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Derived equivalences of hyperkähler varieties

LENNY TAELMAN

We show that the Looijenga–Lunts–Verbitsky Lie algebra acting on the cohomology
of a hyperkähler variety is a derived invariant, and obtain from this a number of conse-
quences for the action on cohomology of derived equivalences between hyperkähler
varieties.

This includes a proof that derived equivalent hyperkähler varieties have isomorphic
Q–Hodge structures, the construction of a rational “Mukai lattice” functorial for
derived equivalences, and the computation (up to index 2) of the image of the group
of auto-equivalences on the cohomology of certain Hilbert squares of K3 surfaces.

14F05, 14J32

1 Introduction

1.1 Background

We briefly recall the background to our results. We refer to Huybrechts [24] for
more details. For a smooth projective complex variety X , we denote by DX the
bounded derived category of coherent sheaves on X . By a theorem of Orlov [37] any
(exact, C–linear) equivalence ˆ W DX1 ��! DX2 comes from a Fourier–Mukai kernel
P 2D.X1�X2/, and convolution with the Mukai vector v.P/2H.X1�X2;Q/ defines
an isomorphism

ˆH
W H.X1;Q/ ��! H.X2;Q/

between the total cohomology of X1 and X2. This isomorphism is not graded, and
respects the Hodge structures only up to Tate twists. Nonetheless, Orlov has conjectured
[38] that ifX1 andX2 are derived equivalent, then for every i there exist (noncanonical)
isomorphisms Hi .X1;Q/Š Hi .X2;Q/ of Q–Hodge structures.

For every X we have a representation

�X W Aut.DX/! GL.H.X;Q//; ˆ 7!ˆH:
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2650 Lenny Taelman

Its image is known for varieties with ample or antiample canonical class (in which
case Aut.DX/ is small and well understood; see Bondal and Orlov [9]), for abelian
varieties — see Golyshev, Lunts and Orlov [18] — and for K3 surfaces. To place our
results in context, we recall the description of the image for K3 surfaces.

Let X be a K3 surface. Consider the Mukai lattice

zH.X;Z/ WD H0.X;Z/˚H2.X;Z.1//˚H4.X;Z.2//:

This is a Hodge structure of weight 0, and it comes equipped with a perfect bilinear form
b of signature .4; 20/. For convenience, we denote by ˛ and ˇ the natural generators of
H0.X;Z/ and H4.X;Z.2// respectively, so that zH.X;Z/D Z˛˚H2.X;Z.1//˚Zˇ.
The pairing b is the orthogonal sum of the intersection pairing on H2.X;Z.1// and the
pairing on Z˛˚Zˇ given by b.˛; ˛/D b.ˇ; ˇ/D 0 and b.˛; ˇ/D�1.

It was observed by Mukai [35] that if ˆ W DX1 ��! DX2 is a derived equivalence
between K3 surfaces, then ˆH restricts to an isomorphism ˆ

zH W zH.X1;Z/! zH.X2;Z/
respecting the pairing and Hodge structures. Denote by Aut.zH.X;Z// the group of
isometries of zH.X;Z/ respecting the Hodge structure, and by AutC.zH.X;Z// the
subgroup (of index 2) consisting of those isometries that respect the orientation on a
four-dimensional positive definite subspace of zH.X;R/.

Theorem 1.1 [22; 26; 35; 36; 39] Let X be a K3 surface. Then the image of �X is
AutC.zH.X;Z//.

In this paper, we prove Orlov’s conjecture on Q–Hodge structures for hyperkähler
varieties, construct a rational version of the Mukai lattice for hyperkähler varieties, and
compute (up to index 2) the image of �X for certain Hilbert squares of K3 surfaces.
The main tool in these results is the Looijenga–Lunts–Verbitsky Lie algebra.

1.2 The LLV Lie algebra and derived equivalences

Let X be a smooth projective complex variety. By the hard Lefschetz theorem, every
ample class �2NS.X/ determines a Lie algebra g��End.H.X;Q// isomorphic to sl2.
More generally, this holds for every cohomology class � 2H2.X;Q/ (algebraic or not)
satisfying the conclusion of the hard Lefschetz theorem. Looijenga and Lunts [33] and
Verbitsky [46] have studied the Lie algebra g.X/� End.H.X;Q// generated by the
collection of the Lie algebras g�. We will refer to this as the LLV Lie algebra. See
Section 2.1 for more details.
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Derived equivalences of hyperkähler varieties 2651

We say thatX is holomorphic symplectic if it admits a nowhere degenerate holomorphic
symplectic form � 2 H0.X;�2X /.

Theorem A (Section 2.4) Let X1 and X2 be holomorphic symplectic varieties. Then
for every equivalenceˆ WDX1 ��!DX2 there exists a canonical isomorphism of rational
Lie algebras

ˆg
W g.X1/

��! g.X2/

with the property that the map ˆH WH.X1;Q/ ��!H.X2;Q/ is equivariant with respect
to ˆg.

Note that g.X/ is defined in terms of the grading and the cup product on H.X;Q/,
neither of which are preserved under derived equivalences.

To prove Theorem A we introduce a complex Lie algebra g0.X/ whose definition is
similar to the rational Lie algebra g.X/, but where the action of H2.X;Q/ on H.X;Q/
is replaced with a natural action of the Hochschild cohomology group HH2.X/ on
Hochschild homology HH�.X/. Since Hochschild cohomology and its action on
Hochschild homology is known to be invariant under derived equivalences, it follows
that g0.X/ is a derived invariant. We show that if X is holomorphic symplectic, then the
isomorphism HH�.X/! H.X;C/ (coming from the Hochschild–Kostant–Rosenberg
isomorphism) maps g0.X/ to g.X/˝Q C. This is closely related to Verbitsky’s “mirror
symmetry” for hyperkähler varieties [46; 47]. From this we deduce that the rational
Lie algebra g.X/ is a derived invariant.

1.3 A rational Mukai lattice for hyperkähler varieties

A hyperkähler (or irreducible holomorphic symplectic) variety is a simply connected
smooth projective variety X for which H0.X;�2X / is spanned by a nowhere degenerate
form.

Let X be a hyperkähler variety. Consider the Q–vector space

zH.X;Q/ WDQ˛˚H2.X;Q/˚Qˇ

equipped with the bilinear form b which is the orthogonal sum of the Beauville–
Bogomolov form on H2.X;Q/ and a hyperbolic plane Q˛˚Qˇ with ˛ and ˇ isotropic
and b.˛; ˇ/ D �1. By analogy with the case of a K3 surface, we will call zH.X;Q/
the (rational) Mukai lattice of X . Looijenga and Lunts [33] and Verbitsky [46] have
shown that the Lie algebra g.X/ can be canonically identified with so.zH.X;Q//;
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2652 Lenny Taelman

see Section 3.1 for a precise statement. Moreover, Verbitsky [46] has shown that
the subalgebra SH.X;Q/ of H.X;Q/ generated by H2.X;Q/ forms an irreducible
sub-g.X/–module. Using this, we show that Theorem A implies:

Theorem B (Section 4.2) Let X1 and X2 be hyperkähler varieties and

ˆ W DX1 ��! DX2
an equivalence. Then the induced isomorphism ˆH restricts to an isomorphism
ˆSH W SH.X1;Q/ ��! SH.X2;Q/.

Taking X1 DX2 DX in Theorem B we obtain a homomorphism

�SH
X W Aut.DX/! GL.SH.X;Q//:

The complex structure on a hyperkähler varietyX induces a Hodge structure of weight 0
on zH.X;Q/ given by

zH.X;Q/DQ˛˚H2.X;Q.1//˚Qˇ:

Denote by Aut zH.X;Q/ the group of Hodge isometries of zH.X;Q/.

Theorem C (Section 4.2) Let X be a hyperkähler variety of dimension 2d and
second Betti number b2. Assume that b2 is odd or d is odd. Then �SH

X factors over a
map �zHX W Aut.D.X//! Aut.zH.X;Q//.

See Sections 3.2 and 4.2 for an explicit description of the implicit map

Aut.zH.X;Q//! GL.SH.X;Q//:

Note that all known hyperkähler varieties satisfy the parity conditions in the theorem:
there are two infinite series of deformation classes with odd b2 (generalized Kummers
and Hilbert schemes of points), and three exceptional deformation classes with odd d
(K3, OG6, OG10).

1.4 Hodge structures of derived equivalent hyperkähler varieties

Another application of Theorem A is the following:

Theorem D (Section 5) Let X1 and X2 be derived equivalent hyperkähler varieties.
Then for every i the Q–Hodge structures Hi .X1;Q/ and Hi .X2;Q/ are isomorphic.

This confirms Orlov’s conjecture for hyperkähler varieties. The proof is inspired by
Soldatenkov [43].
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1.5 Auto-equivalences of the Hilbert square of a K3 surface

In the second half of the paper we consider the problem of determining the image
of �X for certain hyperkähler varieties. An important difference with the first half of
the paper is that integral structures (lattices, arithmetic subgroups, . . . ) will play an
important role here.

As a first approximation to determining the image of �X , we consider a variation of
this problem which is deformation invariant. Let X be a smooth projective complex
variety. If X 0 and X 00 are smooth deformations of X (parametrized by paths in the
base), and if ˆ W DX 0 ��! DX 00 is an equivalence, then we obtain an isomorphism as
the composition

H.X;Q/! H.X 0;Q/ ˆ
H
�! H.X 00;Q/! H.X;Q/:

We define the derived monodromy group of X to be the subgroup DMon.X/ of
GL.H.X;Q// generated by all these isomorphisms. This group contains both the
usual monodromy group of X and the image of �X W Aut.DX/! GL.H.X;Q//.

If S is a K3 surface, then the result of Huybrechts, Macrì and Stellari [26] implies
DMon.S/ D OC.zH.S;Z//, and that the image of �S consists of those elements of
DMon.S/ that respect the Hodge structure on zH.S;Z/. Similarly, for an abelian
variety A, the results of [18] imply DMon.A/ D Spin.H1.A;Z/˚H1.A_;Z//, and
that the image of �A consists of those elements of DMon.A/ that respect the Hodge
structure on H1.A;Z/˚H1.A_;Z/.

Now let X be a hyperkähler variety of type K3Œ2�. We have H.X;Q/ D SH.X;Q/
and hence by Theorem C the action of Aut.DX/ on H.X;Q/ factors over a subgroup
O.zH.X;Q// of GL.H.X;Q//.

For an integral lattice ƒ � zH.X;Q/ we denote by OC.ƒ/ � O.ƒ/ the subgroup
consisting of those Hodge isometries that respect the orientation of a positive 4–plane
in ƒR.

Theorem E (Section 9.4) Let X be a hyperkähler variety deformation equivalent to
the Hilbert square of a K3 surface. There is an integral lattice ƒ� zH.X;Q/ such that

OC.ƒ/� DMon.X/� O.ƒ/
inside O.zH.X;Q//.

