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We show that the intermediate Jacobian fibration associated to any smooth cubic
fourfold X admits a hyper-Kähler compactification J.X / with a regular Lagrangian
fibration � W J ! P 5. This builds upon work of Laza, Saccà and Voisin (2017),
where the result is proved for general X , as well as on the degeneration techniques
introduced in the work of Kollár, Laza, Saccà and Voisin, and the minimal model
program. We then study some aspects of the birational geometry of J.X /: for very
general X we compute the movable and nef cones of J.X /, showing that J.X / is
not birational to the twisted version of the intermediate Jacobian fibration, nor to
an OG10–type moduli space of objects in the Kuznetsov component of X ; for any
smooth X we show, using normal functions, that the Mordell–Weil group MW.�/ of
the fibration is isomorphic to the integral degree-4 primitive algebraic cohomology
of X , ie MW.�/ŠH 2;2.X;Z/0.
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1480 Giulia Saccà

Introduction

The geometry of smooth cubic fourfolds has ties to that of K3 surfaces and, more
generally, to that of higher-dimensional hyper-Kähler manifolds. For example, with
certain special cubic fourfolds one can associate a K3 surface via Hodge-theoretic
(Hassett [34]) or derived categorical (Kuznetsov [43]) methods. From a more geometric
perspective, given a smooth cubic fourfold X , hyper-Kähler manifolds of K3Œn�–type
are constructed geometrically, via parameter spaces of rational curves of certain degrees
on X (Beauville and Donagi [12] and Lehn, Lehn, Sorger and van Straten [49]), or as
moduli spaces of objects in the Kuznetsov component of X (Bayer, Lahoz, Macrì, Nuer,
Perry and Stellari [6] and Lahoz, Lehn, Macrì and Stellari [44]). These constructions
give rise to 20–dimensional families of polarized hyper-Kähler manifolds, the maximal
possible dimension of families of polarized hyper-Kähler manifolds of K3Œn�–type.
As the cubic fourfold becomes special, for example when it acquires more algebraic
classes, the geometry of these hyper-Kähler manifolds also becomes more interesting.
For example, when X has an associated K3 surface in the sense of Addington and
Thomas [2], Hassett [34], Huybrechts [37] and Kuznetsov [43], these hyper-Kähler
manifolds become isomorphic, or birational, to moduli spaces of objects in the derived
category of the corresponding K3 surface; see Addington [1] and Bayer, Lahoz, Macrì,
Nuer, Perry and Stellari [6].

Laza, Saccà and Voisin [47] constructed a Lagrangian fibered hyper-Kähler manifold
starting from a general cubic fourfold. This hyper-Kähler manifold is a deformation
of O’Grady’s 10–dimensional exceptional example. More precisely, let X � P5 be a
smooth cubic fourfold and let �U W JU ! U � .P5/_ be the family of intermediate
Jacobians of the smooth hyperplane sections of X . This fibration was considered by
Donagi and Markman in [25], where they showed that the total space has a holomorphic
symplectic form. The main result of [47] was to construct, for general X , a smooth
projective hyper-Kähler compactification J of JU , with a flat morphism J ! .P5/_

extending �U , and to show that this hyper-Kähler 10–fold is deformation equivalent
to O’Grady’s 10–dimensional example. In [80], Voisin constructed a hyper-Kähler
compactification J T of a natural JU –torsor J T

U
, which is nontrivial for very general X .

The two hyper-Kähler manifolds J and J T are birational over countably many hy-
persurfaces in the moduli space of cubic fourfolds. These two constructions give rise
to two 20–dimensional families of hyper-Kähler manifolds of OG10–type, each of
which forms an open subset of a codimension-two locus inside the moduli space of
hyper-Kähler manifolds in this deformation class.
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Birational geometry of the intermediate Jacobian fibration 1481

If one wishes to study the geometry of these hyper-Kähler manifolds as the cubic
fourfold becomes special, a first step is to check if a hyper-Kähler compactification of
the fibration JU ! U can be constructed for an arbitrary smooth cubic fourfold. The
starting result of this paper is that this can indeed be done.

Theorem 1 (Theorem 1.6) Let X � P5 be a smooth cubic fourfold , and let

�U W JU ! U � .P5/_

be the Donagi–Markman fibration. There exists a smooth projective hyper-Kähler
compactification J of JU with a morphism � W J ! .P5/_ extending �U .

The same techniques also give the existence of a Lagrangian fibered hyper-Kähler
compactification for the nontrivial JU –torsor J T

U
! U of [80] for any smooth X ; see

Remark 1.14. Moreover, with little extra work, the theorem is proved also for mildly
singular cubic fourfolds such as, for example, cubic fourfolds with a simple node; see
Proposition 1.17. For a general cubic fourfolds with one node, the existence of such a
Lagrangian fibered hyper-Kähler manifold provides a positive answer to a question of
Beauville [11]; see Remark 1.18.

We should point out that as a consequence of the “finite monodromy implies smooth
filling” results of Kollár, Laza, Saccà and Voisin [41], we prove in Proposition 1.5 that
JU admits projective birational model that is hyper-Kähler. Theorem 1 shows that
there exists a hyper-Kähler model with a Lagrangian fibration extending �U .

There are several ingredients in the construction of the hyper-Kähler compactification
of [47]: a cycle-theoretic construction of the holomorphic symplectic form, the problem
of the existence of so-called very good lines for any hyperplane section of X , a
smoothness criterion for relative compactified Prym varieties, the independence of the
compactification from the choice of a very good line. Here we have pursued a different
direction, and instead rely on the existence of a hyper-Kähler compactification for
general X , use the degeneration techniques introduced in [41], and implement some
results from birational geometry and the minimal model program, following Kollár [40]
and Lai [45]. One advantage of our method is that it opens the door to using birational
geometry to compactify Lagrangian fibrations.

The second result of this paper is concerned with the hyper-Kähler birational geometry
of J . We show that the relative theta divisor ‚ of the fibration is a prime exceptional
divisor and that for general X it can be contracted after a Mukai flop.

Geometry & Topology, Volume 27 (2023)



1482 Giulia Saccà

Theorem 2 (Theorem 4.1) Let q be the Beauville–Bogomolov form on H 2.J;Z/.
The relative theta divisor ‚� J is a prime exceptional divisor with q.‚/D�2. For
very general X , there is a unique other hyper-Kähler birational model of J , denoted
by N , which is the Mukai flop p W JÜN of J along the image of the zero section. N

admits a divisorial contraction h WN ! xN, which contracts the proper transform of ‚
onto an 8–dimensional variety which is birational to the LLSv 8–fold Z.X /.

Thus, for very general X , J is the unique hyper-Kähler birational model with a
Lagrangian fibration, it is not birational to J T (Corollary 3.10), and its movable cone is
the union of its nef cone and the nef cone of N . This answers a question by Voisin [80].
As a consequence of this theorem we show that for very general X , J is not birational to
a moduli spaces of objects in the Kuznetsov component Ku.X / of X ; see Corollary 4.2.
In the opposite direction, it was recently proved by Li, Pertusi and Zhao [51] that
the twisted hyper-Kähler manifold J T is birational to a moduli space of objects of
OG10–type in Ku.X /. By objects of OG10–type, we mean objects whose Mukai vector
is of the form 2w, with w2D 2. As a consequence, the family of intermediate Jacobian
fibrations is the only known family of hyper-Kähler manifolds associated with cubic
fourfolds whose very general point cannot be described as a moduli space of objects in
the Kuznetsov component of X .

Given J DJ.X /, a hyper-Kähler compactification of the intermediate Jacobian fibration
for any smooth cubic fourfold X , a natural question to ask is how the geometry of J

changes as X becomes less general. One way to answer this question is the following
theorem, describing the Mordell–Weil group of � in terms of the primitive algebraic
cohomology of X . In Section 5 we prove:

Theorem 3 (Theorem 5.1) Let MW.�/ be the Mordell–Weil group of � W J ! P5,
ie the group of rational sections of � , and let H 2;2.X;Z/0 be the primitive degree-4
integral cohomology of X . The natural group homomorphism

�X WH
2;2.X;Z/0!MW.�/

induced by the Abel–Jacobi map is an isomorphism.

The proof of this result uses the theory of normal functions, as developed by Griffiths
and Zucker, as well as the techniques used by Voisin to prove the integral Hodge
conjecture for cubic fourfolds. A consequence of this is a geometric description of the
Lagrangian fibered hyper-Kähler manifolds with maximal Mordell–Weil rank, whose
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existence was proved by Oguiso in [64]: indeed, Oguiso’s examples are (birationally)
given by J D J.X /! P5, where X is a smooth cubic fourfold with H 2;2.X;Z/ of
maximal rank.

Plan of the paper

In Section 1 we prove the existence of a hyper-Kähler compactification for JU and
for J T

U
, in the case of any smooth, or mildly singular, X . This uses some results

from the minimal model program, which are briefly recalled. In Section 2 we review
some basic results about moduli spaces of OG10–type and we compute, using the
Bayer–Macrì techniques adapted to these singular moduli spaces by Meachan and
Zhang [58], the nef and movable cones of certain moduli spaces of OG10–type that
appear as limits of the intermediate Jacobian fibration. The main result of Section 3
is the computation that q.‚/D �2. Section 4 is devoted to the proof of Theorem 2
and its preparation: Given a family of cubic fourfolds degenerating to the chordal
cubic, we construct a certain degeneration of the intermediate Jacobian fibration and
identify the limit of the corresponding degeneration of the relative Theta divisor. By
the results of Section 2, the limiting theta divisor can be contracted after a Mukai flop
of the zero section and we deduce the analogous result for ‚. The computation of the
Mordell–Weil group occupies Section 5.

Finally, in the appendix by C Voisin, some applications to the Beauville conjecture on
the polynomial relations in the Chow group of a projective hyper-Kähler manifold are
given for J D J.X /, in the case of very general J of Picard number 2 or 3. This is
obtained as an application of the computation of q.‚/D�2 from Theorem 2.
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1 A hyper-Kähler compactification of the intermediate
Jacobian fibration for any smooth cubic fourfold

We denote by X � P5 a smooth cubic fourfold, by .P5/_ the dual projective space
parametrizing hyperplane sections Y DX\H �X , and by U � .P5/_ the open subset
parametrizing smooth hyperplane sections. The dual hypersurface of X , parametrizing
singular hyperplane sections, is denoted by X_ � .P5/_. Its smooth locus

U1 WD .P
5/_ nSing.X_/� .P5/_

parametrizes hyperplane sections of X that are smooth or have one simple node and
no other singularities. In what follows, we freely drop the _ from .P5/_ and write
simply P5. From the context it will be clear if we are referring to the projective space
parametrizing hyperplane sections of X or the projective space containing X . For a
smooth cubic threefold Y , the Griffiths intermediate Jacobian of Y will be denoted by

Jac.Y /ŠH 1.Y; �2
Y /
_=H3.Y;Z/:

It is a principally polarized abelian fivefold which parametrizes rational equivalence
classes of homologically trivial 1–cycles on Y [79, Theorem 6.24].

Over U consider the Donagi–Markman fibration

(1-1) �U W JU D JU .X /! U;

whose fiber over a smooth hyperplane section Y DX \H is the intermediate Jacobian
Jac.Y /. By [25], JU is quasiprojective and admits a holomorphic symplectic form �JU

,
with respect to which �U is Lagrangian. The main result of [47] is the following
theorem.

Theorem 1.1 [47] Let X be a general cubic fourfold. Then there exists a smooth
projective compactification J D J.X / of JU , with a flat morphism � W J ! .P5/_

extending �U , which has irreducible fibers and which admits a rational zero section
s W .P5/_Ü J . Moreover , J is an irreducible holomorphic symplectic manifold ,
deformation equivalent to O’Grady’s 10–dimensional exceptional example.

We will say that X is general in the sense of LSV if the construction of [47] works for
JU .X /, and we refer to J D J.X / as in Theorem 1.1 as the LSV fibration. A necessary
condition for this to happen is that the hyperplane sections of X are palindromic;
see [17]. For example, a cubic fourfold containing a plane is not general in the sense
of LSV.

Geometry & Topology, Volume 27 (2023)
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To extend the theorem above for any X , we use the existence of a hyper-Kähler compact-
ification for general X , the cycle-theoretic description of the holomorphic symplectic
form that was given in [47], the degeneration results from [41], and techniques from
the minimal model program, following [40; 45]. We start by recalling the construction
of a natural partial compactification of JU , which already appeared in [25; 47].

Lemma 1.2 [25; 47] For any smooth X , there is a canonical partial compactification
JU1
D JU1

.X / of JU , with a projective morphism �U1
W JU1

! U1 with irreducible
fibers extending �U . This JU1

is smooth and has a holomorphic symplectic form �JU1

extending �JU
.

Proof This is already proved in [25, Section 8.5.2 and Theorem 8.18]. Alternatively,
one can use [23, Corollary 2.38], and [47, Definitions 2.2 and 2.9, Proposition 1.4 and
Lemma 5.2].

Before giving an application of the cycle-theoretic construction of the holomorphic
symplectic form [47, Section 1], we recall the definition of symplectic variety.

Definition 1.3 A normal projective variety M is called symplectic if its smooth locus
carries a holomorphic symplectic form which extends to a regular (ie holomorphic)
form on any resolution of singularities of M .

Lemma 1.4 Let xJ be a normal projective compactification of JU . Then:

(1) The smooth locus of xJ admits a holomorphic two-form extending �JU
. In

particular , the canonical class K xJ of xJ is effective and is trivial if and only if
xJ is a symplectic variety.

(2) xJ is not uniruled.

Proof (1) The first statement is [47, Theorem 1.2(iii)], while the second follows
from the fact that the canonical class of xJ is the (closure of the) codimension-one locus
where the generically nondegenerate holomorphic two-form is degenerate.

(2) Let zJ ! xJ be a resolution of singularities. By (1), zJ has effective canonical class
and thus by [59] it is not uniruled.

The following is an application of the degeneration techniques of [41].

Geometry & Topology, Volume 27 (2023)
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Proposition 1.5 Let X be a smooth cubic fourfold and let JU D JU .X / be as above.
Then there exists a smooth projective hyper-Kähler manifold M birational to JU and
of OG10–type.

Proof Let X ! � be a family of smooth cubic fourfolds with X0 D X . Here � is
an open affine subset of a smooth projective curve, or a small disk. We will use the
notation t D 0 to denote a chosen special point in �, and t ¤ 0 to denote any other
point. Up to restricting � if necessary, assume that for t ¤ 0, Xt is general in the sense
of LSV. By [47, Proposition 2.10], we can assume that for any t ¤ 0 all the hyperplane
sections of Xt admit a very good line; see [47, Definition 2.9]. Consider the open set
V D .P5/_ �� n Sing.X_

0
/� f0g, so that Vt D .P5/_ for t ¤ 0 and V0 D U1 � f0g

parametrizes the hyperplane sections of X0 DX that have at most one nodal point and
no other singularities. The construction of [47, Section 5] can be carried out in families,
yielding a projective morphism

JV ! V;

which is fibered in compactified Prym varieties and is such that, denoting by Jt the
fiber of the induced smooth quasiprojective morphism JV ! � for t ¤ 0, Jt is the
LSV fibration J.Xt /, and J0 D JU1

.X /. Let zJ ! � be a projective morphism
extending JV ! �. The central fiber J0 has a multiplicity-one component which
contains JU1

as dense open subset. By Lemma 1.4, this component is not uniruled.
By [41, Corollary 5.2] there is a birational model M of JU1

.X / that is a hyper-Kähler
manifold, deformation equivalent to the smooth fibers Jt D J.Xt /, for t ¤ 0.

By [57], given a hyper-Kähler manifold M with a Lagrangian fibration � WM ! Pn,
the locus inside Def.M / where the Lagrangian fibration deforms is an open subset of
the hypersurface where the class ��O.1/ stays of type .1; 1/. However, this fact alone
is not enough to imply the existence of a hyper-Kähler compactification of JU1

for any
smooth X .

This is what we prove in the following theorem, whose proof uses the mmp following
Kollár [40, Section 8] and Lai [45]. In Section 1.1 we will recall some basic facts about
the mmp that are needed in the proof of Theorems 1.6 and 1.19. We refer to [42] and
to [32] for the basic definitions and fundamental results.

