Geometry \& Topology

Volume 27 (2023)

On dense totipotent free subgroups in full groups

Alessandro Carderi
Damien Gaboriau
François Le Maître

On dense totipotent free subgroups in full groups

Alessandro Carderi
Damien Gaboriau
François Le Maître

We study probability measure preserving (p.m.p.) nonfree actions of free groups and the associated IRSs. The perfect kernel of a countable group Γ is the largest closed subspace of the space of subgroups of Γ without isolated points. We introduce the class of totipotent ergodic p.m.p. actions of Γ : those for which almost every point-stabilizer has dense conjugacy class in the perfect kernel. Equivalently, the support of the associated IRS is as large as possible, namely it is equal to the whole perfect kernel. We prove that every ergodic p.m.p. equivalence relation \mathscr{R} of cost $<r$ can be realized by the orbits of an action of the free group \boldsymbol{F}_{r} on r generators that is totipotent and such that the image in the full group [R] is dense. We explain why these actions have no minimal models. This also provides a continuum of pairwise orbit inequivalent invariant random subgroups of \boldsymbol{F}_{r}, all of whose supports are equal to the whole space of infinite-index subgroups. We are led to introduce a property of topologically generating pairs for full groups (which we call evanescence) and establish a genericity result about their existence. We show that their existence characterizes cost 1.

37A20, 22F10; 22F50, 37B05

1. Introduction 2298
2. Perfect kernel for groups and minimal models 2302
3. Full groups and density 2304
4. Evanescent pairs and topological generators 2308
5. Proof of the main theorem 2313
References 2317
[^0]
1 Introduction

> In this context, clarifying precisely what is meant by "totipotency" and how it is experimentally determined will both avoid unnecessary controversy and potentially reduce inappropriate barriers to research.

—M Condic [5]
Let Γ be a countable discrete group. Denote by $\operatorname{Sub}(\Gamma)$ the space of subgroups of Γ. It is equipped with the compact totally disconnected topology of pointwise convergence and with the continuous Γ-action by conjugation. Let β be a Borel Γ-action on the standard Borel space $X \simeq[0,1]$. Its stabilizer map

$$
\operatorname{Stab}^{\beta}: X \rightarrow \operatorname{Sub}(\Gamma), \quad x \mapsto\{\gamma \in \Gamma: \beta(\gamma) x=x\}
$$

is Γ-equivariant. If μ is a probability measure on X which is preserved by β, then the pushforward measure $\operatorname{Stab}_{*}^{\beta} \mu$ is invariant under conjugation. It is the prototype of an invariant random subgroup (IRS). When μ is atomless and the stabilizer map is essentially injective (a.k.a. the action β is totally nonfree), the support of the associated $\operatorname{IRS} \operatorname{Stab}_{*}^{\beta}(\mu)$ has no isolated points: it is a perfect set. The largest closed subspace of $\operatorname{Sub}(\Gamma)$ with no isolated points is called the perfect kernel of $\operatorname{Sub}(\Gamma)$. We say that an ergodic probability measure preserving (p.m.p.) action is totipotent when the support of its IRS is equal to the perfect kernel of $\operatorname{Sub}(\Gamma)$. By ergodicity, the following stronger property holds: almost every element of the associated IRS has dense orbit in the perfect kernel; see Proposition 2.3. We call such an IRS totipotent.

Given a p.m.p. action $\Gamma \curvearrowright^{\beta}(X, \mu)$, we consider the associated p.m.p. equivalence relation

$$
\mathscr{R}^{\beta}:=\{(x, y) \in X \times X: \beta(\Gamma) x=\beta(\Gamma) y\}
$$

and its full group $\left[\mathscr{R}^{\beta}\right]$ as the group of all measure-preserving transformations whose graph is contained in \mathscr{R}^{β}. The (bi-invariant) uniform distance between two measurepreserving transformations S and T is defined by

$$
d_{u}(T, S):=\mu(\{x \in X: S(x) \neq T(x)\})
$$

It endows the full group $\left[\mathscr{R}^{\beta}\right]$ with a Polish group structure. The cost is a numerical invariant attached to the equivalence relation \mathscr{R}^{β}. If β is a p.m.p. action of the free group \boldsymbol{F}_{r} on r generators, then the cost of \mathscr{R}^{β} is exactly r when β is free, and the cost of \mathscr{R}^{β} is $<r$ when β is nonfree; see Gaboriau [8].

The main result of Le Maître [15] is that for any ergodic p.m.p. equivalence relation \mathscr{R}, if \mathscr{R} has cost $<r$ for some integer $r \geq 2$, then there exists a homomorphism $\tau: \boldsymbol{F}_{r} \rightarrow[\mathscr{R}]$ with dense image.

This result has been sharpened in order to ensure that the homomorphism τ is injective. Actually, the associated (almost everywhere defined) p.m.p. action α_{τ} can be made to satisfy the following two opposite conditions: high faithfulness and amenability on μ-almost every orbit; see Le Maître [18].

These two conditions can be phrased in terms of the support of the IRS associated to the action: the first one means that the support contains the trivial subgroup, and one can show that the second one is equivalent to the support containing a coamenable subgroup (which in the construction of [18] is the kernel of a certain surjective homomorphism $\boldsymbol{F}_{r} \rightarrow \mathbb{Z}$).

The purpose of the present paper is to show that the homomorphism can be chosen so that the support of the associated IRS is actually the largest perfect subspace of $\operatorname{Sub}\left(\boldsymbol{F}_{r}\right)$, which consists of all its infinite-index subgroups; see Proposition 2.1.

Theorem Let \mathscr{R} be an ergodic p.m.p. equivalence relation whose cost is $<r$ for some integer $r \geq 2$. Then there exists a homomorphism $\tau: \boldsymbol{F}_{r} \rightarrow[\mathscr{R}]$ whose image is dense and whose associated p.m.p. action α_{τ} is totipotent.

The density in $[\mathscr{R}]$ of the image of τ implies that $\mathscr{R}^{\alpha_{\tau}} \simeq \mathscr{R}$ and that the stabilizer map $\operatorname{Stab}^{\alpha_{\tau}}$ is essentially injective [18, Proposition 2.4]. In particular, the actions $\boldsymbol{F}_{r} \curvearrowright\left(\operatorname{Sub}\left(\boldsymbol{F}_{r}\right), \operatorname{Stab}_{*}^{\alpha_{\tau}} \mu\right)$ and $\boldsymbol{F}_{r} \curvearrowright^{\alpha_{\tau}}(X, \mu)$ are conjugate (thus produce the same equivalence relation) and almost every subgroup for the IRS $\operatorname{Stab}_{*}^{\alpha_{\tau}} \mu$ equals its own normalizer. It follows that, up to isomorphism, every p.m.p. ergodic equivalence relation of cost $<r$ comes from a totipotent IRS of \boldsymbol{F}_{r} (actually, from continuum many different totipotent IRSs of \boldsymbol{F}_{r}; see Remark 5.1).

Such a statement is optimal since p.m.p. equivalence relations of cost $\geq r$ cannot come from a nonfree \boldsymbol{F}_{r} action. To our knowledge, it was not even clear until now whether \boldsymbol{F}_{r} admits ergodic totipotent IRSs. Since there are continuum many pairwise nonisomorphic ergodic p.m.p. equivalence relations of cost $<r$, our approach provides continuum many pairwise distinct ergodic totipotent IRSs of the free group on r generators, whose associated equivalence relations are even nonisomorphic.
Another interesting fact about totipotent p.m.p. \boldsymbol{F}_{r}-actions is that they have no minimal model, ie they cannot be realized as minimal actions on a compact space. Indeed, it
follows from a result of Glasner and Weiss [10, Corollary 4.3] that as soon as the support of the IRS of a given p.m.p. action contains two distinct minimal subsets (eg when it contains two distinct fixed points), the action does not admit a minimal model; see Theorem 2.5. In our case the perfect kernel of $\operatorname{Sub}\left(\boldsymbol{F}_{r}\right)$ contains a continuum of fixed points (namely, all infinite-index normal subgroups), so that totipotent p.m.p. actions of \boldsymbol{F}_{r} are actually very far from admitting a minimal model.

Let us now recall the context around our construction. The term IRS was coined by Abert, Glasner and Virag [1] and has become an important subject on its own at the intersection of group theory, probability theory and dynamical systems. The notion of IRS is a natural generalization of a normal subgroup, especially in the direction of superrigidity type results. It has thus been present implicitly in the work of many authors, a famous landmark being the Stuck-Zimmer theorem [21], which gives examples of groups admitting very few IRSs. On the contrary, some groups admit a "zoo" of IRSs, starting with free groups; see Bowen [2] and, for other examples, Bowen, Grigorchuk and Kravchenko [3; 4] and Kechris and Quorning [13].

In particular, Bowen proved that every p.m.p. ergodic equivalence relation of cost $<r$ comes from some IRS of \boldsymbol{F}_{r}. He obtained this result through a Baire category argument which required that the first generator act freely. In particular, such IRSs can never be totipotent.

Eisenmann and Glasner [7] then used homomorphisms $\boldsymbol{F}_{r} \rightarrow[\mathscr{R}]$ with dense image so as to obtain interesting IRSs of \boldsymbol{F}_{r}. They proved that given a homomorphism $\Gamma \rightarrow[\mathscr{R}]$ with dense image, the associated IRS is always cohighly transitive almost surely, which means that for almost every $\Lambda \leq \Gamma$, the Γ-action on Γ / Λ is n-transitive for every $n \in \mathbb{N}$. They also showed that the IRSs of \boldsymbol{F}_{r} obtained by Bowen for cost 1 equivalence relations are faithful and, moreover, almost surely coamenable.

