Geometry \&
 Topology

Volume 27 (2023)

The 2-primary Hurewicz image of tmf
MARK BEHRENS
Mark Mahowald
J D Quigley

The 2-primary Hurewicz image of tmf

Mark Behrens
Mark Mahowald
J D Quigley

We determine the image of the 2-primary tmf Hurewicz homomorphism, where tmf is the spectrum of topological modular forms. We do this by lifting elements of tmf_{*} to the homotopy groups of the generalized Moore spectrum $M\left(8, v_{1}^{8}\right)$ using a modified form of the Adams spectral sequence and the tmf resolution, and then proving the existence of a v_{2}^{32}-self-map on $M\left(8, v_{1}^{8}\right)$ to generate 192-periodic families in the stable homotopy groups of spheres.

55Q45; 55Q51, 55T15

1. Introduction 2763
2. Preliminaries 2772
3. Analysis of the algebraic tmf resolution 2776
4. The MASS for $M\left(8, v_{1}^{8}\right)$ 2789
5. The v_{2}^{32}-self-map on $M\left(8, v_{1}^{8}\right)$ 2796
6. Determination of elements not in the tmf Hurewicz image 2811
7. Lifting the remaining elements of tmf_{*} to π_{*}^{S} 2813
References 2829

1 Introduction

The Hurewicz theorem implies that the Hurewicz homomorphism

$$
h: \pi_{*}\left(S^{n}\right) \rightarrow \widetilde{H}_{*}\left(S^{n} ; \mathbb{Z}\right)
$$

is an isomorphism for $*=n$, implying the well-known result that the $0^{\text {th }}$ stable stem is given by

$$
\pi_{0}^{s} \cong \mathbb{Z}
$$

[^0]Adams [1] studied the Hurewicz homomorphism for real K-theory

$$
h_{\mathrm{KO}}: \pi_{*}^{s} \rightarrow \pi_{*} \mathrm{KO}=\mathrm{KO}^{-*}(\mathrm{pt}) .
$$

The computation of the real K-theory of a point (the homotopy groups of the spectrum KO representing real K-theory) is a consequence of the Bott periodicity theorem [11]: these groups are given by the following 8 -fold periodic pattern:

$n \bmod 8$	0	1	2	3	4	5	6	7
$\pi_{n} \mathrm{KO}$	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	0	\mathbb{Z}	0	0	0

The map h_{KO} is an isomorphism in degree 0 , and Adams showed that h_{KO} is surjective in degrees $* \equiv 1,2 \bmod 8$. He did this by constructing what is now known as a v_{1}-self-map

$$
v_{1}^{4}: \Sigma^{8} M(2) \rightarrow M(2)
$$

where $M(2)$ denotes the mod 2 Moore spectrum, and considering the projections

$$
\mu_{8 j+1+\epsilon} \in \pi_{8 j+1+\epsilon}^{s}
$$

of the elements

$$
\begin{equation*}
\eta^{\epsilon} \cdot v_{1}^{4 j} \tilde{\eta} \in \pi_{8 j+2+\epsilon} M(2) \tag{1.1}
\end{equation*}
$$

to the top cell of $M(2)$. Here $\tilde{\eta}$ denotes a lift of $\eta \in \pi_{1}^{s}$ to the top cell of $M(2)$ and $\epsilon \in\{0,1\}$. Because we have

$$
\pi_{*}^{s} \otimes \mathbb{Q}=0
$$

for $*>0$, the homomorphism $h_{\text {KO }}$ is necessarily trivial in positive degrees $* \equiv 0 \bmod 4$. Goerss, Hopkins and Miller constructed the spectrum tmf of topological modular forms [16] as a higher analog of the real K-theory spectrum. ${ }^{1}$ The homotopy groups of tmf are 576-periodic. The goal of this paper is to determine the image of the 2-local tmf-Hurewicz homomorphism

$$
h_{\mathrm{tmf}}: \pi_{*}^{s} \rightarrow \pi_{*} \operatorname{tmf}_{(2)}
$$

The 3-primary Hurewicz image has recently been determined by Belmont and Shimomura [9]. Since $\pi_{*} \operatorname{tmf}_{(p)}$ has no torsion for $p \geq 5$, the p-primary tmf-Hurewicz image is trivial in positive degrees for these primes. Henceforth, everything in this paper is implicitly 2-local.
2-Locally, the homotopy groups of tmf are merely 192-periodic. These homotopy groups were originally computed by Hopkins and Mahowald [19] (see also Bauer [3])

[^1]

Figure 1: The homotopy groups of tmf.
using the descent spectral sequence

$$
\mathrm{Ext}_{\Gamma^{\mathrm{ell}}}^{\mathrm{s} t}\left(A^{\mathrm{ell}}, A^{\mathrm{ell}}\right) \Rightarrow \pi_{t-s}(\mathrm{tmf})
$$

where $\left(A^{\text {ell }}, \Gamma^{\text {ell }}\right)$ is the elliptic curve Hopf algebroid. These homotopy groups are displayed in Figure 1. In this figure:

- A series of i black dots joined by vertical lines corresponds to a factor of $\mathbb{Z} / 2^{i}$ which is annihilated by some power of c_{4}.
- An open circle corresponds to a factor of $\mathbb{Z} / 2$ which is not annihilated by a power of c_{4}.
- A box indicates a factor of $\mathbb{Z}_{(2)}$ which is not annihilated by a power of c_{4}.
- The nonvertical lines indicate multiplication by η and v.
- A pattern with a dotted box around it and an arrow emanating from the right face indicates this pattern continues indefinitely to the right by c_{4}-multiplication (ie tensor the pattern with $\mathbb{Z}_{(2)}\left[c_{4}\right]$).
- The vertical arrangement of the chart is arbitrary.

The homotopy groups $\pi_{*} \operatorname{tmf}$ are given by tensoring the pattern depicted in Figure 1 with $\mathbb{Z}_{(2)}\left[\Delta^{8}\right]$, where $\Delta^{8} \in \pi_{192}$ tmf. Our choice of names for generators in Figure 1 is motivated by the fact that the elements

$$
\eta, \quad v, \quad \epsilon, \quad \kappa, \quad \bar{\kappa}, \quad q, \quad u, \quad w
$$

in the stable stems map to the corresponding elements in π_{*} tmf under the tmf-Hurewicz homomorphism. The other indecomposable multiplicative generators are named based on the names of elements which detect them in the E_{2}-term of the descent spectral sequence. There is thus some ambiguity in the naming of some of these elements coming from the filtration associated to the descent spectral sequence.

For definiteness we fix $c_{4} \in \pi_{8}$ tmf to be the unique element detected by c_{4} in the descent spectral sequence of Adams filtration 4. Note that the c_{4}-torsion in $\pi_{*} \mathrm{tmf}$ does not have c_{4}-exponent 1 . Indeed, on c_{4}-torsion classes, multiplication by c_{4} is equal to multiplication by ϵ - see Bruner and Rognes [14, Section 9.5] - so, for example, $c_{4} \kappa=\epsilon \kappa \neq 0$. However, all c_{4}-torsion has c_{4}-exponent 2 ; see loc. cit. and Behrens, Hill, Hopkins and Mahowald [7, Proposition 6.1].

The main theorem of this paper is the following:

Theorem 1.2 The tmf-Hurewicz image is the subgroup of $\pi_{*} \operatorname{tmf}$ generated by
(1) all the elements of $\pi_{\leq 3}(\mathrm{tmf})$,
(2) the elements $c_{4}^{i} \eta$ and $c_{4}^{i} \eta^{2}$,
(3) all the elements of $\pi_{*} \mathrm{tmf}$ annihilated by a power of c_{4} except those in $\pi_{24 k+3} \mathrm{tmf}$.

Remark 1.3 The reader will note from Figure 1 that the subgroup of $\pi_{*}(\operatorname{tmf})$ generated by the elements of type (3) above form a self-dual pattern centered in dimension 85. This is discussed in [14, Chapter 10].

Besides representing an advance in our understanding of v_{2}-periodic homotopy at the prime 2, Theorem 1.2 also has applications to smooth structures on spheres, as explained in [7]. Specifically, Hill, Hopkins and the first two authors consider the following question:

Question 1.4 In which dimensions n do there exist exotic smooth structures on the n-sphere?

Such spheres with exotic smooth structures are called exotic spheres. The work of Kervaire and Milnor [26] relates the existence of exotic spheres to the triviality of the Kervaire homomorphism

$$
\pi_{4 k+2}^{S} \rightarrow \mathbb{Z} / 2
$$

and the nontriviality of the cokernel of the J-homomorphism

$$
J: \pi_{n} \mathrm{SO} \rightarrow \pi_{n}^{s} .
$$

Specifically, they prove that exotic spheres exist in dimensions n for which:
$\boldsymbol{n}=\mathbf{4} \boldsymbol{k} \quad n \geq 8$ and there exists a nontrivial element of coker J.
$\boldsymbol{n}=\mathbf{4 k}+\mathbf{1}$ There exists a nontrivial element of coker J, or there does not exist an element of Kervaire invariant 1 in dimension $n+1$.
$\boldsymbol{n}=\mathbf{4} \boldsymbol{k}+\mathbf{2}$ There exists a nontrivial element of coker J with Kervaire invariant 0 . $\boldsymbol{n}=\mathbf{4} \boldsymbol{k}+\mathbf{3} \quad n \geq 7$.

Combining this with the work of Moise [35], Browder [12], Barratt, Jones and Mahowald [2], Hill, Hopkins and Ravenel [18], and Wang and Xu [36], Question 1.4 has been answered completely for n odd:

The only odd dimensions n for which there do not exist exotic spheres are $n=1,3,5$ and 61 .

For n even, the case of $n=4$ is unresolved. For other even n, by the previous discussion, the question boils down to the existence of nontrivial elements of coker J (with Kervaire invariant 0). It is shown in [7]:

The only even dimensions $4 \neq n<140$ for which there do not exist exotic spheres are $n=2,6,12$ and 56 .

In the case of $n=8 k+2 \geq 10$, Adams' elements $\mu_{8 k+2}$ with nontrivial KO-Hurewicz image are not in the image of J and have trivial Kervaire invariant. It thus follows that:

There exist exotic spheres in all dimensions $n=8 k+2 \geq 10$.
As is explained in [7], many of the 192-periodic families of elements of Theorem 1.2 also are not in the image of J and have trivial Kervaire invariant. Theorem 1.2 therefore has the following corollary: ${ }^{2}$

Corollary 1.5 There exist exotic spheres in the following congruence classes of even dimensions $n \geq 8$ modulo 192:

$$
\begin{gathered}
2,6,8,10,14,18,20,22,26,28,32,34,40,42,46,50,52,54,58,60,66,68, \\
70,74,80,82,90,98,100,102,104,106,110,114,116,118,122,124,128, \\
130,136,138,142,146,148,150,154,156,162,164,170,178,186 .
\end{gathered}
$$

(This accounts for over half of the even dimensions.)
We will prove Theorem 1.2 by first showing (Theorem 6.1) that the subgroup of $\pi_{*} \operatorname{tmf}$ described by Theorem 1.2 is contained in the Hurewicz image. This will be a relatively straightforward consequence of some v_{1}-periodic computations. The elements of Theorem 1.2(1) are already established to be in the Hurewicz image by the preceding discussion, and the elements of (2) are in the Hurewicz image because they are the images of the elements $\mu_{8 i+j}$. We are left to show that the elements of type (3) lift to π_{*}^{s}. This is the main task of this paper.

In [14], Bruner and Rognes give a systematic and careful study of the Adams spectral sequence for tmf, and in particular they have independently established the Hurewicz image in many low-dimensional cases. Specifically, they prove Theorem 1.2 for degrees $* \leq 101$ and also show that $w \bar{\kappa}^{3}, w^{2} \bar{\kappa}, w \bar{\kappa}^{4}, 2 \Delta^{4} \kappa \bar{\kappa}$ and $4 \Delta^{6} v^{2}$ (in dimensions 105 , $110,125,130$ and 150) are in the Hurewicz image. Also, they use a different technique (Anderson duality) to prove that the Hurewicz image is contained in the subgroup of tmf_{*} described in Theorem 1.2.

Our strategy to lift elements from $\pi_{*} \operatorname{tmf}$ to π_{*}^{s} is to use the methods of [7]. We summarize that strategy here. We recall the following from [7, Proposition 6.1]:

[^2]Proposition 1.6 [7] Every c_{4}-torsion element $x \in \pi_{*} \operatorname{tmf}$ is 8 -torsion and c_{4}^{2}-torsion. Let $M\left(2^{i}\right)$ denote the cofiber of 2^{i}, and let $M\left(2^{i}, v_{1}^{j}\right)$ denote the cofiber of a v_{1}-selfmap (see Davis and Mahowald [15, Proposition 2.3])

$$
v_{1}^{j}: \Sigma^{2 j} M\left(2^{i}\right) \rightarrow M\left(2^{i}\right) .
$$

Corollary 1.7 Every c_{4}-torsion element $x \in \pi_{*}($ tmf $)$ lifts to an element

$$
\tilde{x} \in \operatorname{tmf}_{*+18} M\left(8, v_{1}^{8}\right)
$$

so that the projection to the top cell maps \tilde{x} to x.
Given a c_{4}-torsion element $x \in \pi_{<192}(\operatorname{tmf})$, Proposition 1.6 implies it lifts to an element

$$
\tilde{x} \in \operatorname{tmf}_{*} M\left(8, v_{1}^{8}\right)
$$

so that the projection to the top cell maps \tilde{x} to x. We will then show that \tilde{x} lifts to an element

$$
\tilde{y} \in \pi_{*} M\left(8, v_{1}^{8}\right) .
$$

Then the image

$$
y \in \pi_{*}^{S}
$$

given by projecting \tilde{y} to the top cell is an element whose image under the tmf-Hurewicz homomorphism is x.

Every c_{4}-torsion element $x^{\prime} \in \pi_{\geq 192} \operatorname{tmf}$ is of the form $v_{2}^{32 k} x$ for $x \in \pi_{<192} \operatorname{tmf}$. We will prove the following theorem:

Theorem 1.8 There exists a v_{2}^{32}-self-map

$$
v_{2}^{32}: \Sigma^{192} M\left(8, v_{1}^{8}\right) \rightarrow M\left(8, v_{1}^{8}\right)
$$

If $\tilde{x} \in \operatorname{tmf}_{*} M\left(8, v_{1}^{8}\right)$ is a lift of x, and $\tilde{y} \in \pi_{*} M\left(8, v_{1}^{8}\right)$ is a lift of \tilde{x}, as in the discussion above, then the resulting element

$$
v_{2}^{32 k} \tilde{y} \in \pi_{*} M\left(8, v_{1}^{8}\right),
$$

obtained by composing with the k-fold iterate of the v_{2}^{32}-self-map, projects to an element $y^{\prime} \in \pi_{*}^{s}$ which maps to x^{\prime} under the tmf-Hurewicz homomorphism.

As in [7], the analysis above rests on a systematic analysis of the homotopy groups $\pi_{*} M\left(8, v_{1}^{8}\right)$. This will be based on computations using the modified Adams spectral sequence (MASS). The E_{2}-term of the modified Adams spectral sequence will be
analyzed in a region near its vanishing line by means of another spectral sequence, the algebraic tmf resolution.

The work of [7] was hampered by the fact that all of the algebraic tmf resolution computations were performed on the level of the E_{1}-term of the algebraic tmf resolution. In this paper, we will show that the weight spectral sequence, used in the context of bo resolutions by Lellmann and Mahowald [28] and Beaudry, Behrens, Bhattacharya, Culver and Xu [4], can be used to analyze the E_{2}-term of the algebraic tmf resolution, greatly simplifying the computations.

Conventions

- Homology will be implicitly taken with mod 2 coefficients.
- We let A_{*} denote the dual Steenrod algebra, $A / / A(2)_{*}$ denote the dual of the Hopf algebra quotient $A / / A(2)$, and, for an A_{*}-comodule M (or more generally an object of the stable homotopy category of A_{*}-comodules; see Hovey [21]), we let

$$
\operatorname{Ext}_{A_{*}}^{s, t}(M)
$$

denote the group $\mathrm{Ext}_{A_{*}}^{s, t}\left(\mathbb{F}_{2}, M\right)$.

- Given a Hopf algebroid (B, Γ) and a comodule M, we will let $C_{\Gamma}^{*}(M)$ denote the associated normalized cobar complex.
- For a spectrum E, we let E_{*} denote its homotopy groups $\pi_{*} E$.

Outline of the paper

In Section 2, we recall the modified Adams spectral sequence (MASS), which takes the form

$$
{ }^{\operatorname{mass}} E_{2}^{*, *}=\operatorname{Ext}_{A_{*}}\left(H_{*} X \otimes H\left(8, v_{1}^{8}\right)\right) \Rightarrow \pi_{*}\left(X \wedge M\left(8, v_{1}^{8}\right)\right)
$$

for a certain object $H\left(8, v_{1}^{8}\right)$ in the stable homotopy category of A_{*}-comodules. We recall how the E_{2}-term of the MASS can be studied using the algebraic tmf resolution, which is a spectral sequence that takes the form

$$
\underset{\operatorname{alg}}{\operatorname{tmf}} E_{1}(M)^{*, *, *} \Rightarrow \operatorname{Ext}_{A_{*}}^{*, *}(M)
$$

for any M in the stable category of A_{*}-comodules. We then recall how the E_{1}-term of the algebraic tmf resolution decomposes as a sum of Ext groups involving tensor
powers of bo Brown-Gitler comodules, and also summarize an inductive method to compute these Ext groups.

In Section 3, we study the d_{1}-differential in the algebraic tmf resolution for \mathbb{F}_{2}, and introduce a tool, the weight spectral sequence (WSS)

$$
{ }_{\mathrm{alg}}^{\mathrm{mff}} E_{1}={ }^{\mathrm{wss}} E_{0} \Rightarrow{ }_{\mathrm{alg}}^{\mathrm{tmf}} E_{2}
$$

which serves as an analog of the May spectral sequence and converges to the E_{2}-term of the algebraic tmf resolution. The E_{0}-page of the v_{0}-localized weight spectral sequence is identified with the cobar complex of a primitively generated Hopf algebra, and this allows us to give "names" to the v_{0}-torsion-free classes of ${ }_{\text {alg }}^{\text {tmf }} E_{1}$. We include many charts of summands of ${ }_{\mathrm{alg}}^{\mathrm{tmf}} E_{1}\left(\mathbb{F}_{2}\right)$ corresponding to tensor powers of bo Brown-Gitler comodules which illustrate this naming convention, and provide the essential data for the rest of the computations in this paper. Finally, we study the g-local WSS 3 using recent work of Bhattacharya, Bobkova and Thomas [10], and show that many classes are killed in the g-local WSS by d_{1}-differentials. This is the key fact we will use to systematically remove obstructions for lifting classes from $\operatorname{tmf}_{*} X$ to $\pi_{*} X$.

In Section 4 we study the structure of the MASS for $M\left(8, v_{1}^{8}\right)$. We recall the structure of the MASS for $\operatorname{tmf}_{*} M\left(8, v_{1}^{8}\right)$, and we explain how to adapt the Ext charts of Section 3 to give the corresponding computations of ${ }_{\text {alg }}^{\operatorname{tmf}} E_{1}\left(H\left(8, v_{1}^{8}\right)\right)$. We then explain how to translate the computations of the g-localized algebraic tmf resolution of Section 3 to the case of $H\left(8, v_{1}^{8}\right)$.

Section 5 is dedicated to the proof of Theorem 1.8. We recall the work of Davis, Mahowald and Rezk, who discovered topological attaching maps between the first two bo Brown-Gitler spectra which constitute $\mathrm{tmf} \wedge \mathrm{tmf}$, which give extra differentials in the Adams spectral sequence of $\operatorname{tmf} \wedge$ tmf that kill some g-torsion-free classes. We then prove a technical lemma (Lemma 5.5) which lifts differentials from the MASS for $\mathrm{tmf}^{S} \wedge M\left(8, v_{1}^{8}\right)$ to the MASS for $M\left(8, v_{1}^{8}\right)$. We prove Theorem 1.8 by listing all elements in ${ }_{\operatorname{alg}}^{\operatorname{tmf}} E_{1}\left(H\left(8, v_{1}^{8}\right)\right)$ which could detect a nontrivial differential $d_{r}\left(v_{2}^{32}\right)$ in the MASS for $M\left(8, v_{1}^{8}\right)$, and then we systematically eliminate these possibilities. Most of these classes are g-torsion-free, and are eliminated in the WSS or by using Lemma 5.5.

In Section 6, we explain how v_{1}-periodic computations give an upper bound on the Hurewicz image.

[^3]Section 7 is devoted to showing this upper bound is sharp, by producing lifts of the remaining elements of π_{*} tmf to the sphere. We begin by identifying multiplicative generators of the Hurewicz image in dimensions less than 192, so that it suffices for us to lift these. We then lift these elements by producing elements in the MASS for $M\left(8, v_{1}^{8}\right)$ which we show are permanent cycles, and detect elements of $\pi_{*} M\left(8, v_{1}^{8}\right)$ which project to the desired elements on the top cell. These elements are then propagated to v_{2}^{32}-periodic families using the self-map, thus proving Theorem 1.2 in all dimensions.

Acknowledgments

We are grateful to Bob Bruner and John Rognes for generously sharing their results on their study of the Adams spectral sequence of tmf, and also to Rognes for pointing out a redundancy in Section 7. This project would have not been possible without the Ext computational software developed by Bob Bruner and Amelia Perry, and the detailed computations of the Adams spectral sequence of the sphere by Isaksen, Wang and Xu . The authors are especially grateful to Bob Bruner for providing them with a module definition file for $\overline{A / / A(2)}$. Behrens would also like to express his appreciation to Agnès Beaudry, Prasit Bhattacharya, Dominic Culver, Kyle Ormsby, Nat Stapleton, Vesna Stojanoska and Zhouli Xu, whose previous collaborative work on the tmf resolution was essential for the results of this paper, as well as to Mike Hill and Mike Hopkins, whose collaboration with Behrens and Mahowald was the genesis of this paper. Quigley also wishes to thank his coauthors for the opportunity to contribute to this project. Finally, the authors wish to thank the referees for important comments and corrections. Behrens was supported by NSF grants DMS-1050466, DMS-1452111, DMS-1547292, DMS-1611786 and DMS-2005476 over the course of this work. Quigley was partially supported by NSF grant DMS-1547292.

2 Preliminaries

The techniques and methods of this paper closely follow those of [7]. In this section we recall some spectral sequences used in that paper.

The modified Adams spectral sequence

Our computations of $\pi_{*} M\left(8, v_{1}^{8}\right)$ and $\operatorname{tmf}_{*} M\left(8, v_{1}^{8}\right)$ will be performed using the modified Adams spectral sequence (MASS). We refer the reader to [7, Section 6] for a complete account of the construction of the MASS and summarize the form it takes here.

Let $\mathrm{St}_{A_{*}}$ denote Hovey's stable homotopy category of A_{*}-comodules [21]. For objects M and N of $\mathrm{St}_{A_{*}}$, we define the group

$$
\operatorname{Ext}_{A_{*}}^{s, t}(M, N)=\operatorname{St}_{A_{*}}\left(\Sigma^{t} M, N[s]\right)
$$

as a group of maps in the stable homotopy category. Here $\Sigma^{t} M$ denotes the t-fold shift with respect to the internal grading of M, and $N[s]$ denotes the s-fold shift with respect to the triangulated structure of $\mathrm{St}_{A_{*}}$. This reduces to the usual definition of $\mathrm{Ext}_{A_{*}}$ when M and N are A_{*}-comodules.

Define $H(8)$ to be the cofiber of the map

$$
\begin{equation*}
\Sigma^{3} \mathbb{F}_{2}[-3] \xrightarrow{h_{0}^{3}} \mathbb{F}_{2} \tag{2.1}
\end{equation*}
$$

in the stable homotopy category of A_{*}-comodules. Define $H\left(8, v_{1}^{8}\right) \in \mathrm{St}_{A_{*}}$ to be the cofiber

$$
\begin{equation*}
\Sigma^{24} H(8)[-8] \xrightarrow{v_{1}^{8}} H(8) \rightarrow H\left(8, v_{1}^{8}\right) . \tag{2.2}
\end{equation*}
$$

For a spectrum X, the MASS takes the form

$$
{ }^{\text {mass }} E_{2}^{s, t}\left(M\left(8, v_{1}^{8}\right) \wedge X\right)=\operatorname{Ext}_{A_{*}}^{s, t}\left(H\left(8, v_{1}^{8}\right) \otimes H_{*} X\right) \Rightarrow \pi_{t-s} M\left(8, v_{1}^{8}\right) \wedge X
$$

Recall the following from [7, Proposition 7.1]:
Proposition 2.3 $M\left(8, v_{1}^{8}\right)$ is a weak homotopy ring spectrum. ${ }^{4}$
It follows that, if X is a ring spectrum, the MASS above is a spectral sequence of (nonassociative) algebras.

We recall the following key theorem of Mathew:
Theorem 2.4 (Mathew [34]) We have

$$
H_{*} \operatorname{tmf} \cong A / / A(2)_{*}
$$

as an algebra in A_{*}-comodules.

Taking $X=\operatorname{tmf} \wedge Y$ for some Y and applying a change-of-rings theorem, the MASS takes the form
${ }^{\text {mass }} E_{2}^{s, t}\left(\operatorname{tmf} \wedge M\left(8, v_{1}^{8}\right) \wedge Y\right)=\operatorname{Ext}_{A(2)_{*}}^{s, t}\left(H\left(8, v_{1}^{8}\right) \otimes H_{*} Y\right) \Rightarrow \operatorname{tmf}_{t-s}\left(M\left(8, v_{1}^{8}\right) \wedge Y\right)$.

[^4]
The algebraic tmf resolution

The E_{2}-page of the MASS for $M\left(8, v_{1}^{8}\right)$ will be analyzed using an algebraic analog of the tmf resolution (as in [7, Section 6]).

The (topological) tmf resolution of a space X is the Adams spectral sequence based on the spectrum tmf:

$$
{ }^{\operatorname{tmf}} E_{1}^{s, t}=\pi_{t} \operatorname{tmf} \wedge \overline{\operatorname{tmf}}^{s} \wedge X \Rightarrow \pi_{t-s} X
$$

Here, $\overline{\operatorname{tmf}}$ is the cofiber of the unit

$$
S \rightarrow \operatorname{tmf} \rightarrow \overline{\operatorname{tmf}}
$$

and $\overline{\operatorname{tmf}}^{s}=\overline{\operatorname{tmf}}^{\wedge s}$ denotes its s-fold smash power.
The algebraic tmf resolution is an algebraic analog. Namely, let M be an object of the stable homotopy category of A_{*}-comodules and let $\overline{A / / A(2)}$ * denote the cokernel of the unit

$$
0 \rightarrow \mathbb{F}_{2} \rightarrow A / / A(2)_{*} \rightarrow \overline{A / / A(2)}_{*} \rightarrow 0
$$

(note that $H_{*} \overline{\operatorname{tmf}}=\overline{A / / A(2)}$). The algebraic tmf resolution of M is a spectral sequence of the form

$$
\left.\underset{\operatorname{alg}}{\operatorname{tmf}} E_{1}^{s, t, n}(M)=\operatorname{Exx}_{A(2)_{*}}^{s, t}(\overline{A / / A(2)})_{*}^{\otimes n} \otimes M\right) \Rightarrow \operatorname{Ext}_{A_{*}}^{s+n, t}(M)
$$

bo Brown-Gitler comodules

We recall some material on bo Brown-Gitler comodules. These are A_{*}-comodules which are the homology of the bo Brown-Gitler spectra constructed by [17]. Mahowald used integral Brown-Gitler spectra to analyze the bo resolution [30]. The bo BrownGitler comodules play a similar role in the algebraic tmf resolution $[6 ; 31 ; 15 ; 8 ; 7]$.

