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Discrete subgroups of small critical exponent
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We prove that finitely generated Kleinian groups � < Isom.Hn/ with small critical
exponent are always convex cocompact. We also prove some geometric properties for
any complete pinched negatively curved manifold with critical exponent less than 1.

22E40; 20F65

1 Introduction

A Kleinian group is a discrete isometry subgroup of Isom.Hn/. The study of 3–
dimensional finitely generated Kleinian groups dates back to Schottky, Poincaré and
Klein. It is only recently that the geometric picture of the associated hyperbolic manifold
has been much better understood, after the celebrated work of Ahlfors’ finiteness
theorem [2], the proof of the tameness conjecture (see Agol [1], Bonahon [10] and
Calegari and Gabai [18]), and the unraveling of the ending lamination conjecture; see
Bowditch [13], Brock, Canary and Minsky [14], Minsky [36] and Soma [42]. However,
such geometric descriptions fail in higher dimensions; see Kapovich [29; 30], Kapovich
and Potyagailo [33; 34] and Potyagailo [41; 40].

One way to study higher-dimensional Kleinian groups is to consider the interplay
between the group-theoretic properties, the geometry of the quotient manifolds, and
the measure-theoretic size of the limit set. It was shown by Gusevskii [23] that if
the Hausdorff dimension of the entire limit set dimH.ƒ.�// is less than 1, then � is
geometrically finite. In this case, the Hausdorff dimension of the entire limit set equals
the Hausdorff dimension of the conical limit set (see Bowditch [12]), which is smaller
than 1. However, when � is geometrically infinite, the size of the entire limit set could
a priori be much larger, so dimHƒ.�/ > dimHƒc.�/. Thus, it is interesting to ask
what the relative size ofƒc.�/ is compared to the entireƒ.�/, or rather, to what extent
is the size of ƒc.�/ able to determine the geometric finiteness of the group. By the
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2348 Beibei Liu and Shi Wang

work of Bishop and Jones [9], the Hausdorff dimension of the conical limit set ƒc.�/

equals the critical exponent ı.�/. Hence, Kapovich [31, Problem 1.6] asked:

Question 1.1 Is every finitely generated Kleinian group � < Isom.Hn/ with ı.�/ < 1

geometrically finite?

We partly answer this in the affirmative in a slightly more general context.

Theorem 1.2 For each n and � there exists a positive constant D.n; �/ < 1
2

with
the property that , for every n–dimensional Hadamard manifold with pinched sectional
curvature ��2 � K � �1 and any finitely generated torsion-free discrete isometry
subgroup � < Isom.X /, � is convex cocompact if ı.�/ <D.n; �/.

Remark 1.3 The constant D.n; �/ can be obtained from the quantitative version of the
Tits alternative for pinched negatively curved manifolds; see Dey, Kapovich and Liu [20].

Remark 1.4 For 3–dimensional finitely generated Kleinian groups � of second kind,
ie ƒ.�/¤ S2, Bishop and Jones [9] showed that � is geometrically finite if ı.�/ < 2.
Hou [25; 26; 27] proved that a 3–dimensional Kleinian group � is a classical Schottky
group if dimH.ƒ.�// < 1.

In [31], Kapovich established a relation between the homological dimension and the
critical exponent of a Kleinian group. A similar homological vanishing feature has been
extended to other rank-one symmetric spaces by Connell, Farb and McReynolds [19].
It is conjectured [31, Conjecture 1.4] that the virtual cohomological dimension vcd.�/
is bounded above by ı.�/C 1 (assuming � has no higher-rank cusps). Under the
condition ı.�/ < 1, it is equivalent to ask (see Stallings [43] and also a weaker form
by Bestvina [8, Question 5.6]):

Question 1.5 Is every finitely generated Kleinian group � < Isom.Hn/ with ı.�/ < 1

virtually free?

In the same paper, Kapovich gave a positive answer to this question under the stronger
assumption that � is finitely presented. On the other hand, when ı.�/ is sufficiently
small, our Theorem 1.2 automatically implies dimH.ƒ.�// D ı.�/ < D.n; �/ < 1.
This implies that the limit set ƒ.�/ is a Cantor set since it is perfect. Following the
classical result of Kulkarni [35, Theorem 6.11]:

Corollary 1.6 For each n there is a positive constant D.n/ < 1
2

such that any finitely
generated discrete isometry subgroup � < Isom.Hn/ is virtually free if ı.�/ <D.n/.
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Remark 1.7 Under the assumption that dimH.ƒ.�// < 1, Pankka and Souto [39]
proved that any torsion-free Kleinian group (not necessarily finitely generated) is free.

The method in [31] also works for discrete isometry subgroups of Hadamard manifolds
with negatively pinched sectional curvature ��2 �K ��1, and Question 1.5 can be
asked for this family of groups. If in addition we know � is free in Theorem 1.2, then
the constant D.n; �/ can actually be made effective, and independent of n and �.

Theorem 1.8 Let � < Isom.X / be a finitely generated virtually free discrete isometry
subgroup of an n–dimensional Hadamard manifold with pinched negative curvature
��2 �K � �1. If ı.�/ < 1

16
, then � is convex cocompact.

Thus, in view of Kapovich’s result [31, Corollary 1.5], we obtain:

Corollary 1.9 A finitely presented Kleinian group with ı.�/< 1
16

is convex cocompact.

One of the main efforts in our proofs is investigating the geometric properties of the
quotient manifold M DX=� under the condition that ı is small. While these results
are only restricted to ı < 1, we still find that they might be of independent interest and
worth highlighting. The following theorem is closely related to the classical Plateau’s
problem, where we obtain a certain type of linear isoperimetric inequality for the
quotient manifold M DX=� .

Theorem 1.10 Suppose that C is a union of smooth loops in M D X=� which
represents a trivial homology class in H1.M;Z/. If ı.�/ D ı < 1, then C bounds a
smooth surface i W†!M (see Definition 2.6) whose area satisfies

A.i/�
4

1�ı
`.C/;

where `.C/ denotes the total length of the smooth loops in C.

Finitely generated Kleinian groups in dimension 3 have only finitely many cusps (see
Sullivan [44]), but the same result does not hold in higher dimensions; see Kapovich [29].
As an application of Theorem 1.10, we show that, under the assumption ı < 1, the
�–thin part of M has only finitely many connected components when � is small enough.
In particular, M has only finitely many cusps.

Theorem 1.11 Let � < Isom.X / be a finitely generated torsion-free discrete isometry
subgroup of an n–dimensional Hadamard manifold with pinched negative curvature
��2 �K � �1. Suppose that ı.�/ < 1. Then:

Geometry & Topology, Volume 27 (2023)



2350 Beibei Liu and Shi Wang

(1) The number of cusps in M DX=� is at most the first Betti number of M .

(2) M has bounded geometry. That is , the noncuspidal part of M has a uniform
lower bound on its injectivity radius.

(3) � is convex cocompact if and only if the injectivity radius function inj WM !R

is proper.

Remark 1.12 Without the assumption on the critical exponent, Benoist and Hulin
[5, Proposition 2.6] showed that � is convex cocompact if and only if M is Gromov
hyperbolic and the injectivity radius function is proper.

Outline of the proof of Theorem 1.2

We first observe that whenever ı < 1 there is an area-decreasing self-map (the Besson–
Courtois–Gallot map) on M . This allows us to prove the linear isoperimetric type
inequality as in Theorem 1.10, from which we deduce further that closed geodesics
on M asymptotically have uniformly bounded normal injectivity radii. This means
that if there is an escaping sequence of closed geodesics on M , then there exists
a subsequence on which the normal injectivity radii are uniformly bounded. Next
we observe that, given a long closed geodesic with small normal injectivity radius,
one can always separate along the normal direction to replace it by a shorter closed
geodesic nearby. Then, we use the result by Kapovich and Liu [32] which states that
� is geometrically infinite if and only if there exists an escaping sequence of closed
geodesics. The assumption that D.n; �/ is smaller than 1

2
excludes parabolic elements,

so assume for the sake of contradiction that there is one such escaping sequence. Using
the idea of infinite descent we can reduce the length of the closed geodesics and find
another escaping sequence whose lengths and normal injectivity radii are both uniformly
bounded, from which we can find two loxodromic isometries that move a common
point within a uniformly bounded distance. This means the nonelementary subgroup
generated by the two isometries will have large critical exponent, thus leading to a
contradiction if we assume ı is small enough.

Organization of the paper

In Section 2 we review some elementary results of negatively pinched Hadamard
manifolds and the Besson–Courtois–Gallot map. In Section 3 we give the proofs of
Theorems 1.10 and 1.11. In Section 4 we prove Theorem 4.1, which together with
Theorem 1.11 implies Theorems 1.2 and 1.8.

Geometry & Topology, Volume 27 (2023)
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2 Preliminaries

2.1 Discrete isometry groups

Let X be a complete simply connected n–dimensional Riemannian manifold of pinched
negative curvature ��2 �K ��1 where � � 1. The Riemannian metric on X induces
the distance function dX , and .X; dX / is a uniquely geodesic space. With the curvature
assumption, the metric space .X; dX / is Gromov hyperbolic, where the hyperbolicity
constant ı0 can be chosen as cosh�1.

p
2/, ie every geodesic triangle in X is ı0–slim.