The third author [18] then used a modified version of his result on the topological rank of full groups to show that every p.m.p. ergodic equivalence relation of cost $<r$ comes from a coamenable, cohighly transitive and faithful IRS of \boldsymbol{F}_{r}. Also in this construction, the first generator continues to act freely, thus preventing totipotency. Let us now briefly explain how our new construction (Section 5) allows us to circumvent this.

The main idea is to use a smaller set $Y \subsetneq X$ such that the restriction of \mathscr{R} to Y still has cost $<r$, so that we can find some homomorphism $\boldsymbol{F}_{r} \rightarrow\left[\mathscr{R}_{Y}\right]$ with dense image.

This provides us with some extra space in order to obtain totipotency via a well-chosen perturbation of the above homomorphism.

This perturbation is obtained by mimicking all Schreier balls on $X \backslash Y$ and then merging these amplifications with the action on Y so as to obtain both density in [$\mathscr{R}]$ and totipotency. The use of evanescent pairs of topological generators (see Definition 4.1) with Theorem 4.5 and Proposition 3.8 will grant us that this perturbation maintains the density. We establish in Theorem 4.6 that the existence of an evanescent pair of topological generators is equivalent to \mathscr{R} having cost 1 .

Finally, let us mention the case of the free group on infinitely many generators \boldsymbol{F}_{∞}. Here, the space of subgroups is already perfect (see Proposition 2.1), and one can easily adapt our arguments to show that: For every ergodic p.m.p. equivalence relation \mathscr{R}, there exists a homomorphism $\tau: \boldsymbol{F}_{\infty} \rightarrow[\mathscr{R}]$ whose image is dense and whose associated p.m.p. action α_{τ} is totipotent.

This result could, however, also be obtained by a purely Baire-categorical argument: it is not hard to see that the space of such homomorphisms is dense G_{δ} in the Polish space of all homomorphisms $\tau: \boldsymbol{F}_{\infty} \rightarrow[\mathscr{R}]$.

Going back to the case of finite rank, it is not even true that a generic homomorphism $\tau: \boldsymbol{F}_{r} \rightarrow[\mathscr{R}]$ generates the equivalence relation \mathscr{R}. In order to hope for a similar genericity statement, one should first answer the following question.

Question Consider a p.m.p. ergodic equivalence relation \mathscr{R} of cost $<r$. Is it true that, in the space of homomorphisms $\tau: \boldsymbol{F}_{r} \rightarrow[\mathscr{R}]$ whose image generates \mathscr{R}, those with dense image are dense?

The fact that Bowen and then Eisenmann and Glasner had to work in the even smaller space where the first generator acts freely, indicates that a Baire-categorical approach to our main result is out of reach at the moment, if not impossible.

Acknowledgements We are grateful to Sasha Bontemps, Yves Cornulier, Gabor Elek and Todor Tsankov for their comments on preliminary versions of this work.

The authors acknowledge funding by the ANR project GAMME ANR-14-CE25-0004. Carderi acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) 281869850 (RTG 2229). Gaboriau is supported by the CNRS. Le Maître acknowledges funding by the ANR projects ANR-17-CE40-0026 AGRUME and ANR-19-CE40-0008 AODynG.

2 Perfect kernel for groups and minimal models

Let Γ be a countable discrete group. The topology on its space of subgroups $\operatorname{Sub}(\Gamma)$ admits $V(\mathcal{I}, \mathcal{O}):=\{\Lambda \in \operatorname{Sub}(\Gamma): \mathcal{I} \subseteq \Lambda$ and $\mathcal{O} \cap \Lambda=\varnothing\}$ as a basis of open sets, where \mathcal{I} and \mathcal{O} are finite subsets of Γ. By the Cantor-Bendixson theorem, $\operatorname{Sub}(\Gamma)$ decomposes in a unique way as the disjoint union of a perfect set, called the perfect kernel $\mathcal{K}(\Gamma)$ of $\operatorname{Sub}(\Gamma)$, and of a countable set. We indicate some isolation properties of subgroups:
(1) If $\Lambda \in \operatorname{Sub}(\Gamma)$ is not finitely generated, then writing $\Lambda=\left(\lambda_{j}\right)_{j \in \mathbb{N}}$ we obtain Λ as the nontrivial limit of the infinite index (both in Λ and in Γ) of the finitely generated subgroups $\Lambda_{n}:=\left\langle\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right\rangle$.
(2) If Γ is finitely generated, then its finite-index subgroups are isolated. Indeed, a finite-index subgroup Λ is finitely generated as well and it is alone in the open subset defined by a finite family \mathcal{I} of generators and a finite family \mathcal{O} of representatives of its cosets Γ / Λ except $\{\Lambda\}$.
(3) If Γ is not finitely generated, then its finite-index subgroups are also not finitely generated and thus are not isolated by property (1).

Let us denote by $\operatorname{Sub}_{\infty i}(\Gamma)$ the subspace of infinite-index subgroups of Γ. The following is probably well known, but we were not able to locate a proof in the literature.

Proposition 2.1 For the free group \boldsymbol{F}_{r} on r generators, with $2 \leq r \leq \infty$:
(i) For finite $r \geq 2, \mathcal{K}\left(\boldsymbol{F}_{r}\right)=\operatorname{Sub}_{\infty i}\left(\boldsymbol{F}_{r}\right)$.
(ii) For r infinite, $\mathcal{K}\left(\boldsymbol{F}_{\infty}\right)=\operatorname{Sub}\left(\boldsymbol{F}_{\infty}\right)$.

Proof We first show that if $\Lambda \in \operatorname{Sub}_{\infty i}\left(\boldsymbol{F}_{r}\right)$, with $2 \leq r \leq \infty$, then it is a nontrivial limit of finitely generated infinite-index subgroups of \boldsymbol{F}_{r}. If Λ is not finitely generated, then property (1) above applies. Thus, assume Λ is finitely generated. If r is infinite, then Λ has infinite index in some finitely generated noncyclic free subgroup $\Lambda \leq \Lambda * \boldsymbol{F}_{2} \leq \boldsymbol{F}_{\infty}$. We can thus assume that the rank $r \geq 2$ is finite. By the Hall theorem, Λ is a free factor of a finite-index subgroup $\Lambda * \Delta$ of the free group \boldsymbol{F}_{r} (we include the case $\Lambda=\{1\}$). Since Λ has infinite index, Δ is nontrivial. If $g \in \Delta$ is a nontrivial element, then Λ is the nontrivial limit of the sequence of finitely generated infinite-index subgroups $\left(\Lambda *\left\langle g^{n}\right\rangle\right)_{n \geq 2}$ of \boldsymbol{F}_{r}.

This (with property (2), and property (3) above, respectively) shows that $\mathcal{K}\left(\boldsymbol{F}_{r}\right)=$ $\operatorname{Sub}_{\infty i}\left(\boldsymbol{F}_{r}\right)$ for $r<\infty$ and $\mathcal{K}\left(\boldsymbol{F}_{\infty}\right)=\operatorname{Sub}\left(\boldsymbol{F}_{\infty}\right)$.

Remark 2.2 This also shows that the Cantor-Bendixson rank of $\operatorname{Sub}\left(\boldsymbol{F}_{r}\right)$ equals 1 when r is finite and equals 0 when $r=\infty$.

Computations of the perfect kernel for some other groups have been performed in [3; 20].

The following is a classical result:
Assume Γ acts by homeomorphisms on a Polish space Z and v is an ergodic Γ-invariant probability measure on Z. Then the orbit of v-almost every point $z \in Z$ is dense in the support of v.

In particular:
Proposition 2.3 If $\Gamma \curvearrowright(X, \mu)$ is a p.m.p. ergodic action on a standard probability space, then the stabilizer $\operatorname{Stab}(x)$ of almost every point $x \in X$ has dense Γ-orbit in the support of the associated IRS $v=\operatorname{Stab}_{*} \mu$ of $\operatorname{Sub}(\Gamma)$.

Thus, our main theorem produces IRSs on $\operatorname{Sub}\left(\boldsymbol{F}_{r}\right)$ for which almost every \boldsymbol{F}_{r}-orbit (under conjugation) is dense in $\mathcal{K}\left(\boldsymbol{F}_{r}\right)=\operatorname{Sub}_{\infty i}\left(\boldsymbol{F}_{r}\right)$. In other words, for almost every subgroup Λ, the Schreier graph of the action $\boldsymbol{F}_{r} \curvearrowright \boldsymbol{F}_{\boldsymbol{r}} / \Lambda$ contains arbitrarily large copies of Schreier balls of every infinite transitive \boldsymbol{F}_{r}-action.

Remark 2.4 In the introduction, we defined an IRS to be totipotent when almost every subgroup has dense orbit in the perfect kernel. But an IRS can also be considered as a p.m.p. dynamical system whose associated IRS can be different. The connections between the two notions of totipotency are unclear to us. However, since the actions that we construct are totally nonfree, this situation does not happen and our IRSs are totipotent in both senses.

Moreover, this proposition can be combined with [10, Corollary 4.3] to give the following result.

Theorem 2.5 Let $\Gamma \curvearrowright(X, \mu)$ be a p.m.p. ergodic action on a standard probability space. Suppose that the support of the associated IRS contains at least two distinct minimal subsets. Then the action has no minimal model.

This is in wide contrast with free actions of countable groups: they always admit minimal models [22].

Proof By the previous proposition, the orbit closure of the stabilizer of μ-almost every point is equal to the support of the IRS, and hence contains two distinct minimal subsets. Admitting a minimal model would thus be incompatible with [10, Corollary 4.3].

