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We relate three classes of nonpositively curved metric spaces: hierarchically hy-
perbolic spaces, coarsely injective spaces and strongly shortcut spaces. We show
that every hierarchically hyperbolic space admits a new metric that is coarsely in-
jective. The new metric is quasi-isometric to the original metric and is preserved
under automorphisms of the hierarchically hyperbolic space. We show that every
coarsely injective metric space of uniformly bounded geometry is strongly shortcut.
Consequently, hierarchically hyperbolic groups — including mapping class groups of
surfaces — are coarsely injective and coarsely injective groups are strongly shortcut.

Using these results, we deduce several important properties of hierarchically hyper-
bolic groups, including that they are semihyperbolic, they have solvable conjugacy
problem and finitely many conjugacy classes of finite subgroups, and their finitely
generated abelian subgroups are undistorted. Along the way we show that hierar-
chically quasiconvex subgroups of hierarchically hyperbolic groups have bounded
packing.

20F65, 20F67, 51F30

1 Introduction

A principal theme of geometric group theory is the study of groups as metric spaces.
This includes studying groups via the types of metric spaces they act on. In this vein,
the study of groups acting on spaces satisfying various forms of nonpositive curvature
conditions has been especially fruitful. In this article, we are concerned with three
classes of spaces exhibiting nonpositive curvature: hierarchically hyperbolic spaces,
coarsely injective spaces and strongly shortcut spaces.
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1.1 The setting

The first of our three classes is that of hierarchically hyperbolic spaces, which exhibit
hyperbolic-like behaviour. Behrstock, Hagen and Sisto introduced these in [11] and,
with Martin [9], showed they include many quotients of mapping class groups, while
Hagen and Susse [48] added all known cubical groups to a growing body of interesting
examples. The theory has had a number of successes: Behrstock, Hagen and Sisto [12]
proved Farb’s quasiflats conjecture for mapping class groups, and Abbott, Ng, Spriano,
Gupta and Petyt [3] established uniform exponential growth for many cubical groups.
We postpone describing the hierarchy structure until Section 3.1.

The next class we consider is that of coarsely injective spaces. A metric space is said to
be coarsely injective if there is a constant ı such that, for any family fB.xi ; ri / W i 2 I g
of balls with d.xi ; xj /6 ri C rj for all i; j 2 I, the ı–neighbourhoods of those balls
have nonempty total intersection. This property was first considered by Chepoi and
Estellon in [30].

As the term suggests, this notion is closely related to that of injective metric spaces. A
metric space is injective (also called hyperconvex) if, for any family fB.xi ; ri / W i 2 I g of
balls with d.xi ; xj /6 riC rj for all i; j 2 I, the balls have nonempty total intersection.
In other words, it amounts to taking ı D 0 in the definition of coarse injectivity. (There
are multiple equivalent ways to define injectivity of a metric space, by a theorem
of Aronszajn and Panitchpakdi [6].) A construction of Isbell [57], which was later
rediscovered by Dress [36] and by Chrobak and Larmore [32], shows that every metric
space has an essentially unique injective hull. More precisely, the injective hull of a
metric spaceX is an injective metric spaceE.X/, together with an isometric embedding
e W X ! E.X/, such that no injective proper subspace of E.X/ contains e.X/. For
convenience, we will often identify X with its image e.X/. A nice description of the
construction of the injective hull is given by Lang in [60, Section 3].

The classes of coarsely injective spaces and injective spaces are tied together by the
following useful fact, the proof of which is identical to that of Chalopin, Chepoi,
Genevois, Hirai and Osajda [26, Proposition 3.12]. A subset Y of a metric space X is
coarsely dense if there exists r such that every x 2X is r–close to some y 2 Y.

Proposition 1.1 A metric space is coarsely injective if and only if it is coarsely dense
in its injective hull.

Geometry & Topology, Volume 27 (2023)
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Moreover, if a group acts properly and coboundedly on a coarsely injective space, then
it acts properly and coboundedly on the injective hull of that space (see Lemma 3.10).
Here and throughout the paper, a group G is said to act properly on a metric space X
if fg 2 G W gB \B ¤ ∅g is finite for every metric ball B of X. This is sometimes
referred to as a metrically proper action.

Injective metric spaces satisfy a number of properties reminiscent of nonpositive
curvature and, in particular, of CAT(0) spaces. For instance, they admit a conical
geodesic bicombing [60], and proper injective spaces of finite combinatorial dimension
have a canonical convex such bicombing; see Descombes and Lang [34]. Also, every
bounded group action on an injective metric space has a fixed point, and the fixed-point
set is itself injective [60]. These properties are what allow us to draw our conclusions for
hierarchically hyperbolic groups. Although it will not be needed here, it is interesting
to note that injective spaces are also complete [6] and contractible [57].

The second author introduced the strong shortcut property for graphs [52] and then
generalised it to roughly geodesic metric spaces [51]. A Riemannian circle S is the
circle S1 endowed with a geodesic metric of some length jS j. A roughly geodesic
metric space .X; �/ is strongly shortcut if there exists K > 1 such that, for any C > 0,
there is a bound on the lengths jS j of .K;C /–quasi-isometric embeddings S !X of
Riemannian circles S in .X; �/. A group is strongly shortcut if it acts properly and
coboundedly on a strongly shortcut metric space. Many spaces and graphs of interest
in geometric group theory and metric graph theory are strongly shortcut, including
Gromov-hyperbolic spaces, 1–skeletons of finite-dimensional CAT.0/ cube complexes,
Cayley graphs of Coxeter groups, and asymptotically CAT.0/ spaces. Despite being
such a unifying notion, it remains possible to draw conclusions about strongly shortcut
groups, including that they are finitely presented and have polynomial isoperimetric
function, and so have decidable word problem.

1.2 Comparison of the classes

Our main result is the definition of a new metric on hierarchically hyperbolic spaces
and, more generally, on coarse median spaces satisfying a nice approximation property
of median intervals by CAT(0) cube complexes.

Our construction is directly inspired by work of Bowditch [20], in which he constructs
an injective metric on any finite-rank metric median space. Indeed, if one endows a
finite-dimensional CAT(0) cube complex with the piecewise `1 metric, it becomes an

Geometry & Topology, Volume 27 (2023)
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injective metric space. The new metric we construct is weakly roughly geodesic and
has the property that balls are coarsely median convex; see Theorem 2.13.

We then prove a hierarchical generalisation of a very nice result of Chepoi, Dragan and
Vaxès [29] about pairwise close subsets of hyperbolic spaces. Combining this with
work of Russell, Spriano and Tran [71] enables us to deduce a coarse Helly property
for balls.

Theorem A (Proposition 2.16 and Corollary 3.6) Let .X;S/ be a hierarchically
hyperbolic space with metric d . There exists a metric � on X such that .X; �/ is
coarsely injective and quasi-isometric to .X; d/. Moreover , � is invariant with respect
to the automorphism group of .X;S/.

Our second result relates the class of coarsely injective spaces to that of strongly
shortcut spaces. A metric space has uniformly bounded geometry if, for any r > 0,
there exists a uniform N.r/ 2N such that every ball of radius r contains at most N.r/
points.

Theorem B (Theorem 4.2) Every coarsely injective metric space of uniformly
bounded geometry is strongly shortcut.

Huang and Osajda [55] proved that weak Garside groups of finite type and Artin groups
of FC type are Helly, so we have the following corollary of Theorem B:

Corollary C Weak Garside groups of finite type and Artin groups of FC type are
strongly shortcut.

Combining Theorem A with Theorem B, we deduce the following:

Corollary D Every hierarchically hyperbolic space admits a roughly geodesic metric
in its quasi-isometry class that satisfies the strong shortcut property.

In fact, in the case of hierarchically hyperbolic groups, the metric we construct is equi-
variant, by the “moreover” statement of Theorem A (also see Remark 3.9). Therefore,
every hierarchically hyperbolic group acts properly cocompactly on a coarsely injective
space, and any group admitting such an action is a strongly shortcut group. Moreover,
these three classes can be distinguished. Indeed, the second author showed [50] that

Geometry & Topology, Volume 27 (2023)
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the .3; 3; 3/ Coxeter triangle group is strongly shortcut but not coarsely injective, and
type-preserving uniform lattices in thick buildings of type Cn are coarsely injective [26],
but, by work of the first author [46], they cannot be hierarchically hyperbolic groups,
because they do not admit any nonelementary actions on hyperbolic spaces.

One can also ask how Helly groups, as defined in [26], fit into this framework. A
Helly graph is a locally finite graph in which any set of pairwise intersecting balls
in the vertex set have nonempty total intersection, and a group is Helly if it acts
properly cocompactly on a Helly graph. Helly groups have some strong properties,
including biautomaticity [26, Theorem 1.5]. Hughes and Valiunas [56] have constructed
a hierarchically hyperbolic group that is not biautomatic and hence not Helly, though it
is CAT(0) and acts properly cocompactly on an injective metric space.

It is clear that every Helly group is coarsely injective. Recall that, according to Bridson
(see [22]), mapping class groups are not CAT(0). Note that any Helly group acts
properly cocompactly on a space with a convex geodesic bicombing (see [34]). So we
suspect that mapping class groups are not Helly groups.

We can summarise the relations between these classes with the following diagram,
in which A) B denotes the statement “any group that is A is necessarily B”, and
A 6) B denotes “there is an example of a group that is A but not B”:

HHG

coarsely injective strongly shortcut

Helly

= =

=
=

=

1.3 Metric consequences

We now describe some of the consequences of Theorem A for hierarchically hyperbolic
spaces. Recall that a quasigeodesic bicombing on a metric space .X; �/ is a map

 WX�X�Œ0; 1�!X such that, for each distinct pair a; b2X, the map Œ0; �.a; b/�!X

given by t 7! 
a;b.t=�.a; b// is a quasigeodesic from a to b with uniform constants.

There are various fellow-travelling conditions that a bicombing may enjoy. We say that
a bicombing is roughly conical if there is a C > 0 such that, for all a; b; a0; b0 2X and
t 2 Œ0; 1�,

�.
a;b.t/; 
a0;b0.t//6 .1� t /�.a; a0/C t�.b; b0/CC I

Geometry & Topology, Volume 27 (2023)
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and it is roughly reversible if it satisfies the following coarse version of symmetry:
there is a C � 0 such that, for all a; b 2X and t 2 Œ0; 1�,

�.
a;b.t/; 
b;a.1� t //� C:

From the existence of conical, reversible, isometry-invariant geodesic bicombings on
injective metric spaces [60], we deduce the following:

Corollary E (Corollary 3.7) Let .X;S/ be a hierarchically hyperbolic space. Then
.X; �/ admits a roughly conical , roughly reversible , quasigeodesic bicombing that is
coarsely equivariant under the automorphism group of .X;S/. More strongly, the
combing lines are rough geodesics for the metric � .

In particular, this applies to Teichmüller space with either of the standard metrics, with
equivariance under the action of the mapping class group. This particular application
was unknown to us until comparing results with Durham, Minsky and Sisto [38].

Corollary E gives a positive answer to Question 8.1 of Engel and Wulff [40], as any
roughly conical bicombing is coherent and expanding, in their terminology. Engel and
Wulff proved that the existence of such a bicombing has a large number of K–theoretic
consequences. This positive answer also allows one to apply work of Fukaya and Oguni
(see [42]) to deduce the coarse Baum–Connes conjecture for hierarchically hyperbolic
groups. The coarse Baum–Connes conjecture is also a consequence of finite asymptotic
dimension, which is a known property of uniformly proper hierarchically hyperbolic
spaces [10].

1.4 Consequences for groups

We now turn to the case of hierarchically hyperbolic groups, which, as we have seen,
act properly cocompactly on coarsely injective spaces. Here we describe some of the
consequences of such an action.

Following Alonso and Bridson [4], we say that a bicombing is bounded if it satisfies
the following weak two-sided fellow-traveller property: there is a C > 0 such that, for
all a; b; a0; b0 2X and t 2 Œ0; 1�,

�.
a;b.t/; 
a0;b0.t//6 C max.�.a; a0/; �.b; b0//CC:

Note that, if a bicombing is roughly conical, then it is bounded. A finitely generated
group is said to be semihyperbolic if it has a Cayley graph that admits an equivariant
bounded quasigeodesic bicombing.

Geometry & Topology, Volume 27 (2023)
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Among other results, Alonso and Bridson proved that semihyperbolicity implies the
existence of a quadratic isoperimetric function, that the group has soluble word and
conjugacy problems, and that an algebraic flat torus theorem holds [4]. For more
discussion of the consequences of semihyperbolicity, see Bridson and Haefliger [24].
Semihyperbolicity was introduced as a response to Gromov’s call for a weaker form of
hyperbolicity in his original essay on hyperbolic groups, and it fits into the framework
of algorithmic properties developed by Epstein, Cannon, Holt, Levy, Paterson and
Thurston [41]. For example, semihyperbolicity is implied by biautomaticity, but not by
automaticity. A survey can be found in [23].

