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Formal groups and quantum cohomology

PAUL SEIDEL

We use chain-level genus-zero Gromov–Witten theory to associate to any closed
monotone symplectic manifold a formal group (loosely interpreted), whose Lie
algebra is the odd-degree cohomology of the manifold (with vanishing bracket).
When taken with coefficients in Fp for some prime p, the pth power map of the
formal group is related to quantum Steenrod operations. The motivation for this
construction comes from derived Picard groups of Fukaya categories, and from
arithmetic aspects of mirror symmetry.
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2938 Paul Seidel

1 Introduction

This paper is concerned with aspects of genus-zero Gromov–Witten theory, which are
specifically of interest if one works with integer or mod p cohomological coefficients.
There is a shared context between this and arithmetic aspects of Fukaya categories —
see for instance Alston and Amorim [2], Evans and Lekili [18], Lekili and Perutz [41]
and Lekili and Polishchuk [42] — even though we do not work on a categorical level.
Instead, our constructions will resemble those of certain chain-level structures, and of
cohomology operations, in algebraic topology.

1a Background

Gromov–Witten theory on a closed symplectic manifold X can be axiomatized as
a cohomological field theory (see Kontsevich and Manin [38]), which means that
operations are parametrized by Deligne–Mumford moduli spaces of curves. We will
only consider genus-zero curves, where the notion of cohomological field theory is
related to ones from classical topology: namely, one can start with the little disc operad
(May [51, Chapter IV]), then enlarge it to the framed little disc operad (Getzler [28]),
and finally trivialize the circle action (Drummond-Cole [17]) to obtain the genus-zero
Deligne–Mumford operad. It is important for this paper to work on the chain level. An
example of a chain-level construction is the quantum A1–ring structure (Ruan and
Tian [61]), which refines the small quantum product. In abstract terms, this comes
from mapping Stasheff associahedra to Deligne–Mumford spaces, compatibly with the
operad structures.

To define the genus-zero cohomological field theory for a general X , one usually has
to work with coefficient rings containing Q, because of the multivalued perturbations
involved in making moduli spaces regular. However, in the special case where X is
weakly monotone,1 the relevant Gromov–Witten invariants, which count genus-zero
curves with � 3 marked points in a given homology class, can be defined over Z. If
one reduces coefficients to a finite field Fp, there are two obvious constructions of
cohomology operations. One can use the relation with the little disc operad to obtain
analogues of the Cohen operations [14] on the homology of double loop spaces. For
ease of reference, let’s call these quantum Cohen operations. The second approach
is to introduce quantum Steenrod operations, which were proposed in Fukaya [21]
and have attracted some recent attention in Wilkins [74]. These are both facets of a
1Also called semipositive; see eg McDuff and Salamon [54, Section 6.4].
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Formal groups and quantum cohomology 2939

common story, which involves the equivariant cohomology of Deligne–Mumford space
with pC 1 marked points, with respect to the action of the symmetric group Symp

permuting all but one point.

We take our bearings from both the “one-dimensional” quantum A1–structure and
the “two-dimensional” quantum Cohen and Steenrod operations. To thread our way
between the two, we use another family of moduli spaces, which come from the
convolution theory of Lagrangian correspondences, as in Bottman [6], Bottman and
Wehrheim [9], Fukaya [22] and Ma’u, Wehrheim and Woodward [48]. They map to
Deligne–Mumford spaces, and on the other hand, their boundary structure is governed
by Stasheff associahedra. The effect of using (the simplest of) these spaces is to equip
the set of quantum Maurer–Cartan solutions with a multiplicative structure. After
reduction mod p, that structure will admit a partial description in terms of a specific
quantum (Cohen or) Steenrod operation.

1b Algebraic terminology

Before continuing the discussion, we need to recall some definitions. In a “functor of
points” approach, an object is often described as a functor from a class of “coefficient
rings” to sets. We use the following coefficient rings, familiar from the theory of formal
schemes and from deformation theory.

Definition 1.1 An adic ring is a nonunital commutative ring N such that the map
N ! lim

 ��m
N=N m is an isomorphism. In other words,

T
m N mD0, and N is complete

with respect to the topology given by the decreasing filtration fN mg. Note that one
can adjoin a unit, forming the augmented ring Z1˚N , which contains N as an ideal.

Example 1.2 Standard examples are N D qZŒŒq�� (power series with zero constant
term) or its truncations N D qZŒq�=qmC1. We can also use field coefficients, for
instance taking N D qFp ŒŒq��, which simplifies the algebraic behavior slightly. An
example with “unequal characteristic” is N D pZp, the maximal ideal in the ring of
p–adic integers, where N=N m D Z=pm�1.

Definition 1.3 A “formal group” is a functor from adic rings to groups.

This is somewhat weaker than the classical notion of formal group as in Lazard [39]:
there, one imposes additional conditions on the functor, leading to representability
results in an appropriate category of formal schemes. In our application, we will be
truncating what should really be an object of derived geometry, and representability in
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2940 Paul Seidel

the classical sense is not expected to hold. For simplicity, we have chosen to ignore the
issue, resulting in the definition given above.

As mentioned before, adic rings are a standard way to formulate deformation problems;
see Schlessinger [63]. The specific problem relevant for us is the following. Let A be
an A1–ring; see Section 2c for our conventions. Given an adic ring N , let A y̋ N be
the inverse limit of tensor products A˝ .N=N m/. We consider solutions  2A1 y̋ N

of the (generalized) Maurer–Cartan equation

(1-1)
X
d�1

�d
A.; : : : ;  /D 0:

Two such solutions ; z are considered equivalent if there is an h 2A0 y̋ N such that

(1-2)
X
p;q

�
pCqC1
A .

p‚ …„ ƒ
; : : : ;  ; h;

q‚ …„ ƒ
z ; : : : ; z /D  � z :

Definition 1.4 MC.AIN / is the set of equivalence classes of Maurer–Cartan elements
in A y̋ N . This is functorial in N , giving a functor MC.A/ from adic rings to sets.

If N 2D 0, (1-1) reduces to �1
A. /D 0, and (1-2) to �1

A.h/D  � z . Hence, in this case
MC.AIN /DH 1.AIN / is the cohomology with coefficients in the abelian group N.
Correspondingly, the general MC.AIN / can be viewed as nonlinear analogues of
cohomology groups. Note that what we are studying is not the deformation theory
of A as an A1–ring: instead, it can be viewed as the deformation theory of the free
module A, inside the dg category of A1–modules.

1c The formal group structure

With this in mind, let’s return to symplectic geometry. To keep the formalism in
the simple form set up above (avoiding Novikov rings), we will assume that our
symplectic manifold X is monotone (rather than weakly monotone), which means that
its symplectic form satisfies

(1-3) Œ!X �D ıc1.X / 2H 2.X IR/ for some ı > 0:

Take a suitable chain complex C D C �.X / representing its integral cohomology,
equipped with the quantum A1–structure �C. Note that the quantum A1–structure is
only Z=2–graded; hence, the definition above should be interpreted so that Maurer–
Cartan elements are taken in Codd y̋ N , and correspondingly, the entire odd-degree
cohomology of X appears. Let MC.X IN / D MC.CIN / be the set of equivalence
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classes of Maurer–Cartan solutions. One can think of this as the deformation theory of
the diagonal �X as an object of the Fukaya category F.X � xX /, where xX means that
we have reversed the sign of the symplectic form. In other words, deformations are
“bounding cochains” for �X in the sense of Fukaya, Oh, Ohta and Ono [23; 24]. If the
closed–open map is an isomorphism, one can also think of this theory as deformations
of the identity functor on F.X /, which describes the formal neighborhood of the identity
in the “automorphism group” of that category. From the composition of automorphisms,
one would expect additional structure, and indeed:

Proposition 1.5 The functor MC.X / has the canonical structure of a “formal group”.

As mentioned above, if one makes suitable assumptions on the closed–open map,
this structure has an explanation purely within homological algebra. If one drops
that assumption, one could still obtain the group structure by looking at F.X � xX /
together with its monoidal structure (in a suitable sense, which we will not try to make
precise) given by convolution of correspondences — see Bottman and Wehrheim [9]
and Ma’u, Wehrheim and Woodward [48]; another approach is Fukaya [22] and Lekili
and Lipyanskiy [40]. Compared to those constructions, the definition given here (which
avoids talking about Fukaya categories or Lagrangian correspondences) is less general
but more direct, and hence more amenable to computations.

Proposition 1.6 The groups MC.X IN / are commutative if N 3 D 0. They are also
commutative if N 4 D 0 provided that , additionally, H�.X IZ/ is torsion-free.

Commutativity mod N 3 is not surprising: it amounts to the well-known fact that the
Lie bracket on cohomology, which exists for any algebra over the little disc operad,
becomes zero for cohomological field theories. For general algebraic reasons (formal
exponentiation), one expects commutativity to hold always if N is an algebra over Q;
and the same should be true if N is an algebra over Fp and N p D 0. In contrast, the
origin of the second part of Proposition 1.6 is more geometric: it reflects an explicit
(if poorly understood, partly due to a lack of examples) enumerative obstruction to
commutativity.

Remark 1.7 Our construction focuses on the odd-degree cohomology of X. One could
try to include even-degree classes by enlarging the notion of formal group to its derived
counterpart, which in our terms means allowing N to be a commutative dg (or maybe
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2942 Paul Seidel

better simplicial) ring. Another potential use of even-degree classes (with different
enumerative content) would be as “bulk insertions” at points in arbitrary position, as in
big quantum cohomology. Note however that, for classes of degree > 2, the standard
algebraic formalism of “bulk insertions” involves dividing by factorials. Hence, it
would have to be modified for our applications. Neither direction will be attempted in
this paper.

1d Quantum Steenrod operations

Fix a prime p. The quantum Steenrod operation, in a form slightly simplified by the
monotonicity assumption (1-3), is a map

(1-4) Q StX ;p D
X
A

Q StX ;p;A WH�.X IFp/!H�.X IFp/˝H�Z=p.Fp/;

with
Q StX ;p;A WH l.X IFp/!

�
H�.X IFp/˝H�Z=p.Fp/

�pl�2c1.A/:

Here, H�Z=p.Fp/ is the group cohomology of the cyclic group with coefficients mod p,
which is one-dimensional in each degree. We fix generators

(1-5) H�Z=p.Fp/D Fp Œt; � �; with jt j D 2; j� j D 1:

The notation here requires some explanation. For pD 2, we have �2D t (or � D t1=2),
so the two generators are not independent. For p > 2, it is implicit that our description
is as a graded commutative algebra, so �2D 0. The sum in (1-4) is over A2H2.X IZ/,
and the notation c1.A/ is shorthand for integrating the first Chern class of X over A.
The classical Steenrod operations [70] are encoded in the AD 0 term. More precisely,
if we write StX ;p DQ StX ;p;0, the relation with the classical notation is that

(1-6) StX ;p.x/D

8̂̂̂̂
<̂
ˆ̂̂:

X
i

Sqi.x/t .jxj�i/=2 if p D 2;

.�1/�
�

p� 1

2
!

�jxjX
i

.�1/iP i.x/ t .jxj�2i/.p�1/=2

C � (terms involving ˇP i) if p > 2;

where ˇ is the Bockstein, and

(1-7) � D
jxj.jxj � 1/

2

p� 1

2
:

When handling the constants in (1-6) in practice, one should bear in mind that

(1-8)
�

p� 1

2
!

�2

� .�1/.pC1/=2 mod p:
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See [70, Lemma 6.3]. For instance, if jxj is even and p > 2,

(1-9) t0 term of StX ;p.x/D .�1/�
�

p� 1

2
!

�jxj
.�1/jxj=2P jxj=2.x/

D .�1/jxj=2 .p�1/=2.�1/jxj=2 .pC1/=2.�1/jxj=2P jxj=2.x/

D P jxj=2.x/D xp:

Definition 1.8 Define an endomorphism Q„X ;p of H odd.X IFp/ by

(1-10) Q„X ;p.x/

D

8<:
the t1=2 (or � ) component of Q StX ;2.x/ if p D 2;�

p� 1

2
!

��1

times the t .p�1/=2–component of Q StX ;p.x/ if p > 2:

To recapitulate, this has the form

(1-11) Q„X ;p D

X
A

Q„X ;p;A;

with
Q„X ;p;A WH

l.X IFp/!H pl�.p�1/�2c1.A/.X IFp/;

and where the classical component is

(1-12) „X ;p.x/DQ„X ;p;0.x/D

�
Sqjxj�1.x/ if p D 2;

P .jxj�1/=2.x/ if p > 2:

1e The pth power maps

Let’s return to the formal group MC.X /. The group structure gives rise to mth power
(meaning the m–fold product) maps for each m�1, which are functorial endomorphisms
of MC.X IN / for any N.

Theorem 1.9 The power maps of prime order fit into a diagram

(1-13)

MC.X I qFp Œq�=q
pC1/

projection
��

pth power of the formal group
// MC.X I qFp Œq�=q

pC1/

MC.X I qFp Œq�=q
2/ MC.X I qpFp Œq�=q

pC1/

inclusion

OO

H odd.M IFp/
Q„X;p

// H odd.M IFp/

Geometry & Topology, Volume 27 (2023)



2944 Paul Seidel

Remark 1.10 Because of the monotonicity of X and the grading of our operations,
see (1-11), one always has

(1-14) Q„X ;p.x/D„X ;p.x/D x for x 2H 1.X IFp/:

For comparison, consider the formal completion yGm of the multiplicative group. In a
local coordinate 1C z 2 yGm, the pth power map is

(1-15)
p‚ …„ ƒ

z � � � � � z D .1C z/p � 1D zp
Cp.something/D z for z 2 Fp;

which matches what we have seen in (1-14). There is a categorical explanation for
the occurrence of the multiplicative group. Recall that H 1.X IGm/ classifies flat line
bundles over X . The definition of the Fukaya category F.X / includes having the
Lagrangian submanifolds equipped with flat bundles. By tensoring with the restriction
of flat line bundles on X , one gets an action of H 1.X IGm/ on the Fukaya category.
For us, it is better to think of the action as being given by the trivial Lagrangian
correspondence, namely the diagonal in X � xX , equipped with a flat line bundle. From
that viewpoint, one can pass to the formal completion: one has a formal family of
objects in F.X � xX /, which consists of the diagonal together with a formal deformation
of the trivial line bundle; that gives rise to a deformation of the identity functor on F.X /;
and composition of such deformations corresponds to the tensor product of line bundles.
Of course, within the present framework this discussion is of very limited concrete use:
the known examples of monotone symplectic manifolds with nontrivial H 1 (obtained
by combining Reznikov [60] and Millson [55], see Fine and Panov [19] for a discussion)
are somewhat esoteric.

Example 1.11 Let X �CP1 �CP3 be a hypersurface of bidegree .1; 2/, which has
odd cohomology H 3.X IFp/D F2

p for any p. Then Q„X ;2 D id, by a computation
from [74, Section 8]. More generally, each Q„X ;p is a multiple of the identity. Here
are the results for the first few primes:

(1-16)
p 2 3 5 7 11 13 17 19 23 29 31 37 41

Q„p=id �1 �1 1 0 �4 �2 2 4 0 �2 0 �10 10

The entries lie in Fp , and we have chosen integer representatives with the least absolute
value (with some fudging for p D 2). Those integers are meaningful: they are the qp

coefficients of the modular form [43, Newform 15.2.a.a]

(1-17) �.q/�.q3/�.q5/�.q15/; where �.q/D q1=24
1Y

nD1

.1� qn/:
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One can interpret this observation via mirror symmetry and arithmetic geometry. The
(conjectural, but supported by superpotential computations) statement is that a specific
elliptic curve appears in the mirror geometry, and hence is encoded in the Fukaya
category of X . Correspondingly, the automorphism group of the Fukaya category would
contain the derived automorphism group of that curve, and in particular, the product of
two copies of the curve itself. What we see in (1-16) is the leading coefficient of the
pth power map of the formal group law of the elliptic curve. For general number theory
reasons, this is closely related to counting Fp–points on the curve, and the appearance
of (1-17) is an instance of the modularity of elliptic curves. For further discussion, see
Example 9.11 and Conjecture 9.12.

The computation underlying Example 1.11 turns out to involve only those quantum
Steenrod operations which can ultimately (using forthcoming work of Wilkins and the
author) be reduced to ordinary Gromov–Witten invariants. To push the understanding
of Q„X ;p further, one would have to study the contribution of p–fold covered curves,
which is beyond our scope here.

Example 1.12 Let X �CP1�CP5 be a hypersurface of bidegree .1; 2/. In this case,
Q„X ;p is unknown. The answer involves stable maps to X with first Chern number
2p�2. The difficulty is that there are points in the relevant space of stable maps which
have Z=p isotropy groups.

1f Structure of the paper

In order to make the underlying ideas appear clearly, the paper is set up as follows.
Most of the time (Sections 2–6) we work in an abstract operadic framework. In
principle, one could aim to prove that quantum cohomology is an instance of this
general setup, but that would overshoot the desired target somewhat. Instead, we will
explain (in Section 7) how to convert the previous arguments into symplectic terms,
in a more ad hoc way. In Section 8, we outline an alternative approach to parts of
the construction, based on Fukaya [22]. After that, Section 9 is a bit of an outlier: it
is concerned with computational techniques for quantum Steenrod operations, and is
formulated in a language much closer to standard Gromov–Witten theory. At this point,
we should make one apology for the paper. Because of the complexity of the formulae
involved, signs are sometimes not worked out, which we signal by ˙; however, we
have made sure that signs are given at key points. Part of this involves spelling out
certain conventions for equivariant cohomology, which is done in Section 10.
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2 Maurer–Cartan theory

After some introductory remarks about solutions of the Maurer–Cartan equations in
general A1–rings, we turn to a specific situation, namely the induced A1–structure on
Hochschild cochains. Maurer–Cartan solutions in Hochschild cochains carry a formal
group structure, which can be considered as a purely algebraic counterpart of our main
construction. This algebraic viewpoint will not really be used later on: we include it
here for expository purposes, and also because it would provide the background for
linking the results in this paper to the Fukaya category. To make things more intuitive
from a classical homological algebra viewpoint, we will take the A1–structures to be
Z–graded in this section, even though, as mentioned before, the quantum A1–structure
is only Z=2–graded.

2a A1–structures

To clarify our conventions, let’s spell out the definition of an A1–ring. This is a free
graded abelian group A is with multilinear operations f�d

Ag, d � 1, which satisfy the
A1–associativity relations

(2-1) 0D
X
ij

.�1/zi�
d�jC1
A .a1; : : : ; �

j
A.aiC1; : : : ; aiCj /; : : : ; ad /:

Here, zi D ka1k C � � � C kaik, where kak D jaj � 1 is the reduced degree; both
will be standing notation from now on. If we consider A as a chain complex with
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differential dA D��
1
A, the associative algebra structure on H�.A/ is induced by the

chain-level product

(2-2) a1 � a2 D .�1/ja1j�2
A.a1; a2/:

From the overall “A1–lingo”, the notions of A1–homomorphism and homotopy
between such homomorphisms will be the ones that occur most frequently in our
discussion. Homotopy admits the following useful interpretation. Take the following
dg ring (cochains on the interval as a simplicial complex, with the Alexander–Whitney
product):

(2-3)

IDZu˚Zzu˚Zv; with jujD jzujD0; jvjD1;

u2
Du; zu2

Dzu; zuuDuzuD0; uvDvDvzu (and hence vuDzuvD0),

dIuDv; dIzuD�v:

If A is an A1–ring, the tensor product A˝ I inherits the same structure, with

(2-4)
�1
A˝I.a˝x/D �1

A.a/˝xC.�1/jaja˝dIx;

�d
A˝I.a1˝x1; : : : ; ad˝xd /D .�1/��d

A.a1; : : : ; ad /˝x1 � � �xd for d � 2;

where � D
P

i>j kaik � jxj j. This A1–structure is compatible with the projections

(2-5) A˝ I

project to A˝Zu
,,

project to A˝Zzu

22 A:

Two A1–homomorphisms zA!A are homotopic if and only if they can be obtained
from a common homomorphism zA!A˝ I by composing with (2-5). We will often
use the following fact:

Lemma 2.1 Let F W zA!A be an A1–homomorphism such that the linear term F1

is a chain homotopy equivalence (in view of our freeness assumption , that will be the
case whenever it’s a quasi-isomorphism). Then F has an inverse up to homotopy.

Unitality conditions, while not always strictly necessary, are both convenient for the
theory and satisfied in most applications (including ours). A homology unit for A is a
cocycle eA 2A

0 such that the products

(2-6) a 7! a � eA D .�1/jaj�2
A.a; eA/ and a 7! eA � aD �

2
A.eA; a/

are homotopic to the identity (when working over a field, one asks that these products
induce the identity on cohomology, but that is obviously inadequate over Z; the notion
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used here goes back to [44, Definition 7.3]). One says that eA is a strict unit if: the
inclusion ZeA!A0 splits, as a map of abelian groups; the maps (2-6) are equal to the
identity; and in addition, all operations �d

A.: : : ; eA; : : :/, d � 3, are zero. The following
is [45, Theorem 3.7 and Remark 3.8]:

Lemma 2.2 Given any homologically unital A1–ring A, there is a strictly unital
one zA and an inclusion A ,! zA, compatible with the A1–structures , which is a
chain homotopy equivalence. (Note that by Lemma 2.1, we then also have an inverse
A1–functor F W zA!A, such that F1 is a chain homotopy equivalence.)

The result in [45] is more explicit: one can enlarge the A1–structure to zADA˚Zh˚

Ze zA, where e zA is the strict unit, and

(2-7)
�1
zA
.h/ 2 e zACA0;

�d
zA
.A˚Zh; : : : ;A˚Zh/�A for d � 2:

This has a consequence which we find useful to state, even though it goes slightly
beyond the limits of our current terminology. Introduce an A1–category with two
objects Y and zY , morphism spaces

(2-8)
hom.Y;Y /D hom.Y; zY /D hom. zY ;Y /DA;

hom. zY ; zY /D zA;

and with all A1–structures inherited from zA (the second part of (2-7) ensures that this
makes sense). The two objects are quasi-isomorphic, and so we arrive at the following:

Lemma 2.3 Given any homologically unital A1–ring A, there is a homologically
unital A1–category with two objects such that

� the endomorphism ring of the first object is A,

� the endomorphism ring of the second object is strictly unital , and

� the two objects are mutually quasi-isomorphic.

2b Maurer–Cartan elements

We have already mentioned the notions of Maurer–Cartan element (1-1) and of equiv-
alence between such elements (1-2). Given an A1–homomorphism F W zA! A, we
define the induced map MC.FIN / WMC. zAIN /!MC.AIN / by

(2-9) z 7!  D
X

d

Fd .z ; : : : ; z /:
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The basic results (the second is a consequence of the first and Lemma 2.1) are:

Lemma 2.4 Homotopic A1–homomorphisms induce the same map MC. zAIN /!

MC.AIN /.

Lemma 2.5 Suppose that we have an A1–homomorphism zA!A, whose linear part
is a chain homotopy equivalence. Then the induced map MC. zAIN /!MC.AIN / is
bijective.

One can think of equivalence of Maurer–Cartan elements in several ways. In terms of
the A1–structure (2-4),

(2-10)  ˝uC z ˝ zuC h˝ v 2 .A˝ I y̋ N /1

is a Maurer–Cartan element for A˝I if and only if  and z are Maurer–Cartan elements
for A, and h satisfies (1-2). This makes Lemma 2.4 particularly intuitive. Another
possible interpretation goes as follows. Let’s add a strict unit, forming Ze˚A y̋ N .
There is an A1–category whose objects are Maurer–Cartan elements in A y̋ N , with
morphisms between any two elements given by Ze ˚A y̋ N . The differential for
morphisms z !  is

(2-11) g 7!
X
p;q

�
pCqC1

Ze˚A y̋N
.

p‚ …„ ƒ
; : : : ;  ;g;

q‚ …„ ƒ
z ; : : : ; z /;

and the formulae for higher A1–compositions are similar. Clearly, h satisfies (1-2) if
and only if g D eC h is a closed morphism z !  in our category. This viewpoint
can be useful when thinking about the transitivity and functoriality of the notion
of equivalence. Finally, if A is homologically unital, one can introduce a modified
version of the Maurer–Cartan category, by setting the morphisms between objects to
be A˝ .Z1˚N /, which means using the natural identity of A rather than artificially
adjoining one. The resulting version of our previous observation (obvious in the strictly
unital case, and generalized from there using Lemmas 2.2 and 2.5) is this:

Lemma 2.6 Suppose that A is homologically unital. Then , two Maurer–Cartan
solutions are equivalent if and only if there is a g 2A0 y̋ .Z1˚N / which , modulo N ,
reduces to a cocycle homologous to eA, and which satisfies

(2-12)
X
p;q

�
pCqC1
A .

p‚ …„ ƒ
; : : : ;  ;g;

q‚ …„ ƒ
z ; : : : ; z /D 0:

Geometry & Topology, Volume 27 (2023)



2950 Paul Seidel

2c Hochschild cochains

As before, let A be an A1–ring. Our attention will now shift to its Hochschild complex
(the complex underlying Hochschild cohomology)

(2-13) CD CC�.A/D
Y
d�0

Hom.AŒ1�˝d ;A/:

The Hochschild differential is

(2-14) .dCc/d .a1; : : : ; ad /

D�

X
ij

.�1/zi �kck�
d�jC1
A .a1; : : : ; c

j .aiC1; : : : ; aiCj /; : : : ; ad /

C

X
ij

.�1/ziCkckcd�jC1.a1; : : : ; �
j
A.aiC1; : : : ; aiCj /; : : : ; ad /

(we apologize for the double use of d as differential and as counting the number of
entries); and its cohomology is the Hochschild cohomology HH�.A/. We will also
use Hochschild cohomology with coefficients in a commutative ring R, denoted by
HH�.AIR/, which is the cohomology of CC�.AIR/ D C y̋ R — here, completion
means that we take each term in (2-13)˝R and then their product. C carries a canonical
A1–structure, with �1

C D�dC, and where the next term is

(2-15) �2
C.c1; c2/

d .a1; : : : ; ad /DX
i1;j1;i2;j2

i2�i1Cj1

.�1/zi1
kc1kCzi2

kc2k�
d�j1�j2C2
A

�
a1; : : : ; c

j1

1
.ai1C1; : : : ; ai1Cj1

/; : : : ;

c
j2

2
.ai2C1; : : : ; ai2Cj2

/; : : : ; ad

�
:

The higher-order A1–operations follow the same pattern as �2
C. If A has a homological

unit, then so does C. One way to show that is to apply Lemma 2.3: in that situation,
the restriction from the Hochschild complex of the A1–category to the Hochschild
complex of either A or zA is a homotopy equivalence, allowing one to transfer properties
from zA to A in two steps.

Note that strictly speaking, C does not fit into the original context for A1–rings,
because (2-13) is not usually free. However, it is the inverse limit of chain complexes
of free groups, by using the (complete decreasing) length filtration, which is compatible
with the A1–structure. All the associated notions have to be modified to take this
“pro-object” nature into account. We have already done that when defining Hochschild
cohomology with coefficients, by using the completed tensor product C y̋ R. Maurer–
Cartan elements, and homotopies between such elements, will live in such completed
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tensor products. To prove the analogue of Lemma 2.6 for Hochschild complexes, one
again uses reduction to the strictly unital case via Lemma 2.3.

The product on Hochschild cohomology induced from �2
C is graded commutative.

Additionally, Hochschild cohomology has a Lie bracket of degree�1. The two combine
to form the structure of a Gerstenhaber algebra. When we take coefficients in a ring
with pRD 0, let’s say for concreteness RD Fp, there is one more operation

(2-16) „A;p W HHl.AIFp/! HHpl�.p�1/.AIFp/

�
for odd l if p > 2,
for all l if p D 2.

This combines with the bracket to form a restricted Lie algebra [77]. As we next explain,
following [71], the underlying chain-level map can be written as a sum over trees.

Terminology 2.7 A rooted tree with d leaves is a tree which (in addition to its finite
edges) has dC 1 semi-infinite edges. One of the semi-infinite edges is singled out, and
called the root; the other d are the leaves. There is a unique way of orienting edges, so
that they point towards the root. Given a vertex v, write jvj for its valence. Among the
edges adjacent to v, there is a unique outgoing one, and kvk D jvj � 1 incoming ones.

In our applications, the rooted trees (unless otherwise indicated) come with the following
structure. First, an ordering of the semi-infinite edges by f0; : : : ; dg, starting with the
root. Secondly, at any vertex, an ordering of the adjacent edges by f0; : : : ; jvjg, again
starting with the outgoing edge. A special case is that of rooted planar trees, where
all orderings come from a single embedding of the tree into the plane, which implies
certain compatibilities between them.

For now, we will only use rooted planar trees (the more general version will play a role
later on; see Section 3b). Given such a tree and a Hochschild cochain c, one defines an
operation A˝d !A, by starting with elements of A at the leaves, and having ckvk act
at each vertex, with the output of that fed into the next vertex on our way to the root.
To define the chain map underlying (2-16), one considers those operations for trees
with p vertices, and adds them up with certain multiplicities: the multiplicity of a tree
is the number of ways to order its vertices, so that the ordering increases when going
towards the root (“causal orderings”). For p D 2, we get

(2-17) .„A;2c/d .a1; : : : ; ad /D
X
ij

cd�jC1.a1; : : : ; c
j .aiC1; : : : ; aiCj /; : : : ; ad /:
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c5(a1, c
3(a2, a3, a4), a5, c

0, a6) c3(a1, c
2(c3(a2, a3, a4), a5), a6)

Figure 1: Sample trees that correspond to expressions from (2-18):
c5.a1; c

3.a2;a3;a4/;a5; c
0;a6/, left, and c3.a1; c

2.c3.a2;a3;a4/;a5/;a6/,
right.

This is usually written as c ı c, where ı is the operation which underlies the homotopy
commutativity of �2

C, and which upon antisymmetrization yields the Lie bracket. The
p D 3 case is less familiar [71, Example 3.3]:

(2-18) .„A;3c/d .a1; : : : ; ad /D

2
X

i1;j1;i2;j2

i1Cj1�i2

cd�j1�j2C2
�
a1; : : : ; c

j1.ai1C1; : : : ; ai1Cj1
/;

: : : ; cj2.ai2C1; : : : ; ai2Cj2
/; : : : ; ad

�
C

X
i1;j1;i2;j2

cd�j1�j2C2
�
a1; : : : ; c

j1
�
ai1C1; : : : c

j2.ai2C1; : : : ; ai2Cj2
/;

: : : ; ai1Cj1Cj2�1

�
; : : : ; ad

�
:

The summands in (2-18) correspond to trees as in Figure 1, where that on the left admits
two causal orderings. Koszul signs as in (2-15) are absent here, since kck is even;
recall that for odd p, the operation „A;p is only defined on odd-degree Hochschild
cohomology.

Example 2.8 The first terms of dC.c/D 0, for kck even, are

(2-19)

�1
A.c

0/D 0;

�1
A.c

1.a//C�2
A.a; c

0/C�2
A.c

0; a/D c1.�1
A.a//;

�1
A.c

2.a1; a2//C�
2
A.c

1.a1/; a2/C�
2
A.a1; c

1.a2//

C�3
A.c

0; a1; a2/C�
3
A.a1; c

0; a2/C�
3
A.a1; a2; c

0/

D c1.�2
A.a1; a2//C c2.�1

A.a1/; a2/C .�1/ka1kc2.a1; �
1
A.a2//:

The constant term in (2-18) is

(2-20) .„A;3c/0 D 2c2.c0; c0/C c1.c1.c0//:
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One sees that this is again a cocycle modulo 3:

(2-21) �1
A.c

2.c0; c0//

D��2
A.c

1.c0/; c0/��2
A.c

0; c1.c0//� 3�3
A.c

0; c0; c0/C c1.�2
A.c

0; c0//

D �1
A.c

1.c1.c0///� 3�3
A.c

0; c0; c0/C 3c1.�2
A.c

0; c0//:

Example 2.9 Suppose that A is a differential graded algebra, ie �d
A D 0 for d � 3.

A derivation of A gives a cocycle in C1, and applying (2-16) amounts to taking the pth

iterate of that derivation.

2d The formal group structure

Given an adic ring N , let C y̋ N be the space obtained by applying y̋ N to each factor
in (2-13) and then again forming their product. We consider Maurer–Cartan elements
 2 C y̋ N . Concretely, the first terms are

(2-22)
 0
2A1 y̋N;

X
d

�d
A.

0; : : : ;  0/D0;

 1
2Hom.A;A/0 y̋N;

X
p;q

�
pCqC1
A . 0; : : : ;  0„ ƒ‚ …

p

; a;  0 : : : ;  0„ ƒ‚ …
q

/D 1.�1
A.a//;

and so on. One can think of  as a formal deformation of the identity endomorphism
of A. What this means is that  satisfies (1-1) if and only if, over Z1˚N ,

(2-23) �d
D

�
idAC  1 if d D 1;

 d if d ¤ 1;

satisfies the (curved) A1–homomorphism equations. Similarly, two Maurer–Cartan
solutions are equivalent (1-2) if the associated A1–homomorphisms (2-23) are (curved)
homotopic. The standard composition of A1–homomorphisms (2-23) leads to the
following composition law for Maurer–Cartan solutions:

(2-24) .1�2/
d .a1; : : : ; ad /D

 d
2 .a1; : : : ; ad /

C

X
m�0

i1;j1;:::;im;jm

i1Cj1�i2;:::;
im�1Cjm�1�im


d�j1�����jmCm
1

�
a1; : : : ; 

j1

2
.ai1C1; : : : ; ai1Cj1

/;

ai1Cj1C1; : : : ; 
j2

2
.ai2C1; : : : ; ai2Cj2

/;

: : : ; 
jm

2
.aimC1; : : : ; aimCjm

/; : : :
�
:

This is strictly associative, and descends to a product on MC.CIN /. Moreover, by
explicitly solving the equation �2�1 D idA, one sees that this composition has inverses.
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The outcome is that N 7!MC.CIN / comes with the structure of a “formal group”.
The analogue of Theorem 1.9 in this algebraic context is [71, equation (3-1)]:

Lemma 2.10 There is a commutative diagram

(2-25)

MC.CI qFp Œq�=q
pC1/

projection
��

pth power of the formal group
// MC.CI qFp Œq�=q

pC1/

MC.CI qFp Œq�=q
2/ MC.CI qpFp Œq�=q

pC1/

inclusion

OO

HH1.AIFp/
„A;p

// HH1.AIFp/

The proof is quite straightforward. Namely, let’s iterate (2-24) to form the pth power of
a Maurer–Cartan element  . The outcome can be written as a sum over rooted planar
trees, with multiplicities. These multiplicities count “causal labelings” of trees, where
the vertices are labeled by f1; : : : ;pg and the numbers increase when going towards the
root. This limits the depth of the tree to be � p, but does not by itself limit the number
of vertices, since several vertices can carry the same label. However, in the formula
for the pth power map, each vertex carries a copy of  , and since the coefficient ring
N D qFp Œq�=q

pC1 satisfies N pC1 D 0, the contribution from trees with > p vertices
vanishes. The labels on trees with � p vertices can be thought of as consisting of two
pieces: a choice of subset of f1; : : : ;pg, and then a choice of labels which uses all
numbers in that subset, and which obeys the causality condition. From that, it follows
that the only trees with nontrivial mod p contribution are those with exactly p vertices,
and where each label is used once. If we write  D cqCO.q2/, it then follows that

(2-26)
p‚ …„ ƒ

 � � � � �  D„A;p.c/ qp
2 C y̋ qFp Œq�=q

pC1:

Remark 2.11 In characteristic zero, the deformation theory associated to the Maurer–
Cartan equation in C is unobstructed: as a concrete illustration, the truncation map

(2-27) MC.CI qQŒŒq��/!MC.CI qQŒq�=q2/D HH1.AIQ/

is onto. This is closely related to the formal group structure, since one can prove it by
formal exponentiation. The analogous statement in positive characteristic is no longer
generally true. The square of a class in HH1.AIF2/ is not necessarily zero, and that
gives an obstruction to lifting to MC.CI qF2Œq�=q

3/. As an example, take a polynomial
ring A D ZŒa� with jaj D 1; the element a becomes central over F2, hence gives a
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Hochschild cohomology class. Instead, one could look at the 2–adic lifting problem,
but that’s also obstructed: in the first step, which means lifting to MC.CI 2Z=8Z/, the
requirement is that the square of the Hochschild cohomology class must be equal to its
Bockstein (which fails in the same example).

Remark 2.12 If A is a dg algebra, the Hochschild complex has the same structure.
Let’s follow classical notation and write ^ for the product on Hochschild cochains.
The Maurer–Cartan equation is

(2-28) dC C  ^  D 0;

and two solutions are equivalent if

(2-29) dChC . C  ^ h/� .z C h^ z /D 0:

The composition law (2-24) can be written in terms of the brace operations from [72] as

(2-30) 1 � 2 D 2C

X
m�0

1f

m‚ …„ ƒ
2; : : : ; 2g:

When put in this way, the formalism can be generalized to any complex C which is an
algebra over the braces operad [53], since that exactly provides the operations used in
(2-28)–(2-30). The formula (2-30) can be viewed as an application of a construction [27]
(see [76] for a review and further context) which equips the tensor coalgebra of C
with a bialgebra structure. It is possible that the geometric results in this paper could
be similarly sharpened, replacing “formal groups” with a suitable bialgebra language
(where the comultiplication would be the standard tensor coalgebra structure, but the
multiplication would be A1); however, that would likely require the full generality
of Bottman’s witch ball spaces.

3 Parameter spaces

This section discusses the moduli spaces underlying our constructions. This is mostly
an exposition of known material; the small amount that may be new appears towards
the end of the section. Stasheff associahedra, Deligne–Mumford spaces, and Fulton–
MacPherson spaces (for the latter, originally in their homotopy equivalent guise [62] as
the little squares operad) belong to classical algebraic topology and geometry, and we
include a brief exposition mainly as a warmup exercise. The more complicated spaces
are borrowed from the theory of Lagrangian correspondences, variously combining
[49; 48; 9; 22; 5; 6].
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3a Associahedra

The Stasheff spaces (associahedra) Sd , for d � 2, are compactifications of the space of
ordered point configurations on the real line, modulo translations and positive dilations,
meaning of

(3-1)
f.s1; : : : ; sd / 2Rd W s1 < � � �< sdg

f.s1; : : : ; sd /� .�.s1/; : : : ; �.sd // for �.s/D �C�s with � 2R, � > 0g
:

The collection fSdg has the structure of a nonsymmetric operad, given by maps

(3-2)
Y
v

Skvk
T
�! Sd ;

one for each rooted planar tree T with d C 1 semi-infinite edges, and where every
vertex v has valence jvj � 3 (see Terminology 2.7; it will be our standard procedure to
just denote such maps by the underlying tree). The single-vertex tree is a trivial special
case, since it gives rise to the identity map on Sd .

Topologically, Sd is a (contractible) compact manifold with boundary, whose interior
is (3-1), and whose boundary is the union of the images of the nontrivial maps (3-2).
One can get a slightly more precise description by introducing a suitable smooth
structure, for instance by embedding the Stasheff spaces into the real locus of Deligne–
Mumford spaces. Then Sd becomes a smooth (and in fact real subanalytic) manifold
with corners, whose open strata are the images of

Q
v.Skvk n @Skvk/ under (3-2).

We orient Sd by picking, on the interior (3-1), the parametrization where .s1; s2/ are
fixed, and using the standard orientation of the remaining parameters .s3; : : : ; sd /.

3b Fulton–MacPherson spaces

The Fulton–MacPherson spaces2 FMd , for d � 2, are compactifications of planar
configuration space up to translations and positive dilations:

(3-3)
f.z1; : : : ; zd / 2Cd W zi ¤ zj for i ¤ j g

f.z1; : : : ; zd /� .�.z1/; : : : ; �.zd // for �.z/D �C�z with � 2C, � > 0g
:

The (symmetric) operad structure on fFMdg comes from permutations of the zk ,
together with maps similar to (3-2),

(3-4)
Y
v

FMkvk
T
�! FMd :

2The terminology is taken from [29]; versions of the construction arose in [3; 25; 37]
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Here, the rooted trees T come with our usual structure (see Terminology 2.7), but are
not necessarily planar. Changing the ordering of the semi-infinite edges of T amounts
to composing (3-4) with an element of Symd on the left; and changing the orderings at
the vertices amounts to composing (3-4) with an element of

Q
v Symkvk on the right.

The inclusion R�C induces maps

(3-5) Sd ! FMd ;

which are compatible with (3-2) and (3-4) (they form a morphism of nonsymmetric
operads).

As before, FMd is topologically a compact manifold with boundary. One can complexify
it by considering point configurations in C2, which yields a smooth compact complex
manifold, and then embed FMd into the real locus of that. As a consequence, it inherits
the structure of a smooth (or real subanalytic) manifold with corners, just as in the case
of the associahedra.

To orient FMd , we consider representatives in (3-3) where z1 and jz1� z2j are fixed.
Then, rotating z2 anticlockwise around z1 yields the first coordinate, and the remaining
coordinates are .z3; : : : ; zd / with their complex orientations. Equivalently, consider
the classical configuration space Confd .C/, of which (3-3) is a quotient by the action
of .�; �/ 2C �R>0. The Lie algebra of that group fits into an exact sequence

(3-6) 0!C˚R! T.z1;:::;zd / Confd .C/! T.z1;:::;zd /FMd ! 0I

our orientation of the quotient is compatible with that sequence and with the complex
orientation of Confd .C/. In particular, Symd acts orientation-preservingly.

3c Deligne–Mumford spaces

For most of this paper, we will write DMd for the Deligne–Mumford moduli space of
genus 0 curves with d C 1 marked points, bringing it in line with the notation for the
other moduli spaces. One can consider it as a compactification of

(3-7)
f.z1; : : : ; zd / 2Cd W zi ¤ zj for i ¤ j g

f.z1; : : : ; zd /� .�.z1/; : : : ; �.zd // for �.z/D �C�z with � 2C, � 2C�g
;

which is a free S1–quotient of (3-3). The operadic structure takes on exactly the same
form as for Fulton–MacPherson spaces. Indeed, the quotient map on configuration
spaces extends to a map

(3-8) FMd ! DMd ;
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which is compatible with (3-4) and its Deligne–Mumford counterpart. We adopt the
usual orientation of DMd as a complex manifold.

3d Colored multiplihedra

Ma’u, Wehrheim and Woodward [49; 48] introduced a geometric interpretation of the
classical multiplihedra, as well as certain generalizations. We will call these spaces
colored multiplihedra, and denote them by

(3-9) MWWd1;:::;dr
for r � 1; d1; : : : ; dr � 0; d D d1C � � �C dr > 0:

They are compactifications of

(3-10)
f.s1;1; : : : ; s1;d1

I : : : I sr;1; : : : ; sr;dr
/ 2Rd W sk;1 < � � �< sk;dk

for each kg

fsk;i � sk;i C� for � 2Rg
:

The intuitive meaning of (3-10) is that we have d points on the real line, which are
divided into r colors, with dk points of any given color k. Points of different colors
can have the same position, while those of the same color are distinct and lie on the real
line in increasing order. We denote the compactification by MWWd1;:::;dr

. It tracks
what happens on a large scale, meaning the relative speeds as points diverge from each
other, as well as on the small scale, where points of the same color converge. Therefore,
a point in the compactification consists of “screens” (terminology taken from [25])
which are either “large-scale”, “mid-scale”, or “small-scale”. Correspondingly, the
analogue of (3-2) is of the form

(3-11)
Y
v large

Skvk �
Y
v mid

MWWkvk1;:::;kvkr �
Y
v small

Skvk
T
�!MWWd1;:::;dr

:

Here, the tree T has d C 1 semi-infinite edges. We still single out a root, but the
leaves are now divided into subsets of orders dk , each subset being then ordered by
f1; : : : ; dkg. Each vertex has one of three scales. The mid-scale vertices have the same
kind of combinatorial data attached to them as the entire tree: their incoming edges are
divided into r subsets of different colors, whose sizes we denote by kvk1; : : : ; kvkr ,
and then ordered within each subset. The large-scale vertices and small-scale vertices
just come with an ordering of the incoming edges. The small-scale vertices are also
labeled with a color in f1; : : : ; rg. Any path going from a leaf of color k to the root
travels in nondecreasing order of scale: first through any number (which can be zero) of
small-scale vertices of color k; then through exactly one single mid-scale vertex, which
it enters by an edge with color k; and finally, through any number (which can be zero)
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.1; 1/

.2; 1/ .2; 2/

.1; 2/

degeneration
.1; 1/ .1; 2/

.2; 1/ .2; 2/

Figure 2: A degeneration in MWW2;2; see Example 3.1. The shaded regions
are “mid-scale screens”; we have drawn marked points of different colors as
lying on separate copies of the real line.

of large-scale vertices. There are compatibility conditions between the orderings, which
are somewhat tedious to write down combinatorially; see [48, Section 6] — they are
similar in principle to those for planar rooted trees, but concern each color separately.

Example 3.1 Suppose that in MWW2;2 we have a sequence of configurations where
one point (of the first color) moves to�1, and the remaining three points move towards
the same position. The outcome is shown in Figure 2.

Topologically, MWWd1;:::;dr
is again a compact manifold with boundary, having (3-10)

as its interior. Note that the codimension of the image of (3-4) is the number of small-
scale plus large-scale vertices, mid-scale vertices being irrelevant. As a consequence of
the resulting combinatorial structure of boundary strata, MWWd1;:::;dr

can’t be made
into a smooth manifold with corners in the same way as the previously considered
moduli spaces. However, it is naturally a (subanalytic) manifold with generalized
corners in the sense of [36]. To prove that, one introduces a complexification as in
[49; 8], which is a complex variety with toric singularities, and embeds MWWd1;:::;dr

into its real locus.

As for orientations, we orient (3-10) by ordering the coordinates lexicographically, and
then keeping the first one fixed to break the translation-invariance.

Example 3.2 In the spaces MWW1;:::;1, no small-scale vertices can appear. The maps
(3-11) with zero-dimensional domains correspond to trivalent planar rooted trees with
an additional ordering of the r leaves, hence there are .2r � 2/!=.r � 1/! of them.
For instance, the two-dimensional space MWW1;1;1 is a 12–gon; see Figure 3. The
boundary sides each have either one large-scale screen containing three points, or one
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Figure 3: The space MWW1;1;1 from Example 3.2.

mid-scale screen with two points (each possibility occurs six times). Figure 4 shows in
more detail a neighborhood of one of the corners of the 12–gon, and in particular, the
degenerate configuration associated to the vertex.

Example 3.3 The space MWW2;1 is an octagon; see Figure 5. There are only two
points which belong to the same color, hence only one way in which a small-scale
vertex can occur, which is the boundary side at the top of our figure. The other boundary
sides are of two kinds, as in Example 3.2.

Figure 4: A specific part of MWW1;1;1, compare Figure 3. As one ap-
proaches the vertex along the edge from the left, the leftmost of the three
points on the large-scale screen moves to �1. As one approaches it along
the other edge from the right, the rightmost point on the mid-scale screens
moves toC1. We have colored the points that we think of as moving white.
(Of course, because of translation invariance, there are other equivalent ways
of thinking about the degenerations.)
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Figure 5: The space MWW2;1 from Example 3.3.

One can associate to a real colored configuration a complex configuration, by setting

(3-12) zk;i D sk;i C k
p
�1

and then ordering the zk;i lexicographically (we use
p
�1 here to avoid notational

confusion with the index i ). This extends to a continuous map

(3-13) MWWd1;:::;dr
! FMd ; provided that d D d1C � � �C dr � 2:

In terms of (3-11), the extension uses the same formula (3-12) for the points on
each mid-scale screen, while the small-scale and large-scale screens use (3-5). To
be precise, there is one exception: mid-scale vertices with jvj D 2 have no Fulton–
MacPherson counterpart, and we simply forget about them, which is unproblematic
since MWW0;:::;0;1;0;:::;0 D point. There is a commutative diagram involving (3-13) as
well as (3-5), (3-4), (3-11):

(3-14)

Y
v small

Skvk �
Y
v mid

MWWkvk1;:::;kvkr �
Y
v large

Skvk

(3-13)
��

(3-11)
// MWWd1;:::;dr

(3-13)

��

Y
v small

Skvk �
Y

v mid;jvj>2

FMkvk �
Y
v large

Skvk

(3-5)
��Y

jvj>2

FMkvk (3-4)
// FMd
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It can be convenient to allow more flexibility in the construction of (3-13). Namely,
suppose that we have a collection of continuous functions

(3-15) �d1;:::;dr
D .�d1;:::;dr ;1;1; : : : ; �d1;:::;dr ;r;dr

/ WMWWd1;:::;dr
!Rd

with the following properties. In the interior of our space,

(3-16) �d1;:::;dr ;k;i < �d1;:::;dr ;l;j at any point of (3-10) where sk;i D sl;j for some
k < l and i; j .

Take the pullback of �d1;:::;dr
by (3-11) for some tree T . Each index .k; i/ corresponds

to a leaf of T , and the path from that leaf to the root enters a single mid-scale vertex v
through an incoming edge labeled .k; j /. Then, we require that the .k; i/ component
of the pullback be given by the .k; j /–component of �kvk1;:::;kvkr , as a function on the
product in (3-11). Instead of (3-12), we can then set

(3-17) zk;i D sk;i C �d1;:::;dr ;k;i

p
�1:

Intuitively, the imaginary parts of the zk;i can vary depending on the modular parameters,
but if two points of different colors k < l come to lie on the same vertical axis, the point
with the higher color l always passes above that of color k (in contrast, points of the same
color still collide, “bubbling off” into a small-scale screen). The consistency condition
we have imposed on (3-15) ensures that (3-17) extends to a continuous map (3-13), with
the same boundary compatibilities (3-14) as before. This is a strict generalization of
the previous construction, since the constant functions �d1;:::;dr ;k;i D k clearly satisfy
our conditions. More general choices of (3-15) can be defined inductively by extension
from the boundary of MWWd1;:::;dr

to the entire space, which is unproblematic since
(3-16) is a convex condition.

As one application of (3-17), note that we have (orientation-preserving) identifications

(3-18) MWWd1;:::;dr
DMWWd1;:::;dl�1;dlC1;:::;dr

if dl D 0:

According to the original formula (3-12), these two isomorphic spaces come with
different maps to FMd . However, when constructing the functions (3-15), one can
additionally achieve that

(3-19) �d1;:::;dr ;k;i D

�
�d1;:::;dl�1;dlC1;:::;k;i for k < l;

�d1;:::;dl�1;dlC1;:::;k�1;i for k > l
if dl D 0;

and then the maps (3-13) obtained from (3-17) become compatible with (3-18).
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3e Witch ball spaces

Our next topic is a simplified version of Bottman’s witch ball spaces [6], for didactic
reasons: we won’t use them as such, but the discussion serves as a preparation for a
related construction to be carried out afterwards. Our notation is

(3-20) Bd1;:::;.dm;dmC1/;:::;dr
; where r � 2; d D d1C� � �Cdr > 0; 1�m� r�1:

The interior is the configuration space (3-10) with an additional parameter t 2 .0; 1/.
This parameter extends to a map

(3-21) Bd1;:::;.dm;dmC1/;:::;dr
! Œ0; 1�:

Over t 2 .0; 1�, we just have a copy of .0; 1��MWWd1;:::;dr
. In particular, by looking

at t D 1 one gets boundary strata inherited from (3-11), which are images of maps

(3-22)
Y
v large

Skvk �
Y
v mid

MWWkvk1;:::;kvkr �
Y
v small

Skvk
T
�! Bd1;:::;.dm;dmC1/;:::;dr

:

At t D 0, the mth and .mC1/st color “collide”. There, the analogue of (3-22) is

(3-23)
Y
v mid

MWWkvk1;:::;kvkr�1
�

Y
v small-mid

MWWkvk1;kvk2 �
Y

v of any other scale

Skvk

T
�! Bd1;:::;.dm;dmC1/;:::;dr

:

This time six different scales are involved, which we (unimaginatively) call “large”,
“mid”, “small”, “small-large”, “small-mid” and “small-small”. Suppose that we have
a path from a leaf to the root. As usual, the leaves carry colors f1; : : : ; rg. If the color
of our leaf is ¤m;mC1, things proceed as for the MWW spaces, with the path going
through any number of small vertices, one mid-scale vertex, and then any number of
large vertices. (There is a relabeling rule: if the color is k>mC1, it enters the mid-scale
vertex through an edge with color k � 1.) If the color is m (resp. mC 1), the path first
goes through small-small vertices, and then through exactly one small-mid vertex, which
it enters through an edge colored by 1 (resp. 2). It then proceeds through an arbitrary
number of small-large vertices, then through a mid-scale vertex, which it always enters
through the mth color, following by large-scale vertices. To compute the codimension of
(3-23) one counts the number of “other scale” screens. Finally, our space has boundary
strata which lie over the entire interval Œ0; 1�, and those are images of maps

(3-24)
Y
v large

Skvk �

Œ0;1�Y
v mid

Bkvk1;:::;.kvkm;kvkmC1/;:::;kvkr �

Y
v small

Skvk

T
�! Bd1;:::;.dm;dmC1/;:::;dr

;
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mid mid mid

mid mid

mid mid mid

mid mid mid mid mid mid

mid mid

small-mid small-mid small-mid small-mid

small-mid

large

large large

large

large

large

large

large

t D 1

t 2 .0; 1/

t D 0

t D 0

t D 0

t 2 .0; 1/

Figure 6: One of the boundary faces of B1;.1;1/; see Example 3.4.

where the superscript means that instead of a product, we have a fiber product over
(3-21); compare [7, equation (1)]. We refer to [6; 5; 7] for a detailed discussion; the
results obtained there can easily be carried over to our version.

Example 3.4 The space B1;.1;1/ is half (sliced through horizontally) of [7, Figure 1b].
Figure 6 shows one of its boundary faces of type (3-24), namely

S2 �B1;.0;0/ �Œ0;1�B0;.1;1/ Š B.1;1/:

The spaces (3-20) are topological manifolds with boundary, and smooth manifolds with
generalized corners. For Bottman’s witch ball spaces, this is proved in [8], and the
same arguments apply to the (comparatively simpler) situation here.

As was the case for the MWW spaces, one can map our spaces to Fulton–MacPherson
spaces

(3-25) Bd1;:::;.dm;dmC1/;:::;dr
! FMd provided that d � 2;
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compatibly with (3-22), (3-23) and (3-24). Suppose for simplicity that the maps (3-13)
have been defined using (3-12). The corresponding formula for Bd1;:::;.dm;dmC1/;:::;dr

is then

(3-26) zk;i D

�
sk;i C k

p
�1 if k �m;

sk;i C .k � 1C t/
p
�1 if k >m:

As before, the extension of this map to the entire space forgets any screens (necessarily
of mid-scale or small-mid-scale) which carry configurations consisting only of one
point.

3f Strip-shrinking spaces

We will now introduce a modification of the idea of witch ball spaces, designed to
avoid the kind of fiber products which appeared in (3-24). This is inspired by [9], and
correspondingly called strip-shrinking spaces. We will denote them by

(3-27) SSd1;:::;.dm;dmC1/;:::;dr
; with r � 2; d D d1C� � �Cdr � 0; 1�m� r �1:

(Note that this time, unlike the situation in (3-20), it is possible to have all dk D 0.) The
SS spaces compactify colored configuration space as in (3-10), but without dividing
by common translation. The important point is an asymmetry between the two ways
in which points in the configuration can go to infinity. In the s!�1 direction, we
dictate a fairly standard behavior, where MWW spaces with r colors appear. In the
s!C1 limit, we think of the mth and .mC1/st colored points as lying on lines that
become asymptotically close to each other, at a rate of 1=s. One way to make this more
concrete is to consider the analogue of (3-26), which associates to a real configuration
a complex one. Choose a function  WR! .�1; 0� with asymptotics

(3-28)  .s/�

�
0 for s� 0;

�1C 1=s for s� 0:

Then set (see Figure 7)

(3-29) zk;i D

�
sk;i C k

p
�1 for k �m;

sk;i D sk;i C .kC .sk;i//
p
�1 for k >m:

To relate the spaces to Fulton–MacPherson spaces, we can add two auxiliary marked
points, say

(3-30) z˙ D˙1C .r C 1/
p
�1;
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Figure 7: A point in SS.1;1/;2, thought of as a configuration in C as in (3-29).

which stabilize the situation and otherwise stay out of the way. This gives continuous
maps

(3-31) SSd1;:::;.dm;dmC1/;:::;dr
! FMdC2:

For a more precise picture, consider the analogue of (3-2),

(3-32)
Y

v<v� mid

MWWkvk1;:::;kvkr �SSkv�k1;:::;kv�kr �
Y

v>v� mid

MWWkvk1;:::;kvkr�1

�

Y
v small-mid

MWWkvk1;kvk2 �
Y

v of any other scale

Skvk

T
�! SSd1;:::;dr

:

Here, we have the same six scales as in (3-23), but with different roles. There is a
distinguished mid-scale vertex, denoted by v�, to which corresponds an SS space. All
other mid-scale vertices carry MWW spaces, in two different versions: if v < v� (with
respect to the ordering of mid-scale vertices determined by the ordering of the incoming
edges at large-scale vertices) that space has r colors, but for v > v� there are only
r �1 colors. The part of the tree lying on top of v � v� vertices consists of small-scale
vertices as in (3-11), and the same is true for v > v� if the color is ¤ m. For that
remaining color, we have a structure of small-large, small-mid and small-small vertices,
parallel to (3-23).

Example 3.5 Take the two-dimensional space SS.1;1/, denoting points in its interior
by .s1I s2/ for brevity. Consider sequences

(3-33) .s
.k/
1
I s
.k/
2
/; k D 1; 2; : : : ; where s

.k/
1
< s

.k/
2

and s
.k/
1
; s
.k/
2
!C1:

The possible limit configurations, shown in Figure 8, correspond to the following
behaviors:

(i) .s
.k/
2
� s

.k/
1
/=s

.k/
1
!C1.

(ii) .s
.k/
2
� s

.k/
1
/=s

.k/
1

converges to a nonzero constant.

(iii) s
.k/
2
� s

.k/
1
!C1, but .s.k/

2
� s

.k/
1
/=s

.k/
1
! 0.
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(iv) s
.k/
2
� s

.k/
1

converges to a nonzero constant.

(v) s
.k/
2
�s

.k/
1
!0, but s

.k/
1
.s
.k/
2
�s

.k/
1
/!C1. Since the two points get increasingly

close to each other, the additional mid-scale screen carries only one marked
point. On the other hand, rescaling by s

.k/
1

separates the two points in the limit.
This leads to the appearance of a small-large screen.

(vi) s
.k/
2
�s

.k/
1
! 0, but s

.k/
1
.s
.k/
2
�s

.k/
1
/ converges to a constant (which can be zero).

In that case, we get a small-mid scale screen with two marked points on it.

The whole space is a 14–gon (Figure 9), with three adjacent sides corresponding to (ii),
(iv) and (vi) above, and corners corresponding to (i), (iii) and (iv).

The structure of SS as a compact topological space is relatively straightforward to
obtain, following the model of [6]. It turns out that it is also a topological manifold
with boundary, and in fact a differentiable manifold with generalized corners. The
last-mentioned property deserves some discussion, since the required construction of
coordinate charts, which borrows ideas from [8], is instructive in its own right.

A boundary point in SSd1;:::;.dm;dmC1/;:::;dr
is given by a tree T and associated screens

carrying point configurations, as in (3-32). The gluing process which associates to this
point a chart in the interior involves (small) gluing parameters �e > 0 for the finite edges
of T , subject to constraints. Our main interest lies in those constraints, but let’s first
recall how to think of such gluing processes. This is made slightly more complicated
in our case by the fact that the screens have different natures: the vertex v� carries a
configuration of real numbers, without dividing by any group action; the mid-scale
and small-mid scale vertices carry configurations which are given up to translation;
and at all other scales we have configurations up to translation and rescaling. To deal
with that, it is convenient to stabilize the configuration associated to the distinguished
mid-scale vertex v� by adding two points s˙ D˙1, thought of as belonging to their
own new color, just as in (3-30). To glue the screens together, we first choose specific
representatives for those configurations, which are defined only up to ambiguities.
Then, given any finite edge e of the tree, we take the screen associated to its source
vertex, rescale the points in that configuration by �e , and then insert that into the target
vertex by adding the real number that corresponds to the point where our configuration
is being glued in. (In abbreviated notation, gluing s with scale � into a screen at point r

results in r C�s.) After we have done that for all edges, we translate and rescale the
resulting configuration to bring the points s˙ back to their original position (and then
forget about those points).
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(i) (ii)

(iii) (iv)

(v) (vi)

small-mid small-mid small-mid small-mid

mid� mid mid mid� mid mid

large large

large

small-mid small-mid small-mid small-mid

mid� mid mid mid� mid

large

large large

small-mid small-mid small-mid

small-large

mid� mid

mid� mid

large

large

Figure 8: Some limits in SS.1;1/, as discussed in Example 3.5. The � marks
the distinguished mid-scale screen.
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(i)

(ii)
(iii)

(iv)
(v)(vi)

Figure 9: The space SS.1;1/ is a 14–gon; see Example 3.5. For space reasons,
we have only drawn half of it. However, the drawing is arranged so that
exchanging the first two colors corresponds to reflection along the vertical
axis, and the missing half can be inferred from that.

It may strike the reader that there are too many gluing parameters with respect to the
codimension of the boundary strata; and indeed, the parameters are not independent,
but subject to constraints. To formulate those, we can think in terms of the scales
that the screens acquire after gluing. For any vertex v, let �v be the product of the
�˙1

e along a path going from v� to v, with the sign C1 if the path follows the edge
orientation, and �1 otherwise. We also need the following terminology:

(3-34) Given a small-mid scale vertex v�, we say that a large scale vertex vC is
a turning point for v� if there is a path from v� to v� which follows the
orientation until it hits vC, and then goes against the orientation to v�.
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For any v� there is a unique turning point vC. With that at hand, the relations are:

If v is a mid-scale vertex, �v D 1 (this is automatic for v D v�).(3-35)

If vC is a turning point for v� (so v� is small-mid scale), �vC�v� D 1.(3-36)

It is easy to see that for a codimension-one stratum, all the �e therefore end up being
the same.

Example 3.6 Consider gluing from the horizontal boundary edge at the top of Figure 9.
Let’s say that the large screen carries the configuration .r1; r2/; the mid-scale screen
on the left carries a configuration .s1I s2/; the remaining screen, corresponding to
v�, is empty, but we add a third color and its points s˙ as explained above. The
constraint (3-35) says that the gluing parameters for both edges must be equal, so we
effectively have a single parameter �. In a first step, gluing with that parameter yields
the configuration

(3-37) .r1C�s1I r1C�s2I r2��; r2C�/:

After that, we apply translation and rescaling which maps r2˙� back to˙1, that being
s 7! ��1.s� r2/; and (forgetting those points) we end up with

(3-38) .��1.r1� r2/C s1I�
�1.r1� r2/C s2/ 2 SS.1;1/ n @SS.1;1/:

This means that the gluing takes place in a way which preserves the size of the mid-scale
screens, even though that has been obscured a bit by writing it as rescaling by � and
then its inverse.

Example 3.7 Consider the situation of the horizontal boundary edge at the bottom of
Figure 9, which is also Figure 8(vi). Let’s say that �1 and �2 are the gluing parameters
for the edges leading to the large-scale vertices, and �3 that for the remaining edge. Then,
(3-36) says that �1�

�1
2
D1, and (3-36) that �vC�v�D�1.�1�

�1
2
��1

3
/D�2

1
��1

2
��1

3
D1.

As mentioned before, the end result is again that all gluing parameters are equal.
Suppose that the large-scale screen carries .r1; r2/, the mid-scale screen carries r , and
the small-mid scale screen carries .s1I s2/. The analogue of (3-37) is

(3-39) .r2C�
2s1I r2C�

2s2I r1��; r1C�/;

and that of (3-38) is obtained by applying s 7! ��1.s� r1/, which gives

(3-40) .��1.r2� r1/C�s1I�
�1.r2� r1/C�s2/:

In the end, the two points end up at position O.��1/, and at distance O.�/ from each
other, which matches the description in Example 3.5(vi).
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1 2
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7

large

Figure 10: A generalized corner point; see Example 3.8.

Allowing some of the parameters to become zero yields a partial gluing process, which
extends the chart obtained by gluing to include boundary points. In order for the
relations (3-35) and (3-36) to make sense in this context, one multiplies them all
by ��1

e , so as to get equations between monomials with nonnegative coefficients. One
can think of this completely as a limit of the previous gluing process.

Example 3.8 Take the example from Figure 10. After preliminary simplifications,
the relations between gluing parameters are �1 D �2, �7 D �2�3, �4 D �5 and, more
importantly,

(3-41) �2�3 D �5�6:

Hence, this point is not a classical corner in its moduli space. After gluing, the position
of the two rightmost points is of order �2�3, and the distance between them is of
order ��1

6
. In the limit as all gluing parameters to go zero, �2�3�

�1
6
D �5 ! 0 by

(3-41), as in the similar but simpler situation of Example 3.5(v).

It is convenient to pass from the multiplicative language of gluing parameters to the
additive language of monoids. We define an abelian group GT as follows. There is one
generator ge for each edge. For a vertex v, we define gv to be the signed sum of ge

over a path from v� to v, with signs according to orientations. The additive relations
corresponding to the ones above are

gv D 0 for a mid-scale vertex v,(3-42)

gvC Cgv� D 0 if vC is a turning point for v�.(3-43)

Geometry & Topology, Volume 27 (2023)



2972 Paul Seidel

Let GT;�0�GT be the submonoid generated by the ge . The gluing parameters, includ-
ing the degenerate cases where some are set to zero, are elements of Hom.G�0

T
;R�0/,

where R�0 is the multiplicative monoid.

Lemma 3.9 GT is a free abelian group , whose rank is the number of vertices of T

which are neither mid-scale nor small-mid scale (in other words , the “other scales” in
(3-32)).

Proof Let ET be the set of finite edges, and RT be the set of relations. Our definition
amounts to a short exact sequence

(3-44) 0! ZRT
relations
����! ZET !GT ! 0:

Any relation has a distinguished finite edge associated to it: for (3-42), the edge
exiting v, and for (3-43), the edge exiting v�. Those edges are pairwise different.
Given an element of ZET , the coefficients for the distinguished edges give a splitting
of the first map in (3-44), which implies freeness of the quotient.

Lemma 3.10 GT;�0 is saturated , meaning that if g 2 GT satisfies mg 2 GT;�0 for
some m� 2, then g 2GT;�0.

Proof For this, it is simpler to work exclusively in terms of the gv, and use (3-42)
to drop the mid-scale vertices. Hence, let VT be the set of all vertices which are not
mid-scale. We start with ZVT, and define GT by quotienting out by (3-43). An element

(3-45)
X
v2VT

mvgv 2 ZVT

is nonnegative if satisfies the following conditions. If v lies above v� in our tree
(meaning that the path from v to the root goes through v�), then mv � 0. If v� lies
above v, then mv � 0. Finally, the mv increase as one goes towards the root. As
before, GT;�0 is the image of the nonnegative elements in the quotient GT . Here is an
equivalent form of the desired statement:

Claim Given some element (3-45), suppose that there are rational numbers cv� 2 Œ0; 1�,
one for each small-mid-scale vertex v�, such that

(3-46)
X
v2VT

mvgvC
X

v�small-mid

cv�.gv� CgvC/

satisfies the nonnegativity condition. Then the same can be achieved with cv� 2 f0; 1g.
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To prove this, we take (3-46) and then gradually modify the cv� . Take a turning
point vC. There can in principle be several corresponding small-mid scale vertices
v�;1; : : : ; v�;j . The coefficient of vC in (3-46) is then

(3-47) mvC C cvC ; where cvC D

jX
iD1

cv�;i :

If this is an integer, we do nothing. Otherwise, we increase (some of) the noninteger cv�;i
until the resulting expression (3-47) becomes equal to the next larger integer. Let’s
apply this to all turning points. The outcome is that now we have an expression
(3-46) which still satisfies the nonnegativity condition, and where the coefficients of all
turning points are integers. In a second pass, we change the coefficients of small-mid
scale vertices again, but without affecting (3-47), to make all of them integers. The
situation is, simplifying the notation, that we have noninteger c1; : : : ; ck 2 Œ0; 1� such
that c1C � � �C ck is an integer; and we then need to change them to be either 0 or 1,
while preserving the sum, something that’s clearly possible. Having done that, we have
justified our claim.

Lemma 3.11 GT;�0 is sharp , meaning it contains no nontrivial pair of elements˙g.

Proof We know that Hom.GT;�0;R
�0/ recovers the space of gluing parameters,

including degenerate ones. In particular, there is a distinguished point where all gluing
parameters are set to zero, which is the zero map. Composing that with a homomorphism
Z!GT;�0 would mean that the zero map Z!R�0 is a group homomorphism, which
is nonsense.

Lemmas 3.9–3.11 say that G�0
T

is a toric monoid (terminology as in [36]). For the
space of gluing parameters, this is precisely what defines a generalized corner.

4 The formal group structure

This section carries out versions of our main constructions in an idealized context, where
the technicalities of symplectic topology have been replaced by a general operadic frame-
work (this degree of abstraction comes with its own occasional complications). The
primary objects under consideration will be chain complexes which are algebras over
the Fulton–MacPherson operad. Abstractly speaking, in view of [53, Theorem 1.1], this
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i C 1 � � � i C j

i C 1 � � � i C j

1 � � � i iCjC1 � � � d

1 � � � i iCjC1 � � � d

Figure 11: The boundary faces of Sd appearing in (4-1), as trees and as strata
of the compactified configuration space.

situation is not more general than the purely algebraic one mentioned in Remark 2.12.
However, that viewpoint lacks the geometric explicitness which is useful for applications
to symplectic topology.

4a Associahedra

Consider the singular chain complexes of the associahedra, C�.Sd /. These inherit
the structure of a nonsymmetric operad, using the maps induced by (3-2) as well as
the shuffle (Eilenberg–Mac Lane or Eilenberg–Zilber) product. One can inductively
construct “fundamental chains” ŒSd � 2 Cd�2.Sd / such that ŒS2�D Œpoint� and

(4-1) @ŒSd �D
X
ij

.�1/.d�i�j/jCiTij ;�.ŒSd�jC1�� ŒSj �/:

Here, the sum is over pairs .i; j / corresponding to trees Tij with two vertices, of
valences j C 1 and d � j C 2, respectively; and where the unique finite edge is the
.iC1/st incoming edge of the first vertex (0� i <d�jC1); see Figure 11. We take the
shuffle product (here just denoted by �) of the fundamental chains ŒSd�jC1� and ŒSj �,
and then map that to C�.Sd / by the chain-level map induced by (3-2), denoted here
by Tij ;�. The sign takes into account the co-orientations of the boundary faces. In view
of (4-1), ŒSd � has a preferred lift to a cycle for the pair .Sd ; @Sd /, whose homology
class is then a fundamental class in the standard sense, compatible with the orientations
described in Section 4a.

Our standing convention is that chain complexes are cohomologically graded, hence
we now switch to the grading-reversed version C��.Sd /. By an algebra over the
chain-level Stasheff operad, we mean a chain complex of free abelian groups A, which
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comes with maps

(4-2) C��.Sd /˝

d‚ …„ ƒ
A˝ � � �˝A!A;

compatible with the composition maps induced by (3-2). Let’s evaluate these maps at
ŒSd �˝ a1˝ � � �˝ ad , multiply with a sign .�1/�, where

(4-3) � D .d � 1/ja1jC .d � 2/ja2jC � � �C jad�1j;

and denote the outcome by �d
A.a1; : : : ; ad /. These maps, together with �1

A D �dA,
make A into an A1–ring. The associativity equations (2-1) are a direct consequence
of (4-1). Homological unitality is not part of this framework, hence has to be imposed
as a separate property.

Remark 4.1 It is maybe appropriate to recall briefly how the signs work out. If we
denote the operation (4-2) by od

A, the starting point is its chain map property, which
together with (4-1) yields

(4-4)
X
ij

.�1/.dC1/jCi.jC1/od
A.Tij ;�.ŒSd�jC1�� ŒSj �/˝ a1˝ � � �˝ ad /

C .terms involving dA/D 0:

The operad property, not forgetting the Koszul signs, transforms this into

(4-5)
X
ij

.�1/.dC1/jCiCjzi o
d�jC1
A

�
ŒSd�jC1�˝a1˝� � �

˝o
j
A.ŒSj �˝aiC1˝� � �˝aiCj /˝� � �˝ad

�
C.terms involving dA/D 0I

or, in terms of the A1–operations,

(4-6) .�1/�
X
ij

.�1/zi�
d�jC1
A .a1; : : : ; �

j
A.aiC1; : : : ; aiCj /; : : : ; ad /

C .terms involving dA/D 0;

with � as in (4-3). The sum in (4-6) is over 2� j � d � 1, but only because we have
omitted the differential terms, which are

(4-7)
X

i

.�1/dCziCioA.ŒSd �˝ a1˝ � � �˝ dAaiC1˝ � � �˝ ad /

� dA.o
d
A.ŒSd �˝ a1˝ � � � ad //

D .�1/�
X

i

.�1/zi�d
A.a1; : : : ; �

1
A.aiC1/; : : : ; ad /

C .�1/��1
A.�

d
A.a1; : : : ; ad //:
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iC1 iCj iC1 pC1 iCj iC1 iCj

ŒSj �
pC1 fp�i;1;iCj�p�1 pC 1 Œ zSj �

fp�jC1;1;q
fi;1;q�i�jCpC1 fp;1;q�jC1

p � i C j i � p < i C j p < i

Figure 12: Graphical representation of the terms in (4-8).

4b Dependence on the fundamental chains

Suppose we are given two sequences of fundamental chains ŒSd � and Œ zSd �, each of
which separately satisfies (4-1). To relate them, we want to make further choices of
fundamental chains, which have a mixed boundary property:

(4-8) fp;1;q 2Cd�2.Sd /; where p; q�0 and dDpC1Cq;

fp;1;0D ŒSpC1�;

f0;1;qD Œ zSqC1�;

@fp;1;qDX
ij

.�1/.d�i�j/jCiTij ;�

8<:
fp�jC1;1;q�ŒSj � if p� iCj ,
fi;1;pCqC1�i�j�fp�i;1;iCj�p�1 if i�p< iCj ,
fp;1;q�jC1�Œ zSj � if p< i .

Graphically, one can think of (4-8) as follows. Let’s mark the .pC1/st leaf of our planar
trees. Vertices that lie on the unique path connecting that leaf to the root correspond to
factors carrying an appropriate f chain, while the remaining ones always carry ŒS � or
Œ zS � chains, depending on whether they lie to the left or right of the path; see Figure 12.

Let �A and z�A be the A1–ring structures associated to ŒSd � and Œ zSd �. In the same
way, the action of fp;1;q gives rise to operations

(4-9) �
p;1;q
A WA˝pCqC1

!AŒ1�p� q�; where pC 1C q � 2;

�
p;1;0
A D �

pC1
A ; �

0;1;q
A D z�

qC1
A ;

which, as before, we extend by setting

�
0;1;0
A D�dA:
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The relations inherited from (4-8) are

(4-10)
X

p�iCj

.�1/zi�
p�jC1;1;q
A

�
a1; : : : ; �

j
A.aiC1; : : : ; aiCj /; : : : ; apI apC1I

apC2; : : : ; apCqC1

�
C

X
i�p<iCj

.�1/zi�
i;1;pCqC1�i�j
A

�
a1; : : : I

�
p�i;1;iCj�p�1
A .aiC1; : : : ; apI apC1I apC2; : : : ; aiCj /I

: : : ; apCqC1

�
C

X
p<i

.�1/zi�
p;1;q�jC1
A

�
a1; : : : ; apI apC1I

apC2; : : : ; z�
j
A.aiC1; : : : ; aiCj /; : : : ; apCqC1

�
D0:

Remark 4.2 The operations (4-9) equip the shifted space AŒ1� with the structure of an
A1–bimodule, where � acts on the left and z� on the right; see eg [64, equation (2.5)];
the shift is there to match sign conventions.

In a second step, we find fundamental chains

(4-11) gp;q 2 Cd�1.Œ0; 1��Sd /; where p; q > 0 and d D pCq,

@gp;q D f1g�fp�1;1;q�f0g�fp;1;q�1

C

X
ij

.�1/.d�i�j/jCi

�Tij ;�

8<:
�gp�jC1;q�ŒSj � if p � iCj ;

.�1/d�jfi;1;q�iCp�j�gp�i;iCj�p if i � p < iCj ;

�gp;q�jC1�Œ zSj � if p < i:

When compared to (4-1) and (4-8), the spaces involved have acquired an additional
Œ0; 1� factor; hence, we should really write idŒ0;1� �Tij ;�. The graphical representation
involves drawing a dividing line between the first p and last q leaves of our trees. In
the first two summands in (4-11), we remove that dividing line and instead mark the
leaves that are on either side of it, leading to the appearance of two f terms. For the
remaining summands, vertices to the left (resp. right) of the dividing line carry ŒS �
(resp. zŒS �) chains; see Figure 13. If the dividing line ends at the top vertex, which is
the middle case in both (4-11) and Figure 13, the finite edge of the tree becomes the
marked edge of the bottom vertex, which explains how that vertex carries an f term.

Let’s take the image of (4-11) under projection to Sd . Its action under the operad
structure, with additional signs inserted as in (4-3), gives operations

(4-12)  
p;q
A WA˝pCq

!AŒ1�p� q�; where p; q > 0;
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ŒSj �

gp�jC1;q

p � i C j

gp�i;i�pCj

fi;1;q�iCp�j

Œ zSj �

gp;q�jC1

i � p < i C j p < i

Figure 13: Graphical representation of the
P

ij in (4-11).

which we complement by setting  1;0
A D�idA and  0;1

A D idA. These satisfy

(4-13)
X

p�iCj

.�1/zi 
p�jC1;q
A

�
a1; : : : ; �

j
A.aiC1; : : : ; aiCj /; : : : ; apI

apC1; : : : ; apCq

�
�

X
i<p<iCj

�
i;1;pCq�iCj
A

�
a1; : : : ; ai I

 
p�i;iCj�p
A .aiC1; : : : ; apI apC1; : : : ; aiCj /I aiCjC1; : : : ; apCq

�
C

X
p�i

.�1/zi 
p;q�jC1
A

�
a1; : : : ; apI

apC1; : : : ; z�
j
A.aiC1; : : : ; aiCj /; : : : ; apCq

�
D 0:

Note that (4-13) contains terms which correspond to the boundary faces f0g �Sd and
f1g �Sd :

(4-14) ��
p�1;1;q
A .a1; : : : ; ap�1I 

1;0
A .ap/I apC1; : : : ; apCq/

��
p;1;q�1
A .a1; : : : ; apI 

0;1
A .apC1/I apC2; : : : ; apCq/

D �
p�1;1;q
A .a1; : : : ; ap�1I apI apC1; : : : ; apCq/

��
p;1;q�1
A .a1; : : : ; apI apC1I apC2; : : : ; apCq/:

Example 4.3 The simplest instance of (4-13), bearing in mind the conventions for
�0;1;0, �1;1;0 and �0;1;1, is

(4-15)  
1;1
A .�1

A.a1/I a2/C .�1/ka1k 
1;1
A .a1I�

1
A.a2//

D �1
A. 

1;1
A .a1I a2//C�

2
A.a1; a2/� z�

2
A.a1; a2/:

This says that .�1/ja1j 1;1.a1; a2/ is a chain homotopy relating the two versions of
multiplication.

Remark 4.4 Following up on our last observation, one can give the following inter-
pretation of (4-13). Recall from Remark 4.2 that the operations � equip A (here, we
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undo the shift for simplicity) with an A1–bimodule structure. By construction, this is
isomorphic to .A; �A/ as a left module over itself, and to .A; z�A/ as a right module.
Correspondingly, one has two bimodule maps

(4-16) .A; �A/˝Z .A; z�A/
�A
//

z�A

// .A; �A/;

given by

(4-17)

�
p�1;1;q�1
A .a1; : : : I ap˝ apC1I : : : ; apCq/

D˙�
p;1;q�1
A .a1; : : : I apC1I : : : ; apCq/;

z�
p�1;1;q�1
A .a1; : : : I ap˝ apC1I : : : ; apCq/

D˙�
p�1;1;q
A .a1; : : : I apI : : : ; apCq/:

In these terms, (4-13) says that  provides a homotopy between � and z�.

It is worth noting that homological unitality, when it holds, can be used to simplify
the picture. Namely, suppose that �A and z�A are both homologically unital, with
a priori different units eA and zeA. Then a bimodule map as in (4-16) is determined up
to homotopy by the image of ŒeA˝zeA� in H 0.A/. In our situation, the two classes are

(4-18) Œ�2
A.eA; zeA/�D ŒzeA� and Œz�2

A.eA; zeA/�D ŒeA�;

so the existence of a homotopy  just amounts to saying that the two units are, after all,
cohomologous. Similarly, the different choices of  form an affine space over H�1.A/.

Let’s define an A1–ring structure on

(4-19) HDA˝ IDAu˚Azu˚Av;

where I is the noncommutative interval (2-3), as follows. The differential �1
H is as

in (2-4). The nonzero higher A1–operations, for d � 2 and p; q > 0, are

(4-20)

�d
H.a1˝u; : : : ; ad ˝u/D �d

A.a1; : : : ; ad /˝u;

�
pCq
H .a1˝u; : : : ; ap˝u; apC1˝ zu; : : : ; apCq˝ zu/

D .�1/zpCq 
p;q
A .a1; : : : ; apI apC1; : : : ; apCq/˝ v;

�d
H.a1˝ zu; : : : ; ad ˝ zu/D z�

d
A.a1; : : : ; ad /˝ zu;

�
pCqC1
H .a1˝u; : : : ; ap˝u; apC1˝ v; apC2˝ zu; : : : ; apCqC1˝ zu/

D .�1/zpCqC1�zpC1�p;1;q.a1; : : : ; apI apC1I apC2; : : : ; apCqC1/˝ v:
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(This generalizes the previous (2-4), which corresponds to the diagonal A1–bimodule
structure and vanishing  .) The A1–associativity relations follow directly from (4-10)
and (4-13).

Remark 4.5 As a check on the signs, consider the associativity relation for

.a1˝u; : : : ; ap˝u; apC1˝ zu; : : : ; apCq˝ zu/;

and more specifically the v–component of that relation. This turns out to be exactly
(4-13) multiplied by .�1/zpCqC1. The crucial terms, compare (4-14), are

(4-21) .�1/zp�1�
pCq
H .a1˝u; : : : ; v–component of �1

H.ap˝u/; apC1˝ zu; : : : /

D .�1/zpC1�
pCq
H .a1˝u; : : : ; ap˝ v; apC1˝ zu; : : : /

D .�1/zpCqC1�
p�1;1;q
A .a1; : : : ; ap�1I apI apC1; : : : ; apCq/˝ v

and

(4-22) .�1/zp�
pCq
H .a1˝u; : : : ; ap˝u; v–component of �1

H.apC1˝ zu/; : : : /

D .�1/zpC1�
pCq
H .a1˝u; : : : ; ap˝u; apC1˝ v; : : : /

D .�1/zpCq�
p;1;q�1
A .a1; : : : ; apI apC1I apC2; : : : ; apCq/˝ v:

By construction, the projections (2-5) are A1–homomorphisms from�H to�A and z�A,
respectively, and also chain homotopy equivalences. By taking a homotopy inverse
(Lemma 2.1) of one projection, and composing with the other projection, we get an
A1–homomorphism

(4-23) .A; �A/! .A; z�A/;

whose linear part is homotopic to the identity (one can achieve that it is exactly
the identity). For a completely satisfactory statement, one would need to prove that
(4-23) is itself independent of the choice of (4-9) and (4-12) up to homotopy of A1–
homomorphisms; and also, that the composition of two maps (4-23) is again a map of
the same type, up to homotopy. This would use higher analogues of I. For the sake of
brevity, we will not carry it out here.

4c Fulton–MacPherson spaces and colored multiplihedra

One defines the structure of an algebra over C��.FMd / on a chain complex C by
maps analogous to (4-2), with the additional stipulation of Symd –invariance. On the
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cohomology level, H�.C/ becomes a Gerstenhaber algebra. The chain-level structure
is a classical topic in algebraic topology (E2–algebras; see eg [51; 14; 53; 68]). For our
purpose, only part of that structure is relevant — that part, maybe surprisingly, does not
include the fundamental chains ŒFMd � 2C2d�3.FMd / and the resulting L1–structure;
in fact, the chains relevant for us have dimension � d .

First of all, having chosen fundamental chains ŒSd � for the Stasheff associahedra, one can
map them to Cd�2.FMd / via (3-5), and their action turns C into an A1–ring. As before,
one has to require homological unitality separately. Next, choose fundamental chains
ŒMWWd1;:::;dr

� 2 Cd�1.MWWd1;:::;dr
/ for the colored multiplihedra, which satisfy

the analogue of (4-1). It is worthwhile writing this down:

(4-24) @ŒMWWd1;:::;dr
�DX

ijk

.�1/.dk�i�jCdkC1C���Cdr /jC.d1C���Cdk�1CiC1/

�Tijk;�.ŒMWWd1;:::;dk�jC1;:::;dr
�� ŒSj �/

C

X
partitions

.�1/}Td1;1;:::;dj ;r ;�.ŒSj ��ŒMWWd1;1;:::;d1;r
��� � ��ŒMWWdj ;1;:::;dj ;r �/:

The second sum is over all j � 2 and partitions

d1 D d1;1C � � �C dj ;1; : : : ; dr D d1;r C � � �C dj ;r

such that di;1C � � �C di;r > 0 for each i D 1; : : : ; j . The sign there is given by

(4-25) }D

X
i1<i2I k1>k2

di1;k1
di2;k2

C .j � 1/.d1;1C � � �C d1;r � 1/

C .j � 2/.d2;1C � � �C d2;r � 1/C � � � :

Example 4.6 Examples of the degenerate configurations corresponding to the terms
in (4-24) are shown in Figure 14. (The trees Tijk and Td1;1;:::;dj ;r can be inferred from
looking at those, so we will not define them explicitly.) Figures 3 and 5 illustrate the
orientation issues: in both of them, the actual moduli space has the standard orientation
of the plane, and the arrows show the orientations of the boundary strata arising from
(3-11).

Choose maps (3-13), take the images of the fundamental chains under those maps, and
let them act on C. The outcomes are operations

(4-26) ˇ
d1;:::;dr

C W C˝d
! CŒ1� d �:
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.k; iC1/ � � � .k; iCj /

.r; 1/ � � � .r; dr /

� � � .k; i/ .k; iCjC1/ � � �

.1; 1/ � � � .1; d1/

d1;r
:::

d1;1

d2;r
:::

d2;1

dj ;r
:::

dj ;1

� � �

1 2 � � � j

Figure 14: Top: a summand in the first sum in (4-24). Bottom: a summand
in the second sum in (4-24).

In their definition, we insert signs as in (4-3); for

ˇ
d1;:::;dr

C .c1;1; : : : ; c1;d1
I : : : I cr;1; : : : ; cr;dr

/

this means .�1/� with

(4-27) � D .d1C � � �C dr � 1/jc1;1jC .d1C � � �C dr � 2/jc1;2jC � � �

C .d1C � � �C dr�1/jc1;d1
jC .d1C � � �C dr�1� 1/jc2;1jC � � � :

For MWW0;:::;0;1;0;:::;0 D point, where there is no corresponding Fulton–MacPherson
space, we artificially set

(4-28) ˇ
0;:::;0;1;0;:::;0
C D idC:

As a consequence of (4-24),

(4-29)
X
ijk

.�1/zk;iˇ
d1;:::;dk�jC1;:::;dr

C

�
c1;1; : : : ; c1;d1

I : : : I

ck;1; : : : ; �
j
C.ck;iC1; : : : ; ck;iCj /; : : : ; ck;dk

I : : : I cr;1; : : : ; cr;dr

�
D

X
partitions

.�1/~�
j
C

�
ˇ

d1;1;:::;d1;r

C .c1;1; : : : ; c1;d1;1
I : : : I cr;1; : : : ; cr;d1;r

/; : : : ;

ˇ
dj ;1;:::;dj ;r
C .c1;d1�dj ;1C1; : : : ; c1;d1

I : : : I cdr�dj ;rC1; : : : ; cr;dr
/
�
:

Here, the sums are over indexing sets as in (4-24), except that we now additionally
allow the differential �1

C D dC. Recall that by construction, the map (3-13) forgets
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factors of MWW0;:::;0;1;0;:::;0 D point. Algebraically, this corresponds to the places
where (4-28) appears in (4-29). The z symbol is the sum of reduced degrees of all c

which precede the �; and ~ yields the Koszul sign that corresponds to permuting
the ck;i from their original order into the order in which they appear on the right-hand
side of (4-29), but using reduced degrees kck;ik.

Remark 4.7 The operations (4-26) constitute an A1–multihomomorphism with
r entries C � � � � � C ! C (the single-object version of an A1–multifunctor; see
[4, Definition 8.8], or closer to our context, the discussion of the r D 2 case in
[9, Section 4.5]). What we will study later on amounts to the action of those A1–
multihomomorphisms on Maurer–Cartan elements. One can argue that the homomor-
phisms themselves should be the center of attention;3 in the interest of keeping the
discussion concrete, we have chosen not to take that route.

Example 4.8 In view of (4-28) and (4-29), ˇ2
C satisfies

(4-30) �1
C.ˇ

2
C.c1; c2//�ˇ

2
C.�

1
C.c1/; c2/� .�1/kc1kˇ2

C.c1; �
1
C.c2//

D ˇ1
C.�

2
C.c1; c2//��

2
C.ˇ

1
C.c1/; ˇ

1
C.c2//D 0;

which means that .�1/jc1jˇ2
C.c1; c2/ is a chain map of degree �1. Geometrically, the

reason is that the image of the fundamental chain under MWW2! FM2 is a one-cycle.
However, this cycle is supported at a single point of FM2 Š S1, hence is necessarily
nullhomologous. This implies that ˇ2

C is chain homotopic to zero.

Example 4.9 The first substantially nontrivial case is ˇ1;1
C , which satisfies

(4-31) �1
Cˇ

1;1
C .c1I c2/�ˇ

1;1
C .�1

C.c1/I c2/� .�1/kc1kˇ
1;1
C .c1I�

1
C.c2//

D��2
C.c1; c2/� .�1/kc1k�kc2k�2

C.c2; c1/:

In more conventional terminology, .�1/jc1jˇ
1;1
C .c1I c2/ is the ı operation which shows

homotopy commutativity of the product on H�.C/.

Definition 4.10 Fix an adic ring N (Definition 1.1). Given 1; : : : ; r 2 C1 y̋ N ,
define

(4-32) …r
C.1; : : : ; r /D

X
d1;:::;dr�0;

d1C���Cdr>0

ˇ
d1;:::;dr

C .

d1‚ …„ ƒ
1; : : : ; 1I : : : I

dr‚ …„ ƒ
r ; : : : ; r /:

3Meaning that Proposition 4.20 should be understood as a consequence of a composition property of the
A1–multihomomorphisms up to homotopy; and similarly that Corollary 4.25 should be true because for
r D 1, one gets an A1–endomorphism of C which is homotopy equivalent to the identity.
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Suppose that we have .1; : : : ; r / as well as, for some k, another element zk .4 Then,
define a linear endomorphism of C y̋ N by a generalization of (2-11),

(4-33) P
r;k
C .�/D

X
d1;:::;dr

X
pCqC1Ddr

ˇ
d1;:::;dk ;:::;dr

C

� d1‚ …„ ƒ
1; : : : ; 1I : : : I

p‚ …„ ƒ
k ; : : : ; k ; �;

zk ; : : : ; zk„ ƒ‚ …
q

I : : : I r ; : : : ; r„ ƒ‚ …
dr

�
:

The definitions, taking (4-28) into account, have the following immediate consequences:

…r
C.1; : : : ; r /D 1C � � �C r mod N 2;(4-34)

…r
C.1; : : : ; k C �; : : : ; r /D…C.x/CP

r;k
C .�/C .order � 2 terms in �/;(4-35)

� 2 C y̋ N m
D) P

r;k
C .�/D � mod N mC1;(4-36)

…r
C.1; : : : ; r /�…

r
C.1; : : : ; zk ; : : : ; r /D P

r;k
C .k � zk/:(4-37)

In (4-35), the endomorphism P
r;k
C is with respect to zk D k . The two subsequent

equations, in contrast, use a general zk .

Lemma 4.11 If 1; : : : ; r are Maurer–Cartan elements (1-1), then so is

 D…r
C.1; : : : ; r /:

Moreover , the equivalence class of  depends only on those of 1; : : : ; r .

Proof From (4-29) one gets

(4-38)
X

d

�d
C .; : : : ;  /D

X
k

P
r;k
C

�X
j

�
j
C.k ; : : : ; k/

�
:

Here, the P operations are defined using zk D k . This shows that the Maurer–Cartan
property is preserved. Similarly, suppose that for some 1 � k � r , we have another
Maurer–Cartan solution zk . Then, for the associated  and z D…r

C.1; : : : ; zk ; : : : ; r /,

(4-39)
X
p;q

�
pCqC1
C .

p‚ …„ ƒ
; : : : ;  ;P

r;k
C .x/;

q‚ …„ ƒ
z ; : : : ; z /

D P
r;k
C

�X
p;q

�
pCqC1
C .

p‚ …„ ƒ
k ; : : : ; k ;x;

q‚ …„ ƒ
zk ; : : : ; zk/

�
:

In particular, if we have an element hk which provides an equivalence between k

and zk , then hD P
r;k
C .hk/ provides an equivalence between  and z , by (4-37).

4The basic case is k D zk , but for some applications, the freedom to choose a general zk is important.

Geometry & Topology, Volume 27 (2023)



Formal groups and quantum cohomology 2985

We want to mention a few elementary statements which, taken together, stand in a
converse relation of sorts to Lemma 4.11.

Lemma 4.12 Suppose that we have 1; : : : ; k�1; kC1; : : : ; r 2 C
1 y̋ N . Then , for

each  2 C1 y̋ N , there is exactly one k such that …r
C.1; : : : ; r /D  .

Proof By (4-35) and (4-36), if � 2 C1 y̋N m, then …r
C.1; : : : ; k C �; : : : ; r / D

…r
C.1; : : : ; r /C � mod N mC1. This allows one to solve for k order by order, and

to show uniqueness of the solution in the same way.

Lemma 4.13 Suppose that we have 1; : : : ; r 2 C
1 y̋ N . If all but k are Maurer–

Cartan elements , and  D …r
C.1; : : : ; r / is Maurer–Cartan as well , then k must

also be Maurer–Cartan.

Proof From (4-38) and the assumptions, one sees that P
r;k
C

�P
j �

j
C.k ; : : : ; k/

�
D 0.

On the other hand, by (4-36), P
r;k
C is clearly invertible.

Lemma 4.14 Given Maurer–Cartan elements 1; : : : ; k�1; kC1; : : : ; r and  , there
is a unique Maurer–Cartan element k such that …r

C.1; : : : ; r /D  .

Proof This is simply a combination of Lemmas 4.12 and 4.13.

Lemma 4.15 Suppose that we have Maurer–Cartan elements 1; : : : ; r and zk for
some 1� k � r . If  D…r

C.1; : : : ; r / and z D…r
C.1 : : : ; k�1; zk ; kC1; : : : ; r /

are equivalent , then so are k and zk .

Proof This is a consequence of (4-39) and the fact that P
r;k
C is an automorphism.

Take the case r D 1 of (4-32). Then (4-29) says that .ˇ1
C D id; ˇ2

C; : : : / form an
A1–homomorphism from C to itself (which is not surprising, since the underlying
spaces MWWd are the multiplihedra). The corresponding operation (4-32) is just the
action of the A1–homomorphism on Maurer–Cartan elements. One can show that
this A1–homomorphism is always homotopic to the identity, and hence …1

C. / is
equivalent to  . (The first piece of the statement about the A1–homomorphism is
Example 4.8, but we won’t explain the rest here; as for the action on Maurer–Cartan
elements, we will give an indirect argument in Corollary 4.25.) Therefore, that case
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is essentially trivial. With that in mind, the first nontrivial instance of (4-32) is r D 2,
which we will denote by

(4-40) 1 � 2 D…
2
C.1; 2/:

It will eventually turn out that the r > 2 cases can be reduced to an .r�1/–fold
application of this product (Corollary 4.24), and hence are in a sense redundant.

4d Well-definedness

Proving that (4-32) is well-defined involves comparing different choices of the underly-
ing A1–structures �C, as well as of the operations ˇC. Since the details are lengthy,
and the outcome overall not surprising, we will provide only a sketch of the argument.

One can generalize the construction of the operations (4-26) by allowing the use of
different versions of the A1–structure (in fact, a different version for each color of input,
and another one for the output). Concretely, suppose that we have .r C 1/ choices of
fundamental chains for the Stasheff associahedra, with their associated A1–structures
�C;0; : : : ; �C;r . By choosing fundamental chains on the colored multiplihedra which
satisfy an appropriately modified version of (4-24), we get generalized operations
(4-26), which then lead to a map

(4-41) …r
C WMC.C; �C;1IN /� � � � �MC.C; �C;r IN /!MC.C; �C;0IN /:

For instance, let’s look at r D 1. Then, what we get from the modified operations
(4-26) is an A1–homomorphism between two choices of A1–structures on C, whose
linear part is the identity. That gives an alternative proof of the uniqueness result from
Section 4b. (In spite of that, it made sense for us to include the original proof; the
reason will become clear shortly.)

In (4-41), we want to understand the effect of simultaneously changing �C;0, one of
the other �C;kC1, with k � 0, and correspondingly also (4-41). Namely, suppose that
we have alternative versions z�C;0 and z�C;kC1. Alongside (4-41), we also have another
operation which uses the alternative A1–structures, as well as different choices of
functions (3-17) and fundamental chains on the MWW spaces. Let’s denote that version
by z…r

C. The construction from Section 4b yields A1–structures �H;0 and �H;kC1,
where HD C˝I. One can then construct a new operation …k;1;l

H , where kC1C l D r ,
which fits into the following diagram, with vertical arrows induced by (2-5):
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(4-42)

MC.C; �C;1IN /� � � � �MC.C; �C;kC1IN /

� � � � �MC.C; �C;r IN /

…r
C
// MC.C; �C;0IN /

MC.C; �C;1IN /� � � � �MC.H; �H;kC1IN /

� � � � �MC.C; �C;r IN /

Š

OO

Š

��

…
k;1;l
H

// MC.H; �H;0IN /

Š

OO

Š

��MC.C; �C;1IN /� � � � �MC.C; z�C;kC1IN /

� � � � �MC.C; �C;r IN /

z…r
C
// MC.C; z�C;0IN /

Rather than giving the general construction of (4-42), we will only look at the r D 1

case. This is not terribly interesting in itself, but contains the main complications of
the general situation, while allowing us to couch the discussion in more familiar terms.
The setup for r D 1 is that we are given the following data:

� Four A1–structures on C, namely �C;k and z�C;k for k D 0; 1.

� Two A1–structures on H, namely �H;k for k D 0; 1, which are constructed
with the aim of interpolating between �C;k and z�C;k . Their definition, following
(4-20), involves operations �C;k and  C;k as in (4-9) and (4-12).

� Finally, we have two versions of (4-26), which are A1–homomorphisms

ˇC W .C; �C;1/! .C; �C;0/;

ž
C W .C; z�C;1/! .C; z�C;0/:

The aim is to define an A1–homomorphism ˇH, again having the identity as its linear
term, which fits into a commutative diagram

(4-43)

.C; �C;1/
ˇC

// .C; z�C;0/

.H; �H;1/

OO

��

ˇH
// .H; �H;0/

OO

��

.C; z�C;1/
ž
C

// .C; z�C;0/
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The corresponding special case of (4-42) is then defined through the action of ˇH on
Maurer–Cartan elements. The definition of ˇH involves two kinds of operations:

(4-44) �
p;1;q
C W C˝pC1Cq

! CŒ�p� q� for pC q � 0;

with �p;1;0
C D ˇ

pC1
C , �0;1;q

C D ž
qC1
C and, in particular, �0;1;0

C D idC, and

(4-45) �
p;q
C W C˝pCq

! CŒ�p� q� 1� for p; q > 0:

These enter into a formula parallel to equation (4-20): the nonzero terms of our A1–
homomorphism are, for p; q > 0,

(4-46)

ˇd
H.c1˝u; : : : ; cd ˝u/D ˇd

C .c1; : : : ; cd /˝u;

ˇ
pCq
H .c1˝u; : : : ; cp˝u; cpC1˝ zu; : : : ; cpCq˝ zu/

D .�1/zpCq�
p;q
C .c1; : : : ; cpI cpC1; : : : ; cpCq/˝ v;

ˇd
H.c1˝ zu; : : : ; cd ˝ zu/D ž

d
C .c1; : : : ; cd /˝ zu;

ˇ
pCqC1
H .c1˝u; : : : ; cp˝u; cpC1˝ v; cpC2˝ zu; : : : ; cpCqC1˝ zu/

D .�1/zpCqC1�zpC1�
p;1;q
C .c1; : : : ; cpI cpC1I cpC2; : : : ; cpCqC1/˝ v:

The fact that (4-46) satisfies the A1–homomorphism relations reduces to certain
properties of (4-44) and (4-45). Those for (4-44) are

(4-47)
X

p�iCj

.�1/zi�
p�jC1;1;q
C

�
c1; : : : ; ci ; �

j
C;1
.ciC1; : : : ; ciCj /; : : : I cpC1I

: : : ; cpCqC1

�
C

X
i�p�iCj

.�1/zi�
i;1;pCq�iCj
C

�
c1; : : : ; ci I

�
p�i;1;iCj�p�1
C;1

.ciC1; : : : I cpC1I : : : ; ciCj /I

ciCjC1; : : : ; cpCqC1

�
C

X
p<i

.�1/zi�
p;1;q�jC1
C .c1; : : : I cpC1I

: : : ; z�
j
C;1
.ciC1; : : : ; ciCj /; : : : ; cpCqC1/

D

X
partitions

�
s;1;t
C;0

�
ˇ

d1

C .c1; : : : ; cd1
/; : : : ; ˇ

ds

C .cd1C���Cds�1C1; : : : ; cd1C���Cds
/I

�
p�d1�����ds ;1;d1C���CdsC1�p�1

C .cd1C���CdsC1; : : : I cpC1I

: : : ; cd1C���CdsC1
/I

: : : ; ž
dsC1Ct

C .cpCqC2�dsCtC1
; : : : ; cpCqC1/

�
:

On the right-hand side, the sum is over all .s; t/ and partitions d1C � � � C dsC1Ct D

pC 1C q such that d1C � � � C ds < pC 1 and d1C � � � C dsC1 � pC 1. In spite of
the apparently larger number of terms which appear, this is formally parallel to the
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A1–homomorphism equation, and in fact the nontrivial operations (4-44) are obtained
from a choice of fundamental chains on MWWpCqC1, as well as functions (3-17). The
trick is that the boundary behavior of these data is partially determined by the choices
underlying ˇC and žC, just as in our previous discussion of (4-8). Introducing the
shorthand notation †d l

k
WD dkCdkC1C� � �Cdl for k < l , the relations for (4-45) are

(4-48) �

X
p�iCj

.�1/zi �
p�jC1;q
C

�
c1; : : : ; ci ; �

j
C;1
.ciC1; : : : ; ciCj /; : : : I

cpC1; : : : ; cpCq

�
C

X
i<p<iCj

�
i;1;pCq�i�j
C

�
c1; : : : ; ci I 

p�i;iCj�p
C;1

.ciC1; : : : I cpC1; : : : ; ciCj /I

ciCjC1; : : : ; cpCq

�
�

X
p�i

.�1/zi �
p;q�jC1
C .c1; : : : ; cpI : : : ; z�

j
C;1
.ciC1; : : : ; ciCj /; : : : ; cpCq/

D

X
partitions

.�1/
z†ds

1�
s;1;t
C;0

�
ˇ

d1

C .c1; : : : ; cd1
/; : : : ; ˇ

ds

C .c†ds�1
1
C1; : : : ; c†ds

1
/I

�
p�†ds

1
;†d

sC1
1
�p

C .c†ds
1
C1; : : : ; cpI cpC1; : : : ; c†d

sC1
1

/I

: : : ; ž
dsC1Ct

C .cpCqC2�dsCtC1
; : : : ; cpCq/

�
C

X
partitions

 
s;t
C;0

�
ˇ

d1

C .c1; : : : ; cd1
/; : : : ; ˇ

ds

C .c†ds�1
1
C1; : : : ; c†ds

1
/I

: : : ; ž
dsCt

C .cpCqC2�dsCtC1
; : : : ; cpCq/

�
:

Combinatorially, the difference between the two terms on the right-hand side of (4-48)
is where the dividing semicolon between the first p and last q inputs comes to lie: in the
first case, we require that †d s

1
WD d1C � � �C ds < p < d1C � � �C dsC1 DW†d sC1

1
, so

that semicolon is inside one of the innermost operations, which becomes a � operation;
in the second case, we require that †d s

1
WD d1 C � � � C ds D p, so that semicolon

separates the two kinds of inputs for the  operation. Topologically one realizes (4-45)
by choosing suitable fundamental chains on Œ0; 1��MWWpCq , and analogues of (3-17)
on that product space. The second sum in (4-48) contains terms which correspond to
the boundary faces f0; 1g �MWWpCq , just as in (4-14):

(4-49) �
p�1;1;q
C .c1; : : : ; cp�1I 

1;0
C;1
.cp/I cpC1; : : : ; cpCqC1/

C �
p;1;q�1
C .c1; : : : ; cpI 

0;1
C;1
.cp/I cpC1; : : : ; cpCqC1/

D��
p�1;1;q
C .c1; : : : ; cp�1I cpI cpC1; : : : ; cpCq/

C �
p;1;q�1
C .c1; : : : ; cpI cpC1I cpC2; : : : ; cpCq/:
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Example 4.16 The first new operation �1;1
C satisfies

(4-50) �1
C.�

1;1
C .c1I c2//C �

1;1
C .�1

C.c1/I c2/C .�1/kc1k�
1;1
C .c1I�

1
C.c2//

D ˇ2
C.c1; c2/� ž

2
C.c1; c2/C 

1;1
C;1
.c1I c2/� 

1;1
C;0
.c1I c2/;

bearing in mind that all versions of the A1–structure on C share the same differential
�d D �1

C D �
0;1;0
C;0

D �
0;1;0
C;1

. This is exactly what’s required for the first nontrivial
A1–functor equation on H: one has

(4-51) �1
H;0.ˇ

2
H.c1˝u; c2˝ zu//C�

2
H;0.ˇ

1
H.c1˝u/; ˇ1

H.c2˝ zu//

D .�1/kc1kCkc2k
�
�1
C.�

1;1
C .c1I c2//C 

1;1
C;0
.c1I c2/

�
˝ v;

while

(4-52) ˇ2
H.�

1
H;1.c1˝u/; c2˝zu/C.�1/kc1kˇ2

H.c1˝u; �1
H;1.c2˝zu//

Cˇ1
H.�

2
H;1.c1˝u; c2˝zu//

D .�1/kc1kCkc2k
�
��

1;1
C .�1

C.c1/I c2/Cˇ
2
C.c1; c2/�.�1/kc1k�

1;1
C .c1I�

1
C.c2//

� ž
2
C.c1; c2/C 

1;1
C;1
.c1I c2/

�
˝v:

To conclude our discussion, let’s return to the general context (arbitrary r ), and note
that then, repeated application of (4-42) allows one to change all the choices involved.
We record the outcome:

Corollary 4.17 Suppose that we have two different choices of fundamental chains on
the associahedra and colored multiplihedra , as well as of functions (3-17), leading to
two versions of the A1–structure and operations (4-32). These fit into a commutative
diagram

(4-53)

MC.C; �CIN /r

Š

��

…r
C
// MC.C; �CIN /

Š

��

MC.C; z�CIN /r
z…r

C
// MC.C; z�CIN /

Here , we have related our A1–structures using functors as in (4-23), and the vertical
arrows are the induced maps on Maurer–Cartan elements.

4e The pth power operation

When defining (4-26), suppose now that we choose our functions (3-15) so that they
satisfy (3-19). For the fundamental chains, we may also assume that they are chosen
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to be compatible with the identifications (3-18). In algebraic terms, the outcome is a
cancellation property, which allows one to forget colors that do not carry any marked
points:

(4-54) ˇ
d1;:::;dk�1;0;dkC1;:::;dr

C D ˇ
d1;:::;dk�1;dkC1;:::;dr

C :

Assuming that such a choice has been adopted, we have:

Lemma 4.18 Take a prime number p, and the coefficient ring N D qFp ŒŒq��=q
pC1.

Then , for  D qcCO.q2/, one has

(4-55) …
p
C .; : : : ;  /D ˇ

1;:::;1
C .cI : : : I c/qp:

Proof This is elementary, along the same lines as in Lemma 2.10. Applying (4-54)
allows one to rewrite (4-32) as

(4-56) …r
C.; : : : ;  /D

X
1�k�r

� r

k

� X
d1;:::;dk>0

ˇ
d1;:::;dk

C .

d1‚ …„ ƒ
; : : : ;  I : : : I

dk‚ …„ ƒ
; : : : ;  /;

where the combinatorial factor reflects the possibilities of inserting 0 superscripts into
each ˇ operation. Suppose that our coefficient ring is N D qFp ŒŒq��, and set r D p.
Then (4-56) becomes

(4-57) …
p
C .; : : : ;  /D

X
d1;:::;dp>0

ˇ
d1;:::;dk

C .

d1‚ …„ ƒ
; : : : ;  I : : : I

dp‚ …„ ƒ
; : : : ;  /:

Truncating mod qpC1 leaves

ˇ
1;:::;1
C . I : : : I  /D ˇ

1;:::;1
C .cI : : : I c/qp

as the only nonzero term.

4f Deligne–Mumford spaces and commutativity

Let’s consider the question of commutativity of the product (4-40). Concretely, this
hypothetical commutativity would mean that there is an h 2 C0 y̋ N such that

(4-58)
X
p;q

�
pCqC1
C .

p‚ …„ ƒ
1 � 2; : : : ; 1 � 2; h;

q‚ …„ ƒ
2 � 1; : : : ; 2 � 1/D 1 � 2� 2 � 1:

Let’s suppose, to simplify the exposition, that the coefficient ring is N D qZŒŒq��.
Moreover, we choose to define the operations (4-26) as in Section 4e, so that (4-54)
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holds. That entails some convenient (but not essential, of course) cancellations in our
formulae. Given two Maurer–Cartan elements

(4-59) k D qck CO.q2/ for k D 1; 2;

with leading terms ck which are cocycles in C1, we have by definition,

(4-60) 1 � 2� 2 � 1 D q2
�
ˇ

1;1
C .c1I c2/�ˇ

1;1
C .c2I c1/

�
CO.q3/:

In writing down this formula, we have exploited the fact that, due to our choices,
ˇ

2;0
C .ck ; ck/D ˇ

0;2
C .ck ; ck/. It follows from Example 4.9 that

(4-61) .c1; c2/ 2 C 7! .�1/kc1kˇ
1;1
C .c1I c2/� .�1/kc1k jc2jˇ

1;1
C .c2I c1/

is a chain map of degree �1. On cohomology, it defines the Lie bracket

Œ � ; � � WH�.C/˝H�.C/!H��1.C/;

which is part of the Gerstenhaber algebra structure. Geometrically, ˇ1;1 arises from
a one-dimensional chain in FM2 whose boundary points are exchanged by the Z=2–
action. The sum of this chain and its image under the nontrivial element of Z=2 is a
cycle, which generates H1.FM2/ŠH1.S

1/DZ. If we similarly write hDqbCO.q2/,
then (4-58) taken modulo q3 says that b is a cocycle, and that

(4-62) �2
C.c1Cc2; b/C�

2
C.b; c1Cc2/C.coboundaries/Dˇ1;1

C .c1I c2/�ˇ
1;1
C .c2I c1/:

By (4-31), the left-hand side of (4-62) is nullhomologous. Hence, for (4-62) to be
satisfied, the Lie bracket of Œc1� and Œc2� must be zero, which means that commutativity
does not hold in this level of generality.

