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We determine the image of the 2–primary tmf Hurewicz homomorphism, where tmf is
the spectrum of topological modular forms. We do this by lifting elements of tmf� to
the homotopy groups of the generalized Moore spectrum M.8; v8

1/ using a modified
form of the Adams spectral sequence and the tmf resolution, and then proving the
existence of a v32

2 –self-map on M.8; v8
1/ to generate 192–periodic families in the

stable homotopy groups of spheres.
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1 Introduction

The Hurewicz theorem implies that the Hurewicz homomorphism

h W ��.S
n/! zH�.S

n
IZ/

is an isomorphism for �D n, implying the well-known result that the 0th stable stem is
given by

�s
0 Š Z:
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2764 Mark Behrens, Mark Mahowald and J D Quigley

Adams [1] studied the Hurewicz homomorphism for real K–theory

hKO W �
s
�! ��KOD KO��.pt/:

The computation of the real K–theory of a point (the homotopy groups of the spectrum
KO representing real K–theory) is a consequence of the Bott periodicity theorem [11]:
these groups are given by the following 8–fold periodic pattern:

n mod 8 0 1 2 3 4 5 6 7
�nKO Z Z=2 Z=2 0 Z 0 0 0

The map hKO is an isomorphism in degree 0, and Adams showed that hKO is surjective
in degrees � � 1; 2 mod 8. He did this by constructing what is now known as a
v1–self-map

v4
1 W†

8M.2/!M.2/;

where M.2/ denotes the mod 2 Moore spectrum, and considering the projections

�8jC1C� 2 �
s
8jC1C�

of the elements

.1.1/ �� � v
4j
1
z� 2 �8jC2C�M.2/

to the top cell of M.2/. Here z� denotes a lift of � 2 �s
1

to the top cell of M.2/ and
� 2 f0; 1g. Because we have

�s
�˝QD 0

for �> 0, the homomorphism hKO is necessarily trivial in positive degrees �� 0 mod 4.

Goerss, Hopkins and Miller constructed the spectrum tmf of topological modular
forms [16] as a higher analog of the real K–theory spectrum.1 The homotopy groups
of tmf are 576–periodic. The goal of this paper is to determine the image of the 2–local
tmf–Hurewicz homomorphism

htmf W �
s
�! ��tmf.2/:

The 3–primary Hurewicz image has recently been determined by Belmont and Shi-
momura [9]. Since ��tmf.p/ has no torsion for p � 5, the p–primary tmf–Hurewicz
image is trivial in positive degrees for these primes. Henceforth, everything in this
paper is implicitly 2–local.

2–Locally, the homotopy groups of tmf are merely 192–periodic. These homotopy
groups were originally computed by Hopkins and Mahowald [19] (see also Bauer [3])

1Here, tmf denotes connective topological modular forms.

Geometry & Topology, Volume 27 (2023)
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Figure 1: The homotopy groups of tmf.

using the descent spectral sequence

Exts;t
�ell.A

ell;Aell/) �t�s.tmf/;

where .Aell; �ell/ is the elliptic curve Hopf algebroid. These homotopy groups are
displayed in Figure 1. In this figure:
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2766 Mark Behrens, Mark Mahowald and J D Quigley

� A series of i black dots joined by vertical lines corresponds to a factor of Z=2i

which is annihilated by some power of c4.

� An open circle corresponds to a factor of Z=2 which is not annihilated by a
power of c4.

� A box indicates a factor of Z.2/ which is not annihilated by a power of c4.

� The nonvertical lines indicate multiplication by � and �.

� A pattern with a dotted box around it and an arrow emanating from the right
face indicates this pattern continues indefinitely to the right by c4–multiplication
(ie tensor the pattern with Z.2/Œc4�).

� The vertical arrangement of the chart is arbitrary.

The homotopy groups ��tmf are given by tensoring the pattern depicted in Figure 1
with Z.2/Œ�

8�, where �8 2 �192tmf. Our choice of names for generators in Figure 1 is
motivated by the fact that the elements

�; �; �; �; x�; q; u; w

in the stable stems map to the corresponding elements in ��tmf under the tmf–Hurewicz
homomorphism. The other indecomposable multiplicative generators are named based
on the names of elements which detect them in the E2–term of the descent spectral
sequence. There is thus some ambiguity in the naming of some of these elements
coming from the filtration associated to the descent spectral sequence.

For definiteness we fix c4 2 �8tmf to be the unique element detected by c4 in the
descent spectral sequence of Adams filtration 4. Note that the c4–torsion in ��tmf does
not have c4–exponent 1. Indeed, on c4–torsion classes, multiplication by c4 is equal
to multiplication by �— see Bruner and Rognes [14, Section 9.5] — so, for example,
c4� D �� ¤ 0. However, all c4–torsion has c4–exponent 2; see loc. cit. and Behrens,
Hill, Hopkins and Mahowald [7, Proposition 6.1].

The main theorem of this paper is the following:

Theorem 1.2 The tmf–Hurewicz image is the subgroup of ��tmf generated by

(1) all the elements of ��3.tmf/,

(2) the elements ci
4
� and ci

4
�2,

(3) all the elements of ��tmf annihilated by a power of c4 except those in �24kC3tmf.

Geometry & Topology, Volume 27 (2023)
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Remark 1.3 The reader will note from Figure 1 that the subgroup of ��.tmf/ generated
by the elements of type (3) above form a self-dual pattern centered in dimension 85.
This is discussed in [14, Chapter 10].

Besides representing an advance in our understanding of v2–periodic homotopy at
the prime 2, Theorem 1.2 also has applications to smooth structures on spheres, as
explained in [7]. Specifically, Hill, Hopkins and the first two authors consider the
following question:

Question 1.4 In which dimensions n do there exist exotic smooth structures on the
n–sphere?

Such spheres with exotic smooth structures are called exotic spheres. The work of
Kervaire and Milnor [26] relates the existence of exotic spheres to the triviality of the
Kervaire homomorphism

�s
4kC2! Z=2

and the nontriviality of the cokernel of the J–homomorphism

J W �nSO! �s
n:

Specifically, they prove that exotic spheres exist in dimensions n for which:

nD 4k n� 8 and there exists a nontrivial element of coker J.

nD 4kC 1 There exists a nontrivial element of coker J, or there does not exist an
element of Kervaire invariant 1 in dimension nC 1.

nD 4kC 2 There exists a nontrivial element of coker J with Kervaire invariant 0.

nD 4kC 3 n� 7.

Combining this with the work of Moise [35], Browder [12], Barratt, Jones and Ma-
howald [2], Hill, Hopkins and Ravenel [18], and Wang and Xu [36], Question 1.4 has
been answered completely for n odd:

The only odd dimensions n for which there do not exist exotic spheres are
nD 1, 3, 5 and 61.

For n even, the case of nD 4 is unresolved. For other even n, by the previous discussion,
the question boils down to the existence of nontrivial elements of coker J (with Kervaire
invariant 0). It is shown in [7]:

The only even dimensions 4¤ n< 140 for which there do not exist exotic
spheres are nD 2, 6, 12 and 56.

Geometry & Topology, Volume 27 (2023)
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In the case of nD 8kC2� 10, Adams’ elements �8kC2 with nontrivial KO–Hurewicz
image are not in the image of J and have trivial Kervaire invariant. It thus follows that:

There exist exotic spheres in all dimensions nD 8kC 2� 10.

As is explained in [7], many of the 192–periodic families of elements of Theorem 1.2
also are not in the image of J and have trivial Kervaire invariant. Theorem 1.2 therefore
has the following corollary:2

Corollary 1.5 There exist exotic spheres in the following congruence classes of even
dimensions n� 8 modulo 192:

2; 6; 8; 10; 14; 18; 20; 22; 26; 28; 32; 34; 40; 42; 46; 50; 52; 54; 58; 60; 66; 68;

70; 74; 80; 82; 90; 98; 100; 102; 104; 106; 110; 114; 116; 118; 122; 124; 128;

130; 136; 138; 142; 146; 148; 150; 154; 156; 162; 164; 170; 178; 186:

(This accounts for over half of the even dimensions.)

We will prove Theorem 1.2 by first showing (Theorem 6.1) that the subgroup of ��tmf
described by Theorem 1.2 is contained in the Hurewicz image. This will be a relatively
straightforward consequence of some v1–periodic computations. The elements of
Theorem 1.2(1) are already established to be in the Hurewicz image by the preceding
discussion, and the elements of (2) are in the Hurewicz image because they are the
images of the elements �8iCj . We are left to show that the elements of type (3) lift
to �s
�. This is the main task of this paper.

In [14], Bruner and Rognes give a systematic and careful study of the Adams spectral
sequence for tmf, and in particular they have independently established the Hurewicz
image in many low-dimensional cases. Specifically, they prove Theorem 1.2 for degrees
� � 101 and also show that wx�3, w2x�, wx�4, 2�4�x� and 4�6�2 (in dimensions 105,
110, 125, 130 and 150) are in the Hurewicz image. Also, they use a different technique
(Anderson duality) to prove that the Hurewicz image is contained in the subgroup
of tmf� described in Theorem 1.2.

Our strategy to lift elements from ��tmf to �s
� is to use the methods of [7]. We

summarize that strategy here. We recall the following from [7, Proposition 6.1]:

2In fact, the v32
2

–self-map of Theorem 1.8 which is used to construct the periodic families of Theorem 1.2
also immediately implies the existence of some elements not in the image of the J–homomorphism which
are in the kernel of the tmf–Hurewicz homomorphism, such as the beta elements ˇ32k=8. However, we
will not concern ourselves here with the few additional dimensions such considerations add to the list of
Corollary 1.5.

Geometry & Topology, Volume 27 (2023)



The 2–primary Hurewicz image of tmf 2769

Proposition 1.6 [7] Every c4–torsion element x 2��tmf is 8–torsion and c2
4

–torsion.

Let M.2i/ denote the cofiber of 2i , and let M.2i ; v
j
1
/ denote the cofiber of a v1–self-

map (see Davis and Mahowald [15, Proposition 2.3])

v
j
1
W†2j M.2i/!M.2i/:

Corollary 1.7 Every c4–torsion element x 2 ��.tmf/ lifts to an element

Qx 2 tmf�C18M.8; v8
1/

so that the projection to the top cell maps Qx to x.

Given a c4–torsion element x 2 �<192.tmf/, Proposition 1.6 implies it lifts to an
element

Qx 2 tmf�M.8; v8
1/

so that the projection to the top cell maps Qx to x. We will then show that Qx lifts to an
element

Qy 2 ��M.8; v8
1/:

Then the image
y 2 �s

�

given by projecting Qy to the top cell is an element whose image under the tmf–Hurewicz
homomorphism is x.

Every c4–torsion element x0 2 ��192tmf is of the form v32k
2

x for x 2 �<192tmf. We
will prove the following theorem:

Theorem 1.8 There exists a v32
2

–self-map

v32
2 W†

192M.8; v8
1/!M.8; v8

1/:

If Qx 2 tmf�M.8; v8
1
/ is a lift of x, and Qy 2��M.8; v8

1
/ is a lift of Qx, as in the discussion

above, then the resulting element

v32k
2 Qy 2 ��M.8; v8

1/;

obtained by composing with the k–fold iterate of the v32
2

–self-map, projects to an
element y0 2 �s

� which maps to x0 under the tmf–Hurewicz homomorphism.

As in [7], the analysis above rests on a systematic analysis of the homotopy groups
��M.8; v8

1
/. This will be based on computations using the modified Adams spectral

sequence (MASS). The E2–term of the modified Adams spectral sequence will be

Geometry & Topology, Volume 27 (2023)
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analyzed in a region near its vanishing line by means of another spectral sequence, the
algebraic tmf resolution.

The work of [7] was hampered by the fact that all of the algebraic tmf resolution
computations were performed on the level of the E1–term of the algebraic tmf resolution.
In this paper, we will show that the weight spectral sequence, used in the context of
bo resolutions by Lellmann and Mahowald [28] and Beaudry, Behrens, Bhattacharya,
Culver and Xu [4], can be used to analyze the E2–term of the algebraic tmf resolution,
greatly simplifying the computations.

Conventions
� Homology will be implicitly taken with mod 2 coefficients.

� We let A� denote the dual Steenrod algebra, A==A.2/� denote the dual of the
Hopf algebra quotient A==A.2/, and, for an A�–comodule M (or more generally
an object of the stable homotopy category of A�–comodules; see Hovey [21]),
we let

Exts;t
A�
.M /

denote the group Exts;t
A�
.F2;M /.

� Given a Hopf algebroid .B; �/ and a comodule M, we will let C �
�
.M / denote

the associated normalized cobar complex.

� For a spectrum E, we let E� denote its homotopy groups ��E.

Outline of the paper

In Section 2, we recall the modified Adams spectral sequence (MASS), which takes
the form

massE
�;�
2
D ExtA�.H�X ˝H.8; v8

1//) ��.X ^M.8; v8
1//

for a certain object H.8; v8
1
/ in the stable homotopy category of A�–comodules. We

recall how the E2–term of the MASS can be studied using the algebraic tmf resolution,
which is a spectral sequence that takes the form

tmf
algE1.M /�;�;�) Ext�;�

A�
.M /

for any M in the stable category of A�–comodules. We then recall how the E1–term
of the algebraic tmf resolution decomposes as a sum of Ext groups involving tensor

Geometry & Topology, Volume 27 (2023)
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powers of bo Brown–Gitler comodules, and also summarize an inductive method to
compute these Ext groups.

In Section 3, we study the d1–differential in the algebraic tmf resolution for F2, and
introduce a tool, the weight spectral sequence (WSS)

tmf
algE1 D

wssE0)
tmf
algE2;

which serves as an analog of the May spectral sequence and converges to the E2–term of
the algebraic tmf resolution. The E0–page of the v0–localized weight spectral sequence
is identified with the cobar complex of a primitively generated Hopf algebra, and this
allows us to give “names” to the v0–torsion-free classes of tmf

algE1. We include many
charts of summands of tmf

algE1.F2/ corresponding to tensor powers of bo Brown–Gitler
comodules which illustrate this naming convention, and provide the essential data for
the rest of the computations in this paper. Finally, we study the g–local WSS3 using
recent work of Bhattacharya, Bobkova and Thomas [10], and show that many classes
are killed in the g–local WSS by d1–differentials. This is the key fact we will use to
systematically remove obstructions for lifting classes from tmf�X to ��X.

In Section 4 we study the structure of the MASS for M.8; v8
1
/. We recall the structure

of the MASS for tmf�M.8; v8
1
/, and we explain how to adapt the Ext charts of Section 3

to give the corresponding computations of tmf
algE1.H.8; v

8
1
//. We then explain how to

translate the computations of the g–localized algebraic tmf resolution of Section 3 to
the case of H.8; v8

1
/.

Section 5 is dedicated to the proof of Theorem 1.8. We recall the work of Davis,
Mahowald and Rezk, who discovered topological attaching maps between the first two
bo Brown–Gitler spectra which constitute tmf^ tmf, which give extra differentials in
the Adams spectral sequence of tmf^ tmf that kill some g–torsion-free classes. We
then prove a technical lemma (Lemma 5.5) which lifts differentials from the MASS
for tmfs

^M.8; v8
1
/ to the MASS for M.8; v8

1
/. We prove Theorem 1.8 by listing all

elements in tmf
algE1.H.8; v

8
1
// which could detect a nontrivial differential dr .v

32
2
/ in the

MASS for M.8; v8
1
/, and then we systematically eliminate these possibilities. Most of

these classes are g–torsion-free, and are eliminated in the WSS or by using Lemma 5.5.

In Section 6, we explain how v1–periodic computations give an upper bound on the
Hurewicz image.

3Here, g 2 Ext4;24
A�

.F2/ is the element corresponding to the element h4
2;1

in the May spectral sequence
which detects x� in the Adams spectral sequence for the sphere.

Geometry & Topology, Volume 27 (2023)
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Section 7 is devoted to showing this upper bound is sharp, by producing lifts of the
remaining elements of ��tmf to the sphere. We begin by identifying multiplicative
generators of the Hurewicz image in dimensions less than 192, so that it suffices for us to
lift these. We then lift these elements by producing elements in the MASS for M.8; v8

1
/

which we show are permanent cycles, and detect elements of ��M.8; v8
1
/ which

project to the desired elements on the top cell. These elements are then propagated to
v32

2
–periodic families using the self-map, thus proving Theorem 1.2 in all dimensions.
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2 Preliminaries

The techniques and methods of this paper closely follow those of [7]. In this section
we recall some spectral sequences used in that paper.