For hierarchically hyperbolic groupsG, the freeness of the regular action ofG on .G; �/
allows the bicombing of Corollary E to be pulled back to the Cayley graph of G [4].

Corollary F (Corollary 3.11) Every hierarchically hyperbolic group is semihyper-
bolic. In particular , the mapping class group of a surface of finite type is semihyperbolic.

The mapping class group case also follows from unpublished work of Hamenstädt [49],
and is related to Mosher’s automaticity theorem [62].

We should emphasise that the same result for mapping class groups has been obtained
by rather different methods, simultaneously and independently, by Durham, Minsky
and Sisto (see [38]). This will be discussed more in Section 1.6.

It is well known that mapping class groups have finitely many conjugacy classes
of finite subgroups (see Bridson [21]), a property that they share with hyperbolic
groups. However, to the authors’ knowledge, all existing proofs of this fact rely on
deep results that do not generalise to other settings, such as Kerckhoff’s celebrated
solution of the Nielsen realisation problem [59]. It is interesting to ask whether there is
a proof that avoids such powerful machinery, and indeed a more general question about
hierarchically hyperbolic groups was asked by Hagen and Petyt [47]. The question of
whether all hierarchically hyperbolic groups have finitely many conjugacy classes of
finite subgroups has resisted a number of attempted resolutions.

The fact that hierarchically hyperbolic groups act properly cocompactly on coarsely
injective spaces makes the following a simple consequence of Lang’s result about
bounded actions on injective spaces [60, Proposition 1.2]:

Theorem G (Corollary 3.12) Hierarchically hyperbolic groups have finitely many
conjugacy classes of finite subgroups.

Geometry & Topology, Volume 27 (2023)
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It is interesting to note that this applies in particular to many quotients of mapping
class groups [10; 9]. It is also a simple consequence that residually finite hierarchically
hyperbolic groups are virtually torsionfree.

We now summarise the consequences for hierarchically hyperbolic groups of the results
described above (also see Remark 3.9 for a comment on their generality).

Corollary H Every hierarchically hyperbolic group G has the following properties:

� G acts properly cocompactly on a proper coarsely injective space.

� G has finitely many conjugacy classes of finite subgroups.

� G is semihyperbolic. In particular ,

– the conjugacy problem in G is soluble , and it can be solved in doubly
exponential time;

– any polycyclic subgroup of G is virtually abelian;

– any finitely generated abelian subgroup of G is quasi-isometrically embed-
ded ;

– the centraliser of any finite subset of G is finitely generated , quasi-isometri-
cally embedded and semihyperbolic.

� [40, Theorem C] For any ring R, if the cohomological dimension cdR.G/ is
finite , then cdR.G/6 asdim.G/C 1.

� G is a strongly shortcut group.

The result about polycyclic subgroups can also be deduced from the Tits alternative for
hierarchically hyperbolic groups established by Durham, Hagen and Sisto [37]. The
result about finitely generated abelian subgroups was proved by Plummer [67]. The
other consequences are new, however. The result about the conjugacy problem extends
work of Abbott and Behrstock [1], showing that it can be solved in exponential time
for Morse elements of hierarchically hyperbolic groups, and generalises the fact that,
in mapping class groups, it can always be solved in exponential time; see Masur and
Minsky [61] and Tao [74; 8]. In the case of cubical groups, a beautiful result of Niblo
and Reeves [63] states that every cubical group is biautomatic, and semihyperbolicity
is a direct consequence of this. We emphasise, though, that the class of hierarchically
hyperbolic groups is considerably larger than just cubical groups and mapping class
groups.

Geometry & Topology, Volume 27 (2023)
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1.5 Bounded packing

The bounded packing property for subgroups of finitely generated groups was in-
troduced as a metric abstraction of tools used to prove intersection properties of
subgroups of hyperbolic groups by Gitik, Mitra, Rips and Sageev [45] and Rubinstein
and Sageev [70], and in turn as a stepping stone towards ensuring cocompactness of
the cube complex associated with a finite collection of quasiconvex codimension-1
subgroups; see Sageev [72], Niblo and Reeves [64] and Hruska and Wise [54]. We
recall the definition in Section 3; see Hruska and Wise [53; 54] for more motivation and
background. The prototypical example is that of a quasiconvex subgroup of a hyperbolic
group. That such subgroups have bounded packing was first established by Gitik, Mitra,
Rips and Sageev, using compactness of the boundary [45], and another proof was given
by Hruska and Wise [53], using induction on the height of the subgroups.

More general examples have been provided by Antolín, Mj, Sisto and Taylor [5], who
use induction on height to show that finite collections of stable subgroups in any finitely
generated group have bounded packing. Stable subgroups were introduced by Durham
and Taylor [39], and they are always hyperbolic. More generally, Morse subgroups were
introduced independently by Tran [75] and Genevois [43], and the notion is implicit
in earlier work of Sisto [73]. Notably, Tran proved that any finite collection of Morse
subgroups has bounded packing [75, Theorem 1.2], again by using induction on height.

Theorem I (Corollary 3.13) Every finite collection of hierarchically quasiconvex
subgroups of a group that is a hierarchically hyperbolic space (in particular , of any
hierarchically hyperbolic group) has bounded packing.

For many groups that are HHSs (including all HHGs), every stable subgroup is hierar-
chically quasiconvex; see Abbott, Behrstock and Durham [2] and Russell, Spriano and
Tran [71]. Theorem B also applies to subsurface stabilisers in the mapping class group,
which are neither Morse nor stable. See Section 3.1 for the definition of hierarchical
quasiconvexity.

Our proof of this result is purely geometric. It relies on a very strong result for
quasiconvex subsets of hyperbolic spaces that was proved by Chepoi, Dragan and
Vaxès [29]; we state it as Theorem 3.4. Their theorem does not seem to have garnered
the notice it deserves in geometric group theory. For instance, it yields what appears to
be the simplest and most natural proof of bounded packing for quasiconvex subgroups
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of hyperbolic groups. One case of our hierarchical generalisation of their result can be
stated as follows:

Theorem J (Theorem 3.5) Let X be a hierarchically hyperbolic space , and let Q be
a finite collection of hierarchically quasiconvex subsets of X. If every pair of elements
of Q is r–close , then there is a point of X that is R–close to every element of Q, where
R does not depend on the cardinality of Q.

1.6 Comparison to the work of Durham, Minsky and Sisto [38]

Let us now say a few words about the difference between the present article and the
work of Durham, Minsky and Sisto [38]. As noted, both articles independently prove
that mapping class groups are semihyperbolic, but the approaches differ greatly. In
both cases, this fact is deduced from a stronger statement in a more general setting, but
those two statements are very different in flavour. Their results hold for hierarchically
hyperbolic spaces with the extra assumption of colorability, and they deduce interesting
corollaries about bicombings on the Teichmüller space with the Teichmüller metric,
and the existence of barycentres. These results are also consequences of Theorem A
and Corollary E.

Our construction is built on the fact that intervals in hierarchically hyperbolic spaces
can be approximated by finite CAT(0) cube complexes (proved in [12]). The main
result of Durham, Minsky and Sisto is that these approximations are furthermore stable,
meaning that a small change in the endpoints of the interval induces a small change in
the approximating CAT(0) cube complex. This stability result may prove extremely
useful for other purposes.

If we want to compare the bicombing we obtain to the one from [38] in the simplest case
of a CAT(0) cube complex, our bicombing looks like the geodesic CAT(0) bicombing,
whereas their bicombing is more similar to (but not the same as) Niblo–Reeves normal
cube paths [63]. One notable difference is that our bicombing is roughly conical and
their bicombing is merely bounded, which is not enough to deduce the consequences
of Section 1.3. On the other hand, their bicombing paths are known to be hierarchy
paths, whilst ours are not.

Structure of the article

In Section 2, we recall basic definitions of coarse median spaces, and we explain the
extra property we need, a stronger approximation of median intervals by CAT(0) cube
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complexes. We then define a new distance, and we prove that it is quasi-isometric to
the original one and is weakly roughly geodesic, and that its balls are coarsely median
convex.

In Section 3, we treat hierarchical hyperbolicity, and prove that hierarchically quasi-
convex subsets satisfy a coarse version of the Helly property. We use this to show that
the new distance makes hierarchically hyperbolic spaces coarsely injective, and deduce
semihyperbolicity of hierarchically hyperbolic groups. We also show that hierarchically
quasiconvex subgroups have bounded packing.

In Section 4, we recall the definition of a strongly shortcut group, and prove that coarse
injectivity implies the strong shortcut property.
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2 Coarse median spaces with quasicubical intervals

2.1 Background on coarse median spaces

Coarse median spaces, defined by Bowditch in [17], are a generalisation of CAT(0) cube
complexes and Gromov-hyperbolic spaces, and the class is rich enough to encompass
mapping class groups of finite-type surfaces. The general idea is to associate to every
triple of points in the space a point that satisfies the axioms of a usual median up to
controlled error. This point will be called the coarse median.

Let us recall here that a median � WX3!X on a set X is a map satisfying (where we
write equivalently �.x; y; z/ or �x;y;z to increase readability)

� �.x; y; z/ is symmetric in x, y and z;

� �.x; x; y/D x for all x; y 2X ; and

� �.a; b; �x;y;z/D �.�a;b;x; �a;b;y ; z/ for all a; b; x; y; z 2X.

Geometry & Topology, Volume 27 (2023)
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The pair .X; �/ is called a median algebra. The rank of .X; �/ is the supremum of
all � 2N such that there exists an injective median homomorphism from the �–cube
f0; 1g� into X.

Every finite median algebra can be seen as the 0–skeleton of a CAT(0) cube complex
(see [28; 69]).

Let .X; d/ be a metric space. For any x; y 2X, let

Id .x; y/D fz 2X j d.x; z/C d.z; y/D d.x; y/g

denote the interval between x and y. The metric space .X; d/ is called metric median
if Id .x; y/\Id .y; z/\Id .x; z/ is a singleton — say f�.x; y; z/g— for all x; y; z 2X.
In this case, � defines a median on X. Examples of median metric spaces include trees,
1–skeletons of CAT(0) cube complexes with the combinatorial distance, and L1 spaces.

In a Gromov-hyperbolic space X, the three intervals joining three points may not
intersect precisely in a singleton, but by definition they do coarsely intersect with
uniformly bounded diameter. This suggests defining a map X3 ! X that satisfies
the axioms of a median up to bounded error. This is made precise by the following
definition, due to Bowditch [17], generalising the centroid defined for mapping class
groups in [14]:

Definition 2.1 (coarse median space) Let .X;d/ be a metric space. A map� WX3!X

is called a coarse median if there exists h WN! .0;C1/ such that:

� For all a; b; c; a0; b0; c0 2X, we have

d.�.a; b; c/; �.a0; b0; c0//6 h.0/.d.a; a0/C d.b; b0/C d.c; c0//C h.0/:

� For each finite nonempty set A�X with jAj6 n, there exists a finite median
algebra .Q;�Q/ and maps � W A ! Q and � W Q ! X such that, for every
˛; ˇ; 
 2 Q, we have d.��Q.˛; ˇ; 
/; �.�˛; �ˇ; �
// 6 h.n/, and, for every
a 2 A, we have d

�
a; �.�.a//

�
6 h.n/.

We say that the triple .X; �; d/ is a coarse median space. If Q can always be chosen
to have rank at most �, we say that � has rank at most �. As with median algebras, we
shall write �a;b;c D �.a; b; c/ interchangeably. Note that we are also free to assume
that �.a; b; c/ is symmetric in a, b and c, and that �.a; a; b/D a [17, page 73].

We now recall the definitions of intervals and coarse convexity in coarse median spaces.
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Definition 2.2 (median interval) For a pair of points a; b 2 X, the median interval
between a and b is defined as

Œa; b�D f�.a; b; x/ j x 2Xg:

Definition 2.3 (coarse median convexity) For a constant M � 0, a subset Y of X is
said to be M–coarsely median convex if

d.Y; �.x; y; y0//�M for all y; y0 2 Y; x 2X:

We finish by introducing some terminology.

Definition 2.4 (weakly roughly geodesic) Recall that a metric space .X; d/ (or, more
briefly, the metric d ) is called roughly geodesic if there exists a constant Cd > 0 such
that, for any a; b 2X, there exists a .1; Cd /–quasi-isometric embedding of the interval
f W Œ0; d.a; b/�!X such that f .0/D a and f .d.a; b//D b.

We say that a metric space .X; d/ is called weakly roughly geodesic if there exists a
constant C 0

d
> 0 such that, for any a; b 2X and any nonnegative r � d.a; b/, there is

a point c 2X with jd.a; c/� r j � C 0
d

and d.a; c/C d.c; b/� d.a; b/CC 0
d

.

