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in 4 and 5 dimensions
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CHAO LI

YEVGENY LIOKUMOVICH

We show that if N is a closed manifold of dimension n D 4 (resp. n D 5) with
�2.N / D 0 (resp. �2.N / D �3.N / D 0) that admits a metric of positive scalar
curvature, then a finite cover yN of N is homotopy equivalent to Sn or connected
sums of Sn�1 �S1. Our approach combines recent advances in the study of positive
scalar curvature with a novel argument of Alpert, Balitskiy and Guth.

Additionally, we prove a more general mapping version of this result. In particular,
this implies that if N is a closed manifold of dimensions 4 or 5, and N admits a
map of nonzero degree to a closed aspherical manifold, then N does not admit any
Riemannian metric with positive scalar curvature.

53C21

Introduction

We are concerned here with the problem of classification of manifolds admitting positive
scalar curvature (PSC). For closed (compact, no boundary) 2– and 3–manifolds, this
problem is completely resolved; namely, the sphere and projective plane are the only
closed surfaces admitting positive scalar curvature and a 3–manifold admits positive
scalar curvature if and only if it has no aspherical factors in its prime decomposi-
tion. In particular, a 3–manifold admitting positive scalar curvature has a finite cover
diffeomorphic to S3 or to a connected sum of finitely many S2 �S1.

The main result of this paper is the following partial generalization of this statement to
dimensions nD 4; 5:
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1636 Otis Chodosh, Chao Li and Yevgeny Liokumovich

Theorem 1 Suppose that N is a closed smooth n–manifold admitting a metric of
positive scalar curvature and

� nD 4 and �2.N /D 0, or

� nD 5 and �2.N /D �3.N /D 0.

Then a finite cover yN of N is homotopy equivalent to Sn or connected sums of
Sn�1 �S1.

Chodosh and Li [7] and Gromov [14] showed that, if a closed N n is aspherical (ie
�k.N /D 0 for all k � 2) and nD 4; 5, then there is no Riemannian metric of positive
scalar curvature on N. Theorem 1 can thus be seen as a refinement of this into a positive
result.

Remark By Theorem 1.3 of Gadgil and Seshadri [12] (see also Freedman [11],
Milnor [26] and Kreck and Lück [22]), we have that if n D 4 and yN is homotopy
equivalent to S4 or S3 �S1, or if nD 5 (with no further restriction on the homotopy
type), then homotopy equivalence in the conclusion to Theorem 1 can be upgraded to
homeomorphism.

We also prove a more general “mapping” version of Theorem 1.

Theorem 2 Suppose that N is a closed smooth n–manifold with a metric of positive
scalar curvature and there exists a nonzero degree map f W N ! X, to a manifold X

satisfying

� nD 4 and �2.X /D 0, or

� nD 5 and �2.X /D �3.X /D 0.

Then a finite cover yX of X is homotopy equivalent to Sn or connected sums of
Sn�1 �S1.

We note that the following result immediately follows from Theorem 2:

Corollary 3 Let n 2 f4; 5g, X and N be closed oriented manifolds of dimension n,
and X be aspherical. Suppose there exists a map f WN !X with degf ¤ 0. Then N

does not admit any Riemannian metric of positive scalar curvature.

Recall that it was previously shown in [7; 14] that closed aspherical (ie �k.N /D 0

for all k � 2) n–manifolds do not admit PSC for nD 4; 5. In [14] a related statement
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was proven for manifolds admitting proper, distance-decreasing maps to uniformly
contractible manifolds. In fact, Corollary 3 seems to have been asserted by Gromov
[15, page 144–145], but the (relatively simple) lifting argument does not appear there.

0.1 Urysohn width bounds

Recall that a metric space .X; d/ has Urysohn q–width �ƒ if there is a q–dimensional
simplicial complex K and a continuous map X ! K such that diamf �1.s/ � ƒ

for all s 2K. As such, having finite Urysohn q–width implies that a manifold looks
� q–dimensional in some macroscopic sense.

A well-known conjecture (see [15, page 63]) of Gromov posits that an n–manifold
with scalar curvature � 1 has finite Urysohn .n�2/–width. Various forms of this
conjecture are proven for nD 3 — see Gromov and Lawson [16], Katz [21], Marques
and Neves [24] and Liokumovich and Maximo [23] — while the conjecture is largely
open for n� 4 (some progress has been achieved by Bolotov and Dranishnikov [2; 3]).

A key component in the proof of Theorem 1 is the following result:

Theorem 4 For .N n;g/ satisfying the hypothesis of Theorem 1, the universal cover
. zN ; Qg/ has finite Urysohn 1–width.

This follows by combining Corollary 7 and Proposition 8 below. A simple example
where Theorem 1 applies is the product metric on S1 �S3, whose universal cover is
R�S3, clearly of finite Urysohn 1–width. On the other hand, we note that the higher
connectivity hypothesis in Theorem 4 is necessary: compare with T 2 �S2.