The modified Adams spectral sequence

Our computations of ��M.8; v8
1
/ and tmf�M.8; v8

1
/ will be performed using the

modified Adams spectral sequence (MASS). We refer the reader to [7, Section 6] for a
complete account of the construction of the MASS and summarize the form it takes here.
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Let StA� denote Hovey’s stable homotopy category of A�–comodules [21]. For objects
M and N of StA� , we define the group

Exts;t
A�
.M;N /D StA�.†

tM;N Œs�/

as a group of maps in the stable homotopy category. Here†tM denotes the t–fold shift
with respect to the internal grading of M, and N Œs� denotes the s–fold shift with respect
to the triangulated structure of StA� . This reduces to the usual definition of ExtA�
when M and N are A�–comodules.

Define H.8/ to be the cofiber of the map

.2.1/ †3F2Œ�3�
h3

0
�! F2

in the stable homotopy category of A�–comodules. Define H.8; v8
1
/ 2 StA� to be the

cofiber

.2.2/ †24H.8/Œ�8�
v8

1
�!H.8/!H.8; v8

1/:

For a spectrum X, the MASS takes the form

massE
s;t
2
.M.8; v8

1/^X /D Exts;t
A�
.H.8; v8

1/˝H�X /) �t�sM.8; v8
1/^X:

Recall the following from [7, Proposition 7.1]:

Proposition 2.3 M.8; v8
1
/ is a weak homotopy ring spectrum.4

It follows that, if X is a ring spectrum, the MASS above is a spectral sequence of
(nonassociative) algebras.

We recall the following key theorem of Mathew:

Theorem 2.4 (Mathew [34]) We have

H�tmfŠA==A.2/�

as an algebra in A�–comodules.

Taking X D tmf^Y for some Y and applying a change-of-rings theorem, the MASS
takes the form

massE
s;t
2
.tmf^M.8; v8

1/^Y /DExts;t
A.2/�

.H.8; v8
1/˝H�Y /) tmft�s.M.8; v8

1/^Y /:

4By this, we mean a spectrum with a possibly nonassociative product and a two-sided unit in the stable
homotopy category.

Geometry & Topology, Volume 27 (2023)
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The algebraic tmf resolution

The E2–page of the MASS for M.8; v8
1
/ will be analyzed using an algebraic analog of

the tmf resolution (as in [7, Section 6]).

The (topological) tmf resolution of a space X is the Adams spectral sequence based on
the spectrum tmf:

tmfE
s;t
1
D �t tmf^ tmfs

^X ) �t�sX:

Here, tmf is the cofiber of the unit

S ! tmf! tmf

and tmfs D tmf^s denotes its s–fold smash power.

The algebraic tmf resolution is an algebraic analog. Namely, let M be an object of the
stable homotopy category of A�–comodules and let A==A.2/� denote the cokernel of
the unit

0! F2!A==A.2/�!A==A.2/�! 0

(note that H�tmf D A==A.2/�). The algebraic tmf resolution of M is a spectral
sequence of the form

tmf
algE

s;t;n
1

.M /D Exts;t
A.2/�

.A==A.2/˝n
� ˝M /) ExtsCn;t

A�
.M /:

bo Brown–Gitler comodules

We recall some material on bo Brown–Gitler comodules. These are A�–comodules
which are the homology of the bo Brown–Gitler spectra constructed by [17]. Mahowald
used integral Brown–Gitler spectra to analyze the bo resolution [30]. The bo Brown–
Gitler comodules play a similar role in the algebraic tmf resolution [6; 31; 15; 8; 7].

Endow the mod 2 homology of the connective real K–theory spectrum

H�.bo/ŠA==A.1/� D F2Œ�
4
1 ; �

2
2 ; �3; : : : �

with a multiplicative grading by declaring the weight of �i to be

.2.5/ wt.�i/D 2i�1:

The i th bo Brown–Gitler comodule is the subcomodule

boi D F4iA==A.1/� �A==A.1/�
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spanned by monomials of weight less than or equal to 4i . It is isomorphic as an
A�–comodule to the homology of the i th bo Brown–Gitler spectrum boi .

The analysis of the E1–page of the algebraic tmf resolution is simplified via the
decomposition of A.2/�–comodules

A==A.2/� Š
M
i>0

†8iboi

of [6, Corollary 5.5]. We therefore have a decomposition of the E1–page of the
algebraic tmf resolution for M given by

.2.6/ tmf
algE

s;t;n
1

.M /Š
M

i1;:::;in>0

Exts;t
A.2/�

.†8.i1C���Cin/boi1
˝ � � �˝ boin

˝M /:

For any M, the computation of

Exts;t
A.2/�

.†8.i1C���Cin/boi1
˝ � � �˝ boin

˝M /

can be inductively determined from ExtA.2/�.bo˝k
1
˝M / by means of a set of exact

sequences of A.2/�–comodules, which relate the boi [6, Section 7] (see also [8]),

0!†8j boj ! bo2j !A.2/==A.1/�˝ tmfj�1!†8jC9boj�1! 0;.2.7/

0!†8j boj ˝ bo1! bo2jC1!A.2/==A.1/�˝ tmfj�1! 0:.2.8/

Here tmfj is the j th tmf–Brown–Gitler comodule — it is the subcomodule of

H�.tmf/ŠA==A.2/� D F2Œ�
8
1 ; �

4
2 ; �

2
3 ; �4; : : : �

spanned by monomials of weight less than or equal to 8j.5

The exact sequences (2.7) and (2.8) can be reexpressed as resolutions in the stable
homotopy category of A.2/�–comodules

bo2j !A.2/==A.1/�˝ tmfj�1!†8jC9boj�1!†8j boj Œ2�;

bo2jC1!A.2/==A.1/�˝ tmfj�1!†8j boj ˝ bo1Œ1�;

5Technically speaking, as is addressed in [6, Section 7], the comodules A.2/==A.1/�˝tmfj�1 in the above
exact sequences have to be given a slightly different A.2/�–comodule structure from the standard one
arising from the tensor product. However, this different comodule structure ends up being Ext–isomorphic
to the standard one. As we are only interested in Ext groups, the reader can safely ignore this subtlety.

Geometry & Topology, Volume 27 (2023)



2776 Mark Behrens, Mark Mahowald and J D Quigley

which give rise to spectral sequences

.2.9/

E
n;s;t
1
D

8̂̂̂<̂
ˆ̂:

Exts;t
A.1/�

.tmfj�1˝M /; nD 0;

Exts;t
A.2/�

.†8jC9boj�1˝M Œ�1�/; nD 1;

Exts;t
A.2/�

.†8j boj ˝M /; nD 2;

0; n> 2

9>>>=>>>;) Exts;t
A.2/�

.bo2j ˝M /;

E
n;s;t
1
D

8̂<̂
:

Exts;t
A.1/�

.tmfj�1˝M /; nD 0;

Exts;t
A.2/�

.†8j boj ˝ bo1˝M /; nD 1;

0; n> 1

9>=>;) Exts;t
A.2/�

.bo2jC1˝M /:

These spectral sequences have been observed to collapse in low degrees (see [8]) but it
is not known if they collapse in general. They inductively build ExtA.2/�.boi ˝M /

out of ExtA.2/�.bo˝k
1
˝M / and ExtA.1/�.tmfj ˝M /.

3 Analysis of the algebraic tmf resolution

In this section we will compute the d1–differential in the algebraic tmf resolution, and
will introduce a tool, the weight spectral sequence (WSS), which is a variant of the May
spectral sequence that converges to the E2–page of the algebraic tmf resolution.

The d1–differential in the algebraic tmf resolution

Our approach to understanding the d1–differential in the algebraic tmf resolution will
be to compute it on v0–torsion-free classes, and then infer its effect on v0–torsion
classes by means of linearity over ExtA�.F2/.

Consider the algebraic BPh2i and algebraic BP resolutions
BPh2i

algEs;t;n
D Exts;t

EŒ2��
.A==EŒ2�˝n

� /) ExtsCn;t
A�

.F2/;

BP
algEs;t;n

D Exts;t
E�
.A==E˝n

� / ) ExtsCn;t
A�

.F2/:

Here EŒ2�DEŒQ0;Q1;Q2� and E DEŒQ0;Q1;Q2; : : : � denote subalgebras of the
Steenrod algebra, where Qi are the Milnor generators dual to �iC1 2A�.

The d1–differential in the algebraic tmf resolution may be studied by means of the
zigzag

.3.1/ tmf
algE

�;�;�
1

!
BPh2i

algE
�;�;�
1

 
BP
algE

�;�;�
1

:

Note that
BP
algE

�;�;n
1

Š F2Œv0; v1; v2; : : : �˝F2Œ�
2
1
; �2

2
; : : : �˝n;
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where F2Œ�
2
1
; �2

2
; : : : � denotes the cokernel of the unit

F2! F2Œ�
2
1 ; �

2
2 ; : : : �:

The Adams spectral sequences

BP
algE

n;�;�
1

D
ass
�;�E2.BP^BPn/) C n

BP�BP.BP�/

collapse, where C �BP�BP is the normalized cobar complex for BP�BP, and

�2
i 2A==E� detects ti 2 BP�BP:

We conclude:

Lemma 3.2 The d1–differential in the algebraic BP resolution is the associated graded
of the differential in the cobar complex for BP�BP with respect to Adams filtration.

The weight spectral sequence

Endow the normalized cobar complex

C �.A�;A�;F2/

with a decreasing filtration by weight by defining

wt.a0Œa1 j � � � j as �/D wt.a1/C � � �Cwt.as/:

Applying ExtA�.F2;�/ to the resulting filtered A�–comodule produces a variant of
the May spectral sequence, which we will call the modified May spectral sequence
(MMSS),6

.3.3/ mmssE
w;s;t
0
D C �

E0A�
.F2/) Exts;t

A�
.F2/:

Since E0A� is primitively generated, we have

mmssE
�;�
1
D F2Œhi;j W i � 1; j � 0�:

The map tmf!H induces an inclusion

ˆ WH�.tmf^ tmfn/ ,!H�.H ^H n/Š C n.A�;A�;F2/:

Under this inclusion, the weight filtration restricts to a decreasing filtration on

H�.tmf^ tmfn/ŠA==A.2/�˝A==A.2/˝n
�

6The authors of [29] construct a similar modified May spectral sequence, but with a slightly different
filtration.
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by A�–subcomodules. Because the weights of all of the generators of A==A.2/� are
divisible by 8, we actually work with weights divided by 8. Applying ExtA.2/�.F2;�/

and taking cohomology, we get the weight spectral sequence (WSS)
wssE

w;n;s;t
0

D

M
i1C���CinDw

Exts;t
A.2/�

.boi1
˝ � � �˝ boin

/) tmf
algE

n;s;t
2

:

The WSS serves as an analog of the May spectral sequence for the algebraic tmf
resolution.

The map ˆ above induces a map of spectral sequences

.3.4/

wssE
w;n;0;t
0

+3

ˆ�
��

tmf
algE

n;0;t
0

ˆ�
��

mmssE
8w;n;t
0

// Extn;t
A�
.F2/

The v0–localized algebraic tmf resolution

Observe that we have

.3.5/ v�1
0 ExtA.2/�.F2/D F2Œv

˙
0 ; v

4
1 ; v

2
2 �:

Note that c4; c6 2 .tmf�/Q are detected in the v0–localized ASS by v4
1

and v3
0
v2

2
,

respectively.

We recall from [8] that

.3.6/ v�1
0 Ext�;�

A.2/�
.A==A.2/�/D F2Œv

˙
0 ; v

4
1 ; v

2
2 �Œ�

8
1 ; �

4
2 �

and that there is an isomorphism

.3.7/ v�1
0 ExtA.2/�.boi/Š F2Œv

˙
0 ; v

4
1 ; v

2
2 �f�

8i0

1 �4i00

2 giDi0Ci00 :

We will now compute the localized E1–page v�1
0

wssE1. The following is immediate
from the computation of the cobar differential (modulo terms of higher Adams filtration)
on the elements �8

1
and �4

2
, using (3.6), (3.7) and (3.1):

Proposition 3.8 There is an isomorphism of differential graded algebras

v�1
0

wssE
�;n;�;�
0

Š F2Œv
˙
0 ; v

4
1 ; v

2
2 �˝C n

F2Œ�
8
1
;�4

2
�
;

where F2Œ�
8
1
; �4

2
� is regarded as a primitively generated Hopf algebra.

Corollary 3.9 There is an isomorphism

v�1
0

wssE1 D F2Œv
˙
0 ; v

4
1 ; v

2
2 �˝F2Œh1;3; h1;4; : : : ; h2;2; h2;3; : : : �:
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Charts

For the convenience of the reader we include some charts of ExtA.2/�.bok
1
/ for 0�k�3

as well as ExtA.2/�.bo2/.

ExtA.2/�
.F2/ (see Figure 2) All the elements are c4D v

4
1

–periodic and v8
2

–periodic.
Exactly one v4

1
–multiple of each element is displayed with the � replaced by a ı.

Observe the wedge pattern beginning in t � s D 35. This pattern is infinite, propagated
horizontally by h2;1–multiplication and vertically by v1–multiplication. Here h2;1 is
the name of the generator in the May spectral sequence of bidegree .t � s; s/D .5; 1/,
and h4

2;1
D g.

ExtA.2/�
.bo˝k

1
/ for kD 1; 2 ; 3 (Figure 3) Every element is v8

2
–periodic. However,

unlike ExtA.2/�.F2/, not every element of these Ext groups is v4
1

–periodic. Rather, it is
the case that an element x 2 ExtA.2/�.bo˝k

1
/ either satisfies v4

1
x D 0 or is v4

1
–periodic.

The v4
1

–periodic elements fit into families which look like shifted and truncated copies
of ExtA.1/�.F2/ and are labeled with a ı. We have only included the beginning of
these v4

1
–periodic patterns in the chart. The other generators are labeled with a �.

A indicates a polynomial algebra F2Œh2;1�.

ExtA.2/�
.bo2/ (Figure 4) Via the spectral sequence (2.9), this Ext chart is assembled

out of ExtA.1/�.F2/, ExtA.2/�.†
8bo1/ and ExtA.2/�.†

17F2Œ�1�/.

h2 ;1–towers

Our computations of the MASS for M.8; v8
1
/ will rely on a detailed understanding of

this spectral sequence near its vanishing line. Since M.8; v8
1
/ is a type 2 complex, the

Hopkins–Smith periodicity theorem [20] implies that the E1–page of this MASS has a
vanishing line of slope 1=jv2j D

1
6

. However, g D h4
2;1

is not nilpotent in the modified
Ext groups ExtA�.H.8; v

8
1
//, and h2;1–multiplication has slope 1

5
. The goal of this

subsection is to show that many of the h2;1–towers in the E1–page of the algebraic tmf
resolution actually kill each other off by the E2–page of the algebraic tmf resolution.
We will then identify specific h2;1–periodic elements of ExtA�.F2/ that some of these
remaining h2;1–towers detect.

Consider the quotient Hopf algebra C� WD F2Œ�2�=.�
4
2
/ of A.2/�, with

Ext�;�
C�
.F2/D F2Œv1; h2;1�:
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Lemma 3.10 Let C.v8
2
/ be the cofiber of the map

v8
2 W†

56F2Œ�8�! F2

in the stable homotopy category StA.2/� . For any M 2 StA.2/� there is an isomorphism

g�1 ExtA.2/�.M ˝C.v8
2//Š h�1

2;1 ExtC�.M /:

Proof Since the element v8
2
2 ExtA.2/�.F2/ maps to zero in ExtC�.F2/, it follows that

there is a factorization
F2

//

��

A.2/==C�

C.v8
2
/

99

in StA.2/� . Explicit computation reveals

g�1 ExtA.2/�.F2/D F2Œv
8
2 ; v1; h

˙
2;1�

and it follows that the map

g�1C.v8
2/! g�1A.2/==C�

induces an isomorphism on ExtA.2/� , and is hence an equivalence. The result follows.

Corollary 3.11 For any M 2 StA.2/� , there is a v8
2

–Bockstein spectral sequence

h�1
2;1 ExtC�.M /˝F2Œv

8
2 �) g�1 ExtA.2/�.M /:

Bhattacharya, Bobkova and Thomas [10] computed the P1
2

–Margolis homology of
the tmf resolution, and in the process computed the structure of A==A.2/˝n

� as C�–
comodules. From this one can read off the Ext groups

h�1
2;1 ExtC�.A==A.2/

˝n
� /;

which in turn determines the g–local algebraic tmf resolution by Corollary 3.11 (the
spectral sequence in this corollary will collapse in the cases we consider it).

