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We define an invariant of contact structures in dimension three from Heegaard Floer
homology. This invariant takes values in the set Z�0[f1g. It is zero for overtwisted
contact structures,1 for Stein-fillable contact structures, nondecreasing under Leg-
endrian surgery, and computable from any supporting open book decomposition. As
an application, we give an easily computable obstruction to Stein-fillability on closed
contact 3–manifolds with nonvanishing Ozsváth–Szabó contact class.
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1 Introduction

Let M be a closed orientable 3–manifold and � be a contact structure on M. The
goal of this article is to define an invariant of .M; �/ as a refinement of the contact
invariant in Heegaard Floer homology, the Ozsváth–Szabó contact class Oc.�/ [50],
and to study some of its properties. To define our invariant, we start from an open
book decomposition of M supporting � and a collection of pairwise disjoint properly
embedded arcs on a page of the open book decomposition. From this data we build a
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filtered chain complex out of the corresponding Heegaard Floer chain complex, whose
filtration captures in an algebraic sense the topological complexity of curves counted
by the differential. We then consider how far the Ozsváth–Szabó contact class survives
in the associated spectral sequence. The result is an invariant of the contact manifold,
denoted by o.M; �/, and read the spectral order, or simply order, of .M; �/, taking
values in Z�0[f1g.

Theorem 1.1 The contact invariant o satisfies the following properties:

� o.M; �/D 0 if .M; �/ is overtwisted.

� o.M; �/D1 if .M; �/ is Stein-fillable.

� o.M; �/ can be detected on an arbitrary supporting open book decomposition
of .M; �/.

The second bullet point property in Theorem 1.1 follows from the fact that the contact
invariant o behaves well under Legendrian surgery, giving a map of partially ordered
sets from contact manifolds ordered by Stein cobordisms to the set Z�0[f1g with
the usual ordering:

Theorem 1.2 The contact invariant o is nondecreasing under Legendrian surgery and
in particular gives an obstruction to the existence of Stein cobordisms between contact
3–manifolds. Specifically, if .M�; ��/ and .MC; �C/ are respectively the concave and
convex ends of a Stein cobordism , then o.M�; ��/� o.MC; �C/.

Aside from the properties listed in Theorem 1.1, the contact invariant o behaves well
under connected sums. To be more explicit:

Theorem 1.3 Let .M1; �1/ and .M2; �2/ be closed contact 3–manifolds. Then their
connected sum satisfies o.M1 # M2; �1 # �2/Dminfo.M1; �1/; o.M2; �2/g.

The above theorem fits into a broader pattern of similar contact connected sum results.
Loosely, various measures of rigidity of .M1 # M2; �1 # �2/— for example, Stein-
fillability, having a nonvanishing Ozsváth–Szabó contact class, or tightness — is the
weaker of that property for .M1; �1/ or .M2; �2/ (see Eliashberg [11], Cieliebak and
Eliashberg [7], Ozsváth and Szabó [50] and Colin [8]). In addition, Theorem 1.3 leads
to existence of a family of monoids ok.S/ in the mapping class group Mod.S; @S/:
� 2 Mod.S; @S/ belongs to ok.S/ if and only if o � k for the contact 3–manifold
specified by the open book decomposition .S; �/.

Geometry & Topology, Volume 27 (2023)
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Our contact invariant is inspired by an analog of Latschev and Wendl’s algebraic torsion
introduced by Hutchings in the context of embedded contact homology (ECH) in [33,
Appendix]. To a closed oriented 3–manifold M, a nondegenerate contact 1–form �

on M, and a generic almost complex structure J on R�M as needed to define the
ECH chain complex, Hutchings associates a number f .M; �;J / in Z�0[f1g. The
latter is shown to vanish for overtwisted contact structures for all choices of � and J,
and can be used to obstruct exact symplectic cobordisms. Our initial definitions follow
the ideas of Hutchings’ construction, ported to the setting of Heegaard Floer homology
(see our work [32] for more on this). We choose to work with Heegaard Floer homology
because of its computational advantages.

As an application, it follows from the second bullet point above that, even for closed
contact 3–manifolds with nonvanishing Ozsváth–Szabó contact class, one can obstruct
Stein-fillability by finding a finite upper bound on its spectral order, which is easier
than computing the spectral order itself.

Theorem 1.4 There is an infinite family of contact 3–manifolds f.Yp; �p/gp2Z>0
each

with Oc.�p/ ¤ 0 but with o.Yp; �p/ D 0 (see Figure 19, left, for a description of this
family via open book decompositions). In particular , these contact 3–manifolds are not
Stein-fillable.

Remark During the course of this project we learned that John Baldwin and David
Shea Vela-Vick have independently been working on a filtration in Heegaard Floer
homology similar in spirit to the JC–filtration defined in Section 2.2. This led to an
interesting application in knot Floer homology [4].

Future considerations

In upcoming work in progress [31], we present an infinite family of contact structures
with vanishing Ozsváth–Szabó contact class but with nonzero spectral order. Further-
more, we compute upper bounds on the spectral order of these contact structures and
these upper bounds span the range of all positive integers. The next step will be to show
that there is an increasing sequence of positive integers that provides lower bounds
on the spectral order of our family of contact structures. These computations would
resolve the following conjecture:

Conjecture 1.5 An infinite sequence of distinct positive integers is realized by the
spectral order of an infinite family of contact structures with vanishing Ozsváth–Szabó
contact class.

Geometry & Topology, Volume 27 (2023)
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In addition, such a family of examples would provide a nested sequence of monoids

� � �¨ oknC1.S/¨ okn.S/¨ � � � ;

where okn.S/ is the set of orientation-preserving homeomorphisms � in the mapping
class group Mod.S; @S/ such that the open book decomposition .S; �/ supports a
contact structure with o � k, and S may have arbitrary genus. Note that this family
of monoids would be contained in the monoid Tight.S; @S/ and would contain the
monoid Stein.S; @S/ (see Etnyre and Van Horn-Morris [13], as well as Baldwin [3]
and Baker, Etnyre and Van Horn-Morris [1]), and it would provide an answer to [13,
Question 6.8].

A more conceptual question concerns the potential of a converse to the first bullet point
of Theorem 1.1:

Question 1.6 Suppose that .M; �/ has vanishing Ozsváth–Szabó contact class. Does
o.M; �/D 0 imply that � is overtwisted?

An affirmative answer to Question 1.6 would imply that Heegaard Floer package detects
tight contact structures. In this regard, spectral order gives a potential interpretation
of consistency of an open book decomposition (see Wand [55]), a combinatorial
condition equivalent to tightness of the supported contact structure, in the context of
pseudoholomorphic curves. Furthermore, along with the nondecreasing behavior of
spectral order under Legendrian surgery, an affirmative answer to Question 1.6 would
provide an alternative and more conceptual proof of the following theorem, which has
recently been proved by the last author in [56]:

Theorem 1.7 Let � be a tight contact structure on M, and K � M be a null-
homologous Legendrian knot. Then contact .�1/–surgery on K produces a 3–manifold
with a tight contact structure.

Another question of interest is related to generalizing our invariant to compact contact
3–manifolds with convex boundary. In this regard, our construction of a filtered chain
complex out of the Heegaard Floer chain complex readily generalizes to the case of
partial open book decompositions introduced by Honda, Kazez and Matić [22]. This
allows us to extend the definition of spectral order (Definition 2.2) to compact contact
3–manifolds with convex boundary. This was independently observed by Juhász and
Kang [26], who used it to find an upper bound on the spectral order for a closed contact
3–manifold that contains a Giroux torsion domain. More generally, Juhász and Kang
showed that the spectral order of a codimension zero contact submanifold with convex

Geometry & Topology, Volume 27 (2023)
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boundary gives an upper bound on the spectral order of the ambient manifold. Among
other things, we will compare o to Wendl’s planar torsion [58]. As is stated by Latschev
and Wendl [33, Theorem 6], planar torsion provides an upper bound to Latschev and
Wendl’s algebraic torsion. Moreover, planar torsion detects overtwistedness. One could
expect a similar relationship between spectral order and Wendl’s planar torsion. These
are the content of another work in progress by the authors [30].

Question 1.8 Suppose that the closed contact 3–manifold .M; �/ has planar k–torsion.
Does this imply o.M; �/� k?

Organization

In Section 2, we provide the definitions required throughout the article, leading to the
definition of spectral order. These include a preliminary version of the latter, denoted
by o, which a priori depends on the choices made to define it.

Section 3 investigates the dependence of o on various choices made in its definition.
Among these are a choice of the monodromy of an open book decomposition in its
isotopy class and a choice of a collection of pairwise disjoint properly embedded arcs
on a page of an open book decomposition.

In Section 4, we exhibit several properties of spectral order, and in doing so prove
Theorems 1.1, 1.2 and 1.3.

In Section 5, we present an infinite family of contact structures with nonvanishing
Ozsváth–Szabó contact class but with zero spectral order. This implies, by Theorem 1.1,
that these contact structures are not Stein-fillable. We also compare our method to
other known obstructions to fillability of closed contact 3–manifolds.
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2 Definitions

2.1 Background

To set the stage, let M be a closed, connected and oriented 3–manifold endowed
with a cooriented contact structure �. It is understood that the orientation on M

is induced by �. A celebrated theorem of Giroux states that there is a one-to-one
correspondence between contact structures up to isotopy and open book decompositions
up to positive stabilization [17]. An abstract open book decomposition of M is
a pair .S; �/, where S is a compact oriented surface of genus g with B boundary
components, called the page, and � is an orientation-preserving diffeomorphism of S

which restricts to the identity in a neighborhood of the boundary, called the monodromy.
The manifold M is homeomorphic to S � Œ0; 1�=�, where .p; 1/� .�.p/; 0/ for any
p2S and .p; t/� .p; t 0/ for any p2@S and t; t 02 Œ0; 1�. The open book decomposition
is said to support the contact structure � if there exists a 1–form � such that � D ker.�/,
�j@S > 0 and d�jS > 0.

Now fix an abstract open book decomposition .S; �/ of M supporting � and a collection
of pairwise disjoint properly embedded arcs aDfa1; : : : ; aNg on S that contains a basis,
that is, a subcollection of arcs cutting S into a polygon. This arc collection together with
the monodromy � defines a Heegaard diagram .†; fˇ1; : : : ; ˇNg; f˛1; : : : ; ˛Ng/ for�M

as in [23, Section 3.1]. To be more explicit, let bD fb1; : : : ; bNg be a collection of arcs
on S where bi is isotopic to ai via a small isotopy satisfying the following conditions:

� The endpoints of bi are obtained from the endpoints of ai by pushing along @S
in the direction of the boundary orientation.

Geometry & Topology, Volume 27 (2023)
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@S

bi

ai

xi

@S

Figure 1: The arcs ai and bi on the surface S.

� ai intersects bi transversally at one point, xi , in the interior of S.

� Having fixed an orientation of ai , there is an induced orientation on bi , and the
sign of the oriented intersection ai \ bi is positive (see Figure 1).

Then†DS�
˚

1
2

	
[@S�S�f0g, ˛iDai�

˚
1
2

	
[ai�f0g and ˇiDbi�

˚
1
2

	
[�.bi/�f0g.

Note that the Heegaard diagram .�†; f˛1; : : : ; ˛Ng; fˇ1; : : : ; ˇNg/ also describes the
manifold �M, and we may sometimes prefer to use this diagram in figures.

With the preceding understood, we recall the definition of the Heegaard Floer chain
complex .cCF.†;ˇ;˛/; y@HF/. In doing so, we adopt Lipshitz’s cylindrical reformulation
of Heegaard Floer homology [35]. The definition also requires the choice of basepoints
z � † X

S
i2f1;:::;Ng.˛i [ ˇi/. In the present context, this is done according to the

convention in [23, Section 3.1]. To be more explicit, place a single basepoint in every
connected component of S X

S
i2f1;:::;Ng ai outside the small strips between ai and bi

(see Figure 1). Following Lipshitz, the chain group cCF.†;ˇ;˛/ is freely generated
over F WD Z=2Z by I–chord collections Ex WD x � Œ0; 1� specified by unordered N–
tuples of points in † of the form x D fx1; : : : ;xNg, where xi 2 ˛i \ ˇ�.i/ for some
element � of the symmetric group SN . Given a generic almost complex structure
JHF on †� Œ0; 1��R satisfying conditions (J1)–(J5) in [35, Section 1, page 959], the
differential y@HF on cCF.†;ˇ;˛/ is defined to be the endomorphism of cCF.†;ˇ;˛/
sending a generator Ex to X

y

X
A2y�2. Ex; Ey/

ind.A/D1

n.Ex; Ey IA/ Ey :

Here y�2.Ex; Ey/ denotes the set of relative homology classes of continuous maps from a
Riemann surface with boundary and boundary punctures into †� Œ0; 1��R such that
it maps the boundary of the surface into ˛� f0g �R[ˇ � f1g �R, it converges to Ex
and Ey at its punctures, and it has trivial homological intersection with fzg � Œ0; 1��R.

Geometry & Topology, Volume 27 (2023)
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Meanwhile, ind.A/ denotes the index of a class A2 y�2.Ex; Ey/ (see [35, Definition 4.4]),
and n.Ex; Ey IA/ is a signed count, modulo R–translation, of JHF–holomorphic curves
in †� Œ0; 1��R satisfying conditions (M0)–(M6) in [35, Section 1, page 960] and
representing the class A. The latter is guaranteed to be finite if we choose the mon-
odromy � appropriately in its isotopy class so as to make the multipointed Heegaard
diagram .†;ˇ;˛; z/ admissible. A multipointed Heegaard diagram is admissible if
every nontrivial periodic domain has both positive and negative coefficients (see [35,
Definition 5.1]).

Remark Even though Lipshitz carried out his construction of a cylindrical reformula-
tion of Heegaard Floer homology in the case ND 2gC B� 1 (in other words, the case
with one basepoint), the details of his construction and especially the results in [35,
Sections 4 and 10] carry over to the multipointed case but for cosmetic changes.