Remark Consider a metric gR on S3 formed by capping off a cylinder Œ�R;R��S2.1/

with hemispheres and smoothing out the resulting metric, so that the scalar curvature
is � 1. The product metric .S1.1/;gS /� .S

3;gR/ has scalar curvature � 1 but the
universal cover has Urysohn 1–width �R. As such, the estimate in Theorem 4 cannot
be made quantitative (essentially, the issue is that the universal cover converges to
R2 �S2.1/, which has nontrivial �2).

As we were finishing this paper, we discovered that, recently, Gromov has indicated a
proof of the classification of PSC 3–manifolds [15, page 135] by using finiteness of
the 1–Urysohn width of the universal cover. Our proof of Theorem 1 follows a similar
strategy once Theorem 4 is proven.
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1638 Otis Chodosh, Chao Li and Yevgeny Liokumovich

0.2 Remarks on positive isotropic curvature

Theorem 1 has an interesting relationship to well-known conjectures of Gromov [13,
Section 3(b)] and Schoen [29] concerning the topology of closed n–manifolds admitting
a metric with positive isotropic curvature (PIC). Namely, they (respectively) conjecture
that if a closed manifold has a PIC metric then the fundamental group is virtually free
and a finite cover is diffeomorphic to either a sphere or connected sums of finitely
many S1 �Sn�1.

There have been distinct approaches to such a question, relying on either minimal
surface theory or Ricci flow. Using minimal surface theory, Micallef and Moore have
shown that, if M n is a closed PIC manifold then �k.M /D 0 for k D 2; : : : ;

�
1
2
n
�

[25].
In particular, if M is simply connected, then it is homeomorphic to a sphere. In related
work, Fraser has proven that an n–manifold (n � 5) with PIC does not contain a
subgroup isomorphic to Z˚Z [10].

On the other hand, using Ricci flow, Hamilton has classified 4–manifolds admitting
PIC that do not contain nontrivial incompressible .n�1/–dimensional space forms [18].
This was extended to prove the Gromov–Schoen conjectures for nD 4 by Chen, Tang
and Zhu [6]. In higher dimensions, Brendle and Schoen [5] and Nguyen [27] proved
the PIC condition is preserved under the Ricci flow; this is an important ingredient in
Brendle and Schoen’s proof of the differentiable sphere theorem. Recently, Brendle
has achieved a breakthrough in the study of the Ricci flow of PIC manifolds and has
extended Hamilton’s result to dimensions n � 12 [4]; as above, this result has been
used to prove the Gromov–Schoen conjectures for n� 12 by Huang [20].

We note that, since PIC implies PSC, combining [25] with Theorem 1 yields an
alternative proof of Gromov’s conjecture (the fundamental group is virtually free) for
nD 4 and proves a weak version of Schoen’s conjecture for nD 4 (ie with homotopy
equivalence replacing diffeomorphism). Furthermore, Theorem 1 implies that a PIC
5–manifold with �3.M /D 0 satisfies Gromov’s conjecture and the same weak version
of Schoen’s conjecture. It is an interesting question if a 5–manifold with PIC has
�3.M /D 0 (note that �2.M /D 0 by [25]).

Organization of the paper

In Section 1 we revisit the filling radius estimates from [7; 14]. In Section 2 we show
that such estimates imply Theorem 4. Then, we complete the proof of Theorem 1 in
Section 3. Finally, in Section 4 we prove Theorem 2.
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1 Filling estimates

In [7; 14], it was shown that a closed aspherical n–manifold does not admit positive
scalar curvature for n D 4; 5 by combining a linking argument with a filling radius
inequality in the presence of positive scalar curvature. In this section we observe that
this filling radius inequality carries over to the setting considered here.

We begin by summarizing the results contained in [7] that will be needed in this paper.

Theorem 5 Consider .N n;g/ a closed Riemannian n–manifold with scalar curvature
R� 1. Fix a Riemannian cover . yN ; Og/.

(1) Suppose that n D 4. There is a universal constant L0 > 0 with the following
property. Consider a closed embedded 2–dimensional submanifold y†2 �

yN with
Œy†2�D 0 2H2. yN IZ/. Then there is a 3–chain y†0

3
�BL0

.y†2/ and a closed embedded
2–dimensional submanifold y†0

2
with

@y†03 D
y†2�

y†02

as chains such that , for every connected component S of y†0
2
, the extrinsic diameter

of S satisfies diam.S/�L0.

