Geometry \&
 Topology

Volume 27 (2023)

Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions

Otis Chodosh

Chao Li
Yevgeny Liokumovich

Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions

Otis Chodosh
Chao Li
Yevgeny Liokumovich

Abstract

We show that if N is a closed manifold of dimension $n=4$ (resp. $n=5$) with $\pi_{2}(N)=0\left(\right.$ resp. $\left.\pi_{2}(N)=\pi_{3}(N)=0\right)$ that admits a metric of positive scalar curvature, then a finite cover \hat{N} of N is homotopy equivalent to S^{n} or connected sums of $S^{n-1} \times S^{1}$. Our approach combines recent advances in the study of positive scalar curvature with a novel argument of Alpert, Balitskiy and Guth.

Additionally, we prove a more general mapping version of this result. In particular, this implies that if N is a closed manifold of dimensions 4 or 5 , and N admits a map of nonzero degree to a closed aspherical manifold, then N does not admit any Riemannian metric with positive scalar curvature.

Introduction

We are concerned here with the problem of classification of manifolds admitting positive scalar curvature (PSC). For closed (compact, no boundary) 2- and 3-manifolds, this problem is completely resolved; namely, the sphere and projective plane are the only closed surfaces admitting positive scalar curvature and a 3 -manifold admits positive scalar curvature if and only if it has no aspherical factors in its prime decomposition. In particular, a 3-manifold admitting positive scalar curvature has a finite cover diffeomorphic to S^{3} or to a connected sum of finitely many $S^{2} \times S^{1}$.

The main result of this paper is the following partial generalization of this statement to dimensions $n=4,5$:

[^0]Theorem 1 Suppose that N is a closed smooth n-manifold admitting a metric of positive scalar curvature and

- $n=4$ and $\pi_{2}(N)=0$, or
- $n=5$ and $\pi_{2}(N)=\pi_{3}(N)=0$.

Then a finite cover \hat{N} of N is homotopy equivalent to S^{n} or connected sums of $S^{n-1} \times S^{1}$.

Chodosh and Li [7] and Gromov [14] showed that, if a closed N^{n} is aspherical (ie $\pi_{k}(N)=0$ for all $k \geq 2$) and $n=4,5$, then there is no Riemannian metric of positive scalar curvature on N. Theorem 1 can thus be seen as a refinement of this into a positive result.

Remark By Theorem 1.3 of Gadgil and Seshadri [12] (see also Freedman [11], Milnor [26] and Kreck and Lück [22]), we have that if $n=4$ and \hat{N} is homotopy equivalent to S^{4} or $S^{3} \times S^{1}$, or if $n=5$ (with no further restriction on the homotopy type), then homotopy equivalence in the conclusion to Theorem 1 can be upgraded to homeomorphism.

We also prove a more general "mapping" version of Theorem 1.
Theorem 2 Suppose that N is a closed smooth n-manifold with a metric of positive scalar curvature and there exists a nonzero degree map $f: N \rightarrow X$, to a manifold X satisfying

- $n=4$ and $\pi_{2}(X)=0$, or
- $n=5$ and $\pi_{2}(X)=\pi_{3}(X)=0$.

Then a finite cover \hat{X} of X is homotopy equivalent to S^{n} or connected sums of $S^{n-1} \times S^{1}$.

We note that the following result immediately follows from Theorem 2:
Corollary 3 Let $n \in\{4,5\}, X$ and N be closed oriented manifolds of dimension n, and X be aspherical. Suppose there exists a map $f: N \rightarrow X$ with $\operatorname{deg} f \neq 0$. Then N does not admit any Riemannian metric of positive scalar curvature.

Recall that it was previously shown in [7;14] that closed aspherical (ie $\pi_{k}(N)=0$ for all $k \geq 2$) n-manifolds do not admit PSC for $n=4$, 5. In [14] a related statement
was proven for manifolds admitting proper, distance-decreasing maps to uniformly contractible manifolds. In fact, Corollary 3 seems to have been asserted by Gromov [15, page 144-145], but the (relatively simple) lifting argument does not appear there.

0.1 Urysohn width bounds

Recall that a metric space (X, d) has Urysohn q-width $\leq \Lambda$ if there is a q-dimensional simplicial complex K and a continuous map $X \rightarrow K$ such that $\operatorname{diam} f^{-1}(s) \leq \Lambda$ for all $s \in K$. As such, having finite Urysohn q-width implies that a manifold looks $\leq q$-dimensional in some macroscopic sense.

A well-known conjecture (see [15, page 63]) of Gromov posits that an n-manifold with scalar curvature ≥ 1 has finite Urysohn ($n-2$)-width. Various forms of this conjecture are proven for $n=3$ - see Gromov and Lawson [16], Katz [21], Marques and Neves [24] and Liokumovich and Maximo [23] — while the conjecture is largely open for $n \geq 4$ (some progress has been achieved by Bolotov and Dranishnikov [2; 3]). A key component in the proof of Theorem 1 is the following result:

Theorem 4 For $\left(N^{n}, g\right)$ satisfying the hypothesis of Theorem 1, the universal cover (\tilde{N}, \tilde{g}) has finite Urysohn 1-width.

This follows by combining Corollary 7 and Proposition 8 below. A simple example where Theorem 1 applies is the product metric on $S^{1} \times S^{3}$, whose universal cover is $\mathbb{R} \times S^{3}$, clearly of finite Urysohn 1-width. On the other hand, we note that the higher connectivity hypothesis in Theorem 4 is necessary: compare with $T^{2} \times S^{2}$.

Remark Consider a metric g_{R} on S^{3} formed by capping off a cylinder $[-R, R] \times S^{2}(1)$ with hemispheres and smoothing out the resulting metric, so that the scalar curvature is ≥ 1. The product metric $\left(S^{1}(1), g_{S}\right) \times\left(S^{3}, g_{R}\right)$ has scalar curvature ≥ 1 but the universal cover has Urysohn 1 -width $\sim R$. As such, the estimate in Theorem 4 cannot be made quantitative (essentially, the issue is that the universal cover converges to $\mathbb{R}^{2} \times S^{2}(1)$, which has nontrivial $\left.\pi_{2}\right)$.

As we were finishing this paper, we discovered that, recently, Gromov has indicated a proof of the classification of PSC 3-manifolds [15, page 135] by using finiteness of the 1 -Urysohn width of the universal cover. Our proof of Theorem 1 follows a similar strategy once Theorem 4 is proven.

0.2 Remarks on positive isotropic curvature

Theorem 1 has an interesting relationship to well-known conjectures of Gromov [13, Section 3(b)] and Schoen [29] concerning the topology of closed n-manifolds admitting a metric with positive isotropic curvature (PIC). Namely, they (respectively) conjecture that if a closed manifold has a PIC metric then the fundamental group is virtually free and a finite cover is diffeomorphic to either a sphere or connected sums of finitely many $S^{1} \times S^{n-1}$.

There have been distinct approaches to such a question, relying on either minimal surface theory or Ricci flow. Using minimal surface theory, Micallef and Moore have shown that, if M^{n} is a closed PIC manifold then $\pi_{k}(M)=0$ for $k=2, \ldots,\left[\frac{1}{2} n\right]$ [25]. In particular, if M is simply connected, then it is homeomorphic to a sphere. In related work, Fraser has proven that an n-manifold ($n \geq 5$) with PIC does not contain a subgroup isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$ [10].

On the other hand, using Ricci flow, Hamilton has classified 4-manifolds admitting PIC that do not contain nontrivial incompressible ($n-1$)-dimensional space forms [18]. This was extended to prove the Gromov-Schoen conjectures for $n=4$ by Chen, Tang and Zhu [6]. In higher dimensions, Brendle and Schoen [5] and Nguyen [27] proved the PIC condition is preserved under the Ricci flow; this is an important ingredient in Brendle and Schoen's proof of the differentiable sphere theorem. Recently, Brendle has achieved a breakthrough in the study of the Ricci flow of PIC manifolds and has extended Hamilton's result to dimensions $n \geq 12$ [4]; as above, this result has been used to prove the Gromov-Schoen conjectures for $n \geq 12$ by Huang [20].
We note that, since PIC implies PSC, combining [25] with Theorem 1 yields an alternative proof of Gromov's conjecture (the fundamental group is virtually free) for $n=4$ and proves a weak version of Schoen's conjecture for $n=4$ (ie with homotopy equivalence replacing diffeomorphism). Furthermore, Theorem 1 implies that a PIC 5-manifold with $\pi_{3}(M)=0$ satisfies Gromov's conjecture and the same weak version of Schoen's conjecture. It is an interesting question if a 5 -manifold with PIC has $\pi_{3}(M)=0$ (note that $\pi_{2}(M)=0$ by [25]).