2.2 The JC filtration

Next we build a filtered chain complex out of .cCF.†;ˇ;˛/; y@HF/. To do this, we adopt
Hutchings’ recipe in [24, Section 6]. Given a pair of generators Ex and Ey , define a
function JC on y�2.Ex; Ey/ by1

(2-1) JC.A/ WD �.D.A//� 2e.D.A//Cjxj � jy j;

where j � j denotes the number of disjoint cycles in the element of the symmetric
group SN associated to a given generator following the convention described above
in Section 2.1 (eg the generator x� corresponding to the distinguished set of points
fx1; : : : ;xNg indicated in Figure 1 has j Ex� j D N), D.A/ is the domain in the pointed
Heegaard diagram .†;ˇ;˛; z/ representing a class A 2 y�2.Ex; Ey/, �.D.A// is the
Maslov index of D.A/ as in the traditional setting of [48], and e.D.A// is the Euler
measure of D.A/ (see [35, Section 4.1, page 973] for the definition). Since the Maslov
index and Euler measure are additive under concatenation of domains, so is JC. More
precisely, for any A 2 y�2.Ex; Ey/ and A0 2 y�2. Ey ; Ez/, we have

JC.ACA0/D JC.A/CJC.A
0/:

Now suppose that A 2 y�2.Ex; Ey/ is represented by a JHF–holomorphic curve CL in
† � Œ0; 1� � R satisfying conditions (M0)–(M6) in [35, Section 1]. Then, by [35,
Proposition 4.2 (see also Proposition 4:20 in the correction)],

(2-2) �.CL/D N� nx.D.A//� ny.D.A//C e.D.A//:
1The interested reader may refer to [32] to see how the authors originally came up with this formula.
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Here, np.D.A// denotes the point measure, namely, the average of the coefficients
of D.A/ for the four regions with corners at p 2˛i\ ǰ . Meanwhile, Lipshitz’s formula
for the Maslov index of domains [35, Corollary 4.10 (see also Proposition 4:80 in the
correction)] asserts that

(2-3) �.D.A//D nx.D.A//C ny.D.A//C e.D.A//:

Combining (2-2) and (2-3), we obtain

�.D.A//� 2e.D.A//D��.CL/C N;

and hence (2-1) can be rewritten as

(2-4) JC.A/D��.CL/C NCjxj � jy j:

With the preceding understood, consider the smooth compact oriented surface C

obtained from the compactification of CL by attaching 2–dimensional 1–handles along
pairs of points in ˛i �f0g�R\CL and ˇi �f1g�R\CL for each i D 1; : : : ; N, and
then smoothing. Then �.C /D �.CL/� N, and jxj (resp. jy j) is equal to the number
of boundary components of C arising from the I–chord Ex (resp. Ey). Hence, we can
further rewrite (2-4) as

(2-5) JC.A/D
X

Cj�C

.2gj � 2C 2jxj j/;

where each Cj denotes a connected component of C, gj denotes the genus of Cj , and
each xj � x denotes the maximal subcollection of points in x such that xj � Œ0; 1� lies
on the boundary of the component Cj . Note that each connected component of C has
nonempty intersections with the I–chord collections specified by x and y since each
connected component of CL has nonempty negative and positive ends. Therefore, it
follows from (2-5) that 2 jJC.A/ and JC.A/� 0.

Remark If there exists an embedded JHF–holomorphic curve CL representing the
class A, then the Maslov index of D.A/ agrees with the Fredholm index of CL. For
Maslov index-1 domains, we prefer to use the equivalent formula

(2-6) JC.A/D 2Œnx.D.A//C ny.D.A//�� 1Cjxj � jy j:

2.3 The filtered chain complex

Following Hutchings, we decompose the Heegaard Floer differential as

y@HF D @0C @1C � � �C @l C � � � ;

Geometry & Topology, Volume 27 (2023)
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where @l counts JHF–holomorphic curves with JC D 2l and having empty intersection
with fzg � Œ0; 1��R. Since JC is additive under gluing of J–holomorphic curves, the
above decomposition induces a spectral sequence with pages

Ek.S; �; aIJHF/DH�.E
k�1.S; �; aIJHF/; dk�1/:

To be more explicit, consider the Z–graded modulecCF.S; �; a/ WD cCF.†;ˇ;˛/˝F F Œt; t�1�

endowed with the endomorphism y@ defined by

y@

�X
i2Z

ci t
i

�
WD

X
i2Z

�X
l2Z

.@lci/t
i�l

�
:

Here ci ¤ 0 for only finitely many i 2 Z. Note that the additivity property of JC

implies that X
iCjDl

@i ı @j D 0

for any l � 0; hence, y@ ı y@D 0, making .cCF.S; �; a/; y@/ into a filtered chain complex,
where the pth filtration level

Fp.S; �; a/D

�X
i�p

ci t
i
ˇ̌̌
ci 2 cCF.†;ˇ;˛/

�
:

Then .Ek.S; �; aIJHF/; dk/ is the spectral sequence associated to this filtered chain
complex, where dk is the restriction of y@ to Ek.S; �; aIJHF/. To be more explicit, let
Ak

p denote the subcomplex defined by

Ak
p D fc 2 Fp.S; �; a/ j y@c 2 Fp�k.S; �; a/g;

ie

Ak
p D

�X
i�p

ci t
i
ˇ̌̌
ci 2 cCF.†;ˇ;˛/ with

jX
iD0

@icpCi�j D 0 for 0� j < k

�
:

Then

Ek
p .S; �; aIJHF/D

Ak
p

y@Ak�1
pCk�1

CAk�1
p�1

:

A straightforward calculation shows that Ek
0
.S; �; aIJHF/ is isomorphic to

(2-7)
Zk.S; �; aIJHF/

Bk.S; �; aIJHF/
;

Geometry & Topology, Volume 27 (2023)
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where

Zk.S; �; aIJHF/

WD

�
c0 2

cCF.†;ˇ;˛/
ˇ̌̌
9ci 2 cCF.†;ˇ;˛/ for 1� k � i � �1 with @0c0 D 0

and @j c0 D

j�1X
iD0

@ici�j for 0< j < k

�
and

Bk.S; �; aIJHF/

WD

�k�1X
iD0

@ibi

ˇ̌̌
bi 2 cCF.†;ˇ;˛/ and

k�1�jX
iD0

@ibiCj D 0 for 0< j < k

�
:

(Note that, for an element
P

i�0 ci t
i 2 Ak

0
, the chains ci for 1 � k � i � �1 are

uniquely determined by c0 up to chains ai for 1 � k � i � �1 belonging to someP
i��1 ai t

i 2 Ak�1
�1

, and that Zk is isomorphic to Ak
0
=Ak�1
�1

.) Since Fp.S; �; a/Š

Fp�1.S; �; a/ canonically as chain complexes, Ek
p .S; �; aIJHF/ is canonically iso-

morphic to the quotient (2-7) for every p.

By [23, Theorem 3.1], the distinguished generator Ex� represents the Ozsváth–Szabó
contact class Oc.�/2cHF.�M /, and it satisfies @i Ex�D0 for all i�0. This is because there
is no Fredholm index-1 JHF–holomorphic curve in †� Œ0; 1��R satisfying conditions
(M0)–(M6) in [35, Section 1] with Ex� at its negative punctures and having empty
intersection with fzg� Œ0; 1��R. Hence, Ex� represents a cycle in Ek.S; �; aIJHF/ for
all k � 1.

Definition 2.1 Define o.S; �; aIJHF/ to be the smallest nonnegative integer k such
that the generator Ex� represents the trivial class in EkC1.S; �; aIJHF/.

Ideally, one would like to show that o.S; �; aIJHF/ does not depend on choices of
.S; �; a/ and JHF. This is not true in general. For example, consider the closed contact
3–manifold where the contact structure is supported by the open book decomposition
.S; �/, where S is a 4–holed sphere and � is the product of Dehn twists depicted
in Figure 2, left. Using the basis of arcs a shown in Figure 2, left, and a generic
split almost complex structure JHF, we observe that the shaded domain D in Figure 2,
right, has a unique holomorphic representative up to translation (see [49, Lemma 3.4]),
and this is sufficient for the vanishing of the Ozsváth–Szabó contact class. A simple
computation shows that JC.D/ D 2. Therefore, Ex� represents the trivial class in
E2.S; �; aIJHF/, and o.S; �; aIJHF/ � 1. Furthermore, using the symmetry of the

Geometry & Topology, Volume 27 (2023)
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C1

�2

C1 C1

C1

y2

x2
y1 x1

z

Figure 2: Left: an open book decomposition .S; �/ supporting an overtwisted
contact structure and a basis of arcs depicted in red. Right: a Maslov index-1
holomorphic domain with JCD 2 in the S�f0g half of the Heegaard diagram
.�†;˛;ˇ/.

open book decomposition and the choice of the arc basis, one can argue as in [31]
that o.S; �; aIJHF/D 1. However, the contact structure supported by the open book
decomposition .S; �/ is overtwisted, which can be seen after a sequence of positive
stabilizations to reveal the overtwisted disk (see [55] for an explicit algorithm). Then
there exists another open book decomposition .S 0; �0/ and a basis of arcs a0 on S 0 for
which o.S 0; �0; a0IJ 0HF/D 0 using a generic split almost complex structure J 0HF (see
the proof of Theorem 2.3). As a result, o is not independent of these choices.

Definition 2.2 Let .M; �/ be a closed contact 3–manifold. Then define the spectral
order

o.M; �/ WDminfo.S; �; aIJHF/g;

where the minimum is taken over all data .S; �; aIJHF/ such that .S; �/ is an open
book decomposition of M supporting � , a is a collection of pairwise disjoint properly
embedded arcs on S that contains a basis, and JHF is a generic almost complex structure
on †� Œ0; 1��R satisfying conditions (J1)–(J5) in [35, Section 1].

It follows immediately that Definition 2.2 yields an invariant of contact structures. With
the definition of our contact invariant in place, the first bullet point of Theorem 1.1
follows without much effort:

Theorem 2.3 Let �OT be an overtwisted contact structure on a closed 3–manifold M.
Then o.M; �OT/D 0.

Proof Note that an overtwisted contact structure is supported by an open book de-
composition .S; �/ where the monodromy � is not right-veering [21, Theorem 1.1].
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One can find a basis of arcs a on S such that, in the corresponding Heegaard diagram,
y@HF Ey D Ex�OT

, where y D fy1;x2; : : : ;xGg and there is exactly one Maslov index-1
holomorphic domain D, a bigon, that contributes to the differential [23, Lemma 3.2]
as defined by a split complex structure on †� Œ0; 1��R. Therefore, ny.D.A//D 1

4
,

nx�OT
.D/ D 1

4
, jy j D G and jx�OT

j D G. Applying (2-6), we find JC.D/ D 0. As a
result, o.M; �OT/D 0.

3 Dependence on choices

This section investigates the question of dependence of o.S; �; aIJHF/ on a choice of
generic almost complex structure JHF on†�Œ0; 1��R, where†DS�

˚
1
2

	
[@S�S�f0g,

a choice of the monodromy � in its isotopy class, and how it changes under certain
modifications of arc collections. We start with a priori dependence of o on a choice of
generic almost complex structure.

3.1 Independence of almost complex structures

Proposition 3.1 Fix an open book decomposition .S; �/ of M supporting � and a
collection of pairwise disjoint properly embedded arcs a on S that contains a basis.
Suppose that .S; �; a/ yields an admissible Heegaard diagram , and let J 0

HF and J 1
HF be

two generic almost complex structures on †� Œ0; 1��R satisfying conditions (J1)–(J5)
in [35, Section 1]. Then o.S; �; aIJ 0

HF/D o.S; �; aIJ 1
HF/.

Proof There exists a smooth 1–parameter family of R–invariant almost complex
structures fJ s

HFgs2R on † � Œ0; 1� �R that agrees with J 0
HF if s < � and with J 1

HF
if s > 1 � � for some � � 1. As is explained in [35, Section 9], this family of
almost complex structures can be chosen to satisfy conditions (J1), (J2) and (J4) in
[35, Section 1] when considered as a non-R–invariant almost complex structure on
†� Œ0; 1��R. Furthermore, this almost complex structure guarantees transversality
for pseudoholomorphic curves with prescribed boundary conditions. It is used in [35,
Section 9] to define a chain map

ˆ W .cCF.†;ˇ;˛/; y@0
HF/! .cCF.†;ˇ;˛/; y@1

HF/

via a signed count of J s
HF–holomorphic curves in †� Œ0; 1��R satisfying conditions

(M0)–(M6) in [35, Section 1] and representing relative homology classes A 2 y�2.Ex; Ey/

with ind.A/D 0. If J s
HF is generic, then the moduli space of such J s

HF–holomorphic
curves representing a class A2 y�2.Ex; Ey/with ind.A/D0 (resp. ind.A/D1) is a smooth
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orientable 0–dimensional (resp. 1–dimensional) manifold whose compactification in the
1–dimensional case is obtained by adding on pseudoholomorphic buildings of height 2
in which one level is J s

HF–holomorphic and the other is either J 0
HF–holomorphic or

J 1
HF–holomorphic as the case may be. The topology of the curves in each component

of these moduli spaces is fixed.

