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We show that a compact weighted extremal Kähler manifold, as defined by the third
author (2019), has coercive weighted Mabuchi energy with respect to a maximal
complex torus T C in the reduced group of complex automorphisms. This provides
a vast extension and a unification of a number of results concerning Kähler metrics
satisfying special curvature conditions, including Kähler metrics with constant scalar
curvature, extremal Kähler metrics, Kähler–Ricci solitons, and their weighted ex-
tensions. Our result implies the strict positivity of the weighted Donaldson–Futaki
invariant of any nonproduct T C–equivariant smooth Kähler test configuration with
reduced central fibre, a property known as T C–equivariant weighted K–polystability
on such test configurations. It also yields the T C–uniform weighted K–stability on
the class of smooth T C–equivariant polarized test configurations with reduced central
fibre. For a class of fibrations constructed from principal torus bundles over a product
of Hodge cscK manifolds, we use our results in conjunction with results of Chen and
Cheng (2021), He (2019) and Han and Li (2022) in order to characterize the existence
of extremal Kähler metrics and Calabi–Yau cones associated to the total space, in
terms of the coercivity of the weighted Mabuchi energy of the fibre. This yields
a new existence result for Sasaki–Einstein metrics on certain Fano toric fibrations,
extending the results of Futaki, Ono and Wang (2009) in the toric Fano case, and of
Mabuchi and Nakagawa (2013) in the case of Fano P 1–bundles.

32Q20, 53C25, 53C55, 58J60; 14J45, 32J27

Introduction

We are concerned with the existence and obstruction theory of a class of special Kähler
metrics, called weighted constant scalar curvature metrics, which were introduced by
the third author in [54; 55], giving a vast extension of the notion of Kähler metrics of
constant scalar curvature (cscK for short), and providing the unification of a number of
related notions of Kähler metrics satisfying special curvature conditions.
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0.1 The weighted cscK problem

Let X be a smooth compact complex m–dimensional manifold with a given de Rham
cohomology class ˛ 2 H 1;1.X;R/ of Kähler metrics, and let T � Autr .X / denote
a fixed compact torus in the reduced group Autr .X / of automorphisms of X , ie the
connected subgroup of automorphisms of X generated by the Lie algebra of real
holomorphic vector fields with zeros; see eg Gauduchon [41]. It is well known that T

acts in a hamiltonian way with respect to any T–invariant Kähler metric ! 2 ˛, and the
corresponding momentum map �! sends X onto a compact convex polytope �� t�

in the dual vector space t� of the Lie algebra t of T ; see Atiyah [9] and Guillemin
and Sternberg [44]. Furthermore, up to translations, � is independent of the choice
of ! 2 ˛. We shall further fix �, giving rise to a normalization of the corresponding
momentum maps f�! j ! 2 ˛g.

Following [55], let v.�/ > 0 and w.�/ be smooth functions defined on �. One can
then consider the following condition for T–invariant Kähler metrics ! in ˛ (and fixed
polytope �), called .v; w/–cscK metrics:

(1) Scalv.!/D w.�!/:

Here the so-called v–scalar curvature of ! is defined by

(2) Scalv.!/ WD v.�!/Scal.!/C 2�!v.�!/Chg! ; �
�
!.Hess.v//i;

with Scal.!/ being the usual scalar curvature of the riemannian metric g! associated
to !, �! the Laplace operator of g! , and where the contraction h � ; � i is taken between
the smooth t�˝ t�–valued function g! on X (the restriction of the riemannian metric
g! to t � C1.X;TX /) and the smooth t˝ t–valued function �!�.Hess.v// on X

(given by the pullback by �! of Hess.v/ 2 C1.�; t˝ t/). The relevance of (1) to
various geometric conditions is discussed in detail in [55], but we mention below a few
special cases which partly motivate our study:

� v D 1 and w is a constant: this is the familiar cscK problem.

� vD 1 andwD ` with ` an affine-linear function on t�: (1) then describes an extremal
Kähler metric in the sense of Calabi [21].

� v D e` and w D 2.`C a/e`, where ` is an affine-linear function on t� and a is
a constant corresponding to the so-called �–cscK (see Inoue [50]), extending the
notion of Kähler–Ricci solitons (see Tian and Zhu [71]) defined when X is Fano and
˛ D 2�c1.X /.
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� vD `�m�1, wD a`�m�2 and ˛D c1.L/, where ` is a positive affine-linear function
on �, m is the complex dimension of X , a is a constant, and L is a polarization of X :
(1) then describes a scalar flat cone Kähler metric on the affine cone .L�1/� polarized
by the lift of � D d` to L�1 via `; see Apostolov, Calderbank and Legendre [2; 7].

In general, the problem of finding a T–invariant Kähler metric ! 2 ˛ solving (1) is
obstructed in a similar way that the cscK problem is obstructed by the vanishing of
the Futaki invariant: for any T–invariant Kähler metric ! 2 ˛ and any affine-linear
function ` on t�, one must have

(3) Futv;w.`/ WD
Z

X
.Scalv.!/�w.�!//`.�!/!m

D 0;

should a solution to (1) exist. In [55], an unobstructed modification of (1) is proposed,
extending Calabi’s notion [21] of extremal Kähler metrics. To this end, suppose
that v;w0 > 0 are positive smooth functions on �. One can then find a unique affine-
linear function `ext

v;w0
.�/ on t�, called the extremal function, such that (3) holds for the

weights .v; w/D .v; `ext
v;w0

w0/. In this case, a solution of the .v; w/–cscK problem (1)
is referred to as a .v; w0/–extremal Kähler metric. We emphasize that .v; w0/–extremal
Kähler metrics are .v; w/–cscK metrics with a special property of the weight functionw,
namely, w D `w0 with w0 > 0 on � and ` affine-linear. In particular, .v; w/–cscK
metrics with w ¤ 0 on � are .v; w/–extremal with `ext

v;w D sign.wj�/ and .v; 0/–cscK
metrics are .v; w/–extremal with `ext

v;w D 0 for any w > 0. It follows that all the above
listed special cases are examples of .v; w/–extremal Kähler metrics, and thus the setup
of .v; w/–extremal Kähler metrics allows one to study all these cases together.

0.2 Relation to v–solitons

Motivated by works of T Mabuchi [58; 59] and subsequent work by Berman and
Nyström [15], Y Han and C Li [45] have recently introduced and studied the general
notion of a weighted v–soliton on a smooth Fano variety X , as follows. In the setup
explained above, we let ˛ D 2�c1.X / and consider the natural action of T on K�1

X
,

which fixes the momentum polytope � of .X; ˛;T / and normalizes the momentum
map �! for any T–invariant Kähler metric ! 2 ˛. For a (smooth) positive weight
function v.�/ on �, one defines a v–soliton as a T–invariant Kähler metric ! 2 ˛,
such that

(4) �! �! D
1
2
ddc log v.�!/;

where �! denotes the Ricci form of !. Notice that when v.�/D eh�;�i for some � 2 t,
one gets the well-studied class of Kähler–Ricci solitons [71] whereas the case when
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v.�/ is a positive affine-linear function on � corresponds to the Mabuchi solitons
studied in [58; 59]. As we shall see below, other choices for v are also geometrically
meaningful. We make the following useful observation:

Proposition 1 Let X be a smooth Fano manifold and T �Aut.X / a compact torus. A
T–invariant Kähler metric ! 2 2�c1.X / is a v–soliton if and only if ! is .v; w/–cscK
with w.�/ WD 2.mChd log v; �i/v.�/.

We use the above result in order to make connection with the recent paper [45] (where the
authors obtain a complete Yau–Tian–Donaldson type correspondence for the existence
of v–Ricci solitons), which will play an important role in our present study of .v; w/–
cscK metrics.

We also notice that v–solitons can be viewed as . Nv; Nw/–cscK metrics for different
choices of weights. This is for instance the case when v.�/ D `.�/�.mC2/, where
`.�/D h�; �iC a is positive affine-linear on �. Whereas Proposition 1 identifies the
v–soliton as a .v; w/–cscK metric with

v D `�.mC2/ and w D 2`�.mC3/.�2`C .mC 2/a/;

we also observe:

Proposition 2 Let .X;T / be a smooth Fano variety and `.�/ D .h�; �i C a/ a
positive affine-linear function on its canonical polytope �. A T–invariant Kähler
metric ! 2 2�c1.X / is an `�.mC2/–soliton if and only if the lift O� of � D d` to KX

via ` is the Reeb vector field of a Sasaki–Einstein structure defined on the unit circle
bundle N �KX with respect to the hermitian metric on KX with curvature �!. This
condition is also equivalent to ! being an .`�m�1; 2ma`�m�2/–cscK metric.

0.3 Main results

Similarly to the usual cscK case, it is shown by Lahdili [55] that the solutions of (1)
can be characterized as minimizers of a functional Mv;w defined on the space of T–
invariant Kähler metrics in ˛, extending the Mabuchi energy to the weighted setting (see
Section 1 below for the precise definition). After the deep works of Berman, Darvas and
Lu [14] and Chen and Cheng [23], it is now well understood that the coercivity of the
Mabuchi energy is equivalent to the existence of a cscK metric in a given cohomology
class. Noting that, by the results in [55], any .v; w/–extremal metric is invariant under
a maximal compact torus in Autr .X /, our first main result is an extension of one
direction of the correspondence in the cscK case to the weighted setting.
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Theorem 1 Suppose T � Autr .X / is a maximal torus in the reduced group of auto-
morphisms of X , and !0 2 ˛ a T–invariant .v; w0/–extremal Kähler metric. Then
the weighted Mabuchi energy Mv;w (with w D `ext

v;w0
w0) is coercive relative to the

complex torus TC in the sense of Darvas and Rubinstein [29], ie there exist positive
real constants � and ı such that for any T–invariant Kähler metric ! 2 ˛,

Mv;w.!/� � inf
�2TC

J .��!/� ı;

where J denotes the Aubin functional on the space of Kähler metrics; see Definition 3.1.

Our proof of Theorem 1 adapts to the case when the torus T�Autr .X / is not necessarily
maximal. Instead of TC one takes the infimum of J .��!/ over yG WD AutTr .X /,
the connected component of the identity of the centralizer of T in Autr .X / (which
by [55] is a reductive group if X admits a .v; w0/–extremal T–invariant Kähler metric;
see Remark 7.7 for more details). Furthermore, we can also consider any reductive
connected subgroup group G DKC � yG with a compact form K containing T , and
restrict Mv;w to the space of K–invariant Kähler metrics in ˛ as in Han and Li [45].1

As noticed by Berman, Darvas and Lu [14] (in the polarized case) and by Sjöström
Dyrefelt [66] (in the more general Kähler case), the coercivity of the Mabuchi energy
yields a sharp estimate of the sign of the Donaldson–Futaki invariant of a T–equivariant
test configuration. In our weighted setting, we consider T–equivariant (compactified)
Kähler test configurations .X ;A / associated to .X; ˛;T /, which have smooth total
space. To any such test configuration one can associate a weighted Donaldson–Futaki
invariant by the formula (see [55])

Fv;w.X ;A / WD �
Z

X
.Scalv.�/�w.��//�ŒmC1�

C .8�/
Z

X
v.�!/!

Œm�;

where � 2 A and ! 2 ˛ are T–invariant Kähler forms on X and X , respectively,
with respective �–normalized momentum maps �� and �! , and Scalv.�/ is the
v–scalar curvature of � defined by (2). In the above formula, for any 2–form  we use
the convention  Œk� WD  k=k!. Thus, Fv;w.X ;A / extends to the weighted setting
the expression of the Donaldson–Futaki invariant of .X ;A / in terms of intersection
numbers (see Odaka [62] and Wang [72]).

Corollary 1 Under the hypotheses of Theorem 1, for any T–equivariant smooth
Kähler test configuration .X ;A / of .X; ˛;T / which has a reduced central fibre ,

Fv;w.X ;A /� 0;

1We are grateful to Chi Li for pointing this out to us.
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with equality if and only if .X ;A / is a product test configuration. Furthermore , if
˛D 2�c1.L/ corresponds to a polarization L of X and .X ;L ;T / is a T–equivariant
smooth polarized test configuration of .X;L/ as above ,

Fv;w.X ;A /� �J NA
TC .X ;A /;

where A D 2�c1.L /, � > 0 is the constant appearing in Theorem 1, and J NA
TC .X ;A /

is the TC–relative non-Archimedean J –functional of the test configuration introduced
in Hisamoto [49] and Li [57]; see (20).

Corollary 1 improves the (T–equivariant) .v; w/–K–semistability established in Lahdili
[56, Theorem 2] to (T–equivariant) .v; w/–K–polystability on the test configurations
as above, and, in the projective case, further to TC–uniform .v; w/–K–stability in
the sense of [49; 57]. As we already mentioned, the fist part of Corollary 1 was
proved by Berman, Darvas and Lu [14], Sjöström Dyrefelt [66] and Stoppa [67] in
the cscK case (v D 1 and w is a constant), and by Dervan [33], [66] and Stoppa and
Székelyhidi [68] in the unweighted extremal case (v D 1D w0). We however notice
that in the extremal case our proof uses directly the coercivity of the relative Mabuchi
energy (which follows from Theorem 1) whereas the proofs in [33; 68] and [66] are
based on the Arezzo–Pacard existence results of extremal metrics on blow-ups (see
Arezzo, Pacard and Singer [8]), and on the coercivity of the unweighted Mabuchi
energy M1;c established in [14; 66], respectively. The TC–uniform .v; w/–K–stability
statement in the second part of Corollary 1 is established in the cscK case in [49; 57],
and in the case of a v–soliton by Han and Li [45]. Our proof of Corollary 1 in the
general weighted case follows easily from Theorem 1 by the established techniques in
the cscK case; see Section 4.

Another notable special case where our results apply is when ˛ D c1.L/ for an ample
line bundle L over X , and v D `�m�1 and w0 D `

�m�3 for a positive affine-linear
function on �. It is observed by Apostolov and Calderbank [2] that in this case a
.v; w0/–extremal Kähler metric in ˛ describes an extremal Sasaki metric on the total
space N of the unit circle bundle in L�1 with respect to the hermitian metric with
curvature �!, and Reeb vector field corresponding to the lift of d` to L�1 via `. In this
special case, the first part of Corollary 1 above was obtained by Apostolov, Calderbank
and Legendre [7] for polarized test configurations (see Theorem 1, Conjecture 5.8 and
Remark 5.9 in [7]), by using the results in He and Li [48] which establish an analogue
of Theorem 1 in the Sasaki case. Thus, our proofs of Theorem 1 and Corollary 1 allow
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one to recast and further generalize [7, Theorem 1] entirely within the framework of
the weighted Kähler geometry of X .

0.4 Method of proof

We now discuss briefly the method of proof of Theorem 1 above. It is an application
of the general coercivity principle of Darvas and Rubinstein [29, Theorem 3.4]; see
Section 3. This principle is used in the cscK case by Berman, Darvas and Lu [14], and
our approach is mainly inspired by these two references. Noting that in the weighted
extremal case Mv;w is G–invariant and G WD TC is reductive, by the results of [29],
in order to obtain Theorem 1 one needs to

(i) extend Mv;w to the space E1.X; !0/ of !0–relative plurisubharmonic functions
of maximal mass and finite energy;

(ii) show that the extension is convex and continuous along weak d1–geodesics in
E1.X; !0/;

(iii) establish a compactness result for the extension of Mv;w; and

(iv) show the uniqueness modulo the action of G (and in particular the regularity)
of the weak minimizers of Mv;w , under the assumption that a .v; w0/–extremal
metric exists.

The steps (i), (ii) and (iii) in the unweighted cscK case are obtained by Berman, Darvas
and Lu [13] and follow from the Chen–Tian formula of M1;1. The analogous formula
for Mv;w is obtained by Lahdili [55], but the presence of weights does not allow for
a straightforward generalization of the arguments in [13]. Similar difficulty arises in
Berman and Nyström [15] in the framework of v–solitons on a Fano variety, where
the authors were able to obtain a suitable extension of the weighted Ding functional
to the space E1.X; !0/. This functional has milder dependence on the weights than
the weighted Mabuchi functional we consider. Indeed, the arguments of [15] yield
the existence of a continuous extension to E1.X; !0/ of one of the three terms in
the Chen–Tian decomposition of Mv;w, which depend on the weight w. Building
on [15], Han and Li [45] proposed a new approach to the extension problem in the case
of v–solitons, based on an idea going back to Donaldson [36] (see in particular the
proof of Proposition 3 in [36]), which amounts to considering suitable fibre bundles
Y over a cscK base B and fibre X , and showing that the weighted quantities on X

correspond to the restrictions of unweighted quantities on the total space Y . This is
the semisimple principal .X;T /–fibration construction, which we review in the next
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subsection. Going further than [45], we express in general the scalar curvature of
a bundle-compatible Kähler metric on Y in terms of the weighted scalar curvature
of X , and show that the usual (unweighted) Mabuchi energy on Y restricts to a
suitably weighted Mabuchi energy on X . It thus follows that, at least for suitable
polynomial weights v, the remaining terms of the Chen–Tian decomposition of Mv;w

can be extended to E1.X; !0/ simply by restricting to the fibres the corresponding
(unweighted) extension of the Mabuchi energy of Y . The final crucial observation for
obtaining the extension for any weights is that Mv;w depends linearly and continuously
on .v; w/, so that one can further use (as in [45]) the Stone–Weierstrass approximation
theorem over C 0.�/. With this in place, and using the weighted analogue of the
uniqueness (see Berman and Berndtsson [11]) achieved by Lahdili [56], we can adapt
the arguments from [14].

0.5 Applications to the semisimple principal fibration construction

We briefly review here the semisimple principal bundle construction, which is not
only a key tool in our proof of Theorem 1, but also provides a framework for further
geometric applications of our results, extending the setting of the generalized Calabi
construction in Apostolov, Calderbank, Gauduchon and Tønnesen-Friedman [6].

We denote by T a compact r–dimensional torus with Lie algebra t and lattice ƒ� t of
generators of S1–subgroups, ie TD t=2�ƒ. Let BDB1�� � ��Bk be a 2n–dimensional
cscK manifold which is a product of compact cscK Hodge Kähler 2na–manifolds
.Ba; !Ba

/ for a D 1; : : : ; k. We then consider a principal T–bundle � W P ! B

endowed with a connection 1–form � 2�1.P; t/ with curvature

d� D
kP

aD1

.��!Ba
/˝pa for pa 2ƒ:

For any smooth compact Kähler 2m–manifold .X; !X ;T /, endowed with a hamiltonian
isometric action of the torus T as in the setup above, we can construct the principal
.X;T /–fibration

Y WD .X �P /=T ! B;

where the T–action on the product is �.x;p/ D .��1x; �p/ for x 2 X , p 2 P and
� 2 T . Using the chosen connection on P , the almost complex structures on X and B

lift to define a CR structure on the product X �P , and thus endow Y with the structure
of a 2.mCn/–dimensional smooth complex manifold. Furthermore, Y comes equipped
with an induced holomorphic fibration � W Y !B, with smooth complex fibres X , and
induced fibrewise T–action. Fixing constants ca 2R such that, for each aD 1; : : : ; k,
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the affine-linear function hpa; �iCca on t� is strictly positive on the momentum image
� of X , one can define a lifted Kähler metric !Y on Y which, pulled back to X �P ,
has the form

!Y WD !X C

kX
aD1

.hpa; �!iC ca/�
�!Ba

Chd�! ^ �i;

where h � ; � i stands for the natural pairing of t and t�. Thus hpa; �!i is a smooth
function and hd�! ^ �i is a 2–form on X �P . As we show in Section 5, when !X

varies in a given Kähler class of X , the corresponding Kähler metric !Y will vary
in a fixed Kähler class on Y . We also notice that when .X; !X ;T / is a smooth toric
Kähler manifold, the setup above reduces to the theory of semisimple rigid toric fibra-
tions studied by Apostolov, Calderbank, Gauduchon and Tønnesen-Friedman [3; 4; 6].
Inspired by these results, we show that the scalar curvature of !Y can be expressed
in terms of the p–weighted scalar curvature of .X; !X /, where the weight function
p.�/ is a polynomial depending on the fixed data .pa; ca; na/ of the construction. With
this observation in mind, we show that (similarly to the case of semisimple rigid toric
fibrations recently studied by Jubert [52]) the recent results Chen and Cheng [23] and
He [47] can be used to obtain a converse of Theorem 1 in the case of semisimple
principal fibrations.

Theorem 2 Suppose Y is a semisimple principal .X;T /–fibration , with a Kähler
metric !Y induced by a T–invariant Kähler metric !X on X . Suppose , moreover ,
that T is a maximal torus in the reduced group of automorphisms Autr .X /. Then , the
following conditions are equivalent :

(i) Y admits an extremal Kähler metric in the Kähler class Œ!Y �.