Theorem 1.6 For any smooth cubic fourfold X , there exists a smooth projective
hyper-Kähler compactification J D J.X / of JU .X /, with a projective flat morphism
� W J ! P5 extending �U .

Geometry & Topology, Volume 27 (2023)
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Proof Let xJ ! P5 be any normal projective compactification of JU1
with a regular

morphism x� W xJ ! P5. By Lemma 1.4, there is a holomorphic two-form x� on the
smooth locus of xJ extending �JU1

, the canonical class K xJ � 0 is effective, and K xJ D 0

if and only if xJ is a symplectic variety. Since K xJ is supported on the complement
of JU1

, codim x�.Supp.K xJ //� 2. By definition [40, Definition 7], this means that K xJ
is x�–exceptional, if it is nontrivial. If this is the case, then by [61, III 5.1] (see also
[45, Lemma 2.10]), K xJ is not x�–nef. More precisely, there is a component of K xJ that
is covered by curves that are contracted by x� and that intersect K xJ negatively.

Let zJ ! P5 be a smooth projective compactification of JU1
admitting a regular

morphism z� W zJ ! P5, and let K zJ be its canonical class. If the effective divisor K zJ
is not trivial, we use the mmp to contract Supp.K zJ / relatively to P5. Let H be a
z�–ample Q–divisor such that the pair . zJ ;H / is klt and K zJ CH is relatively big and
nef. The mmp with scaling over P5 (see Section 1.1 below) produces a sequence of
birational maps

(1-2) zJ D J0

 0Ü J1
 1Ü � � �Ü Ji

 iÜ � � �

over P5 — ie there are projective morphisms �i W J ! P5 such that �0 D z� and
�i WD �i�1 ı 

�1
i — and a nonincreasing sequence of nonnegative rational numbers

t0 D 1� t1 � : : : ti � � � � � 0, with the following properties:

(1) For every i � 0, KJi
C tiHi is �i–big and �i–nef.

(2) For every i � 0, Ji is a Q–factorial terminal compactification of JU1
. The fact

that the birational morphisms  i are isomorphisms away from JU1
follows from

the fact that the KJi
–negative rays of the mmp correspond to rational curves

that are contained in the support of KJi
. Thus, by Lemma 1.4, the smooth locus

of Ji carries a holomorphic two-form �i extending �JU1
.

(3) KJi
is effective and, if not trivial, it has a component covered by KJi

–negative
curves which are contracted by �i .

(4) The process stops if and only if there exists an i such that KJi
is �i–nef. This

holds if and only if KJi
D 0.

The number of irreducible components of the support of KJi
is nonincreasing, since

the birational maps of the mmp extract no divisors. In fact, we claim that this number
is eventually strictly decreasing. By (4) above, this happens if and only if the process
eventually stops. Suppose that this is not the case. Then by Lemma 1.13, lim ti D 0.
Recall, as already observed, that if KJk

¤ 0, then there exists a component that is
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covered by KJk
–negative curves that are contracted by �k . Since we are assuming

that lim ti D 0, this implies that for i � 0, ti is small enough that this component is
contained in the relative stable base locus B..KJk

C tiHk/=P
5/. Since by Lemma 1.12,

the divisorial components of B..KJk
C tiHk/=P

5/ are contracted by Jk Ü Ji , it
follows that for i�0, the number of irreducible components of the effective divisor KJi

is strictly less than the number of components of KJk
. Thus, the claim is proved and

for some i � 0, the process gives a model with KJi
D 0. By Lemma 1.4, xJ WD Ji is a

Q–factorial terminal symplectic compactification of JU1
. Finally, by Proposition 1.7

below, xJ is smooth and the theorem is proved.

Proposition 1.7 (Greb–Lehn–Rollenske) Let xM be a Q–factorial terminal symplec-
tic variety. Suppose that xM is birational to a smooth hyper-Kähler manifold M . Then
xM is smooth.

Proof This is [29, Proposition 6.5].

Remark 1.8 The techniques used to prove the theorem above can be applied to
similar contexts to give Q–factorial terminal symplectic compactifications of other
quasiprojective Lagrangian fibrations. We plan to come back to this in upcoming work.

As a consequence of Theorem 1.19 below, we will give a slightly stronger version of the
theorem just proved (see Remark 1.20) showing that, given a family of smooth cubic
fourfolds whose general fiber is general in the sense of [47], then up to a base change
and birational transformations, the corresponding family of LSV intermediate Jacobian
fibrations can be filled with a Lagrangian fibered smooth projective hyper-Kähler
compactification of the Donagi–Markman fibration of the limiting cubic fourfold.

Another approach to Theorem 1 would be to show that the rational map M Ü P5

induced by the birational map � WM Ü JU1
of Proposition 1.5 is almost holomorphic

[56, Definition 1]. By [56] this would imply the existence of a birational hyper-Kähler
model of M with a regular morphism to P5. It seems, however, that controlling the
mmp of Proposition 1.5 to ensure that M Ü P5 is almost holomorphic is not too far
from running the relative mmp as in the proof of Theorem 1.6.

Given a smooth cubic fourfold X , we will refer to both the Donagi–Markman fibration
JU and to any hyper-Kähler compactification J of JU as in Theorem 1.6, as the
intermediate Jacobian fibration. Hopefully, it will be clear from the context which one
we are referring to.
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Remark 1.9 Unlike the compactification of [47], the proof of Theorem 1.6 is not
constructive and, for a given X , the hyper-Kähler compactification that we show to
exist may not be unique. We will return to this question in Section 4.

1.1 The mmp with scaling

In this subsection we recall some basic tools and known results from the minimal model
program (mmp) that are used to prove Theorems 1.6 and 1.19. For the basic notions
and the fundamental results we refer to [42] and [32]. In this section, by divisor we
will mean a Q–divisor.

Let M be a normal Q–factorial variety with a projective morphism � WM ! B to
a normal quasiprojective variety B. Let � be an effective divisor on M and let H

be a general divisor on M that is ample (or big) over B. We assume that the pair
.M; �CH / is klt and that KM C�CH is nef over B.

The mmp with scaling of H [32, Section 5.E] produces a sequence of birational maps
 i WMiÜMiC1 over B, such that M0 DM , �iC1 D . i/��i , HiC1 D . i/�Hi

and  i is the flip or the divisorial contraction for a .KMi
C�i/–negative relative

extremal ray Ri over B. We let �i be the induced regular morphism Mi ! B. The
sequence is defined inductively in the following way. Let

ti D infft � 0 jKMi
C�i C tHi is nef over Bg:

If ti D 0, then KMi
C�i is nef over B and the process stops. Otherwise, there is a

0 < t 0 � ti such that KMi
C�i C t 0Hi is not nef over B. By the cone theorem (see

[42, Chapter 3] or [32, Theorem 5.4]) KMi
C�iC tiHi is nef over B and there exists

a .KMi
C�i/–negative extremal ray Ri over B such that .KMi

C�iC tiHi/ �Ri D 0.

Let ci WMi!Zi be the extremal contraction over B associated to Ri , which exists by
the “contraction” part of the cone theorem [32, (5.4.3)–(5.4.4)]. If dim Zi < dim Mi ,
then ci is a Mori fiber space and we stop. If ci is not a Mori fiber space then it is either
a divisorial or flipping contraction. In the first case, we let MiC1 DZi and  i D ci .
In second case, we let  i WMiÜMiC1 be the .KMi

C�iC t 0Hi/–flip (which exists
by [32, Corollary 5.73]). By construction,  i extracts no divisors, meaning that  �1

i

contracts no divisors.

By the contraction part of the cone theorem, the divisor KMiC1
C�iC1C tiHiC1 is

nef over B. The pair .Mi ; �iC1C tiHiC1/ is klt (see [42, Corollaries 3.42–3.44]) and
Mi is Q–factorial (see [42, Corollary 3.18]). If � D 0 and M is terminal, then so
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is Mi . As long as KMi
C�i is not �i–nef, tiC1 is nonzero and �iC1C tiHiC1 is big

over B. Thus we can keep going, producing a nonincreasing sequence ti � tiC1 � � � �

of nonnegative rational numbers and a sequence of birational maps  i WMiÜMiC1

over B. The process stops if there exists an N such that cN WMN ! ZN is a Mori
fiber space over B or such that KMN

C�N is nef over B. Otherwise, the sequence is
infinite.

The pair .Mi ; �i C tiHi/ is a log terminal model (ltm) for .M; �C tiH / over B; see
Definition 5.29 and Lemma 5.31 of [32]. We will need the following lemmas:

Lemma 1.10 For any i > j , let  ij WMj ÜMi be the induced birational morphism
over B. Then  ij is not an isomorphism.

Proof This is [32, Lemma 5.62].

Lemma 1.11 [32, Exercise 5.10] Let .M; �/ be a klt pair as above and suppose that
� is big over B and that KM C� is nef over B. Then KM C� is semiample over B,
ie there exists a projective morphism f WM !Z over B and an ample divisor L on B

such that KM C��Q;B f
�L.

Proof Since � is big over B, we can write ��Q;B ACC , where A is ample over B

and C � 0. Choose an 0< �� 1 such that .M; �0/ is klt, where �0 D .1� �/�C �C .
Then

.KM C�/� .KM C�
0/D �A

is ample over B. By the basepoint-free theorem (see eg [32, Theorem 5.1]), KM C�

is semiample over B.

Lemma 1.12 Let the notation be as above and for any i > 0, let �i W M Ü Mi

be the induced birational map over B. Then the divisors contracted by �i are the
divisorial components of B..KMi

C�i C tiHi/=B/, the stable base locus over B;
cf [32, Section 2.E]. Similarly,  ij WMj ÜMi contracts the divisorial components of
B..KMj

C�j C tiHj /=B/.

Proof Since .Mi ; �i C tiHi/ is klt, �i C tiHi is big over B, and KMi
C�i C tiHi

is nef over B, by the lemma above, KMi
C�i C tiHi is semiample over B.

Let W be a smooth birational model resolving �i , and let p and q be the induced
birational morphisms to M and Mi . By [32, Lemma 5.31] the pair .Mi ; �iC tiHi/ is
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a log terminal model for .M; �C tiH / over B; see [32, Definition 5.29]. Thus,

(1-3) p�.KM C�C tiH /D q�.KMi
C�i C tiHi/CE;

where
E D

X
F

.a.F IM; �C tiH /� a.F IMi ; �i C tiH //F

is an effective q–exceptional divisor whose support contains the divisors contracted
by �i . Since

p�1B..KM C�C tiH /=B/D B.p�.KM C�C tiH /=B/

D B.q�.KMi
C�i C tiHi/CE=B/

D Supp.E/;

the first statement follows. The second statement is proved in the same way, since by
[32, Lemma 5.31], the pair .Mi ; �iCtiHi/ is a log terminal model for .Mj ; �jCtiHj /

over B and hence the equivalent of (1-3) holds.

Lemma 1.13 Let the notation be as above. If the mmp with scaling does not terminate ,
then

lim
i!1

ti D 0:

Proof This is [26, Proposition 3.2]. The only difference is the relative setting, but the
proof is the same: Suppose the mmp does not terminate and that lim ti D t1 > 0. By
[13, Theorem E] there are finitely many log terminal models of .M; �C .t1C t/H /,
with t 2 Œ0; 1 � t1�. We have already observed that .Mi ; �i C tiHi/ is an ltm for
.M; �CtiH /D .M; �Ct1HC.ti�t1/H // over B. Thus, if the sequence is infinite
there are integers i > j such that the birational map Mj ÜMi is an isomorphism.
This gives a contradiction with Lemma 1.10 above.

1.2 Variants

In this section we give some variants of the results of the previous section. First we notice
that the compactification result of Theorem 1.6 holds also for the twisted intermediate
Jacobian fibration; see Remark 1.14. Then we consider the case of the intermediate
Jacobian fibration associated to a mildly singular cubic fourfold; see Proposition 1.15
and Remark 1.16. We then give a slightly stronger version of Theorem 1.6, in that we
show that the Lagrangian fibered hyper-Kähler compactification works in families; see
Proposition 1.17 and Theorem 1.19. As an application, we give a positive answer to a
question of Beauville; see Remark 1.18.
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Remark 1.14 (the twisted case) In [80], Voisin constructed a nontrivial JU –torsor
J T

U
!U defined from a class in H 1.U;JU Œ3�/, where JU is the sheaf of holomorphic

sections of JU ! U and where JU Œ3� � JU is the sheaf of 3–torsion points. The
nontriviality (for very general X ) of this class corresponds to the nonexistence, for the
universal family of hyperplanes sections of X , of a relative one-cycle of degree one. The
main result of the paper is to produce, for general X , a hyper-Kähler compactification
J T D J T .X / with Lagrangian fibration to P5 extending J T

U
! U . This builds on the

compactification of [47]. We will refer to this hyper-Kähler manifold as the twisted
intermediate Jacobian fibration. This hyper-Kähler manifold is deformation equivalent
to the nontwisted version J.X /, as they agree as soon as X has a two-cycle which
restricts to a one-cycle of degree one or two on its hyperplane sections. Lemma 1.4,
Proposition 1.5 and Theorem 1.6 work the same for the nontrivial torsor J T

U
!U , giving

a Lagrangian fibered hyper-Kähler J T D J T .X / for every smooth X . In Section 4.1
we will return to the twisted intermediate Jacobian fibration and in Corollary 3.10 we
prove that for very general X these two fibrations are not birational and that on J

there is a unique isotropic class in the movable cone of J . This fact will be used in the
appendix.

Finally, we show that the Lagrangian fibered hyper-Kähler compactification exists
generically also over C6, the divisor in the moduli space of cubic fourfolds whose
general point parametrizes cubics with one A1 singularity. The following proposition is
an adaptation of [47, Section 2] to the case of a cubic fourfold with mild singularities.

Proposition 1.15 Let X0 � P5 be a cubic fourfold with one simple node o 2X0 and
no other singularities. Let U � P5 be the open locus parametrizing smooth hyperplane
sections , and let �U W JU D JU .X0/! U be the Donagi–Markman fibration. Then
there exists a holomorphic symplectic form �U on JU , which extends to a holomorphic
two-form on any smooth projective compactification. As a consequence , Lemma 1.4
holds for JU , namely any projective compactification of JU has smooth locus admitting
a generically nondegenerate holomorphic two-form extending �U , and is not uniruled.
Similarly, for the twisted intermediate Jacobian , J T

U
D J T

U
.X0/.

Proof Let zX0 (resp. zP5) be the blowup of X0 (resp. P5) at the point o. Let E� zP5 be
the exceptional divisor. Projection from o determines an isomorphism zX0 ŠBLSP4,
where S is the .2; 3/ complete intersection in P3 parametrizing lines in X0 by o. The
surface S is a smooth K3 surface and thus H 1. zX0; �

3
zX0
/ is one-dimensional; let �

be a generator. The same argument as in [47, Theorem 1.2 ] shows that � induces
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a holomorphic two-form � on JU , with respect to which the fibers of JU ! U are
isotropic. To show that � is nondegenerate, it suffices to show that for any smooth
hyperplane section Y (which in particular does not pass by the point o), the map

(1-4) TŒY �U DH 0.Y;OY .1//!H 1.Y; �2
Y /DH 0.JU ; �

1
JU
/

induced by � , via the fact that the fibers of JU ! U are isotropic, is an isomorphism.
By [47, Theorem 1.2(ii)], this map is given by the cup product with a class �Y 2

H 1.Y; �2
Y
.�1// defined in the following way: let �jY 2 H 1.Y; .�3

zX0
/jY / be the

restriction of � to Y . Since H 1.Y; �3
Y
/D 0, the exact sequence

0!�2
Y .�1/! .�3

zX0
/jY !�3

Y ! 0

implies that �jY lifts to a class �Y 2 H 1.�2
Y
.�1//. By Griffiths residue theory

[47, Lemma 1.7], H 1.�2
Y
.�1// is one-dimensional and cup product with any nonzero

element induces an isomorphism H 0.Y;OY .1//!H 1.Y; �2
Y
/; more precisely, using

the canonical isomorphism �2
Y
.�1/ D TY .3/, this space is spanned by the class

of the nontrivial extension 0 ! TY ! .TP4/jY ! OY .�3/ ! 0. It follows that
to show that (1-4) is an isomorphism, we only need to show that �Y ¤ 0, which
amounts to showing that �jY ¤ 0. Under the isomorphism �3

zX0

D T zX0
.�3/.2E/,

the class of a generator of H 1. zX0; �
3
zX0

/ corresponds to the class of the extension
0 ! T zX ! .TzP5/j zX ! O zX .3/.�2E/ ! 0. Restricting to Y and considering the
tangent bundle sequence for Y in P4, we get the diagram of short exact sequences

0 // .T zX /jY
// .TzP5/jY // OY .3/ // 0

0 // TY
//

OO

.TP4/jY

˛

OO

// OY .3/ // 0

where the first two vertical arrows are injective. The extension class of the first row is
�jY and the second row is nonsplit, as we already observed. Since coker.˛/DOY .1/,
we have Hom.OY .3/; coker.˛//D 0. Thus any splitting of the first row would induce
a splitting of the second row, giving a contraction.

