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Hyperbolic groups acting improperly

DANIEL GROVES

JASON FOX MANNING

We study hyperbolic groups acting on CAT.0/ cube complexes. The first main result
is a structural result about the Sageev construction, in which we relate quasiconvexity
of hyperplane stabilizers with quasiconvexity of cell stabilizers. The second main
result generalizes both Agol’s Theorem on cubulated hyperbolic groups and Wise’s
Quasiconvex Hierarchy Theorem.
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1 Introduction

In recent years, CAT.0/ cube complexes have played a central role in many spectacular
advances, most notably in Agol’s proof of the Virtual Haken and Virtual Fibering
Theorems in [1]. The main result of [1] is that a hyperbolic group which acts properly
and cocompactly on a CAT.0/ cube complex is virtually special. A key ingredient
in Agol’s proof was the work of Wise from [36], particularly Wise’s Quasiconvex
Hierarchy Theorem [36, Theorem 13.3]. One of the two main results of the current
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paper is Theorem D, which provides a simultaneous generalization of Agol’s Theorem
and Wise’s Theorem. So far this generalization has been applied by Duong [12] and
Einstein and Groves [13]. At the end of the introduction in Section 1.2, we explain
how Theorem D (together with Theorem A) simplifies the proof of the Virtual Haken
and Virtual Fibering Theorems for hyperbolic 3–manifolds, requiring only a single
immersed quasi-Fuchsian surface instead of a ubiquitous family.

Cube complexes in group theory arise via the construction of Sageev [32] which takes
as input a group G and a collection of codimension-one subgroups of G and produces
a CAT.0/ cube complex X , equipped with an isometric G–action on X with no global
fixed point. The other main result of the current paper is Theorem A, which establishes
some fundamental properties about the Sageev construction.

Sageev’s construction works in great generality. However, in order to get more informa-
tion from the G–action on X , it is useful to add geometric hypotheses. For example, if
G is a hyperbolic group and the codimension-one subgroups are quasiconvex, Sageev
proved that the associated cube complex isG–cocompact [33, Theorem 3.1]. Achieving
a proper action is harder (see Bergeron and Wise [5] and Hruska and Wise [24] for
conditions which ensure properness).

Even an improper action GÕX gives a description of G as the fundamental group of
a complex of groups in the sense of Bridson and Haefliger (see [8, III.C] or Section 2
below). In this description, the underlying space is the quotient GnX and the local
groups can be identified with cell stabilizers for the action.

Our first main result links the geometry of the hyperplane stabilizers with that of the
cell stabilizers.

Theorem A Let G be hyperbolic. The following conditions on a cocompact G–action
on a CAT (0) cube complex are equivalent :

(1) All hyperplane stabilizers are quasiconvex.

(2) All vertex stabilizers are quasiconvex.

(3) All cell stabilizers are quasiconvex.

Intersections of quasiconvex subgroups are quasiconvex, and cell stabilizers are inter-
sections of vertex stabilizers. Therefore, the equivalence of (2) and (3) is trivial. We
prove the equivalence of (1) and (2).

We remark that we actually prove the direction (1)D) (2) in the more general setting of
arbitrary finitely generated groups where we assume the relevant subgroups are strongly
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quasiconvex in the sense of Tran [35]. Note that in this more general setting, (2) and
(3) are still equivalent. See Section 3 for more details. In Section 3.6 we explain how
Theorem A implies the following result.

Corollary B Suppose that G is a hyperbolic group acting cocompactly on a CAT (0)
cube complex X with quasiconvex hyperplane stabilizers. Then

(1) X is ı–hyperbolic for some ı;

(2) there exists a k � 0 such that the fixed-point set of any infinite subgroup of G
intersects at most k distinct cells; and

(3) the action of G on X is acylindrical (in the sense of Bowditch [6, page 284]).

Anthony Genevois explained to us how conclusion (2) implies acylindricity for actions
on hyperbolic CAT.0/ cube complexes (see Section 3.6). The condition in (2) is not
implied by acylindricity since X is not assumed to be locally compact.

Without the conclusion of ı–hyperbolicity, a more general version of Corollary B holds
just as for Theorem A. See Remark 3.31 for more details.

In Sageev’s construction, the stabilizers in G of hyperplanes in the resulting cube com-
plex are commensurable with the chosen codimension-one subgroups of G. Therefore,
we have the following result.

Corollary C Let G be a hyperbolic group and let HD fH1; : : : ;Hkg be a collection
of quasiconvex codimension-one subgroups. Let X be a CAT (0) cube complex obtained
by applying the Sageev construction to H.

(1) The stabilizers of cells in X are quasiconvex in G. In particular , they are finitely
presented.

(2) X is ı–hyperbolic for some ı.

(3) There exists a k � 0 such that the fixed-point set of any infinite subgroup of G
intersects at most k distinct cells.

(4) The action of G on X is acylindrical.

As far as we are aware, even the corollary of item (1) that the cell stabilizers are finitely
generated in the above result is new. We remark that the fact that cell stabilizers are
finitely presented implies that the description of G as the fundamental group of the
complex of groups associated to GnX is a finite description.

Some of the most dramatic uses of CAT.0/ cube complexes have come from Haglund
and Wise’s theory of special cube complexes [20]. A cube complex is special if it

Geometry & Topology, Volume 27 (2023)
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admits a locally isometric immersion into the Salvetti complex of a right-angled Artin
group. A group G is virtually special if there is a finite-index subgroup G0 �G and
a CAT.0/ cube complex X such that G0 acts freely and cubically on X and G0nX
is a compact special cube complex. (For some authors the quotient is allowed to be
noncompact but have finitely many hyperplanes.)

As shown in [20], virtually special hyperbolic groups have many remarkable properties,
such as being residually finite, linear over Z and possessing very strong subgroup
separability properties.

Agol [1] proved that if a hyperbolic group G acts properly and cocompactly on a
CAT.0/ cube complex then G is virtually special. It is this result that implies the virtual
Haken conjecture, as well as the virtual fibering conjecture (in the compact case), and
many other results.

One of the key ingredients of the proof of Agol’s Theorem, and another of the most
important theorems in the area is Wise’s Quasiconvex Hierarchy Theorem [36, Theorem
13.3] — see also [3, Theorem 10.2] — which states that if a hyperbolic group G can
be expressed as A�C (resp. A�C B), where C is quasiconvex in G and A is (resp. A
and B are) virtually special then G is virtually special. This theorem can be rephrased
as saying that if a hyperbolic group acts cocompactly on a one-dimensional CAT.0/
cube complex (otherwise known as a “tree”) with virtually special and quasiconvex cell
stabilizers, then G is virtually special.

Our second main result is a common generalization of Agol’s Theorem and Wise’s
Quasiconvex Hierarchy Theorem.

Theorem D Suppose that G is a hyperbolic group acting cocompactly on a CAT (0)
cube complex X with quasiconvex and virtually special cell stabilizers. Then G is
virtually special.

By Corollary C, Theorem D has the following immediate consequence.

Corollary E Suppose that G is a hyperbolic group and that HD fH1; : : : ;Hkg is a
collection of quasiconvex codimension-one subgroups. If the vertex stabilizers of the
G–action on a cube complex obtained by applying the Sageev construction to H are
virtually special , then G is virtually special.

Since finding proper actions of hyperbolic groups on CAT.0/ cube complexes is much
harder than finding cocompact actions, Theorem D is expected to be a powerful new
tool for proving that hyperbolic groups are virtually special. As mentioned above,

Geometry & Topology, Volume 27 (2023)
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Theorem D was used in [12] to show that random groups in the square model at density
< 1
3

are virtually special. Theorem D (as well as Corollary 6.6 below) are also applied
in [13] to provide a characterization of relatively hyperbolic groups with 2–sphere
boundary in terms of actions on cube complexes.

Theorem A is one of the key ingredients of the proof of Theorem D. We now explain
how Theorem D is a consequence of the above-mentioned results of Agol and Wise,
along with Theorem A and the following result (proved in Section 6).

Theorem F Suppose that the hyperbolic group G acts cocompactly on a CAT (0) cube
complex X and that cell stabilizers are virtually special and quasiconvex. There exists
a quotient G DG=K such that

(1) the quotient KnX is a CAT (0) cube complex;

(2) the group G is hyperbolic; and

(3) the action of G on KnX is proper (and cocompact).

Proof of Theorem D Consider the hyperbolic group G, acting on a CAT.0/ cube
complex X as in the statement of Theorem D. By Theorem F there exists a hyperbolic
quotient G DG=K of G such that KnX is a CAT.0/ cube complex, and the G–action
on KnX is proper and cocompact. Let Z DKnX .

By Agol’s Theorem [1, Theorem 1.1], there is a finite-index subgroup G0 of G such
that G0nZ is special. Let G0 be the preimage in G of G0. Clearly, the underlying
space of G0nX is the same as that of G0nZ, and in particular all of the hyperplanes
are two-sided and embedded.

We cut successively along these hyperplanes, applying the complex of groups version
of the Seifert–Van Kampen Theorem [8, Example III.C.3.11(5) and Exercise III.C.3.12].
In this way, we obtain a hierarchy of G0 with the following properties:

(1) The edge groups are quasiconvex (since they are stabilizers of hyperplanes, which
are quasiconvex by Theorem A).

(2) The terminal groups are virtually special (since they are finite-index subgroups
of the vertex stabilizers in G).

Therefore,G0 admits a quasiconvex hierarchy terminating in virtually special groups, so
G0 is virtually special by Wise’s Quasiconvex Hierarchy Theorem [36, Theorem 13.3]
(see [3, Theorem 10.3] for a somewhat different account). Since G0 is finite index
in G, the group G is virtually special, as required.

Geometry & Topology, Volume 27 (2023)
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Remark 1.1 We thank one of the referees for pointing out that one can replace the use
of the complex of groups Seifert–Van Kampen Theorem in the previous proof with the
following argument: Once all of the hyperplanes inG0nX are two-sided and embedded,
lift to X and consider the trees dual to the hyperplanes. This gives a collection of
G0–trees. Order them in some way. If V stabilizes a vertex in the first tree, consider
the V –action on the second tree. The stabilizers in V for this second action act on the
third tree, and so on. In this way, a quasiconvex hierarchy for G0 is obtained, and the
proof finishes as above.

We now briefly outline the contents of this paper. In Section 2 we recall those parts of
the theory of complexes of groups from [8] which we need. In Section 3, we prove
Theorem A and Corollary B. The proof of Theorem A depends on a quasiconvexity
criterion (Theorem A.3) which is proved separately in the appendix. We separate
out Theorem A.3 and its proof both because it may be of independent interest and
because the methods, unlike in the rest of the paper, are pure ı–hyperbolic geometry. In
Section 4 we investigate conditions on a group G acting on a CAT.0/ cube complex X
and a normal subgroup K EG which imply that the quotient KnX is a CAT.0/ cube
complex. In Section 5 we translate these conditions into group-theoretic statements. In
Section 6 we prove various results about Dehn filling (in particular, Theorem 6.5 and
Corollary 6.6, which may be of independent interest) to see that the conditions from
Section 5 are satisfied for certain subgroups K which arise as kernels of long Dehn
filling maps. We use this to deduce Theorem F.

1.1 Notation and conventions

The notation A P<B indicates that A is a finite-index subgroup of B; similarly, A PCB
indicates A is a finite-index normal subgroup. We write conjugation as ax D xax�1, or
sometimes as Ad.x/.a/. For p an element of a G–set, we denote the G–orbit by ŒŒp��.

1.2 Virtual Haken and fibering with a single surface

Let M be a closed hyperbolic 3–manifold, and let � D �1.M/. Agol’s proof that
M is virtually Haken and virtually fibered in [1] proceeds via proving that � is
virtually special. This relies on Bergeron and Wise’s Theorem that � acts properly
and cocompactly on a CAT.0/ cube complex [5]. In turn, Bergeron and Wise rely on
work of Kahn and Markovic [26], which provides a “ubiquitous”1 family of immersed

1This terminology is from Cooper and Futer [10].
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quasi-Fuchsian surfaces in M . That there is such an abundance of surfaces follows
from the proofs in [26], but is not explicitly stated there.

Here we point out that the results in this paper show that the fact that � is virtually
special follows from the existence of a single immersed quasi-Fuchsian surface in M .
It is explained in [36] how virtual Haken and virtual fibering follow.

Theorem 1.2 Suppose that M is a closed hyperbolic 3–manifold and that M contains
an immersed quasi-Fuchsian surface. Then �1.M/ is virtually special.

Proof If M is nonorientable, we replace it by its orientation double cover. Let
� Š �1M be a lattice in IsomC.H3/, so that M Š �nH3. We note that in this setting
a subgroup W < � is geometrically finite as a Kleinian group if and only if it is
quasiconvex in �; see [27, Theorem 2] or [34, Theorem 1.1 and Proposition 1.3].

Let H < � be the subgroup corresponding to the immersed quasi-Fuchsian surface.
Since H is quasiconvex and codimension-one in � , we can apply the Sageev construc-
tion to obtain a cocompact action of � on a CAT.0/ cube complex X with no global
fixed point, and with hyperplane stabilizers conjugate to H . Theorem A implies that
the vertex stabilizers for this action are quasiconvex in � . To apply Theorem D, we will
show that the vertex stabilizers admit quasiconvex hierarchies and hence are virtually
special.

Let V <� be a vertex stabilizer. Since V is quasiconvex in � it is a geometrically finite
subgroup of IsomC.H3/. As V has infinite index in � , it acts with infinite covolume
on H3. An argument of Thurston shows that every finitely generated subgroup of V is
also geometrically finite [30, Proposition 7.1].

Since � contains no parabolics, neither does V . Thus a small closed neighborhood
N of the convex core of HnH3 is a compact 3–manifold with nonempty boundary,
and hence is irreducible in the sense that every embedded 2–sphere bounds a ball [29,
Propositions 2.36 and 3.1]. A compact irreducible 3–manifold with nonempty boundary
is Haken; see [22, Chapter 6; 25, Chapter III]. In particular it has a Haken hierarchy
[25, IV.12]. This topological hierarchy of N gives a group-theoretic hierarchy of V .
The edge groups in the hierarchy are finitely generated. The previously mentioned
argument of Thurston then implies that the edge groups are geometrically finite and
hence quasiconvex in � . In particular, this is a quasiconvex hierarchy, and we may
apply Wise’s Quasiconvex Hierarchy Theorem to conclude that V is virtually special.

Geometry & Topology, Volume 27 (2023)
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Since all vertex stabilizers of the action � ÕX are quasiconvex and virtually special,
we may apply Theorem D to conclude that � is itself virtually special.
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2 Complexes of groups

In this section we give a brief account of those parts of the theory of complexes of groups
which we need. Much more detail can be found in Bridson and Haefliger [8, III.C].

2.1 Paths and homotopies in a category

The definitions here are mainly taken from [8, III.C.A], though our notation is slightly
different.

Let C be a category. For an arrow a of C, we denote its source by i.a/ and its target
by t .a/. An oriented edge of C is a symbol aC or a�, where a is an arrow of C. The
source and target of an oriented edge are defined by

i.a�/D i.a/; t.a�/D t .a/ and i.aC/D t .a/; t.aC/D i.a/:

Geometry & Topology, Volume 27 (2023)
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(We caution readers that this may be the opposite of what they expect. The signs
are chosen so that concatenation of C edges is homotopic to composition of the
corresponding arrows; see Definition 2.1.)

We now define C–paths. A C–path p of length 0 is an object v of C with i.p/D t .p/Dv.
For j > 0, a C–path of length j is a list p D e1 � e2 � � � ej where for each i we have
t .ei /D i.eiC1/. We have i.p/D i.e1/ and t .p/D t .ej /.

If p is a C–path of length j , q is a C–path of length k, and t .p/ D i.q/, then the
concatenation p �q is a C–path of length jCk with i.p �q/D i.p/ and t .p �q/D t .q/.2

The category C is connected if for any two objects v0; v1 in C there is a C–path p with
i.p/D v0 and t .p/D v1.

If p is a C–path, then p is nonbacktracking if it contains no subpath of the form aC �a�

or a� � aC.

Definition 2.1 Homotopies of C–paths (see [8, III.C.A.11]) are generated by the
following elementary homotopies, valid whenever both sides are paths:

(1) p � aC � a� � q ' p � q or p � a� � aC � q ' p � q;

(2) p �aC �bC �q ' p � .ab/C �q or p �b� �a� �q ' p � .ab/� �q (here and below we
write ab for the composition a ı b); and

(3) p � 1˙v � q ' p � q (where 1v is an identity arrow).

Any category has a nerve which is a simplicial complex whose 0–cells are the objects
of C, with 1–cells corresponding to arrows, 2–cells to composable pairs of arrows, and
so on. The C–paths we have just defined give edge-paths and the elementary homotopies
correspond to simplicial homotopies in this complex.

2.2 Small categories without loops (scwols)

By a scwol (small category without loops) we mean a small category in which for
every object v, the set of arrows from v to itself contains only the unit 1v, and this
unit 1v cannot be written as a composition of other arrows. An arrow is trivial if it is
equal to 1v for some object v. We sometimes conflate v and 1v. A (nondegenerate)
morphism of scwols f WA! B is a functor which induces, for each object v of A, a
bijection between the arrows fa j i.a/D vg and the arrows fa j i.a/D f .v/g.

2For purposes of concatenation, a C–path of length 0 is regarded as an empty list.
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Definition 2.2 (simple scwol, scwolification) A scwol in which there is at most one
arrow with a given source and target will be called a simple scwol. Any small category C
has a canonical quotient category scwol.C/, which is a simple scwol. The objects of
scwol.C/ are equivalence classes of objects of C, where v�w if there are arrows a and b
such that i.a/D t .b/D v and i.b/D t .a/D w. Similarly, the arrows of scwol.C/ are
equivalence classes of arrows of C, where a� b whenever i.a/� i.b/ and t .a/� t .b/.
We may refer to scwol.C/ as the scwolification of C. The map C! scwol.C/ taking
each object and arrow to its equivalence class will be called the scwolification functor.

Remark 2.3 The procedure of scwolification is natural. In particular, a group action
on a small category C descends to an action on scwol.C/.

A key example of a scwol is the (opposite) poset of cells of a simplicial or cubical
complex, with arrows from each cell to all its faces. If two faces of some cell are glued
together one obtains a nonsimple scwol.

Definition 2.4 [8, III.C.1.3] A scwol A has a (geometric) realization which is a
simplicial complex whose 0–cells are the objects of A, with 1–cells corresponding to
nontrivial arrows, 2–cells to composable pairs of such arrows, and so on.

The realization of A is naturally a subcomplex of the nerve of A. Although the nerve
is necessarily infinite-dimensional, the realization of a scwol has dimension equal to
the length of the longest chain of nontrivial composable arrows. Every scwol which
appears in the current paper has finite-dimensional realization.

Definition 2.5 If A is the realization of a scwol A, then there is a canonical correspon-
dence between combinatorial paths in the 1–skeleton of A and A–paths without trivial
arrows. If p is a combinatorial path in A.1/, and q the corresponding A–path, we say
that p is the realization of q, and q is the idealization of p.

2.3 Complexes of groups

Definition 2.6 [8, III.C.2.1] Let A be a scwol. A complex of groups H.A/ consists
of

(1) for each object � of A, a local group (also called a cell group) H� ;

(2) for each arrow a of A, an injective group homomorphism  a WHi.a/!Ht.a/

(if a is a trivial arrow, we require  a to be the identity map);
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(3) for each pair of composable arrows a and b with composition ab, a twisting
element z.a; b/ 2Ht.a/ (if either a or b is trivial, z.a; b/D 1).3

These data satisfy the following conditions (continuing to write ab for a ı b) whenever
all written compositions of arrows are defined:

(1) Compatibility Ad.z.a; b// ab D  a b .4

(2) Cocycle  a.z.b; c//z.a; bc/D z.a; b/z.ab; c/.

The cocycle condition above applies to any arrangement of arrows of the form

�

� �

�

ab

b

c

bc a

Definition 2.7 (the complex of groups coming from an action) Suppose G acts on
a scwol X in such a way that any g 2G fixing an object fixes every arrow from that
object. Suppose further that Y D GnX is a scwol. We obtain a complex of groups
G.Y/ once we have [8, III.C.2.9]:

(1) For each object v of Y , a choice of a lift Qv to X ; this lift also determines lifts Qa
of all arrows a with i.a/D v.

(2) For each arrow a, a choice of ha 2G such that t .ha. Qa//Det .a/. (When a is a
trivial arrow, we always take ha D 1.)

Given these choices, one defines

(1) Gv as the stabilizer of Qv,

(2)  a D Ad.ha/jGi.a/ ,

(3) z.a; b/D hahbh
�1
ab

.

The complex of groups G.Y/ can be used to recover the group G. There are two
different ways of doing this. The first is explained in [8, III.C.3.7], and involves G.Y/–
paths. The second way is from [8, III.C.A], and is the way that we proceed. The
advantage to this second way, which uses categories and coverings of categories, is
that lifting paths to covers is a canonical procedure (as with usual covering theory).

3In [8] the notation ga;b is used instead of z.a; b/.
4Recall Ad.z/.x/D zxz�1.
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2.4 Fundamental groups and coverings of categories

In Definition 2.1 we defined homotopy of C–paths, where C is a category.

Definition 2.8 Given a category C and an object v0 of C, the fundamental group of
C based at v0, denoted by �1.C; v0/, is the set of homotopy classes of C–loops based
at v0, with operation induced by concatenation of C–paths.

Definition 2.9 [8, III.C.A.15] Let C be a connected category. A functor f W C0! C is
a covering if for each object � 0 of C0, the restriction of f to the collection of arrows
that have � 0 as their initial (resp. terminal) object is a bijection onto the set of arrows
which have f .� 0/ as their initial (resp. terminal) object.

The universal cover zC of a connected category C is described in [8, III.C.A.19]: Fix a
base vertex v0 of C, and define Obj.zC/ to be the set of homotopy classes of C–paths
starting at v0. If Œc� is a homotopy class of path, and ˛ is an arrow from t .c/, then there
is an arrow Q̨ of zC from Œc� to Œc �˛��. The projection � W zC! C sets �.Œp�/D t .p/ and
if Q̨ is the arrow described above then �. Q̨ /D ˛. The fundamental group �1.C; v0/
acts on zC by preconcatenation.

The theory of coverings of categories is entirely analogous to ordinary covering theory.
In fact it is a special case, as the coverings of a connected category C correspond
bijectively to the covering spaces of its nerve.

We record the following observation.

Lemma 2.10 Let � W zC! C be a covering of categories , and suppose �. Qv/ D v for
objects v of C and Qv of zC. Any C–path p with i.p/D v has a unique lift to a zC–path Qp
with i. Qp/D Qv. Moreover any elementary homotopy from p to a path p0 gives a unique
elementary homotopy of Qp to a lift Qp0 of p0 with the same endpoints as Qp.

2.5 The category associated to a complex of groups

Any complex of groups G.Y/ has an associated category CG.Y/.

Definition 2.11 [8, III.C.2.8] The objects of CG.Y/ are the objects of the scwol Y .
Arrows of CG.Y/ are pairs .g; a/ such that a is an arrow of Y and g 2Gt.a/. Compo-
sition is defined by .g; a/ ı .h; b/D .g a.h/z.a; b/; ab/.

Recall that if a is a trivial arrow then  a is the identity homomorphism and z.a; x/
and z.x; a/ are always trivial.
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Remark 2.12 The map CG.Y/! Y given by .g; a/! a is the scwolification functor
(see Definition 2.2), and is a bijection on objects. This functor has an obvious section
a 7! .1; a/. If there are nontrivial twisting elements, this is not a functor, but it does
allow Y–paths to be “unscwolified” to CG.Y/–paths. In Definition 2.22, we explain
how to go back and forth between paths in covers of CG.Y/ and their associated
scwols.

Theorem 2.13 [8, III.C.3.15 and text before III.C.A.13] Suppose that the group G
acts on the simply connected complex X , giving rise to an action of G on the scwol X
as in Definition 2.7, and that v0 is an object in Y DGnX . Let CG.Y/ be the category
associated to G.Y/. Then there is an isomorphism from �1.CG.Y/; v0/ to G taking
any loop of the form .g1; a1/

�1 � � � .gn; a1/
�1 to the product .g1ha1/

�1 � � � .gnha1/
�n .

The exponents �i in the statement are taken from the set fC;�g. We use the mild abuse
of notation that if g is a group element then gC D g and g� D g�1.

Definition 2.14 Let a be a nontrivial arrow of Y . The arrow .1; a/ of CG.Y/ is called
a scwol arrow. Let g 2 Gv where v is a vertex of the scwol Y . The arrow .g; 1v/ is
called a group arrow at v, or just a group arrow if v is unimportant.

In later sections we abuse notation and refer to the edge .g; 1v/C (for a group arrow
.g; 1v/) as “.g; v/” or even just “g”. We also blur the difference between the scwol
arrow .1; a/ and the Y–arrow a, and often refer to the scwol arrow by “a”. We also
blur the distinction between the CG.Y/–edge .1; a/˙ and the Y–edge a˙.

Definition 2.15 Let C! CG.Y/ be a covering of categories. We say that an arrow is
labeled by .g; a/ if its image in CG.Y/ is .g; a/. An arrow of C is said to be a scwol
(resp. group) arrow if its label is a scwol (resp. group) arrow of CG.Y/.

Lemma 2.16 If C ! CG.Y/ is any cover , then every C–path is homotopic to a
concatenation of group and scwol arrows.

Proof Observe that any CG.Y/–arrow .g; a/ is a composition of a group arrow and a
scwol arrow; .g; a/D .g; t.a// ı .1; a/. This gives a homotopy in CG.Y/ to a path of
the desired form. Lemma 2.10 says that the homotopy lifts.

As described at the end of the last subsection, a choice of base vertex v0 determines
a universal covering map BCG.Y/! CG.Y/ sending a homotopy class of path Œp� to
its terminal vertex t .p/, and the arrow from Œc� to Œc � .g; a/�� to the arrow .g; a/ of
CG.Y/.
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The group �1.CG.Y/; v0/ŠG acts on the universal cover BCG.Y/ by preconcatenation
of paths. The quotient by this action is CG.Y/. IfH <�1.CG.Y/; v0/ is any subgroup,
then HnBCG.Y/ is an intermediate cover of categories. Every connected cover of
CG.Y/ is of this form. Indeed, covers of CG.Y/ correspond to coverings of the
nerve N of CG.Y/. Since �1.CG.Y; v0// is canonically isomorphic to �1.N; v0/,
connected covers of CG.Y/ are all of the form HnBCG.Y/ for H < �1.CG.Y/; v0/.
The isomorphism �1.CG.Y/; v0/ŠG from Theorem 2.13 allows us to identify such
H as subgroups of G.

Proposition 2.17 Suppose that CG.Y/ arises from an action of G on a simply con-
nected scwol X via Definitions 2.7 and 2.11. Let � W �1.CG.Y/; v0/ ! G be the
isomorphism from Theorem 2.13. There is a �–equivariant functor ‚ WBCG.Y/! X
which factors through an isomorphism of categories y‚ W scwol.BCG.Y//! X .

Proof sketch Consider an arrow x labeled by .g; a/ from Œ�1� to Œ�2� in BCG.Y/. We
may suppose

�1 D .g1; a1/
�1 � � � .gn; an/

�n and �2 D .g1; a1/
�1 � � � .gn; an/

�n � .g; a/�:

We define

‚.x/D

nY
iD1

.gihai /
�i Qa

Examining the elementary homotopies, it is not hard to see that ‚.x/ is well defined.

The map � sends the homotopy class of the loop .h1; b1/ı1 � � � .hk; bk/ık to the group
element

.h1hb1/
ı1 � � � .hkhbk /

ık :

Since �1.CG.Y/; v0/ acts by preconcatenation of paths, ‚ is clearly �–equivariant.

To see that ‚ is a functor, suppose that xD yz in BCG.Y/, where x, y and z are labeled
by .g; a/, .h; b/ and .k; c/, respectively, and i.x/D i.z/D Œ.g1; a1/�1 � � � .gn; an/�n �.
Letting pD

Qn
iD1.gihai /

�i , we have ‚.x/Dp Qa, ‚.y/Dph�1c k�1 Qb and ‚.z/Dp Qc,
and it is easily checked that ‚.y/‚.z/D‚.x/.

Any two objects of BCG.Y/ identified under the scwolification map are separated by a
group arrow. If x is a group arrow then ‚.x/ is a trivial arrow, so ‚ factors through a
functor

y‚ W scwol.BCG.Y//! X :
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It remains to show that y‚ is an isomorphism of scwols. The fact that the homomorphism
from Theorem 2.13 is surjective for any v0 2 Y implies that y‚ is also surjective, so the
only difficult point is to see injectivity.

Assuming that ‚.Œ��/D‚.Œ��/, we consider the images O� and O� of the paths � and � ,
respectively. Since X is assumed to be simply connected, there is a sequence of
elementary homotopies in X taking O� to O� . It can be shown that these homotopies all
lift (nonuniquely) to homotopies in BCG.Y/, so we may assume that O� D O� . If O� D O� is
a degenerate path at Qv0, then it is clear that � and � are separated by a group arrow.
Otherwise, after a further homotopy in BCG.Y/, we can assume that

� D .g1; a1/
�1 � � � .gn; an/

�n ; � D .h1; a1/
�1 � � � .hn; an/

�n ;

where the signs of the �i alternate and each arrow ai is nontrivial. If k is the smallest
index for which gk ¤ hk and k < n, one can find a short sequence of elementary
homotopies taking � to another path � 0 which agrees with � for the first k edges. If
k D n, then there is a slightly shorter sequence of elementary homotopies taking � to
� � x for some group arrow x.

To sum up, if ‚.Œ��/D‚.Œ��/, then there is a group arrow from Œ�� to Œ� �. It follows
that the map y‚ W scwol.BCG.Y//! X is injective, and hence an isomorphism.

The map ‚ also passes to quotients by subgroups of G:

Corollary 2.18 Suppose that CG.Y/ arises from an action of G on a simply connected
scwol X via Definitions 2.7 and 2.11, and that Y D GnX is simple. If H < G, the
scwolification of HnBCG.Y/ is canonically isomorphic to HnX .

Proof For any small category C, acted on by a group H , there is a canonical surjective
functor Hn scwol C! scwol.HnC/. This is an isomorphism if and only if Hn scwol C
is already a simple scwol. Since Y DGnX is a simple scwol, the intermediate quotient
HnX is also a simple scwol.

The naturality of scwolification (Remark 2.3) and the equivariance of ‚ together mean
that the map y‚ from Proposition 2.17 is also equivariant, and so we get an isomorphism

y‚H WHn scwol.BCG.Y//!HnX :

Thus scwol.HnBCG.Y//DHn scwol.BCG.Y// is isomorphic to HnX .

Remark 2.19 Although Corollary 2.18 does not explicitly appear in Bridson and
Haefliger [8], it can be derived from results there, as we outline briefly in this remark.
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Suppose C0DHnBCG.Y/!CG.Y/ is a cover. According to [8, Proposition III.C.A.24]
there is an associated (category of a) complex of groups CG.Y 0/, which is a subcategory
of C0 such that the inclusion is an equivalence CG.Y 0/! C0. The construction of
CG.Y 0/ from C0 is as in [8, Proposition III.C.A.4], which uses the same equivalence
relation as the definition of the scwolification functor as in Definition 2.2. From the
construction of CG.Y 0/, and the assumption that Y is a simple scwol, it follows that Y 0

is isomorphic to scwol.C0/. Further, from the correspondence between coverings and
subgroups (both for categories and also for complexes of groups), and the identification
of G with �1.CG.Y// as in Theorem 2.13, it follows that Y 0 is isomorphic to HnX ,
as required.

Rather than fully develop this approach, we chose to sketch a more direct approach
using Proposition 2.17 and the naturality of the scwolification functor.

Definition 2.20 We denote the scwolification functor fromHnBCG.Y/ toHnX by‚H .
If H D f1g, we just write ‚, as in Proposition 2.17.

We observe the following.

Lemma 2.21 Suppose that CG.Y/ arises from an action of G on a simply connected
scwol X via Definitions 2.7 and 2.11, and that Y DGnX is simple.

Let o be an object of X . Then StabG.o/ acts freely and transitively on ‚�1.o/.

Definition 2.22 LetK <GŠ�1.CG.Y/; v0/, let CK DKnBCG.Y/ and let ZDKnX .
Since ‚K W CK ! scwol.CK/D Z is a functor, it gives a way to turn a CK–path p into
a Z–path p0. Deleting all the trivial arrows from p0 produces a Z–path, which we call
the scwolification of p. Abusing the notation slightly, we denote the scwolification
of p by ‚K.p/.

Conversely, if � is a Z–path, then any CK–path O� such that ‚K. O�/D � is called an
unscwolification of � . The unscwolification is highly nonunique, but always exists.

The following can be deduced by examining the elementary homotopies.

Lemma 2.23 Scwolifications of homotopic paths are homotopic.

Given a CG.Y/–path p we can lift it to a CK–path Op, and then scwolify Op to the Z–path
‚K. Op/.
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Lemma 2.24 Let p be a CG.Y/–loop at v and let Op be a lift to CK . If ‚K. Op/ is a
loop , then there is a group arrow labeled by an element of Gv joining the endpoints
of Op.

2.6 The complex of groups coming from an action on a cube complex

Let X be a CAT.0/ cube complex, and suppose that G acts on X by cubical auto-
morphisms. The quotient GnX may or may not be a cube complex, depending on
whether the groups G� D fg j g� D �g and fg j gx D x for all x 2 �g agree for all
cells � .

Another way to phrase this issue is to note that, if X0 is the scwol of cells of X ,
then G acts by morphisms on X0, but the quotient map X0 ! GnX0 may not be a
nondegenerate morphism of scwols, since some isometry of X may fix the center of
some cube, but permute faces of that cube. In order to obtain a complex of groups
structure on G from the action GÕX , we need a scwol quotient, so we replace X0
with X , the scwol of cells of the first barycentric subdivision of X :

Definition 2.25 If W is a cube complex, the idealization of W is the scwol of cells of
the first barycentric subdivision of W .

If every cube of the cube complex W embeds in W , there is another way of thinking of
the idealization W . Namely, the objects of W are in one-to-one correspondence with
nonempty nested chains of cubes of W and there is at most one arrow in W between
two objects: if c1 contains c2 as a subchain, there is an arrow from c1 to c2.

For example, if X is a single one-dimensional cube e with endpoints a and b, the
nontrivial arrows of the idealization X are

(1) .a/ .a � e/! .e/ .b � e/! .b/:

Already a square � with e as a face is much more complicated. The idealization is shown
on the left of Figure 1 as a graph, with detail shown on the right for the highlighted
portion.

Let X be a CAT.0/ cube complex, and let X be its idealization. Any cubical au-
tomorphism of X gives a nondegenerate automorphism of X . Moreover if such an
automorphism maps a chain of cubes to itself, then it also preserves all subchains. In
terms of the scwol structure this means that the stabilizer of an object also stabilizes
every arrow from that object. It follows that the quotient Y DGnX is a simple scwol,
and that the quotient map X ! Y is nondegenerate morphism of scwols. Similarly, if
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.a/ .a � e/ //oo .e/

.a � e � �/

��

hh OO

//

88

��

.e � �/

OO

��

.a � �/

aa

&&
.�/

Figure 1: Idealization of a square.

K <G is any subgroup, then KnX is a simple scwol and the maps X !KnX ! Y
are nondegenerate morphisms of scwols. In particular Corollary 2.18 applies to the
covers of CG.Y/.

Example 2.26 Let X be the regular 3–valent tree dual to the Farey tessellation, and let

G D PSL.2;Z/Š hx j x2i � hy j y3i

act on X in the standard way, with y rotating around a vertex v, and x rotating around
the center of an adjacent edge e. Then CG.Y/ has the following form, omitting identity
arrows and most arrow labels:

(2) .e/ .v � e/ .v/x

y

y2

The two-fold cover corresponding to the subgroup generated by fy; xyxg is of the
following form, omitting identity arrows and all labels:

(3)
ı ı ı

ı ı ı

The scwolification of this cover is isomorphic to the scwol shown in (1). In both (2)
and (3), the scwol arrows are exactly the horizontal ones.

This example is one-dimensional, so there are no nontrivial compositions of scwol
arrows. The reader is invited to explore a simple two-dimensional example, for example
the category of the complex of groups associated to a dihedral group acting on a square
with quotient scwol equal to the right-hand part of Figure 1.
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Remark 2.27 Suppose that C is the idealization of a cube complex C , so that the
realization of C is the second barycentric subdivision of C . In later sections, we make
use of the fact that the following types of paths have canonical idealizations in C:

(1) combinatorial paths in the 1–skeleton of the first cubical subdivision C b of C
(Section 3);

(2) combinatorial paths in links of cells of C (Section 4).

In both cases, this follows from the fact that subdivisions of these graphs embed
naturally in the 1–skeleton of the second barycentric subdivision.

3 Quasiconvexity in the Sageev construction

In this section, we prove Theorem A. Recall that we have a hyperbolic group G acting
cocompactly on a CAT.0/ cube complex X , and we are required to prove that the vertex
stabilizers are quasiconvex if and only if the hyperplane stabilizers are quasiconvex.

To prepare for this proof it may be useful to think about the case that X is a tree. In that
case, hyperplanes are midpoints of edges, and so the statement is that edge stabilizers
are quasiconvex if and only if vertex stabilizers are. Edge stabilizers are intersections of
vertex stabilizers, and intersections of quasiconvex subgroups are quasiconvex, so one
direction is clear. The other direction is not much harder: Consider a geodesic joining
two vertices of a vertex stabilizer. The vertex stabilizer is coarsely separated from the
rest of the Cayley graph by appropriate cosets of edge stabilizers. The quasiconvexity
of these cosets “traps” the geodesic close to the vertex stabilizer.

Now remove the assumption that X is a tree, and suppose that vertex stabilizers are
quasiconvex. It still follows that edge stabilizers are quasiconvex, but a hyperplane
stabilizer is much bigger than an edge stabilizer. We will express a hyperplane stabilizer
as a union of cosets of edge stabilizers, intersecting in a controlled way, and use
a quasiconvexity criterion proved in the appendix to conclude that the hyperplane
stabilizer is quasiconvex.

If on the other hand we assume that hyperplane stabilizers are quasiconvex, we will
use them as in the tree case to control geodesics joining points in a vertex stabilizer.
We inductively use more and more hyperplanes to corral points on a geodesic in an
argument which terminates because of the finite-dimensionality of the cube complex.
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Throughout this section we suppose that X is a CAT.0/ cube complex and that X
is its idealization (see Definition 2.25). We suppose further that G is a group acting
cocompactly on this cube complex. The quotient GnX is a scwol Y . Making choices
as in Definition 2.7, we obtain a complex of groups G.Y/, with associated category
CG.Y/. Choosing a vertex v0 2 Y , Theorem 2.13 gives an identification of G with
�1.CG.Y/; v0/. It is helpful to assume (as we may do without loss of generality) that
v0 is the orbit of some 0–cube of X .

In Section 2.4, we defined BCG.Y/ to be the universal covering of the category CG.Y/.
Recall that the objects of BCG.Y/ are homotopy classes of CG.Y/–paths, starting at
the basepoint v0 2 Y , and arrows are labeled by arrows of CG.Y/ (Definition 2.15).
The basepoint of BCG.Y/ is Qv0, the homotopy class of the constant path at v0. As in
Section 2.4 we denote the universal covering map by � WBCG.Y/! CG.Y/. Recall
from Proposition 2.17 and Definition 2.20 that ‚ WBCG.Y/! X is the scwolification
functor.

We briefly describe the contents of the remainder of this section. In Section 3.1 we
explain how we consider subsets of small categories as graphs. In Section 3.2 we
identify certain subsets of BCG.Y/ which are tuned to the cubical geometry of Xb and
associate graphs with these subsets. In Section 3.3 we prove the direction (1)D) (2) of
Theorem A. In fact, we prove the more general Theorem 3.19. In Section 3.4 we prove
the direction (2) D) (1) of Theorem A. In Section 3.5 we consider various possible
generalizations of Theorem A. Finally, in Section 3.6 we prove Corollary B.

3.1 Graphs from subsets of small categories

Let C be a (small) category, and let S be a subset of the set of arrows of C. There is an
associated graph (really a 1–complex), which we denote by Gr.S/, with vertex set the
set of objects which are either the source or target of some arrow in S , and with edges
in correspondence with the arrows S .

Example 3.1 Let S be the set of all arrows in C. Then Gr.C/ WDGr.S/ is the 1–skeleton
of the nerve of C.

Example 3.2 Suppose C is a group (ie C has a single object and each arrow of C is
invertible), and S0 � C is a generating set. Let S be the set of arrows in the universal
cover zC with label in S0. Then Gr.S/ is the Cayley graph of G with respect to S0.
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3.2 Cubical paths

The group �1.CG.Y/; v0/ acts on BCG.Y/, with quotient the category CG.Y/. As in
Theorem 2.13, we can identify G with �1.CG.Y/; v0/. The proof of each direction
of Theorem A begins with choosing a certain connected G–cocompact subgraph �
of Gr.BCG.Y// (see Lemma 3.9). The graph � admits a G–equivariant map to the
1–skeleton of the cubical subdivision of X , which we now recall.

Definition 3.3 Suppose that X is a cube complex. The (first) cubical subdivision of X ,
denoted by Xb , is the cube complex obtained by replacing each n–cube in X by 2n

n–cubes, found by subdividing each coordinate interval into two equal halves, and then
gluing in the obvious way induced from the structure of X .

Of course, Xb is canonically homothetic to X , and Xb is NPC (respectively, CAT.0/)
if and only if X is. We suppose that X is CAT.0/, and therefore Xb is also.

Observation 3.4 The vertices of Xb are in bijection with the cubes of X .

The cells of Xb are in bijection with pairs . Q�1; Q�2/ of cubes in X such that Q�1 � Q�2.
The dimension of the cube corresponding to . Q�1; Q�2/ is dim. Q�2/� dim. Q�1/.

Thus, a 1–cell in Xb corresponds to a pair of cubes . Q�1; Q�2/ where Q�1 is a codimension-
one face of Q�2. Moreover, each cell of Xb can be naturally identified with an object
of X .

As noted in Remark 2.27 any path in the 1–skeleton of Xb has a canonical idealization
in X . Each 1–cell e of Xb corresponds to some pair of cells . Q�1 � Q�2/ with Q�1 of
codimension one in Q�2. If the path p traverses the 1–cell e, its idealization Op contains
consecutive arrows labeled . Q�1 � Q�2/! Q�1 and . Q�1 � Q�2/! Q�2, and every arrow of Op
has such a label. By Lemma 2.16, every BCG.Y/–path is homotopic to a concatenation
of group arrows and scwol arrows. The graph that we use to prove Theorem A uses
only scwol arrows that occur in pairs corresponding to the above description. Thus we
make the following definition.

Definition 3.5 A pair of opposable scwol arrows in CG.Y/ is a pair of scwol arrows
.
#; 
"/ such that

(1) c D i.
#/ D i.
"/ is an orbit of chain . Q�1 � Q�2/, where Q�1 has codimension
one in Q�2;
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(2) 
#D .1; a/, where a is the arrow in Y corresponding to the G–orbit of the arrow
. Q�1 � Q�2/! Q�1 in X ; and

(3) 
"D .1; b/, where b is the arrow in Y corresponding to the G–orbit of the arrow
. Q�1 � Q�2/! Q�2 in X .

Suppose c D i.
#/D i.
"/ for a pair of opposable scwol arrows .
#; 
"/. If Qc is a
lift of c to BCG.Y/, there are unique lifts Q
# and Q
" with source Qc. The pair . Q
#; Q
"/
is a pair of opposable scwol arrows in BCG.Y/.

We remark that the image under‚ of a pair of opposable scwol arrows is quite restricted.
In the right-hand part of Figure 1, for example, the possible images are the horizontal
pair of arrows at the top of the diagram or the vertical pair at the right.

Definition 3.6 An object in CG.Y/ (equivalently, in Y , since the objects of these
two categories are the same) is cubical if it is an orbit of cubes in X (rather than an
orbit of chains of cubes of length greater than 1). An object in BCG.Y/ is cubical if its
projection to CG.Y/ is cubical.

A path p in CG.Y/ is cubical if

(1) the initial and terminal objects of p are cubical;

(2) p is a concatenation of group arrows and scwol arrows; and

(3) the scwol arrows occur in consecutive pairs, as pairs of opposable scwol arrows.

A path in BCG.Y/ is cubical if its projection to CG.Y/ is cubical.

It follows from the definition that all group arrows for a cubical path occur at cubical
objects.

Proposition 3.7 Suppose that v and w are cubical vertices of CG.Y/ and � is a
CG.Y)–path between v and w. Then � is homotopic to a cubical path.

In particular , every g 2G D �1.CG.Y/; v0/ is represented by a cubical CG.Y/–loop
starting and ending at v0.

Proof By path lifting, it suffices to prove the analogous statement for BCG.Y/–paths.
We already observed in the proof of Proposition 2.17 that homotopies in X can be
lifted to homotopies of BCG.Y/–paths, thus a given path can be homotoped to a path
whose image under ‚ stays in the idealization of .Xb/.1/. Lemma 2.16 turns this
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into a concatenation of group arrows and scwol arrows (without changing its image
under‚). Any subpath .1; a/C �.g; 1i.a//˙ is homotopic to . .a/.g/; 1t.a//˙ �.1; a/C.
In particular, after a homotopy, we may assume our path contains no such subpath, and
whenever a scwol arrow occurs it occurs in a pair of opposable scwol arrows.

Definition 3.8 Suppose that for each cubical object o of Y we choose a set Ao �Go.
These determine a subset S.A/ of the arrows of BCG.Y/ which is the union of

(1) the set of (group) arrows with label .g; 1o/ for some o and some g 2Ao, and

(2) the set of scwol arrows occurring in some pair of opposable scwol arrows.

As discussed in Section 3.1, there is an associated graph Gr.S.A// which we denote
by �.A/. A vertex of this graph is called cubical if it comes from a cubical object, and
otherwise it is called central.

Note that any central vertex of �.A/ only meets opposable scwol arrows and thus has
valence exactly two, and each of its neighbors is a cubical vertex of �.A/. The valence
of a cubical vertex coming from the object o is equal to the number of opposable scwol
arrows with terminus o plus twice the cardinality of Ao. Since Y is finite, the graph
�.A/ is locally finite if and only if every Ao is finite.

Lemma 3.9 Suppose that G D �1.CG.Y/; v0/ is finitely generated. Then we can
choose A so that �.A/ is locally finite , connected , and G–cocompact.

Proof Let S be a finite generating set for G. For each s 2 S choose a cubical loop
p.s/ in CG.Y/ based at v0 representing s. For a cubical object o of Y , let Ao consist
of those group arrows at o which occur in some p.s/. There are only finitely many
such, so the graph �.A/ defined in Definition 3.8 is locally finite.

To see that �.A/ is connected, let w be any vertex of �.A/. There is a path composed
of opposable scwol arrows joining w to a vertex v in the G–orbit of Qv0. Since S
generates G, there is a concatenation of the cubical loops p.s/ which lifts to a path in
�.A/ joining Qv0 to v.

The set of G–orbits of cubical vertices of �.A/ injects into the set of objects of Y , so
it is finite and �.A/ is G–cocompact.

Convention 3.10 For the rest of this section, we fix � D �.A/ as in the conclusion of
Lemma 3.9.
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The functor ‚ WBCG.Y/! X induces a map

‰ W �! .Xb/.1/:

This map is simplicial after barycentrically subdividing the target. Each pair of edges
of � coming from a pair of opposable scwol arrows maps to a single 1–cell of .Xb/.1/.
Any central vertex of � maps under ‰ to an intersection of an edge of Xb with a
hyperplane of Xb .

Note that the map ‰ is continuous, G–equivariant and Lipschitz.

Definition 3.11 (cubical neighborhood) Let v be a vertex of X . The cubical neigh-
borhood of v is the union of those cubes of Xb which contain v. It will be denoted
below by N.v/.

Proposition 3.12 Let v be a vertex of X . Then ‰�1.N.v// is finite Hausdorff
distance from ‰�1.v/ in � .

Proof Since G acts cocompactly on X , there are finitely many Stab.v/–orbits of pairs
of cubes .� � �/, so � contains v and is a codimension-one face of � .

Let .� � �/ be one such pair of cubes. By Lemma 2.21, Stab.�/ acts freely and
transitively on ‚�1..�//. The subgroup Stab.�/\Stab.�/D Stab..� � �// preserves
the collection of pairs of opposable scwol arrows joining ‚�1..�// to ‚�1..�//.
Moreover, Stab..� � �// is finite index in Stab.�/. It follows that there is some
c.�; �/ > 0 such that every vertex of ‰�1..�// is distance at most c.�; �/ from a vertex
of ‰�1..�//. As there are only finitely many Stab.v/–orbits of pairs .� � �/ of such
faces, there is some c > 0 which works for every such pair.

If x 2‰�1.N.v// is a cubical vertex, it is therefore distance at most c �dim.X/ from a
vertex of‰�1.v/. If x2‰�1.N.v// is central, then it is distance 1 from a cubical vertex
of ‰�1.N.v//. We have shown that ‰�1.N.v// is contained in the .c � dim.X/C1/–
neighborhood of ‰�1.v/. Since ‰�1.v/�‰�1.N.v//, we are finished.

Part of our reason for working in Xb is that Proposition 3.12 would fail if we defined
N.v/ to be the union of those cubes of X meeting v.

In the following statements we use the convention that the empty intersection of
hyperplanes of X is Xb and the empty intersection of subgroups is G.

Lemma 3.13 Suppose that W1; : : : ; Wk are hyperplanes in X and that I D
Tk
iD1Wi

is nonempty. For any cell � intersecting I, the subgroup Stab.I /\ Stab.�/ is finite
index in Stab.�/.
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Proof Finitely many hyperplanes intersect � and these are permuted by any element
of Stab.�/. Thus, a finite-index subgroup of Stab.�/ fixes all the hyperplanes in I .

We observe the following consequence of the cocompactness of GÕX .

Lemma 3.14 There are finitely many G–orbits of finite sets

fW1; : : : ; Wkg

of distinct hyperplanes of X with nonempty intersection
Tk
iD1Wi . For each such set ,

the intersection
Tk
iD1 Stab.Wi / is finite index in Stab

�Tk
iD1Wi

�
.

Definition 3.15 Let D > 0. An action of a group on a metric space is D–cobounded
if there is a set of diameter D which meets every orbit.

Proposition 3.16 There is a constant D > 0 such that for any nonempty intersection I
of hyperplanes of X , the subgroup Stab.I / acts D–coboundedly on ‰�1.I /.

Proof Since there are finitely many orbits of nonempty intersections of hyperplanes,
it suffices to consider a single such intersection.

Since the action of G on X is cocompact, so is the action of Stab.I / on I . In particular,
there are finitely many Stab.I / orbits of cubical or central vertices in the idealization
of I . Let o be the object of X corresponding to one of these vertices. By Lemma 2.21,
StabG.o/ acts transitively on ‚�1.o/. By Lemma 3.13, there is a finite-index subgroup
of StabG.o/ in Stab.I /. Thus we see that‰�1.I / contains finitely many Stab.I /–orbits
of vertices.

3.3 If hyperplane stabilizers are QC then cell stabilizers are QC

In this section we prove the direction (1) D) (2) of Theorem A. As mentioned in the
introduction, we prove this in greater generality than that of a hyperbolic group acting
cocompactly on a CAT.0/ cube complex with quasiconvex hyperplane stabilizers. The
right general setting for this proof is that of strongly quasiconvex subgroups of finitely
generated groups, as defined by Tran in [35]. (Such subgroups were also studied by
Genevois [14] under the name Morse subgroups.)

Definition 3.17 [35, Definition 1.1] Let X be a geodesic metric space. A subset Q�
X is strongly quasiconvex if for every K � 1 and C � 0 there is some M DM.K;C/
such that every .K;C /–quasigeodesic in X with endpoints in Q is contained in the
M–neighborhood of Q. The function M.K;C/ is called a Morse gauge.
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Strong quasiconvexity persists under quasi-isometries of pairs. This is presumably
known to the experts, and is closely related to [35, Proposition 4.2], but we do not see
it in the literature so we provide a proof sketch.

Theorem 3.18 Suppose X and Y are geodesic metric spaces , that A�X is strongly
quasiconvex , that � W X ! Y is a quasi-isometry and that B � Y is finite Hausdorff
distance from �.A/. Then B is a strongly quasiconvex subset of Y .

Proof sketch This is proved essentially in the same way as the corresponding fact
about quasiconvex subsets of hyperbolic spaces. The difference is that instead of a
single constant of quasiconvexity, we must produce a Morse gauge.

Suppose that � WX! Y and  W Y !X are .�; �/–quasi-isometries which are �–quasi-
inverses, and that dHaus.B; �.A//� �.

Any quasigeodesic 
 joining points in B can be extended by a pair of geodesic segments
of length � � to make a quasigeodesic 
 0 joining points in �.A/. The image of 
 0 under
 can likewise be extended to a quasigeodesic 
 00 between points of A. If 
 was a
.K;C /–quasigeodesic, then 
 00 is a .K 0; C 0/–quasigeodesic where K 0 and C 0 depend
only on K, C , � and �. If M is the Morse gauge for A in X , then let M1DM.K

0; C 0/.
For any point p on 
 , the point  .p/ is on 
 00 so it is within M1 of some point in A.
Using � to move back to X , we see that p is within �M1C3� of some point of B . We
can thus define a Morse gauge M 0 for B in Y by M 0.K;C /D �M.K 0; C 0/C 3�.

In particular, the notion of strong quasiconvexity makes sense for subgroups of finitely
generated groups.

In this subsection, we prove the following theorem.

Theorem 3.19 Suppose that a finitely generated group G acts cocompactly on a
CAT (0) cube complex X and that the hyperplane stabilizers are strongly quasiconvex.
Then the cell stabilizers are strongly quasiconvex.

Since quasiconvexity is equivalent to strong quasiconvexity for subgroups of hyperbolic
groups, Theorem 3.19 immediately implies the direction (1) D) (2) of Theorem A.

Note that each cell stabilizer is a finite intersection of vertex stabilizers. Tran shows
that a finite intersection of strongly quasiconvex subgroups is strongly quasiconvex
[35, Theorem 1.2(2)], so we only need to show that vertex stabilizers are strongly
quasiconvex whenever hyperplane stabilizers are.
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We will use the following general statement about intersections of strongly quasiconvex
sets, analogous to [8, III.� .4.13].