To state the results of [10], we will need to introduce some notation. The coaction
of F2Œ�2�=�

4
2

is encoded in the dual action of the algebra EŒQ1;P
1
2
� on A==A.2/˝n

� .
Define elements

xi;j D 1˝ � � �˝ 1˝ �iC3„ƒ‚…
j

˝1˝ � � �˝ 1; ti;j D 1˝ � � �˝ 1˝ �4
iC1„ƒ‚…
j

˝1˝ � � �˝ 1

in A==A.2/˝n
� . The weight filtration on A==A.2/� induces a multiweight filtration

on A==A.2/˝n
� indexed by n–tuples of weights. The generators xi;j and ti;j have
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multiweight
.0; : : : ; 0; 2iC2„ƒ‚…

j

; 0; : : : ; 0/:

For sets of multi-indices

I D f.i1; j1/; : : : ; .ik ; jk/g; I 0 D f.i 01; j
0
1/; : : : ; .i

0
k0 ; j

0
k0/g

with I \ I 0 D∅, let
xI tI 0 2A==A.2/�

denote the corresponding monomial. The action of the algebra EŒQ1;P
1
2
� on the

F2–submodule of A==A.2/˝n
� spanned by such monomials is given by

Q1.xI tI 0/D
X
`

xI�f.i`;j`/gtI 0[f.i`;j`/g;

P1
2 .xI tI 0/D

X
`<`0

xI�f.i`;j`/;.i`0 ;j`0 /g
tI 0[f.i`;j`/;.i`0 ;j`0 /g

:

For an ordered set
J D ..i1; j1/; : : : ; .ik ; jk//

of multi-indices, let
jJ j WD k

denote the number of pairs of indices it contains. Define linearly independent sets of
elements

TJ �A==A.2/˝n
�

inductively as follows. Define
T.i;j/ D fxi;j g:

For J as above with jJ j odd, define

TJ ;.i;j/ D fz �xi;j gz2TJ
;

TJ ;.i;j/;.i0;j 0/ D fQ1.z �xi;j /xi0;j 0gz2TJ
[fQ1.z �xi0;j 0/xi;j gz2TJ

:

Let
NJ �A==A.2/˝n

�

denote the F2–subspace with basis

Q1TJ WD fQ1.z/gz2TJ
:

While the set TJ depends on the ordering of J, the subspace NJ does not.

Finally, for a set of pairs of indices

J D f.i1; j1/; : : : ; .ik ; jk/g
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as before, define
xJ tJ WD xi1;j1

ti1;j1
� � �xik ;jk

tik ;jk
:

The following is the main theorem of [10]:7

Theorem 3.12 (Bhattacharya, Bobkova and Thomas) As modules over F2Œh
˙
2;1
; v1�,

we have

h�1
2;1 Ext�;�

EŒQ1;P
1
2
�
.A==A.2/˝n

� /

D F2Œh
˙
2;1�˝

�
F2Œv1�fxJ 0 tJ 0gJ 0 ˚

M
jJ j odd

NJ fxJ 0 tJ 0gJ\J 0D∅

˚

M
jJ j¤0 even

F2Œv1�=v
2
1 ˝NJ fxJ 0 tJ 0gJ\J 0D∅

�
;

where J and J 0 range over the subsets of

f.i; j / W 1� i; 1� j � ng

and v1 acts trivially on NJ for jJ j odd. The summand

h�1
2;1 Ext�;�

EŒQ1;P
1
2
�
.boi1

˝ � � �˝ boin
/

is spanned by those monomials of multiweight .8i1; : : : ; 8in/.

In light of Lemma 3.10 and Corollary 3.11, we may refer to elements of the g–local
algebraic tmf resolution as v8j

2
z, where z is an element of the h2;1–localized Ext groups

described in the theorem above.

Lemma 3.13 The WSS d0–differential on the element

x1;1t1;1 2 g�1 Ext�;�
A.2/�

.bo2/

is given by
dwss

0 .x1;1t1;1/DQ1.x1;1x1;2/ 2 ExtA.2/�.bo˝2
1
/:

Proof We use the map of spectral sequences

wssE0! g�1wssE0:

7The main theorem of [10] is a computation of P1
2

–Margolis homology, but the actual content of the paper
is a decomposition of A==A.2/� in the stable module category of EŒQ1;P

1
2
�.
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By explicit computation of g�1 ExtA.2/�.bo2/, under the map

ExtA.2/�.bo2/! g�1 ExtA.2/�.bo2/

we have
v�1

0 v2
2�

8
1�

4
2 7! h2;1x1;1t1;1:

In the WSS, we have

.3.14/ dwss
0 .v�1

0 v2
2�

8
1�

4
2/D v

�1
0 v2

2 Œ�
8
1 ; �

4
2 �:

Again, by explicit computation of g–local Ext groups, under the map

ExtA.2/�.bo˝2
1
/! g�1 ExtA.2/�.bo˝2

1
/

we have
v�1

0 v2
2 Œ�

8
1 ; �

4
2 � 7! h2;1Q1.x1;1x1;2/:

Proposition 3.15 In g�1wssE0, all of the h2;1–towers coming from ExtA.2/�.bo˝k
1
/

for k � 2 either support nontrivial d0–differentials or are the target of d0–differentials.

Proof By Lemma 3.10 and Theorem 3.12, the h2;1–towers coming from

ExtA.2/�.bo˝k
1
/

are supported by the elements Tf.1;1/;:::;.1;k/g. By Lemma 3.13, the WSS d0 induces a
surjection for k D 2,

dwss
0 W F2Œh

˙
2;1; v1; v

8
2 �fx1;1t1;1g� F2Œh

˙
2;1; v1; v

8
2 �=v

2
1 ˝Nf.1;1/;.1;2/g:

For k > 2, observe that

T.1;1/;:::;.1;k/ DQ1.x1;1x1;2/T.1;3/;:::;.1;k/[Q1.x1;2x1;3/Tf.1;1/;.1;4/;:::;.1;k/g:

For k > 2 even, the WSS d0 gives isomorphisms

dwss
0 W F2Œh

˙
2;1; v1; v

8
2 �=v

2
1 ˝x1;1t1;1Nf.1;2/;:::;.1;k�1/g

Š�! F2Œh
˙
2;1; v1; v

8
2 �=v

2
1 ˝Q1.x1;1x1;2/Nf.1;3/;:::;.1;k/g;

dwss
0 W F2Œh

˙
2;1; v1; v

8
2 �=v

2
1 ˝x1;2t1;2Nf.1;1/;.1;3/;:::;.1;k�1/g

Š�! F2Œh
˙
2;1; v1; v

8
2 �=v

2
1 ˝Q1.x1;2x1;3/Nf.1;1/;.1;4/;:::;.1;k/g;

and, for k > 2 odd, the WSS d0 gives isomorphisms

dwss
0 W F2Œh

˙
2;1; v

8
2 �˝x1;1t1;1Nf.1;2/;:::;.1;k�1/g

Š�! F2Œh
˙
2;1; v

8
2 �˝Q1.x1;1x1;2/Nf.1;3/;:::;.1;k/g;

dwss
0 W F2Œh

˙
2;1; v

8
2 �˝x1;2t1;2Nf.1;1/;.1;3/;:::;.1;k�1/g

Š�! F2Œh
˙
2;1; v

8
2 �˝Q1.x1;2x1;3/Nf.1;1/;.1;4/;:::;.1;k/g:

Geometry & Topology, Volume 27 (2023)



The 2–primary Hurewicz image of tmf 2787

We shall denote the elements of the Mahowald–Tangora wedge [32] in ExtA�.F2/ by8

vi
1h

j
2;1

g2; i � 0; j � 0:

Recall that the Mahowald operator

M D hg2; h
3
0;�i

leads to an infinite collection of wedges

M k.vi
1h

j
2;1

g2/ 2 ExtA�.F2/

with nonzero image in

ExtB�.F2/D ExtA.2/�.F2/Œv3�;

where B� is the quotient algebra

.3.16/ B� WD F2Œ�1; �2; �3; �4�=.�
8
1 ; �

4
2 ; �

2
3 ; �

2
4/

of A� [33; 23]. The existence of the element �2g2 2 ExtA�.F2/ gives elements

�2mM k.vi
1h

jC8m
2;1

g2/ 2 ExtA�.F2/:

These elements are all linearly independent, since they project to linearly independent
elements of ExtB�.F2/.

The following proposition gives the elements of ExtA.2/� that some of the remaining
h2;1–towers in ExtA.2/� detect in the algebraic tmf resolution:

Proposition 3.17 The following table lists , for i � 0, m � 0 and j � 4, an A.2/�–
comodule M, an h2;1–tower in g�1 ExtA.2/�.M /, the corresponding h2;1–tower in
ExtA.2/�.M /, and an h2;1–tower in ExtA�.F2/ that it detects in the algebraic tmf
resolution (assuming the latter is nonzero):

M g�1 ExtA.2/�.M / ExtA.2/�.M / ExtA�.F2/

F2 �2mvi
1h

jC8mC8
2;1 �2mvi

1h
jC8m
2;1 g2 �2mvi

1h
jC8m
2;1 g2

bo1 �2mh
jC8mC4
2;1

Q1.x1;1/ �2mh
jC8mC4
2;1

�4
2

�2mh
jC8m
2;1

n

bo2
�2mh

jC8mC6
2;1

Q1.x2;1/ �2mh
jC8mC1
2;1 g.h2;1v

�2
0 v2

2�
16
1 / �2mh

jC8m
2;1 Q2

�2mviC2
1

h
jC8mC11
2;1

x1;1t1;1 �2mviC2
1

h
jC8mC2
2;1

g2.v�1
0
v2

2
�8

1
�4

2
/ �2mvi

1
h

jC8m
2;1

Mg2

8This notation is slightly misleading, as there are a few wedge elements for which the P operator does not
take the element we are denoting by vi

1
x to the element we are denoting by viC4

1
x, but we justify this

notation by the fact that the wedge elements map to elements with such names in ExtA.2/�.F2/.

Geometry & Topology, Volume 27 (2023)



2788 Mark Behrens, Mark Mahowald and J D Quigley

(Note that the notation Q2 in the above table refers to the name of the generator of
Ext7;57C7

A�
.F2/, and not the Milnor generator Q2 2A.)

Proof The classes corresponding to �2mvi
1
hk

2;1
are clear, because they are in the

image of the map
ExtA�.F2/! ExtA.2/�.F2/:

In the case of the classes corresponding to �2mhk
2;1

n and �2mhk
2;1

Q2, we consider
the h

j
2;1

–multiples of n and Q2 2 ExtA�.F2/ for j � 4:

gn; gt; rn; mn; g2n; : : : ; gQ2; gC0; rQ2; mQ2; g2Q2; : : : :

It suffices to show that
n; t; Q2; C0

are detected in the algebraic tmf resolution by

.3.18/ h4
2;1�

4
2 C˛1; h5

2;1�
4
2 C˛2; h6

2;1v
�2
0 v2

2�
16
1 C˛3; h7

2;1v
�2
0 v2

2�
16
1 C˛4;

where g˛i D r˛i Dm˛i D 0.

Examination of a computer calculation of ExtA�.A==A.2/
˝2
� / reveals that none of the

elements n, t , Q2 and C0 are in the image of the map

.3.19/ Ext�;�
A�
.A==A.2/˝2

� /! Ext�C2;�
A�

.F2/:

Since the elements n, t , Q2 and C0 map to zero in ExtA.2/�.F2/, they must therefore
be detected on the 1–line of the algebraic tmf resolution. Examination of the relevant
Ext charts reveals the only possibility is for the elements to be detected by classes of
the form (3.18).

If we consider the class Mg 2ExtA�.F2/, one can check both that it is not in the image
of (3.19), and that the only class in ExtA.2/�.A==A.2/�/ which can detect it is the class

e2
0.v
�1
0 v2

2�
8
1�

4
2/ 2 ExtA.2/�.bo2/:

It follows from the multiplicative structure of the wedge and the fact that

ge2
0 D v

2
1h2

2;1g2;

that the elements vi
1
h

j
2;1

Mg2 2 ExtA�.F2/ are detected by

viC2
1

h
jC2
2;1

g2.v�1
0 v2

2�
8
1�

4
2/ 2 ExtA.2/�.bo2/

for i � 0 and j � 4.
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4 The MASS for M.8; v8
1
/

In this and the following sections, we shall use the notation

xŒk�

to denote an element of ExtA.2/�.M ˝H.8; v8
1
// detected by an element

x 2 ExtA.2/�.M /

on the k–cell of H.8; v8
1
/ for k 2 f0; 1; 17; 18g.

The MASS for tmf�M.8; v8
1
/

The computation of ExtA.2/�.H.8; v
8
1
// is depicted in Figure 5. In this figure, solid dots

correspond to classes carried by the “0–cell” of H.8; v8
1
/, and open circles correspond

to classes carried by the “1–cell” of H.8; v8
1
/. The large solid circles correspond to

h0–torsion-free classes of ExtA.2/�.F2/ on the 0–cell of H.8; v8
1
/. The classes with

solid boxes around them support h2;1–towers. Everything is v8
2

–periodic.

Figure 6 depicts the differentials in the MASS for tmf^M.8; v8
1
/ through the same

range; the complete computation of this MASS can be similarly accomplished. An
explanation of how to determine these differentials can be found in [7].

The algebraic tmf resolution for H.8; v8
1
/

The following lemma explains that, in our H.8; v8
1
/ computations, we may disregard

terms coming from ExtA.1/� in the sequence of spectral sequences (2.9):

Lemma 4.1 [7, Lemma 8.8] In the algebraic tmf resolution for M DH.8; v8
1
/, the

terms
ExtA.1/�.something/

in (2.9) do not contribute to Exts;t
A�
.H.8; v8

1
// if

s > 1
7
.t � s/C 51

7
:

For n> 0 and i1; : : : ; in > 0, the terms

Exts;t
A.2/�

.boi1
˝ � � �˝ boin

˝H.8; v8
1//

that are the terms in the algebraic tmf resolution for H.8; v8
1
/ are in some sense less

complicated than ExtA.2/�.H.8; v
8
1
//.
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Figure 5: The groups ExtA.2/�.H.8; v
8
1//.
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Figure 6: The MASS for tmf^M.8; v8
1/.
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Figure 7: ExtA.2/�.bo1˝H.8; v8
1
//.

Geometry & Topology, Volume 27 (2023)



The 2–primary Hurewicz image of tmf 2793

Most of the features of these computations can already be seen in the computation
of ExtA.2/�.bo1˝H.8; v8

1
//, which is displayed in Figure 7. This computation was

performed by taking the computation of ExtA.2/�.bo1/ (see for example [6]) and
running the long exact sequences in Ext associated to the cofiber sequences

†3bo1Œ�3�
h3

0
�! bo1! bo1˝H.8/;

†24bo1˝H.8/Œ�8�
v8

1
�! bo1˝H.8/! bo1˝H.8; v8

1/:

In Figure 7, as before, solid dots represent generators carried by the 0–cell of H.8; v8
1
/

and open circles are carried by the 1–cell. Unlike the case of ExtA.2/�.H.8//, there is
v8

1
–torsion in ExtA.2/�.bo1˝H.8//. This results in classes in ExtA.2/�.bo1˝H.8; v8

1
//

carried by the 17–cell and the 18–cell of H.8; v8
1
/, which are represented by solid

triangles and open triangles, respectively. A box around a generator indicates that it
actually carries a copy of F2Œh2;1�. As before, everything is v8

2
–periodic.

One can similarly compute

ExtA.2/�.bo˝k
1
˝H.8; v8

1//

for larger values of k by applying the same method to the corresponding computations
of

ExtA.2/�.bo˝k
1
/

in [6]. We do not bother to record the complete results of these computations for small
values of k, but will freely use them in what follows. The spectral sequences (2.9)
imply these computations control ExtA.2/�.boI /.

h2 ;1–towers in the algebraic tmf resolution for H.8; v8
1
/

Theorem 3.12 has the following implication for the g–local algebraic tmf resolution of
H.8; v8

1
/:

h�1
2;1 Ext�;�

EŒQ1;P
1
2
�
.A==A.2/˝n

� ˝H.8; v8
1//

DF2Œh
˙
2;1�

�̋
F2Œv1�=v

8
1˝H.8/fxJ 0 tJ 0gJ 0˚

M
jJ j odd

NJ ˝H.8; v8
1/fxJ 0 tJ 0gJ\J 0D∅

˚

M
jJ j¤0 even

F2Œv1�=v
2
1 ˝NJ ˝H.8; v8

1/fxJ 0 tJ 0gJ\J 0D∅

�
;

where J and J 0 range over the subsets of

f.i; j / W 1� i; 1� j � ng:
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This leads to the following twist in the analog of Proposition 3.15:

Proposition 4.2 In g�1wssE0.H.8; v
8
1
//, all of the h2;1–towers coming from

ExtA.2/�.bo˝k
1
˝H.8; v8

1//

for k � 3 are either the source of a nontrivial d0–differential or the target of a d0–
differential. For k D 2, the h2;1–towers

v�1h
j
2;1

Q1.x1;1x1;2/Œn�

are killed for � 2 f0; 1g and n 2 f0; 1g (but the corresponding towers with n 2 f17; 18g

are not killed).