Organization of the paper

In Section 1 we revisit the filling radius estimates from [7; 14]. In Section 2 we show that such estimates imply Theorem 4. Then, we complete the proof of Theorem 1 in Section 3. Finally, in Section 4 we prove Theorem 2.

Acknowledgements

Chodosh was supported by a Sloan Fellowship, a Terman Fellowship and NSF grant DMS-2016403. Li was supported by NSF grant DMS-2005287. Liokumovich was supported by a NSERC Discovery grant and an NSERC Accelerator award. We are grateful to Hannah Alpert, Larry Guth, Ciprian Manolescu, Kasra Rafi and Boyu Zhang for various discussions related to this article. We would like to thank Georg Frenck for suggesting the statement of Theorem 2 to us as well as the referee for several helpful suggestions.

1 Filling estimates

In [7; 14], it was shown that a closed aspherical n-manifold does not admit positive scalar curvature for $n=4$, 5 by combining a linking argument with a filling radius inequality in the presence of positive scalar curvature. In this section we observe that this filling radius inequality carries over to the setting considered here.

We begin by summarizing the results contained in [7] that will be needed in this paper.
Theorem 5 Consider $\left(N^{n}, g\right)$ a closed Riemannian n-manifold with scalar curvature $R \geq 1$. Fix a Riemannian cover (\hat{N}, \hat{g}).
(1) Suppose that $n=4$. There is a universal constant $L_{0}>0$ with the following property. Consider a closed embedded 2-dimensional submanifold $\hat{\Sigma}_{2} \subset \hat{N}$ with $\left[\widehat{\Sigma}_{2}\right]=0 \in H_{2}(\hat{N} ; \mathbb{Z})$. Then there is a 3-chain $\widehat{\Sigma}_{3}^{\prime} \subset B_{L_{0}}\left(\widehat{\Sigma}_{2}\right)$ and a closed embedded 2-dimensional submanifold $\widehat{\Sigma}_{2}^{\prime}$ with

$$
\partial \hat{\Sigma}_{3}^{\prime}=\hat{\Sigma}_{2}-\hat{\Sigma}_{2}^{\prime}
$$

as chains such that, for every connected component S of $\hat{\Sigma}_{2}^{\prime}$, the extrinsic diameter of S satisfies $\operatorname{diam}(S) \leq L_{0}$.
(2) Suppose that $n=5$. There is a universal constant $L_{0}>0$ with the following property. Consider a closed embedded 3-dimensional submanifold $\hat{\Sigma}_{3} \subset \hat{N}$ with $\left[\widehat{\Sigma}_{3}\right]=0 \in H_{3}(\widehat{N} ; \mathbb{Z})$. Then there is a 4-chain $\widehat{\Sigma}_{4}^{\prime} \subset B_{L_{0}}\left(\widehat{\Sigma}_{3}\right)$ and a closed embedded 3-dimensional submanifold $\hat{\Sigma}_{3}^{\prime}$ with

$$
\partial \Sigma_{4}^{\prime}=\Sigma_{3}-\Sigma_{3}^{\prime}
$$

as chains as well as 3-chains $\hat{U}_{1}, \ldots, \hat{U}_{m}$ with $\operatorname{diam}\left(\hat{U}_{j}\right) \leq L_{0}$ and 2-cycles

$$
\left\{\hat{\Gamma}_{j}^{l}: j=1, \ldots, m, l=1, \ldots, k(j)\right\}
$$

with $\operatorname{diam}\left(\hat{\Gamma}_{j}^{l}\right) \leq L_{0}$ such that

$$
\widehat{\Sigma}_{3}=\sum_{j=1}^{m} \hat{U}_{j} \quad \text { and } \quad \partial \hat{U}_{j}=\sum_{l=1}^{k(j)} \hat{\Gamma}_{j}^{l} \quad \text { for each } j=1, \ldots, m
$$

where both equalities hold as chains (not just in homology). Finally, there is an integer q and a function

$$
u:\{(j, l): j=1, \ldots, m, l=1, \ldots, k(j)\} \rightarrow\{1, \ldots, q\}
$$

such that, for $r \in\{1, \ldots, q\}$, we have

$$
\operatorname{diam}\left(\bigcup_{(j, l) \in u^{-1}(r)} \hat{\Gamma}_{j}^{l}\right) \leq L_{0}
$$

and, moreover,

$$
\sum_{(j, l) \in u^{-1}(r)} \hat{\Gamma}_{j}^{l}=0
$$

as 2-chains for $r \in\{1, \ldots, q\}$.
Proof When $n=4$, one can solve Plateau's problem to find $\hat{\Sigma}_{3}$ minimizing area with $\partial \widehat{\Sigma}_{3}=\widehat{\Sigma}_{2}$. Applying the " μ-bubble technique" (see [7, Section 3]), we can find $\widehat{\Sigma}_{2}^{\prime} \subset \widehat{\Sigma}_{3}$ with $d_{\widehat{\Sigma}_{3}}\left(\widehat{\Sigma}_{2}^{\prime}, \widehat{\Sigma}_{2}\right) \leq L_{0}$ and such that $\widehat{\Sigma}_{2}^{\prime} \subset \widehat{\Sigma}_{3}$ is a "stable μ-bubble" in the sense of [7, Lemma 14]. By [7, Lemma 16], the intrinsic diameter of each component is $\leq L_{0}$ (taking L_{0} larger if necessary). This proves the assertion (since extrinsic distances are bounded by the intrinsic distances).

Similarly, when $n=5$, we can solve Plateau's problem to find $\hat{\Sigma}_{4}$ minimizing area with $\partial \hat{\Sigma}_{4}=\hat{\Sigma}_{3}$. As before, we can find a "stable μ-bubble" $\widehat{\Sigma}_{3}^{\prime}$ with $d_{\widehat{\Sigma}_{4}}\left(\widehat{\Sigma}_{3}^{\prime}, \widehat{\Sigma}_{3}\right) \leq L_{0}$. Finally, the construction of the \hat{U}_{j} and $\hat{\Gamma}_{j}^{k}$ follows from the "slice-and-dice" procedure from [7, Sections 6.3-6.4].
Note that the last conclusion (ie that $\sum_{(j, l) \in u^{-1}(r)} \hat{\Gamma}_{j}^{l}=0$) was stated slightly differently in [7]. To be precise, it was proven that the cycles $\sum_{(j, l) \in u^{-1}(r)} \widehat{\Gamma}_{j}^{l}$ are disjoint for distinct r (see [7, Section 6.4]). Now, by using $\sum_{r=1}^{q} \sum_{(j, l) \in u^{-1}(r)} \widehat{\Gamma}_{j}^{l}=$ $\partial\left(\sum_{j=1}^{m} U_{j}\right)=0$, we find that each term in the sum must vanish.

Example 1 We illustrate the "slice-and-dice" procedure and its relevance to the statements of Theorem 5 with Figure 1, where $\widehat{\Sigma}_{3}^{\prime}$ is diffeomorphic to $S^{2} \times S^{1}$. We first cut (slice) $\hat{\Sigma}_{3}^{\prime}$ by an embedded S^{2} and view the result as a 3 -manifold with boundary, which we further cut (dice) into seven 3 -chains $\hat{U}_{1}, \ldots, \hat{U}_{7}$ such that each

Figure 1: Cutting the 3-cycle $\hat{\Sigma}_{3}^{\prime}$ into small pieces.
\widehat{U}_{j} satisfies diam $\hat{U}_{j} \leq L_{0}$ (of course, the number of chains may vary in different examples). We label the boundary components of \hat{U}_{j}, from left to right in the figure, by $\widehat{\Gamma}_{j}^{l}$ for $l=1, \ldots, k(j)$. Note that, in this case, there are four such boundary components that are nonsmooth, namely $\widehat{\Gamma}_{2}^{2}, \widehat{\Gamma}_{3}^{1}, \widehat{\Gamma}_{4}^{3}$ and $\widehat{\Gamma}_{6}^{1}$. The function u groups different $\widehat{\Gamma}_{j}^{l}$ that glue together into a 2 -cycle. For example, we have

$$
u(2,2)=u(3,1)=u(4,3)=u(6,1)
$$

and

$$
u(1,1)=u(2,1), \quad u(3,2)=u(4,1), \quad u(4,2)=u(5,1), \quad u(6,2)=u(7,1)
$$

Moreover, the values of u on different groups of $\hat{\Gamma}_{j}^{l}$ are different (eg $\left.u(2,2) \neq u(1,1)\right)$. Note here that $\sum_{(j, l) \in u^{-1}(r)} \widehat{\Gamma}_{j}^{l}=0$ for each r.