Remark 1.16 Proposition 1.15 holds, more generally, for any cubic fourfold with
isolated singularities, as long as a general one-parameter smoothing of it has finite
monodromy. This corresponds to the K3 surface S of lines through one of the singular
points having canonical singularities. The case of the degeneration to the chordal
cubic [34], which has finite monodromy but central fiber with 2–dimensional singular
locus, will be discussed at length in Section 4.2.
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Proposition 1.17 Let X0�P5 be as in Proposition 1.15 (or as in Remark 1.16) and let
�U W JU ! U be the corresponding intermediate Jacobian fibration. Then there exists a
hyper-Kähler compactification J DJ.X0/ of JU , with a regular flat morphism to .P5/_

extending �U . Moreover , if X ! � is a general family of smooth cubic fourfolds
degenerating to X0, then up to a base change , there exists a family of Lagrangian
fibered hyper-Kähler manifolds

J ! P5
�!�

such that for t ¤ 0, Jt D J.Xt / is the LSV compactification and , for t D 0, J0 is a
hyper-Kähler compactification of JU D JU .X0/. Similarly , the analogous statement
holds for the twisted intermediate Jacobian.

Proof By Proposition 1.15 above, JU has a holomorphic symplectic form that extends
to a regular form on any smooth projective compactification. As in Lemma 1.4, it
follows that JU is not uniruled. Let X ! � be a family of smooth cubic fourfolds
degenerating to X0 DX0 with the property that for t ¤ 0, Xt is general in the sense of
LSV. As in the beginning of Theorem 1.6, let JV ! V be such that the fiber over t ¤ 0

of JV !� is the LSV compactification J.Xt / and, over t D 0, is JU ! U . We are
thus in the position of applying Theorem 1.19 below, which proves the proposition.

A consequence of this proposition is a positive answer to a question of Beauville [11],
as explained in the following remark.

Remark 1.18 Given a smooth cubic threefold Y , let `� Y be a line. In [9; 26] it is
shown that the moduli space of Ulrich bundles on Y with rank 2, c1D 0 and c2D 2` is
birational to the intermediate Jacobian of Y ; more precisely, it can be identified with the
blowup of the intermediate Jacobian fibration along the Fano surface. Now let X0 be
cubic fourfold with one simple node and let S � P4 be the .2; 3/ complete intersection
K3 surface parametrizing lines through the singular point of X0. Consider the Mukai
vector vD 2v0D 2.1; 0;�1/2H�.S;Z/ and let zM2v0

.S/ be the symplectic resolution
of the singular moduli space of OG10–type; cf Section 2.

By considering the relative moduli spaces of Ulrich bundles supported on the five-
dimensional family of cubic threefolds containing S and by restricting the bundles
to S , Beauville [11, Section 5, Example d D 3] shows that there is a birational map
JU ÜMv.S/. This induces a rational map M2v0

.S/Ü P5, and Beauville asks
whether there exists a hyper-Kähler manifold birational to Mv.S/ which admits a
regular morphism to P5. Proposition 1.17 thus gives a positive answer to this question.
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The proof of the proposition above relies on the following theorem, which is the
Lagrangian fibration analogue of results from [41, Theorem 2.1 and Corollary 5.2].
Theorem 1.19 will be used also in Section 4 for the proof of Proposition 4.5 (and thus
also of Theorem 4.1). As usual, � is an open affine subset of a smooth curve, or a
small analytic disk. In both cases, we keep the notation t D 0 to denote a chosen special
point in �, and t ¤ 0 to denote any other point.

Theorem 1.19 Let zf W zJ !� be a projective degeneration of hyper-Kähler manifolds
of dimension 2n. Suppose that there is a commutative diagram

zJ

zf ��

z�
// Pn
�

p

��

�

where zJ ! Pn
�

is a projective fibration such that for t ¤ 0, Jt ! Pn
t is a Lagrangian

fibration. Assume that the central fiber zJ 0DY0C
P

i2I miYi has a reduced component
Y0 which is not uniruled. Suppose , furthermore , that there is an open subset of
Y0 n

S
i�1.Yi \ Y0/ such that the morphism to Pn

0
is a fibration JU0

! U0 � Pn
0

in
abelian varieties. Then:

(1) There exists a projective degeneration xf W xJ ! � of hyper-Kähler manifolds
such that

(a) xJ is Q–factorial , terminal and isomorphic to zJ over ��,

(b) the central fiber xJ 0 is a reduced , irreducible , and a normal symplectic variety
with canonical singularities and admitting a symplectic resolution , and

(c) there is a relative Lagrangian fibration x� W xJ ! Pn
�

compatible , via the
birational map xJ Ü zJ , with z� and such that , up to restricting the open set
U0 � Pn

0
, the morphism xJ 0! Pn

0
extends the abelian fibration JU0

! U0.

(2) Up to a base change �0!�, there exists a (not necessarily projective) family
J ! �0 of hyper-Kähler manifolds , with a birational morphism J ! xJ 0 WD
xJ ��0 � over �0, which is an isomorphism away from the central fiber and in

the central fiber is a symplectic resolution of xJ 0. Moreover , J has a family of
Lagrangian fibrations � 0 W J ! Pn

�0
compatible with the base change of x� .

Proof The proof follows ideas from [75; 40; 41]. Up to passing to a log resolution
of the pair . zJ ; zJ 0/, we can assume that zJ 0 D Y0C

Pk
iD1 miYi is a normal crossing

divisor. By [41, Theorem 2.1 and Corollary 5.2], running the mmp over � contracts the
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components Yi for i � 1, and yields a birational model of zJ with an irreducible central
fiber which is a symplectic variety. In particular, Y0 is the unique component of zJ 0

that is not uniruled; cf [41, Remark 2.2]. To prove the theorem we only need to show
that the birational maps required to contract the other components can be preformed
relatively to Pn

�
and, furthermore, that they induce isomorphism away from

S
i�1 Yi .

This is to ensure that the central fiber has a Lagrangian fibration extending JU0
! U0

(maybe up to restricting the open subset U0 � Pn
0

).

The canonical class K zJ is trivial over ��, so it is zf –equivalent to a divisor of the formPk
iD0 a0iYi . Following [75, Section 2.3, point (1)] we set r Dmin a0i=mi , so1

K zJ DQ;�

kX
iD0

aiYi ;

where ai D a0i � rmi � 0 are nonnegative rational numbers and ai D 0 for at least
one i . Let J ¨ f0; 1; : : : ; kg be the set of indices such that ai > 0 and let J c be its
complement. By [75, Proposition 5.1]:

(1) For every j 2 J , the irreducible component Yj is uniruled.

(2) If jJ cj � 2, then for every j 2 J c , the irreducible component Yj is uniruled.

Since Y0 is not uniruled, it follows that J D f1; : : : ; kg and thus

K zJ DQ;z�

kX
iD1

aiYi ; with ai > 0:

By assumption, for every i � 1, the closed subset Y0\Yi is in the complement of JU0

and, since the fibers of zJ 0 ! Pn
�

are connected, it follows that the induced map
Yi ! Pn

0
is not dominant. Thus, the codimension of z�.Yi/ in Pn

�
is greater or equal

to two. In other words, Yi is z�–exceptional.

We are in the same setting of Theorem 1.6, namely a projective morphism from a
smooth quasiprojective variety with a canonical class that is relatively Q–linearly
equivalent to an effective divisor all of whose components are relatively exceptional.
We can thus argue as in the proof of Theorem 1.6, running the mmp over Pn

�
with

scaling of an ample divisor in order to contract each of the Yi , for i � 1. This yields a
birational map zJÜ xJ over Pn

�
, where xJ !� has irreducible fibers and the fibration

1For a projective morphism f WA!B and two Q–Cartier divisors D and D0 on A, we write DDQ;B D0

or D �Q;f D0 if and only if D and D0 are Q–linearly equivalent up to the pullback of a Q–Cartier divisor
from B.
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xJ ! Pn
�

has Q–factorial terminal total space and is such that K xJ D z�
�B for some

Q–divisor B on Pn
�

. Since at each step the K–negative rays of the mmp are contained
in uniruled components of the central fiber, it follows that the birational map zJ Ü xJ
is an isomorphism away from

S
i�1 Yi . In particular, the central fiber xJ 0, which

is irreducible, has an open subset which is isomorphic to JU0
. Since .K xJ /jJt

D 0

for t ¤ 0, we get that BjPn
t
D0 for t¤0. In particular, B is p–trivial, where p WPn

�
!�

is the projection, and thus K xJ is zf –trivial. We can now argue as in the last part of
the proof of [47, Theorem 1.1] to show that xJ 0 is normal with canonical singularities.
As in [47, Corollary 4.2] it follows that xJ 0 is a symplectic variety and that, up to a
base change �0!�, there exists a smooth family J !�0 with a birational morphism
J ! xJ 0 WD xJ ��0 � with the desired properties.

Remark 1.20 Theorem 1.19 gives another proof of Theorem 1.6, as well as the
stronger statement of the existence of a relative intermediate Jacobian fibration J !P5

�

associated to any family X !� of smooth cubic fourfolds for which the general fiber
is general in the sense of LSV.

2 Moduli spaces of OG10–type

By [47, Corollary 6.3] (see also [41, Section 6.3]) any hyper-Kähler compactification J

of JU is deformation equivalent to O’Grady’s 10–dimensional example. We start this
section by recalling the basic definitions and first properties of those singular moduli
spaces of sheaves on a K3 surface whose symplectic resolutions are hyper-Kähler
manifolds in this deformation class. Then we use the methods of Bayer and Macrì, as
adapted by Meachan and Zhang to this class of singular moduli spaces, to study the
movable cone of certain moduli spaces that appear naturally as limits of the intermediate
Jacobian fibration, when the underlying cubic fourfold degenerates to the chordal cubic;
see Section 4.2.

We start by recalling the following fundamental theorem.

Theorem 2.1 [60; 82; 63; 50; 38; 66] Let .S;H / be a general polarized K3 surface
and let v0 2H�alg.S;Z/ be a primitive Mukai vector which we suppose to be positive in
the sense of [8, Definition 5.1], see also [18, Remark 3.1.1]. Let m� 2 be an integer.
The moduli space Mmv0;H .S/ of H–semistable sheaves on S with Mukai vector mv0

is an irreducible normal projective symplectic variety of dimension m2v2
0
C 2, which
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admits a symplectic resolution if and only if mD 2 and v2
0
D 2. When this is the case ,

the symplectic resolution zM2v0;H .S/!M2v0;H .S/ is the blow up of the singular
locus Sym2 Mv0;H .S/�M2v0;H .S/, with its reduced induced structure. Moreover ,
zM2v0;H .S/ is an irreducible holomorphic symplectic manifold and its deformation

class is independent of .S;H / and of v0; in particular , zM2v0;H .S/ is deformation
equivalent to O’Grady’s original 10–dimensional exceptional example.

We will refer to a Mukai vector of the form 2v0 with v2
0
D 2 as a Mukai vector of

OG10–type and to a hyper-Kähler manifold in this deformation class as a hyper-Kähler
of OG10–type.

2.1 Contracting the relative theta divisor on the relative Jacobian of curves

It is known [4; 7; 8; 5] that the birational geometry of moduli spaces of pure dimension
one sheaves on a K3 surface is related to Brill–Noether loci. For example, on the degree
g� 1 Beauville–Mukai system of a genus g linear system on a K3 surface, the relative
theta divisor can be contracted, possibly after performing a finite sequence of birational
transformations. This is the content of the following example.

Example 2.2 [4; 5] Let .S;C / be a general polarized K3 surface of genus g, with
NS.S/ D ZC . Set v D .0;C; 0/ 2 H�.S;Z/ and let Mv be the moduli space of
C –stable sheaves on S with Mukai vector2 v. Since we are assuming .S;C / to be
general in moduli, we are suppressing the polarization from the notation — thus Mv

will denote the moduli space of C –semistable sheaves on S with Mukai vector v;
when we consider instead a Bridgeland stability condition � , the corresponding moduli
space will be denoted by Mv;� . This moduli space is smooth and Mv ! Pg D jC j

is the degree g � 1 relative compactified Jacobian of the genus g linear system jC j
on S . There is a naturally defined effective, irreducible, relatively ample theta divisor
� �Mv which parametrizes sheaves with a nontrivial global section and which can
be realized as the zero locus of a canonical section of the determinant line bundle;
see [48, Section 2.3] or [3, Theorem 5.3]. Recall that there is a Hodge isometry
NS.Mv/Š v

? D h.0; 0; 1/; .1; 0; 0/i; see for example [7, Theorem 3.6].

2This Mukai vector is not positive in the sense defined above, since both the first and last entry are
zero. However, since for general .S;C /, tensoring by C induces an isomorphism with Mv0 , where
v0 D .0;C;g� 1/, the results of [7] still hold. See also [66] for other considerations about the last entry of
the Mukai vector.

Geometry & Topology, Volume 27 (2023)



Birational geometry of the intermediate Jacobian fibration 1499

The class ` WD .0; 0; 1/ is the class of the isotropic line bundle inducing the Lagrangian
fibration Mv ! Pg while the theta divisor � corresponds to the class �.1; 0; 1/ D
�v.OS /; see [48, page 643] or also [7, Proposition 7.1 and Theorem 12.3].3 Since
�2 D �2, the irreducible effective divisor � is prime exceptional. By [27], it can be
contracted on a hyper-Kähler birational model of Mv. Since the rays corresponding
to divisorial contractions and to Lagrangian fibrations must be in the boundary of the
movable cone [36], it follows that

Mov.Mv/DR�0`CR�0h;

where hD .�1; 0; 1/ 2 �? \ v? is a big line which is nef on some birational model
of Mv; this also follows from [7, Theorem 12.3]. Using [7], the walls of the nef cones
of the various birational models can be computed. Since we don’t need this, we omit
the computation.

2.2 Movable cones of certain moduli spaces of OG10–type

If we consider a nonprimitive genus g linear system jmC j, with m � 2, then the
relative compactified Jacobian of degree g� 1 is singular. For singular moduli spaces
of OG10–type, ie when v D 2w with w2 D 2, Meachan and Zhang [58] adapted the
techniques of Bayer and Macrì [8; 7] to compute the nef and movable cones of these
moduli spaces. We refer to [16; 4; 8; 7] for the relevant definitions and main results on
Bridgeland stability conditions on K3 surfaces, and to [58] for the results on moduli
spaces of OG10 type.

By [58, Theorem 7.6(3)], all birational models of M2wDM2w;C which are isomorphic
to M2w in codimension one are isomorphic to a Bridgeland moduli space M2w;� for
some Bridgeland stability condition � on S . Moreover, by [58, Corollary 2.8],

(2-1) NS.M2w;� /Š w
?:

We now apply the results of [58] to describe the nef and movable cones of certain
singular models of OG10 appearing as limits of the intermediate Jacobian fibration.
By [67], the factoriality properties of a singular moduli space M2w of OG10–type
depend on the divisibility of the primitive Mukai vectorw 2H�alg.S;Z/. More precisely,
by [67, Theorem 1.1], M2w is factorial if and only ifw �u22Z for every u2H�alg.S;Z/.
Otherwise, M2w is 2–factorial. Since there can be different birational models with

3Compared to [7], there is a difference in a choice of sign in the isomorphism NS.Mv/Š v
?.
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different factoriality properties (cf Remark 2.3), it is important to choose the correct
model to work with.

