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punctured contact 3–manifolds
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Let ƒ˙ DƒC[ƒ� � .R3; �std/ be a contact surgery diagram determining a closed,
connected contact 3–manifold .S3

ƒ̇
; �
ƒ̇
/ and an open contact manifold .R3

ƒ̇
; �
ƒ̇
/.

Following work of Bourgeois, Ekholm and Eliashberg, we demonstrate how ƒ˙

determines a family ˛� of contact forms for .R3
ƒ̇
; �
ƒ̇
/ whose closed Reeb orbits

are in one-to-one correspondence with cyclic words of composable Reeb chords
on ƒ˙. We compute the homology classes and integral Conley–Zehnder indices of
these orbits diagrammatically and develop algebraic tools for studying holomorphic
curves in surgery cobordisms between the .R3

ƒ̇
; �
ƒ̇
/.

These new techniques are used to describe the first known examples of closed, tight
contact manifolds with vanishing contact homology: they are contact 1=k surgeries
along the right-handed, tbD 1 trefoil for k > 0, which are known to have nonzero
Heegaard Floer contact classes by work of Lisca and Stipsicz.
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954 Russell Avdek

1 Introduction

The main objects of interest in this paper are contact 3–manifolds and their Legendrian
submanifolds. A contact form on an oriented 3–manifold M is a 1–form ˛ 2�1.M/

for which ˛ ^ d˛ > 0 with respect to the orientation of M. A contact 3–manifold
is a pair .M; �/ consisting of an oriented 3–manifold M together with an oriented
2–dimensional distribution � � TM which is the kernel of a contact form ˛ satisfying
d˛j� >0 with respect to the orientation on � . We say that ˛ is a contact form for .M; �/.
A Legendrian submanifold of .M; �/ is a link which is tangent to �. We’ll typically
denote Legendrian submanifolds by ƒ or ƒ0.

Given a contact 1–form ˛ for some .M; �/ its Reeb vector field, R, is determined by
the equations

˛.R/D 1; d˛.R;�/D 0:

For the purposes of studying invariants of .M; �/ and its Legendrian submanifolds
defined by counting holomorphic curves — see Eliashberg, Givental and Hofer [23],
Etnyre and Ng [26], Hutchings [40] and Seidel [59] — we are interested in finding
contact forms on a given .M; �/ for which R is easy to analyze. Specifically we want to
have visibility into the closed orbits ofR as well the chords of Legendriansƒ0� .M; �/,
that is, the orbits of R parametrized by compact intervals which both begin and end
on ƒ0.

Let .R3; �std/ denote the standard contact structure on Euclidean 3–space, where

�std D ker.˛std/; ˛std D dz�y dx;

and let .S3; �std/ denote the standard contact structure on the unit 3–sphere S3, where

�std D ker
� 2X

1

xi dyi �yi dxi

�
:

A contact surgery diagram is a Legendrian link

ƒ˙ DƒC[ƒ� � .R3; �std/:

Performing contact ˙1 surgery on the components of the ƒ˙ as defined by Ding and
Geiges [16] produces a contact 3–manifold, which we will denote by .R3

ƒ˙
; �ƒ˙/.

By considering .R3; �std/ as being contained in .S3; �std/, we can view the surgery
diagramƒ˙ as determining a closed contact 3–manifold .S3

ƒ˙
; �ƒ˙/, with .R3

ƒ˙
; �ƒ˙/

obtained by removing a point from .S3
ƒ˙
; �ƒ˙/. As proved by Ding and Geiges
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Combinatorial Reeb dynamics on punctured contact 3–manifolds 955

in [16] — see also Avdek [2] — every closed, connected contact 3–manifold .M; �/ can
be described as .S3

ƒ˙
; �ƒ˙/ for some choice of ƒ˙.

For the remainder of this introduction we assume basic familiar with contact surgery,
Weinstein handle attachment and symplectic field theory (SFT). Further background
and references will be provided in Section 2.

1.1 Combinatorial Reeb dynamics on punctured contact 3–manifolds

The primary purpose of this article is to describe a family of particularly well-behaved
contact forms ˛� for .R3

ƒ˙
; �ƒ˙/ which are determined by the surgery diagramƒ˙. Our

intention is to extend the analysis of Reeb dynamics appearing in work of Bourgeois,
Ekholm and Eliashberg [7; 18] to allow for contact C1 surgeries. In particular, the
following theorem states that their “chord-to-orbit correspondence” is applicable to
any closed contact 3–manifold:1

Theorem 1.1 Let ƒ˙ be a contact surgery diagram presented in the front projection ,
where each component is equipped with an orientation. Possibly after a Legendrian
isotopy of ƒ˙ which preserves the front projection up to isotopy, there is

(1) a constant �0,

(2) a neighborhood N�0 of ƒ˙ in R3, and

(3) a family of contact forms ˛� with Reeb vector fields R� parametrized by � < �0
on .R3

ƒ˙
; �ƒ˙/

such that the following conditions hold :

(1) For any � < �0, performing contact surgery along a neighborhood N� � N�0
produces .R3

ƒ˙
; �ƒ˙/ equipped with the contact form ˛�.

(2) ˛� D ˛std on the complement of N�.

(3) For any � < �0, there is a one-to-one correspondence between cyclic words of
composable @z chords of ƒ˙ and closed orbits of R� (Theorem 5.1).

(4) For a given cyclic word of chords w, there exists �w < �0 such that the orbits
of R� corresponding to w are hyperbolic for � < �w (Theorem 5.3).

(5) There is pair of sections .X; Y / of .R3
ƒ˙
; �ƒ˙/ determined by ƒ˙ and its orien-

tation , providing a symplectic trivialization of the restriction of .�ƒ˙ ; d˛�/ to
all closed orbits of R�. The zero locus X�1.0/D Y �1.0/ is a link contained in

1Contact �1 surgery — also known as Legendrian surgery — describes how the convex boundaries of
Liouville domains are modified by critical-index Weinstein handle attachment.
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956 Russell Avdek

.R3nN�/�R3
ƒ˙

whose connected components are given by transverse push-offs
of the components of ƒ˙ with nonzero rotation number (Theorem 6.1).

(6) The integral Conley–Zehnder indices CZX;Y (Theorem 7.1) and homology
classes (Theorem 9.1) of the closed orbits ofR� can be computed combinatorially
from the surgery diagram.

By “computed combinatorially”, we mean computed via extensions of methods typically
used to set up chain complexes for the Legendrian contact homology (LCH) [26] or
the Legendrian rational symplectic field theory (LRSFT) of Ng [50] of ƒ˙. Analogous
results are stated for chords of Legendrian links ƒ0 � .R3

ƒ˙
; �ƒ˙/ throughout the

paper, providing a “chord-to-chord” correspondence with diagrammatically computable
Maslov indices. The content of Theorem 1.1 is sufficient to compute some algebraic
invariants of tight contact structures on the lens space L.2; 1/ and S1 �S2, as shown
in Section 12.1.

The dynamics analysis of Theorem 1.1 can be supplemented with a direct limit argument
as in Ekholm and Ng [20, Section 4] to obtain a description of the Reeb dynamics on the
closed contact manifolds .S3

ƒ˙
; �ƒ˙/ associated to a contact surgery diagram, which

introduces a pair of embedded elliptic orbits.2 We will not pursue analysis of closed
contact manifolds in this paper, as the open manifolds .R3

ƒ˙
; �ƒ˙/ have particularly

friendly geometries, which we’ll leverage in applications.

1.2 Constrained topology of holomorphic curves and applications

The secondary purpose of this article is to develop tools for studying holomorphic
curves in symplectizations of the .R3

ƒ˙
; �ƒ˙/ and in surgery cobordisms between

them. Our intention is to make “hat versions” of holomorphic curve invariants of
.R3
ƒ˙
; �ƒ˙/— as defined by Colin, Ghiggini, Honda and Hutchings [14, Section 7.1] —

more computationally accessible. Theorem 1.1 already provides us with rather complete
descriptions of the chain complexes underlying such invariants.3 In particular, we’ll be
interested in the hat version of contact homology .CH/,cCH.S3

ƒ˙
; �ƒ˙/D CH.R3

ƒ˙
; �ƒ˙/:

2See for example Bourgeois [6, Section 4.1] and Hutchings [40, Example 1.8].
3There is some subtlety for bECH: In order to compute relative ECH indices, the links underlying collections
of simple Reeb orbits should be known, whereas we will describe the homotopy classes of closed Reeb
orbits. Such link embeddings can be computed as solutions to matrix arithmetic problems described in
Section 5.6.
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Figure 1: The Legendrian trefoil of Theorem 1.2 shown in the front projection.

Hat versions of other holomorphic curve invariants of .S3
ƒ˙
; �ƒ˙/ such as embedded

contact homology ( bECH) and the SFT algebra (bSFT) are defined analogously.4

We demonstrate the utility of our tools in two applications: First we provide a (slightly)
new proof of the vanishing of CH of overtwisted contact manifolds (see Eliashberg
and Yau [65]) using surgery-theoretic methods (Section 12.3). Second, we prove the
following theorem (Section 12.5):

Theorem 1.2 Ifƒ�D¿ andƒC has a component which is a right-handed trefoil , then

CH.S3
ƒ˙
; �ƒ˙/D

cCH.S3
ƒ˙
; �ƒ˙/D 0

In particular , contact 1=k surgery on the right-handed , tbD 1 trefoil for k >0 produces
a closed , tight contact manifold .S3

ƒ˙
; �ƒ˙/ with vanishing contact homology. (See

Figure 1.)

The development of our tools (Section 11) starts with a variation of the construction of
transverse knot filtrations of holomorphic curve invariants from [14, Section 7.2]: Lines
in R3 directed by @z over points .x; y/ 2 R2 n �x;y.N�/ determine infinite-energy
holomorphic planes Cx;y in R�R3

ƒ˙
. The Cx;y form a holomorphic foliation whose

existence constrains the topology of curves à la the proofs of uniqueness-of-symplectic-
manifold theorems of Eliashberg [22], Gromov [32], Geiges and Zehmisch [30],
Hind [34], McDuff [44; 45] and Wendl [61]. Counting intersections Cx;y �U of these
planes with finite-energy curves U asymptotic to collections ˙ of closed R� orbits
yields locally constant, Z�0–valued functions on SFT moduli spaces — topological
invariants determined by the relative homology classes

Œ�R3
ƒ̇
ıU � 2H2.R

3
ƒ˙
; ˙/

of holomorphic curves. Surgery cobordisms may be similarly considered when equipped
with special almost-complex structures described in Section 11.2. By tracking these
intersections, we can:

(1) Show that certain disks appearing in Ng’s combinatorially defined Legendrian
RSFT [50] determine rigid holomorphic planes in R�R3

ƒ˙
(Section 12.2). This

4We use SFT to denote the SFT algebra, while SFT — without italics — refers to Eliashberg, Givental and
Hofer’s framework for defining holomorphic curve invariants of contact and symplectic manifolds of [23].
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follows a Lagrangian-boundary version of Hofer’s bubbling argument [35], in
which case the Cx;y �U completely dictate the ways in which certain families of
holomorphic disks can degenerate into multilevel SFT buildings.

(2) Equip the cCH chain complexes with a new grading, denoted by Iƒ, which
depends on the surgery diagram (Section 12.4). Variants of this grading may
similarly be applied to any holomorphic curve invariant of .R3

ƒ˙
; �ƒ˙/.

In the proof of Theorem 1.2, we show that C1 surgery on the tbD 1 trefoil provides
a CZX;Y D 2 closed orbit  of R� with @CH D˙1 2Q. Computations of Conley–
Zehnder indices, homology classes, and Iƒ shows that any indD1 rational holomorphic
curves positively asymptotic to  must be a plane, and that such planes may be counted
using our bubbling argument.

Theorem 1.2 provides the first examples of closed, tight contact manifolds with CHD0.5

The tightness of 1=k surgeries on the tb D 1 trefoil is provided by computations of
Heegaard Floer (HF) contact classes — see Honda, Kazez and Matić [38] and Ozsváth
and Szabó [53] — by Lisca and Stipsicz in [43, Section 3]. As the HF contact class
contains the same information as the ECH contact class — see Colin, Ghiggini and
Honda [13] and Kutluhan, Lee and Taubes [42] — and both ECH and SFT count
holomorphic curves of arbitrary topological type — in particular, arbitrary genus — it
would be interesting to know if there is some SFT invariant of this contact manifold
which is nonvanishing. Broadening the scope of this inquiry, we ask the following:

Question 1.3 For 3–dimensional contact manifolds , does CH.M; �/¤ 0 imply that the
HFD ECH contact class of .M; �/ is nonzero? Do there exist tight contact manifolds
of dimension greater than three with vanishing contact homology?

We note that, using the algebraic formalism of [23], the vanishing of contact homology
is equivalent to the vanishing of SFT according to Bourgeois and Niederkrüger [9].

Outline of this paper

In Section 2 we outline notation and background information which will be used through-
out the rest of the paper. Section 3 is also primarily concerned with notation, associating
algebraic data to chords of Legendrian links in .R3; �std/, which will be used to package
invariants of chords and closed orbits in the surgered contact manifolds .R3

ƒ˙
; �ƒ˙/.

5Due to CH functoriality under Liouville cobordism, Honda’s tight contact manifold which becomes
overtwisted after contact �1 surgery [37] already provides an example of a contact manifold with convex
boundary whose sutured contact homology [14] is zero.
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Sections 4–9 carry out the computational details of Theorem 1.1 and analogous re-
sults for chords of Legendrian links ƒ0 � .R3

ƒ˙
; �ƒ˙/. In Section 10 we describe

handle-attachment cobordisms between the .R3
ƒ˙
; �ƒ˙/ associated to surgeries along

their Legendrian knots. The construction of these cobordisms — slight modifications
of Ekholm [18] and Weinstein [60] — provides us with model geometry facilitating
analysis of holomorphic curves.

Section 11 describes holomorphic curves in symplectizations of and surgery cobordisms
between the .R3

ƒ˙
; �ƒ˙/. The algebraic tools described in that section are prerequisite

for the applications appearing in Section 12, culminating in the proof of Theorem 1.2.

Content pertaining to Legendrian links ƒ0 � .R3
ƒ˙
; �ƒ˙/ may be skipped by readers

only interested in the applications of Section 12. This material is included to provide a
complete picture of relative SFT chain complexes in anticipation of their use in future
applications.
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2 Prerequisites

2.1 General notation

Throughout this paper ı�;�— with a double subscript — will denote the Kronecker delta
and b�cwill be the floor function R!Z. A collection will be a set in which elements are
allowed to have nontrivial multiplicity. We use set notation for collections. For example
f1; 1; 2g is a collection with f1; 1; 2gnf1gD f1; 2g and f1; 1; 2g[f2; 3gD f1; 1; 2; 2; 3g.
We’ll use often use collections and ordered collection to organize chords and orbits as
they may appear in CH, ECH, LCH, etc.

Unless otherwise specified, we use I to denote a connected 1–manifold and, for a
positive number �, we write I� D Œ��; ��. For a > 0, the circle R=aZ will be denoted
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by S1a and, without the subscript, S1D S11 . The unit disk of dimension n and radius C
centered about x 2Rn will be denoted by DnC .x/. We’ll typically use the simplified
notation Dn DDn1 .0/ and D for D2. The complex projective space will be written Pn.

For a closed manifold M, �M will denote the open manifold obtained from M by
removing a point or closed disk. When .M; �/ is a closed contact manifold, 1.M; �/
will denote .M; �/ with a point or standard Darboux disk removed. We say that 1.M; �/
is a punctured contact manifold.6

For a space M, we denote homology and cohomology groups by H�.M/ and H�.M/,
respectively. Integral coefficients will be assumed unless otherwise explicitly stated.
When M is a closed manifold, PD will be used to denote the Poincaré duality iso-
morphism in either direction, Hi $H dim.M/�i . Abusing notation, we also use PD
to denote the associated isomorphisms for punctured manifolds �M in degrees i ¤ 0.
By a Q–homology sphere, we mean a closed or punctured 3–manifold with finite H1
(implying that H2 D 0 by the universal coefficients theorem; see [33, Corollary 3.3]).

For a vector bundle E over a manifold M, the space of C1 sections will denoted
by �.E/. The space of nowhere-zero sections — which may be empty — will be
denoted by �¤0.E/. Provided that E has finite rank n and trivializations .Vi / and .Wi /
of E over some set U �M, transformations of the form

P
i;j ai;jWi ˝ V

�
j can be

written as matrices, with respect to which we say that .Vi / is the incoming basis
and .Wi / is the outgoing basis. In such situations, provided a1; : : : ; an 2 C1.U /,
Diag.a1; : : : ; an/ will be the diagonal matrix with a1 in the top-left corner and J0
will denote standard complex multiplication where applicable. The Euler class of a
finite-dimensional bundle will be written e.E/ and Chern classes will be written ck.E/
when the bundle is equipped with a (homotopy class of) complex structure. We will
be predominantly interested in the case E D � for a 3–dimensional contact manifold
.M; �/, in which case the Euler and first Chern classes coincide: e.�/D c1.�/.

2.2 Vector fields and almost-complex structures

In this section we review vector fields and almost-complex structures typically encoun-
tered in symplectic and contact geometry, primarily for the purpose of establishing
conventions which often vary in the literature. We’ll use Option 1 of [63]. See that
article or [46, Remark 3.3] for further discussion.7

6In [14], the notation M.1/ is used for what we call �M.
7Regarding work we’ll be frequently referencing, our signs for symplectic forms on cotangent bundles
will be opposite that of [18] and our signs for Hamiltonian vector fields are opposite that of [4; 3; 14].
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Let .W; ˇ/ be a 2n–dimensional exact symplectic manifold. That is, W is an oriented
2n–manifold on which dˇ is symplectic. We call such ˇ a Liouville form or symplectic
potential. If H 2 C1.W / is a smooth function with values in R or S1, the associated
Hamiltonian vector field, denoted by XH , is the unique solution to the equation

dˇ.�; XH /D dH:

Clearly H is constant along the flow-lines of XH and XH depends only on dˇ (rather
than ˇ). If J is an almost-complex structure for which gJ , defined by

gJ .u; v/D dˇ.u; J v/; u; v 2 Tp†;

is a J –invariant Riemannian metric, then

XH D JrH;

where rH is the gradient of H with respect to gJ solving gJ .rH;�/D dH. We say
that such J is a compatible almost-complex structure.

The Liouville vector field, denoted by Xˇ , on W is the unique solution to the equation

dˇ.Xˇ ;�/D ˇ:

If W is compact and Xˇ points outward along the boundary of W, we say that the pair
.W; ˇ/ is a Liouville domain. Given a functionH 2 C1.W /, the 1–form ˇH DˇCdH

is also a primitive for dˇ such that

XˇH DXˇ CXH :

By our choice of convention, Hamiltonian and Liouville vector fields interact with dˇ
via

ˇ.XH /D dˇ.Xˇ ; XH /D dH.Xˇ /:

Given a contact manifold .M; �/ equipped with a contact form ˛, action of the chords
and closed orbits of its Reeb vector field may be computed as

A./D
Z


˛:

2.3 Contact and symplectic manifolds

Here we review some contact and symplectic manifolds which will appear frequently.

2.3.1 Cotangent bundles Our convention for Liouville forms on the cotangent bundle
T �L of a smooth manifold L will be to use the form .T �L; �can/ with �canDpi dqi in
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a local coordinate system .qi / on L. Provided such coordinates on L, we use .pi ; qi /
as local coordinates on T �L, so that d�can is symplectic with respect to the induced
orientation.

2.3.2 Contactizations Provided an exact symplectic manifold .W; ˇ/, we have a
contact form dzCˇ on I�W. We will refer to the contact manifold .I�W; ker.dzCˇ//
and the pair .R�W; dzCˇ/ both as the contactization of .W; ˇ/.

It’s easy to see that deformations of an exact symplectic manifold give rise to contacto-
morphic contactizations. For, ifH 2C1.W;R/, then the contactization of .W; ˇCdH/
is equivalent to the contactization of .W; ˇ/ by the transformation

.t; w/ 7! .t CH;w/:

We’ll further analyze geometry of contactizations in Sections 10.1 and 11.1. The
quintessential example of a contactization is the 1–jet space of a closed manifold,
which is the contactization of its cotangent bundle.

2.3.3 Symplectizations Provided .M; �/ and ˛ as above, .R�M; et˛/ is an exact
symplectic manifold, called the symplectization of the pair .M; ˛/. By considering
diffeomorphisms of the form .t; x/ 7! .tCf .x/; x/ on R�M for f 2 C1.M; .0;1//,
it is clear that the symplectization is independent of the choice of ˛ for �, up to
symplectomorphism.

For any constant C, we will likewise refer to
�
ŒC;1/�M; et˛

�
as the positive half-

infinite symplectization and
�
.�1; C ��M; et ; ˛

�
as the negative half-infinite symplec-

tization of the pair .M; ˛/. For constants C < C 0, we will call .ŒC; C 0��M; et˛/ a
finite symplectization of the pair .M; ˛/.

Here we can compute
Xˇ D @t ; Xt D e

�tR:

Hence, there is a one-to-one correspondence between periodic orbits of R and 1–
periodic orbits of Xt by associating to each  in M the loop .logA./; / in the
symplectization.

2.3.4 Liouville cobordisms between closed and punctured contact manifolds Here
we review some standard vocabulary regarding symplectic cobordisms, modified to
deal with punctured contact manifolds. What are sometimes called “strong symplectic
cobordisms” we will simply refer to as symplectic cobordisms for notational simplicity.

Geometry & Topology, Volume 27 (2023)
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What are sometimes called “exact symplectic cobordisms” we will refer to as Liouville
cobordisms. Our reasoning is that there exist symplectic cobordisms which are exact
symplectic manifolds but which are not “exact symplectic cobordisms”; see Section 2.4
of [62]. See that paper or [52, Chapter 12] for a review of various notions of fillings
and cobordisms with emphasis on low dimensions. We will only be concerned with
Liouville cobordisms here.

Let .M; �/ be a closed contact manifold of dimension 2nC 1 and p 2M a point. We
say that a contact form ˛ for � defined on M n fpg is standard at infinity if there exists
a ball Bp about p 2M, a positive constant C and a diffeomorphism

ˆ W .Bp n fpg/! .R2nC1 nD2nC1C .0//

such that ˆ�.dz�yi dxi /D ˛ and jˆ..t//j !1 for paths .t/ in Bp nfpg tending
towards p.

A Liouville cobordism between contact manifolds .MC; �C/ and .M�; ��/ is a com-
pact exact symplectic manifold .W; �/ for which

(1) @W DMC�M�,

(2) the Liouville vector field X� points into W along M� and out of W along MC,
and

(3) �jTM˙ is a contact form for �˙.

We call MC the convex boundary of .W; �/ and M� the concave boundary of .W; �/.
We may think of a Liouville domain as cobordism whose concave boundary is the
empty set.

A Liouville cobordism between punctured contact manifolds 3.MC; �C/ and 3.M�; ��/
is defined analogously as in the case where the .M˙; �˙/ are closed. However, we
require that there exists a region

IC � .R
2nC1

nD2nC1C .0//�W; f˙C g � .R2nC1 nD2nC1C .0//�M˙

along which �D et .dz�yi dxi / and such that the t D˙C slices provide standard at
infinity neighborhoods of the punctures of the M˙.

We won’t bother to specify that a Liouville cobordism is between closed or punctured
contact manifolds, as it should be clear from the context. In either case, we may
define the completion of a Liouville cobordism to be the noncompact exact symplectic
manifold obtained from a Liouville cobordism by appending a positive half-infinite
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symplectization to a collar of its convex boundary and a negative half-infinite sym-
plectization to a collar of its concave boundary. We denote the completion of such a
cobordism .W; �/ by .W ; x�/.

2.4 Remarks on SL.2 ;R/

We briefly review some properties of SL.2;R/ which will be useful for analyzing
Reeb dynamics on contact 3–manifolds. By definition, SL.2;R/ coincides with
Symp.2;R/— the space of matrices preserving the standard symplectic form dx ^dy.

An element A 2 SL.2;R/ has characteristic polynomial

(1) det.A�� Id/D �2� tr.A/�C 1;

using which eigenvalues of A can be found using the quadratic formula. The non-
degenerate elements are those for which 1 is not an eigenvalue. A nondegenerate
element A falls into one of two classes:

(1) A is called elliptic if its eigenvalues lie on the unit circle or, equivalently,
jtr.A/j< 2.

(2) A is called hyperbolic if its eigenvalues are elements of R or, equivalently,
jtr.A/j> 2.

Hyperbolic elements are further classified as positive (resp. negative) hyperbolic if
the eigenvalues are positive (resp. negative) real numbers. The classification of A 2
SL.2;R/ as elliptic, positive hyperbolic or negative hyperbolic depends only on the
conjugacy class of A.

2.5 Conley–Zehnder indices of Reeb orbits in contact 3–manifolds

Throughout the remaining subsections covering Reeb dynamics and contact homology,
we follow the expositions [6] of Bourgeois (which covers all dimensions) and [40,
Section 3.2] of Hutchings (which specifically focuses on the 3–manifolds). Let  be a
closed Reeb orbit of a contact manifold .M; �/ equipped with a contact form ˛ for �,
whose Reeb vector field will be denoted by R. We assume  is embedded and comes
with a parametrization .t/; write k for its k–fold iterate with k > 0.

As the Reeb flow preserves �, the Poincaré return map for time t D A./ sends
�j.0/ to itself and — provided a symplectic basis of .�j.0/; d˛/— determines a matrix
Ret 2 SL.2;R/. The orbit  will be called nondegenerate, elliptic, positive (negative)
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hyperbolic if the matrix Ret has the associated property. We say that the contact
form ˛ is nondegenerate if all of its Reeb orbits are nondegenerate.8

Remark 2.1 Having a nondegenerate contact form for which all closed orbits are
hyperbolic — as is the case with the contact forms ˛� of Theorem 1.1 — is generally
desirable as branched covers of trivial cylinders over elliptic orbits can have negative
index [41, Section 1]. Likewise, in ECH chain complexes only simple covers of
hyperbolic orbits are considered, whereas multiple covers of elliptic orbits cannot be
avoided [40]. See also [3; 56], where analysis of holomorphic maps is simplified by
considering only hyperbolic orbits.

Suppose that  is a nondegenerate orbit equipped with a framing s 2 �¤0.�j /. By
extending s to a symplectic trivialization of the normal bundle .�j ; d˛/ to  , we can
write the restriction of the linearized flow to �j as a path � D �.t/ in SL.2;R/. Then
we define the Conley–Zehnder index of the orbit  with framing s, denoted by CZs./,
to be the Conley–Zehnder index CZ.�/ of the path �.

If  is hyperbolic, � rotates the eigenspaces of Ret by an angle �n for some n 2 Z,
in which case

CZs.k/D kn:

Negative hyperbolic orbits have n odd and positive hyperbolic orbits have n even. If 
is elliptic, � rotates the eigenspaces of Ret by some angle � 2Rn2�Z in which case
the Conley–Zehnder index is

CZs.k/D 2
j
k�

2�

k
C 1:

Note that CZs depends only on the isotopy class of the framing s. If we write sCn for
a framing whose isotopy class is given by twisting s by n meridians, then

(2) CZsCn.k/D CZs.k/� 2nk:

An orbit k is bad if the parity of its Conley–Zehnder index disagrees with that of
the underlying embedded orbit  . Orbits which are not bad are good. Hence (when
dim.M/D 3), the only bad orbits are even covers of negative hyperbolic orbits. See
[23, Remarks 1.9.2 and 1.9.6].

8In practice, one is typically interested in studying sequences of contact forms ˛n with “nice” limit-
ing behavior, namely there exists a sequence Cn !1 such that the orbits of ˛n of action � Cn are
nondegenerate. See for example [4; 3; 5; 18]. We take a similar approach in this article.
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Note that, as CZs./ mod 2 is independent of s, so is the property that an orbit is good
or bad. We write CZ2./ 2 Z=2Z for the index modulo 2 which satisfies

(3) sgn ı det.Ret � Id/D .�1/CZ2C1:

The following method of computing the Conley–Zehnder index of a path �.t/ for
t 2 Œ0; 1� of symplectic matrices is due to Robbin and Salamon [55]. For a path
� W Œ0; 1�! SL.2;R/, a point t 2 Œ0; 1� is crossing if 1 is an eigenvalue of �.t/. Writing

(4) @�

@t
.t/D J0S.t/�.t/

for symmetric matrices S.t/, we say that a crossing t is regular if the quadratic
form �.t/ defined as the restriction of S.t/ to ker.�.t/� Id/ is nondegenerate. For a
path � with only regular crossings, we can compute CZ.�/ as

(5) CZ.�/D 1
2

sgn.�.0//C
X

t>0 crossing

sgn.�.t//:

Also of utility for computation is the loop property of CZ, which states that, given
k 2 Z and a nondegenerate path �, the path z�.t/D ei2�kt�.t/ has

(6) CZ.z�/D 2kCCZ.�/:

2.6 Holomorphic curves in symplectizations and the index formula

Now suppose that ˛ is a nondegenerate contact form for some contact 3–manifold
.M; �/ and that J is an almost-complex structure which is adapted to the symplectization
.R�M; et˛/. That is,

(1) J is compatible with d.et˛/,

(2) it is t–invariant and preserves � , and

(3) J@t DR.

Let

C D fC1 ; : : : ; 
C

mC
g and � D f�1 ; : : : ; 

�
m�g

be collections of Reeb orbits with C nonempty and let .†; j / be a Riemann surface
with marked points fpC1 ; : : : ; p

C

mC
; p�1 ; : : : ; p

�
m�g. We write †0 for † with its marked
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points removed. We say that .t; U / W†0!R�M is holomorphic if

x@.t; U /D 1
2
.T .t; U /CJ ıT .t; U / ı j /

vanishes. If we wish to specify J and j, we’ll say that the map is .J; j /–holomorphic.
This is equivalent to the conditions

(7) dt D U �˛ ı j; J�˛ ıT U D �˛ ıT U ı j;

where �˛ W TM ! � is the projection V 7! V � ˛.V /R. We provide a few simple
examples.

Example 2.2 (trivial strips, planes and cylinders) Provided a map  W I ! M

parametrizing a Reeb trajectory for a connected 1–manifold I, R� im./�R�M is
an immersion with J –complex tangent planes. Some examples of particular interest:

(1) If I is compact with nonempty boundary parametrizing a chord of R with
endpoints on a Legendrian submanifold ƒ, we’ll call R� im./ a trivial strip.

(2) If I DR and the map  is an embedding, we’ll say that R� im./ is a trivial
plane.

(3) If I D S1a parametrizing a Reeb orbit of action a, then we’ll say that R� im./
is a trivial cylinder.

Given a holomorphic map .t; U / W .†; j /! .R�M;J /, we say that the puncture pCi
is positively asymptotic to the orbit Ci if there exists a neighborhood ŒC;1/� S1

of pCi in † with coordinates r and � for which j is the standard cylindrical complex
structure such that t .r; �/!1 and U.r; �/ tends to a parametrization of Ci as r!1.
Likewise, we say that the puncture p�i is negatively asymptotic to the orbit �i if
t .r; �/!�1 and U.r; �/ tends to a parametrization of �Ci as r!1. Allowing j
and the location of the marked points to vary and then modding out by reparametrization
in the domain, we write M.t;U / for the moduli space of holomorphic maps asymptotic
to the ˙ containing the map .t; U /.

The index of a holomorphic map as above is defined by

(8) ind..t; U //D CZs.C/�CZs.�/��.†0/C 2cs.U / 2 Z;

where

CZs.˙/D
m˙X
iD1

CZs.˙i /:

The relative first Chern class cs.U / is the signed count of zeros of U �� over †0 using
a section which coincides with s near the punctures. Note that ind is independent of s.
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In ideal geometric settings, M.t;U / is a manifold near the point .t; U / of dimension
ind..t; U //.

Remark 2.3 Here we are disregarding asymptotic markers for orbits which are required
for a rigorous functional-analytic setup for moduli spaces and curve counts. We refer
to [4; 54] for details.

The energy of a holomorphic curve is defined by

E.t; U /D
Z
†0
d˛ D

mCX
1

A.Ci /�
m�X
1

A.�i /:

The energy is nonnegative and is zero if and only if .t; U / is a branched cover of a trivial
cylinder. Energies of curves will be presumed finite unless otherwise explicitly stated.