Now we define an integer-valued function on moduli spaces of J s
HF–holomorphic curves

in †� Œ0; 1��R with ind� 1 satisfying conditions (M0)–(M6) in [35, Section 1]. If
CL is such a curve representing a class in y�2.Ex; Ey/, then define

(3-1) JC.CL/ WD ��.CL/C NCjxj � jy j:

Note that (3-1) is additive in the sense that, if a pseudoholomorphic building of height 2
consists of a J 0

HF–holomorphic curve C 1
L

with indD 1 representing a class in y�2.Ex; Ex
0/

and a J s
HF–holomorphic curve C 0

L
with indD 0 representing a class in y�2.Ex

0; Ey/, then
the J s

HF–holomorphic curve CL obtained from these by gluing (see [35, Appendix A])
satisfies

(3-2) JC.CL/D JC.C
1
L/CJC.C

0
L/;

since �.CL/D �.C
1
L
/C�.C 0

L
/�N. The same holds for a pseudoholomorphic building

of height 2 consisting of a J s
HF–holomorphic curve C 0

L
with ind D 0 representing a

class in y�2.Ex; Ey
0/ and a J 1

HF–holomorphic curve C 1
L

with indD 1 representing a class
in y�2. Ey

0; Ey/. Note also that (3-1) coincides with (2-4), which allows us to deduce
similarly that JC.CL/ is a nonnegative even integer. Hence, we may decompose ˆ as

ˆDˆ0
Cˆ1

C � � �Cˆl
C � � � ;

where ˆl counts J s
HF–holomorphic curves with JC D 2l . Since ˆ is a chain map and

JC is additive under gluing, it follows thatX
iCjDl

.ˆi
ı @0

j � @
1
i ıˆ

j /D 0:

This identity implies that there is a filtered chain map ŷ from .cCF.S; �; a/; y@0/ to
.cCF.S; �; a/; y@1/ defined by

ŷ

�X
i2Z

ci t
i

�
WD

X
i2Z

�X
l2Z

.ˆlci/t
i�l

�
;

and hence a morphism of spectral sequences from E�.S; �; aIJ 0
HF/ to E�.S; �; aIJ 1

HF/.
Moreover, ˆ.Ex�/ D Ex� since the only J s

HF–holomorphic curve with negative ends
at Ex� satisfying conditions (M0)–(M6) in [35, Section 1] is Ex� �R. Therefore, we
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have o.S; �; aIJ 0
HF/ � o.S; �; aIJ 1

HF/. On the other hand, we may also consider
the chain map induced by the smooth 1–parameter family of almost complex struc-
tures fJ 1�s

HF gs2R. Likewise, we obtain o.S; �; aIJ 0
HF/� o.S; �; aIJ 1

HF/. As a result,
o.S; �; aIJ 0

HF/D o.S; �; aIJ 1
HF/.

3.2 Isotopy independence

Given Proposition 3.1, we may drop a choice of generic almost complex structure
from the notation and simply write o.S; �; a/. We proceed to discuss the dependence
of o on the monodromy. In this regard, let � and �0 be two orientation-preserving
diffeomorphisms of S that restrict to the identity in a neighborhood of @S. Suppose
that � is isotopic to �0, and fix an isotopy f�tgt2Œ0;1� relative to @S such that �0 D �

and �1 D �
0. Given a collection of pairwise disjoint properly embedded arcs a on S

that contains a basis, the isotopy f�tgt2Œ0;1� yields an isotopy of arcs f�t .b/gt2Œ0;1�,
where b is the collection of arcs as in Section 2.1. Of interest to us are two kinds of
isotopies:

(1) For any t 2 Œ0; 1�, a intersects �t .b/ transversally in the interior of S.

(2) The isotopy creates/annihilates a pair of transverse intersections between a

and �.b/.

Following [35], we refer to such isotopies as basic isotopies. In general, a pointed
isotopy between two multipointed Heegaard diagrams, namely an isotopy supported in
the complement of the basepoints, is called admissible if each intermediate multipointed
Heegaard diagram is admissible. Any two admissible multipointed Heegaard diagrams
that are pointed isotopic are in fact isotopic through a sequence of admissible basic
isotopies (see [35, Proposition 5.6]). Note that isotopies of the monodromy of an open
book decomposition yield pointed isotopies of the corresponding multipointed Heegaard
diagram. Therefore, it suffices to investigate the behavior of o under admissible basic
isotopies of the monodromy.

Proposition 3.2 Let .S; �/ be an open book decomposition and a be a collection of
pairwise disjoint properly embedded arcs a on S that contains a basis. Suppose that
.S; �; a/ yields an admissible multipointed Heegaard diagram and that �0 is isotopic
to � via an admissible basic isotopy. Then o.S; �0; a/D o.S; �; a/.

Proof As is explained in [35, Chapter 9] (see also [48, Section 7.3]), basic isotopies
of the first kind above are equivalent to deformations of the complex structure on †.
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@S
ˇi ˇ0i ˛i

�i xi

x0i

@S

Figure 3: Part of the restriction of the multipointed Heegaard triple diagram
.†;ˇ 0;ˇ;˛; z/ to S �

˚
1
2

	
�†.

With this understood, o is unchanged under isotopies of this sort by Proposition 3.1. As
for basic isotopies of the second kind above, we consider the chain maps induced by
the multipointed Heegaard triple diagram .†;ˇ 0;ˇ;˛; z/, where ˇ 0 D fˇ0

1
; : : : ; ˇ0Ng is

such that each ˇ0i is obtained from a small Hamiltonian isotopy of ai [�
0.bi/ so that it

intersects ˇi transversally in exactly two points near the point xi , as shown in Figure 3,
while it is disjoint from ǰ for j ¤ i . As a result, the Heegaard diagram .†;ˇ 0;ˇ/

represents the manifold #G S1 �S2, where G is the genus of †; we may assume that
the signed area of the region between ˇ and ˇ 0 is zero with respect to an area form
on † which delivers the admissibility criteria for the multipointed Heegaard diagram
.†;ˇ 0;ˇ; z/ as stated in [35, Lemma 5.3]. Consequently, the multipointed Heegaard
triple diagram .†;ˇ 0;ˇ;˛; z/ is also admissible by [35, Lemma 10.14].

The Heegaard triple diagram .†;ˇ 0;ˇ;˛/ describes a cobordism with one outgoing
boundary component and two incoming boundary components, one of which is diffeo-
morphic to the manifold #G S1 �S2. To be more specific, this cobordism is diffeo-
morphic to the complement of a tubular neighborhood of a bouquet of G embedded
circles in the product cobordism Œ0; 1� �M. It follows that there is a unique Spinc

structure t� on this cobordism which restricts to the trivial Spinc structure sı on
#G S1 �S2 and to s� on M.

With the preceding understood, there exists a chain map

Ofˇ 0;ˇ;˛It� W
cCF.†;ˇ 0;ˇ; sı/˝F cCF.†;ˇ;˛; s�/! cCF.†;ˇ 0;˛; s�/;

defined by counting embedded Fredholm index-0 pseudoholomorphic curves in †�T

subject to appropriate boundary conditions. Here T denotes a disk with three marked
points on its boundary and † � T is equipped with an almost complex structure
satisfying conditions (J 01)–(J 04) in [35, Section 10.2, page 1018].
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No matter the almost complex structure, the differential on cCF.†;ˇ 0;ˇ; sı/ vanishes
identically. Therefore, restricting to the subcomplex F � E�˝F cCF.†;ˇ;˛; s�/, where
� D f�1; : : : ; �Ng and E� is the top degree generator of cCF.†;ˇ 0;ˇ; sı/, results in a
chain map

Ofˇ 0;ˇ;˛It� .
E�˝ � / W cCF.†;ˇ;˛; s�/! cCF.†;ˇ 0;˛; s�/:

The latter induces an isomorphism of homologies by [35, Proposition 11.4] (see also
[48, Proposition 9.8]). In what follows, we work with a generic split complex structure
on †�T. We are allowed to do so since transversality of moduli spaces as defined
by such almost complex structures can be guaranteed by slight perturbation of the ˛–,
ˇ– and ˇ 0–curves. To be more precise, we may invoke the technique of [46]. This
is because any class A in y�2. E�; � ; � / satisfies the boundary injectivity criterion in the
sense of [35]. By way of a reminder, a class A in y�2. E�; � ; � / is said to satisfy the
boundary injectivity criterion if any pseudoholomorphic curve u for some split complex
structure on † � T representing the class A has �† ı u somewhere injective in its
boundary. This criterion is guaranteed as long as the domain representing the class has
a region with multiplicity one adjacent to a region of multiplicity zero. Note that this
is the case for any class in y�2. E�; � ; � / due to the placement of the basepoints, in that
basepoints appear on both sides of every ˛–, ˇ– and ˇ 0–curve.

Next we show that the chain map Ofˇ 0;ˇ;˛It� .
E� ˝ � / induces a morphism of spectral

sequences from E�.S; �; aIJHF/ to E�.S; �0; aIJ 0HF/. First, define an analog of (2-1)
for the cobordism described by the Heegaard triple diagram .†;ˇ 0;ˇ;˛/ via

(3-3) JC.A/D
1
2

NC�.D.A//� 2e.A/Cjxj � jy j;

where A 2 y�2. E�; Ex; Ey/; �.D.A// denotes the Maslov index of the domain D.A/
associated to A, which is the expected dimension of the moduli space of pseudoholo-
morphic curves representing the class A; and e.A/ is the Euler measure of the domain
associated to the class A. If A can be represented by an embedded Fredholm index-0
pseudoholomorphic curve CL, then (3-3) becomes

JC.A/D
1
2

N� 2e.A/Cjxj � jy j D ��.CL/C N„ ƒ‚ …
by [35, Section 10.2]

Cjxj � jy j:

It follows from this formula that JC.A/ D 2l for some l � 0. To see this, consider
the smooth compact oriented surface C obtained from the compactification of CL

by first adding 2–dimensional 1–handles, one for each pair .ˇ0i ; ˇi/ and one for each
pair .ˇ0i ; ˛i/, and then capping off the boundary components of the resulting surface
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containing the I–chord collection E� . Note that �.C /D�.CL/�N, and jxj (resp. jy j) is
equal to the number of boundary components of C arising from the I–chord collection Ex
(resp. Ey ). The claim then follows in exactly the same way as in Section 2. Consequently,
we can decompose the chain map Ofˇ 0;ˇ;˛It� .

E�˝ � / as

Ofˇ 0;ˇ;˛It� .
E�˝ � /D f 0

Cf 1
C � � �Cf l

C � � � ;

where f l counts embedded Fredholm index-0 pseudoholomorphic curves with JCD 2l .
Since the Maslov index and the Euler measure are additive under concatenation, it
follows using (2-1) and (3-3) that JC is also additive. Therefore, we have

(3-4)
X

iCjDl

.f i
ı @j � @

0

i ıf
j /D 0

since Ofˇ 0;ˇ;˛It� is a chain map and the JC–filtered differential on cCF.†;ˇ 0;ˇ; sı/ is
identically zero. The latter is due to the fact that cCF.†;ˇ 0;ˇ; sı/ is isomorphic to
.F.0/˚F.1//

˝N, where F.0/˚F.1/ is a graded module over F with vanishing differential
and the domains corresponding to the pseudoholomorphic curves that contribute to the
differential of the generator, �i � Œ0; 1�, of F.1/ are both bigons, which have JC D 0. In
short, the restriction of the differential on cCF.†;ˇ 0;ˇ; sı/˝F cCF.†;ˇ;˛; s�/ to the
subcomplex F � E�˝F cCF.†;ˇ;˛; s�/ is JC–filtered.

The identity (3-4) implies that there is a filtered chain map from .cCF.S; �; a/; y@/
to .cCF.S; �0; a/; y@0/ as before, and hence a morphism of spectral sequences from
E�.S; �; aIJHF/ to E�.S; �0; aIJ 0HF/. In addition,

Ofˇ 0;ˇ;˛It� .
E�˝ Ex�/D Ex

0
�

since the shaded triangles in Figure 3 constitute the only holomorphic domain that
contributes to this chain map due to the placement of the basepoints, and it is rep-
resented by a unique pseudoholomorphic curve by the Riemann mapping theorem.
Hence, o.S; �; aIJHF/� o.S; �0; aIJ 0HF/. Likewise, the isotopy from �0 to � yields
o.S; �; aIJHF/� o.S; �0; aIJ 0HF/. As a result, o.S; �; aIJHF/D o.S; �0; aIJ 0HF/.

Remark Sarkar and Wang [54] and Plamenevskaya [52] proved that the Heegaard
diagram resulting from an arbitrary choice of .S; �; a/, where a contains a basis, can be
made nice by choosing � appropriately in its isotopy class. On a nice Heegaard diagram,
every Maslov index-1 holomorphic domain is represented by an empty embedded bigon
or an empty embedded square [54, Theorem 3.3]. It is easy to see from (2-1) that such
domains have either JC D 0 or JC D 2. This observation indicates that there should
be a combinatorial description of o.
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a4

a0
2

a01

a0

a3

Figure 4: The configuration of arcs in the S �
˚

1
2

	
page of the open book

decomposition representing a triangle elimination operation.

3.3 Eliminating triangles

In this subsection, we investigate dependence of o on a choice of collection of pairwise
disjoint properly embedded arcs containing a basis. More specifically, given an open
book decomposition .S; �/ and such an arc collection a on S , we prove that o is
nonincreasing under a triangle elimination operation on a, which we will describe
in a moment. As we shall see in Section 4, this operation gives us quite a bit of
flexibility in our arguments that lead to the proofs of our main theorems. To set the
stage, let .S; �/ be an open book decomposition supporting a contact structure �,
and aD fa0; a3; a4; : : : ; aNg be a collection of pairwise disjoint properly embedded
arcs on S that contains a basis. Suppose that the three arcs a0; a3; a4 2 a bound a
connected component of S X

S
a. Denote by a0 the collection of pairwise disjoint

properly embedded arcs on S obtained by discarding a0 and “doubling” a3 and a4, ie
a0 D fa0

1
; a0

2
; a3; a4; : : : ; aNg, where a0

1
and a0

2
are parallel and sufficiently close to a3

and a4, respectively (see Figure 4). Then:

Proposition 3.3 Let .S; �/ be an open book decomposition , a be a collection of
pairwise disjoint properly embedded arcs on S that contains a basis , and a0 be obtained
from a via triangle elimination. Then o.S; �; a0/� o.S; �; a/.

In preparation for the proof of the above proposition, we assume that the monodromy �
moves the arcs a0, a3 and a4 to the right, since otherwise it would not move a0

1
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ˇ4

˛3

x4

x3

ı

�

v

Figure 5: Left: the local behavior of the ˇ–curves as shown in the S � f0g

half of the Heegaard diagram .†;ˇ 0;˛0/. Right: the arc configuration in the
desired nice Heegaard diagram with the arcs prohibited from forming bigons
indicated.

and a0
2

to the right either, resulting in both o.S; �; a/ and o.S; �; a0/ being zero as in
the proof of Theorem 2.3. We further assume that ˇ4 stays parallel to the boundary
of S immediately after turning right in the S � f0g half of the Heegaard diagram

A

B

A

B

A

B

C

A

B

C

Figure 6: Left: configuration of arcs when ˇ4 doesn’t stay parallel to the
boundary of S immediately after turning right in the S � f0g half of the
Heegaard diagram. Right: configuration of arcs after an isotopy to guarantee
that ˇ4 intersects ˛3 immediately after turning right. In both figures, brackets
indicate the ends of arcs that are identified.
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until it intersects ˛3 as in Figure 5, left. Otherwise (see Figure 6, left), isotope the
monodromy � so as to guarantee that this is the case (see Figure 6, right). Note that, by
Proposition 3.2, o is invariant under isotopies of the monodromy �. With the preceding
understood, we prove that we can work with a special kind of nice Heegaard diagram
after a sequence of isotopies of the monodromy.