Proof Everything is identical to the proof of Proposition 3.15, except that the differ-
entials

dwss
0 W F2Œv1; h

˙
2;1�=v

8
1fx1;1t1;1g˝H.8/! F2Œv1; h

˙
2;1�=v

2
1fQ1.x1;1x1;2/g˝H.8; v8

1/

now have nontrivial kernel and cokernel.

We now give elements of ExtA�.H.8; v
8
1
// which these remaining h2;1–towers detect

in the algebraic tmf resolution. Note that, as pointed out in [33], the Mahowald operator
satisfies

h3
0M.x/D 0;

which implies that, for any x 2 ExtA�.F2/, there exists a lift

M.x/Œ1� 2 ExtA�.H.8//

and thus an element M.x/Œ1� 2 ExtA�.H.8; v
8
1
//. Furthermore, the element �2 D v8

2

exists in ExtA�.H.8; v
8
1
// (see Lemma 5.1 below). We conclude that, for 0 � i � 7,

j ; k; l � 0 and � 2 f0; 1g, the wedge elements

vi
1h

j
2;1
�2kM lg2Œ�� 2 ExtA�.H.8; v

8
1//

exist, and we see they are linearly independent by mapping to ExtB�.H.8; v
8
1
// (where

B� is as defined in (3.16)).

Proposition 4.3 The following table lists , for m � 0, 0 � i � 7, 0 � i 0 � 5,
j � 4, k 2 f0; 1; 17; 18g and �; �0 2 f0; 1g, an A.2/�–comodule M, an h2;1–tower in
g�1 ExtA.2/�.M˝H.8;v8

1
//, the corresponding h2;1–tower in ExtA.2/�.M˝H.8;v8

1
//

and an h2;1–tower in ExtA�.H.8; v
8
1
// that it detects in the algebraic tmf resolution:
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M g�1 ExtA.2/�.M˝H.8; v8
1
// ExtA.2/�.M˝H.8; v8

1
// ExtA�.H.8; v

8
1
//

F2 �2mvi
1
h

jC8
2;1

Œ�� �2mvi
1
h

j
2;1

g2Œ�� �2mvi
1
h

j
2;1

g2Œ��

bo1 �2mh
jC4
2;1

Q1.x1;1/Œk� �2mh
jC4
2;1

�4
2
Œk� �2mh

j
2;1

nŒk�

�2mh
jC6
2;1

Q1.x2;1/Œk� �2mh
jC1
2;1

g.h2;1v
�2
0
v2

2
�16

1
/Œk� �2mh

j
2;1

Q2Œk�

bo2 �2mvi0C2
1

h
jC11
2;1

x1;1t1;1Œ��
�2mvi0C2

1
h

jC2
2;1 �2mvi0

1
h

j
2;1

Mg2Œ��
�g2.v�1

0 v2
2�

8
1�

4
2/Œ��

bo˝2
1

v�
0

1 �
2mh

jC11
2;1 �2mv�

0

1 h
jC2
2;1 �2mv6C�0

1 h
j
2;1Mg2Œ��

�Q1.x1;1x1;2/Œ17C�� �g2.v�1
0
v2

2
Œ�8

1
; �4

2
�/Œ17C��

Proof The cases of

�2mvi
1h

j
2;1

g2Œ��; �2mh
j
2;1

nŒ��; �2mh
j
2;1

Q2Œ��; �2mvi0

1 h
j
2;1

Mg2Œ��

follow immediately from Proposition 3.17 since all of these elements are annihilated
by v3

0
.

The elements

h
jC4
2;1

�4
2 2 ExtA.2/�.bo1/; h

jC6
2;1

�16
1 2 ExtA.2/�.bo2/

lift to elements

.4.4/
h

jC4
2;1

�4
2 Œ17C �� 2 ExtA.2/�.bo1˝H.8; v8

1//;

h
jC6
2;1

�16
1 Œ17C �� 2 ExtA.2/�.bo2˝H.8; v8

1//:

One can explicitly check that the lifts (4.4) are permanent cycles in the algebraic tmf
resolution. Therefore they detect the desired elements

h
j
2;1

nŒ17C ��; h
j
2;1

Q2Œ17C �� 2 ExtA�.H.8; v
8
1//:

Applying case (5) of the geometric boundary theorem [5, Lemma A.4.1] to the triangle

H.8; v8
1/Œ�1�!†24H.8/Œ�8�

v8
1
�!H.8/!H.8; v8

1/

and the differential

d1.v
�0

1 h
jC2
2;1

g2.v�1
0 v2

2�
8
1�

4
2//D v

�0

1 h
jC2
2;1

g2.v�1
0 v2

2 Œ�
8
1 ; �

4
2 �/

in the algebraic tmf resolution for †24H.8/Œ�8� (3.14), we find that the images of the
elements

v8C�0

1
h

j
2;1

M.g2/Œ�� 2 ExtA�.H.8//
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under the map
ExtA�.H.8//! ExtA�.H.8; v

8
1//

are detected by the elements

v�
0

1 h
jC2
2;1

g2.v�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ17C ��

in the algebraic tmf resolution for H.8; v8
1
/.

5 The v32
2

–self-map on M.8; v8
1
/

We now endeavor to prove Theorem 1.8. We first recall the following lemma:

Lemma 5.1 [7, Lemma 7.6] The element

v8
2 2 Ext8;48C8

A.2/�
.H.8; v8

1//

is a permanent cycle in the algebraic tmf resolution , and gives rise to an element

v8
2 2 Ext8;48C8

A�
.H.8; v8

1//:

It follows from the Leibniz rule that v32
2

persists to the E4–page of the MASS for
M.8; v8

1
/. Our task will then be reduced to showing that dr .v

32
2
/D 0 for r � 4. We

will do this by identifying the potential targets of such a differential, and show that they
are either the source or target of shorter differentials. This will necessitate lifting certain
differentials from the MASS for tmf^ tmfn ^M.8; v8

1
/ to the MASS for M.8; v8

1
/.

As explained in [8, Section 7.4], work of the second author, Davis and Rezk [31; 15]
implies that the algebraic map

ExtA.2/.†
8bo1˚†

16bo2/! ExtA.2/�.A==A.2/�/

realizes to a map

.5.2/ tmf^ tmf2! tmf^ tmf;

where tmf ^ tmf2 is a spectrum built out of tmf ^†8bo1 and tmf ^†16bo2. They
furthermore show that there is a map

.5.3/ †32tmf! tmf^ tmf2;

which geometrically realizes the inclusion of the direct summand (2.9),

ExtA.2/�.†
33F2Œ�1�/ ,! ExtA.2/�.†

16bo2/� ExtA.2/�.†
8bo1˚†

16bo2/:
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The attaching map from tmf^ bo2 to tmf^ bo1 in the spectrum tmf^ tmf2 induces
d3–differentials from the h2;1–towers in bo2 to the h2;1–towers in bo1 in the ASS for
tmf^ tmf under the map (5.2). Furthermore, there are differentials in the ASSs for
tmf^bo1, tmf^bo2 and tmf, which induce differentials in the ASS for tmf^ tmf under
the maps (5.2) and (5.3). We wish to study when these differentials (and more generally
differentials in the ASS for tmf^ tmfn) lift via the tmf resolution to differentials in the
ASS for the sphere.

To this end we consider the partial totalizations

T n
WD Totn.tmf�C1/

of the cosimplicial tmf resolution of the sphere, so that we have

S ' lim
 ��

n

T n

and fiber sequences
†�ntmf^ tmfn

! T n
! T n�1:

The spectrum T n is a ring spectrum, and in particular has a unit

S ! T n:

We let

.5.4/ T n
D Totn.A==A.2/˝�C1

� /

denote the corresponding construction in the stable homotopy category of A�–co-
modules. There is a MASS

Ext�;�
A�
.T n
˝H.8; v8

1//) T n
�M.8; v8

1/

and the algebraic tmf resolution for H.8; v8
1
/ truncates to give an algebraic tmf resolu-

tion
nM

iD0

Ext�;�
A.2/�

.A==A.2/˝i
� ˝H.8; v8

1//) ExtA�.T
n
˝H.8; v8

1//:

The following lemma will be our key to lifting the desired differentials:

Lemma 5.5 Suppose x is an element of ExtA�.H.8; v
8
1
// which is detected in the

n–line of the algebraic tmf resolution for H.8; v8
1
/ by an element

x0 2 ExtA.2/�.A==A.2/
˝n
� ˝H.8; v8

1//:

Furthermore , suppose that , in the MASS for tmf^tmfn^M.8; v8
1
/, there is a differential

dmass
r .x0/D y0
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and that , for 2� r 0 < r , we have

dmass
r 0 .x/D 0

in the MASS for the M.8; v8
1
/. Then either

(1) the differential
dmass

r .x/

in the ASS for M.8; v8
1
/ is detected by y0 in the algebraic tmf resolution; or

(2) the element y0 is the target of a differential in the algebraic tmf resolution for
H.8; v8

1
/, or , in the algebraic tmf resolution for T n˝H.8; v8

1
/, y0 detects an

element of ExtA�.T
n˝H.8; v8

1
// which is zero in massEr .T

n ^M.8; v8
1
//.

Proof Consider the maps of algebraic tmf resolutions and MASSs induced from the
zigzag

M.8; v8
1/

˛
�! T n

^M.8; v8
1/

ˇ
 �†�ntmf^ tmfn

^M.8; v8
1/:

Define
Nx WD ˛�.x/ 2 ExtA�.T

n
˝H.8; v8

1//

Then Nx is detected by x0, regarded as an element of the algebraic tmf resolution for
T n ^M.8; v8

1
/. In particular, this means that

Nx D ˇ�.x
0/

Therefore, the differential
dmass

r .x0/D y0

in the MASS for tmf^ tmfn ^M.8; v8
1
/ maps to a differential

dmass
r . Nx/D Ny WD ˇ�.y

0/

in the MASS for T n ^M.8; v8
1
/. In particular, either

(1) Ny is nonzero in massEr .T
n ^M.8; v8

1
// and is detected by y0 in the algebraic

tmf resolution for T n˝H.8; v8
1
/, or

(2) either Ny D 0 in massEr .T
n ^M.8; v8

1
// or y0 is killed in the algebraic tmf

resolution for T n˝H.8; v8
1
/.

If the latter is true, then y0 is killed in the algebraic tmf resolution for H.8; v8
1
/, since

the algebraic tmf resolution for T n ˝H.8; v8
1
/ is a truncation of the algebraic tmf

resolution for H.8; v8
1
/.
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If we are in case (2), we are done. If we are in case (1), consider the differential

y WD dmass
r .x/

in the MASS for M.8; v8
1
/ (which is defined by hypothesis). We must have

˛�.y/D Ny:

Therefore, dmass
r .x/ is detected by y0 in the algebraic tmf resolution.

Remark 5.6 We will primarily be applying Lemma 5.5 to the following two cases:

Case 1 (x D�2mh
j
2;1

Q2Œk�) Suppose that we can prove

d ass
2 .�2mh

j
2;1

Q2Œk�/D 0

in the MASS for M.8; v8
1
/. The element �2mh

j
2;1

Q2Œk� is detected by

�2mh
jC1
2;1

g.h2;1v
�2
0 v2

2�
16
1 /Œk� 2 ExtA.2/�.bo2˝H.8; v8

1//

in the algebraic tmf resolution, and it is proven in [8] that, in the ASS for tmf^ tmf,
there is a differential

d ass
3 .�2mh

jC1
2;1

g.h2;1v
�2
0 v2

2�
16
1 //

D�2mh
jC4
2;1

g.h2;1�
4
2/C �.m/�

2m�4h
jC20
2;1

g.h2;1v
�2
0 v2

2�
16
1 /;

where
�.m/D

�
1 if m� 2 mod 4;

0 otherwise:

Lifting this differential to tmf^ tmf^M.8; v8
1
/, Lemma 5.5 implies that either the

target of the differential d ass
3
.�2mh

j
2;1

Q2Œk�/ in the MASS for M.8; v8
1
/ is detected by

�2mh
jC4
2;1

g.h2;1�
4
2/Œk�C �.m/�

2m�4h
jC20
2;1

g.h2;1v
�2
0 v2

2�
16
1 /Œk�

in the algebraic tmf resolution, or

�2mh
jC4
2;1

g.h2;1�
4
2/Œk�C �.m/�

2m�4h
jC20
2;1

g.h2;1v
�2
0 v2

2�
16
1 /Œk�

is the target of a differential in the algebraic tmf resolution or detects an element of
ExtA�.T

1˝H.8; v8
1
// which is zero on the E3–page of the MASS for T 1^M.8; v8

1
/.

Case 2 (xDM�2vi
1
h

jC8
2;1

Œ�� for �2f0; 1g and 0� i�4) The element M�2vi
1
h

jC8
2;1

Œ��

is detected by
�2viC2

1
h

jC10
2;1

.v�1
0 v2

2�
8
1�

4
2/Œ��
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in the algebraic tmf resolution for H.8; v8
1
/, and the map (5.3) implies there is a

differential

dmass
2 .�2viC2

1
h

jC10
2;1

.v�1
0 v2

2�
8
1�

4
2/Œ��/D v

iC3
1

h
jC19
2;1

.v�1
0 v2

2�
8
1�

4
2/Œ��

in the MASS for tmf^ tmf^M.8; v8
1
/.

Then Lemma 5.5 implies that either dmass
2

.M�2vi
1
h

jC8
2;1

Œ��/ is detected by

viC3
1

h
jC19
2;1

.v�1
0 v2

2�
8
1�

4
2/Œ��

in the algebraic tmf resolution, or viC3
1

h
jC19
2;1

.v�1
0
v2

2
�8

1
�4

2
/Œ�� is killed in the tmf reso-

lution for H.8; v8
1
/ or it detects an element which is zero in the E2–term of the MASS

for T 1 ^M.8; v8
1
/. However, the element

M viC1
1

h
jC17
2;1

Œ�� 2 ExtA�.H.8; v
8
1//

is nonzero, and is detected by viC3
1

h
jC19
2;1

.v�1
0
v2

2
�8

1
�4

2
/Œ�� in the algebraic tmf res-

olution for H.8; v8
1
/. We conclude that viC3

1
hjC19

2;1
.v�1

0
v2

2
�8

1
�4

2
/Œ�� is not killed in

the algebraic tmf resolution for H.8; v8
1
/. Since the algebraic tmf resolution for

T 1˝H.8; v8
1
/ is a truncation of the algebraic tmf resolution for H.8; v8

1
/, we conclude

that viC3
1

hjC19
2;1

.v�1
0
v2

2
�8

1
�4

2
/Œ�� detects a nontrivial element of the E2–page of the

MASS for T 1 ^M.8; v8
1
/. We conclude that

dmass
2 .M�2vi

1h
jC8
2;1

Œ��/

is nontrivial in the MASS for M.8; v8
1
/, and is detected in the algebraic tmf resolution

by viC3
1

h
jC19
2;1

.v�1
0
v2

2
�8

1
�4

2
/Œ��.

Proof of Theorem 1.8 By Proposition 2.3, it suffices to prove that

v32
2 2 ExtA�.H.8; v

8
1//

is a permanent cycle in the MASS. Furthermore, since v8
2
2 massE2.M.8; v8

1
//, the

Leibniz rule implies that v32
2
2massE4.M.8; v8

1
//. We therefore are left with eliminating

possible targets of dmass
r .v32

2
/ for r � 4.

Suppose that dr .v
32
2
/ is nontrivial for r � 4. We successively consider terms in

the algebraic tmf resolution which could detect dr .v
32
2
/, and then eliminate these

possibilities one by one.
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The only terms in the algebraic tmf resolution E1–page which can contribute to
Exts;191Cs

A�
.H.8; v8

1
// for s � 36 are

� ExtA.2/�.bo˝s
1
/ for 0� s � 6, and

� ExtA.2/�.bo˝s
1
˝ bo2/ for 0� s � 2.

