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We study probability measure preserving (p.m.p.) nonfree actions of free groups
and the associated IRSs. The perfect kernel of a countable group � is the largest
closed subspace of the space of subgroups of � without isolated points. We introduce
the class of totipotent ergodic p.m.p. actions of �: those for which almost every
point-stabilizer has dense conjugacy class in the perfect kernel. Equivalently, the
support of the associated IRS is as large as possible, namely it is equal to the whole
perfect kernel. We prove that every ergodic p.m.p. equivalence relation R of cost < r

can be realized by the orbits of an action of the free group Fr on r generators that
is totipotent and such that the image in the full group ŒR� is dense. We explain why
these actions have no minimal models. This also provides a continuum of pairwise
orbit inequivalent invariant random subgroups of Fr , all of whose supports are equal
to the whole space of infinite-index subgroups. We are led to introduce a property
of topologically generating pairs for full groups (which we call evanescence) and
establish a genericity result about their existence. We show that their existence
characterizes cost 1.
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1 Introduction

In this context, clarifying precisely what is meant by “totipotency” and how
it is experimentally determined will both avoid unnecessary controversy and
potentially reduce inappropriate barriers to research.

— M Condic [5]

Let � be a countable discrete group. Denote by Sub.�/ the space of subgroups of � . It
is equipped with the compact totally disconnected topology of pointwise convergence
and with the continuous �–action by conjugation. Let ˇ be a Borel �–action on the
standard Borel space X ' Œ0; 1�. Its stabilizer map

Stabˇ WX ! Sub.�/; x 7! f 2 � W ˇ. /x D xg;

is �–equivariant. If � is a probability measure on X which is preserved by ˇ, then
the pushforward measure Stabˇ� � is invariant under conjugation. It is the prototype
of an invariant random subgroup (IRS). When � is atomless and the stabilizer map is
essentially injective (a.k.a. the action ˇ is totally nonfree), the support of the associated
IRS Stabˇ�.�/ has no isolated points: it is a perfect set. The largest closed subspace of
Sub.�/ with no isolated points is called the perfect kernel of Sub.�/. We say that an
ergodic probability measure preserving (p.m.p.) action is totipotent when the support of
its IRS is equal to the perfect kernel of Sub.�/. By ergodicity, the following stronger
property holds: almost every element of the associated IRS has dense orbit in the perfect
kernel; see Proposition 2.3. We call such an IRS totipotent.

Given a p.m.p. action � Õˇ .X; �/, we consider the associated p.m.p. equivalence
relation

Rˇ
WD f.x;y/ 2X �X W ˇ.�/x D ˇ.�/yg;

and its full group ŒRˇ � as the group of all measure-preserving transformations whose
graph is contained in Rˇ. The (bi-invariant) uniform distance between two measure-
preserving transformations S and T is defined by

du.T;S/ WD �.fx 2X W S.x/¤ T .x/g/:

It endows the full group ŒRˇ � with a Polish group structure. The cost is a numerical
invariant attached to the equivalence relation Rˇ. If ˇ is a p.m.p. action of the free
group Fr on r generators, then the cost of Rˇ is exactly r when ˇ is free, and the cost
of Rˇ is < r when ˇ is nonfree; see Gaboriau [8].
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The main result of Le Maître [15] is that for any ergodic p.m.p. equivalence relation R,
if R has cost< r for some integer r � 2, then there exists a homomorphism � WFr! ŒR�

with dense image.

This result has been sharpened in order to ensure that the homomorphism � is injective.
Actually, the associated (almost everywhere defined) p.m.p. action ˛� can be made to
satisfy the following two opposite conditions: high faithfulness and amenability on
�–almost every orbit; see Le Maître [18].

These two conditions can be phrased in terms of the support of the IRS associated to the
action: the first one means that the support contains the trivial subgroup, and one can
show that the second one is equivalent to the support containing a coamenable subgroup
(which in the construction of [18] is the kernel of a certain surjective homomorphism
Fr ! Z).

The purpose of the present paper is to show that the homomorphism can be chosen
so that the support of the associated IRS is actually the largest perfect subspace of
Sub.Fr /, which consists of all its infinite-index subgroups; see Proposition 2.1.

Theorem Let R be an ergodic p.m.p. equivalence relation whose cost is < r for some
integer r � 2. Then there exists a homomorphism � W Fr ! ŒR� whose image is dense
and whose associated p.m.p. action ˛� is totipotent.

The density in ŒR� of the image of � implies that R˛� ' R and that the stabilizer
map Stab˛� is essentially injective [18, Proposition 2.4]. In particular, the actions
Fr Õ .Sub.Fr /;Stab˛�

� �/ and Fr Õ˛� .X; �/ are conjugate (thus produce the same
equivalence relation) and almost every subgroup for the IRS Stab˛�

� � equals its own
normalizer. It follows that, up to isomorphism, every p.m.p. ergodic equivalence
relation of cost < r comes from a totipotent IRS of Fr (actually, from continuum many
different totipotent IRSs of Fr ; see Remark 5.1).

Such a statement is optimal since p.m.p. equivalence relations of cost � r cannot come
from a nonfree Fr action. To our knowledge, it was not even clear until now whether Fr

admits ergodic totipotent IRSs. Since there are continuum many pairwise nonisomorphic
ergodic p.m.p. equivalence relations of cost < r , our approach provides continuum
many pairwise distinct ergodic totipotent IRSs of the free group on r generators, whose
associated equivalence relations are even nonisomorphic.