By the Cartan–Hadamard theorem, X is diffeomorphic to the Euclidean space Rn via
the exponential map at any point in X . We can naturally compactify X by adding the
ideal boundary @1X , thus the compactified space X DX [ @1X is homeomorphic
to the unit n–ball Bn.

Every isometry  2 Isom.X / extends the action to the ideal boundary, so it induces a
diffeomorphism on X . Based on its fixed-point set Fix. /, the isometry  on X can
be classified:

(1)  is parabolic if Fix. / is a singleton fpg � @1X .

(2)  is elliptic if it has a fixed point in X . In this case, the fixed-point set Fix. / is
a totally geodesic subspace of X invariant under  . In particular, the identity
map is elliptic.

(3)  is loxodromic if Fix. / consists of two distinct points p; q 2 @1X . In this
case,  stabilizes and translates along the geodesic pq, and we call the geodesic
pq the axis of  .

One can also use the translation length to classify the isometries on X . For each
isometry  2 Isom.X /, we define its translation length �. / as

�. / WD inf
x2X

dX .x;  .x//:

Geometry & Topology, Volume 27 (2023)
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The isometry  is loxodromic if and only if �. / > 0. In this case, the infimum is
attained exactly when the points are on the axis of  . The isometry  is parabolic if
and only if �. /D 0 and the infimum is not attained. The isometry  is elliptic if and
only if �. /D 0 and the infimum is attained.

Let � < Isom.X / be a discrete subgroup which acts on X properly discontinuously. If
� is torsion-free, then any nontrivial element in � is either loxodromic or parabolic.
We denote the quotient manifold X=� by M , and let � WX !M denote the canonical
projection. The geodesic loops c W Œa; b�!M at pD c.a/D c.b/2M are in one-to-one
correspondence with geodesic segments from x to  .x/, where x 2X with �.x/D p

and  2 � . Recall that the injectivity radius at a point p 2M is the largest radius for
which the exponential map at p is a diffeomorphism. The injectivity radius at a point
p 2M is half the length of shortest geodesic loop at p since there are no conjugate
points in M . We use inj.p/ to denote the injectivity radius at p and define

d�.x/ WD min
2�nfidg

dX .x;  .x//

for x2X . Then d�.x/D2 inj.�.x//. We say the injectivity radius function inj WM!R

is proper if the preimage of a compact set is compact. The injectivity radius function
is 1–Lipschitz. To see this, given any two points p; q 2M , let Qp and Qq be lifts of p

and q in X whose distance is the same as the distance d.p; q/ of p; q 2M . There
exists an isometry  2 � such that dX . Qp;  Qp/D d�. Qp/, and

2 inj.q/� dX . Qq;  . Qq//� dX . Qq; Qp/C dX . Qp;  . Qp//C dX . . Qp/;  . Qq//

D 2d.p; q/C 2 inj.p/:

Hence, inj.q/� inj.p/� d.p; q/.

Now recall that the critical exponent ı.�/ of a torsion-free discrete isometry group
� < Isom.X / is defined to be

ı.�/ WD inf
�

s
ˇ̌̌ X
2�

exp
�
�sdX .p;  .p//

�
<1

�
;

where p is a given point in X . Note that ı.�/ is independent of the choice of p.
Alternatively, one can also define the critical exponent ı.�/ [38] as

(2-1) ı.�/D lim sup
R!1

log.N.R//
R

;

where N.R/D #f 2 � j dX .x;  .x//�Rg for any given point x 2X .

Geometry & Topology, Volume 27 (2023)
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We will need to use the following proposition later in the proofs:

Proposition 2.1 [32, Corollary 6.12] Let w 2M DX=� be a piecewise geodesic
loop which consists of r geodesic segments , and let ˛ be the closed geodesic freely
homotopic to w such that `.˛/� � > 0. Then ˛ is contained in the D–neighborhood of
the loop w, where

D D cosh�1.
p

2/dlog2 reC sinh�1
�

2

�

�
C 2ı0:

Remark 2.2 The original corollary was stated under the extra assumption that ˛ is
simple. However, the proof of [32, Corollary 6.12] does not rely on this fact so we
have removed the assumption here.

2.2 Thick–thin decomposition

Given an isometry  2 Isom.X / and a constant � > 0, we define the Margulis region
Mar.; �/ of  as

Mar.; �/ WD fx 2X j dX .x;  .x//� �g:

It is a convex subset by the convexity of the distance function. Given a point x 2 X

and a constant � > 0, the set

F�.x/ WD f 2 Isom.X / j dX .x;  .x//� �g

consists of all isometries that translate x by at most �. For any discrete subgroup
� < Isom.X /, we denote by ��.x/ the group generated by F�.x/\� . The Margulis
lemma [3, Theorem 9.5] states that ��.x/ is a finitely generated virtually nilpotent
group for any 0< � < �.n; �/, where �.n; �/ is the Margulis constant depending on the
dimension n of X and the sectional curvature bound �.

We define the �–invariant set

T�.�/ WD fp 2X j ��.p/ is infiniteg:

The thin part (more precisely, the �–thin part) of the quotient orbifold M DX=� , which
we denote by thin�.M /, is defined to be T�.�/=� . The closure of the complement
M n thin�.�/ is called the thick part of M and is denoted by thick�.M /. The thin
part consists of bounded and unbounded components. The bounded components are
called the Margulis tubes, and are neighborhoods of short closed geodesics of length
no greater than �. More precisely, for every point x in the closed geodesic and every
tangent vector v at x perpendicular to the geodesic, we consider a unit-speed ray �
emanating from x in the direction of v. There exists R, depending on x and v, such that

d�.�.R//D � and d�.�.t// < �

Geometry & Topology, Volume 27 (2023)
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for all t <R. We call the arc �.Œ0;R�/ a maximal radial arc, and a Margulis tube is
the union of all radial arcs emanating from a short closed geodesic. For details, see for
example [16].

The unbounded components are called the Margulis cusps, and can be described more
precisely as follows. Denote the fixed-point set of � by

Fix.�/ WD
\
2�

Fix. /:

A discrete subgroup P < � is called a parabolic subgroup if Fix.P / consists of a
single point � 2 @1X . Given a constant 0 < � < �.n; �/ and a maximal parabolic
subgroup P < � , the set T�.P / � X is precisely invariant under P , and we have
stab�.T�.P //D P ; see [12, Corollary 3.5.6]. In this case, T�.P /=P can be regarded
as a subset of M , called a Margulis cusp. The cuspidal part of M is the union of all
Margulis cusps, denoted by cusp�.M /. Note that cusp�.M /� thin�.M /.

In our context, the parabolic subgroups in � (hence also the cuspidal part of M ) turn
out to be very simple due to the following proposition:

Proposition 2.3 Let � < Isom.X / be a torsion-free discrete isometry group , and
P < � be any parabolic subgroup. If ı is the critical exponent of � and P has
polynomial growth rate r , then we have r � 2ı. Thus:

(1) If ı < 1, then all parabolic subgroups (if they exist) are isomorphic to Z.

(2) If ı < 1
2

, then all nontrivial isometries in � are loxodromic.

Proof Let H be a horosphere that P acts on and choose any basepoint O 2H. Denote
by dH the horospherical distance and by dP the Cayley metric with respect to some
fixed finite generating set of P . Then there exists a constant C > 0 such that

(2-2) dH.O;  .O//� CdP .1;  /

holds for all  2 P . By [24, Theorem 4.6] there exists a constant C 0 > 0 such that, for
any p; q 2H with dX .p; q/ > C 0, we have

(2-3) dX .p; q/� 2 ln.C 0dH.p; q//:

By possibly replacing C or C 0 by a larger constant, we may assume C 0DC . Therefore
we obtain, from the above the asymptotic inequalities (for R large),

jf 2 P W dP .1;  /�Rgj � jf 2 P W dH.O;  .O//� CRgj .by (2-2)/

. jf 2 P W dX .O;  .O//� 2 ln.C 2R/gj .by (2-3)/

Geometry & Topology, Volume 27 (2023)
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' e2 ln.C 2R/ı.P/ .by (2-1)/

'R2ı.P/;

where ı.P / is the critical exponent of P . Since ı.P /� ı, it follows that r � 2ı.

In particular, if ı < 1, then r < 2 and by the Bass–Guivarc’h formula [4; 22], P must
be virtually Z. But since P is torsion-free, it must be Z [43]. If ı < 1

2
, then r < 1 and

P cannot exist. Thus all nontrivial elements in � are loxodromic.

2.3 Geometric finiteness

Recall that the limit set ƒ.�/ of a discrete subgroup � < Isom.X / is defined to be
the set of accumulation points of the �–orbit �.p/ in @1X , where p is an arbitrary
given point in X , and that the definition is independent of the choice of p. If ƒ.�/
is finite, then � is called elementary. Otherwise, it is called nonelementary. A point
� 2ƒ.�/ is called a conical limit point if every geodesic ray � WRC!X asymptotic
to � projects to a nonproper map � ı � WRC!M DX=� . We denote by ƒc.�/ the
set of all conical limit points.

We denote by Hull.ƒ/ � X the closed convex hull of ƒ � @1X , which is the
smallest closed convex subset in X whose accumulation set in @1X is ƒ, and by
C.�/D Hull.ƒ/=� the convex core of � .