We now switch from Fulton–MacPherson to Deligne–Mumford spaces. One could
define the structure of an algebra over C��.DMd / on a chain complex C in the same
way as before. However, that notion is not well-behaved. For instance, the action
of DM2 D point would yield a strictly commutative product on C. The underlying
problem is that the Symd –action on DMd is not free — from an algebraic viewpoint,
C��.DMd / is not a projective ZŒSymd �–module. There is a simple workaround, by
“freeing up” the action. Namely, let .Ed / be an E1–operad, which means that the
spaces Ed are contractible and freely acted on by Symd . Let’s adopt a concrete choice,
namely, the analogue of Fulton–MacPherson space for point configurations in R1.
Then

(4-63) DMd D DMd �Ed
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is again an operad, which is homotopy equivalent to DMd but carries a free action
of Symd . The maps (3-8) admit lifts

(4-64) FMd !DMd

which are compatible with the operad structure, including the action of Symd . As an
existence statement, this is a consequence of the properties of Ed ; but for our specific
choice, such lifts can be defined explicitly by taking (3-8) together with the natural
inclusion FMd !Ed .

Assume from now on that C carries the structure of an operad over C��.DMd /, and
hence inherits one over the Fulton–MacPherson operad by (4-64). Take the one-cycle
in FM2 underlying (4-60) and map it to (the contractible space) DM2. Choosing a
bounding cochain (which is itself unique up to coboundaries) yields a nullhomotopy

(4-65) �
1;1
C W C

˝2
! CŒ�2�;

�1
C.�

1;1
C .c1I c2//C �

1;1
C .�1

C.c1/I c2/C .�1/kc1k�
1;1
C .c1I�

1
C.c2//

D ˇ
1;1
C .c1I c2/� .�1/kc1kkc2kˇ

1;1
C .c2I c1/:

As a consequence, if we set

(4-66) hD q2�
1;1
C .c1I c2/ 2 C

0 y̋ q2ZŒŒq��;

then (4-58) is satisfied modulo q3 (on the left-hand side, only the p D q D 0 term
matters at this point). Hence, if we reduce coefficients to qZŒŒq��=q3, then (4-40) is
commutative. Nothing we have said so far is in any way surprising: the vanishing of
the Lie bracket in the case where the operations come from Deligne–Mumford space is
a well-known fact — if one uses the framed little disc operad as an intermediate object,
it follows from vanishing of the BV operator.

Let’s push our investigation a little further. As special cases of (4-29), we have

(4-67) �1
C.ˇ

2;1
C .c1; c2I c3//�ˇ

2;1
C .�1

C.c1/; c2I c3/

� .�1/kc1kˇ
2;1
C .c1; �

1
C.c2/I c3/� .�1/kc1kCkc2kˇ

2;1
C .c1; c2I�

1
C.c3//

D ˇ
1;1
C .�2

C.c1; c2/I c3/� .�1/kc2kkc3k�2
C.ˇ

1;1
C .c1I c3/; c2/

��2
C.c1; ˇ

1;1
C .c2I c3//��

2
C.ˇ

2
C.c1; c2/; c3/

� .�1/kc3k.kc1kCkc2k/�2
C.c3; ˇ

2
C.c1; c2//��

3
C.c1; c2; c3/

� .�1/kc2kkc3k�3
C.c1; c3; c2/� .�1/.kc1kCkc2k/kc3k�3

C.c3; c1; c2/;
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and respectively,

(4-68) �1
C.ˇ

1;2
C .c3I c1; c2//�ˇ

1;2
C .�1

C.c3/I c1; c2/

� .�1/kc3kˇ
1;2
C .c3I�

1
C.c1/; c2/� .�1/kc3kCkc1kˇ

1;2
C .c3I c1; �

1
C.c2//

D .�1/kc3kˇ
1;1
C .c3I�

2
C.c1; c2//��

2
C.ˇ

1;1
C .c3I c1/; c2/

� .�1/kc1kkc3k�2
C.c1; ˇ

1;1
C .c3I c2//��

2
C.c3; ˇ

2
C.c1; c2//

� .�1/kc3k.kc1kCkc2k/�2
C.ˇ

2
C.c1; c2/; c3/��

3
C.c3; c1; c2/

� .�1/kc3kkc1k�3
C.c1; c3; c2/� .�1/kc3k.kc1kCkc2k/�3

C.c1; c2; c3/:

Therefore, if we consider the map K
2;1
C W C

˝3! CŒ�2� given by

(4-69) K
2;1
C .c1; c2I c3/

Dˇ
2;1
C .c1; c2I c3/�.�1/kc3k.kc1kCkc2k/ˇ

1;2
C .c3I c1; c2/��

1;1
C .�2

C.c1; c2/I c3/

� .�1/kc2kkc3k�2
C.�

1;1
C .c1I c3/; c2/� .�1/kc1k�2

C.c1; �
1;1
C .c2I c3//;

then that satisfies

(4-70) �1
C.K

2;1
C .c1; c2I c3//�K

2;1
C .�1

C.c1/; c2I c3/

� .�1/kc1kK
2;1
C .c1; �

1
C.c2/I c3/� .�1/kc1kCkc2kK

2;1
C .c1; c2I�

1
C.c3//D 0;

which means that .�1/jc2jK
2;1
C .c1; c2I c3/ is a chain map of degree �2. The same

observation applies to

(4-71) K
1;2
C .c1I c2; c3/

D ˇ
1;2
C .c1I c2; c3/� .�1/kc1k.kc2kCkc3kˇ

2;1
C .c2; c3I c1/

� .�1/kc1k�
1;1
C .c1I�

2
C.c2; c3//��

2
C.�

1;1
C .c1I c2/; c3/

� .�1/kc1kkc2k�2
C.c2; �

1;1
C .c1I c3//:

We now return to the original situation (4-59). Suppose that the cocycles K
2;1
C .c1; c1I c2/

and K
1;2
C .c1I c2; c2/ are trivial in H�.C/, and that we have chosen bounding cochains

for them,

(4-72) K
2;1
C .c1; c1I c2/D �

1
C.b

2;1/ and K
1;2
C .c1I c2; c2/D �

1
C.b

1;2/:

Then (4-58) is satisfied modulo q4 by the refinement of (4-66) given by

(4-73) hD �
1;1
C .1I 2/C q3.b2;1

C b1;2/ 2 C0 y̋ qZŒŒq��=q4:
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It remains to look at the geometry underlying (4-69) and (4-71). Both cases are parallel,
so let’s focus on K

2;1
C . For ˇ2;1

C .c1; c2I c3/, take the relevant map and project it to actual
Deligne–Mumford space for simplicity, which means considering the composition

(4-74) MWW2;1! FM3!DM3! DM3 Š S2:

Looking at Figure 5, we see that three boundary sides of the octagon MWW2;1,
corresponding to the �3 terms in (4-69), are mapped to paths in DM3 which are images
of the canonical map S3 ! DM3 and two of its permuted versions (those which
preserve the ordering between the first and second point in the configuration). The
remaining sides are collapsed to “special points”, meaning the images of the maps
DM2 � DM2 ! DM3. Altogether, we get a relative cycle, whose homology class
in H2.DM3; .DM3/R/ D H2.S

2;S1/ is independent of all choices involved in the
construction. From the assumption (3-16), one sees easily that this cycle corresponds to
one of the two discs in S2 bounding S1. Correspondingly, for ˇ1;2

C .c3I c1; c2/, we get
a relative cycle corresponding to the other disc. The outcome of this discussion is that
K

2;1
C is constructed from a cycle which represents a generator of H2.DM3/DH2.S

2/;
roughly speaking, the difference between the two discs bounding the same S1. Since
the action of Sym3 on H2.DM3/ is trivial, the induced map

(4-75) .Œc1�; Œc2�; Œc3�/ 7! Œ.�1/jc2jK
2;1
C .c1; c2I c3/� WH

�.C/˝3
!H��2.C/

is graded symmetric. In particular, ŒK2;1
C .c1; c1I c2/� 2H 1.C/ must be 2–torsion. If

we can rule out such torsion, then the class must necessarily vanish, and similarly for
ŒK

1;2
C .c1I c2; c2/�. We can carry over the argument to other coefficients:

Proposition 4.19 The product � on MC.CIN / is commutative if N 3 D 0. It is also
commutative if N 4 D 0 and , additionally, H�.C/ is a free abelian group.

Proof The first part is as in (4-66). For the second part, the obstruction is now
ŒK

2;1
C .c1; c1I c2/� 2 H��2.CIN 3/, and similarly for K

1;2
C . From our assumption, it

follows that H�.CIG/DH�.C/˝G for any abelian group G. Hence, the symmetry
argument that ensures vanishing of (4-75) carries over to arbitrary coefficients.

4g Strip-shrinking spaces and associativity

Let’s assume that C is homologically unital; this assumption is used in the context of
geometric stabilization arguments, which add extra marked points. Our aim is to show:
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Proposition 4.20 For any r � 2 and any 1�m� r � 1, …r
C.1; : : : ; r / is equivalent

to …r�1
C .1; : : : ; m � mC1; : : : ; r /D…

r�1
C .; : : : ;…2

C.m; mC1/; : : : ; r /.

Before getting into the proof, let’s draw some immediate consequences.

Corollary 4.21 The product � is associative.

This is because, by the r D 3 case of Proposition 4.20, …3
C.1; 2; 3/ is equivalent to

both …2
C.1 � 2; 3/D .1 � 2/ � 3 and …2

C.1; 2 � 3/D 1 � .2 � 3/.

Corollary 4.22 The neutral element is  D 0, meaning that  � 0 and 0 �  are both
equivalent to  .

The definition says that

(4-76)  � 0D
X

d

ˇ
d;0
C .; : : : ;  /;

so the statement is not immediately obvious. However, it is obvious that 0 � 0 D 0.
By Lemmas 4.14 and 4.15,  7!  � 0 is a bijective map from MC.CIN / to itself. By
associativity, that bijective map is idempotent, and therefore the identity. (There is a
more direct geometric argument which shows that (4-76) is equivalent to  , along the
lines of Example 4.8, but we have chosen to avoid it.)

Corollary 4.23 .MC.CIN /; � / is a group.

This is a combination of the previous two corollaries and Lemma 4.14.

Corollary 4.24 For any r � 3, …r
C.1; : : : ; r / is equivalent to 1 � � � � � r .

This follows by induction: if …r�1
C .1; : : : ; r�1/ is equivalent to 1 � � � � � r�1, then

…r
C.1; : : : ; r / is equivalent to …r�1

C .1 � 2; : : : ; r /, hence to .1 � 2/ � � � � � r .

Corollary 4.25 …1
C. / is always equivalent to  .

Proposition 4.20, with r D 2, says that…2
C.1; 2/D 1�2 is equivalent to…1

C.1�2/,
which implies the desired statement by specializing to 1D0 (again, this is a workaround
which avoids a direct geometric argument).
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Proof of Proposition 4.20 This uses the strip-shrinking moduli spaces from Section 3f,
with their maps (3-31). The codimension-one boundary faces are images of maps (3-22)
defined on the following spaces. First, in parallel with the first term of (4-24), we have

(4-77) SSd1;:::;dk�jC1;:::;dr
�Sj ;

where j and k can be arbitrary (in particular, the latter can be m or mC 1, something
that’s not entirely reflected in our notation). The analogue of the second term in (4-24)
is less obvious:

(4-78) Sj �

k�1Y
iD1

r colors‚ …„ ƒ
MWWdi;1;:::;di;r

�SSdk;1;:::;.dk;m;dk;mC1/;:::;dk;r

�

jY
iDkC1

�
MWWdi;1;:::;di;m�1;ai ;di;mC2;:::;di;r„ ƒ‚ …

r �1 colors

�

aiY
lD1

MWWdi;l;1;di;l;2„ ƒ‚ …
2 colors

�
:

The last kind of MWW factor corresponds to the small-mid vertices in the terminology
of (3-22). Such boundary faces are parametrized by “double partitions”. One first
chooses j � 2 and partitions

d1 D d1;1C � � �C dj ;1; : : : ; dr D d1;r C � � �C dj ;r :

In addition, there is a distinguished k 2 f1; : : : ; j g for which .dk;1; : : : ; dk;r / can be
.0; : : : ; 0/. Finally, for each i >k, one chooses a further ai and corresponding partitions
di;m D di;1;1C � � �C di;ai ;1 and di;mC1 D di;1;2C � � �C di;ai ;2.

We fix fundamental chains on the SS spaces, compatible with the boundary structure in
the usual sense. We then insert those chains into our operadic structure through (3-31),
with the additional convention that at the stabilizing marked points (3-30), we will
always apply a fixed homology unit eC. Denote the resulting operations by

(4-79) ˛
d1;:::;.dm;dmC1/;:::;dr

C W C˝d
! CŒ�d �; where d D d1C � � �C dr � 0:

The simplest example is SS0;:::;0 D point, which is mapped to FM2 D S1 by taking
the configuration (3-30). This coincides with the map S2! FM2 which is part of our
A1–structure, and therefore

(4-80) ˛
0;:::;.0;0/;:::;0
C D �2

C.eC; eC/D eCC (coboundary):

Generally, the operations (4-79) satisfy the equation obtained from setting the sum of
boundary contributions (4-77), (4-78) equal to zero:
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(4-81)
X
ijk

˙˛
d1;:::;dk�jC1;:::;dr

C

�
c1;1; : : : ; c1;d1

I : : : I

ck;1; : : : ; �
j
C.ck;iC1; : : : ; ck;iCj /; : : : ; ck;dk

I : : : I

cr;1; : : : ; cr;dr

�
D

X
double

partitions

˙�
j
C

�
ˇ

d1;1;:::;d1;r

C .c1;1; : : : ; c1;d1;1
I : : : I cr;1; : : : ; cr;d1;r

/; : : : ;

˛
dk;1;:::;dk;r

C .c1;d1;1C���Cdk�1;1C1; : : : ; c1;d1;1C���Cdk;1
I : : : /; : : : ;

ˇ
dj ;1;:::;dj ;m�1;aj ;dj ;mC2;:::;dj ;r
C

�
c1;d1�dj ;1C1; : : : ; c1;d1

I

ˇ
dj ;1;1;dj ;1;2
C .cm;dm�dj ;mC1; : : : I cmC1;dmC1�dj ;mC1C1; : : : /;

: : : ; ˇ
dj ;aj ;1;dj ;aj ;2

C .: : : ; cm;dm
I : : : ; cmC1;dmC1

/I

cmC2;dmC2�dmC2;jC1; : : : ; cmC2;dmC2
I : : :

��
;

with double partitions as in (4-78), the only difference being that we have an additional
�1
C.ˇ

d1;:::;dr

C / term. Given Maurer–Cartan elements 1; : : : ; r , set

(4-82) g D
X

d1;:::;dr�0

˛
d1;:::;.dm;dmC1/;:::;dr

C .

d1‚ …„ ƒ
1; : : : ; 1I : : : I

dr‚ …„ ƒ
r ; : : : ; r /

2 C0 y̋ .Z1˚N /:

As a direct consequence of (4-81), this satisfies

(4-83)
X
p;q

�
pCqC1
C

� p‚ …„ ƒ
…r

C.1; : : : ; r /; : : : ;…
r
C.1; : : : ; r /;g;

…r�1
C .1; : : : ; m�mC1; : : : ; r /; : : : ;…

r�1
C .1; : : : ; m�mC1; : : : ; r /„ ƒ‚ …

q

�
D 0:

In view of (4-80) and Lemma 2.6, this is exactly what we need to prove the equivalence
of the two Maurer–Cartan elements in question.

5 Cohomology operations

Following Steenrod and (in a more abstract context) May, reduced power operations
arise from homotopy symmetries. This general principle can be applied to configuration
spaces, as in Cohen’s classical work, and also to Deligne–Mumford spaces. After a
brief review of the underlying homological algebra, we discuss those two instances,
and their relationship.
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5a Equivariant (co)homology

Let C be a complex of vector spaces over a field F . Given an action of a group G on C,
one can consider the group cochain complex C �

G
.C/ and its cohomology H�

G
.C/. (This

is a mild generalization of the classical concept of equivariant cohomology, where the
coefficients lie in a G–module; see eg [10] for a general account, and [46, page 115] or
[73, page 179] for the traditional choice of group cochain complex.) If C �.X / is the
cochain complex of a space X carrying a G–action, and V is a representation of G

over F , then setting CD C �.X /˝V recovers

(5-1) H�G.C
�.X /˝V /DH�G.X IV /DH�.X �G EGIV /;

the equivariant cohomology in the classical sense (with coefficients in the local system
over the Borel construction X �G EG determined by V ). A variant of the construction
yields the group chain complex C G

� .C/ and group homology H G
� .C/. Recall that in

our convention, all chain complexes are cohomologically graded. If we start with
the chain complex C�.X / of a space, and a representation V , as before, then setting
CD C��.X /˝V gives

(5-2) H G
� .C��.X /˝V /DH G

��.X IV /DH��.X �G EGIV /:

Group homology and cohomology carry exterior cup and cap products

H�G.C1/˝H�G.C2/!H�G.C1˝C2/;(5-3)

H G
� .C1/˝H�G.C2/!H G

� .C1˝C2/I(5-4)

see eg [10, Section V.3]. The cases relevant for our purpose are where G is a permutation
group Symp of prime order, or its cyclic subgroup Z=p, and F D Fp. For the cyclic
group, there are particularly simple complexes computing equivariant (co)homology.
The cohomology version is

(5-5)

8̂̂<̂
:̂

C �Z=p.C/D CŒŒt ��˚ �CŒŒt ��; with jt j D 2; j� j D 1;

dZ=p.t
kc/D tk dcC � tk.T c � c/;

dZ=p.� tkc/D�� tk dcC tkC1.cCT cC � � �CT p�1c/;

where T W C! C is the generator of the Z=p–action. In the case of trivial coefficients
CD Fp, the differential vanishes. The ring structure (5-3), for C1 D Fp and general
C2 D C, satisfies Œt � � Œtkc�D ŒtkC1c� and Œt � � Œtk�c�D ŒtkC1�c�. However, for p D 2

and C1 D C2 D Fp, one has Œ� � � Œ� � D Œt �, while for p > 2 that expression would be
zero. Indeed, in the case p D 2 it is more convenient to write � D t1=2; for a more
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precise discussion of the choices of generators used here in relation to topology, we
refer to Section 10a. The group homology version is

(5-6)

8̂̂<̂
:̂

C
Z=p
� .C/D CŒs�˚ �CŒs�; with jsj D �2; j� j D �1;

dZ=p.skc/D sk dc � �sk�1.cCT cC � � �CT p�1c/;

dZ=p.�skc/D��sk dc � sk.T c � c/;

and under (5-4), t acts on equivariant homology by canceling one power of s in (5-6)
(by convention, s�1 is set to zero). Because the index of Z=p � Symp is coprime to p,
for every complex C with Symp–action,

H�Symp
.C/!H�Z=p.C/ is injective,(5-7)

H
Z=p
� .C/!H

Symp

� .C/ is surjective.(5-8)

Let Fp.l/ with l 2 Z be the one-dimensional representations which are

� trivial if l is even, and

� associated to sign W Symp! f˙1g � F�p if l is odd.

Note that the restriction of the sign homomorphism to Z=p is trivial. The relevant
special case of (5-7) can be made explicit:

H�Symp
.Fp/D Fp Œt

p�1�˚ � tp�2Fp Œt
p�1��H�Z=p.Fp/;(5-9)

H�Symp
.Fp.1//D t .p�1/=2Fp Œt

p�1�˚ � t .p�3/=2Fp Œt
p�1��H�Z=p.Fp/:(5-10)

See eg [50, Lemma 1.4]. Let C be a general complex of Fp–vector spaces, and consider
Symp acting on its tensor power C˝p by permuting the factors with Koszul signs. In
this situation, there is a canonical equivariant diagonal map

(5-11) H l.C/!H
pl
Symp

.C˝p
˝Fp.l//

which lifts the standard diagonal H l.C/!H pl.C˝p/; see eg [50, Lemma 1.1(iv)] for
its well-definedness. The equivariant diagonal is compatible with multiplication by
elements of Fp , but not additive. It is sometimes convenient to simplify the discussion
of (5-11) by restricting to the cyclic subgroup:

(5-12)

H
pl
Symp

.C˝p˝Fp.l//
� _

��

H k.C/

(5-11)
77

// H
pl

Z=p.C
˝p/
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By explicit computation in (5-5), one sees that the equivariant diagonal for Z=p

becomes additive after multiplying with t . It follows that (5-11) becomes additive after
multiplying with tp�1, since that lies in the subgroup (5-9).

5b Cohen operations

Let C be a complex of Fp–vector spaces, which has the structure of an algebra over
the Fp–coefficient version of the Fulton–MacPherson operad. Recall that the action of
Symp on FMp is free. The associated Cohen operation is a map

(5-13) Cohp WH
l.C/! .H�.FMp=SympIFp.l//˝H�.C//pl ;

defined as follows:

(5-14)

H l.C/

��

(5-11)
// H

pl
Symp

.C˝p˝Fp.l//

operad structure
��

H
pl
Symp

.Hom.C��.FMp/;C/˝Fp.l//

H
pl
Symp

.Hom.C��.FMp/˝Fp.l/;C//

Künneth

Hompl.H
Symp

�� .FMpIFp.l//;H
�.C//

freeness of the action�
H�.C/
˝

H�.FMp=SympIFp.l//

�pl

Hompl.H��.FMp=SympIFp.l//;H
�.C//

On the middle lines, the Symp–action is trivial on the C–factor. Because their definition
involves (5-11), these operations are not expected to be additive. Note that we could also
have defined our operations using Z=p, but of course, they would still lie in the subspace
H�.FMp=SympIFp.l// � H�.FMp=.Z=p/IFp/. For computational purposes, let’s
spell out what happens when one decodes (5-14).

Lemma 5.1 Suppose we have an cycle c 2 C of degree l . Then c˝p 2 C˝p is a cycle
which is Symp–invariant up to an Fp.l/–twist , and which therefore represents a class in
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H�Symp
.C˝p˝Fp.l//. Similarly, suppose that we have a chain B 2 C�.FMpIFp/ with

the property that @B goes to zero in C�.FMp/˝Symp
Fp.l/. Such a chain represents

a class ŒB� 2H�.FMp=SympIFp.l//. As a consequence of the properties of B and c,
the image of B˝ c˝p under the operad action is a cycle in C. That cycle represents the
image of Œc� under (5-13), paired with ŒB�.

The structure of Cohen operations was determined in [14, Theorems 5.2 and 5.3]. The
group relevant for operations on the even-degree cohomology of C is

(5-15) H�.FMp=SympIFp/Š

�
Fp if � D 0; 1;

0 otherwise.

For � D 0, that just recovers the p–fold power for the product that is part of the
Gerstenhaber algebra structure on H�.C/. If we suppose that p > 2, the operation
obtained from the � D 1 group can again be described as part of the Gerstenhaber
structure, as x 7! Œx;x�xp�2. The twisted counterpart is more interesting:

(5-16) H�.FMp=SympIFp.1//Š

�
Fp if � D p� 1; p� 2;

0 otherwise.

Moreover, still as part of [14, Theorem 5.3], the pullback map

(5-17) H�Symp
.Fp.1//DH�.BSympIFp.1//!H�.FMp=SympIFp.1//

is onto. Therefore, the groups (5-16) can be thought of as generated by t .p�1/=2 and
� t .p�3/=2, the lowest-degree generators in (5-10). Note that for p > 2, t .p�1/=2 is the
image of � t .p�3/=2 under the Bockstein ˇ.

5c Quantum Steenrod operations

The same idea works for any operad, and in particular, Deligne–Mumford spaces.
Concretely, this means that we consider the action of Symp on DMp which keeps
the marked point z0 fixed, and permutes .z1; : : : ; zp/. Given an algebra C over the
Fp–coefficient Deligne–Mumford operad, one gets operations analogous to (5-13),

(5-18) H l.C/!
�
H�.C/˝H�Symp

.DMpIFp.l//
�pl
:

In principle, the same caveat as in Section 4f applies, which means that we should
replace DMp by a homotopy equivalent space (4-63). However, that makes no difference
for the present discussion, since only the equivariant cohomology of the space will be
involved.
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Unfortunately, the equivariant mod p cohomology of Deligne–Mumford space is not
known (to this author, at least), but there are simplified versions of this construction
which are easier to understand. Because p is assumed to be prime, the Symp–action
on DMp has a unique orbit Op with isotropy subgroups isomorphic to Z=p (all other
isotropy subgroups have orders not divisible by p). For concreteness, we just look at
one specific point ˘ 2Op, whose isotropy subgroup is the standard cyclic subgroup
Z=p � Symp:

(5-19) ˘ D .C D xC DC[f1g; z0 D1; zk D e2�
p
�1k=p for k D 1; : : : ;p/:

Lemma 5.2 Restriction to ˘ 2Op yields isomorphisms

(5-20) H�Symp
.OpIFp.l//

Š

22

// H�Z=p.OpIFp/ // H�Z=p.˘IFp/DH�Z=p.Fp/:

Proof This is elementary: the underlying map of Borel constructions, obtained by
composing

(5-21) ESymp �Z=p ˘ ,!ESymp �Z=p Op�ESymp �Symp
Op;

is a homeomorphism. Moreover, the local system on ESymp �Symp
Op associated to

Fp.1/ is canonically trivial.

Quantum Steenrod operations are obtained by replacing DMp in (5-18) by its sub-
space Op. In view of Lemma 5.2, we can equivalently define them using the Z=p–
equivariant cohomology of a point. Written in that way, they have the form

(5-22) Q Stp WH l.C/! .H�.C/˝H�Z=p.Fp//
pl :

Following our discussion of (5-11), we know that (5-22) becomes additive after multi-
plication with tp�1. Since that multiplication acts injectively on H�Z=p.Fp/, one sees
that (5-22) is already additive.

As an intermediate object between the two spaces considered so far, take DMıp be
the moduli space of smooth genus-zero curves with pC 1 marked points, or equiva-
lently (3-7), which is an open subset of DMp containing Op . Similarly, let FMıp be the
configuration space (3-1), which is the interior of FMp and hence homotopy equivalent
to the whole space. The forgetful map FMp ! DMp restricts to a circle bundle
FMıp! DMıp.
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Lemma 5.3 Restriction to Op �DMıp, together with Lemma 5.2, yields isomorphisms

H�Symp
.DMıpIFp/ŠH�Z=p.pointIFp/;(5-23)

H�Symp
.DMıpIFp.1//Š

�
0 for �< p� 2;

H�Z=p.pointIFp/ for � � p� 2:
(5-24)

Moreover , the pullback map is an isomorphism

(5-25) H�Symp
.DMıpIFp.1//!H�Sym.FMıpIFp.1// for � D p� 2; p� 1:

Proof Consider the Gysin sequence and its restriction to (5-19):

(5-26)

� � � !H��2
Symp

.DMıpIFp.l// //

��

H�Symp
.DMıpIFp.l// //

��

H�Symp
.FMıpIFp.l//! � � �

��

� � � !H��2
Z=p .˘IFp/

�t
// H�Z=p.˘IFp/ // H�Z=p.S

1IFp/! � � �

Over ˘, the fiber of the circle bundle FMıp ! DMıp can be identified with the repre-
sentation of Z=p with weight �1. In other words, the S1 in (5-26) carries the action
of Z=p by clockwise rotation. The �t appearing in the sequence is the associated
equivariant Euler class. For l D 0, inspection of (5-15) shows that the rightmost # in
(5-26) is always an isomorphism. One can therefore prove (5-23) by upwards induction
on degree.

For l D 1, we use a variant of the same argument. The Gysin sequence and (5-16)
imply that

(5-27) H�Symp
.DMıpIFp.1//Š

�
0 for �< p� 2;

H�Symp
.FMıpIFp.1// for � D p� 2:

Let’s look at the first nontrivial degree, and the maps

(5-28) H
p�2
Symp

.pointIFp.1//
pullback
�����!H

p�2
Symp

.DMıpIFp.1//
restriction
������!H

p�2
Fp

.˘IFp/:

From (5-27) and (5-17), it follows that the first map is an isomorphism. The composition
of the two maps is just (5-7), hence an isomorphism. It follows that the second map
must be an isomorphism as well, which is part of (5-24). On the other hand, since the
Symp–action has isotropy groups of order coprime to p outside Op,

(5-29) H�Symp
.DMıp;OpIFp.1//ŠH�.DMıp=Symp;Op=SympIFp.1//;

and the right-hand side vanishes in high degrees. From that and Lemma 5.2, one sees
that the restriction map H�Symp

.DMıpIFp.1//! H�Z=p.pointIFp/ is an isomorphism
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in high degrees. By downward induction on degree, using (5-16) and (5-26), one
obtains the degree � p � 1 part of (5-24). From (5-24), it also follows that the map
H

p�2
Symp

.DMıpIFp.1//!H
p
Symp

.DMıpIFp.1// in the top row of (5-26) is an isomorphism,
which then implies (5-25) in degree p� 1; the degree p� 2 part of the same statement
has been derived before, in (5-27).

As an immediate consequence, suppose that C is an algebra over the chain-level
Deligne–Mumford operad. Consider its induced structure as an algebra over the Fulton–
MacPherson operad. By definition, the associated operations (5-13) and (5-22) fit into
a commutative diagram

(5-30)

�
H�.C/˝H�.FMıp=SympIFp.l//

�pl

H l.C/

Cohen

55

//

quantum Steenrod
))

�
H�.C/˝H�Symp

.DMıpIFp.l//
�pl

OO

���
H�.C/˝H�Z=p.Fp/

�pl

If l is odd, then Lemma 5.3 shows that both vertical arrows are isomorphisms on the
degree p� 2 or p� 1 cohomology groups of the moduli spaces. Those cohomology
groups are one-dimensional, and their generators can be identified with � t .p�3/=2 and
t .p�1/=2, respectively. To put it more succinctly:

Lemma 5.4 The Cohen and quantum Steenrod operations

(5-31) H l.C/!H pl�k.C/ for l odd and k D p� 2 or k D p� 1

coincide.

6 Prime power maps

This section brings together the lines of thought from Sections 4 (formal group structure)
and 5 (cohomology operations). Our first task is to make part of the discussion
in Section 5b more concrete, by introducing an explicit cocycle which generates
H p�1.FMp=SympIFp.1//. By looking at the relation between that cocycle and the
map MWW1;:::;1 ! FMp, we obtain an abstract analogue of Theorem 1.9 in the
operadic context.
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6a A cocycle in unordered Fulton–MacPherson space

Take (3-5), modify it by rotation by i so as to put the resulting configurations on the
imaginary axis in C, and then compose that with projection to FMp=Symp (recall that
the Symp–action is free, so the quotient is again a smooth manifold with corners, or
topologically a manifold with boundary). The outcome is a submanifold (a copy of the
associahedron Sp)

(6-1) Zp � FMp=Symp;

with @Zp�@FMp=Symp . By definition, (6-1) has a preferred lift to FMp , and therefore,
the local system Fp.1/jZp has a canonical trivialization. Using that and the orientations
of Sp and FMp, we get a class

(6-2) ŒZp �2Hp�2.FMp=Symp; @FMp=SympIFp.1//ŠH p�1.FMp=SympIFp.1//:

In terms of the previous computations (5-10) and (5-16), this can be expressed as
follows:

Lemma 6.1 For p D 2, (6-2) is the image of � D t1=2 under (5-17); for p > 2, it is
the image of

(6-3) .�1/.p�1/=2
�

p�1

2
!
�
t .p�1/=2

2H p�1.BSympIFp.1//:

Proof Let’s consider the more interesting case p > 2 first. Take the map

(6-4) Confp.C/!Rp=RDRp�1

which projects ordered configurations to their real part, and then quotients out by
the diagonal R subspace. This map is Symp–equivariant, and the fiber at 0 is the
subspace zZp DR�Confp.R/� Confp.C/ of configurations with common real part,
.z1 D sC

p
�1 t1; : : : ; zp D sC

p
�1 tp/. Let’s orient that by using the coordinates

.s; t1; : : : ; tp/ in this order. This differs from its orientation as a fiber of (6-4) by a
Koszul sign .�1/p.p�1/=2 D .�1/.p�1/=2. On the other hand, the fiber at 0 represents
the pullback via (6-4) of the equivariant Euler class of the Z=p–representation Rp=R.
From this and (10-5), we get

(6-5) Œ zZp �D .�1/.p�1/=2
�

p�1

2
!
�
t .p�1/=2

2H
p�1

Z=p .Confp.C/IFp/:

The corresponding relation must hold in H
p�1
Symp

.Confp.C/IFp.1// as well, since both
classes involved live in that group, and the map from there to Z=p–equivariant co-
homology is injective. Note that zZp is the preimage of Zp under the quotient map
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Confp.C/! FMp . Moreover, inspection of (3-6) shows that the orientations of FMp ,
Zp and zZp we have used are compatible with that relation. Since the quotient map
is equivariant and a homotopy equivalence, (6-5) implies the corresponding property
for ŒZp �.

One could follow the same strategy for p D 2, but we can be even more explicit. The
generator of H1.FM2=Sym2IZ=2/Š Z=2 consists of a loop of configurations where
two points rotate around each other, and its image in H1.BSym2IZ=2/ Š Z=2 is
obviously nontrivial. On the other hand, that loop intersects Zp transversally at exactly
one point, which proves the desired statement.

6b A cycle in unordered Fulton–MacPherson space

Consider the space MWW1;:::;1 with d colors, denoted here by MWWd for the sake
of brevity. As a special case of (3-11), its codimension-one boundary faces are of the
form

(6-6) MWWd1
� � � � �MWWdr

�Sr

TI1;:::;Ir
����!MWWd I

there is one such face for each decomposition of f1; : : : ; dg into r � 2 nonempty
subsets .I1; : : : ; Ir / with dk DjIk j. In describing the boundary faces, we have used the
identifications (3-18). Suppose that we choose maps (3-13) so as to be compatible with
(3-18), as in Section 4e. Consider two decompositions .I1; : : : ; Id / and .zI1; : : : ; zId /,
which correspond to the same ordered partition dk D jIk j D j

zIk j. Then, the associated
maps (6-6) and (3-13) fit into a commutative diagram

(6-7)

MWWd

��

MWWd1
� � � � �MWWdr

�Sr

TzI1;:::;
zIr
//

TI1;:::;Ir
oo MWWd

��

FMd FMd

�I1;:::;Ir

Š
oo

�zI1;:::;
zIr

Š
// FMd

Here, �I1;:::;Ir
2 Symd is the unique permutation which maps f1; : : : ; d1g order-

preservingly to I1, fd1 C 1; : : : ; d1 C d2g order-preservingly to I2, and so on; and
correspondingly for �zI1;:::;zIr

. Suppose that we choose fundamental chains to be also
compatible with (3-18). Then, (4-24) simplifies to

(6-8) @ŒMWWd �D
X

.I1;:::;Ir /

˙TI1;:::;Ir ;�.ŒMWWd1
�� � � � � ŒMWWdr

�� ŒSr �/:

Thinking of the homology of FMp=Symp as in Lemma 5.1, we get:
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Lemma 6.2 Suppose that d D p is prime. Then , the image of ŒMWWp � under
(3-13) is a chain , denoted here by Bp 2 C�.FMpIFp/, with the property that @Bp

goes to zero in C�.FMpIFp/˝Symp
Fp.1/. Therefore , it represents a class ŒBp � in

Hp�1.FMp=SympIFp.1//.

Proof Consider two codimension-one boundary faces as in (6-7). The resulting
chains in FMd differ by applying the permutation �zI1;:::;zIr

��1
I1;:::;Ir

. Hence, when
mapped to C�.FMd /˝Symp

Fp.1/, they differ by the sign of that permutation. On the
other hand, their entries in (6-8) differ by the same sign. When computing @Bp in
C�.FMp/˝Symp

Fp.1/, the two kinds of signs cancel, which means that the contributions
are the same. Now, the cyclic group Z=p�Symp acts freely on ordered decompositions
corresponding to the same ordered partition, and this provides the required cancellation
mod p for the terms of @Bp.

Lemma 6.3 The canonical pairing between the cohomology class of (6-2) and the
homology class from Lemma 6.2 is ŒZp � � ŒBp �D .�1/p.p�1/=2.

Proof We think of this Poincaré-dually as an intersection number. The relevant
cycles intersect at exactly one point of FMp , which is a configuration .z1I : : : I zp/ with
re.z1/D � � � D re.zd /D 0 and im.z1/ < � � �< im.zd /. The tangent space of Zd � FMd

at that point can be thought of as keeping .z1; z2/ fixed, and moving .z3; : : : ; zd /

infinitesimally in the imaginary direction. The tangent space to the image of MWWp

at the same point consists of keeping z1 fixed, but moving .z2; : : : ; zd / infinitesimally
in the real direction. Note that positive horizontal motion of z2 yields a clockwise
motion of the angular component of z2� z1. This observation, when combined with
standard Koszul signs, yields the desired local intersection number.

To see the implications of Lemmas 6.1 and 6.3, note that, by the dual of (5-16)
and (5-17),

(6-9) Hp�1.FMp=SympIFp.1//ŠHp�1.BSympIFp.1//Š Fp:

In those terms, what we have shown is:

Lemma 6.4 For pD 2, the homology class of the cycle from Lemma 6.2 is the unique
nontrivial element in (6-9). For p > 2, it is�

p�1

2
!
��1

times the standard generator (dual to t .p�1/=2).
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Take Œc� 2H odd.C/ and our Bp , and consider the image of Bp˝ c˝p under the operad
action. This defines a map H odd.C/! H odd.C/, which by Lemma 5.1 is a certain
component of the Cohen operation applied to Œc�. Lemma 6.4 tells us exactly what it is:

(6-10)

(
the t1=2 (or � ) component of (5-14) if p D 2;�

p�1

2
!
��1

times the t .p�1/=2–component of (5-14) if p > 2:

If c has degree 1, the same process computes ˇ1;:::;1
C .cI : : : I c/, by definition of (4-26).

Lemma 4.18 shows that this is the leading order term of …p
C .; : : : ;  / for a Maurer–

Cartan element  D qcCO.q2/, and Corollary 4.24 identifies that with the p–fold
product of  under our formal group law. The consequence, under the assumption of
homological unitality inherited from the proof of Proposition 4.20, is:

Theorem 6.5 Take the group law � on MC.CI qFp Œq�=q
pC1/. The pth power map for

that group fits into a commutative diagram like (1-13), with the operation (6-10) at the
bottom.

To conclude our discussion, note that if the operad structure is induced from one over
Deligne–Mumford spaces, as in (4-64), then the relevant operation (6-10) can also be
written as a quantum Steenrod operation, by Lemma 5.4.

7 Constructions using pseudoholomorphic curves

We will now translate the previous arguments into more specifically symplectic terms.
The choice of singular chains on parameter spaces, and its application to a general
operadic structure, is replaced by a choice of perturbations which make the moduli
spaces regular, followed by counting-of-solutions to extract the algebraic operations. For
technical convenience, we use Hamiltonian Floer theory (with a small time-independent
Hamiltonian) as a model for cochains on our symplectic manifold. Correspondingly,
all the operations are defined using inhomogeneous Cauchy–Riemann equations on
punctured surfaces. This makes no difference with respect to Theorem 1.9, since the
Floer-theoretic version of quantum Steenrod operations agrees with that defined using
ordinary pseudoholomorphic curves (for p D 2, see [75]; the same strategy works for
general p).

7a Floer-theoretic setup

Let .X; !X / be a closed symplectic manifold, which is monotone (1-3). We fix a
C 2–small Morse function H 2 C1.X;R/, with its Hamiltonian vector field ZH . We
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also fix a compatible almost complex structure J , and the associated metric gJ . We
require:

Properties 7.1 (i) All spaces of Morse flow lines for .H;gJ / are regular.

(ii) All one-periodic orbits of ZH are constant, hence critical points of H . Moreover,
the linearized flow at each such point x is nondegenerate for all times t 2 .0; 1�,
which implies that the Conley–Zehnder index is equal to the Morse index �.x/.

(iii) No J–holomorphic sphere v with c1.v/D 1 passes through a critical point of H

or intersects an isolated Morse flow line. Here, c1.v/ is the usual shorthand for
c1.X / integrated over Œv� 2H2.X /.

Consider the autonomous Floer equation, where as usual S1 DR=Z:

(7-1)

8<:
u WR�S1!X;

@suCJ.@tu�ZH /D 0;

lims!˙1 u.s; t/D x˙;

where the limits x˙ are critical points of H . This equation has an .R�S1/–symmetry
by translation in both directions. For S1–invariant solutions, meaning t–independent
maps uD u.s/, it reduces to the negative gradient flow equation du=dsCrgJ

H D 0.
Denote by Du the linearized operator at a solution of (7-1). Its Fredholm index can be
computed as

(7-2) index.Du/D �.x�/��.xC/C 2c1.u/;

where in the last term, we have extended u to .R�S1/[f˙1g D S2, the two-point
compactification. As a consequence of transversality results in [33; 20] (see in particular
[33, Theorem 7.3] and [20, Theorem 7.4]), we may further require:

Properties 7.2 (i) All solutions of Floer’s equation with index.Du/� 1 are inde-
pendent of t . Concretely, there are none with negative index; the only ones with
index zero are constant; and those with index.Du/D 1 are isolated Morse flow
lines for .H;gJ /.

(ii) For the last-mentioned u, all solutions of Du� D 0 are independent of t , hence
lie in the kernel of the corresponding linearized operator from Morse theory.
In view of Properties 7.1(i) and (ii), this implies that such Floer solutions are
regular.
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Define C to be the standard Morse complex for .H;gJ /, meaning that

(7-3) CD
M

x

Zx Œ��.x/�;

where Zx is the orientation line (the rank-one free abelian group whose two generators
correspond to orientations of the descending manifold of x), with a differential dC that
counts isolated gradient flow lines. When considered as a Z=2–graded space, this is
equal to the Floer complex of .H;J /, thanks to the properties above. Our conventions
are cohomological, meaning that with notation as in (7-1), dC takes “xC to x�”.

7b Operations

Take xCDCP1 with marked points z0D1 and z1; : : : ; zd 2C. Consider the resulting
punctured surface,

(7-4) C D xC n fz0; : : : ; zdg DC n fz1; : : : ; zdg:

An inhomogeneous term �C is a .0; 1/–form on C with values on vector fields on X :

(7-5) �C 2�
0;1.C;C1.X;TX //D C1.C �X;HomC.T C ;TX //;

where the .0; 1/ part is taken with respect to J . We require that our inhomogeneous
terms should have a special structure near the marked points:

(7-6) �C D

(�
ZH ˝ re.d log.z� zk/=2�

p
�1/

�0;1 near zk for k > 0,�
ZH ˝ re.d log.z� �C /=2�

p
�1/

�0;1 near z0 D1,

where �C 2 C is an auxiliary datum that we consider as part of �C . In cylindrical
coordinates

(7-7) zD

�
zkCexp.�2�.sC

p
�1t// near zk for k > 0, where .s; t/ 2R�0�S1;

�CCexp.�2�.sC
p
�1t// near z0 D1, where .s; t/ 2R�0�S1;

what (7-6) says is �C D .ZH ˝dt/0;1. Consider the inhomogeneous Cauchy–Riemann
equation

(7-8)

8<:
u W C !X;
x@uD �C .u/;

limz!zk
u.z/D xk ;

where the limits xk are again critical points of H . When written in coordinates
(7-7) near the marked points, (7-8) reduces to (7-1), explaining why this convergence
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rescaled version of C2

C�

Figure 15: Gluing punctured planes equipped with inhomogeneous terms,
as in (7-12). The shaded regions are where the inhomogeneous term on the
glued surface is prescribed.

condition makes sense. The linearization of (7-8) has

(7-9) index.Du/D �.x0/�

dX
jD1

�.xj /C 2c1.u/:

We will not explain the compactness and transversality theory for moduli spaces of
solutions of (7-8), both being standard (the first due to monotonicity, the second
because we have complete freedom in choosing �C on a compact part of C ). For a
single surface C and a generic choice of �C , counting solutions of (7-8) will give rise
to a chain map C˝d ! C which preserves the Z=2–degree (and which represents the
d–fold pair-of-pants product).

We need to review briefly the gluing process for surfaces, to see how it fits in with
inhomogeneous terms. Suppose that we have two surfaces Ck DC n fzk;1; : : : ; zk;dk

g

for k D 1; 2, which also come with inhomogeneous terms �Ck
, and in particular

�Ck
2 C. Fix some 0 � i < d1. The gluing process produces a family of surfaces

C� DC n fz�;1; : : : ; z�;dg, where d D d1C d2� 1, depending on a sufficiently small
parameter � > 0. Namely, take the affine transformation

(7-10) ��.z/D �.z� �C2
/C z1;iC1I

then

(7-11) z�;k D

8<:
z1;k for k � i;

��.z2;k�i/ for i < k � i C d2;

z1;k�d2C1 for k > i C d2:
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We want to equip the glued surfaces with inhomogeneous terms �C� which are smoothly
dependent on � and have the following property. Fix some sufficiently small r > 0 and
large R> 0. First,

(7-12)

8<:
�C� D �C1

where jzj �R and jz� z1;k j � r for 0< k ¤ i C 1;

�C� D ��;��C2
where �R� jz� z1;iC1j � r ;

��
�
�C� D �C2

where jz� z2;k j � r for any k > 0:

The upshot is that �C� is completely prescribed in certain (partly �–dependent) neigh-
borhoods of the marked points on C�, as well as on an annular “gluing region”; see
Figure 15. On each such region, �C� is given by a similar expression as in (7-6). In
particular, the middle line of (7-12) really says that

(7-13) �C� D

�
ZH ˝ re

�
d

log.z�z1;iC1/

2�
p
�1

��0;1

where �R� jz�z1;iC1j � r

() ����C� D

�
ZH ˝ re

�
d

log.z��C2
/

2�
p
�1

��0;1

where R� jz��C2
j � ��1r:

Additionally, there are asymptotic conditions as �! 0:

(7-14) � On jz� z1;iC1j � r , the family �C� can be smoothly extended to �D 0, by
setting that extension equal to �C1

.

� On jzj �R, the family ��
�
�C� can be smoothly extended to �D 0, by setting

that extension equal to �C2
.

Given that, it makes sense for a sequence of solutions of (7-8) on C�k
, with �k ! 0,

to converge to a “broken solution” which consists of corresponding solutions on C1

and C2; and conversely, the gluing process for broken solutions applies — as used,
for instance, in proving associativity of the pair-of-pants product. Again, we omit the
details, which are standard. Thanks to our use of an autonomous Hamiltonian, there
is also a version where C2 is rotated before being glued in, meaning that we use a
small � 2C� (inserting absolute values wherever the size of � appears in the formulae
above).

A process such as (7-11), in which the �–dependence of the marked points follows a
specific pattern, is simple to describe, but far more rigid than the analytic arguments
require. Here is a more appropriate formulation, where the first part describes the
ingredient for compactness arguments, and the second part addresses gluing of solutions.

Definition 7.3 Take C1 and C2 as before. Choose arbitrary families of surfaces with
inhomogeneous terms C1;r and C2;r , depending on r 2 Rm for some m, and which

Geometry & Topology, Volume 27 (2023)



3014 Paul Seidel

reduce to the given ones for r D 0. Apply the previously described notion of gluing in
a parametrized way, which means that we have a family C�;r .

(i) Suppose that Ck is a sequence of surfaces with inhomogeneous terms �Ck
, which

for k� 0 are isomorphic to C�k ;rk
for �k > 0 and .�k ; rk/! .0; 0/. We then

say that the Ck degenerate to .C1;C2/.

(ii) Suppose that C� is a smooth family of surfaces with inhomogeneous terms �C� ,
depending on a parameter � > 0. Suppose that for small � , these are isomorphic
to C�.�/;r.�/, where .�.�/; r.�// satisfies .�.0/; r.0// D .0; 0/ and �0.0/ > 0.
We then say that the family C� is obtained by smoothing .C1;C2/.

To clarify the notation, it might be useful to look slightly ahead to our first application.
When defining an A1–structure, one deals with C1 and C2 which depend, respectively,
on moduli in Sd1

n @Sd1
and Sd2

n @Sd2
. In these terms, r is a local coordinate on

the product of those spaces, while � is the transverse coordinate to Sd1
�Sd2

� @Sd ,
where d D d1Cd2� 1. As this example shows, our discussion has been limited to the
simplest process of gluing two surfaces together; a complete description would include
the generalization to arbitrarily many surfaces.

To round off the discussion of inhomogeneous terms, let’s mention an obvious gen-
eralization, which is to equip (7-4) with a family of compatible almost complex
structures .Jz/z2C which reduce to the given J outside a compact subset. When
defining the associated notion of inhomogeneous term, one uses those structures to
define the .0; 1/ part, and similarly for (7-8). It is straightforward to extend the gluing
process to this situation. Usually, this generalization is not required, since the freedom
to choose �C is already enough to achieve transversality of moduli spaces. However,
there are situations such as the construction of continuation maps, where varying almost
complex structures necessarily occur (because one is trying to relate different choices
of J ).

7c The quantum A1–structure

This is the most familiar application. Given .s1; : : : ; sd / as in (3-1), we think of
them as complex points zk D sk , and then equip the resulting surface (7-4) with an
inhomogeneous term �C , which should vary smoothly in dependence on the points,
and be invariant under the symmetries in (3-1); one can think of this as a fiberwise
inhomogeneous term on the universal family of surfaces over Sd n @Sd . Along the
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boundary of the moduli space, we want the family to extend along the lines indicated
in Definition 7.3(ii). Of course, on a boundary stratum of codimension k, one has
k components that are being glued together, and the definition should be adapted
accordingly. The outcome is a parametrized moduli space, which consist of points
of Sd n @Sd together with a solution of (7-8) on the associated surface. For generic
choices, these parametrized moduli spaces are regular. Moreover, they are oriented
relative to the orientation spaces at limit points, meaning that a choice of isomorphism
Zxk
ŠZ for kD 0; : : : ; d , determines an orientation of the parametrized moduli spaces.

A signed count of points in the zero-dimensional moduli spaces, with auxiliary signs as
in (4-3), yields operations �d

C for d � 2, which one combines with the Floer differential
�1
C D�dC to form the (Z=2–graded) quantum A1–structure.

One can adapt the arguments from Section 4b to show that the quantum A1–structure is,
in a suitable homotopical sense, independent of all choices, including the Floer differ-
ential. Suppose that we have .H;J / and . zH ; zJ /, leading to chain complexes .C; dC/

and .zC; dzC/. For each of the two, we make the choices of inhomogeneous terms required
to build the A1–structures, denoted by �C and �zC. To relate them, we start by picking
a third version of the chain complex, denoted by .{C; d{C/, based on some . {H ; {J /. Next,
we introduce maps

(7-15) �
p;1;q

{C
W C˝p

˝ {C˝ zC˝q
! {CŒ1�p� q�;

with �0;1;0

{C
D�d{C, which turn {CŒ1� into an A1–bimodule, with �C acting on the left

and �zC on the right. This is analogous to (4-9), except that the conditions on �p;1;0 and
�0;1;q which we imposed there are no longer satisfied. The geometric construction of
(7-15) involves another family of inhomogeneous terms over Sd n@Sd , d D pC1Cq.
Those terms are modeled on H near .z1; : : : ; zp/, on zH near .zpC2; : : : ; zd /, and on
{H near the remaining points .z0; zpC1/. Similarly, our surfaces carry varying families

of complex structures. The behavior under degeneration to @Sd follows the pattern
from Figure 12, with some components of the limit carrying the inhomogeneous terms
that define the two A1–ring structures, and others, the A1–bimodule structure; we
have represented this in a more geometric way in Figure 16.

At this point, we add continuation maps to the mix. These arise from the configuration
.z0D1; z1D 0/, meaning the surface C DC�. In our application, the behavior at z0

is always given by . {H ; {J /, and that at z1 by either .H;J / or . zH ; zJ /. The outcome is
two chain maps

(7-16) C
 

1;0

{C
// {C zC:

 
0;1

{C
oo
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�2
C

�2
zC

�2
C

�
0;1;2

{C

�3
zC

�
2;1;2

{C

Figure 16: The A1–bimodule operations (7-15). We show the behavior of
the inhomogeneous terms on a sample (codimension 5) boundary stratum, for
.p; q/D .4; 7/.

Our sign conventions are nonstandard: on cohomology,  0;1 induces the canonical
isomorphism between Floer cohomology groups, whereas  1;0 has the opposite sign.
Extending (7-16), we want to build operations

(7-17)  
p;q

{C
W C˝p

˝ zC˝q
! {CŒ1�p� q� for d D pC q > 0;

which unlike their counterparts in (4-12) are defined even if p or q are zero, and
(that being taken into account) satisfy the same kind of relation (4-13). Geometri-
cally, the parameter space underlying (7-17) is no longer Œ0; 1��Sd as in Section 4b,
but instead SdC1, where we think of having inserted an additional point s|, with
sp < s| < spC1, into (3-1). The orientation is that associated to ordered configurations
.s1; : : : ; sp; s|; : : : ; spCq/ multiplied by .�1/p. When forming the associated surface
(7-4), we do not equip it with a puncture corresponding to s|: the position of that
point just serves as an additional modular variable. The inhomogeneous terms and
almost complex structures are determined by .H;J / near z1; : : : ; zp; by . zH ; zJ / near
zpC1; : : : ; zpCq; and by {H near zz0. In the limit as we approach a point of @SdC1, the
screen containing s| corresponds to a component surface which carries data underlying
(7-17), while the other components have data underlying the A1–ring structures or the
A1–bimodule structure.

Example 7.4 Consider the cases where pC q D 2. The algebraic relations are

(7-18)

 
1;0

{C
.�2

C.c1; c2//��
1;1;0

{C
.c1I 

1;0

{C
.c2//

��
0;1;1

{C
. 

1;0

{C
.c1/I zc2/��

1;1;0

{C
.c1I 

0;1

{C
.zc2//

 
0;1

{C
.�2
zC
.zc1; zc2//��

0;1;1

{C
. 

0;1

{C
.zc1/I zc2/

9>>>>=>>>>;D.terms involving differentials/:
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�2
zC

 1;1

 0;2

�1;1;0

 1;0

�0;1;2

 1;1

�0;1;1

 0;1

�1;1;1

Figure 17: The construction of the maps (7-17), in the case from Example 7.5.
The cross marks the additional point (not a puncture of the associated surface).

On the cohomology level, consequence is that if the classes Œck � and Œzck � correspond
to each other under canonical isomorphisms, meaning that Œ 1;0

{C
.ck/�D�Œ 

0;1

{C
.zck/�,

then their products inherit the same property:

(7-19) Œ 
1;0

{C
.�2

C.c1; c2//�D Œ�
1;1;0

{C
.c1I 

1;0

{C
.c2//�D�Œ�

1;1;0

{C
.c1I 

0;1

{C
.zc2//�

D Œ�
0;1;1

{C
. 

1;0

{C
.c1/I zc2/�D�Œ�

0;1;1

{C
. 

0;1

{C
.zc1/I zc2/�

D�Œ 
0;1

{C
.�2
zC
.zc1; zc2//�:

Example 7.5 For .p; q/D .1; 2/, the algebraic relation is

(7-20) ��
0;1;2

{C
. 

1;0

{C
.c1/I zc2; zc3/��

0;1;1

{C
. 

1;1

{C
.c1I zc2/I zc3/��

1;1;1

{C
.c1I 

0;1

{C
.zc2/I zc3/

��
1;1;0

{C
.c1I 

0;2

{C
.zc2; zc3//C .�1/kc1k 

1;1

{C
.c1I�

2
zC
.zc2; zc3//

D .terms involving differentials/:
Figure 17 shows the relevant degenerations, corresponding to the boundary faces of S4.

Using (7-15) and (7-17), we define an A1–structure on

(7-21) HD .C˝Zu/˚ .zC˝Zzu/˚ .{C˝Zv/;

where the symbols u, zu and v have degrees as in (2-3). The definition is a modified
version of (4-20). The differential is

(7-22)

�1
H.c˝u/D �1

C.c/˝uC .�1/kck 
1;0

{C
.c/˝ v;

�1
H.zc˝ zu/D �

1
zC
.zc/˝ zuC .�1/kzck 

0;1

{C
.zc/˝ v;

�1
H.{c˝ v/D �

0;1;0

{C
.{c/˝ v;
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and we similarly change the higher A1–operations in the case when the input consists
of only terms from either C or zC:

(7-23)
�d
H.c1˝u; : : : ; cd˝u/D �d

C .c1; : : : ; cd /˝uC.�1/zd 
d;0

{C
.c1; : : : ; cd /˝v;

�d
H.zc1˝zu; : : : ; zcd˝zu/D �

d
zC
.zc1; : : : ; zcd /˝zuC.�1/zd 

0;d

{C
.zc1; : : : ; zcd /˝v:

As before, the projection maps from (7-21) to C or zC are compatible with A1–ring struc-
tures, and are chain homotopy equivalences. This implies the desired well-definedness
statement for the A1–structure, as in (4-23).

7d An alternative strategy for proving independence

The approach to well-definedness of the quantum A1–structure adopted above involves
additional families of Riemann surfaces, leading to the larger A1–ring H, which serves
as an intermediate object. Alternatively, as we will now explain, one can enlarge the
target symplectic manifold.

Let’s start by looking at a toy model, namely the symplectic manifold S2.

(7-24) Choose .HS2 ;JS2/ as in Section 7a, satisfying the following additional tech-
nical condition. At a local maximum or minimum of HS2 , the Hessian is
JS2–invariant. This means that there are local JS2–holomorphic coordinates
centered at that point, in which HS2.y/D .constant/˙jyj2CO.jyj3/. When
choosing inhomogeneous terms, we also require that they be zero at the local
maxima and minima of HS2 .

As a consequence of the condition on inhomogeneous terms, the constant map at a local
minimum or maximum will be a solution of (7-8). One can use a counting-of-zeros
argument for solutions of linear Cauchy–Riemann type operators on line bundles to
show that the constant maps at minima have injective linearizations, and hence (since
they have index 0) are regular. A similar argument, applied to (7-8) itself rather than
its linearization, shows the following:

Lemma 7.6 (i) Let p 2 S2 be a local maximum. For any solution of (7-8) on S2,
which is not constant equal to p, the homology class Œu� 2H2.S

2/DZ satisfies

(7-25) Œu�� #f1� i � d W xi D pgC #fu�1.p/g:
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(ii) Let p 2 S2 be a local minimum. For any solution of (7-8) on S2, with x0 D p,
and which is not constant equal to p, we have

(7-26) Œu�� 1C #fu�1.p/g:

Take the graded abelian group obtained by using only critical points of HS2 which
have index � 1 as generators. We want to equip this with a version of the quantum A1–
structure, which uses inhomogeneous terms as in (7-24), but only considers solutions
with degree Œu� D 0. The argument showing that this works consists of three steps.
First, Lemma 7.6(i) implies that for all solutions, one has Œu�� 0. It follows that if we
consider a sequence of maps of degree zero which converges to a limit with several
pieces, then each piece must again have degree zero. Suppose that our original sequence
consisted of maps whose limits are critical points of index � 1. Our second point is that
then, no critical point of index 2 can appear in the limit, since it would cause one of the
pieces to have positive degree, again by Lemma 7.6(i). Thirdly, transversality of moduli
spaces is unproblematic except possibly for the constant solutions at local minima; but
we already know that such solutions are regular (in the ordinary sense of considering a
fixed C , and therefore in the parametrized sense as well). We want to point out two
properties of this A1–structure: the maps involved stay away from the local maxima,
because of Lemma 7.6(i); and if u is a map that contributes to it, and whose limit x0 is
a local minimum, the map must actually be constant, by Lemma 7.6(ii) and the degree
requirement.

Take a monotone symplectic manifold X . For each minimum or maximum p of HS2 , we
choose a Morse function and almost complex structure on X , written as .HX ;p;JX ;p/.
On the product X �S2, we then proceed as follows.

(7-27) Take a Hamiltonian HX�S2 and almost complex structure JX�S2 , satisfying
our usual conditions, and with the following additional properties. In a local
JS2–holomorphic coordinate on S2 around a local minimum or maximum p,
we have HX�S2DHS2CHX ;pCO.jyj3/, and JX�S2DJS2�JX ;pCO.jyj2/

similarly. When we choose inhomogeneous terms, they should have the
property that, when restricted to X � fpg, they take values in vector fields
tangent to that submanifold.

As a consequence of this, we can have solutions of the associated equation (7-8) which
are contained in X �fpg. If p is a local minimum, then any such solution is regular in
X �S2 if and only if it is regular inside X � fpg. The counterpart of Lemma 7.6 for
X �S2, proved by projecting to S2 and arguing as before, is:
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Lemma 7.7 (i) Let p 2 S2 be a local maximum. For any solution of (7-8) on
X�S2, which is not contained in X�fpg, the homology class Œu�2H2.X�S2/

satisfies

(7-28) ŒX � � Œu�� #f1� i � d W xi 2X � fpggC #
˚
u�1.X � fpg/

	
:

(ii) Let p 2 S2 be a local minimum. For any solution of (7-8) on X � S2, with
x0 2X � fpg, and which is not contained in X � fpg, we have

(7-29) ŒX � � Œu�� 1C #
˚
u�1.X � fpg/

	
:

For each local minimum p, we make choices of inhomogeneous terms which, building
on the previously chosen .HX ;p;JX ;p/, yield a quantum A1–structure Cp . On X �S2,
we then make corresponding choices, which restrict to the previous ones on X �fpg for
each local minimum p. When building the corresponding version of the A1–structure
on X �S2, denoted by K, we use only those critical points of HX�S2 which do not lie
on X �fpg for a local maximum p; and only maps u with ŒX � � Œu�D 0. This works for
exactly the same reasons as in the previously considered toy model case. Moreover, the
following two properties hold: those maps that contribute avoid the subsets X � fpg,
where p is a local maximum; and projection to the subgroup generated by critical
points in X � fpg, where p is a local minimum, is a map

(7-30) K! Cp

compatible with the A1–structure. At this point, we specialize to functions HS2 that
have exactly one local maximum, but possibly several local minima. By looking at
the Morse theory of HX�S2 , one sees that the projections (7-30) are chain homotopy
equivalence. By looking at those maps for two local minima, one relates the A1–
structures Cp for different p.

7e The formal group structure

Take the parameter spaces (3-9). We think of the interior of this space as parametrizing
a family of punctured planes, which degenerate along the boundary. This is essentially
constructed as in (3-13), but with two differences. First of all, we do include the spaces
MWW0;:::;1;:::;0, to which we associate a once-punctured plane (a cylinder) with an
inhomogeneous term, which is that defining the Floer differential. Since we are not
dividing by translation, the only isolated point in the associated moduli space is a
stationary solution at a critical point of the Hamiltonian, and that is the geometric origin

Geometry & Topology, Volume 27 (2023)



Formal groups and quantum cohomology 3021

of (4-28). Hence, to each “screen” in the limit corresponds a surface (unlike our original
construction (3-13), where some of the screens were collapsed). The second difference
is that we need everything to depend smoothly on parameters (the original construction
was purely topological, hence allowed us to get away with continuity). More precisely,
near the codimension-one boundary points of MWWd1;:::;dr

, we really need a situation
as in Definition 7.3(ii); but along the codimension>1 points, all we need is the situation
from Definition 7.3(i), since those points only appear in compactness arguments. In
any case, given the structure of MWWd1;:::;dr

as a smooth manifold with generalized
corners, it is unproblematic to define the required notion of smoothness, and to construct
families of inhomogeneous terms satisfying it (by induction on dimension). The
outcome are operations as in (4-26), with the difference that (4-28) is now a geometric
statement rather than a separately imposed condition. One can therefore define (4-32)
for the quantum A1–structure, and Lemmas 4.11–4.15 carry over immediately. What’s
important for applications is that we can, if desired, choose the inhomogeneous terms
to be compatible with forgetting any color that has no marked points belonging to it;
and therefore, to make our operations satisfy (4-54).

Well-definedness of (4-32) can be proved by a combination of the approaches from
Sections 4d and 7c. Namely, suppose first that we have A1–rings C0; : : : ;Cr , each
defined by a separate choice of function and other data. One can generalize (4-26) to
obtain a map

(7-31) MC.C1IN /� � � � �MC.Cr IN /!MC.C0IN /:

Now, we want to change the A1–structure on C0 and one of the CkC1. The new
versions are related to the old ones by larger A1–rings H0 and HkC1, constructed as
in the uniqueness argument from Section 7c. The main tool in analyzing this change is
an analogue of the middle! in (4-42), which is a map

(7-32) MC.C1IN /� � � � �MC.HkC1IN /� � � � �MC.Cr IN /!MC.H0IN /:

The definition of this involves two kinds of parameter spaces. The first ones are
again the MWWd1;:::;dr

, but where we single out one of the dkC1 points of color
k C 1, as in the definition of (7-15), for special treatment when constructing the
inhomogeneous terms and almost complex structures. The second class of parameter
spaces are MWWd1;:::;dkC1C1;:::;dr

, which have an additional point of color k C 1

(more precisely, there is one such space for every possible position of the additional
point with respect to the other dk). That point will not correspond to a puncture of the
resulting Riemann surface; we just use its position as a modular variable, following the
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C0

{C0D additional marked point

Figure 18: The construction from Example 7.8.

idea from (7-17). Of course, the additional marked point can in principle split off by
itself into a mid-scale screen; when constructing the Riemann surface, that screen will
not correspond to a component. We omit the details entirely.

Example 7.8 The simplest example of a parameter space of the second kind is
MWW1C1, where the additional marked point could be placed either on the left
or right. The context in this case is that we have two versions of (7-21), namely
Hk D Cku ˚ zCk zu ˚ {Ckv for k D 0; 1. As part of their A1–structure, we have
continuation maps Ck !

{Ck . On the other hand, as part of the r D 1 case of (7-31),
we have constructed continuation maps C1 ! C0, zC1 !

zC0, {C1 !
{C0. The two

versions of our moduli space then yield chain homotopies between compositions of
those continuation maps, drawn as dashed arrows here:

(7-33)

C1

����

// C0

��

{C1
// {C0

zC1

����

// zC0

��

{C1
// {C0

The geometry behind the construction on the left is shown schematically in Figure 18.

Remark 7.9 Alternatively, one could prove the well-definedness of the maps …r
C

using the approach from Section 7d, which means defining a corresponding structure
using X �S2, which comes with quasi-isomorphic projections to different copies of X .

The spaces SS from (3-27), while more complicated, show the same geometric behavior
as MWW. Hence, the same kind of argument allows the proof of Proposition 4.20
to carry over, which completes our discussion of Proposition 1.5. There is a minor
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point which may be worth mentioning: in Section 3f, we added two marked points
in the definition of the map (3-31), whose purpose was to break the symmetries of
Fulton–MacPherson space. In a pseudoholomorphic curve context, we treat the extra
points as in the well-definedness arguments above, meaning that their position gives
additional modular variables on which the inhomogeneous term depends.

7f Commutativity

Adapting the arguments from Section 4f, we will now prove Proposition 1.6. This is
the first time that one of the features of our Floer-theoretic setup, namely the time-
independence of the Hamiltonians and almost complex structures, and the resulting
S1–symmetry of (7-1), will be used in a substantial manner.

Throughout the following discussion, it is assumed that choices of inhomogeneous
terms have been made so as to satisfy (4-54). Let’s start with the moduli space
underlying ˇ1;1

C . It involves a family of surfaces depending on one parameter, which
we denote by Cs D C n fz1.s/; z2.s/g for s 2 R. One can assume that this family is
symmetric outside a compact parameter range, in the sense that for some S > 0,

(7-34) .z1.�s/; z2.�s//D .z2.s/; z1.s// if jsj � S;

and that the inhomogeneous terms are chosen compatibly with this symmetry. As a
consequence, there is partial cancellation between the two moduli spaces that enter
into (4-61), with the parts having jsj � S contributing only canceling pairs of points.
One can therefore say that (4-61) is computed by a single parametrized moduli space,
whose compact parameter space is a circle, obtained by gluing together the endpoints
of two intervals Œ�S;S �. If we parametrize this circle by r 2R=2�Z compatibly with
its orientation, then that family of surfaces can be deformed to the simple form

(7-35) .z1.r/; z2.r//D .exp.r
p
�1/;�exp.r

p
�1//:

Up to rotation, this is independent of r , and (it is here that we use time-independence)
one can choose an inhomogeneous term to be compatible with that; in which case, the
moduli space cannot have any isolated points, hence contributes zero. The deformation
which ends up with (7-35), which can be thought as a family of surfaces parametrized
by a compact two-dimensional disc, therefore gives rise to a nullhomotopy (4-65). As
in our previous discussion of (4-60), this implies commutativity of the formal group
structure mod N 3, which is the first part of Proposition 1.6.
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Figure 19: The geometry underlying (7-36): ˇ2;1
C .c1; c2I c3/, top left, and

ˇ
1;2
C .c3I c1I c2/, bottom left. Since part of the structure agrees, we can remove

the hatched regions and join the rest together, with the outcome shown on
the right after removing the “trivial screens” that have only one marked point.
The pairs of points drawn as lying on a circle rotate around each other once
in dependence on the parameters.

Next, let’s look at part of the formula (4-69),

(7-36) ˇ
2;1
C .c1; c2I c3/� .�1/kc3k.kc1kCkc2k/ˇ

1;2
C .c3I c1; c2/:

The underlying moduli spaces are two copies of the octagon from Figure 5. Five
of the boundary sides of those octagons match up in pairs which carry the same
inhomogeneous term. We may assume that this extends to a neighborhood of those
sides. As far as counting points in zero-dimensional moduli spaces is concerned, we can
then cut out suitably matching neighborhoods and glue the rest together. The outcome
of this process, shown in Figure 19, is that our expression can be computed by a single
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moduli space parametrized by a compact pair-of-pants surface. Moreover, along each
boundary circle, we find that one of the components is a copy of the family of surfaces
underlying (4-61), and which can be therefore filled in with a family parametrized by a
disc. As a consequence, we find that the operation K

2;1
C defined in (4-69) is given by

a family of surfaces parametrized by S2. One can further deform that family so that
degenerations happen only along three points (instead of the previous three discs) in
the parameter space.

The outcome is that we have a family of four-punctured spheres, parametrized by S2.
Inspection of Figure 19 shows that this family has degree 1 in H2.DM3/Š Z. This is
a Floer-theoretic implementation of the four-pointed Gromov–Witten invariant, which
we can relate to the standard version by a gluing argument as in [58]. As a consequence,
identifying H�.C/DH�.X IZ/, we have that on the cohomology level,

(7-37)
Z

X

x0 K
2;1
C .x1;x2Ix3/D hx0;x1;x2;x3i4; where xk 2H�.X IZ/:

(See (9-1) for our notational conventions in Gromov–Witten theory.) For the par-
ticular case of K

2;1
C .x1;x1Ix2/, where x1 has odd degree, the graded symmetry of

Gromov–Witten invariants means that hx0;x1;x1;x2i4 D 0. Assuming additionally
that H�.X IZ/ is torsion-free, it follows that K

2;1
C .x1;x1Ix2/ itself is zero. As in

Proposition 4.19, this and the corresponding argument for K1;2 imply the desired
commutativity statement modulo N 4.

7g The pth power map

We now carry over the required arguments from Sections 5 and 6, leading to the proof
of Theorem 1.9 as the Floer-theoretic analogue of Theorem 6.5.

We can bring Floer-theoretic constructions closer to the abstract operadic framework,
by making a generic choice of inhomogeneous terms which are parametrized by FMd .
In the interior, this means that for every complex configuration .z1; : : : ; zd / we choose
an inhomogeneous term �C on the resulting surface (7-4), in a way which is compatible
with the action of the automorphisms which appear in (3-3). We then ask that this
should extend to the “screens” associated to points in @FMd , in a way which enables
compactness arguments for boundary strata of any dimension, see Definition 7.3(i), and
gluing for codimension-one boundary strata, see Definition 7.3(ii). We also ask that
our choices should be Symd –equivariant (recall that the symmetric group acts freely
on FMd ).
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Suppose that we have maps (3-13) based on smooth functions (3-15). By pull-
back, our previous choice induces a family of inhomogeneous terms parametrized
by MWWd1;:::;dr

. For a point in @MWWd1;:::;dr
, any vertices that are collapsed under

(3-13) correspond to cylindrical components C DC n fz1g, which we equip with the
standard inhomogeneous term �C D

�
ZH ˝ re.d log.z� z1/=2�

p
�1/

�0;1. Moreover,
a generic choice of (3-13) ensures transversality for the parametrized moduli spaces
associated to all MWWd1;:::;dr

, and we may then use that choice to build the operations
ˇ

d1;:::;dr

C . Additionally, we may assume that the maps (3-13) are chosen so that (3-19)
holds, which means that the resulting operations satisfy (4-54).

We will be specifically interested in MWWp , in the notation from Section 6b, and the
associated operation ˇ

p

C D ˇ
1;:::;1
C , with p prime. At this point, we fix an odd-degree

cocycle

(7-38) c 2 C˝Fp;

which will remain the same throughout the subsequent discussion. Applying ˇ
p

C to p

copies of c yields another such cocycle, hence a cohomology class

(7-39) Œˇ
p

C .cI : : : I c/� 2H odd.CIFp/:

The underlying geometric phenomenon was explained in Section 6b: the codimension-
one boundary faces of MWWp correspond to nontrivial decompositions of f1; : : : ;pg
into nonempty subsets .I1; : : : ; Ir / for any r � 2. If we act by an element of Z=p on
such a decomposition, we get a new decomposition .zI1; : : : ; zIr /, and the corresponding
boundary faces, when mapped to FMp , are related by the action of a suitable element
of Symp; see (6-7). The cohomology class in (7-39) is independent of our choice of
inhomogeneous terms.

Our first point is that we can realize (7-39) using a family of surfaces without de-
generations. To do that, let’s choose a Symp–equivariant isotopy that pushes Fulton–
MacPherson space into its interior,

(7-40)
�r W FMp! FMp with r 2 Œ0; ��;

�0 D id; �r .FMp/� FMıp D FMp n @FMp for r > 0:

Write �p for the original map MWWp! FMp. The perturbed version,

(7-41) z�p D �r ı �p WMWWp! FMp n @FMp for some r > 0;

will retain the same Z=p–action on codimension-one boundary faces as �p. Going
back to the choice of inhomogeneous terms over FMp , we want to also assume that the
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pullback of that family by (7-41) should lead to a regular parametrized moduli space.
Given that, from (7-41) for some r > 0 we get a new operation ž

p

C , which again yields
a cohomology class

(7-42) Œ ž
p

C .cI : : : I c/� 2H odd.CIFp/:

A similar construction, where one interpolates between �p and z�p, shows that this
cohomology class agrees with (7-39). At this point, we no longer need to compactify
configuration space: to define (7-42), one can use families of perturbation data which
are only defined on FMıp (and still Symp–equivariant).

In the same vein as in (4-63), take

(7-43) DMıp D DMıp �Eıp;

where Eıp is the interior of Fulton–MacPherson space for R1, meaning point configu-
rations up to translation and rescaling. More precisely, we think of this as the direct
limit of the corresponding spaces in each finite-dimensional Euclidean space. There is
an embedding

(7-44) FMıp!DMıp;

which takes each point configuration to the pair formed by its quotient in Deligne–
Mumford space and its image in Eıp . In this context, classes in H

Symp

� .DMıpIFp.1// are
realized by smooth simplicial chains in (7-43), having Fp–coefficients, and quotiented
out by the relation that acting on a chain by some � 2 Symp is the same as multiplying
the chain with .�1/sign.�/. Let’s write C Symp

� .DMıpIFp.1// for this chain complex.

Choose a family of inhomogeneous terms on the family of surfaces pulled back by the
projection DMıp!DMıp , and which is Symp–equivariant. For every smooth map from
a simplex to DMıp, that family of inhomogeneous terms gives rise to a parametrized
moduli space. If that space is regular, we get an operation .C˝ Fp/

˝p ! C˝ Fp.
By adding up those operations with coefficients, we extend the construction to chains.
Let’s specialize to using p copies of our cocycle c as input. Morally, this can be thought
of as giving rise to a Z=2–graded chain map

(7-45) C
Symp

� .DMıpIFp.1//! CpjcjC�
˝Fp:

The cautionary “morally” figures here because of the regularity condition for moduli
spaces, which makes it impossible to define such a map on the entire chain complex.
However, any argument involving a relation between specific chains, such as the one we
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are about to give, only involves finitely many terms, and one can assume that the chains
involved are embedded into the infinite-dimensional space DMıp . One can a posteriori
make a choice of perturbation terms over DMıp which makes the finitely many spaces
involved regular. Hence, for all practical purposes, the consequence is the same as if
we had a map (7-45). In particular, we do get a map

(7-46) H
Symp

� .DMıpIFp.1//!H pC�.CIFp/:

One can think of (7-42) as an instance of this general construction, by smoothly
triangulating the spaces MWWp, in a way which is compatible with the Z=p–action
on codimension-one boundary strata, and then using the embedding (7-44). Using
Lemma 5.3, one identifies the relevant homology class with that underlying the t .p�1/=2

coefficient of the quantum Steenrod operation, up to a coefficient which is spelled out
in Lemma 6.4. This equality, applied to (7-46), implies Theorem 1.9.

8 An alternative approach

The approach outlined in this section was pointed out to the author by Fukaya. It
is an application of the results from [22] (taking the Lagrangian correspondence to
be the diagonal, but with a general bounding cochain, which is our Maurer–Cartan
element). The basic building blocks are parameter spaces from [47], which are close
cousins of Stasheff associahedra (and in particular, are manifolds with corners in the
classical sense). One can use them to define the composition law on Maurer–Cartan
elements, a little indirectly, following [22, Theorem 1.7]; and to prove its associativity,
following [22, Theorem 1.8]. On the other hand, it’s not clear that there is a easier route
from there to Theorem 1.9, which is one reason why we have not given first billing
to this approach. Because of its complementary nature, our discussion will be quite
sparse: not only are proofs omitted, we won’t even make the distinction between the
implementation of these arguments in an abstract operadic context (as in Section 4,
assuming homological unitality) or a concrete Floer-theoretic one (as in Section 7).

8a The moduli spaces

We start with basically the same configuration space as in (3-10), except that the
ordering of points in the last color is reversed:

(8-1)

�
.s1;1; : : : ; s1;d1

I : : : I sr;1; : : : ; sr;dr
/ W

sk;1 < � � �< sk;dk
for k < r ,

sr;1 > � � �> sr;dr

�
fsk;i � sk;i C� for � 2Rg

:
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More importantly, we now consider a compactification of (8-1) which is smaller than
its counterpart from Section 3d. This compactification will be denoted by

(8-2) Qd1;:::;dr
; where r � 2; d1; : : : ; dr � 0; d D d1C � � �C dr > 0;

partly following the “quilted strips” terminology from [47]. The recursive structure of
boundary strata is expressed by maps

(8-3)
mY

jD1

Qkvı;j k1;:::;kvı;j kr �
Y

v in Tj ; v¤vı;j

Skvk
.T1;:::;Tm/
������!Qd1;:::;dr

:

Here, T1; : : : ;Tm (for any m� 1) are trees of the following kind. In each Tj , denote
by vı;j the vertex closest to the root. Then, the incoming edges at that vertex should
carry one of r colors, and are ordered within their color. The parts of the tree lying
above vı;j have planar embeddings, and inherit a single color. The whole thing is
arranged, of course, so that the total number of leaves of each respective color add up to
.d1; : : : ; dr /. Geometrically, what happens is that as groups of points move to˙1, we
split them up into separate screens, which correspond to the Q factors in (8-3) (in the
terminology of Section 3d, these would be called mid-scale, since there is no rescaling
involved, just translation); but we do not keep track of the relative speeds at which
this divergence happens (no large-scale screens). The remaining factors in (8-3) are
small-scale screens, which describe the limit of points converging towards each other.
The image of (8-3) has codimension equal to the overall number of factors (vertices)
minus one. This is related to the fact that Qd1;:::;dr

is a smooth manifold with corners.

Let’s map our points to radial half-lines in the punctured plane,

(8-4) zk;i D exp
�
�sk;i �

2�k

r

p
�1
�
2C�;

and add a marked point at 0 (the zk;i are ordered lexicographically, and the extra point
is inserted between the last two colors). This extends to a continuous map

(8-5) Qd1;:::;dr
! FMdC1:

In terms more familiar from pseudoholomorphic curve theory, one can think of the
configurations (8-4) as lying on parallel lines on a cylinder. In the limit, this breaks
up into several cylinders, plus spheres (copies of xC with a marked point at infinity,
and other marked points lying on the real line) attached to them; see Figures 20(i) and
21(i). On the combinatorial level, the map (8-5) works as follows: starting with trees
as in (8-3), one adds an incoming edge to each vertex vı;j except the last one, and then
identifies those edges with the root edges of TjC1, thereby combining all our trees into
a single T , which is what appears in (3-4); see Figure 20(ii).

Geometry & Topology, Volume 27 (2023)



3030 Paul Seidel

2

T1

vı;1

T2

vı;2

(i) (ii)

1

2

vı;2

T

vı;1

Figure 20: (i) A boundary point in (8-2), drawn in the way familiar from
pseudoholomorphic curve theory; and (ii) the corresponding picture in Fulton–
MacPherson space.

8b The operations

Algebraically, the outcome of using (8-2) and (8-5) are operations

(8-6) �
d1;:::;dr�1;1;dr

C W Cd1C���CdrC1
! CŒ1� d1� � � � � dr �:

Additionally, we set

(8-7) �
0;:::;1;0
C D �1

C:

The property of these operations, derived as usual from the structure of codimension-one
boundary strata, and including (8-7), is that

(8-8)
X
k<r

ij

˙�
d1;:::;dk�jC1;:::;1;dr

C

�
c1;1; : : : ; c1;d1

I : : : I ck;1; : : : ;

�
j
C.ck;iC1; : : : ; ck;iCj /; : : : ; ck;dk

I : : : I cI cr;1; : : : ; cr;dr

�
C

X
p1;:::;pr

˙�
d1�p1;:::;1;dr�pr

C

�
c1;1; : : : ; c1;p1

I : : : I cr�1;1; : : : ; cr;pr�1
I

�
p1;:::;1;pr

C .c1;p1C1; : : : ; c1;d1
I : : : I cI cr;p1

; : : : ; cr;pr
/I

cr;prC1; : : : ; cr;dr

�
C

X
ij

˙�
d1;:::;1;dr�jC1
C

�
c1;1; : : : I cI cr;1; : : : ; cr;i ; �

j
C.cr;iC1; : : : ; cr;iCj /;

: : : ; cr;dr

�
D0:
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In terminology similar to [47], these define the structure of an A1–.r�1; 1/–module,
with the first r � 1 factors acting on the left, and the last one on the right.

Example 8.1 Suppose that d1D� � �Ddr�1D 0. Then, the points (8-4), with the origin
added as usual, lie on a half-line in C. One can use that to identify Q0;:::;0;d Š SdC1.
The auxiliary data involved in defining (8-6) can be chosen to be compatible with that,
in which case one gets �0;:::;1;d

C D �dC1
C .

Example 8.2 For r D 2, the points (8-4) still lie on R�C, hence Qd1;d2
ŠSd1Cd2C1

and, for suitable choices, �d1;1;d2

C D �
d1Cd2C1
C .

Example 8.3 The operations with two inputs, �0;:::;1;:::;1;0
C and �0;:::;1;1

C , are all chain
homotopic to the multiplication �2

C, simply because they come from a single two-point
configuration in the plane.

Our purpose in defining these operations is the following:

Definition 8.4 Let 1; : : : ; r 2 C
1 y̋ N be Maurer–Cartan elements. We say that r

is the product of .1; : : : ; r�1/ if there is a k 2 C0 y̋ .Z1˚N / which modulo N

reduces to a cocycle representing the unit ŒeC�, and such that

(8-9)
X

d1;:::;dr

�
d1;:::;dr�1;1;dr

C .

d1‚ …„ ƒ
1; : : : ; 1I : : : I

dr�1‚ …„ ƒ
r�1; : : : ; r�1I kI

dr‚ …„ ƒ
r ; : : : ; r /D 0:

The expression (8-9) includes a term �1
C.k/, corresponding to .d1; : : : ; dr /D .0; : : : ; 0/.

If write k D eCC .coboundary/C h with h 2 C0 y̋ N , then (keeping Example 8.3 in
mind) the next-order term in the equation says that

(8-10) Œ�
1;0;:::;1;0
C .1; k/�C � � �C Œ�

0;:::;1;1;0
C .r�1; k/�C Œ�

0;:::;1;1
C .k; r /�

D Œ�2
C.1; eC/�C � � �C Œ�

2
C.r�1; eC/�C Œ�

2
C.eC; r /�

D Œ�1� � � � � r�1C r �D 0 in H 1.C˝N=N 2/:

For r D 2, and assuming the choices have been made as in Example 8.2, the condition
in (8-9) reduces to the criterion for equivalence of 1 and 2 given in Lemma 2.6.

Lemma 8.5 The notion of product from Definition 8.4 only depends on the equivalence
class of the Maurer–Cartan elements involved.
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This is the analogue of Lemma 4.11, and is proved in a similar way. Given .1; : : : ; r /

and k as in (8-9), and an element h 2 C0 y̋ N which provides an equivalence between
j and zj , we can construct an explicit zk which shows that .1; : : : ; zj ; : : : ; r / satisfy
the same condition:

(8-11) zk D kC
X

d1;:::;dr ;i

�
d1;:::;1;dr

C .: : : I

i‚ …„ ƒ
j ; : : : ; j ; h;

dj�i�1‚ …„ ƒ
zj ; : : : ; zj I : : : I kI : : : /:

(The formula as written is for j < r , but the j D r case is parallel.)

Lemma 8.6 Given .1; : : : ; r�1/, there is a unique equivalence class r satisfying
Definition 8.4.

This is roughly analogous to Lemma 4.14. It is maybe helpful to reformulate the issue
as follows. We have a right A1–module structure, defined by

(8-12) .cI c1; : : : ; cd /

7!

X
d1;:::;dr�1

�
d1;:::;dr�1;1;d
C .

d1‚ …„ ƒ
1; : : : ; 1I : : : I

dr�1‚ …„ ƒ
r�1; : : : ; r�1I cI c1; : : : ; cd /;

which (thanks to Example 8.1) is a deformation of the free module C. One then wants
to modify that module structure through  insertions, so as to “undo” the deformation,
rendering it trivial. This is a purely algebraic question, which can be reduced to the
strictly unital situation if desired (using Lemma 2.2).

Proposition 8.7 In the sense of Definition 8.4, if  is the product of .i ; iC1/ for
some i < r � 1, and r is the product of .1; : : : ; i�1; ; iC2; : : : ; r�1/, then r is
also the product of .1; : : : ; r�1/.

This is the associativity statement for our notion of product. The proof uses a moduli
space of points lying on certain lines in the punctured plane. It is convenient to draw that
plane as a pair-of-pants, see Figure 21(ii), which is half of the “double pants diagram”
in [22, Section 11.2]. The two known statements about products come with their
respective elements k as in (8-9). One inserts those elements at the two bottom ends,
and the Maurer–Cartan elements at points on the respective lines (the arrows denote
the ordering of the points), the outcome being another element k which establishes the
desired statement.

Remark 8.8 Let’s briefly discuss the counterpart of Definition 8.4 in homological
algebra, in the spirit of Section 2. Take a homologically unital A1–ring A, and its
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z1;1

z1;2

z1;3

1 2 3

z D 0

(i) (ii)

1

2  3 4

z3;3

z3;2
z3;1

z2;1

z2;2

Figure 21: (i) Another picture of a point configuration (8-4), with correct
ordering of the lines and points. (ii) An analogous picture of the moduli
spaces that enter into the proof of Proposition 8.7 (r D 4; i D 1).

Hochschild complex C; see (2-13). Given a Maurer–Cartan element  2 C1 y̋ N , one
can define two A1–bimodules L and R , whose underlying space is A y̋ .Z1˚N /,
with bimodule structure

(8-13) �
pI1Iq
L

.a1; : : : ; apI apC1I apC2; : : : ; apCqC1/D

˙�
pCqC1
A .a1; : : : ; apCqC1/

C

X
ij

˙�
pCqC2�j
A

�
a1; : : : ; : : : ; ai ; 

j .aiC1; : : : ; aiCj /; : : : ; apC1;

: : : ; apCqC1

�
;

C

X
i1j1i2j2

˙�
pCqC3�j1�j2

A

�
a1; : : : ; ai1

;  j1.ai1C1; : : : ; ai1Cj1
/;

: : : ; ai2
;  j2.ai2C1; : : : ; ai2Cj2

/; : : : ; apC1; : : : ; apCqC1

�
C � � �

together with

(8-14) �
pI1Iq
R

.a1; : : : ; apI apC1I apC2; : : : ; apCqC1/D

˙�
pCqC1
A .a1; : : : ; apCqC1/

C

X
ij

˙�
pCqC2�j
A .a1; : : : ; apC1; : : : ; ai ; 

j .aiC1; : : : ; aiCj /; : : : ; apCqC1/

C

X
i1j1i2j2

˙�
pCqC3�j1�j2

A

�
a1; : : : ; apC1; : : : ; ai1

;  j1.ai1C1; : : : ; ai1Cj1
/;

: : : ; ai2
;  j2.ai2C1; : : : ; ai2Cj2

/; : : : ; apCqC1

�
C � � � :
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Here, the rule is that an arbitrary number of  terms are inserted, but always to the
left (8-13), or right (8-14), of apC1. For  D 0, this reduces to A with the diagonal
bimodule structure extended to A y̋ .Z1˚N /, which will denote by L0DR0DD. More
generally, L and R can be viewed as pullbacks of D by the formal automorphism
(2-23) acting on one of the two sides. Using that, one sees easily that the bimodules
are inverses: there are bimodule homotopy equivalences

(8-15) R ˝AL ' L ˝AR 'D:

Here, the tensor product notation is shorthand: we are really taking the tensor product
of A1–bimodules relative to A y̋ .Z1˚N /, and making sure that completion with
respect to the filtration of N is taken into account. Modulo N , all our bimodules reduce
to the diagonal bimodule. Consider the Hochschild complex of A with coefficients in a
bimodule B, denoted here by CC�.B/; see eg [26, Section 2.9]. We say that r is the
product of .1; : : : ; r�1/ if there is a cocycle

(8-16) k 2 CC0.R1
˝A � � � ˝ARr�1

˝ALr
/

which, after reduction modulo N , represents the identity in HH0.A/. For r D 1, one
can use (8-15) to show that this is the case if and only if 1; 2 are equivalent. On the
other hand, for � defined as in (2-24), there are homotopy equivalences

(8-17) L1
˝A� � �˝ALr�1

'Lr�1�����1
and R1

˝A� � �˝ARr�1
'R1�����r�1

:

Combining that with the previous observation shows that our definition of product is
the same as saying that r is equivalent to 1 � � � � � r�1.

8c Relating the two approaches

To conclude our discussion, we’ll mention a possible way to connect the construction
in this section to the rest of the paper, or more precisely: to prove that, if r is the
product of .1; : : : ; r�1/ in the sense of Definition 8.4, then r is also equivalent to
…r�1

C .1; : : : ; r�1/, which is the product from Definition 4.10. The reader is exhorted
to treat this as what it is, a suggestion: it relies on new moduli spaces whose structure
has not been fully developed.

We begin by introducing an additional parameter t 2 Œ0; 1/, and changing (8-4) by
letting the first r � 1 radial lines collide in the limit t ! 1:

(8-18) zk;i D

(
exp

�
�sk;i�.1� t/

2�k

r

p
�1� t�

p
�1
�
2C� if k D 1; : : : ; r �1;

exp.�sr;i/ if k D r:
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t ! 1

these three lines collide in the limit

Figure 22: A limit in the space PQ3;1;1;2 which lies in the image of (8-20).
For compatibility with Figure 21, we have drawn the MWW components
rotated by 90 degrees.

This leads to a compactification of Œ0; 1/ times (8-1), which we write as

(8-19) t W PQd1;:::;dr
! Œ0; 1� for r � 3:

Over each t 2 Œ0; 1/, the fiber is a copy of Qd1;:::;dr
. In the limit t ! 1, points of the

first r � 1 colors bubble off into screens which have the structure of MWW spaces
(Figure 22). This means that we have maps

(8-20) Qj ;rd
�

jY
iD1

MWWd1;i ;:::;dr�1;i
! PQd1;:::;dr

for each partition d1 D d1;1C � � � C dj ;1; : : : ; dr�1 D dr�1;1C � � � C dr�1;j , whose
images are the top-dimensional parts of the fiber of (8-19) over t D 1. The space (8-19)
comes with a map to FMdC1, which over the fiber t D 0 reduces to (8-5).

The definition (8-18) suffers from the usual disadvantage of parametrized spaces,
meaning that its compactification contains strata that are fiber products over Œ0; 1�. To
bypass that difficulty, one can try to use those spaces in a “time-ordered” form (the
same strategy as in [65, Section 10e]), which means that we consider k–tuples of
points in PQd1;1;:::;d1;r

� � � � �PQdk;1;:::;dk;r
, where .di;k/ is again a partition of .dk/,

such that the associated parameters satisfy t1 � � � � � tk . Pairs of points with equal
parameters now occur in the boundary of two different such spaces (when ti D tiC1
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for some i ; and as a boundary face of one of the PQ factors involved). If we insert
Maurer–Cartan elements .1; : : : ; r / at the marked points in C�, and add a trivial
term which is the identity map, the outcome should be a map

(8-21) ˆC W C! C

which, setting  D…r�1
C .1; : : : ; r�1/, satisfies

(8-22) ˆC

� X
d1;:::;dr

�
d1;:::;dr�1;1;dr

C .

d1‚ …„ ƒ
1; : : : ; 1I : : : I

dr�1‚ …„ ƒ
r�1; : : : ; r�1I cI

dr‚ …„ ƒ
r ; : : : ; r /

�
D

X
d1;d2

�
d1;1;d2

C .; : : : ; „ ƒ‚ …
d1

IˆC.c/I r ; : : : ; r„ ƒ‚ …
d2

/:

The left-hand side of this equation represents what happens for t1 D 0 (the t1 D 0

component then gives �C, and the other components giveˆC), while the right-hand side
represents what happens for tk D 1 (with the  factors coming from the collision of the
first r � 1 lines). Suppose that r is the product of .1; : : : ; r�1/; see Definition 8.4.
Then, inserting the associated element k into (8-21) produces another element, which
shows that “r is the product of . /” in the same sense. As pointed out before, in that
special case, the definition just amounts to saying that r and  are equivalent.

9 Computing quantum Steenrod operations

By definition, quantum Steenrod operations belong to genus-zero enumerative geometry.
Generally speaking, it’s an open question what their role is within that theory. However,
for low-degree contributions one can give a satisfactory answer, in terms of the usual
Gromov–Witten invariants. After explaining this, we will turn to specific example
computations.

9a Gromov–Witten theory background

Let’s start in a context which is a little different than the rest of the paper. Take X to
be a closed symplectic 2n–manifold, with the only restriction (for notational simplicity,
since we only want to use power series in the Novikov variable q) that the symplectic
form must lie in an integral cohomology class, denoted here by

�X 2 Im
�
H 2.X IZ/!H 2.X IQ/

�
:
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Genus-zero Gromov–Witten invariants for m–pointed curves, and their generalizations
that include gravitational descendants, will be written as

(9-1) h r1x1; : : : ;  
rmxmim

D

X
A

q�X �Ah r1x1; : : : ;  
rmxmim;A 2QŒŒq�� for xi 2H�.X IQ/;

where the sum is over A2H2.X IZ/. For the contribution of A to be potentially nonzero,
one should either consider classes with positive symplectic area�X �AD

R
A !X > 0, or

take AD 0 (the case of constant curves) and m� 3. For expositions of Gromov–Witten
that include the properties used in this paper, see eg [57, Section 1] or [35, Chapter 26].

We introduce another formal variable t , so that the coefficient ring for our algebraic
considerations will be QŒt˙1�ŒŒq��. The small quantum product, and the small quantum
connection, on the Z=2–graded space H�.X IQ/Œt˙1�ŒŒq�� are defined byZ

X

.y1 �y2/y3 D hy1;y2;y3i3;(9-2)

ry D q@qyC t�1�X �y:(9-3)

We will consider endomorphisms ˆ of H�.X IQ/Œt˙1�ŒŒq�� which are (linear over the
coefficient ring and) covariantly constant with respect to r. Concretely, this means that

(9-4) .q@qˆ/.y/C t�1�X �ˆ.y/� t�1ˆ.�X �y/D 0:

If we expand ˆDˆ.0/C qˆ.1/C q2ˆ.2/C � � � , (9-4) becomes

ˆ.0/.�X y/D�Xˆ
.0/.y/;(9-5)

ˆ.k/.y/D t�1k�1.ˆ.k/.�X y/��Xˆ
.k/.y//C (recursive terms) if k > 0;(9-6)

where the generic “recursive terms” covers expressions involving onlyˆ.0/; : : : ; ˆ.k�1/.
By repeatedly inserting (9-6) into itself, we get

(9-7) ˆ.k/.y/D t�mk�m
X

i

.�1/i
�m

i

�
�i

Xˆ
.k/.�m�i

X y/C (recursive terms):

Setting m> 2n means that in the sum we have i > n or m� i > n, so all those terms
vanish. One therefore gets explicit recursive formulae, which show that the constant
term ˆ.0/, subject to (9-5), determines all of ˆ. The case we are interested in is where
ˆ.0/.y/D xy is the cup product with a given class x 2H�.X IQ/. There is a formula
for the resulting ˆDˆx in terms of gravitational descendants, closely related to the
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standard formula for solutions of the quantum differential equation:

(9-8)
Z

X

y0ˆx.y1/

D

Z
X

y0xy1� t�1
hy0; .1C t�1 /�1xy1i2C t�1

h.1� t�1 /�1y0x;y1i2

� t�2
X

k

hy0; .1C t�1 /�1xeki2h.1� t�1 /�1e_k ;y1i2:

In principle, the terms .1C � � � /�1 are supposed to be expanded into geometric series;
but for degree reasons, only one term in this series is nonzero for each class A that
contributes to the expressions in (9-8). The .ek/, .e_k / are Poincaré dual bases in
H�.X IQ/, meaning that in the Künneth decomposition,

(9-9)
X

k

ek ˝ e_k D Œdiagonal� 2H 2n.X �X IQ/:

Checking that ˆx satisfies (9-4) is an exercise using basic properties (divisor equation
and TRR) of Gromov–Witten invariants. Using the string equation, one can write the
special case y0 D y, y1 D 1 as

(9-10)
Z

X

yˆx.1/D

Z
X

yx� t�1
hy; .1C t�1 /�1xi2C t�2

h.1� t�1 /�1yxi1

� t�3
X

k

hy; .1C t�1 /�1xeki2h.1� t�1 /�1e_k i1:

Let’s modify the context slightly, and assume that X is weakly monotone. Moreover,
choose an integer lift of the symplectic cohomology class, again denoted by �X .
Then, one can define mod p versions of Gromov–Witten invariants counting curves
in A 2H2.X IZ/, for which we use the same notation:

(9-11) hx1; : : : ;xmim;A 2 Fp with xi 2H�.X IFp/;

provided that
�

m� 3; or
any m and 0<�X �A< p:

For m � 3, this is the classical definition in terms of an inhomogeneous x@–equation
(Gromov’s trick). The definition in the second case can be reduced to the first case by
taking the divisor equation as an axiom, where the class inserted is always (the mod p

reduction of) �X . Alternatively, one could argue more geometrically: if �X �A< p,
then no stable map in class A can have an automorphism group whose order is a
multiple of p. This should allow one to define virtual fundamental classes in homology
with Fp–coefficients (we say “should” since this has not, to our knowledge, been carried
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out in the literature). The discussion of the second case also applies to gravitational
descendants, with the same assumption 0 < �X �A < p. Geometrically, this uses
the fact that orbifold line bundles whose isotropy groups have orders coprime to p

have Chern classes in mod p cohomology; algebraically, one can use the formula
(involving the divisor relation and TRR) that reduces invariants involving gravitational
descendants to ordinary Gromov–Witten invariants.

The quantum product and connection can be considered as acting on H�.X IFp/Œt
˙1�ŒŒq��,

where one now thinks of t as in (1-5). Formal linear differential equations in character-
istic p have a much larger space of solutions than their characteristic 0 counterparts,
simply because d

dx
xp D 0. As an instance of that, the uniqueness statement derived

from (9-7) now holds only up to order qp�1, because of the division by km. If one
truncates the formula (9-8) modulo qp , then all terms appearing in it are defined with
Fp–coefficients; and it yields the unique solution modulo qp of (9-4), whose q0 term
equals the cup product with x.

9b Application to quantum Steenrod operations

We adapt our previous definition of quantum Steenrod operations to the weakly mono-
tone context, by adding the variable q. This means that, with .t; �/ as in (1-5) (and
omitting the manifold X for the sake of brevity),

(9-12) Q Stp D
X
A

q�X �A Q Stp;A WH�.X IFp/!H�.X IFp/Œt; � �ŒŒq��:

We find it convenient to introduce a minor generalization, which is a bilinear map on
cohomology. More precisely, for each x 2 H�.X IFp/ one gets an endomorphism
of H�.X IFp/Œt; � �ŒŒq��, denoted by

(9-13) Q†p;x D

X
A

q�X �AQ†p;x;A WH
�.X IFp/Œt; � �ŒŒq��!H�.X IFp/Œt; � �ŒŒq��:

Geometrically, while quantum Steenrod operations are obtained from holomorphic
maps which have (5-19) as a domain, we use the remaining Z=p–fixed point (z D 0)
on that curve as an additional input point to define (9-13). In other words, one can
view it as an equivariant version of the “quantum cap product”, obtained from the Z=p–
equivariant curve in Figure 23. On a technical level, the definition is entirely parallel
to that of quantum Steenrod operations, by looking at moduli spaces parametrized by
cycles in the classifying space BZ=p [66]. The q0 term of (9-13) is the cup product

Geometry & Topology, Volume 27 (2023)



3040 Paul Seidel

p points arranged symmetrically, insert x in each

Figure 23: The Riemann surface underlying the definition of Q†p;x. � /; see (9-13).

with the classical Steenrod operation,

(9-14) Q†p;x;0.y/D Stp.x/y:

The relation between (9-12) and (9-13) is that

(9-15) Q Stp.x/DQ†p;x.1/:

Remark 9.1 It is natural to extend the definition of (9-13) to x 2H�.X IFp/ŒŒq�� in a
Frobenius-twisted way, meaning that †p;qx D qp†p;x . Then,

(9-16) Q†p;x1
ıQ†p;x2

D .�1/p.p�1/=2jx1j jx2jQ†p;x1�x2
:

Note that as a consequence of (9-14) and (9-16),

(9-17) Q†p;x.Q Stp.y//DQ†p;x ıQ†p;y.1/D .�1/p.p�1/=2jxj jyjQ†p;x�y.1/

D .�1/p.p�1/=2jxj jyjQ Stp.x �y/:

Every class in H�.X IFp/Œt; t
�1; � � can be written as Stp.y/ for some y. An analogous

statement holds for quantum Steenrod operations, and by combining that with (9-17),
one sees that Q Stp actually determines Q†p.

For our purpose, the key point is the following result:

Theorem 9.2 [66, Theorem 1.4] For any x, the endomorphism Q†p;x is covari-
antly constant for the small quantum connection (9-3), meaning that it satisfies (9-4).
(We have tacitly extended the coefficient ring to include � .)

As a consequence of that and the discussion at the end of Section 9a, Q†p;x is
determined modulo qp by the classical term (9-15). More explicitly, comparison with
(9-8) shows that

(9-18) Q†p;x DˆStp.x/ modulo qp:

Specializing to (9-14) and using (9-10) leads to:
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Corollary 9.3 The low-degree contributions to the quantum Steenrod operation are:

(9-19)
X

�X �A<p

q�X �A

Z
X

y Q Stp;A.x/

D

Z
X

y Stp.x/� t�1
X

0<�X �A<p

q�X �Ahy; .1C t�1 /�1 Stp.x/i2;A

C t�2
X

0<�X �A<p

q�X �Ah.1� t�1 /�1y Stp.x/i1;A

� t�3
X

�X �A0>0
�X �A1>0

�X �.A0CA1/<p

X
k

q�X �.A0CA1/hy; .1C t�1 /�1 Stp.x/ eki2;A0

� h.1� t�1 /�1e_k i1;A1
:

Note that even though there are negative powers of t in the formula, we know a priori
that none of them can appear in Q Stp, so all terms involving them must cancel.

9c A localization argument

The approach to quantum Steenrod operations via Theorem 9.2 is formally slick,
but maybe somewhat indirect; we will therefore suggest a possible alternative. For
simplicity, we will work out only the most elementary case. Namely, let’s assume that
our symplectic manifold X is an algebraic variety, and that we use the given complex
structure. We fix some A 2H2.X IZ/ which is holomorphically indecomposable: this
means that one can’t find nonzero classes A1; : : : ;Ar , r � 2, each of them represented
by a holomorphic map CP1! X , such that A1C � � � CAr D A. This implies that
the space of unparametrized rational curves in class A is compact, and contains no
multiple covers. We further assume that this space is regular. Consider the standard
framework involving stable map spaces,

(9-20)

LpC1;0; : : : ;LpC1;p

��

MpC1 MpC1.X IA/oo
evpC1D.evpC1;0;:::;evpC1;p/

// X pC1

Here, MpC1 is genus-zero Deligne–Mumford space (we prefer to use the conventional
algebrogeometric notation rather than that in the rest of the paper); MpC1.X IA/ is
the space of stable maps; and the LpC1;k are the tautological line bundles (cotangent
bundles of the curve) at the marked points. Our assumption was that M0.X IA/

is regular, hence smooth of complex dimension nC c1.A/� 3. As a consequence,
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all MpC1.X IA/ are smooth of dimension nCc1.A/C.p�2/, and actually fiber bundles
over M0.X IA/ with fiber MpC1.CP1I 1/. The Symp–action on Deligne–Mumford
space has a canonical lift to MpC1.X IA/.

At this point, we (re)impose the assumption that p is prime. Let M˘
pC1

.X IA/ �

MpC1.X IA/ be the subset of stable maps which, under the forgetful map to Deligne–
Mumford space, are mapped to the point from (5-19). Clearly, that subset is invariant
under Z=p� Symp . As before, one can describe its geometry explicitly: M˘

pC1
.X IA/

is a fiber bundle over M0.X IA/ with three-dimensional fiber M˘
pC1

.CP1I 1/, and
Z=p acts in a fiber-preserving way.

Lemma 9.4 The fixed-point set F �M˘
pC1

.X IA/ of the Z=p–action is the disjoint
union of :

(i) A copy of M2.X IA/. The restriction of evpC1 to that component can be
identified with .ev2;0; ev2;1; : : : ; ev2;1/. Moreover , the normal bundle N of this
component is the dual of the tautological bundle L2;1 !M2.X IA/, and the
.Z=p/–action on it has weight �1.

(ii) A copy of M1.X IA/. The restriction of evpC1 to that component can be
identified with .ev1;0; : : : ; ev1;0/. Topologically , the normal bundle N of this
component is a direct sum of a trivial line bundle and the dual of L1;0, with the
.Z=p/–action having weight 1 on each component.

Proof (i) The relevant rational curves have two components C D C� [� CC;
see Figure 24. C� carries marked points z1; : : : ; zp and also the node �, and can
be identified with (5-19), in such a way that � corresponds to 1; the stable map is

�

z1

z2

z3

z0

CCC�

(ii)

z0

CC

z1

z2

z3

C�

(i)

�

Figure 24: The fixed loci from Lemma 9.4 (with p D 3). The lighter shaded
components are those where the map is constant.
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constant on that component. The other component CC carries the node � and the
marked point z0; the stable map on that component represents A. The fiber of the
normal bundle to the fixed locus at such a point can be canonically identified with
T�C�˝ T�CC; see eg [31, Proposition 3.31]. The identification of C� with (5-19)
mentioned above provides a distinguished isomorphism T�C� Š C over the entire
stratum, and also shows that the action of Z=p on T�C� has weight �1. By definition,
T�CC is the dual of the cotangent line which is the fiber of L2;1, and carries the trivial
Z=p–action.

(ii) Here, the curves also have two components C DC�[�CC, with details as follows;
see again Figure 24. There are no marked points on C�, and ujC� represents A. The
other component is isomorphic to (5-19), compatibly with all marked points and so
that the node � corresponds to 0 2 xC; and ujCC is constant. The fiber of the normal
bundle to the fixed locus at such a point can be written as an extension

(9-21) 0! T�.CC/!N ! T�.C�/˝T�.CC/! 0:

The tensor product in the right term again expresses gluing together the two components.
This time, because � is identified with the point 0 in (5-19), the Z=p–action has weight 1

on T�.CC/ŠC. The subspace on the left in (9-21) corresponds to staying inside the stra-
tum of nodal curves, but moving the position of the node on CC. Topologically (9-21)
splits, even compatibly with the .Z=p/–action, leading to the desired statement.

Reformulating the definition of quantum Steenrod operations, one can say that the
pairing .y;x/ 7!

R
X yQ Stp;A.x/ is obtained as follows:

(9-22)

H j .X IFp/˝H l.X IFp/

��

// H
pj

Z=p.X
pIFp/˝H l.X IFp/

H
pjCl

Z=p .X pC1IFp/

ev�
pC1

��

H
pjCl�2n�2c1.A/C6

Z=p .pointIFp/ H
pjCl

Z=p . xM˘
pC1

.X IA//R Z=p

M˘
pC1

.X IA/

oo

The ! is (the topological version of) the equivariant diagonal map (5-11), and the
integration map is the pairing with the equivariant fundamental class of the moduli
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space. The localization theorem for Z=p–actions [1, Proposition 5.3.18] shows that
this integral can be computed in terms of the fixed locus:

(9-23)
Z Z=p

xM˘
pC1

.X IA/

w D

Z
F

.wjF /eZ=p.N /�1 for w 2H�Z=p.
xM˘pC1.X IA//;

where eZ=p.N / is the equivariant Euler class of the normal bundle. Applying this to the
description from Lemma 9.4, with w being a class pulled back by evaluation, we get:

Corollary 9.5 The contribution of a holomorphically indecomposable class A, which
has regular moduli spaces , to the quantum Steenrod operation is

(9-24)
Z

X

y Q Stp;A.x/

D�t�1
hy; .1C t�1 /�1 Stp.x/i2;AC t�2

h.1� t�1 /�1y Stp.x/i1;A:

The use of an integrable complex structure is not really necessary. It was convenient for
expository purposes, because it makes the moduli spaces into differentiable manifolds,
so that we can talk about the normal bundle to the fixed locus. However, (9-23) also
applies to actions on topological manifolds, provided that they are linear in local
topological charts near the fixed locus (thereby defining a notion of normal bundle).
One can prove that property for regular moduli spaces of pseudoholomorphic curves
by standard gluing methods.