Another interesting fact about totipotent p.m.p. Fr –actions is that they have no minimal
model, ie they cannot be realized as minimal actions on a compact space. Indeed, it
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follows from a result of Glasner and Weiss [10, Corollary 4.3] that as soon as the support
of the IRS of a given p.m.p. action contains two distinct minimal subsets (eg when
it contains two distinct fixed points), the action does not admit a minimal model; see
Theorem 2.5. In our case the perfect kernel of Sub.Fr / contains a continuum of fixed
points (namely, all infinite-index normal subgroups), so that totipotent p.m.p. actions
of Fr are actually very far from admitting a minimal model.

Let us now recall the context around our construction. The term IRS was coined by
Abert, Glasner and Virag [1] and has become an important subject on its own at the
intersection of group theory, probability theory and dynamical systems. The notion
of IRS is a natural generalization of a normal subgroup, especially in the direction of
superrigidity type results. It has thus been present implicitly in the work of many authors,
a famous landmark being the Stuck–Zimmer theorem [21], which gives examples of
groups admitting very few IRSs. On the contrary, some groups admit a “zoo” of IRSs,
starting with free groups; see Bowen [2] and, for other examples, Bowen, Grigorchuk
and Kravchenko [3; 4] and Kechris and Quorning [13].

In particular, Bowen proved that every p.m.p. ergodic equivalence relation of cost < r

comes from some IRS of Fr . He obtained this result through a Baire category argument
which required that the first generator act freely. In particular, such IRSs can never be
totipotent.

Eisenmann and Glasner [7] then used homomorphisms Fr ! ŒR� with dense image so
as to obtain interesting IRSs of Fr . They proved that given a homomorphism �! ŒR�

with dense image, the associated IRS is always cohighly transitive almost surely, which
means that for almost every ƒ � � , the �–action on �=ƒ is n–transitive for every
n2N. They also showed that the IRSs of Fr obtained by Bowen for cost 1 equivalence
relations are faithful and, moreover, almost surely coamenable.

The third author [18] then used a modified version of his result on the topological
rank of full groups to show that every p.m.p. ergodic equivalence relation of cost < r

comes from a coamenable, cohighly transitive and faithful IRS of Fr . Also in this
construction, the first generator continues to act freely, thus preventing totipotency. Let
us now briefly explain how our new construction (Section 5) allows us to circumvent
this.

The main idea is to use a smaller set Y ¨ X such that the restriction of R to Y still
has cost < r , so that we can find some homomorphism Fr ! ŒR�Y � with dense image.
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This provides us with some extra space in order to obtain totipotency via a well-chosen
perturbation of the above homomorphism.

This perturbation is obtained by mimicking all Schreier balls on X nY and then merging
these amplifications with the action on Y so as to obtain both density in ŒR� and
totipotency. The use of evanescent pairs of topological generators (see Definition 4.1)
with Theorem 4.5 and Proposition 3.8 will grant us that this perturbation maintains
the density. We establish in Theorem 4.6 that the existence of an evanescent pair of
topological generators is equivalent to R having cost 1.

Finally, let us mention the case of the free group on infinitely many generators F1.
Here, the space of subgroups is already perfect (see Proposition 2.1), and one can easily
adapt our arguments to show that: For every ergodic p.m.p. equivalence relation R,
there exists a homomorphism � WF1! ŒR� whose image is dense and whose associated
p.m.p. action ˛� is totipotent.

This result could, however, also be obtained by a purely Baire-categorical argument:
it is not hard to see that the space of such homomorphisms is dense Gı in the Polish
space of all homomorphisms � W F1! ŒR�.

Going back to the case of finite rank, it is not even true that a generic homomorphism
� W Fr ! ŒR� generates the equivalence relation R. In order to hope for a similar
genericity statement, one should first answer the following question.

Question Consider a p.m.p. ergodic equivalence relation R of cost < r . Is it true that,
in the space of homomorphisms � W Fr ! ŒR� whose image generates R, those with
dense image are dense?

The fact that Bowen and then Eisenmann and Glasner had to work in the even smaller
space where the first generator acts freely, indicates that a Baire-categorical approach
to our main result is out of reach at the moment, if not impossible.
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2 Perfect kernel for groups and minimal models

Let � be a countable discrete group. The topology on its space of subgroups Sub.�/
admits V .I;O/ WD fƒ 2 Sub.�/ W I � ƒ and O \ƒ D ∅g as a basis of open sets,
where I and O are finite subsets of � . By the Cantor–Bendixson theorem, Sub.�/
decomposes in a unique way as the disjoint union of a perfect set, called the perfect
kernel K.�/ of Sub.�/, and of a countable set. We indicate some isolation properties
of subgroups:

(1) If ƒ 2 Sub.�/ is not finitely generated, then writing ƒD .�j /j2N we obtain ƒ
as the nontrivial limit of the infinite index (both in ƒ and in �) of the finitely
generated subgroups ƒn WD h�0; �1; : : : ; �ni.

(2) If � is finitely generated, then its finite-index subgroups are isolated. Indeed,
a finite-index subgroup ƒ is finitely generated as well and it is alone in the
open subset defined by a finite family I of generators and a finite family O of
representatives of its cosets �=ƒ except fƒg.

(3) If � is not finitely generated, then its finite-index subgroups are also not finitely
generated and thus are not isolated by property (1).

Let us denote by Sub1i.�/ the subspace of infinite-index subgroups of � . The follow-
ing is probably well known, but we were not able to locate a proof in the literature.

Proposition 2.1 For the free group Fr on r generators , with 2� r �1:

(i) For finite r � 2, K.Fr /D Sub1i.Fr /.

(ii) For r infinite , K.F1/D Sub.F1/.