Endow the mod 2 homology of the connective real K-theory spectrum

$$
H_{*}(\mathrm{bo}) \cong A / / A(1)_{*}=\mathbb{F}_{2}\left[\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}, \ldots\right]
$$

with a multiplicative grading by declaring the weight of ζ_{i} to be

$$
\begin{equation*}
\mathrm{wt}\left(\zeta_{i}\right)=2^{i-1} \tag{2.5}
\end{equation*}
$$

The $i^{\text {th }}$ bo Brown-Gitler comodule is the subcomodule

$$
{\underline{\mathrm{bo}_{i}}}_{i}=F_{4 i} A / / A(1)_{*} \subset A / / A(1)_{*}
$$

spanned by monomials of weight less than or equal to $4 i$. It is isomorphic as an A_{*}-comodule to the homology of the $i^{\text {th }}$ bo Brown-Gitler spectrum bo ${ }_{i}$.

The analysis of the E_{1}-page of the algebraic tmf resolution is simplified via the decomposition of $A(2)_{*}$-comodules

$$
\overline{A / / A(2)}_{*} \cong \bigoplus_{i>0} \Sigma^{8 i}{\underline{\mathrm{bo}_{i}}}_{i}
$$

of [6, Corollary 5.5]. We therefore have a decomposition of the E_{1}-page of the algebraic tmf resolution for M given by

For any M, the computation of

$$
\mathrm{Ext}_{A(2)_{*}}^{\mathrm{s}, t}\left(\Sigma^{8\left(i_{1}+\cdots+i_{n}\right)}{\underline{\mathrm{bo}_{i}}}_{i_{1}} \otimes \cdots \otimes \underline{\mathrm{bo}}_{i_{n}} \otimes M\right)
$$

can be inductively determined from $\operatorname{Ext}_{A(2) *}\left(\underline{\mathrm{bo}}_{1}^{\otimes k} \otimes M\right)$ by means of a set of exact sequences of $A(2)_{*}$-comodules, which relate the ${\underline{\mathrm{bo}_{i}}}_{i}[6$, Section 7] (see also [8]),

$$
\begin{equation*}
0 \rightarrow \Sigma^{8 j} \underline{\mathrm{bo}}_{j} \rightarrow \underline{\mathrm{bo}}_{2 j} \rightarrow A(2) / / A(1)_{*} \otimes \underline{\operatorname{tmf}}_{j-1} \rightarrow \Sigma^{8 j+9} \underline{\mathrm{bo}}_{j-1} \rightarrow 0 \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
0 \rightarrow \Sigma^{8 j}{\underline{\mathrm{bo}_{j}}}_{j} \otimes{\underline{\mathrm{bo}_{1}}}_{1}{\underline{\mathrm{bo}_{2}} j+1} \rightarrow A(2) / / A(1)_{*} \otimes \underline{\mathrm{tmf}}_{j-1} \rightarrow 0 \tag{2.8}
\end{equation*}
$$

Here tmf_{j} is the $j^{\text {th }} \mathrm{tmf}$-Brown-Gitler comodule - it is the subcomodule of

$$
H_{*}(\operatorname{tmf}) \cong A / / A(2)_{*}=\mathbb{F}_{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}, \zeta_{3}^{2}, \zeta_{4}, \ldots\right]
$$

spanned by monomials of weight less than or equal to $8 j .{ }^{5}$
The exact sequences (2.7) and (2.8) can be reexpressed as resolutions in the stable homotopy category of $A(2)_{*}$-comodules

$$
\begin{gathered}
{\underline{\mathrm{bo}_{2}}}_{2} \rightarrow A(2) / / A(1)_{*} \otimes \underline{\operatorname{tmf}}_{j-1} \rightarrow \Sigma^{8 j+9}{\underline{\mathrm{bo}_{j-1}}}_{j} \rightarrow \Sigma^{8 j}{\underline{\text { bo }_{j}}}_{j}[2], \\
{\underline{\mathrm{bo}_{2}}}_{j+1} \rightarrow A(2) / / A(1)_{*} \otimes \underline{\mathrm{mf}}_{j-1} \rightarrow \Sigma^{8 j}{\underline{\mathrm{bo}_{j}}}_{j} \otimes \underline{\mathrm{bo}}_{1}[1],
\end{gathered}
$$

[^5]which give rise to spectral sequences
\[

$$
\begin{aligned}
& E_{1}^{n, s, t}=\left\{\begin{array}{ll}
\operatorname{Ext}_{A(1)_{*}}^{s, t}\left(\operatorname{tmf}_{j-1} \otimes M\right), & n=0, \\
\operatorname{Ext}_{A(2) *}^{s, t}\left(\Sigma^{8 j}+9\right. \\
\left.\underline{\mathrm{bo}}_{j-1} \otimes M[-1]\right), & n=1, \\
\operatorname{Ext}_{A(2) *}^{s, t}\left(\Sigma^{8 j} \underline{\mathrm{bo}}_{j} \otimes M\right), & n=2, \\
0, & n>2
\end{array}\right\} \Rightarrow \operatorname{Ext}_{A(2)_{*}, t}\left(\underline{(b o}_{2 j} \otimes M\right),
\end{aligned}
$$
\]

These spectral sequences have been observed to collapse in low degrees (see [8]) but it is not known if they collapse in general. They inductively build $\operatorname{Ext}_{A(2)_{*}}\left(\underline{b o}_{i} \otimes M\right)$ out of $\operatorname{Ext}_{A(2) *}\left(\underline{\mathrm{bo}}_{1}^{\otimes k} \otimes M\right)$ and $\operatorname{Ext}_{A(1)_{*}}\left(\underline{\operatorname{tmf}_{j}} \otimes M\right)$.

3 Analysis of the algebraic tmf resolution

In this section we will compute the d_{1}-differential in the algebraic tmf resolution, and will introduce a tool, the weight spectral sequence (WSS), which is a variant of the May spectral sequence that converges to the E_{2}-page of the algebraic tmf resolution.

The d_{1}-differential in the algebraic tmf resolution

Our approach to understanding the d_{1}-differential in the algebraic tmf resolution will be to compute it on v_{0}-torsion-free classes, and then infer its effect on v_{0}-torsion classes by means of linearity over Ext $A_{*}\left(\mathbb{F}_{2}\right)$.

Consider the algebraic $\mathrm{BP}\langle 2\rangle$ and algebraic BP resolutions

$$
\begin{aligned}
& \underset{\mathrm{alg}}{\mathrm{BP}(2\rangle} E^{s, t, n}=\mathrm{Ext}_{E[2]_{*}}^{s, t}\left(\overline{A / / E[2]_{*}^{\otimes n}}\right) \\
& \underset{\mathrm{alg}}{\mathrm{BP}} E^{s, t, n} \Rightarrow \mathrm{Ext}_{A_{*}}^{s+n, t}\left(\mathbb{F}_{2}\right), \\
& \mathrm{Ext}_{*}^{s, t}\left(\overline{A / / E_{*}^{\otimes n}}\right) \Rightarrow \mathrm{Ext}_{A_{*}}^{s+n, t}\left(\mathbb{F}_{2}\right) .
\end{aligned}
$$

Here $E[2]=E\left[Q_{0}, Q_{1}, Q_{2}\right]$ and $E=E\left[Q_{0}, Q_{1}, Q_{2}, \ldots\right]$ denote subalgebras of the Steenrod algebra, where Q_{i} are the Milnor generators dual to $\xi_{i+1} \in A_{*}$.
The d_{1}-differential in the algebraic tmf resolution may be studied by means of the zigzag

$$
\begin{equation*}
\underset{\mathrm{alg}}{\operatorname{tmf}} E_{1}^{*, *, *} \rightarrow \underset{\mathrm{alg}}{\mathrm{BP}\langle 2\rangle} E_{1}^{*, *, *} \leftarrow{ }_{\mathrm{alg}}^{\mathrm{BP}} E_{1}^{*, *, *} \tag{3.1}
\end{equation*}
$$

Note that

$$
\underset{\mathrm{alg}}{\mathrm{BP}} E_{1}^{*, *, n} \cong \mathbb{F}_{2}\left[v_{0}, v_{1}, v_{2}, \ldots\right] \otimes \overline{\mathbb{F}_{2}\left[\zeta_{1}^{2}, \zeta_{2}^{2}, \ldots\right]^{\otimes n}},
$$

where $\overline{\mathbb{F}_{2}\left[\zeta_{1}^{2}, \zeta_{2}^{2}, \ldots\right]}$ denotes the cokernel of the unit

$$
\mathbb{F}_{2} \rightarrow \mathbb{F}_{2}\left[\zeta_{1}^{2}, \zeta_{2}^{2}, \ldots\right]
$$

The Adams spectral sequences

$$
\underset{\mathrm{alg}}{\mathrm{BP}} E_{1}^{n, *, *}=\underset{*, *}{\mathrm{ass}} E_{2}\left(\mathrm{BP} \wedge \overline{\mathrm{BP}}^{n}\right) \Rightarrow C_{\mathrm{BP}_{*} \mathrm{BP}}^{n}\left(\mathrm{BP}_{*}\right)
$$

collapse, where $C_{\mathrm{BP}_{*} \mathrm{BP}}^{*}$ is the normalized cobar complex for $\mathrm{BP}_{*} \mathrm{BP}$, and

$$
\zeta_{i}^{2} \in \overline{A / / E}_{*} \quad \text { detects } \quad t_{i} \in \mathrm{BP}_{*} \mathrm{BP}
$$

We conclude:

Lemma 3.2 The d_{1}-differential in the algebraic BP resolution is the associated graded of the differential in the cobar complex for $\mathrm{BP}_{*} \mathrm{BP}$ with respect to Adams filtration.

The weight spectral sequence

Endow the normalized cobar complex

$$
C^{*}\left(A_{*}, A_{*}, \mathbb{F}_{2}\right)
$$

with a decreasing filtration by weight by defining

$$
\mathrm{wt}\left(a_{0}\left[a_{1}|\cdots| a_{s}\right]\right)=\operatorname{wt}\left(a_{1}\right)+\cdots+\operatorname{wt}\left(a_{s}\right)
$$

Applying $\operatorname{Ext}_{A_{*}}\left(\mathbb{F}_{2},-\right)$ to the resulting filtered A_{*}-comodule produces a variant of the May spectral sequence, which we will call the modified May spectral sequence (MMSS), ${ }^{6}$

$$
\begin{equation*}
{ }^{\mathrm{mmss}} E_{0}^{w, s, t}=C_{E^{0} A_{*}}^{*}\left(\mathbb{F}_{2}\right) \Rightarrow \mathrm{Ext}_{A_{*}}^{s, t}\left(\mathbb{F}_{2}\right) \tag{3.3}
\end{equation*}
$$

Since $E^{0} A_{*}$ is primitively generated, we have

$$
{ }^{\mathrm{mmss}} E_{1}^{*, *}=\mathbb{F}_{2}\left[h_{i, j}: i \geq 1, j \geq 0\right]
$$

The map tmf $\rightarrow H$ induces an inclusion

$$
\Phi: H_{*}\left(\operatorname{tmf} \wedge \overline{\operatorname{tmf}}^{n}\right) \hookrightarrow H_{*}\left(H \wedge \bar{H}^{n}\right) \cong C^{n}\left(A_{*}, A_{*}, \mathbb{F}_{2}\right)
$$

Under this inclusion, the weight filtration restricts to a decreasing filtration on

$$
H_{*}\left(\operatorname{tmf} \wedge \overline{\mathrm{tmf}}^{n}\right) \cong A / / A(2)_{*} \otimes \overline{A / / A(2)}_{*}^{\otimes n}
$$

[^6]by A_{*}-subcomodules. Because the weights of all of the generators of $A / / A(2)_{*}$ are divisible by 8 , we actually work with weights divided by 8 . Applying $\operatorname{Ext}_{A(2) *}\left(\mathbb{F}_{2},-\right)$ and taking cohomology, we get the weight spectral sequence (WSS)
$$
{ }^{\mathrm{wss}} E_{0}^{w, n, s, t}=\bigoplus_{i_{1}+\cdots+i_{n}=w} \mathrm{Ext}_{A(2)_{*}}^{s, t}\left(\underline{\mathrm{bo}}_{i_{1}} \otimes \cdots \otimes \underline{\mathrm{bo}}_{i_{n}}\right) \Rightarrow{ }_{\mathrm{alg}}^{\mathrm{tmf}} E_{2}^{n, s, t}
$$

The WSS serves as an analog of the May spectral sequence for the algebraic tmf resolution.

The map Φ above induces a map of spectral sequences

The v_{0}-localized algebraic tmf resolution

Observe that we have

$$
\begin{equation*}
v_{0}^{-1} \operatorname{Ext}_{A(2)_{*}}\left(\mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[v_{0}^{ \pm}, v_{1}^{4}, v_{2}^{2}\right] . \tag{3.5}
\end{equation*}
$$

Note that $c_{4}, c_{6} \in\left(\operatorname{tmf}_{*}\right)_{\mathbb{Q}}$ are detected in the v_{0}-localized ASS by v_{1}^{4} and $v_{0}^{3} v_{2}^{2}$, respectively.
We recall from [8] that

$$
\begin{equation*}
v_{0}^{-1} \mathrm{Ext}_{A(2)_{*}}^{*, *}\left(A / / A(2)_{*}\right)=\mathbb{F}_{2}\left[v_{0}^{ \pm}, v_{1}^{4}, v_{2}^{2}\right]\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right] \tag{3.6}
\end{equation*}
$$

and that there is an isomorphism

$$
\begin{equation*}
v_{0}^{-1} \operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{i}\right) \cong \mathbb{F}_{2}\left[v_{0}^{ \pm}, v_{1}^{4}, v_{2}^{2}\right]\left\{\zeta_{1}^{8 i^{\prime}} \zeta_{2}^{4 i^{\prime \prime}}\right\}_{i=i^{\prime}+i^{\prime \prime}} \tag{3.7}
\end{equation*}
$$

We will now compute the localized E_{1}-page $v_{0}^{-1 \text { wss }} E_{1}$. The following is immediate from the computation of the cobar differential (modulo terms of higher Adams filtration) on the elements ζ_{1}^{8} and ζ_{2}^{4}, using (3.6), (3.7) and (3.1):

Proposition 3.8 There is an isomorphism of differential graded algebras

$$
v_{0}^{-1 \mathrm{wss}} E_{0}^{*, n, *, *} \cong \mathbb{F}_{2}\left[v_{0}^{ \pm}, v_{1}^{4}, v_{2}^{2}\right] \otimes C_{\mathbb{F}_{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]}^{n}
$$

where $\mathbb{F}_{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]$ is regarded as a primitively generated Hopf algebra.
Corollary 3.9 There is an isomorphism

$$
v_{0}^{-1 \mathrm{wss}} E_{1}=\mathbb{F}_{2}\left[v_{0}^{ \pm}, v_{1}^{4}, v_{2}^{2}\right] \otimes \mathbb{F}_{2}\left[h_{1,3}, h_{1,4}, \ldots, h_{2,2}, h_{2,3}, \ldots\right]
$$

Charts

For the convenience of the reader we include some charts of $\operatorname{Ext}_{A(2) *}\left(\underline{\mathrm{bo}}_{1}^{k}\right)$ for $0 \leq k \leq 3$ as well as $\operatorname{Ext}_{A(2)_{*}}\left(\underline{b o}_{2}\right)$.
$\operatorname{Ext}_{\boldsymbol{A}(\mathbf{2})_{*}}\left(\mathbb{F}_{\mathbf{2}}\right)$ (see Figure 2) All the elements are $c_{4}=v_{1}^{4}$-periodic and v_{2}^{8}-periodic. Exactly one v_{1}^{4}-multiple of each element is displayed with the \bullet replaced by a \circ. Observe the wedge pattern beginning in $t-s=35$. This pattern is infinite, propagated horizontally by $h_{2,1}$-multiplication and vertically by v_{1}-multiplication. Here $h_{2,1}$ is the name of the generator in the May spectral sequence of bidegree $(t-s, s)=(5,1)$, and $h_{2,1}^{4}=g$.
$\left.\operatorname{Ext}_{\boldsymbol{A}(\mathbf{2})_{*}} \underline{\mathbf{b o}}_{\mathbf{1}}^{\otimes \boldsymbol{k}}\right)$ for $\boldsymbol{k}=\mathbf{1 , 2 , 3}$ (Figure 3) Every element is v_{2}^{8}-periodic. However, unlike $\operatorname{Ext}_{A(2)_{*}}\left(\mathbb{F}_{2}\right)$, not every element of these Ext groups is v_{1}^{4}-periodic. Rather, it is the case that an element $x \in \operatorname{Ext}_{A(2)_{*}}\left(\underline{\text { bo }}_{1}^{\otimes k}\right)$ either satisfies $v_{1}^{4} x=0$ or is v_{1}^{4}-periodic. The v_{1}^{4}-periodic elements fit into families which look like shifted and truncated copies of $\operatorname{Ext}_{A(1)_{*}}\left(\mathbb{F}_{2}\right)$ and are labeled with a \circ. We have only included the beginning of these v_{1}^{4}-periodic patterns in the chart. The other generators are labeled with a \bullet. A \square indicates a polynomial algebra $\mathbb{F}_{2}\left[h_{2,1}\right]$.
$\boldsymbol{E x t}_{\boldsymbol{A} \mathbf{(2)}_{\boldsymbol{*}}}$ (bo2) $_{\mathbf{2}}$ (Figure 4) Via the spectral sequence (2.9), this Ext chart is assembled out of $\operatorname{Ext}_{A(1)_{*}}\left(\mathbb{F}_{2}\right), \operatorname{Ext}_{A(2)_{*}}\left(\Sigma^{8} \underline{\text { bo }}_{1}\right)$ and $\operatorname{Ext}_{A(2)_{*}}\left(\Sigma^{17} \mathbb{F}_{2}[-1]\right)$.

$h_{2,1}$-towers

Our computations of the MASS for $M\left(8, v_{1}^{8}\right)$ will rely on a detailed understanding of this spectral sequence near its vanishing line. Since $M\left(8, v_{1}^{8}\right)$ is a type 2 complex, the Hopkins-Smith periodicity theorem [20] implies that the E_{∞}-page of this MASS has a vanishing line of slope $1 /\left|v_{2}\right|=\frac{1}{6}$. However, $g=h_{2,1}^{4}$ is not nilpotent in the modified Ext groups $\operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)$, and $h_{2,1}-$ multiplication has slope $\frac{1}{5}$. The goal of this subsection is to show that many of the $h_{2,1}$-towers in the E_{1}-page of the algebraic tmf resolution actually kill each other off by the E_{2}-page of the algebraic tmf resolution. We will then identify specific $h_{2,1}$-periodic elements of $\operatorname{Ext}_{A_{*}}\left(\mathbb{F}_{2}\right)$ that some of these remaining $h_{2,1}$-towers detect.

Consider the quotient Hopf algebra $C_{*}:=\mathbb{F}_{2}\left[\zeta_{2}\right] /\left(\zeta_{2}^{4}\right)$ of $A(2)_{*}$, with

$$
\operatorname{Ext}_{C_{*}}^{*, *}\left(\mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[v_{1}, h_{2,1}\right] .
$$

Figure 2: $\operatorname{Ext}_{A(2)_{*}}\left(\mathbb{F}_{2}\right)($ left $)$ and $\operatorname{Ext}_{A(2) *}\left(\underline{b o}_{1}\right)($ right $)$.

Figure 3: $\operatorname{Ext}_{A(2) *}\left(\underline{\mathrm{bo}}_{1}^{\otimes 2}\right)(\mathrm{left})$ and $\operatorname{Ext}_{A(2) *}\left(\underline{\mathrm{bo}}_{1}^{\otimes 3}\right)($ right $)$.

Figure 4: $\operatorname{Ext}_{A(2) *}\left(\underline{b o}_{2}\right)$.

Lemma 3.10 Let $C\left(v_{2}^{8}\right)$ be the cofiber of the map

$$
v_{2}^{8}: \Sigma^{56} \mathbb{F}_{2}[-8] \rightarrow \mathbb{F}_{2}
$$

in the stable homotopy category $\mathrm{St}_{A(2)_{*}}$. For any $M \in \mathrm{St}_{A(2)_{*}}$ there is an isomorphism

$$
g^{-1} \operatorname{Ext}_{A(2)_{*}}\left(M \otimes C\left(v_{2}^{8}\right)\right) \cong h_{2,1}^{-1} \operatorname{Ext}_{C_{*}}(M)
$$

Proof Since the element $v_{2}^{8} \in \operatorname{Ext}_{A(2)_{*}}\left(\mathbb{F}_{2}\right)$ maps to zero in $\operatorname{Ext}_{C_{*}}\left(\mathbb{F}_{2}\right)$, it follows that there is a factorization

in $\mathrm{St}_{A(2)_{*}}$. Explicit computation reveals

$$
g^{-1} \operatorname{Ext}_{A(2)_{*}}\left(\mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[v_{2}^{8}, v_{1}, h_{2,1}^{ \pm}\right]
$$

and it follows that the map

$$
g^{-1} C\left(v_{2}^{8}\right) \rightarrow g^{-1} A(2) / / C_{*}
$$

induces an isomorphism on $\operatorname{Ext}_{A(2)_{*}}$, and is hence an equivalence. The result follows.
Corollary 3.11 For any $M \in \mathrm{St}_{A(2)_{*}}$, there is a v_{2}^{8}-Bockstein spectral sequence

$$
h_{2,1}^{-1} \operatorname{Ext}_{C_{*}}(M) \otimes \mathbb{F}_{2}\left[v_{2}^{8}\right] \Rightarrow g^{-1} \operatorname{Ext}_{A(2)_{*}}(M)
$$

Bhattacharya, Bobkova and Thomas [10] computed the P_{2}^{1}-Margolis homology of the tmf resolution, and in the process computed the structure of $A / / A(2)_{*}^{\otimes n}$ as $C_{*}-$ comodules. From this one can read off the Ext groups

$$
h_{2,1}^{-1} \operatorname{Ext}_{C_{*}}\left(A / / A(2)_{*}^{\otimes n}\right),
$$

which in turn determines the g-local algebraic tmf resolution by Corollary 3.11 (the spectral sequence in this corollary will collapse in the cases we consider it).

To state the results of [10], we will need to introduce some notation. The coaction of $\mathbb{F}_{2}\left[\zeta_{2}\right] / \zeta_{2}^{4}$ is encoded in the dual action of the algebra $E\left[Q_{1}, P_{2}^{1}\right]$ on $A / / A(2)_{*}^{\otimes n}$. Define elements

$$
x_{i, j}=1 \otimes \cdots \otimes 1 \otimes \underbrace{\zeta_{i+3}}_{j} \otimes 1 \otimes \cdots \otimes 1, \quad t_{i, j}=1 \otimes \cdots \otimes 1 \otimes \underbrace{\zeta_{i+1}^{4}}_{j} \otimes 1 \otimes \cdots \otimes 1
$$

in $A / / A(2)_{*}^{\otimes n}$. The weight filtration on $A / / A(2)_{*}$ induces a multiweight filtration on $A / / A(2)_{*}^{\otimes n}$ indexed by n-tuples of weights. The generators $x_{i, j}$ and $t_{i, j}$ have
multiweight

$$
(0, \ldots, 0, \underbrace{2^{i+2}}_{j}, 0, \ldots, 0)
$$

For sets of multi-indices

$$
I=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{k}, j_{k}\right)\right\}, \quad I^{\prime}=\left\{\left(i_{1}^{\prime}, j_{1}^{\prime}\right), \ldots,\left(i_{k^{\prime}}^{\prime}, j_{k^{\prime}}^{\prime}\right)\right\}
$$

with $I \cap I^{\prime}=\varnothing$, let

$$
x_{I} t_{I^{\prime}} \in A / / A(2)_{*}
$$

denote the corresponding monomial. The action of the algebra $E\left[Q_{1}, P_{2}^{1}\right]$ on the \mathbb{F}_{2}-submodule of $A / / A(2)_{*}^{\otimes n}$ spanned by such monomials is given by

$$
\begin{aligned}
& Q_{1}\left(x_{I} t_{I^{\prime}}\right)=\sum_{\ell} x_{I-\left\{\left(i_{\ell}, j_{\ell}\right)\right\}} t_{I^{\prime} \cup\left\{\left(i_{\ell}, j_{\ell}\right)\right\}}, \\
& P_{2}^{1}\left(x_{I} t_{I^{\prime}}\right)=\sum_{\ell<\ell^{\prime}} x_{I-\left\{\left(i_{\ell}, j_{\ell}\right),\left(i_{\ell^{\prime}}, j_{\ell^{\prime}}\right)\right\}} t_{I^{\prime} \cup\left\{\left(i_{\ell}, j_{\ell}\right),\left(i_{\ell^{\prime}}, j_{\ell^{\prime}}\right)\right\}} .
\end{aligned}
$$

For an ordered set

$$
J=\left(\left(i_{1}, j_{1}\right), \ldots,\left(i_{k}, j_{k}\right)\right)
$$

of multi-indices, let

$$
|J|:=k
$$

denote the number of pairs of indices it contains. Define linearly independent sets of elements

$$
\mathcal{T}_{J} \subset A / / A(2)_{*}^{\otimes n}
$$

inductively as follows. Define

$$
\mathcal{T}_{(i, j)}=\left\{x_{i, j}\right\}
$$

For J as above with $|J|$ odd, define

$$
\begin{aligned}
\mathcal{T}_{J,(i, j)}= & \left\{z \cdot x_{i, j}\right\}_{z \in \mathcal{T}_{J}}, \\
\mathcal{T}_{J,(i, j),\left(i^{\prime}, j^{\prime}\right)}= & \left\{Q_{1}\left(z \cdot x_{i, j}\right) x_{i^{\prime}, j^{\prime}}\right\}_{z \in \mathcal{T}_{J}} \cup\left\{Q_{1}\left(z \cdot x_{i^{\prime}, j^{\prime}}\right) x_{i, j}\right\}_{z \in \mathcal{T}_{J}} . \\
& N_{J} \subset A / / A(2)_{*}^{\otimes n}
\end{aligned}
$$

Let
denote the \mathbb{F}_{2}-subspace with basis

$$
Q_{1} \mathcal{T}_{J}:=\left\{Q_{1}(z)\right\}_{z \in \mathcal{T}_{J}}
$$

While the set \mathcal{T}_{J} depends on the ordering of J, the subspace N_{J} does not.
Finally, for a set of pairs of indices

$$
J=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{k}, j_{k}\right)\right\}
$$

as before, define

$$
x_{J} t_{J}:=x_{i_{1}, j_{1}} t_{i_{1}, j_{1}} \cdots x_{i_{k}, j_{k}} t_{i_{k}, j_{k}}
$$

The following is the main theorem of [10]: ${ }^{7}$

Theorem 3.12 (Bhattacharya, Bobkova and Thomas) As modules over $\mathbb{F}_{2}\left[h_{2,1}^{ \pm}, v_{1}\right]$, we have

$$
\begin{aligned}
& h_{2,1}^{-1} \mathrm{Ext}_{E\left[Q_{1}, P_{2}^{1}\right]}^{*, *}\left(A / / A(2)_{*}^{\otimes n}\right) \\
& =\mathbb{F}_{2}\left[h_{2,1}^{ \pm}\right] \otimes\left(\mathbb{F}_{2}\left[v_{1}\right]_{\left\{x_{J^{\prime}} t_{J^{\prime}}\right\}_{J^{\prime}} \oplus \bigoplus_{|J| \text { odd }} N_{J}\left\{x_{J^{\prime}} t_{J^{\prime}}\right\}_{J \cap J^{\prime}=\varnothing}}\right. \\
& \left.\oplus \underset{|J| \neq 0 \text { even }}{\bigoplus_{2}} \mathbb{F}_{2}\left[v_{1}\right] / v_{1}^{2} \otimes N_{J}\left\{x_{J^{\prime}} t_{J^{\prime}}\right\}_{J \cap J^{\prime}=\varnothing}\right),
\end{aligned}
$$

where J and J^{\prime} range over the subsets of

$$
\{(i, j): 1 \leq i, 1 \leq j \leq n\}
$$

and v_{1} acts trivially on N_{J} for $|J|$ odd. The summand

$$
h_{2,1}^{-1} \mathrm{Ext}_{E\left[Q_{1}, P_{2}^{1}\right]}^{*, *}\left({\underline{\mathrm{bo}_{i}}}_{1} \otimes \cdots \otimes{\underline{\mathrm{bo}_{i}}}_{i_{n}}\right)
$$

is spanned by those monomials of multiweight $\left(8 i_{1}, \ldots, 8 i_{n}\right)$.