Lemma 3.4 We may isotope the monodromy � so that the multipointed Heegaard
diagram .†;ˇ 0;˛0; z0/ corresponding to .S; �; a0/ is nice while making sure that the
intersection pattern as depicted in Figure 5, left , is preserved.

Proof As is argued in [52], we may apply the algorithm of Sarkar and Wang [54,
Section 4.1] to produce a nice Heegaard diagram by performing finger moves on
ˇ–curves only in the S � f0g half of the Heegaard surface †. This is because, in a
Heegaard diagram arising from an open book decomposition, there are regions with
basepoints on either side of every ˇ–curve. In order to preserve the intersection pattern
in Figure 5, left, we will show that these finger moves on ˇ–curves can be performed
in such a way that the arc ı along ˇ4 between the points x4 and v, shown in Figure 5,
right, remains unchanged, and, in the resulting nice Heegaard diagram, no ˇ–curve
forms a bigon with the arc � along ˛3 between the points x3 and v. It suffices to
perform these finger moves in the Heegaard diagram resulting from the arc collection
fa3; a4; : : : ; aNg, which still contains a basis, since adding a0

1
and a0

2
, parallel to a3

and a4, respectively, merely subdivides bigon and rectangle regions into smaller bigon
and rectangle regions. With the preceding understood, we produce a nice diagram
with the desired properties in the three steps that follow. Throughout, we change the
definition of the distance of a region used in the Sarkar–Wang algorithm to be the
minimum number of intersection points between the ˇ–curves and an arc connecting
the interior of that region to a region with basepoint, with the arc taken to be in the
complement of the ˛–curves and the arc ı.

Step 1 Note that, given a region, there is exactly one region with basepoint that can be
connected to the interior of that region via an arc in the complement of the ˛–curves
and the arc ı. Proceed as in the algorithm of Sarkar and Wang by first killing all nondisk
regions without performing a finger move starting at ı and then performing finger
moves as in the proof of [54, Lemma 4.1] to reduce the distance d complexity of the
Heegaard diagram to (0) starting from bad regions with the largest distance. By way of
reminder, the badness of a 2n–gon is defined in [54, Section 4.1] to be maxfn� 2; 0g,
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x4

x3

D0

ı

� �

D�

v

Figure 7: The domain D�, the adjacent region with basepoint D0, and the
arc � along ˇ3 which they both have on their boundaries.

and the distance d complexity of a multipointed Heegaard diagram is the tuple� mX
iD1

b.Di/;�b.D1/; : : : ;�b.Dm/

�
;

where D1; : : : ;Dm are all the distance d bad regions ordered in decreasing measure of
badness b.D1/� � � � � b.Dm/. Given a distance d bad region, a finger move used to
break up that region into regions of smaller badness as in the proof of [54, Lemma 4.1]
starts from an arc along a ˇ–curve that is common to that bad region and another
region of distance d � 1. As a result of our definition of the distance of a region, the
region without a basepoint that has the arc ı on its boundary is adjacent to a region
with distance one less along an arc along a ˇ–curve other than ı. Therefore, at no
point in the process do the finger moves needed to break up the former region into
rectangles and bigons start at ı. Continue performing finger moves as in the proof of
[54, Lemma 4.1] until the distance of the Heegaard diagram is reduced to 1; that is,
until all bad regions are of distance at most 1.

Step 2 Having completed Step 1, all bad regions now have distance at most 1. The
region with no basepoints and the arc � on its boundary has distance 1, and it is adjacent
to a region with basepoint D0 along ˇ3 (see Figure 7). Denote this region by D�. The
goal of this step is to break up every bad region except for D�, if it is a bad region
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at any point during the process, into rectangles and bigons, while avoiding crossing
the arc �. Perform finger moves as in the proof of [54, Lemma 4.1], ignoring D� in
the measure of distance 1 complexity of the Heegaard diagram and stopping all finger
moves once they enter D�. Doing so breaks up every bad region other than D� into
rectangles and bigons and preserves the intersection pattern in Figure 5, left. We can
do this because the Sarkar–Wang algorithm terminates after a finite number of finger
moves, and we can stop those finger moves that enter D� once they enter D�. This
modification of the algorithm does not increase the distance of any bad regions, and the
modified algorithm eventually breaks up every bad region other than D� into rectangles
and bigons at the expense of possibly increasing the badness of D�. The proof of the
lemma is complete if D� is not a bad region at the end of this step. Otherwise, we
proceed to Step 3 in order to break up D� into rectangles and bigons without changing
badness of any other region without a basepoint.

Step 3 Finally, we break up the only remaining bad region, namely, D�. We claim that
we can perform a sequence of finger moves as in the proof of [54, Lemma 4.1] so that,
in the resulting nice Heegaard diagram, no ˇ–curve forms a bigon with �. We prove
this claim by strong induction on the badness b.D�/ of the region D�. If b.D�/D 1 —
that is, if D� is a hexagon — then performing a finger move as in the proof of [54,
Lemma 4.1] starting at the arc � along ˇ3 with an end at x3 on the boundary of D�

breaks D� up into two rectangles. Moreover, since all other regions are either bigons
or rectangles, this finger has to push through a “tunnel” of rectangular regions, forcing
it to stay “parallel” to a ˇ–curve. Therefore, it won’t come back to D�, since otherwise
it would have to follow a full ˇ–curve, which in turn would force our finger to cross a
region with basepoint because there are regions with basepoint on either side of every
ˇ–curve. Next suppose that b.D�/ > 1 and perform a finger move as in the proof of
[54, Lemma 4.1] starting at � (see Figure 8, left). If the finger doesn’t come back to D�,
then it will end up in a bigon region or a region with basepoint, and D� will be broken
up into a region D�;1 with badness b.D�/� 1 and a rectangle D�;2. Note that both
D�;1 and D�;2 are adjacent to D0 along ˇ3, and that D�;1 has the arc � on its boundary
(see Figure 8, right). Then, by the induction hypothesis, the claim is true. Suppose
instead that the finger comes back to D�. Then, by the argument in [54, Subcase 4.2]
and the fact that there are regions with basepoint on either side of every ˇ–curve, there
exists another finger move starting at � that doesn’t come back to D�. This finger move
would break D� up into two regions, D�;1 and D�;2, both adjacent to D0 along ˇ3 and
D�;1 having the arc � on its boundary. Then we have b.D�;1/Cb.D�;2/D b.D�/�1
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Figure 8: Left: the dashed line indicates the finger move to break up D�.
Right: the regions D�;1 and D�;2 formed after the finger move.

and b.D�;2/� 1. Once again, in contrast to the Sarkar–Wang algorithm, which requires
ordering bad regions with increasing badness and then breaking up bad regions starting
with the regions having the least positive badness, we first break up the region D�;2

regardless of whether it is a bad region with the least positive badness. As we perform
finger moves to break up D�;2, as well as any subsequent new bad region that might
emerge in that process, we stop a finger move that enters D�;1 once it enters D�;1,
regardless of whether b.D�;1/ > 0 or not. In order to break up a bad region with
badness b into rectangles, we need to perform exactly b finger moves, assuming no
finger comes back to that region, and each finger pushed into a region would increase
its badness by 1. Therefore, the process of breaking up D�;2 into rectangles would
increase the badness of D�;1 by at most b.D�;2/. In the end, we have a Heegaard
diagram with a single bad region of distance 1 adjacent to D0 along � having the arc �
on its boundary. The badness of this region is at most b.D�;1/Cb.D�;2/D b.D�/�1.
Hence, by the induction hypothesis, our claim holds true, and a further sequence of
finger moves as described above yields the desired nice Heegaard diagram.

With the above lemma understood, isotope a0 and � so that ˛0 and ˇ0 intersect ˇ4

and ˛3, respectively, to form bigons as in Figure 9, left. Then the multipointed Heegaard
diagram .†;ˇ;˛; z/ corresponding to .S; �; a/ is also nice. This is because outside
the shaded areas in Figure 9, center and right, the multipointed Heegaard diagrams
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Figure 9: Left: the S � f0g half of the multipointed Heegaard diagram
.†;ˇ;˛; z/. Center and right: the shaded areas in which the regions in the two
multipointed Heegaard diagrams .†;ˇ;˛; z/ and .†;ˇ 0;˛0; z0/ essentially
differ.

.†;ˇ;˛; z/ and .†;ˇ 0;˛0; z0/, respectively, are isomorphic and, in the shaded area
in Figure 9, center, all regions without a basepoint in .†;ˇ;˛; z/ are bigons. Since
o is invariant under isotopy of �, we may assume without loss of generality that
the monodromy � is such that the multipointed Heegaard diagrams .†;ˇ;˛; z/ and
.†;ˇ 0;˛0; z0/ are both nice and have the intersection patterns depicted in Figures 5,
left, and 9, left. Note also that, in the multipointed Heegaard diagram .†;ˇ;˛; z/, no
˛–curve other than ˛0 forms a bigon with ı and no ˇ–curve other than ˇ0 forms a
bigon with �.

Proof of Proposition 3.3 To start, associate to each (N�1)–tuple of intersection points
y D fy0;y3;y4; : : : ;yNg defining a generator Ey of cCF.†;ˇ;˛/ a unique (N�1)–tuple
of intersection points y 0 in ˛0\ˇ 0 using the following recipe. For points belonging to y

that lie on ˛0 or ˇ0, associate a unique point in ˛0\ˇ 0 according to the following rules:

� If y0 2 ˛0\ˇ0 and y0 ¤ x0, then the associated point in ˛0\ˇ 0 lies in ˛0i \ˇ
0
j ,

where i; j 2f1; 2g (see Figure 10, left). If y0Dx0, we associate to it the point x0
1
.

� If y0 2 ˛0\ ǰ with j � 3, then the associated point in ˛0\ˇ 0 lies in ˛0i \ ǰ ,
where i 2 f1; 2g (see Figure 10, center).

� If yi 2 ˛i \ˇ0 with i � 3, then the associated point in ˛0 \ˇ 0 lies in ˛i \ˇ
0
j ,

where j 2 f1; 2g (see Figure 10, right).
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y

y0

y

y0

y

y0

Figure 10: Assigning to an intersection point in ˛\ˇ an intersection point in
˛0\ˇ 0. Straight arcs indicate ˛–curves, while wavy arcs indicate ˇ–curves.
Purple corresponds to ˛0 or ˇ0, black corresponds to ˛i or ǰ for i; j � 3,
and red corresponds to ˛0i or ˇ0j for i; j 2 f1; 2g.

In all other cases, the intersection points remain the same. Note that y 0 uses exactly
one of ˛0

1
or ˛0

2
, and exactly one of ˇ0

1
and ˇ0

2
. Depending on which pair of ˛0i and ˇ0j

that y 0 uses, we assign y the ordered pair py WD .i; j /. Then, unless py D .1; 2/, we
associate to y a unique N–tuple of intersection points Qy WD fy0

1
;y0

2
;y0

3
;y0

4
; : : : ;y0Ng

defining a generator EQy of the chain complex cCF.†;ˇ 0;˛0/ by adding to y 0

� the point x0
2

if py D .1; 1/,

� the point w 2 ˛0
1
\ˇ0

2
indicated in Figure 11 if py D .2; 1/,

� the point x0
1

if py D .2; 2/.

Note that this recipe associates to the distinguished (N�1)–tuple of intersection points
x� D fx0;x3;x4; : : : ;xNg the distinguished N–tuple of intersection points

x0� D fx
0
1;x
0
2;x3;x4; : : : ;xNg:

x0
2

x0
1

w

Figure 11: The intersection point w.
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These two sets of intersection points define the distinguished generators that represent
the Ozsváth–Szabó contact class in the homology of the chain complexes cCF.†;ˇ;˛/
and cCF.†;ˇ 0;˛0/, respectively.

Lemma 3.5 Let D 2 y�2. Ey
1; Ey2/ be a Maslov index-1 holomorphic domain. Then

py1 D py2 unless D is a bigon. Furthermore , if py1 D .1; 2/, then py2 D .1; 2/.

Proof Given y1 D fy1
0
;y1

3
;y1

4
; : : : ;y1

Ng defining a generator Ey1 of cCF.†;ˇ;˛/, the
first entry of the ordered pair py1 is determined by y1

0
, specifically by whether y1

0

is near ˛0
1

or ˛0
2
. Similarly, the second entry of py is determined by y1

i 2 ˛i \ ˇ0,
specifically by whether y1

i is near ˇ0
1

or ˇ0
2
. Let D 2 y�2. Ey

1; Ey2/ be a rectangular
Maslov index-1 domain and py1 D .i; j /. If D has neither an edge along ˛0 nor an
edge along ˇ0 on its boundary, then it follows at once from the definition of py that
py2 D .i; j /. If, on the other hand, D has an edge along ˛0 and/or an edge along ˇ0

on its boundary, but it does not overlap the shaded area in Figure 9, center, then D has
to have an edge parallel to ˛3 or to ˛4 depending on whether i D 1 or i D 2, and/or
an edge parallel to ˇ3 or ˇ4 depending on whether j D 1 or j D 2 on its boundary;
hence, py2 D .i; j /. Finally, if D has an edge along ˛0 and/or an edge along ˇ0

on its boundary, and it overlaps the shaded area in Figure 9, center, then it has an
edge along ˛0 or along ˇ0 running parallel to both ˛3 and ˛4 or to both ˇ3 and ˇ4,
respectively, on its boundary. Such a rectangular domain would have to have an edge
on its boundary along either another ˛k or another ˇk for some k � 3 running parallel
to both ˛3 and ˛4 or to both ˇ3 and ˇ4, as the case may be. This would force either
ı to form a bigon with ˛k or � to form a bigon with ˇk , since otherwise D would
contain the bigon region between ˛0 and ı or the bigon region between ˇ0 and �, and
a Maslov index-1 rectangular domain in a nice Heegaard diagram can only be tiled by
rectangular regions. But the nice Heegaard diagrams we produced in Lemma 3.4 do
not allow any ˛k to intersect ı or any ˇk to intersect � for k � 3. Therefore, such a
rectangular domain cannot exist. On the other hand, if D is a bigon and py1 ¤ py2 ,
then we have either py1 D .2; j / or py1 D .i; 1/ while py2 D .1; j / or py2 D .i; 2/,
respectively. (Think of the bigons formed between ˛0 and ı, and between ˇ0 and �, as
models.) It follows, in particular, that if py1 D .1; 2/, then py2 D .1; 2/.