The following proposition will be used to replace [7, Proposition 10] in the more general setting considered here:

Proposition 6 Consider $\pi:(\hat{N}, \hat{g}) \rightarrow(N, g)$ a regular ${ }^{1}$ Riemannian covering map of n-dimensional manifolds, with (N, g) compact. Assume that $H_{l}(\hat{N}, \mathbb{Z})=0$. Then, for $r>0$, there is $R=R(r)<\infty$ such that $H_{l}\left(B_{r}(x), \mathbb{Z}\right) \rightarrow H_{l}\left(B_{R}(x), \mathbb{Z}\right)$ is the zero map for any $x \in \widehat{N}$.

[^1]Proof We first fix $x=x_{0}$. For any $r>0$, there is $r_{1} \in[r, 2 r]$ with $\overline{B_{r_{1}}\left(x_{0}\right)}$ a compact manifold (with boundary). By Corollaries A. 8 and A. 9 in [19], the homology groups of $\overline{B_{r_{1}}\left(x_{0}\right)}$ are finitely generated. Assume that $\alpha_{1}, \ldots, \alpha_{J}$ generates $H_{l}\left(\overline{B_{r_{1}}\left(x_{0}\right)}, \mathbb{Z}\right)$. By assumption, for each $i, \alpha_{i}=\partial \beta_{i}$ for some $(l+1)$-chains $\beta_{1}, \ldots, \beta_{J}$. Choose $R_{1}=R_{1}(r)$ so that $\beta_{i} \in B_{R_{1}}\left(x_{0}\right)$ for $i=1, \ldots, J$. Then we see that $H_{l}\left(\overline{B_{r_{1}}\left(x_{0}\right)}, \mathbb{Z}\right) \rightarrow$ $H_{l}\left(B_{R_{1}}\left(x_{0}\right), \mathbb{Z}\right)$ is the zero map, so, in particular,

$$
H_{l}\left(B_{r}\left(x_{0}\right), \mathbb{Z}\right) \rightarrow H_{l}\left(B_{R_{1}}\left(x_{0}\right), \mathbb{Z}\right)
$$

is the zero map.
Now, for any $x \in \hat{N}$, we can assume (using a deck transformation) that $d\left(x, x_{0}\right) \leq$ diam N. Thus,

$$
B_{r}(x) \subset B_{r+\operatorname{diam} N}\left(x_{0}\right) \quad \text { and } \quad B_{R_{1}(r+\operatorname{diam} N)}\left(x_{0}\right) \subset B_{R_{1}(r+\operatorname{diam} N)+\operatorname{diam} N}(x)
$$

Thus, we find that the assertion holds for $R(r)=R_{1}(r+\operatorname{diam} N)+\operatorname{diam} N$.
Putting these facts together, we thus obtain the following generalization of the filling estimate obtained in [7; 14]:

Corollary 7 Suppose that, for $n \in\{4,5\},\left(N^{n}, g\right)$ is a closed Riemannian n-manifold with positive scalar curvature and $\pi_{2}(N)=\cdots=\pi_{n-2}(N)=0$. Then there is $L=$ $L(N, g)>0$ with the following property. Consider Σ_{n-2} an closed embedded ($n-2$)submanifold in \tilde{N} the universal cover. Then Σ_{n-2} is nullhomologous in $B_{L}\left(\Sigma_{n-2}\right)$.

Proof Observe that the universal cover \tilde{N} has $\pi_{1}(\tilde{N})=\cdots=\pi_{n-2}(\tilde{N})=0$. By the Hurewicz theorem, $H_{n-3}(\tilde{N}, \mathbb{Z})=H_{n-2}(\tilde{N}, \mathbb{Z})=0$.

When $n=4$, the assertion immediately follows from a combination of Theorem 5 with Proposition 6. Indeed, Theorem 5 implies that Σ_{2} is homologous to Σ_{2}^{\prime} in $B_{L_{0}}\left(\Sigma_{2}\right)$, where $\operatorname{diam}\left(\Sigma_{2}^{\prime}\right) \leq L_{0}$. Proposition 6 implies that Σ_{2}^{\prime} can be filled in an $R\left(L_{0}\right)$-neighborhood. Thus, Σ_{2} can be filled in an $\left(L_{0}+R\left(L_{0}\right)\right)$-neighborhood.
When $n=5$, the proof is more complicated due to the nature of the "slice-anddice" decomposition in Theorem 5. Fix $\widehat{\Sigma}_{3}^{\prime} \subset B_{L_{0}}\left(\Sigma_{3}\right)$ homologous to Σ_{3} and $\left\{\hat{U}_{j}\right\}$ and $\left\{\hat{\Gamma}_{j}^{l}\right\}$ with the properties described in Theorem 5. We can now fill $\widehat{\Sigma}_{3}^{\prime}$ in a bounded neighborhood following [7, Section 6.4], which we explain here. Since diam $\left(\hat{\Gamma}_{j}^{l}\right) \leq L_{0}$, Proposition 6 implies that $\widehat{\Gamma}_{j}^{l}=\partial \widetilde{\Gamma}_{j}^{l}$ for a 3-chain with $\operatorname{diam}\left(\widetilde{\Gamma}_{j}^{l}\right) \leq R\left(L_{0}\right)$. Then, because $\operatorname{diam}\left(\hat{U}_{j}\right) \leq L_{0}$,

$$
\widehat{U}_{j}-\sum_{l=1}^{k(j)} \widetilde{\Gamma}_{j}^{l}
$$

is a 3-cycle of diameter $\leq L_{0}+2 R\left(L_{0}\right)$. Thus, by Proposition 6, there is a 4-chain \tilde{U}_{j} with $\operatorname{diam}\left(\tilde{U}_{j}\right) \leq R\left(L_{0}+2 R\left(L_{0}\right)\right)$ and

$$
\partial \widetilde{U}_{j}=\widehat{U}_{j}-\sum_{l=1}^{k(j)} \widetilde{\Gamma}_{j}^{l}
$$

On the other hand, as was proven in Theorem 5, there is

$$
u:\{(j, l): j=1, \ldots, m, l=1, \ldots, k(j)\} \rightarrow\{1, \ldots, q\}
$$

such that

$$
\operatorname{diam}\left(\bigcup_{(j, l) \in u^{-1}(r)} \hat{\Gamma}_{j}^{l}\right) \leq L_{0}
$$

and

$$
\sum_{(j, l) \in u^{-1}(r)} \hat{\Gamma}_{j}^{l}=0
$$

as 2-chains.
As such, for $r \in\{1, \ldots, q\}, \sum_{(j, l) \in u^{-1}(r)} \widetilde{\Gamma}_{j}^{l}$ is a 3-cycle of diameter bounded by $2 R\left(L_{0}\right)+L_{0}$ and thus there is a 4-chain $\widehat{\Xi}_{r}$ with $\operatorname{diam}\left(\Xi_{r}\right) \leq R\left(L_{0}+2 R\left(L_{0}\right)\right)$ and

$$
\partial \Xi_{r}=\sum_{(j, l) \in u^{-1}(r)} \widetilde{\Gamma}_{j}^{l}
$$

This yields

$$
\hat{\Sigma}_{3}^{\prime}=\partial\left[\sum_{r=1}^{q} \Xi_{q}+\sum_{j=1}^{m} \tilde{U}_{j}\right]
$$

with

$$
\sum_{r=1}^{q} \Xi_{q}+\sum_{j=1}^{m} \tilde{U}_{j} \subset B_{R\left(L_{0}+2 R\left(L_{0}\right)\right)}\left(\hat{\Sigma}_{3}^{\prime}\right)
$$

Thus, Σ_{3} is nullhomologous in an $\left(R\left(L_{0}+2 R\left(L_{0}\right)\right)+R\left(L_{0}\right)\right)$-neighborhood.