See Section 9.4 for a precise description of ƒ. As an abstract lattice, ƒ is isomorphic
to H2.X;Z/˚U , but its image in zH.X;Q/ is not Z˛˚H2.X;Z/˚Zˇ.

Geometry & Topology, Volume 27 (2023)



2654 Lenny Taelman

Crucial in the proof of Theorem E is the derived McKay correspondence due to
Bridgeland, King and Reid [11] and Haiman [21]. It provides an ample supply of
elements of DMon.X/: every deformation of X to the Hilbert square S Œ2� of a K3
surface S induces an inclusion DMon.S/ ! DMon.X/. As part of the proof, we
explicitly compute this inclusion.

We denote by Aut.ƒ/ the group of isometries of ƒ� zH.X;Q/ that respect the Hodge
structure on zH.X;Q/. It follows from Theorem E that im.�X / is contained in Aut.ƒ/
for every X which is deformation equivalent to the Hilbert square of a K3 surface. For
some X we can show that the upper bound in the above corollary is close to being sharp.
Denote by AutC.ƒ/�Aut.ƒ/ the subgroup consisting of those Hodge isometries that
respect the orientation of a positive 4–plane in ƒR.

Theorem F (Section 10.2) Let S be a complex K3 surface and X D S Œ2�. Assume
that NS.X/ contains a hyperbolic plane. Then AutC.ƒ/� im.�X /� Aut.ƒ/.

Remark 1.2 To determine im �X up to index 2 for a general hyperkähler of type K3Œ2�

new constructions of derived equivalences will be needed.

Remark 1.3 Theorems E and F leave an ambiguity of index 2, related to orientations on
a maximal positive subspace of zH.X;R/. In the case of K3 surfaces, it was conjectured
by Szendrői [44] that derived equivalences must respect such orientation, and this was
proven by Huybrechts, Macrì, and Stellari [26]. Their method is based on deformation
to generic (formal or analytic) K3 surfaces of Picard rank 0, and on a complete
understanding of the space of stability conditions on those [25]. It is far from clear if
such a strategy can be used to remove the index 2 ambiguity for hyperkähler varieties
of type K3Œ2�.

Remark 1.4 That a lattice of signature .4; b2�2/ should play a role in describing the
image of �X for hyperkähler varieties X was expected from the physics literature —
see Dijkgraaf [16] — but it is not clear where the lattice should come from, nor what
its precise description should be for general hyperkähler varieties. In the above results,
the lattice ƒ arises in a rather implicit way, and one may hope for a more concrete
interpretation of its elements.

Remark 1.5 It is tempting to try to conjecture a description of the group Aut.DX/ in
terms of an action on a space of stability conditions on X , generalizing Bridgeland’s
work on K3 surfaces [10]. However, there is a representation-theoretic obstruction
against doing this naively. The central charge of a hypothetical stability condition on X
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Derived equivalences of hyperkähler varieties 2655

takes values in H.X;C/, yet Theorems E and F suggest the central charge should take
values in zH.X;C/. IfX is of type K3Œ2�, then H.X;C/ and zH.X;C/ are nonisomorphic
irreducible DMon.X/–modules, so this would require a modification of the notion of
stability condition.

Acknowledgements

I am grateful to Nick Addington, Thorsten Beckmann, Dion Leijnse, Eyal Markman,
Zoë Schroot, and the referees for many valuable comments on earlier versions of this
paper. This project received funding from the European Research Council (ERC), grant
864145, and from the Dutch Research Council (NWO).

2 The LLV Lie algebra of a smooth projective variety

In this section we recall the construction of Looijenga and Lunts [33] and Verbitsky
[46] of a Lie algebra acting naturally on the cohomology of algebraic varieties. For
holomorphic symplectic varieties we show that this Lie algebra is a derived invariant.

2.1 The LLV Lie algebra

Let F be a field of characteristic zero and M be a Z–graded F –vector space of finite
F –dimension. Denote by h the endomorphism of M that is multiplication by n on Mn.

Let e be an endomorphism of M of degree 2. We say that e has the hard Lefschetz
property if for every n � 0 the map en W M�n ! Mn is an isomorphism. This is
equivalent to the existence of an f 2 End.M/ such that the relations

(1) Œh; e�D 2e; Œh; f �D�2f; Œe; f �D h

hold in End.M/. Thus, .e; h; f / forms an sl2–triple and defines a Lie homomorphism
sl2! End.M/.

Proposition 2.1 Assume that e has the hard Lefschetz property. Then the element f
satisfying (1) is unique , and if e and h lie in a semisimple sub-Lie algebra g�End.M/,
then so does f .

Proof The action of ad e on End.M/ has the hard Lefschetz property for the grading
defined by ad h. In particular,

.ad e/2 W End.M/�2
��! End.M/2

is an isomorphism. It sends f to �2e, so f is indeed uniquely determined.

Geometry & Topology, Volume 27 (2023)



2656 Lenny Taelman

If e and h lie in g, then g � End.M/ is graded and the above map restricts to an
injective map

.ad e/2 W g�2 ,! g2:

Since h is diagonalizable, it is contained in a Cartan subalgebra of g. The symmetry
of the resulting root system implies that dim g�n D dim gn for all n. In particular, the
map .ad e/2 defines an isomorphism between g�2 and g2; thus f lies in g.

Let a be an abelian Lie algebra and e W a! gl.M/, defined by a 7! ea, a Lie homo-
morphism. We say that e has the hard Lefschetz property if e.a/� gl.M/2 and if there
exists some a 2 a such that ea has the hard Lefschetz property. Note that this is a
Zariski open condition on a 2 a.

If e W a! gl.M/ has the hard Lefschetz property, then we denote by g.a;M/ the Lie
algebra generated by the sl2–triples .ea; h; fa/ for a 2 a such that ea has the hard
Lefschetz property. We say that .a;M/ is a Lefschetz module if g.a;M/ is semisimple.

Now let X be a smooth projective complex variety of dimension d . Denote by M WD
H.X;Q/Œd � the shifted total cohomology of X (with middle cohomology in degree 0).
For a class � 2 H2.X;Q/, consider the endomorphism e� 2 End.M/ given by cup
product with �. If � is ample, then e� has the hard Lefschetz property, so the map
e W H2.X;Q/! gl.M/ has the hard Lefschetz property. We denote the corresponding
Lie algebra by g.X/ WD g.H2.X;Q/;M/.

Proposition 2.2 [33, 1.6, 1.9] .H2.X;Q/;M/ is a Lefschetz module.

In other words, g.X/ is a semisimple Lie algebra over Q.

2.2 Hochschild homology and cohomology

Let X be a smooth projective variety of dimension d with canonical bundle !X WD�dX .
Its Hochschild cohomology is defined as

HHn.X/ WD ExtnX�X .��OX ; ��OX /

and its Hochschild homology is defined as

HHn.X/ WD Extd�nX�X .��OX ; ��!X /:

Composition of extensions defines maps

HHn˝HHm! HHnCm; HHn˝HHm! HHm�n;

making HH�.X/ into a graded module over the graded ring HH�.X/.

Geometry & Topology, Volume 27 (2023)
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The Hochschild–Kostant–Rosenberg isomorphism (twisted by the square root of the
Todd class as in [30; 15]) defines isomorphisms

In W HHn.X/ ��!
M
iCjDn

Hi
�
X;
Vj

TX
�
; In W HHn.X/ ��!

M
j�iDn

Hi .X;�jX /:

Under these isomorphisms, multiplication in HH�.X/ corresponds to the operation
induced by the product in

V
�
TX , and the action of HH�.X/ on HH�.X/ corresponds

to the action induced by the contraction action of
V
�
TX on ��X ; see [12; 13].

Together with the degeneration of the Hodge–de Rham spectral sequence, the isomor-
phism I� defines an isomorphism

HH�.X/ ��! H.X;C/:

This map does not respect the grading; rather it maps HHi to the i th column of the
Hodge diamond (normalized so that the 0th column is the central column

L
p Hp;p).

Combining with the action of HH� on HH�, we obtain an action of the ring HH�.X/
on H.X;C/.

Theorem 2.3 Let ˆ WDX1 ��!DX2 be a derived equivalence between smooth projec-
tive complex varieties. Then we have natural graded isomorphisms

ˆHH�
W HH�.X1/ ��! HH�.X2/; ˆHH� W HH�.X1/ ��! HH�.X2/;

compatible with the ring structure on HH� and the module structure on HH�, and such
that the square

HH�.X1/ H.X1;C/

HH�.X2/ H.X2;C/

I

ˆHH� ˆH

I

commutes.

Proof See [13; 34].

2.3 The Hochschild Lie algebra of a holomorphic symplectic variety

Now assume that X is holomorphic symplectic of dimension 2d . That is, we assume
that there exists a symplectic form � 2 H0.X;�2X /. Note that this implies that a
Zariski-dense collection of � 2 H0.X;�2X / will be nowhere degenerate.

Through the isomorphism I WHH�.X/! H.X;C/, the vector space H.X;C/ becomes
a module under the ring HH�.X/.
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2658 Lenny Taelman

Lemma 2.4 HH�.X/Š H�.X;C/ as graded rings , and H.X;C/ is free of rank one
as an HH�.X/–module.

Proof A symplectic form � defines an isomorphism �1X
��! TX , and hence an

isomorphism of algebras
V
�
�1X

��!
V
�
TX . Combining this with the Hochschild–

Kostant–Rosenberg isomorphism I and the degeneration of the Hodge–de Rham spectral
sequence, we obtain a chain of isomorphisms of graded rings

HH�.X/ ��! H�
�
X;
V
�
TX
�
��! H�.X;��X /

��! H�.X;C/:

This proves the first assertion. For the second it suffices to observe that the module
HH�.X;C/ is generated by �d 2 HH2d .X/D H0.X;�2dX /.

Consider the endomorphisms hp; hq 2 End.H.X;C// given by

hp D p� d; hq D q� d on Hp;q:

These define the Hodge bigrading on H.X;C/, normalized to be symmetric along the
central part Hd;d. Note that h D hp C hq . The action of HHn.X/ on H.X;C/ has
degree n for the grading defined by h0 D hq � hp.

Lemma 2.4 and hard Lefschetz imply:

Corollary 2.5 For a Zariski-dense collection of � 2 HH2.X/, the action by �,

e0� W H.X;C/! H.X;C/;

has the hard Lefschetz property with respect to the grading defined by h0.

In particular, for every such � we have a complex subalgebra g� � End.H.X;C//
isomorphic to sl2, and the collection of such algebras generates a Lie algebra which
we denote by g0.X/� End.H.X;C//. From Lemma 2.4 we also obtain:

Corollary 2.6 The complex Lie algebras g0.X/ and g.X/˝QC are isomorphic.