2.7 Contact homology and its variants

We now give a brief overview of contact homology and symplectic field theory. As in
previous subsections, we focus specifically on the case of contact 3–manifolds.

For each closed Reeb orbit  with framing s, we define its degree j jsDCZs./�12Z.
This degree modulo 2will be denoted by j j. We write CC.˛/ for the supercommutative
algebra with unit 1 generated by the good Reeb orbits of ˛ over Q. Here super-
commutativity means 12 D .�1/j1jj2j21. We note that CC.˛/ has two canonical
gradings:

(1) The degree grading given by j1 � � � nj WD
Pn
1 ji j 2 Z=2Z.

(2) The H1 grading given by Œ1 � � � n� WD
Pn
1Œi � 2H1.M/.

For i 2 Z=2Z and h 2H1.M/, we will use the notation CCi;h to denote the relevant
graded Q–subspaces. The contact homology differential

@CH W CCi;h! CCi�1;h

is defined by counting indD 1 (possibly perturbed) solutions to x@.t; U /D 0 with one
positive puncture, any number of negative punctures and genus 0. For such curves .t; U /
positively asymptotic to some C and negatively asymptotic to �j simultaneously
framed with some choice of s, equation (8) becomes

(9) ind..t; U //D jCjs �
X
j

j�j jsC 2cs.U /:

Each such solution contributes a term to @C of the form m.CI �i /
�
1 � � � 

�
n with

m.CI �i / 2Q. If there are no negative punctures, we get a term of the form m.C/1
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and we set @CH1D 0. The differential is then extended to products of orbits using the
graded Leibniz rule

@CH.12/D .@1/2C .�1/
j1j1.@2/

and to sums of products linearly.

Definition 2.4 The resulting differential graded algebra ker.@CH/=im.@CH/ is defined
to be the contact homology of .M; �/, denoted by CH.M; �/. As in the case of CC.˛/,
CH.M; �/ also has degree and H1 gradings. We write CHi;h.M; �/ for the subspace
of CH.M; �/ with degree i and H1 grading h.

This theory, first proposed by Eliashberg, Givental and Hofer [23], has been proven to
be rigorously defined and independent of all choice involved by Bao and Honda [4]
and Pardon [54]. We defer to these citations for the specifics of how the coefficients
m.CI �i / 2 Q are computed and details around any required perturbations of x@.
For the purposes of this paper, it suffices to know that, for generic J adapted to the
symplectization of a contact manifold,

(1) curves which are somewhere injective may be assumed regular,

(2) regularity for these curves may be achieved by perturbations of J in arbitrarily
small neighborhoods of the closed orbits of R, and

(3) assuming such regularity, the moduli space of holomorphic planes positively
asymptotic to a closed, embedded orbit will be a manifold (rather than an
orbifold), so that such indD 1 planes can be counted over Z.

Additional algebraic structures — which require more sophisticated underlying chain
complexes — may be constructed as follows:

(1) By counting ind D 1, genus 0 holomorphic curves with arbitrary numbers of
positive and negative punctures via a differential @RSFT , the rational SFT algebra
(RSFT) may be defined.

(2) By counting indD 1 holomorphic curves with arbitrary genus and numbers of
positive and negative punctures via a differential @SFT , the SFT algebra (SFT)
may be defined.

See [23] for a more complete picture or the exposition [64, Lecture 12] for further
details regarding these invariants.9 For other RSFT-like algebraic structures associated

9At the time of writing, rigorous definitions of RSFT and SFT are under construction using a variety of
frameworks. We refer to [4; 48; 54] for accounts of the current state of the development of SFT.
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to counts of rational curves with multiple positive punctures, see [48], which constructs
such invariants and provides an overview of recent additions to the literature.

The lecture notes [6] and Section 1.8 of [54] also contain a rather exhaustive list of
additional structures such as grading refinements and twisted coefficient systems for
contact homology. We won’t address such additional structures in this article, except
in the following simple situations:

Proposition 2.5 (canonical Z gradings) The 0 2 H1.M/ part of CH.M; �/ is a
subalgebra of CH. Suppose that �¤0.�/ is nonempty (equivalently, c1.�/D 0).

(1) The Z–valued degree gradings j � js on CC.˛/ determine Z–valued gradings
on CH�;0.M; �/ and are independent of the choice of s 2 �¤0.�/.

(2) Moreover , if H 1.M/ DH2.M/ D 0, then the Z–valued degree gradings j � js
on CC.˛/ determine Z–valued gradings CH.M; �/ which are independent of the
choice of s 2 �¤0.�/.

We get canonical Z gradings on CH when we have a nondegenerate Reeb vector field
with only homologically trivial Reeb orbits or whenM is a 3–dimensional Q–homology
sphere.

Proof The fact that CH�;0.M; �/ is a subalgebra of CH.M; �/ is clear from the fact
that @CH preserves H1 and that CC�;0 is closed under products.

Provided s 2 �¤0.�/, extend s to a trivialization �! C. For our extension, we may
use Js for an almost-complex structure J on �. In this way, we see that any other
nonvanishing section s0 defines a map M !C�' S1 and recall that homotopy classes
of maps to S1 are in bijective correspondence with elements of H 1 [33, Theorem 4.57].
Write Œs0� s� 2H 1 for the cohomological element provided by this correspondence. If
 is a closed orbit of some ˛ for .M; �/, then Œs0� s� � Œ� 2 Z equals the difference in
meridians between the framings of �j determined by s and s0. Then CZs./�CZs0./
will be determined by this framing difference according to (2).

If Œ�D 0 2H1, then the above tells us CZs./D CZs0./, so that the gradings j js
on CC�;0 are independent of choice of nonvanishing s. If H 1.M/ D 0 then s0 is
necessarily homotopic to s, so that all of the gradings j � js are equivalent on CC�;�.
As s is nonvanishing, the cs term in (9) is always 0, meaning that @ always lowers the
degree j � js by exactly 1 and so the Z–valued degree gradings on CC determines a Z

grading on homology.
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To complete the proof, we must show that the Z grading is independent of the choices
used to compute CH. Proofs of invariance of CH (see as they appear in [4; 54]) are
obtained by considering the symplectization of .M; ˛/— for some ˛— equipped with
almost-complex structures which are adapted to ˛ at the negative end .�1;�C ��M
of the symplectization and adapted to H˛ at the positive end ŒC;1/�M for some
C > 0 and H 2 C1.M; .0;1//. In such a scenario, T .R�M/ can be split as the
direct sum spanR.@t ; J @t /˚ �, and we can extend s over R�M in the obvious way
to frame Reeb orbits at both ends of R�M. The isomorphism between the contact
homologies of the ends of the cobordism is defined by counting indD 0 holomorphic
curves in R�M, which, by the index formula of (9), must preserve the Z grading.

The variant of contact homology which will be of the most interest to us is the hat version,
denoted by cCH.M; �/ and defined in [14]. To define this theory for .M; �/, we can equip�M with a standard-at-infinity ˛ for y� D �j �M , choose an appropriately convex J on y�,
and compute CH as above. We describe such J for the .R3

ƒ˙
; �ƒ˙/ in Section 11.2.10

The following theorem summarizes some properties of cCH laid out in the introduction
of [14] (coupled with some well-known results):

Theorem 2.6 The invariant cCH.M; �/ satisfies the following properties:

(1) For the standard contact 3–sphere .S3; �std/, cCH.S3; �std/DQ1.

(2) If .M; �/ is overtwisted , then cCH.M; �/D 0.

(3) For a contact-connected sum .M1; �1/ # .M2; �2/,cCH..M1; �1/ # .M2; �2//' cCH.M1; �1/˝ cCH.M2; �2/:

(4) The inclusion 1.M; �/! .M; �/ induces an algebra homomorphismcCH.M; �/! CH.M; �/:

Consequently, CH.M; �/¤ 0 implies cCH.M; �/¤ 0.

(5) A Liouville cobordism .W; �/ with convex boundary 4.MC; �C/ and concave
boundary 3.M�; ��/ determines an algebra homomorphism

ˆ.W;�/ W cCH.MC; �C/! cCH.M�; ��/:

(6) Consequently, if .M; �/ admits a Liouville filling , then both CH.M; �/ andcCH.M; �/ are nonzero.

10In [14], less restrictive conditions are placed on ˛ and J to define cCH within the framework of the more
general sutured contact homology. We choose more restrictive conditions so as to simplify our exposition
and avoid general discussion of sutured contact manifolds and their completions as well as to simplify
J –convexity arguments.
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Item (5), which will refer to as Liouville functoriality, does not explicitly appear
in the literature for cCH, though it follows from a simple combination of existing
arguments and constructions. Liouville functoriality is established for closed contact
manifolds in [4; 54]. To extend the results to punctured contact manifolds, one needs to
establish SFT compactness [8] of (possibly perturbed) moduli spaces of holomorphic
curves positively asymptotic to closed orbits of a standard-at-infinity contact form on
3.MC; �C/ and negatively asymptotic to closed orbits of a standard-at-infinity form

on 3.M�; ��/ in the completion of .W; �/. To obtain compactness, we may restrict
to almost-complex structures J which are t–invariant over the neighborhood of the
puncture of the M˙ to ensure that sequences of curves cannot escape the completed
cobordism through the horizontal boundary of the symplectization of the puncture.
Our definition of Liouville cobordism between punctured contact manifolds and the J
of Section 11.2 ensure that these desired hypotheses are in place. Perturbations of x@
required to achieve transversality for the counting of curves and gluing of multilevel
SFT buildings can be implemented in arbitrarily small neighborhoods of closed Reeb
orbits [4, Section 5], so that such perturbations do not interfere with convexity. In this
way, the compactness results of [14, Section 5] carry over without issue.

For Theorem 2.6(6), Liouville functoriality tells us that a Liouville filling of a closed
contact manifold induces an algebra homomorphism from CH.M; �/ to Q (also known
as an augmentation). Therefore, CH.M; �/¤ 0, implying cCH.M; �/¤ 0 by (4).

2.7.1 Relative contact homology We now briefly review SFT invariants of a Legen-
drian link ƒ� .M; �/. For the case .M; �/D .R3; �std/, we recommend [26], with the
general theory laid out in [23, Section 2.8].

Provided a Legendrian link ƒ� .M; �/ and a contact form ˛ for � , consider the space
of chords of R which begin and end on ƒ. A chord r D r.t/ is nondegenerate if it
satisfies the transversality condition

FlowA.r/
R .Tr.0/ƒ/ t Tr.A.r//ƒ� �r.A.r//:

We then say that the pair .˛;ƒ/ is nondegenerate if all chords for the pair and all closed
orbits of R are nondegenerate. Provided nondegeneracy, we consider a Z=2Z–graded
supercommutative algebra CC.˛;ƒ/ generated by the chords of ƒ and the good closed
orbits of R.11 As in the nonrelative case, CC.˛;ƒ/ comes with an additional homolog-
ical grading, given by the relative homology classes of chords and orbits in H�.M;ƒ/.

11We are skipping definition of the gradings of chords in the general case. See [26; 50] for gradings in the
case of Legendrians in .R3; �std/.
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We may then define a differential

@LCH W CCi;h.˛;ƒ/! CCi�1;h.˛;ƒ/

for i 2 Z=2Z and h 2 H1.M;ƒ/ as follows: for a chord r , @LCH counts ind D 1

holomorphic disks in the symplectization of .M; �/ with

(1) a single boundary puncture positively asymptotic to r ,

(2) any number m of boundary punctures negatively asymptotic to chords r�i of ƒ,

(3) @D with its punctures removed mapped to the Lagrangian cylinder over ƒ, and

(4) n interior punctures negatively asymptotic to closed orbits �j
Each such disk contributes a term of the form m.rCI r�; �/r�1 � � � r

�
m
�
1 � � � 

�
n to

@LCHr
C. For a closed orbit C, the differential @LCH

C coincides with the contact
homology differential of C. The differential is then extended to products and sums
of products using the Leibniz rule and linearity as in the case of nonrelative contact
homology.

Definition 2.7 The resulting differential graded algebra ker.@LCH/=im.@LCH/ is de-
fined to be the Legendrian contact homology of the triple .M; �;ƒ/, denoted by
LCH.M; �;ƒ/. As in the case of CCƒ, LCH has degree and relative H1 gradings.

The computation @2LCH D 0 and proof of invariance for links in .R3; �std/— in which
case there are no closed Reeb orbits — is carried out in [19], with a proof of the general
case sketched in [23]. In the case ƒ� .R3; �std/, a combinatorial version of LCH —
originally due to Chekanov [10] — may be computed by counting immersions of disks
into the xy–plane with boundary mapped to the Lagrangian projection of ƒ, in which
case @2LCH D 0 may be proved diagrammatically. Additional algebraic structures may
derived from the triple .M; �;ƒ/ by considering disks with multiple positive punctures
as in [17; 50]. Again, we point to [26] for further references regarding proofs that the
combinatorially and analytically defined invariants coincide for .R3; �std/ as well as
extensions and generalizations of LCH in both algebraic and geometric directions.

2.8 Legendrian knots and links in .R3; �std/

Legendrian knots and links will be denoted byƒwith sub- and superscripts. Throughout
this article, we assume that each component of ƒ is equipped with a predetermined
orientation. For a Legendrian link ƒ in a contact manifold .M; �/ with contact form ˛

and Reeb vector field R,
FlowıR.ƒ/
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for ı > 0 arbitrarily small will be called the push-off ofƒ. The Legendrian isotopy class
of the pair .ƒ;FlowıR.ƒ// is independent of R and ı. We write �� for the Legendrian
isotopy class of the push-off.

For a Legendrian link ƒ in .R3; �std/, the front and Lagrangian projections will be
denoted by �xz and �xy , respectively. We will use front projections as our default
starting point for analysis of ƒ, from which we will transition to the Lagrangian
projection — see Section 4.4.

Assuming that ƒ has a single connected component, its classical invariants are

(1) the Thurston–Bennequin number tb.ƒ/;

(2) the rotation number, rot.ƒ/, which depends on an orientation of ƒ; and

(3) the smooth topological knot underlying ƒ.

In the Lagrangian projection, we may compute tb.ƒ/ as the writhe and rot.ƒ/ as the
winding number. Geometrically, the Thurston–Bennequin number is defined as the
linking number

tb.ƒ/D lk.ƒ; ��/;

whereas rot is defined as the degree of the Gauss map of Tƒ in �std with respect to
a nowhere-vanishing trivialization. If we replace R3 with any contact Q–homology
sphere, then tb is defined for null-homologous Legendrian knots and rot is defined for
all Legendrian knots using the framings of Proposition 2.5. See also Definition 6.3.

Classical invariants of a Legendrian knot ƒ� .R3; �std/ are constrained by the slice-
Bennequin bound of [57]:

(10) 1
2

�
tb.ƒ/Cjrot.ƒ/jC 1

�
� gs.ƒ/� g.ƒ/:

Here gs.ƒ/ is the smooth slice genus of the topological knot underlying ƒ and g.ƒ/
is the Seifert genus. See [24, Section 3] for an overview of related results.

Let ƒ be a Legendrian knot in a contact manifold .M; �/. Take a cube I 3� �M with
� > 0 and coordinates x, y and z such that

� D ker.˛std/; ƒ\ I 3� D fy D z D 0g

and @x orients ƒ. Then ƒ is locally described by Figure 2, left. The positive and
negative stabilizations of ƒ, denoted by SC.ƒ/ and S�.ƒ/, are defined as the Leg-
endrian knots determined by modifying ƒ in the front projection of I 3� as described
in Figure 2, right. We say that a Legendrian knot ƒ is stabilized if it is a positive or
negative stabilization of some ƒ0 � .M; �/.
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ƒ

SC.ƒ/

S�.ƒ/

Figure 2: Positive and negative stabilizations of ƒ described in the front
projection as in [24, Figure 19].

2.9 Contact surgery

Contact surgery — first defined in [16] — provides a way of performing Dehn surgery
on a Legendrian link ƒ˙ so that the surgered manifold carries a contact structure
uniquely determined by ƒ˙ and .M; �/. We recommend Ozbagci and Stipsicz [52] as
a general reference.

We take the coefficients of the components of the sublinks ƒC (resp. ƒ�) to be C1
(resp. �1). Intuitively speaking, contact �1 (resp.C1) surgery removes a neighborhood
of a Legendrian knot of the form I� � I� � S

1 — the first coordinate being directed
by @z — and then glues it back in using a positive (resp. negative) Dehn twist along
f�g � I� �S

1. The construction may be formalized using the gluing theory of convex
surfaces. A rigorous account of the construction will be carried out in Section 4.
For k 2 Z n f0g one may analogously perform contact 1=k surgery on a Legendrian
knot ƒ by applying �k Dehn twists as above. We will take as definition that contact
1=k surgery for k ¤ 0 is given by performing contact sgn.k/ surgery on jkj parallel
push-offs of ƒ.

We write
ƒDƒC[ƒ0[ƒ� � .R3; �std/

to specify a Legendrian link ƒ0 sitting inside of the contact manifold .R3
ƒ˙
; �ƒ˙/.

Since the neighborhoods of the components of ƒ defining surgery many be chosen to
be disjoint from ƒ0, we may consider it to be a Legendrian link in .R3

ƒ˙
; �ƒ˙/ post

surgery. The superscript 0 on ƒ0 may be thought of as indicating a trivial 1
0
D 1

surgery in the usual notation of Kirby calculus.

In Section 10 we will review how contact surgeries may be viewed as the result of
handle attachments. We refer the reader to [52] for a review in the low-dimensional
case and to [11] for the general case.
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Theorem 2.8 We summarize some known results about contact surgery relevant to
this paper:

(1) The contact manifold obtained by contact C1 surgery on the Legendrian unknot
with tbD�1 yields the standard fillable contact structure �std on S1 �S2.

(2) Applying contact �1 surgery on a Legendrian knot in .M; �/ produces the same
contact manifold as is obtained by attaching a Weinstein handle to the convex
boundary of the symplectization of .M; �/.

(3) Then performing˙1 surgery on a Legendrian knot ƒ� .M; �/ followed by�1
surgery on a push-off �� leaves .M; �/ unchanged.

(4) A contact 3–manifold is overtwisted if and only if it can be described as the result
of a contact C1 surgery along a stabilized Legendrian knot ƒ in some .M; �/.12

(5) If ƒ� .R3; �std/ satisfies tb.ƒ/D 2gs.ƒ/� 1, then contact 1=k surgery on ƒ
produces a tight contact manifold [43] for any k 2 Z.

(6) For a Legendrian knot ƒ� .R3; �std/ and an integer k > 0, contact 1=k surgery
on ƒ produces a symplectically fillable contact 3–manifold if and only if both
k D 1 and ƒ bounds a Lagrangian disk in the standard symplectic 4–disk [15].

3 Notation and algebraic data associated to chords

In this section we describe notation and algebraic data associated to chords of Legendrian
links which will be used throughout the remainder of the paper. We take ƒ� .R3; �std/

to be a nonempty link with sublinks ƒC, ƒ� and ƒ0 — any of which may be empty.
We write ƒ˙ DƒC[ƒ�.

Assumptions 3.1 It is assumed throughout that ƒ is chord generic, meaning that all
chords of ƒ are nondegenerate and that distinct chords are disjoint as subsets of R3.

3.1 Surgery coefficients and chords of ƒ

It will be convenient to write ƒD [ƒi with the subscript i indexing the connected
components ofƒ. Using this notation, we use ci 2f�1; 0;C1g to indicate thatƒi �ƒci .

Denote by rj the Reeb chords of ƒ with the contact form ˛std D dz�y dx, which are
in one-to-one correspondence with the double points of the Lagrangian projection �xy .

12One proof is obtained by proving the “if” statement using [51] and proving “only if” by following the
proof of Theorem 12.3. Alternatively, one can apply a handle-slide to [2, Theorem 5.5(2)].
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We write sgnj 2 f˙1g for the sign of the crossing of ƒ in the Lagrangian projection
associated with the chord rj in accordance with the orientation of ƒ.

We define l�j to be the index i of the ƒi on which rj begins and lCj to be the index of
the component of ƒ on which rj ends. The tip of a chord rj is the point qCj 2ƒlC

j

where the chord ends. The tail of rj is the point q�j 2ƒl�j at which the chord rj begins.
We write the surgery coefficient of the components of ƒ corresponding to l˙j as c˙j .
That is,

c˙j D cl˙
j

:

3.2 Words of chords

An ordered pair of chords .rj1 ; rj2/ is composable if lCj1 D l
�
j2

. A word of Reeb chords
for ƒ is a formal product of chords w D rj1 � � � rjn in which each pair .rjk ; rjkC1/ is
composable for k D 1; : : : ; n� 1.

We say that a word of Reeb chords rj1 � � � rjn is a word of chords with boundary
on ƒ0 if rj1 begins on ƒ0 and rjn ends on ƒ0 and all other endpoints of chords touch
components of ƒC[ƒ�.

A cyclic word of Reeb chords for ƒ, denoted by rj1 � � � rjn , is a word of Reeb chords
for which .rjn ; rj1/ is composable. Cyclic permutations of cyclic words are considered
to be equivalent:

rj1rj2 � � � rjn D rj2 � � � rjnrj1 :

When speaking of cyclic words of Reeb chords on ƒ, we will implicitly assume that it
is a cyclic word of Reeb chords on ƒC[ƒ�.

The word length of a word w of Reeb chords is the number of individual chords it
contains and will be denoted by wl.w/. The actions of each rj will be denoted by Aj
and the action of a word is defined by

A.rj1 � � � rjn/D
nX
kD1

Ajk :

3.3 Capping paths

Provided a composable pair of chords .rj1 ; rj2/, their capping path is the unique
embedded, oriented segment ofƒlC

j1
Dƒl�

j2
, traveling in the direction of the orientation

of ƒ from the tip of rj1 to the tail of rj2 . The capping path will be denoted by �j1;j2 .
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The analogously defined path, which travels opposite the orientation of ƒlC
j1

will be
denoted by x�j1;j2 and called the opposite capping path. We will use �j1;j2 to denote
one of either �j1;j2 or x�j1;j2 . By setting xx�j1;j2 D �j1;j2 , we can define x�j1;j2 in the
obvious way.

3.3.1 Rotation angles and numbers Denote by G the Gauss map sending the unit
tangent bundle of R2 to S12� with

G.cos.t/@xC sin.t/@y/D t:

This determines a map Gƒ W ƒ! S12� assigning to each point in ƒ the unit tangent
vector at that point determined by the orientation on ƒ.

For any path � W Œ0; 1�!ƒ, we can associate an angle �.�/ 2R as follows: Composing
� with Gƒ determines a map

� DGƒ ı � W Œ0; 1�! S12� :

Denoting by z� the lift of this map to R, the rotation angle of �, denoted by �.�/, is
defined by

�.�/D z�.1/� z�.0/:

If q W S1!R3 is a parametrization of a component ƒi of ƒ, then the rotation angle of
the associated path Œ0; 1�!ƒi is 2� rot.ƒi /.

The rotation angle of a composable pair .rj1 ; rj2/, denoted by �j1;j2 2 R, will later
help us to compute Conley–Zehnder indices of closed Reeb orbits. It is defined as
�j1;j2 D �.�j1;j2/. We write x�j1;j2 for the rotation angle computed with the opposite
capping path x�j1;j2 , whence

(11) �j1;j2 �
x�j1;j2 D 2� rot.ƒlC

j1
/:

The rotation number of a composable pair of chords .rj1 ; rj2/, denoted by rotj1;j2 , is
defined as

rotj1;j2 D
�
�j1;j2
�

�
2 Z:

3.3.2 Crossing monomials Now we define the crossing monomials, which will later
facilitate our computations of the homology classes of Reeb orbits of the R� . Consider
a collection of variables �i indexed by the connected components ƒi of ƒ.

The crossing monomial of a chord rj , denoted by crj , is defined by

(12) crj D 1
2
..c�j C sgnj /�l�j C .c

C
j C sgnj /�lC

j

/ 2
M

Z�i :
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Figure 3: Each subfigure gives a local picture of a crossing of a capping
path � with a component of ƒ in the Lagrangian projection. Labelings of the
strands appears at the left of each subfigure, with the local contribution to the
crossing number appearing below. Each subfigure may be rotated by � .

The crossing monomial of a composable pair of chords .rj1 ; rj2/, denoted by crj1;j2 ,
is defined by

crj1;j2 D
X

q�
j�
2int.�j1;j2 /

sgnj��lC
j�
C

X
q
C

jC
2int.�j1;j2 /

sgnjC�l�
jC
2

M
Z�i :

The contributions are as described in Figure 3.

Remark 3.2 (crossing monomials for connected ƒ) When ƒ consists of a single
connected component, we get a single surgery coefficient c and a single �. In this
case, crj D .cC sgnj /� 2 2�Z and crj1;j2 D m�, where m is the number of times
the interior capping path �j1;j2 touches the tips and tails of chords, counted with signs
given by the sgnj .

3.4 Broken closed strings

We temporarily work with an arbitrary contact 3–manifold .M; �/ containing a Legen-
drian submanifold ƒ. Equip .M; �/ with a contact form ˛ and write �j for the chords
of ƒ, which will be assumed nondegenerate. Words of chords with boundary on ƒ and
cyclic words of chords on ƒ are defined as above in the obvious fashion.

Let �k for k D 1; : : : ; n be a sequence of chords on ƒ and let ak 2 f˙1g. Let �k be a
collection of oriented arcs �k W Œ0; 1�!ƒ starting at the endpoint (starting point) of �k
if ak is positive (negative) and ending at the starting point (endpoint) of �kC1 if akC1
is positive (negative). Assume that the ak and �jk are such that

(13) b D .a1�1/� �1 � � � � � .ak�n/� �n

forms a closed, oriented loop, where � denotes concatenation and ˙�k is �k paramet-
rized with positive (negative) orientation.
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Definition 3.3 We call a map b as in (13) a broken closed string on ƒ. We call the
ak asymptotic indicators. We consider broken closed strings which differ by cyclic
rotation of indices involved to be equivalent and say that a broken closed string is
parametrized if a fixed ordering of the indices is in use. We also consider broken closed
strings which differ by homotopy of the �k (relative to their endpoints) to be equivalent.

Example 3.4 Let .t; U / be a holomorphic map from a disk with boundary punctures
fpj g removed, D n fpj g, to the symplectization of .M; �/, with boundary punctures
asymptotic to chords of ƒ. Suppose that

(1) the pj are indexed according to their counterclockwise ordering along @D,

(2) the pj are aj –asymptotic to chords �j (aj D 1 for positively asymptotic and
aj D�1 for negatively asymptotic), and

(3) U.@D n fpj g/ � ƒ with �j denoting the restriction of U to the component of
@D n fpj g/�ƒ whose oriented boundary is pjC1�pj .

With the data aj , �j and �j specified by .t; U / as above, equation (13) is a broken
closed string on ƒ. Of particular interest are broken closed strings determined by disks
appearing in the LRSFT differential for Legendrian links in .R3; �std/ [50].

This may be generalized in the obvious way to holomorphic maps .t; U / whose domain
is a compact Riemann surface .†; j / decorated with interior punctures (asymptotic to
closed Reeb orbits) and boundary punctures (asymptotic to chords). Then any boundary
component of † determines a broken closed string on ƒ.

Definition 3.5 A broken closed string determined by a holomorphic map as in
Example 3.4 will be called a holomorphic boundary component.

We note that the �k in the definition of a holomorphic boundary component may be
constant: for example, if .t; U / is a trivial strip with domain R� I� for some chord �,
consider

b D � � �1 � .��/� �2

with �1 being a constant path with value the tip of � and �2 a constant path with value
the tail of �.

Example 3.6 Suppose that ƒ˙ is a contact surgery diagram and let w D rj1 � � � rjn be
a cyclic word of composable Reeb chords on ƒ. There are 2n parametrized broken
closed strings associated to this cyclic word, given by all of the ways that we may
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choose orientations for the capping path starting at the tip of each rjk and ending at
the tail of each rjkC1 :

rj1 � �j1;j2 � � � � � rjn � �jn;j1 ;

rj1 � �j1;j2 � � � � � rjn � x�jn;j1 ;
:::

rj1 � x�j1;j2 � � � � � rjn � �jn;j1 ;

rj1 � x�j1;j2 � � � � � rjn � x�jn;j1 :

Definition 3.7 We call each of the broken closed strings described in Example 3.6 an
orbit string associated to w.

When dealing with orbit strings, the rj are determined by the indices of the capping
paths involved, and so will be omitted from our notation.

Note that a broken closed string on a Legendrian submanifold of dimension n in a
contact manifold of dimension 2nC 1 for n > 1 is uniquely determined by its chords
up to homotopy through broken closed strings. We will see in Section 9.3 that a
parametrized capping string provides instructions for homotoping a Reeb orbit of
.R3
ƒ˙
; �ƒ˙/ into the complement of a neighborhood of ƒ˙ in R3.

3.5 Maslov indices of broken closed strings

Here we define Maslov indices on broken closed strings on Legendrians in contact 3–
manifolds, which are relevant to index computation of holomorphic curves. Essentially,
we are packaging terminology appearing in the above subsection so as to be cleanly
plugged into index computations appearing in [19; 17]. See Section 8.

We assume that dim.M/D3 and that we are working with �k , ak and �k for kD1; : : : ; n,
as described in the previous subsection, determining a broken closed string b whose
domain we take to be dom.b/D S1. We remark on the case dim.M/ > 3 later in this
subsection. Our discussion follows [17, Section 3]. We write q�

k
2ƒ for the starting

point of each �k and qC
k

for its endpoint.

We assume that � is equipped with an adapted almost-complex structure J and suppose
that we have a trivialization s W �jim.b/ ! C of � over the image of a broken closed
string b in M which identifies the symplectic structure d˛ and complex structure J on
the target with the standard symplectic and complex structures on C. The trivialization s
provides us with an identification

b�� 'C �S1
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Denote by L.�/! M the bundle whose fiber L.�jx/ ' S1� over a point x 2 M is
the space of unoriented Lagrangian subspaces — that is, unoriented real lines — in
.�x; d˛/.13 Then s likewise determines an identification

b�L.�/' S1� �S1:

Over the subset of S1 parametrizing the �k , we have a section of this bundle determined
by the unoriented Gauss map,

t 7! Tb.t/ƒ� �b.t/:

Using s, this section determines a map �G over this subset to S1� . We now describe
how to extend this section over the subset of S1 parametrizing the ak�k .

For each chord �k , the time t 2 Œ0;A.�k/� flow of R determines a path in SL.2;R/
by writing FlowtR.�q�k / in the standard basis of R2 determined by s. This likewise
determines a section of L.�/ over the chord by FlowtR.Tq�k ƒ/. As we’ve assumed that
�k is nondegenerate,

FlowA.�k/
R .Tq�

k
ƒ/¤ T

q
C

k

ƒ

as Lagrangian subspaces of �qC
k

. In order to assign a Maslov number to b, we must
make a correction to obtain a closed loop of Lagrangian subspaces:

(1) If ak D 1, then the orientation of b and the chord coincide. To form a closed loop
we join FlowA.�k/

R .Tq�
k
ƒ/ to T

q
C

k

ƒ by making the smallest possible clockwise
rotation to FlowA.�k/

R .Tq�
k
ƒ/.

(2) If ak D�1, then the orientation of b and the chord disagree. To form a closed
loop of Lagrangian subspaces along b, we start at the endpoint of the chord,
follow the negative flow of R, and then join Flow�A.�k/R .T

q
C

k

ƒ/ to Tq�
k
ƒ by

making the smallest clockwise rotation possible.

Denote by �b;s W S1! S1� the map so obtained.

Definition 3.8 We call the degree of the map �b;s described above the Maslov index
of the broken closed string b with respect to the framing s, denoted by Ms.b/ 2 Z. It is
easy to see that Ms.b/ does not depend on the cyclic ordering of its indices involved,
so that it is well defined.

13We use the circle of radius � , S1� , rather than S12� due to our ignoring the orientations of the lines
involved.
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The following easily follows from the construction of Ms:

Proposition 3.9 Let b be a broken closed string on ƒ� .M; �/ with a trivialization s
of �jim.b/. Smooth homotopies of such trivializations s leave Ms.b/ unchanged. The
mod 2 reduction of Ms.b/ is independent of s, so that we may define M2.b/ 2 Z=2Z

as an invariant of b.

