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A higher-rank rigidity theorem for
convex real projective manifolds

ANDREW ZIMMER

For convex real projective manifolds we prove an analogue of the higher-rank rigidity
theorem of Ballmann and Burns and Spatzier.

53C24; 20H10, 22E40, 37D40, 53C15

1 Introduction

A real projective structure on a d–manifold M is an open cover M D
S
˛ U˛ along

with coordinate charts '˛ WU˛! P .RdC1/ such that each transition function '˛ ı'�1ˇ
coincides with the restriction of an element in PGLdC1.R/. A real projective manifold
is a manifold equipped with a real projective structure.

An important class of real projective manifolds is the convex real projective manifolds,
which are defined as follows. First, a subset �� P .RdC1/ is called a properly convex
domain if there exists an affine chart which contains it as a bounded convex open set.
In this case, the automorphism group of � is

Aut.�/ WD fg 2 PGLdC1.R/ W g�D�g:

If � �Aut.�/ is a discrete subgroup that acts freely and properly discontinuously on�,
then the quotient manifold �n� is called a convex real projective manifold. Notice that
local inverses to the covering map �! �n� provide a real projective structure on
the quotient. In the case when there exists a compact quotient, the domain � is called
divisible. For more background see the expository papers by Benoist [7], Marquis [22]
and Quint [25].

When d � 3, the structure of closed convex real projective d–manifolds is very well
understood thanks to deep work of Benzécri [9], Goldman [16] and Benoist [6]. But,
when d � 4, their general structure is mysterious.
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We establish a dichotomy for convex real projective manifolds inspired by the theory
of nonpositively curved Riemannian manifolds. In particular, a compact Riemannian
manifold .M; g/with nonpositive curvature is said to have higher rank if every geodesic
in the universal cover is contained in a totally geodesic subspace isometric to R2.
Otherwise, .M; g/ is said to have rank one. An important theorem of Ballmann [2]
and Burns and Spatzier [11; 12] states that every compact irreducible Riemannian
manifold with nonpositive curvature and higher rank is a locally symmetric space. This
foundational result reduces many problems about nonpositively curved manifolds to
the rank-one case. Further, rank-one manifolds possess very useful “weakly hyperbolic
behavior” (see for instance Ballmann [1] and Knieper [20]).

In the context of convex real projective manifolds, the natural analogue of isometrically
embedded copies of R2 are properly embedded simplices, see Section 2.6 below, which
leads to a definition of higher rank:

Definition 1.1 (i) A properly convex domain �� P .Rd / has higher rank if for
every p; q 2� there exists a properly embedded simplex S �� with dim.S/� 2
and Œp; q�� S .

(ii) If a properly convex domain � � P .Rd / does not have higher rank, then we
say that � has rank one.

There are two basic families of properly convex domains with higher rank: reducible
domains (see Section 2.4) and symmetric domains with real rank at least two.

A properly convex domain �� P .Rd / is called symmetric if there exists a semisimple
Lie group G � PGLd .R/ which preserves � and acts transitively. In this case, the real
rank of � is defined to be the real rank of G. Koecher and Vinberg characterized the
irreducible symmetric properly convex domains and proved that G must be locally
isomorphic to either

(i) SO.1;m/ with d DmC 1,

(ii) SLm.R/ with d D 1
2
.m2Cm/,

(iii) SLm.C/ with d Dm2,

(iv) SLm.H/ with d D 2m2�m, or

(v) E6.�26/ with d D 27.

For details see Faraut and Korányi [15], Koecher [21] and Vinberg [28; 29]. Borel [10]
proved that every semisimple Lie group contains a cocompact lattice, which implies
that every symmetric properly convex domain is divisible.

Geometry & Topology, Volume 27 (2023)



A higher-rank rigidity theorem for convex real projective manifolds 2901

We prove that these two families of examples are the only divisible domains with higher
rank. In fact, we show that being symmetric with real rank at least two is equivalent to
a number of other “higher rank” conditions. Before stating the main result we need a
few more definitions.

Definition 1.2 � Given g 2 PGLd .R/, let

�1.g/� �2.g/� � � � � �d .g/

denote the absolute values of the eigenvalues of some (hence any) lift of g to
SL˙d .R/ WD fh 2 GLd .R/ W det hD˙1g.

� g 2 PGLd .R/ is proximal if �1.g/ > �2.g/. In this case, let `Cg 2P .Rd / denote
the eigenline of g corresponding to �1.g/.

� g 2 PGLd .R/ is biproximal if g and g�1 are both proximal. In this case, define
`�g WD `

C

g�1 .

Next we define a distance on the boundary using projective line segments:

Definition 1.3 Given a properly convex domain � � P .Rd / the (possibly infinite
valued) simplicial distance on @� is defined by

s@�.x; y/

D inffk W 9a0; : : : ; ak with x D a0; y D ak and Œaj ; ajC1�� @� for 0� j � k� 1g:

We will prove a characterization of higher rank in the context of convex real projective
manifolds:

Theorem 1.4 (see Section 9) Suppose that � � P .Rd / is an irreducible properly
convex domain and � � Aut.�/ is a discrete group acting cocompactly on �. Then
the following are equivalent :

(i) � is symmetric with real rank at least two.

(ii) � has higher rank.

(iii) The extreme points of � form a closed proper subset of @�.

(iv) Œx1; x2�� @� for every two extreme points x1; x2 2 @�.

(v) s@�.x; y/� 2 for all x; y 2 @�.

(vi) s@�.x; y/ <C1 for all x; y 2 @�.

(vii) � has higher rank in the sense of Prasad and Raghunathan (see Section 8).

Geometry & Topology, Volume 27 (2023)
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(viii) For every g 2 � with infinite order , the cyclic group gZ has infinite index in the
centralizer of g in � .

(ix) Every g 2 � with infinite order has at least three fixed points in @�.

(x) Œ`Cg ; `
�
g �� @� for every biproximal element g 2 � .

(xi) s@�.`
C
g ; `
�
g / <C1 for every biproximal element g 2 � .

M Islam [18] has recently defined and studied rank-one isometries of a properly convex
domain. These are analogous to the classical definition of rank-one isometries of
CAT.0/ spaces (see [1]) and are defined as follows:

Definition 1.5 (Islam [18]) Suppose that �� P .Rd / is a properly convex domain.
An element g 2Aut.�/ is a rank-one isometry if g is biproximal and s@�.`Cg ; `

�
g / > 2.

Remark 1.6 (1) When g 2 Aut.�/ is a rank-one isometry, the properly embedded
line segment .`Cg ; `

�
g / � � is preserved by g. Further, g acts by translations on

.`Cg ; `
�
g / in the following sense: if H� is the Hilbert metric on �, then there exists

T > 0 such that
H�.g

n.x/; x/D nT

for all n� 0 and x 2 .`Cg ; `
�
g /.

(2) Islam [18, Proposition 6.3] also proved a weaker characterization of rank-one
isometries: g 2 Aut.�/ is a rank-one isometry if and only if g acts by translations on
a properly embedded line segment .a; b/�� and s@�.a; b/ > 2.

As an immediate consequence of Theorem 1.4:

Corollary 1.7 Suppose that � � P .Rd / is an irreducible properly convex domain
and � � Aut.�/ is a discrete group acting cocompactly on �. Then the following are
equivalent :

(i) � has rank one.

(ii) � contains a rank-one isometry.

Islam has also established a number of remarkable results when the automorphism
group contains a rank-one isometry; see [18] for details. For instance:

Corollary 1.8 (consequence of Theorem 1.4 and [18, Theorem 1.5]) Suppose that
� � P .Rd / is an irreducible properly convex domain and � � Aut.�/ is a discrete
group acting cocompactly on �. If d � 3 and � is not symmetric with real rank at
least two , then � is an acylindrically hyperbolic group.

Geometry & Topology, Volume 27 (2023)
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1.1 Outline of the proof of Theorem 1.4

The difficult part is showing that any one of conditions (ii)–(xi) implies that the domain
is symmetric with real rank at least two.

One key idea is to construct and study special semigroups in P .End.Rd // associated
to each boundary face. This is accomplished as follows. First, motivated by a lemma
of Benoist [5, Lemma 2.2], we consider a compactification of a subgroup of PGLd .R/:

Definition 1.9 Given a subgroup G � PGLd .R/ let

GEnd
� P .End.Rd //

denote the closure of G in P .End.Rd //.