(ii) X admits a T–invariant .p; zw/–cscK metric in the Kähler class Œ!X �, with
weights

p.�/D

kY
aD1

.hpa; �iC ca/
na ; zw.�/D p.�/

�
�

kX
aD1

Scal.!Ba
/

hpa; �iC ca
C `ext.�/

�
;

where `ext is an affine-linear function determined by the condition (3).

(iii) The weighted Mabuchi energy M X
p; zw

of .X; Œ!X �;T / is coercive with respect
to TC , where p and zw are the weights defined in (ii).

Compared to the general setting of Dervan and Sektnan [35], the semisimple principal
.X;T /–fibration (trivially) satisfies the condition of optimal symplectic connection.
Accordingly, one can conclude by [35] that .Y; Œ!Y �/ admits an extremal Kähler metric,
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provided that .X; !X / is cscK, and if we take large enough constants ca. As a matter
of fact, the conclusion also follows under the more general assumption that .X; !X / is
extremal, by the proof of [4, Theorem 3]. The novelty of Theorem 2 is therefore in the
fact that it gives a precise condition (in terms of X ) for the existence of an extremal
Kähler metric in a given Kähler class Œ!Y �, also revealing that .X; Œ!X �/ need not be
extremal in general. We finally note that in the case of toric fibre, [52] provides a further
equivalence with a certain weighted notion of uniform K–stability of the corresponding
Delzant polytope.

If all the factors .Ba; !Ba
/ of the base are positive Kähler–Einstein manifolds, and

the fibre .X;T / is a smooth Fano variety, the semisimple principal .X;T /–fibration
construction can produce a smooth Fano variety Y for suitable choice of the principal T–
bundle over B; see Lemma 5.11. In this case, combining Han and Li [45, Theorem 3.5]
with our results:

Theorem 3 Suppose Y is a Fano semisimple principal .X;T /–fibration , obtained
from the product of positive Kähler–Einstein Hodge manifolds .Ba; !Ba

/ and a smooth
Fano fibre .X;T / via Lemma 5.11. Suppose also that T is a maximal torus in the
automorphism group Aut.X /. Then Y admits a v–soliton in 2�c1.Y /, provided that
the weighted Mabuchi functional M X

pv; zw
of .X;T ; 2�c1.X // is coercive with respect

to TC , where p is the weight defined in Theorem 2(ii) and

zw D 2pv.mChd log v; �iC hd log p; �i/:

If , furthermore , the fibre .X;T / is a smooth toric Fano variety , then this equation is
equivalent to the vanishing of the Futaki invariant (3) associated to the weights .pv; zw/
on X . In particular , any Fano semisimple principal .X;T /–fibration with smooth toric
Fano fibre .X;T / admits a Kähler–Ricci soliton , and the corresponding affine cone
.KY /

� admits a Calabi–Yau cone metric , given by a Sasaki–Einstein structure on a
unit circle bundle associated to the canonical bundle KY .

The existence of a Kähler–Ricci soliton in the above setting is essentially known even
though we didn’t find it explicitly stated in the literature. In the toric case (ie when
Y D X and B is a point) the result follows by Wang and Zhu [73] (see also Datar
and Székelyhidi [30]), and for P1–bundles by Apostolov, Calderbank, Gauduchon and
Tønnesen-Friedman [5], Dancer and Wang [26] and Koiso [53]. In the general case the
result can be obtained from Podestà and Spiro [63], which in turn extends [73] to the
framework of multiplicity-free manifolds, but the arguments can be also adapted to the
case of semisimple principal .X;T /–fibrations; see Apostolov, Calderbank, Gauduchon
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and Tønnesen-Friedman [6, Remark 7] and Donaldson [37]. Our approach, however,
builds on the idea of [30]. There are also related existence results for Kähler–Ricci
solitons on spherical manifolds; see Delcroix [31] and Delgove [32]. On the other hand,
the existence of Sasaki–Einstein metrics seems to be new in the above stated generality.
Indeed, in the toric case the claim follows from Futaki, Ono and Wang [40], and
there are known existence results (see Boyer and Tønnesen-Friedman [20], Gauntlett,
Martelli, Sparks and Waldram [42] and Mabuchi and Nakagawa [60]) on P1–bundles.
We expect our arguments to extend to spherical manifolds too.

0.6 Structure of the paper

In Section 1, we recall the setup of weighted cscK metrics and state the main results
we shall need from Lahdili [55; 56]. In Section 2, we recall the notion of v–solitons
from Han and Li [45] and Mabuchi [58], and establish the equivalences stated in
Propositions 1 and 2. Sections 3 and 4 review and recast in the weighted setting,
respectively, the coercivity principle of Darvas and Rubinstein [29] and its application
to stability (see Berman, Darvas and Lu [14] and Sjöström Dyrefelt [66]), thus outlining
the main steps needed for the proof of Theorem 1 and from it deriving Corollary 1.
In Section 5, we introduce the semisimple principal .X;T /–fibration construction,
and establish the main geometric properties allowing us to extend the results from
Apostolov, Calderbank, Gauduchon and Tønnesen-Friedman [6]. In Section 6, we use
an idea from [45] in order to define an extension of the weighted Mabuchi energy to the
space E1.X; !0/, and show its convexity and compactness properties. In Section 7, we
extend the arguments of [14] to show that weak minimizers of the weighted Mabuchi
energy are smooth. Here, we complete the proof of Theorem 1. In Section 8, we
detail the proofs of Theorems 2 and 3. In the appendices, we present some technical
computational results, detailing the linearization of the scalar and the twisted scalar
curvature of a semisimple principal .X;T /–fibre and recasting the weighted Futaki
invariant (3), which are needed for the proofs of Theorems 2 and 3.
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1 Preliminaries on the weighted cscK problem

We recall the setup from [55]. Let X be a smooth compact, connected Kähler manifold
of (real) dimension 2m, and let

K.X; !0/D f' 2 C1.X / j !' WD !0C ddc' > 0g

be the space of !0–relative smooth Kähler potentials on X . We let T � Autr .X / be a
fixed compact torus in the reduced group of automorphisms of X , ie the connected
closed subgroup Autr .X / of the group of complex automorphisms Aut.X /, whose
Lie algebra is the space of holomorphic vector fields of X with zeros; see eg [41].
Equivalently, Autr .X / is the connected component of the identity of the kernel of the
natural group homomorphism from Aut.X / to the Albanese torus, and is known to
be isomorphic to the linear algebraic group in the Chevalley-type decomposition of
Aut.X /; see [38]. We denote by C1T .X / the space of T–invariant smooth functions
on X and introduce the space

KT .X; !0/ WD K.X; !0/\C1T .X /;

of T–invariant relative Kähler potentials, assuming also that !0 is T–invariant.

It is well known that the action of T on .X; !0/ is hamiltonian, and we let �0 WX ! t�

be a momentum map, where t is the Lie algebra of T and t� the dual vector space.
By the convexity theorem [9; 44], the image � WD �0.X /� t� is a compact convex
polytope. For any ' 2 KT .X; !0/, the smooth t�–valued function

(5) �' D �0C dc'

is the T–momentum map of .X; !'/, normalized by the condition �'.X / D �. In
the above formula, dc' is viewed as a smooth t�–valued function via the identity
hdc'; �i WD dc'.�/ for any � 2 t� C1.X;TX /.

1.1 The .v; w/–constant scalar curvature Kähler metrics

Following [55], let v.�/>0 andw.�/ be smooth functions on�. One can then consider
the condition (1) for a T–invariant Kähler metric !' in ˛ (and the fixed polytope �),
called a .v; w/–cscK metric. We thus want to solve the PDE for ' 2 KT .X; !0/

(6) Scalv.!'/D w.�'/;
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where

Scalv.!'/ WD v.�'/Scal.!'/C 2�!'v.�'/Chg' ; �
�
'.Hess.v//i:

As we explained in the introduction, the problem of finding !' 2 ˛ solving (6) is
obstructed by the condition (3), and in the case when v and w0 are positive weights,
this can be resolved (similarly to the approach in [21]) by finding a unique affine-linear
function `ext

v;w0
.�/ on t�, called the extremal function, such that for any !' ,Z

X
.Scalv.!'/� `ext

v;w0
.�'/w0.�'//`.�'/!

Œm�
' D 0 for all ` 2 Aff.t�/:

Geometrically, the above condition means that the weighted cscK problem with
weights .v; w/ D .v; `ext

v;w0
w0/ is unobstructed in terms of (3), and a solution !'

of the .v; `ext
v;w0

w0/–cscK problem is referred to as a .v; w0/–extremal metric.

1.2 The weighted Mabuchi energy

Definition 1.1 [55] Let v and w be weight functions on � with v.�/ > 0. The
weighted Mabuchi energy Mv;w on KT .X; !0/ is defined by

.d'Mv;w/. P'/D�
Z

X
.Scalv.!'/�w.�'// P'!Œm�' ; Mv;w.0/D 0:

Remark 1.2 It follows from the above definition and the results in [55] that for a
constant c, Mv;w.'Cc/DMv;w.'/ if and only if v and w satisfy the integral relation

(7)
Z

X
Scalv.!0/!

Œm�
0
D

Z
X
w.�0/!

Œm�
0
:

Furthermore, by the results in [55], (7) is a necessary condition for the existence of a
solution of (6) and it is incorporated in the definition of Mv;w given in [55] via the
constant cv;w.˛/ in front ofw, but we do not assume a priori this condition in the current
article. It is however automatically satisfied if ˛ admits a T–invariant .v; w/–cscK
metric, or if we consider the weights .v; w/D .v; `ext

v;w0
w0/ corresponding to .v; w0/–

extremal Kähler metrics. In these cases, we shall write Mv;w.!'/ to emphasize that
the weighted Mabuchi functional acts on the space of T–invariant Kähler metrics
in ˛ D Œ!0�.

The following result is established in [56], generalizing [11] to arbitrary weights v > 0

and w:

Theorem 1.3 If ! is a T–invariant .v; w/–cscK metric on .X; ˛;T ; �/, then for any
' 2 KT .X; !0/ we have Mv;w.!'/�Mv;w.!/.
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1.3 The automorphism group of a .v; w0/–extremal Kähler manifold

In what follows we will consider connected Lie groups. We recall that we have set
Autr .X / to be the connected component of the identity of the kernel of the Albanese
homomorphism and, similarly, we denote by AutTr .X / the connected component of
the identity of the centralizer of the torus T in Autr .X /. We shall use the following
result, established in [55, Theorem B.1] (see also [39]) and [56, Remark 2]:

Proposition 1.4 If .X; ˛;T / admits a .v; w0/–extremal Kähler metric !, then the
connected component of the identity AutTr .X / of the subgroup of T–commuting
automorphisms in Autr .X / is reductive , and ! is invariant under the action of a
maximal compact connected subgroup of AutTr .X /. In particular , the isometry group
of .X; !/ contains a maximal torus Tmax � Autr .X / with T � Tmax. If , furthermore ,
T D Tmax, then AutTr .X /D TC .

Because of this result, we shall often assume (without loss of generality for solving (6))
that T D Tmax � Autr .X / and thus AutTr .X /D TC .

1.4 Uniqueness of the .v; w0/–extremal Kähler metrics

Another key result in the theory is the extension in [56] of the uniqueness results [11; 24]
to the weighted setting.

Theorem 1.5 Suppose ! and !0 are T–invariant .v; w0/–extremal Kähler metrics.
Then there exists � 2 AutTr .X / such that ��.!0/D !. In particular , if T � Autr .X /
is maximal , then the uniqueness holds modulo TC .

2 v–solitons as weighted cscK metrics

We review here the definition of v–solitons on a Fano manifold, following [15; 45],
and discuss their link with .v; w/–cscK metrics.

We thus suppose throughout this section that X is a smooth Fano manifold ˛ WD2�c1.X /

and T � Aut.X / a fixed compact torus. (We recall here that on a Fano manifold
Autr .X / coincides with the connected component of the identity of the full automor-
phism group.) We further consider the natural action of T on the anticanonical bundle
K�1

X
of X , which normalizes the momentum map �! of each T–invariant Kähler

metric ! 2 ˛, and fixes the momentum image �. We shall sometimes refer to this
normalization as the canonical normalization of �. In this setup, we recall:
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Definition 2.1 Let v > 0 be a positive smooth weight function on �. A v–soliton on
X is a T–invariant Kähler metric ! 2 2�c1.X / which satisfies the relation (4).

In the special case v D eh�;�i we obtain a Kähler–Ricci soliton in the sense of [71].

Lemma 2.2 A T–invariant Kähler metric ! 2 2�c1.X / is a v–soliton if and only if
! is a .v; w/–cscK metric with weight w.�/D 2v.�/ŒmChd log v.�/; �i�.

Proof We start by showing that (4) implies that ! is .v; w/–cscK with the weight w
specified in the lemma. Taking the trace in (4) with respect to ! gives

(8) Scal.!/� 2mD��!.log v.�!//

D�
1

v.�!/
�!.v.�!//�

1

v.�!/2
g!.dv.�!/; dv.�!//

D�

mX
iD1

v;i.�!/

v.�!/
.�!�

�i
! /C

mX
i;jD1

v;ij .�!/

v.�!/
g!.�i ; �j /

�

mX
i;jD1

v;i.�!/v;j .�!/

v.�!/2
g!.�i ; �j /;

where .�i/iD1;:::;r is a basis of t and v;i denotes the partial derivative in direction of �i .
On the other hand, by taking the interior product of (4) with �i and using that �i is
Killing with respect to !, we get

�d�!�
�i
! C 2d��i

! D d
�
dc.log v.�!//.�i/

�
D d

� mX
jD1

v;j .�!/

v.�!/
g!.�i ; �j /!

�
;

where ��! WD h�! ; �i is the momentum of � . It follows that

(9) ��!�
�i
! C 2��i

! D

mX
jD1

v;j .�!/

v.�!/
g!.�i ; �j /C c

for some constant c. As we consider the canonical normalization of �! (corresponding
to the natural lifted T–action on K�1

X
), one can see that cD 0. Indeed, the infinitesimal

actions Ai of the elements of the basis .�i/i on smooth sections of K�1
X

are given by
Ai.s/ WD L�i

s. We denote by Hg the induced hermitian metric on K�1
X

through the
riemannian metric g! of ! (so that Hg has curvature �!) and by H D v.�!/Hg the
induced hermitian metric with curvature ! (by using (4)); comparing the actions of the
corresponding Chern connections, rg

�i
and rH

�i
Dr

g

�i
�

1
2

p
�1dc log v.�!/.�i/ id on
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smooth sections of K�1
X

with the infinitesimal actions Ai gives (see eg [41, Propositions
8.8.2 and 8.8.3])

(10) Ai.s/Dr
g

�i
sC 1

2

p
�1.�!�

�i
! /s and Ai.s/Dr

H
�i

sC
p
�1��i

! s:

We thus deduce 1
2
�!�

�i
! D �

�i
! �

1
2
dc.log v.�!//.�i/, ie c D 0 in (9).

Now, letting c D 0 in (9), multiplying it by v;i.�!/=v.�!/, and taking the sum over i

gives
mX

i;jD1

v;i.�!/v;j .�!/

v.�!/2
g!.�i ; �j /D

rX
iD1

v;i.�!/

v.�!/
.�!�

�i
! /� 2

rX
iD1

v;i.�!/

v.�!/
��i
! ;

which, substituted back into (8), yields

Scal.!/�2mD�2

rX
iD1

v;i.�!/

v.�!/
�!�

�i
!C

mX
i;jD1

v;ij .�!/

v.�!/
g!.�i ; �j /C2

rX
iD1

v;i.�!/

v.�!/
��i
!

D�2

rX
iD1

v;i.�!/

v.�!/
�!�

�i
! C 2

mX
i;jD1

v;ij .�!/

v.�!/
g!.�i ; �j /

�

mX
i;jD1

v;ij .�!/

v.�!/
g!.�i ; �j /C 2hd log v; �!i

D �2�!.v.�!//�

mX
i;jD1

v;ij .�!/

v.�!/
g!.�i ; �j /C 2hd log v; �!i:

Thus, Scalv.!/D w.�!/.

Now we show the converse. To this end, let ! 2 2�c1.X / be a T–invariant Kähler
metric, v > 0 a positive smooth function on the canonically normalized polytope �
and w D 2.mChd log; �i/v the weight defined in Lemma 2.2. Let h 2 C1T .X / be an
!–relative Ricci potential, ie

�! �! D
1
2
ddch:

Taking the trace with respect to ! and the interior product with � 2 t in the above
identity, we get

(11) Scal.!/D 2m��!h and �!�
�
! CLJ �hD 2��! ;

where we have used the canonical normalization of �! to determine the additive
constant in the second inequality (as we did for (9)). Similar computations as in the
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first part of the proof (using (11)) give

(12) Scalv.!/�w.�!/

D�v.�!/.�!h/C 2

rX
iD1

v;i.�!/.�!�
�i
! /�

rX
i;jD1

v;ij .�!/.�i ; �j /!

C 2

rX
iD1

v;i.�!/�
�i
!

D�v.�!/.�!h/C

rX
iD1

v;i.�!/g!.dh; d��i
! /C

rX
iD1

v;i.�!/.�!�
�i
! /

�

rX
i;jD1

v;ij .�!/g!.�i ; �j /

D�v.�!/.�!;vh/C

rX
iD1

v;i.�!/.�!�
�i
! /�

rX
i;jD1

v;ij .�!/g!.�i ; �j /;

where�!;v WD .1=v.�!//ı!v.�!/d is the weighted Laplacian; see Appendix A. Using
the second equality in (8), we compute

v.�!/�!;v.log v.�!//Dv.�!/.�! log v.�!//�
mX

iD1

vi.�!/g!.d.log v.�!//; d��i
! /

Dv.�!/.�! log v.�!//�
mX

i;jD1

v;i.�!/v;j .�!/

v.�!/
g!.�i ; �j /

D

rX
iD1

v;i.�!/.�!�
�i
! /�

rX
i;jD1

v;ij .�!/g!.�i ; �j /:

Substituting back in (12),

(13) Scalv.!/�w.�!/D v.�!/�!;v.log v.�!/� h/:

It follows that if ! is .v; w/–cscK then hD log v.�!/C c by the maximum principle,
showing that ! satisfies (4).

Remark 2.3 Using the second relation in (11) it follows that, under the canonical
normalization of �! ,

(14)
Z

X
��!eh!Œm� D 0 for � 2 t:

This is precisely the normalization of �! used in [71, Section 2].
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Lemma 2.4 Define v WD `�.mC2/ for `.�/D h�; �iC a positive affine-linear on �.
Then ! 2 2�c1.X / is a v–soliton if and only if ! is an .`�.mC1/; 2ma`�.mC2//–cscK
metric.

Proof The proof is similar to that of Lemma 2.2.

If ! is a v–soliton with v WD `�.mC2/, specializing (8) and (9) to the specific choice of
v and letting f WD `.�!/D �

�
! C a, we get the identities

Scal.!/D 2mC .mC 2/�! logf and ��!f C 2f D
mC2

f
g!.df; df /C 2a:

Multiplying the first equality by f 2 and taking the sum with the second equality
multiplied by mf gives

(15) f 2 Scal.!/� 2.mC 1/f�!f � .mC 1/.mC 2/g!.df; df /D 2maf:

The right side is the .mC2; f /–scalar curvature (see [2]) and it is straightforward to
check that (15) is equivalent to the condition that ! is an .`�.mC1/; 2ma`�.mC2�/–cscK
metric.

In the other direction, for any T–invariant Kȧhler metric ! 2 2�c1.X /, we let

f WD `.�!/D �
�
! C a> 0

be the corresponding Killing potential and let h2C1T .X / be such that �!�!D 1
2
ddch.

From (11) we have

Scal.!/D 2m��!h and ��!f C 2f D�g!.df; dh/C 2a:

Multiplying the first identity by f 2 and summing with the second identity multiplied
by mf gives

(16) f 2 Scal.!/� 2.mC 1/f�!f � .mC 1/.mC 2/g!.df; df /� 2maf

D�f 2
�
�!.hC .mC 2/ logf /Cmg!.d logf; dhC .mC 2/ d logf /

�
:

If we suppose that (15) holds, we conclude, again by the maximum principle, that
.mC 2/ logf C h must be constant.

Remark 2.5 Lemmas 2.2 and 2.4 give two different realizations of the same `�.mC2/–
soliton as a weighted cscK metric, with weights

�
`�.mC2/; 2.�2`C.mC2/a/`�.mC3/

�
and .`�.mC1/; 2am`�.mC2//, respectively.

