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2938 Paul Seidel

1 Introduction

This paper is concerned with aspects of genus-zero Gromov–Witten theory, which are
specifically of interest if one works with integer or mod p cohomological coefficients.
There is a shared context between this and arithmetic aspects of Fukaya categories —
see for instance Alston and Amorim [2], Evans and Lekili [18], Lekili and Perutz [41]
and Lekili and Polishchuk [42] — even though we do not work on a categorical level.
Instead, our constructions will resemble those of certain chain-level structures, and of
cohomology operations, in algebraic topology.

1a Background

Gromov–Witten theory on a closed symplectic manifold X can be axiomatized as
a cohomological field theory (see Kontsevich and Manin [38]), which means that
operations are parametrized by Deligne–Mumford moduli spaces of curves. We will
only consider genus-zero curves, where the notion of cohomological field theory is
related to ones from classical topology: namely, one can start with the little disc operad
(May [51, Chapter IV]), then enlarge it to the framed little disc operad (Getzler [28]),
and finally trivialize the circle action (Drummond-Cole [17]) to obtain the genus-zero
Deligne–Mumford operad. It is important for this paper to work on the chain level. An
example of a chain-level construction is the quantum A1–ring structure (Ruan and
Tian [61]), which refines the small quantum product. In abstract terms, this comes
from mapping Stasheff associahedra to Deligne–Mumford spaces, compatibly with the
operad structures.

To define the genus-zero cohomological field theory for a general X , one usually has
to work with coefficient rings containing Q, because of the multivalued perturbations
involved in making moduli spaces regular. However, in the special case where X is
weakly monotone,1 the relevant Gromov–Witten invariants, which count genus-zero
curves with � 3 marked points in a given homology class, can be defined over Z. If
one reduces coefficients to a finite field Fp, there are two obvious constructions of
cohomology operations. One can use the relation with the little disc operad to obtain
analogues of the Cohen operations [14] on the homology of double loop spaces. For
ease of reference, let’s call these quantum Cohen operations. The second approach
is to introduce quantum Steenrod operations, which were proposed in Fukaya [21]
and have attracted some recent attention in Wilkins [74]. These are both facets of a
1Also called semipositive; see eg McDuff and Salamon [54, Section 6.4].
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Formal groups and quantum cohomology 2939

common story, which involves the equivariant cohomology of Deligne–Mumford space
with pC 1 marked points, with respect to the action of the symmetric group Symp

permuting all but one point.

We take our bearings from both the “one-dimensional” quantum A1–structure and
the “two-dimensional” quantum Cohen and Steenrod operations. To thread our way
between the two, we use another family of moduli spaces, which come from the
convolution theory of Lagrangian correspondences, as in Bottman [6], Bottman and
Wehrheim [9], Fukaya [22] and Ma’u, Wehrheim and Woodward [48]. They map to
Deligne–Mumford spaces, and on the other hand, their boundary structure is governed
by Stasheff associahedra. The effect of using (the simplest of) these spaces is to equip
the set of quantum Maurer–Cartan solutions with a multiplicative structure. After
reduction mod p, that structure will admit a partial description in terms of a specific
quantum (Cohen or) Steenrod operation.

1b Algebraic terminology

Before continuing the discussion, we need to recall some definitions. In a “functor of
points” approach, an object is often described as a functor from a class of “coefficient
rings” to sets. We use the following coefficient rings, familiar from the theory of formal
schemes and from deformation theory.

Definition 1.1 An adic ring is a nonunital commutative ring N such that the map
N ! lim

 ��m
N=N m is an isomorphism. In other words,

T
m N mD0, and N is complete

with respect to the topology given by the decreasing filtration fN mg. Note that one
can adjoin a unit, forming the augmented ring Z1˚N , which contains N as an ideal.

Example 1.2 Standard examples are N D qZŒŒq�� (power series with zero constant
term) or its truncations N D qZŒq�=qmC1. We can also use field coefficients, for
instance taking N D qFp ŒŒq��, which simplifies the algebraic behavior slightly. An
example with “unequal characteristic” is N D pZp, the maximal ideal in the ring of
p–adic integers, where N=N m D Z=pm�1.

Definition 1.3 A “formal group” is a functor from adic rings to groups.

This is somewhat weaker than the classical notion of formal group as in Lazard [39]:
there, one imposes additional conditions on the functor, leading to representability
results in an appropriate category of formal schemes. In our application, we will be
truncating what should really be an object of derived geometry, and representability in
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2940 Paul Seidel

the classical sense is not expected to hold. For simplicity, we have chosen to ignore the
issue, resulting in the definition given above.

As mentioned before, adic rings are a standard way to formulate deformation problems;
see Schlessinger [63]. The specific problem relevant for us is the following. Let A be
an A1–ring; see Section 2c for our conventions. Given an adic ring N , let A y̋ N be
the inverse limit of tensor products A˝ .N=N m/. We consider solutions  2A1 y̋ N

of the (generalized) Maurer–Cartan equation

(1-1)
X
d�1

�d
A.; : : : ;  /D 0:

Two such solutions ; z are considered equivalent if there is an h 2A0 y̋ N such that

(1-2)
X
p;q

�
pCqC1
A .

p‚ …„ ƒ
; : : : ;  ; h;

q‚ …„ ƒ
z ; : : : ; z /D  � z :

Definition 1.4 MC.AIN / is the set of equivalence classes of Maurer–Cartan elements
in A y̋ N . This is functorial in N , giving a functor MC.A/ from adic rings to sets.

If N 2D 0, (1-1) reduces to �1
A. /D 0, and (1-2) to �1

A.h/D  � z . Hence, in this case
MC.AIN /DH 1.AIN / is the cohomology with coefficients in the abelian group N.
Correspondingly, the general MC.AIN / can be viewed as nonlinear analogues of
cohomology groups. Note that what we are studying is not the deformation theory
of A as an A1–ring: instead, it can be viewed as the deformation theory of the free
module A, inside the dg category of A1–modules.

1c The formal group structure

With this in mind, let’s return to symplectic geometry. To keep the formalism in
the simple form set up above (avoiding Novikov rings), we will assume that our
symplectic manifold X is monotone (rather than weakly monotone), which means that
its symplectic form satisfies

(1-3) Œ!X �D ıc1.X / 2H 2.X IR/ for some ı > 0:

Take a suitable chain complex C D C �.X / representing its integral cohomology,
equipped with the quantum A1–structure �C. Note that the quantum A1–structure is
only Z=2–graded; hence, the definition above should be interpreted so that Maurer–
Cartan elements are taken in Codd y̋ N , and correspondingly, the entire odd-degree
cohomology of X appears. Let MC.X IN / D MC.CIN / be the set of equivalence
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classes of Maurer–Cartan solutions. One can think of this as the deformation theory of
the diagonal �X as an object of the Fukaya category F.X � xX /, where xX means that
we have reversed the sign of the symplectic form. In other words, deformations are
“bounding cochains” for �X in the sense of Fukaya, Oh, Ohta and Ono [23; 24]. If the
closed–open map is an isomorphism, one can also think of this theory as deformations
of the identity functor on F.X /, which describes the formal neighborhood of the identity
in the “automorphism group” of that category. From the composition of automorphisms,
one would expect additional structure, and indeed:

Proposition 1.5 The functor MC.X / has the canonical structure of a “formal group”.

As mentioned above, if one makes suitable assumptions on the closed–open map,
this structure has an explanation purely within homological algebra. If one drops
that assumption, one could still obtain the group structure by looking at F.X � xX /
together with its monoidal structure (in a suitable sense, which we will not try to make
precise) given by convolution of correspondences — see Bottman and Wehrheim [9]
and Ma’u, Wehrheim and Woodward [48]; another approach is Fukaya [22] and Lekili
and Lipyanskiy [40]. Compared to those constructions, the definition given here (which
avoids talking about Fukaya categories or Lagrangian correspondences) is less general
but more direct, and hence more amenable to computations.

Proposition 1.6 The groups MC.X IN / are commutative if N 3 D 0. They are also
commutative if N 4 D 0 provided that , additionally, H�.X IZ/ is torsion-free.

Commutativity mod N 3 is not surprising: it amounts to the well-known fact that the
Lie bracket on cohomology, which exists for any algebra over the little disc operad,
becomes zero for cohomological field theories. For general algebraic reasons (formal
exponentiation), one expects commutativity to hold always if N is an algebra over Q;
and the same should be true if N is an algebra over Fp and N p D 0. In contrast, the
origin of the second part of Proposition 1.6 is more geometric: it reflects an explicit
(if poorly understood, partly due to a lack of examples) enumerative obstruction to
commutativity.

Remark 1.7 Our construction focuses on the odd-degree cohomology of X. One could
try to include even-degree classes by enlarging the notion of formal group to its derived
counterpart, which in our terms means allowing N to be a commutative dg (or maybe
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2942 Paul Seidel

better simplicial) ring. Another potential use of even-degree classes (with different
enumerative content) would be as “bulk insertions” at points in arbitrary position, as in
big quantum cohomology. Note however that, for classes of degree > 2, the standard
algebraic formalism of “bulk insertions” involves dividing by factorials. Hence, it
would have to be modified for our applications. Neither direction will be attempted in
this paper.

1d Quantum Steenrod operations

Fix a prime p. The quantum Steenrod operation, in a form slightly simplified by the
monotonicity assumption (1-3), is a map

(1-4) Q StX ;p D
X
A

Q StX ;p;A WH�.X IFp/!H�.X IFp/˝H�Z=p.Fp/;

with
Q StX ;p;A WH l.X IFp/!

�
H�.X IFp/˝H�Z=p.Fp/

�pl�2c1.A/:

Here, H�Z=p.Fp/ is the group cohomology of the cyclic group with coefficients mod p,
which is one-dimensional in each degree. We fix generators

(1-5) H�Z=p.Fp/D Fp Œt; � �; with jt j D 2; j� j D 1:

The notation here requires some explanation. For pD 2, we have �2D t (or � D t1=2),
so the two generators are not independent. For p > 2, it is implicit that our description
is as a graded commutative algebra, so �2D 0. The sum in (1-4) is over A2H2.X IZ/,
and the notation c1.A/ is shorthand for integrating the first Chern class of X over A.
The classical Steenrod operations [70] are encoded in the AD 0 term. More precisely,
if we write StX ;p DQ StX ;p;0, the relation with the classical notation is that

(1-6) StX ;p.x/D

8̂̂̂̂
<̂
ˆ̂̂:

X
i

Sqi.x/t .jxj�i/=2 if p D 2;

.�1/�
�

p� 1

2
!

�jxjX
i

.�1/iP i.x/ t .jxj�2i/.p�1/=2

C � (terms involving ˇP i) if p > 2;

where ˇ is the Bockstein, and

(1-7) � D
jxj.jxj � 1/

2

p� 1

2
:

When handling the constants in (1-6) in practice, one should bear in mind that

(1-8)
�

p� 1

2
!

�2

� .�1/.pC1/=2 mod p:
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See [70, Lemma 6.3]. For instance, if jxj is even and p > 2,

(1-9) t0 term of StX ;p.x/D .�1/�
�

p� 1

2
!

�jxj
.�1/jxj=2P jxj=2.x/

D .�1/jxj=2 .p�1/=2.�1/jxj=2 .pC1/=2.�1/jxj=2P jxj=2.x/

D P jxj=2.x/D xp:

Definition 1.8 Define an endomorphism Q„X ;p of H odd.X IFp/ by

(1-10) Q„X ;p.x/

D

8<:
the t1=2 (or � ) component of Q StX ;2.x/ if p D 2;�

p� 1

2
!

��1

times the t .p�1/=2–component of Q StX ;p.x/ if p > 2:

To recapitulate, this has the form

(1-11) Q„X ;p D

X
A

Q„X ;p;A;

with
Q„X ;p;A WH

l.X IFp/!H pl�.p�1/�2c1.A/.X IFp/;

and where the classical component is

(1-12) „X ;p.x/DQ„X ;p;0.x/D

�
Sqjxj�1.x/ if p D 2;

P .jxj�1/=2.x/ if p > 2:

1e The pth power maps

Let’s return to the formal group MC.X /. The group structure gives rise to mth power
(meaning the m–fold product) maps for each m�1, which are functorial endomorphisms
of MC.X IN / for any N.

Theorem 1.9 The power maps of prime order fit into a diagram

(1-13)

MC.X I qFp Œq�=q
pC1/

projection
��

pth power of the formal group
// MC.X I qFp Œq�=q

pC1/

MC.X I qFp Œq�=q
2/ MC.X I qpFp Œq�=q

pC1/

inclusion

OO

H odd.M IFp/
Q„X;p

// H odd.M IFp/

Geometry & Topology, Volume 27 (2023)



2944 Paul Seidel

Remark 1.10 Because of the monotonicity of X and the grading of our operations,
see (1-11), one always has

(1-14) Q„X ;p.x/D„X ;p.x/D x for x 2H 1.X IFp/:

For comparison, consider the formal completion yGm of the multiplicative group. In a
local coordinate 1C z 2 yGm, the pth power map is

(1-15)
p‚ …„ ƒ

z � � � � � z D .1C z/p � 1D zp
Cp.something/D z for z 2 Fp;

which matches what we have seen in (1-14). There is a categorical explanation for
the occurrence of the multiplicative group. Recall that H 1.X IGm/ classifies flat line
bundles over X . The definition of the Fukaya category F.X / includes having the
Lagrangian submanifolds equipped with flat bundles. By tensoring with the restriction
of flat line bundles on X , one gets an action of H 1.X IGm/ on the Fukaya category.
For us, it is better to think of the action as being given by the trivial Lagrangian
correspondence, namely the diagonal in X � xX , equipped with a flat line bundle. From
that viewpoint, one can pass to the formal completion: one has a formal family of
objects in F.X � xX /, which consists of the diagonal together with a formal deformation
of the trivial line bundle; that gives rise to a deformation of the identity functor on F.X /;
and composition of such deformations corresponds to the tensor product of line bundles.
Of course, within the present framework this discussion is of very limited concrete use:
the known examples of monotone symplectic manifolds with nontrivial H 1 (obtained
by combining Reznikov [60] and Millson [55], see Fine and Panov [19] for a discussion)
are somewhat esoteric.

Example 1.11 Let X �CP1 �CP3 be a hypersurface of bidegree .1; 2/, which has
odd cohomology H 3.X IFp/D F2

p for any p. Then Q„X ;2 D id, by a computation
from [74, Section 8]. More generally, each Q„X ;p is a multiple of the identity. Here
are the results for the first few primes:

(1-16)
p 2 3 5 7 11 13 17 19 23 29 31 37 41

Q„p=id �1 �1 1 0 �4 �2 2 4 0 �2 0 �10 10

The entries lie in Fp , and we have chosen integer representatives with the least absolute
value (with some fudging for p D 2). Those integers are meaningful: they are the qp

coefficients of the modular form [43, Newform 15.2.a.a]

(1-17) �.q/�.q3/�.q5/�.q15/; where �.q/D q1=24
1Y

nD1

.1� qn/:
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One can interpret this observation via mirror symmetry and arithmetic geometry. The
(conjectural, but supported by superpotential computations) statement is that a specific
elliptic curve appears in the mirror geometry, and hence is encoded in the Fukaya
category of X . Correspondingly, the automorphism group of the Fukaya category would
contain the derived automorphism group of that curve, and in particular, the product of
two copies of the curve itself. What we see in (1-16) is the leading coefficient of the
pth power map of the formal group law of the elliptic curve. For general number theory
reasons, this is closely related to counting Fp–points on the curve, and the appearance
of (1-17) is an instance of the modularity of elliptic curves. For further discussion, see
Example 9.11 and Conjecture 9.12.

The computation underlying Example 1.11 turns out to involve only those quantum
Steenrod operations which can ultimately (using forthcoming work of Wilkins and the
author) be reduced to ordinary Gromov–Witten invariants. To push the understanding
of Q„X ;p further, one would have to study the contribution of p–fold covered curves,
which is beyond our scope here.

Example 1.12 Let X �CP1�CP5 be a hypersurface of bidegree .1; 2/. In this case,
Q„X ;p is unknown. The answer involves stable maps to X with first Chern number
2p�2. The difficulty is that there are points in the relevant space of stable maps which
have Z=p isotropy groups.

1f Structure of the paper

In order to make the underlying ideas appear clearly, the paper is set up as follows.
Most of the time (Sections 2–6) we work in an abstract operadic framework. In
principle, one could aim to prove that quantum cohomology is an instance of this
general setup, but that would overshoot the desired target somewhat. Instead, we will
explain (in Section 7) how to convert the previous arguments into symplectic terms,
in a more ad hoc way. In Section 8, we outline an alternative approach to parts of
the construction, based on Fukaya [22]. After that, Section 9 is a bit of an outlier: it
is concerned with computational techniques for quantum Steenrod operations, and is
formulated in a language much closer to standard Gromov–Witten theory. At this point,
we should make one apology for the paper. Because of the complexity of the formulae
involved, signs are sometimes not worked out, which we signal by ˙; however, we
have made sure that signs are given at key points. Part of this involves spelling out
certain conventions for equivariant cohomology, which is done in Section 10.
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2 Maurer–Cartan theory

After some introductory remarks about solutions of the Maurer–Cartan equations in
general A1–rings, we turn to a specific situation, namely the induced A1–structure on
Hochschild cochains. Maurer–Cartan solutions in Hochschild cochains carry a formal
group structure, which can be considered as a purely algebraic counterpart of our main
construction. This algebraic viewpoint will not really be used later on: we include it
here for expository purposes, and also because it would provide the background for
linking the results in this paper to the Fukaya category. To make things more intuitive
from a classical homological algebra viewpoint, we will take the A1–structures to be
Z–graded in this section, even though, as mentioned before, the quantum A1–structure
is only Z=2–graded.

2a A1–structures

To clarify our conventions, let’s spell out the definition of an A1–ring. This is a free
graded abelian group A is with multilinear operations f�d

Ag, d � 1, which satisfy the
A1–associativity relations

(2-1) 0D
X
ij

.�1/zi�
d�jC1
A .a1; : : : ; �

j
A.aiC1; : : : ; aiCj /; : : : ; ad /:

Here, zi D ka1k C � � � C kaik, where kak D jaj � 1 is the reduced degree; both
will be standing notation from now on. If we consider A as a chain complex with
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differential dA D��
1
A, the associative algebra structure on H�.A/ is induced by the

chain-level product

(2-2) a1 � a2 D .�1/ja1j�2
A.a1; a2/:

From the overall “A1–lingo”, the notions of A1–homomorphism and homotopy
between such homomorphisms will be the ones that occur most frequently in our
discussion. Homotopy admits the following useful interpretation. Take the following
dg ring (cochains on the interval as a simplicial complex, with the Alexander–Whitney
product):

(2-3)

IDZu˚Zzu˚Zv; with jujD jzujD0; jvjD1;

u2
Du; zu2

Dzu; zuuDuzuD0; uvDvDvzu (and hence vuDzuvD0),

dIuDv; dIzuD�v:

If A is an A1–ring, the tensor product A˝ I inherits the same structure, with

(2-4)
�1
A˝I.a˝x/D �1

A.a/˝xC.�1/jaja˝dIx;

�d
A˝I.a1˝x1; : : : ; ad˝xd /D .�1/��d

A.a1; : : : ; ad /˝x1 � � �xd for d � 2;

where � D
P

i>j kaik � jxj j. This A1–structure is compatible with the projections

(2-5) A˝ I

project to A˝Zu
,,

project to A˝Zzu

22 A:

Two A1–homomorphisms zA!A are homotopic if and only if they can be obtained
from a common homomorphism zA!A˝ I by composing with (2-5). We will often
use the following fact:

Lemma 2.1 Let F W zA!A be an A1–homomorphism such that the linear term F1

is a chain homotopy equivalence (in view of our freeness assumption , that will be the
case whenever it’s a quasi-isomorphism). Then F has an inverse up to homotopy.

Unitality conditions, while not always strictly necessary, are both convenient for the
theory and satisfied in most applications (including ours). A homology unit for A is a
cocycle eA 2A

0 such that the products

(2-6) a 7! a � eA D .�1/jaj�2
A.a; eA/ and a 7! eA � aD �

2
A.eA; a/

are homotopic to the identity (when working over a field, one asks that these products
induce the identity on cohomology, but that is obviously inadequate over Z; the notion
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used here goes back to [44, Definition 7.3]). One says that eA is a strict unit if: the
inclusion ZeA!A0 splits, as a map of abelian groups; the maps (2-6) are equal to the
identity; and in addition, all operations �d

A.: : : ; eA; : : :/, d � 3, are zero. The following
is [45, Theorem 3.7 and Remark 3.8]:

Lemma 2.2 Given any homologically unital A1–ring A, there is a strictly unital
one zA and an inclusion A ,! zA, compatible with the A1–structures , which is a
chain homotopy equivalence. (Note that by Lemma 2.1, we then also have an inverse
A1–functor F W zA!A, such that F1 is a chain homotopy equivalence.)

The result in [45] is more explicit: one can enlarge the A1–structure to zADA˚Zh˚

Ze zA, where e zA is the strict unit, and

(2-7)
�1
zA
.h/ 2 e zACA0;

�d
zA
.A˚Zh; : : : ;A˚Zh/�A for d � 2:

This has a consequence which we find useful to state, even though it goes slightly
beyond the limits of our current terminology. Introduce an A1–category with two
objects Y and zY , morphism spaces

(2-8)
hom.Y;Y /D hom.Y; zY /D hom. zY ;Y /DA;

hom. zY ; zY /D zA;

and with all A1–structures inherited from zA (the second part of (2-7) ensures that this
makes sense). The two objects are quasi-isomorphic, and so we arrive at the following:

Lemma 2.3 Given any homologically unital A1–ring A, there is a homologically
unital A1–category with two objects such that

� the endomorphism ring of the first object is A,

� the endomorphism ring of the second object is strictly unital , and

� the two objects are mutually quasi-isomorphic.

2b Maurer–Cartan elements

We have already mentioned the notions of Maurer–Cartan element (1-1) and of equiv-
alence between such elements (1-2). Given an A1–homomorphism F W zA! A, we
define the induced map MC.FIN / WMC. zAIN /!MC.AIN / by

(2-9) z 7!  D
X

d

Fd .z ; : : : ; z /:
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The basic results (the second is a consequence of the first and Lemma 2.1) are:

Lemma 2.4 Homotopic A1–homomorphisms induce the same map MC. zAIN /!

MC.AIN /.

Lemma 2.5 Suppose that we have an A1–homomorphism zA!A, whose linear part
is a chain homotopy equivalence. Then the induced map MC. zAIN /!MC.AIN / is
bijective.

One can think of equivalence of Maurer–Cartan elements in several ways. In terms of
the A1–structure (2-4),

(2-10)  ˝uC z ˝ zuC h˝ v 2 .A˝ I y̋ N /1

is a Maurer–Cartan element for A˝I if and only if  and z are Maurer–Cartan elements
for A, and h satisfies (1-2). This makes Lemma 2.4 particularly intuitive. Another
possible interpretation goes as follows. Let’s add a strict unit, forming Ze˚A y̋ N .
There is an A1–category whose objects are Maurer–Cartan elements in A y̋ N , with
morphisms between any two elements given by Ze ˚A y̋ N . The differential for
morphisms z !  is

(2-11) g 7!
X
p;q

�
pCqC1

Ze˚A y̋N
.

p‚ …„ ƒ
; : : : ;  ;g;

q‚ …„ ƒ
z ; : : : ; z /;

and the formulae for higher A1–compositions are similar. Clearly, h satisfies (1-2) if
and only if g D eC h is a closed morphism z !  in our category. This viewpoint
can be useful when thinking about the transitivity and functoriality of the notion
of equivalence. Finally, if A is homologically unital, one can introduce a modified
version of the Maurer–Cartan category, by setting the morphisms between objects to
be A˝ .Z1˚N /, which means using the natural identity of A rather than artificially
adjoining one. The resulting version of our previous observation (obvious in the strictly
unital case, and generalized from there using Lemmas 2.2 and 2.5) is this:

Lemma 2.6 Suppose that A is homologically unital. Then , two Maurer–Cartan
solutions are equivalent if and only if there is a g 2A0 y̋ .Z1˚N / which , modulo N ,
reduces to a cocycle homologous to eA, and which satisfies

(2-12)
X
p;q

�
pCqC1
A .

p‚ …„ ƒ
; : : : ;  ;g;

q‚ …„ ƒ
z ; : : : ; z /D 0:
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2c Hochschild cochains

As before, let A be an A1–ring. Our attention will now shift to its Hochschild complex
(the complex underlying Hochschild cohomology)

(2-13) CD CC�.A/D
Y
d�0

Hom.AŒ1�˝d ;A/:

The Hochschild differential is

(2-14) .dCc/d .a1; : : : ; ad /

D�

X
ij

.�1/zi �kck�
d�jC1
A .a1; : : : ; c

j .aiC1; : : : ; aiCj /; : : : ; ad /

C

X
ij

.�1/ziCkckcd�jC1.a1; : : : ; �
j
A.aiC1; : : : ; aiCj /; : : : ; ad /

(we apologize for the double use of d as differential and as counting the number of
entries); and its cohomology is the Hochschild cohomology HH�.A/. We will also
use Hochschild cohomology with coefficients in a commutative ring R, denoted by
HH�.AIR/, which is the cohomology of CC�.AIR/ D C y̋ R — here, completion
means that we take each term in (2-13)˝R and then their product. C carries a canonical
A1–structure, with �1

C D�dC, and where the next term is

(2-15) �2
C.c1; c2/

d .a1; : : : ; ad /DX
i1;j1;i2;j2

i2�i1Cj1

.�1/zi1
kc1kCzi2

kc2k�
d�j1�j2C2
A

�
a1; : : : ; c

j1

1
.ai1C1; : : : ; ai1Cj1

/; : : : ;

c
j2

2
.ai2C1; : : : ; ai2Cj2

/; : : : ; ad

�
:

The higher-order A1–operations follow the same pattern as �2
C. If A has a homological

unit, then so does C. One way to show that is to apply Lemma 2.3: in that situation,
the restriction from the Hochschild complex of the A1–category to the Hochschild
complex of either A or zA is a homotopy equivalence, allowing one to transfer properties
from zA to A in two steps.

Note that strictly speaking, C does not fit into the original context for A1–rings,
because (2-13) is not usually free. However, it is the inverse limit of chain complexes
of free groups, by using the (complete decreasing) length filtration, which is compatible
with the A1–structure. All the associated notions have to be modified to take this
“pro-object” nature into account. We have already done that when defining Hochschild
cohomology with coefficients, by using the completed tensor product C y̋ R. Maurer–
Cartan elements, and homotopies between such elements, will live in such completed
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tensor products. To prove the analogue of Lemma 2.6 for Hochschild complexes, one
again uses reduction to the strictly unital case via Lemma 2.3.

The product on Hochschild cohomology induced from �2
C is graded commutative.

Additionally, Hochschild cohomology has a Lie bracket of degree�1. The two combine
to form the structure of a Gerstenhaber algebra. When we take coefficients in a ring
with pRD 0, let’s say for concreteness RD Fp, there is one more operation

(2-16) „A;p W HHl.AIFp/! HHpl�.p�1/.AIFp/

�
for odd l if p > 2,
for all l if p D 2.

This combines with the bracket to form a restricted Lie algebra [77]. As we next explain,
following [71], the underlying chain-level map can be written as a sum over trees.

Terminology 2.7 A rooted tree with d leaves is a tree which (in addition to its finite
edges) has dC 1 semi-infinite edges. One of the semi-infinite edges is singled out, and
called the root; the other d are the leaves. There is a unique way of orienting edges, so
that they point towards the root. Given a vertex v, write jvj for its valence. Among the
edges adjacent to v, there is a unique outgoing one, and kvk D jvj � 1 incoming ones.

In our applications, the rooted trees (unless otherwise indicated) come with the following
structure. First, an ordering of the semi-infinite edges by f0; : : : ; dg, starting with the
root. Secondly, at any vertex, an ordering of the adjacent edges by f0; : : : ; jvjg, again
starting with the outgoing edge. A special case is that of rooted planar trees, where
all orderings come from a single embedding of the tree into the plane, which implies
certain compatibilities between them.

For now, we will only use rooted planar trees (the more general version will play a role
later on; see Section 3b). Given such a tree and a Hochschild cochain c, one defines an
operation A˝d !A, by starting with elements of A at the leaves, and having ckvk act
at each vertex, with the output of that fed into the next vertex on our way to the root.
To define the chain map underlying (2-16), one considers those operations for trees
with p vertices, and adds them up with certain multiplicities: the multiplicity of a tree
is the number of ways to order its vertices, so that the ordering increases when going
towards the root (“causal orderings”). For p D 2, we get

(2-17) .„A;2c/d .a1; : : : ; ad /D
X
ij

cd�jC1.a1; : : : ; c
j .aiC1; : : : ; aiCj /; : : : ; ad /:
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c5(a1, c
3(a2, a3, a4), a5, c

0, a6) c3(a1, c
2(c3(a2, a3, a4), a5), a6)

Figure 1: Sample trees that correspond to expressions from (2-18):
c5.a1; c

3.a2;a3;a4/;a5; c
0;a6/, left, and c3.a1; c

2.c3.a2;a3;a4/;a5/;a6/,
right.

This is usually written as c ı c, where ı is the operation which underlies the homotopy
commutativity of �2

C, and which upon antisymmetrization yields the Lie bracket. The
p D 3 case is less familiar [71, Example 3.3]:

(2-18) .„A;3c/d .a1; : : : ; ad /D

2
X

i1;j1;i2;j2

i1Cj1�i2

cd�j1�j2C2
�
a1; : : : ; c

j1.ai1C1; : : : ; ai1Cj1
/;

: : : ; cj2.ai2C1; : : : ; ai2Cj2
/; : : : ; ad

�
C

X
i1;j1;i2;j2

cd�j1�j2C2
�
a1; : : : ; c

j1
�
ai1C1; : : : c

j2.ai2C1; : : : ; ai2Cj2
/;

: : : ; ai1Cj1Cj2�1

�
; : : : ; ad

�
:

The summands in (2-18) correspond to trees as in Figure 1, where that on the left admits
two causal orderings. Koszul signs as in (2-15) are absent here, since kck is even;
recall that for odd p, the operation „A;p is only defined on odd-degree Hochschild
cohomology.

Example 2.8 The first terms of dC.c/D 0, for kck even, are

(2-19)

�1
A.c

0/D 0;

�1
A.c

1.a//C�2
A.a; c

0/C�2
A.c

0; a/D c1.�1
A.a//;

�1
A.c

2.a1; a2//C�
2
A.c

1.a1/; a2/C�
2
A.a1; c

1.a2//

C�3
A.c

0; a1; a2/C�
3
A.a1; c

0; a2/C�
3
A.a1; a2; c

0/

D c1.�2
A.a1; a2//C c2.�1

A.a1/; a2/C .�1/ka1kc2.a1; �
1
A.a2//:

The constant term in (2-18) is

(2-20) .„A;3c/0 D 2c2.c0; c0/C c1.c1.c0//:
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One sees that this is again a cocycle modulo 3:

(2-21) �1
A.c

2.c0; c0//

D��2
A.c

1.c0/; c0/��2
A.c

0; c1.c0//� 3�3
A.c

0; c0; c0/C c1.�2
A.c

0; c0//

D �1
A.c

1.c1.c0///� 3�3
A.c

0; c0; c0/C 3c1.�2
A.c

0; c0//:

Example 2.9 Suppose that A is a differential graded algebra, ie �d
A D 0 for d � 3.

