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Formal groups and quantum cohomology

PAUL SEIDEL

We use chain-level genus-zero Gromov—Witten theory to associate to any closed
monotone symplectic manifold a formal group (loosely interpreted), whose Lie
algebra is the odd-degree cohomology of the manifold (with vanishing bracket).
When taken with coefficients in IF, for some prime p, the p™ power map of the
formal group is related to quantum Steenrod operations. The motivation for this
construction comes from derived Picard groups of Fukaya categories, and from
arithmetic aspects of mirror symmetry.
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2938 Paul Seidel

1 Introduction

This paper is concerned with aspects of genus-zero Gromov—Witten theory, which are
specifically of interest if one works with integer or mod p cohomological coefficients.
There is a shared context between this and arithmetic aspects of Fukaya categories —
see for instance Alston and Amorim [2], Evans and Lekili [18], Lekili and Perutz [41]
and Lekili and Polishchuk [42] — even though we do not work on a categorical level.
Instead, our constructions will resemble those of certain chain-level structures, and of
cohomology operations, in algebraic topology.

la Background

Gromov—Witten theory on a closed symplectic manifold X can be axiomatized as
a cohomological field theory (see Kontsevich and Manin [38]), which means that
operations are parametrized by Deligne—-Mumford moduli spaces of curves. We will
only consider genus-zero curves, where the notion of cohomological field theory is
related to ones from classical topology: namely, one can start with the little disc operad
(May [51, Chapter IV]), then enlarge it to the framed little disc operad (Getzler [28]),
and finally trivialize the circle action (Drummond-Cole [17]) to obtain the genus-zero
Deligne-Mumford operad. It is important for this paper to work on the chain level. An
example of a chain-level construction is the quantum A ,—ring structure (Ruan and
Tian [61]), which refines the small quantum product. In abstract terms, this comes
from mapping Stasheff associahedra to Deligne-Mumford spaces, compatibly with the
operad structures.

To define the genus-zero cohomological field theory for a general X, one usually has
to work with coefficient rings containing Q, because of the multivalued perturbations
involved in making moduli spaces regular. However, in the special case where X is
weakly monotone,! the relevant Gromov—Witten invariants, which count genus-zero
curves with > 3 marked points in a given homology class, can be defined over Z. If
one reduces coefficients to a finite field I, there are two obvious constructions of
cohomology operations. One can use the relation with the little disc operad to obtain
analogues of the Cohen operations [14] on the homology of double loop spaces. For
ease of reference, let’s call these quantum Cohen operations. The second approach
is to introduce quantum Steenrod operations, which were proposed in Fukaya [21]
and have attracted some recent attention in Wilkins [74]. These are both facets of a

1 Also called semipositive; see eg McDuff and Salamon [54, Section 6.4].
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Formal groups and quantum cohomology 2939

common story, which involves the equivariant cohomology of Deligne—Mumford space
with p + 1 marked points, with respect to the action of the symmetric group Sym,,
permuting all but one point.

We take our bearings from both the “one-dimensional” quantum A s,—structure and
the “two-dimensional” quantum Cohen and Steenrod operations. To thread our way
between the two, we use another family of moduli spaces, which come from the
convolution theory of Lagrangian correspondences, as in Bottman [6], Bottman and
Wehrheim [9], Fukaya [22] and Ma’u, Wehrheim and Woodward [48]. They map to
Deligne—Mumford spaces, and on the other hand, their boundary structure is governed
by Stasheff associahedra. The effect of using (the simplest of) these spaces is to equip
the set of quantum Maurer—Cartan solutions with a multiplicative structure. After
reduction mod p, that structure will admit a partial description in terms of a specific
quantum (Cohen or) Steenrod operation.

1b Algebraic terminology

Before continuing the discussion, we need to recall some definitions. In a “functor of
points” approach, an object is often described as a functor from a class of “coefficient
rings” to sets. We use the following coefficient rings, familiar from the theory of formal
schemes and from deformation theory.

Definition 1.1 An adic ring is a nonunital commutative ring N such that the map
N —lim,  N/N™ is an isomorphism. In other words, (),, N =0, and N is complete
with respect to the topology given by the decreasing filtration { N""}. Note that one
can adjoin a unit, forming the augmented ring Z1 @ N, which contains N as an ideal.

Example 1.2 Standard examples are N = gZ[q] (power series with zero constant

term) or its truncations N = ¢Z[q]/q™ !

. We can also use field coefficients, for
instance taking N = ¢[F,[¢], which simplifies the algebraic behavior slightly. An
example with “unequal characteristic” is N = pZ,, the maximal ideal in the ring of

p-adic integers, where N/N™ =7,/ p™~1.
Definition 1.3 A “formal group” is a functor from adic rings to groups.

This is somewhat weaker than the classical notion of formal group as in Lazard [39]:
there, one imposes additional conditions on the functor, leading to representability
results in an appropriate category of formal schemes. In our application, we will be
truncating what should really be an object of derived geometry, and representability in

Geometry & Topology, Volume 27 (2023)



2940 Paul Seidel

the classical sense is not expected to hold. For simplicity, we have chosen to ignore the
issue, resulting in the definition given above.

As mentioned before, adic rings are a standard way to formulate deformation problems;
see Schlessinger [63]. The specific problem relevant for us is the following. Let A be
an Aoo—ring; see Section 2¢ for our conventions. Given an adic ring N, let A ® N be
the inverse limit of tensor products A ® (N/N™). We consider solutions y € A' ® N
of the (generalized) Maurer—Cartan equation

(1-1) Do HA ) =0,

d=1

Two such solutions y, 7 are considered equivalent if there is an 7 € A° ® N such that

D
teHl —— , 5 = ~
(1-2) S TR =y -7
b.q

Definition 1.4 MC(A; N) is the set of equivalence classes of Maurer—Cartan elements
in A ® N. This is functorial in N, giving a functor MC(A) from adic rings to sets.

If N2 =0, (1-1) reduces to ,u}q(y) =0, and (1-2) to ,u}q(h) =y —¥. Hence, in this case
MC(A; N) = H!(A; N) is the cohomology with coefficients in the abelian group N.
Correspondingly, the general MC(A; N) can be viewed as nonlinear analogues of
cohomology groups. Note that what we are studying is not the deformation theory
of A as an A,—T1ing: instead, it can be viewed as the deformation theory of the free
module A, inside the dg category of As—modules.

1c The formal group structure

With this in mind, let’s return to symplectic geometry. To keep the formalism in
the simple form set up above (avoiding Novikov rings), we will assume that our
symplectic manifold X is monotone (rather than weakly monotone), which means that
its symplectic form satisfies

(1-3) [wx] =38¢i1(X) € H*(X;R) for some § > 0.

Take a suitable chain complex ¢ = C*(X) representing its integral cohomology,
equipped with the quantum A o—structure e. Note that the quantum A o—structure is
only Z/2-graded; hence, the definition above should be interpreted so that Maurer—
Cartan elements are taken in C°% ® N, and correspondingly, the entire odd-degree
cohomology of X appears. Let MC(X; N) = MC(C; N) be the set of equivalence

Geometry & Topology, Volume 27 (2023)



Formal groups and quantum cohomology 2941

classes of Maurer—Cartan solutions. One can think of this as the deformation theory of
the diagonal Ay as an object of the Fukaya category F(X x X), where X means that
we have reversed the sign of the symplectic form. In other words, deformations are
“bounding cochains” for Ay in the sense of Fukaya, Oh, Ohta and Ono [23; 24]. If the
closed—open map is an isomorphism, one can also think of this theory as deformations
of the identity functor on F(X'), which describes the formal neighborhood of the identity
in the “automorphism group” of that category. From the composition of automorphisms,
one would expect additional structure, and indeed:

Proposition 1.5 The functor MC(X') has the canonical structure of a “formal group”.

As mentioned above, if one makes suitable assumptions on the closed—open map,
this structure has an explanation purely within homological algebra. If one drops
that assumption, one could still obtain the group structure by looking at F(X x X)
together with its monoidal structure (in a suitable sense, which we will not try to make
precise) given by convolution of correspondences — see Bottman and Wehrheim [9]
and Ma’u, Wehrheim and Woodward [48]; another approach is Fukaya [22] and Lekili
and Lipyanskiy [40]. Compared to those constructions, the definition given here (which
avoids talking about Fukaya categories or Lagrangian correspondences) is less general
but more direct, and hence more amenable to computations.

Proposition 1.6 The groups MC(X; N) are commutative if N3 = 0. They are also
commutative if N* = 0 provided that, additionally, H*(X; Z) is torsion-free.

Commutativity mod N3 is not surprising: it amounts to the well-known fact that the
Lie bracket on cohomology, which exists for any algebra over the little disc operad,
becomes zero for cohomological field theories. For general algebraic reasons (formal
exponentiation), one expects commutativity to hold always if N is an algebra over Q;
and the same should be true if NV is an algebra over [, and N? = 0. In contrast, the
origin of the second part of Proposition 1.6 is more geometric: it reflects an explicit
(if poorly understood, partly due to a lack of examples) enumerative obstruction to
commutativity.

Remark 1.7 Our construction focuses on the odd-degree cohomology of X. One could

try to include even-degree classes by enlarging the notion of formal group to its derived
counterpart, which in our terms means allowing N to be a commutative dg (or maybe

Geometry & Topology, Volume 27 (2023)



2942 Paul Seidel

better simplicial) ring. Another potential use of even-degree classes (with different
enumerative content) would be as “bulk insertions” at points in arbitrary position, as in
big quantum cohomology. Note however that, for classes of degree > 2, the standard
algebraic formalism of “bulk insertions” involves dividing by factorials. Hence, it
would have to be modified for our applications. Neither direction will be attempted in
this paper.

1d Quantum Steenrod operations

Fix a prime p. The quantum Steenrod operation, in a form slightly simplified by the
monotonicity assumption (1-3), is a map

(1-4) OStyp =Y OStyp.a: H*(X:Fp) — H*(X:Fp) ® H, (Fp),
A

with
[—2c¢1(A)
O Sty p.a: H' (X:Fp) —> (H*(X:Fp) ® Hy, ,(F,))" .

Here, H; /p (IFp) is the group cohomology of the cyclic group with coefficients mod p,
which is one-dimensional in each degree. We fix generators
(1-5) Z/p(IFP) =Fp[t,0], with |t| =2, |0|=1.

The notation here requires some explanation. For p = 2, we have 2 =¢ (or § = 1172y,
so the two generators are not independent. For p > 2, it is implicit that our description
is as a graded commutative algebra, so 62 = 0. The sum in (1-4) is over 4 € H,(X; Z),
and the notation ¢ (A) is shorthand for integrating the first Chern class of X over A.
The classical Steenrod operations [70] are encoded in the 4 = 0 term. More precisely,
if we write Sty , = O Sty ; o, the relation with the classical notation is that

Z Sq’ (x)¢xI=D/2 if p=2,
(1-6) Sty,p(x)= (—1)* ( )lxz( 1) Pi(x) ¢ (xI=2D (=12

+ f(terms involving BP?) if p > 2,

where 8 is the Bockstein, and

-p-—-1
- _xxl=Dp-1
2 2
When handling the constants in (1-6) in practice, one should bear in mind that
—1)\?
(1-8) (pTv) (—1)PTD/2 mod p.

Geometry & Topology, Volume 27 (2023)
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See [70, Lemma 6.3]. For instance, if |x| is even and p > 2,

-1 x|
(1-9) ¢° term of Sty p(x) = (—=D* (pTv) (—1)x172 plxl/2 ()
= (= 1)XI72(=D/2(_1)lxl/2(p+1D/2(_1ylxl/2 plxl/2 ()

= P2 (x) = xP.

Definition 1.8 Define an endomorphism QEy, , of H odd(x: Fp) by

(1-10)  QEx,p(x)
the £1/2 (or 6) component of O Sty 2(x) if p=2,

= —1 —1
(pT‘) times the ?~1/2_component of Q Sty p(x) if p>2.

To recapitulate, this has the form
(1-11) QExp=) QExpa4
A

with
Q8x pa: H (X;F,) — HP =P~ D2a0) ()

and where the classical component is

S |x|—1 if p=2.
(1-12) EX’p(x):QEX’p’O(x):{ q*(x)  ifp

PIXI=D/2(x) if p>2.
le The p'™ power maps

Let’s return to the formal group MC(X). The group structure gives rise to m™ power
(meaning the m—fold product) maps for each 72 > 1, which are functorial endomorphisms
of MC(X; N) for any M.

Theorem 1.9 The power maps of prime order fit into a diagram

p™ power of the formal group

MC(X: gF p[q]/q?*") MC(X:¢Fplq]/q?t")

projectionl Tinclusion

(1-13)  MC(X:1qF,lg)/q%) MC(X: g?Fplq)/q?*")

HOY(\f T ) HoY (M F
p P

Geometry & Topology, Volume 27 (2023)



2944 Paul Seidel

Remark 1.10 Because of the monotonicity of X and the grading of our operations,
see (1-11), one always has

(1-14) QEx, p(x)=Ex p(x)=x for x € H (X;Fp).

For comparison, consider the formal completion @m of the multiplicative group. In a
local coordinate 1 + z € G,,, the p™ power map is

P
(1-15) ze--voz2=(l1+2z)? —1=z"+ p(something) =z for z € Fp,

which matches what we have seen in (1-14). There is a categorical explanation for
the occurrence of the multiplicative group. Recall that H!(X;G,,) classifies flat line
bundles over X. The definition of the Fukaya category F(X) includes having the
Lagrangian submanifolds equipped with flat bundles. By tensoring with the restriction
of flat line bundles on X, one gets an action of H!(X;G,,) on the Fukaya category.
For us, it is better to think of the action as being given by the trivial Lagrangian
correspondence, namely the diagonal in X x X, equipped with a flat line bundle. From
that viewpoint, one can pass to the formal completion: one has a formal family of
objects in F(X x X), which consists of the diagonal together with a formal deformation
of the trivial line bundle; that gives rise to a deformation of the identity functor on F(X);
and composition of such deformations corresponds to the tensor product of line bundles.
Of course, within the present framework this discussion is of very limited concrete use:
the known examples of monotone symplectic manifolds with nontrivial H! (obtained
by combining Reznikov [60] and Millson [55], see Fine and Panov [19] for a discussion)
are somewhat esoteric.

Example 1.11 Let X C CP! x CP? be a hypersurface of bidegree (1,2), which has
odd cohomology H3(X;F,) = IF; for any p. Then QE x> = id, by a computation
from [74, Section 8]. More generally, each Q E x,,, is a multiple of the identity. Here
are the results for the first few primes:

p| 2 3 5 7 11 13 17 19 23 29 31 37 41
QEp/id| -1 -1 1 0 -4 -2 2 4 0 -2 0 —10 10

(1-16)

The entries lie in [F,, and we have chosen integer representatives with the least absolute
value (with some fudging for p = 2). Those integers are meaningful: they are the g?
coefficients of the modular form [43, Newform 15.2.a.a]

A-17) (@@ n(g In(g"®). where n(q) =¢"** [T(1—g¢").

n=1

Geometry & Topology, Volume 27 (2023)
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One can interpret this observation via mirror symmetry and arithmetic geometry. The
(conjectural, but supported by superpotential computations) statement is that a specific
elliptic curve appears in the mirror geometry, and hence is encoded in the Fukaya
category of X. Correspondingly, the automorphism group of the Fukaya category would
contain the derived automorphism group of that curve, and in particular, the product of
two copies of the curve itself. What we see in (1-16) is the leading coefficient of the
p™ power map of the formal group law of the elliptic curve. For general number theory
reasons, this is closely related to counting IF,—points on the curve, and the appearance
of (1-17) is an instance of the modularity of elliptic curves. For further discussion, see
Example 9.11 and Conjecture 9.12.

The computation underlying Example 1.11 turns out to involve only those quantum
Steenrod operations which can ultimately (using forthcoming work of Wilkins and the
author) be reduced to ordinary Gromov—Witten invariants. To push the understanding
of QEx,, further, one would have to study the contribution of p—fold covered curves,
which is beyond our scope here.

Example 1.12 Let X € CP' x CP? be a hypersurface of bidegree (1,2). In this case,
Q&Ex,p is unknown. The answer involves stable maps to X with first Chern number
2 p —2. The difficulty is that there are points in the relevant space of stable maps which
have Z/ p isotropy groups.

1f Structure of the paper

In order to make the underlying ideas appear clearly, the paper is set up as follows.
Most of the time (Sections 2—-6) we work in an abstract operadic framework. In
principle, one could aim to prove that quantum cohomology is an instance of this
general setup, but that would overshoot the desired target somewhat. Instead, we will
explain (in Section 7) how to convert the previous arguments into symplectic terms,
in a more ad hoc way. In Section 8, we outline an alternative approach to parts of
the construction, based on Fukaya [22]. After that, Section 9 is a bit of an outlier: it
is concerned with computational techniques for quantum Steenrod operations, and is
formulated in a language much closer to standard Gromov—Witten theory. At this point,
we should make one apology for the paper. Because of the complexity of the formulae
involved, signs are sometimes not worked out, which we signal by =+; however, we
have made sure that signs are given at key points. Part of this involves spelling out
certain conventions for equivariant cohomology, which is done in Section 10.

Geometry & Topology, Volume 27 (2023)
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2 Maurer-Cartan theory

After some introductory remarks about solutions of the Maurer—Cartan equations in
general Aoo-rings, we turn to a specific situation, namely the induced A —structure on
Hochschild cochains. Maurer—Cartan solutions in Hochschild cochains carry a formal
group structure, which can be considered as a purely algebraic counterpart of our main
construction. This algebraic viewpoint will not really be used later on: we include it
here for expository purposes, and also because it would provide the background for
linking the results in this paper to the Fukaya category. To make things more intuitive
from a classical homological algebra viewpoint, we will take the Aoo—structures to be
Z—graded in this section, even though, as mentioned before, the quantum A o—structure
is only Z /2-graded.

2a A -structures

To clarify our conventions, let’s spell out the definition of an As.—ring. This is a free
graded abelian group A is with multilinear operations { ufl}, d > 1, which satisfy the
Aso—associativity relations

d—j+1 j
2-1) 0= 2:(—1)"",%q I ay, .. .,uil(a,url, cea@ig ), ... ag).
ij
Here, % = |lai|| + --- + ||laill, where ||a|| = |a| — 1 is the reduced degree; both
will be standing notation from now on. If we consider A as a chain complex with

Geometry & Topology, Volume 27 (2023)
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differential d4 = _“}1’ the associative algebra structure on H*(A) is induced by the
chain-level product

(2-2) ar-ay = (=)2 @y, ay).

From the overall “A4,,—lingo”, the notions of A, —homomorphism and homotopy
between such homomorphisms will be the ones that occur most frequently in our
discussion. Homotopy admits the following useful interpretation. Take the following
dg ring (cochains on the interval as a simplicial complex, with the Alexander—Whitney
product):
I=Zu®Zu®Zv, with |u|=|u|=0, |v|=1,
(2-3) w?=u, W=#, Gu=uli=0, wuv=v=vii (and hence vu=7av=0),
dju=v, dyjii=—v.
If A is an Axo—Ting, the tensor product A ® J inherits the same structure, with
) gy (@®X) = p(@)@x+(—1)a®d;x,
Waei(@1®x1....,aq®xq) = (—1)*p(ar.....a))®x1 - xq for d =2,
where * =) j llaill - |xj[. This Aso—structure is compatible with the projections

projectto A @ Zu

(2-5) ARIT~ T3A

project to A ® Zu

Two Asc—homomorphisms A — A are homotopic if and only if they can be obtained
from a common homomorphism A—>A®I by composing with (2-5). We will often
use the following fact:

Lemma 2.1 LetF: A — A bean Aoo—homomorphism such that the linear term F!
is a chain homotopy equivalence (in view of our freeness assumption, that will be the
case whenever it’s a quasi-isomorphism). Then J has an inverse up to homotopy.

Unitality conditions, while not always strictly necessary, are both convenient for the
theory and satisfied in most applications (including ours). A homology unit for A is a
cocycle e € A° such that the products

(2-6) ar>a-eq = (—1)'“'/%24((1,6}1) and ar>ey-a= ufq(e/l,a)

are homotopic to the identity (when working over a field, one asks that these products
induce the identity on cohomology, but that is obviously inadequate over Z; the notion
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used here goes back to [44, Definition 7.3]). One says that ey is a strict unit if: the
inclusion Ze4 — A splits, as a map of abelian groups; the maps (2-6) are equal to the
identity; and in addition, all operations uﬁ(. ..,€4,...), d >3, are zero. The following
is [45, Theorem 3.7 and Remark 3.8]:

Lemma 2.2 Given any homologically unital As,—ring A, there is a strictly unital
one A and an inclusion A <> ﬁ:, compatible with the Ax—structures, which is a
chain homotopy equivalence. (Note that by Lemma 2.1, we then also have an inverse
Aso—functor F: A — A, such that F! is a chain homotopy equivalence.)

The result in [45] is more explicit: one can enlarge the A o—structure to A=A SZh&
Ze g, where ez is the strict unit, and

phh) € ez +A°

&7 nUASTh,... A®ThH)CA ford=>2.

This has a consequence which we find useful to state, even though it goes slightly
beyond the limits of our current terminology. Introduce an A,—category with two

objects Y and Y, morphism spaces
2-8) hom(Y, Y) = hom(Y, )7) = hom(f, Y)=A,
hom(?, )7) = A,

and with all A o—structures inherited from A (the second part of (2-7) ensures that this
makes sense). The two objects are quasi-isomorphic, and so we arrive at the following:

Lemma 2.3 Given any homologically unital As,—ring A, there is a homologically
unital A~o—category with two objects such that

e the endomorphism ring of the first object is A,
e the endomorphism ring of the second object is strictly unital, and

¢ the two objects are mutually quasi-isomorphic.

2b Maurer-Cartan elements

We have already mentioned the notions of Maurer—Cartan element (1-1) and of equiv-
alence between such elements (1-2). Given an 4 —homomorphism F: A — A, we
define the induced map MC(F; N): MC(A; N) — MC(A; N) by

(2-9) Fry=> 77, . ...
d
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The basic results (the second is a consequence of the first and Lemma 2.1) are:

Lemma 2.4 Homotopic Aso—homomorphisms induce the same map MC(.E; N)—
MC(A; N).

Lemma 2.5 Suppose that we have an A—homomorphism A — A, whose linear part
is a chain homotopy equivalence. Then the induced map MC(A; N) — MC(A; N) is
bijective.

One can think of equivalence of Maurer—Cartan elements in several ways. In terms of
the Aoo—structure (2-4),

(2-10) YQuU+TRU+hQue (AT @N)!

is a Maurer—Cartan element for A®J if and only if y and ) are Maurer—Cartan elements
for A, and £ satisfies (1-2). This makes Lemma 2.4 particularly intuitive. Another
possible interpretation goes as follows. Let’s add a strict unit, forming Ze & A ® N.
There is an Aoo—category whose objects are Maurer—Cartan elements in A ® N, with
morphisms between any two elements given by Ze @ A ® N. The differential for
morphisms y — y is

p
pratl o = =
(2-11) gHZuMA@N IO N A AL

and the formulae for higher A,—compositions are similar. Clearly, /4 satisfies (1-2) if
and only if g = e + & is a closed morphism ¥ — y in our category. This viewpoint
can be useful when thinking about the transitivity and functoriality of the notion
of equivalence. Finally, if A is homologically unital, one can introduce a modified
version of the Maurer—Cartan category, by setting the morphisms between objects to
be A® (Z1 & N), which means using the natural identity of A rather than artificially
adjoining one. The resulting version of our previous observation (obvious in the strictly
unital case, and generalized from there using Lemmas 2.2 and 2.5) is this:

Lemma 2.6 Suppose that A is homologically unital. Then, two Maurer—Cartan
solutions are equivalent if and only if there is a g € A° ® (Z1 & N) which, modulo N,
reduces to a cocycle homologous to e 4, and which satistfies

p
Iup—i—q—i—l ——

—
(2-12) &,....v.g.¥,....,y)=0.

p.q
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2¢ Hochschild cochains

As before, let A be an Ao—ring. Our attention will now shift to its Hochschild complex
(the complex underlying Hochschild cohomology)

(2-13) €= CC*(A) = [ | Hom(A[1]®4. A).
d=0
The Hochschild differential is
2-14)  (dec)?(ar, ... aq)
el d—j+1 ;
= Y R L i), )
ij
+ Z(—l)*"Jrllc”cd_j“(al, e W @igrs i) Ag)
ij

(we apologize for the double use of d as differential and as counting the number of
entries); and its cohomology is the Hochschild cohomology HH* (A). We will also
use Hochschild cohomology with coefficients in a commutative ring R, denoted by
HH*(A; R), which is the cohomology of CC*(A; R) = € ® R — here, completion
means that we take each term in (2-13) ® R and then their product. € carries a canonical

A so—structure, with ,ué = —dp, and where the next term is
(2-15) pgler,ea)®( )=
/’LG 1,C2 ay,...,dq) =
X ey | +%, leall,, d—j1—j2+2 J1
Z (=1 iy e+, | ZHMA (al,...,cl @iy 415 Qigdjy)s e s
i1,J1502,)2 j
irZi1 41 3 (it 1s- - igtjn)s - dg).

The higher-order A4 —operations follow the same pattern as Mé- If A has a homological
unit, then so does €. One way to show that is to apply Lemma 2.3: in that situation,
the restriction from the Hochschild complex of the A,—category to the Hochschild
complex of either A or Aisa homotopy equivalence, allowing one to transfer properties
from A to A in two steps.

Note that strictly speaking, € does not fit into the original context for As—rings,
because (2-13) is not usually free. However, it is the inverse limit of chain complexes
of free groups, by using the (complete decreasing) length filtration, which is compatible
with the Ao,—structure. All the associated notions have to be modified to take this
“pro-object” nature into account. We have already done that when defining Hochschild
cohomology with coefficients, by using the completed tensor product € ® R. Maurer—
Cartan elements, and homotopies between such elements, will live in such completed
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tensor products. To prove the analogue of Lemma 2.6 for Hochschild complexes, one
again uses reduction to the strictly unital case via Lemma 2.3.

The product on Hochschild cohomology induced from ,ué is graded commutative.
Additionally, Hochschild cohomology has a Lie bracket of degree —1. The two combine
to form the structure of a Gerstenhaber algebra. When we take coefficients in a ring
with pR = 0, let’s say for concreteness R = I, there is one more operation

for odd [ if p > 2,

216)  Bap:HH (A;F,) - HHP'=P~D(A:F
( ) A.p (A:Fp) — (A Fp) forall / if p = 2.

This combines with the bracket to form a restricted Lie algebra [77]. As we next explain,
following [71], the underlying chain-level map can be written as a sum over trees.

Terminology 2.7 A rooted tree with d leaves is a tree which (in addition to its finite
edges) has d + 1 semi-infinite edges. One of the semi-infinite edges is singled out, and
called the root; the other d are the leaves. There is a unique way of orienting edges, so
that they point towards the root. Given a vertex v, write |v| for its valence. Among the
edges adjacent to v, there is a unique outgoing one, and ||v|| = |v| — 1 incoming ones.

In our applications, the rooted trees (unless otherwise indicated) come with the following
structure. First, an ordering of the semi-infinite edges by {0, ..., d}, starting with the
root. Secondly, at any vertex, an ordering of the adjacent edges by {0, ..., |v|}, again
starting with the outgoing edge. A special case is that of rooted planar trees, where
all orderings come from a single embedding of the tree into the plane, which implies
certain compatibilities between them.

For now, we will only use rooted planar trees (the more general version will play a role
later on; see Section 3b). Given such a tree and a Hochschild cochain ¢, one defines an
operation A®d 5 4, by starting with elements of A at the leaves, and having vl act
at each vertex, with the output of that fed into the next vertex on our way to the root.
To define the chain map underlying (2-16), one considers those operations for trees
with p vertices, and adds them up with certain multiplicities: the multiplicity of a tree
is the number of ways to order its vertices, so that the ordering increases when going
towards the root (“‘causal orderings”). For p = 2, we get

(2—17) (Eﬂ,zc)d(al, cen ,ad) = ch_j+1(a1, .. .,cj(ai+1, .. .,aH_j), e ,ad).

i
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Figure 1: Sample trees that correspond to expressions from (2-18):
c*(ay,c(az.a3.a4),as,c%, ag), left, and ¢* (a1, ¢*(c*(az.a3.a4) . as), as),
right.

This is usually written as ¢ o ¢, where o is the operation which underlies the homotopy
commutativity of ,ué, and which upon antisymmetrization yields the Lie bracket. The
p = 3 case is less familiar [71, Example 3.3]:

(2-18) (Easc)¥(ay.....aq) =

Y AN (g e g s a1 )

llll’-{'lj’llzf,l]zz . . ,Cjz(aiz_H, ce ,a,-2+j2), .. ,ad)

+ Z cd_jl_jZ"'z(al, e (a,-1+1, .. .cj2(a,-2+1, ey listjs),
b2 ...,a,-1+j1+j2_1),...,ad).

The summands in (2-18) correspond to trees as in Figure 1, where that on the left admits
two causal orderings. Koszul signs as in (2-15) are absent here, since ||c|| is even;
recall that for odd p, the operation E 4, , is only defined on odd-degree Hochschild
cohomology.

Example 2.8 The first terms of de(c) = 0, for ||c|| even, are
1y(c®) =0,
2-19)  p(c' @)+ pi(a, ) + pi(c® a) = ¢! (uy(a)),

ph(c?(ay, az)) + pi(c'(ar), az) + pi(ar, c'(az))
+u3(c® ar,az) + i (ar, e az) + 1l (ay, az, c®)
= c (U2 (a1, a2)) + A (phy(ar), az) + (D192 (ay, 1l (@2)).

The constant term in (2-18) is

(2-20) (E4.30)° =2¢2(c% %) + ' (! ().
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One sees that this is again a cocycle modulo 3:

221)  puyu(c*(c®, %)
= -3 (). %) = uZ(c® e (c®) = 3u3 (% c® ) + e (nF (0, %)

= ph (e () =313 (% %, ¢®) + 3¢ (14 (0, ).

Example 2.9 Suppose that A is a differential graded algebra, ie Mf{ =0 ford > 3.
A derivation of A gives a cocycle in C!, and applying (2-16) amounts to taking the p'"
iterate of that derivation.

2d The formal group structure

Given an adic ring N, let €® N be the space obtained by applying ® N to each factor
in (2-13) and then again forming their product. We consider Maurer—Cartan elements
y € €® N. Concretely, the first terms are

yPeA'®N. Y ud(O.....y"=0,
(2-22) d

P~ 1
y!' eHom(A, A)°QN, > b0 % a0y =y (uy(@),
D.q P q

and so on. One can think of ¢ as a formal deformation of the identity endomorphism
of A. What this means is that y satisfies (1-1) if and only if, over Z1 & N,

idg +y! ifd =1,
ye ifd #1,

satisfies the (curved) Aso—homomorphism equations. Similarly, two Maurer—Cartan

(2-23) ¢! =

solutions are equivalent (1-2) if the associated 4 o,—homomorphisms (2-23) are (curved)
homotopic. The standard composition of 4,—homomorphisms (2-23) leads to the
following composition law for Maurer—Cartan solutions:

2-24) (niey)(ar,....aq) =

)/zd(al,...,ad)

T Z Vld_jl_m_jerm(al’---’Vgl(ai1+1,---,ai1+jl),
".l’flelg.)maJ'm Qi+ ji+1s- s V32 @iy 41y Gint o),
I,JLT—{J-IJ,SJ_ZI’S;M cee ,szm (a,-m+1, - ,a,-m+jm), R )

This is strictly associative, and descends to a product on MC(C; N). Moreover, by
explicitly solving the equation ¢,¢; = id 4, one sees that this composition has inverses.
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The outcome is that N +— MC(C; N) comes with the structure of a “formal group”.
The analogue of Theorem 1.9 in this algebraic context is [71, equation (3-1)]:

Lemma 2.10 There is a commutative diagram

p™ power of the formal group

MC(€; gF plg]/q?+) MC(€; qF plgl/¢?* 1)

proj ectionl Tinclusion

(225 MC(C: ¢F»lql/q?) MC(€;¢PFplql/qPt1)

H ”-“A ‘

HH'(A;F,) HH'(A;F)p)

The proof is quite straightforward. Namely, let’s iterate (2-24) to form the p™ power of
a Maurer—Cartan element y. The outcome can be written as a sum over rooted planar
trees, with multiplicities. These multiplicities count “causal labelings” of trees, where
the vertices are labeled by {1, ..., p} and the numbers increase when going towards the
root. This limits the depth of the tree to be < p, but does not by itself limit the number
of vertices, since several vertices can carry the same label. However, in the formula
for the p™ power map, each vertex carries a copy of y, and since the coefficient ring
N = qFplq]/qP ! satisfies NP+ =0, the contribution from trees with > p vertices
vanishes. The labels on trees with < p vertices can be thought of as consisting of two
pieces: a choice of subset of {1,..., p}, and then a choice of labels which uses all
numbers in that subset, and which obeys the causality condition. From that, it follows
that the only trees with nontrivial mod p contribution are those with exactly p vertices,
and where each label is used once. If we write y = cq + O(g?), it then follows that

V4
(2-26) Yooy =Euplc)g? €eC®qF,lql/qPT".

Remark 2.11 In characteristic zero, the deformation theory associated to the Maurer—
Cartan equation in € is unobstructed: as a concrete illustration, the truncation map

(2-27) MC(C; ¢Q[g¢]) — MC(C; ¢Qlg]/q*) = HH' (A; Q)

is onto. This is closely related to the formal group structure, since one can prove it by
formal exponentiation. The analogous statement in positive characteristic is no longer
generally true. The square of a class in HH' (A; F,) is not necessarily zero, and that
gives an obstruction to lifting to MC(C; gF5[g]/¢>). As an example, take a polynomial
ring A = Z|a] with |a| = 1; the element a becomes central over I,, hence gives a
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Hochschild cohomology class. Instead, one could look at the 2—adic lifting problem,
but that’s also obstructed: in the first step, which means lifting to MC(C; 2Z/8Z), the
requirement is that the square of the Hochschild cohomology class must be equal to its
Bockstein (which fails in the same example).

Remark 2.12 If A is a dg algebra, the Hochschild complex has the same structure.
Let’s follow classical notation and write — for the product on Hochschild cochains.
The Maurer—Cartan equation is

(2-28) dey +y —vy =0,

and two solutions are equivalent if

(2-29) deh+ @y +y—h—-F+h—y)=0.
The composition law (2-24) can be written in terms of the brace operations from [72] as
m
e N
(2-30) vieva=v2+ Y niva... )

m=0

When put in this way, the formalism can be generalized to any complex € which is an
algebra over the braces operad [53], since that exactly provides the operations used in
(2-28)—(2-30). The formula (2-30) can be viewed as an application of a construction [27]
(see [76] for a review and further context) which equips the tensor coalgebra of C
with a bialgebra structure. It is possible that the geometric results in this paper could
be similarly sharpened, replacing “formal groups” with a suitable bialgebra language
(where the comultiplication would be the standard tensor coalgebra structure, but the
multiplication would be A,); however, that would likely require the full generality
of Bottman’s witch ball spaces.

3 Parameter spaces

This section discusses the moduli spaces underlying our constructions. This is mostly
an exposition of known material; the small amount that may be new appears towards
the end of the section. Stasheff associahedra, Deligne-Mumford spaces, and Fulton—
MacPherson spaces (for the latter, originally in their homotopy equivalent guise [62] as
the little squares operad) belong to classical algebraic topology and geometry, and we
include a brief exposition mainly as a warmup exercise. The more complicated spaces
are borrowed from the theory of Lagrangian correspondences, variously combining
[49; 48; 9; 22; 5; 6].
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3a Associahedra

The Stasheff spaces (associahedra) S, for d > 2, are compactifications of the space of
ordered point configurations on the real line, modulo translations and positive dilations,
meaning of

{((51,....57) €R 15y <+ < 54}

G-1) {(s1,....80) ~(t(s1),...,1(sg)) for t(s) = A + us with A € R, u > 0}

The collection {S;} has the structure of a nonsymmetric operad, given by maps

(3-2) [ TSk Sa.
v

one for each rooted planar tree 7" with d + 1 semi-infinite edges, and where every
vertex v has valence |v| > 3 (see Terminology 2.7; it will be our standard procedure to
just denote such maps by the underlying tree). The single-vertex tree is a trivial special
case, since it gives rise to the identity map on Sy .

Topologically, S is a (contractible) compact manifold with boundary, whose interior
is (3-1), and whose boundary is the union of the images of the nontrivial maps (3-2).
One can get a slightly more precise description by introducing a suitable smooth
structure, for instance by embedding the Stasheff spaces into the real locus of Deligne—
Mumford spaces. Then S; becomes a smooth (and in fact real subanalytic) manifold
with corners, whose open strata are the images of [ [, (S} \ 0S|,) under (3-2).

We orient Sy by picking, on the interior (3-1), the parametrization where (s1, 55) are

fixed, and using the standard orientation of the remaining parameters (s3, ..., 57).

3b Fulton—-MacPherson spaces

The Fulton—-MacPherson spaces> FMy, for d > 2, are compactifications of planar
configuration space up to translations and positive dilations:

{(21,...,Zd)€(Cd:Z,-7éZj fori # j}
{(z1,....29) ~ (t(z1),...,T(zq)) for t(z) = A + puz with A € C, u > 0}

(3-3)

The (symmetric) operad structure on {FM,} comes from permutations of the z,
together with maps similar to (3-2),

T
(3-4) [ [EMp -5 FM,.
v
2The terminology is taken from [29]; versions of the construction arose in [3; 25; 37]
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Here, the rooted trees 7' come with our usual structure (see Terminology 2.7), but are
not necessarily planar. Changing the ordering of the semi-infinite edges of 7" amounts
to composing (3-4) with an element of Sym on the left; and changing the orderings at
the vertices amounts to composing (3-4) with an element of [ [, Symy, on the right.
The inclusion R C C induces maps

(3-5) S; — FMy,

which are compatible with (3-2) and (3-4) (they form a morphism of nonsymmetric
operads).

As before, FM is topologically a compact manifold with boundary. One can complexify
it by considering point configurations in C2, which yields a smooth compact complex
manifold, and then embed FM; into the real locus of that. As a consequence, it inherits
the structure of a smooth (or real subanalytic) manifold with corners, just as in the case
of the associahedra.

To orient FM, we consider representatives in (3-3) where z; and |z; — z;| are fixed.
Then, rotating z, anticlockwise around z; yields the first coordinate, and the remaining
coordinates are (z3, ..., zg) with their complex orientations. Equivalently, consider
the classical configuration space Conf;(C), of which (3-3) is a quotient by the action
of (A, 1) € C x R™0. The Lie algebra of that group fits into an exact sequence

(3-6) 0—-CoR— T(zl,...,zd) Conf;(C) — T(zl,...,zd)FMd — 0;

our orientation of the quotient is compatible with that sequence and with the complex
orientation of Confy(C). In particular, Sym, acts orientation-preservingly.

3¢ Deligne-Mumford spaces

For most of this paper, we will write DM, for the Deligne—-Mumford moduli space of
genus 0 curves with d 4+ 1 marked points, bringing it in line with the notation for the
other moduli spaces. One can consider it as a compactification of

{(z1,....24) €C?: z # zj fori # j}
{(z1,...,29) ~ (t(z1),...,1(zg)) for t(z) = A + puz with L € C, u € C*}’

(3-7)

which is a free S!—quotient of (3-3). The operadic structure takes on exactly the same
form as for Fulton—MacPherson spaces. Indeed, the quotient map on configuration
spaces extends to a map

(3-8) FM,; — DMy,
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which is compatible with (3-4) and its Deligne—-Mumford counterpart. We adopt the
usual orientation of DMy as a complex manifold.

3d Colored multiplihedra

Ma’u, Wehrheim and Woodward [49; 48] introduced a geometric interpretation of the
classical multiplihedra, as well as certain generalizations. We will call these spaces
colored multiplihedra, and denote them by

(3-9) MWWy, a4 forr>=1,dy,....d>0,d=d +---+d >0.

r

They are compactifications of

1,10 S1dys e 38r 0022 Srd,) eR4 DSk, <0+ < Sk,q, foreach k}

3-10
G-10 {8k,i ~ sk,i + pfor e R}

The intuitive meaning of (3-10) is that we have d points on the real line, which are
divided into r colors, with dj points of any given color k. Points of different colors
can have the same position, while those of the same color are distinct and lie on the real
line in increasing order. We denote the compactification by MWWy, ;. It tracks
what happens on a large scale, meaning the relative speeds as points diverge from each
other, as well as on the small scale, where points of the same color converge. Therefore,
a point in the compactification consists of “screens” (terminology taken from [25])

which are either “large-scale”, “mid-scale”, or “small-scale”. Correspondingly, the
analogue of (3-2) is of the form

G-1D) [T Swor> [T MW Wi x [T St MWWy, g,
v large v mid v small

Here, the tree 7" has d + 1 semi-infinite edges. We still single out a root, but the
leaves are now divided into subsets of orders d, each subset being then ordered by
{1,...,dy}. Each vertex has one of three scales. The mid-scale vertices have the same
kind of combinatorial data attached to them as the entire tree: their incoming edges are
divided into r subsets of different colors, whose sizes we denote by ||v||1, ..., [|[v],
and then ordered within each subset. The large-scale vertices and small-scale vertices
just come with an ordering of the incoming edges. The small-scale vertices are also
labeled with a color in {1, ..., r}. Any path going from a leaf of color k to the root
travels in nondecreasing order of scale: first through any number (which can be zero) of
small-scale vertices of color k; then through exactly one single mid-scale vertex, which
it enters by an edge with color k; and finally, through any number (which can be zero)
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2,1)(2,2)
2,1 (2,2)
o degeneration - -
(1,1 1,2 T W (1.2)

Figure 2: A degeneration in MWW, »; see Example 3.1. The shaded regions
are “mid-scale screens”; we have drawn marked points of different colors as
lying on separate copies of the real line.

of large-scale vertices. There are compatibility conditions between the orderings, which
are somewhat tedious to write down combinatorially; see [48, Section 6] — they are
similar in principle to those for planar rooted trees, but concern each color separately.

Example 3.1 Suppose that in MWW, >, we have a sequence of configurations where
one point (of the first color) moves to —oo, and the remaining three points move towards
the same position. The outcome is shown in Figure 2.

Topologically, MWW, ;. isagain a compact manifold with boundary, having (3-10)
as its interior. Note that the codimension of the image of (3-4) is the number of small-
scale plus large-scale vertices, mid-scale vertices being irrelevant. As a consequence of
the resulting combinatorial structure of boundary strata, MWW, ;. can’t be made
into a smooth manifold with corners in the same way as the previously considered
moduli spaces. However, it is naturally a (subanalytic) manifold with generalized
corners in the sense of [36]. To prove that, one introduces a complexification as in
[49; 8], which is a complex variety with toric singularities, and embeds MWW, 4
into its real locus.

As for orientations, we orient (3-10) by ordering the coordinates lexicographically, and
then keeping the first one fixed to break the translation-invariance.

Example 3.2 In the spaces MWW, no small-scale vertices can appear. The maps
(3-11) with zero-dimensional domains correspond to trivalent planar rooted trees with
an additional ordering of the r leaves, hence there are (2r — 2)!/(r — 1)! of them.
For instance, the two-dimensional space MWW/ ; ; is a 12—gon; see Figure 3. The
boundary sides each have either one large-scale screen containing three points, or one
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Figure 3: The space MWW/ ; ; from Example 3.2.

mid-scale screen with two points (each possibility occurs six times). Figure 4 shows in
more detail a neighborhood of one of the corners of the 12—gon, and in particular, the

degenerate configuration associated to the vertex.

Example 3.3 The space MWW, ; is an octagon; see Figure 5. There are only two
points which belong to the same color, hence only one way in which a small-scale
vertex can occur, which is the boundary side at the top of our figure. The other boundary
sides are of two kinds, as in Example 3.2.

=== :iW:
— %7

Figure 4: A specific part of MWW, ; ;, compare Figure 3. As one ap-
proaches the vertex along the edge from the left, the leftmost of the three
points on the large-scale screen moves to —oo. As one approaches it along
the other edge from the right, the rightmost point on the mid-scale screens
moves to +00. We have colored the points that we think of as moving white.
(Of course, because of translation invariance, there are other equivalent ways
of thinking about the degenerations.)
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Figure 5: The space MWW ; from Example 3.3.

One can associate to a real colored configuration a complex configuration, by setting
(3—12) Zk,i = Sk,i +k\/—1

and then ordering the zj ; lexicographically (we use +/—1 here to avoid notational
confusion with the index 7). This extends to a continuous map

(3-13) MWW, 4. —FMy, provided that d =d; +---+d, > 2.

r

In terms of (3-11), the extension uses the same formula (3-12) for the points on
each mid-scale screen, while the small-scale and large-scale screens use (3-5). To
be precise, there is one exception: mid-scale vertices with |v| = 2 have no Fulton—
MacPherson counterpart, and we simply forget about them, which is unproblematic
since MWWy 0 1,0,...,0 = point. There is a commutative diagram involving (3-13) as
well as (3-5), (3-4), (3-11):

(3-11)
TT St [T MWWy, < T Siot —— MWW, _q,

v small v mid v large

(3—13)l
(3-14) [T S TT PMpyrx I Sp (3-13)

v small v mid,|v|>2 v large

[T ™M 5 FM,
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It can be convenient to allow more flexibility in the construction of (3-13). Namely,
suppose that we have a collection of continuous functions

. d
(3-15) Uy,dy = (Tdy,dy 115+ Tdydyornd, ) MWW g — R
with the following properties. In the interior of our space,

(3-16)  74,,...d, k,i < Td,,....d,1,j at any point of (3-10) where s; ; = 57 ; for some
k<landi,j.

Take the pullback of 74, . 4, by (3-11) for some tree T". Each index (k, i) corresponds
to a leaf of 7', and the path from that leaf to the root enters a single mid-scale vertex v
through an incoming edge labeled (k, j). Then, we require that the (k,7) component
of the pullback be given by the (k, j)—component of 7|, ,....|v|, @ a function on the
product in (3-11). Instead of (3-12), we can then set

(3-17) Zki = Sk,i t Tdy,..dy k,iV 1.

Intuitively, the imaginary parts of the z; ; can vary depending on the modular parameters,
but if two points of different colors & </ come to lie on the same vertical axis, the point
with the higher color / always passes above that of color k (in contrast, points of the same
color still collide, “bubbling off” into a small-scale screen). The consistency condition
we have imposed on (3-15) ensures that (3-17) extends to a continuous map (3-13), with
the same boundary compatibilities (3-14) as before. This is a strict generalization of
the previous construction, since the constant functions 7, 4, k,; = k clearly satisfy
our conditions. More general choices of (3-15) can be defined inductively by extension
from the boundary of MWW, ;. to the entire space, which is unproblematic since
(3-16) is a convex condition.

As one application of (3-17), note that we have (orientation-preserving) identifications
(3-18) Mwwdl,...,dr = Mwwdl,...,d]_l,d]_;,_l,...,dr lf dl = 0

According to the original formula (3-12), these two isomorphic spaces come with
different maps to FM,;. However, when constructing the functions (3-15), one can
additionally achieve that

dy,esdi—1,di 41,5k, for k <1,

if d; =0,
le,...,d/_l,d/+1,...,k—l,i for k >/

(3-19) Tdy,ody i = {

and then the maps (3-13) obtained from (3-17) become compatible with (3-18).
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3e Witch ball spaces

Our next topic is a simplified version of Bottman’s witch ball spaces [6], for didactic
reasons: we won’t use them as such, but the discussion serves as a preparation for a
related construction to be carried out afterwards. Our notation is

(3-20) Buay.....(dw.dms1)sedrs  Where r=2,d=di+---+d, >0, 1 <m=r—1.
The interior is the configuration space (3-10) with an additional parameter ¢ € (0, 1).
This parameter extends to a map

(3-21) Ba,,....dmsdmi 1)y = [0: 1]

Over t € (0, 1], we just have a copy of (0, 1] x MWW,

at ¢t = 1 one gets boundary strata inherited from (3-11), which are images of maps

T
3-22) [T Sporx [T MWWt % [T Siol == Bav,.oosdsdns 1)
v large v mid v small
At t =0, the m™ and (m+1)* color “collide”. There, the analogue of (3-22) is
323 [T MWW peleo [T MWWy x [T Sp

v mid v small-mid v of any other scale

d, - In particular, by looking

.....

L Bi,,...dmodms1)snsdy -
This time six different scales are involved, which we (unimaginatively) call “large”,
“mid”, “small”, “small-large”, “small-mid” and “small-small”. Suppose that we have
a path from a leaf to the root. As usual, the leaves carry colors {1, ..., r}. If the color
of our leaf is # m, m + 1, things proceed as for the MWW spaces, with the path going
through any number of small vertices, one mid-scale vertex, and then any number of
large vertices. (There is a relabeling rule: if the color is k > m 41, it enters the mid-scale
vertex through an edge with color k — 1.) If the color is m (resp. m + 1), the path first
goes through small-small vertices, and then through exactly one small-mid vertex, which
it enters through an edge colored by 1 (resp. 2). It then proceeds through an arbitrary
number of small-large vertices, then through a mid-scale vertex, which it always enters
through the m™ color, following by large-scale vertices. To compute the codimension of
(3-23) one counts the number of “other scale” screens. Finally, our space has boundary
strata which lie over the entire interval [0, 1], and those are images of maps

[0,1]

G20 [T St [T Bioheeotm b ealioly X [T Shon

v large v mid v small

T
— Ba,,...(dpm.dmi1)s..rdr >
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Figure 6: One of the boundary faces of B (j,1); see Example 3.4.

where the superscript means that instead of a product, we have a fiber product over
(3-21); compare [7, equation (1)]. We refer to [6; 5; 7] for a detailed discussion; the
results obtained there can easily be carried over to our version.

Example 3.4 The space By (q,1) is half (sliced through horizontally) of [7, Figure 1b].
Figure 6 shows one of its boundary faces of type (3-24), namely

S2 % Bi,0,0) X[0.1] Bo,(1.1) = B(1,)-
The spaces (3-20) are topological manifolds with boundary, and smooth manifolds with

generalized corners. For Bottman’s witch ball spaces, this is proved in [8], and the
same arguments apply to the (comparatively simpler) situation here.

As was the case for the MWW spaces, one can map our spaces to Fulton—-MacPherson
spaces

(3-25) Bdl,---,(dm,dm-l—l)w-»dr — FM, provided that d > 2,
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compatibly with (3-22), (3-23) and (3-24). Suppose for simplicity that the maps (3-13)
have been defined using (3-12). The corresponding formula for By, . (d.dms1).....d;
is then

i+ k-1 if k <m,
(3-26) i = {Sk,l +k/ ifk <m

Ski + (k—1+0)/=1 ifk >m.

As before, the extension of this map to the entire space forgets any screens (necessarily
of mid-scale or small-mid-scale) which carry configurations consisting only of one
point.

3f Strip-shrinking spaces

We will now introduce a modification of the idea of witch ball spaces, designed to
avoid the kind of fiber products which appeared in (3-24). This is inspired by [9], and
correspondingly called strip-shrinking spaces. We will denote them by

(3-27) SSu,.....dmdms1)sdys  With =2, d=dy+--+dp 20, 1=m=r—1.

(Note that this time, unlike the situation in (3-20), it is possible to have all d; =0.) The
SS spaces compactify colored configuration space as in (3-10), but without dividing
by common translation. The important point is an asymmetry between the two ways
in which points in the configuration can go to infinity. In the s — —oo direction, we
dictate a fairly standard behavior, where MWW spaces with r colors appear. In the
s — oo limit, we think of the m™ and (74 1)*' colored points as lying on lines that
become asymptotically close to each other, at a rate of 1/s. One way to make this more
concrete is to consider the analogue of (3-26), which associates to a real configuration
a complex one. Choose a function ¥ : R — (—1, 0] with asymptotics

0 for s < 0,

3-28 ~
( ) Ve {—1—|—1/s for s > 0.
Then set (see Figure 7)

i ._{sk,i—i-k«/—l for k <m,
i Ski =Sk,i+ (k+v¥(sk))v—1 fork>m.

To relate the spaces to Fulton—MacPherson spaces, we can add two auxiliary marked

(3-29)

points, say

(3-30) zy = x4 (r 4+ V-1,
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—
e

Figure 7: A point in SS(; 1),2, thought of as a configuration in C as in (3-29).

which stabilize the situation and otherwise stay out of the way. This gives continuous
maps

(3-31) SSay,...dm.dmi),.dy —> FMa42.

For a more precise picture, consider the analogue of (3-2),

(3-32) l_[ MWW o)1y ,livlle X SSHvell e ol X ]_[ MWW i, lvll—

V<Vy mid V>V4 mid

< [T MWWy, x I1 Sii]

v small-mid v of any other scale

XSSy,
Here, we have the same six scales as in (3-23), but with different roles. There is a
distinguished mid-scale vertex, denoted by v, to which corresponds an SS space. All
other mid-scale vertices carry MWW spaces, in two different versions: if v < vy (with
respect to the ordering of mid-scale vertices determined by the ordering of the incoming
edges at large-scale vertices) that space has r colors, but for v > v, there are only
r — 1 colors. The part of the tree lying on top of v < v, vertices consists of small-scale
vertices as in (3-11), and the same is true for v > vy if the color is # m. For that
remaining color, we have a structure of small-large, small-mid and small-small vertices,
parallel to (3-23).

Example 3.5 Take the two-dimensional space SS; 1), denoting points in its interior
by (s1;52) for brevity. Consider sequences

(3-33) (sgk);sék)), k=1,2,..., where sgk) < sgk) and sfk),sék) — 4o00.

The possible limit configurations, shown in Figure 8, correspond to the following
behaviors:

) (sgk) —sfk))/sik) — +o00.

(ii) (sgk) — sgk)) / sgk) converges to a nonzero constant.

i) 89— > oo, but (0 -5 )/s) 0
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i) s® @
W % (k)

converges to a nonzero constant.

0 (0 _

— 0, but s, (k)) — +00. Since the two points get increasingly

close to each other, the additional mid-scale screen carries only one marked

(k)

point. On the other hand, rescaling by s,"" separates the two points in the limit.

This leads to the appearance of a small-large screen.

(vi) 5% 5 0 () _

— 0, but s, slk)) converges to a constant (which can be zero).

In that case, we get a small-mid scale screen with two marked points on it.

The whole space is a 14—gon (Figure 9), with three adjacent sides corresponding to (ii),
(iv) and (vi) above, and corners corresponding to (i), (iii) and (iv).

The structure of SS as a compact topological space is relatively straightforward to
obtain, following the model of [6]. It turns out that it is also a topological manifold
with boundary, and in fact a differentiable manifold with generalized corners. The
last-mentioned property deserves some discussion, since the required construction of
coordinate charts, which borrows ideas from [8], is instructive in its own right.

A boundary point in SSg, .. (dn.dpt1),....dr 1S gIven by a tree 7" and associated screens
carrying point configurations, as in (3-32). The gluing process which associates to this
point a chart in the interior involves (small) gluing parameters A, > 0 for the finite edges
of T', subject to constraints. Our main interest lies in those constraints, but let’s first
recall how to think of such gluing processes. This is made slightly more complicated
in our case by the fact that the screens have different natures: the vertex vy carries a
configuration of real numbers, without dividing by any group action; the mid-scale
and small-mid scale vertices carry configurations which are given up to translation;
and at all other scales we have configurations up to translation and rescaling. To deal
with that, it is convenient to stabilize the configuration associated to the distinguished
mid-scale vertex vy by adding two points s+ = =£1, thought of as belonging to their
own new color, just as in (3-30). To glue the screens together, we first choose specific
representatives for those configurations, which are defined only up to ambiguities.
Then, given any finite edge e of the tree, we take the screen associated to its source
vertex, rescale the points in that configuration by A, and then insert that into the target
vertex by adding the real number that corresponds to the point where our configuration
is being glued in. (In abbreviated notation, gluing s with scale A into a screen at point r
results in 7 + As.) After we have done that for all edges, we translate and rescale the
resulting configuration to bring the points s+ back to their original position (and then
forget about those points).
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Figure 8: Some limits in SS; 1), as discussed in Example 3.5. The * marks

the distinguished mid-scale screen.
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Figure 9: The space SS(; 1) is a 14—gon; see Example 3.5. For space reasons,
we have only drawn half of it. However, the drawing is arranged so that
exchanging the first two colors corresponds to reflection along the vertical
axis, and the missing half can be inferred from that.

It may strike the reader that there are too many gluing parameters with respect to the
codimension of the boundary strata; and indeed, the parameters are not independent,
but subject to constraints. To formulate those, we can think in terms of the scales
that the screens acquire after gluing. For any vertex v, let A, be the product of the
k;tl along a path going from vy to v, with the sign +1 if the path follows the edge
orientation, and —1 otherwise. We also need the following terminology:

(3-34) Given a small-mid scale vertex v—, we say that a large scale vertex vy is
a turning point for v_ if there is a path from v« to v— which follows the
orientation until it hits v4, and then goes against the orientation to v_.
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For any v_ there is a unique turning point v4. With that at hand, the relations are:

(3-35) If v is a mid-scale vertex, A, = 1 (this is automatic for v = v).

(3-36) If vy is a turning point for v— (so v_ is small-mid scale), A, +Av_ =1.

It is easy to see that for a codimension-one stratum, all the A, therefore end up being
the same.

Example 3.6 Consider gluing from the horizontal boundary edge at the top of Figure 9.
Let’s say that the large screen carries the configuration (ry, r,); the mid-scale screen
on the left carries a configuration (s1;s,); the remaining screen, corresponding to
Vx, 1S empty, but we add a third color and its points s+ as explained above. The
constraint (3-35) says that the gluing parameters for both edges must be equal, so we
effectively have a single parameter A. In a first step, gluing with that parameter yields
the configuration

(3-37) (r1 +Asy;r +Asa rp— A,y +A).

After that, we apply translation and rescaling which maps r, &= A back to £1, that being
s+ A~ 1(s —r,); and (forgetting those points) we end up with

(3-38) (T o —r2) + 5127 (r = 12) +52) €SS(1.1) \ 8SS(1.1)-

This means that the gluing takes place in a way which preserves the size of the mid-scale

screens, even though that has been obscured a bit by writing it as rescaling by A and
then its inverse.

Example 3.7 Consider the situation of the horizontal boundary edge at the bottom of
Figure 9, which is also Figure 8(vi). Let’s say that A; and A, are the gluing parameters
for the edges leading to the large-scale vertices, and A3 that for the remaining edge. Then,
(3-36) says that A A5 ' =1, and (3-36) that Ay, Ay_ =A1 (A1 A 1A =A3A AT =1
As mentioned before, the end result is again that all gluing parameters are equal.
Suppose that the large-scale screen carries (71, ), the mid-scale screen carries r, and
the small-mid scale screen carries (s1; 5;). The analogue of (3-37) is

(3-39) (ry + A2s1m 4+ A2spirp — A, r 4 4),
and that of (3-38) is obtained by applying s — A~ (s —ry), which gives
(3-40) " Ny —r1) + Asis A (e —rp) + Asa).

In the end, the two points end up at position O(A~1), and at distance O(A) from each
other, which matches the description in Example 3.5(vi).
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Figure 10: A generalized corner point; see Example 3.8.

Allowing some of the parameters to become zero yields a partial gluing process, which
extends the chart obtained by gluing to include boundary points. In order for the
relations (3-35) and (3-36) to make sense in this context, one multiplies them all
by ke_l, so as to get equations between monomials with nonnegative coefficients. One
can think of this completely as a limit of the previous gluing process.

Example 3.8 Take the example from Figure 10. After preliminary simplifications,
the relations between gluing parameters are Ay = Ay, A7 = AsA3, Ay = A5 and, more
importantly,

(3-41) Aahs = Ashe.

Hence, this point is not a classical corner in its moduli space. After gluing, the position
of the two rightmost points is of order A,A3, and the distance between them is of
order Ag'. In the limit as all gluing parameters to go zero, A;A34g ' = As — 0 by
(3-41), as in the similar but simpler situation of Example 3.5(v).

It is convenient to pass from the multiplicative language of gluing parameters to the
additive language of monoids. We define an abelian group Gt as follows. There is one
generator g, for each edge. For a vertex v, we define g, to be the signed sum of g,
over a path from v, to v, with signs according to orientations. The additive relations
corresponding to the ones above are

(3-42) gy =0 for a mid-scale vertex v,

(3-43) gvy t&v_ =0 if vy is a turning point for v_.
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Let GT,>0 C G be the submonoid generated by the g.. The gluing parameters, includ-
ing the degenerate cases where some are set to zero, are elements of Hom(G%O, R=0),
where R=0 is the multiplicative monoid.

Lemma 3.9 G is a free abelian group, whose rank is the number of vertices of T
which are neither mid-scale nor small-mid scale (in other words, the “other scales” in
(3-32)).

Proof Let E7 be the set of finite edges, and Ry be the set of relations. Our definition
amounts to a short exact sequence

(3-44) 0 — zRr o, 7 Er _, Gr 0.

Any relation has a distinguished finite edge associated to it: for (3-42), the edge
exiting v, and for (3-43), the edge exiting v—. Those edges are pairwise different.
Given an element of Z 7, the coefficients for the distinguished edges give a splitting
of the first map in (3-44), which implies freeness of the quotient. |

Lemma 3.10 Gr,> is saturated, meaning that if g € Gr satisfies mg € Gt,>¢ for
somem > 2, then g € GT,>0.

Proof For this, it is simpler to work exclusively in terms of the gy, and use (3-42)
to drop the mid-scale vertices. Hence, let V7 be the set of all vertices which are not
mid-scale. We start with Z"7, and define G by quotienting out by (3-43). An element

(3-45) > mygy € ZVT
velr

is nonnegative if satisfies the following conditions. If v lies above vy in our tree
(meaning that the path from v to the root goes through vy), then m, < 0. If vy lies
above v, then m, > 0. Finally, the m, increase as one goes towards the root. As
before, G >0 is the image of the nonnegative elements in the quotient Gr. Here is an
equivalent form of the desired statement:

Claim Given some element (3-45), suppose that there are rational numbers ¢,_ € [0, 1],
one for each small-mid-scale vertex v—, such that

(3-46) domuge+ Y. o (8o +8guy)

velr v_small-mid

satisfies the nonnegativity condition. Then the same can be achieved with c¢,_ € {0, 1}.
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To prove this, we take (3-46) and then gradually modify the ¢,_. Take a turning
point v4. There can in principle be several corresponding small-mid scale vertices
V—1,...,VU— . The coefficient of vy in (3-46) is then

J
(3-47) My, +cy,, where ¢y, = Z Co_ ;-
i=1

If this is an integer, we do nothing. Otherwise, we increase (some of) the noninteger ¢y_
until the resulting expression (3-47) becomes equal to the next larger integer. Let’s
apply this to all turning points. The outcome is that now we have an expression
(3-46) which still satisfies the nonnegativity condition, and where the coefficients of all
turning points are integers. In a second pass, we change the coefficients of small-mid
scale vertices again, but without affecting (3-47), to make all of them integers. The
situation is, simplifying the notation, that we have noninteger cy, ..., c; € [0, 1] such
that c¢; 4 - -+ 4 ¢ is an integer; and we then need to change them to be either 0 or 1,
while preserving the sum, something that’s clearly possible. Having done that, we have
justified our claim. O

Lemma 3.11 Gr7 >0 is sharp, meaning it contains no nontrivial pair of elements -g.

Proof We know that Hom(G7 >0, R=?) recovers the space of gluing parameters,
including degenerate ones. In particular, there is a distinguished point where all gluing
parameters are set to zero, which is the zero map. Composing that with a homomorphism
Z — Gr.>0 would mean that the zero map Z — R=? is a group homomorphism, which
is nonsense. |

Lemmas 3.9-3.11 say that G%O is a toric monoid (terminology as in [36]). For the
space of gluing parameters, this is precisely what defines a generalized corner.

4 The formal group structure

This section carries out versions of our main constructions in an idealized context, where
the technicalities of symplectic topology have been replaced by a general operadic frame-
work (this degree of abstraction comes with its own occasional complications). The
primary objects under consideration will be chain complexes which are algebras over
the Fulton—-MacPherson operad. Abstractly speaking, in view of [53, Theorem 1.1], this
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Figure 11: The boundary faces of S; appearing in (4-1), as trees and as strata
of the compactified configuration space.

situation is not more general than the purely algebraic one mentioned in Remark 2.12.
However, that viewpoint lacks the geometric explicitness which is useful for applications
to symplectic topology.

4a Associahedra

Consider the singular chain complexes of the associahedra, C«(S;). These inherit
the structure of a nonsymmetric operad, using the maps induced by (3-2) as well as
the shuffle (Eilenberg—Mac Lane or Eilenberg—Zilber) product. One can inductively
construct “fundamental chains” [S;] € C;7_5(Sy) such that [S,] = [point] and

4-1) 0[Sql =Y (=TT (Sa—j+1] % [S))).
ij

Here, the sum is over pairs (i, j) corresponding to trees 7;; with two vertices, of
valences j + 1 and d — j + 2, respectively; and where the unique finite edge is the
(i +1)* incoming edge of the first vertex (0 <i <d — j +1); see Figure 11. We take the
shuffle product (here just denoted by x) of the fundamental chains [S;_ ;4] and [S;],
and then map that to C«(S;) by the chain-level map induced by (3-2), denoted here
by Tjj,«. The sign takes into account the co-orientations of the boundary faces. In view
of (4-1), [S4] has a preferred lift to a cycle for the pair (S, dSy), whose homology
class is then a fundamental class in the standard sense, compatible with the orientations
described in Section 4a.

Our standing convention is that chain complexes are cohomologically graded, hence
we now switch to the grading-reversed version C_«(S;). By an algebra over the
chain-level Stasheff operad, we mean a chain complex of free abelian groups A, which

Geometry & Topology, Volume 27 (2023)



Formal groups and quantum cohomology 2975

comes with maps
d

N
(4-2) Cx(S)HQA®---QA— A,

compatible with the composition maps induced by (3-2). Let’s evaluate these maps at
[Syl®a; ®---® ay, multiply with a sign (—1)*, where

(4-3) * = (d = Dlay| + (d =D)laz| +---+ag—|.

and denote the outcome by ufl(al, ...,dg). These maps, together with M}l = —dy,
make A into an A—ring. The associativity equations (2-1) are a direct consequence
of (4-1). Homological unitality is not part of this framework, hence has to be imposed
as a separate property.