We derive from Lemma 2.4 and the correspondence in [2] the following fact, which
does not seem to have been noticed before:
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Lemma 2.6 On a Fano manifold .X;T /, a T–invariant Kähler metric ! 2 2�c1.X /

is an `�.mC2/–soliton with respect to a positive affine-linear function `D h�; �iC a if
and only if the lift O� of the vector field � to KX , via the hermitian connection rh with
curvature �! and the !–momentum `.�!/ of �, is a Reeb vector of a Sasaki–Einstein
(transversal ) structure of transversal scalar curvature 2am, defined on the unit circle
bundle N of .KX ; h/.

Proof By Lemma 2.4, we need to show that an .`�.mC1/; 2am`�.mC2//–cscK metric
in 2�c1.X / corresponds to a Sasaki–Einstein structure as defined in the statement. By
[2, Theorem 1], the condition that ! is .`�.mC1/; 2am`�.mC2//–cscK is equivalent to
the condition that the corresponding Sasaki structure has transversal scalar curvature
equal to 2ma (notice that a> 0 by the positivity of ` over the canonical polytope �).
Any Sasaki structure of constant transversal scalar curvature on N �KX is transversally
Kähler–Einstein as c1.K

�
X
/D0, and therefore the first Chern class of the CR distribution

of N vanishes; see eg [19, Corollary 5.3; 40, Proposition 4.3].

Remark 2.7 The correspondence in Lemma 2.6 is, in fact, local and can be deduced
directly from the relation between the transversal Ricci tensors of the two Sasaki
structures on the CR manifold N � KX , defined by O� and the regular Reeb vector
field O�, respectively, according to [51] and Gauduchon (personal communication).

Proof of Propositions 1 and 2 Propositions 1 and 2 from the introduction follow
directly from Lemmas 2.2, 2.4 and 2.6.

3 The coercivity principle: the plan of the proof of Theorem 1

We consider the following general setup, based on the results of [27; 29; 70]. As
before, we let T � Autr .X / be a fixed connected compact torus in the reduced
group of automorphisms of X , and denote by G D TC � Autr .X / the corresponding
complex torus.

Following [27], we consider the L1–length function on K.X; !0/, introduced on a
smooth curve  t for t 2 Œ0; 1� by

L1. t / WD
Z 1

0

�Z
X
j P t j!

Œm�

 t

�
ds;

and, for '0; '1 2 K.X; !0/, we let

d1.'0; '1/ WD inffL1. t / j  t 2 K.X; !0/ for t 2 Œ0; 1�;  0 D '0 and  1 D '1g:
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Similarly, we define d1 on KT .M; !0/ by considering the infimum over smooth curves
in KT .X; !0/. It is proved in [27] that .K.X; !0/; d1/ is a metric space, and it is
observed in [29] that .KT .X; !0/; d1/ is a metric subspace of .K.X; !0/; d1/.

Recall the following well-known functionals on K.X; !0/:

Definition 3.1 Let I denote the functional on K.X; !0/ defined by

.d'I/. P'/D
Z

X
P'!Œm�' ; I.0/D 0;

and let J .'/ WD
R
X '!

Œm�
0
� I.'/.

Remark 3.2 For any constant c, we have that I.'Cc/D I.'/Cc Vol.X; !0/ (where
Vol.X; !0/ D

R
X !0

Œm� is the total volume of .X; !0/), whereas J .' C c/ D J .'/,
ie we can see J as a functional on the space of Kähler metrics in the Kähler class
˛ D Œ!0�, which motivates the notation J .!'/. One can further show that J .!'/� 0

with equality if and only if !' D !0.

By the above remark, for any Kähler metric !' in the Kähler class Œ!0�, there exists a
uniquely determined !0–relative potential ' 2 K.X; !0/ satisfying

I.'/D 0:

We shall denote by VK.X; !0/ (and VKT .X; !0/) the subspaces of normalized !0–relative
Kähler potentials satisfying the above equality. We notice that the group G D TC

naturally acts on the space of Kähler metrics in Œ!0�, preserving the subspace of T–
invariant Kȧhler metrics. This induces an action ŒG� on the spaces VK.X; !0/ and
VKT .X; !0/ such that

!�Œ'� D �
�.!'/ for all � 2G and ' 2 VK.X; !0/:

We introduce the G–relative distance on VK.X; !0/ and VKT .X; !0/ by

d
ŒG�
1
.'0; '1/D inf

�0;�12G
d1.�0Œ'0�; �1Œ'1�/:

It is proved in [29] that d
ŒG�
1

is G–invariant, ie d
ŒG�
1
.�Œ'0�; � Œ'1�/ D d

ŒG�
1
.'0; '1/,

and thus
d
ŒG�
1
.'0; '1/D inf

�2G
d1.'0; � Œ'1�/:

Definition 3.3 Let F be a functional on KT .X; !0/. We say that F is G–coercive if
there exist uniform positive constants .�; ı/ such that

(17) F .'/� �d
ŒG�
1
.0; '/� ı for all ' 2 VKT .X; !0/:
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It is sometimes more natural to introduce G–coercivity in terms of the functional J via:

Proposition 3.4 [29] F is G–coercive if and only if there exist uniform positive
constants .�0; ı0/ such that

(18) F .'/� �0 inf
�2G

J .��!'/� ı
0 for all ' 2 KT .X; !0/:

Remark 3.5 If F is G–coercive, then it is bounded below by (17).

As in [27], one can consider the metric completion .E1.X; !0/; d1/ of .K.X; !0/; d1/,
which can be characterized by a suitable continuously embedded subspace in L1.X; !0/;
similarly we let .E1

T .X; !0/; d1/ be the metric completion of .KT .X; !0/; d1/, which,
again by the results in [29], can be viewed as the closed subspace of T–invariant
elements of E1.X; !0/. It will be important for us that .E1

T .X; !0/; d1/ is a geodesic
space, ie each two elements  0;  1 2 E1

T .X; !0/ can be connected with a curve  t

for t 2 Œ0; 1� in .E1
T .X; !0/; d1/, called a weak geodesic, obtained as the limit of

C 1; N1–geodesics between elements of KT .X; !0/; see [22; 27]. This object is a curve
't 2 E1

T .X; !0/, of regularity C 1;1.Œ0; 1��X /, which is uniquely associated to each
'0; '1 2KT .X; !0/; see [16; 22; 25] and the proof of Proposition 5.8 for more details
about the weak C 1; N1–geodesics.

In [29, Theorem 3.4], the following general principle is established:

Theorem 3.6 (coercivity principle) Let F W KT .X; !0/! R be a lower semicon-
tinuous (lsc) functional with respect to d1, and F W E1

T .X; !0/! R[ fC1g be its
largest lsc extension. Suppose , furthermore , that F .' C c/ D F .'/ DW F .!'/ and
F .��!'/D F .!'/ for any ' 2 KT .X; !0/ and � 2G, and that F satisfies:

(i) Convexity For each '0; '1 2 KT .X; !0/ and the C 1; N1–geodesic 't joining '0

and '1, t ! F .'t / is continuous and convex.

(ii) Regularity If  2 E1
T .X; !0/ is a minimizer of F , then  2 KT .X; !0/.

(iii) Uniqueness G acts transitively on the set of minimizers of F .

(iv) Compactness If f j gj 2 E1
T .X; !0/ satisfies limj!1 F . j /D infE1

T .X ;!0/
F

and , for some C > 0, d1.0;  j / � C , then there exists a  2 E1
T .X; !0/ and a

subsequence f jk
gk with  jk

!  in .E1
T .X; !0/; d1/.

Then , the following two conditions are equivalent :

� F has minimizer in KT .X; !0/.

� F is G–coercive.
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The above result provides a clear framework for achieving the proof of Theorem 1:
we need to find a suitable largest lsc extension of the weighted Mabuchi functional
Mv;w to the space E1

T .X; !0/ and show it satisfies the properties (i)–(iv). Notice that
the invariance of Mv;w under the action of G D TC is equivalent to the necessary
condition (3) for the existence of a .v; w/–cscK metric, whereas (iii) will follow from
Theorem 1.5 once the regularity condition (ii) is established. Furthermore, the property
(i) is proved in [56, Theorem 1], so the core of our argument is to define the extension
of Mv;w to E1

T .X; !0/ and establish the properties (ii) and (iv). These steps will be
detailed in Theorems 6.1, 7.1 and 6.17, respectively.

4 K–stability via coercivity: deriving Corollary 1 from
Theorem 1

We use the following general setup, based on the results of [10; 14; 18; 49; 57; 66; 70]
which deal with the K–polystability and uniform K–stability in the unweighted cscK
case. Let T � Autr .X / be a connected compact torus in the reduced group of auto-
morphisms of X .

Definition 4.1 A T–equivariant Kähler test configuration .X ;A / associated to
.X; ˛;T / is a normal compact Kähler space X endowed with

� a flat morphism � WX ! P1;

� a C�–action � covering the standard C�–action on P1, and a T–action commut-
ing with � and preserving � ;

� a T�C�–equivariant biholomorphism …0 W .X ; n��1.0//ŠX � .P1 n f0g/;

� a Kähler class A 2H 1;1.X ;R/ such that .…�1
0
/�.A /jX�f�g D ˛.

We say that .X ;A / is smooth if X is smooth and dominating if …0 extends to a
T�C�–equivariant morphism

(19) … WX !X �P1:

.X ;A / is called trivial if it is dominating and … is an isomorphism; .X ;A / is called
product if ��1.0/ Š X . If .X;L/ is a smooth polarized variety and ˛ D 2�c1.L/,
a polarized test configuration is a normal polarized variety .X ;L / such that, for
some r 2N�, .X ; .1=r/2�c1.L // defines a Kähler test configuration of .X; ˛/ and,
under …0, .X;L jX�f�g/Š .X;Lr /.
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4.1 Non-Archimedean functionals

We recall that any T�S1–invariant Kähler metric � 2 A on X gives rise to a smooth
ray of T–invariant Kähler metrics !t 2 ˛ on X defined by

!t WD �.e
�tCis/�.�/jX�f1g:

Definition 4.2 Let F be a functional defined on the space of T–invariant Kähler
metrics on X in the class ˛. We say that F admits a non-Archimedean version F NA,
defined on a subclass C of T–equivariant Kähler test configurations .X ;A / associated
to .X; ˛;T / if, for any .X ;A /2C and any induced smooth ray of T–invariant Kähler
metrics !t 2˛ on X , the slope limt!1 F .!t /=t is well defined and given by a quantity
F NA.X ;A / which is independent of the choice of the T�S1–invariant Kähler form
� 2 A .

We give below two key examples of non-Archimedean versions of known functionals.
The first one is established in the polarized case in [18] and in the generality we consider
in [34; 65]:

Example 4.3 The functional J introduced in Definition 3.1 admits a non-Archimedean
version defined, up to a positive-dimensional multiplicative constant, on the class of
smooth T–equivariant dominating Kähler test configurations .X ;L / by

J NA.X ;A /D
..…�˛/m �A /X

.˛m/X
�

1

mC1

.A mC1/X

.˛m/X
;

where … is the morphism (19) and ˛ denotes both the Kähler class on X and its
pullback to X �P1.

The above expression generalizes to dominating smooth test configurations which are
only relatively nef (in the terminology of [66]), thus also providing a non-Archimedean
version of J for any Kähler test configuration. Indeed, by the equivariant Hironaka
resolution, any T–equivariant test configuration can be dominated by a smooth relatively
nef Kähler dominating test configuration, and the computation of J NA on the latter
does not depend on the choice made.

The non-Archimedean functional J NA defined above is always nonnegative and equals
zero precisely when .X ;A / is the trivial test configuration. This statement is proved
in [18, Theorem 7.9] in the polarized case, and follows from the results in [66] in
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the Kähler case; see in particular [66, Lemma 4.8] with G trivial and recall that the
J –norm is Lipschitz equivalent to the d1–distance, so that the unique weak geodesic
ray associated to a test configuration with vanishing J NA–norm must be constant, and
hence the test configuration must be trivial by [66, Corollary 3.12]. Thus, J NA can be
thought of as a “norm” on the space of Kähler test configurations.

In order to obtain a norm which is zero for more general product test configurations, in
[33; 49; 57] the authors consider smooth rays z!t 2 ˛ of T–invariant Kähler metrics
on X which are obtained by composing an induced ray !t from a T�S1–invariant
Kähler metric � 2 A on X with the flow of a vector field J �, where � 2 t, ie
z!t D exp.tJ �/�.!t /. They show that the slope

lim
t!1

J .z!t /

t
DW J NA.X� ;A�/

is well defined and independent of the choice of induced ray !t . We notice that when
� 2 2�ƒ is a lattice element (or more generally is rational), � induces a C�–action
�� on X and z!t is an induced smooth ray from another Kähler test configuration
.X� ;A�/, called the �–twist of .X ;A /, obtained from X by composing the initial
C�–action � with �� and compactifying trivially at infinity. (For instance, the product
test configurations are precisely the �–twists of the trivial test configuration.) In
this case, J NA.X� ;A�/ is just the non-Archimedean J –functional computed as in
Example 4.3 on .X� ;A�/. For a general �, the quantity .X� ;A�/ in this notation is
not a test configuration in the usual sense (it is sometimes refereed to as an R–test
configuration) but the value J NA.X� ;A�/ can be obtained as a continuous extension
of the corresponding quantity for rational �’s. Following [49; 57], we let

(20) J NA
TC .X ;A / WD inf

�2t
J NA.X� ;A�/� 0:

A key observation [18; 49; 57] in the polarized case is that the equality in (20) holds
if and only if .X ;L / is a product test configuration. Furthermore, according to
[49, Theorem B; 57, Theorem 3.14]:

Example 4.3 (continued) In the polarized case, the quantity J NA
TC .X ;A / introduced

in (20) defines a non-Archimedean version of the functional

JTC .!/ WD inf
�2TC

J .��.!//

on the class of T–equivariant polarized test configuration of .X;L;T /.

Our second example is established in [55, Theorem 7]:
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Example 4.4 Consider the weighted Mabuchi functional Mv;w from Definition 1.1
and assume that the relation (7) holds; see Remark 1.2. Then Mv;w admits a non-
Archimedean version defined on smooth T–equivariant Kähler test configurations with
reduced central fibre, given by

(21) Fv;w.X ;A / WD �
Z

X
.Scalv.�/�w.��//�ŒmC1�

C 8�
Z

X
v.�!/!

Œm�;

where�2A is any T–invariant Kähler metric on X with�–normalized T–momentum
map �� W X ! � and v–scalar curvature Scalv.�/, and ! 2 ˛ is any T–invariant
Kähler metric on X with �–normalized T–momentum map �! WX !�.

Definition 4.5 The right side of (21) is independent of � 2 A and ! 2 ˛ (see [55])
and is referred to as the .v; w/–weighted Donaldson–Futaki invariant of a smooth
T–equivariant Kähler test configuration .X ;A /.

Remark 4.6 In the unweighted case (ie v D 1 and w D 4m�c1.X / � ˛
m�1=˛m),

Fv;w.X ;A / admits an equivalent expression in terms of intersection cohomology
numbers on X ; see [62; 72]. This allows one to extend the definition of the (unweighted)
Donaldson–Futaki invariant to any normal Kähler test configuration. For arbitrary
weight functions v > 0 and w, we don’t have as yet a general definition for Fv;w,
but (21) can be readily extended to orbifold test configurations. We also notice that
the assumption on the central fibre in Example 4.4 is necessary in order to ensure the
equality Fv;w DM NA

v;w; see [65] for a general formula of the non-Archimedean version
of the unweighted Mabuchi energy. It will be interesting to obtain a non-Archimedean
version of Mv;w for any orbifold T–equivariant Kähler test configuration.

4.2 F NA–stability

Definition 4.7 Let F be a functional defined on the space of T–invariant Kähler
metrics on X in the Kähler class ˛, and suppose F admits a non-Archimedean version
F NA.X ;A / (see Definition 4.2), defined on a class C of T–equivariant Kähler test
configurations .X ;A / associated to .X; ˛;T /. We suppose that C contains the product
test configurations. We say that:

(i) .X; ˛;T / is T–equivariant F NA–semistable (on test configurations of C ) if for
any .X ;A / 2 C we have F NA.X ;A /� 0.

(ii) .X; ˛;T / is T–equivariant F NA–polystable (on test configurations of C ) if it
is T–equivariant F NA–semistable and, further, F NA.X ;A /D 0 if and only if
.X ;A / is a product test configuration.
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(iii) .X; ˛;T / is TC–uniform F NA–stable (on test configurations of C ) if there
exists a uniform positive constant � > 0 such that, for any test configuration
.X ;A / 2 C ,

F NA.X ;A /� �J NA
TC .X ;A /;

where J NA
TC .X ;L / is as introduced in (20).

Remark 4.8 If F is bounded below, .X; ˛;T / is T–equivariant F NA–semistable.
Furthermore both (ii) and (iii) imply (i) and, in the polarized case, (iii) implies (ii) by
the results in [18; 49; 57].

Theorem 4.9 [14; 49; 57; 66] Suppose F is a functional defined on the space
of T–invariant Kähler metrics in ˛, which is T–relatively TC–proper. Suppose ,
furthermore , that F admits a non-Archimedean version F NA defined for a class C of T–
equivariant Kähler test configurations of .X; ˛;T /. Then .X; ˛;T / is T–equivariant
F NA–polystable on C . If , moreover , .X;L/ is a polarized variety and ˛ D 2�c1.L/,
then .X; ˛;T / is TC–uniform F NA–stable on polarized test configurations in C .

Proof For the first part, we follow [66] with some minor modifications. We want to
show that if F NA.X ;A /D 0, then .X ;A / is a product test configuration.

Fix a T�S1–invariant Kähler form�2A and let!t be the corresponding ray of smooth
T–invariant Kähler forms in ˛, and  t 2 KT .X; !0/ the normalized smooth ray of
Kähler potentials satisfying I. t /D 0. According to [65], the Kähler test configuration
.X ;A / also determines a unique C 1; N1 weak geodesic ray 't in K1; N1.X; !0/, emanating
from  0. Furthermore, 't is invariant under T (by its uniqueness) provided that we
have  0 2 KT .X; !0/. According to [66, Proposition 4.2], we can consider instead
of A the relative Kähler class Ac DA � cŒX0�DA � c��.OP1.1// (for a constant c

determined from A and where ŒX0� denotes the divisor corresponding to the central
fibre X0 of X ) such that the C 1; N1 weak geodesic ray 'c

t corresponding to .X ;Ac/

is the projection of 't to the slice K1; N1
T .X; !0/ \ I�1.0/. Notice that the smooth

.1; 1/–form �� c��!FS 2 Ac defines the same smooth ray !t of T–invariant Kähler
metrics, and thus the same ray of smooth potentials  t is in KT .X; !0/\ I�1.0/ and
F NA.X ;Ac/D F NA.X ;A /D 0. The key point is that (17) and

lim
t!1

F .! t
/

t
D F NA.X ;Ac/D 0

yield an estimate 0 � d
ŒG�
1
.0;  t / � o.t/, which is shown in [66, Lemma 4.8] to be

equivalent to 0� d
ŒG�
1
.0; 'c

t /� o.t/. We can now apply the arguments in the proof of
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the implication “.2/D) .5/” of [66, Theorem 4.4] by replacing the Mabuchi energy
with the abstract functional F and the group Aut0.X / with TC , and noting that in our
T–relative situation instead of the cscK potential  0 in [66, Proposition 4.10] we can
take any Kähler potential in KT .X; !0/ (as ! 0

is T–invariant and TC is reductive).
We thus deduce the implication (5) of [66], namely, that the geodesic ray 'c

t associated
to .X ;Ac/ is given by the !0–relative Kähler potentials of exp.tJ �/�.! 0

/ in I�1.0/,
where � is a vector field in the Lie algebra of T ; it follows from [66, Theorem A.6]
that .X ;Ac/, and hence also .X ;A /, is a product test configuration.

The second part follows immediately from (18) and Example 4.3 (continued).

We next apply Theorem 4.9 to F DMv;w and F NA DFv;w.

Definition 4.10 Let F NADFv;w , where Fv;w is defined on any smooth T–equivariant
test configuration via the formula (21); see Definition 4.5. We then refer to the
F NA–stability notions introduced in Definition 4.7(i)–(iii) as T–equivariant .v; w/–
K–semistability, T–equivariant .v; w/–K–polystability, and TC–uniform .v; w/–K–
stability, respectively, on T–invariant dominating smooth Kähler test configurations
with reduced central fibre.

Proof of Corollary 1 modulo Theorem 1 By definition of Mv;w (see Definition 1.1),

Mv;w.'C c/DMv;w.'/C c
Z

X
.Scalv.!'/�w.�'//!Œm�' ;

showing that if Mv;w is bounded below on KT .X; !0/ (in particular if Mv;w is T–
relatively TC–proper), then the relation (7) holds and Mv;w defines a functional on the
space of T–invariant Kähler metrics in ˛ (see Remark 1.2). In this case, Example 4.4
tells us that Fv;w.X ;A / defines a non-Archimedean version of Mv;w. We can now
apply Theorem 4.9.