Clearly, (9-24) is compatible with the formula (9-19), which we obtained by other
means (conversely, one could specialize our earlier argument to only use the class A,
and thereby recover (9-24) from it). In principle, this localization method should apply
more generally to classes A that are p–indecomposable: by that, we mean that one
can’t write ADpA1CA2C� � �CAr for r � 1 and nonzero classes A1; : : : ;Ar which
are represented by holomorphic curves (this is always satisfied if �X �A < p). In
that situation, there is another component to the fixed locus, which corresponds to
the final sum in (9-19). However, note that there are significant technical issues: one
can no longer assume that the moduli spaces under consideration are smooth, hence
presumably needs to apply a virtual analogue of localization, analogous to [30]. Maybe
the most salient argument in favor of the direct approach is that it shows how, when
going beyond the situations we have considered so far, the existence of p–fold covered
curves complicate the situation: such curves yield yet more components of the fixed
locus of the Z=p–action, whose contributions would need to be studied separately.

Geometry & Topology, Volume 27 (2023)



Formal groups and quantum cohomology 3045

9d Basic examples

From this point onwards, we return to the monotone context from the main part of the
paper — actually, our first two examples are only spherically monotone, meaning that
the symplectic class and first Chern class are positive proportional on �2.X /, but that’s
just as good for our purpose. In terms of formulae such as (9-19), this simply means
that all expressions are polynomials in q for degree reasons, and hence it is permitted
to remove the formal variable by setting q D 1.

Example 9.6 Let X D T 2�CP2. We consider pD 2, take any x 2H 1.T 2IF2/, and
let l 2H 2.CP2IF2/ be the generator. The classical contribution is

(9-25)

8<:
„2.x˝ 1/D x˝ 1;

„2.x˝ l/D x˝ l2;

„2.x˝ l2/D 0:

For degree reasons, the only other contribution comes from the class A of a line in CP2,
and in view of of invariance under symplectic automorphisms, that contribution must
be that Q„2;A.x˝ l2/ is some multiple of x˝ l . Using the notation � D t1=2, we
have Q St.x˝ l2/D t5=2.x˝ l2/. Take some y 2H 1.T 2IF2/. Then (9-24) says that

(9-26)
Z

X

.y˝ l/Q St2;A.t5=2.x˝ l2//D t1=2
hy˝ l;  .x˝ l2/i2;A

D t1=2

�Z
T 2

yx

�
hl;  l2

iCP2;2;A:

In the rightmost term, the Gromov–Witten invariant is taken in CP2, and we have
marked that notationally (to get to that expression, we have used the fact that all our
curves are constant in T 2–direction). Geometrically, what we are considering in that
term is the space of all lines in CP2 going through a specific line Z (representing l) and
a point q 62Z (representing l2). That moduli space can be identified with Z, and the
normal bundle to Z is the dual to the line bundle which gives rise to the gravitational
descendant in the formula. Hence, hl;  l2iCP2;2;A D 1.

Let’s pass to the algebraic closure F2, with a nontrivial third root of unity � 2 F2.
This yields a splitting of 1 2 QH�.CP2IF2/ into idempotents uj D 1C �j l C �2j l2.
The natural extension of Q„2 to H odd.X IF2/ is linear in a Frobenius-twisted sense,
meaning that Q„2.� � /D �

2Q„2. � /. From our previous computations, it follows that

(9-27) Q„2.x˝uj /D x˝uj :
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Let’s see how this might look from a categorical viewpoint, along the lines of Remark
1.10. The Fukaya category of CP2 over F2 is more properly described as a collection of
three categories, each of which is semisimple, and which correspond to the idempotent
summands F2uj in quantum cohomology. Unfortunately, we cannot introduce a
meaningful version of the Fukaya category of T 2 without Novikov parameters, because
there are no nontrivial monotone Lagrangian submanifolds. However, the diagonal in
the Fukaya category of X �X makes sense in a monotone context, so we can frame the
discussion in that language. Algebraically, the diagonal splits as the direct sum of three
objects, again corresponding to the uj . We can take one of those summands and equip
it with a flat line bundle, or formal family of flat line bundles, in the T 2–direction.
The convolution of such Lagrangian correspondences gives us H 1.T 2IGm/ D G2

m,
respectively its formal completion. Since we can do that independently for all three
summands, we see the formal completion of G6

m appearing, which is consistent with
(9-27). If one wanted to work over F2 itself, only the idempotents u0 and u1C u2

would be defined, giving rise to a more complicated picture of the Fukaya category.

Example 9.7 Along the same lines, take X D T 2�CP1�CP1, but now with p D 3.
Take x;y 2H 1.T 2IF3/ and k; l 2H 2.CP1 �CP1IF3/. The only classes A which
contribute to Q„3.x˝k/ are those which yield the two rulings of X , and hence satisfy
hŒpoint�i1;A D 1. For each such class, (9-24) yields

(9-28)
Z

X

.y˝ l/Q„3;A.x˝ k/D�h.y˝ l/.x˝ k/i1;A D�

Z
X

.y˝ l/.x˝ k/:

Adding up their contributions yields

(9-29) Q„3 D�2 idD id on H 3.X IF3/.

The same holds on H 1.X IF3/; see (1-14). The corresponding question for H 5.X IF3/

is just outside the reach of our methods, because there is a potential contribution from
classes that are 3 times that of a ruling.

This time, the Fukaya category of CP1�CP1 splits into four semisimple pieces over F3,
so one expects to see the product of four copies of the formal group associated to T 2,
meaning a total of yG8

m, which is compatible with our (partial) computation.

9e Fano threefolds

The remaining examples will be monotone symplectic six-manifolds, which have
H1.X IZ/ D 0 and H�.X IZ/ torsion-free (in fact, they will be algebraic, meaning
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Fano threefolds). We will assume that there is some � 2 Z such that

(9-30) c1.X /�x D �x for x 2H 3.X /;

or, equivalently,
hy;xi2 D �

Z
X

yx for x;y 2H 3.X /:

From now on, we fix a prime p, and our notation will be that x;y 2H 3.X IFp/. The
classical Steenrod operations applied to x have potentially nontrivial components in
degrees 3, 4 and 6. The degree 4 component is the Bockstein ˇ, which is zero because
all our classes come from H 3.X IZ/. The degree 6 component is the t .3p�7/=2� part
of Sq.x/. For p D 2, this is just the cup square, which again is zero by lifting to
H 3.X IZ/; and for p > 2, it involves the Bockstein, see (1-6), hence is again zero. The
outcome is that only the degree 3 component survives. Taking the constants in (1-6)
into account (and omitting X from the notation), this says that

(9-31) Stp.x/D

(
xt3=2 if p D 2;

�

�
p�1

2
!
�
xt .3p�3/=2 if p > 2:

As a consequence of (9-30) (and the divisor and TRR relations in Gromov–Witten
theory), we have for 0< d � p� 2,

(9-32) hy;  dxi2 D
�

d C 1
hy;  d�1xi2 D � � � D

�dC1

.d C 1/!

Z
X

yx:

Let’s look at
R
X y Q„p.x/. For degree reasons, the curves that contribute to this lie in

classes A with c1.A/D p� 1, hence (setting �X D c1.X / in view of monotonicity)
Corollary 9.3 applies. At first sight, the outcome reads as follows:

(9-33)
Z

X

yQ„p.x/

D�

X
��ADp�1

hy;  p�2xi2;A�

Z
X

yx
X

��ADp�1

h p�3Œpoint�i1;A

C

X
d0D��A0>0
d1D��A1>0
d0Cd1Dp�1

hy; .�1/d0�1 d0�1xi2;A0
h d1�2Œpoint�i1;A1

:

Using (9-32), one simplifies this to

(9-34)
Z

X

y Q„p.x/

D

�Z
X

xy

��
�
�p�1

.p� 1/!
C

X
2�d�p�1

.�1/d�1 �p�1�d

.p� 1� d/!
h d�2Œpoint�i1

�
:
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Besides �, the enumerative ingredient that enters is the quantum period (see [12], where
the notation is GX )

(9-35) …D 1C
X
d�2

qd
h d�2Œpoint�i1;A;

or more precisely, what’s obtained from it by truncating mod qp and then considering
the coefficients as lying in Fp. In that notation, one can also write (9-34) as

(9-36) Q„p D�.q
p�1–coefficient of e��q…/ id:

All the examples that we will consider are instances of [12, Theorem 4.7], itself based
on Givental’s work.

Example 9.8 Let X be the intersection of two quadrics in CP5, which is also a moduli
space of stable bundles (with rank two and fixed odd-degree determinant) on a genus
two curve. This has

(9-37) Hl.X IZ/D

8<:
Z4 if l D 3;

Z if l D 0; 2; 4; 6;

0 otherwise.

The first Chern class is twice a generator of H 2.X IZ/. For degree reasons, this implies
that Q„2D 0. This is not necessarily indicative of the general picture, since we already
know that the prime pD2 is exceptional [15, page 137]: the small quantum cohomology
ring has QHeven.X /Š ZŒh�=h2.h2� 16/, hence does not split into summands if one
reduces coefficients to F2.

Let’s look at odd primes. We have �D 0 since there are no classes A with �X �AD 1.
The quantum period is [13, page 135]

(9-38) …D
X
d�0

.2d/!2

.d!/6
q2d
D 1C 22q2

C 32q4
C
�

10
3

�2
q6C

�
35
12

�2
q8C � � � :

Applying (9-34) yields

(9-39) Q„p D�
.p� 1/!2�

1
2
.p� 1/

�
!6

idD .�1/.p�1/=2 id for odd p:

We should point out that the first nontrivial case pD 3, where the enumerative geometry
is that of lines on X , is amenable to the more direct method of Section 9c. The space
of lines is regular [59, Theorem 2.6] (it is isomorphic to the Jacobian of the genus
two curve associated to X [59, Theorem 4.7]), and there are 4 lines passing through a
generic point [16, page 135]. That information enables one to apply (9-24) and obtain
Q„3 D�4 idD�id.
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When thinking about the outcome of this computation, it may be useful to know that
there is an algebraic group whose formal completion shows the same behavior, namely

(9-40) G D fxC iy W x2
Cy2

D 1g;

where i is an abstract symbol such that i2 D �1 (some readers may feel more com-
fortable writing this as a group of 2 � 2 rotation matrices). It is a nonsplit torus,
which becomes isomorphic to Gm over any coefficient ring that contains an actual root
of �1. To write down the group law for the completion yG, one can use the rational
parametrization z D y=.1Cx/, in which it is given by

(9-41) z1 � z2 D
z1C z2

1� z1z2

:

The pth power map, for primes p > 2, is .xC iy/p � xpC .�1/.p�1/=2iyp mod p,
or for (9-41),

(9-42)
p‚ …„ ƒ

z � � � � � z �
.�1/.p�1/=2yp

1Cxp
D .�1/.p�1/=2zp

D .�1/.p�1/=2z for z 2 Fp:

A natural conjecture would be that the formal group associated to X is yG4. Note that
in [69], a direct summand of the Fukaya category of X was shown to be equivalent
to the Fukaya category of the genus two curve. This seems to suggest a role for yG4

m

rather than yG4 (compare Remark 1.10). However, [69] works with complex number
coefficients. To the author’s best knowledge, we do not have a version of that argument
that would work over Z or Fp , and hence, it remains an open question to interpret the
computation above in terms of mirror symmetry.

Example 9.9 Let X � CP4 be a cubic threefold. This situation is parallel to the
previous example, except that H 3.X / is ten-dimensional. The quantum period is
[13, page 134]

(9-43) …D
X

d

.3d/!

.d!/5
q2d
D 1C 6q2C

45
2

q4C
140

3
q6C

1925
32

q8C � � � :

One again has Q„2 D 0 and �D 0 for degree reasons, but this time

(9-44) Q„p D�

�
3p�3

2
!
�

�
p�1

2
!
�5 idD 0 for p > 2.
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Example 9.10 The quartic threefold has [13, page 136]

(9-45) …D e�24q
X

d

.4d/!

.d!/5
qd :

We have �D�24, the “big eigenvalue” in the terminology of [67, Corollary 1.14]. The
e�24q cancels out the corresponding term in (9-36), and we again have Q„p D 0.

In both of the previous examples, homological mirror symmetry is known to hold [67],
but again, arithmetic aspects are not addressed in that paper. Even assuming that the
answer given there is true arithmetically, it takes the form of an orbifold LG (Landau–
Ginzburg) model with a highly degenerate singular point. For our purpose, one would
need to understand the formal completion near the identity of the derived automorphism
group of such an LG model, which is a purely algebrogeometric problem, but one
whose answer is not known to this author. This means that we do not have a mirror
symmetry interpretation for the vanishing of Q„p.

Example 9.11 (previously mentioned in Example 1.11) Let X be a hypersurface
of bidegree .1; 2/ in CP1 � CP3; equivalently, this is obtained by blowing up the
intersection of two quadrics (which is an elliptic curve) in CP3. It is a Fano threefold
satisfying

(9-46) Hl.X IZ/D

8<:
Z2 if l D 2; 3; 4;

Z if l D 0; 6;

0 otherwise.

More precisely, we have H2.X IZ/ Š H2.CP1�CP3IZ/ by inclusion, and for the
exceptional divisor T 2 �CP1 � X , we similarly have H3.T

2�CP1/ŠH3.X IZ/.
The classes potentially represented by holomorphic curves are

(9-47) AD .d1; d2/; with d1; d2 � 0 and �X �AD d1C 2d2:

Curves in the unique class A D .1; 0/ with �X �A D .1; 0/ form the ruling of the
exceptional divisor. From that, one easily sees that �D�1. We have [13, page 183]

(9-48) e��q…D eq…D
X

d1;d2

.d1C 2d2/!

.d1!/2.d2!/4
qd1C2d2 ;

and hence

(9-49) Q„p D id
X

d1C2d2Dp�1

1

.d1!/2.d2!/4
:

See (1-16) for the first few terms. As before, the lowest-degree case pD 2 is amenable
to more direct methods, and was in fact determined in [74].

Geometry & Topology, Volume 27 (2023)



Formal groups and quantum cohomology 3051

One can write

(9-50)
X

d1C2d2Dm

m!2

.d1!/2.d2!/4
D

X
d1C2d2Dm

� m

d1d2d2

�2
D constant coefficient of zW m;

where
zW .x0;x1;x2;x3/D

.x2
0
Cx2

1
Cx2x3/.x0x1Cx2

2
Cx2

3
/

x0x1x2x3

:

This is an elementary combinatorial argument: when we expand

.x2
0 Cx2

1 Cx2x3/
m.x0x1Cx2

2 Cx2
3/

m;

the monomial .x0x1x2x3/
m arises by picking each x2

k
term an equal number (d2 in

our formula) of times, which leads to the multinomial coefficients. Setting mD p� 1

allows us to apply that to (9-49). Next, consider the intersection of the two quadrics
that appear in (9-50),

(9-51) C D fx2
0 Cx2

1 Cx2x3 D 0; x0x1Cx2
2 Cx2

3 D 0g � P3:

There is an elementary number theory argument which allows one to count the number
of points of C.Fp/ modulo p; it goes as follows. By little Fermat,

(9-52)
X

x0;:::;x3

.1�x2
0 �x2

1 �x2x3/
p�1.1�x0x1�x2

2 �x2
3/

p�1
2 Fp

counts the number of points in F4
p lying on the intersection of our quadrics. On the

other hand,

(9-53)
X

x0;:::;x3

x
i0

0
� � �x

i3

3
D

�X
x0

x
i0

0

��X
x1

x
i1

1

��X
x2

x
i2

2

��X
x3

x
i3

3

�

D

�
1 for .i0; : : : ; i3/D .p� 1; : : : ;p� 1/;

0 for all other 0� i0; : : : ; i3 � p� 1:

If we expand (9-52) and apply (9-53) to the resulting terms, the outcome is that (9-52)
is the x

p�1
0

x
p�1
1

x
p�1
2

x
p�1
3

–coefficient of .x2
0
�x2

1
�x2x3/

p�1.x0x1�x2
2
�x2

3
/p�1,

which is what appears in (9-50). Adjusting that to the point-count in projective space,
we get

(9-54) 1� #C.Fp/� constant coefficient of zW m mod p:

The isogeny class of the elliptic curve Jac.C / is listed as [43, Isogeny class 15.a],
and its associated modular form is (1-17). Point-counting becomes relevant for us
through a theorem of Honda [34; 56; 32], which says that 1� #C.Fp/ mod p can be
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identified with the pth coefficient of the pth power map for the formal group which is
the completion of Jac.C / (this coefficient is sometimes called the Hasse invariant of
the mod p reduction of C ; maybe more precisely, it is a special case of the Hasse–Witt
matrix of an algebraic curve). The natural interpretation of this in terms of mirror
symmetry is the following:

Conjecture 9.12 Take X as in Examples 1.11 and 9.11. The Fukaya category of X

contains a direct summand equivalent to the derived category of sheaves on a genus
one curve, whose Jacobian is isogeneous to that of C . (The remaining summands are
expected to be semisimple: they do not contribute to H odd.X / or to our formal group.)

It turns out that this is compatible with predictions coming from “classical” enumerative
mirror symmetry. There (see eg [12, Definition 4.9]), a mirror superpotential W 2

ZŒy˙1
1
;y˙1

2
;y˙1

3
� for X needs to have the property that

(9-55) …D

Z
jy1jDjy2jDjy3jD1

eqW dy1 ^ dy2 ^ dy3

y1y2y3

D

1X
dD0

constant coefficient of W d

d!
qd :

There can be infinitely many different superpotentials for the same X , related by
certain birational changes of variables. Assuming that the anticanonical linear system
for X contains a smooth divisor, then the actual mirror of X , formed relative to that
divisor, should come with a proper (fibers are compact) function that specializes to
those superpotentials in different Zariski charts.

Getting back to our example: the function zW .1;x1;x2;x3/� 1 satisfies the property
(9-55), as a consequence of (9-50), but fails another requirement for mirror superpoten-
tials, that of having a reflexive Newton polyhedron. Instead, the precise relation is as
follows. One of the superpotentials for our specific X , given in [11, Polytope 198], is

(9-56) W D y1Cy2Cy3Cy�1
1 y2y3Cy1y�1

3 Cy�1
2 Cy�1

1 Cy�1
2 y�1

3 :

One can then write

(9-57) zW .1;x1;x2;x3/� 1DW .x�1
1 x2x�1

3 ;x�1
1 x�1

2 x3;x
�1
1 x2

2/:

The monomial coordinate change in (9-57) is a Z=4–cover of the .y1;y2;y3/–torus by
the .x1;x2;x3/–torus; such coordinate changes do not affect oscillating integrals as
in (9-55). It is clear from the definition (9-50) that the critical locus of zW .1;x1;x2;x3/
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contains an affine part of C , lying in the fiber zW �1.0/. Hence, the critical locus of W

contains an affine part of a Z=4–quotient of C , lying in the fiber W �1.�1/. Moreover,
the Hessian in transverse direction to those critical loci is nondegenerate over Q

(or over Fp , provided that p is large). In view of the expected correspondence between
the Fukaya category of X and the category Db

sing associated to a compactification of W ,
this provides strong support for Conjecture 9.12, and also gives a specific candidate
genus-one curve (within the given isogeny class).

10 Sign conventions

Signs are important for some of our example computations. This section clarifies the
conventions used for Z=p–equivariant (and therefore Symp–equivariant) cohomology,
and for the Steenrod operations.

10a Equivariant cohomology

Take the standard classifying space BS1 D S1=S1 DCP1. Let t 2H 2
S1.point/D

H 2.CP1/ be the Chern class of O.�1/. Given a representation V of S1, form the
associated vector bundle

(10-1) .V �S1/=S1
!CP1; where g � .v; z/D .gv;g�1z/:

In this way, the representation Vk of weight k corresponds to the line bundle O.�k/.
We use the same convention as in (10-1) when forming the Borel construction (the
equivariant cohomology of a space), and similarly for equivariant Euler classes of
vector bundles.

Given a representation Vk1
˚� � �˚Vkd

, its equivariant Euler class, defined as the Euler
class of the associated bundle (10-1), is therefore

(10-2) eS1.V /D k1 � � � kd td :

We embed Z=p � S1 in the obvious way, and take the mod p reduction of t to be the
generator of H 2

Z=p.pointIFp/, leading to a corresponding version of (10-2). We take
� 2H 1

Z=p.pointIFp/ to be the tautological generator, meaning the one associated to
the identity map Z=p D �1.B.Z=p//! Fp. Then, the Bockstein satisfies

(10-3) ˇ.�/D�t:
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Example 10.1 Fix some odd p. Take the fundamental representation of Z=p on Rp ,
by cyclic permutations, and let V be its quotient by the trivial subspace R.1; : : : ; 1/.
Our orientation convention is that taking first .1; : : : ; 1/, and then after that lifts of
an oriented basis of V , yields an oriented basis of Rp. If we temporarily ignore
orientations, then clearly

(10-4) V Š V1˚V2˚ � � �V.p�1/=2:

This decomposition can be made explicit in terms of a discrete Fourier basis. A
computation of the determinant of that basis (compare eg [52]) shows that (10-4) is
in fact orientation-preserving. As a consequence,

(10-5) eZ=p.V /D
�

p�1

2

�
! t .p�1/=2:

Example 10.2 To check the sign in (10-3), let’s replace the infinite-dimensional space
K.Z=p; 1/ by the lens space L.p; 1/ D S3=.Z=p/, with Z=p acting diagonally on
S3 D fjz1j

2C jz2j
2 D 1g � C2. The relation between the homological Bockstein b

and its cohomological counterpart ˇ is that

(10-6) hˇ.y/;xiC .�1/jyjhy; b.x/i D 0:

Consider fjz1j � 1; z2D
p

1� jz1j
2g �L.p; 1/, with the complex orientation from z1.

This is a Z=p–cycle, whose homology class we write as x. Applying the homological
Bockstein yields a 1=p fraction of the boundary, which is exactly the circle fz2D 0g �

L.p; 1/, with its orientation given by going around z1 anticlockwise from 1 to e2� i=p .
This means that by definition of � ,

(10-7) h�; b.x/i D 1:

The class �t is Poincaré dual to the zero-locus of a section of the pullback of O.1/,
hence represented by the cycle fz1 D 0g, with the usual orientation of the z2 circle.
The intersection number of that and the mod p cycle defined above is

(10-8) h�t;xi D 1:

From (10-6), for y D � , and (10-7) we get hˇ.�/;xi D 1, which together with (10-8)
yields the desired (10-3).

10b Steenrod operations

The appearance of combinatorial constants similar to those in (1-6) goes back to the
classical literature; see eg [70, pages 107 and 112]. The point of introducing those is to
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make sure the operations satisfy the Steenrod axioms. Since a comparison between
different definitions is made more complicated by sign conventions for equivariant
cohomology, we want to explain one way of checking the choices made here.

Fix an odd prime p. Consider the Steenrod axiom which says that P0.x/ D x for
x 2H�.X IFp/. With our convention (1-6), this is equivalent to

(10-9) Stp.x/D .�1/�
�

p�1

2
!
�jxj

t .p�1/=2jxjx

C terms of higher degree in H�.X IFp/,

with � as in (1-7). Suppose that X is an oriented closed manifold, and that we apply
this to x D Œpoint� 2H dim.X /.X IFp/. By definition, Stp.x/ is obtained from

(10-10) H dim.X /.X IFp/
pth power
�����!H

p dim.X /
Z=p .X p

IFp/

restriction
to diagonal
�����!H

p dim.X /
Z=p .X IFp/:

Hence, it maps x to itself times the equivariant Euler class of the normal bundle to the
diagonal X �X p , restricted to a point. If X is one-dimensional, that normal bundle is
given by the representation V from Example 10.1. In general, it can be identified with
dim.X / copies of V , up to a Koszul reordering sign .�1/|,

(10-11) |D
jxj.jxj � 1/

2

p.p� 1/

2
�
jxj.jxj � 1/

2

p� 1

2
mod 2:

Combining that with the jxjth power of (10-5) precisely yields the constant factor in
(10-9).
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AGT relations for sheaves on surfaces

ANDREI NEGUT,

We consider a natural generalization of the Carlsson–Okounkov Ext operator on
the K–theory groups of the moduli spaces of stable sheaves on a smooth projective
surface. We compute the commutation relations between the Ext operator and the
action of the deformed W –algebra on K–theory, which was developed by the author
in previous work. The conclusion is that the Ext operator is closely related to a vertex
operator, thus giving a mathematical incarnation of the Alday–Gaiotto–Tachikawa
correspondence for a general algebraic surface.

14J60; 14D21

1 Introduction

1.1 Fix a smooth projective surface S over an algebraically closed field of characteristic
zero (henceforth denoted by C), and invariants .r; c1/ 2N �H 2.S;Z/. An important
object in algebraic geometry is the moduli space

(1-1) MD
1G

c2Dd..r�1/=2r/c2
1
e

Mc2

of H–stable sheaves on S with invariants .r; c1; c2/ for any c2 2 Z. The reason that
c2 is bounded below is called Bogomolov’s inequality, which states that there are no
H–stable sheaves if c2 < ..r � 1/=2r/c2

1
. We make the same assumptions as in our

earlier work [15; 17; 16]:

� Assumption A gcd.r; c1 �H /D 1.

� Assumption S Either !S ŠOS , or c1.!S / �H < 0.
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Assumption A implies that M is proper and there exists a universal sheaf1

(1-2)
U

��

M�S

Assumption S implies that M is smooth.

1.2 The enumerative geometry of the moduli space of stable sheaves is quite rich, as
evidenced by Donaldson invariants arising as certain integrals of cohomology classes
on M. In the present paper, we will consider algebraic K–theory instead of cohomology,
a process which accounts for the adjective “deformed” in the representation-theoretic
structures explained in Section 1.6. Explicitly, we consider the following algebraic
K–theory groups with Q coefficients:

(1-3) KM D

1M
c2Dd..r�1/=2r/c2

1
e

K0.Mc2
/˝Z Q:

Let m 2 Pic.S/, and consider two copies M and M0 of the moduli space (1-1). These
two copies may be defined with respect to a different c1 and stability condition H , but
we assume that the rank r of the sheaves parametrized by M and M0 is the same. In
this paper, we will mostly be concerned with the virtual vector bundle

(1-4)

Em

��

M�M0
�1

yy

�2

&&

M M0

(a straightforward generalization of the construction of Carlsson and Okounkov [7])
given by

(1-5) Em D R�.m/�R��.RHom.U 0;U ˝m//:

The RHom is computed on M �M0 � S : the notation U , U 0 and m stands for the
pullback of the universal sheaf from M�S and M0 �S , respectively, as well as the
pullback of the line bundle m from S . Similarly, � WM�M0 �S !M�M0 is the
standard projection, so Em is a complex of coherent sheaves on M�M0.
1We require the universal sheaves on the various connected components of M to be constructed as in
[15, Section 5.9], which will ensure that they lift in a compatible way to the moduli spaces Z1 and Z�

2
of

Section 2.4.

Geometry & Topology, Volume 27 (2023)



AGT relations for sheaves on surfaces 3063

1.3 Any Schur functor applied to Em gives rise to a K–theory class on M �M0,
which in turn induces an operator from KM0 to KM via the usual formalism of corre-
spondences. With this in mind, let us consider the following immediate generalization
of Carlsson and Okounkov [7, Equation (3)] and Carlsson, Nekrasov and Okounkov
[6, Equation (19)].

Definition 1.4 Consider the so-called Ext operator KM0
Am
�!KM given by

(1-6) Am D �1�.^
�Em ��

�
2 /;

with �1 and �2 as in (1-4). The pushforward and pullback maps are well-defined due
to the properness and smoothness of M and M0, respectively.

In (1-6), the symbol ^�Em denotes the total exterior power of Em; as Em is in general a
complex of coherent sheaves, some explanation is in order. Specifically, consider

(1-7) ^
�

�
Em

t

�
D

X
k�0

.�t/�k Œ^kEm� 2KM�M0 ŒŒt
�1��;

where the right-hand side is the power series expansion of a rational function in t ; see
Section 3.1 for details. Then the quantity ^�Em in (1-6) denotes the t D 1 specialization
of (1-7). If this specialization is not well-defined, then all the results in Sections 1.6
and 1.9 hold with m replaced by m=t , and with all formulas being equalities of rational
functions in t ; see Section 3.1 for details.

Example 1.5 Let MDM0 and mDOS=t , with t being a formal parameter. Then
Assumption S implies that EOS

is locally free (up to a constant sheaf) and that

EOS
j� Š TanM;

where ��M�M0 denotes the diagonal. By a simple computation involving corre-
spondences, the isomorphism above implies that

Tr.AOS=t /D
X
k�0

.�t/�k�.M;^k TanM/

(up to a constant rational function in t). The right-hand side is the �t –genus of the
moduli space M, as considered for example in Göttsche and Kool [10].

1.6 In the present paper, we will seek to determine the Ext operator Am using the
representation-theoretic properties of the vector space KM. To this end, we need

Geometry & Topology, Volume 27 (2023)
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to make KM into a representation of an appropriate algebra which is “big” enough,
in order to constrain the operator Am as much as possible. A candidate for such an
algebra is Ar , namely a particular integral form of the deformed W –algebra of type glr
(initially defined in Awata, Kubo, Odake and Shiraishi [1] and Feigin and Frenkel [8]).
The main purpose of our work in [15; 17; 16] is to construct an action Ar ÕKM; we
will recall the construction in Section 2, but let us summarize the main idea here. In
[17, Section 6.7], we construct certain geometric operators

(1-8) KM
Wn;k
��!KM�S for all .n; k/ 2 Z�N:

Under Assumptions A and S, we show in [16, Theorem 4.15] that the operators Wn;k

satisfy the quadratic commutation relations developed in [1] and [8]; see (2-28) for the
specific form of these relations in our language. In [17, Theorem 6.9], we further show
that Wn;k D 0 for all n 2 Z and k > r , which tautologically implies that the operators
(1-8) yield an action Ar ÕKM. Write

(1-9) q D Œ!S � 2KS WDK0.S/˝Z Q:

Given two copies M and M0 of the moduli space of stable sheaves, each with its own
universal sheaf U and U 0, respectively, we may write

(1-10) uD detU and u0 D detU 0

for the determinant line bundles on M�S and M0 �S , respectively. We set

(1-11)  D
mr u

qr u0
;

which is the class of a line bundle on M�M0 � S (it is implicit that m and q are
pulled back from S ). Our main result, which will be proved in Section 3, is:

Theorem 1.7 We have the following interaction between the Ext operator (1-6) and
the generators (1-8) of the W –algebra action:

(1-12) AmWk.x/.1�x/DmkWk.x /Am

�
1�

x

qk

�
;

where Wk.x/D
P

n2Z Wn;k=x
n. The series coefficients of the two sides of (1-12) are

maps KM0 !KM�S which arise from certain correspondences in KM�M0�S .

Remark See Section 2.1 for a review of correspondences as K–theoretic operators.
In particular, the composition of operators depends on which of Am and Wk.x/ is on

Geometry & Topology, Volume 27 (2023)



AGT relations for sheaves on surfaces 3065

the left of the other:

AmWn;k WKM0
Wn;k
��!KM0�S

Am�IdS
�����!KM�S ;

Wn;kAm WKM0
Am
��!KM

Wn;k
��!KM�S :

The expressions above are actually given by certain correspondences in KM�M0�S .
Then the factors q and  on the right-hand side of (1-12) indicate multiplication of the
aforementioned correspondences by various powers of the line bundles (1-9) and (1-11).

1.8 A major motivation for the study of the Ext operator Am stems from mathematical
physics: as explained in Carlsson, Nekrasov and Okounkov [6], the operator Am encodes
the contribution of bifundamental matter to partition functions of 5d supersymmetric
gauge theory on the algebraic surface S times a circle. Moreover, the deformed W –
algebra Ar encodes symmetries of Toda conformal field theory. In this language,
(1-12) becomes a mathematical manifestation of the Alday–Gaiotto–Tachikawa (AGT)
correspondence between gauge theory and conformal field theory, by describing the Ext
operator Am in terms of its commutation with W –algebra generators. To the author’s
knowledge, the present paper is the first mathematical treatment of AGT over general
algebraic surfaces in rank r > 1 (the reference [6] used different techniques from ours
to describe the Ext operator in the r D 1 case).

However, we note that formulas (1-12) are not enough to completely determine Am for
a general smooth projective surface S , and one should instead work with a deformed
vertex operator algebra which properly contains several deformed W –algebras Ar . In
the nondeformed case, a potential candidate for such a larger algebra was studied in
Feigin and Gukov [9], where the authors expect that it contains operators which modify
sheaves on S along entire curves, on top of our operators Wn;k which modify sheaves
at individual points. While we give a complete algebrogeometric description of the
latter operators, we do not have such a description for the former operators. Once such
a description is available, we hope that one can extend Theorem 1.7 to a bigger vertex
operator algebra properly containing Ar .

There is a situation where formulas (1-12) do indeed determine the Ext operator Am

completely: this corresponds to taking S DA2, replacing M by the moduli space of
framed rank r sheaves on the projective plane, and working with torus equivariant
K–theory; see Section 4.1 for details. In this particular case, we showed in [14] that
KM is isomorphic to the universal Verma module of Ar . Theorem 1.7 holds in the
situation at hand, and we will show in Theorem 4.5 that our formulas completely
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determine the Ext operator Am. This precisely yields the AGT correspondence for 5d
supersymmetric gauge theory on A2�S1; see for instance Braverman, Finkelberg and
Nakajima [4], Bruzzo, Pedrini, Sala and Szabo [5], Maulik and Okounkov [12] and
Schiffmann and Vasserot [18] for the history of this correspondence in mathematical
language.

1.9 Alongside the operators (1-8), we constructed in [16, Theorem 4.15] K–theory
lifts of the operators introduced by Grojnowski and Nakajima [11; 13] for r D 1, and
generalized by Baranovsky [2] for any r , in cohomology:

(1-13) KM
Pn
�!KM�S for all n 2 Zn0:

These operators satisfy the Heisenberg commutation relation (2-29), and interact with
the deformed W –algebra generators according to relation (2-30).

Recall the line bundles q and  of (1-9) and (1-11), respectively, and the footnote in
Theorem 1.7 to properly interpret compositions of the operators Am and P˙n.

Theorem 1.10 We have the following interaction between the Ext operator (1-6) and
the Heisenberg operators P˙n for all n> 0:

AmP�n�P�nAm
n
DAm.1� 

n/;(1-14)

AmPn�PnAm
�n
DAm.

�n
� qrn/:(1-15)

In Ar , the series Wr .x/ matches the normal-ordered exponential of the generating
series of the Pn; see Theorem 2.8. With this in mind, it is straightforward to show that
the k D r case of Theorem 1.7 follows from Theorem 1.10.

For any ˛ 2KS , we will write Pnf˛g for the composition

Pnf˛gWKM
Pn
�!KM�S

multiplication by proj�
2
.˛/

�������������!KM�S
proj1�
��!KM;

where proj1 and proj2 are the projections from M�S to M and S , respectively. Let
q1 and q2 denote the Chern roots of the cotangent bundle �1

S
. Any symmetric Laurent

polynomial in q1 and q2 gives rise to a well-defined element of KS , via

q1C q2 D Œ�
1
S � and q D q1q2 D Œ!S �:

Define

(1-16) ˆm DAm exp
� 1X

nD1

Pn

n

�
.qn� 1/q�nr

Œn�q1
Œn�q2

��
;

where Œn�x D 1C xC � � � C xn�1. The expression in curly brackets is an element of
KS because Œn�q1

Œn�q2
is a unit in the ring KS .
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Remark To see that Œn�q1
Œn�q2

is a unit in the ring KS , since the Chern character
gives us an isomorphism KS Š A�.S;Q/, we have q1 C q2 D Œ�

1
S
� 2 2CN and

qD Œ!S �2 1CN , where N �KS denotes the nilradical. Therefore Œn�q1
Œn�q2
2n2CN ,

and is thus invertible in the ring KS .

Corollary 1.11 Formulas (1-12), (1-14) and (1-15) imply

ŒˆmWk.x/�mkWk.x /ˆm�

�
1�

x

qk

�
D 0;(1-17)

ˆmP˙n�P˙nˆm
�n
D˙ˆm.

�n
� q˙rn/(1-18)

for all k; n > 0. An operator ˆm satisfying (1-17) and (1-18) is called a vertex
operator.

Acknowledgements I thank Boris Feigin, Sergei Gukov, Hiraku Nakajima, Nikita
Nekrasov, Andrei Okounkov, Francesco Sala and Alexander Tsymbaliuk for many
interesting discussions on the subject of Ext operators and W –algebras. I gratefully
acknowledge the support of NSF grant DMS–1600375.

2 The moduli space of sheaves

2.1 Throughout the present paper, we will work with smooth projective varieties over
the field C. For such varieties X , we let

KX DK0.X /˝Z Q

be the Grothendieck group of the category of coherent sheaves on X , with scalars
extended to Q. Derived tensor product yields a ring structure on KX , and we have
pullback and pushforward maps for any proper l.c.i. morphism X ! Y .

Definition 2.2 Given smooth projective varieties X and Y , any class � 2 KX�Y

(called a “correspondence” in this setup) defines an operator

(2-1) KY
‰�
�!KX ; ‰� D projX �.� � proj�Y /;

where projX ; projY denote the projection maps from X �Y to X and Y , respectively.

The composition of operators (2-1) can also be described as a correspondence

(2-2) ‰� ı‰� 0 D‰� 00 WKZ !KX

Geometry & Topology, Volume 27 (2023)
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for any � 2KX�Y and � 0 2KY �Z , where

(2-3) � 00 D projX�Z�

�
proj�X�Y .�/˝ proj�Y �Z .�

0/
�
;

where projX�Y , projY �Z and projX�Z are the standard projections from X �Y �Z

to X �Y , Y �Z and X �Z. Throughout the present paper, all operators KY !KX

arise from explicit correspondences. While we will use the language of composition of
operators for convenience, what is really happening behind the scenes is composition
of correspondences under the operation .�; � 0/ 7! � 00 of (2-3).

2.3 In Section 1.6, we referred to various operators KM ! KM�S as defining an
action of a certain algebra on KM, and we will now explain the meaning of this notion.
Given two arbitrary homomorphisms (of abelian groups)

(2-4) KM
x;y
�!KM�S ;

their “product” xyj� is defined as the composition

xyj� WKM
y
�!KM�S

x�IdS
���!KM�S�S

IdM ���
����!KM�S

where S
�
�! S �S is the diagonal. It is easy to check that .xyj�/zj� D x.yzj�/j�,

hence the aforementioned notion of product is associative, and it makes sense to define
x1 � � �xnj� for arbitrarily many operators x1; : : : ;xn WKM!KM�S .

Similarly, given two operators (2-4), we may define their commutator

KM
Œx;y�
��!KM�S�S

as the difference of the two compositions

KM
y
�!KM�S

x�IdS
���!KM�S�S ;

KM
x
�!KM�S

y�IdS
���!KM�S�S

IdM �swap�
������!KM�S�S ;

where swap W S �S ! S �S is the permutation of the two factors. In all cases studied
in the present paper, we will have2

Œx;y�D��.z/

for some KM
z
�!KM�S which is uniquely determined (the diagonal embedding ��

is injective because it has a left inverse), and which will be denoted by z D Œx;y�red.
We leave it as an exercise to the interested reader to prove that the commutator satisfies

2Here we abuse notation by writing�� instead of .IdM ��/� for the diagonal map KM�S!KM�S�S .
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the Leibniz rule in the form Œxyj�; z�red D xŒy; z�redj�C Œx; z�redyj�, and the Jacobi
identity in the form

�
Œx;y�red; z

�
redC

�
Œy; z�red;x

�
redC

�
Œz;x�red;y

�
red D 0.

Finally, we consider the ring homomorphism K D ZŒq˙1
1
; q˙1

2
�Sym! KS given by

sending q1 and q2 to the Chern roots of the cotangent bundle of S (therefore, qD q1q2

goes to the class of the canonical line bundle). We will often abuse notation, and write
q1; q2; q for the images of the indeterminates in the ring KS . For any � 2K and any
operator (2-4), we may define their product as the composition

� �x WKM
x
�!KM�S

IdM �.multiplication by �/
��������������!KM�S ;

where we identify � 2K with its image in KS . With this in mind, the ring KS can be
thought of as the “ring of constants” for the algebra of operators (2-4).

2.4 Recall the universal sheaf (1-2), and consider the derived scheme

(2-5) Z1 D PM�S .U/!M�S:

Since U is isomorphic to a quotient V=W of vector bundles on M�S (Proposition 2.2
of [15]), the projectivization in (2-5) is defined as the derived zero locus of a section
of a vector bundle on the projective bundle PM�S .V/. However, it was shown in
[15, Proposition 2.10] that under Assumption S, the derived zero locus is actually a
smooth scheme

Z1 D

1G
cDd..r�1/=2r/c2

1
e

ZcC1;c ;

whose connected components are given by

(2-6) ZcC1;c Df.FcC1;Fc/ such that FcC1�x Fc for some x 2Sg�McC1�Mc ;

and F 0 �x F means that F 0 � F and the quotient F=F 0 is isomorphic to the length
one skyscraper sheaf at the point x 2 S . This scheme comes with projection maps

(2-7)

ZcC1;c

pC

zz

pS

��

p�

##

McC1 S Mc

More generally, we defined a derived scheme Z�
2

in [17, Definition 4.17], which was
shown (under Assumption S, in [17, Proposition 4.21]) to be a smooth scheme

Z�2 D

1G
cDd..r�1/=2r/c2

1
e

Z�cC2;c ;
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whose connected components are given by

(2-8) Z�cC2;c D f.FcC2 �x FcC1 �x Fc/ for some x 2 Sg �McC2�McC1�Mc :

This scheme is equipped with projection maps as in (2-9) below, but we observe that
the rhombus is not derived Cartesian (and this is key to our construction):

(2-9)

Z�
cC2;c

�C

xx

��

%%

ZcC2;cC1

p��pS &&

ZcC1;c

pC�pSxx

McC1 �S

Note that all of the maps in the diagram above are proper, l.c.i. morphisms. Define

(2-10) Z�n D

1G
cDd..r�1/=2r/c2

1
e

Z�cCn;c ;

whose connected components are given by derived fiber products

(2-11) Z�cCn;c D Z�cCn;cCn�2 �
ZcCn�1;cCn�2

: : : �
ZcC2;cC1

Z�cC2;c!McCn� � � � �Mc :

While Z�n is a derived scheme, we note that its closed points are all of the form

(2-12) Z�cCn;cDf.FcCn; : : : ;Fc/ sheaves with FcCn�x � � ��x Fc for some x 2Sg:

Therefore, we have the following projection maps, which only remember the smallest
and the largest sheaf in a flag (2-12):

(2-13)

Z�cCn;c
pC

zz

pS

��

p�

##

McCn S Mc

(the notation generalizes (2-7)). In diagram (2-13), the maps p˙ are l.c.i. morphisms,
and the maps p˙�pS are proper (they inherit these properties from the maps in (2-9)).
Finally, we consider the line bundles L1; : : : ;Ln on Z�n, whose fibers are given by

(2-14) Li j.FcCn;:::;Fc/ D FcCn�i;x=FcCn�iC1;x

on the connected component Z�cCn;c � Z�n.
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2.5 Using the derived scheme (2-11) and the maps (2-13), define for all n; k 2N

KM
Ln;k
��!KM�S ; Ln;k D .�1/k�1.pC �pS /�.Lk

n �p
�
�/;(2-15)

KM
Un;k
��!KM�S ; Un;k D

.�1/rnCk�1un

q.r�1/n
.p� �pS /�

�
Lk

n

Qr
�p�C

�
;(2-16)

where QD L1 � � �Ln, and u is the determinant of the universal sheaf on M�S , as in
(1-10).3 Implicit in the definitions (2-15) and (2-16) is that we define the operators
therein for all components Mc of the moduli space M. We also set

(2-17) Ln;0 D Un;0 D ı
0
n and L0;k D U0;k D ı

0
k :

Finally, consider for all k 2N t 0 the operators

(2-18) Ek WKM
pullback
����!KM�S

multiplication by ^kU
�����������!KM�S :

Since U Š V=W is a coherent sheaf of projective dimension one on M � S (see
[15, Proposition 2.2]), the class ^kU in (2-18) is defined by setting

(2-19) ^
�

�U
z

�
D

^�
�V

z

�
^�
�W

z

�
and picking out the coefficient of z�k when expanding in negative powers of z. The
reason for our notation for the operators (2-15), (2-16) and (2-18) is that these three
operators are respectively lower triangular, upper triangular, and diagonal with respect
to the grading on KM by the second Chern class; see (1-3).

Definition 2.6 [17, Section 6.7] For any .n; k/ 2 Z�N, consider the operators

(2-20) Wn;k D

n2�n1DnX
k0Ck1Ck2Dk

q.k�1/n2 �Ln1;k1
Ek0

Un2;k2

ˇ̌̌̌
�

as k0; k1; k2; n1; n2 run over N t 0 (recall the convention (2-17)).

Note that (2-20) is an infinite sum, but its action on KM is well-defined because the
operators Ln;k (resp. Un;k) increase (resp. decrease) the c2 of stable sheaves by n, and
Bogomolov’s inequality ensures that the moduli space of stable sheaves is empty if c2

is small enough.

3Note that u parametrizes the determinant of any one of the sheaves FcCn; : : : ;Fc in a flag (2-12), since
these sheaves have canonically isomorphic determinants; see Proposition 3.4.
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2.7 Similarly with (2-15) and (2-16), for all n 2N we have the operators

KM
P�n
��!KM�S ; P�n D .pC �pS /�

� n�1X
iD0

qiLn

Ln�i
�p��

�
;(2-21)

KM
H�n
��!KM�S ; H�n D .pC �pS /�.p

�
�/;(2-22)

KM
Pn
��!KM�S ; Pn D .�1/rnun.p� �pS /�

� n�1X
iD0

qiLn

QrLn�i
�p�C

�
;(2-23)

KM
Hn
��!KM�S ; Hn D .�1/rnun.p� �pS /�.Q�r

�p�C/:(2-24)

As a consequence of [17, formulas (2.15) and (5.18)–(5.21)], the operators H˙n are to
the operators P˙n as complete symmetric functions are to power sum functions

(2-25)
1X

nD0

H˙n

z˙n
D exp

� 1X
nD1

P˙n

nz˙n

�ˇ̌̌̌
�

or, explicitly,

H0 D proj�1;

where proj1 WM�S !M is the usual projection, and

H˙1 D P˙1;

H˙2 D
1
2
.P˙1P˙1j�CP˙2/;

H˙3 D
1
6
.P˙1P˙1P˙1j�C 3P˙1P˙2j�C 2P˙3/;

and so on.

Theorem 2.8 [17, Theorem 6.9] The operators (2-20) satisfy

Wn;r D u

n2�n1DnX
n1;n2�0

H�n1
Hn2

ˇ̌̌̌
�

for all n 2 Z;(2-26)

Wn;k D 0 for all k > r:(2-27)

2.9 We will now present the interaction of the operators (2-20), (2-21) and (2-23).
Recall the commutator construction from Section 2.3.

The following theorem was stated in [17, Theorem 3.13 and Proposition 3.15] and
proved in [16, Theorem 4.15] under Assumption S.
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Theorem 2.10 We have the following formulas for all n; n0 2 Z and k; k 0 2N:

ŒWn;k ;Wn0;k0 �D��

� m= l�m0=l 0

min.l;l 0/�min.k;k0/X
kCk0DlCl 0

mCm0DnCn0

c
m;m0;l;l 0

n;n0;k;k0
.q1; q2/ �Wm;lWm0;l 0

ˇ̌̌̌
�

�
;(2-28)

ŒPn0 ;Pn�D��

�
0 if sign.n/D sign.n0/;
ı0

nCn0nŒn�q1
Œn�q2

Œr �qn � proj�M if n0 < 0< n;
(2-29)

ŒWn0;k0 ;P˙n�D��.˙Œn�q1
Œn�q2

Œk 0�qnqn.r�k0/ı
C

˙ �W˙nCn0;k0/;(2-30)

where the coefficients c
m;m0;l;l 0

n;n0;k;k0
.q1; q2/ 2KS were computed algorithmically in [17].

They are certain universal symmetric Laurent polynomials in q1 and q2.

Indeed, we show in [17, Theorem 3.13] that (2-28) is equivalent to the defining relation in
the deformed W –algebra Ar (with�� replaced by .1�q1/.1�q2/). Similarly, relation
(2-29) is the defining relation in the deformed Heisenberg algebra. As we explained in
[17, Definition 5.2 and formulas (5.20)–(5.21)] and proved in [16, Theorem 4.15], the
fact that the operators (2-20), (2-21) and (2-23) satisfy the relations in Theorem 2.10
is precisely what we mean when we say that the deformed W –algebra Ar and the
deformed Heisenberg algebra act on the groups KM.

2.11 Let us consider the operators of Section 2.5 and form the generating series

(2-31) Ln.y/D

1X
kD1

Ln;k

.�y/k
and Un.y/D

1X
kD1

Un;k

.�y/k
:

In other words, these power series are considered as operators

KM
Ln.y/
���!KM�S

r
1

y

z
; Ln.y/D .pC �pS /�

�
1

1� .y=Ln/
�p��

�
;

KM
Un.y/
���!KM�S

r
1

y

z
; Un.y/D

.�1/rnun

q.r�1/n
.p� �pS /�

�
Q�r

1� .y=Ln/
�p�C

�
:

We will also consider the operators

E.y/ WKM
pullback
�����!KM�S

multiplication by ^�.U=y/
��������������!KM�S

r
1

y

z
:

Furthermore, we will consider the generating series

(2-32) L.x;y/D 1C

1X
nD1

Ln.y/x
n and U.x;y/D 1C

1X
nD1

Un.y/

xn
;
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and also set

Wk.x/D

1X
nD�1

Wn;k

xn
;(2-33)

W .x;y/D 1C

1X
kD1

Wk.x/

yk
:(2-34)

The definition of the W –algebra generators in (2-20) is equivalent to

(2-35) W .x;yDx/DL.x;yDx/E.yDx/U.xq;yDx/j�;

where Dx is the q–difference operator in the variable x, ie Dx.f .x// D f .xq/. In
formula (2-35), we place all powers of Dx to the right (resp. left) of all powers of x

when writing down the power series L.x;yDx/ (resp. U.xq;yDx/). In terms of
generating series, formula (2-30) reads

(2-36) ŒWk.x/;P˙n�D��
�
˙Œn�q1

Œn�q2
Œk�qnqn.r�k/ı

C

˙ �x˙nWk.x/
�
:

2.12 Given a rational function F.z/, whose set of simple poles is partitioned into two
disjoint sets P1 tP2 (which may be empty), we will write

(2-37)
Z
P1�z�P2

F.z/D
X
c2P1

Res
zDc

F.z/

z
D�

X
c2P2

Res
zDc

F.z/

z
:

The first equality is a definition, and the second equality is the residue theorem. If
F.z1; : : : ; zn/ is a rational function with simple poles of the form zi D c and zi D  zj

for various c 2 P1 tP2 and various scalars  in some set Q, then we set

(2-38)
Z
P1�z1�����zn�P2

F.z1; : : : ; zn/

as the result of the n–step process which starts with F.z1; : : : ; zn/=z1 � � � zn, and at
the i th step replaces a rational function in zi ; : : : ; zn by the sum of its residues of the
form zi D c1 � � � i�1 for various c 2 P1 and 1; : : : ; i�1 2 Q [ f1g. Just like in
(2-37), the residue theorem implies that the answer is the same as .�1/n times the
result of the n–step process which starts with F.z1; : : : ; zn/=z1 � � � zn, and at the i th step
replaces a rational function in z1; : : : ; znC1�i by the sum of its residues of the form
znC1�i D c1 � � � i�1 for various c 2 P2 and 1; : : : ; i�1 2Q[f1g.
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Proposition 2.13 [17, following the proof of Proposition 5.12] We have the following
formulas for the maps (2-13):

.pC �pS /�r.L1; : : : ;Ln/(2-39)

D

Z
f0;1gtP�zn�����z1�U

r.z1; : : : ; zn/
nQ

iD1

^�

�
ziq

U

�
�

1�
z2q

z1

�
: : :

�
1�

znq

zn�1

� Q
1�i<j�n

�

�
zj

zi

� ;
.p� �pS /�r.L1; : : : ;Ln/(2-40)

D

Z
U�zn�����z1�f0;1gtP

r.z1; : : : ; zn/
nQ

iD1

^�

�
�
U
zi

�
�

1�
z2q

z1

�
: : :

�
1�

znq

zn�1

� Q
1�i<j�n

�

�
zj

zi

� ;
where

�.x/D
.1�xq1/.1�xq2/

.1�x/.1�xq/
2KS .x/

and r.z1; : : : ; zn/ is a rational function with coefficients in .p˙�pS /
�.KM�S / whose

poles are all of the form zi D c, where c 2 f0;1gtP for some finite set P .

Note that the integrands in (2-39)–(2-40) have poles when zi equals q1 or 0 times one
of the Chern roots of U . Thus, the location of the symbol U in the subscripts of the
integrals (2-39)–(2-40) indicates whether these poles are thought to lie in the set P1 or
P2 for the sake of the notation (2-37).

3 Computing the Ext operator

3.1 To properly define the Ext operator (1-6), note that the complex Em of (1-4) can
be written as a difference V1�V2 of vector bundles. Then we define

(3-1) ^
�

�
Em

t

�
D

^�

�V1

t

�
^�

�V2

t

� D
rank V1P
kD0

.�t/�k Œ^kV1�

rank V2P
kD0

.�t/�k Œ^kV2�

and interpret it as a rational function in t , with coefficients in KM�M0 . Strictly speaking,
the object ^�Em in (1-6) refers to the specialization of this rational function at t D 1. If
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this specialization is not well-defined, ie if

rank V2X
kD0

.�1/k Œ^kV2�

is not a unit in KM�M0 , then we employ the following artifice: replace m by m=t in
formulas (1-11), (1-12), (1-17) and throughout the current section. Once one does this,
our main Theorems 1.7, 1.10 and Corollary 1.11 will be equalities of operator-valued
rational functions in t . Moreover, we will often use the notation

^
�

�
t

U

�
instead of ^

� .U_t/

for any coherent sheaf U (all our coherent sheaves have finite projective dimension).

3.2 The main goal of the present section is to compute the commutation relations
between the Ext operator Am WKM0 !KM of (1-6) and the operators

(3-2) Wn;k ;P˙n0 WKM!KM�S

of (2-20), (2-21) and (2-23) for all n 2Z and n0; k 2N. One must be careful what one
means by “commutation relation”. While the operator

P˙nAm unambiguously refers to KM0
Am
��!KM

P˙n
��!KM�S ;

AmP˙n henceforth refers to KM0
P˙n
��!KM0�S

Am�IdS
����!KM�S ;

and analogously for Wn;k instead of P˙n. As opposed to the operators (3-2), the
operator Am acts nontrivially between all components of the moduli space

(3-3) Amj
c0

c WKMc0
!KMc

:

In principle, the moduli spaces of sheaves in the domain and codomain can correspond
to different choices of first Chern class and stability condition, but we always require
them to have the same rank r . Therefore, there are two universal sheaves

U

��

M�S

and

U 0

��

M0 �S

of the same rank r , where M (resp. M0) is the union of the moduli spaces that appear
in the codomain (resp. domain) of (3-3). The determinants of these universal sheaves
are denoted by u and u0, respectively, as in (1-10).
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3.3 We must explain how to make sense of the symbols q;m;  in (1-12), (1-14) and
(1-15). In the language of correspondences from Section 2.1, the operators

KM0
z
�!KM�S

studied in the present paper (such as the compositions Wn;kAm or P˙nAm that appear
in (1-12), (1-14) and (1-15)) arise from K–theory classes � on M�M0 �S . Then
the product qz refers to the operator corresponding to the class proj�S .q/ �� , while the
product  z refers to the operator corresponding to the class

proj�S
�

m

q

�r
�

proj�M�S .detU/
proj�M0�S .detU 0/

��;

where M�M0 �S
projM�S ; projM0�S ; projS
���������������!M�S; M0 �S; S are the projections.

Proposition 3.4 We have the equality of correspondences KMc˙n
!KMc�S

(3-4) P˙n � .detUc˙n/D .detUc/ �P˙n

for all c 2 Z. Formula (3-4) also holds with P˙n replaced by Wn;k or H˙n.

Equation (3-4) is best restated in the language of correspondences from Section 2.1. In
these terms, P˙n is given by a K–theory class supported on the locus

CD f.FcCn �nx Fc/ for some x 2 Sg �McCn �Mc �S;

where F 0 �nx F means that F 0 � F and that F=F 0 is a length n sheaf supported
at x. Then (3-4) merely states that the universal sheaves UcCn and Uc have isomorphic
determinants when restricted to C. This is just the version “in families” of the well-
known statement that a codimension-2 modification of a torsion-free sheaf does not
change its determinant. As a consequence of Proposition 3.4,  of (1-11) will behave
just like a constant in all our computations, ie it will not matter where we insert  in
any product of operators among P˙n, H˙n and Wn;k .

3.5 Our main intersection-theoretic computation is the following:

Lemma 3.6 We have the following relations involving the Ext operator Am

Am.H�n�H�nC1/D 
n.H�n�H�nC1/Am;(3-5)

Am.Hn�Hn�1
�1/D .Hn

�n
�Hn�1qr�nC1/Am(3-6)

for all n 2N. (Recall that H0 D proj�1 , where M�S
proj1
��!M is the usual projection.)
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Proof Consider the following diagrams of spaces and arrows, for all c; c0 2 Z:

(3-7)

Mc �S �Mc0

�1�IdS

��

�2

��

Mc �Z
�

c0Cn;c0
Id�pC�pS

uu ((

Id�pS�p�

OO

Mc �Mc0Cn �S

vv ))

Z�c0Cn;c0

pC�pSvv p� %%

Mc �S Mc0Cn �S Mc0

(3-8)

Mc �S �Mc0

� 0
1
�IdS





� 0
2

��

Z�c;c�n �Mc0

vv

p0��Id

))

p0
C
�p0

S
�Id

OO

Z�c;c�n

p0
C
�p0

S
xx p0� ((

Mc�n �Mc0

uu ''

Mc �S Mc�n Mc0

Recall that H�n D .pC �pS /�p
�
�, in the notation of (2-13). Then the rule for compo-

sition of correspondences in (2-2) gives us the formulas

AmH�n D .�1 � IdS /�.‡n ��
�
2 /;(3-9)

H�nAm D .�
0
1 � IdS /�.‡

0
n ��

0�
2 /;(3-10)

where, in the notation of (3-7) and (3-8),

‡n D .Id�pS �p�/�
�
^
�
�
.Id�pC/

�Em

��
;(3-11)

‡ 0n D .p
0
C �p0S � Id/�

�
^
�
�
.p0� � Id/�Em

��
(3-12)

are certain classes on Mc �S �Mc0 , which we will now compute.

Claim 3.7 In K–theory we have the equalities

(3-13) .Id�pC/
�Em D .Id�p�/

�EmC

�
1

L1
C � � �C

1

Ln

�
.Id�pS /

�
�Um

q

�
on Mc �Z

�

c0Cn;c0 , where U denotes the universal sheaf on Mc �S , and

(3-14) .p0� � Id/�Em D .p
0
C � Id/�Em� .L1C � � �CLn/.p

0
S � Id/�.U 0_m/

on Z�c;c�n �Mc0 , where U 0 denotes the universal sheaf on Mc0 �S .
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Proof To prove (3-13), consider the diagram

(3-15)

Mc �Z
�

c0Cn;c0 �S

�

��

Id�pC�IdS

uu

Id�p��IdS

))

Mc �Mc0Cn �S

�

��

Mc �Mc0 �S

�

��

Mc �Z
�

c0Cn;c0

Id�pC

uu

Id�p�

))

Mc �Mc0Cn Mc �Mc0

where the vertical maps are the natural projections (we use the notation � for all of
them). We have the short exact sequence of sheaves over Z�c0Cn;c0 �S

(3-16) 0! U 0C! U 0�! ��.L1 “˚” � � � “˚”Ln/! 0;

where U 0
˙
D .p�

˙
� IdS /.universal sheaf/, while L1; : : : ;Ln denote the tautological

line bundles on Z�c0Cn;c0 that were defined in (2-14), and

(3-17) � W Z�c0Cn;c0 ! Z�c0Cn;c0 �S

is the graph of the map pS . The notation “˚” in (3-16) refers to a coherent sheaf which
is filtered by the line bundles L1; : : : ;Ln; since we work in K–theory, we henceforth
make no distinction between this coherent sheaf and its associated graded object. We
may also pull back the short exact sequence (3-16) to Mc�Z

�

c0Cn;c0�S . Now apply the
functor RHom.�;U ˝m/ to the short exact sequence (3-16), where U is the universal
sheaf pulled back from Mc �S :

RHom.U 0C;U ˝m/D RHom.U 0�;U ˝m/�

nX
iD1

1

Li
RHom.O� ;U ˝m/:

Now recall that the line bundles Li come from Z�c0Cn;c0 , and so they are unaffected by
the derived pushforward map ��,

��RHom.U 0C;U ˝m/D ��RHom.U 0�;U ˝m/�

nX
iD1

1

Li
��RHom.O� ;U ˝m/:

Recalling (1-5), the formula above reads

(3-18) .Id�pC/
�Em D .Id�p�/

�EmC

nX
iD1

1

Li
��RHom.O� ;U ˝m/:
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Then (3-13) follows from the fact that

(3-19) ��RHom.O� ;U ˝m/D

Id‚ …„ ƒ
�� ı��

�
RHom.O; � !.U ˝m//

�
D Umj� ˝�

!O:

(The first equality is coherent duality, and the second equality holds for any closed
embedding � .) The right-hand side of (3-19) matches .Id�pS /

�.Um=q/ because the
map � W Z�n! Z�n �S is obtained by base change from the diagonal map S ! S �S ,
and the ratio of dualizing objects on S and S �S is precisely q D Œ!S �.

As for (3-14), consider the diagram

(3-20)

Z�c;c�n �Mc0 �S

�

��

p0
C
�Id� IdS

uu

p0��Id� IdS

))

Mc �Mc0 �S

�

��

Mc�n �Mc0 �S

�

��

Z�c;c�n �Mc0

p0
C
�Id

uu

p0��Id

))

Mc �Mc0 Mc�n �Mc0

and consider the following analogue of (3-16):

0! UC! U�! � 0�.L1 “˚” � � � “˚”Ln/! 0;

where U˙ D .p0�˙ � IdS /.U/, and � 0 denotes the graph of the map pS W Z
�

c;c�n! S .
Let us apply the functor RHom.U 0;�˝m/ to the short exact sequence above:

RHom.U 0;U�˝m/D RHom.U 0;UC˝m/C

nX
iD1

Li ˝RHom.U 0;O� 0 ˝m/:

Let us apply �� to the equality above, and recall the definition of Em in (1-5):

.p0� � Id/�Em D .p
0
C � Id/�Em�

nX
iD1

Li ˝ ��RHom.U 0;O� 0 ˝m/:

By adjunction, we have

��RHom.U 0;O� 0 ˝m/D

Id‚ …„ ƒ
�� ı�

0
� RHom.U 0j� 0 ;p0S

�
m/D .U 0_m/j� 0 :
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Armed with (3-13) and (3-14), we may rewrite (3-11) and (3-12) as

‡n D Œ^
�Em� � .Id�pS �p�/�

� nO
iD1

^
�

�
Um

Liq

��
;

‡ 0n D Œ^
�Em� � .p

0
C �p0S � Id/�

� nO
iD1

^
�

�
�
Lim

U 0

��
:

Henceforth, “U ;U 0” in the subscript of the integrals are simply shorthand for “the set
of Chern roots of U ;U 0”, respectively, and Proposition 2.13 implies

‡n D Œ^
�Em�

Z
U 0�zn�����z1�f0;1gtU

nQ
iD1

^�.Um=.ziq//

^�.U 0=zi/

n�1Q
iD1

.1� .qziC1=zi//
Q

i<j

�.zj=zi/

;(3-21)

‡ 0n D Œ^
�Em�

Z
f0;1gtU 0�zn�����z1�U

nQ
iD1

^�.ziq=U/
^�.zim=U 0/

n�1Q
iD1

.1� .qziC1=zi//
Q

i<j

�.zj=zi/

:(3-22)

Consider the rational function with coefficients in KMc�S�Mc0
given by

(3-23) In.z1; : : : ; zn/D

nQ
iD1

^�.Um=.ziq//

^�.U 0=zi/

n�1Q
iD1

.1� .qziC1=zi//
Q

i<j

�.zj=zi/

:

One may then rewrite (3-21) and (3-22) as

‡n D Œ^
�Em�

Z
U 0�zn�����z1�f0;1gtU

In.z1; : : : ; zn/;

‡ 0n D Œ^
�Em�

Z
f0;1gtU 0�zn�����z1�U

In.z1m; : : : ; znm/ � �n:

Changing the variables zi 7! zi=m in the second formula, we conclude that

(3-24) ‡n�‡
0
n � 

n
D Œ^�Em�

� Z
U 0�zn�����z1�f0;1gtU

In�

Z
f0;1gtU 0�zn�����z1�U

In

�
:

The only difference between the two integrals is the location of the poles f0;1g with
respect to the variables z1; : : : ; zn. Therefore, we conclude that the difference above
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picks up the residues at 0 and1 in the various variables. However, all such residues
vanish, except for

Res
z1D1

In.z1; : : : ; zn/

z1

D�In�1.z2; : : : ; zn/;(3-25)

Res
znD0

In.z1; : : : ; zn/

zn
D  � In�1.z1; : : : ; zn�1/:(3-26)

Therefore, formula (3-24) implies that

(3-27) ‡n�‡
0
n � 

n
D ‡n�1�‡

0
n�1 � 

n

which, as an equality of classes on Mc �S �Mc0 , precisely encodes (3-5). Let us run
the analogous computation for (3-6) (we will recycle all of our notation):

(3-28)

Mc �S �Mc0

�1�IdS

��

�2

��

Mc �Z
�

c0;c0�n

Id�p��pS

vv &&

Id�pS�pC

OO

Mc �Mc0�n �S

ww ((

Z�c0;c0�n

p��pS
xx

pC
""

Mc �S Mc0�n �S Mc0

(3-29)

Mc �S �Mc0

� 0
1
�IdS

��

� 0
2

��

Z�cCn;c �Mc0

xx

p0
C
�Id

''

p0��p0
S
�Id

OO

Z�cCn;c

p0��p0
Szz p0

C &&

McCn �Mc0

vv %%

Mc �S McCn Mc0

Recall that Hn D .�1/rnun.p��pS /�.Q�r �p�C/, in the notation of (2-13). Then the
rule for composition of correspondences in (2-2) gives us

AmHn D .�1 � IdS /�.‡n ��
�
2 /;(3-30)

HnAm D .�
0
1 � IdS /�.‡

0
n ��

0�
2 /;(3-31)
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where

‡n D .�1/rnu0
n
.Id�pS �pC/�

�
Q�r
� ^
�
�
.Id�p�/

�Em

��
;(3-32)

‡ 0n D .�1/rnun.p0� �p0S � Id/�
�
Q�r
� ^
�
�
.p0C � Id/�Em

��
(3-33)

are certain classes on Mc �S �Mc0 . As a consequence of (3-13) and (3-14), which
continue to hold as stated in the new setup, we may rewrite (3-32) and (3-33) as

‡n D .�1/rnu0
n
Œ^�Em�.Id�pS �pC/�

�
Q�r

nO
iD1

^
�

�
�
Um

Liq

��
;

‡ 0n D .�1/rnunŒ^�Em�.p
0
� �p0S � Id/�

�
Q�r

nO
iD1

^
�

�
Lim

U 0

��
:

Therefore, Proposition 2.13 implies

‡n D Œ^
�Em�

Z
f0;1gtU�zn�����z1�U 0

.�1/rnu0
n
z�r

1
: : : z�r

n

nQ
iD1

^�.ziq=U 0/
^�.Um=.ziq//

n�1Q
iD1

.1� .qziC1=zi//
Q

i<j

�.zj=zi/

;(3-34)

‡ 0n D Œ^
�Em�

Z
U�zn�����z1�f0;1gtU 0

.�1/rnunz�r
1
: : : z�r

n

nQ
iD1

^�.zim=U 0/
^�.U=zi/

n�1Q
iD1

.1� .qziC1=zi//
Q

i<j

�.zj=zi/

:(3-35)

Consider the rational function with coefficients in KMc�S�Mc0
given by

(3-36) In.z1; : : : ; zn/D

qrn
nQ

iD1

^�.U 0=.ziq//

^�.Um=.ziq//

n�1Q
iD1

.1� .qziC1=zi//
Q

i<j

�.zj=zi/

One may then rewrite (3-34) and (3-35) as

‡n D Œ^
�Em�

Z
f0;1gtU�zn�����z1�U 0

In.z1; : : : ; zn/;

‡ 0n D Œ^
�Em�

Z
U�zn�����z1�f0;1gtU 0

In

�
z1m

q
; : : : ;

znm

q

�
�  n:

Changing the variables zi 7! ziq=m in the second formula, we conclude that

(3-37) ‡n�‡
0
n�
�n
D Œ^�Em�

� Z
f0;1gtU�zn�����z1�U 0

In�

Z
U�zn�����z1�f0;1gtU 0

In

�
:
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The only difference between the two integrals is the location of the poles f0;1g with
respect to the variables z1; : : : ; zn. Therefore, we conclude that the difference above
picks up the residues at 0 and1 in the various variables. However, all such residues
vanish, except for

Res
znD0

In.z1; : : : ; zn/

zn
D �1

� In�1.z1; : : : ; zn�1/;

Res
z1D1

In.z1; : : : ; zn/

z1

D�qr
� In�1.z2; : : : ; zn/:

Therefore, formula (3-37) implies that

(3-38) ‡n�‡
0
n � 

�n
D ‡n�1 � 

�1
�‡ 0n�1 � q

r�nC1;

which, as an equality of classes on Mc �S �Mc0 , precisely encodes (3-6).

3.8 We will now show how Lemma 3.6 allows us to prove Theorem 1.10.

Proof of Theorem 1.10 We will only prove (1-14), since (1-15) is analogous. We
will use formulas (2-25), which say that the H operators are to the P operators as
complete symmetric functions are to power sum functions. Then let us place (3-5) into
a generating series that goes over all n 2N,

(3-39)
1X

nD0

AmH�n.z
n
� znC1/D

1X
nD0

�
. z/n� . z/nC1

�
H�nAm:

If we write H�.z/ for the power series (2-25) (with sign ˙D�), then (3-39) reads

(3-40) AmH�.z/.1� z/DH�.z /.1�  z/Am:

If P is an operator KM! KM�S which commutes with two line bundles ` and `0

(in the sense of Proposition 3.4, and the discussion after it), then

(3-41) A exp.P / exp.`0/j� D exp.P / exp.`/j�A () AP CA`0 D PAC `A:

(This claim uses the associativity of the operation x;y  xyj�, as discussed in
Section 2.3.) With this in mind, formula (3-40) implies

AmP�.z/�

1X
nD1

Am

nz�n
D P�.z /Am�

1X
nD1

 n Am

nz�n
;

where P�.z/D
P1

nD1 P�n=.nz�n/. Extracting the coefficient of zn yields precisely
equation (1-14).
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3.9 Having proved Lemma 3.6, we will now perform the analogous computations for
the commutator of Am with the operators of Section 2.5.

Lemma 3.10 We have the following relations involving the Ext operator Am:

AmLn.y/�AmLn�1.y/(3-42)

DLn

�
y

m

�
Am � 

n
�Ln�1

�
yq

m

�
E

�
yq

m

�
AmE.y/�1

ˇ̌̌̌
�

�  n�1;

Un

�
yq

m

�
Am � 

�n
�Un�1

�
yq

m

�
Am � q

�nC1(3-43)

DAmUn.y/�E

�
yq

m

��1

AmE.yq/Un�1.yq/

ˇ̌̌̌
�

� q:

The two sides of (3-42) and (3-43) map KM0 to KM�SJy�1K. The symbol j� applied
to any term that involves three of the series L;E;U means that we restrict a certain
operator KM0 !KM�S�S�SJy�1K to the small diagonal.

Proof In order to prove (3-42), we will closely follow the proof of Lemma 3.6. With
the notation therein, one needs to replace (3-11) and (3-12) by

‡n;y D .Id�pS �p�/�

�
1

1� .y=Ln/
^
�
�
.Id�pC/

�Em

��
;

‡ 0n;y D .p
0
C �p0S � Id/�

�
1

1� .y=Ln/
^
�
�
.p0� � Id/�Em

��
:

This has the effect of inserting �
1�

y

zn

��1

into the right-hand sides of formulas (3-21) and (3-22). Therefore, the function
In.z1; : : : ; zn/ defined in (3-23) should be replaced by

In;y.z1; : : : ; zn/D
In.z1; : : : ; zn/

1� .y=zn/
:

It is easy to see that the nonzero residues of In;y are

Res
z1D1

In;y.z1; : : : ; zn/

z1

D�In�1;y.z2; : : : ; zn/;

Res
znDy

In;y.z1; : : : ; zn/

zn
D
^�.Um=.yq//

^�.U 0=y/
�
In�1;yq.z1; : : : ; zn�1/Qn�1

iD1 �.y=zi/
:
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Therefore, the analogue of identity (3-27) is

‡n;y �‡
0
n;y=m � 

n
D ‡n�1;y �‡

0
n�1;yq=m � 

n�1^
�.Um=.yq//

^�.U 0=y/
:

This equality of classes on Mc �S �Mc0 precisely underlies equality (3-42).

As for (3-43), we proceed analogously. One needs to replace (3-32) and (3-33) by

‡n D
.�1/rnu0

n

q.r�1/n
.Id�pS �pC/�

�
Q�r

1�y=Ln
� ^
�
�
.Id�p�/

�Em

��
;

‡ 0n D
.�1/rnun

q.r�1/n
.p0� �p0S � Id/�

�
Q�r

1�y=Ln
� ^
�
�
.p0C � Id/�Em

��
:

This has the effect of inserting

qn.1�r/

�
1�

y

zn

��1

into the right-hand sides of formulas (3-34) and (3-35). Therefore, the function In

defined in (3-36) should be replaced by

In;y.z1; : : : ; zn/D
In.z1; : : : ; zn/

q.r�1/n.1�y=zn/
:

It is easy to see that the nonzero residues of In;y are

Res
znDy

In;y.z1; : : : ; zn/

zn
D q
^�.U 0=.yq//

^�.Um=.yq//
�
In�1;yq.z1; : : : ; zn�1/

n�1Q
iD1

�.y=zi/

;

Res
z1D1

In;y.z1; : : : ; zn/

z1

D�q � In�1;y.z2; : : : ; zn/:

Therefore, the analogue of identity (3-38) is

‡n;y �‡n;yq=m � 
�n
D ‡n�1;yq � q

^�.U 0=.yq//

^�.Um=.yq//
�‡n�1;yq=m � q

�nC1:

This equality of classes on Mc �S �Mc0 precisely underlies equality (3-43).

3.11 In all formulas below, whenever one encounters a product of several L, E, U

operators, one needs to place the symbol j� next to it, eg L.: : : /E.: : : /U.: : : /j� as in
(2-20). From now on, we will suppress the notation j� from our formulas for brevity.

Geometry & Topology, Volume 27 (2023)



AGT relations for sheaves on surfaces 3087

Proof of Theorem 1.7 In terms of the generating series (2-32), formulas (3-42) and
(3-43) take the form

.1�x/AmL.x;y/DL

�
x;

y

m

�
Am�xL

�
x;

yq

m

�
E

�
yq

m

�
AmE.y/�1;

U

�
x;

yq

m

�
Am

�
1�

q

x

�
DAmU.x;y/�

q

x
E

�
yq

m

��1

AmE.yq/U.x;yq/:

Change the variables x 7! xq, y 7! y=q in the second equation, and multiply the first
equation by E.y/ and the second equation by E.y=m/. Thus we obtain

.1�x/AmL.x;y/E.y/DL

�
x;

y

m

�
AmE.y/

�xL

�
x;

yq

m

�
E

�
yq

m

�
Am;

E

�
y

m

�
U

�
xq;

y

m

�
Am

�
1�

1

x

�
DE

�
y

m

�
AmU

�
xq;

y

q

�
�

1

x
AmE.y/U.xq;y/:

Now let us replace the variable y by the symbol yDx , where Dx denotes the q–
difference operator Dx.f .x//D f .xq/. However, we make the following prescription:
in the first equation above, the Dx’s are placed to the right of all x’s, while in the
second equation, the Dx’s are placed to the left of all the x’s. We thus obtain

.1�x/AmL.x;yDx/E.yDx/

DL

�
x;

yDx

m

�
AmE.yDx/�xL

�
x;

yDxq

m

�
E

�
yDxq

m

�
Am;

E

�
yDx

m

�
U

�
xq;

yDx

m

�
Am.1�x/

DAmE.yDx/U.xq;yDx/�E

�
yDx

m

�
AmU

�
xq;

yDx

q

�
x:

Now let us multiply the first equation on the right by U.qx;yDx/ (with the Dx’s
placed to the left of all the x’s) and the second equation on the left by L.x;yDx=m/

(with the Dx’s placed to the right of all the x’s):

.1�x/AmL.x;yDx/E.yDx/U.xq;yDx/

DL

�
x;

yDx

m

�
AmE.yDx/U.xq;yDx/

�xL

�
x;

yDxq

m

�
E

�
yDxq

m

�
AmU.xq;yDx/
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and

L

�
x;

yDx

m

�
E

�
yDx

m

�
U

�
xq;

yDx

m

�
Am.1�x/

DL

�
x;

yDx

m

�
AmE.yDx/U.xq;yDx/

�L

�
x;

yDx

m

�
E

�
yDx

m

�
AmU

�
xq;

yDx

q

�
x:

The two terms in the right-hand sides of the above equations are pairwise equal to each
other (this is not manifestly obvious for the second term, because y differs from yq,
but this is a consequence of commuting Dx past x). We conclude that

.1�x/AmL.x;yDx/E.yDx/U.xq;yDx/

DL

�
x;

yDx

m

�
E

�
yDx

m

�
U

�
xq;

yDx

m

�
Am.1�x/:

Recalling the definition (2-35), this implies

.1�x/AmW .x;yDx/DW

�
x;

yDx

m

�
Am.1�x/:

Taking the coefficient of .yDx/
�k implies (1-12). In doing so, the right-most factor

1�x changes into 1�x=qk due to the fact that the operators 1=Dk
x must pass over it.

3.12 Finally, we recall the operator ˆm WKM0 !KM defined in (1-16),

ˆm DAm exp
� 1X

nD1

Pn

n

�
.qn� 1/q�rn

Œn�q1
Œn�q2

��
;

and let us translate (1-12), (1-14) and (1-15) into commutation relations involving ˆm.

Proof of Corollary 1.11 Since Pn commutes with Pn0 for all n; n0 > 0, (1-15) implies
(1-18) when the sign is C. Let us now prove (1-18) when the sign is �. We write

ˆm DAm � exp;

where exp is shorthand for

exp
� 1X

nD1

Pn

n

�
.qn� 1/q�rn

Œn�q1
Œn�q2

��
:

Then (1-14) reads

ˆm � exp�1
�P�n�P�n �ˆm � exp�1  n

Dˆm � exp�1.1�  n/:
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The relation above will establish (1-18) for ˙D� once we prove that

(3-44) Œexp�1;P�n�D .1� q�rn/ exp�1 :

If we take the logarithm of (3-44), it boils down to

(3-45)
�
P�n;

Pn

n

�
.qn� 1/q�nr

Œn�q1
Œn�q2

��
D 1� q�rn:

Relation (3-45) is an equality of operators KM!KM�S (the right-hand side denotes
pullback multiplied by proj�S .1� q�rn/), and it is proved as follows. Take equality
(2-29) of operators KM!KM�S�S , multiply it by

(3-46) proj�3

�
1

n
�
.qn� 1/q�nr

Œn�q1
Œn�q2

�
2KM�S�S

and then apply proj12� to the result (above, we write M�S �S
proj12; proj3
������!M�S; S

for the obvious projection maps). The outcome of this procedure is precisely (3-45).

Now let us prove (1-12) D) (1-17). To do so, we must take formula (2-36) for ˙DC
(which is a priori an equality of operators KM!KM�S�S ), multiply it by (3-46) and
then apply proj12� to the result. The resulting equality reads�

Wk.x/;
Pn

n

�
.qn� 1/q�nr

Œn�q1
Œn�q2

��
D
.1� q�nk/xn

n
Wk.x/:

It is easy to show that ŒW;P �D cW implies that exp.�P /W D exp.c/ �W exp.�P /

as long as c commutes with both W and P . Therefore, we infer that

exp�1 Wk.x/D exp
� 1X

nD1

.1� q�nk/xn

n

�
Wk.x/ exp�1

D) exp�1 Wk.x/D
1� .x=qk/

1�x
�Wk.x/ exp�1

D) ˆm exp�1 Wk.x/ � .1�x/DˆmWk.x/ exp�1
�

�
1�

x

qk

�
:

With this in mind, (1-12) and the fact that ˆm exp�1 DAm imply that

mkWk.x /ˆm exp�1
�

�
1�

x

qk

�
DˆmWk.x/ exp�1

�

�
1�

x

qk

�
Multiplying on the right with exp yields (1-17).
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4 The Verma module

4.1 Let us now specialize to S DA2, and explain all the necessary modifications to
the constructions in the present paper; we refer the reader to [14, Section 3] for details.
From here on, let M be the moduli space parametrizing rank r torsion-free sheaves F
on P2, together with a trivialization along a fixed line1� P2:

MD fF ;F j1
�
ŠOr

1g:

The c1 of such sheaves is forced to be 0, but c2 is free to vary over the nonnegative
integers, and so the moduli space breaks up into connected components as before:

MD
1G

cD0

Mc :

The space M is acted on by the torus T DC��C��.C�/r , where the first two factors
act by scaling A2, and the latter r factors act on the framing �. Note that

KT
0 .pt/D ZŒq˙1

1 ; q˙1
2 ;u˙1

1 ; : : : ;u˙1
r �;

where q1; q2;u1; : : : ;ur are the standard elementary characters of the torus T . We
note that q1 and q2 are the equivariant weights of �1

A2 , and the determinant of the
universal sheaf U is the equivariant constant uD u1 � � �ur . Consider the group

KM D

1M
cD0

KT
0 .Mc/˝ZŒq˙1

1
;q˙1

2
;u˙1

1
;:::;u˙1

r �
Q.q1; q2;u1; : : : ;ur /

The main goal of loc. cit. was to define operators akin to (2-20), (2-21) and (2-23),

(4-1) Wn;k ;P˙n0 WKM!KM

for all n 2 Z and k; n0 2N, and then show that these operators satisfy the relations in
the deformed W –algebra of type glr (since S DA2, KM ŠKM�S naturally).

Definition 4.2 [14, Definition 2.28] Let q1; q2;u1; : : : ;ur be formal symbols. The
universal Verma module Mu1;:::;ur

is the Q.q1; q2;u1; : : : ;ur /–vector space with basis

(4-2) Wn1;k1
: : :Wns ;ks

j¿i

as the pairs .ni ; ki/ range over �N�f1; : : : ; rg and are ordered in nondecreasing order
of the slope ni=ki . We make Mu1;:::;ur

into a deformed W –algebra module as follows.

Geometry & Topology, Volume 27 (2023)



AGT relations for sheaves on surfaces 3091

The action of an arbitrary generator Wn;k on the basis vector (4-2) is prescribed by the
commutation relations (2-28), together with the relations

Wn;k j¿i D 0 if n> 0 or k > r;

W0;k j¿i D ek.u1; : : : ;ur /j¿i for all k;

where ek denotes the k th elementary symmetric polynomial.

Theorem 4.3 [14, Theorem 3.12] We have an isomorphism of modules for the
deformed W –algebra of type glr (the action on the left-hand side is given by (4-1))

(4-3) KM ŠMu1;:::;ur
;

induced by sending the K–theory class of the structure sheaf of M0 �M to j¿i.

4.4 The Ext (respectively vertex) operator Am (respectively ˆm) for S D A2 was
studied in [14, Section 4], where we obtained an analogue of Theorem 1.7 in the
case k D 1 (some coefficients in the formulas of loc. cit. differ from those of the
present paper, because their operator Am differs from ours by an equivariant constant).
However, having only proved the case k D 1 in loc. cit. led to weaker formulas than
(1-12). Thus, the present paper strengthens the results of loc. cit.; see Remark 4.8
therein. Specifically, Corollary 1.11 completely determines the operator ˆm (hence
also Am) in the case S DA2, due to Theorems 4.3 and 4.5.

Theorem 4.5 Given two Verma modules Mu1;:::;ur
and Mu0

1
;:::;u0r , there is a unique

(up to constant multiple in Q.q1; q2;u1; : : : ;ur ;u
0
1
; : : : ;u0r /) linear map

ˆm WMu0
1
;:::;u0r !Mu1;:::;ur

satisfying (1-17) for all k � 1.

Proof The existence of such a linear map follows from the very fact that the operator
(1-16) satisfies (1-17). To show uniqueness, it is enough to prove h¿jˆm j¿i D 0

implies ˆm D 0, for any operator that satisfies the following relations for all n, k:

(4-4) ˆmWn;k�ˆmWnC1;k �q
�k
DWn;kˆm �m

k�nk
�WnC1;kˆm �

mk

qk
�.nC1/k ;

where m and  are certain nonzero constants.
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Claim 4.6 For any parameters u1; : : : ;ur , there exists a nondegenerate pairing

Mu1;:::;ur
˝Mu1;:::;ur

h � ;� i
��!Q.q1; q2;u1; : : : ;ur /

such that the adjoint of Wn;k is W�n;k for all n 2 Z and k 2N.

Proof Using Theorem 4.3, the required pairing is provided by the equivariant Euler
characteristic pairing on KM (renormalized as in [14, Section 3.14]). The operators
Wn;k and W�n;k are adjoint with respect to this pairing [14, formula (3.39)].

Let us now complete the proof of Theorem 4.5. Because Verma modules are generated
by Wn;k acting on ¿, then we must show that h¿jˆm j¿i D 0 implies

(4-5) h¿jW�ns ;ks
: : :W�n1;k1

ˆmWn0
1
;k0

1
: : :Wn0t ;k

0
t
j¿i D 0

for all collections of indices .ni ; ki/; .n
0
i ; k
0
i/ 2 Z�0 � f1; : : : ; rg, ordered by slope

n1

k1

� � � � �
ns

ks
and

n0
1

k 0
1

� � � � �
n0t
k 0t
:

The matrix coefficient (4-5) is nonzero only if the ni and the n0j are all nonpositive, so
we will prove formula (4-5) by induction on the nonpositive integer ı D

P
ni C

P
n0i .

We may assume that ns; n
0
t < 0 because W0;k j¿i is a multiple of j¿i for any k. The

base case ı D 0 of the induction is simply the assumption h¿jˆm j¿i D 0. As for the
induction step, let us iterate relation (4-4) to obtain

ˆmWn0
1
;k0

1
� � �Wn0t ;k

0
t
2 span

�
ˆmWn0

1
C"1;k

0
1
� � �Wn0tC"t ;k

0
t
;

Wn0
1
C"0

1
;k0

1
� � �Wn0tC"

0
t ;k
0
t
ˆm;

where "1; : : : ; "t 2 f0; 1g are not all 0, and "0
1
; : : : ; "0t 2 f0; 1g. That means that the

left-hand side of (4-5) is a linear combination of

h¿jW�ns ;ks
� � �W�n1;k1

ˆmWn0
1
C"1;k

0
1
� � �Wn0tC"t ;k

0
t
j¿i;

which is 0 by the induction hypothesis, because the "i are not all 0, and

(4-6) h¿jW�ns ;ks
� � �W�n1;k1

Wn0
1
C"0

1
;k0

1
� � �Wn0tC"

0
t ;k
0
t
ˆm j¿i:

The induction step will be complete once we show that (4-6) is 0. As a consequence of
(2-28), the product of W ’s in (4-6) can be written as a linear combination of

W�n00r ;k
00
r
� � �W�n00

1
;k00

1
with

n00
1

k 00
1

� � � � �
n00r
k 00r
;
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and
P

n00i D
P

ni �
P

n0i �
P
"0i for degree reasons. If n00r > 0, then the product of

W ’s above annihilates h¿j. Thus, we may assume n00r � 0, in which case the fact thatX
n00i D

X
ni �

X
n0i �

X
"0i >

X
ni C

X
n0i

(recall that n0i < 0 by assumption, while "0i 2 f0; 1g) means that we can apply the
induction hypothesis to conclude that (4-6) is 0.

We note that the identification of Am (in the case S DA2) with a vertex operator was
also achieved in [3], which computed relations (3-42) and (3-43) for nD 1 in the basis
of fixed points. This uniquely determines the operator Am due to certain features of
the Ding–Iohara–Miki algebra, but does not directly establish the connection with the
generating currents of the deformed W –algebra of glr . From a geometric point of view,
this is because the Nakajima-type simple correspondences only describe the operators
L1;k and U1;k . As we have seen in Section 2.4, in order to define the operators Ln;k

and Un;k for all n (with the ultimate goal of defining the W –algebra generators Wn;k

in (2-20)), one needs to introduce the more complicated correspondences (2-11).
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We study 3–dimensional partially hyperbolic diffeomorphisms that are homotopic to
the identity, focusing on the geometry and dynamics of Burago and Ivanov’s center
stable and center unstable branching foliations. This extends our previous study of
the true foliations that appear in the dynamically coherent case. We complete the
classification of such diffeomorphisms in Seifert fibered manifolds. In hyperbolic
manifolds, we show that any such diffeomorphism is either dynamically coherent and
has a power that is a discretized Anosov flow, or is of a new potential class called a
double translation.
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1 Introduction

A diffeomorphism f of a 3–manifoldM is partially hyperbolic if it preserves a splitting
of the tangent bundle TM into three 1–dimensional subbundles

TM DEs
˚Ec

˚Eu;

where the stable bundleEs is eventually contracted, the unstable bundleEu is eventually
expanded, and the center bundleEc is distorted less than the stable and unstable bundles
at each point. That is, for some n > 0 one has, at each x 2M,

kDf njE s.x/k< 1;

kDf njEu.x/k> 1;

kDf njE s.x/k< kDf
n
jE c.x/k< kDf

n
jEu.x/k:

From a geometric perspective, one can think of partial hyperbolicity as a generalization
of the discrete behavior of an Anosov flow. On a 3–manifoldM, such a flowˆ preserves
a splitting of the unit tangent bundle TM into three 1–dimensional subbundles

TM DEs
˚Tˆ˚Eu;

where Es is eventually exponentially contracted, Eu is eventually exponentially ex-
panded, and Tˆ is the tangent direction to the flow. After flowing for a fixed time, an
Anosov flow generates a partially hyperbolic diffeomorphism of a particularly simple
type, where the stable and unstable bundles are contracted uniformly, and the center
direction, which corresponds to Tˆ, is left undistorted. More generally, there are
examples of partially hyperbolic diffeomorphisms of the form f .x/Dˆ�.x/.x/, where
ˆ is a (topological) Anosov flow and � WM !R>0 is a positive continuous function;
the partially hyperbolic diffeomorphisms obtained in this way are called discretized
Anosov flows.
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A partially hyperbolic diffeomorphism is said to be dynamically coherent if there are
invariant foliations tangent to the center stable and center unstable bundles Ec˚Es

and Ec˚Eu. Discretized Anosov flows are dynamically coherent, since their center
stable and center unstable bundles are uniquely integrable. On the other hand, we show
in [3] that large classes of dynamically coherent partially hyperbolic diffeomorphisms
must in fact be discretized Anosov flows:

Theorem 1.1 [3, Theorem A] Let f WM !M be a dynamically coherent partially
hyperbolic diffeomorphism on a closed Seifert fibered 3–manifold. If f is homotopic
to the identity, then some iterate is a discretized Anosov flow.

Theorem 1.2 [3, Theorem B] Let f WM !M be a dynamically coherent partially
hyperbolic diffeomorphism on a closed hyperbolic 3–manifold. Then some iterate is a
discretized Anosov flow.

The assumption of dynamical coherence is natural from a geometric perspective: the
way that an Anosov flow distorts its weak stable and weak unstable foliations is often
seen as the defining property of such a flow. In this light, the preceding results say
that on certain classes of manifolds, any diffeomorphism with a geometric structure
reminiscent to that of an Anosov flow must in fact come from one.

This assumption is much less satisfying from a dynamical perspective, however. Here
the interest in partial hyperbolicity stems from its appearance as a generic consequence
of dynamical conditions, such as stable ergodicity and robust transitivity (see Bonatti,
Díaz and Viana [6]), and one is not provided with any invariant foliations. Although
dynamical coherence was once generally expected, a number of recent results (see
for example Barthelmé, Fenley, Frankel and Potrie [4], Bonatti, Gogolev, Hammerlindl
and Potrie [7] and Rodriguez Hertz, Rodriguez Hertz and Ures [31]) have shattered
that belief. For instance, in the unit tangent bundle of a hyperbolic surface, we proved
in [4] that many partially hyperbolic diffeomorphisms are not dynamically coherent.

In our study of the dynamically coherent case in [3], the key to relating the inherently
local property of partial hyperbolicity with the global structure of the ambient manifold
lay in understanding the geometry and topology of the center stable and center unstable
foliations, as well as their leafwise and transverse dynamics. The present article does
away with the assumption of dynamical coherence. Instead of foliations we work with
the center stable and center unstable “branching foliations” constructed by Burago
and Ivanov [10] under certain orientability conditions. These are generalizations of
foliations in which distinct leaves are allowed to merge together.

Geometry & Topology, Volume 27 (2023)
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A large part of the present paper is concerned with carrying over our understanding of
the geometry of foliations to branching foliations. We find that much of the familiar
structure still holds in this more general context — sometimes by direct analogy, and
sometimes with considerably more work. At the same time, there are important points
at which branching foliations allow for more varied behavior than true foliations.
A particularly important example of this appears in Figure 9, where the possibility
of merging leaves thwarts one’s ability to use the qualitative transverse and tangent
behavior of a dynamical system to draw conclusions about its Lefschetz index. We
hope that our work will entice those interested in the theory of foliations to consider
the possible uses for branching foliations.

The following two theorems, which generalize the preceding theorems from [3], sum-
marize the major consequences of the present article.

Theorem A Let f WM !M be a partially hyperbolic diffeomorphism on a closed
Seifert fibered 3–manifold. If f is homotopic to the identity, then it is dynamically
coherent , and some iterate is a discretized Anosov flow.

This is a stronger version of Theorem 1.1, without the a priori assumption of dynamical
coherence. The following corresponds to Theorem 1.2.

Theorem B Let f WM !M be a partially hyperbolic diffeomorphism on a closed
hyperbolic 3–manifold. Then either

(i) f is dynamically coherent , some iterate is a discretized Anosov flow; or

(ii) f is not dynamically coherent , and after taking a finite cover1 and iterate , it
has center stable and center unstable branching foliations which are R–covered
and uniform , and a lift of f acts as a nontrivial translation on both of the
corresponding leaf spaces.

The existence or nonexistence of examples of type (ii) is one of the major questions
coming out of this article. See Section 2.0.6.

Let us also mention a dynamical consequence of our analysis (Corollary 4.14).

Theorem 1.3 Let f WM !M be a partially hyperbolic diffeomorphism of a closed
3–manifold M that is homotopic to the identity. If either M is hyperbolic or Seifert
fibered , or the center stable or center unstable branching foliation is f –minimal , then
f has no contractible periodic points (see Definition 4.13).

1This is only needed to get the existence of f –invariant branching foliations.
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2 Outline and discussion

After recalling some definitions, we outline the more detailed results that lie behind
our main theorems.

Let f WM !M be a partially hyperbolic diffeomorphism that is homotopic to the
identity on a closed 3–manifold M.

Convention Throughout this paper, we will assume that the group �1.M/ is not
virtually solvable.

Although this assumption is not always necessary, it will simplify certain parts of
the exposition. It does not result in loss of generality, since partially hyperbolic
diffeomorphisms have been completely classified in manifolds with solvable or virtually
solvable fundamental group; see Hammerlindl and Potrie [22; 23].

A foundational result of Burago and Ivanov (Theorem 3.6) implies that, after passing
to an appropriate finite power and lift, we can assume that there is a pair of “branching
foliations” Wcs and Wcu that are preserved by f and tangent to the center stable and
center unstable bundles Ec˚Es and Ec˚Eu.

We outline the theory of these branching foliations in Section 3, and construct cor-
responding leaf spaces Lcs and Lcu. Like the leaf spaces of true foliations, these are
simply connected, possibly non-Hausdorff 1–manifolds that capture the transverse
structure of eWcs and eWcu, the lifts of Wcs and Wcu to the universal cover. This is
where a large part of our work takes place, studying the dynamics of the following
important class of lifts of f .

Definition 2.1 A lift of f to the universal cover is called good if it moves each point
a uniformly bounded distance and commutes with every deck transformation.

Geometry & Topology, Volume 27 (2023)
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Since f is homotopic to the identity, it has at least one good lift, obtained by lifting
such a homotopy.

Remark 2.2 The diffeomorphisms we consider are in fact isotopic to identity: indeed,
all the manifolds that appear in this article are irreducible and covered by R3. Then,
the works of many authors — Waldhausen [35] for Haken manifolds, Boileau and
Otal [5] for Seifert manifolds and Gabai, Meyerhoff and Thurston [21] for hyperbolic
manifolds — give that homotopy implies isotopy. We will however not use this fact in
the sequel, as the existence of a good lift is all that we use.

2.0.1 Dynamics on leaf spaces In Section 4, we study the way that good lifts of f
permute the leaves of the lifted center stable and center unstable branching foliations,
and the implications for the structure of their leaf spaces. This extends [3, Section 3].

The picture is particularly simple when Wcs is f –minimal, which means that the only
closed, nonempty, f –invariant set which is a union of leaves is M itself. If Wcs is
f –minimal, then:

(?) � Each good lift zf fixes either every leaf or no leaf of eWcs.

� If some good lift zf fixes no leaf, then Wcs is R–covered and uniform, and zf
acts as a translation its leaf space.

The same holds for eWcu. In particular, if both Wcs and Wcu are f –minimal, then one
of the following holds for each good lift zf of f :

(1) Double invariance zf fixes every leaf of both eWcs and eWcu.

(2) Mixed behavior zf fixes every leaf of either eWcs or eWcu, and acts as a transla-
tion on the leaf space of the other.

(3) Double translation zf acts as a translation on the leaf spaces of both eWcs

and eWcu.

This trichotomy applies whenever f is transitive or volume-preserving, where the
associated branching foliations are always f –minimal [8].

When f is a discretized Anosov flow, there is a natural homotopy from the identity
to f that moves points along the orbits of the underlying flow. The good lift zf that
comes from lifting this homotopy fixes every center leaf. In order to show that a given
partially hyperbolic diffeomorphism is a discretized Anosov flow, we will need to find
a good lift with this property. Here, one takes the center leaves to be the components
of intersections between center stable and center unstable leaves. In particular, we will
need find a good lift with doubly invariant behavior.
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2.0.2 Center dynamics in fixed leaves In Section 5, we study the dynamics of the
center foliation within center stable and center unstable leaves. We obtain the following
crucial tool (see Definition 5.1 and Proposition 5.2):

(??) Suppose that Wcs is f –minimal, and that some good lift zf fixes every center
stable leaf but no center leaf in zM. Then every f –periodic center leaf in M is
coarsely contracted.

If one replaces Wcs with Wcu then one concludes that any f –periodic center leaf in M
is coarsely expanded. This is widely applicable since one can find a periodic center
leaf on any center stable or center unstable leaf with nontrivial fundamental group
(Proposition 5.6).

Remark 2.3 In the dynamically coherent case, (??) leads to a contradiction that yields
a fixed center leaf [3, Proposition 4.4]. In Section 9 we show that this holds as well
under the assumption of absolute partial hyperbolicity.

2.0.3 Minimality in hyperbolic and Seifert fibered manifolds In Section 6, we
show the following, which means that the preceding trichotomy holds whenever the
ambient manifold is hyperbolic or Seifert fibered.

If M is hyperbolic or Seifert fibered, then:

(?0) � Each good lift zf fixes either every leaf or no leaf of eWcs.

� If some good lift zf fixes every leaf, then Wcs is f –minimal.

� If some good lift zf fixes no leaf, then Wcs is R–covered and uniform, and zf
acts as a translation on its leaf space.

2.0.4 Double invariance implies dynamical coherence In Section 7 we prove the
following criterion for when a partially hyperbolic diffeomorphism is a discretized
Anosov flow:

Theorem 2.4 Let f W M ! M be a partially hyperbolic diffeomorphism that is
homotopic to the identity. If f admits f –minimal center stable and center unstable
branching foliations , and some good lift zf has doubly invariant behavior , then f is a
discretized Anosov flow.

The key is to show that such an f is dynamically coherent. Then [3, Theorem 6.1]
implies that it is a discretized Anosov flow.
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Until this point we have always assumed that the bundles Es, Ec and Eu have orienta-
tions that are preserved by f so that we can use the result of Burago and Ivanov to find
center stable and center unstable branching foliations. In Section 7.3, we show that
if a lift of an iterate of f is dynamically coherent and has a good lift zg with doubly
invariant behavior, then f is dynamically coherent. This is why Theorems A and B(i)
do not need the orientability conditions.

2.0.5 Seifert fibered and hyperbolic manifolds We rule out mixed behavior in
Seifert fibered manifolds in Section 8, and in hyperbolic manifolds in Sections 11–12.
Together with Theorem 2.4, this yields the following:

Theorem 2.5 Let f WM !M be a partially hyperbolic diffeomorphism homotopic to
the identity on a closed hyperbolic or Seifert fibered 3–manifold. Assume that there are
center stable and center unstable branching foliations. Then each good lift of f either

(i) fixes every leaf of both eWcs and eWcu, or

(ii) acts as a translation on both leaf spaces.

If there is a good lift of type (i), then f is a discretized Anosov flow.

As was already pointed out in [3, Remark 7.3], there are examples in Seifert fibered
manifolds where every good lift acts as a double translation. However, we show in
Section 8 that one can always find a finite power of such diffeomorphisms with a
good lift that has doubly invariant behavior. Together with the results of Section 7 this
implies Theorem A.

Since every diffeomorphism of a hyperbolic 3–manifold has an iterate homotopic to
the identity, one also deduces Theorem B.

Remark 2.6 An analogue of Theorem 2.5 holds under the assumption of f –minimality
together with absolute partial hyperbolicity. See Section 9.

We believe that Theorem 2.5 should hold, using the same strategy as here, under the
assumption of f –minimality together with the existence of an atoroidal piece in the
JSJ decomposition of M. We have not pursued this here as it would require proving
results similar to [33; 11; 17] in this setting.

2.0.6 Double translations This leaves open one major question:

Question Is there a partially hyperbolic diffeomorphism on a closed hyperbolic 3–
manifold whose good lifts act as double translations?

Geometry & Topology, Volume 27 (2023)



Partial hyperbolicity in 3–manifolds, II 3103

As noted above, there are such examples on Seifert fibered manifolds, but by Theorem A
these are all dynamically coherent and have iterates that are discretized Anosov flows.

The dynamics of a double translation on a hyperbolic manifold would have to be
coarsely comparable to that of a pseudo-Anosov flow; see Section 11. The closest
analogues from this perspective are the non-dynamically-coherent examples on Seifert
manifolds, constructed in [7], which act as pseudo-Anosov maps on the base.

2.1 Remarks and references

There are three major areas in which the general case differs significantly from the
dynamically coherent case:

(1) Unlike the dynamically coherent case (see condition (??) in [3, Section 2]), there
may be annular center stable leaves which do not contain a closed center leaf.

(2) In hyperbolic manifolds, we cannot rule out the possibility of double translations
from the general version of the existence of cores that “shadow” the periodic orbits
of the transverse pseudo-Anosov flow; see condition (???) in [3, Section 2].

(3) In hyperbolic and Seifert manifolds, it is more difficult to eliminate the hypothesis
of f –minimality. See Section 6.

We refer to [15; 24; 30] for surveys on the problem of classification of partially hyper-
bolic diffeomorphisms in dimension 3. There is earlier work towards classification that
does not assume dynamical coherence, but these articles tend to have two simplifying
characteristics: they work with manifolds on which taut foliations are well understood
and amenable to classification, and on which known partially hyperbolic models are
available for comparison. Typically, dynamical coherence is established under the
assumption of nonexistence of invariant tori by using the fact that coarse dynamics
separates leaves of the branching foliations. Neither of these features hold for the
classes of manifolds considered in this article, and dynamical incoherence may appear
in several different ways.

For instance, we obtain dynamical coherence in Section 7 when the lift of the partially
hyperbolic diffeomorphism fixes each leaf of the lifted branching foliations. We also
learn more about the structure of the branching foliations in the non-dynamically-
coherent case, leading, in particular, to case (ii) of Theorem B. This structure also
allows us to better understand the dynamical properties of the system, even when the
manifold is not hyperbolic or Seifert fibered, as can be seen in Theorem 1.3.
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More generally, the framework that we develop for the study of non-dynamically-
coherent partially hyperbolic diffeomorphism is useful outside of the homotopy class
of the identity.

Below are several tools developed in this article that we wish to emphasize:

(1) In Sections 3 and 4, we develop some of the basic theory necessary for the
topological study of branching foliations and the diffeomorphisms that preserve them,
including the structure of their leaf spaces.

(2) In Section 5.1 we introduce the notion of coarsely contracting and coarsely re-
pelling periodic rays. This should be useful for the study of all partially hyperbolic
diffeomorphisms in 3–manifolds, ie including those not homotopic to the identity.

(3) In Section 6 we study the way that certain special lifts of a partially hyperbolic
diffeomorphism act within a fixed center stable leaf, and find conditions that guarantee
the nonexistence of fixed points. This involves understanding the behavior of strong
stable manifolds through fixed points under iteration, which may find applications in
other contexts.

(4) In Section 7 we prove uniqueness of (branching) foliations under certain conditions.
This is a key to finding results that do not require taking finite lifts and finite powers.
As such, it may also be relevant for the study of topological obstructions for partially
hyperbolic diffeomorphisms — note that the topological obstructions for the existence
of Anosov flows can depend on taking finite lifts; see eg [12].

There is other work that shows the uniqueness of branching foliations, but always in a
setting where there is an understood model partially hyperbolic diffeomorphism for
comparison.

(5) In Sections 11 and 12 we develop some tools to analyze the transverse geometry
of branching foliations. This combines ideas from the theory of Lefschetz index,
hyperbolic geometry, and the notion of coarsely expanding and contracting rays in
item (2).

The tools in (5) are used in [4] to prove that a large class of partially hyperbolic diffeo-
morphisms in Seifert manifolds are dynamically incoherent. In addition, (2) and (5)
are used in [18] to obtain fine dynamical consequences of partial hyperbolicity in
3–manifolds.
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3 Branching foliations and leaf spaces

In this section we review the existence of center stable and center unstable branching
foliations, and construct corresponding leaf spaces that capture their transverse topology.
We will also construct a “center foliation” and leaf space.

Definition 3.1 A branching foliation of a 3–manifold M is a collection F of C 1–
immersed surfaces, called leaves, each complete in its induced metric, such that

(i) each x 2M is contained in at least one leaf,

(ii) no leaf crosses itself,

(iii) different leaves do not cross each other, and

(iv) if Ln are leaves, and xn 2Ln converges to a point x 2M, then some subsequence
of the Ln converges to a leaf L with x 2 L.2

Here, “crossing” is meant in a topological sense; see [10] or [24].

Remark 3.2 In this context, “branching” refers to the fact that leaves may merge.
This should not be confused with the typical use of “branching” in the theory of
codimension-1 foliations, where it refers to non-Hausdorff behavior in the leaf space.

Since a branching foliation has C 1 leaves that do not cross, it has a well-defined tangent
distribution.

As with foliations, there is a sense in which branching foliations are “locally product
(branched) foliated”: around each point one can find a neighborhood U with a smooth
product structure U ' D2 � Œ0; 1� such that each leaf of F that intersects U does
so in a collection of discs that are transverse to the Œ0; 1�–fibration and meet every
Œ0; 1�–fiber. This follows readily from the fact that branching foliations are tangent to
C 1 distributions.

On a compact manifold there is a uniform scale �0, called the local product structure
size, such that every open set of diameter less than �0 is contained in a product chart as
above.
2Here, convergence should be understood in the pointed compact–open topology, ie given a compact setK
in L containing x, there is a sequence of compact subsetsKn of Ln containing xn such thatKn converges
to K in the Hausdorff topology.
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Definition 3.3 A branching foliation F is well-approximated by foliations if there is,
for a set of � > 0 accumulating on 0, a family of foliations fF�g with C 1 leaves, and a
family of continuous maps fh� WM !M g, which have the following properties (with
respect to some fixed Riemannian metric):

(v) The angles between leaves of F and F� are less than �.

(vi) The C 0–distance between h� and the identity is less than �.

(vii) On each leaf of F� , the map h� restricts to a local diffeomorphism to a leaf of F .

(viii) For each leaf L of F there is a leaf L� of F� with h�.L�/D L.

Remark 3.4 While the maps h� restrict to local diffeomorphisms on leaves, they will
fail to be global diffeomorphisms on leaves of F� that map to self-merging leaves of F .
In addition, the h� will not be local diffeomorphisms on M unless F is actually a true
foliation.

Definition 3.5 A partially hyperbolic diffeomorphism f W M ! M is said to be
orientable if the bundles Es, Eu and Ec admit orientations that are preserved by f .

The following is the foundational existence result of Burago and Ivanov:

Theorem 3.6 (Burago and Ivanov [10]) Let f be an orientable partially hyperbolic
diffeomorphism of a 3–manifold M. Then there are f –invariant branching foliations
Wcs and Wcu tangent to Ec˚Es and Ec˚Eu that are well-approximated by foliations.

Here, a branching foliation is said to be f –invariant if the image of any leaf under f
is again a leaf.

Note that there is no a priori uniqueness for the center stable and center unstable
branching foliations Wcs and Wcu related to a partially hyperbolic diffeomorphism.
Nevertheless, we will typically fix some pair of such branching foliations and call them
“the” branching foliations for our diffeomorphism. In addition, we will fix families of
approximating foliations Wcs

� and Wcu
� , with associated maps denoted by hcs

� and hcu
� .

On the other hand, since the stable bundle Es is uniquely integrable, a stable leaf s
that intersects a center stable leaf L must be contained entirely in L. Consequently, the
intersection of any two center stable leaves is saturated by stable leaves.
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Figure 1: The branching of center and center stable leaves. Left: two center
stable leaves sharing a region. Right: distinct center leaves inside a center
stable leaf.