Remark 4.1 It is maybe appropriate to recall briefly how the signs work out. If we
denote the operation (4-2) by oﬁ, the starting point is its chain map property, which
together with (4-1) yields

(4 Y DI (Ty o (Sam ] X [SD @ a1 @ @ ag)
! + (terms involving d4) = 0.

The operad property, not forgetting the Koszul signs, transforms this into

. . . . d_ .
(4_5) Z(_l)(d+1)j+l+]’x‘10A ]+1([Sd_j+1]®a]®"'
o ®0% ([Sj1®ai4+1® - Qait )@ -Qay)
+ (terms involving d4) = 0;

or, in terms of the A—operations,

i d—j+1 j
@-6) (—=D*> (=D ps T N ay. (@i aigg). . dg)
! + (terms involving d4) =0,

with * as in (4-3). The sum in (4-6) is over 2 < j < d — 1, but only because we have
omitted the differential terms, which are

@7 Y (=)o ([Sg)®@ar ® - @ dadit ® - ®ag)

1

—da(0}(Sal® a1 ®---aq))
= (=D* Y (=D uf(ar, ..., phlaiv), ... aq)

+ (=D kil ... aq)).
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i+l i+4j i+1 p+1 i+4j i+1 i+j

Jo—ii+j-p-1

i<p<i+j

Figure 12: Graphical representation of the terms in (4-8).

4b Dependence on the fundamental chains

Suppose we are given two sequences of fundamental chains [Sy] and [gd], each of
which separately satisfies (4-1). To relate them, we want to make further choices of
fundamental chains, which have a mixed boundary property:
4-8)  fp,1,4€Ca—2(Sq), where p,g>0and d = p+1+q,

Jp,1,0=[Sp+1l;

J0,1,4 =[Sq+1l,

fp.1,q=
Jo—i+1,1,4%[S)] if p=i+j,
Z(_l)(d - ])]—Hle* fl 1,p+q+1—i— Xfp ili+j—p—1 WiZ<p<i+j,
j Ipig— ]+1X[Sj] if p<i.

Graphically, one can think of (4-8) as follows. Let’s mark the (p+1)% leaf of our planar
trees. Vertices that lie on the unique path connecting that leaf to the root correspond to
factors carrying an appropriate f chain, while the remaining ones always carry [S] or
[§ ] chains, depending on whether they lie to the left or right of the path; see Figure 12.

Let 4 and ji4 be the Aoo-Ting structures associated to [S;] and [§d] In the same
way, the action of f, 1 4 gives rise to operations

(4-9) ¢p1q A®PTATL Al — p—gq], where p+1+¢q>2,
1,0 1 0,1 ~g+1
¢P /’Lfl-i- , ¢ q q+ ,

which, as before, we extend by setting

0,1,0
$910 = —d,.
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The relations inherited from (4-8) are

L .
@-10) Y (DFph T ay @iy ai ). apiapya

e p+2s- - dptq+1)
+ Y (Mgl gy
i=p<itj ¢ﬁ_i’1’i+j_p_l(a,-+1, el p 13 Ap s i)
e lptgt1)
—I—Z (_1)-14,.¢£,1,q—j+1 (ar.....apiapsr:
p<i Apt2se s B @i i), Aptgt1)
=0.

Remark 4.2 The operations (4-9) equip the shifted space A[1] with the structure of an
Aoso—bimodule, where p acts on the left and i on the right; see eg [64, equation (2.5)];
the shift is there to match sign conventions.

In a second step, we find fundamental chains
4-11) gpq € Cy—1([0,1]xSy), where p,g>0andd = p+q,
0gp,g = {1} X fp—1,1,4— {0} X fp.1,4—1
+Z(_1)(d—i—j)j+i

ij

_gp—jfl,qX[Sj] ifp>i+j,
Tijy D fitgmiep—i Xgp—iiitj—p i = p<i+],
—&p.g—j+1%[Sj] if p <i.

When compared to (4-1) and (4-8), the spaces involved have acquired an additional
[0, 1] factor; hence, we should really write id[g, 1] X T;;,«. The graphical representation
involves drawing a dividing line between the first p and last g leaves of our trees. In
the first two summands in (4-11), we remove that dividing line and instead mark the
leaves that are on either side of it, leading to the appearance of two f terms. For the
remaining summands, vertices to the left (resp. right) of the dividing line carry [S]
(resp. [§]) chains; see Figure 13. If the dividing line ends at the top vertex, which is
the middle case in both (4-11) and Figure 13, the finite edge of the tree becomes the
marked edge of the bottom vertex, which explains how that vertex carries an f term.

Let’s take the image of (4-11) under projection to S;. Its action under the operad
structure, with additional signs inserted as in (4-3), gives operations

(4-12) l/fﬁ’q:fl®p+q — A[l—p—gq], where p,q >0,
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8p—ii—p+j

Jitg—i+p—j

pi+j i<p<i+j p<i

Figure 13: Graphical representation of the ), ; in (4-11).

which we complement by setting l/f}[’o = —id4 and l/f;)l’l = id4. These satisfy

@13) Y 0Py g @i aig ), ap

pzitj ap+1,...,ap+q)
- Z ¢i{1’p+q_i+j(a1,...,a,-;
i<p<i+j wﬁ_i’iJrj_p(aiJr], e Oyl i) i 1y - ,ap+q)
+ Z (—1)*"1ﬂﬁ’q_j+l(a1, s dp;
p=i Apits oo LR (@it o i) Aptg)
=0.

Note that (4-13) contains terms which correspond to the boundary faces {0} x S; and
{1} X S4:

@-14) =5 "My ap Yy @p)iapt - dprg)
_¢A,l,q—l(a1’ -..,dp; ¢2’1(ap+1);ap+z, ceeslptq)
= ¢£_1’1’q(a1, e lp_130piAp41, ... Aptq)
—¢A’1’q_1(a1, celpipy1iGpyd, ... Aptq).

Example 4.3 The simplest instance of (4-13), bearing in mind the conventions for
¢0,1,0 ¢1,l,0 and ¢0,1,1 is

@-15) vt (uhan)an) + (D1 My ay: ph(a2))
= pa Uy (@i:a) + pii(ar. az) — i ay. az).
This says that (—1)1411y 11 (4, a,) is a chain homotopy relating the two versions of

multiplication.

Remark 4.4 Following up on our last observation, one can give the following inter-
pretation of (4-13). Recall from Remark 4.2 that the operations ¢ equip A (here, we
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undo the shift for simplicity) with an 4.—bimodule structure. By construction, this is
isomorphic to (A, (4) as a left module over itself, and to (A, ji4) as a right module.
Correspondingly, one has two bimodule maps

(4-16) (A, 140) ©2 (A, TLr) =3 (A. 9.
given by
pﬁ_l’l’q_l(al, e Ap ®Apini. .., dptgq)
w1 = :I:¢£’1’q_1(a1,...;ap+1;...,ap+q),
ﬁﬁ_l’l’q_l(al, cep @ Apini. .. Aptq)
= iq&ﬁ_l’l’q(al, e ilpy ... dptgq)-

In these terms, (4-13) says that i provides a homotopy between p and p.

It is worth noting that homological unitality, when it holds, can be used to simplify
the picture. Namely, suppose that (4 and ji4 are both homologically unital, with
a priori different units ¢4 and 4. Then a bimodule map as in (4-16) is determined up
to homotopy by the image of [e4 ® 24] in H°(A). In our situation, the two classes are

(4-18) [ul(ea.Z)) =[2a] and  [fi5(ea.2a)] = [eal:

so the existence of a homotopy ¥ just amounts to saying that the two units are, after all,
cohomologous. Similarly, the different choices of ¥ form an affine space over H 1 (A).
Let’s define an A —ring structure on

(4-19) H=A®IJ=Au e Au e Av,

where J is the noncommutative interval (2-3), as follows. The differential uﬂl% is as
in (2-4). The nonzero higher As,—operations, for d > 2 and p,q > 0, are

/’Lgf(al®ua---sad®u):/’Li{(alv~--9ad)®u,
uifrq(al®u,...,ap®u,ap+1®i7,...,ap+q®i7)
=(—1)*”+"¢£’q(a1,...,ap;ap+1,...,ap+q)®v,
@20 , o _
na(ar ®u,...,aq @u) = puy(ay,...,ag) 1,
ué’{+q+1(a1®u,...,ap®u,ap+1®v,ap+2®ﬁ,...,ap+q+1®ﬁ)

= (—1)*P+‘1+1_*P+1¢P’1"1(a1,. e lpiApy1iApga, ... dpigt1) V.
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(This generalizes the previous (2-4), which corresponds to the diagonal Asc—bimodule
structure and vanishing 1.) The Asc—associativity relations follow directly from (4-10)
and (4-13).

Remark 4.5 As a check on the signs, consider the associativity relation for

(@1 Qu,....ap QuU,apy1 U, ..., dp1q ),

and more specifically the v—component of that relation. This turns out to be exactly
(4-13) multiplied by (—1)®r+a+1 The crucial terms, compare (4-14), are

4-21) (—1)*P—1ui+q(a1 Qu,...,v—component of ;Lé{(ap Qu),api1 QU,...)
= (=D®H P G Qu, .. ap @, aps OF,...)
= (—1)’1‘p+q+1¢£—1’1’q(a1,._.,ap_l;ap;ap+1,...,ap+q)®v
and

@22) (=D* P Qu, ..., ap ®u, v—component of ul (ap @), ...)
= (—1)*”+1Mi+q(a1 QuU,....,ap QU,ap 1 ®V,...)

* ’19 -1 . .
=(-1) ”+‘1¢£ a (@i,....ap;ap11:apya,....dp+q) V.

By construction, the projections (2-5) are Aso—homomorphisms from g to 4 and i,
respectively, and also chain homotopy equivalences. By taking a homotopy inverse
(Lemma 2.1) of one projection, and composing with the other projection, we get an
A so—homomorphism

(4-23) (‘A’ MA) - (‘A’ /jﬂ),

whose linear part is homotopic to the identity (one can achieve that it is exactly
the identity). For a completely satisfactory statement, one would need to prove that
(4-23) is itself independent of the choice of (4-9) and (4-12) up to homotopy of Aso—
homomorphisms; and also, that the composition of two maps (4-23) is again a map of
the same type, up to homotopy. This would use higher analogues of J. For the sake of
brevity, we will not carry it out here.

4c Fulton—-MacPherson spaces and colored multiplihedra

One defines the structure of an algebra over C_.(FM,) on a chain complex C by
maps analogous to (4-2), with the additional stipulation of Sym —invariance. On the
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cohomology level, H*(C) becomes a Gerstenhaber algebra. The chain-level structure
is a classical topic in algebraic topology (E,—algebras; see eg [51; 14; 53; 68]). For our
purpose, only part of that structure is relevant — that part, maybe surprisingly, does not
include the fundamental chains [FMy] € C,7_3(FM,) and the resulting L oo—structure;
in fact, the chains relevant for us have dimension < d.

First of all, having chosen fundamental chains [S ;] for the Stasheff associahedra, one can
map them to Cz_, (FMy) via (3-5), and their action turns € into an 4 -ting. As before,
one has to require homological unitality separately. Next, choose fundamental chains
4] € Ca-1 MWWy,
the analogue of (4-1). It is worthwhile writing this down:

d,) for the colored multiplihedra, which satisfy

.....

(4-24) MWWy, . a.]1=
Z (_1)(dk—i—j+dk+1+"'+dr)j+(d1 +tdje—1+i+1)

ijk Tije s MWWa, ae—jtt,...,d, ) ¥ [S;]
+ ) DT dy  (SIXIMWW gy DX [MWWg, g D
partitions

The second sum is over all j > 2 and partitions
dq :dl,l +-.-+dj’1, e, dy :dl,r+"'+dj,r

such that d; | +---+d;, >0foreachi =1, ..., j. The sign there is given by

425 o= Y diysdig+ G —Ddi e +diy—1)
i1<i2; k1>k2

+ (=D dr+-Fdyy =1+

Example 4.6 Examples of the degenerate configurations corresponding to the terms
in (4-24) are shown in Figure 14. (The trees T;j and Ty, . 4; . can be inferred from
looking at those, so we will not define them explicitly.) Figures 3 and 5 illustrate the
orientation issues: in both of them, the actual moduli space has the standard orientation
of the plane, and the arrows show the orientations of the boundary strata arising from
(3-11).

Choose maps (3-13), take the images of the fundamental chains under those maps, and
let them act on €. The outcomes are operations

(4-26) pl-dr . e84 _, 1 —d|.
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(kyi+1) --- (k,i+]j)

(r: 1) \ ... A(r, d,)
o (k,.i) i (k, z—l—]—l—l)
LD (L)
° dl,r o dz,r — o e dj,r
o ° . d; 1

d1’1 d2,1
\\.1 2./ j/

Figure 14: Top: a summand in the first sum in (4-24). Bottom: a summand
in the second sum in (4-24).

In their definition, we insert signs as in (4-3); for
ﬁg"""d’(cl’l,...,cl,dl;...;cr,l,...,c,,dr)

this means (—1)* with

(4-27) x=(dy+---+dr—Dlcra| + 1+ +dr =2)[c12] + -
+(di+-+dry)lerg |+ (di+- -+ drmy = Deg |+

For MWWy 0.1,0,...,0 = point, where there is no corresponding Fulton—-MacPherson
space, we artificially set

(4-28) ﬂg,...,o,l,o,...,o — ide.
As a consequence of (4-24),

i pA15edic—j+1,....dy
(4-29) Y (=D)Fwi et b T e e gy

ijk J . .
ck,ls---sﬂe(cki—i—l’---’Ck,i—l—j)’---’Ck,dk’---’Cr,l’---’cr,dr)
v} d11, dyr . .
E D)~ u (01,1,---,Cl,de-~-,Cr,lw--’Cr,d],,.),---,
tit
par110ns d] L ,d] .

. (Cl,dl—dj,1+1’ e Cldys e ;Cdr—dj,r-i-l’ cees Cr,dr))-
Here, the sums are over indexing sets as in (4-24), except that we now additionally
allow the differential ,ué = de. Recall that by construction, the map (3-13) forgets
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factors of MWWy 0.1,0,...,0 = point. Algebraically, this corresponds to the places
where (4-28) appears in (4-29). The " symbol is the sum of reduced degrees of all ¢
which precede the w; and Q yields the Koszul sign that corresponds to permuting
the ¢ ; from their original order into the order in which they appear on the right-hand
side of (4-29), but using reduced degrees ||c ;||

Remark 4.7 The operations (4-26) constitute an Asc—multihomomorphism with
r entries C x --- x € — € (the single-object version of an A.,—multifunctor; see
[4, Definition 8.8], or closer to our context, the discussion of the » = 2 case in
[9, Section 4.5]). What we will study later on amounts to the action of those As—
multihomomorphisms on Maurer—Cartan elements. One can argue that the homomor-
phisms themselves should be the center of attention;> in the interest of keeping the
discussion concrete, we have chosen not to take that route.

Example 4.8 In view of (4-28) and (4-29), ﬂé satisfies

(4-30)  pe(BE(cr.e2)) — BE(pe(cr). c2) — (DI BE (c1. pg(ca))

= Be(ug(cr.c2)) — ng(Belcr). Be(ca)) =0,
which means that (—1)le! |,Bg,(c1 , C2) is a chain map of degree —1. Geometrically, the
reason is that the image of the fundamental chain under MWW, — FM}, is a one-cycle.

However, this cycle is supported at a single point of FM, 2 S, hence is necessarily
nullhomologous. This implies that ﬁé is chain homotopic to zero.

Example 4.9 The first substantially nontrivial case is ,8(13’1, which satisfies

g, )1 ) 1, .
@431 peBe (criea) =B (ue(er)iea) = (=DIMBE (11 pg(ea))
= —pg(er.e2) = (Dl e ).
In more conventional terminology, (—1)|Cl |,Bé’1 (c1;¢p) is the o operation which shows

homotopy commutativity of the product on H*(C).

Definition 4.10 Fix an adic ring N (Definition 1.1). Given yq,...,y, € C I'& N,
define

dy dy
disendr ="~ o~
(4-32) O v = > B G vV 1)
di,...,d,>0,
dy+-+d,>0

3Meaning that Proposition 4.20 should be understood as a consequence of a composition property of the
Aoso—multihomomorphisms up to homotopy; and similarly that Corollary 4.25 should be true because for
r =1, one gets an Aso—endomorphism of € which is homotopy equivalent to the identity.
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Suppose that we have (y1,. .., },) as well as, for some k, another element 7.# Then,
define a linear endomorphism of € ® N by a generalization of (2-11),

d; D
k Ay sl sennsdy .
@33) POEE= Y. ) BTt (LY T VR 6
d],--.,drp+q+l=dr Vk,...,?k;...;yr,...,yr).
q d,

The definitions, taking (4-28) into account, have the following immediate consequences:
4-34) ML, 7)) =vi+-+y mod N2,

(4-35) Me(y1,..- vk +E&....yr) =e(x) + Pé’k(é) + (order > 2 terms in &),
(4-36) £€CRON™ = PI¥(§) =& mod N"T!,

@-37) TE(r. . y) =T T ve) = PE (= Ta).

In (4-35), the endomorphism Pé’k is with respect to ¥, = y%. The two subsequent
equations, in contrast, use a general .

Lemma 4.11 If yq,...,y, are Maurer—Cartan elements (1-1), then so is
y =M1, 7).

Moreover, the equivalence class of y depends only on those of y1,...,Yr.

Proof From (4-29) one gets

(4-38) Zu‘é’(%--.,)/)=ZPé’k(Zué(yk,m,yk)).
a p j

Here, the P operations are defined using 7, = 4. This shows that the Maurer—Cartan
property is preserved. Similarly, suppose that for some 1 < k < r, we have another
Maurer—Cartan solution ¥ . Then, for the associated y and ¥ =T1G(y1, ..., Vko -0 Vi),

p q

1, —— ork =
@39 Y WM GTTY P )T D)
p.q

D q
k | ——— =
:P(; (Zué’+"+ (Vk,---,J/kvx»)/kw-wyk))-
p.q

In particular, if we have an element /s; which provides an equivalence between Yy
and Y, then i = Pé’k (hy) provides an equivalence between y and y, by (4-37). O

4The basic case is Yk = ¥k, but for some applications, the freedom to choose a general ¥ is important.
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We want to mention a few elementary statements which, taken together, stand in a
converse relation of sorts to Lemma 4.11.

Lemma 4.12 Suppose that we have y1, ..., Vik_1,Vk41s---»Vr € C! ® N. Then, for
eachy € @' ® N, there is exactly one y, such that Ie(yis---vr) =v.

Proof By (4-35) and (4-36), if £ € C!®N™, then (i vk +6.0. ) =
Ge(y1,...,¥r) +& mod N m+1_This allows one to solve for y; order by order, and
to show uniqueness of the solution in the same way. O

Lemma 4.13 Suppose that we have y, ..., y, € C' ® N. If all but y;, are Maurer—
Cartan elements, and y = II5(y1, ..., yy) is Maurer-Cartan as well, then yj must
also be Maurer—Cartan.

Proof From (4-38) and the assumptions, one sees that Pé’k (Zj ,ué (Vk-----vk)) =0.
On the other hand, by (4-36), Pé’k is clearly invertible.

Lemma4.14 Given Maurer—Cartan elements y1, ..., Vk—1, Yk+1, - - - » Vr and y, there
is a unique Maurer—Cartan element yy such that I15(y1,...,yr) = y.

Proof This is simply a combination of Lemmas 4.12 and 4.13. |
Lemma 4.15 Suppose that we have Maurer—Cartan elements y, ..., y, and ¥} for

somel <k <r.If y =TIG(y1,....¥r) and ¥ = TIG(Y1 - Vi—1: Vs Viet1s -2 V)
are equivalent, then so are yy and yy.

Proof This is a consequence of (4-39) and the fact that Pé’k is an automorphism. O

Take the case r = 1 of (4-32). Then (4-29) says that (ﬂ(l3 = id, ,Bé, ...) form an
A so—homomorphism from € to itself (which is not surprising, since the underlying
spaces MWW ,; are the multiplihedra). The corresponding operation (4-32) is just the
action of the 4,—homomorphism on Maurer—Cartan elements. One can show that
this Asc—homomorphism is always homotopic to the identity, and hence IT é(y) is
equivalent to y. (The first piece of the statement about the As,—homomorphism is
Example 4.8, but we won’t explain the rest here; as for the action on Maurer—Cartan
elements, we will give an indirect argument in Corollary 4.25.) Therefore, that case
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is essentially trivial. With that in mind, the first nontrivial instance of (4-32) is r = 2,
which we will denote by

(4-40) yieys =51, 1)

It will eventually turn out that the r > 2 cases can be reduced to an (r—1)—fold
application of this product (Corollary 4.24), and hence are in a sense redundant.

4d Well-definedness

Proving that (4-32) is well-defined involves comparing different choices of the underly-
ing Aso—structures e, as well as of the operations Be. Since the details are lengthy,
and the outcome overall not surprising, we will provide only a sketch of the argument.

One can generalize the construction of the operations (4-26) by allowing the use of
different versions of the Ao—structure (in fact, a different version for each color of input,
and another one for the output). Concretely, suppose that we have (¥ + 1) choices of
fundamental chains for the Stasheff associahedra, with their associated A o—structures
He,0s - - - » Me,r. By choosing fundamental chains on the colored multiplihedra which
satisfy an appropriately modified version of (4-24), we get generalized operations
(4-26), which then lead to a map

(4-41) IG5 MC(C, pe 13 N) x--- x MC(C, pe,r: N) = MC(C, pe,0; N).

For instance, let’s look at ¥ = 1. Then, what we get from the modified operations
(4-26) is an Aso,—homomorphism between two choices of Aso—structures on €, whose
linear part is the identity. That gives an alternative proof of the uniqueness result from
Section 4b. (In spite of that, it made sense for us to include the original proof; the
reason will become clear shortly.)

In (4-41), we want to understand the effect of simultaneously changing ¢ o, one of
the other pie k41, with k& > 0, and correspondingly also (4-41). Namely, suppose that
we have alternative versions jie,o and jie k4. Alongside (4-41), we also have another
operation which uses the alternative A —structures, as well as different choices of
functions (3-17) and fundamental chains on the MWW spaces. Let’s denote that version
by 1':1(’3 The construction from Section 4b yields Aqo—structures pug¢,0 and pgc k41,
where H{ = € ® J. One can then construct a new operation ngc{’l’l, where k +1+1=r,
which fits into the following diagram, with vertical arrows induced by (2-5):
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MC(C, pe,1; N) x---xMC(C, pegy1: N) e
’ ’ ——— MC(C, Y
%o x MC(C, p1er: N) (C. peo0: V)

Il
14

MC(C, pte,1; N) x -+ - x MC(H, g g+1; N) k.1

4-42 MO, psco: N
(4-42) X+ e MC(C, picr: N) (F, peac,0: N)

1R
12

MC(C, pe1: N) x---x MC(C, i N i, )
(€, pe,1: N) x -« x MC(C, lek41:N) © L MC(@. Tie.o: N)
X -+ x MC(C, pe,,r; N) ’

Rather than giving the general construction of (4-42), we will only look at the r = 1
case. This is not terribly interesting in itself, but contains the main complications of
the general situation, while allowing us to couch the discussion in more familiar terms.
The setup for r =1 is that we are given the following data:

* Four Axo—structures on C, namely pe x and jig for k =0, 1.

e Two Axo—structures on H, namely puq¢  for k = 0, 1, which are constructed
with the aim of interpolating between jie x and [ie . Their definition, following
(4-20), involves operations ¢¢ x and Ve x as in (4-9) and (4-12).

¢ Finally, we have two versions of (4-26), which are As,—homomorphisms

Be: (C, pe,1) — (€, we,o),
Be: (C. fie1) — (C, fic,0)-

The aim is to define an 4so,—homomorphism fBs¢, again having the identity as its linear
term, which fits into a commutative diagram

B -
(C, pe, ) ——— (€, fie,0)

B
(4-43) (I, pg.1) ——— (I, ftac0)

+ Be v
(C, fie,1) ——— (C, fie,0)
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The corresponding special case of (4-42) is then defined through the action of B¢ on
Maurer—Cartan elements. The definition of 84¢ involves two kinds of operations:

(4-44) Gé”l’q:€®p+1+q—>€[—p—q] for p+¢ >0,

1 1 1 1 . . .
1,0 _ ,Bp+ , 0’ e ﬂq+ and, in particular, 08’1’0 = ide, and

with op
(4-45) fé”q: C®PTd 5 Q—p—g—1] for p,qg>0.

These enter into a formula parallel to equation (4-20): the nonzero terms of our Ao—
homomorphism are, for p,q > 0,

Blci®u.....cq®u)=Be(cy.....ca)®u.

,Bglfrq(cl®u,...,cp®u,cp+1®L7,...,cp+q®ii)
* p’q e) 2 . )
446 = (=D)FPrar " (cr, .. CpiCptts o Cptg) @V,
@46 o 3
1 ®u,...,cq®@u)=Pelcr,....cq) U,
+q+1 ~ ~
91; 1 (C1®u,....cp Qu,Cpt1 @V, Cpy2 Rl,...,Cppqt1 QM)

_ L — p.lgq . .
= (=) Frtat 17410, (Cp, o CpiCp1iCpt2s e o2 Cpigt1) V.

The fact that (4-46) satisfies the As,—homomorphism relations reduces to certain
properties of (4-44) and (4-45). Those for (4-44) are

. p—j+1,1, j . .
(4-47) Z (-1 ’aé’ I q(Cl,...,Ci,,LLé’l(Clq_],...,Ci+j),...,Cp+1,

pzi+j -an—i-q—l—l)
+ Z (_1)*,-Gé,l,p+q—i+j( o
iSpsit ¢p B P (et i)
Citj+1s-- -’Cp-‘rq-}-l)
+Z(—1)*"o§’l’q—j+l(c1, i Cptts

et --»ﬁé,1(0i+1, s Cij)se s Cptgt1)

Z d)s 1 t (Cl, R Cdl), el ,Bgs (Cd1+'"+ds—1+1’ R Cd1+---+ds)§

partitions oé’_dl_'"_d“l’dl+'"+ds+l_p_l (Cdyttdy+1s -3 Cptts

: ’cd1+"'+ds+1);
+1+1
.’ﬂes (CP+‘1+2—ds+t+1""’CP+q+1))-
On the right-hand side, the sum is over all (s, ?) and partitions dy + -+ + ds4 14 =

p+1+4+gsuchthatd, +---+ds<p+1landdy+---+ds+1 > p+ 1. In spite of
the apparently larger number of terms which appear, this is formally parallel to the
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Aso—homomorphism equation, and in fact the nontrivial operations (4-44) are obtained
from a choice of fundamental chains on MWW/, ;1 1, as well as functions (3-17). The
trick is that the boundary behavior of these data is partially determined by the choices
underlying Be and Ee, just as in our previous discussion of (4-8). Introducing the
shorthand notation Xd Ilc :=dyg +dy41+---+d; for k <, the relations for (4-45) are

it :
(4-48) -— Z (—l)*’tg a q(cl,...,c,-,,ué,l(c,-H,...,c',-+j),...;

p=i+j
Cp—i—l’---’cp—l-q)
Lp+ o Phi = . )
+ Z z pH+q—i J(Cla---aCi,Wél i+j P(CH_I,..,,cp+1,...,ci+j),
i<p<i+j
Citj41s--2Cpiq)
X _p.q—j+1 . i
_Z(—l) trépq J (Cl,...,Cp,...,Mé’l(CH_l,...,Ci+j),...,cp+q)
p=i
Hsas s,1,t(pd .
Z (_1) 1¢G,0 ( e (Cl,-- Cdl 'B(“:' (CEds 1+1""’Czdf)?
partitions p—st,):df"'l—p ‘ |
Te (Cde‘H"'"cp’cp+1""’62d‘1‘+l)’
Zds+1+
: IBGS t(Cp+q+2—dv+,+1,---,Cp+q))
s,t (pd .
+ Z 1'”@,0( Gl(cl"' cd] ,3@ (Czds 1+1""’02df)’
partitions -
.y /3@ (Cp+q+2_ds+t+l seaey Cp+q)),

Combinatorially, the difference between the two terms on the right-hand side of (4-48)
is where the dividing semicolon between the first p and last ¢ inputs comes to lie: in the
first case, we require that Xd{ :=dy +---+ds < p <di +---+ds41 =: Edf“, o)
that semicolon is inside one of the innermost operations, which becomes a t operation;
in the second case, we require that Xd{ := dy +--- + ds = p, so that semicolon
separates the two kinds of inputs for the y» operation. Topologically one realizes (4-45)
by choosing suitable fundamental chains on [0, 1]x MWW, and analogues of (3-17)
on that product space. The second sum in (4-48) contains terms which correspond to
the boundary faces {0, 1} x MWW, just as in (4-14):

(4-49) Gé’_l’l’q(cl,...,cp_l;wé’?(cp);cpﬂ,...,cp+q+1)
+o0p’ 1.a- (cl,...,cp;ngll(cp);cerl,...,cp+q+1)
——Ug_l’l’q(cl,...,cp_l;cp;cp+1,... Cptq)
—i—op’ A= l(cl,...,cp;cp+1;cp+2,...,cp+q).
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Example 4.16 The first new operation ré’l satisfies

(4-50)  pe(re’ (erien)) + e (uelen)ien) + (DIteg  eri pgea))
= B(c1,¢2) — Bi(er, ) + Wéll (c1:c2) — Wé,’é (c1:c2),
bearing in mind that all versions of the A—structure on € share the same differential

—d = ,ué = ¢8’é’0 = ¢8’11’0. This is exactly what’s required for the first nontrivial
Aso—functor equation on J{: one has

(4-51) e o(Bi(cr @ u.ca ® D)) + i o (Bie(c1 ® u). Biecz ® il))

= (_1)"61 I+lle2 I (Mé(fé’l (c1:¢2)) + wézé (c1: Cz)) Q.
while

(4-52)  Bi(ic (c1®u). @) +(=DIM B3 (e @u. 1) | (c2®i))
+Bc (13 1 (1 ®u, c2®il))
= (=Dllerthesl (—ot (ug(er)s e +Be(ern e (=DM (e1: pglea))
—B&(cr, Cz)+1ﬁé:11 (c1:¢2))®v.
To conclude our discussion, let’s return to the general context (arbitrary ), and note

that then, repeated application of (4-42) allows one to change all the choices involved.
We record the outcome:

Corollary 4.17 Suppose that we have two different choices of fundamental chains on
the associahedra and colored multiplihedra, as well as of functions (3-17), leading to
two versions of the Ao—structure and operations (4-32). These fit into a commutative
diagram

Hr
MC(C, pe; N) ——— MC(C, pe; N)

(4-53) % lg
ﬁr

MC(C, fie; N)" ——=— MC(C, fig; N)

Here, we have related our Ac—structures using functors as in (4-23), and the vertical
arrows are the induced maps on Maurer—Cartan elements.

4e The p™ power operation

When defining (4-26), suppose now that we choose our functions (3-15) so that they
satisfy (3-19). For the fundamental chains, we may also assume that they are chosen
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to be compatible with the identifications (3-18). In algebraic terms, the outcome is a
cancellation property, which allows one to forget colors that do not carry any marked
points:

dy,....dr—1,0,d yeeesd dy..,di—1,d "
(4_54) ﬂel k—1 k+1 r — 5@1 k—1:8Kk+1 I‘

Assuming that such a choice has been adopted, we have:

Lemma 4.18 Take a prime number p, and the coefficient ring N = qF,[q]/q?*".
Then, for y = qgc + O(g?), one has

(4-55) N2y, ....y) =B (e i0)qP.

Proof This is elementary, along the same lines as in Lemma 2.10. Applying (4-54)
allows one to rewrite (4-32) as

r di,..., dj. —"~—. L —
@56 Moo= Y (p) D B G ),
1<k=r dl ..... dk>0

where the combinatorial factor reflects the possibilities of inserting 0 superscripts into
each B operation. Suppose that our coefficient ring is N = ¢gF,[q], and set r = p.

Then (4-56) becomes
di dp

dy,..., dy —"—. L —
(4-57) n2(y,....y) = Z BV YY),

Truncating mod ¢g?*1 leaves

1,...,1 . . 1,...,1, . .
B (Vi sy) =B (e i0)gf

as the only nonzero term. |

4f Deligne-Mumford spaces and commutativity

Let’s consider the question of commutativity of the product (4-40). Concretely, this
hypothetical commutativity would mean that there is an 4 € C® ® N such that
p q
@-58) Y w M Gy e v e =it — Ve
P4

Let’s suppose, to simplify the exposition, that the coefficient ring is N = gZ[q].
Moreover, we choose to define the operations (4-26) as in Section 4e, so that (4-54)
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holds. That entails some convenient (but not essential, of course) cancellations in our
formulae. Given two Maurer—Cartan elements

(4-59) Vi =qck + 0(q%) for k=1,2,
with leading terms ¢ which are cocycles in €!, we have by definition,

(4-60) yieya—vaeyi =q>(Be (cric2) — By (c2ie1)) + O(q?).

In writing down this formula, we have exploited the fact that, due to our choices,
,Bé’o(ck, Cr) = ,Bg’z(ck, ¢ )- It follows from Example 4.9 that

(4-61) (c1,¢2) € Crs (=DIlg Ll ey cp) — (=Dllerllezl gL (cp5¢p)

is a chain map of degree —1. On cohomology, it defines the Lie bracket
[-.-]: H*(€)® H*(¢) — H*7'(©),

which is part of the Gerstenhaber algebra structure. Geometrically, 81! arises from
a one-dimensional chain in FM, whose boundary points are exchanged by the Z /2—
action. The sum of this chain and its image under the nontrivial element of Z/2 is a
cycle, which generates H; (FM,) = H, (S ') = Z. If we similarly write 1 = gb+ O(g?),
then (4-58) taken modulo ¢ says that b is a cocycle, and that

(4-62) Mé(cl 4¢3, b)+ué(b, ¢14+c¢3)+ (coboundaries) = ﬂé’l (c1; cz)—ﬂé’l (c25¢1).

By (4-31), the left-hand side of (4-62) is nullhomologous. Hence, for (4-62) to be
satisfied, the Lie bracket of [c;] and [c;] must be zero, which means that commutativity
does not hold in this level of generality.

We now switch from Fulton—-MacPherson to Deligne-Mumford spaces. One could
define the structure of an algebra over C_,(DMy) on a chain complex € in the same
way as before. However, that notion is not well-behaved. For instance, the action
of DM, = point would yield a strictly commutative product on C. The underlying
problem is that the Sym —action on DMy is not free — from an algebraic viewpoint,
C_«(DMy) is not a projective Z[Sym ]-module. There is a simple workaround, by
“freeing up” the action. Namely, let (£;) be an E,—operad, which means that the
spaces Iy are contractible and freely acted on by Sym,;. Let’s adopt a concrete choice,
namely, the analogue of Fulton—-MacPherson space for point configurations in R®°.
Then

(4-63) DM,; =DMy x Eg
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is again an operad, which is homotopy equivalent to DM, but carries a free action
of Sym,;. The maps (3-8) admit lifts

(4-64) FM, — DMy

which are compatible with the operad structure, including the action of Sym,. As an
existence statement, this is a consequence of the properties of E ;; but for our specific
choice, such lifts can be defined explicitly by taking (3-8) together with the natural
inclusion FMy; — E.

Assume from now on that € carries the structure of an operad over C_,(DMy), and
hence inherits one over the Fulton—MacPherson operad by (4-64). Take the one-cycle
in FM, underlying (4-60) and map it to (the contractible space) DM,. Choosing a
bounding cochain (which is itself unique up to coboundaries) yields a nullhomotopy

(4-65) ket @82 - ¢[-2],

pb(k (i) + k! (nblen)iea) + (=Dl ez b (e))
= ,Bél (c1;¢2) — (_1)||01 l ||62||13é91 (caic1).

As a consequence, if we set
(4-66) h=q*kg" (c1:¢2) € €° & ¢*Z[q],

then (4-58) is satisfied modulo ¢3 (on the left-hand side, only the p = ¢ = 0 term
matters at this point). Hence, if we reduce coefficients to ¢Z[q]/q>, then (4-40) is
commutative. Nothing we have said so far is in any way surprising: the vanishing of
the Lie bracket in the case where the operations come from Deligne-Mumford space is
a well-known fact —if one uses the framed little disc operad as an intermediate object,
it follows from vanishing of the BV operator.

Let’s push our investigation a little further. As special cases of (4-29), we have

(4-67)  pe(By " (c1.caie3)) — e’ (e(er). caies)
— (=Dl B2 (e, pd(ca)s e3) — (=DllerlHleal 821 ey L en: pulies))
= Be’ (ud(cr.ca)iez) — (=Dleallesl 28T (e e3), ¢)
— ud(er. Be ' (caie3)) — nd(BE(er. c2). c3)
— (=plleslllierhtlleal 2 (e5, B2(cy. 2)) — pd(er. 2. c3)
_ (_l)llr:zll ”"3”ué(c1 ,C3,C2) — (_1)(Ilc1 I+lle2Dlle3 Ilué(% 1,¢2),
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and respectively,

(4-68)  pb(Bg(csict.c2)) — Be(bles)icr.ca)
— (=Dl (e3: pdier). ea) — (= DleslHlerl go2 (e5: 1 pudi(er))
= (DIl (e3: pd(er. 2)) — (B (e3:¢1) . c2)
— (=pllerllesly 2 ey, Bl (e3102)) — pd(es. BE(er. c2)
— (=Dylleslitleni+lea 2 (83 (c1, ¢3). ¢3) — pd(es. e1. c2)
—(=nleshlenl 3y 5. e0) — (= Dllesenlitliead 3 ey ey o).

Therefore, if we consider the map K (23’1 : @®3 5 @[-2] given by

4-69) K3 (c1,e5¢3)
=B (1, a5 c3)—(=DlsllerlFleaD gi2 (s ¢y ) —ieg (i (e, c2)i 3)
— (=Dlle2llesl 2 e b2 (e15e3), 0) = (DI (1, 1 h (€23 €3),

then that satisfies
1 2,1 . 2,11 .
(4-70)  pe(Ko  (c1,c2;¢03)) — Ko™ (elcr), c25¢3)

— (=Dleth g2  (er, ud(ea)s e3) — (=pletlFle2l g2V e en: pdies)) = o,

which means that (—1)"’2|Ké’1 (c1,c2;¢3) is a chain map of degree —2. The same
observation applies to

@71 K (erica )
= Bl (ers ca, c3) — (—letliealtlesl g2.8 () [eqic)
- (—1)"CI||K(13’1 (c1; pd(ca, e3)) — M%(Ké’l (c1:¢2),¢3)

— (=nylterlliezll 2 ey icb (15 e3)).

‘We now return to the original situation (4-59). Suppose that the cocycles K é’l (c1,c15¢2)
and K é’z(c 1;C2, ¢o) are trivial in H*(C), and that we have chosen bounding cochains
for them,

@472 Kg'(erene) =pe®®") and  Kg?(erzeacr) = ug(b?).
Then (4-58) is satisfied modulo ¢* by the refinement of (4-66) given by

(4-73) h=kg' (ri:v2) + ¢ (0% +b12) e €° @ ¢Z[ql/q*.
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It remains to look at the geometry underlying (4-69) and (4-71). Both cases are parallel,
so let’s focus on Ké 1 For ,Bé’l (c1,c2; c3), take the relevant map and project it to actual
Deligne-Mumford space for simplicity, which means considering the composition

(4-74) MWW, ; — FM3; — DM3 — DM; = S,

Looking at Figure 5, we see that three boundary sides of the octagon MWW, i,
corresponding to the 43 terms in (4-69), are mapped to paths in DM3 which are images
of the canonical map S3 — DMj and two of its permuted versions (those which
preserve the ordering between the first and second point in the configuration). The
remaining sides are collapsed to “special points”, meaning the images of the maps
DM, x DM, — DMj3. Altogether, we get a relative cycle, whose homology class
in H,(DM3, (DM3)R) = H,(S?, S1) is independent of all choices involved in the
construction. From the assumption (3-16), one sees easily that this cycle corresponds to
one of the two discs in S bounding S'. Correspondingly, for ,Bé’z(q; c1,C2), we get
a relative cycle corresponding to the other disc. The outcome of this discussion is that
K é "1 is constructed from a cycle which represents a generator of H,(DM3) = H,(S?);
roughly speaking, the difference between the two discs bounding the same S!. Since
the action of Sym; on H,(DM3) is trivial, the induced map

475 (el el les) = [(=D2KE er caren)): HH@)FP — H'2(€)

is graded symmetric. In particular, [Ké’1 (c1,c15¢2)] € H'(C) must be 2—torsion. If
we can rule out such torsion, then the class must necessarily vanish, and similarly for
[K é’z(cl ; €2, ¢2)]. We can carry over the argument to other coefficients:

Proposition 4.19 The product » on MC(C; N) is commutative if N3 = 0. It is also
commutative if N* = 0 and, additionally, H* (@) is a free abelian group.

Proof The first part is as in (4-66). For the second part, the obstruction is now
[Ké’l(cl,cl;cz)] e H*72(C; N?), and similarly for Ké’z. From our assumption, it
follows that H*(C; G) = H*(C) ® G for any abelian group G. Hence, the symmetry
argument that ensures vanishing of (4-75) carries over to arbitrary coefficients. O

4g Strip-shrinking spaces and associativity

Let’s assume that C is homologically unital; this assumption is used in the context of
geometric stabilization arguments, which add extra marked points. Our aim is to show:

Geometry & Topology, Volume 27 (2023)



2996 Paul Seidel

Proposition 420 Foranyr >2andany 1 <m <r —1, II5(y1, ..., yr) is equivalent
to Hg_l(yl, e Ym O YmAls e V) = Hg_l(y, e, Hé()/m,)/m_,_l), e Vr).

Before getting into the proof, let’s draw some immediate consequences.
Corollary 4.21 The product e is associative.

This is because, by the » = 3 case of Proposition 4.20, IT (33()/1, V2, ¥3) is equivalent to
both TIE(y1 * 2, 73) = (v1 *¥2) e 3 and TE(v1, v2 ¢ v3) = v * (2 * 3)-

Corollary 4.22 The neutral element is y = 0, meaning that y 0 and 0 ® y are both
equivalent to y .

The definition says that

(4-76) ye0=> B 0.....v).
d

so the statement is not immediately obvious. However, it is obvious that 0 ¢ 0 = 0.
By Lemmas 4.14 and 4.15, y — y 0 is a bijective map from MC(C; N) to itself. By
associativity, that bijective map is idempotent, and therefore the identity. (There is a
more direct geometric argument which shows that (4-76) is equivalent to y, along the
lines of Example 4.8, but we have chosen to avoid it.)

Corollary 4.23 (MC(C; N), ) is a group.
This is a combination of the previous two corollaries and Lemma 4.14.
Corollary 4.24 Forany r > 3, I15(y1. ..., yr) is equivalent to yy ®--- o ;.

This follows by induction: if Hg_l (¥1,-..,Yr—1) is equivalent to y; ®---ey,_q, then
MG (y1s - .- ¥r) is equivalent to Hg_l(yl *yr,...,¥r), henceto (y1eyz)e---oy,.

Corollary 4.25 TI1 é(y) is always equivalent to y .
Proposition 4.20, with r = 2, says that Hé(yl, ¥2) = Y1 *Y> is equivalent to Hé(yl ),

which implies the desired statement by specializing to y; = 0 (again, this is a workaround
which avoids a direct geometric argument).
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Proof of Proposition 4.20 This uses the strip-shrinking moduli spaces from Section 3f,
with their maps (3-31). The codimension-one boundary faces are images of maps (3-22)
defined on the following spaces. First, in parallel with the first term of (4-24), we have

(4-77) SSay,.di—j+1

.....

where j and k can be arbitrary (in particular, the latter can be m or m + 1, something
that’s not entirely reflected in our notation). The analogue of the second term in (4-24)
is less obvious:

k—1 r colors
4-78) Sjx [[MWWy,, .4, XSS,

i=1

aaaaa (dk.m =dk.m+l)s~--sdk,r

J a;
X l_[ (Mwwdi.lw-ydi.ml,aisdi,m+2:---adi,r x l_[ Mwwdi,l,udi,l,z)'

i=k+1 r — 1 colors I=1 2 colors

The last kind of MWW factor corresponds to the small-mid vertices in the terminology
of (3-22). Such boundary faces are parametrized by “double partitions”. One first
chooses j > 2 and partitions

di=diy+-+dj1, ... dr=diy+-+dj,.
In addition, there is a distinguished k € {1,..., j} for which (dj 1,...,d,,) can be
(0,...,0). Finally, for each i > k, one chooses a further a; and corresponding partitions

dim=dij1+-+digranddipmii =di12+-+dig .

We fix fundamental chains on the SS spaces, compatible with the boundary structure in
the usual sense. We then insert those chains into our operadic structure through (3-31),
with the additional convention that at the stabilizing marked points (3-30), we will
always apply a fixed homology unit ec. Denote the resulting operations by

(479 (st Dty 0@ _ C[-d], where d =d; +---+d, > 0.

The simplest example is SSo ..o = point, which is mapped to FM, = S! by taking

.....

the configuration (3-30). This coincides with the map S, — FM, which is part of our
Ao—structure, and therefore

(4-80) ag,...,(o,o),...,o = ,ué(e@, ee) = ee + (coboundary).

Generally, the operations (4-79) satisfy the equation obtained from setting the sum of
boundary contributions (4-77), (4-78) equal to zero:
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di,...dir—j+1,...d . .

(4-81) E o' "(e11s e Cdy s
ijk J .

Choyis oo M (Chidfts oo s Chyidj)s e s Cloydy s oo -

Crise.s Cr,d,)

di 1,edyr ..
Z :I:/Le( "(eq, 1’---’Cl,dl,l,---,cr,l’---’Cr,dl,,)’---’

ngt}lt]ij(])%s Olgk pdier (Cludy+otdi—y 415+ s CLdy g otdy oo )se e e
gf»]""’df:m—l’af ’djgm+2’m’dj’r (Cl,dl_dj.l-i-l’ cees Cl,dl;
e N Comd—dy 15+ SOt L1 —dj 1 15+
. ﬂg’j’aj'l,djqaj'z ( s Cmdyys s Cm+1,dm+1);
Cm+2.dmia—dmi2,j+1> > Cmt2.dpmyns - ) ’

with double partitions as in (4-78), the only difference being that we have an additional

ue(ﬁdl’ d’) term. Given Maurer—Cartan elements yq, ..., ¥, set
dy dy
di,....(dy,,d ),....d, — | ——
4-82) g= Y ag Ottt G TN )
di,....d>0

eC'®(Z1a@N).
As a direct consequence of (4-81), this satisfies

D
+q+1
(4-83) Zu” 1 ( AICZ TR 75 FOUUN § 1 62 T 2 Iy

Hé_l(yl,---»Vm.)/m—i—],---,)/r),---,H’é_l()/],---,Vm']/m—i—l,---»)/r))

q
=0.
In view of (4-80) and Lemma 2.6, this is exactly what we need to prove the equivalence
of the two Maurer—Cartan elements in question. |

5 Cohomology operations

Following Steenrod and (in a more abstract context) May, reduced power operations
arise from homotopy symmetries. This general principle can be applied to configuration
spaces, as in Cohen’s classical work, and also to Deligne-Mumford spaces. After a
brief review of the underlying homological algebra, we discuss those two instances,
and their relationship.
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S5a Equivariant (co)homology

Let C be a complex of vector spaces over a field IF. Given an action of a group G on C,
one can consider the group cochain complex C;(€) and its cohomology H;(€). (This
is a mild generalization of the classical concept of equivariant cohomology, where the
coefficients lie in a G—module; see eg [10] for a general account, and [46, page 115] or
[73, page 179] for the traditional choice of group cochain complex.) If C*(X) is the
cochain complex of a space X carrying a G—action, and V is a representation of G
over I, then setting € = C*(X) ® V recovers

(5-1) HE(CH(X)®V) = HL(X; V) = H* (X xg EG; V),

the equivariant cohomology in the classical sense (with coefficients in the local system
over the Borel construction X xg EG determined by V'). A variant of the construction
yields the group chain complex CY(C) and group homology HZ (€). Recall that in
our convention, all chain complexes are cohomologically graded. If we start with
the chain complex Cy(X) of a space, and a representation V, as before, then setting
C=C_«(X)®V gives

(5-2) HE(C_(X)® V) = HO(X; V) = H_+(X xg EG; V).

Group homology and cohomology carry exterior cup and cap products

(5-3) Hg(C) ® H;(Cy) = Hi (€ ® €3),

(5-4) HE (1) ® H(€2) — HI (€1 ® Ca):

see eg [10, Section V.3]. The cases relevant for our purpose are where G is a permutation
group Sym,, of prime order, or its cyclic subgroup Z/ p, and F = [F,,. For the cyclic

group, there are particularly simple complexes computing equivariant (co)homology.
The cohomology version is

CZ*/p(G) =C:]®0C[t], with|t]|=2,|0|=1,
(5-5) dgp(t*e) = t* de + 015 (Te —c),
dg)p(0t*c) = =015 de + 5TV e+ Te+---+ TP o),
where T': € — C is the generator of the Z/ p—action. In the case of trivial coefficients
C = IFp, the differential vanishes. The ring structure (5-3), for ¢; = [F, and general
@, = @, satisfies [¢]-[tXc] = [tk c] and [¢]- [t¥Oc] = [tk +16¢]. However, for p = 2

and C; = €, =, one has [#]-[0] = [¢], while for p > 2 that expression would be

zero. Indeed, in the case p = 2 it is more convenient to write 6 = 1Y/ 2. for a more
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precise discussion of the choices of generators used here in relation to topology, we
refer to Section 10a. The group homology version is

CL/P@e)=Cls]@oCs], with|s|=—2, |o| = —1,
(5-6) dP/P(skey =5k de —osk V(e + Te+---+ TP o),
d2P(gske) = —os% de — sK(Te — o),

and under (5-4), ¢ acts on equivariant homology by canceling one power of s in (5-6)

1

(by convention, s~ is set to zero). Because the index of Z/ p C Sym,, is coprime to p,

for every complex C with Sym,,—action,

(5-7) Hs*ymp (©) — Hg/p(e) is injective,
(5-8) HE'P @) = HP™ (@) is surjective.

Let IF, (/) with [ € Z be the one-dimensional representations which are
e trivial if / is even, and
* associated to sign: Sym, - {£1} C IF; if / is odd.

Note that the restriction of the sign homomorphism to Z/ p is trivial. The relevant
special case of (5-7) can be made explicit:

(5-9) Hgy (Fp) = Fplt? '@ 1P Fp 1P~ C Hy, ,(Fp),
(5-10) HS*ymp (Fp(])) = t(p_l)/sz[lp_l] D Qt(p_3)/2Fp[tp_1] - Hz/p(FP)‘
See eg [50, Lemma 1.4]. Let C be a general complex of IF,—vector spaces, and consider

Sym,, acting on its tensor power C®? by permuting the factors with Koszul signs. In
this situation, there is a canonical equivariant diagonal map

(5-11) H (©) - Hsl’y’mp (C®2 T, (1))

which lifts the standard diagonal H! (€) — HP!(C®?); see eg [50, Lemma 1.1(iv)] for
its well-definedness. The equivariant diagonal is compatible with multiplication by
elements of ¥, but not additive. It is sometimes convenient to simplify the discussion
of (5-11) by restricting to the cyclic subgroup:

HE, (€97 @ T (1))

(5-12) y [

I
H*(€) ——— Hy, (C®P)
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By explicit computation in (5-5), one sees that the equivariant diagonal for Z/ p
becomes additive after multiplying with z. It follows that (5-11) becomes additive after
multiplying with 171, since that lies in the subgroup (5-9).

5b Cohen operations

Let € be a complex of [F,—vector spaces, which has the structure of an algebra over
the [F,—coefficient version of the Fulton-MacPherson operad. Recall that the action of
Sym,, on FM,, is free. The associated Cohen operation is a map

(5-13) Cohy,: H'(C) — (H*(FM,/Sym,: F,(I)) ® H*(C))?',

defined as follows:

(5-11)

H' © HEL (€97 @ ,())
: operad structurel
|
‘ Hsf’y’mp (Hom(C_«(FM,), @) ® F 5 (1))
|
I
|
|
(5-14) | HSI;Im,, (Hom(C—«(FM,) ® F (/). €))
|
: Kiinneth
| Hom?! (HZ2"™ (FM p: F (1)), H*(©))
I
\L freeness of the action
H* (e) pl ! %
( H* (FM,,/Sym : F (1))) == Hom® (H_(FM,/Sym ; Fp (1)), H*(€))
p PP

On the middle lines, the Sym ,—action is trivial on the C—factor. Because their definition
involves (5-11), these operations are not expected to be additive. Note that we could also
have defined our operations using Z/ p, but of course, they would still lie in the subspace
H*(FM, /Sym,,; Fp (1)) C H*(FMp/(Z/ p); Fp). For computational purposes, let’s
spell out what happens when one decodes (5-14).

Lemma 5.1 Suppose we have an cycle ¢ € C of degree [. Then ¢®? € C®? js a cycle
which is Sym,,~invariant up to an ¥, (/)~twist, and which therefore represents a class in
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HS*ymp (C®P @ F,(1)). Similarly, suppose that we have a chain B € Cy(FM,; F,) with
the property that 9B goes to zero in C«(FMp) Qsym, Fp (/). Such a chain represents
a class [B] € H«(FMp /Sym;Fp(/)). As a consequence of the properties of B and c,
the image of B ® c¢®” under the operad action is a cycle in C. That cycle represents the

image of [c] under (5-13), paired with [B].

The structure of Cohen operations was determined in [14, Theorems 5.2 and 5.3]. The
group relevant for operations on the even-degree cohomology of € is

F, ifx=0,1
5-15 H*(FM,/Sym,,; Fp) = ¢ 7 o
©-15) (FMp /Sym,:Ep) {0 otherwise.
For x = 0, that just recovers the p—fold power for the product that is part of the
Gerstenhaber algebra structure on H*(C). If we suppose that p > 2, the operation
obtained from the * = 1 group can again be described as part of the Gerstenhaber

structure, as x > [x, x]x? 2. The twisted counterpart is more interesting:

F, ifx=p—1, p—2,
5-16 H*(FM,,/Sym,,; Fy (1)) = { 7
(5-16) (FMp /Sym,: IFp (1)) {O otherwise.

Moreover, still as part of [14, Theorem 5.3], the pullback map
(5-17) Hs*ymp (Fp(1)) = H*(BSymp; Fp(1)) — H*(FMP/Symp; Fp(1))

is onto. Therefore, the groups (5-16) can be thought of as generated by 1(P=1/2 gpnq
01(P=3)/2 the lowest-degree generators in (5-10). Note that for p > 2, 1(P=1/2 ig the
image of ¢(P=3)/2 ynder the Bockstein .

5S¢ Quantum Steenrod operations

The same idea works for any operad, and in particular, Deligne—-Mumford spaces.
Concretely, this means that we consider the action of Sym, on DM, which keeps
the marked point zq fixed, and permutes (zy,...,zp). Given an algebra C over the
[Fp—coefficient Deligne-Mumford operad, one gets operations analogous to (5-13),

(5-18) H'(©) — (H*(©) ® Hy,y, (DM,:F, (1))

In principle, the same caveat as in Section 4f applies, which means that we should
replace DM, by a homotopy equivalent space (4-63). However, that makes no difference
for the present discussion, since only the equivariant cohomology of the space will be
involved.
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Unfortunately, the equivariant mod p cohomology of Deligne—-Mumford space is not
known (to this author, at least), but there are simplified versions of this construction
which are easier to understand. Because p is assumed to be prime, the Sym ,—action
on DM,, has a unique orbit O, with isotropy subgroups isomorphic to Z/ p (all other
isotropy subgroups have orders not divisible by p). For concreteness, we just look at
one specific point ¢ € O,, whose isotropy subgroup is the standard cyclic subgroup
Z[p C Symy:

(5-19) o= (C =C =C U{oo}, zg = o0, Zk=€27“/jlk/p fork=1,...,p).

Lemma 5.2 Restriction to ¢ € O, yields isomorphisms

(5-20) H¢

Sm, (OpiFp(1) — H, (0p:Fp) — Hy | (0:F,) = H, (Fp).

~

Proof This is elementary: the underlying map of Borel constructions, obtained by
composing

(5-21) ESym, xz/p ¢ < ESym, Xz, Op = ESym,, Xsym, Op,

is a homeomorphism. Moreover, the local system on ESym,, Xsym, Op associated to
Fp(1) is canonically trivial. |

Quantum Steenrod operations are obtained by replacing DM, in (5-18) by its sub-
space Op. In view of Lemma 5.2, we can equivalently define them using the Z/ p—
equivariant cohomology of a point. Written in that way, they have the form

(5-22) QSty: H'(C) — (H*(©) ® Hy, ,(Fp)”".

Following our discussion of (5-11), we know that (5-22) becomes additive after multi-
plication with t7~!. Since that multiplication acts injectively on HE /p (Fp), one sees
that (5-22) is already additive.

As an intermediate object between the two spaces considered so far, take DM:, be
the moduli space of smooth genus-zero curves with p 4+ 1 marked points, or equiva-
lently (3-7), which is an open subset of DM,, containing O,. Similarly, let FM7 be the
configuration space (3-1), which is the interior of FM,, and hence homotopy equivalent
to the whole space. The forgetful map FM, — DM, restricts to a circle bundle
FM,, — DM,,.
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Lemma 5.3 Restriction to O, C DM° , together with Lemma 5.2, yields isomorphisms

(5-23) HS*ymp (DM,; [Fp) = Z/p(point; Fp).
forx < p—2,

5-24 HS (DM F 1)) =~

(5-24) Symp( (1) = { Z/p(pomt Fp) forx>p—2.

Moreover, the pullback map is an isomorphism

(5-25) Hs*ymp (DM;; Fp(1)) — Hs*ym(FM;; Fp(1)) for x=p—-2, p—1.
Proof Consider the Gysin sequence and its restriction to (5-19):

_>HS*ym2 (DM;; Fy (1)) — H, sym (DMS; Fp (1)) — H, Sym (FMS: Fp (1)) — ---

S

—t
— Hy 2(01Fp) ———— Hy , (0:Fp) ——— Hy, (S";Fp) —---

Over ¢, the fiber of the circle bundle FM1°7 — DM1°, can be identified with the repre-
sentation of Z/ p with weight —1. In other words, the S! in (5-26) carries the action
of Z/ p by clockwise rotation. The —¢ appearing in the sequence is the associated
equivariant Euler class. For / = 0, inspection of (5-15) shows that the rightmost | in
(5-26) is always an isomorphism. One can therefore prove (5-23) by upwards induction
on degree.

For / = 1, we use a variant of the same argument. The Gysin sequence and (5-16)

imply that
527 HE, (DM2:Fp(1)) = | forx<p-2,
( - ) Symp( D’ P( )) = Sym (FMO,FP(I)) f0r % — p— 2
Let’s look at the first nontrivial degree, and the maps
2 pullback 2 restriction -2
(5-28) Hg,  (point: Fp (1)) —— Hsf’ym (DM, Fy(1)) —— H]gp (0;Fp).

From (5-27) and (5-17), it follows that the first map is an isomorphism. The composition
of the two maps is just (5-7), hence an isomorphism. It follows that the second map
must be an isomorphism as well, which is part of (5-24). On the other hand, since the
Sym,,—action has isotropy groups of order coprime to p outside Op,

(5-29) H,y, (DM, Opi Fp(1)) 2 H* (DM /Sym,,, 0, /Sym,,; Fp(1)),

and the right-hand side vanishes in high degrees. From that and Lemma 5.2, one sees

that the restriction map Hg,  (DM,;Fy(1)) — H; Z/p (point; IF) is an isomorphism

Sym
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in high degrees. By downward induction on degree, using (5-16) and (5-26), one
obtains the degree > p — 1 part of (5-24). From (5-24), it also follows that the map
HSpyr_nf, (DMS; Fp(1)) — HSpymp (DM; Fp (1)) in the top row of (5-26) is an isomorphism,
which then implies (5-25) in degree p — 1; the degree p — 2 part of the same statement

has been derived before, in (5-27). O

As an immediate consequence, suppose that C is an algebra over the chain-level
Deligne-Mumford operad. Consider its induced structure as an algebra over the Fulton—
MacPherson operad. By definition, the associated operations (5-13) and (5-22) fit into
a commutative diagram

(H*(©) ® H*(EMS,/Sym,,; F,(1)))""

Cohen
(5-30) H!(€) —— (H*(©) ® H},,, (DM5:F, 0)”!

quantum Steenrod

(H*(©) ® Hy,,(Fp)”

If / is odd, then Lemma 5.3 shows that both vertical arrows are isomorphisms on the
degree p —2 or p — 1 cohomology groups of the moduli spaces. Those cohomology
groups are one-dimensional, and their generators can be identified with 0:(P=3)/2 and
1(P=1/2, respectively. To put it more succinctly:

Lemma 5.4 The Cohen and quantum Steenrod operations
(5-31) H'(€) > HP'%(@) forl oddandk = p—2ork =p—1

coincide.

6 Prime power maps

This section brings together the lines of thought from Sections 4 (formal group structure)
and 5 (cohomology operations). Our first task is to make part of the discussion
in Section 5b more concrete, by introducing an explicit cocycle which generates
HP1 (FMp/Sym,,; 5 (1)). By looking at the relation between that cocycle and the
map MWW, | — FM,, we obtain an abstract analogue of Theorem 1.9 in the
operadic context.
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6a A cocycle in unordered Fulton-MacPherson space

Take (3-5), modify it by rotation by i so as to put the resulting configurations on the
imaginary axis in C, and then compose that with projection to FM, /Sym,, (recall that
the Sym,,—action is free, so the quotient is again a smooth manifold with corners, or
topologically a manifold with boundary). The outcome is a submanifold (a copy of the
associahedron Sp)

(6-1) Z, CFM,/Sym,,

with dZ, C 9FM, /Sym,,. By definition, (6-1) has a preferred lift to FM, and therefore,
the local system IF, (1)| Z, has a canonical trivialization. Using that and the orientations
of S, and FM,,, we get a class

(6-2) [Zpl€ Hy—r(FM,/Sym,, 9FM,/Sym,: F, (1)) = HP~' (FM,/Sym,: F,(1)).

In terms of the previous computations (5-10) and (5-16), this can be expressed as
follows:

Lemma 6.1 For p = 2, (6-2) is the image of 6 = /2 under (5-17); for p > 2, it is
the image of

(6-3) (— 1)(p 1)/2( > )(17 /2 c gr— I(BSy Fp(1)).

Proof Let’s consider the more interesting case p > 2 first. Take the map
(6-4) Conf,(C) — R? /R = RP™!

which projects ordered configurations to their real part, and then quotients out by
the diagonal R subspace. This map is Sym,—equivariant, and the fiber at 0 is the
subspace Z, = R x Conf,(R) C Conf,(C) of configurations with common real part,
(zy=s+~—111,..., Zp =8+ «/—_llp). Let’s orient that by using the coordinates
(8,21, ...,1p) in this order. This differs from its orientation as a fiber of (6-4) by a
Koszul sign (—1)?®~1/2 = (—1)(P=1/2_ On the other hand, the fiber at 0 represents
the pullback via (6-4) of the equivariant Euler class of the Z/ p—representation R? /R.
From this and (10-5), we get

65) 1 Zp)= ()@ V2 (LZL) D2 ¢ g2 (Cony (C):Fp).

The corresponding relation must hold in Hg, L (Conf (C);Fp(1)) as well, since both
classes involved live in that group, and the map from there to Z/ p—equivariant co-
homology is injective. Note that Z p 1s the preimage of Z, under the quotient map
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Conf, (C) — FM,,. Moreover, inspection of (3-6) shows that the orientations of FM,,,
Zp and V4 p» we have used are compatible with that relation. Since the quotient map
is equivariant and a homotopy equivalence, (6-5) implies the corresponding property
for [Z,].

One could follow the same strategy for p = 2, but we can be even more explicit. The
generator of Hy(FM;/Sym,;7Z/2) = Z/?2 consists of a loop of configurations where
two points rotate around each other, and its image in H;(BSym,;Z/2) = Z/2 is
obviously nontrivial. On the other hand, that loop intersects Z, transversally at exactly
one point, which proves the desired statement. O

6b A cycle in unordered Fulton-MacPherson space

Consider the space MWW, with d colors, denoted here by MWW/ for the sake
of brevity. As a special case of (3-11), its codimension-one boundary faces are of the
form

T
(6-6) MWW, x---x MWW x S, 20 MWW,

there is one such face for each decomposition of {1,...,d} into r > 2 nonempty
subsets (1, ..., I,) with d = |I|. In describing the boundary faces, we have used the
identifications (3-18). Suppose that we choose maps (3-13) so as to be compatible with
(3-18), as in Section 4e. Consider two decompositions (1, ..., I;) and (71, e, fd),
which correspond to the same ordered partition dy, = || = |f |- Then, the associated
maps (6-6) and (3-13) fit into a commutative diagram

Tr,....1r Ty dr

MWW, 1 MWW, x - x MWW, X S, ——— 5 MWW,

(6-7) l l
011 Iy 071 Tr

FMy e FM,

Here, oy,,...1, € Symy is the unique permutation which maps {1,...,d;} order-

r

preservingly to Iy, {d; + 1,...,d; + d,} order-preservingly to I,, and so on; and
correspondingly for oF ...L Suppose that we choose fundamental chains to be also
compatible with (3-18). Then, (4-24) simplifies to

6-8)  IMWWql= > £Tp 1 «(MWWg]x - x [MWW,4 ] % [S]).

Thinking of the homology of FM,/Sym,, as in Lemma 5.1, we get:
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Lemma 6.2 Suppose that d = p is prime. Then, the image of [MWW p| under
(3-13) is a chain, denoted here by B, € Cx(FM;F,), with the property that 0B,
goes to zero in Cx(FMp;Fp) ®sym, Fp(1). Therefore, it represents a class [Bp] in
Hy 1 (FM, /Sym,: Fp(1)).