Example 2 Continuing Example 1, we illustrate in Figure 2 how Corollary 7 works for $\widehat{\Sigma}_{3}^{\prime}$ in Figure 1. Consider all 2-cycles $\widehat{\Gamma}_{j}^{i}$ with $u(j, i)=r$. Fill in $\widehat{\Gamma}_{j}^{l}$ with a 3-chain $\widetilde{\Gamma}_{j}^{l}$. By construction, the sum of these $\widetilde{\Gamma}_{j}^{l}$ forms a 3-cycle, which can then be filled in by a 4-chain Ξ_{r}. By Proposition 6 and Corollary 7, the diameter of all these fill-ins are bounded by $R\left(L_{0}+2 R\left(L_{0}\right)\right)$.

Figure 2: To fill in $\left\{\hat{\Gamma}_{j}^{l}: u(j, l)=r\right\}$, we first fill in each $\hat{\Gamma}_{j}^{l}$ with $\widetilde{\Gamma}_{j}^{l}$ (center), then fill in by Ξ_{r} to obtain a 3-cycle (right).

2 Filling versus Urysohn width

The next result is inspired by work of Hannah Alpert, Alexey Balitskiy and Larry Guth [1], which we learnt about from a talk by Alpert. The strategy should be compared with [16, Corollary 10.11].

Proposition 8 Assume that $\left(N^{n}, g\right)$ has the property that any closed embedded ($n-2$)submanifold in the universal cover $\Sigma_{n-2} \subset \tilde{N}$ can be filled in $B_{L}\left(\Sigma_{n-2}\right)$. Then the universal cover (\tilde{N}, \tilde{g}) satisfies:
(*) For any point $p \in \tilde{N}$, each connected component of a level set of $d(p, \cdot)$ has diameter $\leq 20 L$.

Note that Corollary 7 implies a manifold (N, g) in Theorem 1 satisfies the assumptions of Proposition 8. By the argument in [17, Corollary 10.11], this shows that the universal cover (\tilde{N}, \tilde{g}) has Urysohn 1 -width $\leq 20 L$. In particular, the macroscopic dimension of \tilde{N} is 1 .

Proof Let $p \in \tilde{N}$ be a point and consider level sets of the distance function $f(x)=$ $d(p, x)$.
For the sake of contradiction, suppose that there is a curve $\gamma \subset f^{-1}(t)$ connecting points x and y with $d(x, y) \geq 20 L$. Fix a minimizing geodesic η_{x} from p to x (and similarly for η_{y}) and consider the triangle $T=\eta_{x} * \gamma *-\eta_{y}$. Fix $0<l<L$ such that $\partial B_{4 L+l}(x)$ and $\partial B_{L+l}\left(\eta_{x}\right)$ are smooth hypersurfaces intersecting transversely. Set $\Sigma_{n-2}:=\partial B_{4 L+l}(x) \cap \partial B_{L+l}\left(\eta_{x}\right)$. Note that we have not ruled out $\Sigma_{n-2}=\varnothing$; in this case we will take $d\left(\Sigma_{n-2}, \cdot\right)=\infty$ below.

By construction,

$$
d\left(\Sigma_{n-2}, \eta_{x}\right)>L
$$

Set $\Sigma_{n-1}^{\prime}:=\partial B_{4 L+l}(x) \cap \overline{B_{L+l}\left(\eta_{x}\right)}$ and note that $\partial \Sigma_{n-1}^{\prime}=\Sigma_{n-2}$. Observe that, since η_{x} is a minimizing geodesic between p and x and Σ_{n-1}^{\prime} is a subset of $\partial B_{4 L+l}(x)$, it must hold that η_{x} intersects Σ_{n-1}^{\prime} exactly once and does so orthogonally (and thus transversally). We will return to this observation below.

Lemma 9

$$
d\left(\Sigma_{n-2}, \gamma\right) \geq d\left(\Sigma_{n-1}^{\prime}, \gamma\right)>L
$$

Proof We first prove that $d\left(\Sigma_{n-1}^{\prime}, \gamma\right)>L$. Choose $s \in \Sigma_{n-1}^{\prime}$ with $d(s, \gamma)=$ $d\left(\Sigma_{n-1}^{\prime}, \gamma\right)$. There is $e \in \eta_{x}$ such that $d(s, e) \leq L+l$. We have

$$
d(x, e) \geq d(x, s)-d(s, e) \geq 4 L+l-(L+l)=3 L
$$

Since η_{x} is minimizing (and has length t), we have $d(p, e) \leq t-3 L$. Thus,

$$
d(p, s) \leq d(p, e)+d(e, s) \leq t-3 L+L+l=t-2 L+l .
$$

Thus,

$$
d(s, \gamma) \geq d(p, \gamma)-d(p, s) \geq t-(t-2 L+l)=2 L-l
$$

This completes the proof of $d\left(\Sigma_{n-1}^{\prime}, \gamma\right)>L$. Since $\Sigma_{n-2} \subset \Sigma_{n-1}^{\prime}$, it clearly holds that $d\left(\Sigma_{n-2}, \gamma\right) \geq d\left(\Sigma_{n-1}^{\prime}, \gamma\right)$.

Lemma 10

$$
\Sigma_{n-1}^{\prime} \cap \eta_{y}=\varnothing
$$

Proof Suppose the contrary. Consider $s \in \Sigma_{n-1}^{\prime} \cap \eta_{y}$. Note that $d(s, x)=4 L+l$ and there is $e \in \eta_{x}$ with $d(s, e) \leq L+l$. We have

$$
d(x, e) \leq d(x, s)+d(e, s) \leq 5 L+2 l
$$

As such,

$$
d(p, e) \geq t-5 L-2 l
$$

so

$$
d(p, s) \geq d(p, e)-d(e, s) \geq t-5 L-2 l-L-l=t-6 L-3 l
$$

Thus,

$$
d(s, y) \leq 6 L+3 l
$$

However, this contradicts

$$
20 L \leq d(x, y) \leq d(x, s)+d(s, y) \leq 4 L+l+6 L+3 l=10 L+4 l
$$

Lemma 11

 $d\left(\Sigma_{n-2}, \eta_{y}\right)>L$.Proof The proof is similar to the previous argument. Suppose we have $s \in \Sigma_{n-2}$ and $e_{y} \in \eta_{y}$ with $d\left(s, e_{y}\right) \leq L$. There is $e_{x} \in \eta_{x}$ with $d\left(s, e_{x}\right)=L+l$. Note that
$d(s, x)=4 L+l$. Thus,

$$
d\left(p, e_{x}\right)=t-d\left(x, e_{x}\right) \geq t-d(x, s)-d\left(s, e_{x}\right) \geq t-5 L-2 l
$$

Thus,

$$
d\left(p, e_{y}\right) \geq d\left(p, e_{x}\right)-d\left(e_{x}, e_{y}\right) \geq d\left(p, e_{x}\right)-d\left(e_{x}, s\right)-d\left(s, e_{y}\right)=t-7 L-3 l
$$

This implies that

$$
d\left(y, e_{y}\right) \leq 7 L+3 l
$$

However, this contradicts

$$
20 L \leq d(x, y) \leq d(x, s)+d\left(s, e_{y}\right)+d\left(e_{y}, y\right) \leq 12 L+4 l
$$

We can now complete the proof of Proposition 8. Perturb the triangle T to be a smooth embedded curve T^{\prime} still intersecting Σ_{n-1}^{\prime} transversely. As long as the perturbation is small, $T^{\prime} \cap \Sigma_{n-1}^{\prime}$ will consist of a single point (thanks to Lemmas 9 and 10, along with the observation that η_{x} intersects Σ_{n-1}^{\prime} transversely in exactly one point). Assume first that $\Sigma_{n-2} \neq \varnothing$. By assumption, there is $\Sigma_{n-1} \subset B_{L}\left(\Sigma_{n-2}\right)$ with $\partial \Sigma_{n-1}=\Sigma_{n-2}$. Using Lemmas 9 and 11 as well as $d\left(\Sigma_{n-2}, \eta_{x}\right)=L+l$, we find that $\Sigma_{n-1} \cap T^{\prime}=\varnothing$. As such, T^{\prime} has nontrivial algebraic intersection with the cycle $\Sigma_{n-1}^{\prime}-\Sigma_{n-1}$. This is a contradiction since \tilde{N} is simply connected.

If $\Sigma_{n-2}=\varnothing$, then the argument is similar but simpler. In this case, we note that Σ_{n-1}^{\prime} is a cycle and, combining Lemmas 9 and 10 with the fact that Σ_{n-1}^{\prime} intersects η_{x} transversely exactly once, we see that Σ_{n-1}^{\prime} is a cycle with nontrivial algebraic intersection with T^{\prime}, a contradiction as before.