A discrete isometry subgroup � < Isom X is geometrically finite if the noncuspidal part
of the convex core C.�/ in M DX=� is compact. Otherwise, it is called geometrically
infinite. If C.�/ is compact, then the discrete subgroup � is called convex cocompact.

There are various equivalent definitions of geometric finiteness, but we will only
mention one of them, proved by Kapovich and the first author. For the other equivalent
definitions we refer the readers to [12]. The following theorem is a generalization of a
previous result of Bonahon [10]:

Theorem 2.4 [32, Theorem 1.5] A discrete subgroup � < Isom.X / is geometrically
infinite if and only if there exists a sequence of closed geodesics ˛i �M D X=�

which escapes every compact subset of M .

2.4 Admissible surfaces

In this section, we give a sketch of the existence of smooth admissible surfaces. This
can be treated as a smooth version of [17, Section 1.1.5]. In our case, we will need a
slightly broader category of admissible surfaces than smooth maps in order to include

Geometry & Topology, Volume 27 (2023)
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the gluing of two maps along a smooth boundary. In general the notion of a piecewise
smooth map is rather technical (using Whitney stratification), but we only consider
maps from a smooth surface with boundary to a smooth manifold. Thus we simplify
the notion:

Definition 2.5 Given a smooth surface † (possibly with boundary) and a smooth
manifold M , we say a map f W†!M is a piecewise smooth map if there is a smooth
triangulation �D f�1; : : : ; �mg on † (ie edges are all smooth paths) such that:

(1) f is continuous.

(2) f is smooth on the interior of each face �i .

(3) If e D �i \ �j is a common edge, then the restriction f jp is smooth.

Roughly speaking, a piecewise smooth map is just a finite concatenation of smooth
maps, possibly pleating along the gluing edges. The singular set forms a piecewise
smooth 1–skeleton on†. Now we return to our context, where M DX=� is a complete
pinched negatively curved manifold. Suppose f�1; : : : ; �kg is a collection of k smooth
loops in M . If there exists a set of integers c1; : : : ; ck such that

Pk
iD1 ci Œ�i � D 0 in

H1.M;Z/, then we claim that
S

i ci�i will bound a piecewise smooth surface in the
sense explained below.

Choose a basepoint x0 2M and connect x0 to each of the loops �i by a smooth path pi .
Then the loop qi WD pi � .ci�i/�p�1

i is free homotopic to ci�i , which also represents
an element i 2 � Š �1.M;x0/. Since

Pk
iD1 ci Œ�i � D 0 in H1.M;Z/ Š �=Œ�; ��,

it follows that the product  D 1 � � � k is an element in the commutator subgroup
Œ�1.M;x0/; �1.M;x0/�. Thus we can write

 D Œa1; b1� � � � Œag; bg�

for some ai ; bi 2 � . We choose smooth loops ˛i and ˇi from x0 that represent ai

and bi , respectively. Fix a preimage Qx0 2X of x0 under the projection map � WX!M .
The loop � D ˛1 � ˇ1 � ˛

�1
1
� ˇ�1

1
� � � � � ˛g � ˇg � ˛

�1
g � ˇ

�1
g � .q1 � � � � � qk/

�1 is
nullhomotopic, thus lifts to a piecewise smooth loop on X . Therefore it bounds a
smooth disk on X , that is, there exists a disk D � R2 and a piecewise smooth map
f WD!X with f .@D/D � . Moreover, by identifying D with a .4gC3k/–polygon
with the label of

Qg
iD1

Œ Nai ; Nbi � Np1`1 Np
�1
1
� � � Npk`k Np

�1
k

, we can make the map f explicit
by sending the edge labels Nai , Nbi , Na�1

i , Nb�1
i , Npi , `i and Np�1

i to ˛i , ˇi , ˛�1
i , ˇ�1

i , pi ,
ci�i and p�1

i , respectively. Therefore, after gluing along the edge labels, f descends to
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a piecewise smooth map from †g;k (a genus g surface with k boundary components)
to M , which sends the boundary components (corresponding to `i) to ci�i .

In general:

Definition 2.6 Let † be a compact oriented (not necessarily connected) surface with
k boundary components. Given a collection of k loops f˛1; : : : ; ˛kg on M , we say a
map f W†!M is admissible with respect to f˛1; : : : ; ˛kg if the following diagram
commutes:

@† †

Sk
iD1 ˛i M

i

@f f

i

Note that ˛i could carry multiplicities, and the orientation of the surface † induces an
orientation on @†. In the above commutative diagram we also require @f to preserve
the orientations. If there exist such † and f , then we simply say

Sk
iD1 ˛i bounds a

surface f .

By the above discussion:

Proposition 2.7 Suppose f˛1; : : : ; ˛kg is a collection of k smooth loops in M . If
there exists a set of integers c1; : : : ; ck such that

Pk
iD1 ci Œ˛i �D 0 in H1.M;Z/, then

there exists a piecewise smooth admissible map with respect to fc1˛1; : : : ; ck˛kg, that
is ,
Sk

iD1 ci˛i bounds a piecewise smooth surface f W†!M .

Given two Riemannian manifolds N and M , a smooth map F WN !M and a positive
integer p�minfdim.N /; dim M g, the p–Jacobian of F at a point x 2N is defined to be

Jacp.F /.x/D sup kdFx.e1/^ dFx.e2/^ � � � ^ dFx.ep/k;

where the supremum is taken over all orthonormal p–frames fe1; : : : ; epg on TxN , and
the norm is induced by the Riemannian inner product at TF.x/M . Note that when
pD dim N � dim M , the p–Jacobian of F coincides with

p
detgN

F�gM .

Definition 2.8 Given a Riemannian manifold M , a smooth map f W †!M and a
smooth region U �†, we define the area of the map on U to be

A.f jU / WD

Z
U

jJac2 f j.x/ dV†;

where dV† is the volume form on†with respect to some chosen Riemannian metric g†,
and it is clear the definition of area is independent of the choice of g†. When U D†,
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we simply denote it by A.f /. The definition naturally extends to a piecewise smooth
map. Note that, at the region where df is degenerate, .Jac2 f / vanishes, so it does not
contribute to the area.

2.5 Besson–Courtois–Gallot map

In this section, we give a brief introduction to the Besson–Courtois–Gallot map and we
refer the readers to [6] for a more detailed exposition. First we recall that, given any
discrete subgroup � < Isom.X /, there exists a family of positive finite Borel measures
called the Patterson–Sullivan measures, which satisfy:

(1) �x is �–equivariant for all x 2X .

(2) d�x.�/D e�ıB.x;�/d�o.�/ for all x 2X and � 2 @1X .

Here ı is the critical exponent of � , o is a basepoint on X , and B.x; �/ is the Busemann
function on X with respect to o. Recall that the Busemann function B is defined by

B.x; �/D lim
t!1

�
d.x; ˛� .t//� t

�
;

where ˛� .t/ is the unique geodesic ray from o to � .

We note that the Busemann function B.x; �/ is convex on X . If � is any finite Borel
measure supported on at least two points on @1X , then the function

x 7! B�.x/ WD
Z
@1X

eB.x;�/ d�.�/

is strictly convex, and one can check it tends to C1 as x ! @1X . Hence we can
define the barycenter bar.�/ of � to be the unique point in X where the function attains
its minimum.

Now we construct the map zF WX !X given by

x 7! bar.e�B.x;�/�x/;

where e�B.x;�/�x denotes the unique (up to measure zero) Borel measure which is
absolutely continuous with respect to �x , with the corresponding Radon–Nikodym
derivative e�B.x;�/.

Theorem 2.9 (Besson–Courtois–Gallot [6]) The map zF WX !X constructed above
satisfies:

(1) zF is �–equivariant , and thus descends to a map F WM !M .

(2) F is smooth and homotopic to the identity.

(3) jJacp.F /.x/j � ..1C ı/=p/p for any integer p 2 Œ1; dim M � and any x 2M .
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Remark 2.10 The case of pD 1 in .3/ is not directly stated in the paper, however it
is clear from the 2–form equation [6, (4.11)] that kdFk � .1C ı/. According to the
theorem, if ı� p�1, then jJacp.F /j� 1 hence F is a p–dimensional volume-decreasing
map. However, in order to obtain the linear isoperimetric inequality in Section 3.1, we
will need an area-decreasing map, which is assured only in the case ı < 1. Thus, we
will only apply the theorem to the cases pD 1; 2.

Notation

Henceforth X always denotes a negatively pinched Hadamard manifold with sectional
curvature ��2 �K � �1, and � < Isom.X / denotes a torsion-free discrete isometry
subgroup. Let M D X=� be the quotient manifold, � W X ! M be the quotient
map, and d be the distance on M . Let ı denote the critical exponent of � and
C.ı/D 4=.1�ı/. We use ` and A to denote the length and area functions, respectively.
We let inj.x/ denote the injectivity radius at a point x 2M , and let NJ.S/ denote the
normal injectivity radius of a submanifold S �M ; see Section 3.2.

3 Geometry with small critical exponent

In this section, we investigate the geometry of the quotient manifold M under the
assumption ı < 1.