A derivation of A gives a cocycle in C1, and applying (2-16) amounts to taking the pth

iterate of that derivation.

2d The formal group structure

Given an adic ring N , let C y̋ N be the space obtained by applying y̋ N to each factor
in (2-13) and then again forming their product. We consider Maurer–Cartan elements
 2 C y̋ N . Concretely, the first terms are

(2-22)
 0
2A1 y̋N;

X
d

�d
A.

0; : : : ;  0/D0;

 1
2Hom.A;A/0 y̋N;

X
p;q

�
pCqC1
A . 0; : : : ;  0„ ƒ‚ …

p

; a;  0 : : : ;  0„ ƒ‚ …
q

/D 1.�1
A.a//;

and so on. One can think of  as a formal deformation of the identity endomorphism
of A. What this means is that  satisfies (1-1) if and only if, over Z1˚N ,

(2-23) �d
D

�
idAC  1 if d D 1;

 d if d ¤ 1;

satisfies the (curved) A1–homomorphism equations. Similarly, two Maurer–Cartan
solutions are equivalent (1-2) if the associated A1–homomorphisms (2-23) are (curved)
homotopic. The standard composition of A1–homomorphisms (2-23) leads to the
following composition law for Maurer–Cartan solutions:

(2-24) .1�2/
d .a1; : : : ; ad /D

 d
2 .a1; : : : ; ad /

C

X
m�0

i1;j1;:::;im;jm

i1Cj1�i2;:::;
im�1Cjm�1�im


d�j1�����jmCm
1

�
a1; : : : ; 

j1

2
.ai1C1; : : : ; ai1Cj1

/;

ai1Cj1C1; : : : ; 
j2

2
.ai2C1; : : : ; ai2Cj2

/;

: : : ; 
jm

2
.aimC1; : : : ; aimCjm

/; : : :
�
:

This is strictly associative, and descends to a product on MC.CIN /. Moreover, by
explicitly solving the equation �2�1 D idA, one sees that this composition has inverses.
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The outcome is that N 7!MC.CIN / comes with the structure of a “formal group”.
The analogue of Theorem 1.9 in this algebraic context is [71, equation (3-1)]:

Lemma 2.10 There is a commutative diagram

(2-25)

MC.CI qFp Œq�=q
pC1/

projection
��

pth power of the formal group
// MC.CI qFp Œq�=q

pC1/

MC.CI qFp Œq�=q
2/ MC.CI qpFp Œq�=q

pC1/

inclusion

OO

HH1.AIFp/
„A;p

// HH1.AIFp/

The proof is quite straightforward. Namely, let’s iterate (2-24) to form the pth power of
a Maurer–Cartan element  . The outcome can be written as a sum over rooted planar
trees, with multiplicities. These multiplicities count “causal labelings” of trees, where
the vertices are labeled by f1; : : : ;pg and the numbers increase when going towards the
root. This limits the depth of the tree to be � p, but does not by itself limit the number
of vertices, since several vertices can carry the same label. However, in the formula
for the pth power map, each vertex carries a copy of  , and since the coefficient ring
N D qFp Œq�=q

pC1 satisfies N pC1 D 0, the contribution from trees with > p vertices
vanishes. The labels on trees with � p vertices can be thought of as consisting of two
pieces: a choice of subset of f1; : : : ;pg, and then a choice of labels which uses all
numbers in that subset, and which obeys the causality condition. From that, it follows
that the only trees with nontrivial mod p contribution are those with exactly p vertices,
and where each label is used once. If we write  D cqCO.q2/, it then follows that

(2-26)
p‚ …„ ƒ

 � � � � �  D„A;p.c/ qp
2 C y̋ qFp Œq�=q

pC1:

Remark 2.11 In characteristic zero, the deformation theory associated to the Maurer–
Cartan equation in C is unobstructed: as a concrete illustration, the truncation map

(2-27) MC.CI qQŒŒq��/!MC.CI qQŒq�=q2/D HH1.AIQ/

is onto. This is closely related to the formal group structure, since one can prove it by
formal exponentiation. The analogous statement in positive characteristic is no longer
generally true. The square of a class in HH1.AIF2/ is not necessarily zero, and that
gives an obstruction to lifting to MC.CI qF2Œq�=q

3/. As an example, take a polynomial
ring A D ZŒa� with jaj D 1; the element a becomes central over F2, hence gives a
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Hochschild cohomology class. Instead, one could look at the 2–adic lifting problem,
but that’s also obstructed: in the first step, which means lifting to MC.CI 2Z=8Z/, the
requirement is that the square of the Hochschild cohomology class must be equal to its
Bockstein (which fails in the same example).

Remark 2.12 If A is a dg algebra, the Hochschild complex has the same structure.
Let’s follow classical notation and write ^ for the product on Hochschild cochains.
The Maurer–Cartan equation is

(2-28) dC C  ^  D 0;

and two solutions are equivalent if

(2-29) dChC . C  ^ h/� .z C h^ z /D 0:

The composition law (2-24) can be written in terms of the brace operations from [72] as

(2-30) 1 � 2 D 2C

X
m�0

1f

m‚ …„ ƒ
2; : : : ; 2g:

When put in this way, the formalism can be generalized to any complex C which is an
algebra over the braces operad [53], since that exactly provides the operations used in
(2-28)–(2-30). The formula (2-30) can be viewed as an application of a construction [27]
(see [76] for a review and further context) which equips the tensor coalgebra of C
with a bialgebra structure. It is possible that the geometric results in this paper could
be similarly sharpened, replacing “formal groups” with a suitable bialgebra language
(where the comultiplication would be the standard tensor coalgebra structure, but the
multiplication would be A1); however, that would likely require the full generality
of Bottman’s witch ball spaces.

3 Parameter spaces

This section discusses the moduli spaces underlying our constructions. This is mostly
an exposition of known material; the small amount that may be new appears towards
the end of the section. Stasheff associahedra, Deligne–Mumford spaces, and Fulton–
MacPherson spaces (for the latter, originally in their homotopy equivalent guise [62] as
the little squares operad) belong to classical algebraic topology and geometry, and we
include a brief exposition mainly as a warmup exercise. The more complicated spaces
are borrowed from the theory of Lagrangian correspondences, variously combining
[49; 48; 9; 22; 5; 6].
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3a Associahedra

The Stasheff spaces (associahedra) Sd , for d � 2, are compactifications of the space of
ordered point configurations on the real line, modulo translations and positive dilations,
meaning of

(3-1)
f.s1; : : : ; sd / 2Rd W s1 < � � �< sdg

f.s1; : : : ; sd /� .�.s1/; : : : ; �.sd // for �.s/D �C�s with � 2R, � > 0g
:

The collection fSdg has the structure of a nonsymmetric operad, given by maps

(3-2)
Y
v

Skvk
T
�! Sd ;

one for each rooted planar tree T with d C 1 semi-infinite edges, and where every
vertex v has valence jvj � 3 (see Terminology 2.7; it will be our standard procedure to
just denote such maps by the underlying tree). The single-vertex tree is a trivial special
case, since it gives rise to the identity map on Sd .

Topologically, Sd is a (contractible) compact manifold with boundary, whose interior
is (3-1), and whose boundary is the union of the images of the nontrivial maps (3-2).
One can get a slightly more precise description by introducing a suitable smooth
structure, for instance by embedding the Stasheff spaces into the real locus of Deligne–
Mumford spaces. Then Sd becomes a smooth (and in fact real subanalytic) manifold
with corners, whose open strata are the images of

Q
v.Skvk n @Skvk/ under (3-2).

We orient Sd by picking, on the interior (3-1), the parametrization where .s1; s2/ are
fixed, and using the standard orientation of the remaining parameters .s3; : : : ; sd /.

3b Fulton–MacPherson spaces

The Fulton–MacPherson spaces2 FMd , for d � 2, are compactifications of planar
configuration space up to translations and positive dilations:

(3-3)
f.z1; : : : ; zd / 2Cd W zi ¤ zj for i ¤ j g

f.z1; : : : ; zd /� .�.z1/; : : : ; �.zd // for �.z/D �C�z with � 2C, � > 0g
:

The (symmetric) operad structure on fFMdg comes from permutations of the zk ,
together with maps similar to (3-2),

(3-4)
Y
v

FMkvk
T
�! FMd :

2The terminology is taken from [29]; versions of the construction arose in [3; 25; 37]
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Here, the rooted trees T come with our usual structure (see Terminology 2.7), but are
not necessarily planar. Changing the ordering of the semi-infinite edges of T amounts
to composing (3-4) with an element of Symd on the left; and changing the orderings at
the vertices amounts to composing (3-4) with an element of

Q
v Symkvk on the right.

The inclusion R�C induces maps

(3-5) Sd ! FMd ;

which are compatible with (3-2) and (3-4) (they form a morphism of nonsymmetric
operads).

As before, FMd is topologically a compact manifold with boundary. One can complexify
it by considering point configurations in C2, which yields a smooth compact complex
manifold, and then embed FMd into the real locus of that. As a consequence, it inherits
the structure of a smooth (or real subanalytic) manifold with corners, just as in the case
of the associahedra.

To orient FMd , we consider representatives in (3-3) where z1 and jz1� z2j are fixed.
Then, rotating z2 anticlockwise around z1 yields the first coordinate, and the remaining
coordinates are .z3; : : : ; zd / with their complex orientations. Equivalently, consider
the classical configuration space Confd .C/, of which (3-3) is a quotient by the action
of .�; �/ 2C �R>0. The Lie algebra of that group fits into an exact sequence

(3-6) 0!C˚R! T.z1;:::;zd / Confd .C/! T.z1;:::;zd /FMd ! 0I

our orientation of the quotient is compatible with that sequence and with the complex
orientation of Confd .C/. In particular, Symd acts orientation-preservingly.

3c Deligne–Mumford spaces

For most of this paper, we will write DMd for the Deligne–Mumford moduli space of
genus 0 curves with d C 1 marked points, bringing it in line with the notation for the
other moduli spaces. One can consider it as a compactification of

(3-7)
f.z1; : : : ; zd / 2Cd W zi ¤ zj for i ¤ j g

f.z1; : : : ; zd /� .�.z1/; : : : ; �.zd // for �.z/D �C�z with � 2C, � 2C�g
;

which is a free S1–quotient of (3-3). The operadic structure takes on exactly the same
form as for Fulton–MacPherson spaces. Indeed, the quotient map on configuration
spaces extends to a map

(3-8) FMd ! DMd ;
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which is compatible with (3-4) and its Deligne–Mumford counterpart. We adopt the
usual orientation of DMd as a complex manifold.

3d Colored multiplihedra

Ma’u, Wehrheim and Woodward [49; 48] introduced a geometric interpretation of the
classical multiplihedra, as well as certain generalizations. We will call these spaces
colored multiplihedra, and denote them by

(3-9) MWWd1;:::;dr
for r � 1; d1; : : : ; dr � 0; d D d1C � � �C dr > 0:

They are compactifications of

(3-10)
f.s1;1; : : : ; s1;d1

I : : : I sr;1; : : : ; sr;dr
/ 2Rd W sk;1 < � � �< sk;dk

for each kg

fsk;i � sk;i C� for � 2Rg
:

The intuitive meaning of (3-10) is that we have d points on the real line, which are
divided into r colors, with dk points of any given color k. Points of different colors
can have the same position, while those of the same color are distinct and lie on the real
line in increasing order. We denote the compactification by MWWd1;:::;dr

. It tracks
what happens on a large scale, meaning the relative speeds as points diverge from each
other, as well as on the small scale, where points of the same color converge. Therefore,
a point in the compactification consists of “screens” (terminology taken from [25])
which are either “large-scale”, “mid-scale”, or “small-scale”. Correspondingly, the
analogue of (3-2) is of the form

(3-11)
Y
v large

Skvk �
Y
v mid

MWWkvk1;:::;kvkr �
Y
v small

Skvk
T
�!MWWd1;:::;dr

:

Here, the tree T has d C 1 semi-infinite edges. We still single out a root, but the
leaves are now divided into subsets of orders dk , each subset being then ordered by
f1; : : : ; dkg. Each vertex has one of three scales. The mid-scale vertices have the same
kind of combinatorial data attached to them as the entire tree: their incoming edges are
divided into r subsets of different colors, whose sizes we denote by kvk1; : : : ; kvkr ,
and then ordered within each subset. The large-scale vertices and small-scale vertices
just come with an ordering of the incoming edges. The small-scale vertices are also
labeled with a color in f1; : : : ; rg. Any path going from a leaf of color k to the root
travels in nondecreasing order of scale: first through any number (which can be zero) of
small-scale vertices of color k; then through exactly one single mid-scale vertex, which
it enters by an edge with color k; and finally, through any number (which can be zero)
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.1; 1/

.2; 1/ .2; 2/

.1; 2/

degeneration
.1; 1/ .1; 2/

.2; 1/ .2; 2/

Figure 2: A degeneration in MWW2;2; see Example 3.1. The shaded regions
are “mid-scale screens”; we have drawn marked points of different colors as
lying on separate copies of the real line.

of large-scale vertices. There are compatibility conditions between the orderings, which
are somewhat tedious to write down combinatorially; see [48, Section 6] — they are
similar in principle to those for planar rooted trees, but concern each color separately.

Example 3.1 Suppose that in MWW2;2 we have a sequence of configurations where
one point (of the first color) moves to�1, and the remaining three points move towards
the same position. The outcome is shown in Figure 2.

Topologically, MWWd1;:::;dr
is again a compact manifold with boundary, having (3-10)

as its interior. Note that the codimension of the image of (3-4) is the number of small-
scale plus large-scale vertices, mid-scale vertices being irrelevant. As a consequence of
the resulting combinatorial structure of boundary strata, MWWd1;:::;dr

can’t be made
into a smooth manifold with corners in the same way as the previously considered
moduli spaces. However, it is naturally a (subanalytic) manifold with generalized
corners in the sense of [36]. To prove that, one introduces a complexification as in
[49; 8], which is a complex variety with toric singularities, and embeds MWWd1;:::;dr

into its real locus.

As for orientations, we orient (3-10) by ordering the coordinates lexicographically, and
then keeping the first one fixed to break the translation-invariance.

Example 3.2 In the spaces MWW1;:::;1, no small-scale vertices can appear. The maps
(3-11) with zero-dimensional domains correspond to trivalent planar rooted trees with
an additional ordering of the r leaves, hence there are .2r � 2/!=.r � 1/! of them.
For instance, the two-dimensional space MWW1;1;1 is a 12–gon; see Figure 3. The
boundary sides each have either one large-scale screen containing three points, or one
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Figure 3: The space MWW1;1;1 from Example 3.2.

mid-scale screen with two points (each possibility occurs six times). Figure 4 shows in
more detail a neighborhood of one of the corners of the 12–gon, and in particular, the
degenerate configuration associated to the vertex.

Example 3.3 The space MWW2;1 is an octagon; see Figure 5. There are only two
points which belong to the same color, hence only one way in which a small-scale
vertex can occur, which is the boundary side at the top of our figure. The other boundary
sides are of two kinds, as in Example 3.2.

Figure 4: A specific part of MWW1;1;1, compare Figure 3. As one ap-
proaches the vertex along the edge from the left, the leftmost of the three
points on the large-scale screen moves to �1. As one approaches it along
the other edge from the right, the rightmost point on the mid-scale screens
moves toC1. We have colored the points that we think of as moving white.
(Of course, because of translation invariance, there are other equivalent ways
of thinking about the degenerations.)
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Figure 5: The space MWW2;1 from Example 3.3.

One can associate to a real colored configuration a complex configuration, by setting

(3-12) zk;i D sk;i C k
p
�1

and then ordering the zk;i lexicographically (we use
p
�1 here to avoid notational

confusion with the index i ). This extends to a continuous map

(3-13) MWWd1;:::;dr
! FMd ; provided that d D d1C � � �C dr � 2:

In terms of (3-11), the extension uses the same formula (3-12) for the points on
each mid-scale screen, while the small-scale and large-scale screens use (3-5). To
be precise, there is one exception: mid-scale vertices with jvj D 2 have no Fulton–
MacPherson counterpart, and we simply forget about them, which is unproblematic
since MWW0;:::;0;1;0;:::;0 D point. There is a commutative diagram involving (3-13) as
well as (3-5), (3-4), (3-11):

(3-14)

Y
v small

Skvk �
Y
v mid

MWWkvk1;:::;kvkr �
Y
v large

Skvk

(3-13)
��

(3-11)
// MWWd1;:::;dr

(3-13)

��

Y
v small

Skvk �
Y

v mid;jvj>2

FMkvk �
Y
v large

Skvk

(3-5)
��Y

jvj>2

FMkvk (3-4)
// FMd
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It can be convenient to allow more flexibility in the construction of (3-13). Namely,
suppose that we have a collection of continuous functions

(3-15) �d1;:::;dr
D .�d1;:::;dr ;1;1; : : : ; �d1;:::;dr ;r;dr

/ WMWWd1;:::;dr
!Rd

with the following properties. In the interior of our space,

(3-16) �d1;:::;dr ;k;i < �d1;:::;dr ;l;j at any point of (3-10) where sk;i D sl;j for some
k < l and i; j .

Take the pullback of �d1;:::;dr
by (3-11) for some tree T . Each index .k; i/ corresponds

to a leaf of T , and the path from that leaf to the root enters a single mid-scale vertex v
through an incoming edge labeled .k; j /. Then, we require that the .k; i/ component
of the pullback be given by the .k; j /–component of �kvk1;:::;kvkr , as a function on the
product in (3-11). Instead of (3-12), we can then set

(3-17) zk;i D sk;i C �d1;:::;dr ;k;i

p
�1:

Intuitively, the imaginary parts of the zk;i can vary depending on the modular parameters,
but if two points of different colors k < l come to lie on the same vertical axis, the point
with the higher color l always passes above that of color k (in contrast, points of the same
color still collide, “bubbling off” into a small-scale screen). The consistency condition
we have imposed on (3-15) ensures that (3-17) extends to a continuous map (3-13), with
the same boundary compatibilities (3-14) as before. This is a strict generalization of
the previous construction, since the constant functions �d1;:::;dr ;k;i D k clearly satisfy
our conditions. More general choices of (3-15) can be defined inductively by extension
from the boundary of MWWd1;:::;dr

to the entire space, which is unproblematic since
(3-16) is a convex condition.

As one application of (3-17), note that we have (orientation-preserving) identifications

(3-18) MWWd1;:::;dr
DMWWd1;:::;dl�1;dlC1;:::;dr

if dl D 0:

According to the original formula (3-12), these two isomorphic spaces come with
different maps to FMd . However, when constructing the functions (3-15), one can
additionally achieve that

(3-19) �d1;:::;dr ;k;i D

�
�d1;:::;dl�1;dlC1;:::;k;i for k < l;

�d1;:::;dl�1;dlC1;:::;k�1;i for k > l
if dl D 0;

and then the maps (3-13) obtained from (3-17) become compatible with (3-18).
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3e Witch ball spaces

Our next topic is a simplified version of Bottman’s witch ball spaces [6], for didactic
reasons: we won’t use them as such, but the discussion serves as a preparation for a
related construction to be carried out afterwards. Our notation is

(3-20) Bd1;:::;.dm;dmC1/;:::;dr
; where r � 2; d D d1C� � �Cdr > 0; 1�m� r�1:

The interior is the configuration space (3-10) with an additional parameter t 2 .0; 1/.
This parameter extends to a map

(3-21) Bd1;:::;.dm;dmC1/;:::;dr
! Œ0; 1�:

Over t 2 .0; 1�, we just have a copy of .0; 1��MWWd1;:::;dr
. In particular, by looking

at t D 1 one gets boundary strata inherited from (3-11), which are images of maps

(3-22)
Y
v large

Skvk �
Y
v mid

MWWkvk1;:::;kvkr �
Y
v small

Skvk
T
�! Bd1;:::;.dm;dmC1/;:::;dr

:

At t D 0, the mth and .mC1/st color “collide”. There, the analogue of (3-22) is

(3-23)
Y
v mid

MWWkvk1;:::;kvkr�1
�

Y
v small-mid

MWWkvk1;kvk2 �
Y

v of any other scale

Skvk

T
�! Bd1;:::;.dm;dmC1/;:::;dr

:

This time six different scales are involved, which we (unimaginatively) call “large”,
“mid”, “small”, “small-large”, “small-mid” and “small-small”. Suppose that we have
a path from a leaf to the root. As usual, the leaves carry colors f1; : : : ; rg. If the color
of our leaf is ¤m;mC1, things proceed as for the MWW spaces, with the path going
through any number of small vertices, one mid-scale vertex, and then any number of
large vertices. (There is a relabeling rule: if the color is k>mC1, it enters the mid-scale
vertex through an edge with color k � 1.) If the color is m (resp. mC 1), the path first
goes through small-small vertices, and then through exactly one small-mid vertex, which
it enters through an edge colored by 1 (resp. 2). It then proceeds through an arbitrary
number of small-large vertices, then through a mid-scale vertex, which it always enters
through the mth color, following by large-scale vertices. To compute the codimension of
(3-23) one counts the number of “other scale” screens. Finally, our space has boundary
strata which lie over the entire interval Œ0; 1�, and those are images of maps

(3-24)
Y
v large

Skvk �

Œ0;1�Y
v mid

Bkvk1;:::;.kvkm;kvkmC1/;:::;kvkr �

Y
v small

Skvk

T
�! Bd1;:::;.dm;dmC1/;:::;dr

;
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mid mid mid

mid mid

mid mid mid

mid mid mid mid mid mid

mid mid

small-mid small-mid small-mid small-mid

small-mid

large

large large

large

large

large

large

large

t D 1

t 2 .0; 1/

t D 0

t D 0

t D 0

t 2 .0; 1/

Figure 6: One of the boundary faces of B1;.1;1/; see Example 3.4.

where the superscript means that instead of a product, we have a fiber product over
(3-21); compare [7, equation (1)]. We refer to [6; 5; 7] for a detailed discussion; the
results obtained there can easily be carried over to our version.

Example 3.4 The space B1;.1;1/ is half (sliced through horizontally) of [7, Figure 1b].
Figure 6 shows one of its boundary faces of type (3-24), namely

S2 �B1;.0;0/ �Œ0;1�B0;.1;1/ Š B.1;1/:

The spaces (3-20) are topological manifolds with boundary, and smooth manifolds with
generalized corners. For Bottman’s witch ball spaces, this is proved in [8], and the
same arguments apply to the (comparatively simpler) situation here.

As was the case for the MWW spaces, one can map our spaces to Fulton–MacPherson
spaces

(3-25) Bd1;:::;.dm;dmC1/;:::;dr
! FMd provided that d � 2;
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compatibly with (3-22), (3-23) and (3-24). Suppose for simplicity that the maps (3-13)
have been defined using (3-12). The corresponding formula for Bd1;:::;.dm;dmC1/;:::;dr

is then

(3-26) zk;i D

�
sk;i C k

p
�1 if k �m;

sk;i C .k � 1C t/
p
�1 if k >m:

As before, the extension of this map to the entire space forgets any screens (necessarily
of mid-scale or small-mid-scale) which carry configurations consisting only of one
point.

3f Strip-shrinking spaces

We will now introduce a modification of the idea of witch ball spaces, designed to
avoid the kind of fiber products which appeared in (3-24). This is inspired by [9], and
correspondingly called strip-shrinking spaces. We will denote them by

(3-27) SSd1;:::;.dm;dmC1/;:::;dr
; with r � 2; d D d1C� � �Cdr � 0; 1�m� r �1:

(Note that this time, unlike the situation in (3-20), it is possible to have all dk D 0.) The
SS spaces compactify colored configuration space as in (3-10), but without dividing
by common translation. The important point is an asymmetry between the two ways
in which points in the configuration can go to infinity. In the s!�1 direction, we
dictate a fairly standard behavior, where MWW spaces with r colors appear. In the
s!C1 limit, we think of the mth and .mC1/st colored points as lying on lines that
become asymptotically close to each other, at a rate of 1=s. One way to make this more
concrete is to consider the analogue of (3-26), which associates to a real configuration
a complex one. Choose a function  WR! .�1; 0� with asymptotics

(3-28)  .s/�

�
0 for s� 0;

�1C 1=s for s� 0:

Then set (see Figure 7)

(3-29) zk;i D

�
sk;i C k

p
�1 for k �m;

sk;i D sk;i C .kC .sk;i//
p
�1 for k >m:

To relate the spaces to Fulton–MacPherson spaces, we can add two auxiliary marked
points, say

(3-30) z˙ D˙1C .r C 1/
p
�1;
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Figure 7: A point in SS.1;1/;2, thought of as a configuration in C as in (3-29).

which stabilize the situation and otherwise stay out of the way. This gives continuous
maps

(3-31) SSd1;:::;.dm;dmC1/;:::;dr
! FMdC2:

For a more precise picture, consider the analogue of (3-2),

(3-32)
Y

v<v� mid

MWWkvk1;:::;kvkr �SSkv�k1;:::;kv�kr �
Y

v>v� mid

MWWkvk1;:::;kvkr�1

�

Y
v small-mid

MWWkvk1;kvk2 �
Y

v of any other scale

Skvk

T
�! SSd1;:::;dr

:

Here, we have the same six scales as in (3-23), but with different roles. There is a
distinguished mid-scale vertex, denoted by v�, to which corresponds an SS space. All
other mid-scale vertices carry MWW spaces, in two different versions: if v < v� (with
respect to the ordering of mid-scale vertices determined by the ordering of the incoming
edges at large-scale vertices) that space has r colors, but for v > v� there are only
r �1 colors. The part of the tree lying on top of v � v� vertices consists of small-scale
vertices as in (3-11), and the same is true for v > v� if the color is ¤ m. For that
remaining color, we have a structure of small-large, small-mid and small-small vertices,
parallel to (3-23).

Example 3.5 Take the two-dimensional space SS.1;1/, denoting points in its interior
by .s1I s2/ for brevity. Consider sequences

(3-33) .s
.k/
1
I s
.k/
2
/; k D 1; 2; : : : ; where s

.k/
1
< s

.k/
2

and s
.k/
1
; s
.k/
2
!C1:

The possible limit configurations, shown in Figure 8, correspond to the following
behaviors:

(i) .s
.k/
2
� s

.k/
1
/=s

.k/
1
!C1.

(ii) .s
.k/
2
� s

.k/
1
/=s

.k/
1

converges to a nonzero constant.

(iii) s
.k/
2
� s

.k/
1
!C1, but .s.k/

2
� s

.k/
1
/=s

.k/
1
! 0.
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(iv) s
.k/
2
� s

.k/
1

converges to a nonzero constant.

(v) s
.k/
2
�s

.k/
1
!0, but s

.k/
1
.s
.k/
2
�s

.k/
1
/!C1. Since the two points get increasingly

close to each other, the additional mid-scale screen carries only one marked
point. On the other hand, rescaling by s

.k/
1

separates the two points in the limit.
This leads to the appearance of a small-large screen.

(vi) s
.k/
2
�s

.k/
1
! 0, but s

.k/
1
.s
.k/
2
�s

.k/
1
/ converges to a constant (which can be zero).

In that case, we get a small-mid scale screen with two marked points on it.

The whole space is a 14–gon (Figure 9), with three adjacent sides corresponding to (ii),
(iv) and (vi) above, and corners corresponding to (i), (iii) and (iv).

The structure of SS as a compact topological space is relatively straightforward to
obtain, following the model of [6]. It turns out that it is also a topological manifold
with boundary, and in fact a differentiable manifold with generalized corners. The
last-mentioned property deserves some discussion, since the required construction of
coordinate charts, which borrows ideas from [8], is instructive in its own right.

A boundary point in SSd1;:::;.dm;dmC1/;:::;dr
is given by a tree T and associated screens

carrying point configurations, as in (3-32). The gluing process which associates to this
point a chart in the interior involves (small) gluing parameters �e > 0 for the finite edges
of T , subject to constraints. Our main interest lies in those constraints, but let’s first
recall how to think of such gluing processes. This is made slightly more complicated
in our case by the fact that the screens have different natures: the vertex v� carries a
configuration of real numbers, without dividing by any group action; the mid-scale
and small-mid scale vertices carry configurations which are given up to translation;
and at all other scales we have configurations up to translation and rescaling. To deal
with that, it is convenient to stabilize the configuration associated to the distinguished
mid-scale vertex v� by adding two points s˙ D˙1, thought of as belonging to their
own new color, just as in (3-30). To glue the screens together, we first choose specific
representatives for those configurations, which are defined only up to ambiguities.
Then, given any finite edge e of the tree, we take the screen associated to its source
vertex, rescale the points in that configuration by �e , and then insert that into the target
vertex by adding the real number that corresponds to the point where our configuration
is being glued in. (In abbreviated notation, gluing s with scale � into a screen at point r

results in r C�s.) After we have done that for all edges, we translate and rescale the
resulting configuration to bring the points s˙ back to their original position (and then
forget about those points).
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(i) (ii)

(iii) (iv)

(v) (vi)

small-mid small-mid small-mid small-mid

mid� mid mid mid� mid mid

large large

large

small-mid small-mid small-mid small-mid

mid� mid mid mid� mid

large

large large

small-mid small-mid small-mid

small-large

mid� mid

mid� mid

large

large

Figure 8: Some limits in SS.1;1/, as discussed in Example 3.5. The � marks
the distinguished mid-scale screen.
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(i)

(ii)
(iii)

(iv)
(v)(vi)

Figure 9: The space SS.1;1/ is a 14–gon; see Example 3.5. For space reasons,
we have only drawn half of it. However, the drawing is arranged so that
exchanging the first two colors corresponds to reflection along the vertical
axis, and the missing half can be inferred from that.

It may strike the reader that there are too many gluing parameters with respect to the
codimension of the boundary strata; and indeed, the parameters are not independent,
but subject to constraints. To formulate those, we can think in terms of the scales
that the screens acquire after gluing. For any vertex v, let �v be the product of the
�˙1

e along a path going from v� to v, with the sign C1 if the path follows the edge
orientation, and �1 otherwise. We also need the following terminology:

(3-34) Given a small-mid scale vertex v�, we say that a large scale vertex vC is
a turning point for v� if there is a path from v� to v� which follows the
orientation until it hits vC, and then goes against the orientation to v�.
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For any v� there is a unique turning point vC. With that at hand, the relations are:

If v is a mid-scale vertex, �v D 1 (this is automatic for v D v�).(3-35)

If vC is a turning point for v� (so v� is small-mid scale), �vC�v� D 1.(3-36)

It is easy to see that for a codimension-one stratum, all the �e therefore end up being
the same.