Now suppose that �¤0.�/ is nonempty as in Proposition 2.5, which clearly applies to
any ƒ� .R3; �std/:

(1) If b is homologically trivial in M, then Ms.b/ is independent of s 2 �¤0.�/.

(2) If H2.M/DH 1.M/D 0, then Ms.b/ is independent of s 2 �¤0.�/, regardless
of the homotopy class of b in M.

3.6 Generalizations and comparison with existing conventions

3.6.1 Generalized crossing signs and Maslov indices Crossing signs generalize
to n–dimensional Legendrian submanifolds inside contact manifolds of dimension
2nC 1 as follows. As above, consider a generic chord � on an oriented Legendrian
submanifoldƒ� .M; �/ parametrized by an interval Œ0; a� given by the flow of some R.
Then we may define sgn.�/ by�Vn

T�.a/ƒ
�
^
�Vn FlowaR.T�.0/ƒ/

�
D sgn.�/

�V2n
��.a/

�
as an orientation on ��.a/. Note that sgn.�/ is independent of the orientation of ƒ if
and only if ƒ is connected. However, the product of sgn over the chords appearing in
a broken closed string is always independent of choice of orientation.

We also briefly address generalizations of the Maslov index to higher dimensions.
Provided a contact manifold .M; �/ of dimension 2nC1, we write L.2n/DU.n/=O.n/
for the space of (unoriented) Lagrangian planes in the standard symplectic vector space
and define the bundle

L.2n/ ,! L.�/�M

as above without modification. Provided a trivialization

s W b�.�/!Cn
�S1;

we can view the sections of b�L.�/ as maps from S1 to U.n/=O.n/, in which case
Ms.b/ may be defined and computed as the usual Maslov index of loops in the La-
grangian Grassmannian. See for example [46, Theorem 2.35]. The required “clockwise
rotation” correction in arbitrary dimensions is described by the paths fj .s/ appearing
in Section 5.9 of [19].
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3.6.2 Conventions for capping paths We briefly address how our conventions
for capping paths and rotation angles differ from those used to construct gradings
in Legendrian contact homology. See for example the exposition [26, Section 3.1].
Assume that ƒ � .R3; �std/ consists of a single component and has a designated
basepoint � not coinciding with the tip or tail of any chord.

For a chord rj , exactly one of �j;j or x�j;j will pass through �. Denoting by �j the
rotation angle of the path not passing through �, the LCH grading is defined — by a
slight manipulation of conventional notation — as

jrj j D

�
�j

�

�
� 1:

This is very similar to our computation of rotation numbers except that

(1) knots along which we are performing surgery do not have basepoints,

(2) our capping paths do not necessarily begin and end at endpoints of the same chord,

(3) our capping paths follow the orientation of ƒ by default.

We will see that our conventions for computation arise naturally when computing
Conley–Zender indices of Reeb orbits of the R� using the framing construction of
Section 6. This convention is also convenient as it will simplify the statements of
homology classes of closed Reeb orbits in Section 9.

Our framing construction can be modified so as to naturally lead to computations of
rotation angles using basepoints as in LCH. See Remark 6.2. By (11), if rot.ƒ/D 0
then our computation of rotation angles coincide when the endpoints of a capping path
lie over the same chord:

�j;j D x�j;j D �j :

3.6.3 Conventions for broken closed strings In [50, Definition 3.1], broken closed
strings have discontinuities at Reeb chords, whereas our broken closed strings are
continuous maps. We have chosen to define broken closed strings to include the data of
the chords in question, so as reduce ambiguity when discussing chords on Legendrians
contained in surgered contact manifolds .R3

ƒ˙
; �ƒ˙/.

4 Model geometry for Legendrian links and contact surgery

In this section we construct neighborhoods of Legendrian links and then perform
contact surgery on ƒ˙ using these neighborhoods to describe the contact manifolds
.R3
ƒ˙
; �ƒ˙/ and the contact forms ˛�.
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Our strategy is to develop highly specialized models for the objects involved in contact
surgery, determining Reeb vector fields on surgered contact manifolds which are linear
in a way which will be made precise in Section 5.1. The main benefits of this approach
are that the proofs of the following will be considerably simplified:

(1) The chord-to-orbit (Theorem 5.1) and chord-to-chord (Theorem 5.10) correspon-
dences.

(2) The Conley-Zehnder index (Theorem 7.1) and Maslov index (Theorem 7.2)
computations.

We will also be able to determine the embeddings of simple closed orbits in surgered
manifolds as fixed points of explicitly defined affine endomorphisms of R2 (Section 5.6).
While we don’t pursue computation in this paper, we anticipate this being of utility in
future applications.

The primary disadvantage to our contact forms being so specialized is that surgery
cobordisms between the .R3

ƒ˙
; �ƒ˙/ will be less explicitly defined and will require

greater effort in their construction (Section 10). Furthermore, we will be imposing
restrictions on the Lagrangian projections of Legendrian links in the style of [49], so
that our analysis — which is applicable to all Legendrian isotopy classes ƒ˙— will
not be applicable to all chord-generic Legendrian links in .R3; �std/.

Remark 4.1 Our approach to contact surgery is quite similar to that of Foulon and
Hasselblatt [29], who defined surgery using a model Dehn twist as in our Section 4.6.

In [7; 18], Bourgeois, Ekholm and Eliashberg describe surgeries as the result of critical-
index Weinstein handle attachments and then study the resulting Reeb dynamics. This
contrasts with our approach in that we will first describe our contact forms ˛� and then
build specialized Weinstein handles that have the ˛� as the restriction of their Liouville
form to their contact boundaries.

The approaches to contact surgery here and [29; 7; 18] all have at least one feature in
common: shrinking the size of the surgery locus is used to control Reeb dynamics.

4.1 Almost-complex structures, metrics and the Gauss map

We will want our Legendrians and their neighborhoods to interact nicely with an
almost-complex structure J0 and a metric gR3 , which we now describe.

Define vector fields X; Y 2 �.�std/ by lifting the derivatives of the usual coordinates:

X D @xCy@z; Y D @y :
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We define a complex structure J0 on �std as the lift of the usual complex structure on
R2 DC:

(14) J0X D Y; J0Y D�X:

This determines an almost-complex structure, which we’ll also call J0, adapted to the
symplectization .R�R3; et˛std/, defined by

J0@t D @z; J0@z D�@t :

This almost-complex structure determines a J0–invariant metric gR3 on R3, defined by

gR3.u; v/D ˛.u/˛.v/C d˛.�˛u; J0�˛v/; �˛.u/D u�˛.u/@z 2 �std:

The metric yields a simple formula for the lengths of vectors in �std:

(15) Z D aX C bY 2 �std D) jZj D
p
a2C b2:

4.2 Good position and Lagrangian resolution

Definition 4.2 We say that a Legendrian link ƒ�R3 is in good position if it is chord
generic and, for each double point .x0; y0/ 2R2 of its Lagrangian projection �xy.ƒ/,
there exists a neighborhood within which

(1) the over-crossing arc admits a parametrization satisfying

.x; y/.q/D .x0C q; y0� q/;

and

(2) the under-crossing arc admits a parametrization satisfying

.x; y/.q/D .x0C q; y0C q/:

Good position guarantees that the Gauss map of a parametrization of ƒ evaluates to
3
4
� or 7

4
� near an over-crossing and to 1

4
� or 5

4
� near an under-crossing.14 Likewise,

the condition ensures that capping paths of composable pairs of chords satisfy

�j1;j2 mod 2� 2
˚
1
2
�; 3

2
�
	
:

14In [7], it is presumed that the tangent map of Reeb flow along a chord r sends Tr.0/ƒ � � to the
subspace JTr.a/ƒ, which is achieved by an appropriate choice of almost-complex structure on the contact
hyperplane of the manifold containing ƒ. In our case, this is achieved by assuming that ƒ is in good
position. We will see in the proof of Theorem 7.1 that our analysis is contingent upon this assumption.
Similarly precise perturbations of Legendrian submanifolds near endpoints of chords appear in [19] for
the purpose of guaranteeing transversality of moduli spaces used to compute differentials for the contact
homology of Legendrians in .R2nC1; �std/.
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Figure 4: The first row of subfigures shows segments of a Legendrian link
appearing in the front projection. Directly below each subfigure is how it
appears in the Lagrangian resolution.

Proposition 4.3 Provided a front projection of a Legendrian link ƒ, we may perform
a Legendrian isotopy so that the following properties are satisfied :

(1) ƒ is in good position.

(2) The Lagrangian diagram is obtained by resolving singularities of the front as
depicted in Figure 4.

(3) The arc length of each connected component of ƒ with respect to gR3 is 1.

Proof The proof proceeds in three steps. The first step establishes the first two desired
properties of ƒ. This step is essentially the proof of Proposition 2.2 from [49] and so
we will omit the details. The only modification required to ensure a link is in good
position after Legendrian isotopy is to control @z=@x of a parametrization of ƒ near
the right-pointing cusps and what are called “exceptional segments” in that proof. In
particular, @z=@x can be made quadratic with highest-order coefficient 1

2

�
resp. �1

2

�
on neighborhoods of the positive (resp. negative) endpoints of chords.

In our second step, we modify ƒ so that the arc length of each component is arbitrarily
small while maintaining our desired conditions on the Lagrangian projection. For � > 0,
consider the linear transformation �� of R3, defined by ��.x; y; z/D .�x; �y; �2z/.
Then ���˛std D �

2˛std, so that each �� is a contact transformation. The map �� also
has the following useful properties:

(1) It preserves the angles of vectors in �std.

(2) If ƒi is a Legendrian curve with arc length `, then ��.ƒi / has arc length �`.

Take the family of Legendrians �e�T .ƒ/ for T 2 Œ0; T0� with T0 large enough that each
connected component of �e�T0 .ƒ/ will have arc length� 1. This interpolation between
ƒ and �e�T0 .ƒ/ determines a 1–parameter family of Legendrian submanifolds and so
may be realized by a Legendrian isotopy.

In the case that ƒ connected, we choose T0 so that the arc length is exactly equal to 1
after the isotopy and conclude the proof. When ƒ is disconnected, a final, third step is
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Figure 5: Locally modifying a Legendrian in the Lagrangian projection by a
rapidly oscillating function Qy to increase its arc length.

required. In this step we increase the arc lengths of the connected components of ƒ so
that they are all 1 while preserving good position and the smooth isotopy type of the
Lagrangian projection.

We demonstrate how to increase arc lengths so as to achieve the desired result. Consider
a segment ofƒi along which the x–derivative is nonzero, parametrized via the x variable
by x 7! .x; y.x/; z.x// with x 2 Œ�ı; ı� for an arbitrarily small positive constant ı. We
assume that the Lagrangian projection of the segment does not touch any double points.
Let Qy 2 C1.Œ�ı; ı�/ be a function with compact support contained in .�ı; ı/ and for
which

R ı
�ı Qy dx D 0. Consider perturbations ƒi;T of ƒi parametrized by T 2 Œ0; 1�

which modify ƒi along our segment to take the form

x 7!

�
x; yCT Qy; zCT

Z x

�ı

Qy dx

�
:

The vanishing of the integral of Qy ensures that the z–values at the endpoints of the
segment are unaffected by the perturbation. By making sup Qy small and

R
j@ Qy=@xj dx

very large, we can ensure that, for T 2 Œ0; 1�, our perturbations introduce no new double
points in the Lagrangian projection and that ƒi;T has arc length as large as we like,
say 2 when T D 1. See Figure 5. Hence, for some T0 2 Œ0; 1�, the arc length of ƒi;T0
will be exactly 1.

r1 r2 r3
r4

r5

Figure 6: The left column shows Legendrian tbD�1 unknot in the front and
Lagrangian projections. A right-handed trefoil knot with tbD 1 and rotD 0 is
shown in the front and Legendrian projections on the right. The Reeb chords
of the Lagrangian projection of the trefoil are labeled ri .
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Apply such perturbations to each connected component of ƒ so that no new double
points are created and neighborhoods of double points are unaffected. Each perturbation
is realizable by a Legendrian isotopy. Thus, we have obtained a Legendrian isotopy
of ƒ having all of the desired properties.

Provided ƒ as a front projection diagram, we call the Lagrangian projection of (an
isotopic copy of) ƒ obtained as in the above proposition the Lagrangian resolution of
the front diagram. Figure 6 displays Lagrangian resolutions of an unknot and a trefoil.
Following [49], we say that a front projection of a Legendrian link ƒ is nice if there
exists some x0 2R for which all right-pointing cusps have x–value x0. It’s not difficult
to see that any ƒ can be isotoped to have a nice front projection.

4.3 Conventions for link diagrams

We will not concern ourselves with specific requirements of good position or arc
length when drawing Legendrian links in the Lagrangian projection and consider such
a diagram to be valid if it recovers the Lagrangian projection of a Legendrian link
after an isotopy of the xy–plane. In particular, we will not take care to ensure that
angles at crossings are precise or that the components of R2 n�xy.ƒ/ satisfy the area
requirements of [24, Section 2].

Throughout, Legendrian knots with surgery coefficient C1 will be colored blue and
knots with surgery coefficient �1 will be colored red. If the coefficient of a knot is not
already determined or the knot corresponds to a component of ƒ0, it will be colored
black.

4.4 Standard neighborhoods

Before stating the properties we will want our neighborhoods ofƒ to have, we will create
model neighborhoods near under- and over-crossings of chords. The neighborhood
construction is completed in Proposition 4.5.

4.4.1 Model neighborhoods near endpoints of chords Here we describe a con-
struction of a neighborhood of ƒ along the arcs described in Definition 4.2. We can
reparametrize the arcs to have unit speed, so that they take the form

q 7!
�
x0C

1p
2
q; y0�

1p
2
q; z0C

1p
2
y0q�

1
4
q2
�

near an over-crossing and

q 7!
�
x0C

1p
2
q; y0C

1p
2
q; z0C

1p
2
y0qC

1
4
q2
�
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along an under-crossing. For � > 0 sufficiently small, we extend these embeddings to
embeddings of I��I��I2� into R3 using coordinates .z; p; q/. Near an over-crossing,
this embedding takes the form

(16) ˆCx0;y0;z0.z; p; q/

D
�
x0�

1p
2
pC 1p

2
q; y0�

1p
2
p� 1p

2
q; z0CzCy0

1p
2
q�pC 1

4
p2C 1

2
pq� 1

4
q2
�
:

Near an under-crossing arc, this takes the form

(17) ˆ�x0;y0;z0.z; p; q/

D
�
x0C

1p
2
pC 1p

2
q; y0�

1p
2
pC 1p

2
q; z0CzCy0

1p
2
pCq�1

4
p2C1

2
pqC1

4
q2
�
:

Properties 4.4 The following properties are satisfied by the ˆ˙x0;y0;z0 :

(1) ˆ˙x0;y0;z0.0; 0; q/ provides a parametrization of ƒ with unit speed.

(2) .ˆ˙x0;y0;z0/
�˛std D dzCp dq.

(3) With respect to the basis P D @p and QD @q �p@z , we have J0 D
�
0 �1
1 0

�
.

(4) �xy ıˆ
˙
x0;y0;z0

is an affine map.

(5) The images of �xy ıˆ˙x0;y0;z0 overlap in squares of the form I� � I� near a
crossing (see Figure 9).

4.4.2 Neighborhood construction We now assume that ƒ satisfies the conclusions
of Proposition 4.3.

Proposition 4.5 For �0 sufficiently small , there exists a neighborhoodN�0;i of eachƒi
parametrized by an embedding

ˆi W I�0 � I�0 �S
1
!R3

with coordinates .z; p; q/ such that the following conditions are satisfied :

(1) ˆ�i ˛std D dzCp dq.

(2) The N�0;i are disjoint.

(3) ˆi .0; 0; q/ provides a unit-speed parametrization of ƒi .

(4) J0 is z–invariant inN�0;i and , with respect to the basisP D@p and QD@q�p@z ,
it satisfies

ˆ�i J0 D

�
0 �1
1 0

�
CO.p/:
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(5) Near the endpoints .xj ; yj ; z˙j / with zCj > z
�
j of each chord rj of touching ƒ,

we can find a matrix of the formM DDiag.1; 1; 1/ or Diag.1;�1;�1/ such that

ˆi .z; p; q/Dˆ
˙

xj ;yj ;z
˙
j

ıM.z; p; q� q˙j /;

where the ˆ
xj ;yj ;z

˙
j

are as in Properties 4.4.

Proof Presuming that ƒi is parametrized with a variable q with respect to which
it has unit speed, we pick an arbitrarily small positive constant �1 and define a map
I�1 �S

1!R3 as

�1 W .p; q/ 7! expƒi .q/

�
�pJ0

@ƒi

@q
.q/C h1.p; q/

�
;

where h1 2 C1.I�1 �S1;R3/ vanishes up to second order in p and is chosen so that it
produces the map

.p; q/ 7!ˆ˙
xj ;yj ;z

˙
j

ıM.0; p; q� q˙j /

near the endpoints of the chords of ƒ as in the statement of the proposition. Here exp
is the exponential map with respect to the metric gR3 and the matrix M is as in the
statement of the proposition.

Since the tangent map of the exponential map is the identity along the zero section,

T expƒi .q/ D Id W Tƒi .q/R
3
! Tƒi .q/R

3

and h1 is O.p2/, we have

@�1

@p

ˇ̌̌̌
pD0

D�J0
@ƒi

@q
C
@h1

@p

ˇ̌̌̌
pD0

D�J0
@ƒi

@q
D�J0e

J0GiX D�eJ0Gi .q/Y;

@�1

@q

ˇ̌̌̌
pD0

D
@

@q
expƒi .q/.0/D

@ƒi

@q
D eJ0GiX:

Therefore, the tangent map for �1 can be expressed along fp D 0g as a matrix

(18) T�1jpD0 D�J0e
J0Gi .q/

with incoming basis .P;Q/ and outgoing basis .X; Y /. This map will be an embedding
when restricted to some I�1 �S

1 for �1 sufficiently small.

From (18), we compute ��1 d˛std D dp^ dq along fp D 0g. More generally, we can
write ��1 d˛std D F dp ^ dq for some smooth function F satisfying F jfpD0g D 1.
Hence, F will be strictly positive on some tubular neighborhood of fpD 0g � I�1�S

1,
so that ��1 d˛std will be symplectic on some I�2 �S

1 for �2 sufficiently small.
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Applying a fiberwise Taylor expansion to ��1˛std along the annulus I�2 �S
1, we write

��1˛std D .f0Cpf1Cp
2f2Cfhot/ dpC .g0Cpg1Cp

2g2Cghot/ dq;

where

(1) fhot and ghot are functions of p and q which are O.p3/, and

(2) f0; : : : ; g2 are functions of q.

As ƒi is Legendrian and J0 preserves the contact structure, we must have f0D g0D 0.
Then, computing

��1 d˛std D d�
�
1˛std D

�
g1Cp

�
2g2�

@f1

@q

�
�p2

@f2

@q
C
@ghot

@p
�
@fhot

@q

�
dp^ dp;

we must have g1 D 1, so that

��1˛std D .pf1Cp
2f2Cfhot/ dpC .pCp

2g2Cghot/ dq:

We can eliminate the f1 term in this equation with a perturbation in the z direction.
With h2 D 1

2
p2f1, we have dh2 D pf1 dpC 1

2
p2@f1=@q dq. Hence,

�2.p; q/D �1.p; q/� .0; 0; h2.p; q//;

admits an expansion of the form

��2˛std D .p
2f2Cfhot/ dpC .pCp

2g2Cghot/ dq:

To ensure that this map is an embedding, we restrict its domain to I�3 �S
1 for some

sufficiently small �3 � �2. We note that the f2 and g2 here may differ from those in
the Taylor expansion of ��1˛std.

Now we’ll apply a Moser argument as in [46, Section 3.2] to modify �2 by precomposing
it with an isotopy to produce a map �3 so that ��3 d˛std D dp ^ dq. Due to the facts
that the annulus is not closed and that we’ll require the result to be an codimension 1
embedding, we cannot simply quote [46, Section 3.2].

Writing ��2˛std D p dqC � and, solving for a vector field X� satisfying

dp^ dq.�; X� /D �;

we see that � and X� have coefficient functions, vanishing up to second order,

� DO.p2/ dpCO.p2/ dq; X� DO.p2/@pCO.p2/@q:

Writing FlowtX� for the time t flow of X� , choose �4 � �3 so that FlowtX� .I�4 �S
1/�

I�3 �S
1 for all t 2 Œ0; 1� and define

�3.p; q/D �2 ıFlow1X� .p; q/ W I�4 �S
1
!R3:
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The Moser argument shows that ��3 d˛std D dp ^ dq, as desired. Moreover our
conditions on X� imply that Flow1X� must agree with the identity mapping up to third
order along fp D 0g. Hence, we can continue to write ��3˛std D p dqC � for some �
which vanishes up to second order in p. Using ��3 d˛std D dp^dq, we know that � is
closed, and, since it mush vanish along fp D 0g, we conclude that it is exact. Hence,
��3˛std D p dqC dh4 for some h4 2 C1.I�3 � S1;R/. Possibly restricting to some
I�4 �S

1, we define
�4.p; q/D �3.p; q/� .0; 0; h4/;

so that �4 is an embedding, whence ��4˛std D p dq. Now define

ˆi .z; p; q/D �4.p; q/C .0; 0; z/:

Restricting to some I�0 � I�0 �S
1 for �0 sufficiently small, we can ensure that

F
ˆi

is an embedding. By construction of the ˆi , we have

ˆ�i ˛std D dzCp dq:

Regarding the formula for J0 in the basis .P;Q/, note that this is satisfied for the
map �1 and that subsequent perturbations —�2, �3 and �4 — preserve .P;Q/ up to
second order in p. The z–invariance of J0 is clear from the definition of the ˆi and
z–invariance of the almost-complex structure on �std.

For the last condition stated in the proposition, we note that �1 produces the desired
result by definition of the function h1. As all other required conditions are satisfied
by �1, where the last condition is required to be satisfied as per Properties 4.4. The
perturbations of �1 carried out in the remainder of the proof are trivial where this
condition is required to be satisfied. Indeed, near the endpoints of chords h2 (used to
define �2), � (used to define �3) and h4 (used to define �4) all vanish.

Assumptions 4.6 We assume throughout the remainder of this article that the Leg-
endrian link ƒ is in good position and has unit arc length with respect to gR3 , and
write

N� D
[
i

N�;i

for a neighborhood of ƒ as described in the above proposition with � � �0. We call the
set fz D 0g �N�;i the ribbon of ƒi . From the above proof, we may assume that the
image of the projection of the ribbon of ƒi to the xy–plane coincides with the image
of the projection of N�;i .
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4.5 Transverse push-offs

The boundary of the ribbon of a component ƒi of ƒ consists of two knots

(19) TCi;� D fz D 0; p D �g T �i;� D fz D 0; p D��g:

Definition 4.7 With � fixed, the knots TCi;� and T �i;� will be called the positive and
negative transverse push-offs of ƒi . We orient both of these knots so that @q > 0 in the
coordinate system on N�;i .

The positive (negative) transverse push-off is positively (negatively) transverse to �ƒ.
Because these knots live on the boundary of N�;i , we may consider them as living
within either .R3

ƒ˙
; �ƒ˙/ or .R3; �std/.

4.6 Model Dehn twists

In this and the following subsection we describe contact forms on R3
ƒ˙

which will
facilitate analysis on Reeb orbits after contact ˙1 surgery. We begin by providing an
explicit model for a Dehn twist and then describe the gluing map used to define contact
˙1 surgery explicitly.

Provided a smooth function f WR! S1, we define �f 2 DiffC.R�S1/ by

�f .p; q/D .p; qCf .p//

and note that ��f D ��1f . We’ll call the map �f a positive (resp. negative) Dehn twist
by f if:

(1) The derivative of f has compact support in R.

(2)
R

R @f=@p dp D�1 (resp. C1).

A positive (resp. negative) Dehn twist by f is a positive (resp. negative) Dehn twist in
the usual sense of the expression. We compute

(20) ��f p dq D p dqCp
@f

@p
dp; ��f .dp^ dq/D dp^ dq;

so that �f is always a symplectomorphism with respect to dp^dq but does not preserve
p dq unless f is constant. For any f and � > 0, we write

f�.p/D f
�
p

�

�
:
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p
�
1
2

1
2

f lin f f�

Figure 7: The functions f lin, f and f� .

Assumptions 4.8 Throughout the remainder of this paper, f will denote a function
for which �f is a negative Dehn twist whose derivative @f=@p is

(1) nonnegative,

(2) an even function of p,

(3) supported on I1 D Œ�1; 1�, and

(4) bounded in absolute value pointwise by 1.

We think of f as being a smooth approximation to a piecewise-linear function

(21) f lin.p/D

8<:
0 if p 2

�
�1;�1

2

�
;

pC 1
2

if p 2 I1=2;
1 if p 2

�
1
2
;1

�
:

See Figure 7.

The following proposition gathers some properties of the deviation of twists by f� from
preserving p dq, as described in (20):

Proposition 4.9 Suppose that f satisfies Assumptions 4.8 and , for � 2 .0; 1/, define

H�.p/D

Z p

�1

P
@f�

@p
.P / dP:

Then H is well defined , zero on the complement of I�, symmetric and satisfies �� �
H� � 0 pointwise.

Proof The first two statements are clear from the compact support and symmetry of
the derivative of f. Then, using the fact that @f�=@p is supported on I�, we have

jH�.p/j D
1

�

ˇ̌̌̌Z p

��

P
@f

@p

�
P

�

�
dP

ˇ̌̌̌
�
1

�
sup
p

ˇ̌̌
@f

@p

ˇ̌̌ Z �

��

jP j dP D � sup
p

ˇ̌̌
@f

@p

ˇ̌̌
� �:

For p � 0, H�.p/ is an integral of a nonpositive function and so must be nonpositive.
Then, for p � 0,

H�.p/DH�.0/C

Z p

0

P
@f�

@p
.P / dP DH�.0/�

Z 0

�p

P
@f�

@p
.P / dP DH�.�p/

by the symmetry of the derivative of f.
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p
q

z

Figure 8: From left to right: the top, side and bottom pieces of our neighbor-
hood are shaded.

4.7 Gluing maps

Now we define the gluing maps to define contact surgery on ƒ and contact forms ˛�
on the surgered manifold R3

ƒ˙
.

Let �0 be a sufficiently small as described in Proposition 4.5 and choose � 2 .0; �0/.
We decompose a neighborhood of each @N�;i into top, side and bottom pieces as shown
in Figure 8:

(1) Tı;� D fz � �� ıg.

(2) Sı;� D fjpj � �� ıg.

(3) Bı;� D fz � ��C ıg.

To perform contact surgery along ƒi with surgery coefficient ci , we define a map
�ci ;f;�;ı in coordinates .z; p; q/ by

(22) �c;f;�;ı.z; p; q/�

�
.z� ciH�.p/; p; qC cf�.p// along Tı;�;
.z; p; q/ along Sı;� [Bı;�;

where H� is as described in Proposition 4.9. Due to the properties of f� and H�
described in the previous section, we have that �c;f;�;ı agrees on the overlaps of the
top, bottom and sides of N�;i for ı sufficiently small. Therefore, the map determines a
smooth gluing.

The tangent map of the gluing map is given by

(23) T�ci ;f;�;ı D @z˝

�
dz� cip

@f�

@p
dp

�
C @p˝ dpC @q˝

�
dqC ci

@f�

@p
dp

�
along Tı;� and T�ci ;f;�;ı D Id along Sı;� [Bı;�, so that

��ci ;f;�;ı.dzCp dq/D dzCp dq:

The gluing map therefore determines a contact form ˛ci ;f;�;ı on the manifold R3ƒi
obtained by performing the surgery and hence a contact structure �ƒ˙ D ker.˛ci ;f;�;ı/
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on this manifold. Shrinking ı amounts to a restriction of the domain of the map and so
does not affect the associated contact manifold.

Definition 4.10 For � 2 .0; �0/, we write ˛� for the contact form on R3
ƒ˙

determined
by performing surgery using the gluings �ci ;f;�;ı as described in (22) to each connected
component N�;i of N�. The Reeb vector field of ˛� will be denoted by R�.

5 Chord-to-orbit and chord-to-chord correspondences

In this section we study the dynamics of the Reeb vector fields R� for the contact
forms ˛� for .R3

ƒ˙
; �ƒ˙/ as described in Definition 4.10. Our results are summarized

by the following:

Theorem 5.1 There exist one-to-one correspondences between:

(1) Closed orbits ofR� in .R3
ƒ˙
; �ƒ˙/ and cyclic words of chords onƒ˙� .R3; �std/.

(2) Chords of R� with boundary on ƒ0 � .R3
ƒ˙
; �ƒ˙/ and words of chords with

boundary on ƒ0 � .R3; �std/.

A description of the correspondences will be given below.

Definition 5.2 Via the above theorem, we use the notation

.rj1 � � � rjn/

to denote either a closed orbit of R� or a chord of ƒ0 � .R3
ƒ˙
; �ƒ˙/ whose underlying

word is rj1 � � � rjn .

After establishing Theorem 5.1, we estimate the actions of chords and closed orbits
in .R3

ƒ˙
; �ƒ˙/ in Section 5.5. Then, in Section 5.6, we describe equations whose

solutions determine the embeddings of closed Reeb orbits and allow exact calculation
of their actions. While we do not provide a closed form solutions to these equations,
their analysis provides the following:

Theorem 5.3 For each n > 0, there exists �n such that , for all � � �n, all orbits  of
word length � n are hyperbolic with

CZ2./D
nX
kD1

.rotjk ;jkC1 Cı1;cC
jk

/ 2 Z=2Z:

Moreover , if either ƒC D¿ or ƒ� D¿, then all closed orbits of R� are hyperbolic for
all � <min

˚
1
2
; �0
	
.
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Throughout this section,  will denote a closed orbit of R� and � will denote a chord
of ƒ0 � .R3

ƒ˙
; �ƒ˙/.

5.1 Overlapping rectangles

In order to state our chord-to-orbit and chord-to-chord correspondences, we need to
introduce the objects which will define them: embedded squares in .R3

ƒ˙
; �ƒ˙/ which

record the positions of Reeb orbits as they propagate through the manifold. Along the
way, we slightly refine the specifications of the function f in our surgery construction so
as to reduce our analysis of dynamics of R� to analysis of affine linear transformations.

With �— the constant which governs the size of N� — sufficiently small, the projection
of N� to the xy–plane will have overlaps only at rectangles centered about double
points of the Lagrangian projection of ƒ. There is a unique rectangle Dj � R2 for
each chord rj . As per Assumptions 4.6 and Properties 4.4, each Dj is the image of a
map of the form

.p; q/ 7! .x0Cp� q; y0CpC q/

for .p; q/ 2 I�1 � I�2 for some �i 2 .0;1/ with .x0; y0/ 2 R2 being the coordinates
of the double point of ƒ in the xy–plane corresponding to rj .

We write Dex
j for the lift of this disk to the top of the N�;l�

j
and Den

j for the lift to the
bottom of N

�;l
C

j

. The superscripts are indicative of the fact that closed orbits of R�
enter N� through the Den

j and exit N� through the Dex
j . See Lemma 5.6.

Again using Assumptions 4.6 and Properties 4.4, we have that each Den
j and Dex

j can
be described as

(24) fz D˙�; q 2 Œq˙j � ı; q
˙
j C ı�g

for some ı2 .0;1/with respect to the coordinates .z; p; q/ provided by Proposition 4.5
on the “outside” of the surgery handle.

If we flow Den
j through the surgery handle in which it is contained, we will see it pass

through the top fz D �g in a set D�j , which, when projected onto the .p; q/ coordinates,
is of the form

D�j D �
c
C

j

f�
.fq 2 Œq0� ı; q0C ı�g/

for some q0 2 S1 and ı > 0. This set will intersect the each Dex
j 0 for j 0 ¤ j in a

connected set diffeomorphic to a square. These intersections are depicted as the dark
gray regions in Figure 9, right.
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Dj Den
j

Dex
j

rj Dex
j 0

D�jHHY
HHj

Figure 9: On the left, we see the xy–projection of the ribbon ofƒ overlapping
at a rectangle Dj . In the middle — with a slightly offset point of view — we
see the D�j touching the endpoints of a chord rj . Here the boxes represent
portions of N� . On the right, we see �f� applied to one rectangle intersecting
other rectangles. In this portion of the diagram, @p points upward and @q
points to the left.