Once we have fixed “the” center stable and center unstable branching foliations Wcs

and Wcu, the corresponding lifted foliations on zM will be denoted by eWcs and eWcu.
We may then define center leaves as follows:

Definition 3.7 A center leaf of a partially hyperbolic diffeomorphism is the projection
to M of a connected component of the intersection between a leaf of eWcs and a leaf
of eWcu.

Although the collection of center leaves is not a foliation, it is a kind of codimension-2
branching foliation. We will abuse terminology and call the collection of center leaves
the center foliation.

Remark 3.8 Each center leaf is tangent to the central direction Ec, but a complete
curve that is tangent to the central direction may not be a center leaf. Indeed, even
when the diffeomorphism is dynamically coherent, the central direction may not be
uniquely integrable. See [31] for an example.

3.1 Tautness

In this article, the approximating foliations Wcs
� and Wcu

� have no compact leaves.

Indeed, suppose that one has a compact leaf L 2Wcs
� . Then K WD hcs

� .L/ is a compact
leaf of Wcs. Since the stable bundleEs is uniquely integrable, this compact surface has a
foliation without compact leaves, so it is a torus. According to [27, Theorem 1.4], there
are only a few classes of manifolds that admit partially hyperbolic diffeomorphisms
with tori tangent to Es˚Ec, all mapping tori of T2.

Since we assume that �1.M/ is not virtually solvable, it follows that the approximating
foliations have no compact leaves, which implies that they are taut.
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3.2 Center stable and center unstable leaf spaces

Given a foliation F on a manifold M, the set of leaves of the lifted foliation zF on zM
has a natural topology — the quotient obtained from zM by collapsing each leaf to a
point — and the resulting space is called the leaf space of M.

In this section we will define a notion of leaf space for our branching foliations, where
it would not make sense to take the quotient topology. We will see, in fact, that the leaf
spaces of our branching foliations are homeomorphic to those of the approximating
foliations for small enough �.

Much of this section would apply to any codimension-1 branching foliation, of any
dimension, as long as the leaves in the universal cover are properly embedded Rn�1’s
in Rn. For convenience, however, we will mostly restrict attention to the branching
foliations that we are interested in. This allows for some shortcuts. For example, in
Proposition 3.16 we use the approximating foliations and maps to see that the leaf
space is a 1–manifold as desired, though this could also be done directly.

3.2.1 Complementary regions and sides SinceM is not finitely covered by S2�S1

(as �1.M/ is not virtually solvable), and our branching foliations are well-approximated
by taut foliations, it follows that the universal cover is homeomorphic to R3, and the
lifted leaves are properly embedded planes [14].

The complementary regions of a leaf L are the two connected components of zM nL.
For each complementary region U of a leaf L, the closure U D U [L is called a side
of L.

A coorientation of the branching foliation (which may be thought of as a coorientation
of its tangent distribution) determines, for each leaf L, a positive and a negative
complementary region, which we denote by L˚ and L	. The corresponding sides
are denoted by LC D L˚ [L and L� D L	 [L. We will fix such a coorientation
throughout.

3.2.2 Leaf spaces Let us now construct the center stable leaf space Lcs. This is
the set of leaves of eWcs with the topology defined below. The center unstable leaf
space Lcu is constructed similarly.

In the case of a true codimension-1 foliation, each transverse arc in the universal cover
maps homeomorphically to an arc in the leaf space. We will use a similar idea for
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branching foliations, and use transverse arcs to construct the topology. In a true foliation
each point in a transverse arc intersects a single leaf; for our branching foliations we
need to “blow up” at some points, using the following definition:

Definition 3.9 Given x 2 zM, let Lcs.x/� Lcs denote the set of leaves that contain x.

Given distinct leaves L¤E in Lcs.x/, we will write L<x E whenever LC �E.

Claim 3.10 For each x 2 zM, <x defines a linear order , with respect to which Lcs.x/

is order-isomorphic to a closed interval (possibly a single point).

Proof Assume that Lcs.x/ is not a singleton.

That <x defines a linear order on Lcs.x/ follows from the fact that leaves do not
cross (property (iii) of Definition 3.1). From property (iv), it follows that this order is
complete.

To see that Lcs.x/ is order-isomorphic to a closed interval, it suffices to check that
there are no gaps in the order. That is, given L;E 2 Lcs.x/ such that L<x E, we must
find some L0 2 Lcs.x/ with L<x L0 <x E.

Given such L and E, let y be a boundary point of the connected component of L\E
that contains x. Consider a neighborhood B of y with diameter less than �0, the local
product structure size of Wcs. Since eWcs is product branched foliated in B, each leaf
that intersects B \ .LC \E�/ must intersect y, and since leaves do not cross, any
such leaf must intersect x. Any such leaf L0 will have L<x L0 <x E.

Combined with the linear ordering of points in a transversal, this gives a linear ordering
on the set of leaves that intersect a transversal:

Definition 3.11 Given a transverse arc � , let Lcs.�/� Lcs denote the set of leaves that
intersect � .

Orient � so that it agrees with the coorientation on eWcs. Given distinct leaves K ¤ L
in Lcs.�/, we will write K <� L whenever either

� K \ � lies forward of L\ � with respect to the orientation on � , or

� K and L intersect � at the same point x and K <x L.
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The following properties of these orderings may be found in [10, Section 7].

Claim 3.12 (1) For each open transverse arc � , <� is a linear order , with respect to
which Lcs.�/ is order-isomorphic to an open interval.

(2) If � and � are open transverse arcs , then <� and <� define the same linear
order on Lcs.�/\Lcs.�/, which is order-isomorphic to an open interval (possibly
empty).

Definition 3.13 (topology of Lcs) The center stable leaf space is Lcs, with the topology
T generated by all open intervals in Lcs.�/� Lcs, over all open transverse arcs � .

From Claim 3.12(2), it suffices to take any collection of open transverse arcs that
intersect every leaf of eWcs. Since M is compact, one can take a finite collection of
open transverse arcs in M and consider all of their lifts to zM. This implies in particular
that Lcs is second-countable.

Proposition 3.14 The center stable leaf space Lcs is a simply connected , possibly
non-Hausdorff 1–manifold.

The same applies to Lcu. This is not difficult to prove directly, and it applies more
generally to any codimension-1 branching foliation of a closed n–manifold, as long as
the lifted foliation is by properly embedded Rn�1’s in zM 'Rn. In the present case, it
follows as well from Proposition 3.16 below.

3.2.3 Leaf spaces and approximating foliations Let Lcs
� and Lcu

� denote the leaf
spaces of the approximating foliations Wcs

� and Wcu
� . The maps hcs

� and hcu
� induce

functions
g�;s W Lcs

� ! Lcs and g�;u W Lcu
� ! Lcu

between the corresponding leaf spaces, which are surjective whenever � is sufficiently
small; cf Definition 3.3.

Since Wcs
� is a true foliation, its leaf space Lcs

� is a simply connected, possibly non-
Hausdorff 1–manifold; cf [3, Appendix B].

Remark 3.15 It is possible to modify the proof of [10, Theorem 7.2], where the
foliations Wcs

� and maps hcs
� are constructed, so that the g�;s are injective in addition

to surjective. With this in hand, one could define the topology on Lcs to be the one
induced by this bijection.
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Instead of redoing the entire proof of [10, Theorem 7.2], we will use a simpler fact that
can easily be extracted from that proof: the maps hcs

� are “monotone” in the sense that
they preserve the natural linear order on plaques in local charts.

Proposition 3.16 When � is sufficiently small ,

(1) the preimage of each point in Lcs under g�;s is a closed interval ,

(2) g�;s W Lcs
� ! Lcs is continuous , and

(3) the topology T on Lcs is equivalent to the quotient topology T� induced by g�;s .

The same applies for the center unstable foliations.

Proof Let �0 be the local product sizes of Wcs, and let � < �0=2. Let T� be the quotient
topology induced by g�;s on Lcs.

(1) Let I � Lcs
� be the preimage of a leaf L 2 Lcs, and suppose that I contains two

leaves yL1 and yL2. We want to show that zhcs
� takes every leaf between yL1 and yL2 to L.

From property (vi) of Definition 3.3, the Hausdorff distance between yL1 and yL2 is less
than 2�. Since 2� was chosen to be less than the local product structure size, it follows
that the region between yL1 and yL2 has leaf space which is a closed interval. By the
local monotonicity of zhcs

� , it follows that g�;s maps the entire region between yL1 and
yL2 to L. This implies that the preimage of L is an interval, which is closed because
zhcs
� is continuous.

(2) Let U �Lcs be open. Around each point in U one can find an open interval J �U
that is the set of leaves intersecting a small open transversal ˇ. We want to show that
g�1�;s .J / is open in Lcs

� .

Let yL1 be a leaf in g�1�;s .J /. Then yL1 intersects ˇ (or a slightly bigger transversal), so
all the leaves of eWcs

� close enough to yL1\ˇ intersect ˇ. Thus an open neighborhood
of yL1 is contained in g�1�;s .J /, and g�;s is continuous.

(3) From (2) it follows that T � T�. Let us prove the other inclusion.

Suppose W 2 Lcs is an open set in T�, and let y 2W . Then U D .g�;s/�1.W / is an
open set containing the closed interval I D .g�;s/�1.y/. Let L and E be the boundary
leaves of I . Then one can find half-open intervals IL; IE � U such that IL\ I D L
and IE \ I D E. Then IL [ I [ IE projects to a set in Lcs which contains an open
interval around y in Lcs. Since this applies for every y 2W it follows that W is open
in T .
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This suffices to show that Lcs is a 1–manifold. It is possible to modify g�;s W Lcs
� ! Lcs

to be a homeomorphism when � is sufficiently small, but we will not need this fact.

In the sequel, we fix � small enough that the previous proposition applies for both the
center stable and center unstable foliations.

3.3 Center “foliations”

3.3.1 The center foliation within a center stable/unstable leaf Fix a center stable
leaf L of eWcs. We will describe the topology of the center leaf space, Lc

L, restricted
to L. The center leaf within a center unstable leaf is defined in the same manner.

Remark 3.17 Recall from Definition 3.7 that a center leaf in zM is defined as a
connected component of the intersection between a leaf of eWcs and a leaf of eWcu. Now,
the following situation may arise (see Figure 2): two leaves U1; U2 of eWcu and a leaf L
of eWcs such that the triple intersection U1\L\U2 contains a connected component
of c1 of U1 \L as well as a connected component c2 of U2 \L. That is, the center
leaves c1 and c2 represent the same set in zM. In this case, we also consider c1 and c2
as the same leaf of the center foliation in L.

Definition 3.18 (topology A in Lc
L) Consider a countable set of open transversals �i

which are perpendicular to the center bundle in L, and whose union intersects every
center leaf in L. Put the order topology on the set Ii of center leaves intersecting �i .
This induces the topology A in Lc

L.

L 2 eWcs

U2 2 eWcu

U1 2 eWcu

c1 D c2

Figure 2: Different center unstable leaves may intersect a given center stable
leaf in the same center leaf.
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Let L be a fixed leaf of eWcs. We again fix an � > 0 and consider the approximating
foliation eWcu

� . Since eWcu is transverse to L, so is eWcu
� (for � small enough). Thus,eWcu

� induces a 1–dimensional (nonbranching) foliation F� on L, and hence its leaf
space Lc

L;� is a 1–dimensional, not necessarily Hausdorff, simply connected manifold.

The behavior described in Remark 3.17 above leads to the following issue: the unique
center leaf c1 D c2 is approximated by two distinct leaves of F�. Thus, the leaf
space Lc

L of the center foliation on L is not in bijection with Lc
�. However, we still

have a surjective, but not necessarily injective, projection pr� W Lc
L;� ! Lc

L as in the
previous subsection. Let A� be the quotient topology from the map pr�.

Just as in Proposition 3.16 one can prove the following:

Lemma 3.19 The set of center leaves in L through a point x is a closed interval. Let
c0 be a center leaf in L. Let I D pr�1.c0/ � Lc

�. The set I is a closed interval. If
� < �0, then the topologies A and A� are the same.

3.3.2 Center foliation in zM Finally, we have to put a topology on the leaf space Lc

of the center foliation in zM.

Pick an 0 < � < �0 so that eWcs
� and eWcu

� are transverse to each other. Call F� the
1–dimensional foliation obtained as the intersection of eWcs

� and eWcu
� . The leaf space Lc

�

of F� is now a simply connected, possibly non-Hausdorff, 2–dimensional manifold.
But as before, there is only a surjective, and not injective, projection g� W Lc

�! Lc.

The map g� is defined in the following way: if xc is a leaf of F� , then it is the intersection
of a leaf xU of eWcu

� and a leaf xS of eWcs
� . There exists a unique connected component c

of g�;u. xU/\g�;s. xS/ that is at distance less than 2� from xc. We define g�.xc/D c.

Once again, the topology B� we put on Lc is obtained by identifying elements of Lc
�

that project to the same element of Lc and taking the quotient topology.

As done previously in Sections 3.2.2 and 3.3.1, in order to prove that the topology that
we put on Lc makes it a simply connected (not necessarily Hausdorff) 2–manifold, it
is enough to show that the preimages of points by g� are closed, simply connected
sets contained in a local chart of Lc

�. In order to do that, first notice that Lc
� is locally

homeomorphic to Lcs
� �Lcu

� . Indeed, any xc0 2Lc
� is a connected component of xU0\ xS0,

with xU0 2 Lcu
� and xS0 2 Lcs

� . Now, if Vu is a small enough open interval in Lcu
�

and Vs is a small enough open interval in Lcs
� , then for any xU 2 Vu and xS 2 Vs ,
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the intersection xU \ xS contains a unique connected component close to c0. Using this
local homeomorphism, the following lemma will imply that the topology Lc is as we
claimed.

Lemma 3.20 Let c0 be in Lc. The set R D g�1� .c0/ is homeomorphic to a closed
rectangle in Lcs

� �Lcu
� .

Proof Let xc1; xc2 2R. Let xU1 be the leaf in Lcu
� containing xc1 and let xS2 be the leaf in

Lcs
� containing xc2. Let U1 D g�;u. xU1/ and S2 D g�;s. xS2/. Since xc1; xc2 2R, the center

leaf c0 is a connected component of U1\S2. Thus xU1 and xS2 must intersect and the
intersection contains a unique connected component xc3 at distance at most 2� from c0.

Now, the proof of Lemma 3.19 shows that xc1 and xc3 are two ends of an interval in
the leaf space of F� restricted to xU1 that is entirely contained in R, and similarly for
xc2 and xc3 considered as elements of the leaf space of F� restricted to xS2. In turn, the
arguments of the proof of Lemma 3.19 imply that the set R projects to a closed interval
in both Lcs

� and Lcu
� , ie it is a closed rectangle in Lcs

� �Lcu
� .

Just as in the previous two sections we can also put a topology B on Lc directly as
follows:

Definition 3.21 (topology B on Lc) In M pick a collection of very small open
rectangles Ri which are almost perpendicular to the center bundle, and with boundary
two arcs in leaves of Lcs and two arcs in leaves of Lcu. Consider all lifts R of these
to zM. The set of center leaves intersecting R is naturally bijective to an open rectangle
and we give it the topology making this a local homeomorphism. The topology B is
generated by these rectangles.

First we justify why the set of center leaves through R is naturally an open rectangle.
Let L1; L2 be the center stable leaves containing the two arcs in the boundary of R,
and U1; U2 be the corresponding center unstable leaves. The set of center stable leaves
betweenL1; L2 (not includingL1; L2) is naturally order-isomorphic to an open interval.
This was proved in Section 3.2.2. The same holds for the center unstable foliation. The
product is an open rectangle. The set of center leaves intersecting R is a quotient of
this. The sets which are quotiented to a point are compact subrectangles. The proof
is the same as the previous lemma. Hence the quotient is naturally a rectangle. In
addition, if a collection of center leaves intersects two such rectangles R and R0, then
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the identifications in R also produce the same identifications in R0, and the order of
the center stable and center unstable foliations in the subsets are the same whether in
R or R0. Hence in the identification, the topologies agree.

Just as in the previous sections one can prove:

Lemma 3.22 For � < �0, the topologies B and B� are the same.

The main property is to prove is exactly that of Lemma 3.20. The rest follows just as
in the previous subsections.

3.4 From foliations to branching foliations

Using the leaf space, one can carry over a number of concepts from foliations to
branching foliations.

3.4.1 Uniform and R–covered branching foliations A branching foliation is said
to be R–covered if its leaf space is homeomorphic to R. It is uniform if every two
leaves in the universal cover are a finite Hausdorff distance apart.

By Proposition 3.16 a branching foliation is uniform or R–covered if and only if its
approximating foliations are, for � sufficiently small.

3.4.2 Saturations and minimality A foliation preserved by a homeomorphism f

is said to be f –minimal if the only closed, saturated, f –invariant sets are the empty
set and the whole manifold. We will define f –minimality identically for branching
foliations, but we must be careful about what we mean by “saturated”:

Definition 3.23 A set C �M is Wcs–saturated if, for every x 2 C , there is a leaf
of Wcs that contains x and is contained in C .

A saturation of a saturated set C �M is a collection of leaves X �Wcs whose union
is C .

Note that this is much weaker than asking that every leaf intersecting C be contained
inC . In particular, our notion of saturation has the peculiar property that the complement
of a saturated set need not be saturated; see Figure 3.

In addition, a saturated set may have different saturations. However, a saturated set
always has a unique maximal saturation, consisting of all leaves that are contained in it.
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L2

L1

R

Figure 3: L1 and L2 are two leaves in C , but the region R is not in C . Then,
in parts of R, all the center stable leaves intersect the branch locus between
L1 and L2, so have parts in C and parts not in C (and therefore M nC is not
saturated by center stable leaves).

Definition 3.24 We say that Wcs is f –minimal if the only closed, Wcs–saturated, and
f –invariant subsets of M are ∅ and M.

We emphasize that “closed” is meant as a subset of M, not Lcs.

Saturated sets and saturations are defined similarly in the universal cover. Here, a
saturation can be naturally thought of as a subset of the leaf space Lcs. However, the
topology of a saturated set in zM does not necessarily agree with the topology of a
saturation in Lcs:

Remark 3.25 Let C � zM be eWcs–saturated. It is possible for C to be closed in zM,
but have a saturation C � Lcs that is not closed in Lcs. However, it is easy to see that C
is closed in zM if and only if its maximal saturation is closed in Lcs.

It is true but less immediate that the only saturation of zM that is closed in Lcs is all
of Lcs (Lemma B.1).

3.4.3 Perfect fits The notion of “perfect fits” from the theory of codimension-1 foli-
ations [3, Section 4.1] applies to branching foliations once it is modified appropriately.

We will need the 2–dimensional version of this concept, in Section 5, to understand the
center and stable foliations within a center stable leaf. Given a center stable leaf L,
let CL and SL be the center and stable foliations within L, and let Lc

L and Ls
L be the

corresponding leaf spaces.
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Definition 3.26 A leaf c 2 CL and a leaf s 2 SL make a CS–perfect fit if they do not
intersect, but there is a local transversal � to CL through c such that every leaf in CL.�/
that lies sufficiently close to one side of c (in the linear order <� ) intersects s.

They make an SC–perfect fit if there is a local transversal � 0 to SL through s such that
every leaf in SL.�/ that lies sufficiently close to one side of s intersects c.

We say that c and s make a perfect fit if they make both a CS– and SC–perfect fit.

Remark 3.27 When defining CS–perfect fits it is important to use the linear order <�
on CL.�/, defined in Section 3.2.2, since there may be center leaves on the same side
of c as s that merge with c.

Since SL is a true foliation, the linear order <� 0 on SL.� 0/ comes directly from the
transversal � 0, so the notion of a SC–perfect fit is exactly as in [3, Section 4.1].

One may equivalently define CS–perfect fits as follows. Given a stable leaf s in L, let
Is � Lc

L be the set of center leaves that intersect s. Then c and s make a CS–perfect fit
if and only if c 2 @Is .

Lemma 3.28 Let c and s be center and stable leaves in a center stable leaf L that
make a CS–perfect fit. Then there is a stable leaf s0 such that c and s0 make a perfect fit.

The symmetric statement holds for SC–perfect fits.

Proof This is [3, Lemma 4.2], whose proof remains valid with the obvious modifica-
tions.

4 Branching foliations and good lifts

Fix a closed 3–manifold M whose fundamental group is not virtually solvable, a
partially hyperbolic diffeomorphism f WM !M homotopic to the identity, and a good
lift zf . We will assume that f is orientable (Definition 3.5) so that we have center stable
and center unstable branching foliations Wcs and Wcu which are well-approximated
by taut foliations (Theorem 3.6). This can be achieved by taking an iterate of f and
lifting to a finite cover of M — we will deal with the effects of replacing f and M in
Section 7.
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In this section we will study the way that a good lift zf acts on the lifted branching
foliations eWcs and eWcu in the universal cover zM.

4.1 Translation-like behavior

In this section, we will see that the action of zf on the center stable leaf space must look
locally like a translation. Identical statements hold for the center unstable foliation.

Remark 4.1 In fact, the results in this subsection are not really particular to partially
hyperbolic diffeomorphisms. They apply to any diffeomorphism that is homotopic
to the identity and that preserves a branching foliation well-approximated by taut
foliations. In addition, in this subsection we also do not need to assume that �1.M/ is
virtually solvable.

The key to this section is the following fact:

Lemma 4.2 (big half-space lemma) Let L be a leaf of eWcs. For any R > 0, there
exists a ball of radius R contained in each complementary region of L.

Proof This lemma holds for true foliations — see [3, Lemma 3.3] — so it suffices to
consider a leaf corresponding to L in the approximating foliation eWcs

� for � sufficiently
small.

Remark 4.3 The tautness of the foliation is essential for this result to hold. The
branching foliations in the non-dynamically-coherent example of [31], for instance, do
not satisfy that lemma.

Definition 4.4 (regions between leaves) Let K;L 2 eWcs be distinct leaves. In the
leaf space, Lcs n fK;Lg consists of three open connected components. Only one of
these components accumulates on both K and L: we call this the open Lcs–region
between K and L. Its closure in Lcs, which is obtained by adjoining K and L, is called
the closed Lcs–region between K and L.

Remark 4.5 The subset of zM that corresponds to the open Lcs–region between two
leaves may not be open. However, the subset of zM that corresponds to the closed
Lcs–region between two leaves is closed. It is also connected, but its interior may
not be. See Figure 4.
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V L

KU

W

Figure 4: The interior of the closed region between leaves may not be connected.

The following is the equivalent of [3, Proposition 3.5]. The same proof applies if one
considers complementary regions and regions between leaves as subsets of zM and Lcs,
as appropriate.

Proposition 4.6 If L 2 eWcs is not fixed by a good lift zf , then

(1) the closed Lcs–region between L and zf .L/ is an interval ,

(2) zf takes each coorientation at L to the corresponding coorientation at zf .L/, and

(3) the subset of zM corresponding to the closed Lcs–region between L and zf .L/ is
contained in the closed 2R–neighborhood of L, where

RD max
y2 zM

d.y; zf .y//:

Remark 4.7 In the above proposition, we may a priori have that L and zf .L/ merge.

Using Proposition 4.6 we therefore also obtain the equivalent of [3, Proposition 3.7].

Proposition 4.8 The set ƒ� Lcs of leaves that are fixed by zf is closed and �1.M/–
invariant. Each connected component I of Lcs nƒ is acted on by zf as a translation ,
and every pair of leaves in I are a finite Hausdorff distance apart.

In the above proposition, one has to be mindful again that “open” and “closed” refer to
the topology on the leaf space Lcs, and not the topology on zM.

When Wcs is f –minimal (Definition 3.24), we deduce the following dichotomy from
Proposition 4.8:

Corollary 4.9 If Wcs is f –minimal , then either

(1) zf fixes every leaf of eWcs, or

(2) Wcs is R–covered and uniform , and zf acts as a translation on the leaf space Lcs.
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Proof Although the proof is conceptually identical to that of the corresponding result
in the dynamically coherent case [3, Corollary 3.10], we will redo it since the distinction
between the topology in Lcs and zM becomes important.

Let ƒ be the set of leaves that are fixed by zf . Since zf commutes with deck transfor-
mations, each deck transformation preserves ƒ. In particular, if I is a component of
Lcs nƒ and g 2 �1.M/, one has either g.I /D I or g.I /\ I D∅.

So ƒ is invariant under zf and deck transformations, saturated by eWcs, and closed
in Lcs (by Proposition 4.8).

Let zB � zM be the union of the points in all leaves in zƒ, and let B D �. zB/ � M.
Since ƒ is closed in Lcs, zB is closed in zM, and B is closed in M. In addition, B is
f –invariant. Since Wcs is f –minimal, B is either ∅ or M.

If B is empty then ƒ is empty, and Proposition 4.8 implies that we are in case (2).

If B DM then zB D zM, and we have to prove that ƒ D Lcs. This follows from the
more general Lemma B.1, but it also has a more direct proof, as follows.

Suppose ƒ ¤ Lcs. Let I be a connected component of Lcs nƒ. Let J be the set of
points of zM contained in a leaf in I . The set I is open (in Lcs) and zf translates leaves
in I . It follows that the interior in zM of J is nonempty. These points in the interior
of J are not contained in zB . This contradicts zB D zM. So ƒ D Lcs, and we are in
case (1).

This immediately implies the trichotomy in Section 2.0.1.

4.2 Ruling out fixed points

Let us now find conditions under which we show that our good lift zf has no fixed
points in zM. We will use the following lemma.

Lemma 4.10 Let L 2 eWcs be a center stable leaf that is fixed by zf . Suppose that for
every y 2 L one can find a leaf L0 2 eWcs that is fixed by zf and intersects the unstable
leaf through y in a point other than y. Then no nontrivial power of zf fixes a point in L.

Proof Suppose that zf n fixes a point x 2 L for some n¤ 0. One can assume after
possibly switching signs that n > 0. Then expansion of the unstable leaf u through x
implies that no leaf L0 that intersects u at a point other than x can be fixed.
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Compare this with the simpler statement [3, Lemma 3.13] in the dynamically coherent
setting, where it suffices to assume L is not isolated in the set of fixed leaves.

Corollary 4.11 If zf fixes every center stable leaf , then it has no fixed or periodic
points in zM.

This follows immediately from the lemma. We will now exclude the existence of fixed
or periodic points under the assumption of f –minimality.

Theorem 4.12 If Wcs or Wcu is f –minimal , then zf does not have any fixed or
periodic points in zM.

Proof Assume without loss of generality that Wcs is f –minimal. By the dichotomy
in Corollary 4.9, zf either fixes every leaf of eWcs, or acts as a translation on Lcs.

If zf fixes every leaf of eWcs, the result follows from Lemma 4.10. If zf acts as a
translation on Lcs, then for any leaf L of eWcs one has zf i .L/\LD∅ for ji j sufficiently
large.

A noteworthy consequence is the nonexistence of “contractible periodic points” under
the assumption of f –minimality.

Definition 4.13 Let g be a homeomorphism of a manifold homotopic to the identity.
A point p is a contractible periodic point if gn.p/D p for some n¤ 0 and there is a
homotopy H WM � Œ0; 1�!M from the identity to g such that the concatenation of
the paths H.p; � /;H.g.p/; � /; : : : ;H.gn�1.p/; � / is homotopically trivial.

Notice that if p is a contractible periodic point of g of period n then there exists a good
lift zg of g and a lift zp of p such that zgn. zp/D zp. Thus, Theorem 4.12 immediately
yields:

Corollary 4.14 If f admits a f –minimal branching center stable or center unstable
foliation , then f has no contractible periodic points.

This completes the proof of Theorem 1.3 in the f –minimal case. The hyperbolic and
Seifert fibered cases follow from Proposition 6.1.
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4.3 Fundamental groups of leaves

The leaves of Wcs and Wcu are immersed surfaces which may not be injectively
immersed. In the universal cover, however, the leaves of eWcs and eWcu are properly
embedded planes; cf Section 3.2.

It follows that there may be a closed loop in a leaf with a corresponding element of
�1.M/ that fixes no lift of that leaf in the universal cover. These elements are not
useful for our purposes, so we will remove them by convention:

Convention When working with a fixed lift L of a leaf C of Wcs or Wcu, we will say
that an element  2 �1.M/ is in the fundamental group of C if it stabilizes L.

There is another way of seeing this notion of fundamental group arise: recall from
Theorem 3.6 that the branching foliations are approximated by true foliations Wcu

�

and Wcs
� and that there exists maps hcs

� and hcu
� mapping leaves of Wcs

� (or Wcu
� ) to

those of Wcs (or Wcu). Then, a loop is in the fundamental group of a leaf C of Wcs

if and only if it is freely homotopic to a loop in a corresponding leaf C� of Wcs
� for

every � small enough. Notice that if there are several leaves that project to C , in the
universal cover, take a lift L and it follows from Proposition 3.16 that the set of leaves
that projects to L is an interval in the leaf space of eWcs

� . It follows that hcs
� lifts to

an equivariant (with respect to the defined fundamental group of C ) diffeomorphism
from the boundary leaves of the closed interval to L. We call such a leaf L� and write
C� D �.L�/.

In other words, for us, the fundamental group of C based at y will be exactly
.hcs
� /�.�1.C�; y0//, where hcs

� .y0/D y.

In particular, since Wcs
� and Wcu

� are taut foliations without Reeb components, each
leaf is �1–injective in M. Thus, this second interpretation helps explain our convention:
the closed loops in a leaf of Wcs are either in the fundamental group as we defined it,
or they are due to a self-intersection. In that case, they are not an essential feature of
the leaf, as they stopped being closed when pulled-back to the approximating leaf.

Following our convention, we will then say that a leaf C of the branching foliation
is a plane, a cylinder or a Möbius band if its corresponding approximated leaf C� is,
respectively, a plane, a cylinder or a Möbius band for any small enough �.

Using these conventions, Proposition 3.14 of [3] holds for the leaves of the branching
foliations whenever zf has no fixed points in the leaf; cf Lemma 4.10. For ease of
reference, we restate it here.
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Proposition 4.15 Assume that zf fixes a leaf L of eWcs. Then C D �.L/ has cyclic
fundamental group (thus it is either a plane , an annulus or a Möbius band ), or L has a
point fixed by zf .

Remark 4.16 Similarly, because of possible self-intersections, we need to be careful
with how to define the path metric on a leaf of Wcs or Wcu.

If C is a leaf of, say, Wcs, we define a path on C as a continuous curve � that is the
projection of a continuous curve z� in a lift L of C to zM. We then define the path metric
on C as usual, but considering only the paths as defined before.

Notice that not every continuous curve � on C is a path in the above sense, as there
might not exists any lift of � that stays on only one lift of C .

Still, the analogue of [3, Lemma 3.11] holds:

Lemma 4.17 If zf fixes every leaf of eWcs (resp. eWcu) then there is a K > 0 such that
for every L 2 eWcs (resp. L 2 eWcu), we have that dL.x; zf .x// < K.

4.4 Gromov hyperbolicity of leaves

We now prove a version of [3, Lemma 3.20] in the non-dynamically-coherent setting.

Lemma 4.18 If Wcs is f –minimal , and zf fixes every leaf of eWcs. Then each leaf
of Wcs is Gromov hyperbolic.

Proof The foliation Wcs
� is taut. Thus, Candel’s theorem [13] asserts that either all

the leaves of Wcs
� are Gromov hyperbolic or there is a holonomy-invariant transverse

measure (of zero Euler characteristic).

Assume for a contradiction that � is a holonomy-invariant transverse measure. Since
Wcs
� is not f –invariant, we have to adjust the proof given in [3]. The transverse measure

� lifts to a measure z� transverse to eWcs
� . Thus, z� defines a measure on Lcs

� , the leaf
space of Wcs

� .

Let g�;s WLcs
� !Lcs be the canonical projection between the leaf spaces of Wcs

� and Wcs;
see Section 3.2.2. Let z� WD .g�;s/� z� be the corresponding measure on Lcs. Now z� is
zf –invariant since zf is the identity on Lcs, and it is also �1.M/–invariant as z� is. The

support of z� in Lcs is a closed set Z in Lcs that is zf –invariant and �1.M/–invariant.
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The measure z� on Lcs can also be considered as a measure on the set of transversals toeWcs in zM : For any transversal � to eWcs in zM , we define z�.�/ as the z�–measure of the
set of leaves in Lcs that intersects � . Notice that the measure of a point in zM (which
can be thought of as a degenerate transversal) can be positive if the image of that point
in Lcs is an interval.

Note also that we refrained from calling z� a transverse measure to eWcs because it is
by no means holonomy-invariant. In fact holonomy itself is not well-defined for a
branching foliation. Still, z� satisfies the property that if �1; �2 are transversals and
every leaf intersecting �1 also intersects �2, then z�.�1/� z�.�2/.

Projecting down to M, the measure z� induces a measure � on the set of transversals
to Wcs on M.

Let � be any unstable segment in M. Since zf fixes every leaf of eWcs, the measure of
f i .�/ (D �.f i .�//) is equal to �.�/ for any integer i . We can choose i very big and
negative so that the length of f i .�/ is extremely small. Therefore it is contained in a
small foliated box of Wcs, which is the projection of a compact foliated box of Wcs

� . It
follows that �.�/ is uniformly bounded. In particular, this implies that the �–measure
of any unstable leaf in M is bounded above. In turn, it implies that for any j > 0
(assumed big enough), there is an unstable segment uj of length > j which has �.uj /
measure < 1=j . Taking the midpoint of these segments and a converging subsequence,
we obtain a full unstable leaf, call it �, so that � has �.�/D 0 (since �.�/ < 1=j for all
big enough j ).

Let Y be the union of the leaves of Wcs that do not intersect � or any of its iterates
by f . Then Y is a closed subset of M and clearly f –invariant. Let L be a leaf in eWcs

which is in Z, the support of z�. Then by definition of support of z�, it follows that �.L/
cannot intersect � or any of its iterates by f . Hence �.L/ is in Y . In particular, Y is
not empty. This contradicts the fact that Wcs is f –minimal, and hence cannot happen.

This finishes the proof of the lemma.

5 Center dynamics in fixed leaves

This section deals with the dynamics of center leaves within center stable (and center
unstable) leaves. It is one of the first places where we encounter significant difficulties
compared with the dynamically coherent setting.
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In [3, Proposition 4.4] we found a condition for the existence of center leaves that
are fixed by a good lift, but the proof does not work without dynamical coherence
[3, Remark 4.8].

Throughout this section we continue to assume that f is orientable (Definition 3.5).

Definition 5.1 Let c �M be a center leaf that is fixed by f . We say that c is coarsely
contracting if it is homeomorphic to the line, and it contains a nonempty compact
interval I such that each compact interval J � c whose interior contains I has the
property that f .J /� VJ .

We say that c is called coarsely expanding if it is coarsely contracting for f �1.

We also naturally extend the definition of coarse contraction/expansion to leaves that
are periodic under f .

The following is the main result of this section.

Proposition 5.2 Suppose that Wcs is f –minimal , and that there is a good lift zf that
fixes every center stable leaf but no center leaf in zM. Then every f –periodic center leaf
in M is coarsely contracting.

Note that a coarsely contracting periodic leaf must contain a periodic point.

If Wcu is f –minimal, and there is a good lift zf that fixes every center unstable leaf
in zM , then one concludes that each periodic center leaf is coarsely expanding.

We will see in Proposition 5.6 that one can always find f –periodic center leaves.

5.1 Fixed centers or coarse contraction

We begin with a preliminary result.

Lemma 5.3 Suppose that zf fixes every center stable leaf but no center leaf in zM. Then
the same holds for every iterate zf n with n¤ 0.

Proof Suppose that zf n fixes a center leaf c0 for n>0, and let L be a center stable leaf
that contains c0 (which is fixed by zf by hypothesis). Since f is orientable, zf preserves
transverse orientations to the center and stable foliations on L.
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Let Ac be the axis for the action of zf on the center leaf space in L, ie the set of
center leaves c such that zf .c/ separates c from zf 2.c/; see [3, Appendix E]. Since
zf n.c0/D c0, the leaf c0 cannot be in Ac. If c0 is not in @Ac then we can replace it with

the unique center leaf that separates c0 from Ac. Thus we can assume that c0 2 @Ac.

Recall (see [1, Proposition 2.15]) that the boundary of the axis of a homeomorphism
on a 1–manifold splits into three disjoint sets: the “positive” boundary, “negative” and
“middle” boundary. That is, @Ac contains three types of leaves, the center leaves c such
that c and zf .c/ are nonseparated on their positive side, the leaves c such that c and
zf .c/ are nonseparated on their negative side, and the leaves c that are nonseparated

with a leaf c0 in Ac.

If c0 was in the “middle” boundary, then we would have that there exists c0 2 Ac not
separated with c0. Thus c0 and zf n.c0/ are separated, contradicting that c0 D zf n.c0/.
So c0 must be either in the positive or negative boundary. In particular, c0 and zf .c0/
are nonseparated.

Now, consider the closure of the set of stable leaves intersect c0. There exists a unique
stable leaf s0 in the boundary of that set that separates c0 from zf .c0/. Therefore,
s0 must be fixed by zf n, and hence contains a fixed point x of zf n.

In particular, we found a periodic point of zf ; thus, by the Brouwer translation theorem
(see eg [2]) zf must also admit a fixed point, say y. Since the center leaves through y
form a closed interval (Lemma 3.19), there exists at least one closed center leaf
through y, a contradiction.

In order to obtain coarsely contracting center leaves we will use the following tool.

Proposition 5.4 Suppose that zf fixes every center stable leaf in zM, and let L be a
center stable leaf that is also fixed by some  2 �1.M/ n fIdg.

Assume that there exists a properly embedded C 1–curve y�� L that is transverse to the
stable foliation and fixed by both  and zf .

� If zf does not act freely on Lc
L, then there is a center leaf in L fixed by both zf

and  .

� If zf acts freely on Lc
L, then every f –periodic center leaf in �.L/ is coarsely

contracting.

In the first case the center leaf projects to an f –invariant closed center leaf.
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Note also that the hypotheses of Proposition 5.4 are implied by the conclusion of the
graph transform lemma [3, Appendix H].

We will use the following result from [3], whose proof works equally well in the
non-dynamically-coherent case.

Lemma 5.5 [3, Lemma 4.15] Let c be a center leaf in a center stable leaf L � zM.
Suppose that L is Gromov hyperbolic , and fixed by zf and some nontrivial  2 �1.M/.
Moreover , assume that there exist two stable leaves s1; s2 on L such that

(1) the center leaf c is in the region between s1 and s2,

(2) the leaves s1 and s2 are a bounded Hausdorff distance apart , and

(3) the leaves c, s1 and s2 are all fixed by hD n ı zf m, m¤ 0.

Then there is a compact segment I � c such that h (if m> 0) or h�1 (if m< 0) acts as
a contraction on c n VI .

Proof of Proposition 5.4 Since zf fixes every leaf of Wcs, Lemma 4.10 implies that it
fixes no point in zM, and hence fixes no stable leaf.

Let S be the stable saturation of the curve y�. Let ˛ D �.y�/. The curve ˛ is closed,
f –invariant, and tangent to the center bundle.

Case 1 We start by assuming that zf fixes a center leaf c in L.

Suppose that c and y� do not intersect a common stable leaf. Then c does not intersect
the set S and there is a unique stable leaf s contained in the boundary of S such that
s separates S from c. Since both S and c are zf –invariant, so is s. But then zf must
admit a fixed point in s, a contradiction.3

Therefore there is a stable leaf s intersecting c in y and y� in x. Iterating forward by zf ,
we deduce that d. zf n.y/; zf n.x// converges to zero as y and x are in the same stable
leaf. Since both c and y� are zf –invariant, it implies that c and y� are asymptotic; note
that c and y� may or may not intersect. Calling ˛D�.y�/ the projection toM, we deduce
that �.c/ accumulates onto ˛. But as ˛ is closed and �.c/ is a center leaf, we deduce
that ˛ is also a center leaf. Hence y� is the required center leaf of the first option of the
proposition.

3Note the distinction of c being fixed by zf as opposed to �.c/ being periodic under f . It is the first
property which creates a fixed point of zf and a contradiction.
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Case 2 Assume now that zf acts freely on the center leaf space of L.

According to Lemma 5.3, zf n also acts freely on the center leaf space of L for any
n 6D 0.

We need to prove now that every center leaf in �.L/ that is periodic must be coarsely
contracting.

Let then c be a center leaf in L such that �.c/D e is periodic under f , say of period m.
Then, for some 1 2 �1.M/ n fIdg, we have c D 1 zf m.c/. (One can show under our
current assumptions that �.L/ projects to an annulus, so  and 1 are both powers of
a particular deck transformation, but we do not need that fact for the proof.) Let

h WD 1 ı zf
m:

We now want to show that either c intersects y�, or there exists another center leaf, also
fixed by h, that does.

Suppose first that c intersects S , ie there exists a stable leaf intersecting both c and y�.
Since the stable distance is contracted by h, which fixes both c and y�, we obtain that
either c and y� are asymptotic, or they intersect. If c and y� are asymptotic, then, as in
Case 1, we deduce that y� must be a center leaf, contradicting the fact that zf acts freely
on the center leaf space. Thus we must have that c intersects y�.

Suppose now that c does not intersect y�, and thus does not intersect S . Then there is a
unique stable leaf s in @S that separates y� from c. That leaf s must then be invariant
by h, so admits a fixed point for h. Then at least one center leaf, say c1, through that
fixed point must be fixed by h. Since c1 intersects S and is invariant by h, it must
intersect y�.

Thus in any case, we have a center leaf c1 that intersects y�, is invariant by h and, by
the above argument, has both ends that escape compacts sets of L.

Let I be the projection of c1 onto y� along stable leaves.

Suppose first that I is unbounded. Then, considering iterates by f m, we deduce that
�.c1/ must be asymptotic to �.y�/, so y� must be a center leaf, which is not allowed,
since zf is assumed to act freely on center leaves.

So I is bounded in y�. Let s1 and s2 be the stable leaves through the two endpoints of
the interval I . Since I is fixed by h, so are s1 and s2. Moreover, the center leaf c1, as
well as c if it is different from c1, is in between s1 and s2.
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Now, zf acts as a translation on y�, so there exists k 2 Z such that s2 separates s1 from
zf k.s1/. By Lemma 4.17, s1 and zf k.s1/ are a bounded Hausdorff distance apart. Thus
s1 and s2 are a bounded Hausdorff distance apart. So c satisfies all the conditions for
Lemma 5.5 to hold, thus it is coarsely expanding.

This finishes the proof of Proposition 5.4.

We are now ready to prove the main result of this section.

Proof of Proposition 5.2 Let e �M be an f –periodic center leaf, and let c � zM be
a lift of e. If m> 0 is the period of e, then c and zf m.c/ both project to e, so there is
an element  0 2 �1.M/ with  0. zf m.c//D c.

Choose a leaf L 2 eWcs that contains c. Then  0 is in the stabilizer of L, because
zf leaves invariant every leaf of eWcs. Since zf m acts freely on the center leaf space

(cf Lemma 5.3),  0 is not the identity.

Since zf does not have any fixed points, Proposition 4.15 implies that the stabilizer of
L in zM is infinite cyclic. Thus, there exists  2�1.M/nfidg such that n ı zf m.c/D c
for some n 2 Z with n¤ 0, and such that  generates the stabilizer of L. Let

h WD n ı zf m:

Notice that h is still a partially hyperbolic diffeomorphism and has bounded derivatives.

Since zf acts freely on Lc
L, it must also act freely on Ls

L. Let As be the axis for the
action of zf on the stable leaf space Ls

L; see [3, Appendix E]. No stable leaf in M can
be closed, so  must also act freely on Ls

L. Since  and zf commute, As is also the axis
for the action of  on Ls

L. The axis As can be a line or a countable union of intervals.

Suppose first that As is a line. Let s be a stable leaf in As and p in s. Then p and p
can be connected by a transversal to the stable foliation, chosen so that the projection
to �.L/ is a smooth simple closed curve. Let � be the union of the  iterates of this
segment. Applying the graph transform lemma [3, Lemma H.1] to � we obtain a curve y�
which satisfies the properties in the hypothesis of Proposition 5.4, as desired.

Now suppose that As is a countable union of intervals

As
D

[
i2Z

Œs�i ; s
C
i �D

[
i2Z

Ti :

Our first claim is that there exists s 2 As, fixed by h, such that the center leaf c is
between �1s and s.
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Suppose that c intersects some stable leaf s0 in As. Then s0 is in a unique Ti for some i
(the center leaf c cannot intersect two different intervals otherwise c would intersect
two nonseparated leaves, which is impossible). Then, since h fixes c, it also fixes the
axis As and preserves the transverse orientation. It follows that h.Tj /D Tj for all j .
In this case we set s D sCi . The leaf s is fixed by h and there exists k ¤ 0 such that
˙1Ti D Ti˙k . Thus Ti is in between �1s and s and hence, so is c. Recall here
that h preserves orientation.

Now, suppose instead that c does not intersect As. Hence, there is a unique i such that
sCi�1 [ s

�
i separates c from all other stable leaves in As. We again set s WD sCi . As

before, since h fixes both c and As, and preserves the transverse orientation, it must fix
s also. The same argument as above also shows that c is between �1s and s.

In either case we have found a stable leaf s (chosen as a positive endpoint of one of the
closed intervals Ti ) that is fixed by h, such that c lies between �1s and s. Notice
that both s and �1s are fixed by h.

The leaf �1s is between s and zf 2m.s/ D �2nC1s (assuming n � 1, otherwise
between s and f �2m.s/). Hence the Hausdorff distance between �1s and s is
bounded above by a uniform constant C > 0, depending only on f and m.

Thus the center leaf c, fixed by h, lies between the stable leaves s and �1s, also
fixed by h, which are a bounded Hausdorff distance apart. Moreover, the leaves of Wcs

are Gromov hyperbolic by Lemma 4.18. These are all the conditions needed to apply
Lemma 5.5, so c is coarsely contracting for h.

5.2 Existence of periodic center leaves

In order to apply Propositions 5.2 and 5.4 we will need some way to find periodic
center leaves.

Proposition 5.6 Let f WM !M be a partially hyperbolic diffeomorphism homotopic
to the identity.

Suppose that some good lift zf fixes every center stable leaf in zM. If L is a center stable
leaf fixed by some  2 �1.M/ n fIdg, then there is an f –periodic center leaf in �.L/.

Proof First notice that if one can prove the above result for a finite cover of M and
a finite power of f , then the same result directly follows for the original map and
manifold. Thus, we may assume that M is orientable, f is orientation-preserving, and
the branching foliations are both transversely orientable.
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Given these assumptions, L projects to an annulus in M (Proposition 4.15). Let  be a
generator of the stabilizer of L.

If zf fixes a center leaf in L, then it would project to a center leaf fixed by f , proving
the claim. So we assume that zf acts freely on the center leaf space in L. This implies
that zf also acts freely on the stable leaf space in L, and we can thus consider the
stable axis A� Ls

L of zf . Since  also acts freely on the stable leaves, and commutes
with zf , it has the same set A as its axis. This axis is either a line or a countable union
of intervals.

If the axis is a countable union of intervals, there must be integers n;m such that
h WD n zf m fixes one of the intervals, and hence a stable leaf s. One cannot havemD 0,
since this would mean that n would fix a stable leaf, which is impossible. So m 6D 0,
and s projects to a periodic stable leaf �.s/ in M. This must contain a periodic point,
and at least one center leaf through that point is periodic, as desired.

If the axis is a line, then one can use the graph transform lemma [3, Appendix H] to
see that there is a properly embedded curve in L which is invariant under zf and  .
Then [3, Lemma H.3] provides a periodic center leaf, as desired.

5.3 Additional result

The intermediate results in this section also provide a proof of the following result,
which will be needed later in this article.

Proposition 5.7 Suppose that zf fixes every center stable leaf in zM, and let L be a
center stable leaf that is also fixed by some  2 �1.M/ n fIdg. Assume moreover that
there is no center leaf in L fixed by zf . Then there is a center leaf c in L fixed by
hD n ı zf m for some n;m with m¤ 0, and two stable leaves s1; s2 on L such that

(1) the center leaf c separates s1 from s2 in L,

(2) the leaves s1 and s2 are a bounded Hausdorff distance apart , and

(3) the leaves c, s1 and s2 are all fixed by hD n ı zf m, where m¤ 0.

Proof The conditions imply that �.L/ is an annulus. Proposition 5.6 implies that
there is a periodic center in �.L/.

To prove Proposition 5.7 we revisit the proof of Proposition 5.2. Since there is no
center fixed by zf in L, then as in the proof of Proposition 5.2 the map zf acts freely
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on the stable leaf space. As in that proposition we separate into whether the stable axis
is a line or a Z–union of intervals.

In the first case, as in Proposition 5.2 we produce a curve y� in L which is invariant
under yf and  . We will use Proposition 5.4, and the existence of such a curve y� is
necessary for that. The analysis of Proposition 5.4 has cases depending on the action
of zf on the center leaf space — as opposed to the action on the stable leaf space As.
However, in this proposition we are assuming that the action on the center leaf space in
L is free, so this is Case 2 of Proposition 5.4, where the proof showed the existence of a
center leaf c and stable leaves s1; s2 satisfying the conditions stated in this proposition,
except perhaps that c separates s1 from s2.

We now show that such a center leaf exists with this additional property. Suppose that
this does not happen for c. This can only occur if both ends of �.c/ are in the same
end of the annulus �.L/, or in other words, if �.c/ separates �.L/. Since the action of
zf on the center leaf space in L is free it has an axis denoted by Ac. The leaf c is not in

this axis. If the axis Ac is a real line then there is a unique center leaf c0 in the axis Ac

which is either nonseparated from c or is nonseparated from a leaf which separates c
from the axis. In either case it also follows that h fixes c0. We can then redo the analysis
with c0 instead of c. It will produce stable leaves s1; s2 fixed by h, with c0 between
them, and now c0 separates s1 from s2. If the center axis Ac is a countable union of
intervals, there is a unique consecutive pair of intervals such that c is “between” them.
Then the boundary leaves of these intervals are fixed by h. Choose c0 to be one of these
boundary leaves, and redo the proof with c0 instead of c to obtain the conclusion of the
proposition.

The other case of this proposition is when the stable axis is a Z–union of intervals.
Here we use the notation of the proof of Proposition 5.2, where As D

S
i2ZŒs

�
i ; s
C
i �DS

i2Z Ti . Consider sC0 , which is nonseparated in the stable leaf space from s�1 . There
are n;m, with m 6D 0, such that hD n ı zf m fixes all Ti and their boundary leaves.
Since sC0 and s�1 are nonseparated, consider a nearby stable leaf s which intersects
transversals to both of them. Choose a center c0 intersecting s and sC0 , and choose a
center c1 intersecting s and s�1 . Starting from c0 and considering the centers intersecting
s between c0\ s and c1\ s, there is a first center leaf, denoted by c, which does not
intersect sC0 . This center is fixed by h. Let s1 D sC0 and s2 D s�1 . They are both fixed
by h. In addition, c separates s1 from s2. Finally, s1 and s2 are a finite Hausdorff
distance from each other in L.

This completes the proof of the proposition.
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6 Minimality for Seifert and hyperbolic manifolds

In this section we will show that when M is hyperbolic or Seifert, the existence of
a single fixed center stable leaf implies that every center stable leaf is fixed. This is
considerably easier in the dynamically coherent case [3, Proposition 3.15].

We continue to assume that f is orientable.

Proposition 6.1 Suppose that M is hyperbolic or Seifert fibered , and a good lift zf
fixes some leaf of eWcs. Then zf fixes every leaf of eWcs, Wcs is f –minimal , and every
leaf of Wcs

� and Wcs is either a plane or an annulus. The same statement holds for Wcu.

The main issue in extending the proof of [3] to the non-dynamically-coherent context
is that here we cannot ensure the nonexistence of fixed points of zf , since Lemma 4.10
does not exclude fixed points when the branching foliation is not f –minimal. So we
will need to exclude the existence of fixed points for good lifts. We cannot exclude
their existence in general, but we are able to show that they cannot exist in minimal
sublaminations of Wcs or Wcu.

6.1 No fixed points for good lifts

Note that the definition of f –minimality for the whole foliation can be applied to
subsets: a Wcs–saturated subset of M is f –minimal if it is closed, nonempty, and
f –invariant, and no proper saturated subset satisfies these conditions.

The goal of this subsection is to prove the following proposition, which does not assume
that M is hyperbolic or Seifert.

Proposition 6.2 Let zf be a good lift of f to zM. Suppose that ƒ is a nonempty
f –minimal set of Wcs such that every leaf L of zƒD ��1.ƒ/ is fixed by zf . Then zf
has no fixed points in zƒ.

We will prove this proposition by contradiction. So from now on, we assume that there
is a fixed point p of zf in a leaf L contained in zƒ. This point projects to a fixed point
�.p/ in M. Note that any leaf L0 of zƒ that intersects the unstable leaf u.p/ through p
must have L0\u.p/D p D L\u.p/. This is because L and L0 are both fixed, and
unstable leaves are expanded.

6.1.1 Many fixed points The following property uses crucially the fact that ƒ is an
f –minimal sublamination.
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Lemma 6.3 There exists b > 0 such that any point in a leaf of zƒ is at distance at
most b (for the path metric on the leaf ) from a fixed point of zf .

Proof Otherwise, one can find a sequence of discs Di in leaves of zƒ that contain
no fixed points and whose radius goes to1. Up to deck transformations and subse-
quences, these disks converge to a full leaf L1 of eWcs that is contained in zƒ. Here, the
convergence is with respect to the topology of the center stable leaf space, which also
implies convergence as a set of zM. The leaf L1 does not contain any fixed point of zf .
Indeed, the unstable leaf through a fixed point q in L1 would eventually intersect one
of the discs Di . Since zf fixes the leaves of eƒ, this would imply that the leaf through
Di merges with L1 and that Di contains the fixed point q, a contradiction.

Since L1 contains no fixed points, it does not contain the zf –fixed point p, and
AD �.L1/ does not contain the f –fixed point �.p/. But the closure of AD �.L1/
in M is ƒ by minimality, so A must accumulate on �.p/. But this means that A
intersects u.�.p//, which implies that A contains �.p/ as explained above. This is a
contradiction.

6.1.2 A topological lemma Let L be a metrically complete, noncompact, simply
connected, Riemannian surface.

For a compact subset X � L we denote by Fill.X/ the complement of the unique
unbounded connected component of L nX . Note that Fill.X/ is always compact, as a
neighborhood of1 in the compactification of L is disjoint from X . Notice further that,
by definition, Fill.X/ is a compact connected set which does not separate the plane.

We will use the following simple properties of Fill.X/:

� If X � Y are compact sets, then Fill.X/� Fill.Y /.

� If g W L! L is a homeomorphism and X � L, then g.Fill.X//D Fill.g.X//.

The following lemma will be used in the next section; see Figure 5.

Lemma 6.4 Let L be as above. Then for every b > 0 and ı > 0 there exists R > 0
and n0 > 0 with the following property. Let A and B be topological disks , and let
`1; : : : ; `n, with n� n0, be disjoint curves that join A and B. Suppose that

(i) d.A;B/ > 2R, and

(ii) the ı–neighborhoods of the curves `i are pairwise disjoint.

Then the region Fill.A[B [`1[� � �[`n/n .A[B/ contains a disk D of radius > 4b.
Moreover , D can be chosen so that d.D;A/ and d.D;B/ are larger than d.A;B/=10.
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Figure 5: A depiction of Lemma 6.4.

Proof Using the Jordan curve theorem we can reorder the curves so that

� Fill.A[B [ `1[ � � � [ `n/D Fill.A[B [ `1[ `n/, and

� for 1 < i < n we have that `i � Fill.A[B [ `i�1[ `iC1/.

Take R > 100b and n0 > 100b=ı. Without loss of generality we can assume that n is
even. This way, we can choose a point x 2 `n=2 such that d.x;A/ > d.A;B/=4 and
d.x; B/ > d.A;B/=4. We claim that B.x; 4b/� Fill.A[B[`1[`n/. By our choice
of x it will follow that B.x; 4b/ is at distance larger than d.A;B/=10 from A and B.

To see this, consider a geodesic ray r starting from x, and let y be the first point of
intersection of r with @Fill.A[B [ `1[ � � � [ `n/ n .A[B/. By our ordering, there
are two possibilities: either

� y belongs to @A[ @B , or

� y belongs to `1[ `n.

By our assumptions, if y 2 @A[ @B then the distance d.x; y/ > R=4 > 4b. On the
other hand, if y 2 `1 then by our choice of reordering we deduce that r must intersect `i
for all 1 � i � n=2. Since the points of intersection are at distance pairwise larger
than ı, we deduce that d.x; y/ > 4b. Similarly, if y 2 `n we also get d.x; y/ > 4b.
This completes the proof.
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6.1.3 Proof of Proposition 6.2 We will repeatedly use the fact that zf �1 expands
stable length. To simplify notation we set g WD zf �1. The rest of this subsection is
devoted to the proof of Proposition 6.2.

According4 to Lemma 4.17, there is a constant K >0 such that, for any z 2L, we have

dL.z; g.z//�K;

where dL denotes the path metric on L. From now on within this subsection we will
always work in L, so we will drop the subscript and write d WD dL.

To finish the proof, our aim will be to show that the fact that zf moves points a bounded
distance in L, together with the exponential contraction of length along the stable
leaf s.p/ under iteration by zf , will force an arbitrarily large amount of “bunching”
of s.p/, which is impossible for leaves of planar foliations.

Indeed, since s.p/ is a leaf of a foliation of the plane, there exist some constants ı; �>0
such that if I; J � s.p/ are closed segments which are at distance larger than � in
the s.p/ metric, then their ı–neighborhoods are disjoint in L. Now, this implies in
particular that the volume of the ı–neighborhood of a segment of s.p/ must grow to
infinity with its length (and therefore, the diameter grows to infinity with the length).

Without loss of generality, we can assume that ı; � < 1 and K > 1.

To prove Proposition 6.2 we will fix b > 0 as given by Lemma 6.3, and ı > 0 by the
considerations above. Lemma 6.4 then gives us values of R > 0 and n0 > 0 associated
to b and ı so that its statement holds. We will fix

n >max
�
10R

K
;
10b

ı
; n0

�
:

We introduce the following notation: given any a; b 2 s.p/, we write Œa; b�s to indicate
the closed segment along the stable leaf s.p/ between a and b, oriented from a to b.

We will then pick points in y; z 2 s.p/ with the properties

� d.y; z/ > 200Kn,

� g.Œy; z�s/\ Œy; z�s D∅ (equivalently, z 2 Œy; g.y/�s).

The existence of points like this follows from the fact that if y0 is any point in s.p/,
the length of gk.Œy0; g.y0/�s/ grows to infinity, and thus its diameter grows too. See
Figure 6.

4It is not hard to see that the proof applies to the fixed sublamination.
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y

z

g.y/

Figure 6: Choosing points y and z in s.p/.

We will pick Ai D B.y;Ki/ and Bi D B.z;Ki/, the neighborhoods of radius Ki of
the points y and z. Given our choices, notice that g.y/2A1, g.z/2B1, and, for any i ,
we have g.Ai /� AiC1 as well as g.Bi /� BiC1.

The following holds:

Lemma 6.5 Every arc J � Œy; gn.z/�s which is disjoint from An[Bn is completely
contained in a fundamental domain of s.p/ for the action of g. More precisely, there
exists ` such that J � Œg`.y/; g`.z/�s or J � Œg`.z/; g`C1.y/�s.

Proof This is because Œy; z�s intersects A1 and B1, so every fundamental domain as
above intersects both An and Bn.

We can apply Lemma 6.4 to get:

Lemma 6.6 Fill.An[Bn[ Œy; gn.z/�s/n .A10n[B10n/ contains a disk of radius 4b.

Proof Note that Œg`.y/; g`C1.y/�s contains at least two segments joining A10n to
B10n if 0� ` < n; see Figure 6. Thus there are at least 2n such curves, which, since
they are segments separated in s.p/, must have pairwise disjoint ı–neighborhoods.
Thus, by our choice of constants b; ı;K and n above, we can apply Lemma 6.4 to
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find a disk of radius � 4b inside Fill.An [Bn [ Œy; gn.z/�/ n .An [Bn/ which is at
distance larger than d.An; Bn/=10 from An and Bn. Thus, the disk is contained in
Fill.An[Bn[ Œy; gn.z/�s/ n .A10n[B10n/, as required.

Using Lemma 6.3 we can find a fixed point q 2 Fix.g/ such that

B.q; 2b/� Fill.An[Bn[ Œy; gn.z/�s/ n .A10n[B10n/:

We can show the following:

Lemma 6.7 There exists an arc J � Œy; gn.z/�s such that either

(1) J intersects An only at its endpoints and q 2 Fill.An[J /, or

(2) J intersects Bn only at its endpoints and q 2 Fill.Bn[J /.

Moreover , J is contained in a fundamental domain: for some 0� `� n we either have
J � Œg`.y/; g`C1.y/�s or J � Œg`.z/; g`C1.z/�s.

Proof This follows from the fact that Fill.An [Bn [ Œy; gn.z/�s/ is contained in a
union of sets of this form.

To see this, note that

Fill.An[Bn[ Œy; gn.z/�s/D Fill.An[ Œy; gn.z/�/[Fill.Bn[ Œy; gn.z/�s/

becauseAn andBn are disjoint topological disks and Œy; gn.z/�s is a topological interval.
Indeed, by Jordan’s theorem yAD Fill.An[ Œy; gn.z/�s/ is a topological disk with an
arc attached (ie the segment Œw; gn.z/�s where w is the last point of intersection of
Œy; gn.z��s), and similarly yB D Fill.Bn[ Œy; gn.z/�s/ is a topological disk with an arc
attached. One has that Fill.An[Bn[ Œy; gn.z/�s/D Fill. yA[ yB/. Since the intersection
of these sets is connected (because their intersection retracts to Œy; gn.z/�s) we deduce5

that Fill. yA[ yB/D yA[ yB .

The fact that J is contained in a fundamental domain is a direct consequence of the
fact that it intersects An (or Bn) only in its boundaries, and thus Lemma 6.5 can be
applied.

5Here we are using the fact from plane topology that generalizes the Jordan curve theorem stating that if
X and Y are compact connected sets, then their union separates the plane if and only if their intersection
is not connected.
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Both cases are analogous, so we will assume from now on that the first option happens,
namely, q 2 Fill.An [ J / for a curve J � Œy; gn.z/�s which intersects An only at its
endpoints and such that J is contained in a fundamental domain of s.p/.

To reach a contradiction, the idea will be to find fixed points q1; q2 which are sufficiently
close, and such that one belongs to Fill.An[J / and the other does not. If we choose
them appropriately, we will be able to see that gi .J / will intersect a geodesic joining q1
and q2 for several values of i (before the set gi .An/ becomes too big). This will produce
some accumulation of the arcs gi .J / (which are segments of s.p/ far along s.p/); this
is not possible, and gives the desired contradiction.

Lemma 6.8 There are fixed points q1; q2 2 Fix.g/ such that d.q1; q2/ < 3b and we
have that q1 2 Fill.An[J / nA10n while q2 … Fill.An[J /.

Proof We will use Lemma 6.3. By the choice of the point q we can consider an
unbounded geodesic ray r starting at q which is at distance larger than 2b from A10n.
One can cover r by balls of radius b; in each such ball there is a fixed point, and
eventually, the fixed point is not in Fill.An[J /, which is a bounded set. So there is a
pair of such points for which one belongs to Fill.An[J / and the other does not. Their
distance is less than 3b.

We are now ready to prove Proposition 6.2 by finding a contradiction, which will be
produced using the following:

Lemma 6.9 For every 0� i � n, we have that gi .J /\ Œq1; q2�L¤∅, where Œq1; q2�L
denotes a geodesic segment joining q1 and q2.

Proof Note first that since d.q1; q2/ < 3b and q1 … A10n, we know that the geodesic
segment Œq1; q2�L is disjoint from A5n (recall that ı < 1 and that n > 10b=ı).

Since q1 2 Fill.An [ J / is fixed, we get that q1 D gi .q1/ 2 g
i .Fill.An [ J // D

Fill.gi .An/[ gi .J //. Similarly, we get that since q2 … Fill.An [ J /, we have that
q2 … Fill.gi .An/[gi .J //.

This implies that @Fill.gi .An/[gi .J //must intersect Œq1; q2�L. Since gi .An/�AnCi ,
which is disjoint from Œq1; q2�L, we deduce that gi .J / must intersect Œq1; q2�L, as we
wanted to show.
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The contradiction is now the fact that gi .J / are curves whose ı–neighborhoods are
disjoint, and all intersect Œq1; q2�L, which is a geodesic segment of length < 3b. This
produces n different points at pairwise distance� ı in Œq1; q2�L, which is a contradiction
since n > 10b=ı.

6.2 Proof of Proposition 6.1

We are now ready to prove Proposition 6.1.

This proof follows the same structure as the one of [3, Proposition 3.15] and we will
continuously refer to it. Recall the standing assumption that f is orientable.

Considerƒ an f –minimal nonempty subset. We need to show thatƒDM. We assume
for the sake of contradiction that ƒ¤M.

Since Wcs has no closed leaves and ƒ is f –minimal, there cannot be any isolated
leaves in ƒ (for the topology of the stable leaf space).

Now, Proposition 6.2 allows us to assert that zf has no fixed points in leaves of zƒ.
Then, Corollary 6.12 implies that each leaf of ƒ is either a plane or an annulus.

Fix an � small enough and letƒ0 be the pullback ofƒ to the approximating foliation Wcs
� .

That is, ƒ0 D .hcs
� /
�1.ƒ/. Let V be a connected component of zM n zƒ0.

Claim 6.10 The projection �.V / to M has finitely many boundary leaves.

This is a standard fact in the theory of foliations [14, Lemma 5.2.5].

Claim 6.11 Each leaf L� @V projects to an annulus �.L/ in M.

Proof Suppose that �.L/ is a plane. Recall (see [14, Lemma 5.2.14]) that �.V / has
an octopus decomposition and a compact core. So for any ı > 0, the subset of points
in �.L/ that are at distance greater than ı from another boundary component of �.V /
is precompact. Since �.L/ is supposed to be a plane, that subset must be contained
in a closed disk D. Then �.L/ nD is an annulus that is ı–close to another boundary
component, �.L0/, of �.V /. Moreover, the subset of �.L0/ that is ı–close to �.L/nD
then also has to be an annulus. If �1.L0/ were not a plane it would be an annulus and
its nontrivial curve corresponds to a curve homotopic to the boundary of the closed
disk D, which is homotopically trivial in M. Since the leaves of Wcs

� are �1–injective,
this implies that �.L0/ is also a plane.
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Since M is irreducible this implies that �.V / is homeomorphic to an open disk times
an interval. So �.V / has only two boundary components, both of which are planes. In
particular, the isotropy group of V is trivial and �.V / is homeomorphic to V.

We will now switch to the branching foliation to finish the proof. Let AD hcs
� .�.L//

and B D hcs
� .�.L

0//. Since we chose � small enough, up to taking ı small enough also,
the unstable segments through A n hcs

� .D/ intersect B, and their length is uniformly
bounded. Moreover, no unstable ray of A can stay in hcs

� .�.V //. This is because �.V /
is homeomorphic to an open disk times an interval. So, since D is compact, the length
of every unstable segment between A and B is bounded by a uniform constant. Notice
that, since Wcs is a branching foliation, we may have A\B ¤ ∅, ie some of these
unstable segments may be points.

Since L and L0 are in @V, which is a connected component of zM n zƒ0, we have that
A;B 2 @ .M nƒ/. So in particular, A and B are fixed by f . Hence, the set of unstable
segments between A and B is also invariant by f . Since the lengths of unstable
segments between A and B are bounded above and f expands the unstable length, all
the unstable segments must have zero length, ie AD B . This implies that V is empty,
which contradicts the assumption that ƒ¤M.

Thus we showed that every component of �.@V / is an annulus. We can then apply
without change the (topological) arguments of the proof of [3, Proposition 3.15] to
obtain a torus T , composed of annuli along leaves of Wcs

� together with annuli transverse
to Wcs

� , which bounds a solid torus U 0 in �.V /.

Now consider U D hcs
� .U

0/. Because of the collapsing of leaves, U may not be a solid
torus. If U is empty for any such component U 0, this would directly contradict the
assumption ƒ¤M. So for some such complementary component U 0, the set U is not
empty and it is contained in a solid torus (the �–tubular neighborhood of U 0 in M ).
We can then use the same “volume vs length” argument on U, exactly as in the end of
the proof of [3, Proposition 3.15], to get a final contradiction. This ends the proof of
Proposition 6.1.

6.3 Some consequences

An important consequence of Proposition 6.2 is the following:

Corollary 6.12 Suppose that f is a partially hyperbolic diffeomorphism in M that
is homotopic to the identity. Let zf be a good lift of f to zM. Suppose that ƒ is a
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nonempty (saturated ) f –minimal subset of Wcs such that every leaf of the lift zƒ to zM
is fixed by zf . Then every leaf in the f –minimal set ƒ of Wcs is either a plane or an
annulus.

Proof Let A be a leaf of ƒ and L a lift in zM. By Proposition 6.2, L does not admit
any fixed points of zf . Hence, zf acts freely on the space of stable leaves in L.

Now, recall that �1.A/ can be defined as the elements  2 �1.M/ that fix L; see
Section 4.3. So if  2 �1.A/, it must also act freely on the space of stable leaves in L.
As zf commutes with every deck transformation, Corollary E.4 of [3] — which still
applies in the context of branching foliation, as does all of [3, Appendix E] — implies
that �.A/ is abelian, ie A is either a plane or an annulus (again with the understanding
that A might actually only be an immersion of one of these manifolds in M, and
recalling that all bundles were assumed to be orientable in this section, so in particular
the leaves cannot be Möbius bands).

As a consequence, we also get the following result, which completes the proof of
Theorem 1.3 as announced.

Corollary 6.13 Suppose that f is a partially hyperbolic diffeomorphism homotopic
to the identity. Suppose that f is either volume-preserving or transitive , or that M is
either hyperbolic or Seifert. Let zf be a good lift of f . Then zf has no periodic points.
In particular , f has no contractible periodic points.

Proof Up to finite covers and iterates, we may assume that f preserves the branching
foliations Wcs and Wcu.

If zf acts as a translation on either Wcs or Wcu, then it does not have periodic points.

Otherwise, since we showed that under our assumptions the branching foliations are
f –minimal, the result then follows from Theorem 4.12.

7 Double invariance implies dynamical coherence

In this section we show that if the center stable and center unstable branching foliations
are minimal and leafwise fixed by a good lift zf W zM! zM, then, f has to be dynamically
coherent (ie the branching foliations do not branch). Therefore, we will be able to
apply the results from the dynamically coherent setting.
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The universal cover zM of M is homeomorphic to R3 (since it admits a partially
hyperbolic diffeomorphism; see [3, Appendix B]). We do not assume anything further
on M in this section.

Recall also that a center leaf is a connected component of the intersection of a leaf ofeWcs and one of eWcu; cf Definition 3.7.

This section (and the proof of dynamical coherence) is split into three parts. First,
in Section 7.1, we show that for an appropriate lift of M and power of f , double
invariance of the foliations implies that the center leaves are fixed. The lift and power
we need to consider here is in order to have everything orientable and coorientable.
Then, in Section 7.2, we show that if a good lift fixes every center leaf, then it must
be dynamically coherent. Finally, in Section 7.3, we show that if a lift and power of
a partially hyperbolic diffeomorphism is dynamically coherent and fixes the center
leaves, then the original diffeomorphism is itself dynamically coherent (and a good lift
of a power of it will fix every center leaf).

7.1 Center leaves are all fixed

To begin, we would like to show that zf fixes every center leaf. The results of Section 5
already provide at least one fixed center leaf:

Lemma 7.1 Let f WM !M be an orientable partially hyperbolic diffeomorphism
homotopic to the identity with f –minimal branching foliations Wcs and Wcu. If there
is a good lift zf that fixes every leaf of eWcs and eWcu, then zf fixes some center leaf.

Proof Suppose that zf fixes no center leaf. Since there is at least one nonplanar leaf,
Proposition 5.6 provides an f –periodic center leaf c in M. Applying Proposition 5.2 toeWcs

bran shows that c is coarsely contracting, but the same result applied to eWcu
bran shows

that c is coarsely expanding. This is a contradiction, so zf must fix a center leaf, as
desired.

Proposition 7.2 Let f WM !M be an orientable partially hyperbolic diffeomorphism
homotopic to the identity with f –minimal branching foliations Wcs and Wcu. If a good
lift zf of f fixes every leaf of eWcs and eWcu, then zf fixes every center leaf.

Proof Let
Fixc
zf
WD fc W zf .c/D cg;

thought of as a subset of the center leaf space.

Geometry & Topology, Volume 27 (2023)



3144 Thomas Barthelmé, Sérgio R Fenley, Steven Frankel and Rafael Potrie

The set Fixc
zf

is obviously �1.M/–invariant. It is also open, by an argument very
similar to the one in [3, Lemma 6.3]: if c is a fixed center leaf in a center stable leaf L
in zM, then for any center leaf c0 in L close enough to c (for the topology of the center
leaf space in L), there is a strong stable leaf that intersects c, c0 and zf .c0/. Now, since
zf fixes the center unstable leaves, c0 and zf .c0/ are on the same center unstable leaf.

Since no transversal can intersect the same leaf twice, it implies that c0 D zf .c0/. Thus
the set of fixed center leaves within each center stable leaf is open (in the center leaf
space within that center stable leaf). Similarly, the set of fixed center leaves within
each center unstable leaf is open. Together, these facts imply that the set of fixed center
leaves is open in the center leaf space.

Note that a good lift zf fixes every leaf of eWcs, so f fixes every leaf of Wcs. In
particular, f –minimality of Wcs is equivalent to minimality of Wcs. Hence Wcs is
minimal; similarly for Wcu.6

To see that zf fixes every center leaf, we proceed as in [3, Lemma 6.4]: we show first
that every center leaf in a center stable leaf (resp. center unstable leaf) which projects to
an annulus has to be fixed (due to our orientability assumptions, leaves cannot project
to a Möbius band). Then the same argument as in [3, Lemma 6.4] applies to show that
every center leaf has to be fixed.

Let L be any center stable leaf that projects to an annulus, and choose a generator  of
the isotropy group of L.

Since the set of fixed center leaves is open in the center leaf spaces of any center
unstable leaf, minimality of Wcs implies that L must have some fixed center leaves.

We will first prove that if c is a center leaf in L which is in the boundary of the set
of fixed center leaves in L, then �.c/ is periodic under f . We will then show, as in
Proposition 5.4, that any periodic leaf in �.L/ must be coarsely contracting. The same
argument applied to the center unstable leaves yields that periodic center leaves must
also be coarsely expanding; a contradiction.

Since zf cannot have fixed points (as zf fixes all the leaves of eWcs and eWcu), zf acts
freely on the space of stable leaves in L.

We assume, for a contradiction, that not all center leaves in L are fixed. Let FixL be
the set (in Lc

L, the center leaf space on L) of center leaves fixed by zf .

6In fact f –minimality and minimality are always equivalent as long as the branching foliation does not
have a compact leaf, without assumptions on f ; see Lemma B.2.
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The set FixL is open, and assumed not to be the whole of L. So let c1 be any leaf in
@FixL.

Let .cn/ be any sequence of center leaves in FixL that converge to c1. Then zf .cn/D cn
converges to zf .c1/. As the leaf c1 is not fixed by zf , we deduce that zf .c1/ is not
separated from c1.

Hence, there exists a (unique) stable leaf s1 which separates zf .c1/ from c1 and makes
a perfect fit with c1; see Section 3.4.3 for the definition of perfect fits in the non-
dynamically-coherent setting. Then zf .s1/ makes a perfect fit with zf .c1/. Because
c1 and zf .c1/ are not separated from each other, s1 and zf .s1/ intersect a common
transversal to the stable foliation. It follows that the stable axis of zf acting on L is a
line. Thus, since  commutes with zf , the stable axis of  is that same line. Moreover,
both the stable leaves s1 and zf .s1/ are in the axis of zf .

Since the stable axis of zf acting on L is a line, the graph transform argument
[3, Appendix H] applies and we obtain a curve y�, tangent to the center direction,
which is fixed by both  and zf .

As s1 makes a perfect fit with c1, and s1 intersects y�, we deduce that there exists a
stable leaf s that intersects both c1 and y�. Let x D s \ y� and y D s \ c1. We denote
by J the segment of s between x and y.

Since y� projects down to a closed curve �.y�/, and zf decreases stable lengths, there exist
n1; n2 2 Z and m1; m2 2N as large as we want such that the four points n1 zf m1.x/,
n1 zf m1.y/, n2 zf m2.x/ and n2 zf m2.y/ are all in a disk of radius as small as we
want.

Suppose now that n1 zf m1.c1/ ¤ n2 zf m2.c1/. Then, up to switching n1; m1 and
n2; m2, we obtain that n2 zf m2.c1/ intersects n1 zf m1.J /. This is in contradiction
with the fact that c1 is in @FixL, which is invariant by both zf and  .

Thus n1 zf m1.c1/D 
n2 zf m2.c1/. In other words, c1 is fixed by the map hD n zf m

for some n;m integers with m> 0. (Although not useful for the rest of the proof, one
can further notice that y� and c1 intersect, as h decreases the length of J by forward
iterations and both c1 and y� are fixed by h.)

Now recall that we built above a stable leaf s1 making a perfect fit with c1. And, by
our choice of s1, the center leaf c1 is in between s1 and s2 WD zf �1.s1/.

Recall that s1 is the unique leaf making a perfect fit with c1 and separating c1 from
zf .c1/. Thus h.s1/ is the unique leaf making a perfect fit with h.c1/D c1 and separating
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h.c1/D c1 from hı zf .c1/D zf ıh.c1/D zf .c1/. That is, s1 is fixed by h. Using again
that h and zf commute, we deduce that s2 is also fixed by h.

Now, the leaves s1 and s2 are also a bounded distance apart, so Lemma 5.5 holds and
we deduce that c1, as well as any other center leaf c that is in between s1 and s2, must
be coarsely contracting. Note now that any center leaf c in L that is fixed by some
h0 D n

0 zf m
0

is separated from FixL by a center leaf c01 � @FixL as above. Hence, we
proved that every nonfixed periodic leaf in �.L/ is coarsely contracting.

Therefore, the same argument applied to the center unstable leaf containing c1 shows
that c1 must also be coarsely expanding; a contradiction.

So we obtained that every center stable or center unstable leaf L which is fixed by
some nontrivial element of �1.M/ has all of its center leaves fixed by zf . Since Fixc

zf
is open (in the center leaf space), minimality of the foliations implies that it contains
every center leaf, as in the end of the proof of [3, Lemma 6.4].

7.2 Dynamical coherence

We now want to prove dynamical coherence provided that a good lift fixes every center
leaf. We do not assume that f is orientable, only that it admits branching foliations.
We start with the following:

Lemma 7.3 Let f WM !M be a partially hyperbolic diffeomorphism homotopic
to the identity , preserving branching foliations Wcs and Wcu. Let zf be a good lift
that fixes every center leaf. Then there is a global bound on the length of every center
segment between a point x and zf .x/.

In the dynamically coherent case this was very easy as the center curves form an actual
foliation and there is a local product picture near any compact segment. We have to be
more careful in the non-dynamically-coherent setting.

Proof We assume the conclusion of the lemma fails. Then there exists a sequence xi
of points in zM contained in center leaves ci such that the length in ci from xi to zf .xi /
diverges to infinity. This length depends not only on xi but also on ci , since there may
be many center leaves through xi . We denote by ei the segment in ci from xi to zf .xi /.

Up to acting by covering translations we can assume that the xi converge to a point
x 2 zM. Let Li and Ui be, respectively, a center stable leaf and center unstable leaf
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containing ci . Up to considering a subsequence, we may assume that Li converges to
a center stable leaf L containing x; see condition (iv) of Definition 3.1. Similarly, we
can further assume that Ui converges to some center unstable leaf U with x 2 U .

For i large enough, all the leaves Li intersect a small unstable segment in u.x/. The
set of center stable leaves intersecting this segment is also a segment (even though
many different leaves may intersect a given point in u.x/). Hence we may assume that
Li is weakly monotone, and so is Ui . Let c be the center leaf through x contained in
L\U . Then zf .x/ 2 c, and we call e the segment in c from x to zf .x/.

Suppose first that Li D L for all big i . So we may assume Li D L for all i . Then the
center leaves ci are all in L and, for i big enough, intersect s.x/. Hence the leaves ci
are, for i big enough, contained in an interval of the center leaf space in L. In addition
they are converging to c, which is a center leaf through x and zf .x/. This implies that
the length of ei is converging to the length of e, and hence the length of ei is bounded
in i ; contradiction.

Suppose now that the Li are all distinct from L. The points xi and zf .xi / are all in a
compact region of zM. Since Li converges to L, we have that u.xi / intersects L for
big enough i . We call this nearby intersection yi . Likewise, u. zf .xi // intersects L in
zf .yi /. We want to push the center segments ci contained in Ui \Li along unstable

segments to center segments in Ui \L.

For i big enough, both xi and zf .xi / are very near L. Thus, their unstable leaves u.xi /
and u. zf .xi // both intersect L. Let yi be the intersection of u.xi / with L— recall that
this intersection is unique as the center stable branching foliation is approximated by a
taut foliation. Then zf .yi / is the intersection of u. zf .xi // with L, since L is fixed by zf .
Then the intersection of the unstable saturation of ei with L is a compact segment
inside a center leaf between yi and zf .yi /, since zf fixes every center leaf. Let bi be this
segment between yi and zf .yi /. The segments bi also converge to e, so the previous
paragraph shows that the lengths of the bi are bounded. Since the distance between xi
and yi converges to zero, this in turn implies that the lengths of the segments ei are
themselves bounded. This contradicts our assumption and finishes the proof.

Lemma 7.4 Let f WM !M be a partially hyperbolic diffeomorphism homotopic to
the identity , preserving branching foliations Wcs and Wcu. Let zf be a good lift that
fixes every center leaf. If c1 and c2 are different center leaves in a single center stable
leaf L 2 eWcs, then c1\ c2 D∅.
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L

c1

c2

zf �1.x/
x zf �2.x/

B

Figure 7: Two centers that merge. The bound on the distance between x and
zf .x/ forces a behavior like the figure.

Proof Suppose that there are distinct center leaves c1 and c2 that intersect at a point
x 2 c1\ c2. Then zf .x/ is also in c1\ c2. If c1 coincides with c2 in their respective
segments from x to zf .x/, then applying iterates of zf implies that c1 D c2, contrary to
assumption.

So we may assume that x is a boundary point of an open interval I in, say, c1, which is
disjoint from c2 but such that both endpoints are in c2. Then c1[ c2 bounds a bigon B
with endpoints x; y and a “side” in I . All center segments in B pass through x and y
and they have bounded length by Lemma 7.3. Each stable segment intersecting I also
intersects the other “boundary” component of B. See Figure 7.

The stable lengths grow without bound under negative iterates of zf . Hence, since a
stable segment can intersect a local foliated disk of the stable foliation in L only in a
bounded length, it follows that the diameter in zf n.L/ of zf n.B/ grows without bound
as n goes to �1. But the length of the center segments in zf n.B/ are all bounded,
according to Lemma 7.3. Moreover, between any two points in zf n.B/ there exists a
path along (at most) two center leaves — one just follows the center leaf to one of the
endpoints and then switches to the appropriate other center leaf. Thus the diameter is
bounded, which is a contradiction.

Thus we deduce what we wanted to obtain in this section.
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Corollary 7.5 Let f WM !M be a partially hyperbolic diffeomorphism homotopic
to the identity, preserving branching foliations Wcs and Wcu. If some good lift zf fixes
every center leaf , then f is dynamically coherent.

Proof By Proposition B.3 it is enough to show that the leaves of the branching
foliations do not merge.

Assume that two center unstable leaves U1 and U2 merge. Let L be a center stable
leaf intersecting U1 and U2 at the merging, ie L is a leaf through a point x such that
the unstable leaf through x is a boundary component of U1 \U2. Then, connected
components of U1 \L and U2 \L give two center leaves that intersect but do not
coincide. This contradicts Lemma 7.4. A symmetric argument gives that two center
stable leaf cannot merge either, proving dynamical coherence of f .

7.3 Dynamical coherence without taking lifts and iterates

We now want to prove that if a finite lift and finite power of a partially hyperbolic
diffeomorphism is dynamically coherent, then the original diffeomorphism is itself
dynamically coherent. Although we do not know how to prove it in this generality, we
show it when a good lift of the dynamically coherent lift fixes every center leaf, which
is enough for our purposes.

Again, in this subsection we do not assume that f is orientable.

We start by showing a uniqueness result for the pairs of the center stable and center
unstable foliations under some conditions.

Lemma 7.6 Let g WM !M be a dynamically coherent partially hyperbolic diffeomor-
phism homotopic to the identity. Let Wcs and Wcu be g–invariant foliations tangent to
Ecs and Ecu, respectively. Let Wc be the center foliation associated with Wcs and Wcu

(defined as in Definition 3.7), and assume that there exists a good lift zg which fixes all
the leaves of eWc.

Suppose that Wcs
1 and Wcu

1 are two g–invariant foliations tangent , respectively, to Ecs

and Ecu. Suppose that zg also fixes all the leaves of the center foliation eWc
1 associated

with Wcs
1 and Wcu

1 .

Then Wcs DWcs
1 and Wcu DWcu

1 .
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Proof The argument is similar to the one made in Lemma 7.4.

Let eWcs
1 and eWcu

1 be two g–equivariant foliations as in the lemma. We will consider
the center foliation eWc

1 defined by taking the connected components of intersections of
leaves of eWcs

1 and eWcu, to show that eWcs D eWcs
1 . A symmetric argument shows thateWcu D eWcu

1 .

Since every leaf of both eWc and eWc
1 is fixed by zg, Lemma 7.3 implies that zg moves

points a uniformly bounded amount in both center foliations.

Consider, for a contradiction, a point x 2 zM such that eWc.x/ ¤ eWc
1.x/; note that

we are dealing here with actual foliations, not branching ones, so this notation makes
sense. Without loss of generality, we can choose x so that the leaves L WD eWcs.x/ and
L1 WD eWcs

1 .x/ do not coincide in any neighborhood of x.

Let c and c1 be the center leaves obtained respectively as the connected components of
L\F and L1\F containing x for some F 2 eWcu.

By assumption, both c and c1 are fixed by zg, so we are in the exact same setup as in
the proof of Lemma 7.4. Thus we deduce that c D c1, a contradiction.

We can now state and prove the aim of this section.

Proposition 7.7 Let f WM !M be a partially hyperbolic diffeomorphism such that
f k is homotopic to the identity for some k > 0. Let yM be a finite cover of M which
makes all bundles orientable. Let g be a lift to yM of a homotopy of f k to the identity
that preserves orientation of the bundles. Suppose that g is dynamically coherent and
that there exists a good lift zg of g that fixes all the center leaves. Then f is dynamically
coherent and f k is a discretized Anosov flow.

Proof First we notice that the assumptions of the proposition will be verified for any
further finite cover xM of yM — because one can take a further lift xg of g to xM, it is
dynamically coherent and zg is a good lift of xg too. Hence, without loss of generality,
we may and do assume that yM is a normal cover of M.

Let eWcs and eWcu be the lifts to zM of the center stable and center unstable foliations
of g. Our goal is to show that these foliations are �1.M/–invariant, thus they descend
to foliations in M, and that these projected foliations are f –invariant.

Notice that zg fixes each leaf of eWcs and eWcu.
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The map g is obtained from a lift of a homotopy of f k to the identity. Lifting that
homotopy further to zM, we get a good lift zf k of f k that is also a lift (hence a good lift)
of g to zM. As both zg and zf k are good lifts of g, there exists a ˇ 2 �1. yM/� �1.M/

such that zgD ˇ zf k . (Note however that zg is not necessarily a good lift of f k as zg only
commutes with elements of �1. yM/ and not �1.M/.)

Moreover, both zg and zf k move points a bounded distance in zM; hence so does
ˇ D zg. zf k/�1. Lemma A.1 then implies that either ˇ is the identity or M is Seifert
(and ˇ is either the identity or a power of a regular fiber).

We split the rest of the proof of dynamical coherence into two cases.

Case 1 Suppose that M is not a Seifert fibered space.

Then ˇ is the identity, which means that zg D zf k .

Let  be a deck transformation in �1.M/. Define the foliations

Fcs
 WD  eWcs; Fcu

 WD  eWcu; Fc
 WD  eWc:

The leaves of these foliations are all fixed by zg because  commutes with zf k D zg. In
particular, Lemma 7.6 then implies that  eWcs D eWcs and  eWcu D eWcu. Since this is
true for any element of �1.M/, these foliations descend to foliations Wcs

M and Wcu
M

in M.

Now we need to show that Wcs
M and Wcu

M are also f –invariant. Equivalently, we need
to show that eWcu and eWcs are invariant by any lift f1 of f to zM.

Let f1 be a lift of f to zM. Notice that f may not be homotopic to the identity, so f1
is not assumed to be a good lift. Let Fcs

1 WD f1.
eWcs/ and Fcu

1 WD f1.
eWcu/.

We will first show that f1 and zg commute. Both f1zg and zgf1 are lifts of the map f kC1

to zM. So .zg/�1.f1/�1zgf1 is a deck transformation  2 �1.M/. As zg moves points a
bounded distance, we have that d.f1.y/; zgf1.y// is bounded in zM. In addition, f1 has
bounded derivatives so d.y; .f1/�1zgf1.y// is also bounded in zM. So using again that
zg is a good lift, we deduce that d.y; .zg/�1.f1/�1zgf1.y// is bounded in zM.

Hence  is a deck transformation that moves points a bounded distance. Applying
Lemma A.1 again gives that ˇ is the identity (since M is not Seifert). Hence f1 and zg
commute.

Since zg fixes every leaf of eWc (the center foliation in zM ) and commutes with f1,
we deduce that zg fixes every leaf of f1.eWc/. We can again apply Lemma 7.6 to get
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that f1.eWcs/ D eWcs and f1.eWcu/ D eWcu. That is, the foliations eWcs and eWcu are
f1–invariant. Since this holds for any lift of f , it implies that Wcs

M and Wcu
M are

f –invariant. Hence f is dynamically coherent with foliations Wcs
M and Wcu

M . This
completes the proof that f is dynamically coherent when M is not Seifert fibered.

Case 2 Assume that M is Seifert fibered.

In this case, Lemma A.1 implies that ˇD zg. zf k/�1 is either the identity or represents a
power of a regular fiber of the Seifert fibration. In any case, ˇ is in a normal subgroup
of �1.M/ isomorphic to Z. Moreover, as proved earlier, ˇ 2 �1. yM/.

Let  2 �1.M/ be any deck transformation. Consider the foliations Fcs
 WD  eWcs and

Fcu
 WD  eWcu, as before.

We first claim that these foliations are zg–invariant. We show this for Fcs
 , the other

being analogous. Let L 2 eWcs. We have

zg.L/D ˇ zf k.L/D ˇ zf k.L/D ˇ˙1 zf k.L/:

Notice that both zf k (because it is a lift of g) and ˇ (because it belongs to �1. yM/

and the foliation Wcs is defined in yM ) preserve the foliation eWcs. It follows that
ˇ˙1 zf k.L/ 2 eWcs, so

zg.L/D ˇ˙1 zf k.L/ 2 Fcs
 :

Thus Fcs
 is zg–invariant.

We now want to show that the foliations Fcs
 , Fcu

 and Fc
 WD  eWc are all leafwise fixed

by zg.

Since yM was chosen to be a normal cover ofM, any element  2�1.M/ can be thought
of as a diffeomorphism of yM. Hence we can consider the foliation yFcs

 WD Wcs in yM.
Note that yFcs

 is tangent to the center stable distribution Ecs � T yM, since  preserves
the tangent bundle decomposition, as it is defined by f in M. The argument above
shows that yFcs

 is g–invariant.

Thus, we can consider g to be a dynamically coherent diffeomorphism for the pair of
transverse foliations yFcs

 and Wcu. Moreover, g is homotopic to the identity and the
good lift zg fixes every leaf of eWcu. Since yM is Seifert, mixed behavior is excluded
(cf [3, Theorem 5.1]) and this implies that zg must also fix every leaf of Fcs

 .

The symmetric argument shows that Fcu
 is also fixed by zg. We can apply Proposition 6.1

to both yFcs
 and yFcu

 , implying that they are g–minimal. To apply the proposition we
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need that g is orientable. Hence, the center foliation Fc
 is fixed by zg, thanks to

Proposition 7.2 (this also uses that g is orientable).

Since all the leaves of Fc
 are fixed by zg, we can finally apply Lemma 7.6 to deduce

that Fcs
 D

eWcs and Fcu
 D

eWcu. As this is true for any  , the foliations eWcs and eWcu

descend to foliations Wcs
M and Wcu

M on M in this case too.

We now again have to show that Wcs
M and Wcu

M are f –invariant. The argument is the
same for both foliations, so we only deal with Wcs

M .

We start with a preliminary step. Let f� be the automorphism of �1.M/ induced by f .
Let

A WD �1. yM/\f�.�1. yM//\ � � � \ .f�/
k�1.�1. yM//:

The set A is a finite-index, normal subgroup of �1.M/. Moreover, as f k is homotopic
to the identity, f�.A/D A.

As we remarked at the beginning of the proof, we can without loss of generality prove
the result for any further finite cover of yM. Thus we choose, if necessary, a further
cover so that �1. yM/D A. Since f�.A/D A, the map f lifts to a homeomorphism yf

of yM.

As in the first case, we let f1 be an arbitrary lift of yf to zM and we define Fcs
1 WDf1.

eWcs/

and Fcu
1 WD f1.

eWcu/. (In particular, f1 is also a lift of f .)

Note as before that both zgf1 and f1zg are lifts of f kC1, and zgf1.zg/�1.f1/�1 is a
bounded distance from the identity (because zg is and f1 has bounded derivatives). So
ı WD zgf1.zg/

�1.f1/
�1 is an element of �1.M/ a bounded distance from the identity.

By Lemma A.1, ı represents a power of a regular fiber of the Seifert fibration, so is
in the normal Z subgroup of �1.M/ (note that since �1.M/ is not virtually nilpotent,
there exists a unique Seifert fibration on M; see Appendix A).

In addition, zgf1 and f1zg are also lifts of the homeomorphisms g yf and yf g in yM to zM .
Hence ı is in �1. yM/.

Using once more the arguments above, we get that .f1/�1ıf1.ı/�1 is a bounded
distance from the identity, and projects to the identity in M (and in yM ), hence it is
a deck transformation � also contained in the Z normal subgroup of �1.M/. Thus ı
and � commute. Moreover, � is also in �1. yM/.
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Now we can show that zg preserves Fcs
1 . Let L be in eWcs. Then

zg.f1.L//D ıf1.zg.L//D ıf1.L/D f1.�ı.L//:

Here �ı.L/ is in eWcs, because L is in eWcs and �ı is in �1. yM/. Hence zf1.�ıL/ is in
f1.eWcs/ so zg preserves Fcs

1 .

What we proved implies that g preserves yf .Wcs/ in yM. Now consider the pair of
foliations yf .Wcs/ and Wcu. They are both invariant by g, so g is dynamically coherent
for this particular pair of foliations, and zg fixes the leaves of eWcu. So once again, as
yM is Seifert, we get that zg must also fix every leaf of f1.eWcs/; cf [3, Theorem 5.1].

The symmetric argument implies that zg fixes every leaf of f1.eWcu/. Once again,
yM being Seifert implies that all the foliations are g–minimal (Proposition 6.1). Hence
zg also fixes the center foliation f1.eWc/ (Proposition 7.2). So Lemma 7.6 applies and
we deduce that f1.eWcs/D eWcs and f1.eWcu/D eWcu.

In particular, f preserves the foliations Wcs
M and Wcu

M as wanted. So f is dynamically
coherent.

This finishes the proof that f is dynamically coherent. Once that is known, then
Propositions 6.5 and G.2 of [3] imply that f k is a discretized Anosov flow. This
finishes the proof of the proposition.

8 Proof of Theorem A

Fix a partially hyperbolic diffeomorphism f WM !M that is homotopic to the identity
on a closed Seifert fibered 3–manifold M. We make no orientability assumptions. We
will show that some iterate of f is a discretized Anosov flow, completing the proof of
Theorem A.

Fix a finite cover yM of M so that the lifted center, stable and unstable bundles are
orientable. Then there is an integer k > 0 such that a lift of f k to yM will preserve the
orientations of the bundles. In addition, we can find such a lift that is homotopic to the
identity by lifting a homotopy from f k to the identity. Fix such a lift g W yM ! yM.

Applying Theorem 3.6, we have g–invariant center stable and center unstable branching
foliations Wcs and Wcu on yM.

Lemma 8.1 There exists a lift zg of an iterate of g that fixes every leaf of eWcs and also
fixes every leaf of eWcu.
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Proof We will use the following result, found in [3, Proposition 7.1 and Remark 7.2].

Proposition 8.2 Let g W M ! M be a partially hyperbolic diffeomorphism that is
homotopic to the identity on a Seifert fibered 3–manifold M with orientable Seifert
fibration. Then some iterate of g has a good lift which fixes every leaf of eWcs.

Since yM is orientable, the bundles are orientable, and Wcs is a horizontal foliation (see
[3, Theorem F.3]), it follows that the Seifert fibration is orientable. Thus there is an
integer i > 0 such that the iterate gi has a good lift zgi which fixes every leaf of eWcs.

Suppose that zgi fixes one leaf of eWcu. Then Proposition 6.1 says that Wcu is gi–minimal
and zgi fixes every leaf of eWcu, as desired.

Suppose, then, that zgi fixes no leaf of eWcu. Then zg fixes no center leaf, and we can
apply Proposition 5.2 to see that every periodic center leaf of g has to be coarsely
contracting. Exchanging roles, and applying Proposition 8.2 to the center unstable
branching foliation, we deduce that every periodic center leaf for g must be coarsely
expanding. Notice that although the lifts may be different, the coarsely expanding and
coarsely contracting behavior is for periodic center leaves of the original map g.

As there must be at least one such periodic center leaf (cf Proposition 5.6), this gives a
contradiction.

Let zgi be a good lift of an iterate gi , for some i > 0, that fixes every leaf of both eWcs

and eWcu. Then Proposition 7.2 implies that zgi fixes every center leaf, and Corollary 7.5
says that gi is dynamically coherent. Then Proposition 7.7 tells us that f is dynamically
coherent.

Now that we have reduced to the dynamically coherent case, [3, Theorem A] says
that f has an iterate that is a discretized Anosov flow. This completes the proof of
Theorem A.

Note that the arguments in the proof of Lemma 8.1 also eliminate mixed behavior for
good lifts in Seifert fibered manifolds.

9 Absolutely partially hyperbolic diffeomorphisms

In this section, we explain how one can improve the trichotomy in Section 2.0.1
eliminating the mixed case, if one uses a strong version of partial hyperbolicity.
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Definition 9.1 A partially hyperbolic diffeomorphism f WM !M on a 3–manifold
is called absolutely partially hyperbolic if there exist constants �1 < 1 < �2 such that
for some ` > 0 and every x 2M, we have

kDf `jE s.x/k< �1 < kDf
`
jE c.x/k< �2 < kDf

`
jEu.x/k:

Notice that, although subtle, the difference between being absolutely partially hyperbolic
versus just partially hyperbolic is far from trivial. Here, we just show that with this
stronger property one can significantly simplify the arguments. However, some previous
results have shown significant differences between the two notions, specifically with
regard to the integrability of the bundles; see [9; 31; 29].

We will show the following:

Theorem 9.2 Let f WM!M be an absolutely partially hyperbolic diffeomorphism on
a 3–manifold. Suppose that f is homotopic to the identity and preserves two branching
foliations Wcs and Wcu that are both f –minimal. Then either

(i) f is a discretized Anosov flow, or

(ii) Wcs and Wcu are R–covered and uniform and a good lift zf of f acts as a
translation on their leaf spaces.

In order to prove this theorem, the main step will be to show that, using absolute partial
hyperbolicity, we have an improvement of Proposition 5.2.

Proposition 9.3 Let f WM!M be an absolutely partially hyperbolic diffeomorphism
homotopic to the identity , and zf a good lift of f to zM. Assume that every leaf of eWcs

is fixed by zf . Let L be a leaf whose stabilizer is generated by  2 �1.M/ n fidg. Then
there is a center leaf in L fixed by zf .

The proof is essentially the same as the one in [25, Section 5.4], but we repeat it since
the contexts are different.

Proof The proof is by contradiction. Assume that zf does not fix any center leaf in L.

Proposition 5.6 gives that there exists a center leaf which is periodic by f . Call c a lift
of this center leaf. Using Proposition 5.7 we get two stable leaves s1 and s2 in L fixed
by h WD n ı zf m, a bounded distance apart in L and such that c separates s1 from s2

in L. We denote by B the band bounded by s1 and s2.

Geometry & Topology, Volume 27 (2023)



Partial hyperbolicity in 3–manifolds, II 3157

Since  is an isometry, the diffeomorphism h is absolutely partially hyperbolic, and we
can (modulo taking iterates) assume that there are constants �1 < �2 such that

kDhjE sk< �1 < �2 < kDhjE ck:

Moreover, there is a constant R > 1 such that kDh�1k �R in all of L.

For simplicity, we will assume that the distance between s1 and s2 is smaller than 1
2

so that the band B is contained in the neighborhood yB D
S
x2S1

B1.x/ of radius 1
around s1.

For every positive d there is a constant r.d/ > 0 such that for any set of diameter
less than d , the length of a stable leaf contained in this set is at most r.d/. This is
because in a foliated box only one segment of a stable segment can intersect it. This
implies that stable leaves (and center leaves as well) are quasi-isometrically embedded
in their neighborhoods of a fixed diameter. So there is a K > 0 such that for any stable
segment J contained in yB with endpoints z and w, we have

length.J /�Kd yB.z; w/:

Now, choose n > 0 such that K2 �n1=�
n
2 �

1
2

and once n is fixed, choose D > 0 so
that D=2� 2RnC 2K=�n2 .

We now pick points z; w 2 s1 such that d yB.z; w/DD, and take J s an arc of s1 joining
these points. From the choice of K and D we know that length.J s/ � KD. So it
follows that length.hn.J s//�KD�n1 .

Choose a center curve J c joining B1.hn.z// with B1.hn.w//— this can be done
because c separates s1 from s2 — and call zn and wn the endpoints in each ball. It
follows that length.J c/�K2D�n1C 2K.

Since the distance between the endpoints of J c and hn.z/, hn.w/ is less than 1, by
iterating backwards by h�n we get that d.h�n.zn/; z/ and d.h�n.wn/; w/ are less
than Rn.

This implies that

D � d yB.z; w/�K
2 �

n
1

�n2
DC 2RnC

2K

�n2
;

a contradiction with the choices of n and D, completing the proof of the proposition.

Using this proposition, we can prove Theorem 9.2 in the same way as [3, Theorem 5.1].
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Proof of Theorem 9.2 Let zf be a good lift of f . Since Wcs and Wcu are f –minimal,
by Corollary 4.9 zf either fixes each leaf of eWcs and eWcu, or acts as a translation on
both leaf spaces (in which case the foliations are R–covered and uniform and we are
in case (ii) of the theorem), or zf translates one and fixes the other.

If zf fixes the leaves of both eWcs and eWcu, then Proposition 7.2 and Corollary 7.5
imply that we are in case (i) of the theorem.

So we have to show that we cannot be in the mixed case. Suppose that zf fixes every
leaf of eWcs.

SinceM is not T3, there are leaves of Wcs with nontrivial fundamental group. Consider
the lift L in eWcs of such a leaf, with L invariant by  in �1.M/ n fIdg. We can apply
Proposition 9.3 to conclude that there is a center leaf c in L that is fixed by zf . So,
in particular, zf needs to fix a center unstable leaf containing c (note that there may
be an interval of center unstable leaves intersecting L in c, but the endpoints of such
an interval will then be fixed by zf ). Thus zf has to also fix every leaf of eWcu, by
Corollary 4.9.

10 Regulating pseudo-Anosov flows and translations

The rest of the paper is concerned with hyperbolic 3–manifolds. We will get positive
results dealing with the non-dynamically-coherent case. That is, we want to understand
the dynamics of a homeomorphism acting by translation on a branching foliation. In
order to be able to do that, we first need to build a regulating pseudo-Anosov flow
transverse to the branching foliation. The existence of such a flow is a relatively
immediate consequence of the construction of the regulating flow and the fact that the
branching foliation is well-approximated by foliations.

Proposition 10.1 Let M be a hyperbolic 3–manifold and F a branching foliation
well-approximated by foliations F� and such that F (and thus also F� for small �) is
R–covered and uniform. Then there exists a transverse and regulating pseudo-Anosov
flow ˆ for F .

Proof By [33; 11; 17] (see [3, Theorem D.3]), for any � there exists a pseudo-Anosov
flow ˆ� transverse to and regulating for F�.

Now, as � gets small, the angle between leaves of F� and leaves of F becomes arbitrarily
small.
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Then, since both F and F� are R–covered and uniform, for any leaf L 2 zF there exist
two leaves L1; L2 2 zF� such that L is in between L1 and L2.7 As ˆ� is regulating
for F� , every orbit of ẑ � intersects both L1 and L2, thus it also intersects L. So every
orbit of ẑ � intersects every leaf of zF ; that is, ˆ� is regulating for F .

The fact that the flow ˆ� can be chosen transverse to zF follows from the construction
of ˆ�; see [33; 11; 17]. The flow ˆ� is build by blowing down certain laminations
transverse to F�. Moreover, these laminations are transverse to any foliations that
are close enough to F� for a uniform angle. Since the angle between F and F� gets
arbitrarily small, ˆ� will also be transverse. For a continuous family of R–covered
foliations, this property is explicitly stated in [11, Corollary 5.3.22].

Using the regulating pseudo-Anosov flow given by Proposition 10.1, all of [3, Section 8]
works for a branching foliation without change. Thus we obtain:

Proposition 10.2 Let M be a hyperbolic 3–manifold. Let f WM !M be a homeo-
morphism homotopic to the identity that preserves a (branching) foliation F . Suppose
that F is uniform and R–covered , and that a good lift zf of f acts as a translation on
the leaf space of F . Let ˆ be a transverse regulating pseudo-Anosov flow to F .

Then , for every  2 �1.M/ associated with a periodic orbit of ˆ, there is a compact
yf–invariant set T in M which intersects every leaf of yF , where M D zM=hi and
yf WM !M is the corresponding lift of f .

Moreover , if an iterate yf k of yf fixes a leaf L of yF , and  fixes all the prongs of this
orbit , then the fixed set of yf k in L is contained in T \L and has negative Lefschetz
index.

Almost without any change, we obtain the corresponding version of [3, Proposition 9.1].

Proposition 10.3 Let f be a partially hyperbolic diffeomorphism in a hyperbolic
3–manifold which preserves a branching foliation Wcs tangent to Ecs. Assume that a
good lift zf of f acts as a translation on the foliation Wcs, and let ˆcs be a transverse
regulating pseudo-Anosov flow. Then , for every  2 �1.M/ associated to the inverse
periodic orbit of ˆcs, there are n > 0 and m> 0 such that hD n ı zf m fixes a leaf L
of Wcs.
7By construction, each leaf of F is the image of a leaf of F� by a continuous map homotopic to the
identity of M, so, given a leaf L 2 zF , there is a leaf L0 2 zF� at a bounded distance < a1 from L. Now
using the fact that F� is uniform, choose L1; L2 in zF� on different components of zM �L0, and so that for
any p 2 L0, q 2 L1 and z 2 L2, we have d.p; q/ > a1 and d.p; z/ > a1. The leaves L1 and L2 satisfy
the required property.
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Proof The only difference is that we cannot say that the action of h in the leaf space
is expanding, since collapsing of leaves may change the behavior. However, the same
proof gives the existence of an interval in the leaf space which is mapped inside itself
by h�1 giving a fixed leaf, as desired.

Remark 10.4 In the non-dynamically-coherent situation, the proof of [3, Theorem B]
does not give a contradiction: it could happen (and indeed does happen in a situation
with similar properties, see eg [7]) that having a fixed point in a leaf of the foliation
does not force the dynamics on the leaf space to be repelling around the leaf in terms
of the action on the leaf space. This issue has previously appeared, in particular in
Proposition 6.2.

Notice that if one assumes the existence of a periodic center leaf, then we can easily
prove a version of [3, Theorem B] in the non-dynamically-coherent setting.

Proposition 10.5 Let f W M ! M be a partially hyperbolic diffeomorphism on a
hyperbolic 3–manifold. Suppose that there exists a closed center leaf c that is periodic
under f . Then f is a discretized Anosov flow.

Proof We start by replacing f by a power, so that f becomes homotopic to the
identity.

Let zf be a good lift of f . We will show that zf fixes every leaf of eWcs and eWcu. Then
Section 7 above shows that the original f (before taking a power) is dynamically
coherent; hence the result follows from [3, Theorem B].

Suppose that zf does not fix every leaf of, say, eWcs. Then Corollary 4.9 implies that
the leaf space of eWcs is R and that zf acts as a translation on it.

Let zc be a lift of the periodic closed center leaf c. Since c is periodic and zf acts as a
translation, there exists  2 �1.M/ which is nontrivial and such that .zc/D zf k.zc/ for
some k. Now c is also closed, so there exists g 2 �1.M/� Id such that g.zc/D zc. We
have that g is distinct from any power of  , since if L 2 eWcs is such that zc 2 L, we
have that g.L/D L¤ k.L/ for every k ¤ 0.

On the other hand, gı.zc/Dgı zf k.zc/D zf kıg.zc/D.zc/, which implies that �1ıgı
and g fix zc. This is impossible since M is hyperbolic: if they both fix zc then they have
they have the same axis. But the geodesic axes of the hyperbolic transformations g and
�1g cannot share an ideal point since g and  are not contained in a cyclic group.
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Remark 10.6 The arguments here show that the dynamics of the transverse pseudo-
Anosov flow coarsely affects the dynamics of f . In particular, if zf is a translation with
respect to a certain R–covered branching foliation, there must be a lower bound on the
topological entropy of f depending only on the R–covered branching foliation and the
amount of translation of zf . It is possible that in certain hyperbolic 3–manifolds one
could control the possible geometries of R–covered foliations, in which case one could
find a uniform lower bound on the entropy of partially hyperbolic diffeomorphisms that
act as translations on their branching foliations. If such a bound could be obtained, one
could deduce that if the entropy of a partially hyperbolic diffeomorphism is sufficiently
low, then the system must be a discretized Anosov flow.

11 Translations in hyperbolic 3–manifolds

In this section we obtain further consequences of having a partially hyperbolic diffeo-
morphism act as a translation in a hyperbolic 3–manifold.

We start by recalling the setting. Let f WM !M be a (not necessarily dynamically
coherent) partially hyperbolic diffeomorphism on a hyperbolic 3–manifold. Up to
replacing f by a power, we assume that it is homotopic to the identity. Up to taking
a further iterate of f and a lift to a finite cover of M, we can assume that f admits
branching foliations, and that the good lift zf acts as a translation on the leaf space
of eWcs.