Example 3.6 Consider gluing from the horizontal boundary edge at the top of Figure 9.
Let’s say that the large screen carries the configuration .r1; r2/; the mid-scale screen
on the left carries a configuration .s1I s2/; the remaining screen, corresponding to
v�, is empty, but we add a third color and its points s˙ as explained above. The
constraint (3-35) says that the gluing parameters for both edges must be equal, so we
effectively have a single parameter �. In a first step, gluing with that parameter yields
the configuration

(3-37) .r1C�s1I r1C�s2I r2��; r2C�/:

After that, we apply translation and rescaling which maps r2˙� back to˙1, that being
s 7! ��1.s� r2/; and (forgetting those points) we end up with

(3-38) .��1.r1� r2/C s1I�
�1.r1� r2/C s2/ 2 SS.1;1/ n @SS.1;1/:

This means that the gluing takes place in a way which preserves the size of the mid-scale
screens, even though that has been obscured a bit by writing it as rescaling by � and
then its inverse.

Example 3.7 Consider the situation of the horizontal boundary edge at the bottom of
Figure 9, which is also Figure 8(vi). Let’s say that �1 and �2 are the gluing parameters
for the edges leading to the large-scale vertices, and �3 that for the remaining edge. Then,
(3-36) says that �1�

�1
2
D1, and (3-36) that �vC�v�D�1.�1�

�1
2
��1

3
/D�2

1
��1

2
��1

3
D1.

As mentioned before, the end result is again that all gluing parameters are equal.
Suppose that the large-scale screen carries .r1; r2/, the mid-scale screen carries r , and
the small-mid scale screen carries .s1I s2/. The analogue of (3-37) is

(3-39) .r2C�
2s1I r2C�

2s2I r1��; r1C�/;

and that of (3-38) is obtained by applying s 7! ��1.s� r1/, which gives

(3-40) .��1.r2� r1/C�s1I�
�1.r2� r1/C�s2/:

In the end, the two points end up at position O.��1/, and at distance O.�/ from each
other, which matches the description in Example 3.5(vi).
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small-mid small-mid

4 5

small-large6

mid mid� mid
1 2

large 3
7

large

Figure 10: A generalized corner point; see Example 3.8.

Allowing some of the parameters to become zero yields a partial gluing process, which
extends the chart obtained by gluing to include boundary points. In order for the
relations (3-35) and (3-36) to make sense in this context, one multiplies them all
by ��1

e , so as to get equations between monomials with nonnegative coefficients. One
can think of this completely as a limit of the previous gluing process.

Example 3.8 Take the example from Figure 10. After preliminary simplifications,
the relations between gluing parameters are �1 D �2, �7 D �2�3, �4 D �5 and, more
importantly,

(3-41) �2�3 D �5�6:

Hence, this point is not a classical corner in its moduli space. After gluing, the position
of the two rightmost points is of order �2�3, and the distance between them is of
order ��1

6
. In the limit as all gluing parameters to go zero, �2�3�

�1
6
D �5 ! 0 by

(3-41), as in the similar but simpler situation of Example 3.5(v).

It is convenient to pass from the multiplicative language of gluing parameters to the
additive language of monoids. We define an abelian group GT as follows. There is one
generator ge for each edge. For a vertex v, we define gv to be the signed sum of ge

over a path from v� to v, with signs according to orientations. The additive relations
corresponding to the ones above are

gv D 0 for a mid-scale vertex v,(3-42)

gvC Cgv� D 0 if vC is a turning point for v�.(3-43)
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Let GT;�0�GT be the submonoid generated by the ge . The gluing parameters, includ-
ing the degenerate cases where some are set to zero, are elements of Hom.G�0

T
;R�0/,

where R�0 is the multiplicative monoid.

Lemma 3.9 GT is a free abelian group , whose rank is the number of vertices of T

which are neither mid-scale nor small-mid scale (in other words , the “other scales” in
(3-32)).

Proof Let ET be the set of finite edges, and RT be the set of relations. Our definition
amounts to a short exact sequence

(3-44) 0! ZRT
relations
����! ZET !GT ! 0:

Any relation has a distinguished finite edge associated to it: for (3-42), the edge
exiting v, and for (3-43), the edge exiting v�. Those edges are pairwise different.
Given an element of ZET , the coefficients for the distinguished edges give a splitting
of the first map in (3-44), which implies freeness of the quotient.

Lemma 3.10 GT;�0 is saturated , meaning that if g 2 GT satisfies mg 2 GT;�0 for
some m� 2, then g 2GT;�0.

Proof For this, it is simpler to work exclusively in terms of the gv, and use (3-42)
to drop the mid-scale vertices. Hence, let VT be the set of all vertices which are not
mid-scale. We start with ZVT, and define GT by quotienting out by (3-43). An element

(3-45)
X
v2VT

mvgv 2 ZVT

is nonnegative if satisfies the following conditions. If v lies above v� in our tree
(meaning that the path from v to the root goes through v�), then mv � 0. If v� lies
above v, then mv � 0. Finally, the mv increase as one goes towards the root. As
before, GT;�0 is the image of the nonnegative elements in the quotient GT . Here is an
equivalent form of the desired statement:

Claim Given some element (3-45), suppose that there are rational numbers cv� 2 Œ0; 1�,
one for each small-mid-scale vertex v�, such that

(3-46)
X
v2VT

mvgvC
X

v�small-mid

cv�.gv� CgvC/

satisfies the nonnegativity condition. Then the same can be achieved with cv� 2 f0; 1g.
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To prove this, we take (3-46) and then gradually modify the cv� . Take a turning
point vC. There can in principle be several corresponding small-mid scale vertices
v�;1; : : : ; v�;j . The coefficient of vC in (3-46) is then

(3-47) mvC C cvC ; where cvC D

jX
iD1

cv�;i :

If this is an integer, we do nothing. Otherwise, we increase (some of) the noninteger cv�;i
until the resulting expression (3-47) becomes equal to the next larger integer. Let’s
apply this to all turning points. The outcome is that now we have an expression
(3-46) which still satisfies the nonnegativity condition, and where the coefficients of all
turning points are integers. In a second pass, we change the coefficients of small-mid
scale vertices again, but without affecting (3-47), to make all of them integers. The
situation is, simplifying the notation, that we have noninteger c1; : : : ; ck 2 Œ0; 1� such
that c1C � � �C ck is an integer; and we then need to change them to be either 0 or 1,
while preserving the sum, something that’s clearly possible. Having done that, we have
justified our claim.

Lemma 3.11 GT;�0 is sharp , meaning it contains no nontrivial pair of elements˙g.

Proof We know that Hom.GT;�0;R
�0/ recovers the space of gluing parameters,

including degenerate ones. In particular, there is a distinguished point where all gluing
parameters are set to zero, which is the zero map. Composing that with a homomorphism
Z!GT;�0 would mean that the zero map Z!R�0 is a group homomorphism, which
is nonsense.

Lemmas 3.9–3.11 say that G�0
T

is a toric monoid (terminology as in [36]). For the
space of gluing parameters, this is precisely what defines a generalized corner.

4 The formal group structure

This section carries out versions of our main constructions in an idealized context, where
the technicalities of symplectic topology have been replaced by a general operadic frame-
work (this degree of abstraction comes with its own occasional complications). The
primary objects under consideration will be chain complexes which are algebras over
the Fulton–MacPherson operad. Abstractly speaking, in view of [53, Theorem 1.1], this

Geometry & Topology, Volume 27 (2023)



2974 Paul Seidel

i C 1 � � � i C j

i C 1 � � � i C j

1 � � � i iCjC1 � � � d

1 � � � i iCjC1 � � � d

Figure 11: The boundary faces of Sd appearing in (4-1), as trees and as strata
of the compactified configuration space.

situation is not more general than the purely algebraic one mentioned in Remark 2.12.
However, that viewpoint lacks the geometric explicitness which is useful for applications
to symplectic topology.

4a Associahedra

Consider the singular chain complexes of the associahedra, C�.Sd /. These inherit
the structure of a nonsymmetric operad, using the maps induced by (3-2) as well as
the shuffle (Eilenberg–Mac Lane or Eilenberg–Zilber) product. One can inductively
construct “fundamental chains” ŒSd � 2 Cd�2.Sd / such that ŒS2�D Œpoint� and

(4-1) @ŒSd �D
X
ij

.�1/.d�i�j/jCiTij ;�.ŒSd�jC1�� ŒSj �/:

Here, the sum is over pairs .i; j / corresponding to trees Tij with two vertices, of
valences j C 1 and d � j C 2, respectively; and where the unique finite edge is the
.iC1/st incoming edge of the first vertex (0� i <d�jC1); see Figure 11. We take the
shuffle product (here just denoted by �) of the fundamental chains ŒSd�jC1� and ŒSj �,
and then map that to C�.Sd / by the chain-level map induced by (3-2), denoted here
by Tij ;�. The sign takes into account the co-orientations of the boundary faces. In view
of (4-1), ŒSd � has a preferred lift to a cycle for the pair .Sd ; @Sd /, whose homology
class is then a fundamental class in the standard sense, compatible with the orientations
described in Section 4a.

Our standing convention is that chain complexes are cohomologically graded, hence
we now switch to the grading-reversed version C��.Sd /. By an algebra over the
chain-level Stasheff operad, we mean a chain complex of free abelian groups A, which
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comes with maps

(4-2) C��.Sd /˝

d‚ …„ ƒ
A˝ � � �˝A!A;

compatible with the composition maps induced by (3-2). Let’s evaluate these maps at
ŒSd �˝ a1˝ � � �˝ ad , multiply with a sign .�1/�, where

(4-3) � D .d � 1/ja1jC .d � 2/ja2jC � � �C jad�1j;

and denote the outcome by �d
A.a1; : : : ; ad /. These maps, together with �1

A D �dA,
make A into an A1–ring. The associativity equations (2-1) are a direct consequence
of (4-1). Homological unitality is not part of this framework, hence has to be imposed
as a separate property.

Remark 4.1 It is maybe appropriate to recall briefly how the signs work out. If we
denote the operation (4-2) by od

A, the starting point is its chain map property, which
together with (4-1) yields

(4-4)
X
ij

.�1/.dC1/jCi.jC1/od
A.Tij ;�.ŒSd�jC1�� ŒSj �/˝ a1˝ � � �˝ ad /

C .terms involving dA/D 0:

The operad property, not forgetting the Koszul signs, transforms this into

(4-5)
X
ij

.�1/.dC1/jCiCjzi o
d�jC1
A

�
ŒSd�jC1�˝a1˝� � �

˝o
j
A.ŒSj �˝aiC1˝� � �˝aiCj /˝� � �˝ad

�
C.terms involving dA/D 0I

or, in terms of the A1–operations,

(4-6) .�1/�
X
ij

.�1/zi�
d�jC1
A .a1; : : : ; �

j
A.aiC1; : : : ; aiCj /; : : : ; ad /

C .terms involving dA/D 0;

with � as in (4-3). The sum in (4-6) is over 2� j � d � 1, but only because we have
omitted the differential terms, which are

(4-7)
X

i

.�1/dCziCioA.ŒSd �˝ a1˝ � � �˝ dAaiC1˝ � � �˝ ad /

� dA.o
d
A.ŒSd �˝ a1˝ � � � ad //

D .�1/�
X

i

.�1/zi�d
A.a1; : : : ; �

1
A.aiC1/; : : : ; ad /

C .�1/��1
A.�

d
A.a1; : : : ; ad //:
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iC1 iCj iC1 pC1 iCj iC1 iCj

ŒSj �
pC1 fp�i;1;iCj�p�1 pC 1 Œ zSj �

fp�jC1;1;q
fi;1;q�i�jCpC1 fp;1;q�jC1

p � i C j i � p < i C j p < i

Figure 12: Graphical representation of the terms in (4-8).

4b Dependence on the fundamental chains

Suppose we are given two sequences of fundamental chains ŒSd � and Œ zSd �, each of
which separately satisfies (4-1). To relate them, we want to make further choices of
fundamental chains, which have a mixed boundary property:

(4-8) fp;1;q 2Cd�2.Sd /; where p; q�0 and dDpC1Cq;

fp;1;0D ŒSpC1�;

f0;1;qD Œ zSqC1�;

@fp;1;qDX
ij

.�1/.d�i�j/jCiTij ;�

8<:
fp�jC1;1;q�ŒSj � if p� iCj ,
fi;1;pCqC1�i�j�fp�i;1;iCj�p�1 if i�p< iCj ,
fp;1;q�jC1�Œ zSj � if p< i .

Graphically, one can think of (4-8) as follows. Let’s mark the .pC1/st leaf of our planar
trees. Vertices that lie on the unique path connecting that leaf to the root correspond to
factors carrying an appropriate f chain, while the remaining ones always carry ŒS � or
Œ zS � chains, depending on whether they lie to the left or right of the path; see Figure 12.

Let �A and z�A be the A1–ring structures associated to ŒSd � and Œ zSd �. In the same
way, the action of fp;1;q gives rise to operations

(4-9) �
p;1;q
A WA˝pCqC1

!AŒ1�p� q�; where pC 1C q � 2;

�
p;1;0
A D �

pC1
A ; �

0;1;q
A D z�

qC1
A ;

which, as before, we extend by setting

�
0;1;0
A D�dA:
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The relations inherited from (4-8) are

(4-10)
X

p�iCj

.�1/zi�
p�jC1;1;q
A

�
a1; : : : ; �

j
A.aiC1; : : : ; aiCj /; : : : ; apI apC1I

apC2; : : : ; apCqC1

�
C

X
i�p<iCj

.�1/zi�
i;1;pCqC1�i�j
A

�
a1; : : : I

�
p�i;1;iCj�p�1
A .aiC1; : : : ; apI apC1I apC2; : : : ; aiCj /I

: : : ; apCqC1

�
C

X
p<i

.�1/zi�
p;1;q�jC1
A

�
a1; : : : ; apI apC1I

apC2; : : : ; z�
j
A.aiC1; : : : ; aiCj /; : : : ; apCqC1

�
D0:

Remark 4.2 The operations (4-9) equip the shifted space AŒ1� with the structure of an
A1–bimodule, where � acts on the left and z� on the right; see eg [64, equation (2.5)];
the shift is there to match sign conventions.

In a second step, we find fundamental chains

(4-11) gp;q 2 Cd�1.Œ0; 1��Sd /; where p; q > 0 and d D pCq,

@gp;q D f1g�fp�1;1;q�f0g�fp;1;q�1

C

X
ij

.�1/.d�i�j/jCi

�Tij ;�

8<:
�gp�jC1;q�ŒSj � if p � iCj ;

.�1/d�jfi;1;q�iCp�j�gp�i;iCj�p if i � p < iCj ;

�gp;q�jC1�Œ zSj � if p < i:

When compared to (4-1) and (4-8), the spaces involved have acquired an additional
Œ0; 1� factor; hence, we should really write idŒ0;1� �Tij ;�. The graphical representation
involves drawing a dividing line between the first p and last q leaves of our trees. In
the first two summands in (4-11), we remove that dividing line and instead mark the
leaves that are on either side of it, leading to the appearance of two f terms. For the
remaining summands, vertices to the left (resp. right) of the dividing line carry ŒS �
(resp. zŒS �) chains; see Figure 13. If the dividing line ends at the top vertex, which is
the middle case in both (4-11) and Figure 13, the finite edge of the tree becomes the
marked edge of the bottom vertex, which explains how that vertex carries an f term.

Let’s take the image of (4-11) under projection to Sd . Its action under the operad
structure, with additional signs inserted as in (4-3), gives operations

(4-12)  
p;q
A WA˝pCq

!AŒ1�p� q�; where p; q > 0;
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ŒSj �

gp�jC1;q

p � i C j

gp�i;i�pCj

fi;1;q�iCp�j

Œ zSj �

gp;q�jC1

i � p < i C j p < i

Figure 13: Graphical representation of the
P

ij in (4-11).

which we complement by setting  1;0
A D�idA and  0;1

A D idA. These satisfy

(4-13)
X

p�iCj

.�1/zi 
p�jC1;q
A

�
a1; : : : ; �

j
A.aiC1; : : : ; aiCj /; : : : ; apI

apC1; : : : ; apCq

�
�

X
i<p<iCj

�
i;1;pCq�iCj
A

�
a1; : : : ; ai I

 
p�i;iCj�p
A .aiC1; : : : ; apI apC1; : : : ; aiCj /I aiCjC1; : : : ; apCq

�
C

X
p�i

.�1/zi 
p;q�jC1
A

�
a1; : : : ; apI

apC1; : : : ; z�
j
A.aiC1; : : : ; aiCj /; : : : ; apCq

�
D 0:

Note that (4-13) contains terms which correspond to the boundary faces f0g �Sd and
f1g �Sd :

(4-14) ��
p�1;1;q
A .a1; : : : ; ap�1I 

1;0
A .ap/I apC1; : : : ; apCq/

��
p;1;q�1
A .a1; : : : ; apI 

0;1
A .apC1/I apC2; : : : ; apCq/

D �
p�1;1;q
A .a1; : : : ; ap�1I apI apC1; : : : ; apCq/

��
p;1;q�1
A .a1; : : : ; apI apC1I apC2; : : : ; apCq/:

Example 4.3 The simplest instance of (4-13), bearing in mind the conventions for
�0;1;0, �1;1;0 and �0;1;1, is

(4-15)  
1;1
A .�1

A.a1/I a2/C .�1/ka1k 
1;1
A .a1I�

1
A.a2//

D �1
A. 

1;1
A .a1I a2//C�

2
A.a1; a2/� z�

2
A.a1; a2/:

This says that .�1/ja1j 1;1.a1; a2/ is a chain homotopy relating the two versions of
multiplication.

Remark 4.4 Following up on our last observation, one can give the following inter-
pretation of (4-13). Recall from Remark 4.2 that the operations � equip A (here, we
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undo the shift for simplicity) with an A1–bimodule structure. By construction, this is
isomorphic to .A; �A/ as a left module over itself, and to .A; z�A/ as a right module.
Correspondingly, one has two bimodule maps

(4-16) .A; �A/˝Z .A; z�A/
�A
//

z�A

// .A; �A/;

given by

(4-17)

�
p�1;1;q�1
A .a1; : : : I ap˝ apC1I : : : ; apCq/

D˙�
p;1;q�1
A .a1; : : : I apC1I : : : ; apCq/;

z�
p�1;1;q�1
A .a1; : : : I ap˝ apC1I : : : ; apCq/

D˙�
p�1;1;q
A .a1; : : : I apI : : : ; apCq/:

In these terms, (4-13) says that  provides a homotopy between � and z�.

It is worth noting that homological unitality, when it holds, can be used to simplify
the picture. Namely, suppose that �A and z�A are both homologically unital, with
a priori different units eA and zeA. Then a bimodule map as in (4-16) is determined up
to homotopy by the image of ŒeA˝zeA� in H 0.A/. In our situation, the two classes are

(4-18) Œ�2
A.eA; zeA/�D ŒzeA� and Œz�2

A.eA; zeA/�D ŒeA�;

so the existence of a homotopy  just amounts to saying that the two units are, after all,
cohomologous. Similarly, the different choices of  form an affine space over H�1.A/.

Let’s define an A1–ring structure on

(4-19) HDA˝ IDAu˚Azu˚Av;

where I is the noncommutative interval (2-3), as follows. The differential �1
H is as

in (2-4). The nonzero higher A1–operations, for d � 2 and p; q > 0, are

(4-20)

�d
H.a1˝u; : : : ; ad ˝u/D �d

A.a1; : : : ; ad /˝u;

�
pCq
H .a1˝u; : : : ; ap˝u; apC1˝ zu; : : : ; apCq˝ zu/

D .�1/zpCq 
p;q
A .a1; : : : ; apI apC1; : : : ; apCq/˝ v;

�d
H.a1˝ zu; : : : ; ad ˝ zu/D z�

d
A.a1; : : : ; ad /˝ zu;

�
pCqC1
H .a1˝u; : : : ; ap˝u; apC1˝ v; apC2˝ zu; : : : ; apCqC1˝ zu/

D .�1/zpCqC1�zpC1�p;1;q.a1; : : : ; apI apC1I apC2; : : : ; apCqC1/˝ v:
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(This generalizes the previous (2-4), which corresponds to the diagonal A1–bimodule
structure and vanishing  .) The A1–associativity relations follow directly from (4-10)
and (4-13).

Remark 4.5 As a check on the signs, consider the associativity relation for

.a1˝u; : : : ; ap˝u; apC1˝ zu; : : : ; apCq˝ zu/;

and more specifically the v–component of that relation. This turns out to be exactly
(4-13) multiplied by .�1/zpCqC1. The crucial terms, compare (4-14), are

(4-21) .�1/zp�1�
pCq
H .a1˝u; : : : ; v–component of �1

H.ap˝u/; apC1˝ zu; : : : /

D .�1/zpC1�
pCq
H .a1˝u; : : : ; ap˝ v; apC1˝ zu; : : : /

D .�1/zpCqC1�
p�1;1;q
A .a1; : : : ; ap�1I apI apC1; : : : ; apCq/˝ v

and

(4-22) .�1/zp�
pCq
H .a1˝u; : : : ; ap˝u; v–component of �1

H.apC1˝ zu/; : : : /

D .�1/zpC1�
pCq
H .a1˝u; : : : ; ap˝u; apC1˝ v; : : : /

D .�1/zpCq�
p;1;q�1
A .a1; : : : ; apI apC1I apC2; : : : ; apCq/˝ v:

By construction, the projections (2-5) are A1–homomorphisms from�H to�A and z�A,
respectively, and also chain homotopy equivalences. By taking a homotopy inverse
(Lemma 2.1) of one projection, and composing with the other projection, we get an
A1–homomorphism

(4-23) .A; �A/! .A; z�A/;

whose linear part is homotopic to the identity (one can achieve that it is exactly
the identity). For a completely satisfactory statement, one would need to prove that
(4-23) is itself independent of the choice of (4-9) and (4-12) up to homotopy of A1–
homomorphisms; and also, that the composition of two maps (4-23) is again a map of
the same type, up to homotopy. This would use higher analogues of I. For the sake of
brevity, we will not carry it out here.

4c Fulton–MacPherson spaces and colored multiplihedra

One defines the structure of an algebra over C��.FMd / on a chain complex C by
maps analogous to (4-2), with the additional stipulation of Symd –invariance. On the
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cohomology level, H�.C/ becomes a Gerstenhaber algebra. The chain-level structure
is a classical topic in algebraic topology (E2–algebras; see eg [51; 14; 53; 68]). For our
purpose, only part of that structure is relevant — that part, maybe surprisingly, does not
include the fundamental chains ŒFMd � 2C2d�3.FMd / and the resulting L1–structure;
in fact, the chains relevant for us have dimension � d .

First of all, having chosen fundamental chains ŒSd � for the Stasheff associahedra, one can
map them to Cd�2.FMd / via (3-5), and their action turns C into an A1–ring. As before,
one has to require homological unitality separately. Next, choose fundamental chains
ŒMWWd1;:::;dr

� 2 Cd�1.MWWd1;:::;dr
/ for the colored multiplihedra, which satisfy

the analogue of (4-1). It is worthwhile writing this down:

(4-24) @ŒMWWd1;:::;dr
�DX

ijk

.�1/.dk�i�jCdkC1C���Cdr /jC.d1C���Cdk�1CiC1/

�Tijk;�.ŒMWWd1;:::;dk�jC1;:::;dr
�� ŒSj �/

C

X
partitions

.�1/}Td1;1;:::;dj ;r ;�.ŒSj ��ŒMWWd1;1;:::;d1;r
��� � ��ŒMWWdj ;1;:::;dj ;r �/:

The second sum is over all j � 2 and partitions

d1 D d1;1C � � �C dj ;1; : : : ; dr D d1;r C � � �C dj ;r

such that di;1C � � �C di;r > 0 for each i D 1; : : : ; j . The sign there is given by

(4-25) }D

X
i1<i2I k1>k2

di1;k1
di2;k2

C .j � 1/.d1;1C � � �C d1;r � 1/

C .j � 2/.d2;1C � � �C d2;r � 1/C � � � :

Example 4.6 Examples of the degenerate configurations corresponding to the terms
in (4-24) are shown in Figure 14. (The trees Tijk and Td1;1;:::;dj ;r can be inferred from
looking at those, so we will not define them explicitly.) Figures 3 and 5 illustrate the
orientation issues: in both of them, the actual moduli space has the standard orientation
of the plane, and the arrows show the orientations of the boundary strata arising from
(3-11).

Choose maps (3-13), take the images of the fundamental chains under those maps, and
let them act on C. The outcomes are operations

(4-26) ˇ
d1;:::;dr

C W C˝d
! CŒ1� d �:
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.k; iC1/ � � � .k; iCj /

.r; 1/ � � � .r; dr /

� � � .k; i/ .k; iCjC1/ � � �

.1; 1/ � � � .1; d1/

d1;r
:::

d1;1

d2;r
:::

d2;1

dj ;r
:::

dj ;1

� � �

1 2 � � � j

Figure 14: Top: a summand in the first sum in (4-24). Bottom: a summand
in the second sum in (4-24).

In their definition, we insert signs as in (4-3); for

ˇ
d1;:::;dr

C .c1;1; : : : ; c1;d1
I : : : I cr;1; : : : ; cr;dr

/

this means .�1/� with

(4-27) � D .d1C � � �C dr � 1/jc1;1jC .d1C � � �C dr � 2/jc1;2jC � � �

C .d1C � � �C dr�1/jc1;d1
jC .d1C � � �C dr�1� 1/jc2;1jC � � � :

For MWW0;:::;0;1;0;:::;0 D point, where there is no corresponding Fulton–MacPherson
space, we artificially set

(4-28) ˇ
0;:::;0;1;0;:::;0
C D idC:

As a consequence of (4-24),

(4-29)
X
ijk

.�1/zk;iˇ
d1;:::;dk�jC1;:::;dr

C

�
c1;1; : : : ; c1;d1

I : : : I

ck;1; : : : ; �
j
C.ck;iC1; : : : ; ck;iCj /; : : : ; ck;dk

I : : : I cr;1; : : : ; cr;dr

�
D

X
partitions

.�1/~�
j
C

�
ˇ

d1;1;:::;d1;r

C .c1;1; : : : ; c1;d1;1
I : : : I cr;1; : : : ; cr;d1;r

/; : : : ;

ˇ
dj ;1;:::;dj ;r
C .c1;d1�dj ;1C1; : : : ; c1;d1

I : : : I cdr�dj ;rC1; : : : ; cr;dr
/
�
:

Here, the sums are over indexing sets as in (4-24), except that we now additionally
allow the differential �1

C D dC. Recall that by construction, the map (3-13) forgets
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factors of MWW0;:::;0;1;0;:::;0 D point. Algebraically, this corresponds to the places
where (4-28) appears in (4-29). The z symbol is the sum of reduced degrees of all c

which precede the �; and ~ yields the Koszul sign that corresponds to permuting
the ck;i from their original order into the order in which they appear on the right-hand
side of (4-29), but using reduced degrees kck;ik.

Remark 4.7 The operations (4-26) constitute an A1–multihomomorphism with
r entries C � � � � � C ! C (the single-object version of an A1–multifunctor; see
[4, Definition 8.8], or closer to our context, the discussion of the r D 2 case in
[9, Section 4.5]). What we will study later on amounts to the action of those A1–
multihomomorphisms on Maurer–Cartan elements. One can argue that the homomor-
phisms themselves should be the center of attention;3 in the interest of keeping the
discussion concrete, we have chosen not to take that route.

Example 4.8 In view of (4-28) and (4-29), ˇ2
C satisfies

(4-30) �1
C.ˇ

2
C.c1; c2//�ˇ

2
C.�

1
C.c1/; c2/� .�1/kc1kˇ2

C.c1; �
1
C.c2//

D ˇ1
C.�

2
C.c1; c2//��

2
C.ˇ

1
C.c1/; ˇ

1
C.c2//D 0;

which means that .�1/jc1jˇ2
C.c1; c2/ is a chain map of degree �1. Geometrically, the

reason is that the image of the fundamental chain under MWW2! FM2 is a one-cycle.
However, this cycle is supported at a single point of FM2 Š S1, hence is necessarily
nullhomologous. This implies that ˇ2

C is chain homotopic to zero.

Example 4.9 The first substantially nontrivial case is ˇ1;1
C , which satisfies

(4-31) �1
Cˇ

1;1
C .c1I c2/�ˇ

1;1
C .�1

C.c1/I c2/� .�1/kc1kˇ
1;1
C .c1I�

1
C.c2//

D��2
C.c1; c2/� .�1/kc1k�kc2k�2

C.c2; c1/:

In more conventional terminology, .�1/jc1jˇ
1;1
C .c1I c2/ is the ı operation which shows

homotopy commutativity of the product on H�.C/.

Definition 4.10 Fix an adic ring N (Definition 1.1). Given 1; : : : ; r 2 C1 y̋ N ,
define

(4-32) …r
C.1; : : : ; r /D

X
d1;:::;dr�0;

d1C���Cdr>0

ˇ
d1;:::;dr

C .

d1‚ …„ ƒ
1; : : : ; 1I : : : I

dr‚ …„ ƒ
r ; : : : ; r /:

3Meaning that Proposition 4.20 should be understood as a consequence of a composition property of the
A1–multihomomorphisms up to homotopy; and similarly that Corollary 4.25 should be true because for
r D 1, one gets an A1–endomorphism of C which is homotopy equivalent to the identity.
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Suppose that we have .1; : : : ; r / as well as, for some k, another element zk .4 Then,
define a linear endomorphism of C y̋ N by a generalization of (2-11),

(4-33) P
r;k
C .�/D

X
d1;:::;dr

X
pCqC1Ddr

ˇ
d1;:::;dk ;:::;dr

C

� d1‚ …„ ƒ
1; : : : ; 1I : : : I

p‚ …„ ƒ
k ; : : : ; k ; �;

zk ; : : : ; zk„ ƒ‚ …
q

I : : : I r ; : : : ; r„ ƒ‚ …
dr

�
:

The definitions, taking (4-28) into account, have the following immediate consequences:

…r
C.1; : : : ; r /D 1C � � �C r mod N 2;(4-34)

…r
C.1; : : : ; k C �; : : : ; r /D…C.x/CP

r;k
C .�/C .order � 2 terms in �/;(4-35)

� 2 C y̋ N m
D) P

r;k
C .�/D � mod N mC1;(4-36)

…r
C.1; : : : ; r /�…

r
C.1; : : : ; zk ; : : : ; r /D P

r;k
C .k � zk/:(4-37)

In (4-35), the endomorphism P
r;k
C is with respect to zk D k . The two subsequent

equations, in contrast, use a general zk .

Lemma 4.11 If 1; : : : ; r are Maurer–Cartan elements (1-1), then so is

 D…r
C.1; : : : ; r /:

Moreover , the equivalence class of  depends only on those of 1; : : : ; r .