5 Semisimple principal fibrations

Let .X; !/ be a compact Kähler 2m–manifold, endowed with a hamiltonian isometric
action of an r–dimensional torus T . As T will act on various spaces, we shall use at
times super- and subscripts to emphasize the space on which T acts. For instance, TX

will denote the T–action on X . Let t be the Lie algebra of T and ƒ� t the lattice of
generators of circle groups in T (ie T D t=2�ƒ). We denote by �! W X ! � � t�

the normalized TX –momentum map of ! (the map whose image is a fixed compact
convex polytope �� t�).
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Let B D B1 � � � � �Bk be a 2n–dimensional cscK manifold where each .Ba; !Ba
/,

for a D 1; : : : ; k, is a compact cscK Hodge Kähler 2na–manifold (ie 1
2�
Œ!Ba

� is in
H 2.Ba;Z/), and �B WP!B a principal T–bundle endowed with a connection 1–form
� 2�1.P; t/ with curvature

(22) d� D
kP

aD1

.��B!Ba
/˝pa for pa 2ƒ:

Remark 5.1 The principal T–bundle P above can be described in terms of r complex
line bundles over B as follows. Fixing a lattice basis f�1; : : : ; �r g of t and writing
pa D

Pr
iD1 pai�i for pai 2 Z with aD 1; : : : ; k (22) yields that P is the (fiberwise)

product of r principal U.1/–bundles Pi!B, where each Pi is associated to a complex
line bundle L�i on B with Chern class 2�c1.L

�
i /D�

Pr
aD1 pai�

�
B
Œ!Ba

�:

2�c1.P / WD �2�
rP

iD1

c1.L
�
i /˝ �i D

kP
aD1

��B Œ!Ba
�˝pa:

Fixing a connection 1–form � on P as in (22) amounts to introducing a hermitian
metric h�i on each L�i , with curvature �

Pr
aD1 pai�

�
B
.!Ba

/, and identifying Pi �L�i
with the corresponding unitary S1–bundle.

Let DD ann.�/� TP be the horizontal distribution defined by � , leading to a splitting

TP DD˚ tP ;

where tP denotes the Lie algebra of TP inside C1.P;TP /, corresponding to the
T–action TP on P . The lift JB of the integrable almost complex structure of B to D

gives rise to a CR structure .D;JB/ on P (of codimension r ).

We further let Z WD X � P and consider the induced T–action, denoted by TZ ,
generated by .��X

i C �
P
i / for any basis of ƒ as above. We thus define

Y WDZ=TZ :

It follows that Y is a 2.mCn/–dimensional smooth manifold, and �Y WZDX�P!Y

is a principal T–bundle over Y , whereas �B W P ! B defines a fibration �B W Y ! B

with smooth fibres X , as summarized in the diagram

Z DX �P

X �B Y

B

=TP
=TZ

�B

�B �B
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The TX –action on the factor X in Z DX �P descends to a T–action on Y , denoted
by TY , which preserves each fibre (and thus coincides with the action of TX ). Notice
that the 1–form � also defines a connection 1–form on Z with horizontal distribution H :

(23) T .X �P /DH ˚ tZ ; H D TX ˚DD ann.�/:

This gives rise to an induced CR structure .H ;J D JX ˚JB/ of codimension r on Z,
which is clearly invariant under the TZ –action, and therefore defines a TY –invariant
complex structure JY on Y .

We now consider Kähler metrics on Y , compatible with the fibre bundle construction
of the above form. To simplify the notation, we denote by !a WD !Ba

the (fixed) cscK
metric on each factor Ba, by ! a T–invariant Kähler structure in the class ˛ on X , and
by z! the resulting Kähler structure on Y , which is defined in terms of a basic 2–form
on Z DX �P , depending on k real constants ca 2R (which will be fixed) such that,
for each aD 1; : : : ; k, the affine-linear function hpa; �iC ca on t� is strictly positive
on the momentum image �:

z! WD !C
kP

aD1

.hpa; �!iC ca/�
�
B!aChd�! ^ �i(24)

D !C
kP

aD1

ca.�
�
B!a/C d.h�! ; �i/:

In the above expression, h � ; � i stands for the natural pairing between t and t�. Thus
hpa; �!i is a smooth function, h�! ; �i is a 1–form, and hd�! ^ �i is a 2–form on Z.
One can directly check from the above expression that z! is closed and TZ –basic, and
is positive definite on .H ;JX ˚ JB/, so it is the pullback of a Kähler form on Y .
We shall tacitly identify in the sequel the Kähler form on Y with its pullback (24) on
Z D X �P . Notice that z! is TY –invariant and �! , seen as a smooth TZ –invariant
function on Z, is the �–normalized momentum map.

Remark 5.2 The horizontal part z!h WD z!jH of the 2–form z! on ZDX�P
�B
��!X�B

is invariant and basic with respect to the action TP on the factor P , and thus induces a
hermitian (non-Kähler in general) metric on X �B DX �

Qk
aD1 Ba, given by

Q!h D !C
kP

aD1

.hpa; �!iC ca/!a;

which is an instance of warped geometry. On can thus think of .X � B; z!h/ and
.Y; z!/ as being related by the twist construction of [69] applied to .Z; z!;TZ / and
.Z; z!;TP /.
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Definition 5.3 The Kähler manifold .Y;TY / constructed as above will be called a
semisimple .X;T /–principal fibration associated to the Kähler manifold .X;T / and
the product cscK manifold B D B1 � � � � �Bk . The TY –invariant Kähler metric z!
on Y constructed from a TX –invariant Kähler metric ! on X (and fixed cscK metrics
!a on Ba) will be called bundle-compatible.

Remark 5.4 In the case when .X;T ; !/ is a toric Kähler manifold, a semisimple
.X;T /–principal fibration endowed with a bundle-compatible Kähler metric is an
example of a semisimple rigid toric fibration in the sense of [6], and is thus described
by the generalized Calabi construction with a global product structure on the base and
no blow-downs.

5.1 The space of functions

The above bundle construction gives rise to a natural embedding of the space C1T .X /

of TX –invariant smooth functions on X to the space C1T .Y / of TY –invariant smooth
functions on Y : for any ' 2 C1T .X / we consider the induced function on Z DX �P ,
which is clearly TZ –invariant, and thus descends to a smooth TY –invariant function
on Y . We shall tacitly identify ' and its image in C1T .Y /, ie we shall consider

C1T .X /� C1T .Y /:

Notice that the above embedding is closed in the Fréchet topology, as we can identify
a smooth TX –invariant function on X with a smooth TY –invariant function ' on Y ,
which has the property

dP .�
�
Y '/D 0

on Z DX �P .

More generally, for any TY –invariant smooth function  2 C1T .Y /, its lift ��
Y
 to

Z DX �P is a smooth function which is both TZ – and TX –invariant, or equivalently
TX – and TP –invariant. It thus follows that ��

Y
 can be equivalently viewed as a

TX –invariant smooth function on X �B, ie we have an identification

(25) C1T .Y /Š C1T .X �B/:

In particular, for any fixed point x 2X , we shall denote by  x 2 C1.B/ the induced
smooth function on B, and for any fixed point b 2 B by  b 2 C1T .X / the induced
function on X . We thus have the identification

C1T .X /Š f 2 C1T .Y / j dB x D 0 for all x 2X g:
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5.2 The space of bundle-compatible Kähler metrics

We shall next use the construction of (24) in order to identify the space KT .X; !0/ of
TX –invariant !0–relative Kähler potentials on X as a subset of the space KT .Y; z!0/

of TY –invariant z!0–relative Kähler potentials on Y .

Lemma 5.5 Let !'D!0CdX dc
X
' be a TX –invariant Kähler form on X in the Kähler

class ˛D Œ!0�, where ' 2KT .X; !0/ is a TX –invariant smooth function on X . Denote
by �' the momentum map of TX with respect to !' , satisfying the normalization
�'.X /D�, and by z!' the induced Kähler metric on Y , via (24). Then

z!' D z!0C dY dc
Y ';

where ' stands for the induced smooth function on Y .

Proof Recall that�'D�0Cdc
X
'; see (5). By (24), the pullback of z!' to ZDX�P is

z!' D !'C
kP

aD1

ca.�
�
B!a/CdZ h�' ; �i D !0C

kP
aD1

ca.�
�
B!a/CdX dc

X 'CdZ h�' ; �i

D z!0CdZ dc
X 'CdZ .hd

c
X '; �i/;

so it is enough to check that

(26) dc
Y ' D dc

X 'Chd
c
X '; �i

for any TX –invariant smooth function ' on X . To this end, let us choose a basis
f�1; : : : ; �r g of t, with dual basis f�1; : : : ; �r g of t�, and write

dc
X ' D

rP
jD1

.dc
X '/.�

X
j /�j and � D

rP
jD1

�j�j

for 1–forms �j on Z such that �j is zero on H and �j .�P
i /D �j .��

X
i C �

P
i /D ıij .

Thus, (26) is equivalent to

dc
Y ' D dc

X 'C
rP

jD1

.dc
X '/.�

X
j /�j :

Evaluating the right side of the above equality on the generators .��X
j C �

P
j / of tZ ,

we see that it is a �Y –basic 1–form on Z, and thus is the pullback of a 1–form on Y

via �Y . The claim follows easily.

Thus, Lemma 5.5 defines an embedding KT .X; !0/ � KT .Y; z!0/ and we have also
identified in Section 5.1 a natural embedding of the space of TX –invariant functions on
X into the space of TY –invariant functions on Y , through their pullbacks to ZDX�P .
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Letting � WD
Pr

jD1 �j ˝ �
P
j be the decomposition of the connection 1–form � on P in

a basis f�1; : : : ; �r g of the lattice ƒ� t, and �^r WD �1 ^ � � � ^ �r , it follows from (24)
and Lemma 5.5 that for any ' 2 KT .X; !0/� KT .Y; z!0/, the measure z!ŒmCn�

' on Y

is the pushforward of the measure on Z

(27)
1

.2�/r
z!ŒmCn�
' ^ �^r

D
1

.2�/r

�
p.�'/!

Œm�
' ^

Vk
aD1 �

�
B!

Œna�
a

�
^ �^r ;

where

(28) p.�/ WD
kQ

aD1

.hpa; �iC ca/
na for na D dimC.Ba/

is a positive polynomial on�, determined by the semisimple .X;T /–principal fibration
Y and the given bundle-compatible Kähler class on it. It thus follows that any TX –
invariant integrable function f on X defines an integrable TY –invariant function on Y

and, for any ' 2 KT .X; !0/� KT .Y; z!0/,

(29)
Z

Y
f z!ŒnCm�

' D Vol.B; !B/
Z

X
p.�'/f!

Œm�
' :

Corollary 5.6 There exists an embedding KT .X; !0/�KT .Y; z!0/ such that , for any
smooth curve  t 2 KT .X; !0/� KT .Y; z!0/,

LY
1 . t /D Vol.B; !B/L

X
1;p. t /;

where p.�/ is the positive weight function on � defined in (28), LX
1;p

is the p.�/–
weighted length function on KT .X; !0/ given by

LX
1;p. t / WD

Z 1

0

�Z
X
j P t jp.� t

/!
Œm�

 t

�
dt;

and LY
1

is the length function on KT .Y; z!0/ corresponding to the weight p D 1.
In particular , dY

1
.'0; '1/ D Vol.B; !B/d

X
1;p
.'0; '1/ for any '0; '1 2 KT .X; !0/ �

KT .Y; z!0/, where dX
1;p

is the induced distance via the length functional LX
1;p

.

Proof This is a direct consequence of (29).

Lemma 5.7 Let ' be a smooth TX –invariant function on X , also considered as a
smooth TY –invariant function on Y , and ! be a TX –invariant Kähler metric on X

with z! the corresponding TY –invariant Kähler metric on Y given by (24). Then

kd'k2! D kd'k
2
z! :
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Proof We use that

kd'k2! D
dX ' ^ dc

X
' ^!Œm�1�

!Œm�
D

dX ' ^ dc
X
' ^!Œm�1� ^p.�!/.�

�
B
!B/

Œn� ^ �^r

!Œm� ^p.�!/.�
�
B
!B/Œn� ^ �^r

;

kd'k2
z! D

dY ' ^ dc
Y
' ^ z!ŒmCn�1�

z!ŒmCn�
D

dY ' ^ dc
Y
' ^ z!ŒmCn�1� ^ �^r

z!ŒmCn� ^ �^r

(where the right sides are written on X �P ) together with dX ' D dY ' and (27).

Proposition 5.8 The embedding in Corollary 5.6 is totally geodesic with respect to
the weak C 1; N1 geodesics.

Proof Let '0; '12KT .X; !0/. If '0 and '1 can be connected by a smooth geodesic 't ,
ie with a smooth curve in KT .X; !0/ such that

(30) R' D kd P'k2!' ;

then, by Lemma 5.7, 't is also a smooth geodesic in KT .Y; z!0/ connecting '0 and '1

in KT .Y; z!0/.

In general, by the results in [22], '0 and '1 can be connected only with a weak C 1; N1–
geodesic in K1; N1

T .X; !0/, where K1; N1.X; !0/ stand for the space of C 1.X / functions
' on X such that !0C ddc' � 0 and has bounded coefficients as a .1; 1/–current.
More precisely, letting † WD f1 < z < eg � C, it is shown in [22] that there exists a
unique weak solution (ie a positive .1; 1/–current in the sense of Bedford and Taylor)
of the homogeneous Monge–Ampère equation

(31)
.��X!0C dX dc

Xˆ/
mC1
D 0; ��X!0C dX dc

Xˆ� 0 for ˆ 2 C 1;˛.X �†/;

ˆ.x; 1/D '0.x/; ˆ.x; e/D '1.x/:

It was later shown in [25] that ˆ is actually of regularity C 1;1.X �†/. Note that, by
uniqueness, ˆ is T–invariant as soon as '0 and '1 are. The link with (30) is (see [64])
that if ˆ were actually smooth, we could recover the smooth geodesic 't joining '0

and '1 by letting t WD log jzj and 't .x/ WDˆ.x; log jzj/. In the general case, the curve
't of (weak) !0–relative plurisubharmonic potentials (of regularity C 1;1.X � Œ0; 1�/)
is referred to as the weak C 1; N1–geodesic joining '0 and '1.

We are thus going to check that any weak C 1; N1–geodesic on X (invariant under TX )
defines, via Lemma 5.5, a C 1; N1–geodesic on Y . To this end, we need to show that ˆ
satisfies

(32) .��Y z!0C dY dc
Yˆ/

mCnC1
D 0 and ��Y z!0C dY dc

Yˆ� 0;

the regularity statements being automatically satisfied on Y .

Geometry & Topology, Volume 27 (2023)



3262 Vestislav Apostolov, Simon Jubert and Abdellah Lahdili

By the results in [16; 22], ˆ can be approximated as "! 0, both in the weak sense of
currents and in C 1;˛.X �†/ (for a fixed ˛ 2 .0; 1/), by smooth functions ‰".x; z/ on
X �† for " > 0 which solve

(33)
.��X!0C dX dc

X‰
"/ŒmC1�

D "..��X!0/
Œm�
^ .dx ^ dy//;

��X!0C dX dc
X‰

" > 0; ‰".x; 1/D '0; ‰".x; e/D '1:

By the uniqueness of the smooth solution of (33) (and using that both '0 and '1

are TX –invariant), we have that ‰".x; z/ is a TX –invariant smooth function on X

for any z 2 †. Furthermore, the positivity condition on the second line yields that
‰".x; z/ 2 KT .X; !0/ for any z 2†. We can then also see ‰".x; z/, via its pullback
to X �P �†, as a TY –invariant smooth function on Y �†; the arguments in the proof
of Lemma 5.5 yield that ��

Y
z!0C dY dc

Y
‰" > 0 on Y �†. Also, by the same proof,

we have the equality of volume forms, on X �P �†,

(34) .��Y z!0C dY dc
Y‰

"/ŒmCnC1�
^ �^r

D p.�‰"/.�
�
X!0C ddc‰"/ŒmC1�

^ .��B!B/
Œn�
^ �^r

D "p.�‰"/.�
�
X!0/

ŒmC1�
^ .��B!B/

Œn�
^ �^r ;

where, we recall, p.�/ WD
Qk

aD1.hpa; �i C ca/
na and �^r WD �1 ^ � � � ^ �r (for

� D
Pr

iD1 �i ˝ �
P
i with respect to a basis f�1; : : : ; �r g of ƒ � t), and, for any fixed

z 2†, �‰" denotes the normalized TX –momentum map (5) of !0CdX dc
X
‰". Notice

that, as p is uniformly bounded on � by positive constants, it follows by (34) that

lim
"!0

..��Y z!0C dY dc
Y‰

"/ŒmCnC1�
^ �^r /D 0

weakly (as measures on Z � †). The measure .��
Y
z!0 C dY dc

Y
‰"/ŒmCnC1� is the

pushforward measure of .��
Y
z!0C dY dc

Y
‰"/ŒmCnC1� ^ �^r to Y , so we obtain, on Y ,

lim
"!0

..��Y z!0C dY dc
Y‰

"/ŒmCnC1�/D 0:

Furthermore, using the C 1;˛–convergence of ‰" to ˆ, we get the weak convergences
(of positive .1; 1/–currents)

lim
"!0

.��Y z!0C dY dc
Y‰

"/D ��Y z!0C dY dc
Yˆ� 0;

0D lim
"!0

.��Y z!0C dY dc
Y‰

"/ŒmCnC1�
D .��Y z!0C dY dc

Yˆ/
ŒmCnC1�:

Thus, (32) follows.
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Lemma 5.9 Let v be a smooth positive weight function on �, let ! and z! be
T–invariant Kähler metrics on X and Y , respectively, given by (24), and suppose
.Ba; !a/ has constant scalar curvature Scal.!a/ D sa. Then the v–scalar curvature
Scal.z!/, considered as smooth function on X �P , is given by

(35) Scalv.z!/D
1

p.�!/
Scalpv.!/C v.�!/q.�!/;

with p.�/D
Qk

aD1.hpa; �iCca/
na and q.�/D

Pk
aD1 sa=.hpa; �iCca/. In particular ,

! is a .pv; zw/–cscK metric on X if and only if z! is a .v; w/–cscK metric on Y , with

zw.�/D p.�/.w.�/� v.�/q.�//:

Proof We apply the arguments in the proof of [3, Proposition 7] to both .X;TX / and
.Y;TY / to compute the corresponding scalar curvatures, and compare the results.

On X , we consider the open dense subset VX �X of stable points of the TX –action,
and take the quotient �S W

VX ! S WD VX=TC
X

under the induced complexified action
TC

X
Š .C�/r (thus S is a complex 2.m�r/–dimensional orbifold).

Consider the pointwise !–orthogonal and T–invariant decomposition

T VX DH˚ tX ˚J tX ;

and write the Kähler structure .g;J; !/ on X as

g D gHC

rP
i;jD1

Hij .�i ˝ �j CJ�i ˝J�j /; ! D !HC

rP
i;jD1

Hij�i ^J�j ;

where, for a fixed basis f�1; : : : ; �r g of t, the 1–forms �j on VX are defined by .�j /jHD0,
�j .�

X
i /D ıij ; �j .J �

X
i /D 0 and Hij D g.�X

i ; �
X
j /.