In the next section, we will show something stronger: that g0.X/ and g.X/˝Q C

coincide as sub-Lie algebras of End.H.X;C//. Theorem A then follows by combining
this with the following proposition:

Proposition 2.7 Assume that X1 and X2 are holomorphic symplectic varieties. Then
for every equivalence ˆ W DX1 ��! DX2 there exists a canonical isomorphism of
complex Lie algebras

ˆg0
W g0.X1/

��! g0.X2/:

Geometry & Topology, Volume 27 (2023)



Derived equivalences of hyperkähler varieties 2659

It has the property that the mapˆH WH.X1;C/ ��!H.X2;C/ is equivariant with respect
to ˆg0 .

Proof This follows immediately from Theorem 2.3.

2.4 Comparison of the two Lie algebras and proof of Theorem A

The remainder of this section is devoted to the proof of the following:

Proposition 2.8 If X is holomorphic symplectic , then g.X/˝Q CD g0.X/ as sub-Lie
algebras of End.H.X;C//.

Let X be holomorphic symplectic. If F is a coherent OX–module then we will simply
write Hi .F/ for Hi .X;F/. We have decompositions

H2.X;C/D H2.OX /˚H1.�1X /˚H0.�2X /
and

HH2.X/D H2.OX /˚H1.TX /˚H0
�V2

TX
�
:

We will use the same symbol � to denote an element � 2 H2.X;C/ and the endo-
morphism of End.H.X;C// given by cup product with �. Note that � 2 g.X/˝Q C

by construction. Similarly, we will use the same symbol for � 2 HH2.X/ and the
resulting � 2 End.H.X;C//, given by contraction with �. We have � 2 g0.X/.

For a symplectic form � 2 H0.�2X /, we denote by L� 2 H0
�V2

TX
�

the image of the
form � 2H0.�2X / under the isomorphism �2X!

V2
TX defined by � . In suitable local

coordinates, we have

� D du1 ^ dv1C � � �C dud ^ dvd
and

L� D
@

@u1
^

@

@v1
C � � �C

@

@ud
^

@

@vd
:

Lemma 2.9 If � is a nowhere degenerate symplectic form then .�; hp; L�/ is an sl2–
triple in End.H.X;C//.

Proof Clearly � has degree 2 and L� has degree �2 for the grading given by hp, so
Œhp; ��D 2� and Œhp; L��D�2 L� .

We need to show that Œ�; L��D hp . This follows immediately from a local computation:
in the above local coordinates, one verifies that on the standard basis of �p the
commutator Œ�; L�� acts as p� d .

Geometry & Topology, Volume 27 (2023)
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Note that the existence of one nowhere degenerate � implies that a Zariski-dense
collection of � 2 H0.�2X / is nowhere degenerate.

Lemma 2.10 For a Zariski-dense collection ˛2H2.X;OX /, there is L̨ 2End.H.X;C//
such that .˛; hq; L̨ / is an sl2–triple.

Proof This follows from Lemma 2.9 and Hodge symmetry.

Lemma 2.11 For all � 2 H0
�
X;
V2
TX
�

the endomorphism � lies in g.X/˝Q C.

Proof It suffices to show that this holds for a Zariski-dense collection of � ; hence we
may assume without loss of generality that � D L� with � and L� as in Lemma 2.9. Let
˛ and L̨ be as in Lemma 2.10. Because � and hp commute with both ˛ and hq , we
have that every element of the sl2–triple .�; hp; L�/ commutes with every element of
the sl2–triple .˛; hq; L̨ /. From this, it follows that

.˛C �; h; L̨ C L�/ and .˛� �; h; L̨ � L�/

are sl2–triples. Since the elements ˛˙� lie in H2.X;C/, and apparently have the hard
Lefschetz property, we conclude that the endomorphisms L̨ ˙ L� lie in g.X/˝Q C;
hence also � D L� lies in g.X/˝Q C.

Corollary 2.12 hp and hq lie in g.X/˝Q C.

Proof By Lemma 2.9 we have hp D Œ�; L��, which by Lemma 2.11 lies in g.X/˝Q C.
Since hq D h� hp we also have that hq lies in g.X/˝Q C.

Fix a � 2H0
�
X;
V2
TX
�

that is nowhere degenerate as an alternating form on �1X . This
defines isomorphisms c� W�1X ! TX and c� W H1.�1X /! H1.TX / given by contracting
sections of �1X with � .

Lemma 2.13 For all � 2 H1.�1X /, we have Œ�; ��D c� .�/ in End.H.X;C//.

Proof This is again a local computation. If � is a local section of �1X , then a compu-
tation on a local basis shows Œ�; ��D c� .�/ as maps �pX !�

p�1
X .

Corollary 2.14 Every element �0 of H1.X; TX / lies in g.X/˝Q C.

Proof (See also [19, 4.5] for the case of a hyperkähler variety.) Every such �0 is
of the form c� .�/ for a unique � 2 H1.�1X /, and hence the corollary follows from
Lemmas 2.13 and 2.11 and the fact that � lies in g.X/˝Q C.
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We can now finish the comparison of the two Lie algebras.

Proof of Proposition 2.8 By Corollary 2.6 it suffices to show that g0.X/ is contained
in g.X/˝QC. By Proposition 2.1 it suffices to show that h0 is contained in g.X/˝QC,
and that for almost every a 2 HH2.X/ we have that the action of a on H.X;C/ is
contained in g.X/˝Q C. This follows from Lemma 2.11, Corollaries 2.12 and 2.14,
and the fact that the action of any ˛ 2 H2.OX / lies in g.X/˝Q C.

Together with Proposition 2.7, this proves Theorem A.

3 Rational cohomology of hyperkähler varieties

3.1 The BBF form and the LLV Lie algebra

Let X be a complex hyperkähler variety of dimension 2d . We denote by

b D bX W H2.X;Q/�H2.X;Q/!Q

its Beauville–Bogomolov–Fujiki, and by cX its Fujiki constant. These are related by

(2)
Z
X

�2d D
.2d/Š

2ddŠ
cXb.�; �/

d

for � 2 H2.X;Q/; see eg [41].

We extend b to a bilinear form on

zH.X;Q/ WDQ˛˚H2.X;Q/˚Qˇ;

by declaring ˛ and ˇ to be orthogonal to H2.X;Q/, and setting b.˛; ˇ/ D �1,
b.˛; ˛/D 0 and b.ˇ; ˇ/D 0. We equip zH.X;Q/ with a grading satisfying deg˛D�2
and degˇD 2, and for which H2.X;Q/ sits in degree 0. This induces a grading on the
Lie algebra so.zH.X;Q//.

For �2H2.X;Q/we consider the endomorphism e�2so.zH.X;Q// given by e�.˛/D�,
e�.�/D b.�; �/ˇ for all � 2 H2.X;Q/, and e�.ˇ/D 0.

Theorem 3.1 (Looijenga–Lunts, Verbitsky) There is a unique isomorphism of graded
Lie algebras

so.zH.X;Q// ��! g.X/

that maps e� to e� for every � 2 H2.X;Q/.

Proof See [33, Proposition 4.5] or [46, Theorem 1.4] for the theorem over the real
numbers. This readily descends to Q; see [43, Proposition 2.9] for more details.
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The representation of so.zH.X;Q// on H.X;Q/ integrates to a representation of the
group Spin.zH.X;Q// on H.X;Q/. Let � 2H2.X;Q/. Then e� is nilpotent, and hence
B� WD exp e� is an element of Spin.zH.X;Q//. It acts on zH.X;Q/ by

(3) B�.r˛C�C sˇ/D r˛C .�C r�/C
�
sC b.�; �/C r 1

2
b.�; �/

�
ˇ

for all r; s 2Q and � 2 H2.X;Q/. The action on the total cohomology of X is given
by:

Proposition 3.2 B� acts as multiplication by ch.�/ on H.X;Q/.

In particular, if L is a line bundle on X and ˆ W DX ! DX is the equivalence that
maps F to F ˝L, then ˆH D Bc1.L/.

3.2 The Verbitsky component of cohomology

Let X be a complex hyperkähler variety of dimension 2d . We define the even co-
homology of X as the graded Q–algebra

Hev.X;Q/ WD
M
n

H2n.X;Q/;

and the Verbitsky component of the cohomology of X as the sub-Q–algebra SH.X;Q/
of Hev.X;Q/ generated by H2.X;Q/. Clearly, SH.X;Q/Œ2d � is a sub-Lefschetz
module of Hev.X;Q/Œ2d � for H2.X;Q/.

Lemma 3.3 (Verbitsky [8; 45]) The kernel of the Q–algebra homomorphism

Sym�H2.X;Q/� SH.X;Q/

is generated by the elements �dC1 with � 2 H2.X;Q/ satisfying b.�; �/D 0.

Lemma 3.4 (Verbitsky) SH.X;Q/Œ2d � is an irreducible Lefschetz module.

Proof It is the smallest sub-Lefschetz module of Hev.X;Q/Œ2d � having a nontrivial
component of degree �2d .

Verbitsky also describes the space SH.X;Q/ explicitly. Below we normalize this
description, and use it to compute the Mukai pairing on SH.X;Q/.
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Proposition 3.5 There is a unique map

‰ W SH.X;Q/Œ2d �! Symd zH.X;Q/

satisfying

(i) ‰ is morphism of Lefschetz modules ,

(ii) ‰.1/D ˛d=dŠ.

Note that the Lefschetz module structure on Symd zH.X;Q/ is given by the Leibniz
rule

e�.x1 � � � xd / WD
X
i

x1 � � � e�.xi / � � � xd :

Proof Uniqueness is clear. For existence, consider the map

z‰ W Sym�H2.X;Q/! Symd zH.X;Q/;

given by
�1 � � ��n 7! e�1 � � � e�n.˛

d=dŠ/:

This map is well defined since the e�i commute. Moreover, the map is graded and
satisfies z‰.�x/D e� z‰.x/ for all �2H2.X;Q/ and x 2 Sym� H2.X;Q/. To show that
z‰ induces a morphism of Lefschetz modules with the desired properties it now suffices
to verify that it vanishes on the ideal generated by the �dC1 for �2H2.X;Q/ satisfying
b.�; �/D 0. Equivalently, it suffices to show that for every x 2 Symd zH.X;Q/ and
for every � 2 H2.X;Q/ with b.�; �/D 0 we have edC1

�
.x/D 0.

Without loss of generality, we may assume that x is a monomial of the form

x D ˛iˇj�1 � � ��m; i C j CmD d; �i 2 H2.X;Q/:

For degree reasons, we have ek
�
.ˇj�1 � � ��m/ D 0 for k > m. Moreover, it follows

from b.�; �/ D 0 that ek
�
.˛i / D 0 for k > i . Combining these, one concludes that

edC1
�

.x/D 0, which is what we had to prove.

Lemma 3.6 ‰.ptX /D ˇ
d=cX .

Proof Choose � 2 H2.X;Q/ with b.�; �/¤ 0. Then we have

(4) ‰.�2d /D e2d�

�
˛d

dŠ

�
D
.2d/Š

2ddŠ
b.�; �/dˇd :

Dividing by (2) gives the claimed identity.
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Consider the contraction (or Laplacian) operator

� W Symd zH.X;Q/! Symd�2 zH.X;Q/;

given by
x1 : : : xd 7!