3 Full groups and density

We fix once and for all a standard probability space (X, μ) and denote by $\operatorname{Aut}(X, \mu)$ the group of all its measure-preserving transformations, two such transformations being identified if they coincide on a full measure set. In order to ease notation, we will always neglect what happens on null sets. Given an element $T \in \operatorname{Aut}(X, \mu)$, its set of fixed points is denoted by

$$
\operatorname{Fix}(T):=\{x \in X: T(x)=x\} .
$$

A partial isomorphism of (X, μ) is a partially defined Borel bijection $\varphi: \operatorname{dom} \varphi \rightarrow \operatorname{rng} \varphi$, with $\operatorname{dom} \varphi$ and $\operatorname{rng} \varphi$ Borel subsets of X, such that φ is measure-preserving for the measures induced by μ on its domain $\operatorname{dom} \varphi$ and its range $\operatorname{rng} \varphi$. In particular, we have $\mu(\operatorname{dom} \varphi)=\mu(\operatorname{rng} \varphi)$. The support of φ is the set

$$
\operatorname{supp} \varphi:=\{x \in \operatorname{dom} \varphi: \varphi(x) \neq x\} \cup\left\{x \in \operatorname{rng} \varphi: \varphi^{-1}(x) \neq x\right\} .
$$

Given two partial isomorphisms with φ, ψ disjoint domains and ranges, one can form their union, which is the partial isomorphism

$$
\varphi \sqcup \psi: \operatorname{dom} \varphi \sqcup \operatorname{dom} \psi \rightarrow \operatorname{rng} \varphi \sqcup \operatorname{rng} \psi, \quad x \mapsto \begin{cases}\varphi(x) & \text { if } x \in \operatorname{dom} \varphi, \\ \psi(x) & \text { if } x \in \operatorname{dom} \psi .\end{cases}
$$

A graphing is a countable set of partial isomorphisms Φ. Its $\operatorname{cost} \mathcal{C}(\Phi)$ is the sum of the measures of the domains of its elements, which is also equal to the sum of the measures of their ranges since they preserve the measure.

Given a graphing Φ, the smallest equivalence relation which contains all the graphs of the elements of Φ is denoted by \mathscr{R}_{Φ} and called the equivalence relation generated by Φ. When $\Phi=\{\varphi\}$, we also write it as \mathscr{R}_{φ} and call it the equivalence relation generated by φ.

The equivalence relations that can be generated by graphings are called p.m.p. equivalence relations; they are Borel as subsets of $X \times X$ and have countable classes. The $\operatorname{cost} \mathcal{C}(\mathscr{R})$ of a p.m.p. equivalence relation \mathscr{R} is the infimum of the costs of the graphings which generate it.

Whenever $\alpha: \Gamma \rightarrow \operatorname{Aut}(X, \mu)$ is a p.m.p. action, we denote by \mathscr{R}^{α} the equivalence relation generated by $\alpha(\Gamma)$.

Given a p.m.p. equivalence relation \mathscr{R}, the set of partial isomorphisms whose graph is contained in \mathscr{R} is denoted by $\llbracket \mathscr{R} \rrbracket$ and called the pseudo full group of \mathscr{R}. Here is a useful way of obtaining elements of the pseudo full group that we will use implicitly. Say that \mathscr{R} is ergodic when every Borel \mathscr{R}-saturated set has measure 0 or 1 . Under this assumption, given any two Borel subsets $A, B \subseteq X$ of equal measure, there is $\varphi \in \llbracket \mathscr{R} \rrbracket$ such that $\operatorname{dom} \varphi=A$ and $\operatorname{rng} \varphi=B$ [12, Lemma 7.10].

The full group of \mathscr{R} is the subgroup [\mathscr{R}] of $\operatorname{Aut}(X, \mu)$ consisting of almost everywhere defined elements of the pseudo full group. Endowed with the uniform metric given by $d_{u}(S, T)=\mu(\{x \in X: S(x) \neq T(x)\})$, it becomes a Polish group. Observe that $d_{u}\left(T, \mathrm{id}_{X}\right)=\mu(\operatorname{supp} T)$.

For more material about this section, we refer for instance to [12; 9].

3.1 Around a theorem of Kittrell and Tsankov

In this paper, we will be interested in p.m.p. actions $\tau: \boldsymbol{F}_{r} \rightarrow[\mathscr{R}]$ with dense image in $[\mathscr{R}]$. To that end, the following result of Kittrell and Tsankov is very useful. Given a family (\mathscr{R}_{i}) of equivalence relations on the same set X, we define $\bigvee_{i \in I} \mathscr{R}_{i}$ as the smallest equivalence relations which contains each \mathscr{R}_{i}.

Theorem 3.1 [14, Theorem 4.7] Let \mathscr{R} be a p.m.p. equivalence relation on (X, μ), and suppose that $\left(\mathscr{R}_{i}\right)_{i \in I}$ is a family of Borel subequivalence relations such that $\mathscr{R}=\bigvee_{i \in I} \mathscr{R}_{i}$. Then $\left.[\mathscr{R}]=\overline{\left\langle\bigcup_{i \in I}\left[\mathscr{R}_{i}\right]\right.}\right\rangle$.

We will also use two easy corollaries of their result, which require us to set up a bit of notation.

Definition 3.2 Given an equivalence relation \mathscr{R} on a set X and $Y \subseteq X$, we define the equivalence relation $\mathscr{R}_{\uparrow Y}$ restricted to Y and the equivalence relation $\mathscr{R}_{\uparrow \mid}$ induced on Y by

$$
\begin{aligned}
& \mathscr{R}_{\uparrow Y}:=\mathscr{R} \cap Y \times Y=\{(x, y) \in \mathscr{R}: x, y \in Y\} \subseteq Y \times Y, \\
& \mathscr{R}_{\uparrow Y}:=\mathscr{R}_{\uparrow Y} \cup\{(x, x): x \in X\} \subseteq X \times X .
\end{aligned}
$$

Observe that given a p.m.p. equivalence relation \mathscr{R}, we have a natural way of identifying the full group of the restriction $\mathscr{R}_{{ }^{Y}}$ with the full group of the induced equivalence relation $\mathscr{R}_{\uparrow Y}$ by making its elements act trivially outside of Y.

Corollary 3.3 Let \mathscr{R} be an ergodic p.m.p. equivalence relation on (X, μ). Let $T \in[\mathscr{R}]$ and $Y \subseteq X$ be measurable and such that $\mu(Y \cap T Y)>0$. Put $Y_{T}:=\bigcup_{n \in \mathbb{Z}} T^{n} Y$. Then $\overline{\left\langle T,\left[\mathscr{R}_{\uparrow Y}\right]\right\rangle} \geq\left[\mathscr{R}_{\downarrow Y_{T}}\right]$.

Proof Since $\mu(Y \cap T Y)>0$ and \mathscr{R} is ergodic, we have that $\mathscr{R}_{\uparrow Y \cup T Y}=\mathscr{R}_{\uparrow Y} \vee \mathscr{R}_{\uparrow T Y}$. Therefore Theorem 3.1 implies that

$$
\overline{\left\langle\left[\mathscr{R}_{\uparrow Y}\right], T\left[\mathscr{R}_{\uparrow Y}\right] T^{-1}\right\rangle}=\left[\mathscr{R}_{Y \cup T Y}\right] .
$$

Now observe that $(Y \cup T Y) \cap T(Y \cup T Y) \supseteq T Y$ has positive measure. Therefore Theorem 3.1 implies that $\overline{\left\langle T,\left[\mathscr{R}_{\uparrow Y}\right]\right\rangle}$ contains $\left[\mathscr{R}_{\uparrow\left(Y \cup T Y \cup T^{2} Y\right)}\right]$, and the corollary follows by induction.

Corollary 3.4 Consider an ergodic p.m.p. equivalence relation \mathscr{R} on (X, μ) and let $Y \subseteq X$ be a positive-measure subset. Let α be a p.m.p. action of Γ on (X, μ) such that $\alpha(\Gamma) \leq[\mathscr{R}], \mu(\alpha(\Gamma) Y)=1$ and $\left[\mathscr{R}_{\uparrow Y}\right] \leq \overline{\alpha(\Gamma)}$. Then either $\overline{\alpha(\Gamma)}=[\mathscr{R}]$, or Γ preserves a finite partition $\left\{Y_{i}\right\}_{i=1}^{k}$ of X, with $Y \subseteq Y_{1}$ and $\left[\mathscr{R}_{\uparrow Y_{i}}\right] \leq \overline{\alpha(\Gamma)}$ for each $i \leq k$.

In particular, if $\mu(Y)>\frac{1}{2}$, then $k=1$ and hence $\overline{\alpha(\Gamma)}=[\mathscr{R}]$.

Proof Let $B \supset Y$ be a subset of maximal measure such that $\overline{\alpha(\Gamma)} \geq\left[\mathscr{R}_{\downarrow B}\right]$. Then by the above corollary, for every $\gamma \in \Gamma$ such that $\alpha(\gamma) B \neq B$ we must have $\mu(B \cap \alpha(\gamma) B)=0$; hence B is an atom of a finite partition preserved by the Γ-action α.

3.2 From graphings to density

The following is a slight variation of [15, Definition 8].

Definition 3.5 Let $n \geq 2$. A precycle of length n is a partial isomorphism φ such that if we set $B:=\operatorname{dom} \varphi \backslash \operatorname{rng} \varphi$ (the basis of the precycle), then $\left\{\varphi^{i}(B)\right\}_{i=0, \ldots, n-2}$ is a partition 0 of $\operatorname{dom} \varphi$, and $\left\{\varphi^{i}(B)\right\}_{i=1, \ldots, n-1}$ is a partition of $\operatorname{rng} \varphi$.

We say that $T \in \operatorname{Aut}(X, \mu)$ extends φ if $T x=\varphi x$ for every $x \in \operatorname{dom}(\varphi)$.

Observe that a precycle of length 2 is an element $\varphi \in \llbracket \mathscr{R} \rrbracket$ such that $\operatorname{dom}(\varphi) \cap \operatorname{rng}(\varphi)=\varnothing$. If φ is a precycle of length n, then $\mu(\operatorname{supp} \varphi)=n \mu(B)$ and $\mu(\operatorname{dom} \varphi)=(n-1) \mu(B)$.