We next fix a local volume form VolS on S in some holomorphic coordinates, and
pointwise write

(36) !
Œm�r �
H DQ��S .VolS /

for some positive (locally defined) smooth function Q on VX (where both !Œm�1�
H

and
��

S
.VolS / are seen as sections of

Vm�1
H�). According to [3, Proposition 7],

(37) � WD �1
2
.log QC log det.Hij //

is a (local) Ricci potential of !, ie �! D dX dc
X
�, and thus

Scal.!/D�2
dX dc

X
� ^!Œm�1�

!Œm�
:
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We can now make a similar argument on Y , noting that the Kähler reduction of VY by the
induced TY –action is S �B; taking a local volume form in holomorphic coordinates
on S �B of the form VolS ^VolB1

^ � � � ^VolBk
, and using (24), we see that a Ricci

potential on Y (when pulled back to X �P ) is written as

Q� D
kP

aD1

�a�
1
2
.log zQC log det.Hij //;

where �a WD �
1
2

log.!Œna�
a =VolBa

/ is a Ricci potential of .Ba; !a/ and

zQD p.�!/Q:

Thus,

(38) Q� D
kP

aD1

�aC � �
1
2

log p.�!/;

as functions on X � P . Introducing a basis .�i/i of ƒ and writing the connection
1–form � 2�1.P; t/ as � D

Pr
jD1 �j ˝ �

P
j (where the 1–forms �j on P are such that

�j is zero on D and �j .�P
i /D ıij ), we compute the scalar curvature of Q! to be

(39) Scal.z!/D
�
�.dY dc

Y
Q� ^ z!ŒmCn�1�/=.z!ŒmCn�/ on Y;

�.dY dc
Y
Q� ^ z!ŒmCn�1� ^ �^r /=.z!ŒmCn� ^ �^r / on X �P:

By (26) and (38), the pullback of dY dc
Y
Q� to X �P is given by

(40) dY dc
Y Q� D dY dc

Y

�
� � 1

2
log p.�!/

�
C

kP
aD1

dY dc
Y �a

D dX dc
X

�
� � 1

2
log p.�!/

�
C

rP
jD1

dX

�
dc

X

�
� � 1

2
log p.�!/

�
.�X

j /
�
^ �j

C

rP
jD1

dc
X

�
� � 1

2
log p.�!/

�
.�j /dP�j C

kP
aD1

ddc
Ba
�a

D dX dc
X � �

1
2
dX dc

X .log p.�!//

C

rP
jD1

dX

�
dc

X

�
� � 1

2
log p.�!/

�
.�X

j /
�
^ �j

C

kP
aD1

dc
X

�
� � 1

2
log p.�!/

�
.pa/.�

�
B!a/C

kP
aD1

ddc
Ba
�a;

where in the last equality we used (22) and we have denoted by pa the induced vector
field on X by the element pa2 t. We shall compute the term dc

X
�.pa/ on VX . Using (37),
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we get

(41) dc
X �.pa/D

1

2

�LJpa
Q

Q
C tr.H�1

ij .LJpa
Hij //

�
:

Taking the wedge product of both sides of (36) with� rX
i;jD1

Hij�i ^J�j

�Œr �
D det.Hij /

Vr
jD1.�j ^J�j /

gives
!Œm� DQ��S VolS ^ det.Hij /

Vr
jD1.�j ^J�j /:

Applying the Lie derivative LJpa
to the above equality yields

.�!�
pa
! /!

Œm�
D .LJ �a

Q/��S VolS ^ det.Hij /
Vr

jD1.�j ^J�j /

CQ��S VolS ^LJpa

�
det.Hij /

Vr
jD1 �j ^J�j

�
and

Q��S VolS ^LJpa

�
det.Hij /

Vr
jD1.�j ^J�j /

�
D
�
tr.H�1

ij .LJpa
Hij //

�
Q��S VolS ^ .det.Hij //

Vr
jD1 �j ^J�j ;

where we used that LJpa
�j is a basic form (since .LJpa

�j /.�i/D��j .ŒJpa; �i �/D 0).
We thus get �!�

pa
! D LJpa

Q=Q C tr.H�1
ij .LJpa

Hij // or equivalently, in terms
of (41),

(42) dc
X �.pa/D

1
2
.�!�

pa
! /:

Using the above equation in (40), we continue the computation:

(43) dY dc
Y Q�DdX dc

X ��
1
2
ddc

X .log p.�!//C

rX
jD1

dX

�
dc

X

�
��1

2
log p.�!/

�
.�X

j /
�
^�j

C
1

2

kX
aD1

�
�!�

pa
! C

LJpa
.p.�!//

p.�!/

�
.��B!a/C

kX
aD1

dBa
dc

Ba
�a:

Recall that, by (27), on Z we have z!ŒmCn�^�^r Dp.�!/!
Œm�^

Vk
aD1 �

�
B
!
Œna�
a ^�^r .

Similarly, by (24),

(44) z!ŒmCn�1�
^ �^r

D

kX
bD1

�
p.�!/

h�! ;pbiC cb

!Œm� ^ .��B!b/
Œnb�1�

^
Vk

aD1;a¤b.�
�
B!a/

Œna� ^ �^r

�
Cp.�!/!

Œm�1�
^
Vk

aD1.�
�
B!a/

Œna� ^ �^r :
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Using (39), (43), (27) and (44), we obtain

(45) Scal. Q!/

D Scal.!/C�!.log p.�!//

C

kX
aD1

�
na

h�! ;paiCca

�
�!�

pa
! C

LJpa
p.�!/

p.�!/

�
C

sa

h�! ;paiCca

�

D Scal.!/C
kX

aD1

na�!.log.h�! ;paiCca//

C

kX
aD1

�
na

h�! ;paiCca

�
�!.h�! ;pai/C

LJpa
.p.�!//

p.�!/

�
C

sa

h�! ;paiCca

�

D Scal.!/�
kX

a;bD1

nanbg.pa;pb/

.h�! ;paiCca/.h�! ;pbiCcb/

C

kX
aD1

�
2na�!.h�! ;pai/

h�! ;paiCca
C

naj�aj
2
g!

.h�! ;paiCca/2
C

sa

h�! ;paiCca

�
:

On the other hand, using a basis .�i/ of t with a dual basis .�i/ of t�,

Scalp.!/ WDp.�!/Scal.!/C2

rX
iD1

p;i.�!/�!.h�! ; �ii/�

rX
i;jD1

p;ij .�!/g!.�i ; �j /

Dp.�!/Scal.!/C2

rX
iD1

�!.h�! ; �ii/

kX
aD1

na�
i.pa/p.�!/

h�! ;paiCca

C

rX
i;jD1

g!.�i ; �j /

� kX
aD1

na�
i.pa/�

j .pa/p.�!/

.h�! ;paiCca/2

�

kX
a;bD1

nanb�
i.pa/�

j .pa/p.�!/

.h�! ;paiCca/.h�! ;pbiCcb/

�

Dp.�!/Scal.!/C2�!.h�! ;pai/

kX
aD1

nap.�!/

h�! ;paiCca

C

� kX
aD1

najpaj
2
g!

p.�!/

.h�! ;paiCca/2
�

kX
a;bD1

nanbg!.pa;pb/p.�!/

.h�! ;paiCca/.h�! ;pbiCcb/

�
:
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Comparing the above expression with (45),

(46) Scal.z!/D 1

p.�!/
Scalp.!/C

� kX
aD1

sa

h�! ;paiC ca

�
:

Using that (as functions on X � P ) � Q! D �! and g!.�i ; �j / D gz!.�i ; �j / (see the
proof of Lemma 5.7), we further compute, from (46),

Scalv. Q!/D v.� Q!/Scal. Q!/C 2

rX
iD1

v;i.� Q!/�
Y
Q!.h� Q! ; �ii/�

rX
i;jD1

v;ij .� Q!/gz!.�i ; �j /

D
v.�!/

p.�!/
Scalp.!/C v.�!/q.�!/C 2

rX
iD1

v;i.�!/�
Y
Q!.h�! ; �ii/

�

rX
i;jD1

v;ij .�!/gz!.�i ; �j /

D
v.�!/

p.�!/
Scalp.!/C v.�!/q.�!/C 2

rX
iD1

v;i.�!/�
X
!;p.h�! ; �ii/

�

rX
i;jD1

v;ij .�!/g!.�i ; �j /;

where, for passing to the last line, we used the identity �Y
z!
D �X

!;p established in
Lemma A.3. As

(47) �X
!;p. / WD

1

p.�!/
ı!.p.�!/d /D�

X
! . /�

rX
jD1

p;j .�!/

p.�!/
g!.d�

�j
! ; d /;

we further get

v.�!/

p.�!/
Scalp.!/C 2

rX
iD1

v;i.�!/�
X
!;p.h�! ; �ii/�

rX
i;jD1

v;ij .�!/g!.�i ; �j /

D v.�!/Scal.!/C 2

rX
iD1

v.�!/p;i.�!/

p.�!/
�X
! .h�! ; �ii/

�

rX
i;jD1

v.�!/p;ij .�!/

p.�!/
g!.�i ; �j /C 2

rX
iD1

v;i.�!/�
X
! .h�! ; �ii/

� 2

rX
i;jD1

v;i.�!/p;j .�!/

p.�!/
gX .�i ; �j /�

rX
i;jD1

v;ij .�!/g!.�i ; �j /
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D
1

p.�!/

�
.pv/.�!/Scal! C2

rX
iD1

.pv/;i.�!/�
X
! .h�! ; �ii/

�

rX
i;jD1

.pv/;ij .�!/g!.�i ; �j /

�
D

1

p.�!/
Scalpv.!/:

The expression (35) follows from the above formulas.

Lemma 5.10 The restriction of the weighted Mabuchi energy M Y
v;w on Y to the

subspace KT .X; !0/ � KT .Y; z!0/ is equal to C M X
pv; zw

, where p, w and zw are as
given in Lemma 5.9 and C D Vol.B; !B/.

Proof This is a direct corollary of Lemma 5.9 and Definition 1.1.

We now specialize to the case when each .Ba; !a/ is a Hodge Kähler–Einstein manifold
with positive scalar curvature sa D 2naka, where ka 2N. Equivalently, 2�c1.Ba/D

kaŒ!a� for a positive integer ka and an integral Kähler class 1
2�
Œ!a�. Notice that ka must

be a positive divisor of the Fano index Ind.Ba/ of Ba, which yields the a priori bound
1� ka � Ind.Ba/. We also assume that .X;T / is Fano, with canonically normalized
momentum polytope �. We then have:

Lemma 5.11 In the setting above , if the affine-linear functions hpa; �i C ka are
positive on �, then the bundle-compatible Kähler metric z! on Y corresponding to the
constants ca D ka belongs to de Rham class 2�c1.Y /. Furthermore , z! is a v–soliton if
and only if ! is a pv–soliton.

Proof By using (38) and rearranging the terms in (40), we have the relation (written
on Z)

(48) �z! D �! C

kX
aD1

.hpa; ��! iC ca/!aChdX��! ^ �i

C

kX
aD1

.�a� ca!a/�
1
2
dY dc

Y log p.�!/;

where �z! , �! and �a denote the Ricci forms of .Y; z!/, .X; !/ and .Ba; !a/, respec-
tively, pulled back to Z, and ��! WD dc

X
� is the “momentum map” with respect to the

Ricci form �! . As in (42), we have ��! D
1
2
�!�! . Suppose �! �! D 1

2
dX dc

X
h for
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some T–invariant smooth function on X ; by using that the momentum polytope �
is canonically normalized, we have (see (11)) ��! ��! D dch. A closer look at the
proof of Lemma 5.5 and the relation (48) (with ca D sa=.2na/D ka) show that

�z! � z! D
1
2
dY dc

Y
Qh with Qh WD h� log p.�!/:

The claim follows from the above.

Remark 5.12 Lemma 5.11 provides a useful way to construct semisimple .X;T /–
principal Fano fibrations. Indeed, for given positive Hodge Kähler–Einstein manifolds
.Ba; !a/ as above with corresponding integer constants ka, and a given Fano manifold
.X;T / with associated canonical polytope �, one can try to find the possible principal
T–bundles P over B D

Qk
aD1 Ba for which the corresponding semisimple .X;T /–

principal fibration is Fano. Such principal T–bundles P are in correspondence with
the choice of lattice elements pa 2 ƒ � t and Lemma 5.11 tells us that for a set
of elements pa, to determine a Fano semisimple .X;T /–principal fibration Y it is
sufficient to check that, for all a,

hpa; �iC ka > 0 on �:

For instance, if we take B D B1 D P1 with a Fubini–Study metric !1 of scalar
curvature 4 (so that k1 D 2 and !1 is primitive) and .X;T /D .P1;S1/ with canon-
ical polytope � D Œ�1; 1�, then the possible Fano .P1;S1/–principal fibrations will
correspond to p1 2 Z such that p1�C 2 > 0 on Œ�1; 1�, ie p1 D ˙1; 0 are the only
possible values. This gives rise to the Fano surfaces P .O˚O.�1//Š P .O˚O.1//
and P1 �P1. In general, the isomorphism class of the principal T–bundle P over B,
and hence also the semisimple .X;T /–principal Fano fibration constructed as above,
is encoded by the Hodge classes 1

2�
Œ!a�˝pa D 1=kac1.Ba/˝pa 2H 2.B;Z/r . The

a priori bounds 1 � ka � Ind.Ba/ for ka show that, for given base B D
Qk

aD1 Ba

and fibre .X;T /, there are only a finite number of semisimple .X;T /–principal Fano
fibrations constructed this way.

Remark 5.13 The relationship between the Ricci potentials Qh and h established in
the proof of Lemma 5.11 and (29) yield, via Remark 2.3, that, if the momentum map
�! of .X; !;TX / is canonically normalized, then the momentum map �z! D �! of
the corresponding bundle-compatible Kähler metric z! on .Y;TY / is also canonically
normalized.

We finish this section with a straightforward extension of [6, Lemma 5]:

Geometry & Topology, Volume 27 (2023)



3270 Vestislav Apostolov, Simon Jubert and Abdellah Lahdili

Lemma 5.14 Suppose Y is a semisimple principal .X;T /–fibration over B, such
that T is a maximal torus in the reduced group of automorphisms Autr .X /. Let z!
be a bundle-compatible Kähler metric on Y corresponding to a T–invariant Kähler
metric ! on X , and KB � Autr .B/ be a maximal compact torus in the reduced
group of automorphisms of B which (without loss of generality by the Lichnerowicz–
Matsushima theorem) belongs to the isometry group of !B . Then z! is invariant under
the action of a maximal torus KY � Autr .Y /, and we have an exact sequence

f0g ! Lie.TY /! Lie.KY /! Lie.KB/! f0g:

Furthermore , for any positive weight functions v and w0 defined on � � t�, there
exists a unique affine-linear function `ext

v;w0
on t� such that , when pulled back to the

dual Lie algebra k�
Y

of KY , .v; w0`
ext
v;w0

/ satisfies (3) with respect to z! on Y for any
affine-linear function ` on k�

Y
.

Proof This proof is not materially different than the proof of [6, Lemma 5] (which
is made in the case when .X;T / is toric and v D w0 D 1). We only give a sketch.
A Killing potential f for a Killing vector field K 2 kB WD Lie.KB/ is of the form
f D

Pk
aD1 fa, where fa is a Killing potential of .Ba; !a/. Letting zK be the horizontal

lift of K to P (using the tP –valued connection 1–form �), one can check that the
vector field on P

yK D zKC
kP

aD1

fa�
P
pa

is a CR vector field on .P;D;JB/, hence also on .Z;H ;JB˚JX /. Furthermore, a
direct verification in (24) reveals that

(49) { yK z! D�d
� kP

aD1

.hpa; �!iC ca/fa

�
;

so yK also preserves z!. We thus obtain a lift OkB of the Lie algebra kB D Lie.TB/ to Z,
which clearly commutes with the action TZ and preserves both the CR structure of
.Z;H / and the 2–form z!. The Lie algebra kY of KY is then induced by tX˚OkB�T Z,
which descend to an abelian Lie algebra of Killing fields on Y . The maximality of
KY � Autr .Y / and the exactness of the sequence follow from the maximality of each
KB � Autr .B/ and T � Autr .X /, and the fact that (recall that Y is a locally trivial
X –fibre bundle and therefore the fibres have trivial normal bundle) any holomorphic
vector field on Y projects under �B to a holomorphic vector field on B. For the final
claim in Lemma 5.14, notice that by (49) the Killing potentials of all lifted Killing
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vector fields yK from B are of the form
Pk

aD1.hpa; �!iC ca/fa. Thus, by Lemma 5.9
and using (27), the integral condition (3) on .Y; z!/ will be zero for any such Killing
potential as soon as we normalize

R
Ba
fa!

na
a D 0 and assume `ext

v;w0
2Aff.t�

X
/. On the

other hand, examining (3) on .Y; z!/ for the Killing potentials `.�z!/ for ` 2 Aff.t�/
reduces (again by Lemma 5.9 and (29)) to an integral relation on .X; !/ which defines
a unique element `ext

v;w0
2 Aff.t�/.

6 Weighted functionals and distances and their extensions

Let !0 be a T–invariant Kähler metric in the Kähler class ˛, denote by PSHT .X; !0/

the space of T–invariant !0–plurisubharmonic functions in L1.X; !0/, and define the
class of potentials of full volume by

ET .X; !0/ WD

�
' 2 PSHT .X; !0/

ˇ̌̌ Z
X

MA.'/D
Z

X

!
Œn�
0

�
:

According to [27], the d1–completion of KT .X; !0/ can be identified with the subspace
of potentials of finite energy:

E1
T .X; !0/D

�
' 2 ET .X; !0/

ˇ̌̌ Z
X

j'jMA.'/ <1
�
:

Our main result in this section will be the existence of an lsc extension of the weighted
Mabuchi functional (defined in Definition 1.1 on the space KT .X; !0/) to a functional
on E1

T .X; !0/. Our starting point is that the weighted Mabuchi energy Mv;w admits a
weighted Chen–Tian decomposition [55, Theorem 5] into energy and entropy parts

(50) Mv;w.'/D

Z
X

log
�
v.�'/!

m
'

!m
0

�
v.�'/!

Œm�
' � 2I

�!0
v .'/C Iw.'/

�

Z
X

log.v.�0//v.�0/!
Œm�
0
;

where �!0
is the Ricci form of !0 and the functionals Iw and I

�!0
v are introduced in

Definition 6.2. We want to show:

Theorem 6.1 For smooth weight functions v.�/ and w.�/ such that v.�/ > 0 on �,
the weighted Mabuchi energy Mv;w WKT .X; !0/!R extends using (50) to the largest
d1–lsc functional Mv;w W E1

T .X; !0/ ! R [ f1g which is convex along the finite-
energy geodesics of ET .X; !0/. Additionally , the extended weighted Mabuchi energy
Mv;w is linear in v and w, uniformly continuous in w in the C 0.�/ topology , and
continuous with respect to v in the C 1.�/ topology.
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The above result is well known for the unweighted case, by [13], and we will follow a
similar path to get an extension in the weighted case. The proof of Theorem 6.1 will
be given at the end of the section, and we detail below the definition and extension of
each component of (50).

6.1 The weighted Aubin–Mabuchi functionals

Definition 6.2 [55] For a smooth weight function v.�/ on � we let Iv denote the
functional on KT .X; !0/ defined by

.d'Iv/. P'/D
Z

X
P'v.�'/!

Œn�
' ; Iv.0/D 0;

and let Jv WD
R
X 'v.�0/!

Œm�
0
� Iv.'/. Furthermore, for a fixed T–invariant closed

.1; 1/–form � on X with momentum �� W X ! t�, we define the �–twisted Aubin–
Mabuchi functional I

�
v W KT .X; !0/!R by

.d'I�v /. P'/ WD
Z

X
P'
�
v.�'/�^!

Œm�1�
' Ch.dv/.�'/; ��i!

Œm�
'

�
; I�v .0/D 0:

For v � 1, we let I1 D I , J1 D J and I
�
v D I�, and notice that I and J are the

functionals introduced in Definition 3.1

Remark 6.3 It follows from the above definition and the results in [55] that for any
weight v.x/ and a constant c, Jv.'Cc/DJv.'/, allowing one to see Jv as a functional
on the space of T–invariant Kähler metrics in the Kähler class ˛D Œ!0�, and motivating
the notation Jv.!'/. Notice also that Iv, Jv and I

�
v are linear in v. In the case when

v > 0, Jv is nonnegative (see Lemma 6.4), whereas Iv is monotone in the sense that,
for any '0; '1 2 KT .X; !0/ with '1.x/� '0.x/,

Iv.'1/� Iv.'0/� inf
�
.v/

Z
X
.'1�'0/!

Œm�
'0
:

The above inequality follows by Definition 6.2, integrating the derivative of Iv along
the path t'1C .1� t/'0 2 KT .X; !0/, and integrating by parts.

The following is established in [45, (2.37)]:

Lemma 6.4 Let v > 0. There exists a uniform constant C D C.X; !0; v/ > 0 such
that

1

C
J .'/� Jv.'/� C J .'/:
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Proof Let 't WD '0C t' with ' WD '1 � '0 and !'t
D !'0

C tddc' for t 2 Œ0; 1�.
We compute

Jv.'/D Jv.'1/�Jv.'0/D
Z 1

0

Z
X
'.v.�!/!

Œm�
�v.�'s

/!Œm�'s
/ ds

D�

Z 1

0

Z
X
'
�Z s

0

d

dt
Œv.�'t

/!Œm�'t
� dt

�
ds

D�

Z 1

0

Z
X
'
�Z s

0

�
g't

.d Œlog ıv.�'t
/�; d'/��'t

.'/
�
v.�'t

/!Œm�'t
dt
�

ds

D�

Z 1

0

Z s

0

�Z
X
'd Œv.�'t

/�^dc'^!Œm�1�
't

C'ddc'^v.�'t
/!Œm�1�
't

�
dt ds

D

Z 1

0

Z s

0

�Z
X
v.�'t

/d'^dc'^!Œm�1�
't

�
dt ds

D

Z 1

0

Z s

0

�Z
X
v.�'t

/d'^dc'^.t!'C.1�t/!/Œm�1�
�

dt ds

D

m�1P
jD0

Z 1

0

Z s

0

�Z
X

tj .1�t/m�j�1v.�'t
/d'^dc'^!Œj �^!