Proof We first show that if ƒ 2 Sub1i.Fr /, with 2 � r � 1, then it is a non-
trivial limit of finitely generated infinite-index subgroups of Fr . If ƒ is not finitely
generated, then property (1) above applies. Thus, assume ƒ is finitely generated.
If r is infinite, then ƒ has infinite index in some finitely generated noncyclic free
subgroup ƒ�ƒ�F2 � F1. We can thus assume that the rank r � 2 is finite. By the
Hall theorem, ƒ is a free factor of a finite-index subgroup ƒ�� of the free group Fr

(we include the case ƒD f1g). Since ƒ has infinite index, � is nontrivial. If g 2� is
a nontrivial element, then ƒ is the nontrivial limit of the sequence of finitely generated
infinite-index subgroups .ƒ� hgni/n�2 of Fr .

This (with property (2), and property (3) above, respectively) shows that K.Fr / D

Sub1i.Fr / for r <1 and K.F1/D Sub.F1/.
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Remark 2.2 This also shows that the Cantor–Bendixson rank of Sub.Fr / equals 1

when r is finite and equals 0 when r D1.

Computations of the perfect kernel for some other groups have been performed
in [3; 20].

The following is a classical result:

Assume � acts by homeomorphisms on a Polish space Z and � is an ergodic �–invariant
probability measure on Z. Then the orbit of �–almost every point z 2Z is dense in the
support of �.

In particular:

Proposition 2.3 If � Õ .X; �/ is a p.m.p. ergodic action on a standard probability
space , then the stabilizer Stab.x/ of almost every point x 2X has dense �–orbit in the
support of the associated IRS � D Stab�� of Sub.�/.

Thus, our main theorem produces IRSs on Sub.Fr / for which almost every Fr –orbit
(under conjugation) is dense in K.Fr /D Sub1i.Fr /. In other words, for almost every
subgroup ƒ, the Schreier graph of the action Fr Õ Fr=ƒ contains arbitrarily large
copies of Schreier balls of every infinite transitive Fr –action.

Remark 2.4 In the introduction, we defined an IRS to be totipotent when almost every
subgroup has dense orbit in the perfect kernel. But an IRS can also be considered as
a p.m.p. dynamical system whose associated IRS can be different. The connections
between the two notions of totipotency are unclear to us. However, since the actions
that we construct are totally nonfree, this situation does not happen and our IRSs are
totipotent in both senses.

Moreover, this proposition can be combined with [10, Corollary 4.3] to give the
following result.

Theorem 2.5 Let � Õ .X; �/ be a p.m.p. ergodic action on a standard probability
space. Suppose that the support of the associated IRS contains at least two distinct
minimal subsets. Then the action has no minimal model.

This is in wide contrast with free actions of countable groups: they always admit
minimal models [22].
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Proof By the previous proposition, the orbit closure of the stabilizer of �–almost every
point is equal to the support of the IRS, and hence contains two distinct minimal subsets.
Admitting a minimal model would thus be incompatible with [10, Corollary 4.3].

3 Full groups and density

We fix once and for all a standard probability space .X; �/ and denote by Aut.X; �/
the group of all its measure-preserving transformations, two such transformations being
identified if they coincide on a full measure set. In order to ease notation, we will
always neglect what happens on null sets. Given an element T 2 Aut.X; �/, its set of
fixed points is denoted by

Fix.T / WD fx 2X W T .x/D xg:

A partial isomorphism of .X; �/ is a partially defined Borel bijection ' W dom'! rng',
with dom' and rng' Borel subsets of X , such that ' is measure-preserving for the
measures induced by � on its domain dom' and its range rng'. In particular, we have
�.dom'/D �.rng'/. The support of ' is the set

supp' WD fx 2 dom' W '.x/¤ xg[ fx 2 rng' W '�1.x/¤ xg:

Given two partial isomorphisms with '; disjoint domains and ranges, one can form
their union, which is the partial isomorphism

' t W dom' t dom ! rng' t rng ; x 7!

�
'.x/ if x 2 dom';

 .x/ if x 2 dom :

A graphing is a countable set of partial isomorphisms ˆ. Its cost C.ˆ/ is the sum of
the measures of the domains of its elements, which is also equal to the sum of the
measures of their ranges since they preserve the measure.

Given a graphing ˆ, the smallest equivalence relation which contains all the graphs of
the elements ofˆ is denoted by Rˆ and called the equivalence relation generated byˆ.
When ˆD f'g, we also write it as R' and call it the equivalence relation generated
by '.

The equivalence relations that can be generated by graphings are called p.m.p. equiv-
alence relations; they are Borel as subsets of X � X and have countable classes.
The cost C.R/ of a p.m.p. equivalence relation R is the infimum of the costs of the
graphings which generate it.
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Whenever ˛ W � ! Aut.X; �/ is a p.m.p. action, we denote by R˛ the equivalence
relation generated by ˛.�/.

Given a p.m.p. equivalence relation R, the set of partial isomorphisms whose graph
is contained in R is denoted by ŒŒR�� and called the pseudo full group of R. Here is a
useful way of obtaining elements of the pseudo full group that we will use implicitly.
Say that R is ergodic when every Borel R–saturated set has measure 0 or 1. Under this
assumption, given any two Borel subsets A;B �X of equal measure, there is ' 2 ŒŒR��
such that dom' DA and rng' D B [12, Lemma 7.10].

The full group of R is the subgroup ŒR� of Aut.X; �/ consisting of almost everywhere
defined elements of the pseudo full group. Endowed with the uniform metric given
by du.S;T /D �.fx 2 X W S.x/¤ T .x/g/, it becomes a Polish group. Observe that
du.T; idX /D �.supp T /.