An n-cycle is a measure-preserving transformation all of whose orbits have cardinality either 1 or n. Given a precycle φ of length n, we can extend it to an n-cycle $U_{\varphi} \in\left[\mathscr{R}_{\varphi}\right]$ as follows:

$$
U_{\varphi}(x):= \begin{cases}\varphi(x) & \text { if } x \in \operatorname{dom} \varphi, \\ \varphi^{-(n-1)}(x) & \text { if } x \in \operatorname{rng} \varphi \backslash \operatorname{dom} \varphi, \\ x & \text { otherwise }\end{cases}
$$

This n-cycle U_{φ} is called the closing cycle of φ and $\operatorname{supp} U_{\varphi}=\operatorname{supp} \varphi$.
Remark 3.6 If $\left\{\varphi_{1}, \ldots, \varphi_{n-1}\right\}$ is a pre- n-cycle in the sense of [15, Definition 8], then $\varphi_{1} \sqcup \cdots \sqcup \varphi_{n-1}$ is a precycle of length n in our sense; and if φ is a precycle of length n in our sense, then $\left\{\varphi_{\mid \varphi^{i}(B)}: i=0, \ldots, n-2\right\}$ is a pre- n-cycle in the sense of [15, Definition 8]. The reason for this change of terminology will become apparent in the statement of the next lemma, which was proved for $U=U_{\varphi}$ in [15, Proposition 10].

Lemma 3.7 Suppose that φ is a precycle of basis B, let $\psi:=\varphi_{\upharpoonright B}$, and suppose that $U \in \operatorname{Aut}(X, \mu)$ extends φ. Then $\left[\mathscr{R}_{\varphi}\right]$ is contained in the closure of the group generated by $\left[\mathscr{R}_{\psi}\right] \cup\{U\}$.

Proof Let n be the length of φ. For $i=0, \ldots, n-2$, let $\psi_{i}=\varphi_{\upharpoonright \varphi^{i}(B)}$. Then we have $\mathscr{R}_{\varphi}=\bigvee_{i=0}^{n-2} \mathscr{R}_{\psi_{i}}$. Since U extends φ, we have $U \psi_{i} U^{-1}=\psi_{i+1}$ for all $i=0, \ldots, n-3$, and hence $U\left[\mathscr{R}_{\psi_{i}}\right] U^{-1}=\left[\mathscr{R}_{\psi_{i+1}}\right]$. Since $\psi_{0}=\psi$, the group generated by $U \cup\left[\mathscr{R}_{\psi}\right]$ contains $\left[\mathscr{R}_{\psi_{i}}\right]$ for all $i=0, \ldots, n-2$. Theorem 3.1 finishes the proof.

The following proposition is obtained by a slight modification of the proof of the main theorem of [15].

Proposition 3.8 Let \mathscr{R} be a p.m.p. ergodic equivalence relation on X and let $Y \subseteq X$ be a positive measure subset. Let $\mathscr{R}_{0} \leq \mathscr{R}_{\uparrow Y}$ be a hyperfinite equivalence relation whose restriction to Y is ergodic (and trivial on $X \backslash Y$). Suppose that $\mathcal{C}\left(\mathscr{R}_{\uparrow Y}\right)<r \mu(Y)$ for some integer $r \geq 2$. Then there are $r-1$ precycles $\varphi_{2}, \varphi_{3}, \ldots, \varphi_{r} \in \llbracket \mathscr{R}_{\uparrow Y} \rrbracket$ such that $\mu\left(\operatorname{supp}\left(\varphi_{i}\right)\right)<\mu(Y)$ and such that whenever $U_{2}, U_{3}, \ldots, U_{r} \in[\mathscr{R}]$ extend $\varphi_{2}, \varphi_{3}, \ldots, \varphi_{r}$, we have $\overline{\left\langle\left[\mathscr{R}_{0}\right], U_{2}, U_{3}, \ldots, U_{r}\right\rangle} \geq\left[\mathscr{R}_{\uparrow Y}\right]$.

For instance, one can take $U_{2}, U_{3}, \ldots, U_{r}$ to be the closing cycles of $\varphi_{2}, \varphi_{3}, \ldots, \varphi_{r}$.
Proof Let $T \in\left[\mathscr{R}_{0}\right]$ be such that its restriction to Y is ergodic. Our assumption $\mathcal{C}\left(\mathscr{R}_{\uparrow Y}\right)<r \mu(Y)$ means that the normalized cost of the restriction \mathscr{R}_{Y} is less than r.

Lemma III. 5 from [8] then provides a graphing Φ on Y of normalized cost $<(r-1)$ such that $\left\{T_{\uparrow Y}\right\} \cup \Phi$ generates the restriction $\mathscr{R}_{\uparrow Y}$. We now view Φ as a graphing on X, so that $\{T\} \cup \Phi$ generates $\mathscr{R}_{\uparrow Y}$, and $\mathcal{C}(\Phi)<(r-1) \mu(Y)$. Let $c:=\mathcal{C}(\Phi) /(r-1)<\mu(Y)$. We take $p \in \mathbb{N}$ so large that $c(p+2) / p<\mu(Y)$.

Pick $\psi \in \llbracket \mathscr{R}_{0} \rrbracket$ a precycle of length 2 whose domain B has measure c / p. By cutting and pasting the elements of Φ and by conjugating them by elements of [\mathscr{R}_{0}], we may as well assume that $\Phi=\left\{\varphi_{2}, \ldots, \varphi_{r}\right\}$, where each φ_{i} is a precycle of length $p+2$ extending ψ of basis B, whose support is a strict subset of Y. Assume that $U_{i} \in[\mathscr{R}]$ extends φ_{i} for every $i=2,3, \ldots, r$. Since $\psi \in \llbracket \mathscr{R}_{0} \rrbracket$, then $\left[\mathscr{R}_{\psi}\right] \leq\left[\mathscr{R}_{0}\right]$. We can apply Lemma 3.7 and obtain that the closure of the group generated by $\left[\mathscr{R}_{0}\right]$ and U_{i} contains $\left[\mathscr{R}_{\varphi_{i}}\right.$]. Since $\mathscr{R}_{\uparrow Y}=\mathscr{R}_{0} \vee \mathscr{R}_{\varphi_{2}} \vee \cdots \vee \mathscr{R}_{\varphi_{r}}$, we can conclude the proof of the theorem using Theorem 3.1.

Remark 3.9 We have a lot of freedom in constructing the precycles $\varphi_{2}, \varphi_{3}, \ldots, \varphi_{r}$ of Proposition 3.8. To start with, their length can be chosen to be any integer $n=$ $p+2$ large enough that $c / \mu(Y)<(n-2) / n$. Actually, they could even have been chosen with any (possibly different) lengths $n_{2}, n_{3}, \ldots, n_{r}$, integers large enough that $c / \mu(Y)<\left(n_{j}-2\right) / n_{j}:$ simply pick $r-1$ precycles $\psi_{j} \in \llbracket \mathscr{R}_{0} \rrbracket$ of length 2 whose domain B_{j} has measure $c /\left(n_{j}-2\right)$, and proceed as in the proof above.

In particular, the periodic closing cycles $U_{2}, U_{3}, \ldots, U_{r}$ can be assumed to have any large enough period $n_{2}, n_{3}, \ldots, n_{r}$ and domains contained in Y of measure $<\mu(Y)$. Up to conjugating by elements of [\mathscr{R}_{0}], one can further assume that the closing cycles have a nonnull common subset of fixed points in Y :

$$
\mu\left(\operatorname{Fix}\left(U_{2}\right) \cap \operatorname{Fix}\left(U_{3}\right) \cap \cdots \cap \operatorname{Fix}\left(U_{r}\right) \cap Y\right)>0
$$

4 Evanescent pairs and topological generators

In this section our main goal is to obtain two topological generators of the full group of a hyperfinite ergodic equivalence relation with new flexibility properties relying on the following definition.

Definition 4.1 A pair (T, V) of elements of the full group [\mathscr{R}] of the p.m.p. equivalence relation \mathscr{R} is called an evanescent pair of topological generators of \mathscr{R} if
(1) V is periodic, and
(2) for every $n \in \mathbb{N}$, the full group [$\mathscr{R}]$ is topologically generated by the conjugates of V^{n} by the powers of T, ie $\overline{\left\langle T^{j} V^{n} T^{-j}: j \in \mathbb{Z}\right\rangle}=[\mathscr{R}]$.

In particular, if (T, V) is an evanescent pair of topological generators, then

- the pair (T, V) topologically generates $[\mathscr{R}]$,
- $\left(T, V^{n}\right)$ is an evanescent pair of topological generators for any $n \in \mathbb{N}$,
- $d_{u}\left(V^{n!}, \mathrm{id}_{X}\right)$ tends to 0 when n tends to ∞.

We will show in Theorem 4.5 that the odometer T_{0} can be completed to form an evanescent pair (T_{0}, V) of topological generators for $\mathscr{R}_{T_{0}}$, and that the set of possible V is actually a dense G_{δ}.