Next, for a dividing group, we introduce subsets of this compactification:

Definition 1.10 Suppose that��P .Rd / is a properly convex domain and ��Aut.�/
is a discrete group acting cocompactly on �. If F � @� is a boundary face and
V WD SpanF �Rd , then define

�End
F WD fT 2 �End

W image.T /� V g
and

�End
F;? WD fT 2 �

End
W image.T /D V and ker.T /\V D f0gg:

We then prove:

Theorem 3.1 Suppose that � � P .Rd / is an irreducible properly convex domain
and � � Aut.�/ is a discrete group acting cocompactly on �. If � is nonsymmetric ,
F � @� is a boundary face , V WD SpanF �Rd , and dim.V /� 2, then:

(a) If T 2 �End
F , then T .�/� F .

(b) If T 2 �End
F;?, then T .F / is an open subset of F .

(c) The set
fT jV W T 2 �

End
F;?g

is a nondiscrete Zariski-dense semigroup in P .End.V //.

Using Theorem 3.1 we will show that any one of Theorem 1.4(ii)–(xi) implies that the
domain is symmetric with real rank at least two. Here is a sketch of the argument: First
suppose that �� P .Rd / is an irreducible properly convex domain, � � Aut.�/ is a
discrete group acting cocompactly on �, and any one of Theorem 1.4(ii)–(xi) is true.

Geometry & Topology, Volume 27 (2023)
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Then let E� � @� denote the extreme points of �. We will show that there exists a
boundary face F � @� such that

(1) F \ E� D∅:

By choosing F minimally, we can also assume that E� intersects every boundary face
of strictly smaller dimension. As before, let V WD SpanF . Then using (1) we show
that T jV 2 Aut.F / for every T 2 �End

F;?. Therefore Theorem 3.1 implies that either �
is symmetric or Aut.F / is a nondiscrete Zariski-dense subgroup of PGL.V /. In the
latter case, it is fairly easy to deduce that PSL.V /� Aut.F /, see Lemma 4.5 below,
which is impossible. So � must be symmetric.

1.2 Outline of the paper

In Section 2 we recall some preliminary material. In Section 3 we prove Theorem 3.1.
In Section 4 we prove the rigidity result mentioned in the previous subsection.

The rest of the paper is devoted to the proof of the various equivalences in Theorem 1.4.
In Sections 5, 6, and 7 we prove some new results about the action of the automorphism
group. In Section 8 we consider the rank of a group in the sense of Prasad and
Raghunathan. Finally, in Section 9 we prove Theorem 1.4.
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2 Preliminaries

2.1 Notation

Given a linear subspace V �Rd , we let P .V /� P .Rd / denote its projectivization. In
all other cases, given some object o, we will let Œo� be the projective equivalence class
of o. For instance:

(i) If v 2Rd n f0g, let Œv� denote the image of v in P .Rd /.

(ii) If � 2 GLd .R/, let Œ�� denote the image of � in PGLd .R/.

(iii) If T 2 End.Rd / n f0g, let ŒT � denote the image of T in P .End.Rd //.

Geometry & Topology, Volume 27 (2023)
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We also identify P .Rd /D Gr1.Rd /, so for instance if x 2 P .Rd / and V � Rd is a
linear subspace, then x 2 P .V / if and only if x � V .

Finally, given a subset X of Rd (respectively P .Rd /), we will let SpanX �Rd denote
the smallest linear subspace containing X (respectively the preimage of X ).

2.2 Convexity and line segments

A subset C � P .Rd / is called convex if there exists an affine chart which contains
it as a convex subset. A subset C � P .Rd / is called properly convex if there exists
an affine chart which contains it as a bounded convex subset. For convex subsets, we
make some topological definitions:

Definition 2.1 Let C �P .Rd / be a convex set. The relative interior of C , denoted by
rel-int.C /, is the interior of C in its span and the boundary of C is @C WDC nrel-int.C /.

A line segment in P .Rd / is a connected subset of a projective line. Given two points
x; y 2 P .Rd / there is no canonical line segment with endpoints x and y, but we will
use the convention that if C � P .Rd / is a properly convex set and x; y 2 C , then
(when the context is clear) we will let Œx; y� denote the closed line segment joining
x to y which is contained in C . In this case, we will also let .x; y/D Œx; y� n fx; yg,
Œx; y/D Œx; y� n fyg, and .x; y�D Œx; y� n fxg.

2.3 Irreducibility

A subgroup � � PGLd .R/ is irreducible if f0g and Rd are the only �–invariant linear
subspaces of Rd , and strongly irreducible if every finite-index subgroup is irreducible.

We will use the following observation several times:

Observation 2.2 If � � PGLd .R/ is strongly irreducible , x1; : : : ; xk 2 P .Rd /, and

V1; : : : ; Vk ¨ Rd

are linear subspaces , then there exists g 2 � such that gxj … P .Vj / for all 1� j � k.

Proof Let G D �Zar denote the Zariski closure of � in PGLd .R/ and let G0 � G
denote the connected component of the identity of G (in the Zariski topology). Then
G0\� is a finite-index subgroup of � and hence G0 is irreducible. So each set

Oj D fg 2G0 W gxj … P .Vj /g

is nonempty and Zariski open in G0. Hence OD
Tk
jD1Oj is nonempty and Zariski

open in G0. Since � \G0 is Zariski dense in G0, there exists some g 2 � \O.

Geometry & Topology, Volume 27 (2023)
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2.4 Zariski closures

An open convex cone C � Rd is reducible if there exists a nontrivial vector space
decomposition Rd D V1 ˚ V2 and convex cones C1 � V1 and C2 � V2 such that
C D C1 C C2. Otherwise, C is said to be irreducible. The preimage in Rd of a
properly convex domain �� P .Rd / is the union of a cone and its negative; when this
cone is reducible (respectively irreducible) we say that � is reducible (respectively
irreducible).

Benoist determined the Zariski closures of discrete groups acting cocompactly on
irreducible properly convex domains:

Theorem 2.3 (Benoist [5]) Suppose that � � P .Rd / is an irreducible properly
convex domain and � � Aut.�/ is a discrete group acting cocompactly on �. Then
either

(i) � is symmetric , or

(ii) � is Zariski dense in PGLd .R/.

2.5 The Hilbert distance

In this section we recall the definition of the Hilbert metric. But first some notation:

Given a projective line L � P .Rd / and four distinct points a; x; y; b 2 L we define
the cross ratio by

Œa; x; y; b�D
jx� bjjy � aj

jx� ajjy � bj
;

where j � j is some (any) norm in some (any) affine chart of P .Rd / containing a, x, y
and b.

Next, for x; y 2P .Rd / distinct, let Lx;y �P .Rd / denote the projective line containing
x and y.

Definition 2.4 Suppose that �� P .Rd / is a properly convex domain. The Hilbert
distance on �, denoted by H�, is defined as follows: if x; y 2� are distinct, then

H�.x; y/D
1
2

logŒa; x; y; b�;

where @�\Lx;y D fa; bg with the ordering a; x; y; b along Lx;y .

The following result is classical; see for instance [13, Section 28].

Geometry & Topology, Volume 27 (2023)
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Proposition 2.5 Suppose that �� P .Rd / is a properly convex domain. Then H� is
a complete Aut.�/–invariant metric on � which generates the standard topology on �.
Moreover , if p; q 2�, then there exists a geodesic joining p and q whose image is the
line segment Œp; q�.

2.6 Properly embedded simplices

In this subsection we recall the definition of properly embedded simplices.

Definition 2.6 A subset S � P .Rd / is a simplex if there exists g 2 PGLd .R/ and
k � 0 such that

gS D fŒx1 W � � � W xkC1 W 0 W � � � W 0� 2 P .Rd / W x1 > 0; : : : ; xkC1 > 0g:

In this case, we write dim.S/D k (notice that S is homeomorphic to Rk).

Definition 2.7 Suppose that A� B � P .Rd /. Then A is properly embedded in B if
the inclusion map A ,! B is a proper map (relative to the subspace topology).

By [23, Proposition 1.7], [17], or [26] the Hilbert metric on a simplex is isometric to a
normed space, and so:

Observation 2.8 Suppose that �� P .Rd / is a properly convex domain and S ��
is a properly embedded simplex. Then .S;H�/ is quasi-isometric to RdimS .

2.7 Limits of linear maps

Every T 2 P .End.Rd // induces a map

P .Rd / nP .kerT /! P .Rd /

defined by x! T .x/. We will frequently use:

Observation 2.9 If .Tn/n�1 converges in P .End.Rd // to T 2 P .End.Rd //, then

T .x/D lim
n!1

Tn.x/

for all x 2 P .Rd / n P .kerT /. Moreover , the convergence is uniform on compact
subsets of P .Rd / nP .kerT /.