3.1 Linear isoperimetric type inequality

The study of the isoperimetric problem has a long and significant history. In the classical
context, given a region ��R2, it is natural to ask what the optimal relation between
its area A.�/ and the length of its bounding curve `.@�/ is. It is proved that there
is a quadratic relation A.�/ � `.@�/2=4� , and that equality holds if and only if �
has a circular boundary. However, our main interest has driven us to work in a slightly
different context. Let M DX=� be a complete quotient manifold and C�M be a union
of smooth loops which represents a trivial homology class in M . By the discussion in
Section 2.4, C bounds an admissible surface. Among all admissible surfaces, we find
one surface † such that A.†/ and `.@†/ satisfy a linear isoperimetric type inequality.

Definition 3.1 A family of loops F D f˛1; : : : ; ˛kg in M is irreducible if either

(1) k D 1 and ˛1 represents a trivial or torsion homology class, or

(2) F consists of linearly dependent loops, and any nontrivial subfamily of F is
linearly independent.
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Suppose F D f˛1; : : : ; ˛kg is an irreducible family of loops. In case .1/, F consists
of one homology class Œ˛�, so there is a minimal positive integer c such that cŒ˛�D 0.
In case .2/, there exists a unique (up to a sign) set of integers c1; : : : ; ck such that
gcd.c1; : : : ; ck/ D 1 and

Pk
iD1 ci Œ˛i � D 0 in H1.M /. Thus, there exist admissible

surfaces in M with respect to cŒ˛� (or
Sk

iD1 ci˛i) and by irreducibility they are
necessarily connected. Note that ci˛i denotes the ci multiple of ˛i , and ci being
negative corresponds to reversing the orientation of ˛i . We call the set of integers
c1; : : : ; ck (or, in case 1, c) the associated integers of the irreducible family.

Theorem 3.2 Let F D f˛1; : : : ; ˛kg be any family of smooth loops in M which
are linearly dependent in H1.M;Z/ such that there are integers c1; : : : ; ck satisfyingPk

iD1 ci Œ˛i � D 0 in H1.M /. Suppose the critical exponent ı is less than 1. ThenSk
iD1 ci˛i bounds a smooth surface f0 W†!M whose area satisfies

A.f0/�
4

1�ı
`.f0.@†//D

4

1�ı

� kX
iD1

jci j`.˛i/

�
:

Proof We may assume F is irreducible. Otherwise, we decompose F into irreducible
subfamilies and use the additivity of area and length functions on disjoint unions.
We consider the set S which consists of all piecewise smooth surfaces bounded bySk

iD1 ci˛i , or more precisely, we set S equal to˚
f W†!M j f is piecewise smooth admissible with respect to fc1˛1; : : : ; ck˛kg

	
:

By Proposition 2.7 it is nonempty. Let A0 D inffA.f / W f 2Sg. To avoid possible
existence and regularity issues (see the following remark) of minimal surfaces in M ,
we can choose a piecewise smooth admissible map f� 2S such that A.f�/� .1C�/A0

for any � > 0. Composing with the Besson–Courtois–Gallot map F as described in
Section 2.5, we obtain a piecewise smooth admissible map F ı f� with respect toSk

iD1 ciF.˛i/. By Theorem 2.9 we have the area estimate

A.F ıf�/D

Z
†

jJac2.F ıf�/j dV† �

Z
†

jJac2 F j � jJac2 f�j dV†

�
�

1
2
.1C ı/

�2
A.f�/�

�
1
2
.1C ı/

�2
.1C �/A0;

and the length estimate `.F.˛i// � .1C ı/`.˛i/. For each ˛i , since F.˛i/ is free
homotopic to ˛i , we can build an (immersed) cylindrical homotopy †i �M between
them by taking the image of the union of two geodesic cones Conep. zF . Q̨ // and
Cone.q/. Q̨ / under the projection � WX !M ; see Figure 1. Here  2 � is an element
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p Q̨  .p/

q
zF . Q̨ /

 .q/

Figure 1

represented by ˛, Q̨ is a lift of ˛, and p and q as well as  .p/ and  .q/ are connected
by geodesics. To estimate the area of †i , we will need:

Lemma 3.3 For any p 2X and any smooth curve ˛�X , the geodesic cone Conep.˛/

has the area bound
A.Conep.˛//� `.˛/:

Proof We parametrize the smooth curve by ˛ W Œ0; 1�!X , and write D.s/Dd.p; ˛.s//.
The geodesic cone Conep.˛/ can be parametrized by the smooth map

ˆ W Œ0; 1�� Œ0;D.s/�!X; .s; t/ 7! expp.tˇ.s//;

where ˇ.s/ is the unit vector in the direction of the preimage of ˛ under the exponential
map, that is, the unique curve in TpX satisfying expp.D.s/ˇ.s// D ˛.s/. Since
˛.s/Dˆ.s;D.s//, we have

˛0.s/D

�
@ˆ

@s
C
@ˆ

@t
D0.s/

�
.s;D.s//:

Let s.t/D ˆ.s; t/. For each s, s.t/ is a unit-speed geodesic connecting p to ˛.s/,
so, at any point .s; t/ 2 Œ0; 1�� Œ0;D.s/�,

@ˆ

@t
D  0s.t/;

@ˆ

@s
D Js.t/;

where Js.t/ is the unique Jacobi field along s satisfying Js.0/D 0 and

Js.D.s//D
@ˆ

@s
.s;D.s//D ˛0.s/�  0s.D.s//D

0.s/;

which is the projection of ˛0.s/ orthogonal to  0s.D.s//. This implies that Js.t/ is a
normal Jacobi field and that @ˆ=@t ? @ˆ=@s. Therefore

jJac.ˆ/j D
@ˆ
@s
^
@ˆ

@t

D @ˆ
@s

 � @ˆ
@t

D kJs.t/k:

Using [24, Proposition 2.3] and the curvature assumption K ��1, we can estimate the
norm of the Jacobi fields by

(3-1) kJs.t/k �
sinh t

sinh.D.s//
kJs.D.s//k �

sinh t

sinh.D.s//
k˛0.s/k:
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Finally we obtain the area estimate of the geodesic cone:

(3-2) A.Conep.˛//�

Z 1

0

Z D.s/

0

jJac.ˆ/j dt ds

�

Z 1

0

Z D.s/

0

sinh t

sinh.D.s//
k˛0.s/k dt ds .by (3-1)/

�

Z 1

0

k˛0.s/k ds � `.˛/:

Now we continue with the proof. By the lemma above,

(3-3) A.†i/� `.˛i/C `.F.˛i//� .2C ı/`.˛i/:

Here †i is a piecewise immersed surface in M and we can choose any piecewise
smooth parametrization �i WS

1� Œ0; 1�!M to represent †i . If we concatenate each �i

with F ı f� (glue
Sk

iD1 ci†i onto F ı f�.†/ on M ), we get a new piecewise smooth
admissible surface f 0� with respect to

Sk
iD1 ci˛i , and by assumption A.f 0� /�A0. On

the other hand, combining the above inequalities,

A0 �A.f 0� /DA.F ıf�/C

kX
iD1

jci jA.†i/

�
�

1
2
.1C ı/

�2
.1C �/A0C .2C ı/

� kX
iD1

jci j`.˛i/

�
.by (3-2) and (3-3)/:

Thus, by letting � tend to zero, we obtain

A0 �
4.2C ı/

.1� ı/.3C ı/

� kX
iD1

jci j`.˛i/

�
<

4

1�ı

� kX
iD1

jci j`.˛i/

�
:

Therefore we can always choose a piecewise smooth map in S whose area is arbitrarily
close to A0, and finally we can always smoothen it with an arbitrarily small increase
on the area. In particular, there is a smooth admissible map f0 with area

A.f0/�
4

1�ı

� kX
iD1

jci j`.˛i/

�
:

Remark 3.4 The existence and regularity of minimal surfaces for a general complete
manifold relate to the generalized Plateau problem, which has been studied in [37].
If there is a uniform lower bound on the injectivity radius on M , then the condition
of “homogeneously regular” in [37] is satisfied; hence, the existence and regularity
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of the area minimizer hold. Although in Theorem 3.7 we manage to show M has
bounded geometry, the proof relies on this theorem; hence, using this would fall into
circular reasoning.

We do not pursue the optimal bound in the theorem above. Indeed, the linear isoperi-
metric constant we produce via this method will always tend to infinity as ı! 1. This
stands as an obstacle in improving our main theorems as ı approaches 1.

3.2 Asymptotically uniformly bounded tubular neighborhood

Let S be a closed submanifold of M , N.S;M /Df.x; v/2TM Wx 2S and v?TxSg

be the normal bundle of S in M , and Nr .S;M /D f.x; v/ 2 N.S;M / W jvj < rg be
the r–normal bundle of S in M . The normal exponential map expS is defined to be
the restriction of the exponential map exp W TM !M to the normal bundle N.S;M /

of S in M . The normal injectivity radius NJ.S/ is defined to be the supremum of r

such that expS is an embedding on Nr .S;M /. In the case where r � NJ.S/, we say
expS .Nr .S;M //D fx 2M j d.x;S/ < rg is the r–tubular neighborhood of S in M ,
and we denote it by Tr .S/. By convention, if the submanifold has a self-intersection,
we declare that it has normal injectivity radius zero.