In light of Lemma 3.10 and Corollary 3.11, we may refer to elements of the g-local algebraic tmf resolution as $v_{2}^{8 j} z$, where z is an element of the $h_{2,1}$-localized Ext groups described in the theorem above.

Lemma 3.13 The WSS d_{0}-differential on the element

$$
x_{1,1} t_{1,1} \in g^{-1} \mathrm{Ext}_{A(2)_{*}}^{*, *}\left(\underline{\mathrm{bo}}_{2}\right)
$$

is given by

$$
d_{0}^{\mathrm{wss}}\left(x_{1,1} t_{1,1}\right)=Q_{1}\left(x_{1,1} x_{1,2}\right) \in \operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes 2}\right)
$$

Proof We use the map of spectral sequences

$$
{ }^{\mathrm{wss}} E_{0} \rightarrow g^{-1 \mathrm{wss}} E_{0}
$$

${ }^{7}$ The main theorem of [10] is a computation of P_{2}^{1}-Margolis homology, but the actual content of the paper
is a decomposition of $A / / A(2)_{*}$ in the stable module is a decomposition of $A / / A(2)_{*}$ in the stable module category of $E\left[Q_{1}, P_{2}^{1}\right]$.

By explicit computation of $\left.g^{-1} \operatorname{Ext}_{A(2)}\right)_{\left(\underline{\mathrm{bo}}_{2}\right) \text {, under the map }}$

$$
\operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{2}\right) \rightarrow g^{-1} \operatorname{Ext}_{A(2)_{*}}\left({\left.\underline{\mathrm{bo}_{2}}\right)}\right)
$$

we have

$$
v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4} \mapsto h_{2,1} x_{1,1} t_{1,1}
$$

In the WSS, we have

$$
\begin{equation*}
d_{0}^{\mathrm{wss}}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)=v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right] \tag{3.14}
\end{equation*}
$$

Again, by explicit computation of g-local Ext groups, under the map

$$
\operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes 2}\right) \rightarrow g^{-1} \operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes 2}\right)
$$

we have

$$
v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right] \mapsto h_{2,1} Q_{1}\left(x_{1,1} x_{1,2}\right)
$$

Proposition 3.15 In $g^{-1 \text { wss }} E_{0}$, all of the $h_{2,1}$-towers coming from $\operatorname{Ext}_{A(2) *}\left(\right.$ bo $\left._{1}^{\otimes k}\right)$ for $k \geq 2$ either support nontrivial d_{0}-differentials or are the target of d_{0}-differentials.

Proof By Lemma 3.10 and Theorem 3.12, the $h_{2,1}$-towers coming from

$$
\operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes k}\right)
$$

are supported by the elements $\mathcal{T}_{\{(1,1), \ldots,(1, k)\}}$. By Lemma 3.13, the WSS d_{0} induces a surjection for $k=2$,

$$
d_{0}^{\mathrm{wss}}: \mathbb{F}_{2}\left[h_{2,1}^{ \pm}, v_{1}, v_{2}^{8}\right]\left\{x_{1,1} t_{1,1}\right\} \rightarrow \mathbb{F}_{2}\left[h_{2,1}^{ \pm}, v_{1}, v_{2}^{8}\right] / v_{1}^{2} \otimes N_{\{(1,1),(1,2)\}}
$$

For $k>2$, observe that

$$
\mathcal{T}_{(1,1), \ldots,(1, k)}=Q_{1}\left(x_{1,1} x_{1,2}\right) \mathcal{T}_{(1,3), \ldots,(1, k)} \cup Q_{1}\left(x_{1,2} x_{1,3}\right) \mathcal{T}_{\{(1,1),(1,4), \ldots,(1, k)\}}
$$

For $k>2$ even, the WSS d_{0} gives isomorphisms

$$
\begin{aligned}
d_{0}^{\mathrm{wss}}: \mathbb{F}_{2}\left[h_{2,1}^{ \pm}, v_{1}, v_{2}^{8}\right] / v_{1}^{2} \otimes & x_{1,1} t_{1,1} N_{\{(1,2), \ldots,(1, k-1)\}} \\
& \xrightarrow{\cong} \mathbb{F}_{2}\left[h_{2,1}^{ \pm}, v_{1}, v_{2}^{8}\right] / v_{1}^{2} \otimes Q_{1}\left(x_{1,1} x_{1,2}\right) N_{\{(1,3), \ldots,(1, k)\}}, \\
d_{0}^{\mathrm{wss}}: \mathbb{F}_{2}\left[h_{2,1}^{ \pm}, v_{1}, v_{2}^{8}\right] / v_{1}^{2} \otimes & x_{1,2} t_{1,2} N_{\{(1,1),(1,3), \ldots,(1, k-1)\}} \\
& \cong \\
& \mathbb{F}_{2}\left[h_{2,1}^{ \pm}, v_{1}, v_{2}^{8}\right] / v_{1}^{2} \otimes Q_{1}\left(x_{1,2} x_{1,3}\right) N_{\{(1,1),(1,4), \ldots,(1, k)\}},
\end{aligned}
$$

and, for $k>2$ odd, the WSS d_{0} gives isomorphisms

$$
\begin{aligned}
d_{0}^{\text {wss }}: \mathbb{F}_{2}\left[h_{2,1}^{ \pm}, v_{2}^{8}\right] \otimes x_{1,1} t_{1,1} & N_{\{(1,2), \ldots,(1, k-1)\}} \\
& \stackrel{\cong}{\leftrightarrows} \mathbb{F}_{2}\left[h_{2,1}^{ \pm}, v_{2}^{8}\right] \otimes Q_{1}\left(x_{1,1} x_{1,2}\right) N_{\{(1,3), \ldots,(1, k)\}} \\
d_{0}^{\text {wss }}: \mathbb{F}_{2}\left[h_{2,1}^{ \pm}, v_{2}^{8}\right] \otimes x_{1,2} t_{1,2} & N_{\{(1,1),(1,3), \ldots,(1, k-1)\}} \\
& \xrightarrow{\cong} \mathbb{F}_{2}\left[h_{2,1}^{ \pm}, v_{2}^{8}\right] \otimes Q_{1}\left(x_{1,2} x_{1,3}\right) N_{\{(1,1),(1,4), \ldots,(1, k)\}}
\end{aligned}
$$

We shall denote the elements of the Mahowald-Tangora wedge [32] in $\operatorname{Ext}_{A_{*}}\left(\mathbb{F}_{2}\right)$ by ${ }^{8}$

$$
v_{1}^{i} h_{2,1}^{j} g^{2}, \quad i \geq 0, j \geq 0
$$

Recall that the Mahowald operator

$$
M=\left\langle g_{2}, h_{0}^{3},-\right\rangle
$$

leads to an infinite collection of wedges

$$
M^{k}\left(v_{1}^{i} h_{2,1}^{j} g^{2}\right) \in \operatorname{Ext}_{A_{*}}\left(\mathbb{F}_{2}\right)
$$

with nonzero image in

$$
\operatorname{Ext}_{B_{*}}\left(\mathbb{F}_{2}\right)=\operatorname{Ext}_{A(2)_{*}}\left(\mathbb{F}_{2}\right)\left[v_{3}\right],
$$

where B_{*} is the quotient algebra

$$
\begin{equation*}
B_{*}:=\mathbb{F}_{2}\left[\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\right] /\left(\zeta_{1}^{8}, \zeta_{2}^{4}, \zeta_{3}^{2}, \zeta_{4}^{2}\right) \tag{3.16}
\end{equation*}
$$

of $A_{*}[33 ; 23]$. The existence of the element $\Delta^{2} g^{2} \in \operatorname{Ext}_{A_{*}}\left(\mathbb{F}_{2}\right)$ gives elements

$$
\Delta^{2 m} M^{k}\left(v_{1}^{i} h_{2,1}^{j+8 m} g^{2}\right) \in \operatorname{Ext}_{A_{*}}\left(\mathbb{F}_{2}\right)
$$

These elements are all linearly independent, since they project to linearly independent elements of $\operatorname{Ext}_{B_{*}}\left(\mathbb{F}_{2}\right)$.

The following proposition gives the elements of $\operatorname{Ext}_{A(2)_{*}}$ that some of the remaining $h_{2,1}$-towers in $\operatorname{Ext}_{A(2)_{*}}$ detect in the algebraic tmf resolution:

Proposition 3.17 The following table lists, for $i \geq 0, m \geq 0$ and $j \geq 4$, an $A(2)_{*}-$ comodule M, an $h_{2,1}$-tower in $g^{-1} \operatorname{Ext}_{A(2)_{*}}(M)$, the corresponding $h_{2,1}$-tower in $\operatorname{Ext}_{A(2)_{*}}(M)$, and an $h_{2,1}$-tower in $\operatorname{Ext}_{A_{*}}\left(\mathbb{F}_{2}\right)$ that it detects in the algebraic tmf resolution (assuming the latter is nonzero):

M	$g^{-1} \operatorname{Ext}_{A(2)_{*}}(M)$	$\operatorname{Ext}_{A(2)_{*}}(M)$	$\operatorname{Ext}_{A *}\left(\mathbb{F}_{2}\right)$
\mathbb{F}_{2}	$\Delta^{2 m} v_{1}^{i} h_{2,1}^{j+8 m+8}$	$\Delta^{2 m} v_{1}^{i} h_{2,1}^{j+8 m} g^{2}$	$\Delta^{2 m} v_{1}^{i} h_{2,1}^{j+8 m} g^{2}$
$\underline{\mathrm{bo}}_{1}$	$\Delta^{2 m} h_{2,1}^{j+8 m+4} Q_{1}\left(x_{1,1}\right)$	$\Delta^{2 m} h_{2,1}^{j+8 m+4} \zeta_{2}^{4}$	$\Delta^{2 m} h_{2,1}^{j+8 m} n$
$\underline{\mathrm{bo}}_{2}$	$\Delta^{2 m} h_{2,1}^{j+8 m+6} Q_{1}\left(x_{2,1}\right)$	$\Delta^{2 m} h_{2,1}^{j+8 m+1} g\left(h_{2,1} v_{0}^{-2} v_{2}^{2} \zeta_{1}^{16}\right)$	$\Delta^{2 m} h_{2,1}^{j+8 m} Q_{2}$
	$\Delta^{2 m} v_{1}^{i+2} h_{2,1}^{j+8 m+11} x_{1,1} t_{1,1}$	$\Delta^{2 m} v_{1}^{i+2} h_{2,1}^{j+8 m+2} g^{2}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)$	$\Delta^{2 m} v_{1}^{i} h_{2,1}^{j+8 m} M g^{2}$

[^7](Note that the notation Q_{2} in the above table refers to the name of the generator of $\operatorname{Ext}_{A_{*}}^{7,57+7}\left(\mathbb{F}_{2}\right)$, and not the Milnor generator $Q_{2} \in A$.)

Proof The classes corresponding to $\Delta^{2 m} v_{1}^{i} h_{2,1}^{k}$ are clear, because they are in the image of the map

$$
\operatorname{Ext}_{A_{*}}\left(\mathbb{F}_{2}\right) \rightarrow \operatorname{Ext}_{A(2)_{*}}\left(\mathbb{F}_{2}\right)
$$

In the case of the classes corresponding to $\Delta^{2 m} h_{2,1}^{k} n$ and $\Delta^{2 m} h_{2,1}^{k} Q_{2}$, we consider the $h_{2,1}^{j}$-multiples of n and $Q_{2} \in \operatorname{Ext}_{A_{*}}\left(\mathbb{F}_{2}\right)$ for $j \geq 4$:
$g n, \quad g t, \quad r n, \quad m n, g^{2} n, \ldots, g Q_{2}, g C_{0}, r Q_{2}, m Q_{2}, g^{2} Q_{2}, \ldots$
It suffices to show that

$$
n, \quad t, \quad Q_{2}, \quad C_{0}
$$

are detected in the algebraic tmf resolution by
(3.18) $\quad h_{2,1}^{4} \zeta_{2}^{4}+\alpha_{1}, \quad h_{2,1}^{5} \zeta_{2}^{4}+\alpha_{2}, \quad h_{2,1}^{6} v_{0}^{-2} v_{2}^{2} \zeta_{1}^{16}+\alpha_{3}, \quad h_{2,1}^{7} v_{0}^{-2} v_{2}^{2} \zeta_{1}^{16}+\alpha_{4}$, where $g \alpha_{i}=r \alpha_{i}=m \alpha_{i}=0$.

Examination of a computer calculation of $\operatorname{Ext}_{A_{*}}\left(\overline{A / / A(2)}{ }_{*}^{\otimes 2}\right)$ reveals that none of the elements n, t, Q_{2} and C_{0} are in the image of the map

$$
\begin{equation*}
\operatorname{Ext}_{A_{*}}^{*, *}\left(\overline{A / / A(2)}{ }_{*}^{\otimes 2}\right) \rightarrow \operatorname{Ext}_{A_{*}}^{*+2, *}\left(\mathbb{F}_{2}\right) \tag{3.19}
\end{equation*}
$$

Since the elements n, t, Q_{2} and C_{0} map to zero in $\operatorname{Ext}_{A(2)_{*}}\left(\mathbb{F}_{2}\right)$, they must therefore be detected on the 1-line of the algebraic tmf resolution. Examination of the relevant Ext charts reveals the only possibility is for the elements to be detected by classes of the form (3.18).

If we consider the class $M g \in \operatorname{Ext}_{A_{*}}\left(\mathbb{F}_{2}\right)$, one can check both that it is not in the image of (3.19), and that the only class in $\operatorname{Ext}_{A(2)_{*}}\left(\overline{A / / A(2)}_{*}\right)$ which can detect it is the class

$$
e_{0}^{2}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right) \in \operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{2}\right)
$$

It follows from the multiplicative structure of the wedge and the fact that

$$
g e_{0}^{2}=v_{1}^{2} h_{2,1}^{2} g^{2}
$$

that the elements $v_{1}^{i} h_{2,1}^{j} M g^{2} \in \operatorname{Ext}_{A_{*}}\left(\mathbb{F}_{2}\right)$ are detected by

$$
v_{1}^{i+2} h_{2,1}^{j+2} g^{2}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right) \in \operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{2}\right)
$$

for $i \geq 0$ and $j \geq 4$.

4 The MASS for $M\left(8, v_{1}^{8}\right)$

In this and the following sections, we shall use the notation

$$
x[k]
$$

to denote an element of $\operatorname{Ext}_{A(2)_{*}}\left(M \otimes H\left(8, v_{1}^{8}\right)\right)$ detected by an element

$$
x \in \operatorname{Ext}_{A(2)_{*}}(M)
$$

on the k-cell of $H\left(8, v_{1}^{8}\right)$ for $k \in\{0,1,17,18\}$.

The MASS for $\operatorname{tmf}_{\boldsymbol{*}} M\left(8, v_{1}^{8}\right)$

The computation of $\operatorname{Ext}_{A(2) *}\left(H\left(8, v_{1}^{8}\right)\right)$ is depicted in Figure 5. In this figure, solid dots correspond to classes carried by the " 0 -cell" of $H\left(8, v_{1}^{8}\right)$, and open circles correspond to classes carried by the " 1 -cell" of $H\left(8, v_{1}^{8}\right)$. The large solid circles correspond to h_{0}-torsion-free classes of $\operatorname{Ext}_{A(2)_{*}}\left(\mathbb{F}_{2}\right)$ on the 0 -cell of $H\left(8, v_{1}^{8}\right)$. The classes with solid boxes around them support $h_{2,1}$-towers. Everything is $v_{2}^{8}-$ periodic.
Figure 6 depicts the differentials in the MASS for $\operatorname{tmf} \wedge M\left(8, v_{1}^{8}\right)$ through the same range; the complete computation of this MASS can be similarly accomplished. An explanation of how to determine these differentials can be found in [7].

The algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$

The following lemma explains that, in our $H\left(8, v_{1}^{8}\right)$ computations, we may disregard terms coming from $\operatorname{Ext}_{A(1)_{*}}$ in the sequence of spectral sequences (2.9):

Lemma 4.1 [7, Lemma 8.8] In the algebraic tmf resolution for $M=H\left(8, v_{1}^{8}\right)$, the terms

$$
\operatorname{Ext}_{A(1)_{*}} \text { (something) }
$$

in (2.9) do not contribute to $\mathrm{Ext}_{\boldsymbol{A}_{*}}^{s, t}\left(H\left(8, v_{1}^{8}\right)\right)$ if

$$
s>\frac{1}{7}(t-s)+\frac{51}{7} .
$$

For $n>0$ and $i_{1}, \ldots, i_{n}>0$, the terms

$$
\mathrm{Ext}_{A(2) *}^{s, t}\left(\underline{\mathrm{bo}}_{i_{1}} \otimes \cdots \otimes \underline{\mathrm{bo}}_{i_{n}} \otimes H\left(8, v_{1}^{8}\right)\right)
$$

that are the terms in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$ are in some sense less complicated than $\operatorname{Ext}_{A(2)_{*}}\left(H\left(8, v_{1}^{8}\right)\right)$.

Figure 5: The groups $\operatorname{Ext}_{A(2) *}\left(H\left(8, v_{1}^{8}\right)\right)$.

Figure 6: The MASS for $\operatorname{tmf} \wedge M\left(8, v_{1}^{8}\right)$.

Figure 7: $\operatorname{Ext}_{A(2)_{*}}\left({\underline{\mathrm{bo}_{1}}}_{1} \otimes H\left(8, v_{1}^{8}\right)\right)$.

Most of the features of these computations can already be seen in the computation of $\operatorname{Ext}_{A(2) *}\left(\underline{\text { bo }}_{1} \otimes H\left(8, v_{1}^{8}\right)\right)$, which is displayed in Figure 7. This computation was performed by taking the computation of $\operatorname{Ext}_{A(2) *}\left(\underline{\mathrm{bo}}_{1}\right)$ (see for example [6]) and running the long exact sequences in Ext associated to the cofiber sequences

$$
\begin{gathered}
\Sigma^{3} \underline{\mathrm{bo}}_{1}[-3] \stackrel{h_{0}^{3}}{\mathrm{~b}_{\mathrm{bo}}^{1}} \rightarrow \underline{\mathrm{bo}}_{1} \otimes H(8), \\
\Sigma^{24} \underline{\mathrm{bo}}_{1} \otimes H(8)[-8] \xrightarrow{v_{1}^{8}} \underline{\mathrm{bo}}_{1} \otimes H(8) \rightarrow \underline{\mathrm{bo}}_{1} \otimes H\left(8, v_{1}^{8}\right) .
\end{gathered}
$$

In Figure 7, as before, solid dots represent generators carried by the 0 -cell of $H\left(8, v_{1}^{8}\right)$ and open circles are carried by the 1 -cell. Unlike the case of $\operatorname{Ext}_{A(2)_{*}}(H(8))$, there is v_{1}^{8}-torsion in $\operatorname{Ext}_{A(2) *}\left(\underline{\text { bo }}_{1} \otimes H(8)\right)$. This results in classes in $\operatorname{Ext}_{A(2)_{*}}\left(\underline{\text { bo }}_{1} \otimes H\left(8, v_{1}^{8}\right)\right)$ carried by the 17 -cell and the 18 -cell of $H\left(8, v_{1}^{8}\right)$, which are represented by solid triangles and open triangles, respectively. A box around a generator indicates that it actually carries a copy of $\mathbb{F}_{2}\left[h_{2,1}\right]$. As before, everything is v_{2}^{8}-periodic.

One can similarly compute

$$
\operatorname{Ext}_{A(2) *}\left(\underline{\mathrm{bo}}_{1}^{\otimes k} \otimes H\left(8, v_{1}^{8}\right)\right)
$$

for larger values of k by applying the same method to the corresponding computations of

$$
\operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes k}\right)
$$

in [6]. We do not bother to record the complete results of these computations for small values of k, but will freely use them in what follows. The spectral sequences (2.9) imply these computations control $\operatorname{Ext}_{A(2)_{*}}\left(\underline{\text { bo }}_{I}\right)$.

$\boldsymbol{h}_{\mathbf{2}, \mathbf{1}}$-towers in the algebraic tmf resolution for $H\left(8, v_{1}^{\mathbf{8}}\right)$

Theorem 3.12 has the following implication for the g-local algebraic tmf resolution of $H\left(8, v_{1}^{8}\right)$:

$$
\begin{aligned}
& h_{2,1}^{-1} \operatorname{Ext}_{E\left[Q_{1}, P_{2}^{1}\right]}^{*, *}\left(A / / A(2)_{*}^{\otimes n} \otimes H\left(8, v_{1}^{8}\right)\right) \\
& =\mathbb{F}_{2}\left[h_{2,1}^{ \pm}\right] \otimes\left(\mathbb{F}_{2}\left[v_{1}\right] / v_{1}^{8} \otimes H(8)\left\{x_{J^{\prime}} t_{J^{\prime}}\right\}_{J^{\prime}} \oplus \bigoplus_{|J| \text { odd }} N_{J} \otimes H\left(8, v_{1}^{8}\right)\left\{x_{J^{\prime}} t_{J^{\prime}}\right\}_{J \cap J^{\prime}=\varnothing}\right. \\
& \\
& \left.\oplus \bigoplus_{|J| \neq 0 \text { even }} \mathbb{F}_{2}\left[v_{1}\right] / v_{1}^{2} \otimes N_{J} \otimes H\left(8, v_{1}^{8}\right)\left\{x_{J^{\prime}} t_{J^{\prime}}\right\}_{J \cap J^{\prime}=\varnothing}\right),
\end{aligned}
$$

where J and J^{\prime} range over the subsets of

$$
\{(i, j): 1 \leq i, 1 \leq j \leq n\}
$$

This leads to the following twist in the analog of Proposition 3.15:
Proposition 4.2 In $g^{-1 \text { wss }} E_{0}\left(H\left(8, v_{1}^{8}\right)\right)$, all of the $h_{2,1}$-towers coming from

$$
\operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes k} \otimes H\left(8, v_{1}^{8}\right)\right)
$$

for $k \geq 3$ are either the source of a nontrivial d_{0}-differential or the target of a d_{0} differential. For $k=2$, the $h_{2,1}-$ towers

$$
v_{1}^{\epsilon} h_{2,1}^{j} Q_{1}\left(x_{1,1} x_{1,2}\right)[n]
$$

are killed for $\epsilon \in\{0,1\}$ and $n \in\{0,1\}$ (but the corresponding towers with $n \in\{17,18\}$ are not killed).

Proof Everything is identical to the proof of Proposition 3.15, except that the differentials
$d_{0}^{\text {wss }}: \mathbb{F}_{2}\left[v_{1}, h_{2,1}^{ \pm}\right] / v_{1}^{8}\left\{x_{1,1} t_{1,1}\right\} \otimes H(8) \rightarrow \mathbb{F}_{2}\left[v_{1}, h_{2,1}^{ \pm}\right] / v_{1}^{2}\left\{Q_{1}\left(x_{1,1} x_{1,2}\right)\right\} \otimes H\left(8, v_{1}^{8}\right)$ now have nontrivial kernel and cokernel.

We now give elements of $\operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)$ which these remaining $h_{2,1}$-towers detect in the algebraic tmf resolution. Note that, as pointed out in [33], the Mahowald operator satisfies

$$
h_{0}^{3} M(x)=0
$$

which implies that, for any $x \in \operatorname{Ext}_{A_{*}}\left(\mathbb{F}_{2}\right)$, there exists a lift

$$
M(x)[1] \in \operatorname{Ext}_{A_{*}}(H(8))
$$

and thus an element $M(x)[1] \in \operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)$. Furthermore, the element $\Delta^{2}=v_{2}^{8}$ exists in $\operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)$ (see Lemma 5.1 below). We conclude that, for $0 \leq i \leq 7$, $j, k, l \geq 0$ and $\epsilon \in\{0,1\}$, the wedge elements

$$
v_{1}^{i} h_{2,1}^{j} \Delta^{2 k} M^{l} g^{2}[\epsilon] \in \operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)
$$

exist, and we see they are linearly independent by mapping to $\operatorname{Ext}_{B_{*}}\left(H\left(8, v_{1}^{8}\right)\right)$ (where B_{*} is as defined in (3.16)).