Remark 2.5 Every roughly geodesic metric space is weakly roughly geodesic. More-
over, any metric space .X; d/ that is weakly roughly geodesic with constant C 0

d
is

necessarily .4C 0
d
; 4C 0

d
/–quasigeodesic. Indeed, given x; y 2 X, one can repeatedly

take r D 3C 0
d

in the definition of weak rough geodesicity to get a sequence x D w0,
w1; : : : , wnDy such that d.wi ; wiC1/2 Œ2C 0d ; 4C

0
d
� and d.wi ; y/�d.wi�1; y/�C 0d ,

and the points of this sequence form a quasigeodesic from x to y.

2.2 Construction of a new metric

Let .X; �; d/ be a coarse median space. Following Bowditch’s construction of an
injective metric on a median metric space [20], we shall define a new metric � on X.

Definition 2.6 (contraction) For a constant K > 0, a map ˆ W X ! R is called a
K–contraction if:

� ˆ is .1;K/–coarsely Lipschitz, ie jˆ.x/�ˆ.y/j6 d.x; y/CK for all a; b 2X.

� ˆ is a K–quasimedian homomorphism, ie

jˆ.�.a; b; c//��R.ˆ.a/;ˆ.b/;ˆ.c//j6K for all a; b; c 2X;

where �R denotes the standard median on R.
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Definition 2.7 (new metric) For K > 0, we define a new metric � on X as follows.
Given a; b 2X, let �.a; b/ denote the supremum of all r > 0 such that there exists a
K–contraction ˆ WX !R such that ˆ.a/D 0 and ˆ.b/D r .

The assumption that K is nonzero is needed to ensure that � separates points in the
setting of coarse median spaces. In the special case where X is a CAT(0) cube complex,
we may take K D 0. More precisely, if X is a CAT(0) cube complex endowed with the
piecewise `p length metric for p 2 f1; 2;1g, for instance, then the new metric � for
K D 0 is the piecewise `1 length metric on X.

Lemma 2.8 The function � is a metric on X.

Proof Let a; b 2X be distinct. Consider the map ˆ WX ! f0;Kg that sends b to K
and everything else to 0. It is a K–contraction, and so �.a; b/>K > 0.

The proof of the triangle inequality is identical to [20, Lemma 3.1]. For the reader’s
convenience, we repeat it here. Let a; b; c 2 X. For each r < �.a; b/, there exists
a K–contraction ˆr W X ! R such that jˆr.a/ � ˆr.b/j � r . We certainly have
�.a; c/� jˆr.c/�ˆr.a/j and �.b; c/� jˆr.b/�ˆr.c/j, so

�.a; c/C �.c; b/> supfjˆr.c/�ˆr.a/jC jˆr.b/�ˆr.c/j W r < �.a; b/g

� supfjˆr.b/�ˆr.a/j W r < �.a; b/g D �.a; b/:

Remark 2.9 Although the construction of � depends on the choice of a positive
constant K, the actual choice of K will not matter to us here. If K1 < K2, then any
K1–contraction is automatically a K2–contraction, so �K1

� �K2
. On the other hand, if

ˆ is a K2–contraction, then .K1=K2/ˆ is a K1–contraction, so �K1
� .K1=K2/�K2

.
Thus, any two choices of K give bi-Lipschitz metrics.

We record the following simple consequence of the definition of � :

Lemma 2.10 If a group G is acting isometrically on a coarse median space .X; �; d/
by median isometries , in the sense that g�.x; y; z/D �.gx; gy; gz/ for all g 2G and
x; y; z 2X, then the induced action of G on .X; �; �/ is isometric.

Proof For any g 2 G and x; y 2 X, if ˆ is a K–contraction with ˆ.x/ D 0 and
ˆ.y/D r , then ˆ0 Dˆg�1 is a K–contraction with ˆ0.gx/D 0 and ˆ0.gy/D r .
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In order to help understand the metric � , we shall work with coarse median spaces that
have the following property, which is a strengthening of the second axiom of coarse
median spaces for sets AD fa; bg with cardinality 2. We require an approximation of
the entire median interval Œa; b� with uniform constants, and also that the comparison
map be a quasi-isometry and not just coarsely invertible.

Definition 2.11 (quasicubical intervals) Let .X; �; d/ be a coarse median space.
We say that it has quasicubical intervals if it has finite rank � and there exists � > 1

such that the following holds: for every a; b 2 X, there exists a finite CAT(0) cube
complex Q of dimension at most �, endowed with the `1 metric dQ and the median
�Q, such that there exists a map � WQ! Œa; b� satisfying:

� � is a .�; �/–quasi-isometry, ie � is �–coarsely onto and
1

�
dQ.˛; ˇ/� � 6 d.�.˛/; �.ˇ//6 �dQ.˛; ˇ/C � for all ˛; ˇ 2Q:

� � is a �–quasimedian homomorphism, ie

d
�
�.�Q.˛; ˇ; 
//; �.�.˛/; �.ˇ/; �.
//

�
6 � for all ˛; ˇ; 
 2Q:

Obviously this is satisfied by finite-dimensional CAT(0) cube complexes, or indeed by
any space with a global quasimedian quasi-isometry to a CAT(0) cube complex.

Proposition 2.12 Hierarchically hyperbolic spaces have quasicubical intervals , as do
coarse median spaces satisfying the axioms (B1)–(B10) in [18].

Proof In hierarchically hyperbolic spaces, the notion of median intervals used here
coincides coarsely with the hierarchically quasiconvex hull of a pair of points defined
in [13], by [71, Corollary 5.12; 19, Lemma 8.1]. The first statement is thus a special
case of [12, Theorem 2.1]. The second statement is exactly [18, Theorem 1.3].

As noted by Bowditch, every hierarchically hyperbolic space satisfies the axioms (B1)–
(B10) in [18]. It is not known whether all cocompact cube complexes can be given a
structure that satisfies these axioms.

We can now state the main result of this section. It sums up Lemma 2.10, Propositions
2.16 and 2.21, and Lemma 2.23, and the proof is split over the next three subsections.

Theorem 2.13 Assume that the coarse median space .X; �; d/ has quasicubical inter-
vals and is roughly geodesic. The metrics � and d are quasi-isometric , � is weakly
roughly geodesic , and balls for � are uniformly coarsely median convex. Moreover ,
� is invariant under the group of median isometries of .X; �; d/.
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2.3 The metrics d and � are quasi-isometric

Here we shall prove that the new distance � is quasi-isometric to the original distance d .
We need the following technical result for coarse median spaces, which is a special
case of Lemmas 2.18 and 2.19 of [65]:

Lemma 2.14 In any coarse median space .X; d; �/, there exists a constant H5 > 0

such that , for any a; b; x; y; z 2X,

d.�.a; b; �x;y;z/; �.�a;b;x; �a;b;y ; z//6H5;

d.�.a; b; �x;y;z/; �.�a;b;x; �a;b;y ; �a;b;z//6H5:

We will now prove that, up to multiplicative and additive constants, one can restrict to
contractions defined on the interval between two points for the definition of � .

Lemma 2.15 For each a; b 2X, let � 0.a; b/ denote the supremum of all r > 0 such
that there exists a K–contraction ˆ0 W Œa; b�!R for which ˆ0.a/D 0 and ˆ0.b/D r .
There exists L> 1 such that , for each a; b 2X, we have �.a; b/6 � 0.a; b/6L�.a; b/.

Proof It is immediate that �.a; b/ 6 � 0.a; b/. Consider r > 0 and a K–contraction
ˆ0 W Œa; b� ! R such that ˆ0.a/ D 0 and ˆ0.b/ D r . Define ˆ W X ! R by c 7!
ˆ0.�.a; b; c//. Since the map c 7!�.a; b; c/ is .h.0/; h.0//–coarsely Lipschitz and ˆ0

is .1;K/–coarsely Lipschitz, we deduce that ˆ is .h.0/; h.0/CK/–coarsely Lipschitz.

Now let x; y; z 2X. According to Lemma 2.14, we have

d.�.a; b; �x;y;z/; �.�a;b;x; �a;b;y ; �a;b;z//6H5:

Hence, since ˆ0 is .1;K/–coarsely Lipschitz,

jˆ0.�.a; b; �x;y;z//�ˆ
0.�.�a;b;x; �a;b;y ; �a;b;z//j6H5CK:

But ˆ0 is also a K–quasimedian homomorphism, and so

jˆ0.�.�a;b;x; �a;b;y ; �a;b;z//��R.ˆ
0.�a;b;x/; ˆ

0.�a;b;y/; ˆ
0.�a;b;z//j6K:

Combining these and recalling the definition of ˆ enables us to conclude that

jˆ.�x;y;z/��R.ˆ.x/;ˆ.y/;ˆ.z//j6H5C 2K:

Thus, if we setLDmaxfh.0/; 1Ch.0/=K; 2CH5=Kg, then .1=L/ˆ is aK–contraction,
and so � 0.a; b/6 L�.a; b/.
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We can now deduce that � is quasi-isometric to d in the setting of Theorem 2.13.

Proposition 2.16 If .X; �; d/ has quasicubical intervals , then d and � are quasi-
isometric.

Proof Fix a; b 2X. First of all, since any K–contraction is .1;K/–coarsely Lipschitz,
�.a; b/6 d.a; b/CK.

According to the quasicubicality of intervals, there exists a finite CAT(0) cube complex
Q of dimension at most � and a map � W .Q; dQ/! Œa; b� that is a .�; �/–quasi-isometry
and a �–quasimedian homomorphism. Then � has a quasi-inverse � W Œa; b�! .Q; dQ/

that is a .�0; �0/–quasi-isometry and a �0–quasimedian homomorphism, where �0 is a
constant depending only on � and h.0/.

Note that we shall in fact useQ to denote the vertex set, dQ to denote the combinatorial
(piecewise `1) distance onQ, and �Q to denote the median onQ. Let us denote by �Q
the piecewise `1 distance on Q; we have �Q 6 dQ 6 ��Q.

Since Q is a CAT(0) cube complex, there exists a 0–contraction ˆQ W .Q; dQ/! Z

such that ˆQ.�.a// D 0 and ˆQ.�.b// D �Q.�.a/; �.b// (see [20, Section 7; 7,
Corollary 2.5]). Let us consider ˆ0 D .minf1;Kg=�0/ˆQ� W Œa; b�!R. Since � is a
.�0; �0/–quasi-isometry and ˆQ is 1–Lipschitz, we deduce that ˆ0 is .1;K/–coarsely
Lipschitz. Furthermore, for every x; y; z 2 Œa; b�,

jˆQ�.�x;y;z/��R.ˆQ�.x/;ˆQ�.y/;ˆQ�.z//j

6
ˇ̌
ˆQ�.�x;y;z/�ˆQ

�
�Q.�.x/; �.y/; �.z//

�ˇ̌
C
ˇ̌
ˆQ

�
�Q.�.x/; �.y/; �.z//

�
��R.ˆQ�.x/;ˆQ�.y/;ˆQ�.z//

ˇ̌
6 dQ

�
�.�x;y;z/; �Q.�.x/; �.y/; �.z//

�
� �0;

so ˆ0 is K–quasimedian.

The map ˆ0 is therefore a K–contraction on Œa; b�, and ˆ0.a/ D 0 and ˆ0.b/ D
.minf1;Kg=�0/�Q.�.a/; �.b// > .minf1;Kg=��0/dQ.�.a/; �.b//. Using Lemma
2.15, we deduce that dQ.�.a/; �.b//� .��0L=minf1;Kg/�.a; b/. But � is a .�0; �0/–
quasi-isometry, so we also have dQ.�.a/; �.b//� .1=�0/d.a; b/� �0.

In conclusion,
minf1;Kg

��02L
d.a; b/�

minf1;Kg
�L

� �.a; b/� d.a; b/CK

for all a; b 2X.
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2.4 The metric � is weakly roughly geodesic

Recall that .X; �; d/ is a coarse median space with corresponding function h, that X
has quasicubical intervals (though this will only be used for Proposition 2.21 in this
section) and that the metric d is Cd–roughly geodesic. We shall prove that the new
metric � is weakly roughly geodesic (see Definition 2.4). This will be the most difficult
part of the proof of Theorem 2.13.

Let a; b 2X, let E be a small positive constant and consider K–contractions ˆ1 WX!
Œ0; r� and ˆ2 W X ! Œr; r C s� (for some r; s > E) such that ˆ1.a/ � E and ˆ2.b/ �
r C s�E. We want to find a criterion to ensure that we can combine ˆ1 and ˆ2 into
a contraction ˆ such that ˆ.a/ D 0 and .r C s/�ˆ.b/ is bounded above by some
constant.

Lemma 2.17 Assume that a, b, ˆ1, ˆ2, r , s and E are as above. Let D D
h.0/.3K C 4Cd /C 4K C h.0/. If t 2 Œ0;minfr; sg �D CK � E� is such that the
sets

Z1 D fz 2X jˆ1.z/6 r � t �Kg and Z2 D fz 2X jˆ2.z/> r C t CKg

are disjoint , then �.a; b/> r C s� 2t � 2D� 2E.

Proof For m 2 f0; 1; 2g, let us write Y m1 D fx 2X jˆ1.x/6 r � t �DCmKg and
Y m2 D fx 2X jˆ2.x/> r C t CD�mKg. Note that, if m1 <m2, then Y m1

i � Y
m2

i .