Œm�j�1�

'

�
dt ds;

where, in the fourth equality, we have used that

(51) d

dt
Œv.�'t

/�D
rP

iD1

v;i.�'t
/.dc'/.�i/D g't

.d Œv.�'t
/�; d'/

for any basis .�i/iD1;:::;r of t. It follows that

1

C
J .'/� Jv.'/� C J .'/;

where C D C.X; ˛; v/ is a constant such that 1=C 6 v 6 C on �˛.

Lemma 6.5 Suppose v and w are smooth functions on �. Then

jJv.'/�Jw.'/j � kv�wkC 0.�/J1.'/;

jIv.'/� Iw.'/j � kv�wkC 0.�/.k'kL1.X ;!0/
CJ1.'//:

In particular , for a fixed ' 2 KT .X; !0/, Iv.'/ and Jv.'/ are uniformly continuous
in v.

Proof The first relation follows from Lemma 6.4 whereas the second inequality follows
from the first and Definition 6.2.

Lemma 6.6 The restrictions of IY
1

and J Y
1

to the subspace KT .X; !0/�KT .Y; z!0/

are equal to C IX
p and C J X

p , respectively, where p.�/ is the weight function defined
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in Lemma 5.9 and C D Vol.B; !B/. Furthermore , if Q� is a Kähler form on Y induced
by a Kähler form � on X using (24), then the restriction of .I Q�

1
/Y to the subspace

KT .X; !0/ equals C.I
�
p /

X .

Proof The first part follows from the definition of IY
1

, using that

z!ŒnCm�
' ^ �^r

D p.�'/!
Œm�
' ^!

Œn�
B
^ �^r

on Z.

Similarly, if Q� is a .1; 1/–form Y whose pullback to Z is

(52) Q� WD �C
kP

aD1

.hpa; ��iC cai/�
�
B!aChd�� ^ �i;

we compute

.d'I�p /
X . P'/D

Z
X

P'Œp.�'/�^!
Œm�1�
' Ch.dp/.�'/; ��i!

Œm�
' �

D
1

Vol.B; !B/

Z
Y

P' Q�^ z!ŒnCm�1�
' D

1

Vol.B; !B/
.d'I Q�/Y . P'/:

The claim follows, as .I�p /X .0/D 0D .I Q�/Y .0/.

6.2 The weighted d1–distance

Definition 6.7 Let v > 0 be a positive function on �. For '0; '1 2 KT .X; !0/ we let

d1;v.'0; '1/ WD inf
 .t/
fL1;v. .t// j  .t;x/ 2 C1T .Œ0; 1��X / and  .t/ 2 KT .X; !0/g;

where

L1;v. .t// WD

Z 1

0

�Z
X

j P .t/jv.� .t//!
Œm�

 .t/

�
dt:

For v � 1, we have d1;1 D d1, where d1 is the distance introduced in Section 3.

Lemma 6.8 For any weight v > 0, there exists uniform constant C DC.X; !0; v/ > 0

such that

(53) 1

C
d1.'0; '1/� d1;v.'0; '1/� Cd1.'0; '1/ for all '0; '1 2 KT .X; !0/;

where d1 WD d1;1 is the distance introduced in [27]. In particular , d1;v is a distance on
KT .X; !0/ which is quasiisometric with d1.

Proof The relation (53) follows from the fact that v.�/ is positive and uniformly
bounded on�. This yields that d1;v is a distance, as d1 is a distance according to [27].

Geometry & Topology, Volume 27 (2023)



Weighted K–stability 3275

Lemma 6.9 For any smooth weight v > 0,

jIv.'0/� Iv.'1/j � d1;v.'0; '1/� Cd1.'0; '1/ for all '0; '1 2 KT .X; !0/:

Proof For any smooth curve 't between '1 and '2, using Definition 6.2,

jIv.'0/� Iv.'1/j D
ˇ̌̌Z 1

0
.d't

Iv/. P't / dt
ˇ̌̌
�L1;v.'t /:

The claim follows from the above and Lemma 6.8.

6.3 Extensions to E1
T

.X; !0/

Lemma 6.10 For any smooth weight v, the functionals Iv and Jv continuously extend
to the space E1

T .X; !0/. Furthermore , for any  2 E1
T .X; !0/, the extended functionals

are linear and uniformly continuous in v, in the topology C 0.�/.

Proof Iv is d1–Lipschitz by Lemma 6.9; for Jv, we get from Definition 6.2 that

jJv.'0/�Jv.'1/j �
Z

X
j'0�'1j!

Œm�
0
CjIv.'0/� Iv.'1/j:

Combining the above inequality with Lemma 6.9 and [27, Corollary 5.7], there exists
a uniform positive constant C D C.X; !0; v/ and, for any fixed positive real number
R> 0, an increasing continuous function FR WRC!RC;F.0/D 0, defined in terms
of .X; !0;R/, such that, for any '0; '1 2 KT .X; !0/ with d1.0; 'i/�R,

jJv.'0/�Jv.'1/j � Cd1.'0; '1/CFR.d1.'0; '1//;

showing that Jv is locally uniformly continuous on .KT .X; !0/; d1/ and thus extends
continuously to .E1

T .X; !0/; d1/.

The v–linearity of Iv and Jv is clear by continuity; see Remark 6.3. The continuity with
respect to v follows from the continuous extensions of the inequalities in Lemma 6.5,
noting that we have already shown that Jv , Jw , J , Iv and Iw all extend continuously,
whereas k � kL1.X ;!0/

extends continuously by [27, Theorem 5.8].

Corollary 6.11 The metric completion of .KT .X; !0/\ I�1
v .0/; d1/ is the complete

geodesic metric space .E1
T .X; !0/\ I�1

v .0/; d1/.

Proof Similarly to [29, Lemma 5.2], one can show that Iv is linear along finite-energy
geodesics. As Iv WE1

T .X; !0/!R is d1–continuous, it follows that E1
T .X; !0/\I�1

v .0/

is a d1–closed subspace.
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Lemma 6.12 Let v be a smooth weight function and � a T–invariant closed .1; 1/–
form. The functional I

�
v W KT .X; !0/!R extends to a d1–continuous functional on

E1
T .X; !0/ which is bounded on d1–bounded subsets of E1

T .X; !0/. Furthermore , the
extended functional is linear and uniformly continuous in v, in the C 1.�/ topology.

Proof Following the proof of [14, Proposition 4.4], we show that I
�
v is locally

uniformly d1–continuous and bounded on d1–bounded subsets of KT .X; !0/. Letting
'0; '1 2 KT .X; !0/, we put 's WD s'1C .1� s/'0 for s 2 Œ0; 1� and compute

(54) I�v .'1/�I�v .'0/D
Z 1

0

d

ds
I�v .'s/ ds

D

Z 1

0

Z
X
.'1�'0/

�
v.�'s

/�^!Œm�1�
's

Ch.dv/.�'s
/;��i!

Œm�
's

�
ds

D

Z
X
.'1�'0/

m�1P
jD0

vj ;m�1.�'0
; �'1

/�^!Œj �'1
^!Œm�j�1�

'0

C

Z
X
.'1�'0/

mP
jD0

h.dv/j ;m.�'0
; �'1

/; ��i!
Œj �
'1
^!Œm�j �

'0
;

where vj ;k.�0; �1/ and .dv/j ;k.�0; �1/ are defined on ��� by

vj ;k.�0; �1/ WD
Z 1

0
sj .1� s/k�jv.s�1C .1� s/�0/;

.dv/j ;k.�0; �1/D
Z 1

0
sj .1� s/k�j .dv/.s�1C .1� s/�0/:

Using the computation (54),

(55) jI�v .'1/� I�v .'0/j6 C
Z

X
j'1�'0j

m�1P
jD0

!0 ^!
Œj �
'1
^!Œm�j�1�

'0

CC
Z

X
j'1�'0j

mP
jD0

!Œj �'1
^!Œm�j �

'0

6 C
Z

X
j'1�'0j!

Œm�

.'0C'1/=4
;

where in the first inequality we use that the functions h.dv/j ;k.�'0
; �'1

/; ��i and
vj ;k.�'0

; �'1
/ are bounded on ��� and �C!0<�<C!0 for some constant C > 1,

and in the second inequality we use the observation !.'0C'1/=4D
1
2
!0C

1
4
!'0
C

1
4
!'1

.
Using the estimate (55) we can show, similarly to [14, Proposition 4.4], that for any
R> 0 there is an increasing continuous function FR WR!R with FR.0/D 0 such that

jI�v .'1/� I�v .'0/j6 FR.d1.'0; '1//
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for any '0; '1 2 KT .X; !0/ \ f' j d1.0; '/ < Rg. It follows that I
�
v extends to a

d1–continuous functional on E1
T .X; !0/ which is bounded on d1–bounded subsets of

E1
T .X; !0/.

For the last statement, let v and w be two (smooth) positive weight functions and
' 2 KT .X; !0/. Taking '1 D ' and '0 D 0 in the computation (54),

I�v .'/D
Z

X
'

m�1P
jD0

vj ;m�1.�0; �'/�^!
Œj �
' ^!

Œm�j�1�
0

C

Z
X
'

mP
jD0

h.dv/j ;m.�0; �'/; ��i!
Œj �
' ^!

Œm�j �
0

:

Let C > 1 such that �C!0 < � < C!0. Using the above formula,

jI�v .'/� I�w.'/j D jI
�
v�w.'/j

6 C
Z

X
j'j

m�1P
jD0

j.v�w/j ;m�1.�0; �'/j!
Œj �
' ^!

Œm�j �
0

CC
Z

X
j'j

mP
jD0

jh.d.v�w//j ;m.�0; �'/; ��ij!
Œj �
' ^!

Œm�j �
0

6 Ckv�wkC 1.�/

Z
X

mP
jD0

j'j!Œj �' ^!
Œm�j �
0

6 Ckv�wkC 1.�/

Z
X
j'j.2!0C ddc'/Œm�

6 Ckv�wkC 1.�/

Z
X
j'j!Œm�' :

Using approximation by decreasing sequences in KT .X; !0/, the above estimate holds
for E1

T .X; !0/.

Following Berman and Nyström [15] and the recent work of Han and Li [45], we now
define the extension of weighted Monge–Ampère measures to the space ET .X; !0/.

Proposition 6.13 Let v > 0 be a smooth weight function. For any ' 2KT .X; !0/, let

MAv.'/ WD v.�'/!Œm�' :

Then MAv.'/ extends to a well-defined Radon measure defined for any ' 2 ET .X; !0/

such that , for any decreasing sequence .'j /j of elements in KT .X; !0/ converging
to ' (which exists by [17]), we have limj!1MAv.'j /DMAv.'/.
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Proof The result is established in [15; 45] for !0 2 ˛ D c1.L/ a Kähler Hodge class
on a projective variety X . The method of Han and Li [45, Proposition 2.2], which
uses the semisimple principal fibration construction and polynomial approximations,
extends to the case of an arbitrary Kähler class ˛ D Œ!0�. Below we give details of this
construction, for the reader’s convenience.

Let ' 2 ET .X; !0/. Following the proof of [45, Proposition 2.2], we first define
MAp.'/ for a positive polynomial weight of the form p.�/ WD

Qk
aD1.hpa; �iCca/

na ,
and extend the definition linearly on p for finite sums of such polynomials. We can then
use the Bernstein approximation theorem of an arbitrary positive v with polynomials
of the above form in order to obtain MAv.'/.

We start with a semisimple principal .X;T /–fibration Y (see Section 5) with corre-
sponding polynomial weight p.�/ WD

Qk
aD1.hpa; �iC ca/

na ; see (28). As the choice
of the base B D B1 � � � � �Bk does not matter, we can simply take (as in [45]) B to
be the product of projective spaces .Ba; !a/D .Pna ; !a/ endowed with Fubini–Study
metrics of scalar curvatures 2na.na C 1/, and P to be the principal U.1/r –bundle
over B, obtained from the tensor products Pi of (the pullbacks to B of) the natural
principal U.1/–bundles of degrees pai over Pna ; see Remark 5.1.

Using [17, Theorem 1], there is a decreasing sequence

'j 2 PSHT .X; !0/\C1.X /D KT .X; !0/

converging towards '. By Lemma 5.5 we have 'j 2 KT .Y; z!0/ and, by (29), for any
TX –invariant continuous function f on X ,Z

X

fp.�'j /.!0C dX dc
X 'j /

Œm�
D

1

Vol.B; !B/

Z
Y

f .z!0C dY dc
Y 'j /

ŒmCn�:

Passing to the limit in both sides of the above equation, we can define MAX
p .'/ on

T–invariant continuous functions f by

(56)
Z

X

f MAX
p .'/ WD lim

j!1

1

Vol.B; !B/

Z
Y

f . Q!0C dY dc
Y 'j /

ŒmCn�:

Notice that by [43, Theorem 1.9] the limit exists and is well defined on Y (independent
of the chosen sequence).

For a continuous function f on X which is not necessarily TX –invariant, we defineZ
X

f MAX
p .'/ WD

Z
X

f T MAX
p .'/;
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where f T is the TX –invariant function given by the average of f over the TX –action.
It follows that MAX

p .'/ is a well-defined Radon measure by the Riesz representation
theorem.

We can extend the above definition by linearity in p on polynomials which are linear
combinations with positive coefficients of polynomials of the above special form. Thus,
for ' 2 PSHT .X; !0/ and for two polynomials p and q on �,

(57)
ˇ̌̌̌Z

X

f MAX
p .'/�

Z
X

f MAX
q .'/

ˇ̌̌̌
6 kp� qkC 0.�/

Z
X

jf jMAX .'/

for any f 2 C 0.X /.

For an arbitrary smooth positive function v on � we can approximate v in C 0.�/ by
polynomials pi as above (eg by using Bernstein’s approximation theorem), and thus,
for any continuous function f , the limit

lim
i!1

lim
j!1

Z
X

f MAX
pi
.'j /

exists independently of the chosen approximation. We then defineZ
X

f MAX
v .'/ WD lim

i!1
lim

j!1

Z
X

f MAX
pi
.'j /:

By the Riesz representation theorem, MAX
v .'/ is a well-defined Radon measure.

Remark 6.14 For any ' 2 ET .X; !0/, the measure MAv.'/ is absolutely continuous
with respect to MA.'/ since v is bounded on�. In particular, for any positive weight v,

E1
T .X; !0/D

�
' 2 ET .X; !0/

ˇ̌ Z
X

j'jMAv.'/ <1
�
:

Lemma 6.15 Let v be a positive weight function and 'j ; ' 2 E1
T .X; !0/ such that

d1.'j ; '/! 0. Then MAv.'j /!MAv.'/ weakly.

Proof Let v.�/ be a polynomial of the form p.�/ WD
Qk

aD1.hpa; �i C ca/
na for

'j 2 KT .X; !0/, and f any continuous T–invariant function on X . We then have, by
the construction in Section 5,Z

X

fp.�'j /.!0C dX dc
X 'j /

Œm�
D

1

Vol.B; !B/

Z
Y

f . Q!0C dY dc
Y 'j /

ŒmCn�:

It follows that, for each 'j 2 E1
T .X; !0/ (using an approximation with a decreasing

sequence of smooth potentials [17]),Z
X

f MAX
p .'j /D

1

Vol.B; !B/

Z
Y

f MAY .'j /:
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By [27, Theorem 5], MAY .'j /!MAY .'/ weakly as j !1. It follows that

lim
j!1

Z
X

f MAX
p .'j /D

1

Vol.B; !B/

Z
Y

f MAY .'/D

Z
X

f MAX
p .'/:

Using (56), we conclude that MAX
p .'j /!MAX

p .'/ weakly as j !1.

For an arbitrary weight function v 2 C 0.�/, we take a sequence of polynomials pi

of the above form converging to v in C 0.�/. For any continuous function f on X ,
using (57),ˇ̌̌̌Z

X

f MAv.'j /�

Z
X

f MAv.'/
ˇ̌̌̌

6
ˇ̌̌̌Z

X

f MAv.'j /�

Z
X

f MApi
.'j /

ˇ̌̌̌
C

ˇ̌̌̌Z
X

f MApi
.'j /�

Z
X

f MApi
.'/

ˇ̌̌̌
C

ˇ̌̌̌Z
X

f MApi
.'/�

Z
X

f MAv.'/
ˇ̌̌̌

6
ˇ̌̌̌Z

X

f MApi
.'j /�

Z
X

f MApi
.'/

ˇ̌̌̌
Ckpi � vkC 0.�/

�Z
X

jf jMA.'j /C

Z
X

jf jMA.'/
�
:

Letting j !1,

lim
j!1

ˇ̌̌̌Z
X

f MAv.'j /�

Z
X

f MAv.'/
ˇ̌̌̌
6 2kpi � vkC 0.�/

Z
X

jf jMA.'/;

using the existence of the weak limits MApi
.'j /!MApi

.'/ and MA.'j /!MA.'/
as j !1 (by [27, Theorem 5]). Taking the limit i !1 in the above inequality,

lim
j!1

ˇ̌̌̌Z
X

f MAv.'j /�

Z
X

f MAv.'/
ˇ̌̌̌
D 0:

It follows that MAv.'j /!MAv.'/ weakly as j !1.

For a finite measure � on X we define the entropy of � with respect to !Œm� by

Ent.!Œm�; �/ WD
Z

X

log
�

�

!Œm�

�
�:

In the following lemma we show that the elements of E1
T .X; !0/ can be approximated

in the d1 distance by smooth potentials with converging entropy of the corresponding
weighted Monge–Ampère measures. This is the weighted analogue of [14, Lemma 3.1].
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Lemma 6.16 If v > 0, then E1
T .X; !0/ 3 ' 7! Ent.!Œm�

0
;MAv.'// is d1–lsc. Further ,

for any ' 2 E1
T .X; !0/, there exists a sequence of smooth potentials 'j 2 KT .X; !0/

such that d1.'j ; '/! 0 and Ent.!Œm�
0
;MAv.'j //! Ent.!Œm�

0
;MAv.'// as j !1.

Proof The proof follows closely the arguments of [14, Lemma 3.1]. By Lemma 6.15
and the fact that the entropy � 7! Ent.!m

0
; �/ is lsc on the space of finite measures,

with respect to the weak convergence of measures (see [11, Proposition 3.1]), it
follows that the entropy ' 7! Ent.!Œm�

0
;MAv.'// is d1–lsc. Let ' 2 E1

T .X; !0/. If
Ent.!Œm�

0
;MAv.'//D1 then any sequence 'j 2KT .X; !0/ such that d1.'j ; '/! 0

satisfies Ent.!Œm�
0
;MAv.'//!1 as j !1. We suppose Ent.!Œm�

0
;MAv.'// <1

and we put g WDMAv.'/=!
Œm�
0

> 0, the density function of the measure MAv.'/. From
the proof of [14, Lemma 3.1], there exist a sequence of positive functions gj 2C1T .X /

such that kg�gjkL1 ! 0 andZ
X

gj log gj!
Œm�
0
! Ent.!Œm�

0
;MAv.'//:

Using [45, Proposition 3.7], we can find a smooth potential 'j 2 KT .X; !0/ (which is
unique up to adding a constant) such that MAv.'j /D

�R
X v.�0/!

m
0
=
R
X gj!

m
0

�
gj!

Œm�
0

.
By [45, Lemma 2.16], up to passing to a subsequence of 'j , there exists a 2E1

T .X; !0/

such that d1. ; 'j /! 0. Lemma 6.15 together with kg�gjkL1 ! 0 gives

MAv. /D lim
j!1

MAv.'j /DMAv.'/:

It follows that ' D  (up to a constant) by [15, Theorem 2.18]. Thus, d1.'; 'j /! 0

and Ent.!Œm�
0
;MAv.'j //! Ent.!Œm�

0
;MAv.'// as j !1.

Now we are in position to prove Theorem 6.1.

Proof of Theorem 6.1 By Lemmas 6.10 and 6.12, the functionals Iw and I
�!0
v

extend as continuous functionals on E1
T .X; !0/. On the other hand, the entropy

' 7! Ent.!m
0
;MAv.'// is d1–lsc by Lemma 6.16. Thus, the weighted Chen–Tian

decomposition (50) gives rise to an extension of the .v; w/–Mabuchi energy to a
d1–lsc functional Mv;w W E1

T .X; !0/! R[ f1g. Notice that (using the continuity
of Iw and I

�!0
v ) the restriction of Mv;w W E1

T .X; !0/! R [ f1g on the subspace
K1; N1

T .X; !0/ is equal to the weighted .v; w/–Mabuchi energy on that space defined
in [56, Corollary 3]. By Lemma 6.16, for ' 2 E1

T .X; !0/, we can find a sequence
'j 2 KT .X; !0/ such that d1.'j ; '/! 0 and

lim
j!1

Mv;w.'j /DMv;w.'/:
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It follows that the extension Mv;w W E1
T .X; !0/! R[ f1g using (50) is the largest

d1–lsc extension of Mv;w W KT .X; !0/!R.