Proposition 4.3 The following table lists, for $m \geq 0,0 \leq i \leq 7,0 \leq i^{\prime} \leq 5$, $j \geq 4, k \in\{0,1,17,18\}$ and $\epsilon, \epsilon^{\prime} \in\{0,1\}$, an $A(2)_{*}$-comodule M, an $h_{2,1}$-tower in $g^{-1} \operatorname{Ext}_{A(2)_{*}}\left(M \otimes H\left(8, v_{1}^{8}\right)\right)$, the corresponding $h_{2,1}$-tower in $\operatorname{Ext}_{A(2)_{*}}\left(M \otimes H\left(8, v_{1}^{8}\right)\right)$ and an $h_{2,1}$-tower in $\operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)$ that it detects in the algebraic tmf resolution:

M	$g^{-1} \operatorname{Ext}_{A(2)_{*}}\left(M \otimes H\left(8, v_{1}^{8}\right)\right)$	$\operatorname{Ext}_{A(2)_{*}}\left(M \otimes H\left(8, v_{1}^{8}\right)\right)$	$\operatorname{Ext}_{A *}\left(H\left(8, v_{1}^{8}\right)\right)$
\mathbb{F}_{2}	$\Delta^{2 m} v_{1}^{i} h_{2,1}^{j+8}[\epsilon]$	$\Delta^{2 m} v_{1}^{i} h_{2,1}^{j} g^{2}[\epsilon]$	$\Delta^{2 m} v_{1}^{i} h_{2,1}^{j} g^{2}[\epsilon]$
$\underline{\mathrm{bo}}_{1}$	$\Delta^{2 m} h_{2,1}^{j+4} Q_{1}\left(x_{1,1}\right)[k]$	$\Delta^{2 m} h_{2,1}^{j+4} \zeta_{2}^{4}[k]$	$\Delta^{2 m} h_{2,1}^{j} n[k]$
	$\Delta^{2 m} h_{2,1}^{j+6} Q_{1}\left(x_{2,1}\right)[k]$	$\Delta^{2 m} h_{2,1}^{j+1} g\left(h_{2,1} v_{0}^{-2} v_{2}^{2} \zeta_{1}^{16}\right)[k]$	$\Delta^{2 m} h_{2,1}^{j} Q_{2}[k]$
$\underline{\mathrm{bo}}_{2}$	$\Delta^{2 m} v_{1}^{i^{\prime}+2} h_{2,1}^{j+11} x_{1,1} t_{1,1}[\epsilon]$	$\Delta^{2 m} v_{1}^{i^{\prime}+2} h_{2,1}^{j+2}$	$g^{2}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[\epsilon]$
		$\Delta^{2 m} v_{1}^{i^{\prime}} h_{2,1}^{j} M g^{2}[\epsilon]$	
$\underline{\mathrm{bo}}_{1}^{\otimes 2}$	$v_{1}^{\epsilon^{\prime}} \Delta^{2 m} h_{2,1}^{j+11}$	$Q_{1}^{2 m}\left(x_{1,1} x_{1,2}\right)[17+\epsilon]$	$v_{1}^{\epsilon^{\prime}} h_{2,1}^{j+2}\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)[17+\epsilon]$
		$\Delta^{2 m} v_{1}^{6+\epsilon^{\prime}} h_{2,1}^{j} M g^{2}[\epsilon]$	

Proof The cases of

$$
\Delta^{2 m} v_{1}^{i} h_{2,1}^{j} g^{2}[\epsilon], \quad \Delta^{2 m} h_{2,1}^{j} n[\epsilon], \quad \Delta^{2 m} h_{2,1}^{j} Q_{2}[\epsilon], \quad \Delta^{2 m} v_{1}^{i^{\prime}} h_{2,1}^{j} M g^{2}[\epsilon]
$$

follow immediately from Proposition 3.17 since all of these elements are annihilated by v_{0}^{3}.

The elements

$$
h_{2,1}^{j+4} \zeta_{2}^{4} \in \operatorname{Ext}_{A(2)_{*}}\left({\left.\left.\underline{\mathrm{bo}_{1}}\right), \quad h_{2,1}^{j+6} \zeta_{1}^{16} \in \operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{2}\right), ~\right)}\right.
$$

lift to elements

$$
\begin{gather*}
h_{2,1}^{j+4} \zeta_{2}^{4}[17+\epsilon] \in \operatorname{Ext}_{A(2)}\left(\underline{b o}_{1} \otimes H\left(8, v_{1}^{8}\right)\right), \\
h_{2,1}^{j+6} \zeta_{1}^{16}[17+\epsilon] \in \operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{2} \otimes H\left(8, v_{1}^{8}\right)\right) . \tag{4.4}
\end{gather*}
$$

One can explicitly check that the lifts (4.4) are permanent cycles in the algebraic tmf resolution. Therefore they detect the desired elements

$$
h_{2,1}^{j} n[17+\epsilon], h_{2,1}^{j} Q_{2}[17+\epsilon] \in \operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)
$$

Applying case (5) of the geometric boundary theorem [5, Lemma A.4.1] to the triangle

$$
H\left(8, v_{1}^{8}\right)[-1] \rightarrow \Sigma^{24} H(8)[-8] \xrightarrow{v_{1}^{8}} H(8) \rightarrow H\left(8, v_{1}^{8}\right)
$$

and the differential

$$
d_{1}\left(v_{1}^{\epsilon^{\prime}} h_{2,1}^{j+2} g^{2}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)\right)=v_{1}^{\epsilon^{\prime}} h_{2,1}^{j+2} g^{2}\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)
$$

in the algebraic tmf resolution for $\Sigma^{24} H(8)[-8]$ (3.14), we find that the images of the elements

$$
v_{1}^{8+\epsilon^{\prime}} h_{2,1}^{j} M\left(g^{2}\right)[\epsilon] \in \operatorname{Ext}_{A_{*}}(H(8))
$$

under the map

$$
\operatorname{Ext}_{A_{*}}(H(8)) \rightarrow \operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)
$$

are detected by the elements

$$
v_{1}^{\epsilon^{\prime}} h_{2,1}^{j+2} g^{2}\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)[17+\epsilon]
$$

in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$.

5 The v_{2}^{32}-self-map on $M\left(8, v_{1}^{8}\right)$

We now endeavor to prove Theorem 1.8. We first recall the following lemma:
Lemma 5.1 [7, Lemma 7.6] The element

$$
v_{2}^{8} \in \operatorname{Ext}_{A(2)_{*}}^{8,48+8}\left(H\left(8, v_{1}^{8}\right)\right)
$$

is a permanent cycle in the algebraic tmf resolution, and gives rise to an element

$$
v_{2}^{8} \in \mathrm{Ext}_{A_{*}}^{8,48+8}\left(H\left(8, v_{1}^{8}\right)\right)
$$

It follows from the Leibniz rule that v_{2}^{32} persists to the E_{4}-page of the MASS for $M\left(8, v_{1}^{8}\right)$. Our task will then be reduced to showing that $d_{r}\left(v_{2}^{32}\right)=0$ for $r \geq 4$. We will do this by identifying the potential targets of such a differential, and show that they are either the source or target of shorter differentials. This will necessitate lifting certain differentials from the MASS for $\operatorname{tmf} \wedge \overline{\operatorname{tmf}}^{n} \wedge M\left(8, v_{1}^{8}\right)$ to the MASS for $M\left(8, v_{1}^{8}\right)$.

As explained in [8, Section 7.4], work of the second author, Davis and Rezk [31; 15] implies that the algebraic map

$$
\operatorname{Ext}_{A(2)}\left(\Sigma^{8}{\underline{\mathrm{bo}_{1}}}_{1} \oplus \Sigma^{16}{\left.\underline{\mathrm{bo}_{2}}\right)}\right) \rightarrow \operatorname{Ext}_{A(2)_{*}}\left(\overline{A / / A(2)}{ }_{*}\right)
$$

realizes to a map

$$
\begin{equation*}
\operatorname{tmf} \wedge \overline{\operatorname{tmf}}_{2} \rightarrow \operatorname{tmf} \wedge \overline{\mathrm{tmf}} \tag{5.2}
\end{equation*}
$$

where $\operatorname{tmf} \wedge \overline{\operatorname{tmf}}_{2}$ is a spectrum built out of $\operatorname{tmf} \wedge \Sigma^{8} \mathrm{bo}_{1}$ and $\operatorname{tmf} \wedge \Sigma^{16} \mathrm{bo}_{2}$. They furthermore show that there is a map

$$
\begin{equation*}
\Sigma^{32} \operatorname{tmf} \rightarrow \operatorname{tmf} \wedge \overline{\operatorname{tmf}}_{2} \tag{5.3}
\end{equation*}
$$

which geometrically realizes the inclusion of the direct summand (2.9),

$$
\operatorname{Ext}_{A(2)_{*}}\left(\Sigma^{33} \mathbb{F}_{2}[-1]\right) \hookrightarrow \operatorname{Ext}_{A(2)_{*}}\left(\Sigma^{16} \underline{\mathrm{bo}}_{2}\right) \subset \operatorname{Ext}_{A(2)_{*}}\left(\Sigma^{8} \underline{\mathrm{bo}}_{1} \oplus \Sigma^{16} \underline{\mathrm{bo}}_{2}\right)
$$

The attaching map from $\operatorname{tmf} \wedge \mathrm{bo}_{2}$ to $\operatorname{tmf} \wedge \mathrm{bo}_{1}$ in the spectrum $\operatorname{tmf} \wedge \overline{\operatorname{tmf}}_{2}$ induces d_{3}-differentials from the $h_{2,1}$-towers in bo_{2} to the $h_{2,1}$-towers in bo_{1} in the ASS for $\operatorname{tmf} \wedge \overline{\mathrm{tmf}}$ under the map (5.2). Furthermore, there are differentials in the ASSs for $\operatorname{tmf} \wedge \mathrm{bo}_{1}, \operatorname{tmf} \wedge \mathrm{bo}_{2}$ and tmf, which induce differentials in the ASS for $\operatorname{tmf} \wedge \overline{\mathrm{tmf}}$ under the maps (5.2) and (5.3). We wish to study when these differentials (and more generally differentials in the ASS for $\operatorname{tmf} \wedge \overline{\operatorname{tmf}}^{n}$) lift via the tmf resolution to differentials in the ASS for the sphere.

To this end we consider the partial totalizations

$$
T^{n}:=\operatorname{Tot}^{n}\left(\operatorname{tmf}^{\bullet+1}\right)
$$

of the cosimplicial tmf resolution of the sphere, so that we have

$$
S \simeq{\underset{\overleftarrow{n}}{n}}^{\lim ^{n}} T^{n}
$$

and fiber sequences

$$
\Sigma^{-n} \operatorname{tmf} \wedge \overline{\operatorname{tmf}}^{n} \rightarrow T^{n} \rightarrow T^{n-1}
$$

The spectrum T^{n} is a ring spectrum, and in particular has a unit

$$
S \rightarrow T^{n}
$$

We let

$$
\begin{equation*}
\underline{T}^{n}=\operatorname{Tot}^{n}\left(A / / A(2)_{*}^{\otimes \bullet+1}\right) \tag{5.4}
\end{equation*}
$$

denote the corresponding construction in the stable homotopy category of A_{*}-comodules. There is a MASS

$$
\operatorname{Ext}_{A_{*}}^{*, *}\left(\underline{T}^{n} \otimes H\left(8, v_{1}^{8}\right)\right) \Rightarrow T_{*}^{n} M\left(8, v_{1}^{8}\right)
$$

and the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$ truncates to give an algebraic tmf resolution

$$
\bigoplus_{i=0}^{n} \operatorname{Ext}_{A(2)_{*}}^{*, *}\left(\overline{A / / A(2)_{*}^{\otimes i}} \otimes H\left(8, v_{1}^{8}\right)\right) \Rightarrow \operatorname{Ext}_{A_{*}}\left(\underline{T}^{n} \otimes H\left(8, v_{1}^{8}\right)\right)
$$

The following lemma will be our key to lifting the desired differentials:
Lemma 5.5 Suppose x is an element of $\operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)$ which is detected in the n-line of the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$ by an element

$$
x^{\prime} \in \operatorname{Ext}_{A(2)_{*}}\left(\overline{A / / A(2)_{*}^{\otimes n}} \otimes H\left(8, v_{1}^{8}\right)\right) .
$$

Furthermore, suppose that, in the MASS for $\operatorname{tmf} \wedge \overline{\operatorname{tmf}}^{n} \wedge M\left(8, v_{1}^{8}\right)$, there is a differential

$$
d_{r}^{\text {mass }}\left(x^{\prime}\right)=y^{\prime}
$$

and that, for $2 \leq r^{\prime}<r$, we have

$$
d_{r^{\prime}}^{\text {mass }}(x)=0
$$

in the MASS for the $M\left(8, v_{1}^{8}\right)$. Then either
(1) the differential

$$
d_{r}^{\text {mass }}(x)
$$

in the ASS for $M\left(8, v_{1}^{8}\right)$ is detected by y^{\prime} in the algebraic tmf resolution; or
(2) the element y^{\prime} is the target of a differential in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$, or, in the algebraic tmf resolution for $\underline{T}^{n} \otimes H\left(8, v_{1}^{8}\right), y^{\prime}$ detects an element of $\operatorname{Ext}_{A_{*}}\left(\underline{T}^{n} \otimes H\left(8, v_{1}^{8}\right)\right)$ which is zero in ${ }^{\text {mass }} E_{r}\left(T^{n} \wedge M\left(8, v_{1}^{8}\right)\right)$.

Proof Consider the maps of algebraic tmf resolutions and MASSs induced from the zigzag

$$
M\left(8, v_{1}^{8}\right) \xrightarrow{\alpha} T^{n} \wedge M\left(8, v_{1}^{8}\right) \stackrel{\beta}{\longleftrightarrow} \Sigma^{-n} \operatorname{tmf} \wedge \overline{\operatorname{tmf}}^{n} \wedge M\left(8, v_{1}^{8}\right)
$$

Define

$$
\bar{x}:=\alpha_{*}(x) \in \operatorname{Ext}_{A_{*}}\left(\underline{T}^{n} \otimes H\left(8, v_{1}^{8}\right)\right)
$$

Then \bar{x} is detected by x^{\prime}, regarded as an element of the algebraic tmf resolution for $T^{n} \wedge M\left(8, v_{1}^{8}\right)$. In particular, this means that

$$
\bar{x}=\beta_{*}\left(x^{\prime}\right)
$$

Therefore, the differential

$$
d_{r}^{\mathrm{mass}}\left(x^{\prime}\right)=y^{\prime}
$$

in the MASS for $\operatorname{tmf} \wedge{\overline{\operatorname{tmf}^{n}}} \wedge M\left(8, v_{1}^{8}\right)$ maps to a differential

$$
d_{r}^{\text {mass }}(\bar{x})=\bar{y}:=\beta_{*}\left(y^{\prime}\right)
$$

in the MASS for $T^{n} \wedge M\left(8, v_{1}^{8}\right)$. In particular, either
(1) \bar{y} is nonzero in ${ }^{\text {mass }} E_{r}\left(T^{n} \wedge M\left(8, v_{1}^{8}\right)\right)$ and is detected by y^{\prime} in the algebraic tmf resolution for $\underline{T}^{n} \otimes H\left(8, v_{1}^{8}\right)$, or
(2) either $\bar{y}=0$ in ${ }^{\text {mass }} E_{r}\left(T^{n} \wedge M\left(8, v_{1}^{8}\right)\right)$ or y^{\prime} is killed in the algebraic tmf resolution for $\underline{T}^{n} \otimes H\left(8, v_{1}^{8}\right)$.

If the latter is true, then y^{\prime} is killed in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$, since the algebraic tmf resolution for $\underline{T}^{n} \otimes H\left(8, v_{1}^{8}\right)$ is a truncation of the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$.

If we are in case (2), we are done. If we are in case (1), consider the differential

$$
y:=d_{r}^{\text {mass }}(x)
$$

in the MASS for $M\left(8, v_{1}^{8}\right)$ (which is defined by hypothesis). We must have

$$
\alpha_{*}(y)=\bar{y} .
$$

Therefore, $d_{r}^{\text {mass }}(x)$ is detected by y^{\prime} in the algebraic tmf resolution.
Remark 5.6 We will primarily be applying Lemma 5.5 to the following two cases:
Case $1 \quad\left(x=\Delta^{2 m} h_{2,1}^{j} Q_{2}[k]\right)$ Suppose that we can prove

$$
d_{2}^{\text {ass }}\left(\Delta^{2 m} h_{2,1}^{j} Q_{2}[k]\right)=0
$$

in the MASS for $M\left(8, v_{1}^{8}\right)$. The element $\Delta^{2 m} h_{2,1}^{j} Q_{2}[k]$ is detected by

$$
\Delta^{2 m} h_{2,1}^{j+1} g\left(h_{2,1} v_{0}^{-2} v_{2}^{2} \zeta_{1}^{16}\right)[k] \in \operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{2} \otimes H\left(8, v_{1}^{8}\right)\right)
$$

in the algebraic tmf resolution, and it is proven in [8] that, in the ASS for $\operatorname{tmf} \wedge \overline{\mathrm{tmf}}$, there is a differential

$$
\begin{aligned}
& d_{3}^{\text {ass }}\left(\Delta^{2 m} h_{2,1}^{j+1} g\left(h_{2,1} v_{0}^{-2} v_{2}^{2} \zeta_{1}^{16}\right)\right) \\
&=\Delta^{2 m} h_{2,1}^{j+4} g\left(h_{2,1} \zeta_{2}^{4}\right)+\epsilon(m) \Delta^{2 m-4} h_{2,1}^{j+20} g\left(h_{2,1} v_{0}^{-2} v_{2}^{2} \zeta_{1}^{16}\right)
\end{aligned}
$$

where

$$
\epsilon(m)= \begin{cases}1 & \text { if } m \equiv 2 \bmod 4 \\ 0 & \text { otherwise }\end{cases}
$$

Lifting this differential to $\operatorname{tmf} \wedge \overline{\operatorname{tmf}} \wedge M\left(8, v_{1}^{8}\right)$, Lemma 5.5 implies that either the target of the differential $d_{3}^{\text {ass }}\left(\Delta^{2 m} h_{2,1}^{j} Q_{2}[k]\right)$ in the MASS for $M\left(8, v_{1}^{8}\right)$ is detected by

$$
\Delta^{2 m} h_{2,1}^{j+4} g\left(h_{2,1} \zeta_{2}^{4}\right)[k]+\epsilon(m) \Delta^{2 m-4} h_{2,1}^{j+20} g\left(h_{2,1} v_{0}^{-2} v_{2}^{2} \zeta_{1}^{16}\right)[k]
$$

in the algebraic tmf resolution, or

$$
\Delta^{2 m} h_{2,1}^{j+4} g\left(h_{2,1} \zeta_{2}^{4}\right)[k]+\epsilon(m) \Delta^{2 m-4} h_{2,1}^{j+20} g\left(h_{2,1} v_{0}^{-2} v_{2}^{2} \zeta_{1}^{16}\right)[k]
$$

is the target of a differential in the algebraic tmf resolution or detects an element of $\operatorname{Ext}_{A_{*}}\left(\underline{T}^{1} \otimes H\left(8, v_{1}^{8}\right)\right)$ which is zero on the E_{3}-page of the MASS for $T^{1} \wedge M\left(8, v_{1}^{8}\right)$.

Case $2\left(x=M \Delta^{2} v_{1}^{i} h_{2,1}^{j+8}[\epsilon]\right.$ for $\epsilon \in\{0,1\}$ and $\left.0 \leq i \leq 4\right)$ The element $M \Delta^{2} v_{1}^{i} h_{2,1}^{j+8}[\epsilon]$ is detected by

$$
\Delta^{2} v_{1}^{i+2} h_{2,1}^{j+10}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[\epsilon]
$$

in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$, and the map (5.3) implies there is a differential

$$
d_{2}^{\text {mass }}\left(\Delta^{2} v_{1}^{i+2} h_{2,1}^{j+10}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[\epsilon]\right)=v_{1}^{i+3} h_{2,1}^{j+19}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[\epsilon]
$$

in the MASS for $\operatorname{tmf} \wedge \overline{\operatorname{tmf}} \wedge M\left(8, v_{1}^{8}\right)$.
Then Lemma 5.5 implies that either $d_{2}^{\text {mass }}\left(M \Delta^{2} v_{1}^{i} h_{2,1}^{j+8}[\epsilon]\right)$ is detected by

$$
v_{1}^{i+3} h_{2,1}^{j+19}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[\epsilon]
$$

in the algebraic tmf resolution, or $v_{1}^{i+3} h_{2,1}^{j+19}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[\epsilon]$ is killed in the tmf resolution for $H\left(8, v_{1}^{8}\right)$ or it detects an element which is zero in the E_{2}-term of the MASS for $T^{1} \wedge M\left(8, v_{1}^{8}\right)$. However, the element

$$
M v_{1}^{i+1} h_{2,1}^{j+17}[\epsilon] \in \operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)
$$

is nonzero, and is detected by $v_{1}^{i+3} h_{2,1}^{j+19}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[\epsilon]$ in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$. We conclude that $v_{1}^{i+3} h_{2,1}^{j+19}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[\epsilon]$ is not killed in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$. Since the algebraic tmf resolution for $\underline{T}^{1} \otimes H\left(8, v_{1}^{8}\right)$ is a truncation of the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$, we conclude that $v_{1}^{i+3} h_{2,1}^{j+19}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[\epsilon]$ detects a nontrivial element of the E_{2}-page of the MASS for $T^{1} \wedge M\left(8, v_{1}^{8}\right)$. We conclude that

$$
d_{2}^{\text {mass }}\left(M \Delta^{2} v_{1}^{i} h_{2,1}^{j+8}[\epsilon]\right)
$$

is nontrivial in the MASS for $M\left(8, v_{1}^{8}\right)$, and is detected in the algebraic tmf resolution by $v_{1}^{i+3} h_{2,1}^{j+19}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[\epsilon]$.

Proof of Theorem 1.8 By Proposition 2.3, it suffices to prove that

$$
v_{2}^{32} \in \operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)
$$

is a permanent cycle in the MASS. Furthermore, since $v_{2}^{8} \in{ }^{\text {mass }} E_{2}\left(M\left(8, v_{1}^{8}\right)\right)$, the Leibniz rule implies that $v_{2}^{32} \in{ }^{\text {mass }} E_{4}\left(M\left(8, v_{1}^{8}\right)\right)$. We therefore are left with eliminating possible targets of $d_{r}^{\text {mass }}\left(v_{2}^{32}\right)$ for $r \geq 4$.

Suppose that $d_{r}\left(v_{2}^{32}\right)$ is nontrivial for $r \geq 4$. We successively consider terms in the algebraic tmf resolution which could detect $d_{r}\left(v_{2}^{32}\right)$, and then eliminate these possibilities one by one.

The only terms in the algebraic tmf resolution E_{1}-page which can contribute to $\mathrm{Ext}_{A_{*}}^{s, 191+s}\left(H\left(8, v_{1}^{8}\right)\right)$ for $s \geq 36$ are

- $\operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes s}\right)$ for $0 \leq s \leq 6$, and
- $\operatorname{Ext}_{A(2) *}\left(\underline{\mathrm{bo}}_{1}^{\otimes s} \otimes \underline{\mathrm{bo}}_{2}\right)$ for $0 \leq s \leq 2$.

Furthermore, $\underline{\mathrm{bo}}_{1}^{\otimes s}$ only contributes $h_{2,1}$-towers in this range for $s=5,6$. We list these contributions below, except we do not list elements in $h_{2,1}$-towers coming from $\underline{\mathrm{bo}}_{1}^{\otimes s}$ for $s \geq 2$ which are zero in the WSS E_{1}-term (see Proposition 4.2). Also, since v_{2}^{32} is a permanent cycle in the MASS for $\operatorname{tmf} \wedge M\left(8, v_{1}^{8}\right)$, we can disregard any terms coming from $\operatorname{Ext}_{A(2)_{*}}\left(\mathbb{F}_{2}\right)$ (the 0 -line of the algebraic tmf resolution). Finally, we do not include any terms which can be eliminated through the application of Case 2 of Remark 5.6.

We now eliminate these possibilities one by one. We will consider the terms in order of reverse algebraic tmf filtration.
$\underline{\mathbf{b o}}_{\mathbf{1}}^{\otimes \mathbf{4}}$ In the modified May spectral sequence (3.3), there is a differential

$$
d_{8}^{\mathrm{mmss}}\left(b_{2,2} h_{3}^{2}\right)=h_{3}^{5}
$$

which lifts under the map Φ_{*} of (3.4) to a nontrivial differential

$$
d_{1}^{\mathrm{wss}}\left(\left[\zeta_{1}^{8}\left|\zeta_{1}^{8}\right| \zeta_{2}^{4} \mid \zeta_{2}^{4}\right]\right)=\left[\zeta_{1}^{8}\left|\zeta_{1}^{8}\right| \zeta_{1}^{8}\left|\zeta_{1}^{8}\right| \zeta_{1}^{8}\right]
$$

in the WSS for \mathbb{F}_{2}, and this implies a nontrivial differential

$$
d_{1}^{\mathrm{wss}}\left(v_{1}^{4} \Delta^{6} h_{1}^{2}\left[\zeta_{1}^{8}\left|\zeta_{1}^{8}\right| \zeta_{2}^{4} \mid \zeta_{2}^{4}\right][1]\right)=v_{1}^{4} \Delta^{6} h_{1}^{2}\left[\zeta_{1}^{8}\left|\zeta_{1}^{8}\right| \zeta_{1}^{8}\left|\zeta_{1}^{8}\right| \zeta_{1}^{8}\right][1]
$$

in the WSS for $H\left(8, v_{1}^{8}\right)$.
$\underline{\mathbf{b}}_{\mathbf{1}}^{\boldsymbol{\otimes} \mathbf{2}} \otimes \underline{\mathbf{b} \mathbf{0} \mathbf{2}}$ In the cobar complex for $\mathbb{F}_{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]$, we find

$$
d\left(\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right] \mid \zeta_{1}^{8} \zeta_{2}^{4}\right) \quad \text { and } \quad \mathrm{d}\left(1_{1}^{8}\left|1_{1}^{8} 1_{2}^{4}\right| 1_{2}^{4}+1_{2}^{4}\left|1_{1}^{8} 1_{2}^{4}\right| 1_{1}^{8}\right)
$$

are linearly independent, and

$$
d\left(\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\left|\zeta_{1}^{8} \zeta_{2}^{4}+\zeta_{1}^{8} \zeta_{2}^{4}\right|\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)=0
$$

However,

$$
d\left(\zeta_{1}^{8} \zeta_{2}^{4} \mid \zeta_{1}^{8} \zeta_{2}^{4}\right)=\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\left|\zeta_{1}^{8} \zeta_{2}^{4}+\zeta_{1}^{8} \zeta_{2}^{4}\right|\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]
$$

The elements are thus eliminated by multiplying the computations above with $v_{1}^{-2} v_{2}^{4} h_{2,1}^{22}$ and lifting them to the top cell of $H\left(8, v_{1}^{8}\right)$.
$\underline{b o}_{\mathbf{1}}^{\boldsymbol{\otimes 3}}$ Note that

$$
\operatorname{Ext}_{A_{*}}^{10,10+48}\left(\mathbb{F}_{2}\right)=0
$$

We conclude that the class

$$
v_{1}^{4} c_{0} h_{1}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right) \in \operatorname{Ext}_{A(2)_{*}}\left({\left.\underline{\mathbf{b o}_{2}}\right)}\right)
$$

must either support or be the target of a differential in the algebraic tmf resolution, for otherwise it would give a nonzero element of $\operatorname{Ext}_{A_{*}}^{10,10+48}\left(\mathbb{F}_{2}\right)$. However, by examination, there are no classes in $\operatorname{Ext}_{A(2) *}\left(\mathbb{F}_{2}\right)$ which can kill $v_{1}^{4} c_{0} h_{1}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)$ in the algebraic tmf resolution, so there must be a nontrivial differential

$$
d_{r}\left(v_{1}^{4} c_{0} h_{1}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)\right)
$$

in the algebraic tmf resolution for \mathbb{F}_{2}. Since the target of this differential must be h_{1}-torsion, there is only one possibility:

$$
d_{2}\left(v_{1}^{4} c_{0} h_{1}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)\right)=v_{1}^{4} h_{1}^{2} v_{2}^{2} \zeta_{1}^{8}\left|\zeta_{1}^{8}\right| \zeta_{2}^{4}
$$

It follows that we have

$$
d_{2}\left(v_{1}^{4} c_{0}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)\right)=v_{1}^{4} h_{1} v_{2}^{2} \zeta_{1}^{8}\left|\zeta_{1}^{8}\right| \zeta_{2}^{4}
$$

This differential lifts to a differential

$$
d_{2}\left(v_{1}^{4} c_{0}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[1]\right)=v_{1}^{4} h_{1} v_{2}^{2} \zeta_{1}^{8}\left|\zeta_{1}^{8}\right| \zeta_{2}^{4}[1]
$$

in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$. Multiplying by Δ^{6}, we have

$$
d_{2}\left(\Delta^{6} v_{1}^{4} c_{0}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[1]\right)=\Delta^{6} v_{1}^{4} h_{1} v_{2}^{2} \zeta_{1}^{8}\left|\zeta_{1}^{8}\right| \zeta_{2}^{4}[1]
$$