X
i<j

b.xi ; xj /x1 � � � Oxi � � � Oxj � � � xd :

This is a morphism of Lefschetz modules, or equivalently of so.zH.X;Q//–modules.

Lemma 3.7 The sequence of Lefschetz modules

0! SH.X;Q/Œ2d � ‰�! Symd zH.X;Q/ �
�! Symd�2 zH.X;Q/! 0

is exact.

Proof Since �‰.1/ D 0, we have � ı‰ D 0. The map � is well known to be a
surjective map of so.zH.X;Q//–modules with irreducible kernel. Since ‰ is nonzero
and SH.X;Q/ is irreducible, it follows that the sequence is exact.

The Mukai pairing [14] on Hev.X;Q/ restricts to a pairing bSH on SH.X;Q/. It pairs
elements of degree m with elements of degree 2d �m, according to the formula

bSH.�1 � � ��m; �1 � � ��2d�m/D .�1/
m

Z
X

�1 � � ��m�1 � � ��2d�m:

Note that bSH.e�x; y/C bSH.x; e�y/D 0 for all x; y 2 SH.X;Q/ and � 2 H2.X;Q/,
so bSH is so.zH.X;Q//–invariant.

The pairing on zH.X;Q/ induces a pairing on Symd zH.X;Q/ defined by

bŒd�.x1 � � � xd ; y1 � � �yd / WD .�1/
d
X
�2Sd

Y
i

b.xi ; y�i /:

By construction, bŒd� is so.zH.X;Q//–invariant. The map ‰ is almost an isometry, in
the following sense:

Proposition 3.8 For all x; y 2 SH.X;Q/,

cXbŒd�.‰x;‰y/D bSH.x; y/:

Proof Both the Mukai form on SH.X;Q/Œ2d � and the pairing on Symd zH.X;Q/
are so.zH.X;Q//–invariant. Since SH.X;Q/ is an irreducible so.zH.X;Q//–module, it
suffices to verify the identity for some x; y 2 SH.X;Q/ with bSH.x; y/¤ 0.

Geometry & Topology, Volume 27 (2023)



Derived equivalences of hyperkähler varieties 2665

Let � 2 H2.X;Q/ with b.�; �/¤ 0. We have

bSH.1; �
2d /D

Z
X

�2d D
.2d/Š

2ddŠ
cXb.�; �/

d
¤ 0:

By (4),

‰.�2d /D
.2d/Š

2ddŠ
b.�; �/dˇd ;

and hence

cXbŒd�.‰.1/;‰.�
2d //D

cX .2d/Š

2d .d Š/2
bŒd�.˛

d ; ˇd /D
cX .2d/Š

2ddŠ
b.�; �/d ;

which agrees with the above expression for bSH.1; �
2d /.

Remark 3.9 If X is of type K3Œd� then cX D 1 and ‰ is an isometry.

4 Action of derived equivalences on the Verbitsky component

In this section we prove Theorems B and C from the introduction.

4.1 A representation-theoretical construction

LetK be a field of characteristic different from 2, and let V D .V; b/ be a nondegenerate
quadratic space over K. Let d be a positive integer and consider the space

SŒd�V WD ker.Symd V �
�! Symd�2 V /:

The Lie algebra so.V / acts faithfully on SŒd�V , inducing an inclusion

so.V /� End.SdV /:

Consider the normalizer of so.V / in GL.SŒd�V /, that is, the group

N.V; d/ WD fg 2 GL.SŒd�V / j g so.V /g
�1
D so.V /g:

Proposition 4.1 Assume that K is separably closed. Then there is an exact sequence

1! f˙1g ! O.V /�K�!N.V; d/! 1;

where the inclusion maps � to .�; �d / and the surjection maps .'; �/ to �SŒd�.'/.

Proof The only nontrivial part is surjectivity of O.V /�K�!N.V; d/. Denote by

� W O.V /!N.V; d/; ' 7! SŒd�.'/;

the restriction of this map to the first component.

Geometry & Topology, Volume 27 (2023)



2666 Lenny Taelman

The representation SŒd�V of so.V / is irreducible, so by Schur’s lemma the centralizer
of so.V / in GL.SŒd�V / is K�, and we have an exact sequence

1!K�!N.V; d/
 
�! Aut.so.V //:

It therefore suffices to show that the image of  equals the image of  ı � .

The adjoint group of so.V / is PSO.V /, and we have a short exact sequence

(5) 1! PSO.V /! Aut.so.V //! Out.so.V //! 1;

where Out.so.V // coincides with the group of symmetries of the Dynkin diagram.

If dimV D 2nC1, then we have PSO.V /D SO.V /. The Dynkin diagram (of type Bn)
has no nontrivial automorphisms, so Aut.so.V; b//D SO.V /. The composition  ı �
maps SO.V / identically to SO.V /, and we conclude that the image of  is the image
of  ı � .

Now assume dimV D 2n. Since K is algebraically closed, PSO.V /D SO.V /=f˙1g.
The larger group O.V /=f˙1g embeds in Aut so.V /, with elements of determinant �1
in O.V / inducing the reflection in the horizontal axis in the Dynkin diagram (of
type Dn). For n ¤ 4, this inclusion is an equality, while for n D 4 “triality” gives
extra automorphisms. However, expressed on simple roots the highest weight of the
representation SŒd�V of so.V / is

d d d d

d=2

d=2

such that for nD 4 the extra automorphisms of so.V / do not lift to automorphisms
of SŒd�V . We conclude that the image of  is contained in O.V /=f˙1g and that the
composition  ı � is the natural map O.V /! O.V /=f˙1g, so also in this case the
image of  coincides with the image of  ı � .

Remark 4.2 The condition that K is algebraically closed is needed in the case of even
dimV. IfK is not algebraically closed, then one still has the exact sequence (5), but one
should be careful to define PSO.V / as the group of K–points of the algebraic group
PSO.V / over K. In general, this group is bigger than SO.V /=f˙1g/. In particular, not
every element of N.V; d/ can be lifted to O.V /�K�.

Proposition 4.3 Let V1 and V2 be nondegenerate quadratic spaces over K. Assume
that there is a linear isomorphism f WSŒd�V1!SŒd�V2 such that f so.V1/f

�1Dso.V2/
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as subspaces of End.V2/. Then there exists a � 2 K� and a similitude ' W V1! V2

such that f D �SŒd�.'/.

Proof Let K be a separable closure of K. Consider the Gal.K=K/–sets

S WD f' W V1;K ! V2;K j ' is a similitudeg

and
N WD fg W SŒd�V1;K ! SŒd�V2;K j g so.V1;K/g

�1
D so.V2;K/g

and the Galois-equivariant map

� WK��S !N; .�; '/ 7! �SŒd�.'/:

The map � is surjective. Indeed, since over a separably closed field the quadratic
spaces are isometric, we may assume without loss of generality that V1 D V2. Then
N DN.V1;K ; d / and the surjectivity follows from Proposition 4.1 (it suffices even to
consider isometries instead of similitudes).

The group K� acts on K� � S by �.�; '/ WD .��d�; �'/ and the fibers of � are
principal homogenous spaces under this action.

The map f defines a Galois-invariant element f 2 N , so its fiber ��1.f / carries a
natural Galois action. By Hilbert 90, we have H1.Gal.K=K;K�/Df1g, which implies
that ��1.f / contains a Galois-invariant element .�; '/.

The bilinear form b on V induces a bilinear form bŒd� on SŒd�V defined as

bŒd�.x1 � � � xd ; y1 � � �yd / WD .�1/
d
X
�2Sn

Y
i

b.xi ; y�i /;

Consider the group
G.V; d/ WDN.V; d/\O.SŒd�; bŒd�/

of isometries of SŒd�V that preserve the subspace so.V / of EndSŒd�V .

Proposition 4.4 If d is odd , then the map

O.V /!G.V; d/; ' 7! SŒd�.'/;

is an isomorphism. If d is even and dimV is odd , then the map

O.V /!G.V; d/; ' 7! det.'/SŒd�.'/;

is an isomorphism.
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Proof Assume first thatK is separably closed. The short exact sequence of Proposition
4.1 restricts to a short exact sequence

1! f˙1g ! O.V /� f˙1g !G.V; d/! 1;

from which one verifies directly that the given maps are isomorphisms. If K is not
separably closed, then the result follows from taking Galois invariants.

Remark 4.5 If both d and dimV are even, one obtains

G.VK ; d /Š O.VK/=f˙1g � f˙1g:

Note, however, that in general there are more Galois-invariant elements than just those
in O.V /=f˙1g. See also Remark 4.2.

4.2 The Verbitsky component

Theorem 4.6 Let X1 and X2 be hyperkähler varieties and ˆ W DX1 ! DX2 an
equivalence. Then the induced isomorphism ˆH W H.X1;Q/! H.X2;Q/ restricts to
an isomorphism ˆSH W SH.X1;Q/! SH.X2;Q/. Moreover:

(i) ˆSH is an isometry with respect to the Mukai pairings.

(ii) ˆSHg.X1/.ˆ
SH/�1 D g.X2/ in End.SH.X2;Q//.

Proof Note that SH.X;Q/ can be characterized as the minimal sub-g.X/–module of
H.X;Q/ whose Hodge structure attains the maximal possible level (width). It then
follows from Theorem A and from Lemma 3.4 that ˆH restricts to an isomorphism

ˆSH
W SH.X1;Q/ ��! SH.X2;Q/

respecting the Lie algebras g.X1/ and g.X2/. By [14], the map ˆH respects the Mukai
pairings, and the theorem follows.

Definition 4.7 For a complex hyperkähler variety we equip SH.X;Q/ and zH.X;Q/
with Hodge structures of weight 0, given by

SH.X;Q/� Hev.X;Q/D
M
n

H2n.X;Q.n//

and
zH.X;Q/DQ˛˚H2.X;Q.1//˚Qˇ:

Lemma 4.8 Let X be a hyperkähler variety of dimension 2d . Then the map

‰ W SH.X;Q/! Symd zH.X;Q/

of Proposition 3.5 is a morphism of Hodge structures of weight 0.
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Proof One verifies directly that the “action map”

H2.X;Q.1//˝ zH.X;Q/! zH.X;Q/;

which maps .�; x/ to e�.x/ is a map of Hodge structures. From this it follows that the
action map

H2.X;Q.1//˝Symd zH.X;Q/! Symd zH.X;Q/

is a map of Hodge structures, and that the map

z‰ W Sym�H.X;Q.1//! Symd zH.X;Q/

from the proof of Proposition 3.5 is a morphism of Hodge structures.

Since multiplication in the cohomology ofX preserves the Hodge structure, the quotient
map Sym� H.X;Q.1//!SH.X;Q/ is also a morphism of Hodge structures, and hence
so is the map ‰ constructed in the proof of Proposition 3.5.