2.8 The faces and extreme points of a properly convex domain

Definition 2.10 Suppose that �� P .Rd / is a properly convex domain. For x 2� let
F�.x/ denote the (open) face of x; that is,

F�.x/D fxg[ fy 2� W 9 an open line segment in � containing x and yg:

Geometry & Topology, Volume 27 (2023)
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If x 2 @� and F�.x/D fxg, then x is called an extreme point of �. Finally, let

E� � @�
denote the set of all extreme points.

These subsets have some basic properties:

Observation 2.11 Suppose that �� P .Rd / is a properly convex domain.

(i) If x 2�, then F�.x/D�.

(ii) F�.x/ is open in its span.

(iii) y 2 F�.x/ if and only if x 2 F�.y/ if and only if F�.x/D F�.y/.

(iv) If y 2 @F�.x/, then F�.y/� @F�.x/ and F�.y/D FF�.x/.y/.

(v) If x; y 2� and z 2 .x; y/, then

.p; q/� F�.z/

for all p 2 F�.x/ and q 2 F�.y/.

Proof These are all simple consequences of convexity.

We will also use results about the action of the automorphism group:

Proposition 2.12 [19, Proposition 5.6] Suppose that ��P .Rd / is a properly convex
domain , p0 2�, and .gn/n�1 is a sequence in Aut.�/ such that

(i) gn.p0/! x 2 @�,

(ii) g�1n .p0/! y 2 @�, and

(iii) gn converges in P .End.Rd // to T 2 P .End.Rd //.

Then imageT � SpanF�.x/, P .kerT /\�D∅, and y 2 P .kerT /.

In the case of “nontangential” convergence we can say more:

Proposition 2.13 [19, Proposition 5.7] Suppose that � � P .Rd / is a properly
convex domain , p0 2 �, x 2 @�, .pn/n�1 is a sequence in Œp0; x/ converging to x,
and .gn/n�1 is a sequence in Aut.�/ such that

sup
n�1

H�.gn.p0/; pn/ <C1:

If gn converges in P .End.Rd // to T 2 P .End.Rd //, then

T .�/D F�.x/;

and hence imageT D SpanF�.x/.
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Proposition 5.7 in [19] is stated differently, so we provide the proof:

Proof Proposition 2.12 implies T .�/� F�.x/, so we have to prove T .�/� F�.x/.

Fix y 2 F�.x/. Then we can pick a sequence .yn/n�1 in Œp0; y/ such that

sup
n�1

H�.yn; pn/ <1:

Thus
sup
n�1

H�.g
�1
n .yn/; p0/ <1:

So there exists nj !1 such that the limit

q WD lim
j!1

g�1nj
.ynj

/

exists in �. Notice that q … P .kerT / by Proposition 2.12 and so the “moreover” part
of Observation 2.9 implies that

T .q/D lim
n!1

gn.q/D lim
j!1

gnj
.q/D lim

j!1
gnj

.g�1nj
.ynj

//D lim
j!1

ynj
D y:

Since y was arbitrary, F�.x/� T .�/.

2.9 Proximal elements

In this section we recall some basic properties of proximal elements. For more back-
ground we refer the reader to [8].

Definition 2.14 Suppose that F WM !M is a C 1 map of a manifold M . Then a fixed
point x2M of F is attractive if j�j<1 for every eigenvalue � of d.F /x WTxM!TxM .

A straightforward calculation provides a characterization of proximality:

Observation 2.15 Suppose that g 2 PGLd .R/ and x is a fixed point of the g action
on P .Rd /. Then the following are equivalent :

(i) x is an attractive fixed point of g.

(ii) g is proximal and x D `Cg .

Next we explain the global dynamics of a proximal element.

Definition 2.16 If g 2 PGLd .R/ is proximal, then define H�g 2Grd�1.Rd / to be the
unique g–invariant linear hyperplane with

`Cg ˚H
�
g DRd :

If g is biproximal, then also define HCg WDH
�

g�1 .

Geometry & Topology, Volume 27 (2023)
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When g 2 PGLd .R/ is proximal, H�g is usually called the repelling hyperplane of g.
This is motivated by the following observation:

Observation 2.17 If g 2 PGLd .R/ is proximal , then

Tg WD lim
n!1

gn

exists in P .End.Rd //. Moreover , imageTg D `Cg , kerTg DH�g , and

imageTg ˚ kerTg DRd :

Hence
`Cg D lim

n!1
gnx

for all x 2 P .Rd / nP .H�g /.

Observation 2.18 Suppose �� P .Rd / is a properly convex domain. If g 2 Aut.�/
is proximal , then `Cg is an extreme point of @� and P .H�g /\ @�D∅.

Proof Proposition 2.12 implies that `Cg 2 @� and P .H�g /\@�D∅. Let F DF�.`Cg /
and V D SpanF . Then g.V /D V . Let Ng 2GLd .R/ be a lift of g 2 PGLd .R/ and let
h2GL.V / denote the element obtained by restricting Ng to V . Notice that h is proximal
since `Cg � V . Further Œh� 2 Aut.F / and h.`Cg /D `

C
g . Since Aut.F / acts properly on

F and `Cg 2 F , the cyclic group

Œh�Z � Aut.F /� PGL.V /

must be relatively compact. This implies that every eigenvalue of h has the same absolute
value. Then, since h is proximal, V must be one-dimensional and so F D f`Cg g. Thus
`Cg is an extreme point.

The following result can be viewed as a converse to Observation 2.17 and will be used
to construct proximal elements.

Proposition 2.19 Suppose that .gn/n�1 is a sequence in PGLd .R/ and

T WD lim
n!1

gn

exists in P .End.Rd //. If dim.imageT /D 1 and

imageT ˚ kerT DRd ;

then , for n sufficiently large , gn is proximal and

imageT D lim
n!1

`Cgn
:

Geometry & Topology, Volume 27 (2023)
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Proof Since gn! T in P .End.Rd //,

lim
n!1

gn.x/D T .x/D imageT 2 P .Rd /

for all x 2 P .Rd / n P .kerT /. Moreover, the convergence is uniform on compact
subsets of P .Rd / nP .kerT /.

By assumption,
imageT … P .kerT /;

so we can find a compact neighborhood U of imageT in P .Rd / such that U is
homeomorphic to a closed ball and

U \P .kerT /D∅:

Then, by passing to a tail, we can assume that gn.U /�U for all n. So, by the Brouwer
fixed-point theorem, each gn has a fixed point xn2U . SinceU can be chosen arbitrarily
small,

imageT D lim
n!1

xn:

We claim that, for n large, xn is an attractive fixed point of gn. By Observation 2.15
this will finish the proof. Let fn W P .Rd /! P .Rd / be the diffeomorphism induced
by gn, that is fn.x/D gn.x/ for all x. Then, since each gn acts by projective linear
transformations, we see that the fn converge locally uniformly in the C1 topology on
P .Rd / nP .kerT / to the constant map f � imageT . So, fixing a Riemannian metric
on P .Rd /, we have

lim
n!1

kd.fn/xn
k D 0:

Hence, for n large, xn is an attractive fixed point of gn.

2.10 Rank-one isometries

In this section we state a characterization of rank-one isometries established in [18]:

Theorem 2.20 (Islam [18, Proposition 6.3]) Suppose that �� P .Rd / is a properly
convex domain and 
 2 Aut.�/. If

inf
p2�

H�.
.p/; p/ > 0

and 
 fixes two points x; y 2 @� with s@�.x; y/ > 2, then:

(i) 
 is biproximal and f`C
 ; `
�

 g D fx; yg. In particular , 
 is a rank-one isometry.

(ii) The only points fixed by 
 in @� are `C
 and `�
 .
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(iii) If w 2 @�, then
.`C
 ; w/[ .w; `

�

 /��:

(iv) If z 2 @� n f`˙
 g, then
s@�.`

˙

 ; z/D1:

Remark 2.21 Notice that (iv) is a consequence of (iii).

3 A semigroup associated to a boundary face

Theorem 3.1 Suppose that � � P .Rd / is an irreducible properly convex domain
and � � Aut.�/ is a discrete group acting cocompactly on �. If � is nonsymmetric ,
F � @� is a boundary face , V WD SpanF , and dim.V /� 2, then:

(a) If T 2 �End
F , then T .�/� F .

(b) If T 2 �End
F;?, then T .F / is an open subset of F .

(c) The set
fT jV W T 2 �

End
F;?g

is a nondiscrete Zariski-dense semigroup in P .End.V //.