For more material about this section, we refer for instance to [12; 9].

3.1 Around a theorem of Kittrell and Tsankov

In this paper, we will be interested in p.m.p. actions � W Fr ! ŒR� with dense image
in ŒR�. To that end, the following result of Kittrell and Tsankov is very useful. Given
a family .Ri/ of equivalence relations on the same set X , we define

W
i2I Ri as the

smallest equivalence relations which contains each Ri .

Theorem 3.1 [14, Theorem 4.7] Let R be a p.m.p. equivalence relation on .X; �/,
and suppose that .Ri/i2I is a family of Borel subequivalence relations such that
R D

W
i2I Ri . Then ŒR�D

˝S
i2I ŒRi �

˛
.

We will also use two easy corollaries of their result, which require us to set up a bit of
notation.

Definition 3.2 Given an equivalence relation R on a set X and Y �X , we define the
equivalence relation R�Y restricted to Y and the equivalence relation RlY induced
on Y by

R�Y WDR \Y �Y D f.x;y/ 2R W x;y 2 Y g � Y �Y;

RlY WDR�Y [f.x;x/ W x 2X g �X �X:

Observe that given a p.m.p. equivalence relation R, we have a natural way of identifying
the full group of the restriction R�Y with the full group of the induced equivalence
relation RlY by making its elements act trivially outside of Y .
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Corollary 3.3 Let R be an ergodic p.m.p. equivalence relation on .X; �/. Let T 2 ŒR�

and Y �X be measurable and such that �.Y \T Y / > 0. Put YT WD
S

n2Z T nY . Then
hT; ŒRlY �i � ŒRlYT

�.

Proof Since �.Y \T Y /> 0 and R is ergodic, we have that RlY[T Y DRlY _RlT Y .
Therefore Theorem 3.1 implies that

hŒRlY �;T ŒRlY �T
�1i D ŒRY[T Y �:

Now observe that .Y [ T Y /\ T .Y [ T Y / � T Y has positive measure. Therefore
Theorem 3.1 implies that hT; ŒRlY �i contains ŒRl.Y[T Y[T 2Y /�, and the corollary
follows by induction.

Corollary 3.4 Consider an ergodic p.m.p. equivalence relation R on .X; �/ and let
Y �X be a positive-measure subset. Let ˛ be a p.m.p. action of � on .X; �/ such that
˛.�/� ŒR�, �.˛.�/Y /D 1 and ŒRlY ��˛.�/. Then either ˛.�/D ŒR�, or � preserves
a finite partition fYig

k
iD1

of X , with Y � Y1 and ŒRlYi
�� ˛.�/ for each i � k.

In particular , if �.Y / > 1
2

, then k D 1 and hence ˛.�/D ŒR�.

Proof Let B�Y be a subset of maximal measure such that ˛.�/� ŒRlB �. Then by the
above corollary, for every  2� such that ˛. /B¤B we must have�.B\˛. /B/D0;
hence B is an atom of a finite partition preserved by the �–action ˛.

3.2 From graphings to density

The following is a slight variation of [15, Definition 8].

Definition 3.5 Let n� 2. A precycle of length n is a partial isomorphism ' such that
if we set B WD dom' n rng' (the basis of the precycle), then f'i.B/giD0;:::;n�2 is a
partition 0 of dom', and f'i.B/giD1;:::;n�1 is a partition of rng'.

We say that T 2 Aut.X; �/ extends ' if T x D 'x for every x 2 dom.'/.

Observe that a precycle of length 2 is an element '2 ŒŒR�� such that dom.'/\rng.'/D∅.
If ' is a precycle of length n, then �.supp'/D n�.B/ and �.dom'/D .n� 1/�.B/.
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An n–cycle is a measure-preserving transformation all of whose orbits have cardinality
either 1 or n. Given a precycle ' of length n, we can extend it to an n–cycle U' 2 ŒR' �

as follows:

U'.x/ WD

8<:
'.x/ if x 2 dom';

'�.n�1/.x/ if x 2 rng' n dom';

x otherwise.

This n–cycle U' is called the closing cycle of ' and supp U' D supp'.

Remark 3.6 If f'1; : : : ; 'n�1g is a pre-n–cycle in the sense of [15, Definition 8],
then '1 t � � � t 'n�1 is a precycle of length n in our sense; and if ' is a precycle of
length n in our sense, then f'�'i .B/ W i D 0; : : : ; n� 2g is a pre-n–cycle in the sense of
[15, Definition 8]. The reason for this change of terminology will become apparent in
the statement of the next lemma, which was proved for U DU' in [15, Proposition 10].

Lemma 3.7 Suppose that ' is a precycle of basis B, let  WD '�B , and suppose that
U 2Aut.X; �/ extends '. Then ŒR' � is contained in the closure of the group generated
by ŒR �[fU g.

Proof Let n be the length of '. For i D 0; : : : ; n�2, let  i D '�'i .B/. Then we have
R'D

Wn�2
iD0R i

. Since U extends ', we have U iU
�1D iC1 for all i D 0; : : : ; n�3,

and hence U ŒR i
�U�1 D ŒR iC1

�. Since  0 D  , the group generated by U [ ŒR �

contains ŒR i
� for all i D 0; : : : ; n� 2. Theorem 3.1 finishes the proof.

The following proposition is obtained by a slight modification of the proof of the main
theorem of [15].