3 Fundamental group and homotopy type

In this section, we prove Theorem 1. We first prove (see Corollary 14 below) that a manifold $\left(N^{n}, g\right)$ whose universal cover satisfies the conclusion of Proposition 8 has virtually free fundamental group. (Recall that a group is virtually free if it processes a free subgroup of finite index.) This fact seems to be well known among certain experts (in particular, see [15, page 135]). We give a proof here, roughly following the strategy used in [28]. The argument is based on notion of the number of ends of a group.

Definition 12 Given a group G, its number of ends, $e(G)$, is defined as the number of topological ends of \widetilde{K}, where $\widetilde{K} \rightarrow K$ is a regular covering of finite simplicial complexes K and \widetilde{K}, and G is the group of deck transformations.

It follows from [9] that a finitely generated group can have $0,1,2$ or infinitely many ends. Our main result here is as follows:

Proposition 13 Suppose (N, g) is a closed Riemannian manifold satisfying the conclusions of Proposition 8. Then any finitely generated subgroup G of $\pi_{1}(N)$ cannot have one end.

We will prove this below, but first we note that it yields the desired statement:
Corollary 14 Suppose (N, g) is a closed Riemannian manifold satisfying the conclusions of Proposition 8. Then $\pi_{1}(N)$ is virtually free.

Proof We follow the proof of [28, Theorem 2.5]. Indeed, by combining the main result of [8] (see [30, Section 7]) with Proposition 13, $\pi_{1}(N)$ is the fundamental group of a finite graph of groups with finite edge and vertex groups. The assertion now follows from Proposition 11 in Chapter II, Section 2.6 of [31] (or eg [30, Theorem 7.3]).

Moreover, we observe that given these results, we can finish the proof of Theorem 1.

Proof of Theorem 1 By Corollary 7, Proposition 8, and Corollary 14, $\pi_{1}(N)$ is virtually free. Let $G \subset \pi_{1}(N)$ be a finite-index subgroup which is a free group. Consider the finite covering $\widehat{N} \xrightarrow{\hat{p}} N$ such that the image of $\hat{p}_{\#}$ is G. Then $\pi_{1}(\hat{N})$ is a finitely generated free group. Since $\pi_{2}(\hat{N})=\cdots=\pi_{n-2}(\hat{N})=0$, Sections 2 and 3 of [12] imply that \hat{N} is homotopy equivalent to S^{n} or connected sums of $S^{n-1} \times S^{1}$.

We now give the proof of Proposition 13:

Proof of Proposition 13 Suppose there is a finitely generated subgroup G of $\pi_{1}(N)$ with one end. We will show that this leads to a contradiction.

We divide the proof into several steps. Take a cover $N_{0} \xrightarrow{p} N$ such that $p_{\#}\left(\pi_{1}\left(N_{0}\right)\right)=G$. Because $p_{\#}: \pi_{1}\left(N_{0}\right) \rightarrow \pi_{1}(N)$ is injective, this ensures that $\pi_{1}\left(N_{0}\right)=G$. If G is finite then $e(G)=0$, so we can assume G is infinite.

Since G is finitely generated, we can find $K \subset N_{0}$ a compact submanifold with boundary containing representatives of all of the generators of G. Write $i: K \rightarrow N_{0}$ for the inclusion map and note that $i_{\#}: \pi_{1}(K) \rightarrow \pi_{1}\left(N_{0}\right)=G$ is surjective. Let $H=\operatorname{ker} i_{\#}$, so $G=\pi_{1}(K) / H$. Choose $j: \widetilde{K} \rightarrow K$ the cover (with \widetilde{K} path connected) of K so that
$j_{\#}\left(\pi_{1}(\tilde{K})\right)=H$. Since H is a normal subgroup of $\pi_{1}(K)$, the covering $j: \widetilde{K} \rightarrow K$ is regular, and the group of deck transformations of j is isomorphic to $\pi_{1}(K) / H=G$. Thus, \widetilde{K} is noncompact. Note that $j_{\#} \circ i_{\#}: \pi_{1}(\widetilde{K}) \rightarrow \pi_{1}\left(N_{0}\right)$ is the zero map, so we can lift i to $\tilde{\imath}: \widetilde{K} \rightarrow \tilde{N}$, where \tilde{N} is the universal cover of N. (We emphasize that \tilde{K} is not necessarily the universal cover of K.)

As such, we have the diagram of spaces

The maps i and \tilde{l} are inclusions of codimension zero submanifolds with boundary; indeed:

Lemma $15 \tilde{l}$ is a proper embedding.
Proof We first show that \tilde{l} is injective. Suppose that $\tilde{l}(\tilde{a})=\tilde{l}(\tilde{b})$. Connect a and b by a curve $\tilde{\eta}$ in \tilde{K}. By assumption, $\tilde{\imath}(\tilde{\eta})$ is a loop in \tilde{N}, so $\eta=j(\tilde{\eta})$ has $[\eta]=e \in \pi_{1}\left(N_{0}\right)=G$. Thus, $[\eta] \in H \subset \pi_{1}(K)$. This implies that $\tilde{\eta}$ is a loop, ie $a=b$. It is straightforward to check that \tilde{l} is a closed map, using the fact that K is compact and \tilde{p} is a covering map. Therefore, \tilde{l} is proper.

Note that N is equipped with a Riemannian metric g, so that, for any $p \in \tilde{N}$, each connected component of a level set of $f_{p}(x)=d_{\tilde{g}}(x, p)$ has diameter $\leq C$, where $C=20 L$ as given in Proposition 8. The embeddings i, \tilde{l} induce metric structures on K and \widetilde{K}, respectively.

Lemma 16 For each $r>0$, there exists $R(r)>0$ such that, for any $a, b \in \widetilde{K}$ with $d_{\tilde{N}}(a, b) \leq r$, we have $d_{\tilde{K}}(a, b) \leq R(r)$.

Proof Fix $x \in \tilde{K}$. By applying a deck transformation, we can assume that $d_{\tilde{N}}(a, x) \leq c_{0}$ (here c_{0} only depends on K), so $d_{\tilde{N}}(b, x) \leq r+c_{0}$. Since \tilde{K} is connected (and \tilde{l} is proper), there exists $R=R\left(r+c_{0}\right)$ so that $d_{\tilde{K}}(a, x), d_{\widetilde{K}}(b, x) \leq R$. The assertion follows from the triangle inequality.

In the following lemma, we will call a curve $\tilde{\gamma}: \mathbb{R} \rightarrow \tilde{K}$ a line if it minimizes length on compact subintervals relative to competitors in \tilde{K}. Note that such a curve is a geodesic in the sense of metric geometry, but not necessarily in the sense of Riemannian geometry, since it could stick to $\partial \widetilde{K}$ in places. Similarly, we will call $\sigma^{\prime}:[0, \infty) \rightarrow \widetilde{K}$ a minimizing ray if it minimizes length in the same sense.

Lemma 17 There exists a line $\tilde{\gamma}$ in \tilde{K}.
Proof Fix $p \in \widetilde{K}$, and choose $p_{j} \in \widetilde{K}$ diverging. Let σ_{j} denote a curve that minimizes length in \widetilde{K} between p and p_{j}. We assume that σ_{j} is parametrized by unit speed. In particular, σ_{j} is a $1-$ Lipschitz map from an interval to \tilde{K}. Consider an exhaustion of \widetilde{K} by nested compact sets containing p. Applying Arzelà-Ascoli in each compact set and taking a diagonal sequence, we obtain that, after passing to a subsequence, σ_{i} converges to a minimizing ray $\sigma^{\prime}:[0, \infty) \rightarrow \tilde{K}$. Since G is the group of deck transformations of $\widetilde{K} \rightarrow K$ acting transitively on \widetilde{K} and K is compact, we can choose $t_{i} \rightarrow \infty$ and deck transformations Φ_{i} so that $d_{\tilde{g}}\left(p, \Phi_{i}\left(\sigma^{\prime}\left(t_{i}\right)\right)\right)$ is uniformly bounded. Then $\sigma_{i}^{\prime}(t)=\Phi_{i}\left(\sigma^{\prime}\left(t+t_{i}\right)\right)$ subsequentially converges to a geodesic line σ (using Arzelà-Ascoli again).

Parametrize the curve $\tilde{\gamma}$ so that $d_{\tilde{K}}(\tilde{\gamma}(a), \tilde{\gamma}(b))=|a-b|$ (note that $d_{\tilde{N}}(\tilde{\gamma}(a), \tilde{\gamma}(b))$ might be smaller than $|a-b|$). Let $\gamma=\tilde{l} \circ \tilde{\gamma}$. Note that $\tilde{\gamma}$ is automatically proper in \tilde{K}, and thus Lemma 15 implies that γ is proper in \tilde{N}.