The proof of Theorem 3.1 will follow from a series of lemmas, many of which hold in
greater generality.

For the rest of the section fix a properly convex domain �� P .Rd / and a subgroup
� � Aut.�/. Notice that we are not (currently) assuming that � is irreducible, that �
is discrete, or that � acts cocompactly on �.

Observation 3.2 (a) If T 2 �End, then P .kerT /\�D∅.

(b) If S; T 2 �End and imageT n kerS ¤∅, then S ıT 2 �End.

Proof Part (a) follows immediately from Proposition 2.12.

For part (b), fix S; T 2 �End with imageT n kerS ¤∅. By hypothesis S ıT is a well-
defined element of P .End.Rd //. To show that S ı T 2 �End, fix sequences .gn/n�1
and .hn/n�1 in � such that

S D lim
n!1

gn and T D lim
n!1

hn

in P .End.Rd //. Then, since S ıT ¤ 0,

S ıT D lim
n!1

gnhn

in P .End.Rd //. So S ıT 2 �End.
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Lemma 3.3 If F � @� is a boundary face and T 2 �End
F , then T .�/� F .

Proof Suppose T 2 �End
F . Then there exists a sequence .gn/n�1 in � such that

T D lim
n!1

gn

in P .End.Rd //. Since P .kerT /\�D∅,

T .p/D lim
n!1

gn.p/ 2�

for all p 2�. So T .�/��. Since image.T /� V ,

T .�/� P .V /\�D F :

Lemma 3.4 If F � @� is a boundary face and T 2�End
F;?, then T .F / is an open subset

of F .

Proof By definition and Observation 3.2

.�[F /\P .kerT /� .�[P .V //\P .kerT /D∅:

So T induces a continuous map on�[F . SinceF ��, the previous lemma implies that

T .F /� T .�/� F :

Since V \ kerT D f0g, T .F / is an open subset of P .V /. So

T .F /� rel-int.F /D F:

Lemma 3.5 If F � @� is a boundary face , then the set

fT jV W T 2 �
End
F;?g

is a semigroup in P .End.V //.

Proof Fix T1; T2 2 �End
F;?. Then

imageT2 n kerT1 D V n kerT1 D V n f0g ¤∅;

and so T1 ıT2 2 �End by Observation 3.2.

We first show ker.T1ıT2/\V Df0g. Suppose v2ker.T1ıT2/\V . Then T2.v/2kerT1.
But imageT2 D V and kerT1 \V D f0g, so T2.v/D 0 and so v 2 kerT2 \V D f0g.
So v D 0, and thus

(2) f0g D ker.T1 ıT2/\V:

Next, by definition,
image.T1 ıT2/� imageT1 D V:
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So by (2) and dimension counting

image.T1 ıT2/D V:

Thus T1 ıT2 2 �End
F;?.

Since imageT2 D V
T1jV ıT2jV D .T1 ıT2/jV ;

so
.T1 ıT2/jV 2 fT jV W T 2 �

End
F;?g:

Then, since T1; T2 2 �End
F;? were arbitrary, we see that

fT jV W T 2 �
End
F;?g

is a semigroup in P .End.V //.

The next lemma requires a definition.

Definition 3.6 A point x 2 @� is a conical limit point of � if there exist p0 2�, a
sequence .pn/n�1 in Œp0; x/ with pn! x, and a sequence .
n/n�1 in � with

sup
n�1

H�.
n.p0/; pn/ <C1:

Notice that if � acts cocompactly on� then every boundary point is a conical limit point.

Lemma 3.7 Suppose x 2 @� is a conical limit point of � , F D F�.x/, V D SpanF ,
and dim.V /D k. If k � 2 and the image of � ,! PGL

�VkRd
�

is strongly irreducible
(eg � is Zariski dense in PGLd .R/), then there exists a sequence .gn/n�1 in � with :

(i) gn! T in P .End.Rd //, where T 2 �End
F;?.

(ii) g1jV ; g2jV ; : : : are pairwise distinct elements of P .Lin.V;Rd //.

Proof By hypothesis there exist p0 2�, a sequence .pn/n�1 in Œp0; x/ with pn! x,
and a sequence .
n/n�1 in � with

sup
n�1

H�.
n.p0/; pn/ <C1:

After passing to a subsequence we can suppose that the limit

S D lim
n!1


n

exists in P .End.Rd //. Then, by Proposition 2.13,

imageS D SpanF D V;
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and so S 2 �End
F . By passing to another subsequence we can suppose that

V1 D lim
n!1


�1n V

exists in Grk.Rd /.

Let V D Spanfv1; : : : ; vkg, V1D Spanfu1; : : : ; ukg, and kerS D Spanfs1; : : : ; sd�kg,
and let W1 D Œu1 ^ � � � ^uk� and

W2 D
˚
˛ 2

VkRd W ˛^ s1 ^ � � � ^ sd�k D 0
	
:

Since the image of � ,! PGL
�VkRd

�
is strongly irreducible, Observation 2.2 implies

that there exists some � 2 � such that �Œv1 ^ � � � ^ vk� … W1 [W2. Equivalently,
kerS \�V D f0g and �V ¤ V1.

Define gn WD 
n�. Then
T WD S ı� D lim

n!1
gn

exists in P .End.Rd //. Further, imageT D imageS D V and

kerT \V D ��1.kerS \�V /D f0g;

so T 2 �End
F;?. Also, since T .V /D V ,

V D T .V /D lim
n!1

gnV:

Next we claim that gnV ¤ V for n sufficiently large. Notice that gnV D V if and
only if g�1n V D V if and only if 
�1n V D �V . But 
�1n V ! V1 and �V ¤ V1, so
gnV ¤ V for n sufficiently large.

Finally, since gnV ! V and gnV ¤ V for n sufficiently large, we can pass to a subse-
quence so that V; g1V; g2V; : : : are pairwise distinct subspaces. Thus g1jV ; g2jV ; : : :
must be pairwise distinct.

Lemma 3.8 Suppose x 2 @� is a conical limit point of � , F D F�.x/, V D SpanF ,
and dim.V /D k. If k � 2 and the image of � ,! PGL.^kRd / is strongly irreducible
(eg � is Zariski dense in PGLd .R/), then the set

fT jV W T 2 �
End
F;?g

is nondiscrete in P .End.V //.

Proof Let T 2 �End
F;? and .gn/n�1 be as in the previous lemma. Since g1jV ; g2jV ; : : :

are pairwise distinct and each gnjV is determined by its values on any set of dimV C1

points in general position, after passing to a subsequence we can find a point x0 2 F
such that g1.x0/; g2.x0/; : : : are pairwise distinct.
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Since x0 2 F and P .kerT /\F D∅,

T .x0/D lim
n!1

gn.x0/:

Since g1.x0/; g2.x0/; : : : are pairwise distinct, by passing to another sequence we can
assume that gn.x0/¤ T .x0/ for all n. Then, for each n there exists a unique projective
line Ln containing T .x0/ and gn.x0/. By passing to a subsequence we can suppose
that Ln converges to a projective line L. Then let W � Rd be the two-dimensional
linear subspace with LD P .W /.

Fix some W 0 2 Grk.Rd / with W � W 0 and suppose that V D Spanfv1; : : : ; vkg,
W 0 D Spanfw1; : : : ; wkg, and kerT D Spanft1; : : : ; td�kg. Let

U D
˚
˛ 2

VkRd W ˛^ t1 ^ � � � ^ td�k D 0
	
:

Since the image of � ,! PGL
�VkRd

�
is strongly irreducible, Observation 2.2 implies

that there exists ' 2 � such that 'Œv1^� � �^vk� …U and 'Œw1^� � �^wk� …U . Hence
kerT \'V D f0g and kerT \'W D f0g.

Notice that T 'T D limn!1 gn'gn is in �End
F;?. Then replacing .gn/n�1 with a tail,

we can assume that
Sn WD T 'gn 2 �

End
F;?

for all n.

We claim that the set
fSn.x0/ W n� 0g � F

is infinite. For this calculation we fix an affine chart A of P .Rd / which contains �.
We then identify A with Rd�1 so that T .x0/D 0 and

A\LD f.t; 0; : : : ; 0/ W t 2Rg:

Since kerT \'V D f0g, in these coordinates the map T ' is smooth in a neighborhood
of 0D T .x0/. Further, since kerT \'W D f0g, in these coordinates

d.T '/0.1; 0; : : : ; 0/¤ 0:

Now, since Ln! L and gn.x0/! T .x0/ in these coordinates,

gn.x0/D .tn; 0; : : : ; 0/C o.jtnj/

for some sequence .tn/n�1 converging to 0. Then, in these coordinates,

Sn.x0/D T 'gn.x0/D T '..tn; 0; : : : ; 0/C o.jtnj//

D T 'T .x0/C tnd.T '/0.1; 0; : : : ; 0/C o.jtnj/:
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Since d.T '/0.1; 0; : : : ; 0/ ¤ 0 and tn ! 0, we see that the set fSn.x0/ W n � 0g is
infinite.