We now show that t 7! Mv;w.'t / for t 2 Œ0; 1� is convex and continuous along
the finite-energy geodesics 't 2 ET .X; !0/. We will follow closely the arguments
of [14, Theorem 4.7]. Let 't 2 E1

T .X; !0/ for t 2 Œ0; 1� be a finite-energy geodesic.
Suppose that t0; t1 2 Œ0; 1� with t0 6 t1. Using Lemma 6.16, we can find sequences
'

j
t0
; '

j
t1
2 KT .X; !0/ such that d1.'

j
t0
; 't0

/! 0 and d1.'
j
t1
; 't1

/! 0, and

lim
j!1

Mv;w.'
j
t0
/DMv;w.'t0

/ and lim
j!1

Mv;w.'
j
t1
/DMv;w.'t1

/:

Let t 7!'
j
t 2K

1; N1
T .X; !0/ for t 2 Œt0; t1� be the C 1; N1–weak geodesic segment connecting

'
j
t0

and 'j
t1

. By [56, Theorem 5], the function Œt0; t1�3 t 7!Mv;w.'
j
t / is convex. Since

Mv;w W E1
T .X; !0/!R[f1g is d1 lsc,

Mv;w.'t /6 lim inf
j!1

Mv;w.'
j
t /

6
�

t � t0

t1� t0

�
lim

j!1
Mv;w.'

j
t0
/C

�
t1� t

t1� t0

�
lim

j!1
Mv;w.'

j
t1
/

6
�

t � t0

t1� t0

�
Mv;w.'t0

/C

�
t1� t

t1� t0

�
lim

j!1
Mv;w.'t1

/;

where the second inequality uses the convexity of t 7!Mv;w.'
j
t /. Thus, t 7!Mv;w.'t /

is convex and continuous up to the boundary of Œt0; t1� since it is d1–lsc.

It remains to show that Mv;w W E1
T .X; !0/! R[ f1g is linear and continuous in v

and w. For smooth potentials ' 2 KT .X; !0/,

(58) Ent.!Œm�
0
;MAv.'//�

Z
X

log.v.�0//v.�0/!
Œm�
0
D

Z
X

log
�

MA.'/
!m

0

�
MAv.'/;

which is manifestly linear in v. For ' 2 E1
T .X; !0/ the above expression is still linear

in v by Proposition 6.13. Substituting back in (50), and using Lemmas 6.10 and 6.12,
it follows that Mv;w W E1

T .X; !0/! R[ f1g is linear in v and w. From these two
lemmas we know that I

�
v W E1

T .X; !0/! R and Iw W E1
T .X; !0/! R are uniformly

continuous in v andw. For the remaining entropy part, we notice that, if ' 2 E1
T .X; !0/,

v; v0 2 C1.�/ and f 2 C 0.X /, thenˇ̌̌̌Z
X

f MAv.'/�
Z

X

f MAv0.'/
ˇ̌̌̌
6 kv� v0kC 0.�/

Z
X

jf jMA.'/;

which can be obtained again by approximating ' with a monotone sequence of smooth
relative potentials and Proposition 6.13. So C1.�/�E1

T .X; !0/3 .v; '/ 7!MAv.'/ is
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uniformly continuous with respect to v for the weak topology on the space of measures.
Since the entropy � 7! Ent.!m

0
; �/ is lsc on the space of finite measures with respect to

the weak convergence of measures [11, Proposition 3.1], the term Ent.!Œm�
0
;MAv.'//

is lsc with respect to v. The linearity with respect to v in the right side of (58) shows
that Ent.!Œm�

0
;MAv.'// is in fact continuous with respect to v.

We derive the following weighted version of the key compactness result from [12; 13]:

Theorem 6.17 Any sequence 'j 2 E1
T .X; !0/ such that

d1.0; 'j /6 C and Mv;w.'j /6 C

admits a d1–convergent subsequence.

Proof From (50) and Lemmas 6.9 and 6.12, Ent.!Œm�
0
;MAv.'// is uniformly bounded

under the hypotheses. We conclude using [45, Lemma 2.16].

7 Regularity of the weak minimizers of the weighted Mabuchi
energy

In this section, we establish the regularity of the weak minimizers of Mv;w.

Theorem 7.1 Suppose T�Autr .X / is a maximal torus and .X; ˛;T / admits a .v; w/–
cscK metric ! with w D `ext

v;w0
w0, where v;w0 > 0 are two positive smooth weight

functions on �. If  2 E1
T .X; !0/ is a minimizer of the extended .v; w/–Mabuchi

energy Mv;w W E1
T .X; !0/!R[f1g, then  2 KT .X; !0/ is a smooth potential.

The proof of this result, which is an adaptation of the arguments in [14], will occupy
the reminder of the section.

Definition 7.2 Let v.�/ > 0 and w.�/ be smooth weight functions on � and � > 0 a
T–invariant Kähler form on X . We let

(59) Mv;w WD
˚
 2 E1

T .X; !0/\ I�1.0/ jMv;w. /D inf
'2E1

T

Mv;w.'/
	

and M
�
v;w WDMv;wC I�, where I� is introduced via Lemma 6.12 and v D 1.

By [29, Lemma 5.2] and Theorem 6.1, the set Mv;w (when nonempty) is totally geodesic
with respect to the finite-energy geodesics of E1

T .X; !0/. Furthermore, if there exists
a  � 2Mv;w such that I�. �/D inf 2Mv;w

I�. /, then  � is unique by the strict
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convexity of I� established in [14, Proposition 4.5]. Furthermore, by Theorem 6.1, the
functional M

�
v;w WE1

T .X; !0/!R[f1g will also be strictly convex along finite-energy
geodesics, showing the uniqueness of an element  2 E1

T .X; !0/\ I�1.0/ such that
M

�
v;w. /D inf'2E1

T
M

�
v;w.'/ (assuming that such minimizer  exists).

We then have a weighted version of the continuity method of [14, Proposition 3.1]:

Proposition 7.3 Let v > 0 and w be smooth weight functions on �. Suppose that
Mv;w is nonempty and ' 2 KT .X; !0/\ I�1.0/. Then , for any � > 0, there exists
a unique minimizer  � 2 E1

T .X; !0/ \ I�1.0/ of M
�!'
v;w WD Mv;w C I�!' . The

curve Œ0;1/ 3 � 7! � 2 E1
T .X; !0/\I�1.0/ is d1–continuous and d1–bounded , and

 0 WD lim�!0  � is the unique minimizer of I!' on Mv;w. Furthermore , for any
 2Mv;w and � > 0,

(60) I.';  �/6 m.mC 1/I.';  /;

where I.';  / WD
R
X .' � /.!

m
 
�!m

' /.

Proof The proof is a straightforward adaptation of that of [14, Proposition 3.1].

We next need a weighted analogue of [14, Lemma 3.3]:

Lemma 7.4 Let v > 0 and w be smooth weight functions on �, and � > 0 a smooth
T–invariant Kähler form on X . Let '0 2 KT .X; !0/ and '1 2 E1

T .X; !0/, and
Œ0; 1� 3 t 7! 't 2 E1

T .X; !0/ be a finite-energy geodesic connecting '0 and '1. Then

lim
t!0C

M
�
v;w.'t /�M

�
v;w.'0/

t
>
Z

X

.w.�'0
/�Scalv.'0// P'0!

Œm�
'0
C

Z
X

P'0�^!
Œm�1�
'0

;

where M
�
v;w WDMv;wC I�.

Proof By Theorem 6.1 and the fact that I� is d1–continuous (see [14] or Lemma 6.12),
for any t 2 Œ0; 1� there exists a sequence .'k

t /k 2 KT .X; !0/ such that

lim
k!1

d1.'
k
t ; 't /D 0 and M �

v;w.'
k
t /!M �

v;w.'t /:

We let Œ0; t � 3 s 7!  k
s be the weak C 1; N1–geodesic joining 'k

0
D '0 with 'k

t . By the
proof of [56, Corollary 1],

lim
t!0C

M
�
v;w.'

k
t /�M

�
v;w.'0/

t
>
Z

X

.w.�'0
/�Scalv.'0// P 

k
0!

Œm�
'0
C

Z
X

P k
0 �^!

Œm�1�
'0

:

According to [14, Lemma 3.4], we can use the dominated convergence theorem on the
right side of the above inequality to conclude.
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The last step is to establish a weighted version of [14, Proposition 3.2.]:

Proposition 7.5 Suppose T � Autr .X / is a maximal torus , and let v.�/; w0.�/ > 0

and w D `ext
v;w0

w0. Suppose that '� 2KT .X; !0/\ I�1.0/ is a .v; w/–cscK potential.
Then , for any fixed Kähler form !' with ' 2 KT .X; !0/, there exists a � 2G WD TC

such that
inf

 2Mv;w

I!' . /D I!' .�Œ'��/:

Proof As G is reductive, there exists a unique � 2G such that

(61) I!' .�Œ'��/D inf
�2G

I!' .� Œ'��/

(see eg [29, Section 6] or [56, Lemma 11]), where, we recall, the G action on potentials
is introduced via the slice I�1.0/. Let '0 WD �Œ'�� 2 KT .X; !0/ \ I�1.0/, and
 0 2Mv;w be the unique minimizer of I!' . We want to show that '0 D  0.

For �> 0 let the unique minimizer of M
�!'
v;w DMv;wC�I!' on E1

T .X; !0/\I�1.0/

be  �, as given by Proposition 7.3. By this proposition, lim�!0 d1. �;  0/ D 0.
We denote by V� and W the differentials of M

�!'
v;w and I!' , respectively, viewed as

1–forms on the Fréchet space K.X; !0/. We thus have, for all  2 KT .X; !0/ and for
all P 2 C1T .X /,

.V0/ . P /D�
Z

X
.Scalv.! /�w.� // P !

Œm�

 
;

W . P /D
Z

X

P !' ^!
Œm�1�

 
;(62)

.V�/ . P /D .V0/ . P /C�W . P /:

Recall that the Mabuchi connection D on the Fréchet space KT .X; !0/ is introduced by

.D P't
P t /'t

WD R t � hd P t ; d P't i!'t
;

where 't and  t are smooth paths in KT .X; !0/. Using [55, Lemma B.1], we compute
the covariant derivative of V0 with respect to the Mabuchi connection to be

..D P 2
V0/. P 1// D

Z
X

�
2v.� /..r

! d P 1/
�; .r! d P 2/

�/! 

C.Scalv.! /�w.� //.d P 1; d P 2/! 
�
!
Œm�

 
;

where .r! d P /� denotes the .2; 0/C .0; 2/ part of the Hessian of P with respect to
the Levi-Civita connection r! of ! . Taking  D '0 to be the .v; w/–cscK potential,

..D P 2
V0/. P 1//'0

D 2
Z

X
..r!'0 d P 1/

�; .r!'0 d P 2/
�/!'0

v.�'0
/!Œm�'0

D 2
Z

X
L!'0

;v. P 1/ P 2!
Œm�
'0
D 2

Z
X

L!'0
;v. P 2/ P 1!

Œm�
'0
;
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where the operator L! ;v.
P / WD ı! ı! .v.� /.r

! d P /�/ is a fourth-order elliptic
self-adjoint operator on .X; ! /, with kernel given by the space of Killing potentials
in C1T .X /; see Appendix A.

As '0 is a .v; w/–cscK potential which satisfies (61), we have by [56, Lemma 10] that
W'0

. P /D 0 for any T–invariant Killing potential P with respect to !'0
. It follows

that we can solve the linear equation (for a function P 2 C1T .X /)

L!'0
;v. P /D

!' ^!
Œm�1�
'0

!
Œm�
'0

;

as the right side is L2–orthogonal (with respect to the measure !Œm�'0
) to the kernel

of L!'0
;v. Equivalently, there exists a P 0 2 C1T .X / such that we have equality of

1–forms on KT .X; !0/:

(63) .D P 0
V0/'0

D�W'0
:

Let �! P��2C1T .X / be a smooth curve in the tangent space to .'0C� P 0/2KT .X;!0/,
defined for � > 0 small enough. We compute

(64) d

d�

ˇ̌̌
�D0

.V�/'0C� P 0
. P��/DW'0

. P�0/C..D P 0
V0/. P�0//'0

C.V0/'0

�
d

d�

ˇ̌̌
�D0

P��

�
D0;

where we have used (63) and that .V0/'0
D 0 since '0 is a .v; w/–cscK potential;

see (62). On the other hand, letting

f� WD �Scalv.!'0C� P 0
/Cw.�

'0C� P 0
/Ch!

'0C� P 0
; !'i!' ;

it follows from (62) that, for any P� 2 C1T .X /,

.V�/'0C� P 0
. P�/D

Z
X

P�f�!
Œm�

'0C� P 0

:

Thus (64) implies that f� DO.�2/ and

j.V�/'0C� P 0
. P�/j6 C�2 sup

X

j P�j:

Let �.t/2E1
T .X; !0/ be a finite-energy geodesic connecting �.0/ WD �2E1

T .X; !0/

with  �.1/ WD '0C� P 0 2 KT .X; !0/ for � > 0 small enough. By Lemma 7.4,
d

dt

ˇ̌̌
tD1�

M
�!'
v;w . �.t//6

Z
X

P �.1/f�!
Œm�

'0C� P 0

:

By Proposition 7.3, d1.0;  �.0// is uniformly bounded. Also, d1.0;  �.1// is uniformly
bounded for � small enough since  �.1/ WD '0C� P 0 2KT .X; !0/. We thus have that
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both d1.0;  �.0// and d1.0;  �.1// are uniformly bounded and, by [14, Lemma 3.4(ii)],
we getZ

X
j P �.1/j!

Œm�

'0C� P 0

D d1. �.0/;  �.0//6 d1.0;  �.0//C d1.0;  �.1//6 C:

From f� DO.�2/, we obtain

d

dt

ˇ̌̌
tD1�

M
�!'
v;w . �.t//6 O.�2/:

As the unique minimizer of the strictly convex functional M
�!'
v;w on E1

T .X; !0/\I�1.0/

is  �.0/D  �,

d

dt

ˇ̌̌
tD1�

M
�!'
v;w . �.t//> d

dt

ˇ̌̌
tD0C

M
�!'
v;w . �.t//> 0:

Using that the functions t 7! I!' . �.t// and t 7!Mv;w. �.t// are both convex (this
follows from [14, Proposition 4.5] and Theorem 6.1),

0 6 �
�

d

dt

ˇ̌̌
tD1�

�
d

dt

ˇ̌̌
tD0C

�
I!' . �.t//6

�
d

dt

ˇ̌̌
tD1�

�
d

dt

ˇ̌̌
tD0C

�
M

�!'
v;w . �.t//

6 O.�2/:

By the convexity of t 7! I!' . �.t//, the last estimate also gives

0 6 tI!' . �.1//C.1� t/I!' . �.0//�I!' . �.t//

D t.1� t/

�
I!' . �.1//�I!' . �.t//

1� t

�
� t.1� t/

�
�I!' . �.0//CI!' . �.t//

t

�
6 t.1� t/O.�/:

Letting �! 0 and using the endpoint stability of the finite-energy geodesic segments
(see [14, Proposition 4.3]) together with the d1–continuity of I!' [14, Proposition 4.4],
t 7! I!' . .t// is linear along the finite-energy geodesic  .t/ D lim�!0C  �.t/

connecting  0.0/ D  0 and  0.1/ D '0. The strict convexity of I!' along finite-
energy geodesics [14, Proposition 4.5] then yields  0 D '0 D �Œ'

��.

Now we are in position to prove Theorem 7.1 by the arguments in [14, Theorem 1.4].

Proof of Theorem 7.1 Without loss of generality, we can assume that the .v; w/–
extremal metric !�D!0 is the initial metric, and we suppose  0 2E1

T .X; !0/\I�1.0/

is a weak minimizer of Mv;w W E1
T .X; !0/!R[f1g. We want to show that  0D �Œ0�

for some � 2G D TC . It is well known (see [28] or Corollary 6.11) that there exists a
sequence 'j 2KT .X; !0/\I�1.0/ such that d1.'j ;  0/!0. We set �j D!0Cddc'j ,
which is a T–invariant Kähler form.
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Since !0 is a .v; w/–extremal metric, Mv;w is nonempty. By Proposition 7.3, the
functional M

��j
v;w DMv;wC�I�j has a unique minimizer  j ;� 2 E1

T .X; !0/\I�1.0/

such that
I.'j ;  j ;�/6 m.mC 1/I.'j ;  0/:

By the quasitriangle identity [14, (2.16)],

(65) I. 0;  j ;�/6 C.I. 0; 'j /C I.'j ;  j ;�//6 C.m2
CmC 1/I.'j ;  0/;

where C > 0 is a uniform constant depending only on m.

Let j > 0 be fixed. According to Proposition 7.3,  j ;0 WD lim�!0  j ;� is the unique
minimizer of I��j on Mv;w , whereas Proposition 7.5 yields that there exists a �j 2G

such that  j ;0 D �j Œ0�. Letting �! 0C in (65) (and using the d1–continuity of I ; see
eg [13] or Lemma 6.10),

I. 0; �j Œ0�/6 C.m2
CmC 1/I.'j ;  0/:

When j!1 ( using d1.'j ;  0/!0), we get I. 0; �j Œ0�/!0. By [12, Proposition 2.3;
27, Proposition 5.9], the latter limit is equivalent to d1.�j Œ0�;  0/! 0. Using [14,
Lemma 3.7], there exists a � 2G such that �Œ0�D  0.

Remark 7.6 The arguments in the proofs of Proposition 7.5 and Theorem 7.1 extend if
we remove the maximality assumption for T �Autr .X /, and replace GDTC with the
connected component of the identity yGDAutTr .X / of the centralizer of T in Autr .X /.
The key points are that yG is reductive (see Proposition 1.4) and yG acts transitively on
the space of T–invariant .v; w0/–extremal Kähler metrics (see Theorem 1.5).

Proof of Theorem 1 We apply the coercivity principle of [29]; see Theorem 3.6.
By Theorem 6.1, the extension of the weighted Mabuchi energy Mv;w to the space
E1

T .X; !0/ satisfies the hypotheses of Theorem 3.6 (the invariance of Mv;w under the
action of G D TC is equivalent to the necessary condition (3) for the existence of a
.v; w/–cscK metric). We thus need to ensure that Mv;w further satisfies properties
(i)–(iv) of Theorem 3.6. Theorem 6.1 also yields the convexity property (i), whereas
the regularity property (ii) is established in Theorem 7.1. This last result also yields
the uniqueness property (iii) via Theorem 1.5. Finally, the compactness property (iv) is
established in Theorem 6.17.

Remark 7.7 By virtue of Theorem 1.5 and Remark 7.6, the conclusion of Theorem 1
holds true if one drops the assumption that T �Autr .X / is a maximal torus, but instead
of TC one considers the larger reductive group yG D AutTr .X /; see Proposition 1.4.
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8 Proofs of Theorems 2 and 3

Proof of Theorem 2 The implication .ii/D) .i/ follows from Lemma 5.9, whereas
.ii/D) .iii/ is established in Theorem 1. We shall prove .iii/D) .ii/ and .i/D) .ii/. The
arguments are very similar to the ones in the proof of [52, Theorem 1], where the case
when .X;T / is toric is studied. The main idea is to show that, on a semisimple principal
.X;T /–fibration, the continuity path used by Chen and Cheng [23] in the cscK case and
its modification by He [47] to the extremal case can be adapted to bundle-compatible
construction. We sketch the proof below for the reader’s convenience.

(iii) D) (ii) We shall work on Y . Let z!0 be a bundle-compatible Kähler metric
on Y , corresponding to a TX –invariant Kähler metric !0 on X . By Lemma 5.14,
z!0 is invariant under a maximal torus KY � Autr .Y / (containing TY ), and, by this
lemma and Lemma 5.10, the extremal affine-linear function corresponding to KY

is the pullback to the vector space k�
Y
D .Lie.KY //

� of the extremal affine-linear
function `ext.�/ on t defined in Theorem 2(ii). Furthermore, by Lemma 5.10, the
restriction of M Y

1;`ext to the subspace KT .X; !0/�KKY
.Y; z!0/ (see Corollary 5.6 and

Lemma 5.14) is a positive multiple of M X
p; zw

, where the weights are those defined in
Theorem 2(ii). In this setup, the main ingredients of the proof are as follows.