Letˆcs be a transverse regulating pseudo-Anosov flow to Wcs given by Proposition 10.1.
This flow is fixed throughout the discussion.

Then Proposition 10.3 shows that for any periodic orbit of ˆcs, there exists a center
stable leaf periodic by f .

11.1 Periodic center rays

We will now produce rays in periodic center leaves which are expanding. A ray in L is
a proper embedding of Œ0;1/ into L. We say that a ray is a center ray if it is contained
in a center leaf. So a center ray cx is the closure in L of a connected component of
c n fxg, where c is a center curve and x 2 c.

Let  in �1.M/ be associated with a periodic orbit ı0 of the pseudo-Anosov flow ˆcs.
Let L be a leaf (given by Proposition 10.3) of eWcs fixed by h WD n ı zf m, with m> 0.
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A center ray cx is expanding if h.cx/D cx and x is the unique fixed point of h in cx
and every y 2 cx n fxg verifies that h�n.y/! x as n!C1. It is contracting if it is
expanding for h�1.

Proposition 11.1 Assume that a good lift zf of f acts as a translation on the (branching)
foliation eWcs. Let ˆcs be a regulating transverse pseudo-Anosov flow. Let  in
�1.M/ be associated with a periodic orbit ı0 of ˆcs. Let L be a leaf of eWcs fixed by
hD n ı zf m, where m> 0. Assume that  fixes all prongs of a lift of ı0 to zM. Then
there are at least two center rays in L, fixed by h, which are expanding.

Remark 11.2 We should stress that we cannot guarantee that we get a single center
leaf with both rays expanding. For example, it is very easy to construct an example
such that h has Lefschetz index �1 in L, and has exactly 3 fixed center leaves in L,
and only two fixed expanding rays, which are contained in distinct center leaves; see
Figure 9. This situation occurs in the examples constructed in [7] in the unit tangent
bundle of a surface.

We will use Proposition 11.1 and its proof to eliminate the mixed behavior in hyper-
bolic 3–manifolds. It should be noted that this proposition also gives some relevant
information about the structure of the enigmatic double translation examples which are
not ruled out by our study.

The key point is to understand how each fixed center leaf contributes to the total Lef-
schetz index of the map in a center stable leaf which we can control. Since the dynamics
preserves foliations and one of them has a well-understood dynamical behavior (ie in
the center stable foliation, the stable foliation is contracting) we can compute the index
just by looking at the dynamics in the center foliation; see Figure 8.

As remarked above, one does have to be careful when computing the index, as cancel-
lations might happen with branching foliation; see Figure 9.

We are now ready to give a proof of Proposition 11.1.

Proof of Proposition 11.1 By Proposition 10.2, we know that the fixed-point set of h
in L is contained in the lift of T to zM (which intersects L in a compact set) and has
Lefschetz index 1�p, where p is the number of stable prongs at the fixed point. In
particular, h has some fixed points in L.

Let L2 D zf m.L/. We denote by �12 W L! L2 the flow along the êcs map.
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index �1index 0index 1

Figure 8: Contribution of index of a center arc, depending on the center dynamics.

Claim 11.3 Let c1 and c2 be two distinct center leaves in L that have a nontrivial
intersection. Suppose that both c1 and c2 are fixed by h, and there exist two distinct
points z; y 2 c1\ c2 which are fixed by h. Then the center leaves c1 and c2 coincide
on the segment between z and y.

Proof Let Œy; z�c1
and Œy; z�c2

be the center segments between y and z in c1 and c2,
respectively.

Figure 9: Two segments of zero index merge with a point with index 1 to
produce a global �1 index.
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Assume for a contradiction that Œy; z�c1
and Œy; z�c2

are distinct. Then, up to changing
y and z, we can assume that the intersection between the open intervals .y; z/c1

and
.y; z/c2

is empty.

Thus, by construction, Œy; z�c1
and Œy; z�c2

intersect only at z and y. We let B be the
bigon in L bounded by Œy; z�c1

and Œy; z�c2
.

Note that any stable leaf that enters the bigon B must exit it (otherwise it would limit in
a stable leaf entirely contained inB, which is impossible). Hence, B is “product foliated”
by stable leaves. Since B is compact, the length of the stable segments contained in B
is bounded.

Since z; y are fixed by h it follows that B is also fixed by h. Let s be one such stable
segment connecting .z; y/c1

to .z; y/c2
. Then the images of s under powers of h�1

stay in B but must also have unbounded length, a contradiction.

Let x be a fixed point of h. Recall from Lemma 3.19 that the set of center leaves
through x in L is a closed interval. In particular, h fixes the endpoints of this interval.
Hence, x is contained in a center leaf c such that h.c/D c.

Claim 11.4 All the fixed points of h in L are contained in the union of finitely many
compact segments of center leaves in L.

Proof Let c be a center leaf fixed by h. Since the fixed points are contained in a
compact set C (see [3, Lemma 8.11]), there is a minimal compact interval J in c which
contains all the fixed points of h in c.

Suppose that there exist infinitely many distinct such minimal intervals Ji in center
leaves ci . Since the fixed points of h in L are in a compact set, we can choose i and j
large enough that Ji is very close in the Hausdorff distance of L to Jj . Let z be an
endpoint of Ji . Then the stable leaf s.z/ through z intersects the center leaf cj . As z is
fixed by h and so is cj , contraction of the stable length implies that z 2 cj , thus z 2 Jj .

Hence, both endpoints of Ji are on Jj . By Claim 11.3, it implies that Ji � Jj , and
minimality of the interval Jj implies Jj D Ji , which is a contradiction.

Let fJi ; 1 � i � i0g be a finite family of compact intervals containing all the fixed
point of h, as given by Claim 11.4. Note that we do not necessarily take the minimal
intervals as constructed in the proof of Claim 11.4, as we want the following properties
for that family.

Geometry & Topology, Volume 27 (2023)



Partial hyperbolicity in 3–manifolds, II 3165

Claim 11.5 We can choose the collection of intervals fJi ; 1� i � i0g, each in a center
leaf fixed by h, satisfying the following properties:

(1) The union
S
1�i�i0

Ji contains all the fixed points of h.

(2) The endpoints of each interval Ji are fixed by h.

(3) The intervals are pairwise disjoint.

Proof Let c1; : : : ; cn be a minimal collection of center leaves that contains all fixed
points of h in L, as given by Claim 11.4. Let Ji be the minimal compact interval
containing all fixed points of h in ci .

The family Ji then satisfies conditions (1) and (2). So we only have to show that
one can split the intervals Ji further so that condition (3) is also satisfied (while still
satisfying the first two conditions).

Notice that ci and cj intersect if and only if Ji and Jj intersect. Thus, we can restrict
our attention to each connected component of the union of the ci separately.

Up to renaming, assume that
S
1�i�k ck is a connected component of

S
1�i�n ck .

Now we can consider the union of the J1; : : : ; Jk as a graph, where the vertices are
the endpoints of the segments Ji together with the points where two segments merge,
and the edges are the subsegments joining the vertices. With this convention, the union
of the J1; : : : ; Jk is then a tree. Otherwise there would be a bigon in L enclosed by
the union, which is ruled out by Claim 11.3.

Let B be this tree. Our goal is to remove enough open segments from the Ji so that
no vertex of this associated tree has degree 3 or more. Consider a vertex p in B with
degree 3 or more. Then there are two edges e1 and e2 abutting at p on the same side
of p. We claim that e1 cannot have points fixed by h arbitrarily close to p (except for
p itself). Otherwise one would have a fixed point y 2 e1 such that s.y/ intersects e2.
Since e2 is contained in a fixed leaf, e2 \ s.y/ is fixed by h. This implies (since h
decreases stable length) that y is in e2. Thus, by Claim 11.3, the intersection of e1 and
e2 would contain the segment Œy; p�, contradicting the fact that they are distinct edges.

Thus, we can remove an open interval .p; z/ from, say, e1, where z is fixed by h but
.p; z/ has no fixed points. In the new tree, p has index one less than before and z has
index one.
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Doing this recursively on each vertex of index strictly greater than 2, we will obtain, as
sought, a disjoint collection of intervals that also satisfy conditions (1) and (2).

Now we will look at the index of h on the fixed intervals Ji , for 1� i � i0, produced
by Claim 11.5. Note that for each such interval Ji there are no other fixed points of h
nearby in L. Let c be a leaf fixed by h containing Ji .

If h is contracting on c near both endpoints of Ji on the outside, then the index of Ji
is C1. This is because the stable foliation is contracting under h D n ı zf m (since
m > 0). Hence h is contracting near Ji . If h is expanding on both sides, the index
is �1. If one side is contracting and the other is expanding, then the index is zero.

The global index for h can then be computed by adding the indexes of h on each of the
intervals Ji , taking care of cancellations.

Let ck , for 1 � k � k0, be finitely many center leaves, fixed by h and containing all
the Ji . We choose this collection to have the minimum possible number of leaves.

Each leaf ck contains finitely many segments Ji , so there are exactly two infinite rays
that do not contain any Ji . The contribution of ck to the global index of h (before
possible cancellations) will then be �1 if both rays are expanding, 0 if one is expanding
while the other contracts, and 1 if both are contracting.

Suppose, for a contradiction, that there is at most one expanding ray in L. So each ck ,
considered separately, has index either 0 or 1.

If there is an expanding ray, let ck be a leaf with an expanding ray. Otherwise let ck be
any leaf. Now we need to consider how the other leaves and the possible cancellations
impact the global index of h. Let cl be a leaf that intersects ck . If cl shares an expanding
ray with ck , then the other ray of cl is contracting, and eventually disjoint from the
corresponding ray of ck . The fixed set (if any) of this ray in cl has index zero. If cl
does not share an expanding ray with ck , then both rays of cl are contracting. The ray
that is added to the same end as the expanding ray of ck contributes index 1. The other
ray contributes index 0. In any case the index, starting at 0 or 1, does not decrease.

Now, if cm is another leaf that is disjoint from the set above, then both rays are
contracting and it contributes an index 1. So again the index does not decrease.

Thus, if there is at most one expanding ray, then the index of h is at least 0. This
contradicts the fact that the index of h is 1�p where p � 2, and thus finishes the proof
of Proposition 11.1.
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11.2 Periodic rays and boundary dynamics

Proposition 11.1 gave the existence of periodic rays that are coarsely expanding. Here
we will show that such a ray has a well-defined ideal point on the circle at infinity of
the leaf, and that it corresponds to the endpoint of a prong of the transverse regulating
pseudo-Anosov flow, ˆcs.

As previously, we assume that we have a center stable leaf L 2 eWcs such that there is a
deck transformation  for which  ı zf m.L/DL for some m>0. We let L2D zf m.L/
and define �12 W L! L2 the flow along êcs map. We also take as before

h WD  ı zf m and g WD  ı �12:

Recall that h and g are maps of L that are a bounded distance from each other. Also
g preserves the (singular) foliations Gs and Gu. We again assume that if g has a fixed
point x0 in L then  is such that g preserves each of the prongs of Gs.x0/ and Gu.x0/.

The action of g on the circle at infinity S1.L1/ has an even number of fixed points,
which are alternately attracting and repelling. We denote by P the set of attracting fixed
points and by N the set of repelling ones. With this notation, we get the following.

Proposition 11.6 Let � W Œ0;1/! L be a contracting fixed ray for h. Then the limit
limt!1 �.t/ exists in S1.L/ and it is a (unique) point in N. (Symmetrically, if � is an
expanding fixed ray, its limit point belongs to P .)

Proof Let y be in P and let U be a small neighborhood of y in L[ S1.L/ as in
[3, Section 8]. If � has a point q in U \L, then hn.q/ converges to y as n!C1,
so � could not be a contracting ray; a contradiction. So � cannot limit to any point
in P . If z is in S1.L/ n fN [P g, then hn.z/ converges to a point in P under forward
iteration. Hence, again, a small neighborhood Z of z in L[S1.L/ is sent, under some
iterate, inside a neighborhood U as in the first part of the proof. So any point in Z\L
converges to a point in P under forward iteration. Hence � cannot limit to a point
in S1.L/ n fN [P g either. So � can only limit to points in N . Since � is properly
embedded in L, the set of accumulations points of � is connected, so it has to be a
single point.

12 Mixed case in hyperbolic manifolds

In this section we show that even in the non-dynamically-coherent case, the mixed
behavior is impossible for hyperbolic 3–manifolds. This will be done by using the study
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of translations in hyperbolic 3–manifolds developed in Sections 10 and 11 to provide
more information on the dynamics of general partially hyperbolic diffeomorphisms.

The main result of this section is the following.

Theorem 12.1 Let f WM !M be a partially hyperbolic diffeomorphism homotopic
to the identity on a hyperbolic 3–manifold M. Suppose that there exists a finite lift and
finite power yf of f that preserves two branching foliations Wcs and Wcu, and is such
that a good lift zf fixes a leaf of eWcu. Then f is a discretized Anosov flow.

This, together with Proposition 6.1, completes Theorem 2.5.

12.1 The setup

Consider a partially hyperbolic diffeomorphism f as in Theorem 12.1.

Our goal is to show that the good lift zf of f fixes every leaf of eWcs and eWcu. Indeed,
Proposition 7.2 (and Corollary 7.5) then implies that yf is dynamically coherent, so we
can then use [3, Theorem B] to obtain that yf is a discretized Anosov flow. In turn, thanks
to Proposition 7.7, we obtain that f itself is dynamically coherent and a discretized
Anosov flow.

Since Proposition 7.7 allows us to use finite lifts and powers, we assume directly
that f D yf , that Wcs and Wcu are orientable and transversely orientable, and that f
preserves their orientations.

Since zf is assumed to fix one leaf of eWcu, Proposition 6.1 implies that every leaf
of eWcu is fixed. We will prove by contradiction that every leaf of eWcs is fixed by zf .
So, by Proposition 6.1, we can assume that Wcs is R–covered and uniform and that zf
acts as a translation on the leaf space of eWcs. In particular, there are no center curves
fixed by zf .

Then, we can apply Proposition 5.2 to Wcu to deduce that every periodic center leaf is
coarsely expanding.

On the other hand, since zf acts as a translation on eWcs, we can use the results from
Sections 10 and 11. Let ˆcs be a regulating pseudo-Anosov flow transverse to Wcs

given by Proposition 10.1.

The flow ˆcs is a genuine pseudo-Anosov, that is, it admits at least one periodic orbit
which is a p–prong with p � 3; see [3, Proposition D.4].
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Now, we choose  in �1.M/, associated to this prong, and apply Proposition 10.3:
up to taking powers, we can assume that h WD  ı zf k for some k > 0 fixes a leaf L
of eWcs. Moreover, the dynamics in L resembles that of the dynamics of a p–prong,
and in particular fixes every prong.

Notice that Proposition 11.1 also provides some center rays which are expanding in L
for h. We will need to use some of the ideas involved in the proof of that proposition
(even though the statement itself will not be used).

We summarize the discussion above in the following proposition.

Proposition 12.2 Let f W M ! M be a partially hyperbolic diffeomorphism of a
hyperbolic 3–manifold M , homotopic to the identity, preserving branching foliations
Wcs and Wcu. Suppose that a good lift zf fixes a leaf of eWcu and acts as a translation oneWcs. Then , up to taking finite iterates and covers , there exists  2 �1.M/ and k > 0
such that a center stable leaf L 2 eWcs is fixed by h WD  ı zf k , and its Lefschetz index
is IFix.h/.h/ D 1� p, with p � 3. Moreover , every center curve fixed by h in L is
coarsely expanding.

Let  be as in the proposition. Let L be a center stable leaf fixed by hD  ı zf k and
L2 D zf

k.L/. As previously, we write �12 W L! L2 for the map obtained by flowing
from L to L2 along êcs. We set g WD  ı �12.

The map g acts on the compactification of L with its ideal circle L[S1.L/ the same
way as h does; see Sections 10 and 11.

Let ı be the unique orbit of êcs fixed by  and let x be the (unique) intersection of ı
with L. Note that x is the unique fixed point of g. We assume that  fixes the prongs
of ı, so h has exactly 2p fixed points in S1.L/. These fixed points are contracting
if they correspond to an ideal point of Gu.x/, and expanding if they are ideal points
of Gs.x/.

12.2 Proof of Theorem 12.1

To prove Theorem 12.1 we will first show some properties. Recall from Proposition 11.6
that every proper ray in L 2 eWcs fixed by h has a unique limit point in S1.L/; notice
that the ray must be either expanding or contracting. We will show that the fixed rays
associated to the center and stable (branching) foliations have different limit points at
infinity.
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Lq1

z

cs.z/

Figure 10: Rays have to land in different points of S1.L/.

Lemma 12.3 Let s be a stable leaf in L which is fixed by h. Then the two rays of s
limit to distinct ideal points of L. The same holds if c is a center leaf in L fixed by h.

Proof We do the proof for the center leaf c; the one for stable leaves is analogous,
and a little bit easier (since there is no branching).

By hypothesis, c is fixed by h, hence it is coarsely expanding under h. It follows that
there are fixed points of h in c. By Proposition 11.6, each ray of c can only limit to a
point in P � S1.L/ where, as previously, P is the set of attracting fixed points of h
in S1.L/. Let q1 and q2 be the ideal points of the rays. What we have to prove is that
q1 and q2 are distinct.

Suppose that q1 D q2. Then c bounds a unique region S in L which limits only to
q1 2 S

1.L/. The other complementary region of c in L limits to every point in S1.L/.
Let z be a fixed point of h in c. Then the stable leaf s.z/ of z has a ray s1 entering S .
It cannot intersect c again, and it is properly embedded in L. Hence it has to limit
to q1 as well. See Figure 10.

But now this ray is contracting for h. This contradicts Proposition 11.6 because this
ray should limit in a point of N .

Remark 12.4 The proof used strongly that periodic center leafs are coarsely expanding,
in order to induce a behavior at infinity. In the examples of [7] it does happen that
different stable curves land in the same ideal point at infinity in their center stable leaf.
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Figure 11: Showing the existence of fixed points below x in Lemma 12.5.

Now we show a sort of dynamical coherence for fixed center rays.

Lemma 12.5 Suppose that c1 and c2 are distinct center leaves in L which are fixed
by h. Then c1 and c2 cannot intersect.

Notice that since f is not necessarily dynamically coherent, the distinct center leaves
c1 and c2 can a priori intersect each other. The proof will depend very strongly on the
fact that center rays fixed by h are coarsely expanding.

Proof Suppose that c1 and c2 intersect. Since c1 and c2 are both fixed by h, so is
their intersection. Since h is coarsely expanding in each, c1 and c2 share a fixed point
of h. In the proof of Claim 11.3, we showed that c1 and c2 cannot form a bigon B.

It follows that there is a point x, fixed by h, which is an endpoint of all intersections of
c1 and c2: on one side x bounds a ray e1 of c1 and a ray e2 of c2 such that e1 and e2
are disjoint. For a point y in e1 near enough to x, we have that s.y/ must intersect c2.
Since stable lengths are contracting under powers of h, it implies that e1 is contracting
towards x near x and similarly for e2; see Figure 11. But e1 is coarsely expanding.
Hence there must exist fixed points of h in e1. Let y 2 e1 be the closest point to x
which is fixed by h. Similarly, let z in e2 be the closest to x fixed by h.

The leaves s.y/ and s.z/ are not separated from each other in the stable leaf space
in L.
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Let now c be a center leaf through x which is between c1 and c2 and which is the first
center leaf not intersecting s.y/.

Then h.c/D c since s.y/ is fixed and c is the first leaf through x not intersecting s.y/.
Consider the ray of c starting at x and moving in the direction of y. This ray is the limit
of compact center segments from x to points in s.y/. As such this ray of c can only
intersect stable leaves which are between s.x/ and s.y/. Because the map h contracts
stable lengths it follows that the map h is contracting in this ray of c. This contradicts
Proposition 12.2 because this ray is in a center leaf which is fixed by h.

Thus far, we showed that distinct center leaves inL which are fixed by h do not intersect.
Then the proof of Claim 11.4 also implies that fixed center leaves cannot accumulate
(as accumulation would imply that some fixed leaves intersect).

We conclude that there are finitely many center leaves in L that are fixed under h. Each
such center leaf is coarsely expanding. For each such center leaf c, we consider a small
enough open topological disk containing all the fixed points of h in c, and no other
fixed point of h in L. Then, on such disks, the Lefschetz index of h is �1. Since the
total Lefschetz number of h in L is 1�p it follows that:

Lemma 12.6 There are exactly p� 1 center leaves which are fixed by h in L.

This together with the following lemma will allow us to make a counting argument to
reach a contradiction.

Lemma 12.7 Let c1 and c2 be two distinct center leaves in L fixed by h. Let y1 2 c1
and y2 2 c2 be fixed points of h. Then s.y1/ and s.y2/ do not have common ideal
points.

Proof Suppose, for a contradiction, that there are distinct fixed center leaves c1 and
c2 satisfying the following: there are points y1 2 c1 and y2 2 c2, fixed by h, such that
s1 D s.y1/ and s2 D s.y2/ share an ideal point in S1.L/.

Let q be the common ideal point of the corresponding rays of s1 and s2. Note that by
Proposition 12.2 the point q cannot be an endpoint of c1 or c2, because ideal points of
fixed centers are contracting in S1.L/ and ideal points of fixed stables are repelling
in S1.L/.
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Figure 12: A depiction of the main objects in the proof of Lemma 12.7.

Let ej be the ray in sj with endpoint yj and ideal point q. Suppose first that no center
leaf intersecting e1 intersects e2. Let c0 be a center leaf intersecting e1. Iterate c0
by powers of h�1. It pushes points in s1 away from y1. Since the leaves h�i .c0/ all
intersect s1 and none of them intersects s2 or c2, the sequence .h�i .c0// converges to
a collection of center leaves as i !C1. Then there is only one center leaf in this
limit, call it c, which separates all of h�i .c0/ from s2. This c is invariant under h and
it has an ideal point in q because it separates h�i .c0/ (recall that h�i .c0/\ s1! q

as i !1) from s2. Now q is a repelling fixed point in S1.L/, so c must have an
attracting ray, a contradiction with Proposition 12.2.

It follows that some center leaf intersecting e1 also intersects e2. Let c0 be one such
center leaf. Now iterate by positive powers of h. Then .hi .c0// converges to a fixed
center leaf v1 through y1 and a fixed center leaf v2 through y2. But then v1 and c1 are
both fixed by h and both contain y1. Lemma 12.5 implies that c1 D v1 and c2 D v2.
In particular v1 6D v2, and they are nonseparated from each other. In this case, consider
s the unique stable leaf defined as the first leaf not intersecting c1 that separates s1
from s2. Then, as above, h fixes s and has a fixed point y in s. But a center leaf c
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through y fixed by h has to intersect the interior of the ray e1. This intersection point
is the intersection of c fixed by h, and s1 fixed by h. So this intersection point is fixed
by h. But this is a contradiction, because y1 is the only fixed point of h in s1. So
Lemma 12.7 is proven.

We now can complete the proof of Theorem 12.1.

Proof of Theorem 12.1 By Lemma 12.6, there are p�1 center leaves fixed by h in L.
We denote them by c1; : : : ; cp�1.

Each center leaf has at least one fixed point. Let yi , for 1� i � p� 1, be a fixed point
in ci . Then, for each i , Lemma 12.3 states that s.yi / has two distinct ideal points z1i
and z2i .

Moreover, for every i 6D j , the ideal points of the stable leaves are distinct by
Lemma 12.7. It follows that there are at least 2p� 2 distinct points in S1.L/ which
are repelling.

But we also know that there are exactly p points in S1.L/ that are repelling under h.
It follows that 2p � 2 � p, which implies p D 2. However, we had that p � 3, thus
obtaining a contradiction.

This finishes the proof of Theorem 12.1.

Appendix A Some 3–manifold topology

Besides the 3–manifold topology presented in [3, Appendix A] we will need an addi-
tional result, which is important for understanding certain particular deck transforma-
tions when one lifts to finite covers.

Lemma A.1 Let M be a closed , irreducible 3–manifold with fundamental group that
is not virtually nilpotent. Suppose that ˇ is a nontrivial deck transformation so that
d.x; ˇ.x// is bounded above in zM. Then M is a Seifert fibered space and ˇ represents
a power of a regular fiber.

Proof First we assume that M is orientable. Then, the JSJ decomposition states
that M has a canonical decomposition into Seifert fibered and geometrically atoroidal
pieces. We lift this to a decomposition of zM and construct a tree T in the following
way: the vertices are the lifts of components of the torus decomposition of M, and we
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associate an edge if two components intersect along the lift of a torus. Such a lift of a
torus is called a wall. There is a minimum separation distance between any two walls.

The deck transformation ˇ acts on this tree. Let W be a wall. Suppose that ˇ.W / is
distinct from W. But, as subsets of zM, the walls W and ˇ.W / are a finite Hausdorff
distance from each other. Then �.W / and �.ˇ.W // are tori in M, and the region V
in zM betweenW and ˇ.W / projects to �.V /, which is T2�Œ0; 1� inM. If this happens,
then M is a torus bundle over a circle. In that case, use that �1.M/ is not virtually
nilpotent, so the monodromy of the fibration is an Anosov map of T2. But then no ˇ
as above could satisfy the bounded distance property. It follows that ˇ.W /DW for
any wall, and in particular ˇ.P /D P for any vertex of T .

Now consider a vertex P . Suppose first that �.P / is homotopically atoroidal. By the
geometrization theorem, �.P / is hyperbolic. If ˇ restricted to P were to satisfy the
bounded distance property, then it would have to be the identity on P . Hence ˇ itself
is the identity, a contradiction.

Hence all the pieces of the torus decomposition of M are homotopically toroidal.
Suppose now that there is one such piece �.P / that is geometrically atoroidal (but not
homotopically atoroidal). The proof of the Seifert fibered conjecture [16; 20] shows
that �.P / has no boundary and �.P / is Seifert. In other words, M D �.P / is Seifert.
So we can assume that all the pieces of the torus decomposition are geometrically
toroidal. Then they are all Seifert fibered. Thus M is a graph manifold.

We will show that the torus decomposition of M is in fact trivial, proving that M is
Seifert fibered. Suppose it is not true. Then the tree T is infinite. Let P1; P2; P3 be
three consecutive vertices in T . Let W1 be the wall between P1 and P2. Then ˇ.W1/
(as a set in zM ) is a bounded distance from W1 and sends the Seifert fibration of P
in W1 to lifts of Seifert fibers. It follows that ˇ D ık1˛1, where ı1 represents a regular
fiber in �.P1/, and ˛1 is a loop in �.W1/. Similarly, if W2 is the wall between P2
and P3, then ˇ D ıi3˛3, where ˛3 is a loop in �.W3/. Then ˛1 and ˛3 are both in the
boundary of �.P2/. The loops representing ık1˛1 and ıi3˛3 are both in the boundary
of �.P2/. They represent the same element of �1.M/ only when k D i D 0 and ˛1
and ˛3 are freely homotopic. That means that P2 is a torus times an interval, which is
impossible in the torus decomposition in our situation, as explained above.

It follows now that the torus decomposition of M is trivial, which implies that M is
Seifert fibered. Moreover, if the base is not hyperbolic, then �1.M/ is virtually nilpotent
[32, Theorem 5.3]. But this contradicts the hypothesis of the lemma.
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It follows that the base is hyperbolic. Also ˇ induces a transformation in the universal
cover of the base that is a bounded distance from the identity. This can only happen if
this transformation is the identity. Therefore ˇ represents a power of a regular Seifert
fiber in M (notice that nonregular fibers induce a finite symmetry on the base, thus not
the identity, and not a bounded distance from the identity).

So the lemma is proven when M is orientable. If M is not orientable, then it has
a double cover M2 which is orientable. Now ˇ2 lifts to an element of �1.M2/ that
satisfies the assumption of the lemma. So we can apply the result to M2 and obtain
that M2 is Seifert. Thus M is doubly covered by a Seifert space, which, by a result of
Tollefson [34], implies that M itself is Seifert fibered. It follows that ˇ corresponds to
a power of a regular fiber. This finishes the proof of the lemma.

Appendix B Minimality and f –minimality

We prove that in certain situations minimality is equivalent to f –minimality. We need
the following result, which is of interest in itself.

Lemma B.1 Let Lcs be the leaf space of eWcs. Let B � Lcs be a closed set of leaves.
Suppose that , for all x 2 zM, there exists a leaf L 2 B containing x. Then B D Lcs.

Proof The lemma is obvious when Wcs is a true foliation (and one does not need to
require B to be closed). However, when Wcs has some branching, one could possibly
have a union of leaves that cover all of zM without using all the leaves of eWcs. For
closed sets of leaves we show this is not possible.

Let L be a leaf of eWcs, x a point in L and � an open unstable segment through x.
The set of leaves of eWcs intersecting � is isomorphic to an open interval. Using the
transversal orientation to eWcs, we can put an order on this interval.

By our assumption, every point in � intersects a leaf in B. Let L0 be the supremum of
leaves in B, intersecting � and smaller than or equal to L. Since B is closed, we have
L0 2 B. Notice that x is in both L and L0.

We claim that L0DL. If L is not equal to L0 then they branch out. Let y be a boundary
point of L\L0. Let z 2 L0, with z … L close enough to y that its unstable leaf u.z/
intersects L. Now take any point w 2 u.z/ in between z and L \ u.z/. Any leaf
L1 2 eWcs that contains w must contain y. Hence (because leaves do not cross), L1 also
contains x. By definition, it is above L0, thus L1 is not in B. Since this is true for any
leaf through w, it contradicts our assumption.
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Lemma B.2 When Wcs does not have compact leaves , then f –minimality of Wcs is
equivalent to minimality of Wcs.

Proof Minimality obviously implies f –minimality, so we only need to show the other
implication.

Suppose that Wcs is not minimal and let C be the union of a set of Wcs leaves which is
closed and not M. Let Wcs

� be an approximating foliation, with approximating map hcs
�

sending leaves of Wcs
� to those of Wcs. Then .hcs

� /
�1.C / is a set which is a union of

Wcs
� leaves, which is closed and notM. In particular, it contains an exceptional minimal

set D. By [26, Theorem 4.1.3], the actual foliation Wcs
� has finitely many exceptional

minimal sets B1; : : : ; Bk . The union B of these is not M because D 6DM. The set of
leaves in B is a closed set of leaves denoted by B. Then AD hcs

� .B/ is a closed subset
of M, and AD hcs

� .B/ is a closed set of leaves, being the image by hcs
� of the leaves

in B. Let zAD ��1.A/; we stress that this is on the leaf-space level, not in terms of
sets. This is a closed subset of Lcs.

Let Ai WD hcs
� .Bi /. Every leaf of Wcs which is the image of a leaf in Bi is dense in Ai .

Using this, it is easy to see that f .A/D A. By f –minimality it follows that ADM.

Since A DM , zA is a closed subset of Lcs, whose union of points in all leaves of zA
is zM , as ADM. Lemma B.1 implies that zAD Lcs. Hence for each leaf E of Wcs, it is
the image of a leaf F in some Bi . Conversely, every leaf of Wcs

� maps by hcs
� to a leaf

of Wcs.

For each leaf E of Wcs, its preimage .hcs
� /
�1.E/ is a closed interval of leaves of Wcs

� .
No leaf in the interior of the interval can be in a Bi as it is a minimal set. It follows
that the complementary regions to B in M are I–bundles. These can be collapsed to
generate another foliation C. Since the Bi were minimal sets of Wcs

� , the collapsing of
each of these is a minimal set of C. Since the union is all of M, there can be only one
such minimal set, so Wcs

� is minimal.

But this contradicts the fact that D is an exceptional minimal set of Wcs
� .

We state the following criteria for dynamical coherence (which in this setting is quite
obvious).

Proposition B.3 [8, Proposition 1.6 and Remark 1.10] Assume that f is a partially
hyperbolic diffeomorphism admitting branching foliations Wcs and Wcu. If no two
distinct leaves of Wcs or Wcu intersect , then f is dynamically coherent.
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Appendix C The Lefschetz index

Here we define the Lefschetz index and give the main property that we used. We refer
to the monograph by Franks [19, Section 5] for details and other references.

For any space X and subset A�X , we denote by Hk.X;A/ the kth relative homology
group with coefficients in Z.

Definition C.1 Let V � Rk be an open set and F W V � Rk ! Rk be a continuous
map such that the set of fixed points of F is � � V, a compact set. Then the Lefschetz
index of F , denoted by I�.F /, is an element in Z Š Hk.R

k;Rk � f0g/, defined
as follows. It is the image by .id � F /� W Hk.V; V � �/ ! Hk.R

k;Rk � f0g/ of
the class u� , where u� itself is the image of the generator 1 under the composite
Hk.R

k;Rk�D/!Hk.R
k;Rk��/ŠHk.V; V ��/. Here D is a ball containing � .

It is easy to see that if � D Fix.F /D �1[� � �[�j , where �i are compact and disjoint,
then I�.F /D

Pj
1 I�.F /. Here I�.F / is the index restricted to an open set Vi of V

which does not intersect the other �m; see [19, Theorem 5.8(b)].

This technical definition works well with the standard examples. For a single hyperbolic
fixed point q, the index at q is exactly sgn.det.id�DqF //, where det is the determinant
and sgn is the sign of the determinant; see [19, Proposition 5.7]. Hence in dimension
two, the index of a hyperbolic fixed point when the orientation of the bundles is
preserved is �1. This can be generalized to a p–prong hyperbolic fixed point, to
obtain that the index is 1�p. This is because the index is invariant under homotopic
changes. A p–prong can be easily split into p� 1 distinct hyperbolic points which are
differentiable. In addition, for any fixed set which behaves locally as a hyperbolic fixed
point, the index is the same as the hyperbolic fixed point.

The main property we use is the following.

Proposition C.2 [19, Theorem 5.8(c)] Let P be a topological plane equipped with a
metric d . Let g; h W P ! P be two homeomorphisms. Suppose that there exists R > 0
such that

� for every x 2 P , one has that d.g.x/; h.x// < R, and

� there is a disk D such that , for every x …D, one has that d.x; g.x// > 2R.

Then the total index satisfies IFix.g/.g/D IFix.h/.h/.

See also [28, Section 8.6] for an alternative presentation of the Lefschetz index.
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The Weil–Petersson gradient flow of renormalized volume
and 3–dimensional convex cores
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We use the Weil–Petersson gradient flow for renormalized volume to study the
space CC.N IS;X / of convex cocompact hyperbolic structures on the relatively
acylindrical 3–manifold .N IS/. Among the cases of interest are the deformation
space of an acylindrical manifold and the Bers slice of quasifuchsian space associ-
ated to a fixed surface. To treat the possibility of degeneration along flow-lines to
peripherally cusped structures, we introduce a surgery procedure to yield a surgered
gradient flow that limits to the unique structure Mgeod 2 CC.N IS;X / with totally
geodesic convex core boundary facing S . Analyzing the geometry of structures
along a flow line, we show that if VR.M / is the renormalized volume of M , then
VR.M /�VR.Mgeod/ is bounded below by a linear function of the Weil–Petersson
distance dWP.@cM; @cMgeod/, with constants depending only on the topology of S .
The surgered flow gives a unified approach to a number of problems in the study of
hyperbolic 3–manifolds, providing new proofs and generalizations of well-known
theorems such as Storm’s result that Mgeod has minimal volume for N acylindrical
and the second author’s result comparing convex core volume and Weil–Petersson
distance for quasifuchsian manifolds.

32G15, 30F40, 30F60; 32Q45, 51P05

1 Introduction

The use of a geometric flow, or a flow on a space of metrics on a given manifold, has
provided an abundantly fruitful approach to understanding a manifold’s structure. In
our previous work [4], we introduced a new geometric flow on the space of hyperbolic
metrics on a 3–manifold that admits a hyperbolic structure, showing how the flow can
be used to discover the metric of least convex core volume. In the present paper, we
illustrate how this flow provides an analytic version of results on convex core volume
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that were available previously only through combinatorial methods, demonstrating how
this approach allows for conjectured extensions to much more general cases.

When a hyperbolic 3–manifold M admits a compact convex submanifold we say it
is convex cocompact; the geometry of the smallest such submanifold, its convex core,
carries all the interesting information about its geometry. For such M (or more generally
conformally compact Einstein manifolds), work of Graham and Witten [17] in physics
led to an alternative notion of renormalized volume. From a mathematical perspective,
this concept has been elaborated in a series of papers of Krasnov and Schlenker
[21; 22], Takhtajan and Teo [32] and Zograf and Takhtajan [35]. The renormalized
volume VR.M / of M connects many analytic notions from the deformation theory to
the geometry of M and is closely related to classical objects such as the convex core
volume VC .M / and the Weil–Petersson geometry of Teichmüller space.

If N is a compact 3–manifold admitting a complete hyperbolic structure of finite
volume, the renormalized volume gives an analytic function VR W CC.N /!R, where
CC.N / is the deformation space of convex cocompact structures on N . We will give a
precise definition of VR later in the paper, but knowledge of its basic properties will
be largely sufficient for our purposes. In particular, the differential dVR on CC.N / is
described in terms of the classical Schwarzian derivative and can be used as a definition
of VR.

A convex cocompact structure M 2 CC.N / is naturally compactified by a complex
projective structure on @N . The underlying conformal structure is the conformal
boundary @cM of M . The Schwarzian derivative associated to the projective structure
determines a holomorphic quadratic differential �M 2 Q.@cM /. The utility of the
renormalized volume function lies in a particularly clean formula for its derivative,
first shown by Takhtajan and Zograf [35] and Takhtajan and Teo [32]. A new proof
was given by Krasnov and Schlenker [22, Lemma 8.5] using methods that are more
closely aligned with the present work. To state the result, we recall that CC.N / is
(locally) parametrized by Teich.@N /, and the cotangent space at @cM is parametrized
by Q.@cM /. We then have:

Theorem 1.1 [35; 32; 22] Let � be an infinitesimal Beltrami differential on @cM .
Then

dVR.�/D Re
Z
@cM

�M�:
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By integrating this formula along a Weil–Petersson geodesic and applying the classical
Kraus–Nehari bound on the L1–norm of �M , Schlenker [29, Theorem 1.2] obtained
the following for the quasifuchsian structure Q.X;Y / on N DS�Œ0; 1� with conformal
boundary X tY :

VR.Q.X;Y //� 3

r
�

2
j�.S/j dWP.X;Y /:

Furthermore, Schlenker showed that for quasifuchsian manifolds, the renormalized
volume and the volume of the convex core are boundedly related. A more refined
version (see [4, Theorems 2.16 and 3.7]) is

VC .Q.X;Y //� 6�j�.S/j � VR.Q.X;Y //� VC .Q.X;Y //:

Combined, these gave a new proof of an upper bound on the volume the convex core
of Q.X;Y / in terms of dWP.X;Y / originally due to the second author [9], resulting
also in new approaches to the study of volumes of fibered 3–manifolds in [11; 19]
generalizing and sharpening known estimates [10].

Here, the variational formula (Theorem 1.1) will be our jumping-off point to study
the Weil–Petersson gradient flow of VR. It will be useful to restrict VR to certain
subspaces of the space of convex cocompact structures CC.N /. In particular, let
.N IS/ be a pair where N is a compact hyperbolizable 3–manifold and S � @N is a
collection of components of the boundary. Then CC.N IS;X /� CC.N / is the space
of convex cocompact hyperbolic structures on N where the conformal boundary on
the complement of S is the fixed conformal structure X . The pair .N IS/ is relatively
incompressible if the inclusion S ,!N is �1–injective, and relatively acylindrical if
there are no essential cylinders with boundary in S . Note that the second condition
implies the first.

In this paper our focus will be on when .N IS/ is relatively acylindrical. The cases of
greatest interest are

(1) when S D @N , and N itself is acylindrical, and

(2) when N D S � Œ0; 1�, and CC.N IS � f1g;X / is a Bers slice of the space of
quasifuchsian structures.

One important feature of relatively acylindrical pairs is that the deformation space
CC.N IS;X / has a unique hyperbolic structure Mgeod where the components of the
convex core facing S are totally geodesic. The main application of our study of the
gradient flow is the following.
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Theorem A Let CC.N;S IX / be a relatively acylindrical deformation space. There
exists A.S/, depending only on the topology of S , and a universal constant ı such that

A.S/
�
dWP.@cMgeod; @cM /� ı

�
� VR.M /�VR.Mgeod/:

For a Bers slice CC.S � Œ0; 1�;S � f1g;X /, we have Mgeod DQ.X;X / and both the
convex core and renormalized volume of this Fuchsian manifold are zero. Applying the
above comparison between renormalized volume and convex core volume, we obtain:

Theorem B Let S be a closed surface of genus g � 2. Then we have

A.S/
�
dWP.X;Y /� ı

�
� VC .Q.X;Y //� 3

r
�

2
j�.S/j dWP.X;Y /C 6�j�.S/j:

Schlenker’s argument in the quasifuchsian case also applies to relatively acylindrical
manifolds, so we have for any M and M 0 in CC.N IS;X / that

VR.M /�VR.M
0/� 3

r
�

2
j�.S/j dWP.@cM; @cM 0/:

If we let Mgeod DM 0, then we get an upper bound on the expression in Theorem A.
The comparison between renormalized volume and convex core volume also extends
to acylindrical manifolds (or any manifold with incompressible boundary).

Theorem C Let N be a hyperbolizable , acylindrical 3–manifold. Then

A.@N /
�
dWP.@cMgeod; @cM /�ı

�
�VC .M /�VC .Mgeod/

�3

r
�

2
j�.@N /j dWP.@cMgeod; @cM /C3�j�.@N /j;

where A and ı are as in Theorem A.

Remark The constants in Theorem C depend only on the topology of @N . While we
expect the second author’s original method combined with Thurston’s compactness
theorem for hyperbolic structures on acylindrical manifolds should also produce a
similar bound, the constants in such an approach would depend on the topology of N ,
due to the application of Thurston’s result. The approach taken here is thus not only
more direct but produces a stronger result. In particular, while Thurston’s compactness
theorem implies that the convex core of Mgeod has a bi-Lipschitz embedding into any
complete hyperbolic structure on N where the bi-Lipschitz constants only depend
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on N , it is natural to conjecture that these bi-Lipschitz constants only depend on @N .
Theorem C can be taken as some evidence for this conjecture.

We note that a positive resolution of this conjecture would also imply Minsky’s con-
jecture that the diameter of the skinning map is bounded by constants only depending
on @N , and provide an approach to improving related estimates for the models of [14].

1.1 The Weil–Petersson gradient flow of renormalized volume

One of the main purposes of this paper is to develop the structure theory of the gradient
flow V for renormalized volume VR. From this development, the above results will
follow directly. We show that flow provides a powerful new tool to investigate the
internal geometry of ends of hyperbolic 3–manifolds.

To give a basic outline of the main ideas of the paper, we begin with a general discussion
of gradient flows, which we will then apply to the gradient of renormalized volume.
Let f be a smooth function on a noncompact, not necessarily complete, Riemannian
manifold X , and assume that

(a) f is bounded below,

(b) the gradient flow of f is defined for all time,

(c) krf k � C ,

(d) f has a unique critical point xx,

(e) for all � > 0 there exists an A> 0 such that if d.x; xx/� �, then krf k �A.

By integrating krf k along a distance-minimizing path between points x and x0 we
immediately see that (c) implies that

jf .x/�f .x0/j � Cd.x;x0/:

Clearly, we cannot expect a similar lower bound to hold as the level sets of f may have
infinite diameter. Instead, we obtain lower bounds when x0 D xx, the unique critical
point. In particular, let xt be a flow line of �rf with x D x0. We then have

f .x/�f .xa/D

Z a

0

krf .xt /k
2 dt:

By (a), lima!1 f .xa/ exists so as a ! 1, the improper integral is convergent.
Therefore there will be an increasing sequence of ti with krf .ti/k! 0 so, by (e), the
flow line xt will accumulate on xx. Fix some � > 0 with corresponding A> 0 as in (e)
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and let I� � Œ0;1/ be those values t where d.xt ; xx/ > �. Then for t 2 I� we have
krf .xt /k�A and the length of the path xt restricted to I� will be at least d.x; xx/��.
Therefore,

f .x/�f .xx/D

Z 1
0

krf .xt /k
2 dt �

Z
I�

krf .xt /k
2 dt

�A

Z
I�

krf .xt /k dt �A.d.x; xx/� �/;

which gives the desired linear lower bound.

Unfortunately, when we replace f with the renormalized volume function VR , property
(e) will not hold (but the others will). To mimic what happens in our generic setting,
we let xX be the metric completion of our Riemannian manifold X and G � xX a subset.
We replace (e) with the following three properties:

(e-1) For all � > 0 there exists a A> 0 such that if d.x;G/� � then krf .x/k �A.

(e-2) There exists an n > 0 such that in any subset of G with more than n elements
there are at least two that a distance ı0 apart.

(e-3) For every x0 2 G there is a path xt starting at x0 with xt 2 X for t > 0 and
f .xt / < f .x0/.

While the overall structure of the argument will remain the same, some modifications
are necessary. First, we need to construct a surgered flow xt where

� x0 D x,

� the function t 7! f .xt / satisfies f .xt / < f .x0/,

� outside of the �–neighborhood of G, xt is the gradient flow,

� xt ! xx as t !1.

To construct xt we start the gradient flow at x. If it limits to xx (as we conjecture it will
for renormalized volume) then we are done. If not, we limit to some other point in G.
We reparametrize so that this happens in finite time and then use (e-3) to restart the
flow. If this converges to xx we stop; if not we repeat. The first three bullets follow
directly from this construction.

As before we fix an � and A as in (e-1) and let I�.a/� Œ0; a� be those t 2 Œ0; a� where
d.xt ;G/ > �. If L�.a/ is the length of the path xŒ0;a� restricted to I�.a/ then the above
argument gives

f .x/�f .xa/�AL�.a/:
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A simple geometric argument, using (e-2), shows that L�.a/ grows linearly in both the
number of points of G that xt passes through and in the distance d.x;xa/. In particular,
if xt passes through infinitely many points in G then L�.a/ ! 1 as a ! 1 so
f .a/!�1, contradicting (a). Therefore xt only passes through finitely many points
in G which implies that the surgered flow converges to the critical point. Therefore if
we take the limit of the above inequality we have

f .x/�f .xx/�AL�.1/;

and as L�.1/ is bounded below by a linear function of d.x; xx/, we have our bound.

We now apply this discussion to the renormalized volume function VR on a relatively
acylindrical deformation space CC.N IS;X /. Properties (a)–(d) are already known
so we will focus on (e-1)–(e-3). In particular, we need to understand when krVRk is
small. By Theorem 1.1 we have that the Weil–Petersson gradient of VR is given by the
harmonic Beltrami differential

rVR.M /D
�M

�M

;

where �M is the area form for the hyperbolic metric on @cM and �M is the quadratic
differential associated to the projective structure on the components of @cM corre-
sponding to S . The norm of rVR is then the L2–norm of �M . This L2–norm is
zero exactly when �M D 0. As �M is the Schwarzian derivative of the univalent map
uniformizing the components of @cM corresponding to S (see [22]), �M D 0 implies
that the uniformizing maps are Möbius. It follows that if the norm of rVR is zero then
the components of the boundary of the convex core facing S are totally geodesic. In a
relatively acylindrical deformation space there is exactly one such manifold (which is
why (d) holds) and one might hope that when k�Mk2 is small we are near this critical
point. If this were so, (e) would hold. Unfortunately, it does not. While k�Mk2 being
small will imply that M is near a hyperbolic manifold whose convex core boundary
(facing S ) is totally geodesic, this manifold may have rank one cusps.

To state this more precisely, if GF.N IS;X / is the space of geometrically finite
hyperbolic structures on .N IS;X /, then the map M 7! @cM is a bijection from
GF.N IS;X / to the Weil–Petersson metric completion Teich.S/ of Teichmüller space
where points in the completion are noded hyperbolic structures on S ; see [25]. Nodes in
the conformal boundary correspond to rank one cusps in the hyperbolic 3–manifold. The
triple .N IS;X / determines a subset G.N IS;X / of Teich.S/ where the corresponding
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hyperbolic structures have totally geodesic boundary facing S . With G D G.N IS;X /
defined, we can briefly describe how we will verify (e-1)–(e-3).

Property (e-1) is the following theorem and its proof will occupy much of the paper:

Theorem D For all � > 0, there exists AD A.�;S/ such that if M 2 CC.N IS;X /
with k�Mk2 �A then there is an M 0 2 G.N IS;X /� GF.N IS;X / such that

dWP.@cM; @cM 0/� �:

Property (e-2) follows from Wolpert’s strata separation theorem (Theorem 2.2). For
a noded surface Y 2 @Teich.S/, we denote the family of curves given by the nodes
by �Y . Then Wolpert’s strata separation theorem implies there is a universal constant
ı0 > 0 such that if Y1;Y2 2 @Teich.S/ with geometric intersection i.�Y1

; �Y2
/ ¤ 0,

then dWP.Y1;Y2/ > ı0. Thus (e-2) holds with nD 2�.S/, where �.S/ is the maximal
number of disjoint simple closed curves on S as any collection of greater than n noded
surfaces in @Teich.S/ contains two that have intersecting nodes.

Finally property (e-3) follows by unbending the nodes by decreasing the bending angle
from � along the nodes to some angle � < � . Such a deformation was constructed by
Bonahon and Otal [3]. Using the variational formula for VR it can be easily shown that
VR satisfies property (e-3) along this path (see Proposition 5.2) as required.

1.2 Constants

A striking feature of Schlenker’s proof of the second author’s upper bounds for volume
is that the constants are very explicit. Unfortunately we lack the same control of
constants in our lower bounds as there is one place in the proof, the use of McMullen’s
contraction theorem for the skinning map, that we fail to control constants explicitly.
If we assume, optimistically, that the contraction constant does not depend on the
manifold then we can at least understand the asymptotics. With this assumption the
multiplicative constant in our lower bound will decay exponentially with exponent of
order g2, where g is the genus. On the other hand, the additive constants will decay to
zero even without controlling the contraction constant. This should be compared to
work of Aougab, Taylor and Webb [1], who produced an effective lower bound in the
quasifuchsian case via the second author’s combinatorial methods. Their multiplicative
constants decay exponentially with exponent of order g log g, which is better than ours,
but their additive constant grows, also of order g log g, rather than decays.
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1.3 Questions and conjectures

A central feature of the surgered gradient flow of �VR on a relatively acylindrical
deformation space is that it converges to the unique structure whose convex core has
totally geodesic boundary. While in this paper we will focus on relatively acylindrical
deformation spaces, the gradient flow is defined on the deformation space of any
hyperbolizable 3–manifold as is a surgered flow. We conjecture:

Conjecture 1.2 The surgered gradient flow either converges to a hyperbolic structure
whose convex core has totally geodesic boundary or it finds an obstruction to the
existence of such a structure. More concretely, either

� N is acylindrical and Mt !Mgeod, or

� there is an essential annulus or compressible disk whose boundary has small
length in @cMt for some t .

In fact we expect that the surgeries are unnecessary. Here is a more concrete conjecture
when the manifold has incompressible boundary.

Conjecture 1.3 Let N have incompressible boundary. Then for M 2 CC.N / the
renormalized volume gradient flow Mt starting at M has the property that for any
simple closed curve  on @N the geodesic length `Mt

. �/ tends to zero if and only if
 lies in the window frame.

See Thurston’s paper [33] for the definition of the window of a hyperbolic 3–manifold
with incompressible boundary.

In effect, the renormalized volume gradient flow realizes the geometric decomposition of
the manifold into pieces by pinching cylinders corresponding to the window boundary,
cutting the convex core of the manifold into pared acylindrical pieces with totally
geodesic boundary and Fuchsian “windows”.

Other questions relate to the internal geometric structure of convex cocompact ends
and how the flow relates to their internal structure. To avoid technicalities, for the
remainder of this section we will assume that our manifolds are acylindrical.

Let C.M;L/ the collection of simple closed curves on @M with geodesic length �L

in M , and let F.M;L/ be the collection of simple closed curves on @M that have
length �L on some @cMt , where Mt is the gradient flow starting at M .
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Question 1.4 Given L> 0 does there exist an L0 > 0 such that

F.M;L0/� C.M;L/ and C.M;L0/� F.M;L/?

A stronger version of this question is the following.

Question 1.5 Does the flow give a continuous family of bi-Lipschitz embeddings into
the initial manifold? In other words, for s < t , does the convex core of Mt embed in
the convex core of Ms in a bi-Lipschitz manner?

Note that a positive answer to this question would have applications. First, it would
imply Thurston’s compactness theorem for deformation spaces of acylindrical manifolds.
A suitable generalization of this conjecture to the general incompressible case would
also imply Thurston’s relative compactness theorem in this setting. It would also imply
the following conjecture that was mentioned above:

Conjecture 1.6 Let N be an acylindrical 3–manifold. Then for all M 2 CC.N /

the convex core of Mgeod has a bi-Lipschitz embedding in M with constants only
depending on @N .

We note that as gradient flow lines are Weil–Petersson quasigeodesics, relative stability
properties established in Brock and Masur [13] for low-genus cases (genus two or lower
complexity) for such quasigeodesics would control the behavior of manifolds along the
flow Mt when @N has genus two. This observation gives an approach to Question 1.5 in
such cases. Such stability fails to hold in higher genus cases, so other properties of the
flow would be required. The question is reminiscent of similar questions involving the
relation of Weil–Petersson geodesics to properties of ends of hyperbolic 3–manifolds
and the models of Brock, Canary and Minsky [12].
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2 Background and notation

In what follows, we fix S to be a closed orientable surface with connected components
having genus at least two.

Norms on quadratic differential and metrics on Teichmüller space Let�p;q.Y / be
the space of .p; q/–differentials on a Riemann surface Y . Given a quadratic differential
� 2 �2;0.Y / and a Beltrami differential � 2 ��1;1.Y /, the product �� is .1; 1/–
differential which can canonically be identified with a 2–form, so we have a pairing

h�;�i D

Z
Y

��:

In particular, these two spaces are naturally dual.

We also have the subspace Q.Y / � �2;0.Y / of holomorphic quadratic differen-
tials. This space is important as it is canonically identified with the cotangent space
T �

Y
Teich.S/. The tangent space TY Teich.S/ is then a quotient of ��1;1.Y /. In

particular, define

N.Y /D f� 2��1;1.Y / j h�;�i D 0 for all � 2Q.Y /g;

and then
TY Teich.S/D��1;1.Y /=N.Y /:

If �Y is the area form for the hyperbolic metric on Y and � 2�2;0.Y /, then j�j=�Y is
also a function, and we define k�.z/k D j�.z/j=�Y .z/ to be the pointwise norm. We
let k�kp be the Lp–norm of this function on Y , again with respect to the hyperbolic
area form. Given � 2��1;1.Y / we define the Lq–norm (with 1=pC 1=q D 1) of the
equivalence class Œ�� 2 TY Teich.S/ by

kŒ��kq D sup
�2Q.Y /nf0g

jh�;�ij

k�kp
� k�kq:

For pD 1 this norm on TY Teich.S/ gives the Teichmüller metric on Teich.S/ and for
p D 2 it gives the Weil–Petersson metric. Note that the Teichmüller metric is a Finsler
metric while the Weil–Petersson metric is Riemannian, as the L2–norm on Q.Y / can
be given as an inner product. In particular, the L2–norm on Q.Y / is given by the inner
product

. ; �/D Re
Z

Y

 x�=�Y :
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From this we see that if f W Teich.S/!R is a smooth function then its differential df

is an assignment of a holomorphic quadratic differential �Y to each Y 2 Teich.S/.
Its Weil–Petersson gradient is the vector field is represented at each Y by a Beltrami
differential �Y , where for all  2Q.Y / we have

. ; �Y /D h ;�Y i:

It is a standard fact (and not hard to check directly) that Œ�Y � is represented by the
harmonic Beltrami differential x�Y =�Y and that

kŒ�Y �k2 D kx�Y =�Y k2 D k�Y k2:

Collars We state the collar lemma originally due to Keen [18]. We give it in a form
due to Buser [15].

Theorem 2.1 (Buser [15]) Let Y be a complete hyperbolic surface and  a simple
closed geodesic of length ` .Y /. Then the collar B. / of width

w. /D sinh�1

�
1

sinh
�

1
2
` .Y /

��
is embedded. If z 2 B. /, then

sinh.injY .z//D sinh
�

1
2
` .Y /

�
cosh.d.z;  //:

Furthermore , for any two disjoint geodesics , the collars are disjoint.

Let �2 D sinh�1.1/ be the Margulis constant in dimension 2. If ` .Y /� 2�2 then we
define the standard collar of  as

fz 2 B. / j injY .z/� �2g:

We note that it follows from the collar lemma (see [15]) that the standard collar consists
of all points in Y that lie on a curve of length � 2�2 which is homotopic to  .

For S a finite-type surface, we define �.S/ to be the maximal number of disjoint
simple closed curves in S . For S a surface of genus g and k punctures we have
�.S/D 3g� 3C k, and for S with connected components Si then �.S/D

P
i �.Si/.

Hyperbolic 3–manifolds Let .N;P / be a pared 3–manifold (see eg [27]) and S a
collection of components of @N �P . Then the triple .N;P IS/ is relatively acylindrical
if no essential cylinder has boundary in S. The acylindricity condition implies that all
components of S are incompressible.
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A complete hyperbolic 3–manifold M on the interior of N naturally has the structure
of a pared 3–manifold. This is simplest to describe when M is geometrically finite
and, as this is the only setting we will consider, we stick to this case. Let M be the
union of M and its conformal boundary. Then there is a paring locus P � @N such
that M is homeomorphic to N �P . The paring locus P is a collection of annuli and
tori. These are the rank one and rank two cusps of M . In particular, a curve in M �N

has parabolic holonomy if and only if it is homotopic into P .

Let MP.N;P / be the space of geometrically finite hyperbolic structures on the interior
of N with induced pared manifold structure .N;P /. (These are minimally parabolic
structures on .N;P /— every parabolic is contained in P .) Now fix a conformal
structure X on the complement of S in @N�P and let MP.N;P IS;X /�MP.N;P / be
those hyperbolic structures with conformal boundary X on the complement of S . Then
by the deformation theory of Kleinian groups (see eg [20]) we have the parametrization
MP.N;P IS;X /' Teich.S/. The space MP.N;P IS;X / is a quasiconformal defor-
mation space; any two hyperbolic manifolds in MP.N;P IS;X / are quasiconformal
deformations of each other with the deformation supported on S .

Our results on renormalized volume will only apply to manifolds where P is empty.
However, in the course of the proof it will be necessary to consider hyperbolic 3–
manifolds with cusps.

Schwarzian derivatives and projective structures Let f W � ! yC be a locally
univalent map on the unit disk � � C. The Schwarzian derivative is the quadratic
differential given by

Sf .z/D

��
f 00.z/

f 0.z/

�0
�

1

2

�
f 00.z/

f 0.z/

�2�
dz2:

If f is a Möbius transformation then Sf D 0, and in general, Sf measures how much
f differs from a Möbius transformation. We also have the composition rule

S.f ıg/.z/D Sf .g.z//g0.z/2CSg.z/:

Observe that if f is a Möbius transformation then S.f ı g/ D Sg, while if g is a
Möbius transformation S.f ıg/.z/D Sf .g.z//g0.z/2.

Let � be a Fuchsian group such that Y D�=� . A projective structure on Y is given by
a locally univalent map f W�! yC (the developing map) with a holonomy representation
� W �! PSL2.C/ such that for all  2 � we have

f ı  D �. / ıf:
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The composition rule for the Schwarzian implies that Sf descends to a holomorphic
quadratic differential in Q.Y /.

The Weil–Petersson completion and its stratification While the Teichmüller metric
is complete, there are paths with finite length in the Weil–Petersson metric that leave
every compact subset of Teichmüller space. Our goal in this section is to describe
some of the basic structure of the completion of the Weil–Petersson metric. Points in
this metric completion are naturally parametrized by families of Riemann surface with
nodes, namely, a degeneration of a finite-area hyperbolic Riemann surface obtained by
collapsing the curves in a multicurve to cusps.

Given a compact surface S , the complex of curves C .S/ is a simplicial complex organiz-
ing the isotopy classes of simple closed curves on S that do not represent boundary com-
ponents. To each isotopy class  we associate a vertex v , and each k–simplex � is the
span of kC1 vertices whose associated isotopy classes can be realized disjointly on S .

It is due to Masur [25] that the completion of Teich.S/ with the Weil–Petersson metric
is identified with the augmented Teichmüller space, obtained by adjoining at infinity
the Riemann surfaces with nodes. A point in the completion is given by a choice of the
multicurve � , a (0–skeleton of a) simplex in C .S/, and finite-area hyperbolic structures
on the complementary subsurfaces S n � . The completion is stratified by the simplices
of C .S/: the collection of noded Riemann surfaces with nodes determined by a given
simplex � lies in a product of lower-dimensional Teichmüller spaces determined by
varying the structures on S n � . This stratum of the completion, S� , inherits a natural
metric from the Weil–Petersson metric, which by Masur [25] is isometric to the product
of Weil–Petersson metrics on the Teichmüller spaces of the complementary subsurfaces.

The Teichmüller space, with this “augmentation” by its Weil–Petersson completion,
naturally descends under the action of the mapping class group to a finite diameter
metric on the Deligne–Mumford compactification of the moduli space of Riemann
surfaces. If Teich.S/ is the completion then we can describe the strata as follows

S� D fX 2 Teich.S/ j ` .X /D 0 if and only if  2 �g;

where ` is the extended length function of  .

We note that if �0 � �1 are simplices in C .S/, then we have S�1
�S�0

.

In his investigation of the geometry of the completion, Wolpert showed the following.
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Theorem 2.2 (Wolpert [34, Corollary 22]) There is a positive constant ı0 such that
either i.�0; �1/D 0 and the closures of the strata S�0

and S�1
intersect or i.�0; �1/ > 0

and

dWP.S�0
;S�1

/� ı0:

We note that the minimum such ı0 satisfies 6:57< ı0 < 6:66; see [7].

3 Hyperbolic 3–manifolds with small Schwarzian derivative

Before proving Theorem D we set some notation. Let .N;P IS/ be a relatively
acylindrical triple where P is a collection of tori and X a conformal structure on
the complement of S in @N �P . We consider the following:

� � is a simplex in C.S/.

� P� is the union of P and the curves in � .

� S� is the complement of � in S .

Note that the new triple .N;P� IS� / is still relatively acylindrical and the complement
of S� in @N �P� is homeomorphic to the complement of S in @N �P . We then have

GF.N;P IS;X /D
G
�

MP.N;P� IS� ;X /:

Thus, GF.N;P IS;X / is naturally parametrized by the Weil–Petersson completion
Teich.S/ of Teichmüller space.

We next set:

� If Y 2 Teich.S/, then MY is the hyperbolic manifold in GF.N;P IS;X / under
the above identification GF.N;P IS;X /Š Teich.S/.

� �Y is the Schwarzian quadratic differential given by the projective structure
on Y induced by MY .

We are especially interested in those manifolds in GF.N;P IS;X / where the boundary
of the convex core facing S is totally geodesic. We fix notation for this set:

� Y �geod is the unique conformal structure in Teich.S� / such that the component of
the boundary of the convex core of MY �geod

facing S� is totally geodesic.
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� G .N;P IS;X / is the union of the Y �geod.

� If � D∅, then we set Ygeod D Y �geod and Mgeod DMYgeod .

We have the following elementary observation.

Lemma 3.1 Let .N;P IS/ be a relatively acylindrical triple where P is a collection
of tori and X a conformal structure on the complement of S in @N �P . Then the set
G .N;P IS;X / in Teich.S/ is discrete.

Proof Assume that Y
�k

geod! Y �geod is a convergent sequence in G .N;P IS;X /. Then
we can choose an n > 0 such that dWP.Y

�k

geod;Y
�

geod/ < ı0=2 for k > n, where ı0 is
the constant in Wolpert’s strata separation theorem (Theorem 2.2). By the triangle
inequality we also have dWP.Y

�k

geod;Y
�l

geod/ < ı0 for k; l > n. Thus by Wolpert’s strata
separation theorem we have i.�k ; �l/D i.�k ; �/D 0 for k; l > n. This implies that �k

can be only a finite number of possibilities for k > n and therefore G .N;P IS;X / is
discrete.

We will also be interested in the manifold obtained by drilling the curves in � from the
interior of N . We set notation here:

� Set W Š @N � Œ0; 1� to be a collar neighborhood of @N with @0W D @N � f0g

the component of the boundary lying in int.N /.

� Set �0 D � � f0g to be copies of � isotoped into int.N /, lying on @0W .

� Let yN be the compact 3–manifold obtained removing open tubular neighborhoods
N .�0/ of �0.

� Note that @ yN is the union of @N and a torus for each component of �0. Let yP
be the union of P and the new tori in @ yN so there is a natural homeomorphism
from @N �P to @ yN � yP .

There is an inclusion � W yN ,!N that restricts to a homeomorphism from @ yN � yP to
@N �P . Therefore MP. yN ; yP IS;X / is also parametrized by Teich.S/.

� Given Y 2 Teich.S/, yMY 2MP. yN ; yP IS;X / is the hyperbolic manifold such
that � extends to a conformal map between the conformal boundary of yMY

and MY .

� y�Y is the Schwarzian quadratic differential for the projective structure on Y

induced by yMY .
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There is a natural embedding

j WN ! yN

obtained by including the submanifold N n int.W [ N .�0// ,! N such that the
composition �ıj is isotopic to the identity and j is a homeomorphism from @N�.P[S/

to @ yN � . yP [S/.

For every hyperbolic manifold in MP. yN ; yP IS;X / this embedding induces a cover
that lies in MP.N;P� IS� ;X /. That is, there is an induced map

j � WMP. yN ; yP IS;X /!MP.N;P� IS� ;X /

between the deformation spaces and we set

M yY
D j �. yMY /:

Outline of the proof of Theorem D If k�Y k1 is small the proof is straightforward:
Thurston’s skinning map is a map from MP.N;P IS;X / to itself that has a fixed point
at the totally geodesic structure. By a theorem of McMullen the skinning map is
contracting and therefore we obtain a bound on the distance from Y to Ygeod if we
can bound distance between Y and its first skinning iterate. When k�Y k1 is small, a
classical result of Ahlfors and Weill bounds this initial distance.

A key element of our investigation involves understanding the behavior of the L1–
norm when the L2–norm is small. In particular, the pointwise norm of �Y may be
large in the thin parts of Y which we will need to pinch to nodes. There are several
steps to the proof:

� We choose � to be the simplex of short curves on Y . A version of the drilling
theorem bounds the L2–norm of �Y �

y�Y in terms of the length of � . We use
this to bound the pointwise norm of y�Y outside of the standard collars of � .

� Using the above bullet and a modification of some classical arguments, this
bounds k� yY k1. We are then in position to use McMullen’s contraction theorem
to bound the distance between yY and Y �geod.

� We also have that Y � � conformally embeds in yY , which implies that Y and
yY are close in the Weil–Petersson completion. Together, this and the previous
bullet point imply the theorem.
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3.1 Choosing the curves to drill

As we noted in the outline, a bound in k�Y k2 does not give a bound on k�Y k1.
However, we have the following bound on the pointwise norm that depends on the
injectivity radius. For Y a hyperbolic surface and z 2 Y we define injY .z/ to be the
injectivity radius of z in the hyperbolic metric on Y . For simplicity, we define the
truncated injectivity radius by inj�Y .z/ D minfinjY .z/; �2g, where �2 D sinh�1.1/ is
the Margulis constant in dimension 2.

Proposition 3.2 (Bridgeman and Wu [8]) Let � 2Q.Y / then

k�.z/k �
k�k2p
inj�Y .z/

:

As a first step we show that after an appropriate choice for � , we can obtain a pointwise
bound on y�Y outside of the standard collars of � . For this we will need the following
bound on the L2–norm.

Theorem 3.3 (Bridgeman and Bromberg [5]) There exist constants cdrill; `drill > 0

with `drill < 1 such that the following holds. Given Y 2 Teich.S/ and a simplex � in
C.S/ such that `ˇ.Y /� `drill for all ˇ 2 � , we have

k�Y �
y�Y k2 � cdrill

p
`� .Y /;

where `ˇ.Y / is the length of ˇ in Y .

Fixing a universal constant We first prove that we can choose the simplex � such
that ky�Y .z/k is small for z 2 Y in the complement of the standard collars of � .

Theorem 3.4 Assume that Y 2 Teich.S/ with k�Y k
2=.2�.S/C3/
2

� `drill. There exists
an `D `.Y / > 0 with

`� k�Y k
2=.2�.S/C3/
2

such that the following holds. Let � be the simplex in C.S/ of all curves with length� `.
Then for z 2 Y in the complement of the standard collars of � ,

ky�Y .z/k � C0

p
�.S/k�Y k

2=.2�.S/C3/
2

:

for C0 D
p

2.cdrillC 1/.
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Proof Let ƒ D k�Y k
2=.2�.S/C3/
2

� `drill < 1 and let `k D ƒ2kC1. As ƒ < 2�2,
there are at most �.S/ curves of length � ƒ so there must be some integer k with
0 � k � �.S/ such that Y has no curves of length in the interval .`kC1; `k �. Let
`D `kC1 � `0 D k�Y k

2=.2�.S/C3/
2

and let � be the simplex in C .S/ of all curves of
length � ` on Y .

By Theorem 3.3 we have

k�Y �
y�Y k2 � cdrill

p
`� .Y /:

As `� .Y /� �.S/ƒ2kC3, we have

ky�Y k2 � k�Y k2Ck�Y �
y�Y k2 �ƒ

�.S/C 3
2 C cdrill

p
�.S/ƒkC 3

2 :

As Y contains no curves of length in the interval .`kC1; `k � every point in the comple-
ment of the standard collars of � has injectivity radius > `k=2Dƒ

2kC1=2. Therefore
if z 2 Y is in the complement of the standard collars of C, then by Proposition 3.2

ky�Y .z/k �
ky�Y k2p
`k=2

�
ƒ�.S/C

3
2 C cdrill

p
�.S/ƒkC 3

2p
ƒ2kC1=2

�
p

2.ƒC cdrill
p
�.S/ƒ/

�
p

2.1C cdrill
p
�.S//ƒ

� C0

p
�.S/ƒ;

where C0 D
p

2.1C cdrill/ is a universal constant.

We can now prove:

Theorem 3.5 If Y 2 Teich.S/ with

k�Y k
2=.2�.S/C3/
2

�min
˚
`drill; 2 sinh�1

�
1
2

�	
;

then there is a simplex � 2 C .S/ and a yY 2 Teich.S� /� Teich.S/ such that

(a) dWP.Y; yY /�
2�q

sinh�1
�

1
2

�p�.S/k�Y k
1=.2�.S/C3/
2

,

(b) k� yY k1 � C1

p
�.S/k�Y k

1=.2�.S/C3/
2

,

where C1 D 9
p

2.C0C 1/.
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Proof of Theorem 3.5(a) Let � be the simplex given by Theorem 3.4 and let yY 2
Teich.S� / be the surface with j �. yMY /DM yY

. To obtain the bound on dWP.Y; yY / we
will apply Proposition A.1, and to do this we need to show that certain covers of Y

embed in yY . To set notation, let y�Y be a Kleinian group such that yMY D H3=y�Y .
Then M yY DH3=� yY , where � yY � y�Y is a subgroup.

We consider the domains of discontinuity of these two groups. First, note that as � yY is a
subgroup of y�Y , the domain of discontinuity of � yY contains the domain of discontinuity
of y�Y . More precisely, if � is the subgroup of � yY that fixes a component � of the
domain discontinuity of � yY then the subgroup � will be the fundamental group of the
one of the components of the boundary of the pared manifold M yY . Under the inclusion
j WM yY ,! yMY , boundary components of the pared manifold M yY will be homotopic
to embeddings into components of the pared manifold yMY . As � corresponds to the
fundamental group of a component of the boundary of M yY , this implies that there will
be a subgroup y� of y�Y , corresponding to the fundamental group of a component of
the boundary of yMY , with � a subgroup of y� . Then y� will fix a component y� of the
domain of discontinuity of y�Y . As � is a subgroup of y� it will also fix y� and therefore
y� � �. We finally note that if �=� is a component of X , as j restricted to X is a
homeomorphism, we have y� D � and y�D�.

Fix a component yW of yY and let � yW be a component of the domain discontinuity that
covers yW . Let � yW � � yY be the subgroup that fixes � yW . Then yW D� yW =� yW . By
the above, there is a component W of Y , a component y�W , and a subgroup y�W of
y�Y with

� W D y�W =y�W ,

� � yW � y�W ,

� y�W �� yW .

As � yW also fixes y�W , the quotient {W D y�W =� yW embeds in yW D� yW =� yW , where
{W is the cover of W corresponding to the (topological) inclusion yW ,!W .

Let {Y be the union of the covers {W of (the components of) Y obtained by letting yW
vary over all components of yY . Then yY embeds in {Y , and by assumption, we have

k�Y k
2=.2�.S/C3/
2

� 2 sinh�1
�

1
2

�
:

Therefore, by Theorem 3.4, for each ˇ 2 � ,

`ˇ.Y /� 2 sinh�1
�

1
2

�
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so we can apply Proposition A.1 to get

dWP.Y; yY /�
2�q

sinh�1
�

1
2

�p`� .Y /� 2�q
sinh�1

�
1
2

�p�.S/k�Y k
1=.2�.S/C3/
2

:

To obtain our bound on k� yY k1 we will first need the following generalization of the
Kraus–Nehari bound on the norm of the Schwarzian.

Lemma 3.6 Let f W�!� be univalent and assume that for z 2� the image f .�/
contains a hyperbolic disk of radius r centered at f .z/. Then kSf .z/k � 3

2
sech

�
1
2
r
�
.

Proof The proof is a refinement of the classical proof of the Kraus–Nehari theorem.

Assume that z D f .z/ D 0. By applying the Schwarz lemma to the restriction of
f �1 to the hyperbolic disk of radius r , we see that jf 0.0/j � tanh

�
1
2
r
�
. If we let

g.z/D f 0.0/=f .1=z/ we have the expansion

g.z/D zC

1X
nD0

bnz�n:

Note that the domain of g is fz 2 yC j jzj > 1g and that jg.z/j > tanh
�

1
2
r
�

for z in
the domain. As in the proof of Nehari’s theorem we can also calculate to see that
Sf .0/ D �6b1. As the conformal factor for the area form of the hyperbolic metric
on � at z D 0 is 4, we obtain kSf .0/k D 3

2
jb1j. Let C� be the circle of radius �

centered at 0 with � > 1. Then the Euclidean area m� in C bounded by g.C�/ is

m� D ��
2
��

1X
nD1

njbnj
2��2n:

Since, for all � > 1, C� will contain the disk of radius tanh
�

1
2
r
�

centered at 0 we have
that m� > � tanh2

�
1
2
r
�

and by letting �! 1 we have

� tanh2
�

1
2
r
�
� � ��

1X
nD1

njbnj
2
� � ��jb1j

2:

The estimate follows.

Proof of Theorem 3.5(b) Choose � such that

k�Y k
2=.2�.S/C3/
2

D 2�;

and note that 2� � �2.

Geometry & Topology, Volume 27 (2023)



3204 Martin Bridgeman, Jeffrey Brock and Kenneth Bromberg

We use the same setup as in (a). As we have there, � yW is component of the domain of
discontinuity � yY covering a component yW � yY of the conformal boundary of M yY . We
need to bound the Schwarzian of the uniformizing map f yW W�!� yW . If fW W�! y�Y

is the map uniformizing y�W �� yW the we can factor fW through a map g W�!�

such that fW D f yW ıg. Here g is the lift of the embedding {W ,! yW described above.
To control the Schwarzian of f yW we need to apply Lemma 3.6 to g and combine the
bound there with the given bounds on the Schwarzian of fW .

Let yW �2 and yW � be the complements of the �2– and �–cuspidal thin parts of yW ,
respectively. By the Schwarz lemma the embedding {W ,! yW is a contraction from
the complete hyperbolic metric on {W (which is lifted from W � Y ) to the complete
hyperbolic metric on yW . The peripheral curves in {W will map to the cuspidal curves
in yW . In W these curves are in � and therefore have length in W (and therefore in {W )
that is � 2�. This implies that the image of embedding of {W in yW will contain yW �.
At the level of universal covers this implies that if z 2� such that f yW .z/ is mapped
into yW � in the quotient � yW =� yW then z is in the image of g.

By [2, Lemma 4.5] the norm of a quadratic differential achieves its maximum in the
complement of the standard neighborhood of the cusps. Therefore to bound k� yY k1 it
suffices to bound k� yW .z/k for z 2 yW �2 .

After fixing a z 2 yW �2 it will be convenient to normalize our uniformizing maps so
that g.0/D 0 and 0 maps to z under the quotient maps to yW and Y . Then

k� yY .z/k D 4jSf yW .0/j and ky�Y .z/k D 4jSfW .0/j:

By the composition rule for Schwarzian derivatives we have

SfW .0/D Sf yW .g.0//g
0.0/2CSg.0/;

and therefore (assuming that g.0/D 0)

k� yY .z/k D kSf yW .0/k �
kSfW .0/kCkSg.0/k

jg0.0/j2
:

We now need to bound the individual terms on the right.

As yW �2 is in the complement of the standard collars of � in Y , by Theorem 3.4

kSfW .0/k D k�Y .z/k � 2C0

p
�.S/�:

We would like to apply Lemma 3.6 to bound kSg.0/k but to do so we need to bound
from below the distance from 0 to�ng.�/ in the hyperbolic metric on�. This distance
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is bounded below by the distance from yW �2 to yW n {W in the hyperbolic metric on yW ,
and this distance in turn is bounded below by the distance from yW �2 to yW n yW � since
yW � is contained in {W . A simple calculation shows that if r is the distance from @ yW �2

to @ yW �, then

er >
sinh

�
1
2
�2

�
sinh

�
1
2
�
� > �2

�
� 2:

The hyperbolic disk of radius r centered at 0 will be contained in g.�/ and Lemma 3.6
plus the above bound implies that

kSg.z/k � 3
2

sech
�

1
2
r
�
< 3e�

1
2

r < 3

r
�

�2
:

Finally we need to bound from below jg0.0/j. As in the proof of Lemma 3.6 we have
jg0.0/j � tanh

�
1
2
r
�
, and given our above bound on r this becomes

jg0.0/j � tanh
�

1
2
r
�
�

1� �=�2

1C �=�2

�
1
3
:

Combining our estimates we have

kSf yW .0/k � 9
�
2C0

p
�.S/�C 3

r
�

�2

�
� 9
p

2.C0C 1/
p
�.S/k�Y k

1=.2�.S/C3/
2

:

Therefore we let C1 D 9
p

2.C0C 1/, and the result follows.

3.2 Bounds on iteration of the skinning map

Let .N;P IS/ be a relatively acylindrical triple. For Y 2 Teich.S/ŠMP.N;P IS;X /
we need to show that if k�Y k1 is small, then dWP.Y;Ygeod/ is small. When .N;P / is
acylindrical the proof is a straightforward application of a classical bound of Ahlfors
and Weill plus McMullen’s contraction theorem for the skinning map. However, in
the relatively acylindrical case we will need a slight extension of McMullen’s original
statement.

The skinning map

� WMP.N;P IS;X /' Teich.S/! Teich.S/

is defined as follows: for each Y 2 Teich.S/, the cover of MY 2 MP.N;P IS;X /
associated to the subgroup �1.Y / � �1.MY / under inclusion will be quasifuchsian.
(If Y is disconnected then the cover will also be a finite collection of a quasifuchsian
manifolds.) For each connected component of @MY , one component of the conformal
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boundary restricts to a homeomorphism to Y under the covering projection. The other
component will be �.Y /, the image of the skinning map for that component. Note that
Z 2 Teich.S/ is in G.N;P IS;X / if and only if Z is a fixed point for � .

The skinning map is a smooth map and we will be interested in bounding its derivative
so that we can apply the contraction mapping principle. The estimate we need from
McMullen essentially works as written in [26] but there are a few differences in the
relative case, which we highlight. Given Y 2 Teich.S/ let � be the Kleinian group that
uniformizes MY 2MP.N;P IS;X / and let � be the domain of discontinuity of � . If
the pair .N;P / was acylindrical, then every component of� would be a Jordan domain
and the stabilizer of every component would be a quasifuchsian group. Furthermore if
D0 and D1 are distinct components of � then either their closures are disjoint and the
intersection of their stabilizers is trivial, or the intersection is a point and the intersection
of their stabilizers is an infinite cyclic group generated by a parabolic. In the relatively
acylindrical case this will not hold. However, if we let �Y be those components of �
that cover Y then these properties do hold for the components in �Y . The second
key point is that a tangent vector of MP.N;P IS;X / is represented by a �–invariant
Beltrami differential � that is supported on �Y . With these two observations one sees
that McMullen’s proof in the acylindrical case extends to the relatively acylindrical
case:

Theorem 3.7 (McMullen [26, Theorem 6.1 and Corollary 6.2]) If .N;P IS;X / is
relatively acylindrical , then for Y 2 Teich.S/,

kd�Y k1 � �.S/ < 1;

where �.S/ depends only on the topology of S .

The contraction mapping principle implies that �n.Y /!Z with �.Z/DZ and

dTeich.Y;Z/�
dTeich.Y; �.Y //

1��.S/
:

To complete the proof of Theorem 3.9 we need to bound d.Y; �.Y //. This is a direct
consequence of the Ahlfors–Weill quasiconformal reflection theorem:

Theorem 3.8 (Ahlfors and Weill [23, Theorem 5.1]) Let Y 2 Teich.S/ and �Y be
the associated quadratic differential on Y . If k�Y k1 <

1
2

then

dTeich.Y; �.Y //�
1
2

log
1C 2k�Y k1

1� 2k�Y k1
:
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If k�Y k1 �
1
3

, then an easy estimate of the right-hand side gives

dTeich.Y; �.Y //� 3k�Y k1;

and therefore

dTeich.Y;Z/�
3

1��.S/
k�Y k1:

By a result of Linch [24], dWP �
p

area.S/ dTeich and we have the following result.

Theorem 3.9 Let .N;P IS/ be relatively acylindrical. Then for all Y 2 Teich.S/ with
k�Y k1 �

1
3

we have

dWP.Y;Z/p
area.Y /

� dTeich.Y;Ygeod/�
3k�Y k1

1��.S/
;

where �.S/ is the contraction constant from Theorem 3.7.

Remark McMullen’s proof is not effective and this is the one place in our proof where
we don’t control the growth rate of the constants in terms of genus. However, we have
made some effort to isolate this from the constants that we do control.

3.3 Proof of Theorem D

We now put together the results above. We first restate Theorem D, but here we carefully
control the constants.

Theorem 3.10 There are a universal constants K0 and �0 such that if

A.�;S/D

�
K0�.1��.S//

�.S/

�2�.S/C3

and Y 2 Teich.S/ with k�Y k2 �A.�;S/ and � � �0 then there exists Y �geod 2 G with
dWP.Y;Y

�
geod/� �.

Proof By Theorem 3.5, there are universal constants `drill;C1 > 0 such that if
k�Y k

2=.2�.S/C3/
2

� `drill then there is a simplex � in C.S/ such that after drilling
curves C,

k� yY k1 � C1

p
�.S/k�Y k

1=.2�.S/C3/
2

;

dWP.Y; yY /�
2�q

sinh�1
�

1
2

�p�.S/k�Y k
1=.2�.S/C3/
2

:
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Assuming that k� yY k1 �
1
3

we can apply Theorem 3.9 to .N� ;P� IS� / to see that

dWP. yY ;Y
�

geod/�
3

q
area. yY /

1��.S/
k� yY k1 �

2
p

3�C1�.S/

1��.S/
k�Y k

1=.2�.S/C3/
2

;

since area. yY /D area.Y /D 4
3
��.S/. Then by the triangle inequality and the fact that

C1 > 1, we have

dWP.Y;Y
�

geod/� dWP.Y; yY /C dWP. yY ;Y
�

geod/�
4
p

3�C1�.S/

1��.S/
k�Y k

1=.2�.S/C3/
2

:

We let K0 D 1=.4
p

3�C1/. Recounting our progress, if

k�Y k2 �A.�;S/D

�
K0�.1��.S//

�.S/

�2�.S/C3

;

we have
dWP.Y;Y

�
geod/� �;

assuming that k�Y k
2=.2�.S/C3/
2

< `drill and k� yY k1 �
1
3

. However, if we let

�0 Dmin
�p

`drill

K0

; 4

r
�

3

�
and � < �0 then

k�Y k
2=.2�.S/C3/
2

�

�
K0�.1��.S//

�.S/

�2

� .K0�/
2 < `drill

and
k� yY k1 � C1

p
�.S/k�Y k

1=.2�.S/C3/
2

� C1

p
�.S/

K0�.1��.S//

�.S/

� C1K0� D
�

4
p

3�
�

1
3
:

This completes the proof.

Hyperbolic manifolds with cylinders and compression disks We conclude this
section with a discussion of where we use the relative acylindricity of .N;P IS/. For
simplicity, in this discussion we will assume that both P and S are empty.

The first problem that can occur is in Theorem 3.4 and its application. In particular, it
can happen that two or more curves in � may be homotopic in N or even homotopically
trivial in N if N has compressible boundary. In this case, the manifold yN will not be
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hyperbolizable. If N has incompressible boundary, this problem can be corrected by
only removing a single curve from N for each homotopy class (in N ) of curves in � .
With this change, Theorem 3.4 we still hold but we cannot define the embedding of N

in yN and therefore cannot carry through the proof of Theorem 3.5.

If none of the curves in � are homotopic in N then the proofs up to and including
Theorem 3.5 go through. However, if the pared manifold .N;P� / is not acylindrical
then Theorem 3.7, McMullen’s contraction theorem, will fail. In fact, the deformation
space MP.N;P� / contains a hyperbolic structure whose convex core boundary is totally
geodesic if and only if .N;P� / is acylindrical or is a pared I–bundle.

We expect that the only problem that can occur is the first one. We have the following
conjecture.

Conjecture 3.11 Let M be a convex cocompact hyperbolic 3–manifold with � the
Schwarzian quadratic differential for the projective boundary of M . If k�k2 is small,
then either:

� There exists a geometrically finite structure M 0 on N with totally geodesic
convex core boundary, and dWP.@cM; @cM 0/ is small.

� There are two or more short curves on @cM that are homotopic in M .

In particular, if no two curves in � are homotopic in M , we expect that .N;P� / is an
acylindrical pair even when N itself is not acylindrical.

4 W –volume and renormalized volume

Given a convex submanifold N with smooth boundary such that N ,!M is a homotopy
equivalence, the W –volume of N is defined to be

W .N /D vol.N /�
1

2

Z
@N

H dA;

where H is the mean curvature1 of @N .

The W –volume has many nice analytic properties that make it a useful tool for studying
hyperbolic manifolds. We let Nt be the t–neighborhood of N . The nearest point

1This differs from the formula in [21] as we define H D Tr.B/=2 rather than H D Tr.B/, where B is the
shape operator.
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retraction from M to each Nt extends to a diffeomorphism from @cM to @Nt and
using this retract we pull back the induced metrics on @Nt to metrics It on @cM . Then

I�.x;y/D lim
t!1

1

cosh2.t/
It .x;y/

is a well-defined metric in the conformal class of @cM and is called the metric at
infinity.

For N �M we will denote by �N the metric at infinity on @cM . The W –volume has
the following properties.

Proposition 4.1 (Krasnov and Schlenker [21]) Let N �M be a compact , convex
submanifold of a convex cocompact hyperbolic 3–manifold M and let Nt be the
t–neighborhood of N . Then:

(1) The metric �N is in the conformal class of @cM .

(2) �Nt
D e2t�N .

(3) W .Nt /DW .N /� t��.@N /.

Furthermore , if � is any smooth conformal metric on @cM then for t sufficiently large
there exists a convex submanifold Xt �M with �Xt

D e2t�.

Using this proposition, the W –volume of any smooth conformal metric � on @cM is
defined by

W .�/DW .Nt .�//C t��.@M /

for t sufficiently large. The proposition above implies that W .�/ doesn’t depend on the
choice of t . With this setup we can now define the renormalized volume VR by setting

VR.M /DW .�M /;

where �M is the unique hyperbolic metric on @cM .

Convex cores Perhaps the most natural convex submanifold of a convex cocompact
hyperbolic 3–manifold M is the convex core C.M /. The boundary of the convex
core is not in general smooth, so we cannot use the previous definition to define the
W –volume of C.M /. However, there is a natural way to extend W –volume to this
setting (see the discussion in [4]) and for the convex core we have

W .C.M //D VC .M /� 1
4
L.ˇM /;
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where ˇM is the bending lamination of the boundary of the convex core and L.ˇM / is
its length (as a measured lamination). The convex core also induces a natural metric
at infinity, called the projective metric (so called as Thurston gave a definition that is
intrinsic to the induced projective structure on @cM ). We will be interested in a hybrid
metric that is the hyperbolic metric on some components of @cM and the projective
metric on the others. We have the following:

Proposition 4.2 Let M be a convex cocompact hyperbolic 3–manifold and suppose
that @cM D X t Y , a disjoint union of connected components of @cM . Let � be
the hyperbolic metric on X and the projective metric on Y . Let ˇY be the bending
lamination of the components of the boundary of C.M / that faces Y . Then

W .�/� 1
4
L.ˇY /� VR.M /�W .�/:

In particular , if Y D @N , we have

VC .M /� 1
2
L.ˇM /� VR.M /� VC .M /� 1

4
L.ˇM /:

By the definition of the W –volume of the convex core, the two statements are equivalent
for the case X D∅, and this case was proven in [4, Theorem 3.7]. Furthermore, the
proof trivially extends to the relative case above.

5 The variational formula

Recall that if .N IS/ is a pair such that each component of S is incompressible in N then
MP.N IS;X / is parametrized by Teich.S/ and therefore we can view renormalized
volume as a function

VR W Teich.S/!R:

We recall the variational formula:

Theorem 1.1 Given Y 2 Teich.S/ and � 2 TY Teich.S/, we have

dVR.�/D Re
Z
@cMY

�Y �:

Therefore the Weil–Petersson gradient of VR has norm k�Y k2. By the classical bound
of Kraus–Nehari for the Schwarzian of univalent functions, we have that k�Y k1 �

3
2

.
As a corollary we have:
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Corollary 5.1 The Weil–Petersson norm of the gradient of VR is bounded by

3
2

p
area.Y /D

p
3�n.S/:

In particular , VR is Lipschitz with respect to the Weil–Petersson metric , and therefore
extends to a continuous function on the Weil–Petersson completion.

Note if S is not incompressible in N then we cannot apply the Kraus–Nehari theorem
to bound the norm of the gradient and in fact there is no upper bound of the gradient in
this setting.

We now assume that .N IS/ is relatively acylindrical and recall that G D G.N IS;X /
is the collection of Y 2 Teich.S/ such that the component of the boundary convex core
of MY facing Y is totally geodesic.

Proposition 5.2 Given � a nonempty simplex in C.S/, let Y �geod be the unique surface
in G \Teich.S� /. Then for t > 0 there is a one-parameter family Yt 2 Teich.S/ with
Yt ! Y �geod as t ! 0 with VR.Yt / < VR.Y

�
geod/.

Proof By a construction of Bonahon and Otal [3] there exists a one-parameter fam-
ily M� 2MP.N IS;X / where the bending lamination ˇ� of the components of the
convex core facing S have support � and bending angle � . In the parametrization
MP.N IS;X /Š Teich.S/, the manifolds M� correspond to Z� 2 Teich.S/. We also
let �� be the hybrid metric that is the projective metric on Z� and the hyperbolic metric
on X . Let �� be the Schwarzian quadratic differential on Z� .

As part of the construction, Bonahon and Otal show that MZ� converges to MY �geod
in the

algebraic topology on GF.N;S IX /. Unfortunately what we need is that Z� ! Y �geod
in Teich.S/Š GF.N;S IX /, where the topology is the metric topology of the Weil–
Petersson completion. These two topologies are not homeomorphic. While the con-
vergence we need could be proven using the notion of strong convergence of Kleinian
groups and techniques well-known to experts, we will instead give a proof more in line
with the methods from this paper.

We first note that from the construction it follows that L.ˇ� /! 0 as � ! � . In [6] it
is shown that

k��k2 �
5
2

p
L.ˇ� /;

and therefore we also have k��k2! 0 as � ! � . Theorem 3.10 then implies that Z�

accumulates on G. As G is discrete (see Lemma 3.1), Z� must limit to a unique point.
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It also follows from construction that the length of a curve  on Z� limits to zero if
and only if  is in � so any limit for Z� will be in the strata for � . Together this implies
that Z� ! Y �geod.

By Corollary 5.1, VR extends to a continuous function on Teich.S/. Combining this
with Proposition 4.2 and the fact the L.ˇ� /! 0 we have

lim
�!�

W .�� /D lim
�!�

VR.M� /D VR.Y
�

geod/:

We will show that

VR.M� /�W .�� / < VR.Y
�

geod/;

which will give the result.

For this we use the variational formula

d

d�
W .�� /D

1
4

�
`.�/� �`0.�/

�
;

where `.�/ is the sum of the length of the curves in � on in M� . If X D∅ then by the
Schläfli formula

d

d�
VC .M� /D

1
2
`.�/;

and the variational formula follows from differentiating the formula for W –volume
of the convex core and the noting that L.ˇ� /D �`.�/. In general, if �t is a family of
metrics on @N then the variation of W –volume will have a term for each component
of the boundary and if z�t is a another family of metrics that agrees with �t on a
component S of @N then the term for both variations on S will be the same. In our
case �� is the hyperbolic metric on X for all � , so the variation of W –volume on X

is zero. On Z� , �� is the projective metric so on Y the variation is the same as the
variation of the W –volume of the convex core. This gives the variational formula.

We can now complete the proof. By Choi and Series [16], `0.�/ < 0, which implies
that W .�� / < VR.Y

�
geod/. We can also see this directly by integrating to get

VR.Y
�

geod/�W .�T /D
1

4

Z �

T

`.�/ d� C 1
8
T `.T / > 0:

We then define Yt by reparametrizing Z� via an orientation-reversing homeomorphism
from .0;1/ to .0; �/. Thus we have VR.Yt / < VR.Y

�
geod/, as required.
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6 Lower bounds on renormalized volume

We begin with a geometric lemma. We note that a geodesic metric space is a metric
space .X; d/, where the distance between two points is attained by the length of a path
between the points.

Lemma 6.1 Let Z be a collection of points in a geodesic metric space .X; d/ such
that for any collection of nC 1 points in Z there are two that are at least a distance ı
apart. Let

˛ W Œ0; 1�!X

be a rectifiable path and let L�.˛/ be the length of the path that is disjoint from the
�–neighborhood of Z. Then for � < ı=2n,

L�.˛/�
ı� 2n�

ı

�
d.˛.0/; ˛.1//� 2n�

�
:

Proof For each z 2Z, let

Uz D ft 2 Œ0; 1� j d.˛.t/; z/ < �g

and let U be the union of the Uz . Note that for any t 2 Œ0; 1� there are at most N points
z 2Z such that N�.z/ intersects the .ı� 2�/=2–neighborhood of ˛.t/ and therefore
there is a neighborhood of t that intersects at most N of the Uz . As Œ0; 1� is compact
this implies that there are finitely many z 2Z with Uz ¤∅.

We claim we that we can find z1; : : : ; zm in Z and

0D tC
0
� t�1 < tC

1
� t�2 < � � � � t�m < tCm � 1D t�mC1

such that

� t�i 2
xUzi

,

� tCi D sup Uzi
,

� ˛.ŒtC
i�1
; t�i �/ is disjoint from N�.Z/.

We assume that the first i points and values have been chosen and then find ziC1 and t˙
iC1

.
Let t�

iC1
be the infimum of .tCi ; 1�\U . As there are finitely many nonempty Uz , there

must be some z 2 Z with t�
iC1

the infimum of .tCi ; 1� \ Uz . We let ziC1 D z and
tC
iC1
D sup Uz . This process terminates (and mD i) when either .tCi ; 1�\U D∅ or

tCi D 1.
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Note that this implies that d.˛.t�i /; ˛.t
C
i //� 2� andX

d.˛.tC
i�1
/; ˛.t�i //�L�.˛/:

Therefore,

d.˛.0/; ˛.1//�
X

d.˛.t�i /; ˛.t
C
i //C

X
d.˛.tC

i�1
/; ˛.t�i //� 2m�CL�.˛/:

We need to show that 2m� is only a controlled portion of d.˛.0/; ˛.1//. For this we
choose a nonnegative integer k such that kn < m � .k C 1/n. Then we let j1 be
the smallest index such that there exists an i1 < j1 with d.zi1

; zj1
/ � ı. Note that

j1 � nC 1. Then, as above,

ı� 2� � d.˛.tCi1
/; ˛.t�j1

//� 2.n� 1/�CL�.˛jŒtC
i1
;t�
j1
�
/:

Repeating this argument we get i` and j` for ` D 1; : : : ; k, where j`�1 � i` < j`,
j` � j`�1 �N and

ı� 2� � d.˛.tCi` /; ˛.t
�
j`
//� 2.n� 1/�CL�.˛jŒtC

i`
;t�
j`
�
/:

Summing these inequalities and rearranging we get

k �
L�.˛/

ı� 2n�
:

As m� .kC 1/n our previous bound on d.˛.0/; ˛.1// becomes

d.˛.0/; ˛.1//� 2.kC 1/n�CL�.˛/:

Combining the two inequalities and rearranging gives the result.

Lemma 6.2 Assume that 0 < � � �0 and let Yt be a path on Teich.S/ such that on
EDft jdWP.Yt ;G/>�g the path is smooth and the tangent vector is the Weil–Petersson
gradient of �VR, and for Œu; v� a connected component of the path Yt in Ec we have
VR.Yv/� VR.Yu/. Then

VR.Ya/�VR.Yb/�A.�;S/
ı0� 2�.S/C1�

ı0
.dWP.Ya;Yb/� 2�.S/C1�/:

Proof We have that E is a collection I of open intervals. By assumption, for t 2E

the tangent vector PYt of Yt is the Weil–Petersson gradient of �VR , so by Theorem 1.1,

k PYtkWP D k�Yt
k2:

By Theorem 3.10 we also have that for t 2E,

k�Yt
k2 �A.�;S/:
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Again applying the variational formula, Theorem 1.1, to an interval .s; t/ in I, we have

VR.Ys/�VR.Yt /D

Z t

s

k�Yt
k

2
2 dt �

Z t

s

A.�;S/k�Yt
k2 dt DA.�;S/L.Y.s;t//;

where L.Y.s;t// is the length of the path from s to t . For any interval Œu; v� in Ec , by
assumption we have VR.Yu/�VR.Yv/ > 0. Therefore we have

VR.Ya/�VR.Yb/�
X
.s;t/2I

VR.Ys/�VR.St /;

and therefore

VR.Ya/�VR.Yb/�A.�;S/L.YI/;

where

L.YI/D
X
.s;t/2I

L.Y.s;t//:

For any collection of 2�.S/C1 simplices in C.S/ there must be at least two that contain
intersecting curves. Therefore by Theorem 2.2 for any collection of 2�.S/C1 points in
GD G.N IS;X / there are at least two that are a distance ı0 apart in the Weil–Petersson
metric on Teich.S/ and we can apply Lemma 6.1 with Z D G the set of points and
nD 2�.S/. Noting that L�.YŒa;b�/DL.YI/ by Lemma 6.1, we have

L.YI/�
ı0� 2�.S/C1�

ı0

�
dWP.Ya;Yb/� 2�.S/C1�

�
:

Combining this with our above bound on the differences between renormalized volumes
gives the result.

Convergence in the Weil–Petersson completion

Proposition 6.3 Let Yt be a flow line of the Weil–Petersson gradient flow of �VR.
Then Yt converges in Teich.S/ to a yY 2 G.

Proof By Lemma 6.2 for every positive distance d > 0 there is a v > 0 such that
if dWP.Ys;Yt / � d then VR.Ys/ � VR.Yt / � v. Renormalized volume is bounded
below (and is in fact nonnegative) and therefore VR.Yt / converges as t ! 1. In
particular there exists a T > 0 such that if s; t > T then VR.Ys/� VR.Yt / < v and
dWP.Ys;Yt / < d . It follows that Yt converges in Teich.S/ as t !1.
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The lower bound on renormalized volume also implies that the integralZ 1
0

k�Yt
k

2
2 dt <1:

Therefore we can find a sequence ti with k�Yti
k2! 0 as i !1. Theorem 3.10 then

implies that any accumulation point of the sequence will lie in G. As we have just seen
that the entire path converges, this implies that the limit of Yt as t !1 lies in G.

The surgered flow

Proposition 6.4 Fix � > 0. For all Y 2 Teich.S/ there exists a path Yt in Teich.S/
with Y D Y0 such that :

� On ft j dWP.Yt ;G/ > �g, the path is smooth and the tangent vector is the Weil–
Petersson gradient of �VR.

� If a< b and Œa; b� is a connected component of the set ft j dWP.Yt ;G/� �g, then
VR.Yb/ < VR.Ya/.

� Yt ! Ygeod as t !1.

Proof We claim there exists an integer k � 0 such that for i D 0; : : : ; k there are a
family of paths Y i

t and simplices �0; : : : ; �k in C.S/ such that

� Y D Y i
0

,

� Y i
t passes through Y

�0

geod; : : : ;Y
�i�1

geod ,

� VR.Y
�j�1

geod / < VR.Y
�j

geod/ for j D 1; : : : i � 1,

� if dWP.Y
i
t ;G/ > � the path is smooth and the tangent vector PY i

t is the Weil–
Petersson gradient of �VR,

� Y i
t ! Y

�i

geod as t !1 and �k D∅.

We start by letting Y 0
t be the flow line of the Weil–Petersson gradient of �VR with

Y 0
0
D Y . By Proposition 6.3, there is a simplex �0 in C.S/ such that Yt converges to

some Y
�0

geod 2 G, where �0 are the nodes of Y
�0

geod.

Now assume Y 0
t ; : : : ;Y

i
t and �0; : : : ; �i have been chosen. If �i D∅ then k D i and

we are done. If not, we form Y iC1
t as follows. As Y i

t ! �i there exists a t0 such
that if t > t0 then dWP.Yt ;Y

�i

geod/ < �=2. By Proposition 5.2, there is a path Zt with
Z0 D Y

�i

geod, Zt 2 Teich.S/ and VR.Zt / < VR.Y
�i

geod/. We can then choose t1 such
that if 0< t < t1 then dWP.Y

�i

geod;Zt / < �=2. We then define Y iC1
t by

� Y iC1
t D Y i

t if t � t0,
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� Y iC1
Œt0;t0C1/

is a reparametrization of Y i
Œt0;1/

,

� Y iC1
t DZt�t0�1 if t 2 Œt0C 1; t0C t1C 1�,

� for t � t0C t1C 1, Y iC1
t is a flow line of the Weil–Petersson gradient of �VR.

For large t , Y iC1
t is a gradient flow line, so once again by Proposition 6.3, we have

that Y iC1
t ! Y

�iC1

geod 2 G, where curves in the simplex �iC1 are the nodes of Y
�iC1

geod .

We now show that the process terminates. Observe that VR.Y
�iC1

geod / < VR.Y
�i

geod/ as the
path Y iC1

t passes through Y
�i

geod, VR.Y
iC1
t / is decreasing, and VR.Y

iC1
t /!VR.Y

�iC1

geod /

as t !1 by Corollary 5.1. Thus all of the �i are distinct and VR.Y
�i

geod/ is decreasing
in i .

The flows Y i
t satisfy the conditions of Lemma 6.2 so there exists a vD v.�; ı0/> 0 such

that if dWP.Y
i
a ;Y

i
b
/� ı0 then VR.Y

i
a /�VR.Y

i
b
/� v. As we noted above, for any col-

lection of 2�.S/C1 simplices in C.S/ there will be at least two that contain intersecting
curves. Therefore for any i � 0 there exist j <` in fi; : : : ; iC2�.S/g such that �j and �`
contain intersecting curves. By Theorem 2.2 we then have dWP.Y

�j
geod;Y

�`
geod/� ı0. As

Y iC2�.S/C1
t passes through �j and �`, in that order (with possibly iDj or `D iC2�.S/),

we have
VR.Y

�i

geod/�VR.Y
�

iC2�.S/

geod /� VR.Y
�j

geod/�VR.Y
�`

geod/� v:

Therefore, if the paths are defined up to i with 2�.S/m� i � 2�.S/.mC 1/, we have

VR.Y /�VR.Y
�i

geod/� VR.Y
�0

geod/�VR.Y
�i

geod/�mv:

As VR � 0 this implies that

i � 2�.S/
�

VR.Y /

v
C 1

�
:

Therefore the process must terminate.

We now use the above to give a new proof of the following theorem of Storm.

Corollary 6.5 (Storm [30; 31]) Let N be a compact hyperbolizable acylindrical
3–manifold without torus boundary components. Then VC has a unique minimum at
the structure Mgeod 2 CC.N / with totally geodesic convex core boundary.

The minimality of Mgeod was the main result in [30] and the uniqueness is a corollary
of the main result in [31], which considers the general case of N with incompressible
boundary.
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Proof Let Y ¤ Ygeod. Using surgered flow, we have the path Yt with Yt 2 Teich.@N /

from Y to Ygeod with VR.MY / > VR.Mgeod/. Therefore

VC .MY /� VR.MY / > VR.Mgeod/D VC .Mgeod/:

Thus VC has unique minimum at Mgeod.

In the course of the proof we have shown that the unique minimum of VR also occurs at
Mgeod. In the relatively acylindrical case, we no longer have VC .Mgeod/D VR.Mgeod/,
but otherwise the above proof goes through to give the following more general version
of Storm’s theorem for renormalized volume.

Corollary 6.6 Let .N IS/ be a compact hyperbolizable relatively acylindrical 3–
manifold without torus boundary components. Then VR has a unique minimum at the
structure Mgeod 2 CC.N IS;X / with totally geodesic convex core boundary facing S .

In [4] we proved that Corollaries 6.5 and 6.6 are equivalent. Here we are directly
proving both statements. A version of Corollary 6.6 was also proved by Pallete [28]
using different methods.

Also applying Lemma 6.2 to the surgered flow path gives:

Theorem 6.7 For all � � �0,

VR.Y /�VR.Ygeod/�A.�;S/
ı0� 2�.S/C1�

ı0
.dWP.Y;Ygeod/� 2�.S/C1�/:

Theorem A then follows from the above by choosing � D min.�0; ı0=2
�.S/C2/ and

letting
A.S/D 1

2
A.�;S/ and ı D 1

2
ı0:

We also recall Schlenker’s upper bounds. His argument was originally for quasifuchsian
manifolds, but as we will see it holds whenever .N IS/ has incompressible boundary.

Theorem 6.8 Let .N IS/ have incompressible boundary. Then

jVR.Y /�VR.Y
0/j � 3

r
�

2
j�.@N /j dWP.Y;Y

0/:

Proof As noted in Corollary 5.1 the norm of the Weil–Petersson gradient of VR is
bounded above by 3

2

p
area.Y / D 3

p
.�=2/j�.S/j. Integrating this bound along a

Weil–Petersson geodesic segment from Y to Y 0 gives the result.
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We can now use the above to prove Theorem B, which we now restate.

Theorem B Let S be a closed surface of genus g � 2. Then

A.S/.dWP.X;Y /� ı/� VC .Q.X;Y //� 3

r
�

2
j�.S/j dWP.X;Y /C 6�j�.S/j:

Proof If N DS � Œ0; 1� then a Bers slice is the deformation space CC.N IS �f0g;X /,
where X is a fixed conformal structure on S . Manifolds in this deformation space are
quasifuchsian and the manifold MY 2 CC.N IS � f0g;X / in our general notation is
usually referred to as Q.X;Y /.

We apply Theorem A to this case. Then Q.X;X / is the Fuchsian manifold so YgeodDX

and VR.Ygeod/D 0. Therefore we have

A.S/.dWP.X;Y /� ı/� VR.Q.X;Y //:

Combining this lower bound with the bound of Schlenker [29, Theorem 1.2], we have

A.S/.dWP.X;Y /� ı/� VR.Q.X;Y //� 3

r
�

2
j�.S/j dWP.X;Y /:

By [4], for any convex cocompact M ,

VR.M /C 1
4
L.ˇM /� VC .M /� VR.M /C 1

2
L.ˇM /:

Also for @N incompressible L.ˇM /� 6�j�.@N /j; see [4]. The result follows.

Theorem C follows identically as in the proof of Theorem B above.

Appendix A Weil–Petersson estimate

We recall that the Margulis constant in two dimensions is �2 D sinh�1.1/. In this
section we prove the following proposition:

Proposition A.1 Let � be a simplex in C.S/ and Y 2 Teich.S/ a hyperbolic surface
such that `ˇ.Y /� `0 for each curve ˇ 2 � , where 0< `0 < 2�2. Let yY 2 Teich.S� / be
such that the cover {Z of Y associated to Sn� conformally embeds in yY . Then

dWP.Y; yY /� 2�

s
2 sinh

�
1
2
`0

�
`0

�
1� sinh

�
1
2
`0

��p`� .Y /:
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We will use the following criteria for convergence in the Weil–Petersson completion.
Let � be a simplex in C.S/ and yY a surface in Teich.S� /. Then a sequence Yi 2Teich.S/
converges to yY in Teich.S/ if for all simple closed curves  with i.; �/D 0 we have
` .Yi/! ` . yY /. In particular the length of the curves in � must converge to zero. We
will use the following lemma to verify this criteria.

Lemma A.2 Let R� S be a proper , essential , nonannular subsurface of a finite-type
surface S . Let Ri and Si be conformal structures on R and S , respectively, such
that there is a conformal embedding Ri ,! Si in the homotopy class of R ,! S . If
`@R.Ri/! 0, then for all simple closed curves  on R we have

lim
i!1

` .Ri/D lim
i!1

` .Si/;

where the lengths are measured on the completed hyperbolic metrics on the respective
conformal structures.

Proof Let R

i and S


i be the annular covers of Ri and Si corresponding to the curve  .

Then there is a conformal embedding R

i ,! S


i that is a homotopy equivalence.

Therefore
�

` .Ri/
Dm.R


i /�m.S


i /D

�

` .Si/
;

where m. � / is the modulus of the annulus.

To get a bound in the other direction we let Di be the distance, in the Si–metric, from
the geodesic representative of  in Si to the complement of Ri and denote the Di–
neighborhood of the geodesic core of S


i by S


i .Di/. Then S


i .Di/ will be contained

in Ri and it follows that

m.S

i .Di//D

� � �i

` .Si/
�m.R


i /;

where �i only depends on Di and �i! 0 as Di!1. To finish the proof we need to
show that Di!1.

Let C.Ri/ be the convex core of Ri and assume that each component of the boundary
of C.Ri/ has length < 2�2. Then each component of the boundary of C.Ri/ will lie
in the standard collar of the associated geodesic in Si . As the length of the boundary
curves of C.Ri/ limits to zero, the depth of these curves in the standard Si–collars
will limit to infinity. In particular, the distance of any point in the R–component of the
complement of the Si–collars from the complement of the Ri will also limit to infinity.
As the geodesic representative of  in Si will be in this complementary region we have
that Di!1, as desired.
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Let A be a conformal annulus with finite modulus m.A/. Then A can be realized as
the quotient of the strip

S D fz 2C j 0< Im z < �g

by the translation
z 7! zC

�

m.A/
:

Define Beltrami differentials �t
A

and �h
A

so that their lifts to S are z�t
A
D 1 and

z�h
A
D sin2 y, respectively. Then � is a Teichmüller differential on A if it is a constant

multiple of �t
A

and is a harmonic differential on A if it is a constant multiple of �h
A

.