Finally, since SnjV ! T 'T jV , this implies that

fSnjV W n� 0g[ fT 'T jV g

is nondiscrete in P .End.V //.

Lemma 3.9 Suppose x 2 @� is a conical limit point of � , F D F�.x/, V D SpanF ,
and dim.V /D k. If k � 2 and � is Zariski dense in PGLd .R/, then

fT jV W T 2 �
End
F;?g

is Zariski dense in P .End.V //.

Proof Let Z0 be the Zariski closure of

fT jV W T 2 �
End
F;?g

in P .End.V //.

Lemma 3.7 implies that �End
F;? is nonempty, so fix T 2 �End

F;?. Then define

Z1 D fg 2 PGLd .R/ W rank.T ıgjV / < dim.V /g:

Notice that Z1 is a proper Zariski-closed set in PGLd .R/ since rank.T / D dim.V /.
Also define

Z2 D fg 2 PGLd .R/ W T ıgjV 2Z0g:

Notice that Z2 is a Zariski-closed subset of PGLd .R/.

We claim that � �Z1[Z2. If g 2 � nZ1, then rank.T ıgjV /D dimV and

image.T ıgjV /� imageT D V:

So .T ı g/.V / D V , which implies that T ı g 2 �End
F;?, and hence that g 2 Z2. So

� �Z1[Z2.

Then, since Z1 is a proper Zariski closed subset of PGLd .R/ and � is Zariski dense
in PGLd .R/, we see that Z2 D PGLd .R/. Therefore

Z0 � fT ıgjV W g 2Z2g D fT ıgjV W g 2 PGLd .R/g � PGL.V /;

since imageT D V . Thus Z0 D P .End.V //.

Proof of Theorem 3.1 Parts (a) and (b) follow from Lemmas 3.3 and 3.4, respectively.
Since � acts cocompactly on �, every point in @� is a conical limit point, and

Geometry & Topology, Volume 27 (2023)



2918 Andrew Zimmer

Theorem 2.3 implies that � is Zariski dense in PGLd .R/. So part (c) follows from
Lemmas 3.3, 3.8, and 3.9.

4 The main rigidity theorem

Recall that E� � @� denotes the set of extreme points of a properly convex domain �.
In this section we prove the following rigidity result:

Theorem 4.1 Suppose that � � P .Rd / is an irreducible properly convex divisible
domain and there exists a boundary face F � @� such that

F \ E� D∅:

Then � is symmetric with real rank at least two.

The rest of the section is devoted to the proof of the theorem, so suppose �� P .Rd /

satisfies the hypothesis of the theorem. Then let � �Aut.�/ be a discrete group acting
cocompactly on �.

We assume, for a contradiction, that � is not symmetric with real rank at least two.

Lemma 4.2 It holds that � is not symmetric.

Proof If � were symmetric, then by assumption it would have real rank one. Then,
by the characterization of symmetric convex divisible domains, � coincides with the
unit ball in some affine chart. Therefore E� D @�, which is impossible since there
exists a boundary face F � @� such that

F \ E� D∅:

Now we fix a boundary face F � @�, where

E�\F D∅

and if F 0 � @� is a face with dimF 0 < dimF then

E�\F 0 ¤∅:
Then define V WD SpanF .

Lemma 4.3 If T 2 �End
F;?, then the map

F ! P .V /; p 7! T .p/;

is in Aut.F /.
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Proof Notice that T jV 2 PGL.V / since T .V /� V and kerT \V D f0g. So we just
have to show that T .F / D F . Theorem 3.1(b) says that T .F / � F , and so we just
have to show that F � T .F /.

Fix y 2F . Since the set T .F /\F is closed in F , there exists x0 2 T .F /\F such that

HF .y; x0/D min
x2T.F /\F

HF .y; x/:

Since T jV 2 PGL.V /, the set T .F / is open in F . So we either have y D x0 2 T .F /
or x0 2 T .@F /. Suppose for a contradiction that x0 2 T .@F /. Then let x00 2 @F be the
point where T .x00/Dx0. Next, let F 0� @F be the face of x00. Then dimF 0< dimF , so

E�\F 0 ¤∅:

Thus we can find z 2F 0 and a sequence .zn/n�1 in E� such that zn! z. Since z 2F 0,
there exists an open line segment L in F which contains z and x00. Then T .L/ is an
open line segment in F since T jV 2 PGL.V /. So, since T .x00/ 2 F , we also have
T .z/ 2 F , and since

T 2 �End
F;? � �

End;

there exists a sequence .gn/n�1 in � such that gn! T in P .End.Rd //. Now note that
z … P .kerT / since kerT \V D f0g. So by the “moreover” part of Observation 2.9,

T .z/D lim
n!1

gn.zn/ 2 F:

However, gn.zn/ 2 E�, and so

T .z/ 2 E�\F D∅:

Thus we have a contradiction. Hence y D x0 2 T .F /, and since y 2 F was arbitrary
we have F � T .F /.

Lemma 4.4 Aut.F / is nondiscrete and Zariski dense in PGL.V /.

Proof This follows immediately from Lemma 4.3 and Theorem 3.1(c).

Lemma 4.5 PSL.V /� Aut.F /:

Proof Let Aut0.F / denote the connected component of the identity in Aut.F / and
let g� sl.V / denote the Lie algebra of Aut0.F /. Then g¤ f0g since Aut.F / is closed
and nondiscrete. Also Aut0.F / is normalized by Aut.F /, and so

Ad.g/gD g
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for all g 2 Aut.F /. Then, since Aut.F / is Zariski dense in PGL.V /, we see that

Ad.g/gD g

for all g 2 PGL.V /. Since the representation Ad W PGL.V /!GL.sl.V // is irreducible,
we must have gD sl.V /. Thus Aut0.F /D PSL.V /.

Proof of Theorem 4.1 The previous lemma immediately implies a contradiction: fix
x 2 F , then

P .V /� F � Aut.F / � x � PSL.V / � x D P .V /:

So F D P .V /, which contradicts the fact that � is properly convex.

5 Density of biproximal elements

In this section we prove a density result for the attracting and repelling fixed points of
biproximal elements. To state the result we need one definition: if � � P .Rd / is a
properly convex domain and � � Aut.�/, then the limit set of � is

L�.�/D
[
p2�

� �p\ @�:

Equivalently, a point x 2 @� is in L�.�/ if and only if there exist p 2� and a sequence
.
n/n�1 in � such that 
n.p/! x.

Theorem 5.1 Suppose that ��P .Rd / is a properly convex domain and � �Aut.�/
is a strongly irreducible group. If x; y 2L�.�/ are extreme points of � and .x; y/��,
then there exists a sequence of biproximal elements .gn/n�1 in � such that

lim
n!1

`Cgn
D x and lim

n!1
`�gn
D y:

Before proving the theorem we state and prove one corollary:

Corollary 5.2 Suppose that ��P .Rd / is an irreducible properly convex domain and
� � Aut.�/ is a discrete group that acts cocompactly on �. If x; y 2 @� are extreme
points and .x; y/ ��, then there exists a sequence of biproximal elements .gn/n�1
in � such that

lim
n!1

`Cgn
D x and lim

n!1
`�gn
D y:

Proof A result of Vey [27, Theorem 5] implies that � is strongly irreducible and
Proposition 2.13 implies that @�D L�.�/, so Theorem 5.1 implies the corollary.
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Proof of Theorem 5.1 By definition there exist p 2� and a sequence .
n/n�1 in �
such that 
n.p/! x. Passing to a subsequence, we can suppose the limits

TC D lim
n!1


n and T � D lim
n!1


�1n

exist in P .End.Rd //. By Proposition 2.12

imageTC � SpanF�.x/D Spanfxg D x;

and so imageTC D x. Proposition 2.12 also implies that P .kerT �/\� D ∅ and
x 2 P .kerT �/. Notice that y … P .kerT �/ since .x; y/��.

Similarly, we can find a sequence .�n/n�1 in � such that the limits

SC D lim
n!1

�n and S� D lim
n!1

��1n

exist in P .End.Rd //, imageSC D y, and x … P .kerS�/.