Proof Consider two codimension-one boundary faces as in (6-7). The resulting
chains in FMy differ by applying the permutation o7 ..T. 01_11 I Hence, when
mapped to C«x(FMy) ®sym, Fp(1), they differ by the sign of that permutation. On the
other hand, their entries in (6-8) differ by the same sign. When computing 9B, in
C«(FMp) ®sym, [Fp (1), the two kinds of signs cancel, which means that the contributions
are the same. Now, the cyclic group Z/ p C Sym,, acts freely on ordered decompositions
corresponding to the same ordered partition, and this provides the required cancellation

mod p for the terms of 0B,. a

Lemma 6.3 The canonical pairing between the cohomology class of (6-2) and the
homology class from Lemma 6.2 is [Z,] - [Bp] = (—=1)PP=1/2,

Proof We think of this Poincaré-dually as an intersection number. The relevant
cycles intersect at exactly one point of FM,,, which is a configuration (z;;...;zp) with
re(zy) =---=re(zg) =0 and im(zy) <--- <im(zy). The tangent space of Z; C FMy
at that point can be thought of as keeping (z1, z») fixed, and moving (z3,...,z4)
infinitesimally in the imaginary direction. The tangent space to the image of MWW,
at the same point consists of keeping z; fixed, but moving (z3, ..., z4) inﬁnitesimallgf
in the real direction. Note that positive horizontal motion of z, yields a clockwise
motion of the angular component of z, — z;. This observation, when combined with
standard Koszul signs, yields the desired local intersection number. |

To see the implications of Lemmas 6.1 and 6.3, note that, by the dual of (5-16)
and (5-17),

(6-9) Hpy_1(FM,/Sym,,; Fy (1)) = Hp_1 (BSym,; Fp(1)) = Fp.

In those terms, what we have shown is:

Lemma 6.4 For p = 2, the homology class of the cycle from Lemma 6.2 is the unique
nontrivial element in (6-9). For p > 2, it is

(51

times the standard generator (dual to ((P=1/ 2),
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Take [¢] € H°¥(C) and our B, and consider the image of B, ® ¢®” under the operad
action. This defines a map H°%(C) — H°Y(@), which by Lemma 5.1 is a certain
component of the Cohen operation applied to [c]. Lemma 6.4 tells us exactly what it is:

the 1/2 (or 6) component of (5-14) if p =2,
(6-10)

1371
(pTl,) times the (?~1/2_component of (5-14) if p > 2.

Lemma 4.18 shows that this is the leading order term of Hg (y,...,y) for a Maurer—
Cartan element y = gc + O(¢?), and Corollary 4.24 identifies that with the p—fold
product of y under our formal group law. The consequence, under the assumption of
homological unitality inherited from the proof of Proposition 4.20, is:

Theorem 6.5 Take the group law » on MC(C; ¢Fp[gq]/qP*"). The p™ power map for
that group fits into a commutative diagram like (1-13), with the operation (6-10) at the
bottom.

To conclude our discussion, note that if the operad structure is induced from one over
Deligne—-Mumford spaces, as in (4-64), then the relevant operation (6-10) can also be
written as a quantum Steenrod operation, by Lemma 5.4.

7 Constructions using pseudoholomorphic curves

We will now translate the previous arguments into more specifically symplectic terms.
The choice of singular chains on parameter spaces, and its application to a general
operadic structure, is replaced by a choice of perturbations which make the moduli
spaces regular, followed by counting-of-solutions to extract the algebraic operations. For
technical convenience, we use Hamiltonian Floer theory (with a small time-independent
Hamiltonian) as a model for cochains on our symplectic manifold. Correspondingly,
all the operations are defined using inhomogeneous Cauchy—Riemann equations on
punctured surfaces. This makes no difference with respect to Theorem 1.9, since the
Floer-theoretic version of quantum Steenrod operations agrees with that defined using
ordinary pseudoholomorphic curves (for p = 2, see [75]; the same strategy works for
general p).

7a Floer-theoretic setup

Let (X, wy) be a closed symplectic manifold, which is monotone (1-3). We fix a
C?—small Morse function H € C*® (X, R), with its Hamiltonian vector field Z . We
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also fix a compatible almost complex structure J, and the associated metric gy. We
require:

Properties 7.1 (i) All spaces of Morse flow lines for (H, gy) are regular.

(ii) All one-periodic orbits of Z g are constant, hence critical points of H. Moreover,
the linearized flow at each such point x is nondegenerate for all times ¢ € (0, 1],
which implies that the Conley—Zehnder index is equal to the Morse index p(x).

(iii) No J-holomorphic sphere v with ¢ (v) = 1 passes through a critical point of H
or intersects an isolated Morse flow line. Here, ¢ (v) is the usual shorthand for
c1(X) integrated over [v] € Hy(X).

Consider the autonomous Floer equation, where as usual .S I—R /7.

uwRxS'— X,
(7-1) dsu+ J(Ou—Zg) =0,

limg 100 u(s,t) = x4,

where the limits x4 are critical points of H. This equation has an (Rx.S!)-symmetry
by translation in both directions. For S'—invariant solutions, meaning /—independent
maps u = u(s), it reduces to the negative gradient flow equation du/ds 4+ Vg, H = 0.
Denote by D, the linearized operator at a solution of (7-1). Its Fredholm index can be
computed as

(7-2) index(Dy) = p(x-) — p(x4) + 2¢1(u),

where in the last term, we have extended u to (R x S!) U {f00} = S?, the two-point
compactification. As a consequence of transversality results in [33; 20] (see in particular
[33, Theorem 7.3] and [20, Theorem 7.4]), we may further require:

Properties 7.2 (i) All solutions of Floer’s equation with index(D,) < 1 are inde-
pendent of . Concretely, there are none with negative index; the only ones with
index zero are constant; and those with index(D,) = 1 are isolated Morse flow
lines for (H, gy).

(ii) For the last-mentioned u, all solutions of D,& = 0 are independent of ¢, hence
lie in the kernel of the corresponding linearized operator from Morse theory.
In view of Properties 7.1(i) and (ii), this implies that such Floer solutions are
regular.
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Define C to be the standard Morse complex for (H, g y), meaning that
(7-3) C =P Zu[-nx)
X

where Z, is the orientation line (the rank-one free abelian group whose two generators
correspond to orientations of the descending manifold of x), with a differential de that
counts isolated gradient flow lines. When considered as a Z /2—graded space, this is
equal to the Floer complex of (H, J), thanks to the properties above. Our conventions
are cohomological, meaning that with notation as in (7-1), de takes “x4 to x_".

7b Operations

Take C = CP! with marked points zy = oo and zy, .. ., zz € C. Consider the resulting
punctured surface,

(7-4) C=C\{z0,....24}=C\{z1,....z4}
An inhomogeneous term v¢ is a (0, 1)-form on C with values on vector fields on X:
(7-5) ve € Q¥N(C,C®(X, TX)) = C%®(C x X,Homc (TC, TX)),

where the (0, 1) part is taken with respect to J. We require that our inhomogeneous
terms should have a special structure near the marked points:

(7-6) (ZH ®re(dlog(z —zx) /2w \/—1))0’1 near z; for k > 0,
- C =
(ZH ®re(d log(z — éc)/2nv—1))o’l near zo = o0,

where ¢ € C is an auxiliary datum that we consider as part of vc. In cylindrical
coordinates
(7-7) Zx+exp(—2m(s++/—1t))  near z; for k > 0, where (s,7) € RZ%x S,

- z =

Ec+exp(—2m(s++/—1t)) near zy = oo, where (s,7) € RSOx S,
what (7-6) says is vc = (Zg ® d)®!. Consider the inhomogeneous Cauchy—Riemann
equation
u:C - X,

(7-8) u = ve (u),

limz—z, u(z) = xg,

where the limits x; are again critical points of H. When written in coordinates
(7-7) near the marked points, (7-8) reduces to (7-1), explaining why this convergence
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rescaled version of C,

)

Figure 15: Gluing punctured planes equipped with inhomogeneous terms,
as in (7-12). The shaded regions are where the inhomogeneous term on the
glued surface is prescribed.

condition makes sense. The linearization of (7-8) has
d

(7-9) index (D) = pu(x0) — Y _ plx)) + 2¢1 (u).

j=1
We will not explain the compactness and transversality theory for moduli spaces of
solutions of (7-8), both being standard (the first due to monotonicity, the second
because we have complete freedom in choosing v¢c on a compact part of C). For a
single surface C and a generic choice of v, counting solutions of (7-8) will give rise
to a chain map €®¢ — @ which preserves the Z /2—degree (and which represents the
d—fold pair-of-pants product).

We need to review briefly the gluing process for surfaces, to see how it fits in with
inhomogeneous terms. Suppose that we have two surfaces Cy = C \ {zx 1,...,Zk,q, }
for k = 1,2, which also come with inhomogeneous terms vc, , and in particular
éc, € C. Fix some 0 <i < dj. The gluing process produces a family of surfaces
C,=C\{zy,1,....2) 4}, where d = d; + d, — 1, depending on a sufficiently small
parameter A > 0. Namely, take the affine transformation

(7-10) 61 (2) = Mz —Ec,) + 21415
then
21,k for k <1,
(7-11) Dok =3¢ (zani) fori <k <i+dy,

Zl,k—d2+1 fOFk>i+d2.
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We want to equip the glued surfaces with inhomogeneous terms v, which are smoothly
dependent on A and have the following property. Fix some sufficiently small » > 0 and
large R > 0. First,

Ve, = V¢, where |z| > Rand |z —z; g| SrforO <k #i+1,
(7-12) Ve, = Pr xVc, Where AR <|z—zy ;1| =7,

$yvc, =ve,  where |z —z; ;| <r forany k > 0.

The upshot is that vc, is completely prescribed in certain (partly A—dependent) neigh-
borhoods of the marked points on Cj, as well as on an annular “gluing region”; see
Figure 15. On each such region, vc, is given by a similar expression as in (7-6). In
particular, the middle line of (7-12) really says that

log(z—z1,i41)

2w A/—1

log(z—&¢,) ))0’1 —1
N where R<|z—&c,| <A™ 1

Additionally, there are asymptotic conditions as A — 0:

0,1
(7-13) Ve, = (ZH ®re(d )) where AR < |z—zy ;41| =7

= Pivc, = (ZH ®re(d

(7-14) » On|z—zy ;41| > r, the family v¢, can be smoothly extended to A = 0, by
setting that extension equal to vc,.

* On |z| < R, the family ¢;'vc, can be smoothly extended to A = 0, by setting
that extension equal to vc,.

Given that, it makes sense for a sequence of solutions of (7-8) on Cj, , with A — 0,
to converge to a “broken solution” which consists of corresponding solutions on C;
and Cj; and conversely, the gluing process for broken solutions applies — as used,
for instance, in proving associativity of the pair-of-pants product. Again, we omit the
details, which are standard. Thanks to our use of an autonomous Hamiltonian, there
is also a version where C is rotated before being glued in, meaning that we use a
small A € C* (inserting absolute values wherever the size of A appears in the formulae
above).

A process such as (7-11), in which the A—dependence of the marked points follows a
specific pattern, is simple to describe, but far more rigid than the analytic arguments
require. Here is a more appropriate formulation, where the first part describes the
ingredient for compactness arguments, and the second part addresses gluing of solutions.

Definition 7.3 Take C; and C, as before. Choose arbitrary families of surfaces with
inhomogeneous terms Cj , and C; ,, depending on r € R" for some m, and which
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reduce to the given ones for r = 0. Apply the previously described notion of gluing in
a parametrized way, which means that we have a family C, ,.

(i) Suppose that Cy is a sequence of surfaces with inhomogeneous terms v¢, , which
for k > 0 are isomorphic to Cy, ,, for A > 0 and (Ag,r%) — (0,0). We then
say that the Cj degenerate to (Cy, Cy).

(ii) Suppose that Cy is a smooth family of surfaces with inhomogeneous terms v¢,,
depending on a parameter o > 0. Suppose that for small o, these are isomorphic
to Ci(0).r(0)> Where (A(0), (0)) satisfies (A(0),7(0)) = (0,0) and 1/(0) > 0.
We then say that the family C, is obtained by smoothing (Cy, Cs).

To clarify the notation, it might be useful to look slightly ahead to our first application.
When defining an Ao—structure, one deals with C; and C, which depend, respectively,
on moduli in Sy, \ 354, and Sg, \ S4,. In these terms, r is a local coordinate on
the product of those spaces, while A is the transverse coordinate to Sz, x Sz, C 0S4,
where d = d{ + d, — 1. As this example shows, our discussion has been limited to the
simplest process of gluing two surfaces together; a complete description would include
the generalization to arbitrarily many surfaces.

To round off the discussion of inhomogeneous terms, let’s mention an obvious gen-
eralization, which is to equip (7-4) with a family of compatible almost complex
structures (J;),ec which reduce to the given J outside a compact subset. When
defining the associated notion of inhomogeneous term, one uses those structures to
define the (0, 1) part, and similarly for (7-8). It is straightforward to extend the gluing
process to this situation. Usually, this generalization is not required, since the freedom
to choose v¢ is already enough to achieve transversality of moduli spaces. However,
there are situations such as the construction of continuation maps, where varying almost
complex structures necessarily occur (because one is trying to relate different choices
of J).

7c¢ The quantum A .,—structure

This is the most familiar application. Given (sq,...,$g) as in (3-1), we think of
them as complex points z; = sj, and then equip the resulting surface (7-4) with an
inhomogeneous term v, which should vary smoothly in dependence on the points,
and be invariant under the symmetries in (3-1); one can think of this as a fiberwise
inhomogeneous term on the universal family of surfaces over S; \ 9S;. Along the

Geometry & Topology, Volume 27 (2023)



Formal groups and quantum cohomology 3015

boundary of the moduli space, we want the family to extend along the lines indicated
in Definition 7.3(ii). Of course, on a boundary stratum of codimension k, one has
k components that are being glued together, and the definition should be adapted
accordingly. The outcome is a parametrized moduli space, which consist of points
of Sz \ 05, together with a solution of (7-8) on the associated surface. For generic
choices, these parametrized moduli spaces are regular. Moreover, they are oriented
relative to the orientation spaces at limit points, meaning that a choice of isomorphism
Zx, =Zfork=0,...,d,determines an orientation of the parametrized moduli spaces.
A signed count of points in the zero-dimensional moduli spaces, with auxiliary signs as
in (4-3), yields operations yfé for d > 2, which one combines with the Floer differential
ué = —dp to form the (Z/2—graded) quantum A —structure.

One can adapt the arguments from Section 4b to show that the quantum A4 ,—structure is,
in a suitable homotopical sense, independent of all choices, including the Floer differ-
ential. Suppose that we have (H, J) and (FI J ), leading to chain complexes (C, d¢)
and (é, d). For each of the two, we make the choices of inhomogeneous terms required
to build the Aso—structures, denoted by pe and ug. To relate them, we start by picking
a third version of the chain complex, denoted by (é, dy), based on some (PVI J ). Next,
we introduce maps

(7-15) gL 8P @ CRE®T - €[l - p—g],

with ¢>g’1’0 = —dj, which turn é[l] into an Ao—bimodule, with we acting on the left
and p5 on the right. This is analogous to (4-9), except that the conditions on ¢? 1.0 and
¢%14 which we imposed there are no longer satisfied. The geometric construction of
(7-15) involves another family of inhomogeneous terms over Sy \ 0S4, d = p+1+4.
Those terms are modeled on H near (zq,...,zp), on H near (zp+2+--..24), and on
H near the remaining points (2o, z,+1). Similarly, our surfaces carry varying families
of complex structures. The behavior under degeneration to d.S; follows the pattern
from Figure 12, with some components of the limit carrying the inhomogeneous terms
that define the two Ao—ring structures, and others, the 4,—bimodule structure; we
have represented this in a more geometric way in Figure 16.

At this point, we add continuation maps to the mix. These arise from the configuration
(zo = 00, z; = 0), meaning the surface C = C*. In our application, the behavior at z,
is always given by (IE/I, f), and that at z; by either (H, J) or (ITI, f). The outcome is

two chain maps
ve' Lovgl
(7-16) e——C+——~=C.
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Figure 16: The As,—bimodule operations (7-15). We show the behavior of
the inhomogeneous terms on a sample (codimension 5) boundary stratum, for

(p.q)=4,7).

Our sign conventions are nonstandard: on cohomology, ¥%! induces the canonical
isomorphism between Floer cohomology groups, whereas ¥ ! has the opposite sign.
Extending (7-16), we want to build operations

(7-17) yoter ®C® > C[l—p—yq] ford=p+q>0,

which unlike their counterparts in (4-12) are defined even if p or ¢ are zero, and
(that being taken into account) satisfy the same kind of relation (4-13). Geometri-
cally, the parameter space underlying (7-17) is no longer [0, 1] x S; as in Section 4b,
but instead Sy, where we think of having inserted an additional point s+, with
Sp < 8+ < Spt1,into (3-1). The orientation is that associated to ordered configurations
(S1,---,8p, 8. ..., Sp+q) multiplied by (—1)”. When forming the associated surface
(7-4), we do not equip it with a puncture corresponding to s+: the position of that
point just serves as an additional modular variable. The inhomogeneous terms and
almost complex structures are determined by (H, J) near zy, ..., zp; by (ITI J ) near
Zp41s--+Zp+q; and by H near Zo. In the limit as we approach a point of 9S4, the
screen containing s+ corresponds to a component surface which carries data underlying
(7-17), while the other components have data underlying the Aoo—ring structures or the
Aso—bimodule structure.

Example 7.4 Consider the cases where p 4+ g = 2. The algebraic relations are
U3 (ders )= (er: ¥ (2)

(7-18) —¢g’1’1(¢é’0(cl); 52)—¢é’1’0(cl; ¢g’1(52)) = (terms involving differentials).
Vg 3@, 295 (Vg @) 8)
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Figure 17: The construction of the maps (7-17), in the case from Example 7.5.
The cross marks the additional point (not a puncture of the associated surface).

On the cohomology level, consequence is that if the classes [cx] and [¢%] correspond
to each other under canonical isomorphisms, meaning that [wé’o(ck)] = —[wg )1 )],
then their products inherit the same property:

(7-19) [ (uEler )l = (o5 (v P ()] = g (er: vg ' (@))]
=[pg " (Y () D) = —lg M (¥ @0): @)
= —vg 3@ ).

Example 7.5 For (p,q) = (1, 2), the algebraic relation is

(7-20) —¢3 2 (W5 (€1): 0. 8) =g (U (i @) @) =y (1 vy (@2):8)
—¢5 (g (@.E)) + (DI ly s e w3 @, 7))

= (terms involving differentials).

Figure 17 shows the relevant degenerations, corresponding to the boundary faces of Sy.

Using (7-15) and (7-17), we define an A4 s —structure on
(7-21) H=C®Zu)® CoZi)® (C® Zv),

where the symbols u, # and v have degrees as in (2-3). The definition is a modified
version of (4-20). The differential is

wicle®@u) = pg©) @u+ (=Hlly () ®v,
(7-22) @@ = pg@ @+ (DY @ @ v.

uiE®v) = ¢ (@ @,
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and we similarly change the higher A4.c—operations in the case when the input consists
of only terms from either C or C:

da
pier®@u, ... ca®u) = pg(er,....ca)@u+DFYL ey, . ) ®v,
a2, d %, 0.d
uh (@ ®T,....5 28 = pd @, ... )@+ (DX Y2 @, ... . ) @v.

As before, the projection maps from (7-21) to € or Care compatible with 4 s—ring struc-
tures, and are chain homotopy equivalences. This implies the desired well-definedness
statement for the A o—structure, as in (4-23).

7d An alternative strategy for proving independence

The approach to well-definedness of the quantum A o—structure adopted above involves
additional families of Riemann surfaces, leading to the larger Ao—ring I, which serves
as an intermediate object. Alternatively, as we will now explain, one can enlarge the
target symplectic manifold.

Let’s start by looking at a toy model, namely the symplectic manifold S2.

(7-24) Choose (Hg2, Jg2) as in Section 7a, satisfying the following additional tech-
nical condition. At a local maximum or minimum of Hyg>, the Hessian is
J g2—invariant. This means that there are local Jg>—holomorphic coordinates
centered at that point, in which Hg2(y) = (constant) & |y|? + O(|y|®). When
choosing inhomogeneous terms, we also require that they be zero at the local
maxima and minima of Hygo>.

As a consequence of the condition on inhomogeneous terms, the constant map at a local
minimum or maximum will be a solution of (7-8). One can use a counting-of-zeros
argument for solutions of linear Cauchy—Riemann type operators on line bundles to
show that the constant maps at minima have injective linearizations, and hence (since
they have index 0) are regular. A similar argument, applied to (7-8) itself rather than
its linearization, shows the following:

Lemma7.6 (i) Let p € S? be a local maximum. For any solution of (7-8) on S2,
which is not constant equal to p, the homology class [u] € H,(S?) = Z satisfies

(7-25) [u] >#{1 <i <d:x;=p}+#u"'(p)}
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(i) Letp e S2 be a local minimum. For any solution of (7-8) on S2, with xg = D,
and which is not constant equal to p, we have

(7-26) [u] = 1+ #u""(p)}.

Take the graded abelian group obtained by using only critical points of Hg¢> which
have index < 1 as generators. We want to equip this with a version of the quantum A4 —
structure, which uses inhomogeneous terms as in (7-24), but only considers solutions
with degree [¢] = 0. The argument showing that this works consists of three steps.
First, Lemma 7.6(i) implies that for all solutions, one has [u] > 0. It follows that if we
consider a sequence of maps of degree zero which converges to a limit with several
pieces, then each piece must again have degree zero. Suppose that our original sequence
consisted of maps whose limits are critical points of index < 1. Our second point is that
then, no critical point of index 2 can appear in the limit, since it would cause one of the
pieces to have positive degree, again by Lemma 7.6(i). Thirdly, transversality of moduli
spaces is unproblematic except possibly for the constant solutions at local minima; but
we already know that such solutions are regular (in the ordinary sense of considering a
fixed C, and therefore in the parametrized sense as well). We want to point out two
properties of this Aso—structure: the maps involved stay away from the local maxima,
because of Lemma 7.6(i); and if « is a map that contributes to it, and whose limit xg is
a local minimum, the map must actually be constant, by Lemma 7.6(ii) and the degree
requirement.

Take a monotone symplectic manifold X'. For each minimum or maximum p of Hg>, we
choose a Morse function and almost complex structure on X, written as (Hy, ,, Jx,p)-
On the product X x S?2, we then proceed as follows.

(7-27) Take a Hamiltonian Hy g2 and almost complex structure Jy, 2, satisfying
our usual conditions, and with the following additional properties. In a local
J g2—holomorphic coordinate on S around a local minimum or maximum p,
we have Hy g2 = Hgo+ Hy, p+O(|y]?), and Jy 52 = J g2 xJx p+O(|y|?)
similarly. When we choose inhomogeneous terms, they should have the
property that, when restricted to X x {p}, they take values in vector fields
tangent to that submanifold.

As a consequence of this, we can have solutions of the associated equation (7-8) which
are contained in X x {p}. If p is a local minimum, then any such solution is regular in
X x S? if and only if it is regular inside X x {p}. The counterpart of Lemma 7.6 for
X x §2, proved by projecting to S? and arguing as before, is:
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Lemma 7.7 (i) Let p € S? be a local maximum. For any solution of (7-8) on
X x S2, which is not contained in X x{ p}, the homology class [u] € Hy(X x S?)
satisfies

(728)  [X]-ul=#{1<i<d:x;eXx{p}}+#u"" (X x{p})}.

(i) Let p € S2 be a local minimum. For any solution of (7-8) on X x S2, with
xo € X x{p}, and which is not contained in X x {p}, we have

(7-29) [(X]-[u] = 1+ #{u" " (X x {p})}.

For each local minimum p, we make choices of inhomogeneous terms which, building
on the previously chosen (Hy p, Jx, p), yield a quantum Axo—structure €. On X x S 2,
we then make corresponding choices, which restrict to the previous ones on X x {p} for
each local minimum p. When building the corresponding version of the Aso—structure
on X x S2, denoted by K, we use only those critical points of Hy g2 which do not lie
on X x {p} for alocal maximum p; and only maps u with [X]-[u] = 0. This works for
exactly the same reasons as in the previously considered toy model case. Moreover, the
following two properties hold: those maps that contribute avoid the subsets X x {p},
where p is a local maximum; and projection to the subgroup generated by critical
points in X x {p}, where p is a local minimum, is a map

(7-30) K6,

compatible with the 4.,—structure. At this point, we specialize to functions Hg> that
have exactly one local maximum, but possibly several local minima. By looking at
the Morse theory of Hy , g2, one sees that the projections (7-30) are chain homotopy
equivalence. By looking at those maps for two local minima, one relates the Aso—
structures €, for different p.

7e¢ The formal group structure

Take the parameter spaces (3-9). We think of the interior of this space as parametrizing
a family of punctured planes, which degenerate along the boundary. This is essentially
constructed as in (3-13), but with two differences. First of all, we do include the spaces
MWWy . 1....0, to which we associate a once-punctured plane (a cylinder) with an
inhomogeneous term, which is that defining the Floer differential. Since we are not
dividing by translation, the only isolated point in the associated moduli space is a
stationary solution at a critical point of the Hamiltonian, and that is the geometric origin
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of (4-28). Hence, to each “screen” in the limit corresponds a surface (unlike our original
construction (3-13), where some of the screens were collapsed). The second difference
is that we need everything to depend smoothly on parameters (the original construction
was purely topological, hence allowed us to get away with continuity). More precisely,
near the codimension-one boundary points of MWW, ;s , we really need a situation
as in Definition 7.3(ii); but along the codimension > 1 points, all we need is the situation
from Definition 7.3(i), since those points only appear in compactness arguments. In
any case, given the structure of MWW, 5 as a smooth manifold with generalized
corners, it is unproblematic to define the required notion of smoothness, and to construct
families of inhomogeneous terms satisfying it (by induction on dimension). The
outcome are operations as in (4-26), with the difference that (4-28) is now a geometric
statement rather than a separately imposed condition. One can therefore define (4-32)
for the quantum A —structure, and Lemmas 4.11-4.15 carry over immediately. What’s
important for applications is that we can, if desired, choose the inhomogeneous terms
to be compatible with forgetting any color that has no marked points belonging to it;
and therefore, to make our operations satisfy (4-54).

Well-definedness of (4-32) can be proved by a combination of the approaches from
Sections 4d and 7c. Namely, suppose first that we have A —rtings Cy, ..., C;, each
defined by a separate choice of function and other data. One can generalize (4-26) to
obtain a map

(7-31) MC(Cy; N) x---xMC(Cy; N) = MC(Cqy; N).

Now, we want to change the As—structure on €y and one of the Cx . The new
versions are related to the old ones by larger Aoo—rings Ho and Hy 4 1, constructed as
in the uniqueness argument from Section 7c. The main tool in analyzing this change is
an analogue of the middle — in (4-42), which is a map

(7-32) MC(C;;N) x -+ xMC(Hgy1; N) x---xMC(Cp; N) - MC(Hp; N).

The definition of this involves two kinds of parameter spaces. The first ones are
again the MWW, ;. but where we single out one of the dj points of color
k + 1, as in the definition of (7-15), for special treatment when constructing the
inhomogeneous terms and almost complex structures. The second class of parameter
spaces are MWWy, 4. +1,....d,» Which have an additional point of color k + 1
(more precisely, there is one such space for every possible position of the additional
point with respect to the other d ). That point will not correspond to a puncture of the
resulting Riemann surface; we just use its position as a modular variable, following the
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Figure 18: The construction from Example 7.8.

idea from (7-17). Of course, the additional marked point can in principle split off by
itself into a mid-scale screen; when constructing the Riemann surface, that screen will
not correspond to a component. We omit the details entirely.

Example 7.8 The simplest example of a parameter space of the second kind is
MWW, ., where the additional marked point could be placed either on the left
or right. The context in this case is that we have two versions of (7-21), namely
Hr = Cru & ékﬂ <) ékv for k = 0,1. As part of their Ay —structure, we have
continuation maps Cp — ék. On the other hand, as part of the r = 1 case of (7-31),
we have constructed continuation maps C; — Cy, él — éo, él — éo. The two
versions of our moduli space then yield chain homotopies between compositions of
those continuation maps, drawn as dashed arrows here:

¢ —Co C; — €
AN N
(7-33) l N l l hN l
> e 2 N
€ —Co C; —— Co

The geometry behind the construction on the left is shown schematically in Figure 18.

Remark 7.9 Alternatively, one could prove the well-definedness of the maps TIj
using the approach from Section 7d, which means defining a corresponding structure
using X x S2, which comes with quasi-isomorphic projections to different copies of X

The spaces SS from (3-27), while more complicated, show the same geometric behavior
as MWW. Hence, the same kind of argument allows the proof of Proposition 4.20
to carry over, which completes our discussion of Proposition 1.5. There is a minor
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point which may be worth mentioning: in Section 3f, we added two marked points
in the definition of the map (3-31), whose purpose was to break the symmetries of
Fulton—-MacPherson space. In a pseudoholomorphic curve context, we treat the extra
points as in the well-definedness arguments above, meaning that their position gives
additional modular variables on which the inhomogeneous term depends.

7f Commutativity

Adapting the arguments from Section 4f, we will now prove Proposition 1.6. This is
the first time that one of the features of our Floer-theoretic setup, namely the time-
independence of the Hamiltonians and almost complex structures, and the resulting
S1_symmetry of (7-1), will be used in a substantial manner.

Throughout the following discussion, it is assumed that choices of inhomogeneous
terms have been made so as to satisfy (4-54). Let’s start with the moduli space
underlying ,8(131 It involves a family of surfaces depending on one parameter, which
we denote by Cs = C \ {z1(s), z2(s)} for s € R. One can assume that this family is
symmetric outside a compact parameter range, in the sense that for some S > 0,

(7-34) (21(=9), 22(=9)) = (22(5). 21 (s)) if |s[ =S,

and that the inhomogeneous terms are chosen compatibly with this symmetry. As a
consequence, there is partial cancellation between the two moduli spaces that enter
into (4-61), with the parts having |s| > S contributing only canceling pairs of points.
One can therefore say that (4-61) is computed by a single parametrized moduli space,
whose compact parameter space is a circle, obtained by gluing together the endpoints
of two intervals [—S, S]. If we parametrize this circle by r € R/27Z compatibly with
its orientation, then that family of surfaces can be deformed to the simple form

(7-35) (z1(r), zp(r)) = (exp(r\/—_l), —exp(r «/—_1))

Up to rotation, this is independent of », and (it is here that we use time-independence)
one can choose an inhomogeneous term to be compatible with that; in which case, the
moduli space cannot have any isolated points, hence contributes zero. The deformation
which ends up with (7-35), which can be thought as a family of surfaces parametrized
by a compact two-dimensional disc, therefore gives rise to a nullhomotopy (4-65). As
in our previous discussion of (4-60), this implies commutativity of the formal group
structure mod N, which is the first part of Proposition 1.6.
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Figure 19: The geometry underlying (7-36): ,Bé’l(cl,cz; c3), top left, and
B é’z((g; c1; ¢2), bottom left. Since part of the structure agrees, we can remove
the hatched regions and join the rest together, with the outcome shown on
the right after removing the “trivial screens” that have only one marked point.
The pairs of points drawn as lying on a circle rotate around each other once
in dependence on the parameters.

Next, let’s look at part of the formula (4-69),
(7-36) Bo' (1. caies) — (—nllesllenl+leaD gi2 iy ).

The underlying moduli spaces are two copies of the octagon from Figure 5. Five
of the boundary sides of those octagons match up in pairs which carry the same
inhomogeneous term. We may assume that this extends to a neighborhood of those
sides. As far as counting points in zero-dimensional moduli spaces is concerned, we can
then cut out suitably matching neighborhoods and glue the rest together. The outcome
of this process, shown in Figure 19, is that our expression can be computed by a single
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moduli space parametrized by a compact pair-of-pants surface. Moreover, along each
boundary circle, we find that one of the components is a copy of the family of surfaces
underlying (4-61), and which can be therefore filled in with a family parametrized by a
disc. As a consequence, we find that the operation K é ' defined in (4-69) is given by
a family of surfaces parametrized by S2. One can further deform that family so that
degenerations happen only along three points (instead of the previous three discs) in
the parameter space.

The outcome is that we have a family of four-punctured spheres, parametrized by S2.
Inspection of Figure 19 shows that this family has degree 1 in H,(DM3) = Z. This is
a Floer-theoretic implementation of the four-pointed Gromov—Witten invariant, which
we can relate to the standard version by a gluing argument as in [58]. As a consequence,
identifying H*(C) = H*(X; Z), we have that on the cohomology level,

(7-37) / X0 Ké’l(xl,xz;xg,) = (X0, X1,X2,X3)4, where x; € H*(X;Z).
X

(See (9-1) for our notational conventions in Gromov—Witten theory.) For the par-
ticular case of Ké’l (x1,x1;x2), where x; has odd degree, the graded symmetry of
Gromov—Witten invariants means that (xg, X1, X1, X2)4 = 0. Assuming additionally
that H*(X;Z) is torsion-free, it follows that Ké’l (x1,x1;X) itself is zero. As in
Proposition 4.19, this and the corresponding argument for K!-2 imply the desired
commutativity statement modulo N*.

7¢ The p™ power map

We now carry over the required arguments from Sections 5 and 6, leading to the proof
of Theorem 1.9 as the Floer-theoretic analogue of Theorem 6.5.

We can bring Floer-theoretic constructions closer to the abstract operadic framework,
by making a generic choice of inhomogeneous terms which are parametrized by FM,;.
In the interior, this means that for every complex configuration (zy, ..., zgz) we choose
an inhomogeneous term v¢ on the resulting surface (7-4), in a way which is compatible
with the action of the automorphisms which appear in (3-3). We then ask that this
should extend to the “screens” associated to points in dFMy, in a way which enables
compactness arguments for boundary strata of any dimension, see Definition 7.3(i), and
gluing for codimension-one boundary strata, see Definition 7.3(ii). We also ask that
our choices should be Sym —equivariant (recall that the symmetric group acts freely
on FMy).
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Suppose that we have maps (3-13) based on smooth functions (3-15). By pull-
back, our previous choice induces a family of inhomogeneous terms parametrized
,,,,, d, - For a point in IMWW 4,
(3-13) correspond to cylindrical components C = C \ {z;}, which we equip with the
standard inhomogeneous term ve = (Z g ®re(dlog(z—z1)/2m~/—1 ))0’1. Moreover,
a generic choice of (3-13) ensures transversality for the parametrized moduli spaces

d,» any vertices that are collapsed under

.....

associated to all MWW, and we may then use that choice to build the operations
,Bg“'"’d". Additionally, we may assume that the maps (3-13) are chosen so that (3-19)

holds, which means that the resulting operations satisfy (4-54).

We will be specifically interested in MWW p, in the notation from Section 6b, and the
associated operation ﬁg = ,Bé""’l, with p prime. At this point, we fix an odd-degree
cocycle

(7-38) ceCRFp,

which will remain the same throughout the subsequent discussion. Applying ﬁg to p
copies of ¢ yields another such cocycle, hence a cohomology class

(7-39) [BE(c;...;0) € HOY(C; Tp).

The underlying geometric phenomenon was explained in Section 6b: the codimension-
one boundary faces of MWW , correspond to nontrivial decompositions of {1,..., p}
into nonempty subsets ([, . o ) for any r > 2. If we act by an element of Z/ p on
such a decomposition, we get a new decomposition (f Loeees 7,), and the corresponding
boundary faces, when mapped to FM,,, are related by the action of a suitable element
of Sym_; see (6-7). The cohomology class in (7-39) is independent of our choice of
inhomogeneous terms.

Our first point is that we can realize (7-39) using a family of surfaces without de-
generations. To do that, let’s choose a Sym,,—equivariant isotopy that pushes Fulton—
MacPherson space into its interior,
¢r:FM, — FM,, with r €0, €],

(7-40) , R

$o =1id, ¢,(FMp) CFM,, = FM, \ 0FM,, for r > 0.
Write ¢, for the original map MWW , — FM,,. The perturbed version,
(7-41) p=¢rotp: MWW, —FM, \ 0FM, for some r >0,

will retain the same 7 / p—action on codimension-one boundary faces as ¢,. Going
back to the choice of inhomogeneous terms over FM,,, we want to also assume that the
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pullback of that family by (7-41) should lead to a regular parametrized moduli space.
Given that, from (7-41) for some r > 0 we get a new operation ﬂg, which again yields
a cohomology class

(7-42) [BE(c;...;0)] € HOY(C;Tp).

A similar construction, where one interpolates between ¢, and 7, shows that this
cohomology class agrees with (7-39). At this point, we no fonger need to compactify
configuration space: to define (7-42), one can use families of perturbation data which
are only defined on FM;’, (and still Sym,,—equivariant).

In the same vein as in (4-63), take
(7-43) DM, =DM x Ej.

where E is the interior of Fulton-MacPherson space for R, meaning point configu-
rations up to translation and rescaling. More precisely, we think of this as the direct
limit of the corresponding spaces in each finite-dimensional Euclidean space. There is
an embedding

(7-44) FMS, — DM,

which takes each point configuration to the pair formed by its quotient in Deligne—
Mumford space and its image in E;. In this context, classes in Hf e (DM;; Fp(1)) are
realized by smooth simplicial chains in (7-43), having IF,—coefficients, and quotiented
out by the relation that acting on a chain by some o € Sym,, is the same as multiplying
the chain with (—1)%2"(), Let’s write C3Y™» (DMS; F, (1)) for this chain complex.

Choose a family of inhomogeneous terms on the family of surfaces pulled back by the
projection DM; — DM}, and which is Symj,—equivariant. For every smooth map from
a simplex to DM, that family of inhomogeneous terms gives rise to a parametrized
moduli space. If that space is regular, we get an operation (C ® F,)®? — C ® [F),.
By adding up those operations with coefficients, we extend the construction to chains.
Let’s specialize to using p copies of our cocycle ¢ as input. Morally, this can be thought
of as giving rise to a Z/2—graded chain map

(7-45) C™ (DM Fy (1) — €I+ @ Ty,

The cautionary “morally” figures here because of the regularity condition for moduli
spaces, which makes it impossible to define such a map on the entire chain complex.
However, any argument involving a relation between specific chains, such as the one we
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are about to give, only involves finitely many terms, and one can assume that the chains
involved are embedded into the infinite-dimensional space DM;. One can a posteriori
make a choice of perturbation terms over @M; which makes the finitely many spaces
involved regular. Hence, for all practical purposes, the consequence is the same as if
we had a map (7-45). In particular, we do get a map

(7-46) H™ (DM Fp (1)) — HPH*(C:Fp).

One can think of (7-42) as an instance of this general construction, by smoothly
triangulating the spaces MWW ,,, in a way which is compatible with the Z/ p—action
on codimension-one boundaryistrata, and then using the embedding (7-44). Using
Lemma 5.3, one identifies the relevant homology class with that underlying the (p=1)/2
coefficient of the quantum Steenrod operation, up to a coefficient which is spelled out
in Lemma 6.4. This equality, applied to (7-46), implies Theorem 1.9.

8 An alternative approach

The approach outlined in this section was pointed out to the author by Fukaya. It
is an application of the results from [22] (taking the Lagrangian correspondence to
be the diagonal, but with a general bounding cochain, which is our Maurer—Cartan
element). The basic building blocks are parameter spaces from [47], which are close
cousins of Stasheff associahedra (and in particular, are manifolds with corners in the
classical sense). One can use them to define the composition law on Maurer—Cartan
elements, a little indirectly, following [22, Theorem 1.7]; and to prove its associativity,
following [22, Theorem 1.8]. On the other hand, it’s not clear that there is a easier route
from there to Theorem 1.9, which is one reason why we have not given first billing
to this approach. Because of its complementary nature, our discussion will be quite
sparse: not only are proofs omitted, we won’t even make the distinction between the
implementation of these arguments in an abstract operadic context (as in Section 4,
assuming homological unitality) or a concrete Floer-theoretic one (as in Section 7).

8a The moduli spaces

We start with basically the same configuration space as in (3-10), except that the
ordering of points in the last color is reversed:

S <00 <Ska, fork <r,
(51,1 -+ St1,dys -+ 351+ Srd, ) "
Sr,1 >0 > Srd,
(8-1)

Sk ~ Sk + i for ;L € R}
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More importantly, we now consider a compactification of (8-1) which is smaller than
its counterpart from Section 3d. This compactification will be denoted by

(8-2) OQd,,..d,» Where r=2dy,....d, 20, d=dy+---+d, >0,

partly following the “quilted strips” terminology from [47]. The recursive structure of
boundary strata is expressed by maps

m
@3 []Cwestitvoitrx [T Sk Qo) Qd.....d, -

=1 vin T, v#vo,j
Here, Ty, ..., Ty, (for any m > 1) are trees of the following kind. In each 77}, denote
by vo,; the vertex closest to the root. Then, the incoming edges at that vertex should
carry one of r colors, and are ordered within their color. The parts of the tree lying
above v, ; have planar embeddings, and inherit a single color. The whole thing is
arranged, of course, so that the total number of leaves of each respective color add up to
(dy,...,dy). Geometrically, what happens is that as groups of points move to +o00, we
split them up into separate screens, which correspond to the Q factors in (8-3) (in the
terminology of Section 3d, these would be called mid-scale, since there is no rescaling
involved, just translation); but we do not keep track of the relative speeds at which
this divergence happens (no large-scale screens). The remaining factors in (8-3) are
small-scale screens, which describe the limit of points converging towards each other.
The image of (8-3) has codimension equal to the overall number of factors (vertices)
minus one. This is related to the fact that Q 4, .. 4, is a smooth manifold with corners.

Let’s map our points to radial half-lines in the punctured plane,
(8-4) Zki = exp(—sk,,- — @«/—1) e C*,

and add a marked point at 0 (the zj ; are ordered lexicographically, and the extra point
is inserted between the last two colors). This extends to a continuous map

(8-5) OQd,,...d. —> FMg41.

In terms more familiar from pseudoholomorphic curve theory, one can think of the
configurations (8-4) as lying on parallel lines on a cylinder. In the limit, this breaks
up into several cylinders, plus spheres (copies of C with a marked point at infinity,
and other marked points lying on the real line) attached to them; see Figures 20(i) and
21(i). On the combinatorial level, the map (8-5) works as follows: starting with trees
as in (8-3), one adds an incoming edge to each vertex v, ; except the last one, and then
identifies those edges with the root edges of 7} 1 1, thereby combining all our trees into
a single 7', which is what appears in (3-4); see Figure 20(ii).
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Figure 20: (i) A boundary point in (8-2), drawn in the way familiar from
pseudoholomorphic curve theory; and (ii) the corresponding picture in Fulton—
MacPherson space.

8b The operations

Algebraically, the outcome of using (8-2) and (8-5) are operations
(8—6) Xgl,m,dr—l,l,dr . edl +-tdr+1 — e[l . dl I dr]

Additionally, we set

(8-7) Xg,...,l,o

The property of these operations, derived as usual from the structure of codimension-one

boundary strata, and including (8-7), is that

dy,...dx—j+1,...,1,d . .
(8-8) Y ygir T T(Co s e Cldys e Chils e s

k;r I‘Lé(ck,i-i-l’ .. "ck,i-i—j)? e Chodps -3 CCr0 - -’Cr,dr)
+ Z j:xgl_pl""’l’d’_p’ (CLtsee s Clpyie e 3 Crat s e e s Cropyy
Ploobr AP gyt s Cldyi e € Crpys s Cripy )
Cropr+15-- -,Cr,dr)
+Zix§"""l’d’_j+l (C11s e 3 Crta s Cris W (Crig s s Cri )
i i Crd,)
=0.
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In terminology similar to [47], these define the structure of an Aso—(r—1, 1)—module,
with the first r — 1 factors acting on the left, and the last one on the right.

Example 8.1 Suppose that dy =---=d,_; = 0. Then, the points (8-4), with the origin
added as usual, lie on a half-line in C. One can use that to identify Qo . 0.4 = Sg+1-
The auxiliary data involved in defining (8-6) can be chosen to be compatible with that,

in which case one gets Xg """ Ld _ u‘é“.

Example 8.2 For r = 2, the points (8-4) still lieon R C C, hence Q4, .4, = Sq, +d,+1

and, for suitable choices, X‘é"l’dz = Mgl+d2+l.

Example 8.3 The operations with two inputs, Xg """ 1.0 and Xg """ 11 "are all chain
homotopic to the multiplication ué, simply because they come from a single two-point

configuration in the plane.
Our purpose in defining these operations is the following:

Definition 8.4 Let y,...,y, € @' ® N be Maurer—Cartan elements. We say that y,
is the product of (yi,...,y,—1) if there is a k € C® ® (Z1 & N) which modulo N
reduces to a cocycle representing the unit [ee], and such that

d; dr—1 d,

dy,...dr—1,1,d, . . -
89 Y xe L Tt Ve ks Y ) = 0.
dy,....dy

The expression (8-9) includes a term Mé(k), corresponding to (dy,...,d,)=(0,...,0).
If write k = e¢ + (coboundary) + & with i € C® ® N, then (keeping Example 8.3 in
mind) the next-order term in the equation says that
100 [xe " 0 ol + D r—n BT+ e (K )
= ey, el + -+ 1 (vr—1, )] + g (ec, vr)]
=[-vi—=Vr—1+r]=0 in H'(C® N/N?).

For r = 2, and assuming the choices have been made as in Example 8.2, the condition
in (8-9) reduces to the criterion for equivalence of y; and y, given in Lemma 2.6.

Lemma 8.5 The notion of product from Definition 8.4 only depends on the equivalence
class of the Maurer—Cartan elements involved.
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This is the analogue of Lemma 4.11, and is proved in a similar way. Given (y1,...,¥r)
and k as in (8-9), and an element 4 € C® ® N which provides an equivalence between
yj and Y, we can construct an explicit k which shows that (V1,2 ¥js--.. yr) satisfy
the same condition: .

; di—i—1
@11 k=k+ Z xde e (ST h%_/? sk,

dy,....dr,i

(The formula as written is for j < r, but the j = r case is parallel.)

Lemma 8.6 Given (yy,...,Yr—1), there is a unique equivalence class y, satisfying
Definition 8.4.

This is roughly analogous to Lemma 4.14. It is maybe helpful to reformulate the issue
as follows. We have a right 4—module structure, defined by

(8-12) (c;cqy...5¢q) dy dr—y

di,...dr—1,1,d . . e
= Z Xel r=1 (Vl:"'9)/1""’yr—19'"9)/r—lvc7c1""’cd)’
dls"'sdr—l

which (thanks to Example 8.1) is a deformation of the free module €. One then wants
to modify that module structure through y insertions, so as to “undo” the deformation,
rendering it trivial. This is a purely algebraic question, which can be reduced to the
strictly unital situation if desired (using Lemma 2.2).

Proposition 8.7 In the sense of Definition 8.4, if y is the product of (y;, y;+1) for
somei <r —1, and y, is the product of (y1,...,Vi—1,VsVi+2,---»Vr—1), then y, is
also the product of (y1, ..., Vr—1)-

This is the associativity statement for our notion of product. The proof uses a moduli
space of points lying on certain lines in the punctured plane. It is convenient to draw that
plane as a pair-of-pants, see Figure 21(ii), which is half of the “double pants diagram”
in [22, Section 11.2]. The two known statements about products come with their
respective elements k as in (8-9). One inserts those elements at the two bottom ends,
and the Maurer—Cartan elements at points on the respective lines (the arrows denote
the ordering of the points), the outcome being another element & which establishes the
desired statement.

Remark 8.8 Let’s briefly discuss the counterpart of Definition 8.4 in homological
algebra, in the spirit of Section 2. Take a homologically unital 4.—ring A, and its
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Z1,1] o

q
®Z2.1
Z1,2| &

( YA X)

® |23,2
Z1,3| o ® 23,1

® (i)
Figure 21: (i) Another picture of a point configuration (8-4), with correct

ordering of the lines and points. (ii) An analogous picture of the moduli
spaces that enter into the proof of Proposition 8.7 (r =4, i = 1).

Hochschild complex €; see (2-13). Given a Maurer—Cartan element y € C'® N, one
can define two Ac—bimodules £, and R, whose underlying space is A R (Z1®N),
with bimodule structure

(8-13) Mﬁil;q(al,...,ap;ap+1;ap+2,...,ap+q+1)=
£ B @y, dpgr)
+Z:tufl+q+2_j(a1,...,...,ai,yj(ai+1,...,ai+j),...,ap+1,
i ...,ap+q+1),
n Z ﬂ:ﬂﬁ+q+3_jl_j2(al,---aail’)/jl(al'l-i-l"'"ai1+j1)’
ij1i2J2 ...,a,-z,)/jz(ai2+1,...,a,'2+j2),...,ap+1,...,ap+q+1)
_|_...
together with
(8-14) MR;I;q(al,...,ap;ap+1;ap+2,...,ap+q+1):
j:ufl+q+1(a1,...,ap+q+1)
+Ziuﬁ+q+2_j(a1,...,ap+1,...,a,-,yj(a,-H,...,a,-+j),...,ap+q+1)
ij
+ Z i,u,fl"'q“_jl_jz(al,...,ap+1,...,a,-l,yjl(aiIH,...,a,-]+j]),
i1i2J2 ...,a,-z,yjz(ai2+1,...,a,'2+j2),...,ap+q+1)
+...
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Here, the rule is that an arbitrary number of y terms are inserted, but always to the
left (8-13), or right (8-14), of a, 1. For y = 0, this reduces to A with the diagonal
bimodule structure extended to A&®(Z 1 N ), which will denote by £ =Ry = D. More
generally, £, and R, can be viewed as pullbacks of D by the formal automorphism
(2-23) acting on one of the two sides. Using that, one sees easily that the bimodules
are inverses: there are bimodule homotopy equivalences

(8-15) fRy ®ALy:Ly ®ARVZD.

Here, the tensor product notation is shorthand: we are really taking the tensor product
of Ase—bimodules relative to A & (Z1 @ N), and making sure that completion with
respect to the filtration of N is taken into account. Modulo N, all our bimodules reduce
to the diagonal bimodule. Consider the Hochschild complex of A with coefficients in a
bimodule B, denoted here by CC*(B); see eg [26, Section 2.9]. We say that y; is the
product of (yy, ..., yr—1) if there is a cocycle

(8-16) keCCO' Ry, ®a- - ®aRy,_, ®4Ly,)

which, after reduction modulo N, represents the identity in HH 0 (A). Forr =1, one
can use (8-15) to show that this is the case if and only if y;, y» are equivalent. On the
other hand, for e defined as in (2-24), there are homotopy equivalences

(8-17) L), ®@a-+®aLy,_, =Ly, _jeey; and Ry @a---®aRy,_ | 2Ry eey,_, -

Combining that with the previous observation shows that our definition of product is
the same as saying that y, is equivalent to y; ®---®y,_1.

8c Relating the two approaches

To conclude our discussion, we’ll mention a possible way to connect the construction
in this section to the rest of the paper, or more precisely: to prove that, if y, is the
product of (y1, ..., yr—1) in the sense of Definition 8.4, then y;, is also equivalent to
Hg_l (Y1,---,¥Yr—1), Which is the product from Definition 4.10. The reader is exhorted
to treat this as what it is, a suggestion: it relies on new moduli spaces whose structure
has not been fully developed.

We begin by introducing an additional parameter ¢ € [0, 1), and changing (8-4) by
letting the first r — 1 radial lines collide in the limit # — 1:

2wk — w er B
(8-18) z¢; = exp( ski— (1 t)—r N=l—tm~/ 1) eC* ifk=1,...,r—1,
exp(—sr,i) if k =r.
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f these three lines collide in the limit

[ —
—T 1

[ ] o
[ ]

t—>1

)

N .

Figure 22: A limit in the space PQj5 1 ; , which lies in the image of (8-20).
For compatibility with Figure 21, we have drawn the MWW components
rotated by 90 degrees.

This leads to a compactification of [0, 1) times (8-1), which we write as
(8-19) t:PQg,. .4 —10,1] for r>3.

Over each € [0, 1), the fiber is a copy of Oy, ... 4, In the limit 7 — 1, points of the
first r — 1 colors bubble off into screens which have the structure of MWW spaces
(Figure 22). This means that we have maps
J

(8-20) Qjra x [ [MWWay, a,—y ;= PQuy,...dy

i=1
for each partition dy = dy 1 +---+d;1,....dr—1 =dr_1,1 +---+d,_1,j, Whose
images are the top-dimensional parts of the fiber of (8-19) over ¢t = 1. The space (8-19)
comes with a map to FMy 1, which over the fiber t = 0 reduces to (8-5).

The definition (8-18) suffers from the usual disadvantage of parametrized spaces,
meaning that its compactification contains strata that are fiber products over [0, 1]. To
bypass that difficulty, one can try to use those spaces in a “time-ordered” form (the
same strategy as in [65, Section 10e]), which means that we consider k—tuples of
points in PQy, | ..a,, X"+ XPQq, | . 4., Where (d; ) is again a partition of (dg),
such that the associated parameters satisfy #; < --- < ;. Pairs of points with equal
parameters now occur in the boundary of two different such spaces (when ¢; = ;4
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for some i; and as a boundary face of one of the PQ factors involved). If we insert
Maurer—Cartan elements (y1, ..., ;) at the marked points in C*, and add a trivial
term which is the identity map, the outcome should be a map

(8-21) ®e:C—C
which, setting y = Hé_l(yl . ..., Vr—1), satisfies
di dr—1 dy
dyseondy—1,1,dy o o
(8-22) CDe( Z Xe' ! ! (yl,...,)/1,...,y,_l,...,y,_l,c,yr,...,y,))
dy,....dy
d ’17d . .
= Z XGI 2(%---,V»CDG(C),)/r,---,J/r)-
—— ~——
dy,d> d dy

The left-hand side of this equation represents what happens for £ = 0 (the 11 = 0
component then gives xe, and the other components give ®¢), while the right-hand side
represents what happens for 7z = 1 (with the y factors coming from the collision of the
first r — 1 lines). Suppose that y, is the product of (y1, ..., y,—1); see Definition 8.4.
Then, inserting the associated element k into (8-21) produces another element, which
shows that “y, is the product of (y)” in the same sense. As pointed out before, in that
special case, the definition just amounts to saying that y, and y are equivalent.

9 Computing quantum Steenrod operations

By definition, quantum Steenrod operations belong to genus-zero enumerative geometry.
Generally speaking, it’s an open question what their role is within that theory. However,
for low-degree contributions one can give a satisfactory answer, in terms of the usual
Gromov—Witten invariants. After explaining this, we will turn to specific example
computations.

9a Gromov-Witten theory background

Let’s start in a context which is a little different than the rest of the paper. Take X to
be a closed symplectic 2n—manifold, with the only restriction (for notational simplicity,
since we only want to use power series in the Novikov variable ¢) that the symplectic
form must lie in an integral cohomology class, denoted here by

Qx eIm(H*(X;Z) — H*(X;Q)).
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Genus-zero Gromov—Witten invariants for m—pointed curves, and their generalizations
that include gravitational descendants, will be written as

O-1) (Y"'x1, ..., ¢ xm)m
=3 ¢ A Xy Y Xm)m,a € Qlg] for x; € HY(X: Q).
A

where the sum is over A € H,(X; Z). For the contribution of 4 to be potentially nonzero,
one should either consider classes with positive symplectic area Qy -4 = | 4 ox >0,or
take A = 0 (the case of constant curves) and m > 3. For expositions of Gromov—Witten
that include the properties used in this paper, see eg [57, Section 1] or [35, Chapter 26].

We introduce another formal variable 7, so that the coefficient ring for our algebraic
considerations will be Q[¢*!][¢]. The small quantum product, and the small quantum
connection, on the Z/2—graded space H*(X; Q)[t*'][¢] are defined by

9-2) /X(yl *¥2) ¥y3 = (V1, Y2, ¥3)3>
(9-3) Vy=qdgy+t'Qx*y.

We will consider endomorphisms ® of H*(X; Q)[r*!][¢] which are (linear over the
coefficient ring and) covariantly constant with respect to V. Concretely, this means that

(9-4) (g0g®)(y) + 17 Qy + ©(y) — 17 (R * y) = 0.

If we expand ¢ = ®© 4 gdM 4 420?) 4 ... (9-4) becomes

9-5) o©(Qxy) =2x 2 (y).

(9-6) CID(k)(y) =1kt (Cb(k)(QXy) —Qyo® (»)) + (recursive terms) if k > 0,

where the generic “recursive terms” covers expressions involving only ®© .. . Pk—1),
By repeatedly inserting (9-6) into itself, we get

©-7) B () =k Z(—l)i (T)Q}fb(k)(Q?_iy) + (recursive terms).
i

Setting m > 2n means that in the sum we have i > n or m —i > n, so all those terms
vanish. One therefore gets explicit recursive formulae, which show that the constant
term 0, subject to (9-5), determines all of ®. The case we are interested in is where
@) (y) = xy is the cup product with a given class x € H*(X; Q). There is a formula
for the resulting ® = @, in terms of gravitational descendants, closely related to the
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standard formula for solutions of the quantum differential equation:
(9-8) / Yo @x (1)
X

= /Xyoxyl —t N o, A+t ) Iy o + 7N =7 ) " yox, y1)a

=172 {yo. L+ 7)) xer)o (U =171 y) ey v
k

In principle, the terms (1 4 ---)~! are supposed to be expanded into geometric series;
but for degree reasons, only one term in this series is nonzero for each class A4 that
contributes to the expressions in (9-8). The (eg), (e]\c/) are Poincaré dual bases in
H*(X;Q), meaning that in the Kiinneth decomposition,

(9-9) Z ex ® e}/ = [diagonal] H?™(X x X:Q).

k
Checking that ®, satisfies (9-4) is an exercise using basic properties (divisor equation
and TRR) of Gromov—Witten invariants. Using the string equation, one can write the
special case yo = y, y1 =1 as

(9-10) /X y (1) = /X yx =1 (L) )y (=) ),
—7 ) U+ ) xe)o (=1 y) e
k

Let’s modify the context slightly, and assume that X is weakly monotone. Moreover,
choose an integer lift of the symplectic cohomology class, again denoted by Q.
Then, one can define mod p versions of Gromov—Witten invariants counting curves
in A € Hy(X;Z), for which we use the same notation:

(9-11)  (x1,....Xm)m.a €Fp with x; € H*(X;Fp),
m >3, or

provided that
anymand 0 < Qy -4 < p.

For m > 3, this is the classical definition in terms of an inhomogeneous g—equation
(Gromov’s trick). The definition in the second case can be reduced to the first case by
taking the divisor equation as an axiom, where the class inserted is always (the mod p
reduction of) Qy. Alternatively, one could argue more geometrically: if Qx -4 < p,
then no stable map in class 4 can have an automorphism group whose order is a
multiple of p. This should allow one to define virtual fundamental classes in homology
with [F,—coefficients (we say “should” since this has not, to our knowledge, been carried

Geometry & Topology, Volume 27 (2023)



Formal groups and quantum cohomology 3039

out in the literature). The discussion of the second case also applies to gravitational
descendants, with the same assumption 0 < Qx - 4 < p. Geometrically, this uses
the fact that orbifold line bundles whose isotropy groups have orders coprime to p
have Chern classes in mod p cohomology; algebraically, one can use the formula
(involving the divisor relation and TRR) that reduces invariants involving gravitational
descendants to ordinary Gromov—Witten invariants.

The quantum product and connection can be considered as acting on H*(X;F,)[t*!][¢],
where one now thinks of ¢ as in (1-5). Formal linear differential equations in character-
istic p have a much larger space of solutions than their characteristic 0 counterparts,
simply because j—xxp = 0. As an instance of that, the uniqueness statement derived
from (9-7) now holds only up to order g?~!, because of the division by k™. If one
truncates the formula (9-8) modulo g7, then all terms appearing in it are defined with
[Fp—coefficients; and it yields the unique solution modulo ¢” of (9-4), whose q° term

equals the cup product with x.

9b Application to quantum Steenrod operations

We adapt our previous definition of quantum Steenrod operations to the weakly mono-
tone context, by adding the variable ¢. This means that, with (¢, 8) as in (1-5) (and
omitting the manifold X for the sake of brevity),

0-12)  0Sty=) ¢ 0S4 H*(X:Fp) - H*(X:Fp)[1. 0]4].

A
We find it convenient to introduce a minor generalization, which is a bilinear map on
cohomology. More precisely, for each x € H*(X;F,) one gets an endomorphism
of H*(X;Fp)l[t, 6]lg], denoted by

(9-13) 0%px =Y 4™ A0%, 41 H*(X;FpI1.0llq] — H* (X:Fp)lt. 01lq].
A

Geometrically, while quantum Steenrod operations are obtained from holomorphic
maps which have (5-19) as a domain, we use the remaining Z/ p—fixed point (z = 0)
on that curve as an additional input point to define (9-13). In other words, one can
view it as an equivariant version of the “quantum cap product”, obtained from the Z/ p—
equivariant curve in Figure 23. On a technical level, the definition is entirely parallel
to that of quantum Steenrod operations, by looking at moduli spaces parametrized by
cycles in the classifying space BZ/p [66]. The ¢° term of (9-13) is the cup product
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g
\

p points arranged symmetrically, insert x in each

Figure 23: The Riemann surface underlying the definition of QX (-); see (9-13).

with the classical Steenrod operation,

(9-14) sz,x,O(y) = Stp(x)y-
The relation between (9-12) and (9-13) is that
(9-15) O Sty(x) = 0%p x(1).

Remark 9.1 Tt is natural to extend the definition of (9-13) to x € H*(X;F,)[¢] in a
Frobenius-twisted way, meaning that X, ;x = ¢ X, . Then,

9-16) 0% px; 00, = (_1)P(P—1)/2|X1||x2|sz,xl*x2.

Note that as a consequence of (9-14) and (9-16),

O-17) 0% (0S4 (») = QFpx 0 0y (1) = ()PP~ D2KVgx, (1)
— (_1)P(17—1)/2|x| (¥l 0 Sty(x * y).

Every class in H*(X;F,)[t, 271, 6] can be written as Sty () for some y. An analogous
statement holds for quantum Steenrod operations, and by combining that with (9-17),
one sees that Q St, actually determines Q%.

For our purpose, the key point is the following result:

Theorem 9.2 [66, Theorem 1.4] For any x, the endomorphism QX  is covari-
antly constant for the small quantum connection (9-3), meaning that it satisfies (9-4).
(We have tacitly extended the coefficient ring to include 6.)

As a consequence of that and the discussion at the end of Section 9a, QX « is
determined modulo ¢? by the classical term (9-15). More explicitly, comparison with
(9-8) shows that

(9-18) 0%y x = Py, (x) modulo ¢?.

Specializing to (9-14) and using (9-10) leads to:
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Corollary 9.3 The low-degree contributions to the quantum Steenrod operation are:

©-19) Y g% f 0 Sty 4(x)

QX-A<p X

= [ rspe—t S A )T Sy W)

0<QX'A<p

+172 Y A=) T St ()14
0<Qx-A<p
— Y D g oA () (L) TS, (%) ek) 2,4
grazy K (A=) e 14,
Qx-(do+41)<p
Note that even though there are negative powers of ¢ in the formula, we know a priori
that none of them can appear in Q St,, so all terms involving them must cancel.

9¢ A localization argument

The approach to quantum Steenrod operations via Theorem 9.2 is formally slick,
but maybe somewhat indirect; we will therefore suggest a possible alternative. For
simplicity, we will work out only the most elementary case. Namely, let’s assume that
our symplectic manifold X is an algebraic variety, and that we use the given complex
structure. We fix some A € H,(X; Z) which is holomorphically indecomposable: this
means that one can’t find nonzero classes A1, ..., A,, r = 2, each of them represented
by a holomorphic map CP! — X, such that A; +---+ A, = A. This implies that
the space of unparametrized rational curves in class A4 is compact, and contains no
multiple covers. We further assume that this space is regular. Consider the standard
framework involving stable map spaces,

Lpti05---sLptip

(9-20) l
Mpt1 —— Mpr1(X; A)

evp_H=(evp+1,0,...,evp+1,p) XP‘H

Here, 3\7[1,_,_1 is genus-zero Deligne-Mumford space (we prefer to use the conventional
algebrogeometric notation rather than that in the rest of the paper); JV[IH_I (X;A)is
the space of stable maps; and the L, j are the tautological line bundles (cotangent
bundles of the curve) at the marked points. Our assumption was that My(X; A)
is regular, hence smooth of complex dimension n + ¢;(A4) — 3. As a consequence,
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all M p+1 (X'; A) are smooth of dimension n+cq(A4)+(p—2), and actually fiber bundles
over Mo(X; A) with fiber Mp+1 (CP';1). The Sym,,—action on Deligne-Mumford
space has a canonical lift to MI,H (X; A).

At this point, we (re)impose the assumption that p is prime. Let JV[; X4 C
Mp41(X: A) be the subset of stable maps which, under the forgetful map to Deligne—
Mumford space, are mapped to the point from (5-19). Clearly, that subset is invariant
under Z/ p C Sym,,. As before, one can describe its geometry explicitly: J\_/E; (X5 4)
is a fiber bundle over Mg (X ; A) with three-dimensional fiber J\_/[; +1 (CP';1), and
Z/ p acts in a fiber-preserving way.

Lemma 9.4 The fixed-point set F' C JVE; 41 (X3 A) of the Z/ p—action is the disjoint
union of:

(i) A copy of M,(X; A). The restriction of evVp41 to that component can be
identified with (ev3,0,€v2.1, ..., €Va,1). Moreover, the normal bundle N of this
component is the dual of the tautological bundle L, ; — My (X; A), and the
(Z./ p)-action on it has weight —1.

(ii) A copy of My(X;A). The restriction of eVp+1 to that component can be
identified with (evy 0, ...,evy,0). Topologically, the normal bundle N of this
component is a direct sum of a trivial line bundle and the dual of L o, with the
(Z/ p)-action having weight 1 on each component.