Proposition 3.20 For any Morse gauge M and any D and N , there is a function
R W Œ0;1/! Œ0;1/ such that the following holds: Let X be a graph of valence at
most N with a free G–action , let A;B < G be subgroups acting D–coboundedly on
M–strongly quasiconvex subgraphs YA and YB , respectively. If YC D YA \ YB is
nonempty, then , for any p 2X ,

d.p; YA\YB/�R
�
maxfd.p; YA/; d.p; YB/g

�
:

Proof Let r > 0. We must describe R.r/.

Note that a concatenation of a geodesic of length r with a geodesic of any length is a
.1; 2r/–quasigeodesic. Let M0 DM.1; 2r/. Let R.r/ be a bound for the number of
pointed oriented simplicial paths in X of length � 2.M0CD/, up to the G–action. (A
bound can be chosen depending only on N , M , D and r .)

Let p 2X be chosen such that maxfd.p; YA/; d.p; YB/g � r . Let q be a closest point
in YC to p. Suppose d.p; q/ >R.r/, and let 
 be a geodesic from p to q. Every vertex
on 
 lies within M0 of both YA and YB . It follows from D–coboundedness that every
vertex v on 
 lies within M0CD of some aq and some bq for a 2 A and b 2 B . By
our choice of R.r/, there must be a pair of distinct vertices v1 and v2 on 
 and paths �i
joining vi to aiq, and �i joining vi to biq of length at most M0CD, and an element
h 2G such that hv1 D v2, h�1 D �2 and h�1 D �2. We may assume that v1 is closer
to q than v2 is.

Note that we have hAq\Aq¤∅. Since the action of G on X is free, this implies that
h 2 A. By the same argument h 2 B , so h 2 C , and thus hq 2 YC . But hq is closer to
p than q is, contradicting our choice of q.

Remark 3.21 It is straightforward to see, using the above proof, that the set YC is
.RıM/–strongly quasiconvex, and also that C acts coboundedly on YC (with constants
depending only on D, M and R).

Towards proving Theorem 3.19, suppose that G is a finitely generated group acting
cocompactly on a CAT.0/ cube complex X , and suppose that hyperplane stabilizers are
strongly quasiconvex in G. Recall the graph � from Lemma 3.9, and the continuous,
G–equivariant, Lipschitz map ‰ W �! .Xb/.1/.
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Lemma 3.22 Suppose that W1; : : : ; Wk are hyperplanes in X and that I D
Tk
iD1Wi

is nonempty. Then Stab.I / is strongly quasiconvex in G.

Proof By Lemma 3.14, the stabilizer of I is a finite-index supergroup of the intersec-
tion

Tk
iD1 Stab.Wi /. The intersection of strongly quasiconvex subgroups is strongly

quasiconvex by [35, Theorem 1.2(2)].

Proposition 3.23 There exists a Morse gauge M such that for any collection of
hyperplanes inX with nonempty intersection I , the set ‰�1.I / is strongly quasiconvex
in � with Morse gauge M .

Proof The G–action on X is cocompact, so there are finitely many G–orbits of sets
fW1; : : : ; Wkg of hyperplanes ofX such that

Tk
iD1Wi ¤∅. If I is such a set and g2G

then ‰�1.g � I /D g �‰�1.I /. Therefore, it suffices to consider a (finite) collection of
representatives of G–orbits of intersections and prove that each is individually strongly
quasiconvex, and then take a maximum over the finitely many Morse gauges for these
subsets.

By Proposition 3.16, Stab.I / acts cocompactly on ‰�1.I / and, by Lemma 3.22,
Stab.I / is strongly quasiconvex in G. Therefore, by considering an orbit map G! �

and applying Theorem 3.18, we see that each ‰�1.I / is a strongly quasiconvex subset
of � .

We now give the main part of the argument of the proof of Theorem 3.19, namely that
if hyperplane stabilizers are strongly quasiconvex, vertex stabilizers are also strongly
quasiconvex. We therefore fix a vertex v of X .

Note that ‰�1.v/ is a nonempty and Stab.v/–invariant set of vertices of � consisting
of finitely many Stab.v/–orbits. Thus in order to show Stab.v/ is strongly quasiconvex
in G, it suffices (by Theorem 3.18) to show that the preimage ‰�1.v/ is a strongly
quasiconvex subset of � .

We fix constants K � 1 and C � 0, suppose that a and b are vertices in ‰�1.v/
and let 
 be a .K;C /–quasigeodesic in � between a and b. Let y be an arbitrary
vertex on 
 . We have to show d.y;‰�1.v// is bounded independent of a and b. By
Proposition 3.12, ‰�1.v/ is finite Hausdorff distance from ‰�1.N.v// (recall N.v/ is
the cubical neighborhood of v), so it is enough to show d

�
y;‰�1.N.v//

�
is bounded

independent of a and b.
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Here is a description of our bound: Let N be a bound for the valence of � and D the
bound from Proposition 3.16. Let R0 DM.K;C/. Assuming Ri has been defined, we
let RiC1 be the maximum of Ri and the number R.Ri /, where R is the function from
the conclusion of Proposition 3.20, with the Morse gauge M and the above D and N .
We will prove that d.y;‰�1.v//�RdimX .

We build a sequence of points y D z0; z1; : : : ; zt in � and hyperplanes W1; : : : ; Wt in
X for some t � dimX such that for each i ,

(�i ) d.y; zi /�Ri ; ‰.zi / 2

i\
sD1

Ws; and
i\
sD1

Ws \N.v/¤∅:

Notice that .�0/ holds, since d.y; z0/D 0�R0 and the empty intersection of hyper-
planes is Xb .

Proposition 3.24 Suppose i � 0 and that z0; : : : ; zi andW1; : : : ; Wi have been defined
and satisfy .�i /. Then either ‰.zi / 2N.v/ or there is some ziC1 and WiC1 such that
ziC1 and W1; : : : ; WiC1 satisfy .�iC1/.

Proof Suppose that ‰.zi / …N.v/. We are given hyperplanes W1; : : : ; Wi such that
I D

Ti
sD1Ws is nonempty and I \N.v/ ¤ ∅. Notice that I is a combinatorially

convex subcomplex of Xb . Choose a geodesic p in the 1–skeleton of I from I \N.v/

to ‰.zi /. The first edge of p joins a vertex u1 in I \N.v/ to a vertex u2 which is not
in I \N.v/. Thus, the vertex u1 corresponds to a cube � of X which contains v, and
u2 corresponds to a cube � which is a codimension one face of � such that � does not
contain v. Let WiC1 be the hyperplane of X meeting � in a mid-cube parallel to � .
Since u1 2 I \N.v/ we see that I \WiC1\N.v/¤∅, since it contains the vertex u1
of Xb . Also, because p is a geodesic in .Xb/.1/, WiC1 separates N.v/ from ‰�.zi /.
It is clear that

iC1\
sD1

Ws \N.v/DWiC1\ I \N.v/¤∅;

so it remains to find ziC1 satisfying the first two conditions of .�iC1/.

Claim d.y;‰�1.WiC1//�Ri .

Proof If ‰.y/ 2 WiC1 then d.y;‰�1.WiC1// D 0, so we suppose ‰.y/ … WiC1.
There are two cases.
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Suppose first WiC1 separates v from ‰.y/. In this case, we know that 
 must cross
‰�1.WiC1/ between a and y. However, ‰�.
/ is a loop, so 
 must also cross
‰�1.WiC1/ in the segment of 
 between y and b. Thus, there is a (quasigeodesic)
subsegment 
1 of 
 which contains y and which starts and finishes on ‰�1.WiC1/.
Since M is a Morse gauge for ‰�1.WiC1/, and M.K;C/�Ri , the claim follows in
this case.

Now suppose WiC1 does not separate v from ‰.y/. In this case, since WiC1 does
separate v from ‰.zi / we know that WiC1 must separate ‰.y/ from ‰.zi /. (In
particular i > 0 in this case.) Since d.y; zi / � Ri , and any path from y to zi must
intersect ‰�1.WiC1/, we must have d.y;‰�1.WiC1//�Ri , as required.

Let I D
Ti
sD1Ws . It follows immediately from the first two conditions of .�i / that

d.y;‰�1.I //�Ri . Moreover, by the claim, d.y;‰�1� .WiC1//�Ri . Furthermore,

‰�1.I \WiC1/D‰
�1.I /\‰�1.WiC1/:

By Proposition 3.16 each of the sets ‰�1.I /, ‰�1.WiC1/ and ‰�1.I \WiC1/ is
D–cobounded under the action of its stabilizer. Proposition 3.20 thus gives

d.y;‰�1.I \WiC1//�R.Ri /�RiC1:

We choose ziC1 to be any point of ‰�1.I \WiC1/ which is closest to y. The point
ziC1 satisfies the first two conditions of .�iC1/ so the proof is complete.

For j > dimX , there cannot exist a point zj satisfying .�j /, since there are no j –tuples
of hyperplanes with nonempty intersection. Therefore, Proposition 3.24 asserts that
for some i � dimX , ‰.zi /D v. We conclude that d.y;‰�1.v// � Ri � RdimX , as
desired.

This completes the proof of Theorem 3.19.

3.4 If cell stabilizers are QC then hyperplane stabilizers are QC

In this section we prove the direction (2) D) (1) of Theorem A. Therefore, suppose
that G is a hyperbolic group acting cocompactly on a CAT.0/ cube complex X , and
suppose that the vertex stabilizers are quasiconvex in G.

Let W be a hyperplane in X . Then as we have noted W is a subcomplex of Xb . Given
w in W \ .Xb/.0/, let Y.w/ be the (closed) 1–neighborhood in ‰�1.W / of ‰�1.w/.
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Lemma 3.25 The sets Y.w/ are quasiconvex subsets of � with constants which do
not depend on w.

Proof Since Stab.W / acts cocompactly onW , there are finitely many Stab.W /–orbits
of sets Y.w/, so the uniformity of constants will follow immediately if we can prove
each Y.w/ is a quasiconvex subset of � . We therefore fix such a w.

The stabilizer Stab.w/ is equal to the stabilizer of some cube � of X . Thus Stab.w/ is
virtually the intersection of the stabilizers of the vertices of � . The vertex stabilizers
are assumed to be quasiconvex, so Stab.w/ is also quasiconvex.

Since G acts freely and cocompactly on � and ‰ is equivariant, Stab.w/ acts freely
and cocompactly on ‰�1.w/. By Lemma 3.13, Stab.W /\ Stab.w/ is a finite-index
subgroup of Stab.w/, so it is also quasiconvex and acts freely and cocompactly on
‰�1.w/. It moreover acts cocompactly on Y.w/.

The result follows (for example, by Theorem 3.18).

We are ready to prove the direction (2) D) (1) of Theorem A, which is the content of
the following theorem. For this result, we assume Theorem A.3, which is proved in the
appendix.

Theorem 3.26 Suppose that the hyperbolic group G acts cocompactly on the cube
complex X , and that for every vertex v of X , the stabilizer Stab.v/ is quasiconvex.
Then , for every hyperplane W �X , the stabilizer Stab.W / is a quasiconvex subgroup
of G.

Proof As we have already remarked, quasiconvexity of vertex stabilizers implies
quasiconvexity of all cell stabilizers.

Let � , ‰�1.W / and the Y.w/ be as discussed above. Since G acts freely and cocom-
pactly on � , we know that � is ı–hyperbolic for some ı. Let � be a constant such that
Y.w/ is �–quasiconvex for every w (Lemma 3.25).

Since Stab.W / acts freely and cocompactly on ‰�1.W /, in order to prove the theorem
it suffices to prove that ‰�1.W / is quasiconvex in � , so let p; q 2‰�1.W /.

Consider a geodesic 
 in .Xb/.1/ between ‰.p/ and ‰.q/. Both ‰.p/ and ‰.q/ lie
inW . SinceW is combinatorially convex in Xb , the geodesic 
 is entirely contained in
the 1–skeleton ofW (considered as a subcomplex ofXb). The verticesw1; : : : ; wn on 
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correspond to cells of X contained in W . The sets Y.wi / corresponding to these cells
satisfy the hypotheses of Theorem A.3 with mD 2, c D 1, and � the quasiconvexity
constant chosen above. Theorem A.3 then implies that Y.w1/[ � � � [ Y.wn/ is �0–
quasiconvex, for a constant �0 depending only on � and ı.

In particular, a �–geodesic between p and q lies within �0 of Y.w1/[ � � � [ Y.wn/.
Since each of these Y.wi / is contained in ‰�1.W /, the �–geodesic between p and q
stays uniformly close to ‰�1.W /, as required.

Together with Theorem 3.19, this completes the proof of Theorem A.

3.5 On generalizations of Theorem A

For a subgroupH of a hyperbolic groupG, the following three conditions are equivalent:

(a) H is strongly quasiconvex in G.

(b) H is quasiconvex in G.

(c) H is undistorted in G.

Dropping the condition that G is hyperbolic, condition (b) ceases to be a useful notion,
but conditions (a) and (c) still make sense.

One can ask for versions of Theorem A where the hypothesis of hyperbolicity is
removed and condition (b) is replaced by either condition (a) or (c).

3.5.1 Strong quasiconvexity Replacing quasiconvexity with strong quasiconvexity
we can ask about the following conditions for a finitely generated group G acting
cocompactly on a CAT.0/ cube complex:

(1S) Hyperplane stabilizers are strongly quasiconvex.

(2S) Vertex stabilizers are strongly quasiconvex.

(3S) All cell stabilizers are strongly quasiconvex.

As remarked earlier, (2S)() (3S) follows from [35, Theorem 1.2(2)]. Theorem 3.19
states that (1S) D) (2S).

The remaining implication (3S) D) (1S) is false, as shown for example by Z2 acting
freely on a cubulated R2.
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3.5.2 Undistortedness The situation when replacing quasiconvexity with quasi-
isometric embeddedness is murkier. We consider the following conditions, for a finitely
generated group G acting cocompactly on a CAT.0/ cube complex X :

(1U) Hyperplane stabilizers are undistorted.

(2U) Vertex stabilizers are undistorted.

(3U) All cell stabilizers are undistorted.

If X is a tree, (1U) and (3U) each imply (2U), but not conversely. For example, the
double of a finitely generated group over a distorted group acts on a tree with undistorted
vertex stabilizers but distorted edge/hyperplane stabilizers.

We do not know the relationship between (1U) and (3U) in general, so we ask the
question.

Question 3.27 For finitely generated groups acting cocompactly on CAT (0) cube
complexes does (1U)D) (3U)? Does (3U)D) (1U)?

3.6 Height of families and the proof of Corollary B

The height of a subgroup was introduced in [16]. We need a generalization of this
notion to families of subgroups.

Definition 3.28 (height of a family) Suppose that G is a group and H is a collection
of subgroups. The height of H is the minimum number n such that for every tuple of
distinct cosets .g0H0; g1H1; : : : ; gnHn/ with Hi 2H (and gi 2G), the intersectionTn
iD0H

gi
i is finite. If there is no such n then we say the height of H is infinite.

When HD fH g is a single subgroup, we recover the familiar notion of the height of a
subgroup from [16].

The following result for a single subgroup is part of [16, Main Theorem]. The proof of
that result from [1, Corollary A.40] can be adapted in the obvious way to prove the
result for finite families. This result was proved in the more general setting of strongly
quasiconvex subgroups by Tran [35, Theorem 1.2(3)].

Proposition 3.29 Let G be a hyperbolic group and H a finite collection of quasiconvex
subgroups of G. Then the height of H is finite.
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We also use a special case of a theorem of Charney and Crisp [9, Theorem 5.1]:

Theorem 3.30 Suppose that G acts cocompactly on a cube complex X . Then X is
quasi-isometric to the space obtained from the Cayley graph of G by coning cosets of
stabilizers of vertices to points.

We now prove Corollary B. For convenience, we recall the statement.

Corollary B Suppose that G is a hyperbolic group acting cocompactly on a CAT (0)
cube complex X with quasiconvex hyperplane stabilizers. Then

(1) X is ı–hyperbolic for some ı;

(2) there exists a k � 0 such that the fixed-point set of any infinite subgroup of G
intersects at most k distinct cells; and

(3) the action of G on X is acylindrical (in the sense of Bowditch [6, page 284]).

Proof If G is a hyperbolic group acting cocompactly on a CAT.0/ cube complex, and
if the stabilizers in G of vertices in X are quasiconvex, then [7, Theorem 7.11], due
to Bowditch, implies that this coned graph is ı–hyperbolic for some ı. Theorem 3.30
then implies that the cube complex X is ı–hyperbolic for some (possibly different) ı.
Thus, we have the first statement from Corollary B.

Now we prove the statement about fixed-point sets of infinite subgroups. Let I be a
collection of orbit representatives of cells in X . For i 2 I , let Qi D fg 2G j gi D ig,
and let QD fQigi2I . Then Q is a finite collection of quasiconvex subgroups of G, so
it has some finite height k by Proposition 3.29. If H < G is infinite with nonempty
fixed-point set and � is a cell meeting the fixed-point set of H , then H <Q

g
i , where

� D gi . Since the height of Q is k, at most k such cells appear.

In [15], Genevois studies actions of groups on hyperbolic CAT.0/ cube complexes and
shows in Theorem 8.33 that, in this setting, acylindricity is equivalent to the condition:

(G) 9L;R 8x; y 2X .0/ d.x; y/� L D) #.Stab.x/\Stab.y//�R:

We takeR to be the maximum size of a finite subgroup andLDk. Suppose d.x; y/�L.
Then the union of the combinatorial geodesics joining x to y contains finitely many
(but at least k C 1) vertices. There is a finite-index subgroup of Stab.x/\ Stab.y/
which fixes all of these vertices. This finite-index subgroup fixes more than k cells, so
it is finite. This implies Stab.x/\Stab.y/ is finite, as desired.
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Remark 3.31 In the context where G is a finitely generated group acting cocompactly
on a cube complex X with strongly quasiconvex hyperplane stabilizers, the same proof
of conclusion (2) works as written, replacing the reference to Proposition 3.29 with a
reference to [35, Theorem 1.2(3)].

4 Conditions for quotients to be CAT.0/

As noted in the introduction, Theorem D follows quickly from Theorems A and F,
Agol’s Theorem [1, Theorem 1.1] and Wise’s Quasiconvex Hierarchy Theorem [36,
Theorem 13.3]. Thus, other than Theorem A.3 in the appendix (which is independent
of everything else in this paper), it remains to prove Theorem F. Therefore, we are
interested in conditions on a groupG acting on a CAT.0/ cube complexX and a normal
subgroup K EG which ensure that the quotient KnX is a CAT.0/ cube complex. In
this section we develop criteria in terms of complexes of groups to ensure this. In the
next section, we translate these conditions into algebraic conditions on K EG.

Three conditions need to be ensured in order for the complexZDKnX to be a CAT.0/
cube complex:

(1) Z must be simply connected;

(2) Z must be a cube complex (rather than a complex made out of cells which are
quotients of cubes); and

(3) Z must be nonpositively curved.

We investigate these three properties in turn.

4.1 Ensuring the quotient is simply connected

First, we give a sufficient condition for KnX to be simply connected.

Since X is a finite-dimensional cube complex, it has finitely many shapes, and we can
use the following application of a theorem of Armstrong:

Theorem 4.1 Let X be a simply connected metric polyhedral complex with finitely
many shapes , and let K be a group of isometries of X respecting the polyhedral
structure , generated by elements with fixed points. Then KnX is simply connected.

Proof sketch A theorem of Armstrong [4, Theorem 3] shows that KnX is simply
connected with the CW topology. We have to show it is still simply connected with the
metric topology.
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Because X has finitely many shapes, there is an equivariant triangulation T and an
� > 0 such that for every finite subcomplex Y , the �–neighborhood of Y deformation
retracts to Y . If f WS1!X is any loop, then a compactness argument shows that it lies
in an �–neighborhood of some such finite complex. We can then homotope f to have
image in Y and apply the simple connectedness of KnX with the CW topology.

We remark that the hypothesis of finitely many shapes is necessary even when X is
CAT.0/ as the following example shows:

Example 4.2 For n 2 f2; 3; : : : g, let Dn be the Euclidean cone of radius 1 on a loop
�n of length 2�=n2. For each n mark a point on �n. Let Y be obtained from

S
nDn

by identifying the marked points. Unwrapping all the cones to Euclidean discs gives a
tree of Euclidean discs of radius 1. We call this CAT.0/ space zY . There is a discrete
group of isometries � D h
2; 
3; : : : i acting on zY with quotient Y such that each 
n
fixes the center of some disc and rotates it by an angle of 2�=n2. Nonetheless Y is not
simply connected, as the infinite concatenation of the loops �n has finite length, but
cannot be contracted to a point.

4.2 Ensuring the quotient is a cube complex

We now turn to the question of when KnX is a cube complex.

In order that the quotient Z DKnX be a cube complex, there needs to be no element
of K which fixes a cell of X setwise but not pointwise.

Suppose that � is a cube of X . The stabilizer G� has a finite-index subgroup Q�
consisting of those elements which fix � pointwise. Let f�1; : : : ; �kg be a set of
representatives of G–orbits of cubes in X . The following result is straightforward:

Proposition 4.3 Suppose that G acts cocompactly on the cube complex X and that
K is a normal subgroup of G such that for each i we have G�i \K �Q�i . Then the
quotient KnX is a cube complex and the links of vertices in KnX inherit a cellular
structure from the simplicial structure of cells in X .

4.3 Ensuring the quotient is nonpositively curved

The most complicated condition to ensure is that KnX is nonpositively curved.

Throughout this subsection we suppose that X is a CAT.0/ cube complex and that X
is its idealization (see Definition 2.25). We suppose further that G is a group acting
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cocompactly on this cube complex. The induced action of G on X has quotient a scwol
Y . Making choices as in Definition 2.7, we obtain a complex of groups G.Y/, with
associated category CG.Y/. Choosing a vertex v0 2 Y , there is then an identification
of G with �1.CG.Y/; v0/. Moreover, we choose a normal subgroup K EG such that
KnX is a cube complex. Throughout this section we let Z DKnX .5

In Section 4.2 we discussed how to find subgroupsK such thatKnX is a cube complex,
but for this section we just assume that this is the case.

Let CK be the cover of the category CG.Y/ corresponding to the subgroup K. Observe
that CG.Y/–loops lift to CK if and only if they represent elements of K. (Basepoints
are mostly omitted in this section, since we deal with a normal subgroup K.)

Standing Assumption 4.4 Lemma 2.16 tells us that any CG.Y/–path is homotopic
to a concatenation of group and scwol arrows. Throughout this section we assume all
CG.Y/–paths have been homotoped to this form, though we do not assume that the
arrows alternate between group and scwol arrows. We blur the distinction between the
scwol arrow .1; ai / in CG.Y/ and the Y–arrow ai , and also between the group arrow
.g; 1v/ and the element g 2Gv.

Thus we may write a CG.Y/ path for example as a list g1 � e1 � e2 �g2 � � � , where each
gi is an element of a local group Gv and represents the edge .g; 1v/C, corresponding
to the group arrow .g; 1v/, and each ei is equal to some a˙i for a scwol arrow .1; ai /.
We implicitly assume that each concatenation we write defines a path, which forces
the group arrows labeled gi to be elements of particular local groups. Whenever we
consider a CG.Y/–path of length 1 consisting of a single group arrow we are either
explicit about the local group or else it is clear from the context.

If we have an edge of the form .1; 1v/˙, we often implicitly (or explicitly) omit this
arrow from our path. Again this only changes the path by an elementary homotopy.

Definition 4.5 (link of a cube) Given an n–cube � in a cube complex Z, let b� be
the barycenter. For sufficiently small � > 0, the sphere fx 2 Z j dZ.b� ; x/ D �g is
the join of an .n�1/–sphere with some simplicial complex (here we take the join of a
.�1/–sphere with K to be equal to K). This simplicial complex is what we refer to
as the link of � , or link.�/. It is naturally triangulated by simplices corresponding to
inclusions of � as a face of some higher-dimensional cube. In particular link.�/ is a
�–complex [21, Chapter 2.1] (though it may not be simplicial).

5We do not make any further assumptions than these about G and X in this subsection. This may be an
important observation for future applications.
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Though the link of a cube naturally has the structure of a piecewise spherical complex,
we will think of it as just a combinatorial object. When we refer to paths or loops in a
link, these will always be concatenations of 1–cells. The length of such a path is the
number of 1–cells traversed.

Theorem 4.6 (Gromov’s cubical link condition [8, Theorem II.5.20]) The cube
complex Z is a nonpositively curved cube complex if and only if the link of each vertex
in Z is flag.

In this section, we provide a set of conditions on the subgroup K which imply the link
condition for Z DKnX .

We record two elementary observations:

Lemma 4.7 Let v be a vertex of a cube complex , and let L D link.v/. Then L is
simplicial if and only if for every cell � containing v, the 1–skeleton of link.�/ contains
no immersed loop of length 1 or 2.

Proof If L fails to be simplicial, there is either a nonembedded simplex, or a pair
of simplices which intersect in a set which is not a face of both. If a simplex is
nonembedded, we obtain a loop of length 1 in L. If two embedded simplices �1 and �2
of L intersect in a set which is not a single face, let F1 and F2 be different maximal
faces in the intersection, and let f D F1 \ F2. For i 2 f1; 2g, let vi be a vertex in
Fi � f . Then the simplices spanned by v1 [ f and v2 [ f correspond to points in
link.f / which lie on an immersed loop of length 2. But f corresponds to some cube
containing � , and link.f /� L is isomorphic to the link of that cube.

Lemma 4.8 Let v be a vertex of a cube complex, and supposeLD link.v/ is simplicial.
Then L is a flag complex if and only if for every cell � containing v, every loop of
length 3 in link.�/ is filled by a 2–cell.

Proof If � is a cube and � is a cube with � as a face, of dimension one higher, then �
corresponds to a vertex f of the link L of � . The link of � is isomorphic to the link
in L of f. The result now follows from [8, Remark II.5.16(4)].

Therefore, in order to ensure Z is nonpositively curved, for each cell � in Z we must
rule out loops of length 1 and 2 in link.�/ and also ensure that any loop of length 3 in
link.�/ is filled by a 2–cell. We first explain how we translate between 1–cells in links
in Z and CG.Y/–paths. Then we develop the required conditions to rule out loops,
finally dealing with loops of length 3 which must be filled by 2–cells.
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4.3.1 CG.Y/–paths associated to 1–cells in link.� / Below we choose, for each
cube � in X and each oriented 1–cell ˛ in the link of � , a CG.Y/–path pŒŒ˛�� which is
the label of an unscwolification of the idealization of ˛. As indicated by the notation,
this label is the same for two such 1–cells in the same G–orbit. (In fact we will choose
these paths for slightly more general objects than 1–cells in links of cubes.) If ˛ is an
oriented 1–cell, we write (̨ for the same 1–cell with the opposite orientation.

We fix a cube � of X . The second barycentric subdivision of the link of � embeds
naturally in the geometric realization of X . The vertices of the image of link.�/ are
precisely the length � 2 chains of cubes whose minimal element is � .

We first consider an oriented 1–cell ˇ of link.�/. The 1–cell ˇ corresponds to a triple
of cubes �1; �2; � in X such that

dim.�/D dim.�i /� 1D dim.�/� 2;

with �1; �2 � � and �1\ �2 D � .

In particular, ˇ has idealization an X–path of length 4, made up of arrows

(4) .� � �1/ .� � �1 � �/! .� � �/ .� � �2 � �/! .� � �2/:

In order to formulate Definition 4.9 and Lemma 4.10 below we must consider a slightly
more general situation: we suppose �1, �2 and � are cubes in X with �1 and �2
codimension-one subcubes of �, and 
 is a chain of cubes in X such that each element
of 
 is contained in each of �1, �2 and �. We can naturally extend 
 to chains which
we denote by .
 � �1/, .
 � �2/, .
 � �/, and .
 � �i � �/. This sequence of chains
corresponds to a 1–cell ˛ in an “iterated link” (a link of a cell in a link, etc), which
we fix from now through Definition 4.9. The 1–cell ˛ has idealization an X–path of
length 4,

(5) .
 � �1/ .
 � �1 � �/! .
 � �/ .
 � �2 � �/! .
 � �2/:

The X–path (5) may not embed in Y . There are two ways this could happen. The first
is that there is an element of Stab.
/ which sends �1 to �2, but no such element fixes �.
In this case, the image in Y is a nonbacktracking loop. The second possibility is that
there is an element g 2G sending each of 
 and � to itself, but exchanging �1 and �2.
If there is such a g, the idealization of the 1–cell ˛ backtracks in Y , forming a “half
1–cell”. Since we are assuming Z is a cube complex, the second possibility does not
arise for the image of (5) in Z , though the first possibility may.
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Let yŒŒ˛�� D a
C
1 � a

�
2 � a

C
3 � a

�
4 be the Y–path which is the image of the X–path (5). For

more compact notation, we define

� D ŒŒ.
 � �/��; �i D ŒŒ.
 � �i � �/��; �i D ŒŒ.
 � �i /�� for i 2 f1; 2g:

Then we have the injective homomorphisms

 a2 WG�1 !G� and  a3 WG�2 !G� :

The images of  a2 and  a3 are equal. The projection to Y of the path (5) associated to
˛ depends only on ŒŒ˛��. We denote the common image of  a2 and  a3 in G� by GC� .
Note that GC� either has index 2 in G� (if there is a g fixing 
 and � and exchanging
�1 with �2) or else GC� DG� (if there is no such g). If GC� has index 2 in G� , we fix
a choice of g� 2 G� �GC� . We make this choice once and for all for each orbit of
.
; �1; �2; �/, so that the choice depends only on the orbit and not on the representative.

In the sequel, we refer to the vertex groups by Gi.ŒŒ˛��/ (for G�1/ and Gt.ŒŒ˛��/ (for G�2/.
We further define “edge-inclusions”  ŒŒ˛�� WGC� !Gt.ŒŒ˛��/ and  ŒŒ(̨�� WG

C
� !Gi.ŒŒ˛��/

by
 ŒŒ˛�� D  a4 ı 

�1
a3

and  ŒŒ(̨�� D  a1 ı 
�1
a2
:

Let EŒŒ˛�� denote the image of  ŒŒ˛�� in Gt.ŒŒ˛��/, and EŒŒ(̨�� denote the image of  ŒŒ(̨��
in Gi.ŒŒ˛��/.

Definition 4.9 If GC� ¤G� , associate to ˛ the CG.Y/–path

p˛ D a
C
1 � a

�
2 �g� � a

C
3 � a

�
4 ;

where g� 2 G� �GC� is the element fixed above. Note that in this case a2 D a3 and
a1 D a4. If GC� DG� , let

p˛ D a
C
1 � a

�
2 � a

C
3 � a

�
4 :

In either case some lift of p˛ to BCG.Y/ is an unscwolification of the idealization of ˛.
The CG.Y/–path p˛ depends only on ŒŒ˛��; if there is a g with g� D � and g˛0 D ˛,
then p˛0 D p˛. Therefore, we have a well-defined CG.Y/–path pŒŒ˛��.

Next we consider CG.Y/–paths whose scwolifications traverse yŒŒ˛�� and whose lifts to
BCG.Y/ have nonbacktracking scwolifications. (SinceZDKnX is assumed to be a cube
complex, these paths also have lifts in CK whose scwolifications are nonbacktracking
in Z .) We observe in the following lemma that such paths can be converted by a sequence
of elementary homotopies to paths which consist of a copy of pŒŒ˛�� bookended by
group arrows.
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Lemma 4.10 Suppose that GC� DG� . Then any CG.Y/–path

g0 � a
C
1 �g1 � a

�
2 �g2 � a

C
3 �g3 � a

�
4 �g4

is homotopic to a CG.Y/–path of the form

g00 �pŒŒ˛�� �g
0
1:

Suppose that GC� ¤G� . Then any CG.Y/–path

g0 � a
C
1 �g1 � a

�
2 �g2 � a

C
3 �g3 � a

�
4 �g4

such that g2 …EŒŒ˛�� is homotopic to a CG.Y/–path of the form

g00 �pŒŒ˛�� �g
0
1:

In both cases , the scwolification of the path is fixed during the homotopy. Moreover
any lift of the homotopy to a cover of CG.Y/ gives a sequence of paths with constant
scwolification.

Notation 4.11 We fix some notation in order to study paths in Z and also Y–paths
and CG.Y/–paths. As above, we use ŒŒ � �� to denote a G–orbit in Z , which corresponds
to its image in Y under the projection � W Z! Y .

Let pŒŒ˛�� be one of the CG.Y/–paths fixed in Definition 4.9, corresponding to a 1–cell ˛
in some link (or iterated link) of a cube of Z. The CG.Y/–path pŒŒ˛�� has an underlying
Y–path, which we denote by yŒŒ˛��. Define t .ŒŒ˛��/ D t .yŒŒ˛��/ and i.ŒŒ˛��/ D i.yŒŒ˛��/.
This is so we can denote the corresponding local groups by Gi.ŒŒ˛��/ and Gt.ŒŒ˛��/.

We will also need to refer to the subgroups EŒŒ˛��<Gt.ŒŒ˛��/ and EŒŒ(̨��<Gi.ŒŒ˛��/ defined
just before Definition 4.9. Each of these subgroups can be thought of as the pointwise
stabilizer of some translate of a lift of ˛ to X .

4.3.2 Loops in link.{� / We are now ready to formulate the conditions on K which
characterize whether or not KnX is nonpositively curved. We use Lemmas 4.7 and 4.8
repeatedly.

Recall that we have fixed a K CG such that Z DKnX is a cube complex. We also
fix a cube {� of Z, and a lift � of {� to X . If ˛ is a 1–cell in link.�/, then as described
above there is a corresponding X–path of length 4 (its idealization). Similarly a 1–cell
in the link of {� has a corresponding Z–path of length 4. We sometimes conflate a
concatenation of 1–cells with a concatenation of these idealizations.
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We next give an algebraic characterization of 1–cells in link.�/ which project to loops
of length 1 in link.{�/. Recall CK DKnBCG.Y/.
Lemma 4.12 Let ˛ be a 1–cell in link.�/, and {̨ the projection of ˛ to link.{�/. The
endpoints of {̨ are equal if and only if there is a CG.Y/–loop of the form pŒŒ˛�� �g that
represents a conjugacy class in K.

Proof Thinking of X as the geometric realization of X , the 1–cell ˛ is the realization
of an X–path q˛ of length 4, which projects to a Y–path aC1 � a

�
2 � a

C
3 � a

�
4 . Let Oq˛ be

an unscwolification of q˛ in BCG.Y/, which we may choose to have label

(6) aC1 � a
�
2 �g1 � a

C
3 � a

�
4

for some group arrow g1.

Suppose first that the endpoints of {̨ coincide. Then the path (6) projects in CK to a
path with endpoints separated by a group arrow, and so there is a CK–loop with label

aC1 � a
�
2 �g1 � a

C
3 � a

�
4 �g2:

Lemma 4.10 implies that this loop is homotopic to a loop with label g0 � pŒŒ˛�� � g1
for some g0 and g1, and starting this loop at a different place gives the required
CG.Y/–loop pŒŒ˛�� �g representing a conjugacy class of K.

Conversely, suppose a conjugacy class in K is represented by a CG.Y/–loop of the
form pŒŒ˛�� �g. Then pŒŒ˛�� �g lifts to a loop in CK whose scwolification is a projection
of a translate of q˛ by some element of G. In particular, q˛ must project to a loop, and
so the endpoints of {̨ coincide.

Definition 4.13 If o is an object of Y , let Ko CGo be K \Go.

Definition 4.14 A CG.Y/–path p is K–nonbacktracking if for some (equivalently
any) lift Op to CK , the scwolification ‚K. Op/ is nonbacktracking. A CG.Y/–loop can
be thought of as a path starting at any of its vertices. The loop is K–nonbacktracking
if all these paths are K–nonbacktracking.

Lemma 4.15 A CG.Y/–path g0 �pŒŒ˛1�� �g1 �pŒŒ˛2�� � � �gk�1 �pŒŒ˛k�� �gk isK–nonback-
tracking if and only if

(1) for i 2 f1; : : : ; k� 1g, if ŒŒ˛iC1��D ŒŒ(̨i �� then gi …EŒŒ˛i ��Kt.ŒŒ˛i ��/ �Gt.ŒŒ˛i ��/.

Furthermore , a CG.Y/–loop with such a label is K–nonbacktracking if and only if (1)
and

(2) if ŒŒ˛1��D ŒŒ(̨k��, then gkg0 …EŒŒ˛k��Kt.ŒŒ˛k��/ �Gt.ŒŒ˛k��/.
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The following result algebraically characterizes immersed loops of length 2 in link.�/.

Lemma 4.16 Let p be a path in link.{�/ which is a concatenation of two 1–cells , {̨
and {̌, which lift respectively to 1–cells ˛ and ˇ in X . The following are equivalent :

(1) There is a path p0D {̨0 � {̌0 in link.{�/ with ŒŒ{̨0��D ŒŒ{̨�� and ŒŒ {̌0��D ŒŒ {̌�� such that
p0 is an immersed loop.

(2) There is a K–nonbacktracking CG.Y/–loop pŒŒ˛�� �g1 �pŒŒˇ�� �g2 that represents
a conjugacy class in K.

Moreover , when these conditions hold , the path p0 can be chosen to be the scwolifica-
tion of a lift of pŒŒ˛�� �g1 �pŒŒˇ�� �g2 (and conversely pŒŒ˛�� �g1 �pŒŒˇ�� �g2 is the CG.Y/–path
which labels the unscwolification of p0).

Proof Suppose that there is an immersed loop p0 D {̨0 � {̌0 as in (1). The idealization
of p0 is a Z–path qp0 of length 8, labeled by a Y–path aC1 �a

�
2 �a
C
3 �a

�
4 �b
C
1 �b

�
2 �b

C
3 �b

�
4

as discussed above. Using Lemma 4.10, we can choose an unscwolification Oqp0 of qp0
in CK with label

pŒŒ˛�� �g1 �pŒŒˇ��;

where g1 is a group arrow. But the unscwolification Oqp0 has endpoints separated by
a group arrow g2, so there is a loop labeled pŒŒ˛�� � g1 � pŒŒˇ�� � g2 as desired. It is
K–nonbacktracking since its scwolification is the path qp0 .

Conversely, suppose that there is a K–nonbacktracking CG.Y/–loop

pŒŒ˛�� �g1 �pŒŒˇ�� �g2;

which represents an element of K. Then pŒŒ˛�� �g1 �pŒŒˇ�� �g2 lifts to a loop in CK . The
scwolification of this loop gives a path p0 as in condition (1).

The following is elementary.

Lemma 4.17 Let Q be a complex such that there are no loops of length 1 or 2 in its
1–skeleton. Any loop in Q of length 3 is nonbacktracking.

The utility of Lemma 4.17 is that once we have found conditions to ensure that links
in KnX have no loops of length 1 or 2 then loops of length 3 are automatically
nonbacktracking.

Given Lemma 4.17, the following is proved in the same way as Lemma 4.16.
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Lemma 4.18 Suppose that link.{�/ is simplicial , and suppose that p is a path in
link.{�/ which is a concatenation of three 1–cells , {̨, {̌ and {
 , with lifts ˛, ˇ and 

to X . The following are equivalent :

(1) There is a path p0 D {̨0 � {̌0 � {
 0 in link.{�/ such that ŒŒ{̨0��D ŒŒ{̨��, ŒŒ {̌0��D ŒŒ {̌�� and
ŒŒ{
 0��D ŒŒ{
��, and p0 is an immersed loop.

(2) There is a CG.Y/–loop of the form pŒŒ˛�� �g1 �pŒŒˇ�� �g2 �pŒŒ
�� �g3 that represents
a conjugacy class in K.

Moreover , when these conditions hold , the path p0 can be chosen to be the scwolifica-
tion of a lift of pŒŒ˛�� �g1 �pŒŒˇ�� �g2 �pŒŒ
�� �g3 (and conversely pŒŒ˛�� �g1 �pŒŒˇ�� �g2 �pŒŒ
�� �g3
is the CG.Y/–path which labels the unscwolification of p0).

If X has dimension greater than 2, there are certainly some � such that there are loops
of length 3 in link.�/. This introduces some subtleties, which we discuss in the next
subsection.

4.3.3 Loops of length 3 filled by 2–cells We assume for the rest of the section
that cubes of Z are embedded, so that objects of Z can be unambiguously described
by chains of cubes of Z. The phenomenon we are concerned with in this section is
illustrated by the following example.

Example 4.19 Let Y be a single 2–simplex, and consider the complex of groups G.Y/
such that Gv Š Z for each vertex v, and all the other local groups are trivial. Let
x; y; z 2 �1.G.Y// generate the three vertex groups. The universal cover X of G.Y/
is an infinite-valence “tree of triangles”. Let K D hhx3; y3; z3; xyzii. Then KnX can
be realized as a subset of the Euclidean plane, consisting of every other triangle of a
tessellation by equilateral triangles. Moreover, if ˛ˇ
 is the path in the 1–skeleton
of Y labeling the boundary of Y , there are paths in KnX projecting to ˛ˇ
 , but which
are not filled by a 2–cell in KnX . The issue here, as we will see, is that xyz 2K is
not an element of KxKyKz , where Kx DK \ hxi, and so on.

Of course X is not a cube complex, but it can be realized as the link of a vertex of a
cube complex, covering a complex of groups in which G.Y/ is embedded.

Definition 4.20 Let {� be a cube of Z, and let {� be a 2–cell in link.{�/. Then @{� is
a loop, composed of three oriented 1–cells, {̨ � {̌ � {
 , which we may lift to 1–cells ˛,
ˇ and 
 , forming the boundary of a lift � of {� in X . These 1–cells are associated to
CG.Y/–paths pŒŒ˛��, pŒŒˇ�� and pŒŒ
�� as in Definition 4.9. Consider a CG.Y/–path of
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�

�

.���/

.���˛/ .���ˇ /

.���/

.�����˛/

.���
 /

.�����ˇ /

a˛ aˇ

Figure 2: A part of X representing part of the link of � , containing the
idealization of the 1–cell � in green. Directions of most arrows have been
omitted.

the form q D pŒŒ˛�� � g � pŒŒˇ��. Let Oq be a lift to CK . The realization of ‚K. Oq/ is a
concatenation of two 1–cells {̨0 � {̌0. We say that q K–bounds a .�; ˛/–corner if there
is a cube {� 0, a 2–cell {� 0 in link.{� 0/, and an h 2G such that {� 0D h{� , {� 0D h{� , {̨0D h{̨
and {̌0 D h {̌. If there is some .�; ˛/ for which the path q K–bounds a .�; ˛/–corner,
we may just say q K–bounds a corner.

If there exists a path q as above which K–bounds a .�; ˛/–corner, there are X–cubes
�, �˛, �ˇ and  , all containing � , such that � � �˛, �ˇ �  , and

dim. /D dim.�˛/C 1D dim.�ˇ /C 1D dim.�/C 2D dim.�/C 3:

There is a copy of the link of � contained in the link of � . The cubes �, �˛ , �ˇ and  
determine an oriented 1–cell � in this copy of the link of �. Its idealization is shown
in Figure 2. The idealization of � begins at the object .� � � � �˛/ and ends at
.� � ���˛/. Let a˛ be the arrow pointing from .� � ���˛/ to .� � �/, and let aˇ be
the arrow pointing from .� � � � �ˇ / to .� � �/. These arrows project to arrows ŒŒa˛��
and ŒŒaˇ �� in Y , and the path pŒŒ��� (defined as in Definition 4.9) travels from i.ŒŒa˛��/

to i.ŒŒaˇ ��/.

Geometry & Topology, Volume 27 (2023)



3432 Daniel Groves and Jason Fox Manning

Lemma 4.21 The CG.Y/–loop

ŒŒa˛��
C
�pŒŒ��� � ŒŒaˇ ��

�;

which is based at ŒŒ� � ���, represents an element of GŒŒ�����.

Proof All the chains which occur in this proof have the same minimal element � , so
we omit the prefix “� �” from all chains until the end of the proof of the lemma. We
therefore have a diagram in link.�/ in the scwol X as follows:

.�/

.� � �˛/

a˛

33

.� � �ˇ /

aˇ

kk

.� � �˛ �  /

a1

gg

a2

''

b1

@@

.� � �ˇ �  /

a3ww

a4
77b3

^^

.� �  /

b2

OO

We have the identities a˛a1 D b1 D b2a2 and aˇa4 D b3 D b2a3 in the category X .
The path in the statement of the lemma is equal to

ŒŒa˛��
C
� ŒŒa1��

C
� ŒŒa2��

�
�g.�� / � ŒŒa3��

C
� ŒŒa4��

�
� ŒŒaˇ ��

�;

where g.�� / is the element of GŒŒ.�� /�� chosen for the path p� as in Definition 4.9.

Define the elements of GŒŒ���

h1 D z.ŒŒa˛��; ŒŒa1��/z.ŒŒb2��; ŒŒa2��/
�1;

h2 D h1 ŒŒb2��.g.�� //;

h3 D h2z.ŒŒb2��; ŒŒa3��/z.ŒŒaˇ ��; ŒŒa4��/
�1;

where the z.ŒŒa��; ŒŒb��/ are the twisting elements determined by the complex of groups
structure on G.Y/.

We now have the sequence of elementary homotopies of CG.Y/–paths (all of which
consist of applying the moves in Definition 2.1, and the rule of arrow composition in
CG.Y/ from Definition 2.11),

ŒŒa˛��
C
�pŒŒ��� � ŒŒaˇ ��

�
' ŒŒa˛��

C
� ŒŒa1��

C
� ŒŒa2��

�
�g.�� / � ŒŒa3��

C
� ŒŒa4��

�
� ŒŒaˇ ��

�
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' z.ŒŒa˛��; ŒŒa1��/ � ŒŒb1��
C
� ŒŒa2��

�
�g.�� / � ŒŒa3��

C
� ŒŒa4��

�
� ŒŒaˇ ��

�

' z.ŒŒa˛��; ŒŒa1��/z.ŒŒb2��; ŒŒa2��/
�1
� ŒŒb2��

C
� ŒŒa2��

C
� ŒŒa2��

�

�g.�� / � ŒŒa3��
C
� ŒŒa4��

�
� ŒŒaˇ ��

�

' h1 � ŒŒb2��
C
�g.�� / � ŒŒa3��

C
� ŒŒa4��

�
� ŒŒaˇ ��

�

' h1 � ŒŒb2��.g.�� // � ŒŒb2��
C
� ŒŒa3��

C
� ŒŒa4��

�
� ŒŒaˇ ��

�

' h2z.ŒŒb2��; ŒŒa3��/ � ŒŒb3��
C
� ŒŒa4��

�
� ŒŒaˇ ��

�

'h2z.ŒŒb2��; ŒŒa3��/z.ŒŒaˇ ��; ŒŒa4��/
�1
�ŒŒaˇ ��

C
�ŒŒa4��

C
�ŒŒa4��

�
�ŒŒaˇ ��

�

' h3 � ŒŒaˇ ��
C
� ŒŒaˇ ��

�

' h3:

Notation 4.22 The element of GŒŒ��� represented by ŒŒa˛��C �pŒŒ��� � ŒŒaˇ ��� is denoted
by g�;˛.

Lemma 4.23 A path pŒŒ˛�� � g � pŒŒˇ�� K–bounds a .�; ˛/–corner if and only if there
exists a CG.Y/–loop

(7) ŒŒa˛��
C
�g1 �pŒŒ��� �g2 � ŒŒaˇ ��

�
�g�1

which represents an element of K.

Proof First suppose that there is aCG.Y/–loop of the form (7) representing an element
of K.

Then the CG.Y/–paths

pŒŒ˛�� �g �pŒŒˇ��; pŒŒ˛�� � ŒŒa˛��
C
�g1 �pŒŒ��� �g2 � ŒŒaˇ ��

�
�g�1 �g �pŒŒˇ��

differ by an element of K. Thus they together form a loop which lifts to CK .

This second path is homotopic to a CG.Y/–path whose scwolification avoids the vertex
t .ŒŒ˛��/ after pŒŒ˛�� but instead travels across the first three edges of pŒŒ˛��, traverses pŒŒ���,
and then travels across the final three edges of pŒŒˇ��. The homotopy lifts to CK , and the
image in Z of this homotopy under the scwolification ‚K shows that there is a 2–cell
{� 0 between the 1–cells {̨0 and {̌0 whose idealizations are the scwolifications of the lifts
of pŒŒ˛�� and pŒŒˇ��, respectively. This shows that the path pŒŒ˛�� �g �pŒŒˇ�� K–bounds a
.�; ˛/–corner.
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Conversely, suppose that the CG.Y/–path qDpŒŒ˛�� �g �pŒŒˇ�� K–bounds a .�; ˛/–corner.
Lift to a CK–path Oq and consider the scwolification ‚K. Oq/ in Z . As in Definition 4.20,
the realization of Oq is the concatenation of two 1–cells {̨0 and {̌0 in link.{� 0/ for some
cube {� 0 in the orbit of {� . Moreover, there is a 2–cell {� 0 with {̨0 and {̌0 in the boundary
of {� 0 and an element h of G such that {� 0 D h{� , {� 0 D h{� , {̨0 D h{̨ and {̌0 D h {̌. Let v0

be the vertex of link.{� 0/ where {̨0 and {̌0 meet.

Consider the loop q0 D ŒŒa˛��C �pŒŒ��� � ŒŒaˇ ��� as in Lemma 4.21. This represents an
element of Gt.ŒŒ˛��/, and there is a lift Oq0 of q0 to CK such that ‚K. Oq0/ is a loop based
at v0 and traveling across the corner of {� 0 from {̨0 to {̌0. The paths q0 and q have lifts
to CK forming a subdiagram

�

�

ˇ

�

�
�
�
�

�

ˇ

�

�

g ##

��

??
��

a˛
??

aˇ
__

��
__

��

�
� ˇ �

�
Oq0 FF

Oq ?? ee
-- qq

99

?? __

The circled dots represent either single objects or pairs of objects separated by a group
arrow, depending on whether the paths pŒŒx�� have length four or five for x 2 f˛; ˇ; �g.
The scwolification of this diagram in Z looks like

�

�

�

�

��

�

�

�

���

?? ��

a˛
??

aˇ
__

�� __

��

�
�
�

__

)) uu

??

The edges which scwolify to a˛ in Oq and Oq0 have sources connected by a group arrow
labeled by some g1. Similarly the edges which scwolify to aˇ have sources connected
by group arrow with some label g2. We thus obtain a loop in CK of the form (7).

Given the criterion from Lemma 4.23, the following result is straightforward. Recall
the definition of the element g�;˛ from Notation 4.22.
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Proposition 4.24 Suppose that � is a 2–cell in link.�/ and that the boundary of � is
˛:ˇ:
 . For any g 2GtŒŒ˛�� the CG.Y/–path pŒŒ˛�� �g �pŒŒˇ 0�� K–bounds a .�; ˛/–corner
if and only if

(1) ŒŒˇ0��D ŒŒˇ��, and

(2) g 2EŒŒ˛��g�;˛EŒŒ(̌��:Kt.ŒŒ˛��/

Proof Recall from Notation 4.22 that g�;˛ is the element of GtŒŒ˛�� represented by the
CG.Y/–loop

ŒŒa˛��
C
�pŒŒ
�� � ŒŒaˇ ��

�:

Suppose that pŒŒ˛�� �g �pŒŒˇ�� K–bounds a .�; ˛/–corner. Then consider the path

ŒŒa˛��
C
�g1 �pŒŒ
�� �g2 � ŒŒaˇ ��

�
�g�1

from Lemma 4.23 which represents an element of K.

We have homotopies

ŒŒa˛��
C
�g1 �pŒŒ
�� �g2 �ŒŒaˇ ��

�
�g�1' ŒŒa˛��.g1/ �ŒŒa˛��

C
�pŒŒ
�� �ŒŒaˇ ��

�
�. ŒŒaˇ��.g2/g

�1/

' ŒŒa˛��.g1/ �g�;˛ �. ŒŒaˇ��.g2/g
�1/

' ŒŒa˛��.g1/g�;˛ ŒŒaˇ��.g2/g
�1:

Since  ŒŒa˛��.g1/ 2 EŒŒ˛��,  ŒŒaˇ��.g2/ 2 EŒŒˇ�� and the whole expression above is an
element of K \GŒŒv�� DKt.ŒŒ˛��/,

g 2EŒŒ˛��g�;˛EŒŒˇ��Kt.ŒŒ˛��/;

as required.

In order to prove the other direction, this computation may be performed in reverse.

Lemma 4.25 Suppose that link.{�/ is simplicial and contains 1–cells {̨, {̌ and {
 which
lift respectively to 1–cells ˛, ˇ and 
 in link.�/ in X . Let

q D pŒŒ˛�� �g1 �pŒŒˇ�� �g2 �pŒŒ
�� �g3

be a CG.Y/–loop which represents an element of K. Suppose {� � link.{�/ is the
realization of the scwolification of some lift of q to CK .

If any one of pŒŒ˛�� � g1 �pŒŒˇ��, pŒŒˇ�� � g2 �pŒŒ
�� or pŒŒ
�� � g3 �pŒŒ˛�� K–bounds a corner ,
then {� bounds a 2–cell in link.{�/.
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Proof Note that since q represents an element of K, any lift to CK is a loop, and so
the realization {� is also a loop. Since link.{�/ is simplicial, this loop is embedded of
length 3 in link.{�/ by Lemma 4.17.

Think of q as given by a cyclic word in the arrows of CG.Y/, and suppose that one of
the three given subpaths of q K–bounds a corner. By relabeling and cyclically rotating
we can assume it is the subpath p D pŒŒ˛�� � g1 � pŒŒˇ��, so there is some 2–cell {� in
link.{�/ and lift � to link.�/ and p K–bounds a .�; ˛/–corner. It follows that some
translate {� 0 of {� in link.{�/ has boundary given by a path {̨0 � {̌0 � {
 0, where ˛0 �ˇ0 are
the first two 1–cells of the path {�. If the third 1–cell of @{� 0 is not the third 1–cell of {�,
we obtain 1–cells in link.{�/ with the same endpoints, contradicting the assumption
that link.{�/ is simplicial. So � bounds the 2–cell {� 0.

Since there are finitely many Stab.{�/–orbits of 2–cells in link.{�/, we obtain the
following.