Fix some x0 2 imageT � and y0 2 imageS�. Since � is strongly irreducible, by
Observation 2.2 there exists h 2 � such that:

(i) h.y0/ … P .kerTC/; hence, h.imageS�/š kerTC.

(ii) hS�.x/ … P .kerTC/.

(iii) h.x0/ … P .kerSC/; hence, h.imageT �/š kerSC.

(iv) hT �.y/ … P .kerSC/.

Then consider gn D 
n ıh ı��1n . By our choice of h, we have TC ıh ıS� ¤ 0 and
hence

TC ı h ıS� D lim
n!1

gn

in P .End.Rd //. Notice that image.TC ıh ıS�/D imageTC D x and, by our choice
of h,

x … P .ker.TC ı h ıS�//:
So

image.TC ı h ıS�/C ker.TC ı h ıS�/D xC ker.TC ı h ıS�/DRd ;

and hence, by Proposition 2.19, gn is proximal for n sufficiently large and `Cgn
! x.

By similar reasoning g�1n is proximal for n sufficiently large and `�gn
D `C

g�1
n

! y.

6 North–south dynamics

In this section we prove a stronger version of Theorem 5.1 for pairs of extreme points
in the limit set whose simplicial distance is greater than two.
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Theorem 6.1 Suppose �� P .Rd / is a properly convex domain and � � Aut.�/ is
strongly irreducible. Assume x; y 2L�.�/ are extreme points of � and s@�.x; y/ > 2.
If A;B �� are neighborhoods of x and y, then there exists g 2 � with

g.� nB/� A and g�1.� nA/� B:

Remark 6.2 Theorem 6.1 is an analogue of a result for CAT.0/ spaces; see Chapter 3
and specifically Theorem 3.4 of [3].

Before proving the theorem we state and prove one corollary:

Corollary 6.3 Suppose that � � P .Rd / is an irreducible properly convex domain
and � � Aut.�/ is a discrete group acting cocompactly on �. Assume x; y 2 @� are
extreme points and s@�.x; y/ > 2. If A;B �� are neighborhoods of x and y, then
there exists g 2 � with

g.� nB/� A and g�1.� nA/� B:

Proof A result of Vey [27, Theorem 5] implies that � is strongly irreducible and
Proposition 2.13 implies that @�D L�.�/, so Theorem 6.1 implies the corollary.

Lemma 6.4 Suppose that � � P .Rd / is a properly convex domain , 
 2 Aut.�/ is
biproximal , and s@�.`C
 ; `

�

 / > 2. If A;B �� are neighborhoods of `C
 and `�
 , then

there exists N � 0 such that


n.� nB/� A and 
�n.� nA/� B

for all n�N .

Proof Observation 2.17 implies that

(3) `C
 D lim
n!1


n.x/

for all x 2 P .Rd /�P .H�g / and the convergence is locally uniform.

We claim that
P .H�g /\�D f`

�
g g:

Proposition 2.12 implies that f`�g g � P .H�g / \� and that � \ P .H�g / D ∅. So
if y 2 P .H�g /\� then Œy; `�g � � P .H�g /\�, and hence Œy; `�g � � @�. Then, by
Theorem 2.20(ii), we have yD `Cg . So P .H�g /\��f`

�
g g and the claim is established.
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Then, by the locally uniform convergence in (3), there exists N1 > 0 such that


n.� nB/� A

for all n�N1.

Repeating the same argument with 
�1 shows that there exists N2 > 0 such that


�n.� nA/� B

for all n�N2.

Then N DmaxfN1; N2g satisfies the conclusion of the lemma.

Proof of Theorem 6.1 By Theorem 5.1 there exists a sequence of biproximal elements
.gn/n�1 in � such that

lim
n!1

`Cgn
D x and lim

n!1
`�gn
D y:

Since s@�.x; y/ > 2 we may pass to a tail of .gn/n�1 and assume that

s@�.`
C
gn
; `�gn

/ > 2

for all n.

Next, fix n sufficiently large that `Cgn
2 A and `�gn

2 B . Then, by Lemma 6.4, there
exists m� 0 such that

gmn .� nB/� A and g�mn .� nA/� B;

so g D gmn satisfies the theorem.

7 Fixed points and centralizers

In this section we prove the following result, connecting the number of boundary fixed
points of an element with the size of its centralizer:

Theorem 7.1 Suppose that �� P .Rd / is an irreducible properly convex domain and
� � Aut.�/ is a discrete group that acts cocompactly on �. If g 2 � has infinite order
then the following are equivalent :

(i) There exist two distinct points x; y 2 @� fixed by g with s@�.x; y/ <C1.

(ii) g fixes at least three points in @�.

(iii) The cyclic group gZ has infinite index in its centralizer.
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Corollary 7.2 Suppose that ��P .Rd / is an irreducible properly convex domain and
� � Aut.�/ is a discrete group that acts cocompactly on �. If g 2 � is biproximal ,
then the following are equivalent :

(i) Œ`Cg ; `
�
g �� @�.

(ii) s@�.`
C
g ; `
�
g / <C1.

(iii) g has at least three fixed points in @�.

(iv) The cyclic group gZ has infinite index in its centralizer.

We will first recall some results established in [19], then prove the theorem and corollary.

7.1 Maximal abelian subgroups and minimal translation sets

Theorem 7.3 (Islam and Zimmer [19, Theorem 1.6]) Suppose that �� P .Rd / is
a properly convex domain and � � Aut.�/ is a discrete group that acts cocompactly
on �. If A � � is a maximal abelian subgroup of � then there exists a properly
embedded simplex S �� such that

(i) S is A–invariant ,

(ii) A acts cocompactly on S , and

(iii) A fixes each vertex of S .

Moreover , A has a finite-index subgroup isomorphic to Zdim.S/.

Remark 7.4 The above result is a special case of [19, Theorem 1.6], which holds in
the more general case when � � Aut.�/ is a naive convex cocompact subgroup.

Definition 7.5 Suppose that ��P .Rd / is a properly convex domain and g 2Aut.�/.
Define the minimal translation length of g to be

��.g/ WD inf
x2�

H�.x; g.x//

and the minimal translation set of g to be

Min�.g/D fx 2� WH�.g.x/; x/D ��.g/g:

Cooper, Long and Tillmann [14] showed that the minimal translation length of an
element can be determined from its eigenvalues:

Proposition 7.6 [14, Proposition 2.1] If �� P .Rd / is a properly convex domain
and g 2 Aut.�/, then

��.g/D
1
2

log
�1.g/

�d .g/
:

Geometry & Topology, Volume 27 (2023)



A higher-rank rigidity theorem for convex real projective manifolds 2925

Remark 7.7 Recall that

�1.g/� �2.g/� � � � � �d .g/

denote the absolute values of the eigenvalues of some (and hence any) lift of g to
SL˙d .R/ WD fh 2 GLd .R/ W det hD˙1g.

As a consequence of Proposition 7.6, we observe the following:

Observation 7.8 If ��P .Rd / is a properly convex domain , p02�, and g2Aut.�/,
then

lim
n!1

1

n
H�.g

n.p0/; p0/D ��.g/:

Proof Proposition 7.6 implies that ��.gn/D n��.g/, and hence

lim inf
n!1

1

n
H�.g

n.p0/; p0/� ��.g/:

For the other inequality, fix � > 0 and q 2� with H�.g.q/; q/ < ��.g/C �. Then

lim sup
n!1

H�.g
n.p0/; p0/

n

� lim sup
n!1

H�.g
n.q/; q/C 2H�.p0; q/

n

� lim sup
n!1

H�.g
n.q/; gn�1.q//C � � �CH�.g.q/; q/C 2H�.p0; q/

n

D lim sup
n!1

H�.g.q/; q/C
2H�.p0; q/

n
< ��.g/C �:

Since � > 0 was arbitrary, the proof is complete.

Next, given a group G and an element g 2 G, let CG.g/ denote the centralizer of g
in G. Then given a subset X �G, define

CG.X/D
\
x2X

CG.x/:

Theorem 7.9 (Islam and Zimmer [19, Theorem 1.10]) Suppose that �� P .Rd / is a
properly convex domain , � � Aut.�/ is a discrete group that acts cocompactly on �,
and A� � is an abelian subgroup. Then

Min�.A/ WD
\
a2A

Min�.a/

is nonempty and C�.A/ acts cocompactly on the convex hull of Min�.A/ in �.
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Remark 7.10 The above result is a special case of [19, Theorem 1.9], which holds in
the more general case when � � Aut.�/ is a naive convex cocompact subgroup.