Claim 1 d.Y 21 ; Y
2
2 />D� 4K:

Proof Let x1 2 Y 21 and x2 2 Y 22 . Since Y 22 � Z2, we have x2 … Z1, so ˆ1.x2/ >
r � t �K. We also have ˆ1.x1/6 r � t �DC 2K, so jˆ1.x1/�ˆ1.x2/j>D� 3K.
As ˆ1 is .1;K/–coarsely Lipschitz, we have jˆ1.x1/�ˆ1.x2/j6 d.x1; x2/CK, and
hence d.x1; x2/>D� 4K. G

Claim 2 d.Y 11 ; Y
1
2 /> 3KC 4Cd :

Proof Let x1 2 Y 11 and x2 2 Y 12 , and set y1 D �.a; b; x1/ 2 Œa; b� and y2 D
�.a; b; x2/2 Œa; b�. We know thatˆ1.y1/6�R.ˆ1.a/;ˆ1.b/;ˆ1.x1//CK. We also
haveˆ1.a/�E by assumption, andˆ1.x1/6 r�t�DCK. As this latter quantity is at
least E, �R.ˆ1.a/;ˆ1.b/;ˆ1.x1//6 r�t�DCK. Hence, ˆ1.y1/6 r�t�DC2K,
so y1 2 Y 21 . A similar argument shows that y2 2 Y 22 .
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According to Claim 1, d.y1; y2/>D�4K. Since � is .h.0/; h.0//–coarsely Lipschitz
with respect to each variable, d.y1; y2/6 h.0/d.x1; x2/C h.0/, so

d.x1; x2/>
d.y1; y2/� h.0/

h.0/
>
D� 4K � h.0/

h.0/
D 3KC 4Cd ;

as desired. G

Claim 3 The set f�x;y;z j x; y 2 Y 01 ; z 2 Xg is disjoint from Y 02 , and the set
f�x;y;z j x; y 2 Y

0
2 ; z 2Xg is disjoint from Y 01 .

Proof Fix x; y 2 Y 01 and z 2 X. Since ˆ1.x/;ˆ1.y/ 6 r � t �D, we deduce that
�R.ˆ1.x/;ˆ1.y/;ˆ1.z//6 r� t�D, and it follows that ˆ1.�x;y;z/6 r� t�DCK,
so �x;y;z 2 Y 11 . Because we showed in Claim 2 that d.Y 11 ; Y

1
2 /> 3KC 4Cd > 0, we

know that �x;y;z … Y 12 , and, in particular, �x;y;z … Y 02 . The other case is similar. G

Write Y DX X .Y 01 [Y
0
2 /, and consider ˆ WX ! Œ0; r C s� 2t � 2D� defined by

ˆ.x/D

8<:
ˆ1.x/ if x 2 Y 01 ;
ˆ2.x/� 2t � 2D if x 2 Y 02 ;
r � t �D if x 2 Y:

We have ˆ.a/ � E and ˆ.b/ � r C s � 2t � 2D � E, so, if we prove that ˆ is a
K–contraction, then we may deduce that �.a; b/> r C s� 2t � 2D� 2E, the desired
conclusion.

Claim 4 ˆ is .1;K/–coarsely Lipschitz.

Proof Notice that ˆ coincides on Y 01 [ Y with the composition of ˆ1 W X ! Œ0; r�

with the 1–Lipschitz map mt D min. � ; r � t �D/ W Œ0; r�! Œ0; r � t �D�. Hence,
if x; y 2 Y 01 [ Y, then jˆ.x/�ˆ.y/j 6 jˆ1.x/�ˆ1.y/j 6 d.x; y/CK. A similar
argument involving a maximum function applies if x; y 2 Y 02 [Y.

Now suppose that x 2 Y 01 and y 2 Y 02 . Since d is Cd–roughly geodesic, there
is a .1; Cd /–quasi-isometric embedding f W Œ0; d.x; y/� ! X with f .0/ D x and
f .d.x; y//D y. For any " > 0, there exists � such that f .�/ 2 Y 01 but f .� C ı/ … Y 01
for any ı > ". (Were f continuous, we could take "D 0 and use the maximal � with
f .�/ 2 Y 01 .) Write z1 D f .�/. We have d.x; z1/C d.z1; y/ � d.x; y/C Cd and
ˆ1.z1/� r � t �D. Moreover, for any ı > ",

ˆ1.z1/�ˆ1.f .� C ı//�
�
d.f .�/; f .� C ı//CK

�
> r � t �D� .ıCCd CK/;

and soˆ1.z1/�r�t�D�Cd�K�". We can now similarly construct z22Y 02 such that
d.z1; z2/Cd.z2; y/�d.z1; y/CCd and rCtCD�ˆ2.z2/� rCtCDCCdCKC".
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With these, we can compute

jˆ.x/�ˆ.y/j

� jˆ.x/�ˆ.z1/jC jˆ.z1/�ˆ.z2/jC jˆ.z2/�ˆ.y/j

D jˆ1.x/�ˆ1.z1/jC jˆ1.z1/� .ˆ2.z2/� 2t � 2D/jC jˆ2.z2/�ˆ2.y/j

6 .d.x; z1/CK/C .2Cd C 2KC 2"/C .d.z2; y/CK/

6 .d.x; y/CCd�d.z1; y/CK/C.2CdC2KC2"/C.d.z1; y/CCd�d.z1; z2/CK/

D d.x; y/� d.z1; z2/C 4KC 4Cd C 2"

6 d.x; y/CKC 2";

where the last line comes from Claim 2: d.z1; z2/ > d.Y 01 ; Y
0
2 / > d.Y 11 ; Y

1
2 / �

3KC 4Cd . This is sufficient, because " can be taken to be arbitrarily close to 0. G

Claim 5 ˆ is K–quasimedian.

Proof As noted in the proof of Claim 4, on Y 01 [Y we have ˆDmtˆ1. As mt is a
median homomorphism with respect to �R, if x; y; z 2 Y 01 [Y, then

jˆ.�x;y;z/��R.ˆ.x/;ˆ.y/;ˆ.z//j

D jmtˆ1.�x;y;z/��R.mtˆ1.x/;mtˆ1.y/;mtˆ1.z//j

6 jˆ1.�x;y;z/��R.ˆ1.x/;ˆ1.y/;ˆ1.z//j

�K;

and similarly if x; y; z 2 Y 02 [Y.

Assume now that x; y 2 Y 01 and z 2 Y 02 . We have that both ˆ.x/ and ˆ.y/ are
at most r � t � D. Moreover, ˆ.z/ D ˆ2.z/ � 2t � 2D > r � t � D, and the
fact that z … Y 01 implies that ˆ1.z/ > r � t �D. Thus, �R.ˆ.x/;ˆ.y/;ˆ.z// D

�R.ˆ1.x/;ˆ1.y/;ˆ1.z// � r � t �D. As ˆ1 is K–quasimedian, we deduce that
j�R.ˆ.x/;ˆ.y/;ˆ.z//�ˆ1.�x;y;z/j 6K. By Claim 3, we know that �x;y;z … Y 02 ,
and so ˆ.�x;y;z/ D mtˆ1.�x;y;z/. But �R.ˆ.x/;ˆ.y/;ˆ.z// 6 r � t �D, so we
conclude that j�R.ˆ.x/;ˆ.y/;ˆ.z//�ˆ.�x;y;z/j6K. A similar argument applies
when x; y 2 Y 02 and z 2 Y 01 .

Assume finally that x 2 Y 01 , y 2 Y, and z 2 Y 02 . Since ˆ.x/ D ˆ1.x/ 6 r � t �D,
ˆ.y/D r � t �D and ˆ.z/Dˆ2.z/� 2t � 2D > r � t �D, we have

�R.ˆ.x/;ˆ.y/;ˆ.z//D r � t �D:
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If �x;y;z 2 Y, then ˆ.�x;y;z/D r � t �D D �R.ˆ.x/;ˆ.y/;ˆ.z//. If �x;y;z 2 Y 01 ,
then ˆ.�x;y;z/Dˆ1.�x;y;z/>�R.ˆ1.x/;ˆ1.y/;ˆ1.z//�K > r� t�D�K, from
which it follows that j�R.ˆ.x/;ˆ.y/;ˆ.z//�ˆ.�x;y;z/j 6K. A similar argument
applies if �x;y;z 2 Y 02 .

We have shown that j�R.ˆ.x/;ˆ.y/;ˆ.z//�ˆ.�x;y;z/j6K in all cases. G

We have proved that ˆ is a K–contraction. As stated above, this shows that �.a; b/>
jˆ.a/�ˆ.b/j � r C s� 2t � 2D� 2E.

Recall that the convex hull Hull.A/ of a subset A of a CAT(0) cube complex Q is
the smallest convex subcomplex of Q containing A. Equivalently, it is the smallest
subcomplex that contains A and which is median convex, in the sense that �.q; a; b/ 2
Hull.A/ whenever a; b 2 Hull.A/. We regard a subset of Q.0/ as convex if the full
subcomplex spanned by it is convex. We need the following iterative description convex
hulls in CAT(0) cube complexes:

Lemma 2.18 Let Q be a CAT (0) cube complex of dimension at most �, and let
�Q WQ

.0/3!Q.0/ denote the median. Given A �Q.0/, set A0 D A, and , for each
i 2N, let

AiC1 D �Q.Q
.0/; Ai ; Ai /D f�Q.x; a; b/ j a 2 Ai ; b 2 Ai ; x 2Q

.0/
g:

Then A�0 D Hull.A/, where �0 Dmaxf1; � � 1g.

Note that the constant �0 is probably far from optimal. However, �0 does depend on A
and Q. For example, if A is the star of a vertex in a �–cube, then it can be seen that
the optimal value of �0 is dlog2 �e in this case.

Proof The result is trivial if A is convex. Otherwise, fix x 2 Hull.A/XA, and let H
be the collection of hyperplanes of Hull.A/ that are adjacent to x. For each H 2H, let
Q.0/DHCtH� denote the partition defined byH, where x 2HC. Let fH1; : : : ;Hng
be a maximal pairwise crossing family in H. We have n� �. For each i , let Hi denote
the set of elements of H that are disjoint from Hi , together with Hi . An important
observation is that H�i �H

C whenever H 2Hi X fHig.

If n D 1, then x is a cut-point or leaf of Hull.A/, so taking any a 2 A \HC and
b 2 A\H� gives x D �.x; a; b/, and we are done.
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So suppose that n � 2. If for every a 2 A\H�1 we have a 2 H�2 , then for every
b 2 A\HC2 we have b 2HC1 , so, if we take z1 2 A\H�1 and z2 2 A\HC2 , then
�.x; z1; z2/ 2H

C\H 0C for every H 2H1 and H 0 2H2. We can reason similarly if
every element of A\H�2 lies in H�1 . Otherwise there exist z1 2 A\H�1 \H

C
2 and

z2 2 A\H
C
1 \H

�
2 , and we again have �.x; z1; z2/ 2HC\H 0C for every H 2H1

and H 0 2H2. Let y1 D �.x; z1; z2/ 2 A1.

We proceed inductively. Suppose that we have yi 2 Ai such that yi 2 HC for all
H 2

S
j�iC1Hj . Let ziC2 be any point of A that is separated from yi by HiC2, and

set yiC1 D �.x; yi ; ziC2/. Since x; yi 2HC for every H 2
S
j�iC1Hj , the same is

true of yiC1, and, since yi and ziC2 lie on opposite sides of HiC2, we also have that
yiC1 2H

C for all H 2HiC2.

By this procedure, we obtain yn�1 2 An�1\Hull.A/ that is not separated from x by
any hyperplane of Hull.A/, so we must have yn�1 D x.

In order to apply Lemma 2.17, we focus on contractions on CAT(0) cube complexes.
Recall that a chain of hyperplanes is an ordered sequence .H1; : : : ;Hn/ of pairwise
disjoint hyperplanes such that Hj separates Hi from Hk whenever i < j < k.

Lemma 2.19 Let Q be a CAT (0) cube complex of dimension at most �, and let
ˆ WQ.0/!R be a K 0–quasimedian , .K 0; K 0/–coarsely Lipschitz map (for the `1 met-
ric) with bounded image. There exists an interval Œu; v� of Z and a chain .Hn/u6n6v

of hyperplanes of Q satisfying the following:

� For each vertex x in Q, there exists a unique nD‰.x/ 2 Œu� 1; v� such that

– either u6 n6 v� 1 and x is between Hn and HnC1,

– or nD u� 1 and Hu separates x from HuC1,

– or nD v and Hv separates x from Hv�1.

� For each vertex x in Q, we have jˆ.x/� 4K 0�‰.x/j6 4K 0�.

Proof Fix n 2Z, and consider KnDˆ�1
�
.2An�A; 2An�

�
, where AD 2K 0�. Since

Q.0/ is 1–connected, ˆ.Q.0// is 2K 0–connected. In particular, the set of integers n2Z

such that Kn ¤ ∅ is an interval Œu� 1; v�. Furthermore, for each u 6 n 6 v� 1, we
know that Kn disconnects Q.