(2) Suppose that n D 5. There is a universal constant L0 > 0 with the following
property. Consider a closed embedded 3–dimensional submanifold y†3 �

yN with
Œy†3�D 0 2H3. yN IZ/. Then there is a 4–chain y†0

4
�BL0

.y†3/ and a closed embedded
3–dimensional submanifold y†0

3
with

@†04 D†3�†
0
3

as chains as well as 3–chains yU1; : : : ; yUm with diam. yUj /�L0 and 2–cycles

fy� l
j W j D 1; : : : ;m; l D 1; : : : ; k.j /g

Geometry & Topology, Volume 27 (2023)



1640 Otis Chodosh, Chao Li and Yevgeny Liokumovich

with diam.y� l
j /�L0 such that

y†3 D

mX
jD1

yUj and @ yUj D

k.j/X
lD1

y� l
j for each j D 1; : : : ;m;

where both equalities hold as chains (not just in homology). Finally, there is an integer
q and a function

u W f.j ; l/ W j D 1; : : : ;m; l D 1; : : : ; k.j /g ! f1; : : : ; qg

such that , for r 2 f1; : : : ; qg, we have

diam
� [
.j ;l/2u�1.r/

y� l
j

�
�L0

and , moreover , X
.j ;l/2u�1.r/

y� l
j D 0

as 2–chains for r 2 f1; : : : ; qg.

Proof When n D 4, one can solve Plateau’s problem to find y†3 minimizing area
with @y†3 D

y†2. Applying the “�–bubble technique” (see [7, Section 3]), we can find
y†0

2
� y†3 with dy†3

.y†0
2
; y†2/�L0 and such that y†0

2
� y†3 is a “stable �–bubble” in the

sense of [7, Lemma 14]. By [7, Lemma 16], the intrinsic diameter of each component
is � L0 (taking L0 larger if necessary). This proves the assertion (since extrinsic
distances are bounded by the intrinsic distances).

Similarly, when nD 5, we can solve Plateau’s problem to find y†4 minimizing area with
@y†4 D

y†3. As before, we can find a “stable �–bubble” y†0
3

with dy†4
.y†0

3
; y†3/�L0.

Finally, the construction of the yUj and y�k
j follows from the “slice-and-dice” procedure

from [7, Sections 6.3–6.4].

Note that the last conclusion (ie that
P
.j ;l/2u�1.r/

y� l
j D 0) was stated slightly dif-

ferently in [7]. To be precise, it was proven that the cycles
P
.j ;l/2u�1.r/

y� l
j are

disjoint for distinct r (see [7, Section 6.4]). Now, by using
Pq

rD1

P
.j ;l/2u�1.r/

y� l
j D

@
�Pm

jD1 Uj

�
D 0, we find that each term in the sum must vanish.

Example 1 We illustrate the “slice-and-dice” procedure and its relevance to the
statements of Theorem 5 with Figure 1, where y†0

3
is diffeomorphic to S2 �S1. We

first cut (slice) y†0
3

by an embedded S2 and view the result as a 3–manifold with
boundary, which we further cut (dice) into seven 3–chains yU1; : : : ; yU7 such that each
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y†0
3

y�2
2

y�1
3

y�3
4

y�1
6

yU1

yU2

yU3

yU5
yU7

yU4

yU6

Figure 1: Cutting the 3–cycle y†03 into small pieces.

yUj satisfies diam yUj � L0 (of course, the number of chains may vary in different
examples). We label the boundary components of yUj , from left to right in the figure, by
y� l
j for lD 1; : : : ; k.j /. Note that, in this case, there are four such boundary components

that are nonsmooth, namely y�2
2

, y�1
3

, y�3
4

and y�1
6

. The function u groups different y� l
j

that glue together into a 2–cycle. For example, we have

u.2; 2/D u.3; 1/D u.4; 3/D u.6; 1/;

and

u.1; 1/D u.2; 1/; u.3; 2/D u.4; 1/; u.4; 2/D u.5; 1/; u.6; 2/D u.7; 1/:

Moreover, the values of u on different groups of y� l
j are different (eg u.2; 2/¤ u.1; 1/).

Note here that
P
.j ;l/2u�1.r/

y� l
j D 0 for each r .

The following proposition will be used to replace [7, Proposition 10] in the more
general setting considered here:

Proposition 6 Consider � W . yN ; Og/! .N;g/ a regular1 Riemannian covering map of
n–dimensional manifolds , with .N;g/ compact. Assume that Hl. yN ;Z/D 0. Then ,
for r > 0, there is R D R.r/ <1 such that Hl.Br .x/;Z/! Hl.BR.x/;Z/ is the
zero map for any x 2 yN.

1Recall that a cover is regular if the group of deck transformations acts transitively on the fibers. In
particular, the universal cover is a regular cover.

Geometry & Topology, Volume 27 (2023)
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Proof We first fix x D x0. For any r > 0, there is r1 2 Œr; 2r � with Br1
.x0/ a compact

manifold (with boundary). By Corollaries A.8 and A.9 in [19], the homology groups
of Br1

.x0/ are finitely generated. Assume that ˛1; : : : ; ˛J generates Hl.Br1
.x0/;Z/.

By assumption, for each i , ˛i D @ˇi for some .lC1/–chains ˇ1; : : : ; ˇJ . Choose
R1DR1.r/ so that ˇi 2BR1

.x0/ for iD1; : : : ;J. Then we see that Hl.Br1
.x0/;Z/!

Hl.BR1
.x0/;Z/ is the zero map, so, in particular,

Hl.Br .x0/;Z/!Hl.BR1
.x0/;Z/

is the zero map.