Step 1 Following [23; 46; 47], one considers the continuity path 't 2 KKY
.Y; z!0/

determined by the solution of the PDE

(66) t.Scal. Q!'t
/� `ext.�z!'t

//D .1� t/.trz!'t
. Q�/� .nCm// for t 2 .0; 1/;

where Q� is a suitable (fixed) KY –invariant Kähler metric on Y in the class Œz!0�.
By [23; 47] there exists Q� 2 Œz!0� and a t0 2 .0; 1/ such that a solution 't of (66)
exists for t in the interval Œt0; 1/. Furthermore, the solution 't .y/ is smooth as a
function on Œt0; 1/� Y . The main observation of [52] is that, with a suitable choice
for Q�, the path (66) can in fact be reduced to a continuity path on X . To see this
we observe that, by [47, Proposition 3.1], one can take Q� in (66) to be of the form
Q� D z!0C .1=r0/ddcf with r0 large enough, where f is the smooth function on Y

with zero mean with respect to z!0 which solves the Laplace equation

�z!0
f D Scal. Q!0/� `

ext.�z!0
/:

By Lemmas 5.9 and A.3, f 2C1T .X /, whereas by Lemma 5.5 Q� is bundle-compatible, ie

Q�D �C
kP

aD1

.hpa; ��iC ca/�
�
B!aChd�� ^ �i;
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where � D !0C .1=r0/ddcf is a T–invariant Kähler metric on X ; see (24). Using
Lemma 5.9 and that both z!' and Q� are of the form (24), we get a path of PDEs on X

of the form

(67) t.Scalp.!'t
/� zw.�!'t

//D .1� t/H.'t / for t 2 .t0; 1/;

where 't 2KT .X; !0/ and H.'t / WD trz!'t
. Q�/� .nCm/ is manifestly a second-order

differential operator on X for 't 2KT .X; !0/�KKY
.Y; z!0/. Then the solution 't for

t 2 Œt0; 1/ of (66) will actually belong to KT .X; !0/�KKY
.Y; z!0/. This last point is a

consequence of the implicit function theorem (used in [46; 47] to establish the openness),
which can be applied directly to (67); to find the linearization of (67), we use [46] that the
linearization of H.'/ on Y is the operator H Q�

z!' ;1
(see Definition A.1), so that, by virtue

of Lemma A.3, the linearization of H.'/ when restricted to KT .X; !0/�KKY
.Y; z!0/

is given by the p–weighted operator H�
!' ;p introduced in Appendix A. Similar argument

allows us to identify the linearization of Scalp.!'/; see also [55, Lemma B1]. We refer
the reader to [52, Section 6] for further details.

Step 2 The next ingredient is a deep result from [23] with a complement in [47],
showing that if M Y

1;`ext is G–coercive along the continuity path 't with respect to a
reductive subgroup G �Autr .Y / containing the torus generated by the extremal vector
field �Y

ext D d`ext 2 tY in its centre, then there exists a subsequence of times j ! 1

and elements �j 2 G such that ��j .z!'j / converges in C1.Y / to an extremal Kähler
metric z!1. In our case, assuming (iii), we have that M Y

1;`ext.'t /DVol.B; !B/M
X

p; zw
.'t /

(see Lemma 5.10) is G D TC
Y

–coercive (see Lemmas 6.6 and 6.4 and Proposition 3.4).
We can thus find �j 2 TC

Y
and 'j as above. The Kähler metrics ��j .z!'j / are bundle-

compatible in the sense of Definition 5.3, and thus are of the form

��j .z!'j /D z!0C dY dc
Y �j Œ'j � for �j Œ'j � 2 KT .X; !0/� KKY

.Y; z!0/:

It follows that z!1 is a bundle-compatible extremal Kähler metric on Y (as KT .X; !0/

is C1.Y /–closed in KKY
.Y; z!0/). By Lemma 5.9, the corresponding Kähler metric

!1 on X is then .p; zw/–cscK.

.i/ D) .ii/ The proof is very similar to the proof of .iii/D) .ii/. As in Step 1 above,
we consider the continuity path (66), which defines potentials

't 2 KT .X; !0/� KKY
.Y; z!0/ for t 2 Œt0; 1/:

We can assume without loss of generality [21] that Y admits a KY –invariant extremal
Kähler metric in Œz!0�, where KY �Autr .Y / is the maximal torus given by Lemma 5.14.
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This implies that M Y
1;`ext is G–coercive for G DKC

Y
. Indeed, this can be justified, for

instance, by applying Theorem 1 and Proposition 3.4 in the case .v; w/ D .1; `ext/.
As in Step 2 of the proof of .iii/ D) .ii/, we use [23; 47] and the G–coercivity
of M Y

1;`ext along the path in order to find a subsequence of times j ! 1 and elements
�j 2 G such that ��j .z!'j / converges in C1.Y / to a KY –invariant extremal Kähler
metric z!1 2 Œz!0�. However, unlike the proof of .iii/D) .ii/, in general ��j .z!'j / and
hence z!1 are not bundle-compatible, as �j can act nontrivially on B (see the proof of
Lemma 5.14). We thus need to slightly modify the argument in order to show that z!1

still induces a .p; zw/–cscK metric on any given fibre Xb D�
�1
B
.b/� Y . We denote by

!j .b/ WD .z!'j /jXb
and x!j .b/ WD .�

�
j .z!'j //jXb

the induced T–invariant metrics on Xb .
As z!'j is bundle-compatible, Lemma 5.9 yields

Scalp.!j .b//D Œp.�z!'j
/Scal.z!'j /�p.�z!'j

/q.�z!' /�jXb
:

Using that �j 2KC
Y

sends the fibre Xb to the fibre X�j .b/ (this follows from the construc-
tion of KY in the proof of Lemma 5.14), the above equality holds true for the metrics
x!j .b/, where in the right side we replace the metric z!'j on Y with x!j WD �

�
j .z!'j /. It

thus follows by the smooth convergence of x!j .b/ to !1.b/ that

Scalp.!1.b//D Œp.�z!1
/Scal.z!1/�p.�z!1

/q.�z!1
/�jXb

D Œp.�z!1
/.`ext.�z!1

/� q.�z!1
/�jXb

D zw.�!1.b//;

where for the equalities on the second line we have used that the KY –extremal function
`ext is in Aff.t�

X
/; see Lemma 5.14. Thus !1.b/ is a .v; zw/–cscK metric on X .

Proof of Theorem 3 Han and Li introduced a functional M HL
v W KT .X; !0/! R

whose critical points are the v–solitons; see [45, Lemma 4.4]. A careful inspection
using (50) shows that M HL

v .!/DMv;w.!/�
R
X log.v.�!//v.�!/!Œm�, where w is

the weight function defined in Proposition 1. Thus, the difference of the two functionals
is a constant independent of the choice of a T–invariant Kähler metric ! 2 2�c1.X /;
see eg [55]. Thus, by [45, Theorem 3.5] applied to .X; 2�c1.X /;T / (and weights
pv; zw), the TC–coercivity of M X

pv; zw
is equivalent to the existence of a vp–soliton

on X . By Lemma 5.11, this implies that Y admits a (bundle-compatible) v–soliton.

By [45, Theorem 1.7], the TC–coercivity of M X
pv; zw

is also equivalent to the uniform
vp–K–stability on T–equivariant special test configurations. When .X;T / is a toric
Fano variety, the only such test configurations are the product test configurations, and
thus, by [55, Proposition3], the condition is reduced to verifying (3) on X with respect
to the weights .pv; zw/.
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Therefore, in order to show the existence of a Kähler–Ricci soliton, it is sufficient
to find �0 2 t such that (3) is satisfied for the weight functions v.�/ D eh�0;�ip.�/

and zw.�/ D 2p.�/eh�0;�i.mC h�0; �i C hd log p; �i/. We detail the proof of this
fact below.

Let ! 2 2�c1.X / be any T–invariant Kähler metric with canonically normalized
momentum map �! WX !�. We then consider the following p–weighted version of
a functional on t, defined originally by Tian and Zhu [71, Lemma 2.2]:

(68) � 7!
Z

X
eh�;�!ip.�!/!

Œm� for � 2 t:

The convexity and properness of the above functional follow by the arguments in
[71, Lemma 2.2], but under our toric assumption these can also be seen directly by
rewriting the right side in (68) as an integral over the Delzant polytope:

� 7! .2�/m
Z
�

eh�;�ip.�/ d�:

Properness of this functional follows by the fact that the origin is in the interior of �
(by the canonical normalization condition of �; see Remark 2.3). Let �0 2 t be the
unique critical point of (68). We have thatZ

X
h�; �!ie

h�0;�!ip.�!/!
Œm�
D 0;

which is precisely the condition Futv; zw D 0 according to Lemma B.1.

The existence of a Sasaki–Einstein structure follows similarly. By Proposition 2,
Lemma 5.11 and Proposition 1, in that order, we want to find �0 2 t such that (3) holds
true for the weights given as in Proposition 1, with v.�/Dp.�/.h�0; �iCa/�.mCnC2/.
(This will show the existence of a pv–soliton on the toric Fano manifold .X;T / and
hence a v–soliton on Y by the general arguments evoked above.) We argue based on [61],
which introduced the volume functional on the space of normalized positive affine-linear
functions on �. Strictly speaking, the functional in [61, Section 3] is introduced on the
principal S1–bundle N over .X; !/ (which admits a natural strictly pseudoconvex CR
structure .D;J / coming from X ), and is then defined as the Sasaki volume of a .D;J /–
compatible normalized Sasaki–Reeb vector field O� on N ; using the point of view of [7]
(see in particular Lemma 1.4), the volume functional can also be written on X , noting
that positive affine-linear functions `� D h�; �iCa over � are in bijection with Sasaki–
Reeb vector fields O� on .N;D;J /, and the normalization condition used in [61] is
equivalent to requiring `�.0/D aD 1. Specifically, in our toric weighted setting, we let

� 7!
Z

X
.h�; �!iC1/�.mCnC1/p.�!/!

Œm�
D .2�/m

Z
�
.h�; �iC1/�.mCnC1/p.�/ d�;

Geometry & Topology, Volume 27 (2023)



Weighted K–stability 3293

which is defined for � 2 t such that .h�; �i C 1/ > 0 on �. The properness of the
functional follows by the fact that a canonically normalized Delzant polytope of a Fano
toric manifold is determined by �D f� WLj .�/� 0g, where the affine-linear functions
Lj .�/ satisfy Lj .0/D 1; see eg [1, Section 7.4]. The unique critical point �0 2 t of
the above convex functional then satisfiesZ

X
h�; �!i.h�0; �!iC 1/�.mCnC2/p.�!/!

Œm�
D 0 for � 2 t;

which, by Lemma B.1, is precisely the condition (3) for the weight functions considered.
This concludes the proof of Theorem 3.

Appendix A Weighted differential operators

Let .X; !;T / be as in Section 1 and v > 0 be a positive smooth weight function
defined over the polytope �. We denote by r! the Levi-Civita connection of the
riemannian metric g! , and by ı! the formal adjoint of r! . We define the following
weighted differential operators, which are self-adjoint with respect to the volume form
v.�!/!

Œm� on X :

Definition A.1 The v–weighted Laplacian of  is the second-order operator acting
on smooth functions, defined by

(69) �!;v. /D
1

v.�!/
ı!.v.�!/d /:

The v–weighted linear Lichnerowicz operator is the fourth-order operator given by

(70) L!;v. / WD
ı!ı!.v.�!/.r

!d /�/

v.�!/
;

where .r!d�/� stands for the .0; 2/–symmetric tensor of type .2; 0/C .0; 2/ with
respect to the complex structure of X . For any T–invariant Kähler form � on X , we
define the second-order operator, given by

(71) H�
!;v. / WD h�; ddc i! Chd tr!.�/; d i! C

1

v.�!/
h�; dv.�!/^ dc i! ;

where tr!.�/ WD .� ^!Œm�1�/=!Œm� D h�; !i! . The operator H�
!;v is a v–weighted

version of the linear operator used in [46].

A straightforward computation shows:

Lemma A.2 The v–weighted Lichnerowicz operator can be written as

L!;v. /D
1
2
.�!;v/

2. /C ı!;v
�
�!;v..d

c /]/
�
;
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where ı!;v WD .1=v.�!//ı!v.�!/ is the formal adjoint of the exterior derivative d on
functions with respect to the weighted volume form v.�!/!

Œm�,

�!;v WD �! �
1
2
ddc.log v.�!//

is the Ricci form of the weighted volume form v.�!/!
Œm�, and ]D g�1

! stands for the
riemannian duality between TM and T�M by using the Kähler metric !.

We now specialize to the case when .Y; z!;TY / is a semisimple principal .X; !;TX /–
fibration over B, as in Section 5. We then denote by �Y

z!
, LY
z!

and .H Q�
z!
/Y the corre-

sponding unweighted operators on .Y; z!/, where the Kähler form Q� in the definition
of H Q�

z!
is bundle-compatible, ie given by (24) for a TX –invariant Kähler form � on X .

We further let �Ba
!a

denote the Laplacian on .Ba; !a/, and �B
x and LB

x the Laplacian
and Lichnerowicz operators on B, respectively, with respect to the Kähler metric
!B.x/ WD

Pk
aD1.hpa; �!.x/iC ca/!a. We thus have:

Lemma A.3 Let  be a TY –invariant smooth function on Y , seen as a TX –invariant
function on X �B via (25), and z! a bundle-compatible TY –invariant Kähler metric on
Y associated to a TX –invariant Kähler metric ! on X . We then have

�Y
z! D�

X
!;p bC�

B
x x;

LY
z! D LX

!;p bCLB
x xC�

B
x.�

X
!;p b/xC�

X
!;v.�

B
x x/bC

kP
aD1

Qa.x/�
Ba
!a
 x

and

.H Q�
z!;1
/Y  D .H�

!;p/
X bC

kP
aD1

Pa.x/�
Ba
!a
 x;

where Pa.x/ and Qa.x/ are smooth T–invariant functions on X , and  x and  b are
the induced smooth functions on B and X , respectively, via (25).

Proof This first two equalities are established in [6] (see the proof of Lemma 8) in
the special case when .X; !;TX / is a toric variety, whereas the third identity is proved
in [52] (also in the case when .X;TX / is toric). These computations extend to the
general setting with no substantial additional difficulty (by using Lemma A.2 for the
second identity), but we include them below for the sake of self-containedness.

In the notation of Section 5,

(72) �Y
Q!. /D

�
�.dY dc

Y
 ^ Q!ŒnCm�1�/= Q!ŒnCm� on Y;

�.dY dc
Y
 ^ Q!ŒnCm�1� ^ �^r /=. Q!ŒnCm� ^ �^r / on Z DX �P;
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where �^r WD
Vr

iD1 �i with respect to any lattice basis .�i/i ofƒ� t. Viewing dc
X�B

 

as a 1–form on Z, it admits the decomposition, with respect to (23),

(73) dc
X�B D .d

c
X�B /H C

rX
iD1

.dc
X�B /.�

P
i � �

X
i /�i D dc

Y  � hd
c
X ; �i:

We thus compute, on Z,

(74) .dY dc
Y  /.x;b/ D dZ

�
dc

X C

rX
jD1

dc
X .�

X
j /�j C dc

B 

�

D dZ dc
X C

rX
jD1

dZ .d
c
X .�

X
j //�j

C

rX
jD1

dc
X b.�

X
j /

� kX
aD1

�j .pa/�
�
B!a

�
C dZ dc

B 

D dX dc
X bC dBdc

B xC

rX
jD1

dZ .d
c
X .�

X
j //^ �j

C

kX
aD1

dc
X .p

X
a /�

�
B!aC dBdc

X C dX dc
B ;

where for the third equality we used (22), as well as the identities dP dc
X
 D dBdc

X
 

and dP dc
B
 DdBdc

B
 (which follow from the identification (25)). Using (27) and (44),

we derive, from (72) and (74),

�Y
Q!. /.x; b/D .�

X
! b/.x/C .�

B
!B.x/

 x/.b/�

kX
aD1

na

h�! ;paiC ca
.dc

X b/.p
X
a /;

where, we recall, for a fixed x 2 X we have set !B.x/ WD
Pk

aD1.hpa; �!iC ca/!a,
and pX

a denotes the vector field on X corresponding to pa 2 t. The first equality in the
lemma follows from the identity (47), keeping in mind that, for any smooth function u

on � and any T–invariant smooth function � on X ,

g!.d.u.�!//; d�/D

rX
iD1

u;i.�!/d
c�.�i/:

Now we establish the expression of the corresponding Lichnerowicz operators. Recall
that (see eg [41])

(75) LY
Q! WD

1
2
.�Y
Q!/

2. /C ı Q!.� Q!.d
c
Y  //:
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Using the decomposition of �Y
z!

we have just established,

(76) .�Y
Q!/

2. /D .�X
!;p/

2. b/C .�
B
x/

2. x/C�
X
!;p.�

B
x. x//C�

B
x.�

X
!;p. b//:

It remains to compute the Ricci term in (75). From (43),

(77) � Q! D �!;pC�
�
B�!B

C
1

2

kX
aD1

�X
!;p.h�! ;p

X
a i/�

�
B!a

C

rX
jD1

dX

�
dc

X

�
� � 1

2
log p.�!/

�
.�X

j /
�
^ �j ;

where �!;p WD �! � 1
2
dX dc

X
log p.�!/ is the Ricci form of the weighted volume form

p.�!/!
Œm�. Using integration by parts, for any TY –invariant smooth test function �

on Y , seen as a TX and TP –invariant function on Z DX �P via (25),

(78)
Z

Z

�ı Q!.� Q!.d
c
Y  // Q!

ŒnCm�
^ �^r

D�

Z
Z

� Q!.dY �; d
c
Y  / Q!

ŒnCm�
^ �^r

D

Z
Z

� Q! ^ dY � ^ dc
Y  ^ Q!

ŒnCm�2�
^ �^r

�
1

2

Z
Z

Scal. Q!/ Qgz!.dY �; dY  / Q!
ŒnCm�

^ �^r

D

Z
Z

� Q! ^ dY � ^ dc
Y  ^ Q!

ŒnCm�2�
^ �^r

�
1

2

Z
Z

�
Scalp.!/
p.�!/

C q.�!/

�
dY � ^ dc

Y  ^ Q!
ŒnCm�1�

^ �^r :

From the above formula, using (44), (73) and (77), we compute (after some straight-
forward but long algebraic manipulations and integration by parts over X and B)

(79) ıY
Q! .� Q!.d

c
Y  //

D ıX
!;p.�!;p.d

c
X //C ı

B
!B.x/

.�!B
.dc

B //

C
1

2

kX
aD1

q.�!/

h�! ;paiC ca
�B
!a
. /

C
1

2

kX
aD1

.na� 1/

.h�! ;paiC ca/2
�X
!;p.h�! ;pai/�

B
!a
. x/

C

kX
a;bD1

nb

.h�! ;paiC ca/.h�! ;pbiC cb/
�X
!;p.h�! ;pbi/�

B
!a
. x/:
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Combining (75), (76) and (79) yields the desired expression.

The expression for .H Q�
z!;1
/Y . / is obtained by similar arguments, using that

.H Q�
z!;1
/Y . /D h Q�; dY dc

Y  i Q! ChdY tr Q!. Q�/; dY  i Q!

D�tr Q!. Q�/�
Y
Q!. /�

Q�^ dY dc
Y
 ^ Q!ŒnCm�2�

Q!ŒnCm�

C
dY tr Q!. Q�/^ dc

Y
 ^ Q!ŒnCm�1�

Q!ŒnCm�
:

Appendix B Weighted Futaki invariants

On a smooth Fano manifold .X;T / as in the setting and notation of Section 2, we
further relate the weighted Futaki obstruction Futv;w D 0 (see (3)) with weights v.�/
and w.�/ as in Proposition 1 with the Futaki-type obstructions studied by Tian and
Zhu [71] in the case of Kähler–Ricci solitons (ie when v D eh�;�i):

Lemma B.1 Let .X;T / be a smooth Fano manifold .X;T / with canonically nor-
malized momentum polytope �, and v > 0 and w smooth functions on � as in
Proposition 1. Then , for any T–invariant Kähler metric ! 2 2�c1.X / with momentum
map �! and T–invariant Ricci potential h (ie �! �! D 1

2
ddch), the weighted Futaki

invariant Futv;w introduced in (3) satisfies

Futv;w.`�/D
Z

X

�
LJ �.log v.�!/� h/

�
v.�!/!

Œm�
D�2

Z
X
h�; �!iv.�!/!

Œm�

for `� D h�; �iC a and � 2 t.

Proof We haveZ
X

�
LJ �.log v.�!/�h/

�
v.�!/!

Œm�
D

Z
X

g!
�
d`� ; d log.v.�!/�h/

�
v.�!/!

Œm�

D

Z
X
`�
�
�!;v.log v.�!/�h/

�
v.�!/!

Œm�

D

Z
X
`�
�
Scalv.!/�w.�!/

�
!Œm� D Futv;w.`�/;

where for the last equality we have used (13). The second equality in the lemma follows
from the first, the second relation in (11) and integration by parts.
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