Assumptions 5.4 For a fixed �, we refine our choice of f in Assumptions 4.8 so that
it is affine with derivative equal to 1 on some I1�ı � I1, with ı chosen sufficiently
small that each D�j \Dex

j 0 with j ¤ j 0 is determined by a pair of linear inequalities

D�j \Dex
j 0 D fq 2 Œq0� ı1; q0C ı1�; aC bq 2 Œı2; ı3�g

for constants a, b, ı1, ı2 and ı3.

Properties 5.5 Under Assumptions 5.4, we have that , at any point .p; q/ 2 Den
j for

which �f� .p; q/ 2 Dex
j 0 ,

@f�

@p
.p/D

1

�
; H�.p/DH�.0/C

p2

2�
;

where i D lCj . At such points we can write �ci
f�

as

.p; q/ 7!

�
p; qC

1

2
C
cip

�

�
:

5.2 Cyclic words from Reeb orbits

Here we prove the easy part of the of the (cyclic words)$ (closed orbits) correspon-
dence, showing that each  uniquely determines a cyclic word of chords on ƒC[ƒ�.

Lemma 5.6 Any closed orbit  of R� must pass through N� . Every time  enters N�,
it must pass through some Den

j , and , every time it exits N�, it must pass through
some Dex

j .

Proof The Reeb vector field R� agrees with @z on the complement of N� and flows
Dex
j into Den

j . The orbit  must pass through N� as otherwise z./ would take on
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arbitrarily large values, implying that  is not closed. If when passing through some
component N�;i of the surgery handles  exits the top of N�;i in the complement of
the Dex

j , then, again, z./ would tend to 1 as we follow the trajectory of the orbit.
Likewise, if  enters some N�;i in the complement of the Den

j , then, following the orbit
backwards in time, we see that z./ is unbounded from below.

Then  must intersect some nonempty finite collection of the Dex
j . Let j1; : : : ; jn be the

indices of the Dex
j through which  passes, ordered in accordance with a parametrization

of  .

Definition 5.7 We define the cyclic word map as

cw./D rj1 � � � rjn

and write wl./ for the word length of cw./.

5.3 Reeb orbits from cyclic words

In this section we describe how a cyclic word of composable Reeb chords uniquely
determines an closed orbit of R�. Let rj1 � � � rjn be a cyclic word and consider the
squares D�jk ;� D en; ex; � as described in the previous subsection.

Theorem 5.8 For � � �0 and each word w D rj1 � � � rjn , there is a unique closed Reeb
orbit w of R� for which cw.w/D w.

Our logic follows directly from arguments in [7, Section 6.1] — carried out in de-
tail in [18] — which are simplified by our reduction of dynamics to that of affine
transformations in Section 5.1.

Proof The proof follows from an analysis of FlowtR� applied to the disk Dex
j1

. Recall
that this disk is contained in the “top” of a surgery handle N�;l�

j1

.

Write S1 DDex
j1

and let G1 D IdS1 . Consider the following iterative process, for which
Figure 10 serves as a visual aid:

(1) Flow through the handle complement There is a function t .p; q/ solving for
the minimal t > 0 such that Flowt.p;q/R�

applied to .p; q/ 2 S1 is an element of the
square Den

j1
directly above S1. Write F co

1 .p; q/D Flowt.p;q/R�
.p; q/, whose image is the

square S 01, which is contained in the bottom of N�;lC
j1

. By the results of Section 5.1,
S 01 D Den

j1
. Briefly, F co

1 is the flow of our square Den
j1

through the handle complement.

(2) Flow through the handle Similarly define a function F h1 which flows S 01 �
fz D��g �N

�;l
C

j1

up to the top, fz D �g, of the surgery handle. The square F h.S 01/
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Dex
j1
DS1

Dex
j2

Dex
j3

S2
-

dom.G2/ -dom.G3/ -

S3

?

Figure 10: Following the subfigures clockwise we see the sets Sk and
dom.Gk/ drawn schematically. The Sk are shaded dark gray. Each rectangle
represents the ribbon of some component ofƒ cut at some value of q, layered
over each other as indicated by the crossings so that the value of z increases
as we traverse each subfigure clockwise. Within each rectangle, the sides
of shorter (resp. longer) length are directed by p (resp. q). In the top-right
we see F h1 ı F

co
1 .S1/ as a subset of the top of N�;lC

j1
DN�;l�

j2
. Taking the

intersection of this set with Dex
j2

determines S2.

will appear in the coordinates .z; p; q/ on the “outside” of the surgery handle as the
application of a (positive or negative) Dehn twist to S 01. That is, in the notation of
Section 5.1, F h1 .S

0
1/D D�j2 is the flow through the handle.

(3) Trim We write S2 D F h1 .S
0
1/\Dex

j2
for the intersection of F h1 .S

0
1/ with the next

square in the sequence Dex
jk

determined by w. Then S2 is contained in the top of N�;l�
j2

.

Geometry & Topology, Volume 27 (2023)



1002 Russell Avdek

We get a diffeomorphismG2 from dom.G2/D .F h1 ıF
co
1 /
�1.S2/�S1 to im.G2/DS2

by G2 D F h1 ıF
co
1 .

(4) Repeat We now inductively repeat the process by applying it to Sk � Dex
jk

. We
analogously define F co

k
and F h

k
with domain Sk then apply F h

k
ıF co

k
to flow Sk up

through the next handle in the sequence N�;lC
jk

whose image we trim to define SkC1.
This determines a diffeomorphism

GkC1 D F
h
k ıF

co
k ı � � � ıF

h
1 ıF

co
1 W .dom.GkC1/� S1/! .SkC1 � Dex

jkC1
/:

Making use of the results in Section 5.1, we have the following observations:

(1) Each F co
k

— considered with the domain Dex
jk

in which Sk is contained — is an
affine transformation with respect to the .p; q/ coordinates of the components of N�.
Each F co

k
sends Dex

jk
diffeomorphically to Den

jk
and is a symplectomorphism with respect

to d˛�.

(2) Each F h
k

— considered with the domain Den
jk

— is nonlinear, as can by seen
by looking at where p is extremal. It is also a symplectomorphism with respect
to d˛std. The restriction of F h

k
to .F h

k
/�1.Dex

j / for each j is an affine transformation
by Properties 4.4.

(3) We see by induction that Sk is a connected, nonempty quadrilateral determined by a
nondegenerate pair of linear inequalities, one of which is of the form q 2 Œq0�ı; q0Cı�.

(4) Combining the above with the fact that a composition of affine transformations
is an affine transformation, dom.Gk/ is a quadrilateral determined by a pair of linear
inequalities, one of which is the trivial p 2 Œ��; ��.

(5) Each trimming step monotonically decreases the area with respect to d˛� and, for
each k, we have dom.GkC1/¨ dom.Gk/:

0 <

Z
SkC1

d˛� <

Z
Sk

d˛�; 0 <

Z
dom.GkC1/

d˛� <

Z
dom.Gk/

d˛�:

Now observe that dom.Gn/ stretches across Dex
j1

in the p direction and that Sn stretches
across Dex

j1
in the q direction. Since both sets are convex, U1 D dom.Gn/\Sn must

be nonempty and convex. We likewise define Uk as the intersection of Snk with
dom.Gnk/ for all k > 0. See Figure 11.

The Uk satisfy UkC1 ¨ Uk and we claim that area.Uk/! 0 as k!1. To see this,
recall that f� is linear on p 2 Œ��.1� ı/; �.1� ı/�, where ı 2 .0; 1/ is as described
in Assumptions 5.4. By the conditions which characterize ı, for each k � 0 the set
of points in Sk which reach SkC1 via the map F h

k
ıF co

k
must be contained in the set
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Uk
Snk

dom.Gnk/

Figure 11: Overlaps of the sets Snk and dom.Gnk/ within in the set S1 D Dex
j1

.

S lin
k
D fp 2 Œ��.1� ı/; �.1� ı/�g \Sk . By the fact that Sk is a rectangle stretching

across the p coordinate of the annulus, area.S lin
k
/D .1� ı/ area.Sk/. By the definition

of S lin
k

and the fact that F h
k
ıF co

k
is symplectic, area.SkC1/� area.S lin

k
/. Inductively,

we conclude area.Sk/� .1� ı/k�1 area.S1/. Since Uk is contained in Snk , our claim
is established.

By our construction, any Reeb orbit with word wk must intersect Dex
j1

at a point in
dom.Gnk/ which is sent to itself via Gnk . Hence, such a point of intersection must lie
in Uk . By considering multiple covers of the orbit w — whose existence we seek to
establish — we see that, if such a point of intersection lies in U1, then it must lie in Uk
for all k > 0. We therefore define

U1 D

1\
1

Uk � Dex
j1
;

which, by our previous analysis, consists of a single point.

To complete our proof, it suffices to show that Gnk.U1/ D U1 for all k > 0. This
amounts to unwinding the definitions established in the proof so far. If we write
k D k1C k2 for any pair of natural numbers k1 and k2, then we must have

Gnk1.dom.Gnk//� dom.Gnk2/

as otherwise Gnk2 ıGnk1.dom.Gnk// would not be contained in Dex
j1

. On the other
hand, dom.Gnk/¨ dom.Gnk1/ implies that

Gnk1.dom.Gnk//¨ Snk1 :

Combining the above two equations, we conclude that

U1 D

1\
1

.Snk \ dom.Gnk//D
�1\
1

Snk

�
\

�1\
1

dom.Gnk/
�

satisfies Gnk.U1/D U1.

Geometry & Topology, Volume 27 (2023)



1004 Russell Avdek

5.4 Reeb chords of ƒ0 after surgery

In this section, we describe open-string versions of our results for closed Reeb orbits,
establishing the chord-to-chord correspondence of Theorem 5.10.

Definition 5.9 Suppose that a chord � of ƒ0� .R3
ƒ˙
; �ƒ˙/ passes through a sequence

of the D�j of the form

Den
j1
;Dex

j2
;Den

j2
; : : : ;Dex

jn�1
;Den

jn�1
;Dex

jn
:

Then we write w.�/D rj1 � � � rjn . We call the association � 7! w.�/ the word map.

Theorem 5.10 For each � < �0, the word map w determines a one-to-one correspon-
dence between words of chords with boundary on ƒ0 � .R3; �std/ and Reeb chords
of ƒ0 � .R3

ƒ˙
; �ƒ˙/ determined by the contact form ˛�. For each such word w, the

associated chord �w is nondegenerate for all � < �0.

The chords with word length 1 are those which exist forƒ0�R3 prior to surgery, while
the rest of the chords in Theorem 5.10 are created after the performance of surgery
along ƒ˙.

Proof The proof is analogous to the proof of Theorem 5.8, although considerably
simpler.

Let wD rj1 � � � rjn be a word of chords on ƒ0 with word length n> 1. By (16), flowing
ƒ0 up to N� along a chord sends ƒ0 to a strand in N� of the form q D q0, which we
call A

0

1. Flow this arc up to the top of N� and take its intersection with Dex
j2

to obtain
an arc we’ll call A1. Define arcs Ak for k > 1 as follows:

(1) Flow through the handle complement Flow Ak�1 �Dex
jk

up to Den
jk

using the
map F co

k
as in the proof of Theorem 5.8.

(2) Flow through the handle Now we apply the map F h
k

as defined in Theorem 5.8
to flow F co

k
.Ak�1/ up to the top of N�.

(3) Trim Define Ak D F hk ıF
co
k
.Ak�1/\Dex

jk
.

(4) Repeat Repeat the above steps until we obtain an arc An � Dex
jn

.

Again, following the logic of the proof of Theorem 5.8 using the linearity conditions of
Section 5.1, each Ak �Dex

jk
is a line segment which wraps across Dex

jk
in the q direction.

In other words, each admits a parametrization of the form

Ak D f.aqC b; q/ W q 2 Œq0� ı; q0C ı�g
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for some constants a ¤ 0; b; q0; ı. Since flowing ƒ0 downward to Dex
jn

along the
chord rjn is a set of the form q D q0, the intersection of this set with Ak consists
of a single point. Since Ak wraps across Dex

jn
in the q direction, this intersection is

transverse. By construction, the collection of such intersections are in one-to-one
correspondence with the collection of chords of ƒ0 � .R3

ƒ˙
; �ƒ˙/.

For words of length 1, the restriction of R� to the complement of the surgery handles
is @z , so that words of length 1 correspond exactly to the chords of ƒ0 present prior to
surgery.

5.5 Action estimates

To obtain refined estimates of the actions of the chords and orbits of R� we’ll need the
following lemmas. The first lemma tells us how much time it takes to flow from the
top of N� to the bottom in a neighborhood of a chord rj .

Lemma 5.11 Let rj be some chord of ƒ� .R3; �std/ with action A.rj / and parame-
trize the disk Dex

j � @N� with coordinates .p; q/ as in (17). Then , for each .p; q/2Den
j ,

there exists a minimal-length chord from Dex
j to Den

j starting at .P;Q/ with action

t DA.rj /� 2��pq:

Proof This is a straightforward calculation, so we omit the details. For a given j,
write .pex; qex/ and .pen; qen/ for the coordinates on Dex

j and Den
j provided by (17)

and (16), respectively. Then pen D�qex and qen D pex. Plug these into the equations
provided to compute the differences in the z coordinates and consider the fact that
R� D @z on R3 nN�.

Our second lemma tells how much time it takes for an orbit to flow through one of the
surgery handles.

Lemma 5.12 For some j, again consider coordinates .p; q/ on Dex
j � @N� as provided

by (17). Then the time it takes a point in Den
j to reach this point via the flow of R� is

t D 2�C ciH�.p/:

This becomes obvious if we look at the graph of the “top” part of the gluing map of (22).
See Figure 12. By comparing Proposition 4.9 with the definition of the gluing map
in (22), actions increase slightly as we pass through a surgery handle with coefficient�1
and decrease slightly as we pass through a surgery handle with coefficient C1.
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2� ��ciH�.p/

Figure 12: The squares represent fq D q0g �N�;i slices of the N� at compo-
nents N�;i with surgery coefficient ci D�1 (left) and ci D 1 (right). The black
arcs represent the boundaries of the gluing region, as it intersects each slice.

Proposition 5.13 For all closed Reeb orbits  of R�, we have

jA./�A.cw.//j< 3�wl./:

For each chord r of R� with boundary on ƒ0 � .R3
ƒ˙
; �ƒ˙/, we have

jA.r/�A.w.//j< 3�wl.r/:

This is obvious from Lemmas 5.11 and 5.12 together with Proposition 4.9.

5.6 Calculating orbit embeddings

Let  D .rj1 � � � rjn/ be a closed orbit of some R� . Let .pk; qk/ be coordinates on the
squares Dex

jk
described by (16). Suppose that, in these coordinates,  passes through

the points .Pk;Qk/. If  is simply covered and we compute the exact values of
the .Pk;Qk/, then we can see the knot formed by  inside of R3

ƒ˙
and be able to

compute the action A./ exactly. In this section, we describe how these .Pk;Qk/
can be calculated. The analysis here will be the starting point for the computation of
Conley–Zehnder indices.

In the above notation, we can describe .P1;Q1/ as a fixed point of an affine transfor-
mation

AC b WR2!R2; A 2 SL.2;R/; b 2R2;

as follows.

Starting at (a subset of) Dex
jk

, apply FlowR� to pass through the handle complement
to Den

jk
and then through the surgery handle N�;lC

jk
to Dex

jkC1
. As we are only interested

in the set of points in Dex
jk

along which the �˙f� are linear, we can write this as a map

Geometry & Topology, Volume 27 (2023)



Combinatorial Reeb dynamics on punctured contact 3–manifolds 1007

Ak C bk with Ak 2 SL.2;R/. The bk 2 R2 term is required by (16) centering the q
coordinate about the endpoint of the Reeb chord rkC1.

Hence, we may write

(25) AC b D .AnC bn/ ı � � � ı .A1C b1/

D .An � � �A1/C .An � � �A2/b1C � � �CAnbn�1C bn

with .P1;Q1/ being the fixed point of this map. By linearity of the equations involved
and our prior knowledge (Theorem 5.8) that there exists a unique fixed point, we may
as well consider the Ak C bk to be transformations of R2. We can then solve for
u1 D .P1;Q1/ as

u1 D .Id�A/�1b D .Id�An � � �A1/�1.An � � �A2b1C � � �CAnbn�1C bn/:

Provided u1, we can then find the uk D .Pk;Qk/ by applying the .AkC bk/:

ukC1 D AkukC bk D .AkC bk/ � � � .A1C b1/u1:

Proposition 5.14 In the above notation ,

(� 1/rotjk;jkC1Ak D

�
0 �1

1 �cjk=�

�
D J0

�
1 �cjk=�
0 1

�
;

(� 1/rotjk;jkC1bk D

�
0

1
2
� djk ;jkC1

�
D J0

�
1
2
� djk ;jkC1

0

�
;

where djk ;jkC1 is the minimal length of a capping path for the pair .rj ; rjkC1/ projected
to the xy–plane using the standard Euclidean metric on R2.

Proof We can determine Ak C bk as a composition of the following elementary
mappings:

(1) The change of coordinates from Dex
jk

to Den
jk

, which we see when flowing points
.p; q/ through the handle complement,

.p; q/ 7! .�q; p/:

(2) The flow from Den
jk

to the top of N�;lC
jk

, which, according to Properties 5.5, is
given by

.p; q/ 7!

�
p; qC

1

2
C
cCjk
�
p

�
:

(3) A shift in the q coordinate such that .0; 0/ is identified with the tail of rjkC1 .
Here d in

k;kC1
is the magnitude of this shift when ƒjk is parametrized with ˆiC ,
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as in Proposition 4.5,

.p; q/ 7! .p; q� d in
k;kC1/:

(4) A mapping of the coordinates on the top of N�;lC
jk

to Dex
kC1

,

.p; q/ 7! .�1/
rotjk;jkC1 .p; q/:

The result of composing the above maps produces

.p; q/ 7! .�1/
rotjk;jkC1

�
�q; pC

1

2
� d in

k;kC1�
cCjk
�
q

�
:

5.7 Hyperbolicity and the Z=2Z index

For a given closed orbit  D .rj1 � � � rjn/, we can use the above formula to write its
Poincaré return map as Ret DAn � � �A1, where the Ak are given by (25). By using the
calculation of the Ak in Proposition 5.14, we have an explicit representation of Ret
as

(26)

.�1/rot Ret D
nY

KD1

J0

 
1 �cCjnC1�K�

�1

0 1

!

D J0

 
1 �cCjn�

�1

0 1

!
� � �J0

 
1 �cCj1�

�1

0 1

!

D J n0 C

nX
KD1

� X
k2IK

� KY
iD1

�cCjki

�
Mk

�
��K ;

rotD
nX

KD1

rotjK ;jKC1 ;

Mk D J
n�kK
0 Diag.0; 1/J kK�kK�1�10 � � �J

k2�k1�1
0 Diag.0; 1/J k1�10 ;

IK D fk D .k1; : : : ; kK/ W 1� k1 < � � �< kK � ng:

The equality in the third line involving the Mk easily follows from an induction on n.

Observe that In consists of a single element .1; : : : ; n/, so that the K D n term in the
above formula is

(27) ��n
� nY
kD1

�cCjk

�
Diag.0; 1/D ��n.�1/#.c

C

jk
D1/ Diag.0; 1/:

Thus, for a fixed word, tr.Ret / can be expressed as a polynomial in ��1 whose
highest-order term is given by the above expression.
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Proof of Theorem 5.3 For �w sufficiently small, the ��n term in the polynomials
for tr.Ret / determines their sign for all � < �w and words of length � n as there are
only finitely many cyclic words less than a given length. Possibly making �w smaller,
we can guarantee that the absolute values of the traces are bounded below by 2. To
compute CZ2, we apply (1) and (3), noting that det.Ret� Id/D 2� tr.Ret/.

If one of ƒC or ƒ� is empty, then each orbit of word length n has return map

Ret D˙M n
a ; Ma D

�
0 �1

1 a

�
; aD˙��1:

If � < 1
2

, then Ma is hyperbolic and so is conjugate to Diag.�; ��1/ with

�D 1
2
.aC

p

a2� 4/; ��1 D 1
2
.a�
p

a2� 4/;

implying that Ret is conjugate to ˙Diag.�n; ��n/. In this case, it’s clear that
jtr.Ret /j> 2 independent of n, implying that all closed orbits of R� are hyperbolic
for � < 1

2
.

6 The semiglobal framing .X; Y /

Having computed the Z=2Z Conley–Zehnder indices of the closed Reeb orbits of R� ,
we now seek to compute Z–valued indices with respect to a framing as well as Maslov
indices of broken closed strings on ƒ0 � .R3

ƒ˙
; �ƒ˙/.

In this section we describe sections of �ƒ˙ , which we will later use to compute these
indices. This will allow us to draw a cycle representing PD.c1.�ƒ˙//D PD.e.�ƒ˙//
as a link in the Lagrangian projection: See Figure 13 for an example. The results of
this section are summarized as follows:

Theorem 6.1 For each � < �0 there are sections X; Y 2 �.�ƒ/ such that the following
conditions hold :

(1) .X; Y /D .@xCy@z; @y/ on R3
ƒ˙
nN� 'R3 nN�.

(2) .X; Y / is a symplectic basis of .�ƒ˙ ; d˛�/ at each point contained in a closed
Reeb orbit of R�.

(3) X�1.0/ D Y �1.0/ is a union of connected components of
S
i T

ci
i , where the

T˙i are the transverse push-offs of the ƒi as described in Definition 4.7.

Using the .X; Y /, the first Chern class of �ƒ˙ may be computed as

PD.c1.�ƒ˙//D
X

ƒi�ƒ˙

�ci rot.ƒi /ŒT
ci
i �D

X
ƒi�ƒ˙

rot.ƒi /�i 2H1.R3ƒ˙/:
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Figure 13: Here we consider contact˙1 surgery on the Legendrian unknot
with rot.ƒ/D 1. In each case, Theorem 6.1 provides a framing of �ƒ on the
complement of a transverse push-off of ƒ which travels along the right-hand
side of ƒ when the surgery coefficient is C1 and along the left side of ƒ
when the coefficient is �1. These push-offs are depicted as the dashed, black
circles.

The classes �i are given by a standard presentation of H1.R3ƒ˙/ determined by the
surgery diagram, which we will describe in Section 9.

Theorem 6.1 may be compared with [31, Proposition 2.3], where a similar result is stated
for Chern classes integrated over 2–cycles in Stein surfaces, and with [27, Section 3],
where Chern classes are computed when performing surgery along Legendrians lying
in pages of open book decompositions.

For notational simplicity, we assume throughout this section that ƒ˙ has a single
connected component unless otherwise stated. Accordingly, we temporarily drop the
indices i appearing in the notation of Section 3. The surgery coefficient of this knot
will be denoted by c.

Our framing is constructed in three steps:

(1) We start with a framing of �std over the complement of N� and express it in
terms of our local coordinate system .z; p; q/ along the boundary of our surgery
handles.

(2) Next, we describe an explicit extension of this framing throughout most of the
handle. We will need this explicit description to compute Conley–Zehnder and
Maslov indices in Section 7.

(3) Finally, we describe the zero locus of this extension.

6.1 Change of bases between trivializations

Consider the following pairs of sections of �std and �ƒ˙ , which form symplectic bases:

fXD@xCy@x; Y D@yg; fPinD@p; QinD@q�p@zg; fPoutD@p; QoutD@q�p@zg:
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These come from

(1) the coordinate systems .x; y; z/ on R3,

(2) the coordinates .z; p; q/ on N� viewed “from the outside” of the surgery handle
prior to surgery, and

(3) .z; p; q/ on N� viewed “from the inside” of the surgery handle after surgery,

respectively. After performing surgery, the pairs .X; Y / and .Pin;Qin/ are well defined
on the complement of a neighborhood of the form N�0 for some �0 < �. Our strategy
will be to apply a series of change-of-basis transformations to extend the framing
.X; Y / of �ƒ˙ throughout the surgery handle in so far as cohomological obstruction —
c1.�ƒ˙/— will allow.

First we describe change of bases from .Pin;Qin/ to .Pout;Qout/. Following (23), the
restriction of the tangent map of the gluing map �c;f;�;ı — defined in (22) — to �ƒ˙
can be written as

(28) T�c;f;�;ı.z; p; q/j� D

�
1 0

c@f�=@p.p/ 1

�
along Tı;� and as Diag.1; 1/ along Bı;� [Sı;�. Here the incoming basis is .Pin;Qin/,
the outgoing basis is .Pout;Qout/, and coordinates .z; p; q/ correspond to the coordinate
system inside of the surgery handle.

Now we describe change of bases from .Pout;Qout/ to .X; Y /. To this end, let G
be the Gauss map for a parametrization of ƒ as described in Section 4.4. Using the
construction of N� in Proposition 4.5, we can write the change of basis at a point
.p; q; z/ as

(29) E.p; q/eJ0.G.q/��=2/;

where E DDiag.1; 1/CO.p/. Here the incoming basis is .Pout;Qout/, the outcoming
basis is .X; Y /, and coordinates .z; p; q/ correspond to the coordinate system on “the
outside” — the complement of the surgery handle in N�.

By composing the changes of bases described above in (28) and (29) and then inverting,
we can write .X; Y / in the basis .Pin;Qin/ on a neighborhood of @N� as follows: Along
Bı;� [Sı;� the change of basis is given by

(30) eJ0.�=2�G.q//E�1.p; q/:

Along Tı;� the transition map is

(31)
�

1 0

�c@f�=@p.p/ 1

�
eJ0.�=2�G.qCcf�.p///E�1.p; qC cf�.p//:
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Here the incoming basis is .X; Y /, the outcoming basis is .Pin;Qin/, and coordinates
.z; p; q/ correspond to the coordinate system inside of the surgery handle. Then, where
they are defined, equations (30) and (31) provideX and Y as a linear combination of Pin

and Qin by multiplying the above expressions on the left by
�
1
0

�
and

�
0
1

�
, respectively.

6.2 Framing extension up to obstruction

We use the above equations to extend the framing .X; Y / of �ƒ˙ inside of the surgery
handle. To this end, let ı > 0 be an arbitrarily small constant and consider a smooth
function � W I�! Œ0; 1� with the following properties:

(1) �.��/D 0 and �.�/D 1.

(2) All of its derivatives vanish outside of I��ı .

When c D 1, we use (30) and (31) to extend the definitions of .X; Y / over the set
fp < �� ıg �N� using the family of matrices

(32)
�

1 0

�@f�=@p.�
C/ 1

�
eJ0.�=2�G.�

C//E�1.�C; �C/;

where

�C.z; p/D p�.z/� �.1� �.z//; �C.z; p; q/D qCf�.�
C.z; p//:

Note that �CD�� along fzD��g[fpD��g and that �CD p along zD �. By these
properties and the properties of f� and its derivatives in Section 4.7, we have that this
family of matrices agrees with (30) along Bı;� and with (31) along Tı;�.

Likewise, when c D�1, we extend the definitions of .X; Y / over fp > ��C ıg �N� ,
using the family of matrices which provide .X; Y / in the basis .Pin;Qin/,

(33)
�

1 0

@f�=@p.�
�/ 1

�
eJ0.�=2�iG.�

�//E�1.��; ��/;

where

��.z; p/D p�.z/C �.1� �.z//; ��.z; p; q/D q�f�.�
�.z; p//:

Note that �� D � along fz D��g [ fp D �g and that �� D p along z D �. As in the
c D 1 case, this family of matrices agrees with (30) along Bı;� [Sı;� and with (31)
along Tı;�.

The extension of the fields .X; Y / through the surgery handle N� is illustrated in
Figure 14.
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p D�� p D �� ı p D��C ı p D �

Figure 14: On the left we have the extension of the framing .X; Y / through
the surgery handle over a square of the form fq D q0; p < �� ıg in N� when
c D 1 and rot.ƒ/D 1. On the right is the case c D �1, rot.ƒ/D 1. Here @p
points to the right, @q points in to the page, and @z points upwards. Along the
bottom of the square, the framing is constant. At each p, the framing twists
with respect to the trivialization .@p; @q � p@z/ according to the twisting of
Gauss map along the path inƒ from q0 to q0Cf�.p/. For cD 1, moving from
left to right, we eventually get to p0 D �� ı such that f�.p/D 1 for p > p0.

6.3 Obstruction to global definition of .X; Y /

The Chern class c1.�ƒ˙/ agrees with the Euler class of �ƒ˙ and so can be represented
as the zero locus of a generic section s 2�.�ƒ˙/. In attempting to extend the definition
of .X; Y / over the squares SC

q0;�;ı
WD fq D q0; � � ı � p � �g when c D 1 and

SCq0;�;ı WD fq D q0; �� � p � ��C ıg when c D�1, we may complete the proof of
Theorem 6.1.

Proof of Theorem 6.1 We attempt to extend X throughout the entirety of the han-
dle, assuming that ı is small enough so that f� is constant on each component of
Œ��;��C ı/[ .�� ı; ��. For the case of C1 contact surgery we study (32). We orient
SC
q0;�;ı

so that @q points positively through it. Parametrize the oriented boundary of
each SC

q0;�;ı
with a piecewise-smooth curve  D .t/ so that

@

@t
D

8̂̂̂<̂
ˆ̂:

@z if p D �� ı;
@p if z D �;
�@z if p D �;
�@p if z D �:

Applying the vector
�
1
0

�
to the left of (31) gives us the sectionX as a linear combination

of Pin and Qin along  . By throwing away the shearing and rescaling terms in (32),
this section is homotopic through nonvanishing sections of �ƒ˙ to a section of the form

(34) t 7!

�
e�J0G.q0Cf�.t�// for p D �� ı; t 2 Œ�1; 1�;
e�J0G.q0Cf�.�// on fz D��g[ fp D �g[ fz D �g:
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This is homotopic to
t 7! econst�2�it rot.ƒ/; t 2 Œ0; 1�:

Therefore, a generic extension of X over each SC
q0;�;ı

will have �rot.ƒ/ zeros counted
with multiplicity. Taking a generic extension of X over fp > � � ıg will then be an
oriented link which transversely intersects each square with multiplicity rot.ƒ/. Pushing
this zero locus through the side p D � of the surgery handle provides PD.c1.�ƒ˙//D
�rot.ƒ/�� .

The case c D �1 is similar; we only check signs. Consider a parametrization of the
boundary of the square S�

q0;�;ı
with a loop  satisfying

@

@t
D

8̂̂̂<̂
ˆ̂:
�@z if p D��C ı;
�@p if z D��;
@z if p D��;
@p if z D �:

Then, following (33), the analog of (34) for the c D�1 case is

t 7!

�
e�J0G.q0�f�.t�// for p D��C ı; t 2 Œ�1; 1�;
e�J0G.q0�f�.�// on fz D �g[ fp D��g[ fz D��g;

so that the zero locus of the extension of the vector field X throughout the handle is
homologous to rot.ƒ/�� .

Remark 6.2 We sketch how the framing .X; Y / can be modified so that its zero locus is
contained in a union of meridians of the ƒi . Take a meridian �i of ƒi and handle-slide
it through N� to obtain a longitude �ci�i , which we may take to be �ciT ci .

This homotopy, say parametrized by Œ0; 1�may be chosen so that the surface S it sweeps
out is an embedded cylindrical cobordism parametrized by an annulus Œ0; 1��S1. Then
we can find a family .Xt ; Yt / of sections of �ƒ whose zero loci are contained in ftg�S1,
so that .X1; Y1/ will vanish along some union of the ƒi , as desired.

If  is a Reeb orbit of R� , then, according to (2), we can compute CZX1;Y1 from CZX;Y
by counting the number of intersections of  with S, which measures the meridional
framing difference.

6.4 Rotation numbers and Chern classes in arbitrary contact 3–manifolds

We briefly state how the above can be generalized to understand how c1 changes
after contact surgery on an arbitrary contact manifold .M; �/. A section s 2 �.�/
determines a homotopy class of oriented trivialization of � on the complement of
s�1.0/ by considering �x D spanR.sx; Jsx/ for an almost-complex structure J on �
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compatible with d˛ for a contact form ˛ for � and x 2M n s�1.0/. Suppose that s is
transverse to the zero section and nonvanishing along a neighborhood N� of ƒ. Write
�s for the oriented link

Ts D s
�1.0/� .M nN�/D .Mƒ nN�/:

Definition 6.3 The rotation number rots.ƒ/ is the winding number of @q in �ƒ
determined by the trivialization of �jƒ provided by s.