Now, for any x 2 yN, we can assume (using a deck transformation) that d.x;x0/ �

diam N. Thus,

Br .x/� BrCdiam N .x0/ and BR1.rCdiam N /.x0/� BR1.rCdiam N /Cdiam N .x/:

Thus, we find that the assertion holds for R.r/DR1.r C diam N /C diam N.

Putting these facts together, we thus obtain the following generalization of the filling
estimate obtained in [7; 14]:

Corollary 7 Suppose that , for n 2 f4; 5g, .N n;g/ is a closed Riemannian n–manifold
with positive scalar curvature and �2.N /D � � � D �n�2.N /D 0. Then there is LD

L.N;g/ > 0 with the following property. Consider †n�2 an closed embedded .n�2/–
submanifold in zN the universal cover. Then †n�2 is nullhomologous in BL.†n�2/.

Proof Observe that the universal cover zN has �1. zN /D � � � D �n�2. zN /D 0. By the
Hurewicz theorem, Hn�3. zN ;Z/DHn�2. zN ;Z/D 0.

When n D 4, the assertion immediately follows from a combination of Theorem 5
with Proposition 6. Indeed, Theorem 5 implies that †2 is homologous to †0

2
in

BL0
.†2/, where diam.†0

2
/ � L0. Proposition 6 implies that †0

2
can be filled in an

R.L0/–neighborhood. Thus, †2 can be filled in an .L0CR.L0//–neighborhood.

When n D 5, the proof is more complicated due to the nature of the “slice-and-
dice” decomposition in Theorem 5. Fix y†0

3
� BL0

.†3/ homologous to †3 and f yUj g

and fy� l
j g with the properties described in Theorem 5. We can now fill y†0

3
in a bounded

neighborhood following [7, Section 6.4], which we explain here. Since diam.y� l
j /�L0,

Proposition 6 implies that y� l
j D @

z� l
j for a 3–chain with diam.z� l

j / � R.L0/. Then,
because diam. yUj /�L0,

yUj �

k.j/X
lD1

z� l
j

Geometry & Topology, Volume 27 (2023)



Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions 1643

is a 3–cycle of diameter �L0C 2R.L0/. Thus, by Proposition 6, there is a 4–chain
zUj with diam. zUj /�R.L0C 2R.L0// and

@ zUj D
yUj �

k.j/X
lD1

z� l
j :

On the other hand, as was proven in Theorem 5, there is

u W f.j ; l/ W j D 1; : : : ;m; l D 1; : : : ; k.j /g ! f1; : : : ; qg

such that

diam
� [
.j ;l/2u�1.r/

y� l
j

�
�L0

and X
.j ;l/2u�1.r/

y� l
j D 0

as 2–chains.

As such, for r 2 f1; : : : ; qg,
P
.j ;l/2u�1.r/

z� l
j is a 3–cycle of diameter bounded by

2R.L0/CL0 and thus there is a 4–chain y„r with diam.„r /�R.L0C2R.L0// and

@„r D

X
.j ;l/2u�1.r/

z� l
j :

This yields

y†03 D @

� qX
rD1

„qC

mX
jD1

zUj

�
with

qX
rD1

„qC

mX
jD1

zUj � BR.L0C2R.L0//.
y†03/:

Thus, †3 is nullhomologous in an
�
R.L0C2R.L0//CR.L0/

�
–neighborhood.

Example 2 Continuing Example 1, we illustrate in Figure 2 how Corollary 7 works for
y†0

3
in Figure 1. Consider all 2–cycles y� i

j with u.j ; i/D r . Fill in y� l
j with a 3–chain z� l

j .
By construction, the sum of these z� l

j forms a 3–cycle, which can then be filled in by
a 4–chain „r . By Proposition 6 and Corollary 7, the diameter of all these fill-ins are
bounded by R.L0C 2R.L0//.
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y�1
6

y�3
4

y�2
2

y�1
3

Figure 2: To fill in fy� l
j W u.j ; l/D rg, we first fill in each y� l

j with z� l
j (center),

then fill in by „r to obtain a 3–cycle (right).

2 Filling versus Urysohn width

The next result is inspired by work of Hannah Alpert, Alexey Balitskiy and Larry
Guth [1], which we learnt about from a talk by Alpert. The strategy should be compared
with [16, Corollary 10.11].

Proposition 8 Assume that .N n;g/ has the property that any closed embedded .n�2/–
submanifold in the universal cover †n�2 �

zN can be filled in BL.†n�2/. Then the
universal cover . zN ; Qg/ satisfies:

(�) For any point p 2 zN, each connected component of a level set of d.p; � / has
diameter � 20L.

Note that Corollary 7 implies a manifold .N;g/ in Theorem 1 satisfies the assumptions
of Proposition 8. By the argument in [17, Corollary 10.11], this shows that the universal
cover . zN ; Qg/ has Urysohn 1–width � 20L. In particular, the macroscopic dimension
of zN is 1.

Proof Let p 2 zN be a point and consider level sets of the distance function f .x/D
d.p;x/.