Proof From (4-29) one gets

(4-38)
X

d

�d
C .; : : : ;  /D

X
k

P
r;k
C

�X
j

�
j
C.k ; : : : ; k/

�
:

Here, the P operations are defined using zk D k . This shows that the Maurer–Cartan
property is preserved. Similarly, suppose that for some 1 � k � r , we have another
Maurer–Cartan solution zk . Then, for the associated  and z D…r

C.1; : : : ; zk ; : : : ; r /,

(4-39)
X
p;q

�
pCqC1
C .

p‚ …„ ƒ
; : : : ;  ;P

r;k
C .x/;

q‚ …„ ƒ
z ; : : : ; z /

D P
r;k
C

�X
p;q

�
pCqC1
C .

p‚ …„ ƒ
k ; : : : ; k ;x;

q‚ …„ ƒ
zk ; : : : ; zk/

�
:

In particular, if we have an element hk which provides an equivalence between k

and zk , then hD P
r;k
C .hk/ provides an equivalence between  and z , by (4-37).

4The basic case is k D zk , but for some applications, the freedom to choose a general zk is important.
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We want to mention a few elementary statements which, taken together, stand in a
converse relation of sorts to Lemma 4.11.

Lemma 4.12 Suppose that we have 1; : : : ; k�1; kC1; : : : ; r 2 C
1 y̋ N . Then , for

each  2 C1 y̋ N , there is exactly one k such that …r
C.1; : : : ; r /D  .

Proof By (4-35) and (4-36), if � 2 C1 y̋N m, then …r
C.1; : : : ; k C �; : : : ; r / D

…r
C.1; : : : ; r /C � mod N mC1. This allows one to solve for k order by order, and

to show uniqueness of the solution in the same way.

Lemma 4.13 Suppose that we have 1; : : : ; r 2 C
1 y̋ N . If all but k are Maurer–

Cartan elements , and  D …r
C.1; : : : ; r / is Maurer–Cartan as well , then k must

also be Maurer–Cartan.

Proof From (4-38) and the assumptions, one sees that P
r;k
C

�P
j �

j
C.k ; : : : ; k/

�
D 0.

On the other hand, by (4-36), P
r;k
C is clearly invertible.

Lemma 4.14 Given Maurer–Cartan elements 1; : : : ; k�1; kC1; : : : ; r and  , there
is a unique Maurer–Cartan element k such that …r

C.1; : : : ; r /D  .

Proof This is simply a combination of Lemmas 4.12 and 4.13.

Lemma 4.15 Suppose that we have Maurer–Cartan elements 1; : : : ; r and zk for
some 1� k � r . If  D…r

C.1; : : : ; r / and z D…r
C.1 : : : ; k�1; zk ; kC1; : : : ; r /

are equivalent , then so are k and zk .

Proof This is a consequence of (4-39) and the fact that P
r;k
C is an automorphism.

Take the case r D 1 of (4-32). Then (4-29) says that .ˇ1
C D id; ˇ2

C; : : : / form an
A1–homomorphism from C to itself (which is not surprising, since the underlying
spaces MWWd are the multiplihedra). The corresponding operation (4-32) is just the
action of the A1–homomorphism on Maurer–Cartan elements. One can show that
this A1–homomorphism is always homotopic to the identity, and hence …1

C. / is
equivalent to  . (The first piece of the statement about the A1–homomorphism is
Example 4.8, but we won’t explain the rest here; as for the action on Maurer–Cartan
elements, we will give an indirect argument in Corollary 4.25.) Therefore, that case
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is essentially trivial. With that in mind, the first nontrivial instance of (4-32) is r D 2,
which we will denote by

(4-40) 1 � 2 D…
2
C.1; 2/:

It will eventually turn out that the r > 2 cases can be reduced to an .r�1/–fold
application of this product (Corollary 4.24), and hence are in a sense redundant.

4d Well-definedness

Proving that (4-32) is well-defined involves comparing different choices of the underly-
ing A1–structures �C, as well as of the operations ˇC. Since the details are lengthy,
and the outcome overall not surprising, we will provide only a sketch of the argument.

One can generalize the construction of the operations (4-26) by allowing the use of
different versions of the A1–structure (in fact, a different version for each color of input,
and another one for the output). Concretely, suppose that we have .r C 1/ choices of
fundamental chains for the Stasheff associahedra, with their associated A1–structures
�C;0; : : : ; �C;r . By choosing fundamental chains on the colored multiplihedra which
satisfy an appropriately modified version of (4-24), we get generalized operations
(4-26), which then lead to a map

(4-41) …r
C WMC.C; �C;1IN /� � � � �MC.C; �C;r IN /!MC.C; �C;0IN /:

For instance, let’s look at r D 1. Then, what we get from the modified operations
(4-26) is an A1–homomorphism between two choices of A1–structures on C, whose
linear part is the identity. That gives an alternative proof of the uniqueness result from
Section 4b. (In spite of that, it made sense for us to include the original proof; the
reason will become clear shortly.)

In (4-41), we want to understand the effect of simultaneously changing �C;0, one of
the other �C;kC1, with k � 0, and correspondingly also (4-41). Namely, suppose that
we have alternative versions z�C;0 and z�C;kC1. Alongside (4-41), we also have another
operation which uses the alternative A1–structures, as well as different choices of
functions (3-17) and fundamental chains on the MWW spaces. Let’s denote that version
by z…r

C. The construction from Section 4b yields A1–structures �H;0 and �H;kC1,
where HD C˝I. One can then construct a new operation …k;1;l

H , where kC1C l D r ,
which fits into the following diagram, with vertical arrows induced by (2-5):
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(4-42)

MC.C; �C;1IN /� � � � �MC.C; �C;kC1IN /

� � � � �MC.C; �C;r IN /

…r
C
// MC.C; �C;0IN /

MC.C; �C;1IN /� � � � �MC.H; �H;kC1IN /

� � � � �MC.C; �C;r IN /

Š

OO

Š

��

…
k;1;l
H

// MC.H; �H;0IN /

Š

OO

Š

��MC.C; �C;1IN /� � � � �MC.C; z�C;kC1IN /

� � � � �MC.C; �C;r IN /

z…r
C
// MC.C; z�C;0IN /

Rather than giving the general construction of (4-42), we will only look at the r D 1

case. This is not terribly interesting in itself, but contains the main complications of
the general situation, while allowing us to couch the discussion in more familiar terms.
The setup for r D 1 is that we are given the following data:

� Four A1–structures on C, namely �C;k and z�C;k for k D 0; 1.

� Two A1–structures on H, namely �H;k for k D 0; 1, which are constructed
with the aim of interpolating between �C;k and z�C;k . Their definition, following
(4-20), involves operations �C;k and  C;k as in (4-9) and (4-12).

� Finally, we have two versions of (4-26), which are A1–homomorphisms

ˇC W .C; �C;1/! .C; �C;0/;

ž
C W .C; z�C;1/! .C; z�C;0/:

The aim is to define an A1–homomorphism ˇH, again having the identity as its linear
term, which fits into a commutative diagram

(4-43)

.C; �C;1/
ˇC

// .C; z�C;0/

.H; �H;1/

OO

��

ˇH
// .H; �H;0/

OO

��

.C; z�C;1/
ž
C

// .C; z�C;0/
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The corresponding special case of (4-42) is then defined through the action of ˇH on
Maurer–Cartan elements. The definition of ˇH involves two kinds of operations:

(4-44) �
p;1;q
C W C˝pC1Cq

! CŒ�p� q� for pC q � 0;

with �p;1;0
C D ˇ

pC1
C , �0;1;q

C D ž
qC1
C and, in particular, �0;1;0

C D idC, and

(4-45) �
p;q
C W C˝pCq

! CŒ�p� q� 1� for p; q > 0:

These enter into a formula parallel to equation (4-20): the nonzero terms of our A1–
homomorphism are, for p; q > 0,

(4-46)

ˇd
H.c1˝u; : : : ; cd ˝u/D ˇd

C .c1; : : : ; cd /˝u;

ˇ
pCq
H .c1˝u; : : : ; cp˝u; cpC1˝ zu; : : : ; cpCq˝ zu/

D .�1/zpCq�
p;q
C .c1; : : : ; cpI cpC1; : : : ; cpCq/˝ v;

ˇd
H.c1˝ zu; : : : ; cd ˝ zu/D ž

d
C .c1; : : : ; cd /˝ zu;

ˇ
pCqC1
H .c1˝u; : : : ; cp˝u; cpC1˝ v; cpC2˝ zu; : : : ; cpCqC1˝ zu/

D .�1/zpCqC1�zpC1�
p;1;q
C .c1; : : : ; cpI cpC1I cpC2; : : : ; cpCqC1/˝ v:

The fact that (4-46) satisfies the A1–homomorphism relations reduces to certain
properties of (4-44) and (4-45). Those for (4-44) are

(4-47)
X

p�iCj

.�1/zi�
p�jC1;1;q
C

�
c1; : : : ; ci ; �

j
C;1
.ciC1; : : : ; ciCj /; : : : I cpC1I

: : : ; cpCqC1

�
C

X
i�p�iCj

.�1/zi�
i;1;pCq�iCj
C

�
c1; : : : ; ci I

�
p�i;1;iCj�p�1
C;1

.ciC1; : : : I cpC1I : : : ; ciCj /I

ciCjC1; : : : ; cpCqC1

�
C

X
p<i

.�1/zi�
p;1;q�jC1
C .c1; : : : I cpC1I

: : : ; z�
j
C;1
.ciC1; : : : ; ciCj /; : : : ; cpCqC1/

D

X
partitions

�
s;1;t
C;0

�
ˇ

d1

C .c1; : : : ; cd1
/; : : : ; ˇ

ds

C .cd1C���Cds�1C1; : : : ; cd1C���Cds
/I

�
p�d1�����ds ;1;d1C���CdsC1�p�1

C .cd1C���CdsC1; : : : I cpC1I

: : : ; cd1C���CdsC1
/I

: : : ; ž
dsC1Ct

C .cpCqC2�dsCtC1
; : : : ; cpCqC1/

�
:

On the right-hand side, the sum is over all .s; t/ and partitions d1C � � � C dsC1Ct D

pC 1C q such that d1C � � � C ds < pC 1 and d1C � � � C dsC1 � pC 1. In spite of
the apparently larger number of terms which appear, this is formally parallel to the
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A1–homomorphism equation, and in fact the nontrivial operations (4-44) are obtained
from a choice of fundamental chains on MWWpCqC1, as well as functions (3-17). The
trick is that the boundary behavior of these data is partially determined by the choices
underlying ˇC and žC, just as in our previous discussion of (4-8). Introducing the
shorthand notation †d l

k
WD dkCdkC1C� � �Cdl for k < l , the relations for (4-45) are

(4-48) �

X
p�iCj

.�1/zi �
p�jC1;q
C

�
c1; : : : ; ci ; �

j
C;1
.ciC1; : : : ; ciCj /; : : : I

cpC1; : : : ; cpCq

�
C

X
i<p<iCj

�
i;1;pCq�i�j
C

�
c1; : : : ; ci I 

p�i;iCj�p
C;1

.ciC1; : : : I cpC1; : : : ; ciCj /I

ciCjC1; : : : ; cpCq

�
�

X
p�i

.�1/zi �
p;q�jC1
C .c1; : : : ; cpI : : : ; z�

j
C;1
.ciC1; : : : ; ciCj /; : : : ; cpCq/

D

X
partitions

.�1/
z†ds

1�
s;1;t
C;0

�
ˇ

d1

C .c1; : : : ; cd1
/; : : : ; ˇ

ds

C .c†ds�1
1
C1; : : : ; c†ds

1
/I

�
p�†ds

1
;†d

sC1
1
�p

C .c†ds
1
C1; : : : ; cpI cpC1; : : : ; c†d

sC1
1

/I

: : : ; ž
dsC1Ct

C .cpCqC2�dsCtC1
; : : : ; cpCq/

�
C

X
partitions

 
s;t
C;0

�
ˇ

d1

C .c1; : : : ; cd1
/; : : : ; ˇ

ds

C .c†ds�1
1
C1; : : : ; c†ds

1
/I

: : : ; ž
dsCt

C .cpCqC2�dsCtC1
; : : : ; cpCq/

�
:

Combinatorially, the difference between the two terms on the right-hand side of (4-48)
is where the dividing semicolon between the first p and last q inputs comes to lie: in the
first case, we require that †d s

1
WD d1C � � �C ds < p < d1C � � �C dsC1 DW†d sC1

1
, so

that semicolon is inside one of the innermost operations, which becomes a � operation;
in the second case, we require that †d s

1
WD d1 C � � � C ds D p, so that semicolon

separates the two kinds of inputs for the  operation. Topologically one realizes (4-45)
by choosing suitable fundamental chains on Œ0; 1��MWWpCq , and analogues of (3-17)
on that product space. The second sum in (4-48) contains terms which correspond to
the boundary faces f0; 1g �MWWpCq , just as in (4-14):

(4-49) �
p�1;1;q
C .c1; : : : ; cp�1I 

1;0
C;1
.cp/I cpC1; : : : ; cpCqC1/

C �
p;1;q�1
C .c1; : : : ; cpI 

0;1
C;1
.cp/I cpC1; : : : ; cpCqC1/

D��
p�1;1;q
C .c1; : : : ; cp�1I cpI cpC1; : : : ; cpCq/

C �
p;1;q�1
C .c1; : : : ; cpI cpC1I cpC2; : : : ; cpCq/:
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Example 4.16 The first new operation �1;1
C satisfies

(4-50) �1
C.�

1;1
C .c1I c2//C �

1;1
C .�1

C.c1/I c2/C .�1/kc1k�
1;1
C .c1I�

1
C.c2//

D ˇ2
C.c1; c2/� ž

2
C.c1; c2/C 

1;1
C;1
.c1I c2/� 

1;1
C;0
.c1I c2/;

bearing in mind that all versions of the A1–structure on C share the same differential
�d D �1

C D �
0;1;0
C;0

D �
0;1;0
C;1

. This is exactly what’s required for the first nontrivial
A1–functor equation on H: one has

(4-51) �1
H;0.ˇ

2
H.c1˝u; c2˝ zu//C�

2
H;0.ˇ

1
H.c1˝u/; ˇ1

H.c2˝ zu//

D .�1/kc1kCkc2k
�
�1
C.�

1;1
C .c1I c2//C 

1;1
C;0
.c1I c2/

�
˝ v;

while

(4-52) ˇ2
H.�

1
H;1.c1˝u/; c2˝zu/C.�1/kc1kˇ2

H.c1˝u; �1
H;1.c2˝zu//

Cˇ1
H.�

2
H;1.c1˝u; c2˝zu//

D .�1/kc1kCkc2k
�
��

1;1
C .�1

C.c1/I c2/Cˇ
2
C.c1; c2/�.�1/kc1k�

1;1
C .c1I�

1
C.c2//

� ž
2
C.c1; c2/C 

1;1
C;1
.c1I c2/

�
˝v:

To conclude our discussion, let’s return to the general context (arbitrary r ), and note
that then, repeated application of (4-42) allows one to change all the choices involved.
We record the outcome:

Corollary 4.17 Suppose that we have two different choices of fundamental chains on
the associahedra and colored multiplihedra , as well as of functions (3-17), leading to
two versions of the A1–structure and operations (4-32). These fit into a commutative
diagram

(4-53)

MC.C; �CIN /r

Š

��

…r
C
// MC.C; �CIN /

Š

��

MC.C; z�CIN /r
z…r

C
// MC.C; z�CIN /

Here , we have related our A1–structures using functors as in (4-23), and the vertical
arrows are the induced maps on Maurer–Cartan elements.

4e The pth power operation

When defining (4-26), suppose now that we choose our functions (3-15) so that they
satisfy (3-19). For the fundamental chains, we may also assume that they are chosen
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to be compatible with the identifications (3-18). In algebraic terms, the outcome is a
cancellation property, which allows one to forget colors that do not carry any marked
points:

(4-54) ˇ
d1;:::;dk�1;0;dkC1;:::;dr

C D ˇ
d1;:::;dk�1;dkC1;:::;dr

C :

Assuming that such a choice has been adopted, we have:

Lemma 4.18 Take a prime number p, and the coefficient ring N D qFp ŒŒq��=q
pC1.

Then , for  D qcCO.q2/, one has

(4-55) …
p
C .; : : : ;  /D ˇ

1;:::;1
C .cI : : : I c/qp:

Proof This is elementary, along the same lines as in Lemma 2.10. Applying (4-54)
allows one to rewrite (4-32) as

(4-56) …r
C.; : : : ;  /D

X
1�k�r

� r

k

� X
d1;:::;dk>0

ˇ
d1;:::;dk

C .

d1‚ …„ ƒ
; : : : ;  I : : : I

dk‚ …„ ƒ
; : : : ;  /;

where the combinatorial factor reflects the possibilities of inserting 0 superscripts into
each ˇ operation. Suppose that our coefficient ring is N D qFp ŒŒq��, and set r D p.
Then (4-56) becomes

(4-57) …
p
C .; : : : ;  /D

X
d1;:::;dp>0

ˇ
d1;:::;dk

C .

d1‚ …„ ƒ
; : : : ;  I : : : I

dp‚ …„ ƒ
; : : : ;  /:

Truncating mod qpC1 leaves

ˇ
1;:::;1
C . I : : : I  /D ˇ

1;:::;1
C .cI : : : I c/qp

as the only nonzero term.

4f Deligne–Mumford spaces and commutativity

Let’s consider the question of commutativity of the product (4-40). Concretely, this
hypothetical commutativity would mean that there is an h 2 C0 y̋ N such that

(4-58)
X
p;q

�
pCqC1
C .

p‚ …„ ƒ
1 � 2; : : : ; 1 � 2; h;

q‚ …„ ƒ
2 � 1; : : : ; 2 � 1/D 1 � 2� 2 � 1:

Let’s suppose, to simplify the exposition, that the coefficient ring is N D qZŒŒq��.
Moreover, we choose to define the operations (4-26) as in Section 4e, so that (4-54)
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holds. That entails some convenient (but not essential, of course) cancellations in our
formulae. Given two Maurer–Cartan elements

(4-59) k D qck CO.q2/ for k D 1; 2;

with leading terms ck which are cocycles in C1, we have by definition,

(4-60) 1 � 2� 2 � 1 D q2
�
ˇ

1;1
C .c1I c2/�ˇ

1;1
C .c2I c1/

�
CO.q3/:

In writing down this formula, we have exploited the fact that, due to our choices,
ˇ

2;0
C .ck ; ck/D ˇ

0;2
C .ck ; ck/. It follows from Example 4.9 that

(4-61) .c1; c2/ 2 C 7! .�1/kc1kˇ
1;1
C .c1I c2/� .�1/kc1k jc2jˇ

1;1
C .c2I c1/

is a chain map of degree �1. On cohomology, it defines the Lie bracket

Œ � ; � � WH�.C/˝H�.C/!H��1.C/;

which is part of the Gerstenhaber algebra structure. Geometrically, ˇ1;1 arises from
a one-dimensional chain in FM2 whose boundary points are exchanged by the Z=2–
action. The sum of this chain and its image under the nontrivial element of Z=2 is a
cycle, which generates H1.FM2/ŠH1.S

1/DZ. If we similarly write hDqbCO.q2/,
then (4-58) taken modulo q3 says that b is a cocycle, and that

(4-62) �2
C.c1Cc2; b/C�

2
C.b; c1Cc2/C.coboundaries/Dˇ1;1

C .c1I c2/�ˇ
1;1
C .c2I c1/:

By (4-31), the left-hand side of (4-62) is nullhomologous. Hence, for (4-62) to be
satisfied, the Lie bracket of Œc1� and Œc2� must be zero, which means that commutativity
does not hold in this level of generality.

We now switch from Fulton–MacPherson to Deligne–Mumford spaces. One could
define the structure of an algebra over C��.DMd / on a chain complex C in the same
way as before. However, that notion is not well-behaved. For instance, the action
of DM2 D point would yield a strictly commutative product on C. The underlying
problem is that the Symd –action on DMd is not free — from an algebraic viewpoint,
C��.DMd / is not a projective ZŒSymd �–module. There is a simple workaround, by
“freeing up” the action. Namely, let .Ed / be an E1–operad, which means that the
spaces Ed are contractible and freely acted on by Symd . Let’s adopt a concrete choice,
namely, the analogue of Fulton–MacPherson space for point configurations in R1.
Then

(4-63) DMd D DMd �Ed
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is again an operad, which is homotopy equivalent to DMd but carries a free action
of Symd . The maps (3-8) admit lifts

(4-64) FMd !DMd

which are compatible with the operad structure, including the action of Symd . As an
existence statement, this is a consequence of the properties of Ed ; but for our specific
choice, such lifts can be defined explicitly by taking (3-8) together with the natural
inclusion FMd !Ed .

Assume from now on that C carries the structure of an operad over C��.DMd /, and
hence inherits one over the Fulton–MacPherson operad by (4-64). Take the one-cycle
in FM2 underlying (4-60) and map it to (the contractible space) DM2. Choosing a
bounding cochain (which is itself unique up to coboundaries) yields a nullhomotopy

(4-65) �
1;1
C W C

˝2
! CŒ�2�;

�1
C.�

1;1
C .c1I c2//C �

1;1
C .�1

C.c1/I c2/C .�1/kc1k�
1;1
C .c1I�

1
C.c2//

D ˇ
1;1
C .c1I c2/� .�1/kc1kkc2kˇ

1;1
C .c2I c1/:

As a consequence, if we set

(4-66) hD q2�
1;1
C .c1I c2/ 2 C

0 y̋ q2ZŒŒq��;

then (4-58) is satisfied modulo q3 (on the left-hand side, only the p D q D 0 term
matters at this point). Hence, if we reduce coefficients to qZŒŒq��=q3, then (4-40) is
commutative. Nothing we have said so far is in any way surprising: the vanishing of
the Lie bracket in the case where the operations come from Deligne–Mumford space is
a well-known fact — if one uses the framed little disc operad as an intermediate object,
it follows from vanishing of the BV operator.

Let’s push our investigation a little further. As special cases of (4-29), we have

(4-67) �1
C.ˇ

2;1
C .c1; c2I c3//�ˇ

2;1
C .�1

C.c1/; c2I c3/

� .�1/kc1kˇ
2;1
C .c1; �

1
C.c2/I c3/� .�1/kc1kCkc2kˇ

2;1
C .c1; c2I�

1
C.c3//

D ˇ
1;1
C .�2

C.c1; c2/I c3/� .�1/kc2kkc3k�2
C.ˇ

1;1
C .c1I c3/; c2/

��2
C.c1; ˇ

1;1
C .c2I c3//��

2
C.ˇ

2
C.c1; c2/; c3/

� .�1/kc3k.kc1kCkc2k/�2
C.c3; ˇ

2
C.c1; c2//��

3
C.c1; c2; c3/

� .�1/kc2kkc3k�3
C.c1; c3; c2/� .�1/.kc1kCkc2k/kc3k�3

C.c3; c1; c2/;
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and respectively,

(4-68) �1
C.ˇ

1;2
C .c3I c1; c2//�ˇ

1;2
C .�1

C.c3/I c1; c2/

� .�1/kc3kˇ
1;2
C .c3I�

1
C.c1/; c2/� .�1/kc3kCkc1kˇ

1;2
C .c3I c1; �

1
C.c2//

D .�1/kc3kˇ
1;1
C .c3I�

2
C.c1; c2//��

2
C.ˇ

1;1
C .c3I c1/; c2/

� .�1/kc1kkc3k�2
C.c1; ˇ

1;1
C .c3I c2//��

2
C.c3; ˇ

2
C.c1; c2//

� .�1/kc3k.kc1kCkc2k/�2
C.ˇ

2
C.c1; c2/; c3/��

3
C.c3; c1; c2/

� .�1/kc3kkc1k�3
C.c1; c3; c2/� .�1/kc3k.kc1kCkc2k/�3

C.c1; c2; c3/:

Therefore, if we consider the map K
2;1
C W C

˝3! CŒ�2� given by

(4-69) K
2;1
C .c1; c2I c3/

Dˇ
2;1
C .c1; c2I c3/�.�1/kc3k.kc1kCkc2k/ˇ

1;2
C .c3I c1; c2/��

1;1
C .�2

C.c1; c2/I c3/

� .�1/kc2kkc3k�2
C.�

1;1
C .c1I c3/; c2/� .�1/kc1k�2

C.c1; �
1;1
C .c2I c3//;

then that satisfies

(4-70) �1
C.K

2;1
C .c1; c2I c3//�K

2;1
C .�1

C.c1/; c2I c3/

� .�1/kc1kK
2;1
C .c1; �

1
C.c2/I c3/� .�1/kc1kCkc2kK

2;1
C .c1; c2I�

1
C.c3//D 0;

which means that .�1/jc2jK
2;1
C .c1; c2I c3/ is a chain map of degree �2. The same

observation applies to

(4-71) K
1;2
C .c1I c2; c3/

D ˇ
1;2
C .c1I c2; c3/� .�1/kc1k.kc2kCkc3kˇ

2;1
C .c2; c3I c1/

� .�1/kc1k�
1;1
C .c1I�

2
C.c2; c3//��

2
C.�

1;1
C .c1I c2/; c3/

� .�1/kc1kkc2k�2
C.c2; �

1;1
C .c1I c3//:

We now return to the original situation (4-59). Suppose that the cocycles K
2;1
C .c1; c1I c2/

and K
1;2
C .c1I c2; c2/ are trivial in H�.C/, and that we have chosen bounding cochains

for them,

(4-72) K
2;1
C .c1; c1I c2/D �

1
C.b

2;1/ and K
1;2
C .c1I c2; c2/D �

1
C.b

1;2/:

Then (4-58) is satisfied modulo q4 by the refinement of (4-66) given by

(4-73) hD �
1;1
C .1I 2/C q3.b2;1

C b1;2/ 2 C0 y̋ qZŒŒq��=q4:
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It remains to look at the geometry underlying (4-69) and (4-71). Both cases are parallel,
so let’s focus on K

2;1
C . For ˇ2;1

C .c1; c2I c3/, take the relevant map and project it to actual
Deligne–Mumford space for simplicity, which means considering the composition

(4-74) MWW2;1! FM3!DM3! DM3 Š S2:

Looking at Figure 5, we see that three boundary sides of the octagon MWW2;1,
corresponding to the �3 terms in (4-69), are mapped to paths in DM3 which are images
of the canonical map S3 ! DM3 and two of its permuted versions (those which
preserve the ordering between the first and second point in the configuration). The
remaining sides are collapsed to “special points”, meaning the images of the maps
DM2 � DM2 ! DM3. Altogether, we get a relative cycle, whose homology class
in H2.DM3; .DM3/R/ D H2.S

2;S1/ is independent of all choices involved in the
construction. From the assumption (3-16), one sees easily that this cycle corresponds to
one of the two discs in S2 bounding S1. Correspondingly, for ˇ1;2

C .c3I c1; c2/, we get
a relative cycle corresponding to the other disc. The outcome of this discussion is that
K

2;1
C is constructed from a cycle which represents a generator of H2.DM3/DH2.S

2/;
roughly speaking, the difference between the two discs bounding the same S1. Since
the action of Sym3 on H2.DM3/ is trivial, the induced map

(4-75) .Œc1�; Œc2�; Œc3�/ 7! Œ.�1/jc2jK
2;1
C .c1; c2I c3/� WH

�.C/˝3
!H��2.C/

is graded symmetric. In particular, ŒK2;1
C .c1; c1I c2/� 2H 1.C/ must be 2–torsion. If

we can rule out such torsion, then the class must necessarily vanish, and similarly for
ŒK

1;2
C .c1I c2; c2/�. We can carry over the argument to other coefficients:

Proposition 4.19 The product � on MC.CIN / is commutative if N 3 D 0. It is also
commutative if N 4 D 0 and , additionally, H�.C/ is a free abelian group.

Proof The first part is as in (4-66). For the second part, the obstruction is now
ŒK

2;1
C .c1; c1I c2/� 2 H��2.CIN 3/, and similarly for K

1;2
C . From our assumption, it

follows that H�.CIG/DH�.C/˝G for any abelian group G. Hence, the symmetry
argument that ensures vanishing of (4-75) carries over to arbitrary coefficients.

4g Strip-shrinking spaces and associativity

Let’s assume that C is homologically unital; this assumption is used in the context of
geometric stabilization arguments, which add extra marked points. Our aim is to show:
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Proposition 4.20 For any r � 2 and any 1�m� r � 1, …r
C.1; : : : ; r / is equivalent

to …r�1
C .1; : : : ; m � mC1; : : : ; r /D…

r�1
C .; : : : ;…2

C.m; mC1/; : : : ; r /.

Before getting into the proof, let’s draw some immediate consequences.

Corollary 4.21 The product � is associative.

This is because, by the r D 3 case of Proposition 4.20, …3
C.1; 2; 3/ is equivalent to

both …2
C.1 � 2; 3/D .1 � 2/ � 3 and …2

C.1; 2 � 3/D 1 � .2 � 3/.

Corollary 4.22 The neutral element is  D 0, meaning that  � 0 and 0 �  are both
equivalent to  .

The definition says that

(4-76)  � 0D
X

d

ˇ
d;0
C .; : : : ;  /;

so the statement is not immediately obvious. However, it is obvious that 0 � 0 D 0.
By Lemmas 4.14 and 4.15,  7!  � 0 is a bijective map from MC.CIN / to itself. By
associativity, that bijective map is idempotent, and therefore the identity. (There is a
more direct geometric argument which shows that (4-76) is equivalent to  , along the
lines of Example 4.8, but we have chosen to avoid it.)

Corollary 4.23 .MC.CIN /; � / is a group.

This is a combination of the previous two corollaries and Lemma 4.14.

Corollary 4.24 For any r � 3, …r
C.1; : : : ; r / is equivalent to 1 � � � � � r .

This follows by induction: if …r�1
C .1; : : : ; r�1/ is equivalent to 1 � � � � � r�1, then

…r
C.1; : : : ; r / is equivalent to …r�1

C .1 � 2; : : : ; r /, hence to .1 � 2/ � � � � � r .

Corollary 4.25 …1
C. / is always equivalent to  .

Proposition 4.20, with r D 2, says that…2
C.1; 2/D 1�2 is equivalent to…1

C.1�2/,
which implies the desired statement by specializing to 1D0 (again, this is a workaround
which avoids a direct geometric argument).
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Proof of Proposition 4.20 This uses the strip-shrinking moduli spaces from Section 3f,
with their maps (3-31). The codimension-one boundary faces are images of maps (3-22)
defined on the following spaces. First, in parallel with the first term of (4-24), we have

(4-77) SSd1;:::;dk�jC1;:::;dr
�Sj ;

where j and k can be arbitrary (in particular, the latter can be m or mC 1, something
that’s not entirely reflected in our notation). The analogue of the second term in (4-24)
is less obvious:

(4-78) Sj �

k�1Y
iD1

r colors‚ …„ ƒ
MWWdi;1;:::;di;r

�SSdk;1;:::;.dk;m;dk;mC1/;:::;dk;r

�

jY
iDkC1

�
MWWdi;1;:::;di;m�1;ai ;di;mC2;:::;di;r„ ƒ‚ …

r �1 colors

�

aiY
lD1

MWWdi;l;1;di;l;2„ ƒ‚ …
2 colors

�
:

The last kind of MWW factor corresponds to the small-mid vertices in the terminology
of (3-22). Such boundary faces are parametrized by “double partitions”. One first
chooses j � 2 and partitions

d1 D d1;1C � � �C dj ;1; : : : ; dr D d1;r C � � �C dj ;r :

In addition, there is a distinguished k 2 f1; : : : ; j g for which .dk;1; : : : ; dk;r / can be
.0; : : : ; 0/. Finally, for each i >k, one chooses a further ai and corresponding partitions
di;m D di;1;1C � � �C di;ai ;1 and di;mC1 D di;1;2C � � �C di;ai ;2.