Note that changing the orientation of ƒ multiplies the rotation number by �1 and that
rots agrees with the standard definition of the rotation number for oriented Legendrians
in .R3; �std/ if we take s 2�¤0.�std/. More generally, the rotation number of Legendrian
knot ƒ is canonically defined whenever � admits a nonvanishing section and at least
one of H 1.M/D 0 or Œƒ0�D 0 2H1.M/ holds as in Proposition 2.5.

We note that Definition 6.3 may be applied to Legendrian knots in .R3
ƒ˙
; �ƒ˙/ even

when these hypotheses are not satisfied: if such a knot ƒ0 is contained in R3 nN� D

R3
ƒ˙
nN� , then rotX;Y .ƒ0/ may be computed using the typical methods for Legendrian

knots in .R3; �std/ as described in Section 2.8. This follows immediately from the first
condition listed in Theorem 6.1.

Proposition 6.4 Following the notation in the preceding discussion and writing �� for
a longitude ofƒ determined by � , and � for a meridian ofƒ, the Chern class c1.�ƒ/ for
the contact manifold .Mƒ; �ƒ/ obtained by performing contact ˙1 surgery on ƒ�M
is determined by the formula

PD.c1.�ƒ//D ŒTs�� rots.ƒ/�� D ŒTs�˙ rots.ƒ/� 2H1.Mƒ/:

This can be proved using the same strategy as Theorem 6.1, replacing X with s.

7 Conley–Zehnder and Maslov index computations

The goal of this section is to compute the integral Conley–Zehnder indices of closed
orbits of the R� and the Maslov indices of broken closed strings on ƒ0 � .R3

ƒ˙
; �ƒ˙/

using the framing .X; Y / defined in Section 6.

Theorem 7.1 For each n > 0, there exists �0 such that , for all � � �0, all orbits  of
word length � n are hyperbolic with

CZX;Y ./D
nX
kD1

.rotjk ;jkC1 Cı1;cC
jk

/ 2 Z:
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Theorem 7.2 Let b be a broken closed string on ƒ0 � .R3
ƒ˙
; �ƒ˙/ of the form

b D �1 � .a1�1/� � � � �n � .an�n/;

where each �k is a path in ƒ0 and each �k is a chord of ƒ0 with respect to R�. By
Theorem 5.10, we can write

�k D .rk1 � � � rknk
/

for some word of chords with boundary on ƒ0 � .R3; �std/. In this notation ,

MX;Y .b/D

nX
1

�
�.�k/

�
�
1

2
C akmX;Y .�k/

�
;

mX;Y .�k/D

nk�1X
lD1

.rotjkl ;jklC1 Cı
C
1;ckl

/:

Proving the above theorems requires further analysis of (32) and (33). The analysis will
provide an expression of the linearized flow of R� as a path of matrices in SL.2;R/
with entries in RŒ��1� determined by cw./. Analysis of the highest-order terms of
these polynomials gave us the proof of Theorem 5.3. Analysis of the second-highest-
order terms of these polynomials will yield a formula for integral Conley–Zehnder
indices, CZX;Y .

7.1 Matrix model for the linearized flow

With respect to the coordinate system .z; p; q/ inside of the surgery handles R� D @z .
Hence computing the restriction of the linearized to flow to �ƒ˙ from the bottom
(z D ��) to a point above it (z > ��) in the surgery handle with respect to .X; Y /
amounts to writing .X; Y /��;p;q in the basis .X; Y /z;p;q . We write Fi .z; p; q/ 2
SL.2;R/ for this path of matrices associated to points .z; p; q/ in the component of
N� associated to ƒi .

By composing (30) with equations (32) — in the case of C1 surgery — and (33) — in
the case of �1 surgery — we have

(35) Fi .z; p; q/DE.�
ci ; �ci /eJ0Gi .�

ci /

�
1 �ci@f�=@p.�

ci /

0 1

�
e�J0Gi .q/E�1.p; q/

D eJ0Gi .�
ci /

�
1 �ci@f�=@p.�

ci /

0 1

�
e�J0G.q/.IdCO.p//:
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We have preemptively simplified the expression with some basic arithmetic. Here Gi
is the Gauss map associated to the component ƒi of ƒ. The following collection of
assumptions will allow us to further simplify the above expression:

Assumptions 7.3 We refine our previous constructions as follows: At any point
through which a closed Reeb orbit passes, the sections X and Y of �ƒ˙ described in
Section 6.2 are defined according to the formula contained within that section. This
can be achieved by setting the constant ı to be sufficiently small.

Some consequences of the above assumptions coupled with Assumptions 5.4 are:

(1) Equation (35) is valid for any point contained in a closed Reeb orbit.

(2) The expression �ci@f�=@p.�ci / in that formula simplifies to �ci��1 for any
point lying in a closed Reeb orbit.

Combining these consequences with a conjugation, we have that Fi in a neighborhood
of a Reeb segment which exits N�;i near lCj1 and exits near l�j2 for composable Reeb
chords rji and rj2 is homotopic — relative endpoints — to a path of the form

(36) Fj1;j2.t/D eJ0t�j1;j2
 
1 �tcCj1�

�1

0 1

!
.IdCO.�// 2 SL.2;R/; t 2 Œ0; 1�;

where we use the basis ei�=4.X; Y /.

Using (36), we can write the restriction of Poincaré return map to � of a closed Reeb
orbit  of ˛� with cw./D rj1 � � � rjn as

(37) Ret D Fjn;j1.1/Fjn�1;jn.1/ � � �Fj1;j2.1/

by composing the flow maps as an orbit passes through the various surgery handles. If
the word consists of a single chord, then we have RetD Fj1;j1.1/. Note that, while
our expression for Ret depends on a particular representation of the associated cyclic
word, its conjugacy class in SL.2;R/ does not.

7.2 Integral Conley–Zehnder indices

In this subsection we prove Theorem 7.1 via induction on the word length n of  . The
proof is computational, making use of the Robbin–Salamon characterization of the
Conley–Zehnder index described in (5).
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7.2.1 The case n D 1 We begin with the case n D 1, analyzing (36). A slight
modification of the proof of the following lemma along with further analysis of (26)
will provide the general case. For the sake of notational simplicity, we temporarily
drop the subscripts required to describe words of length greater than 1.

Lemma 7.4 Theorem 7.1 is valid for Reeb orbits of word length 1.

Proof We homotop the path F so that it is parametrized with the interval Œ0; 3�, taking
the form

(38)

F.t/D eJ0t1�
�
1 �t2c�

�1

0 1

�
E.t3/; E.0/D Id; E.1/D IdCO.�/;

tk D

8<:
0 if t � k� 1;
t � kC 1 if t 2 .k� 1; k/;
1 if t � k:

With this parametrization we are performing the rotation first so that the path is
nondegenerate at F.0/D Id. A standard computation shows that, along the interval Œ0; 1�,
the contributions to CZX;Y are given by 2b�=2�cC 1. Then, along t 2 Œ1; 2�, we have

F.t/D .�1/rot
�
0 �1

1 �t2c�
�1

�
By the SL.2;R/ trace formula of (1), t 2 Œ1; 2� will be crossing exactly when

tr.F.t//D .�1/1Crott2c D 2:

Therefore, we find a crossing in the interval — and a single one at that — if and only
if c D .�1/1Crot. At such a crossing, if it exists, the matrix S.t/ of (4) is S.t/ D
Diag.t2c��1; 0/. So the contribution to CZX;Y can be computed as 1

2
.c � .�1/rot/.

Adding up the contributions along t 2 Œ0; 2�, we have

CZD 2
j
�

2�

k
C 1C 1

2
.c � .�1/ı/D 2

j
�

2�

k
C
1
2
.1� .�1/rot/C 1

2
.cC 1/

D rotCı1;c :

Along the interval Œ2; 3�, the addition of the E term to the formula contributes a term to
the trace which is bounded by a constant which is independent of �. Thus, this interval
is devoid of crossings for � small.

7.2.2 The case n> 1 Now we prove the induction step in our index computation. We
suppose that the Reeb orbit in question has word length nC 1 > 1 and is parametrized
with an interval Œ0; nC 1�. Then we can compute the Conley–Zehnder index using the
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path of symplectic matrices

�.t/D Fjn;jnC1.tnC1/ � � �FjnC1;j1.t1/; tk D

8<:
0 if t � k� 1;
t � kC 1 if t 2 .k� 1; k/;
1 if t � k;

by combining (36) and (37). As in the proof of Lemma 7.4, we can drop the E terms
in the equations, count the contributions to CZ coming from the rotation and shearing
matrices, then reintroduce the E terms, noting that they do not contribute to CZ due
to the large absolute values of traces. Consequently, we ignore these E terms during
computation. With this simplification, � takes the form, when t 2 Œn; nC 1�,

(39) �.t/D z�.tnC1/Retn;

where

z�.tnC1/D e
itn�jnC1;j1

 
1 �tnC1c

C
jnC1

��1

0 1

!
;

Retn D Fjn�1;jn.1/ � � �FjnC1;j1.1/

D .�1/rotn
�
J nC

nX
KD1

� X
k2IK

� KY
iD1

�cCjki

�
Mk

�
��K

�
;

rotn D
n�1X
0

rotjk ;jkC1 ;

over the subinterval Œn; nC 1�. Here indices are cyclic, so that rotj0;j1 D rotjnC1;j1 .
The Mk are as in (26).

By Theorem 5.3, the trace of Retn has absolute value of order ��n. Therefore, n; nC12
Œ0; nC1� are not crossing for � small. The ��n term in Retn is given by (27). The �1�n

term is also easily computable. Noting that Diag.0; a/J Diag.0; b/D 0 for a; b 2 R,
the only k for whichMk is nonzero with k 2 In are .1; : : : ; n�1/ and .2; : : : ; n/. Thus,
the �1�n terms in Retn are� n�1Y

1

�cCjki

�
Diag.0; 1/JC

� nY
2

�cCjki

�
J Diag.0; 1/D

 
0 �

Qn
2 �c

C
jkiQn�1

1 �cCjki
0

!
:

Combining this with (27), we have

(40) Retn D .�1/rotn

 
0 ���nC1

Qn
2 �c

C
jki

��nC1
Qn�1
1 �cCjki

��n
Qn
1 �c

C
jki

!
CO.�2�n/

D .�1/rotn��nC1
� nY
1

�cCjki

� 
0 cCjk1

�cCjkn
��1

!
CO.�2�n/:
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Lemma 7.5 For � sufficiently small , the contribution to CZX;Y along the interval
Œn; nC 1� in (39) is

rotjn;jnC1 Cı1;cC
jnC1

:

Proof We begin by making some temporary notational simplifications and further
subdivide the interval Œn; nC1� along which the map z� is changing and Retn is constant.
We are referring here to (39) and use notation from that equation throughout the proof.
We write

� D .�1/rotn
� nY
1

�cCjki

�
2 f˙1g;

c1 D c
C
j1
; cn D c

C
jn
; cnC1 D c

C
jnC1

;

rotD rotjn;jnC1 ; rot2 D rot mod 2 2 Z=2Z;

�jn;jnC1 D �
�
2kC ı1;rot2 C

1
2

�
; k D

�
�jn;jnC1

2�

�
2 Z:

By combining the above notation with (40), we can write �.t/D z�.tn/Retn, where

z�.tnC1/D e
J0tnC1�jn;jnC1

�
1 �tnC1cnC1�

�1

0 1

�
;

Retn D ��1�n
�

0 c1
�cn �

�1

�
CO.�2�n/:

Along the subset t 2 Œn; nC 1�, we homotop z� to take the form

z�.tnC1/D e
J0�

�
1 �s2cnC1�

�1

0 1

�
; � D �

�
s1 �

1
4
C s3

�
ı1;rot2 C

1
4

�
C s4 � 2k

�
;

where si are functions of t taking values in Œ0; 1� as described in Figure 15, so that
� D �jn;jnC1 when s1 D � � � D s4 D 1. In words, we will be applying a rotation by 1

4
� ,

a shear, a rotation by �
�
ı1;rot2 C

1
4

�
, and then finally a rotation by 2�k. Taking the

arguments of all trigonometric functions to be � ,

� D

�
cos �sin
sin cos

��
1 �s2cnC1�

�1

0 1

��
��1�n

�
0 c1
�cn �

�1

�
CO.�2�n/

�
D ���n

�
s2cncnC1 cos �s2cnC1��1 cos� sin
s2cncnC1 sin �s2cnC1��1 sinC cos

�
CO.�1�n/;

tr.�/D ���n.s2cncnC1 cos�s2cnC1��1 sinC cos/CO.�1�n/:
Along our first subinterval parametrized by s1, we have s2 D s3 D s4 D 0 with �
increasing from 0 to 1

4
� . Here tr.�/D ���n cosCO.�1�n/ has large absolute value
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n nC 1

Figure 15: From left to right are graphs of the functions s1.t/; : : : ; s4.t/.

when � is small. Hence, for � small, there are no crossings over the s1 subinterval and
so there are no contributions to the Conley–Zehnder index.

Along the subinterval parametrized by s2, we have �D 1
4
� , so that cos.�/Dsin.�/D 1p

2
.

Hence,

(41) tr.�/D 1p
2
���n.s2cncnC1� s2cnC1�

�1
C 1/CO.�1�n/:

At both the s2 D 0 and s2 D 1 endpoints of the interval, tr.�/ will have large absolute
value of orders ��n and ��1�n, respectively, so that � cannot be crossing at either
of these endpoints. Over the interior of the subinterval, we see that there is a single
crossing if cnC1 D 1 and no crossings if cnC1 D�1.

If cnC1 D 1, then at the unique crossing we compute the crossing form

S D�J0
@�

@s2
��1 D

1

2�

�
1 �1

�1 1

�
;

�
a b

�
S

�
a

b

�
D
1

2�
.a� b/2:

The quadratic form determined by S vanishes exactly along the line R
�
1
1

�
. Therefore,

to see that the unique crossing along the s2 subinterval is nondegenerate, we only need
to check that �

�
1
1

�
¤ 0 at the crossing. Plugging cnC1 D 1 into (41), at the crossing

we must have
s2.cn� �

�1/C 1DO.�/

in order to eliminate the ��n and ��n�1 terms. Therefore, at the crossing,

�

�
1

1

�
D

1p
2
���n

�
s2.cn� �

�1/� 1

s2.cn� �
�1/C 1

�
CO.�1�n/D 1p

2
���n

�
�2

0

�
CO.�1�n/

is nonzero for � small. We conclude that, at the crossing, ker.� � Id/ must be 1–
dimensional and the restriction of S to ker.� � Id/ must be positive. Hence, the s2
subinterval contributes ıcnC1;1 to the Conley–Zehnder index.

Now we study the s3 subinterval along which s2 D 1 and � 2
�
1
4
�; �

�
ı1;rot2 C

1
2

��
.

Along this subinterval,

tr.�/D ���n.cncnC1 cos�cnC1��1 sinC cos/CO.�1�n/:
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If ı1;rot2 D 0 and � is very small, then, as � increases from 1
4
� to 1

2
� , the sin term

dominates, tr.�/ maintains a large absolute value, and there are no crossings.

If ı1;rot2 D 1, then we have a single crossing at which the crossing form is determined
by the matrix

S D�J0
@�

@s2
��1 D 3

4
� Id:

Because the crossing form is positive definite, the contribution to the Conley–Zehnder
index is the dimension of ker.� � Id/— either 1 or 2. At the crossing, sin is O.�/,
implying that � ! � (and so cos.�/!�1) as �! 0. Therefore, at the crossing,

.� � Id/
�
0

1

�
D ���n

�
�cnC1�

�1 cos� sin
�cnC1�

�1 sinC cos

�
CO.�1�n/

D ���1�n
�
�cnC1 cos

0

�
CO.��n/¤ 0;

implying that dim ker.� � Id/D 1. We conclude that the contribution to CZ along the
s3 interval is ı1;rot2 .

For the s4 subinterval, we appeal to the loop property of CZ described in (6) to see a
contribution of 2k. Combining the contributions over the four si subintervals, we get

2kC ırot2;1C ıcnC1;1 D rotjn;jnC1 CıcC
jnC1

;1
;

by reverting to our original notation, thereby completing the proof.

The combination of the above lemmas completes our induction, thereby proving
Theorem 7.1.

7.3 Integral Maslov indices

The proof of Theorem 7.2 follows from the same methods of calculation as Theorem 7.1.

Proof of Theorem 7.2 According to Definition 3.8, we need to measure the rotation
of FlowtR� .Tq�k1ƒ

0/ along each chord .rk1 � � � rknk / with respect to the framing .X; Y /.
For chords �k of word length 1, the flow is trivial, so we restrict attention to chords
of word length > 1. The required analysis can be carried out via analysis of (36); we
recall that this describes the restriction of the linearized flow of R� to �ƒ˙ through a
component N�;j1 of N� starting at a point near the tip of one chord rj1 up to a point
near the tail of another chord rj2 .
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We study the rotation along a single � D .rj1 � � � rjn/: The matrix expression Fj1;j2.t/
in (36) applies to the basis

ei�=4.X; Y /' .@q �p@z;�@p/;

beginning on the bottom, fz D ��g, of the surgery handle N�;j1 . For j1 D k1 and
j2 D k2, the strand of ƒ0 touching the starting point of the chord rj1 is such that
Tƒ0 D R

�
0
1

�
. Therefore, we need to see how Fj1;j2.t/ rotates this subspace for

t 2 Œ0; 1�. As in the proof of Theorem 7.1, we can modify the path so as to apply the
shearing first, and then the rotation.

For the shearing, we study the family of real lines in R2 given by

R

 
1 �tcCj1�

�1

0 1

!
.IdCO.�//

�
0

1

�
; t 2 Œ0; 1�:

The end result is a line of the form R
��
1
0

�
CO.�/

�
obtained by rotating R

�
0
1

�
by an

angle of

(42) cCj1 �
1
2
� CO.�/:

Then, applying the rotation through angles t�j1;j2 as in (36), we rotate this subspace by

(43) �j1;j2 D � rotj1;j2 C
1
2
�;

which we recall from Section 3 is the rotation angle of the capping path �i;j associated
to the pair of composable chords .rj1 ; rj2/.

Continuing the flow by applying the remaining Fkl ;klC1 for l D 2; : : : ; nk�1 provides
us a total rotation angle of

�

� nk�1X
lD1

rotkl ;klC1 C
1
2
C
1
2
cC
kl

�
CO.�/D �

� nk�1X
lD1

rotkl ;klC1 CıcC
kl
;1

�
CO.�/;

leaving us on a neighborhood of the strand of ƒ lying at the starting point of the
chord rknk which ends on ƒ0. Each summand in the above formula is the result of
adding the contributions of (42) and (43). As in the case wl.�/ D 1, the linearized
flow up to ƒ0 along rknk is trivial in the basis .X; Y /. This nearly completes the
construction of the section �G along the chord �: we must apply one more rotation
to ensure that the unoriented Lagrangian line closes up as described in the discussion
preceding Definition 3.8.
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In the case that our asymptotic indicator is ak D 1, the total rotation along the chord
will be

�

�
�
1
2
C

nk�1X
lD1

.rotkl ;klC1 CıcC
1;kl

/

�
;

where the 1
2

is the contribution of the clockwise correction rotation at the end of the
chord. From the above analysis we know that the angle for this rotation is �1

2
�CO.�/.

If the asymptotic indicator is �1, we must travel in the opposite direction, from the tip
to the tail of the chord, and then apply small the clockwise rotation to obtain a total
rotation angle of

�

�
�
1
2
�

nk�1X
lD1

.rotkl ;klC1 CıcC
1;kl

/

�
:

The section �G appearing in the definition of Ms is determined by the �.�k/ as the
framing .X; Y / coincides with .@x�y@z; @y/— from which the �.�k/ are computed —
on the complement of N�, in which ƒ0 is presumed to be contained.

8 Diagrammatic index formulas

In this section we compute indices of holomorphic curves in .R�R3
ƒ˙
; d.et˛�//. We

begin by covering the case of curves whose domain is a closed surface with punctures,
which is a simple application of (8) to our existing computations of Conley–Zehnder
indices and Chern classes. Next we cover the case of a holomorphic disk which is
asymptotic to a broken closed string on ƒ0 � .R3

ƒ˙
; �ƒ˙/ in the sense of Example 3.4.

The case ƒ˙D¿ recovers a classic index formula appearing in combinatorial versions
of LCH and Legendrian RSFT . These index formulas are then combined to describe
indices associated to holomorphic curves with arbitrary configurations of interior and
boundary punctures in Theorem 8.3.

All indices computed will depend only on topological data, so mention of any specific
almost-complex structures are ignored.

8.1 Index formulas for closed orbits

Let fwC1 ; : : : ; w
C

mC
g and fwC1 ; : : : ; w

�
m�g be collections of cyclic words of chords onƒ.

By Theorem 7.1, we may choose some � > 0 such that for all � < � , the closed orbits
˙j of R� corresponding to these cyclic words via Theorem 5.8 are all nondegenerate
hyperbolic à la Theorem 5.3. Write C D fC1 ; : : : ; 

C

mC
g and � D f�1 ; : : : ; 

�
m�g

for the corresponding collections of orbits.
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Suppose that .†; j / is a closed Riemann surface containing a nonempty collection of
punctures and that .t; U / W†0!R�R3

ƒ˙
is a holomorphic curve (as in Section 2.7)

which is positively asymptotic to the punctures C and negatively asymptotic to the �.

Theorem 8.1 Using the framing .X; Y / described in Section 6.2, we can write the
expected dimension of the moduli space of curves near .t; U / as

(44) ind..t; U //D CZX;Y .C/�CZX;Y .�/��.†0/� 2
nX
1

ci rot.ƒi /.U �T
ci
i /

for all � < � , where the sum runs over the connected components of ƒ˙ and the
CZX;Y are computed as in Theorem 7.1.

Proof By comparing with (8), we only need to check that

cX;Y .U /D�

nX
1

ci rot.ƒi /.U �T
ci
i /;

where cX;Y .U / is the relative Chern class of the framing .X; Y /. Letting XU 2
U �.R3

ƒ˙
; �ƒ˙/ be a section for which TzU.XU / D X.U.z// for z 2 †0 to compute

cX;Y .U / provides the desired result, as X�1.0/ is a union of connected components
of
S
T
ci
i and the coefficients �ci rot.ƒi / account for the multiplicities of the zeros

of XU by the construction of .X; Y / in Section 6.

8.2 Index formulas for disks with boundary punctures

Now suppose that fpj gm1 � @D is a collection of distinct points on the boundary of a
disk. Write D0 D D n fpj g for the complement of the boundary punctures in D and
write j for the standard complex structure on D. Suppose that .t; U / WD0!R�R3

ƒ˙

is a .j; J /–holomorphic map satisfying

(1) .t; U /.@D0/�R�ƒ0, and

(2) the punctures fpj g are asymptotic to chords of R� with boundary on ƒ0 �
.R3
ƒ˙
; �ƒ˙/.

As described in Example 3.4, such a map determines a broken closed string which
we will denote by bcs.U /. As in the case of (8), we use ind..t; U // to denote the
expected dimension of the space of holomorphic maps with the same bcs.U / boundary
conditions as .t; U / and in the same relative homotopy class obtained by allowing
the locations to vary and then modding out by holomorphic reparametrization in the
domain (when m< 3).
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Theorem 8.2 The moduli space of holomorphic disks with boundary condition bcs.U /
in the homotopy class of U has expected dimension

(45) ind..t; U //DMX;Y .bcs.U //Cm� 1� 2
nX
1

ci rot.ƒi /.U �T
ci
i /

near the point .t; U /. The sum appearing in the above formula is indexed over the
components ƒi of ƒ.

Proof We are simply plugging our definition of broken closed strings into formulas
appearing in [19; 17].

Assume first that X is nonvanishing over im.U /, so that @t , R� , X and Y determine a
trivialization of U �T .R�R3

ƒ˙
/ which splits as a pair of complex lines. Using framing

deformation-invariance of MX;Y , we may perturb .X; Y / so that it is invariant under
the flow of R� , in which case the geometric setup described in [17, Section 3.1] applies.
Our choices of “clockwise rotations” along positive punctures and “counterclockwise
rotations” along negative punctures in the definition of the path of symplectic matrices
defining Ms coincide with those used to define the Maslov numbers (which are denoted
by �./) in that text. The tangent space of our Lagrangian — R � ƒ0 — splits as
R@t ˚Tƒ0, so the only contribution to the Maslov number in question comes from the
rotation of Tƒ0 along the boundary of the disk by the direct sum formula for Maslov
numbers. Then the moduli space dimension formula of [17, Section 3.1] completes our
proof.

Now suppose that X is nonvanishing along im.U /. By the construction of the framing
.X; Y /, we have that this section must be nonvanishing along ƒ0 and all of its Reeb
chords, and so is nonvanishing along im.bcs.U //. Therefore, the Maslov index can
corrected by a relative Chern class term as in (8), which may be computed as signed
count of intersections of U with the transverse push-offs of the ƒi as in the statement
of that theorem.

8.3 Index formulas for curves with interior and boundary punctures

Now we state an index formula for holomorphic curves of general topological type.
The geometric setup is as follows.

Let .†; j / be a compact, connected Riemann surface with boundary components

.@†/k; k D 1; : : : ; #.@†/;
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marked points pint;˙
i contained in int.†/, and marked points p@;˙i contained in @†.

We write †0 for † with all of its marked points removed. Consider a holomorphic map
.t; U / W†0!R� .R3

ƒ˙
; �ƒ˙/ subject to the following conditions:

(1) the pint;C
i are positively asymptotic to some collection C of closed orbits of R� ,

(2) the pint;�
i are negatively asymptotic to some collection � of closed orbits of R� ,

(3) the p@;Ci are positively asymptotic to some collections �C of chords of ƒ0 �
.R3
ƒ˙
; �ƒ˙/,

(4) the p@;�i are negatively asymptotic to some collections �� of chords of ƒ0 �
.R3
ƒ˙
; �ƒ˙/, and

(5) .t; U /.@†0/�R�ƒ0.

In this setup, we have a broken closed string bcsk associated to each component .@†/k
of †. We may consider the moduli space of curves subject to the same asymptotics —
˙ and bcsk — allowing the complex structure on † to vary and taking a quotient by
j–holomorphic symmetries on the domain.

Theorem 8.3 In the above notation , the expected dimension of the moduli space of
holomorphic maps is

ind..t; U //D CZX;Y .C/�CZX;Y .�/C
X
k

MX;Y .bcsk/

��.†/C #.pint/C #.p@/� 2
X

ƒi�ƒ˙

ci rot.ƒi /.U �T
ci
i /:

The proof is a simple combination of Theorems 8.1 and 8.2 using index additivity; see
[58, Section 3].

9 H1 computations and push-outs of closed orbits

Here we compute the first homology H1.R3ƒ˙/ of R3
ƒ˙

and the homology classes of
the closed orbits of R�.

Theorem 9.1 The first homology H1.R3ƒ˙/ is presented with generators �i and
relations

.tb.ƒi /C ci /�i C
X
j¤i

lk.ƒi ; ƒj /�j D 0:
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Figure 16: Default orientations for meridians.

Let  be a Reeb orbit of ˛� with cw./ D rj1 � � � rjn . Then its homology class in
H1.R3ƒ˙/ with respect to the above basis is

Œ�D
1

2

nX
kD1

.crjk C crjk ;jkC1/;

where the k are considered modulo n.

Relative homology classes Œ�� 2 H1.R3ƒ˙ ; ƒ
0/ of chords � with boundary on ƒ0 �

.R3
ƒ˙
; �ƒ˙/ can similarly be computed using the technique of the proof of Theorem 9.1

which is carried out in Section 9.3. It will be clear that the method of proof allows
the reader to compute Œ� as an element of the H0 of the free loop space of R3

ƒ˙
. In

Section 9.4, we show how the proof can be generalized to provide a general means of
homotoping closed orbits of R� into R3 nN, a technique we will need for the proof of
Theorem 1.2.

9.1 Conventions for meridians and longitudes

Before proving Theorem 9.1, we quickly review some standard notation. Let �j denote
a meridian ofƒ and �i a longitude ofƒ provided by the Seifert framing and orientation
of ƒi . We note that, with respect to the Seifert framing of ƒi , the longitude provided
by �, denoted by ��;i is

��;i D �i C tb.ƒi /�i :

Each �i is oriented so that

.meridian, longitude, outward-pointing normal/

is a basis for TR3 agreeing with the usual orientation over @N (after rounding the
edges of @N in the obvious fashion). See Figure 16.

9.2 First homology of the ambient space

The computation of H1.R3ƒ˙/ easily follows from the fact that contact ˙1 surgery is a
form of Dehn surgery. Suppose that R3L is a 3–manifold obtained by Dehn surgery on
a smooth link LD

S
Li for which the surgery coefficients with respect to the Seifert
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framing are pi=qi for relatively prime integers pi and qi . Writing �j for the oriented
meridians of the Li , we have the following theorem from Kirby calculus — see eg [52,
Theorem 2.2.11]:

Theorem 9.2 Denote by R3L a 3–manifold determined by a surgery diagram where
each component Li of L has Dehn surgery coefficient pi=qi for relative prime integers
pi and qi . Then H1.R3L/ is presented with generators �i and relations

pi�i C qi
X
j¤i

lk.Li ; Lj /�j D 0;

where lk.Li ; Lj / is the linking number.

When performing contact surgery on the componentƒi ofƒ, the meridian �i bounding
a core disk of the surgery handle is sent to

�i C ci��;i D .1C ci tb.Li //�i C ci�i :

Thus, for Legendrian knots in R3, contact ˙1 surgery on ƒi is topologically a
.tb.ƒi /˙1/ surgery. From this computation, the calculation ofH1.M/ in Theorem 9.1
is then immediate.

9.3 Homology classes of Reeb orbits

In this section we describe how to compute homology classes of the Reeb orbits of ˛� .
Our strategy will be to homotop orbits to the complement of N� in R3

ƒ˙
, after which

the following computational tool may be applied:

Theorem 9.3 Let  be an oriented link in R3 nL. Then the homology classes of  in
H1.R3 nL/ and H1.R3L/ is given by

Œ�D
X
i

lk.; Li /�i :

Proof Assume that  is embedded and let S �R3 be a Seifert surface which trans-
versely intersects the Li . Punch holes in S near its intersections with the Li , producing
a surface S 0 which is disjoint from L and whose oriented boundary is a union of 
and a linear combination

P
ai�i . Then S 0 provides a cobordism from  to these �i ,

providing an equivalence Œ�D
P
ai�i in homology. By the definition of lk, we have

ai D lk.; Li /.

Warning 9.4 The homotopies which we apply to closed Reeb orbits  are not guaran-
teed to preserve the isotopy class of their embedding in R3

ƒ˙
(assuming  is embedded).
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Figure 17: Homotoping a Reeb orbit into R3 nN� as it passes through a
c DC1 surgery handle.

Figure 17 demonstrates how to homotop a segment of a Reeb orbit  into the exterior
of the surgery handle N� as it passes through a component N�;i for which ci D 1. The
boxes represent the surgery handles with @p pointing into the page, @q pointing to
the left, and @z pointing up. On the left we have an arc parallel to the Reeb vector
field entering the handle as seen from the inside of N�;i . The arc extends in the @z
direction through the handle, along which it can be realized as being contained in the
boundary of a square of the form fp � p0; q D q0g, depicted in gray. On the right, we
see intersection of the boundary of this square with @N� as seen from the outside of
the surgery handle R3 nN� . By homotoping  across the gray disk, we obtain this arc
shown on the right.

Figure 18 demonstrates the same procedure for orbits as they pass through surgery
handles with surgery coefficient �1. In this case we consider squares of the form
fp � p0; q D q0g through which we homotop our arcs. Note that our choice of
homotopy for both surgery coefficients is such that the homotoped arcs traverse @N in
the @q direction in which the components of ƒ are oriented.

For a Reeb orbit  , we can perform homotopies as described above at the tips of all
chords in cw./ to push it to the exterior of N� . Away from the chords, we may arrange
that the homotoped orbit traverses the pD�� side of N�;i when the surgery coefficient
of ƒi is ˙1. The image of  after homotopy is shown in the Lagrangian projection in
Figure 19.