For the sake of contradiction, suppose that there is a curve  � f �1.t/ connecting
points x and y with d.x;y/� 20L. Fix a minimizing geodesic �x from p to x (and
similarly for �y) and consider the triangle T D �x �  ���y . Fix 0< l <L such that
@B4LCl.x/ and @BLCl.�x/ are smooth hypersurfaces intersecting transversely. Set
†n�2 WD @B4LCl.x/\@BLCl.�x/. Note that we have not ruled out †n�2D∅; in this
case we will take d.†n�2; � /D1 below.

Geometry & Topology, Volume 27 (2023)
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By construction,
d.†n�2; �x/ >L:

Set †0
n�1
WD @B4LCl.x/ \BLCl.�x/ and note that @†0

n�1
D †n�2. Observe that,

since �x is a minimizing geodesic between p and x and†0
n�1

is a subset of @B4LCl.x/,
it must hold that �x intersects †0

n�1
exactly once and does so orthogonally (and thus

transversally). We will return to this observation below.

Lemma 9 d.†n�2;  /� d.†0
n�1

;  / >L:

Proof We first prove that d.†0
n�1

;  / > L. Choose s 2 †0
n�1

with d.s;  / D

d.†0
n�1

;  /. There is e 2 �x such that d.s; e/�LC l . We have

d.x; e/� d.x; s/� d.s; e/� 4LC l � .LC l/D 3L:

Since �x is minimizing (and has length t ), we have d.p; e/� t � 3L. Thus,

d.p; s/� d.p; e/C d.e; s/� t � 3LCLC l D t � 2LC l:

Thus,
d.s;  /� d.p;  /� d.p; s/� t � .t � 2LC l/D 2L� l:

This completes the proof of d.†0
n�1

;  / > L. Since †n�2 � †
0
n�1

, it clearly holds
that d.†n�2;  /� d.†0

n�1
;  /.

Lemma 10 †0
n�1
\ �y D∅:

Proof Suppose the contrary. Consider s 2 †0
n�1
\ �y . Note that d.s;x/ D 4LC l

and there is e 2 �x with d.s; e/�LC l . We have

d.x; e/� d.x; s/C d.e; s/� 5LC 2l:

As such,
d.p; e/� t � 5L� 2l;

so
d.p; s/� d.p; e/� d.e; s/� t � 5L� 2l �L� l D t � 6L� 3l:

Thus,
d.s;y/� 6LC 3l:

However, this contradicts

20L� d.x;y/� d.x; s/C d.s;y/� 4LC l C 6LC 3l D 10LC 4l:

Lemma 11 d.†n�2; �y/ >L:

Proof The proof is similar to the previous argument. Suppose we have s 2 †n�2

and ey 2 �y with d.s; ey/ � L. There is ex 2 �x with d.s; ex/ D LC l . Note that

Geometry & Topology, Volume 27 (2023)
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d.s;x/D 4LC l . Thus,

d.p; ex/D t � d.x; ex/� t � d.x; s/� d.s; ex/� t � 5L� 2l:

Thus,

d.p; ey/� d.p; ex/� d.ex; ey/� d.p; ex/� d.ex; s/� d.s; ey/D t � 7L� 3l:

This implies that
d.y; ey/� 7LC 3l:

However, this contradicts

20L� d.x;y/� d.x; s/C d.s; ey/C d.ey ;y/� 12LC 4l:

We can now complete the proof of Proposition 8. Perturb the triangle T to be a smooth
embedded curve T 0 still intersecting †0

n�1
transversely. As long as the perturbation is

small, T 0\†0
n�1

will consist of a single point (thanks to Lemmas 9 and 10, along with
the observation that �x intersects †0

n�1
transversely in exactly one point). Assume

first that †n�2¤∅. By assumption, there is †n�1 �BL.†n�2/ with @†n�1D†n�2.
Using Lemmas 9 and 11 as well as d.†n�2; �x/DLC l , we find that †n�1\T 0D∅.
As such, T 0 has nontrivial algebraic intersection with the cycle †0

n�1
�†n�1. This is

a contradiction since zN is simply connected.

If †n�2 D∅, then the argument is similar but simpler. In this case, we note that †0
n�1

is a cycle and, combining Lemmas 9 and 10 with the fact that †0
n�1

intersects �x trans-
versely exactly once, we see that †0

n�1
is a cycle with nontrivial algebraic intersection

with T 0, a contradiction as before.

3 Fundamental group and homotopy type

In this section, we prove Theorem 1. We first prove (see Corollary 14 below) that a
manifold .N n;g/ whose universal cover satisfies the conclusion of Proposition 8 has
virtually free fundamental group. (Recall that a group is virtually free if it processes a
free subgroup of finite index.) This fact seems to be well known among certain experts
(in particular, see [15, page 135]). We give a proof here, roughly following the strategy
used in [28]. The argument is based on notion of the number of ends of a group.