Proof (i) The relevant rational curves have two components C = C_ U Cy;
see Figure 24. C_ carries marked points zy,...,z, and also the node ¢, and can
be identified with (5-19), in such a way that { corresponds to oo; the stable map is

g ¢

x x

() (i1)
Figure 24: The fixed loci from Lemma 9.4 (with p = 3). The lighter shaded
components are those where the map is constant.
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constant on that component. The other component C4 carries the node ¢ and the
marked point zg; the stable map on that component represents A. The fiber of the
normal bundle to the fixed locus at such a point can be canonically identified with
T:C_ ® T¢Cy; see eg [31, Proposition 3.31]. The identification of C_ with (5-19)
mentioned above provides a distinguished isomorphism 7;C_ = C over the entire
stratum, and also shows that the action of Z/ p on T¢C_ has weight —1. By definition,
T¢Cy is the dual of the cotangent line which is the fiber of L 1, and carries the trivial
7/ p—action.

(i) Here, the curves also have two components C = C_ Ug C, with details as follows;
see again Figure 24. There are no marked points on C_, and u|C_ represents A. The
other component is isomorphic to (5-19), compatibly with all marked points and so
that the node ¢ corresponds to 0 € C; and u|C is constant. The fiber of the normal
bundle to the fixed locus at such a point can be written as an extension

(9-21) 0= Te(C4) = N = Tp(C-) ® Te(C4) — 0.

The tensor product in the right term again expresses gluing together the two components.
This time, because ¢ is identified with the point 0 in (5-19), the Z / p—action has weight 1
on T¢(C4) = C. The subspace on the left in (9-21) corresponds to staying inside the stra-
tum of nodal curves, but moving the position of the node on C. Topologically (9-21)
splits, even compatibly with the (Z/ p)—action, leading to the desired statement. O

Reformulating the definition of quantum Steenrod operations, one can say that the
pairing (y,x) = [y yQ St, 4(x) is obtained as follows:

H/(X:F,)® H (X:F,) ——— HYJ

Z/p(Xp;FP) ®HI(X§]FP)

j+1
HZp;p (Xp+1;IFP)

k
BVH-HJ

pi+l—2n—2ci(A)+6, . . pi+l .
HZ/p 1 (p01nt’Fp)<THZ/p (M;+1(X,A))

NG 4 (X5 4)

(9-22)

The — is (the topological version of) the equivariant diagonal map (5-11), and the
integration map <— is the pairing with the equivariant fundamental class of the moduli
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space. The localization theorem for Z / p—actions [1, Proposition 5.3.18] shows that
this integral can be computed in terms of the fixed locus:

z/p _
(9-23) / w=/ (u)|F)eZ/p(N)_1 for weHz/p(M;H(X;A)),
MS, 1 (X;A) F

where ez, ,(N) is the equivariant Euler class of the normal bundle. Applying this to the
description from Lemma 9.4, with w being a class pulled back by evaluation, we get:

Corollary 9.5 The contribution of a holomorphically indecomposable class A, which
has regular moduli spaces, to the quantum Steenrod operation is

(9-24) f ¥ 0Stya(x)
X

=ty L+ Y) T St (0)2,a + 1A =7 ) Ty Stp ()1, 4

The use of an integrable complex structure is not really necessary. It was convenient for
expository purposes, because it makes the moduli spaces into differentiable manifolds,
so that we can talk about the normal bundle to the fixed locus. However, (9-23) also
applies to actions on topological manifolds, provided that they are linear in local
topological charts near the fixed locus (thereby defining a notion of normal bundle).
One can prove that property for regular moduli spaces of pseudoholomorphic curves
by standard gluing methods.

Clearly, (9-24) is compatible with the formula (9-19), which we obtained by other
means (conversely, one could specialize our earlier argument to only use the class 4,
and thereby recover (9-24) from it). In principle, this localization method should apply
more generally to classes A that are p—indecomposable: by that, we mean that one
can’t write A = pA + A, +---+ A, for r > 1 and nonzero classes A, ..., A, which
are represented by holomorphic curves (this is always satisfied if Qy - A < p). In
that situation, there is another component to the fixed locus, which corresponds to
the final sum in (9-19). However, note that there are significant technical issues: one
can no longer assume that the moduli spaces under consideration are smooth, hence
presumably needs to apply a virtual analogue of localization, analogous to [30]. Maybe
the most salient argument in favor of the direct approach is that it shows how, when
going beyond the situations we have considered so far, the existence of p—fold covered
curves complicate the situation: such curves yield yet more components of the fixed
locus of the Z / p—action, whose contributions would need to be studied separately.
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9d Basic examples

From this point onwards, we return to the monotone context from the main part of the
paper — actually, our first two examples are only spherically monotone, meaning that
the symplectic class and first Chern class are positive proportional on 7, (X ), but that’s
just as good for our purpose. In terms of formulae such as (9-19), this simply means
that all expressions are polynomials in ¢ for degree reasons, and hence it is permitted
to remove the formal variable by setting ¢ = 1.

Example 9.6 Let X = T2 x CP2. We consider p = 2, take any x € H'(T?;F5), and
let / € H?(CP?;TF,) be the generator. The classical contribution is

Ex(x®1D)=x®1,
(9-25) E,(x®)=x®12,
Er(x®1%) =0.

For degree reasons, the only other contribution comes from the class A of a line in CP?,
and in view of of invariance under symplectic automorphisms, that contribution must
be that QE,_4(x ® /?) is some multiple of x ® /. Using the notation 6 = 112 we

have O St(x ®12) = t3/2(x ® [?). Take some y € H'(T'2;F,). Then (9-24) says that

(9-26) /X (&N 0S4 P (x@1?) =t (y LY (x®1%))2,4

=02 [ ) uter

In the rightmost term, the Gromov—Witten invariant is taken in CP?, and we have
marked that notationally (to get to that expression, we have used the fact that all our
curves are constant in 7" >—direction). Geometrically, what we are considering in that
term is the space of all lines in CP? going through a specific line Z (representing /) and
a point ¢ & Z (representing /%). That moduli space can be identified with Z, and the
normal bundle to Z is the dual to the line bundle which gives rise to the gravitational
descendant in the formula. Hence, (I, ¥/?)cp2 5 4 = 1.

Let’s pass to the algebraic closure F,, with a nontrivial third root of unity ¢ € F».
This yields a splitting of 1 € QH*(CP?;F,) into idempotents u; = 1 + /1 + 2712
The natural extension of Q25 to H°4(X;F,) is linear in a Frobenius-twisted sense,
meaning that QE,(¢-) = {2 QE»(-). From our previous computations, it follows that

(9-27) QB (x®uj) =xQuj.
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Let’s see how this might look from a categorical viewpoint, along the lines of Remark
1.10. The Fukaya category of CP? over I, is more properly described as a collection of
three categories, each of which is semisimple, and which correspond to the idempotent
summands F,u j in quantum cohomology. Unfortunately, we cannot introduce a
meaningful version of the Fukaya category of 7% without Novikov parameters, because
there are no nontrivial monotone Lagrangian submanifolds. However, the diagonal in
the Fukaya category of X x X makes sense in a monotone context, so we can frame the
discussion in that language. Algebraically, the diagonal splits as the direct sum of three
objects, again corresponding to the u;. We can take one of those summands and equip
it with a flat line bundle, or formal family of flat line bundles, in the T?—direction.
The convolution of such Lagrangian correspondences gives us H'(T?; Gp) = G2,
respectively its formal completion. Since we can do that independently for all three
summands, we see the formal completion of an appearing, which is consistent with
(9-27). If one wanted to work over I, itself, only the idempotents uo and u; + u,
would be defined, giving rise to a more complicated picture of the Fukaya category.

Example 9.7 Along the same lines, take X = 72 x CP! x CP!, but now with p = 3.
Take x,y € H'(T?;F3) and k,/ € H>(CP! x CP';[F3). The only classes 4 which
contribute to Q E3(x ® k) are those which yield the two rulings of X', and hence satisfy
([point]) 1,4 = 1. For each such class, (9-24) yields

029 [ (r®N0E1AxeH = (&N @bha==[ (&N,
Adding up their contributions yields
(9-29) QE;=-2id=id on H*(X;F3).

The same holds on H!(X;F3); see (1-14). The corresponding question for H>(X; F3)
is just outside the reach of our methods, because there is a potential contribution from
classes that are 3 times that of a ruling.

This time, the Fukaya category of CP! x CP! splits into four semisimple pieces over F3,
so one expects to see the product of four copies of the formal group associated to 72,
meaning a total of G,Sn, which is compatible with our (partial) computation.

9¢ Fano threefolds

The remaining examples will be monotone symplectic six-manifolds, which have
H(X;Z) =0 and H«(X;Z) torsion-free (in fact, they will be algebraic, meaning
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Fano threefolds). We will assume that there is some A € Z such that
(9-30) ci(X)xx=Aix for x € H}(X),

or, equivalently,
(y,x)y = A/ yx for x,y e H3(X).
X

From now on, we fix a prime p, and our notation will be that x, y € H3(X; Fp). The
classical Steenrod operations applied to x have potentially nontrivial components in
degrees 3, 4 and 6. The degree 4 component is the Bockstein 8, which is zero because
all our classes come from H*(X;Z). The degree 6 component is the 1B3r=7/2¢ part
of Sq(x). For p = 2, this is just the cup square, which again is zero by lifting to
H?3(X;Z); and for p > 2, it involves the Bockstein, see (1-6), hence is again zero. The
outcome is that only the degree 3 component survives. Taking the constants in (1-6)
into account (and omitting X from the notation), this says that

9-31 Stp(x) {Xﬂ/z o
(9-31) tp(x p—1 _ .
(£~ (3p—3)/2
( 3 .)xt if p > 2.

As a consequence of (9-30) (and the divisor and TRR relations in Gromov—Witten
theory), we have for 0 <d < p —2,

Xd+1
d—1 — e =
T _(d+1)!/ny'

Let’s look at |- v ¥ QEp(x). For degree reasons, the curves that contribute to this lie in

(9-32) (v ¥9x), =

classes A with ¢;(A) = p — 1, hence (setting Qy = ¢;(X) in view of monotonicity)
Corollary 9.3 applies. At first sight, the outcome reads as follows:
033 [ 502,
X
=- Z YPTx) 54— /yx Z (v P 3 [point]); 4
Q-A=p—1 Q-A=p—1
Y DT )y g (U point) 1 4,
do=R-A9p>0

di=Q-A41>0
do+di=p—1

Using (9-32), one simplifies this to
034 [ y0Z,0
X

APl kp—l—d 3 '
~(f) 5= L T S o).

2=<d=<p
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Besides A, the enumerative ingredient that enters is the quantum period (see [12], where
the notation is Gy)

(9-35) M=1+)Y ¢y *[point]); 4.

d=2
or more precisely, what’s obtained from it by truncating mod ¢? and then considering
the coefficients as lying in [F,,. In that notation, one can also write (9-34) as

(9-36) QE, = —(¢? '—coefficient of e M) id.

All the examples that we will consider are instances of [12, Theorem 4.7], itself based
on Givental’s work.

Example 9.8 Let X be the intersection of two quadrics in CP3, which is also a moduli
space of stable bundles (with rank two and fixed odd-degree determinant) on a genus

two curve. This has )
z* ifl =3,

(9-37) H(X;Z)=13Z ifl=0,2,4,6,

0  otherwise.
The first Chern class is twice a generator of H2(X; Z). For degree reasons, this implies
that Q E, = 0. This is not necessarily indicative of the general picture, since we already
know that the prime p = 2 is exceptional [15, page 137]: the small quantum cohomology
ring has QH®*"(X) = Z[h]/ h*(h* — 16), hence does not split into summands if one
reduces coefficients to IF,.

Let’s look at odd primes. We have A = 0 since there are no classes 4 with Qy - 4 = 1.
The quantum period is [13, page 135]

2d)"
(9‘38) H=Z( ) q2d:1+22q2+32q4+(13_0)2q6+(%)2q8+”.

16
d=0 CY)
Applying (9-34) yields
—n?
(9-39) 08, = —l(p—) id=(=1)®D/2id forodd p.
(z(p—D)t6

We should point out that the first nontrivial case p = 3, where the enumerative geometry
is that of lines on X, is amenable to the more direct method of Section 9c. The space
of lines is regular [59, Theorem 2.6] (it is isomorphic to the Jacobian of the genus
two curve associated to X [59, Theorem 4.7]), and there are 4 lines passing through a
generic point [16, page 135]. That information enables one to apply (9-24) and obtain
QE; =—4id = —id.
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When thinking about the outcome of this computation, it may be useful to know that
there is an algebraic group whose formal completion shows the same behavior, namely

(9-40) G={x+iy:x*+y*> =1},

where i is an abstract symbol such that i> = —1 (some readers may feel more com-
fortable writing this as a group of 2 x 2 rotation matrices). It is a nonsplit torus,
which becomes isomorphic to G, over any coefficient ring that contains an actual root
of —1. To write down the group law for the completion 6’, one can use the rational
parametrization z = y/(1 + x), in which it is given by

Z1+ 23

(9-41) Z192) = )
1 —Z1Zp

The p™ power map, for primes p > 2, is (x +iy)? = x? + (—=1)?~D/2jP mod p,
or for (9-41),

(9-42) QTL.Z = M = (_1)(17—1)/221) — (_1)(17—1)/22 for z € Fp.
1 +xP

A natural conjecture would be that the formal group associated to X is G*. Note that
in [69], a direct summand of the Fukaya category of X was shown to be equivalent
to the Fukaya category of the genus two curve. This seems to suggest a role for @;‘n
rather than G4 (compare Remark 1.10). However, [69] works with complex number
coefficients. To the author’s best knowledge, we do not have a version of that argument
that would work over Z or I, and hence, it remains an open question to interpret the

computation above in terms of mirror symmetry.

Example 9.9 Let X C CP* be a cubic threefold. This situation is parallel to the
previous example, except that H3(X) is ten-dimensional. The quantum period is
[13, page 134]

(3d)!
(9-43) Z(dv)s D= 14607 + Bt + 1505 + B0 4

One again has QE, = 0 and A = 0 for degree reasons, but this time

()
(9-44) 08p=——2—2id=0 forp>2.
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Example 9.10 The quartic threefold has [13, page 136]

4d )'

~ —24q (

(9-45) M= Z @’

We have A = —24, the “big eigenvalue” in the terminology of [67, Corollary 1.14]. The
e~244 cancels out the corresponding term in (9-36), and we again have Q E p=0.

In both of the previous examples, homological mirror symmetry is known to hold [67],
but again, arithmetic aspects are not addressed in that paper. Even assuming that the
answer given there is true arithmetically, it takes the form of an orbifold LG (Landau—
Ginzburg) model with a highly degenerate singular point. For our purpose, one would
need to understand the formal completion near the identity of the derived automorphism
group of such an LG model, which is a purely algebrogeometric problem, but one
whose answer is not known to this author. This means that we do not have a mirror
symmetry interpretation for the vanishing of Q& .

Example 9.11 (previously mentioned in Example 1.11) Let X be a hypersurface
of bidegree (1,2) in CP! x CP?; equivalently, this is obtained by blowing up the
intersection of two quadrics (which is an elliptic curve) in CP3. It is a Fano threefold

satisfying 72 -2 34
1 = b b b

(9-46) H(X;Z)y=47Z ifl=0,6,

0  otherwise.
More precisely, we have H,(X;Z) = H,(CP! x CP3;7Z) by inclusion, and for the
exceptional divisor 72 x CP! C X, we similarly have H3(T? x CP') = H3(X;Z).
The classes potentially represented by holomorphic curves are
(9-47) A= (dy,dy), with dy,dy, >0 and Qy-A=d;+ 2d,.
Curves in the unique class 4 = (1,0) with Qx - A = (1,0) form the ruling of the
exceptional divisor. From that, one easily sees that A = —1. We have [13, page 183]
(di +2d,)! g2

9-48 M = 11 = ,
o4 M= )
and hence
1
(9-49) QE,=id )

(di)2(d2))*

See (1-16) for the first few terms. As before, the lowest-degree case p = 2 is amenable

di+2dy=p—1

to more direct methods, and was in fact determined in [74].
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One can write
2 2 ~
(9-50) Z ( dlZ dz) = constant coefficient of W™,

di+2dr=m

m!
2 (diN2(dy)*

di+2dr=m

where ) ) ) )
(xg +x7 +x2x3)(x0X1 + x5 + X3)

X0X1X2X3

W(xo, X1, X2,X3) =

This is an elementary combinatorial argument: when we expand
(X3 4+ X7+ x2x3)™ (xox1 + X3 +x3)™,

the monomial (x¢x1x,x3)™ arises by picking each x,% term an equal number (d; in
our formula) of times, which leads to the multinomial coefficients. Setting m = p — 1
allows us to apply that to (9-49). Next, consider the intersection of the two quadrics
that appear in (9-50),

(9-51) C={x§+x12+xZX3=0, x0x1+x§+x§=0}CP3.

There is an elementary number theory argument which allows one to count the number
of points of C(IF,) modulo p; it goes as follows. By little Fermat,
(9-52) Z (1—x3 —xF —x2x3) P11 —xox; — x5 —x3)P" ! €T,

X050y X3

counts the number of points in IFI‘,‘ lying on the intersection of our quadrics. On the
other hand,

©-53) Y o = (xeo)(xel)(xzxz)(xZXB)

X(seees X3
1 for (ig,...,i3)=(p—1,...,p—1),
o for all other 0 <ip,...,i3 < p—1.

If we expand (9-52) and apply (9-53) to the resulting terms, the outcome is that (9-52)
is the xé’_le’_lxé’_lxé’_l—coefﬁcient of (xg —x12 —x2x3)P 7 (x0x; —x% —>c§)1’_1 ,
which is what appears in (9-50). Adjusting that to the point-count in projective space,

we get
(9-54) 1 —#C(IFp) = constant coefficient of W™ mod p.

The isogeny class of the elliptic curve Jac(C) is listed as [43, Isogeny class 15.a],
and its associated modular form is (1-17). Point-counting becomes relevant for us
through a theorem of Honda [34; 56; 32], which says that 1 —#C(IF,) mod p can be
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identified with the p coefficient of the p™ power map for the formal group which is
the completion of Jac(C) (this coefficient is sometimes called the Hasse invariant of
the mod p reduction of C'; maybe more precisely, it is a special case of the Hasse—Witt
matrix of an algebraic curve). The natural interpretation of this in terms of mirror
symmetry is the following:

Conjecture 9.12 Take X as in Examples 1.11 and 9.11. The Fukaya category of X
contains a direct summand equivalent to the derived category of sheaves on a genus
one curve, whose Jacobian is isogeneous to that of C. (The remaining summands are
expected to be semisimple: they do not contribute to H°¥(X) or to our formal group.)

It turns out that this is compatible with predictions coming from “classical” enumerative
mirror symmetry. There (see eg [12, Definition 4.9]), a mirror superpotential W €
ZIyE, yF!, yE!] for X needs to have the property that

dyyndy, nd
(9-55) Nl :/ qu V1 V2 Y3
[y11=ly2l=ly3|=1 Y1)2)3
_ > constant coefficient of W9 d
3 f “
d=0

There can be infinitely many different superpotentials for the same X, related by
certain birational changes of variables. Assuming that the anticanonical linear system
for X contains a smooth divisor, then the actual mirror of X', formed relative to that
divisor, should come with a proper (fibers are compact) function that specializes to
those superpotentials in different Zariski charts.

Getting back to our example: the function W(l ,X1,X2,Xx3) — 1 satisfies the property
(9-55), as a consequence of (9-50), but fails another requirement for mirror superpoten-
tials, that of having a reflexive Newton polyhedron. Instead, the precise relation is as
follows. One of the superpotentials for our specific X, given in [11, Polytope 198], is

9-56)  W=pi+y+y+y v+ 0+ el
One can then write
(9-57) W(l,xl,xz,x3) —-1= W(xl_lxzxgl,x1_1x2_1x3,x1_1x§).

The monomial coordinate change in (9-57) is a Z /4—cover of the (1, y2, y3)—torus by
the (x1, x,, x3)—torus; such coordinate changes do not affect oscillating integrals as
in (9-55). It is clear from the definition (9-50) that the critical locus of VT/(I, X1,X2,X3)
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contains an affine part of C, lying in the fiber w1 (0). Hence, the critical locus of W
contains an affine part of a Z /4—quotient of C, lying in the fiber W ~1(—1). Moreover,
the Hessian in transverse direction to those critical loci is nondegenerate over QQ
(or over I, provided that p is large). In view of the expected correspondence between
the Fukaya category of X and the category Dﬁ’ing associated to a compactification of W,
this provides strong support for Conjecture 9.12, and also gives a specific candidate
genus-one curve (within the given isogeny class).

10 Sign conventions

Signs are important for some of our example computations. This section clarifies the
conventions used for Z/ p—equivariant (and therefore Sym ,—equivariant) cohomology,
and for the Steenrod operations.

10a Equivariant cohomology

Take the standard classifying space BS! = §®°/S! = CP®. Lett € H ;1 (point) =
H?*(CP) be the Chern class of O(—1). Given a representation V of S!, form the
associated vector bundle

(10-1) (V x8®)/S! - CP>®, where g-(v,2) = (gv, g '2).

In this way, the representation V} of weight k& corresponds to the line bundle O(—k).
We use the same convention as in (10-1) when forming the Borel construction (the
equivariant cohomology of a space), and similarly for equivariant Euler classes of
vector bundles.

Given a representation Vi, @ ---® Vi, its equivariant Euler class, defined as the Euler
class of the associated bundle (10-1), is therefore

(10-2) esi(V)=ky--kqgt?.

We embed Z/p C S! in the obvious way, and take the mod p reduction of # to be the
generator of Hé /p (point; IF), leading to a corresponding version of (10-2). We take
0 e HZ1 /p (point; [F,) to be the tautological generator, meaning the one associated to
the identity map Z/p = w1 (B(Z/ p)) — F,. Then, the Bockstein satisfies

(10-3) B(O) = —t.
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Example 10.1 Fix some odd p. Take the fundamental representation of Z/p on R?,
by cyclic permutations, and let V' be its quotient by the trivial subspace R(1,...,1).
Our orientation convention is that taking first (1,..., 1), and then after that lifts of
an oriented basis of V, yields an oriented basis of R?. If we temporarily ignore
orientations, then clearly

(10-4) VeVieV,d: - Vip-1.

This decomposition can be made explicit in terms of a discrete Fourier basis. A
computation of the determinant of that basis (compare eg [52]) shows that (10-4) is
in fact orientation-preserving. As a consequence,

—1\, . (p—
(10-5) ez p(V) = (PT)![(p /2

Example 10.2 To check the sign in (10-3), let’s replace the infinite-dimensional space
K(Z/ p,1) by the lens space L(p,1) = S*/(Z/p), with Z/ p acting diagonally on
S3 ={|z1|?> + |z2|?> = 1} C C2. The relation between the homological Bockstein b
and its cohomological counterpart f is that

(10-6) (B(y), x) + (=D Iy, b(x)) = 0.

Consider {|z1| <1, zo = /1 —|z1|?} C L(p, 1), with the complex orientation from z;.
This is a Z/ p—cycle, whose homology class we write as x. Applying the homological
Bockstein yields a 1/ p fraction of the boundary, which is exactly the circle {z, = 0} C
L(p, 1), with its orientation given by going around z; anticlockwise from 1 to ¢27/?.
This means that by definition of 6,

(10-7) (6,b(x)) =1.

The class —¢ is Poincaré dual to the zero-locus of a section of the pullback of O(1),
hence represented by the cycle {z; = 0}, with the usual orientation of the z, circle.
The intersection number of that and the mod p cycle defined above is

(10-8) (—t,x)=1.

From (10-6), for y = 6, and (10-7) we get (8(6), x) = 1, which together with (10-8)
yields the desired (10-3).

10b Steenrod operations

The appearance of combinatorial constants similar to those in (1-6) goes back to the
classical literature; see eg [70, pages 107 and 112]. The point of introducing those is to
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make sure the operations satisfy the Steenrod axioms. Since a comparison between
different definitions is made more complicated by sign conventions for equivariant
cohomology, we want to explain one way of checking the choices made here.

Fix an odd prime p. Consider the Steenrod axiom which says that P%(x) = x for
x € H*(X;F,). With our convention (1-6), this is equivalent to

— 1 \Ixl
(10-9)  Sty(x) = (—1)* ( 1) F(P=1)/2lx|
+ terms of higher degree in H* (X:Fp),

with % as in (1-7). Suppose that X is an oriented closed manifold, and that we apply
this to x = [point] € H4mX)(x Fp). By definition, St,(x) is obtained from

restriction
to diagonal

. th
(10_10) Hdlm(X)(X,Fp) D power delm(X)(Xp Fp) de]m(X)(X IFP)

Hence, it maps x to itself times the equivariant Euler class of the normal bundle to the
diagonal X C X7, restricted to a point. If X is one-dimensional, that normal bundle is
given by the representation V' from Example 10.1. In general, it can be identified with
dim(X) copies of V, up to a Koszul reordering sign (—1),
IX[(x| =D p(p =1 _ [x[(x[=1D p—1
2 2 2 2

Combining that with the |x|" power of (10-5) precisely yields the constant factor in
(10-9).

(10-11) T= mod 2.
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AGT relations for sheaves on surfaces

ANDREI NEGUT

We consider a natural generalization of the Carlsson—Okounkov Ext operator on
the K—theory groups of the moduli spaces of stable sheaves on a smooth projective
surface. We compute the commutation relations between the Ext operator and the
action of the deformed W —algebra on K-theory, which was developed by the author
in previous work. The conclusion is that the Ext operator is closely related to a vertex
operator, thus giving a mathematical incarnation of the Alday—Gaiotto—Tachikawa
correspondence for a general algebraic surface.

14J60; 14D21

1 Introduction

1.1 Fix asmooth projective surface .S over an algebraically closed field of characteristic
zero (henceforth denoted by C), and invariants (r,c;) € N x H?(S, Z). An important
object in algebraic geometry is the moduli space
o0
(1-1) M= L Me,
e2=[((r=1)/2r)ct]

of H-stable sheaves on S with invariants (7, ¢y, ¢;) for any ¢, € Z. The reason that
¢, is bounded below is called Bogomolov’s inequality, which states that there are no
H-—stable sheaves if ¢c; < ((r — 1)/ 2r)cf. We make the same assumptions as in our
earlier work [15; 17; 16]:

e Assumption A gcd(r,c;- H) = 1.

e Assumption S Either wg = Og, or c;(wg)- H < 0.
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Assumption A implies that M is proper and there exists a universal sheaf!

U

(1-2)
./\/l; S
Assumption S implies that M is smooth.
1.2 The enumerative geometry of the moduli space of stable sheaves is quite rich, as
evidenced by Donaldson invariants arising as certain integrals of cohomology classes
on M. In the present paper, we will consider algebraic K—theory instead of cohomology,
a process which accounts for the adjective “deformed” in the representation-theoretic
structures explained in Section 1.6. Explicitly, we consider the following algebraic
K—theory groups with Q coefficients:
o0
(1-3) Knm = &b Ko(Me,) ®z Q.
c2=[((r=1)/2r)¢{]

Let m € Pic(S), and consider two copies M and M’ of the moduli space (1-1). These
two copies may be defined with respect to a different ¢; and stability condition H, but
we assume that the rank r of the sheaves parametrized by M and M’ is the same. In
this paper, we will mostly be concerned with the virtual vector bundle

Em

\

1
(1-4) Mx M

>
M M

(a straightforward generalization of the construction of Carlsson and Okounkov [7])
given by
(1-5) Em = RT(m) — Ry (RAm(U', U @ m)).

The R.#om is computed on M x M’ x S the notation U, U’ and m stands for the
pullback of the universal sheaf from M x S and M’ x S, respectively, as well as the
pullback of the line bundle m from S. Similarly, 7: M x M’ x S — M x M’ is the
standard projection, so &, is a complex of coherent sheaves on M x M’.

IWe require the universal sheaves on the various connected components of M to be constructed as in

[15, Section 5.9], which will ensure that they lift in a compatible way to the moduli spaces 31 and 33 of
Section 2.4.
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1.3 Any Schur functor applied to &,, gives rise to a K—theory class on M x M/,
which in turn induces an operator from Ky to K via the usual formalism of corre-
spondences. With this in mind, let us consider the following immediate generalization
of Carlsson and Okounkov [7, Equation (3)] and Carlsson, Nekrasov and Okounkov
[6, Equation (19)].

Definition 1.4 Consider the so-called Ext operator Ky Am, K given by
(1'6) Am :nl*(/\.gm'ﬂ;),

with 1 and m, as in (1-4). The pushforward and pullback maps are well-defined due
to the properness and smoothness of M and M’, respectively.

In (1-6), the symbol A&, denotes the total exterior power of £y,; as &, is in general a
complex of coherent sheaves, some explanation is in order. Specifically, consider
Em

1-7) /\'( .

) = X Hrkenl € Kuael ')

k=0
where the right-hand side is the power series expansion of a rational function in 7; see
Section 3.1 for details. Then the quantity A*&,, in (1-6) denotes the # = 1 specialization
of (1-7). If this specialization is not well-defined, then all the results in Sections 1.6
and 1.9 hold with m replaced by m /¢, and with all formulas being equalities of rational
functions in #; see Section 3.1 for details.

Example 1.5 Let M = M’ and m = Og/t, with ¢ being a formal parameter. Then
Assumption S implies that £p¢ is locally free (up to a constant sheaf) and that

5(95|A =~ Tanp,,

where A C M x M’ denotes the diagonal. By a simple computation involving corre-
spondences, the isomorphism above implies that

Ti(Adog/e) = (=) x(M. A Tany)
k>0
(up to a constant rational function in #). The right-hand side is the x;—genus of the
moduli space M, as considered for example in Géttsche and Kool [10].

1.6 In the present paper, we will seek to determine the Ext operator 4,, using the
representation-theoretic properties of the vector space K . To this end, we need
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to make K into a representation of an appropriate algebra which is “big” enough,
in order to constrain the operator A, as much as possible. A candidate for such an
algebra is A,, namely a particular integral form of the deformed W —algebra of type gl,
(initially defined in Awata, Kubo, Odake and Shiraishi [1] and Feigin and Frenkel [8]).
The main purpose of our work in [15; 17; 16] is to construct an action A, ~ Kaq; we
will recall the construction in Section 2, but let us summarize the main idea here. In
[17, Section 6.7], we construct certain geometric operators

(1-8) K Dk K s forall (n,k)€Z x N,

Under Assumptions A and S, we show in [16, Theorem 4.15] that the operators W), ;.
satisfy the quadratic commutation relations developed in [1] and [8]; see (2-28) for the
specific form of these relations in our language. In [17, Theorem 6.9], we further show
that W, = 0 for all n € Z and k > r, which tautologically implies that the operators
(1-8) yield an action A, ~ K. Write

(1-9) q =[ws] € K5 := Ko(S) ®z Q.

Given two copies M and M’ of the moduli space of stable sheaves, each with its own
universal sheaf I/ and U, respectively, we may write

(1-10) u=detd and u' =detld

for the determinant line bundles on M x S and M’ x S, respectively. We set

r

m-u

(1-11) y

= qru/’
which is the class of a line bundle on M x M’ x S (it is implicit that m and ¢ are
pulled back from S). Our main result, which will be proved in Section 3, is:

Theorem 1.7 We have the following interaction between the Ext operator (1-6) and
the generators (1-8) of the W —algebra action:

(1-12) AnWie(x)(1 —x) =mka(xy)Am(1 - ik),
q

where Wi (x) =),z Wi /x". The series coefficients of the two sides of (1-12) are
maps Ky — Knixs which arise from certain correspondences in K yix p/ xS -

Remark See Section 2.1 for a review of correspondences as K—theoretic operators.
In particular, the composition of operators depends on which of A,, and Wy (x) is on
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the left of the other:

W, i A, xId
AWy it Ko =5 Kpprss —— K pixs

A W,
Wk Am: Ko = K —5 Kpxs-

The expressions above are actually given by certain correspondences in Ky x a1/ xS -
Then the factors ¢ and y on the right-hand side of (1-12) indicate multiplication of the
aforementioned correspondences by various powers of the line bundles (1-9) and (1-11).

1.8 A major motivation for the study of the Ext operator 4,, stems from mathematical
physics: as explained in Carlsson, Nekrasov and Okounkov [6], the operator A, encodes
the contribution of bifundamental matter to partition functions of 5d supersymmetric
gauge theory on the algebraic surface .S times a circle. Moreover, the deformed W -
algebra A, encodes symmetries of Toda conformal field theory. In this language,
(1-12) becomes a mathematical manifestation of the Alday—Gaiotto-Tachikawa (AGT)
correspondence between gauge theory and conformal field theory, by describing the Ext
operator A, in terms of its commutation with W—algebra generators. To the author’s
knowledge, the present paper is the first mathematical treatment of AGT over general
algebraic surfaces in rank » > 1 (the reference [6] used different techniques from ours
to describe the Ext operator in the r = 1 case).

However, we note that formulas (1-12) are not enough to completely determine A, for
a general smooth projective surface S, and one should instead work with a deformed
vertex operator algebra which properly contains several deformed W —algebras A,. In
the nondeformed case, a potential candidate for such a larger algebra was studied in
Feigin and Gukov [9], where the authors expect that it contains operators which modify
sheaves on S along entire curves, on top of our operators W, ; which modify sheaves
at individual points. While we give a complete algebrogeometric description of the
latter operators, we do not have such a description for the former operators. Once such
a description is available, we hope that one can extend Theorem 1.7 to a bigger vertex
operator algebra properly containing A,.

There is a situation where formulas (1-12) do indeed determine the Ext operator A4,
completely: this corresponds to taking S = A2, replacing M by the moduli space of
framed rank r sheaves on the projective plane, and working with torus equivariant
K—theory; see Section 4.1 for details. In this particular case, we showed in [14] that
K\ is isomorphic to the universal Verma module of A,. Theorem 1.7 holds in the
situation at hand, and we will show in Theorem 4.5 that our formulas completely
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determine the Ext operator A4,,. This precisely yields the AGT correspondence for 5d
supersymmetric gauge theory on A2 x S'!; see for instance Braverman, Finkelberg and
Nakajima [4], Bruzzo, Pedrini, Sala and Szabo [5], Maulik and Okounkov [12] and
Schiffmann and Vasserot [18] for the history of this correspondence in mathematical
language.

1.9 Alongside the operators (1-8), we constructed in [16, Theorem 4.15] K—theory
lifts of the operators introduced by Grojnowski and Nakajima [11; 13] for r = 1, and

generalized by Baranovsky [2] for any r, in cohomology:

(1-13) Ka 2% Kyxs  forall ne Z\0.

These operators satisfy the Heisenberg commutation relation (2-29), and interact with
the deformed W —algebra generators according to relation (2-30).

Recall the line bundles ¢ and y of (1-9) and (1-11), respectively, and the footnote in
Theorem 1.7 to properly interpret compositions of the operators 4,, and P4,.

Theorem 1.10 We have the following interaction between the Ext operator (1-6) and
the Heisenberg operators P+, for alln > 0:

(1-14) AmP_p — P_yApy" = Ap(1—y"),
(1-15) AmPp— PuAmy™ = Am(y™" —q"").

In A,, the series W, (x) matches the normal-ordered exponential of the generating
series of the P,; see Theorem 2.8. With this in mind, it is straightforward to show that
the k = r case of Theorem 1.7 follows from Theorem 1.10.

For any o € Kg, we will write P,{a} for the composition

multiplication by proj} (c) proj; s

Py,
Polay: Ky — Kxs — K,

Knixs

where proj; and proj, are the projections from M x .S to M and S, respectively. Let

g1 and g, denote the Chern roots of the cotangent bundle Qg Any symmetric Laurent

polynomial in g and g, gives rise to a well-defined element of K, via
q1+¢92=[Qg] and ¢ =q19> =[ws].

Define
o0

(1-16) D = Am exp[z%{w}},

— [n]q,[n]g,

where [n]y = 1 + x +--- 4+ x"~1. The expression in curly brackets is an element of
K g because [n]4, [1]y, is a unit in the ring Kg.
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Remark To see that [n]y, [1],, is a unit in the ring K, since the Chern character
gives us an isomorphism Kg =~ A4*(S,Q), we have ¢; + ¢, = [5219] €2+ N and
g =[ws] € 1+N, where N' C K g denotes the nilradical. Therefore [n],, 1], € n% + N,
and is thus invertible in the ring Kg.

Corollary 1.11 Formulas (1-12), (1-14) and (1-15) imply

(1-17) [CIDka(x)—mka(xy)CDm](l—qx—k) =0,
(1-18) O Pin — Pin®my ™" = £ (yT" —g*™)
for all k,n > 0. An operator ®,, satisfying (1-17) and (1-18) is called a vertex

operator.
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2 The moduli space of sheaves

2.1 Throughout the present paper, we will work with smooth projective varieties over
the field C. For such varieties X, we let

Ky = Ko(X)®zQ

be the Grothendieck group of the category of coherent sheaves on X, with scalars
extended to Q. Derived tensor product yields a ring structure on Ky, and we have
pullback and pushforward maps for any proper l.c.i. morphism X — Y.

Definition 2.2 Given smooth projective varieties X and Y, any class I' € Kxyxy
(called a “correspondence” in this setup) defines an operator

v . .
2-1) Ky —> Kx. Wr = projy, (T - projy).

where projy, projy denote the projection maps from X x Y to X and Y, respectively.

The composition of operators (2-1) can also be described as a correspondence

(2—2) \IJF o \IJI‘/ = \IJIWI KZ — KX

Geometry & Topology, Volume 27 (2023)



3068 Andrei Negut

forany I' € Kyxy and I € Ky 7, where

(2-3) I = projx x 2 (Proj¥ .y (T) @ projy, 2 (1)),

where projy .y, Projy x z and projy > are the standard projections from X x Y x Z
to X xY,Y xZ and X x Z. Throughout the present paper, all operators Ky — Ky
arise from explicit correspondences. While we will use the language of composition of
operators for convenience, what is really happening behind the scenes is composition
of correspondences under the operation (I', I'') > I'” of (2-3).

2.3 In Section 1.6, we referred to various operators Ky — K xs as defining an
action of a certain algebra on K ¢, and we will now explain the meaning of this notion.
Given two arbitrary homomorphisms (of abelian groups)

(2-4) K 25 K,

their “product” xy| is defined as the composition

y xxIdg Idp XA*
xXY|at Km— Kypsxs —> Kuxsxs —> Kaxs

where S 25 S x S is the diagonal. It is easy to check that (xy|a)z|a = x(¥z|A)|A»
hence the aforementioned notion of product is associative, and it makes sense to define
X1 -+ Xp|a for arbitrarily many operators X1, ..., Xn: Ky = Kyxs-

Similarly, given two operators (2-4), we may define their commutator

K./\/l M KMXSXS

as the difference of the two compositions

y xxIdg
Kyt — Kpxs — Kvixsxs,

X yxIdg Idpq Xswap™
Km — Kpxs = Kyxsxs —————> Kuxsxss

where swap: S xS — § x § is the permutation of the two factors. In all cases studied
in the present paper, we will have?

[x, y] = Ax(2)

for some K q —> K rixs Which is uniquely determined (the diagonal embedding A
is injective because it has a left inverse), and which will be denoted by z = [X, J]red-
We leave it as an exercise to the interested reader to prove that the commutator satisfies

2Here we abuse notation by writing A instead of (Idaq x A)x for the diagonal map K MxS = Kamxsxs-
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the Leibniz rule in the form [xy|A, Zlied = X[V, Z]red|A + [X, Z]red V| A, and the Jacobi
identity in the form [[x, Vlted, z]red + [[y, Zted, x]red + [[Z, Xreds y]red =0.

+1
2

sending ¢ and ¢, to the Chern roots of the cotangent bundle of .S (therefore, ¢ = q1¢»

Finally, we consider the ring homomorphism K = Z[qfEl ,qF1Y™ — Kg given by
goes to the class of the canonical line bundle). We will often abuse notation, and write
41,492, q for the images of the indeterminates in the ring Kg. For any A € K and any
operator (2-4), we may define their product as the composition

x Id o X (multiplication by A)
)\'XIKM—>KMX5 M

KMXSv

where we identify A € K with its image in Kg. With this in mind, the ring Kg can be
thought of as the “ring of constants” for the algebra of operators (2-4).

2.4 Recall the universal sheaf (1-2), and consider the derived scheme
(2-5) 31 =PuxsW) > M xS.

Since U is isomorphic to a quotient /W of vector bundles on M x S (Proposition 2.2
of [15]), the projectivization in (2-5) is defined as the derived zero locus of a section
of a vector bundle on the projective bundle Prxs()V). However, it was shown in
[15, Proposition 2.10] that under Assumption S, the derived zero locus is actually a
smooth scheme 0o
31 = | | de+ier
e=[((r=1)/2r)c{]

whose connected components are given by
(2-6) 3c+1.c = {(Fet1.Fe) such that Foq g Cx Fe for some x € S} C Moy X Mg,

and 7' Cx F means that 7' C F and the quotient F/F’ is isomorphic to the length
one skyscraper sheaf at the point x € S. This scheme comes with projection maps

Bet1,c
2-7) 7 lPSK
MC+1 S MC

More generally, we defined a derived scheme 35 in [17, Definition 4.17], which was
shown (under Assumption S, in [17, Proposition 4.21]) to be a smooth scheme

o0

35 = I_l 3;+2,c’
e=[((r—1)/2r)c]
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whose connected components are given by
(2-8) 3;+2’c ={(Fet+2 Cx Feq1 Cx Fe) forsome x € S} C Meyo X Mey1 X Me.
This scheme is equipped with projection maps as in (2-9) below, but we observe that

the rhombus is not derived Cartesian (and this is key to our construction):

3;+2x
S
(2-9) Bet2,e41 et1,e

;i;;g\\x (//;i;;s

Mey1 xS

Note that all of the maps in the diagram above are proper, l.c.i. morphisms. Define

oo

(2-10) 3, = | | 3% e
e=[((r=1)/2r)c{]

whose connected components are given by derived fiber products

(2-11) 3;+n’c=3;+n’c+n_2 X oo X 3;+2’c—>./\/lc+,,x---x/\/lc.
3('+n—l.c+n—2 3(7+2,c+1

While 3;, is a derived scheme, we note that its closed points are all of the form
(2-12) 3;+n’c ={(F¢+n, ..., Fc) sheaves with Fo4, Cx --- Cx Fc for some x € S}.

Therefore, we have the following projection maps, which only remember the smallest
and the largest sheaf in a flag (2-12):

3;+n¢
(2-13) 7 lpsx
Mc-i—n S MC

(the notation generalizes (2-7)). In diagram (2-13), the maps p4 are l.c.i. morphisms,
and the maps pi X pg are proper (they inherit these properties from the maps in (2-9)).

Finally, we consider the line bundles Ly, ..., £, on 3;,, whose fibers are given by
(2-14) Lil(FesmsenFe) = Fetn—ix/ Fetn—i+1,x

on the connected component 3; tn.e C 35
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2.5 Using the derived scheme (2-11) and the maps (2-13), define for all n, k € N

Ly _
2-15) K =5 Kpiws. Lug = (D" (g x ps)«(Lh - p¥),
Uy (_l)rn-i-k—lun rk
@16) Ko =% Kxs. Unke == oy (=X ps)e| Gr P} ).

where Q@ = L1 --- L, and u is the determinant of the universal sheaf on M x S, as in
(1-10).3 Implicit in the definitions (2-15) and (2-16) is that we define the operators
therein for all components M, of the moduli space M. We also set

(2-17) Lno=Uy0=38) and Log=Uss =65

Finally, consider for all k£ € N LI 0 the operators

pullback multiplication by Ay

(2-18) Ej: K K pnixs Kpxs.

Since U =~ V/W is a coherent sheaf of projective dimension one on M x S (see
[15, Proposition 2.2]), the class AK1{ in (2-18) is defined by setting

(2-19) a4 :ﬁ
&)=

and picking out the coefficient of z=% when expanding in negative powers of z. The
reason for our notation for the operators (2-15), (2-16) and (2-18) is that these three
operators are respectively lower triangular, upper triangular, and diagonal with respect
to the grading on K, by the second Chern class; see (1-3).

Definition 2.6 [17, Section 6.7] For any (n, k) € Z x N, consider the operators
Nno—ni1=n

(2-20) Wn,k = Z q(k—l)nz ' Lnl,kl Eko Unz,kz
ko+ky +hka=k A

as ko, k1, ko, n1,n, run over N LI 0 (recall the convention (2-17)).

Note that (2-20) is an infinite sum, but its action on K », is well-defined because the
operators L, ;. (resp. U, ) increase (resp. decrease) the ¢, of stable sheaves by n, and
Bogomolov’s inequality ensures that the moduli space of stable sheaves is empty if ¢,
is small enough.

3Note that u parametrizes the determinant of any one of the sheaves Fe4y, ..., Fe in a flag (2-12), since
these sheaves have canonically isomorphic determinants; see Proposition 3.4.
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2.7 Similarly with (2-15) and (2-16), for all » € N we have the operators

n—1

P_, q’[
2-21) Ky — Knxs:  Pon = (P4 X ps)« ( X pi),
i=0 "

H_,
(2-22) Km— Kuxs. Hop=(pyxps)s(pL).
n—1

P, qiﬁ
(2-23) Ky —— Kuxs.  Po=(=D)"u"(p-x ps)*( E Q’Lnn_i 'Pi)’
i=0

H, _
(2-24) Km— Kuxs. Hp=(D""u"(p— x ps)«(Q7" - pY).

As a consequence of [17, formulas (2.15) and (5.18)—(5.21)], the operators Hy, are to
the operators P+, as complete symmetric functions are to power sum functions

o o
H:i:n P:I:n
(2-25) En = exp( E_ nzi”)

or, explicitly,

A

Hy = proj7,
where proj; : M x § — M is the usual projection, and
Hyy = Pyy,
Hiy = 5(P11 Pii|a + Pi2),
Hiy = ¢(P+1 Py Piy|a +3Psy Piala +2P13),

and so on.

Theorem 2.8 [17, Theorem 6.9] The operators (2-20) satisty

Np—ni1=n

(2-26) Whr =u Z H_p, Hy,| forall neZ,
ny,ny=0 A

(2-27) Wyk =0 forall k >r.

2.9 We will now present the interaction of the operators (2-20), (2-21) and (2-23).
Recall the commutator construction from Section 2.3.

The following theorem was stated in [17, Theorem 3.13 and Proposition 3.15] and
proved in [16, Theorem 4.15] under Assumption S.
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Theorem 2.10 We have the following formulas for alln,n’ € Z and k, k' € N:

m/l<m’[l'
min(/,!")<min(k,k’)
9 /5171/
(2-28) [Wn,k’ Wn’,k’] = A*( Z C:an’rjk,k’ (q1.92) Wm,le’,l’ )a
k+k/=I+1 A
m+m’'=n+n’
0 if sign(n) = sign(n’),

(2-29) [Py, Pu] = A { .
e * 89 ynlnlg, Mg, [rlgn - proji, ifn’ <0 <n,

_ st
(2-30)  [Wy i, Panl = Aw(Elnlg, [nlg [k 1gn g™ K% - Wiy ).

4 4
where the coefficients cZ’n’/" klkl, (91, 92) € Ks were computed algorithmically in [17].
They are certain universal symmetric Laurent polynomials in q; and q>.

Indeed, we show in [17, Theorem 3.13] that (2-28) is equivalent to the defining relation in
the deformed W -algebra A4, (with A replaced by (1—¢1)(1—g3)). Similarly, relation
(2-29) is the defining relation in the deformed Heisenberg algebra. As we explained in
[17, Definition 5.2 and formulas (5.20)—(5.21)] and proved in [16, Theorem 4.15], the
fact that the operators (2-20), (2-21) and (2-23) satisfy the relations in Theorem 2.10
is precisely what we mean when we say that the deformed W -algebra A, and the
deformed Heisenberg algebra act on the groups K 4.

2.11 Let us consider the operators of Section 2.5 and form the generating series

(2-31) La()=)  —"% and Un(y)=) —".
= &) i =)
In other words, these power series are considered as operators
Lu(») 1 1 x
2 s [1], 1009 = emron (i 1)
M MxS | n(y) = (p+ ps)*(1 o/ ? )
Un(y) 1 _ (_1)rnun Q_r *
Km ——= Kpmxs [[;]] Un(y) = W(P— X P§)x =G/ P+)

We will also consider the operators

E(y) : KM pullback KMXS multiplication by A® U/ y) KMXS [[%H ‘
Furthermore, we will consider the generating series
(2-32) Lexy) =1+ La()x" and Ulx,y) =1+ ’;ny :
n=1 n=1
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and also set

o0 Wn
(2-33) We(x)= Y x,;k,
(2-34) W) =1+ W; ,Ex).
k=1

The definition of the W —algebra generators in (2-20) is equivalent to
(2-35) W(x, yDx) = L(x, yDx) E(yDx)U(xq, yDx)|a,

where Dy is the g—difference operator in the variable x, ie Dy (f(x)) = f(xq). In
formula (2-35), we place all powers of D, to the right (resp. left) of all powers of x
when writing down the power series L(x, yDy) (resp. U(xq, yDx)). In terms of
generating series, formula (2-30) reads

(2-36) (Wi (x). Pan] = A (g, [1]gs[Klgn g™ 0L xEM W ().

2.12 Given a rational function F(z), whose set of simple poles is partitioned into two
disjoint sets P; LI P, (which may be empty), we will write

~ FG) F(2)
em [ = TResPe-Yrg S

CcEPy CEP>

The first equality is a definition, and the second equality is the residue theorem. If
F(zy,...,zy) is arational function with simple poles of the form z; = ¢ and z; = yz;
for various ¢ € Py U'P, and various scalars y in some set Q, then we set

(2-38) F(zy,...,zy)

/7;1 <Z1 <=z, <Py
as the result of the n—step process which starts with F(zy,...,z,)/z1 - zy, and at
the i™ step replaces a rational function in z;, .. ., z, by the sum of its residues of the
form z; = cyy -+ y;—1 for various ¢ € Py and yq,...,yi—1 € QU {1}. Just like in
(2-37), the residue theorem implies that the answer is the same as (—1)" times the
result of the n—step process which starts with F(zy, ..., z,)/z1 -+~ zn, and at the i " step
replaces a rational function in zy, ..., z,4+1—; by the sum of its residues of the form
Zp+1—i =CY1 - Yi—1 for various c € P, and yy,...,Yi—1 € QU {1}.
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Proposition 2.13 [17, following the proof of Proposition 5.12] We have the following
formulas for the maps (2-13):

(2'39) (P+XPS)*V(£1v---v£n)
r(zy, .. zn) 1 /\'(%)

. / i=1
z z Zj
{0,00}UP=<z; <<z <U (1 — iq) e (1 _ ) I1 é‘(_j)
Z1 Zn—-1/ 1<i<j<n \Zi

(2-40)  (p—x ps)«r(Ly.....Ln)

r(z1y...s2n) ﬁ /\'(—Z)

B / i=1 Zi
z z Z\
U=<zp=<-+=<z1=<{0,00}UP (1 — iq) - (1 — nd ) 1_[ é‘(_j)
Z1 Zn—1/ 1<i<j<n Zi

where )
(1 -xq1)(1 —xq>)
§(x) = € Ks(x)
(I-x)(1—xq)
andr(zy,...,zy) is a rational function with coefficients in (p+ X ps)* (K ypyxs) whose

poles are all of the form z; = ¢, where ¢ € {0, co} LI P for some finite set P.

Note that the integrands in (2-39)—(2-40) have poles when z; equals ¢! ° 0 times one
of the Chern roots of /. Thus, the location of the symbol I/ in the subscripts of the
integrals (2-39)—(2-40) indicates whether these poles are thought to lie in the set P; or
P, for the sake of the notation (2-37).

3 Computing the Ext operator

3.1 To properly define the Ext operator (1-6), note that the complex &, of (1-4) can
be written as a difference V; — V5, of vector bundles. Then we define

A-(ﬁ) S oAy
t k=0

. gm
(3-1) N (T) = (VZ) - rank 1V
/\.

> (=) AR Y]
k=0

and interpret it as a rational function in ¢, with coefficients in K y(x 1. Strictly speaking,
the object A°Ey, in (1-6) refers to the specialization of this rational function at f = 1. If
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this specialization is not well-defined, ie if

rank Vo

> (DA Y]

k=0
is not a unit in K y(x v, then we employ the following artifice: replace m by m/¢ in
formulas (1-11), (1-12), (1-17) and throughout the current section. Once one does this,
our main Theorems 1.7, 1.10 and Corollary 1.11 will be equalities of operator-valued
rational functions in . Moreover, we will often use the notation

/\'(ZL/{) instead of A® (UV1)

for any coherent sheaf I/ (all our coherent sheaves have finite projective dimension).

3.2 The main goal of the present section is to compute the commutation relations
between the Ext operator A,,: Ky — Ky of (1-6) and the operators

(3-2) Wn,k’ Piy: Ky — Kaxs

of (2-20), (2-21) and (2-23) for all n € Z and n’, k € N. One must be careful what one
means by “commutation relation”. While the operator

. A P
PinAm unambiguously refers to Ky —2> K —2% K vixs,

P A x1d
Am Pin henceforth refers to Ko == Krxs 255 K vixss

and analogously for W, ; instead of Pi,. As opposed to the operators (3-2), the
operator A, acts nontrivially between all components of the moduli space

(3-3) AmlE: Ky = K,

In principle, the moduli spaces of sheaves in the domain and codomain can correspond
to different choices of first Chern class and stability condition, but we always require
them to have the same rank r. Therefore, there are two universal sheaves

u U
and
Mx S M xS
of the same rank r, where M (resp. M’) is the union of the moduli spaces that appear

in the codomain (resp. domain) of (3-3). The determinants of these universal sheaves
are denoted by u and u/, respectively, as in (1-10).
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3.3 We must explain how to make sense of the symbols ¢, m, y in (1-12), (1-14) and
(1-15). In the language of correspondences from Section 2.1, the operators

K = Kamxs

studied in the present paper (such as the compositions W, y A, or P+, Ap, that appear
in (1-12), (1-14) and (1-15)) arise from K-theory classes I' on M x M’ x S. Then
the product ¢z refers to the operator corresponding to the class projg(¢) - ', while the
product yz refers to the operator corresponding to the class

o (M Projy, g (detld)
proj (%) - ML T
g/  projy g (dettd’)

Projoqx.Ss Projp/x.s» Projs

where M x M’ x S

Mx S, M'x S, S are the projections.

Proposition 3.4 We have the equality of correspondences K, ., — Ky xs
(3-4) Py - (detUern) = (detUe) - P1y
for all ¢ € Z. Formula (3-4) also holds with P., replaced by W), . or H..

Equation (3-4) is best restated in the language of correspondences from Section 2.1. In
these terms, P4, is given by a K—theory class supported on the locus

C = {(Fetn Cnx Fe) forsome x € S} C Megn X M X S,

where F' C,x F means that 7/ C F and that 7/F is a length n sheaf supported
at x. Then (3-4) merely states that the universal sheaves U4, and U, have isomorphic
determinants when restricted to €. This is just the version “in families” of the well-
known statement that a codimension-2 modification of a torsion-free sheaf does not
change its determinant. As a consequence of Proposition 3.4, y of (1-11) will behave
just like a constant in all our computations, ie it will not matter where we insert y in
any product of operators among P+, Hi, and W, x.

3.5 Our main intersection-theoretic computation is the following:

Lemma 3.6 We have the following relations involving the Ext operator A,
(3-5) Am(H-p— H_py1) = y"(H-n — H_py1) Am,
(3-6) Am(Hy — Hyyy™") = (Huy ™" = Hym1q"y ™" 1) A

for alln € N. (Recall that Hy = proj}, where M x S Proji, M is the usual projection.)
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Proof Consider the following diagrams of spaces and arrows, for all ¢, ¢’ € Z:
Me xS x M

Idxpsxp,T

M % 3;’+n,c/
1d
(3-7) y \
Me X Mergn X S 3Z"+n,c’
/ \ S eps M
M:x S Mergpn X S M,
MC X S X Mc/
qu_xpigxld
3; c—n X MC’
pl_xId
(3-8) / \
My X Mer
p+XpS k / \
MC X S Mc—n MC/

Recall that H_, = (p+ X ps)«pX, in the notation of (2-13). Then the rule for compo-
sition of correspondences in (2-2) gives us the formulas

(3-9) AmH-p = (1 x1dg)«(Ty - 75).
(3-10) H_pAm = (] x1dg)«(Yy - 75°),
where, in the notation of (3-7) and (3-8),

(3-11) Ty = Idxpg x p-)«[A"(Ad x p1)*Em)].
(3-12) T, = (P} x plg x1d)«[A*((pL x 1d)*Ep) ]

are certain classes on M, x S x M., which we will now compute.

Claim 3.7 In K—-theory we have the equalities

G-13)  (Idxp4)*Em = dxp-)"Em+ (L oot i)(ld xps)*(bﬂ)
Ly Ly q
on M¢ % 3%, ..» where U denotes the universal sheaf on M. x S, and

(3-14) (P x1d)*Em = (Pl X 1) *Ep — (L1 + -+ + L) (plg x ID* WU m)

on 3% ._, x M, where U’ denotes the universal sheaf on M x S.
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Proof To prove (3-13), consider the diagram

Mc X 3;/_'_"’6/ X S

Id X p4 xIdg Idxp_xIds

MeXMergn xS P Me X My xS
(3-15)
p M x 3;’+n,c’ P
y %
Me X Meryp Me X M

where the vertical maps are the natural projections (we use the notation p for all of

them). We have the short exact sequence of sheaves over 37, ., xS
(3-16) 0—>U, > U —>Tu(Ly“®" - “®" Ly) —> 0,
where U/, = (p} x Idg)(universal sheaf), while Ly, ..., L, denote the tautological

line bundles on 3;, ine that were defined in (2-14), and
(3-17) U 30 iner = Bersne XS

is the graph of the map pg. The notation “@®” in (3-16) refers to a coherent sheaf which
is filtered by the line bundles L1, ..., £,; since we work in K—theory, we henceforth
make no distinction between this coherent sheaf and its associated graded object. We
may also pull back the short exact sequence (3-16) to M x 3¢, ner X S. Now apply the
functor R5#om(—, U ® m) to the short exact sequence (3-16), where U/ is the universal
sheaf pulled back from M, x S’

n
RAom(Uy . U ® m) = RAomU_ . URm)— %R%am((’)p, U m).
i=1 "

Now recall that the line bundles £; come from 3 o n.el

and so they are unaffected by
the derived pushforward map px,

n
pRAOmUY . U R m) = pxRAomU_ . URm) = Ei xR Aom(Or, U @ m).
i=1""
Recalling (1-5), the formula above reads

n
(3-18) (Idxpy)*Em = AdXp ) Em+ Y %,O*Ra“%m((’)p,u ® m).
l

i=1
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Then (3-13) follows from the fact that
1d

,_/H \ \
(3-19)  psRHAom(Op, U @ m) = ps o T (R#om(O, I'(U @ m))) =Um|r  T"O.

(The first equality is coherent duality, and the second equality holds for any closed
embedding I'.) The right-hand side of (3-19) matches (Id x pg)* (Um/q) because the
map I": 37 — 37, xS is obtained by base change from the diagonal map S — S x §,
and the ratio of dualizing objects on S and S x S is precisely ¢ = [ws].

As for (3-14), consider the diagram

3;,c—n XM xS

Pl xldxIdg ! xId x Idg

MeXx My xS o Me—p X My xS
(3-20)

L]
c,c—Hn

o 3 X M o
pq_/ld Km)

Me x M Me—pn X M¢r
and consider the following analogue of (3-16):
0> U >U-—>TL(L“®" - “D" Ly) = 0,

where Uy = (p'%L xIdg) (@), and T’ denotes the graph of the map pg: 3%, , — S.

Let us apply the functor R#om(U’, — ® m) to the short exact sequence above:

n
RAmU' U@ m) = RAmU' Uy @ m) + Y Li @ RAmU', Ops @ m).

i=1

Let us apply px to the equality above, and recall the definition of &,, in (1-5):

n
(Pl X 1d)*Em = (ply x1)*Em = Y L ® pxRAomU', O @ m).
i=1
By adjunction, we have

Id

] *

—N—
pxRAom(U', Or @ m) = py o T RoAomU' |1, pg m) = (L{/Vm)|p/. a
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Armed with (3-13) and (3-14), we may rewrite (3-11) and (3-12) as

Y, = [AEm]- (Id X pg XP—)*[®/\.(ZZ:Z):|’

i=1

n

Y, = [A"Em]- (Pl x plg X Id)*[(g) A (—EZ’;”)]

i=1

Henceforth, “U, 4" in the subscript of the integrals are simply shorthand for “the set
of Chern roots of U, U"”, respectively, and Proposition 2.13 implies

noA UM/ (ziq))
il;ll ~ U/ zi)

(3-21) Tn = [A.gm] n—1
U=zg<-=<z1<{0,003uut [ (1 =(qziv1/zi) [1 §(zj/zi)

i=1 i<j

’

n A (zig/U)
i=1 A*(zim/U')

(3-22) Y, =[AEm] — :
{(0,000ut/ <zg<=<zi<u || (1 =(qziv1/2) T1 ¢(zj/z1)

i=1 i<j
Consider the rational function with coefficients in K. xsxar,., given by

lﬂ[ N (Um/(ziq))

i=1 AWU'/z)

(3-23) Iy(z1,...,2z0) = — .
[T —=(qzit1/2:)) T1 $(zi/2)
i=1 i<j
One may then rewrite (3-21) and (3-22) as
Tn:[/\.gm] / In(Zl,...,Zn),
U’ <zp<-<z1=<{0,00L1U
Y, = [AEm] / In(zim, ... ,zgm) -y ",

{0,00} U U’ <z, <-+-<z1<U

Changing the variables z; — z; /m in the second formula, we conclude that

(3-24) Y, =Y. -y" = [A‘gm][ [ I— / 1,,].

U’ <z <-<z1=<{0,00}LU {0,00 U <zp<-<2z1<U

The only difference between the two integrals is the location of the poles {0, oo} with
respect to the variables zy, ..., z,. Therefore, we conclude that the difference above
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picks up the residues at 0 and oo in the various variables. However, all such residues
vanish, except for

Ln(z1, ...,
(3-25) Res nCLomn) gy o),
z1=00 Z1
Ln(z1, ...,
(3-26) Res Gz o
Zn=0 Zn

Therefore, formula (3-24) implies that
(3-27) Y=Y,y ="yt — T,;_l ylt

which, as an equality of classes on M. x S x M, precisely encodes (3-5). Let us run
the analogous computation for (3-6) (we will recycle all of our notation):

MCXSXMC/

ldxps XP+T

MeX 3% oy
(3-28) Idy
Mc X MC’—n X S 3:./’6/_,[
/ \ AS A
M x S Meer—py X S M
Mex S XM
pLxplgxId
;—{—n,c X MC’
p’JrXId
3:’+n,c Meeqn X Mg
MC‘ x S Mc-l—n Mc’

Recall that Hy = (=1)""u" (p— x ps)«(Q™" - p7), in the notation of (2-13). Then the
rule for composition of correspondences in (2-2) gives us

(3-30) AmHy = (1 x1dg) (Y - 75),
(3-31) Hy A = (7[; XIds)*(T,/l'ﬂé*),
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where
(3-32) Yo = (=D 1dxps x p1)«[ Q7" A" ((Ad x p-)*Em)].
(3-33) Y, = (—1)"u"(pL x pls x1d)[ Q7" - A*((p)y. x 1d)*Em) |

are certain classes on M, x § x M. As a consequence of (3-13) and (3-14), which
continue to hold as stated in the new setup, we may rewrite (3-32) and (3-33) as

Yo = (=D [AEm](Id X ps X P4 )« [Q" ® A (_Lﬁ)}

i=1

n
E,
Y;, = (=) U [N Em](pL x plg x 1d) [Q—r ® /\(,_m)i|
i=1
Therefore, Proposition 2.13 implies
n_—r 1 /\.(Ziq/ul)

(=D)™u"z77 2y il;ll/\'(um—/(ziq))

(3-34) Ty = [A°Ep] —
(0,000utt=zy=<-=zi <t || (1 =(qziv1/2)) T] §(z/zi)

i=1 i<j
(—1)r"un21_r...z;r - /\'(Z,—Wl/ul)
, . i=1 A(U/zi)
(3-35) Y. =[A"Em] —
U<zy<-<zi<fooojur [T (1= (qziv1/2)) 1 £(zj/2)
i=1 i<j

Consider the rational function with coefficients in K (. xsxar,., given by

(3-36) Iz, 2n) = — im1 A(UM/(zi9))
.Hl(l —(qzi+1/z0) [1 £(zj/2)
1= i<j

One may then rewrite (3-34) and (3-35) as

Y, = [/\°5m]/ Iy(z1,...,28),

{0,00 U<z, <<z <U’
—_— ., 2

U=<zp=<--=<z1=<{0,00}LIU’ q q

Changing the variables z; > z;q/m in the second formula, we conclude that
(3-37) Tn—T,/,-y_”z[/\°8m]|:/ In—/ In].
{0,00} U <zp<-<z1<U' U<zp<-<z1=<{0,00}ILL"
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The only difference between the two integrals is the location of the poles {0, co} with
respect to the variables z1, ..., z;. Therefore, we conclude that the difference above
picks up the residues at 0 and oo in the various variables. However, all such residues
vanish, except for

In(Zl,--"Zl’l) —
Res —— 22—y l.ln_l(Zl,---,Zn—l)v
z,=0 Zn

In(Zla"'ﬂzn)
Res ———————=—¢" - I,_1(z3,...,zn).
Z]=00 1

Therefore, formula (3-37) implies that
(3-38) Yo =Tpy " =Ty -y =Yy gy

which, as an equality of classes on M, x S x M, precisely encodes (3-6). O
3.8 We will now show how Lemma 3.6 allows us to prove Theorem 1.10.

Proof of Theorem 1.10 We will only prove (1-14), since (1-15) is analogous. We
will use formulas (2-25), which say that the H operators are to the P operators as
complete symmetric functions are to power sum functions. Then let us place (3-5) into
a generating series that goes over all n € N,

o0

(339 D AmHoa(" =" =) ()" = ()" ) HonAm.
n=0

n=0

If we write H_(z) for the power series (2-25) (with sign £ = —), then (3-39) reads
(3-40) AmH-_(2)(1—2) = H-(zy)(1 —y2)Am.