Consequently, the submodule of cCF.†;ˇ;˛/ generated by Ey with py D .1; 2/ is a
subcomplex. We will denote this subcomplex by cCFı.†;ˇ;˛/ for future reference.
Next we investigate the holomorphic domains contributing to the differential of a
generator EQy1 of cCF.†;ˇ 0;˛0/ corresponding to a generator Ey1 of cCF.†;ˇ;˛/.
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y1

y2

D

Qy1

Qy2

D0

w

Figure 12: Constructing domains in .†;ˇ 0;˛0; z0/ from domains in .†;ˇ;˛; z/.
Starting with a domain in the multipointed Heegaard diagram .†;ˇ;˛; z/ as
on the left, add the darker shaded rectangular regions and subtract the lighter
shaded bigon region in the center to get the domain in the multipointed Heegaard
diagram .†;ˇ 0;˛0; z0/ shown on the right.

Lemma 3.6 Given a generator y1 of cCF.†;ˇ;˛/ and a generator EQy of cCF.†;ˇ 0;˛0/,
if py1¤ .1; 2/, then there exists a Maslov index-1 holomorphic domain D02 y�2. EQy

1; EQy/

only if Qy D Qy2 for some generator Ey2 of cCF.†;ˇ;˛/ with py2 ¤ .1; 2/.

Proof To see this, write Qy1 D fy0
1
1;y
01
2; ; : : : ;y

01
Ng and Qy D fy01;y

0
2; ; : : : ;y

0
Ng, and

recall that either y0
1
1 D x01, y0

1
1 D w or y0

1
2 D x02. If y0

1
1 D x01 or y0

1
2 D x02, then

y01 D x01 or y02 D x02, respectively, since there are no nontrivial Maslov index-1
holomorphic domains with a corner at x01 or x02. If y0

1
1 D w, then either y01 D x01,

y01 D w or y02 D x02 since a Maslov index-1 holomorphic domain with a corner at w
has to have a corner at x01 or x02. The latter is due to the fact that the multipointed
Heegaard diagram .†;ˇ 0;˛0; z0/ is nice, so all Maslov index-1 holomorphic domains
are empty embedded bigons or rectangles, and that starting at w and moving along
˛0

1
or ˇ0

2
there is nowhere else to turn a corner other than at x0

1
or at x0

2
. As a result,

Qy D Qy2 for some generator Ey2 of cCF.†;ˇ;˛/ with py2 ¤ .1; 2/.

Lemma 3.7 Given generators Ey1 and Ey2 of cCF.†;ˇ;˛/, if py1 ¤ .1; 2/ and py2 ¤

.1; 2/, then there is a canonical one-to-one correspondence between Maslov index-1
holomorphic domains in y�2. Ey

1; Ey2/ and Maslov index-1 holomorphic domains in
y�2. EQy

1; EQy2/.
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Proof Keep in mind that the Heegaard diagrams .†;ˇ;˛; z/ and .†;ˇ 0;˛0; z0/ are
both nice. In particular, a Maslov index-1 holomorphic domain has a unique holo-
morphic representative up to translation. If Ey1 and Ey2 are generators of cCF.†;ˇ;˛/
with py1 ¤ .1; 2/ and py2 ¤ .1; 2/, then a Maslov index-1 holomorphic domain
D 2 y�2. Ey

1; Ey2/ gives rise to a canonical Maslov index-1 holomorphic domain D0 2
y�2. EQy

1; EQy2/, and vice versa. If a domain D has neither ˛0 nor ˇ0 on its boundary, then
D0 D D. Otherwise, to construct D0 from D we add rectangular regions between ˛0

and ˛0
1
, ˛0 and ˛0

2
, ˇ0 and ˇ0

1
or ˇ0 and ˇ0

2
, while removing the bigon regions between

˛0 and ˇ0
2

or ˛0
1

and ˇ0 as needed (see Figure 12). The former operation is reversible
if D0 has ˛0

1
or ˛0

2
, and ˇ0

1
or ˇ0

2
on its boundary.

Lemma 3.8 If Ey1 and Ey2 are generators of cCF.†;ˇ;˛/ with py1 ¤ .1; 2/ and
py2 ¤ .1; 2/ and D 2 y�2. Ey

1; Ey2/ is a Maslov index-1 holomorphic domain , then the
corresponding Maslov index-1 holomorphic domain D0 2 y�2. EQy

1; EQy2/ has JC.D0/D
JC.D/.

Proof To see this, first note the following:

� If py D .1; 1/ or py D .2; 2/, then j Qy j D jy jC 1.

� If py D .2; 1/, then j Qy j D jy j.

As before, if D has neither ˛0 nor ˇ0 on its boundary, then D0 D D, and hence
JC.D0/D JC.D/. Now suppose that D has either ˛0 or ˇ0 on its boundary.

� If D is a rectangle, then py1Dpy2 (by Lemma 3.5) and D0 is a rectangle. Hence,
j Qy1j � j Qy2j D jy1j � jy2j and JC.D0/D JC.D/.

� If D is a bigon, then py1D .2; 1/ (otherwise py2D .1; 2/) and either py2D .1; 1/

or py2 D .2; 2/ (by Lemma 3.5), and D0 is a rectangle. Hence, j Qy1j � j Qy2j D

jy1j � jy2j � 1 and

JC.D0/D 2 � 1� 1Cj Qy1
j � j Qy2

j D 2 � 1
2
� 1Cjy1

j � jy2
j D JC.D/;

by (2-6).

By Lemma 3.5, the module cCFı.†;ˇ;˛/ generated by Ey with py D .1; 2/ is a
subcomplex of cCF.†;ˇ;˛/. Therefore, we may construct the quotient complexcCF.†;ˇ;˛/=cCFı.†;ˇ;˛/. Note that, since px� D .1; 1/, it is sent under the quotient
map q W cCF.†;ˇ;˛/! cCF.†;ˇ;˛/=cCFı.†;ˇ;˛/ to a nonzero class. The filtered
extension of the quotient, .cCF.†;ˇ;˛/=cCFı.†;ˇ;˛//˝F F Œt; t�1�, is canonically
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isomorphic as a filtered chain complex to the quotient cCF.S; �; a/=cCFı.S; �; a/. The
quotient map cCF.S; �; a/! cCF.S; �; a/=cCFı.S; �; a/
is a filtered chain map and it induces a morphism of associated spectral sequences.
Therefore, if we define oq.S; �; a/ to be the spectral order as determined by the
class q.x�/ and the spectral sequence associated to the filtered quotient chain complex
.cCF.†;ˇ;˛/=cCFı.†;ˇ;˛//˝F F Œt; t�1�, then o.S; �; a/� oq.S; �; a/. Meanwhile,
by Lemmas 3.6 and 3.7, there exists an injective map from cCF.†;ˇ;˛/=cCFı.†;ˇ;˛/
to cCF.†;ˇ 0;˛0/ sending Ex� to Ex0

�
, and hence an injective map of filtered chain com-

plexes from .cCF.†;ˇ;˛/=cCFı.†;ˇ;˛//˝FF Œt; t�1� into cCF.S; �; a0/ by Lemma 3.8,
which induces a morphism of associated spectral sequences. As a result, oq.S; �; a/�

o.S; �; a0/, finishing the proof of Proposition 3.3.

Definition 3.9 It follows from Proposition 3.3 that, for the purpose of defining the
contact invariant o, it suffices to work with arc collections that are bases with multiple
parallel copies of some arcs added, since one can always pass to such an arc collection,
which we will refer to as a multibasis, via triangle elimination without increasing the
value of o. In other words, we may define o.M; �/ to be the minimum of o.S; �; a/ over
all choices of open book decompositions .S; �/ of M supporting � and multibases a.

4 Properties of o

The first bullet point of Theorem 1.1, that is, o vanishes for overtwisted contact
structures, was proved at the end of Section 2. This section proves the remaining
properties of the contact invariant o summarized in Theorems 1.1, 1.2 and 1.3.

To start, we establish a few basic properties of o. To do so, we work in a slightly more
general context, where we consider arc collections that may not contain a basis. Let
.S; �/ be an open book decomposition. Given an arc collection a on S that does not
necessarily contain a basis, we can extend it to an arc collection Qa that contains a basis.
Then we fix a generic almost complex structure JHF for the multipointed Heegaard
diagram .†; ž; z̨; Qz/ associated to the arc collection Qa. We may regard cCF.†;ˇ;˛/
as a submodule of cCF.†; ž; z̨/ by identifying the generators of cCF.†;ˇ;˛/ with the
generators obtained from these via adding on the distinguished points lying in S�

˚
1
2

	
for

each of the arcs in QaXa. Due to the placement of the basepoints, there can be no pseudo-
holomorphic curves with negative punctures at the chords resulting from these points.

Geometry & Topology, Volume 27 (2023)



Filtering the Heegaard Floer contact invariant 2211

Therefore, the differentials on cCF.†;ˇ;˛/ and on the submodule of cCF.†; ž; z̨/
that it is identified with coincide. As a result, we may consider cCF.†;ˇ;˛/ as a
subcomplex of cCF.†; ž; z̨/. With the preceding understood, the first basic property
of o is that it is nonincreasing under enlargement of arc collections.

Lemma 4.1 Suppose that a1 � a2 are two collections of pairwise disjoint properly
embedded arcs on S. Then there exists a generic almost complex structure JHF on
†� Œ0; 1��R and an inclusion of chain complexes

I W cCF.†;ˇ1;˛1/! cCF.†;ˇ2;˛2/; I W cCF.S; �; a1/! cCF.S; �; a2/

such that the contact generator is mapped to the contact generator by the first in-
clusion while the latter inclusion induces a morphism of spectral sequences from
E�.S; �; a1IJHF/ to E�.S; �; a2IJHF/; hence , o.S; �; a1IJHF/� o.S; �; a2IJHF/.

Proof It suffices to find a generic almost complex structure JHF on †� Œ0; 1��R such
that moduli spaces of JHF–holomorphic curves associated to the Heegaard diagram
.†;ˇ2;˛2/ are cut out transversally, because this immediately implies transversality
of moduli spaces of JHF–holomorphic curves associated to the Heegaard diagram
.†;ˇ1;˛1/. Having fixed such a generic almost complex structure, the inclusion
map I is defined on the set of generators of cCF.†;ˇ1;˛1/ by

I. Ey/D Ey 0;

where y 0 D y [fxaga2a2Xa1
and xa is the unique intersection point of a and b for an

arc a 2 a2 X a1. It follows that I.Ex1
�
/D Ex2

�
. Meanwhile, the JHF–holomorphic curves

that define the differential acting on elements of the subgroup I.cCF.†;ˇ1;˛1// are
the same as the JHF–holomorphic curves that define the differential on cCF.†;ˇ1;˛1/.
Therefore, I is a chain map and the induced inclusion map I is a filtered chain
map. The latter induces a morphism of spectral sequences from E�.S; �; a1IJHF/ to
E�.S; �; a2IJHF/; hence, o.S; �; a1IJHF/� o.S; �; a2IJHF/.

The next lemma claims that o remains the same under suitable enlargement of the pages
of an open book decomposition while keeping the arc collection untouched.

Lemma 4.2 Let a be a collection of pairwise disjoint properly embedded arcs on S

and S 0 be a compact oriented surface with boundary obtained from S by attaching
1–handles away from a neighborhood of @a. Let �0 W S 0 ! S 0 be an orientation-
preserving diffeomorphism whose restriction to a agrees with �. Then there are generic
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almost complex structures JHF and J 0HF to define the differentials on cCF.†;ˇ;˛/
and cCF.†0;ˇ;˛/, respectively, such that .cCF.S; �; a/; y@/ and .cCF.S 0; �0; a/; y@0/ are
isomorphic as filtered chain complexes. As a result , o.S; �; aIJHF/D o.S 0; �0; aIJ 0HF/.

Proof It follows from the description of the surface S 0 that a can also be seen as
a pairwise disjoint collection of properly embedded arcs on S 0. Moreover, there is a
canonical one-to-one correspondence between unordered tuples of intersection points
in the Heegaard diagrams .†;ˇ;˛/ and .†0;ˇ;˛/. Also note that †0 is obtained
from† by connect-summing with tori along regions in the Heegaard diagram .†;ˇ;˛/

with basepoints. Therefore, having fixed a generic almost complex structure JHF

on †� Œ0; 1��R, we can “extend” it to a generic almost complex structure J 0HF on
†0 � Œ0; 1� �R so that the holomorphic domains in the pointed Heegaard diagrams
.†;ˇ;˛; z/ and .†0;ˇ;˛; z/ agree, and the claim follows.