Lemma 3.5 Let ˛ be a closed geodesic in M with NJ.˛/D R > 0, and let TR.˛/

be its R–tubular neighborhood in M . If i W †!M is any smooth admissible map
with respect to fk˛; ˛0g such that either ˛0 is empty or ˛0 consists of a union of smooth
loops outside of TR.˛/ (ie dM .˛0; ˛/ >R), then

A.i ji�1.TR.˛//
/� kR`.˛/:

Proof We choose a Riemannian metric g0 on †, and let �1 and �2 be two positive
real numbers recognized to be small and to be determined later. First, we perturb the
pullback metric i�gM to be Riemannian on † by setting g D i�gM C �1g0 and use
this to estimate the area of i . It follows that, for any � > 0 and any region U �†,

jvolg.U /�A.i jU /j D

ˇ̌̌̌Z
U

1 dVg �

Z
U

jJac2 i j dVg0

ˇ̌̌̌
(3-4)

D

Z
U

�p
detg0

.g/�
p

detg0
.i�gM /

�
dVg0

�

Z
†

�p
detg0

.g/�
p

detg0
.i�gM /

�
dVg0

< �;

after choosing �1 small enough. Note that this follows from the continuity of the
determinant function, and that the estimate is uniform on U .
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Next, we choose a suitable function on † and use the coarea formula to estimate
volg.U /. Denote by � � @† the boundary component which sends to k˛ under i ,
and by �˛ WM ! R the distance function to ˛ on M . Now we construct a function
f W†!R by setting

f D �˛ ı i C �2';

where ' is a smooth function on † chosen so that:

(1) '.x/D 0 on � and '.x/ > 0 on † n � .

(2) There exists a collar neighborhood V of � such that d'.x/¤ 0 when x 2 V n� .

For example, one can choose ' to be the distance function to � on its local neighborhood
and then extend smoothly to any positive function outside. For this choice, it is clear
that f .x/� 0 and f �1.0/D � . Since M is negatively curved, there is no conjugate
point for M . Thus, for any y 2 TR.˛/, there is a unique geodesic projection onto ˛, so
�˛ is smooth on TR.˛/ n˛. It follows that f is smooth on i�1.TR.˛// n � �†. We
can estimate the norm of its differential with respect to the metric g by

kdf k D kd�˛ ı di C �2d'k(3-5)

� kd�˛k � kdikC �2kd'k .note that i is 1–Lipschitz/

< .1C �/;

after choosing �2 small enough. This uses the compactness of †.

Finally we estimate the area of i on i�1.TR.˛//. By the construction of f , we have
f �1.Œ0;R//� i�1.TR.˛//. Thus, if we set U D f �1.Œ0;R//, then

volg.U /� volg
�
i�1.TR.˛//

�
:

On the other hand, by the coarea formula [15, Section 13.4], we obtain from (3-5) that

(3-6) volg.U / >
1

1C�

Z
U

kdf k dVg D
1

1C�

Z R

0

`g.f
�1.t// dt:

Note that in the above formula, f �1.t/ might not be a smooth curve if t is a singular
value. But by Sard’s theorem, almost all values r 2 .0;R/ are regular, in which case the
level sets are unions of smooth circles on†, and `g denotes the total length of the circles.
In particular, the above integral makes sense. Other boundary components (if any) of †
do not intersect with i�1.TR.˛// by assumption, so, given any regular value t 2 Œ0;R/,
f �1.t/ (up to orientation) is homologous to f �1.0/D � on †. Hence, taking their
images in M , we obtain that i.f �1.t//, which is also a union of smooth loops, is

Geometry & Topology, Volume 27 (2023)



Discrete subgroups of small critical exponent 2365

homologous to k˛ on M . Since they are entirely contained in TR.˛/, i.f �1.t// is
in fact free homotopic to k˛. More precisely, for almost all t 2 .0;R/, if we write
i.f �1.t// as a disjoint union of circles

Sm
iD1 ˛i , then each ˛i is a smooth loop free

homotopic to ki˛ for ki 2 Z, since the fundamental group of the R–neighborhood
of ˛ is a cyclic group generated by the loop ˛. (Some ki could be zero, in which
case ˛i is homotopically trivial in M .) Moreover,

Pm
iD1 ki D k. Since ˛ is a closed

geodesic, we have that `
�
i.f �1.t//

�
D
Pm

iD1 `.˛i/�
Pm

iD1 jki j`.˛/� k`.˛/. Note
that i is 1–Lipschitz, so `g.f

�1.t//� `
�
i.f �1.t//

�
. Combining the above inequality

with (3-4) and (3-6),

A.i ji�1.TR.˛//
/ >

1

1C�
kR`.˛/� �:

Since � > 0 is arbitrary, the lemma follows.

Lemma 3.6 Assume we have N cusps in M and a constant � > 0 small enough that
fM

.i/
12�
W 1� i �N g are disjoint components of the cuspidal part cusp12�.M /. Suppose

� W †!M bounds an irreducible collection of smooth loops
SN

iD1 ci˛i , where each
˛i is contained in the 2�–thinner part M

.i/
2�
�M

.i/
12�

in each cusp component and is
homologically nontrivial. Then

A.�/� 4�2:

Proof Since the collection is irreducible and ˛1 is homologically nontrivial in its
cusp component (which might be homologically trivial in M ), �.†/ has to leave M

.1/
12�

.
We will only focus on the region U0 WD �

�1.M
.1/
12�
/ as shown in Figure 2. If we let

M
.1/
4�
�M

.1/
12�

be the 4�–thinner part and set T1 DM
.1/
12�
nM

.1/
4�

, then certainly

A.�/�A.�ji�1.T1/
/:

So it suffices to give a lower bound on the area restricted to the T1 region.

Similar to the proof of Lemma 3.5, we first choose the same perturbed Riemannian
metric on † as g D ��gM C �1g0, and for any �0 > 0 the estimate of (3-4) still works
after choosing �1 small enough. Thus, for any U �†, we have

(3-7) jvolg.U /�A.�jU /j< �
0:

Denote by � � @† the boundary component which maps to c1˛1 under �, and let ' be,
as before, the smooth function on † such that:

(1) '.x/D 0 on � and '.x/ > 0 on † n � .

(2) There exists a collar neighborhood V of � such that d'.x/¤ 0 when x 2 V n� .
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�
�
�

1 .M
1
4�
/D

U 0
nU

1

U1D �
�1.T1/

D ��1.M 1
12�nM

1
4�/

U0D �
�1.M 1

12�
/

@U0n�

Figure 2

We choose a smooth approximation [21, Proposition 2.1] of the injectivity radius
function on a neighborhood of �.†/, denoted by j , such that

(1) j > 0 on �.†/,

(2) j is .1C�0/–Lipschitz, and

(3) jj .y/� inj.y/j< � on �.†/.

Choose a smooth bump function 0� � 1 on† such that  D 1 on ��1.T1/ and  D 0

on � . Since† is compact, there exists K> 0 such that k'k<K and kd'k<K. Choose
a positive constant �2 <minf�; �0g=K. Now define the smooth function f W†!R by

f D �2'C .j ı �/:

By the construction of f , we see that f .x/ � 0 on U0 and f �1.0/ D � . When
restricting to U1 WD �

�1.T1/D �
�1.M

.1/
12�
nM

.1/
4�
/, the norm of its differential under

the metric g can be estimated by

(3-8) kdf kU1
D k�2d'C dj ı d �k � �2kd'kCkdj k � kd �k< 1C 2�0:

The first inequality follows from the fact that  D 1 on ��1.T1/, and the last inequality
uses that � is 1–Lipschitz and also the choice of j and �2. Now we investigate the
value of f on U0, and apply the coarea formula to give a lower bound for the area
of �jf �1.Œ4�;5��/\U0

.

Claim The subset f �1.Œ4�; 5��/\U0 is contained in U1, and f �1.Œ0; 5��/\U0 is
disjoint from @U0 n � .

Geometry & Topology, Volume 27 (2023)



Discrete subgroups of small critical exponent 2367

Proof For any x 2 U0 nU1 D �
�1.M

.1/
4�
/,

f .x/D �2'.x/C .x/j .�.x// < �C j .�.x// < �C inj.�.x//C � < 4�:

This implies that f �1.Œ4�; 5��/\ U0 is contained in U1. Next, we notice that @U0

consists of � and other boundary components on which injD 6�. For any x 2 @U0 n� ,

f .x/D �2'.x/C .x/j .�.x// > j .�.x// > inj.�.x//� � > 5�:

So, for any t 2 Œ0; 5��, f �1.t/, restricted on U0, does not intersect with @U0.