Furthermore, bo˝s
1

only contributes h2;1–towers in this range for s D 5; 6. We list
these contributions below, except we do not list elements in h2;1–towers coming from
bo˝s

1
for s � 2 which are zero in the WSS E1–term (see Proposition 4.2). Also, since

v32
2

is a permanent cycle in the MASS for tmf^M.8; v8
1
/, we can disregard any terms

coming from ExtA.2/�.F2/ (the 0–line of the algebraic tmf resolution). Finally, we do
not include any terms which can be eliminated through the application of Case 2 of
Remark 5.6.

We now eliminate these possibilities one by one. We will consider the terms in order
of reverse algebraic tmf filtration.

bo˝4
1

In the modified May spectral sequence (3.3), there is a differential

dmmss
8 .b2;2h2

3/D h5
3

which lifts under the map ˆ� of (3.4) to a nontrivial differential

dwss
1 .Œ�8

1 j �
8
1 j �

4
2 j �

4
2 �/D Œ�

8
1 j �

8
1 j �

8
1 j �

8
1 j �

8
1 �

in the WSS for F2, and this implies a nontrivial differential

dwss
1 .v4

1�
6h2

1Œ�
8
1 j �

8
1 j �

4
2 j �

4
2 �Œ1�/D v

4
1�

6h2
1Œ�

8
1 j �

8
1 j �

8
1 j �

8
1 j �

8
1 �Œ1�

in the WSS for H.8; v8
1
/.

bo˝2
1
˝bo2 In the cobar complex for F2Œ�

8
1
; �4

2
�, we find

d.Œ�8
1 ; �

4
2 � j �

8
1�

4
2/ and d.ı81 j ı

8
1ı42 j ı

4
2C ı42 j ı

8
1ı42 j ı

8
1/

are linearly independent, and

d.Œ�8
1 ; �

4
2 � j �

8
1�

4
2 C �

8
1�

4
2 j Œ�

8
1 ; �

4
2 �/D 0:

However,
d.�8

1�
4
2 j �

8
1�

4
2/D Œ�

8
1 ; �

4
2 � j �

8
1�

4
2 C �

8
1�

4
2 j Œ�

8
1 ; �

4
2 �:

The elements are thus eliminated by multiplying the computations above with v�2
1
v4

2
h22

2;1

and lifting them to the top cell of H.8; v8
1
/.

Geometry & Topology, Volume 27 (2023)



2802 Mark Behrens, Mark Mahowald and J D Quigley

bo˝3
1

Note that
Ext10;10C48

A�
.F2/D 0:

We conclude that the class

v4
1c0h1.v

�1
0 v2

2�
8
1�

4
2/ 2 ExtA.2/�.bo2/

must either support or be the target of a differential in the algebraic tmf resolution,
for otherwise it would give a nonzero element of Ext10;10C48

A�
.F2/. However, by

examination, there are no classes in ExtA.2/�.F2/ which can kill v4
1
c0h1.v

�1
0
v2

2
�8

1
�4

2
/

in the algebraic tmf resolution, so there must be a nontrivial differential

dr .v
4
1c0h1.v

�1
0 v2

2�
8
1�

4
2//

in the algebraic tmf resolution for F2. Since the target of this differential must be
h1–torsion, there is only one possibility:

d2.v
4
1c0h1.v

�1
0 v2

2�
8
1�

4
2//D v

4
1h2

1v
2
2�

8
1 j �

8
1 j �

4
2 :

It follows that we have

d2.v
4
1c0.v

�1
0 v2

2�
8
1�

4
2//D v

4
1h1v

2
2�

8
1 j �

8
1 j �

4
2 :

This differential lifts to a differential

d2.v
4
1c0.v

�1
0 v2

2�
8
1�

4
2/Œ1�/D v

4
1h1v

2
2�

8
1 j �

8
1 j �

4
2 Œ1�

in the algebraic tmf resolution for H.8; v8
1
/. Multiplying by �6, we have

d2.�
6v4

1c0.v
�1
0 v2

2�
8
1�

4
2/Œ1�/D�

6v4
1h1v

2
2�

8
1 j �

8
1 j �

4
2 Œ1�:

bo1˝bo2 There is a differential

dwss
0 .�12

2 /D Œ�4
2 ; �

8
2 �

in the WSS for F2 which lifts to a differential

dwss
0 .v1h21

2;1g.v�1
0 v2

2�
12
2 //D v1h21

2;1g.v�1
0 v2

2 Œ�
4
2 ; �

8
2 �/:

We therefore only have to consider one of the two potential elements. In the modified
May spectral sequence (3.3), there is a differential

dmmss
8 .h2;3/D h1;3h1;4

which lifts to a differential
dwss

1 .�8
2/D �

8
1 j �

16
1 :

using the map ˆ� of (3.3), and gives a differential

dwss
1 .�4

2 j �
8
2/D �

4
2 j �

8
1 j �

16
1 :
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The elements
v1g.v�1

0 v2
2�

4
2 j �

8
2/ 2 ExtA.2/�.bo1˝ bo2/

and
v1g.v�1

0 v2
2�

4
2 j �

8
1 j �

16
1 / 2 ExtA.2/�.bo˝2

1
˝ bo2/

support h2;1–towers which are nontrivial in wssE1. Therefore, we have a nontrivial
differential

dwss
1 .v1h21

2;1g.v�1
0 v2

2�
4
2 j �

8
2//D v1h21

2;1g.v�1
0 v2

2�
4
2 j �

8
1 j �

16
1 /:

This differential lifts to the top cell of H.8; v8
1
/ to give

dwss
1 .v1h21

2;1g.v�1
0 v2

2�
4
2 j �

8
2/Œ18�/D v1h21

2;1g.v�1
0 v2

2�
4
2 j �

8
1 j �

16
1 /Œ18�

in the WSS for H.8; v8
1
/.

bo˝2
1

The element
h5

2;1�
4v1g.v�1

0 v2
2 Œ�

8
1 ; �

4
2 �/Œ18�

detects the element
�4
�MP�h2

0e0Œ18�

in the algebraic tmf resolution for H.8; v8
1
/. Regarding this element as an element in

the MASS for tmf^ bo2
1, there is a nontrivial differential

dmass
3 .h5

2;1�
4v1g.v�1

0 v2
2 Œ�

8
1 ; �

4
2 �/Œ18�/D h24

2;1v1g.v�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ18�:

By applying .�/^tmf2 to the map of tmf–modules (5.2), we may consider the composite

.5.7/ tmf^ bo2
1 ,! .tmf^ tmf2/

^tmf2! tmf^ tmf2:

The differential above maps to a nontrivial differential between elements of the same
name in the MASS for tmf^ tmf2. We wish to apply Lemma 5.5. We must have

dmass
2 .�4

�MP�h2
0e0Œ18�/D 0

in the MASS for M.8; v8
1
/, since there are no elements in the algebraic tmf resolution

for H.8; v8
1
/ which could detect a target for this differential. Thus Lemma 5.5 implies

that either
dmass

3 .�4
�MP�h2

0e0Œ18�/

is nontrivial and detected by h24
2;1
v1g.v�1

0
v2

2
Œ�8

1
; �4

2
�/Œ18�, or

h24
2;1v1g.v�1

0 v2
2 Œ�

8
1 ; �

4
2 �/Œ18�
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is killed in the algebraic tmf resolution for H.8; v8
1
/, or detects an element which is

killed in the MASS for T 2 ^M.8; v8
1
/. The only such possibility is for

�2h23
2;1�

4
2 Œ17�

to detect the source of a d2–differential in the MASS for T 2 ^M.8; v8
1
/ to do such a

killing. Projecting onto the top Moore space of M.8; v8
1
/, this would imply

�2h23
2;1�

4
2

detects an element in the algebraic tmf resolution for the sphere which supports a
nontrivial d2–differential in the ASS for the sphere. However, �2h23

2;1
�4

2
detects

�2g5
��h2c1

in the ASS for the sphere, and there is a differential

d ass
2 .�2g5

��h2c1/D d ass
2 .�2g2/ �g3

��h2c1 D�
2h2

2g2e0 �g
3
��h2c1:

However, �2h2
2
e0 ��h2c1 D 0 in ExtA�.F2/ [13], so this d ass

2
is zero.

We now turn our attention to the other potential target coming from bo˝2
1

,

h15
2;1�

2g.v�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ18�:

This element detects
�2g2v6

1h2;1Mg3Œ0�

in the algebraic tmf resolution for M.8; v8
1
/. However, in the ASS for the sphere,

v6
1
h2;1g3 is a d2–cycle, and so there is a differential

d ass
2 .�2g2

� v6
1h2;1g3/D d ass

2 .�2g2/ � v6
1h2;1g3

D�2h2
2g2e0 � v

6
1h2;1g3

D v7
1h22

2;1g2:

Applying M.�/ D h�; h3
0
;g2i and mapping under the inclusion of the bottom cell

of M.8; v8
1
/, we get a nontrivial differential

dmass
2 .�2g2

� v6
1h2;1Mg3Œ0�/D v7

1h22
2;1Mg2Œ0�:

bo1 The element
h31

2;1g.h2;1�
4
2/

detects
g8n 2 ExtA�.F2/

in the algebraic tmf resolution for F2 (Proposition 3.17). This element can be eliminated
by Case 1 of Remark 5.6, but we can also handle it manually using low-dimensional
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calculations in the ASS for the sphere. There is a differential

d3.mQ2/D g3n

in the ASS for the sphere [24], from which it follows that g8n is zero on the E4–page
of the ASS of the sphere, and hence g8nŒ0� is zero on the E4–page of the MASS
for M.8; v8

1
/.

For the element
h18

2;1�
2g.h2;1�

4
2/Œ17�;

we wish to employ Case 1 of Remark 5.6, using the differential

dmass
3 .h15

2;1�
2g.h2;1v

�2
0 v2

2�
16
1 /Œ17�/D h18

2;1�
2g.h2;1�

4
2/Œ17�

in the MASS for tmf^ tmf^M.8; v8
1
/. Note that

h15
2;1�

2g.h2;1v
�2
0 v2

2�
16
1 /Œ17�

detects the element
C 00 ��2g2Œ17�

in the algebraic tmf resolution. Observe [25; 13] that we have

d2.C
00
��2g2/D C 00 � d2.�

2g2/D g2
�C 00�h2

2e0 D g2
� 0D 0:

It follows that d2.C
00 ��2g2Œ17�/ is in the image of the map

ExtA�.H.8//! ExtA�.H.8; v
8
1//;

but a check of the algebraic tmf resolution for H.8; v8
1
/ reveals there are no possible

targets in this bidegree. We therefore have

d2.C
00
��2g2Œ17�/D 0:

Therefore, the hypotheses of Lemma 5.5 are satisfied. It follows that

h18
2;1�

2g.h2;1�
4
2/Œ17�

either is killed in the algebraic tmf resolution for H.8; v8
1
/, or detects an element in

the MASS which is killed by d3.C
00 ��2g2Œ17�/, or detects an element which killed by

a d2–differential in the MASS for T 1 ^M.8; v8
1
/. We just need to eliminate this last

possibility.

Any possible source for such a d2–differential would necessarily be detected on the
0–line of the algebraic tmf resolution and would not support a nontrivial d2 in the
MASS for tmf^M.8; v8

1
/. The only such possibility is

�4h19
21Œ1�:
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However, we can express this element as the Hurewicz image of the element

gm ��4
�g2Œ1�

in the MASS for M.8; v8
1
/. This element is therefore necessarily a d2–cycle, since it

is a product of d2–cycles.

bo2 We begin with the element

h5
2;1�

4g.h2;1v
�2
0 v2

2�
16
1 /Œ18�

which detects the element
�4gQ2Œ18�

in the MASS for M.8; v8
1
/. We are in Case 1 of Remark 5.6. An elementary check

using the charts of [25] reveals that the element gQ2 in the ASS for the sphere lifts to
a d2–cycle

gQ2Œ18�

supported by the top cell of H.8; v8
1
/. Since�4 is a d2–cycle in the MASS for M.8; v8

1
/,

we deduce that
�4gQ2Œ18�

is a d2–cycle. We therefore deduce that

dmass
3 .�4gQ2Œ18�/

either is detected by

�4h8
2;1g.h2;1�

4
2/Œ18�C h24

2;1g.h2;1v
�2
0 v2

2�
16
1 /

in the algebraic tmf resolution for H.8; v8
1
/, or

�4h8
2;1g.h2;1�

4
2/Œ18�C h24

2;1g.h2;1v
�2
0 v2

2�
16
1 /

is killed in the algebraic tmf resolution for H.8; v8
1
/ or detects an element which is

killed in the MASS for T 1 ^M.8; v8
1
/. The only possible sources of such algebraic

tmf resolution differentials are wedge elements coming from ExtA.2/�.H.8; v
8
1
//, and

we know these all must be permanent cycles in the algebraic tmf resolution because
they detect the corresponding wedge elements of ExtA�.H.8; v

8
1
//. The only elements

of the algebraic tmf resolution which can detect an element which could support a
d2–differential killing

�4h8
2;1g.h2;1�

4
2/Œ18�C h24

2;1g.h2;1v
�2
0 v2

2�
16
1 /

in the MASS for T 1 ^M.8; v8
1
/ are the elements

.5.8/ �2v6
1h23

2;1Œ0� and �2v3
1h24

2;1Œ1�:
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However, using the map of spectral sequences

massE
�;�
2
.T 1
^M.8; v8

1//!
massE

�;�
2
.tmf^M.8; v8

1//;

we can eliminate these possibilities on the basis that the elements (5.8) support nontrivial
d2–differentials in the MASS for M.8; v8

1
/.

We are left with eliminating

v2
1h31

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�

as possibly detecting dmass
5

.v32
2
/ in the MASS for M.8; v8

1
/. This is the trickiest

obstruction to eliminate. In the MASS for tmf^ tmf^M.8; v8
1
/, there is a differential

dmass
2 .�2v1h22

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�/D v

2
1h31

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�:

The problem is that, in the WSS for H.8; v8
1
/, there is a nontrivial differential

dwss
0 .�2v1h22

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�/D�

2v1h22
2;1.v

�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ1�:

Sublemma 5.9 The element v32
2

is a permanent cycle in the MASS for T 1^M.8; v8
1
/.

bo1
h31

2;1
g.h2;1�

4
2
/Œ0�

h18
2;1�

2g.h2;1�
4
2/Œ17�

bo2
h5

2;1�
4g.h2;1�

16
1 /Œ18�

v2
1h31

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�

bo˝2
1

h5
2;1
�4v1g.v�1

0
v2

2
Œ�8

1
; �4

2
�/Œ18�

h15
2;1�

2g.v�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ18�

bo1˝ bo2
v1h21

2;1
g.v�1

0
v2

2
Œ�4

2
; �8

2
�/Œ18�

v1h21
2;1

g.v�1
0
v2

2
Œ�8

2
; �4

2
�/Œ18�

bo3
1

v4
1
�6h1.v

2
2
�8

1
j �8

1
j �4

2
/Œ1�

v1h18
2;1

g.v�2
0
v4

2
Œ�8

1
; �4

2
� j �8

1
�4

2
/Œ18�

bo˝2
1
˝ bo2 v1h18

2;1
g.v�2

0
v4

2
.�8

1
j �8

1
�4

2
j �4

2
C �4

2
j �8

1
�4

2
j �8

1
//Œ18�

v1h18
2;1

g.v�2
0
v4

2
�8

1
�4

2
j Œ�8

1
; �4

2
�/Œ18�

bo4
1 v4

1�
6h2

1�
8
1 j �

8
1 j �

4
2 j �

4
2 Œ1�

Table 1: List of potential targets of dmass
r .v32

2 / for r � 4.
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Proof The elements of the algebraic tmf resolution which could possibly detect the
target of a differential

dmass
r .v32

2 /; r � 4;

in the MASS for T 1 ^M.8; v8
1
/ consist of those terms in Table 1 coming from bo1

and bo2.

Using (5.3), there is a map

†31tmf^M.8; v8
1/!†�1tmf^ tmf! T 1

and we therefore have a differential

dmass
2 .�2v1h22

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�/D v

2
1h31

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�

in the MASS for T 1^M.8; v8
1
/. Therefore, v2

1
h31

2;1
.v�1

0
v2

2
�8

1
�4

2
/Œ1� cannot be the target

of a differential dmass
5

.v32
2
/ in the MASS for T 1 ^M.8; v8

1
/.

Our previous arguments eliminate all the other possibilities.