With the above understood, the proofs of Theorems 1.1, 1.2 and 1.3 require working
with a more tractable version of o:

Definition 4.3 Let .M; �/ be a closed contact 3–manifold. Fix an open book decom-
position B D .S; �/ of M supporting � . Then define

o.B/ WDmin
a
fo.S; �; a/g;

where the minimum is taken over all choices of multibasis a on S. Indeed,

o.M; �/Dmin
B
fo.B/g:

The quantity o yields an invariant of open book decompositions. We would like to
understand its behavior under positive stabilization. Recall that a positive stabilization
of an open book decomposition .S; �/ is an open book decomposition .S 0; �0/, where
S 0 is obtained from S by attaching a 1–handle H and �0 differs from � by a right-
handed Dehn twist around a simple closed curve c � S 0 that intersects the cocore
of H in exactly one point; in other words, �0 D � ı �c . As we will show next, o is
nonincreasing under positive stabilization. To prove this, we need the flexibility to
move from one arc collection to another without increasing the value of o. Recall that
one can pass from one basis on S to another via a sequence of arc slides. Given a
basis fa1; a2; : : : ; aGg on S where a1 and a2 are adjacent — namely, there is an arc
� � @S with endpoints on a1 and a2 that intersects no other ai — define a1C a2 to
be a properly embedded arc in S isotopic rel @.a1 [ a2/ X @� to a1 [ � [ a2 and
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disjoint from all other ai . Then passing from fa1; a2; : : : ; aGg to fa1Ca2; a2; : : : ; aGg

is called an arc slide. Somewhat similarly, given a multibasis on S, one can pass to
a multibasis containing an arbitrary arc basis on S via a sequence of multiarc slides.
Given a multibasis a containing a basis fa1; a2; : : : ; aGg on S where a1 and a2 are
adjacent and a contains m parallel copies of the arc a1, a multiarc slide removes all
parallel copies of the arc a1 and adds mC 1 parallel copies of the arc a1C a2 as well
as m additional parallel copies of the arc a2. This modification is equivalent to adding
a copy of the arc a1C a2 and then removing each parallel copy of the arc a1 one by
one via triangle elimination, resulting in a new multibasis a0. Note that a multiarc slide
with mD 1 is not an arc slide.

Lemma 4.4 Let a be a multibasis on S and a0 be obtained from a by a multiarc slide.
Then o.S; �; a0/� o.S; �; a/.

Proof This follows readily from Lemma 4.1 and Proposition 3.3.

Corollary 4.5 Let B WD .S; �/ be an open book decomposition and B0 WD .S 0; �0/ be
a positive stabilization of B. Then o.B0/� o.B/.

Proof Let a be a multibasis such that o.B/D o.S; �; a/. By a sequence of multiarc
slides, pass to a multibasis a0 on S that is disjoint from c. Then o.S; �; a0/D o.S; �; a/

by Lemma 4.4, since o.B/D o.S; �; a/, and o.S 0; �0; a0/D o.S; �; a0/ by Lemma 4.2,
since a0 is disjoint from c. As a result,

o.B0/� o.S 0; �0; a0/D o.S; �; a0/D o.S; �; a/D o.B/:

Corollary 4.6 Let B WD .S; �/ be an open book decomposition of M supporting �.
Then we can apply a sequence of stabilizations to get to an open book decomposition
B0 that realizes o.M; �/.

Proof This follows from Giroux correspondence together with Corollary 4.5.

We move on to analyze the behavior of o under Legendrian surgery.

Proposition 4.7 Let .S; �/ be an open book decomposition and a be any collection
of pairwise disjoint properly embedded arcs on S that contains a basis. Suppose c is
a homologically essential simple closed curve on S which meets each arc in �.a/ at
most once. Then o.S; �c ı�; a/� o.S; �; a/.
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@S

b0i bi ai

xi

x0i
�i

@S

Figure 13: Part of the restriction of the multipointed Heegaard triple diagram
.†;ˇ;;˛; z/ to S �

˚
1
2

	
�†.

Proof To start, use .S; �; a/ and the curve c to form a multipointed triple Heegaard
diagram .†;ˇ;;˛; z/, where  D f1; : : : ; Ng with i D b0i �

˚
1
2

	
[ �c ı�.b

0
i/�f0g

such that b0i is obtained from bi by slightly pushing along @S in the direction of the
boundary orientation as in Figure 13.

Notice that .†;ˇ;˛; z/ is the multipointed Heegaard diagram associated to .S; �; a/
and .†;;˛; z/ is the multipointed Heegaard diagram associated to .S; �c ı �; a/.
Meanwhile, the multipointed Heegaard diagram .†;ˇ;/ describes a connected sum
of some number of copies of the manifold S1 � S2. Note also that the open book
decomposition .S; �c/ together with the collection of arcs fb1; : : : ; bNg specifies the
Heegaard diagram .†;ˇ;/, as in [23]. The chain complex cCF.†;ˇ;/ has trivial

�i �j

yj

c

yi

�i �j

Figure 14: A local picture of the �S �f0g �† part of the Heegaard diagram
.†;ˇ;/ near the surgery curve and all intersecting arcs. The shaded domains
representing pseudoholomorphic curves with negative punctures at E� have
the same JC value. The brackets indicate that the ends of the shaded region
connect to one another.
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differential and the generator E� indicated in Figure 13 is the topmost generator. In
fact, the JC–filtered differential on cCF.†;ˇ;/ is identically zero since all homology
classes in y�2. E�; � / have the same JC value (see Figure 14).

The placement of the basepoints guarantees, once again, that the multipointed triple
Heegaard diagram .†;ˇ;;˛; z/ is admissible. Therefore, there is a chain map

(4-1) Ofˇ;;˛ W
cCF.†;ˇ;/˝F cCF.†;;˛/! cCF.†;ˇ;˛/

induced by the cobordism described by the triple Heegaard diagram .†;ˇ;;˛/. Since
the differential on cCF.†;ˇ;/ is identically zero, F � E� ˝F cCF.†;;˛; s�0/ is a
subcomplex of cCF.†;ˇ;/˝F cCF.†;;˛/. Restricting (4-1) to this subcomplex, we
obtain a chain map

Ofˇ;;˛. E�˝ � / W cCF.†;;˛; s�0/! cCF.†;ˇ;˛; s�/:

Therefore, having decomposed the above chain map as

Ofˇ;;˛. E�˝ � /D f
0
Cf 1

C � � �Cf l
C � � � ;

where f l counts embedded Fredholm index-0 pseudoholomorphic curves with JCD 2l ,
we have

(4-2)
X

iCjDl

.f i
ı @

0

j � @i ıf
j /D 0

just as in Section 3. The identity (4-2) implies that there is a filtered chain map from
.cCF.S; �c ı�; a/; y@

0/ to .cCF.S; �; a/; y@/ and hence a morphism of spectral sequences
from E�.S; �c ı �; aIJ

0
HF/ to E�.S; �; aIJHF/. In addition, Ofˇ;;˛. E� ˝ Ex

0
�
/ D Ex�

since the shaded triangle in Figure 13 is the only holomorphic domain that con-
tributes to this chain map due to the placement of the basepoints, and it is represented
by a unique pseudoholomorphic curve by the Riemann mapping theorem. Hence,
o.S; �c ı�; aIJ

0
HF/� o.S; �; aIJHF/, as desired.

Corollary 4.8 Let B WD .S; �/ be an open book decomposition and suppose B0 WD
.S; �0/ is obtained from B by Legendrian surgery, ie �0 D �cn

ı � � � ı �c1
ı�. Then

(4-3) o.B/� o.B0/:

As a consequence , if B WD .S; �/ is an open book decomposition where � can be
written as a product of positive Dehn twists , then o.B/D1.

Proof We will apply Proposition 4.7 one Dehn twist at a time, noting that, for each
Dehn twist curve ci , we can find a multibasis a on S so that ci intersects each arc in
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the image of a under the monodromy at most once. With the preceding understood,
for each i 2 f0; 1; : : : ; ng denote by Bi the open book decomposition .S; �i/, where
�0 D � and �i D �ci

ı � � � ı �c1
ı � for i 2 f1; : : : ; ng. For each i 2 f1; : : : ; ng, fix a

multibasis ai on S such that o.Bi/D o.S; �i ; ai/. Performing a sequence of multiarc
slides, pass to a multibasis a0i on S such that ci intersects each arc in �i�1.a

0
i/ at

most once. It follows from Lemma 4.4 and Proposition 4.7 that

o.Bi�1/� o.S; �i�1; a
0
i/� o.S; �i ; a

0
i/D o.Bi/:

Concatenating these inequalities for i 2f1; : : : ; ngwhile noting that B0DB and BnDB0,
we achieve the first claim of the corollary.

The last claim of the corollary follows immediately from (4-3) once we note that
o.S; idS /D1. The latter is because the JC–filtered differential in the corresponding
Heegaard Floer chain complex is zero.

With all the results needed in place, we are ready to prove Theorem 1.2, and the second
bullet point of Theorem 1.1.

Proof of Theorem 1.2 First note that, if .M 0; � 0/ is obtained from .M; �/ by attaching
a Weinstein 1–handle, then an open book decomposition supporting � 0 can be built
from an open book decomposition .S; �/ supporting � by attaching a 1–handle to S

and extending the monodromy � as the identity over this handle. It is easy to see that
the latter operation does not change the value of o, which then leads to the conclusion
that o.M 0; � 0/D o.M; �/.

Next, for the case of a Weinstein 2–handle, let .M 0; � 0/ be obtained from .M; �/ by
Legendrian surgery on a single curve c in .M; �/. Let c0 be the Legendrian curve
in .M 0; � 0/ that is the core of the surgery solid torus, which has the property that
contact C1–surgery on it yields .M; �/. The Legendrian c0 lies on a page of an open
book decomposition of M 0 supporting � 0, which by Corollary 4.6 one can positively
stabilize a number of times to get to an open book decomposition B0 which realizes
o.M 0; � 0/; namely, o.B0/ D o.M 0; � 0/. Now let B be the open book decomposition
of M supporting � that is obtained by contact C1–surgery on c0. By Corollary 4.8,

o.M; �/� o.B/� o.B0/D o.M 0; � 0/:

Corollary 4.9 Let .M; �/ be Stein-fillable. Then o.M; �/D1.
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Proof A Stein-fillable contact 3–manifold admits a supporting open book decom-
position .S; �/, where � is a product of positive Dehn twists. To be more explicit,
a Stein-fillable contact 3–manifold can be obtained via Legendrian surgery on some
connected sum #N S1�S2 equipped with its standard contact structure �std (see [18]).
Therefore, by Theorem 1.2, it suffices to prove that o

�
#N S1 �S2; �std

�
D1. To see

this, let B be an open book decomposition of #N S1 � S2 supporting �std which
realizes o

�
#N S1 � S2; �std

�
; in other words, o.B/ D o

�
#N S1 � S2; �std

�
. As�

#N S1 �S2; �std
�

is supported by an open book with trivial monodromy, a common
stabilization, B0, of that and B will have a monodromy which can be written as a product
of positive Dehn twists and will also realize the minimal o. To see this, note that, by
the second claim in Corollary 4.8, we have o.B0/D1. By Corollary 4.5, we also have
o.B0/� o.B/D o

�
#N S1 �S2; �std

�
. Therefore, o

�
#N S1 �S2; �std

�
D1.

Next we prove the third bullet point of Theorem 1.1:

Theorem 4.10 Given an open book decomposition B D .S; �/ of M supporting �,
and a basis a on S , there exists a multibasis am on S containing a such that

o.S; �; am/D o.M; �/:

Proof By Corollary 4.6, we can positively stabilize B to pass to an open book de-
composition B0 D .S 0; �0/ with o.B0/D o.M; �/, where S 0 is built from S by adding
1–handles and �0 D �cn

ı � � � ı �c1
ı �. Extending � to S 0 as the identity on all the

1–handles, we form the open book decomposition zB D .S 0; �/. Since �0 is obtained
from � by adding positive Dehn twists, o.zB/� o.B0/ by Corollary 4.8.

Now fix a multibasis a0 on S 0 such that

o.S 0; �0; a0/D o.B0/D o.M; �/:

Let a1; : : : ; an denote the cocores of the 1–handles added to S so as to build S 0 and
perform a sequence of multiarc slides so as to pass to a multibasis a00 that contains
the arcs a1; : : : ; an and satisfies o.S 0; �; a00/ D o.zB/. We also have o.S 0; �0; a0/ D

o.S 0; �0; a00/ by Lemma 4.4. Let aı D a00 \S and note that aı is a multibasis on S .
Furthermore, � acts trivially on all arcs in a00 X aı. Looking at the Heegaard diagram
resulting from .S 0; �; a00/, the ˛– and ˇ–curves corresponding to arcs in S 0XS intersect
each other exactly twice, forming two canceling bigons and thus contributing zero
to y@HF. Furthermore, ˛i and ˇi intersect no other ˛–curves or ˇ–curves. Thus,cCF.S 0; �; a00/� cCF.S 0; �; aı/˝F .F.0/˚F.1//

˝n;
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where F.0/˚F.1/ is a graded module over F with vanishing differential and n is the
number of arcs in a00 X aı. In particular,

o.S 0; �; a00/D o.S 0; �; aı/:

By Lemma 4.2, we have o.S; �; aı/D o.S 0; �; aı/. Consequently,

o.S; �; aı/D o.S 0; �; aı/D o.S 0; �; a00/� o.S 0; �0; a00/D o.S 0; �0; a0/D o.M; �/:

Since, by definition, o.S; �; aı/ � o.M; �/, we have o.S; �; aı/D o.M; �/. Finally,
given a basis a on S , perform a sequence of multiarc slides to pass from aı to a
multibasis am on S containing a. Then, by Lemma 4.4,

o.S; �; am/D o.S; �; aı/D o.M; �/:

Remark Given an open book decomposition .S; �/ and a multibasis a on S , we can
positively stabilize .S; �/ to pass to a new open book decomposition where a becomes
a basis. Then it follows from Corollary 4.6 and Theorem 4.10 that o.M; �/D o.S; �; a/

for some open book decomposition .S; �/ supporting the contact structure � and a
basis a on S .

Another application of the Legendrian surgery statement in Theorem 1.2 is Theorem 1.3,
namely that the spectral order of a contact connected sum is the minimum of the orders
of the summands:

Proof of Theorem 1.3 Let B1 D .S1; �1/ and B2 D .S2; �2/ be open book de-
compositions which realize o.M1; �1/ and o.M2; �2/, respectively. Fix multibases
a1 and a2 on S1 and S2, respectively, such that o.Bi/ D o.Si ; �i ; ai/ for i D 1; 2.
Then both cCF.S1; �1; a1/ and cCF.S2; �2; a2/ can be seen as filtered subcomplexes ofcCF.S#; �#; a#/, where B1 #B2 D .S#; �#/ is the boundary connected sum open book
decomposition with �# D �2 ı �1, where we extend each by the identity across the
complementary subsurface and a# D a1 t a2. Hence, by Lemmas 4.1 and 4.2,

o.M1 # M2; �1 # �2/� o.B1 #B2/� o.Bi/D o.Mi ; �i/

for both i D 1 and i D 2, and o.M1 # M2; �1 # �2/�minfo.M1; �1/; o.M2; �2/g.