As a consequence, for any regular values t 2 Œ0; 5��, f �1.t/ is a union of smooth
loops that cobounds with f �1.0/D � , and in particular is homologous to � . Under
the image of �, it shows that �.f �1.t/ \ U0/ is homologous to �.�/ D c1Œ˛1� ¤ 0.
Moreover, for regular values t 2 .4�; 5�/ and any point y 2 �.f �1.t/\U0/, we let
x 2 f �1.t/\U0 � U1 be any preimage of y. Then

inj.y/D inj.�.x//� j .�.x//� � D f .x/� �2'.x/� � . .x/D 1 since x 2 U1/

� t � 2� > 2�:

In particular, `
�
�.f �1.t/\U0/

�
� 2 inj.y/ � 4�. Since � is 1–Lipschitz, we obtain

`g.f
�1.t/\U0/� 4� for any regular values t 2 .4�; 5�/. Finally, we apply the coarea

formula together with (3-7) and (3-8), and obtain

A.�/�A.�jf �1.Œ4�;5��/\U0
/ > volg.f �1.Œ4�; 5��/\U0/� �

0

>
1

1C2�0

Z
f �1.Œ4�;5��/\U0

kdf k dVg � �
0

D
1

1C2�0

Z 5�

4�

`g.f
�1.t/\U0/ dt � �0 �

1

1C2�0
4�2
� �0:

Since �0 > 0 is arbitrary, the lemma follows.

Now we are ready to prove .1/ and .2/ of Theorem 1.11.

Theorem 3.7 Let � < Isom.X / be a finitely generated torsion-free discrete isometry
subgroup of a negatively pinched (normalized to K � �1) Hadamard manifold X . Let
N.�/ be the number of cusps in M , and ˇ1.�/ be the first Betti number of M . If
ı < 1, then:

(1) N.�/� ˇ1.�/.
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(2) For an integer k>ˇ1.�/�N.�/ and any family of closed geodesics f˛1; : : : ; ˛kg

that are mutually 2C.ı/C1 apart , there exists at least one closed geodesic whose
normal injectivity radius is � C.ı/, where C.ı/D 4=.1� ı/.

(3) M has bounded geometry.

Proof For .1/, suppose to the contrary N.�/ > ˇ1.�/, where N.�/ could be infinite.
Choose � small enough such that the cuspidal part cusp12�.M / consists of N.�/ disjoint
components

SN
iD1 M

.i/
12�

. For each component M
.i/
12�

, the corresponding parabolic
subgroup Pi is infinite cyclic by Proposition 2.3, so we can choose i 2 Pi < �

which represents a nontrivial torsion-free homology class in X=Pi (not necessarily
in M ). Since N.�/ > ˇ1.�/, we have that fŒ1�; : : : ; ŒN.�/�g is linearly dependent
in H1.M /. We can choose an irreducible subfamily containing Œ1� and without loss
of generality we assume this to be f1; : : : ; kg, where k � ˇ1.�/C 1 < 1. Let
c1; : : : ; ck be the associated integers such that

Pk
iD1 ci Œi � D 0 (with c1 ¤ 0). On

each component M
.i/
12�

choose a thinner part M
.i/
4�
�M

.i/
12�

and let Ti DM
.i/
12�
nM

.i/
4�

.
In particular, the Ti are disjoint and, for any x 2 Ti , we have 2� � inj.x/ � 6�.
We choose a loop ˛i �M

.i/
2�

representing Œi � such that `.˛i/ is small enough thatPk
iD1 jci j`.˛i/ < �

2=C.ı/; see [12, Proposition 1.1.11]. By Theorem 3.2,
Sk

iD1 ci˛i

bounds a smooth surface � W†!M whose area satisfies

(3-9) A.�/� C.ı/

� kX
iD1

jci j`.˛i/

�
< �2:

However, by Lemma 3.6, A.�/�4�2, which contradicts to (3-9). Hence, N.�/�ˇ1.�/.

For .2/, suppose there are k D ˇ1.�/�N.�/C 1 mutually 2C.ı/C 1 apart simple
closed geodesics ˛1; : : : ; ˛k whose normal injectivity radii are greater than C.ı/. To
illustrate the idea, we first assume M has no cusps. Then Œ˛1�; : : : ; Œ˛k � are linearly
dependent on H1.M /. By Theorem 3.2, there exist integers c1; : : : ; ck such thatSk

iD1 ci˛i bounds a smooth surface f W†!M whose area satisfies

(3-10) A.f /� C.ı/

� kX
iD1

jci j`.˛i/

�
:

Let RiDNJ.˛i/ and, by the assumption Ri>C.ı/, we can pick �>0 small enough that
� < 1

2
and C.ı/C � <Ri for all i . Denote by Ti the .C.ı/C�/–tubular neighborhood

of ˛i , and, since f˛ig are mutually 2C.ı/C 1 apart, fTig are disjoint, and so are
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ff �1.Ti/g. Therefore, by Lemma 3.5,

(3-11) A.f /�

kX
iD1

A.f jf �1.Ti /
/� .C.ı/C �/

� kX
iD1

jci j`.˛i/

�
:

This contradicts (3-10).

For the general case, pick nontrivial torsion-free homology classes fŒ1�; : : : ; ŒN.�/�g

on each cusp component as in .1/. This together with Œ˛1�; : : : ; Œ˛k � forms a linearly
dependent system on H1.M /. Choose an irreducible system containing Œ˛1�, and
without loss of generality assume it to be fŒ1�; : : : ; ŒN.�/�; Œ˛1�; : : : ; Œ˛k �g. Thus there
are integers b1; : : : ; bN.�/ and c1; : : : ; ck such that

PN.�/
iD1 bi Œi �C

Pk
jD1 cj Œ j̨ �D 0.

Now choose a loop �i on each cusp component representing i such that `.�i/ is small
enough that

PN.�/
iD1
jbi j`.�i/< �

�Pk
jD1 jcj j`. j̨ /

�
=C.ı/, where � is the same constant

as above in the noncusp case. By Theorem 3.2,
�SN.�/

iD1
bi�i

�
[
�Sk

jD1 cj j̨

�
bounds

a smooth surface f W†!M whose area satisfies

A.f /� C.ı/

�N.�/X
iD1

jbi j`.�i/C

kX
jD1

jcj j`. j̨ /

�
:

Thus we have

A.f / < C.ı/

�
1C

�

C.ı/

�� kX
jD1

jcj j`. j̨ /

�
D .C.ı/C �/

� kX
jD1

jcj j`. j̨ /

�
:

However, the area lower bound estimate in (3-11) still holds, which is a contradiction.

For .3/, suppose M has unbounded geometry, that is, there exists a sequence of closed
geodesics f˛ig with `.˛i/! 0. When `.˛i/ is smaller than the Margulis constant,
˛i determines a Margulis tube such that the length of every maximal radial arc tends
to 1 as `.˛i/ ! 0; see for example [16, Lemma 2.4]. In particular, the normal
injectivity radius NJ.˛i/ goes to1. By passing to a subsequence, we can assume that
the geodesics ˛i are arbitrarily far apart and their normal injectivity radii are all greater
than C.ı/, which contradicts .2/.

Remark 3.8 The assumption ı < 1 is crucial in Theorem 3.7 (which also traces back
to Theorem 3.2). Indeed, the main strategy of the proof is to apply an area-decreasing
map on the (approximated) area-minimizing surfaces, which are bounded either by
tiny loops in different cusps or by far apart closed geodesics. The existence of such a
map follows from a construction of Besson, Courtois and Gallot (Theorem 2.9), where
ı < 1 has been used to obtain that the area is decreasing.
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x0

˛

˛0

˛00

Figure 3

In general, there are examples [29] of finitely generated Kleinian groups � < Isom.H4/

with infinitely many (rank-one) cusps, and by construction it is clear that ı 2 Œ2; 3�.
Thus, for every n� 4, one can construct, via the totally geodesic embedding H4!Hn,
a Kleinian group � < Isom.Hn/ of the same critical exponent which contains infinitely
many cusps. Italiano, Martelli and Migliorini [28] constructed new examples of finitely
generated Kleinian groups �C G< Isom.Hn/ for 5�n� 8 with infinitely many cusps,
where G is a lattice and G=� Š Z. Hence it follows that ı.�/D ı.G/D n� 1. We
believe that finitely generated Kleinian groups must have finitely many cusps if ı < 2.

We end this section with a corollary which turns out to be essential to our proofs of the
main theorems. It is a direct consequence of Theorem 3.7(2). Roughly speaking, if ı <1

then closed geodesics asymptotically have uniformly bounded tubular neighborhoods.

Corollary 3.9 Suppose ı < 1 and M has a sequence of escaping closed geodesics.
Then there exists a subsequence of escaping closed geodesics whose normal injectivity
radii are � C.ı/.

3.3 Decomposing a closed geodesic

Suppose ˛ is a closed geodesic in M with NJ.˛/� C.ı/. By definition, there exists
x0 2M achieving the normal injectivity radius such that it projects to ˛ in two different
geodesic minimizing paths. The two geodesic paths have an angle of � . Thus we can
decompose ˛ into two piecewise geodesic loops ˛0 and ˛00 as shown in Figure 3. It is
clear that their lengths satisfy `.˛0/C `.˛00/� `.˛/C 4C.ı/.