Suppose now for the purpose of generating a contradiction that the differential

dmass
5 .v32

2 /

in the MASS for M.8; v8
1
/ is nontrivial and detected by v2

1
h31

2;1
.v�1

0
v2

2
�8

1
�4

2
/Œ1� in the

algebraic tmf resolution for H.8; v8
1
/. Consider the fiber sequence

†�2tmf2
^M.8; v8

1/!M.8; v8
1/! T 1

^M.8; v8
1/

@
�!†�1tmf2:

We have proven that v32
2

exists in �192T 1 ^M.8; v8
1
/, and, because our assumption

implies that v32
2

does not lift to �192M.8; v8
1
/, we must have

0¤ @.v32
2 / 2 �191†

�2tmf2
^M.8; v8

1/:

Sublemma 5.10 There exists a choice of v32
2
2 �192T 1 ^M.8; v8

1
/ such that @.v32

2
/

has modified Adams filtration 34.

Proof Let X hki denote the k th modified Adams cover of X — so that the MASS
for X hki is the truncation of the MASS for X obtained by only considering terms in
massE

s;t
2
.X / for s � k — and let Xhki denote the cofiber

X hkC1i
!X !Xhki
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Then we have fiber sequences

M.8; v8
1/hki! .T 1

^M.8; v8
1//hki! .†�1tmf2

^M.8; v8
1//hk�2i:

Define �Mhki to be the homotopy pullback

�Mhki //

��

T 1 ^M.8; v8
1
/

��

M.8; v8
1
/hki // .T 1 ^M.8; v8

1
//hki

Then the algebraic tmf resolution for �Mhki is the truncation of the algebraic tmf
resolution for M.8; v8

1
/ obtained by omitting, for n� 2, all terms of

ExtA.2/�.boi1
˝ � � �˝ boin

˝H.8; v8
1//

of cohomological degree greater than k � n. It follows from the map of algebraic tmf
resolutions and MASSs associated to the map

M.8; v8
1/!

�Mhki
that there is a differential

dmass
5 .v32

2 /D v2
1h31

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�

in the MASS for �Mhki. This differential is nontrivial in the MASS for �Mh36i, because
it is nontrivial in the MASS for M.8; v8

1
/, and any intervening differentials killing

the target in the algebraic tmf resolution or MASS for �Mh36i would lift to M.8; v8
1
/

because the spectral sequences are isomorphic in the relevant range. The same is not
true in the case of �Mh35i, where

dwss
0 .�2v1h22

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�/D 0

and therefore �2v1h22
2;1
.v�1

0
v2

2
�8

1
�4

2
/Œ1� persists to the E2–term of the MASS

dmass
2 .�2v1h22

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�/D v

2
1h31

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�:

Therefore, the proof of Sublemma 5.9 goes through with T 1 ^M.8; v8
1
/ replaced

by �Mh35i to show that there exists an element

fv32
2
2 �192

�Mh35i
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which is detected by v32
2

in the MASS. Consider the diagram

†�1tmf2

���Mh36i

��

// T 1 ^M.8; v8
1
/

@0
//

@

55

.†�1tmf2 ^M.8; v8
1
//h34i

���Mh35i
// T 1 ^M.8; v8

1
/

@00
// .†�1tmf2 ^M.8; v8

1
//h33i

where the rows are cofiber sequences. The element fv32
2
2 �192

�Mh35i maps to an
element v32

2
2 T 1 ^M.8; v8

1
/ with

@00.v32
2 /D 0:

However, since dmass
5

.v32
2
/ is nontrivial in the MASS for �Mh36i, the element v32

2
2

�192T 1 ^M.8; v8
1
/ cannot lift to �Mh36i, and therefore

@0.v32
2 /¤ 0:

It follows that @.v32
2
/ has modified Adams filtration 34.

However, we have:

Sublemma 5.11 There are no elements of �191†
�2tmf2 ^M.8; v8

1
/ of modified

Adams filtration 34.

Proof The only possible elements in the algebraic tmf resolution for tmf2^M.8; v8
1
/

which could contribute to modified Adams filtration 34 in this degree are

.5.12/ �2v1h22
2;1.v

�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ1� 2 ExtA.2/�.bo˝2

1
˝H.8; v8

1//

and the elements of Table 1 of algebraic tmf filtration greater than 1 in the appropriate
modified Adams filtration. However, the previous arguments eliminate all of the
candidates coming from Table 1, so we are left with eliminating (5.12). We wish to lift
the differential

dmass
3 .�6v1h3

2;1.v
�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ1�/D�

2v1h22
2;1.v

�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ1�

in the MASS for tmf^tmf2^M.8; v8
1
/ to a differential in the MASS for tmf2^M.8; v8

1
/.

We therefore must argue that

dmass
2 .�6v1h3

2;1.v
�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ1�/D 0
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in the MASS for tmf2^M.8; v8
1
/. We will therefore argue there are no elements in the

algebraic tmf resolution for tmf2^M.8; v8
1
/ which could detect the target of such a d2.

Ignoring any possibilities which are eliminated by Proposition 4.2, the only possibilities
are

�6v4
1h1v

�1
0 v2

2�
8
1 j Œ�

8
1 ; �

4
2 �Œ1�;

�6v4
1h1v

�1
0 v2

2 Œ�
8
1 ; �

4
2 � j �

8
1 Œ1�;

�6v4
1h2

0Œ�
8
1 ; �

4
2 � j �

8
1 j �

8
1 j �

8
1 Œ0�;

�6v4
1h2

0�
8
1 j Œ�

8
1 ; �

4
2 � j �

8
1 j �

8
1 Œ0�;

�6v4
1h2

0�
8
1 j �

8
1 j Œ�

8
1 ; �

4
2 � j �

8
1 Œ0�;

�6v4
1h2

0�
8
1 j �

8
1 j �

8
1 j Œ�

8
1 ; �

4
2 �Œ0�:

However, these are killed by the respective WSS differentials

dwss
0 �6v4

1h1v
�1
0 v2

2�
8
1 j �

8
1�

4
2 Œ1�;

dwss
0 �6v4

1h1v
�1
0 v2

2�
8
1�

4
2 j �

8
1 Œ1�;

dwss
0 �6v4

1h2
0�

8
1�

4
2 j �

8
1 j �

8
1 j j�

8
1 Œ0�;

dwss
0 �6v4

1h2
0�

8
1 j �

8
1�

4
2 j �

8
1 j �

8
1 Œ0�;

dwss
0 �6v4

1h2
0�

8
1 j �

8
1 j �

8
1�

4
2 j �

8
1 Œ0�;

dwss
0 �6v4

1h2
0�

8
1 j �

8
1 j �

8
1 j �

8
1�

4
2 Œ0�:

Thus we have arrived at a contradiction, as we have produced an element of modified
Adams filtration 34, and subsequently showed no such elements exist. We conclude that
our supposition, that the differential dmass

5
.v32

2
/ in the MASS for M.8; v8

1
/ is nontrivial

and detected by v2
1
h31

2;1
.v�1

0
v2

2
�8

1
�4

2
/Œ1� in the algebraic tmf resolution, is false.

6 Determination of elements not in the tmf Hurewicz image

Theorem 6.1 The elements of tmf� not in the subgroup described in Theorem 1.2 are
not in the Hurewicz image.

We first recall some well-known K–theory computations. Recall that ��KO is given
by the v4

1
–periodic pattern

1

�
�2

2v2
1 v4

1

�v4
1

�2v4
1

2v6
1

Let
M.21/ WD lim

��!
i

M.2i/

denote the Moore spectrum for Z=21.

Geometry & Topology, Volume 27 (2023)



2812 Mark Behrens, Mark Mahowald and J D Quigley

Consider the diagram of cofiber sequences

.6.2/

†�1KO^M.2/
p
//

�2�1

��

KO �2
// KO

. � /
//

�2�1

��

KO^M.2/

�2�1

��

†�1KO^M.21/
p
// KO // KOQ

. � /

// KO^M.21/

The groups KO�M.2/ are well known to be given by the v4
1

–periodic pattern

N1

x�

x�2

z�

z�2

2 Nv2
1

Nv4
1

� Nv4
1

�2 Nv4
1

v4
1z�

v4
1z�

2

2 Nv6
1

where we denote lifts of elements of KO� along the map p of diagram (6.2) with a
tilde, and the images of the map . � / with a bar. It then follows easily from the map of
long exact sequences coming from the above diagram that KO�M.21/ is given by the
v4

1
–periodic pattern

N2�1

z�

z�2
Nv2
1 2�1 Nv4

1

v4
1
z�

v4
1
z�2

Nv6
1

where again we denote lifts over the map p with a tilde, and images under the map . � /
with a bar. The infinite sequences of dots going down represent the elements 2�i in
Z=21 DQ=Z.2/.

Proof of Theorem 6.1 Recall [27, Corollary 3] that we have an equivalence

c�1
4 tmf' KOŒj�1�;

where j�1 D�=c3
4

. Applying �0 to this equivalence, we have a commutative diagram

S //

��

KO � s

%%

tmf // c�1
4

tmf
'
// KOŒj�1�
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Consider the diagram

��S

h

��

��C1M.21/
p

oo

h

��

// KO�C1M.21/� v

i

))

tmf�

L
��

tmf�C1M.21/oo
L
// c�1

4
tmf�C1M.21/

p0

ss

KO�C1M.21/Œj�1�

c�1
4

tmf�

Suppose that x 2 tmf>0 has nontrivial image in L.x/ 2 c�1
4

tmf� and that x D h.y/.
Since y is torsion, it lifts over p to an element

Qy 2 ��C1M.21/:

The commutativity of the diagram implies that

0¤L.x/ 2 Im.p0 ı i/

and this implies that
L.x/ 2

˚
ck

4 �
l
W k � 0; l 2 f1; 2g

	
:

Now consider elements of the form

x D ˛�k� 2 tmf�

with ˛ 6� 0 mod 8. Suppose that x D h.y/. Lift y to an element

Qy 2 ��C1M.21/:

Then we have
Lh. Qy/D 1

8
˛�kv2

1
D

1
4
˛v12kC2

1
j�k
¤ 0:

But the commutativity of the diagram implies that Lh. Qy/ is in the image of i , which
implies that k D 0.

7 Lifting the remaining elements of tmf� to �s
�

Multiplicative generators of the Hurewicz image below the 192–stem

In this section, we determine a set of elements which multiplicatively generate the tmf
Hurewicz image below the 192–stem. The results in this subsection drastically reduce
the number of classes which we must lift in the sequel.

Geometry & Topology, Volume 27 (2023)



2814 Mark Behrens, Mark Mahowald and J D Quigley

Lemma 7.1 The Hurewicz map S ! tmf is a map of ring spectra. In particular , it
preserves multiplication.

Corollary 7.2 Suppose ˛ D ˇ
 is a product of elements ˇ; 
 2 ��.tmf/ with lifts
ž; z
 2 ��.S/. Then žz
 2 ��.S/ must be a lift of ˛.

With this in mind, it suffices to find a subset of the Hurewicz image which generates
the entire Hurewicz image up to the 192–stem under products. Our desired generating
subset is given in Corollary 7.16. We will obtain our generating set by listing generators
in lemmas and then recording their products in corollaries, until we have exhausted the
tmf Hurewicz image up to stem 192.

Lemma 7.3 The classes � 2 �1.tmf/, � 2 �3.tmf/, � 2 �8.tmf/, � 2 �14.tmf/,
x� 2 �20.tmf/, u 2 �39.tmf/ and w 2 �45.tmf/ are in the Hurewicz image.

Proof The elements �, �, �, �, x�, u and w are all well-known elements of �s
�, detected

in the Adams spectral sequence by h1, h2, c0, d0, g, �h1d0 and �h1g [22, Table 8].
These elements have nontrivial images under the map of Adams spectral sequences
induced by the unit map S ! tmf. The lemma is therefore somewhat tautological, as
the corresponding elements in tmf were defined in Section 1 to be the Hurewicz images
of these elements.

Lemma 7.4 The class q 2 �32.tmf/ is in the Hurewicz image.

Proof See the proof of Lemma 7.18(1).

Corollary 7.5 The classes �2 2 �2.tmf/, �2 2 �6.tmf/, �3 D �� 2 �9.tmf/, �� 2
�15.tmf/, �� 2 �17.tmf/, x�� 2 �21.tmf/, x��2 D �� 2 �22.tmf/, x�� D �2 2 �28.tmf/,
q� 2 �33.tmf/, x�� 2 �34.tmf/, x��� 2 �35.tmf/, x�2 2 �40.tmf/, x�2� 2 �41.tmf/,
x�2�2D�32�42.tmf/,w�2�46.tmf/, x�q2�52.tmf/, x�q�2�53.tmf/, x�2�2�54.tmf/,
x�u 2 �59.tmf/, x�3 2 �60.tmf/, x�w 2 �65.tmf/, x�w� 2 �66.tmf/, x�4 2 �80.tmf/,
x�2w 2 �85.tmf/, w2 2 �90.tmf/, x�5 2 �100.tmf/, x�3w 2 �105.tmf/, x�w2 2 �110.tmf/,
x�4w 2 �125.tmf/ and x�2w2 2 �130.tmf/ are in the Hurewicz image.

Lemma 7.6 The classes f��2g� 2 �54.tmf/, f��2g� 2 �65.tmf/ and f�2�2gx� 2

�70.tmf/ are in the Hurewicz image.

Proof See Lemma 7.21.

Corollary 7.7 The classes f��2g�2 2 �57.tmf/ and f��2g�� 2 �68.tmf/ are in the
Hurewicz image.
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Lemma 7.8 The classes f��4g� 2�102.tmf/, f��4g 2�104.tmf/, f��4g 2�110.tmf/,
2�4x� 2 �116.tmf/ and f��4gx� 2 �117.tmf/ are in the Hurewicz image.

Proof See Lemmas 7.22 and 7.23.

Corollary 7.9 The classes f��4g� 2 �105.tmf/, f��4g� 2 �111.tmf/, f��4g� 2

�113.tmf/, f��4g�22�116.tmf/, f��4gx��2�118.tmf/, f��4g�2�124.tmf/, f��4gx�2

�130.tmf/, f��4gx�� 2 �131.tmf/, f��4gx�2 2 �137.tmf/ and f��4gx�2� 2 �138.tmf/
are in the Hurewicz image.

Lemma 7.10 The class fq�4g 2 �128.tmf/ is in the Hurewicz image.

Proof See Lemma 7.24.

Corollary 7.11 The classes fq�4g� 2 �129.tmf/, fq�4g� D w��4 2 �142.tmf/,
fq�4gx� 2 �148.tmf/, fq�4gx�� 2 �149.tmf/ and fq�4gx��2 2 �150.tmf/ are in the
Hurewicz image.

Lemma 7.12 The class �4u 2 �135.tmf/ is in the Hurewicz image.

Proof See Lemma 7.25.

Corollary 7.13 The classes �4u� 2 �136.tmf/ and �4ux� 2 �155.tmf/ are in the
Hurewicz image.

Lemma 7.14 The classes f��6g� 2 �150.tmf/ and f��6g� 2 �161.tmf/ are in the
Hurewicz image.

Proof See Lemma 7.26.

Corollary 7.15 The classes f��6g�2 2 �153, f��6g�3 2 �156, f��6g�� 2 �162.tmf/
and f��6g�� 2 �164.tmf/ are in the Hurewicz image.

Thus our calculation of the Hurewicz image up to dimension 192 has been reduced to
showing that the following list of elements is in the Hurewicz image:

Corollary 7.16 Up to dimension 192, the Hurewicz image is generated under multipli-
cation by˚
�; �; �; �; x�; q;u; w; f��2

g�; f��2
g�; f�2�2

gx�; f��4
g�; f��4

g; f��4
g; 2�4

x�;

f��4
gx�; fq�4

g; �4u; f��6
g�; f��6

g�
	
:
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Lifting generators

We will now describe our method for lifting generators. Given an element x 2 tmf�, we
want to lift it to an element y 2 �s

�. To this end, we consider the diagram of (M)ASSs

ExtA.2/�.H.8; v
8
1
// +3

��

tmf�C18M.8; v8
1
/

��

ExtA�.H.8; v
8
1
// +3

66

��

��C18M.8; v8
1
/

77

��

ExtA.2/�.F2/ +3 tmf�

ExtA�.F2/ +3

66

�s
�

66

First, we identify an element

x0 2 ExtA.2/�.F2/

which detects the element x in the ASS for tmf�, and then we identify an element

Qx0 2 ExtA.2/�.H.8; v
8
1//

which maps to it. This element Qx0 can be regarded as an element of the 0–line of the
algebraic tmf resolution for ExtA�.H.8; v

8
1
//. We will show that the element Qx0 is a

permanent cycle in the algebraic tmf resolution, and thus lifts to an element

Qy0 2 ExtA�.H.8; v
8
1//:

We will then show that the element Qy0 is a permanent cycle in the MASS for M.8; v8
1
/,

and hence detects an element

Qy 2 ��M.8; v8
1/:

Let y 2 �s
� be the projection of Qy to the top cell. It then follows that the image of y in

tmf� equals x, modulo terms of higher Adams filtration (AF). Furthermore, using the
v32

2
–self-map on M.8; v8

1
/, we deduce that the element

v32k
2 Qy 2 ��M.8; v8

1/

projects on the top cell to an element v32k
2

y 2 �s
� whose image in tmf� is �8kx

modulo terms of higher Adams filtration. Finally, Theorem 6.1 eliminates the potential
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ambiguity caused by elements of higher Adams filtration, since the elements of higher
Adams filtration are v4

1
–periodic.