Proposition 4.9 Let X1 and X2 be derived equivalent hyperkähler varieties. Then
there exists a Hodge similitude ' W zH.X1;Q/ ��! zH.X2;Q/ and a scalar � 2Q� such
that the square

SH.X1;Q/ SH.X2;Q/

Symd zH.X1;Q/ Symd zH.X2;Q/

ˆSH

‰ ‰

�Symd .'/

commutes.

Proof Recall from Lemma 3.7 that the image of ‰ is precisely SŒd�zH� Symd zH. It
then follows from Theorem 4.6 and Proposition 4.3 that there exists a similitude ' and
a scalar � that make the square commute.

It remains to check that ' respects the Hodge structures. The Hodge structure on
zH.Xi ;Q/ is given by a morphism hi WC�! O.zH.Xi ;R//, and the preceding lemma
implies that the Hodge structure on SH.Xi ;Q/ is given by composing hi with the
injective map O.zH.Xi ;R//! GL.SH.Xi ;R//. Since ' maps the Hodge structure
on SH.X1;Q/ to the Hodge structure on SH.X2;Q/, we conclude that ' maps h1
to h2.

Theorem 4.10 (d odd) Assume that d is odd , and that X1 and X2 are deformation-
equivalent hyperkähler varieties of dimension 2d . Let ˆ W DX1 ��! DX2 be an
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equivalence. Then there is a unique Hodge isometry ˆzH making the square

SH.X1;Q/ SH.X2;Q/

Symd zH.X1;Q/ Symd zH.X2;Q/

ˆSH

‰ ‰

Symd .ˆzH/

commute. The formation of ˆzH is functorial in ˆ.

Proof Since X1 and X2 are deformation equivalent, we can choose an isometry
' W zH.X1;Q/ ��! zH.X2;Q/. Moreover, X1 and X2 have the same Fujiki constant, so
Symd ' restricts to an isometry between the images of ‰. Then by Theorem 4.6 and
Proposition 4.4, there is a unique isometry  2 O.zH.X2;Q// such that ˆzH WD  '
makes the square commute. Uniqueness forces its formation to be functorial.

That ˆzH respects the Hodge structures follows from the same argument as in the proof
of Proposition 4.9.

If d is even, then both existence and uniqueness ofˆzH in the statement of Theorem 4.10
fail. However, if we moreover assume that b2.X/ is odd, then one can use the description
of G.V; d/ from Proposition 4.4 to salvage this, at the cost of keeping track of a
determinant character.

Define an orientation on X to be the choice of a generator of det H2.X;R/, up to R�>0.
Equivalently, an orientation is the choice of generator of det zH.X;R/ up to R�>0. Define
the sign �.'/ of a Hodge isometry ' W zH.X1;Q/ ��! zH.X2;Q/ as �.'/D 1 if ' respects
the orientations and �.'/ D �1 otherwise. A derived equivalence between oriented
hyperkähler varieties is a derived equivalence between the underlying unoriented
hyperkähler varieties.

Theorem 4.11 (d even) Assume that d is even , and that ˆ W DX1 ��! DX2 is a
derived equivalence between oriented hyperkähler varieties of dimension 2d . Assume
that X1 and X2 have odd b2, and that the quadratic spaces H2.X1;Q/ and H2.X2;Q/
are isometric. Then there exists a unique Hodge isometry ˆzH making the square

SH.X1;Q/ SH.X2;Q/

Symd zH.X1;Q/ Symd zH.X2;Q/

�.ˆzH/ˆSH

‰ ‰

Symd .ˆzH/
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commute. Moreover , the formation of ˆzH is functorial for composition of derived
equivalences between hyperkähler varieties equipped with orientations.

Proof The argument is quite similar to the proof of Theorem 4.10. Choose an isometry
' W zH.X1;Q/ ��! zH.X2;Q/. Because the dimension of zH.Xi ;Q/ is odd, we may
replace ' with �' if necessary to ensure that ' respects the orientations, and hence we
may assume �.'/D 1. The map ' induces an isometry Symd ', which restricts to an
isometry 'SH W SH.X1;Q/! SH.X2;Q/.

By Theorem 4.6, there is a  2 G.zH.X2;Q/; d/ such that ˆSH D  ı 'SH, and by
Proposition 4.4, we have that  D det. 0/SŒd�. 0/ for a unique  0 2 O.zH.X2;Q//.
Now take ˆzH WD  0 ı '. Then �.ˆzH/ D det. 0/ and Symd .ˆzH/ lifts to the map
det. 0/�1 ı'SH D �.ˆ

zH/ˆSH as claimed.

Proposition 4.4 forcesˆzH to be unique, and this implies the functoriality for composition.
Compatibility with Hodge structures follows from the same argument as in the proof
of Proposition 4.9.

Remark 4.12 If X1 and X2 are hyperkähler varieties belonging to one of the known
families, and if ˆ W DX1 ��! DX2 is an equivalence, then the hypotheses of either
Theorem 4.10 or Theorem 4.11 are satisfied. Indeed, X1 and X2 will have the same
dimension 2d and because they have isomorphic LLV Lie algebra, they have the
same second Betti number b2. Going through the list of known families, one sees
that this implies that X1 and X2 are deformation equivalent. In particular, they have
isometric H2. Finally, all known hyperkähler varieties of dimension 2d with d even
have odd b2.

Taking X1 DX2 in Theorems 4.10 and 4.11 yields Theorem C from the introduction:

Theorem 4.13 Let X be a hyperkähler variety of dimension 2d . Assume that either d
is odd or that d is even and b2.X/ is odd. Then the representation

�SH
W AutD.X/! GL.SH.X;Q//

factors over a map �zH W AutD.X/! O.zH.X;Q//.

Remark 4.14 For d odd, the implicit map O.zH.X;Q// ! GL.SH.X;Q// is the
natural map coming from the isomorphism SH.X;Q/ Š SŒd�zH.X;Q//. For d even
(and b2 odd), it is the twist of the natural map with the determinant character

O.zH.X;Q//! f˙1g:
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5 Hodge structures

In this section we prove Theorem D from the introduction.

For a nondegenerate quadratic space V over Q we will make use of the algebraic
groups SO.V /, Spin.V /, and GSpin.V / (sometimes denoted CSpin.V /) over Q.
These groups sit in a commutative diagram with exact rows

(6)
1 �2 Spin.V / SO.V / 1

1 Gm GSpin.V / SO.V / 1

from which one deduces an exact sequence

(7) 1! �2!Gm �Spin.V /!GSpin.V /! 1;

where the first map is the diagonal embedding � 7! .�; �/. Alternatively, one can use (7)
as the definition of GSpin, and deduce the existence of the above commutative diagram.

We will write SO.V /, Spin.V /, and GSpin.V / for the groups of Q–points of these
algebraic groups. Note that the above exact sequences of algebraic groups need not
induce exact sequences of groups of Q–points, and the obstruction can be described in
terms of Galois cohomology. The sequence for the Spin–cover of SO.V / induces an
exact sequence

1! f˙1g ! Spin.V /! SO.V /! H1.Gal.Q=Q/; f˙1g/DQ�=.Q�/2;

where the connecting homomorphism SO.V /!Q�=.Q�/2 is the spinor norm. By
Hilbert 90, we have H1.Gal.Q=Q/;Q�/ D f1g and the analogous sequence for the
GSpin–cover does induce a short exact sequence

(8) 1!Q�! GSpin.V /! SO.V /! 1:

This will be used crucially in the proof of Theorem D.

Lemma 5.1 Let X be a hyperkähler variety of dimension 2d . There exists a unique
action of GSpin.zH.X;Q// on H.X;Q/ such that

(i) the action of Spin.zH.X;Q//�GSpin.zH.X;Q// integrates the action of g.X/D
so.zH.X;Q//;

(ii) a section � 2Gm �GSpin.zH.X;Q// acts as �i�2d on Hi .X;Q/.
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Proof The action of so.zH.X;Q// integrates to an action of the simply connected
algebraic group Spin.zH.X;Q//. This commutes with the action of Gm for which
� acts as �i�2d on Hi .X;Q/, and we obtain an action of Gm � Spin.zH.X;Q// on
H.X;Q/. The lemma claims that this descends to an action of the quotient group
GSpin.zH.X;Q//.

By (7) it suffices to verify that the kernel �2 acts trivially, ie that �1 2 Spin.zH.X;Q//
acts as .�1/i on Hi .X;Q/. Any sl2–triple .e�; h; f�/ in g.X/ induces an algebraic
subgroup SL2 � Spin.zH.X;Q// with the property that diag.�; ��1/ 2 SL2.Q/ acts
as �i on H2dCi .X;Q/. It follows that diag.�1;�1/ must be mapped to the nontrivial
central element �1 2 Spin.zH.X;Q//, and that �1 acts as .�1/i on Hi .X;Q/.

Recall from Definition 4.7 that we have equipped zH.X;Q/ and Hev.X;Q/ with Hodge
structures of weight 0. Similarly, we equip the odd cohomology of X with a Hodge
structure of weight 1,

Hodd.X;Q/ WD
M
i

H2iC1.X;Q.i//:

Lemma 5.2 Let g 2 GSpin.zH.X;Q//. If the action of g on zH.X;Q/ respects the
Hodge structure , then so does its action on Hev.X;Q/ and on Hodd.X;Q/.

Proof This follows immediately from the fact that the Hodge structure is determined
by the action of h0 2 g.X/˝Q C (see Section 2.3), and from the faithfulness of the
g.X/–module zH.X;Q/.

Theorem 5.3 Let X1 and X2 be hyperkähler varieties , and let ˆ W DX1 ��! DX2 be
an equivalence. Then for every i the Q–Hodge structures Hi .X1;Q/ and Hi .X2;Q/
are isomorphic.

Proof Consider the Lie algebra isomorphism ˆg W g.X1/
��! g.X2/ from Theorem A.

By Proposition 4.9, there exists a Hodge similitude � W zH.X1;Q/ ��! zH.X2;Q/ such
that the square

so.zH.X1;Q// so.zH.X2;Q//

g.X1/ g.X2/

Ad.�/

ˆg

commutes. Here the vertical maps are the isomorphisms from Theorem 3.1.
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The K3–type Hodge structure zH.X2;Q/ decomposes as N ˚ T , with N and T its
algebraic and transcendental parts, respectively. The Hodge similitude � maps the
distinguished elements ˛1 and ˇ1 of zH.X1;Q/ to N . By Witt cancellation, there exists
a  N 2 SO.N / and �;� 2 Q� such that  N�.˛1/ D �˛2 and  N�.ˇ1/ D �ˇ2.
Extending by the identity, we find a Hodge isometry  2 SO.zH.X2;Q// such that
 � W zH.X1;Q/ ��! zH.X2;Q/ is a graded Hodge similitude. In particular, the induced
map  � W g.X1/ ��! g.X2/ is graded, and  � maps the grading element h1 2 g.X1/
to the grading element h2 2 g.X2/.

