Download this article
 Download this article For screen
For printing
Recent Issues

Volume 28
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
The Gromov–Hausdorff distance between spheres

Sunhyuk Lim, Facundo Mémoli and Zane Smith

Geometry & Topology 27 (2023) 3733–3800
Bibliography
1 H Adams, S Chowdhury, A Q Jaffe, B Sibanda, Vietoris–Rips complexes of regular polygons, preprint (2018) arXiv:1807.10971
2 I Bogdanov, Gromov–Hausdorff distance between a disk and a circle, MathOverflow answer (2018)
3 A M Bronstein, M M Bronstein, R Kimmel, Numerical geometry of non-rigid shapes, Springer (2008) MR2493634
4 D Burago, Y Burago, S Ivanov, A course in metric geometry, 33, Amer. Math. Soc. (2001) MR1835418
5 G Carlsson, Topology and data, Bull. Amer. Math. Soc. 46 (2009) 255 MR2476414
6 G Carlsson, Topological pattern recognition for point cloud data, Acta Numer. 23 (2014) 289 MR3202240
7 G Carlsson, F Mémoli, Characterization, stability and convergence of hierarchical clustering methods, J. Mach. Learn. Res. 11 (2010) 1425 MR2645457
8 M Cho, On the optimal covering of equal metric balls in a sphere, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 4 (1997) 137 MR1603755
9 S Chowdhury, F Mémoli, Explicit geodesics in Gromov–Hausdorff space, Electron. Res. Announc. Math. Sci. 25 (2018) 48 MR3824738
10 T H Colding, Large manifolds with positive Ricci curvature, Invent. Math. 124 (1996) 193 MR1369415
11 L E Dubins, G Schwarz, Equidiscontinuity of Borsuk–Ulam functions, Pacific J. Math. 95 (1981) 51 MR631658
12 D A Edwards, The structure of superspace, from: "Studies in topology" (editors N M Stavrakas, K R Allen), Academic (1975) 121 MR401069
13 G B Folland, Real analysis: modern techniques and their applications, John Wiley and Sons (1999) MR1681462
14 K Funano, Estimates of Gromov’s box distance, Proc. Amer. Math. Soc. 136 (2008) 2911 MR2399058
15 A Gray, Tubes, 221, Birkhäuser (2004) MR2024928
16 M Gromov, Metric structures for Riemannian and non-Riemannian spaces, 152, Birkhäuser (1999) MR1699320
17 Y Ji, A A Tuzhilin, Gromov–Hausdorff distance between interval and circle, Topology Appl. 307 (2022) 107938 MR4356690
18 N J Kalton, M I Ostrovskii, Distances between Banach spaces, Forum Math. 11 (1999) 17 MR1673915
19 M Katz, The filling radius of two-point homogeneous spaces, J. Differential Geom. 18 (1983) 505 MR723814
20 M G Katz, Torus cannot collapse to a segment, J. Geom. 111 (2020) 13 MR4069827
21 S Lim, F Mémoli, O B Okutan, Vietoris–Rips persistent homology, injective metric spaces, and the filling radius, preprint (2020) arXiv:2001.07588
22 S Lim, F Mémoli, Z Smith, GitHub repository
23 S Lim, F Mémoli, Z Smith, The Gromov–Hausdorff distance between spheres, preprint (2021) arXiv:2105.00611
24 J Matoušek, Using the Borsuk–Ulam theorem : lectures on topological methods in combinatorics and geometry, Springer (2003) MR1988723
25 F Mémoli, Gromov–Wasserstein distances and the metric approach to object matching, Found. Comput. Math. 11 (2011) 417 MR2811584
26 F Mémoli, Some properties of Gromov–Hausdorff distances, Discrete Comput. Geom. 48 (2012) 416 MR2946454
27 F Mémoli, G Sapiro, A theoretical and computational framework for isometry invariant recognition of point cloud data, Found. Comput. Math. 5 (2005) 313 MR2168679
28 H J Munkholm, A Borsuk–Ulam theorem for maps from a sphere to a compact topological manifold, Illinois J. Math. 13 (1969) 116 MR238324
29 G Peano, Sur une courbe, qui remplit toute une aire plane, Math. Ann. 36 (1890) 157 MR1510617
30 P Petersen, Riemannian geometry, 171, Springer (1998) MR1480173
31 L A Santaló, Convex regions on the n–dimensional spherical surface, Ann. of Math. 47 (1946) 448 MR17562