In this section, we set $X=\{0,1\}^{\mathbb{N}}$, and endow it with the Bernoulli $\frac{1}{2}$ measure $\mu=\left(\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}\right)^{\otimes \mathbb{N}}$. Given $s \in\{0,1\}^{n}$, we define the basic clopen set

$$
N_{s}:=\left\{x \in\{0,1\}^{\mathbb{N}}: x_{i}=s_{i} \text { for } 1 \leq i \leq n\right\} .
$$

The odometer T_{0} is the measure-preserving transformation of this space defined as adding the binary sequence $(1,0,0, \ldots)$ with carry to the right. More precisely, for each sequence $x \in\{0,1\}^{\mathbb{N}}$, if k is the (possibly infinite) first integer such that $x_{k}=0$, then $y=T_{0}(x)$ is defined by

$$
y_{n}:= \begin{cases}0 & \text { if } n<k \\ 1 & \text { if } n=k \\ x_{n} & \text { if } n>k\end{cases}
$$

For each $n \in \mathbb{N}$, the permutation group $\operatorname{Sym}\left(\{0,1\}^{n}\right)$ has a natural action α_{n} on $\{0,1\}^{\mathbb{N}} \simeq\{0,1\}^{n} \times\{0,1\}^{\mathbb{N}}$ given for $x \in\{0,1\}^{\mathbb{N}}$ and $\sigma \in \operatorname{Sym}\left(\{0,1\}^{n}\right)$ by

$$
\alpha_{n}(\sigma)\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots\right):=\left(\sigma\left(x_{1}, \ldots, x_{n}\right), x_{n+1}, \ldots\right) .
$$

The sequence $\left(\alpha_{n}\left(\operatorname{Sym}\left(\{0,1\}^{n}\right)\right)\right)_{n \in \mathbb{N}}$ is an increasing sequence of subgroups of the full group $\left[\mathscr{R}_{T_{0}}\right]$ whose reunion is dense in $\left[\mathscr{R}_{T_{0}}\right]$; see [11, Proposition 3.8].

We now define a sequence of involutions $U_{n} \in\left[\mathscr{R}_{T_{0}}\right]$ with disjoint supports as in [17, Section 4.2]: $U_{n}:=\alpha_{n}\left(v_{n}\right)$, where $v_{n} \in \operatorname{Sym}\left(\{0,1\}^{n}\right)$ is the 2 -point support transposition that exchanges $0^{n-1} 1$ and $1^{n-1} 0$. Observe that U_{n} is the involution with support $N_{1^{n-1} 0} \sqcup N_{0^{n-1} 1}$ (of measure 2^{-n+1}) which is equal to T_{0} on $N_{1^{n-1} 0}$ and T_{0}^{-1} on $N_{0^{n-1}}^{1}$.

Recall that if $\tau_{n} \in \operatorname{Sym}\left(\{0,1\}^{n}\right)$ is 2^{n}-cycle and w_{n} is a transposition which exchanges two τ_{n}-consecutive elements, then the group $\operatorname{Sym}\left(\{0,1\}^{n}\right)$ is generated by the conjugates of w_{n} by powers of τ_{n} (actually $2^{n}-1$ of them are enough). A straightforward modification gives the following lemma; see [17, Lemma 4.3] for a detailed proof.

Lemma 4.2 For every $n \in \mathbb{N}$, the group $\alpha_{n}\left(\operatorname{Sym}\left(\{0,1\}^{n}\right)\right)$ is contained in the group generated by the conjugates of U_{n} by powers of T_{0}.

Given a periodic p.m.p. transformation U and $k \in \mathbb{N}$, we say that V is a $k^{\text {th }}$ root of U when $\operatorname{supp} U=\operatorname{supp} V$ and $V^{k}=U$. The following lemma is well-known.

Lemma 4.3 Whenever \mathscr{R} is an ergodic equivalence relation, every periodic element in [$\mathscr{R}]$ admits a $k^{\text {th }}$ root in $[\mathscr{R}]$.

Proof Let us first prove that every n-cycle $U \in[\mathscr{R}]$ admits a $k^{\text {th }}$ root. To this end, pick a fundamental domain A for the restriction of U to its support. Since \mathscr{R} is ergodic, we can pick a k-cycle $V \in[\mathscr{R}]$ supported on A. Let B be a fundamental domain for V, and put $C:=A \backslash B$. Then it is straightforward to check that $W \in[\mathscr{R}]$, defined as follows, is a $k^{\text {th }}$ root of U :

$$
W(x):=\left\{\begin{aligned}
U U^{i} V U^{-i}(x) & \text { if } x \in U^{i}(B) \\
U^{i} V U^{-i}(x) & \text { if } x \in U^{i}(C) \\
x & \text { otherwise }
\end{aligned}\right.
$$

In the general case, one glues together the $k^{\text {th }}$ roots obtained for every $n \in \mathbb{N}$ by considering the restrictions of U to U-orbits of cardinality n.

Remark 4.4 The same proof works more generally for aperiodic p.m.p. equivalence relations.

Theorem 4.5 The set of $V \in\left[\mathscr{R}_{T_{0}}\right]$ such that $\left(T_{0}, V\right)$ is an evanescent pair of topological generators of $\mathscr{R}_{T_{0}}$ is a dense G_{δ} subset of $\left[\mathscr{R}_{T_{0}}\right]$.

Proof Denote by \mathcal{P} the set of periodic elements of $\left[\mathscr{R}_{T_{0}}\right.$]. It is a direct consequence of Rokhlin's lemma that \mathcal{P} is dense in $\left[\mathscr{R}_{T_{0}}\right]$. And similarly the subset $\mathcal{P}^{\prime} \subseteq \mathcal{P}$ of $V \in\left[\mathscr{R}_{T_{0}}\right]$ with finite order (or equivalently, with bounded orbit size) is dense in $\left[\mathscr{R}_{T_{0}}\right]$. Writing \mathcal{P} as the intersection (over the positive integers q) of the open sets

$$
\left\{V \in\left[\mathscr{R}_{T_{0}}\right]: d\left(V^{p!}, \mathrm{id}_{X}\right)<\frac{1}{q} \text { for some } p \in \mathbb{N}\right\}
$$

shows that \mathcal{P} is a G_{δ} subset of $\left[\mathscr{R}_{T_{0}}\right]$.
Denote by \mathcal{E} the set of $V \in\left[\mathscr{R}_{T_{0}}\right]$ such that for every n, the group $\left[\mathscr{R}_{T_{0}}\right]$ is topologically generated by conjugates of V^{n} by powers of T_{0}. We want to show that $\mathcal{P} \cap \mathcal{E}$ is
dense G_{δ}, and since \mathcal{P} is dense G_{δ} it suffices (by the Baire category theorem in the Polish group $\left[\mathscr{R}_{T_{0}}\right]$) to show that \mathcal{E} is dense G_{δ}.

For every $m, n \in \mathbb{N}$, set

$$
\mathcal{E}_{m, n}:=\left\{V \in\left[\mathscr{R}_{T_{0}}\right]: \alpha_{n}\left(\operatorname{Sym}\left(\{0,1\}^{n}\right)\right) \leq \overline{\left\langle T_{0}^{k} V^{m} T_{0}^{-k}: k \in \mathbb{Z}\right\rangle}\right\} .
$$

The density of the union of the $\alpha_{n}\left(\operatorname{Sym}\left(\{0,1\}^{n}\right)\right)$ in $\left[\mathscr{R}_{T_{0}}\right]$ recalled above implies that $\mathcal{E}=\bigcap_{m, n \in \mathbb{N}} \mathcal{E}_{m, n}$. So it suffices to show that each $\mathcal{E}_{m, n}$ is dense G_{δ}.

Let us first check that each $\mathcal{E}_{m, n}$ is G_{δ}. Denote by \boldsymbol{W} the subgroup of $\boldsymbol{F}_{2}=\left\langle a_{1}, a_{2}\right\rangle$ generated by the conjugates of a_{2} by powers of a_{1}. So for $w=w\left(a_{1}, a_{2}\right) \in \boldsymbol{W}$ and $V \in\left[\mathscr{R}_{T_{0}}\right]$, the element $w\left(T_{0}, V^{m}\right)$ is a product of conjugates of V^{m} by powers of T_{0}. By the definition of the closure we can write $\mathcal{E}_{m, n}$ as

$$
\mathcal{E}_{m, n}=\bigcap_{p \in \mathbb{N}} \bigcap_{\sigma \in \operatorname{Sym}\left(\{0,1\}^{n}\right)} \bigcup_{w \in \boldsymbol{W}}\left\{V \in\left[\mathscr{R}_{T_{0}}\right]: d_{u}\left(w\left(T_{0}, V^{m}\right), \sigma\right)<\frac{1}{p}\right\} .
$$

Since the map $V \mapsto w\left(T_{0}, V\right)$ is continuous, each of the above right-hand sets is open, so their union over $w \in \boldsymbol{W}$ is also open, and we conclude that $\mathcal{E}_{m, n}$ is G_{δ}.

To check the density, it suffices to show that, for each m, n, one can approximate arbitrary elements of \mathcal{P}^{\prime} by elements of $\mathcal{E}_{m, n}$. So let $U \in \mathcal{P}^{\prime}$ and let $\epsilon>0$. Denote by K the order of U. Pick $p \geq n$ such that $2^{-p} K<\frac{1}{2} \epsilon$. Let A be the U-saturation of the support of $U_{p}=\alpha_{p}\left(v_{p}\right)$ (defined at the beginning of the section). The measure of A is at most ϵ. Finally, let V be a $(\mathrm{Km})^{\text {th }}$ root of U_{p} and define

$$
\tilde{U}(x):= \begin{cases}U(x) & \text { if } x \in X \backslash A, \\ V(x) & \text { if } x \in A .\end{cases}
$$

By construction $d_{u}(U, \tilde{U}) \leq \mu(A)<\epsilon$. Observe that $\tilde{U}^{K m}=\left(\tilde{U}^{m}\right)^{K}=U_{p}$; thus, Lemma 4.2 yields that $\tilde{U} \in \mathcal{E}_{K m, p} \subseteq \mathcal{E}_{m, p}$. Since $p \geq n, \tilde{U} \in \mathcal{E}_{m, p} \subseteq \mathcal{E}_{m, n}$, so we are done.

Let us make a few comments on the above result. First, one can check that the pair (T_{0}, V) produced in the construction of [17, Theorem 4.2] provides an explicit example of an evanescent pair of topological generators of $\mathscr{R}_{T_{0}}$. Also, the above proof can be adapted to show that any rank one p.m.p. ergodic transformation [19, Section 8] can be completed to form an evanescent pair of topological generators; see [16, Theorem 5.28] for an explicit example of a pair which is evanescent. Proving these results is beyond the scope of this paper, so we leave it as an exercise for the interested reader.