We fix fundamental chains on the SS spaces, compatible with the boundary structure in
the usual sense. We then insert those chains into our operadic structure through (3-31),
with the additional convention that at the stabilizing marked points (3-30), we will
always apply a fixed homology unit eC. Denote the resulting operations by

(4-79) ˛
d1;:::;.dm;dmC1/;:::;dr

C W C˝d
! CŒ�d �; where d D d1C � � �C dr � 0:

The simplest example is SS0;:::;0 D point, which is mapped to FM2 D S1 by taking
the configuration (3-30). This coincides with the map S2! FM2 which is part of our
A1–structure, and therefore

(4-80) ˛
0;:::;.0;0/;:::;0
C D �2

C.eC; eC/D eCC (coboundary):

Generally, the operations (4-79) satisfy the equation obtained from setting the sum of
boundary contributions (4-77), (4-78) equal to zero:
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(4-81)
X
ijk

˙˛
d1;:::;dk�jC1;:::;dr

C

�
c1;1; : : : ; c1;d1

I : : : I

ck;1; : : : ; �
j
C.ck;iC1; : : : ; ck;iCj /; : : : ; ck;dk

I : : : I

cr;1; : : : ; cr;dr

�
D

X
double

partitions

˙�
j
C

�
ˇ

d1;1;:::;d1;r

C .c1;1; : : : ; c1;d1;1
I : : : I cr;1; : : : ; cr;d1;r

/; : : : ;

˛
dk;1;:::;dk;r

C .c1;d1;1C���Cdk�1;1C1; : : : ; c1;d1;1C���Cdk;1
I : : : /; : : : ;

ˇ
dj ;1;:::;dj ;m�1;aj ;dj ;mC2;:::;dj ;r
C

�
c1;d1�dj ;1C1; : : : ; c1;d1

I

ˇ
dj ;1;1;dj ;1;2
C .cm;dm�dj ;mC1; : : : I cmC1;dmC1�dj ;mC1C1; : : : /;

: : : ; ˇ
dj ;aj ;1;dj ;aj ;2

C .: : : ; cm;dm
I : : : ; cmC1;dmC1

/I

cmC2;dmC2�dmC2;jC1; : : : ; cmC2;dmC2
I : : :

��
;

with double partitions as in (4-78), the only difference being that we have an additional
�1
C.ˇ

d1;:::;dr

C / term. Given Maurer–Cartan elements 1; : : : ; r , set

(4-82) g D
X

d1;:::;dr�0

˛
d1;:::;.dm;dmC1/;:::;dr

C .

d1‚ …„ ƒ
1; : : : ; 1I : : : I

dr‚ …„ ƒ
r ; : : : ; r /

2 C0 y̋ .Z1˚N /:

As a direct consequence of (4-81), this satisfies

(4-83)
X
p;q

�
pCqC1
C

� p‚ …„ ƒ
…r

C.1; : : : ; r /; : : : ;…
r
C.1; : : : ; r /;g;

…r�1
C .1; : : : ; m�mC1; : : : ; r /; : : : ;…

r�1
C .1; : : : ; m�mC1; : : : ; r /„ ƒ‚ …

q

�
D 0:

In view of (4-80) and Lemma 2.6, this is exactly what we need to prove the equivalence
of the two Maurer–Cartan elements in question.

5 Cohomology operations

Following Steenrod and (in a more abstract context) May, reduced power operations
arise from homotopy symmetries. This general principle can be applied to configuration
spaces, as in Cohen’s classical work, and also to Deligne–Mumford spaces. After a
brief review of the underlying homological algebra, we discuss those two instances,
and their relationship.
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5a Equivariant (co)homology

Let C be a complex of vector spaces over a field F . Given an action of a group G on C,
one can consider the group cochain complex C �

G
.C/ and its cohomology H�

G
.C/. (This

is a mild generalization of the classical concept of equivariant cohomology, where the
coefficients lie in a G–module; see eg [10] for a general account, and [46, page 115] or
[73, page 179] for the traditional choice of group cochain complex.) If C �.X / is the
cochain complex of a space X carrying a G–action, and V is a representation of G

over F , then setting CD C �.X /˝V recovers

(5-1) H�G.C
�.X /˝V /DH�G.X IV /DH�.X �G EGIV /;

the equivariant cohomology in the classical sense (with coefficients in the local system
over the Borel construction X �G EG determined by V ). A variant of the construction
yields the group chain complex C G

� .C/ and group homology H G
� .C/. Recall that in

our convention, all chain complexes are cohomologically graded. If we start with
the chain complex C�.X / of a space, and a representation V , as before, then setting
CD C��.X /˝V gives

(5-2) H G
� .C��.X /˝V /DH G

��.X IV /DH��.X �G EGIV /:

Group homology and cohomology carry exterior cup and cap products

H�G.C1/˝H�G.C2/!H�G.C1˝C2/;(5-3)

H G
� .C1/˝H�G.C2/!H G

� .C1˝C2/I(5-4)

see eg [10, Section V.3]. The cases relevant for our purpose are where G is a permutation
group Symp of prime order, or its cyclic subgroup Z=p, and F D Fp. For the cyclic
group, there are particularly simple complexes computing equivariant (co)homology.
The cohomology version is

(5-5)

8̂̂<̂
:̂

C �Z=p.C/D CŒŒt ��˚ �CŒŒt ��; with jt j D 2; j� j D 1;

dZ=p.t
kc/D tk dcC � tk.T c � c/;

dZ=p.� tkc/D�� tk dcC tkC1.cCT cC � � �CT p�1c/;

where T W C! C is the generator of the Z=p–action. In the case of trivial coefficients
CD Fp, the differential vanishes. The ring structure (5-3), for C1 D Fp and general
C2 D C, satisfies Œt � � Œtkc�D ŒtkC1c� and Œt � � Œtk�c�D ŒtkC1�c�. However, for p D 2

and C1 D C2 D Fp, one has Œ� � � Œ� � D Œt �, while for p > 2 that expression would be
zero. Indeed, in the case p D 2 it is more convenient to write � D t1=2; for a more
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precise discussion of the choices of generators used here in relation to topology, we
refer to Section 10a. The group homology version is

(5-6)

8̂̂<̂
:̂

C
Z=p
� .C/D CŒs�˚ �CŒs�; with jsj D �2; j� j D �1;

dZ=p.skc/D sk dc � �sk�1.cCT cC � � �CT p�1c/;

dZ=p.�skc/D��sk dc � sk.T c � c/;

and under (5-4), t acts on equivariant homology by canceling one power of s in (5-6)
(by convention, s�1 is set to zero). Because the index of Z=p � Symp is coprime to p,
for every complex C with Symp–action,

H�Symp
.C/!H�Z=p.C/ is injective,(5-7)

H
Z=p
� .C/!H

Symp

� .C/ is surjective.(5-8)

Let Fp.l/ with l 2 Z be the one-dimensional representations which are

� trivial if l is even, and

� associated to sign W Symp! f˙1g � F�p if l is odd.

Note that the restriction of the sign homomorphism to Z=p is trivial. The relevant
special case of (5-7) can be made explicit:

H�Symp
.Fp/D Fp Œt

p�1�˚ � tp�2Fp Œt
p�1��H�Z=p.Fp/;(5-9)

H�Symp
.Fp.1//D t .p�1/=2Fp Œt

p�1�˚ � t .p�3/=2Fp Œt
p�1��H�Z=p.Fp/:(5-10)

See eg [50, Lemma 1.4]. Let C be a general complex of Fp–vector spaces, and consider
Symp acting on its tensor power C˝p by permuting the factors with Koszul signs. In
this situation, there is a canonical equivariant diagonal map

(5-11) H l.C/!H
pl
Symp

.C˝p
˝Fp.l//

which lifts the standard diagonal H l.C/!H pl.C˝p/; see eg [50, Lemma 1.1(iv)] for
its well-definedness. The equivariant diagonal is compatible with multiplication by
elements of Fp , but not additive. It is sometimes convenient to simplify the discussion
of (5-11) by restricting to the cyclic subgroup:

(5-12)

H
pl
Symp

.C˝p˝Fp.l//
� _

��

H k.C/

(5-11)
77

// H
pl

Z=p.C
˝p/
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By explicit computation in (5-5), one sees that the equivariant diagonal for Z=p

becomes additive after multiplying with t . It follows that (5-11) becomes additive after
multiplying with tp�1, since that lies in the subgroup (5-9).

5b Cohen operations

Let C be a complex of Fp–vector spaces, which has the structure of an algebra over
the Fp–coefficient version of the Fulton–MacPherson operad. Recall that the action of
Symp on FMp is free. The associated Cohen operation is a map

(5-13) Cohp WH
l.C/! .H�.FMp=SympIFp.l//˝H�.C//pl ;

defined as follows:

(5-14)

H l.C/

��

(5-11)
// H

pl
Symp

.C˝p˝Fp.l//

operad structure
��

H
pl
Symp

.Hom.C��.FMp/;C/˝Fp.l//

H
pl
Symp

.Hom.C��.FMp/˝Fp.l/;C//

Künneth

Hompl.H
Symp

�� .FMpIFp.l//;H
�.C//

freeness of the action�
H�.C/
˝

H�.FMp=SympIFp.l//

�pl

Hompl.H��.FMp=SympIFp.l//;H
�.C//

On the middle lines, the Symp–action is trivial on the C–factor. Because their definition
involves (5-11), these operations are not expected to be additive. Note that we could also
have defined our operations using Z=p, but of course, they would still lie in the subspace
H�.FMp=SympIFp.l// � H�.FMp=.Z=p/IFp/. For computational purposes, let’s
spell out what happens when one decodes (5-14).

Lemma 5.1 Suppose we have an cycle c 2 C of degree l . Then c˝p 2 C˝p is a cycle
which is Symp–invariant up to an Fp.l/–twist , and which therefore represents a class in
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H�Symp
.C˝p˝Fp.l//. Similarly, suppose that we have a chain B 2 C�.FMpIFp/ with

the property that @B goes to zero in C�.FMp/˝Symp
Fp.l/. Such a chain represents

a class ŒB� 2H�.FMp=SympIFp.l//. As a consequence of the properties of B and c,
the image of B˝ c˝p under the operad action is a cycle in C. That cycle represents the
image of Œc� under (5-13), paired with ŒB�.

The structure of Cohen operations was determined in [14, Theorems 5.2 and 5.3]. The
group relevant for operations on the even-degree cohomology of C is

(5-15) H�.FMp=SympIFp/Š

�
Fp if � D 0; 1;

0 otherwise.

For � D 0, that just recovers the p–fold power for the product that is part of the
Gerstenhaber algebra structure on H�.C/. If we suppose that p > 2, the operation
obtained from the � D 1 group can again be described as part of the Gerstenhaber
structure, as x 7! Œx;x�xp�2. The twisted counterpart is more interesting:

(5-16) H�.FMp=SympIFp.1//Š

�
Fp if � D p� 1; p� 2;

0 otherwise.

Moreover, still as part of [14, Theorem 5.3], the pullback map

(5-17) H�Symp
.Fp.1//DH�.BSympIFp.1//!H�.FMp=SympIFp.1//

is onto. Therefore, the groups (5-16) can be thought of as generated by t .p�1/=2 and
� t .p�3/=2, the lowest-degree generators in (5-10). Note that for p > 2, t .p�1/=2 is the
image of � t .p�3/=2 under the Bockstein ˇ.

5c Quantum Steenrod operations

The same idea works for any operad, and in particular, Deligne–Mumford spaces.
Concretely, this means that we consider the action of Symp on DMp which keeps
the marked point z0 fixed, and permutes .z1; : : : ; zp/. Given an algebra C over the
Fp–coefficient Deligne–Mumford operad, one gets operations analogous to (5-13),

(5-18) H l.C/!
�
H�.C/˝H�Symp

.DMpIFp.l//
�pl
:

In principle, the same caveat as in Section 4f applies, which means that we should
replace DMp by a homotopy equivalent space (4-63). However, that makes no difference
for the present discussion, since only the equivariant cohomology of the space will be
involved.
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Unfortunately, the equivariant mod p cohomology of Deligne–Mumford space is not
known (to this author, at least), but there are simplified versions of this construction
which are easier to understand. Because p is assumed to be prime, the Symp–action
on DMp has a unique orbit Op with isotropy subgroups isomorphic to Z=p (all other
isotropy subgroups have orders not divisible by p). For concreteness, we just look at
one specific point ˘ 2Op, whose isotropy subgroup is the standard cyclic subgroup
Z=p � Symp:

(5-19) ˘ D .C D xC DC[f1g; z0 D1; zk D e2�
p
�1k=p for k D 1; : : : ;p/:

Lemma 5.2 Restriction to ˘ 2Op yields isomorphisms

(5-20) H�Symp
.OpIFp.l//

Š

22

// H�Z=p.OpIFp/ // H�Z=p.˘IFp/DH�Z=p.Fp/:

Proof This is elementary: the underlying map of Borel constructions, obtained by
composing

(5-21) ESymp �Z=p ˘ ,!ESymp �Z=p Op�ESymp �Symp
Op;

is a homeomorphism. Moreover, the local system on ESymp �Symp
Op associated to

Fp.1/ is canonically trivial.

Quantum Steenrod operations are obtained by replacing DMp in (5-18) by its sub-
space Op. In view of Lemma 5.2, we can equivalently define them using the Z=p–
equivariant cohomology of a point. Written in that way, they have the form

(5-22) Q Stp WH l.C/! .H�.C/˝H�Z=p.Fp//
pl :

Following our discussion of (5-11), we know that (5-22) becomes additive after multi-
plication with tp�1. Since that multiplication acts injectively on H�Z=p.Fp/, one sees
that (5-22) is already additive.

As an intermediate object between the two spaces considered so far, take DMıp be
the moduli space of smooth genus-zero curves with pC 1 marked points, or equiva-
lently (3-7), which is an open subset of DMp containing Op . Similarly, let FMıp be the
configuration space (3-1), which is the interior of FMp and hence homotopy equivalent
to the whole space. The forgetful map FMp ! DMp restricts to a circle bundle
FMıp! DMıp.
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Lemma 5.3 Restriction to Op �DMıp, together with Lemma 5.2, yields isomorphisms

H�Symp
.DMıpIFp/ŠH�Z=p.pointIFp/;(5-23)

H�Symp
.DMıpIFp.1//Š

�
0 for �< p� 2;

H�Z=p.pointIFp/ for � � p� 2:
(5-24)

Moreover , the pullback map is an isomorphism

(5-25) H�Symp
.DMıpIFp.1//!H�Sym.FMıpIFp.1// for � D p� 2; p� 1:

Proof Consider the Gysin sequence and its restriction to (5-19):

(5-26)

� � � !H��2
Symp

.DMıpIFp.l// //

��

H�Symp
.DMıpIFp.l// //

��

H�Symp
.FMıpIFp.l//! � � �

��

� � � !H��2
Z=p .˘IFp/

�t
// H�Z=p.˘IFp/ // H�Z=p.S

1IFp/! � � �

Over ˘, the fiber of the circle bundle FMıp ! DMıp can be identified with the repre-
sentation of Z=p with weight �1. In other words, the S1 in (5-26) carries the action
of Z=p by clockwise rotation. The �t appearing in the sequence is the associated
equivariant Euler class. For l D 0, inspection of (5-15) shows that the rightmost # in
(5-26) is always an isomorphism. One can therefore prove (5-23) by upwards induction
on degree.

For l D 1, we use a variant of the same argument. The Gysin sequence and (5-16)
imply that

(5-27) H�Symp
.DMıpIFp.1//Š

�
0 for �< p� 2;

H�Symp
.FMıpIFp.1// for � D p� 2:

Let’s look at the first nontrivial degree, and the maps

(5-28) H
p�2
Symp

.pointIFp.1//
pullback
�����!H

p�2
Symp

.DMıpIFp.1//
restriction
������!H

p�2
Fp

.˘IFp/:

From (5-27) and (5-17), it follows that the first map is an isomorphism. The composition
of the two maps is just (5-7), hence an isomorphism. It follows that the second map
must be an isomorphism as well, which is part of (5-24). On the other hand, since the
Symp–action has isotropy groups of order coprime to p outside Op,

(5-29) H�Symp
.DMıp;OpIFp.1//ŠH�.DMıp=Symp;Op=SympIFp.1//;

and the right-hand side vanishes in high degrees. From that and Lemma 5.2, one sees
that the restriction map H�Symp

.DMıpIFp.1//! H�Z=p.pointIFp/ is an isomorphism
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in high degrees. By downward induction on degree, using (5-16) and (5-26), one
obtains the degree � p � 1 part of (5-24). From (5-24), it also follows that the map
H

p�2
Symp

.DMıpIFp.1//!H
p
Symp

.DMıpIFp.1// in the top row of (5-26) is an isomorphism,
which then implies (5-25) in degree p� 1; the degree p� 2 part of the same statement
has been derived before, in (5-27).

As an immediate consequence, suppose that C is an algebra over the chain-level
Deligne–Mumford operad. Consider its induced structure as an algebra over the Fulton–
MacPherson operad. By definition, the associated operations (5-13) and (5-22) fit into
a commutative diagram

(5-30)

�
H�.C/˝H�.FMıp=SympIFp.l//

�pl

H l.C/

Cohen

55

//

quantum Steenrod
))

�
H�.C/˝H�Symp

.DMıpIFp.l//
�pl

OO

���
H�.C/˝H�Z=p.Fp/

�pl

If l is odd, then Lemma 5.3 shows that both vertical arrows are isomorphisms on the
degree p� 2 or p� 1 cohomology groups of the moduli spaces. Those cohomology
groups are one-dimensional, and their generators can be identified with � t .p�3/=2 and
t .p�1/=2, respectively. To put it more succinctly:

Lemma 5.4 The Cohen and quantum Steenrod operations

(5-31) H l.C/!H pl�k.C/ for l odd and k D p� 2 or k D p� 1

coincide.

6 Prime power maps

This section brings together the lines of thought from Sections 4 (formal group structure)
and 5 (cohomology operations). Our first task is to make part of the discussion
in Section 5b more concrete, by introducing an explicit cocycle which generates
H p�1.FMp=SympIFp.1//. By looking at the relation between that cocycle and the
map MWW1;:::;1 ! FMp, we obtain an abstract analogue of Theorem 1.9 in the
operadic context.
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6a A cocycle in unordered Fulton–MacPherson space

Take (3-5), modify it by rotation by i so as to put the resulting configurations on the
imaginary axis in C, and then compose that with projection to FMp=Symp (recall that
the Symp–action is free, so the quotient is again a smooth manifold with corners, or
topologically a manifold with boundary). The outcome is a submanifold (a copy of the
associahedron Sp)

(6-1) Zp � FMp=Symp;

with @Zp�@FMp=Symp . By definition, (6-1) has a preferred lift to FMp , and therefore,
the local system Fp.1/jZp has a canonical trivialization. Using that and the orientations
of Sp and FMp, we get a class

(6-2) ŒZp �2Hp�2.FMp=Symp; @FMp=SympIFp.1//ŠH p�1.FMp=SympIFp.1//:

In terms of the previous computations (5-10) and (5-16), this can be expressed as
follows:

Lemma 6.1 For p D 2, (6-2) is the image of � D t1=2 under (5-17); for p > 2, it is
the image of

(6-3) .�1/.p�1/=2
�

p�1

2
!
�
t .p�1/=2

2H p�1.BSympIFp.1//:

Proof Let’s consider the more interesting case p > 2 first. Take the map

(6-4) Confp.C/!Rp=RDRp�1

which projects ordered configurations to their real part, and then quotients out by
the diagonal R subspace. This map is Symp–equivariant, and the fiber at 0 is the
subspace zZp DR�Confp.R/� Confp.C/ of configurations with common real part,
.z1 D sC

p
�1 t1; : : : ; zp D sC

p
�1 tp/. Let’s orient that by using the coordinates

.s; t1; : : : ; tp/ in this order. This differs from its orientation as a fiber of (6-4) by a
Koszul sign .�1/p.p�1/=2 D .�1/.p�1/=2. On the other hand, the fiber at 0 represents
the pullback via (6-4) of the equivariant Euler class of the Z=p–representation Rp=R.
From this and (10-5), we get

(6-5) Œ zZp �D .�1/.p�1/=2
�

p�1

2
!
�
t .p�1/=2

2H
p�1

Z=p .Confp.C/IFp/:

The corresponding relation must hold in H
p�1
Symp

.Confp.C/IFp.1// as well, since both
classes involved live in that group, and the map from there to Z=p–equivariant co-
homology is injective. Note that zZp is the preimage of Zp under the quotient map
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Confp.C/! FMp . Moreover, inspection of (3-6) shows that the orientations of FMp ,
Zp and zZp we have used are compatible with that relation. Since the quotient map
is equivariant and a homotopy equivalence, (6-5) implies the corresponding property
for ŒZp �.

One could follow the same strategy for p D 2, but we can be even more explicit. The
generator of H1.FM2=Sym2IZ=2/Š Z=2 consists of a loop of configurations where
two points rotate around each other, and its image in H1.BSym2IZ=2/ Š Z=2 is
obviously nontrivial. On the other hand, that loop intersects Zp transversally at exactly
one point, which proves the desired statement.

6b A cycle in unordered Fulton–MacPherson space

Consider the space MWW1;:::;1 with d colors, denoted here by MWWd for the sake
of brevity. As a special case of (3-11), its codimension-one boundary faces are of the
form

(6-6) MWWd1
� � � � �MWWdr

�Sr

TI1;:::;Ir
����!MWWd I

there is one such face for each decomposition of f1; : : : ; dg into r � 2 nonempty
subsets .I1; : : : ; Ir / with dk DjIk j. In describing the boundary faces, we have used the
identifications (3-18). Suppose that we choose maps (3-13) so as to be compatible with
(3-18), as in Section 4e. Consider two decompositions .I1; : : : ; Id / and .zI1; : : : ; zId /,
which correspond to the same ordered partition dk D jIk j D j

zIk j. Then, the associated
maps (6-6) and (3-13) fit into a commutative diagram

(6-7)

MWWd

��

MWWd1
� � � � �MWWdr

�Sr

TzI1;:::;
zIr
//

TI1;:::;Ir
oo MWWd

��

FMd FMd

�I1;:::;Ir

Š
oo

�zI1;:::;
zIr

Š
// FMd

Here, �I1;:::;Ir
2 Symd is the unique permutation which maps f1; : : : ; d1g order-

preservingly to I1, fd1 C 1; : : : ; d1 C d2g order-preservingly to I2, and so on; and
correspondingly for �zI1;:::;zIr

. Suppose that we choose fundamental chains to be also
compatible with (3-18). Then, (4-24) simplifies to

(6-8) @ŒMWWd �D
X

.I1;:::;Ir /

˙TI1;:::;Ir ;�.ŒMWWd1
�� � � � � ŒMWWdr

�� ŒSr �/:

Thinking of the homology of FMp=Symp as in Lemma 5.1, we get:
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Lemma 6.2 Suppose that d D p is prime. Then , the image of ŒMWWp � under
(3-13) is a chain , denoted here by Bp 2 C�.FMpIFp/, with the property that @Bp

goes to zero in C�.FMpIFp/˝Symp
Fp.1/. Therefore , it represents a class ŒBp � in

Hp�1.FMp=SympIFp.1//.

Proof Consider two codimension-one boundary faces as in (6-7). The resulting
chains in FMd differ by applying the permutation �zI1;:::;zIr

��1
I1;:::;Ir

. Hence, when
mapped to C�.FMd /˝Symp

Fp.1/, they differ by the sign of that permutation. On the
other hand, their entries in (6-8) differ by the same sign. When computing @Bp in
C�.FMp/˝Symp

Fp.1/, the two kinds of signs cancel, which means that the contributions
are the same. Now, the cyclic group Z=p�Symp acts freely on ordered decompositions
corresponding to the same ordered partition, and this provides the required cancellation
mod p for the terms of @Bp.

Lemma 6.3 The canonical pairing between the cohomology class of (6-2) and the
homology class from Lemma 6.2 is ŒZp � � ŒBp �D .�1/p.p�1/=2.

Proof We think of this Poincaré-dually as an intersection number. The relevant
cycles intersect at exactly one point of FMp , which is a configuration .z1I : : : I zp/ with
re.z1/D � � � D re.zd /D 0 and im.z1/ < � � �< im.zd /. The tangent space of Zd � FMd

at that point can be thought of as keeping .z1; z2/ fixed, and moving .z3; : : : ; zd /

infinitesimally in the imaginary direction. The tangent space to the image of MWWp

at the same point consists of keeping z1 fixed, but moving .z2; : : : ; zd / infinitesimally
in the real direction. Note that positive horizontal motion of z2 yields a clockwise
motion of the angular component of z2� z1. This observation, when combined with
standard Koszul signs, yields the desired local intersection number.

To see the implications of Lemmas 6.1 and 6.3, note that, by the dual of (5-16)
and (5-17),

(6-9) Hp�1.FMp=SympIFp.1//ŠHp�1.BSympIFp.1//Š Fp:

In those terms, what we have shown is:

Lemma 6.4 For pD 2, the homology class of the cycle from Lemma 6.2 is the unique
nontrivial element in (6-9). For p > 2, it is�

p�1

2
!
��1

times the standard generator (dual to t .p�1/=2).
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Take Œc� 2H odd.C/ and our Bp , and consider the image of Bp˝ c˝p under the operad
action. This defines a map H odd.C/! H odd.C/, which by Lemma 5.1 is a certain
component of the Cohen operation applied to Œc�. Lemma 6.4 tells us exactly what it is:

(6-10)

(
the t1=2 (or � ) component of (5-14) if p D 2;�

p�1

2
!
��1

times the t .p�1/=2–component of (5-14) if p > 2:

If c has degree 1, the same process computes ˇ1;:::;1
C .cI : : : I c/, by definition of (4-26).

Lemma 4.18 shows that this is the leading order term of …p
C .; : : : ;  / for a Maurer–

Cartan element  D qcCO.q2/, and Corollary 4.24 identifies that with the p–fold
product of  under our formal group law. The consequence, under the assumption of
homological unitality inherited from the proof of Proposition 4.20, is:

Theorem 6.5 Take the group law � on MC.CI qFp Œq�=q
pC1/. The pth power map for

that group fits into a commutative diagram like (1-13), with the operation (6-10) at the
bottom.

To conclude our discussion, note that if the operad structure is induced from one over
Deligne–Mumford spaces, as in (4-64), then the relevant operation (6-10) can also be
written as a quantum Steenrod operation, by Lemma 5.4.

7 Constructions using pseudoholomorphic curves

We will now translate the previous arguments into more specifically symplectic terms.
The choice of singular chains on parameter spaces, and its application to a general
operadic structure, is replaced by a choice of perturbations which make the moduli
spaces regular, followed by counting-of-solutions to extract the algebraic operations. For
technical convenience, we use Hamiltonian Floer theory (with a small time-independent
Hamiltonian) as a model for cochains on our symplectic manifold. Correspondingly,
all the operations are defined using inhomogeneous Cauchy–Riemann equations on
punctured surfaces. This makes no difference with respect to Theorem 1.9, since the
Floer-theoretic version of quantum Steenrod operations agrees with that defined using
ordinary pseudoholomorphic curves (for p D 2, see [75]; the same strategy works for
general p).

7a Floer-theoretic setup

Let .X; !X / be a closed symplectic manifold, which is monotone (1-3). We fix a
C 2–small Morse function H 2 C1.X;R/, with its Hamiltonian vector field ZH . We
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also fix a compatible almost complex structure J , and the associated metric gJ . We
require:

Properties 7.1 (i) All spaces of Morse flow lines for .H;gJ / are regular.

(ii) All one-periodic orbits of ZH are constant, hence critical points of H . Moreover,
the linearized flow at each such point x is nondegenerate for all times t 2 .0; 1�,
which implies that the Conley–Zehnder index is equal to the Morse index �.x/.

(iii) No J–holomorphic sphere v with c1.v/D 1 passes through a critical point of H

or intersects an isolated Morse flow line. Here, c1.v/ is the usual shorthand for
c1.X / integrated over Œv� 2H2.X /.

Consider the autonomous Floer equation, where as usual S1 DR=Z:

(7-1)

8<:
u WR�S1!X;

@suCJ.@tu�ZH /D 0;

lims!˙1 u.s; t/D x˙;

where the limits x˙ are critical points of H . This equation has an .R�S1/–symmetry
by translation in both directions. For S1–invariant solutions, meaning t–independent
maps uD u.s/, it reduces to the negative gradient flow equation du=dsCrgJ

H D 0.
Denote by Du the linearized operator at a solution of (7-1). Its Fredholm index can be
computed as

(7-2) index.Du/D �.x�/��.xC/C 2c1.u/;

where in the last term, we have extended u to .R�S1/[f˙1g D S2, the two-point
compactification. As a consequence of transversality results in [33; 20] (see in particular
[33, Theorem 7.3] and [20, Theorem 7.4]), we may further require:

Properties 7.2 (i) All solutions of Floer’s equation with index.Du/� 1 are inde-
pendent of t . Concretely, there are none with negative index; the only ones with
index zero are constant; and those with index.Du/D 1 are isolated Morse flow
lines for .H;gJ /.

(ii) For the last-mentioned u, all solutions of Du� D 0 are independent of t , hence
lie in the kernel of the corresponding linearized operator from Morse theory.
In view of Properties 7.1(i) and (ii), this implies that such Floer solutions are
regular.
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Define C to be the standard Morse complex for .H;gJ /, meaning that

(7-3) CD
M

x

Zx Œ��.x/�;

where Zx is the orientation line (the rank-one free abelian group whose two generators
correspond to orientations of the descending manifold of x), with a differential dC that
counts isolated gradient flow lines. When considered as a Z=2–graded space, this is
equal to the Floer complex of .H;J /, thanks to the properties above. Our conventions
are cohomological, meaning that with notation as in (7-1), dC takes “xC to x�”.