We will show all of the generators of Corollary 7.16 except for �, � and � actually
come from the top cell of M.8; v8

1
/, and thus v32

2
–periodicity extends our work below

dimension 192 to all dimensions. It turns out that �2 and � do not come from the top
cell of M.8; v8

1
/. In order to show that the elements

�8k�2; �8k� 2 ��tmf

are in the Hurewicz image for k > 0, we will instead show that �8�2 and �8� come
from the top cell of M.8; v8

1
/ (Lemma 7.27).

Lemma 7.17 The following classes lift to the top cell of M.8; v8
1
/:

(1) � 2 �14.tmf/.

(2) x� 2 �20.tmf/.

Proof We will check that each element lifts using the AHSS:

(1) Since � is 2–torsion (and thus 8–torsion), it lifts to �Œ1� 2 �15.M.8//. Inspection
of [25, page 3] in stems 31 and 32 and AF� 12 reveals that there are no classes which
could detect v8

1
�Œ1�. Therefore �Œ1� lifts to �Œ18� 2 �32.M.8; v8

1
//.

(2) Since x� is 8–torsion, it lifts to x�Œ1� 2 �21.M.8//. Inspection of [25, page 3] in
stems 36 and 37 and AF� 12 reveals that there are no classes which could detect v8

1
x�Œ1�.

Therefore x�Œ1� lifts to x�Œ18� 2 �38.M.8; v8
1
//.

Lemma 7.18 The following classes lift to the top cell of M.8; v8
1
/:

(1) q 2 �32.tmf/.

(2) u 2 �39.tmf/.

(3) w 2 �45.tmf/.

Proof We will check that each element lifts using the Atiyah–Hirzebruch spectral
sequence (AHSS).

(1) We begin with q 2 �32.tmf/, which we will define to be the unique nontrivial
c4–torsion class detected by the element

v4
2c0 2 Ext7;7C32

A.2/�
.F2/

Geometry & Topology, Volume 27 (2023)



2818 Mark Behrens, Mark Mahowald and J D Quigley

in the ASS for tmf. The element v4
2
c0 does not lift to ExtA� . Nevertheless, we claim

that there is an element9 Qq 2 �s
32

detected by the element

�h1h3 2 Ext6;6C32
A�

.F2/

in the ASS for the sphere, which maps to q under the tmf Hurewicz homomorphism.
Our strategy will be to argue that Qq and q lift to

QqŒ18� 2 �50M.8; v8
1/ and qŒ18� 2 tmf50M.8; v8

1/;

respectively, and that the element which detects QqŒ18� in the MASS for M.8; v8
1
/ maps

to the element which detects qŒ18� in the MASS for tmf^M.8; v8
1
/ under the map

.7.19/ ExtA�.H.8; v
8
1//! ExtA.2/�.H.8; v

8
1//:

Inspection of [25, page 3] in stem 32 and AF� 7 reveals that Qq is 2–torsion (and thus
8–torsion), so Qq lifts to QqŒ1�2�33.M.8//. Inspection of [25, page 3] in stems 48 and 49

and AF� 14 reveals that there are no classes which could detect v8
1
QqŒ1�. Therefore QqŒ1�

lifts to QqŒ18� 2 �50.M.8; v8
1
//. A similar but easier analysis reveals that the lift qŒ18�

exists.

The elements �h1h3 2 ExtA�.F2/ and v4
2
c0 2 ExtA.2/�.F2/ are h0–torsion, and hence

lift to elements

�h1h3Œ1� 2 ExtA�.H.8//; v4
2c0Œ1� 2 ExtA.2/�.H.8//

which detect QqŒ1� 2 �33M.8/ and qŒ1� 2 tmf33M.8/, respectively, in the MASS. To
identify the elements which detect QqŒ18� and qŒ18� in the MASS, we make use of the
geometric boundary theorem [5, Appendix A].10 The differentials

d3.v
2
1h2;1g2Œ1�/D v8

1�h3h1Œ1�; d4.v
2
1h2;1g2Œ1�/D v8

1v
4
2c0Œ1�

in the MASSs for M.8/ and tmf^M.8/, respectively, imply that QqŒ18� 2 �50M.8; v8
1
/

and qŒ18� 2 tmf50M.8; v8
1
/ are detected by

v2
1h2;1g2Œ1� 2 ExtA�.H.8; v

8
1//; v2

1h2;1g2Œ1� 2 ExtA.2/�.H.8; v
8
1//

in the MASSs for M.8; v8
1
/ and tmf^M.8; v8

1
/, respectively, and the former maps to

the latter under the map (7.19).

9The element we are calling Qq 2 �s
32

is traditionally called q, but we add the tilde to distinguish it from
the element we are calling q in �32tmf.
10We are specifically using case .5/ of the geometric boundary theorem since the relevant class (denoted
by p�.y/ in the theorem statement) is a permanent cycle. We will be using this argument repeatedly in
subsequent proofs in this section, and for brevity will simply say “by the geometric boundary theorem . . . ”
in these subsequent instances.
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(2) Since u 2 �39tmf is detected by an element of ExtA.2/� in the image of the map

.7.20/ ExtA�.F2/! ExtA.2/�.F2/;

we immediately see that the element u 2 �39.S/ maps to it. We are left with lifting
u 2 �s

39
to the top cell of M.8; v8

1
/. Inspection of [25, page 3] in stem 39 and

AF� 10 reveals that u is 2–torsion (and thus 8–torsion), so u lifts to uŒ1�2 �40.M.8//.
Inspection of [25, page 3] in stems 55 and 56 and AF � 17 reveals that there are no
classes which could detect v8

1
uŒ1�. Therefore uŒ1� lifts to uŒ18� 2 �57.M.8; v8

1
//.

(3) The element w 2 �45tmf is detected by an element which is in the image of the
map (7.20), and thus we deduce that w 2 �45.S/ maps to it. A similar argument to the
case above shows that w lifts to wŒ18� 2 �63.M.8; v8

1
//.

Lemma 7.21 The following classes lift to the top cell of M.8; v8
1
/:

(1) �2�2 2 �54.tmf/.

(2) �2�� 2 �65.tmf/.

(3) �2�2x� 2 �70.tmf/.

Proof We follow the proof of [7, Theorem 11.1] (which builds on [7, Example 9.5
and Proposition 10.1]).

(1) We begin with �2�2 2 �54.tmf/. This class lifts to an element

�2�2Œ1� 2 tmf55.M.8//

which is detected by
v8

2h2
2Œ1� 2 Ext12;55C12

A.2/�
.H.8//

in the MASS for tmf^M.8/. Let

�2�2Œ18� 2 tmf72.M.8; v8
1//

be a lift of �2�2Œ1�. In the MASS for tmf^M.8/, there is a differential

d2.v
10
2 v4

1h2h0Œ1�/D v
8
2v

8
1h2

2Œ1�:

Since v10
2
v4

1
h2h0Œ1� is a permanent cycle in the MASS for tmf^M.8; v8

1
/, it follows

from the geometric boundary theorem that �2�2Œ18� is detected by v10
2
v4

1
h2h0Œ1� in

the MASS for tmf^M.8; v8
1
/. In particular, we see that �2�2Œ18� has modified Adams

filtration (MAF) 18 and stem 72.

Geometry & Topology, Volume 27 (2023)



2820 Mark Behrens, Mark Mahowald and J D Quigley

We now check that v10
2
v4

1
h2h0Œ1� is a permanent cycle in the algebraic tmf resolution

for H.8; v8
1
/. Its relative position11 is t � s D 65 and AF D 17, its relative position

in ExtA.2/�.bo˝2
1
˝H.8; v8

1
// is t � s D 58 and AFD 16, and its relative position in

ExtA.2/�.bo˝3
1
˝H.8; v8

1
// is t � s D 51 and AFD 15, the last of which lies above

the vanishing line. Inspection of the relevant charts shows that v10
2
v4

1
h2h0Œ1� cannot

support a nontrivial d1–differential since the target bidegrees are zero. Therefore
v10

2
v4

1
h2h0Œ1� is a permanent cycle in the algebraic tmf resolution for H.8; v8

1
/ and

therefore it detects an element fv10
2
v4

1
h2h0Œ1�g in ExtA�.H.8; v

8
1
//.

Finally, inspection of the same algebraic tmf resolution charts reveals that there are
no possible targets for a nontrivial differential supported by fv10

2
v4

1
h2h0Œ1�g in the

MASS for M.8; v8
1
/. Therefore fv10

2
v4

1
h2h0Œ1�g is a permanent cycle which detects a

lift of �2�2.

(2) The class �2�� 2 �65.tmf/ lifts to an element

�2��Œ1� 2 tmf66.M.8//

which is detected by
v8

2h2d0Œ1� 2 Ext15;66C15
A.2/�

.H.8//

in the MASS for tmf^M.8/. Lift �2��Œ1� to an element

�2��Œ18� 2 tmf83.M.8; v8
1//:

In the MASS for tmf^M.8/, there is a differential

d2.v
10
2 v4

1d0h0Œ1�/D v
8
2v

8
1h2d0Œ1�:

By the geometric boundary theorem, v8
2
��Œ18� is detected by v10

2
v4

1
d0h0Œ1� in the MASS

for tmf^M.8; v8
1
/. In particular, we see that �2��Œ18� has MAF 21 and stem 83.

We now check that v10
2
v4

1
d0h0Œ1� is a permanent cycle in the algebraic tmf resolution for

H.8; v8
1
/. Its relative position in ExtA.2/�.bo1˝H.8; v8

1
// is t � sD 76 and AFD 20,

its relative position in ExtA.2/�.bo˝2
1
˝H.8; v8

1
// is t � s D 69 and AFD 19, and its

relative position in ExtA.2/�.bo˝3
1
˝H.8; v8

1
// is t � s D 62 and AFD 18, the last of

which has targets only above the vanishing line. Inspection of the relevant charts shows

11We will say that x 2 ExtA.2/�.H.8; v
8
1
// has relative position .t�s; s/ in ExtA.2/�.boI ˝H.8; v8

1
// if

the image of a differential supported by x in the algebraic tmf resolution lies in ExtsC1;t
A.2/�

.boI˝H.8; v8
1
//,

and the image of a differential supported by x in the MASS could be detected in the algebraic tmf
resolution by an element in ExtsCr;t�rC1

A.2/�
.bo1˝H.8; v8

1
//. In other words, if you were to pretend x is

an element in Exts;t
A.2/�

.boI ˝H.8; v8
1
//, then dr –differentials in the algebraic tmf resolution “look” like

Adams d1’s, and dr –differentials in the MASS “look” like Adams dr ’s.
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that v10
2
v4

1
d0h0Œ1� cannot support a nontrivial d1–differential since the target bidegrees

are zero. Therefore v10
2
v4

1
d0h0Œ1� is a permanent cycle in the algebraic tmf resolution

for H.8; v8
1
/ and detects an element fv10

2
v4

1
d0h0Œ1�g in ExtA�.H.8; v

8
1
//.

Finally, inspection of the same charts reveals that there are no possible targets for a non-
trivial differential supported by fv10

2
v4

1
d0h0Œ1�g in the MASS for M.8; v8

1
/. Therefore

fv10
2
v4

1
d0h0Œ1�g is a permanent cycle.

(3) The class �2�2x� 2 �70.tmf/ lifts to an element

�2�2
x�Œ1� 2 tmf71.M.8//

which is detected by
g2h6

2;1Œ1� 2 Ext16;71C16
A.2/�

.H.8//

in the MASS for tmf^M.8/. Lift �2�2x�Œ1� to an element

�2�2
x�Œ18� 2 tmf88.M.8; v8

1//:

In the MASS for tmf^M.8/, there is a differential

d2.v
8
2v

4
1d0e0Œ1�/D g2v8

1h6
2;1Œ1�:

By the geometric boundary theorem,�2�2x�Œ18� is detected by v8
2
v4

1
d0e0Œ1� in the MASS

for tmf^M.8; v8
1
/. In particular, we see that �2�2x�Œ18� has MAF 24 and stem 88.

We now check that v8
2
v4

1
d0e0Œ1� is a permanent cycle in the algebraic tmf resolution for

H.8; v8
1
/. Its relative position in ExtA.2/�.bo1˝H.8; v8

1
// is t � s D 81 and AFD 23

and its relative position in ExtA.2/�.bo˝2
1
˝H.8; v8

1
// is t � s D 74 and AFD 22, the

latter of which lies above the vanishing line. Inspection of the relevant charts shows
that v8

2
v4

1
d0e0Œ1� cannot support a nontrivial differential in the algebraic tmf resolution

for H.8; v8
1
/ since the target bidegrees are zero. Therefore v8

2
v4

1
d0e0Œ1� is a permanent

cycle in the algebraic tmf resolution for H.8; v8
1
/ and therefore lifts to an element

fv8
2
v4

1
d0e0Œ1�g in ExtA�.H.8; v

8
1
//.

Finally, inspection of the same charts reveals that there are no possible targets for a
nontrivial differential supported by fv8

2
v4

1
d0e0Œ1�g in the MASS for M.8; v8

1
/. Therefore

fv8
2
v4

1
d0e0Œ1�g is a permanent cycle in the MASS for M.8; v8

1
/.

Lemma 7.22 The following classes lift to the top cell of M.8; v8
1
/:

(1) �4�2 2 �102.tmf/, �4� 2 �104.tmf/, �4� 2 �110.tmf/.

(2) �42x� 2 �116.tmf/.
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Proof (1) These classes were lifted in [7, Theorem 11.1].

(2) The class �42x� 2 �116.tmf/ lifts to an element

�42x�Œ1� 2 tmf117.M.8//

which is detected by
v16

2 h0gŒ1� 2 Ext23;117C23
A.2/�

.H.8//

in the MASS for tmf^M.8/. Lift �42x�Œ1� to an element

�42x�Œ18� 2 tmf134.M.8; v8
1//:

In the MASS for tmf^M.8/, there is a differential

d2.v
18
2 v4

1d0h2Œ1�/D v
16
2 v8

1h0gŒ1�:

By the geometric boundary theorem,�42x�Œ18� is detected by v18
2
v4

1
d0h2Œ1� in the MASS

for tmf^M.8; v8
1
/. In particular, we see that �42x�Œ18� has MAF 29 and stem 134.

We now check that v18
2
v4

1
d0h2Œ1� is a permanent cycle in the algebraic tmf resolution for

H.8; v8
1
/. Its relative position in ExtA.2/�.bo1˝H.8; v8

1
// is t�sD 127 and AFD 28,

its relative position in ExtA.2/�.bo˝2
1
˝H.8; v8

1
// is t � s D 120 and AF D 27, and

its relative position in ExtA.2/�.bo˝3
1
˝H.8; v8

1
// is t � s D 113 and AF D 26, the

last of which lies above the vanishing line. Inspection of the relevant charts shows
that v16

2
2x�Œ18� cannot support a nontrivial d1–differential since the target bidegrees

are zero. Therefore v16
2

2x�Œ18� is a permanent cycle in the algebraic tmf resolution for
H.8; v8

1
/ and lifts to an element v16

2
2x�Œ18� in ExtA�.H.8; v

8
1
//.

Finally, inspection of the same charts reveals that there are no possible targets for a
nontrivial differential supported by v16

2
2x�Œ18� in the MASS for M.8; v8

1
/. Therefore

v16
2

2x�Œ18� is a permanent cycle.

Contrary to the previous cases, there are several potential obstructions to lifting �4x��2

�117.tmf/ to the top cell of M.8; v8
1
/ which are tricky to resolve. However, since this

element is 2–torsion and v4
1

–torsion, we may instead attempt to lift it to the top cell of
the generalized Moore spectrum M.2; v4

1
/ of [6], where the potential obstructions are

much simpler to analyze. It then follows from the fact that the composite

†8M.2; v4
1/
�4v4

1
��!M.8; v8

1/! S18

is projection onto the top cell of M.2; v4
1
/ that�4x�� does lift to the top cell of M.8; v8

1
/.
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Lemma 7.23 The class �4x�� 2 �117.tmf/ lifts to the top cell of M.2; v4
1
/.