For the reverse inequality, let B D .S; �/ be a stabilization of B1 # B2 realizing
o.M1 # M2; �1 # �2/. Ignore the extra positive Dehn twists on B which arise from its
description as a positive stabilization of B1#B2. The resulting open book decomposition
B0 D .S; �0/ describes the 3–manifold M1 # M2 # #k S1�S2 for some k, the page S

contains S1 \ S2 as a subsurface due to B being a positive stabilization of B1 # B2,
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and the monodromy �0 extends �# as the identity to the rest of S . In particular, B is
obtained from B0 by Legendrian surgery along curves contained in a page of B; hence,

o.M1 # M2; �1 # �2/D o.B/� o.B0/;
by Theorem 1.2.

Fix a multibasis a0 on S such that o.B0/D o.S; �0; a0/. After a sequence of multiarc
slides, we can pass to a multibasis Qa on S which contains a1 t a2. By Lemma 4.4
o.B0/D o.S; �0; Qa/, and we havecCF.S; �0; Qa/Š cCF.S1; �1; a1/˝F cCF.S2; �2; a2/˝F .F.0/˚F.1//

˝l

as filtered chain complexes, where F.0/˚F.1/ is a graded module over F with vanishing
differential and l is some nonnegative integer. As a result, o.B0/ D o.S; �0; Qa/ D

minfo.S1; �1; a1/; o.S2; �2; a2/g. On the other hand, since o.S1; �1; a1/D o.B1/D

o.M1; �1/ and o.S2; �2; a2/D o.B2/D o.M2; �2/, by the above inequality we have

minfo.M1; �1/; o.M2; �2/g � o.M1 # M2; �1 # �2/:

Corollary 4.11 For any surface S with boundary, the set of monodromies yielding
open book decompositions supporting contact 3–manifolds .M; �/ with o.M; �/� k

forms a monoid in the mapping class group Mod.S; @S/.

We use ok.S/ to denote this monoid.

Proof By [1], for any two mapping classes �1 and �2, there is a Stein cobordism
starting at the disconnected contact manifold .M�1

; ��1
/t .M�2

; ��2
/ and ending at

.M�2ı�1
; ��2ı�1

/. By Theorems 1.2 and 1.3, this implies that

o.M�2ı�1
; ��2ı�1

/� o..M�1
; ��1

/t .M�2
; ��2

//

Dminfo.M�1
; ��1

/; o.M�2
; ��2

/g:

5 Obstructing Stein-fillability

In this section, we use spectral order to obstruct Stein-fillability by demonstrating a
family of contact 3–manifolds with nonzero Ozsváth–Szabó contact class but with
zero spectral order. In Section 5.1, we give a warm-up example of this application
on a contact manifold which had previously been shown to be nonfillable in [39; 9].
In Section 5.2, we generalize this method to a previously unstudied family of contact
3–manifolds thereby proving Theorem 1.4. Finally, in Section 5.3, we compare this
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a b

c

a

b

a1

a3

a2

c

Figure 15: Left: the open book decomposition .S; �/ supporting the contact 3–
manifold .Y; �/, where � D �a�b�c

�1. Right: the basis of arcs aD fa1; a2; a3g

on S , where the two middle circles intersecting a3 decorated with “plus” are
identified.

method to other techniques in the literature for obstructing symplectic-fillability (in its
various forms) in the context of these examples.

5.1 A warm-up

We start with a warm-up example .Y; �/, which is the base case of a family of contact
3–manifolds used by Conway in [9, Section 4]. The contact structure � is supported by
the open book decomposition .S; �/, where S is a compact oriented genus-1 surface
with two boundary components and � D �a�b�c

�1, the product of positive Dehn twists
around the curves a and b and a negative Dehn twist around the curve c indicated
in Figure 15, left. This is an open book decomposition for inadmissible transverse
2–surgery on the binding of an open book decomposition .S1;1; idS1;1

/, where the
page S1;1 has genus 1 and one boundary component. The contact structure � has
nonzero Ozsváth–Szabó contact class by [19, Corollary 4], as indicated by Conway.

Theorem 5.1 o.Y; �/D 0. Hence , .Y; �/ is not Stein-fillable.

Proof To show that o.Y; �/ D 0, we need to find a multibasis a on S such that
o.S; �; a/D 0; more explicitly, we will find a generator Ey of the resulting Heegaard
Floer chain complex such that @0 Ey D Ex� . As we will show, it suffices to work with the
basis of arcs fa1; a2; a3g depicted in Figure 15, right. The effect of the monodromy on
this basis of arcs is shown in Figure 16. In what follows, a region without a basepoint
will be denoted by Ri if it is numbered i in Figure 16.
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z

Figure 16: The effect of the monodromy applied to the basis of arcs. The
resulting regions without basepoint are numbered 1; : : : ; 21.

We claim that the generator Ey determined by the tuple of intersection points y D

.x1;y2;y3/ satisfies @0 Ey D Ex� (see Figure 17). To show this, we need to know in
general what kind of Maslov index-1 domains have JC D 0.

Lemma 5.2 Let D be a domain from y to x. If D has Maslov index 1 and JC.D/D 0,
then it is an immersed 2k–gon with only acute corners and no corners in its interior.
Moreover , if D is any immersed 2k–gon with only acute corners and no corners in
its interior , then it has Maslov index 1 and , furthermore , JC.D/ D 0 if and only if
jy j � jxj D 1� k.
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x1

x3

y3

y2

z

x2

Figure 17: The domain D0 (shaded).

Proof Let D be a Maslov index-1 domain with JC D 0, and suppose that y and x

differ on k ˛–curves; hence, D has 2k corners. By (2-6), we have

0DJC.D/D2.ny.D/Cnx.D//�1Cjy j�jxj�2� 2
4
k�1Cjy j�jxjDk�1Cjy j�jxj:

In other words, jxj � jy jC k � 1. Conversely, let �y and �x denote the permutations
associated to y and x, respectively, and denote by � the composition �x�y

�1. Since
y and x differ on k ˛–curves, the smallest number of transpositions that � can be
written as a composition of is bounded from above by k � 1, which is realized if and
only if � is a k–cycle. Next write � as the composition of disjoint cycles. Note that
composing a permutation with a transposition either merges two disjoint cycles, which
reduces the number of disjoint cycles by 1, or breaks up a cycle into two disjoint cycles,
which increases the number of disjoint cycles by 1. Therefore, �x D ��y can have at
most k � 1 more disjoint cycles than �y has:

jxj � jy jC k � 1:
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As a result, jxj D jy jC k � 1 and, in particular, � is a k–cycle. We deduce from (2-6)
that

ny.D/C nx.D/D 1
2
k;

implying that D has point measure 1
4

at each corner and that D has connected boundary
since � is a k–cycle. Finally, by (2-3), we have e.D/ D 1� 1

2
k, which is the Euler

measure of a 2k–gon with only acute corners, none of which is in the interior of D.

For the second claim, note that, if D is a 2k–gon from y to x with each corner having
point measure 1

4
, then it has Euler measure 1 � 1

2
k and Maslov index 1 by (2-3).

Therefore,
JC.D/D k � 1C 1� k D 0:

With regard to the second part of Lemma 5.2, note that, if x D x� and D is a 2k–gon
from y to x� , then jy j � jx� j D 1� k.

A positive Maslov index-1 JC D 0 domain D0 from y to x� is shaded in Figure 17.
As a formal sum of regions without basepoints in the Heegaard diagram, it is given by

D0 DR3CR4CR5CR7CR8CR9CR17CR18CR19:

This domain is an embedded rectangle. Therefore, it has a unique holomorphic repre-
sentative for a generic split almost complex structure by the Riemann mapping theorem.
In fact, this is the only domain that represents a positive class in y�2. Ey ; Ex�/. This is
because any other domain from y to x� has to differ from D0 by a periodic domain
representing a periodic class in y�2. Ey ; Ey/. The latter is isomorphic to H2.Y IZ/, which
is a free abelian group of rank 2. A basis for y�2. Ey ; Ey/ is given by the periodic domains

P1 DR1CR4CR5�R6�R7�R10�R11�R14�R15CR18CR19CR21;

P2 DR2�R5CR6�R9CR11CR13C2R14CR15CR16�R17�R18�2R19

�R20�R21:

If D0C aP1C bP2 is a positive domain from y to x� , then, in particular,

0C a� 0; 0C b � 0; 0� a� 0; 0� b � 0

via the multiplicities of the regions R1, R2, R10 and R20, respectively. As a result,
aD 0D b.

Next we argue that there are no other positive Maslov index-1 JCD 0 domains from y .
To see this, let D be such a domain from y to some v defining a generator of the
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Heegaard Floer chain complex, and move along the boundary of D in its boundary
orientation. Note firstly that, due to the placement of the basepoint, D cannot have a
corner at x1. Therefore, D must be an immersed rectangle as none of the regions are
bigons. As a result, v D .x1; v2; v3/ for some vi 2 ˛i \ˇi for i D 2; 3. Note further
that the region R12 adjacent to y3 is an immersed 8–gon. Being a positive Maslov
index-1 JC D 0 domain with four corners, D must have Euler measure e.D/ D 0.
As Euler measure is additive under unions and D is a positive domain, D cannot
contain the region R12, which has Euler measure �1. Hence, D contains only the
region R19 among the four regions adjacent to y3. Now v3 ¤ x3, since otherwise
D D D0. Moreover, as D does not contain the region R0 with basepoint, it contains
R19 with multiplicity 1 and does not contain the region R18. This forces D to be
contained in the formal sum

R5CR9CR19;

as D cannot contain the 6–gon regions R1 and R10, which have Euler measure �1
2

.
But then, D cannot have a corner at y2, which is a contradiction.

Consequently, we have @0 Ey D Ex� which implies that o.Y; �/D o.S; �; a/D 0 as the
spectral order is defined to be the minimum over all choices of open book decomposi-
tions .S; �/ supporting � and multibases a on S . Consequently, by the second bullet
point of Theorem 1.1, .Y; �/ is not Stein-fillable.

Remark In fact, y@HF Ey D @0 Ey C @1 Ey D Ex� C Ew where Ew is determined by the tuple
of intersection points wD .x1; w2; w3/ (see Figure 18). The domain D1 from y to w
shown in Figure 18 is an embedded genus-1 surface with one boundary component
and JC.D1/D 2 given by the formal sum

D1 DR11CR12CR13CR14:

Arguing similarly to before, we see that, if D1CaP1CbP2 is another positive domain
from y to w, then, in particular,

0C a� 0; 0C b � 0; 0� a� 0; 0� b � 0

via the multiplicities of the regions R1, R2, R7 and R9, respectively. As a result,
aD 0D b. Furthermore, a slightly more general version of the argument above proves
that there are no other positive Maslov index-1 domains from y . In particular, the
domain D1 has a unique (up to a signed count) holomorphic representative, since
otherwise y@HF Ey D Ex� , contradicting the nonvanishing of the Ozsváth–Szabó contact
class.
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x1

x3

y3w3

w2

y2

z

x2

Figure 18: The domain D1 (shaded). Keep in mind that the middle two
circles are identified.

5.2 A family of examples

In this section, we investigate an infinite family of contact 3–manifolds f.Yp; �p/gp2Z>0
.

For each p 2Z�0, the contact structure �p is supported by the open book decomposition
.S2;2; �p/, where S2;2 is a compact oriented genus-2 surface with two boundary compo-
nents and �p D �

3
a �b�c

�1�d
p , the product of positive Dehn twists around the curves a

and b, a negative Dehn twist around the curve c, and p positive Dehn twists around the
curve d indicated in Figure 19, left. The manifolds Yp are obtained by�1=p–surgery on
a horizontal curve in the circle bundle, Y0, with Euler numberC4 over a closed oriented
surface of genus 2. Therefore, these manifolds are toroidal and have nontrivial JSJ
decompositions. In the case pD 0, Honda [20] gave a complete a classification of tight
contact structures (see also Giroux [16]). The contact structure �0 is the unique virtually
overtwisted contact structure on Y0, and its nonfillability was established by Lisca and
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a

d
c

b

d

a1 a2 a3 a4
c

a b

Figure 19: Left: a page of the open book decomposition .S2;2; �p/ supporting
the contact structure �p , where �p D �

3
a �b�c

�1�d
p . Right: the same surface,

where the two circles decorated with “plus” are identified, as are the two
circles decorated with “cross”.

Stipsicz [39] (see Section 5.3 below for a detailed discussion). The contact structure �p
for p � 0 can be constructed by first applying inadmissible transverse surgery (with
framingC4) on the genus-2 Borromean knot K in L.p;p�1/##3 S1�S2, which is the
binding of an open book decomposition that supports the unique tight contact structure
on this manifold, then resolving the resulting rational open book decomposition into
an integral one following Conway [9]. As with the genus-1 example in Section 5.1, the
contact structures �p have nonzero Ozsváth–Szabó contact class by [19, Corollary 4].

Theorem 5.3 o.Yp; �p/D 0 for p � 1. Hence , .Yp; �p/ is not Stein-fillable for p � 1.

To put the above theorem in context, our examples fit somewhere in between the circle
bundle example of Lisca and Stipsicz and positive-integer surgeries on the .2; 5/–torus
knot. In the former case, the monodromy is trivial away from the pair of pants at the
boundary. In the latter, the monodromy has four positive Dehn twists: those that fit
along the standard length-four chain. These two examples — Lisca and Stipsicz’s and
positive-integer surgeries on the .2; 5/–torus knot — behave differently as one increases
the surgery coefficient. Increasing the surgery coefficient on K by 1 corresponds
to adding a single positive Dehn twist along the curve a to the monodromy. The
Lisca–Stipsicz examples remain nonfillable for all higher-integer surgeries, whereas
C9–surgery on the .2; 5/–torus knot yields a tight contact structure on a lens space;
hence, it is Stein-fillable. All higher-integer surgeries on the .2; 5/–torus knot then
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x1

x4x2
x3 x1

x3x2
x4

y1

y2

y3
y4

Figure 20: The effect of the monodromy applied to the arcs a1, a2, a3 and a4

(dotted) on S2;2. Also shown is the domain D (shaded) with darker shading
indicating 1 higher multiplicity.

remain Stein-fillable. Our initial calculations for C4–surgery on the .2; 5/–torus knot
suggest that in this case o D 1. For the examples �p when p > 0, we expect o to
remain finite (though possibly nonzero) for all integer surgeries higher than C4, and
therefore that all resulting contact structures remain non-Stein-fillable. It would be
interesting to know whether these contact structures are weakly or strongly fillable.