If P is an operator K; — K qxs which commutes with two line bundles £ and ¢’
(in the sense of Proposition 3.4, and the discussion after it), then

(3-41)  Aexp(P)exp({’)| 5 =exp(P)exp({)|,A <> AP+ Al' = PA+LA.
A A

(This claim uses the associativity of the operation x, y ~»> xy|a, as discussed in
Section 2.3.) With this in mind, formula (3-40) implies

X A e A
AnP_(2) =) = =P (zy)Am— ) V"' —.
o nz—n o nz

where P_(z) =) po | P—,/(nz""). Extracting the coefficient of z" yields precisely
equation (1-14). O
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3.9 Having proved Lemma 3.6, we will now perform the analogous computations for
the commutator of A, with the operators of Section 2.5.

Lemma 3.10 We have the following relations involving the Ext operator Ap:

(3-42)  AmLn(y) — AmLp—1(y)

=L, (Z)Am Ay (H)E(y")AmE(y)‘
m m m

yq - yq -
(3-43) Un(_)Am'V "—Un—l(—)Am'W e
m m

n—1
‘)/ s
A

-1
= AmUn(y) - E(fn—") AmE(rq)Un-

-q.
A

The two sides of (3-42) and (3-43) map Ky to K rxs[y~']. The symbol | applied
to any term that involves three of the series L, E, U means that we restrict a certain
operator K ny — K yxsxsxs[y~!] to the small diagonal.

Proof In order to prove (3-42), we will closely follow the proof of Lemma 3.6. With
the notation therein, one needs to replace (3-11) and (3-12) by

T,y =(Idxps x P—)*[ A ((d XP+)*5m)],

1
1—(y/Ln)

= (ply x pls x Id)*[ A ((pl x Id)*Sm)].

1
1=(/Ln)

(%)

into the right-hand sides of formulas (3-21) and (3-22). Therefore, the function
I,(z1,...,zyn) defined in (3-23) should be replaced by

This has the effect of inserting

In(z1,...,2n)
Iny(z1,....20) = m
It is easy to see that the nonzero residues of 7, are
Z?fgo %I,Zn) = _In—l,y(ZZ’ s Zn),s
Res Iny(z1,. .., Zn) _ N UmM/(yq)) ) In—1,yq4(z1. ..., Zn— 1)
S > R T e
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Therefore, the analogue of identity (3-27) is

1 A Um/(yq))
T”,Y_T;;,y/m'yn = n—l,y_T,;_lqu/m'Vn AU y)

This equality of classes on M, x .S x M, precisely underlies equality (3-42).

As for (3-43), we proceed analogously. One needs to replace (3-32) and (3-33) by

<1y -
Yo == G (1dxps x ””*[W'A ((tdxp-) 5’”)}’
(=D)"u" o’
’r_ ’ / o(/ ./ *
Tn—q(rT)n(p_XpS XId)* —1—y/£n/\((p+ XId) 5m) .

This has the effect of inserting

—1
1 ( Zn)

into the right-hand sides of formulas (3-34) and (3-35). Therefore, the function I,
defined in (3-36) should be replaced by

In(z1,. .., 2n)
g1~ y/zn)

It is easy to see that the nonzero residues of I, are

In,y(z1,. ..\ Zn) _ AU/ (vg) _In—l,yq(Zl’---’Zn—l)

In,y(Zl, ceyZn) =

Res =q ,
Zn=y Zn A UmM/(yq)) n—1
[T¢W/z)
i=1
I
Res mrClein) _ g,
Z1=0Q Zl

Therefore, the analogue of identity (3-38) is

N U(9)
=1y s wm (vq))

This equality of classes on M. x .S x M, precisely underlies equality (3-43). a

Tn,y_Tn,yq/m y = Tn—l,yq/m'q)/_n—H-

3.11 In all formulas below, whenever one encounters a product of several L, £, U
operators, one needs to place the symbol |a nexttoit,eg L(...)E(...)U(...)|a asin
(2-20). From now on, we will suppress the notation | o from our formulas for brevity.
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Proof of Theorem 1.7 In terms of the generating series (2-32), formulas (3-42) and
(3-43) take the form

(1—-x)A, L(x,y) = L(xy, %)Am —xL(xy, );n—q)E();q—q)AmE(y)_l,

-1
U(xy, M)Am(l - Z) = AnU(x,y)— 2E(M) AmE(y@U(x, yq).
m X X m

Change the variables x — x¢, y — y/q in the second equation, and multiply the first
equation by E(y) and the second equation by E(y/m). Thus we obtain

(1= 0L DEG) =L (37,2 ) dmE)
—xL(x)/, M)E(H)Am,
m m
E(l)U(qu, l)Am (1 — l) - E(l)AmU(xq, Z) L A EGYU . 7).
m m X m q X

Now let us replace the variable y by the symbol yD,, where D, denotes the g—
difference operator D, (f(x)) = f(xq). However, we make the following prescription:
in the first equation above, the Dy’s are placed to the right of all x’s, while in the
second equation, the Dy’s are placed to the left of all the x’s. We thus obtain

(1=x)AmL(x,yDx)E(yDx)

D D D
- (xy, %)AmE(ny)—xL(xy, . qu)E(y m"q)Am,

D D
_ AmE(ny)U(xq’yDX) — E(ymx)AmU(Xq’ yqx)x.

Now let us multiply the first equation on the right by U(gx, yDy) (with the Dy’s
placed to the left of all the x’s) and the second equation on the left by L(xy, yDyx/m)
(with the Dy ’s placed to the right of all the x’s):

(1=x)AmL(x,yDx)E(yDx)U(xq, yDx)

D
= L(xy, ymx)AmE(ny)U(x% yDy)

D D
—XL(XJ/’y xq)E(y xq)AmU(xquDX)
m m
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o )2

L(X% yD )AmE (yDx)U(xq, yDx)

D D D
—L(xy, ymx)E(ymx)AmU(xq, yqx)x.

The two terms in the right-hand sides of the above equations are pairwise equal to each

other (this is not manifestly obvious for the second term, because y differs from ygq,
but this is a consequence of commuting D, past x). We conclude that

(1=x)AmL(x,yDx) E(yDx)U(xq, yDx)

D D
= L(xy, ymx)E(ymx)U(xq% 4

Recalling the definition (2-35), this implies

Dx)Am(l—x).
m

(1—x)AmW(x, yDy) = W(xy, yZ’“)Am(l — ).

Taking the coefficient of (yD,)~* implies (1-12). In doing so, the right-most factor
1 —Xx changes into 1 —x/ ¢¥ due to the fact that the operators 1/ Di‘ must pass over it. O

3.12 Finally, we recall the operator ®,,: Ky — K defined in (1-16),
o0 _
Puf(¢"—Dg™"" }]
b, =4 exp[ — {— ,
" " ngl n [n]g,[nlg,
and let us translate (1-12), (1-14) and (1-15) into commutation relations involving ®,.
Proof of Corollary 1.11 Since P, commutes with P, for all n,n’ > 0, (1-15) implies
(1-18) when the sign is +. Let us now prove (1-18) when the sign is —. We write

®,, = A, - exp,

where exp is shorthand for

0 P, —1)g~"™
=P [2—{ Il 1l H

Then (1-14) reads

@p-exp L Ppy— Py Dpeexp Ly =Dy -exp (1 —p").
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The relation above will establish (1-18) for £ = — once we prove that
(3-44) [exp™!, P_p]=(1—g™)yexp .

If we take the logarithm of (3-44), it boils down to

(3-45) [p_n’ﬁ{w}] =1—qg ™.

n [n]q,[n]g,

Relation (3-45) is an equality of operators K — K r(xs (the right-hand side denotes
pullback multiplied by projg (1 —¢~"")), and it is proved as follows. Take equality
(2-29) of operators K g — K xsxs, multiply it by

(¢"—Dg™"

Al
(3-46) prof;(— . —) € K yixsxsS
n [n]ql [”]qz

projq2, projz

and then apply proj;,, to the result (above, we write M xS xS —— M xS, S
for the obvious projection maps). The outcome of this procedure is precisely (3-45).

Now let us prove (1-12) = (1-17). To do so, we must take formula (2-36) for &= = +
(which is a priori an equality of operators Ky — K yxsx.5), multiply it by (3-46) and
then apply proj;,, to the result. The resulting equality reads

Py ((g" =g ] _ (1—gk)x"
[Wk(’“)’T{ e 1l }]‘ n el

It is easy to show that [W, P] = ¢ W implies that exp(—P)W = exp(c) - W exp(—P)
as long as ¢ commutes with both W and P. Therefore, we infer that

S _ ,—nk\\n
exp ! Wi(x) = exp[ Z Uq%] Wi (x) exp ™!

n=1

1

= exp_1 Wi(x) =

k
LT () exp™
1—x

= Dpexp ! Wi(x)-(1—x) =P, Wi (x)exp ! -(1 — ik)
q
With this in mind, (1-12) and the fact that ®,, exp~! = 4,, imply that
mk Wi (xy)®,, exp ™! -(1 — ik) = @, Wi (x) exp™! -(1 — ik)
q q

Multiplying on the right with exp yields (1-17). |
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4 The Verma module

4.1 Let us now specialize to S = A2, and explain all the necessary modifications to
the constructions in the present paper; we refer the reader to [14, Section 3] for details.
From here on, let M be the moduli space parametrizing rank r torsion-free sheaves F
on P2, together with a trivialization along a fixed line oo C P2:

¢
M =A{F, Floo = OL}.

The c; of such sheaves is forced to be O, but c; is free to vary over the nonnegative
integers, and so the moduli space breaks up into connected components as before:

o0
M= [ M..
c=0
The space M is acted on by the torus 7 = C* x C* x (C*)", where the first two factors
act by scaling A2, and the latter r factors act on the framing ¢. Note that

KTt =2zlg' ¢F" uf' . uFh,

where ¢1,¢>,u1,...,u, are the standard elementary characters of the torus 7. We
1

A%
universal sheaf I/ is the equivariant constant ¥ = u - - - u,. Consider the group

note that ¢; and ¢, are the equivariant weights of 2 ,, and the determinant of the

o0
KM = @ K({'(Mc) ®Z[qftl,q;:l,uitl

c=0

w1 Q1. g2 11, )

.....

The main goal of loc. cit. was to define operators akin to (2-20), (2-21) and (2-23),
4-1) Wakr Pen s Ky — K

forall n € Z and k,n’ € N, and then show that these operators satisfy the relations in
the deformed W—algebra of type gl, (since S = A2, K = K xs naturally).

Definition 4.2 [14, Definition 2.28] Let g1, ¢>,u1,...,u, be formal symbols. The

universal Verma module My, .., isthe Q(q1.qg2,u1, ..., u,)—vector space with basis
4-2) Wnl,kl "'Wns,ks|®>
as the pairs (n;, k;) range over —N x {1, ..., r} and are ordered in nondecreasing order

of the slope n;/ k;. We make My, ... ,, into a deformed W —algebra module as follows.
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The action of an arbitrary generator W), ;. on the basis vector (4-2) is prescribed by the
commutation relations (2-28), together with the relations

Wyikl2)=0 if n>0o0rk>r,
Wox| D) =er(ui,...,u)|@) forall k,

where ej, denotes the k" elementary symmetric polynomial.

Theorem 4.3 [14, Theorem 3.12] We have an isomorphism of modules for the
deformed W —algebra of type gl, (the action on the left-hand side is given by (4-1))

(4‘3) KM = Mul,...,ur,

induced by sending the K —theory class of the structure sheaf of My C M to |@).

4.4 The Ext (respectively vertex) operator A4,, (respectively ®,,) for S = A? was
studied in [14, Section 4], where we obtained an analogue of Theorem 1.7 in the
case k = 1 (some coefficients in the formulas of loc. cit. differ from those of the
present paper, because their operator A,, differs from ours by an equivariant constant).
However, having only proved the case k£ = 1 in loc. cit. led to weaker formulas than
(1-12). Thus, the present paper strengthens the results of loc. cit.; see Remark 4.8
therein. Specifically, Corollary 1.11 completely determines the operator ®,, (hence
also A,,) in the case S = A2, due to Theorems 4.3 and 4.5.

Theorem 4.5 Given two Verma modules My, ... ,, and Mu/1

(up to constant multiple in qa, U, ... up ', ..., u’)) linear ma
p p q1.49 1 r p

u..» there is a unique

..........

D,y Mu/l,...,u; — Mul,...,ur

satistying (1-17) for all k > 1.

Proof The existence of such a linear map follows from the very fact that the operator
(1-16) satisfies (1-17). To show uniqueness, it is enough to prove (| ®,, |F) = 0
implies ®,, = 0, for any operator that satisfies the following relations for all n, k:

k
_ _ m _
(4-4) O Wiy ko= P W1 k-~ = Wy o @y =K = w1k P Y (+DE,

where m and y are certain nonzero constants.
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Claim 4.6 For any parameters u1, ..., u,, there exists a nondegenerate pairing

( N )
Mlll,...,ur ® Mul,...,ur — Q(QI ’ q2’ ul LI ur)
such that the adjoint of W, y is W_y, j for alln € Z and k € N.
Proof Using Theorem 4.3, the required pairing is provided by the equivariant Euler

characteristic pairing on K, (renormalized as in [14, Section 3.14]). The operators
W,k and W_,, ;. are adjoint with respect to this pairing [14, formula (3.39)]. a

Let us now complete the proof of Theorem 4.5. Because Verma modules are generated
by W, k acting on &, then we must show that (& |®,, |@) = 0 implies

4-5) (BIW_ns kg - Wen, ey Om Wn/l K W' ke, |@)=0

for all collections of indices (n;, k;), (n}.k}) € Z<o x {1,...,r}, ordered by slope
n ng n n
_5.5_ and _5...5_'
ey ks k! k!

/
J
we will prove formula (4-5) by induction on the nonpositive integer § = " n; 4+ ) n}.

The matrix coefficient (4-5) is nonzero only if the n; and the »’; are all nonpositive, so
We may assume that n, n; < 0 because Wy x| @) is a multiple of | @) for any k. The
base case § = 0 of the induction is simply the assumption (& | ®,, |2 ) = 0. As for the
induction step, let us iterate relation (4-4) to obtain

S, W, ;e W ’,

Wy - Wyt € span{ mVWWn' +eq,k) niter,k;
s oy

. ”n’l-l-s’l,ki"'[‘n}-i-s;,k;q)m»

where ¢1,...,&; € {0,1} are not all 0, and &',...,&; € {0, 1}. That means that the
left-hand side of (4-5) is a linear combination of

(Q | W—ns,ks T W—m ki cDmWn’l—i-sl,ki tee Wn’,+8t,k; |®>’
which is 0 by the induction hypothesis, because the ¢; are not all 0, and

(4-6) (DIWong ks Wenydo Wi e ;- Wt ) e, Pm | D).

1
The induction step will be complete once we show that (4-6) is 0. As a consequence of

(2-28), the product of W’s in (4-6) can be written as a linear combination of

" "

n
. 1 r
.o —_ << =
W—n//,k;/ W—n/{,k{/ with = =g
1 r
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and ) n =3 n; —) n;—) ¢ for degree reasons. If n}/ > 0, then the product of

W’s above annihilates (@& |. Thus, we may assume 7’/ < 0, in which case the fact that

Zn?:Zni—an—Zs; >Zn,~+2n;

(recall that n; < 0 by assumption, while &; € {0, 1}) means that we can apply the
induction hypothesis to conclude that (4-6) is 0. O

We note that the identification of A4, (in the case S = A?) with a vertex operator was
also achieved in [3], which computed relations (3-42) and (3-43) for n = 1 in the basis
of fixed points. This uniquely determines the operator A4,, due to certain features of
the Ding—Iohara—Miki algebra, but does not directly establish the connection with the
generating currents of the deformed W —algebra of gl,. From a geometric point of view,
this is because the Nakajima-type simple correspondences only describe the operators
L x and U; . As we have seen in Section 2.4, in order to define the operators L, x
and U, j for all n (with the ultimate goal of defining the W -algebra generators W,
in (2-20)), one needs to introduce the more complicated correspondences (2-11).
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Partially hyperbolic diffeomorphisms
homotopic to the identity in dimension 3, II:
Branching foliations
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We study 3—-dimensional partially hyperbolic diffeomorphisms that are homotopic to
the identity, focusing on the geometry and dynamics of Burago and Ivanov’s center
stable and center unstable branching foliations. This extends our previous study of
the true foliations that appear in the dynamically coherent case. We complete the
classification of such diffeomorphisms in Seifert fibered manifolds. In hyperbolic
manifolds, we show that any such diffeomorphism is either dynamically coherent and
has a power that is a discretized Anosov flow, or is of a new potential class called a
double translation.
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1 Introduction

A diffeomorphism f of a 3—manifold M is partially hyperbolic if it preserves a splitting
of the tangent bundle 7'M into three 1-dimensional subbundles

TM = ES®E°® E",

where the stable bundle E* is eventually contracted, the unstable bundle E" is eventually
expanded, and the center bundle E° is distorted less than the stable and unstable bundles
at each point. That is, for some n > 0 one has, at each x € M,

IDf" syl < 1.
IDf" | Eoeyll > 1.
IDf " Eseyll < IDf" [Ecoyll < IDf |Evx) -

From a geometric perspective, one can think of partial hyperbolicity as a generalization
of the discrete behavior of an Anosov flow. On a 3—manifold M, such a flow ® preserves
a splitting of the unit tangent bundle 7M into three 1-dimensional subbundles

TM =E*®TOP68 E",

where E® is eventually exponentially contracted, E" is eventually exponentially ex-
panded, and 7 ® is the tangent direction to the flow. After flowing for a fixed time, an
Anosov flow generates a partially hyperbolic diffeomorphism of a particularly simple
type, where the stable and unstable bundles are contracted uniformly, and the center
direction, which corresponds to 7' ®, is left undistorted. More generally, there are
examples of partially hyperbolic diffeomorphisms of the form f(x) = ®;(x)(x), where
® is a (topological) Anosov flow and 7: M — R~ is a positive continuous function;
the partially hyperbolic diffeomorphisms obtained in this way are called discretized
Anosov flows.

Geometry & Topology, Volume 27 (2023)
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A partially hyperbolic diffeomorphism is said to be dynamically coherent if there are
invariant foliations tangent to the center stable and center unstable bundles E€ & E*®
and E¢ @ E". Discretized Anosov flows are dynamically coherent, since their center
stable and center unstable bundles are uniquely integrable. On the other hand, we show
in [3] that large classes of dynamically coherent partially hyperbolic diffeomorphisms
must in fact be discretized Anosov flows:

Theorem 1.1 [3, Theorem A] Let f: M — M be a dynamically coherent partially
hyperbolic diffeomorphism on a closed Seifert fibered 3—manifold. If f is homotopic
to the identity, then some iterate is a discretized Anosov flow.

Theorem 1.2 [3, Theorem B] Let f: M — M be a dynamically coherent partially
hyperbolic diffeomorphism on a closed hyperbolic 3—manifold. Then some iterate is a
discretized Anosov flow.

The assumption of dynamical coherence is natural from a geometric perspective: the
way that an Anosov flow distorts its weak stable and weak unstable foliations is often
seen as the defining property of such a flow. In this light, the preceding results say
that on certain classes of manifolds, any diffeomorphism with a geometric structure
reminiscent to that of an Anosov flow must in fact come from one.

This assumption is much less satisfying from a dynamical perspective, however. Here
the interest in partial hyperbolicity stems from its appearance as a generic consequence
of dynamical conditions, such as stable ergodicity and robust transitivity (see Bonatti,
Diaz and Viana [6]), and one is not provided with any invariant foliations. Although
dynamical coherence was once generally expected, a number of recent results (see
for example Barthelmé, Fenley, Frankel and Potrie [4], Bonatti, Gogolev, Hammerlindl
and Potrie [7] and Rodriguez Hertz, Rodriguez Hertz and Ures [31]) have shattered
that belief. For instance, in the unit tangent bundle of a hyperbolic surface, we proved
in [4] that many partially hyperbolic diffeomorphisms are not dynamically coherent.

In our study of the dynamically coherent case in [3], the key to relating the inherently
local property of partial hyperbolicity with the global structure of the ambient manifold
lay in understanding the geometry and topology of the center stable and center unstable
foliations, as well as their leafwise and transverse dynamics. The present article does
away with the assumption of dynamical coherence. Instead of foliations we work with
the center stable and center unstable “branching foliations” constructed by Burago
and Ivanov [10] under certain orientability conditions. These are generalizations of
foliations in which distinct leaves are allowed to merge together.

Geometry & Topology, Volume 27 (2023)
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A large part of the present paper is concerned with carrying over our understanding of
the geometry of foliations to branching foliations. We find that much of the familiar
structure still holds in this more general context — sometimes by direct analogy, and
sometimes with considerably more work. At the same time, there are important points
at which branching foliations allow for more varied behavior than true foliations.
A particularly important example of this appears in Figure 9, where the possibility
of merging leaves thwarts one’s ability to use the qualitative transverse and tangent
behavior of a dynamical system to draw conclusions about its Lefschetz index. We
hope that our work will entice those interested in the theory of foliations to consider
the possible uses for branching foliations.

The following two theorems, which generalize the preceding theorems from [3], sum-
marize the major consequences of the present article.

Theorem A Let f: M — M be a partially hyperbolic diffeomorphism on a closed
Seifert fibered 3—manifold. If f is homotopic to the identity, then it is dynamically
coherent, and some iterate is a discretized Anosov flow.

This is a stronger version of Theorem 1.1, without the a priori assumption of dynamical
coherence. The following corresponds to Theorem 1.2.

Theorem B Let f: M — M be a partially hyperbolic diffeomorphism on a closed
hyperbolic 3—manifold. Then either

(i) f is dynamically coherent, some iterate is a discretized Anosov flow; or

(i) f is not dynamically coherent, and after taking a finite cover' and iterate, it
has center stable and center unstable branching foliations which are R—covered
and uniform, and a lift of f acts as a nontrivial translation on both of the
corresponding leaf spaces.

The existence or nonexistence of examples of type (ii) is one of the major questions
coming out of this article. See Section 2.0.6.

Let us also mention a dynamical consequence of our analysis (Corollary 4.14).

Theorem 1.3 Let f: M — M be a partially hyperbolic diffeomorphism of a closed
3—manifold M that is homotopic to the identity. If either M is hyperbolic or Seifert
fibered, or the center stable or center unstable branching foliation is f—minimal, then
f has no contractible periodic points (see Definition 4.13).

IThis is only needed to get the existence of f—invariant branching foliations.
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2 Outline and discussion

After recalling some definitions, we outline the more detailed results that lie behind
our main theorems.

Let f: M — M be a partially hyperbolic diffeomorphism that is homotopic to the
identity on a closed 3—manifold M.

Convention Throughout this paper, we will assume that the group w1 (M) is not
virtually solvable.

Although this assumption is not always necessary, it will simplify certain parts of
the exposition. It does not result in loss of generality, since partially hyperbolic
diffeomorphisms have been completely classified in manifolds with solvable or virtually
solvable fundamental group; see Hammerlindl and Potrie [22; 23].

A foundational result of Burago and Ivanov (Theorem 3.6) implies that, after passing
to an appropriate finite power and lift, we can assume that there is a pair of “branching
foliations” W and W*®" that are preserved by f and tangent to the center stable and
center unstable bundles E¢ @ E® and E€ @ E".

We outline the theory of these branching foliations in Section 3, and construct cor-
responding leaf spaces £ and L. Like the leaf spaces of true foliations, these are
simply connected, possibly non-Hausdorff 1-manifolds that capture the transverse
structure of W and W<, the lifts of W and W*" to the universal cover. This is
where a large part of our work takes place, studying the dynamics of the following
important class of lifts of f.

Definition 2.1 A lift of f to the universal cover is called good if it moves each point
a uniformly bounded distance and commutes with every deck transformation.

Geometry & Topology, Volume 27 (2023)
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Since f is homotopic to the identity, it has at least one good lift, obtained by lifting
such a homotopy.

Remark 2.2 The diffeomorphisms we consider are in fact isofopic to identity: indeed,
all the manifolds that appear in this article are irreducible and covered by R3. Then,
the works of many authors — Waldhausen [35] for Haken manifolds, Boileau and
Otal [5] for Seifert manifolds and Gabai, Meyerhoff and Thurston [21] for hyperbolic
manifolds — give that homotopy implies isotopy. We will however not use this fact in
the sequel, as the existence of a good lift is all that we use.

2.0.1 Dynamics on leaf spaces In Section 4, we study the way that good lifts of f
permute the leaves of the lifted center stable and center unstable branching foliations,
and the implications for the structure of their leaf spaces. This extends [3, Section 3].

The picture is particularly simple when W is f—minimal, which means that the only
closed, nonempty, f—invariant set which is a union of leaves is M itself. If W is
f—minimal, then:

(%) ¢ Each good lift f fixes either every leaf or no leaf of Wes.

e If some good lift ]7 fixes no leaf, then W is R—covered and uniform, and ]7
acts as a translation its leaf space.

The same holds for W<. In particular, if both W and W are f-minimal, then one
of the following holds for each good lift f of f:

(1) Double invariance f~ fixes every leaf of both WSS and WU,

(2) Mixed behavior f fixes every leaf of either WSS or W<, and acts as a transla-
tion on the leaf space of the other.

(3) Double translation f acts as a translation on the leaf spaces of both wes
and W<,

This trichotomy applies whenever f is transitive or volume-preserving, where the
associated branching foliations are always f-minimal [8].

When f is a discretized Anosov flow, there is a natural homotopy from the identity
to f that moves points along the orbits of the underlying flow. The good lift ]7 that
comes from lifting this homotopy fixes every center leaf. In order to show that a given
partially hyperbolic diffeomorphism is a discretized Anosov flow, we will need to find
a good lift with this property. Here, one takes the center leaves to be the components
of intersections between center stable and center unstable leaves. In particular, we will
need find a good lift with doubly invariant behavior.

Geometry & Topology, Volume 27 (2023)
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2.0.2 Center dynamics in fixed leaves In Section 5, we study the dynamics of the
center foliation within center stable and center unstable leaves. We obtain the following
crucial tool (see Definition 5.1 and Proposition 5.2):

(xx) Suppose that W is f—minimal, and that some good lift ]7 fixes every center
stable leaf but no center leaf in M. Then every f—periodic center leaf in M is
coarsely contracted.

If one replaces W* with W then one concludes that any f—periodic center leaf in M
is coarsely expanded. This is widely applicable since one can find a periodic center
leaf on any center stable or center unstable leaf with nontrivial fundamental group
(Proposition 5.6).

Remark 2.3 In the dynamically coherent case, (x) leads to a contradiction that yields
a fixed center leaf [3, Proposition 4.4]. In Section 9 we show that this holds as well
under the assumption of absolute partial hyperbolicity.

2.0.3 Minimality in hyperbolic and Seifert fibered manifolds In Section 6, we
show the following, which means that the preceding trichotomy holds whenever the
ambient manifold is hyperbolic or Seifert fibered.

If M is hyperbolic or Seifert fibered, then:
(x") » Each good lift f fixes either every leaf or no leaf of Wes.
e If some good lift f~ fixes every leaf, then YW is f—minimal.

e If some good lift ]7 fixes no leaf, then W is R—covered and uniform, and f
acts as a translation on its leaf space.

2.0.4 Double invariance implies dynamical coherence In Section 7 we prove the
following criterion for when a partially hyperbolic diffeomorphism is a discretized
Anosov flow:

Theorem 2.4 Let f: M — M be a partially hyperbolic diffeomorphism that is
homotopic to the identity. If f admits f—minimal center stable and center unstable
branching foliations, and some good lift f has doubly invariant behavior, then f is a
discretized Anosov flow.

The key is to show that such an f is dynamically coherent. Then [3, Theorem 6.1]
implies that it is a discretized Anosov flow.
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Until this point we have always assumed that the bundles E*, E¢ and E" have orienta-
tions that are preserved by f so that we can use the result of Burago and Ivanov to find
center stable and center unstable branching foliations. In Section 7.3, we show that
if a lift of an iterate of f is dynamically coherent and has a good lift g with doubly
invariant behavior, then f is dynamically coherent. This is why Theorems A and B(i)
do not need the orientability conditions.

2.0.5 Seifert fibered and hyperbolic manifolds We rule out mixed behavior in
Seifert fibered manifolds in Section 8, and in hyperbolic manifolds in Sections 11-12.
Together with Theorem 2.4, this yields the following:

Theorem 2.5 Let f: M — M be a partially hyperbolic diffeomorphism homotopic to
the identity on a closed hyperbolic or Seifert fibered 3—manifold. Assume that there are
center stable and center unstable branching foliations. Then each good lift of f either

(i) fixes every leaf of both WS and 17\/“, or

(i1) acts as a translation on both leaf spaces.

If there is a good lift of type (i), then f is a discretized Anosov flow.

As was already pointed out in [3, Remark 7.3], there are examples in Seifert fibered
manifolds where every good lift acts as a double translation. However, we show in
Section 8 that one can always find a finite power of such diffeomorphisms with a
good lift that has doubly invariant behavior. Together with the results of Section 7 this
implies Theorem A.

Since every diffeomorphism of a hyperbolic 3—-manifold has an iterate homotopic to
the identity, one also deduces Theorem B.

Remark 2.6 An analogue of Theorem 2.5 holds under the assumption of f—minimality
together with absolute partial hyperbolicity. See Section 9.

We believe that Theorem 2.5 should hold, using the same strategy as here, under the
assumption of f—minimality together with the existence of an atoroidal piece in the
JSJ decomposition of M. We have not pursued this here as it would require proving
results similar to [33; 11; 17] in this setting.

2.0.6 Double translations This leaves open one major question:
Question Is there a partially hyperbolic diffeomorphism on a closed hyperbolic 3—

manifold whose good lifts act as double translations?
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As noted above, there are such examples on Seifert fibered manifolds, but by Theorem A
these are all dynamically coherent and have iterates that are discretized Anosov flows.

The dynamics of a double translation on a hyperbolic manifold would have to be
coarsely comparable to that of a pseudo-Anosov flow; see Section 11. The closest
analogues from this perspective are the non-dynamically-coherent examples on Seifert
manifolds, constructed in [7], which act as pseudo-Anosov maps on the base.

2.1 Remarks and references

There are three major areas in which the general case differs significantly from the
dynamically coherent case:

(1) Unlike the dynamically coherent case (see condition (x*) in [3, Section 2]), there
may be annular center stable leaves which do not contain a closed center leaf.

(2) In hyperbolic manifolds, we cannot rule out the possibility of double translations
from the general version of the existence of cores that “shadow” the periodic orbits
of the transverse pseudo-Anosov flow; see condition (%) in [3, Section 2].

(3) Inhyperbolic and Seifert manifolds, it is more difficult to eliminate the hypothesis
of f—minimality. See Section 6.

We refer to [15; 24; 30] for surveys on the problem of classification of partially hyper-
bolic diffeomorphisms in dimension 3. There is earlier work towards classification that
does not assume dynamical coherence, but these articles tend to have two simplifying
characteristics: they work with manifolds on which taut foliations are well understood
and amenable to classification, and on which known partially hyperbolic models are
available for comparison. Typically, dynamical coherence is established under the
assumption of nonexistence of invariant tori by using the fact that coarse dynamics
separates leaves of the branching foliations. Neither of these features hold for the
classes of manifolds considered in this article, and dynamical incoherence may appear
in several different ways.

For instance, we obtain dynamical coherence in Section 7 when the lift of the partially
hyperbolic diffeomorphism fixes each leaf of the lifted branching foliations. We also
learn more about the structure of the branching foliations in the non-dynamically-
coherent case, leading, in particular, to case (ii) of Theorem B. This structure also
allows us to better understand the dynamical properties of the system, even when the
manifold is not hyperbolic or Seifert fibered, as can be seen in Theorem 1.3.
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More generally, the framework that we develop for the study of non-dynamically-
coherent partially hyperbolic diffeomorphism is useful outside of the homotopy class
of the identity.

Below are several tools developed in this article that we wish to emphasize:

(1) In Sections 3 and 4, we develop some of the basic theory necessary for the
topological study of branching foliations and the diffeomorphisms that preserve them,
including the structure of their leaf spaces.

(2) In Section 5.1 we introduce the notion of coarsely contracting and coarsely re-
pelling periodic rays. This should be useful for the study of all partially hyperbolic
diffeomorphisms in 3—manifolds, ie including those not homotopic to the identity.

(3) In Section 6 we study the way that certain special lifts of a partially hyperbolic
diffeomorphism act within a fixed center stable leaf, and find conditions that guarantee
the nonexistence of fixed points. This involves understanding the behavior of strong
stable manifolds through fixed points under iteration, which may find applications in
other contexts.

(4) In Section 7 we prove uniqueness of (branching) foliations under certain conditions.
This is a key to finding results that do not require taking finite lifts and finite powers.
As such, it may also be relevant for the study of topological obstructions for partially
hyperbolic diffeomorphisms — note that the topological obstructions for the existence
of Anosov flows can depend on taking finite lifts; see eg [12].

There is other work that shows the uniqueness of branching foliations, but always in a
setting where there is an understood model partially hyperbolic diffeomorphism for
comparison.

(5) In Sections 11 and 12 we develop some tools to analyze the transverse geometry
of branching foliations. This combines ideas from the theory of Lefschetz index,
hyperbolic geometry, and the notion of coarsely expanding and contracting rays in
item (2).

The tools in (5) are used in [4] to prove that a large class of partially hyperbolic diffeo-
morphisms in Seifert manifolds are dynamically incoherent. In addition, (2) and (5)
are used in [18] to obtain fine dynamical consequences of partial hyperbolicity in
3—manifolds.
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3 Branching foliations and leaf spaces

In this section we review the existence of center stable and center unstable branching
foliations, and construct corresponding leaf spaces that capture their transverse topology.
We will also construct a “center foliation” and leaf space.

Definition 3.1 A branching foliation of a 3—manifold M is a collection F of C!—
immersed surfaces, called leaves, each complete in its induced metric, such that

(i) each x € M is contained in at least one leaf,
(i1) no leaf crosses itself,
(iii) different leaves do not cross each other, and

@iv) if L, are leaves, and x, € L, converges to a point x € M, then some subsequence
of the L, converges to a leaf L with x € L.2

Here, “crossing” is meant in a topological sense; see [10] or [24].

Remark 3.2 In this context, “branching” refers to the fact that leaves may merge.
This should not be confused with the typical use of “branching” in the theory of
codimension-1 foliations, where it refers to non-Hausdorff behavior in the leaf space.

Since a branching foliation has C'! leaves that do not cross, it has a well-defined tangent
distribution.

As with foliations, there is a sense in which branching foliations are “locally product
(branched) foliated”: around each point one can find a neighborhood U with a smooth
product structure U ~ D? x [0, 1] such that each leaf of F that intersects U does
so in a collection of discs that are transverse to the [0, 1]-fibration and meet every
[0, 1]-fiber. This follows readily from the fact that branching foliations are tangent to
C! distributions.

On a compact manifold there is a uniform scale €g, called the local product structure
size, such that every open set of diameter less than €g is contained in a product chart as
above.

2Here, convergence should be understood in the pointed compact—open topology, ie given a compact set K

in L containing x, there is a sequence of compact subsets K of L, containing x, such that K, converges
to K in the Hausdorff topology.

Geometry & Topology, Volume 27 (2023)



3106 Thomas Barthelmé, Sérgio R Fenley, Steven Frankel and Rafael Potrie

Definition 3.3 A branching foliation F is well-approximated by foliations if there is,
for a set of € > 0 accumulating on 0, a family of foliations {F.} with C! leaves, and a
family of continuous maps {h.: M — M}, which have the following properties (with
respect to some fixed Riemannian metric):

(v) The angles between leaves of F and F¢ are less than €.
(vi) The C%—distance between /. and the identity is less than e.
(vii) On each leaf of F¢, the map /. restricts to a local diffeomorphism to a leaf of F.

(viii) For each leaf L of F there is a leaf L, of F¢ with he(Le) = L.

Remark 3.4 While the maps /. restrict to local diffeomorphisms on leaves, they will
fail to be global diffeomorphisms on leaves of F, that map to self-merging leaves of F.
In addition, the /¢ will not be local diffeomorphisms on M unless F is actually a true
foliation.

Definition 3.5 A partially hyperbolic diffeomorphism f: M — M is said to be
orientable if the bundles E®, E" and E¢ admit orientations that are preserved by f.

The following is the foundational existence result of Burago and Ivanov:

Theorem 3.6 (Burago and Ivanov [10]) Let f be an orientable partially hyperbolic
diffeomorphism of a 3—manifold M. Then there are f —invariant branching foliations
W and W tangent to E€@® E® and E€ @ E" that are well-approximated by foliations.

Here, a branching foliation is said to be f—invariant if the image of any leaf under f
is again a leaf.

Note that there is no a priori uniqueness for the center stable and center unstable
branching foliations W and W*" related to a partially hyperbolic diffeomorphism.
Nevertheless, we will typically fix some pair of such branching foliations and call them
“the” branching foliations for our diffeomorphism. In addition, we will fix families of
approximating foliations W¢* and WEY, with associated maps denoted by hS* and A",

On the other hand, since the stable bundle E*® is uniquely integrable, a stable leaf s
that intersects a center stable leaf L. must be contained entirely in L. Consequently, the
intersection of any two center stable leaves is saturated by stable leaves.
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N

Figure 1: The branching of center and center stable leaves. Left: two center
stable leaves sharing a region. Right: distinct center leaves inside a center
stable leaf.

Once we have fixed “the” center stable and center unstable branching foliations W
and W*, the corresponding lifted foliations on M will be denoted by WS and W
We may then define center leaves as follows:

Definition 3.7 A center leaf of a partially hyperbolic diffeomorphism is the projection
to M of a connected component of the intersection between a leaf of WSS and a leaf
of W

Although the collection of center leaves is not a foliation, it is a kind of codimension-2
branching foliation. We will abuse terminology and call the collection of center leaves
the center foliation.

Remark 3.8 Each center leaf is tangent to the central direction E€, but a complete
curve that is tangent to the central direction may not be a center leaf. Indeed, even
when the diffeomorphism is dynamically coherent, the central direction may not be
uniquely integrable. See [31] for an example.

3.1 Tautness

In this article, the approximating foliations W¢* and W' have no compact leaves.

Indeed, suppose that one has a compact leaf L € W¢* Then K := h®(L) is a compact
leaf of W*®. Since the stable bundle E*® is uniquely integrable, this compact surface has a
foliation without compact leaves, so it is a torus. According to [27, Theorem 1.4], there
are only a few classes of manifolds that admit partially hyperbolic diffeomorphisms
with tori tangent to E* @ E°, all mapping tori of T?2.

Since we assume that 771 (M) is not virtually solvable, it follows that the approximating
foliations have no compact leaves, which implies that they are taut.
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3.2 Center stable and center unstable leaf spaces

Given a foliation F on a manifold M, the set of leaves of the lifted foliation FonM
has a natural topology — the quotient obtained from M by collapsing each leaf to a
point— and the resulting space is called the leaf space of M.

In this section we will define a notion of leaf space for our branching foliations, where
it would not make sense to take the quotient topology. We will see, in fact, that the leaf
spaces of our branching foliations are homeomorphic to those of the approximating
foliations for small enough €.

Much of this section would apply to any codimension-1 branching foliation, of any
dimension, as long as the leaves in the universal cover are properly embedded R”~!’s
in R”. For convenience, however, we will mostly restrict attention to the branching
foliations that we are interested in. This allows for some shortcuts. For example, in
Proposition 3.16 we use the approximating foliations and maps to see that the leaf
space is a 1-manifold as desired, though this could also be done directly.

3.2.1 Complementary regions and sides Since M is not finitely covered by §2 x S'1
(as w1 (M) is not virtually solvable), and our branching foliations are well-approximated
by taut foliations, it follows that the universal cover is homeomorphic to R3, and the
lifted leaves are properly embedded planes [14].

The complementary regions of a leaf L are the two connected components of M \ L.
For each complementary region U of a leaf L, the closure U = U U L is called a side
of L.

A coorientation of the branching foliation (which may be thought of as a coorientation
of its tangent distribution) determines, for each leaf L, a positive and a negative
complementary region, which we denote by L® and L®. The corresponding sides
are denoted by LT = L® UL and L™ = L® U L. We will fix such a coorientation
throughout.

3.2.2 Leaf spaces Let us now construct the center stable leaf space L% This is
the set of leaves of W with the topology defined below. The center unstable leaf
space L is constructed similarly.

In the case of a true codimension-1 foliation, each transverse arc in the universal cover
maps homeomorphically to an arc in the leaf space. We will use a similar idea for
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branching foliations, and use transverse arcs to construct the topology. In a true foliation
each point in a transverse arc intersects a single leaf; for our branching foliations we
need to “blow up” at some points, using the following definition:

Definition 3.9 Given x € M, let £(x) C £ denote the set of leaves that contain x.

Given distinct leaves L # E in £°(x), we will write L <, E whenever L™ D E.

Claim 3.10 For each x € M, <, defines a linear order, with respect to which L£(x)
is order-isomorphic to a closed interval (possibly a single point).

Proof Assume that £°(x) is not a singleton.

That <y defines a linear order on £%(x) follows from the fact that leaves do not
cross (property (iii) of Definition 3.1). From property (iv), it follows that this order is
complete.

To see that £°°(x) is order-isomorphic to a closed interval, it suffices to check that
there are no gaps in the order. That is, given L, E € £%(x) such that L <, E, we must
find some L' € £L%(x) with L <, L’ <x E.

Given such L and E, let y be a boundary point of the connected component of L N E
that contains x. Consider a neighborhood B of y with diameter less than €, the local
product structure size of W*. Since WSS is product branched foliated in B, each leaf
that intersects B N (L N E™) must intersect y, and since leaves do not cross, any
such leaf must intersect x. Any such leaf L’ will have L <, L' <x E. O

Combined with the linear ordering of points in a transversal, this gives a linear ordering
on the set of leaves that intersect a transversal:

Definition 3.11 Given a transverse arc 7, let £L%(7) C L denote the set of leaves that
intersect t.

Orient T so that it agrees with the coorientation on W<. Given distinct leaves K # L
in £%(t), we will write K <; L whenever either

e KNt lies forward of L N t with respect to the orientation on 7, or

e K and L intersect 7 at the same point x and K <y L.
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The following properties of these orderings may be found in [10, Section 7].

Claim 3.12 (1) For each open transverse arc T, <. is a linear order, with respect to
which £%(t) is order-isomorphic to an open interval.

(2) If o and t are open transverse arcs, then <, and <. define the same linear
order on L%(0) N L(t), which is order-isomorphic to an open interval (possibly

empty).

Definition 3.13 (topology of £L%) The center stable leaf space is L, with the topology
T generated by all open intervals in £°(t) C L over all open transverse arcs t.

From Claim 3.12(2), it suffices to take any collection of open transverse arcs that
intersect every leaf of WS, Since M is compact, one can take a finite collection of
open transverse arcs in M and consider all of their lifts to M. This implies in particular
that £ is second-countable.

Proposition 3.14 The center stable leaf space L is a simply connected, possibly
non-Hausdorff 1-manifold.

The same applies to £°". This is not difficult to prove directly, and it applies more
generally to any codimension-1 branching foliation of a closed n—manifold, as long as
the lifted foliation is by properly embedded R”~!’s in M ~R". In the present case, it
follows as well from Proposition 3.16 below.

3.2.3 Leaf spaces and approximating foliations Let £ and £ denote the leaf
spaces of the approximating foliations WW¢* and W¢". The maps Ag® and A" induce
functions

Ges: L& — L% and  gey: LI — L

between the corresponding leaf spaces, which are surjective whenever € is sufficiently

small; cf Definition 3.3.

Since W¢* is a true foliation, its leaf space £¢® is a simply connected, possibly non-
Hausdorff 1-manifold; cf [3, Appendix B].

Remark 3.15 It is possible to modify the proof of [10, Theorem 7.2], where the
foliations W¢* and maps h¢* are constructed, so that the g s are injective in addition
to surjective. With this in hand, one could define the topology on £ to be the one
induced by this bijection.
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Instead of redoing the entire proof of [10, Theorem 7.2], we will use a simpler fact that
can easily be extracted from that proof: the maps h¢® are “monotone” in the sense that
they preserve the natural linear order on plaques in local charts.

Proposition 3.16 When € is sufficiently small,

(1) the preimage of each point in L% under g¢ s is a closed interval
(2) ge,s: LS — L is continuous, and
(3) the topology T on L is equivalent to the quotient topology T¢ induced by g .

The same applies for the center unstable foliations.

Proof Let ¢q be the local product sizes of W*, and let € < € /2. Let T¢ be the quotient
topology induced by g¢ s on L

(1) Let I C L be the preimage of a leaf L € £ and suppose that / contains two
leaves Z,l and Zz. We want to show that ¢ takes every leaf between Zl and Z,z to L.

From property (vi) of Definition 3.3, the Hausdorff distance between Ly and L is less
than 2e. Since 2¢ was chosen to be less than the local product structure size, it follows
that the region between Li and L5 has leaf space which is a closed interval. By the
local monotonicity of EgS, it follows that g¢ s maps the entire region between L and
L, to L. This implies that the preimage of L is an interval, which is closed because
Egs is continuous.

(2) LetU C L® be open. Around each point in U one can find an open interval J C U
that is the set of leaves intersecting a small open transversal 8. We want to show that
g: (J) is open in L.

Let L, be a leaf in 8e. 1(J). Then L intersects f (or a slightly bigger transversal), so
all the leaves of V~V§s close enough to Lin B intersect B. Thus an open neighborhood
of L; is contained in ge_sl (J), and ge s is continuous.

(3) From (2) it follows that 7 C 7¢. Let us prove the other inclusion.

Suppose W € £ is an open set in T, and let y € W. Then U = (ges)" (W) is an
open set containing the closed interval / = (g s)~ (). Let L and E be the boundary
leaves of I. Then one can find half-open intervals 17, Ig C U suchthat Iy NI =L
and I[g NI = E. Then Iy U I U [g projects to a set in £° which contains an open
interval around y in £ Since this applies for every y € W it follows that W is open
in7T. a
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This suffices to show that £ is a 1-manifold. It is possible to modify ge s: L& — L
to be a homeomorphism when ¢ is sufficiently small, but we will not need this fact.

In the sequel, we fix € small enough that the previous proposition applies for both the
center stable and center unstable foliations.

3.3 Center “foliations”

3.3.1 The center foliation within a center stable/unstable leaf Fix a center stable
leaf L of W*. We will describe the topology of the center leaf space, £, restricted
to L. The center leaf within a center unstable leaf is defined in the same manner.

Remark 3.17 Recall from Definition 3.7 that a center leaf in M is defined as a
connected component of the intersection between a leaf of WS and a leaf of W< Now,
the following situation may arise (see Figure 2): two leaves Uy, U, of W< and a leaf L
of W such that the triple intersection U; N L N U, contains a connected component
of ¢; of Uy N L as well as a connected component ¢, of U N L. That is, the center
leaves c; and ¢ represent the same set in M. In this case, we also consider ¢ and cp
as the same leaf of the center foliation in L.

Definition 3.18 (topology A in £7) Consider a countable set of open transversals t;
which are perpendicular to the center bundle in L, and whose union intersects every
center leaf in L. Put the order topology on the set I; of center leaves intersecting ;.
This induces the topology A in L5 .

U, e chu

Figure 2: Different center unstable leaves may intersect a given center stable
leaf in the same center leaf.
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Let L be a fixed leaf of . We again fix an € > 0 and consider the approximating
foliation )7\/2“ Since W is transverse to L, so is )7\/2“ (for € small enough). Thus,
VNVZ“ induces a 1-dimensional (nonbranching) foliation F¢ on L, and hence its leaf
space L‘CL’ ¢ 1s a 1-dimensional, not necessarily Hausdorff, simply connected manifold.

The behavior described in Remark 3.17 above leads to the following issue: the unique
center leaf ¢; = ¢, is approximated by two distinct leaves of F.. Thus, the leaf
space L of the center foliation on L is not in bijection with £¢. However, we still
have a surjective, but not necessarily injective, projection pr,: E“L’ . — L} asin the
previous subsection. Let .4¢ be the quotient topology from the map pr,.

Just as in Proposition 3.16 one can prove the following:

Lemma 3.19 The set of center leaves in L through a point x is a closed interval. Let
co be a center leaf in L. Let I = pr—'(co) C LS. The set I is a closed interval. If
€ < €9, then the topologies A and A are the same.

3.3.2 Center foliation in M Finally, we have to put a topology on the leaf space £°
of the center foliation in M.

Pick an 0 < € < € so that WS and 17\/2“ are transverse to each other. Call F¢ the
1-dimensional foliation obtained as the intersection of W< and W<". The leaf space £S
of F¢ is now a simply connected, possibly non-Hausdorff, 2—dimensional manifold.
But as before, there is only a surjective, and not injective, projection g¢: £ — L.

The map g is defined in the following way: if ¢ is a leaf of F, then it is the intersection
of a leaf U of W and a leaf S of WS, There exists a unique connected component ¢
of gé,u(lj) N ge.s (S) that is at distance less than 2¢ from ¢. We define g¢(¢) = c.

Once again, the topology B we put on L is obtained by identifying elements of L
that project to the same element of £¢ and taking the quotient topology.

As done previously in Sections 3.2.2 and 3.3.1, in order to prove that the topology that
we put on £° makes it a simply connected (not necessarily Hausdorff) 2-manifold, it
is enough to show that the preimages of points by g¢ are closed, simply connected
sets contained in a local chart of £Z. In order to do that, first notice that £ is locally
homeomorphic to £ x £, Indeed, any o € LS is a connected component of U N S,
with Up € £ and Sp € LS. Now, if Vy is a small enough open interval in £
and Vs is a small enough open interval in £, then for any UeV,and § €V,
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the intersection U N S contains a unique connected component close to ¢g. Using this
local homeomorphism, the following lemma will imply that the topology L€ is as we
claimed.

Lemma 3.20 Let co be in £°. The set R = g '(co) is homeomorphic to a closed
rectangle in L X L.

Proof Letcy,Cs € R. Let Uy be the leaf in L¢" containing ¢1 and let S5 be the leaf in
L containing ¢3. Let Uy = gen(Ur) and Sy = ge 5(S5). Since €1, ¢ € R, the center
leaf ¢ is a connected component of Uy N S3. Thus U; and S; must intersect and the
intersection contains a unique connected component ¢3 at distance at most 2¢ from cg.

Now, the proof of Lemma 3.19 shows that ¢; and c¢3 are two ends of an interval in
the leaf space of F restricted to U that is entirely contained in R, and similarly for
¢2 and c3 considered as elements of the leaf space of F¢ restricted to §2. In turn, the
arguments of the proof of Lemma 3.19 imply that the set R projects to a closed interval
in both £¢° and L£¢", ie it is a closed rectangle in £ x L. |

Just as in the previous two sections we can also put a topology B on L€ directly as
follows:

Definition 3.21 (topology B on £°) In M pick a collection of very small open
rectangles R; which are almost perpendicular to the center bundle, and with boundary
two arcs in leaves of £ and two arcs in leaves of L. Consider all lifts R of these
to M. The set of center leaves intersecting R is naturally bijective to an open rectangle
and we give it the topology making this a local homeomorphism. The topology B is
generated by these rectangles.

First we justify why the set of center leaves through R is naturally an open rectangle.
Let Ly, L, be the center stable leaves containing the two arcs in the boundary of R,
and Uj, U, be the corresponding center unstable leaves. The set of center stable leaves
between L1, L, (notincluding L1, L) is naturally order-isomorphic to an open interval.
This was proved in Section 3.2.2. The same holds for the center unstable foliation. The
product is an open rectangle. The set of center leaves intersecting R is a quotient of
this. The sets which are quotiented to a point are compact subrectangles. The proof
is the same as the previous lemma. Hence the quotient is naturally a rectangle. In
addition, if a collection of center leaves intersects two such rectangles R and R’, then
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the identifications in R also produce the same identifications in R’, and the order of
the center stable and center unstable foliations in the subsets are the same whether in
R or R’. Hence in the identification, the topologies agree.

Just as in the previous sections one can prove:
Lemma 3.22 For € < €9, the topologies B and Be are the same.

The main property is to prove is exactly that of Lemma 3.20. The rest follows just as
in the previous subsections.

3.4 From foliations to branching foliations

Using the leaf space, one can carry over a number of concepts from foliations to
branching foliations.

3.4.1 Uniform and R—covered branching foliations A branching foliation is said
to be R—covered if its leaf space is homeomorphic to R. It is uniform if every two
leaves in the universal cover are a finite Hausdorff distance apart.

By Proposition 3.16 a branching foliation is uniform or R—covered if and only if its
approximating foliations are, for € sufficiently small.

3.4.2 Saturations and minimality A foliation preserved by a homeomorphism f
is said to be f—minimal if the only closed, saturated, f—invariant sets are the empty
set and the whole manifold. We will define f—minimality identically for branching
foliations, but we must be careful about what we mean by “saturated”:

Definition 3.23 A set C C M is W—saturated if, for every x € C, there is a leaf
of W* that contains x and is contained in C.
A saturation of a saturated set C C M is a collection of leaves X C W whose union

is C.

Note that this is much weaker than asking that every leaf intersecting C be contained
in C. In particular, our notion of saturation has the peculiar property that the complement
of a saturated set need not be saturated; see Figure 3.

In addition, a saturated set may have different saturations. However, a saturated set
always has a unique maximal saturation, consisting of all leaves that are contained in it.
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R

o] J

Figure 3: L, and L, are two leaves in C, but the region R is not in C. Then,
in parts of R, all the center stable leaves intersect the branch locus between
Ly and L,, so have parts in C and parts not in C (and therefore M \ C is not
saturated by center stable leaves).

Definition 3.24 We say that W is f—minimal if the only closed, WW*—saturated, and
f—invariant subsets of M are @ and M.

We emphasize that “closed” is meant as a subset of M, not £

Saturated sets and saturations are defined similarly in the universal cover. Here, a
saturation can be naturally thought of as a subset of the leaf space £ However, the
topology of a saturated set in M does not necessarily agree with the topology of a
saturation in £:

Remark 3.25 Let C C M be W—saturated. It is possible for C to be closed in M,
but have a saturation C C £ that is not closed in £ However, it is easy to see that C
is closed in M if and only if its maximal saturation is closed in L

It is true but less immediate that the only saturation of M that is closed in £ is all
of £ (Lemma B.1).

3.4.3 Perfect fits The notion of “perfect fits” from the theory of codimension-1 foli-
ations [3, Section 4.1] applies to branching foliations once it is modified appropriately.

We will need the 2—-dimensional version of this concept, in Section 5, to understand the
center and stable foliations within a center stable leaf. Given a center stable leaf L,
let Cz, and Sy, be the center and stable foliations within L, and let £; and Lj be the
corresponding leaf spaces.
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Definition 3.26 A leaf ¢ € C;, and a leaf s € Sy, make a CS—perfect fit if they do not
intersect, but there is a local transversal 7 to Cy, through ¢ such that every leaf in Cy, (7)
that lies sufficiently close to one side of ¢ (in the linear order <;) intersects s.

They make an SC—perfect fit if there is a local transversal t’ to Sy, through s such that
every leaf in Sy (7) that lies sufficiently close to one side of s intersects c.

We say that ¢ and s make a perfect fit if they make both a CS— and SC—perfect fit.

Remark 3.27 When defining CS—perfect fits it is important to use the linear order <
on Cr (7), defined in Section 3.2.2, since there may be center leaves on the same side
of ¢ as s that merge with c.

Since Sy, is a true foliation, the linear order <, on Sz (z’) comes directly from the
transversal 7/, so the notion of a SC—perfect fit is exactly as in [3, Section 4.1].

One may equivalently define CS—perfect fits as follows. Given a stable leaf s in L, let
Is C L5 be the set of center leaves that intersect s. Then ¢ and s make a CS—perfect fit
if and only if ¢ € d/;.

Lemma 3.28 Let c and s be center and stable leaves in a center stable leaf L that
make a CS—perfect fit. Then there is a stable leaf s’ such that ¢ and s’ make a perfect fit.

The symmetric statement holds for SC—perfect fits.

Proof This is [3, Lemma 4.2], whose proof remains valid with the obvious modifica-
tions. O

4 Branching foliations and good lifts

Fix a closed 3—manifold M whose fundamental group is not virtually solvable, a
partially hyperbolic diffeomorphism f: M — M homotopic to the identity, and a good
lift f~ . We will assume that f is orientable (Definition 3.5) so that we have center stable
and center unstable branching foliations W and W** which are well-approximated
by taut foliations (Theorem 3.6). This can be achieved by taking an iterate of f and
lifting to a finite cover of M — we will deal with the effects of replacing f and M in
Section 7.
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In this section we will study the way that a good lift f acts on the lifted branching
foliations W and W< in the universal cover M.

4.1 Translation-like behavior

In this section, we will see that the action of f on the center stable leaf space must look
locally like a translation. Identical statements hold for the center unstable foliation.

Remark 4.1 In fact, the results in this subsection are not really particular to partially
hyperbolic diffeomorphisms. They apply to any diffeomorphism that is homotopic
to the identity and that preserves a branching foliation well-approximated by taut
foliations. In addition, in this subsection we also do not need to assume that 71 (M) is
virtually solvable.

The key to this section is the following fact:

Lemma 4.2 (big half-space lemma) Let L be a leaf of WSS, For any R > 0, there
exists a ball of radius R contained in each complementary region of L.

Proof This lemma holds for true foliations — see [3, Lemma 3.3] — so it suffices to
consider a leaf corresponding to L in the approximating foliation 17\/25 for € sufficiently
small. O

Remark 4.3 The tautness of the foliation is essential for this result to hold. The
branching foliations in the non-dynamically-coherent example of [31], for instance, do
not satisfy that lemma.

Definition 4.4 (regions between leaves) Let K, L € W be distinct leaves. In the
leaf space, £\ {K, L} consists of three open connected components. Only one of
these components accumulates on both K and L: we call this the open L%—region
between K and L. Its closure in £, which is obtained by adjoining K and L, is called
the closed L%—region between K and L.

Remark 4.5 The subset of M that corresponds to the open £%-region between two
leaves may not be open. However, the subset of M that corresponds to the closed
L%-region between two leaves is closed. It is also connected, but its interior may
not be. See Figure 4.
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w
Figure 4: The interior of the closed region between leaves may not be connected.
The following is the equivalent of [3, Proposition 3.5]. The same proof applies if one
considers complementary regions and regions between leaves as subsets of M and £,
as appropriate.
Proposition 4.6 If L € WSS is not fixed by a good lift f , then

(1) the closed L% -region between L and f (L) is an interval
(2) ]7 takes each coorientation at L to the corresponding coorientation at f (L), and

(3) the subset of M corresponding to the closed L®-region between L and f (L) is
contained in the closed 2 R—neighborhood of L, where

R =max d(y, f()).
yeM

Remark 4.7 In the above proposition, we may a priori have that L and f (L) merge.
Using Proposition 4.6 we therefore also obtain the equivalent of [3, Proposition 3.7].

Proposition 4.8 The set A C L of leaves that are fixed by f is closed and 71 (M )—
invariant. Each connected component I of L%\ A is acted on by f as a translation,
and every pair of leaves in I are a finite Hausdorff distance apart.

In the above proposition, one has to be mindful again that “open” and “closed” refer to
the topology on the leaf space £, and not the topology on M.
When W* is f-minimal (Definition 3.24), we deduce the following dichotomy from
Proposition 4.8:
Corollary 4.9 If W is f—minimal, then either

(1) f fixes every leaf of WSS, or

(2) W* is R—covered and uniform, and f~ acts as a translation on the leaf space L.
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Proof Although the proof is conceptually identical to that of the corresponding result
in the dynamically coherent case [3, Corollary 3.10], we will redo it since the distinction
between the topology in £ and M becomes important.

Let A be the set of leaves that are fixed by ]7 . Since ]7 commutes with deck transfor-
mations, each deck transformation preserves A. In particular, if / is a component of
LS\ A and g € 71 (M), one has either g(I) =T org(I)NI =2

So A is invariant under f and deck transformations, saturated by WS, and closed
in L% (by Proposition 4.8).

Let B C M be the union of the points in all leaves in A, and let B = JT(E) C M.
Since A is closed in £, B is closed in AZ, and B is closed in M. In addition, B is
f—invariant. Since W* is f-minimal, B is either & or M.

If B is empty then A is empty, and Proposition 4.8 implies that we are in case (2).

If B =M then B = M, and we have to prove that A = £ This follows from the
more general Lemma B.1, but it also has a more direct proof, as follows.

Suppose A # L. Let I be a connected component of £\ A. Let J be the set of
points of M contained in a leaf in /. The set I is open (in £) and f translates leaves
in 1. It follows that the interior in M of J is nonempty. These points in the interior
of J are not contained in B. This contradicts B = M. So A = L, and we are in
case (1). O

This immediately implies the trichotomy in Section 2.0.1.

4.2 Ruling out fixed points

Let us now find conditions under which we show that our good lift f has no fixed
points in M. We will use the following lemma.

Lemma 4.10 Let L € W be a center stable leaf that is fixed by f . Suppose that for
every y € L one can find a leaf L' € WSS that is fixed by f and intersects the unstable
leaf through y in a point other than y. Then no nontrivial power of f fixes a point in L.

Proof Suppose that f " fixes a point x € L for some n # 0. One can assume after
possibly switching signs that n > 0. Then expansion of the unstable leaf u through x
implies that no leaf L’ that intersects u at a point other than x can be fixed. |
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Compare this with the simpler statement [3, Lemma 3.13] in the dynamically coherent
setting, where it suffices to assume L is not isolated in the set of fixed leaves.

Corollary 4.11 If ]7 fixes every center stable leaf, then it has no fixed or periodic
points in M.

This follows immediately from the lemma. We will now exclude the existence of fixed
or periodic points under the assumption of f—minimality.

Theorem 4.12 If W or W is f-minimal, then f does not have any fixed or
periodic points in M.

Proof Assume without loss of generality that YW is f—minimal. By the dichotomy
in Corollary 4.9, f either fixes every leaf of WSS, or acts as a translation on £

If f fixes every leaf of WS, the result follows from Lemma 4.10. If f acts as a
translation on £ then for any leaf L of W one has f(L)N L = & for |i| sufficiently
large. |

A noteworthy consequence is the nonexistence of “contractible periodic points” under
the assumption of f-minimality.

Definition 4.13 Let g be a homeomorphism of a manifold homotopic to the identity.
A point p is a contractible periodic point if g"(p) = p for some n # 0 and there is a
homotopy H: M x [0, 1] — M from the identity to g such that the concatenation of
the paths H(p.-), H(g(p),-)..... H(g" ' (p),-) is homotopically trivial.

Notice that if p is a contractible periodic point of g of period n then there exists a good
lift g of g and a lift p of p such that g"(p) = p. Thus, Theorem 4.12 immediately
yields:

Corollary 4.14 If f admits a f—minimal branching center stable or center unstable
foliation, then f has no contractible periodic points.

This completes the proof of Theorem 1.3 in the f—minimal case. The hyperbolic and
Seifert fibered cases follow from Proposition 6.1.
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4.3 Fundamental groups of leaves

The leaves of W and W are immersed surfaces which may not be injectively
immersed. In the universal cover, however, the leaves of W and W* are properly
embedded planes; cf Section 3.2.

It follows that there may be a closed loop in a leaf with a corresponding element of
1 (M) that fixes no lift of that leaf in the universal cover. These elements are not
useful for our purposes, so we will remove them by convention:

Convention When working with a fixed lift L of a leaf C of W or W*", we will say
that an element y € r1 (M) is in the fundamental group of C if it stabilizes L.

There is another way of seeing this notion of fundamental group arise: recall from
Theorem 3.6 that the branching foliations are approximated by true foliations W¢"
and W¢* and that there exists maps /#¢° and 2" mapping leaves of W¢* (or WEY) to
those of W (or W"). Then, a loop is in the fundamental group of a leaf C of W*
if and only if it is freely homotopic to a loop in a corresponding leaf C. of W¢* for
every € small enough. Notice that if there are several leaves that project to C, in the
universal cover, take a lift L and it follows from Proposition 3.16 that the set of leaves
that projects to L is an interval in the leaf space of 17\/25 It follows that h¢® lifts to
an equivariant (with respect to the defined fundamental group of C) diffeomorphism
from the boundary leaves of the closed interval to L. We call such a leaf L, and write
Ce = m(Le).

In other words, for us, the fundamental group of C based at y will be exactly
(hgs)*(ﬂl(ce, ¥o)), where hgs(yo) =y.

In particular, since W¢* and W¢" are taut foliations without Reeb components, each
leaf is w1—injective in M. Thus, this second interpretation helps explain our convention:
the closed loops in a leaf of W are either in the fundamental group as we defined it,
or they are due to a self-intersection. In that case, they are not an essential feature of
the leaf, as they stopped being closed when pulled-back to the approximating leaf.

Following our convention, we will then say that a leaf C of the branching foliation
is a plane, a cylinder or a M&bius band if its corresponding approximated leaf Ce is,
respectively, a plane, a cylinder or a Mobius band for any small enough €.

Using these conventions, Proposition 3.14 of [3] holds for the leaves of the branching
foliations whenever f has no fixed points in the leaf; cf Lemma 4.10. For ease of
reference, we restate it here.
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Proposition 4.15 Assume that f fixes a leaf L of W*. Then C = (L) has cyclic
fundamental group (thus it is either a plane, an annulus or a Mébius band), or L has a
point fixed by f.

Remark 4.16 Similarly, because of possible self-intersections, we need to be careful
with how to define the path metric on a leaf of W or W

If C is a leaf of, say, W, we define a path on C as a continuous curve 7 that is the
projection of a continuous curve 7 in a lift L of C to M. We then define the path metric
on C as usual, but considering only the paths as defined before.

Notice that not every continuous curve 7 on C is a path in the above sense, as there
might not exists any lift of 1 that stays on only one lift of C.

Still, the analogue of [3, Lemma 3.11] holds:

Lemma 4.17 If f fixes every leaf of W< (resp. W) then there is a K > 0 such that
forevery L € yyes (resp. L € W), we have that d, (x, f(x)) <K.