Proof The class �4�x� 2 �117.tmf/ lifts to an element

�4�x�Œ1� 2 tmf118.M.2//

which is detected by
v16

2 h1gŒ1� 2 Ext21;118C21.H.2//

in the MASS for tmf^M.2/. Lift �4�x�Œ1� to an element

�4�x�Œ10� 2 tmf127.M.2; v4
1//:

In the MASS for tmf^M.2/, there is a differential

d3.v
20
2 h2

2Œ1�/D v
16
2 v4

1h1gŒ1�:

It follows from the geometric boundary theorem that �4�x�Œ10� is detected by v20
2

h2
2
Œ1�

in the MASS for tmf^M.2; v4
1
/. In particular, we see that �4�x�Œ10� has MAF 24 and

stem 127.

We now check that v20
2

h2
2
Œ1� is a permanent cycle in the algebraic tmf resolution for

H.2; v4
1
/. Its relative position in ExtA.2/�.bo1˝H.2; v4

1
// is t�sD 120 and AFD 23,

its relative position in ExtA.2/�.bo˝2
1
˝H.2; v4

1
// is t � s D 113 and AFD 22, and its

relative position in ExtA.2/�.bo˝3
1
˝H.2; v4

1
// is t�sD 106 and AFD 21. Inspection

of the relevant charts [6, Figures 6.4–6.5] shows that there is potentially a nontrivial
differential

d1.v
20
2 h2

2Œ1�/D x119;24;

in the algebraic tmf resolution, where

x119;24 2 Ext24;119C24
A.2/�

.bo1˝H.2; v4
1//;

but, since v20
2

h2
2
Œ1� is v16

2
–divisible and x119;24 is not, this differential cannot occur

(compare with the proof of [7, Proposition 10.1]). Therefore v20
2

h2
2
Œ1� is a permanent

cycle in the algebraic tmf resolution for H.2; v4
1
/ and therefore lifts to an element

fv20
2

h2
2
Œ1�g in ExtA�.H.2; v

4
1
//.

Finally, inspection of the same charts reveals that there are no possible nontrivial
differentials supported by fv20

2
h2

2
Œ1�g in the MASS for M.2; v4

1
/. Therefore fv20

2
h2

2
Œ1�g

is a permanent cycle in the MASS for M.2; v4
1
/.

Lemma 7.24 The class �4q 2 �128.tmf/ lifts to the top cell of M.8; v8
1
/.

Proof The class �4q 2 �128.tmf/ lifts to an element

�4qŒ1� 2 tmf129.M.8//
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which is detected by
v20

2 c0Œ1� 2 Ext23;129C23
A.2/�

.H.8//

in the MASS for tmf^M.8/. Lift �4qŒ1� to an element

�4qŒ18� 2 tmf146.M.8; v8
1//:

In the MASS for tmf^M.8/, there is a differential

d4.v
16
2 g2h2;1v

2
1 Œ1�/D v

20
2 v8

1c0Œ1�:

By the geometric boundary theorem, �4qŒ18� is detected by v16
2

g2h2;1v
2
1
Œ1� in the

MASS for tmf^M.8; v8
1
/. In particular, we see that�4qŒ18� has MAF 29 and stem 146.

We now check that v16
2

g2h2;1v
2
1
Œ1� is a permanent cycle in the algebraic tmf resolution

for H.8; v8
1
/. Its relative position in ExtA.2/�.bo1 ˝H.8; v8

1
// is t � s D 139 and

AFD 28, its relative position in ExtA.2/�.bo˝2
1
˝H.8; v8

1
// is t�sD 132 and AFD 27,

and its relative position in ExtA.2/�.bo˝3
1
˝H.8; v8

1
// is t � s D 125 and AFD 26.

The proof of Lemma 7.18(1) implies that the element

g2h2;1v
2
1 Œ1� 2 ExtA.2/�.H.8; v

8
1//

is a permanent cycle in the algebraic tmf resolution for H.8; v8
1
/. It follows from

Lemma 5.1 that
v16

2 g2h2;1v
2
1 Œ1�

is a permanent cycle in the algebraic tmf resolution for H.8; v8
1
/, and detects an element

v16
2 � fg

2h2;1v
2
1 Œ1�g 2 ExtA�.H.8; v

8
1//

which persists to the E3–page of the MASS for M.8; v8
1
/.

The only possibility for this element to support a nontrivial MASS differential is for it
to support a d3–differential whose target to by detected by the element

v1h19
2;1.v

�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ18� 2 ExtA.2/�.bo˝2

1
˝H.8; v8

1//

in the algebraic tmf resolution for H.8; v8
1
/.

We wish to use Lemma 5.5 to argue that the element v1h19
2;1
.v�1

0
v2

2
Œ�8

1
; �4

2
�/Œ18� detects

an element in ExtA�.H.8; v
8
1
// which is zero in the E3–page of the MASS. In the

MASS for bo2
1 ^M.8; v8

1
/, there is a differential

d2.v
8
2h10

2;1.v
�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ18�/D v1h19

2;1.v
�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ18�:
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Using the map

†16tmf^ bo2
1 ^M.8; v8

1/ ,! tmf^ tmf2
^M.8; v8

1/

we get the same differential in the MASS for tmf^tmf2^M.8; v8
1
/. By Proposition 4.3,

the element v8
2
h10

2;1
.v�1

0
v2

2
Œ�8

1
; �4

2
�/Œ18� is a permanent cycle in the algebraic tmf resolu-

tion for H.8; v8
1
/, detecting the element

�2v6
1M.g2/Œ1� 2 ExtA�.H.8; v

8
1//:

Therefore the hypotheses of Lemma 5.5 are satisfied, and we deduce that

v1h19
2;1.v

�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ18�

detects an element which is zero in the E3–page of the MASS, and hence cannot be
the target of a nontrivial d3–differential in the MASS.

Lemma 7.25 The class �4u 2 �135.tmf/ lifts to the top cell of M.8; v8
1
/.

Proof The class �4u 2 �135.tmf/ lifts to an element

�4uŒ1� 2 tmf136.M.8//

which is detected by

v16
2 v2

1x35Œ1� 2 Ext25;136C25
A.2/�

.H.8//

in the MASS for tmf^M.8/. Lift �4uŒ1� to an element

�4uŒ18� 2 tmf153.M.8; v8
1//:

There is a differential in the MASS for tmf^M.8/,

d4.v
16
2 v3

1h2
2;1g2Œ1�/D v16

2 v10
1 x35Œ1�;

so, by the geometric boundary theorem, �4uŒ18� is detected by v16
2
v3

1
h2

2;1
g2Œ1� in the

MASS for tmf^M.8; v8
1
/. In particular, �4uŒ18� has MAF 31 and stem 153.

We now check that v16
2
v3

1
h2

2;1g2Œ1� is a permanent cycle in the algebraic tmf resolution
for H.8; v8

1
/. Note that v3

1
h2

2;1
g2Œ1� detects uŒ18� in the MASS for tmf^M.8; v8

1
/. In

Lemma 7.18, we established that uŒ18� lifts to M.8; v8
1
/, and therefore v3

1
h2

2;1
g2Œ1� is

a permanent cycle in the algebraic tmf resolution and it detects a permanent cycle in
the MASS for M.8; v8

1
/. It follows from Lemma 5.1 that

v16
2 v3

1h2
2;1g2Œ1�

is a permanent cycle in the algebraic tmf resolution and detects an element

v16
2 � fv

3
1h2

2;1g2Œ1�g 2 ExtA�.H.8; v
8
1//:
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Inspection of the relevant charts shows that the only possible nontrivial MASS differ-
entials supported by this element would be

d2.v
16
2 � fv

2
1h2

2;1g2Œ1�g/D fv8
2h15

2;1�
4
2 Œ18�g:

However, we have
d2.v

16
2 � fv

3
1h2

2;1g2Œ1�g/D 0;

since it is a product of d2–cycles.

Lemma 7.26 The following classes lift to the top cell of M.8; v8
1
/:

(1) �6�2 2 �150.tmf/.

(2) �6�� 2 �161.tmf/.

Proof (1) The class �6�2 2 �150.tmf/ lifts to an element

�6�2Œ1� 2 tmf151.M.8//

which is detected by
v24

2 h2
2Œ1� 2 Ext28;151C28

A.2/�
.H.8//

in the MASS for tmf^M.8/. Lift �6�2Œ1� to an element

�6�2Œ18� 2 tmf168.M.8; v8
1//:

In the MASS for tmf^M.8/, there is a differential

d2.v
26
2 v4

1h2h0Œ1�/D v
24
2 v8

1h2
2Œ1�:

By the geometric boundary theorem,�6�2Œ18� is detected by v26
2
v4

1
h2h0Œ1� in the MASS

for tmf^M.8; v8
1
/. In particular, we see that �6�2Œ18� has MAF 34 and stem 168.

In Lemma 7.21(1), we showed that v10
2
v4

1
h2h0Œ1� is a permanent cycle in the algebraic

tmf resolution, detecting an element

fv10
2 v4

1h2h0Œ1�g 2 ExtA�.H.8; v
8
1//

in the algebraic tmf resolution for H.8; v8
1
/. By Lemma 5.1, this is also true of

v26
2
v4

1
h2h0Œ1�.

Lemma 5.1 implies that d2.v
16
2
/D 0 in the MASS for M.8; v8

1
/. By Lemma 7.21(1),

it follows that
d2.v

16
2 � fv

10
2 v4

1h2h0Œ1�g/D 0:

Inspection of the algebraic tmf resolution charts reveals that there are no possible targets
of a longer MASS differential supported by v16

2
� fv10

2
v4

1
h2h0Œ1�g.
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(2) The class �6�� 2 �161.tmf/ lifts to an element

�6��Œ1� 2 tmf162.M.8//

which is detected by

v24
2 d0h2Œ1� 2 Ext31;161C31

A.2/�
.H.8//

in the MASS for tmf^M.8/. Lift �6��Œ1� to an element

�6��Œ18� 2 tmf179.M.8; v8
1//:

In the MASS for tmf^M.8/, there is a differential

d2.v
26
2 v4

1h0d0Œ1�/D v
24
2 v8

1h2d0Œ1�:

By the geometric boundary theorem, �6��Œ18� is detected by v26
2
v4

1
h0d0Œ1� in the

MASS for tmf ^M.8; v8
1
/. In particular, we see that �6��Œ18� has MAF 37 and

stem 179.

We showed in Lemma 7.21 that v10
2
v4

1
h0d0Œ1� is a permanent cycle in the algebraic

tmf resolution. By Lemma 5.1, it follows that v26
2
v4

1
h0d0Œ1� is a permanent cycle in

the algebraic tmf resolution for H.8; v8
1
/ and lifts to an element fv26

2
v4

1
h0d0Œ1�g in

ExtA�.H.8; v
8
1
//.

Finally, inspection of the algebraic tmf resolution charts reveals that there are no pos-
sible nontrivial differentials on fv26

2
v4

1
h0d0Œ1�g in the MASS for M.8; v8

1
/. Therefore

fv26
2
v4

1
h0d0Œ1�g is a permanent cycle.

Lemma 7.27 The classes �8�2 2 �198tmf and �8� 2 �200tmf lift to the top cell of
M.8; v8

1
/.

Proof The classes �8�2 2 �198.tmf/ and �8� 2 �200tmf lift to elements

�8�2Œ1� 2 tmf199.M.8//; �8�Œ1� 2 tmf201.M.8//

which are detected by

v32
2 h2

2Œ1� 2 Ext36;199C36
A.2/�

.H.8//; v32
2 c0Œ1� 2 Ext37;201C37

A.2/�
.H.8//

in the MASS for tmf^M.8/. Lift �8�2Œ1� and �8�Œ1� to elements

�8�2Œ18� 2 tmf210.M.8; v8
1//; �8�Œ18� 2 tmf212.M.8; v8

1//:
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In the MASS for tmf^M.8/, there are differentials

d2.v
32
2 v4

1h0h2v
2
2 Œ1�/D v

32
2 v8

1h2
2Œ1�; d3.v

32
2 v4

1e0Œ1�/D v
32
2 v8

1c0Œ1�:

By the geometric boundary theorem,�8�2Œ18� is detected by v34
2
v4

1
h0h2Œ1� and�8�Œ18�

is detected by v32
2
v4

1
e0Œ1� in the MASS for tmf^M.8; v8

1
/.

In [7, Theorem 11.1] the classes�4�2Œ18�2�120M.8; v8
1
/ and�4�Œ18�2�122M.8; v8

1
/

were produced by showing that the elements

v18
2 v4

1h0h2Œ1� 2 Ext26;120C26
A.2/�

.H.8; v8
1//; v16

2 v4
1e0Œ1� 2 Ext26;122C26

A.2/�
.H.8; v8

1//

detect via the algebraic tmf resolution elements

fv18
2 v4

1h0h2Œ1�g2Ext26;120C26
A�

.H.8; v8
1//; fv

16
2 v4

1e0Œ1�g2Ext26;122C26
A�

.H.8; v8
1//;

which are permanent cycles in the MASS for M.8; v8
1
/.

Since the element v16
2
2 ExtA�.H.8; v

8
1
// is the square of the element v8

2
, we have

d2.v
16
2
/D 0. We deduce that the elements

v16
2 � fv

18
2 v4

1h0h2Œ1�g 2 Ext26;120C26
A�

.H.8; v8
1//;

v16
2 � fv

16
2 v4

1e0Œ1�g 2 Ext26;122C26
A�

.H.8; v8
1//

persist to the E3–page of the MASS for M.8; v8
1
/. If we can show they are permanent

cycles, we are done.

We begin with fv34
2
v4

1
h0h2Œ1�g. Examination of the algebraic tmf resolution for

M.8; v8
1
/ reveals that the only possibility of a nontrivial differential in the MASS

supported by this element would be a d4.fv
34
2
v4

1
h0h2Œ1�g/, which would be detected

by
h33

2;1v1v
�1
0 v2

2 Œ�
8
1 ; �

4
2 �Œ18� 2 ExtA.2/�.bo˝2

1
˝H.8; v8

1//:

In the MASS for tmf^ bo^2
1 there is a differential

dmass
2 .�2h24

2;1v
�1
0 v2

2 Œ�
8
1 ; �

4
2 �Œ18�/D h33

2;1v1v
�1
0 v2

2 Œ�
8
1 ; �

4
2 �Œ18�:

Using the map (5.7) we deduce that there is a corresponding differential in the MASS
for tmf^ tmf^2. The elements

h33
2;1v1v

�1
0 v2

2 Œ�
8
1 ; �

4
2 �Œ18�; �2h24

2;1v1v
�1
0 v2

2 Œ�
8
1 ; �

4
2 �Œ18�

respectively detect

v7
1h23

2;1Mg2Œ1� 2 ExtA�.H.8; v
8
1//; �2v6

1h14
2;1Mg2Œ1� 2 ExtA�.H.8; v

8
1//
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in the algebraic tmf resolution for M.8; v8
1
/. We therefore deduce from Lemma 5.5

that v7
1
h23

2;1
Mg2Œ1� is killed by

dmass
2 .�2v6

1h14
2;1Mg2Œ1�/

in the MASS for M.8; v8
1
/. Therefore it cannot be the target of a nontrivial dmass

4
.

We now consider fv32
2
v4

1
e0Œ1�g. Examination of the algebraic tmf resolution for

M.8; v8
1
/ reveals that the only possibility of a nontrivial differential in the MASS

supported by this element would be a d4.fv
32
2
v4

1
e0Œ1�g/, which would be detected by

�2h28
2;1�

4
2 Œ18� 2 ExtA.2/�.bo1˝H.8; v8

1//

in the algebraic tmf resolution for M.8; v8
1
/. To eliminate this possibility we wish to

employ Case 1 of Remark 5.6, using the differential

dmass
3 .�2h25

2;1v
�2
0 v2

2�
16
1 Œ18�/D�2h28

2;1�
4
2 Œ18�

in the MASS for tmf^ tmf^M.8; v8
1
/. The element �2h25

2;1
v�2

0
v2

2
�16

1
Œ18� detects the

element
�2h19

2;1Q2Œ18� 2 ExtA�.H.8; v
8
1//

in the algebraic tmf resolution for M.8; v8
1
/. We just need to check that there is no

possibility for �2h19
2;1

Q2Œ18� to support a nontrivial dmass
2

in the MASS for M.8; v8
1
/.

However, examination of the algebraic tmf resolution for M.8; v8
1
/ reveals there are

no classes which could detect the target of such a nontrivial dmass
2

.
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