$\underline{\mathbf{b o}_{\mathbf{1}}} \otimes \underline{\mathbf{b o}} \mathbf{2}$ There is a differential

$$
d_{0}^{\mathrm{wss}}\left(\zeta_{2}^{12}\right)=\left[\zeta_{2}^{4}, \zeta_{2}^{8}\right]
$$

in the WSS for \mathbb{F}_{2} which lifts to a differential

$$
d_{0}^{\mathrm{wss}}\left(v_{1} h_{2,1}^{21} g\left(v_{0}^{-1} v_{2}^{2} \zeta_{2}^{12}\right)\right)=v_{1} h_{2,1}^{21} g\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{2}^{4}, \zeta_{2}^{8}\right]\right)
$$

We therefore only have to consider one of the two potential elements. In the modified May spectral sequence (3.3), there is a differential

$$
d_{8}^{\mathrm{mmss}}\left(h_{2,3}\right)=h_{1,3} h_{1,4}
$$

which lifts to a differential

$$
d_{1}^{\mathrm{wss}}\left(\zeta_{2}^{8}\right)=\zeta_{1}^{8} \mid \zeta_{1}^{16}
$$

using the map Φ_{*} of (3.3), and gives a differential

$$
d_{1}^{\mathrm{wss}}\left(\zeta_{2}^{4} \mid \zeta_{2}^{8}\right)=\zeta_{2}^{4}\left|\zeta_{1}^{8}\right| \zeta_{1}^{16}
$$

The elements

$$
v_{1} g\left(v_{0}^{-1} v_{2}^{2} \zeta_{2}^{4} \mid \zeta_{2}^{8}\right) \in \operatorname{Ext}_{A(2)_{*}}\left({\underline{\mathrm{bo}_{1}}}_{1} \otimes{\left.\underline{\mathrm{bo}_{2}}\right)}\right)
$$

and

$$
v_{1} g\left(v_{0}^{-1} v_{2}^{2} \zeta_{2}^{4}\left|\zeta_{1}^{8}\right| \zeta_{1}^{16}\right) \in \operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes 2} \otimes \underline{\mathrm{bo}}_{2}\right)
$$

support $h_{2,1}$-towers which are nontrivial in ${ }^{\text {wss }} E_{1}$. Therefore, we have a nontrivial differential

$$
d_{1}^{\mathrm{wss}}\left(v_{1} h_{2,1}^{21} g\left(v_{0}^{-1} v_{2}^{2} \zeta_{2}^{4} \mid \zeta_{2}^{8}\right)\right)=v_{1} h_{2,1}^{21} g\left(v_{0}^{-1} v_{2}^{2} \zeta_{2}^{4}\left|\zeta_{1}^{8}\right| \zeta_{1}^{16}\right)
$$

This differential lifts to the top cell of $H\left(8, v_{1}^{8}\right)$ to give

$$
d_{1}^{\mathrm{wss}}\left(v_{1} h_{2,1}^{21} g\left(v_{0}^{-1} v_{2}^{2} \zeta_{2}^{4} \mid \zeta_{2}^{8}\right)[18]\right)=v_{1} h_{2,1}^{21} g\left(v_{0}^{-1} v_{2}^{2} \zeta_{2}^{4}\left|\zeta_{1}^{8}\right| \zeta_{1}^{16}\right)[18]
$$

in the WSS for $H\left(8, v_{1}^{8}\right)$.
$\mathbf{b o}_{\mathbf{1}}^{\boldsymbol{\otimes 2}}$ The element

$$
h_{2,1}^{5} \Delta^{4} v_{1} g\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)[18]
$$

detects the element

$$
\Delta^{4} \cdot M P \Delta h_{0}^{2} e_{0}[18]
$$

in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$. Regarding this element as an element in the MASS for $\operatorname{tmf} \wedge \mathrm{bo}_{1}^{2}$, there is a nontrivial differential

$$
d_{3}^{\text {mass }}\left(h_{2,1}^{5} \Delta^{4} v_{1} g\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)[18]\right)=h_{2,1}^{24} v_{1} g\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)[18] .
$$

By applying $(-)^{\wedge_{\mathrm{tmf}}{ }^{2}}$ to the map of tmf-modules (5.2), we may consider the composite

$$
\begin{equation*}
\operatorname{tmf} \wedge \mathrm{bo}_{1}^{2} \hookrightarrow\left(\operatorname{tmf} \wedge{\overline{\operatorname{tmf}_{2}}}_{2}\right)^{\wedge \operatorname{tmf} 2} \rightarrow \operatorname{tmf} \wedge{\overline{\operatorname{tmf}^{2}}}^{2} \tag{5.7}
\end{equation*}
$$

The differential above maps to a nontrivial differential between elements of the same name in the MASS for $\operatorname{tmf} \wedge \overline{\operatorname{tmf}}^{2}$. We wish to apply Lemma 5.5. We must have

$$
d_{2}^{\text {mass }}\left(\Delta^{4} \cdot M P \Delta h_{0}^{2} e_{0}[18]\right)=0
$$

in the MASS for $M\left(8, v_{1}^{8}\right)$, since there are no elements in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$ which could detect a target for this differential. Thus Lemma 5.5 implies that either

$$
d_{3}^{\text {mass }}\left(\Delta^{4} \cdot M P \Delta h_{0}^{2} e_{0}[18]\right)
$$

is nontrivial and detected by $h_{2,1}^{24} v_{1} g\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)[18]$, or

$$
h_{2,1}^{24} v_{1} g\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)[18]
$$

is killed in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$, or detects an element which is killed in the MASS for $T^{2} \wedge M\left(8, v_{1}^{8}\right)$. The only such possibility is for

$$
\Delta^{2} h_{2,1}^{23} \zeta_{2}^{4}[17]
$$

to detect the source of a d_{2}-differential in the MASS for $T^{2} \wedge M\left(8, v_{1}^{8}\right)$ to do such a killing. Projecting onto the top Moore space of $M\left(8, v_{1}^{8}\right)$, this would imply

$$
\Delta^{2} h_{2,1}^{23} \zeta_{2}^{4}
$$

detects an element in the algebraic tmf resolution for the sphere which supports a nontrivial d_{2}-differential in the ASS for the sphere. However, $\Delta^{2} h_{2,1}^{23} \zeta_{2}^{4}$ detects

$$
\Delta^{2} g^{5} \cdot \Delta h_{2} c_{1}
$$

in the ASS for the sphere, and there is a differential

$$
d_{2}^{\text {ass }}\left(\Delta^{2} g^{5} \cdot \Delta h_{2} c_{1}\right)=d_{2}^{\text {ass }}\left(\Delta^{2} g^{2}\right) \cdot g^{3} \cdot \Delta h_{2} c_{1}=\Delta^{2} h_{2}^{2} g^{2} e_{0} \cdot g^{3} \cdot \Delta h_{2} c_{1} .
$$

However, $\Delta^{2} h_{2}^{2} e_{0} \cdot \Delta h_{2} c_{1}=0$ in $\operatorname{Ext}_{A_{*}}\left(\mathbb{F}_{2}\right)$ [13], so this $d_{2}^{\text {ass }}$ is zero.
We now turn our attention to the other potential target coming from $\mathrm{bo}_{1}^{\otimes 2}$,

$$
h_{2,1}^{15} \Delta^{2} g\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)[18] .
$$

This element detects

$$
\Delta^{2} g^{2} v_{1}^{6} h_{2,1} M g^{3}[0]
$$

in the algebraic tmf resolution for $M\left(8, v_{1}^{8}\right)$. However, in the ASS for the sphere, $v_{1}^{6} h_{2,1} g^{3}$ is a d_{2}-cycle, and so there is a differential
$d_{2}^{\text {ass }}\left(\Delta^{2} g^{2} \cdot v_{1}^{6} h_{2,1} g^{3}\right)=d_{2}^{\text {ass }}\left(\Delta^{2} g^{2}\right) \cdot v_{1}^{6} h_{2,1} g^{3}=\Delta^{2} h_{2}^{2} g^{2} e_{0} \cdot v_{1}^{6} h_{2,1} g^{3}=v_{1}^{7} h_{2,1}^{22} g^{2}$. Applying $M(-)=\left\langle-, h_{0}^{3}, g_{2}\right\rangle$ and mapping under the inclusion of the bottom cell of $M\left(8, v_{1}^{8}\right)$, we get a nontrivial differential

$$
d_{2}^{\text {mass }}\left(\Delta^{2} g^{2} \cdot v_{1}^{6} h_{2,1} M g^{3}[0]\right)=v_{1}^{7} h_{2,1}^{22} M g^{2}[0] .
$$

bo1 The element

$$
h_{2,1}^{31} g\left(h_{2,1} \zeta_{2}^{4}\right)
$$

detects

$$
g^{8} n \in \operatorname{Ext}_{A_{*}}\left(\mathbb{F}_{2}\right)
$$

in the algebraic tmf resolution for \mathbb{F}_{2} (Proposition 3.17). This element can be eliminated by Case 1 of Remark 5.6, but we can also handle it manually using low-dimensional
calculations in the ASS for the sphere. There is a differential

$$
d_{3}\left(m Q_{2}\right)=g^{3} n
$$

in the ASS for the sphere [24], from which it follows that $g^{8} n$ is zero on the E_{4}-page of the ASS of the sphere, and hence $g^{8} n[0]$ is zero on the E_{4}-page of the MASS for $M\left(8, v_{1}^{8}\right)$.

For the element

$$
h_{2,1}^{18} \Delta^{2} g\left(h_{2,1} \zeta_{2}^{4}\right)[17]
$$

we wish to employ Case 1 of Remark 5.6, using the differential

$$
d_{3}^{\text {mass }}\left(h_{2,1}^{15} \Delta^{2} g\left(h_{2,1} v_{0}^{-2} v_{2}^{2} \zeta_{1}^{16}\right)[17]\right)=h_{2,1}^{18} \Delta^{2} g\left(h_{2,1} \zeta_{2}^{4}\right)[17]
$$

in the MASS for $\operatorname{tmf} \wedge \overline{\operatorname{tmf}} \wedge M\left(8, v_{1}^{8}\right)$. Note that

$$
h_{2,1}^{15} \Delta^{2} g\left(h_{2,1} v_{0}^{-2} v_{2}^{2} \zeta_{1}^{16}\right)[17]
$$

detects the element

$$
C^{\prime \prime} \cdot \Delta^{2} g^{2}[17]
$$

in the algebraic tmf resolution. Observe [25; 13] that we have

$$
d_{2}\left(C^{\prime \prime} \cdot \Delta^{2} g^{2}\right)=C^{\prime \prime} \cdot d_{2}\left(\Delta^{2} g^{2}\right)=g^{2} \cdot C^{\prime \prime} \Delta h_{2}^{2} e_{0}=g^{2} \cdot 0=0
$$

It follows that $d_{2}\left(C^{\prime \prime} \cdot \Delta^{2} g^{2}[17]\right)$ is in the image of the map

$$
\operatorname{Ext}_{A_{*}}(H(8)) \rightarrow \operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right),
$$

but a check of the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$ reveals there are no possible targets in this bidegree. We therefore have

$$
d_{2}\left(C^{\prime \prime} \cdot \Delta^{2} g^{2}[17]\right)=0
$$

Therefore, the hypotheses of Lemma 5.5 are satisfied. It follows that

$$
h_{2,1}^{18} \Delta^{2} g\left(h_{2,1} \zeta_{2}^{4}\right)[17]
$$

either is killed in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$, or detects an element in the MASS which is killed by $d_{3}\left(C^{\prime \prime} \cdot \Delta^{2} g^{2}[17]\right)$, or detects an element which killed by a d_{2}-differential in the MASS for $T^{1} \wedge M\left(8, v_{1}^{8}\right)$. We just need to eliminate this last possibility.

Any possible source for such a d_{2}-differential would necessarily be detected on the 0 -line of the algebraic tmf resolution and would not support a nontrivial d_{2} in the MASS for $\operatorname{tmf} \wedge M\left(8, v_{1}^{8}\right)$. The only such possibility is

$$
\Delta^{4} h_{21}^{19}[1] .
$$

However, we can express this element as the Hurewicz image of the element

$$
g m \cdot \Delta^{4} \cdot g^{2}[1]
$$

in the MASS for $M\left(8, v_{1}^{8}\right)$. This element is therefore necessarily a d_{2}-cycle, since it is a product of d_{2}-cycles.
$\underline{\text { bo } 2}$ We begin with the element

$$
h_{2,1}^{5} \Delta^{4} g\left(h_{2,1} v_{0}^{-2} v_{2}^{2} \zeta_{1}^{16}\right)[18]
$$

which detects the element

$$
\Delta^{4} g Q_{2}[18]
$$

in the MASS for $M\left(8, v_{1}^{8}\right)$. We are in Case 1 of Remark 5.6. An elementary check using the charts of [25] reveals that the element $g Q_{2}$ in the ASS for the sphere lifts to a d_{2}-cycle

$$
g Q_{2}[18]
$$

supported by the top cell of $H\left(8, v_{1}^{8}\right)$. Since Δ^{4} is a d_{2}-cycle in the MASS for $M\left(8, v_{1}^{8}\right)$, we deduce that

$$
\Delta^{4} g Q_{2}[18]
$$

is a d_{2}-cycle. We therefore deduce that

$$
d_{3}^{\text {mass }}\left(\Delta^{4} g Q_{2}[18]\right)
$$

either is detected by

$$
\Delta^{4} h_{2,1}^{8} g\left(h_{2,1} \zeta_{2}^{4}\right)[18]+h_{2,1}^{24} g\left(h_{2,1} v_{0}^{-2} v_{2}^{2} \zeta_{1}^{16}\right)
$$

in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$, or

$$
\Delta^{4} h_{2,1}^{8} g\left(h_{2,1} \zeta_{2}^{4}\right)[18]+h_{2,1}^{24} g\left(h_{2,1} v_{0}^{-2} v_{2}^{2} \zeta_{1}^{16}\right)
$$

is killed in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$ or detects an element which is killed in the MASS for $T^{1} \wedge M\left(8, v_{1}^{8}\right)$. The only possible sources of such algebraic tmf resolution differentials are wedge elements coming from $\operatorname{Ext}_{A(2)_{*}}\left(H\left(8, v_{1}^{8}\right)\right)$, and we know these all must be permanent cycles in the algebraic tmf resolution because they detect the corresponding wedge elements of $\operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)$. The only elements of the algebraic tmf resolution which can detect an element which could support a d_{2}-differential killing

$$
\Delta^{4} h_{2,1}^{8} g\left(h_{2,1} \zeta_{2}^{4}\right)[18]+h_{2,1}^{24} g\left(h_{2,1} v_{0}^{-2} v_{2}^{2} \zeta_{1}^{16}\right)
$$

in the MASS for $T^{1} \wedge M\left(8, v_{1}^{8}\right)$ are the elements

$$
\begin{equation*}
\Delta^{2} v_{1}^{6} h_{2,1}^{23}[0] \quad \text { and } \quad \Delta^{2} v_{1}^{3} h_{2,1}^{24}[1] . \tag{5.8}
\end{equation*}
$$

However, using the map of spectral sequences

$$
{ }^{\text {mass }} E_{2}^{*, *}\left(T^{1} \wedge M\left(8, v_{1}^{8}\right)\right) \rightarrow{ }^{\text {mass }} E_{2}^{*, *}\left(\operatorname{tmf} \wedge M\left(8, v_{1}^{8}\right)\right)
$$

we can eliminate these possibilities on the basis that the elements (5.8) support nontrivial d_{2}-differentials in the MASS for $M\left(8, v_{1}^{8}\right)$.

We are left with eliminating

$$
v_{1}^{2} h_{2,1}^{31}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[1]
$$

as possibly detecting $d_{5}^{\text {mass }}\left(v_{2}^{32}\right)$ in the MASS for $M\left(8, v_{1}^{8}\right)$. This is the trickiest obstruction to eliminate. In the MASS for $\operatorname{tmf} \wedge \overline{\operatorname{tmf}} \wedge M\left(8, v_{1}^{8}\right)$, there is a differential

$$
d_{2}^{\text {mass }}\left(\Delta^{2} v_{1} h_{2,1}^{22}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[1]\right)=v_{1}^{2} h_{2,1}^{31}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[1]
$$

The problem is that, in the WSS for $H\left(8, v_{1}^{8}\right)$, there is a nontrivial differential

$$
d_{0}^{\mathrm{wss}}\left(\Delta^{2} v_{1} h_{2,1}^{22}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[1]\right)=\Delta^{2} v_{1} h_{2,1}^{22}\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)[1] .
$$

Sublemma 5.9 The element v_{2}^{32} is a permanent cycle in the MASS for $T^{1} \wedge M\left(8, v_{1}^{8}\right)$.

$\underline{\mathrm{bo}}_{1}$	$h_{2,1}^{31} g\left(h_{2,1} \zeta_{2}^{4}\right)[0]$
	$h_{2,1}^{18} \Delta^{2} g\left(h_{2,1} \zeta_{2}^{4}\right)[17]$
$\underline{\mathrm{bo}}_{2}$	$h_{2,1}^{5} \Delta^{4} g\left(h_{2,1} \zeta_{1}^{16}\right)[18]$
	$v_{1}^{2} h_{2,1}^{31}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[1]$
$\underline{\mathrm{bo}}_{1}^{\otimes 2}$	$h_{2,1}^{5} \Delta^{4} v_{1} g\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)[18]$
	$h_{2,1}^{15} \Delta^{2} g\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)[18]$
$\underline{\mathrm{bo}}_{1} \otimes \underline{\mathrm{bo}}_{2}$	$v_{1} h_{2,1}^{21} g\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{2}^{4}, \zeta_{2}^{8}\right]\right)[18]$
	$v_{1} h_{2,1}^{21} g\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{2}^{8}, \zeta_{2}^{4}\right]\right)[18]$
$\underline{\mathrm{bo}}_{1}^{3}$	$v_{1}^{4} \Delta^{6} h_{1}\left(v_{2}^{2} \zeta_{1}^{8}\left\|\zeta_{1}^{8}\right\| \zeta_{2}^{4}\right)[1]$
	$v_{1} h_{2,1}^{18} g\left(v_{0}^{-2} v_{2}^{4}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right] \mid \zeta_{1}^{8} \zeta_{2}^{4}\right)[18]$
$\underline{\mathrm{bo}}_{1}^{\otimes 2} \otimes \underline{\mathrm{bo}}_{2}$	$v_{1} h_{2,1}^{18} g\left(v_{0}^{-2} v_{2}^{4}\left(\zeta_{1}^{8}\left\|\zeta_{1}^{8} \zeta_{2}^{4}\right\| \zeta_{2}^{4}+\zeta_{2}^{4}\left\|\zeta_{1}^{8} \zeta_{2}^{4}\right\| \zeta_{1}^{8}\right)\right)[18]$
	$v_{1} h_{2,1}^{18} g\left(v_{0}^{-2} v_{2}^{4} \zeta_{1}^{8} \zeta_{2}^{4} \mid\left[\zeta_{1}^{8} \zeta_{2}^{4}\right]\right)[18]$
$\underline{\mathrm{bo}}_{1}^{4}$	$v_{1}^{4} \Delta^{6} h_{1}^{2} \zeta_{1}^{8}\left\|\zeta_{1}^{8}\right\| \zeta_{2}^{4} \mid \zeta_{2}^{4}[1]$

Table 1: List of potential targets of $d_{r}^{\text {mass }}\left(v_{2}^{32}\right)$ for $r \geq 4$.

Proof The elements of the algebraic tmf resolution which could possibly detect the target of a differential

$$
d_{r}^{\text {mass }}\left(v_{2}^{32}\right), \quad r \geq 4,
$$

in the MASS for $T^{1} \wedge M\left(8, v_{1}^{8}\right)$ consist of those terms in Table 1 coming from bo ${ }_{1}$ and $\underline{\text { bo }}_{2}$.

Using (5.3), there is a map

$$
\Sigma^{31} \operatorname{tmf} \wedge M\left(8, v_{1}^{8}\right) \rightarrow \Sigma^{-1} \operatorname{tmf} \wedge \overline{\mathrm{tmf}} \rightarrow T^{1}
$$

and we therefore have a differential

$$
d_{2}^{\text {mass }}\left(\Delta^{2} v_{1} h_{2,1}^{22}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[1]\right)=v_{1}^{2} h_{2,1}^{31}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[1]
$$

in the MASS for $T^{1} \wedge M\left(8, v_{1}^{8}\right)$. Therefore, $v_{1}^{2} h_{2,1}^{31}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[1]$ cannot be the target of a differential $d_{5}^{\text {mass }}\left(v_{2}^{32}\right)$ in the MASS for $T^{1} \wedge M\left(8, v_{1}^{8}\right)$.

Our previous arguments eliminate all the other possibilities.

Suppose now for the purpose of generating a contradiction that the differential

$$
d_{5}^{\text {mass }}\left(v_{2}^{32}\right)
$$

in the MASS for $M\left(8, v_{1}^{8}\right)$ is nontrivial and detected by $v_{1}^{2} h_{2,1}^{31}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[1]$ in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$. Consider the fiber sequence

$$
\Sigma^{-2} \overline{\operatorname{tmf}}^{2} \wedge M\left(8, v_{1}^{8}\right) \rightarrow M\left(8, v_{1}^{8}\right) \rightarrow T^{1} \wedge M\left(8, v_{1}^{8}\right) \xrightarrow{\partial} \Sigma^{-1} \overline{\operatorname{tmf}}^{2} .
$$

We have proven that v_{2}^{32} exists in $\pi_{192} T^{1} \wedge M\left(8, v_{1}^{8}\right)$, and, because our assumption implies that v_{2}^{32} does not lift to $\pi_{192} M\left(8, v_{1}^{8}\right)$, we must have

$$
0 \neq \partial\left(v_{2}^{32}\right) \in \pi_{191} \Sigma^{-2}{\overline{\operatorname{tmf}^{2}}}^{2} \wedge M\left(8, v_{1}^{8}\right)
$$

Sublemma 5.10 There exists a choice of $v_{2}^{32} \in \pi_{192} T^{1} \wedge M\left(8, v_{1}^{8}\right)$ such that $\partial\left(v_{2}^{32}\right)$ has modified Adams filtration 34.

Proof Let $X^{\langle k\rangle}$ denote the $k^{\text {th }}$ modified Adams cover of X - so that the MASS for $X^{\langle k\rangle}$ is the truncation of the MASS for X obtained by only considering terms in ${ }^{\text {mass }} E_{2}^{s, t}(X)$ for $s \geq k$-and let $X_{\langle k\rangle}$ denote the cofiber

$$
X^{\langle k+1\rangle} \rightarrow X \rightarrow X_{\langle k\rangle}
$$

Then we have fiber sequences

$$
M\left(8, v_{1}^{8}\right)_{\langle k\rangle} \rightarrow\left(T^{1} \wedge M\left(8, v_{1}^{8}\right)\right)_{\langle k\rangle} \rightarrow\left(\Sigma^{-1}{\overline{\operatorname{tmf}^{2}}}^{2} \wedge M\left(8, v_{1}^{8}\right)\right)_{\langle k-2\rangle}
$$

Define $\widetilde{M}_{\langle k\rangle}$ to be the homotopy pullback

Then the algebraic tmf resolution for $\widetilde{M}_{\langle k\rangle}$ is the truncation of the algebraic tmf resolution for $M\left(8, v_{1}^{8}\right)$ obtained by omitting, for $n \geq 2$, all terms of

$$
\operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{i_{1}} \otimes \cdots \otimes \underline{\mathrm{bo}}_{i_{n}} \otimes H\left(8, v_{1}^{8}\right)\right)
$$

of cohomological degree greater than $k-n$. It follows from the map of algebraic tmf resolutions and MASSs associated to the map

$$
M\left(8, v_{1}^{8}\right) \rightarrow \widetilde{M}_{\langle k\rangle}
$$

that there is a differential

$$
d_{5}^{\text {mass }}\left(v_{2}^{32}\right)=v_{1}^{2} h_{2,1}^{31}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[1]
$$

in the MASS for $\widetilde{M}_{\langle k\rangle}$. This differential is nontrivial in the MASS for $\widetilde{M}_{\langle 36\rangle}$, because it is nontrivial in the MASS for $M\left(8, v_{1}^{8}\right)$, and any intervening differentials killing the target in the algebraic tmf resolution or MASS for $\widetilde{M}_{\langle 36\rangle}$ would lift to $M\left(8, v_{1}^{8}\right)$ because the spectral sequences are isomorphic in the relevant range. The same is not true in the case of $\widetilde{M}_{\langle 35\rangle}$, where

$$
d_{0}^{\text {wss }}\left(\Delta^{2} v_{1} h_{2,1}^{22}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[1]\right)=0
$$

and therefore $\Delta^{2} v_{1} h_{2,1}^{22}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[1]$ persists to the E_{2}-term of the MASS

$$
d_{2}^{\text {mass }}\left(\Delta^{2} v_{1} h_{2,1}^{22}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[1]\right)=v_{1}^{2} h_{2,1}^{31}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[1]
$$

Therefore, the proof of Sublemma 5.9 goes through with $T^{1} \wedge M\left(8, v_{1}^{8}\right)$ replaced by $\widetilde{M}_{\langle 35\rangle}$ to show that there exists an element

$$
\widetilde{v_{2}^{32}} \in \pi_{192} \widetilde{M}_{\langle 35\rangle}
$$

which is detected by v_{2}^{32} in the MASS. Consider the diagram

where the rows are cofiber sequences. The element $\widetilde{v_{2}^{32}} \in \pi_{192} \widetilde{M}_{\langle 35\rangle}$ maps to an element $v_{2}^{32} \in T^{1} \wedge M\left(8, v_{1}^{8}\right)$ with

$$
\partial^{\prime \prime}\left(v_{2}^{32}\right)=0 .
$$

However, since $d_{5}^{\text {mass }}\left(v_{2}^{32}\right)$ is nontrivial in the MASS for $\widetilde{M}_{\langle 36\rangle}$, the element $v_{2}^{32} \in$ $\pi_{192} T^{1} \wedge M\left(8, v_{1}^{8}\right)$ cannot lift to $\widetilde{M}_{\langle 36\rangle}$, and therefore

$$
\partial^{\prime}\left(v_{2}^{32}\right) \neq 0
$$

It follows that $\partial\left(v_{2}^{32}\right)$ has modified Adams filtration 34.
However, we have:
Sublemma 5.11 There are no elements of $\pi_{191} \Sigma^{-2} \overline{\operatorname{tmf}}^{2} \wedge M\left(8, v_{1}^{8}\right)$ of modified Adams filtration 34.