In the notation of Lemma 2.18, for all i � 0, if x 2 .Kn/i , then jˆ.x/�ˆ.Kn/j6K 0i .
Indeed, this is clear for i D 0 and, if x 2 .Kn/iC1, so that there exist a; b 2 .Kn/i with
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x D �Q.x; a; b/, then the fact that ˆ is K 0–quasimedian implies that

jˆ.x/��R.ˆ.x/;ˆ.a/;ˆ.b//j �K
0;

yielding the claimed inequality by induction. In particular, Lemma 2.18 tells us that
every x 2 Hull.Kn/ satisfies jˆ.x/�ˆ.Kn/j �K 0�.

As a consequence, if n¤m, then the convex subcomplexes Hull.Kn/ and Hull.Km/
are disjoint. Thus, for each u6 n6 v, there exists a hyperplane Hn of Q that separates
Hull.Kn�1/ from Hull.Kn/ [27, Corollary 1].

For each vertex x 2 Q.0/, let u� 1 6 n 6 v be such that ˆ.x/ 2 .2An� 2A; 2An�.
Then ‰.x/ is equal either to n� 1 or to n. So jˆ.x/� 2A‰.x/j6 2AD 4K 0�.

Before stating the next lemma, we remark that, given any chain H of hyperplanes
in a finite CAT(0) cube complex Q, there is an associated map Q.0/! Z: the cube
complex dual to H is a finite interval of Z, and each vertex ofQ determines a consistent
orientation of the hyperplanes in H. This is a special case of the restriction quotient
described in [25], and it is clearly a median map. Conversely, any 0–contraction on Q
can be realised as restriction quotient in this manner. Moreover, after a translation of Z,
we may assume that the codomain is contained in N if it is bounded.

Lemma 2.20 Let Q be a finite CAT (0) cube complex of dimension at most �. Let C
be a (necessarily finite up to translations of Z) family of 0–contractions on Q, ie each
‰ 2 C is a map Q.0/!N given by a chain .H‰;1; : : : ;H‰;n‰

/ of hyperplanes of Q.
Let �C denote the pseudometric on Q.0/ defined by

�C.˛; ˇ/Dmax
‰2C
j‰.˛/�‰.ˇ/j for all ˛; ˇ 2Q.0/:

Then , for each ˛; ˇ 2 Q.0/ and for each integer 0 6 r 6 �C.˛; ˇ/, there is a vertex

 2 Œ˛; ˇ� and contractions ‰1; ‰2 2 C such that the following hold :

(1) �C.˛; 
/D r .

(2) �C.˛; 
/D j‰1.˛/�‰1.
/j and �C.
; ˇ/D j‰2.
/�‰2.ˇ/j.

(3) If .H1;1; : : : ;H1;n1
/ is the maximal subchain of hyperplanes defining ‰1 that

separate ˛ from 
 and .H2;1; : : : ;H2;n2
/ is the maximal subchain of hyperplanes

defining ‰2 that separate 
 from ˇ, then .H1;1; : : : ;H1;n1
;H2;1; : : : ;H2;n2

/ is
a chain.
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Proof Fix ˛; ˇ 2Q.0/ and an integer 0 < r < �C.˛; ˇ/. Since �C is 1–Lipschitz with
respect to the combinatorial distance on Q.0/, we know that there exists 
 2 Œ˛; ˇ�
such that �C.˛; 
/D r . Among all possible choices, choose such 
 as far away from ˛

as possible, in the sense that, for 
 0 2 Œ˛; ˇ�,

�C.˛; 

0/D r and 
 2 Œ˛; 
 0� D) 
 0 D 
:

Let ‰2 2 C be such that �C.
; ˇ/ D j‰2.
/�‰2.ˇ/j. Let .H2;1; : : : ;H2;n2
/ be the

maximal subchain of hyperplanes defining ‰2 that separate 
 from ˇ, numbered from

 to ˇ.

Let H be a hyperplane of Q adjacent to 
 and either equal to H2;1 or separating

 from H2;1, and let 
 0 2 Œ˛; ˇ� be the vertex adjacent to 
 such that H crosses
the edge Œ
; 
 0�. First note that, since H2;1 separates 
 and ˇ, we deduce that H
separates 
 and ˇ. Thus, H does not separate ˛ and 
 , because 
 2 Œ˛; ˇ�. In particular,

 2 Œ˛; 
 0�. Since 
 is chosen as far from ˛ as possible among points at �C–distance
equal to r , and every hyperplane separating ˛ and 
 separates ˛ and 
 0, we deduce that
�C.˛; 


0/ > �C.˛; 
/D r , so �C.˛; 
 0/D �C.˛; 
/C 1.

Let ‰1 2 C be such that �C.˛; 
 0/ D j‰1.˛/�‰1.
 0/j. Let .H1;1; : : : ;H1;n1C1/ be
the maximal subchain of hyperplanes defining ‰1 that separate ˛ from 
 0, numbered
from ˛ to 
 0. Since �C.˛; 
 0/ D �C.˛; 
/C 1, we know that H D H1;n1C1 and that
�C.˛; 
/D j‰1.˛/�‰1.
/j. In particular, H is disjoint from H1;1; : : : ;H1;n1

. We
deduce that H separates H1;1; : : : ;H1;n1

from H2;1; : : : ;H2;n2
, and the conclusion

follows.

We can now use these lemmas to prove that, in the setting of Theorem 2.13, the metric �
is weakly roughly geodesic (Definition 2.4).

Proposition 2.21 If .X; �; d/ has quasicubical intervals and is roughly geodesic , then
� is weakly roughly geodesic.

Proof Let a; b 2X. Since X has quasicubical intervals, there exists a finite CAT(0)
cube complex Q (with the `1 metric) of dimension at most � and a map � WQ! Œa; b�

that is a .�; �/–quasi-isometry and a �–quasimedian homomorphism. We can therefore
fix ˛; ˇ2Q such that d.�.˛/; a/6� and d.�.ˇ/; b/6�. According to Proposition 2.16,
there is a constant q � 1 such that d and � are .q; q/–quasi-isometric. It follows that
�.�.˛/; a/� q.�C 1/ and �.�.ˇ/; b/� q.�C 1/.
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For eachK–contraction ˆ WX!R, the composition ˆ� WQ!R is aK 0–quasimedian,
.K 0; K 0/–coarsely Lipschitz map, where K 0 D K C �. According to Lemma 2.19,
there exists a 0–contraction ‰ WQ! Z such that jˆ�.�/� 4K 0�‰.�/j6 4K 0� for all
� 2Q.0/. Let C denote the set of all 0–contractions ‰ WQ!Z such that there is some
K–contraction ˆ WX ! Z with jˆ�.�/� 4K 0�‰.�/j6 4K 0� for all � 2Q.0/.

We shall prove that � is weakly roughly geodesic with constant

C 0� D 64K
0�C 4q.�C 1/C 4�C 4KC 2D;

where D is the constant from Lemma 2.17.

Let r 2 Œ0; �.a; b/�. If r < C 0� , then clearly we can take c D a for the desired point.
Similarly, if r > �.a; b/ � C 0� , then we can take c D b. Otherwise, Lemma 2.20,
applied to ˛, ˇ, the family C and r 0 D br=4K 0�c, provides a vertex 
 2 Œ˛; ˇ� and
0–contractions ‰1; ‰2 2 C. Let c D �.
/ 2 Œa; b�.

Let us start by computing �.a; c/. By definition of the set C, for any K–contraction
ˆ W X ! R there is some ‰ 2 C (and, conversely, for any ‰ 2 C there exists a K–
contraction ˆ) such thatˇ̌
jˆ�.�/�ˆ�.�/j�4K 0�j‰.�/�‰.�/j

ˇ̌
�
ˇ̌
jˆ�.�/�4K 0�‰.�/jCjˆ�.�/�4K 0�‰.�/j

ˇ̌
� 8K 0�

holds for all �; � 2Q.0/. It follows that

(1) j�.�.�/; �.�//� 4K 0��C.�; �/j6 8K 0�:

By the choice of 
 , we have �C.˛; 
/D r 0. Thus, from (1) we obtain

j�.a; c/� r j � j�.�.˛/; �.
//� 4K 0�r 0jC q.�C 1/C 4K 0�

� 12K 0�C q.�C 1/� C 0� :

The aim for the rest of the proof is to confirm the second restriction on c, namely that
�.a; c/C �.c; b/� �.a; b/CC 0� . The strategy is to apply Lemma 2.17.

Recall that ‰1; ‰2 2 C are the 0–contractions provided by Lemma 2.20: they sat-
isfy �C.˛; 
/ D j‰1.˛/�‰1.
/j D r 0 and �C.
; ˇ/ D j‰2.
/�‰2.ˇ/j D s0. After
translations of Z, we may also assume that ‰1.˛/ D 0, ‰1.
/ D ‰2.
/ D r 0 and
‰2.ˇ/ D r 0 C s0. By definition of C, there exist K–contractions ˆ1 and ˆ2 on X
such that jˆ1�.�/� 4K 0�‰1.�/j 6 4K 0� and jˆ2�.�/� 4K 0�‰2.�/j 6 4K 0� for all
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� 2 Q.0/. In particular, ˆ1.a/ � ˆ1�.˛/C � CK � 4K 0� C � CK. Moreover, by
using (1) we see that

ˆ2.b/� 4K
0�.r 0C s0/� 4K 0� � � �K

D 4K 0�.�C.˛; 
/C �C.
; ˇ//� 4K
0� � � �K

� �.�.˛/; �.
//C �.�.
/; �.ˇ//� 16K 0� � 4K 0� � � �K

� �.a; c/C �.c; b/� 20K 0� � 2q.�C 1/� � �K:

We are now in the setting of Lemma 2.17, with E D 20K 0� C 2q.� C 1/C � CK
and with the image of ˆ2 bounded above by �.a; c/C �.c; b/. Let us show that the
assumptions of the lemma are met if we take t D 12K 0�C �CK.

We must first note that r �DCK �E � C 0� �DCK �E � t , and secondly that
�.a; c/C�.c; b/�r�DCK�E � �.a; b/�r�DCK�E �C 0� �DCK�E � t .

It remains to prove that the subspaces Z1 D fz 2 X j ˆ1.z/ 6 r � t � Kg and
Z2 D fz 2X jˆ2.z/> rC tCKg are disjoint. Fix z 2X, let x D �.z; a; b/ and pick
any � 2Q.0/ such that d.�.�/; x/6 �.

If z 2 Z1, so that ˆ1.x/ 6 ˆ1.z/CK � r � t , then ˆ1.�.�// 6 r � t C �CK, and
hence

‰1.�/6
r � t C �CKC 4K 0�

4K 0�
6
r � 8K 0�

4K 0�
6 r 0� 1:

Similarly, if z 2Z2, then ‰2.�/> r 0C 1.

According to property (3) of Lemma 2.20, the halfspace of H‰1;r 0 containing ˛ is
disjoint from the halfspace of H‰2;1 containing ˇ. Thus, if � 2Q.0/, then we cannot
simultaneously have both ‰1.�/6 r 0� 1 and ‰2.�/> r 0C 1. As a consequence, we
cannot have both z 2Z1 and x 2Z2. This implies that Z1\Z2 D∅.

The conditions of Lemma 2.17 are therefore met, and, by applying it, we deduce that
�.a; b/� �.a; c/C�.c; b/�2t �2D�2E D �.a; c/C�.c; b/�C 0� . This completes
the proof that � is weakly roughly geodesic with constant C 0� .

2.5 Coarse convexity of balls

To complete the proof of Theorem 2.13, it remains to show that balls in .X; �/ are
uniformly coarsely median convex.
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Lemma 2.22 There is a constant � > 0 such that , for any x; y; z 2X with x 2 Œy; z�,
we have d.x; �.x; y; z//� �.

Proof According to [19, Lemma 8.1], there are constants r0 and r 00 such that x lies
at distance at most r 00 from a point x0 with d.x0; �.x0; y; z// � r0. Since the coarse
median � is coarsely Lipschitz, d.�.x; y; z/; �.x0; y; z// 6 h.0/d.x; x0/C h.0/ �

h.0/.r 00C1/. We deduce that d.x; �.x; y; z//� �, where �D r 00Cr0Ch.0/.r
0
0C1/.

Lemma 2.23 Suppose that .X; �; d/ has quasicubical intervals and is roughly ge-
odesic. There is a constant M such that each ball in .X; �/ is M–coarsely median
convex.

Proof Fix w 2 X and R > 0. Let y; z 2 B� .w;R/. Given any a 2 X, we want to
bound the distance from x D �.a; y; z/ to B� .w;R/.