Now let .S;C / be a general K3 surface of degree 2 and set

(2-2) vk WD .0;C; k � 2/:

The Le Potier morphism � WM2vk
! P5 realizes the singular moduli space M2vk

as
a compactification of the degree 2k relative Jacobian of the genus-five hyperelliptic
linear system j2C j. Composing � with the symplectic resolution m W zM2vk

!M2vk
,

we get a natural Lagrangian fibration

(2-3) z� W zM2vk
! P5:

By the result of Perego and Rapagnetta mentioned above, M2vk
is factorial if and only

if k is even. It turns out that the birational class of these moduli spaces is independent
of k, but the isomorphism class depends on the parity of k [18, Proposition 3.2.7]:
indeed, tensoring a pure dimension one sheaf by OS .C / determines an isomorphism

(2-4) M2vk

�
�!M2vkC2

:

Remark 2.3 Tensoring a line bundle supported on a smooth hyperelliptic curve of
genus 5 by the unique g1

2
on the curve defines a birational morphism M2vk

ÜM2vkC1
.

(I thank A Rapagnetta for pointing out this to me.) As a side remark, notice that the
map thus defined is not an isomorphism in codimension one. Indeed, it can be checked
that when passing to the birational morphism zM2vk

Ü zM2vkC1
between the two

resolutions, which is an isomorphism in codimension two, the exceptional divisor of
one model is exchanged with the proper transform of the locus parametrizing sheaves
on reducible curves on the other model.

In view of Lemma 4.4 below and the isomorphism (2-4), we will focus on the case
k D 0.

Remark 2.4 For general .S;C / it is not hard to check that the structure sheaf of
every curve in j2C j satisfies the numerical criterion for C –stability and hence that the
fibration M2v0

! P5 admits a regular zero section. Notice also that the image of this
section is not contained in the singular locus of M2v0

.

By [58, Corollary 2.8], NS.M2v0
/Š v?

0
DU Dh.0; 0; 1/; .�1;C; 0/i, where, as above,

(2-5) `D .0; 0; 1/
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is the line bundle inducing the Lagrangian fibration � WM2v0
! P5 D j2C j. Under

the isomorphism M2v2
ŠM2v0

induced by tensoring with OS .�C /, the relative theta
divisor is mapped isomorphically to the prime exceptional divisor

(2-6) � WD �.1;�C; 2/

parametrizing sheaves which receive a nontrivial morphism from the spherical object
OS .�C /; see also Lemma 2.6. Indeed, the relative theta divisor in M2v2

parametrizes
sheaves with a nontrivial morphism from OS and thus its image in M2v0

is exactly the
divisor � . Notice that

(2-7) �2
D�2:

For later use we highlight the following remark.

Remark 2.5 The effective divisor � �M2v0
with cohomology class (2-6) does not

contain the singular locus of M2v0
: using the description of � as the zero locus of

a section of the determinant line bundle [3, Theorem 5.3], which is compatible with
S–equivalence classes, it is enough to show that the section defining � is not identically
zero on the singular locus of M2v0

. It is therefore sufficient to show that there are
S–equivalence classes of polystable sheaves all of whose members have a zero space of
global sections. This is clear, since the generic semistable sheaf with Mukai vector 2v0

is an extension of two degree-one line bundles each supported on two distinct curves
of genus two.

The following lemma is an application of [58, Theorems 5.1–5.3] to M2v0
. (Note that

Example 8.6 of loc. cit. is for odd k, so in view of Remark 2.3 it is concerned with a
birational model of M2v0

which is not isomorphic in codimension one, and hence we
cannot immediately apply it here.)

Lemma 2.6 Let the notation be as above. Then

Nef.M2v0
/DR�0`CR�0h0; Mov.M2v0;C /DR�0`CR�0h;

where
`D .0; 0; 1/; h0 D .�1;C; 1/; hD .�1;C; 0/:

Moreover , the wall spanned by h0D .�1;C; 1/ contracts the zero section of M2v0
!P5

and the class corresponding to hD .�1;C; 0/ is big and nef on the Mukai flop of M2v0

along the zero section and contracts the proper transform of � .
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Proof Since `D��OP5.1/ is nef and isotropic, it is one of the two rays of both the Nef
and the movable cones of M2v0

. By [58, Theorem 5.3] there is a divisorial contraction
of BNU–type (notation as in loc. cit.), determined by the spherical class sD .1;�C; 2/,
which is orthogonal to v0. The second ray of the movable cone is thus determined by
s? \ v?

0
. We pick h D .�1;C; 0/ as a generator of this ray, since h � ` > 0. By the

same theorem in [58], the flopping walls are determined by w?\ v?
0

for w spherical
and such that w � v0 D 2. There is a unique ray in Mov.M2v0

/ that is of this form. It is
determined bywD .1; 0; 1/D v.OS / or, equivalently, byw0D .�1; 2C;�5/D 2v0�w.
We can choose h0 D .�1;C; 1/ as generator of this ray. As in [58, Remark 8.5], we
can see that this wall corresponds to the flop of the P5 corresponding to the sheaves
with a morphism from OS , ie of the image of the zero section.

Remark 2.7 It can be shown that the birational model on the other side of the wall
can be identified with the Gieseker moduli space M2w0

, where w0 D .2;C; 0/. Since
we don’t need this in the rest of the paper, we omit the proof.

Remark 2.8 The theta divisor � is Cartier, since by [66] M2v0
is factorial; see also

Section 2.2. Moreover, it is relatively ample over P5, since by the description of the
Nef cone of Lemma 2.6 we can write � as a sum of an ample line bundle and a multiple
of `D ��OP5.1/.

3 The relative theta divisor on the intermediate Jacobian
fibration

For any smooth cubic threefold Y , there is a canonically defined theta divisor in
Jac.Y / which is .�1/–invariant and whose unique singular point lies at the origin. For
the hyper-Kähler compactification J D J.X /! .P5/_ of the intermediate Jacobian
fibration associated to a smooth cubic 4–fold X , there is an effective relative theta
divisor ‚ � J , which is defined as the closure of the union of the canonical theta
divisor in the smooth fibers. More precisely, by [20; 21], see also [47, Lemma 5.4],
‚ can be defined as the closure of the image of the Abel–Jacobi difference mapping

(3-1) F �.P5/_ FÜ J; .`; `0;Y / 7! �Y .`� `
0/:

The relative theta divisor ‚ played an important role in [47], where it was shown that
for general X the divisor ‚ is �–ample and J is identified with the relative Proj of the
sheaf of OP5–algebras associated with this divisor. Another useful way of realizing the
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theta divisor is using twisted cubics [21]. Let Z DZ.X / be the Lehn–Lehn–Sorger–
van Straten 8–fold [49]. Then Z is the blowdown g WZ0!Z of a smooth 10–fold Z0

whose points parametrize nets of (generalized) twisted cubics. The exceptional locus
of g parametrizes non-ACM cubics and its image in Z is isomorphic to the cubic itself.
Let

r W PZ 0 !Z0

be the P1–bundle over Z0 whose fiber over a twisted cubic ŒC �2Z0 is the pencil P1
C

of
hyperplane sections of X containing†C WDX \hC i. Here hC iDP3 is the linear span
of the curve. By [47, Sublemma 5.5], see also [21, Section 4] or [41, Proposition 6.10],
the Abel–Jacobi map

(3-2) ' W PZ 0Ü J; .C;Y / 7! �Y .C � h2/;

is birational onto its image, which is precisely‚. Here h2 is the class of the intersection
of two hyperplanes in Y .

Remark 3.1 For later use, we note the following two facts. First of all, the restriction
of PZ 0 to the locus of nonCM cubics is mapped to the zero section of J ! P5 (which
lies in ‚). Second, using the Gauss map, see [20, Section 12] or also [33, Section 3],
one can see that if C is a twisted cubic in a smooth cubic threefold Y with the property
that �Y .C � h2/D 0 in Jac.Y /, then the cubic surface †C D Y \ hC i is singular.

For every X , the Néron–Severi group of J D J.X / has at least rank two, since

NS.J.X //� hL; ‚i:

Here L D ��OP5.1/ and ‚ is, as above, the relative theta divisor obtained as the
closure of the image of (3-1).

Lemma 3.2 For any smooth X , there is an isomorphism of rational Hodge structures
H 2.J;Q/tr ŠH 4.X;Q/tr. In particular , �.J /D rk H 2;2.X;Q/C 1.

Proof The first statement was already noted in [47], while the second follows from
the first and the fact that b2.J /D 24 and b4.X /D 23.

Remark 3.3 The locus, inside Def.J /, parametrizing intermediate Jacobian fibrations
is of codimension two and corresponds to the locus where the classes L and ‚ stay
of type .1; 1/. By [74, Theorem 6], a Lagrangian fibration with a section deforms,
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as Lagrangian fibration with a section, over a smooth codimension-two locus of the
deformation space of the underlying hyper-Kähler manifold. Since by Theorem 1.1 for
general X the LSV compactification J.X / has a section, it follows that the codimension-
two locus where L and ‚ stay algebraic is exactly the locus where the section deforms.

We highlight the following corollary for future reference.

Corollary 3.4 For very general X , we have that �.J /D 2. Thus:

(1) J is the only projective hyper-Kähler birational model of JU where L is nef. In
particular , any hyper-Kähler compactification of JU with a Lagrangian fibration
extending JU ! U is isomorphic to the compactification of [47].

(2) There is at most one prime exceptional divisor on J .

Proof (1) Since �.J /D 2, the boundary of the movable cone of J has two rays, of
which L is one.

(2) If there is a prime exceptional divisor, its class has to be orthogonal to the second
extremal ray of the movable cone [52, Theorem 1.5]. Since two prime exceptional
divisors with proportional classes have to be isomorphic [53, Corollary 3.6(3)], there is
at most one prime exceptional divisor.

The following lemma was communicated to me by K Hulek and R Laza. I thank them
for sharing this observation with me and for raising the question of computing q.‚/.

Lemma 3.5 We have that q.L; ‚/D 1. In particular , hL; ‚i is a primitive sublattice
of NS.J /, isomorphic to the standard hyperbolic lattice U of rank two. For very
general X , NS.J /D U .

Proof The computation of q.L; ‚/ goes as in [73, Lemma 1]: one expands in t the
Fujiki equality q.LC t‚/5 D c.LC t‚/10, where c D 945 is the Fujiki constant [71],
and uses the fact that ‚5L5 D .‚jJŒH �

/5 D 5!. The final statement follows from
Lemma 3.2.

I thank C Onorati for many discussions around ‚ and for his interest in the following
computation.

Proposition 3.6 The irreducible divisor ‚� J is prime exceptional. In particular , it
can be contracted on some projective birational hyper-Kähler model of J . Moreover ,
q.‚/D�2.
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Proof Let ' W PZ 0Ü ‚ be the Abel–Jacobi map as in (3-2) and let V � Z0 be a
nonempty open subset such that the restriction of ' to r�1.V /DW PV is regular. By
restricting V if necessary, we can assume that all twisted cubics parametrized by V are
such that †C is smooth and, in particular, that C is ACM.

Recall that for any twisted cubic ŒC � 2 V , we have set P1
C
D r�1.C /. The rational

curve '.P1
C
/� J is smooth because it maps to �.'.P1

C
//� P5, which is the pencil of

hyperplane sections of X that contain the curve C . Moreover, .� ı'/.PV / intersects
the dual variety X_ in a dense open subset and, similarly, '.PV / intersects ‚X_ , the
restriction of ‚ to X_, in a dense open subset. (This statement follows from [21] and
the fact, proven there, that for a cubic threefold with one A1 singularity the Abel–Jacobi
mapping is birational onto its image.)

We start by showing that for a general ŒC � 2 V , the smooth rational curve '.P1
C
/ is

contained in the smooth locus of ‚. The singular locus ‚sing of ‚ has an irreducible
component that is equal to the closure of the zero section of JU ! U , while any
other irreducible component of the singular locus is properly contained in ‚X_ , the
restriction of ‚ to X_. Since V parametrizes ACM curves, by Remark 3.1 it follows
that the intersection of '.PV / with the image of the zero section of J ! P5 is
contained in JX_ , the restriction of J to X_ � P5. Let B WD '�1.‚sing \ '.PV //

be the locus in PV parametrizing points mapped to the singular locus of ‚ and let
WV WD .� ı '/

�1.X_ \ .� ı '/.PV // be the locus in PV of pairs .C;Y / such that
Y is singular. By what we have observed, it follows that B �WV . Notice that WV

is irreducible of dimension 8, because it maps to an open subset of X_, with fibers
parametrizing equivalence classes of twisted cubics contained in a cubic threefold
with one A1 singularity; these form an irreducible subset of Z.X /, as follows from
[21, Section 3]. We have already observed that the general point of ‚X_ is contained
in the image '.PV /. Thus, if Y0 corresponds to a general point in X_, there is a twisted
cubic C � Y0, with ŒC � 2 V and such that '.C;Y0/D �Y0

.C / lies in the smooth locus
of ‚. It follows that B is strictly contained in WV . Since WV is irreducible, dim BD 7.
Thus B does not dominate V and hence the image of the open subset PV 0 WD r�1.V 0/,
where V 0 WD V n r.B/ is contained in the smooth locus of ‚.

For the general point in .C;Y /2PV , let R WD'.P1
C
/�‚ be the corresponding element

of the ruling. By generic smoothness, the differential of ' is of maximal rank at a
general point x 2R, so by [39, Chapter II, Proposition 3.4], the vector bundle .T‚/jR
is globally generated at x 2R. It follows that .T‚/jR D

L
OR.ai/, with ai � 0. By

Lemma 3.8 below, the restriction of the tangent bundle of J to the smooth rational
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curve R is of the form O˚8
R
˚OR.2/˚OR.�2/. Using this and the fact that R is

contained in the smooth locus of ‚, we find that .T‚/jR DOR.2/˚O˚8
R

and hence
that NRj‚ D˚O˚8

R
. In particular, ‚ �RD�2.

Consider the lattice embedding H 2.J;Z/�H 2.J;Z/_ DH2.J;Z/ induced by the
Beauville–Bogomolov form. We claim that under this embedding, the classes of R

and of ‚ are equal, ie that R �x D q.‚;x/ for every x 2H 2.J;Z/. This immediately
proves the proposition, as it implies that q.‚/D‚ �RD�2. By [53, Corollary 3.6(1)]
and [27, Proposition 4.5], the class of the ruling of a prime exceptional divisor is
proportional, via a positive constant, to the class of the exceptional divisor. Thus, to
prove the claim it suffices to show that‚ is prime exceptional, since the constant would
have to be equal to 1, as both R �L and q.‚;L/ are equal to 1.

To prove that ‚ is prime exceptional we use standard techniques on deformations of
maps from rational curves to hyper-Kähler manifolds, following [53, Section 5.1] or
also [19, Section 3]. We include a proof because the setting of Markman is different and
because the proof in [19, Section 3] is for projective families of hyper-Kähler manifolds.
Choose R�‚ a general element in the ruling and let Def.J /R�Def.J / be the smooth
hypersurface in the deformation space of J where the class of R stays of Hodge type.
Let Hilb! Def.J /R be the component of the relative Douady space containing the
point ŒR�. Since NRjJ D OR.�2/˚O˚8

R
, then by [70, Theorem 1] it follows that

the morphism � W Hilb! Def.J /R is smooth at R and of relative dimension 8. Let
T � Def.J /R be a general curve containing 0 (in particular we can assume that for
very general t 2 T , the Néron–Severi of the corresponding deformation Jt of J is
one-dimensional and spanned by a line bundle whose class is proportional to Rt , the
parallel transport of the class of R to Jt ) and let �T WHilbT ! T be the component of
the base change to T of Hilb! Def.J /R that contains ŒR�. Since � is smooth at ŒR�,
�T is dominant of relative dimension 8. Up to a base change and to restricting T , we
can assume that HilbT ! T has irreducible fibers for t ¤ 0. Let JT ! T be the base
change of the universal family to T ! Def.J / and let D � JT be the image of the
universal family over HilbT under the evaluation map. Then D is irreducible of relative
codimension one. Moreover, Dt is irreducible for t ¤ 0, and D WD D0 is a union of
effective uniruled divisors containing ‚ as an irreducible component (with a given
multiplicity m� 1). By the choice of T , for very general t , �.Jt /D 1. It follows that
the class of Dt is proportional to the class of Rt and hence that the class of D DD0 is
proportional to that of R. Moreover, the proportionality constant is positive, as both
D and R intersect positively with a Kähler class. Hence, since ‚ �R is negative, so

Geometry & Topology, Volume 27 (2023)



Birational geometry of the intermediate Jacobian fibration 1507

is q.‚;D/. Moreover, since the product of two distinct irreducible uniruled divisors is
nonnegative, it follows that q.‚;D/�m q.‚;‚/. Thus q.‚;‚/ < 0, ie ‚ is prime
exceptional. Thus, as already observed, the classes of ‚ and of R have to be the same
and hence q.‚;‚/D�2.