Proposition 4.26 Suppose that link.{�/ is simplicial. There are finitely many 2–cells
{�i in link.{�/ (with boundary {̨i � {̌i � {
i , and lifts ˛i , ˇi and 
i to link.�/) such that the
following holds:

Every loop of length 3 in link.{�/ is filled by a 2–cell if and only if , for every CG.Y/–
path

(�) pŒŒ˛�� �g1 �pŒŒˇ�� �g2 �pŒŒ
�� �g3

which represents an element of K, there exists an i such that

(1) ŒŒ˛��D ŒŒ˛i ��, ŒŒˇ��D ŒŒˇi �� and ŒŒ
��D ŒŒ
i ��,

(2) g1 2EŒŒ˛i ��g�i ;˛iEŒŒ(̌i ��
Kt.ŒŒ˛i ��/,

(3) g2 2EŒŒˇi ��g�i ;ˇiEŒŒ(
 i ��Kt.ŒŒˇi ��/, and

(4) g3 2EŒŒ
i ��g�i ;
iEŒŒ(̨i ��Kt.ŒŒ
i ��/.

Proof Choose the 2–cells {�i to be representatives of the Stab.{�/–orbits of 2–cells
(together with a fixed vertex to label the boundary — so that a single orbit may appear
up to three times in the list).

Suppose first that the condition about paths of the form (�) representing elements of K
is satisfied, and suppose that p is a loop of length 3 in link.{�/ which is labeled by
1–cells {̨0, {̌0 and {
 0, in order. By Lemma 4.18 there exists a CG.Y/–path � of the
form (�) which is the label of an unscwolification of p. Because of our hypothesis,
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there exists an i such that conditions (1)–(4) are satisfied. By Proposition 4.24, the
CG.Y/–path � K–bounds a corner at each of its three corners, and so by Lemma 4.25
the path p bounds a 2–cell, as required.

Conversely, suppose that every loop of length 3 in link.{�/ bounds a 2–cell, and consider
a CG.Y/–path � of the form (�) which represents an element ofK. By Lemma 4.18 the
scwolification of a lift of � is (the idealization of) an immersed path of length 3. This
immersed path must then bound a 2–cell {� . Suppose that {�i is the representative in the
Stab.{�/–orbit of the 2–cell {� , so condition (1) is satisfied. According to Lemma 4.23,
applied to all three corners of this 2–cell, the path � satisfies conditions (2)–(4).

To summarize, given Lemma 4.8, Lemmas 4.12, 4.16 and 4.18 and Proposition 4.26 give
descriptions of various types of CG.Y/–paths such that the cube complex Z DKnX
is nonpositively curved if and only if no such path lifts to CK .

5 Algebraic translation

In this section, we continue to work in the context of a group G acting cocompactly
on a CAT.0/ cube complex X . The induced action on the associated scwol X has
quotient scwol Y , the underlying scwol for a complex of groups structure G.Y/ on G.
We let Q.G/ be the set of cube stabilizers for GÕX ; equivalently Q.G/ is the set of
conjugates of the local groups for the complex of groups G.Y/.

We translate the conditions from the previous section into algebraic statements about
elements of G and of Q.G/, with an eye toward finding conditions on KCG implying
that KnX is nonpositively curved. In Section 6 we use hyperbolic Dehn filling to find
K which satisfy the conditions, under certain hyperbolicity assumptions on G and
Q.G/.

We fix a basepoint v0 for Y and an isomorphism �1.CG.Y/; v0/ŠG as in Section 2.
The scwolification functor

‚ WBCG.Y/! X

is G–equivariant. Recall also that the objects of BCG.Y/ are homotopy classes of paths
starting at v0.

Fix also a maximal (undirected) tree T in Y . For each object v of Y which represents
an orbit of cubes in X , let cv be the unique Y–path in T from v0 to v. By using scwol
arrows, we also consider cv to be a CG.Y/–path in the natural way. For an object v
of Y which represents a chain of cubes of length longer than 1, we define a Y–path cv
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from v0 to v as follows: if v is represented by .�1 � �2 � � � � � �k/ (a nested chain of
cubes in X ) then define cv to be the concatenation of cŒŒ�1�� with the path consisting of
the arrows .�1 � � � � � �i /! .�1 � � � � � �iC1/, for i D 1; 2; : : : ; k� 1.

We use the paths cv to define a map from (homotopy classes rel endpoints of) CG.Y/–
paths to (homotopy classes of) CG.Y/–loops based at v0 by

p 7! ci.p/ �p �
(c t.p/:

(Here and below, (c denotes the reverse of the CG.Y/–path c.)

Given a path p, let p̀ D Œci.p/ �p �
(c t.p/� 2 �1.CG.Y/; v0/.

The following results are straightforward:

Lemma 5.1 For any CG.Y/–paths p and p0 such that t .p/D i.p0/,

`(p D `
�1
p ; p̀�p0 D p̀ p̀0 :

Lemma 5.2 Suppose that p is a CG.Y/–path starting at v0. Let Œp� be the equivalence
class of p in BCG.Y/, and let x D‚.Œp�/. Then

StabG.x/D fŒp �g �(p� j g 2GŒŒx��g:

Definition 5.3 Given an object v of Y , define

Qv D fŒcv �g �
(cv� j g 2Gvg:

Definition 5.3 gives an explicit identification of the local groups of the complex of
groups G.Y/ with finitely many elements of Q.G/.

5.1 Algebraic formulation of the link conditions

Suppose that K EG. In order for Z DKnX to be nonpositively curved, there are five
conditions that need to be ensured on links in Z. Roughly speaking, they are

(1) no loop of length 1,

(2) no loop of length 2 consisting of 1–cells in different G–orbits,

(3) no loop of length 2 consisting of 1–cells in the same G–orbit,

(4) no loop of length 3 whose image in Y does not bound a 2–cell, and

(5) no loop of length 3 which does not bound a 2–cell but whose image in Y does
bound a 2–cell.

Geometry & Topology, Volume 27 (2023)



Hyperbolic groups acting improperly 3439

More precisely, the “image in Y” means the image in Y of the idealization. And we
say this image p “bounds a 2–cell” if there is an unscwolification Op and a lift Qp of Op
to BCG.Y/ such that the realization of the scwolification of Qp bounds a 2–cell in some
link of a cube in X .

If KnX is a simply connected cube complex and we ensure each of these conditions,
then Lemmas 4.7, 4.8 and 4.17 imply that KnX is CAT.0/.

In this subsection, we formulate five results which give algebraic conditions to enforce
each of these five conditions in turn. These results follow quickly from the results in
Section 4 using the translation from the beginning of this section. In each case, since
G acts cocompactly on a CAT.0/ cube complex, there are finitely many G–orbits of
links and in each link finitely many G–orbits of each of the five kinds of paths in the
above list, and we can rule out each orbit behaving badly in KnX in turn.

Assumption 5.4 The group G acts cocompactly on the CAT.0/ cube complex X , and
Q.G/ is the collection of cell stabilizers of the action.

Terminology 5.5 Under Assumption 5.4, a normal subgroup K EG is cocubical if
KnX is a cube complex.

The following is a straightforward translation of Lemma 4.12. We spell out the proof
since we use similar techniques for other more complicated results later in the section.

Theorem 5.6 Under Assumption 5.4, there exists a finite set F1 � Q.G/�G such
that for each .Q; p/ 2 F1 we have p …Q and such that , if

(i) K EG is cocubical , and

(ii) for each .Q; p/ 2 F1 we have p …Q:K,

then no link in KnX contains a loop of length 1.

Proof Up to the action of G, there are finitely many pairs . Q�; Q̨ /, where Q� is a cube
of X and Q̨ is a 1–cell in link. Q�/ whose endpoints are identified by some element of G.
For each such pair we will give a pair .Q; p/ as in the statement of the theorem.

For such a pair, let .�; ˛/ be the image in KnX . Since K is assumed to act cocubically,
˛ is embedded in link.�/, except that its endpoints may have been identified, making
it a loop. According to Lemma 4.12, ˛ is a loop if and only if there is a CG.Y/–loop
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of the form pŒŒ˛��:g that represents a conjugacy class in K. In particular, this condition
only depends on the orbit ŒŒ˛�� and not on ˛ itself. We associate to ˛ the element
pD p̀ŒŒ˛�� and the subgroup QDQt.ŒŒ˛��/, as described in the preamble to this section.

Since X itself is a CAT.0/ cube complex, the 1–cell Q̨ is not a loop. Applying
Lemma 4.12 in the case K D f1g, we see that p …Q. On the other hand, to say that
p … Q:K is the same as saying there is no CG.Y/–loop of the form pŒŒ˛��:g which
represents an element of K (since in such a CG.Y/–loop the element g must be in the
local group Gt.ŒŒ˛��/).

The next result is an application of Lemma 4.16 to paths of length 2 consisting of
1–cells in different G–orbits (since then the K–nonbacktracking condition is vacuous).

Theorem 5.7 Under Assumption 5.4 there exists a finite set F2 �Q.G/2 �G2 such
that for each .Q1;Q2; p1; p2/ 2 F2,

1 … p1Q1p2Q2;

and such that , if

(i) K EG is cocubical , and

(ii) for each .Q1;Q2; p1; p2/ 2 F2,

K \p1Q2p2Q2 D∅;

then every loop of length 2 in a link in KnX consists of 1–cells in the same G–orbit.

Proof The proof is similar to the proof of Theorem 5.6 above. Lemma 4.16 implies that
it is enough to verify that no link in a cube of KnX contains a pair of 1–cells ˛ and ˇ
in distinct G–orbits ŒŒ˛�� and ŒŒˇ�� such that there is a CG.Y/–loop pŒŒ˛�� �g1 �pŒŒˇ�� �g2
representing an element of K.

There are finitely many pairs of such orbits, and to each such pair we can associate the
elements p1 D p̀ŒŒ˛�� , p2 D p̀ŒŒˇ�� , Q1 DQt.ŒŒ˛��/ and Q2 DQt.ŒŒˇ��/.

Since X is a CAT.0/ cube complex, there are no nonbacktracking loops of length 2 in
any links in X , so applying Lemma 4.16 with K D f1g we see that 1 … p1Q1p2Q2.
The result now follows from Lemma 4.16 with our choice of K.

For paths of length 2 consisting of 1–cells in the same G–orbit, the condition is slightly
more complicated, as K–backtracking paths are possible.
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Theorem 5.8 Under Assumption 5.4 there exists a finite set F3 �Q.G/2 �G2 such
that , for each .Q1;Q2; p1; p2/ 2 F3,

(8) 1 … p1.Q1�Q
p2
2 /p2.Q2�Q

p1
1 /;

and such that , if

(i) K EG is cocubical ,

(ii) no link in KnX contains a loop of length 1, and

(iii) for every .Q1;Q2; p1; p2/ 2 F3,

(9) K \p1
�
Q1� .Q

p2
2 .K \Q1//

�
p2
�
Q2� .Q

p1
1 .K \Q2//

�
D∅;

then no link in KnX contains an immersed loop of length 2 consisting of 1–cells in the
same orbit.

Proof Because of assumptions (i) and (ii) we only need to be concerned with the
following situation: there is some cube Q� of X and some 1–cell Q̨ in its link such that

(1) there is some g 2G such that g fixes t . Q̨ / but not Q̨ ;

(2) there is some h 2G such that h.i. Q̨ //D i.g Q̨ / but h�1g Q̨ ¤ Q̨ .

There are finitely many orbits of pairs . Q�; Q̨ / of this type. For each orbit we pick
a representative, and describe an element of Q.G/2 �G2 as in the theorem. If (9)
is satisfied for this element, then KnX will contain no immersed loop of length 2
consisting of 1–cells in the orbit of Q̨ .

We apply Lemma 4.16 to a path of length 2 of the form ˛:˛0 where ˛ is the image
of Q̨ in KnX and ˛0 is the (oppositely oriented) image of a translate of Q̨ by an
element of the stabilizer of Q� . Any immersed loop of the type we are trying to rule
out gives rise to a K–nonbacktracking CG.Y/–loop pŒŒ˛�� �g1 �pŒŒ(̨�� �g2 representing a
conjugacy class inK. We let p1D lpŒŒ˛�� , p2D lpŒŒ(˛�� ,Q1DQt.ŒŒ˛��/ andQ2DQi.ŒŒ˛��/.
Using Lemma 4.15, the loop pŒŒ˛�� �g1 �pŒŒ(̨�� �g2 is K–nonbacktracking if and only if
g1 …EŒŒ˛��Kt.ŒŒ˛��/ and g2 …EŒŒ(̨��Ki.ŒŒ˛��/. The subgroup of Q1 corresponding to EŒŒ(̨��
is equal to Q1\Q

p2
2 , and the subgroup of Q2 corresponding to EŒŒ(̨�� is Q2\Q

p1
1 .

Thus an element p1q1p2q2 of p1Q1p2Q2 comes from a K–nonbacktracking CG.Y/–
loop if and only if q1 …Q

p2
2 .K\Q1/ and q2 …Q

p1
1 .K\Q2/. Applying Lemmas 4.15

and 4.16 in the caseKDf1g andKnXDX is CAT.0/, we see that our tuple satisfies (8).
For an arbitrary K we see that when (9) is satisfied, there is no immersed loop of
length 2 in a link in KnX consisting of images of translates of Q̨ .
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In order to apply Lemma 4.17, in each of the following two results we make the extra
assumption that K is such that no link in KnX contains a loop of length 1 or 2. The
following result is a translation of Lemma 4.18.

Theorem 5.9 Under Assumption 5.4 there exists a finite set F4 �Q.G/3 �G3 such
that , for each .Q1;Q2;Q3; p1; p2; p3/ 2 F4,

1 … p1Q1p2Q2p3Q3

and such that if

(i) K EG is cocubical ,

(ii) no link in KnX contains a loop of length 1 or 2, and

(iii) for all .Q1;Q2;Q3; p1; p2; p3/ 2 F4,

K \p1Q1p2Q2p3Q3 D∅;

then every loop of length 3 in a link of KnX has image in Y which bounds a 2–cell.

Proof Condition (ii) and Lemma 4.17 imply that it suffices to consider immersed
loops of length 3 in links in KnX . For each choice of triple of G–orbits ŒŒ˛��; ŒŒˇ��; ŒŒ
��
of 1–cells in links in X whose image in Y forms a loop, but whose image does not
bound a 2–cell in Y (in the sense described at the beginning of this subsection), we
proceed as follows. We associate the elements p1 D lpŒŒ˛�� , p2 D lpŒŒˇ�� , p3 D lpŒŒ
�� ,
Q1 DQt.ŒŒ˛��/, Q2 DQt.ŒŒˇ��/ and Q3 DQt.ŒŒ
��/.

Since X is a CAT.0/ cube complex, we can apply Lemma 4.18 to see that

1 … p1Q1p2Q2p3Q3:

Now let K E G be cocubical, and satisfy conditions (i)–(iii) from the statement.
Condition (iii) implies that condition (2) from Lemma 4.18 does not hold, and by that
lemma there is no immersed loop of length 3 in a link in KnX whose image in Y is
ŒŒ˛��; ŒŒˇ��; ŒŒ
��.

Since there are finitely many such triples ŒŒ˛��; ŒŒˇ��; ŒŒ
��, the theorem follows.

Finally, we deal with loops of length 3 in links in KnX whose image in Y does bound
a 2–cell.
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Terminology 5.10 Suppose that

AD .Q1;Q2;Q3; p1; p2; p3; h1; h2; h3/ 2Q.G/3 �G6:

With indices read mod 3, let

A�i DQ
pi�1
i�1 \Qi ; ACi DQi \Q

piC1
iC1 :

Furthermore, let
Bi D A

�
i hiA

C
i :

Using this terminology, we have the following translation of Proposition 4.26.

Theorem 5.11 Under Assumption 5.4 there exists a finite set F5 �Q.G/3 �G6 such
that , for each AD .Q1;Q2;Q3; p1; p2; p3; h1; h2; h3/,

1 … p1.Q1�B1/p2.Q2�B2/p3.Q3�B3/

and such that , if

(i) K EG is cocubical ,

(ii) no link in KnX contains a loop of length 1 or 2, and

(iii) for all .Q1;Q2;Q3; p1; p2; p3; h1; h2; h3/ 2 F5,

K\p1.Q1�B1.K\Q1//p2.Q2�B2.K\Q2//p3.Q3�B3.K\Q3//D∅;

then no link in KnX contains a loop of length 3 which does not bound a 2–cell but
whose image in Y bounds a 2–cell.

Proof For each choice of triple of orbits ŒŒ˛��; ŒŒˇ��; ŒŒ
�� whose image in Y bounds
a 2–cell (in the sense described at the beginning of this subsection), we proceed as
follows. Without loss of generality we choose representatives ˛, ˇ and 
 of these
orbits such that there is a 2–cell � with boundary ˛ �ˇ � 
 . We associate the elements
p1 D p̀ŒŒ˛�� , p2 D p̀ŒŒˇ�� , p3 D p̀ŒŒ
�� , Q1 DQt.ŒŒ˛��/, Q2 DQt.ŒŒˇ��/, Q3 DQt.ŒŒ
��/,
h1D Œct.ŒŒ˛��/ �g�;˛ �

(c t.ŒŒ˛��/�, h2D Œct.ŒŒˇ��/ �g�;ˇ �(c t.ŒŒˇ��/� and h3D Œct.ŒŒ
��/ �g�;
 �(c t.ŒŒ
��/�.

Once again, since X is a CAT.0/ cube complex, we can apply Proposition 4.26 to see
that

1 … p1.Q1�B1/p2.Q2�B2/p3.Q3�B3/:

When conditions (2)–(4) from the statement of Proposition 4.26 are translated into
statements about the group G, we get exactly g1 2 B1.K \Q1/, etc, which gives the
statement in the conclusion of the result.

Since there are finitely many such triples ŒŒ˛��; ŒŒˇ��; ŒŒ
��, the theorem follows.
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6 Dehn filling

In this section we prove some results about group-theoretic Dehn filling. Theorem 6.5
gives a “weak separability” of certain multicosets, and generalizations of multicosets,
and is used to find subgroups K which satisfy the conditions from Theorems 5.6–5.11.
Theorem 6.5 may be of independent interest, and we expect it to have applications
beyond the scope of this paper. The second main result of this section is Theorem 6.9,
from which Theorem F from the introduction follows quickly by induction.

6.1 Dehn fillings

Let .G;P/ be a group pair, and let N D fNP C P j P 2 Pg be a choice of normal
subgroups of the peripheral groups. The collection N determines a (Dehn) filling
.G;P/ of .G;P/, where G DG=K for K the normal closure of

S
N , and P is equal

to the collection of images of elements of P in G. The elements of N are called filling
kernels. We sometimes write such a filling as

� W .G;P/! .G;P/;

omitting mention of the particular filling kernels.

IfNP P<P (ieNP is finite index inP ) for allP 2P , we say that the filling is peripherally
finite. If H <G and, for all g 2G, jH \P g j D1 implies N g

P �H , then the filling
is an H–filling. If H is a family of subgroups, the filling is an H–filling whenever it is
an H–filling for every H 2H.

A property P holds for all sufficiently long fillings of .G;P/ if there is a finite set
S �

S
P �f1g such that P holds whenever

�S
N
�
\S D∅. It is frequently useful to

restrict attention to specific types of fillings (peripherally finite, H–fillings, etc). If A is
a property of fillings we say that P holds for all sufficiently long A–fillings if, for all
sufficiently long fillings, either P holds or A does not hold.

6.2 Relatively hyperbolic group pairs

We refer the reader to [17] for background on relatively hyperbolic groups. In that
paper, given a group pair .G;P/ (consisting of finitely generated groups) a space called
the cusped space is built, which is ı–hyperbolic (for some ı) if and only if .G;P/ is
relatively hyperbolic. The cusped space is built by attaching combinatorial horoballs
to a Cayley graph for G. Each combinatorial horoball H has vertex set tP �Z�0 for
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some coset tP of some P 2 P , and is hyperbolic. A vertex .g; n/ of such a horoball is
said to have depth n. The depth 0 vertices of the cusped space are exactly the vertices
of the Cayley graph; if two vertices are connected by an edge, then their depths differ
by at most one. See [17, Section 3] for more information about the construction and
geometry of the cusped space. The following result is essentially contained in [7,
Theorem 7.11].

Theorem 6.1 Suppose that G is a hyperbolic group and that P is a finite collection
of subgroups of G. Then .G;P/ is relatively hyperbolic if and only if P is an almost
malnormal family of quasiconvex subgroups.

Recall that P D fP1; : : : ; Png is almost malnormal if whenever Pi \P
g
j is infinite, we

have i D j and g 2 Pi .

We can use the notion of height (see Definition 3.28) to measure how far away a family
of subgroups is from being almost malnormal.

We now define the induced peripheral structure on G associated to a finite collection
of quasiconvex subgroups of a hyperbolic group, in analogy with the construction from
[2, Section 3.1].

Definition 6.2 Suppose that G is a hyperbolic group and H is a finite collection of
quasiconvex subgroups of G. The peripheral structure on G induced by H is obtained
as follows:

Start by taking the collection of minimal infinite subgroups of the form

H1\H
g2
2 \ � � � \H

gk
k

where the Hi are in H and the cosets fH1; g2H2; : : : ; gkHkg are all distinct. Replace
each element in this collection by its commensurator in G, and then choose one from
each G–conjugacy class. The resulting collection P is the induced peripheral structure.

If H 2 H then the induced peripheral structure on H with respect to H is a choice
of H–conjugacy representatives of intersections with H of G–conjugates of elements
of P .

We remark that the fact that there is a bound on the number k of giHi as above follows
from Proposition 3.29.

To state the next lemma we need a definition from [2]:
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Definition 6.3 Let H <G and suppose .H;D/ and .G;P/ are relatively hyperbolic.
Suppose furthermore that every D 2 D is conjugate into some P 2 P . Then — see
[2, Lemma 3.1] — there is an induced H–equivariant map from the cusped space of
.H;D/ to the cusped space of .G;P/. The subgroup .H;D/ is relatively quasiconvex
if this induced map has quasiconvex image.

In [28, Appendix A] it is proved that this is the same notion as the various notions of
relative quasiconvexity discussed by Hruska in [23].

The following can be proved in the same way as [2, Proposition 3.12].

Lemma 6.4 Suppose that G is hyperbolic and H is a finite collection of quasiconvex
subgroups of G.

(1) The induced peripheral structure P is a finite collection of groups. The pair
.G;P/ is relatively hyperbolic.

(2) IfH 2H then the induced peripheral structure D ofH with respect to H is finite.
The pair .H;D/ is relatively hyperbolic.

(3) For any H 2H, the pair .H;D/ is full relatively quasiconvex in .G;P/.

A subgroup H is full if whenever P is a parabolic subgroup such that H \P is infinite
we have H \P P<P .

6.3 The appropriate metacondition

The goal of this subsection is to prove Theorem 6.5 below. The special case that
n D 1 and S1 D ∅ is [2, Proposition 4.5], which is about keeping elements out of
full quasiconvex subgroups when performing long Dehn fillings. Here we generalize
to multicosets of full quasiconvex subgroups, possibly with some elements deleted.
Although the present result is more general, our proof is simpler, using the more
appealing “Greendlinger Lemma”-type Theorem 6.7 below in place of the somewhat
technical [2, Lemmas 4.1 and 4.2].6

Theorem 6.5 Let .G;P/ be relatively hyperbolic , and let Q be a collection of full
relatively quasiconvex subgroups. For 1� i � n, let pi 2G, Qi 2Q and Si �Qi be
chosen to satisfy

(10) 1 … p1.Q1�S1/ � � �pn.Qn�Sn/:

6Using such a Greendlinger Lemma in place of the results of [2] was suggested to us by Alessandro Sisto
while we were collaborating on [19].
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Then , for sufficiently long Q–fillings G!G=K, the kernel K contains no element of
the form

(11) p1t1 � � �pntn

where ti 2Qi � ..K \Qi /Si /.

The five conditions in the conclusions of Theorems 5.6–5.11 each fall into the scheme
of the conditions in Theorem 6.5. Therefore, we may apply Theorem 6.5 to obtain
the following result. We remark that the following result is stated in the generality of
relatively hyperbolic groups acting cocompactly on cube complexes with full relatively
quasiconvex subgroups. This is greater generality than is strictly required for the proof
of Theorem F. However, we believe that this extra generality will be of use in future
work, and should be of independent interest.

Corollary 6.6 Suppose that .G;P/ is relatively hyperbolic and that G acts cocom-
pactly on the CAT (0) cube complex X . Suppose every parabolic element of G
fixes some point of X , and that cell stabilizers are full relatively quasiconvex. Let
�1; : : : ; �k be representatives of the G–orbits of cubes of X . For each i let Qi be the
finite-index subgroup of Stab.�i / consisting of elements which fix �i pointwise. Let
QD fQ1; : : : ;Qkg.

For sufficiently long Q–fillings

G!G DG.N1; : : : ; Nm/

of .G;P/, with kernel K, the quotient KnX is a CAT (0) cube complex.

Proof The kernels of Dehn fillings are always generated by parabolic elements, and the
parabolic elements act elliptically by assumption. Thus the kernel of any Dehn filling
is generated by elliptic elements, so KnX is simply connected by Theorem 4.1. For
sufficiently long Q–fillings the fact thatG�i\K�Qi follows from [2, Proposition 4.4],
so by Proposition 4.3 for such fillings KnX is a cube complex. Therefore, we may
assume that the subgroup K is cocubical (in the sense of Terminology 5.5).

It remains to show that for sufficiently long Q–fillings KnX is nonpositively curved.
It follows from Theorems 5.6–5.8 and 6.5 that for sufficiently long Q–fillings each link
of each cell in KnX is simplicial. Thus it follows from Theorems 5.9, 5.11 and 6.5
that for sufficiently long Q–fillings, each link of each cell in KnX is also flag, which
means that KnX is nonpositively curved by Theorem 4.6.
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To prove Theorem 6.5, we use the following “Greendlinger Lemma” — cf [19, Lemma
2.26].

Theorem 6.7 Let C1; C2 > 0. Suppose that .G;P/ is relatively hyperbolic , with
cusped space X . For all sufficiently long fillings G!G=K, and any geodesic 
 in X
joining 1 to g 2K �f1g, there is a horoball A such that

(1) 
 contains a depth C1 vertex of A, and

(2) there is an element k of K stabilizing A such that , for two points a; b 2 A
and lying on 
 at depth at least C1, d.a; kb/ < d.a; b/ � C2 (in particular ,
d.1; kg/ < d.1; g/�C2).

Proof Let ı > 0 be such that X is ı–hyperbolic, and so are the cusped spaces for
sufficiently long fillings (that there exists such a ı is [2, Proposition 2.3]). We only
consider such fillings, without further mention of this assumption.

Now choose L and � such that every L–local .1; C2/–quasigeodesic lies within an
�–neighborhood of any geodesic with the same endpoints. (Such L and � only depend
on ı and C2; see [11, Chapter 3].)

Now choose a filling long enough that every .2LCC1C2�/–ball centered on the Cayley
graph embeds in the quotient cusped space. Let K be the kernel of the filling, and
choose g 2K � f1g. Let 
 be a geodesic from 1 to g, and let N
 be the projection to
the cusped space KnX for G=K. Within an .LCC1C2�/–neighborhood of the Cayley
graph, N
 is an L–local geodesic. But N
 cannot be an L–local .1; C2/–quasigeodesic
everywhere, since it is a loop with diameter larger than �.

In particular, there is a subsegment � of N
 of length l � L such that the endpoints Na
and Nb of � are less than l �C2 apart. This subsegment � must moreover lie in the
image of a single horoball.

The corresponding points a and b on 
 lie at depth at leastC1 in a horoballA ofX . Since
d. Na; Nb/< l�C2, there is some element k 2K stabilizing A such that d.a; kb/< l�C2,
as desired.

The following result follows immediately from [28, A.6].

Lemma 6.8 Suppose that .G;P/ is relatively hyperbolic with cusped space X and
that .H;D/� .G;P/ is a full relatively quasiconvex subgroup. There exists a constant
� satisfying the following:
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Suppose that g 2G and that x1; x2 2 gH . Suppose that 
 is a geodesic in X between
x1 and x2. Further , suppose that aP (for a 2 G and P 2 P) is a coset such that 

intersects the horoball corresponding to aP to depth at least �. Then P is infinite and
P a \Hg has finite index in P a.

Proof of Theorem 6.5 Let X be the cusped space associated to .G;P/ and suppose
that X is ı–hyperbolic. Let C2 be any positive number, and let

C1 Dmaxfjpi j; �gC 2.nC 100/ı;

where � is the constant from Lemma 6.8 above. Suppose thatK is the kernel of a filling
which is long enough to satisfy the conclusion of Theorem 6.7 with these constants.

In order to obtain a contradiction, suppose that there is an element g 2K which is of
the form

g D p1t1 � � �pntn;

where ti 2 Qi � ..K \Qi /Si /, and suppose that g is chosen such that dX .1; g/ is
minimal amongst all such choices.

Since for each i we have Qi � ..K\Qi /Si /�Qi �Si , the assumption of the theorem
implies that g ¤ 1. We can represent the equation g D p1t1 � � � tnpn by a geodesic
.2nC1/–gon in X , joining the appropriate elements of the Cayley graph in turn by
X–geodesics. Let 
 be the geodesic for g, �i the geodesic for pi and �i the geodesic
for ti .

Since g 2K �f1g, by Theorem 6.7 there exist a horoball A in X , an element k 2K
stabilizing A, and points a and b on 
 at depth at least C1 such that k stabilizes A
and d.a; kb/ < d.a; b/�C2. In particular, we have d.x; kgx/ < d.x; gx/�C2. The
geodesic .2nC1/–gon is .2n�1/ı–thin, so b lies within distance .2n� 1/ı of some
side other than 
 . The paths �i do not go deep enough into any horoballs to be this
close to b, so b lies within .2n�1/ı of some point b0 on some �i . By the choice of C1,
b0 lies at depth at least � in A.

Write AD aP for some P 2 P . Note that �i is a geodesic between two points in the
coset p1t1 � � �piQi . By Lemma 6.8, P a \Qp1t1���pii has finite index in P a. Since the
filling is a Q–filling, we have that k 2Qp1t1���pii .

Let k0 D k.p1t1���pi /
�1

, and let t 0i D k
0ti . Then k0 2K \Qi .

Note that kg D p1t1 � � �pi .k0ti /piC1 � � �pntn. Since ti … .K \Qi /Si , we have that
t 0i … .K \Qi /Si . Therefore, the element kg is another element of the required form,
contradicting the choice of g as the shortest such.
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6.4 Dehn fillings which induce CAT.0/ quotient cube complexes

Theorem 6.9 Suppose that the hyperbolic group G acts cocompactly on the CAT (0)
cube complex X , and that cell stabilizers are virtually special and quasiconvex. Let
�1; : : : ; �k be representatives of the G–orbits of cubes of X , and for each i let Qi be
the finite-index subgroup of Stab.�i / consisting of elements which fix �i pointwise.
Let QD fQ1; : : : ;Qkg, and let P be the peripheral structure on G induced by Q, as in
Definition 6.2.

If some element of Q is infinite , then there exists a Dehn filling

G�G DG.N1; : : : ; Nm/

of .G;P/, with kernel KP such that

(1) G is hyperbolic;

(2) Q consists of virtually special quasiconvex subgroups of G;

(3) KP is generated by elements in cell stabilizers;

(4) for each i , we have KP \Stab.�i /�Qi ;

(5) height.Q/ < height.Q/;

(6) KPnX is a CAT (0) cube complex.

Proof Let G, X , Q and P be as in the statement of the theorem. By Lemma 6.4,
.G;P/ is relatively hyperbolic. Moreover, for each Q 2Q, the induced structure DQ
on Q makes .Q;DQ/ relatively hyperbolic, and Q is full relatively quasiconvex in
.G;P/. Note that the assumption that some element of Q is infinite implies (by the
definition of P) that some element of P is infinite.

Property (1) holds for sufficiently long peripherally finite fillings of .G;P/ by the basic
result of relatively hyperbolic Dehn fillings [31, Theorem 1.1]. We always assume that
we have taken a filling such that G is hyperbolic.

We remark that, because each element of Q is finite-index in a cell stabilizer, each
element of Q is hyperbolic and virtually special. Moreover, since each element of P
has a finite-index subgroup which is a quasiconvex subgroup of some element of Q by
construction, each element of P is also hyperbolic and virtually special. In particular,
each element of P is residually finite. We choose particular fillings with Ni P<Pi , and
residual finiteness guarantees the existence of the fillings that we seek.
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We now explain how to ensure the properties of the conclusion of the result.

Suppose that Q 2Q. Since P is the peripheral structure induced by Q, we can choose
finite-index subgroups of elements of P which induce Q–fillings, and any such fillingG
of G naturally induces a filling Q of Q. By the Malnormal Special Quotient Theorem
[36, Theorem 12.3] — see also [3, Corollary 2.8] — for each Pi 2P there is a subgroup
PPi .Q/ PCPi such that if each filling kernel Ni satisfies Ni � PPi .Q/ then the induced

filling Q is virtually special (and hyperbolic). Let PPi be the intersection of the PPi .Q/
for all Q 2 Q. Thus, if we choose filling kernels Ni � PPi then each of the induced
fillings of each element of Q is virtually special. By [18, Proposition 4.6], the natural
map fromQ toG is injective for all sufficiently long fillings.7 If we choose a sufficiently
long peripherally finite filling of .G;P/ withNi � PPi then [18, Proposition 4.5] implies
that each Q is quasiconvex in G. This ensures property (2).

For the remaining properties, we show that they hold for sufficiently long peripherally
finite Q–fillings of .G;P/. Therefore, to ensure that all of the properties hold, it suffices
to take a sufficiently long Q–filling with each Ni P< PPi .

Property (3) holds automatically for any Q–filling, since KP is generated by conjugates
of elements in Q, and each such conjugate lies in a cell stabilizer.

We now explain how to ensure each of the remaining properties in turn for sufficiently
long Q–fillings.

For property (4), suppose that Fi t f1g is a set of coset representatives for Qi in
Stab.�i /. To ensure that (4) holds, it suffices to keep (the image of) each element of
Fi out of the image of Stab.�i / in G. This is true for sufficiently long Q–fillings by
[1, Theorem A.43.4], because Qi has finite index in Stab.�i /.

Property (5) holds for sufficiently long peripherally finite Q–fillings of .G;P/ by an
entirely analogous argument to that of [1, Theorem A.47].

Finally, property (6) holds for sufficiently long Q–fillings by Corollary 6.6.

The group G as above acts isometrically on X D KPnX with quotient naturally
isomorphic (as a topological space, but not as a complex of groups) to GnX . Therefore,
if the action of G on X is not proper, we can apply Theorem 6.9 to this action, to
obtain a further quotient. By induction on height, we obtain the following result from
the introduction.
7Lemma 3.7 of [18] ensures that sufficiently long Q–fillings are sufficiently wide, in the terminology of
that paper.
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Theorem F Suppose that the hyperbolic group G acts cocompactly on a CAT (0) cube
complex X and that cell stabilizers are virtually special and quasiconvex. There exists
a quotient G DG=K such that

(1) the quotient KnX is a CAT (0) cube complex;

(2) the group G is hyperbolic; and

(3) the action of G on KnX is proper (and cocompact).

Appendix A quasiconvexity criterion

In this appendix, we give a criterion (Theorem A.3) for a possibly infinite union of
quasiconvex sets in a hyperbolic space to be quasiconvex. This criterion is used in
the forward direction of Theorem A: quasiconvex cell stabilizers imply quasiconvex
hyperplane stabilizers. This criterion may be of independent interest.

Since any subset is a union of points, clearly some assumptions are needed.

We begin with a basic lemma about finite unions of quasiconvex subsets.

Lemma A.1 Suppose that Y is ı–hyperbolic , and P � Y is a union of k �–quasi-
convex subsets P1; : : : ; Pk such that Pi \PiC1 ¤ ∅ for each i . Then P is �–quasi-
convex, where

�D ı.log2.k/C 1/C �:

Proof Consider a pair of points x 2Pr and y 2Ps . Without loss of generality, assume
that r < s (the case r D s being straightforward).

Now choose a sequence of points pi 2 Pi \PiC1 for r � i < s, let � be a geodesic
between x and y and let u be a point on � . Our task is to bound the distance from u

to P .

Consider the broken geodesic 
 D Œx; pr ; prC1; : : : ; ps�1; y�. Since the Pi are �–
quasiconvex, 
 is contained in an �–neighborhood of Pr [ � � � [Ps � P .

Consider the geodesic polygon with one side the geodesic � D Œx; y� and the other
sides the geodesics forming 
 . Let r0 D

�
1
2
.r C s/

˘
, and consider the geodesic

triangle �; Œx; pr0 �; Œpr0 ; y�. By ı–hyperbolicity, u lies within ı of one of Œx; pr0 � and
Œpr0 ; y�. Suppose it is Œx; pr0 � (the other case being entirely similar), and suppose that
u1 2 Œx; pr0 � is within ı of u.
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Now let r1D
�
1
2
.rCr0/

˘
and consider the geodesic triangle Œx; pr1 �; Œpr1 ; pr0 �; Œpr0 ; x�.

By ı–hyperbolicity, u1 is within ı of one of Œx; pr1 � or Œpr1 ; pr0 �, so there is u2 on
one of these sides within ı of u1 and within 2ı of u.

We proceed in this manner, in each case making the interval of indices half as long.
After t steps of this argument we find a point ut which is within tı of u.

After at most d D log2.k/C 1 steps, we have a geodesic triangle where two sides are
Œpl ; plC1�; ŒplC1; plC2� (or maybe one endpoint x or y), and we have ud within dı
of u, but also within � of P .

The following straightforward instance of “linear-beats-log” is tailored for use in the
proof of Theorem A.3.

Lemma A.2 Fix ı; � > 0, and let g.x/D ı.log2.xC 1/C 1/C �. For any m> 0 and
c � 0 there exists a natural number Rm;�;ı such that for all R0 >Rm;�;ı ,

g.R0/ <
1

200
m

�
1

4
R0�

2g.R0/C 1

m
� 3c

�
:

The next result states that under appropriate hypotheses, the union of an arbitrary
number of quasiconvex subsets is itself quasiconvex, with constant not depending on
the number of such subsets.

Theorem A.3 Suppose that ‡ is a ı–hyperbolic space and that m; � > 0 and c � 0 are
real numbers. There exists a constant �0 such that for any (finite or countably infinite)
collection of subsets fXigƒiD1 of ‡ for which

(1) each Xi is �–quasiconvex,

(2) for each i we have Xi \XiC1 ¤∅, and

(3) for any i; j , if x 2Xi and y 2Xj , we have d.x; y/�m.ji � j j � c/,

the set X D
S
i Xi is �0–quasiconvex.

Proof Let g.x/D ı.log2.xC 1/C 1/C �, and let R D Rm;�;ı be the number from
Lemma A.2. Without loss of generality we may assume that R � 1.

If ƒ� 100R then Lemma A.1 implies X is �–quasiconvex with

�D ı.log2.100R/C 1/C � D g.100R� 1/:

On the other hand, suppose that ƒ> 100R and fix u; v 2X . Let j and k be such that
u2Xj and v2Xk , and without loss of generality suppose that j �k. It suffices to show
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that any geodesic Œu; v� stays uniformly close to Xj [� � �[Xk . If jk�j j � 100R then
this follows from Lemma A.1, so suppose that jk�j j> 100R. Let Y DXj [� � �[Xk .

Our strategy is to build a path between u and v which is uniformly quasigeodesic
and stays uniformly close to Y . The theorem then follows by quasigeodesic stability.
Choose a sequence of indices t0D j; t1; : : : ; ts�1; tsDk such that for each 0� r � s�2,

trC1� tr D 100R;

and
ts � ts�1 2 Z\ Œ100R; : : : ; 200R�:

Moreover, for each 0� r � s choose some ur 2Xtr . We require u0 D u and us D v.

For r 2 f0; : : : ; s� 1g, let 
r be a geodesic between ur and urC1. Let

K D g.200R/D ı.log2.200RC 1/C 1/C �:

Since we assume R � 1, we know that K > ı.

Since we know that for each r 2 f0; : : : ; s � 1g we have trC1� tr � 200R, we know
that the set

Yr D

trC1[
kDtr

Xk

is K–quasiconvex, by Lemma A.1. In particular, the geodesic 
r lies in a K–neighbor-
hood of Yr .

For each r 2 f0; : : : ; s� 1g and each x 2 
r , let �r.x/ denote the set of closest points
on Yr to x. Furthermore, let Ir.x/ be the set of indices l such that �r.x/\Xl ¤∅.

Claim A.3.1 For any v 2 ftr ; : : : ; trC1g there exists xv 2 
r such that

dN.v; Ir.xv//�
1

2

�
2KC1

m
C c

�
:

Proof For any y 2�r.x/ we have d.x; y/�K. Now, if x and x0 are adjacent vertices
and y 2 �r.x/ with y 2Xk and z 2 �r.x0/ with z 2Xl then

m.jk� l j � c/� d.y; z/� d.y; x/C d.x; x0/C d.x0; z/� 2KC 1;

so jk� l j � .2KC 1/=mC c.

The claim now follows immediately from the fact that tr 2 Ir.ur/ and trC1 2 Ir.urC1/,
letting x and x0 run over adjacent pairs of vertices in 
r .
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u0 D u

u1

y1�0

�1


0


1

y0

x1

v D us

us�1


s�1

�s�1
�s

ys�2

xs�2

ys�1

xs�1
x0 � � �

u2

Figure 3: The �i forming a broken geodesic.

Suppose 0� r � s� 1. Using Claim A.3.1, we can choose a point xr 2 
r and a point
yr 2 �r.xr/ such that yr 2Xkr and

(�)
ˇ̌̌̌
kr �

tr C trC1

2

ˇ̌̌̌
�
2KC 1

2m
C c:

Now, for each r 2 f1; : : : ; s� 1g, let �r be a geodesic between yr�1 and yr . Further,
let �0 be a geodesic from u to y0 and let �s be a geodesic from ys�1 to v (note that
there is no point ys); see Figure 3. We bound the Gromov product between �t and
�tC1 for each t . (There is no reason to expect such a bound on the Gromov product
between 
r and 
rC1.)

Though we have no control on the lengths of the segments �0 and �s , the lengths of
the other segments can be bounded below:

Claim A.3.2 Suppose 0 < r < s. The length of �r is at least 200K.

Proof By the choice of the index kr in (�),

kr �kr�1 �
trC1� tr�1

2
�
2KC1

m
�2cD 100R�

2KC1

m
�2c > 50R�

2KC1

m
�2c

(the equality follows from the choice of tr ).

Below, we apply Lemma A.2 with R0 D 200R, noting that K D g.200R/, where g is
the function from that lemma. We have

j�r j D dG.yr�1; yr/�m.kr � kr�1� c/ > m
�
50R�

2KC1

m
� 3c

�
� 200K:

The second inequality above follows from the fact that yi 2Xki so such points are at
least distance m.kr � kr�1� c/ apart. The final inequality follows from the promised
use of Lemma A.2.

Claim A.3.3 Let 0� r � s� 1. The Gromov product of �r and �rC1 is at most 8K.

Proof We first handle the case that 0 < r < s� 1.
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r�1


rC1

�r

�rC1

ur

urC1

xr

yryr�1

yrC1

xr�1

xrC1


r

z z0

Figure 4: Computing the Gromov product of �r and �rC1.

For i 2 fr; r C 1g, the path �i is one side of a pentagon. The other sides are

(a) two sides of length at most K at either end of �i , and

(b) two “halves” of adjacent geodesics: the second “half” of 
i�1 and the first “half”
of 
i , joined at ui .

See Figure 4.

By Claim A.3.2 the geodesics �r and �rC1 have length at least 200K. Let z be the
point on �r at distance exactly 8K from yr .

Since geodesic pentagons are 3ı–slim, we know that z must be distance at most 3ı from
some point on one of the other four sides. However, it cannot be within distance 3ı of
the geodesic between xr and yr since that geodesic has length at most K. Similarly,
since j�r j � 200K, z cannot be within 3ı of the geodesic between xr�1 and yr�1. We
claim that z also cannot be within 3ı of the part of 
r�1 contained in the pentagon.

Indeed, suppose w 2 
r�1, and choose iw 2 Ir�1.w/� Œtr�1; tr �. There is a point w0

of �r�1.w/ in Xiw ; thus d.w;w0/ � K. The point xr is likewise within K of some
Xkr where kr satisfies the inequality (�). This implies that

jkr � iw j �
trC1� tr

2
�
2KC 1

2m
� c;

and so, using Lemma A.2 again,

d.xr ; w/�m

�
trC1� tr

2
�
2KC1

2m
�2c

�
�2K�m

�
50R�

2KC1

m
�3c

�
�2K�198K:

But this contradicts d.xr ; w/� d.xr ; z/C d.z; w/� 9KC 3ı � 12K.

Geometry & Topology, Volume 27 (2023)



Hyperbolic groups acting improperly 3457


0

�0 �1

u1

u2

x1

y1


1

u

y0

x0

Figure 5: Computing the Gromov product of �0 and �1.

We have shown that there is some point w on 
r between ur and xr within 3ı of z.
Note that d.xr ; w/� d.yr ; z/�K � 3ı � 4K, since K � ı.

Now consider the pentagon formed with �rC1 on one side, and the point z0 on �rC1
which is distance exactly 8K from yr . An entirely analogous argument to the above
shows that there is some w0 between xr and urC1 on 
r such that d.z0; w0/� 3ı, and
d.xr ; w

0/� 4K. Since 
r is geodesic,

d.w;w0/D d.w; xr/C d.xr ; w/� 8K:

It follows that d.z; z0/ � 8K � 6ı � 2K > ı. Therefore, the Gromov product
.yr�1; yrC1/yr is strictly less than d.z; yr/D d.z0; yr/D 8K whenever 0 < r < s.

The cases r D 0 and r D s� 1 are symmetric, so it suffices to handle the case r D 0;
see Figure 5. We are trying to show that .u; y1/y0 � 8K, so we may suppose without
loss of generality that d.y0; u/ > 8K. Thus there is a point z on �0 at distance exactly
8K from y0. Since d.x0; y0/�K, this point is within ı of a point w on 
0 between u
and x0.

For the point z0 on �1 at distance 8K from y0, we argue as before. We are again able
to deduce that d.z; z0/ > ı, and so .u; y1/y0 � 8K.

Thus, we have a collection of arcs �i which form a broken geodesic between u and
v with segments of length at least 200K (except possibly the first and last) and all
Gromov product at most 8K at the corners. Thus the union of the �i forms a global
quasigeodesic with uniformly bounded parameters. However, each �i lies within a
.3ıCK/–neighborhood of the union of the 
i , which in turn lie in a K–neighborhood
of the union of the Xi . As explained above, this suffices to prove that the union of the
Xi is �0–quasiconvex with the constant �0 depending on the quantities ı, m and �, but
not on the number of the Xi , as required.
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Cyclic homology, S 1–equivariant Floer cohomology
and Calabi–Yau structures

SHEEL GANATRA

We construct geometric maps from the cyclic homology groups of the (compact or
wrapped) Fukaya category to the corresponding S1–equivariant (Floer/quantum or
symplectic) cohomology groups, which are natural with respect to all Gysin and
periodicity exact sequences and are isomorphisms whenever the (nonequivariant)
open–closed map is. These cyclic open–closed maps give constructions of geometric
smooth and/or proper Calabi–Yau structures on Fukaya categories, which in the
proper case implies the Fukaya category has a cyclic A1 model in characteristic 0,
and also give a purely symplectic proof of the noncommutative Hodge–de Rham
degeneration conjecture for smooth and proper subcategories of Fukaya categories of
compact symplectic manifolds. Further applications of cyclic open–closed maps, to
counting curves in mirror symmetry and to comparing topological field theories, are
the subject of joint projects with Perutz and Sheridan, and with Cohen.
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1 Introduction

This paper concerns the compatibility between chain level S1–actions arising in two
different types of Floer theory on a symplectic manifold M . The first of these C��.S

1/–
actions1 is induced geometrically on the Hamiltonian Floer homology chain complex

1We will use a cohomological grading convention, so singular chain complexes are negatively graded.
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CF�.M /, formally a type of Morse complex for an action functional on the free loop
space, through rotating free loops. The homological action of ŒS1� is known as the BV
operator Œ��, and the C��.S

1/–action can be used to define S1–equivariant Floer2

homology theories; see eg Bourgeois and Oancea [6] and Seidel [51]. The second
C��.S

1/–action lies on the Fukaya category of M , and has discrete or combinatorial
origins, coming from the hierarchy of compatible cyclic Z=kZ–actions on cyclically
composable chains of morphisms between Lagrangians. A (categorical analogue of a)
fundamental observation of Connes [13], Tsygan [63] and Loday and Quillen [42] is
that such a structure, which exists on any category C, can be packaged into a C��.S

1/–
action on the Hochschild homology chain complex CH�.C/ of the category; see also
Keller [32] and McCarthy [43]. The associated operation of multiplication by (a cycle
representing) ŒS1� is frequently called the Connes B operator, and the corresponding
S1–equivariant homology theories are called cyclic homology groups.

A relationship between the Hochschild homology of the Fukaya category F and Floer
homology on M is provided by the so-called open–closed string map

(1-1) OC W CH�.F/! CF�Cn.M /I

see Abouzaid [1]. Our main result is about the compatibility of OC with C��.S
1/–

actions. Namely, we prove — under technical hypotheses detailed below the main
result — that OC can be made (coherently homotopically) C��.S

1/–equivariant:

Theorem 1.1 Suppose that M, its Fukaya category and CF�.M / satisfy the technical
assumptions (?). Then the map OC admits a geometrically defined S 1–equivariant
enhancement , to an A1 homomorphism of C��.S

1/–modules ,

fOC 2 RHomn
C��.S1/

.CH�.F/;CF�.M //:

Remark 1.2 Theorem 1.1 implies (but is not implied by) the statement (Theorem 5.14)
that ŒOC� intertwines homological actions of ŒS1�.

Remark 1.3 In the geometric settings considered here OC does not a priori strictly
intertwine the C��.S

1/–actions (due to a priori nonequivariant perturbations made to
moduli spaces to define operations, and further due to the potential nontriviality of �,
which — as� is defined using moduli spaces but B is defined using algebra — imply that

2Sometimes S1–equivariant Floer theory is instead defined as Morse theory of an action functional on the
S1–Borel construction of the loop space. For a comparison between these two definitions, see [6].
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OCıB and�ıOC involve moduli spaces of maps from differing domains). In particular,
the homomorphism fOC involves extra data recording coherently higher homotopies
between the two C��.S

1/–actions. This explains our use of the term “enhancement”.

Remark 1.4 It can be shown using usual invariance arguments that the enhancementfOC we define in this paper is uniquely determined up to homotopy: while the geometric
chain-level construction requires a number of auxiliary choices (of perturbation data
on moduli spaces), any two sets of such choices produce homotopic enhancements.

To explain the consequences of Theorem 1.1 to cyclic homology and equivariant
Floer homology, recall that there are a variety of S1–equivariant homology chain
complexes (and homology groups) that one can associate functorially to an A1

C��.S
1/–module P . For instance, denote by

(1-2) PhS1 ; P hS1

; P Tate

the homotopy orbit complex, homotopy fixed-point complex and Tate complex construc-
tions of P , described in Section 2.2. When applied to the Hochschild complex CH�.C/,
the constructions (1-2) by definition recover complexes computing (positive) cyclic
homology, negative cyclic homology and periodic cyclic homology groups of C, respec-
tively; see Section 3.2. Similarly the group H�.CF�.M /hS1/ is the S1–equivariant
Floer cohomology studied (for the symplectic homology Floer chain complex); see eg
Bourgeois and Oancea [6], Seidel [51] and Viterbo [64]. The groups H�.CF�.M /hS1

/

and H�.CF�.M /Tate/ have also been studied in recent work in Floer theory; see
Albers, Cieliebak and Frauenfelder [4], Seidel [56] and Zhao [66]. Functoriality of
the constructions (1-2) and homotopy-invariance properties of C��.S

1/–modules (see
Corollary 2.18 and Proposition 2.19) immediately imply:

Corollary 1.5 Let HF�;C=�=1
S1 .M / denote the (cohomology of the) homotopy orbit

complex, fixed-point complex, and Tate complex construction applied to CF�.M /, and
let HCC=�=1.C/ denote the corresponding positive/negative/periodic cyclic homology
groups. Under the hypotheses (?) of Theorem 1.1, fOC induces cyclic open–closed
maps

(1-3) ŒfOCC=�=1� W HCC=�=1� .F/! HF�Cn;C=�=1

S1 .M /;

which are naturally compatible with respect to the various periodicity/Gysin exact
sequences, and which are isomorphisms whenever OC is.

Geometry & Topology, Volume 27 (2023)
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The map (1-1) is frequently an isomorphism, allowing one to recover in these cases
closed string Floer/quantum homology groups from open string, categorical ones; see
Abouzaid, Fukaya, Oh, Ohta and Ono [2], Bourgeois, Ekholm and Eliashberg [5],
Ganatra [24] and Ganatra, Perutz and Sheridan [27]. In such cases, Theorem 1.1 and
Corollary 1.5 allow one to further categorically recover the C��.S

1/ as well as the
associated equivariant homology groups (in terms of the cyclic homology groups of
the Fukaya category).

Remark 1.6 There are other S1–equivariant homology functors to which our results
apply tautologically as well. For instance, consider the contravariant functor P 7!

.PhS1/_; when applied to CH�.C/ this produces the cyclic cohomology chain complex
of C.

We have been deliberately vague about which Fukaya category and which Hamiltonian
Floer homology groups Theorem 1.1 applies to, as it applies in several different
geometric (compact and noncompact) settings. To keep this paper a manageable length,
we implement the map fOC and prove Theorem 1.1 in the technically simplest of such
settings — our technical hypotheses are detailed in (?) below — for which the moduli
spaces appearing in the constructions can be shown to be well behaved by classical
methods. That being said, we should remark that our methods and arguments are
orthogonal to the usual analytic difficulties faced in constructing Fukaya categories and
open–closed maps in more general contexts, and we expect they should extend relatively
directly to other settings. For instance, in the setting of relative Fukaya categories of
compact projective Calabi–Yau manifolds (not considered here), an adapted version of
our construction will appear in joint work with Perutz and Sheridan [26].

(?) Assumptions on M , F and CF�.M /

In our main results we make technical assumptions, explained in detail in Section 3.3
for M and its Fukaya category and in Sections 4.1.1–4.1.2 for the corresponding
Hamiltonian Floer homology chain complexes, which broadly encapsulate the following
situations:

(1) If M is compact and satisfies suitable technical hypotheses such as being mono-
tone or symplectically aspherical (see Section 3.3.1), one could take F to be the
usual Fukaya category (or a summand thereof) of those compact Lagrangians
also satisfying suitable technical hypotheses such as being monotone or not
bounding disks with symplectic area. In this case CF�.M /, the Hamiltonian

Geometry & Topology, Volume 27 (2023)
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Floer complex of any (sufficiently generic) Hamiltonian, is quasi-isomorphic to
the quantum cohomology ring with its trivial C��.S

1/–action.