4.4 Gromov hyperbolicity of leaves

We now prove a version of [3, Lemma 3.20] in the non-dynamically-coherent setting.

Lemma 4.18 If W* is f—minimal, and f fixes every leaf of W*. Then each leaf
of W*® is Gromov hyperbolic.

Proof The foliation W¢* is taut. Thus, Candel’s theorem [13] asserts that either all
the leaves of W¢* are Gromov hyperbolic or there is a holonomy-invariant transverse
measure (of zero Euler characteristic).

Assume for a contradiction that p is a holonomy-invariant transverse measure. Since
WSS is not f —invariant, we have to adjust the proof given in [3]. The transverse measure
p lifts to a measure I transverse to WS, Thus, [ defines a measure on £, the leaf
space of W¢*

Let ge,s: £ — L be the canonical projection between the leaf spaces of W¢* and W®;
see Section 3.2.2. Let V := (ge,s)x /L be the corresponding measure on £ Now V is
]7 —invariant since ]7 is the identity on £, and it is also 1 (M )—invariant as fi is. The
support of ¥ in L is a closed set Z in £ that is ]7 —invariant and 7 (M )—invariant.
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The measure ¥ on £ can also be considered as a measure on the set of transversals to
W< in M: For any transversal t to WS in M, we define v(7) as the V—measure of the
set of leaves in £ that intersects 7. Notice that the measure of a point in M (which
can be thought of as a degenerate transversal) can be positive if the image of that point
in £ is an interval.

Note also that we refrained from calling V a transverse measure to WS because it is
by no means holonomy-invariant. In fact holonomy itself is not well-defined for a
branching foliation. Still, ¥ satisfies the property that if 71, 7, are transversals and
every leaf intersecting 77 also intersects 1, then V(z1) < V(12).

Projecting down to M, the measure vV induces a measure v on the set of transversals
to W on M.

Let t be any unstable segment in M. Since f fixes every leaf of W, the measure of
fi(r) (= v(fi(1))) is equal to v(t) for any integer i. We can choose i very big and
negative so that the length of f7(z) is extremely small. Therefore it is contained in a
small foliated box of W, which is the projection of a compact foliated box of W¢* It
follows that v(7) is uniformly bounded. In particular, this implies that the v—measure
of any unstable leaf in M is bounded above. In turn, it implies that for any j > 0
(assumed big enough), there is an unstable segment u; of length > j which has v(u;)
measure < 1/;j. Taking the midpoint of these segments and a converging subsequence,
we obtain a full unstable leaf, call it ¢, so that ¢ has v(¢) = 0 (since v(¢) < 1/ for all
big enough j).

Let Y be the union of the leaves of W that do not intersect { or any of its iterates
by f. Then Y is a closed subset of M and clearly f—invariant. Let L be a leaf in Wes
which is in Z, the support of V. Then by definition of support of v, it follows that 7 (L)
cannot intersect ¢ or any of its iterates by f. Hence (L) is in Y. In particular, Y is
not empty. This contradicts the fact that W* is f—minimal, and hence cannot happen.

This finishes the proof of the lemma. |
5 Center dynamics in fixed leaves
This section deals with the dynamics of center leaves within center stable (and center

unstable) leaves. It is one of the first places where we encounter significant difficulties
compared with the dynamically coherent setting.
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In [3, Proposition 4.4] we found a condition for the existence of center leaves that
are fixed by a good lift, but the proof does not work without dynamical coherence
[3, Remark 4.8].

Throughout this section we continue to assume that f is orientable (Definition 3.5).
Definition 5.1 Let ¢ C M be a center leaf that is fixed by f. We say that ¢ is coarsely
contracting if it is homeomorphic to the line, and it contains a nonempty compact

interval I such that each compact interval J C ¢ whose interior contains / has the
o
property that f(J) C J.

We say that ¢ is called coarsely expanding if it is coarsely contracting for f 1.
We also naturally extend the definition of coarse contraction/expansion to leaves that
are periodic under f.

The following is the main result of this section.

Proposition 5.2 Suppose that W* is f—minimal, and that there is a good lift ]7 that
fixes every center stable leaf but no center leaf in M. Then every f—periodic center leaf
in M is coarsely contracting.

Note that a coarsely contracting periodic leaf must contain a periodic point.

If W is f-minimal, and there is a good lift f that fixes every center unstable leaf
in M, then one concludes that each periodic center leaf is coarsely expanding.

We will see in Proposition 5.6 that one can always find f—periodic center leaves.

5.1 Fixed centers or coarse contraction

We begin with a preliminary result.

Lemma 5.3 Suppose that f fixes every center stable leaf but no center leaf in M. Then
the same holds for every iterate f" withn # 0.

Proof Suppose that ]7 " fixes a center leaf ¢ for n > 0, and let L be a center stable leaf

that contains ¢ (which is fixed by f by hypothesis). Since f is orientable, f preserves
transverse orientations to the center and stable foliations on L.
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Let A be the axis for the action of ]7 on the center leaf space in L, ie the set of
center leaves ¢ such that f (c) separates ¢ from f~ 2(c); see [3, Appendix E]. Since
f "(co) = co, the leaf ¢g cannot be in A°. If c¢ is not in A then we can replace it with
the unique center leaf that separates co from A°. Thus we can assume that ¢o € 0A°.

Recall (see [1, Proposition 2.15]) that the boundary of the axis of a homeomorphism
on a 1-manifold splits into three disjoint sets: the “positive” boundary, “negative” and
“middle” boundary. That is, dA° contains three types of leaves, the center leaves ¢ such
that ¢ and f (c) are nonseparated on their positive side, the leaves ¢ such that ¢ and
f (c) are nonseparated on their negative side, and the leaves ¢ that are nonseparated
with a leaf ¢’ in A°.

If ¢ was in the “middle” boundary, then we would have that there exists ¢’ € A° not
separated with ¢g. Thus ¢’ and f "(c') are separated, contradicting that ¢y = ]7 "(co).
So cp must be either in the positive or negative boundary. In particular, ¢y and ]7 (co)
are nonseparated.

Now, consider the closure of the set of stable leaves intersect cg. There exists a unique
stable leaf s¢ in the boundary of that set that separates co from f(co). Therefore,
so must be fixed by f”, and hence contains a fixed point x of f”.

In particular, we found a periodic point of f ; thus, by the Brouwer translation theorem
(see eg [2]) f~ must also admit a fixed point, say y. Since the center leaves through y
form a closed interval (Lemma 3.19), there exists at least one closed center leaf
through y, a contradiction. O

In order to obtain coarsely contracting center leaves we will use the following tool.
Proposition 5.4 Suppose that f fixes every center stable leaf in M, and let L be a

center stable leaf that is also fixed by some y € w1 (M) \ {Id}.

Assume that there exists a properly embedded C '—curve 7j C L that is transverse to the
stable foliation and fixed by both y and f .

o If f does not act treely on LS , then there is a center leaf in L fixed by both f
and y.

o If f acts freely on LS, then every f —periodic center leaf in (L) is coarsely
contracting.

In the first case the center leaf projects to an f—invariant closed center leaf.
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Note also that the hypotheses of Proposition 5.4 are implied by the conclusion of the
graph transform lemma [3, Appendix H].

We will use the following result from [3], whose proof works equally well in the
non-dynamically-coherent case.

Lemma 5.5 [3, Lemma 4.15] Let c be a center leaf in a center stable leaf L C M.
Suppose that L is Gromov hyperbolic, and fixed by f and some nontrivial y € w1 (M).
Moreover, assume that there exist two stable leaves s1, s on L such that

(1) the center leaf c is in the region between s1 and 57,
(2) the leaves s and s, are a bounded Hausdortf distance apart, and

(3) the leaves c, s1 and s are all fixed by h = y" o fm, m # 0.

Then there is a compact segment I C ¢ such that h (it m > 0) or h=1 (if m < 0) acts as
o
a contractionon ¢ \ I.

Proof of Proposition 5.4 Since f~ fixes every leaf of W, Lemma 4.10 implies that it
fixes no point in M, and hence fixes no stable leaf.

Let S be the stable saturation of the curve 7. Let o = 7 (7). The curve « is closed,
f—invariant, and tangent to the center bundle.

Case 1 We start by assuming that f~ fixes a center leaf ¢ in L.

Suppose that ¢ and 7) do not intersect a common stable leaf. Then ¢ does not intersect
the set S and there is a unique stable leaf s contained in the boundary of S such that
s separates S from c. Since both S and ¢ are f —invariant, so is s. But then f must
admit a fixed point in s, a contradiction.3

Therefore there is a stable leaf s intersecting ¢ in y and 7] in x. Iterating forward by f,
we deduce that d( f~ (y), ]7 "(x)) converges to zero as y and x are in the same stable
leaf. Since both ¢ and 7 are f —invariant, it implies that ¢ and 7] are asymptotic; note
that ¢ and 7) may or may not intersect. Calling & = (1) the projection to M, we deduce
that 77 (c) accumulates onto «. But as « is closed and 7 (c) is a center leaf, we deduce
that « is also a center leaf. Hence 7 is the required center leaf of the first option of the
proposition.

3Note the distinction of ¢ being fixed by f as opposed to 7(c) being periodic under f. It is the first
property which creates a fixed point of f and a contradiction.
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Case 2 Assume now that f acts freely on the center leaf space of L.

According to Lemma 5.3, f " also acts freely on the center leaf space of L for any
n#0.

We need to prove now that every center leaf in (L) that is periodic must be coarsely
contracting.

Let then ¢ be a center leaf in L such that 77(¢) = e is periodic under f, say of period m.
Then, for some y; € 71 (M) \ {Id}, we have ¢ = y; ]7 " (c). (One can show under our
current assumptions that 77 (L) projects to an annulus, so y and y; are both powers of
a particular deck transformation, but we do not need that fact for the proof.) Let

h:=yio f™

We now want to show that either ¢ intersects 7], or there exists another center leaf, also
fixed by h, that does.

Suppose first that ¢ intersects S, ie there exists a stable leaf intersecting both ¢ and 7.
Since the stable distance is contracted by &, which fixes both ¢ and 7, we obtain that
either ¢ and 7 are asymptotic, or they intersect. If ¢ and 7] are asymptotic, then, as in
Case 1, we deduce that 7) must be a center leaf, contradicting the fact that ]7 acts freely
on the center leaf space. Thus we must have that ¢ intersects 7).

Suppose now that ¢ does not intersect 7, and thus does not intersect S. Then there is a
unique stable leaf s in 0S that separates 7] from c¢. That leaf s must then be invariant
by &, so admits a fixed point for 4. Then at least one center leaf, say ¢, through that
fixed point must be fixed by 4. Since c¢; intersects S and is invariant by £, it must
intersect 7.

Thus in any case, we have a center leaf ¢; that intersects 7, is invariant by & and, by
the above argument, has both ends that escape compacts sets of L.

Let I be the projection of ¢ onto 7 along stable leaves.

Suppose first that 7 is unbounded. Then, considering iterates by f™, we deduce that
7(c1) must be asymptotic to 7 (7)), so 7 must be a center leaf, which is not allowed,
since f is assumed to act freely on center leaves.

So I is bounded in 7). Let 57 and s be the stable leaves through the two endpoints of
the interval /. Since [ is fixed by £, so are s1 and s,. Moreover, the center leaf ¢y, as
well as c if it is different from cq, is in between s; and s5.
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Now, f acts as a translation on 7, so there exists k € Z such that s, separates s from
f k(s1). By Lemma 4.17, 51 and f k(s1) are a bounded Hausdorff distance apart. Thus
s1 and s, are a bounded Hausdorff distance apart. So ¢ satisfies all the conditions for
Lemma 5.5 to hold, thus it is coarsely expanding.

This finishes the proof of Proposition 5.4. |
We are now ready to prove the main result of this section.

Proof of Proposition 5.2 Let e C M be an f—periodic center leaf, and let ¢ C M be
a lift of e. If m > 0 is the period of e, then ¢ and f""(c) both project to e, so there is
an element y’ € w1 (M) with y'(f™(c)) = c.

Choose a leaf L € W that contains ¢. Then y’ is in the stabilizer of L, because
f leaves invariant every leaf of WS, Since f ™ acts freely on the center leaf space
(cf Lemma 5.3), y’ is not the identity.

Since ]7 does not have any fixed points, Proposition 4.15 implies that the stabilizer of
L in M is infinite cyclic. Thus, there exists y € w1 (M) \ {id} such that y" o f™(c) =c
for some n € Z with n # 0, and such that y generates the stabilizer of L. Let

hi=y"o f™.
Notice that 4 is still a partially hyperbolic diffeomorphism and has bounded derivatives.

Since f acts freely on L7, it must also act freely on L] . Let A® be the axis for the
action of ]7 on the stable leaf space L3 ; see [3, Appendix E]. No stable leaf in M can
be closed, so y must also act freely on £ . Since y and f commute, A° is also the axis
for the action of y on L} . The axis A® can be a line or a countable union of intervals.

Suppose first that A° is a line. Let s be a stable leaf in A® and p in s. Then p and yp
can be connected by a transversal to the stable foliation, chosen so that the projection
to (L) is a smooth simple closed curve. Let 7 be the union of the y iterates of this
segment. Applying the graph transform lemma [3, Lemma H.1] to 1 we obtain a curve 7
which satisfies the properties in the hypothesis of Proposition 5.4, as desired.

Now suppose that A% is a countable union of intervals
_ - 71—
- Uirs1=Ut
i€Z i€Z
Our first claim is that there exists s € A%, fixed by &, such that the center leaf ¢ is

-1

between Y~ s and ys.
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Suppose that ¢ intersects some stable leaf s’ in A%. Then s’ is in a unique 7; for some i
(the center leaf ¢ cannot intersect two different intervals otherwise ¢ would intersect
two nonseparated leaves, which is impossible). Then, since / fixes c, it also fixes the
axis A® and preserves the transverse orientation. It follows that #(7;) = T} for all ;.
In this case we set s = sl.Jr . The leaf s is fixed by & and there exists k # 0 such that

1

y*1T; = T; 1x. Thus T} is in between y~ls and ys and hence, so is c¢. Recall here

that & preserves orientation.

Now, suppose instead that ¢ does not intersect A%. Hence, there is a unique i such that
sl-+_ L Us; separates ¢ from all other stable leaves in A°. We again set s := s;r . As

before, since 4 fixes both ¢ and A%, and preserves the transverse orientation, it must fix

1

s also. The same argument as above also shows that ¢ is between y~"s and ys.

In either case we have found a stable leaf s (chosen as a positive endpoint of one of the

closed intervals 7;) that is fixed by /4, such that ¢ lies between y~!

that both ys and y s are fixed by A.

s and ys. Notice

—2n+1

The leaf y~1s is between ys and ]7 2m(ys) =y s (assuming n > 1, otherwise

between ys and f~2™(ys)). Hence the Hausdorff distance between y !

s and ys is
bounded above by a uniform constant C > 0, depending only on f and m.

g also

Thus the center leaf ¢, fixed by 4, lies between the stable leaves ys and y—
fixed by %, which are a bounded Hausdorff distance apart. Moreover, the leaves of W
are Gromov hyperbolic by Lemma 4.18. These are all the conditions needed to apply

Lemma 5.5, so ¢ is coarsely contracting for /. |

5.2 Existence of periodic center leaves

In order to apply Propositions 5.2 and 5.4 we will need some way to find periodic
center leaves.

Proposition 5.6 Let f: M — M be a partially hyperbolic diffeomorphism homotopic
to the identity.

Suppose that some good lift ]7 fixes every center stable leaf in M. If L is a center stable
leaf fixed by some y € w1 (M) \ {Id}, then there is an f —periodic center leaf in w(L).

Proof First notice that if one can prove the above result for a finite cover of M and
a finite power of f, then the same result directly follows for the original map and
manifold. Thus, we may assume that M is orientable, f is orientation-preserving, and
the branching foliations are both transversely orientable.
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Given these assumptions, L projects to an annulus in M (Proposition 4.15). Let y be a
generator of the stabilizer of L.

If f fixes a center leaf in L, then it would project to a center leaf fixed by f, proving
the claim. So we assume that f acts freely on the center leaf space in L. This implies
that ]7 also acts freely on the stable leaf space in L, and we can thus consider the
stable axis A C L} of f . Since y also acts freely on the stable leaves, and commutes
with f, it has the same set A as its axis. This axis is either a line or a countable union
of intervals.

If the axis is a countable union of intervals, there must be integers n,m such that
h:=y" f ™ fixes one of the intervals, and hence a stable leaf s. One cannot have m = 0,
since this would mean that y” would fix a stable leaf, which is impossible. So m # 0,
and s projects to a periodic stable leaf 7 (s) in M. This must contain a periodic point,
and at least one center leaf through that point is periodic, as desired.

If the axis is a line, then one can use the graph transform lemma [3, Appendix H] to
see that there is a properly embedded curve in L which is invariant under f and y.
Then [3, Lemma H.3] provides a periodic center leaf, as desired. O

5.3 Additional result

The intermediate results in this section also provide a proof of the following result,
which will be needed later in this article.

Proposition 5.7 Suppose that f fixes every center stable leaf in M, and let L be a

center stable leaf that is also fixed by some y € w1 (M) \ {Id}. Assume moreover that

there is no center leaf in L fixed by f. Then there is a center leaf ¢ in L fixed by

h =y"o f™ for some n,m withm # 0, and two stable leaves s, s, on L such that
(1) the center leaf ¢ separates s1 from s in L,

(2) the leaves s1 and s, are a bounded Hausdorff distance apart, and

(3) the leaves c, s1 and so are all fixed by h = y" o ]7’”, where m # 0.

Proof The conditions imply that 7 (L) is an annulus. Proposition 5.6 implies that
there is a periodic center in 7w (L).

To prove Proposition 5.7 we revisit the proof of Proposition 5.2. Since there is no
center fixed by f in L, then as in the proof of Proposition 5.2 the map f acts freely
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on the stable leaf space. As in that proposition we separate into whether the stable axis
is a line or a Z—union of intervals.

In the first case, as in Proposition 5.2 we produce a curve 7 in L which is invariant
under f and y. We will use Proposition 5.4, and the existence of such a curve 7 is
necessary for that. The analysis of Proposition 5.4 has cases depending on the action
of ]7 on the center leaf space — as opposed to the action on the stable leaf space AS.
However, in this proposition we are assuming that the action on the center leaf space in
L is free, so this is Case 2 of Proposition 5.4, where the proof showed the existence of a
center leaf ¢ and stable leaves 51, 57 satisfying the conditions stated in this proposition,
except perhaps that ¢ separates s; from s;.

We now show that such a center leaf exists with this additional property. Suppose that
this does not happen for c. This can only occur if both ends of 7 (c) are in the same
end of the annulus 77 (L), or in other words, if 7 (c) separates 7 (L). Since the action of
f on the center leaf space in L is free it has an axis denoted by A°. The leaf ¢ is not in
this axis. If the axis A° is a real line then there is a unique center leaf ¢’ in the axis A°
which is either nonseparated from c¢ or is nonseparated from a leaf which separates ¢
from the axis. In either case it also follows that / fixes ¢/. We can then redo the analysis
with ¢’ instead of ¢. It will produce stable leaves s1, 55 fixed by &, with ¢’ between
them, and now ¢’ separates s1 from s,. If the center axis AC is a countable union of
intervals, there is a unique consecutive pair of intervals such that ¢ is “between” them.
Then the boundary leaves of these intervals are fixed by 4. Choose ¢’ to be one of these
boundary leaves, and redo the proof with ¢’ instead of ¢ to obtain the conclusion of the
proposition.

The other case of this proposition is when the stable axis is a Z—union of intervals.
Here we use the notation of the proof of Proposition 5.2, where A* = | J,; ¢z [s; s;L 1=
U;ez Ti. Consider S(J)r , which is nonseparated in the stable leaf space from s". There
are n,m, with m # 0, such that h = y" o f " fixes all T; and their boundary leaves.
Since saL and s] are nonseparated, consider a nearby stable leaf s which intersects
transversals to both of them. Choose a center cg intersecting s and s(')" , and choose a
center ¢ intersecting s and 57 . Starting from ¢ and considering the centers intersecting
s between cg N s and ¢; N s, there is a first center leaf, denoted by ¢, which does not
intersect sar . This center is fixed by &. Let s1 = saL and s> = 57 . They are both fixed
by h. In addition, ¢ separates s1 from s,. Finally, s; and s, are a finite Hausdorff
distance from each other in L.

This completes the proof of the proposition. |
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6 Minimality for Seifert and hyperbolic manifolds

In this section we will show that when M is hyperbolic or Seifert, the existence of
a single fixed center stable leaf implies that every center stable leaf is fixed. This is
considerably easier in the dynamically coherent case [3, Proposition 3.15].

We continue to assume that f is orientable.

Proposition 6.1 Suppose that M is hyperbolic or Seifert fibered, and a good lift f
fixes some leaf of W*. Then f fixes every leaf of WSS, WS is f—minimal, and every
leaf of W¢* and W*® is either a plane or an annulus. The same statement holds for VWW*".

The main issue in extending the proof of [3] to the non-dynamically-coherent context
is that here we cannot ensure the nonexistence of fixed points of f , since Lemma 4.10
does not exclude fixed points when the branching foliation is not f—minimal. So we
will need to exclude the existence of fixed points for good lifts. We cannot exclude
their existence in general, but we are able to show that they cannot exist in minimal
sublaminations of W or W

6.1 No fixed points for good lifts

Note that the definition of f—minimality for the whole foliation can be applied to
subsets: a W—saturated subset of M is f-minimal if it is closed, nonempty, and
f—invariant, and no proper saturated subset satisfies these conditions.

The goal of this subsection is to prove the following proposition, which does not assume
that M is hyperbolic or Seifert.

Proposition 6.2 Let f~ be a good lift of f to M. Suppose that A is a nonempty
f—minimal set of W such that every leaf L of A = n~Y(A) is fixed by f. Then f
has no fixed points in A.

We will prove this proposition by contradiction. So from now on, we assume that there
is a fixed point p of f in a leaf L contained in A. This point projects to a fixed point
7(p) in M. Note that any leaf L’ of A that intersects the unstable leaf u(p) through p
must have L’ Nu(p) = p = L Nu(p). This is because L and L’ are both fixed, and
unstable leaves are expanded.

6.1.1 Many fixed points The following property uses crucially the fact that A is an
f—minimal sublamination.
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Lemma 6.3 There exists b > 0 such that any point in a leaf of A is at distance at
most b (for the path metric on the leaf) from a fixed point of f.

Proof Otherwise, one can find a sequence of discs D; in leaves of A that contain
no fixed points and whose radius goes to co. Up to deck transformations and subse-
quences, these disks converge to a full leaf L of WSS that is contained in A. Here, the
convergence is with respect to the topology of the center stable leaf space, which also
implies convergence as a set of M. The leaf L; does not contain any fixed point of f .
Indeed, the unstable leaf through a fixed point ¢ in L would eventually intersect one
of the discs D;. Since f fixes the leaves of A, this would imply that the leaf through
D; merges with L and that D; contains the fixed point ¢, a contradiction.

Since L contains no fixed points, it does not contain the f —fixed point p, and
A = (L) does not contain the f—fixed point 7 (p). But the closure of A = (L1)
in M is A by minimality, so A must accumulate on 7 (p). But this means that A
intersects u (7 (p)), which implies that A contains 7r(p) as explained above. This is a
contradiction. |

6.1.2 A topological lemma Let L be a metrically complete, noncompact, simply
connected, Riemannian surface.

For a compact subset X C L we denote by Fill(X) the complement of the unique
unbounded connected component of L \ X. Note that Fill(X) is always compact, as a
neighborhood of oo in the compactification of L is disjoint from X . Notice further that,
by definition, Fill(X) is a compact connected set which does not separate the plane.

We will use the following simple properties of Fill(X):

e If X CY are compact sets, then Fill(X) C Fill(Y).
e If g: L — L is a homeomorphism and X C L, then g(Fill(X)) = Fill(g(X)).

The following lemma will be used in the next section; see Figure 5.

Lemma 6.4 Let L be as above. Then for every b > 0 and § > 0 there exists R > 0
and ng > 0 with the following property. Let A and B be topological disks, and let
£1,..., 4y, withn > ng, be disjoint curves that join A and B. Suppose that

(i) d(A,B)>2R, and

(i) the §—neighborhoods of the curves {; are pairwise disjoint.

Then the region Fill(AU BU £y U---U¥,)\ (AU B) contains a disk D of radius > 4b.
Moreover, D can be chosen so that d(D, A) and d(D, B) are larger than d(A, B)/10.
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A

/

4y

Figure 5: A depiction of Lemma 6.4.

Proof Using the Jordan curve theorem we can reorder the curves so that

e Fill(AUBUL U---Uy,) =Fill(AU B U{; ULy), and

e for 1 <i <n we have that ; CFill(AUBUY{;_1 U¥;y1).

Take R > 100b and ng > 100b/8. Without loss of generality we can assume that n is
even. This way, we can choose a point x € £,/ such that d(x, A) > d(A, B)/4 and
d(x,B)>d(A, B)/4. We claim that B(x,4b) C Fill(AU BU{; U{,). By our choice
of x it will follow that B(x, 4b) is at distance larger than d(A, B)/10 from A and B.

To see this, consider a geodesic ray r starting from x, and let y be the first point of
intersection of r with dFill(AU BU£y U---U¥£,)\ (AU B). By our ordering, there
are two possibilities: either

¢ y belongs to 04 U dB, or
e y belongs to £1 U{,.

By our assumptions, if y € d4 U dB then the distance d(x, y) > R/4 > 4b. On the
other hand, if y € £, then by our choice of reordering we deduce that » must intersect £;
for all 1 <i < n/2. Since the points of intersection are at distance pairwise larger
than §, we deduce that d(x, y) > 4b. Similarly, if y € £,, we also get d(x, y) > 4b.
This completes the proof. |

Geometry & Topology, Volume 27 (2023)



3136 Thomas Barthelmé, Sérgio R Fenley, Steven Frankel and Rafael Potrie

6.1.3 Proof of Proposition 6.2 We will repeatedly use the fact that f~ ~1 expands
stable length. To simplify notation we set g := f ~!. The rest of this subsection is
devoted to the proof of Proposition 6.2.

According4 to Lemma 4.17, there is a constant K > 0 such that, for any z € L, we have

dr(z,g(2)) = K,

where dj, denotes the path metric on L. From now on within this subsection we will
always work in L, so we will drop the subscript and write d := df..

To finish the proof, our aim will be to show that the fact that f moves points a bounded
distance in L, together with the exponential contraction of length along the stable
leaf s(p) under iteration by f~ , will force an arbitrarily large amount of “bunching”
of s(p), which is impossible for leaves of planar foliations.

Indeed, since s(p) is a leaf of a foliation of the plane, there exist some constants §, > 0
such that if 7, J C s(p) are closed segments which are at distance larger than 5 in
the s(p) metric, then their §—neighborhoods are disjoint in L. Now, this implies in
particular that the volume of the §—neighborhood of a segment of s(p) must grow to
infinity with its length (and therefore, the diameter grows to infinity with the length).

Without loss of generality, we can assume that §,n < 1 and K > 1.

To prove Proposition 6.2 we will fix b > 0 as given by Lemma 6.3, and § > 0 by the
considerations above. Lemma 6.4 then gives us values of R > 0 and n¢ > 0 associated
to b and § so that its statement holds. We will fix

y 10R 10b
n > max{ —, —, .
K 5§ °

We introduce the following notation: given any a, b € s(p), we write [a, b]® to indicate
the closed segment along the stable leaf s(p) between a and b, oriented from a to b.

We will then pick points in y, z € s(p) with the properties
e d(y,z) >200Kn,
o g(y.z2I) Ny, z]' = & (equivalently, z € [y, g(y)]).

The existence of points like this follows from the fact that if yq is any point in s(p),
the length of g% ([yo. g(0)]*) grows to infinity, and thus its diameter grows too. See
Figure 6.

41t is not hard to see that the proof applies to the fixed sublamination.
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y)
Figure 6: Choosing points y and z in s(p).

We will pick A; = B(y, Ki) and B; = B(z, Ki), the neighborhoods of radius Ki of
the points y and z. Given our choices, notice that g(y) € A1, g(z) € By, and, for any i,
we have g(A;) C Aj+1 as well as g(B;) C Bj+1.

The following holds:

Lemma 6.5 Every arc J C [y, g"(z)]® which is disjoint from A, U By, is completely
contained in a fundamental domain of s(p) for the action of g. More precisely, there
exists £ such that J C [g4(y), g4 (2)]* or J C [g%(2). g*T1(»)].

Proof This is because [y, z]® intersects A and By, so every fundamental domain as
above intersects both 4, and B,,. O

We can apply Lemma 6.4 to get:

Lemma 6.6 Fill(4, U B, U[y, g"(2)]°) \ (A10n U B1on) contains a disk of radius 4b.
Proof Note that [g¢(y), gt 1(y)]° contains at least two segments joining A1gy, to
Bion if 0 < £ < n; see Figure 6. Thus there are at least 2n such curves, which, since

they are segments separated in s(p), must have pairwise disjoint —neighborhoods.
Thus, by our choice of constants b, §, K and n above, we can apply Lemma 6.4 to
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find a disk of radius > 45 inside Fill(4, U B, U [y, g"(2)]) \ (An U By) which is at
distance larger than d(A4,, B,)/10 from A, and B,. Thus, the disk is contained in
Fill(4, U B, U [y, g"(2)]°) \ (A10n U B1on), as required. |

Using Lemma 6.3 we can find a fixed point g € Fix(g) such that
B(q.2b) CFill(A, U B, U[y, g"(2)]") \ (A10n U Bion).

We can show the following:

Lemma 6.7 There exists an arc J C [y, g"(z)]® such that either

(1) J intersects A, only at its endpoints and g € Fill(4, U J), or
(2) J intersects By, only at its endpoints and g € Fill(B, U J).

Moreover, J is contained in a fundamental domain: for some 0 < £ < n we either have
J gt ). g or 7 clgh2). g T )P

Proof This follows from the fact that Fill(4, U B, U [y, g"(2)]°) is contained in a
union of sets of this form.

To see this, note that
Fill(A, U B, U[y, g"(2)]) = Fill(4, U [y, g" (2)]) UFill(B, U [y, g" (2)]°)

because A, and B,, are disjoint topological disks and [y, g" (z)]* is a topological interval.
Indeed, by Jordan’s theorem A= Fill(A, U [y, g"(2)]®) is a topological disk with an
arc attached (ie the segment [w, g"(z)]® where w is the last point of intersection of
[v, g"(z]]*), and similarly B= Fill(B, U [y, g"(2)]®) is a topological disk with an arc
attached. One has that Fill(4, U B, U[y, g"(2)]®) = Fill(/T U E). Since the intersection
of these sets is connected (because their intersection retracts to [y, g” (z)]*) we deduce’
that Fill(AU B) = AU B.

The fact that J is contained in a fundamental domain is a direct consequence of the
fact that it intersects A, (or By) only in its boundaries, and thus Lemma 6.5 can be
applied. |

SHere we are using the fact from plane topology that generalizes the Jordan curve theorem stating that if
X and Y are compact connected sets, then their union separates the plane if and only if their intersection
is not connected.
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Both cases are analogous, so we will assume from now on that the first option happens,
namely, g € Fill(A, U J) for a curve J C [y, g"(2)]® which intersects 4, only at its
endpoints and such that J is contained in a fundamental domain of s(p).

To reach a contradiction, the idea will be to find fixed points g1, g2 which are sufficiently
close, and such that one belongs to Fill(4, U J) and the other does not. If we choose
them appropriately, we will be able to see that g’ (J) will intersect a geodesic joining ¢
and g, for several values of i (before the set g’ (A, ) becomes too big). This will produce
some accumulation of the arcs g (J) (which are segments of s(p) far along s(p)); this
is not possible, and gives the desired contradiction.

Lemma 6.8 There are fixed points ¢1, g2 € Fix(g) such that d(¢1,q2) < 3b and we
have that ¢, € Fill(A,, U J) \ A1on while g» ¢ Fill(A, U J).

Proof We will use Lemma 6.3. By the choice of the point ¢ we can consider an
unbounded geodesic ray r starting at ¢ which is at distance larger than 25 from Aj¢y.
One can cover r by balls of radius b; in each such ball there is a fixed point, and
eventually, the fixed point is not in Fill(4, U J), which is a bounded set. So there is a
pair of such points for which one belongs to Fill(4, U J) and the other does not. Their
distance is less than 3b. |

We are now ready to prove Proposition 6.2 by finding a contradiction, which will be
produced using the following:

Lemma 6.9 Forevery 0 <i <n, we have that g' (J) N [q1. 21 # @, where [q1, ¢2]L
denotes a geodesic segment joining g1 and q».

Proof Note first that since d(g1,¢2) < 3b and ¢1 ¢ A10n, We know that the geodesic
segment [q1, ¢2]1 is disjoint from As, (recall that § < 1 and that n > 10b/4).

Since ¢; € Fill(4, U J) is fixed, we get that ¢; = g'(q1) € g' (Fill(4, U J)) =
Fill(g' (4,) U g’ (J)). Similarly, we get that since ¢» ¢ Fill(4, U J), we have that
g2 ¢ Fill(g' (4n) U g' ().

This implies that dFill(g’ (4,)Ug’ (J)) must intersect [¢1, g2]z. Since g' (An) C Ani,
which is disjoint from [¢1, ¢2]z., we deduce that g (J) must intersect [¢1, 2]z, as we
wanted to show. |
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The contradiction is now the fact that g’ (J) are curves whose §—neighborhoods are
disjoint, and all intersect [¢1, ¢2]7,, which is a geodesic segment of length < 3b. This
produces n different points at pairwise distance > § in [q1, g2]1,, which is a contradiction
since n > 10b/$6.

6.2 Proof of Proposition 6.1

We are now ready to prove Proposition 6.1.

This proof follows the same structure as the one of [3, Proposition 3.15] and we will
continuously refer to it. Recall the standing assumption that f is orientable.

Consider A an f—minimal nonempty subset. We need to show that A = M. We assume
for the sake of contradiction that A # M.

Since W* has no closed leaves and A is f—minimal, there cannot be any isolated
leaves in A (for the topology of the stable leaf space).

Now, Proposition 6.2 allows us to assert that f has no fixed points in leaves of A.
Then, Corollary 6.12 implies that each leaf of A is either a plane or an annulus.

Fix an € small enough and let A’ be the pullback of A to the approximating foliation W¢*.
That is, A’ = (h¢)"1(A). Let V be a connected component of M \ A,

Claim 6.10 The projection (V') to M has finitely many boundary leaves.
This is a standard fact in the theory of foliations [14, Lemma 5.2.5].
Claim 6.11 Each leaf L C 0V projects to an annulus (L) in M.

Proof Suppose that 7(L) is a plane. Recall (see [14, Lemma 5.2.14]) that 7 (V') has
an octopus decomposition and a compact core. So for any § > 0, the subset of points
in 7w(L) that are at distance greater than § from another boundary component of 7 (V')
is precompact. Since w(L) is supposed to be a plane, that subset must be contained
in a closed disk D. Then 7 (L) \ D is an annulus that is §—close to another boundary
component, (L"), of (V). Moreover, the subset of 7 (L") that is —close to (L) \ D
then also has to be an annulus. If 771 (L’) were not a plane it would be an annulus and
its nontrivial curve corresponds to a curve homotopic to the boundary of the closed
disk D, which is homotopically trivial in M. Since the leaves of W¢* are m1—injective,
this implies that 7t (L’) is also a plane.

Geometry & Topology, Volume 27 (2023)



Partial hyperbolicity in 3—-manifolds, Il 3141

Since M is irreducible this implies that 7 (V') is homeomorphic to an open disk times
an interval. So (V') has only two boundary components, both of which are planes. In
particular, the isotropy group of V is trivial and (V') is homeomorphic to V.

We will now switch to the branching foliation to finish the proof. Let A = h* (z(L))
and B = hS (w(L')). Since we chose € small enough, up to taking § small enough also,
the unstable segments through A \ 4°(D) intersect B, and their length is uniformly
bounded. Moreover, no unstable ray of A can stay in £¢*(sr(1')). This is because 7 (V')
is homeomorphic to an open disk times an interval. So, since D is compact, the length
of every unstable segment between A and B is bounded by a uniform constant. Notice
that, since W is a branching foliation, we may have A N B # &, ie some of these
unstable segments may be points.

Since L and L' are in dV, which is a connected component of M \ A’, we have that
A, B e€d(M\ A). Soin particular, A and B are fixed by f. Hence, the set of unstable
segments between A and B is also invariant by f. Since the lengths of unstable
segments between A and B are bounded above and f expands the unstable length, all
the unstable segments must have zero length, ie A = B. This implies that V' is empty,
which contradicts the assumption that A # M. O

Thus we showed that every component of 7(dV') is an annulus. We can then apply
without change the (topological) arguments of the proof of [3, Proposition 3.15] to
obtain a torus 7', composed of annuli along leaves of W¢* together with annuli transverse
to WES which bounds a solid torus U’ in 7z (V).

Now consider U = h¢*(U"). Because of the collapsing of leaves, U may not be a solid
torus. If U is empty for any such component U’, this would directly contradict the
assumption A # M. So for some such complementary component U’, the set U is not
empty and it is contained in a solid torus (the e—tubular neighborhood of U’ in M).
We can then use the same “volume vs length” argument on U, exactly as in the end of
the proof of [3, Proposition 3.15], to get a final contradiction. This ends the proof of
Proposition 6.1.

6.3 Some consequences

An important consequence of Proposition 6.2 is the following:

Corollary 6.12 Suppose that f is a partially hyperbolic diffeomorphism in M that
is homotopic to the identity. Let f be a good lift of f to M. Suppose that A is a
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nonempty (saturated) f—minimal subset of W* such that every leaf of the lift AtoM
is fixed by f. Then every leaf in the f—minimal set A of W* is either a plane or an
annulus.

Proof Let A be aleaf of A and L a lift in M. By Proposition 6.2, L does not admit
any fixed points of f. Hence, f acts freely on the space of stable leaves in L.

Now, recall that 1 (A) can be defined as the elements y € w1 (M) that fix L; see
Section 4.3. So if y € w1 (A), it must also act freely on the space of stable leaves in L.
As f commutes with every deck transformation, Corollary E.4 of [3] — which still
applies in the context of branching foliation, as does all of [3, Appendix E] —implies
that 7w (A) is abelian, ie A is either a plane or an annulus (again with the understanding
that A might actually only be an immersion of one of these manifolds in M, and
recalling that all bundles were assumed to be orientable in this section, so in particular
the leaves cannot be Mobius bands). O

As a consequence, we also get the following result, which completes the proof of
Theorem 1.3 as announced.

Corollary 6.13 Suppose that f is a partially hyperbolic diffeomorphism homotopic
to the identity. Suppose that f is either volume-preserving or transitive, or that M is
either hyperbolic or Seifert. Let ]7 be a good lift of f. Then ]7 has no periodic points.
In particular, f has no contractible periodic points.

Proof Up to finite covers and iterates, we may assume that f preserves the branching
foliations W and W
If f acts as a translation on either W or W*, then it does not have periodic points.

Otherwise, since we showed that under our assumptions the branching foliations are
f—minimal, the result then follows from Theorem 4.12. o

7 Double invariance implies dynamical coherence

In this section we show that if the center stable and center unstable branching foliations
are minimal and leafwise fixed by a good lift f : M — M, then, f has to be dynamically
coherent (ie the branching foliations do not branch). Therefore, we will be able to
apply the results from the dynamically coherent setting.
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The universal cover M of M is homeomorphic to R? (since it admits a partially
hyperbolic diffeomorphism; see [3, Appendix B]). We do not assume anything further
on M in this section.

Recall also that a center leaf is a connected component of the intersection of a leaf of
W< and one of )7V°“; cf Definition 3.7.

This section (and the proof of dynamical coherence) is split into three parts. First,
in Section 7.1, we show that for an appropriate lift of M and power of f, double
invariance of the foliations implies that the center leaves are fixed. The lift and power
we need to consider here is in order to have everything orientable and coorientable.
Then, in Section 7.2, we show that if a good lift fixes every center leaf, then it must
be dynamically coherent. Finally, in Section 7.3, we show that if a lift and power of
a partially hyperbolic diffeomorphism is dynamically coherent and fixes the center
leaves, then the original diffeomorphism is itself dynamically coherent (and a good lift
of a power of it will fix every center leaf).

7.1 Center leaves are all fixed

To begin, we would like to show that ]7 fixes every center leaf. The results of Section 5
already provide at least one fixed center leaf:

Lemma 7.1 Let f: M — M be an orientable partially hyperbolic diffeomorphism
homotopic to the identity with f—minimal branching foliations W and W*, If there
is a good lift f that fixes every leaf of W and W, then f fixes some center leaf.

Proof Suppose that f~ fixes no center leaf. Since there is at least one nonplanar leaf,
Proposition 5.6 provides an f—periodic center leaf ¢ in M. Applying Proposition 5.2 to
Witan Shows that ¢ is coarsely contracting, but the same regﬂt applied to Wy = shows
that ¢ is coarsely expanding. This is a contradiction, so f must fix a center leaf, as

desired. O

Proposition 7.2 Let f: M — M be an orientable partially hyperbolic diffeomorphism
homotopic to the identity with f —minimal branching foliations W and W*". If a good
lift f of f fixes every leaf of W* and W<, then f fixes every center leaf.

Proof Let
Fixcf~ ={c: f(c) =c},

thought of as a subset of the center leaf space.
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The set Fix“ is obviously 71 (M )—invariant. It is also open, by an argument very
similar to the one in [3, Lemma 6.3]: if ¢ is a fixed center leaf in a center stable leaf L
in M, then for any center leaf ¢’ in L close enough to ¢ (for the topology of the center
leaf space in L), there is a strong stable leaf that intersects ¢, ¢’ and f (¢’). Now, since
]7 fixes the center unstable leaves, ¢’ and ]7 (c’) are on the same center unstable leaf.
Since no transversal can intersect the same leaf twice, it implies that ¢/ = f~ (c’). Thus
the set of fixed center leaves within each center stable leaf is open (in the center leaf
space within that center stable leaf). Similarly, the set of fixed center leaves within
each center unstable leaf is open. Together, these facts imply that the set of fixed center
leaves is open in the center leaf space.

Note that a good lift ]7 fixes every leaf of WS, so f fixes every leaf of W In
particular, f—minimality of W is equivalent to minimality of V. Hence W* is
minimal; similarly for W46

To see that ]7 fixes every center leaf, we proceed as in [3, Lemma 6.4]: we show first
that every center leaf in a center stable leaf (resp. center unstable leaf) which projects to
an annulus has to be fixed (due to our orientability assumptions, leaves cannot project
to a Mobius band). Then the same argument as in [3, Lemma 6.4] applies to show that
every center leaf has to be fixed.

Let L be any center stable leaf that projects to an annulus, and choose a generator y of
the isotropy group of L.

Since the set of fixed center leaves is open in the center leaf spaces of any center
unstable leaf, minimality of YW implies that L must have some fixed center leaves.

We will first prove that if ¢ is a center leaf in L which is in the boundary of the set
of fixed center leaves in L, then m(c) is periodic under f. We will then show, as in
Proposition 5.4, that any periodic leaf in 77 (L) must be coarsely contracting. The same
argument applied to the center unstable leaves yields that periodic center leaves must
also be coarsely expanding; a contradiction.

Since ]7 cannot have fixed points (as f fixes all the leaves of W< and W), ]7 acts

freely on the space of stable leaves in L.

We assume, for a contradiction, that not all center leaves in L are fixed. Let Fix;, be
the set (in £, the center leaf space on L) of center leaves fixed by f.

6In fact f—minimality and minimality are always equivalent as long as the branching foliation does not
have a compact leaf, without assumptions on f; see Lemma B.2.
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The set Fixy, is open, and assumed not to be the whole of L. So let ¢; be any leaf in
dFixy .

Let (¢,) be any sequence of center leaves in Fixy, that converge to c;. Then f (cn) =cn
converges to f(c1). As the leaf ¢ is not fixed by f, we deduce that f(c;) is not
separated from c;.

Hence, there exists a (unique) stable leaf s; which separates f~ (c1) from ¢; and makes
a perfect fit with cq; see Section 3.4.3 for the definition of perfect fits in the non-
dynamlcally -coherent setting. Then f (s1) makes a perfect fit with f (c1)- Because
c1 and f (c1) are not separated from each other, s; and f (s1) intersect a common
transversal to the stable foliation. It follows that the stable axis of f actingon L is a
line. Thus, since y commutes with f the stable axis of y is that same line. Moreover,
both the stable leaves s1 and f (s1) are in the axis of f

Since the stable axis of f acting on L is a line, the graph transform argument
[3, Appendix H] applies and we obtain a curve 7], tangent to the center direction,
which is fixed by both y and f.

As s1 makes a perfect fit with ¢q, and s intersects 7], we deduce that there exists a
stable leaf s that intersects both ¢; and 7). Let x = s N7 and y = s N¢;. We denote
by J the segment of s between x and y.

Since 7 projects down to a closed curve 7 (7)), and f decreases stable lengths, there exist
ni,ny € 7. and mi,my € N as large as we want such that the four points y”! f’"1 (x),
y™ fmi(y), y2 fm2(x) and y"2 f™2(y) are all in a disk of radius as small as we

want.

Suppose now that y”! fm‘ (c1) # y"2 fmz (c1). Then, up to switching n1,m; and
np,my, we obtain that y"2 f™2(cq) intersects y”! f™1(J). This is in contradiction
with the fact that ¢; is in dFixz, which is invariant by both f and y.

Thus y™! fN’"1 (c1) = y”zfm2(c1). In other words, c; is fixed by the map h = y”f’”
for some n, m integers with m > 0. (Although not useful for the rest of the proof, one
can further notice that 7 and ¢ intersect, as & decreases the length of J by forward
iterations and both c; and 7 are fixed by A.)

Now recall that we built above a stable leaf s; making a perfect fit with ¢;. And, by
our choice of 51, the center leaf c; is in between s and s := f -1 (s1).

Recall that s is the unique leaf making a perfect fit with ¢, and separating ¢; from
f(c1). Thus h(sy) is the unique leaf making a perfect fit with 2(c;) = ¢ and separating
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h(c1) = cy from h of(cl) = fo h(c1) = f(cl). That is, 7 is fixed by /. Using again
that # and f commute, we deduce that s, is also fixed by 4.

Now, the leaves 51 and s, are also a bounded distance apart, so Lemma 5.5 holds and
we deduce that ¢, as well as any other center leaf ¢ that is in between s; and s,, must
be coarsely contracting. Note now that any center leaf ¢ in L that is fixed by some
W=y ]7 m’ is separated from Fixz, by a center leaf ¢} C 0Fixy, as above. Hence, we
proved that every nonfixed periodic leaf in 7 (L) is coarsely contracting.

Therefore, the same argument applied to the center unstable leaf containing c¢1 shows
that ¢; must also be coarsely expanding; a contradiction.

So we obtained that every center stable or center unstable leaf L which is fixed by
some nontrivial element of 771 (M) has all of its center leaves fixed by f~ . Since Fix%
is open (in the center leaf space), minimality of the foliations implies that it contains
every center leaf, as in the end of the proof of [3, Lemma 6.4]. |

7.2 Dynamical coherence

We now want to prove dynamical coherence provided that a good lift fixes every center
leaf. We do not assume that f is orientable, only that it admits branching foliations.
We start with the following:

Lemma 7.3 Let f: M — M be a partially hyperbolic diffeomorphism homotopic
to the identity, preserving branching foliations W and W*. Let f be a good lift
that fixes every center leaf. Then there is a global bound on the length of every center
segment between a point x and f (x).

In the dynamically coherent case this was very easy as the center curves form an actual
foliation and there is a local product picture near any compact segment. We have to be
more careful in the non-dynamically-coherent setting.

Proof We assume the conclusion of the lemma fails. Then there exists a sequence Xx;
of points in M contained in center leaves ¢; such that the length in ¢; from x; to ]7 (x7)
diverges to infinity. This length depends not only on x; but also on ¢;, since there may
be many center leaves through x;. We denote by e; the segment in ¢; from x; to f (xi).

Up to acting by covering translations we can assume that the x; converge to a point
x € M. Let L; and U; be, respectively, a center stable leaf and center unstable leaf
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containing ¢;. Up to considering a subsequence, we may assume that L; converges to
a center stable leaf L containing x; see condition (iv) of Definition 3.1. Similarly, we
can further assume that U; converges to some center unstable leaf U with x € U.

For i large enough, all the leaves L; intersect a small unstable segment in u(x). The
set of center stable leaves intersecting this segment is also a segment (even though
many different leaves may intersect a given point in u(x)). Hence we may assume that
L; is weakly monotone, and so is U;. Let ¢ be the center leaf through x contained in
LNU. Then f(x) € ¢, and we call e the segment in ¢ from x to f(x).

Suppose first that L; = L for all big i. So we may assume L; = L for all i. Then the
center leaves ¢; are all in L and, for i big enough, intersect s(x). Hence the leaves c;
are, for i big enough, contained in an interval of the center leaf space in L. In addition
they are converging to ¢, which is a center leaf through x and ]7 (x). This implies that
the length of e; is converging to the length of e, and hence the length of e; is bounded
in i ; contradiction.

Suppose now that the L; are all distinct from L. The points x; and f (x;) are allin a
compact region of M. Since L; converges to L, we have that u(x;) intersects L for
big enough i. We call this nearby intersection y;. Likewise, u( f (x;)) intersects L in
f (yi). We want to push the center segments ¢; contained in U; N L; along unstable
segments to center segments in U; N L.

For i big enough, both x; and f (x;) are very near L. Thus, their unstable leaves u(x;)
and u/( f (x;)) both intersect L. Let y; be the intersection of u(x;) with L —recall that
this intersection is unique as the center stable branching foliation is approximated by a
taut foliation. Then ]7 (1) is the intersection of u( ]7 (x;)) with L, since L is fixed by ]7 .
Then the intersection of the unstable saturation of e; with L is a compact segment
inside a center leaf between y; and f (yi), since ]7 fixes every center leaf. Let b; be this
segment between y; and f~ (yi). The segments b; also converge to e, so the previous
paragraph shows that the lengths of the b; are bounded. Since the distance between x;
and y; converges to zero, this in turn implies that the lengths of the segments e; are
themselves bounded. This contradicts our assumption and finishes the proof. |

Lemma 7.4 Let f: M — M be a partially hyperbolic ditfeomorphism homotopic to
the identity, preserving branching foliations W and W*. Let f be a good lift that
fixes every center leaf. If ¢, and c, are different center leaves in a single center stable
leaf L € 17\/“, thenci Ncy = @.

Geometry & Topology, Volume 27 (2023)



3148 Thomas Barthelmé, Sérgio R Fenley, Steven Frankel and Rafael Potrie

C2

1)

Figure 7: Two centers that merge. The bound on the distance between x and
f (x) forces a behavior like the figure.

Proof Suppose that there are distinct center leaves ¢; and ¢, that intersect at a point
X € ¢1 Nca. Then f (x) is also in ¢1 N c¢y. If ¢1 coincides with ¢; in their respective
segments from x to ]7 (x), then applying iterates of f implies that ¢; = ¢, contrary to
assumption.

So we may assume that x is a boundary point of an open interval [ in, say, c;, which is
disjoint from c; but such that both endpoints are in ¢;. Then ¢ U ¢, bounds a bigon B
with endpoints x, y and a “side” in /. All center segments in B pass through x and y
and they have bounded length by Lemma 7.3. Each stable segment intersecting / also
intersects the other “boundary” component of B. See Figure 7.

The stable lengths grow without bound under negative iterates of f . Hence, since a
stable segment can intersect a local foliated disk of the stable foliation in L only in a
bounded length, it follows that the diameter in ]7 "(L) of ]7 "(B) grows without bound
as n goes to —oo. But the length of the center segments in f~ "(B) are all bounded,
according to Lemma 7.3. Moreover, between any two points in f "(B) there exists a
path along (at most) two center leaves — one just follows the center leaf to one of the
endpoints and then switches to the appropriate other center leaf. Thus the diameter is
bounded, which is a contradiction. d

Thus we deduce what we wanted to obtain in this section.
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Corollary 7.5 Let f: M — M be a partially hyperbolic diffeomorphism homotopic
to the identity, preserving branching foliations W and W*®". If some good lift f fixes
every center leaf, then f is dynamically coherent.

Proof By Proposition B.3 it is enough to show that the leaves of the branching
foliations do not merge.

Assume that two center unstable leaves U; and U, merge. Let L be a center stable
leaf intersecting U; and U, at the merging, ie L is a leaf through a point x such that
the unstable leaf through x is a boundary component of U; N U,. Then, connected
components of U; N L and U N L give two center leaves that intersect but do not
coincide. This contradicts Lemma 7.4. A symmetric argument gives that two center
stable leaf cannot merge either, proving dynamical coherence of f. O

7.3 Dynamical coherence without taking lifts and iterates

We now want to prove that if a finite lift and finite power of a partially hyperbolic
diffeomorphism is dynamically coherent, then the original diffeomorphism is itself
dynamically coherent. Although we do not know how to prove it in this generality, we
show it when a good lift of the dynamically coherent lift fixes every center leaf, which
is enough for our purposes.

Again, in this subsection we do not assume that f is orientable.

We start by showing a uniqueness result for the pairs of the center stable and center
unstable foliations under some conditions.

Lemma 7.6 Letg: M — M be a dynamically coherent partially hyperbolic diffeomor-
phism homotopic to the identity. Let W and W*" be g—invariant foliations tangent to
E® and E", respectively. Let W° be the center foliation associated with W and W
(defined as in Definition 3.7), and assume that there exists a good lift ¢ which fixes all
the leaves of W<

Suppose that W{* and Wi" are two g—invariant foliations tangent, respectively, to E
and E°". Suppose that g also fixes all the leaves of the center foliation )7V°1 associated
with Wi* and Wi".

Then W = Wy* and W™ = Wi".
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Proof The argument is similar to the one made in Lemma 7.4.

Let 17\/’? and 17\/‘}“ be two g—equivariant foliations as in the lemma. We will consider
the center foliation VN\/‘i defined by taking the connected components of intersections of
leaves of )7\/“15 and W, to show that W = VV‘iS A symmetric argument shows that
TAICU __ YA)C

we =W

Since every leaf of both W and 17V°1 is fixed by g, Lemma 7.3 implies that g moves
points a uniformly bounded amount in both center foliations.

Consider, for a contradiction, a point x € M such that 17V°(x) # )7V°1 (x); note that
we are dealing here with actual foliations, not branching ones, so this notation makes
sense. Without loss of generality, we can choose x so that the leaves L := VNV“(x) and
Ly:= chls (x) do not coincide in any neighborhood of x.

Let ¢ and ¢ be the center leaves obtained respectively as the connected components of
LN F and L N F containing x for some F € W<,

By assumption, both ¢ and ¢ are fixed by g, so we are in the exact same setup as in
the proof of Lemma 7.4. Thus we deduce that ¢ = c;, a contradiction. |

We can now state and prove the aim of this section.

Proposition 7.7 Let f: M — M be a partially hyperbolic diffeomorphism such that
f k s homotopic to the identity for some k > 0. Let M be a finite cover of M which
makes all bundles orientable. Let g be a lift to M ofa homotopy of f k to the identity
that preserves orientation of the bundles. Suppose that g is dynamically coherent and
that there exists a good lift g of g that fixes all the center leaves. Then f is dynamically
coherent and f* is a discretized Anosov flow.

Proof First we notice that the assumptions of the proposition will be verified for any
further finite cover M of M — because one can take a further lift g of g to M, it is
dynamically coherent and g is a good lift of g too. Hence, without loss of generality,
we may and do assume that M is a normal cover of M.

Let W and W be the lifts to M of the center stable and center unstable foliations
of g. Our goal is to show that these foliations are 771 (M )—invariant, thus they descend
to foliations in M, and that these projected foliations are f—invariant.

Notice that g fixes each leaf of WSS and WU,
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The map g is obtained from a lift of a homotopy of f* to the identity. Lifting that
homotopy further to M, we geta good lift f Fk of £ that is also a lift (hence a good lift)
of g to M. As both g and fk are good lifts of g, there exists a f € my (M) Ccm (M)
suchthat g =g f ik, (Note however that g is not necessarily a good lift of f kasg only
commutes with elements of 7y (1\71 ) and not 71 (M).)

Moreover, both g and f k move points a bounded distance in M; hence so does
B =Z(f*)~1. Lemma A.1 then implies that either f is the identity or M is Seifert
(and B is either the identity or a power of a regular fiber).

We split the rest of the proof of dynamical coherence into two cases.
Case 1 Suppose that M is not a Seifert fibered space.
Then B is the identity, which means that ¢ = f k.
Let y be a deck transformation in 771 (M). Define the foliations
S . __ 1, IAICS CU . __ ., 3A/C C . 1, AC
Fy =yWe Bli=yWs B =y We

The leaves of these foliations are all fixed by g because y commutes with f k= g. In
particular, Lemma 7.6 then implies that y W = W< and yV = W Since this is
true for any element of 71 (M), these foliations descend to foliations Wy and Wy,
in M.

Now we need to show that Wy} and Wiy are also f—invariant. Equivalently, we need
to show that W and W are invariant by any lift f; of f to M.

Let f1 be alift of f to M. Notice that f may not be homotopic to the identity, so f;
is not assumed to be a good lift. Let 77* := f; (V) and Fiti=f ()7\/0“).

We will first show that f; and § commute. Both f;g and g f; are lifts of the map f*+!
to M. So (2)~1(f1)~'g /1 is a deck transformation y € 71 (M). As § moves points a
bounded distance, we have that d( f1(y), g f1(»)) is bounded in M. In addition, f1 has
bounded derivatives so d(y, (f1)~'g f1(y)) is also bounded in M. So using again that
g is a good lift, we deduce that d(y, (2) 1 (f1)"1& f1(»)) is bounded in M.

Hence y is a deck transformation that moves points a bounded distance. Applying
Lemma A.1 again gives that § is the identity (since M is not Seifert). Hence f; and g
commute.

Since g fixes every leaf of W* (the center foliation in M) and commutes with f1,
we deduce that g fixes every leaf of f;(JV°). We can again apply Lemma 7.6 to get
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that f;(OV) = W and f; OV®") = W That is, the foliations W< and W are
fi—invariant. Since this holds for any lift of f, it implies that Wy, and Wj; are
f—invariant. Hence f is dynamically coherent with foliations Wy; and Wy;. This
completes the proof that f is dynamically coherent when M is not Seifert fibered.

Case 2 Assume that M is Seifert fibered.

In this case, Lemma A.1 implies that 8 = g( f k)=1 is either the identity or represents a
power of a regular fiber of the Seifert fibration. In any case, § is in a normal subgroup
of 71 (M) isomorphic to Z. Moreover, as proved earlier, B € 1 (Z\7I ).

Let y € w1 (M) be any deck transformation. Consider the foliations 3 := YW and
Fli= YW, as before.

We first claim that these foliations are g—invariant. We show this for F), the other
being analogous. Let L € WS, We have

Z(yL) = Bf*(L) = By fX(L) = yB*' FF(L).

Notice that both ]7 k (because it is a lift of g) and B (because it belongs to g (]\2 )
and the foliation W is defined in M) preserve the foliation WS 1t follows that
,Bilfk(L) € WS so

gLy =yp* Ry e 7y

Thus F)° is g—invariant.

We now want to show that the foliations ]-'f,s, f-f,“ and }'13 = y1/~V° are all leafwise fixed
by 2.

Since M was chosen to be a normal cover of M, any element y € r1 (M) can be thought
of as a diffeomorphism of M. Hence we can consider the foliation j-"f,s = yWS in M.
Note that .%;5 is tangent to the center stable distribution £ C T'M, since y preserves

the tangent bundle decomposition, as it is defined by f in M. The argument above
shows that ]A-";“ is g—invariant.

Thus, we can consider g to be a dynamically coherent diffeomorphism for the pair of
transverse foliations f"ff and W*. Moreover, g is homotopic to the identity and the
good lift g fixes every leaf of W Since M is Seifert, mixed behavior is excluded
(cf [3, Theorem 5.1]) and this implies that g must also fix every leaf of ]-';S.

The symmetric argument shows that 77" is also fixed by g. We can apply Proposition 6.1

to both F° y and F y» implying that they are g—minimal. To apply the proposition we
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need that g is orientable. Hence, the center foliation Fj is fixed by g, thanks to
Proposition 7.2 (this also uses that g is orientable).

Since all the leaves of Fy are fixed by g, we can finally apply Lemma 7.6 to deduce
that 73 = WS and Fyl= W< As this is true for any y, the foliations W and W
descend to foliations Wy and Wy; on M in this case too.

We now again have to show that Wy, and Wy are f—invariant. The argument is the
same for both foliations, so we only deal with Wy

We start with a preliminary step. Let fix be the automorphism of 771 (M) induced by f.
Let

A= (M) N fulm (M) N -0 () (M)).

The set A is a finite-index, normal subgroup of 71 (M ). Moreover, as f ks homotopic
to the identity, f«(A4) = A.

As we remarked at the beginning of the proof, we can without loss of generality prove
the result for any further finite cover of M. Thus we choose, if necessary, a further
cover so that 71 (M) = A. Since f«(A) = A, the map f lifts to a homeomorphism f
of M.

As in the first case, we let f1 be an arbitrary lift of f to M and we define Fi'i=h OVSs)
and Fi' 1= fi (V). (In particular, f; is also a lift of f.)

Note as before that both g f; and f1§ are lifts of /%t and §/1(8)"'(f1) 'isa
bounded distance from the identity (because g is and f; has bounded derivatives). So
§:=2f1()"1(f1)~! is an element of 1 (M) a bounded distance from the identity.
By Lemma A.1, § represents a power of a regular fiber of the Seifert fibration, so is
in the normal Z subgroup of w1 (M) (note that since 7t (M) is not virtually nilpotent,
there exists a unique Seifert fibration on M; see Appendix A).

In addition, g f1 and f1g are also lifts of the homeomorphisms g f and f g in M to M.
Hence 4§ is in m(l\?).

Using once more the arguments above, we get that (f1)~15/1(8)~! is a bounded
distance from the identity, and projects to the identity in M (and in M ), hence it is
a deck transformation 7 also contained in the Z normal subgroup of 71(M). Thus &
and n commute. Moreover, 7 is also in 7y (1\2 ).
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Now we can show that g preserves F7°. Let L be in WS Then

g(fi(L) =8f1(g(L)) = 8/i(L) = f/i(nd(L)).

Here n8(L) is in W, because L is in W< and 5§ is in 7} (1\2). Hence ﬁ (ndL) is in
F1(OV) so g preserves F T

What we proved implies that g preserves f (W) in M. Now consider the pair of
foliations f (W*) and W*". They are both invariant by g, so g is dynamically coherent
for this particular pair of foliations, and g fixes the leaves of YW So once again, as
M is Seifert, we get that g must also fix every leaf of f; (17\/“); cf [3, Theorem 5.1].

The symmetric argument implies that g fixes every leaf of f} (17\/“’). Once again,
M being Seifert implies that all the foliations are g—minimal (Proposition 6.1). Hence
g also fixes the center foliation fj OV°) (Proposition 7.2). So Lemma 7.6 applies and
we deduce that f; V) = W and fj V") = W

In particular, f preserves the foliations Wy; and Wy; as wanted. So f is dynamically
coherent.

This finishes the proof that f is dynamically coherent. Once that is known, then
Propositions 6.5 and G.2 of [3] imply that f¥ is a discretized Anosov flow. This
finishes the proof of the proposition. |

8 Proof of Theorem A

Fix a partially hyperbolic diffeomorphism f: M — M that is homotopic to the identity
on a closed Seifert fibered 3—manifold M. We make no orientability assumptions. We
will show that some iterate of f is a discretized Anosov flow, completing the proof of
Theorem A.

Fix a finite cover M of M so that the lifted center, stable and unstable bundles are
orientable. Then there is an integer k > 0 such that a lift of /% to M will preserve the
orientations of the bundles. In addition, we can find such a lift that is homotopic to the
identity by lifting a homotopy from f k to the identity. Fix such a lift g: M — M.

Applying Theorem 3.6, we have g—invariant center stable and center unstable branching
foliations W and W on M.

Lemma 8.1 There exists a lift g of an iterate of g that fixes every leaf of WSS and also
fixes every leaf of we,
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Proof We will use the following result, found in [3, Proposition 7.1 and Remark 7.2].

Proposition 8.2 Let g: M — M be a partially hyperbolic ditfeomorphism that is
homotopic to the identity on a Seifert fibered 3—manifold M with orientable Seifert
fibration. Then some iterate of g has a good lift which fixes every leaf of Wes.

Since M is orientable, the bundles are orientable, and YW is a horizontal foliation (see
[3, Theorem F.3]), it follows that the Seifert fibration is orientable. Thus there is an
integer i > 0 such that the iterate g’ has a good lift g/ which fixes every leaf of Wes.

Suppose that g’ fixes one leaf of WU Then Proposition 6.1 says that W is g’ —minimal
and g’ fixes every leaf of W as desired.

Suppose, then, that g/ fixes no leaf of W< Then g fixes no center leaf, and we can
apply Proposition 5.2 to see that every periodic center leaf of g has to be coarsely
contracting. Exchanging roles, and applying Proposition 8.2 to the center unstable
branching foliation, we deduce that every periodic center leaf for g must be coarsely
expanding. Notice that although the lifts may be different, the coarsely expanding and
coarsely contracting behavior is for periodic center leaves of the original map g.

As there must be at least one such periodic center leaf (cf Proposition 5.6), this gives a
contradiction. |

Let g’ be a good lift of an iterate g, for some i > 0, that fixes every leaf of both Wes
and W Then Proposition 7.2 implies that g’ fixes every center leaf, and Corollary 7.5
says that g’ is dynamically coherent. Then Proposition 7.7 tells us that f is dynamically
coherent.

Now that we have reduced to the dynamically coherent case, [3, Theorem A] says
that f has an iterate that is a discretized Anosov flow. This completes the proof of
Theorem A.

Note that the arguments in the proof of Lemma 8.1 also eliminate mixed behavior for
good lifts in Seifert fibered manifolds.