For each $R>0$, consider the open geodesic ball $B_{R}(\gamma(0)) \subset \tilde{N}$. Define parameters

$$
\begin{aligned}
& t_{-}(R)=\max \left\{t: \gamma(-\infty, t) \cap B_{R}(\gamma(0))=\varnothing\right\} \\
& t_{+}(R)=\min \left\{t: \gamma(t, \infty) \cap B_{R}\left(\gamma_{0}\right)=\varnothing\right\}
\end{aligned}
$$

Note that $t_{ \pm}(R) \rightarrow \pm \infty$ as $R \rightarrow \infty$.
Since $e(\widetilde{K})=1, \gamma\left(t_{ \pm}(R)\right)$ can be connected in $\widetilde{K} \backslash B_{R}(\gamma(0))$. Because \tilde{N} is simply connected, this implies that $\gamma\left(t_{ \pm}(R)\right)$ lie in the same component of $\partial B_{R}(\gamma(0)) \subset \tilde{N}$ and thus

$$
d_{\tilde{N}}\left(\gamma\left(t_{-}(R)\right), \gamma\left(t_{+}(R)\right)\right) \leq C .
$$

On the other hand, we have

$$
d_{\tilde{K}}\left(\gamma\left(t_{-}(R)\right), \gamma\left(t_{+}(R)\right)\right)=\left|t_{-}(R)-t_{+}(R)\right| \rightarrow \infty
$$

This contradicts Lemma 16. This completes the proof of Proposition 13.

4 Generalization to the mapping problem

In this section we prove Theorem 2. The proof here is partly motivated by [14, Section 5], where nonexistence of PSC metrics on certain noncompact manifold admitting a proper, distance-decreasing map to a uniformly contractible manifold is established. We first observe that we may assume, without loss of generality, that $\pi_{1}(X)$ is infinite. Indeed, if $\pi_{1}(X)$ is finite, then the universal cover \tilde{X} is compact and satisfies that $\pi_{1}(\tilde{X})=\cdots=$ $\pi_{n-2}(\tilde{X})=0$. By the Hurewicz theorem, we have that $H_{1}(\tilde{X})=\cdots=H_{n-2}(\tilde{X})=0$. Poincaré duality further implies that $H_{1}(\tilde{X})=\cdots=H_{n-1}(\tilde{X})=0$, and hence \tilde{X} is homeomorphic to S^{n}.

We begin with the following general lemma. Note that it is tempting to try to lift a map of nonzero degree to the universal covers, but this map may not be proper (and hence the degree will not be well defined). We note that the construction of the appropriate cover is somewhat analogous to the construction of \widetilde{K} in Section 3.

Lemma 18 Suppose that X and N are closed oriented manifolds and $f: N \rightarrow X$ has nonzero degree. Letting \tilde{X} denote the universal cover of X, there exists a connected cover $\hat{N} \rightarrow N$ and a lift $\hat{f}: \hat{N} \rightarrow \tilde{X}$ such that \hat{f} is proper and $\operatorname{deg} \hat{f}=\operatorname{deg} f$.

Proof Choose a regular value $x \in X$ and set $f^{-1}(x)=\left\{z_{1}, \ldots, z_{k}\right\}$. Consider $H:=\operatorname{ker} f_{\#}: \pi_{1}\left(N, z_{1}\right) \rightarrow \pi_{1}(X, x)$. Choose a covering space $p: \widehat{N} \rightarrow N$ so that image $p_{\#}: \pi_{1}\left(\hat{N}, \hat{z}_{1}\right) \rightarrow \pi_{1}\left(N, z_{1}\right)$ is H. Below we will show that the map f lifts to $\hat{f}: \widehat{N} \rightarrow \tilde{X}$ and that \hat{f} satisfies the assertions made above.

Noncompactness of $\widehat{\boldsymbol{N}}$ We claim that \hat{N} is noncompact. We first show that the image of $f_{\#}$ is a subgroup of $\pi_{1}(X, x)$ with finite index. Let $G=f_{\#}\left(\pi_{1}\left(N, z_{1}\right)\right)$ and $\bar{\pi}:(\bar{X}, \bar{x}) \rightarrow(X, x)$ be a covering map such that image $\left((\bar{\pi})_{\#}: \pi_{1}(\bar{X}, \bar{x}) \rightarrow \pi_{1}(X, x)\right)$ is G. The map f lifts to a map $\bar{f}:\left(N, z_{1}\right) \rightarrow(\bar{X}, \bar{x})$ such that $f=\bar{\pi} \circ \bar{f}$. Since N is compact and f is surjective, we see that \bar{X} is compact. Hence, we have $\operatorname{deg} f=$ $\operatorname{deg} \bar{\pi} \cdot \operatorname{deg} \bar{f}$. It follows that $\operatorname{deg} \bar{\pi}$ is an integer factor of $\operatorname{deg} f$, and thus G is a subgroup of $\pi_{1}(X, x)$ of finite index.

The number of sheets of the covering map p is the index of $H=p_{\#}\left(\pi_{1}\left(\hat{N}, \hat{z}_{1}\right)\right)$ in $\pi_{1}\left(N, z_{1}\right)$. Since H is a normal subgroup, this is equal to the number of elements of the group $\pi_{1}\left(N, z_{1}\right) / H$, which is isomorphic to G and thus of infinite order. This implies that \hat{N} is noncompact, as claimed.

Lifting the map \boldsymbol{f} Consider $f \circ p: \widehat{N} \rightarrow X$. Note that $(f \circ p)_{\#}: \pi_{1}(\hat{N}) \rightarrow \pi_{1}(X)$ is the zero map. Thus, we can lift $f \circ p$ to the universal cover of X :

Clearly, a loop in N lifts to a loop in \hat{N} if and only if it is in H (recall that H is normal).

Counting lifts of preimages We now claim that $\#\left(\hat{f}^{-1}(\tilde{x}) \cap p^{-1}\left(z_{j}\right)\right)=1$. To this end, suppose that $a, b \in \hat{f}^{-1}(\tilde{x}) \cap p^{-1}\left(z_{j}\right)$. Choose a path $\hat{\gamma}$ in \hat{N} connecting the two points. Then $\gamma=p \circ \hat{\gamma}$ is a loop in N based at z_{j}. On the other hand, $\tilde{\gamma}:=\hat{f} \circ \hat{\gamma}$ is a loop in \tilde{X} based at \tilde{x}. Since $e=\pi_{\#}[\tilde{\gamma}]=f_{\#}[\gamma]$, we thus see that $[\gamma] \in H$. This is a contradiction since this would imply that γ lifts to a loop (as remarked above).

Properness We now show that \hat{f} is proper. Assume that $\hat{r}_{i} \rightarrow \infty$ in \hat{N} but $\hat{f}\left(\hat{r}_{i}\right) \rightarrow q$ in \tilde{X}. Since N is compact, we can pass to a subsequence such that $p\left(\hat{r}_{i}\right) \rightarrow r \in N$. Then $\pi(q)=f(r)$.

Choose a contractible neighborhood $U \subset N$ with $r \in U$. By shrinking U, we can assume that $f(U)$ is contained in a contractible open set $W \subset X$. Then $\pi^{-1}(W)$ consists of disjoint copies of W. We can assume that $\hat{f}\left(\hat{r}_{i}\right)$ are all contained in the copy containing q.

Assume that $p\left(\hat{r}_{i}\right) \in U$ for all i. Fix paths η_{i} from $p\left(\hat{r}_{i}\right)$ to r in U and paths $\hat{\gamma}_{i}$ from \hat{r}_{1} to \hat{r}_{i} in \hat{N}. Then

$$
\alpha_{i}:=\left(\eta_{i}\right) *\left(p \circ \hat{\gamma}_{i}\right) *\left(-\eta_{1}\right)
$$

is a loop from r to r. Lift α_{i} to $\hat{\alpha}_{i}$ a path in \hat{N} that agrees with $\hat{\gamma}_{i}$ on that portion of $\hat{\alpha}_{i}$. Note that $\hat{\alpha}_{i}$ cannot be a loop for i large, since the \hat{r}_{i} are diverging.

We now consider $\tilde{\alpha}_{i}:=\hat{f} \circ \hat{\alpha}_{i}$ a path in \tilde{X}. By construction, $\tilde{\alpha}_{i}$ is a loop in \tilde{X}. This is a contradiction as before.