Proof The only possible elements in the algebraic tmf resolution for $\overline{\operatorname{tmf}}^{2} \wedge M\left(8, v_{1}^{8}\right)$ which could contribute to modified Adams filtration 34 in this degree are

$$
\begin{equation*}
\Delta^{2} v_{1} h_{2,1}^{22}\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)[1] \in \operatorname{Ext}_{A(2) *}\left(\underline{b o}_{1}^{\otimes 2} \otimes H\left(8, v_{1}^{8}\right)\right) \tag{5.12}
\end{equation*}
$$

and the elements of Table 1 of algebraic tmf filtration greater than 1 in the appropriate modified Adams filtration. However, the previous arguments eliminate all of the candidates coming from Table 1, so we are left with eliminating (5.12). We wish to lift the differential

$$
d_{3}^{\text {mass }}\left(\Delta^{6} v_{1} h_{2,1}^{3}\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)[1]\right)=\Delta^{2} v_{1} h_{2,1}^{22}\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)[1]
$$

in the MASS for $\operatorname{tmf} \wedge \overline{\operatorname{tmf}}^{2} \wedge M\left(8, v_{1}^{8}\right)$ to a differential in the MASS for $\overline{\operatorname{tmf}}^{2} \wedge M\left(8, v_{1}^{8}\right)$. We therefore must argue that

$$
d_{2}^{\text {mass }}\left(\Delta^{6} v_{1} h_{2,1}^{3}\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)[1]\right)=0
$$

in the MASS for $\overline{\operatorname{tmf}}^{2} \wedge M\left(8, v_{1}^{8}\right)$. We will therefore argue there are no elements in the algebraic tmf resolution for $\overline{\operatorname{tmf}}^{2} \wedge M\left(8, v_{1}^{8}\right)$ which could detect the target of such a d_{2}. Ignoring any possibilities which are eliminated by Proposition 4.2 , the only possibilities are

$$
\begin{array}{cc}
\Delta^{6} v_{1}^{4} h_{1} v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \mid\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right][1], & \Delta^{6} v_{1}^{4} h_{0}^{2} \zeta_{1}^{8}\left|\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right| \zeta_{1}^{8} \mid \zeta_{1}^{8}[0] \\
\Delta^{6} v_{1}^{4} h_{1} v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right] \mid \zeta_{1}^{8}[1], & \Delta^{6} v_{1}^{4} h_{0}^{2} \zeta_{1}^{8}\left|\zeta_{1}^{8}\right|\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right] \mid \zeta_{1}^{8}[0] \\
\Delta^{6} v_{1}^{4} h_{0}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\left|\zeta_{1}^{8}\right| \zeta_{1}^{8} \mid \zeta_{1}^{8}[0], & \Delta^{6} v_{1}^{4} h_{0}^{2} \zeta_{1}^{8}\left|\zeta_{1}^{8}\right| \zeta_{1}^{8} \mid\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right][0]
\end{array}
$$

However, these are killed by the respective WSS differentials

$$
\begin{array}{cc}
d_{0}^{\text {wss }} \Delta^{6} v_{1}^{4} h_{1} v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \mid \zeta_{1}^{8} \zeta_{2}^{4}[1], & d_{0}^{\text {wss }} \Delta^{6} v_{1}^{4} h_{0}^{2} \zeta_{1}^{8}\left|\zeta_{1}^{8} \zeta_{2}^{4}\right| \zeta_{1}^{8} \mid \zeta_{1}^{8}[0], \\
d_{0}^{\text {wss }} \Delta^{6} v_{1}^{4} h_{1} v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4} \mid \zeta_{1}^{8}[1], & d_{0}^{\text {wss }} \Delta^{6} v_{1}^{4} h_{0}^{2} \zeta_{1}^{8}\left|\zeta_{1}^{8}\right| \zeta_{1}^{8} \zeta_{2}^{4} \mid \zeta_{1}^{8}[0] \\
d_{0}^{\text {wss }} \Delta^{6} v_{1}^{4} h_{0}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\left|\zeta_{1}^{8}\right| \zeta_{1}^{8}| | \zeta_{1}^{8}[0], & d_{0}^{\text {wss }} \Delta^{6} v_{1}^{4} h_{0}^{2} \zeta_{1}^{8}\left|\zeta_{1}^{8}\right| \zeta_{1}^{8} \mid \zeta_{1}^{8} \zeta_{2}^{4}[0]
\end{array}
$$

Thus we have arrived at a contradiction, as we have produced an element of modified Adams filtration 34, and subsequently showed no such elements exist. We conclude that our supposition, that the differential $d_{5}^{\text {mass }}\left(v_{2}^{32}\right)$ in the MASS for $M\left(8, v_{1}^{8}\right)$ is nontrivial and detected by $v_{1}^{2} h_{2,1}^{31}\left(v_{0}^{-1} v_{2}^{2} \zeta_{1}^{8} \zeta_{2}^{4}\right)[1]$ in the algebraic tmf resolution, is false.

6 Determination of elements not in the tmf Hurewicz image

Theorem 6.1 The elements of tmf_{*} not in the subgroup described in Theorem 1.2 are not in the Hurewicz image.

We first recall some well-known K-theory computations. Recall that $\pi_{*} \mathrm{KO}$ is given by the v_{1}^{4}-periodic pattern

Let

$$
M\left(2^{\infty}\right):=\underset{i}{\lim } M\left(2^{i}\right)
$$

denote the Moore spectrum for $\mathbb{Z} / 2^{\infty}$.

Consider the diagram of cofiber sequences

The groups $\mathrm{KO}_{*} M(2)$ are well known to be given by the v_{1}^{4}-periodic pattern

where we denote lifts of elements of KO_{*} along the map p of diagram (6.2) with a tilde, and the images of the map $\overline{(\cdot)}$ with a bar. It then follows easily from the map of long exact sequences coming from the above diagram that $\mathrm{KO}_{*} M\left(2^{\infty}\right)$ is given by the v_{1}^{4}-periodic pattern

where again we denote lifts over the map p with a tilde, and images under the map $\overline{(\cdot)}$ with a bar. The infinite sequences of dots going down represent the elements 2^{-i} in $\mathbb{Z} / 2^{\infty}=\mathbb{Q} / \mathbb{Z}_{(2)}$.

Proof of Theorem 6.1 Recall [27, Corollary 3] that we have an equivalence

$$
c_{4}^{-1} \operatorname{tmf} \simeq \mathrm{KO}\left[j^{-1}\right],
$$

where $j^{-1}=\Delta / c_{4}^{3}$. Applying π_{0} to this equivalence, we have a commutative diagram

Consider the diagram

Suppose that $x \in \operatorname{tmf}_{>0}$ has nontrivial image in $L(x) \in c_{4}^{-1} \operatorname{tmf}_{*}$ and that $x=h(y)$. Since y is torsion, it lifts over p to an element

$$
\tilde{y} \in \pi_{*+1} M\left(2^{\infty}\right)
$$

The commutativity of the diagram implies that

$$
0 \neq L(x) \in \operatorname{Im}\left(p^{\prime} \circ i\right)
$$

and this implies that

$$
L(x) \in\left\{c_{4}^{k} \eta^{l}: k \geq 0, l \in\{1,2\}\right\}
$$

Now consider elements of the form

$$
x=\alpha \Delta^{k} v \in \operatorname{tmf}_{*}
$$

with $\alpha \not \equiv 0 \bmod 8$. Suppose that $x=h(y)$. Lift y to an element

$$
\tilde{y} \in \pi_{*+1} M\left(2^{\infty}\right) .
$$

Then we have

$$
\operatorname{Lh}(\tilde{y})=\frac{1}{8} \overline{\alpha \Delta^{k} v_{1}^{2}}=\frac{1}{4} \overline{\alpha v_{1}^{12 k+2}} j^{-k} \neq 0 .
$$

But the commutativity of the diagram implies that $\operatorname{Lh}(\tilde{y})$ is in the image of i, which implies that $k=0$.

7 Lifting the remaining elements of tmf_{*} to $\boldsymbol{\pi}_{*}^{s}$

Multiplicative generators of the Hurewicz image below the 192-stem

In this section, we determine a set of elements which multiplicatively generate the tmf Hurewicz image below the 192-stem. The results in this subsection drastically reduce the number of classes which we must lift in the sequel.

Lemma 7.1 The Hurewicz map $S \rightarrow \operatorname{tmf}$ is a map of ring spectra. In particular, it preserves multiplication.

Corollary 7.2 Suppose $\alpha=\beta \gamma$ is a product of elements $\beta, \gamma \in \pi_{*}(\operatorname{tmf})$ with lifts $\tilde{\beta}, \tilde{\gamma} \in \pi_{*}(S)$. Then $\tilde{\beta} \tilde{\gamma} \in \pi_{*}(S)$ must be a lift of α.

With this in mind, it suffices to find a subset of the Hurewicz image which generates the entire Hurewicz image up to the 192 -stem under products. Our desired generating subset is given in Corollary 7.16. We will obtain our generating set by listing generators in lemmas and then recording their products in corollaries, until we have exhausted the tmf Hurewicz image up to stem 192.

Lemma 7.3 The classes $\eta \in \pi_{1}(\mathrm{tmf}), v \in \pi_{3}(\mathrm{tmf}), \epsilon \in \pi_{8}(\mathrm{tmf}), \kappa \in \pi_{14}(\mathrm{tmf})$, $\bar{\kappa} \in \pi_{20}(\mathrm{tmf}), u \in \pi_{39}(\mathrm{tmf})$ and $w \in \pi_{45}(\mathrm{tmf})$ are in the Hurewicz image.

Proof The elements $\eta, \nu, \epsilon, \kappa, \bar{\kappa}, u$ and w are all well-known elements of π_{*}^{s}, detected in the Adams spectral sequence by $h_{1}, h_{2}, c_{0}, d_{0}, g, \Delta h_{1} d_{0}$ and $\Delta h_{1} g$ [22, Table 8]. These elements have nontrivial images under the map of Adams spectral sequences induced by the unit map $S \rightarrow \mathrm{tmf}$. The lemma is therefore somewhat tautological, as the corresponding elements in tmf were defined in Section 1 to be the Hurewicz images of these elements.

Lemma 7.4 The class $q \in \pi_{32}(\operatorname{tmf})$ is in the Hurewicz image.
Proof See the proof of Lemma 7.18(1).
Corollary 7.5 The classes $\eta^{2} \in \pi_{2}(\mathrm{tmf}), v^{2} \in \pi_{6}(\mathrm{tmf}), v^{3}=\epsilon \eta \in \pi_{9}(\mathrm{tmf}), \kappa \eta \in$ $\pi_{15}(\mathrm{tmf}), \kappa \nu \in \pi_{17}(\mathrm{tmf}), \bar{\kappa} \eta \in \pi_{21}(\mathrm{tmf}), \bar{\kappa} \eta^{2}=\kappa \in \in \pi_{22}(\mathrm{tmf}), \bar{\kappa} \epsilon=\kappa^{2} \in \pi_{28}(\mathrm{tmf})$, $q \eta \in \pi_{33}(\mathrm{tmf}), \bar{\kappa} \kappa \in \pi_{34}(\mathrm{tmf}), \bar{\kappa} \kappa \eta \in \pi_{35}(\mathrm{tmf}), \bar{\kappa}^{2} \in \pi_{40}(\mathrm{tmf}), \bar{\kappa}^{2} \eta \in \pi_{41}(\mathrm{tmf})$, $\bar{\kappa}^{2} \eta^{2}=\kappa^{3} \in \pi_{42}(\mathrm{tmf}), w \eta \in \pi_{46}(\mathrm{tmf}), \bar{\kappa} q \in \pi_{52}(\mathrm{tmf}), \bar{\kappa} q \eta \in \pi_{53}(\mathrm{tmf}), \bar{\kappa}^{2} \kappa \in \pi_{54}(\mathrm{tmf})$, $\bar{\kappa} u \in \pi_{59}(\mathrm{tmf}), \bar{\kappa}^{3} \in \pi_{60}(\mathrm{tmf}), \bar{\kappa} w \in \pi_{65}(\mathrm{tmf}), \bar{\kappa} w \eta \in \pi_{66}(\mathrm{tmf}), \bar{\kappa}^{4} \in \pi_{80}(\mathrm{tmf})$, $\bar{\kappa}^{2} w \in \pi_{85}(\mathrm{tmf}), w^{2} \in \pi_{90}(\mathrm{tmf}), \bar{\kappa}^{5} \in \pi_{100}(\mathrm{tmf}), \bar{\kappa}^{3} w \in \pi_{105}(\mathrm{tmf}), \bar{\kappa} w^{2} \in \pi_{110}(\mathrm{tmf})$, $\bar{\kappa}^{4} w \in \pi_{125}(\mathrm{tmf})$ and $\bar{\kappa}^{2} w^{2} \in \pi_{130}(\mathrm{tmf})$ are in the Hurewicz image.

Lemma 7.6 The classes $\left\{v \Delta^{2}\right\} v \in \pi_{54}(\operatorname{tmf}),\left\{v \Delta^{2}\right\} \kappa \in \pi_{65}(\operatorname{tmf})$ and $\left\{\eta^{2} \Delta^{2}\right\} \bar{\kappa} \in$ $\pi_{70}(\mathrm{tmf})$ are in the Hurewicz image.

Proof See Lemma 7.21.
Corollary 7.7 The classes $\left\{v \Delta^{2}\right\} \nu^{2} \in \pi_{57}(\operatorname{tmf})$ and $\left\{v \Delta^{2}\right\} \kappa v \in \pi_{68}(\operatorname{tmf})$ are in the Hurewicz image.

Lemma 7.8 The classes $\left\{v \Delta^{4}\right\} v \in \pi_{102}(\mathrm{tmf}),\left\{\epsilon \Delta^{4}\right\} \in \pi_{104}(\operatorname{tmf}),\left\{\kappa \Delta^{4}\right\} \in \pi_{110}(\mathrm{tmf})$, $2 \Delta^{4} \bar{\kappa} \in \pi_{116}(\mathrm{tmf})$ and $\left\{\eta \Delta^{4}\right\} \bar{\kappa} \in \pi_{117}(\mathrm{tmf})$ are in the Hurewicz image.

Proof See Lemmas 7.22 and 7.23.
Corollary 7.9 The classes $\left\{\epsilon \Delta^{4}\right\} \eta \in \pi_{105}(\operatorname{tmf}),\left\{\kappa \Delta^{4}\right\} \eta \in \pi_{111}(\mathrm{tmf}),\left\{\kappa \Delta^{4}\right\} \nu \in$ $\pi_{113}(\mathrm{tmf}),\left\{\kappa \Delta^{4}\right\} \nu^{2} \in \pi_{116}(\mathrm{tmf}),\left\{\eta \Delta^{4}\right\} \bar{\kappa} \eta \in \pi_{118}(\mathrm{tmf}),\left\{\kappa \Delta^{4}\right\} \kappa \in \pi_{124}(\mathrm{tmf}),\left\{\kappa \Delta^{4}\right\} \bar{\kappa} \in$ $\pi_{130}(\mathrm{tmf}),\left\{\kappa \Delta^{4}\right\} \bar{\kappa} \eta \in \pi_{131}(\mathrm{tmf}),\left\{\eta \Delta^{4}\right\} \bar{\kappa}^{2} \in \pi_{137}(\mathrm{tmf})$ and $\left\{\eta \Delta^{4}\right\} \bar{\kappa}^{2} \eta \in \pi_{138}(\mathrm{tmf})$ are in the Hurewicz image.

Lemma 7.10 The class $\left\{q \Delta^{4}\right\} \in \pi_{128}(\operatorname{tmf})$ is in the Hurewicz image.
Proof See Lemma 7.24.
Corollary 7.11 The classes $\left\{q \Delta^{4}\right\} \eta \in \pi_{129}(\operatorname{tmf}),\left\{q \Delta^{4}\right\} \kappa=w \eta \Delta^{4} \in \pi_{142}(\mathrm{tmf})$, $\left\{q \Delta^{4}\right\} \bar{\kappa} \in \pi_{148}(\mathrm{tmf}),\left\{q \Delta^{4}\right\} \bar{\kappa} \eta \in \pi_{149}(\mathrm{tmf})$ and $\left\{q \Delta^{4}\right\} \bar{\kappa} \eta^{2} \in \pi_{150}(\mathrm{tmf})$ are in the Hurewicz image.

Lemma 7.12 The class $\Delta^{4} u \in \pi_{135}(\operatorname{tmf})$ is in the Hurewicz image.
Proof See Lemma 7.25.
Corollary 7.13 The classes $\Delta^{4} u \eta \in \pi_{136}(\mathrm{tmf})$ and $\Delta^{4} u \bar{\kappa} \in \pi_{155}(\mathrm{tmf})$ are in the Hurewicz image.

Lemma 7.14 The classes $\left\{v \Delta^{6}\right\} v \in \pi_{150}(\operatorname{tmf})$ and $\left\{v \Delta^{6}\right\} \kappa \in \pi_{161}(\mathrm{tmf})$ are in the Hurewicz image.

Proof See Lemma 7.26.
Corollary 7.15 The classes $\left\{v \Delta^{6}\right\} \nu^{2} \in \pi_{153},\left\{v \Delta^{6}\right\} \nu^{3} \in \pi_{156},\left\{v \Delta^{6}\right\} \kappa \eta \in \pi_{162}(\operatorname{tmf})$ and $\left\{\nu \Delta^{6}\right\} \kappa v \in \pi_{164}(\mathrm{tmf})$ are in the Hurewicz image.

Thus our calculation of the Hurewicz image up to dimension 192 has been reduced to showing that the following list of elements is in the Hurewicz image:

Corollary 7.16 Up to dimension 192, the Hurewicz image is generated under multiplication by
$\left\{\eta, v, \epsilon, \kappa, \bar{\kappa}, q, u, w,\left\{v \Delta^{2}\right\} v,\left\{v \Delta^{2}\right\} \kappa,\left\{\eta^{2} \Delta^{2}\right\} \bar{\kappa},\left\{v \Delta^{4}\right\} v,\left\{\epsilon \Delta^{4}\right\},\left\{\kappa \Delta^{4}\right\}, 2 \Delta^{4} \bar{\kappa}\right.$,

$$
\left.\left\{\eta \Delta^{4}\right\} \bar{\kappa},\left\{q \Delta^{4}\right\}, \Delta^{4} u,\left\{v \Delta^{6}\right\} v,\left\{v \Delta^{6}\right\} \kappa\right\} .
$$

Lifting generators

We will now describe our method for lifting generators. Given an element $x \in \operatorname{tmf}_{*}$, we want to lift it to an element $y \in \pi_{*}^{s}$. To this end, we consider the diagram of (M)ASSs

First, we identify an element

$$
x^{\prime} \in \operatorname{Ext}_{A(2)_{*}}\left(\mathbb{F}_{2}\right)
$$

which detects the element x in the ASS for tmf_{*}, and then we identify an element

$$
\tilde{x}^{\prime} \in \operatorname{Ext}_{A(2)_{*}}\left(H\left(8, v_{1}^{8}\right)\right)
$$

which maps to it. This element \tilde{x}^{\prime} can be regarded as an element of the $0-$ line of the algebraic tmf resolution for $\operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)$. We will show that the element \tilde{x}^{\prime} is a permanent cycle in the algebraic tmf resolution, and thus lifts to an element

$$
\tilde{y}^{\prime} \in \operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)
$$

We will then show that the element \tilde{y}^{\prime} is a permanent cycle in the MASS for $M\left(8, v_{1}^{8}\right)$, and hence detects an element

$$
\tilde{y} \in \pi_{*} M\left(8, v_{1}^{8}\right)
$$

Let $y \in \pi_{*}^{s}$ be the projection of \tilde{y} to the top cell. It then follows that the image of y in tmf_{*} equals x, modulo terms of higher Adams filtration (AF). Furthermore, using the v_{2}^{32}-self-map on $M\left(8, v_{1}^{8}\right)$, we deduce that the element

$$
v_{2}^{32 k} \tilde{y} \in \pi_{*} M\left(8, v_{1}^{8}\right)
$$

projects on the top cell to an element $v_{2}^{32 k} y \in \pi_{*}^{s}$ whose image in tmf_{*} is $\Delta^{8 k} x$ modulo terms of higher Adams filtration. Finally, Theorem 6.1 eliminates the potential
ambiguity caused by elements of higher Adams filtration, since the elements of higher Adams filtration are v_{1}^{4}-periodic.

We will show all of the generators of Corollary 7.16 except for η, ν and ϵ actually come from the top cell of $M\left(8, v_{1}^{8}\right)$, and thus v_{2}^{32}-periodicity extends our work below dimension 192 to all dimensions. It turns out that v^{2} and ϵ do not come from the top cell of $M\left(8, v_{1}^{8}\right)$. In order to show that the elements

$$
\Delta^{8 k} v^{2}, \Delta^{8 k} \epsilon \in \pi_{*} \operatorname{tmf}
$$

are in the Hurewicz image for $k>0$, we will instead show that $\Delta^{8} v^{2}$ and $\Delta^{8} \epsilon$ come from the top cell of $M\left(8, v_{1}^{8}\right)$ (Lemma 7.27).

Lemma 7.17 The following classes lift to the top cell of $M\left(8, v_{1}^{8}\right)$:
(1) $\kappa \in \pi_{14}(\mathrm{tmf})$.
(2) $\bar{\kappa} \in \pi_{20}$ (tmf).

Proof We will check that each element lifts using the AHSS:
(1) Since κ is 2-torsion (and thus 8 -torsion), it lifts to $\kappa[1] \in \pi_{15}(M(8))$. Inspection of [25, page 3] in stems 31 and 32 and $\mathrm{AF} \geq 12$ reveals that there are no classes which could detect $v_{1}^{8} \kappa[1]$. Therefore $\kappa[1]$ lifts to $\kappa[18] \in \pi_{32}\left(M\left(8, v_{1}^{8}\right)\right)$.
(2) Since $\bar{\kappa}$ is 8 -torsion, it lifts to $\bar{\kappa}[1] \in \pi_{21}(M(8))$. Inspection of [25, page 3] in stems 36 and 37 and $\mathrm{AF} \geq 12$ reveals that there are no classes which could detect $v_{1}^{8} \bar{\kappa}[1]$. Therefore $\bar{\kappa}[1]$ lifts to $\bar{\kappa}[18] \in \pi_{38}\left(M\left(8, v_{1}^{8}\right)\right)$.

Lemma 7.18 The following classes lift to the top cell of $M\left(8, v_{1}^{8}\right)$:
(1) $q \in \pi_{32}(\mathrm{tmf})$.
(2) $u \in \pi_{39}(\mathrm{tmf})$.
(3) $w \in \pi_{45}(\mathrm{tmf})$.

Proof We will check that each element lifts using the Atiyah-Hirzebruch spectral sequence (AHSS).
(1) We begin with $q \in \pi_{32}$ (tmf), which we will define to be the unique nontrivial c_{4}-torsion class detected by the element

$$
v_{2}^{4} c_{0} \in \operatorname{Ext}_{A(2)_{*}}^{7,7+32}\left(\mathbb{F}_{2}\right)
$$

in the ASS for tmf. The element $v_{2}^{4} c_{0}$ does not lift to $\operatorname{Ext}_{A_{*}}$. Nevertheless, we claim that there is an element ${ }^{9} \tilde{q} \in \pi_{32}^{s}$ detected by the element

$$
\Delta h_{1} h_{3} \in \operatorname{Ext}_{A_{*}}^{6,6+32}\left(\mathbb{F}_{2}\right)
$$

in the ASS for the sphere, which maps to q under the tmf Hurewicz homomorphism. Our strategy will be to argue that \tilde{q} and q lift to

$$
\tilde{q}[18] \in \pi_{50} M\left(8, v_{1}^{8}\right) \quad \text { and } \quad q[18] \in \operatorname{tmf}_{50} M\left(8, v_{1}^{8}\right)
$$

respectively, and that the element which detects $\tilde{q}[18]$ in the MASS for $M\left(8, v_{1}^{8}\right)$ maps to the element which detects $q[18]$ in the MASS for $\operatorname{tmf} \wedge M\left(8, v_{1}^{8}\right)$ under the map

$$
\begin{equation*}
\operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right) \rightarrow \operatorname{Ext}_{A(2)_{*}}\left(H\left(8, v_{1}^{8}\right)\right) \tag{7.19}
\end{equation*}
$$

Inspection of [25, page 3] in stem 32 and $\mathrm{AF} \geq 7$ reveals that \tilde{q} is 2-torsion (and thus 8 -torsion), so \tilde{q} lifts to $\tilde{q}[1] \in \pi_{33}(M(8))$. Inspection of [25, page 3] in stems 48 and 49 and $\mathrm{AF} \geq 14$ reveals that there are no classes which could detect $v_{1}^{8} \tilde{q}[1]$. Therefore $\tilde{q}[1]$ lifts to $\tilde{q}[18] \in \pi_{50}\left(M\left(8, v_{1}^{8}\right)\right)$. A similar but easier analysis reveals that the lift $q[18]$ exists.

The elements $\Delta h_{1} h_{3} \in \operatorname{Ext}_{A *}\left(\mathbb{F}_{2}\right)$ and $v_{2}^{4} c_{0} \in \operatorname{Ext}_{A(2)_{*}}\left(\mathbb{F}_{2}\right)$ are h_{0}-torsion, and hence lift to elements

$$
\Delta h_{1} h_{3}[1] \in \operatorname{Ext}_{A_{*}}(H(8)), \quad v_{2}^{4} c_{0}[1] \in \operatorname{Ext}_{A(2)_{*}}(H(8))
$$

which detect $\tilde{q}[1] \in \pi_{33} M(8)$ and $q[1] \in \operatorname{tmf}_{33} M(8)$, respectively, in the MASS. To identify the elements which detect $\tilde{q}[18]$ and $q[18]$ in the MASS, we make use of the geometric boundary theorem [5, Appendix A]. ${ }^{10}$ The differentials

$$
d_{3}\left(v_{1}^{2} h_{2,1} g^{2}[1]\right)=v_{1}^{8} \Delta h_{3} h_{1}[1], \quad d_{4}\left(v_{1}^{2} h_{2,1} g^{2}[1]\right)=v_{1}^{8} v_{2}^{4} c_{0}[1]
$$

in the MASSs for $M(8)$ and $\operatorname{tmf} \wedge M(8)$, respectively, imply that $\tilde{q}[18] \in \pi_{50} M\left(8, v_{1}^{8}\right)$ and $q[18] \in \operatorname{tmf}_{50} M\left(8, v_{1}^{8}\right)$ are detected by

$$
v_{1}^{2} h_{2,1} g^{2}[1] \in \operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right), \quad v_{1}^{2} h_{2,1} g^{2}[1] \in \operatorname{Ext}_{A(2)_{*}}\left(H\left(8, v_{1}^{8}\right)\right)
$$

in the MASSs for $M\left(8, v_{1}^{8}\right)$ and $\operatorname{tmf} \wedge M\left(8, v_{1}^{8}\right)$, respectively, and the former maps to the latter under the map (7.19).

[^8](2) Since $u \in \pi_{39} \operatorname{tmf}$ is detected by an element of $\operatorname{Ext}_{A(2)_{*}}$ in the image of the map
\[

$$
\begin{equation*}
\operatorname{Ext}_{A_{*}}\left(\mathbb{F}_{2}\right) \rightarrow \operatorname{Ext}_{A(2)_{*}}\left(\mathbb{F}_{2}\right), \tag{7.20}
\end{equation*}
$$

\]

we immediately see that the element $u \in \pi_{39}(S)$ maps to it. We are left with lifting $u \in \pi_{39}^{s}$ to the top cell of $M\left(8, v_{1}^{8}\right)$. Inspection of [25, page 3] in stem 39 and $\mathrm{AF} \geq 10$ reveals that u is 2 -torsion (and thus 8 -torsion), so u lifts to $u[1] \in \pi_{40}(M(8))$. Inspection of [25, page 3] in stems 55 and 56 and $\mathrm{AF} \geq 17$ reveals that there are no classes which could detect $v_{1}^{8} u[1]$. Therefore $u[1]$ lifts to $u[18] \in \pi_{57}\left(M\left(8, v_{1}^{8}\right)\right)$.
(3) The element $w \in \pi_{45}$ tmf is detected by an element which is in the image of the map (7.20), and thus we deduce that $w \in \pi_{45}(S)$ maps to it. A similar argument to the case above shows that w lifts to $w[18] \in \pi_{63}\left(M\left(8, v_{1}^{8}\right)\right)$.