Definition 12 Given a group G, its number of ends, e.G/, is defined as the number
of topological ends of zK, where zK ! K is a regular covering of finite simplicial
complexes K and zK, and G is the group of deck transformations.
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It follows from [9] that a finitely generated group can have 0, 1, 2 or infinitely many
ends. Our main result here is as follows:

Proposition 13 Suppose .N;g/ is a closed Riemannian manifold satisfying the con-
clusions of Proposition 8. Then any finitely generated subgroup G of �1.N / cannot
have one end.

We will prove this below, but first we note that it yields the desired statement:

Corollary 14 Suppose .N;g/ is a closed Riemannian manifold satisfying the conclu-
sions of Proposition 8. Then �1.N / is virtually free.

Proof We follow the proof of [28, Theorem 2.5]. Indeed, by combining the main result
of [8] (see [30, Section 7]) with Proposition 13, �1.N / is the fundamental group of a
finite graph of groups with finite edge and vertex groups. The assertion now follows
from Proposition 11 in Chapter II, Section 2.6 of [31] (or eg [30, Theorem 7.3]).

Moreover, we observe that given these results, we can finish the proof of Theorem 1.

Proof of Theorem 1 By Corollary 7, Proposition 8, and Corollary 14, �1.N / is
virtually free. Let G � �1.N / be a finite-index subgroup which is a free group.
Consider the finite covering yN Op

�!N such that the image of Op# is G. Then �1. yN / is
a finitely generated free group. Since �2. yN /D � � � D �n�2. yN /D 0, Sections 2 and 3
of [12] imply that yN is homotopy equivalent to Sn or connected sums of Sn�1�S1.

We now give the proof of Proposition 13:

Proof of Proposition 13 Suppose there is a finitely generated subgroup G of �1.N /

with one end. We will show that this leads to a contradiction.

We divide the proof into several steps. Take a cover N0
p
�!N such that p#.�1.N0//DG.

Because p# W�1.N0/!�1.N / is injective, this ensures that �1.N0/DG. If G is finite
then e.G/D 0, so we can assume G is infinite.

Since G is finitely generated, we can find K�N0 a compact submanifold with boundary
containing representatives of all of the generators of G. Write i W K ! N0 for the
inclusion map and note that i# W �1.K/! �1.N0/D G is surjective. Let H D ker i#,
so G D �1.K/=H. Choose j W zK!K the cover (with zK path connected) of K so that
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j#.�1. zK//DH. Since H is a normal subgroup of �1.K/, the covering j W zK!K is
regular, and the group of deck transformations of j is isomorphic to �1.K/=H DG.
Thus, zK is noncompact. Note that j# ı i# W �1. zK/! �1.N0/ is the zero map, so we
can lift i to Q{ W zK! zN, where zN is the universal cover of N. (We emphasize that zK is
not necessarily the universal cover of K.)

As such, we have the diagram of spaces

zK
Q{
//

j

��

zN

Qp

��

K
i
// N0

p

��

N

The maps i and Q{ are inclusions of codimension zero submanifolds with boundary;
indeed:

Lemma 15 Q{ is a proper embedding.

Proof We first show that Q{ is injective. Suppose that Q{. Qa/D Q{. Qb/. Connect a and b by a
curve Q� in zK. By assumption, Q{. Q�/ is a loop in zN, so �D j . Q�/ has Œ��D e 2�1.N0/DG.
Thus, Œ�� 2H � �1.K/. This implies that Q� is a loop, ie aD b. It is straightforward to
check that Q{ is a closed map, using the fact that K is compact and Qp is a covering map.
Therefore, Q{ is proper.

Note that N is equipped with a Riemannian metric g, so that, for any p 2 zN, each
connected component of a level set of fp.x/ D d Qg.x;p/ has diameter � C, where
C D 20L as given in Proposition 8. The embeddings i; Q{ induce metric structures on
K and zK, respectively.

Lemma 16 For each r > 0, there exists R.r/ > 0 such that , for any a; b 2 zK with
d zN .a; b/� r , we have d zK .a; b/�R.r/.

Proof Fix x2 zK. By applying a deck transformation, we can assume that d zN .a;x/�c0

(here c0 only depends on K), so d zN .b;x/ � r C c0. Since zK is connected (and Q{ is
proper), there exists R D R.r C c0/ so that d zK .a;x/; d zK .b;x/ � R. The assertion
follows from the triangle inequality.
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In the following lemma, we will call a curve Q WR! zK a line if it minimizes length on
compact subintervals relative to competitors in zK. Note that such a curve is a geodesic in
the sense of metric geometry, but not necessarily in the sense of Riemannian geometry,
since it could stick to @ zK in places. Similarly, we will call � 0 W Œ0;1/! zK a minimizing
ray if it minimizes length in the same sense.

Lemma 17 There exists a line Q in zK.