Let r < �.w; x/ and let ˆ W X ! Œ0; r� be a K–contraction such that ˆ.w/ D 0 and
ˆ.x/� r . Lemma 2.22 tells us that d.�x;y;z; x/6 �, so jˆ.�x;y;z/�ˆ.x/j � �CK.
Since ˆ is a K–quasimedian homomorphism,

�R.ˆ.x/;ˆ.y/;ˆ.z//�ˆ.�x;y;z/�K �ˆ.x/� �� 2K � r � �� 2K:

This means that one of ˆ.y/ and ˆ.z/ must be at least r � �� 2K, and so �.w; x/6
maxf�.w; y/; �.w; z/gC �C 2K.

This proves that x 2 B� .w;RC �C 2K/. According to Proposition 2.21, � is weakly
roughly geodesic with constant C 0� . Applying Definition 2.4 with aDw, bDx and rD
minfR�C 0� ; �.w; x/g yields a point x02B� .w;R/with d.x0; x/� �C2KC3C 0� DM,
which shows that balls in .X; �/ are M–coarsely median convex.

3 Quasiconvexity and a coarse Helly property in HHSs

The goal of this section is to prove that hierarchically quasiconvex subsets of hier-
archically hyperbolic spaces satisfy a coarse version of the Helly property. Since
coarsely median convex subsets of a hierarchically hyperbolic space are hierarchically
quasiconvex [71, Proposition 5.11], this applies in particular to balls for the metric �
constructed in Section 2, by Theorem 2.13, allowing us to deduce Theorem A. We
also deduce the bounded packing property for hierarchically quasiconvex subgroups of
groups that are HHSs.
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3.1 Background on hierarchical hyperbolicity

Here we give a description of hierarchically hyperbolic spaces (HHSs) and hierarchically
hyperbolic groups (HHGs). For full definitions, see [13, Definitions 1.1 and 1.21].
Briefly, an HHS consists of a quasigeodesic space .X; d/, a constant E and a set S,
elements of which are called domains. Each domain U has an associated E–hyperbolic
space CU, and the various axioms give structure for extracting information about X
from these hyperbolic spaces. This includes:

� Each domain U has an associated E–coarsely onto, .E;E/–coarsely Lipschitz
projection map �U WX ! CU.

� S has a partial order @, called nesting, and a symmetric relation ?, called
orthogonality. If U @ V and V?W, then U?W. The relations Ĺ, ? and D are
mutually exclusive, and their complement, denoted by t, is called transversality.

� There is a bound on the size of Ĺ–chains and pairwise orthogonal sets.

� If U Ĺ V or U t V, then there is a set �UV � CV of diameter at most E.

� If U Ĺ V, then there is also a map �VU W CV ! CU. If 
 � CV is a geodesic and
dCV .
; �

U
V / > E, then diam �VU .
/6E.

This last point is referred to as bounded geodesic image. For x; y 2X, it is standard
to write dU .x; y/ in place of dCU .�U .x/; �U .y//, and similarly for subsets of X.
Moreover, we can always assume that X and the associated hyperbolic spaces are
graphs (for example by [33, Lemma 3.B.6]). In particular, we can and shall assume
that X and the CU are geodesic.

We say that X admits an HHS structure if there is an HHS whose underlying metric
space is X, and we write .X;S/ as shorthand for the entirety of a choice of HHS
structure. An HHG is a finitely generated group G whose Cayley graph admits an HHS
structure .G;S/ such that G acts cofinitely on S and elements of G induce isometries
CU ! CgU for all U 2S. (There are a couple of other natural regulatory assumptions
that we shall not concern ourselves with here.)

The idea behind two domains being orthogonal is that one can see a direct product of
associated sub-HHSs inside X. This is made precise by the partial realisation axiom.

Axiom (partial realisation) If fUig is a set of pairwise orthogonal domains, then, for
any choice of points pi 2 CUi , there is some x 2X with dUi

.x; pi /�E for all i , and
with dV .x; �

Ui

V /�E whenever Ui Ĺ V or Ui t V.
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In fact, one of the main tools for dealing with HHSs is the realisation theorem [13,
Theorem 3.1], which extends the partial realisation axiom. Roughly, it says that any
consistent tuple is well approximated by the projections of some point in X. In other
words, performing constructions in X can be reduced to performing constructions in
the associated hyperbolic spaces and checking that the points produced by this process
are consistent.

Definition 3.1 (consistent tuple) For a constant � >E, a tuple .bU / 2
Q
U2S CU is

said to be �–consistent if

minfdU .bU ; �VU /; dV .bV ; �
U
V /g6 � whenever U t V

and
minfdV .bV ; �UV /; diam.bU [ �VU .bV //g6 � whenever U Ĺ V:

Axiom (consistency) For any x 2X, the tuple .�U .x//U2S is E–consistent.

It will be useful to be able to talk about consistency for subsets of S. Given u 2 CU
and v 2 CV, we say that u and v satisfy the consistency inequalities for U and V if

� U t V and minfdU .u; �VU /; dV .v; �
U
V /g �E, or

� (after relabelling) U Ĺ V and min
˚
dV .v; �

U
V /; diam.fug[ �VU .v//

	
�E.

Let us now state the realisation theorem, which will be the mechanism for our proof of
Theorem 3.5. We shall only need the existence part.

Theorem 3.2 (realisation [13, Theorem 3.1]) For each � � E, there are numbers
�e.�/ and �u.�/ such that , if .bU /U2S is a �–consistent tuple , then there is some
x 2 X with dU .x; bU / � �e.�/ for all domains U. Moreover , the set of such x has
diameter at most �u.�/.

A key application of the realisation theorem is for the construction of a coarse median
operation for HHSs. Given three points x, y and z in an HHS .X;S/, let .mU /U2S
be the tuple whose U –entry is the median of the triple .�U .x/; �U .y/; �U .z// in
the hyperbolic space CU. This tuple is consistent [13, Theorem 7.3], so we define
�.x; y; z/ to be a point obtained by applying the realisation theorem to the tuple .mU /.
(One also needs Proposition 10.1 of Bowditch [17] to conclude that .X; �; d/ is a
coarse median space.) When X is an HHG, one can arrange for � to be equivariant.
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The action on the index set is what distinguishes HHGs from groups that are HHSs,
and this turns out to be an important distinction. For example, the property of being an
HHS is invariant under quasi-isometries, but there are groups that are virtually HHGs
but not HHGs themselves. Indeed, the .3; 3; 3/ triangle group is virtually abelian, but,
as mentioned in the introduction, it is not coarsely injective [50], and it therefore cannot
be an HHG by Corollary H. A more direct proof, not relying on the results of this paper,
is given in [66]. On the other hand, any group that is an HHS can be equipped with a
coarse median [13], but this may fail to be equivariant if the structure is only an HHS
structure.

A related notion that is closed under taking subgroups is that of a group that acts on an
HHS .X;S/ by HHS automorphisms. In other words, it acts on X isometrically and
on S with the regulatory assumptions alluded to above, but the action on S need not
be cofinite. The median is still equivariant for such actions.

In the theory of hyperbolic spaces, an important class of subsets are the quasiconvex
subsets, because they inherit the structure of the ambient space. The natural analogue in
the setting of hierarchical hyperbolicity is that of a hierarchically quasiconvex subset.

Definition 3.3 (hierarchical quasiconvexity) A subset Y of an HHS .X;S/ is said to
be hierarchically quasiconvex if there is a function k such that every �U .Y / is k.0/–
quasiconvex and, if x 2X has dU .x; Y /6 r for all U 2S, then dX .x; Y /6 k.r/.

We finish this section with some examples.

All hyperbolic groups are hierarchically hyperbolic, as are the (extended) mapping class
groups of finite-type surfaces [11]; Teichmüller space with either of the standard met-
rics [11]; many graphs defined from curves on surfaces, including the pants graph [76];
quotients of mapping class groups by powers of pseudo-Anosovs [10] and Dehn-twist
subgroups [9]; extensions of Veech groups [35]; the genus-two handlebody group [31];
fundamental groups of closed 3–manifolds without Nil or Sol components [13]; right-
angled Artin groups [11]; and, in fact, all known cubical groups [48]. Aside from the
extensions of Veech groups and some 3–manifold groups, the groups listed here are all
known to be HHGs, not merely HHSs.

There are also various ways to combine HHSs and HHGs to produce new ones. For
example, both classes are closed under relative hyperbolicity [13], any graph product
of HHGs is an HHG [16], and many graphs of groups are HHGs [13; 15; 68].
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3.2 Coarse injectivity

Here we prove our result on hierarchically quasiconvex subsets of an HHS and deduce
that HHSs are coarsely injective when equipped with the metric � from Section 2. We
then deduce that every HHG acts properly cocompactly by isometries on a coarsely
injective space.

We shall make use of the following powerful result for hyperbolic spaces. The version
stated here is a combination of [29, Lemma 5.1] and the proof of [29, Theorem 5.1].
It states in particular that quasiconvex subsets of a hyperbolic graph satisfy a coarse
version of the Helly property. Throughout this section, we say that subsetsZ1 andZ2 of
a metric space .X; d/ are r–close if there exist z1 2Z1 and z2 2Z2 with d.z1; z2/� r .

Theorem 3.4 [29] The following holds for any nonnegative constants E, r and k0:
Let Y be an E–hyperbolic graph and let y be a vertex of Y. Suppose that Q is a
collection of pairwise 2Er–close k0–quasiconvex subsets of Y .0/ with the property
that fd.y;Q/ WQ 2Qg is bounded. By discreteness , we can fix Q 2Q with d.y;Q/
maximal. Let z 2 Q have d.y; z/ D d.y;Q/, and let c be the point on a geodesic
Œy; z� with d.c; z/ D minfEr; d.y; z/g. Then d.c;Q0/ 6 r 0 for all Q0 2 Q, where
r 0 Dmaxf2k0C 5E;Er C k0C 3Eg.

The strength of this theorem is twofold. Firstly, the constant r 0 is independent of
the size of the set Q— a statement with this independence does not seem to appear
elsewhere in the geometric group theory literature. The second strength is that the
construction of the point c is both completely explicit and allows for a lot of flexibility
in the choice of y. Observe that the condition that fd.y;Q/ WQ 2 Qg is bounded is
satisfied automatically if any Q 2Q is bounded.

We will now prove that hierarchically quasiconvex subsets of a hierarchically hyperbolic
space satisfy a coarse version of the Helly property.

Theorem 3.5 (coarse Helly property) Let .X;S/ be an HHS with constant E, and
let Q be a collection of k–hierarchically quasiconvex subsets of X such that either Q is
finite or Q contains an element with bounded diameter. Suppose that there is a constant r
such that any two elements of Q are r–close. There is a constant RDR.E; k; r/ such
that there is a point x 2X with d.x;Q/6R for all Q 2Q.
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Proof Let us say that a domain U begets a domain V if either U t V or U Ĺ V. If U
begets V, then there is a well-defined bounded set �UV .

Let U D fU1; : : : ; Ung be a maximal collection of pairwise orthogonal, nest-minimal
domains. Note that we may choose U arbitrarily. For any domain V 2SX U , there
is some i such that Ui begets V. By [37, Lemma 1.5], for any domain V 2 S, we
have dV .�

Ui

V ; �
Uj

V / 6 2E whenever Ui and Uj both beget V. Moreover, recall that
diam �

Ui

V 6 E. At the cost of increasing the hierarchical hyperbolicity constant to at
most 10E, we can therefore perturb the HHS structure to assume that every �Ui

V is a
singleton, and that �Ui

V D �
Uj

V whenever both Ui and Uj beget V. We write �UV for the
singleton

�UV D
[

fi WUi begets V g

�
Ui

V :

As mentioned, the construction of U ensures that the point �UV exists for all V 2SXU.

We are free to assume that if r > 0 then r > 1. Thus, by definition of hierarchical
quasiconvexity and the fact that projection maps are .E;E/–coarsely Lipschitz, for
any domain V, the sets �V .Q/ for Q 2Q are pairwise 2Er–close and k0–quasiconvex,
where k0 D k.0/. We assumed that Q either is finite or it contains an element with
bounded diameter, so, for any point y2X and any domain V, the set fdV .y;Q/ WQ2Qg
is bounded. Let r 0 be as in the statement of Theorem 3.4. That theorem now allows
us to choose, for each U 2 U , a point bU in CU with dU .bU ;Q/ 6 r 0 for all Q 2Q.
For any other domain V, let bV be the point of CV obtained by applying Theorem 3.4
in the hyperbolic graph CV, with quasiconvex subsets f�V .Q/ WQ 2Qg and starting
vertex �UV .

Claim The tuple .bV /V 2S is .r 0C7ECEr/–consistent.