Figure 18: Homotoping a Reeb orbit into R3 nN� as it passes through a
c D�1 surgery handle.
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0�l�
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Figure 19: Here the homotopy described in Figures 17 and 18 are depicted in
the Lagrangian projection. The top (bottom) row shows positive (negative)
crossings of ƒ˙. Each subfigure may be rotated by � . Local contributions to
linking numbers are indicated below each subfigure.

The computation of homology classes of orbits in Theorem 9.1 then amounts to
packaging the above observations algebraically:

Proof of Theorem 9.1 We homotop  to R3 nN� as described above and then apply
Theorem 9.3. We write  0 for the image of  under the homotopy. The linking number
of two knots in R3 may be computed from a diagram as half of the signed count of
crossings in the diagram. Therefore, in order to compute Œ�, it suffices to show that
the signed count of crossings between  0 and each ƒi is given by the �i coefficients inP
.crjk C crjk ;jkC1/.

In a neighborhood of a crossing,  0 will be as depicted in Figure 19 in the Lagrangian
projection, where the contribution to the signed count of crossings between  and
the ƒi is given by the terms

1
2
..c�jk C sgnjk /�l�jk

C .cCjk C sgnjk /�lC
jk

/:

The formula may be verified on a case-by-case basis for each of the eight components
of the figure. This is exactly the definition of crjk given in (12).

Away from a crossing,  0 will continue following alongside arc components of the ƒi ,
to the right (in the p > 0 direction) of ƒ when the component of ƒ has coefficient �1
and to the left otherwise as it travels from a crossing jk to jkC1. The contributions to
the signed count of crossings with each of the ƒi are given by the coefficients of �i
in crjk ;jkC1 in the formula, as is clear from the definition of the crossing monomial.
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�1;1 x�1;1 �2;2 x�2;2

�1;1 x�1;1 �2;2 x�2;2

�1;2�2;1 x�1;2�2;1 �1;2x�2;1 x�1;2x�2;1

�1;2�2;1 x�1;2�2;1 �1;2x�2;1 x�1;2x�2;1

Figure 20: Push-outs of Reeb orbits in .R3
ƒ̇
; �
ƒ̇
/, where ƒ is the trefoil

of Figure 6. Default orientations for ƒ and hence for capping paths are
determined by the arrow on ƒ appearing in that figure. Each subfigure
is labeled (to its lower-left) with the capping paths which determine the
homotopy shown with homotoped Reeb orbits appearing in black.

9.4 Push-outs of Reeb orbits

We’ve demonstrated how squares of the form fp � p0; q D q0g � N� in the case of
C1 surgery and of the form fp � p0; q D q0g in the case of �1 surgery are used to
homotop Reeb orbits into R3

ƒ˙
nN� DR3 n � so that the homotoped circles ride along

some �j1;j2 �ƒ according to its prescribed orientation.

Squares of the form fp � p0; q D q0g inside of a ci DC1 component of ƒ and of the
form fp � p0; q D q0g inside of a ci D �1 component could also be used. As may
be checked with the same local model — Figures 17 and 18 — but with opposite the
prescribed orientation for ƒ, we may use these squares to homotop an orbit  to R3 n�.
Using these squares will result in the homotoped arcs riding along some x�j1;j2 �ƒ.
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We then have two choices of homotoping square each time our orbit  passes throughN� ,
with each choice corresponding to a choice of either a �j1;j2 or a x�j1;j2 . Hence, for a
Reeb orbit  D .rj1 � � � rjn/, a choice of �1; : : : ; �n with each �j 2 f�jk ;jkC1 ; x�jk ;jkC1g
determines a means of homotoping  into R3 nN�.

Definition 9.5 Provided �1; : : : ; �n as above, we say that the homotopy class of the
map of the circle in R3 nN� determined by homotoping  as described above is the
push-out of �1; : : : ; �n.

In other words, each orbit string — recall Definition 3.7 — determines instructions for
homotoping  into the complement of the surgery locus. Various examples are depicted
in Figure 20, displaying all push-outs for orbits .r1/, .r2/ and .r1r2/ for R3

ƒ˙
, where

ƒ is the trefoil of Figure 6 for both choices of surgery coefficient.

10 Surgery cobordisms and Lagrangian disks

The purpose of this section is to build symplectic cobordisms between the .R3
ƒ˙
; �ƒ˙/

with specialized properties. We consider the following setup: Take ƒ� .R3; �std/ in
good position with ƒ0 �ƒ nonempty. After performing surgery on ƒ˙ �ƒ, we have
a contact form ˛� on .R3

ƒ˙
; �ƒ˙/ and consider ƒ0 as a Legendrian link in .R3

ƒ˙
; �ƒ˙/.

We choose a constant c D˙1 and denote the contact manifold obtained by performing
contact c surgery along ƒ0 � .R3

ƒ˙
; �ƒ˙/ by .R3ƒ; �ƒ/; we also denote the contact

form on .R3ƒ; �ƒ/ so obtained by ˛�. We write N 0
� for a standard neighborhood of

ƒ0 �R3
ƒ˙

, as described in Section 4.4, of size �.

Theorem 10.1 For any � > 0, there exists a positive constant C > 0 and a Liouville
cobordism .Wc ; �c/ with the following properties:

(1) If c D C1, the convex end of the cobordism is .R3
ƒ˙
; eC˛�/ and the concave

end is .R3ƒ; e
�C˛�/.

(2) If c D�1, the convex end of the cobordism is .R3ƒ; e
C˛�/ and the concave end

is .R3
ƒ˙
; e�C˛�/.

(3) .Wc ; �c/ contains a disjoint collection of disks Dc;i along which �c D 0, bound-
ing ƒ0 in the convex end of the cobordism when c DC1 and bounding ƒ0 in the
concave end of the cobordism when c D�1.

(4) A finite symplectization

.Œ�C;C �� .R3
ƒ˙
nN 0

� /; e
t˛�/

Geometry & Topology, Volume 27 (2023)



1034 Russell Avdek

of .R3
ƒ˙
nN 0

� / is contained in .Wc ; �c/, so that the restriction of its inclusion map
to .@Œ�C;C �/�.R3

ƒ˙
nN 0

� / provides the obvious inclusions into .R3
ƒ˙
; e˙C˛�/

and .R3ƒ; e
˙C˛�/.

We will construct .Wc ; �c/ by attaching 4–dimensional surgery handles to R3
ƒ˙

. As
mentioned in the above theorem, the key properties of our cobordism are that

(1) we get exactly the contact forms ˛� on its boundaries, and

(2) all of the perturbations required to achieve this end happen within a standard
neighborhood of ƒ0 whose size shrinks as � tends to zero.

Then the analysis of Sections 4–7 applies to contact forms on the ends of our cobordisms
without modification.

We are only slightly modifying known handle-attachment constructions — correspond-
ing to the case c D�1 above — such as appear in Weinstein’s original work [60] and
Ekholm [18].

An outline of this section is as follows:

(1) In Section 10.1 we collect lemmas required to perturb contact forms on contacti-
zations, being particularly interested in standard neighborhoods of Legendrian
knots.

(2) In Section 10.2 we describe a square surgery handle sitting inside of R4 and
outline the properties of its ambient geometry.

(3) In Section 10.4 we flatten the corners of the handle to prepare for later attachment.

(4) In Section 10.5 we describe Reeb dynamics on the convex end of this handle,
showing that its flow is described as a Dehn twist.

(5) In Section 10.6 we modify the handle so that the Dehn twist determined by
the Reeb flow is a linear Dehn twist as described in the gluing construction of
Section 4.7.

(6) In Section 10.7 we finalize our construction by attaching our handle to finite
symplectizations of .R3

ƒ˙
; ˛�/.

10.1 Geometry of 1–forms on contactizations and their symplectizations

Let .I �W; ˛ D dzCˇ/ be a contactization of an exact symplectic manifold .W; ˇ/
as in Section 2.3.2.

10.1.1 �–preserving perturbations We first look at how the Reeb vector field
changes if we multiply ˛ by a positive function, thereby preserving the contact structure.
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Lemma 10.2 Given H 2 C1.I �W /, the Reeb vector field RH of the contact form

˛H D e
H .dzCˇ/

on I �W is
RH D e

�H
�
.1Cˇ.XH //@z �XH �

@H

@z
Xˇ

�
;

where XH is computed with respect to dˇ.

This is a straightforward computation. We’ll be interested in the following special case:

Lemma 10.3 Suppose that H DH.z; p/ is a smooth function on I � I �S1. Then
the Reeb vector field of ˛H D eH .dzCp dq/ is

RH D e
�H

��
1Cp

@H

@p

�
@z �

@H

@p
@q �p

@H

@z
@p

�
and the function peH is invariant under FlowtRH .

For the last item, we see that the projection of RH onto the .z; p/ coordinates is the
Hamiltonian vector field associated to dp^ dz and the function pe�H .

10.1.2 �–modifying perturbations Now we study perturbations of ˛ which modify � .
Similar modifications of contact forms appear in [4, Definition 3.1.1; 14, Corollary 2.5].

Lemma 10.4 Given a smooth function h 2 C1.I �W; .0;1//, the contact form

˛h D h dzCˇ

is contact if and only if
h dˇCˇ^ dh

is a symplectic form on each fzg�W. If this form is contact , its Reeb vector field Rh is

Rh D .h�ˇ.Xh//
�1.@z �Xh/;

where Xh is computed with respect to dˇ. The contact structure �h D ker.˛h/ is given
by

�h D fhV �ˇ.V /@z W V 2 T W g:

The following technical result will allow us to modify the Reeb vector field on standard
neighborhoods of Legendrians so that the flow map from the bottom to the top of the
neighborhood realizes a Dehn twist �g associated to a function g. For applications
to surgery later in this section, it will be important to keep track of the size of our
neighborhood.
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Proposition 10.5 For positive constants �p; �g > 0, let g D g.p/ W I�p ! R be a
smooth function which vanishes for all orders on @I�p and satisfies the pointwise bound
jg.p/j � �g . Then , for constants �z and �t satisfying

�p�g �
1
2
�z;

�t�z

2.1C �t /
;

there exists a function hD h.z; p/ on I�z � I�p and an exact symplectic manifold

.Œ��t ; 0�� I�z � I�p �S
1; �/

such that the following conditions hold :

(1) �jf��t g�I�z�I�p�S1 D e
��t .dzCp dq/.

(2) �jf0g�I�z�I�p�S1 D ˛h, where ˛h is as in Lemma 10.4 for a positive function h.

(3) s˛hC .1� s/.dzCp dq/ is contact for all s 2 Œ0; 1�.

(4) ˛h� .dzCp dq/ and all of its derivatives vanish along @.I�z � I�p �S
1/.

(5) The Reeb vector field Rh of ˛h satisfies dz.Rh/ > 0 everywhere.

(6) For each point .p; q/ 2 I�p �S
1 a flow-line of Rh passing through .��z; p; q/

will pass through .�z; p; qCg.p//.

(7) The Liouville vector field of � agrees with @t on a collar neighborhood of the
boundary of its domain.

Proof We first outline the contact forms we’ll need. Consider functions of the form
hD 1CF.z/G.p/ on I�z � I�p and 1–forms

˛h D h dzCp dq

as studied in Lemma 10.4. We assume F � 0 and that both F and G and all of
their derivatives vanish on collar neighborhoods of the boundary of their domains. By
Lemma 10.4, ˛h is contact if and only if

(46) 0 < 1CFG �pF
@G

@p
:

Second we outline the construction of Liouville forms which interpolate between
˛ D dz C p dq and ˛h. Consider functions E on an interval Œ��t ; 0� satisfying
E.��t / D 0 and E.0/ D 1 with @kE=@tk D 0 for all k > 0 at the endpoints of its
domain and @E=@t � 0 everywhere. Define a 1–form

�EFG 2�
1.Œ0; �t �� I�z � I�p �S

1/

determined by

(47) �EFG D e
t
�
.1CE.t/F.z/G.p// dzCp dq

�
:
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Then we compute

(48) d�EFG ^d�EFG D e2t
�
1CEFG�pEF

@G

@p
C
@E

@t
FG

�
dt ^dz^dp^dq:

We seek to specify the E, F and G so that

(1) ˛h is contact and its flow determines a Dehn twist by g,

(2) d�EFG is symplectic, and

(3) the sizes of our neighborhood and symplectic cobordism — governed by the
constants �z and �t — are reasonably small.

First we show that G is determined by g. If ˛h is contact, its Reeb vector field is

Rh D
�
1CFG �pF

@G

@p

��1�
@z �F

@G

@p
@q

�
:

This Reeb vector field is particularly friendly in that it preserves p and provides us
with a separable ODE. For, provided an initial condition .z0; p0; q0/ and some z > z0,
we see that, after some time t > 0, FlowtRh will pass through the point .z; p0; q/ with

q D q0�
@G

@p

Z z

z0

F.Z/ dZ:

In order to realize the flow from f��zg�R�S1 to f�zg�R�S1 as a Dehn twist by g,
we need

G.p/D�

�Z �z

��z

F.z/ dz

��1 Z p

�1

g.P / dP:

This quantity is well defined by our presumption that g is compactly supported.

With this choice of G, the contact condition provided by (46) is equivalent to

(49) F �

�Z p

�1

g.P / dP �pg.p/

�
�

Z �z

��z

F.z/ dz

for all .z; p; q/. The condition that d�EFG is symplectic provided by (48) is equivalent
to

(50) EF �

�Z p

�1

g.P / dP �pg.p/

�
C
@E

@t
F �

�Z p

�1

g.P / dP

�
�

Z �z

��z

F.z/ dz:

Now choose F and a constant �F so that

�F D sup jF.z/j; �F �z D

Z �z

��z

F.z/ dz:

It’s easy to see by drawing pictures of bump functions that these choices can be made.
Then (49) is satisfied so long as

�p�g �
1
2
�z
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and, since 0�E � 1, we have that (50) is satisfied so long as�
2C

@E

@t

�
�p�g � �z :

Choose E so that sup @E=@t D 2=�t . Then this last inequality, which we seek to satisfy,
becomes

2.1C ��1t /�p�g � �z () �p�g �
�t�z

2.1C �t /
:

10.2 The square handle

Having established the above lemmas, we proceed with the construction of our sym-
plectic handle. Here we construct a square Weinstein handle sitting in R4.

Consider the Liouville form on R4 DC2,

�0 D

2X
1

2xi dyi Cyi dxi :

This is a potential for the standard symplectic form d�0 D dxi ^ dyi with Liouville
vector field

X�0 D 2xi@xi �yi@yi ;

whose time t flow is given by

(51) FlowtX�0 .x; y/D .e
2tx; e�ty/:

For �0 > 0, consider also the convex set with corners

D�0 �D D fjxj � �0; jyj � 1g �R4;

whose smooth boundary strata we denote by

MC�0 D @D�0 �D; M��0 DD�0 � @D:

ThenX�0 is positively transverse to theM˙�0 if we equipMC�0 with the outward-pointing
orientation and equip M��0 with its inward-pointing orientation. Therefore, �0jM˙
is contact. Applying FlowtX�0

for t 2 .�1; 0�, we have embeddings of the negative
half-infinite symplectizations of the .M˙�0 ; �0jTS˙/ into R4,

(52) FlowtX�0 ı i
˙
W .�1; 0��M˙�0 !R4;

where i˙ WM˙�0 !R4 denote the inclusion mappings.

10.2.1 Reeb trajectories across the square handle The Reeb vector field R�0
along MC�0 is

R�0 D
1

2�20
xi@yi D) FlowtR�0 .x; y/D

�
x; yC

t

2�20
x

�
:
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Starting at points .x� ; y0/D .�0 cos.�/; �0 sin.�/; 1; 0/, Reeb trajectories are

FlowtR�0 .x� ; y0/D
�
�0 cos.�/; �0 sin.�/; 1C

t

2�0
cos.�/;

t

2�0
sin.�/

�
:

In order that such a trajectory does not immediately exitMC�0 (maintaining the condition
jyj � 1 for small t � 0), we must have � 2

�
1
2
�; 3

2
�
�
. These trajectories touch @MC�0

when
1D

�
1C

t

2�0
cos.�/

�2
C

�
t

2�0
sin.�/

�2
() �4�0 cos.�/D t;

at which point the y coordinate will be

y� D .1� 2 cos2.�/;�2 cos.�/ sin.�//D .�cos.2�/;�sin.2�//

D .cos.2� ��/; sin.2� ��//:

We can then measure the angle from y0 to y� as 2� �� 2 Œ0; 2��.

10.3 Identification of the concave end of the handle as a 1–jet space

We define an embedding of a standard neighborhood of a Legendrian into M�1 as

ˆ�.z; p; q/D
�
z cos� p

2�
sin; z sinC p

2�
cos; cos; sin

�
;

where the arguments of cos and sin are both 2�q. The map parametrizes M�1 so that

(1) 2�q is the angle in the y–plane,

(2) z D x �y,

(3) p D x � @y=@q, and

(4) jxj2 D z2C .p=2�/2.

The tangent map of ˆ� is

Tˆ� D

0BB@
cos �.1=2�/ sin �2�z sin�p cos
sin .1=2�/ cos 2�z cos�p sin
0 0 �2� sin
0 0 2� cos

1CCA
with incoming basis f@z; @p; @qg and outgoing basis f@x1 ; @x2 ; @y1 ; @y2g, from which
it follows that

ˆ���0 D dzCp dq:
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We can extend ˆ� to an embedding of the symplectization of the 1–jet space into R4

by

(53) x̂
�.t; z; p; q/D FlowtX�0 ıˆ�.z; p; q/

D

�
e2t
�
z cos� p

2�
sin
�
; e2t

�
z sinC p

2�
cos
�
; e�t cos; e�t sin

�
:

By (51) and LX�0�0 D �0, we have

(54) x̂�
��0 D e

t .dzCp dq/:

10.4 Shaping the handle

Here we shape our handle so that the manifold obtained by the handle attachment will
be smooth. Moreover, we will choose a specific shape which allows us to control Reeb
dynamics on the surgered contact manifold.

Pick a positive constant �1 < �0 and a smooth function B D B.�/ W .0;1/! Œ0;1/

satisfying the conditions

(1) B.�/D log
p
�0=�D�

1
2
.log �� log �0/ for � 2 .0; �1/,

(2) B.�/D 0 for � > �0, and

(3) 0� �@B=@� < ��1 everywhere.

Along � 2 .0; �1/, we have @B=@�D�1=2�, so that our last condition is satisfied. To
find such a function B, we can take a smoothing of the piecewise-smooth function

(55) BPW.�/D

�
log

p
�0=� if � � �0;

0 if � � �0:

Let N D I � I � S1 be a standard neighborhood of a Legendrian ƒ with ƒ D
f0g � f0g �S1. Using the function B, we define an embedding

ˆH W .N nƒ/!R4; ˆH D FlowHX�0 ıˆ�;

where

H.p; z/D B.�.p; z//; �.p; z/D

r
z2C

�
p

2�

�2
:

We outline some important properties of the map ˆH :

(1) From (54), ˆ�H�0 D e
H .dzCp dq/.

(2) Along the set fz2C .p=2�/2 � �0g, ˆH is the same as ˆ�.
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Figure 21: On the left is the square handle D�0 �D and on the right is the
handle WH . Flow-lines of X�0 transversely pass through M˙�0 and MH . The
Lagrangian disks fxD 0g and fyD 0g are shown in red and blue, respectively.

(3) From the first property characterizingB and (53), we see that, on the set f���1g,
the x and y coordinates of the embedding satisfy

(56)
jx ıˆH .z; p; q/j D e

2H

r
z2C

�
p

2�

�2
D �0;

jy ıˆH .z; p; q/j D e
�H
D

r
�

�0
:

From the last equation, we have the equivalences

ˆH .f� � �1g/D

�
jxj D �0; jyj �

r
�1
�0

�
n fy D 0g;

ˆH .f� � �1g/D

�
jxj D �0; jyj �

r
�1
�0

�
:

The closure of the image ofˆH in R4 is a smooth hypersurfaceMH which is positively
transverse to X�0 . We write MH for this hypersurface and define WH �R4 to be the
set enclosed by M�1 and MH . The handle WH is depicted in Figure 21, right.

10.5 Analysis of RH overMH

Here we analyze dynamics on MH of the Reeb vector field RH for the contact form
˛H D �0jMH . Because of our use of the imprecisely defined function B, we won’t
be able to solve for FlowtRH explicitly. However, we’ll be able to capture enough
information about this flow for the applications to handle attachment.
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Figure 22: Projections of flow-lines of RH to the .p; z/ coordinates. By
Lemma 10.3, these are the level sets of pH. Here p points to the right and z
points upward. The dot represents the circle jxj D 0 along which our flow is
not defined in the .z; p; q/ coordinate system. The region � 2 Œ�1; �0� where
the function BPW is smoothed to obtain B is shaded.

On the complement of the set fz D pD 0g, our contact form is ˛H D eH .dzCp dq/,
whose Reeb field will be denoted by RH . Writing �D �.p; z/, we compute

dH D
@B

@�
d�; d�D ��1

�
z dzC

p

.2�/2
dp

�
:

Now apply Lemma 10.3 to computeRH using the coordinates .z; p; q/ onMH nfyD0g

as

(57) RH D e
�H

��
1C

@B

@�
��1

�
p

2�

�2�
@z �

p

�

@B

@�

�
1

.2�/2
@qC z@p

��
:

Here is a collection of observations regarding RH and its flow:

(1) The @z part of RH is always strictly positive. This is a consequence of the
inequalities

�
@B

@�
��1

�
p

2�

�2
� �

@B

@�
��1�2 D�

@B

@�
� < 1 D) 1C

@B

@�
��1

�
p

2�

�2
> 0

following from the definition of � and the third defining property of the function B.

(2) For each p and � > 0, a flow-line starting at the point .��; p; q/ will pass through
some .�; p; q0/. This follows from the facts that .pe�H /.�z; p/D .pe�H /.z; p/ and
that the projection of RH onto the .z; p/–plane is Hamiltonian with respect to dp^dz
as per Lemma 10.3. See Figure 22.

(3) The flow-line passing through .��; 0; q/ will pass through the point
�
�; 0; qC 1

2

�
.

To see this, observe that such a flow-line with such an initial condition must flow up
into the circle fz D p D 0g along the line fp D 0g and compare with the definition of
the map ˆH .
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(4) A twist map fH;�0 W I2��0 ! S1 is defined by following the flow-line of RH
passing through .��; p; q/ to a point .�; p; qC fH;�0.p//. By the properties we’ve
used to specify B, the derivatives of fH;�0 are supported on I2��0 as RH coincides
with @z outside of this region. Likewise, RH D @z on fj�j � �0g.

(5) The twist map satisfies

fH;�0.�p/D�fH;�0.p/; fH;�0.�2��0/D fH;�0.2��0/D 0:

The first equality follows from the fact that the @z factor of RH is a function of p2

while the @p and @q factors are antisymmetric in p. The second equality follows from
the previous item.

(6) As @B=@p� 0, the @q coefficient of RH from (57) has sign equal to sgn.p/ where
is it nonzero. Hence, fH;�0 always twists to the right for p < 0 and to the left along
p > 0. This is the expected behavior of a positive Dehn twist.

Proposition 10.6 Write QfH;�0 W I2��0!R for the lift of the twist map fH;�0 W I2��0!
R with initial condition

QfH;�0.�2��0/D 0 D) QfH;�0.0/D�
1
2
; QfH;�0.2��0/D�1

by the preceding analysis. Suppose that Qf W I2��0 ! Œ�1; 0� is a decreasing function
also satisfying the above equalities. Then , for H constructed using a function B which
is sufficiently C0–close to the function BPW, the estimate

(58) j QfH;�0.p/�
Qf .p/j � 1

2

is satisfied for all p 2 I2��0 .

Proof The analysis of Section 10.2.1 provides a very explicit approximation of the
function QfH;�0 . Let’s consider the degenerate case when B D BPW as described
in (55), writing H PW for the associated piecewise-smooth function. Then MH PW will
be piecewise smooth as a submanifold of R4. We have a C0 flow on MH PW given by
following @z on MH PW nMC�0 and by following R�0 on MC�0 . We can view MH PW as a
smooth manifold by viewing its nonsmooth part to be the graph of a C0 function, and
observe that MH and MH PW coincide along the sets jxj � �0.

We look at flow trajectories passing over the q D 0 slice of our neighborhood, which
corresponds to the y D y0 subset of MH PW . Then ˆH PW maps the arc

AD

�
z D�

r
�20 �

�
p

2�

�2
; q D 0

ˇ̌̌
p 2 Œ�2��0; 2��0�

�
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to the semicircle

(59)
��
�

r
�20 �

�
p

2�

�2
;
p

2�
; 1; 0

� ˇ̌̌
p 2 Œ�2��0; 2��0�

�
�MH PW :

In the language of Section 10.2.1, this semicircle is the set˚
.x� ; y0/ j � 2

�
1
2
�; 1

2
3�
�	
�R4

equipped with a clockwise parametrization (determined by the variable p). When a
trajectory passes through the handle entering at angle � D �.p/2

�
1
2
�; 3

2
�
�

determined
by p in the x–plane, it will come out on the top of our neighborhood at angle 2� �� ,
as described in Section 10.2.1. Therefore, when using the piecewise-smooth handle,
the lift QfH;�0 of our continuous flow map fH PW;�0 can be written as

QfH PW;�0.p/D

8<:
0 if p < �2��0;
.1=2�/.2�.p/��/ if p 2 Œ�2��0; 2��0�;
�1 if p > 2��0;

where �.p/ is the angle in the x–plane given by (59).

As the p coordinate wraps around the semicircle of (59) in a clockwise fashion,
we conclude that QfH PW;�0 is a decreasing function. Moreover, QfH;�0.�2��/ D 0,
QfH PW;�0.0/D�

1
2

and QfH PW;�0.�2��/D�1, just like our test function Qf. Therefore,
both Qg D Qf ; QfH PW;�0 must satisfy

(60) Qg.Œ�2��0; 0�/D
�
�
1
2
; 0
�
; Qg.Œ0; 2��0�/D

�
�
1
2
;�1

�
:

From this we conclude that (58) holds for QfH PW;�0 given any function Qf satisfying the
required properties.

Now we suppose that B is smooth and C0–close to BPW. Then the twist map QfH;�0
will be C0–close to QfH PW;�0 . This is because the twist map is entirely determined by
the flow of the arc A across the surgery handle. All Reeb trajectories starting at points
in A which pass through the jyj < 1 portion of the handle will intercept the region
� 2 Œ�1; �0� where BPW is smoothed to obtain B. See Figure 22.

Because of item (6) in the observations preceding this proof, QfH;�0.p/ < 0 for p < 0,
we can guarantee to that QfH;�0 satisfies Qg.Œ�2��0;�ı�/�

�
�
1
2
; 0
�

for some arbitrarily
small ı > 0. Therefore, we have j QfH;�0.p/� Qf .p/j �

1
2

for p 2 Œ�2��0;�ı�. By
continuity we can also ensure that the desired inequality holds for p 2 Œ�ı; 0� by making
B C0–close enough to BPW. The same arguments with modified notation apply to
ensure that (58) holds over Œ0; 2��0� for B close enough to BPW.
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10.6 Perturbing �0

Now that we’ve shown that the flow from the set fzD��0g to the set fzD �0g defined
by RH is determined by a Dehn twist by fH;�0 , which is supported on I2��0 � S

1.
Moreover, equation (58) tells us that we can use Proposition 10.5 to correct �0 so that the
flow over our handle will be an “approximately linear twist” satisfying Assumptions 5.4.
We now carry out the details of this correction.

We construct a new coordinate system .z; p; q/ on MH as follows: On the set

fjyj D 1; jxj> �0g;

we have coordinates .p; q; z/ onMH coming from the embedding ˆ� asM�1 andMH

overlap on this region. To get a standard coordinate system on MH , apply the map

(61) .z; p; q/ 7! FlowzC�0RH
ıˆ�.��0; p; q/; z 2 I�0 :

With respect to this coordinate system,

�0jMH D dzCp dq:

Due to our identification of the flow from the top to bottom of this region — with
respect to the .z; p; q/ coordinates on M�— as being determined by a Dehn twist
by fH;ı , the change of coordinates on the overlap

.MH n f� < �0g/!M�1

is given exactly as the gluing map of Section 4.7 with the “height perturbation func-
tion” — denoted in that section by Hf;� — uniquely determined by fH;�0 .

We seek to modify fH;� using Proposition 10.5 so that the flow over the convex boundary
of our handle satisfies the linear dynamics assumptions described in Assumptions 5.4.
To this end, let g W I2��0 !R be a function satisfying the following properties:

(1) A Dehn twist by f�0.0/ D fH;�0.p/C g.p/ satisfies Assumptions 5.4 with
@f�0=@p.0/D .2��0/

�1.

(2) jg.p/j � 1
2

.

(3) g and all of its derivatives vanish along @I2��0 .

Such a choice of g is possible by (58). According to Proposition 10.5, using

(62) �p D �z D 2��0; �g D
1
2

and �t arbitrarily large, we can modify the contact form within the coordinate system
on MH by
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Figure 23: On the left, the rounded handle WH of Figure 21. On the right,
the perturbed handle W �R4. The region along which �0 is modified — as
in Proposition 10.5 — is shaded in dark gray. The lightly shaded extension
of WH indicates extension by the Liouville flow.

(1) adding a finite symplectization .Œ0; e�t ��MH ; �0 D e
t .dzCp dq// to obtain a

handle W �R4 containing WH , and

(2) perturbing �0 within a proper subset of this region to obtain a contact form �

on W,

so that the flow over MH in the coordinates .z; p; q/ is given by a Dehn twist by f�0 .
A schematic for this extension and perturbation is depicted in Figure 23, right.

Now we rework through (61) and its consequences this time using the new Reeb vector
field R. The map

(63) .z; p; q/ 7! FlowzC�0R ıˆ�.��0; p; q/

will provide us with a coordinate system .z; p; q/ on the convex boundary of W. Now
our attaching map is determined by the composition of the Dehn twists

.p; q/ 7! .p; qCg.p//; .p; q/ 7! .p; qCfH;�0/;

yielding a Dehn twist by f�0 , as desired.

10.7 Attaching the handle to finite symplectizations

To finish our construction, we attach the handle .W; �/ to a finite symplectization of
.R3
ƒ˙
; ˛�/. In doing so, we will omit the specific choices of �0 required provided that

they are determined by � as described in Definition 4.10. Likewise, we assume that ƒ0

consists of a single connected component to simplify notation.

We first consider the case c D�1; the map ˆ� provides us with an identification of
standard neighborhood N 0

� of ƒ0. The map ˆ� provides us with an identification
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of this neighborhood with the convex end of the handle W. By considering R3
ƒ˙

as
being contained in the top of a finite symplectization Œ�C; 0��R3

ƒ˙
, we may attach

the handle W via this identification to obtain a 4–manifold along which we set

��1jW D �; ��1jŒ�C;0��R3
ƒ̇
D et˛�:

Outside of a neighborhood of the form f�.p; z/ < constg¨ f0g �N 0
� , we may extend

by some Œ0; C ��R3
ƒ˙
n fjzjC jpj< constg, over which we take

��1jŒ0;C ��R3
ƒ̇
nf�.p;z/<constg D e

t˛�:

The constant C may be chosen so that the top of this region coincides with the convex
end of the handle W. By the fact that the perturbation of � described in the previous
subsection occurs away from the attaching locus,W�1 is smooth with ��1 determining a
smooth form, as desired. The disk D�1 is obtained by taking the intersection of the plane
fjxj D 0g �R4 with the handle WH �W, depicted as the red line in Figures 21 and 23,
and then extending through Œ�C; 0��R3

ƒ˙
by a Lagrangian cylinder Œ�C; 0��ƒ0.

Now set c D C1. In this case our disk DC1 is taken to be the intersection of the
plane fjyj D 0g with the handle W. According to (47), �jDC1 D 0. Using the co-
ordinates .p; q; z/ on (63), we may identify a neighborhood of the boundary of this
disk with a standard neighborhood of ƒ0, which we may consider as being contained
in the bottom of a finite symplectization Œ0; C � � R3

ƒ˙
. We extend the disk by a

Lagrangian cylinder overƒ0 within Œ0; C ��R3
ƒ˙

so that its boundary lies in fC g�R3
ƒ˙

.
To complete the construction of our Liouville cobordism .WC1; �C1/, we layer on
Œ�C; 0��R3

ƒ˙
nfjzjCjpj< constg so that the concave end of the cobordism is smooth

and coincides with .R3ƒ; ˛�/.