By (8) the element  lifts to an element z 2 GSpin.zH.X2;Q//, which by Lemma 5.1
and Lemma 5.2 induces automorphisms of the Hodge structures Hev.X2;Q/ and
Hodd.X2;Q/. Now, by construction, the composition z ıˆH defines isomorphisms

z ıˆH
W Hev.X1;Q/ ��! Hev.X2;Q/; z ıˆH

W Hodd.X1;Q/ ��! Hodd.X2;Q/;

which respect both the grading and the Hodge structure, so they induce isomorphisms
of Hodge structures Hi .X1;Q/ ��! Hi .X2;Q/, for all i .

6 Topological K–theory

6.1 Topological K–theory and the Mukai vector

We now briefly recall some basic properties of topological K–theory of projective
algebraic varieties. See [1; 3; 4] for more details.

For every smooth and projective X over C we have a Z=2Z–graded abelian group

Ktop.X/ WD K0top.X/˚K1top.X/:

This is functorial for pullback and proper pushforward, and carries a product structure.
The group K0top.X/ is the Grothendieck group of topological vector bundles on the
differentiable manifold X an. Pullback agrees with pullback of vector bundles, and the
product structure agrees with the tensor product of vector bundles.

By [3, Section 1.10], the Chern character can be extended to odd degree, inducing a
Z=2Z–graded map

v
top
X W Ktop.X/! H.X;Q/;

given by vtop
X .F/D

p
TdX � ch.F/. The image of vtop

X is a Z–lattice of full rank.
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There is a “forgetful” map K0.X/!Ktop.X/ from the Grothendieck group of algebraic
vector bundles (or equivalently of the triangulated category DX). This is compatible
with pullback, multiplication, and proper pushforward. The Mukai vector

vX W K0.X/! H.X;Q/
factors over vtop

X .

If P is an object in D.X �Y / then convolution with its class in K0top.X �Y / defines a
map ˆK

P W Ktop.X/! Ktop.Y /, in such a way that the diagram

K0.X/ Ktop.X/ H.X;Q/

K0.Y / Ktop.Y / H.Y;Q/:

ˆP ˆK
P

v
top
X

ˆH
P

v
top
Y

commutes.

6.2 Equivariant topological K–theory

The above formalism largely generalizes to an equivariant setting. Again, we briefly
recall the most important properties; see [5; 6; 28; 42] for more details.

If X is a smooth projective complex variety equipped with an action of a finite group G,
we denote by K0G.X/ the Grothendieck group ofG–equivariant algebraic vector bundles
on X , or equivalently the Grothendieck group of the bounded derived category DGX
of G–equivariant coherent OX–modules. This is functorial for pullback along G–
equivariant maps and pushforward along G–equivariant proper maps.

Similarly, we have the G–equivariant topological K–theory

Ktop;G.X/ WD K0top;G.X/˚K1top;G.X/;

where K0top;G.X/ is the Grothendieck group of topological G–equivariant vector bun-
dles.

There is a natural map K0G.X/ ! K0top;G.X/ compatible with pullback and tensor
product. If f WX ! Y is proper and G–equivariant, then we have a pushforward map
f� W Ktop;G.X/! Ktop;G.Y /. There is a Riemann–Roch theorem [5; 28], stating that
the square

K0G.X/ Ktop;G.X/

K0G.Y / Ktop;G.Y /

f� f�

commutes.
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Now assume that we have a finite group G acting on X , and a finite group H acting
on Y . If P is an object in DG�H .X �Y /, then convolution with P induces a functor
ˆP W DGX ! DHY , see [40] for more details. Similarly, convolution with the class
of P in K0top;G�H .X �Y / induces a map ˆK

P W Ktop;G.X/! Ktop;H .Y /. These satisfy
the usual Fourier–Mukai calculus, and moreover they are compatible in the sense that
the square

K0G.X/ Ktop;G.X/

K0H .Y / Ktop;H .Y /

ˆP ˆK
P

commutes.

7 Cohomology of the Hilbert square of a K3 surface

Let S be a K3 surface and X D S Œ2� its Hilbert square. In the coming few paragraphs
we recall the structure of the cohomology of X in terms of the cohomology of S . See
[7; 17; 23] for more details.

7.1 Line bundles on the Hilbert square

Let G D f1; �g be the group of order two, acting on S �S by permuting the factors.
The Hilbert square X sits in a diagram

Z

S �S X

qp

where p WZ! S �S is the blow-up along the diagonal, and where q WZ!X is the
quotient map for the natural action of G on Z. Denote by R � Z the exceptional
divisor of p. Then R equals the ramification locus of q. We have q�OZ DOX ˚ E for
some line bundle E , and q�E ŠOZ.�R/.

If L is a line bundle on S then

L2 WD .q�p�.L�L//G

is a line bundle on X . The map

Pic.S/˚Z! Pic.X/; .L; n/ 7! L2˝ E˝n;

is an isomorphism.
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7.2 Cohomology of the Hilbert square

There is an isomorphism

H2.S;Z/˚Zı ��! H2.X;Z/

with the property that c1.L/ is mapped to c1.L2/, and ı is mapped to c1.E/. We will use
this isomorphism to identify H2.S;Z/˚Zı with H2.X;Z/. The Beauville–Bogomolov
form on H2.X;Z/ satisfies

bX .�; �/D bS .�; �/; bX .�; ı/D 0; bX .ı; ı/D�2

for all � 2 H2.S;Z/.

The cup product defines an isomorphism Sym2 H2.X;Q/ ��! H4.X;Q/. By Poincaré
duality, there is a unique qX 2 H4.X;Q/ representing the Beauville–Bogomolov form,
in the sense that

(9)
Z
X

qX�1�2 D bX .�1; �2/

for all �1; �2 2 H2.X;Z/. Multiplication by qX defines an isomorphism H2.X;Q/!
H6.X;Q/, and, for all �1; �2; �3 2 H2.X;Q/,

(10) �1�2�3 D bX .�1; �2/qX�3C bX .�2; �3/qX�1C bX .�3; �1/qX�2

in H6.X;Q/. Finally, for all � 2 H2.X;Q/ the Fujiki relation

(11)
Z
X

�4 D 3bX .�; �/
2

holds.

7.3 Todd class of the Hilbert square

Proposition 7.1 TdX D 1C 5
2
qX C 3Œpt�.

Proof See also [23, Section 23.4]. Since the Todd class is invariant under the mon-
odromy group of X , we necessarily have

TdX D 1C sqX C t Œpt�

for some s; t 2Q. By Hirzebruch–Riemann–Roch, for every line bundle L on S with
c1.L/D �,

�.X;L2/D

Z
X

ch.�/TdX D
1

24

Z
X

�4C
s

2

Z
X

�2qX C t:
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By the relations (11) and (9), the right-hand side reduces to

1
8
b.�; �/2C 1

2
sb.�; �/C t:

By [23, Section 23.4] or [17, 5.1], the left-hand side computes to

�.X;L2/D
1
8
b.�; �/2C 5

4
b.�; �/C 3:

Comparing the two expressions yields the result.

8 Derived McKay correspondence

8.1 The derived McKay correspondence

As in Section 7.1, we consider a K3 surface S , its Hilbert square X D S Œ2�, the maps
p WZ! S �S and q WZ!X , and the group G D f1; �g acting on S �S and Z.

The derived McKay correspondence [11] is the triangulated functor

BKR W Db.X/! DbG.S �S/
given as the composition

BKR W DX q�
�! DG.Z/ p��! DG.S �S/;

where the first functor maps F to q�F equipped with the trivial G–linearization. By
[11, Theorem 1.1; 21, Theorem 5.1], the functor BKR is an equivalence of categories.

Its inverse has been described in [31, Section 4]. Denote by j W Z! S �S �X the
G–equivariant closed immersion induced by p and q. The exceptional divisor R �Z
is G–invariant and hence defines a G–equivariant sheaf O.R/, and a G–equivariant
sheaf Q WD j�OZ.R/ in DG.S �S �X/.

Proposition 8.1 The inverse equivalence of BKR is given by the equivariant Fourier–
Mukai transform with respect to Q. It maps F 2 DG.S �S/ to the object

.q�p
�F/�D�1˝ E�1

of D.X/.

Proof The first statement is [31, 4.1]. By the adjunction formula for j WZ!S�S!X ,
this implies that F is mapped to

�
q�.p

�F ˝OZ.R//
�G
2 D.X/. If we upgrade the

line bundle E on X to a G–equivariant (for the trivial action on X) line bundle E�
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by making � act as �1, then q�E� Š OZ.�R/ as G–equivariant line bundles on Z.
Applying the projection formula once more for the equivariant map q, we find

.q�.p
�F ˝OZ.R///G Š .q�p�F ˝ E�1� /G Š .q�p

�F/�D�1˝ E�1:

Now let S1 and S2 be K3 surfaces with Hilbert squares X1 and X2. As was observed
by Ploog [39], any equivalence ˆ W DS1 ��! DS2 induces an equivalence

DG.S1 �S2/ ��! DG.S2 �S2/;

and hence, via the derived McKay correspondence, an equivalenceˆŒ2� WDX1 ��!DX2.

8.2 Topological K–theory of the Hilbert square

Theorem 8.2 The composition

BKRtop W Ktop.X/
q�
�! Ktop;G.Z/

p�
�! Ktop;G.S �S/

is an isomorphism.

Proof (See also [11, Section 10].) This is a purely formal consequence of the calculus
of equivariant Fourier–Mukai transforms sketched in Section 6.2. The functor BKR
and its inverse are given by kernels P 2 DG.X � S � S/ and Q 2 DG.S � S �X/.
The map BKRtop is given by convolution with the class of P in K0top;G.X � S � S/.
The identities in K0.X �X/ and K0G�G.S �S �S �S/ witnessing that P and Q are
mutually inverse equivalences induce analogous identities in K0top. These show that
convolution with the class of Q defines a two-sided inverse to BKRtop.

Consider the map
 K
W K0top.X/! K0top.S �S/

G

obtained as the composition of BKRtop and the forgetful map from K0top;G.S �S/ to
K0top.S �S/. Also, consider the map

�K
W K0top.S/! K0top.X/; ŒF � 7! BKR�1top .ŒF �F ; 1�� ŒF �F ;�1�/;

where ŒF �F ;˙1� denotes the class of the topological vector bundle F �F equipped
with ˙ the natural G–linearization.

By construction, these maps are “functorial” in DS , in the following sense:
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Proposition 8.3 If ˆ W DS1 ��! DS2 is a derived equivalence between K3 surfaces ,
and ˆŒ2� W DX1 ��! DX2 is the induced equivalence between their Hilbert squares ,
then the squares

K0top.X1/ K0top.S1 �S1/
G K0top.S1/ K0top.X1/

K0top.X2/ K0top.S2 �S2/
G K0top.S2/ K0top.X2/

 K

ˆŒ2�;K ˆK˝ˆK

�K

ˆK ˆŒ2�;K

 K
�K

commute.