Lemma 7.21 The following classes lift to the top cell of $M\left(8, v_{1}^{8}\right)$:
(1) $\Delta^{2} v^{2} \in \pi_{54}(\mathrm{tmf})$.
(2) $\Delta^{2} \kappa v \in \pi_{65}(\mathrm{tmf})$.
(3) $\Delta^{2} \eta^{2} \bar{\kappa} \in \pi_{70}$ (tmf).

Proof We follow the proof of [7, Theorem 11.1] (which builds on [7, Example 9.5 and Proposition 10.1]).
(1) We begin with $\Delta^{2} v^{2} \in \pi_{54}(\mathrm{tmf})$. This class lifts to an element

$$
\Delta^{2} v^{2}[1] \in \operatorname{tmf}_{55}(M(8))
$$

which is detected by

$$
v_{2}^{8} h_{2}^{2}[1] \in \operatorname{Ext}_{A(2)_{*}}^{12,55+12}(H(8))
$$

in the MASS for $\operatorname{tmf} \wedge M(8)$. Let

$$
\Delta^{2} v^{2}[18] \in \operatorname{tmf}_{72}\left(M\left(8, v_{1}^{8}\right)\right)
$$

be a lift of $\Delta^{2} v^{2}[1]$. In the MASS for $\operatorname{tmf} \wedge M(8)$, there is a differential

$$
d_{2}\left(v_{2}^{10} v_{1}^{4} h_{2} h_{0}[1]\right)=v_{2}^{8} v_{1}^{8} h_{2}^{2}[1] .
$$

Since $v_{2}^{10} v_{1}^{4} h_{2} h_{0}[1]$ is a permanent cycle in the MASS for $\operatorname{tmf} \wedge M\left(8, v_{1}^{8}\right)$, it follows from the geometric boundary theorem that $\Delta^{2} v^{2}[18]$ is detected by $v_{2}^{10} v_{1}^{4} h_{2} h_{0}[1]$ in the MASS for $\operatorname{tmf} \wedge M\left(8, v_{1}^{8}\right)$. In particular, we see that $\Delta^{2} v^{2}[18]$ has modified Adams filtration (MAF) 18 and stem 72.

We now check that $v_{2}^{10} v_{1}^{4} h_{2} h_{0}[1]$ is a permanent cycle in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$. Its relative position ${ }^{11}$ is $t-s=65$ and $\mathrm{AF}=17$, its relative position in $\operatorname{Ext}_{A(2) *}\left(\mathrm{bo}_{1}^{\otimes 2} \otimes H\left(8, v_{1}^{8}\right)\right)$ is $t-s=58$ and $\mathrm{AF}=16$, and its relative position in $\operatorname{Ext}_{A(2) *}\left(\underline{\mathrm{bo}}_{1}^{\otimes 3} \otimes H\left(8, v_{1}^{8}\right)\right)$ is $t-s=51$ and $\mathrm{AF}=15$, the last of which lies above the vanishing line. Inspection of the relevant charts shows that $v_{2}^{10} v_{1}^{4} h_{2} h_{0}$ [1] cannot support a nontrivial d_{1}-differential since the target bidegrees are zero. Therefore $v_{2}^{10} v_{1}^{4} h_{2} h_{0}[1]$ is a permanent cycle in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$ and therefore it detects an element $\left\{v_{2}^{10} v_{1}^{4} h_{2} h_{0}[1]\right\}$ in $\operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)$.
Finally, inspection of the same algebraic tmf resolution charts reveals that there are no possible targets for a nontrivial differential supported by $\left\{v_{2}^{10} v_{1}^{4} h_{2} h_{0}[1]\right\}$ in the MASS for $M\left(8, v_{1}^{8}\right)$. Therefore $\left\{v_{2}^{10} v_{1}^{4} h_{2} h_{0}[1]\right\}$ is a permanent cycle which detects a lift of $\Delta^{2} v^{2}$.
(2) The class $\Delta^{2} \kappa \nu \in \pi_{65}($ tmf $)$ lifts to an element

$$
\Delta^{2} \kappa \nu[1] \in \operatorname{tmf}_{66}(M(8))
$$

which is detected by

$$
v_{2}^{8} h_{2} d_{0}[1] \in \operatorname{Ext}_{A(2)_{*}}^{15,66+15}(H(8))
$$

in the MASS for $\operatorname{tmf} \wedge M(8)$. Lift $\Delta^{2} \kappa \nu[1]$ to an element

$$
\Delta^{2} \kappa \nu[18] \in \operatorname{tmf}_{83}\left(M\left(8, v_{1}^{8}\right)\right)
$$

In the MASS for $\operatorname{tmf} \wedge M(8)$, there is a differential

$$
d_{2}\left(v_{2}^{10} v_{1}^{4} d_{0} h_{0}[1]\right)=v_{2}^{8} v_{1}^{8} h_{2} d_{0}[1] .
$$

By the geometric boundary theorem, $v_{2}^{8} \kappa \nu[18]$ is detected by $v_{2}^{10} v_{1}^{4} d_{0} h_{0}[1]$ in the MASS for $\operatorname{tmf} \wedge M\left(8, v_{1}^{8}\right)$. In particular, we see that $\Delta^{2} \kappa \nu[18]$ has MAF 21 and stem 83.
We now check that $v_{2}^{10} v_{1}^{4} d_{0} h_{0}[1]$ is a permanent cycle in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$. Its relative position in $\operatorname{Ext}_{A(2)}\left(\underline{\mathrm{bo}}_{1} \otimes H\left(8, v_{1}^{8}\right)\right)$ is $t-s=76$ and $\mathrm{AF}=20$, its relative position in $\operatorname{Ext}_{A(2) *}\left(\stackrel{\mathrm{bo}}{1}_{\otimes 2}^{\mathbf{D}_{1}} \otimes H\left(8, v_{1}^{8}\right)\right)$ is $t-s=69$ and $\mathrm{AF}=19$, and its relative position in $\operatorname{Ext}_{A(2) *}\left(\underline{\mathrm{bo}}_{1}^{\otimes 3} \otimes H\left(8, v_{1}^{8}\right)\right)$ is $t-s=62$ and $\mathrm{AF}=18$, the last of which has targets only above the vanishing line. Inspection of the relevant charts shows

[^9]that $v_{2}^{10} v_{1}^{4} d_{0} h_{0}[1]$ cannot support a nontrivial d_{1}-differential since the target bidegrees are zero. Therefore $v_{2}^{10} v_{1}^{4} d_{0} h_{0}$ [1] is a permanent cycle in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$ and detects an element $\left\{v_{2}^{10} v_{1}^{4} d_{0} h_{0}[1]\right\}$ in $\operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)$.

Finally, inspection of the same charts reveals that there are no possible targets for a nontrivial differential supported by $\left\{v_{2}^{10} v_{1}^{4} d_{0} h_{0}[1]\right\}$ in the MASS for $M\left(8, v_{1}^{8}\right)$. Therefore $\left\{v_{2}^{10} v_{1}^{4} d_{0} h_{0}[1]\right\}$ is a permanent cycle.
(3) The class $\Delta^{2} \eta^{2} \bar{\kappa} \in \pi_{70}$ (tmf) lifts to an element

$$
\Delta^{2} \eta^{2} \bar{\kappa}[1] \in \operatorname{tmf}_{71}(M(8))
$$

which is detected by

$$
g^{2} h_{2,1}^{6}[1] \in \operatorname{Ext}_{A(2)_{*}}^{16,71+16}(H(8))
$$

in the MASS for $\operatorname{tmf} \wedge M(8)$. Lift $\Delta^{2} \eta^{2} \bar{\kappa}[1]$ to an element

$$
\Delta^{2} \eta^{2} \bar{\kappa}[18] \in \operatorname{tmf}_{88}\left(M\left(8, v_{1}^{8}\right)\right)
$$

In the MASS for $\operatorname{tmf} \wedge M(8)$, there is a differential

$$
d_{2}\left(v_{2}^{8} v_{1}^{4} d_{0} e_{0}[1]\right)=g^{2} v_{1}^{8} h_{2,1}^{6}[1] .
$$

By the geometric boundary theorem, $\Delta^{2} \eta^{2} \bar{\kappa}[18]$ is detected by $v_{2}^{8} v_{1}^{4} d_{0} e_{0}[1]$ in the MASS for $\operatorname{tmf} \wedge M\left(8, v_{1}^{8}\right)$. In particular, we see that $\Delta^{2} \eta^{2} \bar{\kappa}[18]$ has MAF 24 and stem 88.

We now check that $v_{2}^{8} v_{1}^{4} d_{0} e_{0}[1]$ is a permanent cycle in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$. Its relative position in $\operatorname{Ext}_{A(2)}\left(\underline{\mathrm{bo}}_{1} \otimes H\left(8, v_{1}^{8}\right)\right)$ is $t-s=81$ and $\mathrm{AF}=23$ and its relative position in $\operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes 2} \otimes H\left(8, v_{1}^{8}\right)\right)$ is $t-s=74$ and $\mathrm{AF}=22$, the latter of which lies above the vanishing line. Inspection of the relevant charts shows that $v_{2}^{8} v_{1}^{4} d_{0} e_{0}[1]$ cannot support a nontrivial differential in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$ since the target bidegrees are zero. Therefore $v_{2}^{8} v_{1}^{4} d_{0} e_{0}[1]$ is a permanent cycle in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$ and therefore lifts to an element $\left\{v_{2}^{8} v_{1}^{4} d_{0} e_{0}[1]\right\}$ in $\operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)$.

Finally, inspection of the same charts reveals that there are no possible targets for a nontrivial differential supported by $\left\{v_{2}^{8} v_{1}^{4} d_{0} e_{0}[1]\right\}$ in the MASS for $M\left(8, v_{1}^{8}\right)$. Therefore $\left\{v_{2}^{8} v_{1}^{4} d_{0} e_{0}[1]\right\}$ is a permanent cycle in the MASS for $M\left(8, v_{1}^{8}\right)$.

Lemma 7.22 The following classes lift to the top cell of $M\left(8, v_{1}^{8}\right)$:
(1) $\Delta^{4} \nu^{2} \in \pi_{102}(\mathrm{tmf}), \Delta^{4} \in \in \pi_{104}(\mathrm{tmf}), \Delta^{4} \kappa \in \pi_{110}(\mathrm{tmf})$.
(2) $\Delta^{4} 2 \bar{\kappa} \in \pi_{116}(\mathrm{tmf})$.

Proof (1) These classes were lifted in [7, Theorem 11.1].
(2) The class $\Delta^{4} 2 \bar{\kappa} \in \pi_{116}(\mathrm{tmf})$ lifts to an element

$$
\Delta^{4} 2 \bar{\kappa}[1] \in \operatorname{tmf}_{117}(M(8))
$$

which is detected by

$$
v_{2}^{16} h_{0} g[1] \in \operatorname{Ext}_{A(2)_{*}}^{23,117+23}(H(8))
$$

in the MASS for $\operatorname{tmf} \wedge M(8)$. Lift $\Delta^{4} 2 \bar{\kappa}[1]$ to an element

$$
\Delta^{4} 2 \bar{\kappa}[18] \in \operatorname{tmf}_{134}\left(M\left(8, v_{1}^{8}\right)\right)
$$

In the MASS for $\operatorname{tmf} \wedge M(8)$, there is a differential

$$
d_{2}\left(v_{2}^{18} v_{1}^{4} d_{0} h_{2}[1]\right)=v_{2}^{16} v_{1}^{8} h_{0} g[1] .
$$

By the geometric boundary theorem, $\Delta^{4} 2 \bar{\kappa}[18]$ is detected by $v_{2}^{18} v_{1}^{4} d_{0} h_{2}[1]$ in the MASS for $\operatorname{tmf} \wedge M\left(8, v_{1}^{8}\right)$. In particular, we see that $\Delta^{4} 2 \bar{\kappa}[18]$ has MAF 29 and stem 134.

We now check that $v_{2}^{18} v_{1}^{4} d_{0} h_{2}[1]$ is a permanent cycle in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$. Its relative position in $\operatorname{Ext}_{A(2)_{*}}\left(\underline{\text { bo }}_{1} \otimes H\left(8, v_{1}^{8}\right)\right)$ is $t-s=127$ and $\mathrm{AF}=28$, its relative position in $\operatorname{Ext}_{A(2)}\left(\right.$ bo $\left._{1}^{\otimes 2} \otimes H\left(8, v_{1}^{8}\right)\right)$ is $t-s=120$ and $\mathrm{AF}=27$, and its relative position in $\operatorname{Ext}_{A(2)_{*}}\left(\mathrm{bo}_{1}^{\otimes 3} \otimes H\left(8, v_{1}^{8}\right)\right)$ is $t-s=113$ and $\mathrm{AF}=26$, the last of which lies above the vanishing line. Inspection of the relevant charts shows that $v_{2}^{16} 2 \bar{\kappa}[18]$ cannot support a nontrivial d_{1}-differential since the target bidegrees are zero. Therefore $v_{2}^{16} 2 \bar{\kappa}[18]$ is a permanent cycle in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$ and lifts to an element $v_{2}^{16} 2 \bar{\kappa}[18]$ in $\operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)$.

Finally, inspection of the same charts reveals that there are no possible targets for a nontrivial differential supported by $v_{2}^{16} 2 \bar{\kappa}[18]$ in the MASS for $M\left(8, v_{1}^{8}\right)$. Therefore $v_{2}^{16} 2 \bar{\kappa}[18]$ is a permanent cycle.

Contrary to the previous cases, there are several potential obstructions to lifting $\Delta^{4} \bar{\kappa} \eta \in$ $\pi_{117}(\mathrm{tmf})$ to the top cell of $M\left(8, v_{1}^{8}\right)$ which are tricky to resolve. However, since this element is 2 -torsion and v_{1}^{4}-torsion, we may instead attempt to lift it to the top cell of the generalized Moore spectrum $M\left(2, v_{1}^{4}\right)$ of [6], where the potential obstructions are much simpler to analyze. It then follows from the fact that the composite

$$
\Sigma^{8} M\left(2, v_{1}^{4}\right) \xrightarrow{\cdot 4 v_{1}^{4}} M\left(8, v_{1}^{8}\right) \rightarrow S^{18}
$$

is projection onto the top cell of $M\left(2, v_{1}^{4}\right)$ that $\Delta^{4} \bar{\kappa} \eta$ does lift to the top cell of $M\left(8, v_{1}^{8}\right)$.

Lemma 7.23 The class $\Delta^{4} \bar{\kappa} \eta \in \pi_{117}(\mathrm{tmf})$ lifts to the top cell of $M\left(2, v_{1}^{4}\right)$.
Proof The class $\Delta^{4} \eta \bar{\kappa} \in \pi_{117}$ (tmf) lifts to an element

$$
\Delta^{4} \eta \bar{\kappa}[1] \in \operatorname{tmf}_{118}(M(2))
$$

which is detected by

$$
v_{2}^{16} h_{1} g[1] \in \operatorname{Ext}^{21,118+21}(H(2))
$$

in the MASS for $\operatorname{tmf} \wedge M(2)$. Lift $\Delta^{4} \eta \bar{\kappa}[1]$ to an element

$$
\Delta^{4} \eta \bar{\kappa}[10] \in \operatorname{tmf}_{127}\left(M\left(2, v_{1}^{4}\right)\right)
$$

In the MASS for $\operatorname{tmf} \wedge M(2)$, there is a differential

$$
d_{3}\left(v_{2}^{20} h_{2}^{2}[1]\right)=v_{2}^{16} v_{1}^{4} h_{1} g[1] .
$$

It follows from the geometric boundary theorem that $\Delta^{4} \eta \bar{\kappa}[10]$ is detected by $v_{2}^{20} h_{2}^{2}[1]$ in the MASS for $\operatorname{tmf} \wedge M\left(2, v_{1}^{4}\right)$. In particular, we see that $\Delta^{4} \eta \bar{\kappa}[10]$ has MAF 24 and stem 127.

We now check that $v_{2}^{20} h_{2}^{2}[1]$ is a permanent cycle in the algebraic tmf resolution for $H\left(2, v_{1}^{4}\right)$. Its relative position in $\operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1} \otimes H\left(2, v_{1}^{4}\right)\right)$ is $t-s=120$ and $\mathrm{AF}=23$, its relative position in $\operatorname{Ext}_{A(2)_{*}}\left(\mathrm{bo}_{1}^{\otimes 2} \otimes H\left(2, v_{1}^{4}\right)\right)$ is $t-s=113$ and $\mathrm{AF}=22$, and its relative position in $\operatorname{Ext}_{A(2) *}\left(\underline{\mathrm{bo}}_{1}^{\otimes 3} \otimes H\left(2, v_{1}^{4}\right)\right)$ is $t-s=106$ and $\mathrm{AF}=21$. Inspection of the relevant charts [6, Figures 6.4-6.5] shows that there is potentially a nontrivial differential

$$
d_{1}\left(v_{2}^{20} h_{2}^{2}[1]\right)=x_{119,24},
$$

in the algebraic tmf resolution, where

$$
x_{119,24} \in \operatorname{Ext}_{A(2)_{*}}^{24,119+24}\left(\underline{b o}_{1} \otimes H\left(2, v_{1}^{4}\right)\right),
$$

but, since $v_{2}^{20} h_{2}^{2}[1]$ is v_{2}^{16}-divisible and $x_{119,24}$ is not, this differential cannot occur (compare with the proof of [7, Proposition 10.1]). Therefore $v_{2}^{20} h_{2}^{2}[1]$ is a permanent cycle in the algebraic tmf resolution for $H\left(2, v_{1}^{4}\right)$ and therefore lifts to an element $\left\{v_{2}^{20} h_{2}^{2}[1]\right\}$ in $\operatorname{Ext}_{A_{*}}\left(H\left(2, v_{1}^{4}\right)\right)$.
Finally, inspection of the same charts reveals that there are no possible nontrivial differentials supported by $\left\{v_{2}^{20} h_{2}^{2}[1]\right\}$ in the MASS for $M\left(2, v_{1}^{4}\right)$. Therefore $\left\{v_{2}^{20} h_{2}^{2}[1]\right\}$ is a permanent cycle in the MASS for $M\left(2, v_{1}^{4}\right)$.

Lemma 7.24 The class $\Delta^{4} q \in \pi_{128}(\mathrm{tmf})$ lifts to the top cell of $M\left(8, v_{1}^{8}\right)$.
Proof The class $\Delta^{4} q \in \pi_{128}(\mathrm{tmf})$ lifts to an element

$$
\Delta^{4} q[1] \in \operatorname{tmf}_{129}(M(8))
$$

which is detected by

$$
v_{2}^{20} c_{0}[1] \in \operatorname{Ext}_{A(2)_{*}}^{23,129+23}(H(8))
$$

in the MASS for $\operatorname{tmf} \wedge M(8)$. Lift $\Delta^{4} q[1]$ to an element

$$
\Delta^{4} q[18] \in \operatorname{tmf}_{146}\left(M\left(8, v_{1}^{8}\right)\right)
$$

In the MASS for $\operatorname{tmf} \wedge M(8)$, there is a differential

$$
d_{4}\left(v_{2}^{16} g^{2} h_{2,1} v_{1}^{2}[1]\right)=v_{2}^{20} v_{1}^{8} c_{0}[1] .
$$

By the geometric boundary theorem, $\Delta^{4} q[18]$ is detected by $v_{2}^{16} g^{2} h_{2,1} v_{1}^{2}[1]$ in the MASS for $\operatorname{tmf} \wedge M\left(8, v_{1}^{8}\right)$. In particular, we see that $\Delta^{4} q[18]$ has MAF 29 and stem 146.
We now check that $v_{2}^{16} g^{2} h_{2,1} v_{1}^{2}[1]$ is a permanent cycle in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$. Its relative position in $\operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1} \otimes H\left(8, v_{1}^{8}\right)\right)$ is $t-s=139$ and $\mathrm{AF}=28$, its relative position in $\operatorname{Ext}_{A(2) *}\left(\mathrm{bo}_{1}^{\otimes 2} \otimes H\left(8, v_{1}^{8}\right)\right)$ is $t-s=132$ and $\mathrm{AF}=27$, and its relative position in $\operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes 3} \otimes H\left(8, v_{1}^{8}\right)\right)$ is $t-s=125$ and $\mathrm{AF}=26$.

The proof of Lemma 7.18(1) implies that the element

$$
g^{2} h_{2,1} v_{1}^{2}[1] \in \operatorname{Ext}_{A(2)_{*}}\left(H\left(8, v_{1}^{8}\right)\right)
$$

is a permanent cycle in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$. It follows from Lemma 5.1 that

$$
v_{2}^{16} g^{2} h_{2,1} v_{1}^{2}[1]
$$

is a permanent cycle in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$, and detects an element

$$
v_{2}^{16} \cdot\left\{g^{2} h_{2,1} v_{1}^{2}[1]\right\} \in \operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)
$$

which persists to the E_{3}-page of the MASS for $M\left(8, v_{1}^{8}\right)$.
The only possibility for this element to support a nontrivial MASS differential is for it to support a d_{3}-differential whose target to by detected by the element

$$
v_{1} h_{2,1}^{19}\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)[18] \in \operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes 2} \otimes H\left(8, v_{1}^{8}\right)\right)
$$

in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$.
We wish to use Lemma 5.5 to argue that the element $v_{1} h_{2,1}^{19}\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)[18]$ detects an element in $\operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)$ which is zero in the E_{3}-page of the MASS. In the MASS for $\mathrm{bo}_{1}^{2} \wedge M\left(8, v_{1}^{8}\right)$, there is a differential

$$
d_{2}\left(v_{2}^{8} h_{2,1}^{10}\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)[18]\right)=v_{1} h_{2,1}^{19}\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)[18]
$$

Using the map

$$
\Sigma^{16} \operatorname{tmf} \wedge \mathrm{bo}_{1}^{2} \wedge M\left(8, v_{1}^{8}\right) \hookrightarrow \operatorname{tmf} \wedge \overline{\operatorname{tmf}}^{2} \wedge M\left(8, v_{1}^{8}\right)
$$

we get the same differential in the MASS for $\operatorname{tmf} \wedge \overline{\operatorname{tmf}}^{2} \wedge M\left(8, v_{1}^{8}\right)$. By Proposition 4.3, the element $v_{2}^{8} h_{2,1}^{10}\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)[18]$ is a permanent cycle in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$, detecting the element

$$
\Delta^{2} v_{1}^{6} M\left(g^{2}\right)[1] \in \operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)
$$

Therefore the hypotheses of Lemma 5.5 are satisfied, and we deduce that

$$
v_{1} h_{2,1}^{19}\left(v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right]\right)[18]
$$

detects an element which is zero in the E_{3}-page of the MASS, and hence cannot be the target of a nontrivial d_{3}-differential in the MASS.

Lemma 7.25 The class $\Delta^{4} u \in \pi_{135}(\mathrm{tmf})$ lifts to the top cell of $M\left(8, v_{1}^{8}\right)$.
Proof The class $\Delta^{4} u \in \pi_{135}(\mathrm{tmf})$ lifts to an element

$$
\Delta^{4} u[1] \in \operatorname{tmf}_{136}(M(8))
$$

which is detected by

$$
v_{2}^{16} v_{1}^{2} x_{35}[1] \in \operatorname{Ext}_{A(2)_{*}}^{25,136+25}(H(8))
$$

in the MASS for $\operatorname{tmf} \wedge M(8)$. Lift $\Delta^{4} u[1]$ to an element

$$
\Delta^{4} u[18] \in \operatorname{tmf}_{153}\left(M\left(8, v_{1}^{8}\right)\right)
$$

There is a differential in the MASS for $\operatorname{tmf} \wedge M(8)$,

$$
d_{4}\left(v_{2}^{16} v_{1}^{3} h_{2,1}^{2} g^{2}[1]\right)=v_{2}^{16} v_{1}^{10} x_{35}[1],
$$

so, by the geometric boundary theorem, $\Delta^{4} u[18]$ is detected by $v_{2}^{16} v_{1}^{3} h_{2,1}^{2} g^{2}[1]$ in the MASS for $\operatorname{tmf} \wedge M\left(8, v_{1}^{8}\right)$. In particular, $\Delta^{4} u[18]$ has MAF 31 and stem 153.
We now check that $v_{2}^{16} v_{1}^{3} h_{2,1}^{2} g^{2}[1]$ is a permanent cycle in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$. Note that $v_{1}^{3} h_{2,1}^{2} g^{2}[1]$ detects $u[18]$ in the MASS for $\operatorname{tmf} \wedge M\left(8, v_{1}^{8}\right)$. In Lemma 7.18, we established that $u[18]$ lifts to $M\left(8, v_{1}^{8}\right)$, and therefore $v_{1}^{3} h_{2,1}^{2} g^{2}[1]$ is a permanent cycle in the algebraic tmf resolution and it detects a permanent cycle in the MASS for $M\left(8, v_{1}^{8}\right)$. It follows from Lemma 5.1 that

$$
v_{2}^{16} v_{1}^{3} h_{2,1}^{2} g^{2}[1]
$$

is a permanent cycle in the algebraic tmf resolution and detects an element

$$
v_{2}^{16} \cdot\left\{v_{1}^{3} h_{2,1}^{2} g^{2}[1]\right\} \in \operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)
$$

Inspection of the relevant charts shows that the only possible nontrivial MASS differentials supported by this element would be

$$
d_{2}\left(v_{2}^{16} \cdot\left\{v_{1}^{2} h_{2,1}^{2} g^{2}[1]\right\}\right)=\left\{v_{2}^{8} h_{2,1}^{15} \zeta_{2}^{4}[18]\right\}
$$

However, we have

$$
d_{2}\left(v_{2}^{16} \cdot\left\{v_{1}^{3} h_{2,1}^{2} g^{2}[1]\right\}\right)=0,
$$

since it is a product of d_{2}-cycles.
Lemma 7.26 The following classes lift to the top cell of $M\left(8, v_{1}^{8}\right)$:
(1) $\Delta^{6} v^{2} \in \pi_{150}$ (tmf).
(2) $\Delta^{6} \kappa v \in \pi_{161}(\mathrm{tmf})$.