Remark 3.7 A posteriori, once we know that ‚ is prime exceptional, we can use
[53, Lemma 5.1] to show that D0 D‚.

Lemma 3.8 Let M be a hyper-Kähler manifold of dimension 2n and R �M be a
smooth rational curve. Suppose R is a general ruling of a uniruled divisor. Then

.TM /jR DO˚2n�2
R

˚OR.2/˚OR.�2/;

and thus
NRjM DOR.�2/˚O˚2n�2

R
:

Proof Since TM is self dual, .TM /jR D
L

i OR.ai/˚
L

i OR.�ai/, where ai � 0.
Since R is general and its deformations sweep out a divisor, by [39, Chapter II,
Proposition 3.4], the rank of the evaluation map rkŒH 0.R; .TM /jR/˝OR! .TM /jR �

at a general point of R is equal to 2n � 1. Hence a2 D � � � D an D 0 and a1 � 2;
cf [27, Proposition 4.5]. Since the normal sheaf of R in M is torsion-free and contains
the quotient OR.a1/=TR DOR.a1/=OR.2/, it follows that a1 D 2.

Notice that the same argument as the last part of the proof of Proposition 3.6 shows
the following.

Proposition 3.9 Let M be a hyper-Kähler manifold of dimension 2n and let E �M

be an irreducible uniruled divisor. Suppose that a general curve R in the ruling is
smooth and that E �R< 0, eg if R is contained in the smooth locus of E. Then E is
prime exceptional and hence , under the lattice embedding H 2.M;Z/�H 2.M;Z/_D

H2.M;Z/ induced by the Beauville–Bogomolov form , the classes of E and R are
proportional by a positive constant.

Corollary 3.10 For very general X , the movable cone of J.X / is spanned by L

and H , where H is a generator of ‚? � NS.J / with q.H;L/ > 0 and q.H / > 0; ie

Mov.J /DR�0LCR�0H:

In particular , there is a unique hyper-Kähler model of J with a Lagrangian fibration ,
and J is not birational to the twisted intermediate Jacobian fibration J T .
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Proof We already know that one of the rays of the movable cone of J is spanned
by L. By [53, Theorem 1.5] the closure of the movable cone is spanned by classes that
intersect nonnegatively with all prime exceptional divisors. Since by Proposition 3.6,
‚ is prime exceptional, the second ray of the movable cone is determined by ‚?,
which is spanned by a class H which is big and nef on some birational hyper-Kähler
model of J . Thus, q.H / > 0 and q.H;L/ > 0. In particular, the movable cone is
strictly contained in the positive cone, implying that the only isotropic class that is
movable is L.

In terms of the other projective hyper-Kähler birational models of J , we can actually
prove something more precise. The main result of Section 4 describes, for general X ,
which birational model of J the proper transform of ‚ can be contracted on.

3.1 Induced automorphisms

For hyper-Kähler manifolds of K3Œn�–type, a considerable amount of literature has been
devoted to the study and classification of automorphism groups. This includes studying
the automorphisms induced from a K3 surface to the moduli spaces of sheaves on it.
In view of Theorem 1.6, a natural question is to study the induced action on J of the
automorphism group of X in relation to the Lagrangian fibration structures. I thank
G Pearlstein for asking questions that led me to the following observations.

Let X be a smooth cubic fourfold and let � be an automorphism of X . Then � acts on
the universal family of hyperplane sections of X and thus also on the Donagi–Markman
fibration JU ! U , which is identified with the relative Pic0 of the family of Fano
surfaces of the hyperplane sections of X . By abuse of notation we denote by

� W J Ü J

the induced birational morphism. Notice that � preserves ‚ and L, so the induced
action of �� is the identity on U D hL; ‚i � NS.J /.

Proposition 3.11 Let X be a smooth cubic fourfold and suppose that the fibers of
� W J ! P5 are irreducible. (By [47] this happens for general X .) Then:

(1) ‚ is �–ample and so is any B 2 NS.J / with q.L;B/ > 0.

(2) Any birational automorphism � W J Ü J which fixes LD ��O.1/ extends to a
regular automorphism.
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(3) L is nef on a unique hyper-Kähler birational model of J . In other words , if J 0 is
a birational hyper-Kähler model of J , with birational map f W J 0Ü J , and the
induced map � 0 W J 0Ü J ! P5 is regular , then f is an isomorphism.

Proof (1) Let H be an ample line bundle on J and let Jt be a smooth fiber of
J ! P5. Then ŒHjJt

� D mŒ‚jJt
� for a positive integer m, so the restrictions of H

and m‚ are topologically equivalent for any smooth fiber. Since the fibers of � are
irreducible, it follows that the restrictions of H and m‚ to any fiber are numerically
equivalent; see [80, Lemma 4.4]. By Nakai–Moishezon, m‚ is �–ample. Similarly,
if q.B;L/ > 0, then there exists positive integers a and b such that aB and b‚ are
numerically equivalent on every fiber.

(2) By assumption, ��L D L so q.��‚;L/ D q.‚;L/ D 1. As a consequence,
��‚ and ‚ are topologically equivalent on the smooth fibers and hence, as above,
numerically equivalent on every fiber. Thus, ��‚ is �–ample. It follows that � is a
regular morphism.

(3) Let H 0 be any ample line bundle on J 0 and let L0 D f �L D � 0
�O.1/. Then

0< q.L0;H 0/D q.L; f �H 0/, so by (1) f �H 0 is ample and f is an isomorphism.

In addition to birational automorphisms induced by the automorphisms of X , some
examples of birational automorphisms which preserve L are:

(1) The map � WJ!J induced by the action of .�1/ on the smooth fibers of J!P5.

(2) The map t˛ WJ!J induced by the translation of a rational section of ˛ WP5ÜJ ;
cf Section 5.

(3) More generally, any birational automorphism induced by an element of the
automorphism group of JK , the generic fiber of J ! P5.

Remark 3.12 As already mentioned just below Theorem 1.1, a necessary condition
for the irreducibility of the fibers of J ! P5 is given in [17]. This condition is satisfied
if and only if the hyperplane sections Y of X satisfy

d.Y / WD b2.Y /� b4.Y /D 0;

where bi.Y / denotes the i th Betti number of Y and where d.Y / is called the defect
of Y . It is easy to see that if Y contains a plane then d.Y / > 0.
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4 Birational geometry of J.X/ for general X

To describe the birational geometry of the intermediate Jacobian fibration we degenerate
the underlying cubic to the chordal cubic, following an idea already contained in [41].
There, it was observed that the central fiber of the corresponding family of intermediate
Jacobian fibrations can be chosen to be birational to a moduli space of sheaves of OG10–
type on a K3 surface of genus two. As in Section 2, by moduli space of OG10–type we
mean a moduli space of sheaves on a K3 surface with Mukai vector 2w, with w2 D 2.
We first refine the construction of this degeneration in order to have a central fiber that
is actually isomorphic to a certain singular moduli space of sheaves on the associated
K3 surface. In this way, we can keep track of the limits of the relative theta divisor
and of the line bundle inducing the Lagrangian fibration. This is done in Section 4.2.
The results of Meachan and Zhang [58], which were recalled in Lemma 2.6, imply
that the central fiber of the relative theta divisor can be contracted after a Mukai flop
of the zero section. For X general, we then deduce the same result for J.X / and, for
very general X , we compute the nef and movable cone of J.X /. This is the content of
Theorem 4.1.

Theorem 4.1 Let X be a smooth cubic fourfold and let J D J.X / ! P5 be a
hyper-Kähler compactification of the intermediate Jacobian fibration as in Section 1.

For very general X :

(1) There is a unique other hyper-Kähler birational model of J, denoted by N, which
is the Mukai flop p W J ÜN of J along the image of the zero section.

(2) There is a divisorial contraction h WN ! xN which contracts the proper transform
of ‚ onto an 8–dimensional variety which is birational to the LLSvS 8–fold
Z.X /.

In other words , we have Mov.J /DhL;H iDNef.J /[p�Nef.N /, Nef.J /DhL;H0i

and p�Nef.N /DhH0;H i, where H0 is a big and nef line bundle on J which contracts
the zero section of J ! P5 and H is as in Corollary 3.10.

For general X , the relative theta divisor ‚ can be contracted after the Mukai flop of the
zero section of J ! P5.

Before the proof of the theorem, which will be given in Section 4.2, we mention, as
a consequence of the theorem above, the relation between the intermediate Jacobian
fibration and moduli spaces of objects in the Kuznetsov component of X .
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4.1 Comparison with moduli spaces of objects in the Kuznetsov component
of X

The recent paper [6] establishes the existence and the fundamental properties of moduli
spaces of objects in the Kuznetsov component Ku.X / of a smooth cubic fourfold X .
We refer the reader to Section 29 of loc. cit. for the relevant definitions and the precise
statements of the results.

Given a smooth cubic fourfold X , the extended Mukai lattice zH .Ku.X /;Z/ is a lattice
whose underlying group is the topological K–theory of Ku.X / and whose Mukai
pairing and weight-two Hodge structure are induced from those on X . The only classes
in zH .Ku.X /;Z/ that are of type .1; 1/ for very general X are contained in a rank-two
lattice A2, which is spanned by two classes �1 and �2 that satisfy �2

1
D �2

2
D 2 and

�1 ��2D�1; see [6, equation (29.1)]. A description of a full connected component of the
space of Bridgeland stability conditions on Ku.X / is also produced; see Theorem 29.1
of loc. cit. It is shown that, for a primitive Mukai vector with v2 � �2 and for a
v–generic stability condition � in this component, the moduli space M� .Ku.X /; v/
of Bridgeland stable objects in Ku.X / with Mukai vector v is a nonempty smooth
projective hyper-Kähler manifold of dimension v2C 2, deformation equivalent to a
Hilbert scheme of points on a K3 surface; moreover, the formation of these moduli
spaces works in families; see Theorem 29.4 of loc. cit. for the precise statement.

For a Mukai vector of OG10–type in the A2 lattice, ie of the form v D 2� with
�2 D 2, in [51] it is shown that, for a �–generic stability condition � , the moduli space
M� .Ku.X /; v/ is an irreducible normal projective symplectic variety of dimension 10

admitting a symplectic resolution which is deformation equivalent to a manifold of
OG10–type. The genericity condition here means that the polystable objects with
Mukai vector v are the direct sum of two stable objects with Mukai vector �. More
precisely, the singular locus of M� .Ku.X /; v/ is isomorphic Sym2 M� .Ku.X /; �/.

Moreover, in [51] it is shown that for general X the twisted intermediate Jacobian
fibration J T .X / is birational to M� .Ku.X /; 2�/, for �2 D 2. For the nontwisted case
we have the following corollary of Theorem 4.1 that goes in the opposite direction.

Corollary 4.2 For very general X , J.X / is not birational to a moduli space of the
form M� .Ku.X /; v/.

Proof First of all, by [6, Remark 29.3], if nonempty, the dimension of a moduli
space M� .Ku.X /; v/ is v2C 2. This dimension is equal to 10 if and only if either
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v is primitive (hence M� .Ku.X /; v/ is of K3Œ5�–type and thus cannot be birational
to J.X /) or else v D 2� with �2 D 2. By the results of [51] cited in the remark
above, for v D 2� with � 2 A2 and �2 D 2 and � a �–generic stability condition,
the singular locus of M� .Ku.X /; v/ is isomorphic to the second symmetric product
of a hyper-Kähler manifold of K3Œ2�–type. By dimension reasons, the symplectic
resolution zM� .Ku.X /; v/ ! M� .Ku.X /; v/ is not a small contraction. Suppose
by contradiction that J.X / is birational to zM� .Ku.X /; v/. Then by Theorem 4.1,
the symplectic resolution has to coincide with N ! xN , and M� .Ku.X /; v/ Š xN .
This implies that the singular locus of M� .Ku.X /; v/ has to be birational to the
Lehn–Lehn–Sorger–van Straten 8–fold Z.X /, which gives a contradiction. Indeed,
Z.X / cannot be birational to Sym2 M� .Ku.X /; �/ since, by Proposition 1.7, this
would imply that the latter has a symplectic resolution. This, however, is not true
because Sym2 M� .Ku.X /; �/ is a Q–factorial symplectic variety with singular locus of
codimension strictly greater than two and hence does not admit a symplectic resolution
(since it does not admit a semismall resolution).

Remark 4.3 We expect the more general statement to hold: for very general X ,
J.X / is not birational to a Bridgeland moduli space of objects on a 2–CY category
that is deformation equivalent to the derived category of a K3 surface. We present
a rough sketch of the argument. Assume there is a family of Bridgeland stability
conditions on the family of derived categories realizing the deformation. Then, as
in [6, Theorem 21.24], a relative moduli space exists as an algebraic space; by a
generalization of a theorem of Mukai [68, Theorem 1.4], the stable locus of each fiber
is smooth and has a holomorphic symplectic form; the singular locus parametrizing
strictly semistable objects of codimension � 2. One then expects such moduli spaces
to be normal and irreducible. As in the proof of the projectivity in [6, Theorem 29.4] it
follows that these moduli spaces are projective. Finally, a similar argument to the one
above shows that the contraction N ! xN cannot be the symplectic resolution of one
of these moduli spaces.

In the next subsection we construct the degeneration of the intermediate Jacobian
fibration that will allow us to prove Theorem 4.1. The proof of the theorem will be
given at the end of the section.

4.2 Degeneration to the chordal cubic

The secant variety to the Veronese embedding of P2 in P5 is a cubic hypersurface
isomorphic to Sym2 P2, called the chordal cubic. Such a singular cubic fourfold is
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unique up to the action of the projective linear group. Given a one-parameter family
of cubic fourfolds degenerating to the chordal cubic, it was proved in [41] that, up to
a base change, one can fill the corresponding degeneration of intermediate Jacobian
fibrations with a smooth central fiber that is birational to zM2v0

D zM2v0
.S/, where

.S;C / is the degree-two K3 surface associated to the degeneration of cubic fourfolds as
in [22; 34; 46], and where v0D .0;C;�2/ is as in (2-2). We will use this degeneration
to study the birational properties of the intermediate Jacobian fibration, at least for
general X . For this purpose, we need to control what happens to the line bundles L

and ‚ under the corresponding degeneration of intermediate Jacobian fibrations. We
achieve this by constructing a particular degeneration whose central fiber is precisely
the singular moduli space M2v0

and is such that the Lagrangian fibrations of the
members of this degeneration fit in a relative Lagrangian fibration. This is done in
Proposition 4.5. With this degeneration, we are not only able to identify precisely the
limits of L and ‚ (see Lemma 4.7), but we are also able to deform the results about
the birational geometry of M2v0

away from the central fiber (see Proposition 4.9),
eventually proving Theorem 4.1.

Let X !� be a one-parameter family of cubic fourfolds degenerating to the chordal
cubic. By this we will mean that � is a small disk or an open affine subset in the base
of a pencil of cubic fourfolds with the property that the general fiber is smooth and
the central fiber is isomorphic to the chordal cubic. The following facts were proved
in [34], see also [46] and [41]:

(a) The monodromy of this family has order two.

(b) To such a degeneration one can associate a degree-two polarized K3 surface
.S;C /.

(c) For a general pencil, the polarized K3 surface .S;C / is general in moduli.