Proposition 8.4 The sequence

0! K0top.S/˝Z Q �K
�! K0top.X/˝Z Q

 K
�! K0top.S �S/

G
˝Z Q! 0

is exact.

Proof In the proof, we will implicitly identify Ktop;G.S �S/ and Ktop.X/.

Note that the map �K is additive. Indeed, let F1 and F2 be (topological) vector bundles
on S . Then the cross term �KŒF1˚F2�� �KŒF1�� �KŒF2� computes to�

F1�F2˚F2�F1;
�
0 1
1 0

��
�
�
F1�F2˚F2�F1;

�
0 �1
�1 0

��
;

which vanishes because the matrices
�
0 1
1 0

�
and

�
0 �1
�1 0

�
are conjugated over Z.

Next we observe that  K WK0top.X/˝Z Q!K0top.S �S/
G˝Z Q is surjective. Indeed,

by the Künneth formula [2], the group K0top.S �S/
G ˝Z Q is generated by classes of

the form ŒF1�F2˚F2�F1�, and these lie in the image of  K.

Also, the composition  K�K vanishes. Computing the Q–dimensions one sees that it
suffices to show that �K is injective to conclude that the sequence is exact.

Pulling back to the diagonal and taking invariants defines a map

K0top.S/
�K
�! K0top;G.S �S/

��
�! K0top;G.S/

.�/G
��! K0top.S/:

This composition computes to

ŒF � 7! ŒSym2 F ��
�V2 F�:

This coincides with the second Adams operation, which is injective on K0top.S/˝Z Q,
since it has eigenvalues 1, 2, and 4. We conclude that �K is injective, and the proposition
follows.

Geometry & Topology, Volume 27 (2023)



Derived equivalences of hyperkähler varieties 2681

8.3 A computation in the cohomology of the Hilbert square

We now come to the technical heart of our computation of the derived monodromy of
the Hilbert square of a K3 surface.

Consider the map �H W H.S;Q/! H.X;Q/ given by

(12) �H.sC�C tptS /D .sıC�ıC tqXı/ � e
�ı=2;

for all s; t 2Q and � 2 H2.S;Q/. See Section 7.2 for the definition of ı 2 H2.X;Q/
and qX 2 H4.X;Q/.

Proposition 8.5 The square

K0top.S/ K0top.X/

H.S;Q/ H.X;Q/

�K

v
top
S v

top
X

�H

commutes.

Proof Since K0top.S/˝Z Q is additively generated by line bundles, it suffices to show

(13) v
top
X .�K.L//D

�
ıC�ıC

�
1
2
b.�; �/C 1

�
qXı

�
� e�ı=2

for a topological line bundle L with �D c1.L/. Deforming S if necessary, we may
assume that L is algebraic.

Using Proposition 8.1 and the fact that the natural map

L2˝ q�OZ! q�p
�.L�L/

is an isomorphism of OX–modules, we find

BKR�1ŒL�L; 1�D L2; BKR�1ŒL�L;�1�D E�1˝L2:

We conclude that �K maps L to ŒL2�.1� ŒE�1�/ in K0.X/.

We compute its image under vX . Using the formula for the Todd class from Proposition
7.1, we find

vX .�
K.L//D

�
1C 5

4
qX C � � �

�
exp.�/.1� e�ı/:

Since 1� e�ı has no term in degree 0, the degree 8 part of the square root of the Todd
class is irrelevant, so we have

vX .�
K.L//D

�
1C 5

4
qX
�

exp.�/.1� e�ı/:
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By the Fujiki relation (11) from Section 7.2, we have �3ı D 0, so the above can be
rewritten as

vX .�
K.L//D

�
1C 5

4
qX
�
�
�
ıC�ıC 1

2
�2ı

�
�
1�e�ı

ı
:

Since qXı�D b.ı; �/D 0, we can rewrite this further as

vX .�
K.L//D

�
1C 1

4
qX
�
�
�
ıC�ıC

�
1
2
b.�; �/C 1

�
qXı

�
�
1�e�ı

ı
:

Comparing this with the right-hand side of (13), we see that it suffices to show�
1C 1

4
qX
�
� .1� e�ı/D ıe�ı=2

in H.X;Q/. This boils down to the identities

1
6
ı3C 1

4
ıqX D

1
8
ı3; 1

24
ı4C 1

8
ı2qX D

1
48
ı4

in H6.X;Q/ and H8.X;Q/, respectively. These follow easily from the relations (9),
(10), and (11) in Section 7.2.

9 Derived monodromy group of the Hilbert square of a K3
surface

9.1 Derived monodromy groups

Let X be a smooth projective complex variety. We call a deformation of X the data of
a smooth projective variety X 0, a proper smooth family X ! B , a path  W Œ0; 1�! X ,
and isomorphisms X ��! X.0/ and X 0 ��! X.1/. We will informally say that X 0

is a deformation of X , the other data being implicitly understood. Parallel transport
along  defines an isomorphism H.X;Q/ ��! H.X 0;Q/.

IfX 0 andX 00 are deformations ofX , and if � WX 0!X 00 is an isomorphism of projective
varieties, then we obtain a composite isomorphism

H.X;Q/
�
�! H.X 0;Q/ �

�
�! H.X 00;Q/

�
�! H.X;Q/:

We call such an isomorphism a monodromy operator for X , and denote by Mon.X/
the subgroup of GL.H.X;Q// generated by all monodromy operators.

If X 0 and X 00 are deformations of X , and if ˆ W DX 0 ��! DX 00 is an equivalence, then
we obtain an isomorphism

H.X;Q/
�
�! H.X 0;Q/ ˆ

H

�
�! H.X 00;Q/

�
�! H.X;Q/:
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We call such an isomorphism a derived monodromy operator for X , and denote
by DMon.X/ the subgroup of GL.H.X;Q// generated by all derived monodromy
operators.

By construction, the derived monodromy group is deformation invariant. It contains
the usual monodromy group, and the image of �X , and we have a commutative square
of groups

Aut.X/ Aut.DX/

Mon.X/ DMon.X/

�X

Remark 9.1 The above definition is somewhat ad hoc, and should be considered a
poor man’s derived monodromy group. This is sufficient for our purposes. A more
mature definition should involve all noncommutative deformations of X .

Proposition 9.2 If S is a K3 surface , then DMon.S/D OC.zH.S;Z//.

Proof Indeed, if ˆ W DS1! DS2 is an equivalence, then

ˆH
W zH.S1;Z/! zH.S2;Z/

preserves the Mukai form, as well as a natural orientation on four-dimensional positive
subspaces; see [26, Section 4.5]. Also any deformation preserves the Mukai form and
the natural orientation, so any derived monodromy operator will land in OC.zH.S;Z//.

The converse inclusion can be easily obtained from the Torelli theorem, together with
the results of [22; 39] on derived auto-equivalences of K3 surfaces. Alternatively, one
can use that the group OC.zH.S;Z// is generated by reflections in �2–vectors ı. By the
Torelli theorem, any such �2–vector will become algebraic on a suitable deformation
S 0 of S , and by [32] there exists a spherical object E on S 0 with Mukai vector v.E/D ı.
The spherical twist in E then shows that reflection in ı is indeed a derived monodromy
operator.

9.2 Action of DMon.S / on H.X;Q/

By the derived McKay correspondence, any derived equivalence ˆS W DS1 ��! DS2
between K3 surfaces induces a derived equivalence ˆX W DX1 ��! DX2 between the
corresponding Hilbert squares. By Propositions 8.3 and 8.4, the induced map ˆHX only
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depends on ˆHS . Since any deformation of a K3 surface S induces a deformation of
X D S Œ2�, we conclude that we have a natural homomorphism

DMon.S/! DMon.X/;

and hence an action of DMon.S/ on H.X;Q/. In this subsection, we will explicitly
compute this action. As a first approximation, we determine the DMon.S/–module
structure of H.X;Q/, up to isomorphism.

Proposition 9.3 We have H.X;Q/Š zH.S;Q/˚ Sym2 zH.S;Q/ as representations of
DMon.S/D OC.zH.S;Z//.

Proof This follows from Propositions 8.3 and 8.4.

Since g.X/ is a purely topological invariant, it is preserved under deformations. In
particular, Theorem 4.13 implies that we have an inclusion DMon.X/� O.zH.X;Q//.
We conclude there exists a unique map of algebraic groups h making the square

(14)

DMon.S/ DMon.X/

O.zH.S;Q// O.zH.X;Q//h

commute.

Recall that in (3) we defined an isometry B� of zH.X;Q/ for every � 2 H2.X;Q/.

Theorem 9.4 The map h in the square (14) is given by

g 7! det.g/ � .B�ı=2 ı �.g/ ıBı=2/;

with � W O.zH.S;Q//! O.zH.X;Q// the natural inclusion.

The proof of this theorem will occupy the remainder of this section.

Consider the unique homomorphism of Lie algebras � W g.S/! g.X/ that respects the
grading and maps e� to e� for all � 2 H2.S;Q/� H2.X;Q/. Under the isomorphism
of Theorem 3.1 this corresponds to the map so.zH.S;Q//! so.zH.X;Q// induced by
the inclusion of quadratic spaces zH.S;Q/� zH.X;Q/.

Recall from Section 8.3 the map �H W H.S;Q/! H.X;Q/.
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Lemma 9.5 The map �H W H.S;Q/! H.X;Q/ is equivariant with respect to

�g W g.S/! g.X/; x 7! B�ı=2 ı �.x/ ıBı=2:

Proof We have �H D e�ı=2 � �H
0 , with

�H
0 .sC�C tptS /D sıC�ıC tqXı:

The map �H
0 respects the grading, and we claim that for every �2H2.S;Q/ the diagram

H.S;Q/ H.X;Q/ H.X;Q/

H.S;Q/ H.X;Q/ H.X;Q/

�H
0

e� e�

e�ı=2

e�ı=2e�e
ı=2

�H
0 e�ı=2

commutes. Indeed, we have

e�.�
H
0 .sC�C tptS //D sı�C�ı�C tqXı�;

�H
0 .e�.sC�C tptS //D sı�C b.�; �/qXı:

One verifies easily that these agree, using the identities (10) and (9) from Section 7.2
and the fact that b.�; ı/D b.�; ı/D 0. This shows that the left-hand square commutes.
The right-hand square commutes trivially, so the outer rectangle commutes, which
shows that �H D e�ı=2 � �H

0 is indeed equivariant with respect to �g.

Lemma 9.6 There is an isomorphism

det.zH.X;Q//˝Sym2.zH.X;Q//Š H.X;Q/˚ det.zH.X;Q//

of representations of G D O.zH.X;Q//.

Proof This follows from Lemma 3.7, Theorem 4.13 and Remark 4.14.

We are now ready to prove the main result of this subsection.