Equivalently, in the universal cover (as shown in Figure 4), there exists an isometry
g 2 � and Qx0 2X such that

d. Qx0;A /� C.ı/; d. Qx0;g
�1.A //� C.ı/;

where A is a lift of ˛ in X . Let Qx and Qy be the projections of Qx0 onto g�1.A /

and A , respectively, which will realize the shortest distance between g�1.A / and A
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Qx
g�1.A /

Qx0

g. Qx/ Qy
 �g. Qx/

A

g. Qx0/
g.A /

g. Qy/

Figure 4

(so `. Qx Qy/� 2C.ı/). Under the projection map � WX !M , the consecutive geodesic
segments connecting g. Qx/, Qy and Qx maps to ˛0 and the one connecting Qx, Qy and  �g. Qx/
maps to ˛00, where  translates along A and corresponds to ˛. From Figure 3, we
see that ˛0 represents the isometry g and ˛00 represents the isometry  � g; these are
nontrivial elements in � . We claim that the group hg;  �gi is nonelementary. Otherwise,
hg;  �gi is parabolic or loxodromic. If hg;  �gi is parabolic, then both g and  �g are
parabolic and they have the same fixed point, which implies that  has the same fixed
point as the one of the parabolic isometry g, which contradicts the assumption that �
is discrete by [11, Lemma 3.1.2]. (The proof of Lemma 3.1.2 can be applied to the
case of negatively pinched Hadamard manifolds directly.) If hg;  �gi is loxodromic,
then g and  �g are both loxodromic and they preserve an axis setwise, which means
that  will preserve the same axis as g. However, note that  preserves the axis A ,
which is not preserved by g.

It is possible that x0 projects to the same point on ˛, in which case ˛0 is the entire
transverse geodesic loop, and ˛00 is the concatenation ˛0�1 � ˛. It is also possible
that ˛ may have a transverse self-intersection, in which case the above decomposition
coincides with the obvious separation at the self-intersection. Note that nontransverse
self-intersection of a closed geodesic ˛ can only occur when ˛ is a multiple of some
primitive closed geodesic N̨ , in which case the above decomposition on ˛ can essentially
be treated on N̨ . We remark that in all the abovementioned “exceptional” cases, the
decomposition as described always exists.
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Qx0
g. Qx0/  . Qx0/

� C.ı/ � C.ı/

Qy g. Qx/  . Qy/
A

�D.�/ �D.�/

Nu
Np Nq  . Np/

O  .O/

Figure 5

We can extend the above decomposition to a piecewise geodesic loop:

Lemma 3.10 Let u � M be a piecewise geodesic loop consisting of at most two
geodesics , and let ˛�M be the closed geodesic free homotopic to u with NJ.˛/�C.ı/

and `.˛/� �. Then there exist points p; q 2u (which could be the same) and a geodesic
segment ! connecting p and q whose length is bounded above by C0D 2C.ı/C2D.�/.
Here D.�/ is the constant in Proposition 2.1. Moreover , the two piecewise geodesic
loops under the decomposition shown in Figure 3 are homotopically nontrivial.

Proof Write u as the union of two geodesic segments in M which start and end at O .
Let Nu be a lift of u in X consisting of two geodesic segments from the lift O to  .O/
as in Figure 5, where  2 � is represented by u. We denote the axis of  by A , which
is a lift of ˛. Since NJ.˛/� C.ı/, by the discussion above there exists a point Qx0 2X

and a nontrivial element g 2 � with g ¤  such that Qx0 and g. Qx0/ project onto A

at two points Qy and g. Qx/ (which could be the same point) satisfying d. Qx0; Qy/� C.ı/

and d.g. Qx0/;g. Qx//� C.ı/; see Figure 4.

By Proposition 2.1 there exist Np; Nq2 Nu such that d. Qy; Np/�D.�/ and d.g. Qx/; Nq/�D.�/.
Thus, the piecewise geodesic consecutively connecting Np, Qy and Qx0 together with the
one connecting g. Qx0/, g. Qx/ and Nq projects to a piecewise geodesic path connecting
�. Np/D p and �. Nq/D q 2M with total length � 2C.ı/C 2D.�/. Finally, there is a
unique geodesic segment ! connecting p and q which is homotopic to this piecewise
geodesic path and it is clear that `.!/� 2C.ı/C 2D.�/.

The geodesic segment ! divides the piecewise geodesic loop u into two parts, u1

and u2. The concatenation of ui with the geodesic segment ! gives two piecewise
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˛

q

p

B D Œpq�

pq

ıqp

Figure 6

geodesic loops under this decomposition, where i D 1; 2. If the two piecewise geodesic
loops are homotopically trivial, then Qx0 D g. Qx0/D  . Qx0/. By our construction, g¤ 

and g ¤ 1. Hence, they are homotopically nontrivial.

3.4 Injectivity radius and convex cocompactness

In this section, we prove .3/ of Theorem 1.11. We start by introducing the definition
of a bow which will be used later in the proof.

Definition 3.11 Given a closed geodesic ˛, we say B D pq �ıqp is a bow on ˛ if:

(1) B consists of two edges pq and ıqp, where p and q are two distinct points on ˛.

(2) pq is a minimizing geodesic connecting p to q on M , which might not lie on ˛.

(3) ıqp is a geodesic segment on ˛ connecting q to p, which might not be length
minimizing; see Figure 6.

We say a bow B D pq �ıqp is C –thin if d.p; q/� C , and we say B is nontrivial if the
loop pq�ıqp of B is homotopically nontrivial in M . The length of a bow BDpq�ıqp

is the length of the loop pq �ıqp.

Lemma 3.12 Suppose that ı < 1 and the injectivity radius on M is bounded by some
constant 1

2
�0 > 0 from below. Then there are no closed geodesics ˛ in M satisfying:

(1) ˛ has normal injectivity radius at most C.ı/.

(2) All points of ˛ have injectivity radii greater than 4C0 C 1, where C0 is the
constant in Lemma 3.10.

Proof Suppose that there exists such a closed geodesic ˛ in M . We consider the set
B D B.˛; 2C0/ that consists of all nontrivial 2C0–thin bows on ˛. The set is never
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empty. Indeed, choose p; q 2 ˛ sufficiently close and choose ıqp the longer segment
on ˛ connecting q to p such that `.pq/ < `.ıqp/ and `.pq/ � 2C0. This gives a
nontrivial 2C0–thin bow on ˛. Let t D inff`.B/ WB 2 Bg. We choose BDpq�ıqp 2 B
to be a bow with length� tC1. Since B is a 2–piecewise geodesic path, by Lemma 3.10
there exist r; s 2 B and a geodesic segment ! �M connecting r and s such that

(3-12) `.rs/D `.!/� C0

and that ! splits B nontrivially. Although Lemma 3.10 by itself does not assure that
! is length minimizing, and r and s might even be the same point, we claim this is
not the case. Indeed, since `.pq/� 2C0, r must be contained in the C0–neighborhood
of ˛. By the assumption on the injectivity radius, all the points on ˛ have injectivity
radius > 4C0C1. Since the injectivity radius function is 1–Lipschitz, inj.r/ > 3C0C1.
This implies that any geodesic segment emanating from r whose length is at most
3C0 C 1 must be uniquely length minimizing. In particular, ! is uniquely length
minimizing and r ¤ s.

Based on the positions of r and s, we discuss three cases:

(1) r and s are both on pq.

(2) r and s are both on ıqp.

(3) r 2 pq and s 2ıqp.

Observe that .1/ is impossible since both ! and pq are uniquely length minimizing,
so ! has to be entirely contained in pq, which contradicts the fact that ! splits B

nontrivially. Case .2/ is also impossible. To see this, we assume without loss of
generality that q, s, r and p are in cyclic order in ıqp, as in Figure 7, and r and s cutıqp into three geodesic segments, denoted by Ùqs, Ùsr andırp. By assumption, the bow
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B0 D rs � Ùsr is a nontrivial C0–thin (of course also 2C0–thin) bow on ˛. So by the
choice of B we have `.B0/C 1� t C 1� `.B/, hence

(3-13) `.rs/C 1� `.ırp/C `.pq/C `.Ùqs/:

Since ! splits B nontrivially, we have obtained a homotopically nontrivial piecewise
geodesic loop �D rs � Ùsq � qp �ıpr whose total length can be estimated as

`.�/D `.rs/C `.Ùsq/C `.qp/C `.ıpr/� 2`.rs/C 1 .by (3-13)/

� 2C0C 1 .by (3-12)/:

This contradicts the assumption on injectivity radius.

For case .3/, note that `.pq/ � 2C0, so r is C0 close to either p or q, and without
loss of generality we assume it is closer to q. Therefore by the triangle inequality,
d.q; s/� `.rq/C`.!/� 2C0. Now we consider the bow B00D sq�Ùqs, where Ùqs is the
geodesic segment on ˛. The bow is nontrivial. Otherwise, sq coincides with Ùqs, which
indicates that `.Ùqs/� 2C0. Then we have a piecewise geodesic loop sr � rq � Ùqs with
length � 4C0. By the injectivity radius assumption it must represent a trivial element,
which contradicts the fact that ! cuts Bi nontrivially. Hence, B00 2 B. By the choice
of B, we have `.B00/C 1 � t C 1 � `.B/, hence `.sq/C 1 � `.ısp/C `.pq/. So we
have obtained a piecewise geodesic loop �0 D qs �ısp �pq whose total length satisfies

`.�0/D `.qs/C `.ısp/C `.pq/� 2`.qs/C 1� 4C0C 1:

So �0 must be homotopically trivial according to the injectivity radius assumption. Since
! splits Bi nontrivially, the piecewise geodesic loop rs �ısp � pr is homotopically
nontrivial, and therefore, differing by an �0, the geodesic triangle �00 D rs � sq � qr is
also homotopically nontrivial. On the other hand

`.�00/D `.rs/C `.sq/C `.qr/� 4C0;

which contradicts the injectivity radius assumption.