Proof of Theorem 5.3 A basis of arcs on S2;2 consists of five pairwise disjoint properly
embedded arcs. In what follows, we work with a collection of four pairwise disjoint
properly embedded arcs a D fa1; a2; a3; a4g to show that o.Yp; �p/ D 0. Adding
extra arcs would not change the result in light of Lemma 4.1. These arcs are shown
in Figure 19, right, while their respective images under the monodromy are shown
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B1

B2

B3 B4

A1

A2

A3

A4

x1

x4x2
x3 x1

x3x2
x4

y1

y2

y3
y4

Figure 21: The regions Ai and Bi for i D 1; : : : ; 4 and the region Z with basepoint.

in Figure 20. Also shown in the latter figure is a positive Maslov index-1, JC D 0

domain D from y D .y1;y2;y3;y4/ to x�p D .x1;x2;x3;x4/, which is an immersed
octagon and therefore has a unique holomorphic representative for a generic split almost
complex structure. Our goal is to show that D is the only positive Maslov index-1,
JC D 0 domain from y .

Suppose that D0 is a positive Maslov index-1, JC D 0 domain from y to some wD
.w1; w2; w3; w4/. We will show that D0=D. To begin, for each yi , label the region with
corner at yi having nonzero coefficient in D as Ai , and let Bi denote the region whose
intersection with Ai in a neighborhood of yi consists only of the point yi (see Figure 21).
We label one of the regions with basepoint as Z and denote the multiplicity of a region R

in D0 by jRj. Since JC.D0/D 0, D0 has only acute corners and a connected boundary
by Lemma 5.2; hence, if yi is a corner of D0, then fjAi j; jBi jg D f0; 1g. Note also
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that, as B3 is an annulus with eight acute corners, it has Euler measure �2. Therefore,
jB3j D 0, since e.D0/� �1 and Euler measure is additive.

Next suppose that y4 is a corner of D0 and that jA4j D 1. Following ˇ3 along the
boundary of D0 starting from y4, we deduce that, in order to avoid Z, we must have
w3 D x3, which forces y3 to be a corner of D0 and jA3j D 1. Similarly, for i D 2 and
i D 3, if yi is a corner of D0 and jAi j D 1, we may follow along ˇi�1 to conclude
that, so as to avoid Z, we must have wi�1 D xi�1; hence, yi�1 is a corner of D0 and
jAi�1j D 1. Finally, if y1 is a corner of D0 and jA1j D 1, following ˇ4 along the
boundary of D0, we conclude that, so as to avoid B3, we must have w4 2 ˇ4 \ ˛4;
therefore, y4 should be a corner of D0 and jA4j D 1. In conclusion, if jAi j ¤ 0 for any
i D 1; : : : ; 4, then jAi j ¤ 0 and wi D xi for all i D 1; : : : ; 4. Checking the coefficients
this forces in the remaining regions, we conclude that the only such domain is D itself.

It remains to consider the case that jAi j D 0 for all i D 1; : : : ; 4. As noted above,
jB3j D 0, from which we conclude that y3 is not a corner of D0; hence, @D0 contains
no segment of ˛3 or ˇ2. Supposing then that y2 is a corner of D0 with jB2j D 1, we
may follow ˛2 along the boundary of D0 to see that, in order to avoid B3, w2 should
be the corner of B2 along ˇ4, forcing y1 to be a corner of D0. Similarly, if y1 is a
corner of D0 with jB1j D 1, then, following ˛1 along the boundary of D0, we deduce
that there is a unique candidate for w1 (ie a unique intersection point at which turning
left leads to a yi without creating a self-intersection in @D0), which is along ˇ3, forcing
a corner at y4. Finally, if y4 is a corner of D0 with jB4j D 1, following ˛4 along
the boundary of D0, we conclude that there are three possibilities for w4 to avoid B3.
Of these, one is along ˇ2, which would force y3 to be a corner of D0, and another is
along ˇ3, which would lead us back to y4 along a homotopically nontrivial path, a
contradiction as D0 can have only one boundary component. We conclude that w4

should be the corner of B4 along ˇ1; hence, y2 is a corner of D0. It follows that @D0
has a single self-intersection, at the corner of B1 in ˛1\ˇ1, giving a contradiction.

5.3 Comparison with other known obstructions

Our goal in this section is to put our calculations of o for the contact 3–manifolds
f.Yp; �p/gp2Z>0

into the broader context of obstructions to existence of weak, strong,
exact and Stein fillings. Note that:

(1) The contact structure �p results from inadmissible transverse surgery with framing
C4 on the genus-2 Borromean knot in L.p;p� 1/ # #3 S1 �S2 [9].
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(2) Oc.�p/¤ 0 by [19], since the surgery coefficient is 2g D 4.

(3) Capping the boundary along the curve a gives a weak symplectic 2–handle
cobordism from Yp to L.p;p� 1/ # #3 S1 �S2 [14].

(4) c1.�p/ is torsion.

(5) d3.�p/D
1
4
.p� 3/ [39].

To see (4), note that b2.L.p;p � 1/ # #3 S1 � S2/ D 3 (or D 4 if p D 0) and that
every homology class can be represented by embedded tori. As a result, the Benneqiun–
Eliashberg bound implies that c1.�p/ evaluates trivially on H2.L.p;p�1/##3 S1�S2/;
therefore, it must be torsion.

Coarsely, there are two methods to obstruct symplectic-fillability: via the vanishing
of contact invariants from Floer homology and gauge theory — such as monopole
Floer homology, Heegaard Floer homology and embedded contact homology — via
structural algebraic properties of symplectic field theory (SFT) or contact homology,
or by applying more context specific ad hoc methods. The vanishing of contact
invariants in Floer homology obstructs strong-fillability and can be used to obstruct
weak-fillability with a suitable coefficient system. For our examples, because Oc.�p/¤ 0,
any obstruction to symplectic-fillability would fall into the ad hoc category. It is possible
that weak/strong-fillability of these contact 3–manifolds could be obstructed by SFT,
for example were the algebraic torsion to be nonzero [33]. It is also possible that one
could obstruct strong-fillability using contact homology [51; 5; 25], again assuming
one could both calculate it and show that there are no augmentations of the algebra.
Neither of these methods seems particularly practical for these examples, but we don’t
know.

In situations where contact invariants fail to obstruct symplectic-fillability or they
are too difficult to calculate, other information can sometimes be utilized. Interesting
families of contact 3–manifolds have been shown to be nonfillable by symplectic caps or
other cobordisms. Prior to the introduction of contact invariants from Floer homology,
all methods of obstructing fillability were ad hoc and relied on Gromov’s theory of
pseudoholomorphic curves (eg [11; 12]), but they only apply to obstructing existence of
strong fillings. The introduction of the contact invariant in Seiberg–Witten theory [29]
provided a more universal tool to obstruct symplectic-fillability, but it was notoriously
difficult to calculate. In [39], Lisca and Stipsicz studied a family of contact 3–manifolds
f.Yg;n; �i/gn�2g�0;iD0;1 described by Honda [20] and Giroux [16] to show that they
are not symplectically fillable. Rather than directly showing that the monopole contact
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invariant is zero for this family, Lisca and Stipsicz first calculated the d3–invariants
of these contact structures using descriptions of .Yg;n; �i/ as Legendrian surgeries on
some Stein-fillable contact 3–manifolds. Building on earlier work of Lisca [36] and
Mrowka, Ozsváth and Yu [43], they then conclude that in a given Spinc structure, there
is a unique homotopy class of 2–plane fields � containing a symplectically fillable
contact structure. Finally, they use calculations of an �–invariant by Nicolaescu [44] to
calculate the d3–invariant of � and see that it does not agree with the d3–invariants of �i .

Often filling obstructions follow by finding a symplectic cobordism to either the empty
set or some target contact 3–manifold .M; �/ whose symplectic fillings are classified —
such as certain contact structures on the lens spaces L.p; q/ (eg [42; 37]) — or are
obstructed entirely [14]. One then attempts to obstruct this cobordism from embedding
in any filling of .M; �/. These methods build on the foundational examples and methods
of Lisca in [36] (see [40; 28; 34]). There, strong-fillability is obstructed by finding a
smooth 4–manifold cap which cannot be embedded into a diagonal lattice, noticing that
the projection cred.�/ of cC.�/ onto the reduced Heegaard Floer homology is zero, so
that all strong fillings must be negative-definite, and then invoking Donaldson’s theorem
to obstruct the existence of resulting closed smooth manifold. One can also invoke a
relative version of this obstruction by Owens and Strle [47], using the Heegaard Floer
d–invariants of M. This method also often obstructs existence of weak fillings as well,
as at least some of the manifolds involved are rational homology spheres, where the
two notions of weak and strong filling are equivalent. Similar obstructions are possible
by finding symplectic caps which contain symplectic spheres of nonnegative square
and then analyzing the resulting embedding into a ruled surface (eg [41]).

There are other methods of obstructing existence of even weak fillings in situations
where property (2) and some version of properties (1) [10], (4) [28; 34] and (3) [40; 41]
above hold. In [10], Conway, Etnyre and Tosun study a particular case. They investigate
contact 3–manifolds YK obtained by inadmissible contact surgery on a transverse
knot K in S3 and obstruct existence of weak fillings in a very interesting range of
surgery slopes determined by �.K/. Their obstruction is obtained by the relative
adjunction inequality of Raoux [53] for knots in rational homology spheres, noting
that any weak filling of YK embeds into a strong filling of S3 in which K bounds a
symplectic disk. There are generalizations of this method that work in the exact setting
where YK is built by inadmissible surgery on a transverse knot K in a 3–manifold Y

all of whose weak fillings are classified. We note that neither the Conway–Etnyre–
Tosun nor Lisca–Stipsicz methods appear to be applicable to our family of contact
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3–manifolds. The sphere of square �p easily embeds into the diagonal lattice and
there does not appear to be an obstruction to K bounding a symplectic disk of the
appropriate type in a symplectic filling of L.p;p� 1/. We also note that, if our family
of contact 3–manifolds were supported by planar open book decompositions, one could
conceivably invoke Niederkrüger and Wendl [45; 57], as used by [27], to obstruct weak
and strong fillings.

The obstructions particular to Stein-fillability generally require both that cred.�/D 0 and
that d3.�/ be small (either less than 1 [28] or less than 0 [2]). To date, there is exactly
one method to obstruct Stein-fillability of an exactly fillable contact 3–manifold [6].
This uses Eliashberg’s theorem on decomposing spheres [11] and requires the 3–
manifold in question to be reducible. This method is entirely dependent on Ghiggini’s
obstruction to existence of exact fillings of certain strongly fillable contact 3–manifolds.
In [15], Ghiggini used properties of Stein fillings [38] and the behavior of Heegaard
Floer homology under Spinc conjugation to obstruct Stein-fillability on a number of
Brieskorn spheres. Ghiggini’s method requires, among much else, that � be homotopic
to its coorientation reversal, x� , which implies that c1.�/D 0.

We note that the four simplifying properties (1)–(4) hold only because we have chosen
a particularly simple family of contact 3–manifolds. One can tweak this family to
construct examples where Oc.�/¤0 but o.�/D0 and where none of the properties (1)–(4)
hold. In general, we expect that there are examples of contact 3–manifolds where both
cC.�/¤ 0 and cred.�/¤ 0, but o.�/ <1, and which have no reasonable cobordism
to a contact 3–manifold whose fillings are classified or whose symplectic caps are
constrained. For such contact 3–manifolds, the spectral order obstructs Stein-fillability
but it is likely that no other current method could be applied to show this.

Finally, one major practical advantage of working with Heegaard Floer homology is
its computability. Finding an upper bound for o is a direct calculation that can be
done easily on any fixed open book decomposition. We carried out this task using
a computer program that we wrote, building on a program of Sucharit Sarkar that
analyzes Heegaard Floer chain complexes. The proofs given in Sections 5.1 and 5.2
were done by hand and verified by this computer program, which also gives us the
capability to do calculations on much larger chain complexes. In conclusion, if o is
finite, finding an upper bound for the explicit value is a relatively simple endeavor
even if calculating the exact value is difficult. Hence, as a fillability obstruction when
Oc.�/¤ 0, o is both a robust contact invariant with its fundamental properties, and it is
computable.
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[23] K Honda, W H Kazez, G Matić, On the contact class in Heegaard Floer homology, J.
Differential Geom. 83 (2009) 289–311 MR Zbl

[24] M Hutchings, The embedded contact homology index revisited, from “New perspectives
and challenges in symplectic field theory” (M Abreu, F Lalonde, L Polterovich, editors),
CRM Proc. Lecture Notes 49, Amer. Math. Soc., Providence, RI (2009) 263–297 MR
Zbl

[25] M Hutchings, J Nelson, Cylindrical contact homology for dynamically convex contact
forms in three dimensions, J. Symplectic Geom. 14 (2016) 983–1012 MR Zbl

[26] A Juhász, S Kang, Spectral order for contact manifolds with convex boundary, Algebr.
Geom. Topol. 18 (2018) 3315–3338 MR Zbl

[27] A Kaloti, Stein fillings of planar open books, preprint (2013) arXiv 1311.0208

[28] A Kaloti, B Tosun, Hyperbolic rational homology spheres not admitting fillable contact
structures, Math. Res. Lett. 24 (2017) 1693–1705 MR Zbl

[29] P B Kronheimer, T S Mrowka, Monopoles and contact structures, Invent. Math. 130
(1997) 209–255 MR Zbl
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