Proof Fix p 2 zK, and choose pj 2
zK diverging. Let �j denote a curve that minimizes

length in zK between p and pj . We assume that �j is parametrized by unit speed. In
particular, �j is a 1–Lipschitz map from an interval to zK. Consider an exhaustion
of zK by nested compact sets containing p. Applying Arzelà–Ascoli in each compact
set and taking a diagonal sequence, we obtain that, after passing to a subsequence,
�i converges to a minimizing ray � 0 W Œ0;1/ ! zK. Since G is the group of deck
transformations of zK!K acting transitively on zK and K is compact, we can choose
ti!1 and deck transformations ˆi so that d Qg

�
p; ˆi.�

0.ti//
�

is uniformly bounded.
Then � 0i.t/ D ˆi.�

0.t C ti// subsequentially converges to a geodesic line � (using
Arzelà–Ascoli again).

Parametrize the curve Q so that d zK . Q .a/; Q .b//D ja� bj (note that d zN . Q .a/; Q .b//

might be smaller than ja�bj). Let  D Q{ ı Q . Note that Q is automatically proper in zK,
and thus Lemma 15 implies that  is proper in zN.

For each R> 0, consider the open geodesic ball BR. .0//� zN. Define parameters

t�.R/Dmaxft W  .�1; t/\BR. .0//D∅g;

tC.R/Dminft W  .t;1/\BR.0/D∅g:

Note that t˙.R/!˙1 as R!1.

Since e. zK/D 1,  .t˙.R// can be connected in zK nBR. .0//. Because zN is simply
connected, this implies that  .t˙.R// lie in the same component of @BR. .0//� zN

and thus
d zN

�
 .t�.R//;  .tC.R//

�
� C:

On the other hand, we have

d zK

�
 .t�.R//;  .tC.R//

�
D jt�.R/� tC.R/j !1:

This contradicts Lemma 16. This completes the proof of Proposition 13.
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4 Generalization to the mapping problem

In this section we prove Theorem 2. The proof here is partly motivated by [14, Section 5],
where nonexistence of PSC metrics on certain noncompact manifold admitting a proper,
distance-decreasing map to a uniformly contractible manifold is established. We first
observe that we may assume, without loss of generality, that �1.X / is infinite. Indeed, if
�1.X / is finite, then the universal cover zX is compact and satisfies that �1. zX /D � � � D

�n�2. zX /D 0. By the Hurewicz theorem, we have that H1. zX /D � � � DHn�2. zX /D 0.
Poincaré duality further implies that H1. zX /D � � � DHn�1. zX /D 0, and hence zX is
homeomorphic to Sn.

We begin with the following general lemma. Note that it is tempting to try to lift a map
of nonzero degree to the universal covers, but this map may not be proper (and hence
the degree will not be well defined). We note that the construction of the appropriate
cover is somewhat analogous to the construction of zK in Section 3.

Lemma 18 Suppose that X and N are closed oriented manifolds and f WN !X has
nonzero degree. Letting zX denote the universal cover of X, there exists a connected
cover yN !N and a lift Of W yN ! zX such that Of is proper and deg Of D degf.

Proof Choose a regular value x 2 X and set f �1.x/ D fz1; : : : ; zkg. Consider
H WD kerf# W �1.N; z1/! �1.X;x/. Choose a covering space p W yN ! N so that
image p# W �1. yN ; Oz1/! �1.N; z1/ is H. Below we will show that the map f lifts to
Of W yN ! zX and that Of satisfies the assertions made above.

Noncompactness of yN We claim that yN is noncompact. We first show that the
image of f# is a subgroup of �1.X;x/ with finite index. Let G D f#.�1.N; z1// and
N� W .X ; Nx/! .X;x/ be a covering map such that image.. N�/# W �1.X ; Nx/! �1.X;x//

is G. The map f lifts to a map Nf W .N; z1/! .X ; Nx/ such that f D N� ı Nf. Since N

is compact and f is surjective, we see that X is compact. Hence, we have degf D
deg N� �deg Nf. It follows that deg N� is an integer factor of degf, and thus G is a subgroup
of �1.X;x/ of finite index.

The number of sheets of the covering map p is the index of H D p#.�1. yN ; Oz1// in
�1.N; z1/. Since H is a normal subgroup, this is equal to the number of elements
of the group �1.N; z1/=H, which is isomorphic to G and thus of infinite order. This
implies that yN is noncompact, as claimed.
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Lifting the map f Consider f ıp W yN !X. Note that .f ıp/# W �1. yN /! �1.X /

is the zero map. Thus, we can lift f ıp to the universal cover of X :

. yN ; Oz1/
Of
//

p

��

. zX ; Qx/

�

��

.N; z1/
f

// .X;x/

Clearly, a loop in N lifts to a loop in yN if and only if it is in H (recall that H is
normal).

Counting lifts of preimages We now claim that #. Of �1. Qx/\p�1.zj //D 1. To this
end, suppose that a; b 2 Of �1. Qx/\p�1.zj /. Choose a path O in yN connecting the two
points. Then  D p ı O is a loop in N based at zj . On the other hand, Q WD Of ı O is
a loop in zX based at Qx. Since e D �#Œ Q �D f#Œ �, we thus see that Œ � 2H. This is a
contradiction since this would imply that  lifts to a loop (as remarked above).