Proof Suppose that W begets V and dV .�WV ; �
U
V /6 2E. Assume that dV .bV ; �WV / >

r 0 C 7E C Er . By the construction of bV , there exists some Q 2 Q such that
dV .bV ;Q/6Er . As a consequence,

dV .Q; �
W
V /� dV .bV ; �

W
V /� dV .bV ;Q/� diam �WV > r 0C 6E:

If W t V, then �W .Q/ is contained in the E–neighbourhood of �VW by consistency
for elements of Q. In particular, dW .�VW ; bW /6 r 0CE as bW is r 0–close to �W .Q/.
If W Ĺ V, then, since �V .Q/ is k0–quasiconvex and r 0C 6E > k0C 6E, bounded
geodesic image and consistency show that the set �VW .�V .Q// has diameter at most E,
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and its E–neighbourhood contains �W .Q/. Moreover, its E–neighbourhood contains
�VW .bV / by bounded geodesic image, as witnessed by the geodesic used to construct bV .
Thus,

diam.bW[�VW .bV //6dW .bW ;Q/Cdiam�W .Q/CdW .Q; �
V
W .bV //Cdiam �VW .bV /

6r 0C3EC3ECE

Dr 0C7E:

The above paragraph will be referred to as .�/ for the rest of the proof of the claim.
We split the checking of the consistency inequalities for pairs .V;W / of domains into
three cases.

Case 1 (W 2 U begets V ) In this case, �WV D �
U
V , so we are done by .�/.

Case 2 (there is some U 2 U that begets both V and W ) Proposition 1.8 of [13]
states that, if W begets V, then �UV and �UW satisfy the consistency inequalities for V
and W. Consequently, by .�/, the only case we need to check here is when U tW,
W Ĺ V and diam.�UW [�

V
W .�

U
V //6 2E. Assuming that dV .�WV ; bV / > r

0C7ECEr ,
there are two possibilities, depending on the location of �UV .

If there is a geodesic Œ�UV ; bV � that is disjoint from the E–neighbourhood of �WV ,
then diam.�VW .�

U
V /[ �

V
W .bV //6E, so dW .�UW ; �

V
W .bV //6 3E. Moreover, for each

Q 2 Q there is some q 2Q such that any geodesic ŒbV ; �V .q/� is disjoint from the
E–neighbourhood of �WV . In particular, �VW .bV / is 2E–close to each �W .q/, and hence
�UW is 5E–close to each �W .Q/. Since bW lies on a shortest geodesic between �UW
and some �W .Q/, we get that dW .bW ; �UW /6 5E, and so bW is 8E–close to �VW .bV /.

Otherwise, every geodesic Œ�UV ; bV � meets the E–neighbourhood of �WV . By construc-
tion of bV , there exists Q 2Q such that dV .�WV ;Q/ > .r

0C 7ECEr/CEr � 2E D

r 0C5EC2Er . By the same argument as in .�/, we now get that �VW .bV / is 3E–close
to �W .Q/, which has diameter at most 3E. Hence, diam.bW [ �VW .bV //6 r 0C 7E.

Case 3 (no Ui begets both V and W, and neither V nor W is in U) After relabelling,
we can assume that U1 begets V and U2 begetsW. Since U1 does not begetW, we have
U1?W, and, similarly, U2?V. In particular, the only case that needs checking is when
V tW. The partial realisation axiom applied to any points p1 2 CU1 and p2 2 CU2
provides a point z 2X such that dV .z; �

U1

V /6E and dW .z; �
U2

W /6E. By consistency
for z, either dV .�WV ; �

U1

V /6 2E or dW .�VW ; �
U2

W /� 2E. We are done by .�/. G

In light of the claim, Theorem 3.2 provides a point x 2 X such that dV .x; bV / 6
�e.r

0 C 7E C Er/ for all V 2 S. By construction of the points bV , we have that
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dV .x;Q/6 r 0C �e.r
0C 7ECEr/ for all Q 2Q. Hierarchical quasiconvexity of Q

now tells us that x is k.r 0C�e.r 0C7ECEr//–close to Q for all Q 2Q.

It is worth noting that the proof of Theorem 3.5 gives flexibility of a similar kind to
that in Theorem 3.4. Indeed, we are free in our choice of U and, once this is chosen,
we apply the Chepoi–Dragan–Vaxès construction in each of the hyperbolic spaces
associated with U , without restriction on the choice of starting point therein. We shall
not need to make use of this in the present paper.

Corollary 3.6 If X is an HHS , then .X; �/ is coarsely injective , and hence roughly
geodesic.

Proof By Proposition 2.12, the geodesic coarse median space .X; �; d/ has quasi-
cubical intervals, so Theorem 2.13 tells us that the metric � is weakly roughly geodesic
on X, that it is quasi-isometric to d and that �–balls are uniformly coarsely median
convex. Let fB� .xi ; ri / W i 2 I g be a family of balls in .X; �/ with the property that
�.xi ; xj / � ri C rj for all i; j 2 I. Since � is weakly roughly geodesic, there is a
constant ı, independent of the family of balls, such that the balls B� .xi ; riCı/ intersect
pairwise.

Let Bi be the image of the ball B� .xi ; ri C ı/ under the identity quasi-isometry
.X; �/ ! .X; d/. The Bi are uniformly coarsely median convex, and so they are
uniformly hierarchically quasiconvex by [71, Proposition 5.11]. They also intersect
pairwise, and each is bounded, so Theorem 3.5 produces a point at uniformly bounded
d–distance from each Bi . As d and � are quasi-isometric, this point is at uniformly
bounded �–distance from each B� .xi ; ri C ı/. Thus, .X; �/ is coarsely injective.

Since any injective space is geodesic, we deduce that the coarsely injective metric
space .X; �/ is not merely weakly roughly geodesic, but actually roughly geodesic, as
it is coarsely dense in its injective hull.

Usually it really is necessary to change the metric: Example 5.13 of [26] shows that
Z3 with the standard `1 metric is not coarsely injective, though it is an HHG.

We now explain how to deduce the existence of a bicombing from work of Lang. See
Section 1.3 for the definitions of roughly conical and roughly reversible bicombings.

Corollary 3.7 If .X;S/ is an HHS , then .X; �/ admits a roughly conical , roughly
reversible bicombing by rough geodesics that is coarsely equivariant under the automor-
phism group of .X;S/.
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Proof According to Corollary 3.6, the metric space .X; �/ is coarsely injective, so it
is D–coarsely dense in its injective hull for some D. A construction of Lang shows that
every injective metric space E admits a conical, reversible, geodesic, IsomE–invariant
bicombing 
 0 [60]. TakeEDE..X; �//. For each a; b2X and t 2 Œ0; 1�, define 
a;b.t/
as any point ofX at distance at mostD from 
 0

a;b
.t/. Since 
.t/ is at uniform distanceD

from 
 0.t/, we deduce that 
 is a bicombing on .X; �/ with the listed properties.

Note that, if the action of the automorphism group of .X;S/ on X is free, then the
bicombing may be chosen to be actually equivariant.

Let us now discuss the consequences of our construction for HHGs.

Corollary 3.8 If G is an HHG , then G admits a proper , cocompact , isometric action
on the coarsely injective space .G; �/.

Proof .G; �/ is coarsely injective by Corollary 3.6. Since the median is equivariant in
an HHG, Lemma 2.10 tells us that the action is isometric. Properness and cocompactness
follow from Proposition 2.16.

Remark 3.9 In fact, we do not quite need to assume that we have a hierarchically
hyperbolic group in Corollary 3.8: we only need a proper cocompact action by median
isometries on an HHS. In fact, cocompactness can be relaxed to coboundedness for the
sake of the applications in this paper. For example, it would be sufficient to assume
that G is a group acting properly coboundedly by HHS automorphisms on an HHS.
The consequences for HHGs listed here and in the introduction therefore apply in this
generality.

The next lemma is a modified version of [26, Proposition 6.7], in which the assumption
that the hull is proper has been dropped.

Lemma 3.10 If a group G acts properly coboundedly on a coarsely injective space X,
then G acts properly coboundedly on the injective hull E.X/. In particular , every HHG
admits a proper , cobounded action on an injective space.

Proof There is an induced action of G on E.X/ and the isometric embedding e WX!
E.X/ is equivariant with respect to this induced action [60, Proposition 3.7]. To
simplify notation, we identify the points of X with their images under e and thus
identify X with E.X/. The Hausdorff distance between X and E.X/ is bounded
by some constant D, so the action of G on E.X/ is cobounded. For properness, let
Y �E.X/ be bounded and let Y 0Dfx 2X Wd.Y; x/6Dg¤¿. Since e is an isometric

Geometry & Topology, Volume 27 (2023)



1622 Thomas Haettel, Nima Hoda and Harry Petyt

embedding, Y 0 is bounded. If g 2G has gY \Y ¤¿, then pick y 2 Y with gy 2 Y
and let x 2X have d.y; x/6D. Then d.gy; gx/6D, so gx is D–close to Y. That is,
gY 0\Y 0 ¤¿, so, since Y 0 is bounded and the action of G on X is proper, there are
only finitely many such g. The final sentence follows from Corollary 3.8.

Next we strengthen Corollary 3.7 in the case of HHGs. In particular, this applies to
(extended) mapping class groups of finite-type surfaces.

Corollary 3.11 If G is an HHG , then G is semihyperbolic.

Proof By Lemma 3.10, G acts properly coboundedly on an injective space E. Every
orbit map G!E is a G–equivariant quasi-isometry. By [60, Proposition 3.8], E has
a G–invariant, bounded, geodesic bicombing in the sense of [4]. As the action of G on
itself is free, it is semihyperbolic by [4, Theorem 4.1].

Corollary 3.12 If G is an HHG , then G has finitely many conjugacy classes of finite
subgroups.

Proof By Lemma 3.10, G acts properly coboundedly on an injective space E. Let
x 2E and let r be a constant such that G �x is r–coarsely dense in E. Let F be a finite
subgroup of G. By [60, Proposition 1.2], there is a point z 2E that is fixed by F, and
hence F fixes the ball B.z; r/ in E, which contains a point of G � x. It follows that a
conjugate of F fixes a point in B.x; r/, and we are done by properness of the action.

3.3 Packing subgroups

Here we describe the application to bounded packing mentioned in the introduction.
Following Hruska and Wise [53], we say that a finite collection H of subgroups of a
discrete group G has bounded packing in G if for each N there is a constant r such
that, for any collection of N distinct cosets of elements of H, at least two are separated
by a distance of at least r (with respect to some left-invariant, proper distance). If H
consists of a single subgroup H, then we say that H has bounded packing in G.

Corollary 3.13 If H is a finite collection of hierarchically quasiconvex subgroups of a
group G that is an HHS , then H has bounded packing in G.

Proof By Theorem 3.5, any finite collection of cosets of elements of H that are
pairwise r–close must all come R–close to a single point x 2G. In other words, they
all intersect the R–ball about x. Since distinct cosets of a given subgroup are disjoint
and balls in G are finite, this bounds the size of the collection of cosets.
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In the case of quasiconvex subgroups of hyperbolic groups, one can use Theorem 3.4
in place of Theorem 3.5 in this argument to provide a new, simpler proof of bounded
packing. This type of argument is also implicit in [47, Remark 4.4 and Corollary 4.5],
though the coarse Helly property for quasiconvex subgroups of hyperbolic groups is
established in a much less efficient way there.

Previous proofs of this result work by induction on the height of subgroups. However,
this line of reasoning does not generalise outside the setting of strict negative curvature;
indeed, no subgroup of a flat can ever have finite height. Moreover, Theorems 3.4
and 3.5 are purely geometric: there is no group action involved. It therefore seems
that the most natural way to establish bounded packing for quasiconvex subgroups of
hyperbolic groups is via the Chepoi–Dragan–Vaxès theorem as described above.

If a group G has a codimension-1 subgroup H, then Sageev’s construction yields an
action of G on a CAT(0) cube complex, and, if the conjugates of H satisfy the coarse
Helly property, then it follows that the action of G on the CAT(0) cube complex is
cocompact [72]. This raises the following question:

Question Does the mapping class group have property FW1, ie does any action of
the mapping class group on a finite-dimensional CAT (0) cube complex have a fixed
point?

Note that property FW1 is intermediate between having no virtual surjection onto Z and
Kazhdan’s property (T). There are known restrictions on what an action of the mapping
class group on a CAT(0) cube complex could look like. Indeed, the mapping class group
of a surface of genus at least three does not admit a properly discontinuous action by
semisimple isometries on a complete CAT(0) space [58; 24; 22], nor, more specifically,
does it act properly on a CAT(0) cube complex (even an infinite-dimensional one) [44].

More generally, in relationship with property (T) and the Haagerup property, the
existence of nontrivial actions of the mapping class group on various generalisations
of CAT(0) cube complexes remains mysterious, for example median spaces, Hilbert
spaces, CAT(0) spaces, and Lp spaces. The coarse version of the Helly property
established here may prove useful in the study of such actions.

4 Strong shortcut property

In this section we will prove that coarsely injective spaces of uniformly bounded
geometry are strongly shortcut. Recall that a metric space has uniformly bounded
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geometry if, for any r > 0, there exists a uniform N.r/ 2 N such that every ball of
radius r contains at most N.r/ points.

A Riemannian circle S is S1 endowed with a geodesic metric of some length jS j. A
roughly geodesic metric space .X; �/ is strongly shortcut if there existsK >1 such that
for any C >0 there is a bound on the lengths jS j of .K;C /–quasi-isometric embeddings
S ! X of Riemannian circles S in .X; �/ [51]. A group G is strongly shortcut if it
acts properly and coboundedly on a strongly shortcut metric space [52; 51].