(2) If M is noncompact and Liouville, one could take F DW to be the wrapped
Fukaya category and CF�.M / D SC�.M / to be the symplectic cohomology
cochain complex with its (typically highly nontrivial) C��.S

1/–action.

(3) If M is noncompact and Liouville, one could take F �W to be the Fukaya
category of compact exact Lagrangians. When restricted to CH�.F/, the map
OC to SC�.M / of (2) factors through H�.M; @1M /, the relative (or compactly
supported) cohomology group with its trivial C��.S

1/–action. In fact, as re-
viewed in Section 5.6.2, OC further factors through the symplectic homology
chain complex SC�.M / Š .SC�.M //_Œ�2n�. One could take any of these
groups (SC�.M /, H�.M; @1M / or SC�.M /) to be CF�.M / here. For the
main portion of the paper we use CF�.M / WDH�.M; @1M /.

For example, in case (2) above, when the relevant ŒOC� map is an isomorphism,
Corollary 1.5 computes various S1–equivariant symplectic cohomology groups3 in
terms of cyclic homology groups of the wrapped Fukaya category.

Remark 1.7 For the Fukaya subcategory of a single Lagrangian in a compact symplec-
tic manifold M over a characteristic-zero (Novikov) field containing R, a variant of the
(positive) cyclic open–closed map has also been constructed by Fukaya, Oh, Ohta and
Ono [23] (and will be generalized to multiple Lagrangians in Abouzaid, Fukaya, Oh,
Ohta and Ono [2]). Their construction, which requires the target group (H�.M /) to
have trivial C��.S

1/–action, uses Connes’ small (“coinvariants of cyclic group action
bar”) complex for (in characteristic zero only) positive cyclic homology, along with
cyclically symmetric (necessarily virtual) perturbations of all moduli spaces (building
on work of Fukaya [20] described in Remark 1.14), to directly construct a geometric
map bypassing the higher A1 C��.S

1/–action homotopies constructed here. It does
not seem possible to generalize the methods of [23] to the (possibly noncompact M with
arbitrary coefficients, eg integral/rational/finite characteristic) settings considered here;
see for instance the discussion in Remark 1.11. Also, the perspective of C��.S

1/–
modules taken here makes it simpler to talk about (and describe) all cyclic homology
theories at once, as well to study the compatibility of additional structures, eg exact
sequences, semi-infinite/noncommutative Hodge structures.

3In particular, it computes the usual equivariant symplectic cohomology SH�
S1.M /DH�.SC�.M /hS1/;

see Bourgeois and Oancea [6] but note differing conventions, eg regarding homology vs cohomology.
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Remark 1.8 There are other settings in which Fukaya categories are now well studied,
for instance Fukaya categories of Lefschetz fibrations (and more general LG models), or
more generally partially wrapped Fukaya categories (such as wrapped Fukaya categories
of Liouville sectors). We do not discuss these situations in our paper, but expect suitable
versions of Theorem 1.1 to hold in such settings too. We do note however that the
target of the open–closed map from Hochschild homology in such settings is usually
more subtle than in the cases discussed here, eg it does not typically have the structure
of a unital ring.

Remark 1.9 One can consider variations on Theorem 1.1. As a notable example,
let M denote a (noncompact) Liouville manifold, and F the Fukaya category of
compact exact Lagrangians in M . Then there is a nontrivial refinement of the map
HH�.F/!H�.M; @1M /, which can be viewed as a pairing HH�.F/�H�.M /!k,
to a pairing

CH�.F/˝ SC�.M /! k:

(Symplectic cohomology does not satisfy Poincaré duality, so this is not equivalent to
a map to symplectic cohomology.) Our methods also imply that this pairing admits an
S1–equivariant enhancement, with respect to the diagonal C��.S

1/–action on the left
and the trivial action on the right. Passing to adjoints, we obtain cyclic open–closed
maps from S1–equivariant symplectic cohomology to cyclic cohomology groups of F ,
and from cyclic homology of F to equivariant symplectic homology. See Section 5.6.2
for more details.

Beyond computing equivariant Floer cohomology groups in terms of cyclic homology
theories, we describe in the following subsection two applications of Theorem 1.1 to
the structure of Fukaya categories.

Remark 1.10 We anticipate additional concrete applications of Theorem 1.1 and its
homological shadow, Theorem 5.14. For instance, one can study the compatibility of
open–closed maps with dilations in the sense of Seidel and Solomon [58], which are
elements B in SH�.M / satisfying Œ��B D 1 — the existence of dilations strongly con-
strains intersection properties of embedded Lagrangians; see Seidel [55]. Theorem 5.14,
or rather the variant discussed in Remark 1.9, implies that if there exists a dilation ,
eg an element x 2 SH1.M / with Œ��x D 1, then on the Fukaya category of compact
Lagrangians F , there exists x0 2 .HHnC1.F//_ with x0 ı ŒB� D Œtr�, where tr is the
geometric weak proper Calabi–Yau structure on the Fukaya category; see Section 1.1.
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1.1 Calabi–Yau structures on the Fukaya category

Calabi–Yau structures are a type of cyclically symmetric duality structure on a dg or
A1 category C generalizing the notion of a nowhere-vanishing holomorphic volume
form on a complex algebraic variety X in the case C D perf.X /. As is well understood,
there are two (in some sense dual) types of Calabi–Yau structures on A1 categories:

(1) Proper Calabi–Yau structures (Kontsevich and Soibelman [37]) These can
be associated to proper categories C (those which have cohomologically finite-
dimensional morphism spaces), abstract and refine the notion of integration
against a nowhere-vanishing holomorphic volume form. For C D perf.X / with
X a proper n–dimensional variety, the resulting structure in particular induces
the Serre duality pairing with trivial canonical sheaf Ext�.E ;F/�Ext�.F ; E/!
kŒ�n�. Roughly, a proper Calabi–Yau structure on C (of dimension n) is a map
Œetr� W HCC� .C/! kŒ�n� satisfying a nondegeneracy condition.

(2) Smooth Calabi–Yau structures (Kontsevich, Takeda and Vlassopoulos [39])
These can be associated to smooth categories C (those with perfect diagonal
bimodule), and abstract the notion of the nowhere-vanishing holomorphic volume
form itself, along with the induced identification (by contraction against the
volume form) of polyvectorfields with differential forms. Roughly, a smooth
Calabi–Yau structure on C (of dimension n) is a map Œecotr� W kŒn�! HC�� .C/, or
equivalently an element Œe�� or “ŒvolC �” in HC��n.C/, satisfying a nondegeneracy
condition.

In both cases, the nondegeneracy condition can be phrased purely in terms of the
underlying nonequivariant shadow of the map, eg in the first case on the induced map
Œtr� W HH�.C/ ! HCC.C/ Œztr�

�! kŒ�n�. Precise definitions are reviewed in Section 6.
When C is simultaneously smooth and proper, it is a folk result that the notions are
equivalent; see [27, Proposition 6.10].

In general, Calabi–Yau structures may not exist and when they do, there may be a
nontrivial space of choices; see Menichi [45] for an example. A Calabi–Yau structure
in either form induces nontrivial identifications between Hochschild invariants of the
underlying category C.4 Moreover, categories with Calabi–Yau structures (should) carry
induced 2–dimensional chain level TQFT operations on their Hochschild homology

4In the proper case, there is an induced isomorphism between Hochschild cohomology and the linear dual
of Hochschild homology. In the smooth case, there is an isomorphism between Hochschild cohomology
and homology without taking duals.
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chain complexes, associated to moduli spaces of Riemann surfaces with marked points;
see Costello [14] and Kontsevich and Soibelman [37] in the proper case, and Kontsevich,
Takeda, and Vlassopoulos in the smooth case [39; 38]. If the category is proper and
nonsmooth (resp. smooth nonproper) the resulting TQFT is incomplete in that every
operation must have at least one input (resp. output). In the smooth and proper case in
particular, Calabi–Yau structures play a central role in the mirror symmetry motivated
question of recovering Gromov–Witten invariants from the Fukaya category and to the
related question of categorically recovering Hamiltonian Floer homology with all of its
(possibly higher homotopical) operations. See Costello [14; 15] and Kontsevich [35]
for work around these questions in the setting of abstract topological field theories,
and Ganatra, Perutz and Sheridan [27] for applications of Calabi–Yau structures to
recovering genus-0 Gromov–Witten invariants from the Fukaya category.

Remark 1.11 A closely related to (1), and well studied, notion is that of a cyclic A1

category: this is an A1 category C equipped with a chain level perfect pairing

h�;�iW hom.X;Y /� hom.Y;X /! kŒ�n�

such that the induced correlation functions

h�d .�;�; : : : ;�/;�i

are strictly (graded) cyclically symmetric for each d ; see for instance Cho and Lee [9],
Costello [14] and Fukaya [20]. Although the property of being a cyclic A1 structure
is not a homotopy-invariant notion (ie not preserved under A1 quasi-equivalences),
cyclic A1 categories and proper Calabi–Yau structures turn out to be weakly equivalent
in characteristic 0, in the following sense. Any cyclic A1 category carries a canonical
proper Calabi–Yau structure, and Kontsevich and Soibelman [37, Theorem 10.7] proved
that a proper Calabi–Yau structure on any A1 category C determines a (canonical up to
quasi-equivalence) quasi-isomorphism between C and a cyclic A1 category zC. When
char.k/¤ 0, the two notions of proper Calabi–Yau and cyclic A1 differ in general,
due to group cohomology obstructions to imposing cyclic symmetry. In such instances,
it seems that the notion of a proper Calabi–Yau structure is the “correct” one (as it is a
homotopy-invariant notion and, by Theorem 1.12, the compact Fukaya category always
has one).

As a first application of Theorem 1.1, we verify the longstanding expectation that
various compact Fukaya categories possess geometrically defined canonical Calabi–
Yau structures.
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Theorem 1.12 The Fukaya category of compact Lagrangians has , under technical
hypotheses (?), a canonical geometrically defined proper Calabi–Yau structure over
any ground field k (over which the Fukaya category and fOC are defined ).

In fact, this proper Calabi–Yau structure is easy to describe in terms of the cyclic
open–closed map (cf Corollary 1.5): it is the composition of the map5

fOCC W HCC� .F/!H�Cn.M; @M /..u//=uH�Cn.M; @M /ŒŒu��

with the linear map to k which sends the top class PD.pt/ � u0 2H 2n.M; @M / to 1,
and all other generators ˛ �u�i to 0. See Section 6 for more details.

As a consequence of the discussion in Remark 1.11, specifically [37, Theorem 10.7],
we deduce that

Corollary 1.13 If char.k/ D 0, then any Fukaya category of compact Lagrangians
satisfying (?) admits a (canonical up to equivalence) cyclic A1 (minimal ) model.

Remark 1.14 In the case of compact symplectic manifolds and over kD a Novikov
field containing R, Fukaya [20] constructed a cyclic A1 model of the Floer cohomology
algebra of a single compact Lagrangian, which will be extended to multiple objects by
Abouzaid, Fukaya, Oh, Ohta and Ono [2].

Remark 1.15 In order to construct (chain level) 2d–TFTs on the Hochschild chain
complexes of categories, Kontsevich and Soibelman [37] partly show (on the closed
sector) that a proper Calabi–Yau structure can be used instead of the (weakly equivalent
in characteristic 0) cyclic A1 structures considered in Costello [14]. One might
similarly hope that, for applications of cyclic A1 structures to disc-counting/open
Gromov–Witten invariants developed in Fukaya [21], a proper Calabi–Yau structure is
in fact sufficient. See Cho and Lee [9] for related work.

Turning to smooth Calabi–Yau structures, in Section 6.2, we will establish the following
existence result for smooth Calabi–Yau structures, which applies to wrapped Fukaya
categories of noncompact (Liouville) manifolds as well as to Fukaya categories of
compact manifolds.

5Recall that C�.M; @M / has the trivial C��.S
1/–module structure; the homology of the associated

homotopy orbit complex is H�Cn.M; @M /..u//=uH�Cn.M; @M /ŒŒu��, where juj D 2, as described in
Section 2.
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Theorem 1.16 Under the technical hypotheses (?), suppose further that our sym-
plectic manifold M is nondegenerate in the sense of [24], meaning that the map
ŒOC� W HH��n.F/ ! HF�.M / hits the unit 1 2 HF�.M /. Then , its (compact or
wrapped ) Fukaya category F possesses a canonical , geometrically defined strong
smooth Calabi–Yau structure.

Once more, the cyclic open–closed map gives an efficient description of this structure:
it is the unique element HC��n.F/ mapping via fOC� to the geometrically canonical
lift z1 2H�.CF�.M /hS1

/ of the unit 1 2 CF�.M / described in Section 4.4.6

Remark 1.17 In contrast to compact Fukaya categories or wrapped Fukaya cate-
gories of Liouville manifolds, the Fukaya categories of noncompact Lagrangians
discussed in Remark 1.8 are typically not Calabi–Yau in either sense,7 even if they
are smooth or proper categories; indeed they typically arise as homological mirrors to
perfect/coherent complexes on non-Calabi–Yau varieties. Instead, one might expect
such categories to admit pre-Calabi–Yau structures in the sense of Kontsevich, Takeda
and Vlassopoulos [38] (see also Yeung [65] and Seidel [57] for a construction of related
structures), or relative Calabi–Yau structures in the sense of Brav and Dyckerhoff [7].

The notion of a smooth Calabi–Yau structure, or sCY structure, will be studied further
in forthcoming joint work with R Cohen [12], and used to compare the wrapped Fukaya
category of a cotangent bundle and string topology category of its zero section as
categories with sCY structures (in order to deduce a comparison of topological field
theories on both sides).

1.2 Noncommutative Hodge–de Rham degeneration for smooth and proper
Fukaya categories

For a C��.S
1/–module P , there is a canonical Tor spectral sequence converging to

H�.PhS1/ with first page H�.P /˝k H�.khS1/ Š H�.P /˝k H�.CP1/. When
applied to the Hochschild complex P DCH�.C/ of a (dg/A1) category C, the resulting
spectral sequence, from (many copies of) HH�.C/ to HCC.C/ is called the Hochschild-
to-cyclic or noncommutative Hodge–de Rham (ncHDR) spectral sequence. The latter
name comes from the fact that when C D perf.X / is perfect complexes on a complex

6As shown in [24; 27], if ŒOC� hits 1, then ŒOC� is an isomorphism, and hence by Corollary 1.5, ŒfOC�� is
too. Hence one can speak about the unique element.
7One manifestation of this is the failure of the target of the open–closed map to have a distinguished unit
element, as also discussed in Remark 1.8.

Geometry & Topology, Volume 27 (2023)



Cyclic homology, S1–equivariant Floer cohomology and Calabi–Yau structures 3471

variety X , this spectral sequence is equivalent (via Hochschild–Kostant–Rosenberg
(HKR) isomorphisms) to the usual Hodge-to-de Rham spectral sequence from Hodge
cohomology to de Rham cohomology

H�.X; ��X /)H�dR.X /;

which degenerates (as we are in characteristic 0) whenever X is smooth and proper.
Motivated by this, Kontsevich [37; 35] formulated the noncommutative Hodge–de Rham
(ncHDR) degeneration conjecture: for any smooth and proper category C in charac-
teristic 0, its ncHDR spectral sequence degenerates. A general proof of this fact for
Z–graded categories was recently given by Kaledin [30; 29], following earlier work
establishing it in the coconnective case.

Using the cyclic open–closed map, we can give a purely symplectic proof of the ncHDR
degeneration property for those smooth and proper C arising as Fukaya categories,
including in non-Z–graded cases:

Theorem 1.18 Let A � F.M / be a smooth and proper subcategory of any Fukaya
category of any compact symplectic manifold satisfying the technical assumptions (?),
over any field k (over which the Fukaya category and the cyclic open–closed map
are defined ). Then , the noncommutative Hodge–de Rham spectral sequence for A
degenerates.

Proof The noncommutative Hodge–de Rham spectral sequence for A degenerates at
page 1 if and only if P DCH�.A/ is isomorphic (in the category of C��.S

1/–modules)
to a trivial C��.S

1/–module, for instance, if the C��.S
1/–action is trivializable; see

Dotsenko, Shadrin and Vallette [16, Theorem 2.1]. For compact symplectic mani-
folds M , recall that CF�.M /ŠH�.M / has a canonically trivial(izable) C��.S

1/–
action. (See Corollary 4.16; this comes from, for instance, the fact that we can choose a
C 2–small Hamiltonian to compute the complex, all of the orbits of which are constant
loops on which geometric rotation acts trivially. Or more directly, we can modify the
definition of fOC to give a map directly to H�.M / with its trivial C��.S

1/–action, as
described in Section 5.6.1.)

By earlier work [27; 25], whenever A is smoooth, OCjA is an isomorphism from
HH��n.A/ onto a nontrivial summand S of HF�.M / Š QH�.M /; the C��.S

1/–
action on this summand is trivial too. Theorem 1.1 shows that fOCjA induces an
isomorphism in the category of C��.S

1/–modules between CH�.A/ and S Œn� with its
trivial action, so we are done.
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Remark 1.19 Theorem 1.18 holds for a field k of any characteristic over which
the Fukaya category and relevant structures (satisfy (?) and) are defined, for any
grading structure that can be defined on the given Fukaya category; eg it holds for the
Z=2–graded Fukaya category of a monotone symplectic manifold over a field of any
characteristic. In contrast, for an arbitrary smooth and proper Z=2–graded dg category
in characteristic zero, the noncommutative Hodge–de Rham degeneration is not yet
established (though it is expected). And it is not always true in finite characteristic.

An incomplete explanation for the degeneration property holding for finite characteristic
smooth and proper Fukaya categories may be that the Fukaya category over a charac-
teristic p field k (whenever Lagrangians are monotone or tautologically unobstructed
at least) may always admit a lift to second Witt vectors W2.k/.8

As is described in joint work (partly ongoing) with Perutz and Sheridan [27; 26],
the cyclic open–closed map fOC� can further be shown to be a morphism of semi-
infinite Hodge structures, a key step (along with the above degeneration property and
construction of Calabi–Yau structure) in recovering Gromov–Witten invariants from
the Fukaya category and enumerative mirror predictions from homological mirror
theorems.

1.3 Outline of paper

In Section 2, we recall a convenient model for the category of A1–modules over
C��.S

1/ and various equivariant homology functors from this category. In Section 3,
we review the (compact and wrapped) Fukaya category along with C��.S

1/–action
on its (and more generally, any cohomologically unital A1 category’s) nonunital
Hochschild chain complex (a variant on usual cyclic bar complex that has usually
appeared in the symplectic literature, eg in Abouzaid [1]). In Section 4, we recall
the construction of the A1 C��.S

1/–module structure on the (Hamiltonian) Floer
chain complex, following Bourgeois and Oancea [6] and Seidel [51]; note that our
technical setup is slightly different, though equivalent. Then we prove our main results
in Section 5. Some technical and conceptual variations on the construction of fOC
(including Remark 1.9) are discussed at the end of this section; see Section 5.6. Finally,
in Section 6 we apply our results to construct proper and smooth Calabi–Yau structures,
proving Theorems 1.12 and 1.16.

8The author wishes to thank Mohammed Abouzaid for discussions regarding this point.
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1.4 Conventions

We work over a ground field k of arbitrary characteristic, though we note that all of
our geometric constructions are valid over an arbitrary ring, eg Z. All chain complexes
will be graded cohomologically, including singular chains of any space, which hence
have negative the homological grading and are denoted by C��.X /. All gradings are
either in Z or Z=2 (in the latter case, degrees of maps are implicitly mod 2).

Acknowledgements I’d like to thank Paul Seidel for a very helpful conversation and
Nick Sheridan for several helpful discussions about technical aspects of this paper such
as signs. I would also like to thank Zihong Chen and Yasin Uskuplu for corrections.
Part of this work was revised during a visit at the Institut Mittag-Leffler in 2015, which
I’d like to thank for its hospitality. Finally, I’d like to thank a referee for a number of
helpful suggestions, comments and corrections which improved the exposition of this
article.

The author was partially supported by the National Science Foundation through a
postdoctoral fellowship (grant DMS-1204393) and agreement DMS-1128155. Any
opinions, findings and conclusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views of the National Science
Foundation.

2 Complexes with circle action

In this section, we review a convenient model for the category of A1 C��.S
1/–modules,

for which the A1 C��.S
1/–action can be described by a single hierarchy of maps

satisfying equations. We also describe various equivariant homology complexes in this
language in terms of simple formulae. This model appears elsewhere in the literature
as1–mixed complexes or S1–complexes or multicomplexes (we will sometimes adopt
the second term); see eg [6; 66; 16], but note that the first and third references use
homological grading conventions.

2.1 Definitions

Let C��.S
1/ denote the dg algebra of chains on the circle with coefficients in k, graded

cohomologically, with multiplication induced by the Pontryagin product S1�S1!S1.
This algebra is formal, or quasi-isomorphic to its homology, an exterior algebra on one
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generator ƒ of degree �1 with no differential. Henceforth, by abuse of notation we
take this exterior algebra as our working model for C��.S

1/,

(2-1) C��.S
1/ WD kŒƒ�=ƒ2; where jƒj D �1;

and use the terminology C
sing
�� .S

1/ to refer to usual singular chains on S1.

Definition 2.1 A strict S1–complex, or a chain complex with strict/dg S1–action, is a
unital differential graded module over kŒƒ�=ƒ2.

Let .M; d/ be a strict S1–complex; by definition .M; d/ is a cochain complex (recall
our conventions for complexes from Section 1.4) and the unital dg kŒƒ�=ƒ2–module
structure is equivalent to the data of the single additional operation of multiplying by ƒ,

(2-2) �Dƒ � �WM�!M��1;

which must square to zero and anticommute with d . In other words, .M; d; �/ is what
is known as a mixed complex; see eg [8; 31; 41].

We will need to work with the weaker notion of an A1–action, or rather an A1–module
structure over C��.S

1/DkŒƒ�=ƒ2. Recall that a (left) A1–module M [33; 52; 50; 24]
over the associative graded algebra AD kŒƒ�=ƒ2 is a graded k–module M equipped
with maps

(2-3) �kj1
WA˝k

˝M !M; for k � 0;

of degree 1� k, satisfying the A1–module equations described in [50] or [24, (2.35)].
Since AD kŒƒ�=ƒ2 is unital, we can work with modules that are also strictly unital
(see [50, (2.6)]); this implies that all multiplications by a sequence with at least one
unit element is completely specified,9 and hence the only nontrivial structure maps to
define are the operators

(2-4) ık WD �
kj1
M
.ƒ; : : : ; ƒ„ ƒ‚ …

k copies

;�/ WM !M Œ1� 2k� for k � 0:

The A1–module equations are equivalent to the relations

(2-5)
sX

iD0

ıiıs�i D 0

for (2-4), for each s � 0. We summarize the discussion so far with the following
definition.
9More precisely, �1j1.1;m/Dm and �kj1. : : : ; 1; : : : ;m/D 0 for k > 1.
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Definition 2.2 An S1–complex, or a chain complex with an A1 S1–action, is a strictly
unital (left) A1–module M over kŒƒ�=ƒ2. Equivalently, it is a graded k–module M

equipped with operations fık WM !M Œ1� 2k�gk�0 satisfying, for each s � 0, the
hierarchy of equations (2-5).

Remark 2.3 If X is a topological space with S1–action, then C��.X / carries a dg
C

sing
�� .S

1/–module structure, with module action induced by the action S1 �X !X .
Under the A1 equivalence C

sing
�� .S

1/ Š kŒƒ�=ƒ2, it follows that C��.X / carries
an A1 (not necessarily dg) kŒƒ�=ƒ2–module structure, which can further be made
strictly unital, by [40, Theorem 3.3.1.2] or by passing to normalized chains. If one
wishes, one can then appeal to abstract strictification results to produce a dg kŒƒ�=ƒ2–
module which is quasi-isomorphic as A1 kŒƒ�=ƒ2–modules to C��.X /. More directly,
it turns out [12] that one can find an equivalent dg kŒƒ�=ƒ2–module by taking a
suitable quotient of the normalized singular chain complex C��.X / to form unordered
normalized singular chains of X (identifying simplices differing by permuting vertices
and quotienting by those that are degenerate).

Remark 2.4 There are multiple sign conventions for A1–modules over an A1–
algebra; the most common two conventions appear in [50, (2.6)] and [52, (1j)], as well
as many other places. These conventions are completely irrelevant for strictly unital
A D kŒƒ�=ƒ2–modules, as the reduced degree of any element in xA D spank.ƒ/ is
zero; hence the (Koszul) signs in various formulae are C1 in either convention.

For sD 0, equation (2-5) says simply that the differential d D ı0 squares to 0; for sD 1,
equation (2-5) implies ı WDı1 anticommutes with d , and for sD2, .ı/2D�.dı2Cı2d/,
or that ı2 is chain-homotopic to zero, but not strictly zero, as measured by the chain
homotopy ı2.

S1–complexes, as strictly unital A1–modules over the augmented algebra A D

kŒƒ�=ƒ2, are the objects of a dg category, which we will call

(2-6) S1–mod WD uA–mod;

whose morphisms and compositions we now recall.10 Denote by � W A ! k the
augmentation map, and xAD ker � D spank.ƒ/ the augmentation ideal. Let M and N

be two strictly unital A1 A–modules. A unital premorphism of degree k from M to N

10For the definition of this category compare [50, pages 90, 94], where it is called mod.A/Dmod.A;k/.
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is a collection of maps Fd j1 W xA˝d˝M!N for d �0, of degree k�d , or equivalently,
since dimk. xA/D 1 in degree �1, a collection of operators

(2-7) F D fFd
gd�0; Fd

WD Fd j1.ƒ; : : : ; ƒ„ ƒ‚ …
d copies

;�/ WM !N Œk � 2d �:

If T . xAŒ1�/ D
L

d�0
xAŒ1�˝d denotes the tensor algebra of xAŒ1�, then F can be alter-

natively packaged into the data of a single map F WD
L

d�0 Fd W T xAŒ1�˝M ! N

of degree k. The space of premorphisms of each degree form the graded space of
morphisms in S1–mod, which we will denote by RhomS1.�;�/:

(2-8) RhomS1.M;N / WD
M
k2Z

Rhomk
S1.M;N /

WD

M
k2Z

homgrVect.T . xAŒ1�/˝M;N Œk�/

D

�M
k2Z

homgrVect

�M
d�0

M Œ2d �;N Œk�

��
:

There is a differential @ on (2-8) described in [50, page 90]; in terms of the simplified
form of premorphisms (2-7), one has

(2-9) .@F /s D

sX
iD0

F i
ı ıM

s�i � .�1/deg.F /
sX

jD0

ıN
s�j ıFj :

An A1 kŒƒ�=ƒ2–module homomorphism, or S1–complex homomorphism, is a pre-
morphism F D fFdg which is closed, ie @F D 0. In particular, F is an A1–module
homomorphism if the following equations are satisfied for each s:

(2-10)
sX

iD0

F i
ı ıM

s�i D .�1/deg.F /
sX

jD0

ıN
s�j ıFj :

Note that the s D 0 equation reads F0 ı ıM
0
D .�1/deg.F /ıN

0
ı F0, so (if @F D 0)

F0 induces a cohomology level map ŒF0� W H�.M / ! H�Cdeg.F /.N /. A module
homomorphism (or closed morphism) F is said to be a quasi-isomorphism if ŒF0� is
an isomorphism on cohomology. A strict module homomorphism F is one for which
Fk D 0 for k > 0.

Remark 2.5 There is an enlarged notion of a nonunital premorphism (used for
modules which are not necessarily strictly unital), which is a collection of maps
f yFd W A˝d ˝M ! N gd instead of fFd W xA˝d ˝M ! N gd . Any premorphism
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F D fFdgd as we have defined it extends to a nonunital premorphism yF D f yFdg by
declaring yFd . : : : ; 1; : : : ;m/D 0. For strictly unital modules, the resulting inclusion
from the complex of premorphisms to the complex of nonunital premorphisms is a
quasi-isomorphism.

Remark 2.6 When M and N are dg modules, or strict S1–complexes, the complex
RhomS1.M;N / is a reduced bar model of the chain complex of derived kŒƒ�=ƒ2–
module homomorphisms, which is one of the reasons we have adopted the terminology
“Rhom”. In the A1 setting, we recall that there is no sensible “nonderived” notion of a
kŒƒ�=ƒ2–module map; compare [50].

The composition in the category S1–mod,

(2-11) RhomS1.N;P /˝RhomS1.M;N /! RhomS1.M;P /;

is defined by

(2-12) .G ıF /s D

sX
jD0

Gs�j
ıFj :

Remark 2.7 If M is any S1–complex, then its endomorphisms RhomS1.M;M /,
equipped with composition, form a dg algebra. As an example, consider M D k,
with trivial module structure determined by the augmentation � W kŒƒ�=ƒ2! k. It is
straightforward to compute that, as a dga,

(2-13) RhomS1.k;k/Š kŒu�; with juj D 2:

In terms of the definition of morphism spaces (2-8), u corresponds to the unique
morphism G D fGdgd�0 of degree C2 with G1 D id and Gs D 0 for s ¤ 1.

In addition to taking the morphism spaces, one can define the (derived) tensor product of
S1–complexes N and M : using the isomorphism AŠAop coming from commutativity
of AD kŒƒ�=ƒ2, first view N as a right A1 A–module (see [50, pages 90, 94], where
the category of right A–modules is called mod.k;A/, see also [52, (1j)] and [24,
Section 2]), and then take the usual (necessarily derived) tensor product of N and M

over A (see [50, page 91] or [24, Section 2.5]). The resulting chain complex — which
we will, by abuse of notation, indicate as the derived tensor product over S1 — has
underlying graded vector space

(2-14) N ˝L
S1 M WDN ˝L

A M WD
M
d�0

N ˝ xAŒ1�˝d
˝M D

M
d�0

.N ˝k M /Œ2d �;
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where the degree s part is
L

d�0

L
t Nt˝MsC2d�t . Let us refer to an element n˝m

of the d th summand of this complex by suggestive notation

n˝ƒ˝ � � �˝ƒ„ ƒ‚ …
d times

˝m

as in the first line of (2-14). With this notation, the differential on (2-14) acts as

(2-15) @.n˝ƒ˝ � � �˝ƒ„ ƒ‚ …
d

˝m/

D

dX
iD0

�
.�1/jmjıN

i n˝ƒ˝ � � �˝ƒ„ ƒ‚ …
d�i

˝mC n˝ƒ˝ � � �˝ƒ„ ƒ‚ …
d�i

˝ ıM
i m

�
:

Here our sign convention follows [24, Section 2.5] rather than [50], though the sign
difference is minimal.

Remark 2.8 Analogously to Remark 2.6, if M and N are unital dg modules over
ADkŒƒ�=ƒ2, the chain complex described above computes their derived tensor product,
whose homology is TorA.M;N /. While we have therefore opted for the notation
N ˝L

A
M , or rather the abbreviation N ˝L

S1 M , we note that the (derived) tensor
product of A1–modules is often written in the A1 literature without the superscript L

as simply N ˝A M ; compare [50, equation (2.6)].

The pairing (2-14) is suitably functorial with respect to morphisms of the S1–complexes
involved, meaning that �˝S1 N and M ˝S1� both induce dg functors from S1–mod
to chain complexes; compare [50, page 92]. For instance, if F D fFj gWM0!M1 is
a premorphism of S1–complexes, then there are induced maps

F] WN ˝
L
S1 M0!N ˝L

S1 M1;

n˝ƒ˝ � � �˝ƒ„ ƒ‚ …
d

˝m 7!

dX
jD0

n˝ƒ˝ � � �˝ƒ„ ƒ‚ …
d�j

˝Fj .m/;
(2-16)

F] WM0˝
L
S1 N !M1˝

L
S1 N;

m˝ƒ˝ � � �˝ƒ„ ƒ‚ …
d

˝ n 7!

dX
jD0

.�1/deg.F /�jnjFj .m/˝ƒ˝ � � �˝ƒ„ ƒ‚ …
d�j

˝ n;
(2-17)

which are chain maps if @.F /D 0.

Hom and tensor complexes of S1–complexes, as in any category of A1–modules,
satisfy the following strong homotopy-invariance properties.
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Proposition 2.9 (homotopy invariance) If F WM !M 0 is any quasi-isomorphism of
S1–complexes (meaning @.F /D0 and ŒF0� WH�.M / Š�!H�.M 0/ is an isomorphism),
then composition with F induces quasi-isomorphisms of hom and tensor complexes:

F ı � W RhomS1.M 0;P / ��! RhomS1.M;P /;

� ıF W RhomS1.P;M / ��! RhomS1.P;M 0/;

F] WN ˝
L
S1 M ��!N ˝L

S1 M 0;

F] WM ˝
L
S1 N ��!M 0

˝
L
S1 N:

(2-18)

The proof is a standard argument (though we do not know a specific reference): one
exhibits acyclicity of the cone of each of the above maps by studying the spectral
sequence with respect to the length filtration (with respect to the number of xA˝d

factors in the bar model of the complexes); the first page of the associated spectral
sequence is the cone of the map associated to the derived homs/tensor products of
the associated homology-level modules by the homology level map ŒF0�, which is
acyclic by hypothesis; hence the second page vanishes and the cone is acyclic; compare
analogous arguments in [52, Lemma 2.12] or [24, Proposition 2.2].

Let .P; fıP
i g/ and .Q; fıQ

j gj / be S1–complexes, and f W P ! Q a chain map of
some degree deg.f / (with respect to the ıP

0
and ıQ

0
differentials). An S1–equivariant

enhancement of f is a degree deg.f / homomorphism F DfF igi�0 of S1–complexes —
eg a closed morphism, so F satisfies (2-10) — with ŒF 0�D Œf �.

Remark 2.10 There are a series of obstructions to the existence of an S1–equivariant
enhancement of a given chain map f ; for instance, a first necessary condition is the
vanishing of the cohomology class Œf � ı ŒıP

1
�� Œı

Q
1
� ı Œf �.

Finally, we note that, just as the product of S1–spaces X � Y possesses a diagonal
action, the (linear) tensor product of S1–complexes is again an S1–complex.

Lemma 2.11 If�
M; ıM

eq D

1X
iD0

ıM
j uj

�
and

�
N; ıN

eq D

1X
iD0

ıN
i ui

�
are S1–complexes , then the graded vector space M ˝N is naturally an S1–complex
with ıM˝N

eq D
P1

iD0 ı
M˝N
k

uk , where

(2-19) ıM˝N
k

.m˝n/ WD .�1/jnjıM
k m˝nCm˝ ıN

k n:

We call the resulting S1–action on M ˝N the diagonal S1–action.
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Proof We compute

(2-20) ıM˝N
j ıM˝N

k
.m˝n/

DıM
j ıM

k m˝nC.�1/jnjC1ıM
j m˝ıN

k nC.�1/jnjıM
k m˝ıN

j nCm˝ıN
j ı

N
k n:

Summing over all j Ck D s, the middle two terms cancel in pairs and the sums of the
leftmost terms (resp. rightmost) terms respectively vanish because M (resp. N ) is an
S1–complex.

Definition 2.12 Let M WD .M; d/ be a chain complex over k. The pullback of M

along the (augmentation) map kŒƒ�=ƒ2! k is called the trivial S1–complex, or chain
complex with trivial S1–action associated to M , and denoted by M triv. Concretely,
M triv WD .M; ı0 D d; ık D 0 for k > 0/.

2.2 Equivariant homology groups

Let M be an S1–complex. Let kD ktriv denote the strict trivial rank-1 S1–complex
concentrated in degree 0.

Definition 2.13 The homotopy orbit complex of M is the (derived) tensor product of
M with k over C��.S

1/:

(2-21) MhS1 WD k˝L
S1 M:

The (strict) morphism of S1–complexes � W kŒƒ�=ƒ2 ! k (here kŒƒ�=ƒ2 comes
equipped with structure maps ık D 0 for k¤ 1, and ı1Dƒ ��) induces by functoriality
a chain map from M to MhS1 called the projection to homotopy orbits,

(2-22) pr WM Š kŒƒ�=ƒ2
˝

L
S1 M ! k˝L

S1 M DMhS1 :

Remark 2.14 When M D C��.X /, with S1–complex induced by a topological
S1–action on X as in Remark 2.3, the complex (2-21) computes the Borel equivari-
ant homology of X , by the following reasoning: first, the A1 equivalence between
kŒƒ�=ƒ2 and C

sing
�� .S

1/ induces an equivalence

MhS1 ' C��.pt/˝L
C

sing
�� .S

1/
C��.X /:

Next, one observes that C��.ES1/!C��.pt/ is a quasi-isomorphism of dg C
sing
�� .S

1/–
modules, where the C

sing
�� .S

1/–actions are induced by the S1–actions on ES1 and pt,
respectively. Hence, there is a quasi-isomorphism of derived tensor products

C��.pt/˝L
C

sing
�� .S

1/
C��.X /' C��.ES1/˝L

C
sing
�� .S

1/
C��.X /:
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Finally, it is a standard fact in algebraic topology (used in the construction of Eilenberg–
Moore-type spectral sequences, eg [44, Theorem 7.27] and [17, Proposition 6.13]) that,
as ES1 is a principal S1–bundle,

C��.ES1/˝L
C

sing
�� .S

1/
C��.X /' C��.ES1

�S1 X /D C��.XhS1/;

which is the usual chain complex computing (Borel) equivariant homology. This gives
some justification for the usage of the subscript hS1 notation in Definition 2.13.

Definition 2.15 The homotopy fixed-point complex of M is the chain complex of
morphisms from k to M in the category of S1–complexes,

(2-23) M hS1

WD RhomS1.k;M /:

The morphism of modules � W kŒƒ�=ƒ2! k induces a chain map M hS1

!M , called
the inclusion of homotopy fixed points,

(2-24) � WM hS1

D RhomS1.k;M /! RhomS1.kŒƒ�=ƒ2;M /ŠM:

Remark 2.16 To motivate the usage “homotopy fixed points”, in the topological
category, the usual fixed points of a G–action can be described as MapsG.pt;X /.
When M D C��.X / for X an S1–space, there is a canonical map C��.X

hS1

/!

.C��.X //
hS1

. However, in contrast to the case of homotopy orbits discussed in
Remark 2.14, this map need not be an equivalence.

Composition in the category S1–mod induces a natural action of

(2-25) RhomS1.k;k/D kŒu� with juj D 2

DH�.BS1/

on the homotopy fixed-point complex. There is a third important equivariant homology
complex, called the periodic cyclic, or Tate complex of M , defined as the localization
of M hS1

away from uD 0,

(2-26) M Tate
WDM hS1

˝kŒu� kŒu;u
�1�:

The Tate construction sits in an exact sequence between the homotopy orbits and fixed
points.

Remark 2.17 (Gysin sequences) It is straightforward from the viewpoint of A1

C��.S
1/–modules to explain the appearance of various Gysin and periodicity sequences.

Take for instance the Gysin exact triangle

M
pr
�!MhS1 !MhS1 Œ2�

Œ1�
�!M:
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This is a manifestation of a canonical exact triangle of objects in S1–mod,

kŒƒ�=ƒ2 �
�! k

u
�! kŒ2�

Œ1�
�! kŒƒ�=ƒ2

(recall in Remark 2.7 it was shown that RhomS1.k;k/Š kŒu�), pushed forward by the
functor .�/˝L

S1 M . The other exact sequences arise similarly.

As a special case of the general homotopy-invariance properties of A1–modules stated
in Proposition 2.9, we have:

Corollary 2.18 If F W M ! N is a homomorphism of S1–complexes (meaning a
closed morphism), it induces chain maps between equivariant theories:

F hS1

WM hS1

!N hS1

;(2-27)

FhS1 WMhS1 !NhS1 ;(2-28)

FTate
WM Tate

!N Tate:(2-29)

If F is a quasi-isomorphism of S1–complexes (meaning simply that ŒF0� is a homology
isomorphism), then (2-27)–(2-29) are quasi-isomorphisms of chain complexes.

Functoriality further tautologically implies:

Proposition 2.19 If F W M ! N is a homomorphism of S1–complexes , then the
various induced maps (2-27)–(2-29) intertwine all of the long exact sequences for
(equivariant homology groups of ) M with those for N .

2.3 u–linear models for S 1–complexes

It is convenient to package the data described in the previous two sections into “u–linear
generating functions”, in the following way: Let u be a formal variable of degree C2.
Let us use the abuse of notation

M ŒŒu�� WDM b̋k kŒu�

for the u–adically completed tensor product in the category of graded vector spaces;
in other words M ŒŒu�� WD

L
k M ŒŒu��k , where M ŒŒu��k D

˚P1
iD0 miu

i jmi 2Mk�2i

	
.

Then, we frequently write an S1–complex .M; fıkgk�0/ as a k–module M equipped
with a map

(2-30) ı.M /
eq D

1X
iD0

ıM
i ui
WM !M ŒŒu��
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of total degree 1, satisfying ı2
eq D 0. Here we are implicitly conflating ıeq with its

u–linear extension to a map M ŒŒu��!M ŒŒu�� in order to u–linearly compose and obtain
a map M !M ŒŒu��.

Premorphisms from M to N of degree k can similarly be recast as maps Feq DP1
iD0 Fiu

i W M ! N ŒŒu�� of pure degree k (so each Fi has degree k � 2i). The
differential on premorphisms can be described u–linearly as

(2-31) @.Feq/D Feq ı ı
M
eq � .�1/deg.F /ıN

eq ıFeq;

and composition is simply the u–linear composition Geq ıFeq (again, one implicitly
u–linearly extends Geq and then u–linearly composes); explicitly,�X

i�0

Giu
i

�
ı

�X
j�0

Fj uj

�
D

X
k�0

� X
iCjDk

Gi
ıFj

�
uk :

With respect to this packaging, the formulae for various equivariant homology chain
complexes can be given the more readable forms

MhS1 D .M ..u//=uM ŒŒu��; ıeq/;(2-32)

M hS1

D .M ŒŒu��; ıeq/;(2-33)

M Tate
D .M ..u//; ıeq/;(2-34)

where, again, we use the abuse of notation M ..u//DM ŒŒu��˝kŒu� kŒu;u
�1�. (On the

other hand, note that (2-32) is not completed.) As before, any homomorphism (that is,
closed morphism) of S1–complexes FeqD

P1
iD0 F iui induces a kŒu�–linear chain map

between homotopy fixed-point complexes by u–linearly extended composition, and
hence, by tensoring over kŒu� with k..u//=ukŒŒu�� or k..u//, chain maps between homo-
topy orbit and Tate complex constructions. With respect to these explicit complexes,
the projection to homotopy orbits (2-22) and inclusion of fixed points (2-24) chain
maps have simple explicit descriptions

pr WM !MhS1 ; ˛ 7! ˛ �u0;(2-35)

� WM hS1

!M;

1X
iD0

˛iu
i
7! ˛0:(2-36)

Remark 2.20 This u–linear lossless packaging of the data describing an S1–complex
is a manifestation of Koszul duality; in the case of AD kŒƒ�=ƒ2, it posits that there
is a fully faithful embedding, Rhom.k;�/ D .�/hS1

from A–modules into B WD

RhomA.k;k/D kŒu�–modules.
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From the u–linear point of view, it is easier to observe that the exact triangle of kŒu�–
modules kŒŒu��!k..u//!k..u//=kŒŒu��D u�1.k..u//=ukŒŒu��/ induces an exact triangle
(functorial in M ) between equivariant homology chain complexes

M hS1

!M Tate
!MhS1 Œ2�

Œ1�
�!M hS1

:

3 Circle action on the open sector

3.1 The usual and nonunital Hochschild chain complex

Recall that an A1 category over k, C is specified by the following data:

� A collection of objects ob C.
� For each pair of objects X;X 0, a graded vector space homC.X;X

0/ over k.
� For any set of dC1 objects X0; : : : ;Xd , higher multilinear (over k) composition

maps

(3-1) �d
W homC.Xd�1;Xd /� � � � � homC.X0;X1/! homC.X0;Xd /

(sometimes equivalently viewed as a map from the tensor product) of degree
2� d , satisfying for each k > 0 the (quadratic) A1 relations

(3-2)
X
i;l

.�1/zi�k�lC1
C .xk ; : : : ;xiClC1; �

l
C.xiCl ; : : : ;xiC1/;xi ; : : : ;x1/D 0;

with sign

(3-3) zi WD kx1kC � � �C kxik;

where jxj denotes degree and kxk WD jxj � 1 denotes reduced degree.

The first two equations of (3-2) imply that �1 is a differential, and the cohomology
level maps Œ�2� are a genuine composition for the (nonunital) category H�.C/ with the
same objects and morphisms,

(3-4) HomH �.C/.X;Y / WDH�.homC.X;Y /; �
1/:

We say that C is cohomologically unital if there exist cohomology-level identity mor-
phisms ŒeX � 2 HomH �.C/.X;X / for each object X , making H�.C/ into a genuine
category. We say that C is strictly unital if there exist elements eC

X
2 homC.X;X /, for

every object X , satisfying

(3-5)

8̂<̂
:
�1.eC

X
/D 0;

.�1/jyj�2.eC
X1
;y/D y D �2.y; eC

X0
/ for any y 2 homC.X0;X1/;

�d . : : : ; eC
X
; : : :/D 0 for d > 2:
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We call such elements the chain-level, or strict, identity elements.

The Hochschild chain complex, or cyclic bar complex, of an A1 category C is the
direct sum of all cyclically composable sequences of morphism spaces in C,

(3-6) CH�.C/ WDM
k�0

Xi0
;:::;Xik

2ob C

homC.Xik
;Xi0

/˝ homC.Xik�1;Xik
/˝ � � �˝ homC.Xi0

;Xi1
/:

The (cyclic bar) differential b acts on Hochschild chains by summing over ways to
cyclically collapse elements by any of the A1 structure maps:

(3-7) b.xd ˝xd�1˝ � � �˝x1/

D

X
.�1/#

d
k�d�i.xk ; : : : ;x1;xd ;xd�1; : : : ;xkCiC1/˝xkCi ˝ � � �˝xkC1

C

X
.�1/z

s
1xd ˝ � � �˝�

j .xsCjC1; : : : ;xsC1/˝xs˝ � � �˝x1;

with signs

zk
i WD

kX
jDi

kxik;(3-8)

#d
k WDzk

1 � .1Czd
kC1/Czd�1

kC1C 1:(3-9)

In this complex, Hochschild chains are (cohomologically) graded as

(3-10) deg.xd˝xd�1˝� � �˝x1/ WD deg.xd /C

d�1X
iD1

deg.xi/�dC1Djxd jC

d�1X
iD1

kxik:

Remark 3.1 Frequently the notation CH�.C; C/ is used for (3-6) to emphasize that
Hochschild homology is taken here with diagonal coefficients, rather than coefficients
in another bimodule.

If C is a strictly unital A1 category, then the chain complex (3-6) carries a strict S1–
action B W CH�.C/! CH��1.C/, involving summing over ways to cyclically permute
chains and insert identity morphisms; see Remark 3.7 below. However, there is a
quasi-isomorphic nonunital Hochschild complex of C which always carries a strict
S1–action (even if C is not strictly unital), which we will now describe.

As a graded vector space, the nonunital Hochschild complex consists of two copies of
the cyclic bar complex, the second copy shifted down in grading by 1:

(3-11) CHnu
� .C/ WD CH�.C/˚CH�.C/Œ1�:
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With respect to the decomposition (3-11), we sometimes refer to elements as � WD .{̨; y̌/,
with the notation {̨ or y̌ indicating that a given element ˛ and ˇ belong to the left or
right factor respectively. Similarly, we refer to the left and right factors as the check
factor and the hat factor, respectively.

Let b0 denote a version of the differential (3-7) omitting the “wrap-around terms” (often
simply called the bar differential):

(3-12) b0.xd ˝xd�1˝ � � �˝x1/

D

X
.�1/z

s
1xd ˝ � � �˝xsCjC1˝�

j .xsCj ; : : : ;xsC1/˝xs˝ � � �˝x1

C

X
.�1/z

d�j

1 �j .xd ;xd�1; : : : ;xd�jC1/˝xd�j ˝ � � �˝x1:

For an element y̌ D xd ˝ � � �˝x1 in the hat (right) factor of (3-11), define an element
d^_. y̌/ in the check (left) factor of (3-11) by

(3-13) d^_. y̌/ WD .�1/z
d
2Ckx1k�z

d
2C1x1˝xd˝� � �˝x2C .�1/z

d�1
1 xd˝� � �˝x1:

In this language, the differential on the nonunital Hochschild complex can be written

(3-14) bnu
W .{̨; y̌/ 7! .b.{̨/C d^_. y̌/; b

0. y̌//;

or equivalently can be expressed via the matrix

(3-15) bnu
D

�
b d^_
0 b0

�
:

The left factor CH�.C/ ,! CHnu
� .C/ is by definition a subcomplex. Moreover, since

the quotient complex is the standard A1 bar complex with differential b0, which is
acyclic for cohomologically unital C (by a standard length-filtration spectral sequence
argument, compare [52, Lemma 2.12] or [24, Proposition 2.2]), it follows that:

Lemma 3.2 The inclusion map � W CH�.C/ ,! CHnu
� .C/ is a quasi-isomorphism (when

C is cohomologically unital ).

Remark 3.3 The nonunital Hochschild complex of C can be conceptually explained in
terms of cyclic bar complexes as follows; cf [41, Section 1.4.1; 61, Section 3.5]. First,
augment the category C by adjoining strict units; meaning, consider the A1 category
CC with ob CC D ob C and

(3-16) homCC.X;Y /D

�
homC.X;Y / when X ¤ Y;

homC.X;X /˚kheC
X
i when X D Y;
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whose A1 structure maps are completely determined by the fact that C is an A1

subcategory, and the elements eC
X

act as strict units in the sense of (3-5). Next, consider
the normalized (or reduced) Hochschild complex of the strictly unital category CC,
CHred
� .CC/, by definition the quotient of CH�.CC/ by the acyclic subcomplex consisting

of eC terms in any position but the first. Now, take the further quotient of CHred
� .CC/

by the subcomplex of length one Hochschild chains of the form eC
X

for some X . The
resulting complex, denoted by fCH�.CC/, can be identified as a chain complex with
CHnu
� .C/ via the map

(3-17)

f W fCH�.CC/ Š�! CHnu
� .C/;

yk ˝ � � �˝y1 7�!

�
.0;yk�1˝ � � �˝y1/ if yk D eC

X
for some X;

.yk ˝ � � �˝y1; 0/ otherwise.

In particular, the differential in CHnu.C/ on a Hochschild chain y̌ in the right factor (of
the decomposition (3-11)) agrees with the (usual cyclic bar) Hochschild differential
applied to eC

X
˝ˇ under the correspondence f .

3.2 Circle action on the Hochschild complex

The S1–action on the nonunital (or usual) Hochschild complex is built out of several
intermediate operations. First, let t W CH�.C/! CH�.C/ denote the (signed) cyclic
permutation operator on the cyclic bar complex generating the Z=kZ cyclic action on
the length-k expressions

(3-18) t W xk ˝ � � �˝x1 7! .�1/kx1k�z
k
2Ckx1kCkxkkx1˝xk ˝ � � �˝x2:

(This is not a chain map.)

Let N denote the norm of this operation; that is, the sum of all powers of t (this depends
on k, the length of a given Hochschild chain),

(3-19) N W xk ˝ � � �˝x1 D � 7! .1C t C t2
C � � �C tk�1/�:

Let snu W CHnu
� .C/! CHnu

��1.C/ be the linear map which sends check chains to the
corresponding hat chains, and hat chains to zero:

(3-20) snu.xd ˝ � � �˝x1;yt ˝ � � �˝y1/ WD .�1/z
d
1Ckxd kC1.0;xd ˝ � � �˝x1/:

(Again, this is not a chain map.)
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Finally define Bnu W CHnu
� .C/! CHnu

��1.C/ by

(3-21) Bnu.xk ˝ � � �˝x1;yl ˝ � � �˝y1/

WD

kX
iD1

.�1/z
i
1z

k
iC1CkxkkCz

k
1C1.0;xi ˝ � � �˝x1˝xk ˝ � � �˝xiC1//

D snu.N.xk ˝ � � �˝x1/;yl ˝ � � �˝y1/

D

k�1X
iD0

snu.t i.xk ˝ � � �˝x1/;yl ˝ � � �˝y1/:

Lemma 3.4 We have .Bnu/2 D 0 and bnuBnuCBnubnu D 0. That is , CHnu
� .C/ is a

strict S1–complex, with the action of ƒD ŒS1� given by Bnu.

Let beq D bnuCuBnu be the strict S1–complex structure on the nonunital Hochschild
complex CHnu

� .C/, u–linearly packaged as in Section 2.3. Using this, we can define
cyclic homology groups, as follows.

Definition 3.5 The (positive) cyclic chain complex, the negative cyclic chain complex,
and the periodic cyclic chain complexes of C are the homotopy orbit complex, homo-
topy fixed-point complex, and Tate constructions of the S1–complex .CHnu

� .C/; beq/,
respectively. That is,

CCC� .C/ WD .CHnu
� .C//hS1 D .CHnu

� .C/˝k k..u//=ukŒŒu��; beq/;(3-22)

CC�� .C/ WD .CHnu
� .C//

hS1

D .CHnu
� .C/ b̋k kŒŒu��; beq/;(3-23)

CC1� .C/ WD .CHnu
� .C//

Tate
D .CHnu

� .C/ b̋k k..u//; beq/;(3-24)

with grading induced by setting juj D C2, and where, as in Section 2.3, b̋ refers to
the u–adically completed tensor product in the category of graded vector spaces. The
cohomologies of these complexes, denoted by HCC=�=1� .C/, are called the (positive),
negative and periodic cyclic homologies of C, respectively.