Properness We now show that Of is proper. Assume that Ori!1 in yN but Of . Ori/! q

in zX. Since N is compact, we can pass to a subsequence such that p. Ori/! r 2 N.
Then �.q/D f .r/.

Choose a contractible neighborhood U � N with r 2 U. By shrinking U, we can
assume that f .U / is contained in a contractible open set W � X. Then ��1.W /

consists of disjoint copies of W. We can assume that Of . Ori/ are all contained in the
copy containing q.

Assume that p. Ori/ 2 U for all i . Fix paths �i from p. Ori/ to r in U and paths Oi from
Or1 to Ori in yN. Then

˛i WD .�i/� .p ı Oi/� .��1/

is a loop from r to r . Lift ˛i to Ǫ i a path in yN that agrees with Oi on that portion of Ǫ i .
Note that Ǫ i cannot be a loop for i large, since the Ori are diverging.

We now consider Q̨ i WD Of ı Ǫ i a path in zX. By construction, Q̨ i is a loop in zX. This is a
contradiction as before.

Degree Finally, we check that deg Of D degf. The lift Qx is a regular point for Of
and we have seen that each element of f �1.x/ lifts to a unique element of Of �1. Qx/.
But the local degree of Of at each preimage Ozi is the same as the degree of f at the
corresponding point p.Ozi/ (since p is a covering map).
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Remark With some trivial modifications in the proof, a similar result holds for possibly
nonorientable X and N with a map f WN !X of nonzero mod 2 degree.

Using the lifted map Of we can now follow [14, Section 5] to show that the conclusion
of Corollary 7 holds in the setting of Theorem 2.

Lemma 19 Let X and N be oriented Riemannian manifolds and f W .N;g/! .X;gX /

with f distance-decreasing and degf ¤ 0. Assume that N admits a metric of positive
scalar curvature and that either nD4 and �2.X /D0, or nD5 and �2.X /D�3.X /D0.

Then there exists L> 0 with the following property: if †n�2 is an .n�2/–dimensional
nullhomologous cycle in the universal cover zX of X, then the cycle deg.f /†n�2 can
be filled inside BL.†n�2/.

Proof We consider nD 5 since the nD 4 case is similar (but simpler). By scaling, we
can assume that .N;g/ has scalar curvature R � 1. As in Corollary 7, H2. zX ;Z/D

H3. zX ;Z/D 0.

By assumption, †3 D @†4 in zX for some chain †4. Up to a small perturbation, we
can assume that Of is transversal to †3 and †4. Set y†4 WD

Of �1.†4/ and similarly
y†3D @y†4. Note that y†3 is nullhomologous in yN (by construction). Using Theorem 5,
we can find y†0

3
� BL0

.y†3/ homologous to y†3 as well as 3–chains yU1; : : : ; yUm with
diam.Uj /�L0 and 2–cycles fy� l

j W j D1; : : : ;m; lD1; : : : ; k.j /gwith diam.y� l
j /�L0

and such that

y†03 D

mX
jD1

yUj and @ yUj D

k.j/X
lD1

y� l
j for each j D 1; : : : ;m;

where both equalities hold as chains (not just in homology). Finally, there is an integer q

and a function

u W f.j ; l/ W j D 1; : : : ;m; l D 1; : : : ; k.j /g ! f1; : : : ; qg

such that, for r 2 f1; : : : ; qg, we have

diam
� [
.j ;l/2u�1.r/

y� l
j

�
�L0

and X
.j ;l/2u�1.r/

y� l
j D 0

as 2–cycles for r 2 f1; : : : ; qg.
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Denote by †0
3

the 3–cycle in zX obtained by pushing y†0
3

forward by the map Of and
similarly for Uj and � l

j .

Since Of is transversal to M3, it is easy to check that deg Of jM3
D deg Of. Hence,

Of#.Œy†
0
3
�/D .deg Of /Œ†3�. Moreover, since f (and thus Of ) was assumed to be distance-

decreasing, we see that d
. zX ;g zX /

.†3; †
0
3
/�L0. As such, it suffices to bound †0

3
in a

controlled neighborhood.

To do so, we follow the argument used in Corollary 7. Because diam.y� l
j / � L0, we

can use Proposition 6 to find a 3–chain z�j

l
with diam.z� l

j / � R.L0/ and @z�j

l
D �

j

l

and then a 4–chain zUj with

@ zUj D Uj �

k.j/X
lD1

z� l
j

and diam. zUj /�R.L0C 2R.L0//. Thus,

†03 D

mX
jD1

@ zUj C

qX
rD1

X
.j ;l/2u�1.r/

z� l
j :

and

diam
� X
.j ;l/2u�1.r/

z� l
j

�
� 2R.L0/CL0:

We can thus complete the proof as in Corollary 7.

Granted Lemma 19, Theorem 2 follows. Indeed, in order to prove the Urysohn width
estimate of Proposition 8, it is enough to assume that the filling radius estimate holds
for a multiple deg.f /†n�2 of every cycle †n�2. The rest of the proof of Theorem 2
proceeds exactly as the proof of Theorem 1.
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