Lemma A.3 Let � be a Beltrami differential on Y such that on an annulus A, �D c�t
A

is a Teichmüller differential. Assume that � is the Beltrami differential with � D 2c�h
A

on A and � D � on the complement of A. Then � � � is an infinitesimally trivial
Beltrami differential.

Proof We need to show that for any holomorphic quadratic differential � 2Q.Y /

the pairing of � with �� � is zero. The difference �� � is supported on A so our
computation will be on fundamental domain in S for the action z 7! zC�=m.A/. The
restriction of � to A lifts to a holomorphic quadratic differential g.z/ dz2 on S , where
g is a periodic holomorphic function. That is,

g

�
zC

�

m.A/

�
D g.z/:

Let

b.y/D

Z �=m.A/

0

g.xC iy/ dx:

If Q is a rectangle whose top and bottom sides are horizontal segments from x D 0 to
x D �=m.A/ at heights y0 < y1 thenZ

@Q

g.z/ dz D b.y0/� b.y1/

since the periodicity of g.z/ implies that the line integrals over the vertical sides cancel.
As g.z/ is holomorphic the line integral around @Q is zero and therefore b.y0/D b.y1/,
which implies that b.y/� b is a constant function.

Using this we now compute the pairing:Z
Y

.�� �/� D

Z
A

.�� �/� D

Z �

0

Z �=m.A/

0

c.1� 2 sin2 y/g.xC iy/ dx dy

D

Z �

0

cb.1� 2 sin2 y/ dy D 0:
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In practice it is easier to construct deformations where the tangent vectors are infinites-
imal Teichmüller differentials on annuli. We can use the previous lemma to bound the
Weil–Petersson norm of these deformations.

Lemma A.4 Let Ai be a collection of disjoint annuli on Y with finite moduli mi . If

�D
X

i

ci�
t
Ai

is a Beltrami differential on Y , then

kŒ��k22 � 2�2
X jci j

2

mi
:

Proof By Lemma A.3, the Beltrami differential � is equivalent to

� D 2
X

i

ci�
h
Ai
;

so
kŒ��k22 D kŒ��k

2
2 �

Z
Y

k�k2 daY ;

where daY is the area form for the hyperbolic metric on Y . By the Schwarz lemma if
dai is the area form for the complete hyperbolic metric on Ai then daY < dai . On the
strip S the area form dai lifts to .1= sin2 y/ dx dy soZ

Y

k�k2 daY � 4
X

i

Z
Ai

jci j
2
k�h

Ai
k

2 dai

D 4
X

i

jci j
2

Z �

0

Z �=m.Ai /

0

.sin2 y/2

sin2 y
dx dy

D 4
X jci j

2�2

2mi
:

We can now describe the strategy of the proof of Proposition A.1. Let Z � Y be
the complement of the geodesic representatives of � in Y . Then Z will lift to {Z and
conformally embed in both Y and yY . We will construct a family of quasiconformal
deformations of yY to itself, where the tangent vectors of these deformations will be
Teichmüller differentials on a collection of annuli that lie in Z � yY . As Z is also a
subsurface of Y this will define a family of quasiconformal deformations of Y , but
here the surface will change along the deformation. This will define a path in Teich.S/.
We will use Lemma A.2 to see that this path converges to yY and Lemma A.4 to bound
above the Weil–Petersson length of the path.
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The cusp deformation Every cusp C of a hyperbolic Riemann surface can be para-
metrized as the quotient of the horodisk

HD fz 2C j Im z � 1g

by the translation
z 7! zC 2:

If we let
H.m/D fz 2C j 1� Im z � 2mC 1g;

then the quotient C.m/ of H.m/ is an annulus of modulus m. Define maps

f m
t W C! C

such that f m
t is

� constant in the x–variable,

� an affine map from C.m/ to C.etm/,

� is conformal in the complement of C.m/.

At time t the infinitesimal Beltrami differential �t for this path will be supported on
the annulus C.etm/ and using the fact that

f et m
s ıf m

t D f
m

sCt ;

we see that the lift of �t to H is supported on H.etm/ with z�t D�
1
2

. In particular, �t is
a Teichmüller differential on C.etm/.

The deformation of yY and Y Each curve in � is a node of yY and there are two
associated cusps in yY . If � has k curves we label the two cusps associated to the
i th node by C˙i and assume that the modulus mi has been chosen such that the annuli
C˙i .mi/ lie in Z.

With this choice of moduli we define a family of maps

ft W
yY ! yY

by setting ft to be the map f mi

t on the cusps C˙i and to be the identity on the
complement of the cusps. (There may be cusps of yY that don’t correspond to nodes
in � . The map is the identity here.) The Beltrami differentials �t for this family of
maps are supported on the annuli C˙i .mi/. As these lie in Z, the �t are also a family
of Beltrami differentials on Y so we have two one-parameter families of surfaces Zt

and Yt with Zt conformally embedding in Yt . The Zt also conformally embed in yY .
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Proof of Proposition A.1 Let ˇi be the i th curve of � and let ˇ˙i be the two curves
that are homotopically distinct in Sn� but are both homotopic in S to ˇi . Let Zˇ˙

i
t be

the annular cover of the component of Zt containing ˇ˙i . Then

m.Z
ˇ˙

i

t /� etmi

and therefore

`@Zt
.Zt /! 0 as t !1:

By Lemma A.2 for all nonperipheral simple closed curves  in R we have

lim
t!1

` .Zt /D lim
t!1

` .Yt /; lim
t!1

` .Zi/D lim
t!1

` . yY /D ` . yY /:

It follows that

lim
t!1

` .Yt /D ` . yY /;

so Yt !
yY in Teich.S/.

The tangent vector of the path are Teichmüller differentials on 2k disjoint annuli with
coefficients �1

2
. At time t , two of these annuli have modulus etmi , so integrating the

estimate from Lemma A.4 we have

dWP.Y; yY /�

Z 1
0

r
�2
X

i

1

miet
D 2�

rX 1

mi
:

To finish the proof we need to bound the mi from below. As {Z is a cover of Y ,
`ˇ˙

i
. {Z/D `ˇi

.Y /. By the Schwarz lemma, the geodesic representative of ˇ˙i in {Z
will lie in the `

ˇ˙
i

. {Z/=2–thin part of the associated cusps C˙ of yY . If p 2 C is a point
in our standard model of a cusp with pre-image z D xC iy 2 H then injectivity radius
satisfies the formula

sinh.inj.p//D 1

y
:

Note that while z is not uniquely determined, the y–coordinate is. This implies that {Z
will contain the annuli C.mi/ where

mi D
1

2

�
1

sinh.`ˇi
.Y /=2/

� 1

�
:

With our assumption that `ˇ˙
i
. {Z/D `ˇi

.Y /� `0 we have

sinh.`ˇi
.Y /=2/�

sinh.`0=2/

`0=2
�
`ˇi
.Y /

2
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and therefore

mi �
`0

2 sinh.`0=2/`ˇi
.Y /
�

1

2
D
`0� sinh.`0=2/`ˇi

.Y /

2 sinh.`0=2/`ˇi
.Y /

�
`0� sinh.`0=2/`0

2 sinh.`0=2/`ˇi
.Y /
D
`0.1� sinh.`0=2//

2 sinh.`0=2/`ˇi
.Y /

:

It follows that

dWP.Y; yY /� 2�

sX
i

2 sinh.`0=2/`ˇi
.Y /

`0.1� sinh.`0=2//
D 2�

s
2 sinh.`0=2/

`0.1� sinh.`0=2//

p
`� .Y /:
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Weighted K–stability and coercivity
with applications to extremal Kähler and Sasaki metrics

VESTISLAV APOSTOLOV

SIMON JUBERT

ABDELLAH LAHDILI

We show that a compact weighted extremal Kähler manifold, as defined by the third
author (2019), has coercive weighted Mabuchi energy with respect to a maximal
complex torus T C in the reduced group of complex automorphisms. This provides
a vast extension and a unification of a number of results concerning Kähler metrics
satisfying special curvature conditions, including Kähler metrics with constant scalar
curvature, extremal Kähler metrics, Kähler–Ricci solitons, and their weighted ex-
tensions. Our result implies the strict positivity of the weighted Donaldson–Futaki
invariant of any nonproduct T C–equivariant smooth Kähler test configuration with
reduced central fibre, a property known as T C–equivariant weighted K–polystability
on such test configurations. It also yields the T C–uniform weighted K–stability on
the class of smooth T C–equivariant polarized test configurations with reduced central
fibre. For a class of fibrations constructed from principal torus bundles over a product
of Hodge cscK manifolds, we use our results in conjunction with results of Chen and
Cheng (2021), He (2019) and Han and Li (2022) in order to characterize the existence
of extremal Kähler metrics and Calabi–Yau cones associated to the total space, in
terms of the coercivity of the weighted Mabuchi energy of the fibre. This yields
a new existence result for Sasaki–Einstein metrics on certain Fano toric fibrations,
extending the results of Futaki, Ono and Wang (2009) in the toric Fano case, and of
Mabuchi and Nakagawa (2013) in the case of Fano P 1–bundles.

32Q20, 53C25, 53C55, 58J60; 14J45, 32J27

Introduction

We are concerned with the existence and obstruction theory of a class of special Kähler
metrics, called weighted constant scalar curvature metrics, which were introduced by
the third author in [54; 55], giving a vast extension of the notion of Kähler metrics of
constant scalar curvature (cscK for short), and providing the unification of a number of
related notions of Kähler metrics satisfying special curvature conditions.
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0.1 The weighted cscK problem

Let X be a smooth compact complex m–dimensional manifold with a given de Rham
cohomology class ˛ 2 H 1;1.X;R/ of Kähler metrics, and let T � Autr .X / denote
a fixed compact torus in the reduced group Autr .X / of automorphisms of X , ie the
connected subgroup of automorphisms of X generated by the Lie algebra of real
holomorphic vector fields with zeros; see eg Gauduchon [41]. It is well known that T

acts in a hamiltonian way with respect to any T–invariant Kähler metric ! 2 ˛, and the
corresponding momentum map �! sends X onto a compact convex polytope �� t�

in the dual vector space t� of the Lie algebra t of T ; see Atiyah [9] and Guillemin
and Sternberg [44]. Furthermore, up to translations, � is independent of the choice
of ! 2 ˛. We shall further fix �, giving rise to a normalization of the corresponding
momentum maps f�! j ! 2 ˛g.

Following [55], let v.�/ > 0 and w.�/ be smooth functions defined on �. One can
then consider the following condition for T–invariant Kähler metrics ! in ˛ (and fixed
polytope �), called .v; w/–cscK metrics:

(1) Scalv.!/D w.�!/:

Here the so-called v–scalar curvature of ! is defined by

(2) Scalv.!/ WD v.�!/Scal.!/C 2�!v.�!/Chg! ; �
�
!.Hess.v//i;

with Scal.!/ being the usual scalar curvature of the riemannian metric g! associated
to !, �! the Laplace operator of g! , and where the contraction h � ; � i is taken between
the smooth t�˝ t�–valued function g! on X (the restriction of the riemannian metric
g! to t � C1.X;TX /) and the smooth t˝ t–valued function �!�.Hess.v// on X

(given by the pullback by �! of Hess.v/ 2 C1.�; t˝ t/). The relevance of (1) to
various geometric conditions is discussed in detail in [55], but we mention below a few
special cases which partly motivate our study:

� v D 1 and w is a constant: this is the familiar cscK problem.

� vD 1 andwD ` with ` an affine-linear function on t�: (1) then describes an extremal
Kähler metric in the sense of Calabi [21].

� v D e` and w D 2.`C a/e`, where ` is an affine-linear function on t� and a is
a constant corresponding to the so-called �–cscK (see Inoue [50]), extending the
notion of Kähler–Ricci solitons (see Tian and Zhu [71]) defined when X is Fano and
˛ D 2�c1.X /.
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� vD `�m�1, wD a`�m�2 and ˛D c1.L/, where ` is a positive affine-linear function
on �, m is the complex dimension of X , a is a constant, and L is a polarization of X :
(1) then describes a scalar flat cone Kähler metric on the affine cone .L�1/� polarized
by the lift of � D d` to L�1 via `; see Apostolov, Calderbank and Legendre [2; 7].

In general, the problem of finding a T–invariant Kähler metric ! 2 ˛ solving (1) is
obstructed in a similar way that the cscK problem is obstructed by the vanishing of
the Futaki invariant: for any T–invariant Kähler metric ! 2 ˛ and any affine-linear
function ` on t�, one must have

(3) Futv;w.`/ WD
Z

X
.Scalv.!/�w.�!//`.�!/!m

D 0;

should a solution to (1) exist. In [55], an unobstructed modification of (1) is proposed,
extending Calabi’s notion [21] of extremal Kähler metrics. To this end, suppose
that v;w0 > 0 are positive smooth functions on �. One can then find a unique affine-
linear function `ext

v;w0
.�/ on t�, called the extremal function, such that (3) holds for the

weights .v; w/D .v; `ext
v;w0

w0/. In this case, a solution of the .v; w/–cscK problem (1)
is referred to as a .v; w0/–extremal Kähler metric. We emphasize that .v; w0/–extremal
Kähler metrics are .v; w/–cscK metrics with a special property of the weight functionw,
namely, w D `w0 with w0 > 0 on � and ` affine-linear. In particular, .v; w/–cscK
metrics with w ¤ 0 on � are .v; w/–extremal with `ext

v;w D sign.wj�/ and .v; 0/–cscK
metrics are .v; w/–extremal with `ext

v;w D 0 for any w > 0. It follows that all the above
listed special cases are examples of .v; w/–extremal Kähler metrics, and thus the setup
of .v; w/–extremal Kähler metrics allows one to study all these cases together.

0.2 Relation to v–solitons

Motivated by works of T Mabuchi [58; 59] and subsequent work by Berman and
Nyström [15], Y Han and C Li [45] have recently introduced and studied the general
notion of a weighted v–soliton on a smooth Fano variety X , as follows. In the setup
explained above, we let ˛ D 2�c1.X / and consider the natural action of T on K�1

X
,

which fixes the momentum polytope � of .X; ˛;T / and normalizes the momentum
map �! for any T–invariant Kähler metric ! 2 ˛. For a (smooth) positive weight
function v.�/ on �, one defines a v–soliton as a T–invariant Kähler metric ! 2 ˛,
such that

(4) �! �! D
1
2
ddc log v.�!/;

where �! denotes the Ricci form of !. Notice that when v.�/D eh�;�i for some � 2 t,
one gets the well-studied class of Kähler–Ricci solitons [71] whereas the case when
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v.�/ is a positive affine-linear function on � corresponds to the Mabuchi solitons
studied in [58; 59]. As we shall see below, other choices for v are also geometrically
meaningful. We make the following useful observation:

Proposition 1 Let X be a smooth Fano manifold and T �Aut.X / a compact torus. A
T–invariant Kähler metric ! 2 2�c1.X / is a v–soliton if and only if ! is .v; w/–cscK
with w.�/ WD 2.mChd log v; �i/v.�/.

We use the above result in order to make connection with the recent paper [45] (where the
authors obtain a complete Yau–Tian–Donaldson type correspondence for the existence
of v–Ricci solitons), which will play an important role in our present study of .v; w/–
cscK metrics.

We also notice that v–solitons can be viewed as . Nv; Nw/–cscK metrics for different
choices of weights. This is for instance the case when v.�/ D `.�/�.mC2/, where
`.�/D h�; �iC a is positive affine-linear on �. Whereas Proposition 1 identifies the
v–soliton as a .v; w/–cscK metric with

v D `�.mC2/ and w D 2`�.mC3/.�2`C .mC 2/a/;

we also observe:

Proposition 2 Let .X;T / be a smooth Fano variety and `.�/ D .h�; �i C a/ a
positive affine-linear function on its canonical polytope �. A T–invariant Kähler
metric ! 2 2�c1.X / is an `�.mC2/–soliton if and only if the lift O� of � D d` to KX

via ` is the Reeb vector field of a Sasaki–Einstein structure defined on the unit circle
bundle N �KX with respect to the hermitian metric on KX with curvature �!. This
condition is also equivalent to ! being an .`�m�1; 2ma`�m�2/–cscK metric.

0.3 Main results

Similarly to the usual cscK case, it is shown by Lahdili [55] that the solutions of (1)
can be characterized as minimizers of a functional Mv;w defined on the space of T–
invariant Kähler metrics in ˛, extending the Mabuchi energy to the weighted setting (see
Section 1 below for the precise definition). After the deep works of Berman, Darvas and
Lu [14] and Chen and Cheng [23], it is now well understood that the coercivity of the
Mabuchi energy is equivalent to the existence of a cscK metric in a given cohomology
class. Noting that, by the results in [55], any .v; w/–extremal metric is invariant under
a maximal compact torus in Autr .X /, our first main result is an extension of one
direction of the correspondence in the cscK case to the weighted setting.

Geometry & Topology, Volume 27 (2023)



Weighted K–stability 3233

Theorem 1 Suppose T � Autr .X / is a maximal torus in the reduced group of auto-
morphisms of X , and !0 2 ˛ a T–invariant .v; w0/–extremal Kähler metric. Then
the weighted Mabuchi energy Mv;w (with w D `ext

v;w0
w0) is coercive relative to the

complex torus TC in the sense of Darvas and Rubinstein [29], ie there exist positive
real constants � and ı such that for any T–invariant Kähler metric ! 2 ˛,

Mv;w.!/� � inf
�2TC

J .��!/� ı;

where J denotes the Aubin functional on the space of Kähler metrics; see Definition 3.1.

Our proof of Theorem 1 adapts to the case when the torus T�Autr .X / is not necessarily
maximal. Instead of TC one takes the infimum of J .��!/ over yG WD AutTr .X /,
the connected component of the identity of the centralizer of T in Autr .X / (which
by [55] is a reductive group if X admits a .v; w0/–extremal T–invariant Kähler metric;
see Remark 7.7 for more details). Furthermore, we can also consider any reductive
connected subgroup group G DKC � yG with a compact form K containing T , and
restrict Mv;w to the space of K–invariant Kähler metrics in ˛ as in Han and Li [45].1

As noticed by Berman, Darvas and Lu [14] (in the polarized case) and by Sjöström
Dyrefelt [66] (in the more general Kähler case), the coercivity of the Mabuchi energy
yields a sharp estimate of the sign of the Donaldson–Futaki invariant of a T–equivariant
test configuration. In our weighted setting, we consider T–equivariant (compactified)
Kähler test configurations .X ;A / associated to .X; ˛;T /, which have smooth total
space. To any such test configuration one can associate a weighted Donaldson–Futaki
invariant by the formula (see [55])

Fv;w.X ;A / WD �
Z

X
.Scalv.�/�w.��//�ŒmC1�

C .8�/
Z

X
v.�!/!

Œm�;

where � 2 A and ! 2 ˛ are T–invariant Kähler forms on X and X , respectively,
with respective �–normalized momentum maps �� and �! , and Scalv.�/ is the
v–scalar curvature of � defined by (2). In the above formula, for any 2–form  we use
the convention  Œk� WD  k=k!. Thus, Fv;w.X ;A / extends to the weighted setting
the expression of the Donaldson–Futaki invariant of .X ;A / in terms of intersection
numbers (see Odaka [62] and Wang [72]).

Corollary 1 Under the hypotheses of Theorem 1, for any T–equivariant smooth
Kähler test configuration .X ;A / of .X; ˛;T / which has a reduced central fibre ,

Fv;w.X ;A /� 0;

1We are grateful to Chi Li for pointing this out to us.
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with equality if and only if .X ;A / is a product test configuration. Furthermore , if
˛D 2�c1.L/ corresponds to a polarization L of X and .X ;L ;T / is a T–equivariant
smooth polarized test configuration of .X;L/ as above ,

Fv;w.X ;A /� �J NA
TC .X ;A /;

where A D 2�c1.L /, � > 0 is the constant appearing in Theorem 1, and J NA
TC .X ;A /

is the TC–relative non-Archimedean J –functional of the test configuration introduced
in Hisamoto [49] and Li [57]; see (20).

Corollary 1 improves the (T–equivariant) .v; w/–K–semistability established in Lahdili
[56, Theorem 2] to (T–equivariant) .v; w/–K–polystability on the test configurations
as above, and, in the projective case, further to TC–uniform .v; w/–K–stability in
the sense of [49; 57]. As we already mentioned, the fist part of Corollary 1 was
proved by Berman, Darvas and Lu [14], Sjöström Dyrefelt [66] and Stoppa [67] in
the cscK case (v D 1 and w is a constant), and by Dervan [33], [66] and Stoppa and
Székelyhidi [68] in the unweighted extremal case (v D 1D w0). We however notice
that in the extremal case our proof uses directly the coercivity of the relative Mabuchi
energy (which follows from Theorem 1) whereas the proofs in [33; 68] and [66] are
based on the Arezzo–Pacard existence results of extremal metrics on blow-ups (see
Arezzo, Pacard and Singer [8]), and on the coercivity of the unweighted Mabuchi
energy M1;c established in [14; 66], respectively. The TC–uniform .v; w/–K–stability
statement in the second part of Corollary 1 is established in the cscK case in [49; 57],
and in the case of a v–soliton by Han and Li [45]. Our proof of Corollary 1 in the
general weighted case follows easily from Theorem 1 by the established techniques in
the cscK case; see Section 4.

Another notable special case where our results apply is when ˛ D c1.L/ for an ample
line bundle L over X , and v D `�m�1 and w0 D `

�m�3 for a positive affine-linear
function on �. It is observed by Apostolov and Calderbank [2] that in this case a
.v; w0/–extremal Kähler metric in ˛ describes an extremal Sasaki metric on the total
space N of the unit circle bundle in L�1 with respect to the hermitian metric with
curvature �!, and Reeb vector field corresponding to the lift of d` to L�1 via `. In this
special case, the first part of Corollary 1 above was obtained by Apostolov, Calderbank
and Legendre [7] for polarized test configurations (see Theorem 1, Conjecture 5.8 and
Remark 5.9 in [7]), by using the results in He and Li [48] which establish an analogue
of Theorem 1 in the Sasaki case. Thus, our proofs of Theorem 1 and Corollary 1 allow
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one to recast and further generalize [7, Theorem 1] entirely within the framework of
the weighted Kähler geometry of X .

0.4 Method of proof

We now discuss briefly the method of proof of Theorem 1 above. It is an application
of the general coercivity principle of Darvas and Rubinstein [29, Theorem 3.4]; see
Section 3. This principle is used in the cscK case by Berman, Darvas and Lu [14], and
our approach is mainly inspired by these two references. Noting that in the weighted
extremal case Mv;w is G–invariant and G WD TC is reductive, by the results of [29],
in order to obtain Theorem 1 one needs to

(i) extend Mv;w to the space E1.X; !0/ of !0–relative plurisubharmonic functions
of maximal mass and finite energy;

(ii) show that the extension is convex and continuous along weak d1–geodesics in
E1.X; !0/;

(iii) establish a compactness result for the extension of Mv;w; and

(iv) show the uniqueness modulo the action of G (and in particular the regularity)
of the weak minimizers of Mv;w , under the assumption that a .v; w0/–extremal
metric exists.

The steps (i), (ii) and (iii) in the unweighted cscK case are obtained by Berman, Darvas
and Lu [13] and follow from the Chen–Tian formula of M1;1. The analogous formula
for Mv;w is obtained by Lahdili [55], but the presence of weights does not allow for
a straightforward generalization of the arguments in [13]. Similar difficulty arises in
Berman and Nyström [15] in the framework of v–solitons on a Fano variety, where
the authors were able to obtain a suitable extension of the weighted Ding functional
to the space E1.X; !0/. This functional has milder dependence on the weights than
the weighted Mabuchi functional we consider. Indeed, the arguments of [15] yield
the existence of a continuous extension to E1.X; !0/ of one of the three terms in
the Chen–Tian decomposition of Mv;w, which depend on the weight w. Building
on [15], Han and Li [45] proposed a new approach to the extension problem in the case
of v–solitons, based on an idea going back to Donaldson [36] (see in particular the
proof of Proposition 3 in [36]), which amounts to considering suitable fibre bundles
Y over a cscK base B and fibre X , and showing that the weighted quantities on X

correspond to the restrictions of unweighted quantities on the total space Y . This is
the semisimple principal .X;T /–fibration construction, which we review in the next
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subsection. Going further than [45], we express in general the scalar curvature of
a bundle-compatible Kähler metric on Y in terms of the weighted scalar curvature
of X , and show that the usual (unweighted) Mabuchi energy on Y restricts to a
suitably weighted Mabuchi energy on X . It thus follows that, at least for suitable
polynomial weights v, the remaining terms of the Chen–Tian decomposition of Mv;w

can be extended to E1.X; !0/ simply by restricting to the fibres the corresponding
(unweighted) extension of the Mabuchi energy of Y . The final crucial observation for
obtaining the extension for any weights is that Mv;w depends linearly and continuously
on .v; w/, so that one can further use (as in [45]) the Stone–Weierstrass approximation
theorem over C 0.�/. With this in place, and using the weighted analogue of the
uniqueness (see Berman and Berndtsson [11]) achieved by Lahdili [56], we can adapt
the arguments from [14].

0.5 Applications to the semisimple principal fibration construction

We briefly review here the semisimple principal bundle construction, which is not
only a key tool in our proof of Theorem 1, but also provides a framework for further
geometric applications of our results, extending the setting of the generalized Calabi
construction in Apostolov, Calderbank, Gauduchon and Tønnesen-Friedman [6].

We denote by T a compact r–dimensional torus with Lie algebra t and lattice ƒ� t of
generators of S1–subgroups, ie TD t=2�ƒ. Let BDB1�� � ��Bk be a 2n–dimensional
cscK manifold which is a product of compact cscK Hodge Kähler 2na–manifolds
.Ba; !Ba

/ for a D 1; : : : ; k. We then consider a principal T–bundle � W P ! B

endowed with a connection 1–form � 2�1.P; t/ with curvature

d� D
kP

aD1

.��!Ba
/˝pa for pa 2ƒ:

For any smooth compact Kähler 2m–manifold .X; !X ;T /, endowed with a hamiltonian
isometric action of the torus T as in the setup above, we can construct the principal
.X;T /–fibration

Y WD .X �P /=T ! B;

where the T–action on the product is �.x;p/ D .��1x; �p/ for x 2 X , p 2 P and
� 2 T . Using the chosen connection on P , the almost complex structures on X and B

lift to define a CR structure on the product X �P , and thus endow Y with the structure
of a 2.mCn/–dimensional smooth complex manifold. Furthermore, Y comes equipped
with an induced holomorphic fibration � W Y !B, with smooth complex fibres X , and
induced fibrewise T–action. Fixing constants ca 2R such that, for each aD 1; : : : ; k,
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the affine-linear function hpa; �iCca on t� is strictly positive on the momentum image
� of X , one can define a lifted Kähler metric !Y on Y which, pulled back to X �P ,
has the form

!Y WD !X C

kX
aD1

.hpa; �!iC ca/�
�!Ba

Chd�! ^ �i;

where h � ; � i stands for the natural pairing of t and t�. Thus hpa; �!i is a smooth
function and hd�! ^ �i is a 2–form on X �P . As we show in Section 5, when !X

varies in a given Kähler class of X , the corresponding Kähler metric !Y will vary
in a fixed Kähler class on Y . We also notice that when .X; !X ;T / is a smooth toric
Kähler manifold, the setup above reduces to the theory of semisimple rigid toric fibra-
tions studied by Apostolov, Calderbank, Gauduchon and Tønnesen-Friedman [3; 4; 6].
Inspired by these results, we show that the scalar curvature of !Y can be expressed
in terms of the p–weighted scalar curvature of .X; !X /, where the weight function
p.�/ is a polynomial depending on the fixed data .pa; ca; na/ of the construction. With
this observation in mind, we show that (similarly to the case of semisimple rigid toric
fibrations recently studied by Jubert [52]) the recent results Chen and Cheng [23] and
He [47] can be used to obtain a converse of Theorem 1 in the case of semisimple
principal fibrations.

Theorem 2 Suppose Y is a semisimple principal .X;T /–fibration , with a Kähler
metric !Y induced by a T–invariant Kähler metric !X on X . Suppose , moreover ,
that T is a maximal torus in the reduced group of automorphisms Autr .X /. Then , the
following conditions are equivalent :

(i) Y admits an extremal Kähler metric in the Kähler class Œ!Y �.

(ii) X admits a T–invariant .p; zw/–cscK metric in the Kähler class Œ!X �, with
weights

p.�/D

kY
aD1

.hpa; �iC ca/
na ; zw.�/D p.�/

�
�

kX
aD1

Scal.!Ba
/

hpa; �iC ca
C `ext.�/

�
;

where `ext is an affine-linear function determined by the condition (3).

(iii) The weighted Mabuchi energy M X
p; zw

of .X; Œ!X �;T / is coercive with respect
to TC , where p and zw are the weights defined in (ii).

Compared to the general setting of Dervan and Sektnan [35], the semisimple principal
.X;T /–fibration (trivially) satisfies the condition of optimal symplectic connection.
Accordingly, one can conclude by [35] that .Y; Œ!Y �/ admits an extremal Kähler metric,
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provided that .X; !X / is cscK, and if we take large enough constants ca. As a matter
of fact, the conclusion also follows under the more general assumption that .X; !X / is
extremal, by the proof of [4, Theorem 3]. The novelty of Theorem 2 is therefore in the
fact that it gives a precise condition (in terms of X ) for the existence of an extremal
Kähler metric in a given Kähler class Œ!Y �, also revealing that .X; Œ!X �/ need not be
extremal in general. We finally note that in the case of toric fibre, [52] provides a further
equivalence with a certain weighted notion of uniform K–stability of the corresponding
Delzant polytope.

If all the factors .Ba; !Ba
/ of the base are positive Kähler–Einstein manifolds, and

the fibre .X;T / is a smooth Fano variety, the semisimple principal .X;T /–fibration
construction can produce a smooth Fano variety Y for suitable choice of the principal T–
bundle over B; see Lemma 5.11. In this case, combining Han and Li [45, Theorem 3.5]
with our results:

Theorem 3 Suppose Y is a Fano semisimple principal .X;T /–fibration , obtained
from the product of positive Kähler–Einstein Hodge manifolds .Ba; !Ba

/ and a smooth
Fano fibre .X;T / via Lemma 5.11. Suppose also that T is a maximal torus in the
automorphism group Aut.X /. Then Y admits a v–soliton in 2�c1.Y /, provided that
the weighted Mabuchi functional M X

pv; zw
of .X;T ; 2�c1.X // is coercive with respect

to TC , where p is the weight defined in Theorem 2(ii) and

zw D 2pv.mChd log v; �iC hd log p; �i/:

If , furthermore , the fibre .X;T / is a smooth toric Fano variety , then this equation is
equivalent to the vanishing of the Futaki invariant (3) associated to the weights .pv; zw/
on X . In particular , any Fano semisimple principal .X;T /–fibration with smooth toric
Fano fibre .X;T / admits a Kähler–Ricci soliton , and the corresponding affine cone
.KY /

� admits a Calabi–Yau cone metric , given by a Sasaki–Einstein structure on a
unit circle bundle associated to the canonical bundle KY .

The existence of a Kähler–Ricci soliton in the above setting is essentially known even
though we didn’t find it explicitly stated in the literature. In the toric case (ie when
Y D X and B is a point) the result follows by Wang and Zhu [73] (see also Datar
and Székelyhidi [30]), and for P1–bundles by Apostolov, Calderbank, Gauduchon and
Tønnesen-Friedman [5], Dancer and Wang [26] and Koiso [53]. In the general case the
result can be obtained from Podestà and Spiro [63], which in turn extends [73] to the
framework of multiplicity-free manifolds, but the arguments can be also adapted to the
case of semisimple principal .X;T /–fibrations; see Apostolov, Calderbank, Gauduchon
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and Tønnesen-Friedman [6, Remark 7] and Donaldson [37]. Our approach, however,
builds on the idea of [30]. There are also related existence results for Kähler–Ricci
solitons on spherical manifolds; see Delcroix [31] and Delgove [32]. On the other hand,
the existence of Sasaki–Einstein metrics seems to be new in the above stated generality.
Indeed, in the toric case the claim follows from Futaki, Ono and Wang [40], and
there are known existence results (see Boyer and Tønnesen-Friedman [20], Gauntlett,
Martelli, Sparks and Waldram [42] and Mabuchi and Nakagawa [60]) on P1–bundles.
We expect our arguments to extend to spherical manifolds too.

0.6 Structure of the paper

In Section 1, we recall the setup of weighted cscK metrics and state the main results
we shall need from Lahdili [55; 56]. In Section 2, we recall the notion of v–solitons
from Han and Li [45] and Mabuchi [58], and establish the equivalences stated in
Propositions 1 and 2. Sections 3 and 4 review and recast in the weighted setting,
respectively, the coercivity principle of Darvas and Rubinstein [29] and its application
to stability (see Berman, Darvas and Lu [14] and Sjöström Dyrefelt [66]), thus outlining
the main steps needed for the proof of Theorem 1 and from it deriving Corollary 1.
In Section 5, we introduce the semisimple principal .X;T /–fibration construction,
and establish the main geometric properties allowing us to extend the results from
Apostolov, Calderbank, Gauduchon and Tønnesen-Friedman [6]. In Section 6, we use
an idea from [45] in order to define an extension of the weighted Mabuchi energy to the
space E1.X; !0/, and show its convexity and compactness properties. In Section 7, we
extend the arguments of [14] to show that weak minimizers of the weighted Mabuchi
energy are smooth. Here, we complete the proof of Theorem 1. In Section 8, we
detail the proofs of Theorems 2 and 3. In the appendices, we present some technical
computational results, detailing the linearization of the scalar and the twisted scalar
curvature of a semisimple principal .X;T /–fibre and recasting the weighted Futaki
invariant (3), which are needed for the proofs of Theorems 2 and 3.
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1 Preliminaries on the weighted cscK problem

We recall the setup from [55]. Let X be a smooth compact, connected Kähler manifold
of (real) dimension 2m, and let

K.X; !0/D f' 2 C1.X / j !' WD !0C ddc' > 0g

be the space of !0–relative smooth Kähler potentials on X . We let T � Autr .X / be a
fixed compact torus in the reduced group of automorphisms of X , ie the connected
closed subgroup Autr .X / of the group of complex automorphisms Aut.X /, whose
Lie algebra is the space of holomorphic vector fields of X with zeros; see eg [41].
Equivalently, Autr .X / is the connected component of the identity of the kernel of the
natural group homomorphism from Aut.X / to the Albanese torus, and is known to
be isomorphic to the linear algebraic group in the Chevalley-type decomposition of
Aut.X /; see [38]. We denote by C1T .X / the space of T–invariant smooth functions
on X and introduce the space

KT .X; !0/ WD K.X; !0/\C1T .X /;

of T–invariant relative Kähler potentials, assuming also that !0 is T–invariant.

It is well known that the action of T on .X; !0/ is hamiltonian, and we let �0 WX ! t�

be a momentum map, where t is the Lie algebra of T and t� the dual vector space.
By the convexity theorem [9; 44], the image � WD �0.X /� t� is a compact convex
polytope. For any ' 2 KT .X; !0/, the smooth t�–valued function

(5) �' D �0C dc'

is the T–momentum map of .X; !'/, normalized by the condition �'.X / D �. In
the above formula, dc' is viewed as a smooth t�–valued function via the identity
hdc'; �i WD dc'.�/ for any � 2 t� C1.X;TX /.

1.1 The .v; w/–constant scalar curvature Kähler metrics

Following [55], let v.�/>0 andw.�/ be smooth functions on�. One can then consider
the condition (1) for a T–invariant Kähler metric !' in ˛ (and the fixed polytope �),
called a .v; w/–cscK metric. We thus want to solve the PDE for ' 2 KT .X; !0/

(6) Scalv.!'/D w.�'/;
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where

Scalv.!'/ WD v.�'/Scal.!'/C 2�!'v.�'/Chg' ; �
�
'.Hess.v//i:

As we explained in the introduction, the problem of finding !' 2 ˛ solving (6) is
obstructed by the condition (3), and in the case when v and w0 are positive weights,
this can be resolved (similarly to the approach in [21]) by finding a unique affine-linear
function `ext

v;w0
.�/ on t�, called the extremal function, such that for any !' ,Z

X
.Scalv.!'/� `ext

v;w0
.�'/w0.�'//`.�'/!

Œm�
' D 0 for all ` 2 Aff.t�/:

Geometrically, the above condition means that the weighted cscK problem with
weights .v; w/ D .v; `ext

v;w0
w0/ is unobstructed in terms of (3), and a solution !'

of the .v; `ext
v;w0

w0/–cscK problem is referred to as a .v; w0/–extremal metric.

1.2 The weighted Mabuchi energy

Definition 1.1 [55] Let v and w be weight functions on � with v.�/ > 0. The
weighted Mabuchi energy Mv;w on KT .X; !0/ is defined by

.d'Mv;w/. P'/D�
Z

X
.Scalv.!'/�w.�'// P'!Œm�' ; Mv;w.0/D 0:

Remark 1.2 It follows from the above definition and the results in [55] that for a
constant c, Mv;w.'Cc/DMv;w.'/ if and only if v and w satisfy the integral relation

(7)
Z

X
Scalv.!0/!

Œm�
0
D

Z
X
w.�0/!

Œm�
0
:

Furthermore, by the results in [55], (7) is a necessary condition for the existence of a
solution of (6) and it is incorporated in the definition of Mv;w given in [55] via the
constant cv;w.˛/ in front ofw, but we do not assume a priori this condition in the current
article. It is however automatically satisfied if ˛ admits a T–invariant .v; w/–cscK
metric, or if we consider the weights .v; w/D .v; `ext

v;w0
w0/ corresponding to .v; w0/–

extremal Kähler metrics. In these cases, we shall write Mv;w.!'/ to emphasize that
the weighted Mabuchi functional acts on the space of T–invariant Kähler metrics
in ˛ D Œ!0�.

The following result is established in [56], generalizing [11] to arbitrary weights v > 0

and w:

Theorem 1.3 If ! is a T–invariant .v; w/–cscK metric on .X; ˛;T ; �/, then for any
' 2 KT .X; !0/ we have Mv;w.!'/�Mv;w.!/.
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1.3 The automorphism group of a .v; w0/–extremal Kähler manifold

In what follows we will consider connected Lie groups. We recall that we have set
Autr .X / to be the connected component of the identity of the kernel of the Albanese
homomorphism and, similarly, we denote by AutTr .X / the connected component of
the identity of the centralizer of the torus T in Autr .X /. We shall use the following
result, established in [55, Theorem B.1] (see also [39]) and [56, Remark 2]:

Proposition 1.4 If .X; ˛;T / admits a .v; w0/–extremal Kähler metric !, then the
connected component of the identity AutTr .X / of the subgroup of T–commuting
automorphisms in Autr .X / is reductive , and ! is invariant under the action of a
maximal compact connected subgroup of AutTr .X /. In particular , the isometry group
of .X; !/ contains a maximal torus Tmax � Autr .X / with T � Tmax. If , furthermore ,
T D Tmax, then AutTr .X /D TC .

Because of this result, we shall often assume (without loss of generality for solving (6))
that T D Tmax � Autr .X / and thus AutTr .X /D TC .

1.4 Uniqueness of the .v; w0/–extremal Kähler metrics

Another key result in the theory is the extension in [56] of the uniqueness results [11; 24]
to the weighted setting.

Theorem 1.5 Suppose ! and !0 are T–invariant .v; w0/–extremal Kähler metrics.
Then there exists � 2 AutTr .X / such that ��.!0/D !. In particular , if T � Autr .X /
is maximal , then the uniqueness holds modulo TC .

2 v–solitons as weighted cscK metrics

We review here the definition of v–solitons on a Fano manifold, following [15; 45],
and discuss their link with .v; w/–cscK metrics.

We thus suppose throughout this section that X is a smooth Fano manifold ˛ WD2�c1.X /

and T � Aut.X / a fixed compact torus. (We recall here that on a Fano manifold
Autr .X / coincides with the connected component of the identity of the full automor-
phism group.) We further consider the natural action of T on the anticanonical bundle
K�1

X
of X , which normalizes the momentum map �! of each T–invariant Kähler

metric ! 2 ˛, and fixes the momentum image �. We shall sometimes refer to this
normalization as the canonical normalization of �. In this setup, we recall:
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Definition 2.1 Let v > 0 be a positive smooth weight function on �. A v–soliton on
X is a T–invariant Kähler metric ! 2 2�c1.X / which satisfies the relation (4).

In the special case v D eh�;�i we obtain a Kähler–Ricci soliton in the sense of [71].

Lemma 2.2 A T–invariant Kähler metric ! 2 2�c1.X / is a v–soliton if and only if
! is a .v; w/–cscK metric with weight w.�/D 2v.�/ŒmChd log v.�/; �i�.

Proof We start by showing that (4) implies that ! is .v; w/–cscK with the weight w
specified in the lemma. Taking the trace in (4) with respect to ! gives

(8) Scal.!/� 2mD��!.log v.�!//

D�
1

v.�!/
�!.v.�!//�

1

v.�!/2
g!.dv.�!/; dv.�!//

D�

mX
iD1

v;i.�!/

v.�!/
.�!�

�i
! /C

mX
i;jD1

v;ij .�!/

v.�!/
g!.�i ; �j /

�

mX
i;jD1

v;i.�!/v;j .�!/

v.�!/2
g!.�i ; �j /;

where .�i/iD1;:::;r is a basis of t and v;i denotes the partial derivative in direction of �i .
On the other hand, by taking the interior product of (4) with �i and using that �i is
Killing with respect to !, we get

�d�!�
�i
! C 2d��i

! D d
�
dc.log v.�!//.�i/

�
D d

� mX
jD1

v;j .�!/

v.�!/
g!.�i ; �j /!

�
;

where ��! WD h�! ; �i is the momentum of �. It follows that

(9) ��!�
�i
! C 2��i

! D

mX
jD1

v;j .�!/

v.�!/
g!.�i ; �j /C c

for some constant c. As we consider the canonical normalization of �! (corresponding
to the natural lifted T–action on K�1

X
), one can see that cD 0. Indeed, the infinitesimal

actions Ai of the elements of the basis .�i/i on smooth sections of K�1
X

are given by
Ai.s/ WD L�i

s. We denote by Hg the induced hermitian metric on K�1
X

through the
riemannian metric g! of ! (so that Hg has curvature �!) and by H D v.�!/Hg the
induced hermitian metric with curvature ! (by using (4)); comparing the actions of the
corresponding Chern connections, rg

�i
and rH

�i
Dr

g

�i
�

1
2

p
�1dc log v.�!/.�i/ id on
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smooth sections of K�1
X

with the infinitesimal actions Ai gives (see eg [41, Propositions
8.8.2 and 8.8.3])

(10) Ai.s/Dr
g

�i
sC 1

2

p
�1.�!�

�i
! /s and Ai.s/Dr

H
�i

sC
p
�1��i

! s:

We thus deduce 1
2
�!�

�i
! D �

�i
! �

1
2
dc.log v.�!//.�i/, ie c D 0 in (9).

Now, letting c D 0 in (9), multiplying it by v;i.�!/=v.�!/, and taking the sum over i

gives
mX

i;jD1

v;i.�!/v;j .�!/

v.�!/2
g!.�i ; �j /D

rX
iD1

v;i.�!/

v.�!/
.�!�

�i
! /� 2

rX
iD1

v;i.�!/

v.�!/
��i
! ;

which, substituted back into (8), yields

Scal.!/�2mD�2

rX
iD1

v;i.�!/

v.�!/
�!�

�i
!C

mX
i;jD1

v;ij .�!/

v.�!/
g!.�i ; �j /C2

rX
iD1

v;i.�!/

v.�!/
��i
!

D�2

rX
iD1

v;i.�!/

v.�!/
�!�

�i
! C 2

mX
i;jD1

v;ij .�!/

v.�!/
g!.�i ; �j /

�

mX
i;jD1

v;ij .�!/

v.�!/
g!.�i ; �j /C 2hd log v; �!i

D �2�!.v.�!//�

mX
i;jD1

v;ij .�!/

v.�!/
g!.�i ; �j /C 2hd log v; �!i:

Thus, Scalv.!/D w.�!/.

Now we show the converse. To this end, let ! 2 2�c1.X / be a T–invariant Kähler
metric, v > 0 a positive smooth function on the canonically normalized polytope �
and w D 2.mChd log; �i/v the weight defined in Lemma 2.2. Let h 2 C1T .X / be an
!–relative Ricci potential, ie

�! �! D
1
2
ddch:

Taking the trace with respect to ! and the interior product with � 2 t in the above
identity, we get

(11) Scal.!/D 2m��!h and �!�
�
! CLJ �hD 2��! ;

where we have used the canonical normalization of �! to determine the additive
constant in the second inequality (as we did for (9)). Similar computations as in the
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first part of the proof (using (11)) give

(12) Scalv.!/�w.�!/

D�v.�!/.�!h/C 2

rX
iD1

v;i.�!/.�!�
�i
! /�

rX
i;jD1

v;ij .�!/.�i ; �j /!

C 2

rX
iD1

v;i.�!/�
�i
!

D�v.�!/.�!h/C

rX
iD1

v;i.�!/g!.dh; d��i
! /C

rX
iD1

v;i.�!/.�!�
�i
! /

�

rX
i;jD1

v;ij .�!/g!.�i ; �j /

D�v.�!/.�!;vh/C

rX
iD1

v;i.�!/.�!�
�i
! /�

rX
i;jD1

v;ij .�!/g!.�i ; �j /;

where�!;v WD .1=v.�!//ı!v.�!/d is the weighted Laplacian; see Appendix A. Using
the second equality in (8), we compute

v.�!/�!;v.log v.�!//Dv.�!/.�! log v.�!//�
mX

iD1

vi.�!/g!.d.log v.�!//; d��i
! /

Dv.�!/.�! log v.�!//�
mX

i;jD1

v;i.�!/v;j .�!/

v.�!/
g!.�i ; �j /

D

rX
iD1

v;i.�!/.�!�
�i
! /�

rX
i;jD1

v;ij .�!/g!.�i ; �j /:

Substituting back in (12),

(13) Scalv.!/�w.�!/D v.�!/�!;v.log v.�!/� h/:

It follows that if ! is .v; w/–cscK then hD log v.�!/C c by the maximum principle,
showing that ! satisfies (4).

Remark 2.3 Using the second relation in (11) it follows that, under the canonical
normalization of �! ,

(14)
Z

X
��!eh!Œm� D 0 for � 2 t:

This is precisely the normalization of �! used in [71, Section 2].
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Lemma 2.4 Define v WD `�.mC2/ for `.�/D h�; �iC a positive affine-linear on �.
Then ! 2 2�c1.X / is a v–soliton if and only if ! is an .`�.mC1/; 2ma`�.mC2//–cscK
metric.

Proof The proof is similar to that of Lemma 2.2.

If ! is a v–soliton with v WD `�.mC2/, specializing (8) and (9) to the specific choice of
v and letting f WD `.�!/D �

�
! C a, we get the identities

Scal.!/D 2mC .mC 2/�! logf and ��!f C 2f D
mC2

f
g!.df; df /C 2a:

Multiplying the first equality by f 2 and taking the sum with the second equality
multiplied by mf gives

(15) f 2 Scal.!/� 2.mC 1/f�!f � .mC 1/.mC 2/g!.df; df /D 2maf:

The right side is the .mC2; f /–scalar curvature (see [2]) and it is straightforward to
check that (15) is equivalent to the condition that ! is an .`�.mC1/; 2ma`�.mC2�/–cscK
metric.

In the other direction, for any T–invariant Kȧhler metric ! 2 2�c1.X /, we let

f WD `.�!/D �
�
! C a> 0

be the corresponding Killing potential and let h2C1T .X / be such that �!�!D 1
2
ddch.

From (11) we have

Scal.!/D 2m��!h and ��!f C 2f D�g!.df; dh/C 2a:

Multiplying the first identity by f 2 and summing with the second identity multiplied
by mf gives

(16) f 2 Scal.!/� 2.mC 1/f�!f � .mC 1/.mC 2/g!.df; df /� 2maf

D�f 2
�
�!.hC .mC 2/ logf /Cmg!.d logf; dhC .mC 2/ d logf /

�
:

If we suppose that (15) holds, we conclude, again by the maximum principle, that
.mC 2/ logf C h must be constant.

Remark 2.5 Lemmas 2.2 and 2.4 give two different realizations of the same `�.mC2/–
soliton as a weighted cscK metric, with weights

�
`�.mC2/; 2.�2`C.mC2/a/`�.mC3/

�
and .`�.mC1/; 2am`�.mC2//, respectively.

We derive from Lemma 2.4 and the correspondence in [2] the following fact, which
does not seem to have been noticed before:
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Lemma 2.6 On a Fano manifold .X;T /, a T–invariant Kähler metric ! 2 2�c1.X /

is an `�.mC2/–soliton with respect to a positive affine-linear function `D h�; �iC a if
and only if the lift O� of the vector field � to KX , via the hermitian connection rh with
curvature �! and the !–momentum `.�!/ of �, is a Reeb vector of a Sasaki–Einstein
(transversal ) structure of transversal scalar curvature 2am, defined on the unit circle
bundle N of .KX ; h/.

Proof By Lemma 2.4, we need to show that an .`�.mC1/; 2am`�.mC2//–cscK metric
in 2�c1.X / corresponds to a Sasaki–Einstein structure as defined in the statement. By
[2, Theorem 1], the condition that ! is .`�.mC1/; 2am`�.mC2//–cscK is equivalent to
the condition that the corresponding Sasaki structure has transversal scalar curvature
equal to 2ma (notice that a> 0 by the positivity of ` over the canonical polytope �).
Any Sasaki structure of constant transversal scalar curvature on N �KX is transversally
Kähler–Einstein as c1.K

�
X
/D0, and therefore the first Chern class of the CR distribution

of N vanishes; see eg [19, Corollary 5.3; 40, Proposition 4.3].

Remark 2.7 The correspondence in Lemma 2.6 is, in fact, local and can be deduced
directly from the relation between the transversal Ricci tensors of the two Sasaki
structures on the CR manifold N � KX , defined by O� and the regular Reeb vector
field O�, respectively, according to [51] and Gauduchon (personal communication).

Proof of Propositions 1 and 2 Propositions 1 and 2 from the introduction follow
directly from Lemmas 2.2, 2.4 and 2.6.

3 The coercivity principle: the plan of the proof of Theorem 1

We consider the following general setup, based on the results of [27; 29; 70]. As
before, we let T � Autr .X / be a fixed connected compact torus in the reduced
group of automorphisms of X , and denote by G D TC � Autr .X / the corresponding
complex torus.

Following [27], we consider the L1–length function on K.X; !0/, introduced on a
smooth curve  t for t 2 Œ0; 1� by

L1. t / WD
Z 1

0

�Z
X
j P t j!

Œm�

 t

�
ds;

and, for '0; '1 2 K.X; !0/, we let

d1.'0; '1/ WD inffL1. t / j  t 2 K.X; !0/ for t 2 Œ0; 1�;  0 D '0 and  1 D '1g:
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Similarly, we define d1 on KT .M; !0/ by considering the infimum over smooth curves
in KT .X; !0/. It is proved in [27] that .K.X; !0/; d1/ is a metric space, and it is
observed in [29] that .KT .X; !0/; d1/ is a metric subspace of .K.X; !0/; d1/.

Recall the following well-known functionals on K.X; !0/:

Definition 3.1 Let I denote the functional on K.X; !0/ defined by

.d'I/. P'/D
Z

X
P'!Œm�' ; I.0/D 0;

and let J .'/ WD
R
X '!

Œm�
0
� I.'/.

Remark 3.2 For any constant c, we have that I.'Cc/D I.'/Cc Vol.X; !0/ (where
Vol.X; !0/ D

R
X !0

Œm� is the total volume of .X; !0/), whereas J .' C c/ D J .'/,
ie we can see J as a functional on the space of Kähler metrics in the Kähler class
˛ D Œ!0�, which motivates the notation J .!'/. One can further show that J .!'/� 0

with equality if and only if !' D !0.

By the above remark, for any Kähler metric !' in the Kähler class Œ!0�, there exists a
uniquely determined !0–relative potential ' 2 K.X; !0/ satisfying

I.'/D 0:

We shall denote by VK.X; !0/ (and VKT .X; !0/) the subspaces of normalized !0–relative
Kähler potentials satisfying the above equality. We notice that the group G D TC

naturally acts on the space of Kähler metrics in Œ!0�, preserving the subspace of T–
invariant Kȧhler metrics. This induces an action ŒG� on the spaces VK.X; !0/ and
VKT .X; !0/ such that

!�Œ'� D �
�.!'/ for all � 2G and ' 2 VK.X; !0/:

We introduce the G–relative distance on VK.X; !0/ and VKT .X; !0/ by

d
ŒG�
1
.'0; '1/D inf

�0;�12G
d1.�0Œ'0�; �1Œ'1�/:

It is proved in [29] that d
ŒG�
1

is G–invariant, ie d
ŒG�
1
.�Œ'0�; � Œ'1�/ D d

ŒG�
1
.'0; '1/,

and thus
d
ŒG�
1
.'0; '1/D inf

�2G
d1.'0; � Œ'1�/:

Definition 3.3 Let F be a functional on KT .X; !0/. We say that F is G–coercive if
there exist uniform positive constants .�; ı/ such that

(17) F .'/� �d
ŒG�
1
.0; '/� ı for all ' 2 VKT .X; !0/:
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It is sometimes more natural to introduce G–coercivity in terms of the functional J via:

Proposition 3.4 [29] F is G–coercive if and only if there exist uniform positive
constants .�0; ı0/ such that

(18) F .'/� �0 inf
�2G

J .��!'/� ı
0 for all ' 2 KT .X; !0/:

Remark 3.5 If F is G–coercive, then it is bounded below by (17).

As in [27], one can consider the metric completion .E1.X; !0/; d1/ of .K.X; !0/; d1/,
which can be characterized by a suitable continuously embedded subspace in L1.X; !0/;
similarly we let .E1

T .X; !0/; d1/ be the metric completion of .KT .X; !0/; d1/, which,
again by the results in [29], can be viewed as the closed subspace of T–invariant
elements of E1.X; !0/. It will be important for us that .E1

T .X; !0/; d1/ is a geodesic
space, ie each two elements  0;  1 2 E1

T .X; !0/ can be connected with a curve  t

for t 2 Œ0; 1� in .E1
T .X; !0/; d1/, called a weak geodesic, obtained as the limit of

C 1; N1–geodesics between elements of KT .X; !0/; see [22; 27]. This object is a curve
't 2 E1

T .X; !0/, of regularity C 1;1.Œ0; 1��X /, which is uniquely associated to each
'0; '1 2KT .X; !0/; see [16; 22; 25] and the proof of Proposition 5.8 for more details
about the weak C 1; N1–geodesics.

In [29, Theorem 3.4], the following general principle is established:

Theorem 3.6 (coercivity principle) Let F W KT .X; !0/! R be a lower semicon-
tinuous (lsc) functional with respect to d1, and F W E1

T .X; !0/! R[ fC1g be its
largest lsc extension. Suppose , furthermore , that F .' C c/ D F .'/ DW F .!'/ and
F .��!'/D F .!'/ for any ' 2 KT .X; !0/ and � 2G, and that F satisfies:

(i) Convexity For each '0; '1 2 KT .X; !0/ and the C 1; N1–geodesic 't joining '0

and '1, t ! F .'t / is continuous and convex.

(ii) Regularity If  2 E1
T .X; !0/ is a minimizer of F , then  2 KT .X; !0/.

(iii) Uniqueness G acts transitively on the set of minimizers of F .

(iv) Compactness If f j gj 2 E1
T .X; !0/ satisfies limj!1 F . j /D infE1

T .X ;!0/
F

and , for some C > 0, d1.0;  j / � C , then there exists a  2 E1
T .X; !0/ and a

subsequence f jk
gk with  jk

!  in .E1
T .X; !0/; d1/.

Then , the following two conditions are equivalent :

� F has minimizer in KT .X; !0/.

� F is G–coercive.
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The above result provides a clear framework for achieving the proof of Theorem 1:
we need to find a suitable largest lsc extension of the weighted Mabuchi functional
Mv;w to the space E1

T .X; !0/ and show it satisfies the properties (i)–(iv). Notice that
the invariance of Mv;w under the action of G D TC is equivalent to the necessary
condition (3) for the existence of a .v; w/–cscK metric, whereas (iii) will follow from
Theorem 1.5 once the regularity condition (ii) is established. Furthermore, the property
(i) is proved in [56, Theorem 1], so the core of our argument is to define the extension
of Mv;w to E1

T .X; !0/ and establish the properties (ii) and (iv). These steps will be
detailed in Theorems 6.1, 7.1 and 6.17, respectively.

4 K–stability via coercivity: deriving Corollary 1 from
Theorem 1

We use the following general setup, based on the results of [10; 14; 18; 49; 57; 66; 70]
which deal with the K–polystability and uniform K–stability in the unweighted cscK
case. Let T � Autr .X / be a connected compact torus in the reduced group of auto-
morphisms of X .

Definition 4.1 A T–equivariant Kähler test configuration .X ;A / associated to
.X; ˛;T / is a normal compact Kähler space X endowed with

� a flat morphism � WX ! P1;

� a C�–action � covering the standard C�–action on P1, and a T–action commut-
ing with � and preserving � ;

� a T�C�–equivariant biholomorphism …0 W .X ; n��1.0//ŠX � .P1 n f0g/;

� a Kähler class A 2H 1;1.X ;R/ such that .…�1
0
/�.A /jX�f�g D ˛.

We say that .X ;A / is smooth if X is smooth and dominating if …0 extends to a
T�C�–equivariant morphism

(19) … WX !X �P1:

.X ;A / is called trivial if it is dominating and … is an isomorphism; .X ;A / is called
product if ��1.0/ Š X . If .X;L/ is a smooth polarized variety and ˛ D 2�c1.L/,
a polarized test configuration is a normal polarized variety .X ;L / such that, for
some r 2N�, .X ; .1=r/2�c1.L // defines a Kähler test configuration of .X; ˛/ and,
under …0, .X;L jX�f�g/Š .X;Lr /.
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4.1 Non-Archimedean functionals

We recall that any T�S1–invariant Kähler metric � 2 A on X gives rise to a smooth
ray of T–invariant Kähler metrics !t 2 ˛ on X defined by

!t WD �.e
�tCis/�.�/jX�f1g:

Definition 4.2 Let F be a functional defined on the space of T–invariant Kähler
metrics on X in the class ˛. We say that F admits a non-Archimedean version F NA,
defined on a subclass C of T–equivariant Kähler test configurations .X ;A / associated
to .X; ˛;T / if, for any .X ;A /2C and any induced smooth ray of T–invariant Kähler
metrics !t 2˛ on X , the slope limt!1 F .!t /=t is well defined and given by a quantity
F NA.X ;A / which is independent of the choice of the T�S1–invariant Kähler form
� 2 A .

We give below two key examples of non-Archimedean versions of known functionals.
The first one is established in the polarized case in [18] and in the generality we consider
in [34; 65]:

Example 4.3 The functional J introduced in Definition 3.1 admits a non-Archimedean
version defined, up to a positive-dimensional multiplicative constant, on the class of
smooth T–equivariant dominating Kähler test configurations .X ;L / by

J NA.X ;A /D
..…�˛/m �A /X

.˛m/X
�

1

mC1

.A mC1/X

.˛m/X
;

where … is the morphism (19) and ˛ denotes both the Kähler class on X and its
pullback to X �P1.

The above expression generalizes to dominating smooth test configurations which are
only relatively nef (in the terminology of [66]), thus also providing a non-Archimedean
version of J for any Kähler test configuration. Indeed, by the equivariant Hironaka
resolution, any T–equivariant test configuration can be dominated by a smooth relatively
nef Kähler dominating test configuration, and the computation of J NA on the latter
does not depend on the choice made.

The non-Archimedean functional J NA defined above is always nonnegative and equals
zero precisely when .X ;A / is the trivial test configuration. This statement is proved
in [18, Theorem 7.9] in the polarized case, and follows from the results in [66] in
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the Kähler case; see in particular [66, Lemma 4.8] with G trivial and recall that the
J –norm is Lipschitz equivalent to the d1–distance, so that the unique weak geodesic
ray associated to a test configuration with vanishing J NA–norm must be constant, and
hence the test configuration must be trivial by [66, Corollary 3.12]. Thus, J NA can be
thought of as a “norm” on the space of Kähler test configurations.

In order to obtain a norm which is zero for more general product test configurations, in
[33; 49; 57] the authors consider smooth rays z!t 2 ˛ of T–invariant Kähler metrics
on X which are obtained by composing an induced ray !t from a T�S1–invariant
Kähler metric � 2 A on X with the flow of a vector field J �, where � 2 t, ie
z!t D exp.tJ �/�.!t /. They show that the slope

lim
t!1

J .z!t /

t
DW J NA.X� ;A�/

is well defined and independent of the choice of induced ray !t . We notice that when
� 2 2�ƒ is a lattice element (or more generally is rational), � induces a C�–action
�� on X and z!t is an induced smooth ray from another Kähler test configuration
.X� ;A�/, called the �–twist of .X ;A /, obtained from X by composing the initial
C�–action � with �� and compactifying trivially at infinity. (For instance, the product
test configurations are precisely the �–twists of the trivial test configuration.) In
this case, J NA.X� ;A�/ is just the non-Archimedean J –functional computed as in
Example 4.3 on .X� ;A�/. For a general �, the quantity .X� ;A�/ in this notation is
not a test configuration in the usual sense (it is sometimes refereed to as an R–test
configuration) but the value J NA.X� ;A�/ can be obtained as a continuous extension
of the corresponding quantity for rational �’s. Following [49; 57], we let

(20) J NA
TC .X ;A / WD inf

�2t
J NA.X� ;A�/� 0:

A key observation [18; 49; 57] in the polarized case is that the equality in (20) holds
if and only if .X ;L / is a product test configuration. Furthermore, according to
[49, Theorem B; 57, Theorem 3.14]:

Example 4.3 (continued) In the polarized case, the quantity J NA
TC .X ;A / introduced

in (20) defines a non-Archimedean version of the functional

JTC .!/ WD inf
�2TC

J .��.!//

on the class of T–equivariant polarized test configuration of .X;L;T /.

Our second example is established in [55, Theorem 7]:
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Example 4.4 Consider the weighted Mabuchi functional Mv;w from Definition 1.1
and assume that the relation (7) holds; see Remark 1.2. Then Mv;w admits a non-
Archimedean version defined on smooth T–equivariant Kähler test configurations with
reduced central fibre, given by

(21) Fv;w.X ;A / WD �
Z

X
.Scalv.�/�w.��//�ŒmC1�

C 8�
Z

X
v.�!/!

Œm�;

where�2A is any T–invariant Kähler metric on X with�–normalized T–momentum
map �� W X ! � and v–scalar curvature Scalv.�/, and ! 2 ˛ is any T–invariant
Kähler metric on X with �–normalized T–momentum map �! WX !�.

Definition 4.5 The right side of (21) is independent of � 2 A and ! 2 ˛ (see [55])
and is referred to as the .v; w/–weighted Donaldson–Futaki invariant of a smooth
T–equivariant Kähler test configuration .X ;A /.

Remark 4.6 In the unweighted case (ie v D 1 and w D 4m�c1.X / � ˛
m�1=˛m),

Fv;w.X ;A / admits an equivalent expression in terms of intersection cohomology
numbers on X ; see [62; 72]. This allows one to extend the definition of the (unweighted)
Donaldson–Futaki invariant to any normal Kähler test configuration. For arbitrary
weight functions v > 0 and w, we don’t have as yet a general definition for Fv;w,
but (21) can be readily extended to orbifold test configurations. We also notice that
the assumption on the central fibre in Example 4.4 is necessary in order to ensure the
equality Fv;w DM NA

v;w; see [65] for a general formula of the non-Archimedean version
of the unweighted Mabuchi energy. It will be interesting to obtain a non-Archimedean
version of Mv;w for any orbifold T–equivariant Kähler test configuration.

4.2 F NA–stability

Definition 4.7 Let F be a functional defined on the space of T–invariant Kähler
metrics on X in the Kähler class ˛, and suppose F admits a non-Archimedean version
F NA.X ;A / (see Definition 4.2), defined on a class C of T–equivariant Kähler test
configurations .X ;A / associated to .X; ˛;T /. We suppose that C contains the product
test configurations. We say that:

(i) .X; ˛;T / is T–equivariant F NA–semistable (on test configurations of C ) if for
any .X ;A / 2 C we have F NA.X ;A /� 0.

(ii) .X; ˛;T / is T–equivariant F NA–polystable (on test configurations of C ) if it
is T–equivariant F NA–semistable and, further, F NA.X ;A /D 0 if and only if
.X ;A / is a product test configuration.
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(iii) .X; ˛;T / is TC–uniform F NA–stable (on test configurations of C ) if there
exists a uniform positive constant � > 0 such that, for any test configuration
.X ;A / 2 C ,

F NA.X ;A /� �J NA
TC .X ;A /;

where J NA
TC .X ;L / is as introduced in (20).

Remark 4.8 If F is bounded below, .X; ˛;T / is T–equivariant F NA–semistable.
Furthermore both (ii) and (iii) imply (i) and, in the polarized case, (iii) implies (ii) by
the results in [18; 49; 57].

Theorem 4.9 [14; 49; 57; 66] Suppose F is a functional defined on the space
of T–invariant Kähler metrics in ˛, which is T–relatively TC–proper. Suppose ,
furthermore , that F admits a non-Archimedean version F NA defined for a class C of T–
equivariant Kähler test configurations of .X; ˛;T /. Then .X; ˛;T / is T–equivariant
F NA–polystable on C . If , moreover , .X;L/ is a polarized variety and ˛ D 2�c1.L/,
then .X; ˛;T / is TC–uniform F NA–stable on polarized test configurations in C .

Proof For the first part, we follow [66] with some minor modifications. We want to
show that if F NA.X ;A /D 0, then .X ;A / is a product test configuration.

Fix a T�S1–invariant Kähler form�2A and let!t be the corresponding ray of smooth
T–invariant Kähler forms in ˛, and  t 2 KT .X; !0/ the normalized smooth ray of
Kähler potentials satisfying I. t /D 0. According to [65], the Kähler test configuration
.X ;A / also determines a unique C 1; N1 weak geodesic ray 't in K1; N1.X; !0/, emanating
from  0. Furthermore, 't is invariant under T (by its uniqueness) provided that we
have  0 2 KT .X; !0/. According to [66, Proposition 4.2], we can consider instead
of A the relative Kähler class Ac DA � cŒX0�DA � c��.OP1.1// (for a constant c

determined from A and where ŒX0� denotes the divisor corresponding to the central
fibre X0 of X ) such that the C 1; N1 weak geodesic ray 'c

t corresponding to .X ;Ac/

is the projection of 't to the slice K1; N1
T .X; !0/ \ I�1.0/. Notice that the smooth

.1; 1/–form �� c��!FS 2 Ac defines the same smooth ray !t of T–invariant Kähler
metrics, and thus the same ray of smooth potentials  t is in KT .X; !0/\ I�1.0/ and
F NA.X ;Ac/D F NA.X ;A /D 0. The key point is that (17) and

lim
t!1

F .! t
/

t
D F NA.X ;Ac/D 0

yield an estimate 0 � d
ŒG�
1
.0;  t / � o.t/, which is shown in [66, Lemma 4.8] to be

equivalent to 0� d
ŒG�
1
.0; 'c

t /� o.t/. We can now apply the arguments in the proof of
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the implication “.2/D) .5/” of [66, Theorem 4.4] by replacing the Mabuchi energy
with the abstract functional F and the group Aut0.X / with TC , and noting that in our
T–relative situation instead of the cscK potential  0 in [66, Proposition 4.10] we can
take any Kähler potential in KT .X; !0/ (as ! 0

is T–invariant and TC is reductive).
We thus deduce the implication (5) of [66], namely, that the geodesic ray 'c

t associated
to .X ;Ac/ is given by the !0–relative Kähler potentials of exp.tJ �/�.! 0

/ in I�1.0/,
where � is a vector field in the Lie algebra of T ; it follows from [66, Theorem A.6]
that .X ;Ac/, and hence also .X ;A /, is a product test configuration.

The second part follows immediately from (18) and Example 4.3 (continued).

We next apply Theorem 4.9 to F DMv;w and F NA DFv;w.

Definition 4.10 Let F NADFv;w , where Fv;w is defined on any smooth T–equivariant
test configuration via the formula (21); see Definition 4.5. We then refer to the
F NA–stability notions introduced in Definition 4.7(i)–(iii) as T–equivariant .v; w/–
K–semistability, T–equivariant .v; w/–K–polystability, and TC–uniform .v; w/–K–
stability, respectively, on T–invariant dominating smooth Kähler test configurations
with reduced central fibre.

Proof of Corollary 1 modulo Theorem 1 By definition of Mv;w (see Definition 1.1),

Mv;w.'C c/DMv;w.'/C c
Z

X
.Scalv.!'/�w.�'//!Œm�' ;

showing that if Mv;w is bounded below on KT .X; !0/ (in particular if Mv;w is T–
relatively TC–proper), then the relation (7) holds and Mv;w defines a functional on the
space of T–invariant Kähler metrics in ˛ (see Remark 1.2). In this case, Example 4.4
tells us that Fv;w.X ;A / defines a non-Archimedean version of Mv;w. We can now
apply Theorem 4.9.

5 Semisimple principal fibrations

Let .X; !/ be a compact Kähler 2m–manifold, endowed with a hamiltonian isometric
action of an r–dimensional torus T . As T will act on various spaces, we shall use at
times super- and subscripts to emphasize the space on which T acts. For instance, TX

will denote the T–action on X . Let t be the Lie algebra of T and ƒ� t the lattice of
generators of circle groups in T (ie T D t=2�ƒ). We denote by �! W X ! � � t�

the normalized TX –momentum map of ! (the map whose image is a fixed compact
convex polytope �� t�).
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Let B D B1 � � � � �Bk be a 2n–dimensional cscK manifold where each .Ba; !Ba
/,

for a D 1; : : : ; k, is a compact cscK Hodge Kähler 2na–manifold (ie 1
2�
Œ!Ba

� is in
H 2.Ba;Z/), and �B WP!B a principal T–bundle endowed with a connection 1–form
� 2�1.P; t/ with curvature

(22) d� D
kP

aD1

.��B!Ba
/˝pa for pa 2ƒ:

Remark 5.1 The principal T–bundle P above can be described in terms of r complex
line bundles over B as follows. Fixing a lattice basis f�1; : : : ; �r g of t and writing
pa D

Pr
iD1 pai�i for pai 2 Z with aD 1; : : : ; k (22) yields that P is the (fiberwise)

product of r principal U.1/–bundles Pi!B, where each Pi is associated to a complex
line bundle L�i on B with Chern class 2�c1.L

�
i /D�

Pr
aD1 pai�

�
B
Œ!Ba

�:

2�c1.P / WD �2�
rP

iD1

c1.L
�
i /˝ �i D

kP
aD1

��B Œ!Ba
�˝pa:

Fixing a connection 1–form � on P as in (22) amounts to introducing a hermitian
metric h�i on each L�i , with curvature �

Pr
aD1 pai�

�
B
.!Ba

/, and identifying Pi �L�i
with the corresponding unitary S1–bundle.

Let DD ann.�/� TP be the horizontal distribution defined by � , leading to a splitting

TP DD˚ tP ;

where tP denotes the Lie algebra of TP inside C1.P;TP /, corresponding to the
T–action TP on P . The lift JB of the integrable almost complex structure of B to D

gives rise to a CR structure .D;JB/ on P (of codimension r ).

We further let Z WD X � P and consider the induced T–action, denoted by TZ ,
generated by .��X

i C �
P
i / for any basis of ƒ as above. We thus define

Y WDZ=TZ :

It follows that Y is a 2.mCn/–dimensional smooth manifold, and �Y WZDX�P!Y

is a principal T–bundle over Y , whereas �B W P ! B defines a fibration �B W Y ! B

with smooth fibres X , as summarized in the diagram

Z DX �P

X �B Y

B

=TP
=TZ

�B

�B �B
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The TX –action on the factor X in Z DX �P descends to a T–action on Y , denoted
by TY , which preserves each fibre (and thus coincides with the action of TX ). Notice
that the 1–form � also defines a connection 1–form on Z with horizontal distribution H :

(23) T .X �P /DH ˚ tZ ; H D TX ˚DD ann.�/:

This gives rise to an induced CR structure .H ;J D JX ˚JB/ of codimension r on Z,
which is clearly invariant under the TZ –action, and therefore defines a TY –invariant
complex structure JY on Y .

We now consider Kähler metrics on Y , compatible with the fibre bundle construction
of the above form. To simplify the notation, we denote by !a WD !Ba

the (fixed) cscK
metric on each factor Ba, by ! a T–invariant Kähler structure in the class ˛ on X , and
by z! the resulting Kähler structure on Y , which is defined in terms of a basic 2–form
on Z DX �P , depending on k real constants ca 2R (which will be fixed) such that,
for each aD 1; : : : ; k, the affine-linear function hpa; �iC ca on t� is strictly positive
on the momentum image �:

z! WD !C
kP

aD1

.hpa; �!iC ca/�
�
B!aChd�! ^ �i(24)

D !C
kP

aD1

ca.�
�
B!a/C d.h�! ; �i/:

In the above expression, h � ; � i stands for the natural pairing between t and t�. Thus
hpa; �!i is a smooth function, h�! ; �i is a 1–form, and hd�! ^ �i is a 2–form on Z.
One can directly check from the above expression that z! is closed and TZ –basic, and
is positive definite on .H ;JX ˚ JB/, so it is the pullback of a Kähler form on Y .
We shall tacitly identify in the sequel the Kähler form on Y with its pullback (24) on
Z D X �P . Notice that z! is TY –invariant and �! , seen as a smooth TZ –invariant
function on Z, is the �–normalized momentum map.

Remark 5.2 The horizontal part z!h WD z!jH of the 2–form z! on ZDX�P
�B
��!X�B

is invariant and basic with respect to the action TP on the factor P , and thus induces a
hermitian (non-Kähler in general) metric on X �B DX �

Qk
aD1 Ba, given by

Q!h D !C
kP

aD1

.hpa; �!iC ca/!a;

which is an instance of warped geometry. On can thus think of .X � B; z!h/ and
.Y; z!/ as being related by the twist construction of [69] applied to .Z; z!;TZ / and
.Z; z!;TP /.
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Definition 5.3 The Kähler manifold .Y;TY / constructed as above will be called a
semisimple .X;T /–principal fibration associated to the Kähler manifold .X;T / and
the product cscK manifold B D B1 � � � � �Bk . The TY –invariant Kähler metric z!
on Y constructed from a TX –invariant Kähler metric ! on X (and fixed cscK metrics
!a on Ba) will be called bundle-compatible.

Remark 5.4 In the case when .X;T ; !/ is a toric Kähler manifold, a semisimple
.X;T /–principal fibration endowed with a bundle-compatible Kähler metric is an
example of a semisimple rigid toric fibration in the sense of [6], and is thus described
by the generalized Calabi construction with a global product structure on the base and
no blow-downs.

5.1 The space of functions

The above bundle construction gives rise to a natural embedding of the space C1T .X /

of TX –invariant smooth functions on X to the space C1T .Y / of TY –invariant smooth
functions on Y : for any ' 2 C1T .X / we consider the induced function on Z DX �P ,
which is clearly TZ –invariant, and thus descends to a smooth TY –invariant function
on Y . We shall tacitly identify ' and its image in C1T .Y /, ie we shall consider

C1T .X /� C1T .Y /:

Notice that the above embedding is closed in the Fréchet topology, as we can identify
a smooth TX –invariant function on X with a smooth TY –invariant function ' on Y ,
which has the property

dP .�
�
Y '/D 0

on Z DX �P .

More generally, for any TY –invariant smooth function  2 C1T .Y /, its lift ��
Y
 to

Z DX �P is a smooth function which is both TZ – and TX –invariant, or equivalently
TX – and TP –invariant. It thus follows that ��

Y
 can be equivalently viewed as a

TX –invariant smooth function on X �B, ie we have an identification

(25) C1T .Y /Š C1T .X �B/:

In particular, for any fixed point x 2X , we shall denote by  x 2 C1.B/ the induced
smooth function on B, and for any fixed point b 2 B by  b 2 C1T .X / the induced
function on X . We thus have the identification

C1T .X /Š f 2 C1T .Y / j dB x D 0 for all x 2X g:
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5.2 The space of bundle-compatible Kähler metrics

We shall next use the construction of (24) in order to identify the space KT .X; !0/ of
TX –invariant !0–relative Kähler potentials on X as a subset of the space KT .Y; z!0/

of TY –invariant z!0–relative Kähler potentials on Y .

Lemma 5.5 Let !'D!0CdX dc
X
' be a TX –invariant Kähler form on X in the Kähler

class ˛D Œ!0�, where ' 2KT .X; !0/ is a TX –invariant smooth function on X . Denote
by �' the momentum map of TX with respect to !' , satisfying the normalization
�'.X /D�, and by z!' the induced Kähler metric on Y , via (24). Then

z!' D z!0C dY dc
Y ';

where ' stands for the induced smooth function on Y .

Proof Recall that�'D�0Cdc
X
'; see (5). By (24), the pullback of z!' to ZDX�P is

z!' D !'C
kP

aD1

ca.�
�
B!a/CdZ h�' ; �i D !0C

kP
aD1

ca.�
�
B!a/CdX dc

X 'CdZ h�' ; �i

D z!0CdZ dc
X 'CdZ .hd

c
X '; �i/;

so it is enough to check that

(26) dc
Y ' D dc

X 'Chd
c
X '; �i

for any TX –invariant smooth function ' on X . To this end, let us choose a basis
f�1; : : : ; �r g of t, with dual basis f�1; : : : ; �r g of t�, and write

dc
X ' D

rP
jD1

.dc
X '/.�

X
j /�j and � D

rP
jD1

�j�j

for 1–forms �j on Z such that �j is zero on H and �j .�P
i /D �j .��

X
i C �

P
i /D ıij .

Thus, (26) is equivalent to

dc
Y ' D dc

X 'C
rP

jD1

.dc
X '/.�

X
j /�j :

Evaluating the right side of the above equality on the generators .��X
j C �

P
j / of tZ ,

we see that it is a �Y –basic 1–form on Z, and thus is the pullback of a 1–form on Y

via �Y . The claim follows easily.

Thus, Lemma 5.5 defines an embedding KT .X; !0/ � KT .Y; z!0/ and we have also
identified in Section 5.1 a natural embedding of the space of TX –invariant functions on
X into the space of TY –invariant functions on Y , through their pullbacks to ZDX�P .
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Letting � WD
Pr

jD1 �j ˝ �
P
j be the decomposition of the connection 1–form � on P in

a basis f�1; : : : ; �r g of the lattice ƒ� t, and �^r WD �1 ^ � � � ^ �r , it follows from (24)
and Lemma 5.5 that for any ' 2 KT .X; !0/� KT .Y; z!0/, the measure z!ŒmCn�

' on Y

is the pushforward of the measure on Z

(27)
1

.2�/r
z!ŒmCn�
' ^ �^r

D
1

.2�/r

�
p.�'/!

Œm�
' ^

Vk
aD1 �

�
B!

Œna�
a

�
^ �^r ;

where

(28) p.�/ WD
kQ

aD1

.hpa; �iC ca/
na for na D dimC.Ba/

is a positive polynomial on�, determined by the semisimple .X;T /–principal fibration
Y and the given bundle-compatible Kähler class on it. It thus follows that any TX –
invariant integrable function f on X defines an integrable TY –invariant function on Y

and, for any ' 2 KT .X; !0/� KT .Y; z!0/,

(29)
Z

Y
f z!ŒnCm�

' D Vol.B; !B/
Z

X
p.�'/f!

Œm�
' :

Corollary 5.6 There exists an embedding KT .X; !0/�KT .Y; z!0/ such that , for any
smooth curve  t 2 KT .X; !0/� KT .Y; z!0/,

LY
1 . t /D Vol.B; !B/L

X
1;p. t /;

where p.�/ is the positive weight function on � defined in (28), LX
1;p

is the p.�/–
weighted length function on KT .X; !0/ given by

LX
1;p. t / WD

Z 1

0

�Z
X
j P t jp.� t

/!
Œm�

 t

�
dt;

and LY
1

is the length function on KT .Y; z!0/ corresponding to the weight p D 1.
In particular , dY

1
.'0; '1/ D Vol.B; !B/d

X
1;p
.'0; '1/ for any '0; '1 2 KT .X; !0/ �

KT .Y; z!0/, where dX
1;p

is the induced distance via the length functional LX
1;p

.

Proof This is a direct consequence of (29).

Lemma 5.7 Let ' be a smooth TX –invariant function on X , also considered as a
smooth TY –invariant function on Y , and ! be a TX –invariant Kähler metric on X

with z! the corresponding TY –invariant Kähler metric on Y given by (24). Then

kd'k2! D kd'k
2
z! :
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Proof We use that

kd'k2! D
dX ' ^ dc

X
' ^!Œm�1�

!Œm�
D

dX ' ^ dc
X
' ^!Œm�1� ^p.�!/.�

�
B
!B/

Œn� ^ �^r

!Œm� ^p.�!/.�
�
B
!B/Œn� ^ �^r

;

kd'k2
z! D

dY ' ^ dc
Y
' ^ z!ŒmCn�1�

z!ŒmCn�
D

dY ' ^ dc
Y
' ^ z!ŒmCn�1� ^ �^r

z!ŒmCn� ^ �^r

(where the right sides are written on X �P ) together with dX ' D dY ' and (27).

Proposition 5.8 The embedding in Corollary 5.6 is totally geodesic with respect to
the weak C 1; N1 geodesics.

Proof Let '0; '12KT .X; !0/. If '0 and '1 can be connected by a smooth geodesic 't ,
ie with a smooth curve in KT .X; !0/ such that

(30) R' D kd P'k2!' ;

then, by Lemma 5.7, 't is also a smooth geodesic in KT .Y; z!0/ connecting '0 and '1

in KT .Y; z!0/.

In general, by the results in [22], '0 and '1 can be connected only with a weak C 1; N1–
geodesic in K1; N1

T .X; !0/, where K1; N1.X; !0/ stand for the space of C 1.X / functions
' on X such that !0C ddc' � 0 and has bounded coefficients as a .1; 1/–current.
More precisely, letting † WD f1 < z < eg � C, it is shown in [22] that there exists a
unique weak solution (ie a positive .1; 1/–current in the sense of Bedford and Taylor)
of the homogeneous Monge–Ampère equation

(31)
.��X!0C dX dc

Xˆ/
mC1
D 0; ��X!0C dX dc

Xˆ� 0 for ˆ 2 C 1;˛.X �†/;

ˆ.x; 1/D '0.x/; ˆ.x; e/D '1.x/:

It was later shown in [25] that ˆ is actually of regularity C 1;1.X �†/. Note that, by
uniqueness, ˆ is T–invariant as soon as '0 and '1 are. The link with (30) is (see [64])
that if ˆ were actually smooth, we could recover the smooth geodesic 't joining '0

and '1 by letting t WD log jzj and 't .x/ WDˆ.x; log jzj/. In the general case, the curve
't of (weak) !0–relative plurisubharmonic potentials (of regularity C 1;1.X � Œ0; 1�/)
is referred to as the weak C 1; N1–geodesic joining '0 and '1.

We are thus going to check that any weak C 1; N1–geodesic on X (invariant under TX )
defines, via Lemma 5.5, a C 1; N1–geodesic on Y . To this end, we need to show that ˆ
satisfies

(32) .��Y z!0C dY dc
Yˆ/

mCnC1
D 0 and ��Y z!0C dY dc

Yˆ� 0;

the regularity statements being automatically satisfied on Y .
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By the results in [16; 22], ˆ can be approximated as "! 0, both in the weak sense of
currents and in C 1;˛.X �†/ (for a fixed ˛ 2 .0; 1/), by smooth functions ‰".x; z/ on
X �† for " > 0 which solve

(33)
.��X!0C dX dc

X‰
"/ŒmC1�

D "..��X!0/
Œm�
^ .dx ^ dy//;

��X!0C dX dc
X‰

" > 0; ‰".x; 1/D '0; ‰".x; e/D '1:

By the uniqueness of the smooth solution of (33) (and using that both '0 and '1

are TX –invariant), we have that ‰".x; z/ is a TX –invariant smooth function on X

for any z 2 †. Furthermore, the positivity condition on the second line yields that
‰".x; z/ 2 KT .X; !0/ for any z 2†. We can then also see ‰".x; z/, via its pullback
to X �P �†, as a TY –invariant smooth function on Y �†; the arguments in the proof
of Lemma 5.5 yield that ��

Y
z!0C dY dc

Y
‰" > 0 on Y �†. Also, by the same proof,

we have the equality of volume forms, on X �P �†,

(34) .��Y z!0C dY dc
Y‰

"/ŒmCnC1�
^ �^r

D p.�‰"/.�
�
X!0C ddc‰"/ŒmC1�

^ .��B!B/
Œn�
^ �^r

D "p.�‰"/.�
�
X!0/

ŒmC1�
^ .��B!B/

Œn�
^ �^r ;

where, we recall, p.�/ WD
Qk

aD1.hpa; �i C ca/
na and �^r WD �1 ^ � � � ^ �r (for

� D
Pr

iD1 �i ˝ �
P
i with respect to a basis f�1; : : : ; �r g of ƒ � t), and, for any fixed

z 2†, �‰" denotes the normalized TX –momentum map (5) of !0CdX dc
X
‰". Notice

that, as p is uniformly bounded on � by positive constants, it follows by (34) that

lim
"!0

..��Y z!0C dY dc
Y‰

"/ŒmCnC1�
^ �^r /D 0

weakly (as measures on Z � †). The measure .��
Y
z!0 C dY dc

Y
‰"/ŒmCnC1� is the

pushforward measure of .��
Y
z!0C dY dc

Y
‰"/ŒmCnC1� ^ �^r to Y , so we obtain, on Y ,

lim
"!0

..��Y z!0C dY dc
Y‰

"/ŒmCnC1�/D 0:

Furthermore, using the C 1;˛–convergence of ‰" to ˆ, we get the weak convergences
(of positive .1; 1/–currents)

lim
"!0

.��Y z!0C dY dc
Y‰

"/D ��Y z!0C dY dc
Yˆ� 0;

0D lim
"!0

.��Y z!0C dY dc
Y‰

"/ŒmCnC1�
D .��Y z!0C dY dc

Yˆ/
ŒmCnC1�:

Thus, (32) follows.
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Lemma 5.9 Let v be a smooth positive weight function on �, let ! and z! be
T–invariant Kähler metrics on X and Y , respectively, given by (24), and suppose
.Ba; !a/ has constant scalar curvature Scal.!a/ D sa. Then the v–scalar curvature
Scal.z!/, considered as smooth function on X �P , is given by

(35) Scalv.z!/D
1

p.�!/
Scalpv.!/C v.�!/q.�!/;

with p.�/D
Qk

aD1.hpa; �iCca/
na and q.�/D

Pk
aD1 sa=.hpa; �iCca/. In particular ,

! is a .pv; zw/–cscK metric on X if and only if z! is a .v; w/–cscK metric on Y , with

zw.�/D p.�/.w.�/� v.�/q.�//:

Proof We apply the arguments in the proof of [3, Proposition 7] to both .X;TX / and
.Y;TY / to compute the corresponding scalar curvatures, and compare the results.

On X , we consider the open dense subset VX �X of stable points of the TX –action,
and take the quotient �S W

VX ! S WD VX=TC
X

under the induced complexified action
TC

X
Š .C�/r (thus S is a complex 2.m�r/–dimensional orbifold).

Consider the pointwise !–orthogonal and T–invariant decomposition

T VX DH˚ tX ˚J tX ;

and write the Kähler structure .g;J; !/ on X as

g D gHC

rP
i;jD1

Hij .�i ˝ �j CJ�i ˝J�j /; ! D !HC

rP
i;jD1

Hij�i ^J�j ;

where, for a fixed basis f�1; : : : ; �r g of t, the 1–forms �j on VX are defined by .�j /jHD0,
�j .�

X
i /D ıij ; �j .J �

X
i /D 0 and Hij D g.�X

i ; �
X
j /.

We next fix a local volume form VolS on S in some holomorphic coordinates, and
pointwise write

(36) !
Œm�r �
H DQ��S .VolS /

for some positive (locally defined) smooth function Q on VX (where both !Œm�1�
H

and
��

S
.VolS / are seen as sections of

Vm�1
H�). According to [3, Proposition 7],

(37) � WD �1
2
.log QC log det.Hij //

is a (local) Ricci potential of !, ie �! D dX dc
X
�, and thus

Scal.!/D�2
dX dc

X
� ^!Œm�1�

!Œm�
:
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We can now make a similar argument on Y , noting that the Kähler reduction of VY by the
induced TY –action is S �B; taking a local volume form in holomorphic coordinates
on S �B of the form VolS ^VolB1

^ � � � ^VolBk
, and using (24), we see that a Ricci

potential on Y (when pulled back to X �P ) is written as

Q� D
kP

aD1

�a�
1
2
.log zQC log det.Hij //;

where �a WD �
1
2

log.!Œna�
a =VolBa

/ is a Ricci potential of .Ba; !a/ and

zQD p.�!/Q:

Thus,

(38) Q� D
kP

aD1

�aC � �
1
2

log p.�!/;

as functions on X � P . Introducing a basis .�i/i of ƒ and writing the connection
1–form � 2�1.P; t/ as � D

Pr
jD1 �j ˝ �

P
j (where the 1–forms �j on P are such that

�j is zero on D and �j .�P
i /D ıij ), we compute the scalar curvature of Q! to be

(39) Scal.z!/D
�
�.dY dc

Y
Q� ^ z!ŒmCn�1�/=.z!ŒmCn�/ on Y;

�.dY dc
Y
Q� ^ z!ŒmCn�1� ^ �^r /=.z!ŒmCn� ^ �^r / on X �P:

By (26) and (38), the pullback of dY dc
Y
Q� to X �P is given by

(40) dY dc
Y Q� D dY dc

Y

�
� � 1

2
log p.�!/

�
C

kP
aD1

dY dc
Y �a

D dX dc
X

�
� � 1

2
log p.�!/

�
C

rP
jD1

dX

�
dc

X

�
� � 1

2
log p.�!/

�
.�X

j /
�
^ �j

C

rP
jD1

dc
X

�
� � 1

2
log p.�!/

�
.�j /dP�j C

kP
aD1

ddc
Ba
�a

D dX dc
X � �

1
2
dX dc

X .log p.�!//

C

rP
jD1

dX

�
dc

X

�
� � 1

2
log p.�!/

�
.�X

j /
�
^ �j

C

kP
aD1

dc
X

�
� � 1

2
log p.�!/

�
.pa/.�

�
B!a/C

kP
aD1

ddc
Ba
�a;

where in the last equality we used (22) and we have denoted by pa the induced vector
field on X by the element pa2 t. We shall compute the term dc

X
�.pa/ on VX . Using (37),
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we get

(41) dc
X �.pa/D

1

2

�
LJpa

Q

Q
C tr.H�1

ij .LJpa
Hij //

�
:

Taking the wedge product of both sides of (36) with� rX
i;jD1

Hij�i ^J�j

�Œr �
D det.Hij /

Vr
jD1.�j ^J�j /

gives
!Œm� DQ��S VolS ^ det.Hij /

Vr
jD1.�j ^J�j /:

Applying the Lie derivative LJpa
to the above equality yields

.�!�
pa
! /!

Œm�
D .LJ �a

Q/��S VolS ^ det.Hij /
Vr

jD1.�j ^J�j /

CQ��S VolS ^LJpa

�
det.Hij /

Vr
jD1 �j ^J�j

�
and

Q��S VolS ^LJpa

�
det.Hij /

Vr
jD1.�j ^J�j /

�
D
�
tr.H�1

ij .LJpa
Hij //

�
Q��S VolS ^ .det.Hij //

Vr
jD1 �j ^J�j ;

where we used that LJpa
�j is a basic form (since .LJpa

�j /.�i/D��j .ŒJpa; �i �/D 0).
We thus get �!�

pa
! D LJpa

Q=Q C tr.H�1
ij .LJpa

Hij // or equivalently, in terms
of (41),

(42) dc
X �.pa/D

1
2
.�!�

pa
! /:

Using the above equation in (40), we continue the computation:

(43) dY dc
Y Q�DdX dc

X ��
1
2
ddc

X .log p.�!//C

rX
jD1

dX

�
dc

X

�
��1

2
log p.�!/

�
.�X

j /
�
^�j

C
1

2

kX
aD1

�
�!�

pa
! C

LJpa
.p.�!//

p.�!/

�
.��B!a/C

kX
aD1

dBa
dc

Ba
�a:

Recall that, by (27), on Z we have z!ŒmCn�^�^r Dp.�!/!
Œm�^

Vk
aD1 �

�
B
!
Œna�
a ^�^r .

Similarly, by (24),

(44) z!ŒmCn�1�
^ �^r

D

kX
bD1

�
p.�!/

h�! ;pbiC cb

!Œm� ^ .��B!b/
Œnb�1�

^
Vk

aD1;a¤b.�
�
B!a/

Œna� ^ �^r

�
Cp.�!/!

Œm�1�
^
Vk

aD1.�
�
B!a/

Œna� ^ �^r :
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Using (39), (43), (27) and (44), we obtain

(45) Scal. Q!/

D Scal.!/C�!.log p.�!//

C

kX
aD1

�
na

h�! ;paiCca

�
�!�

pa
! C

LJpa
p.�!/

p.�!/

�
C

sa

h�! ;paiCca

�

D Scal.!/C
kX

aD1

na�!.log.h�! ;paiCca//

C

kX
aD1

�
na

h�! ;paiCca

�
�!.h�! ;pai/C

LJpa
.p.�!//

p.�!/

�
C

sa

h�! ;paiCca

�

D Scal.!/�
kX

a;bD1

nanbg.pa;pb/

.h�! ;paiCca/.h�! ;pbiCcb/

C

kX
aD1

�
2na�!.h�! ;pai/

h�! ;paiCca
C

naj�aj
2
g!

.h�! ;paiCca/2
C

sa

h�! ;paiCca

�
:

On the other hand, using a basis .�i/ of t with a dual basis .�i/ of t�,

Scalp.!/ WDp.�!/Scal.!/C2

rX
iD1

p;i.�!/�!.h�! ; �ii/�

rX
i;jD1

p;ij .�!/g!.�i ; �j /

Dp.�!/Scal.!/C2

rX
iD1

�!.h�! ; �ii/

kX
aD1

na�
i.pa/p.�!/

h�! ;paiCca

C

rX
i;jD1

g!.�i ; �j /

� kX
aD1

na�
i.pa/�

j .pa/p.�!/

.h�! ;paiCca/2

�

kX
a;bD1

nanb�
i.pa/�

j .pa/p.�!/

.h�! ;paiCca/.h�! ;pbiCcb/

�

Dp.�!/Scal.!/C2�!.h�! ;pai/

kX
aD1

nap.�!/

h�! ;paiCca

C

� kX
aD1

najpaj
2
g!

p.�!/

.h�! ;paiCca/2
�

kX
a;bD1

nanbg!.pa;pb/p.�!/

.h�! ;paiCca/.h�! ;pbiCcb/

�
:
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Comparing the above expression with (45),

(46) Scal.z!/D 1

p.�!/
Scalp.!/C

� kX
aD1

sa

h�! ;paiC ca

�
:

Using that (as functions on X � P ) � Q! D �! and g!.�i ; �j / D gz!.�i ; �j / (see the
proof of Lemma 5.7), we further compute, from (46),

Scalv. Q!/D v.� Q!/Scal. Q!/C 2

rX
iD1

v;i.� Q!/�
Y
Q!.h� Q! ; �ii/�

rX
i;jD1

v;ij .� Q!/gz!.�i ; �j /

D
v.�!/

p.�!/
Scalp.!/C v.�!/q.�!/C 2

rX
iD1

v;i.�!/�
Y
Q!.h�! ; �ii/

�

rX
i;jD1

v;ij .�!/gz!.�i ; �j /

D
v.�!/

p.�!/
Scalp.!/C v.�!/q.�!/C 2

rX
iD1

v;i.�!/�
X
!;p.h�! ; �ii/

�

rX
i;jD1

v;ij .�!/g!.�i ; �j /;

where, for passing to the last line, we used the identity �Y
z!
D �X

!;p established in
Lemma A.3. As

(47) �X
!;p. / WD

1

p.�!/
ı!.p.�!/d /D�

X
! . /�

rX
jD1

p;j .�!/

p.�!/
g!.d�

�j
! ; d /;

we further get

v.�!/

p.�!/
Scalp.!/C 2

rX
iD1

v;i.�!/�
X
!;p.h�! ; �ii/�

rX
i;jD1

v;ij .�!/g!.�i ; �j /

D v.�!/Scal.!/C 2

rX
iD1

v.�!/p;i.�!/

p.�!/
�X
! .h�! ; �ii/

�

rX
i;jD1

v.�!/p;ij .�!/

p.�!/
g!.�i ; �j /C 2

rX
iD1

v;i.�!/�
X
! .h�! ; �ii/

� 2

rX
i;jD1

v;i.�!/p;j .�!/

p.�!/
gX .�i ; �j /�

rX
i;jD1

v;ij .�!/g!.�i ; �j /
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D
1

p.�!/

�
.pv/.�!/Scal! C2

rX
iD1

.pv/;i.�!/�
X
! .h�! ; �ii/

�

rX
i;jD1

.pv/;ij .�!/g!.�i ; �j /

�
D

1

p.�!/
Scalpv.!/:

The expression (35) follows from the above formulas.

Lemma 5.10 The restriction of the weighted Mabuchi energy M Y
v;w on Y to the

subspace KT .X; !0/ � KT .Y; z!0/ is equal to C M X
pv; zw

, where p, w and zw are as
given in Lemma 5.9 and C D Vol.B; !B/.

Proof This is a direct corollary of Lemma 5.9 and Definition 1.1.

We now specialize to the case when each .Ba; !a/ is a Hodge Kähler–Einstein manifold
with positive scalar curvature sa D 2naka, where ka 2N. Equivalently, 2�c1.Ba/D

kaŒ!a� for a positive integer ka and an integral Kähler class 1
2�
Œ!a�. Notice that ka must

be a positive divisor of the Fano index Ind.Ba/ of Ba, which yields the a priori bound
1� ka � Ind.Ba/. We also assume that .X;T / is Fano, with canonically normalized
momentum polytope �. We then have:

Lemma 5.11 In the setting above , if the affine-linear functions hpa; �i C ka are
positive on �, then the bundle-compatible Kähler metric z! on Y corresponding to the
constants ca D ka belongs to de Rham class 2�c1.Y /. Furthermore , z! is a v–soliton if
and only if ! is a pv–soliton.

Proof By using (38) and rearranging the terms in (40), we have the relation (written
on Z)

(48) �z! D �! C

kX
aD1

.hpa; ��! iC ca/!aChdX��! ^ �i

C

kX
aD1

.�a� ca!a/�
1
2
dY dc

Y log p.�!/;

where �z! , �! and �a denote the Ricci forms of .Y; z!/, .X; !/ and .Ba; !a/, respec-
tively, pulled back to Z, and ��! WD dc

X
� is the “momentum map” with respect to the

Ricci form �! . As in (42), we have ��! D
1
2
�!�! . Suppose �! �! D 1

2
dX dc

X
h for
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some T–invariant smooth function on X ; by using that the momentum polytope �
is canonically normalized, we have (see (11)) ��! ��! D dch. A closer look at the
proof of Lemma 5.5 and the relation (48) (with ca D sa=.2na/D ka) show that

�z! � z! D
1
2
dY dc

Y
Qh with Qh WD h� log p.�!/:

The claim follows from the above.

Remark 5.12 Lemma 5.11 provides a useful way to construct semisimple .X;T /–
principal Fano fibrations. Indeed, for given positive Hodge Kähler–Einstein manifolds
.Ba; !a/ as above with corresponding integer constants ka, and a given Fano manifold
.X;T / with associated canonical polytope �, one can try to find the possible principal
T–bundles P over B D

Qk
aD1 Ba for which the corresponding semisimple .X;T /–

principal fibration is Fano. Such principal T–bundles P are in correspondence with
the choice of lattice elements pa 2 ƒ � t and Lemma 5.11 tells us that for a set
of elements pa, to determine a Fano semisimple .X;T /–principal fibration Y it is
sufficient to check that, for all a,

hpa; �iC ka > 0 on �:

For instance, if we take B D B1 D P1 with a Fubini–Study metric !1 of scalar
curvature 4 (so that k1 D 2 and !1 is primitive) and .X;T /D .P1;S1/ with canon-
ical polytope � D Œ�1; 1�, then the possible Fano .P1;S1/–principal fibrations will
correspond to p1 2 Z such that p1�C 2 > 0 on Œ�1; 1�, ie p1 D ˙1; 0 are the only
possible values. This gives rise to the Fano surfaces P .O˚O.�1//Š P .O˚O.1//
and P1 �P1. In general, the isomorphism class of the principal T–bundle P over B,
and hence also the semisimple .X;T /–principal Fano fibration constructed as above,
is encoded by the Hodge classes 1

2�
Œ!a�˝pa D 1=kac1.Ba/˝pa 2H 2.B;Z/r . The

a priori bounds 1 � ka � Ind.Ba/ for ka show that, for given base B D
Qk

aD1 Ba

and fibre .X;T /, there are only a finite number of semisimple .X;T /–principal Fano
fibrations constructed this way.

Remark 5.13 The relationship between the Ricci potentials Qh and h established in
the proof of Lemma 5.11 and (29) yield, via Remark 2.3, that, if the momentum map
�! of .X; !;TX / is canonically normalized, then the momentum map �z! D �! of
the corresponding bundle-compatible Kähler metric z! on .Y;TY / is also canonically
normalized.

We finish this section with a straightforward extension of [6, Lemma 5]:
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Lemma 5.14 Suppose Y is a semisimple principal .X;T /–fibration over B, such
that T is a maximal torus in the reduced group of automorphisms Autr .X /. Let z!
be a bundle-compatible Kähler metric on Y corresponding to a T–invariant Kähler
metric ! on X , and KB � Autr .B/ be a maximal compact torus in the reduced
group of automorphisms of B which (without loss of generality by the Lichnerowicz–
Matsushima theorem) belongs to the isometry group of !B . Then z! is invariant under
the action of a maximal torus KY � Autr .Y /, and we have an exact sequence

f0g ! Lie.TY /! Lie.KY /! Lie.KB/! f0g:

Furthermore , for any positive weight functions v and w0 defined on � � t�, there
exists a unique affine-linear function `ext

v;w0
on t� such that , when pulled back to the

dual Lie algebra k�
Y

of KY , .v; w0`
ext
v;w0

/ satisfies (3) with respect to z! on Y for any
affine-linear function ` on k�

Y
.

Proof This proof is not materially different than the proof of [6, Lemma 5] (which
is made in the case when .X;T / is toric and v D w0 D 1). We only give a sketch.
A Killing potential f for a Killing vector field K 2 kB WD Lie.KB/ is of the form
f D

Pk
aD1 fa, where fa is a Killing potential of .Ba; !a/. Letting zK be the horizontal

lift of K to P (using the tP –valued connection 1–form �), one can check that the
vector field on P

yK D zKC
kP

aD1

fa�
P
pa

is a CR vector field on .P;D;JB/, hence also on .Z;H ;JB˚JX /. Furthermore, a
direct verification in (24) reveals that

(49) { yK z! D�d
� kP

aD1

.hpa; �!iC ca/fa

�
;

so yK also preserves z!. We thus obtain a lift OkB of the Lie algebra kB D Lie.TB/ to Z,
which clearly commutes with the action TZ and preserves both the CR structure of
.Z;H / and the 2–form z!. The Lie algebra kY of KY is then induced by tX˚OkB�T Z,
which descend to an abelian Lie algebra of Killing fields on Y . The maximality of
KY � Autr .Y / and the exactness of the sequence follow from the maximality of each
KB � Autr .B/ and T � Autr .X /, and the fact that (recall that Y is a locally trivial
X –fibre bundle and therefore the fibres have trivial normal bundle) any holomorphic
vector field on Y projects under �B to a holomorphic vector field on B. For the final
claim in Lemma 5.14, notice that by (49) the Killing potentials of all lifted Killing
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vector fields yK from B are of the form
Pk

aD1.hpa; �!iC ca/fa. Thus, by Lemma 5.9
and using (27), the integral condition (3) on .Y; z!/ will be zero for any such Killing
potential as soon as we normalize

R
Ba
fa!

na
a D 0 and assume `ext

v;w0
2Aff.t�

X
/. On the

other hand, examining (3) on .Y; z!/ for the Killing potentials `.�z!/ for ` 2 Aff.t�/
reduces (again by Lemma 5.9 and (29)) to an integral relation on .X; !/ which defines
a unique element `ext

v;w0
2 Aff.t�/.

6 Weighted functionals and distances and their extensions

Let !0 be a T–invariant Kähler metric in the Kähler class ˛, denote by PSHT .X; !0/

the space of T–invariant !0–plurisubharmonic functions in L1.X; !0/, and define the
class of potentials of full volume by

ET .X; !0/ WD

�
' 2 PSHT .X; !0/

ˇ̌̌ Z
X

MA.'/D
Z

X

!
Œn�
0

�
:

According to [27], the d1–completion of KT .X; !0/ can be identified with the subspace
of potentials of finite energy:

E1
T .X; !0/D

�
' 2 ET .X; !0/

ˇ̌̌ Z
X

j'jMA.'/ <1
�
:

Our main result in this section will be the existence of an lsc extension of the weighted
Mabuchi functional (defined in Definition 1.1 on the space KT .X; !0/) to a functional
on E1

T .X; !0/. Our starting point is that the weighted Mabuchi energy Mv;w admits a
weighted Chen–Tian decomposition [55, Theorem 5] into energy and entropy parts

(50) Mv;w.'/D

Z
X

log
�
v.�'/!

m
'

!m
0

�
v.�'/!

Œm�
' � 2I

�!0
v .'/C Iw.'/

�

Z
X

log.v.�0//v.�0/!
Œm�
0
;

where �!0
is the Ricci form of !0 and the functionals Iw and I

�!0
v are introduced in

Definition 6.2. We want to show:

Theorem 6.1 For smooth weight functions v.�/ and w.�/ such that v.�/ > 0 on �,
the weighted Mabuchi energy Mv;w WKT .X; !0/!R extends using (50) to the largest
d1–lsc functional Mv;w W E1

T .X; !0/ ! R [ f1g which is convex along the finite-
energy geodesics of ET .X; !0/. Additionally , the extended weighted Mabuchi energy
Mv;w is linear in v and w, uniformly continuous in w in the C 0.�/ topology, and
continuous with respect to v in the C 1.�/ topology.
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The above result is well known for the unweighted case, by [13], and we will follow a
similar path to get an extension in the weighted case. The proof of Theorem 6.1 will
be given at the end of the section, and we detail below the definition and extension of
each component of (50).

6.1 The weighted Aubin–Mabuchi functionals

Definition 6.2 [55] For a smooth weight function v.�/ on � we let Iv denote the
functional on KT .X; !0/ defined by

.d'Iv/. P'/D
Z

X
P'v.�'/!

Œn�
' ; Iv.0/D 0;

and let Jv WD
R
X 'v.�0/!

Œm�
0
� Iv.'/. Furthermore, for a fixed T–invariant closed

.1; 1/–form � on X with momentum �� W X ! t�, we define the �–twisted Aubin–
Mabuchi functional I

�
v W KT .X; !0/!R by

.d'I�v /. P'/ WD
Z

X
P'
�
v.�'/�^!

Œm�1�
' Ch.dv/.�'/; ��i!

Œm�
'

�
; I�v .0/D 0:

For v � 1, we let I1 D I , J1 D J and I
�
v D I�, and notice that I and J are the

functionals introduced in Definition 3.1

Remark 6.3 It follows from the above definition and the results in [55] that for any
weight v.x/ and a constant c, Jv.'Cc/DJv.'/, allowing one to see Jv as a functional
on the space of T–invariant Kähler metrics in the Kähler class ˛D Œ!0�, and motivating
the notation Jv.!'/. Notice also that Iv, Jv and I

�
v are linear in v. In the case when

v > 0, Jv is nonnegative (see Lemma 6.4), whereas Iv is monotone in the sense that,
for any '0; '1 2 KT .X; !0/ with '1.x/� '0.x/,

Iv.'1/� Iv.'0/� inf
�
.v/

Z
X
.'1�'0/!

Œm�
'0
:

The above inequality follows by Definition 6.2, integrating the derivative of Iv along
the path t'1C .1� t/'0 2 KT .X; !0/, and integrating by parts.

The following is established in [45, (2.37)]:

Lemma 6.4 Let v > 0. There exists a uniform constant C D C.X; !0; v/ > 0 such
that

1

C
J .'/� Jv.'/� C J .'/:
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Proof Let 't WD '0C t' with ' WD '1 � '0 and !'t
D !'0

C tddc' for t 2 Œ0; 1�.
We compute

Jv.'/D Jv.'1/�Jv.'0/D
Z 1

0

Z
X
'.v.�!/!

Œm�
�v.�'s

/!Œm�'s
/ ds

D�

Z 1

0

Z
X
'
�Z s

0

d

dt
Œv.�'t

/!Œm�'t
� dt

�
ds

D�

Z 1

0

Z
X
'
�Z s

0

�
g't

.d Œlog ıv.�'t
/�; d'/��'t

.'/
�
v.�'t

/!Œm�'t
dt
�

ds

D�

Z 1

0

Z s

0

�Z
X
'd Œv.�'t

/�^dc'^!Œm�1�
't

C'ddc'^v.�'t
/!Œm�1�
't

�
dt ds

D

Z 1

0

Z s

0

�Z
X
v.�'t

/d'^dc'^!Œm�1�
't

�
dt ds

D

Z 1

0

Z s

0

�Z
X
v.�'t

/d'^dc'^.t!'C.1�t/!/Œm�1�
�

dt ds

D

m�1P
jD0

Z 1

0

Z s

0

�Z
X

tj .1�t/m�j�1v.�'t
/d'^dc'^!Œj �^!

Œm�j�1�

'

�
dt ds;

where, in the fourth equality, we have used that

(51) d

dt
Œv.�'t

/�D
rP

iD1

v;i.�'t
/.dc'/.�i/D g't

.d Œv.�'t
/�; d'/

for any basis .�i/iD1;:::;r of t. It follows that

1

C
J .'/� Jv.'/� C J .'/;

where C D C.X; ˛; v/ is a constant such that 1=C 6 v 6 C on �˛.

Lemma 6.5 Suppose v and w are smooth functions on �. Then

jJv.'/�Jw.'/j � kv�wkC 0.�/J1.'/;

jIv.'/� Iw.'/j � kv�wkC 0.�/.k'kL1.X ;!0/
CJ1.'//:

In particular , for a fixed ' 2 KT .X; !0/, Iv.'/ and Jv.'/ are uniformly continuous
in v.