The C��.S
1/–module structure on CHnu

� .C/ is suitably functorial, in the following
sense. Let F W C! C0 be an A1 functor. There is an induced chain map on nonunital
Hochschild complexes

(3-25) F nu
] W CHnu

� .C/! CHnu
� .C

0; C0/; .x;y/ 7! .F].x/;F
0
].y//;
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where

F 0].xk ˝ � � �˝x0/ WD
X

i1;:::;is

F i1.xk � � � /˝ � � �˝F is .� � �x0/;(3-26)

F].xk ˝ � � �˝x0/ WD
X

i1;:::;is ;j

F jC1Ci1.xj ; : : : ;x0;xk ; : : : ;xk�i1C1/(3-27)

˝F i2.� � � /˝ � � �˝F is .xjCis
; : : : ;xjC1/;

which is an isomorphism on homology if F is a quasi-isomorphism (indeed, even a
Morita equivalence). This functoriality preserves S1 structures:

Proposition 3.6 F nu
]

gives a strict morphism of strict S1–complexes , meaning

F nu
] ı bnu

D bnu
ıF nu

] and F nu
] ıBnu

D Bnu
ıF nu

] :

In other words , the premorphism of A1 kŒƒ�=ƒ2–modules defined as

(3-28) F d
� .ƒ; : : : ; ƒ„ ƒ‚ …

d

; �/ WD

�
F nu
]
.�/ if d D 0;

0 if d � 1;

is closed , ie an A1–module homomorphism.

Sketch of proof It is well known that F nu
]

is a chain map, so it suffices to verify that
F nu
]
ıBnu D Bnu ıF nu

]
, or in terms of (3-25),

(3-29) F 0] ı snuN D snuN ıF]:

We leave this an exercise, noting that applying either side to a Hochschild chain
xk ˝ � � �˝x1, the sums match identically.

Remark 3.7 If C is strictly unital, one can also define an operator B W CH�.C/!
CH��1.C/ on the usual cyclic bar complex by

B D .1� t/sN;

where, up to a sign, s denotes the operation of inserting, at the beginning of a chain,
the unique strict unit eC

X
preserving cyclic composability:

(3-30) s W xk ˝ � � �˝x1 7! .�1/kxkkCz
k
1C1eC

Xik

˝xk ˝ � � �˝x1;

where xk 2 homC.Xik
;Xi0

/. It can be shown that B2D 0 and BbCbBD 0, CH�.C/ is
a strict S1–complex; moreover that the quasi-isomorphism CH�.C/Š CHnu

� .C/ is one
of S1–complexes. In fact, B descends to the reduced Hochschild complex CHred

� .C/
described in Remark 3.3, where it takes the simpler form

Bred
D sN;
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as applying tsN results in a Hochschild chain with a strict unit not in the first position,
which becomes zero in CHred

� .C/. If C was not necessarily strictly unital, following
Remark 3.3 one can still consider the quotient of the reduced Hochschild complex of
the augmented category CC, which we called fCH�.CC/. The discussion here equips
this complex with an S1–action zBred. Under the bijection f of (3-17), zBred is sent to
Bnu and s is sent to snu.

Remark 3.8 Continuing Remark 3.3, suppose we have constructed CHnu
� .C/ asfCH�.C/ WD CHred

� .CC/=
L

X kheC
X
i, the quotient of the reduced Hochschild complex

of the augmented category CC. Given any F as above, extend F to an augmented
functor FC by mandating that

(3-31) .FC/1.eC
X
/D eC

F X
and .FC/d . : : : ; eC

X
; : : :/D 0:

It is easy to see that the map .FC/� W CH�.CC/! CH�..C0/C/ descends to a mapeF W fCH�.CC/! fCH�..C0/C/. Under the bijection (3-17), this precisely corresponds
to F nu

]
described above. In particular, the fact that strictly unital functors induce

strict S1–morphisms between (usual) Hochschild complexes immediately implies
Proposition 3.6.

Remark 3.9 There are options besides the nonunital Hochschild complex for seeing
the C��.S

1/–action on a Hochschild complex of the Fukaya category. For instance,
one could:

(1) Perform a strictly unital replacement (via homological algebra as in [52, Section 2]
or [40, Theorem 3.2.1.1]), and work with the Hochschild complex of the replacement.
However, this doesn’t retain a relationship between the A1 operations and geometric
structure, and hence is difficult to use with open–closed maps.

(2) Geometrically construct a strictly unital structure on the Fukaya category via
constructing homotopy units [22], which roughly involves building a series of geo-
metric higher homotopies between the operation of A1 multiplying by a specified
geometrically defined cohomological unit, and the operation of A1 multiplying by a
strict unit (which is algebraically defined, but may also be geometrically characterized
in terms of forgetful maps). From this one defines a strictly unital A1 category Fhu

with homFhu.X;X /D homF .X;X /˚kheC
X
; fX i and homFhu.X;Y /D homF .X;Y /

for X ¤ Y , extending the A1 structure on F , such that each eC
X

is a strict unit and
�1.fX / D eC

X
� eX for eX a chosen a cohomological unit. The geometric higher
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homotopies alluded to above give operations used to define for instance, �k of a
sequence of elements containing one or more fX terms.

Remark 3.7 then equips the usual Hochschild complex CH�.Fhu;Fhu/ with a strict
S1–action. Using this one can construct a cyclic open–closed map with source
CH�.Fhu;Fhu/, in a manner completely analogous to the construction of Fhu and
the cyclic open–closed map here. This option is equivalent to the one we have chosen
(and has some benefits), but requires additional technicalities/moduli spaces beyond
the route taken here — both in constructing and defining the category Fhu, and then in
defining further “higher homotopies” between inserting a cohomological unit asymptotic
and imposing a strict unit (ie forgettable) constraint into the cyclic open–closed map in
various places, which give operations that correspond to applying the cyclic open–closed
map to a Hochschild chain with one or more fX terms.

A construction of homotopy units was introduced in the work of Fukaya, Oh, Ohta
and Ono [22, Chapter 7, Section 3.1]. See [24] for an implementation in the (possibly
wrapped) exact (or otherwise tautologically unobstructed), multiple Lagrangians setting.

3.3 The Fukaya category

The goal of this subsection is to review (under simplifying technical hypotheses)
the definition of the Fukaya category of a symplectic manifold. The outcome, a
(homologically unital but not necessarily strictly unital) A1 category, will in particular
carry a circle action on its nonunital Hochschild complex.

In Section 3.3.1 below, we detail a set of simplifying assumptions imposed on all
of the moduli spaces of Floer curves considered in this paper (mostly pertaining
to transversality and compactness), and recall examples of the variety of geometric
situations in which they are satisfied. Such assumptions are in particular satisfied in the
technically simplest cases in which (compact or wrapped) Fukaya categories can be
defined, namely exact (Liouville) and monotone or aspherical symplectic manifolds. In
Section 3.3.2 we will quickly review the construction of the Fukaya category under such
hypotheses. The initial thread of discussion will focus on compact Lagrangians, but
immediately extends to wrapped Fukaya categories of Liouville manifolds as described
in a series of remarks; here we are using the framework of quadratic Hamiltonians as
defined in [1] for wrapped Fukaya categories, whose construction is nearly as simple
as that of compact Fukaya categories and requires only a few minor modifications.
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3.3.1 Geometric setup and assumptions about moduli spaces of Floer trajectories
To simplify technicalities, the main assumption we make about moduli spaces in this
paper is as follows.

Assumption 3.10 (main assumption about moduli spaces) All (semistably compacti-
fied) moduli spaces of Floer trajectories considered in this paper of virtual dimension�1

are — for generic choices of complex structure and Hamiltonian (“perturbation data”) —
compact transversally cut-out manifolds with boundary of dimension equal to virtual
dimension. Moreover, the union of any such moduli space with fixed “input” asymptotic
conditions over all possible “output” asymptotic conditions remains compact, and in
particular is empty for all but finitely many possible output conditions (vacuous when
there are only finitely many possible outputs).

Let M D .M 2n; !/ denote our target symplectic manifold and fix a collection of
(always properly embedded) Lagrangian submanifolds fLig in M , which we wish
to be the objects of our Fukaya category. We will call any M , fLig, and choices of
Floer perturbation data used to define moduli spaces for which Assumption 3.10 holds
admissible. We will say M and/or M; fLig are admissible if they possess an ample
supply of Floer data for which Assumption 3.10 holds for the moduli spaces considered
below involving these targets. Examples of admissible M include:

� Any Liouville manifold (in particular noncompact), which is to say that ! is
exact with a fixed choice of primitive �, such that flowing out by the Liouville
vector field Z (defined by �Z! D �) induces a diffeomorphism

(3-32) M n VM Š @M � Œ0;1/

for some codimension-zero manifold-with-boundary M , called a Liouville do-
main whose completion is M .

� Any compact symplectic manifold which is either monotone, ie Œ!�D 2�c1.M /

for some constant � > 0, or symplectically aspherical, ie !.�2.M //D 0.

If M is Liouville, we henceforth fix a cylindrical end (3-32), and use r to refer to
the corresponding Œ0;1/ coordinate. Examples of (properly embedded) admissible
Lagrangian submanifolds L�M in admissible M include:

� In Liouville M , one can take any exact L, ie with �LD df , equipped with fixed
choice of primitive which vanishes outside a compact set, which implies, as in
(3-32), that L is modeled on the cone of a Legendrian near infinity.
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� In (compact) monotone M , one can take monotone L, in the sense that !.�/D
��L.�/ WH2.M;L/!R for some constant � > 0, where ! is symplectic area
and �L is the Maslov class.

� In (compact) symplectically aspherical M one can take L to be tautologically
unobstructed, ie L bounds no J–holomorphic discs for some J , which holds for
all J if !.�2.M;L//D 0.

The conditions above on M and L serve to rule out “bad” (unstable) breakings (such
as J–holomorphic sphere bubbles in M or J–holomorphic disc bubbles in M with
boundary on L) from arising in the limit of a sequence of curves in the moduli
spaces considered, which could obstruct compactness and/or simultaneously complicate
transversality arguments.

Remark 3.11 (more general examples of admissible M and L) More generally, one
could impose that the possible noncompactness of M and (if M is noncompact) L must
be of the geometrically tame variety and that M /L have no/bound no J–holomorphic
spheres/discs, or if they do, that such spheres/discs can either be shown (using classical
methods) either not to arise in the compactifications of virtual one-dimensional moduli
spaces, or to arise but only contribute canceling contributions to the resulting algebraic
formulae.

For noncompact M and fLig, on any given moduli space of trajectories considered,
further (nongeneric) assumptions on the profile of Floer perturbation data near1 are
required to ensure Assumption 3.10 holds, to preclude sequences of curves escaping
to1 so that usual Gromov compactness techniques apply, and also to obtain the second
finiteness statement of Assumption 3.10, which is trivial in the compact case due to there
being a finite list of outputs. We will say a few words about this in Remarks 3.15–3.18;
the verification of Assumption 3.10 for the A1 structure maps (by citing established
works) appears in Lemma 3.19. The verification of Assumption 3.10 for other moduli
spaces considered in the paper is identical and hence omitted. However, we will in
various places point out that the restrictions are needed on Floer data in noncompact
cases to preclude curves escaping to infinity and obtain finiteness along the lines of
Lemma 3.19.

3.3.2 Admissible Fukaya categories For an admissible M , we review the definition
of the Fukaya category associated to an admissible collection of Lagrangians in M ,
which we will term an admissible Fukaya category. Examples of admissible Fukaya
categories, in light of the examples given above, include:
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(1) In a compact aspherical M , the Fukaya category of tautologically unobstructed
Lagrangians.

(2) In a monotone M , the Fukaya category of monotone Lagrangians.

(3) In Liouville M , the Fukaya category of compact exact Lagrangians.

(4) In Liouville M , the wrapped Fukaya category of exact (cylindrical at infinity)
Lagrangians.

Fix first an underlying ground field k and grading structure (Z or Z=2 here, but see
Remark 3.12) that we wish to use when defining the category. If 2c1.M /D 0 and we
wish to define a Z–graded category, we begin by equipping M with a grading structure,
which is a trivialization of the square of the canonical bundle .ƒn

CT �M /˝2. Next,
one equips the Lagrangian submanifolds under consideration with some extra structure
depending on the ground field k and the grading structure. Concretely, we say an
admissible Lagrangian brane consists of a properly embedded admissible Lagrangian
submanifold L�M which is equipped with the following extra two optional pieces of
data (which are only required if one wants to work with char k¤ 2 or with Z–gradings,
respectively, the latter in particular is always excluded in the monotone case):

an orientation and Spin structure, and(3-33)

a grading in the sense of [48] (with respect to the fixed grading structure

on M ).

(3-34)

These choices of extra data respectively require L to be Spin and satisfy 2c1.M;L/D 0,
where c1.M;L/ 2H 2.M;L/ is the relative first Chern class.

Remark 3.12 There are other possible grading structures on M and L that one can
use to equip the Fukaya category with suitable gradings (under geometric hypotheses),
for instance Z=2k–gradings, homology class gradings or hybrids thereof; cf [48; 59].
We suppress discussion of these, but, seeing as such matters are largely orthogonal to
our arguments, note that our results apply in such contexts as well.

Henceforth, by abuse of notation all Lagrangians are implicitly admissible Lagrangian
branes. Denote by obF a finite collection of such (admissible) Lagrangians. Choose a
(potentially time-dependent) Hamiltonian H DHt WM !R satisfying the following
genericity condition:

Assumption 3.13 All time-1 chords of XHt
between any pair of Lagrangians in obF

are nondegenerate.
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Remark 3.14 It is straightforward to adapt all of our constructions to larger collections
of Lagrangians by, for instance, choosing a different Hamiltonian HL0;L1

for each pair
of Lagrangians L0, L1 (as well as a different H for closed orbits), and by choosing
Floer perturbation data depending on corresponding sequences of objects; see eg
[52, Section 9j]. We have opted to use a single Ht simply to keep the notation simpler.

Remark 3.15 (admissible Hamiltonians in the Liouville case) When M is Liouville,
we need to impose further restrictions on the profile of H near1 in order to satisfy
Assumption 3.10. If obF consists solely of compact exact Lagrangians, it suffices to
impose that H is compactly supported, or more generally of the form f .r/ near infinity
for some function with nonnegative first and second derivatives. If obF contains any
noncompact Lagrangians, we will impose, following [1], that H satisfies the following
quadratic at1 condition: H D r2 on the cylindrical end (3-32), outside a compact
subset.

For any pair of Lagrangians L0;L1 2 obF the set �.L0;L1/ of time-1 Hamiltonian
flow lines of H from L0 to L1 can be thought of as the critical points of an action
functional PL0;L1

on the path space from L0 to L1; this functional is, a priori, multi-
valued, but it is certainly R–valued in the presence of primitives � for ! and fi for �jLi

.
Given a choice of grading structure on M and grading for each Li above, elements of
�.L0;L1/ can be graded by the Maslov index

(3-35) deg W �.L0;L1/! Z:

In the absence of grading structures this is always well defined mod 2, provided our
Lagrangians are oriented, which is automatic if they are Spin. As a graded k–module,
the morphism space in the Fukaya category between L0 and L1, also known as the
(wrapped if M is Liouville) Floer homology cochain complex of L0 and L1 with
respect to H , has one (free) generator for each element of �.L0;L1/; concretely,

(3-36) homi
F .L0;L1/D CF�.L0;L1;Ht ;Jt / WD

M
x2�.L0;L1/

deg.x/Di

joxjk;

where the orientation line ox is the real vector space associated to x by index theory11

and for any one-dimensional real vector space V and any ring k, the k–normalization

(3-37) jV jk

11See [52, Section 11h]; a priori, ox depends on a choice of trivialization of x�TM compatible with
the grading structure. However, there is a unique such choice in the presence of a Z–grading, and in the
Z=2–graded case any two choices made induce canonically isomorphic orientation lines.
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is the k–module generated by the two possible orientations on V , with the relationship
that their sum vanishes. If one does not want to worry about signs, note that jV jZ=2 Š
Z=2 canonically.

The A1 structure maps arise as counts of parametrized families of (suitably coherently
perturbed) solutions to Floer’s equation with source a disc with d inputs and one output.
We will quickly summarize the definition and relevant choices required, referring the
reader to standard references for more details. The basic reference we follow is [52]
for Fukaya categories of compact exact Lagrangians in Liouville manifolds; see also
[60] for the mostly straightforward generalization to the monotone case. In the main
body of exposition, we focus on the (slightly simpler) case of compact (admissible)
Lagrangians in compact (admissible) symplectic manifolds; we detail the additional
data and variations required for Fukaya categories of exact Lagrangians in Liouville
manifolds (which are simpler if one is working only with compact exact Lagrangians)
in Remarks 3.15–3.18.

For d � 2, we use the notation Rd for the (Deligne–Mumford compactified) moduli
space of discs with d C 1 marked points modulo reparametrization, with one point z�

0

marked as negative and the remainder zC
1
; : : : ; zC

d
(labeled counterclockwise from z�

0
)

marked as positive. Orient the open (interior) locus Rd as in [52, Section 12g] and [1].
Rd can be given the structure of a manifold-with-corners, and its higher strata are trees
of stable discs with a total of d exterior positive marked points and 1 exterior negative
marked point. Denote the positive and negative semi-infinite strips by

ZC WD Œ0;1/� Œ0; 1�;(3-38)

Z� WD .�1; 0�� Œ0; 1�:(3-39)

One first equips the spaces Rd for each d with a consistent collection of strip-like
ends S; that is, for each component S of Rd , a collection of maps �˙

k
WZ˙! S all

with disjoint image in S , chosen so that positive/negative strips map to neighborhoods
of positively/negatively labeled boundary marked points respectively, smoothly varying
with respect to the manifold-with-corners structures and compatible with choices made
on boundary and corner strata, which are products of lower-dimensional copies of
spaces Rk .

In order to associate transversely cut out moduli spaces of such maps, one studies a
parametric family of solutions to Floer’s equation depending on a choice of “Floer (or
perturbation) data” over the parameter space. Concretely, a Floer datum for a family of
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domains (in this case Rd ) is a choice, for each domain S in the parametric family, of

� an S–dependent (domain-dependent) almost-complex structure JS and Hamil-
tonian HS ,

� a one-form ˛ on S ,

which depend (smoothly) on the particular domain in Rd (and the position in that
domain), and are compatible with strip-like ends, meaning ˛ pulls back to dt and
.HS ;JS / pull back to a fixed choice .Ht ;Jt / in coordinates (3-38)–(3-39). One
inductively chooses a Floer datum for the A1 structure, which is a choice of Floer
data for the collection of domains fRdgd�2 which is consistent, meaning that the Floer
data chosen on a given family of domains Rd agree smoothly along the boundary and
corners (which are products of lower-dimensional spaces Rk) with previous choices of
Floer data made. Such consistent choices exist essentially because spaces of Floer data
are contractible.

Remark 3.16 (Floer data for compact exact Lagrangians in Liouville manifolds) If
M is Liouville and we are studying the Fukaya category of compact exact Lagrangians,
there is an additional requirement imposed on any Floer datum one uses; namely
one requires that JS be of contact type in a neighborhood of infinity in the sense of
[52, (7.3)], and HS be either 0 or of the form f .r/ near infinity for some function
with nonnegative first and second derivatives. The more restrictive types of Floer data
chosen for wrapped Fukaya categories in Remark 3.17 of course suffice as well.

Remark 3.17 (Floer data for wrapped Fukaya categories) Following [1], we recall
the additional information and constraints appearing in Floer data for wrapped Floer
theory (with quadratic Hamiltonians). If M is a Liouville manifold let  � WM !M

denote the time log.�/ (outward) Liouville flow. One fixes for each S , in addition to
.HS ;JS ; ˛S /, a collection of constants wk 2 R>0 for each end, called weights (so
wk is the weight associated to the k th end), and a map �S W @S ! R>0, called the
time-shifting map, where:

(1) �S should be constant and equal to the weight wk on the k th strip-like end.

(2) The one-form ˛S should be subclosed (meaning d˛S � 0), equal to wk dt in
the local coordinates on each strip-like end, and 0 when restricted to @S . By
Stokes’ theorem, this condition implies the sum of weights over all negative ends
is greater than or equal to the sum of weights over all positive ends, and there
should therefore be at least one negative end always (in this case there is one).
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(3) The Hamiltonian should be quadratic at infinity and pull back to H ı wk=w2
k

in coordinates on each end. Note that such a Hamiltonian is quadratic if H is,
by an elementary computation [1, Lemma 3.1].

(4) The almost-complex structure should be of contact type at infinity and equal to
. wk /�Jt in coordinates on each end.

There is a rescaling action by .R>0; � / on the space of such surface dependent data,
which sends

.�S ; fwkg; ˛S ;HS ;JS / 7!

�
��S ; f�wkg; �˛S ;

HS ı 
�

�2
; . �/�JS

�
for � 2R>0:

Using this action, one also relaxes the consistency requirement imposed: The Floer
datum on Rd must agree smoothly, on a boundary or corner stratum, with some
rescaling of the previously made choice; compare [1, Definition 4.1].

Given our choices of Floer data, we can define the moduli spaces appearing in the
A1 operations. First for any pair of objects L0, L1, and any pair of chords x0;x1 2

�.L0;L1/, define eR1
.x0Ix1/ to be the moduli space of maps u WRs�Œ0; 1�t!M with

boundary condition and asymptotics u.s; 0/2L0, u.s; 1/2L1, lims!C1 u.s; t/D x1

and lims!�1 u.s; t/D x0 satisfying Floer’s equation for .Ht ;Jt /,

(3-40) .du�X ˝ dt/0;1 D 0;

where X is the Hamiltonian vector field associated to Ht and .0; 1/ is taken with respect
to Jt . The translation action on Rs descends to a map on this moduli space (as the
equation satisfied is s–independent), and we define the moduli space of (unparametrized)
Floer strips to be

(3-41) R1.x0Ix1/ WD eR1
.x0Ix1/=R;

with the added convention that whenever we are in a component of eR1
.x0Ix1/ with

expected dimension 0, this quotient is replaced by the empty set. Now for d � 2 let
L0; : : : ;Ld be objects of F and fix any sequence of chords Ex D fxk 2 �.Lk�1;Lk/g

as well as another chord x0 2 �.L0;Ld /. We write Rd .x0I Ex/ for the space of maps

u W S !M

with source an arbitrary element S 2Rd , satisfying boundary conditions and asymp-
totics

(3-42)
�

u.z/ 2Lk if z 2 @S lies between zk and zkC1;

lim
s!˙1

u ı �k.s; � /D xk ;

Geometry & Topology, Volume 27 (2023)



Cyclic homology, S1–equivariant Floer cohomology and Calabi–Yau structures 3499

where the limit above is taken as s!C1 if the k th end is positive and �1 if it is
negative, and differential equation

(3-43) .du�XS ˝˛S /
0;1
D 0;

where XS is the Hamiltonian vector field associated to HS and where 0; 1 is taken
with respect to the complex structure JS (for the choice of consistent Floer datum we
have fixed).

The consistency condition imposed on Floer data over the abstract moduli spaces Rd ,
along with the compatibility with strip-like ends, implies that the (Gromov-type)
compactification of the space of maps Rd .x0I Ex/ can be formed by adding the images
of the natural inclusions of products of lower-dimensional such moduli spaces,

(3-44) Rd2.yI Ex2/�Rd1.x0I Ex1/!Rd .x0I Ex/;

where y agrees with one of the elements of Ex1 and Ex is obtained by removing y from
Ex1 and replacing it with the sequence Ex2. Here, we let d1 range from 1 to d , with
d2D d�d1C1, with the stipulation that d1D 1 or d2D 1 is the semistable case (3-41).

Remark 3.18 (operations for wrapped Fukaya categories) In the setting of the
wrapped Fukaya category (continuing Remark 3.17), one needs to incorporate the
map �S into the Lagrangian boundary conditions and asymptotics specified in Floer’s
equation; namely, instead of (3-42), we require the moving boundary condition u.z/ 2

. �S .z//�Lk if z 2 @S lies between zk and zkC1, where . �/�Li denotes the pullback
by  � (or application of . �/�1 D  1=�). We similarly impose that on the k th end,
lims!˙1 u ı �k.s; � /D . �S .z/WDwk /�xk . The point is that Liouville flow for time
log.�/ defines a canonical identification between Floer complexes,

(3-45) CF�.L0;L1IH;Jt /' CF�
�
. �/�L0; . 

�/�L1I
H

�
ı �; . �/�Jt

�
:

The right-hand object is equivalently the (wrapped) Floer complex for

.. �/�L0; . 
�/�L1/

for a strip with one-form � dt using Hamiltonian .H=�2/ı � and . �/�Jt . Up to Liou-
ville flow, the Floer equation and boundary conditions satisfied on the k th strip-like end
therefore coincides with the usual Floer equation for .Ht ;Jt / between Lk�1 and Lk .
In light of this condition and the weakened consistency requirement for Floer data
described in Remark 3.17, one can again deduce (3-44), that lower-dimensional strata
of the Gromov bordification of the space of maps can be identified (now possibly using
a nontrivial Liouville rescaling) with products of previously defined moduli spaces.
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In the graded setting, every connected component of the moduli space Rd .x0I Ex/ has
expected (or virtual) dimension deg.x0/C d � 2�

P
1�k�d deg.xk/; more generally,

this moduli space consists of components of varying expected dimension (a number
which can be computed using index theory in terms of the underlying homotopy class
of u) all of whose mod 2 reductions are deg.x0/C d � 2�

P
1�k�d deg.xk/. The

following lemma is the prototypical method of verifying Assumption 3.10 for the
various moduli spaces considered throughout the paper.

Lemma 3.19 Assumption 3.10 holds for the moduli spaces Rd .x0I Ex/ for admissible
M , fLig and generic choices of a Floer datum for the A1 structure (satisfying the
constraints detailed in Remarks 3.15–3.17 in the Liouville case). Namely: components
of these moduli spaces of virtual dimension � 1 are (for generic choices) compact
manifolds-with-boundary of the given expected dimension. Moreover , given a fixed Ex
these moduli spaces are empty for all but finitely many x0; this is automatic if there
are only finitely many possible x0 to begin with , for instance if all of the Lagrangians
being considered are compact.

Proof If M is compact (and admissible), these assertions (the last of which is au-
tomatic) follow from standard Gromov compactness and transversality methods as
in [52, (9k), (11h) and Proposition 11.13]. In the case that M and possibly also its
Lagrangians are noncompact, there is an additional concern that solutions could escape
to infinity in the target. To address this one can, for instance, appeal to the integrated
maximum principle (compare [3, Lemma 7.2] or [1, Section B]), which implies that
elements of R.x0I Ex/ have image contained in a compact subset of M dependent on x0

and Ex, from where one can again appeal to standard Gromov compactness techniques.
(This is strongly dependent on the form of H , J and ˛ chosen for our Floer data as
in Remarks 3.15–3.17.) The same result can be used to show that solutions do not
exist for x0 of sufficiently negative action compared to Ex (with our conventions, action
is bounded above and there are finitely many x0 with action above any fixed level),
verifying the last assertion.

Choose a generic Floer datum for the A1 structure satisfying Lemma 3.19 and let
u 2Rd .x0I Ex/ be a rigid curve, meaning for us an element of the virtual dimension-0
component (which has dimension 0 in this case). By [52, (11h), (12b),(12d)], given the
fixed orientation12 of Rd , any such element u2Rd .x0I Ex/ determines an isomorphism

12In the case d � 2, that is. For d D 1, one instead needs to “orient the operation of quotienting by R” as
in [52, (12f)].
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of orientation lines

(3-46) Rd
u W oxd

˝ � � �˝ ox1
! ox0

:

Now for any one-dimensional vector spaces V1; : : : ;Vk and W , an isomorphism

f W Vk ˝ � � �˝V1!W

induces a canonical map between k–normalizations,

jV1jk˝ � � �˝ jVk jk Š jV1˝ � � �˝Vk jk! jW jk;

which by abuse of notation, to simplify notation, we also call f (rather than jf jk).
Using this, for d � 1 define the d th A1 operation

(3-47) �d
W hom�F .Ld�1;Ld /˝ � � �˝ hom�F .L0;L1/! hom�F .L0;Ld /

as a sum

(3-48) �d .Œxd �; : : : ; Œx1�/ WD
X

u2Rd .x0I Ex/ rigid

.�1/Fd Rd
u .Œxd �; : : : ; Œx1�/;

where Œxi �2 joxi
jk is an arbitrary element, Rd

u is the map (on k–normalizations induced
by) (3-46), and the sign is given by

(3-49) Fd D

dX
iD1

i � deg.xi/:

Note that this sum is finite by Lemma 3.19. An analysis of the codimension-1 boundary
of one-dimensional moduli spaces along with their induced orientations establishes
that the maps �d satisfy the A1 relations; see [52, Proposition 12.3].

We record here two abuses of notation which will systematically appear in definitions
and usage of operations such as �d . First, as above, we will frequently use the same
symbol for a multilinear map F W V1 � � � � �Vk !W and its corresponding linear map
F W V1˝ � � � ˝ Vk !W . Second, we will frequently use xi to refer to the arbitrary
element Œxi � 2 joxi

jk to simplify expressions; for instance, above we might write
�d .xd ; : : : ;x1/ in place of �d .Œxd �; : : : ; Œx1�/.

4 Circle action on the closed sector

4.1 Floer cohomology and symplectic cohomology

Let M be admissible as in Section 3.3.1. Given a (potentially time-dependent) Hamil-
tonian H WM !R, Hamiltonian Floer cohomology when it is defined is formally the
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Morse cohomology of the H–perturbed action functional AH W LM !R on the free
loop space LM of M . If ! is exact and comes with a fixed primitive �, this functional
can be written as

x 7! �

Z
x

�C

Z 1

0

Ht .x.t// dt:

In general, AH may be multivalued, but dAH is always well defined, leading at least
to a Morse–Novikov-type theory. Recall that the set of critical points of AHt

(when
Ht is implicit) is precisely the set O of time-1 orbits of the associated (time-dependent)
Hamiltonian vector field XH , and we assume Ht is chosen sufficiently generically that:

Assumption 4.1 The elements of O are nondegenerate.

Optionally, given the data of a grading structure on M in the sense of Section 3.3.2
one can define an absolute Z–grading on orbits by deg.y/ WD n�CZ.y/, where CZ is
the Conley–Zehnder index of y (and such a grading is always well defined mod 2).

Fix a (potentially S1–dependent) almost-complex structure Jt . In the formal picture,
this induces a metric on LM . A Floer trajectory is formally a gradient flowline of AHt

using the metric induced by Jt ; concretely it is a map u W .�1;1/�S1!M satisfying
Floer’s equation (3-40) (which is formally the gradient flow equation for AHt

), and
converging exponentially near ˙1 to a pair of specified orbits y˙ 2O. In standard
coordinates s; t on the cylinder (ie s 2R, t 2R=ZD S1) this reads as

(4-1) @suD�Jt .@tu�X /:

The space of nonconstant Floer trajectories between a fixed yC and y� modulo the
free R–action given by translation in the s direction is denoted by M.y�IyC/. As in
Morse theory, one should compactify this space by allowing broken trajectories,

(4-2) M.y�IyC/D
a

M.yk
IyC/�M.yk�1

Iyk/�� � ��M.y1
Iy2/�M.y�Iy1/:

In the graded situation, every component of M.y�IyC/ has expected/virtual dimension
deg.y�/� deg.yC/� 1; in general, M.y�IyC/ has components of varying virtual
dimension, of fixed parity deg.y�/�deg.yC/�1, depending on the underlying homo-
topy class of the cylinder. By Assumption 3.10 for M.y�IyC/, for generic choices
of (time-dependent) Jt , the virtual dimension � 1 components of the moduli spaces
M.y�IyC/ are compact manifolds (with boundary) of the given expected dimension;
fix such a Jt .
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Putting this all together, the Floer cochain complex for .Ht ;Jt / over k has generators
corresponding to orbits of Ht ,

(4-3) CFi.M / WD CFi.M IHt ;Jt / WD
M
y2O

deg.y/Di

joy jk;

where the orientation line oy is a real vector space associated to every orbit in O via index
theory13 (see eg [1, Section C.6]), and jV jk is the k–normalization of V as in (3-37).

The differential d W CF�.M IHt ;Jt / ! CF�.M IHt ;Jt / counts rigid elements of
the compactified moduli spaces (4-2). To fix sign issues, we recall that for a rigid
element u 2M.y0Iy1/ (meaning u belongs to a component of virtual, hence actual,
dimension 0) there is a natural isomorphism between orientation lines induced by index
theory (see eg [52, (11h), (12b),(12d)] and [1, Lemma C.4]),

(4-4) �u W oy1
! oy0

:

Then, one defines the differential as

(4-5) d.Œy1�/D
X

u2M.y0Iy1/ rigid

.�1/deg.y1/�u.Œy1�/;

where Œy1� 2 joy1
jk is an arbitrary element and �u is the map (on k–normalizations

induced by) (4-4). One can show that d2 D 0 (under the assumptions made), and we
call the resulting cohomology group HF�.Ht ;Jt /.

If M is compact (and admissible), Assumption 3.10 holds for all (suitably generic) Jt ,
and all Ht whose time-1 orbits are nondegenerate as in Assumption 4.1. If M is
noncompact and admissible then further hypotheses are needed on the profile of .Ht ;Jt /

at1 to obtain admissibility, in particular to prevent curves from escaping to1 in M

and ensure compactness of
S

y�M.y�IyC/; we recall the two most relevant possible
hypotheses for our purposes in Sections 4.1.1–4.1.2, which can lead to distinct Floer
cohomology groups. For simplicity, the discussion in Section 4.1.2 subsumes the case
of compact M as well.

Remark 4.2 Our (cohomological) grading convention for Floer cohomology follows
[51; 47; 1; 24].

4.1.1 Symplectic cohomology Symplectic cohomology [10; 11; 19; 64], the target of
the open–closed map for wrapped Fukaya categories, is Hamiltonian Floer cohomology

13As before, this index-theoretic definition a priori depends on a choice of trivialization of y�TM

compatible with the grading structure, but any two choices induce isomorphic lines.
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for a particular class of Hamiltonians on noncompact convex symplectic manifolds.
There are several methods for defining this group. We define it here by making the
following specific choices of target, Hamiltonian, and almost-complex structure:

� M is a Liouville manifold equipped with a conical end, meaning that it comes
equipped with a choice of (3-32). (This serves primarily as a technical device;
the resulting invariants are independent of the specific choice.)

� The Hamiltonian term Ht is a sum H C Ft of an autonomous Hamiltonian
H WM !R which is quadratic at1, namely

(4-6) H jMnM .r;y/D r2;

and a time-dependent perturbation Ft such that on the collar (3-32) of M , we
have:

(4-7) For any r0� 0, there exists an R > r0 such that F.t; r;y/ vanishes in a
neighborhood of R.

For instance, Ft could be supported near nontrivial orbits of H , where it is
modeled on a Morse function on the circle. We denote by H.M / the class of
Hamiltonians satisfying (4-6).

� The almost-complex structure should belong to the class J .M / of complex struc-
tures which are (rescaled) contact type on the cylindrical end (3-32), meaning
that for some c > 0,

(4-8) � ıJ D f .r/ dr;

where f is any function with f .r/ > 0 and f 0.r/� 0.

A well-known result [47; 1] asserts that Assumption 3.10 holds for the resulting spaces
of broken Floer trajectories (4-2). Hence if M , Ht and Jt are as above, one has a
well-defined Floer chain complex CF�.M;Ht ;Jt /, which we refer to as the symplectic
cochain complex SC�.M /; this will be the Floer chain complex we use when working
with wrapped Fukaya categories. We call the resulting cohomology group symplectic
cohomology SH�.M /.

4.1.2 Relative cohomology We review here the Floer cohomology group that is the
target of the open–closed map for an admissible symplectic manifold M when working
with a Fukaya category of compact admissible Lagrangian submanifolds in the sense
of Section 3.3.1. Fix a (nondegenerate, generic) pair .Ht ;Jt / which is arbitrary for
compact M and which satisfies the following additional properties if M is Liouville:
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� H is linear of very small negative slope near infinity:

(4-9) Ht jMnM .r;y/D��r;

where r is the cylindrical coordinate and �� 1 is a sufficiently small number
(smaller than the length of any Reeb orbit on @M ).

� Jt is (rescaled) contact type near infinity as before.

It is well known that Assumption 3.10 holds for the moduli spaces (4-2) for generic
.Ht ;Jt / as above [47], and also that:

Proposition 4.3 For generic .Ht ;Jt / as above , there is an isomorphism

HF�.Ht ;Jt /ŠH�.M ; @M /:

H�.M ; @M / equals H�.M / in the case that M is compact , using the convention then
that M DM and @M D∅).

The isomorphism can be realized in one of two ways:

� Choose Ht as above to be a C 2–small (time-independent) Morse function, in
which case a well-known argument of Floer [18] equates HF�.Ht ;Jt / with the
Morse complex of H by showing that all Floer trajectories must in fact be Morse
trajectories of H jM (which in turn, as H is inward pointing near M , compute
the relative cohomology).

� Construct a geometric PSS morphism [46]

PSS WH�.M ; @M /ŠH2n��.M /! HF�.Ht ;Jt /:

4.2 The cohomological BV operator

The first-order BV operator is a Floer analogue of a natural operator that exists on
the Morse cohomology of any manifold with a smooth S1–action. Like the case of
ordinary Morse theory, this operator exists even when the Hamiltonian and complex
structure (cf Morse function and metric) are not S1–equivariant.

For p 2 S1, consider the collection of cylindrical ends on R�S1

(4-10)
�Cp W .s; t/ 7! .sC 1; t Cp/ for s � 0;

��p W .s; t/ 7! .s� 1; t/ for s � 0:

Pick K W S1 � .R�S1/�M !R dependent on p, satisfying

(4-11) .�˙p /
�K.p; s; � ; � /DH.t;m/;
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meaning that

(4-12) Kp.s; t;m/D

�
H.t Cp;m/ if s � 1;

H.t;m/ if s � �1;

so, in the range �1 � s � 1, Kp.s; t;m/ interpolates between HtCp.m/ and Ht .m/

(and outside of this interval is independent of s).

Similarly, pick a family of almost-complex structures J W S1 � .R� S1/�M ! R

satisfying

(4-13) .�˙p /
�J.p; s; t;m/D J.t;m/:

Now, for xC;x� 2O, define

(4-14) M1.x
�
IxC/

to be the parametrized moduli space of Floer cylinders

(4-15)
˚
.p;u/ j p 2 S1;u W S !M is such that lim

s!˙1
.�˙p /

�u.s; � /D x˙ and

.du�XK ˝ dt/0;1 D 0
	
:

There is a natural bordification by adding broken Floer cylinders to either end,

(4-16) M1.x
�
IxC/

D

a
M.a0Ix

C/� � � � �M.ak I ak�1/�M1.b1I ak/�M.b2I b1/� � � �

�M.x�I bl/:

Remark 4.4 (choices of K and J when M is noncompact) When M is noncompact
and Liouville, further constraints on the profile of K and J are required near1 (beyond
genericity) in order to satisfy Assumption 3.10. In the case of symplectic cohomology
described in Section 4.1.1, it suffices to choose K carefully as follows. Given that
Ht .M /DH CFt is a sum of an autonomous term and a time-dependent term that is
zero at infinitely many levels tending towards infinity, we can ensure that

(4-17) at infinitely many levels tending towards infinity, Kp.s; t;m/ is equal to r2;

and in particular is autonomous. In the setting of Section 4.1.2 (when M is noncompact),
we can similarly ensure a version of (4-17) with r2 replaced by ��r (in this case we
could also more simply ensure that Kp.s; t;m/D��r outside a compact set). In either
case, one can take J to be (rescaled) contact type on the cylindrical end. As usual, the
verification of Assumption 3.10 for the moduli spaces (4-16) on Liouville M follows
by combining the results [1, Section B] or [3, Lemma 7.2] — which prevent curves
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escaping to1 and ensure M1.x
C;x�/ is empty for all but finitely many x� given the

constraints near1 fixed in this remark — with classical transversality and compactness
arguments.

As before, M1.x
�IxC/ contains components of varying expected dimension depending

on the underlying homotopy class ˇ of a map. Due to the fact that we are studying
one-parameter families of domains and not quotienting by R, the relevant expected
dimension is 2 more than the expected dimension of the components of M.x�IxC/

underlying the same homotopy class ˇ. In particular, in the graded case, this expected
dimension is deg.xC/ � deg.x�/ C 1 for every component. By Assumption 3.10
for admissible choices of the above data, ie generic choices satisfying Remark 4.4
in the noncompact case, every component of M1.x

�IxC/ of virtual dimension � 1

is a compact manifold-with-boundary of dimension equal to its virtual dimension.
(In particular, the boundary of the one-dimensional components consists of the once-
broken trajectories in (4-16).) In the usual fashion, counting rigid elements of this
compactified moduli space of maps with the right sign (explained more carefully in the
next section) gives an operation ı1 W CF�.M /! CF��1.M / satisfying

dı1C ı1d D 0;

which comes from the fact that the codimension-1 boundary of M1.x
�IxC/ isa

y

M.yIxC/�M1.x
�
Iy/[M1.yIx

C/�M.x�Iy/:

It would be desirable for ı1 to square to zero on the chain level, which would give
.CF�.M /; ı0Dd; ı1/ the structure of a strict S1–complex, or mixed complex. However,
the S1–dependence of our Hamiltonian and almost-complex structure prevent this, in a
manner we now explain.

Typically, one attempts to prove that a geometric/Floer-theoretic operation (such as ı2
1

)
is zero by exhibiting that the relevant moduli problem has no zero-dimensional solutions
(due to, say, extra symmetries in the equation), or otherwise arises as the boundary
of a one-dimensional moduli space. To that end, we first describe a moduli space
parametrized by S1 �S1 which looks like two of the previous parametrized spaces
naively superimposed, leading us to call the associated operation ınaive

2
. The extra

symmetry involved in this definition will allow us to easily conclude:

Lemma 4.5 The operation ınaive
2

is the zero operation.
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For .p1;p2/ 2 S1 �S1, consider the collection of cylindrical ends

(4-18)
�C
.p1;p2/

W .s; t/ 7! .sC 1; t Cp1Cp2/ for s � 0;

��.p1;p2/
W .s; t/ 7! .s� 1; t/ for s � 0:

Pick K W .S1 �S1/� .R�S1/�M !R dependent on .p1;p2/, satisfying

(4-19) �˙.p1;p2/
K.p1;p2; s; � ; � /DH.t;m/;

meaning that

(4-20) K.p1;p2/.s; t;m/D

�
H.t Cp1Cp2;m/ if s � 1;

H.t;m/ if s � �1;

so in the range �1� s � 1, Kp1Cp2
.s; t;m/ interpolates between HtCp1Cp2

.m/ and
Ht .m/.

Similarly, pick a family of almost-complex structures J WS1�S1�.R�S1/�M !R,

(4-21) �˙.p1;p2/
J.p1;p2; s; t;m/D J.t;m/;

such that

(4-22) J only depends on the sum p1Cp2:

Now, for xC;x� 2O, define

(4-23) Mnaive
2 .x�IxC/

to be the parametrized moduli space of Floer cylinders

(4-24)
˚
.p1;p2;u/ j .p1;p2/ 2 S1

�S1;u W S !M is such that

lim
s!˙1

.�˙.p1;p2/
/�u.s; � /D x˙ and .du�XK ˝ dt/0;1 D 0

	
:

For generic choices of K and J (again bearing in mind the extra impositions of
Remark 4.4 in the noncompact case), this moduli space, suitably compactified by adding
broken trajectories, will be (for components of virtual dimension � 1) a manifold with
boundary of the correct (expected) dimension; the dimension agrees mod 2 in the
Z=2–graded case and exactly in the graded case with deg.xC/� deg.x�/C 2. The
details are similar to the previous section, and will be omitted. Counts of rigid elements
in this moduli space will thus, in the usual fashion, give a map of degree �2, which we
call ınaive

2
.
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Proof of Lemma 4.5 Let .p1;p2;u/ be an element of Mnaive
2

.x�IxC/. Then, for any
r 2 S1, .p1 � r;p2C r;u/ is an element too, as the equation satisfied by the map u

only depends on the sum p1Cp2. We conclude that elements of Mnaive
2

.x�IxC/ are
never rigid, and thus that the resulting operation ınaive

2
is zero.

We would like ınaive
2

to be genuinely equal to ı2
1

, which would imply that ı2
1
D 0.

However, this is only true on the homology level; the lack of S1 invariance of our
Hamiltonian and almost-complex structure, and the corresponding family of choices
of homotopy between ��Ht and Ht , over varying � 2 S1, breaks symmetry and
ensures that ı2

1
¤ ınaive

2
as geometric chain maps. However, there is a geometric chain

homotopy, ı2, between ı2
1

and ınaive
2

, along with a hierarchy of higher homotopies ık
forming the S1–complex structure on CF�.M /, which we define in the next section.
See in particular Lemma 4.11 for the proof of the S1–complex equations, one of which
recovers the chain homotopy between ı2

1
and ınaive

2
D 0.

4.3 The A1 circle action

We turn to a “coordinate-free” definition of the relevant parametrized moduli spaces,
which will help us incorporate the construction into open–closed maps.

Definition 4.6 An r–point angle-decorated cylinder consists of a semi-infinite or
infinite cylinder C � .�1;1/ � S1, along with a collection of auxiliary points
p1; : : : ;pr 2 C , satisfying

(4-25) .p1/s � � � � � .pr /s;

where .a/s denotes the s 2 .�1;1/ coordinate. The heights associated to this data
are the s coordinates

(4-26) hi D .pi/s for i D 1; : : : ; r;

and the angles associated to C are the S1 coordinates

(4-27) �i WD .pi/t for i 2 1; : : : ; r:

The cumulative rotation of an r–point angle-decorated cylinder is the first angle:

(4-28) � WD �.C;p1; : : : ;pr /D �1:

The i th incremental rotation of an r–point angle-decorated cylinder is the difference
between the i th and i�1st angles,

(4-29) �inc
i WD �i � �iC1; where �rC1 D 0:
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Inductively, each �i can be expressed as a sum of all incremental rotations from i to r ,

(4-30) �i D

rX
jDi

�inc
j :

Definition 4.7 The moduli space of r–point angle-decorated cylinders

(4-31) Mr

is the space of r–point angle-decorated infinite cylinders, modulo translation.

Remark 4.8 (orientation for Mr ) The space Cr of all r–point angle-decorated
infinite cylinders (not modulo translation) has a canonical complex orientation. Thus, to
orient the quotient space Mr WDCr=R it is sufficient to give a choice of trivialization of
the action of R on Cr . We choose @s to be the vector field inducing said trivialization.

For an element of this moduli space, the angles and relative heights of the auxiliary
points continue to be well defined, so there is a noncanonical isomorphism

(4-32) Mr ' .S
1/r � Œ0;1/r�1:

The moduli space Mr thus possesses the structure of an open manifold-with-corners,
with boundary and corner strata given by the various loci where heights of the auxiliary
points pi are coincident.14 Given an arbitrary representative C of Mr with associated
heights h1; : : : ; hr , we can always find a translation zC satisfying zhr D�

zh1; we call
this the standard representative associated to C .

Given a representative C of this moduli space, and a fixed constant ı, we fix a positive
cylindrical end around C1,

(4-33) �C W Œ0;1/�S1
! C; .s; t/ 7! .sC hr C ı; t/;

and a negative cylindrical end around �1 (note the angular rotation in t !),

(4-34) �� W .�1; 0��S1
! C; .s; t/ 7! .s� .h1� ı/; t C �1/:

These ends are disjoint from the pi and vary smoothly with C ; via thinking of C as
a sphere with two points with asymptotic markers removed, these cylindrical ends
correspond to the positive asymptotic marker having angle 0 and the negative asymptotic
marker having angle �1 D �

inc
1
C �inc

2
C � � �C �inc

r .

14We allow the points pi themselves to coincide; one alternative is to first Deligne–Mumford compactify,
and then collapse all sphere bubbles containing multiple points pi . That the result still forms a smooth
manifold-with-corners is a standard local calculation near any such stratum.
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There is a compactification of Mr consisting of broken r–point angle-decorated
cylinders,

(4-35) Mr D

a
s

a
j1;:::;js

ji>0;
P

jiDr

Mj1
� � � � �Mjs

:

The stratum consisting of s–fold broken configurations lies in the codimension-s
boundary, with the manifold-with-corners structure explicitly defined by local gluing
maps using the ends (4-33) and (4-34). The gluing maps, which rotate the bottom
cylinder of the gluing in order to match its top end (4-33) with the bottom end (4-34) of
the upper cylinder, induce cylindrical ends on the glued cylinders, which agree with the
choices of ends made in (4-33)–(4-34). Concretely, for a 1–fold broken configuration
of the form Mr�k �Mk , the gluing map, for any choice of sufficiently small gluing
parameter, has the following effect on angles:

(4-36)
�
.�1; : : : ; �r�k/; .x�1; : : : ; x�k/

�
7!
�
x�1C�1; x�2C�1; : : : ; x�kC�1; �1; : : : ; �r�k

�
;

where we have denoted coordinates in the second, bottom factor by x�j for 1� j � k,
and in the first, top factor by �i for 1 � i � r � k; see Figure 1. More simply, in the
glued surface, the list of incremental angles .�inc;glued

1
; : : : ; �

inc;glued
r / is equal to the

concatenation of the lists of incremental angles of the original bottom and top surfaces,
.x�inc

1
; x�inc

2
; : : : ; x�inc

k
; �inc

1
; �inc

2
; : : : ; �inc

r�k
/.

The compactification Mr thus has codimension-1 boundary covered by the images of
the natural inclusion maps

Mr�k �Mk ! @Mr for 0< k < r;(4-37)

Mi;iC1
r ! @Mr for 1� i < r;(4-38)

where Mi;iC1
r denotes the compactification of the locus where i th and iC1st heights

are coincident,

(4-39) Mi;iC1
r WD fC 2Mr j hi D hiC1g:

With regards to the above stratum, for r > 1 there is a projection map which will be
relevant, a version of the forgetful map which remembers only the first of the angles
with coincident heights:

(4-40)

�i WMi;iC1
r !Mr�1;

.h1; : : : ;hi ;hiC1D hi ;hiC2; : : : ;hr / 7! .h1; : : : ;hi ;hiC2; : : : ;hr /;

.�1; : : : ;�i ;�iC1; : : : ;�r / 7! .�1; : : : ;�i�1;�i ; y�iC1;�iC2; : : : ;�r /:
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Figure 1: The gluing map for an angle-decorated cylinder rotates all of the
angles of the bottom cylinder by the first angle of the top cylinder as in (4-36).

The map �i is compatible with the choice of positive and negative ends (4-33)–(4-34)
and hence �i extends to compactifications

(4-41) �i WMi;iC1
r !Mr�1:

We will equip each r–point angle-rotated cylinder zC WD .C;p1; : : : ;pr / with perturba-
tion data for Floer’s equation or a Floer datum in the sense of the last section, which
consists of

� the positive and negative cylindrical ends on �˙ W C˙! C chosen in (4-33)–
(4-34),

� the one-form on C given by ˛ D dt ,

� a surface-dependent Hamiltonian H zC W C !H.M / compatible with the positive
and negative cylindrical ends, meaning that

(4-42) .�˙/�H zC DHt ;
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where Ht was the previously chosen Hamiltonian, and

� a surface-dependent almost-complex structure J zC WC !J1.M / also compatible
with �˙, meaning that

(4-43) .�˙/�J zC D Jt

for our previously fixed choice Jt .

A choice of Floer data for the S1–action is an inductive (smoothly varying) choice of
Floer data, for each r and each representative S D .C;p1; : : : ;pr / of Mr , satisfying
the following consistency conditions at boundary strata:

At a boundary stratum (4-37), the datum chosen coincides with the product of
Floer data already chosen on lower-dimensional spaces.

(4-44)

At a boundary stratum (4-38), the Floer data coincides with the pullback, via
the forgetful map �i defined in (4-41) of the Floer data chosen on Mr�1.

(4-45)

Inductively, since the space of choices at each level is nonempty and contractible (and
since the consistency conditions are compatible along overlapping strata), universal
and consistent choices of Floer data exist. From the gluing map, a representative S

sufficiently near the boundary strata (4-37) inherits cylindrical regions, also known as
thin parts, which are the surviving images of the cylindrical ends of lower-dimensional
strata. Together with the cylindrical ends of S , this determines a collection of cylindrical
regions.

Definition 4.9 Given a fixed positive constant ı, the (ı–spaced) rotated cylindrical
regions for an r–point angle-decorated cylinder .C;p1; : : : ;pr / consist of the following
cylindrical ends and finite cylinders, where hi D .pi/s and �i D .pi/t :

� The top cylinder �C W Œ0;max.top.C /� .hr C ı/; 0/��S1! C , defined by

(4-46) .s; t/ 7!
�
min.sC hr C ı; top.C //; t

�
:

� The bottom cylinder �� W Œmin.bottom.C /�.h1�ı/; 0/; 0��S1!C , defined by

.s; t/ 7!
�
max.s� .h1� ı/; bottom.C //; t C �1

�
D

�
max.s� .h1� ı/; bottom.C //; t C

rX
jD1

�i

�
:

� For any 1� i � r � 1 satisfying hiC1� hi > 2ı, the i th thin part is

(4-47) �i W Œhi C ı; hiC1� ı��S1
! C; .s; t/ 7! .s; t C �i/:
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Note that a given r–point angle-decorated cylinder may not have an i th thin part for a
given i 2 Œ1; r �1�, and indeed may not have any thin parts. The consistency conditions
at boundary strata can be ensured in particular by requiring that for any (ı–spaced)
rotated cylindrical region � W C 0! C of sufficiently large length (greater than some
fixed L, say LD 3ı) associated to .C;p1; : : : ;pr / and ı, we have that

(4-48) ��.KC ;JC /D .Kt ;Jt /:

Given the cylindrical regions of Definition 4.9, this would imply the following condition
on .KC ;JC / (assuming L� 3ı): for z D .s; t/ 2 C ,

(4-49) .Kz;Jz/D

8<:
.Kt ;Jt / for s> hrCı;

.��/�.Kt ;Jt /D .KtC�1
;JtC�1

/ for s< h1�ı;

��i .Kz;Jz/D .KtC�i
;JtC�i

/ if hiC1�hi > 3ı

and s 2 ŒhiCı; hiC1�ı�:

Given a choice of Floer data for the S1–action and a pair of asymptotics .xC;x�/ 2O
for each k � 1, there is an associated parametrized moduli space of Floer cylinders
with source an arbitrary element of S 2Mr , where the Floer equation is with respect
to the Hamiltonian HS and JS , with asymptotics .xC;x�/:

(4-50) Mr .x
�
IxC/ WD˚

S D .C;p1; : : : ;pr / 2Mr ; u W C !M j lim
s!˙1

.�˙/�u.s; � /D x˙ and

.du�XHS
˝ dt/.0;1/S D 0

	
:

The consistency condition imposes that the boundary of the Gromov bordification
Mr .x

�IxC/ is covered by the images of the natural inclusions

Mr�k.yIx
C/�Mk.x

�
Iy/! @Mr .x

�
IxC/;(4-51)

Mi;iC1
r .x�IxC/! @Mr .x

�
IxC/;(4-52)

along with the usual semistable strip-breaking boundaries

(4-53)
M.yIxC/�Mr .x

�
Iy/! @Mr .x

�
IxC/;

Mr .yIx
C/�M.x�Iy/! @Mr .x

�
IxC/:

Remark 4.10 (Floer data in the Liouville case) Continuing Remark 4.4, when M is
Liouville we impose the following further constraint on Floer data:

(4-54) H zC is equal to r2 or ��r (depending on whether we are in the setting of
Section 4.1.1 or Section 4.1.2) at infinitely many levels of r tending to1, and
J zC is (rescaled) contact type near1.
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(In fact, in the setting of Section 4.1.2 we can take H zC to be simply equal to ��r for
all r outside of a compact set.) By [3, Lemma 7.2] or [1, Section B], this hypothesis
implies that sequences of curves with fixed asymptotics cannot escape to 1 in M ,
and that Mr .x

�IxC/ given a fixed xC is nonempty for only finitely many x�, both
necessary inputs to verifying Assumption 3.10.