Degree Finally, we check that $\operatorname{deg} \hat{f}=\operatorname{deg} f$. The lift \tilde{x} is a regular point for \hat{f} and we have seen that each element of $f^{-1}(x)$ lifts to a unique element of $\hat{f}^{-1}(\tilde{x})$. But the local degree of \hat{f} at each preimage \hat{z}_{i} is the same as the degree of f at the corresponding point $p\left(\hat{z}_{i}\right)$ (since p is a covering map).

Remark With some trivial modifications in the proof, a similar result holds for possibly nonorientable X and N with a map $f: N \rightarrow X$ of nonzero mod 2 degree.

Using the lifted map \hat{f} we can now follow [14, Section 5] to show that the conclusion of Corollary 7 holds in the setting of Theorem 2.

Lemma 19 Let X and N be oriented Riemannian manifolds and $f:(N, g) \rightarrow\left(X, g_{X}\right)$ with f distance-decreasing and $\operatorname{deg} f \neq 0$. Assume that N admits a metric of positive scalar curvature and that either $n=4$ and $\pi_{2}(X)=0$, or $n=5$ and $\pi_{2}(X)=\pi_{3}(X)=0$. Then there exists $L>0$ with the following property: if Σ_{n-2} is an ($n-2$)-dimensional nullhomologous cycle in the universal cover \widetilde{X} of X, then the cycle $\operatorname{deg}(f) \Sigma_{n-2}$ can be filled inside $B_{L}\left(\Sigma_{n-2}\right)$.

Proof We consider $n=5$ since the $n=4$ case is similar (but simpler). By scaling, we can assume that (N, g) has scalar curvature $R \geq 1$. As in Corollary $7, H_{2}(\tilde{X}, \mathbb{Z})=$ $H_{3}(\tilde{X}, \mathbb{Z})=0$.
By assumption, $\Sigma_{3}=\partial \Sigma_{4}$ in \tilde{X} for some chain Σ_{4}. Up to a small perturbation, we can assume that \hat{f} is transversal to Σ_{3} and Σ_{4}. Set $\hat{\Sigma}_{4}:=\hat{f}^{-1}\left(\Sigma_{4}\right)$ and similarly $\widehat{\Sigma}_{3}=\partial \widehat{\Sigma}_{4}$. Note that $\widehat{\Sigma}_{3}$ is nullhomologous in \hat{N} (by construction). Using Theorem 5, we can find $\hat{\Sigma}_{3}^{\prime} \subset B_{L_{0}}\left(\hat{\Sigma}_{3}\right)$ homologous to $\widehat{\Sigma}_{3}$ as well as 3-chains $\hat{U}_{1}, \ldots, \hat{U}_{m}$ with $\operatorname{diam}\left(U_{j}\right) \leq L_{0}$ and 2-cycles $\left\{\hat{\Gamma}_{j}^{l}: j=1, \ldots, m, l=1, \ldots, k(j)\right\}$ with $\operatorname{diam}\left(\widehat{\Gamma}_{j}^{l}\right) \leq L_{0}$ and such that

$$
\hat{\Sigma}_{3}^{\prime}=\sum_{j=1}^{m} \hat{U}_{j} \quad \text { and } \quad \partial \hat{U}_{j}=\sum_{l=1}^{k(j)} \hat{\Gamma}_{j}^{l} \quad \text { for each } j=1, \ldots, m,
$$

where both equalities hold as chains (not just in homology). Finally, there is an integer q and a function

$$
u:\{(j, l): j=1, \ldots, m, l=1, \ldots, k(j)\} \rightarrow\{1, \ldots, q\}
$$

such that, for $r \in\{1, \ldots, q\}$, we have

$$
\operatorname{diam}\left(\bigcup_{(j, l) \in u^{-1}(r)} \hat{\Gamma}_{j}^{l}\right) \leq L_{0}
$$

and

$$
\sum_{(j, l) \in u^{-1}(r)} \hat{\Gamma}_{j}^{l}=0
$$

as 2-cycles for $r \in\{1, \ldots, q\}$.

Denote by Σ_{3}^{\prime} the 3-cycle in \tilde{X} obtained by pushing $\hat{\Sigma}_{3}^{\prime}$ forward by the map \hat{f} and similarly for U_{j} and Γ_{j}^{l}.
Since \hat{f} is transversal to M_{3}, it is easy to check that $\left.\operatorname{deg} \hat{f}\right|_{M_{3}}=\operatorname{deg} \hat{f}$. Hence, $\hat{f}_{\#}\left(\left[\hat{\Sigma}_{3}^{\prime}\right]\right)=(\operatorname{deg} \hat{f})\left[\Sigma_{3}\right]$. Moreover, since f (and thus \hat{f}) was assumed to be distancedecreasing, we see that $d_{\left(\tilde{X}, g_{\tilde{X}}\right)}\left(\Sigma_{3}, \Sigma_{3}^{\prime}\right) \leq L_{0}$. As such, it suffices to bound Σ_{3}^{\prime} in a controlled neighborhood.

To do so, we follow the argument used in Corollary 7. Because diam $\left(\hat{\Gamma}_{j}^{l}\right) \leq L_{0}$, we can use Proposition 6 to find a 3-chain $\widetilde{\Gamma}_{l}^{j}$ with $\operatorname{diam}\left(\widetilde{\Gamma}_{j}^{l}\right) \leq R\left(L_{0}\right)$ and $\partial \widetilde{\Gamma}_{l}^{j}=\Gamma_{l}^{j}$ and then a 4-chain \widetilde{U}_{j} with

$$
\partial \tilde{U}_{j}=U_{j}-\sum_{l=1}^{k(j)} \widetilde{\Gamma}_{j}^{l}
$$

and $\operatorname{diam}\left(\tilde{U}_{j}\right) \leq R\left(L_{0}+2 R\left(L_{0}\right)\right)$. Thus,

$$
\Sigma_{3}^{\prime}=\sum_{j=1}^{m} \partial \tilde{U}_{j}+\sum_{r=1}^{q} \sum_{(j, l) \in u^{-1}(r)} \widetilde{\Gamma}_{j}^{l}
$$

and

$$
\operatorname{diam}\left(\sum_{(j, l) \in u^{-1}(r)} \widetilde{\Gamma}_{j}^{l}\right) \leq 2 R\left(L_{0}\right)+L_{0} .
$$

We can thus complete the proof as in Corollary 7.
Granted Lemma 19, Theorem 2 follows. Indeed, in order to prove the Urysohn width estimate of Proposition 8, it is enough to assume that the filling radius estimate holds for a multiple $\operatorname{deg}(f) \Sigma_{n-2}$ of every cycle Σ_{n-2}. The rest of the proof of Theorem 2 proceeds exactly as the proof of Theorem 1.