It is unclear whether every p.m.p. ergodic transformations can be completed to form an evanescent pair of topological generators for its full group. Nevertheless, we can characterize the existence of an evanescent pair as follows.

Theorem 4.6 Let \mathscr{R} be an ergodic p.m.p. equivalence relation. Then \mathscr{R} admits an evanescent pair of topological generators if and only if \mathscr{R} has cost 1.

Proof If \mathscr{R} admits an evanescent pair (T, V), then since V is periodic we have $\mu\left(\operatorname{supp} V^{n!}\right) \rightarrow 0$. Since any set of topological generators for [\mathscr{R}] generates the equivalence relation \mathscr{R}, we conclude that \mathscr{R} has cost 1 .

As for the converse, Theorems 4 and 5 from [6] provide an ergodic hyperfinite subequivalence relation which is isomorphic to that of the odometer. So we can pick a conjugate of the odometer $T \in[\mathscr{R}]$. Repeating the proof of Theorem 4.5, we see that the set \mathcal{E}_{T} of $V \in[\mathscr{R}]$ such that for every $n \in \mathbb{N},\left[\mathscr{R}_{T}\right]$ is contained in $\overline{\left\langle T^{j} V^{n} T^{-j}: j \in \mathbb{Z}\right\rangle}$, is dense G_{δ} in $[\mathscr{R}]$.

Let us now consider the set $\mathcal{E}_{\mathscr{R}}$ of $V \in[\mathscr{R}]$ such that (T, V) is an evanescent pair of topological generators of \mathscr{R}, and for $n \in \mathbb{N}$ the set \mathcal{E}_{n} of $V \in[\mathscr{R}]$ such that V is periodic and $\left\langle T^{j} V^{n} T^{-j}: j \in \mathbb{Z}\right\rangle=[\mathscr{R}]$. Each \mathcal{E}_{n} is G_{δ} by the same argument as in the proof of Theorem 4.5. Since $\mathcal{E}_{\mathscr{R}}=\bigcap_{n} \mathcal{E}_{n}$, it suffices to show that each \mathcal{E}_{n} is dense in order to apply the Baire category theorem and finish the proof.

Let us fix $n \in \mathbb{N}$. Since $\mathcal{E}_{\boldsymbol{T}}$ is dense in [$\left.\mathscr{R}\right]$, we only need to approximate elements of \mathcal{E}_{T} by elements of \mathcal{E}_{n}. Moreover, the set of $V \in[\mathscr{R}]$ such that $\mu(\operatorname{supp} V)<1$ is open and dense, so we only need to approximate every $V \in \mathcal{E}_{T}$ with $\mu(\operatorname{supp} V)<1$ by elements of \mathcal{E}_{n}.

So let $V \in \mathcal{E}_{T}$ with $\mu(\operatorname{supp} V)<1$, and take $\epsilon>0$.
Lemma III. 5 from [8] yields a graphing Φ of cost $<\frac{1}{3} \min (\epsilon, \mu(X \backslash \operatorname{supp} V))$ such that $\{T\} \cup \Phi$ generates \mathscr{R}, since \mathscr{R} has cost 1 . Conjugating by elements of $\left[\mathscr{R}_{T}\right]$ and pasting the elements of Φ, we may as well assume that $\Phi=\{\varphi\}$, where $\mu(\operatorname{dom} \varphi)<\frac{1}{3} \epsilon$, and φ is a precycle of length 2 whose support is disjoint from supp V. We then pick $\psi \in \llbracket \mathscr{R}_{T} \rrbracket$ such that $\varphi \sqcup \psi$ is a precycle of length 3 of support disjoint from supp V, and denote by U_{1} the associated 3-cycle.

Now let U_{2} be an $n^{\text {th }}$ root of U_{1} and let $V_{2}:=V U_{2}$. Then $d_{u}\left(V_{2}, V\right)<\epsilon$, and we claim that V_{2} belongs to \mathcal{E}_{n}. In order to prove this, let us denote by G the closed group generated by the conjugates of V_{2}^{n} by powers of T.

Since U_{2} and V have disjoint support, they commute, and so $V_{2}^{n}=U_{2}^{n} V^{n}=U_{1} V^{n}$. So $\left(V_{2}^{n}\right)^{3}=V^{3 n}$, and since $V \in \mathcal{E}_{T}$, we have that $\left[\mathscr{R}_{T}\right] \leq G$. In particular $\left[\mathscr{R}_{\psi}\right] \leq G$, and conjugating by V_{2}^{n} (which acts as U_{1} on $\operatorname{supp} U_{1}$), we get that $\left[\mathscr{R}_{\varphi}\right] \leq G$; see also Lemma 3.7. Since $\mathscr{R}=\mathscr{R}_{T} \vee \mathscr{R}_{\psi}$, we conclude by Theorem 3.1 that G contains [\mathscr{R}], as wanted.

5 Proof of the main theorem

As shown in Proposition 2.1, the perfect kernel of $\operatorname{Sub}\left(\boldsymbol{F}_{r}\right)$ for $1<r<\infty$ is the space of infinite-index subgroups. We will construct a p.m.p. action of \boldsymbol{F}_{r} for which almost every Schreier graph contains all possible balls of Schreier graphs of transitive \boldsymbol{F}_{r}-actions on infinite sets.

Step 1 (using a smaller subset) We start with a p.m.p. ergodic equivalence relation \mathscr{R} on (X, μ) of cost $<r$. By the induction formula [8, Proposition II.6], there is a subset $Y \subseteq X$ such that $\frac{1}{2}<\mu(Y)<1$ and such that the (normalized) cost of the restriction $\mathscr{R}_{\uparrow Y}$ is still $<r$. Thus the cost of the induced equivalence relation $\mathscr{R}_{\uparrow Y}$ is $<r \mu(Y)$.
Using results of Dye [6, Theorems 4 and 5] as in the proof of Theorem 4.6, one can pick a conjugate of the odometer $T \in\left[\mathscr{R}_{\uparrow Y}\right]$. We view T as an element of $\left[\mathscr{R}_{\uparrow Y}\right]$.
Now we apply Proposition 3.8 (where $\mathscr{R}_{0}=\mathscr{R}_{T}$) to obtain precycles $\varphi_{2}, \ldots, \varphi_{r} \in \llbracket \mathscr{R}_{Y} \rrbracket$ whose supports have measure $<\mu(Y)$. For $i \leq r$, we let U_{i} be the closing cycle of φ_{i} as defined after Definition 3.5. Set $\eta:=\mu\left(Y \backslash \operatorname{supp} U_{2}\right)>0$. Let m_{0} be a positive integer such that $\mu(X \backslash Y) / m_{0}<\frac{1}{2} \eta$.

Step 2 (preparing the finite actions) Let $\left(G_{n}\right)_{n \geq 1}$ be an enumeration of the (finite radius) balls of the Schreier graphs of all the transitive \boldsymbol{F}_{r}-actions over an infinite set, up to labeled graph isomorphism, and for which the number of vertices satisfies $\left|G_{n}\right| \geq m_{0}$.
Since G_{n} comes from a transitive action over an infinite set, we can choose some $\ell \in\{1, \ldots, r\}$ and some $\zeta_{n} \in G_{n}$ so that there is no a_{ℓ}-labeled edge whose source is equal to ζ_{n}.
Pick $\delta_{n}, \xi_{n} \notin G_{n}$, set $G_{n}^{\prime}:=G_{n} \sqcup\left\{\delta_{n}, \xi_{n}\right\}$ and add an a_{ℓ}-edge from ζ_{n} to δ_{n}, an a_{1}-edge from δ_{n} to ξ_{n} and an a_{2}-edge from ξ_{n} to itself.
In this way we obtain a finite partial Schreier graph, and this can be extended to a genuine Schreier graph of an $\boldsymbol{F}_{r}=\left\langle a_{1}, \ldots, a_{r}\right\rangle$-action on the same set as follows: for each $i \in\{1,2, \ldots, r\}$, we consider the connected components of the subgraph obtained
by keeping only the edges labeled a_{i}. These are either cycles (we don't modify them) or oriented segments (possibly reduced to a single vertex), in which case we add one edge labeled a_{i} from the end to the beginning of the segment.

Therefore we obtain an action ρ_{n} of \boldsymbol{F}_{r} on the finite set G_{n}^{\prime} and a special point $\xi_{n} \in G_{n}^{\prime} \backslash G_{n}$ such that $\rho_{n}\left(a_{2}\right) \xi_{n}=\xi_{n}$.

Step 3 (defining the action) Set $C:=X \backslash Y$. Consider a partition $C=\bigsqcup_{n \geq 1} C_{n}$, where $\mu\left(C_{n}\right)>0$ for every n. We are going to define an amplified version of the action ρ_{n} on C_{n} as follows.

For each $n \geq 1$, we take a measurable partition $C_{n}=\bigsqcup_{g \in G_{n}^{\prime}} B_{n}^{g}$ such that $\mu\left(B_{n}^{g}\right)\left|G_{n}^{\prime}\right|=$ $\mu\left(C_{n}\right)$ for every $g \in G_{n}^{\prime}$. Set $B_{n}:=B_{n}^{\xi_{n}}$. Using ergodicity of \mathscr{R}, for every $g \in G_{n}^{\prime} \backslash\left\{\xi_{n}\right\}$ we choose $\psi_{g}: B_{n} \rightarrow B_{n}^{g}$ in the pseudo full group $\llbracket \mathscr{R} \rrbracket$ of \mathscr{R}. In this way we obtain an action α_{n} of \boldsymbol{F}_{r}, defined on C_{n} by the formula

$$
\text { if } x \in B_{n}^{g_{0}} \text { and } \rho_{n}(\gamma) g_{0}=g_{1}, \quad \text { then } \quad \alpha_{n}(\gamma) x:=\psi_{g_{1}} \psi_{g_{0}}^{-1}(x) \text {, }
$$

and trivial on $X \backslash C_{n}$. Thus, $\alpha_{n}\left(\boldsymbol{F}_{r}\right) \leq\left[\mathscr{R}_{\uparrow C_{n}}\right]$.
Gluing all the α_{n} together, we obtain an action α_{∞} of \boldsymbol{F}_{r} on X with the properties that $\alpha_{\infty}\left(\boldsymbol{F}_{r}\right) \leq\left[\mathscr{R}_{\uparrow C}\right]$ and α_{∞} restricted to C_{n} is α_{n}.