Proposition 7.11 Suppose that S � P .Rd / is a simplex. If g 2 Aut.S/ fixes every
vertex of S , then MinS .g/D S .

Proof See for instance [19, Proposition 7.3].

Observation 7.12 Suppose��P .Rd / is a properly convex domain and � �Aut.�/
is a discrete group. If g 2 � is biproximal and .`Cg ; `

�
g /��, then gZ has finite index

in C�.g/.

Proof First notice that C�.g/ preserves .`Cg ; `
�
g /. Since Aut.�/ acts properly on �

and � � Aut.�/ is discrete, we see that C�.g/ acts properly on .`Cg ; `
�
g /. Then gZ

has finite index in C�.g/ since gZ acts cocompactly on .`Cg ; `
�
g /.

7.2 Proof of Theorem 7.1

Fix a maximal abelian subgroup A� � which contains g. Then, by Theorem 7.3, there
exists S �� such that

� S is a properly embedded simplex,

� A acts cocompactly on S ,

� A fixes every vertex of S , and

� A has a finite-index subgroup isomorphic to Zdim.S/.

Since g has infinite order, dim.S/� 1.

We consider a number of cases and prove that in each case (i), (ii), and (iii) are either
all true or all false.

Case 1 Assume dim.S/� 2. Then clearly (i), (ii), and (iii) are all true.

Case 2 Assume dim.S/D 1. Let vC and v� be the vertices of S and fix some p0 2 S .
Then, after possibly relabeling, we can assume that

lim
n!˙1

gn.p0/D v
˙:

Case 2(a) Assume s@�.vC; v�/ > 2. Then Theorem 2.20 implies that g is a rank-one
isometry and v˙ D `˙g . Theorem 2.20 also implies that vC and v� are the only fixed
points of g in @� and s@�.vC; v�/D1. Hence (i) and (ii) are false. Observation 7.12
implies that gZ has finite index in C�.g/ and hence (iii) is false.
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Case 2(b) Assume s@�.vC; v�/ D 2. Then, by definition, (i) is true. Fix y0 2 @�
such that ŒvC; y0�[ Œy0; v��.

Pick a sequence nj !1 such that the limits

T˙ WD lim
j!1

g˙nj

exist in P .End.Rd //. Then Proposition 2.12 implies that v� 2 P .kerT˙/ and
P .kerT˙/\�D∅. This implies that v˙ … P .kerT˙/ since .vC; v�/��. Also, g
commutes with T˙ and hence gP .kerT˙/D P .kerT˙/.

Passing to a further sequence, we can suppose that g˙nj .y0/! y˙. Then

ŒvC; y˙�[ Œy˙; v��� @�

and so, since .vC; v�/��, y˙ must be distinct from vC and v�. Since g˙nj .x/!v˙

for all x 2 P .Rd / nP .kerT˙/, we must have y 2 P .kerTC\ kerT �/. Thus the set

C WD @�\P .kerTC\ kerT �/

is nonempty. Then g has a fixed point y 2C since C is g–invariant, closed, and convex,
so g has at least three fixed points in @� and (ii) is true.

Recall that v� 2 P .kerT˙/ and P .kerT˙/\�D∅; hence,

ŒvC; y�[ Œy; v��� @�:

Let S 0 be the open simplex with vertices vC, v� and y. Since .vC; v�/�� we have
S 0 ��. In particular,

(4) HS 0.p; q/�H�.p; q/

for all p; q 2 S 0. Since p0 2 .v�; vC/� S 0 ��, Observation 7.8 implies that

��.g/D lim
n!1

H�.g
n.p0/; p0/

n
D lim
n!1

HS 0.g
n.p0/; p0/

n
D �S 0.g/:

Then, by (4) and Proposition 7.11,

S 0 DMinS 0.g/�Min�.g/:

Now we claim that gZ has infinite index in C�.g/. Theorem 7.9 implies that there is a
compact set K �� such that

S 0[ .vC; v�/� C�.g/ �K:

Further, gZ preserves .vC; v�/, so it is enough to show that

sup
p2S 0

H�.p; .v
C; v�//D1:
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Fix .pn/n�1 in S 0 converging to y. Since .vC; v�/�� and ŒvC; y�[ Œy; v��� @�,
Observation 2.11 implies that the faces F�.vC/, F�.v�/, and F�.y/ are all distinct.
Then, by the definition of the Hilbert metric,

lim
n!1

H�.pn; .v
C; v�//D1:

Thus gZ has infinite index in C�.g/ and so (iii) is true.

7.3 Proof of Corollary 7.2

Theorem 7.1 implies that (ii) D) (iii)() (iv), and by definition (i) D) (ii). Finally,
by Observation 7.12, (iv) D) (i).

8 Rank in the sense of Prasad and Raghunathan

In this section we consider the rank of a group in the sense of [24].

Definition 8.1 (Prasad and Raghunathan) Suppose that � is an abstract group. For
i � 0 let Ai .�/� � be the subset of elements whose centralizer contains a free abelian
group of rank at most i as a subgroup of finite index. Next define r.�/ to be the
minimal i 2 f0; 1; 2; : : : g[ f1g such that there exist 
1; : : : ; 
m 2 � with

� �

m[
jD1


jAi .�/:

Then the Prasad–Raghunathan rank of � is defined to be

rankPR.�/ WD supfr.��/ W �� is a finite-index subgroup of �g:

Prasad and Raghunathan computed the rank of lattices in semisimple Lie groups, which
implies:

Theorem 8.2 [24, Theorem 3.9] Suppose that �� P .Rd / is an irreducible properly
convex domain. If � is symmetric with real rank r and � �Aut.�/ is a discrete group
acting cocompactly on �, then rankPR.�/D r .

As a corollary to Selberg’s lemma we get a lower bound on the Prasad–Raghunathan rank:

Corollary 8.3 If � � PGLd .R/ is a finitely generated infinite group , rankPR.�/� 1.
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Proof By Selberg’s lemma, there exists a finite-index torsion-free subgroup �� � � .
Notice that every element of A0.��/ has finite order and hence A0.��/D fidg. Then,
since �� is infinite,

rankPR.�/� r.�
�/� 1:

In this section we will show that the existence of a rank-one isometry implies that the
Prasad–Raghunathan rank is one.

Proposition 8.4 Suppose �� P .Rd / is a properly convex domain and � � Aut.�/
is a finitely generated strongly irreducible discrete group. If there exists a biproximal
element g 2 � with .`Cg ; `

�
g /��, then

rankPR.�/D 1:

Remark 8.5 The proof of Proposition 8.4 is a simple modification of Ballmann and
Eberlein’s proof [4] of the analogous statement for CAT.0/ groups.

The rest of the section is devoted to the proof of Proposition 8.4, so suppose��P .Rd /,
� � Aut.�/, and g 2 � satisfy the hypothesis of the proposition. By Corollary 8.3 it
is enough to fix a finite-index subgroup �� � � and show that r.��/ � 1. Also, by
replacing g with a sufficiently large power, we may assume that g 2 ��.

Lemma 8.6 Suppose that x1; x2 2 @� and .x1; x2/��. If A;B � @� are open sets
with A\B D ∅, then we can find disjoint neighborhoods V1 and V2 of x1 and x2
such that for each ' 2 Aut.�/ at least one of the following occurs:

(i) '.V1/\AD∅.

(ii) '.V1/\B D∅.

(iii) '.V2/\AD∅.

(iv) '.V2/\B D∅.

Proof The following argument is essentially the proof of Lemma 3.10 in [4].

Fix a distance dP on P .Rd / induced by a Riemannian metric. Then, for each n and
j D 1; 2, let Vj;n be a neighborhood of xj whose diameter with respect to dP is less
than 1=n.

Suppose for a contradiction that the lemma is false. Then, for each n, there exists
'n 2 Aut.�/ such that

(5) 'n.Vj;n/\A¤∅ and 'n.Vj;n/\B ¤∅
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for j D 1; 2. By passing to a subsequence, we can suppose that

T WD lim
n!1

'n

exists in P .End.Rd //. Then

T .u/D lim
n!1

'n.u/

for all u 2 P .Rd / n P .kerT /. Moreover, the convergence is uniform on compact
subsets of P .Rd / nP .kerT /.

Proposition 2.12 implies that P .kerT / \� D ∅. Then, since .x1; x2/ � �, it is
impossible for both x1 and x2 to be contained in P .kerT /. So, after possibly relabelling,
we may assume that x1 … P .kerT /.