References

[1] H Alpert, A Balitskiy, L Guth, Macroscopic scalar curvature and codimension 2 width, preprint (2021) arXiv 2112.04594
[2] D Bolotov, About the macroscopic dimension of certain PSC-manifolds, Algebr. Geom. Topol. 9 (2009) 21-27 MR Zbl
[3] D Bolotov, A Dranishnikov, On Gromov's scalar curvature conjecture, Proc. Amer. Math. Soc. 138 (2010) 1517-1524 MR Zbl
[4] S Brendle, Ricci flow with surgery on manifolds with positive isotropic curvature, Ann. of Math. 190 (2019) 465-559 MR Zbl
[5] S Brendle, R Schoen, Manifolds with 1/4-pinched curvature are space forms, J. Amer. Math. Soc. 22 (2009) 287-307 MR Zbl
[6] B-L Chen, S-H Tang, X-P Zhu, Complete classification of compact four-manifolds with positive isotropic curvature, J. Differential Geom. 91 (2012) 41-80 MR Zbl
[7] O Chodosh, C Li, Generalized soap bubbles and the topology of manifolds with positive scalar curvature, preprint (2020) arXiv 2008.11888
[8] M J Dunwoody, The accessibility of finitely presented groups, Invent. Math. 81 (1985) 449-457 MR Zbl
[9] D B A Epstein, Ends, from "Topology of 3-manifolds and related topics" (M K Fort, Jr, editor), Prentice-Hall, Englewood Cliffs, NJ (1962) 110-117 MR Zbl
[10] A M Fraser, Fundamental groups of manifolds with positive isotropic curvature, Ann. of Math. 158 (2003) 345-354 MR Zbl
[11] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982) 357-453 MR Zbl
[12] S Gadgil, H Seshadri, On the topology of manifolds with positive isotropic curvature, Proc. Amer. Math. Soc. 137 (2009) 1807-1811 MR Zbl
[13] M Gromov, Positive curvature, macroscopic dimension, spectral gaps and higher signatures, from "Functional analysis on the eve of the 21st century, II" (S Gindikin, J Lepowsky, R L Wilson, editors), Progr. Math. 132, Birkhäuser, Boston, MA (1996) 1-213 MR Zbl
[14] M Gromov, No metrics with positive scalar curvatures on aspherical 5-manifolds, preprint (2020) arXiv 2009.05332
[15] M Gromov, Four lectures on scalar curvature, preprint (2021) arXiv 1908.10612v5
[16] M Gromov, H B Lawson, Jr, Spin and scalar curvature in the presence of a fundamental group, I, Ann. of Math. 111 (1980) 209-230 MR Zbl
[17] M Gromov, H B Lawson, Jr, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. 58 (1983) 83-196 MR Zbl
[18] R S Hamilton, Four-manifolds with positive isotropic curvature, Comm. Anal. Geom. 5 (1997) 1-92 MR Zbl
[19] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002) MR Zbl
[20] H Huang, Compact manifolds of dimension $n \geq 12$ with positive isotropic curvature, preprint (2019) arXiv 1909.12265
[21] M Katz, The first diameter of 3-manifolds of positive scalar curvature, Proc. Amer. Math. Soc. 104 (1988) 591-595 MR Zbl
[22] M Kreck, W Lück, Topological rigidity for non-aspherical manifolds, Pure Appl. Math. Q. 5 (2009) 873-914 MR Zbl
[23] Y Liokumovich, D Maximo, Waist inequality for 3-manifolds with positive scalar curvature, preprint (2020) arXiv 2012.12478
[24] F C Marques, A Neves, Rigidity of min-max minimal spheres in three-manifolds, Duke Math. J. 161 (2012) 2725-2752 MR Zbl
[25] M J Micallef, J D Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. 127 (1988) 199-227 MR Zbl
[26] J Milnor, Lectures on the h-cobordism theorem, Princeton Univ. Press (1965) MR Zbl
[27] H T Nguyen, Isotropic curvature and the Ricci flow, Int. Math. Res. Not. 2010 (2010) 536-558 MR Zbl
[28] M Ramachandran, J Wolfson, Fill radius and the fundamental group, J. Topol. Anal. 2 (2010) 99-107 MR Zbl
[29] R Schoen, Manifolds with poinwise 1/4-pinched curvature, preprint (2007)
[30] P Scott, T Wall, Topological methods in group theory, from "Homological group theory" (C T C Wall, editor), London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press (1979) 137-203 MR Zbl
[31] J-P Serre, Trees, Springer (2003) MR Zbl

Department of Mathematics, Stanford University
Stanford, CA, United States
Courant Institute of Mathematical Sciences, New York University
New York, NY, United States
Department of Mathematics, University of Toronto
Toronto ON, Canada
ochodosh@stanford.edu, chaoli@nyu.edu, ylio@math.toronto.edu

Proposed: John Lott
Seconded: Urs Lang, Gang Tian

Received: 21 June 2021
Revised: 13 September 2021

Geometry \& Topology

msp.org/gt

Managing Editor
András I. Stipsicz
Alfréd Rényi Institute of Mathematics
stipsicz@renyi.hu
Board of Editors

Dan Abramovich	Brown University dan_abramovich@brown.edu	Mark Gross	University of Cambridge mgross@dpmms.cam.ac.uk
Ian Agol	University of California, Berkeley ianagol@math.berkeley.edu	Rob Kirby	University of California, Berkeley kirby@math.berkeley.edu
Mark Behrens	Massachusetts Institute of Technology mbehrens@math.mit.edu	Frances Kirwan	University of Oxford frances.kirwan@balliol.oxford.ac.uk
Mladen Bestvina	Imperial College, London bestvina@math.utah.edu	Bruce Kleiner	NYU, Courant Institute bkleiner@cims.nyu.edu
Martin R. Bridson	Imperial College, London m.bridson@ic.ac.uk	Urs Lang	ETH Zürich urs.lang@math.ethz.ch
Jim Bryan	University of British Columbia jbryan@math.ubc.ca	Marc Levine	Universität Duisburg-Essen marc.levine@uni-due.de
Dmitri Burago	Pennsylvania State University burago@math.psu.edu	John Lott	University of California, Berkeley lott@math.berkeley.edu
Ralph Cohen	Stanford University ralph@math.stanford.edu	Ciprian Manolescu	University of California, Los Angeles cm@math.ucla.edu
Tobias H. Colding	Massachusetts Institute of Technology colding@math.mit.edu	Haynes Miller	Massachusetts Institute of Technology hrm@math.mit.edu
Simon Donaldson	Imperial College, London s.donaldson@ic.ac.uk	Tom Mrowka	Massachusetts Institute of Technology mrowka@math.mit.edu
Yasha Eliashberg	Stanford University eliash-gt@math.stanford.edu	Walter Neumann	Columbia University neumann@math.columbia.edu
Benson Farb	University of Chicago farb@math.uchicago.edu	Jean-Pierre Otal	Université d'Orleans jean-pierre.otal@univ-orleans.fr
Steve Ferry	Rutgers University sferry@math.rutgers.edu	Peter Ozsváth	Columbia University ozsvath@math.columbia.edu
Ron Fintushel	Michigan State University ronfint@math.msu.edu	Leonid Polterovich	Tel Aviv University polterov@post.tau.ac.il
David M. Fisher	Rice University davidfisher@rice.edu	Colin Rourke	University of Warwick gt@maths.warwick.ac.uk
Mike Freedman	Microsoft Research michaelf@microsoft.com	Stefan Schwede	Universität Bonn schwede@math.uni-bonn.de
David Gabai	Princeton University gabai@princeton.edu	Peter Teichner	University of California, Berkeley teichner@math.berkeley.edu
Stavros Garoufalidis	Southern U. of Sci. and Tech., China stavros@mpim-bonn.mpg.de	Richard P. Thomas	Imperial College, London richard.thomas@imperial.ac.uk
Cameron Gordon	University of Texas gordon@math.utexas.edu	Gang Tian	Massachusetts Institute of Technology tian@math.mit.edu
Lothar Göttsche	Abdus Salam Int. Centre for Th. Physics gottsche@ictp.trieste.it	Ulrike Tillmann	Oxford University tillmann@maths.ox.ac.uk
Jesper Grodal	University of Copenhagen jg@math.ku.dk	Nathalie Wahl	University of Copenhagen wahl@math.ku.dk
Misha Gromov	IHÉS and NYU, Courant Institute gromov@ihes.fr	Anna Wienhard	Universität Heidelberg wienhard@mathi.uni-heidelberg.de

See inside back cover or msp.org/gt for submission instructions.
The subscription price for 2023 is US $\$ 740 /$ year for the electronic version, and $\$ 1030 /$ year ($+\$ 70$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Geometry \& Topology is indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Geometry \& Topology (ISSN 1465-3060 printed, 1364-0380 electronic) is published 9 times per year and continuously online, by Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall \#3840, Berkeley, CA 94720-3840. Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall \#3840, Berkeley, CA 94720-3840.

> GT peer review and production are managed by EditFlow ${ }^{\circledR}$ from MSP.
> PUBLISHED BY
> E. mathematical sciences publishers nonprofit scientific publishing

http://msp.org/
© 2023 Mathematical Sciences Publishers

GeOMETRY \& TOPOLOGY

Volume 27 Issue 4 (pages 1273-1655) 2023

Floer theory and reduced cohomology on open manifolds
 Yoel Groman

Geodesic coordinates for the pressure metric at the Fuchsian 1391 locus

Xian Dai
Birational geometry of the intermediate Jacobian fibration of a 1479 cubic fourfold

Giulia Saccà
Cohomological χ-independence for moduli of one-dimensional sheaves and moduli of Higgs bundles

Davesh Maulik and Junliang Shen
Coarse injectivity, hierarchical hyperbolicity and 1587 semihyperbolicity
thomas Haettel, Nima Hoda and Harry Petyt
Classifying sufficiently connected PSC manifolds in 4 and 51635
dimensions
Otis Chodosh, Chao Li and Yevgeny
Liokumovich

[^0]: © 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

[^1]: ${ }^{1}$ Recall that a cover is regular if the group of deck transformations acts transitively on the fibers. In particular, the universal cover is a regular cover.