Let $T \in\left[\mathscr{R}_{\uparrow Y}\right]$ be the conjugate of the odometer introduced in Step 1. Theorem 4.5 states that the set of $V \in\left[\mathscr{R}_{T}\right]$ such that (T, V) is an evanescent pair of generators for \mathscr{R}_{T} is dense so we can choose such a V with $\mu(\operatorname{supp} V)<\frac{1}{2} \eta$. Let $W \in\left[\mathscr{R}_{T}\right]$ be such that $\mu\left(\operatorname{supp}\left(W U_{2} W^{-1}\right) \cap \operatorname{supp} V\right)=0$. Set

- $B:=\bigcup_{n} B_{n}$, and note that $\mu(B) \leq \mu(C) / m_{0}<\frac{1}{2} \eta$;
- $D:=\operatorname{supp}\left(W U_{2} W^{-1}\right) \cup \operatorname{supp} V$, and observe that $\mu(Y \backslash D)>\frac{1}{2} \eta$.

Therefore there exists a subset $A \subseteq Y \backslash D$ of measure $\mu(A)=\mu(B)$. Let $I \in[\mathscr{R}]$ be an involution with support $A \cup B$ and which exchanges A and B.

We finally define the desired action α of $\boldsymbol{F}_{\boldsymbol{r}}$ by setting

$$
\begin{aligned}
& \alpha\left(a_{1}\right):=T \alpha_{\infty}\left(a_{1}\right) \\
& \alpha\left(a_{2}\right):=V\left(W U_{2} W^{-1}\right)\left(I \alpha_{\infty}\left(a_{2}\right)\right) \\
& \alpha\left(a_{i}\right):=U_{i} \alpha_{\infty}\left(a_{i}\right) \quad \text { for } i \geq 3
\end{aligned}
$$

See Figure 1 for the action of $\alpha\left(a_{2}\right)$. Note that a_{2} is the only generator of \boldsymbol{F}_{r} which does not leave the set Y invariant, because of the presence of the involution I in the definition of its action.

Figure 1: The action of $\alpha\left(a_{2}\right)$ on X.
Step 4 (density) (a) We claim that $\overline{\alpha\left(\boldsymbol{F}_{r}\right)} \geq\left[\mathscr{R}_{T}\right]$.
Indeed let $S \in\left[\mathscr{R}_{T}\right]$ and fix $\epsilon>0$. There exists n_{0} such that if we set $C_{>n_{0}}:=\bigcup_{n>n_{0}} C_{n}$, then $\mu\left(C_{>n_{0}}\right)<\frac{1}{2} \epsilon$. The elements $U_{2}, I, \alpha_{1}\left(a_{2}\right), \ldots, \alpha_{n_{0}}\left(a_{2}\right)$ have uniformly bounded orbits. So we can pick $k \in \mathbb{N}$ so that U_{2}^{k}, I^{k} and $\alpha_{1}\left(a_{2}\right)^{k}, \ldots, \alpha_{n_{0}}\left(a_{2}\right)^{k}$ are the identity. By construction $V, W U_{2} W^{-1}, I$ and $\alpha_{\infty}\left(a_{2}\right)$ have mutually disjoint supports and hence commute. Therefore $\alpha\left(a_{2}\right)^{k}=V^{k} \alpha_{\infty}\left(a_{2}\right)^{k}$.

The crucial assumption that (T, V) is an evanescent pair of generators now comes into play: there is a word $w\left(T, V^{k}\right)$, which is a product of conjugates of V^{k} by powers of T, such that $d_{u}\left(w\left(T, V^{k}\right), S\right)<\frac{1}{2} \epsilon$. We remark that $\alpha\left(a_{1}\right)$ acts on Y the same way as T, and that $\alpha\left(a_{2}\right)^{k}$ acts on Y the same way as V^{k}. Also note that $\alpha\left(a_{1}\right)$ preserves each C_{j} while $\alpha\left(a_{2}\right)^{k}$ is the identity on each C_{j} for $j=1,2, \ldots, n_{0}$, so that for all $m \in \mathbb{Z}$, the transformation $\alpha\left(a_{1}\right)^{m} \alpha\left(a_{2}\right)^{k} \alpha\left(a_{1}\right)^{-m}$ acts on $C_{1} \cup C_{2} \cup \cdots \cup C_{n_{0}}$ as the identity.

It now follows from the fact that w is a product of conjugates of V^{k} by powers of T that $w\left(T, V^{k}\right)$ and $w\left(\alpha\left(a_{1}\right), \alpha\left(a_{2}\right)^{k}\right)$ coincide on Y and can only differ on $C_{>n_{0}}$, which
has measure less than $\frac{1}{2} \epsilon$. Hence $d_{u}\left(w\left(\alpha\left(a_{1}\right), \alpha\left(a_{2}\right)^{k}\right), S\right)<\epsilon$, which implies that $\overline{\alpha\left(\boldsymbol{F}_{r}\right)} \geq\left[\mathscr{R}_{T}\right]$.
(b) We claim that $\overline{\alpha\left(\boldsymbol{F}_{r}\right)} \geq\left[\mathscr{R}_{\uparrow Y}\right]$.

Recall that $\alpha\left(a_{2}\right)=V\left(W U_{2} W^{-1}\right)\left(I \alpha_{\infty}\left(a_{2}\right)\right)$, where $V, W U_{2} W^{-1}$ and $I \alpha_{\infty}\left(a_{2}\right)$ have pairwise disjoint support. Since U_{2} extends φ_{2}, we get that $W^{-1} \alpha\left(a_{2}\right) W$ extends φ_{2}. By assumption $\alpha\left(a_{3}\right), \ldots, \alpha\left(a_{r}\right)$ extend $\varphi_{3}, \ldots, \varphi_{r}$, respectively. Moreover, $W \in\left[\mathscr{R}_{T}\right]$, so the claim follows from Proposition 3.8:

$$
\overline{\alpha\left(\boldsymbol{F}_{r}\right)} \geq \overline{\left\langle\left[\mathscr{R}_{T}\right], W^{-1} \alpha\left(a_{2}\right) W, \alpha\left(a_{3}\right), \ldots, \alpha\left(a_{r}\right)\right\rangle} \geq\left[\mathscr{R}_{\uparrow Y}\right] .
$$

(c) We claim that $\overline{\alpha\left(\boldsymbol{F}_{r}\right)} \geq[\mathscr{R}]$.

This is a direct consequence of Corollary 3.4 granted that $\alpha(\Gamma) Y=X$, which we will now show.

Clearly $\alpha\left(a_{2}\right) Y \supset \alpha\left(a_{2}\right) A=B=\bigcup_{n} B_{n}$. For every n and $g \in G_{n}^{\prime} \backslash\left\{\xi_{n}\right\}$, there exists $\gamma \in \Gamma$ of minimal length such that $\rho_{n}(\gamma) \xi_{n}=g$. Since $\rho_{n}\left(a_{2}\right) \xi_{n}=\xi_{n}$ and since $\alpha\left(a_{2}\right)_{\mid C_{n} \backslash B_{n}}=\alpha_{n}\left(a_{2}\right)$ mimics the action of $\rho_{n}\left(a_{2}\right)$ on $G_{n}^{\prime} \backslash\left\{\xi_{n}\right\}$, the minimality of the length of γ implies that $\alpha(\gamma) B_{n}=B_{n}^{g}$. Since this is true for every $g \in G_{n}^{\prime}$ we get $\alpha(\Gamma) Y \supset C_{n}$; and this holds for every n. We thus have $\alpha(\Gamma) Y=X$ as wanted.

Step 5 (totipotency) Consider a transitive action ρ of \boldsymbol{F}_{r} on some infinite set. Let H be a Schreier ball such that $|H| \geq m_{0}$. Then by construction there exists n such that $H=G_{n} \subseteq G_{n}^{\prime}$. We also remark that the restriction of the Schreier graph of the action α to $\bigcup_{g \in G_{n}} B_{n}^{g} \subseteq C_{n}$ mimics the partial Schreier graph H. Since ρ and H are arbitrary, the Schreier graph of α contains every sufficiently large Schreier ball of every transitive action of $\boldsymbol{F}_{\boldsymbol{r}}$, and this finishes the proof of the main theorem.

Remark 5.1 The subspace $Y \subseteq X$ chosen in Step 1 of the above proof coincides with the subset where $\alpha\left(a_{1}\right)$ is aperiodic. So the event "no power of a_{1} belongs to Λ " has measure $\mu(Y)$ in the IRS $\operatorname{Stab}_{*}^{\alpha} \mu$ associated with α. The measure $\mu(Y)$ can be chosen to take any value from the nonempty interval

$$
\left(\max \left\{\frac{\mathcal{C}(R)-1}{r-1}, \frac{1}{2}\right\}, 1\right) .
$$

Recalling that the density of $\alpha(\Gamma)$ implies $\operatorname{Stab}^{\alpha}$ is essentially injective, then the following holds: Every ergodic p.m.p. equivalence relation \mathscr{R} of cost $<r$ can be realized (up to a null set) by the action of $\boldsymbol{F}_{r} \curvearrowright \operatorname{Sub}\left(\boldsymbol{F}_{r}\right)$ for continuum many different totipotent IRSs of \boldsymbol{F}_{r}.