11 Holomorphic foliations, intersection numbers and the
ƒ quiver

In this section we describe some tools which allow us to frame geometric questions
regarding holomorphic curves in the 4–manifolds relevant to this article — symplecti-
zations and surgery cobordisms — as algebraic problems. We will largely be relying
on intersection positivity for holomorphic curves in 4–manifolds [47, Appendix E] and
basic algebraic topology.

These tools serve to establish some properties of holomorphic curves in R�R3
ƒ˙

and
surgery cobordisms which we believe to be true intuitively but which are more difficult
to articulate precisely: curves with “high energy” should look like Legendrian RSFT
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disks as they pass through the complement of the surgery locus N� while “low energy”
curves should be trapped inside of the union of N� with a neighborhood of the chords
of ƒ and have constrained asymptotics. This will be formalized in Section 11.7 as the
exposed/hidden alternative.

The first three subsections deal with geometry: In Section 11.1, we describe special
almost-complex structures on contactizations and how combinatorial LRSFT disks can
be “lifted” to holomorphic disks. Section 11.2 described how these complex structures
J can be used on large open subsets of symplectizations and surgery cobordisms.
Next, in Section 11.3, we show that such J endow open subsets of our 4–manifolds
with a foliation by J –holomorphic planes. This is another area of analysis which is
considerably simplified by working with .R3

ƒ˙
; �ƒ˙/ rather than .S3

ƒ˙
; �ƒ˙/.

The remainder of the section is concerned with algebra: Section 11.4 describes some
properties of intersections between these planes and finite-energy holomorphic curves
asymptotic to chords and orbits of the R�. These intersection numbers are essentially
homological invariants of curves. In the event that the intersection numbers all vanish,
an alternative bookkeeping device can be used to keep track of holomorphic curves — an
object we call the ƒ quiver, Qƒ. This quiver can be used as an algebraic tool to encode
LCHcyc chain complexes — see Remark 4.1 of [7] — but we will be most interested in
the fact that it is a quotient of a space homotopy equivalent to the complement of the
C–foliated region of our 4–manifold.

11.1 Model almost-complex structures on symplectizations of
contactizations of Stein manifolds

Here we review some generalities regarding holomorphic curves in symplectizations of
contactizations of Stein manifolds. For the purposes of this paper, we’re really only
interested in the cotangent bundles of the real line — for .R3; �std/ is the 1–jet space
of R — though the results are no harder to state or prove in fuller generality. The results
here are known; for example, they are implicit in the convexity arguments of [14] and
definitions of LCH moduli spaces in [19].

Let W be a manifold of dimension 2n with complex structure J and suppose that
F 2 C1.†/ is such that

ˇ D�dF ıJ

is a Liouville form on W. In other words, .W; J; F / is a Stein manifold except that we
have omitted any requirements regarding transversality between Xˇ and @W. Define a
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contact 1–form ˛ D dzCˇ on R�W so that

� D fV �ˇ.V /@z W V 2 T W g

for V 2 T W. We can define a J 0 adapted to the symplectization of .R�W;˛/ by

J 0@t D @z; J 0.V �ˇ.V /@z/D JV �ˇ.JV /@z :

As previously mentioned, we’re primarily concerned with the cases W D R� I for
a 1–manifold I with ˇ D p dq D�1

2
d.p2/ ı j. We get .R2;�y dx/ by a change of

coordinates.

Lemma 11.1 If a map .t; z; u/ W†0!R�R�W is .J 0; j /–holomorphic , then

(1) z is harmonic , and

(2) u is .J; j /–holomorphic.

Moreover , if †0 is simply connected and we have .z; u/ for which z is harmonic and
u is .J; j /–holomorphic , then there exists t W †0 ! R for which .t; z; u/ is .J 0; j /–
holomorphic. Such t is unique up to addition by a constant.

Proof This is a local calculation: Take coordinates x and y on D, which we may
consider being contained in †0 with j denoting the standard complex structure on TD.
We will be studying (7).

Write x@J 0;j .t; z; u/D 1
2
.T .t; z; u/CJ 0T .t; z; u/ ı j / for the usual Cauchy–Riemann

operator. For V 2 T W, we calculate

�˛.a@zCV /D V �ˇ.V /@z;

so that the �–valued part 1
2
.�˛CJ

0 ı�˛ ıj / of x@J 0;j .s; t; u/ depends only on u. Then

.�˛CJ
0
ı�˛ ı j /.s; t; u/D x@J;ju�ˇ ı .x@J;ju/@z;

where x@J;j is the Cauchy–Riemann operator for u. The T W part of this expression
vanishes if and only if u is .J; j /–holomorphic, which would imply that the @z part of
the expression vanishes as well.

Assuming that .t; z; u/ is .J 0; j /–holomorphic, then u is .J; j /–holomorphic and
dt D ..z; u/�˛/ ı j, implying

u�ˇ D�u�.dF ıJ /D�d.F ıu/ ı j;

.z; u/�˛ ı j D dz ı j C d.F ıu/;

d2t D d..z; u/�˛ ı j /D d.dz ı j /D��.z/D 0;

where � is the Laplacian. Therefore, z is harmonic.
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Now, provided harmonic z and .J; j /–holomorphic u for simply connected †0, the
above expression tells us that .z; u/�˛ ı j is closed, and so is exact. Therefore, we
have a function t — determined uniquely up to addition by scalars — satisfying dt D
.z; u/�˛ ı j. Then, by the above formula and (7), .t; z; u/ is .J 0; j /–holomorphic.

Corollary 11.2 (drawing-to-disk correspondence) Suppose that .W; J; F / is a Stein
manifold of complex dimension 1 and that ƒ is a chord-generic Legendrian link in
.I �W; dz� dF ıJ /. Suppose that

u WD n fpj g !W

is an orientation-preserving immersion of the disk with a finite set of boundary punctures
fpkg removed such that u.@D n fpkg/ � �W .ƒ/. Then there exists a set fp0

k
g of

boundary punctures on the disk , a diffeomorphism � W D n fp0
k
g ! D n fpkg and

functions t; z W !R such that

.t; z; u ı�/ WD n fp0kg !R�R�W

is .J 0; j /–holomorphic with .z; u ı �/.@D n fpkg/ � ƒ. Provided �, z is uniquely
determined and t is uniquely determined up to addition by a positive constant.

Proof Because u is an immersion, we can force it to be .J; j 0/–holomorphic for some
almost-complex structure j 0 on D by defining j 0@x D .T u/�1J.T u/@x . We can then
find a diffeomorphism � which is .j 0; j /–holomorphic by the uniformization theorem.

By the chord-genericity and smoothness of ƒ, there exists a unique, bounded, smooth
function z@ on @D n fp0

k
g for which

.z@; u ı�/ 2ƒ:

Applying [1, Chapter 6, Section 4.2], there is a function z WD n fp0
k
g !R solving the

Dirichlet problem
�.f /D 0; zj@Dnfp0

k
g D z@;

which is unique by the maximum principle. By Lemma 11.1, we can find t for which
.t; z; u ı�/ is .J 0; j /–holomorphic, as desired.

11.2 N–standard almost-complex structures

As always, let N� be a tubular neighborhood ofƒ, whose complement we may consider
to be a codimension-0 submanifold of either R3 or R3

ƒ˙
. Define

zN� D �
�1
xy .�xy.N�//;

which we may view as an open set in either R3 or R3
ƒ˙

. Denote its complement by zN {
� .
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Definition 11.3 We say that an almost-complex structure J on R�R3
ƒ˙

isN –standard
if its restriction to �ƒ˙ agrees with the standard almost-complex structure J0 on �ƒ˙
described by (14) on zN {

� as well as on a neighborhood

NC;1 D fx
2
Cy2C z2 > C g

of the puncture of our 3–manifold for some �; C > 0. In order that J be adapted to the
symplectization, we require J@t D @z on R� zN {

� .

We may define N–standard for almost-complex structures on completions of surgery
cobordisms .Wc ; �c/ of Section 10 analogously as the cobordisms contain the sym-
plectizations of .R3

ƒ˙
nN�; ˛std/.

For an N –standard almost-complex structure J and a .J; j /–holomorphic curve

U W†0!R�R3
ƒ˙
;

along U�1.R�NC;1/ we can write U D .t; z; u/. By Lemma 11.1, z is harmonic
and u is holomorphic, so that x ı u and y ı u are harmonic as well. It follows that
�d.d.z2Cjuj2/ ı j / is nonnegative as an area form on †0. Hence, for C 0 > C, finite-
energy curves with punctures asymptotic to chords and orbits of R� cannot touch
spheres of radius C 0 by the maximum principle.

11.2.1 Compatibility with perturbation schemes and adaption to symplectizations
Note that perturbations of almost-complex structures required to achieve the transver-
sality required to define SFT curve counts in R�R3

ƒ˙
or .Wc ; x�c/ may be defined in

arbitrarily small neighborhoods of the orbits of R� [4, Section 5] and these orbits are
properly contained in open sets unconstrained by the N–standard condition. Hence,
these perturbations may be carried out for N –standard almost-complex structures while
maintaining their defining properties.

Similarly, the cobordisms .Wc ; �c/ of Section 10 are designed to support N –standard
almost-complex structures which are adapted to their cylindrical ends. For such
cobordisms, we’ll be additionally interested in studying somewhere-injective curves
positively asymptotic to chords of the Legendrian boundaries of the disks Dc;i �Wc
with Lagrangian boundary. See Section 12.2. In this context, the perturbation scheme
of [18, Section 2] may be applied, which likewise only deforms Cauchy–Riemann
equations in arbitrarily small neighborhoods of chords and orbits. Again, there is no
lack of compatibility with the N –standard condition.
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Assumptions 11.4 Throughout the remainder of this section, we assume that any
almost-complex structure J on a symplectization or surgery cobordisms is N –standard
and that all somewhere-injective curves under consideration are regular. When dis-
cussing surgery cobordisms, we assume that J is adapted to the cylindrical ends of its
completion and that almost-complex structures on symplectizations are adapted.

11.3 Semiglobal foliation by holomorphic planes

Here we describe holomorphic foliations by infinite-energy planes in symplectizations
and surgery cobordisms.

11.3.1 C foliations in symplectizations Observe that zN {
� is foliated by embedded,

R–parametrized Reeb orbits of the form t ! .t; x0; y0/. Then R� zN {
� is foliated by

holomorphic planes parametrized

.s; t/ 7! .s; t; x; y/

for .x; y/ 2R2 n�x;y.N�/. We denote each such unparametrized plane by Cx;y .

11.3.2 C foliations in surgery cobordisms For the following, we require that ƒ0

be nonempty. The link ƒ˙ is allowed to be empty, in which case we would have
.R3
ƒ˙
; �ƒ˙/D .R

3; �std/ and set ˛� D dz�y dx. Let .Wc ; �c/ be a surgery cobordism
associated to the pair

ƒ0 � .R3
ƒ˙
; �ƒ˙/; c 2 f˙1g

as described in the introduction of Section 10, with completion .Wc ; x�c/. Because the
handles are attached along a neighborhood of ƒ0, we can view R� zN { as a subset
of Wc which is also foliated by infinite-energy planes Cx;y .

11.4 Intersection numbers

For the following, let .†; j / be a compact Riemann surface, possibly with boundary,
with fixed collections of interior points pint

k
and boundary points p@

k
. As usual, we

write †0 for † with all of its marked points removed. When discussing completions
.Wc ; x�c/, we write

Dc;i �Wc

for the Lagrangian planes obtained by extending the disks Dc;i of Theorem 10.1 by
the positive (resp. negative) half-infinite Lagrangian cylinders over their Legendrian
boundaries when c D 1 (resp. c D�1).
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Definition 11.5 We say that a holomorphic map U W†0!Wc is a Wc curve if it its
boundary is mapped to the Dc;i , its boundary punctures are asymptotic to chords of
their Legendrian boundaries, and all interior punctures are asymptotic to closed Reeb
orbits at the convex and concave ends of Wc .

We say that a holomorphic map U W †0 ! R � R3
ƒ˙

is an R � R3
ƒ˙

curve if the
boundary of †0 is mapped to the Lagrangian cylinder over ƒ0, its boundary punctures
are asymptotic to chords of ƒ0, and its interior punctures are asymptotic to closed
orbits of R�.

We recall — see [47, Definition E.2.1] — that, provided a pair of maps ui W†0i !W

from surfaces †0i for i D 1; 2 into a 4–manifold W whose images are disjoint outside
of some open sets Si �†i with compact closures outside of which the †i are disjoint,
then we can define a intersection number u1 �u2 2Z by perturbing the ui along the Si
so that the maps are transverse and counting their intersections with signs.15

Theorem 11.6 Suppose that U is a Wc curve or an R � R3
ƒ˙

curve. Then , for
.x; y/ 2 R2 n �x;y.N�/, the intersection number Cx;y � Us 2 Z is well defined and
nonnegative. Furthermore , they are homological invariants in the following sense:

(1) Boundaryless curves in symplectizations Suppose that U is an R � R3
ƒ˙

curve positively asymptotic to a collection C of Reeb orbits and negatively
asymptotic to some �. Then the intersection number Cx;y �U depends only on
the relative homology class

Œ�R3
ƒ̇
.U /� 2H2.R

3
ƒ˙
; C[ �/:

(2) Curves in symplectizations with Lagrangian boundary Suppose that U is an
R�R3

ƒ˙
curve asymptotic to collections ˙ of Reeb orbits and collections of

chords �˙ of ƒ0. Then the intersection number Cx;y �U depends only on the
relative homology class

Œ�R3
ƒ̇
.U /� 2H2.R

3
ƒ˙
; C[ �[ �C[ ��[ƒ0/:

(3) Boundaryless curves in surgery cobordisms Suppose that U is a Wc curve
positively asymptotic to a collection of closed Reeb orbits C in @CW and

15We’re taking a slight modification of [47, Definition E.2.1] by defining the intersection number to be the
sum of the local intersection numbers over all points of intersection. This is feasible for holomorphic curves
in 4–manifolds with our hypotheses as distinct curves have isolated intersections [47, Proposition E.2.2].
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negatively asymptotic to some collection of closed Reeb orbits � in @�W. Then
the intersection number Cx;y �U depends only on the relative homology class

ŒU � 2H2.Wc ; 
C
[ �/:

Here we view U as a cobordism in the compact manifold Wc bounding the orbit
collections ˙ in its boundary.

(4) Curves in surgery cobordisms with Lagrangian boundary Suppose that U
is a Wc curve positively asymptotic collection of closed Reeb orbits ˙ in @CW
with boundary punctures asymptotic to some collection �˙ of chords of the
Legendrian boundaries of disks Dk . Then the intersection number Cx;y � U

depends only on the relative homology class

ŒU � 2H2

�
Wc ; 

C
[ �[ �C[ ��[

[
Dc;i

�
:

Proof To check well-definedness, we need to ensure that any intersections between
Cx;y and U.†0/ occur away from the boundary and punctures of†0, so that intersection
numbers are independent of the perturbation required in their definition. By our
boundary conditions, U must be such that there exists some open neighborhood S �†0

of the punctures and boundary of†which maps into the complement of R�.R3
ƒ˙
nN�/.

The images of the complements of the Ss must be contained in some compact set of the
form Œ�C1; C1��.R3ƒ˙ nN�/. Likewise, the images of the complements of the Ss must
be bounded in the z coordinate on R3. Hence, all intersections occur within a subset
of the form Œ�C1; C1�� Œ�C2; C2��f.x; y/g �Cx;y , implying that the Cx;y �Us 2Z

are well defined.

Intersection nonnegativity follows from positivity of intersections of holomorphic
curves in 4–manifolds. See for example [47, Section E.2]. For homological invariance,
we will work out the details in the case of boundaryless curves in symplectizations.
The other cases follow similar reasoning.

As in the statement of the theorem, we can slightly perturb U near its asymptotic
ends to obtain a 2–cycle in Œ�C;C � � R3

ƒ˙
bounding fC g � C � f�C g � � for

some large C > 0. Using the coordinates on R � R3 in which we may consider
Cx;y to be contained, each intersection between U and Cx;y occurs at some .t; z; x; y/.
Possibly perturbing U near each such intersection to achieve transversality and isolation
of intersections, the sign of each intersection is given by the sign of TCx;y ^ T U

considered as an oriented ray in the orientation line bundle R@t ^ @z ^ @x ^ @y for
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T.t;z;x;y/W. As TCx;y D spanR.@t ; @z/, this sign only depends on the @x and @y parts
of the tangent map T U of U. Hence, the intersection number Cx;y �U only depends
on .x; y/ and �R3

ƒ̇
ıU.

The ending of the above proof also immediately implies the following:

Lemma 11.7 Suppose that U WD n fpkg !R�R3 is a holomorphic disk determined
by an immersion u W D n fpkg ! R2 as in Corollary 11.2. Given a point .x; y/ 2
R2 n�x;y.N�/, the intersection number is

Cx;y �U D #u�1..x; y//:

11.5 Bases and energy bounds

Here we’ll reduce the information of the Cx;y down to that of a finite collection of
planes. Write Rk for the connected components of R2 n�x;y.N�/ of finite area and
write

Ek D
Z
Rk
dx ^ dy

for their areas. There is also a single connected component R2 n�x;y.N�/ of infinite
area, which we will denote by R1.

Pick a point .xk; yk/ within the interior of each Rk as well as a point .x1; y1/ 2R1.
We’ll call such a choice of indices and points a point basis for ƒ. Provided a point
basis, we may abbreviate

Ck DC.xk ;yk/:

Such a choice allows us to package a simple-to-state energy estimate:

Proposition 11.8 Let U be a finite-energy R�R3
ƒ˙

curve with interior punctures
asymptotic to some collections of orbits of R� and boundary punctures asymptotic to
chords of ƒ0 �R3

ƒ˙
. Then

E.U / >
X
k

EkCk �U:

Proof For each k ¤1 for which

†0k D U
�1.R�R�Rk/

is not empty,
�x;y ı�R3

ƒ̇
ıU W†0k!Rk

is a nonconstant holomorphic map. By our boundary conditions, each †0
k

is disjoint
from some neighborhood of the boundary and punctures of†0 and so must be a branched
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Figure 24: From left to right: a Legendrian Hopf link ƒ in the Lagrangian
projection, the associated quiver Qƒ and the quiver Qƒ=`.

covering. The degree of the associated map

.†0k; @†
0
k/! .Rk; @Rk/

is equal to Ck �U , so that our requirement that ˛� coincides with ˛std D dz�y dx on
the compliment of N˙ implies

E.U / >
X
k

Z
†0
k

d˛� D
X
k

Z
†0
k

dx ^ dy D
X
k

EkCk �U:

11.6 The ƒ quiver

In the event that all intersection numbers Ck � U are zero for a given curve U, we
can employ another device to keep track of holomorphic curves and their boundary
conditions.

Definition 11.9 The ƒ quiver, denoted by Qƒ, is the directed graph with

(1) one vertex `i for each connected component ƒi of ƒ, and

(2) one directed edge for each chord rj of ƒ � R3 starting at the vertex `l�
j

and
ending at `

l
C

j

.16

Also define a graph Qƒ=` which is the quotient of Qƒ obtained by identifying all of
its vertices. We write

�` WQƒ!Qƒ=`

for the quotient map.

An example is provided in Figure 24.

16We recall the l˙j are defined in Section 3.
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11.6.1 Algebraic aspects ofQƒ andQƒ=` The primary utility of the space Qƒ=`
is that its homology has a particularly nice presentation, with H1 freely generated by
the chords of ƒ� .R3; �std/,

H1.Qƒ=`/D˚Zrj ;

while its fundamental group — based at its unique vertex, `— is a free group on the
chords of ƒ,

�1.Qƒ=`; `/D hrj i:

In applications, we’ll make use of the following definitions and lemma:

Definition 11.10 For an edge e of a directed graph G we define the collapse map at e,
denoted by �e WG! S1, as the map which takes the quotient by G n int.e/. The target
is naturally pointed and oriented by the direction of e. A continuous map ˆ W S1!G

from an oriented circle is nonnegative if, for every edge e of g, the composition

S1 ˆ
�!G

�e
�! S1

with the collapse map has nonnegative degree. We say that the map is positive if it is
nonnegative and there exists at least one e �G for which �e ıˆ has positive degree.

Definition 11.11 Let S be a set with associated free group hSi. We say that an element
x 2 hSi is positive if it can be described as a word

x D x1 � � � xn; xk 2 S:

Alternatively, the set of positive elements in hSi is equivalent to the image of the natural
monoid homomorphism from the free monoid on S into hSi.

If x is positive then the above factorization is necessarily unique. We say that two
positive elements x and y of hSi are cyclically equivalent if their positive factorizations
differ by a cyclic rotation. That is, provided a factorization of x as above, there exists
k for which

y D xk � � � xnx1 � � � xk�1:

We say that x 2 hSi is negative if x�1 is positive. Two negative elements x and y are
cyclically equivalent if x�1 and y�1 are cyclically equivalent.

Cyclic equivalence is no stronger than conjugacy equivalence.

Lemma 11.12 Suppose that x; y 2 hSi are positive and conjugate in hSi. Then they
are cyclically equivalent.
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Proof Suppose there exists some z for which zx D yz and write z D z1 � � � zn with
the zk being elements of S or inverses of such letters. We can assume that at least one
of z1 or zn is positive. Otherwise we can write z�1y D xz�1 to obtain the desired
hypothesis by a change of notation.

Suppose that z1 is positive. Then the positive factorization of y must start with z1.
Then y0D z�11 yz1 is positive, so we can write z0xD y0z0 with z0D z2 � � � zn. We have
reduced the problem to finding a cyclic equivalence between two positive elements x
and y0 which are conjugate by a word z0 of length n� 1. A similar argument may be
applying in the case that zn is positive.

To complete the proof, loop through this argument n times.

11.6.2 Geometric aspects ofQƒ andQƒ=` The primary utility of the space Qƒ
in relation to the present discussion is given by the following result:

Proposition 11.13 There exist surjective maps

R3
ƒ˙
n zN {

� !Qƒ; Wc nR� zN {
� !Qƒ;

both of which we will denote by �Q, such that , for each chord rj of ƒ and each line
segment I directed by @z connecting Dex

j to Den
j , the submanifold R� I is mapped

onto the edge rj of Qƒ in a way such that , for each t in R, ftg � I ! ej is a
homeomorphism.17

Proof We start with the case in which the domain of �Q is R3
ƒ˙
n zN {

� . We have that
R3
ƒ˙
n zN {

� is homotopy equivalent the union of N� with all of the chords rj of ƒ. We
can perform this homotopy so that the intervals connecting the Den

j and Dex
j (forming

a neighborhood of rj ) collapse onto rj as a fibration. Note that N� is a collection of
solid tori, so that N� [frj g is homotopy equivalent to a 1–dimensional CW complex.
If we collapse each connected component N�;i of N� to a point `i , the graph Qƒ is
obtained.

The proof for Wc nR� zN {
� is nearly identical except at the last step; the addition of

the surgery handles already provides the effect of attaching 2–cells along the circles in
our 1–complex corresponding to components of ƒ˙. We then collapse these 2 cells
to points, which has the same effect — in the homotopy category — as collapsing the
circles corresponding to the components of ƒ to points.
17We recall that the D�j are defined in Section 5.1.
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Proposition 11.14 Suppose that .t/ parametrizes a Reeb orbit in R3
ƒ˙

or @Wc . Then
�Q ı  is positive in the sense of Definition 11.10.

The open string version of this assertion is as follows: Let U be a Wc or R �R3
ƒ˙

curve with domain†0 having a boundary component @i†� @† for which all punctures
along @i† have positive asymptotics. Then �Q ı U j@i† is a positive loop. If all
punctures along @i† have negative asymptotics , then this loop is negative.

This is clear from the construction of the map �Q. For a parametrization  of a Reeb
orbit with cyclic word rj1 � � � rjn , we have

Œ�` ı�Q ı �D

nX
1

Œrjk � 2H1.Qƒ=`/:

Intuitively, the map �` ı�Q induces a map on homology which abelianizes boundary
conditions for holomorphic curves. We can also view Œ�` ı�Q ı � as an element of
the H0 of the free loop space of Qƒ=` which records the word map of  .

For a single chord � with boundary on someƒ0� .R3
ƒ˙
; �ƒ˙/, we can view �`ı�Qı�

as a pointed map
.�; @�/! .Qƒ=`; `/

as ƒ is mapped to ` by �` ı �Q. In this way, � determines a positive element of
�1.Qƒ=`/ as well as a relative homology class

Œ�` ı�Q ı �� 2H1.Qƒ=`; `/:

Both the �1 and H1 classes record the word map of �.

11.7 The exposed/hidden alternative

Assume thatƒ is equipped with a basis of points .xk; yk/2R2n�x;y.N�/ as described
in Section 11.5.

Definition 11.15 (exposed/hidden alternative) We say that an R�R3
ƒ˙

orWc curveU
is exposed if there exists at least one k for which Ck �U > 0. Otherwise we say that U
is hidden.

If a curve U is exposed, then we can use the intersection numbers to keep track of
the location of its image within the target manifold. If the curve is hidden, then,
by intersection positivity, its image must be entirely contained in the complement
of R� zN {

� , whence we can apply the map �` ı�Q. We state some simple applications,
the first few of which tell us that the homology of Qƒ=` dictates whether a curve is
exposed or hidden.
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Proposition 11.16 (homological mismatches are exposed) Suppose that U is an
R�R3

ƒ˙
or Wc curve without boundary components positively asymptotic to some

collection C D fC
k
g of closed orbits and negatively asymptotic to some collection

� D f�
k
g of Reeb orbits. If the 1–cycleX

Œ�` ı�Q ı 
C

k
��
X

Œ�` ı�Q ı 
�
k �¤ 0 2H1.Qƒ=`/;

then U is exposed.

Proof If the curve was hidden, then we could apply the map �`ı�Q to the image of U.
Our hypotheses on asymptotics imply that we would get a 2–cycle in R3

ƒ˙
n zN {

� or
Wc nR� zN {

� bounding a homologically nontrivial 1–cycle, providing a contradiction.

A slight modification applies to chords as well.

Proposition 11.17 (exposure of filling curves) Suppose that U is an R�R3
ƒ˙

or Wc
curve for which all asymptotic chords and orbits are positive. Then U must be exposed.

Proposition 11.18 (homological matches are hidden) Let h 2 H1.Qƒ=`/ be a
positive homology class.18 Then there exists �h such that , for each � < �h, given a
holomorphic curve in R�R3

ƒ˙
positively asymptotic to a collection of orbits C and

negatively asymptotic to a collection � of R� orbits with

Œ�` ı�Q ı 
C�D Œ�` ı�Q ı 

��D h 2H1.Qƒ=`/;

then U is hidden.

Proof By the action estimates of Section 5.5, we have

E.U /DO
�
3�
X

wl.C
k
/
�
:

For � sufficiently small, we could guarantee that this quantity is less than the energies Ek
of the regions Rk (which grow slightly as � tends to 0 with N� shrinking). Therefore,
the energy bound of Proposition 11.8 would imply that U must be hidden.

Proposition 11.19 (cyclic order preservation of open–closed interpolations) Suppose
that U is a hidden Wc curve whose domain is a disk with a single interior puncture and
any number of boundary punctures. We require that :

(1) If c D C1, the boundary punctures are positively asymptotic to chords of ƒ0

with words w1; : : : ; wn.
18That is, h may be represented as a sum of positive cycles.
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(2) If c D �1, the boundary punctures are negatively asymptotic to chords of ƒ0

with words w1; : : : ; wn.

Here indices follow the counterclockwise cyclic ordering of the punctures around @D.
Then interior puncture of U asymptotic to the orbit .w1 � � �wn/.

The c D �1 curves described are those used to determine homomorphisms from
linearized contact homology to a cyclic version of Legendrian contact homology when
performing a contact �1 surgery in [7; 18; 20].19 We’ll see some of the c D 1 curves
shortly in Theorem 12.2.

Proof Consider the map �` ı �Q ıU from the punctured disk to the graph Qƒ=`.
Then @D — compactified appropriately — will give us an element of the free loop space
ofQƒ=`. It is clear from the construction of the map �Q that the connected component
of the free loop space of Qƒ=` containing this loop is indexed by w1 � � �wn. Looking
at circles of varying radii in D provides a homotopy between this loop and the one
provided by the interior puncture. Again by the construction of �Q, observe that, if the
orbit to which the puncture is asymptotic has cyclic word rj1 � � � rjn , then this word
must also index the component of the free loop space of Qƒ=` to which the puncture is
associated. The connected components of the free loop space of Qƒ=` are in bijective
correspondence with conjugacy classes on hrj i, so that the expressions rj1 � � � rjn and
w1 � � �wn are conjugate by the existence of the aforementioned homotopy. They are
also both positive in the sense of Definition 11.11 and so differ by a cyclic permutation
of their letters by Lemma 11.12.

Proposition 11.20 (triviality of hidden cylinders and strips) Suppose that U is a
hidden holomorphic cylinder in R�R3

ƒ˙
. Then U is a trivial cylinder.

If U has domain R� IC for some C > 0, is hidden , with boundary on the Lagrangian
cylinder over ƒ0 � .R3

ƒ˙
; �ƒ˙/, and with punctures asymptotic to chords of ƒ0, then

U is a trivial strip.

Proof If U is positively asymptotic to some orbit .rj1 � � � rjn/, then we can follow the
proof of Proposition 11.19 verbatim to conclude that U is negatively asymptotic to
.rj1 � � � rjn/. Hence, the energy of U is zero and it must be a trivial cylinder.

The case of a holomorphic strip is even easier. Suppose the strip is parametrized
by s 2 R and t 2 IC , and consider the family of paths s.t/ D �R3

ƒ̇
ıU.s; t/ with

boundary onƒ0�R3
ƒ˙

. Then we may consider the �`ı�Qıs as an R family of based

19We’re ignoring anchors, which can be avoided in some settings, such as [20].
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loops in Qƒ=`. As s!1, the �1.Qƒ=`/ element recorded by this based loop is the
word map of the chord to which U is positively asymptotic. As s!�1, the element
recorded is the word map of the chord to which U is negatively asymptotic. Hence,
the asymptotics are equivalent by our chord-to-chord correspondence (Theorem 5.10),
the energy of U is zero, and U is a trivial strip.

12 Applications

In this section we apply our computational tools to study the contact homology of
various contact manifolds. A summary of the results are as follows:

(1) In Section 12.1, we compute the contact homology of contact ˙1 surgeries on
the tbD�1, rotD 0 unknot in R3.

(2) In Section 12.2, we use the results of Section 11 to prove a general existence
result for holomorphic planes in R�R3

ƒ˙
when ƒC ¤¿.

(3) In Section 12.3, we use the existence of these holomorphic planes to provide a
new proof of the vanishing of CH for overtwisted contact structures.

(4) In Section 12.4, we state how the intersection numbers of Section 11 can be used
to define a grading Iƒ on the CH chain complex for ˛�.

(5) In Section 12.5, we compute the homology classes and Conley–Zehnder indices
of R� orbits appearing after application of contact surgeries to the tbD 1, right-
handed trefoil.

(6) In Section 12.6, we combine computations of Section 12.5 with the results of
Sections 12.2 and 12.4 to prove Theorem 1.2.

For notational simplicity, we will ignore mention of specific contact forms ˛� , assuming
that each contact manifold .R3

ƒ˙
; �ƒ˙/ is equipped with such a contact form with �

small enough to guarantee that all orbits under consideration are hyperbolic and that
Theorem 7.1 may be applied. Assumptions 11.4 are also in effect. When working with
symplectizations of .R3; �std/, we assume that we’re using the standard almost-complex
structure J0.

12.1 Surgeries on the standard unknot

Let ƒ be the Legendrian unknot with tbD�1 and rotD 0, depicted as a figure 8 in the
Lagrangian projection in Figure 25. Performing contact �1 surgery will produce the
standard contact lens space L.2; 1/— the unit cotangent bundle of S2, or alternatively
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Figure 25: Contact surgeries on the tbD�1 unknot with push-outs of their
unique embedded Reeb orbits. A�1 (C1) surgery is applied on the left (right)
subfigure.

the unit circle bundle associated to the line bundle O.�2/! P1. We’ll denote this
contact lens space by .L.2; 1/; �std/. Performing contact C1 surgery produced the
standard contact S1 �S2 — see Theorem 2.8 — denoted by .S1 �S2; �std/.