In the Z–graded case, the virtual dimension of (every component of) Mr .x
�IxC/ is

(4-55) deg.xC/� deg.x�/C .2r � 1/;

while in the Z=2–graded case every component has virtual dimension of the above
parity. By Assumption 3.10, for a generic fixed choice of Floer data for the S1–action
(satisfying Remark 4.10 in the Liouville case), the components of virtual dimension � 1

of the moduli spaces Mr .x
�IxC/ are compact manifolds-with-boundary of the correct

(expected) dimension. As usual, signed counts of rigid elements of this moduli space
for varying xC and x� (using induced maps on orientation lines, twisted as in the
differential by .�1/deg.xC/ — see (4-5)) give the matrix coefficients for the overall map

(4-56) ır W CF�.M /! CF��2rC1.M /:

In the degenerate case r D 0 we define ı0 to be the (already defined) differential,

(4-57) ı0 WD d W CF�.M /! CF�C1.M /:

Lemma 4.11 For each r ,

(4-58)
rX

iD0

ıiır�i D 0:

Proof The counts of rigid elements associated to the boundary of one-dimensional
components of @Mr .x

CIx�/, along with a description of this codimension-1 boundary
(4-51)–(4-53) immediately implies that

(4-59)
� rX

iD1

ıiır�i

�
C

�X
i

ıi;iC1
r

�
C .dır C ır d/D 0;

where ıi;iC1
r for each i is the operation associated to the moduli space of maps (4-52).

(Observe that ı1;2
2

is precisely the operation ınaive
2

from Section 4.2.) Note that the
consistency condition (4-45) implies that the Floer datum chosen for any element
S 2Mi;iC1

r only depends on �i.S/, where the forgetful map �i WMi;iC1
r !Mr�1 has

one-dimensional fibers. Hence given an element .S;u/ 2Mi;iC1
r .x�IxC/, it follows

that .S 0;u/ 2Mi;iC1
r .x�IxC/ for all S 0 2 ��1

i �i.S/. In other words, elements of
Mi;iC1

r .x�IxC/ are never rigid, so the associated operation ıi;iC1
r is zero.
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By definition we conclude:

Corollary 4.12 The pair .CF�.M IHt ;Jt /; fır gr�0/ as defined above forms an S1–
complex, in the sense of Definition 2.2.

By using continuation maps parametrized by various .S1/r � .0; 1�r (or equivalently,
by spaces of angle-decorated cylinders that are not quotiented by overall R–translation),
one can prove:

Proposition 4.13 Any continuation map f W CF�.M;H1/! CF�.M;H2/ enhances
to a homomorphism F of S1–complexes (which is , in particular , a quasi-isomorphism
if f is). Moreover , this homomorphism is canonical up to homotopy , in the sense
that any two homomorphisms F and F 0 enhancing f constructed geometrically from
parametrized continuation maps differ by an exact premorphism of S1–complexes (also
constructed geometrically).

We omit the proof, which is standard; see eg [66], but note some notational differences.
In particular, the S1–complex defined on the symplectic cochain complex SC�.M / or
the Hamiltonian Floer complex (with small negative slope if M is noncompact) is an
invariant of M , up to quasi-isomorphism.

Remark 4.14 (relation to earlier definitions in the literature) In [6], three different
definitions of S1–equivariant symplectic cohomology are considered and shown to be
equivalent. One of the definitions involves taking the S1–equivariant homology associ-
ated to a certain S1–complex defined on CF�.M /D SC�.M / [6, Proposition 2.19].
After normalizing for differing conventions (eg homological versus cohomological
conventions for Floer theory, and the fact that their u�1 is our u), it is direct to see that
the S1–complex constructed therein coincides up to equivalence with the one here —
and even agrees on the chain level, seeing as the choices of Floer data chosen in that
paper constitute a choice of Floer data for the S1–action in our sense; compare, for
instance, [6, Figure 1] with (4-49).

4.4 The circle action on the interior

From the formal point of view of Floer homology of M as the Morse homology of
an action functional on the free loop space LM , one would expect the contributions
coming from constant loops to be acted on trivially by the C��.S

1/–action, which
comes from rotation of free loops. This is indeed the case, as we now review.

Geometry & Topology, Volume 27 (2023)



Cyclic homology, S1–equivariant Floer cohomology and Calabi–Yau structures 3517

Suppose that the Hamiltonian Ht defining CF�.M / is chosen to be C 2–small, time-
independent, and Morse in the compact region of M (which equals M if M is compact).
Then, Floer [18] proved that all orbits of Ht inside M are (constant orbits at) Morse
critical points of H , and all Floer cylinders between such orbits which remain in M

are in fact Morse trajectories of H .

Let CMorse.H / denote the Morse complex of H . In the setting where H is as in
Section 4.1.2 (M can be Liouville or compact), all contributions to CF�.M / (both
orbits and cylinders) come from M , so Floer’s argument gives an isomorphisms

(4-60) CMorse.H /Š CF�.M /:

In the setting where H is quadratic at infinity (and M is Liouville) as in Section 4.1.1,
one can ensure the collection of orbits coming from M is an action-filtered sub-
complex — and, for instance, the integrated maximum principle will ensure that all
cylinders between such orbits lie in M . Hence, there is an inclusion of subcomplexes

(4-61) CMorse.H /! SC�.M /;

which, under smallness constraints on the Floer data for the S1–action gives an S1–
subcomplex [66, Lemma 5.4], meaning the operators ık preserve the subcomplex and
in fact the action filtration; hence a morphism of S1–complexes. We will discuss
both of the above cases at once: in either case, by considering a Hamiltonian which is
C 2–small on M , we obtain an inclusion of S1–subcomplexes

(4-62) CMorse.H /! CF�.M /

with the understanding that in the former case this inclusion is the whole complex.

Lemma 4.15 There exists a choice of Floer data for the S1–action so that CMorse.H /

becomes a trivial S1–subcomplex; meaning that the various operators ır , r � 1,
associated to the C��.S

1/–action strictly vanish on the subcomplex.

Proof By the integrated maximum principle, any Floer trajectory with asymptotics
along two generators in CMorse.H / remains in the interior of M . We can choose the
Hamiltonian term of our Floer data on Mr in this region of M to be autonomous
(ie t– and s–independent on the cylinder), C 2–small and Morse — in fact equal to H ;
then Floer’s theorem [18] again guarantees that any Floer trajectory in Mr .x

�IxC/

between Morse critical points x˙ is in fact a Morse trajectory of H . It follows that for
critical points xC;x� of H , any element uD .C; Ep/ in the parametrized moduli space
of maps Mr .x

�IxC/ solves an equation that is independent of the choice of parameter
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Ep 2 .S1/r � .0; 1�r�1. Namely, u lives in a family of solutions of dimension at least
2r � 1 (given by varying Ep), and hence u cannot be rigid. The associated operation ır ,
which counts rigid solutions, is therefore zero.

By invariance of the S1–complex structure on CF�.M / (up to homotopically canonical
quasi-isomorphism as in Proposition 4.13), we conclude:

Corollary 4.16 For M compact and admissible , or Liouville with .H;J / as in
Section 4.1.2, CF�.M / is quasi-isomorphic to a trivial S1–complex , canonically
up to homotopy.

Corollary 4.17 For M Liouville with .H;J / as in Section 4.1.1, the inclusion chain
map

(4-63) C �Morse.M /! SC�.M /

lifts (cohomologically) canonically to a chain map

(4-64) (CMorse.H /ŒŒu��; dMorse/D .CMorse.H //hS1

! .SC�.M //hS1

D .SC�.M /ŒŒu��; ıeq/;

inducing a cohomological map

(4-65) H�.M /ŒŒu��!H�.SC�.M /hS1

/:

Remark 4.18 Another possibly more direct way of producing the map H�.M /ŒŒu��!

H�.SC�.M /hS1

/ is via an S1–equivariant enhancement ePSS of the PSS morphism
PSS WC �.M /! SC�.M /. We omit a further description here, and simply note that the
resulting map can be shown to coincide cohomologically with the map defined above.

Since the S1–complex structure on C �Morse.H / is trivial, one can (canonically) split the
inclusion of homotopy fixed points map (2-36) H�.C �Morse.H /hS1

/!H�.C �Morse.H //

by the map

(4-66) H�.M /
Œx 7!x�1�
�����!H�.M /ŒŒu��:

The associated composition

(4-67) H�.M /
Œx 7!x�1�
�����!H�.M /ŒŒu��!H�.SC�.M /hS1

/
Œ��
�! SH�.M /

coincides with the usual map H�.M /! SH�.M /. In particular, we note that the
homotopy fixed-point complex of SC�.X / possesses a canonical (geometrically defined)
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cohomological element,

(4-68) z1 2H�.SC�.M /hS1

/;

lifting the usual unit 1 2 SH�.M / (under the map Œ��), defined as the image of 1 under
the map (4-65).

5 Cyclic open–closed maps

5.1 Open–closed Floer data

Here we review the sort of Floer perturbation data that needs to be specified on the
domains appearing in the open–closed map and their cyclic analogues. The main body
of our treatment, following Section 3.3, consists of a (slightly modified) simplification
of the setup from [1] tailored to the case of Fukaya categories of compact admissible M ;
in Remarks 5.1 and 5.2 below we will indicate the modifications we need to make —
following [1] and building on Remarks 3.15–3.18 above — in the case of compact
Fukaya categories of Liouville manifolds (minor modifications) or wrapped Fukaya
categories (slightly more involved modifications). There is one notable deviation
from [1], in that we allow our interior marked point to have a varying asymptotic
marker and choose Floer data depending on this choice, as is done in constructions of
BV-type operations in Hamiltonian Floer theory involving such asymptotic markers;
see eg [58; 55].

Let S be a disc with d boundary punctures z1; : : : ; zd (labeled in counterclockwise
order) marked as positive, and an interior marked point p removed, marked as either
positive or negative; for the main body of the construction p is negative. We also equip
the interior marked point p with an asymptotic marker, that is, a half-line �p 2 TpS

(or equivalently an element of the unit tangent bundle, defined with respect to some
metric). Call any such S D .S; z1; : : : ; zd ;p; �p/ an open–closed framed disc.

In addition to the notation for semi-infinite strips (3-38)–(3-39), we use the following
notation to refer to the positive and negative semi-infinite cylinder:

AC WD Œ0;1/�S1;(5-1)

A� WD .�1; 0��S1:(5-2)

A Floer datum on a stable open–closed framed disc S consists of the following choices
on each component:
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(1) A collection of strip-like or cylindrical ends S around each boundary or interior
marked point, of sign matching the sign of the marked point; strip-like ends were
defined in Section 3.3 and a positive (resp. negative) cylindrical end is a map

ı˙j WA˙! S:

(So for the main body of the construction, we use a negative cylindrical end
around p.) All of the strip-like ends around each of the zi should be positive, and
all (strip-like or cylindrical) ends should have disjoint image in S . The cylindrical
end around p should further should be compatible with the asymptotic marker,
meaning the points with angle zero should asymptotically approach the marker,

(5-3) lim
s!˙1

ı˙.s; 0/D �p:

(2) A one-form ˛S on S , an S–dependent Hamiltonian function HS on M , and an
S–dependent almost-complex structure JS on M , such that on each strip-like
end these data pull back to a given fixed .dt;Ht ;Jt /, (which we used to define
Lagrangian Floer homology chain complexes) and on the cylindrical end this
data pulls back to a given fixed .dt;H

cyl
t ;J

cyl
t / which we used to define our

Hamiltonian Floer homology chain complex. (Note that in many cases we could
further simplify and choose .H cyl

t ;J
cyl
t /D .Ht ;Jt /, given a sufficiently generic

choice of .Ht ;Jt /.)

Given a stable open–closed framed disc S equipped with a Floer datum FS , a collec-
tion of Lagrangians fL0; : : : ;Ld�1g and asymptotics fx1; : : : ;xd Iyg with xi a chord
between Li�1 and Li mod d , a map u W S !M satisfies Floer’s equation for FS with
boundary fL0; : : : ;Ld�1g and asymptotics fx1; : : : ;xd Iyg if

(5-4) .du�XS ˝˛S /
0;1
D 0 using the Floer data given by FS

(meaning XS is the Hamiltonian vector field associated to HS , and 0; 1 parts are taken
with respect to JS ), and

(5-5)

8̂̂̂<̂
ˆ̂:

u.z/2Li if z2@S lies counterclockwise from zi , clockwise from ziC1 mod d ;

lim
s!C1

uı�k.s; � /Dxk ;

lim
s!�1

uıı.s; � /Dy:

Here �k denotes the k th strip-like end, ı denotes the cylindrical end, and the sign � in
the last line is � if ı is a negative end — which is the case for the main body of the
construction — and C if ı is a positive end.
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Remark 5.1 (Floer data for compact Lagrangians in Liouville manifolds) If M is
Liouville and we are studying the Fukaya category of compact exact Lagrangians, then
we take H

cyl
t ;J

cyl
t (the data required to define Floer cohomology) as in Section 4.1.2 and

we again impose the additional requirements on Floer data described in Remark 3.16,
As before the H

cyl
t ;J

cyl
t and more restrictive types of Floer data chosen for wrapped

Fukaya categories in Remark 5.2 below would also work. The ability to choose H
cyl
t

and J
cyl
t as in Section 4.1.2 is indicative of a more general freedom in the Floer data

here, which also will allow us later to define operations in which the interior marked
point (and all boundary marked points) are positive; see Section 5.6.2.

Remark 5.2 (Floer data and Floer’s equation for wrapped Fukaya categories) Almost
exactly as in Remark 3.17, and following [1], in order to associate operations between
the wrapped Fukaya category and symplectic cohomology one needs to make the
following modifications to the notion of Floer data. First, one takes H

cyl
t ;J

cyl
t to be the

data defining the symplectic cochain complex as in Section 4.1.1. Then one equips S

with strip-like and cylindrical ends as above. Let  � as before denote the time log.�/
Liouville flow on M . The modifications to the Floer data are:

� Extra choices of weights and time-shifting maps Exactly as in Remark 3.17,
one associates a weight wk 2 R>0 to each boundary or interior marked point
and a time-shifting map �S W @S!R>0 agreeing with wk near the k th strip-like
end.

� Modified requirements on the one-form The one-form ˛S should be sub-
closed, meaning d˛S � 0, should restrict to 0 along @S , and restrict to wk dt on
each (strip-like or cylindrical) end, as in Remark 3.17(2). It follows by Stokes’
theorem that the weight at the (output) cylindrical end should be greater than the
sum of weights over all (input) strip-like ends. In particular, it is not possible for
˛S to be subclosed and restrict to 0 along @S , conditions necessary to appeal to
the integrated maximum principle if the interior marked point were also positive.
(This is a reflection of the fact that wrapped Fukaya categories do not admit
geometric operations with no outputs.)

� Modified requirements on Hamiltonians, as in Remark 3.17(3) The Hamil-
tonian term should pull back to H ı wk=w2

k
along any strip-like end, and to

H cyl ı wk=w2
k

along the cylindrical end. The Hamiltonian term should also be
quadratic at infinitely many levels of (3-32) tending to infinity. (This is a slight
weakening of Remark 3.17 coming from the fact that the Hamiltonian used to
define SC�.X / is not quadratic at every level near infinity due to (4-7).)

Geometry & Topology, Volume 27 (2023)



3522 Sheel Ganatra

� Modified requirements on almost-complex structures, as in Remark 3.17(4)
The almost-complex structure should be contact type at infinity and pull back to
. wk /�Jt along each strip-like end and . wk /�J

cyl
t along the cylindrical end.

Exactly as in Remark 3.17, there is a rescaling action on the space of such Floer data,
and we will relax any consistency requirement imposed on Floer data to allow for an
arbitrary rescaling when equating different choices of Floer data. Finally, we note the
slight modifications to the boundary and asymptotic conditions of Floer’s equation (5-5),
following Remark 3.18: on the boundary component of @S lying counterclockwise
from zi and clockwise from ziC1 mod d we impose the moving boundary condition
u.z/ 2 . �S .z//�Li , on the k th strip-like end we impose lims!C1 u ı �k.s; � / D

. wk /�xk , and on the cylindrical end we impose lims!�1 u ı ı.s; � / D . w/�y,
where w is the weight associated to the interior puncture p.

Exactly as in the proof of Lemma 3.19, the constraints to Floer data in the Liouville
case made in the above two remarks help ensure Assumption 3.10 holds for associated
moduli spaces.

5.2 Nonunital open–closed maps

We begin by constructing a variant of the open–closed map of [1] with source the
nonunital Hochschild complex of (3-11), which we call the nonunital open–closed map
and indicate by OC or OCnu:

(5-6) OC WDOCnu
W CHnu

��n.F/! CF�.M /:

This map actually has a straightforward explanation from the perspective of Remark 3.3:
we define the map OC from fCH�.FC/ by counting discs with an arbitrary number of
boundary punctures and one interior puncture asymptotic to an orbit, as in [1], with the
proviso that we treat the formal elements eC

L
as “fundamental class ŒL� point constraints

(ie empty constraints)”: we fill back in the relevant boundary puncture and impose no
constraints on that marked point. With respect to the decomposition (3-11), we define
a pair of maps

(5-7) {OC˚ yOC W CH�.F/˚CH�.F/Œ1�! CF�.M /

giving the left and right components of the nonunital open–closed map

(5-8) OC W CHnu
��n.F/! SC.M /; .x;y/ 7! {OC.x/C yOC.y/:

Since the left (check) factor is equal to the usual cyclic bar complex for Hochschild
homology, {OC will be defined exactly as the open–closed map is defined in [1] (briefly
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recalled below), and the new content is the map yOC. We will define yOC below (and
recall the definition of {OC) and prove, extending [1]:

Lemma 5.3 OC is a chain map of degree n.

We note a notational difference from [1], which uses OC to refer to what we call
here {OC; in contrast, in this paper we use OC exclusively to refer to the (nonunital)
open–closed map OC D OCnu WD {OC ˚ yOC with domain the nonunital Hochschild
complex. Of course, the two maps OC and {OC are homologically the same. That is,
assuming Lemma 5.3:

Corollary 5.4 As homology-level maps , ŒOC�D Œ {OC�.

Proof By construction, the chain level map {OC constructed in [1] factors as

(5-9) CH��n.F/� CHnu
��n.F/

OC
�! CF�.M /:

The first inclusion is a quasi-isomorphism by Lemma 3.2, since F is known to be
cohomologically unital.

The moduli space controlling the operation {OC, denoted by

(5-10) {R1
d ;

is the (Deligne–Mumford compactification of the) abstract moduli space of discs with
d boundary positive punctures z1; : : : ; zd labeled in counterclockwise order and one in-
terior negative puncture zout, with an asymptotic marker �out at zout pointing towards zd .
The space (5-10) has a manifold-with-corners structure, with boundary strata described
in [1, Section C.3] — there, the space is called R1

d
— in short, codimension-one strata

consist of disc bubbles containing any cyclic subsequence of k inputs attached to an
element of {R1

d�kC1
at the relative position of this cyclic subsequence. Orient the top

stratum {R1
d

by trivializing it, sending ŒS � to the unit disc representative S with zd and
zout fixed at 1 and 0, and taking the orientation induced by the (angular) positions of
the remaining marked points:

(5-11) �dz1 ^ � � � ^ dzd�1:

The moduli space controlling the new map yOC is nearly identical to {R1
d

, but there is
additional freedom in the direction of the asymptotic marker at the interior puncture zout.
The top (open) stratum is easiest to define: let

(5-12) R1;free
d
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zout

z1

z4

z3

z2

Figure 2: A representative of an element of the moduli space {R1
4

with special
points at 0 (output), �i .

be the moduli space of discs with d positive boundary punctures and one interior
negative puncture as in {R1

d
, but with the asymptotic marker �out pointing anywhere

between z1 and zd .

Remark 5.5 There is a delicate point in naively compactifying R1;free
d

: on any formerly
codimension-one stratum in which z1 and zd bubble off, the position of �out becomes
fixed too, and so the relevant stratum actually should have codimension two (and hence
does not contribute to the codimension-one boundary equation for yOC; moreover, there
is no nice corner chart near this stratum). For technical convenience, we pass to an
alternative, larger (blown-up) model for the compactification in which these strata have
codimension one but consist of degenerate contributions.

In light of Remark 5.5, we use (5-12) as motivation and instead define

(5-13) yR1
d

to be the abstract moduli space of discs with d C 1 boundary punctures zf , z1, . . . , zd

and an interior puncture zout with asymptotic marker �out pointing towards the boundary
point zf , modulo automorphism. We mark zf as “auxiliary”, but otherwise the space is
abstractly isomorphic to {R1

dC1
. Identifying yR1

d
with the space of unit discs with zout

and zf fixed at 1 and 0, the remaining (angular) positions of z1; : : : ; zd determine an
orientation

(5-14) �dz1 ^ � � � ^ dzd :

The forgetful map

(5-15) �f W yR1
d !R1;free

d

puts back in the point zf and forgets it. Since the point zf is recoverable from the
direction of the asymptotic marker at zout, we get:
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zout

z1

z2

z3

z4

Š
zout

z1

z2

z3

z4

zf

Figure 3: A representative of an element of the moduli space R1
4;free and the

corresponding element of yR1
4.

Lemma 5.6 The map �f is a diffeomorphism.

The perspective of the former space (5-13) gives us a model for the compactification

(5-16) R1;free
d

as the ordinary Deligne–Mumford compactification

(5-17) yR1
d :

We call a component T of a representative S of (5-17) the main component if it contains
the interior marked point, and a secondary component if its output is attached to the main
component. As a manifold with corners, (5-17) is equal to the compactification {R1

dC1

except from the point of view of assigning Floer datum, as we will be forgetting the
point zf instead of fixing asymptotics for it. It is convenient therefore (for the purpose
of indicating choices of Floer data made) to name components of strata containing zf

differently. At any stratum:

� We treat the main component (containing zout and k boundary marked points) as
belonging to yR1

k�1
if it contains zf and {R1

k
otherwise.

� If the i th boundary marked point of any nonmain component was zf , we view it
as an element of Rk;fi , the space of discs with one output and k input marked
points removed from the boundary, with the i th point marked as “forgotten,”
constructed in Section A.2.

� We treat any other nonmain component as belonging to Rk as usual.

Thus, the codimension-one boundary of the Deligne–Mumford compactification is
covered by the natural inclusions of the strata

Rm
�i yR1

d�mC1; with 1� i < d �mC 1;(5-18)

Rm;fk �d�mC1
{R1

d�mC1; with 1� j �m; 1� k �m;(5-19)
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Figure 4: A schematic of the two distinct types of codimension-one boundary
strata of (5-17) in codimension one. On the left side, corresponding to (5-18),
a disc bubble forms involving any collection of boundary marked points not
including zf . On the right side, corresponding to (5-19), a disc bubble forms
involving the point zf .

where the notation �j means that the output of the first component is identified with
the j th boundary input of the second. See Figure 4.

The forgetful map �f extends to a map x�f from the compactification yR1
d

(to the space
of stable framed open–closed discs with d marked points) as follows: x�f puts the
auxiliary point zf back in, eliminates any component which is not main or secondary
and which has only one nonauxiliary marked point p, and labels the positive marked
point below this component by p. Given a representative S of yR1

d
, we call x�f .S/

the associated reduced surface. We will study maps from the associated reduced
surfaces x�f .S/, parametrized by S . To this end, define a Floer datum on a stable disc
S in yR1

d
to consist of a Floer datum for the underlying reduced surface x�f .S/ in the

sense of Section 5.1.

First, in Section A.2 we describe an inductive construction of Floer data for (the
underlying reduced surfaces of) the compactified moduli space of discs with a forgotten
point Rd;fi , for every d and i , with the following properties:

(5-20)

8̂̂<̂
:̂

For d > 2, the choice of Floer datum on Rd;fi should be pulled back from
the forgetful map Rd;fi !Rd�1.

For d D 2, the Floer datum on the surface S (with zi forgotten) should be
translation invariant.

Next, we choose a Floer datum for the nonunital open–closed map, which is an inductive
set of choices .D {OC;D yOC/, for each d � 1 and every representative S 2 {R1

d
, T 2 yR1

d
,

of a Floer datum for S and (the associated reduced surface of) T , respectively. As
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usual, these choices should be smoothly varying, and restrict smoothly to previously
chosen Floer data on boundary strata. Note that for a given d the boundary strata
have components that are either {R1

d 0
or yR1

d 0
for d 0 < d , a stratum Rd 0 (over which

we have chosen a Floer datum for the A1 structure), or a stratum Rd;fi where we
have chosen a Floer datum in Section A.2 as described above. (As usual for Liouville
manifolds we use the notion of Floer data and consistency described in Remark 5.1 or
Remark 5.2 in the wrapped case.) Contractibility of the space of choices at every stage
(and consistency of the compatibility conditions imposed at corners) ensures as usual
that a Floer datum for the nonunital open–closed map exists.

Fixing such a choice, we obtain, for any d–tuple of Lagrangians L0; : : : ;Ld�1, and
asymptotic conditions Ex D .xd ; : : : ;x1/ with xi 2 �.Li�1;Li mod d / and yout 2O, a
pair of moduli spaces

{R1
d .youtI Ex/;(5-21)

yR1
d .youtI Ex/;(5-22)

of parametrized families of solutions to Floer’s equation,˚
.S;u/ j S 2 {R1

d ;u W S !M such that .du�X ˝˛/0;1 D 0(5-23)
using the Floer datum given by D {OC.S/

	
;˚

.S;u/ j S 2 yR1
d ;u W �f .S/!M such that .du�X ˝˛/0;1 D 0(5-24)

using the Floer datum given by D yOC.S/
	
;

satisfying asymptotic and boundary conditions (in either case) as in (5-5), with the
modification for wrapped Fukaya categories involving Liouville rescalings described
in Remark 5.2. The expected dimensions of every component of (5-21) and (5-22),
respectively, in the Z–graded case are

deg.yout/� nC d � 1�

dX
kD1

deg.xk/;(5-25)

deg.yout/� nC d �

dX
kD1

deg.xk/;(5-26)

and mod 2 these in the Z=2–graded case.

As usual there are Gromov-type bordifications

{R1
d .youtI Ex/;(5-27)

yR1
d .youtI Ex/;(5-28)
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which allow semistable breakings, as well as maps from strata corresponding to the
boundary strata of {R1

d
and yR1

d
.

By Assumption 3.10, for generic choices of Floer datum for the nonunital open–closed
map, the components of (5-27) and (5-28) of virtual dimension � 1 are compact
manifolds-with-boundary of dimension agreeing with virtual dimension. Fix such a
Floer datum. At a rigid element u of each of the above moduli spaces, we obtain, using
the fixed orientations of moduli spaces of domains (5-11)–(5-14) and [1, Lemma C.4],
isomorphisms of orientation lines

.{R1
d /u W oxd

˝ � � �˝ ox1
! oyout ;(5-29)

.yR1
d /u W oxd

˝ � � �˝ ox1
! oyout :(5-30)

These isomorphisms in turn define the joyout jk component of the check and hat compo-
nents of the nonunital open–closed map with d inputs in the lines joxd

jk; : : : ; jox1
jk,

up to a sign twist:

(5-31) {OCd .Œxd �; : : : ; Œx1�/ WD
X

u2{Rd
1
.yIxd ;:::;x1/ rigid

.�1/{?d .{R1
d /u.Œxd �; : : : ; Œx1�/;

where {?d WD deg.xd /C
Pd

kD1 k deg.xk/, and

(5-32) yOCd .Œxd �; : : : ; Œx1�/ WD
X

u2yR1
d
.youtI Ex/ rigid

.�1/y?d .yR1
d /u.Œxd �; : : : ; Œx1�/;

where y?d WD
Pd

iD1 i � deg.xi/.

By analyzing the boundary of one-dimensional components of the moduli spaces
{R1

d
.youtI Ex/, the consistency condition imposed on Floer data, and a sign analysis, in

[1] it was proved that:

Lemma 5.7 [1, Lemma 5.4] The map OC WD {OC is a chain map of degree n; that is ,
.�1/ndCF ı {OC D {OC ı b.

Similarly, we prove the following, completing the proof of Lemma 5.3:

Lemma 5.8 The following equation holds:

(5-33) .�1/ndCF ı yOC D {OC ı d^_C yOC ı b0:
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Proof The consistency condition imposed on Floer data implies that the boundary of
the one-dimensional components of {R1

d
.yI Ex/ are covered by the images of the natural

inclusions of the rigid (zero-dimensional) components of the moduli spaces of maps
coming from the boundary strata (5-18) and (5-19) along with (the rigid components of)
semistable breakings,

yR1
d .y1I Ex/�M.youtIy1/! @{R1

d .youtI Ex/;(5-34)

R1.xIxi/� yR1
d .youtI

zEx/! @{R1
d .youtI Ex/;(5-35)

where zEx denotes the collection of inputs Ex with xi replaced with x. Let �d;i be the
operation associated to the space of discs with i th point marked as forgotten Rd;fi ,
which is described in detail in Section A.2. The operation �d;i takes a composable
sequence of d � 1 inputs, separated into an i � 1 tuple and a d � i tuple; in line with
Remark 3.3 we will use the suggestive notation15

(5-36) �d .xd ; : : : ;xiC1; e
C;xi�1; : : : ;x1/ WD �

d;i.xd ; : : : ;xiC1Ixi�1; : : : ;x1/:

(Recall the abuse of notation xi WD Œxi �.) Then, up to sign, by the standard codimension-
one boundary principle for Floer-theoretic operations, we have shown that

(5-37) 0D dCF yOC.xd ; : : : ;x1/

�

X
i;j

.�1/z
i
1 yOC.xd ; : : : ;xiCjC1; �

j .xiCj ; : : : ;xiC1/;xi ; : : : ;x1/

�

X
i;j ;k

.�1/]
k
j {OC

�
�jCkC1.xj ; : : : ;x1; e

C;xd ; : : : ;xd�kC1/;

xd�k ; : : : ;xjC1

�
;

with desired signs

zn
m D

nX
jDm

kxik;(5-38)

]k
j Dzj

1
zd

jC1Czd
jC1C 1:(5-39)

However, as shown in Section A.2,

(5-40) �jCkC1.xj ; : : : ;x1; e
C;xd ; : : : ;xd�kC1/D

8<:
x1 if j D1; kD0;

.�1/jxd jxd if j D0; kD1;

0 otherwise.

15In fact, when the Fukaya category is equipped with homotopy units, one can ensure that there is a strict
unit element eC in each self-hom space for which �k with an eC element admits a geometric description
as above. See eg [22] or [24].
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(In this manner, eC, though a formal element, behaves as a strict unit.) So if equation
(5-37) held, it would follow that

(5-41) dCF ı yOC.xd ˝ � � �˝x1/

D .�1/kx1kz
d
2Cz

d
2C1 {OC.x1˝xd ˝ � � �˝x2/

C .�1/jxd jCz
d
1C1 {OC.xd ˝ � � �˝x1/C yOC ı b0.xd ˝ � � �˝x1/

D {OC..�1/z
d
1Ckxd k.1� t/.xd ˝ � � �˝x1//C yOC ı b0.xd ˝ � � �˝x1/

D . {OC ı d^_C yOC ı b0/.xd ˝ � � �˝x1/:

So we are done if we establish that the signs are exactly (5-38)–(5-39).

Using the notation

(5-42) OC.eC˝xd ˝ � � �˝x1/ WD yOC.xd ˝ � � �˝x1/;

where again eC is simply a formal symbol referring to the position of the auxiliary
(forgotten) input point, we observe that the equation (5-37) is exactly the equation for
OC being a chain map on inputs of the form .eC˝xd ˝ � � �˝x1/, where we treat an
“eC” input as an auxiliary unconstrained point on our domain. The sign verification
therefore follows from that of {OC being a chain map (in [1, Lemma 5.4]), for we have
used identical orientations on the abstract moduli space yR1

d
as on {R1

dC1
(identifying

zf with zdC1), and on Rd;fi as on Rd , and we can even insert a formal degree zero
orientation line oeC into the procedure for orienting moduli spaces of open–closed maps
(see [1, Section C.6]), corresponding to the marked point (obtained by filling in) zf .
Note that oeC , being of degree zero, commutes with everything, and is just used as a
placeholder as if we had an asymptotic condition at zf .

Proof of Lemma 5.3 As {OC is already known to be a chain map by [1, Lemma 5.4],
repeated as Lemma 5.7 above, the new part to check is that

.�1/ndCF ı yOC D {OCd^_C yOC ı b0:

This is the content of Lemma 5.8 above.

5.3 An auxiliary operation

It will be technically convenient to define an auxiliary operation

(5-43) OCS1

W CH��n.F/! CH�C1.M /

from the left factor of the nonunital Hochschild complex to Floer cochains, in which
the asymptotic marker �out varies freely around the circle. This operation is more easily
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comparable to the BV operator on Floer cohomology, and moreover, we will show that
OCS1

(and yOC) can be chosen to satisfy the following crucial identity:

Proposition 5.9 There is an equality of chain-level operations ,

(5-44) OCS1

D yOC ıBnu:

To define (5-43), let

(5-45) RS1

d

be the abstract moduli space of discs with d boundary positive punctures z1; : : : ; zd

labeled in counterclockwise order and one interior negative puncture zout, with an
asymptotic marker �out at zout (or choice of real half-line in TzoutD) which is free to
vary. Equivalently,

(5-46) RS1

d
is the space of discs with z1; : : : ; zd and zout as before, and an extra

auxiliary interior marked point p1 such that, for a representative with .zout; z1/

fixed at .0;�i/, jp1j D
1
2

, and the asymptotic marker �out points towards p1.

By using a representative with fixed .zout; z1/ as above, the argument of p1 produces
an abstract identification

(5-47) RS1

d D
{R1

d �S1:

Using this identification, fix an orientation of (5-47) given by negative the product
orientation of (5-11) with the standard counterclockwise orientation on S1. The
Deligne–Mumford-type compactification can thus be thought of as

(5-48) RS1

d D
{R1

d �S1:

Given an element S of RS1

d
and a choice of marked point zi on the boundary of S , we

say that �out points at zi , if, when S is reparametrized so that z1 fixed at �i and zout

fixed at 0, the vector �out is tangent to the straight line from zout to zi . Equivalently, for
this representative, zout, p1 and zi are colinear. For each i , the locus where �out points
at zi forms a codimension-one submanifold, denoted by

(5-49) RS1
i

d
:

The notion compactifies well; if zi is not on the main component of (5-48), we say that
�out points at zi if it points at the root of the bubble tree zi is on. This compactified
locus RS1

i
d

can be identified with R1
d

via the map

(5-50) �i WR
S1

i

d
!R1

d
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which cyclically permutes the labels of the boundary marked points so that zi is now
labeled zd .

In a similar fashion, we have an invariant notion of what it means for �out to point
between zi and ziC1; this is a codimension-zero submanifold with corners of (5-47),
denoted by

(5-51) R
S1

i;iC1

d
:

The compactification has some components that are codimension-one submanifolds
with corners of (5-48), when zi and ziC1 both lie on a bubble tree.

Finally, there is a free Zd –action generated by the map

(5-52) � WRS1

d !RS1

d

which cyclically permutes the labels of the boundary marked points; for concreteness,
� changes the label zi to ziC1 for i < d , and zd to z1. Note that if, on a given S ,
�out points between zi and ziC1, then on �.S/, �out points between ziC1 mod d and
ziC2 mod d .

Lemma 5.10 The action generated by (5-52) is free and properly discontinuous.

Sketch The basic observation arises on the level of uncompactified moduli spaces:
since any element of RS1

d
has a unit disk representative with .zout;p1/ fixed at

�
0; 1

2

�
,

the positions of the remaining points identify RS1

d
with the space of tuples .z1; : : : ; zd /

of disjoint (cyclically ordered) points on S1 (without any further quotienting by auto-
morphism). The action of �, which cyclically permutes the labels z1; : : : ; zd in this
identification, evidently acts freely and properly discontinuously on this locus. Similarly,
an element of a boundary stratum consists of an element of RS1

k
for some k � d with

some collection of stable disc bubble trees attached to some or all of the marked points
of RS1

k
, so that there are d leaf (nonnodal) boundary marked points, along with a

counterclockwise ordered labeling of these marked points by z1; : : : ; zd (note that
there is a well-defined cyclic counterclockwise ordering of boundary marked points
on any such stable configuration). By using a representative of the main component
RS1

k
with .zout;p1/ fixed at

�
0; 1

2

�
, an explicit analysis shows that the action of (5-52)

remains free and properly discontinuous — for instance, to see free, note that there is a
well-defined “first boundary nonnodal marked point at or counterclockwise from the
argument of p1”; the action of (5-52) freely permutes the label of this first boundary
marked point hence cannot have a fixed point.
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The quotient of the action of � consists of the space of discs with zout and p1 as
before,16 equipped with d cyclically unordered or unlabeled boundary marked points.
Note that on the open-locus VRS1

d
, where �out does not point at a boundary marked point,

one can choose a labeling by setting the boundary point immediately clockwise of
where �out points to be zd . This induces a diffeomorphism

(5-53) VRS1

d =� ŠR1;free
d

:

Similarly, on the complementary locus where �out points at a boundary marked point,
we can similarly choose a labeling by declaring this boundary marked point to be zd ,
giving a diffeomorphism (of this locus) with {R1

d
.

We now choose Floer perturbation data for the family of moduli spaces RS1

d
; in fact, it

will be helpful to rechoose Floer data for the moduli spaces appearing in the nonunital
open–closed map to have extra compatibility. To that end, a BV compatible Floer datum
for the nonunital open–closed map is an inductive choice .D {OC;D yOC;DS1/ of Floer
data where D {OC and D yOC is a universal and consistent choice of Floer data for the
nonunital open–closed map as before, and DS1 consists of, for each d � 1 and every
representative S 2RS1

d
, a Floer datum for S varying smoothly over the moduli space.

Again, these satisfy the usual consistency condition with respect to previously made
choices along lower-dimensional strata. Moreover, there are two additional inductive
constraints on the Floer data chosen:

On the codimension-one loci RS1
i

d
where �out points at zi , the Floer datum

should agree with the pullback by �i of the existing Floer datum for the (check)
open–closed map.

(5-54)

The Floer datum should be �–equivariant, where � is the map (5-52).(5-55)

Also, there is a final a posteriori constraint on the Floer data for the nonunital open–
closed map D yOC: for S 2 yR1

d
:

(5-56) The Floer datum on the main component S0 of x�f .S/ should coincide with
the existing datum chosen on S0 2R

1;free
d
�RS1

d
.

By an inductive argument as before, a BV compatible Floer datum for the nonunital
open–closed map exists.

To explain the way choices are made (which ensures both existence at every stage
and that the requirements above are satisfied): we choose the data for RS1

d
prior to

16Meaning zout is a negative interior puncture, and p1 is an auxiliary interior marked point such that for
any representative with zout fixed at 0, jp1j D

1
2

.
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choosing that of yR1
d

and note that the condition (5-56) specifies the Floer datum on
yR1

d
entirely. In particular, the conditions (5-20) required on the latter Floer datum are

compatible with consistency and the condition (5-54). With regards to choosing the
data for RS1

d
, the equivariance constraint (5-55), which is compatible with both (5-54)

(a �–equivariant condition) and with the consistency condition, is also unproblematic
in light of Lemma 5.10: one can pull back a Floer datum from the quotient of RS1

d

by �.

Fixing a BV compatible Floer datum for the nonunital open–closed map we obtain, for
any d–tuple of Lagrangians L0; : : : ;Ld�1, and asymptotics Ex D .xd ; : : : ;x1/ with
xi 2 �.Li�1;Li mod d /, and yout 2O, a moduli space

(5-57) RS1

d .youtI Ex/

of parametrized families of solutions to Floer’s equation, with respect to the Floer data
chosen,

(5-58) f.S;u/ j S 2RS1

d ;u W �f .S/!M such that .du�X ˝˛/0;1 D 0g;

satisfying asymptotic and boundary conditions as in (5-5) (again with the modifications
of Remarks 5.1 or 5.2 for compact or wrapped Fukaya categories of Liouville manifolds).
Generically the Gromov–Floer compactifications

(5-59) RS1

d .youtI Ex/

of the components of virtual dimension � 1 are compact manifolds-with-boundary
of the expected dimension; this dimension coincides (mod 2 or exactly depending on
whether we are in a Z=2– or Z–graded setting) with

(5-60) deg.yout/� nC d �

dX
kD1

deg.xk/:

Each rigid u 2RS1

d
.youtI Ex/ gives by the orientation from (5-48) and [1, Lemma C.4]

an isomorphism of orientation lines

(5-61) .RS1

d /u W oxd
˝ � � �˝ ox1

! oyout ;

which gives the joyout jk component of the S1 open–closed map with d inputs in the
lines joxd

jk; : : : ; jox1
jk, up to a sign twist given below: define

(5-62) OCS1

.Œxd �; : : : ; Œx1�/ WD
X

u2RS1

d
.youtI Ex/ rigid

.�1/|d .RS1

d /u.Œxd �; : : : ; Œx1�/;

where |d D
Pd

iD1.i C 1/ � deg.xi/C deg.xd /C d � 1.
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The proof of Proposition 5.9, which equates OCS1

with yOC ıBnu, appears below and
is composed of two steps. First, we decompose the moduli space RS1

d
into sectors in

which �out points between a pair of adjacent boundary marked points. It will follow
that the sum of the corresponding “sector operations” is exactly OCS1

. The sector
operations in turn can be compared to yOC via cyclically permuting inputs and an
orientation analysis.

We begin by defining the relevant sector operations: For i 2 Z=.d C 1/Z, define

(5-63) yR1
d;�i

to be the abstract moduli space of discs with d C 1 boundary punctures z1; : : : ; zi ,
zf , ziC1; : : : ; zd arranged in counterclockwise order and interior puncture zout with
asymptotic marker pointing towards the boundary point zf , which is also marked as
“auxiliary”. There is a bijection

(5-64) �i W yR1
d;�i
' yR1

d

given by cyclically permuting labels, inducing a model for the compactification yR1
d;�i

.
However, we will use a different orientation than the one induced by pullback: on a
slice with fixed position of zd and zout, we take the volume form

(5-65) dz1 ^ � � � ^ dzd�1 ^ dzf :

By construction, the induced “forgetful map”

(5-66) � i
f W
yR1

d;�i
!RS1

i;iC1

is an oriented diffeomorphism that extends to a map between compactifications. Note
as before that strictly speaking this map does not forget any information, at least on the
open locus.

Remark 5.11 In the case i D 0, this orientation agrees with the previously chosen
orientation (5-14) on yR1

d
. We previously defined the orientation on yR1

d
in terms of

a different slice of the group action. To compare the forms dz1 ^ � � � ^ dzd�1 ^ dzf

(coming from the slice with fixed zd and zout) and �dz1 ^ � � � ^ dzd (coming from the
slice with fixed zf and zout), note that either orientation is induced by the following
procedure:

� Fixing an orientation on the space of discs as above with fixed position of zout

(but not zf or zd ): we shall fix the canonical orientation dz1 ^ � � � ^ dzd ^ dzf .
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� Fixing a choice of trivializing vector field for the remaining S1–action on this
space of discs with fixed zout: we shall fix S D .�@zf � @z1

� � � � � @zd
/.

� Fixing a convention for contracting orientation forms along slices of the action:
to determine the orientation on a slice of an S1–action, we will contract the
orientation on the original space on the right by the trivializing vector field.

Moreover, this data induces an orientation on the quotient by the S1–action, and also
an oriented isomorphism between the induced orientation on any slice and that of the
quotient. It follows that on the quotient, the orientation �dz1 ^ � � � ^ dzd (from the
slice where zf is fixed) and the orientation dz1 ^ � � � ^ dzd�1 ^ dzf (from the slice
where zd is fixed) agree. We conclude that these two orientations agree. The author
thanks Nick Sheridan for relevant discussions about orientations of moduli spaces.

Choose as a Floer datum for each R1
d;�i

the Floer datum pulled back from yR1
d

via
(5-64); this system of choices is automatically inductively consistent with choices made
on lower strata, inheriting this property from the Floer data on the collection of yR1

d
.

Using this choice, for any d–tuple of Lagrangians L0; : : : ;Ld�1, and asymptotic
conditions Ex D .xd ; : : : ;x1/, with xi 2 �.Li�1;Li mod d /, and yout 2O, we obtain a
moduli space

(5-67) R1
d;�i

.youtI Ex/D yR1
d .youtI .xi�1; : : : ;x1;xd ; : : : ;xi//

of parametrized families of solutions to Floer’s equation,

(5-68)
˚
.S;u/ j S 2 yR1

d ;u W �f .S/!M is such that .du�X ˝˛/0;1 D 0

using the Floer datum for �f .S/
	
;

satisfying asymptotic and boundary conditions as in (5-5) (with the modifications as in
Remarks 5.1 or 5.2 in the Liouville case), as well as its Gromov–Floer compactification

(5-69) R1
d;�i

.youtI Ex/ WD yR1
d .youtI .xi ; : : : ;x1;xd ; : : : ;xiC1//;

whose components of virtual dimension � 1 (at least) are compact manifolds-with-
boundary of the correct dimension, coinciding (exactly in the graded case and mod 2
in the Z=2–graded case) with deg.yout/� nC d �

Pd
jD0 deg.xj /.

Each rigid element u 2R1
d;�i

.youtI Ex/ gives, by (5-65) and [1, Lemma C.4], an isomor-
phism of orientation lines

(5-70) .R1
d;�i

/u W oxd
˝ � � �˝ ox1

! oyout ;
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zout

z1

z2

Š

zout

z1

zf

z2
t

z1

z2

zf

zout

p1

Figure 5: The diffeomorphism between yR1
2;�0
[ yR1

2;�1
and the open dense part

of RS1

2 given by RS1
0;1

2 [RS1
1;2

2 . The former spaces can in turn be compared
to yR1

2
via cyclic permutation of labels.

which defines the joyout jk component of an operation yOCd;�i
, with d inputs in the lines

joxd
jk; : : : ; jox1

jk, up to the following sign twist:

(5-71) yOCd;�i
.Œxd �; : : : ; Œx1�/ WD

X
u2yR1

d;�i
.youtI Ex/ rigid

.�1/|d .yR1
d;�i

/u.Œxd �; : : : ; Œx1�/;

where |d D
Pd

iD1.i C 1/ � deg.xi/C deg.xd /C d � 1.

Lemma 5.12 As chain-level operations ,

(5-72) OCS1

D

X
i

yOCd;�i
:

Proof For each d , there is an embedding of abstract moduli spaces

(5-73)
a

i

yR1
d;�i

`
i �

i
f

���!

a
i

R
S1

i;iC1

d
,!RS1

d :

See Figure 5.

By construction, this map is compatible with Floer data (this uses the fact that the Floer
data on RS1

i;iC1 agrees with the data on yR1
d

via the reshuffling map ��i by (5-55)),
and covers all but a codimension-one locus in the target. Since, after perturbation, zero-
dimensional solutions to Floer’s equation can be chosen to come from the complement
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of any codimension-one locus in the source abstract moduli space, we conclude that
the two operations in the lemma, which arise from either side of (5-73), are identical
up to sign. To fix the signs, note that (5-73) is in fact an oriented embedding, and all
the sign twists defining the operations yOCd;�i

are chosen to be compatible with the
sign twist in the operation OCS1

.

Next, because the Floer data used in the constructions are identical, we have that
yOCd;�i

.xd ˝ � � �˝x1/ WD yOCd;�i
.xd ; : : : ;x1/ (recall the abuse of notation xi WD Œxi �)

agrees with yOC.xi˝� � �˝x1˝xd˝� � �˝xiC1/ WD yOC.xi ; : : : ;x1;xd ; : : : ;xiC1/ up to a
sign difference coming from orientations of abstract moduli spaces, cyclically reordering
inputs, and sign twists. The following proposition computes the sign difference, and
hence completes the proof of Proposition 5.9:

Lemma 5.13 There is an equality

(5-74) yOCd;�i
.xd ˝ � � �˝x1/D yOCd .snu.t i.xd ˝ � � �˝x1///;

where snu is the operation (3-20) arising from changing a check term to a hat term with
a sign twist.

Proof It is evident that yOCd;�i
agrees with yOCd ı snu ı t i up to sign, as the Floer data

used in the two constructions are identical. By an inductive argument it suffices to
verify the equalities of signed operations

yOCd;�0
D yOCd ı snu;(5-75)

yOCd;�1
D yOCd;�0

ı t;(5-76)

the remaining sign changes being entirely incremental. For the equality (5-75), we
simply note that the signs appearing in the operations yOCd;�0

.Œxd �; : : : ; Œx1�/ and
yOCd .Œxd �; : : : ; Œx1�/ differ in the following fashions:

� The abstract orientations on the moduli space of domains agree, as in Remark 5.11.

� The difference in sign twists is given by

|d � y?d D

dX
iD1

jxi jC jxd jC d � 1D

� dX
iD1

kxik

�
C 1Cjxd j Dzd

1 Ckxdk:

All together, the parity of difference in signs is zd
1 Ckxdk, which accounts for the

sign in the algebraic operation snu (see (3-20)); this verifies (5-75).
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Next, the sign difference between the two operations in the equality (5-76) is a sum of
three contributions:

� The two orientations of abstract moduli spaces17 from �dz1 ^ � � � ^ dzd to
dz2 ^ � � � ^ dzd ^ dz1 differ by a sign change of parity

d � 1:

� For a given collection of inputs, the change in sign twisting data from |d DPd
iD1.iC1/ � jxi jCjxd jCd �1 to

Pd�1
iD1 .iC1/jxiC1jC .dC1/jx1jCjx1jC

d � 1 D
Pd

iD2 i jxi j C d jx1j C d � 1 (|d for the sequence .x2; : : : ;xd ;x1/)
induces a sign change of parity

dX
iD2

jxi jC jxd jC d jx1j D

dX
iD1

jxi jC jxd jC .d � 1/jx1j

D

dX
iD1

kxikC .d � 1/kx1kCkxdk

Dzd
1 C .d � 1/kx1kCkxdk:

� Finally, the reordering of determinant lines of the inputs induces a sign change
of parity

jx1j �

� dX
iD2

jxi j

�
D kx1k �

� dX
iD2

kxik

�
C

dX
iD2

kxikC .d � 1/kx1kC .d � 1/

D kx1kzd
2 Czd

1 C dkx1kC .d � 1/:

The cumulative sign parity is congruent mod 2 to

kx1kzd
2 Ckx1kCkxdk;

which is precisely the sign appearing in t (see (3-18)). This verifies (5-76).

Proof of Proposition 5.9 Combine Lemmas 5.12 and 5.13; note the definition of Bnu

given in (3-21).

5.4 Compatibility of homology-level BV operators

Before diving into the statement of chain-level equivariance, we prove a homology-level
statement. The theorem below is insufficient for studying, say, equivariant homology
groups, but may be of independent interest.

17On the slice where zf and zout are fixed; see Remark 5.11.
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Theorem 5.14 The homology-level open–closed map ŒOC� intertwines the Hochchild
and symplectic cohomology BV operators; that is ,

(5-77) ŒOC� ı ŒBnu�D Œı1� ı ŒOC�:

Theorem 5.14 is an immediate consequence of the following chain-level statement:

Proposition 5.15 The following diagram homotopy commutes:

(5-78)

CH��n.F ;F/

{OC
��

� � �

�
// CHnu

��n.F ;F/
Bnu
// CHnu

��n�1.F ;F/

OC
��

CF�.M /
ı1

// CF��1.M /

where � is the inclusion onto the left factor , which is a quasi-isomorphism by Lemma 3.2.
More precisely , there exists an operation {OC1 WCH��n.F ;F/!CF��2.M / satisfying

(5-79) .�1/nC1d {OC1
C {OC1b D yOCBnu�� .�1/nı1 {OC:

Proof of Theorem 5.14 Proposition 5.15 implies that Œı1� ı Œ {OC�D ŒOC� ı ŒBnu� ı Œ��,
where � W CH��n.F ;F/! CHnu

��n.F ;F/ is the inclusion of chain complexes. But by
Lemma 3.2, Œ�� is an isomorphism and by Corollary 5.4, Œ {OC�D ŒOC�.

To define {OC1, consider

(5-80) 1
{R1

d ;

the moduli space of discs with d positive boundary marked points z1; : : : ; zd labeled in
counterclockwise order, one interior negative puncture zout equipped with an asymptotic
marker, and one additional interior marked point p1 (without an asymptotic marker),
marked as auxiliary. Also, with respect to the unit disc representative of any element
of this moduli space fixing zd at 1 and zout at 0 on the unit disc, p1 should lie inside
the circle of radius 1

2
, so

(5-81) 0< jp1j<
1
2
:

Using the above representative, one can talk about the angle, or argument of p1

(5-82) �1 WD arg.p1/:

We require that with respect to the above representative:

(5-83) The asymptotic marker on zout points in the direction �1.
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For every representative S 2
1
{R1

d
:

(5-84) Fix a negative cylindrical end around zout not containing p1, compatible with
the direction of the asymptotic marker, or equivalently compatible with the
angle �1.