7b Operations

Take xCDCP1 with marked points z0D1 and z1; : : : ; zd 2C. Consider the resulting
punctured surface,

(7-4) C D xC n fz0; : : : ; zdg DC n fz1; : : : ; zdg:

An inhomogeneous term �C is a .0; 1/–form on C with values on vector fields on X :

(7-5) �C 2�
0;1.C;C1.X;TX //D C1.C �X;HomC.T C ;TX //;

where the .0; 1/ part is taken with respect to J . We require that our inhomogeneous
terms should have a special structure near the marked points:

(7-6) �C D

(�
ZH ˝ re.d log.z� zk/=2�

p
�1/

�0;1 near zk for k > 0,�
ZH ˝ re.d log.z� �C /=2�

p
�1/

�0;1 near z0 D1,

where �C 2 C is an auxiliary datum that we consider as part of �C . In cylindrical
coordinates

(7-7) zD

�
zkCexp.�2�.sC

p
�1t// near zk for k > 0, where .s; t/ 2R�0�S1;

�CCexp.�2�.sC
p
�1t// near z0 D1, where .s; t/ 2R�0�S1;

what (7-6) says is �C D .ZH ˝dt/0;1. Consider the inhomogeneous Cauchy–Riemann
equation

(7-8)

8<:
u W C !X;
x@uD �C .u/;

limz!zk
u.z/D xk ;

where the limits xk are again critical points of H . When written in coordinates
(7-7) near the marked points, (7-8) reduces to (7-1), explaining why this convergence
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rescaled version of C2

C�

Figure 15: Gluing punctured planes equipped with inhomogeneous terms,
as in (7-12). The shaded regions are where the inhomogeneous term on the
glued surface is prescribed.

condition makes sense. The linearization of (7-8) has

(7-9) index.Du/D �.x0/�

dX
jD1

�.xj /C 2c1.u/:

We will not explain the compactness and transversality theory for moduli spaces of
solutions of (7-8), both being standard (the first due to monotonicity, the second
because we have complete freedom in choosing �C on a compact part of C ). For a
single surface C and a generic choice of �C , counting solutions of (7-8) will give rise
to a chain map C˝d ! C which preserves the Z=2–degree (and which represents the
d–fold pair-of-pants product).

We need to review briefly the gluing process for surfaces, to see how it fits in with
inhomogeneous terms. Suppose that we have two surfaces Ck DC n fzk;1; : : : ; zk;dk

g

for k D 1; 2, which also come with inhomogeneous terms �Ck
, and in particular

�Ck
2 C. Fix some 0 � i < d1. The gluing process produces a family of surfaces

C� DC n fz�;1; : : : ; z�;dg, where d D d1C d2� 1, depending on a sufficiently small
parameter � > 0. Namely, take the affine transformation

(7-10) ��.z/D �.z� �C2
/C z1;iC1I

then

(7-11) z�;k D

8<:
z1;k for k � i;

��.z2;k�i/ for i < k � i C d2;

z1;k�d2C1 for k > i C d2:
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We want to equip the glued surfaces with inhomogeneous terms �C� which are smoothly
dependent on � and have the following property. Fix some sufficiently small r > 0 and
large R> 0. First,

(7-12)

8<:
�C� D �C1

where jzj �R and jz� z1;k j � r for 0< k ¤ i C 1;

�C� D ��;��C2
where �R� jz� z1;iC1j � r ;

��
�
�C� D �C2

where jz� z2;k j � r for any k > 0:

The upshot is that �C� is completely prescribed in certain (partly �–dependent) neigh-
borhoods of the marked points on C�, as well as on an annular “gluing region”; see
Figure 15. On each such region, �C� is given by a similar expression as in (7-6). In
particular, the middle line of (7-12) really says that

(7-13) �C� D

�
ZH ˝ re

�
d

log.z�z1;iC1/

2�
p
�1

��0;1

where �R� jz�z1;iC1j � r

() ����C� D

�
ZH ˝ re

�
d

log.z��C2
/

2�
p
�1

��0;1

where R� jz��C2
j � ��1r:

Additionally, there are asymptotic conditions as �! 0:

(7-14) � On jz� z1;iC1j � r , the family �C� can be smoothly extended to �D 0, by
setting that extension equal to �C1

.

� On jzj �R, the family ��
�
�C� can be smoothly extended to �D 0, by setting

that extension equal to �C2
.

Given that, it makes sense for a sequence of solutions of (7-8) on C�k
, with �k ! 0,

to converge to a “broken solution” which consists of corresponding solutions on C1

and C2; and conversely, the gluing process for broken solutions applies — as used,
for instance, in proving associativity of the pair-of-pants product. Again, we omit the
details, which are standard. Thanks to our use of an autonomous Hamiltonian, there
is also a version where C2 is rotated before being glued in, meaning that we use a
small � 2C� (inserting absolute values wherever the size of � appears in the formulae
above).

A process such as (7-11), in which the �–dependence of the marked points follows a
specific pattern, is simple to describe, but far more rigid than the analytic arguments
require. Here is a more appropriate formulation, where the first part describes the
ingredient for compactness arguments, and the second part addresses gluing of solutions.

Definition 7.3 Take C1 and C2 as before. Choose arbitrary families of surfaces with
inhomogeneous terms C1;r and C2;r , depending on r 2 Rm for some m, and which
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reduce to the given ones for r D 0. Apply the previously described notion of gluing in
a parametrized way, which means that we have a family C�;r .

(i) Suppose that Ck is a sequence of surfaces with inhomogeneous terms �Ck
, which

for k� 0 are isomorphic to C�k ;rk
for �k > 0 and .�k ; rk/! .0; 0/. We then

say that the Ck degenerate to .C1;C2/.

(ii) Suppose that C� is a smooth family of surfaces with inhomogeneous terms �C� ,
depending on a parameter � > 0. Suppose that for small � , these are isomorphic
to C�.�/;r.�/, where .�.�/; r.�// satisfies .�.0/; r.0// D .0; 0/ and �0.0/ > 0.
We then say that the family C� is obtained by smoothing .C1;C2/.

To clarify the notation, it might be useful to look slightly ahead to our first application.
When defining an A1–structure, one deals with C1 and C2 which depend, respectively,
on moduli in Sd1

n @Sd1
and Sd2

n @Sd2
. In these terms, r is a local coordinate on

the product of those spaces, while � is the transverse coordinate to Sd1
�Sd2

� @Sd ,
where d D d1Cd2� 1. As this example shows, our discussion has been limited to the
simplest process of gluing two surfaces together; a complete description would include
the generalization to arbitrarily many surfaces.

To round off the discussion of inhomogeneous terms, let’s mention an obvious gen-
eralization, which is to equip (7-4) with a family of compatible almost complex
structures .Jz/z2C which reduce to the given J outside a compact subset. When
defining the associated notion of inhomogeneous term, one uses those structures to
define the .0; 1/ part, and similarly for (7-8). It is straightforward to extend the gluing
process to this situation. Usually, this generalization is not required, since the freedom
to choose �C is already enough to achieve transversality of moduli spaces. However,
there are situations such as the construction of continuation maps, where varying almost
complex structures necessarily occur (because one is trying to relate different choices
of J ).

7c The quantum A1–structure

This is the most familiar application. Given .s1; : : : ; sd / as in (3-1), we think of
them as complex points zk D sk , and then equip the resulting surface (7-4) with an
inhomogeneous term �C , which should vary smoothly in dependence on the points,
and be invariant under the symmetries in (3-1); one can think of this as a fiberwise
inhomogeneous term on the universal family of surfaces over Sd n @Sd . Along the
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boundary of the moduli space, we want the family to extend along the lines indicated
in Definition 7.3(ii). Of course, on a boundary stratum of codimension k, one has
k components that are being glued together, and the definition should be adapted
accordingly. The outcome is a parametrized moduli space, which consist of points
of Sd n @Sd together with a solution of (7-8) on the associated surface. For generic
choices, these parametrized moduli spaces are regular. Moreover, they are oriented
relative to the orientation spaces at limit points, meaning that a choice of isomorphism
Zxk
ŠZ for kD 0; : : : ; d , determines an orientation of the parametrized moduli spaces.

A signed count of points in the zero-dimensional moduli spaces, with auxiliary signs as
in (4-3), yields operations �d

C for d � 2, which one combines with the Floer differential
�1
C D�dC to form the (Z=2–graded) quantum A1–structure.

One can adapt the arguments from Section 4b to show that the quantum A1–structure is,
in a suitable homotopical sense, independent of all choices, including the Floer differ-
ential. Suppose that we have .H;J / and . zH ; zJ /, leading to chain complexes .C; dC/

and .zC; dzC/. For each of the two, we make the choices of inhomogeneous terms required
to build the A1–structures, denoted by �C and �zC. To relate them, we start by picking
a third version of the chain complex, denoted by .{C; d{C/, based on some . {H ; {J /. Next,
we introduce maps

(7-15) �
p;1;q

{C
W C˝p

˝ {C˝ zC˝q
! {CŒ1�p� q�;

with �0;1;0

{C
D�d{C, which turn {CŒ1� into an A1–bimodule, with �C acting on the left

and �zC on the right. This is analogous to (4-9), except that the conditions on �p;1;0 and
�0;1;q which we imposed there are no longer satisfied. The geometric construction of
(7-15) involves another family of inhomogeneous terms over Sd n@Sd , d D pC1Cq.
Those terms are modeled on H near .z1; : : : ; zp/, on zH near .zpC2; : : : ; zd /, and on
{H near the remaining points .z0; zpC1/. Similarly, our surfaces carry varying families

of complex structures. The behavior under degeneration to @Sd follows the pattern
from Figure 12, with some components of the limit carrying the inhomogeneous terms
that define the two A1–ring structures, and others, the A1–bimodule structure; we
have represented this in a more geometric way in Figure 16.

At this point, we add continuation maps to the mix. These arise from the configuration
.z0D1; z1D 0/, meaning the surface C DC�. In our application, the behavior at z0

is always given by . {H ; {J /, and that at z1 by either .H;J / or . zH ; zJ /. The outcome is
two chain maps

(7-16) C
 

1;0

{C
// {C zC:

 
0;1

{C
oo
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�2
C

�2
zC

�2
C

�
0;1;2

{C

�3
zC

�
2;1;2

{C

Figure 16: The A1–bimodule operations (7-15). We show the behavior of
the inhomogeneous terms on a sample (codimension 5) boundary stratum, for
.p; q/D .4; 7/.

Our sign conventions are nonstandard: on cohomology,  0;1 induces the canonical
isomorphism between Floer cohomology groups, whereas  1;0 has the opposite sign.
Extending (7-16), we want to build operations

(7-17)  
p;q

{C
W C˝p

˝ zC˝q
! {CŒ1�p� q� for d D pC q > 0;

which unlike their counterparts in (4-12) are defined even if p or q are zero, and
(that being taken into account) satisfy the same kind of relation (4-13). Geometri-
cally, the parameter space underlying (7-17) is no longer Œ0; 1��Sd as in Section 4b,
but instead SdC1, where we think of having inserted an additional point s|, with
sp < s| < spC1, into (3-1). The orientation is that associated to ordered configurations
.s1; : : : ; sp; s|; : : : ; spCq/ multiplied by .�1/p. When forming the associated surface
(7-4), we do not equip it with a puncture corresponding to s|: the position of that
point just serves as an additional modular variable. The inhomogeneous terms and
almost complex structures are determined by .H;J / near z1; : : : ; zp; by . zH ; zJ / near
zpC1; : : : ; zpCq; and by {H near zz0. In the limit as we approach a point of @SdC1, the
screen containing s| corresponds to a component surface which carries data underlying
(7-17), while the other components have data underlying the A1–ring structures or the
A1–bimodule structure.

Example 7.4 Consider the cases where pC q D 2. The algebraic relations are

(7-18)

 
1;0

{C
.�2

C.c1; c2//��
1;1;0

{C
.c1I 

1;0

{C
.c2//

��
0;1;1

{C
. 

1;0

{C
.c1/I zc2/��

1;1;0

{C
.c1I 

0;1

{C
.zc2//

 
0;1

{C
.�2
zC
.zc1; zc2//��

0;1;1

{C
. 

0;1

{C
.zc1/I zc2/

9>>>>=>>>>;D.terms involving differentials/:

Geometry & Topology, Volume 27 (2023)



Formal groups and quantum cohomology 3017

�2
zC

 1;1

 0;2

�1;1;0

 1;0

�0;1;2

 1;1

�0;1;1

 0;1

�1;1;1

Figure 17: The construction of the maps (7-17), in the case from Example 7.5.
The cross marks the additional point (not a puncture of the associated surface).

On the cohomology level, consequence is that if the classes Œck � and Œzck � correspond
to each other under canonical isomorphisms, meaning that Œ 1;0

{C
.ck/�D�Œ 

0;1

{C
.zck/�,

then their products inherit the same property:

(7-19) Œ 
1;0

{C
.�2

C.c1; c2//�D Œ�
1;1;0

{C
.c1I 

1;0

{C
.c2//�D�Œ�

1;1;0

{C
.c1I 

0;1

{C
.zc2//�

D Œ�
0;1;1

{C
. 

1;0

{C
.c1/I zc2/�D�Œ�

0;1;1

{C
. 

0;1

{C
.zc1/I zc2/�

D�Œ 
0;1

{C
.�2
zC
.zc1; zc2//�:

Example 7.5 For .p; q/D .1; 2/, the algebraic relation is

(7-20) ��
0;1;2

{C
. 

1;0

{C
.c1/I zc2; zc3/��

0;1;1

{C
. 

1;1

{C
.c1I zc2/I zc3/��

1;1;1

{C
.c1I 

0;1

{C
.zc2/I zc3/

��
1;1;0

{C
.c1I 

0;2

{C
.zc2; zc3//C .�1/kc1k 

1;1

{C
.c1I�

2
zC
.zc2; zc3//

D .terms involving differentials/:
Figure 17 shows the relevant degenerations, corresponding to the boundary faces of S4.

Using (7-15) and (7-17), we define an A1–structure on

(7-21) HD .C˝Zu/˚ .zC˝Zzu/˚ .{C˝Zv/;

where the symbols u, zu and v have degrees as in (2-3). The definition is a modified
version of (4-20). The differential is

(7-22)

�1
H.c˝u/D �1

C.c/˝uC .�1/kck 
1;0

{C
.c/˝ v;

�1
H.zc˝ zu/D �

1
zC
.zc/˝ zuC .�1/kzck 

0;1

{C
.zc/˝ v;

�1
H.{c˝ v/D �

0;1;0

{C
.{c/˝ v;
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and we similarly change the higher A1–operations in the case when the input consists
of only terms from either C or zC:

(7-23)
�d
H.c1˝u; : : : ; cd˝u/D �d

C .c1; : : : ; cd /˝uC.�1/zd 
d;0

{C
.c1; : : : ; cd /˝v;

�d
H.zc1˝zu; : : : ; zcd˝zu/D �

d
zC
.zc1; : : : ; zcd /˝zuC.�1/zd 

0;d

{C
.zc1; : : : ; zcd /˝v:

As before, the projection maps from (7-21) to C or zC are compatible with A1–ring struc-
tures, and are chain homotopy equivalences. This implies the desired well-definedness
statement for the A1–structure, as in (4-23).

7d An alternative strategy for proving independence

The approach to well-definedness of the quantum A1–structure adopted above involves
additional families of Riemann surfaces, leading to the larger A1–ring H, which serves
as an intermediate object. Alternatively, as we will now explain, one can enlarge the
target symplectic manifold.

Let’s start by looking at a toy model, namely the symplectic manifold S2.

(7-24) Choose .HS2 ;JS2/ as in Section 7a, satisfying the following additional tech-
nical condition. At a local maximum or minimum of HS2 , the Hessian is
JS2–invariant. This means that there are local JS2–holomorphic coordinates
centered at that point, in which HS2.y/D .constant/˙jyj2CO.jyj3/. When
choosing inhomogeneous terms, we also require that they be zero at the local
maxima and minima of HS2 .

As a consequence of the condition on inhomogeneous terms, the constant map at a local
minimum or maximum will be a solution of (7-8). One can use a counting-of-zeros
argument for solutions of linear Cauchy–Riemann type operators on line bundles to
show that the constant maps at minima have injective linearizations, and hence (since
they have index 0) are regular. A similar argument, applied to (7-8) itself rather than
its linearization, shows the following:

Lemma 7.6 (i) Let p 2 S2 be a local maximum. For any solution of (7-8) on S2,
which is not constant equal to p, the homology class Œu� 2H2.S

2/DZ satisfies

(7-25) Œu�� #f1� i � d W xi D pgC #fu�1.p/g:

Geometry & Topology, Volume 27 (2023)



Formal groups and quantum cohomology 3019

(ii) Let p 2 S2 be a local minimum. For any solution of (7-8) on S2, with x0 D p,
and which is not constant equal to p, we have

(7-26) Œu�� 1C #fu�1.p/g:

Take the graded abelian group obtained by using only critical points of HS2 which
have index � 1 as generators. We want to equip this with a version of the quantum A1–
structure, which uses inhomogeneous terms as in (7-24), but only considers solutions
with degree Œu� D 0. The argument showing that this works consists of three steps.
First, Lemma 7.6(i) implies that for all solutions, one has Œu�� 0. It follows that if we
consider a sequence of maps of degree zero which converges to a limit with several
pieces, then each piece must again have degree zero. Suppose that our original sequence
consisted of maps whose limits are critical points of index � 1. Our second point is that
then, no critical point of index 2 can appear in the limit, since it would cause one of the
pieces to have positive degree, again by Lemma 7.6(i). Thirdly, transversality of moduli
spaces is unproblematic except possibly for the constant solutions at local minima; but
we already know that such solutions are regular (in the ordinary sense of considering a
fixed C , and therefore in the parametrized sense as well). We want to point out two
properties of this A1–structure: the maps involved stay away from the local maxima,
because of Lemma 7.6(i); and if u is a map that contributes to it, and whose limit x0 is
a local minimum, the map must actually be constant, by Lemma 7.6(ii) and the degree
requirement.

Take a monotone symplectic manifold X . For each minimum or maximum p of HS2 , we
choose a Morse function and almost complex structure on X , written as .HX ;p;JX ;p/.
On the product X �S2, we then proceed as follows.

(7-27) Take a Hamiltonian HX�S2 and almost complex structure JX�S2 , satisfying
our usual conditions, and with the following additional properties. In a local
JS2–holomorphic coordinate on S2 around a local minimum or maximum p,
we have HX�S2DHS2CHX ;pCO.jyj3/, and JX�S2DJS2�JX ;pCO.jyj2/

similarly. When we choose inhomogeneous terms, they should have the
property that, when restricted to X � fpg, they take values in vector fields
tangent to that submanifold.

As a consequence of this, we can have solutions of the associated equation (7-8) which
are contained in X �fpg. If p is a local minimum, then any such solution is regular in
X �S2 if and only if it is regular inside X � fpg. The counterpart of Lemma 7.6 for
X �S2, proved by projecting to S2 and arguing as before, is:
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Lemma 7.7 (i) Let p 2 S2 be a local maximum. For any solution of (7-8) on
X�S2, which is not contained in X�fpg, the homology class Œu�2H2.X�S2/

satisfies

(7-28) ŒX � � Œu�� #f1� i � d W xi 2X � fpggC #
˚
u�1.X � fpg/

	
:

(ii) Let p 2 S2 be a local minimum. For any solution of (7-8) on X � S2, with
x0 2X � fpg, and which is not contained in X � fpg, we have

(7-29) ŒX � � Œu�� 1C #
˚
u�1.X � fpg/

	
:

For each local minimum p, we make choices of inhomogeneous terms which, building
on the previously chosen .HX ;p;JX ;p/, yield a quantum A1–structure Cp . On X �S2,
we then make corresponding choices, which restrict to the previous ones on X �fpg for
each local minimum p. When building the corresponding version of the A1–structure
on X �S2, denoted by K, we use only those critical points of HX�S2 which do not lie
on X �fpg for a local maximum p; and only maps u with ŒX � � Œu�D 0. This works for
exactly the same reasons as in the previously considered toy model case. Moreover, the
following two properties hold: those maps that contribute avoid the subsets X � fpg,
where p is a local maximum; and projection to the subgroup generated by critical
points in X � fpg, where p is a local minimum, is a map

(7-30) K! Cp

compatible with the A1–structure. At this point, we specialize to functions HS2 that
have exactly one local maximum, but possibly several local minima. By looking at
the Morse theory of HX�S2 , one sees that the projections (7-30) are chain homotopy
equivalence. By looking at those maps for two local minima, one relates the A1–
structures Cp for different p.

7e The formal group structure

Take the parameter spaces (3-9). We think of the interior of this space as parametrizing
a family of punctured planes, which degenerate along the boundary. This is essentially
constructed as in (3-13), but with two differences. First of all, we do include the spaces
MWW0;:::;1;:::;0, to which we associate a once-punctured plane (a cylinder) with an
inhomogeneous term, which is that defining the Floer differential. Since we are not
dividing by translation, the only isolated point in the associated moduli space is a
stationary solution at a critical point of the Hamiltonian, and that is the geometric origin
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of (4-28). Hence, to each “screen” in the limit corresponds a surface (unlike our original
construction (3-13), where some of the screens were collapsed). The second difference
is that we need everything to depend smoothly on parameters (the original construction
was purely topological, hence allowed us to get away with continuity). More precisely,
near the codimension-one boundary points of MWWd1;:::;dr

, we really need a situation
as in Definition 7.3(ii); but along the codimension>1 points, all we need is the situation
from Definition 7.3(i), since those points only appear in compactness arguments. In
any case, given the structure of MWWd1;:::;dr

as a smooth manifold with generalized
corners, it is unproblematic to define the required notion of smoothness, and to construct
families of inhomogeneous terms satisfying it (by induction on dimension). The
outcome are operations as in (4-26), with the difference that (4-28) is now a geometric
statement rather than a separately imposed condition. One can therefore define (4-32)
for the quantum A1–structure, and Lemmas 4.11–4.15 carry over immediately. What’s
important for applications is that we can, if desired, choose the inhomogeneous terms
to be compatible with forgetting any color that has no marked points belonging to it;
and therefore, to make our operations satisfy (4-54).

Well-definedness of (4-32) can be proved by a combination of the approaches from
Sections 4d and 7c. Namely, suppose first that we have A1–rings C0; : : : ;Cr , each
defined by a separate choice of function and other data. One can generalize (4-26) to
obtain a map

(7-31) MC.C1IN /� � � � �MC.Cr IN /!MC.C0IN /:

Now, we want to change the A1–structure on C0 and one of the CkC1. The new
versions are related to the old ones by larger A1–rings H0 and HkC1, constructed as
in the uniqueness argument from Section 7c. The main tool in analyzing this change is
an analogue of the middle! in (4-42), which is a map

(7-32) MC.C1IN /� � � � �MC.HkC1IN /� � � � �MC.Cr IN /!MC.H0IN /:

The definition of this involves two kinds of parameter spaces. The first ones are
again the MWWd1;:::;dr

, but where we single out one of the dkC1 points of color
k C 1, as in the definition of (7-15), for special treatment when constructing the
inhomogeneous terms and almost complex structures. The second class of parameter
spaces are MWWd1;:::;dkC1C1;:::;dr

, which have an additional point of color k C 1

(more precisely, there is one such space for every possible position of the additional
point with respect to the other dk). That point will not correspond to a puncture of the
resulting Riemann surface; we just use its position as a modular variable, following the
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C1

{C1

{C0
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C1

{C0
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C1

C0

{C0D additional marked point

Figure 18: The construction from Example 7.8.

idea from (7-17). Of course, the additional marked point can in principle split off by
itself into a mid-scale screen; when constructing the Riemann surface, that screen will
not correspond to a component. We omit the details entirely.

Example 7.8 The simplest example of a parameter space of the second kind is
MWW1C1, where the additional marked point could be placed either on the left
or right. The context in this case is that we have two versions of (7-21), namely
Hk D Cku ˚ zCk zu ˚ {Ckv for k D 0; 1. As part of their A1–structure, we have
continuation maps Ck !

{Ck . On the other hand, as part of the r D 1 case of (7-31),
we have constructed continuation maps C1 ! C0, zC1 !

zC0, {C1 !
{C0. The two

versions of our moduli space then yield chain homotopies between compositions of
those continuation maps, drawn as dashed arrows here:

(7-33)

C1

����

// C0

��

{C1
// {C0

zC1

����

// zC0

��

{C1
// {C0

The geometry behind the construction on the left is shown schematically in Figure 18.

Remark 7.9 Alternatively, one could prove the well-definedness of the maps …r
C

using the approach from Section 7d, which means defining a corresponding structure
using X �S2, which comes with quasi-isomorphic projections to different copies of X .

The spaces SS from (3-27), while more complicated, show the same geometric behavior
as MWW. Hence, the same kind of argument allows the proof of Proposition 4.20
to carry over, which completes our discussion of Proposition 1.5. There is a minor
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point which may be worth mentioning: in Section 3f, we added two marked points
in the definition of the map (3-31), whose purpose was to break the symmetries of
Fulton–MacPherson space. In a pseudoholomorphic curve context, we treat the extra
points as in the well-definedness arguments above, meaning that their position gives
additional modular variables on which the inhomogeneous term depends.

7f Commutativity

Adapting the arguments from Section 4f, we will now prove Proposition 1.6. This is
the first time that one of the features of our Floer-theoretic setup, namely the time-
independence of the Hamiltonians and almost complex structures, and the resulting
S1–symmetry of (7-1), will be used in a substantial manner.

Throughout the following discussion, it is assumed that choices of inhomogeneous
terms have been made so as to satisfy (4-54). Let’s start with the moduli space
underlying ˇ1;1

C . It involves a family of surfaces depending on one parameter, which
we denote by Cs D C n fz1.s/; z2.s/g for s 2 R. One can assume that this family is
symmetric outside a compact parameter range, in the sense that for some S > 0,

(7-34) .z1.�s/; z2.�s//D .z2.s/; z1.s// if jsj � S;

and that the inhomogeneous terms are chosen compatibly with this symmetry. As a
consequence, there is partial cancellation between the two moduli spaces that enter
into (4-61), with the parts having jsj � S contributing only canceling pairs of points.
One can therefore say that (4-61) is computed by a single parametrized moduli space,
whose compact parameter space is a circle, obtained by gluing together the endpoints
of two intervals Œ�S;S �. If we parametrize this circle by r 2R=2�Z compatibly with
its orientation, then that family of surfaces can be deformed to the simple form

(7-35) .z1.r/; z2.r//D .exp.r
p
�1/;�exp.r

p
�1//:

Up to rotation, this is independent of r , and (it is here that we use time-independence)
one can choose an inhomogeneous term to be compatible with that; in which case, the
moduli space cannot have any isolated points, hence contributes zero. The deformation
which ends up with (7-35), which can be thought as a family of surfaces parametrized
by a compact two-dimensional disc, therefore gives rise to a nullhomotopy (4-65). As
in our previous discussion of (4-60), this implies commutativity of the formal group
structure mod N 3, which is the first part of Proposition 1.6.
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Figure 19: The geometry underlying (7-36): ˇ2;1
C .c1; c2I c3/, top left, and

ˇ
1;2
C .c3I c1I c2/, bottom left. Since part of the structure agrees, we can remove

the hatched regions and join the rest together, with the outcome shown on
the right after removing the “trivial screens” that have only one marked point.
The pairs of points drawn as lying on a circle rotate around each other once
in dependence on the parameters.

Next, let’s look at part of the formula (4-69),

(7-36) ˇ
2;1
C .c1; c2I c3/� .�1/kc3k.kc1kCkc2k/ˇ

1;2
C .c3I c1; c2/:

The underlying moduli spaces are two copies of the octagon from Figure 5. Five
of the boundary sides of those octagons match up in pairs which carry the same
inhomogeneous term. We may assume that this extends to a neighborhood of those
sides. As far as counting points in zero-dimensional moduli spaces is concerned, we can
then cut out suitably matching neighborhoods and glue the rest together. The outcome
of this process, shown in Figure 19, is that our expression can be computed by a single
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moduli space parametrized by a compact pair-of-pants surface. Moreover, along each
boundary circle, we find that one of the components is a copy of the family of surfaces
underlying (4-61), and which can be therefore filled in with a family parametrized by a
disc. As a consequence, we find that the operation K

2;1
C defined in (4-69) is given by

a family of surfaces parametrized by S2. One can further deform that family so that
degenerations happen only along three points (instead of the previous three discs) in
the parameter space.

The outcome is that we have a family of four-punctured spheres, parametrized by S2.
Inspection of Figure 19 shows that this family has degree 1 in H2.DM3/Š Z. This is
a Floer-theoretic implementation of the four-pointed Gromov–Witten invariant, which
we can relate to the standard version by a gluing argument as in [58]. As a consequence,
identifying H�.C/DH�.X IZ/, we have that on the cohomology level,

(7-37)
Z

X

x0 K
2;1
C .x1;x2Ix3/D hx0;x1;x2;x3i4; where xk 2H�.X IZ/:

(See (9-1) for our notational conventions in Gromov–Witten theory.) For the par-
ticular case of K

2;1
C .x1;x1Ix2/, where x1 has odd degree, the graded symmetry of

Gromov–Witten invariants means that hx0;x1;x1;x2i4 D 0. Assuming additionally
that H�.X IZ/ is torsion-free, it follows that K

2;1
C .x1;x1Ix2/ itself is zero. As in

Proposition 4.19, this and the corresponding argument for K1;2 imply the desired
commutativity statement modulo N 4.

7g The pth power map

We now carry over the required arguments from Sections 5 and 6, leading to the proof
of Theorem 1.9 as the Floer-theoretic analogue of Theorem 6.5.

We can bring Floer-theoretic constructions closer to the abstract operadic framework,
by making a generic choice of inhomogeneous terms which are parametrized by FMd .
In the interior, this means that for every complex configuration .z1; : : : ; zd / we choose
an inhomogeneous term �C on the resulting surface (7-4), in a way which is compatible
with the action of the automorphisms which appear in (3-3). We then ask that this
should extend to the “screens” associated to points in @FMd , in a way which enables
compactness arguments for boundary strata of any dimension, see Definition 7.3(i), and
gluing for codimension-one boundary strata, see Definition 7.3(ii). We also ask that
our choices should be Symd –equivariant (recall that the symmetric group acts freely
on FMd ).

Geometry & Topology, Volume 27 (2023)



3026 Paul Seidel

Suppose that we have maps (3-13) based on smooth functions (3-15). By pull-
back, our previous choice induces a family of inhomogeneous terms parametrized
by MWWd1;:::;dr

. For a point in @MWWd1;:::;dr
, any vertices that are collapsed under

(3-13) correspond to cylindrical components C DC n fz1g, which we equip with the
standard inhomogeneous term �C D

�
ZH ˝ re.d log.z� z1/=2�

p
�1/

�0;1. Moreover,
a generic choice of (3-13) ensures transversality for the parametrized moduli spaces
associated to all MWWd1;:::;dr

, and we may then use that choice to build the operations
ˇ

d1;:::;dr

C . Additionally, we may assume that the maps (3-13) are chosen so that (3-19)
holds, which means that the resulting operations satisfy (4-54).