Proposition 3.8 Let R be a p.m.p. ergodic equivalence relation on X and let Y �X be
a positive measure subset. Let R0 �RlY be a hyperfinite equivalence relation whose
restriction to Y is ergodic (and trivial on X n Y ). Suppose that C.RlY / < r�.Y /

for some integer r � 2. Then there are r � 1 precycles '2; '3; : : : ; 'r 2 ŒŒRlY ��

such that �.supp.'i// < �.Y / and such that whenever U2;U3; : : : ;Ur 2 ŒR� extend
'2; '3; : : : ; 'r , we have hŒR0�;U2;U3; : : : ;Ur i � ŒRlY �.

For instance, one can take U2;U3; : : : ;Ur to be the closing cycles of '2; '3; : : : ; 'r .

Proof Let T 2 ŒR0� be such that its restriction to Y is ergodic. Our assumption
C.RlY / < r�.Y / means that the normalized cost of the restriction R�Y is less than r .
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Lemma III.5 from [8] then provides a graphingˆ on Y of normalized cost<.r�1/ such
that fT�Y g[ˆ generates the restriction R�Y . We now view ˆ as a graphing on X , so
that fT g[ˆ generates RlY , and C.ˆ/ < .r �1/�.Y /. Let c WD C.ˆ/=.r �1/ < �.Y /.
We take p 2N so large that c.pC 2/=p < �.Y /.

Pick  2 ŒŒR0�� a precycle of length 2 whose domain B has measure c=p. By cutting
and pasting the elements of ˆ and by conjugating them by elements of ŒR0�, we may
as well assume that ˆ D f'2; : : : ; 'r g, where each 'i is a precycle of length pC 2

extending  of basis B, whose support is a strict subset of Y . Assume that Ui 2 ŒR�

extends 'i for every i D 2; 3; : : : ; r . Since  2 ŒŒR0��, then ŒR � � ŒR0�. We can
apply Lemma 3.7 and obtain that the closure of the group generated by ŒR0� and Ui

contains ŒR'i
�. Since RlY DR0 _R'2

_ � � � _R'r
, we can conclude the proof of the

theorem using Theorem 3.1.

Remark 3.9 We have a lot of freedom in constructing the precycles '2; '3; : : : ; 'r

of Proposition 3.8. To start with, their length can be chosen to be any integer n D

pC 2 large enough that c=�.Y / < .n� 2/=n. Actually, they could even have been
chosen with any (possibly different) lengths n2; n3; : : : ; nr , integers large enough that
c=�.Y / < .nj � 2/=nj : simply pick r � 1 precycles  j 2 ŒŒR0�� of length 2 whose
domain Bj has measure c=.nj � 2/, and proceed as in the proof above.

In particular, the periodic closing cycles U2;U3; : : : ;Ur can be assumed to have any
large enough period n2; n3; : : : ; nr and domains contained in Y of measure < �.Y /.
Up to conjugating by elements of ŒR0�, one can further assume that the closing cycles
have a nonnull common subset of fixed points in Y :

�.Fix.U2/\Fix.U3/\ � � � \Fix.Ur /\Y / > 0:

4 Evanescent pairs and topological generators

In this section our main goal is to obtain two topological generators of the full group
of a hyperfinite ergodic equivalence relation with new flexibility properties relying on
the following definition.

Definition 4.1 A pair .T;V / of elements of the full group ŒR� of the p.m.p. equivalence
relation R is called an evanescent pair of topological generators of R if

(1) V is periodic, and

(2) for every n 2N, the full group ŒR� is topologically generated by the conjugates
of V n by the powers of T , ie hT j V nT �j W j 2 Zi D ŒR�.
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In particular, if .T;V / is an evanescent pair of topological generators, then

� the pair .T;V / topologically generates ŒR�,

� .T;V n/ is an evanescent pair of topological generators for any n 2N,

� du.V
n!; idX / tends to 0 when n tends to1.

We will show in Theorem 4.5 that the odometer T0 can be completed to form an
evanescent pair .T0;V / of topological generators for RT0

, and that the set of possible V

is actually a dense Gı.

In this section, we set X D f0; 1gN , and endow it with the Bernoulli 1
2

measure
�D

�
1
2
ı0C

1
2
ı1
�˝N . Given s 2 f0; 1gn, we define the basic clopen set

Ns WD fx 2 f0; 1g
N
W xi D si for 1� i � ng:

The odometer T0 is the measure-preserving transformation of this space defined as
adding the binary sequence .1; 0; 0; : : : / with carry to the right. More precisely, for
each sequence x 2 f0; 1gN , if k is the (possibly infinite) first integer such that xk D 0,
then y D T0.x/ is defined by

yn WD

8<:
0 if n< k;

1 if nD k;

xn if n> k:

For each n 2 N, the permutation group Sym.f0; 1gn/ has a natural action ˛n on
f0; 1gN ' f0; 1gn � f0; 1gN given for x 2 f0; 1gN and � 2 Sym.f0; 1gn/ by

˛n.�/.x1; : : : ;xn;xnC1; : : : / WD .�.x1; : : : ;xn/;xnC1; : : : /:

The sequence .˛n.Sym.f0; 1gn///n2N is an increasing sequence of subgroups of the
full group ŒRT0

� whose reunion is dense in ŒRT0
�; see [11, Proposition 3.8].

We now define a sequence of involutions Un 2 ŒRT0
� with disjoint supports as in

[17, Section 4.2]: Un WD ˛n.�n/, where �n 2 Sym.f0; 1gn/ is the 2–point support
transposition that exchanges 0n�11 and 1n�10. Observe that Un is the involution with
support N1n�10 tN0n�11 (of measure 2�nC1) which is equal to T0 on N1n�10 and
T �1

0
on N0n�11.