Suppose that for t ¤ 0 the cubic fourfold Xt is general in the sense of LSV — ie in
the sense that the construction of the hyper-Kähler compactification of [47] works for
JU .Xt /— and let J � ! �� be the family of intermediate Jacobians associated to
the smooth locus X �!�� of the pencil, with corresponding family of Lagrangian
fibrations ��� W J �! P5

��
.

Lemma 4.4 [22; 41] Up to a degree-two base change , we can extend ��� WJ �!P5
��

to a projective morphism �V W JV ! V , where V � P5 �� is an open subset such that
Vt D P5 for t ¤ 0 and V0 � P5 is nonempty for t D 0, and where J0! V0 � P5 is

Geometry & Topology, Volume 27 (2023)



1514 Giulia Saccà

identified with the restriction of M2v0
.S/! j2C j D P5 (cf (2-3)) to an open subset

V � j2C j. Moreover , JV! V has a zero section and is polarized by a relative principal
polarization.

Proof Let H �P5 be a general hyperplane. For the degeneration Y WDX\.H�P5/ of
a single smooth cubic threefold the statement is due to Collino [22]. In Proposition 1.16
of loc. cit., it is also shown that the class of the limit polarization is the theta divisor
of the Jacobian of the genus-five hyperelliptic curve, which is the limiting abelian
variety. For the statement about the limit of the intermediate Jacobian fibration, this is
[41, Section 6.3].

We now compactify the projective family JV of the lemma above to construct a family
of Lagrangian fibered holomorphic symplectic varieties in such a way that the central
fiber is exactly M2v0

DM2v0
.S/ (or zM2v0

D zM2v0
.S/); cf (2-3).

Proposition 4.5 Let X!� be as above a general family of smooth cubic fourfolds de-
generating to the chordal cubic. Suppose that for very general t 2�, Xt is very general.
Let .S;C / be the corresponding K3 surface of degree two as above. Then , possibly
up to a base change , there are two degenerations of the corresponding intermediate
Jacobian fibration , fitting in the commutative diagram

(4-1)

zM m
//

zf   

M
f
��

�

where:

(1) zf W zM!� is a family of smooth hyper-Kähler manifolds , with zMt D J.Xt /

for t ¤ 0 and zM0 D
zMv0

.S/. The family is equipped with a relative Lagrangian
fibration zM! P5

�
, where for each t the corresponding Lagrangian fibration is

the obvious one.

(2) f WM! � is a degeneration of hyper-Kähler manifolds , with Mt D J.Xt /

for t ¤ 0 and M0 D Mv0
.S/. The morphism m W zM ! M is proper and

birational , for t ¤ 0 it is an isomorphism and for t D 0 it is the natural symplectic
resolution m0 W

zM2v0
.S/ ! M2v0

.S/ of Theorem 2.1. Moreover , there is a
relative Lagrangian fibration M ! P5

�
where for each t the corresponding

Lagrangian fibration is the obvious one.
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Proof Start from the projective morphism �V W JV ! V of Lemma 4.4. There is an
isomorphism JV0

Š . zM2v0
/V , where . zM2v0

/V is the restriction of the Lagrangian
fibration z� W zM2v0

! P5 (cf (2-3)) to an open subset V � P5. Let JV ! P5
�

be any
projective morphism extending �V . Applying Theorem 1.19(2) to JV ! P5

�
yields,

possibly up to the base change, a family zg W zJ !� of smooth hyper-Kähler manifolds
(projective over .�/�), with a relative Lagrangian fibration zJ ! P5

�
. Let L be the line

bundle on zJ inducing it on every fiber. Let

(4-2) �0 W zJ 0Ü zM2v0

be the birational morphism induced by the isomorphism of open subsets JV0
Š . zM2v0

/V .
Then .�0/�L0 D

z̀WD z��OP5.1/.

We now use an argument very similar to that in the proof of [41, Theorems 1.3 and 1.7],
to construct a family which is isomorphic to J over� and whose central fiber is actually
isomorphic to zM2v0

.S/. Let ƒ be the OG10 lattice. Fixing a marking of the central
fiber and trivializing the local system R2zg�Z induces a marking �t WH

2. zJ t ;Z/!ƒ

of every fiber. Let D � P .ƒ˝Z C/ be the period domain and let P W �! D be the
period mapping induced by these markings. Let �0 D �0.�0/

� W H 2. zM2v0
;Z/! ƒ

be the induced marking on zM2v0
. Let �t WH

2. zMt ;Z/!ƒ be markings induced by
�0D �0.�0/

� on fibers of the universal family over Def. zM / and let P zM WDef. zM /!D
be the induced period mapping. Since P zM is a local isomorphism, we can lift P to a
map � W�! Def. zM2v0

/. Pulling back the universal family gives a family zf W zM!�

with central fiber zM0D
zM2v0

. As in [41] the two families zg W zJ !� and zf W zM!�

are relatively birational over �, since for every t 2 �, the marked pairs . zJ t ; �t /

and . zMt ; �t / are nonseparated points. To show that the two families zJ and zM are
isomorphic away from the central fiber, first recall that by [35, Theorem 4.3] (cf also
[52, Theorem 3.2]), for every t there exists an effective cycle

�t DZt C

X
Wi;t

of pure dimension 10 in zMt � zJ t such that Zt is the graph of a birational map, the
codimension of the images of the Wi;t in zMt and in zJ t are equal and positive, and
Œ�t �� is a Hodge isometry and is equal to ��1

t ı �t WH
2. zJ t ;Z/!H 2. zMt ;Z/. Let zL

be the line bundle on M such that zLt D �
�1
t �t .L/D Œ�t ��.Lt /. Since zL0D z�

�OP5.1/

induces a Lagrangian fibration on zM0D
zM2v0

, by [57] zL induces a Lagrangian fibration
on Mt for every t (maybe up to restricting �). For very general t , zLt D ŒZt ��.Lt /,
since the isotropic class ŒZt ��.Lt / lies in the movable cone of zMt and hence by
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Corollary 3.10 it has to be equal to zLt . Corollary 3.4 implies that for very general t , Zt

is the graph of an isomorphism between zJ t and zMt . The same countability argument
as in the proof of [41, Theorems 1.3 and 1.7] shows that there exists a component of the
Hilbert scheme parametrizing graphs of such cycles Zt � Jt �Mt that dominates �.
It follows that there is a cycle Z in the fiber product zJ �� zM which, maybe up to
restricting �, induces an isomorphism for t ¤ 0. The conclusion is that the family
zM!� is such that central fiber is zM0Š

zM2v0
while for t ¤ 0, we have zMt ŠJ.Xt /.

Now we construct the second family. By [62, Theorem 2.2] there is a finite morphism

„ W Def. zM2v0
/! Def.M2v0

/

induced by the symplectic resolution m0 W
zM2v0

! M2v0
and compatible with the

universal families on the two deformation spaces; for more details see Section 2
of loc. cit. Set � D„ ı � W�! Def.M2v0

/ and let

M!�

be the pullback via � of the universal family on Def.M2v0
/. Then the birational map

m W zM!M over � induced by [62, Theorem 2.2] has the desired properties.

Finally, the statement about the Lagrangian fibrations follows from the fact that, since
the Lagrangian fibration zM2v0

! P5 in the central fiber factors via zM2v0
!M2v0

,
the morphism zM! P5

�
factors via a morphism M! P5

�
.

As a consequence of the last part of the proof, notice that there is a line bundle LM on
M with

m�LM D zL

and whose restriction to the central fiber satisfies LM0
D `, where ` is as in (2-5).

For any t ¤ 0, let ‚t be the relative theta divisor in Mt D J.Xt /.

Lemma 4.6 For ?D zM or M, let ‚? be the divisor defined as the closure of
S

t¤0‚t

in ?. Then , ‚M is a Cartier divisor and hence the following compatibility conditions
hold (notation as in diagram (4-1)):

(4-3) ‚ zM0
Š .m�‚M/j zM0

Dm�0‚M0
;

where ‚?0
WD .‚?/j0 is the fiber of ‚? over t D 0.
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Proof Let I‚M �OM be the ideal sheaf of‚M in M. Since the morphism‚M!�

is flat, it follows that the restriction .I‚M/jM0
is the ideal sheaf of ‚M0

in M0.
By [66] (cf Section 2.2), M0 DM2v0

is factorial so .I‚M/jM0
is locally free. Hence,

so is I‚M . It follows that the divisors ‚ zM and m�‚M agree and so do their central
fibers.

The next lemma identifies the limit of‚t in M2v0
DM0 and shows that all line bundles

on M2v0
deform over M! �. Recall first that by (2-1), NS.M2v0

/ D U D h`; �i,
and for every t ,

NS.Mt /� Ut D hLt ; ‚t i;

with equality holding for very general t . Here ‚0 D ‚ zM0
. In particular, inside

NS. zM2v0
/ we have the following rank-two sublattices both of which are isomorphic

to the hyperbolic lattice U : the limit lattice U0 spanned by the limits L0 D
z̀ and ‚0,

and the pullback lattice m�
0

NS.M2v0
/D hm�

0
`;m�

0
�i.

Lemma 4.7 Let the notation be as above. Then:

(1) The two sublattices U0Dh
z̀; ‚ zM0

i and hm�
0
`;m�

0
�i of NS. zM2v0

/ are the same.

(2) The limit of the relative theta divisor in M0 is precisely � , the relative theta
divisor on M2v0

.S/ of (2-6).

Proof By Lemmas 4.4 and 4.6, the limit theta divisor .‚M/0 is an effective line bundle
on M0 DM2v0

, which restricts to a theta divisor on the smooth fibers of M2v0
! P5.

Thus ‚M0
is linearly equivalent to an effective line bundle of the form � C a` for

some integer a. We show that aD 0. By (4-3), ‚ zM0
Dm�

0
‚M0

Dm�
0
.� C a`/ and

zL0 Dm�
0
`. This is enough to conclude that the two sublattices

U D h‚ zM0
; zL0i and U Dm�0h�; `i Dm�0 NS.M2v0

/

of NS. zM2v0
/ are the same. This proves the first part of the lemma. By Remark 2.5

above, � does not contain the singular locus of M , thus m�
0
� coincides with its

proper transform and is irreducible. Since it has negative Beauville–Bogomolov square
(cf (2-7)), it is a prime exceptional divisor. By [53, Section 5.1], a prime exceptional
divisor deforms where its first Chern class remains algebraic. Thus m�

0
� deforms

to a relative effective prime exceptional divisor � zM on zM. By Corollary 3.4 and
Proposition 3.6, for very general t ¤ 0, the fiber over t of the two irreducible effective
divisors � zM and ‚ zM have to agree since there is only one prime exceptional divisor
on Mt . Thus � zM and ‚ zM have to be equal for every t . In particular, so are their
restrictions to the central fiber.
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Corollary 4.8 Let X be a general cubic fourfold and let � W J.X / ! P5 be the
intermediate Jacobian fibration of [47]. The natural rational zero section of � is regular.

Proof Consider a degeneration of cubic fourfolds to the chordal cubic as in Proposition
4.5 and let M! � be the corresponding family. By Lemma 4.6 the divisor ‚M is
Cartier and by Remark 2.8 it is relatively ample (up to restricting �). Since ‚M is
�1–invariant, it follows that the birational involution �1 is biregular. One component
of the fixed locus of this involution has the property that its restriction to every fiber is
precisely the closure of the corresponding rational zero section. Since by Remark 2.4, in
the central fiber the section is regular, it follows that for general t 2� the corresponding
rational section is also regular.

Consider the family M!� of Proposition 4.5, with its relative theta divisor ‚M. By
Druel [26] we know that for every t , the prime exceptional divisor‚t can be contracted
on a hyper-Kähler projective birational model of Mt . In the central fiber Mt DM2v0

we have, by Lemma 4.7, that ‚M0
D � . By Lemma 2.6 this divisor can be contracted

after a Mukai flop. We now show that the same is true for any t ¤ 0, namely, that after
a Mukai flop the relative theta divisor can be contracted, possibly up to restricting �.

Proposition 4.9 For general X , the relative theta divisor ‚ on J D J.X / can be
contracted after the Mukai flop of the zero section.

Proof Let M! P5
�

be as in Proposition 4.5. By Corollary 4.8, there is a relative
zero section s W P5

�
!M. Let T be its image. Then T is contained in the smooth locus

of the fibers of zM!�. Let
P WMÜN

be the relative Mukai flop of T in M. By Lemma 2.6, the Mukai flop of the zero section
in the central fiber M2v0

can be performed in the projective category. Thus, the central
fiber of N is projective and so are all the fibers of g W N ! � (since by Lemma 4.7
there is an ample class on the central fiber that deforms over �). For t ¤ 0, Nt is
smooth while the central fiber N0 has the same singularities as M0DM2v0

, since they
are isomorphic away from the flopped locus, which does not meet the singular locus.
Via the birational morphism P , which is a relative isomorphism in codimension one,
we can identify the second integral cohomology group of the fibers of the two families.
In particular, for every t 2� we have P�Ut � NS.Nt /, with equality holding for very
general t and for t D 0. In what follows we freely restrict �, if necessary, without any
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mention. As in Lemma 2.6, let H be the big and nef line bundle on N0 that contracts � ,
ie H is a generator of the ray �?. Since H 2 P�U0, by Lemma 4.7, H deforms
to a line bundle H on N . For very general t , its restriction Ht is a generator of the
one-dimensional space .Pt /�‚

?
t � NS.Nt /. By [27], .Pt /�‚t can be contracted on a

birational model of Nt . We now show that it can be contracted on Nt itself. For very
general t , the line bundle inducing the divisorial contraction has to be Ht , or rather
its proper transform on an appropriate birational model of Nt . It follows that for very
general t (and thus for all t ) Ht is big. Moreover, since H0 is big and nef and N0 has
rational singularities, H i.N0;Hk

0
/ D 0 for i > 0 and any k � 0. It follows that the

locally free sheaf g�Hk satisfies base change. Since H0 is semiample, so is Ht for
all t in �. For k � 0, the regular morphism ‰ W N ! P .g�g�Hk/, relative over �,
is birational onto its image and contracts ‚t for very general t and for t D 0. Up to
further restricting t , we can assume that the locus contracted on Nt is irreducible, and
hence that ‰t contracts precisely .Pt /�‚t for every t .

The proof of Theorem 4.1 is now complete:

Proof of Theorem 4.1 Let X be general. By Proposition 4.9 the Mukai flop p WJÜN

of J along the zero section is projective and on J there exists a big and nef line
bundle that contracts the zero section. For very general X , H0 is unique, up to a
positive rational multiple, and Nef.J / D hL;H0i. Moreover, we have shown that
for general X there is a divisorial contraction N ! xN , contracting p�‚. Since the
divisorial contraction N ! xN contracts the ruling of ‚ (cf Proposition 3.6), by (3-2)
it follows that the image of ‚ in xN is birational to the LLSvS 8–fold Z.X /. For
very general X , Nef.N /D hp�H0;p�H i, where p�H is the unique (up to a positive
multiple) big and nef line bundle inducing the contraction. By [36, Proposition 4.2],
H is the second ray of the movable cone of J , ie Mov.J /D hL;H i.

5 The Mordell–Weil group of J.X/

Let a WA!B be a projective family of abelian varieties over an irreducible basis B and
suppose that a admits a zero section. The Mordell–Weil group MW.a/ of a WA!B is
the group of rational sections of a W A! B. Equivalently, if K denotes the function
field of B, MW.a/ is the group of K–rational points of the generic fiber AK . For
Lagrangian hyper-Kähler manifolds, the study of the Mordell–Weil group of abelian
fibered hyper-Kähler manifolds was started by Oguiso in [65; 64]. The aim of this
section is to prove the following theorem.
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Theorem 5.1 Let X be a smooth cubic fourfold and let � W J D J.X / ! P5 be
as in Theorem 1.6, a smooth projective hyper-Kähler compactification of JU . Let
MW.�/ be the Mordell–Weil group of � , ie the group of rational sections of � , and
let H 2;2.X;Z/0 be the primitive degree-four integral cohomology of X . The natural
group homomorphism

�X WH
2;2.X;Z/0!MW.�/

induced by the Abel–Jacobi map (5-1) is an isomorphism.