9 Absolutely partially hyperbolic diffeomorphisms

In this section, we explain how one can improve the trichotomy in Section 2.0.1
eliminating the mixed case, if one uses a strong version of partial hyperbolicity.
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Definition 9.1 A partially hyperbolic diffeomorphism f: M — M on a 3—manifold
is called absolutely partially hyperbolic if there exist constants A1 < 1 < A, such that
for some £ > 0 and every x € M, we have

IDF eyl < At < IDFE geenll < A2 < 1DFH gy l-

Notice that, although subtle, the difference between being absolutely partially hyperbolic
versus just partially hyperbolic is far from trivial. Here, we just show that with this
stronger property one can significantly simplify the arguments. However, some previous
results have shown significant differences between the two notions, specifically with
regard to the integrability of the bundles; see [9; 31; 29].

We will show the following:

Theorem 9.2 Let f: M — M be an absolutely partially hyperbolic diffeomorphism on
a 3—manifold. Suppose that f is homotopic to the identity and preserves two branching
foliations W and W*®" that are both f—minimal. Then either

(1) f is a discretized Anosov flow, or

(i) WS and W are R—covered and uniform and a good lift f of f acts as a

translation on their leaf spaces.

In order to prove this theorem, the main step will be to show that, using absolute partial
hyperbolicity, we have an improvement of Proposition 5.2.

Proposition 9.3 Let f: M — M be an absolutely partially hyperbolic diffeomorphism
homotopic to the identity, and f a good lift of f to M. Assume that every leaf of Wes
is fixed by f . Let L be a leaf whose stabilizer is generated by y € m1(M) \ {id}. Then
there is a center leaf in L fixed by f .

The proof is essentially the same as the one in [25, Section 5.4], but we repeat it since
the contexts are different.

Proof The proof is by contradiction. Assume that f does not fix any center leaf in L.

Proposition 5.6 gives that there exists a center leaf which is periodic by f. Call ¢ a lift
of this center leaf. Using Proposition 5.7 we get two stable leaves s; and s5 in L fixed
by h:=y"o f ™ a bounded distance apart in L and such that ¢ separates s from s;
in L. We denote by B the band bounded by s1 and s5.
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Since y is an isometry, the diffeomorphism / is absolutely partially hyperbolic, and we
can (modulo taking iterates) assume that there are constants A; < A, such that

|Dh|gl| <A1 <Az <||Dh|g.|.
Moreover, there is a constant R > 1 such that || DA™!|| < R in all of L.

For simplicity, we will assume that the distance between s; and s, is smaller than %
so that the band B is contained in the neighborhood B = |, cg , Bi(x) of radius 1
around s7.

For every positive d there is a constant r(d) > 0 such that for any set of diameter
less than d, the length of a stable leaf contained in this set is at most r(d). This is
because in a foliated box only one segment of a stable segment can intersect it. This
implies that stable leaves (and center leaves as well) are quasi-isometrically embedded
in their neighborhoods of a fixed diameter. So there is a K > 0 such that for any stable
segment J contained in B with endpoints z and w, we have

length(J) < Kdg(z, w).

Now, choose 1 > 0 such that K2 A% /A% < % and once # is fixed, choose D > 0 so
that D/2>> 2R" + 2K /A}.

We now pick points z, w € s1 such that d3(z, w) = D, and take J* an arc of 51 joining
these points. From the choice of K and D we know that length(J%) < KD. So it
follows that length(h" (J®)) < KDAY.

Choose a center curve J€ joining By(h"(z)) with By(h"(w))—this can be done
because ¢ separates s; from s, —and call z, and w, the endpoints in each ball. It
follows that length(J¢) < K?DA% +2K.

Since the distance between the endpoints of J¢ and A" (z), h"(w) is less than 1, by
iterating backwards by h~" we get that d(h™"(z,),z) and d(h™"(wy), w) are less
than R".

This implies that
AT 2K
D <dg(z,w) < KZA—;D—FZR”—I—A—H,
2 2

a contradiction with the choices of n and D, completing the proof of the proposition. O

Using this proposition, we can prove Theorem 9.2 in the same way as [3, Theorem 5.1].
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Proof of Theorem 9.2 Let f~ be a good lift of f. Since W and W are f-minimal,
by Corollary 4.9 f either fixes each leaf of W and W*, or acts as a translation on
both leaf spaces (in which case the foliations are R—covered and uniform and we are
in case (ii) of the theorem), or f translates one and fixes the other.

If f fixes the leaves of both W and W<, then Proposition 7.2 and Corollary 7.5
imply that we are in case (i) of the theorem.

So we have to show that we cannot be in the mixed case. Suppose that f fixes every
leaf of W*.

Since M is not T3 there are leaves of W with nontrivial fundamental group. Consider
the lift L in W of such a leaf, with L invariant by y in 771 (M) \ {Id}. We can apply
Proposition 9.3 to conclude that there is a center leaf ¢ in L that is fixed by f . So,
in particular, f needs to fix a center unstable leaf containing ¢ (note that there may
be an interval of center unstable leaves intersecting L in ¢, but the endpoints of such
an interval will then be fixed by f ). Thus f~ has to also fix every leaf of we, by
Corollary 4.9. a

10 Regulating pseudo-Anosov flows and translations

The rest of the paper is concerned with hyperbolic 3—-manifolds. We will get positive
results dealing with the non-dynamically-coherent case. That is, we want to understand
the dynamics of a homeomorphism acting by translation on a branching foliation. In
order to be able to do that, we first need to build a regulating pseudo-Anosov flow
transverse to the branching foliation. The existence of such a flow is a relatively
immediate consequence of the construction of the regulating flow and the fact that the
branching foliation is well-approximated by foliations.

Proposition 10.1 Let M be a hyperbolic 3—manifold and F a branching foliation
well-approximated by foliations F, and such that F (and thus also F. for small €) is
R—covered and uniform. Then there exists a transverse and regulating pseudo-Anosov
flow ® for F.

Proof By [33; 11; 17] (see [3, Theorem D.3]), for any € there exists a pseudo-Anosov
flow @, transverse to and regulating for Fe.

Now, as € gets small, the angle between leaves of F, and leaves of F becomes arbitrarily
small.
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Then, since both F and F, are R—covered and uniform, for any leaf L € F there exist
two leaves L1, Ly € J‘EE such that L is in between L; and L,.” As & is regulating
for F¢, every orbit of Else intersects both L1 and L,, thus it also intersects L. So every
orbit of ®, intersects every leaf of F; that is, ®¢ is regulating for F.

The fact that the flow ®, can be chosen transverse to F follows from the construction
of ®¢; see [33; 11; 17]. The flow P, is build by blowing down certain laminations
transverse to F.. Moreover, these laminations are transverse to any foliations that
are close enough to F, for a uniform angle. Since the angle between F and F, gets
arbitrarily small, ¢ will also be transverse. For a continuous family of R—covered
foliations, this property is explicitly stated in [11, Corollary 5.3.22]. |

Using the regulating pseudo-Anosov flow given by Proposition 10.1, all of [3, Section §]
works for a branching foliation without change. Thus we obtain:

Proposition 10.2 Let M be a hyperbolic 3—manifold. Let f: M — M be a homeo-
morphism homotopic to the identity that preserves a (branching) foliation F. Suppose
that F is uniform and R—covered, and that a good lift ]7 of f acts as a translation on
the leaf space of F. Let ® be a transverse regulating pseudo-Anosov flow to F.

Then, for every y € w1 (M) associated with a periodic orbit of @, there is a compact
fy—mvanant set Ty, in M, which intersects every leaf of F y, where M), = M /({y) and
fy M, — M, is the corresponding lift of f.

Moreover, if an iterate fy of fy fixes a leaf L of F. y» and y fixes all the prongs of this
orbit, then the fixed set of fy in L is contained in T), N L and has negative Lefschetz
index.

Almost without any change, we obtain the corresponding version of [3, Proposition 9.1].

Proposition 10.3 Let f be a partially hyperbolic diffeomorphism in a hyperbolic
3-manifold which preserves a branching foliation W tangent to E%. Assume that a
good lift ]7 of f acts as a translation on the foliation W, and let ®°* be a transverse
regulating pseudo-Anosov flow. Then, for every y € w1 (M) associated to the inverse
periodic orbit of ®, there aren > 0 and m > 0 such thath = y" o f~m fixes a leaf L
of W*,

7By construction, each leaf of F is~the image of a leaf 02 Fe by a continuous map homotopic to the
identity of M, so, given a leaf L € F, there is a lea£ L’ € F. at a bounded distanc~e < aj from L. Now
using the fact that Fe is uniform, choose L1, Ly in F¢ on different components of M — L', and so that for

any pe L', g€ Ly and z € Ly, we have d(p,q) > aj and d(p, z) > ay. The leaves L and L, satisfy
the required property.
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Proof The only difference is that we cannot say that the action of % in the leaf space
is expanding, since collapsing of leaves may change the behavior. However, the same
proof gives the existence of an interval in the leaf space which is mapped inside itself
by A~ giving a fixed leaf, as desired. a

Remark 10.4 In the non-dynamically-coherent situation, the proof of [3, Theorem B]
does not give a contradiction: it could happen (and indeed does happen in a situation
with similar properties, see eg [7]) that having a fixed point in a leaf of the foliation
does not force the dynamics on the leaf space to be repelling around the leaf in terms
of the action on the leaf space. This issue has previously appeared, in particular in
Proposition 6.2.

Notice that if one assumes the existence of a periodic center leaf, then we can easily
prove a version of [3, Theorem B] in the non-dynamically-coherent setting.

Proposition 10.5 Let f: M — M be a partially hyperbolic diffeomorphism on a
hyperbolic 3—manifold. Suppose that there exists a closed center leaf ¢ that is periodic
under f. Then f is a discretized Anosov flow.

Proof We start by replacing f by a power, so that f becomes homotopic to the
identity.

Let f be a good lift of . We will show that ]7 fixes every leaf of W< and W< Then
Section 7 above shows that the original f (before taking a power) is dynamically
coherent; hence the result follows from [3, Theorem B].

Suppose that f does not fix every leaf of, say, WS, Then Corollary 4.9 implies that
the leaf space of W is R and that f acts as a translation on it.

Let ¢ be a lift of the periodic closed center leaf c¢. Since c is periodic and ]7 acts as a
translation, there exists y € 1 (M) which is nontrivial and such that y(¢) = ]7 k(@) for
some k. Now c is also closed, so there exists g € 1 (M ) —Id such that g(¢) =¢. We
have that g is distinct from any power of y, since if L € WS is such that ¢ € L, we
have that g(L) = L # y* (L) for every k # 0.

On the other hand, goy (¢) = go ¥ (¢) = f¥og(Z) =y(7), which implies that y~logoy
and g fix ¢. This is impossible since M is hyperbolic: if they both fix ¢ then they have
they have the same axis. But the geodesic axes of the hyperbolic transformations g and
¥~ gy cannot share an ideal point since g and y are not contained in a cyclic group. O
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Remark 10.6 The arguments here show that the dynamics of the transverse pseudo-
Anosov flow coarsely affects the dynamics of f. In particular, if f is a translation with
respect to a certain R—covered branching foliation, there must be a lower bound on the
topological entropy of f depending only on the R—covered branching foliation and the
amount of translation of f . It is possible that in certain hyperbolic 3—manifolds one
could control the possible geometries of R—covered foliations, in which case one could
find a uniform lower bound on the entropy of partially hyperbolic diffeomorphisms that
act as translations on their branching foliations. If such a bound could be obtained, one
could deduce that if the entropy of a partially hyperbolic diffeomorphism is sufficiently
low, then the system must be a discretized Anosov flow.

11 Translations in hyperbolic 3-manifolds

In this section we obtain further consequences of having a partially hyperbolic diffeo-
morphism act as a translation in a hyperbolic 3—-manifold.

We start by recalling the setting. Let f: M — M be a (not necessarily dynamically
coherent) partially hyperbolic diffeomorphism on a hyperbolic 3—manifold. Up to
replacing f by a power, we assume that it is homotopic to the identity. Up to taking
a further iterate of f and a lift to a finite cover of M, we can assume that f admits
branching foliations, and that the good lift f acts as a translation on the leaf space
of W*.

Let @ be a transverse regulating pseudo-Anosov flow to W given by Proposition 10.1.
This flow is fixed throughout the discussion.

Then Proposition 10.3 shows that for any periodic orbit of ®, there exists a center
stable leaf periodic by f.

11.1 Periodic center rays

We will now produce rays in periodic center leaves which are expanding. A ray in L is
a proper embedding of [0, c0) into L. We say that a ray is a center ray if it is contained
in a center leaf. So a center ray cy is the closure in L of a connected component of
¢ \ {x}, where c is a center curve and x € c.

Let y in 71 (M) be associated with a periodic orbit &g of the pseudo-Anosov flow O
Let L be a leaf (given by Proposition 10.3) of WS fixed by h:=y"o f™, withm > 0.
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A center ray ¢y is expanding if h(cx) = cx and x is the unique fixed point of % in ¢y
and every y € ¢y \ {x} verifies that A" (y) — x as n — +o0. It is contracting if it is
expanding for =L,

Proposition 11.1 Assume that a good lift f~ of f acts as a translation on the (branching)
foliation W<. Let ® be a regulating transverse pseudo-Anosov flow. Let y in
71 (M) be associated with a periodic orbit §g of ®°. Let L be a leaf of WS fixed by
h=y"o f’” where m > 0. Assume that y fixes all prongs of a lift of &g to M. Then
there are at least two center rays in L, fixed by h, which are expanding.

Remark 11.2 We should stress that we cannot guarantee that we get a single center
leaf with both rays expanding. For example, it is very easy to construct an example
such that /& has Lefschetz index —1 in L, and has exactly 3 fixed center leaves in L,
and only two fixed expanding rays, which are contained in distinct center leaves; see
Figure 9. This situation occurs in the examples constructed in [7] in the unit tangent
bundle of a surface.

We will use Proposition 11.1 and its proof to eliminate the mixed behavior in hyper-
bolic 3-manifolds. It should be noted that this proposition also gives some relevant
information about the structure of the enigmatic double translation examples which are
not ruled out by our study.

The key point is to understand how each fixed center leaf contributes to the total Lef-
schetz index of the map in a center stable leaf which we can control. Since the dynamics
preserves foliations and one of them has a well-understood dynamical behavior (ie in
the center stable foliation, the stable foliation is contracting) we can compute the index
just by looking at the dynamics in the center foliation; see Figure 8.

As remarked above, one does have to be careful when computing the index, as cancel-
lations might happen with branching foliation; see Figure 9.

We are now ready to give a proof of Proposition 11.1.
Proof of Proposition 11.1 By Proposition 10.2, we know that the fixed-point set of /
in L is contained in the lift of 7), to M (which intersects L in a compact set) and has

Lefschetz index 1 — p, where p is the number of stable prongs at the fixed point. In
particular, / has some fixed points in L.

Let L, = fm (L). We denote by 112: L — L, the flow along the o map.
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index 1 index 0 index —1

Figure 8: Contribution of index of a center arc, depending on the center dynamics.

Claim 11.3 Let ¢; and c, be two distinct center leaves in L that have a nontrivial
intersection. Suppose that both ¢ and c; are fixed by h, and there exist two distinct
points z, y € ¢1 N ¢, which are fixed by h. Then the center leaves ¢ and ¢, coincide
on the segment between z and y.

Proof Let [y, z]., and [y, z]., be the center segments between y and z in ¢q and c3,
respectively.

Figure 9: Two segments of zero index merge with a point with index 1 to
produce a global —1 index.
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Assume for a contradiction that [y, z]., and [y, z]., are distinct. Then, up to changing
y and z, we can assume that the intersection between the open intervals (y, z)., and

(¥, 2)c, 1s empty.

Thus, by construction, [y, z]¢, and [y, z], intersect only at z and y. We let B be the
bigon in L bounded by [y, z]¢, and [y, z]c,.

Note that any stable leaf that enters the bigon B must exit it (otherwise it would limit in
a stable leaf entirely contained in B, which is impossible). Hence, B is “product foliated”
by stable leaves. Since B is compact, the length of the stable segments contained in B
is bounded.

Since z, y are fixed by 4 it follows that B is also fixed by A. Let s be one such stable
segment connecting (z, )¢, to (2, y)c,. Then the images of s under powers of 7 ~!
stay in B but must also have unbounded length, a contradiction. O

Let x be a fixed point of 4. Recall from Lemma 3.19 that the set of center leaves
through x in L is a closed interval. In particular, / fixes the endpoints of this interval.
Hence, x is contained in a center leaf ¢ such that h(c) = c.

Claim 11.4 All the fixed points of h in L are contained in the union of finitely many
compact segments of center leaves in L.

Proof Let ¢ be a center leaf fixed by 4. Since the fixed points are contained in a
compact set C (see [3, Lemma 8.11]), there is a minimal compact interval J in ¢ which
contains all the fixed points of / in c.

Suppose that there exist infinitely many distinct such minimal intervals J; in center
leaves ¢;. Since the fixed points of / in L are in a compact set, we can choose i and j
large enough that J; is very close in the Hausdorff distance of L to J;. Let z be an
endpoint of J;. Then the stable leaf s(z) through z intersects the center leaf ¢;. As z is
fixed by / and so is ¢;, contraction of the stable length implies that z € c;, thus z € J;.

Hence, both endpoints of J; are on J;. By Claim 11.3, it implies that J; C J;, and
minimality of the interval J; implies J; = J;, which is a contradiction. |

Let {J;,1 <i <ip} be a finite family of compact intervals containing all the fixed
point of %, as given by Claim 11.4. Note that we do not necessarily take the minimal
intervals as constructed in the proof of Claim 11.4, as we want the following properties
for that family.
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Claim 11.5 We can choose the collection of intervals {J;, 1 <i <ig}, each in a center
leaf fixed by h, satisfying the following properties:

(1) The union | J,;;, Ji contains all the fixed points of h.
(2) The endpoints of each interval J; are fixed by h.

(3) The intervals are pairwise disjoint.

Proof Letcy,...,c, be a minimal collection of center leaves that contains all fixed
points of 4 in L, as given by Claim 11.4. Let J; be the minimal compact interval
containing all fixed points of 4 in c;.

The family J; then satisfies conditions (1) and (2). So we only have to show that
one can split the intervals J; further so that condition (3) is also satisfied (while still
satisfying the first two conditions).

Notice that ¢; and ¢; intersect if and only if J; and J; intersect. Thus, we can restrict
our attention to each connected component of the union of the ¢; separately.

Up to renaming, assume that | J; _; .4 ¢k is a connected component of | J; _; -, Ck-

Now we can consider the union of the Ji, ..., J; as a graph, where the vertices are
the endpoints of the segments J; together with the points where two segments merge,
and the edges are the subsegments joining the vertices. With this convention, the union
of the Ji,..., Ji is then a tree. Otherwise there would be a bigon in L enclosed by
the union, which is ruled out by Claim 11.3.

Let B be this tree. Our goal is to remove enough open segments from the J; so that
no vertex of this associated tree has degree 3 or more. Consider a vertex p in B with
degree 3 or more. Then there are two edges e and e; abutting at p on the same side
of p. We claim that e; cannot have points fixed by /4 arbitrarily close to p (except for
p itself). Otherwise one would have a fixed point y € e; such that s(y) intersects e5.
Since e, is contained in a fixed leaf, e, N s(y) is fixed by 4. This implies (since h
decreases stable length) that y is in e. Thus, by Claim 11.3, the intersection of e¢; and
e would contain the segment [y, p], contradicting the fact that they are distinct edges.

Thus, we can remove an open interval (p, z) from, say, e1, where z is fixed by /4 but
(p, z) has no fixed points. In the new tree, p has index one less than before and z has
index one.
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Doing this recursively on each vertex of index strictly greater than 2, we will obtain, as
sought, a disjoint collection of intervals that also satisfy conditions (1) and (2). O

Now we will look at the index of /& on the fixed intervals J;, for 1 <i < iy, produced
by Claim 11.5. Note that for each such interval J; there are no other fixed points of /
nearby in L. Let ¢ be a leaf fixed by & containing J;.

If & is contracting on ¢ near both endpoints of J; on the outside, then the index of J;
is +1. This is because the stable foliation is contracting under & = y" o f ™ (since
m > 0). Hence & is contracting near J;. If & is expanding on both sides, the index
is —1. If one side is contracting and the other is expanding, then the index is zero.

The global index for /& can then be computed by adding the indexes of & on each of the
intervals J;, taking care of cancellations.

Let ¢, for 1 <k < kg, be finitely many center leaves, fixed by 4 and containing all
the J;. We choose this collection to have the minimum possible number of leaves.

Each leaf c; contains finitely many segments J;, so there are exactly two infinite rays
that do not contain any J;. The contribution of ¢ to the global index of & (before
possible cancellations) will then be —1 if both rays are expanding, 0 if one is expanding
while the other contracts, and 1 if both are contracting.

Suppose, for a contradiction, that there is at most one expanding ray in L. So each c,
considered separately, has index either O or 1.

If there is an expanding ray, let c; be a leaf with an expanding ray. Otherwise let ¢ be
any leaf. Now we need to consider how the other leaves and the possible cancellations
impact the global index of 4. Let ¢; be a leaf that intersects cy. If ¢; shares an expanding
ray with ¢y, then the other ray of ¢; is contracting, and eventually disjoint from the
corresponding ray of c. The fixed set (if any) of this ray in ¢; has index zero. If ¢;
does not share an expanding ray with cg, then both rays of ¢; are contracting. The ray
that is added to the same end as the expanding ray of ¢ contributes index 1. The other
ray contributes index 0. In any case the index, starting at O or 1, does not decrease.

Now, if ¢,, is another leaf that is disjoint from the set above, then both rays are
contracting and it contributes an index 1. So again the index does not decrease.

Thus, if there is at most one expanding ray, then the index of % is at least 0. This
contradicts the fact that the index of 4 is 1 — p where p > 2, and thus finishes the proof
of Proposition 11.1. |
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11.2 Periodic rays and boundary dynamics

Proposition 11.1 gave the existence of periodic rays that are coarsely expanding. Here
we will show that such a ray has a well-defined ideal point on the circle at infinity of
the leaf, and that it corresponds to the endpoint of a prong of the transverse regulating
pseudo-Anosov flow, ®,

As previously, we assume that we have a center stable leaf L € WS such that there is a
deck transformation y for which y o f™(L) = L for some m > 0. We let L, = f™(L)
and define 712: L — L, the flow along ®“ map. We also take as before

hi=yof™ and g:=yoti.

Recall that & and g are maps of L that are a bounded distance from each other. Also
g preserves the (singular) foliations G* and G". We again assume that if g has a fixed
point x¢ in L then y is such that g preserves each of the prongs of G*(x¢) and G"(x¢).

The action of g on the circle at infinity S!(L{) has an even number of fixed points,
which are alternately attracting and repelling. We denote by P the set of attracting fixed
points and by N the set of repelling ones. With this notation, we get the following.

Proposition 11.6 Let7n: [0,00) — L be a contracting fixed ray for h. Then the limit
lim; 00 (2) exists in S'(L) and it is a (unique) point in N. (Symmetrically, if n is an
expanding fixed ray, its limit point belongs to P.)

Proof Let y be in P and let U be a small neighborhood of y in L U S1(L) as in
[3, Section 8]. If 1 has a point ¢ in U N L, then A" (g) converges to y as n — 00,
so 1 could not be a contracting ray; a contradiction. So 7 cannot limit to any point
in P.If zisin S'(L)\ {N U P}, then h"(z) converges to a point in P under forward
iteration. Hence, again, a small neighborhood Z of z in L U S(L) is sent, under some
iterate, inside a neighborhood U as in the first part of the proof. So any pointin Z N L
converges to a point in P under forward iteration. Hence 1 cannot limit to a point
in S1(L)\ {N U P} either. So 7 can only limit to points in N. Since 7 is properly
embedded in L, the set of accumulations points of 1 is connected, so it has to be a
single point. |

12 Mixed case in hyperbolic manifolds

In this section we show that even in the non-dynamically-coherent case, the mixed
behavior is impossible for hyperbolic 3—manifolds. This will be done by using the study
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of translations in hyperbolic 3—manifolds developed in Sections 10 and 11 to provide
more information on the dynamics of general partially hyperbolic diffeomorphisms.

The main result of this section is the following.

Theorem 12.1 Let f: M — M be a partially hyperbolic diffeomorphism homotopic
to the identity on a hyperbolic 3—manifold M. Suppose that there exists a finite lift and
finite power f of f that preserves two branching foliations W and W*", and is such
that a good lift f fixes a leaf of W* Then f is a discretized Anosov flow.

This, together with Proposition 6.1, completes Theorem 2.5.

12.1 The setup

Consider a partially hyperbolic diffeomorphism f as in Theorem 12.1.

Our goal is to show that the good lift f of f fixes every leaf of W and W Indeed,
Proposition 7.2 (and Corollary 7.5) then implies that f is dynamically coherent, so we
can then use [3, Theorem B] to obtain that f 1s a discretized Anosov flow. In turn, thanks
to Proposition 7.7, we obtain that f itself is dynamically coherent and a discretized
Anosov flow.

Since Proposition 7.7 allows us to use finite lifts and powers, we assume directly
that f = f, that W and W*" are orientable and transversely orientable, and that f
preserves their orientations.

Since f is assumed to fix one leaf of W Proposition 6.1 implies that every leaf
of W is fixed. We will prove by contradiction that every leaf of WS is fixed by f .
So, by Proposition 6.1, we can assume that YW is R—covered and uniform and that f
acts as a translation on the leaf space of YW, In particular, there are no center curves
fixed by f.

Then, we can apply Proposition 5.2 to W to deduce that every periodic center leaf is
coarsely expanding.

On the other hand, since ]7 acts as a translation on 17\}“, we can use the results from
Sections 10 and 11. Let ®° be a regulating pseudo-Anosov flow transverse to W
given by Proposition 10.1.

The flow ®°° is a genuine pseudo-Anosov, that is, it admits at least one periodic orbit
which is a p—prong with p > 3; see [3, Proposition D.4].
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Now, we choose y in (M), associated to this prong, and apply Proposition 10.3:
up to taking powers, we can assume that 4 :=y o f k for some k > 0 fixes a leaf L
of W. Moreover, the dynamics in L resembles that of the dynamics of a p—prong,
and in particular fixes every prong.

Notice that Proposition 11.1 also provides some center rays which are expanding in L
for . We will need to use some of the ideas involved in the proof of that proposition
(even though the statement itself will not be used).

We summarize the discussion above in the following proposition.

Proposition 12.2 Let f: M — M be a partially hyperbolic diffeomorphism of a
hyperbolic 3—manifold M , homotopic to the identity, preserving branching foliations
W and W Suppose that a good lift ]7 fixes a leaf of W** and acts as a translation on
WSS, Then, up to taking finite iterates and covers, there exists y € my(M) andk > 0
such that a center stable leaf L € W* is fixed byh:=yo fk, and its Lefschetz index
is Irix(ny(h) = 1 — p, with p > 3. Moreover, every center curve fixed by h in L is
coarsely expanding.

Let y be as in the proposition. Let L be a center stable leaf fixed by h =y o f~ k and
Ly = f*(L). As previously, we write 712: L — L, for the map obtained by flowing
from L to L, along DS, We set g:=yoTty.

The map g acts on the compactification of L with its ideal circle L U S(L) the same
way as h does; see Sections 10 and 11.

Let § be the unique orbit of @ fixed by y and let x be the (unique) intersection of &
with L. Note that x is the unique fixed point of g. We assume that y fixes the prongs
of 8, so h has exactly 2p fixed points in S!(L). These fixed points are contracting
if they correspond to an ideal point of G"(x), and expanding if they are ideal points

of G*(x).
12.2 Proof of Theorem 12.1

To prove Theorem 12.1 we will first show some properties. Recall from Proposition 11.6
that every proper ray in L € W* fixed by / has a unique limit point in S*(L); notice
that the ray must be either expanding or contracting. We will show that the fixed rays
associated to the center and stable (branching) foliations have different limit points at
infinity.
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q1 L

Figure 10: Rays have to land in different points of S'(L).

Lemma 12.3 Let s be a stable leaf in L which is fixed by h. Then the two rays of s
limit to distinct ideal points of L. The same holds if ¢ is a center leaf in L fixed by h.

Proof We do the proof for the center leaf c; the one for stable leaves is analogous,
and a little bit easier (since there is no branching).

By hypothesis, ¢ is fixed by &, hence it is coarsely expanding under /4. It follows that
there are fixed points of / in c. By Proposition 11.6, each ray of ¢ can only limit to a
point in P C S!(L) where, as previously, P is the set of attracting fixed points of &
in ST(L). Let g1 and g5 be the ideal points of the rays. What we have to prove is that
g1 and g, are distinct.

Suppose that g; = ¢g». Then ¢ bounds a unique region S in L which limits only to
g1 € S1(L). The other complementary region of ¢ in L limits to every point in S!(L).
Let z be a fixed point of /& in ¢. Then the stable leaf s(z) of z has a ray s; entering S.
It cannot intersect ¢ again, and it is properly embedded in L. Hence it has to limit
to g1 as well. See Figure 10.

But now this ray is contracting for /. This contradicts Proposition 11.6 because this

ray should limit in a point of N. O

Remark 12.4 The proof used strongly that periodic center leafs are coarsely expanding,
in order to induce a behavior at infinity. In the examples of [7] it does happen that
different stable curves land in the same ideal point at infinity in their center stable leaf.
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Figure 11: Showing the existence of fixed points below x in Lemma 12.5.
Now we show a sort of dynamical coherence for fixed center rays.

Lemma 12.5 Suppose that ¢y and ¢, are distinct center leaves in L which are fixed
by h. Then ¢ and ¢ cannot intersect.

Notice that since f is not necessarily dynamically coherent, the distinct center leaves
c1 and ¢, can a priori intersect each other. The proof will depend very strongly on the
fact that center rays fixed by & are coarsely expanding.

Proof Suppose that ¢; and ¢, intersect. Since c¢; and ¢, are both fixed by £, so is
their intersection. Since % is coarsely expanding in each, c¢; and ¢, share a fixed point
of h. In the proof of Claim 11.3, we showed that ¢; and ¢, cannot form a bigon B.

It follows that there is a point x, fixed by %, which is an endpoint of all intersections of
c1 and ¢3: on one side x bounds a ray e; of ¢; and a ray e, of ¢, such that e; and e;
are disjoint. For a point y in e near enough to x, we have that s(y) must intersect c;.
Since stable lengths are contracting under powers of 4, it implies that e is contracting
towards x near x and similarly for e;; see Figure 11. But e; is coarsely expanding.
Hence there must exist fixed points of 4 in ej. Let y € e; be the closest point to x
which is fixed by /4. Similarly, let z in e, be the closest to x fixed by 4.

The leaves s(y) and s(z) are not separated from each other in the stable leaf space
in L.
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Let now ¢ be a center leaf through x which is between c¢; and c¢» and which is the first
center leaf not intersecting s(y).

Then h(c) = ¢ since s(y) is fixed and c is the first leaf through x not intersecting s(y).
Consider the ray of ¢ starting at x and moving in the direction of y. This ray is the limit
of compact center segments from x to points in s(y). As such this ray of ¢ can only
intersect stable leaves which are between s(x) and s(y). Because the map & contracts
stable lengths it follows that the map 4 is contracting in this ray of ¢. This contradicts
Proposition 12.2 because this ray is in a center leaf which is fixed by 4. |

Thus far, we showed that distinct center leaves in L which are fixed by / do not intersect.
Then the proof of Claim 11.4 also implies that fixed center leaves cannot accumulate
(as accumulation would imply that some fixed leaves intersect).

We conclude that there are finitely many center leaves in L that are fixed under /. Each
such center leaf is coarsely expanding. For each such center leaf ¢, we consider a small
enough open topological disk containing all the fixed points of % in ¢, and no other
fixed point of /2 in L. Then, on such disks, the Lefschetz index of / is —1. Since the
total Lefschetz number of /4 in L is 1 — p it follows that:

Lemma 12.6 There are exactly p — 1 center leaves which are fixed by h in L.

This together with the following lemma will allow us to make a counting argument to
reach a contradiction.

Lemma 12.7 Let ¢ and ¢, be two distinct center leaves in L fixed by h. Let yq € ¢1
and y, € cp be fixed points of h. Then s(y1) and s(y,) do not have common ideal
points.

Proof Suppose, for a contradiction, that there are distinct fixed center leaves c¢; and
¢y satisfying the following: there are points y; € ¢; and y, € ¢3, fixed by £, such that
s1 = s(y1) and s, = s(y,) share an ideal point in S'(L).

Let g be the common ideal point of the corresponding rays of s; and s,. Note that by
Proposition 12.2 the point ¢ cannot be an endpoint of ¢ or ¢, because ideal points of
fixed centers are contracting in S (L) and ideal points of fixed stables are repelling
in S1(L).
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q

Figure 12: A depiction of the main objects in the proof of Lemma 12.7.

Let e; be the ray in s; with endpoint y; and ideal point g. Suppose first that no center
leaf intersecting e; intersects e;. Let co be a center leaf intersecting ey. Iterate cg
by powers of 2~1. It pushes points in s; away from y;. Since the leaves 1~ (cg) all
intersect s1 and none of them intersects s, or c2, the sequence (1~ (co)) converges to
a collection of center leaves as i — +oc. Then there is only one center leaf in this
limit, call it ¢, which separates all of 27 (cg) from s,. This ¢ is invariant under 4 and
it has an ideal point in ¢ because it separates 2~ (co) (recall that 1~ (co) Ns1 — ¢
as i — o0o) from s,. Now ¢ is a repelling fixed point in S'(L), so ¢ must have an
attracting ray, a contradiction with Proposition 12.2.

It follows that some center leaf intersecting e also intersects e,. Let ¢g be one such
center leaf. Now iterate by positive powers of . Then (h'(cg)) converges to a fixed
center leaf vy through y; and a fixed center leaf v, through y,. But then vy and ¢ are
both fixed by 4 and both contain y;. Lemma 12.5 implies that ¢; = v; and ¢z = vs.
In particular v # v,, and they are nonseparated from each other. In this case, consider
s the unique stable leaf defined as the first leaf not intersecting c; that separates s
from s,. Then, as above, & fixes s and has a fixed point y in s. But a center leaf ¢

Geometry & Topology, Volume 27 (2023)



3174 Thomas Barthelmé, Sérgio R Fenley, Steven Frankel and Rafael Potrie

through y fixed by 4 has to intersect the interior of the ray e;. This intersection point
is the intersection of ¢ fixed by &, and s; fixed by 4. So this intersection point is fixed
by h. But this is a contradiction, because y; is the only fixed point of % in s1. So
Lemma 12.7 is proven. |

We now can complete the proof of Theorem 12.1.

Proof of Theorem 12.1 By Lemma 12.6, there are p — 1 center leaves fixed by 4 in L.
We denote them by c1,...,cp—1.

Each center leaf has at least one fixed point. Let y;, for 1 <i < p —1, be a fixed point
in ¢;. Then, for each i, Lemma 12.3 states that s(y;) has two distinct ideal points Zl-l
and Zl-z.

Moreover, for every i # j, the ideal points of the stable leaves are distinct by
Lemma 12.7. It follows that there are at least 2p — 2 distinct points in S!(L) which
are repelling.

But we also know that there are exactly p points in S!(L) that are repelling under 5.
It follows that 2p — 2 < p, which implies p = 2. However, we had that p > 3, thus
obtaining a contradiction.

This finishes the proof of Theorem 12.1. |

Appendix A Some 3—-manifold topology

Besides the 3—manifold topology presented in [3, Appendix A] we will need an addi-
tional result, which is important for understanding certain particular deck transforma-
tions when one lifts to finite covers.

Lemma A.1 Let M be a closed, irreducible 3—manifold with fundamental group that
is not virtually nilpotent. Suppose that 8 is a nontrivial deck transformation so that
d(x, B(x)) is bounded above in M. Then M is a Seifert fibered space and B represents
a power of a regular fiber.

Proof First we assume that M is orientable. Then, the JSJ decomposition states
that M has a canonical decomposition into Seifert fibered and geometrically atoroidal
pieces. We lift this to a decomposition of M and construct a tree 7 in the following
way: the vertices are the lifts of components of the torus decomposition of M, and we
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associate an edge if two components intersect along the lift of a torus. Such a lift of a
torus is called a wall. There is a minimum separation distance between any two walls.

The deck transformation § acts on this tree. Let W be a wall. Suppose that (W) is
distinct from W. But, as subsets of M, the walls W and B(W) are a finite Hausdorff
distance from each other. Then 7w (W) and 7 (8(W)) are tori in M, and the region V
in M between W and B(W) projects to 7r(V'), which is T2 x [0, 1] in M. If this happens,
then M is a torus bundle over a circle. In that case, use that r1 (M) is not virtually
nilpotent, so the monodromy of the fibration is an Anosov map of T2. But then no f8
as above could satisfy the bounded distance property. It follows that (W) = W for
any wall, and in particular §(P) = P for any vertex of 7.

Now consider a vertex P. Suppose first that 77 (P) is homotopically atoroidal. By the
geometrization theorem, 7 (P) is hyperbolic. If B restricted to P were to satisfy the
bounded distance property, then it would have to be the identity on P. Hence f itself
is the identity, a contradiction.

Hence all the pieces of the torus decomposition of M are homotopically toroidal.
Suppose now that there is one such piece s (P) that is geometrically atoroidal (but not
homotopically atoroidal). The proof of the Seifert fibered conjecture [16; 20] shows
that 77 (P) has no boundary and 7 (P) is Seifert. In other words, M = w(P) is Seifert.
So we can assume that all the pieces of the torus decomposition are geometrically
toroidal. Then they are all Seifert fibered. Thus M is a graph manifold.

We will show that the torus decomposition of M is in fact trivial, proving that M is
Seifert fibered. Suppose it is not true. Then the tree 7T is infinite. Let Py, P>, P3 be
three consecutive vertices in 7. Let W} be the wall between Py and P5. Then S(W1)
(as a set in M ) is a bounded distance from W; and sends the Seifert fibration of P
in Wy to lifts of Seifert fibers. It follows that 8 = 5’1‘ o1, where §; represents a regular
fiber in 7w (Pq), and o is a loop in s (Wy). Similarly, if W5 is the wall between P,
and Pj3, then § = 850{3, where a3 is a loop in 7 (W3). Then o1 and o3 are both in the
boundary of 7 (P,). The loops representing 8]1‘ o1 and 8%0[3 are both in the boundary
of w(P3). They represent the same element of 771 (M) only when k =i = 0 and o
and a3 are freely homotopic. That means that P, is a torus times an interval, which is
impossible in the torus decomposition in our situation, as explained above.

It follows now that the torus decomposition of M is trivial, which implies that M is
Seifert fibered. Moreover, if the base is not hyperbolic, then 71 (M) is virtually nilpotent
[32, Theorem 5.3]. But this contradicts the hypothesis of the lemma.
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It follows that the base is hyperbolic. Also 8 induces a transformation in the universal
cover of the base that is a bounded distance from the identity. This can only happen if
this transformation is the identity. Therefore B represents a power of a regular Seifert
fiber in M (notice that nonregular fibers induce a finite symmetry on the base, thus not
the identity, and not a bounded distance from the identity).

So the lemma is proven when M is orientable. If M is not orientable, then it has
a double cover M, which is orientable. Now ,82 lifts to an element of 71 (M>) that
satisfies the assumption of the lemma. So we can apply the result to M and obtain
that M> is Seifert. Thus M is doubly covered by a Seifert space, which, by a result of
Tollefson [34], implies that M itself is Seifert fibered. It follows that 8 corresponds to
a power of a regular fiber. This finishes the proof of the lemma. a

Appendix B Minimality and f -minimality

We prove that in certain situations minimality is equivalent to f—minimality. We need
the following result, which is of interest in itself.

Lemma B.1 Let £ be the leaf space of W*. Let B C L% be a closed set of leaves.
Suppose that, for all x € M, there exists a leaf L € BB containing x. Then B = L.

Proof The lemma is obvious when W is a true foliation (and one does not need to
require B to be closed). However, when W* has some branching, one could possibly
have a union of leaves that cover all of M without using all the leaves of W, For
closed sets of leaves we show this is not possible.

Let L be a leaf of W, x a point in L and t an open unstable segment through x.
The set of leaves of W intersecting t is isomorphic to an open interval. Using the
transversal orientation to YW, we can put an order on this interval.

By our assumption, every point in 7 intersects a leaf in B. Let L’ be the supremum of
leaves in B, intersecting T and smaller than or equal to L. Since B is closed, we have
L' € B. Notice that x is in both L and L’.

We claim that L' = L. If L is not equal to L’ then they branch out. Let y be a boundary
point of LN L'. Let z € L', with z ¢ L close enough to y that its unstable leaf u(z)
intersects L. Now take any point w € u(z) in between z and L Nu(z). Any leaf
Lie W*S that contains w must contain y. Hence (because leaves do not cross), L1 also
contains x. By definition, it is above L’, thus L1 is not in B. Since this is true for any
leaf through w, it contradicts our assumption. |
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Lemma B.2 When W does not have compact leaves, then f-minimality of W is
equivalent to minimality of W<

Proof Minimality obviously implies f—minimality, so we only need to show the other
implication.

Suppose that W* is not minimal and let C be the union of a set of W* leaves which is
closed and not M. Let W¢* be an approximating foliation, with approximating map h¢*
sending leaves of W¢* to those of W*. Then (h¢*)~1(C) is a set which is a union of
WeS leaves, which is closed and not M. In particular, it contains an exceptional minimal
set D. By [26, Theorem 4.1.3], the actual foliation WW¢* has finitely many exceptional
minimal sets By, ..., Bx. The union B of these is not M because D # M. The set of
leaves in B is a closed set of leaves denoted by B. Then A = h$*(B) is a closed subset
of M, and A = hZ*(B) is a closed set of leaves, being the image by A¢° of the leaves
inB. Let A =n""1 (A); we stress that this is on the leaf-space level, not in terms of
sets. This is a closed subset of £,

Let A; := hZ*(B;). Every leaf of W which is the image of a leaf in B; is dense in A4;.
Using this, it is easy to see that f(A) = A. By f-minimality it follows that A = M.

Since A =M, A is a closed subset of L, whose union of points in all leaves of A
is M ,as A = M. Lemma B.1 implies that A = £ Hence for each leaf E of WS, it is
the image of a leaf F in some B;. Conversely, every leaf of WW¢* maps by A¢° to a leaf
of W<,

For each leaf E of W*, its preimage (h<*)~!(E) is a closed interval of leaves of W
No leaf in the interior of the interval can be in a B; as it is a minimal set. It follows
that the complementary regions to B in M are /-bundles. These can be collapsed to
generate another foliation C. Since the B; were minimal sets of W¢* the collapsing of
each of these is a minimal set of C. Since the union is all of M, there can be only one
such minimal set, so W¢* is minimal.

But this contradicts the fact that D is an exceptional minimal set of W¢* |

We state the following criteria for dynamical coherence (which in this setting is quite
obvious).

Proposition B.3 [8, Proposition 1.6 and Remark 1.10] Assume that f is a partially
hyperbolic diffeomorphism admitting branching foliations W and W*. If no two
distinct leaves of W or W*" intersect, then f is dynamically coherent.
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Appendix C The Lefschetz index

Here we define the Lefschetz index and give the main property that we used. We refer
to the monograph by Franks [19, Section 5] for details and other references.

For any space X and subset A C X, we denote by Hy (X, A) the k™ relative homology
group with coefficients in Z.

Definition C.1 Let V C R¥ be an opensetand F:V C R¥ — R be a continuous
map such that the set of fixed points of F is I' C V, a compact set. Then the Lefschetz
index of F, denoted by IT(F), is an element in Z =~ Hj(R¥, RF — {0}), defined
as follows. It is the image by (id — F)«: Hg(V,V —T) - Hp(R¥, RF — {0}) of
the class ur, where ur itself is the image of the generator 1 under the composite
Hi (RF R¥ — D) — Hi (R, RF —T") = Hy(V,V —T). Here D is a ball containing T'.

It is easy to see that if I' = Fix(F) =I'; U---UT;, where I'; are compact and disjoint,
then IT(F) = Z{ It (F). Here IT(F) is the index restricted to an open set V; of V
which does not intersect the other I',;; see [19, Theorem 5.8(b)].

This technical definition works well with the standard examples. For a single hyperbolic
fixed point ¢, the index at ¢ is exactly sgn(det(id— D4 F)), where det is the determinant
and sgn is the sign of the determinant; see [19, Proposition 5.7]. Hence in dimension
two, the index of a hyperbolic fixed point when the orientation of the bundles is
preserved is —1. This can be generalized to a p—prong hyperbolic fixed point, to
obtain that the index is 1 — p. This is because the index is invariant under homotopic
changes. A p—prong can be easily split into p — 1 distinct hyperbolic points which are
differentiable. In addition, for any fixed set which behaves locally as a hyperbolic fixed
point, the index is the same as the hyperbolic fixed point.

The main property we use is the following.
Proposition C.2 [19, Theorem 5.8(c)] Let P be a topological plane equipped with a

metricd. Let g, h: P — P be two homeomorphisms. Suppose that there exists R > 0
such that

e forevery x € P, one has that d(g(x), h(x)) < R, and
o there is a disk D such that, for every x ¢ D, one has that d(x, g(x)) > 2R.

Then the total index satisfies Ifix(¢)(&) = Irix(n) (h).

See also [28, Section 8.6] for an alternative presentation of the Lefschetz index.
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The Weil-Petersson gradient flow of renormalized volume
and 3—dimensional convex cores

MARTIN BRIDGEMAN
JEFFREY BROCK
KENNETH BROMBERG

We use the Weil-Petersson gradient flow for renormalized volume to study the
space CC(N; S, X) of convex cocompact hyperbolic structures on the relatively
acylindrical 3—manifold (V;.S). Among the cases of interest are the deformation
space of an acylindrical manifold and the Bers slice of quasifuchsian space associ-
ated to a fixed surface. To treat the possibility of degeneration along flow-lines to
peripherally cusped structures, we introduce a surgery procedure to yield a surgered
gradient flow that limits to the unique structure Mgeoq € CC(N; S, X) with totally
geodesic convex core boundary facing S. Analyzing the geometry of structures
along a flow line, we show that if Vg(M) is the renormalized volume of M, then
VR(M) — VR(Mgeoq) is bounded below by a linear function of the Weil-Petersson
distance dwp(dc M, 0c Mgeoq), With constants depending only on the topology of S.
The surgered flow gives a unified approach to a number of problems in the study of
hyperbolic 3—manifolds, providing new proofs and generalizations of well-known
theorems such as Storm’s result that Me,q has minimal volume for N acylindrical
and the second author’s result comparing convex core volume and Weil-Petersson
distance for quasifuchsian manifolds.

32G15, 30F40, 30F60; 32Q45, 51P05

1 Introduction

The use of a geometric flow, or a flow on a space of metrics on a given manifold, has
provided an abundantly fruitful approach to understanding a manifold’s structure. In
our previous work [4], we introduced a new geometric flow on the space of hyperbolic
metrics on a 3—manifold that admits a hyperbolic structure, showing how the flow can
be used to discover the metric of least convex core volume. In the present paper, we
illustrate how this flow provides an analytic version of results on convex core volume

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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that were available previously only through combinatorial methods, demonstrating how
this approach allows for conjectured extensions to much more general cases.

When a hyperbolic 3—-manifold M admits a compact convex submanifold we say it
is convex cocompact; the geometry of the smallest such submanifold, its convex core,
carries all the interesting information about its geometry. For such M (or more generally
conformally compact Einstein manifolds), work of Graham and Witten [17] in physics
led to an alternative notion of renormalized volume. From a mathematical perspective,
this concept has been elaborated in a series of papers of Krasnov and Schlenker
[21; 22], Takhtajan and Teo [32] and Zograf and Takhtajan [35]. The renormalized
volume Vg(M) of M connects many analytic notions from the deformation theory to
the geometry of M and is closely related to classical objects such as the convex core
volume V(M) and the Weil-Petersson geometry of Teichmiiller space.

If N is a compact 3—manifold admitting a complete hyperbolic structure of finite
volume, the renormalized volume gives an analytic function Vg: CC(N) — R, where
CC(N) is the deformation space of convex cocompact structures on N. We will give a
precise definition of Vg later in the paper, but knowledge of its basic properties will
be largely sufficient for our purposes. In particular, the differential d Vg on CC(N) is
described in terms of the classical Schwarzian derivative and can be used as a definition
of VR.

A convex cocompact structure M € CC(N) is naturally compactified by a complex
projective structure on dN. The underlying conformal structure is the conformal
boundary 0. M of M. The Schwarzian derivative associated to the projective structure
determines a holomorphic quadratic differential ¢ppr € Q(3d.M). The utility of the
renormalized volume function lies in a particularly clean formula for its derivative,
first shown by Takhtajan and Zograf [35] and Takhtajan and Teo [32]. A new proof
was given by Krasnov and Schlenker [22, Lemma 8.5] using methods that are more
closely aligned with the present work. To state the result, we recall that CC(N) is
(locally) parametrized by Teich(d/V), and the cotangent space at d. M is parametrized
by Q(d. M ). We then have:

Theorem 1.1 [35; 32; 22] Let p be an infinitesimal Beltrami ditferential on 0. M .
Then

dVr(p) = Re/a M¢MM~

Geometry & Topology, Volume 27 (2023)
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By integrating this formula along a Weil-Petersson geodesic and applying the classical
Kraus—Nehari bound on the L% -norm of ¢z, Schlenker [29, Theorem 1.2] obtained
the following for the quasifuchsian structure Q(X, Y) on N = § x[0, 1] with conformal

boundary X LI Y:
VR(Q(X.Y)) =3/ Z1x(S)] dwe(X. ).

Furthermore, Schlenker showed that for quasifuchsian manifolds, the renormalized
volume and the volume of the convex core are boundedly related. A more refined
version (see [4, Theorems 2.16 and 3.7]) is

Ve(Q(X,Y)) =67 |x(S)] = VR(Q(X.Y)) = Ve (Q(X,Y)).

Combined, these gave a new proof of an upper bound on the volume the convex core
of Q(X,Y) in terms of dwp(X, Y) originally due to the second author [9], resulting
also in new approaches to the study of volumes of fibered 3—manifolds in [11; 19]
generalizing and sharpening known estimates [10].

Here, the variational formula (Theorem 1.1) will be our jumping-off point to study
the Weil-Petersson gradient flow of Vg. It will be useful to restrict Vg to certain
subspaces of the space of convex cocompact structures CC(N). In particular, let
(N; S) be a pair where N is a compact hyperbolizable 3—manifold and S € dN is a
collection of components of the boundary. Then CC(N; S, X') € CC(N) is the space
of convex cocompact hyperbolic structures on N where the conformal boundary on
the complement of S is the fixed conformal structure X. The pair (N; S) is relatively
incompressible if the inclusion S < N is w—injective, and relatively acylindrical if
there are no essential cylinders with boundary in S. Note that the second condition
implies the first.

In this paper our focus will be on when (N ; S) is relatively acylindrical. The cases of
greatest interest are

(1) when S = dN, and N itself is acylindrical, and

(2) when N = § x[0,1], and CC(N; S x {1}, X) is a Bers slice of the space of

quasifuchsian structures.

One important feature of relatively acylindrical pairs is that the deformation space
CC(N; S, X) has a unique hyperbolic structure Mgeoq Where the components of the
convex core facing S are totally geodesic. The main application of our study of the
gradient flow is the following.

Geometry & Topology, Volume 27 (2023)
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Theorem A Let CC(N, S; X) be a relatively acylindrical deformation space. There
exists A(S), depending only on the topology of S, and a universal constant § such that

A(S)(dWP(BCMgCOd7 de M) — 5) =Vr(M)— VR(Mgeod)~

For a Bers slice CC(S x [0, 1], S x {1}, X'), we have Myeoq = Q(X, X) and both the
convex core and renormalized volume of this Fuchsian manifold are zero. Applying the
above comparison between renormalized volume and convex core volume, we obtain:

Theorem B Let S be a closed surface of genus g > 2. Then we have
T
A(S)(dwp(X.Y) =8) = Ve (Q(X.Y)) =3,/ 7 XS dwe(X.Y) + 67| x(S)].

Schlenker’s argument in the quasifuchsian case also applies to relatively acylindrical
manifolds, so we have for any M and M’ in CC(N; S, X) that

VR(M) = VR(M') <3\ Z11(S)| dwe(3c M. dc M),

If we let Myeoa = M, then we get an upper bound on the expression in Theorem A.
The comparison between renormalized volume and convex core volume also extends
to acylindrical manifolds (or any manifold with incompressible boundary).

Theorem C Let N be a hyperbolizable, acylindrical 3—manifold. Then
AN ) (dwp(de Mgeod, de M) —8) < Ve (M) — Ve (Migeoa)

Vs
53\/ 5|X(8N)| dWP(acMgeod’ 8cM)+37T|X(8N)|v

where A and § are as in Theorem A.

Remark The constants in Theorem C depend only on the topology of N . While we
expect the second author’s original method combined with Thurston’s compactness
theorem for hyperbolic structures on acylindrical manifolds should also produce a
similar bound, the constants in such an approach would depend on the topology of NV,
due to the application of Thurston’s result. The approach taken here is thus not only
more direct but produces a stronger result. In particular, while Thurston’s compactness
theorem implies that the convex core of Meoq has a bi-Lipschitz embedding into any
complete hyperbolic structure on N where the bi-Lipschitz constants only depend

Geometry & Topology, Volume 27 (2023)
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on N, it is natural to conjecture that these bi-Lipschitz constants only depend on dN .
Theorem C can be taken as some evidence for this conjecture.

We note that a positive resolution of this conjecture would also imply Minsky’s con-
jecture that the diameter of the skinning map is bounded by constants only depending
on dN, and provide an approach to improving related estimates for the models of [14].

1.1 The Weil-Petersson gradient flow of renormalized volume

One of the main purposes of this paper is to develop the structure theory of the gradient
flow V for renormalized volume Vx. From this development, the above results will
follow directly. We show that flow provides a powerful new tool to investigate the
internal geometry of ends of hyperbolic 3—-manifolds.

To give a basic outline of the main ideas of the paper, we begin with a general discussion
of gradient flows, which we will then apply to the gradient of renormalized volume.
Let f be a smooth function on a noncompact, not necessarily complete, Riemannian
manifold X, and assume that

(a) f is bounded below,

(b) the gradient flow of f is defined for all time,
© Vsl =C¢,

(d) f has a unique critical point X,

(e) for all € > 0 there exists an A4 > 0 such that if d(x, X) > ¢, then ||V f|| > A.

By integrating ||V /|| along a distance-minimizing path between points x and x" we
immediately see that (c) implies that

| /() = f(x)] = Cd(x,x).

Clearly, we cannot expect a similar lower bound to hold as the level sets of f may have
infinite diameter. Instead, we obtain lower bounds when x” = X, the unique critical
point. In particular, let x; be a flow line of —V f* with x = xy. We then have

S0) = f(xa) = fo IV £ .

By (a), limg— o f(x4) exists so as a — oo, the improper integral is convergent.
Therefore there will be an increasing sequence of #; with |V f(¢;)|| — 0 so, by (e), the
flow line x; will accumulate on Xx. Fix some € > 0 with corresponding A > 0 as in (e)

Geometry & Topology, Volume 27 (2023)
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and let /. C [0, 00) be those values ¢ where d(x¢, X) > €. Then for t € I we have
IV f(x:)|| = A and the length of the path x, restricted to /. will be at least d(x, X) —e.
Therefore,

f(X)—f(?C)=/0 IIVf(xt)Ilzdtsz IV S (o) |? dt

=4 [ 1VsGolar = A -o
Ie
which gives the desired linear lower bound.

Unfortunately, when we replace f* with the renormalized volume function Vg, property
(e) will not hold (but the others will). To mimic what happens in our generic setting,
we let X be the metric completion of our Riemannian manifold X and G C X a subset.
We replace (e) with the following three properties:

(e-1) For all € > 0 there exists a 4 > 0 such that if d(x,G) > € then |V f(x)]| = 4.

(e-2) There exists an n > 0 such that in any subset of G with more than n elements
there are at least two that a distance &g apart.

(e-3) For every xo € G there is a path x; starting at xo with x; € X for ¢ > 0 and

S (xe) < f (o).

While the overall structure of the argument will remain the same, some modifications
are necessary. First, we need to construct a surgered flow x; where

] xo =X,

¢ the function 7 — f(x;) satisfies f(x;) < f(xo),

¢ outside of the e—neighborhood of G, x; is the gradient flow,

e X;—>Xast— o0.
To construct x; we start the gradient flow at x. If it limits to X (as we conjecture it will
for renormalized volume) then we are done. If not, we limit to some other point in G.
We reparametrize so that this happens in finite time and then use (e-3) to restart the

flow. If this converges to X we stop; if not we repeat. The first three bullets follow
directly from this construction.

As before we fix an € and A as in (e-1) and let I (a) C [0, a] be those ¢ € [0, a] where
d(x;,G) > €. If L¢(a) is the length of the path x[o 4] restricted to I¢(a) then the above
argument gives

J(x) = f(xa) = ALe(a).

Geometry & Topology, Volume 27 (2023)



The Weil—Petersson gradient flow of renormalized volume 3189

A simple geometric argument, using (e-2), shows that L¢(a) grows linearly in both the
number of points of G that x; passes through and in the distance d(x, x,). In particular,
if x; passes through infinitely many points in G then L¢(a) — co as @ — 00 sO
f(a) = —o0, contradicting (a). Therefore x; only passes through finitely many points
in G which implies that the surgered flow converges to the critical point. Therefore if
we take the limit of the above inequality we have

J(x) = f(¥) =2 AL¢(00),
and as L¢(00) is bounded below by a linear function of d(x, X), we have our bound.

We now apply this discussion to the renormalized volume function Vg on a relatively
acylindrical deformation space CC(N; S, X). Properties (a)—(d) are already known
so we will focus on (e-1)—(e-3). In particular, we need to understand when ||V Vg]|| is
small. By Theorem 1.1 we have that the Weil-Petersson gradient of Vg is given by the
harmonic Beltrami differential
VVR(M) = 21
oM

where pps is the area form for the hyperbolic metric on d. M and ¢y is the quadratic
differential associated to the projective structure on the components of d. M corre-
sponding to S. The norm of VVp is then the L?—norm of ¢ps. This L?>—norm is
zero exactly when ¢pr = 0. As ¢y is the Schwarzian derivative of the univalent map
uniformizing the components of d. M corresponding to S (see [22]), ¢par = 0 implies
that the uniformizing maps are Mobius. It follows that if the norm of V Vg is zero then
the components of the boundary of the convex core facing S are totally geodesic. In a
relatively acylindrical deformation space there is exactly one such manifold (which is
why (d) holds) and one might hope that when ||¢p ||, is small we are near this critical
point. If this were so, (¢) would hold. Unfortunately, it does not. While ||¢ps||2 being
small will imply that M is near a hyperbolic manifold whose convex core boundary
(facing S) is totally geodesic, this manifold may have rank one cusps.

To state this more precisely, if GF(N; S, X) is the space of geometrically finite
hyperbolic structures on (N; S, X), then the map M +— 9d.M is a bijection from
GF(N; S, X) to the Weil-Petersson metric completion Teich(S) of Teichmiiller space
where points in the completion are noded hyperbolic structures on S; see [25]. Nodes in
the conformal boundary correspond to rank one cusps in the hyperbolic 3—manifold. The
triple (NV; S, X) determines a subset G(N; S, X) of Teich(S) where the corresponding
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hyperbolic structures have totally geodesic boundary facing S. With G = G(N; S, X)
defined, we can briefly describe how we will verify (e-1)—(e-3).

Property (e-1) is the following theorem and its proof will occupy much of the paper:

Theorem D For all € > 0, there exists A = A(e, S) such thatif M € CC(N; S, X)
with ||¢ar|l2 < A then there isan M’ € G(N; S, X) C GF(N; S, X) such that

dwp(0:. M, BCM/) <e€.

Property (e-2) follows from Wolpert’s strata separation theorem (Theorem 2.2). For
a noded surface Y € dTeich(S), we denote the family of curves given by the nodes
by 7y. Then Wolpert’s strata separation theorem implies there is a universal constant
8o > 0 such that if Y7, Y, € dTeich(S) with geometric intersection i (ty,. tv,) # 0,
then dwp(Y7, Y2) > 8o. Thus (e-2) holds with n = 26(5) where £(S) is the maximal
number of disjoint simple closed curves on S as any collection of greater than #» noded
surfaces in dTeich(S) contains two that have intersecting nodes.

Finally property (e-3) follows by unbending the nodes by decreasing the bending angle
from 7 along the nodes to some angle 6 < 7. Such a deformation was constructed by
Bonahon and Otal [3]. Using the variational formula for Vg it can be easily shown that
Vg satisfies property (e-3) along this path (see Proposition 5.2) as required.

1.2 Constants

A striking feature of Schlenker’s proof of the second author’s upper bounds for volume
is that the constants are very explicit. Unfortunately we lack the same control of
constants in our lower bounds as there is one place in the proof, the use of McMullen’s
contraction theorem for the skinning map, that we fail to control constants explicitly.
If we assume, optimistically, that the contraction constant does not depend on the
manifold then we can at least understand the asymptotics. With this assumption the
multiplicative constant in our lower bound will decay exponentially with exponent of
order g2, where g is the genus. On the other hand, the additive constants will decay to
zero even without controlling the contraction constant. This should be compared to
work of Aougab, Taylor and Webb [1], who produced an effective lower bound in the
quasifuchsian case via the second author’s combinatorial methods. Their multiplicative
constants decay exponentially with exponent of order g log g, which is better than ours,
but their additive constant grows, also of order g log g, rather than decays.
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1.3 Questions and conjectures

A central feature of the surgered gradient flow of —Vx on a relatively acylindrical
deformation space is that it converges to the unique structure whose convex core has
totally geodesic boundary. While in this paper we will focus on relatively acylindrical
deformation spaces, the gradient flow is defined on the deformation space of any
hyperbolizable 3—manifold as is a surgered flow. We conjecture:

Conjecture 1.2 The surgered gradient flow either converges to a hyperbolic structure
whose convex core has totally geodesic boundary or it finds an obstruction to the
existence of such a structure. More concretely, either

e N is acylindrical and M; — Meoq, OF

¢ there is an essential annulus or compressible disk whose boundary has small
length in d. M, for some ¢.

In fact we expect that the surgeries are unnecessary. Here is a more concrete conjecture
when the manifold has incompressible boundary.

Conjecture 1.3 Let N have incompressible boundary. Then for M € CC(N) the
renormalized volume gradient flow M; starting at M has the property that for any
simple closed curve y on dN the geodesic length {37, (y*) tends to zero if and only if
y lies in the window frame.

See Thurston’s paper [33] for the definition of the window of a hyperbolic 3—manifold
with incompressible boundary.

In effect, the renormalized volume gradient flow realizes the geometric decomposition of
the manifold into pieces by pinching cylinders corresponding to the window boundary,
cutting the convex core of the manifold into pared acylindrical pieces with totally
geodesic boundary and Fuchsian “windows”.

Other questions relate to the internal geometric structure of convex cocompact ends
and how the flow relates to their internal structure. To avoid technicalities, for the
remainder of this section we will assume that our manifolds are acylindrical.

Let C(M, L) the collection of simple closed curves on dM with geodesic length < L
in M, and let (M, L) be the collection of simple closed curves on dM that have
length < L on some d, M;, where M; is the gradient flow starting at M .

Geometry & Topology, Volume 27 (2023)
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Question 1.4 Given L > 0 does there exist an L’ > 0 such that

FM,L'ycC(M,L) and C(M,L’)C F(M,L)?
A stronger version of this question is the following.

Question 1.5 Does the flow give a continuous family of bi-Lipschitz embeddings into
the initial manifold? In other words, for s < ¢, does the convex core of M; embed in
the convex core of My in a bi-Lipschitz manner?

Note that a positive answer to this question would have applications. First, it would
imply Thurston’s compactness theorem for deformation spaces of acylindrical manifolds.
A suitable generalization of this conjecture to the general incompressible case would
also imply Thurston’s relative compactness theorem in this setting. It would also imply
the following conjecture that was mentioned above:

Conjecture 1.6 Let N be an acylindrical 3—-manifold. Then for all M € CC(N)
the convex core of Mgeoq has a bi-Lipschitz embedding in M with constants only
depending on N .

We note that as gradient flow lines are Weil-Petersson quasigeodesics, relative stability
properties established in Brock and Masur [13] for low-genus cases (genus two or lower
complexity) for such quasigeodesics would control the behavior of manifolds along the
flow M; when N has genus two. This observation gives an approach to Question 1.5 in
such cases. Such stability fails to hold in higher genus cases, so other properties of the
flow would be required. The question is reminiscent of similar questions involving the
relation of Weil-Petersson geodesics to properties of ends of hyperbolic 3—manifolds
and the models of Brock, Canary and Minsky [12].
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2 Background and notation

In what follows, we fix S to be a closed orientable surface with connected components
having genus at least two.

Norms on quadratic differential and metrics on Teichmiiller space Let Q79(Y) be
the space of (p, ¢)—differentials on a Riemann surface Y. Given a quadratic differential
¢ € Q20(Y) and a Beltrami differential i € Q~11(Y), the product u¢ is (1,1)—
differential which can canonically be identified with a 2—form, so we have a pairing

(. ) = /Y/MP.

In particular, these two spaces are naturally dual.

We also have the subspace Q(Y) C Q2°(Y) of holomorphic quadratic differen-
tials. This space is important as it is canonically identified with the cotangent space
Ty Teich(S). The tangent space Ty Teich(S) is then a quotient of Q LI(Y). In
particular, define

NE)={ueQ "(Y)|(¢.n) =0forall ¢ € Q(Y)},
and then
Ty Teich(S) = Q~M1(Y)/N(Y).