We can arrange that the Lagrangian projection of ƒ has a single crossing corresponding
to a Reeb chord we denote by r , so that after performing a contact ˙1 surgery there is
only a single embedded orbit .r/ with cyclic word r . Push-outs of .r/ using a choice
of capping path are shown in Figure 25. As rot.ƒ/D 0, the framing .X; Y / described
in Section 6 is nowhere-vanishing. For either choice of surgery coefficient, the first
homology H1 is generated by a meridian � of ƒ with

H1.L.2; 1//D .Z=2Z/�; H1.S
1
�S2/D Z�:

Theorem 12.1 The Conley–Zehnder gradings j � jX;Y oncCH.L.2; 1/; �std/ and cCH.S1 �S2; �std/

are canonical in the sense of Proposition 2.5. We computecCH.L.2; 1/; �std/DQŒz0; z2; : : : ; z2k; : : : �; jz2kjX;Y D 2k; Œz2k�D � 2H1;

for the lens space andcCH.S1 �S2; �std/D
V1
kD1Qz2k�1; jz2k�1jX;Y D 2k� 1; Œz2k�1�D 0 2H1;

for S1 �S2.

Proof For either choice of surgery coefficient c D ˙1, we may compute Conley–
Zehnder indices of .r/ using a capping path �. We see that the rotation angle of �
is 3
2
� , so that its rotation number 1. We conclude that

CZX;Y ..rk//D
�
k if c D�1;
2k if c DC1:

Here and throughout the remainder of the proof, .rk/D .r � � � r/ is the k–fold cover
of the embedded orbit .r/ for k > 0. To sanity check our index computations against
known results, we may:
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(1) Compare the case c D�1 with [7, Section 7.1], in which contact �1 surgery is
applied to ƒ.

(2) Compare the case c DC1 with [20, Lemma 4.2], in which a contact 1–handle is
attached to .R3; �std/ to obtain 6.S1 �S2; �std/.

In each case a single closed, embedded orbit is produced with Conley–Zehnder index
as described in the present scenario.

For the homology classes of orbits, we may apply Theorem 9.1, or simply look at the
push-outs depicted in Figure 25 to compute

Œ.r/�D

�
� if c D�1;
0 if c DC1:

As the framing .X; Y / is nonvanishing, we conclude that cCH is canonically Z–graded
for either choice of surgery coefficient, for, when c D �1, we have a Q–homology
sphere and, when c DC1, all orbits are homologically trivial.

When c D�1, an orbit .rk/ is bad exactly when k mod 2D 0. Write z2k for the orbit
.r2k�1/. Then the cCH chain algebra is freely generated by the z2k with gradings as
described in the statement of the theorem. As the CZX;Y grading is even, @CH must
vanish. The theorem is now complete in the case c D�1.

When c DC1, all of the .rk/ are good orbits, which we will denote by z2k�1. These
are graded as described in the statement of the theorem. As .r/ is the unique orbit of
index 1, @CH.r/ must be a count of holomorphic planes. If this count was nonzero,
then the unit in cCH would be exact. This is impossible, as .S1 �S2; �std/ bounds the
Liouville domain

.S1 �D3; x dy �y dxC z d�/;

implying that CH.S1 � S2; �std/¤ 0 and so cCH.S1 � S2; �std/¤ 0 by Theorem 2.6.
We conclude @CH.r/D 0.

For c D C1 and k > 1, the contact homology differential of .rk/ is determined by
counts of pairs of pants P1 n f0; 1;1g with

(1) 1 positively asymptotic to .rk/,

(2) 0 negatively asymptotic to some .rk0/,

(3) 1 negatively asymptotic to some .rk1/, and

(4) k D k0C k1, as required by the index formula, equation (8).
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Figure 26: Some RSFT disks with only positive punctures.

The energies of any such curves must be 0, indicating that these curves must be branched
covers of the trivial cylinder over .r/. According to calculations of Fabert [28], the
contact homology differential must be strictly action-decreasing, implying that the
counts of such curves are 0. We conclude @CH.r

k/D 0, completing the proof.

12.2 Bubbling planes in surgery diagrams

In this section we use the results of Section 11 to count holomorphic curves in completed
surgery cobordisms .WC1; x�C1/ determined by certain LRSFT disks on Legendrian
links in .R3; �std/ with only positive punctures. The arguments can be generalized to
Legendrians ƒ0 in arbitrary punctured contact manifolds .R3

ƒ˙
; �ƒ˙/, with additional

notation and hypothesis. We consider LRSFT disks with arbitrary numbers of positive
punctures, although in the applications of Sections 12.3 and 12.5 we’ll only need to
look at disks with a single positive puncture.

As mentioned in the introduction, the inspiration for our construction is Hofer’s bubbling
argument [35], used to prove the Weinstein conjecture — that every Reeb vector field
on a given contact manifold has a closed orbit — for certain contact 3–manifolds.
We also have in mind the holomorphic curves in contact �1 surgery cobordisms
of [7; 18] positively asymptotic to closed orbits and negatively asymptotic to chords of
a Legendrian link. In the case of C1 surgery, we will see some curves for which these
boundary conditions have been flipped upside-down, allowing us to interpolate between
chords of Legendrian links and Reeb orbits appearing after contact C1 surgery.

Suppose that ƒ0 � .R3; �std/ has an immersed LRSFT disk u W D n fpkg ! R2 for
some boundary punctures fpkg as in Figure 26. Specifically, we assume that u is an
embedding with only positive punctures, completely covering a connected component
of R2 n�x;y.ƒ0/. Write rj1 ; : : : ; rjn for the chords associated to the punctures of the
disk indexed in a counterclockwise fashion along its boundary and write

U WD n fpkg !R� .R3; �std/
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for the associated holomorphic curve with boundary mapping to R�ƒ0 determined by
the drawing-to-disk correspondence, Corollary 11.2.

Let .xk; yk/ be a basis of points for ƒ0, indexed so that .x1; y1/ lies in the interior of
the image of u. Then, by our hypothesis on u,

(64) Ck �U D

�
1 if k D 1;
0 if k ¤ 1:

Consider the completed cobordism .WC1; x�C1/ obtained by performing contact C1
surgery on ƒ0 as described by Theorem 10.1. Then we may consider U as having
WC1 as its target with boundary on an embedded union of Lagrangian planes DC1;i —
as described in Section 10 — whose intersection with the positive end of WC1 is
Œ0;1/ �ƒ0. We simply write DC1 for this union of planes. We may consider the
planes Ck as being contained in any of R�R3, WC1 or R�R3ƒ.

We consider the following moduli spaces:

(1) MR3 is the moduli space of holomorphic disks in R�R3 with positive punctures
asymptotic to the r1; : : : ; rn and boundary on R�ƒ0 satisfying (64).

(2) MWC1
is the moduli space of holomorphic disks in WC1 with positive punctures

asymptotic to the r1; : : : ; rn and boundary on DC1 satisfying (64).

(3) MR3ƒ
is the moduli space of holomorphic planes in R�R3ƒ positively asymptotic

to the closed orbit .rj1 � � � rjn/ and satisfying (64).

Within the positive end of the completed cobordism, we can translate U positively in
the R direction, determining a half-infinite ray Œ0;1/ �MWC1

. The index of U is
equal to 1, so that these curves are regular. Following the analogy with [35], these
disks will serve as our Bishop family.

Theorem 12.2 The boundary of the SFT compactification MWC1
of the moduli

space MWC1
consists of two points (when curves in symplectizations are considered

equivalent modulo R–translation). One point is given by R–translations of the curve U,
considered as living in R�R3. The other point is given by a height 3 SFT building
consisting of :

(1) A collection of trivial strips over the rjk in R�R3.

(2) A hidden curve U oc in WC1 from a disk with n boundary punctures positively
asymptotic to the rjk — preserving the cyclic ordering of the rjk — and a single
interior puncture negatively asymptotic to the closed Reeb orbit .rj1 � � � rjn/.

(3) A curve U c
¿
2MR3ƒ

.
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R�R3

WC1

R�R3ƒ

Figure 27: Elements of @MWC1
.

The algebraic count of such U oc is ˙1 and the algebraic count of points in MR3ƒ
is

also˙1.

The two buildings in @MWC1
are shown in Figure 27. The notation U oc indicates that

the curves interpolates between open and closed strings — that is, between chords and
orbits — and this curve is shown in the center-right of Figure 27. The curve U c

¿
is

shown in the bottom-right of the figure.

Proof The space @MWC1
consists of multilevel SFT buildings such that, when their

levels are glued together, an index 1 curve obeying the topological hypotheses on MWC1

is obtained. Subject to these conditions, such buildings may be of any of the following
configurations:

(1) Case .1;¿;¿/ A 3–level building consisting of an index 1 curve in R�R3, an
empty curve in WC1, and an empty curve in the symplectization of the surgered
manifold R�R3ƒ.

(2) Case .1;0;¿/ A 3–level building consisting of an index 1 curve in R�.R3; �std/,
a collection of index 0 curves in WC1, and an empty curve in R�R3

ƒ˙
.

(3) Case .0; 0; 1/ A 3–level building consisting of a collection of index 0 curves in
R�R3, a collection of index 0 curves in WC1, and an index 1 curve in R�R3

ƒ˙
.

The buildings are required to recover the boundary conditions of U when glued in
the obvious way. Buildings of height greater than 3 are ruled out by presumption of
transversality for somewhere-injective curves in Assumptions 11.4, index additivity and
the fact that all closed orbits of R� at the negative end of WC1 are assumed hyperbolic,
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so that there cannot be levels consisting of branched covers of trivial cylinders with
ind� 0 as described in [41, Section 1].

We will show, using the intersections with the Ck , that

(1) U is the only possibility for the case .1; 0;¿/,
(2) there are no curves in the case .1; 0;¿/, and

(3) the second configuration described in the statement of the proposition — appear-
ing in Figure 27, right — is the only possibility for the case .0; 0; 1/.

Case .1;¿;¿/ For the case .1;¿;¿/, our assumptions on the immersion u indicate
that U is the only disk in R�R3 satisfying (64). We conclude that U is then the only
possibility in this case.

Case .1; 0;¿/ Next, suppose we have a holomorphic building satisfying the condi-
tions of the case .1; 0;¿/ and note that the middle level — a union of curves in WC1
we’ll denote by UWC1 — must be positively asymptotic to some number of chords and
have no negative asymptotics. Hence, each connected component of UWC1 must be
exposed by Proposition 11.17.20 The conditions on intersection numbers of (64) then
indicate that UWC1 must consist of a single component and that the upper level of this
building UR�R3 must be hidden.

For each component of UR�R3 , the number of positive punctures must match the
number of negative punctures, as otherwise Proposition 11.16 would indicate that this
component is exposed. If any component had more than a single negative puncture,
then UWC1 would have more than a single connected component in violation of the
above arguments. We conclude that UR�R3 must be a union of hidden strips, which
are then trivial by Proposition 11.20.

Since UR�R3 is a collection of trivial strips, it must then have indD 0, in violation of
our hypothesis. We conclude that no buildings of type .1; 0;¿/ can exist.

Case .0; 0; 1/ Finally, we address configurations of type .0; 0; 1/. Suppose that
we have such a height 3 building whose levels — going from top to bottom — will
be denoted by UR�R3 , UWC1 and UR�R3ƒ

. By Proposition 11.17, UR�R3ƒ
must be

exposed and so, by (64), both UR�R3 and UWC1 must be hidden. Then UR�R3ƒ
must

consist of a holomorphic plane positively asymptotic to some orbit  . The curve UWC1
20By connected component we intend that nodal configurations, such as those appearing in the appendix
of [12], are broken up into their irreducible pieces, with any removable boundary singularities filled in.
We maintain this convention throughout the remainder of the proof.
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must then consist of a single connected component negatively asymptotic to  , as
any additional components would necessarily have trivial negative asymptotics and
therefore be exposed by Proposition 11.17. As its index is zero, UR�R3 must be a
collection of trivial strips. We conclude that UWC1 must consist of a punctured disk
exactly as described in the statement of the proposition. We know that the negative
puncture of UWC1 must be asymptotic to .rj1 � � � rjn/ by Proposition 11.19.

Apart from the statement regarding algebraic counts, our proof is complete. To prove
this last statement, observe that @MWC1

has a count of 0 points when taking into account
some choice of orientation as it is the boundary of a 1–manifold. We can also write

#@Mx0;y0 D #..1;¿;¿/ buildings/C #..1; 0;¿/ buildings/C #..0; 0; 1/ buildings/;

where the #.� � � / are counted with signs. We know that the set of .1;¿;¿/ buildings
consists of a single element yielding a count of˙1 and that the set of .1; 0;¿/ buildings
must be empty by our previous arguments providing a count of 0. Hence, the number
of .0; 0; 1/ buildings must be �1. But this number is equal to #.UWC1/ � #.UR�R3ƒ

/,
so that both numbers must have absolute value 1. Observing that #.UR�R3ƒ

/ coincides
with a count of points in the moduli space MR�R3ƒ

, the proof is complete.

12.3 Vanishing invariants of overtwisted contact manifolds

Here we use the holomorphic planes of Section 12.2 to prove that the contact homologies
of overtwisted contact 3–manifolds are 0. Throughout, we write .MOT; �OT/ for a closed,
overtwisted contact 3–manifold.

Theorem 12.3 [65] cCH.MOT; �OT/D CH.MOT; �OT/D 0.

Proof Applying Eliashberg’s theorem [21; 39], which asserts that isotopy classes
of overtwisted contact structures on a given contact 3–manifold are classified by the
homotopy classes of their underlying oriented 2–plane fields, we know that, for each
n 2 Z, there exists a unique overtwisted contact structure �n on S3 whose d3 invariant
is n� 1

2
. For the tight contact structure .S3; �std/ on S3, we have d3.�std/ D �

1
2

.21

Denoting contact-connected sum by # and isotopic contact structures by ',

.MOT; �OT/' .MOT; �OT/ # .S3; �std/' .MOT; �OT/ # .S3; ��1/ # .S3; �1/:

By the connected-sum formula of Theorem 2.6, then, we only need to show thatcCH.S3; �1/D 0.

Geometry & Topology, Volume 27 (2023)



1070 Russell Avdek

R1

R2

R3

Figure 28: A basis for the tbD�2, rotD 1 unknot.

A contact surgery diagram for .S3; �1/ is provided by a contactC1 surgery on a tbD�1,
rotD 1 unknot. See [52, Lemma 11.3.10]. A Lagrangian resolution of this knot ƒ—
shown in Figure 28 — has two chords, say r1 and r2. Perturbing ƒ as necessary, we
may assume that the actions of the chords are distinct and that r1 has the least action of
the two chords with r1 corresponding to the positive puncture of the disk determined
by the region R1 of Figure 28. Applying the Conley–Zehnder index calculations of
Theorem 7.1 to the figure, we see that the Reeb orbit .r1/ has CZX;Y D 2. Moreover,
the orbit is contractible as can be seen by considering a push-out by the orbit string �1;1.

As the action of .r1/ is the least among all orbits R� according to our chord-to-orbit
correspondence (Theorem 5.1) and the action estimates of Proposition 5.13, @CH.r1/ and
@SFT.r1/ are counts of planes bounding .r1/. Using the notation of Section 11.5, write
Ei for the areas of the regions Ri �R2 n�xy.N�/ shown in Figure 28. By taking the �
parameter in ˛� to be sufficiently small, we may assume that E2; E3>A..r1//. Likewise,
by Stokes’ theorem, A..r1//� E1 is positive. and may be assumed arbitrarily small by
taking � to be arbitrarily small. Then, by the action-energy bound of Proposition 11.8
and the exposure of filling curves (Proposition 11.17), any plane U W C ! R�R3ƒ
bounding .r1/ must satisfy

Ck �U D

�
1 if k D 1;
0 if k ¤ 1:

We can view R1 as determining a disk with a positive puncture at the chord r1, apply
Theorem 12.2 to obtain a holomorphic plane bounding .r1/, and conclude that the
count of such planes is ˙1. Hence,

@CH.r1/D˙1 2Q;

so that the unit in cCH is zero. This implies that CH.MOT; �OT/ must also be zero by
Theorem 2.6.
21See [52, Section 11.3] for an overview of d3 invariants (which we will be following in this proof) as
defined by Gompf [31, Section 4].
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12.4 Intersection gradings on bCH chain complexes

Here we describe how the intersections of finite-energy curves with the planes Ck
of Section 11.4 can define gradings on the CC�;0.˛�/ chain complexes of punctured
Q–homology spheres which take values in a free Z–module. As described in the intro-
duction, this is simply a variation of the transverse knot filtrations of [14, Section 7.2].

It will be clear from their construction that analogous gradings — which depend on
a surgery presentation of our punctures contact manifold — can be constructed for
holomorphic curve invariants of Q–homology spheres .R3

ƒ˙
; �ƒ˙/ such as bECH and

the bSFT. It will also be clear that the assumption that H2.M/ D 0 may be dropped
by considering QŒH2.M/� coefficient systems as described in [6]. Likewise, such
gradings can be extended to all of CC�;� using QŒH2.M/� coefficients and spanning
surfaces bounding unions of closed orbits and fixed representatives of homology classes
as in [6]. In Section 12.6 we will use this grading to prove Theorem 1.2, in which case
we will only need the CC�;0 version of this construction for Q–homology spheres.

Let .R3
ƒ˙
; �ƒ˙/ be a contact manifold determined by a contact surgery diagram ƒ˙

with R3
ƒ˙

a Q–homology sphere. Let .xk; yk/ for k D 1; : : : ; K be a point basis for
the surgery diagram determining a finite collection of infinite-energy holomorphic
planes Ck as described in Section 11.5.

Suppose  D fkg is a collection of Reeb orbits for which Œ�D 0 2H1.R3ƒ˙/ and let
S be a surface in R3

ƒ˙
with @S D  . To the surface S and each point .xk; yk/, we

define
Ik./D

�
f.xk; yk/g �R

�
�S 2 Z:

By Theorem 11.6 and the fact that H2.R3ƒ˙/D 0, the numbers Ik./ are independent
of choice of spanning surface S for  . We collect all of these numbers as monomials

Iƒ./D
KX
1

Ik./�k 2 ZK

for formal variables �k for k D 1; : : : ; K. It follows from this definition that, provided
two homologically trivial collections 1, 2 of closed Reeb orbits, we have

Iƒ.1[ 2/D Iƒ.1/C Iƒ.2/:

We set Iƒ.¿/D 0 2 ZK . Then Iƒ determines a ZK–valued grading on the H1 D 0
subalgebra CC�;0 of the chain algebra CC for the contact homology associated to the
contact form ˛� of R3

ƒ˙
.
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r1 r2 r3

r4

r5

R1
R2 R3

R4

R5

R6

Figure 29: A Legendrian trefoil with tbD�1 and rotD 0 in the Lagrangian
projection together with a basis for R2 nN.

Now suppose that C and � are two homologically trivial collections of closed orbits
and that U is a map from a surface with boundary into R3

ƒ˙
for which @U D C��.

Then, relative to its boundary, we have�
f.xk; yk/g �R

�
�U D Ik.

C/� Ik.
�/ 2 Z:

In particular, if .t; U / W†0!R�R3
ƒ˙

is a holomorphic curve positively asymptotic to
the C and negatively asymptotic to the �, then

(65) Iƒ.C/� Iƒ.�/D
X��

f.xk; yk/g �R
�
�U
�
�k D

X
.Ck � .t; U //�k 2 ZK�0:

In summary, the Iƒ allows us to make a priori computations of intersection numbers be-
tween holomorphic curves asymptotic to orbits with leaves of the foliation as described
in Section 11. In particular, if

(66) Iƒ.C/� Iƒ.�/ … ZK�0;

then the coefficient of � in @CH.
C/ must be zero.22

12.5 Surgery on a trefoil

Take ƒ to be the trefoil depicted in Figure 29 with chords r1; : : : ; r5. This is a
reproduction of Figure 6 with a point basis shown in the right-hand side of the figure.
This trefoil is the unique nondestabilizable m.31/ by [25].

22Here it is implicit that, if the collection C contains more than a single orbit, then a holomorphic map
.t; U / as above contributing to @CH will consist of a connected index 1 holomorphic curve positively
asymptotic to some orbit in C together with a union of trivial cylinders over the remaining orbits in the
collection. This deviation from convention allows us to associate cobordisms to differentials of monomials
consisting of C containing more than one orbit.
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12.5.1 Ambient geometry According to Theorem 9.1, the first homology of R3
ƒ˙

is
generated by the meridian � with

H1.R
3
ƒ˙
/D

�
Z=2Z� if c D 1;
Z� if c D�1:

Since ƒ is smoothly fibered, with fiber a punctured torus, the closed manifold obtained
by contact �1 surgery — a topological 0 surgery with respect to the Seifert framing —
is a torus bundle over S1. This manifold is Liouville fillable, and hence tight, and so is
a torus bundle covered by the classification in [36, Section 2].

PerformingC1 contact surgery produces a tight but nonfillable contact manifold studied
in [43] — see also [52, Theorem 1.3.4] — which is a Brieskorn sphere with reversed
orientation, �†.2; 3; 4/. Nonfillability may also be viewed as a consequence of the
fact that the trefoil is not slice by [15], as mentioned in Theorem 2.8.

12.5.2 Rotation numbers and crossing monomials Here we compute rotation
numbers and crossing monomials for the trefoil, which will allow us to compute
Conley–Zehnder indices and homology classes of the orbits in the surgered manifolds
by applying Theorems 7.1 and 9.1, respectively.

To compute the rotation numbers, we first find the rotation angles �j1;j2 , which we see
are all either 1

2
� , 3

2
� or 5

2
� , producing the following table:

chord rotj;1 rotj;2 rotj;3 rotj;4 rotj;5

r1 0 0 0 0 1

r2 0 0 0 0 1

r3 0 0 0 0 1

r4 1 1 1 1 2

r5 0 0 0 0 1

For the computation of the crossing monomials, there is only a single �i , so that
Remark 3.2 is applicable. The � coefficients of the relevant crossing monomials are:

chord sgn crj W c D 1 crj W c D�1 crj;1 crj;2 crj;3 crj;4 crj;5

r1 1 2 0 0 0 2 3 1

r2 1 2 0 0 0 0 1 1

r3 1 2 0 �2 0 0 1 �1

r4 �1 0 �2 1 1 3 4 2

r5 �1 0 �2 �1 1 1 2 0
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cw./ � W c D 1 CZX;Y W c D 1 � W c D�1 CZX;Y W c D�1

r1 1 1 0 0

r2 1 1 0 0

r3 1 1 0 0

r4 0 2 1 1

r5 0 2 �1 1

r1r2 0 2 0 0

r1r3 0 2 0 0

r1r4 1 3 1 1

r1r5 1 3 �1 1

r2r3 0 2 0 0

r2r4 0 3 0 1

r2r5 0 3 0 1

r3r4 1 3 1 1

r3r5 1 3 �1 1

r4r5 0 4 0 2

Table 1

12.5.3 Homology classes and indices of orbits after surgery Using the above com-
putations, we can produce in Table 1 the homology classes and Conley–Zehnder indices
of Reeb orbits with word length � 2 using Theorems 9.3 and 7.1. Multiply covered
orbits have been omitted. Coefficients for � in the case c D 1 are taken modulo 2.

12.6 Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by computing @CH.r4/.

12.6.1 The subalgebra C0;0 and intersection gradings As the rotation numbers
of capping paths on ƒ are bounded below by 0, Theorem 7.1 tells us that the Conley–
Zehnder indices of all orbits of are bounded below by their word lengths. We conclude

Figure 30: An annulus bounding .r1/[ .r2/.
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that @CH.r4/must be an element of CC0;0 which is a commutative algebra on generators

1; .r1/
2; .r2/

2; .r3/
2; .r1/.r2/; .r1/.r3/; .r2/.r3/:

We’ll compute the Iƒ gradings on CC0;0 using points .xk; yk/ appearing in the centers
of the regions Rk of Figure 29:

CC�;0 monomial I1 I2 I3 I4 I5 I6

.r4/ 0 0 0 0 1 0

.r1/
2 �1 �1 �2 �1 1 1

.r2/
2 1 2 2 1 �1 �1

.r3/
2 �1 �2 �1 �1 1 1

.r1/.r2/ 0 1 0 0 0 0

.r1/.r3/ �1 �1 �1 �1 1 1

.r2/.r3/ 0 0 1 0 0 0

To establish the calculations appearing in the above table, we construct surfaces bound-
ing .r1/.r2/, .r2/.r3/ and .r2/.r2/, filling in the remainder of the table using arithmetic.
Such surfaces will be constructed out of simple cobordisms built out of homotopies
and skein operations. For .r4/, we have an obvious disk bounding a push-out along x�4,
obtained by perturbing R5.

In Figure 30, we construct a spanning surface for the union of the orbits .r1/[ .r2/.
We begin by homotoping the union of orbits into the complement of N� , as described
in Section 9.4. The result — associated to capping paths �1 and x�2 — is shown on the
left-most subfigure. To get from the left column of the figure to the center, we apply
a skein cobordism along the dashed arc, resulting in a pair-of-pants cobordism. The
resulting knot can be homotoped to the Reeb orbit .r1r2/ as shown in the right-hand
side of the figure. So far our surface has avoided passing through any of the lines
f.x; y/D .xk; yk/g �R3

ƒ˙
. To complete our cobordism, we fill in the knot shown in

the right-most subfigure using the obvious disk which is a perturbation of the disk R2.
The union of our pair of pants with this disk provides us with an annular filling of
.r1/[ .r2/ which intersects the link f.x; y/D .x2; y2/g exactly once with positive sign.
We conclude that

Iƒ..r1/.r2//D �2:

A similar construction can be carried out to find an annular filling of .r2/[ .r3/: we
start with a push-out corresponding to capping paths x�2 and �3, apply a skein cobordism
giving us a pair of pants with boundary .r2/[ .r3/� .r2r3/, and then fill in .r2r3/ with
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Figure 31: A cobordism with boundary .r2/C�.

a perturbation of the disk D3. We conclude that

Iƒ..r2/.r3//D �3:

Now we construct a spanning surface for .r2/[ .r2/. The construction is more compli-
cated in this case: we construct two cobordisms from .r2/ from a positive and negative
meridian of ƒ, which can then be patched together to give us a surface with boundary
.r2/[ .r2/.

We break down the construction of one such cobordism whose boundary is .r2/C�
into a sequence of elementary cobordisms, as shown in Figure 31:

(1) We start with a push-out of .r2/ using the capping path x�2, as shown in the
top-left subfigure.

(2) Going from the top-left to top-center, we homotop our knot across the disks R2
and R3. Along the way, we pick up two intersections with the lines associated
to the points .x2; y2/ and .x3; y3/ with positive signs.

(3) Going from the top-center to the top-right, we apply skein cobordisms along the
dashed arcs appearing in the top-center.

(4) Going from the top-right to the bottom-left, we apply another skein cobordism
along the dashed arc appearing in the top-right yielding a 4–component link.

Figure 32: A tube bounding ���.
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(5) Going from the bottom-left to the bottom-center, we fill in one of the components
of our link with a disk which is a perturbation of the disk R4. In doing so, we
pick up a positive intersection with the line over the point .x4; y4/.

(6) Going from the bottom-center to the bottom-right, we homotop one component
of our knot over �R6 to a ��

Combining all of the above steps, we’ve constructed a homotopy from .r2/ to a collec-
tion of meridians. We can cancel a pair of them with a tube as shown in Figure 32. The
end result is a cobordism with boundary .r2/C� passing through the lines associated to
the points .x2; y2/, .x3; y3/ and .x4; y4/ once each with positive intersection number
and passing through the line over .x6; y6/ with negative intersection number.

We can also construct a cobordism with boundary .r2/ � � by flipping Figure 31
about a horizontal line, starting with a push-out of �2. The resulting cobordism passes
through the lines associated to the points .x1; y1/, .x2; y2/ and .x3; y3/ once each with
positive intersection number and passing through the line over .x5; y5/ with negative
intersection number.

We can connect the two cobordisms with another tube bounding ��� to obtain a
spanning surface for .r2/[ .r2/. By the above counts of intersections, we have

Iƒ..r2/2/D �1C 2�2C 2�3C �4� �5� �6:

Using our calculations of Iƒ..r1/.r2//, Iƒ..r2/.r3// and Iƒ..r2/2/, we can fill out
the remainder of the above table by computing

Iƒ..r1/2/D 2Iƒ..r1/.r2//� Iƒ..r2/2/;
Iƒ..r3/2/D 2Iƒ..r2/.r3//� Iƒ..r2/2/;

Iƒ..r1/.r3//D Iƒ..r1/.r2//C Iƒ..r2/.r3//� Iƒ..r2/2/:

12.6.2 Intersection numbers of curves positively asymptotic to .r4/ Now suppose
that we have a holomorphic curve U positively asymptotic to .r4/ and negatively
asymptotic to a collection of generators � from C0;0. Writing � as a monomial
in C0;0, there are nonnegative constants Ci;j for which

� D .r1/
2C1;1.r2/

2C2;2.r3/
2C3;3..r1/.r2//

C1;2..r1/.r3//
C1;3..r2/.r3//

C2;3 :

We’ll use the intersection grading to show that all of the Ci;j must be zero, so that
U cannot have any negative asymptotics. We can count the intersection of U with
the planes Ck as the coefficients of the �k in the expression Iƒ..r4//� Iƒ.�/ as
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described in (65). Using the table above, we compute

Iƒ..r4//� Iƒ.�/D .C1;1�C2;2CC3;3CC1;3/�1
C .C1;1� 2C2;2C 2C3;3�C1;2CC1;3/�2

C .2C1;1� 2C2;2CC3;3CC1;3�C2;3/�3

C .C1;1�C2;2CC3;3CC1;3/�4

C .1�C1;1CC2;2�C3;3�C1;3/�5

C .�C1;1CC2;2�C3;3�C1;3/�6:

All of the �k coefficients above must be nonnegative by intersection positivity.

As the �4 and �6 coefficients are the same with opposite sign, both must be zero so that

C2;2 D C1;1CC3;3CC1;3:

Therefore, we must have

Iƒ..r4//� Iƒ.�/D .�C1;1�C1;2�C1;3/�2C .�C3;3�C1;3�C2;3/�3C �5;

implying that the remaining Ci;j are all zero.

12.6.3 Completion of the proof The above analysis implies that, if U is an index 1
holomorphic curve contributing to @CH.r4/, then it cannot have any negative asymptotics
and must satisfy

(67) Ck �U D

�
1 if k D 5;
0 if k ¤ 5:

Such a curve must be parametrized by C as per the definition of @CH. To complete our
proof, we analyze the moduli space of finite-energy curves

M4;5 D fC
U
�!R�R3

ƒ˙
W U asymptotic to .r4/, satisfying (67)g=reparametrization:

By the above analysis, @CH..r4// D #.M4;5/1, counting points algebraically. This
moduli space exactly describes the lowest levels U c

¿
of the height 3 SFT buildings

studied in Theorem 12.2, which when applied to the disk R5 tell us that #.M4;5/D˙1.

The proof of Theorem 1.2 is then complete in the case of the tbD 1 trefoil shown in
Figure 29. By the classification torus knots in .R3; �std/ [25], all other right-handed
trefoils are stabilizations of this one — contact C1 surgeries on these stabilized knots
will be overtwisted and so will have CHD 0. The proof is now complete in the case
that ƒC consists of a single component. In the case that ƒC D

Sn
i ƒ
C
i has multiple

components, we have — as described in Section 10 — a Liouville cobordism .W; �/

whose convex end .MC; �C/D .@CW; ker.�/j@CW / is given by contact C1 surgery
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on ƒC1 and whose concave end .M�; �C/D .@�W; ker.�/j@�W / is given by contact
surgery on ƒC. If we index the components of ƒC so that ƒC1 is a right-handed
trefoil, then CH.MC; �C/D 0, and so, by Liouville functoriality, CH.M�; ��/D 0
as well. The proof is now complete for all right-handed trefoils and all contact surgery
coefficients 1=k with k > 0.
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