Proof The first relation follows from Lemma 6.4 whereas the second inequality follows
from the first and Definition 6.2.

Lemma 6.6 The restrictions of IY
1

and J Y
1

to the subspace KT .X; !0/�KT .Y; z!0/

are equal to C IX
p and C J X

p , respectively, where p.�/ is the weight function defined
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in Lemma 5.9 and C D Vol.B; !B/. Furthermore , if Q� is a Kähler form on Y induced
by a Kähler form � on X using (24), then the restriction of .I Q�

1
/Y to the subspace

KT .X; !0/ equals C.I
�
p /

X .

Proof The first part follows from the definition of IY
1

, using that

z!ŒnCm�
' ^ �^r

D p.�'/!
Œm�
' ^!

Œn�
B
^ �^r

on Z.

Similarly, if Q� is a .1; 1/–form Y whose pullback to Z is

(52) Q� WD �C
kP

aD1

.hpa; ��iC cai/�
�
B!aChd�� ^ �i;

we compute

.d'I�p /
X . P'/D

Z
X

P'Œp.�'/�^!
Œm�1�
' Ch.dp/.�'/; ��i!

Œm�
' �

D
1

Vol.B; !B/

Z
Y

P' Q�^ z!ŒnCm�1�
' D

1

Vol.B; !B/
.d'I Q�/Y . P'/:

The claim follows, as .I�p /X .0/D 0D .I Q�/Y .0/.

6.2 The weighted d1–distance

Definition 6.7 Let v > 0 be a positive function on �. For '0; '1 2 KT .X; !0/ we let

d1;v.'0; '1/ WD inf
 .t/
fL1;v. .t// j  .t;x/ 2 C1T .Œ0; 1��X / and  .t/ 2 KT .X; !0/g;

where

L1;v. .t// WD

Z 1

0

�Z
X

j P .t/jv.� .t//!
Œm�

 .t/

�
dt:

For v � 1, we have d1;1 D d1, where d1 is the distance introduced in Section 3.

Lemma 6.8 For any weight v > 0, there exists uniform constant C DC.X; !0; v/ > 0

such that

(53) 1

C
d1.'0; '1/� d1;v.'0; '1/� Cd1.'0; '1/ for all '0; '1 2 KT .X; !0/;

where d1 WD d1;1 is the distance introduced in [27]. In particular , d1;v is a distance on
KT .X; !0/ which is quasiisometric with d1.

Proof The relation (53) follows from the fact that v.�/ is positive and uniformly
bounded on�. This yields that d1;v is a distance, as d1 is a distance according to [27].
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Lemma 6.9 For any smooth weight v > 0,

jIv.'0/� Iv.'1/j � d1;v.'0; '1/� Cd1.'0; '1/ for all '0; '1 2 KT .X; !0/:

Proof For any smooth curve 't between '1 and '2, using Definition 6.2,

jIv.'0/� Iv.'1/j D
ˇ̌̌Z 1

0
.d't

Iv/. P't / dt
ˇ̌̌
�L1;v.'t /:

The claim follows from the above and Lemma 6.8.

6.3 Extensions to E1
T

.X; !0/

Lemma 6.10 For any smooth weight v, the functionals Iv and Jv continuously extend
to the space E1

T .X; !0/. Furthermore , for any  2 E1
T .X; !0/, the extended functionals

are linear and uniformly continuous in v, in the topology C 0.�/.

Proof Iv is d1–Lipschitz by Lemma 6.9; for Jv, we get from Definition 6.2 that

jJv.'0/�Jv.'1/j �
Z

X
j'0�'1j!

Œm�
0
CjIv.'0/� Iv.'1/j:

Combining the above inequality with Lemma 6.9 and [27, Corollary 5.7], there exists
a uniform positive constant C D C.X; !0; v/ and, for any fixed positive real number
R> 0, an increasing continuous function FR WRC!RC;F.0/D 0, defined in terms
of .X; !0;R/, such that, for any '0; '1 2 KT .X; !0/ with d1.0; 'i/�R,

jJv.'0/�Jv.'1/j � Cd1.'0; '1/CFR.d1.'0; '1//;

showing that Jv is locally uniformly continuous on .KT .X; !0/; d1/ and thus extends
continuously to .E1

T .X; !0/; d1/.

The v–linearity of Iv and Jv is clear by continuity; see Remark 6.3. The continuity with
respect to v follows from the continuous extensions of the inequalities in Lemma 6.5,
noting that we have already shown that Jv , Jw , J , Iv and Iw all extend continuously,
whereas k � kL1.X ;!0/

extends continuously by [27, Theorem 5.8].

Corollary 6.11 The metric completion of .KT .X; !0/\ I�1
v .0/; d1/ is the complete

geodesic metric space .E1
T .X; !0/\ I�1

v .0/; d1/.

Proof Similarly to [29, Lemma 5.2], one can show that Iv is linear along finite-energy
geodesics. As Iv WE1

T .X; !0/!R is d1–continuous, it follows that E1
T .X; !0/\I�1

v .0/

is a d1–closed subspace.
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Lemma 6.12 Let v be a smooth weight function and � a T–invariant closed .1; 1/–
form. The functional I

�
v W KT .X; !0/!R extends to a d1–continuous functional on

E1
T .X; !0/ which is bounded on d1–bounded subsets of E1

T .X; !0/. Furthermore , the
extended functional is linear and uniformly continuous in v, in the C 1.�/ topology.

Proof Following the proof of [14, Proposition 4.4], we show that I
�
v is locally

uniformly d1–continuous and bounded on d1–bounded subsets of KT .X; !0/. Letting
'0; '1 2 KT .X; !0/, we put 's WD s'1C .1� s/'0 for s 2 Œ0; 1� and compute

(54) I�v .'1/�I�v .'0/D
Z 1

0

d

ds
I�v .'s/ ds

D

Z 1

0

Z
X
.'1�'0/

�
v.�'s

/�^!Œm�1�
's

Ch.dv/.�'s
/;��i!

Œm�
's

�
ds

D

Z
X
.'1�'0/

m�1P
jD0

vj ;m�1.�'0
; �'1

/�^!Œj �'1
^!Œm�j�1�

'0

C

Z
X
.'1�'0/

mP
jD0

h.dv/j ;m.�'0
; �'1

/; ��i!
Œj �
'1
^!Œm�j �

'0
;

where vj ;k.�0; �1/ and .dv/j ;k.�0; �1/ are defined on ��� by

vj ;k.�0; �1/ WD
Z 1

0
sj .1� s/k�jv.s�1C .1� s/�0/;

.dv/j ;k.�0; �1/D
Z 1

0
sj .1� s/k�j .dv/.s�1C .1� s/�0/:

Using the computation (54),

(55) jI�v .'1/� I�v .'0/j6 C
Z

X
j'1�'0j

m�1P
jD0

!0 ^!
Œj �
'1
^!Œm�j�1�

'0

CC
Z

X
j'1�'0j

mP
jD0

!Œj �'1
^!Œm�j �

'0

6 C
Z

X
j'1�'0j!

Œm�

.'0C'1/=4
;

where in the first inequality we use that the functions h.dv/j ;k.�'0
; �'1

/; ��i and
vj ;k.�'0

; �'1
/ are bounded on ��� and �C!0<�<C!0 for some constant C > 1,

and in the second inequality we use the observation !.'0C'1/=4D
1
2
!0C

1
4
!'0
C

1
4
!'1

.
Using the estimate (55) we can show, similarly to [14, Proposition 4.4], that for any
R> 0 there is an increasing continuous function FR WR!R with FR.0/D 0 such that

jI�v .'1/� I�v .'0/j6 FR.d1.'0; '1//
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for any '0; '1 2 KT .X; !0/ \ f' j d1.0; '/ < Rg. It follows that I
�
v extends to a

d1–continuous functional on E1
T .X; !0/ which is bounded on d1–bounded subsets of

E1
T .X; !0/.

For the last statement, let v and w be two (smooth) positive weight functions and
' 2 KT .X; !0/. Taking '1 D ' and '0 D 0 in the computation (54),

I�v .'/D
Z

X
'

m�1P
jD0

vj ;m�1.�0; �'/�^!
Œj �
' ^!

Œm�j�1�
0

C

Z
X
'

mP
jD0

h.dv/j ;m.�0; �'/; ��i!
Œj �
' ^!

Œm�j �
0

:

Let C > 1 such that �C!0 < � < C!0. Using the above formula,

jI�v .'/� I�w.'/j D jI
�
v�w.'/j

6 C
Z

X
j'j

m�1P
jD0

j.v�w/j ;m�1.�0; �'/j!
Œj �
' ^!

Œm�j �
0

CC
Z

X
j'j

mP
jD0

jh.d.v�w//j ;m.�0; �'/; ��ij!
Œj �
' ^!

Œm�j �
0

6 Ckv�wkC 1.�/

Z
X

mP
jD0

j'j!Œj �' ^!
Œm�j �
0

6 Ckv�wkC 1.�/

Z
X
j'j.2!0C ddc'/Œm�

6 Ckv�wkC 1.�/

Z
X
j'j!Œm�' :

Using approximation by decreasing sequences in KT .X; !0/, the above estimate holds
for E1

T .X; !0/.

Following Berman and Nyström [15] and the recent work of Han and Li [45], we now
define the extension of weighted Monge–Ampère measures to the space ET .X; !0/.

Proposition 6.13 Let v > 0 be a smooth weight function. For any ' 2KT .X; !0/, let

MAv.'/ WD v.�'/!Œm�' :

Then MAv.'/ extends to a well-defined Radon measure defined for any ' 2 ET .X; !0/

such that , for any decreasing sequence .'j /j of elements in KT .X; !0/ converging
to ' (which exists by [17]), we have limj!1MAv.'j /DMAv.'/.
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Proof The result is established in [15; 45] for !0 2 ˛ D c1.L/ a Kähler Hodge class
on a projective variety X . The method of Han and Li [45, Proposition 2.2], which
uses the semisimple principal fibration construction and polynomial approximations,
extends to the case of an arbitrary Kähler class ˛ D Œ!0�. Below we give details of this
construction, for the reader’s convenience.

Let ' 2 ET .X; !0/. Following the proof of [45, Proposition 2.2], we first define
MAp.'/ for a positive polynomial weight of the form p.�/ WD

Qk
aD1.hpa; �iCca/

na ,
and extend the definition linearly on p for finite sums of such polynomials. We can then
use the Bernstein approximation theorem of an arbitrary positive v with polynomials
of the above form in order to obtain MAv.'/.

We start with a semisimple principal .X;T /–fibration Y (see Section 5) with corre-
sponding polynomial weight p.�/ WD

Qk
aD1.hpa; �iC ca/

na ; see (28). As the choice
of the base B D B1 � � � � �Bk does not matter, we can simply take (as in [45]) B to
be the product of projective spaces .Ba; !a/D .Pna ; !a/ endowed with Fubini–Study
metrics of scalar curvatures 2na.na C 1/, and P to be the principal U.1/r –bundle
over B, obtained from the tensor products Pi of (the pullbacks to B of) the natural
principal U.1/–bundles of degrees pai over Pna ; see Remark 5.1.

Using [17, Theorem 1], there is a decreasing sequence

'j 2 PSHT .X; !0/\C1.X /D KT .X; !0/

converging towards '. By Lemma 5.5 we have 'j 2 KT .Y; z!0/ and, by (29), for any
TX –invariant continuous function f on X ,Z

X

fp.�'j /.!0C dX dc
X 'j /

Œm�
D

1

Vol.B; !B/

Z
Y

f .z!0C dY dc
Y 'j /

ŒmCn�:

Passing to the limit in both sides of the above equation, we can define MAX
p .'/ on

T–invariant continuous functions f by

(56)
Z

X

f MAX
p .'/ WD lim

j!1

1

Vol.B; !B/

Z
Y

f . Q!0C dY dc
Y 'j /

ŒmCn�:

Notice that by [43, Theorem 1.9] the limit exists and is well defined on Y (independent
of the chosen sequence).

For a continuous function f on X which is not necessarily TX –invariant, we defineZ
X

f MAX
p .'/ WD

Z
X

f T MAX
p .'/;

Geometry & Topology, Volume 27 (2023)



Weighted K–stability 3279

where f T is the TX –invariant function given by the average of f over the TX –action.
It follows that MAX

p .'/ is a well-defined Radon measure by the Riesz representation
theorem.

We can extend the above definition by linearity in p on polynomials which are linear
combinations with positive coefficients of polynomials of the above special form. Thus,
for ' 2 PSHT .X; !0/ and for two polynomials p and q on �,

(57)
ˇ̌̌̌Z

X

f MAX
p .'/�

Z
X

f MAX
q .'/

ˇ̌̌̌
6 kp� qkC 0.�/

Z
X

jf jMAX .'/

for any f 2 C 0.X /.

For an arbitrary smooth positive function v on � we can approximate v in C 0.�/ by
polynomials pi as above (eg by using Bernstein’s approximation theorem), and thus,
for any continuous function f , the limit

lim
i!1

lim
j!1

Z
X

f MAX
pi
.'j /

exists independently of the chosen approximation. We then defineZ
X

f MAX
v .'/ WD lim

i!1
lim

j!1

Z
X

f MAX
pi
.'j /:

By the Riesz representation theorem, MAX
v .'/ is a well-defined Radon measure.

Remark 6.14 For any ' 2 ET .X; !0/, the measure MAv.'/ is absolutely continuous
with respect to MA.'/ since v is bounded on�. In particular, for any positive weight v,

E1
T .X; !0/D

�
' 2 ET .X; !0/

ˇ̌ Z
X

j'jMAv.'/ <1
�
:

Lemma 6.15 Let v be a positive weight function and 'j ; ' 2 E1
T .X; !0/ such that

d1.'j ; '/! 0. Then MAv.'j /!MAv.'/ weakly.

Proof Let v.�/ be a polynomial of the form p.�/ WD
Qk

aD1.hpa; �i C ca/
na for

'j 2 KT .X; !0/, and f any continuous T–invariant function on X . We then have, by
the construction in Section 5,Z

X

fp.�'j /.!0C dX dc
X 'j /

Œm�
D

1

Vol.B; !B/

Z
Y

f . Q!0C dY dc
Y 'j /

ŒmCn�:

It follows that, for each 'j 2 E1
T .X; !0/ (using an approximation with a decreasing

sequence of smooth potentials [17]),Z
X

f MAX
p .'j /D

1

Vol.B; !B/

Z
Y

f MAY .'j /:
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By [27, Theorem 5], MAY .'j /!MAY .'/ weakly as j !1. It follows that

lim
j!1

Z
X

f MAX
p .'j /D

1

Vol.B; !B/

Z
Y

f MAY .'/D

Z
X

f MAX
p .'/:

Using (56), we conclude that MAX
p .'j /!MAX

p .'/ weakly as j !1.

For an arbitrary weight function v 2 C 0.�/, we take a sequence of polynomials pi

of the above form converging to v in C 0.�/. For any continuous function f on X ,
using (57),ˇ̌̌̌Z

X

f MAv.'j /�

Z
X

f MAv.'/
ˇ̌̌̌

6
ˇ̌̌̌Z

X

f MAv.'j /�

Z
X

f MApi
.'j /

ˇ̌̌̌
C

ˇ̌̌̌Z
X

f MApi
.'j /�

Z
X

f MApi
.'/

ˇ̌̌̌
C

ˇ̌̌̌Z
X

f MApi
.'/�

Z
X

f MAv.'/
ˇ̌̌̌

6
ˇ̌̌̌Z

X

f MApi
.'j /�

Z
X

f MApi
.'/

ˇ̌̌̌
Ckpi � vkC 0.�/

�Z
X

jf jMA.'j /C

Z
X

jf jMA.'/
�
:

Letting j !1,

lim
j!1

ˇ̌̌̌Z
X

f MAv.'j /�

Z
X

f MAv.'/
ˇ̌̌̌
6 2kpi � vkC 0.�/

Z
X

jf jMA.'/;

using the existence of the weak limits MApi
.'j /!MApi

.'/ and MA.'j /!MA.'/
as j !1 (by [27, Theorem 5]). Taking the limit i !1 in the above inequality,

lim
j!1

ˇ̌̌̌Z
X

f MAv.'j /�

Z
X

f MAv.'/
ˇ̌̌̌
D 0:

It follows that MAv.'j /!MAv.'/ weakly as j !1.

For a finite measure � on X we define the entropy of � with respect to !Œm� by

Ent.!Œm�; �/ WD
Z

X

log
�

�

!Œm�

�
�:

In the following lemma we show that the elements of E1
T .X; !0/ can be approximated

in the d1 distance by smooth potentials with converging entropy of the corresponding
weighted Monge–Ampère measures. This is the weighted analogue of [14, Lemma 3.1].
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Lemma 6.16 If v > 0, then E1
T .X; !0/ 3 ' 7! Ent.!Œm�

0
;MAv.'// is d1–lsc. Further ,

for any ' 2 E1
T .X; !0/, there exists a sequence of smooth potentials 'j 2 KT .X; !0/

such that d1.'j ; '/! 0 and Ent.!Œm�
0
;MAv.'j //! Ent.!Œm�

0
;MAv.'// as j !1.

Proof The proof follows closely the arguments of [14, Lemma 3.1]. By Lemma 6.15
and the fact that the entropy � 7! Ent.!m

0
; �/ is lsc on the space of finite measures,

with respect to the weak convergence of measures (see [11, Proposition 3.1]), it
follows that the entropy ' 7! Ent.!Œm�

0
;MAv.'// is d1–lsc. Let ' 2 E1

T .X; !0/. If
Ent.!Œm�

0
;MAv.'//D1 then any sequence 'j 2KT .X; !0/ such that d1.'j ; '/! 0

satisfies Ent.!Œm�
0
;MAv.'//!1 as j !1. We suppose Ent.!Œm�

0
;MAv.'// <1

and we put g WDMAv.'/=!
Œm�
0

> 0, the density function of the measure MAv.'/. From
the proof of [14, Lemma 3.1], there exist a sequence of positive functions gj 2C1T .X /

such that kg�gjkL1 ! 0 andZ
X

gj log gj!
Œm�
0
! Ent.!Œm�

0
;MAv.'//:

Using [45, Proposition 3.7], we can find a smooth potential 'j 2 KT .X; !0/ (which is
unique up to adding a constant) such that MAv.'j /D

�R
X v.�0/!

m
0
=
R
X gj!

m
0

�
gj!

Œm�
0

.
By [45, Lemma 2.16], up to passing to a subsequence of 'j , there exists a 2E1

T .X; !0/

such that d1. ; 'j /! 0. Lemma 6.15 together with kg�gjkL1 ! 0 gives

MAv. /D lim
j!1

MAv.'j /DMAv.'/:

It follows that ' D  (up to a constant) by [15, Theorem 2.18]. Thus, d1.'; 'j /! 0

and Ent.!Œm�
0
;MAv.'j //! Ent.!Œm�

0
;MAv.'// as j !1.

Now we are in position to prove Theorem 6.1.

Proof of Theorem 6.1 By Lemmas 6.10 and 6.12, the functionals Iw and I
�!0
v

extend as continuous functionals on E1
T .X; !0/. On the other hand, the entropy

' 7! Ent.!m
0
;MAv.'// is d1–lsc by Lemma 6.16. Thus, the weighted Chen–Tian

decomposition (50) gives rise to an extension of the .v; w/–Mabuchi energy to a
d1–lsc functional Mv;w W E1

T .X; !0/! R[ f1g. Notice that (using the continuity
of Iw and I

�!0
v ) the restriction of Mv;w W E1

T .X; !0/! R [ f1g on the subspace
K1; N1

T .X; !0/ is equal to the weighted .v; w/–Mabuchi energy on that space defined
in [56, Corollary 3]. By Lemma 6.16, for ' 2 E1

T .X; !0/, we can find a sequence
'j 2 KT .X; !0/ such that d1.'j ; '/! 0 and

lim
j!1

Mv;w.'j /DMv;w.'/:
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It follows that the extension Mv;w W E1
T .X; !0/! R[ f1g using (50) is the largest

d1–lsc extension of Mv;w W KT .X; !0/!R.

We now show that t 7! Mv;w.'t / for t 2 Œ0; 1� is convex and continuous along
the finite-energy geodesics 't 2 ET .X; !0/. We will follow closely the arguments
of [14, Theorem 4.7]. Let 't 2 E1

T .X; !0/ for t 2 Œ0; 1� be a finite-energy geodesic.
Suppose that t0; t1 2 Œ0; 1� with t0 6 t1. Using Lemma 6.16, we can find sequences
'

j
t0
; '

j
t1
2 KT .X; !0/ such that d1.'

j
t0
; 't0

/! 0 and d1.'
j
t1
; 't1

/! 0, and

lim
j!1

Mv;w.'
j
t0
/DMv;w.'t0

/ and lim
j!1

Mv;w.'
j
t1
/DMv;w.'t1

/:

Let t 7!'
j
t 2K

1; N1
T .X; !0/ for t 2 Œt0; t1� be the C 1; N1–weak geodesic segment connecting

'
j
t0

and 'j
t1

. By [56, Theorem 5], the function Œt0; t1�3 t 7!Mv;w.'
j
t / is convex. Since

Mv;w W E1
T .X; !0/!R[f1g is d1 lsc,

Mv;w.'t /6 lim inf
j!1

Mv;w.'
j
t /

6
�

t � t0

t1� t0

�
lim

j!1
Mv;w.'

j
t0
/C

�
t1� t

t1� t0

�
lim

j!1
Mv;w.'

j
t1
/

6
�

t � t0

t1� t0

�
Mv;w.'t0

/C

�
t1� t

t1� t0

�
lim

j!1
Mv;w.'t1

/;

where the second inequality uses the convexity of t 7!Mv;w.'
j
t /. Thus, t 7!Mv;w.'t /

is convex and continuous up to the boundary of Œt0; t1� since it is d1–lsc.

It remains to show that Mv;w W E1
T .X; !0/! R[ f1g is linear and continuous in v

and w. For smooth potentials ' 2 KT .X; !0/,

(58) Ent.!Œm�
0
;MAv.'//�

Z
X

log.v.�0//v.�0/!
Œm�
0
D

Z
X

log
�

MA.'/
!m

0

�
MAv.'/;

which is manifestly linear in v. For ' 2 E1
T .X; !0/ the above expression is still linear

in v by Proposition 6.13. Substituting back in (50), and using Lemmas 6.10 and 6.12,
it follows that Mv;w W E1

T .X; !0/! R[ f1g is linear in v and w. From these two
lemmas we know that I

�
v W E1

T .X; !0/! R and Iw W E1
T .X; !0/! R are uniformly

continuous in v andw. For the remaining entropy part, we notice that, if ' 2 E1
T .X; !0/,

v; v0 2 C1.�/ and f 2 C 0.X /, thenˇ̌̌̌Z
X

f MAv.'/�
Z

X

f MAv0.'/
ˇ̌̌̌
6 kv� v0kC 0.�/

Z
X

jf jMA.'/;

which can be obtained again by approximating ' with a monotone sequence of smooth
relative potentials and Proposition 6.13. So C1.�/�E1

T .X; !0/3 .v; '/ 7!MAv.'/ is
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uniformly continuous with respect to v for the weak topology on the space of measures.
Since the entropy � 7! Ent.!m

0
; �/ is lsc on the space of finite measures with respect to

the weak convergence of measures [11, Proposition 3.1], the term Ent.!Œm�
0
;MAv.'//

is lsc with respect to v. The linearity with respect to v in the right side of (58) shows
that Ent.!Œm�

0
;MAv.'// is in fact continuous with respect to v.

We derive the following weighted version of the key compactness result from [12; 13]:

Theorem 6.17 Any sequence 'j 2 E1
T .X; !0/ such that

d1.0; 'j /6 C and Mv;w.'j /6 C

admits a d1–convergent subsequence.

Proof From (50) and Lemmas 6.9 and 6.12, Ent.!Œm�
0
;MAv.'// is uniformly bounded

under the hypotheses. We conclude using [45, Lemma 2.16].

7 Regularity of the weak minimizers of the weighted Mabuchi
energy

In this section, we establish the regularity of the weak minimizers of Mv;w.

Theorem 7.1 Suppose T�Autr .X / is a maximal torus and .X; ˛;T / admits a .v; w/–
cscK metric ! with w D `ext

v;w0
w0, where v;w0 > 0 are two positive smooth weight

functions on �. If  2 E1
T .X; !0/ is a minimizer of the extended .v; w/–Mabuchi

energy Mv;w W E1
T .X; !0/!R[f1g, then  2 KT .X; !0/ is a smooth potential.

The proof of this result, which is an adaptation of the arguments in [14], will occupy
the reminder of the section.

Definition 7.2 Let v.�/ > 0 and w.�/ be smooth weight functions on � and � > 0 a
T–invariant Kähler form on X . We let

(59) Mv;w WD
˚
 2 E1

T .X; !0/\ I�1.0/ jMv;w. /D inf
'2E1

T

Mv;w.'/
	

and M
�
v;w WDMv;wC I�, where I� is introduced via Lemma 6.12 and v D 1.

By [29, Lemma 5.2] and Theorem 6.1, the set Mv;w (when nonempty) is totally geodesic
with respect to the finite-energy geodesics of E1

T .X; !0/. Furthermore, if there exists
a  � 2Mv;w such that I�. �/D inf 2Mv;w

I�. /, then  � is unique by the strict
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convexity of I� established in [14, Proposition 4.5]. Furthermore, by Theorem 6.1, the
functional M

�
v;w WE1

T .X; !0/!R[f1g will also be strictly convex along finite-energy
geodesics, showing the uniqueness of an element  2 E1

T .X; !0/\ I�1.0/ such that
M

�
v;w. /D inf'2E1

T
M

�
v;w.'/ (assuming that such minimizer  exists).

We then have a weighted version of the continuity method of [14, Proposition 3.1]:

Proposition 7.3 Let v > 0 and w be smooth weight functions on �. Suppose that
Mv;w is nonempty and ' 2 KT .X; !0/\ I�1.0/. Then , for any � > 0, there exists
a unique minimizer  � 2 E1

T .X; !0/ \ I�1.0/ of M
�!'
v;w WD Mv;w C I�!' . The

curve Œ0;1/ 3 � 7! � 2 E1
T .X; !0/\I�1.0/ is d1–continuous and d1–bounded , and

 0 WD lim�!0  � is the unique minimizer of I!' on Mv;w. Furthermore , for any
 2Mv;w and � > 0,

(60) I.';  �/6 m.mC 1/I.';  /;

where I.';  / WD
R
X .' � /.!

m
 
�!m

' /.

Proof The proof is a straightforward adaptation of that of [14, Proposition 3.1].

We next need a weighted analogue of [14, Lemma 3.3]:

Lemma 7.4 Let v > 0 and w be smooth weight functions on �, and � > 0 a smooth
T–invariant Kähler form on X . Let '0 2 KT .X; !0/ and '1 2 E1

T .X; !0/, and
Œ0; 1� 3 t 7! 't 2 E1

T .X; !0/ be a finite-energy geodesic connecting '0 and '1. Then

lim
t!0C

M
�
v;w.'t /�M

�
v;w.'0/

t
>
Z

X

.w.�'0
/�Scalv.'0// P'0!

Œm�
'0
C

Z
X

P'0�^!
Œm�1�
'0

;

where M
�
v;w WDMv;wC I�.

Proof By Theorem 6.1 and the fact that I� is d1–continuous (see [14] or Lemma 6.12),
for any t 2 Œ0; 1� there exists a sequence .'k

t /k 2 KT .X; !0/ such that

lim
k!1

d1.'
k
t ; 't /D 0 and M �

v;w.'
k
t /!M �

v;w.'t /:

We let Œ0; t � 3 s 7!  k
s be the weak C 1; N1–geodesic joining 'k

0
D '0 with 'k

t . By the
proof of [56, Corollary 1],

lim
t!0C

M
�
v;w.'

k
t /�M

�
v;w.'0/

t
>
Z

X

.w.�'0
/�Scalv.'0// P 

k
0!

Œm�
'0
C

Z
X

P k
0 �^!

Œm�1�
'0

:

According to [14, Lemma 3.4], we can use the dominated convergence theorem on the
right side of the above inequality to conclude.
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The last step is to establish a weighted version of [14, Proposition 3.2.]:

Proposition 7.5 Suppose T � Autr .X / is a maximal torus , and let v.�/; w0.�/ > 0

and w D `ext
v;w0

w0. Suppose that '� 2KT .X; !0/\I�1.0/ is a .v; w/–cscK potential.
Then , for any fixed Kähler form !' with ' 2 KT .X; !0/, there exists a � 2G WD TC

such that
inf

 2Mv;w

I!' . /D I!' .�Œ'��/:

Proof As G is reductive, there exists a unique � 2G such that

(61) I!' .�Œ'��/D inf
�2G

I!' .� Œ'��/

(see eg [29, Section 6] or [56, Lemma 11]), where, we recall, the G action on potentials
is introduced via the slice I�1.0/. Let '0 WD �Œ'�� 2 KT .X; !0/ \ I�1.0/, and
 0 2Mv;w be the unique minimizer of I!' . We want to show that '0 D  0.

For �> 0 let the unique minimizer of M
�!'
v;w DMv;wC�I!' on E1

T .X; !0/\I�1.0/

be  �, as given by Proposition 7.3. By this proposition, lim�!0 d1. �;  0/ D 0.
We denote by V� and W the differentials of M

�!'
v;w and I!' , respectively, viewed as

1–forms on the Fréchet space K.X; !0/. We thus have, for all  2 KT .X; !0/ and for
all P 2 C1T .X /,

.V0/ . P /D�
Z

X
.Scalv.! /�w.� // P !

Œm�

 
;

W . P /D
Z

X

P !' ^!
Œm�1�

 
;(62)

.V�/ . P /D .V0/ . P /C�W . P /:

Recall that the Mabuchi connection D on the Fréchet space KT .X; !0/ is introduced by

.D P't
P t /'t

WD R t � hd P t ; d P't i!'t
;

where 't and  t are smooth paths in KT .X; !0/. Using [55, Lemma B.1], we compute
the covariant derivative of V0 with respect to the Mabuchi connection to be

..D P 2
V0/. P 1// D

Z
X

�
2v.� /..r

! d P 1/
�; .r! d P 2/

�/! 

C.Scalv.! /�w.� //.d P 1; d P 2/! 
�
!
Œm�

 
;

where .r! d P /� denotes the .2; 0/C .0; 2/ part of the Hessian of P with respect to
the Levi-Civita connection r! of ! . Taking  D '0 to be the .v; w/–cscK potential,

..D P 2
V0/. P 1//'0

D 2
Z

X
..r!'0 d P 1/

�; .r!'0 d P 2/
�/!'0

v.�'0
/!Œm�'0

D 2
Z

X
L!'0

;v. P 1/ P 2!
Œm�
'0
D 2

Z
X

L!'0
;v. P 2/ P 1!

Œm�
'0
;
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where the operator L! ;v.
P / WD ı! ı! .v.� /.r

! d P /�/ is a fourth-order elliptic
self-adjoint operator on .X; ! /, with kernel given by the space of Killing potentials
in C1T .X /; see Appendix A.

As '0 is a .v; w/–cscK potential which satisfies (61), we have by [56, Lemma 10] that
W'0

. P /D 0 for any T–invariant Killing potential P with respect to !'0
. It follows

that we can solve the linear equation (for a function P 2 C1T .X /)

L!'0
;v. P /D

!' ^!
Œm�1�
'0

!
Œm�
'0

;

as the right side is L2–orthogonal (with respect to the measure !Œm�'0
) to the kernel

of L!'0
;v. Equivalently, there exists a P 0 2 C1T .X / such that we have equality of

1–forms on KT .X; !0/:

(63) .D P 0
V0/'0

D�W'0
:

Let �! P��2C1T .X / be a smooth curve in the tangent space to .'0C� P 0/2KT .X;!0/,
defined for � > 0 small enough. We compute

(64) d

d�

ˇ̌̌
�D0

.V�/'0C� P 0
. P��/DW'0

. P�0/C..D P 0
V0/. P�0//'0

C.V0/'0

�
d

d�

ˇ̌̌
�D0

P��

�
D0;

where we have used (63) and that .V0/'0
D 0 since '0 is a .v; w/–cscK potential;

see (62). On the other hand, letting

f� WD �Scalv.!'0C� P 0
/Cw.�

'0C� P 0
/Ch!

'0C� P 0
; !'i!' ;

it follows from (62) that, for any P� 2 C1T .X /,

.V�/'0C� P 0
. P�/D

Z
X

P�f�!
Œm�

'0C� P 0

:

Thus (64) implies that f� DO.�2/ and

j.V�/'0C� P 0
. P�/j6 C�2 sup

X

j P�j:

Let �.t/2E1
T .X; !0/ be a finite-energy geodesic connecting �.0/ WD �2E1

T .X; !0/

with  �.1/ WD '0C� P 0 2 KT .X; !0/ for � > 0 small enough. By Lemma 7.4,
d

dt

ˇ̌̌
tD1�

M
�!'
v;w . �.t//6

Z
X

P �.1/f�!
Œm�

'0C� P 0

:

By Proposition 7.3, d1.0;  �.0// is uniformly bounded. Also, d1.0;  �.1// is uniformly
bounded for � small enough since  �.1/ WD '0C� P 0 2KT .X; !0/. We thus have that
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both d1.0;  �.0// and d1.0;  �.1// are uniformly bounded and, by [14, Lemma 3.4(ii)],
we getZ

X
j P �.1/j!

Œm�

'0C� P 0

D d1. �.0/;  �.0//6 d1.0;  �.0//C d1.0;  �.1//6 C:

From f� DO.�2/, we obtain

d

dt

ˇ̌̌
tD1�

M
�!'
v;w . �.t//6 O.�2/:

As the unique minimizer of the strictly convex functional M
�!'
v;w on E1

T .X; !0/\I�1.0/

is  �.0/D  �,

d

dt

ˇ̌̌
tD1�

M
�!'
v;w . �.t//> d

dt

ˇ̌̌
tD0C

M
�!'
v;w . �.t//> 0:

Using that the functions t 7! I!' . �.t// and t 7!Mv;w. �.t// are both convex (this
follows from [14, Proposition 4.5] and Theorem 6.1),

0 6 �
�

d

dt

ˇ̌̌
tD1�

�
d

dt

ˇ̌̌
tD0C

�
I!' . �.t//6

�
d

dt

ˇ̌̌
tD1�

�
d

dt

ˇ̌̌
tD0C

�
M

�!'
v;w . �.t//

6 O.�2/:

By the convexity of t 7! I!' . �.t//, the last estimate also gives

0 6 tI!' . �.1//C.1� t/I!' . �.0//�I!' . �.t//

D t.1� t/

�
I!' . �.1//�I!' . �.t//

1� t

�
� t.1� t/

�
�I!' . �.0//CI!' . �.t//

t

�
6 t.1� t/O.�/:

Letting �! 0 and using the endpoint stability of the finite-energy geodesic segments
(see [14, Proposition 4.3]) together with the d1–continuity of I!' [14, Proposition 4.4],
t 7! I!' . .t// is linear along the finite-energy geodesic  .t/ D lim�!0C  �.t/

connecting  0.0/ D  0 and  0.1/ D '0. The strict convexity of I!' along finite-
energy geodesics [14, Proposition 4.5] then yields  0 D '0 D �Œ'

��.

Now we are in position to prove Theorem 7.1 by the arguments in [14, Theorem 1.4].

Proof of Theorem 7.1 Without loss of generality, we can assume that the .v; w/–
extremal metric !�D!0 is the initial metric, and we suppose  0 2E1

T .X; !0/\I�1.0/

is a weak minimizer of Mv;w W E1
T .X; !0/!R[f1g. We want to show that  0D �Œ0�

for some � 2G D TC . It is well known (see [28] or Corollary 6.11) that there exists a
sequence 'j 2KT .X; !0/\I�1.0/ such that d1.'j ;  0/!0. We set �j D!0Cddc'j ,
which is a T–invariant Kähler form.
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Since !0 is a .v; w/–extremal metric, Mv;w is nonempty. By Proposition 7.3, the
functional M

��j
v;w DMv;wC�I�j has a unique minimizer  j ;� 2 E1

T .X; !0/\I�1.0/

such that
I.'j ;  j ;�/6 m.mC 1/I.'j ;  0/:

By the quasitriangle identity [14, (2.16)],

(65) I. 0;  j ;�/6 C.I. 0; 'j /C I.'j ;  j ;�//6 C.m2
CmC 1/I.'j ;  0/;

where C > 0 is a uniform constant depending only on m.

Let j > 0 be fixed. According to Proposition 7.3,  j ;0 WD lim�!0  j ;� is the unique
minimizer of I��j on Mv;w , whereas Proposition 7.5 yields that there exists a �j 2G

such that  j ;0 D �j Œ0�. Letting �! 0C in (65) (and using the d1–continuity of I ; see
eg [13] or Lemma 6.10),

I. 0; �j Œ0�/6 C.m2
CmC 1/I.'j ;  0/:

When j!1 ( using d1.'j ;  0/!0), we get I. 0; �j Œ0�/!0. By [12, Proposition 2.3;
27, Proposition 5.9], the latter limit is equivalent to d1.�j Œ0�;  0/! 0. Using [14,
Lemma 3.7], there exists a � 2G such that �Œ0�D  0.

Remark 7.6 The arguments in the proofs of Proposition 7.5 and Theorem 7.1 extend if
we remove the maximality assumption for T �Autr .X /, and replace GDTC with the
connected component of the identity yGDAutTr .X / of the centralizer of T in Autr .X /.
The key points are that yG is reductive (see Proposition 1.4) and yG acts transitively on
the space of T–invariant .v; w0/–extremal Kähler metrics (see Theorem 1.5).

Proof of Theorem 1 We apply the coercivity principle of [29]; see Theorem 3.6.
By Theorem 6.1, the extension of the weighted Mabuchi energy Mv;w to the space
E1

T .X; !0/ satisfies the hypotheses of Theorem 3.6 (the invariance of Mv;w under the
action of G D TC is equivalent to the necessary condition (3) for the existence of a
.v; w/–cscK metric). We thus need to ensure that Mv;w further satisfies properties
(i)–(iv) of Theorem 3.6. Theorem 6.1 also yields the convexity property (i), whereas
the regularity property (ii) is established in Theorem 7.1. This last result also yields
the uniqueness property (iii) via Theorem 1.5. Finally, the compactness property (iv) is
established in Theorem 6.17.

Remark 7.7 By virtue of Theorem 1.5 and Remark 7.6, the conclusion of Theorem 1
holds true if one drops the assumption that T �Autr .X / is a maximal torus, but instead
of TC one considers the larger reductive group yG D AutTr .X /; see Proposition 1.4.
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8 Proofs of Theorems 2 and 3

Proof of Theorem 2 The implication .ii/D) .i/ follows from Lemma 5.9, whereas
.ii/D) .iii/ is established in Theorem 1. We shall prove .iii/D) .ii/ and .i/D) .ii/. The
arguments are very similar to the ones in the proof of [52, Theorem 1], where the case
when .X;T / is toric is studied. The main idea is to show that, on a semisimple principal
.X;T /–fibration, the continuity path used by Chen and Cheng [23] in the cscK case and
its modification by He [47] to the extremal case can be adapted to bundle-compatible
construction. We sketch the proof below for the reader’s convenience.

(iii) D) (ii) We shall work on Y . Let z!0 be a bundle-compatible Kähler metric
on Y , corresponding to a TX –invariant Kähler metric !0 on X . By Lemma 5.14,
z!0 is invariant under a maximal torus KY � Autr .Y / (containing TY ), and, by this
lemma and Lemma 5.10, the extremal affine-linear function corresponding to KY

is the pullback to the vector space k�
Y
D .Lie.KY //

� of the extremal affine-linear
function `ext.�/ on t defined in Theorem 2(ii). Furthermore, by Lemma 5.10, the
restriction of M Y

1;`ext to the subspace KT .X; !0/�KKY
.Y; z!0/ (see Corollary 5.6 and

Lemma 5.14) is a positive multiple of M X
p; zw

, where the weights are those defined in
Theorem 2(ii). In this setup, the main ingredients of the proof are as follows.

Step 1 Following [23; 46; 47], one considers the continuity path 't 2 KKY
.Y; z!0/

determined by the solution of the PDE

(66) t.Scal. Q!'t
/� `ext.�z!'t

//D .1� t/.trz!'t
. Q�/� .nCm// for t 2 .0; 1/;

where Q� is a suitable (fixed) KY –invariant Kähler metric on Y in the class Œz!0�.
By [23; 47] there exists Q� 2 Œz!0� and a t0 2 .0; 1/ such that a solution 't of (66)
exists for t in the interval Œt0; 1/. Furthermore, the solution 't .y/ is smooth as a
function on Œt0; 1/� Y . The main observation of [52] is that, with a suitable choice
for Q�, the path (66) can in fact be reduced to a continuity path on X . To see this
we observe that, by [47, Proposition 3.1], one can take Q� in (66) to be of the form
Q� D z!0C .1=r0/ddcf with r0 large enough, where f is the smooth function on Y

with zero mean with respect to z!0 which solves the Laplace equation

�z!0
f D Scal. Q!0/� `

ext.�z!0
/:

By Lemmas 5.9 and A.3, f 2C1T .X /, whereas by Lemma 5.5 Q� is bundle-compatible, ie

Q�D �C
kP

aD1

.hpa; ��iC ca/�
�
B!aChd�� ^ �i;
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where � D !0C .1=r0/ddcf is a T–invariant Kähler metric on X ; see (24). Using
Lemma 5.9 and that both z!' and Q� are of the form (24), we get a path of PDEs on X

of the form

(67) t.Scalp.!'t
/� zw.�!'t

//D .1� t/H.'t / for t 2 .t0; 1/;

where 't 2KT .X; !0/ and H.'t / WD trz!'t
. Q�/� .nCm/ is manifestly a second-order

differential operator on X for 't 2KT .X; !0/�KKY
.Y; z!0/. Then the solution 't for

t 2 Œt0; 1/ of (66) will actually belong to KT .X; !0/�KKY
.Y; z!0/. This last point is a

consequence of the implicit function theorem (used in [46; 47] to establish the openness),
which can be applied directly to (67); to find the linearization of (67), we use [46] that the
linearization of H.'/ on Y is the operator H Q�

z!' ;1
(see Definition A.1), so that, by virtue

of Lemma A.3, the linearization of H.'/ when restricted to KT .X; !0/�KKY
.Y; z!0/

is given by the p–weighted operator H�
!' ;p introduced in Appendix A. Similar argument

allows us to identify the linearization of Scalp.!'/; see also [55, Lemma B1]. We refer
the reader to [52, Section 6] for further details.

Step 2 The next ingredient is a deep result from [23] with a complement in [47],
showing that if M Y

1;`ext is G–coercive along the continuity path 't with respect to a
reductive subgroup G �Autr .Y / containing the torus generated by the extremal vector
field �Y

ext D d`ext 2 tY in its centre, then there exists a subsequence of times j ! 1

and elements �j 2 G such that ��j .z!'j / converges in C1.Y / to an extremal Kähler
metric z!1. In our case, assuming (iii), we have that M Y

1;`ext.'t /DVol.B; !B/M
X

p; zw
.'t /

(see Lemma 5.10) is G D TC
Y

–coercive (see Lemmas 6.6 and 6.4 and Proposition 3.4).
We can thus find �j 2 TC

Y
and 'j as above. The Kähler metrics ��j .z!'j / are bundle-

compatible in the sense of Definition 5.3, and thus are of the form

��j .z!'j /D z!0C dY dc
Y �j Œ'j � for �j Œ'j � 2 KT .X; !0/� KKY

.Y; z!0/:

It follows that z!1 is a bundle-compatible extremal Kähler metric on Y (as KT .X; !0/

is C1.Y /–closed in KKY
.Y; z!0/). By Lemma 5.9, the corresponding Kähler metric

!1 on X is then .p; zw/–cscK.

.i/ D) .ii/ The proof is very similar to the proof of .iii/D) .ii/. As in Step 1 above,
we consider the continuity path (66), which defines potentials

't 2 KT .X; !0/� KKY
.Y; z!0/ for t 2 Œt0; 1/:

We can assume without loss of generality [21] that Y admits a KY –invariant extremal
Kähler metric in Œz!0�, where KY �Autr .Y / is the maximal torus given by Lemma 5.14.
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This implies that M Y
1;`ext is G–coercive for G DKC

Y
. Indeed, this can be justified, for

instance, by applying Theorem 1 and Proposition 3.4 in the case .v; w/ D .1; `ext/.
As in Step 2 of the proof of .iii/ D) .ii/, we use [23; 47] and the G–coercivity
of M Y

1;`ext along the path in order to find a subsequence of times j ! 1 and elements
�j 2 G such that ��j .z!'j / converges in C1.Y / to a KY –invariant extremal Kähler
metric z!1 2 Œz!0�. However, unlike the proof of .iii/D) .ii/, in general ��j .z!'j / and
hence z!1 are not bundle-compatible, as �j can act nontrivially on B (see the proof of
Lemma 5.14). We thus need to slightly modify the argument in order to show that z!1

still induces a .p; zw/–cscK metric on any given fibre Xb D �
�1
B
.b/� Y . We denote by

!j .b/ WD .z!'j /jXb
and x!j .b/ WD .�

�
j .z!'j //jXb

the induced T–invariant metrics on Xb .
As z!'j is bundle-compatible, Lemma 5.9 yields

Scalp.!j .b//D Œp.�z!'j
/Scal.z!'j /�p.�z!'j

/q.�z!' /�jXb
:

Using that �j 2KC
Y

sends the fibre Xb to the fibre X�j .b/ (this follows from the construc-
tion of KY in the proof of Lemma 5.14), the above equality holds true for the metrics
x!j .b/, where in the right side we replace the metric z!'j on Y with x!j WD �

�
j .z!'j /. It

thus follows by the smooth convergence of x!j .b/ to !1.b/ that

Scalp.!1.b//D Œp.�z!1
/Scal.z!1/�p.�z!1

/q.�z!1
/�jXb

D Œp.�z!1
/.`ext.�z!1

/� q.�z!1
/�jXb

D zw.�!1.b//;

where for the equalities on the second line we have used that the KY –extremal function
`ext is in Aff.t�

X
/; see Lemma 5.14. Thus !1.b/ is a .v; zw/–cscK metric on X .

Proof of Theorem 3 Han and Li introduced a functional M HL
v W KT .X; !0/! R

whose critical points are the v–solitons; see [45, Lemma 4.4]. A careful inspection
using (50) shows that M HL

v .!/DMv;w.!/�
R
X log.v.�!//v.�!/!Œm�, where w is

the weight function defined in Proposition 1. Thus, the difference of the two functionals
is a constant independent of the choice of a T–invariant Kähler metric ! 2 2�c1.X /;
see eg [55]. Thus, by [45, Theorem 3.5] applied to .X; 2�c1.X /;T / (and weights
pv; zw), the TC–coercivity of M X

pv; zw
is equivalent to the existence of a vp–soliton

on X . By Lemma 5.11, this implies that Y admits a (bundle-compatible) v–soliton.

By [45, Theorem 1.7], the TC–coercivity of M X
pv; zw

is also equivalent to the uniform
vp–K–stability on T–equivariant special test configurations. When .X;T / is a toric
Fano variety, the only such test configurations are the product test configurations, and
thus, by [55, Proposition3], the condition is reduced to verifying (3) on X with respect
to the weights .pv; zw/.
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Therefore, in order to show the existence of a Kähler–Ricci soliton, it is sufficient
to find �0 2 t such that (3) is satisfied for the weight functions v.�/ D eh�0;�ip.�/

and zw.�/ D 2p.�/eh�0;�i.mC h�0; �i C hd log p; �i/. We detail the proof of this
fact below.

Let ! 2 2�c1.X / be any T–invariant Kähler metric with canonically normalized
momentum map �! WX !�. We then consider the following p–weighted version of
a functional on t, defined originally by Tian and Zhu [71, Lemma 2.2]:

(68) � 7!
Z

X
eh�;�!ip.�!/!

Œm� for � 2 t:

The convexity and properness of the above functional follow by the arguments in
[71, Lemma 2.2], but under our toric assumption these can also be seen directly by
rewriting the right side in (68) as an integral over the Delzant polytope:

� 7! .2�/m
Z
�

eh�;�ip.�/ d�:

Properness of this functional follows by the fact that the origin is in the interior of �
(by the canonical normalization condition of �; see Remark 2.3). Let �0 2 t be the
unique critical point of (68). We have thatZ

X
h�; �!ie

h�0;�!ip.�!/!
Œm�
D 0;

which is precisely the condition Futv; zw D 0 according to Lemma B.1.

The existence of a Sasaki–Einstein structure follows similarly. By Proposition 2,
Lemma 5.11 and Proposition 1, in that order, we want to find �0 2 t such that (3) holds
true for the weights given as in Proposition 1, with v.�/Dp.�/.h�0; �iCa/�.mCnC2/.
(This will show the existence of a pv–soliton on the toric Fano manifold .X;T / and
hence a v–soliton on Y by the general arguments evoked above.) We argue based on [61],
which introduced the volume functional on the space of normalized positive affine-linear
functions on �. Strictly speaking, the functional in [61, Section 3] is introduced on the
principal S1–bundle N over .X; !/ (which admits a natural strictly pseudoconvex CR
structure .D;J / coming from X ), and is then defined as the Sasaki volume of a .D;J /–
compatible normalized Sasaki–Reeb vector field O� on N ; using the point of view of [7]
(see in particular Lemma 1.4), the volume functional can also be written on X , noting
that positive affine-linear functions `� D h�; �iCa over � are in bijection with Sasaki–
Reeb vector fields O� on .N;D;J /, and the normalization condition used in [61] is
equivalent to requiring `�.0/D aD 1. Specifically, in our toric weighted setting, we let

� 7!
Z

X
.h�; �!iC1/�.mCnC1/p.�!/!

Œm�
D .2�/m

Z
�
.h�; �iC1/�.mCnC1/p.�/ d�;
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which is defined for � 2 t such that .h�; �i C 1/ > 0 on �. The properness of the
functional follows by the fact that a canonically normalized Delzant polytope of a Fano
toric manifold is determined by �D f� WLj .�/� 0g, where the affine-linear functions
Lj .�/ satisfy Lj .0/D 1; see eg [1, Section 7.4]. The unique critical point �0 2 t of
the above convex functional then satisfiesZ

X
h�; �!i.h�0; �!iC 1/�.mCnC2/p.�!/!

Œm�
D 0 for � 2 t;

which, by Lemma B.1, is precisely the condition (3) for the weight functions considered.
This concludes the proof of Theorem 3.

Appendix A Weighted differential operators

Let .X; !;T / be as in Section 1 and v > 0 be a positive smooth weight function
defined over the polytope �. We denote by r! the Levi-Civita connection of the
riemannian metric g! , and by ı! the formal adjoint of r! . We define the following
weighted differential operators, which are self-adjoint with respect to the volume form
v.�!/!

Œm� on X :

Definition A.1 The v–weighted Laplacian of  is the second-order operator acting
on smooth functions, defined by

(69) �!;v. /D
1

v.�!/
ı!.v.�!/d /:

The v–weighted linear Lichnerowicz operator is the fourth-order operator given by

(70) L!;v. / WD
ı!ı!.v.�!/.r

!d /�/

v.�!/
;

where .r!d�/� stands for the .0; 2/–symmetric tensor of type .2; 0/C .0; 2/ with
respect to the complex structure of X . For any T–invariant Kähler form � on X , we
define the second-order operator, given by

(71) H�
!;v. / WD h�; ddc i! Chd tr!.�/; d i! C

1

v.�!/
h�; dv.�!/^ dc i! ;

where tr!.�/ WD .� ^!Œm�1�/=!Œm� D h�; !i! . The operator H�
!;v is a v–weighted

version of the linear operator used in [46].

A straightforward computation shows:

Lemma A.2 The v–weighted Lichnerowicz operator can be written as

L!;v. /D
1
2
.�!;v/

2. /C ı!;v
�
�!;v..d

c /]/
�
;
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where ı!;v WD .1=v.�!//ı!v.�!/ is the formal adjoint of the exterior derivative d on
functions with respect to the weighted volume form v.�!/!

Œm�,

�!;v WD �! �
1
2
ddc.log v.�!//

is the Ricci form of the weighted volume form v.�!/!
Œm�, and ]D g�1

! stands for the
riemannian duality between TM and T�M by using the Kähler metric !.

We now specialize to the case when .Y; z!;TY / is a semisimple principal .X; !;TX /–
fibration over B, as in Section 5. We then denote by �Y

z!
, LY
z!

and .H Q�
z!
/Y the corre-

sponding unweighted operators on .Y; z!/, where the Kähler form Q� in the definition
of H Q�

z!
is bundle-compatible, ie given by (24) for a TX –invariant Kähler form � on X .

We further let �Ba
!a

denote the Laplacian on .Ba; !a/, and �B
x and LB

x the Laplacian
and Lichnerowicz operators on B, respectively, with respect to the Kähler metric
!B.x/ WD

Pk
aD1.hpa; �!.x/iC ca/!a. We thus have:

Lemma A.3 Let  be a TY –invariant smooth function on Y , seen as a TX –invariant
function on X �B via (25), and z! a bundle-compatible TY –invariant Kähler metric on
Y associated to a TX –invariant Kähler metric ! on X . We then have

�Y
z! D�

X
!;p bC�

B
x x;

LY
z! D LX

!;p bCLB
x xC�

B
x.�

X
!;p b/xC�

X
!;v.�

B
x x/bC

kP
aD1

Qa.x/�
Ba
!a
 x

and

.H Q�
z!;1
/Y  D .H�

!;p/
X bC

kP
aD1

Pa.x/�
Ba
!a
 x;

where Pa.x/ and Qa.x/ are smooth T–invariant functions on X , and  x and  b are
the induced smooth functions on B and X , respectively, via (25).

Proof This first two equalities are established in [6] (see the proof of Lemma 8) in
the special case when .X; !;TX / is a toric variety, whereas the third identity is proved
in [52] (also in the case when .X;TX / is toric). These computations extend to the
general setting with no substantial additional difficulty (by using Lemma A.2 for the
second identity), but we include them below for the sake of self-containedness.

In the notation of Section 5,

(72) �Y
Q!. /D

�
�.dY dc

Y
 ^ Q!ŒnCm�1�/= Q!ŒnCm� on Y;

�.dY dc
Y
 ^ Q!ŒnCm�1� ^ �^r /=. Q!ŒnCm� ^ �^r / on Z DX �P;
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where �^r WD
Vr

iD1 �i with respect to any lattice basis .�i/i ofƒ� t. Viewing dc
X�B

 

as a 1–form on Z, it admits the decomposition, with respect to (23),

(73) dc
X�B D .d

c
X�B /H C

rX
iD1

.dc
X�B /.�

P
i � �

X
i /�i D dc

Y  � hd
c
X ; �i:

We thus compute, on Z,

(74) .dY dc
Y  /.x;b/ D dZ

�
dc

X C

rX
jD1

dc
X .�

X
j /�j C dc

B 

�

D dZ dc
X C

rX
jD1

dZ .d
c
X .�

X
j //�j

C

rX
jD1

dc
X b.�

X
j /

� kX
aD1

�j .pa/�
�
B!a

�
C dZ dc

B 

D dX dc
X bC dBdc

B xC

rX
jD1

dZ .d
c
X .�

X
j //^ �j

C

kX
aD1

dc
X .p

X
a /�

�
B!aC dBdc

X C dX dc
B ;

where for the third equality we used (22), as well as the identities dP dc
X
 D dBdc

X
 

and dP dc
B
 DdBdc

B
 (which follow from the identification (25)). Using (27) and (44),

we derive, from (72) and (74),

�Y
Q!. /.x; b/D .�

X
! b/.x/C .�

B
!B.x/

 x/.b/�

kX
aD1

na

h�! ;paiC ca
.dc

X b/.p
X
a /;

where, we recall, for a fixed x 2 X we have set !B.x/ WD
Pk

aD1.hpa; �!iC ca/!a,
and pX

a denotes the vector field on X corresponding to pa 2 t. The first equality in the
lemma follows from the identity (47), keeping in mind that, for any smooth function u

on � and any T–invariant smooth function � on X ,

g!.d.u.�!//; d�/D

rX
iD1

u;i.�!/d
c�.�i/:

Now we establish the expression of the corresponding Lichnerowicz operators. Recall
that (see eg [41])

(75) LY
Q! WD

1
2
.�Y
Q!/

2. /C ı Q!.� Q!.d
c
Y  //:
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Using the decomposition of �Y
z!

we have just established,

(76) .�Y
Q!/

2. /D .�X
!;p/

2. b/C .�
B
x/

2. x/C�
X
!;p.�

B
x. x//C�

B
x.�

X
!;p. b//:

It remains to compute the Ricci term in (75). From (43),

(77) � Q! D �!;pC�
�
B�!B

C
1

2

kX
aD1

�X
!;p.h�! ;p

X
a i/�

�
B!a

C

rX
jD1

dX

�
dc

X

�
� � 1

2
log p.�!/

�
.�X

j /
�
^ �j ;

where �!;p WD �! � 1
2
dX dc

X
log p.�!/ is the Ricci form of the weighted volume form

p.�!/!
Œm�. Using integration by parts, for any TY –invariant smooth test function �

on Y , seen as a TX and TP –invariant function on Z DX �P via (25),

(78)
Z

Z

�ı Q!.� Q!.d
c
Y  // Q!

ŒnCm�
^ �^r

D�

Z
Z

� Q!.dY �; d
c
Y  / Q!

ŒnCm�
^ �^r

D

Z
Z

� Q! ^ dY � ^ dc
Y  ^ Q!

ŒnCm�2�
^ �^r

�
1

2

Z
Z

Scal. Q!/ Qgz!.dY �; dY  / Q!
ŒnCm�

^ �^r

D

Z
Z

� Q! ^ dY � ^ dc
Y  ^ Q!

ŒnCm�2�
^ �^r

�
1

2

Z
Z

�
Scalp.!/
p.�!/

C q.�!/

�
dY � ^ dc

Y  ^ Q!
ŒnCm�1�

^ �^r :

From the above formula, using (44), (73) and (77), we compute (after some straight-
forward but long algebraic manipulations and integration by parts over X and B)

(79) ıY
Q! .� Q!.d

c
Y  //

D ıX
!;p.�!;p.d

c
X //C ı

B
!B.x/

.�!B
.dc

B //

C
1

2

kX
aD1

q.�!/

h�! ;paiC ca
�B
!a
. /

C
1

2

kX
aD1

.na� 1/

.h�! ;paiC ca/2
�X
!;p.h�! ;pai/�

B
!a
. x/

C

kX
a;bD1

nb

.h�! ;paiC ca/.h�! ;pbiC cb/
�X
!;p.h�! ;pbi/�

B
!a
. x/:
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Combining (75), (76) and (79) yields the desired expression.

The expression for .H Q�
z!;1
/Y . / is obtained by similar arguments, using that

.H Q�
z!;1
/Y . /D h Q�; dY dc

Y  i Q! ChdY tr Q!. Q�/; dY  i Q!

D�tr Q!. Q�/�
Y
Q!. /�

Q�^ dY dc
Y
 ^ Q!ŒnCm�2�

Q!ŒnCm�

C
dY tr Q!. Q�/^ dc

Y
 ^ Q!ŒnCm�1�

Q!ŒnCm�
:

Appendix B Weighted Futaki invariants

On a smooth Fano manifold .X;T / as in the setting and notation of Section 2, we
further relate the weighted Futaki obstruction Futv;w D 0 (see (3)) with weights v.�/
and w.�/ as in Proposition 1 with the Futaki-type obstructions studied by Tian and
Zhu [71] in the case of Kähler–Ricci solitons (ie when v D eh�;�i):

Lemma B.1 Let .X;T / be a smooth Fano manifold .X;T / with canonically nor-
malized momentum polytope �, and v > 0 and w smooth functions on � as in
Proposition 1. Then , for any T–invariant Kähler metric ! 2 2�c1.X / with momentum
map �! and T–invariant Ricci potential h (ie �! �! D 1

2
ddch), the weighted Futaki

invariant Futv;w introduced in (3) satisfies

Futv;w.`�/D
Z

X

�
LJ �.log v.�!/� h/

�
v.�!/!

Œm�
D�2

Z
X
h�; �!iv.�!/!

Œm�

for `� D h�; �iC a and � 2 t.

Proof We haveZ
X

�
LJ �.log v.�!/�h/

�
v.�!/!

Œm�
D

Z
X

g!
�
d`� ; d log.v.�!/�h/

�
v.�!/!

Œm�

D

Z
X
`�
�
�!;v.log v.�!/�h/

�
v.�!/!

Œm�

D

Z
X
`�
�
Scalv.!/�w.�!/

�
!Œm� D Futv;w.`�/;

where for the last equality we have used (13). The second equality in the lemma follows
from the first, the second relation in (11) and integration by parts.
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We study Anosov representations whose limit set has intermediate regularity, namely
is a Lipschitz submanifold of a flag manifold. We introduce an explicit linear
functional, the unstable Jacobian, whose orbit growth rate is integral on this class of
representations. We prove that many interesting higher-rank representations, including
‚–positive representations, belong to this class, and establish several applications to
rigidity results on the orbit growth rate in the symmetric space.
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1 Introduction

Let Γ� PGLd .R/ be a discrete subgroup. Following Guivarc’h, Benoist [4] has shown
that if Γ contains a proximal element and acts irreducibly on Rd then its action on
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projective space P .Rd / has a smallest closed invariant set. This is usually called
Benoist’s limit set or simply the limit set of Γ on P .Rd / and denoted by LΓ.

In contrast with the negatively curved situation, the limit set of a subgroup Γ whose
Zariski closure has rank � 2 need not be a fractal object. Examples of infinite covolume
Zariski-dense groups whose limit set is a proper C1–submanifold arise in the study
of strictly convex divisible sets (see Benoist [5]) and of Hitchin representations (see
Labourie [35]). Lately, more examples of subgroups with this property were found by
Pozzetti, Sambarino and Wienhard [39] and Zhang and Zimmer [48].

Intermediate phenomena also occur. For example, the limit set of the direct sum
.�; �/ W �1S ! PSL2.R/� PSL2.R/ of the holonomies of two hyperbolizations of a
closed topological surface S is a Lipschitz circle that is never a C1–submanifold of
the product S1 �S1 D G=B unless the two hyperbolizations are conjugated. Lipschitz
limit sets more generally occur for maximal representations (see Burger, Iozzi and
Wienhard [12]), Quasi-Fuchsian AdS representations (see Barbot and Mérigot [3]), and
Hp;q–convex–cocompact representations; see Danciger, Guéritaud and Kassel [16].

We provide the first systematic investigation of this intermediate phenomenon — its
main object are discrete groups whose limit set is a Lipschitz manifold. We will
restrict our investigation to the class of Anosov subgroups, a robust and rich class
of strongly undistorted subgroups of semisimple Lie groups; see Section 2.2 for the
precise definition.

For discrete subgroups Γ of SO.1; n/, Sullivan [46] established a beautiful relation
between a geometric invariant of the limit set LΓ, its Hausdorff dimension, and a
dynamical invariant for the action of Γ on the symmetric space Hn, the orbit growth rate.
This was further used by Bowen [7] to prove a strong rigidity result: for fundamental
groups of surfaces acting on H3, the Hausdorff dimension of the limit set is minimal
if and only if the limit set is C1 and Γ preserves a totally geodesic copy of H2 on
which it acts cocompactly. When G has higher rank, the situation is more complicated
as one can additionally consider orbit growth rates with respect to different linear
functionals ' (as in, for example, Quint [41]). It is a challenging problem to understand
which functionals ' have orbit growth rate that carries geometric information on the
group Γ or on its limit set LΓ.

Our main contribution is to single out an explicit linear functional, the unstable Jacobian,
whose critical exponent is integral on Anosov subgroups whose limit set is a Lipschitz
submanifold. In order to prove this we import ideas from nonconformal dynamics,

Geometry & Topology, Volume 27 (2023)
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such as the study of the affinity exponent, to the setting of Anosov groups, and use
the Anosov property, together with ideas from geometric group theory, to establish
a strengthening of the theory of Patterson–Sullivan densities developed by Quint;
these two results are of independent interest. We then showcase the strength of our
main result by applying it to several well-studied classes of representations: maximal
representations, Hp;q–convex–cocompact subgroups and ‚–positive representations.

The unstable Jacobian and the affinity exponent

We now introduce some notation useful to explain more precisely our results. We
denote by

ED

�
aD .a1; : : : ; ad / 2Rd

ˇ̌̌X
i

ai D 0

�
the Cartan subspace of the Lie group PGLd .R/, by

ai .a/D ai � aiC1

the i th simple root and by EC�E the Weyl chamber whose associated set of simple roots
is…Dfai W i 2 ŒŒ1; d�1��g. Let a WPGLd .R/!EC be the Cartan projection with respect
to the choice of a scalar product � . Concretely, a.g/ D .log �1.g/; : : : ; log �d .g//,
where the �i .g/ denote the singular values of the matrix g, the square roots of the
eigenvalues of the matrix gg�, where g� is the adjoint operator of g with respect to � .

Given a discrete subgroup Γ< PGLd .R/, the critical exponent of a linear form ' 2 E�,
denoted by hΓ.'/, is defined as

hΓ.'/ WD lim
T!1

log #f 2 Γ j '.a.// < T g
T

:

We introduce the pth unstable Jacobian Jup 2 E
�, defined by

Jup D .pC 1/!a1 �!apC1 ;

where !ap .a/D
Pp
1 ai is the fundamental weight relative to the pth simple root ap.

Our main result is:

Theorem A Let Γ< PSLd .R/ be a strongly irreducible , projective Anosov subgroup
whose limit set LΓ < P .Rd / is a Lipschitz submanifold of dimension p. Then

hΓ.J
u
p/D 1:

If p D 1 the same holds , replacing strong irreducibility with weak irreducibility.1

1We say that a subgroup Γ< PSLd .R/ is weakly irreducible if the vector space span.LΓ/ is Rd .

Geometry & Topology, Volume 27 (2023)
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A similar result was proven, in the context of fundamental groups of compact strictly
convex projective manifolds, by Potrie and Sambarino [38, Theorem B]; our approach
is entirely different and, since we require less regularity, its scope of application is con-
siderably broader. Note that, up to postcomposing with a suitable linear representation,
any Anosov representation can be turned into a projective Anosov representation.

We prove the two inequalities in Theorem A as corollaries of two different results
that are applicable in more general settings. We focus first on the lower bound on the
critical exponent (Corollary 1.1) that follows from a general result on the Hausdorff
dimension of limit sets (of projective Anosov representations).

An important step in the proof is the study, in the context of Anosov representations,
of the affinity exponent, a key notion from nonconformal dynamics that first appeared
in Kaplan and Yorke [31] and Douady and Oesterlé [19], and played a prominent role
in Falconer’s work [21]. More specifically, for a discrete subgroup Γ< PSLd .R/, we
consider the piecewise Dirichlet series defined, for p 2N and s 2 Œp� 1; p�, by

ˆAff
Γ .s/D

X
2Γ

�
�2

�1
./ � � �

�p

�1
./

��
�pC1

�1
./

�s�.p�1/
:

The affinity exponent is the critical exponent of this series:

hAffΓ WD inffs WˆAff
Γ .s/ <1gD supfs WˆAff

Γ .s/D1g 2 .0;1�:

Our second main result is (see Section 3 for a statement for arbitrary local fields):

Theorem B Let Γ< PGLd .R/ be projective Anosov, then

dimHff.LΓ/� h
Aff
Γ :

It is easy to deduce from Theorem B relations between the Hausdorff dimension of
the limit set of a projective Anosov subgroup and the orbit growth rate with respect to
explicit linear functionals on the Weyl chamber. Since the quantity hΓ.Jup/ appearing
in Theorem A is also the critical exponent of the Dirichlet series

s 7!
X
2Γ

�
�1 � � � �pC1

�
pC1
1

./

�s
;

we get:

Corollary 1.1 Let Γ< PGLd .R/ be projective Anosov and assume furthermore that
dimHff.LΓ//� p. Then

dimHff.LΓ/� phΓ.J
u
p/:
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Observe that Ju1Da1 and thus, whenever dimHff.LΓ/�1, we obtain as a consequence the
results of Glorieux, Monclair and Tholozan [25, Theorem 4.1] and Pozzetti, Sambarino
and Wienhard [39, Proposition 4.1].

Existence of Patterson–Sullivan measures

The second inequality in Theorem A follows from an improvement on a result by Quint
[42, théorème 8.1] concerning the relation between critical exponents and the existence
of .Γ; '/–Patterson–Sullivan measures.

Given a set‚�… of simple roots, we denote by F‚ the associated partial flag manifold,
which consists of the space of flags of subspaces of dimension indexed by ‚. We
denote by E‚ the Levi subspace of E defined by

E‚ D
\
p…‚

ker ap:

The restrictions of the fundamental weights f!ap jE‚ W p 2 ‚g span its dual .E‚/�.
Using the Iwasawa decomposition of PGLd .R/, Quint introduced an Iwasawa cocycle

b‚ W PGLd .R/�F‚! E‚

that is the higher-rank analog of the more-studied Busemann cocycle in negative
curvature; see Quint [42, lemme 6.6] and Section 5.3 for the precise definition. With
this notation at hand we can recall the definition of a .Γ; '/–Patterson–Sullivan measure
from [42]:

Definition 1.2 Given a discrete subgroup Γ < PGLd .R/ and ' 2 .E‚/�, a .Γ; '/–
Patterson–Sullivan measure on F‚ is a finite Radon measure� such that, for every g2Γ,

dg��

d�
.x/D e�'.b‚.g

�1;x//:

Inspired by a classical result by Sullivan [46], Quint shows [42, théorème 8.1] that the
existence of a .Γ; '/–Patterson–Sullivan measure on F‚ gives an upper bound on a
related critical exponent

(1-1) hΓ.'C ��c /� 1:

Here ��c is an explicit linear functional which is positive on the interior of the Weyl
chamber and accounts for the possible growth along the fibers of the projection
F� ! F‚ [42, lemme 8.3]. In general, hΓ.' C ��c / < hΓ.'/, and thus Quint’s
result is not sharp enough for our purposes.
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Using ideas from geometric group theory we show that, provided the group Γ is Anosov
with respect to one of the roots in ‚, there is no contribution from the fibers.

Given‚�…, define i‚Dfd�p Wp2‚g. Two points .x; y/2F‚�Fi‚ are transverse
if, for every p 2‚, one has that xp \yd�p D f0g. A complementary subspace of F‚
is a subset of F‚ of the form

fx 2 F‚ W x is not transverse to y0g

for a given y0 2 Fi‚. If ‚0 � ‚ then we let �‚;‚0 W F‚ ! F‚0 be the canonical
projection.

Theorem C Let Γ< PGLd .R/ be projective Anosov and consider ‚�… such that
a1 2‚. Let ' 2 .E‚/�. If there exists a .Γ; '/–Patterson–Sullivan measure on F‚ with
support on ��1‚;a1.LΓ/ and not contained on a complementary subspace , then

hΓ.'/� 1:

We refer the reader to Section 5 and Theorem 5.14 for a version of Theorem C where
the target group is an arbitrary semisimple group over a local field.

We provide the link between Theorems C and A in Section 6, where we establish that,
if Γ < PSLd .R/ is a projective Anosov subgroup whose limit set LΓ is a Lipschitz
submanifold of dimension p, then there exists a .Γ; Jup/–Patterson–Sullivan measure on
Ffa1;apg. In fact we explicitly construct such a measure using Rademacher’s theorem
and an explicit volume form on the almost everywhere defined tangent space to LΓ

(Proposition 6.4).

Example 1.3 If � W �1S ! PSp.4;R/ is a maximal representation (see Section 9 for
the definition), the combination of Theorems B and C gives h�.�1S/.a2/D 1, while
Quint’s result (1-1) becomes h�.�1S/.!a2/ � 1. This latter inequality is implied by
the former equality, and often far from being sharp: one can find representations � for
which h�.�1S/.!a2/ is arbitrarily small.

Theorem C is complementary to (and independent from) the Patterson–Sullivan theory
for Anosov representations developed by Dey and Kapovich [18]. They only consider
Patterson–Sullivan densities with respect to functionals ' that, as opposed to the
unstable Jacobian, belong to .E� /�, where the representation is assumed to be Anosov
with respect to all elements of � , and induce Finsler distances on the symmetric space;
see also Ledrappier [36] for a different approach yielding similar results. A drawback of
their approach is that they can only relate the critical exponent with a premetric induced
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from a Finsler distance on the symmetric space that is hard to compute. In contrast, we
begin with a natural measure, supported on the limit set, which belongs to the Lebesgue
measure class, find a suitable functional, the unstable Jacobian, turning the measure
into a Patterson–Sullivan measure, and deduce from this geometric properties of the
action of Γ on the symmetric space.

Intermediate regularity and C1–dichotomy

The class of Anosov subgroups with Lipschitz limit sets is very rich, and includes the
images of many well-studied classes of representations, such as maximal representations
(see Burger, Iozzi and Wienhard [12] and Section 9), quasi-Fuchsian AdS representa-
tions (see Barbot and Mérigot [3]) and Hp;q–convex–cocompact representations (see
Danciger, Guéritaud and Kassel [16] and Section 8).

As another contribution of independent interest, we show that‚–positive representations
of fundamental groups of surfaces in SO.p; q/ (see Guichard and Wienhard [27])
yield subgroups with this property. We refer the reader to Section 10 for the precise
definition of ‚–positive representations. We will only2 consider here the ‚–positive
representations that are furthermore ‚–Anosov for ‚D fa1; : : : ; ap�1g. As a result,
for each k 2‚, they admit a boundary map �k W @Γ! Isk.R

p;q/ parametrizing the limit
set in the Grassmannian of k–dimensional isotropic subspaces. In Section 10 we prove:

Theorem D Let � W Γ! SO.p; q/ be a ‚–Anosov representation that is ‚–positive.
Then the images of the boundary maps �k W @Γ! Isk.R

p;q/ are C1–submanifolds for
each 1� k < p� 1; moreover �p�1.@Γ/ is Lipschitz.

We will prove the parts of Theorem D separately, in Corollary 10.4 and Proposition 10.5,
respectively.

At least for representations of fundamental groups of surfaces, the regularity of the limit
set on a given (maximal) flag space seems to be related to the position of the associated
root among the Anosov roots. By definition, a simple root is an Anosov root (for a
subgroup Γ) if its kernel intersects trivially the limit cone LΓ of Γ. Among such roots
one can consider the internal (every neighboring root in the Dynkin diagram is also an
Anosov root) or boundary (connected to a root that nontrivially intersects LΓ) roots.
For example, for a ‚–positive representation in SO.p; q/, the roots fa1; : : : ; ap�2g are
internal while ap�1 is the only boundary root.

2Guichard, Labourie and Wienhard announced that all ‚–positive representations are ‚–Anosov, so this
should not pose any restriction.
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The intermediate regularity (Lipschitz but not C1) of limit sets for surface groups seems
only to occur for boundary roots. For internal roots, we can prove a C1–dichotomy,
ruling out intermediate regularity in several interesting cases. More specifically we
consider fundamental groups Γ of compact surfaces and study small deformations of
representations of the form

Γ! PSL2.R/
R
�! PSLd .R/

that are fa1; a2g–Anosov (this latter assumption can be rephrased as a proximality
assumption on the linear representation R). For any such representation we have
an explicit dichotomy: the associated limit set is either C1 or not even Lipschitz
(Corollary 7.8). We refer the reader to Section 7 for the precise statement of the
dichotomy.

Entropy rigidity results

We conclude the introduction by discussing three well-studied classes of representations
to which Theorem A applies. Interestingly, in all these cases, the mere information
on the critical exponent of the unstable Jacobian provided by Theorem A allows us to
obtain a sharp upper bound on the critical exponent for the action on the symmetric
space endowed with the Riemannian distance function. In the case of ‚–positive
representations this is even sufficient to prove that the bound is rigid: it is attained
only on the specific Fuchsian locus, the generalization, in our setting, of Bowen’s
aforementioned result.

Maximal representations

Maximal representations are well-studied representations of fundamental groups of
surfaces in Hermitian Lie groups GR that were introduced by Burger, Iozzi and
Wienhard [12] through a cohomological invariant, the Toledo invariant. For these
representations Theorem A applies, and gives:

Theorem 1.4 Let GR be a classical simple Hermitian Lie group of tube type. Let
� W Γ! GR be a maximal representation , and let La denote the root associated to the
stabilizer of a point in the Shilov boundary of GR. Then h�.La/D 1.

Concretely, in the case GR 2 fSp.2p;R/; SU.p; p/; SO
�.4p/g, the root La computes the

logarithm of the square of the middle eigenvalue, while for GD SO0.2; p/ the root La
is the first root, computing the logarithm of the first eigenvalue gap.

Geometry & Topology, Volume 27 (2023)



Anosov representations with Lipschitz limit set 3311

Theorem 1.4 also holds for the exceptional Hermitian Lie group of tube type if the
representation is Zariski-dense, and we expect it to hold unconditionally. We refer
the reader to Section 9 for a slightly more general statement, further explanations and
consequences, in particular concerning a sharp upper bound on the exponential orbit
growth rate for the action on the symmetric space (see Proposition 9.9).

Hp;q–convex–cocompact representations

Generalizing work of Mess [37] and Barbot and Mérigot [3], Danciger, Guéritaud
and Kassel [16] introduced a class of representations called Hp;q–convex–cocompact.
Here Hp;q is the pseudo-Riemannian hyperbolic space, consisting of negative lines in
P .Rd / for a fixed nondegenerate form Q of signature .p; qC 1/. It follows then from
[16, Theorem 1.11] that a projective Anosov subgroup Γ< PO.Q/D PO.p; qC 1/ is
Hp;q–convex–cocompact if, for every pairwise distinct triple of points x; y; z 2 LΓ, the
restriction Qjhx;y;zi has signature .2; 1/.

Consider a representationƒ WPO.p; 1/!PO.p; qC1/whose image stabilizes a .pC1/–
dimensional subspace V of Rd , whereQjV has signature .p; 1/. Endow the symmetric
space Xp;qC1 with the PO.p; qC1/–invariant Riemannian metric normalized so that
the totally geodesic copy of Hp in Xp;qC1 stabilized by ƒ has constant curvature �1.

Definition 1.5 For a subgroup Γ< SO.p; qC1/ and x0 2Xp;qC1, denote by hXp;qC1�

the critical exponent of the Dirichlet series

s 7!
X
2Γ

e�sd.x0;�./x0/:

We have the upper bound:

Proposition 1.6 Assume that @Γ is homeomorphic to a .p�1/–dimensional sphere ,
and let Γ< PO.p; qC 1/ be strongly irreducible and Hp;q–convex–cocompact. Then

h
Xp;qC1
� � p� 1:

We expect this upper bound to be rigid, namely the upper bound should only be attained
at an inclusion of a cocompact lattice in PO.p; 1/ preserving a totally geodesic copy
of Hp of the type induced by ƒ. However, only the case p D 2 is known; see Collier,
Tholozan and Toulisse [15].

Section 8 contains more information on Hp;q–convex–cocompact representations. In
particular the relation with recent work by Glorieux and Monclair [24].
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‚–positive representations

Thanks to Theorem D, Theorem A also applies to ‚–positive representations of funda-
mental groups of surfaces in SO.p; q/ and gives:

Corollary 1.7 Let � W Γ! SO.p; q/ be a ‚–Anosov representation that is ‚–positive
and weakly irreducible. Then h�.ak/D 1 for every k � p� 1.

Inspired by Potrie and Sambarino [38], we deduce from Corollary 1.7 a rigid upper
bound for the critical exponent of the action of a positive representation on the Rie-
mannian symmetric space Xp;q (see Theorem 10.7). More precisely, we now normalize
the SO.p; q/–invariant Riemannian metric on Xp;q so that the totally geodesic copy
of H2 induced by the representation ƒ W SL2.R/! SO.p; q/ that stabilizes a subspace
of Rd of signature .p; p � 1/ has constant curvature �1. We consider the critical
exponent in Definition 1.5 with this normalization of distance.

Theorem 1.8 Let Γ be the fundamental group of a surface and let � W Γ! SO.p; q/ be
‚–positive. Then the critical exponent with respect to the Riemannian metric satisfies

h
Xp;q
� � 1:

Furthermore , if equality is achieved at a totally reducible representation �, then � splits
asW ˚V ,W has signature .p; p�1/, �jW has Zariski closure the irreducible PO.2; 1/

in PO.p; p� 1/, and �jV lies in a compact group.

New arguments are needed with respect to [38], since the Anosov–Levi space of a
‚–positive representation has codimension one (instead of 0, which is the case treated
in [38]); see Section 10.

Plan of the paper

In Section 2 we introduce some required preliminaries, and recall some needed results
from Bochi, Potrie and Sambarino [6] and Pozzetti, Sambarino and Wienhard [39].
Section 3 deals with the affinity exponent and Hausdorff dimension for Anosov repre-
sentations, and in it we prove Theorem B for any local field. Section 4 is a reminder
of (more or less) standard definitions on semisimple algebraic groups over a local
field. In Section 5 we recall objects from higher-rank Patterson–Sullivan theory and
in Section 5.3 we prove Theorem 5.14 (a broader version of Theorem C). Section 6
completes the proof of Theorem A. The remaining sections deal with the applications
of this result discussed in the introduction.
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2 Preliminaries

We recall in this section the notions we will need concerning Anosov representations
and cone types. We refer the reader to [6; 39] for more details.

Throughout the paper K will denote a local field with absolute value k � kWK!RC. If
K is non-Archimedean, we require that j!j D 1=q where ! denotes the uniformizing
element, namely a generator of the maximal ideal of the valuation ring O, and q is the
cardinality of the residue field O=!O (this is finite because K is, by assumption, local).
This guarantees that the Hausdorff dimension of P1.K/ equals 1.

2.1 Singular values and Anosov representations into PGLd.VK/

A K–norm k � k on a K vector space VK induces a norm on every exterior power of V ;
the angle between two vectors †.v; w/ is the unique number in Œ0; �� such that

sin†.v; w/ WD
kv^wk

kvkkwk
:

Given two points Œv�; Œw� 2 P .V /, we define their distance as

d.Œv�; Œw�/ WD sin†.v; w/;

and, given any two subspaces P;Q < V , we define their minimal angle as

†.P;Q/D min
v2Pnf0g

min
w2Qnf0g

†.v; w/:
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An element a 2 GL.VK/ is a semihomothecy (for a norm k � k) if there exists an a–
invariant K–orthogonal3 decomposition V D V1˚� � �˚Vk and �1; : : : ; �k 2RC such
that, for every i 2 ŒŒ1; k�� and every vi 2 Vi ,

kavik D �ikvik:

The numbers �i are called the ratios of the semihomothecy a.

Following Quint [40, théorème 6.1], we fix a maximal abelian subgroup of diagonal-
izable matrices A� GL.VK/, a compact subgroup K � GL.VK/ such that if N is the
normalizer of A in GL.VK/ thenN D .N \K/A, and a K–norm k � k on V preserved by
K and such that A acts on V by semihomothecies. Let e1˚ � � �˚ ed be the eigenlines
of A (here d D dimV ) and choose the Weyl chamber AC consisting of those elements
a 2 A whose corresponding semihomothecy ratios verify �1.a/� � � � � �d .a/.

For every g 2 GL.VK/ we choose a Cartan decomposition g D kgag lg with ag in AC

and kg ; lg 2K, and denote by

�1.g/� �2.g/� � � � � �d .g/

the semihomothecy ratios of the Cartan projection ag 2 AC (these do not depend on
the choice of the Cartan decomposition once K and k � k are fixed). In order to simplify
notation we will often write .�i=�j /.g/D �i .g/=�j .g/.

We define, for p 2 ŒŒ1; d � 1��,

up.g/D kg � ep 2 V:

The set fup.g/ W p 2 ŒŒ1; d � 1��g is an arbitrary orthogonal choice of the axes (ordered
in decreasing length) of the ellipsoid fAv W kvk D 1g, and, by construction, for every
v 2 g�1up.g/ one has kgvk D �p.g/kvk. Let

Up.g/D u1.g/˚ � � �˚up.g/D kg � .e1˚ � � �˚ ep/:

If g is such that �p.g/ > �pC1.g/, then we say that g has a gap of index p. In that
case the decomposition

Ud�p.g
�1/˚g�1.Up.g//

is orthogonal (see [39, Remark 2.4]) and, if K is Archimedean, the p–dimensional
space Up.g/ is independent of the Cartan decomposition of g.

3Recall that for K non-Archimedean a decomposition V D V1 ˚ � � � ˚ Vk is orthogonal if
P vi

 D
maxi kvik for every vi 2 Vi .
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We will denote by…Dfa1; : : : ; ad�1g the root system of PGL.VK/, and, given a subset
� �…, by F� the associated partial flag manifold. Given � �… we also denote by
U � .g/ the partial flag U � .g/D fUp.g/ W ap 2 �g. The �–basin of attraction of g

(2-1) B�;˛.g/D
˚
x� 2 F� .K

d / W min
ap2�
†.xp; Ud�p.g

�1// > ˛
	

is the complement of the ˛–neighborhood of U �
c

.g�1/. When � consists of a single
root a, we will write Ba;˛.g/ instead of Bfag;˛.g/.

Remark 2.1 If g has a gap of index p, then Ud�p.g�1/ is well defined if K is
Archimedean, and any two possible choices have distance at most .�pC1=�p/.g/ if K

is non-Archimedean. It follows that, also in the non-Archimedean case, B�;˛.g/ only
depends on K provided ˛ is bigger than the minimal singular value gap.

We recall for later use the following lemma, which explains the choice of the term
basin of attraction:

Lemma 2.2 (Bochi, Potrie and Sambarino [6, Lemma A.6]) For every g 2 PGLd .K/
and x 2 Ba1;˛.g/,

d.U1.g/; g � x/�
1

sin.˛/
�2

�1
.g/:

2.2 Anosov representations

Let Γ be a word-hyperbolic group with identity element e, and fix a finite symmetric
generating set SΓ. For  2 Γ n feg denote by j j the least number of elements of SΓ
needed to write  as a word on S , and define the induced distance dΓ.; �/D j�1�j. A
geodesic segment on Γ is a sequence f˛igk0 of elements in Γ such that dΓ.˛i ; j̨ /Dji�j j.

Definition 2.3 A representation � W Γ! PGLd .K/ is ap–Anosov4 if there exist positive
constants c and �, the ap–Anosov constants of �, such that for all  2 Γ,

(2-2)
�pC1

�p
.�.//� ce��j j:

An a1–Anosov representation will be called projective Anosov.

The following result was proven in Bochi, Potrie and Sambarino [6] for KDR. The
same arguments also give the result for any local field.

4In the language of Bochi, Potrie and Sambarino [6, Section 3.1], an ap–Anosov representation is called
p–dominated. It was proven by Kapovich, Leeb and Porti [33] that if a group Γ admits an Anosov
representation, it is necessarily word hyperbolic. See also Bochi, Potrie and Sambarino [6] for a different
approach.
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Proposition 2.4 [6, Lemma 2.5] Let � W Γ ! PGLd .K/ be a projective Anosov
representation. Then there exists �� > 0 and L 2 N such that , for every geodesic
segment f˛igk0 in Γ through e with j˛0j; j˛kj � L,

†
�
U1.�.˛k//; Ud�1.�.˛0//

�
> ��:

Proposition 2.4 is a key ingredient in the construction of boundary maps:

Proposition 2.5 [6, Lemma 4.9] Let � W Γ! PGLd .K/ be projective Anosov and
.˛i /

1
0 � Γ a geodesic ray based at the identity converging to x 2 @Γ. Then

�1� .x/ WD lim
i!1

U1.�.˛i // and �d�1� .x/ WD lim
i!1

Ud�1.�.˛i //

exist , do not depend on the ray, and define continuous �–equivariant transverse maps
�1� W @Γ!P .Kd / and �d�1� W @Γ!P ..Kd /�/. Furthermore , there are positive constants
C and � depending only on � such that

d
�
U1.�.˛k//; �

1
� .x/

�
� Ce��k :

The next lemma, concerning properties of boundary maps, will be valuable in Section 3.1:

Lemma 2.6 (Bochi, Potrie and Sambarino [6, Lemma 3.9]) Let � W Γ! PGLd .K/ be
projective Anosov. Then there exist constants � 2 .0; 1/, a0 > 0 and a1 > 0 such that ,
for every ; � 2 Γ,

dΓ.; �/� �.j jC j�j/� a0� a1
ˇ̌
log d

�
U1.�.//; U1.�.�//

�ˇ̌
:

3 Hausdorff dimension of limit sets and the affinity exponent

Generalizing the definition given in Section 1, we define the affinity exponent hAff� of
a projective Anosov representation � W Γ! PGL.VK/ as the critical exponent of the
broken Dirichlet series

ˆAff
� .s/D

X
2Γ

�
�2

�1
.�.// � � �

�p�1

�1
.�.//

�dK
�
�p

�1
.�.//

�s�dK.p�2/

for s 2 ŒdK.p� 2/; dK.p� 1/�, where the dimension dK of P1.K/ is 1 unless KDC

in which case dC D 2.

Recall furthermore that, for a metric space .ƒ; d/ and for s > 0, one defines its
s–capacity as

Hs.ƒ/D inf
"

�X
U2U

diamU s
ˇ̌̌
U is a covering of ƒ with sup

U2U

diamU < "

�
;
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and that the Hausdorff dimension of ƒ is defined by

(3-1) dimHff.ƒ/D inffs WHs.ƒ/D 0g D supfs WHs.ƒ/D1g:

The goal of the section is to prove:

Theorem 3.1 Let K be a local field. If � W Γ! PGL.VK/ is a1–Anosov , then

dimHff.�
1
� .@Γ//� h

Aff
� :

The proof of Theorem 3.1 is elementary and based on the construction of a good cover
of the image of the limit map (explicitly constructed in Section 3.1), which we show in
Section 3.2 to be contained in ellipses of controlled axis.

3.1 Coarse cone types

In Pozzetti, Sambarino and Wienhard [39, Section 2.3.1] we used cone types at infinity
to construct well-behaved coverings of the boundary of the group. We now introduce a
coarse version of these sets, which will be more useful for our purposes.

Recall that a sequence . j̨ /10 is a .c0; c1/–quasigeodesic if, for every pair j; l ,

1

c0
jj � l j � c1 � dΓ. j̨ ; ˛l/� c0jj � l jC c1:

We associate to every element  a coarse cone type at infinity, consisting of endpoints
at infinity of quasigeodesic rays based at �1 passing through the identity:

Cc0;c11 ./D
˚
Œ. j̨ /

1
0 � 2 @Γ j .˛i /

1
0 is a .c0; c1/–quasigeodesic, ˛0 D �1; e 2 f j̨ g

	
:

Hyperbolicity of Γ lets us understand the overlaps of coarse cone types; this will be
crucial in Section 5.3 to guarantee bounded overlap of suitable covers of the limit set.

Proposition 3.2 Let Γ be word hyperbolic. For every c0 and c1 there exists C > 0

such that if
Cc0;c11 ./\ �Cc0;c11 .�/¤∅

then
dΓ.; �/�

ˇ̌
j j � j�j

ˇ̌
CC:

Proof Assume that x 2 Cc0;c11 ./\ �C
c0;c1
1 .�/. Since Γ is hyperbolic, by the Morse

lemma there exists K > 0 (only depending on c0, c1 and the hyperbolicity constant
of Γ) such that  is at distance at most K from a geodesic ray from e to x. The same
holds then for �, and, using the hyperbolicity of Γ again, we can assume up to enlarging
the constant K (still depending on c0 and c1 only) that the two rays agree. This implies
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Bc1.e/

�1 Γ

C
c0;c1
1 ./

Figure 1: The coarse cone type at infinity. The black broken lines are .c0; c1/–
quasigeodesics. All endpoints of geodesic rays from �1 intersecting the ball
Bc1.e/ clearly belong to C

c0;c1
1 ./.

that there exist g0 and g1 on a geodesic ray from e to x such that d.; g0/ �K and
d.�; g1/�K. Since g0 and g1 lie in a geodesic d.g0; g1/�

ˇ̌
jg0j � jg1j

ˇ̌
, and thus

d.; �/� 4KC
ˇ̌
j j � j�j

ˇ̌
:

Our next goal is to show that, for an Anosov representation, the intersections of Cartan’s
basins of attraction B�;˛.�.// with the image of the boundary map are contained in
the image of a suitably big coarse cone type of  . Let � �… be a subset containing
the first root a1. We will denote by ��;1 W F� .Kd /! P .Kd / the canonical projection.
Recall from (2-1) that, for every ˛, we associate to each g 2 PGL.VK/ a basin of
attraction B�;˛.g/� F� . We will now use Lemma 2.6 to show that, for every ˛, there
exist c0 and c1 such that the intersection of a �–basin of attraction B�;˛.�.// with
the image of the boundary map is contained in a .c0; c1/–coarse cone type.

Proposition 3.3 Let � W Γ!PGL.VK/ be projective Anosov and consider ˛ > 0. There
exist c0 and c1 only depending on ˛ and � such that , for every � �… containing a1

and every  2 Γ,
.�1/�1

�
��;1

�
B�;˛.�.//

��
� Cc0;c11 ./:

Proof It is enough to show that if �1.x/ 2 ��;1.B�;˛.�./// and j j is big enough,
then there is a quasigeodesic ray from �1 to x that passes through the identity
and whose constants only depend on ˛ and �. Consider a quasigeodesic ray f j̨ g
converging to x, and fix 1 > ˛0 > ˛. Since by assumption �1.x/ 2 Ba1;˛.�.//, we
can find a constant L depending only on � such that, for every j > L, it holds that
U1.�.˛i // 2 Ba1;˛0.�.//. The uniformity of L follows from the last statement in
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Proposition 2.5. By definition we have †.U1.�. j̨ //; Ud�1.�.�1/// > ˛0, and thus,
in particular, d.U1.�. j̨ //; U1.�.�1//>˛0. Now let . j̨ /

�j jS
iD0 be a geodesic segment

with ˛0 D e and ˛�j jS D  . Up to further enlarging ˛0 and L (depending on the
representation only), d.U1.�.˛�L//; U1.�.˛L// > ˛0. Lemma 2.6 implies that the
sequence . j̨ /1iD�j jS , obtained as concatenation of the geodesic between �1 and the
identity and the ray from the identity to x, is a quasigeodesic ray, thus the result.

Corollary 3.4 Let � W Γ! PGL.VK/ be projective Anosov and consider ˛ > 0. There
exists C only depending on ˛ and � such that , for every � �… containing a1, if

�1.@Γ/\��;1
�
�./ �B�;˛.�.//\ �.�/ �B�;˛.�.�//

�
¤∅

then
d.; �/�

ˇ̌
j j � j�j

ˇ̌
CC:

Proof This follows immediately by combining Propositions 3.3 and 3.2.

In particular, we can use basins of attraction to construct coverings of the image of the
boundary map with bounded overlap:

Proposition 3.5 (see Pozzetti, Sambarino and Wienhard [39, Lemma 2.22]) Let
� W Γ! PGL.VK/ be projective Anosov. There exists ˛ small enough such that , for
every T > 0, the family of open sets

UT WD f�./ �Ba1;˛.�.// W j j D T g

defines an open covering of �1.@Γ/. Furthermore there exists a constant C depending
on ˛ (and �) such that , for every x 2 @Γ and every T , �.x/ is contained in at most C
elements of UT .

Proof Let x 2 @Γ and let fj g be a geodesic ray based at the identity representing x.
Propositions 2.4 and 2.5 guarantee that there exists ˛ D ˛� such that

†.�.�1T /�1.x/; Ud�1.�.
�1
T // > ˛I

therefore �1.x/ 2 �.T /Ba1;˛.�.T //. The second statement is a direct consequence
of Corollary 3.4.

3.2 Ellipses

The purpose of this section is to prove that, for a projective Anosov representation, the
set �./ �Ba1;˛.�.// is coarsely contained in an ellipsoid with axes of size

�2

�1
.�.//; : : : ;

�d

�1
.�.//:
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Definition 3.6 Let V be a d–dimensional K–vector space with K–norm k � k. Let

u1˚ � � �˚ud

be a K–orthogonal decomposition and let vD
P
vjuj be the associated decomposition

of v 2 V for suitable vj 2K. Choose positive real numbers a2 � � � � � ad � 1. If K is
Archimedean, an ellipsoid about Ku1 is the projectivization of�

v 2 V
ˇ̌̌
jv1j

2
�

dX
2

.aj jvj j/
2

�
for some ai > 0. If instead K is non-Archimedean, an ellipsoid about Ku1 is the
projectivization of ˚

v 2 V W jv1j � max
2�i�d

.aj jvj j/
	
:

The vector spaces u1˚uj are the axes of the ellipsoid, and the size of the axis u1˚uj
is 1=aj . We need the following covering lemma:

Lemma 3.7 Let E be an ellipsoid with axis of size 1 � ˇ2 � � � � � ˇd . For every
p 2 ŒŒ2; d ��, E can be covered by

22p
�
ˇ2 � � � p̌�1

ˇ
p�2
p

�dK

balls of radius
p
d p̌.

Proof We consider the affine chart of P .V / corresponding to u1D 1. The ellipsoid E
is contained in the product of the balls fjvi j � ˇig �K (it agrees with such a product
if K is non-Archimedean). If K is Archimedean, the ball fjvj j � ǰ g is contained in
the union of d ǰ = p̌e

dK balls of radius p̌. Since the product of d balls of radius p̌

is contained in a ball of radius
p
d p̌, we obtain that E can be covered by�
ˇ2

p̌

�dK

� � �

�
p̌�1

p̌

�dK

balls of radius
p
d p̌.

If instead K is non-Archimedean, the ball fjvj j � ǰ g can be decomposed into
qblogq. ǰ =ˇp/c balls of radius p̌, and hence E can be covered with

qblogq.ˇ2=ˇp/c � � � qblogq.ˇp�1=ˇp/c

balls of radius p̌.
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Proposition 3.8 Consider ˛ > 0. For g 2 PGL.VK/, the image of the corresponding
Cartan basin of attraction g �Ba1;˛.g/ is contained in the ellipsoid about U1.g/ with
axes u1.g/˚uj .g/ of size

1

sin˛
�j

�1
.g/:

Proof Assume first that K is Archimedean. By definition of Ba1;˛.g/, for every
v 2Kd with K � v 2 Ba1;˛.g/,

jv1j
2
� .sin˛/2

dX
1

jvj j
2;

where .v1; : : : ; vd / are the coefficients in the decomposition of v with respect to the
orthogonal splitting V D

L
g�1uj .g/.

Since the coefficients wj of gv in the decomposition induced by the orthogonal de-
composition V D

L
uj .g/ satisfy jwj j D �j .g/jvj j,

jw1j
2
D �1.g/

2
jv1j

2
� �1.g/

2.sin˛/2
dX
jD2

jvj j
2
D �1.g/

2.sin˛/2
dX
jD2

1

�j .g/2
jwj j

2:

One concludes that gv lies on the corresponding ellipsoid. The non-Archimedean case
follows analogously.

3.3 The lower bound on the affinity exponent

We now have all the ingredients needed to prove Theorem 3.1:

Proof For each T > 0, denote by UT the covering of �1.@Γ/ given by Proposition 3.5.
By definition, U D U 2 UT is of the form �./ �Ba1;˛.�.// for some  satisfying
j j D T . Proposition 3.8 applied to �./ implies that �./ �Ba1;˛.�.// is contained
in an ellipsoid about Ku1.�.// with axes of sizes

1

sin˛
�2

�1
.�.//; : : : ;

1

sin˛
�d

�1
.�.//:

Furthermore, since � is Anosov, we deduce from Lemma 2.2 that supU2UT diamU

is arbitrarily small as T goes to infinity. Recall that the s–capacity Hs was defined
by (3-1). Applying Lemma 3.7 to these ellipses and any p 2 ŒŒ2; d ��, we obtain

Hs.�.@Γ//

� 22p
� p

d

sin˛

�s
inf
T

X
j j�T

�
�2

�1
.�.// � � �

�p�1

�1
.�.//

�dK
�
�p

�1
.�.//

�s�dK.p�2/

:
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By definition of the affinity exponent hAff� , for all s > hAff� the broken Dirichlet seriesX
2Γ

�
�2

�1
.�.// � � �

�p�1

�1
.�.//

�dK
�
�p

�1
.�.//

�s�dK.p�2/

; s2 ŒdK.p�2/; dK.p�1/�;

is convergent, and thus, for all s > hAff� ,

2p
� p

d

sin˛

�s
inf
T

X
j j�T

�
�2

�1
.�.// � � �

�p�1

�1
.�.//

�dK
�
�p

�1
.�.//

�s�dK.p�2/

D 0:

As a result we conclude that for all s > hAff� the s–capacity Hs.�.@Γ// vanishes; hence,

hAff� � dimHff.�.@Γ//:

The following generalization of Corollary 1.1 is also immediate:

Corollary 3.9 If � WΓ!PGL.VK/ is projective Anosov and dimHff.�.@Γ//�pdK, then

dimHff.�.@Γ//� ph�.J
u
p/:

Proof Observe that, for every s 2 ŒdKp; dK.pC1/�, the value of the broken Dirichlet
series defining the affinity exponent

ˆAff
� .s/D

X
2Γ

�
�2

�1
.�.// � � �

�pC1

�1
.�.//

�dK
�
�pC2

�1
.�.//

�s�dKp

is smaller than or equal to the value of the series associated to the pth unstable Jacobian
divided by p:

ˆ
Jup=p
� .s/D

X
2Γ

�
�2

�1
.�.// � � �

�pC1

�1
.�.//

�s
p

:

Indeed, �
�pC2

�1
.�.//

�s�dKp

D

�
�pC2

�1
.�.//

�p� sp�dK

�

�

�
�2

�1
.�.//

�s
p�dK

� � �

�
�pC1

�1
.�.//

�s
p�dK

:

As a result, if dKp � h
Aff
� � dK.pC 1/, then ph�.Jup/� h

Aff
� .

The result follows as, for all k 2 ŒŒ1; d � 1�� and v 2 EC,

Ju
k�1

.v/

k� 1
�

Ju
k
.v/

k
;

which implies kh�.Juk/� .k� 1/h�.J
u
k�1

/.
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4 Semisimple algebraic groups

Let G be a connected semisimple K–group, GK the group of its K–points, A a maximal
K–split torus and X.A/ the group of its K�–characters. Consider the real vector
space E� D X.A/˝Z R and E its dual. For every � 2 X.A/, we denote by �! the
corresponding linear form on E.

4.1 Restricted roots and parabolic groups

Let † be the set of restricted roots of A in g. Then the set †! is a root system of E�.
Let †C be a system of positive roots and … the associated subset of simple roots. Let
EC be the Weyl chamber determined by the positive roots .†!/C.

Let W be the Weyl group of †. It is isomorphic to the quotient of the normalizer
NGK.AK/ of AK in GK by its centralizer ZGK.AK/. Let i W E! E be the opposition
involution: if u W E! E is the unique element in the Weyl group with u.EC/D�EC,
then iD�u.

A subset ‚�… determines a pair of opposite parabolic subgroups P‚ and LP‚ whose
Lie algebras are defined by

p‚ D
M

a2†C[f0g

ga˚
M

a2h…�‚i

g�a and Lp‚ D
M

a2†C[f0g

g�a˚
M

a2h…�‚i

ga:

The group LP‚ is conjugate to the parabolic group Pi‚. Let

l‚ D p‚\ Lp‚

be the Lie algebra of the associated Levi group.

The K–flag space associated to ‚ is F‚.GK/ D GK=P‚;K, and the GK orbit of the
pair .ŒP‚;K�; Œ LP‚;K�/ is the unique open orbit for the action of GK in the product
F‚.GK/�Fi‚.GK/. This orbit is denoted by F

.2/
‚ .GK/.

For y 2 Fi‚.GK/ denote by

(4-1) Ann.y/D fx 2 F‚.GK/ W .x; y/ … F‚.GK/
.2/
g

the closed submanifold of flags in F‚.GK/ that are not transverse to y.
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Denote by . � ; � / a W –invariant inner product on E and also the induced inner product
on E�, define

h�; i D
2.�;  /

. ; /
;

and let f!aga2… be the dual basis of…, ie h!a; biD daıab, where daD 1 if 2a… .†!/C

and da D 2 otherwise. The linear form !a is the fundamental weight associated to a.

4.2 Cartan decomposition

Let � W AK! E be defined, for z 2 AK, as the unique vector in E such that for every
� 2X.A/,

�!.�.z//D log j�.z/j:

Define ACK D �
�1.EC/.

Let K � GK be a compact group that contains a representative for every element of the
Weyl group W ; that is, NGK.AK/D .NGK.AK/\K/AK, where NGK is the normalizer.
One has GK DKACKK, and if z; w 2 ACK are such that z 2KwK, then �.z/D �.w/.
There exists thus a function

a W GK! EC;

such that for every g1; g2 2 GK one has that g1 2Kg2K if and only if a.g1/D a.g2/.
It is called the Cartan projection of GK.

In the case of GK D PGL.VK/ this is nothing but the ordered list of semihomothecy
ratios defined in Section 2.1.

4.3 Representations of GK

Let ƒ W G! PGL.V / be a finite-dimensional irreducible representation that is also a
rational map between algebraic varieties and denote by �ƒ W g! sl.V / the Lie algebra
homomorphism associated to ƒ. Then the weight space associated to � 2X.A/ is the
vector space

V� D fv 2 V W �ƒ.a/v D �.a/v for all a 2 AKg;

and if V� ¤ 0 then we say that �! 2 E� is a restricted weight of ƒ. Theorem 7.2 of
Tits [47] states that the set of weights has a unique maximal element with respect to
the order ��  if �� is positive on EC. This is called the highest weight of ƒ and
denoted by �ƒ.

Definition 4.1 Let ‚ƒ be the set of simple roots a 2 … such that �ƒ � a is still a
weight of ƒ.
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Remark 4.2 The subset ‚ƒ is the subset of simple roots such that, for a 2 †C,
n 2 g�a and v 2 �ƒ, we have �ƒ.n/v D 0 if and only if a 2 h…�‚ƒi.

Definition 4.3 We denote by k � kƒ a good norm on V , invariant under ƒK, and
such that ƒAK consists of semihomothecies; if K is Archimedean the existence of
such a norm is classical, and if K is non-Archimedean then this is the content of
Quint [40, théorème 6.1].

For every g 2 GK,

(4-2) log kƒgkƒ D �ƒ.a.g//:

If g D kgzg lg with k; l 2 K and zg 2 ACK, then for all v 2 ƒ.l�1g /V�ƒ one has
kƒg.v/kƒ D kƒgkƒkvkƒ.

Denote by W�ƒ the ƒAK–invariant complement of V�ƒ . Note that the stabilizer in GK

of W�ƒ is LP‚;K, and thus one has a map of flag spaces

(4-3) .�ƒ; �
�
ƒ/ W F

.2/
‚ƒ
.GK/! G

.2/
dimV�ƒ

.V /;

a proper embedding which is a homeomorphism onto its image. Here G
.2/
dimV�ƒ

.V / is
the open PGL.VK/–orbit in the product of the Grassmannian of .dimV�ƒ/–dimensional
subspaces and the Grassmannian of .dimV�dimV�ƒ/–dimensional subspaces.

Proposition 4.4 (Tits [47]; see also Humphreys [30, Chapter XI]) For each a 2…

there exists a finite-dimensional rational irreducible representation ƒa W G! PSL.Va/

such that �ƒa
is an integer multiple of the fundamental weight !a and dimV�ƒa

D 1.
All other weights of ƒa are of the form

�a� a�
X
b2…

nbb;

where nb 2N.

We will fix from now on such a set of representations and call them, for each a 2…,
the Tits representation associated to a.

4.4 The center of the Levi group P‚;K \ LP‚;K

We now consider the vector subspace

E‚ D
\

a2…�‚

ker a! ;
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together with the unique projection �‚ W E! E‚ that is invariant under the subgroup
W‚ of the Weyl group spanned by reflections associated to roots in …�‚:

W‚ D fw 2W W w.v/D v for all v 2 E‚g:

The dual space .E‚/� is canonically the subspace of E� of �‚–invariant linear forms
and it is spanned by the fundamental weights of roots in ‚:

.E‚/
�
D f' 2 E� W ' ı�‚ D 'g D h!a W a 2‚i:

Since �2‚D �‚, precomposition with �‚ induces a projection E�! .E‚/
� denoted by

' 7! '‚ WD ' ı�‚:

Examples 4.5 and 4.6 will be relevant in Sections 7 and 8, respectively.

Example 4.5 Let GK D PGL.VK/ and, as above, denote by ak 2 E� the kth simple
root, so that ak.a1; : : : ; ad / D ak � akC1. We then choose p 2 ŒŒ2; d � 2�� and let
‚D fa1; ap; ad�1g, so that

E‚ D f.a1; : : : ; ad / 2 E W a2 D � � � D ap and apC1 D � � � D ad�1g

is three-dimensional. Using the fact that the fundamental weights !i (for iD1; p; d�1)
belong to .E‚/�, one checks that the projection is

"1.�‚.a//D a1;

"i .�‚.a//D
a2C � � �C ap

p� 1
D
!p �!1

p� 1
.a/ for every i 2 ŒŒ2; p��;

"i .�‚.a//D
apC1C � � �C ad�1

d �p� 1
D
!d�1�!p

d �p� 1
.a/ for every i 2 ŒŒpC 1; d � 1��;

"d .�‚.a//D ad :

Then
a‚p D

!p �!1

p� 1
�
!d�1�!p

d �p� 1

and a‚p jECnf0g � apjECnf0g.

Example 4.6 Consider the group SO.p; q/ of transformations in PSLpCq.R/ preserv-
ing a signature .p; q/ bilinear form with p < q. One has

ED f.a1; : : : ; ap/ W ai 2Rg

equipped with the root system

†! D f"i W i 2 ŒŒ1; p��g[ fa 7! ai � aj W i; j 2 ŒŒ1; p��g:
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A Weyl chamber can be chosen as

EC D fa 2 E W ai � aiC1 for all i 2 ŒŒ1; p� 1�� and ap � 0g;

with the associated set of simple roots

…D fai W i 2 ŒŒ1; p� 1��g[ f"pg:

Consider then ‚D fai W i 2 ŒŒ1; p� 1��g, so that E‚ D ker "p and thus ai 2 .E‚/
� for

i 2 ŒŒ1; p� 2��. Moreover,
a‚p�1 D "p�1;

and one has that a‚p�1jECnf0g � ap�1jECnf0g.

4.5 Gromov product

Recall from Sambarino [45] that the Gromov product5 based at K is the map

. � j � /K W F
.2/
‚ .GK/! E‚;

defined to be the unique vector .xjy/K 2 E‚ such that

�a..xjy/K/D�log sin†kkƒa
.�ƒa

x; ��ƒa
y/

for all a 2‚, where �a is the fundamental weight associated to the Tits representation
ƒa of a. Note that

(4-4) max
a2‚

�a..xjy/K/Dmax
a2‚

ˇ̌
�a..xjy/K/

ˇ̌
D�log min

a2‚
sin†kkƒa

.�ƒa
x; ��ƒa

y/:

One has the following remark from Bochi, Potrie and Sambarino [6]:

Remark 4.7 [6, Remark 8.11] Let ƒ W G! PGL.V / be a finite-dimensional rational
irreducible representation. If .x; y/ 2 F.2/‚ƒ.GK/ then

.�ƒxj�
�
ƒy/kkƒ D �ƒ..xjy/K/;

where kkƒ denotes the (stabilizer of the) inner product on V such thatƒK is orthogonal
(see Definition 4.3).