Recall that if �n 2 Sym.f0; 1gn/ is 2n–cycle and wn is a transposition which exchanges
two �n–consecutive elements, then the group Sym.f0; 1gn/ is generated by the conju-
gates of wn by powers of �n (actually 2n� 1 of them are enough). A straightforward
modification gives the following lemma; see [17, Lemma 4.3] for a detailed proof.
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Lemma 4.2 For every n 2N, the group ˛n.Sym.f0; 1gn// is contained in the group
generated by the conjugates of Un by powers of T0.

Given a periodic p.m.p. transformation U and k 2N, we say that V is a k th root of U

when supp U D supp V and V k D U . The following lemma is well-known.

Lemma 4.3 Whenever R is an ergodic equivalence relation , every periodic element in
ŒR� admits a k th root in ŒR�.

Proof Let us first prove that every n–cycle U 2 ŒR� admits a k th root. To this end,
pick a fundamental domain A for the restriction of U to its support. Since R is ergodic,
we can pick a k–cycle V 2 ŒR� supported on A. Let B be a fundamental domain for V ,
and put C WD A nB. Then it is straightforward to check that W 2 ŒR�, defined as
follows, is a k th root of U :

W .x/ WD

8<:
U U iV U�i.x/ if x 2 U i.B/;

U iV U�i.x/ if x 2 U i.C /;

x otherwise.

In the general case, one glues together the k th roots obtained for every n 2 N by
considering the restrictions of U to U –orbits of cardinality n.

Remark 4.4 The same proof works more generally for aperiodic p.m.p. equivalence
relations.

Theorem 4.5 The set of V 2 ŒRT0
� such that .T0;V / is an evanescent pair of topolog-

ical generators of RT0
is a dense Gı subset of ŒRT0

�.

Proof Denote by P the set of periodic elements of ŒRT0
�. It is a direct consequence

of Rokhlin’s lemma that P is dense in ŒRT0
�. And similarly the subset P 0 � P of

V 2 ŒRT0
� with finite order (or equivalently, with bounded orbit size) is dense in ŒRT0

�.

Writing P as the intersection (over the positive integers q) of the open setsn
V 2 ŒRT0

� W d.V p!; idX / <
1

q
for some p 2N

o
shows that P is a Gı subset of ŒRT0

�.

Denote by E the set of V 2 ŒRT0
� such that for every n, the group ŒRT0

� is topologically
generated by conjugates of V n by powers of T0. We want to show that P \ E is
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dense Gı, and since P is dense Gı it suffices (by the Baire category theorem in the
Polish group ŒRT0

�) to show that E is dense Gı.

For every m; n 2N, set

Em;n WD fV 2 ŒRT0
� W ˛n.Sym.f0; 1gn//� hT k

0
V mT �k

0
W k 2 Zig:

The density of the union of the ˛n.Sym.f0; 1gn// in ŒRT0
� recalled above implies that

E D
T

m;n2N Em;n. So it suffices to show that each Em;n is dense Gı.

Let us first check that each Em;n is Gı. Denote by W the subgroup of F2 D ha1; a2i

generated by the conjugates of a2 by powers of a1. So for w D w.a1; a2/ 2W and
V 2 ŒRT0

�, the element w.T0;V
m/ is a product of conjugates of V m by powers of T0.

By the definition of the closure we can write Em;n as

Em;n D

\
p2N

\
�2Sym.f0;1gn/

[
w2W

n
V 2 ŒRT0

� W du.w.T0;V
m/; �/ <

1

p

o
:

Since the map V 7!w.T0;V / is continuous, each of the above right-hand sets is open,
so their union over w 2W is also open, and we conclude that Em;n is Gı.

To check the density, it suffices to show that, for each m; n, one can approximate
arbitrary elements of P 0 by elements of Em;n. So let U 2 P 0 and let � > 0. Denote
by K the order of U . Pick p � n such that 2�pK < 1

2
�. Let A be the U –saturation

of the support of Up D p̨.�p/ (defined at the beginning of the section). The measure
of A is at most �. Finally, let V be a .Km/th root of Up and define

zU .x/ WD

�
U.x/ if x 2X nA;

V .x/ if x 2A:

By construction du.U; zU / � �.A/ < �. Observe that zU Km D . zU m/K D Up; thus,
Lemma 4.2 yields that zU 2 EKm;p � Em;p . Since p � n, zU 2 Em;p � Em;n, so we are
done.

Let us make a few comments on the above result. First, one can check that the pair
.T0;V / produced in the construction of [17, Theorem 4.2] provides an explicit example
of an evanescent pair of topological generators of RT0

. Also, the above proof can be
adapted to show that any rank one p.m.p. ergodic transformation [19, Section 8] can be
completed to form an evanescent pair of topological generators; see [16, Theorem 5.28]
for an explicit example of a pair which is evanescent. Proving these results is beyond
the scope of this paper, so we leave it as an exercise for the interested reader.
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It is unclear whether every p.m.p. ergodic transformations can be completed to form
an evanescent pair of topological generators for its full group. Nevertheless, we can
characterize the existence of an evanescent pair as follows.

Theorem 4.6 Let R be an ergodic p.m.p. equivalence relation. Then R admits an
evanescent pair of topological generators if and only if R has cost 1.

Proof If R admits an evanescent pair .T;V /, then since V is periodic we have
�.supp V n!/ ! 0. Since any set of topological generators for ŒR� generates the
equivalence relation R, we conclude that R has cost 1.

As for the converse, Theorems 4 and 5 from [6] provide an ergodic hyperfinite sube-
quivalence relation which is isomorphic to that of the odometer. So we can pick a
conjugate of the odometer T 2 ŒR�. Repeating the proof of Theorem 4.5, we see that the
set ET of V 2 ŒR� such that for every n2N, ŒRT � is contained in hT j V nT �j W j 2 Zi,
is dense Gı in ŒR�.