Proof (1) The class $\Delta^{6} v^{2} \in \pi_{150}$ (tmf) lifts to an element

$$
\Delta^{6} v^{2}[1] \in \operatorname{tmf}_{151}(M(8))
$$

which is detected by

$$
v_{2}^{24} h_{2}^{2}[1] \in \operatorname{Ext}_{A(2)_{*}}^{28,151+28}(H(8))
$$

in the MASS for $\operatorname{tmf} \wedge M(8)$. Lift $\Delta^{6} v^{2}[1]$ to an element

$$
\Delta^{6} v^{2}[18] \in \operatorname{tmf}_{168}\left(M\left(8, v_{1}^{8}\right)\right)
$$

In the MASS for $\operatorname{tmf} \wedge M(8)$, there is a differential

$$
d_{2}\left(v_{2}^{26} v_{1}^{4} h_{2} h_{0}[1]\right)=v_{2}^{24} v_{1}^{8} h_{2}^{2}[1]
$$

By the geometric boundary theorem, $\Delta^{6} v^{2}[18]$ is detected by $v_{2}^{26} v_{1}^{4} h_{2} h_{0}[1]$ in the MASS for $\operatorname{tmf} \wedge M\left(8, v_{1}^{8}\right)$. In particular, we see that $\Delta^{6} v^{2}[18]$ has MAF 34 and stem 168.
In Lemma 7.21(1), we showed that $v_{2}^{10} v_{1}^{4} h_{2} h_{0}[1]$ is a permanent cycle in the algebraic tmf resolution, detecting an element

$$
\left\{v_{2}^{10} v_{1}^{4} h_{2} h_{0}[1]\right\} \in \operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)
$$

in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$. By Lemma 5.1, this is also true of $v_{2}^{26} v_{1}^{4} h_{2} h_{0}[1]$.
Lemma 5.1 implies that $d_{2}\left(v_{2}^{16}\right)=0$ in the MASS for $M\left(8, v_{1}^{8}\right)$. By Lemma 7.21(1), it follows that

$$
d_{2}\left(v_{2}^{16} \cdot\left\{v_{2}^{10} v_{1}^{4} h_{2} h_{0}[1]\right\}\right)=0
$$

Inspection of the algebraic tmf resolution charts reveals that there are no possible targets of a longer MASS differential supported by $v_{2}^{16} \cdot\left\{v_{2}^{10} v_{1}^{4} h_{2} h_{0}[1]\right\}$.
(2) The class $\Delta^{6} \kappa \nu \in \pi_{161}$ (tmf) lifts to an element

$$
\Delta^{6} \kappa \nu[1] \in \operatorname{tmf}_{162}(M(8))
$$

which is detected by

$$
v_{2}^{24} d_{0} h_{2}[1] \in \operatorname{Ext}_{A(2)_{*}}^{31,161+31}(H(8))
$$

in the MASS for $\operatorname{tmf} \wedge M(8) . \operatorname{Lift} \Delta^{6} \kappa \nu[1]$ to an element

$$
\Delta^{6} \kappa \nu[18] \in \operatorname{tmf}_{179}\left(M\left(8, v_{1}^{8}\right)\right) .
$$

In the MASS for $\operatorname{tmf} \wedge M(8)$, there is a differential

$$
d_{2}\left(v_{2}^{26} v_{1}^{4} h_{0} d_{0}[1]\right)=v_{2}^{24} v_{1}^{8} h_{2} d_{0}[1]
$$

By the geometric boundary theorem, $\Delta^{6} \kappa \nu[18]$ is detected by $v_{2}^{26} v_{1}^{4} h_{0} d_{0}[1]$ in the MASS for $\operatorname{tmf} \wedge M\left(8, v_{1}^{8}\right)$. In particular, we see that $\Delta^{6} \kappa \nu[18]$ has MAF 37 and stem 179.

We showed in Lemma 7.21 that $v_{2}^{10} v_{1}^{4} h_{0} d_{0}[1]$ is a permanent cycle in the algebraic tmf resolution. By Lemma 5.1, it follows that $v_{2}^{26} v_{1}^{4} h_{0} d_{0}[1]$ is a permanent cycle in the algebraic tmf resolution for $H\left(8, v_{1}^{8}\right)$ and lifts to an element $\left\{v_{2}^{26} v_{1}^{4} h_{0} d_{0}[1]\right\}$ in $\operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)$.

Finally, inspection of the algebraic tmf resolution charts reveals that there are no possible nontrivial differentials on $\left\{v_{2}^{26} v_{1}^{4} h_{0} d_{0}[1]\right\}$ in the MASS for $M\left(8, v_{1}^{8}\right)$. Therefore $\left\{v_{2}^{26} v_{1}^{4} h_{0} d_{0}[1]\right\}$ is a permanent cycle.

Lemma 7.27 The classes $\Delta^{8} \nu^{2} \in \pi_{198} \operatorname{tmf}$ and $\Delta^{8} \epsilon \in \pi_{200} \operatorname{tmf}$ lift to the top cell of $M\left(8, v_{1}^{8}\right)$.

Proof The classes $\Delta^{8} \nu^{2} \in \pi_{198}(\mathrm{tmf})$ and $\Delta^{8} \epsilon \in \pi_{200}$ tmf lift to elements

$$
\Delta^{8} v^{2}[1] \in \operatorname{tmf}_{199}(M(8)), \quad \Delta^{8} \epsilon[1] \in \operatorname{tmf}_{201}(M(8))
$$

which are detected by

$$
v_{2}^{32} h_{2}^{2}[1] \in \operatorname{Ext}_{A(2)_{*}}^{36,199+36}(H(8)), \quad v_{2}^{32} c_{0}[1] \in \operatorname{Ext}_{A(2)_{*}}^{37,201+37}(H(8))
$$

in the MASS for $\operatorname{tmf} \wedge M(8)$. Lift $\Delta^{8} \nu^{2}[1]$ and $\Delta^{8} \epsilon[1]$ to elements

$$
\Delta^{8} v^{2}[18] \in \operatorname{tmf}_{210}\left(M\left(8, v_{1}^{8}\right)\right), \quad \Delta^{8} \epsilon[18] \in \operatorname{tmf}_{212}\left(M\left(8, v_{1}^{8}\right)\right)
$$

In the MASS for $\operatorname{tmf} \wedge M(8)$, there are differentials

$$
d_{2}\left(v_{2}^{32} v_{1}^{4} h_{0} h_{2} v_{2}^{2}[1]\right)=v_{2}^{32} v_{1}^{8} h_{2}^{2}[1], \quad d_{3}\left(v_{2}^{32} v_{1}^{4} e_{0}[1]\right)=v_{2}^{32} v_{1}^{8} c_{0}[1] .
$$

By the geometric boundary theorem, $\Delta^{8} \nu^{2}$ [18] is detected by $v_{2}^{34} v_{1}^{4} h_{0} h_{2}[1]$ and $\Delta^{8} \epsilon[18]$ is detected by $v_{2}^{32} v_{1}^{4} e_{0}[1]$ in the MASS for $\operatorname{tmf} \wedge M\left(8, v_{1}^{8}\right)$.
In [7, Theorem 11.1] the classes $\Delta^{4} \nu^{2}[18] \in \pi_{120} M\left(8, v_{1}^{8}\right)$ and $\Delta^{4} \epsilon[18] \in \pi_{122} M\left(8, v_{1}^{8}\right)$ were produced by showing that the elements

$$
v_{2}^{18} v_{1}^{4} h_{0} h_{2}[1] \in \operatorname{Ext}_{A(2)_{*}}^{26,120+26}\left(H\left(8, v_{1}^{8}\right)\right), \quad v_{2}^{16} v_{1}^{4} e_{0}[1] \in \operatorname{Ext}_{A(2)_{*}}^{26,122+26}\left(H\left(8, v_{1}^{8}\right)\right)
$$

detect via the algebraic tmf resolution elements
$\left\{v_{2}^{18} v_{1}^{4} h_{0} h_{2}[1]\right\} \in \operatorname{Ext}_{A_{*}}^{26,120+26}\left(H\left(8, v_{1}^{8}\right)\right), \quad\left\{v_{2}^{16} v_{1}^{4} e_{0}[1]\right\} \in \operatorname{Ext}_{A_{*}}^{26,122+26}\left(H\left(8, v_{1}^{8}\right)\right)$, which are permanent cycles in the MASS for $M\left(8, v_{1}^{8}\right)$.
Since the element $v_{2}^{16} \in \operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)$ is the square of the element v_{2}^{8}, we have $d_{2}\left(v_{2}^{16}\right)=0$. We deduce that the elements

$$
\begin{gathered}
v_{2}^{16} \cdot\left\{v_{2}^{18} v_{1}^{4} h_{0} h_{2}[1]\right\} \in \operatorname{Ext}_{A_{*}}^{26,120+26}\left(H\left(8, v_{1}^{8}\right)\right) \\
v_{2}^{16} \cdot\left\{v_{2}^{16} v_{1}^{4} e_{0}[1]\right\} \in \operatorname{Ext}_{A_{*}}^{26,122+26}\left(H\left(8, v_{1}^{8}\right)\right)
\end{gathered}
$$

persist to the E_{3}-page of the MASS for $M\left(8, v_{1}^{8}\right)$. If we can show they are permanent cycles, we are done.

We begin with $\left\{v_{2}^{34} v_{1}^{4} h_{0} h_{2}[1]\right\}$. Examination of the algebraic tmf resolution for $M\left(8, v_{1}^{8}\right)$ reveals that the only possibility of a nontrivial differential in the MASS supported by this element would be a $d_{4}\left(\left\{v_{2}^{34} v_{1}^{4} h_{0} h_{2}[1]\right\}\right)$, which would be detected by

$$
h_{2,1}^{33} v_{1} v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right][18] \in \operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes 2} \otimes H\left(8, v_{1}^{8}\right)\right)
$$

In the MASS for $\operatorname{tmf} \wedge \mathrm{bo}_{1}^{\wedge 2}$ there is a differential

$$
d_{2}^{\text {mass }}\left(\Delta^{2} h_{2,1}^{24} v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right][18]\right)=h_{2,1}^{33} v_{1} v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right][18]
$$

Using the map (5.7) we deduce that there is a corresponding differential in the MASS for $\operatorname{tmf} \wedge \overline{\operatorname{tmf}}^{\wedge} \wedge$. The elements

$$
h_{2,1}^{33} v_{1} v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right][18], \quad \Delta^{2} h_{2,1}^{24} v_{1} v_{0}^{-1} v_{2}^{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}\right][18]
$$

respectively detect

$$
v_{1}^{7} h_{2,1}^{23} M g^{2}[1] \in \operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right), \quad \Delta^{2} v_{1}^{6} h_{2,1}^{14} M g^{2}[1] \in \operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)
$$

in the algebraic tmf resolution for $M\left(8, v_{1}^{8}\right)$. We therefore deduce from Lemma 5.5 that $v_{1}^{7} h_{2,1}^{23} M g^{2}[1]$ is killed by

$$
d_{2}^{\text {mass }}\left(\Delta^{2} v_{1}^{6} h_{2,1}^{14} M g^{2}[1]\right)
$$

in the MASS for $M\left(8, v_{1}^{8}\right)$. Therefore it cannot be the target of a nontrivial $d_{4}^{\text {mass }}$.
We now consider $\left\{v_{2}^{32} v_{1}^{4} e_{0}[1]\right\}$. Examination of the algebraic tmf resolution for $M\left(8, v_{1}^{8}\right)$ reveals that the only possibility of a nontrivial differential in the MASS supported by this element would be a $d_{4}\left(\left\{v_{2}^{32} v_{1}^{4} e_{0}[1]\right\}\right)$, which would be detected by

$$
\Delta^{2} h_{2,1}^{28} \zeta_{2}^{4}[18] \in \operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1} \otimes H\left(8, v_{1}^{8}\right)\right)
$$

in the algebraic tmf resolution for $M\left(8, v_{1}^{8}\right)$. To eliminate this possibility we wish to employ Case 1 of Remark 5.6, using the differential

$$
d_{3}^{\text {mass }}\left(\Delta^{2} h_{2,1}^{25} v_{0}^{-2} v_{2}^{2} \zeta_{1}^{16}[18]\right)=\Delta^{2} h_{2,1}^{28} \zeta_{2}^{4}[18]
$$

in the MASS for $\operatorname{tmf} \wedge \overline{\operatorname{tmf}} \wedge M\left(8, v_{1}^{8}\right)$. The element $\Delta^{2} h_{2,1}^{25} v_{0}^{-2} v_{2}^{2} \zeta_{1}^{16}[18]$ detects the element

$$
\Delta^{2} h_{2,1}^{19} Q_{2}[18] \in \operatorname{Ext}_{A_{*}}\left(H\left(8, v_{1}^{8}\right)\right)
$$

in the algebraic tmf resolution for $M\left(8, v_{1}^{8}\right)$. We just need to check that there is no possibility for $\Delta^{2} h_{2,1}^{19} Q_{2}[18]$ to support a nontrivial $d_{2}^{\text {mass }}$ in the MASS for $M\left(8, v_{1}^{8}\right)$. However, examination of the algebraic tmf resolution for $M\left(8, v_{1}^{8}\right)$ reveals there are no classes which could detect the target of such a nontrivial $d_{2}^{\text {mass }}$.

References

[1] J F Adams, On the groups $J(X)$, IV, Topology 5 (1966) 21-71 MR Zbl
[2] M G Barratt, J D S Jones, M E Mahowald, Relations amongst Toda brackets and the Kervaire invariant in dimension 62, J. London Math. Soc. 30 (1984) 533-550 MR Zbl
[3] T Bauer, Computation of the homotopy of the spectrum tmf, from "Groups, homotopy and configuration spaces" (N Iwase, T Kohno, R Levi, D Tamaki, J Wu, editors), Geom. Topol. Monogr. 13, Geom. Topol. Publ., Coventry (2008) 11-40 MR Zbl
[4] A Beaudry, M Behrens, P Bhattacharya, D Culver, Z Xu, On the E_{2}-term of the bo-Adams spectral sequence, J. Topol. 13 (2020) 356-415 MR Zbl
[5] M Behrens, The Goodwillie tower and the EHP sequence, Mem. Amer. Math. Soc. 1026, Amer. Math. Soc., Providence, RI (2012) MR Zbl
[6] M Behrens, M Hill, M J Hopkins, M Mahowald, On the existence of a v_{2}^{32}-self map on $M(1,4)$ at the prime 2, Homology Homotopy Appl. 10 (2008) 45-84 MR Zbl
[7] M Behrens, M Hill, M J Hopkins, M Mahowald, Detecting exotic spheres in low dimensions using coker J, J. Lond. Math. Soc. 101 (2020) 1173-1218 MR Zbl
[8] M Behrens, K Ormsby, N Stapleton, V Stojanoska, On the ring of cooperations for 2-primary connective topological modular forms, J. Topol. 12 (2019) 577-657 MR Zbl
[9] E Belmont, K Shimomura, Beta families arising from a v_{2}^{9} self map on $S /\left(3, v_{1}^{8}\right)$, preprint (2021) arXiv 2109.01059
[10] P Bhattacharya, I Bobkova, B Thomas, The P_{2}^{1} Margolis homology of connective topological modular forms, Homology Homotopy Appl. 23 (2021) 379-402 MR Zbl
[11] R Bott, The stable homotopy of the classical groups, Ann. of Math. 70 (1959) 313-337 MR Zbl
[12] W Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. of Math. 90 (1969) 157-186 MR Zbl
[13] R R Bruner, The cohomology of the mod 2 Steenrod algebra: a computer computation, preprint (2019) Available at http://www.rrb.wayne.edu/papers/cohom.pdf
[14] R R Bruner, J Rognes, The Adams spectral sequence for topological modular forms, Mathematical Surveys and Monographs 253, Amer. Math. Soc., Providence, RI (2021) MR Zbl
[15] D M Davis, M Mahowald, Connective versions of TMF(3), Int. J. Mod. Math. 5 (2010) 223-252 MR Zbl
[16] CL Douglas, J Francis, A G Henriques, MA Hill (editors), Topological modular forms, Mathematical Surveys and Monographs 201, Amer. Math. Soc., Providence, RI (2014) MR Zbl
[17] P G Goerss, J D S Jones, M E Mahowald, Some generalized Brown-Gitler spectra, Trans. Amer. Math. Soc. 294 (1986) 113-132 MR Zbl
[18] MA Hill, M J Hopkins, D C Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. 184 (2016) 1-262 MR Zbl
[19] M J Hopkins, M Mahowald, From elliptic curves to homotopy theory, from "Topological modular forms" (CL Douglas, J Francis, A G Henriques, M A Hill, editors), Mathematical Surveys and Monographs 201, Amer. Math. Soc., Providence, RI (2014) 261-285 MR Zbl
[20] M J Hopkins, J H Smith, Nilpotence and stable homotopy theory, II, Ann. of Math. 148 (1998) 1-49 MR Zbl
[21] M Hovey, Homotopy theory of comodules over a Hopf algebroid, from "Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory" (P Goerss, S Priddy, editors), Contemp. Math. 346, Amer. Math. Soc., Providence, RI (2004) 261-304 MR Zbl
[22] D C Isaksen, Stable stems, Mem. Amer. Math. Soc. 1269, Amer. Math. Soc., Providence, RI (2019) MR Zbl
[23] D C Isaksen, The Mahowald operator in the cohomology of the Steenrod algebra, preprint (2020) arXiv 2001.01758
[24] D C Isaksen, G Wang, Z Xu, Stable homotopy groups of spheres: from dimension 0 to 90, preprint (2020) arXiv 2001.04511
[25] D C Isaksen, G Wang, Z Xu, Classical and C-motivic Adams charts, electronic resource (2022) Available at https://dx.doi.org/10.5281/zenodo. 6987157
[26] M A Kervaire, J W Milnor, Groups of homotopy spheres, I, Ann. of Math. 77 (1963) 504-537 MR Zbl
[27] G Laures, $K(1)$-local topological modular forms, Invent. Math. 157 (2004) 371-403 MR Zbl
[28] W Lellmann, M Mahowald, The bo-Adams spectral sequence, Trans. Amer. Math. Soc. 300 (1987) 593-623 MR Zbl
[29] G Li, XD Shi, G Wang, Z Xu, Hurewicz images of real bordism theory and real Johnson-Wilson theories, Adv. Math. 342 (2019) 67-115 MR Zbl
[30] M Mahowald, bo-resolutions, Pacific J. Math. 92 (1981) 365-383 MR Zbl
[31] M Mahowald, C Rezk, Topological modular forms of level 3, Pure Appl. Math. Q. 5 (2009) 853-872 MR Zbl
[32] M Mahowald, M Tangora, An infinite subalgebra of $\operatorname{Ext}_{A}\left(Z_{2}, Z_{2}\right)$, Trans. Amer. Math. Soc. 132 (1968) 263-274 MR Zbl
[33] H Margolis, S Priddy, M Tangora, Another systematic phenomenon in the cohomology of the Steenrod algebra, Topology 10 (1970) 43-46 MR Zbl
[34] A Mathew, The homology of tmf, Homology Homotopy Appl. 18 (2016) 1-29 MR Zbl
[35] EE Moise, Affine structures in 3-manifolds, V: The triangulation theorem and Hauptvermutung, Ann. of Math. 56 (1952) 96-114 MR Zbl
[36] G Wang, Z Xu, The triviality of the 61-stem in the stable homotopy groups of spheres, Ann. of Math. 186 (2017) 501-580 MR Zbl

Department of Mathematics, University of Notre Dame
Notre Dame, IN, United States
Department of Mathematics, Northwestern University
Evanston, IL, United States
Department of Mathematics, University of Virginia
Charlottesville, VA, United States
mbehren1@nd.edu, mbp6pj@virginia.edu
Proposed: Haynes R Miller Received: 17 February 2021
Seconded: Stefan Schwede, Jesper Grodal
Revised: 18 November 2021

Geometry \& Topology

msp.org/gt

Managing Editor
András I. Stipsicz
Alfréd Rényi Institute of Mathematics
stipsicz@renyi.hu
Board of Editors

Dan Abramovich	Brown University dan_abramovich@brown.edu	Mark Gross	University of Cambridge mgross@dpmms.cam.ac.uk
Ian Agol	University of California, Berkeley ianagol@math.berkeley.edu	Rob Kirby	University of California, Berkeley kirby@math.berkeley.edu
Mark Behrens	Massachusetts Institute of Technology mbehrens@math.mit.edu	Frances Kirwan	University of Oxford frances.kirwan@balliol.oxford.ac.uk
Mladen Bestvina	Imperial College, London bestvina@math.utah.edu	Bruce Kleiner	NYU, Courant Institute bkleiner@cims.nyu.edu
Martin R. Bridson	Imperial College, London m.bridson@ic.ac.uk	Urs Lang	ETH Zürich urs.lang@math.ethz.ch
Jim Bryan	University of British Columbia jbryan@math.ubc.ca	Marc Levine	Universität Duisburg-Essen marc.levine@uni-due.de
Dmitri Burago	Pennsylvania State University burago@math.psu.edu	John Lott	University of California, Berkeley lott@math.berkeley.edu
Ralph Cohen	Stanford University ralph@math.stanford.edu	Ciprian Manolescu	University of California, Los Angeles cm@math.ucla.edu
Tobias H. Colding	Massachusetts Institute of Technology colding@math.mit.edu	Haynes Miller	Massachusetts Institute of Technology hrm@math.mit.edu
Simon Donaldson	Imperial College, London s.donaldson@ic.ac.uk	Tom Mrowka	Massachusetts Institute of Technology mrowka@math.mit.edu
Yasha Eliashberg	Stanford University eliash-gt@math.stanford.edu	Walter Neumann	Columbia University neumann@math.columbia.edu
Benson Farb	University of Chicago farb@math.uchicago.edu	Jean-Pierre Otal	Université d'Orleans jean-pierre.otal@univ-orleans.fr
Steve Ferry	Rutgers University sferry@math.rutgers.edu	Peter Ozsváth	Columbia University ozsvath@math.columbia.edu
Ron Fintushel	Michigan State University ronfint@math.msu.edu	Leonid Polterovich	Tel Aviv University polterov@post.tau.ac.il
David M. Fisher	Rice University davidfisher@rice.edu	Colin Rourke	University of Warwick gt@maths.warwick.ac.uk
Mike Freedman	Microsoft Research michaelf@microsoft.com	Stefan Schwede	Universität Bonn schwede@math.uni-bonn.de
David Gabai	Princeton University gabai@princeton.edu	Peter Teichner	University of California, Berkeley teichner@math.berkeley.edu
Stavros Garoufalidis	Southern U. of Sci. and Tech., China stavros@mpim-bonn.mpg.de	Richard P. Thomas	Imperial College, London richard.thomas@imperial.ac.uk
Cameron Gordon	University of Texas gordon@math.utexas.edu	Gang Tian	Massachusetts Institute of Technology tian@math.mit.edu
Lothar Göttsche	Abdus Salam Int. Centre for Th. Physics gottsche@ictp.trieste.it	Ulrike Tillmann	Oxford University tillmann@maths.ox.ac.uk
Jesper Grodal	University of Copenhagen jg@math.ku.dk	Nathalie Wahl	University of Copenhagen wahl@math.ku.dk
Misha Gromov	IHÉS and NYU, Courant Institute gromov@ihes.fr	Anna Wienhard	Universität Heidelberg wienhard@mathi.uni-heidelberg.de

See inside back cover or msp.org/gt for submission instructions.
The subscription price for 2023 is US $\$ 740 /$ year for the electronic version, and $\$ 1030 /$ year ($+\$ 70$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Geometry \& Topology is indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Geometry \& Topology (ISSN 1465-3060 printed, 1364-0380 electronic) is published 9 times per year and continuously online, by Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall \#3840, Berkeley, CA 94720-3840. Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall \#3840, Berkeley, CA 94720-3840.

> GT peer review and production are managed by EditFlow ${ }^{\circledR}$ from MSP.
> PUBLISHED BY
> E. mathematical sciences publishers nonprofit scientific publishing

http://msp.org/
© 2023 Mathematical Sciences Publishers

GeOMETRY \& TOPOLOGY

Volume 27 Issue 7 (pages 2497-2936) 2023
The combinatorial formula for open gravitational descendents 2497Ran J Tessler
Derived equivalences of hyperkähler varieties 2649
Lenny TaElman
A new cohomology class on the moduli space of curves 2695
Paul Norbury
The 2-primary Hurewicz image of tmf 2763
Mark Behrens, Mark Mahowald and J D Quigley
Hamiltonian no-torsion 2833Marcelo S Atallah and Egor Shelukhin
A higher-rank rigidity theorem for convex real projective 2899 manifoldsAndrew Zimmer

[^0]: © 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

[^1]: ${ }^{1}$ Here, tmf denotes connective topological modular forms.

[^2]: ${ }^{2}$ In fact, the v_{2}^{32}-self-map of Theorem 1.8 which is used to construct the periodic families of Theorem 1.2 also immediately implies the existence of some elements not in the image of the J-homomorphism which are in the kernel of the tmf-Hurewicz homomorphism, such as the beta elements $\beta_{32 k / 8}$. However, we will not concern ourselves here with the few additional dimensions such considerations add to the list of Corollary 1.5 .

[^3]: ${ }^{3}$ Here, $g \in \operatorname{Ext}_{A_{*}}^{4,24}\left(\mathbb{F}_{2}\right)$ is the element corresponding to the element $h_{2,1}^{4}$ in the May spectral sequence which detects $\bar{\kappa}$ in the Adams spectral sequence for the sphere.

[^4]: ${ }^{4}$ By this, we mean a spectrum with a possibly nonassociative product and a two-sided unit in the stable homotopy category.

[^5]: ${ }^{5}$ Technically speaking, as is addressed in [6, Section 7], the comodules $A(2) / / A(1) * \otimes \underline{\operatorname{mf}}_{j-1}$ in the above exact sequences have to be given a slightly different $A(2)_{*}$-comodule structure from the standard one arising from the tensor product. However, this different comodule structure ends up being Ext-isomorphic to the standard one. As we are only interested in Ext groups, the reader can safely ignore this subtlety.

[^6]: ${ }^{6}$ The authors of [29] construct a similar modified May spectral sequence, but with a slightly different filtration.

[^7]: ${ }^{8}$ This notation is slightly misleading, as there are a few wedge elements for which the P operator does not take the element we are denoting by $v_{1}^{i} x$ to the element we are denoting by $v_{1}^{i+4} x$, but we justify this notation by the fact that the wedge elements map to elements with such names in $\operatorname{Ext}_{A(2)_{*}}\left(\mathbb{F}_{2}\right)$.

[^8]: ${ }^{9}$ The element we are calling $\tilde{q} \in \pi_{32}^{s}$ is traditionally called q, but we add the tilde to distinguish it from the element we are calling q in π_{32} tmf.
 ${ }^{10} \mathrm{We}$ are specifically using case (5) of the geometric boundary theorem since the relevant class (denoted by $p_{*}(y)$ in the theorem statement) is a permanent cycle. We will be using this argument repeatedly in subsequent proofs in this section, and for brevity will simply say "by the geometric boundary theorem ..." in these subsequent instances.

[^9]: ${ }^{11}$ We will say that $x \in \operatorname{Ext}_{A(2)_{*}}\left(H\left(8, v_{1}^{8}\right)\right)$ has relative position $(t-s, s)$ in $\operatorname{Ext}_{A(2)_{*}}\left(\right.$ bo $\left._{I} \otimes H\left(8, v_{1}^{8}\right)\right)$ if the image of a differential supported by x in the algebraic tmf resolution lies in $\operatorname{Ext}_{A(2)}^{s+1, t}\left(\underline{t}_{I} \otimes H\left(8, v_{1}^{8}\right)\right)$, and the image of a differential supported by x in the MASS could be detected in the algebraic tmf resolution by an element in $\mathrm{Ext}_{A(2)_{*}+r, t-r+1}\left(\underline{\mathrm{bo}}_{1} \otimes H\left(8, v_{1}^{8}\right)\right)$. In other words, if you were to pretend x is an element in $\operatorname{Ext}_{A(2) *}^{s, t}\left(\underline{\text { bo }} I \otimes H\left(8, v_{1}^{8}\right)\right)$, then d_{r}-differentials in the algebraic tmf resolution "look" like Adams d_{1} 's, and d_{r}-differentials in the MASS "look" like Adams d_{r} 's.