The following is a restatement of Theorem 1.11(3), which gives an alternative geometric
characterization of convex compactness under the assumption that ı < 1.

Theorem 3.13 If ı < 1, then � is convex cocompact if and only if the injectivity
radius function inj WM !R is proper.

Proof We start with the “only if” part, which does not need the condition ı < 1. Since
� is convex cocompact, it consists of only loxodromic isometries. Note that all the
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closed geodesics are in the compact convex core since their lifts in X are in Hull.ƒ.�//.
Therefore, the length of all closed geodesics in M is uniformly bounded from below.
Otherwise, there is an escaping sequence of closed geodesics (whose length tends
to 0) inside the convex core, contradicting compactness. Suppose the injectivity radius
function is not proper. Then there exists an escaping sequence of points xi 2 M

whose injectivity radii are uniformly bounded by some constant R. At each point xi ,
we choose a geodesic loop wi whose length satisfies `.wi/ D 2 inj.xi/ � 2R. By
Proposition 2.1, the closed geodesic free homotopic to wi is within a D–neighborhood
of wi for some constant D. Hence we get an escaping sequence of closed geodesics in
the convex core of M , which contradicts compactness.

To show the “if” part, we first note that properness of the injectivity radius function
automatically implies that M has no cusps, and there is a uniform lower bound �0

on the length of closed geodesics in M . Suppose that � is not convex cocompact,
ie geometrically infinite. By Theorem 2.4 there is an escaping sequence of closed
geodesics f˛ig �M . By Corollary 3.9, there is a subsequence of closed geodesics
whose normal injectivity radii are all at most C.ı/. For convenience, we still denote it
by f˛ig. Now we fix a constant C0 D 2C.ı/C 2D.�0/ as in Lemma 3.10. Since the
injectivity radius function is proper and the sequence f˛ig is escaping, all points on ˛i

have injectivity radii greater than 4C0C 1 when i is sufficiently large. Hence, there
exists a closed geodesic in M whose normal injectivity radius is at most C.ı/, and
where all points on the geodesic have injectivity radii greater than 4C0C1, contradicting
Lemma 3.12. Therefore, � is convex cocompact.

4 Proofs of the main theorems

Theorem 4.1 For each n and � there exists a positive constant D.n; �/ < 1
2

such that ,
for any finitely generated torsion-free discrete isometry subgroup � < Isom X , if either

(1) ı <D.n; �/, or

(2) � is free and ı < 1
16

,

then the injectivity radius function on M is proper.

Proof Since D.n; �/ < 1
2

, there are no parabolic isometries in � by Proposition 2.3.
Suppose that the injectivity radius function is not proper. By the same argument as in the
first paragraph of the proof of Theorem 3.13, there exists an escaping sequence of closed
geodesics f˛ig of uniformly bounded length in M . Let G1 be the set of all escaping
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sequences of closed geodesics in M , and let t D infflim infi!1 `.˛i/ W f˛ig 2 G1g.
From the previous discussion, we see that t <1. On the other hand, M has bounded
geometry according to Theorem 3.7, so t > 0.

We claim that t � 4C.ı/. Suppose t > 4C.ı/. Then there exists an escaping sequence
of closed geodesics ˛i with lim infi!1 `.˛i/ D s 2 .t; t C �0/, where �0 is a fixed
positive number smaller than 1

2
.t�4C.ı//. By Corollary 3.9 there exists a subsequence,

which by abuse of notation we still denote by f˛ig, such that limi!1 `.˛i/D s and
NJ.˛i/� C.ı/ for all i . Without loss of generality, we assume `.˛i/ 2 .t; t C �0/ for
all i . By Section 3.3, each ˛i can be decomposed into two nontrivial loops ˛0i and ˛00i
such that `.˛0i/C `.˛

00
i / � `.˛i/C 4C.ı/. So the shorter one, which we assume to

be ˛0i , has length � 1
2
`.˛i/C2C.ı/, and it represents a nontrivial isometry in � . There

is a closed geodesic �i free homotopic to ˛0i with length � 1
2
`.˛i/C 2C.ı/. Since

M has bounded geometry, �i is inside a uniformly bounded neighborhood of ˛0i by
Proposition 2.1. Thus we have found another escaping sequence of closed geodesics �i

which satisfies

`.�i/� `.˛
0
i/�

1
2
`.˛i/C2C.ı/� 1

2
.tC�0/C2C.ı/ < 1

2

�
tC 1

2
.t�4C.ı//

�
C2C.ı/

D
3
4
tCC.ı/:

The last two inequalities follow from the choices of f˛ig and �0. Hence

lim inf
i!1

`.�i/�
3
4
t CC.ı/ < t:

This contradicts the choice of t , therefore t � 4C.ı/.

This means that, for any � > 0, there exists a primitive closed geodesic, denoted by ˛0,
such that `.˛0/ � t C � � 4C.ı/C � and NJ.˛0/ � C.ı/. By Section 3.3, ˛0 can be
decomposed to two nontrivial loops ˛0

0
and ˛00

0
, and again we assume ˛0

0
is the shorter

one. So `.˛0
0
/ < 4C.ı/C �. Let x0 be a common point of ˛0 and ˛0

0
. Note that ˛0

and ˛0
0

represent two loxodromic elements 0; 
0
0
2 �1.M;x0/Š � , which generate a

nonelementary subgroup h0; 
0
0
i D �0 < � .

Recall that, for any group G with finite generating set S , its entropy is defined as

h.G;S/D lim
N!1

ln jfg 2G W dS .1;g/�N gj

N
;

where dS is the Cayley graph metric determined by S .

Since � is free in .2/, �0 must be a free subgroup isomorphic to F2. So h.�0;S/D ln 3

for S D f0; 
0
0
g. Note that the lengths of geodesic loops from x0 representing 0 and
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 0
0

are both bounded by 4C.ı/C �. We conclude that the orbit map  7!  �x0 gives a
.4C.ı/C�/–Lipschitz injection from .�0; dS / to .X; d/. This implies

ı D ı.�/� ı.�0/�
1

4C.ı/C �
h.�0;S/D

ln 3

4C.ı/C �
;

where the last inequality follows from (2-1). By choosing � small enough and assuming
ı < 1

16
, one can check that the above inequality cannot hold. The contradiction implies

that the injectivity radius is proper.

If we are in case .1/, then according to [20, Theorem 1.1] there is a free subgroup
� 0

0
<�0 generated by two elements g0 and g0

0
whose word lengths measured in .�0;S/

are bounded above by some universal constant C.n; �/ depending only on the dimension
and lower sectional curvature of X . Write S0 D fg0;g

0
0
g. Therefore, the orbit map

.� 0
0
; dS0

/! .X; d/ through the inclusion � 0
0
! �0 is a .4C.ı/C�/C.n; �/–Lipschitz

injection. This implies

ı � ı.�0/�
1

.4C.ı/C �/C.n; �/
h.� 00;S0/D

ln 3

.4C.ı/C �/C.n; �/
:

Thus, there exists a constant D.n; �/ which is smaller than 1
2

such that, by choosing �
small enough and assuming ı <D.n; �/, the above inequality fails. The contradiction
again implies that the injectivity radius is proper.

Remark 4.2 For case (1), instead of passing to a rank-2 free subgroup, one can also
apply the result of [7] to give a uniform lower bound on the entropy of �0.

Now we can finish the proofs of our main results from the introduction.

Proof of Theorems 1.2 and 1.8 Theorem 1.2 follows from Theorems 3.13 and 4.1.
For the proof of Theorem 1.8, there exists a finite-index free subgroup � 0 <� such that
ı.� 0/D ı.�/ < 1

16
. Then � 0 is convex cocompact by Theorems 3.13 and 4.1, which

implies that � is also convex cocompact.

Proof of Corollary 1.6 Let D.n/ be the constant D.n; �/ in Theorem 1.2 with � D 1.
Suppose that � < Isom.Hn/ is a finitely generated discrete isometry subgroup with
ı.�/ < D.n/ < 1

2
. By the Selberg lemma, there exists a finite-index torsion-free

subgroup � 0 < � with ı.� 0/ D ı.�/ < D.n/ < 1
2

. By Theorem 1.2, � 0 is convex
cocompact. Hence, the Hausdorff dimension of the limit set equals ı.� 0/ [9], which
is smaller than 1. Note that since the limit set is a second-countable compact metric
space (hence also locally compact and Hausdorff) its topological dimension equals the
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small inductive dimension, which is bounded above by its Hausdorff dimension, which
hence must be zero. This implies that the limit set is totally disconnected (and is in fact
a Cantor set). Then we apply a result of Kulkarni [35, Theorem 6.11], which states
that if the limit set of a finitely generated Kleinian group is totally disconnected, then
the group splits as a free amalgamation of a free group with virtually abelian groups
corresponding to the parabolic subgroups. Since the condition ı.� 0/ < 1 excludes
all free abelian factors of higher rank, we conclude � 0 must be free. Therefore, � is
virtually free.
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