Let us now consider the set ER of V 2 ŒR� such that .T;V / is an evanescent pair of
topological generators of R, and for n2N the set En of V 2 ŒR� such that V is periodic
and hT j V nT �j W j 2 Zi D ŒR�. Each En is Gı by the same argument as in the proof
of Theorem 4.5. Since ER D

T
n En, it suffices to show that each En is dense in order

to apply the Baire category theorem and finish the proof.

Let us fix n 2 N. Since ET is dense in ŒR�, we only need to approximate elements
of ET by elements of En. Moreover, the set of V 2 ŒR� such that �.supp V / < 1 is
open and dense, so we only need to approximate every V 2 ET with �.supp V / < 1 by
elements of En.

So let V 2 ET with �.supp V / < 1, and take � > 0.

Lemma III.5 from [8] yields a graphing ˆ of cost < 1
3

min.�; �.X n supp V // such
that fT g[ˆ generates R, since R has cost 1. Conjugating by elements of ŒRT � and
pasting the elements ofˆ, we may as well assume thatˆDf'g, where �.dom'/< 1

3
�,

and ' is a precycle of length 2 whose support is disjoint from supp V . We then pick
 2 ŒŒRT �� such that ' t is a precycle of length 3 of support disjoint from supp V ,
and denote by U1 the associated 3–cycle.

Now let U2 be an nth root of U1 and let V2 WD V U2. Then du.V2;V / < �, and we
claim that V2 belongs to En. In order to prove this, let us denote by G the closed group
generated by the conjugates of V n

2
by powers of T .
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Since U2 and V have disjoint support, they commute, and so V n
2
D U n

2
V n D U1V n.

So .V n
2
/3 D V 3n, and since V 2 ET , we have that ŒRT ��G. In particular ŒR ��G,

and conjugating by V n
2

(which acts as U1 on supp U1), we get that ŒR' ��G; see also
Lemma 3.7. Since R DRT _R , we conclude by Theorem 3.1 that G contains ŒR�,
as wanted.

5 Proof of the main theorem

As shown in Proposition 2.1, the perfect kernel of Sub.Fr / for 1 < r < 1 is the
space of infinite-index subgroups. We will construct a p.m.p. action of Fr for which
almost every Schreier graph contains all possible balls of Schreier graphs of transitive
Fr –actions on infinite sets.

Step 1 (using a smaller subset) We start with a p.m.p. ergodic equivalence relation R

on .X; �/ of cost < r . By the induction formula [8, Proposition II.6], there is a subset
Y �X such that 1

2
< �.Y / < 1 and such that the (normalized) cost of the restriction

R�Y is still < r . Thus the cost of the induced equivalence relation RlY is < r�.Y /.

Using results of Dye [6, Theorems 4 and 5] as in the proof of Theorem 4.6, one can
pick a conjugate of the odometer T 2 ŒR�Y �. We view T as an element of ŒRlY �.

Now we apply Proposition 3.8 (where R0DRT ) to obtain precycles '2; : : : ; 'r 2 ŒŒR�Y ��

whose supports have measure < �.Y /. For i � r , we let Ui be the closing cycle of 'i

as defined after Definition 3.5. Set � WD �.Y n supp U2/ > 0. Let m0 be a positive
integer such that �.X nY /=m0 <

1
2
�.

Step 2 (preparing the finite actions) Let .Gn/n�1 be an enumeration of the (finite
radius) balls of the Schreier graphs of all the transitive Fr –actions over an infinite
set, up to labeled graph isomorphism, and for which the number of vertices satisfies
jGnj �m0.

Since Gn comes from a transitive action over an infinite set, we can choose some
` 2 f1; : : : ; rg and some �n 2Gn so that there is no a`–labeled edge whose source is
equal to �n.

Pick ın; �n 62Gn, set G0n WDGntfın; �ng and add an a`–edge from �n to ın, an a1–edge
from ın to �n and an a2–edge from �n to itself.

In this way we obtain a finite partial Schreier graph, and this can be extended to a
genuine Schreier graph of an Fr D ha1; : : : ; ar i–action on the same set as follows: for
each i 2 f1; 2; : : : ; rg, we consider the connected components of the subgraph obtained
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by keeping only the edges labeled ai . These are either cycles (we don’t modify them)
or oriented segments (possibly reduced to a single vertex), in which case we add one
edge labeled ai from the end to the beginning of the segment.

Therefore we obtain an action �n of Fr on the finite set G0n and a special point
�n 2G0n nGn such that �n.a2/�n D �n.

Step 3 (defining the action) Set C WD X n Y . Consider a partition C D
F

n�1 Cn,
where �.Cn/ > 0 for every n. We are going to define an amplified version of the action
�n on Cn as follows.

For each n�1, we take a measurable partition CnD
F

g2G0n
B

g
n such that�.Bg

n /jG
0
njD

�.Cn/ for every g 2G0n. Set Bn WDB
�n
n . Using ergodicity of R, for every g 2G0nnf�ng

we choose  g WBn!B
g
n in the pseudo full group ŒŒR�� of R. In this way we obtain an

action ˛n of Fr , defined on Cn by the formula

if x 2 Bg0
n and �n. /g0 D g1; then ˛n. /x WD  g1

 �1
g0
.x/;

and trivial on X nCn. Thus, ˛n.Fr /� ŒRlCn
�.

Gluing all the ˛n together, we obtain an action ˛1 of Fr on X with the properties that
˛1.Fr /� ŒRlC � and ˛1 restricted to Cn is ˛n.