If py is the area form for the hyperbolic metric on Y and ¢ € Q2-°(Y), then |¢|/ py is
also a function, and we define ||¢(2)| = |¢(2)|/py (2) to be the pointwise norm. We
let ||¢]|, be the LP—norm of this function on Y, again with respect to the hyperbolic
area form. Given u € Q~11(Y) we define the Z9—norm (with 1/p + 1/g = 1) of the
equivalence class [u] € Ty Teich(S) by

Ll
P

S < lmllg-
secom\ioy 2lp i

Illg =

For p =1 this norm on Ty Teich(S) gives the Teichmiiller metric on Teich(S) and for
p = 2 it gives the Weil-Petersson metric. Note that the Teichmiiller metric is a Finsler
metric while the Weil-Petersson metric is Riemannian, as the Z?—norm on Q(Y) can
be given as an inner product. In particular, the L?—norm on Q(Y) is given by the inner
product

(V.¢) = Re /Y v/ py.
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From this we see that if f: Teich(S) — R is a smooth function then its differential df
is an assignment of a holomorphic quadratic differential ¢y to each Y € Teich(S).
Its Weil-Petersson gradient is the vector field is represented at each Y by a Beltrami
differential py, where for all ¢ € Q(Y') we have

(¥, dy) = (¥, uy).

It is a standard fact (and not hard to check directly) that [ty] is represented by the
harmonic Beltrami differential ¢y / py and that

Iyl = gy /oy 2 = Iy |-

Collars We state the collar lemma originally due to Keen [18]. We give it in a form
due to Buser [15].

Theorem 2.1 (Buser [15]) LetY be a complete hyperbolic surface and y a simple
closed geodesic of length £,,(Y'). Then the collar B(y) of width

- 1 )
wly) = sinh (sinh(%ﬁy(Y))
is embedded. If z € B(y), then
sinh(injy (z)) = sinh(3£, (Y)) cosh(d(z, y)).

Furthermore, for any two disjoint geodesics, the collars are disjoint.

Let €, = sinh™! (1) be the Margulis constant in dimension 2. If £,,(Y) < 2¢, then we
define the standard collar of y as

{z € B(y) | injy (2) = €2

We note that it follows from the collar lemma (see [15]) that the standard collar consists
of all points in Y that lie on a curve of length < 2¢, which is homotopic to y.

For S a finite-type surface, we define £(S) to be the maximal number of disjoint
simple closed curves in S. For S a surface of genus g and k punctures we have
£(S) =3g —3+k, and for S with connected components S; then £(S) =Y _; £(S;).

Hyperbolic 3—-manifolds Let (N, P) be a pared 3—manifold (see eg [27]) and S a
collection of components of 0N — P. Then the triple (N, P; S) is relatively acylindrical
if no essential cylinder has boundary in S. The acylindricity condition implies that all
components of S are incompressible.
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A complete hyperbolic 3-manifold M on the interior of N naturally has the structure
of a pared 3—manifold. This is simplest to describe when M is geometrically finite
and, as this is the only setting we will consider, we stick to this case. Let M be the
union of M and its conformal boundary. Then there is a paring locus P C dN such
that M is homeomorphic to N — P. The paring locus P is a collection of annuli and
tori. These are the rank one and rank two cusps of M . In particular, a curve in M C N
has parabolic holonomy if and only if it is homotopic into P.

Let MP(V, P) be the space of geometrically finite hyperbolic structures on the interior
of N with induced pared manifold structure (N, P). (These are minimally parabolic
structures on (N, P)—every parabolic is contained in P.) Now fix a conformal
structure X on the complement of S in IN — P and let MP(N, P; S, X) CMP(N, P) be
those hyperbolic structures with conformal boundary X on the complement of S. Then
by the deformation theory of Kleinian groups (see eg [20]) we have the parametrization
MP(N, P; S, X) >~ Teich(S). The space MP(N, P; S, X) is a quasiconformal defor-
mation space; any two hyperbolic manifolds in MP(N, P; S, X) are quasiconformal
deformations of each other with the deformation supported on S

Our results on renormalized volume will only apply to manifolds where P is empty.
However, in the course of the proof it will be necessary to consider hyperbolic 3—
manifolds with cusps.

Schwarzian derivatives and projective structures Let f: A — C be a locally
univalent map on the unit disk A C C. The Schwarzian derivative is the quadratic
differential given by

o (LY _1(@ 2) 2
Sf()_((f/(Z)) 2(f’(2)) az"

If f is a Mdbius transformation then S/ = 0, and in general, S measures how much
f differs from a Mobius transformation. We also have the composition rule

S(fog)(z) = S[(g(2)g(2)* + Sg(2).

Observe that if f is a Mobius transformation then S(f o g) = Sg, while if g is a
Mobius transformation S(f o g)(z) = Sf(g(2))g’(2)>.

Let I" be a Fuchsian group such that Y = A/ . A projective structure on Y is given by
alocally univalent map f: A — C (the developing map) with a holonomy representation
p: ' = PSL,(C) such that for all y € I" we have

Soy=py)of
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The composition rule for the Schwarzian implies that S/ descends to a holomorphic
quadratic differential in Q(Y).

The Weil-Petersson completion and its stratification While the Teichmiiller metric
is complete, there are paths with finite length in the Weil-Petersson metric that leave
every compact subset of Teichmiiller space. Our goal in this section is to describe
some of the basic structure of the completion of the Weil-Petersson metric. Points in
this metric completion are naturally parametrized by families of Riemann surface with
nodes, namely, a degeneration of a finite-area hyperbolic Riemann surface obtained by
collapsing the curves in a multicurve to cusps.

Given a compact surface S, the complex of curves € (S) is a simplicial complex organiz-
ing the isotopy classes of simple closed curves on S that do not represent boundary com-
ponents. To each isotopy class y we associate a vertex vy, and each k—simplex o is the
span of k + 1 vertices whose associated isotopy classes can be realized disjointly on S.

It is due to Masur [25] that the completion of Teich(.S) with the Weil-Petersson metric
is identified with the augmented Teichmiiller space, obtained by adjoining at infinity
the Riemann surfaces with nodes. A point in the completion is given by a choice of the
multicurve 7, a (O—skeleton of a) simplex in %' (S'), and finite-area hyperbolic structures
on the complementary subsurfaces S \ 7. The completion is stratified by the simplices
of €(S): the collection of noded Riemann surfaces with nodes determined by a given
simplex t lies in a product of lower-dimensional Teichmiiller spaces determined by
varying the structures on S \ 7. This stratum of the completion, .#%, inherits a natural
metric from the Weil-Petersson metric, which by Masur [25] is isometric to the product
of Weil-Petersson metrics on the Teichmiiller spaces of the complementary subsurfaces.

The Teichmiiller space, with this “augmentation” by its Weil-Petersson completion,
naturally descends under the action of the mapping class group to a finite diameter
metric on the Deligne—Mumford compactification of the moduli space of Riemann
surfaces. If Teich(S) is the completion then we can describe the strata as follows

e ={X e Teich(S) | £, (X) = 0 if and only if y € t},
where £, is the extended length function of y.
We note that if 79 C 7 are simplices in €'(S), then we have .77, C 4770

In his investigation of the geometry of the completion, Wolpert showed the following.
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Theorem 2.2 (Wolpert [34, Corollary 22]) There is a positive constant &, such that
either i (7o, T1) = 0 and the closures of the strata .77, and %%, intersect ori(tg, t1) > 0
and

dwp (S, S2,) = 0.

We note that the minimum such § satisfies 6.57 < §¢ < 6.66; see [7].

3 Hyperbolic 3—-manifolds with small Schwarzian derivative

Before proving Theorem D we set some notation. Let (N, P;S) be a relatively
acylindrical triple where P is a collection of tori and X a conformal structure on
the complement of S in N — P. We consider the following:

e 7 is asimplex in C(S).
e P. is the union of P and the curves in 7.

e S7 is the complement of 7 in S.

Note that the new triple (N, Pr; S¢) is still relatively acylindrical and the complement
of S; in N — Py is homeomorphic to the complement of .S in N — P. We then have

GF(N, P:S.X)=|_|MP(NV. P;: S;. X).
T
Thus, GF(N, P; S, X) is naturally parametrized by the Weil-Petersson completion
Teich(S) of Teichmiiller space.
We next set:

e If Y € Teich(S), then My is the hyperbolic manifold in GF(N, P; S, X) under
the above identification GF(N, P; S, X)) = Teich(S).

e ¢y is the Schwarzian quadratic differential given by the projective structure
on Y induced by My.

We are especially interested in those manifolds in GF(N, P; .S, X') where the boundary
of the convex core facing S is totally geodesic. We fix notation for this set:

. YgfeOd is the unique conformal structure in Teich(S7) such that the component of

the boundary of the convex core of M Yo facing S is totally geodesic.

Geometry & Topology, Volume 27 (2023)



3198 Martin Bridgeman, Jeffrey Brock and Kenneth Bromberg

e 4(N, P;S, X) is the union of the Ygfeod.

e If r = &, then we set Ygeoq = Ygfeod and Mgeoa = My,

eod *

We have the following elementary observation.

Lemma 3.1 Let (N, P;S) be arelatively acylindrical triple where P is a collection
of tori and X a conformal structure on the complement of S in N — P. Then the set
¢(N, P; S, X) in Teich(S) is discrete.

Proof Assume that Ygtégd — Yg”eod is a convergent sequence in 4 (N, P; S, X). Then

we can choose an n > 0 such that dWP(YgZBd, Yg’eod) < 8p/2 for k > n, where § is
the constant in Wolpert’s strata separation theorem (Theorem 2.2). By the triangle
inequality we also have dwp(Yg’Z;d, Yggo 1) < 0o for k,/ > n. Thus by Wolpert’s strata
separation theorem we have i (ty, t7) = i (1, T) = 0 for k, [ > n. This implies that 7
can be only a finite number of possibilities for k > n and therefore ¥ (N, P; S, X) is

discrete. O

We will also be interested in the manifold obtained by drilling the curves in T from the
interior of N. We set notation here:

e Set W = dN x |0, 1] to be a collar neighborhood of N with dgW = N x {0}
the component of the boundary lying in int(V).

e Set 79 = t x {0} to be copies of t isotoped into int(N ), lying on do W'

e Let N bethe compact 3—manifold obtained removing open tubular neighborhoods
A (79) of g.

o Note that N is the union of N and a torus for each component of 7y. Let P

be the union of P and the new tori in 9N so there is a natural homeomorphism
from ON — P to 9N — P.

There is an inclusion : N <> N that restricts to a homeomorphism from N — P to
dN — P. Therefore MP(]V  P:S. X ) is also parametrized by Teich(S).

e Given Y € Teich(S), My € MP(N, P; S, X) is the hyperbolic manifold such
that ¢ extends to a conformal map between the conformal boundary of My
and My.

. $y is the Schwarzian quadratic differential for the projective structure on Y
induced by My.
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There is a natural embedding
jiN — N

obtained by including the submanifold N \ int(W U _#'(19)) < N such that the
composition o j is isotopic to the identity and j is a homeomorphism from dN —(PU.S)
to N — (P U S).

For every hyperbolic manifold in MP(]V L P:S. X ) this embedding induces a cover
that lies in MP(N, P;; S;, X). That is, there is an induced map

j*:MP(N, P;S,X)— MP(N, P;; Sz, X)
between the deformation spaces and we set

My = j*(My).

Outline of the proof of Theorem D If ||¢y || is small the proof is straightforward:
Thurston’s skinning map is a map from MP(N, P; S, X) to itself that has a fixed point
at the totally geodesic structure. By a theorem of McMullen the skinning map is
contracting and therefore we obtain a bound on the distance from Y to Ygeoq if we
can bound distance between Y and its first skinning iterate. When ||¢y ||co is small, a
classical result of Ahlfors and Weill bounds this initial distance.

A key element of our investigation involves understanding the behavior of the 1.°°—
norm when the L2-norm is small. In particular, the pointwise norm of ¢y may be
large in the thin parts of ¥ which we will need to pinch to nodes. There are several
steps to the proof:

¢ We choose 7 to be the simplex of short curves on Y. A version of the drilling
theorem bounds the L?—norm of ¢y — ¢y in terms of the length of 7. We use
this to bound the pointwise norm of ¢y outside of the standard collars of t.

¢ Using the above bullet and a modification of some classical arguments, this
bounds [|¢5 [0 We are then in position to use McMullen’s contraction theorem

to bound the distance between ¥ and Ygzod.

e We also have that ¥ — t conformally embeds in Y, which implies that ¥ and
Y are close in the Weil-Petersson completion. Together, this and the previous
bullet point imply the theorem.
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3.1 Choosing the curves to drill

As we noted in the outline, a bound in ||¢y |, does not give a bound on ||¢y | co-
However, we have the following bound on the pointwise norm that depends on the
injectivity radius. For Y a hyperbolic surface and z € Y we define injy (z) to be the
injectivity radius of z in the hyperbolic metric on Y. For simplicity, we define the
truncated injectivity radius by injy (z) = min{injy (z), €2}, where €; = sinh~1(1) is
the Margulis constant in dimension 2.

Proposition 3.2 (Bridgeman and Wu [8]) Let¢ € Q(Y) then

6 < —12l2_

Viniy )

As a first step we show that after an appropriate choice for t, we can obtain a pointwise
bound on ¢y outside of the standard collars of t. For this we will need the following
bound on the L?-norm.

Theorem 3.3 (Bridgeman and Bromberg [5]) There exist constants cgin, Larin > 0
with £4:i1 < 1 such that the following holds. Given Y € Teich(S) and a simplex t in
C(S) such that £g(Y') < £qrin for all B € T, we have

lpy — ¢y ll2 < carn V€ (Y),
where £g(Y') is the lengthof B in Y .

Fixing a universal constant We first prove that we can choose the simplex 7 such
that ||¢y (2)| is small for z € Y in the complement of the standard collars of .

Theorem 3.4 Assume that Y € Teich(S) with ||¢y||§/ (26(5)+3) < Larin. There exists
an{ = £(Y) > 0 with
2/(2£(S)+3
(< ”¢Y”2/( £(8)+3)

such that the following holds. Let t be the simplex in C(S) of all curves with length < £.
Then for z € Y in the complement of the standard collars of 7,

Iy (2)]| < CoVES) gy |2/ ST,
for Co = V2(carin + 1)

Geometry & Topology, Volume 27 (2023)



The Weil—Petersson gradient flow of renormalized volume 3201

Proof Let A = ||¢Y||§/(2$(S)+3) < Lgn < 1 and let £, = A%kt As A < 2es,
there are at most £(S) curves of length < A so there must be some integer k with
0 < k < &(S) such that Y has no curves of length in the interval ({5, ¢;]. Let
0= Uy < Lo = |lpy |3/ G
length <fonY.

and let 7 be the simplex in % (S) of all curves of

By Theorem 3.3 we have

gy — v ll2 < carin v/ € (Y).
As . (Y) < é(S)A2k+3, we have

Iy llz < ll¢y Iz + oy — by lla < ASSH3 4 e VES)AKTE.

As Y contains no curves of length in the interval ({; 1, {x] every point in the comple-

ment of the standard collars of 7 has injectivity radius > £ /2 = A2**1 /2. Therefore

if z € Y is in the complement of the standard collars of C, then by Proposition 3.2
Ié¥llz _

1y @)l < _ AESHE 4o JES) AR
/2 VARFT/2
< V2(A + cain VE(S)A)
< V2(1 + carn VE(S) A
= CovVE(S)A,

where Cy = «/5(1 + carinn) 1S a universal constant. O
We can now prove:

Theorem 3.5 If Y € Teich(S) with
Iy 13" < min{aen, 25inh ™" ()},

then there is a simplex T € %(S) anday e Teich(S;) € Teich(S) such that

@ dwp(¥ V) = e VE®) gy [y T,
sinh™ (2)

S
®) lpglloo < CiVES) Iy |13 ST,
where C; = 94/2(Cy + 1).
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Proof of Theorem 3.5(a) Let t be the simplex given by Theorem 3.4 and let Y e
Teich(S;) be the surface with j *(]\2 y) = M. To obtain the bound on dwp(Y, )A’) we
will apply Proposition A.1, and to do this we need to show that certain covers of Y
embed in Y. To set notation, let f‘y be a Kleinian group such that MY =H3/ f‘y.
Then M3 = H3/ 'y, where T'y C L'y is a subgroup.

We consider the domains of discontinuity of these two groups. First, note that as I'y is a
subgroup of f‘y, the domain of discontinuity of I'§ contains the domain of discontinuity
of f‘y. More precisely, if I" is the subgroup of I'y that fixes a component €2 of the
domain discontinuity of I'y then the subgroup I" will be the fundamental group of the
one of the components of the boundary of the pared manifold My . Under the inclusion
j:i My — My, boundary components of the pared manifold My will be homotopic
to embeddings into components of the pared manifold MY As T corresponds to the
fundamental group of a component of the boundary of My, this implies that there will
be a subgroup T of Fy, corresponding to the fundamental group of a component of
the boundary of M v, with " a subgroup of T. Then T will fix a component Q of the
domain of discontinuity of Ty.AsTisa subgroup of T it will also fix Q and therefore
QCQ. We finally note that if 2/ I" is a component of X', as j restricted to X is a
homeomorphism, we have [=Tand Q=Q.

Fix a component W of Y and let Qw be a component of the domain discontinuity that
covers W. Let I'w C T'y be the subgroup that fixes QW Then W = Qi / FW By
the above, there is a component W of Y, a component QW, and a subgroup FW of
Ty with

« W=Qu/Ty.

e 'y C fw,

. QW C Qw.
As Ty also fixes QW, the quotient W = QAZW/ '/ embeds in W = Qw/ 'y, where

W is the cover of W corresponding to the (topological) inclusion W W.

Let Y be the union of the covers W of (the components of) Y obtained by letting W
vary over all components of Y. Then ¥ embeds in Y, and by assumption, we have

2/(E(S)+3 .
||¢Y”2/( £(S)+3) < 2sinh 1(%)
Therefore, by Theorem 3.4, for each g € 7,
Lp(Y) <2 sinh™! (%)
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so we can apply Proposition A.1 to get

dwp(Y, ?) < 2—n,/ﬁr(Y) \/ﬁ”(]ﬁ ”1/(25(5)4‘3) O

‘/sinh_l(%) 4/sinh™ 1(2)

To obtain our bound on ¢ [leo We will first need the following generalization of the
Kraus—Nehari bound on the norm of the Schwarzian.

Lemma 3.6 Let f: A — A be univalent and assume that for z € A the image f(A)
contains a hyperbolic disk of radius r centered at f(z). Then ||Sf(z)| < 5 sech( )

Proof The proof is a refinement of the classical proof of the Kraus—Nehari theorem.

Assume that z = f(z) = 0. By applying the Schwarz lemma to the restriction of
/7! to the hyperbolic disk of radius r, we see that | f/(0)| > tanh(3r). If we let
g(z) = f(0)/f(1/z) we have the expansion

o0
gz)=z+ Z bpz™".

n=0

Note that the domain of g is {z € C | |z| > 1} and that |g(z)| > tanh(%r) for z in
the domain. As in the proof of Nehari’s theorem we can also calculate to see that
Sf(0) = —6b1. As the conformal factor for the area form of the hyperbolic metric
on A at z = 0 is 4, we obtain ||Sf(0)| = %|b1 |. Let C, be the circle of radius p
centered at 0 with p > 1. Then the Euclidean area m, in C bounded by g(C)) is

My =7p —n2n|b |2p72",
n=1

Since, for all p > 1, C, will contain the disk of radius tanh($r) centered at 0 we have
that m, >  tanh*(3r) and by letting p — 1 we have

o0
ntanhz(%r) <m—mx Zn|bn|2 <7 —7|bi|?.
n=1

The estimate follows. O

Proof of Theorem 3.5(b) Choose ¢ such that
||¢ ”2/(25(5)4‘3)

and note that 2¢ < ¢;.
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We use the same setup as in (a). As we have there, 253 is component of the domain of
discontinuity I'y covering a component W C Y of the conformal boundary of My. We
need to bound the Schwarzian of the uniformizing map fip: A - Q. If fiy: A — Qy
is the map uniformizing QW C Qp the we can factor fy through amap g: A — A
such that fir = fi o g. Here g is the lift of the embedding W <> W described above.
To control the Schwarzian of fjr we need to apply Lemma 3.6 to g and combine the
bound there with the given bounds on the Schwarzian of fj .

Let W€ and W€ be the complements of the €;— and e—cuspidal thin parts of W,
respectively. By the Schwarz lemma the embedding W <> W is a contraction from
the complete hyperbolic metric on w (which is lifted from W C Y') to the complete
hyperbolic metric on W. The peripheral curves in W will map to the cuspidal curves
in W. In W these curves are in 7 and therefore have length in W (and therefore in W)
that is < 2¢. This implies that the image of embedding of W in W will contain W¢.
At the level of universal covers this implies that if z € A such that fj7(z) is mapped
into W€ in the quotient 2537/ 'y then z is in the image of g.

By [2, Lemma 4.5] the norm of a quadratic differential achieves its maximum in the
complement of the standard neighborhood of the cusps. Therefore to bound ||¢¥ || co it
suffices to bound ||¢w (z)| for z € wez,

After fixing a z € W2 it will be convenient to normalize our uniformizing maps so
that g(0) = 0 and 0 maps to z under the quotient maps to W and Y. Then

g9 (2)|l = 41Sfiw (0)] and [|¢y (2)]| = 4|S fw (0)].

By the composition rule for Schwarzian derivatives we have

Sfw (0) = S (g(0)g'(0)* + Sg(0),
and therefore (assuming that g(0) = 0)

IS/w (O)| + [1Sg O
g"(0)]?
We now need to bound the individual terms on the right.

o7 N = I1S/w O] =

As W€ is in the complement of the standard collars of 7 in Y, by Theorem 3.4

I1Sfw (O)] = lloy (D) = 2CoVE(S)e.

We would like to apply Lemma 3.6 to bound || Sg(0)|| but to do so we need to bound
from below the distance from 0 to A\ g(A) in the hyperbolic metric on A. This distance
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is bounded below by the distance from We to VT’\W in the hyperbolic metric on W,
and this distance in turn is bounded below by the distance from We to W\VT/E since
W€ is contained in W. A simple calculation shows that if r is the distance from dW €2
to dWE, then

sinh(%ez) €
sinh(3€) €

r

The hyperbolic disk of radius r centered at 0 will be contained in g(A) and Lemma 3.6
plus the above bound implies that

1Sg(@)| < %sech(%r) <3e72" <3 [ <.

€2
Finally we need to bound from below |g’(0)|. As in the proof of Lemma 3.6 we have

g’ (0)] > tanh(%r), and given our above bound on r this becomes

1—€/ep
"0)| > tanh(ir) > ———== >
¢'(0)] = tanh(37) = § e

W=

Combining our estimates we have

IS/ (0)] < 9(2C0\/§(S)6 + 3\/5) <9V/2(Cy + 1)\/§(S)||¢Y||;/(2$(S)+3)'

Therefore we let C; = 9+/2(Cy + 1), and the result follows. a

3.2 Bounds on iteration of the skinning map

Let (N, P; S) be a relatively acylindrical triple. For Y € Teich(S) = MP(N, P; S, X)
we need to show that if ||¢y || is small, then dwp(Y, Ygeoa) is small. When (N, P) is
acylindrical the proof is a straightforward application of a classical bound of Ahlfors
and Weill plus McMullen’s contraction theorem for the skinning map. However, in
the relatively acylindrical case we will need a slight extension of McMullen’s original
statement.

The skinning map
o:MP(N, P; S, X) ~ Teich(S) — Teich(S)

is defined as follows: for each Y € Teich(S), the cover of My € MP(N, P; S, X)
associated to the subgroup 71 (Y) C 71 (My) under inclusion will be quasifuchsian.
(If Y is disconnected then the cover will also be a finite collection of a quasifuchsian
manifolds.) For each connected component of dMy, one component of the conformal
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boundary restricts to a homeomorphism to ¥ under the covering projection. The other
component will be o (Y), the image of the skinning map for that component. Note that
Z € Teich(S) is in G(N, P; S, X) if and only if Z is a fixed point for o.

The skinning map is a smooth map and we will be interested in bounding its derivative
so that we can apply the contraction mapping principle. The estimate we need from
McMullen essentially works as written in [26] but there are a few differences in the
relative case, which we highlight. Given Y € Teich(S) let I" be the Kleinian group that
uniformizes My € MP(N, P; S, X) and let © be the domain of discontinuity of I". If
the pair (N, P) was acylindrical, then every component of € would be a Jordan domain
and the stabilizer of every component would be a quasifuchsian group. Furthermore if
Dg and D are distinct components of €2 then either their closures are disjoint and the
intersection of their stabilizers is trivial, or the intersection is a point and the intersection
of their stabilizers is an infinite cyclic group generated by a parabolic. In the relatively
acylindrical case this will not hold. However, if we let 2y be those components of €2
that cover Y then these properties do hold for the components in Qy. The second
key point is that a tangent vector of MP(N, P; S, X) is represented by a I'—invariant
Beltrami differential y that is supported on Q2y. With these two observations one sees
that McMullen’s proof in the acylindrical case extends to the relatively acylindrical
case:

Theorem 3.7 (McMullen [26, Theorem 6.1 and Corollary 6.2]) If (N, P; S, X) is
relatively acylindrical, then for Y € Teich(S),
ldoy lloo = A(S) <1,

where A(S) depends only on the topology of S.

The contraction mapping principle implies that 6" (Y) — Z with 6(Z) = Z and

dTeich(Ya U(Y))
1—-A(S)
To complete the proof of Theorem 3.9 we need to bound d(Y, o (Y)). This is a direct

dreicn(Y, Z) =

consequence of the Ahlfors—Weill quasiconformal reflection theorem:

Theorem 3.8 (Ahlfors and Weill [23, Theorem 5.1]) LetY € Teich(S) and ¢y be
the associated quadratic differential on Y. If ||¢y ||co < % then

14 2]¢y lloo

dreicn(Y. 0 (Y)) < 7 log :
2T 1=2]¢rlloo
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If ||y loo < . then an easy estimate of the right-hand side gives

dreicn(Y,0(Y)) < 3|y [l co-
and therefore

dTelch(Y Z) -1_ )x(S) ||¢Y||oo

By a result of Linch [24], dwp < +/area(S) dreich and we have the following result.

Theorem 3.9 Let (N, P;S) be relatively acylindrical. Then for all Y € Teich(S) with
¥ lloo < % we have

dwe(Y.Z) _ 316 lloo
———— =dreich (¥, Ygeod) < ———ov»
’—area(Y) = UTe ch( geod) 1= )\,(S)

where A(S) is the contraction constant from Theorem 3.7.

Remark McMullen’s proof is not effective and this is the one place in our proof where
we don’t control the growth rate of the constants in terms of genus. However, we have
made some effort to isolate this from the constants that we do control.

3.3 Proof of Theorem D

We now put together the results above. We first restate Theorem D, but here we carefully
control the constants.

Theorem 3.10 There are a universal constants K and €y such that if

_ 26(8)+3
Ale.5) = (KOE(;(S)A (S)))

andY € Teich(S) with ¢y |2 < A(e, S) and € < €, then there exists Ygteod € G with
dWP(Y Y eod)

Proof By Theorem 3.5, there are universal constants £y, C; > 0 such that if
||¢Y||§/ (2£(5)+3) < Lgin then there is a simplex t in C(S) such that after drilling

curves C,
95 lloo < Cl\/g(_S”(p ||1/(2E(S)+3)
dwp(Y. V) < ———— \JE(S)llpy ”1/(2g(s)+3)

\/sinh ™' (2)
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Assuming that [|¢5[loc < 3 we can apply Theorem 3.9 to (N¢, Pr; St) to see that

WD) < DTS k),

dwe (YY) = 5 gy 197l = =505

since area(f) =area(Y) = gné (S). Then by the triangle inequality and the fact that
Cy > 1, we have

437 CLE(S) Iy |/ CES+D.
1—A(S)

We let Ky = 1/(4+/37Cy). Recounting our progress, if

dwp(Y. Yog) < dwp(Y.Y) +dwp(Y, Y5y < ——— >

’

Koe(l —k(S)))ZS(S)H
£(S)

WﬂbSMam=(
we have
dwp(Y, Ygeoq) <€,

2/(26(8)+3)

assuming that ||y [|; <Larin and [|¢p [loo < 3. However, if we let

1
3
. {\/Edrl 71’}
€9 = min ,/g
and € < ¢ then

2
oy ||2/(2§(S)+3) < (%S)MS))) < (Ko€)? < Lasin

and
S
||¢y||oo =C \/&'(—Snd) ”1/(25( )+3)
Koe(1-A(S))
SCVES)—(
1 E®
1Ko 4 3
This completes the proof. .

Hyperbolic manifolds with cylinders and compression disks We conclude this
section with a discussion of where we use the relative acylindricity of (&, P; S). For
simplicity, in this discussion we will assume that both P and S are empty.

The first problem that can occur is in Theorem 3.4 and its application. In particular, it
can happen that two or more curves in T may be homotopic in NV or even homotopically
trivial in N if N has compressible boundary. In this case, the manifold N will not be
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hyperbolizable. If N has incompressible boundary, this problem can be corrected by
only removing a single curve from N for each homotopy class (in N') of curves in 7.
With this change, Theorem 3.4 we still hold but we cannot define the embedding of N
in N and therefore cannot carry through the proof of Theorem 3.5.

If none of the curves in v are homotopic in N then the proofs up to and including
Theorem 3.5 go through. However, if the pared manifold (N, P;) is not acylindrical
then Theorem 3.7, McMullen’s contraction theorem, will fail. In fact, the deformation
space MP(N, P;) contains a hyperbolic structure whose convex core boundary is totally
geodesic if and only if (N, P;) is acylindrical or is a pared /-bundle.

We expect that the only problem that can occur is the first one. We have the following

conjecture.

Conjecture 3.11 Let M be a convex cocompact hyperbolic 3—-manifold with ¢ the
Schwarzian quadratic differential for the projective boundary of M. If ||¢ ||, is small,
then either:

e There exists a geometrically finite structure M’ on N with totally geodesic
convex core boundary, and dwp(d. M, d.M") is small.

e There are two or more short curves on d. M that are homotopic in M.

In particular, if no two curves in t are homotopic in M, we expect that (N, P;) is an
acylindrical pair even when N itself is not acylindrical.

4 W —volume and renormalized volume

Given a convex submanifold N with smooth boundary such that N < M is a homotopy
equivalence, the W—volume of N is defined to be

W(N) = vol(N) — % /aN HdA,

where H is the mean curvature! of N .

The W—volume has many nice analytic properties that make it a useful tool for studying
hyperbolic manifolds. We let N; be the t—neighborhood of N. The nearest point

IThis differs from the formula in [21] as we define H = Tr(B)/2 rather than H = Tr(B), where B is the
shape operator.
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retraction from M to each N; extends to a diffeomorphism from d, M to dN; and
using this retract we pull back the induced metrics on 0N, to metrics /; on d. M . Then

I*(x,y)= lim ———
=00 cosh?(t)
is a well-defined metric in the conformal class of d.M and is called the metric at

infinity.

It(x’y)

For N C M we will denote by py the metric at infinity on d. M. The W —-volume has
the following properties.

Proposition 4.1 (Krasnov and Schlenker [21]) Let N C M be a compact, convex
submanifold of a convex cocompact hyperbolic 3—manifold M and let N; be the
t—neighborhood of N . Then:

(1) The metric pp is in the conformal class of d. M .
) pn, =e*pN.
(3) W(N:) =W(N)—txx(dN).

Furthermore, if p is any smooth conformal metric on 0. M then for t sufficiently large
there exists a convex submanifold X; C M with px, = e p.

Using this proposition, the W—volume of any smooth conformal metric p on d. M is
defined by
W(p) = W(N:(p)) +tm x(0M)

for ¢ sufficiently large. The proposition above implies that W (p) doesn’t depend on the
choice of ¢. With this setup we can now define the renormalized volume Vg by setting

VR(M) = W(pnm).

where pps is the unique hyperbolic metric on d. M .

Convex cores Perhaps the most natural convex submanifold of a convex cocompact
hyperbolic 3—-manifold M is the convex core C(M'). The boundary of the convex
core is not in general smooth, so we cannot use the previous definition to define the
W —volume of C(M). However, there is a natural way to extend W—volume to this
setting (see the discussion in [4]) and for the convex core we have

W(C(M)) = Ve (M) — 3 L(Bum),
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where Bar is the bending lamination of the boundary of the convex core and L(Br) is
its length (as a measured lamination). The convex core also induces a natural metric
at infinity, called the projective metric (so called as Thurston gave a definition that is
intrinsic to the induced projective structure on d. M). We will be interested in a hybrid
metric that is the hyperbolic metric on some components of d. M and the projective
metric on the others. We have the following:

Proposition 4.2 Let M be a convex cocompact hyperbolic 3—manifold and suppose
that ) M = X U Y, a disjoint union of connected components of d. M. Let o be
the hyperbolic metric on X and the projective metric on Y. Let By be the bending
lamination of the components of the boundary of C(M) that faces Y. Then

W(o)— L L(By) = V(M) < W(o).
In particular, if Y = 0N, we have
V(M) =3 L(By) < VR(M) < Ve (M) = g L(Bu).
By the definition of the W —volume of the convex core, the two statements are equivalent

for the case X = @, and this case was proven in [4, Theorem 3.7]. Furthermore, the
proof trivially extends to the relative case above.

5 The variational formula

Recall that if (N; S) is a pair such that each component of .S is incompressible in N then
MP(N; S, X) is parametrized by Teich(.S) and therefore we can view renormalized

volume as a function
Vg : Teich(S) — R.

We recall the variational formula:

Theorem 1.1 Given Y € Teich(S) and u € Ty Teich(S), we have

dVR(w) =Re/ Py L.
3CMY

Therefore the Weil-Petersson gradient of Vg has norm ||¢y ||,. By the classical bound
of Kraus—Nehari for the Schwarzian of univalent functions, we have that ||@y ||co < %
As a corollary we have:
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Corollary 5.1 The Weil-Petersson norm of the gradient of Vg is bounded by
%\/area(Y) = /37n(S).

In particular, Vg is Lipschitz with respect to the Weil-Petersson metric, and therefore

extends to a continuous function on the Weil-Petersson completion.

Note if S is not incompressible in N then we cannot apply the Kraus—Nehari theorem
to bound the norm of the gradient and in fact there is no upper bound of the gradient in
this setting.

We now assume that (N; S) is relatively acylindrical and recall that G = G(N; S, X)
is the collection of Y € Teich(S) such that the component of the boundary convex core
of My facing Y is totally geodesic.

Proposition 5.2 Given t a nonempty simplex in C(S), let Ygteod be the unique surface
in G N Teich(Sy). Then for t > 0 there is a one-parameter family Y; € Teich(S) with

Y —> Yg’Od ast — 0 with Vg (Y;) < VR(Yg’Od).

(& (<]

Proof By a construction of Bonahon and Otal [3] there exists a one-parameter fam-
ily My € MP(N; S, X') where the bending lamination 84 of the components of the
convex core facing S have support 7 and bending angle 6. In the parametrization
MP(N; S, X') = Teich(S), the manifolds My correspond to Zy € Teich(.S). We also
let og be the hybrid metric that is the projective metric on Zg and the hyperbolic metric
on X. Let ¢g be the Schwarzian quadratic differential on Zyg.

As part of the construction, Bonahon and Otal show that M 7, converges to M Yo in the
algebraic topology on GF(N, S; X). Unfortunately what we need is that Zg — Yg’éod
in Teich(S) = GF(N, S; X'), where the topology is the metric topology of the Weil—
Petersson completion. These two topologies are not homeomorphic. While the con-
vergence we need could be proven using the notion of strong convergence of Kleinian
groups and techniques well-known to experts, we will instead give a proof more in line

with the methods from this paper.

We first note that from the construction it follows that L(8g) — 0 as 8 — . In [6] it

is shown that
Ipell2 < 3 L(Bo)

and therefore we also have ||¢g|» — 0 as & — m. Theorem 3.10 then implies that Zg
accumulates on G. As G is discrete (see Lemma 3.1), Zy must limit to a unique point.
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It also follows from construction that the length of a curve y on Zy limits to zero if
and only if y is in T so any limit for Zy will be in the strata for t. Together this implies

that Zg — Ygreod'

By Corollary 5.1, Vg extends to a continuous function on Teich(.S). Combining this
with Proposition 4.2 and the fact the L(8g) — 0 we have

lim W(og) = lim Vr(Mp) = VR(Yge0q)-
0—m 0—>m

We will show that
VR(Mg) = W(0g) < VR(Yge0a):

which will give the result.

For this we use the variational formula

L Wiog) = 4(e0)—626)).

where £(60) is the sum of the length of the curves in T on in My. If X = & then by the
Schlifli formula

d
g Ve (M) = 3L(0).

and the variational formula follows from differentiating the formula for W—-volume
of the convex core and the noting that L(8g) = 6£(6). In general, if p; is a family of
metrics on dN then the variation of W—volume will have a term for each component
of the boundary and if p; is a another family of metrics that agrees with p; on a
component S of dN then the term for both variations on .S will be the same. In our
case oy is the hyperbolic metric on X for all 8, so the variation of W—volume on X
is zero. On Zy, oy is the projective metric so on Y the variation is the same as the
variation of the W—volume of the convex core. This gives the variational formula.

We can now complete the proof. By Choi and Series [16], £/(f) < 0, which implies
that W(ayg) < VR(YgTOd). We can also see this directly by integrating to get

(&
1 T
VR(Ygeos) = Wior) = 5 f U6) do + L THT) > 0.
T

We then define Y; by reparametrizing Zy via an orientation-reversing homeomorphism
from (0, 00) to (0, r). Thus we have Vg(Y;) < Vg (Ygfeod), as required. |
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6 Lower bounds on renormalized volume

We begin with a geometric lemma. We note that a geodesic metric space is a metric
space (X, d), where the distance between two points is attained by the length of a path
between the points.

Lemma 6.1 Let Z be a collection of points in a geodesic metric space (X, d) such
that for any collection of n + 1 points in Z there are two that are at least a distance §
apart. Let

a:[0,1]- X
be a rectifiable path and let L¢(«) be the length of the path that is disjoint from the
e-neighborhood of Z. Then for e < §/2n,

5—2
Le(a) = e

(d(a(O), a(l)) — 2ne).

Proof Foreach:z e Z, let
U, ={t€]0,1]]|d(a(t),z) <e€}

and let U be the union of the U,. Note that for any ¢ € [0, 1] there are at most N points
z € Z such that N (z) intersects the (6 — 2¢)/2-neighborhood of «(¢) and therefore
there is a neighborhood of ¢ that intersects at most N of the U,. As [0, 1] is compact
this implies that there are finitely many z € Z with U, # @.

We claim we that we can find zq, ..., z; in Z and
ot et <y - _ .+ —
0=ty <t] <t =ty <+ Sty <ty =1=t,.,
such that
e 17 €Uy,

. tl.+ =sup U,
. oe([tit1 ,1;"]) is disjoint from N (Z).

+
livr-
be the infimum of (tl.+, 1]NU. As there are finitely many nonempty U, there

We assume that the first i points and values have been chosen and then find z; ; and

Let li_—i-l

must be some z € Z with ity the infimum of (tl.+, 11NU;. We let z;4+1 = z and
tlﬁ_"_l = sup U,. This process terminates (and m = i) when either (tl.+, 11NU =g or

+ _
F=1
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Note that this implies that d (ec(z;), oz(ti+)) < 2¢ and

D d(e(t). et) < Le(@).
Therefore,
d(@(0),a(1)) = Y d@(),a(t)) + D d@t ), al)) < 2me+ Le(@).

We need to show that 2me is only a controlled portion of d(«(0), «(1)). For this we
choose a nonnegative integer k such that kn < m < (k + 1)n. Then we let j; be
the smallest index such that there exists an iy < j; with d(z;,,zj,) > §. Note that
J1 <n+ 1. Then, as above,

6—2¢ < d(a(t;lr), a(t;) =2(n—1)e+ Le(“'“:”ﬂ)'
Repeating this argument we get iy and j, for £ = 1,...,k, where j;_; < iy < jy,
Je—Jje—1 =N and

§—2e <d(a(yh), a(t;)) <2(n—1)e + Le(a|[t;m]).
Summing these inequalities and rearranging we get

o L@
~ §—2ne
As m < (k 4+ 1)n our previous bound on d(«(0), «(1)) becomes

d(@(0),a(1)) <2(k + 1)ne + Le(@).

Combining the two inequalities and rearranging gives the result. O

Lemma 6.2 Assume that 0 < € < ¢ and let Y; be a path on Teich(S) such that on
E ={t|dwp(Y:, G) > €} the path is smooth and the tangent vector is the Weil-Petersson
gradient of —Vg, and for [u, v] a connected component of the path Y; in E€ we have
Vr(Yy) < Vr(Yy). Then

o — 26 +1¢

5 (dwp(Yq, Yp) — 25 F1e),

VR(Ya) = VR(Yp) = A(€. S)

Proof We have that E is a collection Z of open intervals. By assumption, for ¢t € £
the tangent vector f’, of Y; is the Weil-Petersson gradient of — Vg, so by Theorem 1.1,

1Yellwe = ll¢y, 2.

By Theorem 3.10 we also have that for ¢ € E,
¢y, ll2 = A(€. S).
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Again applying the variational formula, Theorem 1.1, to an interval (s, ¢) in Z, we have

t t
V(¥s) - Va(Ys) = / by, 12 dt > / A(e. $)|9y, |2 di = A(e. S)L(Yes 1)),

N

where L(Y(y)) is the length of the path from s to 7. For any interval [u, v] in E€, by
assumption we have Vg(Y,) — Vr(Yy) > 0. Therefore we have

VR(Ya) = VR(Yp) = Y Vr(Ys) = VR(S),
(s,t)ez

and therefore
VrR(Ya) = Vr(Yp) = A(e, S)L(Y7),
where

L(Yr) = )Y LY.

(s,0)eT

For any collection of 2808 4] simplices in C(.S) there must be at least two that contain
intersecting curves. Therefore by Theorem 2.2 for any collection of 26(8) 41 points in
G=G(N;S, X) there are at least two that are a distance 8 apart in the Weil-Petersson
metric on Teich(S) and we can apply Lemma 6.1 with Z = G the set of points and
n = 2§(5) Noting that Le(Y(q,p) = L(Y7) by Lemma 6.1, we have

§o — 26()+1¢

L(Y7) =
8o

(dwp(Yg, Yp) — 25T 1e).

Combining this with our above bound on the differences between renormalized volumes
gives the result. ad

Convergence in the Weil-Petersson completion

Proposition 6.3 Let Y; be a flow line of the Weil-Petersson gradient flow of —Vg.
Then Y; converges in Teich(S) to a Y eg.

Proof By Lemma 6.2 for every positive distance d > 0 there is a v > 0 such that
it dwp(Ys,Y:) = d then Vg(Ys) — VR(Y;) = v. Renormalized volume is bounded
below (and is in fact nonnegative) and therefore Vg (Y;) converges as t — oco. In
particular there exists a 7 > 0 such that if 5,7 > T then Vg(Ys) — Vr(Y;) < v and
dwp(Ys, Yy) < d. Tt follows that Y, converges in m as t — oo.
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The lower bound on renormalized volume also implies that the integral

o 2
/0 by |12 dt < oo,

Therefore we can find a sequence #; with ||¢Yti |2 — 0 as i — co. Theorem 3.10 then
implies that any accumulation point of the sequence will lie in G. As we have just seen
that the entire path converges, this implies that the limit of Y; as ¢t — oo liesin G. O

The surgered flow

Proposition 6.4 Fix € > 0. For all Y € Teich(S) there exists a path Y; in Teich(.S)
with Y = Y, such that:

e On {t | dwp(Y:,G) > €}, the path is smooth and the tangent vector is the Weil—
Petersson gradient of —Vg.

e Ifa<b and [a, b] is a connected component of the set {t | dwp(Y?,G) < €}, then
Vr(Ys) < Vr(Ya).

* Yy —> Ygeod ast — o0.

Proof We claim there exists an integer k > 0 such that fori =0, ...,k there are a
family of paths Y/ and simplices 7o, ..., 7 in C(S) such that

o Y = Yé,
o Yti passes through Yg’e% G Ygz(;il’
o VROYZS) < VR(Ygg) for j=1....i 1,

o if dwp(Y},G) > € the path is smooth and the tangent vector Yt’ is the Weil-
Petersson gradient of — Vg,

o Y’—>Yggodast—>ooandrk=®.

We start by letting Y2 be the flow line of the Weil-Petersson gradient of —Vg with
YO Y. By Proposition 6.3, there is a simplex 7y in C(S) such that Y; converges to
some Ygeod € G, where 7 are the nodes of Y. seod”

Now assume Yt AU Yt and 1, ..., 7; have been chosen. If 7; = & then k =i and
we are done. If not, we form Yti *1 as follows. As Y} — 1; there exists a o such
that if ¢ > ¢y then dwp(Y7, greiod) < €/2. By Proposition 5.2, there is a path Z; with
Zo = Ygeod, Z; € Teich(S) and Vg(Z;) < VR(Yggod) We can then choose #; such

that if 0 < ¢ < ; then dwp(Y.” ., Z;) < €/2. We then define Y’Jrl by

geod’

o YTl =vlifr<t,
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i+1
[{o,fo-i-l)
o« YTl =27z, _jiftelto+1,to+1 +1],

is a reparametrization of Y/ ,
p [t0,00)

o fort>ty+1t;+1,7, ,H'l is a flow line of the Weil-Petersson gradient of — V5.

For large ¢, Yti tlisa gradient flow line, so once again by Proposition 6.3, we have
y G+l

that Y/ T1 — Y *! € G, where curves in the simplex 7; 4 are the nodes of oo -

geod

. Ti+1 Ti
We now show that the process terminates. Observe that VR(Yge’(:g ) < VR(Yge’()d) as the

path Yti *1 passes through Ygreiod, VR(Yti *1y is decreasing, and VR(Yti th VR(YgTe’:fl1
Ti

as t — oo by Corollary 5.1. Thus all of the t; are distinct and VR(Ygeod) is decreasing
ini.

The flows Yti satisfy the conditions of Lemma 6.2 so there exists a v = v(e, §g) > 0 such
that if dwp(Y,, Ylf ) > 8o then Vg(Y}) — VR(Ylf ) > v. As we noted above, for any col-
lection of 2§(5) 41 simplices in C(S) there will be at least two that contain intersecting
curves. Therefore for any i > 0 there exist j <£in{i,...,i +28(S )} such that 7; and 7y
contain intersecting curves. By Theorem 2.2 we then have dWP(YgZOd, Ygte“od) > 8g. As
Y,i+2€(s)+1 passes through 7; and g, in that order (with possibly i = j or £ =i +28(5)),
we have

i T 42E(S) i
VR(Yod) = VRV ) = VR(Ygaog) — VR (Ygog) = .

Therefore, if the paths are defined up to i with 26()m <i < 255 (m + 1), we have
VR(Y) = VR(Ygioq) = VR(Ygaod) = VR(Ygaog) = M.

eod eod eod

As Vg > 0 this implies that
i < 7&(S) (VR—(Y) + 1)‘
v

Therefore the process must terminate. a
We now use the above to give a new proof of the following theorem of Storm.

Corollary 6.5 (Storm [30; 31]) Let N be a compact hyperbolizable acylindrical
3—manifold without torus boundary components. Then V¢ has a unique minimum at
the structure Mgeoq € CC(N') with totally geodesic convex core boundary.

The minimality of Mgeoq Was the main result in [30] and the uniqueness is a corollary
of the main result in [31], which considers the general case of N with incompressible
boundary.
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Proof LetY # Ygeod. Using surgered flow, we have the path Y; with Y; € Teich(dN)
from Y to Ygeoq With VR(My) > VR(Mgeoq). Therefore

Ve(My) = Vr(My) > VR(Mgeod) =Vc (Mgeod)-

Thus V¢ has unique minimum at Mgeoq. O

In the course of the proof we have shown that the unique minimum of Vg also occurs at
Meoq. In the relatively acylindrical case, we no longer have Vi (Mgeod) = VR (Mgeod),
but otherwise the above proof goes through to give the following more general version
of Storm’s theorem for renormalized volume.

Corollary 6.6 Let (N;S) be a compact hyperbolizable relatively acylindrical 3—
manifold without torus boundary components. Then Vg has a unique minimum at the
structure Mgeoq € CC(N; S, X) with totally geodesic convex core boundary facing S'.

In [4] we proved that Corollaries 6.5 and 6.6 are equivalent. Here we are directly
proving both statements. A version of Corollary 6.6 was also proved by Pallete [28]
using different methods.

Also applying Lemma 6.2 to the surgered flow path gives:

Theorem 6.7 For all € < ¢,
5() — 2é ($)+1 €

VR(Y) - VR(Ygeod) > A(E, S) 8o

(dwp (Y, Ygeo) — 25 e).
Theorem A then follows from the above by choosing € = min(eg, §o/25¢)+2) and

letting
A(S) = JA(.S) and §=16.

We also recall Schlenker’s upper bounds. His argument was originally for quasifuchsian

manifolds, but as we will see it holds whenever (N ; §) has incompressible boundary.

Theorem 6.8 Let (N ;.S) have incompressible boundary. Then

VRO = VRO =3[ T X @N)| dwe(Y. Y.

Proof As noted in Corollary 5.1 the norm of the Weil-Petersson gradient of Vg is
bounded above by %\/ area(Y) = 3/(7/2)|x(S)|. Integrating this bound along a
Weil-Petersson geodesic segment from Y to Y’ gives the result. |
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We can now use the above to prove Theorem B, which we now restate.

Theorem B Let S be a closed surface of genus g > 2. Then
A(S)(dwp(X.Y)—8) = Vc(Q(X.Y)) =3,/ %|X(S)| dwp(X,Y) + 67| x(S)].

Proof If N =S x[0, 1] then a Bers slice is the deformation space CC(N; S x {0}, X),
where X is a fixed conformal structure on S. Manifolds in this deformation space are
quasifuchsian and the manifold My € CC(N; S x {0}, X) in our general notation is
usually referred to as Q(X, Y).

We apply Theorem A to this case. Then Q (X, X) is the Fuchsian manifold s0 Ygeoqa = X
and VR(Ygeoq) = 0. Therefore we have

A(S)(dwp(X,Y)—8) = Vr(Q(X.Y)).
Combining this lower bound with the bound of Schlenker [29, Theorem 1.2], we have
A(S)(dwp(X.Y)—8) = VR(Q(X.Y)) =3,/ %IX(S)I dwp(X.,Y).
By [4], for any convex cocompact M,
VR(M) + 3 L(By) = Ve (M) = VR(M) + 3 L(By).
Also for N incompressible L(Bpr) < 67| x(dN)|; see [4]. The result follows. |

Theorem C follows identically as in the proof of Theorem B above.

Appendix A Weil-Petersson estimate

We recall that the Margulis constant in two dimensions is €5 = sinh~!(1). In this
section we prove the following proposition:

Proposition A.1 Let t be a simplex in C(S) and Y € Teich(S) a hyperbolic surface
such that £5(Y) < £, for each curve B € t, where 0 < {o < 2¢,. Let Y e Teich(S;) be
such that the cover Z of Y associated to S \ 7 conformally embeds in Y. Then

V().

2 sinh(%ﬁo)
£o(1—sinh(1¢o))

dwp(Y,Y) <27 \/
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We will use the following criteria for convergence in the Weil-Petersson completion.
Let 7 be a simplex in C(S) and Y asurface in Teich(S;). Then a sequence Y; € Teich(SS)
converges to Y in Teich(S) if for all simple closed curves y with i (¥, 7) = 0 we have
Ly, (Y;) — E,,(IA’). In particular the length of the curves in T must converge to zero. We
will use the following lemma to verify this criteria.

Lemma A.2 Let R C S be a proper, essential, nonannular subsurface of a finite-type
surface S. Let R; and S; be conformal structures on R and S, respectively, such
that there is a conformal embedding R; — S; in the homotopy class of R — S. If
Lor(R;) — 0, then for all simple closed curves y on R we have

lim £, (R;) = lim £,(S;),
1—>00 1—>00
where the lengths are measured on the completed hyperbolic metrics on the respective

conformal structures.

Proof Let Rg./ and Sl.y be the annular covers of R; and S; corresponding to the curve y .
Then there is a conformal embedding Rg./ — Siy that is a homotopy equivalence.
Therefore

=m(R)) <m(S}) =

b4
Ey(Ri )
where m(-) is the modulus of the annulus.

Ey(Si),

To get a bound in the other direction we let D; be the distance, in the S;—metric, from
the geodesic representative of y in S; to the complement of R; and denote the D;—
neighborhood of the geodesic core of Siy by Sl.y (Dj). Then Siy (D;) will be contained
in R; and it follows that

T —€; v

Zy (Si ) !

where ¢€; only depends on D; and €; — 0 as D; — oo. To finish the proof we need to

m(S} (Dy)) =

show that D; — oo.

Let C(R;) be the convex core of R; and assume that each component of the boundary
of C(R;) has length < 2¢,. Then each component of the boundary of C(R;) will lie
in the standard collar of the associated geodesic in S;. As the length of the boundary
curves of C(R;) limits to zero, the depth of these curves in the standard S;—collars
will limit to infinity. In particular, the distance of any point in the R—component of the
complement of the S;—collars from the complement of the R; will also limit to infinity.
As the geodesic representative of y in S; will be in this complementary region we have
that D; — o0, as desired. O

Geometry & Topology, Volume 27 (2023)



3222 Martin Bridgeman, Jeffrey Brock and Kenneth Bromberg

Let A be a conformal annulus with finite modulus 71(A). Then A can be realized as
the quotient of the strip
S={zeC|0<Imz <7}
by the translation .
Z=>ZzZ 4+ —

m(A)
Define Beltrami differentials uf4 and ,uffl so that their lifts to S are ﬁf4 =1 and

ﬁi’l = sin? y, respectively. Then p is a Teichmiiller differential on A if it is a constant
multiple of /Lf‘l and is a harmonic differential on A if it is a constant multiple of MZ'

Lemma A.3 Let i1 be a Beltrami differential on Y such that on an annulus A, jt = ¢y
is a Teichmiiller differential. Assume that v is the Beltrami differential with v = 2c,uff1
on A and v = p on the complement of A. Then p — v is an infinitesimally trivial
Beltrami differential.

Proof We need to show that for any holomorphic quadratic differential ¢ € Q(Y)
the pairing of ¢ with u — v is zero. The difference u — v is supported on A so our
computation will be on fundamental domain in S for the action z > z + 7 /m(A). The
restriction of ¢ to A lifts to a holomorphic quadratic differential g(z) dz% on S, where
g is a periodic holomorphic function. That is,

T
g(z + —m(A)) = g(2).
Let

7/ m(A)
mw=A g(x +iy) dx.

If Q is a rectangle whose top and bottom sides are horizontal segments from x = 0 to
x = m/m(A) at heights yo < y; then

‘/ ¢(2)dz = b(yo) —b(31)
a0

since the periodicity of g(z) implies that the line integrals over the vertical sides cancel.
As g(z) is holomorphic the line integral around 0Q is zero and therefore b(y¢) = b(y1),
which implies that 5(y) = b is a constant function.

Using this we now compute the pairing:
w pr/m(A) 5
[ =o= [G=vo= [ [ c-2sin? g+ iv axay

T
=/ eb(1—2sin® y)dy = 0. |
0
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In practice it is easier to construct deformations where the tangent vectors are infinites-
imal Teichmiiller differentials on annuli. We can use the previous lemma to bound the
Weil-Petersson norm of these deformations.

Lemma A.4 Let A; be a collection of disjoint annuli on Y with finite moduli m;. If

=y ciply,
i

is a Beltrami differential on Y, then
2 2 |ci |2
pi =2m?y =
nj
Proof By Lemma A.3, the Beltrami differential u is equivalent to

v =ZZCI'/LZI,
i

I3 = ||[V]||§§A||V||2daY’

where day is the area form for the hyperbolic metric on Y. By the Schwarz lemma if

SO

da; is the area form for the complete hyperbolic metric on A; then day < da;. On the
strip S the area form da; lifts to (1/sin? y) dx dy so

/||v||2days42/ i Pl 12 da
Y ~ ) 4;
w/m(A4;) 2
—4Z|cl|2/ / G0 e dy

smy
||22

_42 - o

We can now describe the strategy of the proof of Proposition A.1. Let Z C Y be

the complement of the geodesic representatives of t in Y. Then Z will lift to Z and
conformally embed in both Y and Y. We will construct a family of quasiconformal
deformations of ¥ to itself, where the tangent vectors of these deformations will be
Teichmiiller differentials on a collection of annuli that lic in Z C Y. As Z is also a
subsurface of Y this will define a family of quasiconformal deformations of Y, but
here the surface will change along the deformation. This will define a path in Teich(S).
We will use Lemma A.2 to see that this path converges to Y and Lemma A.4 to bound
above the Weil-Petersson length of the path.
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The cusp deformation Every cusp € of a hyperbolic Riemann surface can be para-
metrized as the quotient of the horodisk
H={zeC|Imz>1}
by the translation
Z>z 4 2.
If we let
Hm)=4{zeC |1 <Imz <2m+ 1},

then the quotient €(m) of H(rm) is an annulus of modulus m. Define maps
e
such that f;” is
e constant in the x—variable,
e an affine map from €(m) to €(e’m),
¢ is conformal in the complement of &(m).

At time ¢ the infinitesimal Beltrami differential v; for this path will be supported on
the annulus €(e’m) and using the fact that

t
fse moftm = fsrit’

we see that the lift of v; to § is supported on $(e’m) with v; = —%. In particular, v; is
a Teichmiiller differential on €(e’m).

The deformation of ¥ and Y Each curve in 7 is a node of ¥ and there are two
associated cusps in Y. If 7 has k curves we label the two cusps associated to the
i™ node by (ﬁii and assume that the modulus m; has been chosen such that the annuli
¢E(m;) liein Z.

With this choice of moduli we define a family of maps
fi: ¥ Y

by setting f; to be the map f™' on the cusps Q,-i and to be the identity on the
complement of the cusps. (There may be cusps of Y that don’t correspond to nodes
in t. The map is the identity here.) The Beltrami differentials p; for this family of
maps are supported on the annuli @l-i (m;). As these lie in Z, the i, are also a family
of Beltrami differentials on Y so we have two one-parameter families of surfaces Z;
and Y; with Z; conformally embedding in Y;. The Z; also conformally embed in Y.
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Proof of Proposition A.1 Let 8; be the i™ curve of 7 and let ﬂi be the two curves
that are homotopically distinct in S\t but are both homotopic in S to ;. Let Z} B be
the annular cover of the component of Z; containing ,Bl?t. Then

BE
m(Z;" )= e'm;
and therefore

Lyz,(Z;) =0 as t— oo.
By Lemma A.2 for all nonperipheral simple closed curves y in R we have
lim £,(Z0) = lim £,(Y),  lim £,(Z) = lim £,(7) =, (7).
It follows that
tl_l)fgo by (Yr) =4, (Y),
soY; — Y in Teich(.S).

The tangent Vector of the path are Teichmiiller differentials on 2k disjoint annuli with
coefficients —5. At time 7, two of these annuli have modulus e'm;, so integrating the
estimate from Lemma A.4 we have

~ o 1 1
dwp(Y,Y) < 2 =2 —.
)= [F Y =3

To finish the proof we need to bound the m; from below. As Z is a cover of Y,

lp (Z ) =4Lg, (Y). By the Schwarz lemma, the geodesic representatlve of B; *in Z
will lie in the £ pE (Z )/2-thin part of the associated cusps ¢+ of Y. If p € Cis apoint
in our standard model of a cusp with pre-image z = x + iy € $ then injectivity radius
satisfies the formula

sinh(inj(p)) = i

Note that while z is not uniquely determined, the y—coordinate is. This implies that Z
will contain the annuli €(m;) where

1 1
R .—
T2 (sinh(ﬁﬁ,. (V)/2) )
With our assumption that £g+ (Z) =g, (Y) < £y we have

sinh(£o/2) £, (Y)
/2 2

sinh(£g, (Y)/2) <

Geometry & Topology, Volume 27 (2023)
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and therefore
> Lo 1 Lo —sinh({o/2)Lp. (Y)
"7 2sinh(lg/2)€p,(Y) 2 2sinh({/2)es,(Y)
- Lo —sinh({y/2)ly  Lo(1 —sinh({o/2))
~ 2sinh(£o/2)Lp, (Y)  2sinh(Lo/2)Lp, (Y)

It follows that

S5 - 2sinh(€o/2)lp,(Y) 2sinh(£g/2)
dwp(Y., Y) < 2m \/Z T —sinh(/2) ~ " \/eo(l “sinh(ly 2y ¥ ) B
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Weighted K-stability and coercivity
with applications to extremal Kéhler and Sasaki metrics

VESTISLAV APOSTOLOV
SIMON JUBERT
ABDELLAH LAHDILI

We show that a compact weighted extremal Kihler manifold, as defined by the third
author (2019), has coercive weighted Mabuchi energy with respect to a maximal
complex torus TC in the reduced group of complex automorphisms. This provides
a vast extension and a unification of a number of results concerning Kihler metrics
satisfying special curvature conditions, including Kihler metrics with constant scalar
curvature, extremal Kihler metrics, Kdhler—Ricci solitons, and their weighted ex-
tensions. Our result implies the strict positivity of the weighted Donaldson—Futaki
invariant of any nonproduct T C—equivariant smooth Kihler test configuration with
reduced central fibre, a property known as T C—equivariant weighted K—polystability
on such test configurations. It also yields the T C—uniform weighted K—stability on
the class of smooth T € —equivariant polarized test configurations with reduced central
fibre. For a class of fibrations constructed from principal torus bundles over a product
of Hodge cscK manifolds, we use our results in conjunction with results of Chen and
Cheng (2021), He (2019) and Han and Li (2022) in order to characterize the existence
of extremal Kihler metrics and Calabi—Yau cones associated to the total space, in
terms of the coercivity of the weighted Mabuchi energy of the fibre. This yields
a new existence result for Sasaki—Einstein metrics on certain Fano toric fibrations,
extending the results of Futaki, Ono and Wang (2009) in the toric Fano case, and of
Mabuchi and Nakagawa (2013) in the case of Fano IP!-bundles.

32Q20, 53C25, 53C55, 58J60; 14J45, 32127

Introduction

We are concerned with the existence and obstruction theory of a class of special Kihler
metrics, called weighted constant scalar curvature metrics, which were introduced by
the third author in [54; 55], giving a vast extension of the notion of Kihler metrics of
constant scalar curvature (cscK for short), and providing the unification of a number of
related notions of Kihler metrics satisfying special curvature conditions.

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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0.1 The weighted cscK problem

Let X be a smooth compact complex m—dimensional manifold with a given de Rham
cohomology class « € H!(X,R) of Kihler metrics, and let T C Aut, (X) denote
a fixed compact torus in the reduced group Aut, (X)) of automorphisms of X, ie the
connected subgroup of automorphisms of X generated by the Lie algebra of real
holomorphic vector fields with zeros; see eg Gauduchon [41]. It is well known that T
acts in a hamiltonian way with respect to any T —invariant Kéhler metric w € o, and the
corresponding momentum map j4, sends X onto a compact convex polytope A C t*
in the dual vector space t* of the Lie algebra t of T'; see Atiyah [9] and Guillemin
and Sternberg [44]. Furthermore, up to translations, A is independent of the choice
of w € «. We shall further fix A, giving rise to a normalization of the corresponding
momentum maps {{ty, | ® € a}.

Following [55], let v(u) > 0 and w (i) be smooth functions defined on A. One can
then consider the following condition for T—invariant K&hler metrics @ in o (and fixed
polytope A), called (v, w)—cscK metrics:

(1) Scaly(®) = w(Uw).
Here the so-called v—scalar curvature of w is defined by
(2) Scaly (@) := v(1tw) Scal(®) + 28, V(o) + (gw, Uy (Hess(v))),

with Scal(w) being the usual scalar curvature of the riemannian metric g, associated
to w, A, the Laplace operator of g,,, and where the contraction (-, -) is taken between
the smooth t* ® t*—valued function g, on X (the restriction of the riemannian metric
go 10t C C*®(X, TX)) and the smooth t ® t—valued function 4, * (Hess(v)) on X
(given by the pullback by j,, of Hess(v) € C®°(A,t® t)). The relevance of (1) to
various geometric conditions is discussed in detail in [55], but we mention below a few
special cases which partly motivate our study:

e v =1 and w is a constant: this is the familiar cscK problem.

e v=1and w ={ with £ an affine-linear function on t*: (1) then describes an extremal
Kahler metric in the sense of Calabi [21].

e v=ctand w = 2(£ + a)e’, where ¢ is an affine-linear function on t* and a is
a constant corresponding to the so-called pu—cscK (see Inoue [50]), extending the
notion of Kihler—Ricci solitons (see Tian and Zhu [71]) defined when X is Fano and
a=2mci(X).
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o v=/{"""1 w=0al"""2and a = c; (L), where £ is a positive affine-linear function
on A, m is the complex dimension of X, a is a constant, and L is a polarization of X:
(1) then describes a scalar flat cone Kihler metric on the affine cone (L~!)* polarized
by the lift of £ = d{ to L~! via £; see Apostolov, Calderbank and Legendre [2; 7].

In general, the problem of finding a T—invariant Kidhler metric @ € « solving (1) is
obstructed in a similar way that the cscK problem is obstructed by the vanishing of
the Futaki invariant: for any T—invariant Kidhler metric ® € o and any affine-linear
function £ on t*, one must have

(3) Futy,y (€) := /X(Scalv (@) —w(pp)(ty)o™ =0,

should a solution to (1) exist. In [55], an unobstructed modification of (1) is proposed,
extending Calabi’s notion [21] of extremal Kihler metrics. To this end, suppose
that v, wy > 0 are positive smooth functions on A. One can then find a unique affine-
linear function E‘{)"ﬁu , (1) on t*, called the extremal function, such that (3) holds for the
weights (v, w) = (v, Z%’fﬁuo wp). In this case, a solution of the (v, w)—cscK problem (1)
is referred to as a (v, wq)—extremal Kdhler metric. We emphasize that (v, wg)—extremal
Kéhler metrics are (v, w)-cscK metrics with a special property of the weight function w,
namely, w = fwg with wg > 0 on A and ¢ affine-linear. In particular, (v, w)—cscK
metrics with w # 0 on A are (v, w)—extremal with £, = sign(w|a) and (v, 0)—cscK
metrics are (v, w)—extremal with E‘;’)"L} = 0 for any w > 0. It follows that all the above
listed special cases are examples of (v, w)—extremal Kihler metrics, and thus the setup

of (v, w)—extremal Kéhler metrics allows one to 