We will now give a brief description of the injective hull construction of Isbell [57],
which was later rediscovered by Dress [36] and Chrobak and Larmore [32]. For a nice
discussion on this construction, see Lang [60]. Let .X; �/ be a metric space. A radius
function on X is a function f WX !R�0 for which

�.x; y/� f .x/Cf .y/

for every x; y 2X. A radius function f WA!R�0 on any subspace of A�X is called
a partial radius function on X. If f; g W X ! R�0 are two radius functions, then f
dominates g if f .x/� g.x/ for all x 2X. A radius function f WX !R�0 is minimal
if the only radius function it dominates is itself.

If f W A! R�0 is a partial radius function on X, then there exists a minimal radius
function g W X !R�0 such that gjA is dominated by f. For any x 2 X, the function
�. � ; x/ is a minimal radius function. If f; g W X ! R�0 are two minimal radius
functions, then

jf �gj1 D sup
x2X

jf .x/�g.x/j

is finite. The set of minimal radius functions on X, with metric given by dE.X/.f; g/D
jf � gj1, is the injective hull E.X/ of X. The isometric embedding e W X ,! E.X/

sends x 2X to the minimal radius function e.x/ W y 7! �.x; y/ and, for any x 2X and
f 2E.X/, we have dE.X/.e.x/; f /D f .x/.

Lemma 4.1 Let .X; �/ be a metric space. Let g W X ! R�0 be a minimal radius
function , let Nf WX !R�0 be a radius function and let f WX !R�0 be any minimal
radius function dominated by Nf. Then jg�f j1 � jg� Nf j1.

Proof Let y2X. Then f .y/� Nf .y/�g.y/Cjg� Nf j1 and so f .y/�g.y/�jg� Nf j1.
It remains to prove that g.y/�f .y/� jg� Nf j1. By minimality of g, for any � > 0,
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there exists z 2 X for which g.y/C g.z/ < �.y; z/C �. Then, since f is a radius
function dominated by Nf,

f.y/��.y; z/�f.z/��.y; z/� Nf.z/��.y; z/�g.z/�jg� Nf j1>g.y/���jg� Nf j1

and so g.y/�f .y/ < jg� Nf j1C �, which completes the proof since we chose � > 0
arbitrarily.

Theorem 4.2 Let .X; �/ be a coarsely injective metric space. If .X; �/ has uniformly
bounded geometry, then .X; �/ is strongly shortcut.

Proof In order to prove this theorem, we will show that, for some uniform radius
r , a .K;C /–quasi-isometric embedding of a Riemannian circle S ! X implies the
existence of a “centre” point x such that the cardinality of the ball B.x; r/ is bounded
below by an expression that tends to infinity as K approaches 1 and jS j approaches
infinity. If X is not strongly shortcut, then, for any K > 1, it will admit .K;CK/–quasi-
isometric embeddings of arbitrarily long Riemannian circles, so that we would then
contradict the uniformly bounded geometry assumption.

Let X ! E.X/ be the embedding of .X; �/ into its injective hull and view this
embedding as an inclusion of a subspace. By Proposition 1.1, the subspace X is
ı–coarsely dense in E.X/ for some ı > 0. So there is a retraction r WE.X/!X such
that r is a .1; 2ı/–quasi-isometry.

Let � W S ! X be a .K;C /–quasi-isometric embedding of a Riemannian circle. Let
f 00 W �.S/! R�0 be the constant function taking the value K � 1

4
jS j CC. Then f 00

is a radius function on �.S/�X. Let f 0 W �.S/!R�0 be a minimal radius function
on �.S/ dominated by f 00. Then, for each x 2 �.S/ and each � > 0, there exists a
y 2 �.S/ for which f 0.x/Cf 0.y/ < �.x; y/C�. Since f 0 is a partial radius function
on X, we can let f W X ! R�0 be a minimal radius function on X dominated by f 0.
Then f is a point of E.X/, by definition of E.X/. Moreover, if x 2 �.S/, then
dE.X/.f; x/D f .x/� f

0.x/� f 00.x/DK � 1
4
jS jCC, so, if Ns is the antipode in S of

any element of s 2 ��1.x/, then

dE.X/.x; �.Ns//D dE.X/.�.s/; �.Ns//�
1

K
dS .s; Ns/�C D

jS j

2K
�C

and

dE.X/.x; �.Ns//� dE.X/.x; f /C dE.X/.f; �.Ns//D f .x/Cf .�.Ns//

� f .x/CK � 1
4
jS jCC;
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so that f .x/ � jS j=2K �K � 1
4
jS j � 2C D ..2�K2/=4K/jS j � 2C. Thus, we have

shown that
2�K2

4K
jS j � 2C � f .x/�K � 1

4
jS jCC

for any x 2 �.S/.

For x; y 2X, let `x;y D f .x/Cf .y/� �.x; y/. Since f is dominated by f 0, and f 0

is a minimal radius function on �.S/, for each x 2 �.S/ and each � > 0 there exists
y 2 �.S/ such that `x;y < �. Moreover, for a; b 2 S,

2�K2

2K
jS j � 4C � f .�.a//Cf .�.b//

D �.�.a/; �.b//C `�.a/;�.b/

�KdS .a; b/CC C `�.a/;�.b/
and so

dS .a; b/�
2�K2

2K2
jS j �

`�.a/;�.b/C 5C

K
:

Claim Let x 2 �.S/. There exists a sequence of minimal radius functions .f kx WX !
R�0/k , where k ranges in f0; 1; : : : ;Mxg, such thatMx Dbf .x/=ıc and the following
properties hold for all k, k0 and y:

(1) f 0x D f.

(2) dE.X/.f
k
x ; f

k0

x /D ıjk� k
0j.

(3) f .y/C kı� `x;y � f
k
x .y/� f .y/Cmaxf0; kı� `x;yg.

Proof We construct the .f kx /k by induction on k. By property (1), we must start with
f 0x D f. Assuming we have f k�1x , we will begin by defining a radius function Nf kx .
Set Nf kx .x/D f

k�1
x .x/� ı. By minimality of f k�1x , there exists y 2X for which the

inequality

(2) f k�1x .y/Cf k�1x .x/� ı < �.x; y/

holds. Indeed, if no such y existed then

y 7!

�
f k�1x .y/ if y ¤ x;
f k�1x .y/� 1

2
ı if y D x;

would be a radius function that is dominated by but not equal to f k�1x and this would
contradict minimality of f k�1x . Set Nf kx .x/ D f k�1x .x/ � ı. For all y 2 X n fxg
satisfying (2), set Nf kx .y/ D �.x; y/� f

k�1
x .x/C ı. For all other y 2 X n fxg, set
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Nf kx .y/D f
k�1
x .y/. Then, except for at y D x, we have Nf kx .y/� f

k�1
x .y/. Thus, to

check that Nf kx is a radius function, we need only verify that Nf kx .x/C Nf
k
x .y/� �.x; y/

for any y 2 X. When y D x, the inequality Nf kx .x/C Nf
k
x .y/ � �.x; y/ is equivalent

to f k�1x .x/ � ı, which holds by the inductive application of property (2) and the
triangle inequality. When y satisfies (2), the inequality Nf kx .x/C Nf

k
x .y/� �.x; y/ is

equivalent to f k�1x .x/�ıC�.x; y/�f k�1x .x/Cı��.x; y/, which holds with equality.
Finally, when y does not satisfy (2), Nf kx .x/C Nf

k
x .y/D f

k�1
x .x/� ıC f k�1x .y/ �

f k�1x .x/�ıC�.x; y/�f k�1x .x/CıD�.x; y/. Thus, Nf kx is a radius function. Define
f kx as any minimal radius function that is dominated by Nf kx .

Since Nf kx .y/D �.x; y/�f
k�1
x .x/C ı D �.x; y/� Nf kx .x/ for some y 2X, we must

have f kx .x/D Nf
k
x .x/D f

k�1
x .x/� ı. Thus, jf k�1x �f kx j1 � ı and

dE.X/.f
Mx
x ; x/D f Mx

x .x/D f .x/�Mxı D f .x/�

�
f .x/

ı

�
ı < ı;

so dE.X/.f
Mx
x ; x/ < ı. On the other hand, by Lemma 4.1, jf k�1x � f kx j1 �

jf k�1x � Nf kx j1 � ı and so dE.X/.f k�1x ; f kx /D jf
k�1
x �f kx j1 D ı. Therefore,

dE.X/.f; x/D f .x/

DMxıCf .x/�Mxı

DMxıC dE.X/.f
Mx
x ; x/

D

MxX
kD1

dE.X/.f
k�1
x ; f kx /C dE.X/.f

Mx
x ; x/;

where f 0x D f. Then, by the triangle inequality, property (2) is satisfied.

To verify property (3), let y 2X. We have

f .y/C kı� `x;y D �.x; y/C kı�f .x/D �.x; y/�f
k
x .x/� f

k
x .y/;

so the lower bound holds. The upper bound on f kx .y/ given by property (3) is Rk D
f .y/Cmaxf0; kı � `x;yg. Suppose property (3) doesn’t hold and let k be the least
integer for which f kx .y/ > Rk . Then k > 0 and k must satisfy f kx .y/� f

k�1
x .y/ >

Rk �Rk�1 � 0. By the construction of f kx , the fact that f kx .y/ > f
k�1
x .y/ implies

that f k�1x .y/Cf k�1x .x/� ı < �.x; y/ and that Nf kx .y/D �.x; y/�f
k�1
x .x/C ı D

�.x; y/� Nf kx .x/. Then we must have

f kx .y/D
Nf kx .y/D �.x; y/�

Nf kx .x/D �.x; y/�f
k
x .x/D f .y/C kı� `x;y �Rk;

which contradicts f kx .y/ > Rk . Thus, we have verified property (3). G
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We will now use the sequence .f kx /k of minimal radius functions to prove the theorem.
Assume that a; a0 2 S satisfy dS .a; a0/� .2.K2�1/=K2/jS jC .4ıC10C /=K. Such
a and a0 exist when K is close enough to 1. Take b 2 S for which `�.a/;�.b/ < ı. Then
dS .a; a

0/C dS .a
0; b/C dS .b; a/� jS j, so

dS .a
0; b/� jS j � dS .a; b/� dS .a; a

0/

� jS j �
2�K2

2K2
jS jC

`�.a/;�.b/C 5C

K
� dS .a; a

0/

< jS j �
2�K2

2K2
jS jC

5C C ı

K
� dS .a; a

0/

� jS j �
2�K2

2K2
jS jC

5C C ı

K
�
2.K2� 1/

K2
jS j �

4ıC 10C

K

D
2�K2

2K2
jS j �

3ıC 5C

K
and so

2�K2

2K2
jS j �

`�.a0/;�.b/C 5C

K
� dS .a

0; b/ <
2�K2

2K2
jS j �

3ıC 5C

K
;

which implies `�.a0/;�.b/ > 3ı. So

f 3�.a0/.�.b//� f .�.b//Cmaxf0; 3ı� `�.a0/;�.b/g

D f .�.b//

� f 3�.a/.�.b//� 3ıC `�.a/;�.b/

< f 3�.a/.�.b//� 2ı;

where the inequalities are applications of property (3). Thus,

dE.X/.f
3
�.a0/; f

3
�.a// > 2ı

and so r.f 3
�.a0/

/ and r.f 3
�.a/

/ are distinct elements of the metric ball B.r.f /; 5ı/ of
radius 5ı centred at r.f / inX. So, if faigNiD1�S subdivide S into segments of length at
least .2.K2�1/=K2/jS jC.4ıC10C /=K, then B.r.f /; 5ı/ contains at leastN points.
Subdividing S evenly, we can achieve N Db.2.K2�1/=K2C .4ıC10C /=KjS j/�1c.
So we have shown that, if X admits a .K;C /–quasi-isometric embedding of a Rie-
mannian circle S and K is close enough to 1, then, for some x 2 X, we have
jB.x; 5ı/j � b.2.K2� 1/=K2C .4ıC 10C /=KjS j/�1c.

To complete the proof, suppose X is not strongly shortcut. Then, for each K > 1,
there exists CK > 0 and a sequence .�n W Sn ! X/n of .K;CK/–quasi-isometric
embeddings of Riemannian circles where jSnj � n. The argument above shows
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that, for each small enough K > 1 and each n 2 N, there exists xK;n 2 X satis-
fying jB.xK;n; 5ı/j � b.2.K2 � 1/=K2C .4ıC 10Ck/=KjSnj/�1c. The expression
.2.K2�1/=K2C.4ıC10CK/=KjSnj/

�1 tends toK2=2.K2� 1/ as n tends to infinity,
so, if nK 2 N is large enough, then jB.xK;nK

; 5ı/j � K2=2.K2� 1/� 1. But this
contradicts the uniform bounded geometry assumption onX sinceK2=2.K2� 1/ tends
to infinity as K tends to 1.
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