We orient (5-80) as follows: pick, on a slice of the automorphism action which fixes
the position of zd at 1 and zout at 0, the volume form

(5-85) �r1 dz1 ^ dz2 ^ � � � ^ dzd�1 ^ dr1 ^ d�1:

The compactification of (5-80) is a real blow-up of the ordinary Deligne–Mumford
compactification, in the sense of [34] (see [58] for a first discussion in the context
of Floer theory), reviewed in Section A.1; this is the case k D 1 of the more general
description therein. The result of this discussion is that the codimension-one boundary
of the compactified check moduli space

1
{R1

d
is covered by the images of the natural

inclusions of the following strata:

Rs
� 1
{R1

d�sC1;(5-86)

{R1
d �M1;(5-87)

{RS1

d :(5-88)

The stratum (5-88) describes the locus which jp1j D
1
2

, which is exactly the locus we
defined to be the auxiliary moduli space RS1

d
inducing the operation OCS1

. The strata
(5-86)–(5-87) have manifold-with-corners structure given by standard local gluing maps
using fixed choices of strip-like ends near the boundary. For (5-86) this is standard, and
for (5-87), the local gluing map uses the cylindrical ends (5-84) and (4-33) — in other
words, one rotates the 1–pointed angle cylinder by an amount commensurate to the
angle of the marked point zd on the disk before gluing; see Section A.1, particularly
(A-12). See Figure 6 for a schematic of (5-80) and two out of the three types of strata
(5-87)–(5-88).

We will as usual fix a Floer datum for the BV homotopy, meaning an inductive choice,
for every d � 1, of Floer data for every representative S 2

1
{R1

d
varying smoothly in S ,

which on boundary strata is smoothly equivalent to a product of Floer data inductively
chosen on lower-dimensional moduli spaces. Such a system of choices exist again by
a contractibility argument, and for any such choice, one obtains, for any d–tuple of
Lagrangians L0; : : : ;Ld�1 and asymptotic conditions

(5-89) Ex D .xd ; : : : ;x1/ with xi 2 �.Li�1;Li mod d / and yout 2O;
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zout

zout

zout

zint zint

p1

p1

p1

jzj D 1
2

jp1j !
1
2

jp1j ! 0

zd

zd

zd

Figure 6: A schematic of an element of (5-80) on the left and a schematic of
two of its three types of degenerations on the right, (5-88) (above) and (5-87)
(below). The remaining type of degeneration (5-86), omitted from the figure,
occurs when some boundary marked points coalesce into a disc bubble.

a compactified moduli space

(5-90) 1
{R1

d .yout; Ex/

of maps into M with source an arbitrary element S of the moduli space (5-80),
satisfying Floer’s equation using the Floer datum chosen for the given S as in (5-4)
with asymptotics and boundary conditions as in (5-5), with the usual modifications in
the Liouville case detailed in Remarks 5.1 and 5.2. The virtual dimension of every
component of

1
{R1

d
.yout; Ex/ coincides (mod 2 or exactly depending on whether we are

in a Z=2– or Z–graded setting) with

(5-91) deg.yout/� nC d C 1�

dX
iD1

deg.xi/:
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By Assumption 3.10, for generic choices of Floer data, the Gromov–Floer compactifica-
tion of the components of virtual dimension � 1 of (5-90) are compact manifolds-with-
boundary of expected dimension. For rigid elements u of the moduli spaces (5-90), the
orientations (5-85) and [1, Lemma C.4] induce isomorphisms of orientation lines

(5-92) .1
{R1

d /u W oxd
˝ � � �˝ ox1

! oy :

As usual “counting rigid elements u”, ie summing application of these isomorphisms
over all u, defines the joyout jk component of an operation {OC1, up to a sign twist which
we specify:

(5-93) {OC1.Œxd �; : : : ; Œx1�/ WD
X

u2k {R1
d
.youtI Ex/ rigid

.�1/{?d .k {R1
d /u.Œxd �; : : : ; Œx1�/;

where the sign is given by

(5-94) {?d D deg.xd /C
X

i

i � deg.xi/:

A codimension-one analysis of the moduli spaces (5-90) reveals:

Proposition 5.16 The following equation is satisfied :

(5-95) .�1/nı1 {OCC .�1/nd {OC1
DOCS1

C {OC1b:

Proof The boundary of the one-dimensional components of (5-90) are covered by the
rigid components of the following types of strata:

� Spaces of maps with domain lying on the codimension-one boundary of the
moduli space, ie in (5-86)–(5-88).

� Semistable breakings, namely those of the form

1
{R1

d .y1I Ex/�M.youtIy1/;(5-96)

R1.xIxi/� 1
{R1

d .youtI
zEx/;(5-97)

where zEx denotes the collection of inputs Ex with xi replaced with x.

All together, this implies, up to signs, that

(5-98) .�1/nı1 {OCC .�1/nd {OC1
DOCS1

C {OC1b:
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Equation (5-98) is of course a shorthand for saying, for any d and any tuple of d

cyclically composable morphisms xd ; : : : ;x1, that

(5-99) .�1/n
X

i2f0;1g

ıi {OCk�i
d .xd ; : : : ;x1/

DOCS1

d .xd ; : : : ;x1/

C

X
i;s

.�1/z
s
1 {OC1

d�iC1.xd ; : : : ;xsCiC1; �
i.xsCi ; : : : ;xsC1/;xs; : : : ;x1/

C

X
i;j

.�1/]
i
j {OC1

d�i�j

�
�iCjC1.xi ; : : : ;x1;xd ; : : : ;xd�j /;

xd�j�1; : : : ;xiC1

�
:

(Recall the abuse of notation xi WD Œxi �.) Thus, it suffices to verify that the signs
coming from the codimension-one boundary are exactly those appearing in (5-98) — in
particular, that the terms in, for instance, {OC1b appear with the right sign.

Let us recall broadly how the signs are computed. For any operator g defined above,
such as OC, OCS1

, �, d , ı1 etc, we let gut denote the untwisted version of the same
operator, for instance, the operator whose matrix coefficients come from the induced
isomorphism on orientation lines, without any sign twists by the degree of the inputs.
So, for instance, �d .xd ; : : : ;x1/D .�1/

Pd
iD1 i deg.xi /�d

ut.xd ; : : : ;x1/, and so on. The
methods described in [52, Proposition 12.3] and elaborated upon in [1, Section C.3,
Lemma 5.3] and [24, Section B], when applied to the boundary of the one-dimensional
component of the moduli space of maps, {R1

d
.yout; Ex//, imply the signed equality

(5-100) 0D dut {OC1
ut.xd ; : : : ;x1/C .ı1/ut {OCut.xd ; : : : ;x1/�OCS1

ut .xd ; : : : ;x1/

C .�1/fd {OC1b.xd ; : : : ;x1/;
where

(5-101) fd WD
X

i

.i C 1/ deg.xi/C deg.xd /D {?d Czd � d

is an auxiliary sign.

To explain equation (5-100), we note first that the signs appearing in all terms but the
last are simply induced by the boundary orientation on the moduli space of domains.
The sign appearing in the first term also follows from a standard boundary orientation
analysis for Floer cylinders, which we omit (but see eg [52, (12.19-012.20)] for a version
close in spirit). The signs for the first two terms are also exactly as in Lemma 4.11.
Finally, in the last term, the sign .�1/fd {OC1b.xd ˝ � � �˝x1/ (compare [52, (12.25)]
and [24, (B.59)]) appears as a cumulative sum of:
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� The sign twists which turn the untwisted operations {OC1
ut and �s

ut into the usual
operations {OC1 and �s .

� The Koszul sign appearing in the Hochschild differential b.

� The boundary orientation sign appearing in the relevant (untwisted) term of
{OC1b, for instance {OC1

ut.xd ; : : : ;xnCmC1; �
m
ut .xnCm; : : : ;xnC1/;xn; : : : ;x1/,

which itself is as a sum of two different contributions:

(a) The comparison between the boundary (of the chosen) orientation and the
product (of the chosen orientation) on the moduli of domains.

(b) Koszul reordering signs, which measure the signed failure of the method of
orienting the moduli of maps (in terms of orientations of the domain and
orientation lines of inputs and outputs) to be compatible with passing to
boundary strata.

See [52, (12d)] for more details in the case of the A1 structure, and [1, Section C] as
well as [24, Section C] for the case of these computations for the open–closed map. We
note in particular that the forgetful map F1 W 1

{R1
d
! {R1

d
which forgets the point p1 (and

changes the direction of the asymptotic marker to point at zd ) has complex oriented
fibers (in which just the marked point p1 varies). So the boundary analysis of these
“ {OC1 ı b” strata appearing here is identical to the analysis strata appearing in [1; 24]
for the “OC ı b” strata, which is why we have not repeated it here.

Multiplying all terms of (5-100) by .�1/{?dCzd�dC1 and noting that, for instance,
zd � d C 1C n� 2D deg. {OC1.xd ˝ � � �˝x1//, so that

(5-102) .�1/{?dCzd�dC1.ı1/ut {OC1
ut.xd ; : : : ;x1/

D .�1/deg. {OC1.xd ;:::;x1//�n.ı1/ut.�1/{?d {OC1
ut.xd ; : : : ;x1/

D ı1 {OC1.xd ; : : : ;x1/;

and similarly for the d ıOC1 term, it follows that

(5-103) 0D .�1/nı1 {OC.xd ; : : : ;x1/C .�1/nd {OC1.xd ; : : : ;x1/

� {OC1b.xd ; : : : ;x1/� .�1/{?dCzd�dC1OCS1

ut .xd ; : : : ;x1/;

but {?d Czd � d C 1D|d , and hence the last term above is �OCS1

.xd ; : : : ;x1/, as
desired.

Proof of Proposition 5.15 The “sector decomposition” performed in Proposition 5.9
which compares OCS1

to yOCıBnuı�, along with Proposition 5.16, immediately implies
the result.
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5.5 The main construction

We now turn to the definition of the (closed) morphism of S1–complexes, and the proof
of Theorem 1.1 and Corollary 1.5. The required data takes the form

(5-104) fOC D
M
k�0

kŒƒ�=ƒ2˝k
˝CHnu

� .F/! CF�.M /Œn�;

which is equivalent, as recalled in Section 2.1, to defining the collection of mapsfOC D fOCkgk�0, or u–linearly (see Section 2.3) fOC D
P1

kD0 OCkuk , where

(5-105) OCk
D . {OCk

C yOCk/ WDfOCkj1.ƒ; : : : ; ƒ;�/ WCHnu
� .F/!CF�Cn�2k.M /:

(Recall from Section 2.1 that kŒƒ�=ƒ2 is our small model for C��.S
1/, and S1–

complexes are by definition strictly unital A1–modules over kŒƒ�=ƒ2.) By definition,
the case k D 0 is already covered:

(5-106) OC0
D . {OC0

˚ yOC0/D . {OC˚ yOC/DOC:

To handle the general case (k � 0), for each d we will associate operations, for each d ,
to compactifications of three moduli spaces of domains, in the order

k
{R1

d ;(5-107)

kR
S1

d ;(5-108)

k
yR1

d :(5-109)

The moduli space (5-108) will induce an auxiliary operation useful for the proof,
whereas (5-107) and (5-109) will lead to the desired operations. For k D 0, these
moduli spaces are simply {R1

d
, RS1

d
and yR1

d
as defined earlier, and the k D 1 case of

(5-107) was defined in (5-80). Inductively, we will construct and study operations
from (5-107) and (5-108) simultaneously, and then finally construct (5-109). Using
these moduli spaces, we will construct the maps {OCk and yOCk , as well as an auxiliary
operation OCS1;k (which we compare to yOCk�1 ıBnu in Proposition 5.20 below), and
then prove:

Proposition 5.17 The following equations hold , for each k � 0:

.�1/n
kX

i�0

ıi {OCk�i
D yOCk�1Bnu

C {OCkb;(5-110)

.�1/n
kX

i�0

ıi yOCk�i
D yOCkb0C {OCk.1� t/:(5-111)
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All at once , writing

OCk
D . {OCk

C yOCk/; fOC D
1X

iD0

OCiui ; ıeq D

1X
jD0

ıCF
j uj ; beq D bnu

CuBnu;

as in Section 2.3, we have that

(5-112) .�1/nıeq ıfOC D fOC ı beq:

This will also directly imply our main theorems, as spelled out at the end of this
subsection.

The space (5-107) is the moduli space of discs with d positive boundary marked
points z1; : : : ; zd labeled in counterclockwise order, one interior negative puncture zout

equipped with an asymptotic marker, and k additional interior marked points p1; : : : ;pk

(without asymptotic markers), marked as auxiliary. Also, on the unit disc representative
of any element of this moduli space which fixes zd at 1 and zout at 0, the pi should be
strictly radially ordered with norms in

�
0; 1

2

�
; that is,

(5-113) 0< jp1j< � � �< jpk j<
1
2
:

Using the above representative, one can talk about the angle, or argument, of each
auxiliary interior marked point,

(5-114) �i WD arg.pi/:

We require that with respect to the above representative:

(5-115) The asymptotic marker on zout points in the direction �1 (or towards zd if
k D 0).

(Equivalently one could define �kC1 D 0, so that �1 is always defined.) See Figure 7
for a depiction. For every representative S 2 k

{R1
d

:

(5-116) Fix a negative cylindrical end around zout not containing any pi , compatible
with the direction of the asymptotic marker, or equivalently compatible with
the angle �1.

The second moduli space (5-108) is the moduli space of discs with d positive boundary
marked points z1; : : : ; zd labeled in counterclockwise order, 1 interior negative puncture
zout equipped with an asymptotic marker, and kC 1 additional interior marked points
p1; : : : ;pk ;pkC1 (without asymptotic markers), marked as auxiliary. With respect to
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z1

z2

z3

z4

z5

p1

p2

p3

zout

Figure 7: A representative of an element of the moduli space
3
{R1

5
.

the unit disc representative of any element this moduli space fixing zd at 1 and zout at 0,
the pi should again be strictly radially ordered, this time with norms lying in

�
0; 1

2

�
and with pkC1 lying on the circle of radius 1

2
,

(5-117) 0< jp1j< � � �< jpk j< jpkC1j D
1
2
:

The asymptotic marker on zout for this representative again satisfies condition (5-115).
Abstractly we have that kRS1

d
Š�k

{R1
d
�S1, where the S1 parameter is given by the

position of pkC1. See Figure 8 for a depiction of
k�1
{RS1

d
.

The compactification of (5-107) is a real blow-up of the ordinary Deligne–Mumford
compactification, in the sense of [34] (see [58] for a first discussion in the context of
Floer theory), reviewed in more detail in Section A.1. The result of the discussion there
is that the codimension-one boundary of the compactified check moduli space

k
{R1

d
is

jzj D 1
2

p1

p2

pk�1
pk

zd
jpk j D

1
2

zout

Figure 8: A representative of an element of the moduli space
k�1
{RS1

d
, which

also arises as the boundary stratum (5-120) of
k
{R1

d
.
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zout

p1

p2

piC1

pi

pk

zd

jzj D 1
2

jpi j D jpiC1j

Figure 9: A representative of an element of the stratum (5-121).

covered by the images of the natural inclusions of the strata

Rs
� k
{R1

d�sC1;(5-118)

s
{R1

d �Mk�s;(5-119)

k�1
{RS1

d ;(5-120)

i;iC1
k
{R1

d :(5-121)

The strata (5-120)–(5-121), in which jpk j D
1
2

(Figure 8) and jpi j D jpiC1j (Figure 9),
respectively, describe the boundary loci of the ordering condition (5-113) and hence
come equipped with a natural manifold-with-corners structure. The strata (5-118)–
(5-119) have manifold-with-corners structure given by standard local gluing maps using
fixed choices of strip-like ends near the boundary. For (5-118), depicted in Figure 10,
this is standard, and for (5-119), depicted in Figure 11, the local gluing map uses the
cylindrical ends (5-116) and (4-33) — in other words, one rotates the .k�s/–pointed
angle cylinder by an amount commensurate to the angle of the first marked point
pk�sC1 on the disk before gluing — as also described in Section A.1.

Associated to the stratum (5-121) where pi and piC1 have coincident magnitudes,
there is a forgetful map

(5-122) {�i W
i;iC1
k
{R1

d ! k�1
{R1

d

which simply forgets the point piC1. Since the norm of piC1 and pi agree on this
locus, this amounts to forgetting the argument of piC1 (in particular, the fibers of {�i

are one-dimensional).

The compactification of the S1 moduli space (5-108) can be modeled abstractly by

k
{R1

d
�S1. However, it is again preferable to give an explicit description of the boundary
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jzj D 1
2

p1

p2

pk

zd

zout

Figure 10: A representative of an element of the boundary stratum (5-118) in
which a disc bubble forms (such a disc bubble is allowed to include the “first”
point — zd by our convention — but need not, and does not in the figure).

strata, which are covered in codimension one by the strata

Rs
� kR

S1

d�sC1;(5-123)

sR
S1

d �Mk�s;(5-124)
i;iC1
k

RS1

d :(5-125)

zint

zout

p1

pk�s

pk�sC1

pk

jzj D 1
2

zint

zd

Figure 11: A representative of an element of the boundary stratum (5-119).
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Here, (5-123) and (5-124) are just versions of the degenerations (5-118) and (5-119),
in which a collection of boundary points bubbles off, or a collection of auxiliary points
converges to zout and bubbles off; the fact that the latter occurs in codimension one is
part of the “real blow-up phenomenon” already discussed. The stratum (5-125) is the
locus where jpi j D jpiC1j, for i � k; so when i D k, jpk j D jpkC1j D

1
2

.

As in (5-122), on the stratum (5-125), where pi and piC1 have coincident magnitudes,
define the map

(5-126) �S1

i W
i;iC1
k

RS1

d ! k�1R
S1

d

to be the one forgetting the point piC1. As before, this map has one-dimensional fibers.

For an element S 2
k
RS1

d
, we say that pkC1 points at a boundary point zi if, for

any unit disc representative of S with zout at the origin, the ray from zout to pkC1

intersects zi . The locus where pkC1 points at zi is denoted by

(5-127) kR
S1

i

d
:

Similarly, we say that pkC1 points between zi and ziC1 (modulo d , so this includes
the case of pointing between zd and z1) if for such a representative, the ray from zout to
pkC1 intersects the portion of @S between zi and ziC1. The locus where pkC1 points
between zi and ziC1 is denoted by

(5-128) kR
S1

i;iC1

d
:

As before in (5-52), there is a free and properly discontinuous Zd –action

(5-129) � W k.R1
d
/S

1
! k.R1

d
/S

1

which cyclically permutes the labels of the boundary marked points; as before, � changes
the label zi to ziC1 for i < d , and zd to z1; compare Lemma 5.10.

Finally, we come to the third moduli space (5-109), the moduli space of discs with
d C 1 positive boundary marked points z1; : : : ; zd ; zf labeled in counterclockwise
order, one interior negative puncture zout equipped with an asymptotic marker, and k

additional interior marked points p1; : : : ;pk (without an asymptotic marker), marked as
auxiliary, satisfying a strict radial ordering condition as before: for any representative
element with zf fixed at 1 and zout at 0, we require (5-113) to hold, as well as condition
(5-115). The boundary marked point zf is also marked as auxiliary, but apart from this
designation we see, identifying zf with zdC1, that

k
yR1

d
Š

k
{R1

dC1
. See Figure 12.
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z1

z2

z3

z4

zf

p1

p2

p3

p4

zout

Figure 12: A representative of an element of the moduli space
4
yR1

4
.

In codimension one, the compactification
k
yR1

d
has boundary covered by inclusions of

the strata

Rs
� k
yR1

d�sC1;(5-130)

Rm;fk �d�mC1 k
{R1

d�mC1; where 1� k �m;(5-131)

s
yR1

d �Mk�s;(5-132)

k�1
yRS1

d ;(5-133)

i;iC1
k
yR1

d :(5-134)

Once more, on strata (5-134) where pi and piC1 have coincident magnitudes, depicted
in Figure 13, left, define the map

(5-135) y�i W
i;iC1
k
yR1

d ! k�1
yR1

d

to be the one forgetting the point piC1. Again, this map has one-dimensional fibers.
On the stratum (5-133), which is the locus where jpk j D

1
2

(Figure 13, right), there is
also a map of interest

(5-136) y�boundary W k�1
yRS1

d ! k�1R
S1

d

which forgets the position of the auxiliary boundary point zf . The stratum (5-132),
depicted in Figure 14, is the locus where some subcollection of interior auxiliary points
p1; : : : ;pk�s tend to zero and split off an angle-decorated cylinder (in the manner
again described in Section A.1 for (5-119)). The strata (5-130) and (5-131), depicted
in Figure 15 on the left and right, respectively, are the loci where a disc bubble forms
involving some boundary marked points (not including or including zf , respectively).
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jzj D 1
2

p1

p2

pi

piC1
pk

zf
jpi j D jpiC1j

zout

jzj D 1
2

zout

zf
jpk j D

1
2

pk

p1

p2

pk�1

Figure 13: A representative of an element of the stratum (5-134), left, and a
representative of an element of the boundary stratum (5-133), right.

Denote by
k
R1;free

d
WD

k
R

S1
d;1

d
the sector of the moduli space

k
RS1

d
where pkC1 points

between zd and z1. The auxiliary-rescaling map

(5-137) �f W k
yR1

d ! kR
1;free
d

(our replacement of the “forgetful map”) can be described as follows: given a repre-
sentative S in

k
yR1

d
with zout fixed at the origin, there is a unique point p with jpj D 1

2

between zout and zf . The element �f .S/ is the element of
k
RS1

d
obtained from S

by setting pkC1 equal to this point p and deleting zf . Of course, zf is not actually
forgotten, because it is determined by the position of pkC1. In particular, (5-137) is a
diffeomorphism. We extend this map to a map x�f from the compactification

k
yR1

d
as

in Section 5.2, by putting the auxiliary point zf back in, eliminating any component
which is not main or secondary which has only one (nonauxiliary) boundary marked
point q, and by labeling the positive marked point below this component by q.

zint

p1

pk�s

zint

pk�sC1

jzj D 1
2

pk

zout
zf

Figure 14: A representative of an element of the boundary stratum (5-132).
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jzj D 1
2

p1

p2

pk
zout

zf

jzj D 1
2

p1

p2

pk
zout

zf

Figure 15: Left: a representative of an element of the boundary stratum
(5-130) in which a disc bubble forms not including the auxiliary point zf .
Right: a representative of an element of the boundary stratum (5-131) in
which a disc bubble forms including the auxiliary point zf .

We orient the moduli spaces (5-107)–(5-109) as follows: pick, on a slice of the
automorphism action which fixes the position of zd at 1 and zout at 0, the volume
forms

� r1 � � � rk dz1 ^ dz2 ^ � � � ^ dzd�1 ^ dr1 ^ d�1 ^ � � � ^ drk ^ d�k ;(5-138)

r1 � � � rk dz1 ^ dz2 ^ � � � ^ dzd�1 ^ d�kC1 ^ dr1 ^ d�1 ^ � � � ^ drk ^ d�k ;(5-139)

r1 � � � rk dz1 ^ dz2 ^ � � � ^ dzd�1 ^ dzf ^ dr1 ^ d�1 ^ � � � ^ drk ^ d�k :(5-140)

Above, .ri ; �i/ denote the polar coordinate positions of the point pi . (We could
equivalently use Cartesian coordinates .xi ;yi/ and substitute dxi ^ dyi for every
instance of ri dri ^ d�i , but polar coordinates are straightforwardly compatible with
the boundary stratum where jpk j D

1
2

.)

A Floer datum on a stable disc S in
k
{R1

d
or a stable disc S in kRS1

d
is simply a Floer

datum for S in the sense of Section 5.1. A Floer datum on a stable disc S 2
k
yR1

d
is a

Floer datum for x�f .S/.
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Again we will make a system of choices of Floer data for the above moduli spaces. A
Floer datum for the cyclic open–closed map is an inductive sequence of choices, for
every k � 0 and d � 1, of Floer data for every representative

S0 2 k
{R1

d ; S1 2 kRS1

d and S2 2 k
yR1

d ;

varying smoothly in S0, S1 and S2, which satisfies the usual consistency condition:
the choice of Floer datum on any boundary stratum should agree with the previously
inductively chosen datum along any boundary stratum for which (it is possibly a product
of moduli spaces for) we have already inductively picked data. Moreover, this choice
should satisfy a series of additional requirements.

First, for S0 2 k
{R1

d
:

(5-141) At a boundary stratum of the form (5-121), the Floer datum for S0 is
equivalent to the one pulled back from k�1

{R1
d

via the forgetful map {�i .

Next, for S1 2 k
RS1

d
,

On the codimension-one loci
k
RS1

i

d
, where pkC1 points at zi , the Floer

datum should agree with the pullback by �i of the existing Floer datum for
the open–closed map.

(5-142)

The Floer datum should be �–equivariant, where � is the map (5-129).(5-143)

At a boundary stratum of the form (5-125), the Floer datum for S1 is
conformally equivalent to the one pulled back from

k�1
RS1

d
via the forgetful

map �S1

i .

(5-144)

Finally, for S2 2 k
yR1

d
:

The choice of Floer datum on strata containing Rd;fi components should
be constant along fibers of the forgetful map Rd;fi !Rd�1.

(5-145)

The Floer datum on the main component .S2/0 of x�f .S2/ should coincide
with the Floer datum chosen on .S2/0 2 k

R1;free
d
�

k
RS1

d
.

(5-146)

At a boundary stratum of the form (5-133), the Floer datum on the main
component of S2 is conformally equivalent to the one pulled back from

k
RS1

d
via the forgetful map y�boundary.

(5-147)

At a boundary stratum of the form (5-134), the Floer datum for S2 is
conformally equivalent to the one pulled back from k�1

yR1
d

via the forgetful
map y�i .

(5-148)
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The above system of requirements can be split into three broad categories: the first
type concerns the compatibility with forgetful maps of Floer data along the lower strata
which were not previously constrained, the second type concerns the equivariance
(under a free properly discontinuous action) of the Floer data on

k
RS1

d
as well as the

relationship between the Floer datum chosen here and the ones chosen on {R1
d

and
k
yR1

d
.

Proposition 5.18 A Floer datum for the cyclic open–closed map exists.

Proof Since the choices of Floer data at each stage are contractible, this follows from
the straightforward verification that, for a suitably chosen inductive order on strata,
the conditions satisfied by the Floer data at various strata do not contradict each other.
We use the following inductive order: first, say we have chosen a Floer datum for
the A1 structure as in Section 3.3, along with a BV compatible Floer datum for the
nonunital open–closed map following Section 5.3. In particular, we have chosen Floer
data for the moduli spaces Rd;fi (per Section A.2), for

0
{Rd , for the auxiliary moduli

space
0
RS1

d
, and (using the conditions above) we have induced a particular choice of

Floer datum on
0
yRd . Next, inductively assuming that we have made all choices at level

k�1 with k > 0, we first choose Floer data for
k
{Rd for each d , then kRS1

d
for each d

(by pulling back a choice of Floer datum on the quotient by � in order to satisfy the
equivariance condition), and finally note that a choice is fixed for k

yRd by the above
constraints.

Fixing a Floer datum for the cyclic open–closed map, we obtain, for any d–tuple of
Lagrangians L0; : : : ;Ld�1, and asymptotic conditions

(5-149)
�
Ex D .xd ; : : : ;x1/ with xi 2 �.Li�1;Li mod d /;

yout 2O;

Gromov–Floer compactified moduli spaces

k
{R1

d .yout; Ex/;(5-150)

kR
S1

d .yout; Ex/;(5-151)

k
yR1

d .yout; Ex/;(5-152)

of maps into M from an arbitrary element S of the moduli spaces (5-107), (5-108) and
(5-109) respectively (or rather from �f .S/ in the case of (5-109)) satisfying Floer’s
equation using the Floer datum chosen for the given S as in (5-4), with asymptotics
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and Lagrangian boundary conditions as in (5-5), again with the modifications as in
Remarks 5.1 or 5.2 for compact or wrapped Fukaya categories of Liouville manifolds.
The virtual dimension of each component of these moduli spaces coincides (mod 2 or
exactly, depending on whether we are Z=2– or Z–graded) with, respectively,

deg.yout/� nC d � 1�

dX
iD1

deg.xi/C 2k for k
{R1

d .yout; Ex/;(5-153)

deg.yout/� nC d �

dX
iD1

deg.xi/C 2k for kR
S1

d .yout; Ex/;(5-154)

deg.yout/� nC d �

dX
iD1

deg.xi/C 2k for k
yR1

d .yout; Ex/:(5-155)

By Assumption 3.10, for generic choices of Floer data, the Gromov–Floer compactifi-
cations of the components of virtual dimension � 1 of (5-150)–(5-152) are compact
manifolds-with-boundary of the expected dimension. For rigid elements u in the moduli
spaces (5-150)–(5-152), which occur for asymptotics .y; Ex/ satisfying

(5-153) D 0; (5-154) D 0 or (5-155) D 0;

respectively, the orientations (5-138)–(5-140) and [1, Lemma C.4] induce isomor-
phisms of orientation lines

.k
{R1

d /u W oxd
˝ � � �˝ ox1

! oy ;(5-156)

.kR
S1

d /u W oxd
˝ � � �˝ ox1

! oy ;(5-157)

.k
yR1

d /u W oxd
˝ � � �˝ ox1

! oy :(5-158)

Summing the application of these isomorphisms over all rigid u (or “counting rigid
elements”) defines the joyout jk component of three families of operations {OCk , OCS1;k

and yOCk , up to a sign twist specified below. Define

{OCk.Œxd �; : : : ; Œx1�/ WD
X

u2
k
{R1

d
.youtI Ex/ rigid

.�1/{?d .k {R1
d /u.Œxd �; : : : ; Œx1�/;(5-159)

OCS1;k.Œxd �; : : : ; Œx1�/ WD
X

u2
k
RS1

d
.youtI Ex/ rigid

.�1/?
S1

d .kR
S1

d /u.Œxd �; : : : ; Œx1�/;(5-160)

yOCk.Œxd �; : : : ; Œx1�/ WD
X

u2
k
yR1

d
.youtI Ex/ rigid

.�1/y?d .k
yR1

d /u.Œxd �; : : : ; Œx1�/;(5-161)
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where the signs are given by

{?d D deg.xd /C
X

i

i � deg.xi/;(5-162)

?S1

d D|d

dX
iD1

.i C 1/ � deg.xi/C deg.xd /C d � 1D {?d Czd � 1;(5-163)

y?d D

X
i

i � deg.xi/:(5-164)

A codimension-one analysis of the moduli spaces (5-150) and (5-152) reveals:

Proposition 5.19 The following equations hold for each k � 0:

(� 1/n
kX

iD0

ıi {OCk�i
DOCS1;k�1

C {OCkb;(5-165)

(� 1/n
kX

iD0

ıi yOCk�i
D yOCkb0C {OCk.1� t/:(5-166)

Proof The boundary of the one-dimensional components of (5-150) are covered by
the (rigid components of) the following types of strata:

� Spaces of maps with domain lying on the codimension-one boundary of the
moduli space, ie in (5-118)–(5-121).

� Semistable breakings, namely those of the form

k
{R1

d .y1I Ex/�M.youtIy1/;(5-167)

R1.xIxi/� k
{R1

d .youtI
zEx/;(5-168)

where again zEx denotes the collection of inputs Ex with xi replaced with x.

All together, this implies, up to sign, that

(5-169) .�1/n
kX

iD0

ıi {OCk�i
DOCS1;k�1

C {OCkbC

k�1X
iD1

{OCk;i;iC1;

where {OCk;i;iC1 is an operation corresponding with some sign twist to (5-121). Of
course equation (5-169) is a shorthand for saying, for a tuple of d cyclically composable
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morphisms xd ; : : : ;x1 (recalling the abuse of notation xi WD Œxi �), that

(5-170) .�1/n
kX

iD0

ıi {OCk�i
d .xd ; : : : ;x1/

DOCS1;k�1
d

.xd ; : : : ;x1/C

k�1X
iD1

{OCk;i;iC1
d

.xd ; : : : ;x1/

C

X
i;s

.�1/z
s
1 {OCk

d�iC1.xd ; : : : ;xsCiC1;�
i.xsCi ; : : : ;xsC1/;xs; : : : ;x1/

C

X
i;j

.�1/]
i
j {OCk.�iCjC1.xi ; : : : ;x1;xd ; : : : ;xd�j /;xd�j�1; : : : ;xiC1/:

We first note that in fact the operation {OCk;i;iC1 D
P

d
{OC

k;i;iC1

d is zero, because
by condition (5-141), the Floer datum chosen for elements S in (5-121) are constant
along the one-dimensional fibers of {�i . Hence, elements of the moduli space with
source in (5-121) are never rigid; see Lemma 4.11 for an analogous and more detailed
explanation.

Thus, it suffices to verify that the signs coming from the codimension-one boundary
are exactly those appearing in (5-169). We can safely ignore studying any signs for
the vanishing operations such as yOCk;i;iC1. The remaining sign analysis is exactly
as in Proposition 5.16; more precisely, note that the forgetful map {Fk W k

{R1
d
!

1
{R1

d

which forgets p1; : : : ;pk�1 has complex oriented fibers, and in particular (since the
marked points pi contribute complex domain orientations and do not introduce any
new orientation lines) the sign computations sketched in Proposition 5.16 carry over
for any stratum whose domain is pulled back from a boundary stratum of

1
{R1

d
; in turn,

as described in Proposition 5.16, the sign computations for
1
{R1

d
largely reduce to those

for
0
{R1

d
. This verifies (5-169).

Similarly, for the hat moduli space, an analysis of the boundary of one-dimensional
moduli spaces of maps tells us, up to sign verification,

(5-171) .�1/n
kX

iD0

ıi yOCk�i
D yOCkb0C {OCk.1� t/C yOCk;k;kC1

C

k�1X
iD1

yOCk;i;iC1;

where yOCk;k;kC1 is an operation corresponding with some sign twist to (5-133), and
yOCk;i;iC1 is an operation corresponding with some sign twist to (5-134). The conditions

(5-147)–(5-148) similarly imply that yOCk;k;kC1 and yOCk;i;iC1 are zero, so it is not
necessary to even establish what the signs for these terms are.
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To verify signs for (5-171), we apply the principle discussed in the proof of Lemma 5.8,
in which by treating the auxiliary boundary marked point zf as possessing a “formal
unit element asymptotic constraint eC”, therefore viewing yOCk.xd ˝ � � � ˝ x1/ WD

yOCk.xd ; : : : ;x1/ formally as yOCk.eC˝xd ˝ � � �˝x1/, the signs for (5-171) applied
to strings .xd˝� � �˝x1/ of length d follow from the sign computations for {OC applied
to strings .eC ˝ xd ˝ � � � ˝ x1/ of length d C 1. This analysis applies to the term
yOCk;k;kC1 as well, which is the hat version of OCS1;k ; however, the former operation

happens to be zero because extra symmetries imply the moduli space controlling this
operation is never rigid.

Next, by decomposing the moduli space
k
RS1

d
into sectors, we can write the auxiliary

operation OCS1;j in terms of yOCj and Connes’ B operator.

Proposition 5.20 As chain-level operations ,

(5-172) OCS1;k
D yOCk

ıBnu:

Proof The proof directly emulates Proposition 5.9, and as such we will give fewer
details. We begin by defining, for i 2 Z=dZ, operations

(5-173) yOCk
d;�i

associated to various “sectors” of the kC1st marked point pkC1 of
k
RS1

d
. Once more,

to gain better control of the geometry of these sectors in the compactification (when the
sector size can shrink to zero), we pass to an alternative model for the compactification.
Define

(5-174) kR
1
d;�i

to be the abstract moduli space of discs with d C 1 boundary punctures, z1; : : : ; zi , zf ,
ziC1; : : : ; zd arranged in counterclockwise order, one interior negative puncture zout

with asymptotic marker, and k additional interior auxiliary marked points p1; : : : ;pk

which are strictly radially ordered with norms in
�
0; 1

2

�
for a representative fixing z0

at 1 and zout at 0, so

(5-175) 0< jp1j< � � �< jpk j<
1
2
:

Moreover, as before:

(5-176) The asymptotic marker on zout points in the direction �1 (or towards zf if
k D 0).
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There is a bijection

(5-177) �i W kR
1
d;�i
! k
yR1

d

given by cyclically permuting boundary labels, and in particular we also have an
auxiliary-rescaling map, as in (5-137),

(5-178) kR
1
d;�i
! kR

S1
i;iC1

d
;

which, for a representative with jzoutj D 0, adds a point pkC1 on the line between
zout and zf with jpkC1j D

1
2

and deletes zf . We choose orientations on
k
R1

d;�i
to be

compatible with (5-178); more concretely, for a slice fixing the positions of zout and zd ,
consider the top form

(5-179) r1 � � � rk dz1^dz2^ � � �^dzd�1^dzd ^dzf ^dr1^d�1^ � � �^drk ^d�k :

The compactification
k
R1

d;�i
is inherited from the identification (5-177); the salient

point is that we treat bubbled-off boundary strata containing the point zf as coming
from Rd;fi , the moduli space of discs with i th marked point forgotten (where the i th

marked point is zf ), constructed in Section A.2.

We choose as a Floer datum for
k
R1

d;�i
the pulled-back Floer datum from (5-177); it

automatically then exists and is universal and consistent as desired. Moreover we have
chosen orientations as in the case k D 0 so that the auxiliary rescaling map (5-178) is
an oriented diffeomorphism extending to a map between compactifications.

Thus, for a given a Lagrangian labeling fL0; : : : ;Ld�1g and compatible asymptotics
fx1; : : : ;xd Iyoutg we obtain a moduli space of maps satisfying Floer’s equation with
the chosen boundary and asymptotics,

(5-180) kR
1
d;�i

.youtI Ex/ WD k
yR1

d .youtIxi�1; : : : ;x1;xd ; : : : ;xi/;

which is (for components of virtual dimension � 1) a manifold of dimension equal to
the virtual dimension of the right-hand side, namely

deg.yout/� nC d �

dX
jD1

deg.xj /C 2k;

with Z–gradings or mod 2 if working with Z=2–gradings. The isomorphisms of
orientation lines

(5-181) .kR
1
d;�i

/u W oxd
˝ � � �˝ ox1

! oyout
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induced by elements u of the zero-dimensional components of (5-180) define the
joyout jk component of the operation yOCk

d;�i
, up to the sign twist

(5-182) yOCk
d;�i

.Œxd �; : : : ; Œx1�/ WD
X

u2k yR1
d;�i

.youtI Ex/ rigid

.�1/y?d .kR
1
d;�i

/u.Œxd �; : : : ; Œx1�/;

where ?S1

d
D
Pd

iD1.i C 1/ � deg.xi/C deg.xd /C d � 1.

Now, exactly as in Lemma 5.12, there is a chain-level equality of signed operations

(5-183) OCS1;k
d
D

d�1X
iD0

yOCk
d;�i

:

We recall the geometric statement underlying this: the point is that by construction
there is an oriented embedding

(5-184)
a

i

kR
1
d;�i

`
i �

i
f

���!

a
i

kR
S1

i;iC1

d
,! kRS1

d ;

compatible with Floer data, covering all but a codimension-one locus in the target, and
moreover all the sign twists defining the operations OCk

d;�i
are chosen to be compatible

with the sign twist in the operation OCS1;k — this uses the fact that the Floer data on

k
RS1

i;iC1 agrees with the data on k
yR1

d
via the cyclic permutation map ��i by (5-55).

After perturbation, zero-dimensional solutions to Floer’s equation can be chosen to
come from the complement of any codimension-one locus in the source abstract moduli
space, implying the equality (5-183).

Finally, all that remains is a sign analysis, whose conclusion is that

(5-185) yOCk
d;�i
D yOCk

d ı snu
ı t i ;

where snu is the operation arising from changing a check term to a hat term with a
sign twist (3-20). (The equality up to comparing signs is immediate, as the operations
are constructed with identical Floer data and hence involve counts of identical moduli
spaces.) The details of this sign comparison are exactly the same as in Lemma 5.13,
including with signs, since when orienting the moduli of maps, the additional marked
points p1; : : :pk only contribute complex orientations to the moduli spaces of domains
(and no additional orientation line terms).

Proof of Proposition 5.17 This is an immediate corollary of the previous two propo-
sitions.

We now collect all of this information to finish the proof of our main result.
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Proof of Theorem 1.1 The premorphism fOC 2Rhomn
S1.CHnu

� .F/;CF�.M //, written
u–linearly as

P
i OCkuk , where the OCk D {OCk ˚ yOCk are as constructed above,

satisfies @fOC D 0 by Proposition 5.17. Hence fOC is closed, or an S1–complex homo-
morphism, also known as an A1 C��.S

1/–module homomorphism; see Section 2.1.
Note that ŒOC0� D ŒOC� D Œ {OC�, where the first equality holds by definition and the
second holds by Corollary 5.4. Hence fOC is an enhancement of {OC, as defined in
Section 2.1.

Proof of Corollary 1.5 This is an immediate consequence of Theorem 1.1 and the
induced homotopy-invariance properties for equivariant homology groups discussed in
Section 2, particularly Corollary 2.18 and Proposition 2.19.

5.6 Variants of the cyclic open–closed map

5.6.1 Using singular (pseudo)cycles instead of Morse cycles Let M be Liouville or
compact and admissible (in which case by our convention M DM and @M D∅),18 and
let us consider the version of fOC with target the relative cohomology H�.M ; @M / as
in Section 4.1.2. Instead of using a C 2–small Hamiltonian to define the Floer complex
computing H�Cn.M ; @M / (which we only did for simultaneous compatibility with
the symplectic cohomology case), we can pass to a geometric cycle model for the
group, and then build a version of the map fOC with such a target, which simplifies
many of the constructions in the previous section, in the sense that the codimension-one
boundary strata of moduli spaces, and hence the equations satisfied by fOC, are strictly
a subset of the terms appearing above. As such, it will be sufficient to fix some notation
for the relevant moduli spaces, and state the relevant simplified results.

We let

k
{P1

d ;(5-186)

kP
S1

d ;(5-187)

k
yP1

d(5-188)

denote copies of the abstract moduli spaces (5-107)– (5-109), where the interior puncture
zout is filled in and replaced by a marked point xzout, without any asymptotic marker.
The compactifications of these moduli spaces are exactly as before, except that the

18Technically we should write QH�.M / in the latter case, but additively QH�.M / D H�.M /, and
correspondingly no sphere bubbling occurs in the moduli spaces we define here, so there is no difference
for the purposes of this discussion.
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auxiliary points p1; : : : ;pk are now allowed to coincide with xzout, without breaking off
an angle-decorated cylinder or element of Mr (in the language of Section 4.3). In other
words, the real blow-up of Deligne–Mumford compactifications at zout described in
Section A.1, which was responsible for the boundary strata containing Mr factors, no
longer occurs, but all other degenerations do occur. Correspondingly the codimension-
one boundaries of compactified moduli spaces have all of the strata as before except
for strata containing the Mr factors.

Inductively choose smoothly varying families Floer data as before on these moduli
spaces of domains, satisfying all of the requirements and consistency conditions as
before, except for any consistency conditions involving Mr moduli spaces, which no
longer occur on the boundary. For a basis ˇ1; : : : ; ˇs of smooth (pseudo)cycles in
homology H�.M / whose Poincaré duals Œˇ_i � generate the cohomology H�.M ; @M /,
one obtains moduli spaces

k
{P1

d .ˇi I Ex/;(5-189)

kP
S1

d .ˇi ; Ex/;(5-190)

k
yP1

d .ˇi ; Ex/(5-191)

of moduli spaces of maps into M with source an arbitrary element of the relevant
domain moduli space, satisfying Floer’s equation as before, with Lagrangian boundary
and asymptotics Ex as before, with the additional point constraint that xzout lie on the
cycle ˇi . As before, standard methods ensure that zero- and one-dimensional moduli
spaces are (for generic choices of perturbation data and/or ˇi) transversely cut-out
manifolds of the “right” dimension and boundary, which is all that we need.

Then, define the coefficient of Œˇ_i � 2 H�.M ; @M / in {OCk.xd ˝ � � � ˝ x1/ to be
given by signed counts (with the same sign twists as before) of the moduli spaces
(5-189); similarly for yOCk and OCS1;k using the moduli spaces (5-191) and (5-190).
A simplification of the arguments already given (in which the ık operations no longer
occur, but every other part of the argument carries through) implies:

Proposition 5.21 The premorphism

fOC D
1X

iD0

OCkuk
2 Rhomn

S1.CHnu
� .F ;F/;H

�.M ; @M //

satisfies

(5-192) fOC ı beq D 0;
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where beq D bnuC uBnu. In other words , fOC is a homomorphism of S1–complexes
between CHnu

� .F ;F/ with its strict S1–action and H�.M ; @M / with its trivial S1–
action.

As usual this model of fOC again induces maps fOCC=�=1 between homotopy orbit
complexes, homotopy fixed-point complexes etc; note that the relevant equivariant
homology chain complexes are particularly simple for the latter H�.M ; @M /, seeing
as there is no differential and trivial circle action; for instance,

H�.M ; @M /hS1 D
�
H�.M ; @M /..u//=uH�.M ; @M /ŒŒu��; ıeq D 0

�
:

5.6.2 Compact Lagrangians in noncompact manifolds Now let us explicitly restrict
to the case of M a Liouville manifold, and denote by F �W the full subcategory
consisting of a finite collection of compact exact Lagrangian branes contained in the
compact region M . By Poincaré duality we may think of the map OC (and its cyclic
analogue, fOC) with target H�.M ; @M / as a pairing CHnu

� .F ;F/˝C �.M /! kŒn�.
In this case, there is a nontrivial refinement of this pairing to

(5-193) OCcpct W CH�.F/˝ SC�.M /! kŒ�n�;

where SC�.M / is the symplectic cohomology cochain complex.

Remark 5.22 The refinement (5-193) relies on extra flexibility in Floer theory for
compact Lagrangians compared to noncompact Lagrangians (compare Remarks 3.16
and 3.17), first alluded to in this form in [54]. This extra flexibility allows us to define
operations without outputs — and in particular study a version of the open–closed
map where the interior marked point and boundary marked points are all inputs — for
instance by Poincaré dually treating some boundary inputs as outputs with “negative
weight”.

One way to implement such operations, using the type of Floer data discussed in
Remark 3.17, is by allowing the subclosed one-form ˛S used in Floer-theoretic pertur-
bations to have complete freedom along boundary conditions corresponding to compact
Lagrangians; in contrast, along possibly noncompact Lagrangian boundary conditions,
˛S is required to vanish in order to appeal to the integrated maximum principle. In
particular, if we allow ˛S to be nonvanishing along boundary components, Stokes’
theorem no longer implies that ˛S being subclosed implies that the total “output”
weights must be greater than the total “input” weights.
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Remark 5.23 The existence of a map SC�.M / ! CH�.F/_Œ�n� is well known.
Namely, categories C with a weak proper Calabi–Yau structure19 of dimension n come
equipped with isomorphisms between the dual of Hochschild chains and Hochschild
cochains CH�.C/_Œ�n�' CH�.C/, and the existence of a map SC�.M /! CH�.F/
was observed in [49].

The geometric moduli spaces used to establish our main result apply verbatim in this
case, with the interior marked point changed to an input, and the ordering of the
auxiliary marked points p1; : : : ;pk appearing in the cyclic open–closed map reversed.
In this case, the operations associated to such moduli spaces imply:

Proposition 5.24 Consider CHnu
� .F/˝ SC�.M / as an S1–complex with its diagonal

S1–action (see Lemma 2.11 in Section 2.1), and kD ktriv
2 S1–mod with its trivial

S1–complex structure. The map from CH�.F/˝ SC�.M / to k can be enhanced to a
homomorphism of S1–complexesfOCcpct 2 Rhomn

S1.CHnu
� .F/˝ SC�.M /;k/:

For example , fOCcpct satisfies @fOCcpctD0. In other words , in the notation of Section 2.3,
there exists a map

fOCcpct;eq D

1X
iD0

OCcpct;iu
i
W CHnu

� .F/˝ SC�.M /! kŒŒu��

of pure degree n, with ŒOCcpct;0�D ŒOCcpct�, such that

fOCcpct;eq ı
�
.�1/deg.y/beq.�/˝yC � ˝ ıSC

eq .y/
�
D 0:

To clarify the relevant moduli spaces used, we define the spaces

k
{R1

d;cpct;(5-194)

kR
S1

d;cpct;(5-195)

k
yR1

d;cpct;(5-196)

to be copies of the abstract moduli spaces (5-107)–(5-109) where the interior puncture
zout is now a positive puncture (still equipped with an asymptotic marker), and all of
the other inputs and auxiliary points are as before, except we’ve reversed the order

19Such as the Fukaya category of compact Lagrangians; see eg [52, (12j); 53, Proof of Proposition 5.1,
Step 1; 60, Section 2.8].
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of the labelings p1; : : : ;pk (for notational convenience), so the ordering constraints
all now read as 0 < jpk j < � � � < jp1j <

1
2

. The compactified moduli spaces have
boundary strata agreeing with the boundary strata of the compactified (5-107)–(5-109),
except now the Mr cylinders break “above” the

k�r
R1

d;cpct (equipped with {, y or S1

decoration) discs instead of “below”. The reversal of the ordering of auxiliary marked
points is designed to be compatible with the ordering of the auxiliary marked points
on the Mr moduli spaces when it breaks “above” (as in Mr , the label numbers of the
auxiliary marked points increase from top to bottom).

Equipping these moduli spaces with perturbation data satisfying the same consistency
conditions and other requirements as before, and counting solutions with sign twists as
before, defines the terms of the premorphism exactly as in the previous subsections, with
identical analysis to show that, for instance, the operation corresponding to

k
RS1

d;cpct

is the operation corresponding to
k�1
yR1

d;cpct composed with Connes’ B operator, the
boundary strata in which jpi j and jpiC1j are coincident contributes trivially, and so on.

6 Calabi–Yau structures

6.1 The proper Calabi–Yau structure on the Fukaya category

Here we review the notion of a proper Calabi–Yau structure, following Kontsevich
and Soibelman [37], and construct proper Calabi–Yau structures on Fukaya categories
of compact Lagrangians in a compact admissible or Liouville manifold. A proper
Calabi–Yau structure induces chain-level topological-field-theoretic operations on
the Hochschild chain complex of the given category, controlled by the open moduli
space of curves with marked points equipped with asymptotic markers, at least one of
which is an input [14; 37]. Note that Costello’s work [14] constructing field-theoretic
operations has the (a priori stronger) requirement that the underlying A1 category be
cyclic, but in characteristic zero any proper Calabi–Yau structure determines a unique
quasi-isomorphism between the underlying A1 category and a cyclic A1 category
[37, Theorem 10.7]; see Remark 1.11 for more discussion.

We say an A1 category A is proper (sometimes called compact) if its cohomological
morphism spaces H�.homA.X;Y // have total finite rank over k for each X;Y. Recall
that for any object X 2A, there is an inclusion of chain complexes

hom.X;X /! CH�.A/;
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inducing a map
Œi � WH�.hom.X;X //! HH�.A/:

Definition 6.1 Let A be a proper category. A chain map tr W CH�Cn.A/! k is called
a weak proper Calabi–Yau structure, or nondegenerate trace of dimension n if, for any
two objects X;Y 2 obA, the composition

(6-1) H�.homA.X;Y //˝H n��.homA.Y;X //
Œ�2

A�
��!H n.homA.Y;Y //

Œi�
�!HHn.A/

Œtr�
�! k

is a perfect pairing; this nondegeneracy property only depends on the homology class Œtr�.
A chain map from the nonunital Hochschild complex tr WCHnu

�Cn.A/!k is called a weak
proper Calabi–Yau structure if composition with the inclusion CH�Cn.A/�CHnu

�Cn.A/
is a weak proper Calabi–Yau structure in the sense above.

Remark 6.2 In the symplectic literature, weak proper Calabi–Yau structures of dimen-
sion n are sometimes defined as bimodule quasi-isomorphisms A� ��!A_Œn�, where
A� denotes the diagonal bimodule and A_ the linear dual diagonal bimodule; see
[52, (12j)] and Section 6.2 for brief conventions on A1–bimodules, see also [62]. To
explain the relationship between this definition and the one above, which has sometimes
been called a weakly cyclic structure or1–inner product [62; 60], note that for any
compact A1 category A, there are quasi-isomorphisms (with explicit chain-level
models)

(6-2) .CH�.A//_ D CH�.A;A_/ � � homA–A.A�;A_/;

where homA–A denotes morphisms in the category of A1–bimodules; see eg [50]
or [24]. Under this correspondence, nondegenerate morphisms from HH�.A/! k

as defined above correspond precisely (cohomologically) to weak Calabi–Yau struc-
tures, for instance, those bimodule morphisms from A� to A_ which are cohomology
isomorphisms.

Remember that the Hochschild chain complex of an A1 category A comes equipped
with a natural chain map to the (positive) cyclic homology chain complex, the projection
to homotopy orbits (2-22),

pr W CHnu
� .A/! CCC� .A/;

modeled on the chain level by the map that sends ˛ 7! ˛ �u0 for ˛ 2CHnu.A/; compare
with (2-35).
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Definition 6.3 (cf Kontsevich and Soibelman [37]) A (strong) proper Calabi–Yau
structure of degree n is a chain map

(6-3) ztr W CCC� .A/! kŒ�n�

from the (positive) cyclic homology chain complex of A to k of degree �n, such that
the induced map trD ztr ı pr W CHnu

� .A/! kŒ�n�— or equivalently the composition {tr
of tr with the inclusion CH�.A/� CHnu

� .A/— is a weak proper Calabi–Yau structure.

Via the model for cyclic chains given as

CCC� .A/ WD .CHnu
� .A/..u//=uCHnu

� .A/ŒŒu��; bCuBnu/;

such an element ztr takes the form

(6-4) ztr WD
1X

iD0

trk uk ;

where

(6-5) trk
WD .{trk

˚ ytrk/ W CHnu
� .A/! kŒ�n� 2k�:

We now complete the proof of Theorem 1.12 described and sketched in Section 1: first,
define the putative proper Calabi–Yau structure as the composition

(6-6) ztr W CCC� .F/
eOCC
��! C �Cn.M ; @M /˝k k..u//=ukŒŒu��! k;

where the last map (cohomologically) sends PD.pt/ �u0 2H 2n.M ; @M / to 1, and other
elements to 0; ie it projects to the u0 factor then integrates over ŒM �. Instead of using a
C 2–small Hamiltonian to define the Floer complex computing H�Cn.M ; @M /, which
we only did for simultaneous compatibility with the symplectic cohomology case, we
can pass to a geometric cycle model for fOCC (and therefore ztr), which as described in
Section 5.6.1 directly maps (on the chain level) to

H�Cn.M ; @M /˝k k..u//=ukŒŒu��:

With respect to this model, the map ztr involves counts of the moduli spaces de-
scribed there, where the interior marked point xzout is unconstrained, eg

k
{P1

d
.ŒM �I Ex/,

k
yP1

d
.ŒM �I Ex/ and

k
PS1

d
.ŒM �I Ex/; see Figure 16.