4.6 Iwasawa cocycle and its relation to representations of G

Another important decomposition of Lie groups that will play a role in our work is the
Iwasawa decomposition

GK DKAKU…;K;

5This is the negative of the product defined in [45].
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where P…;K is the minimal parabolic subgroup and U…;K is its unipotent radical. For
a general local field K the decomposition of an element is not necessarily unique, but
if z1; z2 2 AK are such that z1 2Kz2U…;K, then �.z1/D �.z2/.

Quint used the Iwasawa decomposition to define the Iwasawa cocycle

b….g; x/D �.z/;

where x D kŒP‚;K� 2 F‚.GK/ with k 2K and g 2 GK, and gk has Iwasawa decom-
position gk D lzu.

Lemma 4.8 (Quint [42, lemmes 6.1 et 6.2]) The map p‚ ı b… factors through a
map b‚ W GK �F‚.GK/! E‚. The map b‚ verifies the cocycle relation: for every
g; h 2 GK and x 2 F‚;K.GK/,

b‚.gh; x/D b‚.g; hx/C b‚.h; x/:

One also has the following behavior of b‚ under the representations of G:

Lemma 4.9 (Quint [42, lemme 6.4]) Suppose ƒ W G! PGL.V / is a proximal irre-
ducible representation. Then for every x 2 F‚ƒ.GK/ and g 2 GK,

�ƒ.b‚ƒ.g; x//D log
kƒ.g/vkƒ

kvkƒ
;

where v 2 �ƒ.x/ n f0g.

4.7 Cartan attractors and Cartan’s attracting basins

Consider g 2 GK and let g D kgzg lg be a Cartan decomposition. Given ‚�…, the
Cartan attractor of g in F‚.GK/ is defined by

U‚.g/D U
K
‚ .g/D kg ŒP‚;K�;

and the Cartan basin of g is defined, for ˛ > 0, by

B‚;˛.g/D fx 2 F‚.GK/ W .xjUi‚.g
�1//K < ˛g:

Remark 4.10 Ifƒ WG!PGL.V / is a rational irreducible representation with‚ƒ�‚,
then

�ƒ.U‚.g//D U
kkƒ
dimV�ƒ

.ƒ.g//:

Notice that the flag U‚.g/ is an arbitrary choice of a “most expanding” flag of type ‚
for g. However, it is clear from the definition that given ˛>0 there exists a constantK˛
such that, if y 2 F‚.GK/ belongs to B‚;˛.g/, then, for all a 2‚,

(4-5) j�a.a.g/� b‚.g; y//j �K˛:
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4.8 The PSLd.K/ case

Given a good norm � on Kd , and considering the exterior power representations of
PSLd .K/, one sees that Lemma 4.9 provides the following computation for the Iwasawa
cocycle b WPSLd .K/�F.Kd /!E associated to a maximal compact group stabilizing � .
For p 2 ŒŒ1; d �� and given g 2 PSLd .K/ and x 2 F.Kd /,

(4-6) !p.b.g; x//D log
kgv1 ^ � � � ^gvpk

kv1 ^ � � � ^ vpk
;

where fv1; : : : ; vpg is any basis of the p–dimensional space xp of x and k � k is the
norm on

Vp Kd induced by � .

Notice that, by definition, the number !p.b.g; x// only depends on xp , so in order to
simplify notation we will also denote it by !p.b.g; xp//.

5 Patterson–Sullivan measures in non-Anosov directions

An interesting quantity associated to a discrete subgroup � < GK is hX� , its critical
exponent, which measures the exponential growth rate of orbit points in balls (in the
symmetric space of GK) as the radius grows. The theory of Quint’s growth indicator
function, which we briefly recall in Section 5.1, allows us to deduce information on hX�
from information on the critical exponent of linear forms � on the Weyl chamber E,
which is often easier to handle with the aid of Patterson–Sullivan measures. When the
discrete group � < GK is the image of an Anosov representation � W Γ! GK, and the
form � belongs to the dual of the Levi–Anosov subspace E�� , the thermodynamical
formalism applies (see Theorem 5.12).

In this section we will instead be interested in studying forms � that do not belong
to .E��/

�. Our main result is Theorem 5.14, in which we show that, provided a
representation � is Anosov with respect to some root, the existence of a Patterson–
Sullivan measure in any flag manifold — and thus also in non-Anosov directions �—
has strong implications for the critical exponent of �.

5.1 Quint’s growth indicator

We recall here some definitions from Quint [41; 42].

Let � � GK be a discrete subgroup; its Quint growth indicator function [41]

‰� W E
C
!RC[f�1g
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is defined as follows. Given a norm k � k on E and an open cone C � EC, let hkkC be the
critical exponent of the Dirichlet series

s 7!
X

fg2�Wa.g/2C g

e�ska.g/k

and define ‰� W EC! f�1g[ Œ0;1/ by

‰�.v/D kvk inf
v2C

h
kk

C ;

where the infimum is taken over all open cones containing v. One can easily check
that ‰� does not depend on the chosen norm k � k and is 1–positively homogenous.

Dually, one considers the growth on linear forms. The limit (or Benoist [4]) cone L�

of � is defined as the limit points of sequences tna.gn/ where .tn/n2N �RC converges
to 0 and .gn/n2N � � . Denote its dual cone by

.L�/
�
D f' 2 E� W 'jL�nf0g � 0g;

and for ' 2 .L�/� let h�.'/ be the critical exponent of the Dirichlet seriesX
g2�

e�s'.a.g//;

that is,
h�.'/D lim sup

t!1

1

t
log #fg 2 � j '.a.g// < tg:

Lemma 5.1 h�.minf�1; : : : ; �kg/Dmaxfh�.�1/; : : : ; h�.�k/g:

Proof One inequality is clear. For the other one,

h�.minf�1; : : : ; �kg/� lim sup
t!1

1

t
log

kX
iD1

#f 2 Γ j �i .a.�./// < tg

� lim sup
t!1

1

t
log kmax

i
#f 2 Γ j �i .a.�./// < tg

Dmaxfh�.�1/; : : : ; h�.�k/g

One can then define the subset

D� D f' 2 .L�/
�
W h�.'/ 2 .0; 1�g:

The next lemma is clear from the definitions, but is very useful in applications:

Lemma 5.2 If � belongs to D� , then �C 2D� for every  2 .L�/�.
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The following result from Quint [41] allows one to deduce information on the critical
exponent of various norms in terms of growth of linear functions, which are often easier
to compute:

Proposition 5.3 (Quint [41]) One has that

D� D f' 2 E
�
W '.v/�‰�.v/ for all v 2 ECg;

and thus it is a convex set. Moreover , for any 1–positively homogenous function
‚ W EC!R, the critical exponent h�.‚/ of the Dirichlet series

s 7!
X
g2�

e�s‚.a.g//

can be computed as h�.‚/D supv2EC ‰�.v/=‚.v/.

A useful property of the set D� is provided by the next theorem.

Theorem 5.4 (Quint [41]) If the Zariski closure of � is semisimple then ‰� is
concave. Consequently, for every norm k � k on E,

h
kk

� D inffk'k� W ' 2D�g;

where k � k� is the induced operator norm on E�.

Remark 5.5 Recall that, if we endow the symmetric space (or the affine building) X
associated to GK with a GK–invariant Riemannian metric, there exists an Euclidean
norm k � kX on E such that, for every g 2 GK,

dX .ŒK�; gŒK�/D ka.g/kX :

So Theorem 5.4 provides the following formula for the critical exponent of a discrete
group with reductive Zariski closure in the symmetric space X :

hX� D inffk�k�X W � 2D�g:

The topological boundary Q� of D� will be called Quint’s indicator set of � . We will
also write

Q�;‚ D Q� \ .E‚/
�:

Let us record here a useful direct consequence of the convexity of D� :

Lemma 5.6 Let �; ' 2 .L�/�. Then

h�.�C'/�
h�.�/h�.'/

h�.�/C h�.'/
:
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We end this subsection with a definition from Quint [42]:

Definition 5.7 Given ‚ �… and ' 2 .E‚/�, a .�; '/–Patterson–Sullivan measure
on F‚.GK/ is a finite Radon measure � such that, for every g 2 � ,

dg��

d�
.x/D e�'.b‚.g

�1;x//:

5.2 Anosov representations with values in GK

Let Γ be a discrete group and fix ‚�….

Definition 5.8 A representation � W Γ! GK is ‚–Anosov if there exist constants c � 0
and � > 0 such that, for every  2 Γ and a 2‚,

a.a.�.///� �j j � c:

If � W Γ! GK is ‚–Anosov and ƒa is as in Proposition 4.4, then ƒa� W Γ! PGL.VK/

is projective Anosov. In particular, Section 2.2 applies to arbitrary GK and one obtains
the following result:

Theorem 5.9 (Kapovich, Leeb and Porti [34]) If � W Γ! GK is ‚–Anosov then Γ

is word hyperbolic and there exist continuous equivariant maps �‚� W @Γ! F‚.GK/

and � i‚
� W @Γ! Fi‚.GK/ such that the product map .�‚� ; �

i‚
� / W @

.2/Γ! F
.2/
‚ .GK/ is

transverse.

We will sometime use the notation introduced in [39] and, if x 2 @Γ is a point, denote by

x‚� WD �
‚
� .x/ 2 F‚.GK/

the image of x via the boundary map. If � D fakg consists of a single root, we will
also write �k� and xk� instead of �fakg� and xfakg� .

If‚�… contains the root a, we denote by �a WF� .GK/!Fa.GK/ the natural projection.
It is easy to deduce from Corollary 3.4 the following more general statement:

Corollary 5.10 Let � W Γ! GK be a–Anosov and consider ˛ > 0. There exists C only
depending on ˛ and � such that , for every � �… containing a, if

�a�.@Γ/\�a

�
�./ �B�;˛.�.//\ �.�/ �B�;˛.�.�//

�
¤∅

then
d.; �/�

ˇ̌
j j � j�j

ˇ̌
CC:
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Definition 5.11 Given a representation � W Γ! GK we define its Anosov–Levi space
as .E‚�/

�, where
‚� D fa 2… W � is a–Anosovg:

It is spanned by the fundamental weights f!a W a 2‚�g.

A more precise description of the indicator set of � can be given on its Anosov–Levi
space. The following is a combination of Bridgeman, Canary, Labourie and Sambarino
[9, Theorem 1.3], Potrie and Sambarino [38, Proposition 4.11] and Sambarino [44]:

Theorem 5.12 Let � W Γ ! GK be a representation. Then Q�.Γ/;‚� is an analytic
codimension-1 embedded submanifold of .E‚�/

� that varies analytically with �.
Moreover, its restriction to the dual of the vector space spanned by the periods is
strictly convex.

5.3 When some wall is not attained

The purpose of this subsection is to explore Q�.Γ/ in directions that are not controlled
by the roots with respect to which � is Anosov.

Definition 5.13 Let � W Γ! GK be an a–Anosov representation. Consider ‚ � …
with a 2‚ and let �' be a .�.Γ/; '/–Patterson–Sullivan measure on F‚.GK/ for some
' 2 .E‚/

�. We say that � is �'–irreducible if, for every y 2 Fi‚.GK/,

�'.Ann.y// < �'.F‚.GK//:

It is clear that if �.Γ/ is Zariski-dense in GK then it is �'–irreducible for any Patterson–
Sullivan measure. Even assuming Zariski-density, the following result is a refinement
of Quint [42, théorème 8.1] when ‚ contains a root with respect to which � is Anosov.
Indeed, in the general case treated by Quint, one needs to control the mass of shadows
on the flag space associated to … n‚, and, as a result, the existence of a .�.Γ/; '/–
Patterson–Sullivan measure only ensures that 'C��c is in D�.Γ/, where ��c is a suitable
form that is nonnegative on the Weyl chamber. In our case, the Anosov condition with
respect to one root in ‚ permits us to control ' directly.

Theorem 5.14 Let � W Γ! GK be an a–Anosov representation. Consider ‚�… with
a 2 ‚ and let �' be a .�.Γ/; '/–Patterson–Sullivan measure on F‚.GK/ for some
' 2 .E‚/

�. Assume � is �'–irreducible , and that supp�� ��1a .�a�.@Γ//. Then

' 2D�.Γ/:
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The rest of the section is devoted to the proof of this result. We begin with the
following lemma from Quint [42], who assumes that the representation is Zariski-dense,
a hypothesis that is too strong for the applications we have in mind. We observe
however that for the proof to work only �'–irreducibility is needed. We sketch the
proof for completeness.

Lemma 5.15 [42, lemme 8.2] Let � W Γ ! GK be a representation and �' be a
.�.Γ/; '/–Patterson–Sullivan measure on F‚.GK/. Assume � is �'–irreducible. Then
there exists ˛0 > 0 such that , for every given 0 < ˛ < ˛0, there exists k > 0, only
depending on ˛, such that , for every  2 Γ,

k�1e�'.a.�./// � �'
�
�./B‚;˛.�.//

�
� ke�'.a.�.///:

Proof Observe that �'–irreducibility guarantees that there exist ˛; k > 0 such that
for every  2 Γ we have �'.B�;˛.�./// � k. Indeed, otherwise there would be a
sequence of reals ˛n! 0 and elements n 2 Γ with �'.B�;˛n.�.n///� 1=n. We can
assume, up to extracting a subsequence, that the complement of B�;˛n.�.// converges
to Ann.y/ for some y 2 Fi� , and this contradicts �'–irreducibility.

The result then follows from the definition of the .�.�/; �/–Patterson–Sullivan measure
using (4-5).

The rest of the proof of Theorem 5.14 is similar to the argument showing that if there
exists a Patterson–Sullivan density of a given exponent, then this exponent must be
greater than the critical exponent; see for example Sullivan [46] and Quint’s notes
[43, Theorem 4.11].

Proof of Theorem 5.14 We have to show that, for every s > 0,X
2Γ

e�.1Cs/'.a.�./// <1:

Corollary 5.10 implies that given ˛ > 0 there exists N 2N such that, if t > 0 and

Γt D f 2 Γ W t � j j � t C 1g;

then, for every x 2 @Γ,

#f 2 Γt W ��1a .�a�.x//\ �./B‚;˛.�.//¤∅g �N:

Lemma 5.15 now yields, for every t � 0,

(5-1) 1> �'.��1a .�a�.@Γ///� C
X
2Γt

e�'.a.�.///;
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where C is independent of t . This is to say, there exists K > 0 independent of t 2RC
such that X

2Γt

e�'.a.�./// <K:

Since � is a–Anosov, for any norm N on E there exist positive ı and C such that

N.a.�.///� ıj j �C:

One concludes that, for every s > 0,X
2Γ

e�'.a.�.//�sN.a.�.//�

1X
nD0

X
2Γn

e�'.a.�.///e�sN.�.//�KeC
1X
nD0

e�ısn<1:

Consider now the counting measure � on E defined by

�.B/D #fa.Γ/\Bg:

The above implies that the measure �0 D e�'� has growth indicator ‰�0 � 0, and so
[41, Corollary 3.1.5] gives

0�‰e�'� D‰� �' D‰�.Γ/�';

as desired.

6 Anosov representations with Lipschitz limit set

In this section we will prove Theorem A. We will hence fix some notation throughout
this section.

Assumption 6.1 The group Γ will be a word-hyperbolic group whose boundary @Γ
is homeomorphic to a sphere of dimension dΓ.6 We will also fix a projective Anosov
representation � W Γ! PSLd .R/ such that the sphere �1� .@Γ/ is a Lipschitz submanifold
of P .Rd /, ie it is locally the graph of a Lipschitz map. Note that we have restricted
ourselves to KDR.

6.1 The pth Jacobian

Given a line ` contained in a .pC1/–dimensional subspace V of Rd , the space of
infinitesimal deformations of ` inside V

T`P .V /� T`P .R
d /

6It follows from [32, Theorem 4.4] that this is the case as soon as @Γ has an open subset homeomorphic
to RdΓ .
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carries a natural volume form induced by the choice of a scalar product � on Rd . Namely,
if one considers the �–orthogonal decomposition V D `˚ `?V , then one canonically
identifies T`P .V /D hom.`; `?V / and thus one can define �`;V 2

Vp
.T`P .V // by

�`;V .'1; : : : ; 'p/D
v^'1.v/^ � � � ^'p.v/

kvkpC1

for any v 2 ` n f0g.

Definition 6.2 The linear form Jup 2 .Efa1;apC1g/
�, defined by

Jup D .pC 1/!1�!pC1;

is called the pth unstable Jacobian.

Lemma 6.3 Given g 2 PSLd .R/ and a partial flag .`; V / 2 Ffa1;apC1g.R
d /,

g��g`;gV D exp
�
�Jup

�
bfa1;apC1g.g; .`; V //

��
�`;V :

Proof This is an explicit computation using (4-6) and the definition of �`;V .

Indeed, whenever '1; : : : ; 'p 2 hom.`; `?V / are linearly independent, for any v 2 `nf0g
the vectors fv; '1.v/; : : : ; 'p.v/g form a basis of V , and thus

g��g`;gV .'1; : : : ; 'p/

D�g`;gV .g'1; : : : ; g'p/

D
gv^ .g'1/.gv/^ � � � ^ .g'p/.gv/

kgvkpC1
D
gv^g.'1.v//^ � � � ^g.'p.v//

kgvkpC1

D
gv^g.'1.v//^ � � � ^g.'p.v//

v^'1.v/^ � � � ^'p.v/

v^'1.v/^ � � � ^'p.v/

kvkpC1
kvkpC1

kgvkpC1

D exp
�
!pC1.bfa1;apC1g.g; V //� .pC 1/!1.bfa1;apC1g.g; `//

�
�`;V :

6.2 Existence of a Ju
dΓ

–Patterson–Sullivan measure

Proposition 6.4 Under Assumption 6.1, there exists a .�.Γ/; Ju
dΓ
/–Patterson–Sullivan

measure on Ffa1;adΓg, which we will denote by ��.

Proof It follows from Rademacher’s theorem [20, Theorem 3.2] that �1� .@Γ/ has
a well-defined Lebesgue measure class (see [22, Section 3.2]), and that Lebesgue
almost every point �1� .x/ 2 �

1
� .@Γ/ has a well-defined tangent space. This defines a

.dΓC1/–dimensional vector subspace xdΓC1� 2 FfadΓC1g.R
d / such that

(6-1) T�1�.x/.�
1
� .@Γ//D hom.�1� .x/; x

dΓC1
� =�1� .x//:
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Consider the �–equivariant measurable map �� W �1� .@Γ/! Ffa1;adΓC1g.R
d / defined by

(6-2) ��.�
1
� .x//D .�

1
� .x/; x

dΓC1
� /:

We can then define a volume form on �1� .@Γ/ via

�1� .x/ 7!���.�1�.x//:

This form is defined Lebesgue almost everywhere and thus defines a Lebesgue measure
on �1� .@Γ/, which we will denote by ��. Lemma 6.3 implies directly that the pushforward
.��/��� is the desired measure.

6.3 When @Γ is a circle

Recall from Section 1 that we say that � is weakly irreducible if the vector space
span.�1� .@Γ// is the whole space.

Lemma 6.5 Under Assumption 6.1 together with weakly irreducibility of � and dΓD1,
one has that � is �'–irreducible for any .�.Γ/; '/–Patterson–Sullivan measure on
Ffa1;a2g.R

d /whose projection is absolutely continuous with the measure �� constructed
in Proposition 6.4.

Proof If this were not the case, there would exist .W0; P0/ 2 Ffad�2;ad�1g.R
d /

such that Ann.W0; P0/ would have full �'–mass; as � is projective Anosov we can
furthermore assume that P0 D �d�1� .x/ for some x 2 @Γ and thus the condition
�1� .y/� P0 only occurs for y D x.

Hence, since the projection of �' is absolutely continuous with respect to ��, one
has that, for �'–almost every �1� .x/ 2 �

1
� .@Γ/, the vector space x2� from Section 6.2

intersects W0.

Let us choose a scalar product � on Rd , and the induced distance function of P .Rd /.
Let us denote by ŒW0� the quotient vector space Rd=W0. It is a 2–dimensional vector
space and every line ` …W0 defines a line Œ`˚W0� in ŒW0�. Moreover, for every ı > 0,
the double quotient projection

� W f` 2 P .Rd / W †� .`;W0/ > ıg ! P .ŒW0�/;

defined by �.`/D ŒŒ`˚W0��, is Lipschitz.

We denote by Uı � �1� .@Γ/ the relative open subset defined by

Uı D f` 2 �
1
� .@Γ/ W †� .`;W0/ > ıg
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and consider the Lipschitz map �jUı W Uı ! P .ŒW0�/. Since, by assumption, for �'–
almost every �1� .x/ 2 �

1
� .@Γ/ the plane x2� intersects W0, one concludes from (6-1) that

�jUı has zero derivative ��–almost everywhere.

Since Lipschitz maps are absolutely continuous, and in particular satisfy the fundamental
theorem of calculus, we deduce that �j�1�.@Γ/ is constant. This implies that

�1� .@Γ/�W0˚ �
1
� .x/

for any x 2 @Γ, which contradicts the weak irreducibility assumption.

We can now prove Theorem A when dΓ D 1:

Corollary 6.6 Let Γ be a word-hyperbolic group such that @Γ is homeomorphic to a
circle. Let � W Γ! PGLd .R/ be a weakly irreducible a1–Anosov representation such
that �1� .@Γ/ is a Lipschitz curve. Then

a1 2 Q�.Γ/:

Proof Note that a1 D Ju1 is the first unstable Jacobian. Since �1� .@Γ/ is a Lipschitz
circle, it has Hausdorff dimension 1, and thus Corollary 1.1 implies that ha1� � 1.

On the other hand, Proposition 6.4 provides a .�.Γ/; Ju1/–Patterson–Sullivan measure
�Ju1 on Ffa1;a2g.VR/ that projects to the Lebesgue measure on �1� .@Γ/. Since � is
weakly irreducible, Lemma 6.5 implies that it is �Ju1–irreducible, thus Theorem 5.14
applies to give

a1 D Ju1 2D�.Γ/:

This is to say, h�.a1/� 1.

Before proceeding to arbitrary dΓ we record a direct consequence of Corollary 6.6. Let
us say that � is coherent if the first root arising in span.�1� .@Γ// is a1.

Corollary 6.7 Let Γ be a word-hyperbolic group such that @Γ is homeomorphic to
a circle. Let � W Γ! GK be an a–Anosov representation and assume there exists a
proximal , real representation ƒ W GK! PGL.VR/ with first root a such that ƒ ı � is
coherent. Then

a 2 Q�.Γ/:

6.4 When @Γ has arbitrary dimension

Recall that a subgroup � �PGL.VK/ is strongly irreducible if any finite-index subgroup
acts irreducibly. It is well known that this is equivalent to the fact that the connected
component of the identity of the Zariski closure of � acts irreducibly on Kd .
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We will need the following lemma (which does not require Assumption 6.1):

Lemma 6.8 Let � W Γ! PGLd .R/ be a strongly irreducible a1–Anosov representation ,
and assume that there exists p 2 ŒŒ1; d � 1�� and a measurable �–equivariant section
� W @Γ! Ffa1;apg.R

d /. Then � is �'–irreducible for any .�.Γ/; '/–Patterson–Sullivan
measure on F‚.Kd /:

Proof Otherwise, we would be able to find a subspace W0 2 Ffad�pg.R
d / such that

for almost every7 �1� .x/ 2 �
1
� .@Γ/ one has �.x/p \W0 ¤ f0g. Since � is �–equivariant,

we would find a p–dimensional subspace V such that, for every  2 Γ,

�./V \W0 ¤ f0g:

This implies that for every g in the Zariski closure of �.Γ/ it holds that dimgV \W0�1.
The contradiction comes from Labourie [35, Proposition 10.3]: if G is an algebraic
subgroup of SL.n;R/, C 2 Gk.Rd /, B 2 Gd�k.Rd / and dim.gC \B/� 1 for every
g 2 G, then the connected component of the identity of G is not irreducible.

We can now prove Theorem A for arbitrary dΓ.

Corollary 6.9 Under Assumption 6.1 together with strong irreducibility of �,

JudΓ 2 Q�.Γ/:

Proof Since �1� .@Γ/ is a Lipschitz sphere it has Hausdorff dimension dΓ, and thus
Corollary 1.1 implies that h�.JudΓ/ � 1. Proposition 6.4 guarantees the existence of
a .�.Γ/; Ju

dΓ
/–Patterson–Sullivan measure. Moreover, the equivariant map from (6-2)

allows us to apply Lemma 6.8, and thus we have the hypothesis of Theorem 5.14.
Consequently, h�.JudΓ/� 1.

7 .1; 1; p/–hyperconvex representations and a C1–dichotomy
for surface groups

In this section we will consider projective Anosov representations whose image of the
boundary map is a C1–submanifold. In the second part of the section we will prove
Corollary 7.8, providing a C1–dichotomy for surface groups.

7This is with respect to the pushed-forward measure ���' , where � W Ffa1;apg.R
d /! P .Rd / consists

of forgetting the pth coordinate.
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7.1 .1; 1; p/–hyperconvex representations

Definition 7.1 We say a fa1; apg–Anosov representation � W Γ!PGLd .R/ is .1; 1; p/–
hyperconvex if, for every pairwise distinct x; y; z 2 @Γ, the sum

�1.x/C �1.y/C �d�p.z/

is direct.

Example 7.2 Zariski-dense hyperconvex representations can be obtained by deforming
Sk ı �, where Sk denotes the kth symmetric power and � W Γ! PO.1; p/ is the inclusion
of a cocompact lattice; see Pozzetti, Sambarino and Wienhard [39, Corollary 7.6].

Hyperconvex representations were introduced by Labourie [35] for surface groups, and
further studied by Zhang and Zimmer [48] when the boundary of Γ is topologically a
sphere and by Pozzetti, Sambarino and Wienhard [39] for arbitrary hyperbolic groups.
In both [39, Proposition 7.4] and [48, Theorem 1.1] one finds:

Theorem 7.3 Assume that @Γ is topologically a sphere of dimension p � 1 and let
� W Γ! PGLd .R/ be a .1; 1; p/–hyperconvex representation. Then �1� .@Γ/ is a C1–
sphere.

Theorem A then gives:

Corollary 7.4 Assume that @Γ is topologically a sphere of dimension p� 1 and let
� W Γ! PSLd .R/ be strongly irreducible and .1; 1; p/–hyperconvex. Then h�.Jup/D 1.

Remark 7.5 This generalizes Potrie and Sambarino [38, Corollary 7.1]. Observe
however that, since the limit set �1.@Γ/ is a C1–submanifold of P .Rd /, the arguments
of [38] adapt directly to give a version of Corollary 7.4 without requiring strong
irreducibility.

Theorem 7.6 (Glorieux, Monclair and Tholozan [25]) Let � W Γ! PGLd .R/ be an
a1–Anosov representation that preserves a properly convex domain. Then

2h�.!1C!d�1/� dimHff..�
1; �d�1/.@Γ//;

where .�1; �d�1/ W @Γ! P .Rd /�P ..Rd /�/.

As an application of Corollary 7.4 we show that, for .1; 1; p/–hyperconvex representa-
tions with p < d � 1, such a bound can never be achieved:
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Proposition 7.7 Assume that @Γ is topologically a sphere of dimension p� 1 and let
� W Γ! PGLd .R/ be strongly irreducible and .1; 1; p/–hyperconvex. If p <d �1, then

2h�.!1C!d�1/ < .1� "/.p� 1/;

where " > 0 only depends on the fa1; apg–Anosov constants of �.

Proof Since p < d � 1 the functional � 2 E� given by

� D
!p �!1

p� 1
�
!d�1�!1

d � 2

is nonzero. Moreover observe that, for every v 2 EC,

�.v/�
d �p� 1

d � 2
ap.v/:

Since � is ap–Anosov, the last computation implies ker� \L�.Γ/ D f0g. This is to say
that � 2 .L�.Γ//�, in particular � has a well-defined entropy h�.�/ 2 .0;1/. Then

h�

�
p� 1

d � 2
..d � 1/!1�!d�1/

�
D h�.J

u
p�1C .p� 1/�/�

h�.�/

h�.�/Cp� 1
;(7-1)

where the equality comes from the equality between the corresponding linear forms
and the inequality follows from Lemma 5.6 together with Corollary 7.4 stating that
h�.J

u
p�1/D 1.

Finally, observe that

1
2
.p�1/.!1�!d�1/D

1

2

�
p�1

d �2
..d �1/!1�!d�1/C

p�1

d �2
..d �1/!d�1�!1/

�
D

1
2

�
Jup�1C.p�1/�C.J

u
p�1C.p�1/�/ı i

�
;

where i W E! E is the opposition involution. Together with (7-1) and Lemma 5.6, this
yields

2

p�1
h�.!1�!d�1/� 2

h�.J
u
p�1C .p� 1/�/h�

�
.Jup�1C .p� 1/�/ ı i

�
h�.J

u
p�1C .p� 1/�/C h�

�
.Jup�1C .p� 1/�/ ı i

�
D h�.J

u
p�1C .p� 1/�/�

h�.�/

h�.�/Cp� 1
< 1;

since entropy is i–invariant.

To conclude the proof we observe that the functional � belongs to the Anosov–Levi
space of every fa1; apg–Anosov representation. Its entropy thus varies continuously
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(Theorem 5.12), and hence
� 7!

h�.�/

h�.�/Cp� 1

is bounded away from 1 on compact subsets of Xfa1;apg.Γ;PGLd .R//.

C1–dichotomy

Now we prove the C1–dichotomy announced in Section 1. As we will later see (Sections
9 and 10) there are many projective Anosov representations of surface groups where
the image of the boundary map is Lipschitz. However, when we embed the surface
group into PSL2.R/ and look at small deformations of representations

Γ! PSL2.R/
R
�! PSLd .R/;

where R satisfies additional proximality assumptions ensuring that the representation
is fa1; a2g–Anosov, then the image of the boundary map is never Lipschitz.

Recall that g 2 PGLd .R/ is proximal if the generalized eigenspace associated to its
greatest eigenvalue (in modulus) has dimension 1. A representation R WG! PGLd .R/

of a given group G is proximal if its image contains a proximal element.

Corollary 7.8 Let R W PSL2.R/! PSLd .R/ be a (possibly reducible) proximal rep-
resentation such that

V2
R is also proximal. Let S be a closed connected surface of

genus � 2 and let �0 W �1S ! PSL2.R/ be discrete and faithful. Then we have the
following dichotomy:

(i) If the top two weight spaces of R belong to the same irreducible factor , then for
every small deformation � W �1S ! PSLd .R/ of R�0 the curve �1� .@�1S/ is C1.

(ii) Otherwise , for every weakly irreducible small deformation � W �1S ! PSLd .R/

of R�0 the curve �1� .@�1S/ is not Lipschitz.

Proof By the proximality assumptions on R, the representation

� WDR�0 W �1S ! PSLd .R/

is fa1; a2g–Anosov: indeed, PSL.2;R/ has rank one. This implies, on the one hand,
that the discrete and faithful representation �0 is Anosov, and on the other hand that
the composition of �0 with any proximal representation is a1 Anosov.

Furthermore, if the first two weights of R belong to the same irreducible factor, the
representation � is also .1; 1; 2/–hyperconvex [39, Proposition 6.16]. Hyperconvexity
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is an open property in X.�1S;PSLd .R// (Pozzetti, Sambarino and Wienhard [39]) and
thus Theorem 7.3 implies that every small deformation of � has C1 limit set.

If instead the two top weights ofR belong to different irreducible factors, then it follows
from the representation theory of SL2.R/ that

h�.a1/D h�.J
u
1/D 2:

Note that the entropy of Ju1 is continuous on Xfa1;a2g.�1S;PSLd .R//; see Theorem 5.12.
In particular there exists a neighborhood U of � such that h�.Ju1/ > 1 for every � 2 U.
Theorem A implies that no weakly irreducible representation in U can have Lipschitz
limit set.

The regular case, Corollary 7.8(i), is inspired by Labourie [35], who treated the case (of
arbitrary deformations) of the irreducible representations, and was proven in Pozzetti,
Sambarino and Wienhard [39, Proposition 9.4]. The novelty of this paper is item (ii),
inspired by Barbot [1], who proved it for d D 3. We believe both items placed together
give a clearer picture.

It is easy to obtain similar results for other groups G by considering suitable linear
representations. On the other hand, the double proximality assumption is necessary:
the composition of a maximal representation not in the Hitchin component and the
irreducible linear representation of Sp.2n;R/ of highest weight wn is proximal, but its
second exterior power is not proximal. It is possible to check that no small Zariski-dense
deformation satisfies either (i) or (ii).

Along the same lines we can deduce that some natural Anosov representations of
hyperbolic lattices do not have Lipschitz boundary maps:

Corollary 7.9 Let Γ < PO.1; n/ be a lattice , n � 3 and �1 W Γ! PO.1;m/ strictly
dominated by the lattice embedding �0. Then , for any Zariski-dense small deformation
of �0˚ �n�11 , the limit set �1� .@Γ/ is not Lipschitz.

Examples of lattices Γ admitting such representations were constructed by Danciger,
Guéritaud and Kassel [17, Proposition 1.8].

8 Hp;q convex–cocompact representations

Generalizing work of Mess [37] and Barbot and Mérigot [3], Danciger, Guéritaud
and Kassel [16] introduced a class of representations called Hp;q–convex–cocompact.
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These form another interesting class of representations with Lipschitz boundary map
where Theorem A applies.

Let d D p C q with p; q � 1 and let Q be a symmetric bilinear form on Rd of
signature .p; q/. The subspace of P .Rd / consisting of negative definite lines is called
the pseudo-Riemannian hyperbolic space and denoted by

Hp;q�1
D
˚
` 2 P .Rd / WQj`nf0g < 0

	
:

The cone of isotropic lines is usually denoted by @Hp;q�1.

Instead of the original definition of convex–cocompactness, we recall the characteriza-
tion given by [16, Theorem 1.11]:

Definition 8.1 An a1–Anosov representation � W Γ! PO.p; q/ is Hp;q�1–convex–
cocompact if, for every pairwise distinct triple of points x; y; z 2 @Γ, the restriction
Qj�1�.x/˚�1�.y/˚�1�.z/ has signature .2; 1/.

When Γ0 is a cocompact lattice in SO.p; 1/, Hp;1–convex–cocompact representations
of Γ0 are usually referred to as AdS–quasi-Fuchsian groups. Barbot [2] proved that
these groups form connected components of the character variety X.Γ0; SO.p; 2// only
consisting of Anosov representations. In [23] Glorieux and Monclair prove that the limit
set of an AdS–quasi-Fuchsian group is never a C1–submanifold, except for Fuchsian
groups.

The following is well known and easy to verify; see for example Glorieux and Monclair
[24, Proposition 5.2].

Proposition 8.2 Assume that @Γ is homeomorphic to a .p�1/–dimensional sphere. If
� W Γ! PO.p; q/ is Hp;q–convex–cocompact , then �1� .@Γ/ is a Lipschitz submanifold
of @Hp;q�1.

Proof The space @Hp;q�1 admits a twofold cover that splits as Sp�1 �Sq�1. It is
immediate to verify that, since for every pairwise distinct triple .x; y; z/ 2 @Γ we have
that Qj�1�.x/˚�1�.y/˚�1�.z/ has signature .2; 1/, each one of the two lifts of �1� .@Γ/ to
Sp�1�Sq�1 is the graph of a 1–Lipschitz function f W Sp�1! Sq�1, and, as such, is
a Lipschitz submanifold of @Hp;q�1.

Theorem A then yields:
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Corollary 8.3 Assume that @Γ is homeomorphic to a .p�1/–dimensional sphere and
let � W Γ! PO.p; q/ be Hp;q�1–convex–cocompact. Then

� for p D 2 and � weakly irreducible , h�.Ju1/D 1;

� for p � 3 and � strongly irreducible , h�.Jup�1/D 1.

One concludes the following upper bound for the entropy of the spectral radius inspired
by Glorieux and Monclair [24].

Corollary 8.4 Assume that @Γ is homeomorphic to a .p�1/–dimensional sphere and
let � W Γ! PO.p; q/ be Hp;q�1–convex–cocompact. Then

� for p D 2 and � weakly irreducible , h�.!1/� 1;

� for p � 3 and � strongly irreducible , h�.!1/� p� 1.

Proof Assume first that p � q and note that, for every g 2 PO.p; q/,

.!p �!1/.�.g//D �2.g/C � � �C�p.g/� 0:

By definition, Jup�1 D p!1�!p, and thus

h�.!1/

p� 1
D h�..p� 1/!1/� h�.J

u
p�1/D 1

by Corollary 8.3. The only difference in the case where q <p is that Jup�1Dp!1�!q ,
but the same argument applies verbatim.

The entropy for the first fundamental weight has a particular meaning for projective
Anosov representations into PO.p; q/, notably for q � 2. Fix o 2Hp;q�1 and consider

So D fW <Rd W o�W; dimW D q and QjW is negative definiteg:

This is a totally geodesic embedding of the symmetric space Xp;q�1 of PO.p; q� 1/
in the symmetric space Xp;q .

Given a projective Anosov representation � W Γ! PO.p; q/ one defines the open subset
of Hp;q�1

�� D fo 2Hp;q�1
WQ.o; �1� .x//¤ 0 for all x 2 @Γg:

Carvajales [13] shows that, assuming �� ¤∅, for every o 2�� one has

lim
t!1

log #f 2 Γ W dXp;q .S
o; �./So/g

t
D h�.!1/;

and provides an asymptotic for this counting function; see [13, Theorem A].
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When � is also Hp;q�1–convex–cocompact, Glorieux and Monclair [24, Section 1.2]
introduce a pseudo-Riemannian critical exponent ı�, and show, in particular, that

ı� � p� 1

[24, Theorem 1.2]. Carvajales proves [13, Remarks 6.9 and 7.15] that ı� D h�.!1/, so
Corollary 8.4 provides a different proof of [24, Theorem 1.2] when Γ is assumed to
have boundary homeomorphic to a .p�1/–dimensional sphere.

We finish the section with a direct application of Theorem 5.4 and Corollary 8.3 allowing
us to get a bound for the Riemannian critical exponent. We use freely the notation from
Remark 5.5.

Consider a representation ƒ W PO.p; 1/! PO.p; q/ such that its image stabilizes a
.pC1/–dimensional subspace V of Rd where QjV has signature .p; 1/. Endow the
symmetric space Xp;q with a PO.p; q/–invariant Riemannian metric such that the
totally geodesic copy of Hp in Xp;q induced by ƒ has constant curvature �1. In
particular, if � W Γ ! PO.p; 1/ is the lattice embedding, hXƒı� D p � 1. We show
that this is an upper bound for any strongly irreducible, Hp;q�1–convex–cocompact
representation:

Proposition 8.5 Assume that @Γ is homeomorphic to a .p�1/–dimensional sphere ,
and let � W Γ! PO.p; q/ be strongly irreducible and Hp;q�1–convex–cocompact. Then

hX� � p� 1:

Proof In view of Theorem 5.4 (or more precisely Remark 5.5), it suffices to recall
that D�.Γ/ is convex (Proposition 5.3) and that, by Corollary 8.3,

Jup�1 2 Q�.Γ/:

See Potrie and Sambarino [38, Section 1.1] for more details.

9 Maximal representations

An important class of representations that are in general only Anosov with respect to
one maximal parabolic subgroup but admit boundary maps with Lipschitz image are
maximal representations into Hermitian Lie groups. In this case the Lipschitz property
for the image of the boundary map is a consequence of a positivity/causality property
of the boundary map. We first describe the causal structure on the Shilov boundary
of a Hermitian symmetric space of tube type, introduce the notion of a positive curve
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and show that the image of any positive curve (that is not necessarily equivariant with
respect to a representation) is a Lipschitz submanifold. We then show how this applies
to maximal representations and allows us to prove Theorem 9.8, the main result of this
section. We also deduce consequences for the orbit growth rate on the symmetric space.

9.1 Causal structure and positive curves

Let GR be a simple Hermitian Lie group of tube type. Examples to keep in mind are
the symplectic group GR D Sp.2n;R/ or the orthogonal group GR D SO0.2; n/. The
Shilov boundary {S of the bounded domain realization of the symmetric space associated
to GR is a flag variety GR= {P , where {P is a maximal parabolic subgroup determined
by a specific simple root fLag. In the first of our main examples, GR D Sp.2n;R/, the
parabolic subgroup {P in question is the stabilizer of a Lagrangian subspaceL2L .R2n/

so LaD an, and in the second, GR D SO0.2; n/, {P is the stabilizer of an isotropic line
l 2 Is1.R2;n/, so LaD a1.

In general, for a simple Hermitian Lie group of rank n, there is a special set of n strongly
orthogonal roots b1; : : : ; bn of the complexification gC; see [29, pages 582–583]. The
set of strongly orthogonal roots give rise to a (holomorphic) embedding of a maximal
polydisk. If the symmetric space is of tube type, the simple root La is the smallest
strongly orthogonal root La D bn. All the other strongly orthogonal roots are of the
form bi D bnC', where ' 2 E� is nonnegative on the Weyl-chamber. We record the
following for later use:

Lemma 9.1 Let a 2 EC. Then La.a/DminiD1;:::;n bi .a/.

For Hermitian groups of tube type, the Shilov boundary carries a natural causal structure:
for every p 2 {S there is an open convex acute cone Cp � Tp {S , which we now define.

Recall that GR= {P can be identified as the space of parabolic subgroups of GR that
are conjugate to {P . Let us fix a point Lp D {P 2 {S , which one should think of as a
point at infinity. Then, at any point p D P 2 {S that is transverse to Lp, ie such that the
parabolic groups P and {P are opposite, the tangent space Tp {S is identified with the
Lie algebra Ln of the unipotent radical of {P , and the cone Cp is an open convex acute
cone {C � Ln, invariant under the action of the connected component of P \ {P .

In the case of Sp.2n;R/ this is the cone of positive definite symmetric matrices, and in
the case of SO0.2; n/ it is the cone of vectors with positive first entry that are positive
for the induced conformal class of Lorentzian inner products on TP Is1.R2;n/.
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This invariant cone {C � Ln in fact also gives rise to the notion of maximal triples in {S
via the exponential map. A triple .P;Q; {P / is said to be maximal if there exists an
s 2 {C such that QD exp s �P . Extending this by the action of G leads to a notion of
maximal triples in {S , which actually coincides exactly with those triples which have
maximal (generalized) Maslov index as introduced by Clerc and Ørsted [14].

Definition 9.2 Let {S be the Shilov boundary of a Hermitian symmetric space of tube
type. A curve � W S1! {S is positive if the image of any positively oriented triple is a
maximal triple.

Proposition 9.3 Let � W S1 ! {S be a positive curve. Then �.S1/ is a Lipschitz
submanifold of {S .

Proof Note that whenever we pick two points p1DP1 and p2DP2 on the image of � ,
the image �.S1/ can be covered by the two charts consisting of parabolic subgroups
that are transverse to p1 and p2, respectively.

In any of these charts the inverse image of �, under the exponential map

ni ! GR=Pi ; s 7! exp.s/ {Pj ;

gives a map N� W R ! ni such that, for every t1 < t2, we have that N�.t2/ � N�.t1/ is
contained in the open convex acute cone {C . It then follows (see for example Burger,
Iozzi, Labourie and Wienhard [10, Lemma 8.10]) that the restriction of N� to any bounded
interval has finite length. As a result, �.S1/ � {S is rectifiable. It is thus possible to
reparametrize S1 so that � is a Lipschitz map.

Remark 9.4 We did not assume that the positive map is equivariant with respect to a
representation. This will be important in Section 10, where we will apply Proposition 9.3
in this generality.

9.2 Maximal representations

Let G denote a Hermitian semisimple Lie group and let Γ denote the fundamental group
of a closed hyperbolic surface S . We consider representations � WΓ!G that are maximal,
in the sense that they maximize the Toledo invariant, whose definition was recalled in
Section 1. Important for us is that they can be characterized in terms of boundary maps:

Theorem 9.5 (Burger, Iozzi and Wienhard [12, Theorem 8]) A representation
� W Γ! G is maximal if and only if there exists a continuous , �–equivariant , positive
map � W @Γ! {S .
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In order to apply Corollary 6.7 we need to verify some weak irreducibility assumptions.
Let us first treat the case when the Zariski closure of �.Γ/ is simple.

Corollary 9.6 Let G be a simple Hermitian Lie group of tube type and let La be the
root associated the Shilov boundary of G. If � W Γ! G is a Zariski-dense maximal
representation , then

La 2 Q�.Γ/;

or equivalently h�.La/D 1.

Proof The proof follows from Corollary 6.7 and Proposition 9.3 by considering the
representation ƒ La from Proposition 4.4.

In the remainder of this section we show how the case of maximal representations
with semisimple target group that are not necessarily Zariski-dense can be reduced to
Corollary 9.6. To this end we will use a result from Burger, Iozzi and Wienhard [11]
describing the Zariski closure H of a maximal representation: H splits as H1� � � � �Hn,
each factor is Hermitian, and the inclusion in H! G is tight. In the following we will
not need the definition of a tight homomorphism, and therefore refer the interested
reader to [11, Definition 1].

The following lemma will then be useful:

Lemma 9.7 Let G be a classical simple Hermitian Lie group of tube type and consider
a tight embedding � WHDH1�� � ��Hn! G. If we denote by �� W ECH ! ECG the induced
map , then

LaG ı �� Dmin
i
LaHi :

Proof Denote by � W h1˚ � � � ˚ hn! g the associated Lie algebra homomorphism.
Let Ei be a Cartan subspace of Hi and EG a Cartan subspace of G such that �.Ei /� EG.

As � is tight and G is classical, the classification of Hamlet and Pozzetti [28] applies and
gives that we have an orthogonal decomposition EG D B1˚ � � �˚Bk such that �jLEi

is a direct sum of maps �i W Ei ! Bi . Furthermore, there are only a few possibilities for
the linear map �i . If Hi has rank greater than one, then Bi D E

mi
i for some mi and �i

is a diagonal inclusion; if instead Ei is one-dimensional, or equivalently Hi Š PSL2.R/,
then �i is induced from a direct sum of nontrivial irreducible representations (of varying
degrees). It is easy to check that the subspace Bi is then the span of the real vectors
in p associated to the strongly orthogonal roots that do not vanish on �.Ei /. Setting
bi D minj;bj jEi¤0 bj , we have bi j�.Ei / D LaHi . And hence, with Lemma 9.1, we have
LaG Dmini .LaHi /.
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Theorem 9.8 Let G be a Hermitian semisimple Lie group such that all factors of G

that are of tube type are classical. Let � �� be the subset of simple roots associated to
the Shilov boundary of G. Then for every maximal representation � W Γ! G,

� � Q�.Γ/:

Proof If GDG1�� � ��Gn then {SD {S1�� � �� {Sn, and so �DfLaG1 ; : : : ; LaGng; see Burger,
Iozzi and Wienhard [11, Lemma 3.2(1)]. Furthermore � W Γ! G is maximal if and only
if all �i W Γ! Gi are maximal (see Burger, Iozzi and Wienhard [12, Lemma 6.1(3)]).
Therefore we can restrict to the case that G is simple.

Since every maximal representation factors through a representation into the normalizer
of a maximal tube type subgroup H<G (Burger, Iozzi and Wienhard [12, Theorem 5(3)]),
which is simple, has the same rank as G, and is such that LaG D LaH, we can restrict to
the tube type case as the limit set in {SG is contained in {SH and coincides with the limit
set in {SH. The maximal tube type domains are always classical Hermitian symmetric
spaces, except for the one exceptional Hermitian symmetric space of tube type.

If now � is not Zariski-dense, then the Zariski closure is reductive and of tube type, so
it is of the form H1 � � � � �Hn and the representations into Hi are Zariski-dense and
maximal. Therefore we have h�.LaHi /D 1 for all i . As the inclusion H1�� � ��Hn! G

is tight, the result follows from Lemmas 9.7 and 5.1.

9.3 Application to the Riemannian critical exponent

Any simple Hermitian Lie group G admits a diagonal embedding �� W SL2.R/! G,
which is equivariant with the inclusion of a diagonal disk in a maximal polydisk. We
say that a representation � W Γ! G is diagonal-Fuchsian if it has the form �D �� ı �0,
where �0 W Γ! SL2.R/ is the lift of the holonomy of a hyperbolization.

Let K� < G be the centralizer of the image of ��, which is compact. Then a diagonal
Fuchsian representation � can be twisted by a representation � W Γ!K�. We call the
corresponding representation �� W Γ!G a twisted diagonal representation. Observe that
the Riemannian critical exponent hX is constant on twisted diagonal representations (the
exact value hXdiag depends on the choice of the normalization of the Riemannian metric)

Proposition 9.9 Let Γ be the fundamental group of a closed surface and let � W Γ! G

be a maximal representation. Then hX� � h
X
diag.
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Proof Let b1; : : : ; bn be the set of strongly orthogonal roots for GC . It is immediate
to verify that the limit cone L�0.Γ/ of a representation �0 in the Fuchsian locus is
concentrated in the span of the vertex of the Weyl chamber

Pn
iD1 b

�
i , where b� is the

basis of E dual to fb1; : : : ; bng. We know from Corollary 9.6 that, for every �, the
growth rate h�.La/ equals 1. Thus, if we denote by .EC/� the cone of functionals that
are nonnegative on the Weyl chamber, we get that LaC .EC/� �D�.Γ/, and in particular
all the strongly orthogonal roots are in D�.Γ/. A simple computation shows that the
affine simplex determined by the strongly orthogonal roots meets the ray R

Pn
iD1 bi

orthogonally in a point (it is just the diagonal in a positive quadrant meeting the span
of the basis vectors), whose norm has to compute the Riemannian orbit growth rate of
any representation �0 in the Fuchsian locus: Q�0.Γ/ is the affine hyperplane orthogonal
to R

Pn
iD1 bi that contains La. Remark 5.5 concludes the proof.

Remark 9.10 When G is Sp.4;R/, or more generally SOı.2; n/, it follows from
Collier, Tholozan and Toulisse [15] that the bound is furthermore rigid: the equality is
strict unless � is equal to �0 up to a character in the compact centralizer of its image.

Note that for maximal representations into Sp.2n;R/, for n � 3, every connected
component of the space of maximal representations contains a twisted diagonal rep-
resentation. However for Sp.4;R/ there are exceptional components, discovered by
Gothen, where every representation is Zariski-dense; see Bradlow, García-Prada and
Gothen [8] and Guichard and Wienhard [26]. In these components it is easy to verify
that the bound we provide is sharp, despite not being achieved.

In the special case of the Hitchin component of Sp.2n;R/ the bound of Proposition 9.9
is never attained, as the irreducible representations provide a better bound that is
furthermore rigid; see Potrie and Sambarino [38].

10 ‚–positive representations

Throughout this section we will write

GD SO.p; q/;

with p < q. We consider the subset ‚D fa1; : : : ; ap�1g of the simple roots discussed
in Example 4.6 and denote by P‚ the corresponding parabolic group, by L‚ its Levi
factor and by U‚ its unipotent radical.
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The group G admits a ‚–positive structure as defined by Guichard and Wienhard [27].
This means that for every b 2‚ there exists an L0‚–invariant sharp convex cone cb in

ub D
X

a2†
C

‚

aDbmod Span.…n‚/

ga:

Here†C‚D†
CnSpan.…n‚/. For b2 fa1; : : : ; ap�2g, the space ub is one-dimensional

and the sharp convex cone cb D RC � R consists of the positive elements, while
uap�1 DRq�pC2 is endowed with a form qJ of signature .1; q�pC 1/ preserved by
the action of L0‚ D Rp�2 � SO0.1; q �pC 1/. The cone cap�1 consists precisely of
the positive vectors for qJ whose first entry is positive.

Following [27, Section 4.3] we denote by W.‚/ the subgroup of the Weyl group W
generated by the reflections f�ig

p�2
iD1 together with the longest element �p�1 of the

Weyl group Wap�1;ap of the subroot system generated by the last two simple roots.
W.‚/ is, in our case, a Weyl group of type Bp�1. We denote by w0‚ the longest
element of W.‚/, and choose a reduced expression w0‚ D �i1 � � � �il . Of course every
reflection �i appears at least once among the �ik . We consider the map

F�i1 ����il
W c0ai1

� � � � � c0ail
! U‚; .v1; : : : ; vl/ 7! exp.v1/ � � � exp.vl/:

The‚–positive semigroup UC‚ is defined as the image of the map F�i1 ����il , and doesn’t
depend on the choice of the reduced expression [27, Theorem 4.5].

A �–positive structure on G gives rise to the notion of a positive triple in G=P‚.

Definition 10.1 A pairwise transverse triple in .G=P‚/3 is ‚–positive if it lies in the
G–orbit of a triple of the form .F1; u �F1; F3/, where Stab.F3/D P‚, F1 is transverse
to F3 and u 2 UC‚ [27, Definition 4.6].

Remark 10.2 The stabilizer in SO0.1; q �pC 1/ of a vector v 2 cap�1 is compact.
As a result one readily checks that the stabilizer in G of a ‚–positive triple is compact.

Let Γg be the fundamental group of a hyperbolic surface. A representation � W Γg ! G

is ‚–positive if there exists a �–equivariant map @Γg ! G=P‚ sending positive triples
to ‚–positive triples [27, Definition 5.3]. Guichard, Labourie and Wienhard show
that every‚–positive representation is necessarily‚–Anosov [27, Conjecture 5.4], but
since the proof has not yet appeared in print, in this section we will freely add this last
assumption, and only discuss ‚–positive Anosov representations.
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Theorem 10.3 Let � W Γg ! SO.p; q/ be ‚–positive and ‚–Anosov. For every
1� k � p� 2 the representation

Vk
� is .1; 1; 2/–hyperconvex.

Proof We denote by � W @Γg! G=P‚ the ‚–positive continuous equivariant boundary
map, and by � i W @Γg! Isi .Rp;q/ the induced maps. Let .x; y; z/ 2 @3Γ be a positively
oriented triple. By assumption, �.y/D s � �.x/ for some element s in the positive semi-
group of the unipotent radical of the stabilizer of �.z/. In turn, s D exp.v1/ � � � exp.vl/
with vt 2 c0ait (recall that it 2 f1; : : : ; p� 1g).

We set d D pC q. It follows from [39, Proposition 8.11] that, in order to check thatVk
� is .1; 1; 2/–hyperconvex, it is enough to verify that the sum

�k� .x/C .�
k
� .y/\ �

d�kC1
� .z//C �d�k�1� .z/

is direct, or equivalently that the sum

�k� .x/C s � .�
k
� .x/\ �

d�kC1
� .z//C �d�k�1� .z/

is direct (recall that s belongs to the stabilizer of ��.z/). Without loss of generality we
can assume that the form Q defining the group SO.p; q/ is represented by

QD

0@ 0 0 K

0 J 0

Kt 0 0

1A ;
with

K D

0@ 0 0 .�1/p�1

0
::: 0

�1 0 0

1A and J D

0@0 0 1

0 �Idq�p 0

1 0 0

1A :
We can furthermore assume that �l.z/Dhe1; : : : ; eli and �l.x/Dhed ; : : : ; ed�lC1i, so
that �k.x/\�d�kC1.z/D ed�kC1. In order to check that the representation is .1; 1; 2/–
hyperconvex, we only have to verify that, given s as above, writing s �ed�kC1D

P
˛iei ,

the coefficient ˛d�k never vanishes. We claim that such coefficient is just
P
itDk

vt >0.
Indeed, by construction, if vt 2 c0am with m 2 f1; : : : ; p� 2g, then exp.vt / 2 SO.p; q/
differs from the identity only in the positions .t; t C 1/ and .d � t; d � t C 1/ where it
is equal to vt (see [27, Section 4.5]), while if vt 2 c0ap�1 ,

exp.vt /D

0BBBB@
Idp�2 0 0 0 0

0 1 vt qJ .v/ 0

0 0 Idq�pC2 Jv 0

0 0 0 1 0

0 0 0 0 Idp�2

1CCCCA :
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In particular, we deduce from [39, Proposition 7.4]:

Corollary 10.4 Let � W Γg! SO.p; q/ be‚–positive Anosov. For every 1� k � p�2
the image of �k� .@Γ/ is a C1 submanifold of Isk.R

p;q/.

Proof Since
Vk

� is .1; 1; 2/–hyperconvex, by [39, Proposition 7.4] its limit set is a
C1 submanifold of P .

Vk Rp;q/. Since the inclusion
Vk
W Isk.R

p;q/! P .
Vk Rp;q/ is

analytic, and the limit set of
Vk

� is the image under this inclusion of the limit set of �,
the result follows.

We now turn to the proof of the last statement in Theorem D. Instead of directly
verifying that the map �p�1� has Lipschitz image, we will study properties of the map
�
‚0
� W @Γg ! G=P‚0 , where

‚0 D fap�2; ap�1g:

The flag manifold G=P‚0 consists of nested pairs of isotropic subspaces of dimension
p� 2 and p� 1.

Proposition 10.5 Let � W Γg! SO.p; q/ be ‚–positive Anosov. The image of the map
�
‚0
� W @Γg ! G=P‚0 is a Lipschitz submanifold of G=P‚0 .

Proof Fix a point z2@Γ and assume without loss of generality that �k� .z/Dhe1; : : : ; eki.
We denote by A�G=P‚0 the set of points transverse to �p�2;p�1� .z/. We will show that
the image of �‚0� j@Γnfzg is a Lipschitz submanifold of A. Denote by Ap�2 �G=Pap�2

the set of isotropic subspaces of dimension p�2 transverse to �p�2� .z/Dhe1; : : : ; ep�2i,
by Zp�1 the .p�1/–isotropic subspace Zp�1 WD �

p�1
� .z/ D he1; : : : ; ep�1i and by

Z?p�1 its orthogonal with respect to the form Q defining SO.p; q/. Observe that we
have a smooth map

A 7!Ap�2 � Is1.Z
?
p�2=Zp�2/; .Yp�2; Yp�1/ 7! .Yp�2; ŒYp�1\Z

?
p�2�/;

whose image is the product of Ap�2 with the set IZ of isotropic lines transverse to the
image of Z?p�1. Indeed, for every pair .Yp�2; v/ 2Ap�2� IZ , the subspace vCZp�2
has dimension p�1 and dim..vCZp�2/\Y ?p�2/D 1 as Y ?p�2 andZp�2 are transverse.
We then have Yp�1 D Yp�2C ..vCZp�2/\Yp�2/.

Denote by �Z W@Γnfzg! IZ the composition of the map �p�2;p�1 and the projection to
the second factor in the product decomposition. The formQ induces a form of signature
.2; q � pC 2/ on Z?p�2=Zp�2, which gives rise to the notion of positive curves (as
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introduced in Section 9). We claim that �Z is a positive curve. This amounts to showing
that if .x; y; z/ 2 @Γ is positively oriented then �Z.y/D sZ�Z.x/ for some positive
element sZ in the unipotent radical of the stabilizer of ŒZp�1� 2 Is1.Z

?
p�2=Zp�2/.

Since the representation � is ‚–positive we know that �.y/ D s � �.x/ for some
element in the positive semigroup UC‚ and, as in the proof of Theorem 10.3, we
can write s D exp.v1/ � � � exp.vl/ with vt 2 c0ait . Observe that, for every vt 2 c0ˇit

,
exp.vt / induces an element exp.vt /Z in the unipotent radical of the stabilizer of
ŒZp�1� 2 Is1.Z

?
p�2=Zp�2/, and the element exp.vt /Z is trivial unless ˇit D ap�1, in

which case exp.vt /Z belongs to the positive semigroup of the unipotent radical of
the stabilizer of ŒZp�1�. As at least one of the vt in the decomposition of s belongs
to such a subgroup, we deduce that �Z is positive, as we claimed. It follows from
Proposition 9.3 that �Z.@Γ n fzg/ is a Lipschitz submanifold of Is1.Z?p�2=Zp�2/.

As we know from Theorem 10.3 that �p�2 is a C1–curve, we deduce that the curve
�p�2;p�1 is Lipschitz, being the image of a monotone map between a C1–submanifold
and a Lipschitz submanifold.

10.1 The critical exponent on the symmetric space is rigid

Let �2p�1 WPO.1; 2/!PO.p; p�1/!PO.p; q/ be the composition of the irreducible
representation of dimension 2p� 1 with the standard embedding of PO.p; p� 1/ into
PO.p; q/. We call any representation � W Γ! PO.p; q/ which is the composition of a
Fuchsian representation with �2p�1 a .p; p�1/–Fuchsian representation.

Lemma 10.6 Let � W Γg ! PO.p; q/ be ‚–positive Anosov. The barycenter of the
affine simplex in E�‚ determined by fa1; : : : ; ap�2; "p�1g belongs to D�.Γ/;‚.

Proof Recall that, in the case of ‚–positive representations in PO.p; q/, the Levi–
Anosov subspace is E‚ WD ker.ap/. In particular, for every k � p� 2 we have that ak
belongs to the dual of E‚, and belongs to the boundary of D�.Γ/;‚ by Corollary 10.4.
Furthermore "p�1 D ap�1C ap belongs to D�.Γ/;‚, being the sum of a linear form
with entropy one (the form ap�1 has entropy one by Proposition 10.5) and a linear
form positive on the Weyl chamber (the root ap). In particular, the form corresponding
to the barycenter of the affine simplex they determine in E�‚ belongs to D�.Γ/;‚.

Theorem 10.7 Let Γ be the fundamental group of a surface and let � W Γ! PO.p; q/

be ‚–positive Anosov. Then hX� � h
X
�0

for any .p; p�1/–Fuchsian representation �0.

If equality is achieved at a totally reducible representation �, then � splits as W ˚V ,
where
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(1) W has signature .p; p�1/ and �jW has Zariski closure the irreducible PO.2; 1/

in PO.p; p� 1/,

(2) �jV lies in a compact group.

Proof The inequality follows from Lemma 10.6, together with the convexity of
D�.Γ/;‚, established by Theorem 5.12.

Assume now that � is a totally reducible representation such that equality holds. We
can assume that p � 3, as the result for p D 2 was proven by Collier, Tholozan and
Toulisse [15, Theorem 4].

Let G D �.�/Z be the Zariski closure. By definition, G is a real reductive group.
We consider G as an abstract group, and denote by ƒ W G! SO.p; q/ the inclusion
representation and by

� W g! so.p; q/

the associated Lie algebra morphism. Denote by aG a Cartan subspace of g.

Since hX� attains it maximal value, Theorem 5.12 forces the Quint indicator set Q�.Γ/;‚
to be the affine hyperplane of .E‚/� spanned by �. The strict convexity guaranteed
by Theorem 5.12 implies that G has real rank at most 2. Moreover, we have that
�.aG/D h.2.p� 1/; 2.p� 2/; : : : ; 2; 0/; .0; : : : ; 0; 1/i.

Denote by T D h�1� .@Γ/i the vector space spanned by the projective limit curve of �.
Since � is totally reducible, the action of �.Γ/, and hence that of G, on T is irreducible.

Fix a Weyl chamber aCG and let � 2 a�G be the highest weight of �.g/jT . Since � is
a1–Anosov, the attracting eigenvector of every element in �.Γ/, and hence of every
purely loxodromic element of G, is in V . We therefore conclude that, for every a 2 aCG ,

�.a/D �1.�.a//:

We denote by LG
� � aCG Benoist’s limit cone of �.Γ/ in G. As the representation � is

a2–Anosov, and thus LG
� avoids the only wall not orthogonal to the kernel of a1, there

exists a linear form � 2 a�G such that, for every a 2 LG
� ,

�.a/D a1.�.�.a///:

Furthermore, as � is .1; 1; 2/–hyperconvex, for every x 2 @Γ the 2–dimensional space
�a2.x/ lies in T , and therefore .���/.a/D�2.�.a//, which implies that � is a simple
root and �D .p� 1/�.
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For a weight  of the representation �.g/jT , or of an irreducible factor of �.g/jT? ,
denote by V  the associated weight space. We obtain from the description of �.aG/
that the weight spaces V ��i� for i 2 ŒŒ0; 2p�2�� are also 1–dimensional and contained
in T . The weight space decomposition of T thus has the form

T D

2p�2M
iD0

V ��i�˚V 0˚V q˚V �q;

where V 0 consists of vectors in the kernel of �.aCG / (except V ��.p�1/�) and V q

corresponds to the eigenvalue "p.�.�.a///. Here V 0 as well as V q and V �q could be
instead contained in T?, and therefore not appear in the decomposition.

Now let W denote the Weyl group of g. As the weight lattice of �jT is W –invariant,
and there is no other weight of �jT at distance p� 1 from the origin, we deduce that
W is reducible, and g splits as g1C g2. If � is the root associated to g1, we deduce
from the fact that V ���, and thus g�, is one-dimensional that g1 D sl.2;R/. As the
actions of g1 and g2 commute and the highest weight space for the restricted action of
g1 is one-dimensional, we furthermore deduce that g2 acts trivially on T . In particular,
T is an irreducible sl.2;R/–module of dimension 2p� 1 and the signature of T? of
the .p; q/–quadratic form preserved by so.p; q/ is thus either negative or .1; q �p/.
In the first case we conclude that �.g/jT? is compact, which is the desired result.

In order to conclude the proof we need to exclude the second case. We know from
Theorem 10.3 that for every 1� k � p� 2 and for every distinct x; y; z 2 @Γ the sum

�k.x/C .�k.y/\ �d�kC1.z//C �d�k�1.z/

is direct. With an inductive argument we deduce that, for every 1 � k � p � 2 and
for every  2 Γ, the kth eigenline belongs to T and therefore the Anosov map �
would be the boundary of a Fuchsian representation composed with an embedding of
PO.1; 2/! PO.p � 1; p/! PO.p; q/. However, such an embedding can never be
positive because it has noncompact centralizer (compare with Remark 10.2).
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The deformation space of geodesic triangulations
and generalized Tutte’s embedding theorem

YANWEN LUO

TIANQI WU

XIAOPING ZHU

We prove the contractibility of the deformation space of the geodesic triangulations
on a closed surface of negative curvature. This solves an open problem, proposed by
Connelly, Henderson, Ho and Starbird (1983), in the case of hyperbolic surfaces. The
main part of the proof is a generalization of Tutte’s embedding theorem for closed
surfaces of negative curvature.

54C25, 55Q52, 57N65, 57S05, 58D10

1 Introduction

We study the deformation space of geodesic triangulations of a surface within a fixed
homotopy class. Such a space can be viewed as a discrete analogue of the space of
surface diffeomorphisms homotopic to the identity. Our main theorem is:

Theorem 1.1 For a closed orientable surface of negative curvature , the space of
geodesic triangulations in a homotopy class is contractible. In particular , it is connected.

The group of diffeomorphisms of a smooth surface is a fundamental object in the study
of low-dimensional topology. Determining the homotopy types of diffeomorphism
groups has profound implications for a wide range of problems in Teichmüller spaces,
mapping class groups, and geometry and topology of 3–manifolds. Smale [23] proved
that the group of diffeomorphisms of a closed 2–disk which pointwise fix the boundary
is contractible. This enabled him to show that the group of orientation-preserving
diffeomorphisms of the 2–sphere is homotopy equivalent to SO.3/ [23]. Earle and
Eells [10] identified the homotopy type of the group of diffeomorphisms homotopic to
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the identity for any closed surface. In particular, this topological group is contractible
for a closed orientable surface with genus greater than one. It is consistent with our
Theorem 1.1 for the discrete analogue.

Cairns [6] initiated the investigation of the topology of the space of geodesic triangula-
tions and proved that, if the surface is a geometric triangle in the Euclidean plane, the
space of geodesic triangulations with fixed boundary edges is connected. A series of
further developments culminated in a discrete version of Smale’s theorem, proved by
Bloch, Connelly and Henderson [2]:

Theorem 1.2 The space of geodesic triangulations of a convex polygon with fixed
boundary edges is homeomorphic to a Euclidean space. In particular , it is contractible.

A simple proof of the contractibility of the space above is provided in Luo [21] using
Tutte’s embedding theorem [24]. It also provides examples showing that the homotopy
type of this space can be complicated if the boundary of the polygon is not convex. For
closed surfaces it is conjectured in Connelly, Henderson, Ho and Starbird [9] that:

Conjecture 1.3 The space of geodesic triangulations of a closed orientable surface
with constant curvature deformation retracts to the group of isometries of the surface
homotopic to the identity.

The connectivity of these spaces has been explored by Cairns [6], Chambers, Erickson,
Lin and Parsa [7] and Hass and Scott [18]. Awartani and Henderson [1] identified a
contractible subspace in the space of geodesic triangulations of the 2–sphere. Hass
and Scott [18] showed that the space of geodesic triangulation of a surface with a
hyperbolic metric is contractible if the triangulation contains only one vertex. Recently,
the authors [22] and Erickson and Lin [11] proved this conjecture independently in
the case of flat tori. Our main result affirms Conjecture 1.3 in the case of hyperbolic
surfaces and generalizes its conclusion to surfaces of negative curvatures.

One practical application of our work concerns the graph morphing on higher-genus
surfaces. Computing morphs between graphs has a wide range of applications in
geometric comparison, animation, and modeling. The 1–skeleton of geodesic triangular
mesh is one of the most common graphs on a surface. As a fundamental result, our
main theorem implies that, on a closed surface of negative curvature, any two geodesic
triangular meshes can be morphed to each other if they have the same combinatorial
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structure. Furthermore, in the proof of our main theorem, we generalize Tutte’s
embedding theorem to higher-genus surfaces. Following the idea initiated by Floater
and Gotsman [14], we can explicitly construct such morphs by linearly interpolating the
nonsymmetric edge weights. A similar idea has been applied for graph morphing on
flat tori in work by Chambers, Erickson, Lin and Parsa [7] and Erickson and Lin [11].

1.1 Setup and the main theorem

Assume M is a connected closed orientable smooth surface with a smooth Riemannian
metric g of nonpositive Gaussian curvature. A topological triangulation of M can
be identified as a homeomorphism  from jT j to M , where jT j is the carrier of a
2–dimensional simplicial complex T D .V;E; F / with the vertex set V , the edge set E,
and the face set F . For convenience, we label the vertices as 1; 2; : : : ; n, where nD jV j
is the number of vertices. The edge in E determined by vertices i and j is written ij .
Each edge is identified with the closed unit interval Œ0; 1�.

Let T .1/ be the 1–skeleton of T , and denote by X DX.M; T; / the space of geodesic
triangulations homotopic to  jT .1/ . More specifically, X contains all the embeddings
' W T .1/!M such that

(i) the restriction 'ij of ' to the edge ij is a geodesic parametrized with constant
speed, and

(ii) ' is homotopic to  jT .1/ .

Given an embedding ' in X , 'ij is often identified as a map from Œ0; 1� to M such that
'.0/D i , '.1/D j and 'ij .t/ represents the point on the edge ij that is t along the
geodesic from i to j parametrized on Œ0; 1�.

It has been proved by Colin de Verdière [8] that such X.M; T; / is always nonempty.
Further, X is naturally a metric space, with the distance function

dX .'; �/Dmax
x
dg.'.x/; �.x//:

Then our main theorem is formally stated as follows:

Theorem 1.4 If .M; g/ has strictly negative Gaussian curvature , then X.M; T; / is
contractible. In particular , it is connected.

Here we consider only surfaces of negative curvature since this ensures the uniqueness
of the geodesic in a homotopy class, and our estimates using the CAT.k/ comparison
theorems of triangles rely on a strictly negative upper bound of the curvature of
the surface.
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1.2 Generalized Tutte’s embedding

Let zX D zX.M; T; / be the superspace of X containing all the continuous maps
' W T .1/!M satisfying that

(i) the restriction 'ij of ' to the edge ij is a geodesic parametrized with constant
speed, and

(ii) ' is homotopic to  jT .1/ .

The key difference between X and zX is that elements in zX may not be embeddings
of T .1/ to M . The space zX is also naturally a metric space, with the same distance
function

d zX .'; �/Dmax
x
dg.'.x/; �.x//:

We call an element in zX a geodesic mapping. A geodesic mapping is determined by
the positions qi D '.i/ of the vertices and the homotopy classes of 'ij relative to
the endpoints qi and qj . In particular, this holds for geodesic triangulations. Since
we can perturb the vertices of a geodesic triangulation to generate another, X is a
2n–dimensional manifold.

Let .i; j / be the directed edge starting from the vertex i and ending at the vertex j .
Denote by EE D f.i; j / W ij 2 Eg the set of directed edges of T . A positive vector
w 2R

EE
>0 is called a weight of T . For any weight w and geodesic mapping ' 2 zX , we

say ' is w–balanced if, for any i 2 V ,X
j Wij2E

wij vij D 0:

Here vij 2 TqiM is defined with the exponential map exp W TM ! M such that
expqi .tvij /D 'ij .t/ for t 2 Œ0; 1�.

The main part of the proof of Theorem 1.4 is to generalize Tutte’s embedding theorem
(see Theorem 9.2 in [24] or Theorem 6.1 in Floater [13]) to closed surfaces of negative
curvature. Specifically, we prove the following two theorems:

Theorem 1.5 Assume .M; g/ has strictly negative Gaussian curvature. For any
weight w there exists a unique geodesic mapping ' 2 zX.M; T; / that is w–balanced.
The induced map ˆ.w/D ' is continuous from R

EE
>0 to zX .

Theorem 1.6 If ' 2 zX is w–balanced for some weight w, then ' 2X .

Theorem 1.6 can be regarded as a generalization of the embedding theorems of Colin
de Verdière (see Theorem 2 in [8]) and Hass and Scott (see Lemma 10.12 in [18]),
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which imply that the minimizer of the discrete Dirichlet energy

E.'/D
1

2

X
ij2E

wij l
2
ij

among the maps ' in the homotopy class of  jT .1/ is a geodesic triangulation. Here lij
is the geodesic length of 'ij in M . The minimizer is a w–balanced geodesic mapping
with wij D wj i for ij 2E. Hence, Theorem 1.6 extends the previous results from the
cases of symmetric weights to nonsymmetric weights. We believe that the proofs of
Colin de Verdière [8] and Hass and Scott [18] could be easily modified to work with
our nonsymmetric case. Nevertheless, we give a new proof in Section 3 to make the
paper self-contained.

1.3 Mean value coordinates and the proof of Theorem 1.4

Theorems 1.5 and 1.6 give a continuous map ˆ from R
EE
>0 to X . To map a geodesic

embedding to a weight, we use the mean value coordinates introduced by Floater [12].
Given ' 2X the mean value coordinates are defined to be

wij D
tan
�
1
2
˛ij
�
C tan

�
1
2
ˇij
�

jvij j
;

where jvij j equals the geodesic length of 'ij .Œ0; 1�/, and ˛ij and ˇij are the inner
angles in '.T .1// at '.i/ sharing the edge 'ij .Œ0; 1�/. The construction of mean value
coordinates gives a continuous map ‰ from X to R

EE
>0. Further, by Floater’s mean

value theorem (see Proposition 1 in [12]), any ' 2 X is ‰.'/–balanced. Namely,
ˆ ı‰ D idX . Then Theorem 1.4 is a direct consequence of Theorems 1.5 and 1.6.

Proof of Theorem 1.4 Since R
EE
>0 is contractible, ‰ ıˆ is homotopic to the identity

map. Since ˆ ı‰ D idX , X is homotopy equivalent to the contractible space R
EE
>0.

We will prove Theorem 1.5 in Section 2 and Theorem 1.6 in Section 3.

Acknowledgment The authors were supported in part by NSF 1737876, NSF 1760471,
NSF DMS FRG 1760527 and NSF DMS 1811878.

2 Proof of Theorem 1.5

Theorem 1.5 consists of three parts: the existence of the w–balanced geodesic mapping,
the uniqueness of the w–balanced geodesic mapping and the continuity of the map ˆ.
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In this section we will first parametrize zX by M, where M is the product manifold
of the n copies of the universal cover �M of M . Then we prove the three parts in
Sections 2.1, 2.2 and 2.3, respectively.

For the proof we mainly work on the universal covering space �M instead of the original
surfaceM . This is because a geodesic arc is uniquely determined by its endpoints in �M
but not in M , and thus the geodesic triangulation of M in the same homotopy class is
naturally parametrized by the lifted vertices in �M . The condition of strictly negative
curvature is mostly needed in the proof of the existence of the w–balanced mappings,
where we frequently compare geodesic triangles in �M with geodesic triangles of
constant negative curvature.

Assume that p is the covering map from �M to M , and � is the corresponding group of
deck transformations of the covering so that �M=� DM . For any i 2 V , fix a lifting
Qqi 2 �M of qi 2M . For any edge ij , denote by Q'ij .t/ by the lifting of 'ij .t/ such that
Q'ij .0/D Qqi . Here Q'ij .1/ may not be equal to Qqj , but p. Q'ij .1//D 'ij .1/D qj Dp. Qqj /,
and so there exists a unique deck transformation Aij 2 � such that Q'ij .1/ D Aij Qqj .
Notice that the deck transformation Aij depends on the choice of the lifts Qqi and Qqj of
qi and qj , respectively. We can deduce that Aij D A�1ji for any edge ij .

Equip �M with the natural pullback Riemannian metric Qg of g with negative Gaussian
curvature. This metric is equivariant with respect to � . For any x; y 2 �M , there exists
a unique geodesic with constant speed parametrization x;y W Œ0; 1�! �M such that
x;y.0/D x and x;y.1/D y. We can naturally parametrize zX as follows:

Theorem 2.1 For any .x1; : : : ; xn/ 2M, define ' D 'Œx1; : : : ; xn� as

'ij .t/D p ı xi ;Aijxj .t/

for any ij 2E and t 2 Œ0; 1�. Then ' is a well-defined geodesic mapping in zX , and the
map .x1; : : : ; xn/ 7! 'Œx1; : : : ; xn� is a homeomorphism from M to zX .

We omit the proof of Theorem 2.1, which is routine but lengthy. In the remainder of
this section, for any x; y; z 2 �M and u; v 2 Tx �M :

(i) d.x; y/ is the intrinsic distance between x and y in . �M; Qg/.

(ii) v.x; y/D exp�1x y 2 Tx �M .

(iii) 4xyz is the geodesic triangle in �M with vertices x, y and z, which could
possibly be degenerate.

(iv) †yxz is the inner angle of 4xyz at x if d.x; y/ > 0 and d.x; z/ > 0.
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(v) jvj is the norm of v under the metric Qgx .

(vi) u � v is the inner product of u and v under the metric Qgx .

By scaling the metric if necessary, we may assume that the Gaussian curvatures of
.M; g/ and . �M; Qg/ are bounded above by �1.

2.1 Uniqueness

We first prove Lemma 2.2 using CAT.0/ geometry. See Theorem 4.3.5 in [4] and
Theorem 1A.6 in [3] for the well-known comparison theorems.

Lemma 2.2 Assume x; y; z 2 �M . Then

(i) jv.z; x/� v.z; y/j � d.x; y/, and

(ii) v.x; y/ � v.x; z/C v.y; x/ � v.y; z/� d.x; y/2,

and equality holds if and only if 4xyz is degenerate.

Proof If4xyz is degenerate then there exists a geodesic  in �M such that x; y; z 2  ,
and then the proof is straightforward, so we assume that 4xyz is nondegenerate.

(i) Three points v.z; x/, v.z; y/, and 0 in Tz �M determine a Euclidean triangle, where
jv.z; x/j D d.x; z/, jv.z; y/j D d.z; y/ and the angle between v.z; x/ and v.z; y/ is
equal to †xzy. Then, by the CAT.0/ comparison theorem,

jv.z; x/� v.z; y/j< d.x; y/:

(ii) Let x0; y0; z0 2R2 be such that

jx0� z0j2 D jv.x; z/j; jy
0
� z0j2 D jv.y; z/j and jx0�y0j2 D jv.x; y/j:

Then, by the CAT.0/ comparison theorem, †yxz < †y0x0z0 and †xyz < †x0y0z0.
Hence,

v.x; y/ � v.x; z/C v.y; x/ � v.y; z/ > .y0� x0/ � .z0� x0/C .x0�y0/ � .z0�y0/

D jx0�y0j22 D d.x; y/
2:

Proof of uniqueness in Theorem 1.5 If ' is not unique, assume 'Œx1; : : : ; xn� and
'Œx01; : : : ; x

0
n� are two different geodesic mappings that are both w–balanced for some

weight w. We are going to prove a discrete maximum principle for the function
j 7! d.xj ; x

0
j /. Assume i 2 V is such that d.xi ; x0i / D maxj2V d.xj ; x0j / > 0. By

lifting the w–balanced assumption to �M , we have that

(1)
X

fj Wij2Eg

wij v.xi ; Aijxj /D 0;
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and

(2)
X

fj Wij2Eg

wij v.x
0
i ; Aijx

0
j /D 0:

Then, by Lemma 2.2(i) and (1),ˇ̌̌̌ X
fj Wij2Eg

wij v.xi ; Aijx
0
j /

ˇ̌̌̌
D

ˇ̌̌̌ X
fj Wij2Eg

wij v.xi ; Aijx
0
j /�

X
fj Wij2Eg

wij v.xi ; Aijxj /

ˇ̌̌̌
�

X
fj Wij2Eg

wijd.Aijxj ; Aijx
0
j /D

X
fj Wij2Eg

wijd.xj ; x
0
j /

� d.xi ; x
0
i /

X
fj Wij2Eg

wij :

By part (ii) of Lemma 2.2, (2), and the Cauchy–Schwartz inequality,

d.xi ; x
0
i / �

ˇ̌̌̌ X
fj Wij2Eg

wij v.xi ; Aijx
0
j /

ˇ̌̌̌
� v.xi ; x

0
i / �

X
fj Wij2Eg

wij v.xi ; Aijx
0
j /C v.x

0
i ; xi / �

X
fj Wij2Eg

wij v.x
0
i ; Aijx

0
j /

�

X
fj Wij2Eg

wij � d.xi ; x
0
i /
2:

Therefore, equality holds in both inequalities above. Then, for any neighbor j of i ,
d.xj ; x

0
j /D d.xi ; x

0
i /Dmaxk2V d.xk; x0k/, and Aijxj is on the geodesic determined

by xi and x0i . Hence, the one-ring neighborhood of p.xi / in 'Œx1; : : : ; xn�.T .1//
degenerates to a geodesic arc. By the connectedness of the surface we can repeat
the above argument and deduce that d.xj ; x0j / D d.xi ; x

0
i / for any j 2 V . Further,

'Œx1; : : : ; xn�.@�/ degenerates to a geodesic arc for any triangle � 2 F .

It is not difficult to extend 'Œx1; : : : ; xn� to a continuous map Q' from jT j toM such that
Q'.@�/D 'Œx1; : : : ; xn�.@�/ is the union of three geodesic arcs for any triangle � 2 F

It is also not difficult to prove that Q' is homotopic to  . Therefore, Q' is degree one
and surjective. This contradicts that Q'.jT j/ is a finite union of geodesic arcs.

2.2 Existence

Here we prove a stronger existence result:
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Theorem 2.3 Given a compact subset K of R
EE
>0 there exists a compact subset

K 0 D K 0.M; T;  ;K/ of zX such that , for any w 2 K, there exists a w–balanced
geodesic mapping ' 2K 0.

We first introduce the topological Lemma 2.4 and the key Lemma 2.5.

Lemma 2.4 Suppose BnDfx 2Rn W jxj � 1g is the unit ball in Rn, and f WBn!Rn

is a continuous map such that x¤f .x/=jf .x/j for any x 2@BnDSn�1 with f .x/¤0.
Then f has a zero in Bn.

Proof If not, g.x/D f .x/=jf .x/j is a continuous map from Bn to @Bn. Since Bn

is contractible, g.x/ is nullhomotopic, and thus gjSn�1 is also nullhomotopic. Since
g.x/¤ x, it is easy to verify that

H.x; t/D
tg.x/C .1� t /.�x/

jtg.x/C .1� t /.�x/j

is a homotopy between gjSn�1 and �id jSn�1 . This contradicts that �id jSn�1 is not
nullhomotopic.

Lemma 2.5 Fix an arbitrary point q 2 �M . If w 2R
EE
>0 and .x1; : : : ; xn/2M satisfies

(3) v.xi ; q/ �
X

fj Wij2Eg

wij v.xi ; Aijxj /� 0

for any i 2 V , then X
i2V

d.xi ; q/
2 <R2

for some constant R > 0 which depends only on M , T ,  , q and

�w WD
maxij2E wij
minij2E wij

:

The vector in Figure 1,

ri D
X

fj Wij2Eg

wij v.xi ; Aijxj /;

is defined as the residue vector ri at xi of 'Œx1; : : : ; xn� with respect to the weight w.
Notice that a geodesic mapping ' is w–balanced if and only if all its residue vectors
vanish with respect to w. Lemma 2.5 means that, if all the residue vectors are dragging
the xi away from q, then all the xi must stay a bounded distance from q.
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ri

xi

q

Figure 1: The residue vector and Lemma 2.5.

Our notion of w–balancedness is closely related to the Riemannian center of mass
developed by Grove and Karcher [17]. In a w–balanced geodesic mapping, each point
can be viewed as the weighted center of mass of its neighboring points. The defining
formula of our residue vectors also appears in [5; 19]. A survey of Riemannian center
of mass by Karcher can be found in [20]. The definition of a residue vector is also
similar to the concept of a discrete tension field in [15].

Proof of Theorem 2.3 Fix an arbitrary basepoint q 2 �M . Then by Lemma 2.5 we can
pick a sufficiently large constant RDR.M; T; ;K/ > 0 such that, if

nX
iD1

d.xi ; q/
2
DR2;

there exists i 2 V such that

v.xi ; q/ �
X

fj Wij2Eg

wij v.xi ; Aijxj / > 0:

We will prove that the compact set

K 0 D

�
'Œx1; : : : ; xn�

ˇ̌̌ nX
iD1

d.xi ; q/
2
�R2

�
is satisfactory.

For x 2 �M let Px W Tx �M ! Tq �M be the parallel transport along the geodesic x;q . Set

B D

�
.v1; : : : ; vn/ 2 .Tq �M/n

ˇ̌̌ nX
iD1

jvi j
2
� 1

�
;
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a Euclidean 2n–dimensional unit ball, and construct a map F W B! .Tq �M/n in three
steps: Firstly, we define n points x1; : : : ; xn 2 �M by xi .v1; : : : ; vn/ D expq.Rvi /:
Secondly, we compute the residue vector at each xi as

ri D
X

fj Wij2Eg

wij v.xi ; Aijxj / 2 Txi
�M:

Lastly, we pull back the residues to Tq �M via F.v1; : : : ; vn/D .Px1.r1/; : : : ; Pxn.rn//.

Notice that the map .v1; : : : ; vn/ 7! 'Œx1; : : : ; xn� is a homeomorphism from B to K 0,
and F.v1; : : : ; vn/ D 0 if and only if the corresponding 'Œx1; : : : ; xn� in K 0 is a
w–balanced map. Hence, it suffices to prove that F has a zero in B . By Lemma 2.4, it
suffices to prove that, for any .v1; : : : ; vn/ 2 @B ,

.v1; : : : ; vn/¤
F.v1; ::; vn/

jF.v1; : : : ; vn/j
:

Suppose .v1; : : : ; vn/ is an arbitrary point on @B . Then it suffices to prove that there
exists i 2 V such that vi �Fi .v1; : : : ; vn/D vi �Pxi .ri / < 0.

Notice that x1.v1; : : : ; vn/; : : : ; xn.v1; : : : ; vn/ satisfy that
Pn
iD1 d.q; xi /

2 DR2, so,
by our assumption on R, there exists i 2 V such that

v.xi ; q/ �
X

fj Wij2Eg

wij v.xi ; Aijxj /D v.xi ; q/ � ri > 0;

and thus

vi �Pxi .ri /D�
1

d.q; xi /
Pxi .v.xi ; q// �Pxi .ri /D�

1

d.q; xi /
v.xi ; q/ � ri < 0:

In the rest of this subsection we will prove Lemma 2.5 by contradiction. Let us first
sketch the idea of the proof. Assume

P
i2V d.xi ; q/

2 is very large. Then by a standard
compactness argument there exists a long edge ij in the geodesic mapping 'Œx1; : : : ; xn�.
Assume d.q; xi / � d.q; xj /. Then the corresponding long edge xi ;Aijxj in �M is
pulling xi towards q. This implies that there exists another long edge xi ;Aikxk
dragging xi away from q, otherwise the residue vector ri would not drag xi away
from q. It can be shown that d.q; xk/ > d.q; xi /. Repeating the above steps, we can
find an arbitrarily long sequence of vertices such that the distance from each of these
vertices to q is increasing. This is impossible as we only have finitely many vertices.

Here is a list of useful properties, where (a), (e), (f), (g) and (h) serve directly as
building blocks of the proof of Lemma 2.5, (b) and (d) are used to prove (e), and (c)
is used to prove (h). The three triangles in Figure 2, from left to right, illustrate the
geodesic triangles appearing in (b), (c) and (d) of Lemma 2.6, respectively.
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q

Aij q Aijxj

C2

q

y

x

q

y

C4
x

Figure 2: Triangles in (b), (c) and (d).

Lemma 2.6 (a) For any constant C >0 there is a constant C1DC1.M; T;  ; C />0
such that , if X

i2V

d.xi ; q/
2
� C1;

then
max
ij2E

d.xi ; Aijxj /� C:

(b) There exists a constant C2 D C2.M; T;  / > 0 such that , if

d.Aijxj ; q/� C2;

then
†.Aj iq/xj q D†q.Aijxj /.Aij q/�

1
8
�:

(c) There exists a constant C3 > 0 such that , if x; y 2 �M satisfy

d.y; q/� d.x; q/CC3;

then
†xyq � 1

4
�:

(d) There exists a constant C4 > 0 such that , if x; y 2 �M satisfy

d.x; y/� C4 and d.x; q/� d.y; q/;

then
†yxq � 1

8
�:

(e) For any constant C >0 there is a constant C5DC5.M; T;  ; C />0 such that , if

max
ij2E

d.xi ; Aijxj /� C5;

then there exists ij 2E such that

v.xi ; q/

jv.xi ; q/j
� v.xi ; Aijxj /� C:
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xk.h/
.f /

xi
.e/

xj

q

Figure 3: Vertices leaving the point q.

(f) For any constant C > 0 there is a constant C6 D C6.M; T;  ; �w ; C / > 0 such
that , if

v.xi ; q/

jv.xi ; q/j
� v.xi ; Aijxj /� C6

for some edge ij 2E, then there exists ik 2E such that

v.xi ; q/

jv.xi ; q/j
� v.xi ; Aikxk/� �C:

(g) For any constant C >0 there is a constant C7DC7.M; T;  ; C />0 such that , if

v.xi ; q/

jv.xi ; q/j
� v.xi ; Aikxk/� �C7;

then
d.xk; q/� d.xi ; q/CC:

(h) For any constant C >0 there is a constant C8DC8.M; T;  ; C />0 such that , if

d.xj ; q/� d.xi ; q/CC8;

then
v.xj ; q/

jv.xj ; q/j
� v.xj ; Aj ixi /� C:

Proof of Lemma 2.5 assuming Lemma 2.6 For any C > 0 there exists a sufficiently
large constant zC D zC.M; T; ; �w ; C / determined by (a), (e), (f) and (g) in Lemma 2.6
such that, if X

i2V

d.xi ; q/
2
� zC ;

then there exist three vertices xi , xj and xk , shown in Figure 3, with

d.xk; q/� d.xj ; q/CC:
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Moreover, by (h), (f) and (g) of Lemma 2.6, we can find another vertex xl such that

d.xl ; q/� d.xk; q/CC � d.xj ; q/C 2C

if the constant zC.M; T; ; �w ; C / is sufficiently large.

Inductively, we can find a sequence i1; : : : ; inC1 2 V such that

d.xi1 ; q/ > d.xi2 ; q/ > � � �> d.xinC1 ; q/:

This contradicts the fact that V only has n different elements.

Proof of Lemma 2.6 (a) By a standard compactness argument, the set

f' 2 zX W max
ij2E

length.'ij .Œ0; 1�//� C g

is a compact subset of zX . Notice that .x1; : : : ; xn/ 7! 'Œx1; : : : ; xn� is a homeo-
morphism from M to zX , and

length.'ij .Œ0; 1�//D d.xi ; Aijxj /:
Therefore ˚

.x1; : : : ; xn/ 2M W max
ij2E

d.xi ; Aijxj /� C
	

is compact, and the conclusion follows.

(b) We claim that the constant C2 determined by

sinhC2 D
maxij2E sinh d.Aij q; q/

sin 1
8
�

is satisfactory. Let 4ABC be the hyperbolic triangle with corresponding edge lengths

aD d.Aijxj ; q/; b D d.Aijxj ; Aij q/ and c D d.Aij q; q/:

Since �M is a CAT.�1/ space, it suffices to show that †C � 1
8
� . By the hyperbolic

law of sine,

sin†C D
sinh c � sin†A

sinh a
�

maxij2E sinh d.Aij q; q/ � 1
sinhC2

D sin 1
8
�:

(c) We claim that the constant C3 determined by

sinhC3 D
1

sin 1
8
�

is satisfactory. Let 4ABC be the hyperbolic triangle with corresponding edge lengths

aD d.x; y/; b D d.y; q/ and c D d.x; q/:
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q

xi

Aijxj

xi

q

Aj i
Aijxj

Aj iq

xj

Aj ixi

Figure 4: Triangles in (e).

Since �M is a CAT.�1/ space it suffices to show that †C � 1
8
� . By the hyperbolic law

of sine,

sin†C D
sinh c � sin†B

sinh b
�

sinh c
sinh b

�
sinh c

sinh.cCC3/
�

sinh c
sinh c � sinhC3

D sin 1
8
�:

(d) We claim that the constant C4 determined by

sin2 1
8
� � coshC4 D 2

is satisfactory. Let 4ABC be the hyperbolic triangle with corresponding edge lengths

aD d.x; y/; b D d.y; q/ and c D d.x; q/:

Since �M is a CAT.�1/ space it suffices to show that †B � 1
8
� . By the hyperbolic law

of cosine,
cosAD�cosB cosC C sinB sinC cosh a:

Then

2� sinB sinC cosh a � sinB sinC coshC4 D 2 �
sinB sinC

sin2 1
8
�
� 2 �

sin2B

sin2 1
8
�
:

Thus, †B � 1
8
� .

(e) We claim that the constant C5 determined by

C5 DmaxfC4; 2C2;
p
2C g

is satisfactory. Assume ij 2 E and d.xi ; Aijxj / � C5. Then we have the two cases
shown in Figure 4.

If d.xi ; q/� d.Aijxj ; q/, then, by (d),

†.Aijxj /xiq �
1
8
� � 1

4
�;
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and
v.xi ; q/

jv.xi ; q/j
� v.xi ; Aijxj /D cos.†.Aijxj /xiq/ � d.xi ; Aijxj /�

1
p
2
C5 � C:

If d.xi ; q/� d.Aijxj ; q/, then d.Aijxj ; q/� C2. By (b) and (d),

†.Aj iq/xj q �
1
8
� and †.Aj iq/xj .Aj ixi /D†q.Aijxj /xi �

1
8
�;

and †qxj .Aj ixi /� 1
4
� . Therefore,

v.xj ; q/

jv.xj ; q/j
� v.xj ; Aj ixi /D cos.†.Aj ixj /xj q/ � d.xj ; Aj ixi /�

1
p
2
C5 � C:

(f) We claim that the constant C6 determined by

C6 D n�w �C

is satisfactory. If not, for any ik 2E,

v.xi ; q/

jv.xi ; q/j
� v.xi ; Aikxk/ > �C:

Then

0�
v.xi ; q/

jv.xi ; q/j
�

X
ik2E

wikv.xi ; Aikxk/ > wijC6C
X
ik2E

wik.�C/

� wijC6C
X
ik2E

�wwij .�C/� wij .C6�n�wC/� 0;

which is a contradiction.

(g) We claim that C7 D C Cmaxij2E d.Aij q; q/ is satisfactory. Notice that

d.Aijxj ; q/D d.xj ; Aj iq/� d.xj ; q/C d.q; Aj iq/� d.xj ; q/C max
ij2E

d.Aij q; q/:

By Lemma 2.2(i),

d.Aijxj ; q/� jv.xi ; Aijxj /� v.xi ; q/j � �.v.xi ; Aijxj /� v.xi ; q// �
v.xi ; q/

jv.xi ; q/j

D C7Cjv.xi ; q/j D C7C d.xi ; q/:

Then
d.xj ; q/� d.xi ; q/� C7� max

ij2E
d.Aij q; q/D C:

(h) We claim that the constant C8 determined by

C8 DmaxfC3;
p
2C gC max

ij2E
d.Aij q; q/
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is satisfactory. Notice that

d.xj ; q/� d.xi ; q/CC8 � d.xi ; Aij q/� d.Aij q; q/CC8

� d.Aj ixi ; q/CmaxfC3;
p
2C g:

Then, by (c), †.Aj ixi /xj q � 1
4
� , and by the triangle inequality,

d.xj ; Aj ixi /� d.xj ; q/� d.Aj ixi ; q/�
p
2C:

Therefore,
v.xj ; q/

jv.xj ; q/j
� v.xj ; Aj ixi /D cos.†.Aj ixi /xj q/ � d.xj ; Aj ixi /�

1
p
2
�
p
2C D C:

2.3 Continuity

Proof of continuity in Theorem 1.5 If ˆ is not continuous, there exists � > 0, a
weight w and a sequence of weights w.k/ such that

(i) the w.k/ converge to w, and

(ii) d zX .ˆ.w
.k//; ˆ.w//� � for any k � 1.

By the stronger existence result Theorem 2.3, the sequence ˆ.w.k// is in some fixed
compact subset K 0 of zX . By picking a subsequence, we may assume that ˆ.w.k//
converges to some ' 2 zX . Since ˆ.w.k// is w.k/–balanced, then, by the continuity
of the residue vectors ri , ' is w–balanced and thus ˆ.w/D ', which contradicts that
ˆ.w.k// does not converge to ˆ.w/.

3 Proof of Theorem 1.6

3.1 Setup and preparation

Assume ' 2 zX isw–balanced for some weightw. We will prove that ' is an embedding.
Recall that qi D '.i/ for each i 2 V , and denote by lij the length of 'ij .Œ0; 1�/ for any
ij 2E. It is not difficult to show that ' has a continuous extension Q' defined on jT j
such that for any triangle � 2 F a continuous lifting map ˆ� of Q'j� from � to �M will
map � to

(i) a geodesic triangle in �M homeomorphically if '.@�/ does not degenerate to a
geodesic, and

(ii) ˆ� .@�/ if '.@�/ degenerates to a geodesic.

The main tool we use to prove Theorem 1.6 is the Gauss–Bonnet formula. We will need
to define the inner angles for each triangle in '.T .1//, even for the degenerate triangles.
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A convenient way is to assign a “direction” to each edge, even for the degenerate edges
with zero length.

Definition 3.1 A direction field is a map v W EE! TM satisfying

(i) vij 2 TqiM for any .i; j / 2 EE, and

(ii) jvij j D 1 for any .i; j / 2 EE.

Given a direction field v, define the inner angle of the triangle � D4ijk at the vertex i
as

� i� D �
i
� .v/D†vij 0vik D arccos.vij � vik/;

where 0 is the origin and †vij 0vik is the angle between vij and vik in TqiM .

A direction field v assigns a unit tangent vector in TqiM to each directed edge starting
from i , even if their lengths are zero. It determines the inner angles in T .

Definition 3.2 A direction field v is admissible if

(i) vij D '
0
ij .0/=lij if lij > 0,

(ii) vij D�vj i in TqiM D TqjM if lij D 0,

(iii) for a fixed vertex i 2 V , if lij D 0 for every neighbor j of i , then there exist
neighbors k and k0 of i such that vik D�vik0 , and

(iv) if � D4ijk 2 F and lij D ljk D lik D 0, then � i� .v/C �
j
� .v/C �

k
� .v/D � .

An admissible direction field encodes the directions of the nondegenerate edges in
'.T .1//, and the induced angle sum of a degenerate triangle is always � . Then, for
any admissible v and triangle � 2 F , by the Gauss–Bonnet formula,

(4) � D
X
i2�

� i� .v/�

Z
ˆ� .�/

K dA�
X
i2�

� i� .v/�

Z
Q'.�/

K d QA:

Here dA (resp. d QA) is the area form on .M; g/ (resp. . �M; Qg/).

The concept of the direction field is similar to the discrete one-form defined in [16].

3.2 Proof of Theorem 1.6

The proof of Theorem 1.6 uses the four lemmas below. We will postpone their proofs
to the subsequent subsections.
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Lemma 3.3 If v is admissible and � D �.v/, then , for any i 2 V ,X
f� Wi2�g

� i� D 2�;

and Q'.�/\ Q'.� 0/ has area 0 for any �; � 0 2 F .

Based on Lemma 3.3, if admissible direction fields exist, the image of the star of each
vertex determined by Q' does not contain any flipped triangles overlapping with each
other. If Q'.�/ does not degenerate to a geodesic arc for any triangle � 2 F , then
Q' is locally homeomorphic and thus globally homeomorphic as a degree-one map.
Therefore, we only need to exclude the existence of degenerate triangles.

Define an equivalence relation on V as follows. Two vertices i and j are equivalent if
there exists a sequence of vertices iD i0; i1; : : : ; ikDj such that li0i1D� � �D lik�1ikD0.
This equivalence relation introduces a partition V D V1[� � �[Vm. Denote by yk 2M
the only point in '.Vk/. For any x 2M and u; v 2 TxM , write u k v if u and v are
parallel, ie there exists .˛; ˇ/¤ .0; 0/ such that ˛uCˇv D 0.

There are plenty of choices of admissible direction fields:

Lemma 3.4 For any v1 2 Ty1M; : : : ; vm 2 TymM , there exists an admissible v such
that vij k vk if i 2 Vk and lij D 0.

For any Vk with at least two vertices, the image of its “neighborhood” lies in a geodesic:

Lemma 3.5 If jVkj � 2, then there exists vk 2 TykM such that vk k'0ij .0/ if i 2 Vk
and lij > 0.

Now let vk be as in Lemma 3.5 if jVkj � 2, and arbitrary if jVkj D 1. Then construct
an admissible direction field v as in Lemma 3.4, with induced inner angles � i� D �

i
� .v/.

If the image of a triangle � under ' degenerates to a geodesic, then its inner angles � i�
are � or 0. Let F 0 ¤∅ be the set of degenerate triangles under '.

Lemma 3.6 If � 2 F 0, i 2 � and � i� D � , then � 0 2 F 0 for any � 0 in the star
neighborhood of the vertex i .

Let � be a connected component of the interior of
S
f� W � 2 F 0g � jT j, and z� be the

completion of � under the natural path metric on �. Notice that z� could be different
from the closure of � in M .

Geometry & Topology, Volume 27 (2023)



3380 Yanwen Luo, Tianqi Wu and Xiaoping Zhu

Since Q' is surjective F 0 ¤ F , �¤ jT j and z� has nonempty boundary. Then z� is a
connected surface with a natural triangulation T 0 D .V 0; E 0; F 0/, and

�. z�/D 2� 2� .genus of z�/� #fboundary components of z�g � 1:

Assume V 0I is the set of interior vertices, V 0B is the set of boundary vertices, E 0I is the
set of interior edges and E 0B is the set of boundary edges of z�. Then jV 0B j D jE

0
B j and,

by Lemma 3.6, if i 2 V 0B and i 2 � then � i� D 0. Therefore,

�jF 0j D
X
�2F 0

i2�

� i� D
X
i2V 0I

X
f�2F 0Wi2�g

� i� D 2�jV
0
I j:

Thus,
1� �. z�/D jV 0j � jE 0jC jF 0j D jV 0I jC jV

0
B j � jE

0
I j � jE

0
B jC jF

0
j

D jV 0B j � jE
0
I j � jE

0
B jC

3
2
jF 0j D �jE 0I jC

3
2
jF 0j

D �jE 0I jC
1
2
.jE 0B jC 2jE

0
I j/D

1
2
jE 0B j:

Therefore, jV 0B j D jE
0
B j � 2. Since z� has nonempty boundary, jE 0B j D 1 or 2. In either

case, it contradicts the fact that T is a simplicial complex. The proof of Theorem 1.6 is
now completed.

3.3 Proof of Lemma 3.3

We claim that, for any i 2 V , X
f� Wi2�g

� i� � 2�:

If lij D 0 for any neighbor j of i , this is a consequence of Definition 3.2(iii). If lij ¤ 0,
by the w–balanced condition, f'0ij .0/=lij W ij 2 Eg should not be contained in any
open half unit circle, and the angle sum around i should be at least 2� .

By the fact that Q' is surjective and (4),X
i2V

�
2� �

X
f� Wi2�g

� i�

�
C

X
�2F

Z
Q'.�/

K dA�
X
�2F

Z
Q'.�/

K dA�
Z
M

K dAD 2��.M/

andX
i2V

�
2� �

X
f� Wi2�g

� i�

�
C

X
�2F

Z
Q'.�/

K dA� 2�jV j �
X
�2F

�X
i2�

� i� �

Z
Q'.�/

K dA
�

D 2��.M/:
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Hence, the inequalities above are equalities. This fact implies thatX
i2V

�
2� �

X
f� Wi2�g

� i�

�
D 0:

Since each term in this summation is nonpositive,
P
f� Wi2�g �

i
� D 2� . The statement

on the area follows similarly.

3.4 Proof of Lemma 3.4

We claim that, for any k, there exists a map h W Vk!R such that

(i) h.i/¤ h.j / if i ¤ j , and

(ii) for a fixed i 2 Vk , if lij D 0 for any neighbor j of i , then there exist neighbors
j and j 0 of i in Vk such that h.j / < h.i/ < h.j 0/.

Given such h, set v as

vij D

�
sgnŒh.j /� h.i/� � vk if i 2 Vk and lij D 0;
'0ij .0/ if lij > 0;

where sgn is the sign function. It is easy to verify that v is satisfactory.

To construct h, we prove a more general statement:

Lemma 3.7 Assume G D .V 0; E 0/ is a subgraph of the 1–skeleton T .1/, and E 0 ¤E.
Define

int.G/D fi 2 V 0 W ij 2E) ij 2E 0g;

and @G D V 0� int.G/. Then there exists h W V 0!R such that

(i) h.i/¤ h.j / if i ¤ j , and

(ii) any i 2 int.G/ has neighbors j and j 0 in V 0 such that h.j / < h.i/ < h.j 0/.

Proof We proceed by induction on the size of V 0. The case jV 0j D 1 is trivial. For
the case jV 0j � 2, first notice that j@Gj � 2 for any proper subgraph G of T .1/. Assign
distinct values Nh.i/ to each i 2 @G, then solve the discrete harmonic equationX

fj Wij2Eg

. Nh.j /� Nh.i//D 0 for all i 2 int.G/

with the given Dirichlet boundary condition on @G.
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Let s1 < � � � < sk be the distinct values that appear in f Nh.i/ W i 2 V 0g. Then consider
the subgraphs Gi D .V 0i ; E

0
i / defined by

V 0i D fj 2 V
0
W h.j /D sig and E 0i D fjj

0
2E 0 W j; j 0 2 V 0i g:

Notice that j@Gj � 2, so k � 2 and jV 0i j< jV
0j for any i D 1; : : : ; k. By the induction

hypothesis, there exists a function hi W V 0i !R such that

(i) hi .j /¤ hi .j
0/ if j ¤ j 0, and

(ii) any j 2 int.Gi / has neighbors j 0 and j 00 in V 0i such that hi .j 0/<hi .j /<hi .j 00/.

Define hi .j /D 0 if j … V 0i . Then, for sufficiently small positive �1; : : : ; �k ,

hD NhC

kX
iD1

�ihi

is the desired function.

3.5 Proof of Lemma 3.5

We must prove that if i; i 0 2Vk , ij; i 0j 0 2E, lij >0 and li 0j 0 >0, then '0ij .0/ k'
0
i 0j 0.0/.

Let
D D

� [
i;i 0;i 002Vk

4i i 0i 00
�
[

� [
i;i 02Vk

i i 0
�
;

which is a closed path-connected set in jT j. For any i 2 Vk , we have i 2 @D if and
only if there exists ij 2E with lij > 0. Therefore, it suffices to prove that

(i) '0ij .0/ k'
0
ij 0.0/ for any i 2 Vk and edges ij and ij 0 with lij > 0 and lij 0 > 0,

(ii) for any ij 2E satisfying ij � @D, there exists m 2 V �Vk such that4ijm 2F ,
and thus '0im.0/D '

0
jm.0/, and

(iii) @D is connected.

For part (i), if it is not true then there exists i 2Vk , ij 2E and ij 0 2E such that lij >0,
lij 0 > 0 and '0ij .0/ is not parallel to '0ij 0.0/. Assuming this claim, by the w–balanced
condition, there exists ij 00 2E with lij 00 > 0, and the three vectors '0ij .0/, '

0
ij 0.0/ and

'0ij 00.0/ are not contained in any closed half-space in TqiM . Assume im 2E, lim D 0
and, without loss of generality, ij , im, ij 0 and ij 00 are ordered counterclockwise in the
one-ring neighborhood of i in T . By Lemma 3.4, there exists an admissible v such that
vim k'

0
ij 00.0/. By possibly changing a sign, we may assume that vim D '0ij 00.0/=lij 00 .
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j 0 m

i

j 00 j

'

vim D vij 00

vij 0

vij

Figure 5: Overlapping triangles lead to angle surplus.

Then, as Figure 5 shows, a contradiction follows:

2� D
X
�i2�

� i� �†vij 0vimC†vim0vij 0 C†vij 00vij 00 C†vij 000vij

D 2†vij 0vij 00 C 2†vij 000vij 0 > 2�:

Part (ii) is straightforward, so we will prove part (iii). By our assumption on the
extension Q', Q'.D/ contains only one point. Then the embedding map iDD �1ı. jD/
from D to jT j is homotopic to the constant map  �1 ı . Q'jD/, meaning that D is
contractible in jT j. If @D contains at least two boundary components, then it is not
difficult to show that jT j �D has a connected component D0 homeomorphic to an
open disk. Let ˆD WD! �M be a lifting of Q'jD . Then ˆD.@D0/�ˆD.D/ contains
only a single point x 2 �M . So, by the w–balanced condition, it is not difficult to derive
a maximum principle and show that Q'jD0 equals the constant x. Then, by the definition
of D, it is easy to see that D0 should be a subset of D, which is a contradiction.

3.6 Proof of Lemma 3.6

Assume ij and ij 0 are two edges in � . If the conclusion is not true, then there exists
ik 2E such that lik > 0 and vik is not parallel to vij . Notice that vij D�vij 0 , and

2� D
X

f�2F Wi2�g

� i� �†vij 0vij 0 C†vij 0vikC†vij 00vik D 2�:

Thus, equality holds in the above inequality, and for any ik0 2E, vik0 should be on the
half circle that contains vij , vik and vij 0 . If vm is the midpoint of this half circle, then

vm �
X

fj Wij2Eg

wij lij vij � wiklikvm � vik > 0:

This contradicts the fact that ' is w–balanced.
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