References

[1] M Abért, Y Glasner, B Virág, Kesten's theorem for invariant random subgroups, Duke Math. J. 163 (2014) 465-488 MR Zbl
[2] L Bowen, Invariant random subgroups of the free group, Groups Geom. Dyn. 9 (2015) 891-916 MR Zbl
[3] L Bowen, R Grigorchuk, R Kravchenko, Invariant random subgroups of lamplighter groups, Israel J. Math. 207 (2015) 763-782 MR Zbl
[4] L Bowen, R Grigorchuk, R Kravchenko, Characteristic random subgroups of geometric groups and free abelian groups of infinite rank, Trans. Amer. Math. Soc. 369 (2017) 755-781 MR Zbl
[5] ML Condic, Totipotency: what it is and what it is not, Stem Cells and Development 23 (2014) 796-812
[6] H A Dye, On groups of measure preserving transformations, I, Amer. J. Math. 81 (1959) 119-159 MR Zbl
[7] A Eisenmann, Y Glasner, Generic IRS in free groups, after Bowen, Proc. Amer. Math. Soc. 144 (2016) 4231-4246 MR Zbl
[8] D Gaboriau, Coût des relations d'équivalence et des groupes, Invent. Math. 139 (2000) 41-98 MR Zbl
[9] D Gaboriau, Orbit equivalence and measured group theory, from "Proceedings of the International Congress of Mathematicians, III" (R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan, editors), Hindustan, New Delhi (2010) 1501-1527 MR Zbl
[10] E Glasner, B Weiss, Uniformly recurrent subgroups, from "Recent trends in ergodic theory and dynamical systems" (S Bhattacharya, T Das, A Ghosh, R Shah, editors), Contemp. Math. 631, Amer. Math. Soc., Providence, RI (2015) 63-75 MR Zbl
[11] AS Kechris, Global aspects of ergodic group actions, Mathematical Surveys and Monographs 160, Amer. Math. Soc., Providence, RI (2010) MR Zbl
[12] A S Kechris, B D Miller, Topics in orbit equivalence, Lecture Notes in Math. 1852, Springer (2004) MR Zbl
[13] A S Kechris, V Quorning, Co-induction and invariant random subgroups, Groups Geom. Dyn. 13 (2019) 1151-1193 MR Zbl
[14] J Kittrell, T Tsankov, Topological properties of full groups, Ergodic Theory Dynam. Systems 30 (2010) 525-545 MR Zbl
[15] F Le Maître, The number of topological generators for full groups of ergodic equivalence relations, Invent. Math. 198 (2014) 261-268 MR Zbl
[16] F Le Maître, Sur les groupes pleins préservant une mesure de probabilité, PhD thesis, ENS Lyon (2014) Available at http://math.univ-lyon1.fr/~melleray/ these_FLM.pdf
[17] F Le Maître, On full groups of non-ergodic probability-measure-preserving equivalence relations, Ergodic Theory Dynam. Systems 36 (2016) 2218-2245 MR Zbl
[18] F Le Maître, Highly faithful actions and dense free subgroups in full groups, Groups Geom. Dyn. 12 (2018) 207-230 MR Zbl
[19] D S Ornstein, D J Rudolph, B Weiss, Equivalence of measure preserving transformations, Mem. Amer. Math. Soc. 262, Amer. Math. Soc., Providence, RI (1982) MR Zbl
[20] R Skipper, P Wesolek, On the Cantor-Bendixson rank of the Grigorchuk group and the Gupta-Sidki 3 group, J. Algebra 555 (2020) 386-405 MR Zbl
[21] G Stuck, R J Zimmer, Stabilizers for ergodic actions of higher rank semisimple groups, Ann. of Math. 139 (1994) 723-747 MR Zbl
[22] B Weiss, Minimal models for free actions, from "Dynamical systems and group actions", Contemp. Math. 567, Amer. Math. Soc., Providence, RI (2012) 249-264 MR Zbl

Fakultät für Mathematik, Institut für Algebra und Geometrie, Karlsruhe Institute of Technology Karlsruhe, Germany

Unité de Mathématiques Pures et Appliquées, École Normale Supérieure de Lyon Lyon, France

Institut de Mathématiques de Jussieu-PRG, Université de Paris
Paris, France
alessandro.carderi@kit.edu, damien.gaboriau@ens-lyon.fr, francois.le-maitre@imj-prg.fr

Proposed: Martin R Bridson
Seconded: David Fisher, Mladen Bestvina

Received: 16 September 2020
Revised: 5 May 2021

Geometry \& Topology

msp.org/gt

András I. Stipsicz
 Alfréd Rényi Institute of Mathematics

Managing Editor

 stipsicz@renyi.hu
Board of Editors

Dan Abramovich	Brown University dan_abramovich@brown.edu	Mark Gross	University of Cambridge mgross@dpmms.cam.ac.uk
Ian Agol	University of California, Berkeley ianagol@math.berkeley.edu	Rob Kirby	University of California, Berkeley kirby@math.berkeley.edu
Mark Behrens	Massachusetts Institute of Technology mbehrens@math.mit.edu	Frances Kirwan	University of Oxford frances.kirwan@balliol.oxford.ac.uk
Mladen Bestvina	Imperial College, London bestvina@math.utah.edu	Bruce Kleiner	NYU, Courant Institute bkleiner@cims.nyu.edu
Martin R. Bridson	Imperial College, London m.bridson@ic.ac.uk	Urs Lang	ETH Zürich urs.lang@math.ethz.ch
Jim Bryan	University of British Columbia jbryan@math.ubc.ca	Marc Levine	Universität Duisburg-Essen marc.levine@uni-due.de
Dmitri Burago	Pennsylvania State University burago@math.psu.edu	John Lott	University of California, Berkeley lott@math.berkeley.edu
Ralph Cohen	Stanford University ralph@math.stanford.edu	Ciprian Manolescu	University of California, Los Angeles cm@math.ucla.edu
Tobias H. Colding	Massachusetts Institute of Technology colding@math.mit.edu	Haynes Miller	Massachusetts Institute of Technology hrm@math.mit.edu
Simon Donaldson	Imperial College, London s.donaldson@ic.ac.uk	Tom Mrowka	Massachusetts Institute of Technology mrowka@math.mit.edu
Yasha Eliashberg	Stanford University eliash-gt@math.stanford.edu	Walter Neumann	Columbia University neumann@math.columbia.edu
Benson Farb	University of Chicago farb@math.uchicago.edu	Jean-Pierre Otal	Université d'Orleans jean-pierre.otal@univ-orleans.fr
Steve Ferry	Rutgers University sferry@math.rutgers.edu	Peter Ozsváth	Columbia University ozsvath@math.columbia.edu
Ron Fintushel	Michigan State University ronfint@math.msu.edu	Leonid Polterovich	Tel Aviv University polterov@post.tau.ac.il
David M. Fisher	Rice University davidfisher@rice.edu	Colin Rourke	University of Warwick gt@maths.warwick.ac.uk
Mike Freedman	Microsoft Research michaelf@microsoft.com	Stefan Schwede	Universität Bonn schwede@math.uni-bonn.de
David Gabai	Princeton University gabai@ princeton.edu	Peter Teichner	University of California, Berkeley teichner@math.berkeley.edu
Stavros Garoufalidis	Southern U. of Sci. and Tech., China stavros@mpim-bonn.mpg.de	Richard P. Thomas	Imperial College, London richard.thomas@imperial.ac.uk
Cameron Gordon	University of Texas gordon@math.utexas.edu	Gang Tian	Massachusetts Institute of Technology tian@math.mit.edu
Lothar Göttsche	Abdus Salam Int. Centre for Th. Physics gottsche@ictp.trieste.it	Ulrike Tillmann	Oxford University tillmann@maths.ox.ac.uk
Jesper Grodal	University of Copenhagen jg@math.ku.dk	Nathalie Wahl	University of Copenhagen wahl@math.ku.dk
Misha Gromov	IHÉS and NYU, Courant Institute gromov@ihes.fr	Anna Wienhard	Universität Heidelberg wienhard@ mathi.uni-heidelberg.de

See inside back cover or msp.org/gt for submission instructions.
The subscription price for 2023 is US $\$ 740 /$ year for the electronic version, and $\$ 1030 /$ year ($+\$ 70$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Geometry \& Topology is indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.
Geometry \& Topology (ISSN 1465-3060 printed, 1364-0380 electronic) is published 9 times per year and continuously online, by Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall \#3840, Berkeley, CA 94720-3840. Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall \#3840, Berkeley, CA 94720-3840.

GT peer review and production are managed by EditFLOw ${ }^{\circledR}$ from MSP.

Geometry \& Topology

Volume 27 Issue 6 (pages 2049-2496) 2023
Duality between Lagrangian and Legendrian invariants 2049
Tobias Ekholm and Yanki Lekili
Filtering the Heegaard Floer contact invariant 2181
Çağatay Kutluhan, Gordana Matić, Jeremy Van Horn-Morris and Andy Wand
Large-scale geometry of big mapping class groups 2237Kathryn Mann and Kasra Rafi
On dense totipotent free subgroups in full groups 2297
Alessandro Carderi, Damien Gaboriau andFrançois Le Maître
The infimum of the dual volume of convex cocompact 2319 hyperbolic 3-manifoldsFilippo Mazzoli
Discrete subgroups of small critical exponent 2347
Beibei Liu and Shi Wang
Stable cubulations, bicombings, and barycenters 2383
Matthew G Durham, Yair N Minsky andAlessandro Sisto
Smallest noncyclic quotients of braid and mapping class groups 2479
Sudipta Kolay

[^0]: © 2023 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