By (5) there exist sequences an; bn 2 @� converging to x1 such that 'n.an/ 2 A and
'n.bn/ 2 B . Then, since x1 … P .kerT /,

T .x1/D lim
n!1

'n.an/ 2 A and T .x1/D lim
n!1

'n.bn/ 2 B:

So T .x1/ 2 A\B D∅, which is a contradiction.

Lemma 8.7 r.��/� 1:

Proof The following argument is essentially the proof of Theorem 3.1 in [4].

Since � is strongly irreducible �� is also strongly irreducible, so, by Observation 2.2,
there exists � 2 �� such that

�`Cg ; �`
�
g ; `
C
g and `�g

are all distinct. Then h WD �g��1 is biproximal, `˙
h
D �`˙g , and

.`C
h
; `�h /D �.`

C
g ; `
�
g /��:

Fix open neighborhoods A;B � @� of `C
h

and `�
h

such that A \ B D ∅. Then
let V1; V2 � @� be neighborhoods of `Cg and `�g such that A, B , V1 and V2 satisfy
Lemma 8.6.

By further shrinking each Vj , we can assume that each @� nVj is homeomorphic to a
closed ball.

Next, let U1� V1 be a closed neighborhood of `Cg such that, if x 2U1 and y 2 @�nV1,
then s@�.x; y/ > 2. Such a choice is possible by Theorem 2.20(ii). In a similar fashion,
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let U2 � V2 be a closed neighborhood of `�g such that, if x 2U2 and y 2 @�nV2, then
s@�.x; y/ > 2.

By further shrinking each Uj , we can assume that each Uj is homeomorphic to a closed
ball.

By Observation 2.18, each `˙g and `˙
h

is an extreme point of �. Furthermore, by
Theorem 2.20(iii),

s@�.`
˙
g ; `
˙
h /D1D s@�.`

˙
g ; `
�

h
/:

So, by Theorem 6.1, there exist '1; '2;  1;  2 2 �� such that

(i) '1.@� nA/� U1 and '�11 .@� nU1/� A,

(ii)  1.@� nA/� U2 and  �11 .@� nU2/� A,

(iii) '2.@� nB/� U1 and '�12 .@� nU1/� B ,

(iv)  2.@� nB/� U2 and  �12 .@� nU2/� B .

We claim that

�� D '�11 A1.�
�/[ �11 A1.�

�/['�12 A1.�
�/[ �12 A1.�

�/:

Fix 
 2 ��. By construction, at least one of the four possibilities in Lemma 8.6 must
occur.

Case 1 Assume 
.V1/\AD∅. Then

(6) '1
.U1/¨ '1
.V1/� '1.@� nA/� U1;

so, by the Brouwer fixed-point theorem, '1
 has a fixed point in x 2 U1 (recall that
U1 is homeomorphic to a closed ball). Further,

.'1
/
�1.@� nV1/� .'1
/

�1.@� nU1/� 

�1.A/� @� nV1;

so '1
 also has a fixed point in y 2 @�nV1. Now, by construction, s@�.x; y/ > 2. So,
by Theorem 2.20(i), either

inf
p2�

H�.'1
.p/; p/D 0

or '1
 is biproximal with
fx; yg D f`C'1


; `�'1

g:

In the latter case, .`C'1

; `�'1


/��, and so '1
 2 A1.�/ by Observation 7.12. Thus
we have reduced to showing that

inf
p2�

H�.'1
.p/; p/ > 0:
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Assume for a contradiction that

inf
p2�

H�.'1
.p/; p/D 0:

Then, by Proposition 7.6, we have

�1.'1
/D �2.'1
/D � � � D �d .'1
/:

Since x and y are eigenlines of '1
 , this implies that '1
 fixes every point of the
line .x; y/. Then, since Aut.�/ acts properly on � and �� is discrete, the group

K D f.'1
/
n
W n 2 Zg

is finite. So .'1
/N D id for some large N . Then (6) implies that

U1 D .'1
/
N .U1/¨ U1:

So we have a contradiction, and hence

inf
p2�

H�.'1
.p/; p/ > 0

and so '1
 2 A1.��/.

Case 2 Assume 
.V1/\B D∅. Then arguing as in Case 1 shows that '2
 2A1.��/.

Case 3 Assume 
.V2/\AD∅. Then arguing as in Case 1 shows that  1
 2A1.��/.

Case 4 Assume 
.V2/\B D∅. Then arguing as in Case 1 shows that  2
 2A1.��/.

Since 
 2 �� was arbitrary,

�� D '�11 A1.�
�/[ �11 A1.�

�/['�12 A1.�
�/[ �12 A1.�

�/:

Hence r.��/� 1.

9 Proof of Theorem 1.4

Suppose for the rest of the section that �� P .Rd / is an irreducible properly convex
domain and � �Aut.�/ is a discrete group that acts cocompactly on �. We will show
that the following conditions are equivalent:

(i) � is symmetric with real rank at least two.

(ii) � has higher rank.

(iii) The extreme points of � form a closed proper subset of @�.
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(vi) (viii) (ix) (x) (xi)

(v) (iv)

(ii) (xii) (iii)

(i) (vii)

Lemma 9.4

definition

Theorem 7.1 Corollary 7.2 Corollary 7.2
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em
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definition Lemma 9.5

Lemma 9.3
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9.1 Theorem
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on
8.

4

Figure 1: The proof of Theorem 1.4.

(iv) Œx1; x2�� @� for every two extreme points x1; x2 2 @�.

(v) s@�.x; y/� 2 for all x; y 2 @�.

(vi) s@�.x; y/ <C1 for all x; y 2 @�.

(vii) � has higher rank in the sense of Prasad and Raghunathan.

(viii) For every g 2 � with infinite order, the cyclic group gZ has infinite index in the
centralizer C�.g/ of g in � .

(ix) Every g 2 � with infinite order has at least three fixed points in @�.

(x) Œ`Cg ; `
�
g �� @� for every biproximal element g 2 � .

(xi) s@�.`
C
g ; `
�
g / <C1 for every biproximal element g 2 � .

(xii) There exists a boundary face F � @� such that

F \ E� D∅:

We verify all the implications shown in Figure 1. First notice that .iii/D) .xii/,
.iv/D) .vi/, and .v/D) .vi/ are by definition. The implication .i/D) .vii/ is due
to Prasad and Raghunathan; see Theorem 8.2 above. Proposition 8.4 implies that
.vii/D) .x/. Theorem 7.1 implies that .viii/() .ix/. Corollary 7.2 implies that
.ix/D) .x/ and .x/() .xi/. Theorem 4.1 implies that .xii/D) .i/. The remaining
implications in Figure 1 are given as lemmas below.

Lemma 9.1 .i/D) .ii/ and .i/D) .iii/.
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Proof These implications follow from direct inspection of the short list of irreducible
symmetric properly convex domains.

Lemma 9.2 .ii/D) .v/.

Proof Suppose x; y 2 @�. If Œx; y� � @�, then s@�.x; y/ � 1. If .x; y/ � �, then
there exists a properly embedded simplex S � � with dim.S/ � 2 and .x; y/ � S .
Then

s@�.x; y/� s@S .x; y/� 2:

Since x; y 2 @� were arbitrary, we see that .v/ holds.

Lemma 9.3 .iv/D) .xii/.

Proof Fix a boundary face F � @� of maximal dimension. We claim that

E�\F D∅:

Otherwise, there exists x 2 F and a sequence xn 2 E� such that xn! x 2 F . Now
fix an extreme point y 2 @� n F . Then, by hypothesis, Œxn; y� � @� for all n, so
Œx; y�� @�.

Fix z 2 .x; y/� @� and let C denote the convex hull of y and F . By Observation 2.11,

@�� F�.z/� rel-int.C /:
Then

dimF�.z/ > dimF;

which is a contradiction. So we must have E�\F D∅, and hence .xii/ holds.

Lemma 9.4 .vi/D) .viii/.

Proof By Theorem 7.3 every infinite-order element g 2 � preserves a properly
embedded simplex S �� with dim.S/� 1. Hence g fixes the vertices v1; : : : ; vk of S .
By hypothesis s@�.v1; v2/ <C1 and hence, by Theorem 7.1, gZ has infinite index in
the centralizer C�.g/.

Lemma 9.5 .x/D) .iv/.

Proof We prove the contrapositive: if there exist extreme points x; y 2 @� with
.x; y/��, then there exists a biproximal element g 2 � with .`Cg ; `

�
g /��. If such x

and y exist, then by Theorem 5.1 there exist biproximal elements gn 2 � with `Cgn
! x

and `�gn
! y. Then, for n large, we must have .`Cgn

; `�gn
/��.
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