We will be specifically interested in MWWp , in the notation from Section 6b, and the
associated operation ˇ

p

C D ˇ
1;:::;1
C , with p prime. At this point, we fix an odd-degree

cocycle

(7-38) c 2 C˝Fp;

which will remain the same throughout the subsequent discussion. Applying ˇ
p

C to p

copies of c yields another such cocycle, hence a cohomology class

(7-39) Œˇ
p

C .cI : : : I c/� 2H odd.CIFp/:

The underlying geometric phenomenon was explained in Section 6b: the codimension-
one boundary faces of MWWp correspond to nontrivial decompositions of f1; : : : ;pg
into nonempty subsets .I1; : : : ; Ir / for any r � 2. If we act by an element of Z=p on
such a decomposition, we get a new decomposition .zI1; : : : ; zIr /, and the corresponding
boundary faces, when mapped to FMp, are related by the action of a suitable element
of Symp; see (6-7). The cohomology class in (7-39) is independent of our choice of
inhomogeneous terms.

Our first point is that we can realize (7-39) using a family of surfaces without de-
generations. To do that, let’s choose a Symp–equivariant isotopy that pushes Fulton–
MacPherson space into its interior,

(7-40)
�r W FMp! FMp with r 2 Œ0; ��;

�0 D id; �r .FMp/� FMıp D FMp n @FMp for r > 0:

Write �p for the original map MWWp! FMp. The perturbed version,

(7-41) z�p D �r ı �p WMWWp! FMp n @FMp for some r > 0;

will retain the same Z=p–action on codimension-one boundary faces as �p. Going
back to the choice of inhomogeneous terms over FMp , we want to also assume that the
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pullback of that family by (7-41) should lead to a regular parametrized moduli space.
Given that, from (7-41) for some r > 0 we get a new operation ž

p

C , which again yields
a cohomology class

(7-42) Œ ž
p

C .cI : : : I c/� 2H odd.CIFp/:

A similar construction, where one interpolates between �p and z�p, shows that this
cohomology class agrees with (7-39). At this point, we no longer need to compactify
configuration space: to define (7-42), one can use families of perturbation data which
are only defined on FMıp (and still Symp–equivariant).

In the same vein as in (4-63), take

(7-43) DMıp D DMıp �Eıp;

where Eıp is the interior of Fulton–MacPherson space for R1, meaning point configu-
rations up to translation and rescaling. More precisely, we think of this as the direct
limit of the corresponding spaces in each finite-dimensional Euclidean space. There is
an embedding

(7-44) FMıp!DMıp;

which takes each point configuration to the pair formed by its quotient in Deligne–
Mumford space and its image in Eıp . In this context, classes in H

Symp

� .DMıpIFp.1// are
realized by smooth simplicial chains in (7-43), having Fp–coefficients, and quotiented
out by the relation that acting on a chain by some � 2 Symp is the same as multiplying
the chain with .�1/sign.�/. Let’s write C Symp

� .DMıpIFp.1// for this chain complex.

Choose a family of inhomogeneous terms on the family of surfaces pulled back by the
projection DMıp!DMıp , and which is Symp–equivariant. For every smooth map from
a simplex to DMıp, that family of inhomogeneous terms gives rise to a parametrized
moduli space. If that space is regular, we get an operation .C˝ Fp/

˝p ! C˝ Fp.
By adding up those operations with coefficients, we extend the construction to chains.
Let’s specialize to using p copies of our cocycle c as input. Morally, this can be thought
of as giving rise to a Z=2–graded chain map

(7-45) C
Symp

� .DMıpIFp.1//! CpjcjC�
˝Fp:

The cautionary “morally” figures here because of the regularity condition for moduli
spaces, which makes it impossible to define such a map on the entire chain complex.
However, any argument involving a relation between specific chains, such as the one we

Geometry & Topology, Volume 27 (2023)



3028 Paul Seidel

are about to give, only involves finitely many terms, and one can assume that the chains
involved are embedded into the infinite-dimensional space DMıp . One can a posteriori
make a choice of perturbation terms over DMıp which makes the finitely many spaces
involved regular. Hence, for all practical purposes, the consequence is the same as if
we had a map (7-45). In particular, we do get a map

(7-46) H
Symp

� .DMıpIFp.1//!H pC�.CIFp/:

One can think of (7-42) as an instance of this general construction, by smoothly
triangulating the spaces MWWp, in a way which is compatible with the Z=p–action
on codimension-one boundary strata, and then using the embedding (7-44). Using
Lemma 5.3, one identifies the relevant homology class with that underlying the t .p�1/=2

coefficient of the quantum Steenrod operation, up to a coefficient which is spelled out
in Lemma 6.4. This equality, applied to (7-46), implies Theorem 1.9.

8 An alternative approach

The approach outlined in this section was pointed out to the author by Fukaya. It
is an application of the results from [22] (taking the Lagrangian correspondence to
be the diagonal, but with a general bounding cochain, which is our Maurer–Cartan
element). The basic building blocks are parameter spaces from [47], which are close
cousins of Stasheff associahedra (and in particular, are manifolds with corners in the
classical sense). One can use them to define the composition law on Maurer–Cartan
elements, a little indirectly, following [22, Theorem 1.7]; and to prove its associativity,
following [22, Theorem 1.8]. On the other hand, it’s not clear that there is a easier route
from there to Theorem 1.9, which is one reason why we have not given first billing
to this approach. Because of its complementary nature, our discussion will be quite
sparse: not only are proofs omitted, we won’t even make the distinction between the
implementation of these arguments in an abstract operadic context (as in Section 4,
assuming homological unitality) or a concrete Floer-theoretic one (as in Section 7).

8a The moduli spaces

We start with basically the same configuration space as in (3-10), except that the
ordering of points in the last color is reversed:

(8-1)

�
.s1;1; : : : ; s1;d1

I : : : I sr;1; : : : ; sr;dr
/ W

sk;1 < � � �< sk;dk
for k < r ,

sr;1 > � � �> sr;dr

�
fsk;i � sk;i C� for � 2Rg

:
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More importantly, we now consider a compactification of (8-1) which is smaller than
its counterpart from Section 3d. This compactification will be denoted by

(8-2) Qd1;:::;dr
; where r � 2; d1; : : : ; dr � 0; d D d1C � � �C dr > 0;

partly following the “quilted strips” terminology from [47]. The recursive structure of
boundary strata is expressed by maps

(8-3)
mY

jD1

Qkvı;j k1;:::;kvı;j kr �
Y

v in Tj ; v¤vı;j

Skvk
.T1;:::;Tm/
������!Qd1;:::;dr

:

Here, T1; : : : ;Tm (for any m� 1) are trees of the following kind. In each Tj , denote
by vı;j the vertex closest to the root. Then, the incoming edges at that vertex should
carry one of r colors, and are ordered within their color. The parts of the tree lying
above vı;j have planar embeddings, and inherit a single color. The whole thing is
arranged, of course, so that the total number of leaves of each respective color add up to
.d1; : : : ; dr /. Geometrically, what happens is that as groups of points move to˙1, we
split them up into separate screens, which correspond to the Q factors in (8-3) (in the
terminology of Section 3d, these would be called mid-scale, since there is no rescaling
involved, just translation); but we do not keep track of the relative speeds at which
this divergence happens (no large-scale screens). The remaining factors in (8-3) are
small-scale screens, which describe the limit of points converging towards each other.
The image of (8-3) has codimension equal to the overall number of factors (vertices)
minus one. This is related to the fact that Qd1;:::;dr

is a smooth manifold with corners.

Let’s map our points to radial half-lines in the punctured plane,

(8-4) zk;i D exp
�
�sk;i �

2�k

r

p
�1
�
2C�;

and add a marked point at 0 (the zk;i are ordered lexicographically, and the extra point
is inserted between the last two colors). This extends to a continuous map

(8-5) Qd1;:::;dr
! FMdC1:

In terms more familiar from pseudoholomorphic curve theory, one can think of the
configurations (8-4) as lying on parallel lines on a cylinder. In the limit, this breaks
up into several cylinders, plus spheres (copies of xC with a marked point at infinity,
and other marked points lying on the real line) attached to them; see Figures 20(i) and
21(i). On the combinatorial level, the map (8-5) works as follows: starting with trees
as in (8-3), one adds an incoming edge to each vertex vı;j except the last one, and then
identifies those edges with the root edges of TjC1, thereby combining all our trees into
a single T , which is what appears in (3-4); see Figure 20(ii).
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Figure 20: (i) A boundary point in (8-2), drawn in the way familiar from
pseudoholomorphic curve theory; and (ii) the corresponding picture in Fulton–
MacPherson space.

8b The operations

Algebraically, the outcome of using (8-2) and (8-5) are operations

(8-6) �
d1;:::;dr�1;1;dr

C W Cd1C���CdrC1
! CŒ1� d1� � � � � dr �:

Additionally, we set

(8-7) �
0;:::;1;0
C D �1

C:

The property of these operations, derived as usual from the structure of codimension-one
boundary strata, and including (8-7), is that

(8-8)
X
k<r

ij

˙�
d1;:::;dk�jC1;:::;1;dr

C

�
c1;1; : : : ; c1;d1

I : : : I ck;1; : : : ;

�
j
C.ck;iC1; : : : ; ck;iCj /; : : : ; ck;dk

I : : : I cI cr;1; : : : ; cr;dr

�
C

X
p1;:::;pr

˙�
d1�p1;:::;1;dr�pr

C

�
c1;1; : : : ; c1;p1

I : : : I cr�1;1; : : : ; cr;pr�1
I

�
p1;:::;1;pr

C .c1;p1C1; : : : ; c1;d1
I : : : I cI cr;p1

; : : : ; cr;pr
/I

cr;prC1; : : : ; cr;dr

�
C

X
ij

˙�
d1;:::;1;dr�jC1
C

�
c1;1; : : : I cI cr;1; : : : ; cr;i ; �

j
C.cr;iC1; : : : ; cr;iCj /;

: : : ; cr;dr

�
D0:
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In terminology similar to [47], these define the structure of an A1–.r�1; 1/–module,
with the first r � 1 factors acting on the left, and the last one on the right.

Example 8.1 Suppose that d1D� � �Ddr�1D 0. Then, the points (8-4), with the origin
added as usual, lie on a half-line in C. One can use that to identify Q0;:::;0;d Š SdC1.
The auxiliary data involved in defining (8-6) can be chosen to be compatible with that,
in which case one gets �0;:::;1;d

C D �dC1
C .

Example 8.2 For r D 2, the points (8-4) still lie on R�C, hence Qd1;d2
ŠSd1Cd2C1

and, for suitable choices, �d1;1;d2

C D �
d1Cd2C1
C .

Example 8.3 The operations with two inputs, �0;:::;1;:::;1;0
C and �0;:::;1;1

C , are all chain
homotopic to the multiplication �2

C, simply because they come from a single two-point
configuration in the plane.

Our purpose in defining these operations is the following:

Definition 8.4 Let 1; : : : ; r 2 C
1 y̋ N be Maurer–Cartan elements. We say that r

is the product of .1; : : : ; r�1/ if there is a k 2 C0 y̋ .Z1˚N / which modulo N

reduces to a cocycle representing the unit ŒeC�, and such that

(8-9)
X

d1;:::;dr

�
d1;:::;dr�1;1;dr

C .

d1‚ …„ ƒ
1; : : : ; 1I : : : I

dr�1‚ …„ ƒ
r�1; : : : ; r�1I kI

dr‚ …„ ƒ
r ; : : : ; r /D 0:

The expression (8-9) includes a term �1
C.k/, corresponding to .d1; : : : ; dr /D .0; : : : ; 0/.

If write k D eCC .coboundary/C h with h 2 C0 y̋ N , then (keeping Example 8.3 in
mind) the next-order term in the equation says that

(8-10) Œ�
1;0;:::;1;0
C .1; k/�C � � �C Œ�

0;:::;1;1;0
C .r�1; k/�C Œ�

0;:::;1;1
C .k; r /�

D Œ�2
C.1; eC/�C � � �C Œ�

2
C.r�1; eC/�C Œ�

2
C.eC; r /�

D Œ�1� � � � � r�1C r �D 0 in H 1.C˝N=N 2/:

For r D 2, and assuming the choices have been made as in Example 8.2, the condition
in (8-9) reduces to the criterion for equivalence of 1 and 2 given in Lemma 2.6.

Lemma 8.5 The notion of product from Definition 8.4 only depends on the equivalence
class of the Maurer–Cartan elements involved.
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This is the analogue of Lemma 4.11, and is proved in a similar way. Given .1; : : : ; r /

and k as in (8-9), and an element h 2 C0 y̋ N which provides an equivalence between
j and zj , we can construct an explicit zk which shows that .1; : : : ; zj ; : : : ; r / satisfy
the same condition:

(8-11) zk D kC
X

d1;:::;dr ;i

�
d1;:::;1;dr

C .: : : I

i‚ …„ ƒ
j ; : : : ; j ; h;

dj�i�1‚ …„ ƒ
zj ; : : : ; zj I : : : I kI : : : /:

(The formula as written is for j < r , but the j D r case is parallel.)

Lemma 8.6 Given .1; : : : ; r�1/, there is a unique equivalence class r satisfying
Definition 8.4.

This is roughly analogous to Lemma 4.14. It is maybe helpful to reformulate the issue
as follows. We have a right A1–module structure, defined by

(8-12) .cI c1; : : : ; cd /

7!

X
d1;:::;dr�1

�
d1;:::;dr�1;1;d
C .

d1‚ …„ ƒ
1; : : : ; 1I : : : I

dr�1‚ …„ ƒ
r�1; : : : ; r�1I cI c1; : : : ; cd /;

which (thanks to Example 8.1) is a deformation of the free module C. One then wants
to modify that module structure through  insertions, so as to “undo” the deformation,
rendering it trivial. This is a purely algebraic question, which can be reduced to the
strictly unital situation if desired (using Lemma 2.2).

Proposition 8.7 In the sense of Definition 8.4, if  is the product of .i ; iC1/ for
some i < r � 1, and r is the product of .1; : : : ; i�1; ; iC2; : : : ; r�1/, then r is
also the product of .1; : : : ; r�1/.

This is the associativity statement for our notion of product. The proof uses a moduli
space of points lying on certain lines in the punctured plane. It is convenient to draw that
plane as a pair-of-pants, see Figure 21(ii), which is half of the “double pants diagram”
in [22, Section 11.2]. The two known statements about products come with their
respective elements k as in (8-9). One inserts those elements at the two bottom ends,
and the Maurer–Cartan elements at points on the respective lines (the arrows denote
the ordering of the points), the outcome being another element k which establishes the
desired statement.

Remark 8.8 Let’s briefly discuss the counterpart of Definition 8.4 in homological
algebra, in the spirit of Section 2. Take a homologically unital A1–ring A, and its
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z1;1

z1;2

z1;3

1 2 3

z D 0

(i) (ii)

1

2  3 4

z3;3

z3;2
z3;1

z2;1

z2;2

Figure 21: (i) Another picture of a point configuration (8-4), with correct
ordering of the lines and points. (ii) An analogous picture of the moduli
spaces that enter into the proof of Proposition 8.7 (r D 4; i D 1).

Hochschild complex C; see (2-13). Given a Maurer–Cartan element  2 C1 y̋ N , one
can define two A1–bimodules L and R , whose underlying space is A y̋ .Z1˚N /,
with bimodule structure

(8-13) �
pI1Iq
L

.a1; : : : ; apI apC1I apC2; : : : ; apCqC1/D

˙�
pCqC1
A .a1; : : : ; apCqC1/

C

X
ij

˙�
pCqC2�j
A

�
a1; : : : ; : : : ; ai ; 

j .aiC1; : : : ; aiCj /; : : : ; apC1;

: : : ; apCqC1

�
;

C

X
i1j1i2j2

˙�
pCqC3�j1�j2

A

�
a1; : : : ; ai1

;  j1.ai1C1; : : : ; ai1Cj1
/;

: : : ; ai2
;  j2.ai2C1; : : : ; ai2Cj2

/; : : : ; apC1; : : : ; apCqC1

�
C � � �

together with

(8-14) �
pI1Iq
R

.a1; : : : ; apI apC1I apC2; : : : ; apCqC1/D

˙�
pCqC1
A .a1; : : : ; apCqC1/

C

X
ij

˙�
pCqC2�j
A .a1; : : : ; apC1; : : : ; ai ; 

j .aiC1; : : : ; aiCj /; : : : ; apCqC1/

C

X
i1j1i2j2

˙�
pCqC3�j1�j2

A

�
a1; : : : ; apC1; : : : ; ai1

;  j1.ai1C1; : : : ; ai1Cj1
/;

: : : ; ai2
;  j2.ai2C1; : : : ; ai2Cj2

/; : : : ; apCqC1

�
C � � � :
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Here, the rule is that an arbitrary number of  terms are inserted, but always to the
left (8-13), or right (8-14), of apC1. For  D 0, this reduces to A with the diagonal
bimodule structure extended to A y̋ .Z1˚N /, which will denote by L0DR0DD. More
generally, L and R can be viewed as pullbacks of D by the formal automorphism
(2-23) acting on one of the two sides. Using that, one sees easily that the bimodules
are inverses: there are bimodule homotopy equivalences

(8-15) R ˝AL ' L ˝AR 'D:

Here, the tensor product notation is shorthand: we are really taking the tensor product
of A1–bimodules relative to A y̋ .Z1˚N /, and making sure that completion with
respect to the filtration of N is taken into account. Modulo N , all our bimodules reduce
to the diagonal bimodule. Consider the Hochschild complex of A with coefficients in a
bimodule B, denoted here by CC�.B/; see eg [26, Section 2.9]. We say that r is the
product of .1; : : : ; r�1/ if there is a cocycle

(8-16) k 2 CC0.R1
˝A � � � ˝ARr�1

˝ALr
/

which, after reduction modulo N , represents the identity in HH0.A/. For r D 1, one
can use (8-15) to show that this is the case if and only if 1; 2 are equivalent. On the
other hand, for � defined as in (2-24), there are homotopy equivalences

(8-17) L1
˝A� � �˝ALr�1

'Lr�1�����1
and R1

˝A� � �˝ARr�1
'R1�����r�1

:

Combining that with the previous observation shows that our definition of product is
the same as saying that r is equivalent to 1 � � � � � r�1.

8c Relating the two approaches

To conclude our discussion, we’ll mention a possible way to connect the construction
in this section to the rest of the paper, or more precisely: to prove that, if r is the
product of .1; : : : ; r�1/ in the sense of Definition 8.4, then r is also equivalent to
…r�1

C .1; : : : ; r�1/, which is the product from Definition 4.10. The reader is exhorted
to treat this as what it is, a suggestion: it relies on new moduli spaces whose structure
has not been fully developed.

We begin by introducing an additional parameter t 2 Œ0; 1/, and changing (8-4) by
letting the first r � 1 radial lines collide in the limit t ! 1:

(8-18) zk;i D

(
exp

�
�sk;i�.1� t/

2�k

r

p
�1� t�

p
�1
�
2C� if k D 1; : : : ; r �1;

exp.�sr;i/ if k D r:
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t ! 1

these three lines collide in the limit

Figure 22: A limit in the space PQ3;1;1;2 which lies in the image of (8-20).
For compatibility with Figure 21, we have drawn the MWW components
rotated by 90 degrees.

This leads to a compactification of Œ0; 1/ times (8-1), which we write as

(8-19) t W PQd1;:::;dr
! Œ0; 1� for r � 3:

Over each t 2 Œ0; 1/, the fiber is a copy of Qd1;:::;dr
. In the limit t ! 1, points of the

first r � 1 colors bubble off into screens which have the structure of MWW spaces
(Figure 22). This means that we have maps

(8-20) Qj ;rd
�

jY
iD1

MWWd1;i ;:::;dr�1;i
! PQd1;:::;dr

for each partition d1 D d1;1C � � � C dj ;1; : : : ; dr�1 D dr�1;1C � � � C dr�1;j , whose
images are the top-dimensional parts of the fiber of (8-19) over t D 1. The space (8-19)
comes with a map to FMdC1, which over the fiber t D 0 reduces to (8-5).

The definition (8-18) suffers from the usual disadvantage of parametrized spaces,
meaning that its compactification contains strata that are fiber products over Œ0; 1�. To
bypass that difficulty, one can try to use those spaces in a “time-ordered” form (the
same strategy as in [65, Section 10e]), which means that we consider k–tuples of
points in PQd1;1;:::;d1;r

� � � � �PQdk;1;:::;dk;r
, where .di;k/ is again a partition of .dk/,

such that the associated parameters satisfy t1 � � � � � tk . Pairs of points with equal
parameters now occur in the boundary of two different such spaces (when ti D tiC1

Geometry & Topology, Volume 27 (2023)



3036 Paul Seidel

for some i ; and as a boundary face of one of the PQ factors involved). If we insert
Maurer–Cartan elements .1; : : : ; r / at the marked points in C�, and add a trivial
term which is the identity map, the outcome should be a map

(8-21) ˆC W C! C

which, setting  D…r�1
C .1; : : : ; r�1/, satisfies

(8-22) ˆC

� X
d1;:::;dr

�
d1;:::;dr�1;1;dr

C .

d1‚ …„ ƒ
1; : : : ; 1I : : : I

dr�1‚ …„ ƒ
r�1; : : : ; r�1I cI

dr‚ …„ ƒ
r ; : : : ; r /

�
D

X
d1;d2

�
d1;1;d2

C .; : : : ; „ ƒ‚ …
d1

IˆC.c/I r ; : : : ; r„ ƒ‚ …
d2

/:

The left-hand side of this equation represents what happens for t1 D 0 (the t1 D 0

component then gives �C, and the other components giveˆC), while the right-hand side
represents what happens for tk D 1 (with the  factors coming from the collision of the
first r � 1 lines). Suppose that r is the product of .1; : : : ; r�1/; see Definition 8.4.
Then, inserting the associated element k into (8-21) produces another element, which
shows that “r is the product of . /” in the same sense. As pointed out before, in that
special case, the definition just amounts to saying that r and  are equivalent.

9 Computing quantum Steenrod operations

By definition, quantum Steenrod operations belong to genus-zero enumerative geometry.
Generally speaking, it’s an open question what their role is within that theory. However,
for low-degree contributions one can give a satisfactory answer, in terms of the usual
Gromov–Witten invariants. After explaining this, we will turn to specific example
computations.

9a Gromov–Witten theory background

Let’s start in a context which is a little different than the rest of the paper. Take X to
be a closed symplectic 2n–manifold, with the only restriction (for notational simplicity,
since we only want to use power series in the Novikov variable q) that the symplectic
form must lie in an integral cohomology class, denoted here by

�X 2 Im
�
H 2.X IZ/!H 2.X IQ/

�
:
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Genus-zero Gromov–Witten invariants for m–pointed curves, and their generalizations
that include gravitational descendants, will be written as

(9-1) h r1x1; : : : ;  
rmxmim

D

X
A

q�X �Ah r1x1; : : : ;  
rmxmim;A 2QŒŒq�� for xi 2H�.X IQ/;

where the sum is over A2H2.X IZ/. For the contribution of A to be potentially nonzero,
one should either consider classes with positive symplectic area�X �AD

R
A !X > 0, or

take AD 0 (the case of constant curves) and m� 3. For expositions of Gromov–Witten
that include the properties used in this paper, see eg [57, Section 1] or [35, Chapter 26].

We introduce another formal variable t , so that the coefficient ring for our algebraic
considerations will be QŒt˙1�ŒŒq��. The small quantum product, and the small quantum
connection, on the Z=2–graded space H�.X IQ/Œt˙1�ŒŒq�� are defined byZ

X

.y1 �y2/y3 D hy1;y2;y3i3;(9-2)

ry D q@qyC t�1�X �y:(9-3)

We will consider endomorphisms ˆ of H�.X IQ/Œt˙1�ŒŒq�� which are (linear over the
coefficient ring and) covariantly constant with respect to r. Concretely, this means that

(9-4) .q@qˆ/.y/C t�1�X �ˆ.y/� t�1ˆ.�X �y/D 0:

If we expand ˆDˆ.0/C qˆ.1/C q2ˆ.2/C � � � , (9-4) becomes

ˆ.0/.�X y/D�Xˆ
.0/.y/;(9-5)

ˆ.k/.y/D t�1k�1.ˆ.k/.�X y/��Xˆ
.k/.y//C (recursive terms) if k > 0;(9-6)

where the generic “recursive terms” covers expressions involving onlyˆ.0/; : : : ; ˆ.k�1/.
By repeatedly inserting (9-6) into itself, we get

(9-7) ˆ.k/.y/D t�mk�m
X

i

.�1/i
�m

i

�
�i

Xˆ
.k/.�m�i

X y/C (recursive terms):

Setting m> 2n means that in the sum we have i > n or m� i > n, so all those terms
vanish. One therefore gets explicit recursive formulae, which show that the constant
term ˆ.0/, subject to (9-5), determines all of ˆ. The case we are interested in is where
ˆ.0/.y/D xy is the cup product with a given class x 2H�.X IQ/. There is a formula
for the resulting ˆDˆx in terms of gravitational descendants, closely related to the
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standard formula for solutions of the quantum differential equation:

(9-8)
Z

X

y0ˆx.y1/

D

Z
X

y0xy1� t�1
hy0; .1C t�1 /�1xy1i2C t�1

h.1� t�1 /�1y0x;y1i2

� t�2
X

k

hy0; .1C t�1 /�1xeki2h.1� t�1 /�1e_k ;y1i2:

In principle, the terms .1C � � � /�1 are supposed to be expanded into geometric series;
but for degree reasons, only one term in this series is nonzero for each class A that
contributes to the expressions in (9-8). The .ek/, .e_k / are Poincaré dual bases in
H�.X IQ/, meaning that in the Künneth decomposition,

(9-9)
X

k

ek ˝ e_k D Œdiagonal� 2H 2n.X �X IQ/:

Checking that ˆx satisfies (9-4) is an exercise using basic properties (divisor equation
and TRR) of Gromov–Witten invariants. Using the string equation, one can write the
special case y0 D y, y1 D 1 as

(9-10)
Z

X

yˆx.1/D

Z
X

yx� t�1
hy; .1C t�1 /�1xi2C t�2

h.1� t�1 /�1yxi1

� t�3
X

k

hy; .1C t�1 /�1xeki2h.1� t�1 /�1e_k i1:

Let’s modify the context slightly, and assume that X is weakly monotone. Moreover,
choose an integer lift of the symplectic cohomology class, again denoted by �X .
Then, one can define mod p versions of Gromov–Witten invariants counting curves
in A 2H2.X IZ/, for which we use the same notation:

(9-11) hx1; : : : ;xmim;A 2 Fp with xi 2H�.X IFp/;

provided that
�

m� 3; or
any m and 0<�X �A< p:

For m � 3, this is the classical definition in terms of an inhomogeneous x@–equation
(Gromov’s trick). The definition in the second case can be reduced to the first case by
taking the divisor equation as an axiom, where the class inserted is always (the mod p

reduction of) �X . Alternatively, one could argue more geometrically: if �X �A< p,
then no stable map in class A can have an automorphism group whose order is a
multiple of p. This should allow one to define virtual fundamental classes in homology
with Fp–coefficients (we say “should” since this has not, to our knowledge, been carried
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out in the literature). The discussion of the second case also applies to gravitational
descendants, with the same assumption 0 < �X �A < p. Geometrically, this uses
the fact that orbifold line bundles whose isotropy groups have orders coprime to p

have Chern classes in mod p cohomology; algebraically, one can use the formula
(involving the divisor relation and TRR) that reduces invariants involving gravitational
descendants to ordinary Gromov–Witten invariants.

The quantum product and connection can be considered as acting on H�.X IFp/Œt
˙1�ŒŒq��,

where one now thinks of t as in (1-5). Formal linear differential equations in character-
istic p have a much larger space of solutions than their characteristic 0 counterparts,
simply because d

dx
xp D 0. As an instance of that, the uniqueness statement derived

from (9-7) now holds only up to order qp�1, because of the division by km. If one
truncates the formula (9-8) modulo qp , then all terms appearing in it are defined with
Fp–coefficients; and it yields the unique solution modulo qp of (9-4), whose q0 term
equals the cup product with x.

9b Application to quantum Steenrod operations

We adapt our previous definition of quantum Steenrod operations to the weakly mono-
tone context, by adding the variable q. This means that, with .t; �/ as in (1-5) (and
omitting the manifold X for the sake of brevity),

(9-12) Q Stp D
X
A

q�X �A Q Stp;A WH�.X IFp/!H�.X IFp/Œt; � �ŒŒq��:

We find it convenient to introduce a minor generalization, which is a bilinear map on
cohomology. More precisely, for each x 2 H�.X IFp/ one gets an endomorphism
of H�.X IFp/Œt; � �ŒŒq��, denoted by

(9-13) Q†p;x D

X
A

q�X �AQ†p;x;A WH
�.X IFp/Œt; � �ŒŒq��!H�.X IFp/Œt; � �ŒŒq��:

Geometrically, while quantum Steenrod operations are obtained from holomorphic
maps which have (5-19) as a domain, we use the remaining Z=p–fixed point (z D 0)
on that curve as an additional input point to define (9-13). In other words, one can
view it as an equivariant version of the “quantum cap product”, obtained from the Z=p–
equivariant curve in Figure 23. On a technical level, the definition is entirely parallel
to that of quantum Steenrod operations, by looking at moduli spaces parametrized by
cycles in the classifying space BZ=p [66]. The q0 term of (9-13) is the cup product
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p points arranged symmetrically, insert x in each

Figure 23: The Riemann surface underlying the definition of Q†p;x. � /; see (9-13).

with the classical Steenrod operation,

(9-14) Q†p;x;0.y/D Stp.x/y:

The relation between (9-12) and (9-13) is that

(9-15) Q Stp.x/DQ†p;x.1/:

Remark 9.1 It is natural to extend the definition of (9-13) to x 2H�.X IFp/ŒŒq�� in a
Frobenius-twisted way, meaning that †p;qx D qp†p;x . Then,

(9-16) Q†p;x1
ıQ†p;x2

D .�1/p.p�1/=2jx1j jx2jQ†p;x1�x2
:

Note that as a consequence of (9-14) and (9-16),

(9-17) Q†p;x.Q Stp.y//DQ†p;x ıQ†p;y.1/D .�1/p.p�1/=2jxj jyjQ†p;x�y.1/

D .�1/p.p�1/=2jxj jyjQ Stp.x �y/:

Every class in H�.X IFp/Œt; t
�1; � � can be written as Stp.y/ for some y. An analogous

statement holds for quantum Steenrod operations, and by combining that with (9-17),
one sees that Q Stp actually determines Q†p.

For our purpose, the key point is the following result:

Theorem 9.2 [66, Theorem 1.4] For any x, the endomorphism Q†p;x is covari-
antly constant for the small quantum connection (9-3), meaning that it satisfies (9-4).
(We have tacitly extended the coefficient ring to include � .)