Corollary 5.2 The group MW.�/ is torsion-free.

Remark 5.3 In [64] Oguiso proved the existence of Lagrangian fibered hyper-Kähler
manifolds whose Mordell–Weil group has rank 20. This is the maximal possible rank
among all the known examples of hyper-Kähler manifolds, as follows from the Shioda–
Tate formula of [65]; see also Proposition 5.4 below. Oguiso considers deformations of
the abelian fibration zM2v0

! P5 (cf (2-3)) preserving both the Lagrangian fibration
structure and the zero section; among these deformations, Oguiso shows the existence
of Lagrangian fibration with rank 20 Mordell–Weil group [65, Theorem 1.4(2)]. The
general deformation of zM2v0

! P5 for which both the Lagrangian fibration structure
and the zero section are preserved (this is a codimension-two condition) is, up to
birational isomorphism, J.X /; see Remark 3.3. By the theorem above, Lagrangian
fibrations of the form J.X /, for X with rk H 2;2.X;Z/D 22, satisfy rk MW.�/D 20.
Thus, they provide an explicit description of Oguiso’s examples.

The following proposition is essentially a reformulation of results from [65; 64].

Proposition 5.4 Let � WM ! Pn be a projective hyper-Kähler manifold with a fixed
(rational ) section. Let K DC.Pn/ be the function field of the base and let MK be the
base change of M to the generic point of Pn. There is a commutative diagram

0

��

0

��

0 // ZL˚
L

i ZDi
// L?

��

// Pic0.MK / //

��

0

0 // ZL˚
L

i ZDi
// NS.M /

rb

����

rK
// Pic.MK / //

����

0

Z NS.MK /
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where LD ��OPn.1/ and where the D1; : : : ;Dk are the irreducible components of
the complement of the regular locus of � that do not meet the section. In particular ,
rk.MW.�//D rk.NS.M //� rk ZL˚ZDi � 1D rk.NS.M //� k.

Proof The column on the left is exact by definition. By [76], for b in the locus
U �Pn parametrizing smooth fibers of � , ImŒrb WNS.M /!H 2.Mb/�DZ. The same
argument as in Lemma 3.5 shows that a line bundle D on M lies in L? if and only if
Dn �LnD .DjMb

/nD 0. Since rk rb D 1, this holds if and only if D �LnDDjMb
D 0,

which is equivalent to D 2 ker rb . This shows that the central column is exact. The same
argument of [64, Theorem 1.1], which was used to show that rk NS.MK /D 1, shows
that any element in ker.rb/D L? goes to zero in NS.MK /. Thus there are induced
horizontal morphisms L?!Pic0.MK / and Z!NS.MK /. Since NS.M /!Pic.MK /

is surjective, the bottom horizontal morphism is an isomorphism. The natural morphism
ZL˚ZDi ! NS.M / is injective, since by [65, Lemma 2.4] it has maximal rank
over Q and NS.M / is torsion-free. Clearly, ZL˚i ZDi � ker.rK /. To show the
reverse inclusion, let D be any line bundle on M that goes to zero in Pic.MK /. Then,
by what we have already proved, for any smooth fiber we have rb.D/D ŒDjMb

�D 0.
It follows that D is a linear combination of L D ��OPn.1/ and boundary divisors,
ie D 2ZL˚i ZDi . As rk.MW.�//D rk Pic0.MK /, the last statement also follows.

Remark 5.5 The study of the Mordell–Weil group for the Beauville–Mukai system is
being carried out in joint work in progress with Chiara Camere.

Corollary 5.6 Let J D J.X /! P5 be a hyper-Kähler compactification of the inter-
mediate Jacobian fibration. Then

rk MW.�/D rk NS.J /� 2D rk H 2;2.X;Z/0:

Proof The discriminant locus of � is irreducible and the fibers of � over the general
point of the discriminant are also irreducible; cf Lemma 1.2. Thus, in the notation
of the proposition above, ker rK D ZL and the equality rk MW.�/ D rk NS.J /� 2

follows. The remaining equality follows from Lemma 3.2.

Remark 5.7 The corollary just proven, which relies on Oguiso’s Shioda–Tate formula
above, is the only part of this section where we use that JU admits a hyper-Kähler
compactification with a regular Lagrangian fibration extending JU ! U . Indeed, to
define the Abel–Jacobi map �X and to prove that it is injective (Section 5.3), we don’t
need to assume the existence of a hyper-Kähler compactification. However, we will
use this corollary in the proof of the surjectivity (Section 5.4).
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Remark 5.8 An interesting problem is to study the action on J of the birational
automorphisms induced by translation by a nontrivial element of MW.�/, as well
as to study the automorphism group of the generic fiber JK . A consequence of the
observations of Section 3.1 is that if J ! P5 has irreducible fibers, then the birational
automorphisms induced by translation are regular morphisms.

5.1 The Abel–Jacobi mapping

This sections uses some ingredients from the theory of normal functions (certain
holomorphic sections of intermediate Jacobian fibrations), as developed and used by
Griffiths [30; 31], Zucker [83; 84] and Voisin [78]. We refer to these papers, as well as
to [77, Sections 7.2.1 and 8.2.2], for the relevant theory.

The first task is to define the morphism �X W H
2;2.X;Z/0 ! MW.�/. One way to

do this is to use relative Deligne cohomology, which allows us to define an algebraic
section of the fibration JU ! U . See, for example, [78; 28].

A more geometric way to define the morphism �X is in terms of algebraic cycles and
Abel–Jacobi maps, which is what we use here. This is possible because the integral
Hodge conjecture holds for degree-four Hodge classes on X [78; 84]. It allows us
to avoid, in the current presentation, defining the normal function associated with a
cohomology class. The reader should keep in mind, however, that constructing an
algebraic section of the intermediate Jacobian fibrations with a Hodge class on X is a
key ingredient in the proof of the Hodge conjecture of [78; 84], so the shortcut is only
at the level of our presentation.

As already mentioned, the integral Hodge conjecture holds for degree-four Hodge
classes on X . In particular, for every class ˛ 2 H 2;2.X;Z/, there is an algebraic
cycle Z such that ŒZ� D ˛. Let V � P5 be the open subset parametrizing smooth
hyperplane sections of X that do not contain any of the components of Z. If ˛ is a
primitive cohomology class, then for b D ŒYb � 2 V , the one-cycle Zb satisfies

ŒZYb
�D 0 in H 4.Yb;Z/D Z;

and hence determines a point �Yb
.Zb/ 2 Jac.Yb/ in the intermediate Jacobian of Yb .

By Griffiths [31] (see also [77, Section 7.2.1]) the assignment

�Z W V ! JV ; b 7! �Yb
.Zb/;

defines a holomorphic section of the restriction of J to V � P5. By [83], this section
is, in fact, algebraic: indeed, consider a Lefschetz pencil Y 0! P1 of hyperplanes of X
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with P1 � V and with the property that none of the singular points of the members
of the pencil are contained in Z. By [83, Proposition (4.58)] the restriction of �Z to
the nonempty open subset V \ P1 of the pencil extends to a holomorphic function
on all of P1 and is thus algebraic; see also [28]. Since a holomorphic function that is
algebraic in each variable is algebraic (see for example [14, Chapter IX, Theorem 5]),
it follows that �Z actually defines a rational function on P5, ie

�Z 2MW.�/:

The holomorphic section �Z does not depend on the algebraic cycle representing ˛.
Indeed, since CH0.X / D Z, by [79, Theorem 6.24] it follows that the cycle map
CH2.X /!H 2;2.X;Z/ is injective. It follows that if Z and Z0 are homologous, then
they are rationally equivalent in X and hence so are their restrictions to a general
smooth hyperplane section. The conclusion of this discussion is that the Abel–Jacobi
map induces a well-defined group homomorphism

(5-1) �X WH
2;2.X;Z/0!MW.�/; ˛ D ŒZ� 7! �˛ WD �Z :

We prove injectivity of �X in Section 5.3 and surjectivity in Section 5.4. Since we
will restrict to general pencils in P5, we start by recalling a few standard facts about
Lefschetz pencils of cubic threefolds.

5.2 Preliminaries on Lefschetz pencils

We start by setting up the notation. Let P1 � .P5/_ be a Lefschetz pencil with base
locus a smooth cubic surface †�X . We have the diagram

†�P1

p1

||

� � i
// Y 0

p

||

q

  

†
� � // X P1

where Y 0 D Bl† X , q W Y 0 ! P1 is the fibration of threefolds, and i W †� P1 ! Y 0
is the inclusion of the exceptional divisor in Y 0. Let j W U 0 � P1 be the open subset
parametrizing smooth fibers.

The following lemma is standard. We include a proof for lack of reference.

Lemma 5.9 The homology and cohomology groups of a cubic threefold which is
smooth or has one A1 singularity have no torsion. Moreover , using notation as above ,

R1q�ZD 0; R2q�ZD Z; R3q�ZD j�j
�R3q�Z; R4q�ZD Z:
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Proof The statement about the homology groups of a cubic threefold with at most an
A1 singularity follow from [24, Example 5.3 and Theorem 2.1]; using the universal
coefficient theorem, the statements on the cohomology groups then follow. From loc. cit.
it also follows that H 4.Y;Z/DH4.Y;Z/

_ D Z, and hence R4q�ZD Z follows by
proper base change. The first two statements on the higher direct images follow from
the Lefschetz hyperplane section theorem. The third equality, which is also known as
the “local invariant cycle” property, is well known to hold with Q–coefficients, and we
now show it with Z–coefficients, as follows. By adjunction, there is a natural morphism

" WR3q�Z! j�j
�R3q�Z;

which is an isomorphism over U . To show " is an isomorphism over any point of
B WD P1 nU 0 we restrict, for every b0 2B, to a small disk � centered at b0. Then " is
an isomorphism around b0 if and only if the specialization morphism

H 3.Yb0
;Z/ŠH 3.Y 0;Z/!H 3.Yb;Z/

inv
D .j�j

�R3q�Z/b0

is an isomorphism (cf [69, pages 439–440]), where b 2�\U 0 and H 3.Yb;Z/
inv �

H 3.Yb;Z/ are the local monodromy invariants. Let ı 2H3.Yb;Z/ be the vanishing
cycle of Y 0�. By the Picard–Lefschetz formula, H 3.Yb;Z/

inv D Zı?, where ? is
taken with respect to the intersection product, which is nondegenerate since H 3.Yb;Z/

is torsion-free. By [77, Corollary 2.17], there is a short exact sequence

0! Zı!H3.Yb;Z/!H3.Y 0�;Z/ŠH3.Yb0
;Z/! 0;

where 0¤ ı 2H3.Yb;Z/ is the class of the vanishing cycle. Dualizing, we get a short
exact sequence

0!H 3.Yb0
;Z/!H 3.Yb;Z/! .Zı/_! 0:

(Recall the absence of torsion in the homology groups of Yb and Yb0
.) Using the

isomorphism H3.Yb;Z/ Š H 3.Yb;Z/ induced by Poincaré duality, we make the
identification Zı? D kerŒH 3.Yb;Z/! Zı_�D ImŒH 3.Yb0

;Z/!H 3.Yb;Z/�.

It is well known that for a Lefschetz pencil the Leray spectral sequence with coefficients
in Q degenerates at E2. For a Lefschetz pencil of cubic threefolds, this is true also for
Z coefficients. Again, we include a proof for lack of reference. For the whole family of
smooth hyperplane sections of X the Leray spectral sequence with integers coefficients
does not degenerate at E2; this is the starting point of the construction of the nontrivial
JU –torsor of [80], cf Remark 1.14.
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Lemma 5.10 Let q W Y 0! P1 be as above. The Leray spectral sequence with Z coef-
ficients degenerates at E2. In particular , the Leray filtration on H 4.Y 0;Z/ is given by

(5-2)
ZDH 2.P1;R2f�Z/�L1 �H 4.Y 0;Z/�H 0.P1;R4f�Z/D Z;

0!H 2.P1;R2f�Z/!L1


�!H 1.P1;R3f�Z/! 0:

Proof Because of the many vanishings in the E2–page of the spectral sequence, the
only map we need to show is trivial is H 0.P1;R4q�Z/!H 2.P1;R3q�Z/. For this,
it is enough to show that H 4.Yb;Z/!H 0.P1;R4q�Z/ is surjective, which is clearly
true since both groups are generated by the class of a line.

Consider the decomposition

(5-3) H 4.Y 0;Z/DH 4.X;Z/˚H 2.†;Z/˚H 0.†;Z/

given by the blowup formula. The inclusion of the first summand is given by the
pullback p�; we freely omit the symbol p� when viewing H 4.X;Z/ as a subspace of
H 4.Y 0;Z/. The inclusion of the second factor is via the map H 2.†;Z/!H 4.Y 0;Z/
given by C 7! i�.C �P1/. Finally, the inclusion of the last summand is through the
map H 0.†;Z/DH 0.†;Z/˝H 2.P1;Z/!H 4.Y 0;Z/ that sends Œ†�D Œ†�p� 7!

i�.Œ†�p�/, where p 2 P1 is a point. We highlight the following results for later use.

Lemma 5.11 There is a natural isomorphism H 0.†;Z/Š H 2.P1;R2q�Z/ which
allows the identification of the inclusion

H 0.†;Z/ŠH 0.†;Z/˝H 2.P1;Z/
i�
�!H 4.Y 0;Z/

of (5-3) with the inclusion H 2.P1;R2q�Z/!H 4.Y 0;Z/ induced by the Leray filtra-
tion of Lemma 5.10.

Proof The closed embedding i W†�P1 ,! Y 0 determines an isomorphism p2�ZŠ

R2q�Z of constant local systems. Here, p2 W†�P1! P1 is the projection onto the
section factor. Since H 2.P1;p2�Z/DH 0.†;Z/˝H 2.P1;Z/ the lemma follows.

Via p�, we identify H 4.X;Z/0 ŠL1\H 4.X;Z/ and set L
2;2
1
DL1\H 2;2.Y 0;Z/.

Here L1 �H 4.Y 0;Z/ denotes the second piece of the Leray filtration; see (5-2).

Corollary 5.12 The surjective morphism 
 WL1!H 1.P1;R3q�Z/ of (5-2) restricts
to an injection

x
 WL1\ .H
2;2.X;Z/˚H 2.†;Z//ŠL

2;2
1
= ker.
 /!H 1.P1;R3q�Z/:
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Proof From Lemmas 5.10 and 5.11 above, it follows that ker.
 /DH 2.P1;R2q�Z/D

H 0.†;Z/. Thus, by (5-3), it follows that H 4.X;Z/˚H 2.†;Z//\ ker.
 / D f0g.
Since H 0.†;Z/�L1 and

(5-4) L1\
�
H 2;2.X;Z/˚H 2.†;Z/˚H 0.†;Z/

�
DL1\

�
H 2;2.X;Z/˚H 2.†;Z/

�
˚H 0.†;Z/;

the corollary follows.

Lemma 5.13 The restriction morphism H 1.P1;R3q�Z/ ! H 1.U 0;R3qU 0�Z/ is
injective.

Proof The Leray spectral sequence for the open immersion j W U 0! P1, applied to
the sheaf j �R3q�ZDR3qU 0�Z, gives a five-term exact sequence starting with

0!H 1.P1; j�j
�R3q�Z/!H 1.U 0;R3qU 0�Z/! � � � :

This concludes the proof, since by Lemma 5.9, R3q�ZD j�j
�R3q�Z.

5.3 Injectivity of �X

The proof of injectivity uses the Hodge class of a normal function; see [83] and
[77, Section 8.2.2].