Proof of Theorem 9.4 By Proposition 8.5, the map �H is equivariant for the action of
DMon.S/. Lemma 9.5 then implies that

h.g/D B�ı=2 ı �.g/ ıBı=2

for all g 2 SO.zH.S;Q//. We have an orthogonal decomposition

zH.X;Q/D B�ı=2.zH.S;Q//˚C

Geometry & Topology, Volume 27 (2023)



2686 Lenny Taelman

withC of rank 1. Since SO.zH.S;Q// is normal in O.zH.S;Q//, the action of O.zH.S;Q//
(via h) must preserve this decomposition. With respect to this decomposition h must
then be given by

h.g/D .B�ı=2 ıg�1.g/ ıBı=2/˚ �2.g/;

where the �i .g/ W O.zH.S;Q// ! f˙1g are quadratic characters. This leaves four
possibilities for h. One verifies that �1 D �2 D detg is the only possibility compatible
with Proposition 9.3 and Lemma 9.6, and the theorem follows.

9.3 A transitivity lemma

In this section we prove a lattice-theoretical lemma that will play an important role in
the proofs of Theorems E and F.

Let b W L�L! Z be an even nondegenerate lattice. Let U be a hyperbolic plane with
basis consisting of isotropic vectors ˛ and ˇ satisfying b.˛; ˇ/D�1.

As before, to a � 2 L we associate the isometry B� 2 O.U ˚L/ defined as

B�.r˛C�C sˇ/D r˛C .�C r�/C
�
sC b.�; �/C r 1

2
b.�; �/

�
ˇ

for all r; s 2Z and �2L. Let  be the isometry of U˚L given by .˛/Dˇ, .ˇ/D˛,
and .�/D�� for all � 2 L.

Lemma 9.7 LetL be an even lattice containing a hyperbolic plane. Let G�O.U˚L/
be the subgroup generated by  and by B� for all � 2 L. Then , for all ı 2 U ˚L with
ı2 D�2 and for all g 2 O.U ˚L/, there exists a g0 2G such that g0g fixes ı.

Proof This follows from classical results of Eichler. A convenient modern source is
[20, Section 3], whose notation we adopt. The isometry B� coincides with the Eichler
transvection t .ˇ;��/. The conjugate B��1 is the Eicher transvection t .˛; �/. Hence
G contains the subgroup EU .L/�O.U ˚L/ of unimodular transvections with respect
to U . By [20, Proposition 3.3], there exists a g0 2EU .L/ mapping gı to ı.

9.4 Proof of Theorem E

Let X be a hyperkähler variety of type K3Œ2�. Let ı 2H2.X;Z/ be any class satisfying
ı2 D �2 and b.ı; �/ 2 2Z for all � 2 H2.X;Z/. For example, if X D S Œ2�, we may
take ı D c1.E/ as in Section 7.2. Consider the integral lattice

ƒ WD Bı=2.Z˛˚H2.X;Z/˚Zˇ/� zH.X;Q/:
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The subgroup ƒ � zH.X;Q/ does not depend on the choice of ı. In this section, we
will prove Theorem E. More precisely, we will show:

Theorem 9.8 OC.ƒ/� DMon.X/� O.ƒ/.

We start with the lower bound.

Proposition 9.9 OC.ƒ/� DMon.X/ as subgroups of O.zH.X;Q//.

Proof Since the derived monodromy group is invariant under deformation, we may
assume without loss of generality that X D S Œ2� for a K3 surface S and ı D c1.E/ as
in Section 7.2.

The shift functor Œ1� on DX acts as �1 on H.X;Q/, which coincides with the action of
�1 2O.zH.X;Q//. In particular, �1 2OC.ƒ/ lies in DMon.X/, so it suffices to show
that SOC.ƒ/ is contained in DMon.X/.

Consider the isometry  2 OC.zH.S;Q// given by .˛/ D �ˇ, .ˇ/ D �˛, and
.�/ D � for all � 2 H2.S;Q/. Then det./ D �1 and by Theorem 9.4 its image
h./ interchanges Bı=2˛ and Bı=2ˇ and acts by �1 on Bı=2H2.X;Z/. Since  lies in
DMon.S/� O.zH.S;Q//, we have that h./ lies in DMon.X/� O.zH.X;Q//.

Let G � O.zH.X;Q// be the subgroup generated by h./ and the isometries B� for
� 2 H2.X;Z/. Clearly G is contained in DMon.X/.

Let g be an element of SOC.ƒ/, and consider the image gBı=2ı of Bı=2ı. By
Lemma 9.7 there exists a g0 2G �DMon.X/ such that g0g fixes Bı=2ı. But then g0g
acts on

.Bı=2ı/
?
D Bı=2.Z˛˚H2.S;Z/˚Zˇ/

with determinant 1 and preserving the orientation of a maximal positive subspace. In
particular, g0g lies in the image of DMon.S/! DMon.X/, and we conclude that g
lies in DMon.X/.

The proof of the upper bound is now almost purely group-theoretical. Denote by
SOC.ƒ/ the intersection OC.ƒ/\SO.ƒ/. This group coincides with the kernel of the
spinor norm on SO.ƒ/.

Proposition 9.10 SO.ƒ/ is the unique maximal arithmetic subgroup of SO.ƒ˝Z Q/

containing SOC.ƒ/.
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Proof More generally, this holds for any even lattice ƒ with the property that the
quadratic form q.x/D b.x; x/=2 on the Z–module ƒ is semiregular [29, Section IV.3].

For such ƒ, the group schemes Spin.ƒ/ and SO.ƒ/ are smooth over Spec Z; see
eg [27]. In particular, for every prime p the subgroups Spin.ƒ˝Zp/ and SO.ƒ˝Zp/

of Spin.ƒ˝Qp/ and SO.ƒ˝Qp/, respectively, are maximal compact subgroups. It
follows that the groups

Spin.ƒ/D Spin.ƒ˝Q/\
Y
p

Spin.ƒ˝Zp/

and
SO.ƒ/D SO.ƒ˝Q/\

Y
p

SO.ƒ˝Zp/

are maximal arithmetic subgroups of Spin.ƒ˝Q/ and SO.ƒ˝Q/, respectively.

The subgroup SOC.ƒ/� SO.ƒ/ is the kernel of the spinor norm, and the short exact
sequence 1! �2 ! Spin! SO! 1 of fppf sheaves on Spec Z induces an exact
sequence of groups

1! f˙1g ! Spin.ƒ/! SOC.ƒ/! 1:

Let � � SO.ƒ˝Q/ be a maximal arithmetic subgroup containing SOC.ƒ/. Let z� be
its inverse image in Spin.ƒ˝Q/, so that we have an exact sequence

1! f˙1g ! z�! �!Q�=2:

Since the group z� is arithmetic and contains Spin.ƒ/, we have z�DSpin.ƒ/. Moreover,
� normalizes SOC.ƒ/ D ker.� ! Q�=2/, and, as the normalizer of an arithmetic
subgroup of SO.ƒ˝Q/ is again arithmetic, � must equal the normalizer of SOC.ƒ/.
But then � contains SO.ƒ/, and we conclude � D SO.ƒ/.

Corollary 9.11 DMon.X/� O.ƒ/.

Proof DMon.X/ preserves the integral lattice Ktop.X/ in the representation H.X;Q/
of O.zH.X;Q//, and hence is contained in an arithmetic subgroup of

O.zH.X;Q//D SO.zH.X;Q//� f˙1g:

By Proposition 9.9 it contains SOC.ƒ/� f˙1g, so we conclude from the preceding
proposition that DMon.X/ must be contained in O.ƒ/.

Together with Proposition 9.9 this proves Theorem 9.8.
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10 The image of Aut.DX/ on H.X;Q/

10.1 Upper bound for the image of �X

We continue with the notation of the previous section. In particular, we denote by X a
hyperkähler variety of type K3Œ2�, and byƒ� zH.X;Q/ the lattice defined in Section 9.4.
We equip zH.X;Q/ with the weight 0 Hodge structure

zH.X;Q/DQ˛˚H2.X;Q.1//˚Qˇ:

We denote by Aut.ƒ/� O.ƒ/ the group of isometries of ƒ that preserve this Hodge
structure.

Proposition 10.1 im.�X /� Aut.ƒ/.

Proof By Theorem 9.8 we have im.�X /� O.ƒ/. The Hodge structure on

H.X;Q/D
4M
nD0

H2n.X;Q.n//

induces a Hodge structure on g.X/ � End.H.X;Q//, which agrees with the Hodge
structure on so.zH.X;Q// induced by the Hodge structure on zH.X;Q/. If

ˆ W DX ��! DX

is an equivalence, then ˆH W H.X;Q/ ��! H.X;Q/ and ˆg W g.X/ ��! g.X/ are
isomorphisms of Q–Hodge structures, from which it follows that ˆH must land in
Aut.ƒ/� O.ƒ/.

10.2 Lower bound for the image of �X

We write AutC.ƒ/ for the index 2 subgroup Aut.ƒ/\OC.ƒ/ of Aut.ƒ/.

Theorem 10.2 Let S be a K3 surface and let X be the Hilbert square of S . Assume
that NS.X/ contains a hyperbolic plane. Then AutC.ƒ/� im �X � Aut.ƒ/.

Proof In view of Proposition 10.1 we only need to show the lower bound. The
argument for this is entirely parallel to the proof of Proposition 9.9. Recall that

ƒD Bı=2.Z˛˚H2.S;Z.1//˚Zı˚Zˇ/:

The shift functor Œ1� 2 Aut.DX/ maps to �1 2 AutC.ƒ/, so it suffices to show that
AutC.ƒ/\SO.ƒ/ is contained in im �X .
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Let S 2Aut.DS/ be the composition of the spherical twist in OS with the shift Œ1�. On
the Mukai lattice zH.S;Z/D Z˛˚H2.X;Z.1//˚Zˇ this equivalence maps ˛ to �ˇ
and ˇ to �˛ and is the identity on H2.S;Z/. Under the derived McKay correspondence
this induces an autoequivalence X 2 AutDX . By Theorem 9.4, the automorphism
�X .X / 2 Aut.ƒ/ interchanges Bı=2˛ and Bı=2ˇ and acts by �1 on Bı=2H2.X;Z/.

Denote by G � Aut.ƒ/ the subgroup generated by �X .X / and the isometries B� D
�X .�˝L/ with L a line bundle of class � 2 NS.X/. Clearly G is contained in the
image of �X . Note that G acts on the lattice

ƒalg WD Bı=2.Z˛˚NS.X/˚Zˇ/

and that by our assumption NS.X/ contains a hyperbolic plane.

Let g 2 AutC.ƒ/. By Lemma 9.7 applied to LD NS.X/, there exists a g0 2G such
that g0g fixes Bı=2ı. But then g0g acts on

.Bı=2ı/
?
D Bı=2.Z˛˚H2.S;Z/˚Zˇ/

with determinant 1 and preserving the Hodge structure and the orientation of a maximal
positive subspace. In particular, g0g lies in the image of Aut.DS/, and we conclude
that g lies in im �X .
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