As a consequence of that and the discussion at the end of Section 9a, Q†p;x is
determined modulo qp by the classical term (9-15). More explicitly, comparison with
(9-8) shows that

(9-18) Q†p;x DˆStp.x/ modulo qp:

Specializing to (9-14) and using (9-10) leads to:
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Corollary 9.3 The low-degree contributions to the quantum Steenrod operation are:

(9-19)
X

�X �A<p

q�X �A

Z
X

y Q Stp;A.x/

D

Z
X

y Stp.x/� t�1
X

0<�X �A<p

q�X �Ahy; .1C t�1 /�1 Stp.x/i2;A

C t�2
X

0<�X �A<p

q�X �Ah.1� t�1 /�1y Stp.x/i1;A

� t�3
X

�X �A0>0
�X �A1>0

�X �.A0CA1/<p

X
k

q�X �.A0CA1/hy; .1C t�1 /�1 Stp.x/ eki2;A0

� h.1� t�1 /�1e_k i1;A1
:

Note that even though there are negative powers of t in the formula, we know a priori
that none of them can appear in Q Stp, so all terms involving them must cancel.

9c A localization argument

The approach to quantum Steenrod operations via Theorem 9.2 is formally slick,
but maybe somewhat indirect; we will therefore suggest a possible alternative. For
simplicity, we will work out only the most elementary case. Namely, let’s assume that
our symplectic manifold X is an algebraic variety, and that we use the given complex
structure. We fix some A 2H2.X IZ/ which is holomorphically indecomposable: this
means that one can’t find nonzero classes A1; : : : ;Ar , r � 2, each of them represented
by a holomorphic map CP1! X , such that A1C � � � CAr D A. This implies that
the space of unparametrized rational curves in class A is compact, and contains no
multiple covers. We further assume that this space is regular. Consider the standard
framework involving stable map spaces,

(9-20)

LpC1;0; : : : ;LpC1;p

��

MpC1 MpC1.X IA/oo
evpC1D.evpC1;0;:::;evpC1;p/

// X pC1

Here, MpC1 is genus-zero Deligne–Mumford space (we prefer to use the conventional
algebrogeometric notation rather than that in the rest of the paper); MpC1.X IA/ is
the space of stable maps; and the LpC1;k are the tautological line bundles (cotangent
bundles of the curve) at the marked points. Our assumption was that M0.X IA/

is regular, hence smooth of complex dimension nC c1.A/� 3. As a consequence,
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all MpC1.X IA/ are smooth of dimension nCc1.A/C.p�2/, and actually fiber bundles
over M0.X IA/ with fiber MpC1.CP1I 1/. The Symp–action on Deligne–Mumford
space has a canonical lift to MpC1.X IA/.

At this point, we (re)impose the assumption that p is prime. Let M˘
pC1

.X IA/ �

MpC1.X IA/ be the subset of stable maps which, under the forgetful map to Deligne–
Mumford space, are mapped to the point from (5-19). Clearly, that subset is invariant
under Z=p� Symp . As before, one can describe its geometry explicitly: M˘

pC1
.X IA/

is a fiber bundle over M0.X IA/ with three-dimensional fiber M˘
pC1

.CP1I 1/, and
Z=p acts in a fiber-preserving way.

Lemma 9.4 The fixed-point set F �M˘
pC1

.X IA/ of the Z=p–action is the disjoint
union of :

(i) A copy of M2.X IA/. The restriction of evpC1 to that component can be
identified with .ev2;0; ev2;1; : : : ; ev2;1/. Moreover , the normal bundle N of this
component is the dual of the tautological bundle L2;1 !M2.X IA/, and the
.Z=p/–action on it has weight �1.

(ii) A copy of M1.X IA/. The restriction of evpC1 to that component can be
identified with .ev1;0; : : : ; ev1;0/. Topologically , the normal bundle N of this
component is a direct sum of a trivial line bundle and the dual of L1;0, with the
.Z=p/–action having weight 1 on each component.

Proof (i) The relevant rational curves have two components C D C� [� CC;
see Figure 24. C� carries marked points z1; : : : ; zp and also the node �, and can
be identified with (5-19), in such a way that � corresponds to 1; the stable map is

�

z1

z2

z3

z0

CCC�

(ii)

z0

CC

z1

z2

z3

C�

(i)

�

Figure 24: The fixed loci from Lemma 9.4 (with p D 3). The lighter shaded
components are those where the map is constant.
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constant on that component. The other component CC carries the node � and the
marked point z0; the stable map on that component represents A. The fiber of the
normal bundle to the fixed locus at such a point can be canonically identified with
T�C�˝ T�CC; see eg [31, Proposition 3.31]. The identification of C� with (5-19)
mentioned above provides a distinguished isomorphism T�C� Š C over the entire
stratum, and also shows that the action of Z=p on T�C� has weight �1. By definition,
T�CC is the dual of the cotangent line which is the fiber of L2;1, and carries the trivial
Z=p–action.

(ii) Here, the curves also have two components C DC�[�CC, with details as follows;
see again Figure 24. There are no marked points on C�, and ujC� represents A. The
other component is isomorphic to (5-19), compatibly with all marked points and so
that the node � corresponds to 0 2 xC; and ujCC is constant. The fiber of the normal
bundle to the fixed locus at such a point can be written as an extension

(9-21) 0! T�.CC/!N ! T�.C�/˝T�.CC/! 0:

The tensor product in the right term again expresses gluing together the two components.
This time, because � is identified with the point 0 in (5-19), the Z=p–action has weight 1

on T�.CC/ŠC. The subspace on the left in (9-21) corresponds to staying inside the stra-
tum of nodal curves, but moving the position of the node on CC. Topologically (9-21)
splits, even compatibly with the .Z=p/–action, leading to the desired statement.

Reformulating the definition of quantum Steenrod operations, one can say that the
pairing .y;x/ 7!

R
X yQ Stp;A.x/ is obtained as follows:

(9-22)

H j .X IFp/˝H l.X IFp/

��

// H
pj

Z=p.X
pIFp/˝H l.X IFp/

H
pjCl

Z=p .X pC1IFp/

ev�
pC1

��

H
pjCl�2n�2c1.A/C6

Z=p .pointIFp/ H
pjCl

Z=p . xM˘
pC1

.X IA//R Z=p

M˘
pC1

.X IA/

oo

The ! is (the topological version of) the equivariant diagonal map (5-11), and the
integration map is the pairing with the equivariant fundamental class of the moduli
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space. The localization theorem for Z=p–actions [1, Proposition 5.3.18] shows that
this integral can be computed in terms of the fixed locus:

(9-23)
Z Z=p

xM˘
pC1

.X IA/

w D

Z
F

.wjF /eZ=p.N /�1 for w 2H�Z=p.
xM˘pC1.X IA//;

where eZ=p.N / is the equivariant Euler class of the normal bundle. Applying this to the
description from Lemma 9.4, with w being a class pulled back by evaluation, we get:

Corollary 9.5 The contribution of a holomorphically indecomposable class A, which
has regular moduli spaces , to the quantum Steenrod operation is

(9-24)
Z

X

y Q Stp;A.x/

D�t�1
hy; .1C t�1 /�1 Stp.x/i2;AC t�2

h.1� t�1 /�1y Stp.x/i1;A:

The use of an integrable complex structure is not really necessary. It was convenient for
expository purposes, because it makes the moduli spaces into differentiable manifolds,
so that we can talk about the normal bundle to the fixed locus. However, (9-23) also
applies to actions on topological manifolds, provided that they are linear in local
topological charts near the fixed locus (thereby defining a notion of normal bundle).
One can prove that property for regular moduli spaces of pseudoholomorphic curves
by standard gluing methods.

Clearly, (9-24) is compatible with the formula (9-19), which we obtained by other
means (conversely, one could specialize our earlier argument to only use the class A,
and thereby recover (9-24) from it). In principle, this localization method should apply
more generally to classes A that are p–indecomposable: by that, we mean that one
can’t write ADpA1CA2C� � �CAr for r � 1 and nonzero classes A1; : : : ;Ar which
are represented by holomorphic curves (this is always satisfied if �X �A < p). In
that situation, there is another component to the fixed locus, which corresponds to
the final sum in (9-19). However, note that there are significant technical issues: one
can no longer assume that the moduli spaces under consideration are smooth, hence
presumably needs to apply a virtual analogue of localization, analogous to [30]. Maybe
the most salient argument in favor of the direct approach is that it shows how, when
going beyond the situations we have considered so far, the existence of p–fold covered
curves complicate the situation: such curves yield yet more components of the fixed
locus of the Z=p–action, whose contributions would need to be studied separately.
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9d Basic examples

From this point onwards, we return to the monotone context from the main part of the
paper — actually, our first two examples are only spherically monotone, meaning that
the symplectic class and first Chern class are positive proportional on �2.X /, but that’s
just as good for our purpose. In terms of formulae such as (9-19), this simply means
that all expressions are polynomials in q for degree reasons, and hence it is permitted
to remove the formal variable by setting q D 1.

Example 9.6 Let X D T 2�CP2. We consider pD 2, take any x 2H 1.T 2IF2/, and
let l 2H 2.CP2IF2/ be the generator. The classical contribution is

(9-25)

8<:
„2.x˝ 1/D x˝ 1;

„2.x˝ l/D x˝ l2;

„2.x˝ l2/D 0:

For degree reasons, the only other contribution comes from the class A of a line in CP2,
and in view of of invariance under symplectic automorphisms, that contribution must
be that Q„2;A.x˝ l2/ is some multiple of x˝ l . Using the notation � D t1=2, we
have Q St.x˝ l2/D t5=2.x˝ l2/. Take some y 2H 1.T 2IF2/. Then (9-24) says that

(9-26)
Z

X

.y˝ l/Q St2;A.t5=2.x˝ l2//D t1=2
hy˝ l;  .x˝ l2/i2;A

D t1=2

�Z
T 2

yx

�
hl;  l2

iCP2;2;A:

In the rightmost term, the Gromov–Witten invariant is taken in CP2, and we have
marked that notationally (to get to that expression, we have used the fact that all our
curves are constant in T 2–direction). Geometrically, what we are considering in that
term is the space of all lines in CP2 going through a specific line Z (representing l) and
a point q 62Z (representing l2). That moduli space can be identified with Z, and the
normal bundle to Z is the dual to the line bundle which gives rise to the gravitational
descendant in the formula. Hence, hl;  l2iCP2;2;A D 1.

Let’s pass to the algebraic closure F2, with a nontrivial third root of unity � 2 F2.
This yields a splitting of 1 2 QH�.CP2IF2/ into idempotents uj D 1C �j l C �2j l2.
The natural extension of Q„2 to H odd.X IF2/ is linear in a Frobenius-twisted sense,
meaning that Q„2.� � /D �

2Q„2. � /. From our previous computations, it follows that

(9-27) Q„2.x˝uj /D x˝uj :
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Let’s see how this might look from a categorical viewpoint, along the lines of Remark
1.10. The Fukaya category of CP2 over F2 is more properly described as a collection of
three categories, each of which is semisimple, and which correspond to the idempotent
summands F2uj in quantum cohomology. Unfortunately, we cannot introduce a
meaningful version of the Fukaya category of T 2 without Novikov parameters, because
there are no nontrivial monotone Lagrangian submanifolds. However, the diagonal in
the Fukaya category of X �X makes sense in a monotone context, so we can frame the
discussion in that language. Algebraically, the diagonal splits as the direct sum of three
objects, again corresponding to the uj . We can take one of those summands and equip
it with a flat line bundle, or formal family of flat line bundles, in the T 2–direction.
The convolution of such Lagrangian correspondences gives us H 1.T 2IGm/ D G2

m,
respectively its formal completion. Since we can do that independently for all three
summands, we see the formal completion of G6

m appearing, which is consistent with
(9-27). If one wanted to work over F2 itself, only the idempotents u0 and u1C u2

would be defined, giving rise to a more complicated picture of the Fukaya category.

Example 9.7 Along the same lines, take X D T 2�CP1�CP1, but now with p D 3.
Take x;y 2H 1.T 2IF3/ and k; l 2H 2.CP1 �CP1IF3/. The only classes A which
contribute to Q„3.x˝k/ are those which yield the two rulings of X , and hence satisfy
hŒpoint�i1;A D 1. For each such class, (9-24) yields

(9-28)
Z

X

.y˝ l/Q„3;A.x˝ k/D�h.y˝ l/.x˝ k/i1;A D�

Z
X

.y˝ l/.x˝ k/:

Adding up their contributions yields

(9-29) Q„3 D�2 idD id on H 3.X IF3/.

The same holds on H 1.X IF3/; see (1-14). The corresponding question for H 5.X IF3/

is just outside the reach of our methods, because there is a potential contribution from
classes that are 3 times that of a ruling.

This time, the Fukaya category of CP1�CP1 splits into four semisimple pieces over F3,
so one expects to see the product of four copies of the formal group associated to T 2,
meaning a total of yG8

m, which is compatible with our (partial) computation.

9e Fano threefolds

The remaining examples will be monotone symplectic six-manifolds, which have
H1.X IZ/ D 0 and H�.X IZ/ torsion-free (in fact, they will be algebraic, meaning
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Fano threefolds). We will assume that there is some � 2 Z such that

(9-30) c1.X /�x D �x for x 2H 3.X /;

or, equivalently,
hy;xi2 D �

Z
X

yx for x;y 2H 3.X /:

From now on, we fix a prime p, and our notation will be that x;y 2H 3.X IFp/. The
classical Steenrod operations applied to x have potentially nontrivial components in
degrees 3, 4 and 6. The degree 4 component is the Bockstein ˇ, which is zero because
all our classes come from H 3.X IZ/. The degree 6 component is the t .3p�7/=2� part
of Sq.x/. For p D 2, this is just the cup square, which again is zero by lifting to
H 3.X IZ/; and for p > 2, it involves the Bockstein, see (1-6), hence is again zero. The
outcome is that only the degree 3 component survives. Taking the constants in (1-6)
into account (and omitting X from the notation), this says that

(9-31) Stp.x/D

(
xt3=2 if p D 2;

�

�
p�1

2
!
�
xt .3p�3/=2 if p > 2:

As a consequence of (9-30) (and the divisor and TRR relations in Gromov–Witten
theory), we have for 0< d � p� 2,

(9-32) hy;  dxi2 D
�

d C 1
hy;  d�1xi2 D � � � D

�dC1

.d C 1/!

Z
X

yx:

Let’s look at
R
X y Q„p.x/. For degree reasons, the curves that contribute to this lie in

classes A with c1.A/D p� 1, hence (setting �X D c1.X / in view of monotonicity)
Corollary 9.3 applies. At first sight, the outcome reads as follows:

(9-33)
Z

X

yQ„p.x/

D�

X
��ADp�1

hy;  p�2xi2;A�

Z
X

yx
X

��ADp�1

h p�3Œpoint�i1;A

C

X
d0D��A0>0
d1D��A1>0
d0Cd1Dp�1

hy; .�1/d0�1 d0�1xi2;A0
h d1�2Œpoint�i1;A1

:

Using (9-32), one simplifies this to

(9-34)
Z

X

y Q„p.x/

D

�Z
X

xy

��
�
�p�1

.p� 1/!
C

X
2�d�p�1

.�1/d�1 �p�1�d

.p� 1� d/!
h d�2Œpoint�i1

�
:
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Besides �, the enumerative ingredient that enters is the quantum period (see [12], where
the notation is GX )

(9-35) …D 1C
X
d�2

qd
h d�2Œpoint�i1;A;

or more precisely, what’s obtained from it by truncating mod qp and then considering
the coefficients as lying in Fp. In that notation, one can also write (9-34) as

(9-36) Q„p D�.q
p�1–coefficient of e��q…/ id:

All the examples that we will consider are instances of [12, Theorem 4.7], itself based
on Givental’s work.

Example 9.8 Let X be the intersection of two quadrics in CP5, which is also a moduli
space of stable bundles (with rank two and fixed odd-degree determinant) on a genus
two curve. This has

(9-37) Hl.X IZ/D

8<:
Z4 if l D 3;

Z if l D 0; 2; 4; 6;

0 otherwise.

The first Chern class is twice a generator of H 2.X IZ/. For degree reasons, this implies
that Q„2D 0. This is not necessarily indicative of the general picture, since we already
know that the prime pD2 is exceptional [15, page 137]: the small quantum cohomology
ring has QHeven.X /Š ZŒh�=h2.h2� 16/, hence does not split into summands if one
reduces coefficients to F2.

Let’s look at odd primes. We have �D 0 since there are no classes A with �X �AD 1.
The quantum period is [13, page 135]

(9-38) …D
X
d�0

.2d/!2

.d!/6
q2d
D 1C 22q2

C 32q4
C
�

10
3

�2
q6C

�
35
12

�2
q8C � � � :

Applying (9-34) yields

(9-39) Q„p D�
.p� 1/!2�

1
2
.p� 1/

�
!6

idD .�1/.p�1/=2 id for odd p:

We should point out that the first nontrivial case pD 3, where the enumerative geometry
is that of lines on X , is amenable to the more direct method of Section 9c. The space
of lines is regular [59, Theorem 2.6] (it is isomorphic to the Jacobian of the genus
two curve associated to X [59, Theorem 4.7]), and there are 4 lines passing through a
generic point [16, page 135]. That information enables one to apply (9-24) and obtain
Q„3 D�4 idD�id.
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When thinking about the outcome of this computation, it may be useful to know that
there is an algebraic group whose formal completion shows the same behavior, namely

(9-40) G D fxC iy W x2
Cy2

D 1g;

where i is an abstract symbol such that i2 D �1 (some readers may feel more com-
fortable writing this as a group of 2 � 2 rotation matrices). It is a nonsplit torus,
which becomes isomorphic to Gm over any coefficient ring that contains an actual root
of �1. To write down the group law for the completion yG, one can use the rational
parametrization z D y=.1Cx/, in which it is given by

(9-41) z1 � z2 D
z1C z2

1� z1z2

:

The pth power map, for primes p > 2, is .xC iy/p � xpC .�1/.p�1/=2iyp mod p,
or for (9-41),

(9-42)
p‚ …„ ƒ

z � � � � � z �
.�1/.p�1/=2yp

1Cxp
D .�1/.p�1/=2zp

D .�1/.p�1/=2z for z 2 Fp:

A natural conjecture would be that the formal group associated to X is yG4. Note that
in [69], a direct summand of the Fukaya category of X was shown to be equivalent
to the Fukaya category of the genus two curve. This seems to suggest a role for yG4

m

rather than yG4 (compare Remark 1.10). However, [69] works with complex number
coefficients. To the author’s best knowledge, we do not have a version of that argument
that would work over Z or Fp , and hence, it remains an open question to interpret the
computation above in terms of mirror symmetry.

Example 9.9 Let X � CP4 be a cubic threefold. This situation is parallel to the
previous example, except that H 3.X / is ten-dimensional. The quantum period is
[13, page 134]

(9-43) …D
X

d

.3d/!

.d!/5
q2d
D 1C 6q2C

45
2

q4C
140

3
q6C

1925
32

q8C � � � :

One again has Q„2 D 0 and �D 0 for degree reasons, but this time

(9-44) Q„p D�

�
3p�3

2
!
�

�
p�1

2
!
�5 idD 0 for p > 2.
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Example 9.10 The quartic threefold has [13, page 136]

(9-45) …D e�24q
X

d

.4d/!

.d!/5
qd :

We have �D�24, the “big eigenvalue” in the terminology of [67, Corollary 1.14]. The
e�24q cancels out the corresponding term in (9-36), and we again have Q„p D 0.

In both of the previous examples, homological mirror symmetry is known to hold [67],
but again, arithmetic aspects are not addressed in that paper. Even assuming that the
answer given there is true arithmetically, it takes the form of an orbifold LG (Landau–
Ginzburg) model with a highly degenerate singular point. For our purpose, one would
need to understand the formal completion near the identity of the derived automorphism
group of such an LG model, which is a purely algebrogeometric problem, but one
whose answer is not known to this author. This means that we do not have a mirror
symmetry interpretation for the vanishing of Q„p.

Example 9.11 (previously mentioned in Example 1.11) Let X be a hypersurface
of bidegree .1; 2/ in CP1 � CP3; equivalently, this is obtained by blowing up the
intersection of two quadrics (which is an elliptic curve) in CP3. It is a Fano threefold
satisfying

(9-46) Hl.X IZ/D

8<:
Z2 if l D 2; 3; 4;

Z if l D 0; 6;

0 otherwise.

More precisely, we have H2.X IZ/ Š H2.CP1�CP3IZ/ by inclusion, and for the
exceptional divisor T 2 �CP1 � X , we similarly have H3.T

2�CP1/ŠH3.X IZ/.
The classes potentially represented by holomorphic curves are

(9-47) AD .d1; d2/; with d1; d2 � 0 and �X �AD d1C 2d2:

Curves in the unique class A D .1; 0/ with �X �A D .1; 0/ form the ruling of the
exceptional divisor. From that, one easily sees that �D�1. We have [13, page 183]

(9-48) e��q…D eq…D
X

d1;d2

.d1C 2d2/!

.d1!/2.d2!/4
qd1C2d2 ;

and hence

(9-49) Q„p D id
X

d1C2d2Dp�1

1

.d1!/2.d2!/4
:

See (1-16) for the first few terms. As before, the lowest-degree case pD 2 is amenable
to more direct methods, and was in fact determined in [74].
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One can write

(9-50)
X

d1C2d2Dm

m!2

.d1!/2.d2!/4
D

X
d1C2d2Dm

� m

d1d2d2

�2
D constant coefficient of zW m;

where
zW .x0;x1;x2;x3/D

.x2
0
Cx2

1
Cx2x3/.x0x1Cx2

2
Cx2

3
/

x0x1x2x3

:

This is an elementary combinatorial argument: when we expand

.x2
0 Cx2

1 Cx2x3/
m.x0x1Cx2

2 Cx2
3/

m;

the monomial .x0x1x2x3/
m arises by picking each x2

k
term an equal number (d2 in

our formula) of times, which leads to the multinomial coefficients. Setting mD p� 1

allows us to apply that to (9-49). Next, consider the intersection of the two quadrics
that appear in (9-50),

(9-51) C D fx2
0 Cx2

1 Cx2x3 D 0; x0x1Cx2
2 Cx2

3 D 0g � P3:

There is an elementary number theory argument which allows one to count the number
of points of C.Fp/ modulo p; it goes as follows. By little Fermat,

(9-52)
X

x0;:::;x3

.1�x2
0 �x2

1 �x2x3/
p�1.1�x0x1�x2

2 �x2
3/

p�1
2 Fp

counts the number of points in F4
p lying on the intersection of our quadrics. On the

other hand,

(9-53)
X

x0;:::;x3

x
i0

0
� � �x

i3

3
D

�X
x0

x
i0

0

��X
x1

x
i1

1

��X
x2

x
i2

2

��X
x3

x
i3

3

�

D

�
1 for .i0; : : : ; i3/D .p� 1; : : : ;p� 1/;

0 for all other 0� i0; : : : ; i3 � p� 1:

If we expand (9-52) and apply (9-53) to the resulting terms, the outcome is that (9-52)
is the x

p�1
0

x
p�1
1

x
p�1
2

x
p�1
3

–coefficient of .x2
0
�x2

1
�x2x3/

p�1.x0x1�x2
2
�x2

3
/p�1,

which is what appears in (9-50). Adjusting that to the point-count in projective space,
we get

(9-54) 1� #C.Fp/� constant coefficient of zW m mod p:

The isogeny class of the elliptic curve Jac.C / is listed as [43, Isogeny class 15.a],
and its associated modular form is (1-17). Point-counting becomes relevant for us
through a theorem of Honda [34; 56; 32], which says that 1� #C.Fp/ mod p can be
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identified with the pth coefficient of the pth power map for the formal group which is
the completion of Jac.C / (this coefficient is sometimes called the Hasse invariant of
the mod p reduction of C ; maybe more precisely, it is a special case of the Hasse–Witt
matrix of an algebraic curve). The natural interpretation of this in terms of mirror
symmetry is the following:

Conjecture 9.12 Take X as in Examples 1.11 and 9.11. The Fukaya category of X

contains a direct summand equivalent to the derived category of sheaves on a genus
one curve, whose Jacobian is isogeneous to that of C . (The remaining summands are
expected to be semisimple: they do not contribute to H odd.X / or to our formal group.)

It turns out that this is compatible with predictions coming from “classical” enumerative
mirror symmetry. There (see eg [12, Definition 4.9]), a mirror superpotential W 2

ZŒy˙1
1
;y˙1

2
;y˙1

3
� for X needs to have the property that

(9-55) …D

Z
jy1jDjy2jDjy3jD1

eqW dy1 ^ dy2 ^ dy3

y1y2y3

D

1X
dD0

constant coefficient of W d

d!
qd :

There can be infinitely many different superpotentials for the same X , related by
certain birational changes of variables. Assuming that the anticanonical linear system
for X contains a smooth divisor, then the actual mirror of X , formed relative to that
divisor, should come with a proper (fibers are compact) function that specializes to
those superpotentials in different Zariski charts.

Getting back to our example: the function zW .1;x1;x2;x3/� 1 satisfies the property
(9-55), as a consequence of (9-50), but fails another requirement for mirror superpoten-
tials, that of having a reflexive Newton polyhedron. Instead, the precise relation is as
follows. One of the superpotentials for our specific X , given in [11, Polytope 198], is

(9-56) W D y1Cy2Cy3Cy�1
1 y2y3Cy1y�1

3 Cy�1
2 Cy�1

1 Cy�1
2 y�1

3 :

One can then write

(9-57) zW .1;x1;x2;x3/� 1DW .x�1
1 x2x�1

3 ;x�1
1 x�1

2 x3;x
�1
1 x2

2/:

The monomial coordinate change in (9-57) is a Z=4–cover of the .y1;y2;y3/–torus by
the .x1;x2;x3/–torus; such coordinate changes do not affect oscillating integrals as
in (9-55). It is clear from the definition (9-50) that the critical locus of zW .1;x1;x2;x3/
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contains an affine part of C , lying in the fiber zW �1.0/. Hence, the critical locus of W

contains an affine part of a Z=4–quotient of C , lying in the fiber W �1.�1/. Moreover,
the Hessian in transverse direction to those critical loci is nondegenerate over Q

(or over Fp , provided that p is large). In view of the expected correspondence between
the Fukaya category of X and the category Db

sing associated to a compactification of W ,
this provides strong support for Conjecture 9.12, and also gives a specific candidate
genus-one curve (within the given isogeny class).

10 Sign conventions

Signs are important for some of our example computations. This section clarifies the
conventions used for Z=p–equivariant (and therefore Symp–equivariant) cohomology,
and for the Steenrod operations.

10a Equivariant cohomology

Take the standard classifying space BS1 D S1=S1 DCP1. Let t 2H 2
S1.point/D

H 2.CP1/ be the Chern class of O.�1/. Given a representation V of S1, form the
associated vector bundle

(10-1) .V �S1/=S1
!CP1; where g � .v; z/D .gv;g�1z/:

In this way, the representation Vk of weight k corresponds to the line bundle O.�k/.
We use the same convention as in (10-1) when forming the Borel construction (the
equivariant cohomology of a space), and similarly for equivariant Euler classes of
vector bundles.

Given a representation Vk1
˚� � �˚Vkd

, its equivariant Euler class, defined as the Euler
class of the associated bundle (10-1), is therefore

(10-2) eS1.V /D k1 � � � kd td :

We embed Z=p � S1 in the obvious way, and take the mod p reduction of t to be the
generator of H 2

Z=p.pointIFp/, leading to a corresponding version of (10-2). We take
� 2H 1

Z=p.pointIFp/ to be the tautological generator, meaning the one associated to
the identity map Z=p D �1.B.Z=p//! Fp. Then, the Bockstein satisfies

(10-3) ˇ.�/D�t:
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Example 10.1 Fix some odd p. Take the fundamental representation of Z=p on Rp ,
by cyclic permutations, and let V be its quotient by the trivial subspace R.1; : : : ; 1/.
Our orientation convention is that taking first .1; : : : ; 1/, and then after that lifts of
an oriented basis of V , yields an oriented basis of Rp. If we temporarily ignore
orientations, then clearly

(10-4) V Š V1˚V2˚ � � �V.p�1/=2:

This decomposition can be made explicit in terms of a discrete Fourier basis. A
computation of the determinant of that basis (compare eg [52]) shows that (10-4) is
in fact orientation-preserving. As a consequence,

(10-5) eZ=p.V /D
�

p�1

2

�
! t .p�1/=2:

Example 10.2 To check the sign in (10-3), let’s replace the infinite-dimensional space
K.Z=p; 1/ by the lens space L.p; 1/ D S3=.Z=p/, with Z=p acting diagonally on
S3 D fjz1j

2C jz2j
2 D 1g � C2. The relation between the homological Bockstein b

and its cohomological counterpart ˇ is that

(10-6) hˇ.y/;xiC .�1/jyjhy; b.x/i D 0:

Consider fjz1j � 1; z2D
p

1� jz1j
2g �L.p; 1/, with the complex orientation from z1.

This is a Z=p–cycle, whose homology class we write as x. Applying the homological
Bockstein yields a 1=p fraction of the boundary, which is exactly the circle fz2D 0g �

L.p; 1/, with its orientation given by going around z1 anticlockwise from 1 to e2�i=p .
This means that by definition of � ,

(10-7) h�; b.x/i D 1:

The class �t is Poincaré dual to the zero-locus of a section of the pullback of O.1/,
hence represented by the cycle fz1 D 0g, with the usual orientation of the z2 circle.
The intersection number of that and the mod p cycle defined above is

(10-8) h�t;xi D 1:

From (10-6), for y D � , and (10-7) we get hˇ.�/;xi D 1, which together with (10-8)
yields the desired (10-3).

10b Steenrod operations

The appearance of combinatorial constants similar to those in (1-6) goes back to the
classical literature; see eg [70, pages 107 and 112]. The point of introducing those is to
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make sure the operations satisfy the Steenrod axioms. Since a comparison between
different definitions is made more complicated by sign conventions for equivariant
cohomology, we want to explain one way of checking the choices made here.

Fix an odd prime p. Consider the Steenrod axiom which says that P0.x/ D x for
x 2H�.X IFp/. With our convention (1-6), this is equivalent to

(10-9) Stp.x/D .�1/�
�

p�1

2
!
�jxj

t .p�1/=2jxjx

C terms of higher degree in H�.X IFp/,

with � as in (1-7). Suppose that X is an oriented closed manifold, and that we apply
this to x D Œpoint� 2H dim.X /.X IFp/. By definition, Stp.x/ is obtained from

(10-10) H dim.X /.X IFp/
pth power
�����!H

p dim.X /
Z=p .X p

IFp/

restriction
to diagonal
�����!H

p dim.X /
Z=p .X IFp/:

Hence, it maps x to itself times the equivariant Euler class of the normal bundle to the
diagonal X �X p , restricted to a point. If X is one-dimensional, that normal bundle is
given by the representation V from Example 10.1. In general, it can be identified with
dim.X / copies of V , up to a Koszul reordering sign .�1/|,

(10-11) |D
jxj.jxj � 1/

2

p.p� 1/

2
�
jxj.jxj � 1/

2

p� 1

2
mod 2:

Combining that with the jxjth power of (10-5) precisely yields the constant factor in
(10-9).
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