For a pencil Y 0! P1 as above, set

H 2;2.Y 0;Z/0 WDL
2;2
1
D kerŒH 2;2.Y 0;Z/!H 0.P1;R4q�Z/�DL1\H 2;2.Y 0;Z/;

and let
� 0 D J 0! P1 and JU 0 ! U 0

be the restriction of the intermediate Jacobian fibration to P1 and to U 0. Choosing a
set of generators for H 2;2.X;Z/0, let Y 0! P1 be a general enough pencil that the
restriction morphism

(5-5) �0X WH
2;2.X;Z/0!MW.� 0/

is well-defined. Here, MW.� 0/ is the group of rational sections of � 0. Similarly, we get
a group homomorphism �0Y 0 WH

2;2.Y 0;Z/0!MW.� 0/. Moreover, if ˛2H 2;2.X;Z/0,
then

�0Y0.p
�˛/D �0X .˛/ 2MW.� 0/:

Recall the Hodge class of a normal function; see for instance [77, Section 8.2.2] and
[83, Proposition (3.9)]. Let H3 DR3qU 0�Z˝Z OU 0 be the Hodge bundle associated
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to the weight-three variation of Hodge structure of the pencil and let F�H3 be the
Hodge filtration. The sheaf JU 0 of holomorphic sections of the intermediate Jacobian
fibration fits into the exact sequence

0!R3f 0U 0�Z!H3=F2H3
! JU 0 ! 0;

and the coboundary morphism

H 0.U 0;JU 0/
cl
�!H 1.U 0;R3f�Z/; � 7! cl.�/;

associates to every holomorphic section � of JU 0!U 0 a class cl.�/ in H 1.U 0;R3q�Z/,
called the Hodge class of �— in the present context, this class is of Hodge type with
respect to the Hodge structure on H 1.U 0;R3q�Z/ induced from that on H 4.Y 0;Z/
via the degeneracy of the Leray spectral sequence; see [83, Section 3].

Lemma 5.14 Let Y 0! P1 be a general pencil. The homomorphism

�0X WH
2;2.X;Z/0

ˇ
�!MW.� 0/

of (5-5) is injective.

Proof By [83, Proposition (3.9)] — see also [77, Lemma 8.20] — the diagram

(5-6)

H 2;2.X;Z/0
p�
//

�0
X ''

H 2;2.Y 0;Z/0
�0Y0
��



// H 1.P1;R3p�Z/

"
��

H 0.U 0;JU 0/ cl
// H 1.U 0;R3f 0�Z/

is commutative. The map " is injective by Lemma 5.13, and p� ı 
 is injective by
Corollary 5.12. Hence, cl ı�0

X
is injective and thus so is �0

X
.

5.4 Surjectivity of �X

There are three ingredients in the proof of surjectivity:

� the fact that rk MW.�/D rk H 2;2.X;Z/0, as proved in Corollary 5.6;

� the restriction, once again, to Lefschetz pencils;

� the techniques used in [78; 84] for the proof of the integral Hodge conjecture
for cubic fourfolds.
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We remark that we use their argument in a slightly different way. To prove the Hodge
conjecture one starts with a cohomology class, uses it to define a normal function,
and then uses the normal function to construct an algebraic cycle representing the
cohomology class (possibly up to a multiple of a complete intersection surface). See [78]
for more details. Here we start with a rational section of the intermediate Jacobian
fibration, we restrict to a general pencil, and use the same method of Voisin to construct
an algebraic cycle inducing the section via the Abel–Jacobi map. Then we have to check
that the cohomology class representing this cycle is primitive, that it is independent of
the pencil, and that it induces, via �X , the section we started from.

Since by Corollary 5.6 the cokernel of the injection �X W H
2;2.X;Z/0 ! MW.�/

is finite, for any � 2 MW.�/ there is an integer N and a cohomology class ˛ 2
H 2;2.X;Z/0 such that

(5-7) �˛ WD �X .˛/DN�:

We will show, again using Lefschetz pencils, that given � and ˛ as above, there exists a
x̌0 2H 2;2.X;Z/0 such that ˛ DN x̌0. This will give the desired surjectivity. Before
we do so, let us introduce some results that we will need.

For a general pencil Y 0! P1, let

.J T /0! P1

be the restriction of the intermediate Jacobian fibration J T !P5 of [80] (compare with
Remark 1.14) to the pencil. For a conic C �†, consider the relative one-cycle of degree
two in Y 0! P1 — any other degree-two relative one-cycle that comes from † will do.
This defines a section of .J T /0! P1, which trivializes the torsor .J T /U 0 inducing
an isomorphism J 0

U 0
Š .J T /U 0 . It is easily seen that this extends to an isomorphism

tC W J
0 Š .J T /0 over P1. For any � 0 2 H 0.U 0;JU 0/, we may consider the induced

section
.�T /0 WD tC ı �

0
2H 0.U 0;J T

U 0/:

The following result is proved in Voisin [78]; see also [84, Theorem (3.2)], where the
result is proved over Q.

Proposition 5.15 [78, Section 2.3] For any section � 0 2MW.� 0/, there is a relative
one-cycle Z on Y 0 of degree two such that the cohomology class

ˇ0 D ŒZ�� ŒC �P1� 2H 2;2.Y 0;Z/0
satisfies �0Y 0.ˇ

0/D � 0 in MW.� 0/.
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Proof For the reader’s convenience, we give a brief sketch of the argument. By a
result of Markushevich and Tikhomirov [54] and Druel [26] there is a relative birational
morphism c2 WM0U 0 ! J T

U 0
, where M0

U 0
! U 0 is the relative moduli space of sheaves

on Y 0U 0 ! U 0 with c1 D 0 and c2 D 2`. The morphism associates to every sheaf
corresponding to a point in M0

U 0
the Abel–Jacobi invariant of its second Chern class.

Given a section .�T /0 2H 0.U 0;J T
U 0
/ as above, Voisin uses M0

U 0
! U 0 to construct a

family CU 0 of degree-two curves in the fibers of Y 0U 0 ! U 0 with the property that for
every b 2 U 0, the curve Cb represents the c2 of a sheaf over .�T /0.b/. By construction,
letting Z be the closure of CU 0 in Y 0 and setting ˇ0 WD ŒZ�� ŒC �P1� 2H 2;2.Y 0;Z/0,
we have �0Y0.ˇ

0/D � 0 in H 0.U 0;JU 0/.

Let � 2MW.�/. For a general pencil P1 � P5, let � 0 D �jP1 be the restriction of �
to P1, and let ˇ0 be as in the proposition above so that �0Y0.ˇ

0/D � 0. It is tempting to
say that, via �X , the class ˇ0 induces � globally and not just on that pencil. This is
indeed the case, though we first need to check that ˇ0 lies in the primitive cohomology
of X and that ˇ0 is independent of the pencil as well as of the chosen isomorphism
tC W J

0 Š .J T /0. More precisely, we need to check that ˇ0 induces � over an open
subset of P5 and not just on the chosen pencil. Before checking this, we have the
following proposition.

Recall that we have set H 2;2.Y 0;Z/0 DL1\H 2;2.Y 0;Z/.

Proposition 5.16 [83, Theorem (4.17)] The Abel–Jacobi morphism

�Y0 WH
2;2.Y 0;Z/0!MW.� 0/�H 0.U 0;JU 0/

is surjective and defines an isomorphism

x�Y0 WL1\ .H
2;2.X;Z/˚H 2.†;Z//!MW.� 0/:

Proof By diagram (5-6) and the fact that " is injective, ker.�Y0/D ker 
 , which by
Lemma 5.10 is equal to H 0.†;Z/. Since �Y0 is surjective by the proposition above,
the induced morphism x�Y 0 WH 2;2.Y 0;Z/0=H 0.†;Z/!MW.� 0/ is an isomorphism.
Finally, by (5-4), H 2;2.Y 0;Z/0=H 0.†;Z/ŠL1\ .H

2;2.X;Z/˚H 2.†;Z//.

We can now end the proof of surjectivity. For � 2 MW.�/, let ˛ 2 H 2;2.X;Z/0
be as in (5-7). Restricting to a pencil Y 0 ! P1, set � 0 D �jP1 and let ˇ0 be as in
Proposition 5.15 such that �Y 0.ˇ0/D � 0. Finally, let x̌0 be the projection of ˇ0 onto
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L1 \ .H
2;2.X;Z/˚H 2.†;Z//. In an abuse of notation, we are omitting p� from

the inclusion of H 4.X;Z/ in H 4.Y 0;Z/ and we will write ˛ instead of p�˛. We have

�Y0.˛/D .�X .˛//jP1 DN� 0 DN�Y0.ˇ
0/D �Y 0.Nˇ

0/:

By Proposition 5.16, ˛ DN x̌0 2L1\ .H
2;2.X;Z/˚H 2.†;Z//. Since

˛ 2H 2;2.X;Z/0 �L1\
�
H 2;2.X;Z/˚H 2.†;Z/

�
;

it follows that x̌0, too, has to lie in H 2;2.X;Z/0�H 2;2.Y 0;Z/. Moreover, the class x̌0,
which a priori depends on the chosen Lefschetz pencil, is independent of the pencil.
Set � x̌0 D �X . x̌

0/. Then, for any sufficiently general Lefschetz pencil P1 � P5, we
have an equality of sections

.� x̌0/jP1 D �jP1 ;

and hence the two rational sections � x̌0 and � coincide. This proves surjectivity.

Appendix On the Beauville conjecture for LSV varieties
by Claire Voisin

In this appendix we explain a consequence of Corollary 3.10 on the following conjecture
made by Beauville in [10].

Conjecture A.1 Let M be a projective hyper-Kähler manifold. Any polynomial
cohomological relation P .d1; : : : ; dr /D 0 in H�.M;Q/, where di are divisor classes
on M , already holds in CH.M /.

Here CH.M / denotes the Chow groups of M with rational coefficients. Let now
M ! B be a projective hyper-Kähler manifold of dimension 2n equipped with a
Lagrangian fibration, and let L 2 Pic M D NS.M / be the Lagrangian class pulled
back from B; see [55]. We have q.L/ D 0 by the Beauville–Fujiki relations, since
L2n D 0. Let also h 2 Pic M D NS.M / be the class of an ample divisor on M , so
that the intersection pairing q restricted to hL; hi is nondegenerate by the Hodge index
theorem. The same argument as in [15] shows that the polynomial cohomological
relations between L and h are generated by the relations

(A-1) ˛nC1
D 0 in H 2nC2.M;Q/ when q.˛/D 0 for ˛ 2 hL; hi:

Here we can restrict to rational cohomology classes because we know that there is
an isotropic class in hL; hi. We consider now, more specifically, an LSV variety J
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(which is of dimension 10, so n D 5) constructed in [47] as a Lagrangian fibration
over P5. The Picard group of a very general such variety is a rank-two lattice which
contains as above the Lagrangian class L and an ample class, but we take as a basis the
classes L and ‚, where ‚ was introduced in [47] and is studied in the present paper.
Riess proved in [72] that a hyper-Kähler manifold M which has a Lagrangian fibration
and satisfies the “RLF conjecture” characterizing classes associated to Lagrangian
fibrations, satisfies Beauville’s conjecture. However we do not know that the LSV
varieties satisfy the RLF conjecture. We prove here the following result.

Theorem A.2 The relations (A-1) hold in CH.J / for the lattice hL; ‚i of an LSV
variety J. Conjecture A.1 is thus satisfied by an LSV variety with Picard number two.

Proof There are, up to multiples, exactly two classes L and L0 in hL; ‚i satisfying
q.L/D 0; q.L0/D 0. Obviously L6D 0 in CH.J / since L comes from the base which
is of dimension 5, so we only have to prove that L0

6
D 0 in CH.J /. We use Riess’

argument in [72], however, in a different way. As a consequence of fundamental results
of Huybrechts in [36], Riess proved the following:

Theorem A.3 [72, Theorem 3.3] Let K be an isotropic class on a projective hyper-
Kähler manifold M of dimension 2n. Then there exists a cycle � 2 CH2n.M �M /

such that �� acts as an automorphism of CH.M / preserving the intersection product ,
the action of �� on H 2.M / preserves the Beauville–Bogomolov form qM , and ��K
belongs to the boundary of the birational Kähler cone of M .

Here the birational Kähler cone of M is defined as the union of the Kähler cones of
hyper-Kähler manifolds M 0 bimeromorphic to M (the bimeromorphic map M 0ÜM

inducing an isomorphism on H 2). We apply this theorem to our class L0 on J and
thus get a correspondence � as above. The class ��L0 is an isotropic class, hence it
must be proportional to either L0 or L. Furthermore, it belongs to the boundary of the
birational Kähler cone. We now have:

Lemma A.4 The class L0 does not belong to the boundary of the birational Kähler
cone.

Proof This is proved in Corollary 3.10 of the present paper.

By Lemma A.4, we conclude that ��L0 is proportional to L. As L6 D 0 in CH6.J /

and �� is an automorphism of CH.J / preserving the intersection product, we conclude
that L0

6
D 0 in CH6.J /.
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If we consider the case of Picard rank three, where the Picard lattice N of J is
generated by three classes L, ‚ and D with q.L;D/D 0 and q.‚;D/D 0, there are
now, according to [15], 13 degree-six cohomological relations between L, ‚ and D,
generated by the classes ˛6 2 S6N � S6H 2.J;Q/, where ˛ belongs to the conic
q.˛/D 0. Among these relations, two of them, namely those involving only L and ‚,
are established in CH.J / by Theorem A.2. We also have the relations

(A-2) L5D D 0 and L0
5
D D 0 in H 12.J;Q/;

which are obtained by differentiating the relation (A-1) at ˛ D L or ˛ D L0 in the
direction given by D, which is tangent to the conic at these points since q.D;L/D 0

and q.D;L0/D 0. We prove the following:

Theorem A.5 The relations (A-2) are satisfied in CH6.J /.

Proof The first relation is proved by applying the following result from [81], which
works in a more general context and needs a mild assumption on the infinitesimal
variation of Hodge structure of a family of abelian varieties at the generic point of the
base. More generally, let M !B be a fibration into abelian varieties and let A2Pic M

be a line bundle whose restriction to the general fiber Mb is topologically trivial.

Proposition A.6 Assume that at the generic point t 2 B, there exists a class ˛ 2
H 1;0.Mb/ such that xr.˛/ W TB;b!H 0;1.Mb/ is surjective. Then there exists a point
b 2 B such that Mb is smooth and AjMb

is a torsion line bundle.

If all fibers Mb have the same class F in CH.M /, it thus follows that F:A D 0 in
CH.M /.

Coming back to our situation, we have to check that the assumption on the infinitesimal
variation of Hodge structures is satisfied in our situation. Let J be the LSV variety
of a cubic fourfold X . The infinitesimal variation of Hodge structure for the fibers of
the Lagrangian fibration J ! .P5/_ is thus canonically isomorphic to the variation
of Hodge structure on the H 3 of the hyperplane section XH � X . If Y is a smooth
cubic threefold in P4 defined by an equation f D 0, Griffiths’ theory of IVHS of
hypersurfaces says that there are isomorphisms

H 2;1.Y /ŠR1
f and H 1;2.Y /ŠR4

f

such that the infinitesimal variation of Hodge structure on H 3.Y;C/ is given (using
the identification R3

f
ŠH 1.Y;TY /) by the multiplication map R3

f
! Hom.R1

f
;R4
f
/.

Now consider the case where Y is a hyperplane section XH , defined by a linear
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equation H, of the cubic fourfold X. It is immediate to see that the inclusions
XH � X � P5 determine a quadratic polynomial QX ;H 2 R2

f
such that the nat-

ural map � W H 0.XH ;OXH
.1// ! R3

f
, defined as the first-order classifying map

for the deformations of XH in X , is given by multiplication by QX ;H . Combin-
ing these facts, we conclude that the desired infinitesimal criterion for the fibration
J ! .P5/_ holds if there exist a smooth hyperplane section XH � X and a linear
form x 2H 0.XH ;OXH

.1//DR1
f

such that, with the above notation, the product map

xQX ;H WR
1
f !R4

f

by xQX ;H is an isomorphism. It is quite easy to show that the existence of such a
hyperplane section is satisfied by X in codimension one in the moduli space of cubic
fourfolds, hence at the generic point of any Hodge locus in this moduli space, or
equivalently any Noether–Lefschetz locus for the corresponding LSV variety J . The
relation L5D D 0 in CH6.J / is thus satisfied at the generic point of the deformation
locus of J preserving the Hodge class D, hence everywhere by specialization.

To conclude the proof of Theorem A.5, we have to prove the relation L0
5
D D 0 in

CH6.J /. This follows however from the relation L5D D 0 in CH6.J / by the same
argument as in the proof of Theorem A.2, using the specialization of the cycle � and
observing that �� acts by ˙1 on H 2.J;Q/?hL;‚i, hence on D.
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