Let T 2 ŒRlY � be the conjugate of the odometer introduced in Step 1. Theorem 4.5
states that the set of V 2 ŒRT � such that .T;V / is an evanescent pair of generators
for RT is dense so we can choose such a V with �.supp V / < 1

2
�. Let W 2 ŒRT � be

such that �
�
supp.W U2W �1/\ supp V

�
D 0. Set

� B WD
S

n Bn, and note that �.B/� �.C /=m0 <
1
2
�;

� D WD supp.W U2W �1/[ supp V , and observe that �.Y nD/ > 1
2
�.

Therefore there exists a subset A� Y nD of measure �.A/D �.B/. Let I 2 ŒR� be
an involution with support A[B and which exchanges A and B.

We finally define the desired action ˛ of Fr by setting

˛.a1/ WD T˛1.a1/;

˛.a2/ WD V .W U2W �1/.I˛1.a2//;

˛.ai/ WD Ui˛1.ai/ for i � 3:

See Figure 1 for the action of ˛.a2/. Note that a2 is the only generator of Fr which
does not leave the set Y invariant, because of the presence of the involution I in the
definition of its action.
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V W U2W �1

Y

9>>>>>>>>>>>>=>>>>>>>>>>>>;
C

I I I

B1 B2
B3

˛1.a2/

˛2.a2/
˛3.a2/

C1

C2
C3

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

X

Figure 1: The action of ˛.a2/ on X .

Step 4 (density) (a) We claim that ˛.Fr /� ŒRT �.

Indeed let S 2 ŒRT � and fix �>0. There exists n0 such that if we set C>n0
WD
S

n>n0
Cn,

then �.C>n0
/< 1

2
�. The elements U2, I , ˛1.a2/; : : : ; ˛n0

.a2/ have uniformly bounded
orbits. So we can pick k 2N so that U k

2
, Ik and ˛1.a2/

k ; : : : ; ˛n0
.a2/

k are the identity.

By construction V , W U2W �1, I and ˛1.a2/ have mutually disjoint supports and
hence commute. Therefore ˛.a2/

k D V k˛1.a2/
k .

The crucial assumption that .T;V / is an evanescent pair of generators now comes into
play: there is a word w.T;V k/, which is a product of conjugates of V k by powers
of T , such that du.w.T;V

k/;S/ < 1
2
�. We remark that ˛.a1/ acts on Y the same way

as T , and that ˛.a2/
k acts on Y the same way as V k . Also note that ˛.a1/ preserves

each Cj while ˛.a2/
k is the identity on each Cj for j D 1; 2; : : : ; n0, so that for all

m 2 Z, the transformation ˛.a1/
m˛.a2/

k˛.a1/
�m acts on C1[C2[ � � � [Cn0

as the
identity.

It now follows from the fact that w is a product of conjugates of V k by powers of T that
w.T;V k/ and w.˛.a1/; ˛.a2/

k/ coincide on Y and can only differ on C>n0
, which
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has measure less than 1
2
�. Hence du.w.˛.a1/; ˛.a2/

k/;S/ < �, which implies that
˛.Fr /� ŒRT �.

(b) We claim that ˛.Fr /� ŒRlY �.

Recall that ˛.a2/ D V .W U2W �1/.I˛1.a2//, where V , W U2W �1 and I˛1.a2/

have pairwise disjoint support. Since U2 extends '2, we get that W �1˛.a2/W ex-
tends '2. By assumption ˛.a3/; : : : ; ˛.ar / extend '3; : : : ; 'r , respectively. Moreover,
W 2 ŒRT �, so the claim follows from Proposition 3.8:

˛.Fr /� hŒRT �;W �1˛.a2/W; ˛.a3/; : : : ; ˛.ar /i � ŒRlY �:

(c) We claim that ˛.Fr /� ŒR�.

This is a direct consequence of Corollary 3.4 granted that ˛.�/Y DX , which we will
now show.

Clearly ˛.a2/Y � ˛.a2/ADB D
S

n Bn. For every n and g 2G0n n f�ng, there exists
 2 � of minimal length such that �n. /�n D g. Since �n.a2/�n D �n and since
˛.a2/�CnnBn

D ˛n.a2/ mimics the action of �n.a2/ on G0n n f�ng, the minimality of
the length of  implies that ˛. /Bn D B

g
n . Since this is true for every g 2G0n we get

˛.�/Y � Cn; and this holds for every n. We thus have ˛.�/Y DX as wanted.

Step 5 (totipotency) Consider a transitive action � of Fr on some infinite set. Let
H be a Schreier ball such that jH j � m0. Then by construction there exists n such
that H D Gn � G0n. We also remark that the restriction of the Schreier graph of the
action ˛ to

S
g2Gn

B
g
n � Cn mimics the partial Schreier graph H . Since � and H are

arbitrary, the Schreier graph of ˛ contains every sufficiently large Schreier ball of every
transitive action of Fr , and this finishes the proof of the main theorem.

Remark 5.1 The subspace Y �X chosen in Step 1 of the above proof coincides with
the subset where ˛.a1/ is aperiodic. So the event “no power of a1 belongs to ƒ” has
measure �.Y / in the IRS Stab˛� � associated with ˛. The measure �.Y / can be chosen
to take any value from the nonempty interval�

max
�C.R/� 1

r � 1
;
1

2

�
; 1

�
:

Recalling that the density of ˛.�/ implies Stab˛ is essentially injective, then the
following holds: Every ergodic p.m.p. equivalence relation R of cost < r can be
realized (up to a null set) by the action of Fr Õ Sub.Fr / for continuum many different
totipotent IRSs of Fr .
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