The following well-known lemma verifies the nondegeneracy property of the map ztr.
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z1

z2

z3

xzout

p1

p2

p3

z1

z2

z3

z4

zf

xzout

p1

p2

Figure 16: An image of representatives of moduli spaces
3
{P1

3
.ŒM �I Ex/ and

2
yP1

4 .ŒM �I Ex/, which appear in the map ztr.

Lemma 6.4 [52, (12j); 60, Lemma 2.4] The corresponding morphism

Œtr� W HH�Cn.F/! k

is a nondegenerate trace (or weak proper Calabi–Yau structure).

Sketch of proof This is an immediate consequence of Poincaré duality in Lagrangian
Floer cohomology; see the cited references. As a brief sketch, note that {tr0 ı�2 D

{tr ı �2 W hom.X;Y /˝ hom.Y;X /! k is chain homotopic (and hence equal in co-
homology) to a chain map which counts holomorphic discs with an interior marked
point satisfying an empty constraint, and two (positive) boundary asymptotics on p

and q, with corresponding Lagrangian boundary on x and y. Via a further homotopy
of Floer data, one can arrange that the generators of hom.X;Y / and hom.Y;X / are in
bijection (for instance if one is built out of time-1 flowlines of H and one out of time-1
flowlines of �H ), and the only such rigid discs are constant discs between p and the
corresponding p_.

Proof of Theorem 1.12 The above discussion constructs ztr and Lemma 6.4 verifies
nondegeneracy.

6.2 The smooth Calabi–Yau structure on the Fukaya category

We give an overview of (a categorical version of) the notion of a (strong) smooth
Calabi–Yau structure, and construct such smooth Calabi–Yau structures on wrapped or
compact Fukaya categories under the “nondegeneracy” hypotheses of [24]. Smooth
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Calabi-Yau structures were proposed by Kontsevich and Vlassopoulous [36] and later
comprehensively studied by Kontsevich, Takeda and Vlassopoulous [39]. Other expo-
sitions appear, for instance, in [27] and [7]; in the latter work the terminology “left”
is used instead of “smooth”, and “right” instead of “proper”. A smooth Calabi–Yau
structure (analogously to the proper case) induces chain-level topological field theory
operations on the Hochschild chain complex of the given category, controlled by the
open moduli space of curves with marked points equipped with asymptotic markers, at
least one of which is an output [39; 38].20

To state the relevant definitions, we make use of some of the theory of A1–bimodules
over a category C. We do so without much explanation, instead referring readers
to existing references [50; 62; 24]. An A1–bimodule P over C is a bilinear A1

functor from Cop� C to chain complexes, which is roughly the data of a chain complex
.P.X;Y /; �0j1j0/ for every pair of objects C, along with “higher multiplication maps”

�sj1jt
W homC.Xs�1;Xs/˝ � � �˝ homC.X0;X1/˝P.X0;Yt /

˝ homC.Yt�1;Yt /˝ � � �˝ homC.Y0;Y1/! P.Xs;Y0/

satisfying a generalization of the A1 equations. A1–bimodules over C form a dg
category C–mod–C, with morphisms denoted by hom�C–C.P;Q/. (For dg bimodules
over a dg category, this chain complex corresponds to a particular chain model for the
“derived morphism space” using the bar resolution.) The basic examples of bimodules
we require are:

� The diagonal bimodule C�, which associates to a pair of objects .K;L/ the
chain complex C�.K;L/ WD homC.L;K/.

� For any pair of objects A;B, there is a Yoneda bimodule Y l
A
˝k Yr

B
, which

associates to a pair of objects .K;L/ the chain complex Y l
A
˝k Yr

B
.K;L/ WD

homC.A;K/˝ homC.L;B/.

Yoneda bimodules are the analogues of the free bimodule A˝Aop in the category of
bimodules over an associative algebra A (which are the same as A˝Aop–modules).
Accordingly, we say a bimodule P is perfect if, in the category C–mod–C, it is split-
generated by (ie isomorphic to a retract of a finite complex of) Yoneda bimodules. We
say that a category C is (homologically) smooth if C� is a perfect C–bimodule.

Recall for what follows that for any bimodule P there is a cap product action

(6-7) \W HH�.C;P/˝HH�.C; C/! HH�.C;P/;
20In contrast, note that in the proper case all operations should have at least one input.
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and hence for any class Œ� � 2 HH�.C; C/ there is an induced map

(6-8) Œ\�� W HH�.C;P/! HH�Cdeg.�/.C;P/:

More generally, the cap products acts as HH�.C;P/˝HH�.C;Q/!HH�.C;P˝CQ/;
here we are considering QDC�, and then composing with the equivalence P˝CC�ŠP .
See for instance [24, Section 2.10] for explicit chain-level formulae in the variant case
that P D C�, which can be straightforwardly adapted to the general case and then
specialized to the case here.

Definition 6.5 Let C be a homologically smooth A1 category. A cycle � 2CH�n.C; C/
is said to be a weak smooth Calabi–Yau structure, or a nondegenerate cotrace if, for
any objects K;L, the operation of capping with � induces a homological isomorphism

(6-9) Œ\�� W HH�.C;Y l
K ˝k Yr

L/
Š�! HH��n.C;Y l

K ˝k Yr
L/'H�.homC.K;L//:

(This nondegeneracy property only depends on the homology class Œ� �.) A cycle in
the nonunital Hochschild complex � 2 CHnu

�n.C/ is said to be a weak smooth Calabi–
Yau structure if again Œ� � 2H�.CHnu

�n.C//Š HH�n.C/ is nondegenerate in the sense
of (6-9).

Remark 6.6 The second isomorphism HH��n.C;Y l
K
˝k Yr

L
/'H�.homC.K;L//

always holds for cohomologically unital categories, such as the Fukaya category; the
content is in the first.

Remark 6.7 Continuing Remark 6.2, there is an alternative perspective on Definition
6.5 using bimodules. Namely, for any bimodule P , there is a naturally associated
bimodule dual P !, defined for a pair of objects .K;L/ as the chain complex

P !.K;L/ WD hom�C–C.P;Y
l
K ˝k Yr

L/:

The higher bimodule structure is defined in [24, Definition 2.40]; for an A–bimodule B,
it is an A1 analogue of defining B! WD RHomA˝Aop.B;A˝Aop/, where RHom is
taken with respect to the outer bimodule structure on A˝ Aop, and the bimodule
structure on B! comes from the inner bimodule structure; see eg [28, Section 20.5].

We abbreviate C! WD C!
�

and call C! the inverse dualizing bimodule, following [37].
(Observe that H�.C!.K;L// Š HH�.C;Y l

K
˝k Yr

L
/.) For a homologically smooth

category C, one notes that there is a quasi-isomorphism CH��n.C/'hom�C–C.C!
�
Œn�; C�/

(see [37, Remark 8.11] for the case of A1–algebras), where the equivalence associates
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to any element the bimodule morphism whose cohomology-level map is the cap product
operation (6-9). Nondegenerate cotraces in CH�n.C/ then correspond precisely to
bimodule quasi-isomorphisms C!Œn� ��! C�. Further discussion of these structures in
the A1 categorical setting will appear as part of forthcoming work with Cohen [12].

Let � W CC�� .C/ ! CHnu
� .C/ denote the “inclusion of homotopy fixed points” chain

map from (2-24); concretely, as described in (2-36), this is the chain map sendingP1
iD0 ˛iu

i 7! ˛0.

Definition 6.8 Let C be a homologically smooth A1 category. A (strong) smooth
Calabi–Yau structure is a cycle z� 2 CC��n.C/ such that the corresponding element
�.z�/ 2 CHnu

�n.C/ is a weak smooth Calabi–Yau structure.

Using these definitions and the cyclic open–closed map, we will now restate and prove
Theorem 1.16. We adopt the notation of wrapped Fukaya categories in the below result,
using W and SC�.M / in place of F and CF�.M /, with the understanding that for a
compact symplectic manifold, these are the same.

Theorem 6.9 (Theorem 1.16 above) Suppose a Liouville (or compact admissible
symplectic) manifold is nondegenerate in the sense of [24], meaning that the map
ŒOC� W HH��n.W/ ! SH�.M / hits 1. Then the Fukaya category W possesses a
(cohomologically) canonical geometrically defined smooth Calabi–Yau structure.

Proof In [24] it was proven, assuming nondegeneracy of M , that the map

ŒOC� W HH��n.W/! SH�.M /

is an isomorphism, W is homologically smooth, and moreover that the preimage Œ� � of 1

gives a weak smooth Calabi–Yau structure in the sense described above; see [25; 27; 26]
for a proof of some of these facts specifically tailored to the case of compact Lagrangians
in compact symplectic manifolds. Let us briefly recall how the nondegeneracy condition
(6-9) is proven (a fact which is left slightly implicit in [24]). First, a geometric morphism
of bimodules CY WW�!W !Œn� is constructed and shown in [24, Theorem 1.3] to be
a quasi-isomorphism under the given nondegeneracy hypotheses. Then, it is shown
that capping with Œ� � is a one-sided inverse to the homological map ŒCY �, and thus an
isomorphism also, by the following argument. We establish that the following diagram
is commutative (up to an overall sign of .�1/n.nC1/=2); it can be thought of as coming
from the compatibility of OC with module structures for Hochschild (co)homology

Geometry & Topology, Volume 27 (2023)



3574 Sheel Ganatra

with coefficients in Y l
K
˝kYr

L
, and can be extracted from the holomorphic curve theory

appearing in [24, Theorem 13.1]:

(6-10)

HH��n.W;W/
˝

H�.homW.K;L//

.id;ŒCY�/
//

.ŒOC�;id/
��

HH��n.W;W/
˝

HH�Cn.W;Y l
K ˝k Yr

L/

\

��SH�.M /
˝

H�.homW.K;L//

Œ�2.CO0.�/;�/�
// // H�.homW.K;L//

D HH�.W;Y l
K
˝k Yr

L
/

Here ŒCO0� is the length-zero part of the closed open map for the object L, map-
ping SH�.M / to H�.homW.L;L//. Plugging Œ� � into HH�.W;W/ and noting that
ŒOC�.Œ� �/D 1 and Œ�2.CO0.1/;�/�D Œ�

2�.ŒeL�;�/ is the identity map establishes, as
desired, that Œ� \ .CY.y//�D Œy�.

To lift the weak smooth Calabi–Yau structure to a (strong) smooth Calabi–Yau structure,
first we note that, because ŒOC� is an isomorphism, Corollary 1.5 implies that there is a
commutative diagram of isomorphisms

(6-11)

HC���n.W/
Œ��

//

ŒeOC��
��

HH��n.W/

ŒOC�
��

H�.SC�.M /hS1

/
Œ��
// SH�.M /

where the horizontal maps � are the “inclusion of homotopy fixed points” maps
� W P hS1

! P defined for any S1–complex P , sending
P1

iD0 ˛iu
i 7! ˛0.

In Section 4.4, and specifically (4-68), it was shown that there is a canonical geometri-
cally defined element z1 2H�.SC�.M /hS1

/ lifting the unit 1 2 SH�.M /; essentially
this is because the map 1 is in the image of the map H�.M /! SH�.M /, which on
the chain level (as this map comes from “the inclusion of constant loops into the free
loop space” and “constant loops are acted on by S1 trivially”) can be canonically lifted
to a map C �.M /! C �.M /hS1

D C �.M /ŒŒu��! SC�.M /hS1

.

Since ŒfOC�� is an isomorphism, it follows that there is a unique (cohomological)
element Œz�� 2HC���n.W/ hitting z1 via ŒfOC�. By (6-11), Œ��.Œz��/�D Œ� �, establishing that
(any cycle representing) Œz�� is a smooth Calabi–Yau structure.
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Appendix Moduli spaces and operations

A.1 A real blow-up of Deligne–Mumford space

We review, in a special case, the compactifications of moduli spaces of surfaces where
some interior marked points are equipped with asymptotic markers, which are a real
blow-up of Deligne–Mumford moduli space as constructed in [34]. In particular, we
show how boundary strata of the abstract compactifications in the sense of [34] can
be identified with the specific models of the moduli spaces we use in Section 5. The
appearance of the compactifications [34] in Floer theory is not new; see eg [58].

To begin, let

(A-1) M2;0

denote the space of spheres with two marked points z1; z2 removed and asymptotic
markers �1, �2 around the z1 and z2, modulo automorphism. Fixing the position of z1

and z2 and one of �1 or �2 gives a diffeomorphism

M2;0 Š S1:

On an arbitrary representative in M2;0, we can think of the map to S1 as coming
from the difference in angles between �1 and �2 — after, say, parallel transporting one
tangent space to the other along a geodesic path.

It is convenient to parametrize this difference by a point on the sphere itself, in the
following manner (though this will break symmetry between z1 and z2). Let

(A-2) M2;1

be the space of spheres with two marked points z1; z2 removed, an extra marked point p,
and asymptotic markers �1, �2 around the z1 and z2, modulo automorphism, such that,
for any representative with position of z1, z2 and p fixed, �2 is pointing towards p.
The remaining freedom in �1 once more gives a diffeomorphism M2;1 Š S1.

We can take a different representative for elements of M2;1: up to biholomorphism
any element of (A-2) is equal to a cylinder sending z1 to C1, z2 to �1, with fixed
asymptotic direction around C1 and an extra marked point p at fixed height freely
varying around S1, such that the asymptotic marker at �1 coincides with the S1

coordinate of p. Thus, we obtain an identification

(A-3) M2;1 ŠM1;

where M1 is the space in Definition 4.7, with p1 corresponding to p here.
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Now let

(A-4) kR
1
d

denote the moduli space of discs .S; z1; : : : ; zd ; zout; �zout ;p1; : : : ;pk/with d boundary
marked points z1; : : : ; zd arranged in counterclockwise order, an interior marked point
with asymptotic marker .zout; �zout/, and interior marked points with no asymptotic
markers p1; : : : ;pk satisfying two constraints to be described below, modulo automor-
phism. Up to automorphism, every equivalence class of the unconstrained moduli space
of such .S; z1; : : : ; zd ; zout; �zout ;p1; : : : ;pk/ admits a unique unit-disc representative
with zd fixed at 1 and zout at 0; call this the .zd ; zout/ standard representative, or simply
the standard representative. The positions of the asymptotic marker, remaining marked
points, and interior marked points identify this unconstrained moduli space with an
open subset of S1 �R2k �Rd . With respect to this identification, the space (A-4)
consists of those discs satisfying the (open) “ordering constraint” on the positions of
the interior marked points

(A-5) on the standard representative, 0< jp1j< jp2j< � � �< jpk j<
1
2

,

along with a (codimension-one) condition on the asymptotic marker,

(A-6) on the standard representative, �zout points at p1.

The condition (A-5), which cuts out a manifold with corners of the larger space in
which the pi are unconstrained, is technically convenient, as it reduces the types of
bubbles that can occur with zout. The compactification of interest, denoted by

(A-7) kR
1
d ;

differs from the Deligne–Mumford compactification in a couple of respects: firstly, we
allow points pi and piC1 to be coincident without bubbling off (alternatively, we can
Deligne–Mumford compactify and collapse the relevant strata). More interestingly,
(A-7) is a real blow-up of the usual Deligne–Mumford compactification along any
strata in which zout and pi points bubble off, as in [34]. We will proceed to describe
the codimension-one boundary strata of (A-7) along with (after identification with
the moduli spaces we introduce in this paper) the boundary chart gluing maps. Let
†D S0[z

C
intDz�int

S1 denote a nodal surface, where

� S0 is a sphere containing interior marked points .zout; �zout/, p1; : : : ;pj and
another marked point zCint, and
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� S1 is a disc with d boundary marked points z1; : : : ; zd and interior marked
points z�int, pjC1, . . . , pk .

To occur as a possible degenerate limit of (A-4), the relevant points pi on S0 and S1

must satisfy an ordering condition:

For any S 0
0

which is biholomorphic to S0, with zout and zCint at opposite poles,
we have 0< jp1j< � � �< jpj j< jz

C
intj, where jpj denotes the geodesic distance

from zout to p on S 0
0
.

(A-8)

For the .zd ; z
�
int/ standard representative of S1, 0< jpjC1j< � � �< jpk j<

1
2

.(A-9)

Also:

(A-10) For S 0
0

as in (A-8), the asymptotic marker �zout should point (geodesically)
towards p1.

The relevant codimension-one stratum of (A-7) consists of all (automorphism classes
of) such broken configurations S0 [z

C
intDz�int

S1 as above, equipped additionally with
a gluing angle at the node, which is a real positive line �zCint ;z

�
int

in TzCint
S0˝ Tz�int

S1,
or equivalently, a pair of asymptotic markers .�zCint

; �z�int
/ around each of zCint and z�int,

modulo the diagonal S1 rotation action. Note that the set of gluing angles (which is
allowed to vary) is S1, making this stratum codimension-1 (the corresponding stratum
in Deligne–Mumford space does not have gluing angles, and hence has real codimension
two). The gluing map takes, for a fixed pair of cylindrical ends around zCint and z�int
compatible with the pair of asymptotic markers in the sense of (5-3), the usual gluing
with respect to the chosen cylindrical ends. Note first that for a given gluing parameter,
if the cylindrical ends are chosen to simply rotate as .�zCint

; �z�int
/ vary, the result of gluing

after rotating �zCint
by �1 and �z�int

by �2 differs from the initial gluing by a rotation of the
bottom component by �2� �1. In particular, the glued surface indeed only depends on
the gluing angle associated to .�zCint

; �z�int
/, ie it is unchanged by simultaneously rotating

.�zCint
; �z�int

/.

We can recast this stratum by taking a slice of the quotient by the diagonal S1–action
appearing in the definition of gluing angle: First, note that z�int on S1 possesses a
canonical asymptotic marker .��zint

/canon, which (on the standard representative) points
towards pjC1; our convention is that psC1D zd , so ��zint

points at zd if j D s. Choosing
the representative .�zCint

; �z�int
/ of each gluing angle for which �z�int

is the canonical
asymptotic marker .��zint

/canon, we see that the stratum described above can be identified
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with the space of broken configurations S0[zCintDz�int
S1 (up to automorphism) of the

form:

� S1 is as above (ie satisfies (A-9)) but is additionally equipped with .��zint
/canon,

ie S1 2 k�j
Rd

1
.

� S0 is equipped with interior marked points with asymptotic markers .zout; �zout/,
.zCint; �zCint

/ and additional marked points p1; : : : ;pj satisfying (A-8) and (A-10).

Just as in (A-3), the space of such S0 up to biholomorphism is precisely Mj as in
Definition 4.7, ie given any S0, there is a one-dimensional space of biholomorphisms
to a cylinder sending zint and zout to1 and �1 while fixing the angle of �

z
C
int

to 1; any
two such biholomorphisms differ by translation.

Thus, we have identified this stratum with

(A-11) k�jR
d
1 �Mj ;

which will be useful in defining the relevant pseudoholomorphic curve counts. From this
perspective, the boundary chart gluing maps, defined with respect to the cylindrical ends
(4-33) and (4-34) on Mj and with respect to a smoothly varying choice of cylindrical
end over elements of k�jRd

1
compatible with .��zint

/canon, just as in (4-36), rotate the
(standard representative of the) angle-decorated cylinder S0 to match the angle of its
top asymptotic marker with the angle of .��zint

/canon, which coincides with the argument
of pjC1 on the standard representative. In other words, if we denote by �i the angle of
pi in S1 for j C 1� i � k — with respect to any standard representative of S1, with
the usual convention that �kC1 is the argument of zd on the standard representative, so
in particular �jC1 is well defined even if j D k — and denote by x�s the angle of ps

in S0 for 1 � s � j , the gluing of S0 and S1 for small gluing parameter has (on its
standard representative) marked points p1; : : : ;pk with the angles

(A-12) .arg.p1/; : : : ; arg.pk//

D .x�1C �jC1; x�2C �jC1; : : : ; x�j C �jC1; �jC1; �jC2; : : : ; �k/:

A.2 Operations with a forgotten marked point

We introduce auxiliary degenerate operations that will arise as the codimension-one
boundary of the open–closed map and equivariant structure. This subsection is a very
special case of the general discussion in [24].
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Let d � 2 and i 2 f1; : : : ; dg. The moduli space of discs with d marked points with i th

boundary point forgotten,

(A-13) Rd;fi ;

is exactly the moduli space of discs Rd , with i th boundary marked point labeled as
auxiliary.

The Deligne–Mumford compactification

(A-14) Rd;fi

is exactly the usual Deligne–Mumford compactification, along with the data of an
auxiliary label at the relevant boundary marked point.

For d > 2, the i–forgetful map

(A-15) Fd;i WRd;fi !Rd�1

associates to a surface S the surface obtained by putting the i th point back in and
forgetting it. This map admits an extension to the Deligne–Mumford compactification

(A-16) Fd;i WRd;fi !Rd�1

as follows: eliminate any nonmain components with only one nonauxiliary marked
point p, and label the positive marked point below this component by p. We say that
any component not eliminated is f–stable and any component eliminated is f–semistable.
The above map is only well defined for d > 2. In the semistable case d D 2, the space
R2;fi is a point so one can define an ad hoc map

(A-17) F ss
i WR

2;fi ! pt;

which associates to a surface S the (unstable) strip †1 D .�1;1/� Œ0; 1� as follows:
take the unique representative of S which, after its three marked points are removed, is
biholomorphic to the strip †1 with an additional puncture .0; 0/. Then, forget/put back
in the point .0; 0/.

Definition A.1 A forgotten Floer datum for a stable disc with i th point auxiliary
S 2Rd;fi consists, for every component T of S , of

� a Floer datum for T , if T does not contain the auxiliary point,

� a Floer datum for Fj .T /, if T is f –stable and contains the auxiliary point as its
j th input,

� a Floer datum on F ss
i .T / which is translation invariant if T is f–semistable.
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By translation invariant, we mean the following: note that†1 has a canonical R–action
given by linear translation in the s coordinate. We require H , J and the time-shifting
map/weights to be invariant under this R–action, and in particular they should only
depend on t 2 Œ0; 1� at most.

In particular, this Floer datum should only depend on the point Fd;i.S/.

Proposition A.2 Let i 2 f1; : : : ; dg with d > 1. Then the operation associated to
Rd;fi is zero if d > 2, and the identity operation I. � / (up to a sign) when d D 2.

Sketch Suppose first that d > 2, and let u be any solution to Floer’s equation over the
space Rd;fi with domain S . Since the Floer data on S only depends on Fd;i.S/, we
see that maps from S 0 with S 0 2 F�1

d;i
.F

d;i
.S// also give solutions to Floer’s equation

with the same asymptotics. Moreover, the fibers of the map Fd;i are one-dimensional,
implying that u cannot be rigid, and thus the associated operation is zero.

Now suppose that d D 2. Then the forgetful map associates to the single point ŒS � 2
R2;fi the unstable strip with its translation-invariant Floer datum. Since nonconstant
solutions can never be rigid — as, by translating, one can obtain other nonconstant
solutions — it follows that the only solutions are constant ones, and the resulting
operation is therefore the identity.
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Congruences on K–theoretic Gromov–Witten invariants

JÉRÉMY GUÉRÉ

We study K–theoretic Gromov–Witten invariants of projective hypersurfaces using
a virtual localization formula under finite group actions. In particular, it provides
all K–theoretic Gromov–Witten invariants of the quintic threefold modulo 41, up to
genus 19 and degree 40. As an illustration, we give an instance in genus one and
degree one. Applying the same idea to a K–theoretic version of FJRW theory, we
determine it modulo 205 for the quintic polynomial with minimal group and narrow
insertions, in every genus.
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0 Introduction

One of the first achievements of Gromov–Witten (GW) theory is the celebrated formula
of Candelas, de la Ossa, Green and Parkes [4] computing genus-0 invariants of the
quintic threefold in terms of a hypergeometric series solution of a Picard–Fuchs equation.
It was a first instance of mirror symmetry and was proved by Givental [14] and Lian,
Liu and Yau [28].

The K–theoretic version of GW theory, which we refer to as KGW theory, was con-
structed in Lee [25], and it is only recently that mirror symmetry in this context was
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3586 Jérémy Guéré

developed by Givental in his series of preprints starting with [15]. It relates the KGW
generating series to a q–hypergeometric function solution of a finite-difference equation.

Both GW and KGW theories rely on the notion of a perfect obstruction theory (see
Behrend and Fantechi [2]), producing two fundamental objects on the moduli space
Mg;n.X; ˇ/ of stable maps to a given nonsingular variety X, namely the virtual cycle
ŒMg;n.X; ˇ/�

vir living in the Chow ring of the moduli space, and the virtual structure
sheaf Ovir

Mg;n.X ;ˇ/
living in its K–theory of coherent sheaves.

Given insertions yi 2 CH�.X /, or Yi 2K0.X /, and psi-classes  i 2 CH1.Mg;n/, or
psi-bundles ‰i 2K0.Mg;n/, we then form

a WD

nY
iD1

ev�.yi/ � 
di

i and A WD

nO
iD1

ev�.Yi/˝‰
˝di

i ; with di 2 Z;

using evaluation maps. It yields GW and KGW invariants

p�.a � ŒMg;n.X; ˇ/�
vir/ 2Q and p!.A˝Ovir

Mg;n.X ;ˇ/
/ 2 Z;

where p is the projection map to a point along which we take pushforwards in Chow
or in K–theory.1 Each theory has an important feature: the virtual cycle is pure-
dimensional, leading to a degree condition on the insertions for the GW invariant
to be nonzero, and KGW invariants are all integers. Moreover, the two theories are
related via a Hirzebruch–Riemann–Roch theorem (see Tonita [38]), saying that all
KGW invariants of a nonsingular variety X can be reconstructed from the knowledge
of all GW invariants of the DM stacks ŒX=.Z=M Z/� for all M 2 N�; see Givental
[16, Main Theorem].

Let T be a torus. When the variety X carries a nontrivial T –action, so does the
moduli space of stable maps, and the virtual cycle and virtual structure sheaf are
T –equivariant. One then benefits from the virtual localization formula of Graber and
Pandharipande [17] to reduce the computation of invariants to the T –fixed locus, which
greatly simplifies the calculation. Unfortunately, the automorphism group of a smooth
projective hypersurface such as the quintic threefold is finite (except in the special cases
of quadrics, elliptic curves and K3 surfaces), so that there is no nontrivial T –action.

Let G be a finite cyclic group. In this paper, we take advantage of the fact that the
(virtual) localization formula holds with no change under finite group actions. Since
projective hypersurfaces X admit such actions, we can apply it to the study of KGW

1In K–theory, it is also known as the Euler characteristic.
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theory of X. However, we still have two difficulties. First, the G–fixed moduli space
is in general quite involved and we cannot guarantee that it is smooth, so even after
applying the virtual localization formula, we may not be able to finish the computation.
Second, the (virtual) localization formula gives an answer in a localized ring. For
instance, the G–equivariant K–theory of a point is isomorphic to the representation
ring R.G/, which in the case of a finite cyclic group of order M yields ZŒX �=.1�X M /.
Instead of providing an answer in R.G/, the (virtual) localization formula only gives
us the image in the localized complexified ring R.G/C;loc, where we invert a maximal
ideal corresponding to a nonzero element in G. The issue with the localized ring is
that the map R.G/!R.G/C;loc is in general not injective. In our example, we have
R.G/C;loc ' C and the map sends X to a given primitive M th root of unity, so that
the nonzero polynomial 1CX C � � � CX M�1 2 R.G/ is sent to 0 2 C. Notice that
when the group is a torus T , the localization map R.T /!R.T /C;loc is injective; that
is why we have no such issue in the previous paragraph.

We overcome the first difficulty by means of an “equivariant quantum Lefschetz theorem”
that we developed for GW theory in [19, Section 2] and that we adapt to KGW theory
and to finite group actions in Section 1; see Theorem 1.6. It compares the G–equivariant
virtual structure sheaf of a hypersurface X � PN to that of the ambient space PN, and
then we use the T –action on the ambient space to apply the virtual localization formula.
However, Theorem 1.6 requires that for every G–fixed stable map from a curve C to X,
all stable components of C are contracted to a point in X. This condition could fail if
the automorphism group of the curve is too big, leading us to impose restrictions on
the genus of the curve and on the degree of the stable map.

The second difficulty is more serious. Indeed, we know the G–equivariant KGW
invariant is of the form a0C a1X C � � �C aM�1X M�1 for some integers ai , and our
goal would be the “nonequivariant” limit a0C � � �C aM�1, but we only have access to
the complex number a0Ca1�C� � �CaM�1�

M�1, where � is a primitive M th root of
unity. Luckily, KGW are integers, so that when M is a prime number, we can sum all
these complex numbers for primitive roots and obtain the KGW invariant modulo M.

As a conclusion, we seek automorphisms of X of prime order with isolated fixed points.
For instance, the quintic threefold can be realized as the zero locus in P4 of the loop
polynomial x4

0
x1C � � �Cx4

4
x0 and the action

� � .x0; : : : ;x4/D .�x0; �
�4x1; �

16x2; �
�64x3; �

256x4/; where � WD e2i�=41;
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yields an automorphism of X of prime order 41, whose fixed points are coordinate
points. As a result of Corollary 2.9, we obtain2 all KGW invariants of the quintic
threefold up to genus 19 and degree 40, modulo 41.

Remark 0.1 It happens that 41 is the biggest prime number p for which there exists
an automorphism of order p for a smooth quintic hypersurface; see Oguiso and Yu [30].

In Proposition 2.13, we provide an instance of this calculation in genus one. Precisely,
we compute

�

�Ovir
M1;0.X ;1/

1� qE_

�
� .120q2

C 180qC 125/
1� q4� q6

.1� q4/.1� q6/
2 Z=205ZŒŒq��;

where E denotes the Hodge bundle and q is a formal variable, so that the inverse of
1�qE_ is defined as the geometric series in q of general term E�kqk (here E is a line
bundle).

Interestingly, if we can find automorphisms of prime orders for infinitely many primes
and if we can handle the respective localization formulas, then we are able to determine
KGW invariants as integers instead of modulo a prime number. We apply this idea to
elliptic curves. There are indeed p–torsion points for every prime number p, so that a
translation by this point is an automorphism of order p. Furthermore, the localization
formula is trivial since there are no fixed points. We deduce the vanishing of all KGW
invariants of an elliptic curve, with homogeneous insertions.

Similarly to GW theory, Fan, Jarvis and Ruan [12; 11] developed a quantum singularity
theory for Landau–Ginzburg orbifolds. It is known as the FJRW theory and an algebraic
construction has been established by Polishchuk and Vaintrob in [33]. Precisely, they
construct a matrix factorization over the moduli space of .W;G/–spin curves, where
W is a nondegenerate quasihomogeneous polynomial and G is an admissible group of
symmetries. We refer to Guéré [18] for details.

In Section 3, we explain how to construct a K–theoretic version of FJRW theory and
we then pursue the same goal as for KGW theory: compute invariants by applying the
localization theorem under finite group actions. We focus on the quintic polynomial

2It means we write the answer as a sum over dual graphs of contributions involving only KGW invariants
of the point. This computation can be encoded into a computer. Note however that the calculation of KGW
invariants of the point is nontrivial in genus more than two. As explained in Proposition 2.13, we use the
computer for the calculation of an explicit example in genus one.
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with group �5 for clarity of the exposition and we find all its K–theoretic FJRW
invariants with narrow insertions in every genus and modulo 205; see Corollary 3.11.
Here, we do not have restriction bounds on the genus of the curve.

In [18], we compute genus-0 FJRW invariants of chain polynomials using a character-
istic class3 ct WK

0.S/!H�.S/ŒŒt ��, which we can define for a line bundle L over a
smooth DM stack S as

ct .L/D Ch.��tL
_/Td.L/D c1.L/ �

ec1.L/� t

ec1.L/� 1
;

and then extend multiplicatively. Genus-0 FJRW invariants of a chain polynomial
x

a1

1
x2C � � �Cx

aN

N
are then equal to

(1) cvir D lim
t!1

NY
jD1

ctj .�R��Lj /; with g D 0;

where tj WD t .�a1/���.�aj�1/ and R��Lj are the derived pushforwards of the universal
line bundles over the moduli space of .W;G/–spin curves. It is remarkable that such a
limit exists and the author has wondered since then whether other limits could exist, for
instance when t tends to some root of unity. Interestingly, we prove4 for the quintic loop
polynomial with group �5 and narrow insertions that such a limit exists for all genus
when t tends to a 41st root of unity �41. It then converges to a Z=41Z–equivariant
version of the FJRW virtual cycle, defined as follows. The two-periodic complex
obtained from the Polishchuk–Vaintrob matrix factorization naturally decouples as
a direct sum of 41 two-periodic complexes.5 Each one of them provides a (virtual)
cycle ak , for 0� k � 40, and we define

c
Z=41Z
vir WD

40X
kD0

ak�
k
41 D lim

t!�41

NY
jD1

ctj .�R��Lj /; with g � 0:

We easily find similar results for other loop polynomials.

3Polishchuk and Vaintrob’s definition of the virtual cycle in FJRW theory involves a Koszul complex of
vector bundles; see [33]. The class ct then appears naturally from the definition of the Koszul complex, as
it involves exterior powers of vector bundles. Note also that c1 recovers the top Chern class of a vector
bundle.
4The restriction to the group �5 is not necessary and we could consider other admissible groups. However,
if one takes the maximal group �1025, then the action of Z=41Z becomes trivial and gives no result.
5Precisely, the k th two-periodic complex is the one containing vector bundles SymkC41�l A_

1
, with l 2N,

in the notation of [18].
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As a conclusion, we mention a future line of research. Chiodo and Ruan [9] and
Chiodo, Iritani and Ruan [8] studied the so-called genus-0 Landau–Ginzburg/Calabi–
Yau (LG/CY) correspondence, which provides a striking relation between GW theory
of a projective hypersurface and FJRW theory of the defining polynomial. Following
Chiodo and Ruan [10], there is a similar correspondence in higher genus as well.
Since we expect the LG/CY correspondence to hold in K–theory as well, it would be
interesting to probe a K–theoretic version for the quintic threefold, up to genus 19,
degree 40, and modulo 41.

Another question we may ask is: what information do we get on GW invariants of the
quintic threefold up to genus 19? The quintic threefold X is special, its virtual cycle
(with no markings) is 0–dimensional, so that a lot of its GW invariants vanish. In fact,
they are all deduced from some rational numbers ng;d 2Q for nonnegative integers g

and d , corresponding to its GW invariants without markings. As a consequence, we
expect some simplifications in the Hirzebruch–Riemann–Roch theorem of Tonita [38]
and Givental [16], and to find formulas expressing KGW invariants of X in terms of
the ng;d . Moreover, it is proven in Fan and Lee [13], Guo, Janda and Ruan [20] and
Chang, Guo and Li [5] that all values of ng;d are expressed in terms of low degrees,
where 5d � 2g� 2. Up to genus 19, there are exactly 61 unknowns:

n4;1; n5;1; : : : ; n18;6; n19;7 2Q:

As we are able to compute all KGW invariants modulo 41 up to genus 19 and degree 40,
we expect a lot of relations among these 61 unknowns. Moreover, KGW is not restricted
by a degree condition on insertions, so we can also insert K–classes from P4, yielding
indeed infinitely many relations among these 61 unknowns. Of course, we do not know
yet how many of these relations are nontrivial. It would also be enlightening to express
KGW invariants in terms of BPS numbers, which are integers as well; see [22] for a
formula in genus zero.

Notation In this paper, we work over the complex numbers. We denote by G0.X /

the Grothendieck group of coherent sheaves on a DM stack X and by K0.X / the
Grothendieck ring of vector bundles on X. If a linear algebraic group G acts on X, then
we denote by G0.G;X / and K0.G;X / the Grothendieck groups of G–equivariant
coherent sheaves and vector bundles. They are identified when X is smooth, by
Thomason [36]. When X is a point, then it equals the representation ring R.G/ of the
group G. The G–fixed locus inside X is denoted by X G . For an element h 2G, we
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denote by X h the h–fixed locus. If V and W are G–equivariant vector bundles over X,
then we denote by

�G
�t .V �W /D

X
k;l�0

.�1/kƒkV ˝SymlW tkCl
2K0.G;X /ŒŒt ��

the lambda-structure in K–theory. We extend multiplicatively the notation to any
element V 2 K0.G;X /. When we forget the group action, we simply denote it by
��t .V / 2K0.X /ŒŒt ��.

Let G be a diagonalizable group. The complexified representation ring R.G/C WD

R.G/˝C is identified with the coordinate ring O.G/ of G. Hence, for every h 2G,
there is a corresponding maximal ideal mh �R.G/C . Let

G0.G;X /loc WDG0.G;X /˝Z R.G/C;mh
;

K0.G;X /loc WDK0.G;X /˝Z R.G/C;mh

denote the localizations. Assume X is smooth and let � WX h �X be the inclusion of
the h–fixed locus. The localization theorem says

(2) AD �!

�
��A

�G
�1
.N _� /

�
2K0.G;X /loc for all A 2K0.G;X /locI

see Thomason [37]. Note that �G
�1

is the evaluation of the formula above at t D 1. In
general, it is not defined in K0.G;X / and it is only partially defined in K0.G;X /loc.
Precisely, for a vector bundle V , the term �G

�1
.V / is invertible if V has no G–fixed

part. This is the case in equation (2).

Equation (2) is in particular true for finite groups G, even though the localization
map R.G/C ! R.G/loc is not injective in that case. Moreover, we can relax the
smoothness condition on X. Indeed, if X is singular but carries a G–equivariant perfect
obstruction theory ŒE�1!E0�, then there is a G–equivariant virtual structure sheaf
Ovir;G

X
2 G0.G;X /; see Lee [25]. The obstruction theory pulls back to the G–fixed

locus X G and we denote by N vir
� 2K0.G;X G/ the K–theoretic class of the dual of its

G–moving part. The G–fixed part gives a perfect obstruction theory on X G and yields
a virtual structure sheaf Ovir

X G . Furthermore, we have the virtual localization formula

(3) Ovir;G
X
D �!

� Ovir
X G

�G
�1
.N vir
�
_
/

�
2G0.G;X /loc:

See Qu [34, Theorem 3.3] for the proof in the case where the group is a torus T , but the
same proof holds word for word when we replace T by any diagonalizable group G. In
particular, it applies to the moduli space M.X / of stable maps to a smooth DM stack X .
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Here, we specify the genus, the degree and the number of markings as Mg;n.X ; ˇ/
when needed.

The letters GW stand for Gromov–Witten and KGW for K–theoretic Gromov–Witten.

1 Equivariant quantum Lefschetz theorem

This section is a generalization of [19, Section 2] to K–theory and to more general
group actions. The main result is an “equivariant quantum Lefschetz” theorem which
is of first importance in the next section.

1.1 Virtual localization formula

Let G be a linear algebraic group and X be a smooth DM stack equipped with a
G–action. The moduli space M.X / of stable maps to X carries a G–action, a G–
equivariant perfect obstruction theory, and thus a G–equivariant virtual structure sheaf
Ovir;G

M.X / 2G0.G;M.X //.

Denote by � WM.X /G ,!M.X / the embedding of the G–fixed locus. By definition,
the virtual normal bundle N vir

� 2K0.G;M.X /G/ is the moving part of the pullback of
the perfect obstruction theory to the fixed locus.6 The virtual localization formula (3)
states

Ovir;G
M.X / D �!

� Ovir
M.X /G

�G
�1
.N vir
�
_
/

�
2G0.G;M.X //loc:

1.2 Enhancement of the group

Let G � T be an embedding of linear algebraic groups and X ,! P be an embedding
of smooth DM stacks equipped with a G–action. We assume that

� the G–fixed loci of X and of P are equal;

� for every G–fixed stable map to P , all stable components of the source curve
are sent to PG ;

� P is equipped with a T –action extending the G–action;

� the normal bundle of X ,! P is the pullback of a T –equivariant vector bundle
N over P;

� X is the zero locus of a G–invariant section of the vector bundle N ; and
6The perfect obstruction theory admits a global presentation by a two-term complex of vector bundles,
hence the virtual normal bundle is an element in K0 rather than an element in G0.
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� the vector bundle N is convex up to two markings, ie for every stable map
f W C ! P , where C is a smooth genus-0 orbifold curve with at most two
markings, we have H 1.C; f �N /D 0.

Let us first consider the G–fixed loci of the moduli spaces of stable maps and observe
the fibered diagram

M.X /G M.P/G

M.P/M.X /

j

z��

zj

Writing i W X ,! P , we have a G–equivariant short exact sequence

0! TX ! i�TP ! i�N ! 0

inducing a distinguished triangle

(4) R��f
�TX !R��f

�TP !R��f
�N ! .R��f

�TX /Œ1�:

Note that their duals are parts of the perfect obstruction theories of M.X / and of
M.P/, the remaining parts being the perfect obstruction theory of the moduli space of
stable curves itself.

The term E WDR��f
�N , pulled back to M.P/G , has a fixed and a moving part, that

we denote respectively by Efix and Emov.

Proposition 1.1 The fixed part Efix is a vector bundle over the fixed moduli space
M.P/G .

Proof Let f W C! P be a stable map belonging to M.P/G . We denote by � W C! C

the coarse map. It is enough to prove that

H 1.C; ��f
�N /fix

D 0:

Take the normalization � W C �! C of the curves at all their nodes. We have

C �
D

G
i2I

C fix
i t

G
j2J

C nf
j ;

where the superscripts refer respectively to fixed/nonfixed components of C � under
the map f . In particular, nonfixed components are unstable curves, ie the projective
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line with one or two special points. By the normalization exact sequence, we obtain an
exact sequenceM

nodes

H 0.node; f �N jnode/!H 1.C; ��f
�N /!H 1.C � ; ����f

�N /! 0;

with

H 1.C � ; ����f
�N /D

M
i2I

H 1.C fix
i ; ����f

�N /˚
M
j2J

H 1.C nf
j ; �

���f
�N /:

Since the normal bundle has a nontrivial G–action once restricted to the fixed locus
of X (or equivalently of P), we have

H 0.node; f �N jnode/
fix
D 0 and H 1.C fix

i ; ����f
�N /fix

D 0:

Therefore, it remains to see the vanishing of H 1 for nonfixed unstable curves C nf
j ,

for j 2 J . The curve C nf
j is isomorphic to P1 with either one or two markings, hence

H 1.C nf
j ; �

���f
�N /D 0 by our assumption of convexity up to two markings.

Denote by Ovir
M.P/G the virtual structure sheaf obtained by the G–fixed part of the

perfect obstruction theory R��f
�TP .

Proposition 1.2 We have

j!Ovir
M.X /G D �

G
�1.E

_
fix/˝Ovir

M.P/G 2G0.M.P/G/:

Furthermore , in the localized equivariant K–theoretic ring , we have

1

�G
�1
.N vir
�
_
/
D j �

�
�G
�1
.Emov

_/

�G
�1
.N vir
z�

_
/

�
2K0.G;M.P/G/loc:

Proof It follows from the standard proof using convexity; we recall here the main
arguments.

The DM stack X is the zero locus of a G–invariant section of the vector bundle N over
the ambient space P . This section induces a map s from the moduli space of stable
maps to P to the direct image cone ��f �N ; see [6, Definition 2:1]. Since the moduli
space M.P/G is fixed by the action of G, it maps to the fixed part of the direct image
cone, that is, the vector bundle Efix. Hence we have the fibered diagram

M.X /G M.P/G

EfixM.P/G

j

s

0
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where the bottom map is the embedding as the zero section. The fixed part of the
distinguished triangle (4) gives a compatibility datum of perfect obstruction theories
for the fixed moduli spaces. Functoriality of the virtual structure sheaf gives

0!Ovir
M.P/G DOvir

M.X /G I

see [34]. Applying the projection formula via the map j on both sides and using the
Koszul resolution gives the first result. The second part of the statement follows from
the moving part of the distinguished triangle (4).

By the virtual localization formula, the G–equivariant virtual structure sheaf satisfies

zj!O
vir;G
M.X / D

zj!�!

� Ovir
M.X /G

�G
�1
.N vir
�
_
/

�
Dz�!j!

�
Ovir

M.X /G ˝ j �
�
�G
�1
.Emov

_/

�G
�1
.N vir
z�

_
/

��

Dz�!

�
�G
�1.Efix

_/˝Ovir
M.P/G ˝

�G
�1
.Emov

_/

�G
�1
.N vir
z�

_
/

�

Dz�!

�
�G
�1.E

_/˝
Ovir

M.P/G

�G
�1
.N vir
z�

_
/

�
;

where equalities happen in G0.G;M.P//loc.

Remark 1.3 If it were defined, the right-hand side would equal

�G
�1.R��f

�N /_˝Ovir;G
M.P/;

using the virtual localization formula, but it is not clear that the G–lambda class of
R��f

�N is defined in G0.G;M.P//loc. However, we say that �G
�1
.R��f

�N /_ is
defined after localization7 to mean that its pullback to the fixed locus is defined.

Now, we aim to extend the right-hand side of the equality to the T action. The inclusion
of groups G ,! T yields a morphism

�� WG0.T;M.P//!G0.G;M.P//;

under which we get
��.Ovir;T

M.P//DOvir;G
M.P/:

Unfortunately, the map �� is only partially defined when we localize equivariant
parameters: the denominators could be nonzero in the T –localization but vanish in
the G–localization. It is easier to work out this issue on the fixed locus of the moduli
space.

7We find this definition for the formal quintic; see [27].
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Let M.P/T ,!M.P/ denote the T –fixed locus of the moduli space. In particular, we
have the inclusion y� WM.P/T ,!M.P/G . We notice that the moduli space M.P/G is
stable under the T –action from M.P/ and that the map y� is T –equivariant. Moreover,
we have a T –equivariant virtual structure sheaf

Ovir;T
M.P/G 2G0.T;M.P/G/

and the equality

��.Ovir;T
M.P/G /DOvir

M.P/G 2G0.G;M.P/G/:

By the virtual localization formula, we have

Ovir;T
M.P/G Dy�!

� Ovir
M.P/T

�T
�1
.N vir
y�

_
/

�
2G0.T;M.P/G/loc:

Furthermore, in K–theory on the space M.P/T we have the equality

(5) N vir
z�ıy�
Dy��N vir

z� CN vir
y�
:

Indeed, let F be the pullback of the perfect obstruction theory from M.P/ to M.P/T.
By definition, the virtual normal bundle N vir

z�ıy�
is the T –moving part Fmov, which

decomposes as FmovDFmov
fix CFmov

mov , where the subscript denotes the G–fixed/moving
part. By definition, the virtual normal bundley��N vir

z�
is the G–moving part of F , ie Fmov

mov ,
since there is no G–moving T –fixed part in F . The virtual normal bundle N vir

y�
identifies

with Fmov
fix .

Remark 1.4 The virtual normal bundle N vir
z�

is defined on M.P/G and we have a
well-defined equality

��.�
T
�1.N

vir
z�

_
/�1/D �G

�1.N
vir
z�

_
/�1
2K0.G;M.P/G/loc:

We also have seen the G–decomposition E D EfixC Emov over M.P/G with Efix being
a T –equivariant vector bundle. Indeed, the vector bundle N over P is T –equivariant,
thus so are E and Efix. As a consequence, the equality

��.�
T
�1.E//D �

G
�1.E/ 2K0.G;M.P/G/loc

is well defined.

Proposition 1.5 Consider the well-defined class

CT WDy�
�.�T
�1.E

_//˝
Ovir

M.P/T

�T
�1
.N vir
z�ıy�

_
/
2G0.T;M.P/T /loc:
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Then its pushforward under the inclusion y� equals

y�!.CT /D �
T
�1.E

_/˝
Ovir;T

M.P/G

�T
�1
.N vir
z�

_
/
2G0.T;M.P/G/loc:

In particular , we have

��.y�!.CT //D �
G
�1.E

_/˝
Ovir

M.P/G

�G
�1
.N vir
z�

_
/
2G0.G;M.P/G/loc:

Proof By the virtual localization above and equation (5), we have

y�!.CT /D �
T
�1.E

_/˝y�!

� Ovir
M.P/T

�T
�1
.N vir
z�ıy�

_
/

�

D �T
�1.E

_/˝y�!

� Ovir
M.P/T

y��.�T
�1
.N vir
z�

_
//˝�T

�1
.N vir
y�

_
/

�

D
�T
�1
.E_/

�T
�1
.N vir
z�

_
/
˝y�!

� Ovir
M.P/T

�T
�1
.N vir
y�

_
/

�
D

�T
�1
.E_/˝Ovir;T

M.P/G

�T
�1
.N vir
z�

_
/

:

The last sentence follows from the following property of ��. Let Z be a DM stack
with a T –action and take A 2 K0.T;Z/loc, B 2 G0.T;Z/loc, a 2 K0.G;Z/loc and
b 2 G0.G;Z/loc. If ��.A/ D a and ��.B/ D b are well-defined equalities, then
��.A˝B/ is well defined and equals the localized class a˝ b.

The pushforward maps z�! and �� commute when the latter is well defined. Precisely,
the map z� is T –equivariant and for any localized class C 2G0.T;M.P/G/loc such that
��.C / is well defined in G0.G;M.P/G/loc, the localized class z�!.C / is well defined
under �� and we have

z�!��.C /D ��z�!.C / 2G0.G;M.P//loc:

1.3 Equivariant quantum Lefschetz formula

Summarizing our discussion, we obtain the following.

Theorem 1.6 (equivariant quantum Lefschetz) Let X ,! P be a G–equivariant
embedding of smooth DM stacks satisfying assumptions listed at the beginning of this
section. Then we have

zj!O
vir;G
M.X / D ��

�
�T
�1.R��f

�N /_˝Ovir;T
M.P/

�
2G0.G;M.P//loc;
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where zj is the embedding of moduli spaces and �� is the specialization of T –equivariant
parameters into G–equivariant parameters. Here, the T –equivariant lambda class
�T
�1
.R��f

�N /_ is defined after localization; see Remark 1.3.

Proof Using previous equalities, we get

zj!O
vir;G
M.X / Dz�!

�
�G
�1.E

_/˝
Ovir

M.P/G

�G
�1
.N vir
z�

_
/

�
D ��z�!y�!

�
y��.�T

�1.E
_//˝

Ovir
M.P/T

�T
�1
.N vir
z�ıy�

_
/

�
:

Following Remark 1.3, the meaning of “defined after localization” is precisely

��
�
�T
�1.R��f

�N /_˝Ovir;T
M.P/

�
D ��

�
�T
�1.R��f

�N /_˝z�!y�!
� Ovir

M.P/T

�T
�1
.N vir
z�ıy�

_
/

��

D ��z�!y�!

�
y��.�T

�1.E
_//˝

Ovir
M.P/T

�T
�1
.N vir
z�ıy�

_
/

�
:

2 K–theoretic Gromov–Witten theory

2.1 Automorphisms of loop hypersurfaces

Let X be a smooth degree-d hypersurface in PN. K–theoretic Gromov–Witten (KGW)
theory is invariant under smooth deformations, so that we can choose any degree-d
homogeneous polynomial P to define X, as long as it satisfies the Jacobian criterion
for smoothness. Here, we will focus on loop polynomials, ie we take

X WD fxd�1
0 x1C � � �Cxd�1

N x0 D 0g � PN :

Let M WD j1� .1� d/NC1j=d and consider on PN the Z=M Z–action

� � .x0; : : : ;xN /D .x0; �x1; �
u2x2; : : : ; �

uN xN /;

where u0 WD 0 and ujC1 WD 1� .d � 1/uj . We have .d � 1/uN � 1 modulo M , so
that the hypersurface X is Z=M Z–invariant. Explicitly, we have

uj D

j�1X
lD0

.1� d/l and M D

NX
lD0

.1� d/l :

Notation 2.1 Let M1 WDM and

MjC1 WD
Mj

gcd.ujC1;Mj /
for 1� j <N:

We write M WDMN and G WD Z=M Z.
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Proposition 2.2 The group G acts on PN, leaves the hypersurface X invariant , and
for all nonzero g 2 G, the g–fixed locus in PN consists of all coordinate points.
Furthermore , assuming the Calabi–Yau condition N C1D d and assuming d is a prime
number , then we have M DM . It holds in particular for the quintic hypersurface in P4.

Proof By the construction of M, we see that every uj with 1 � j � N is coprime
with M. It implies that every pairwise difference ui �uj is coprime with M. Indeed,
let 0� i < j �N , then we have

uj �ui D .1� d/iuj�i ;

so that it is enough to prove that d � 1 is coprime with M. If a nonzero integer p

divides M and d � 1, then it divides M , and from its expression in terms of powers of
d � 1, we get 1� 0 modulo p, so that p D 1.

Therefore, we have, for all 0� i < j �N and all 0< k <M ,

�kui ¤ �kuj ; where � D e2i�=M ;

and hence the statement about the fixed locus.

For the second statement, let d D N C 1 be a prime number. Then we have M � 0

modulo d . Thus, if we have kuj � 0 modulo M , then we have kuj � 0 modulo d .
But uj � j modulo d , so that k D 0. As a consequence, every uj is coprime with M ,
and M DM .

Example 2.3 We realize the quintic hypersurface in P4 as

P D x4
0x2C � � �Cx4

4x0:

Then the group is G D .Z=205Z/, acting as

� �x D .x0; �x1; �
�3x2; �

13x3; �
�51x4/:

2.2 Virtual localization formula

Gromov–Witten (GW) theory of PN and its K–theoretic version is computed by
the virtual localization formula under the natural action of the torus T D .C�/N.
Unfortunately, there are in general no nontrivial torus-actions preserving a smooth
degree-d hypersurface X, leading to many difficulties in the computation of its GW
and KGW invariants. Nevertheless, we have an action of the finite group G on X.
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In cohomology or in Chow theory, the action of the finite group G is useless with respect
to the localization formula. Indeed, we have, for example, AG

� .pt/DC. On the other
hand, we have K0.G; pt/DR.G/, the representation ring of the group G. Moreover,
there exists in K–theory a (virtual) localization formula under finite group actions.

Unfortunately, the (virtual) localization formula does not give a result in K0.G; pt/,
but in a localized ring where we invert equivariant parameters. For instance, in the
case of an abelian group G D Z=M Z, the representation ring (taken with complex
coefficients) is

R.G/C 'CŒX �=.1�X M /;

and the multiplicative set we use for localization is generated by

f1�X; : : : ; 1�X M�1
g:

As a consequence, the localized ring is isomorphic to C and the map R.G/C !

R.G/C;loc is not injective. Precisely, the map sends X to a primitive M th root of
unity �, so that for every prime divisor p of M, the polynomial

pX
kD0

X kM=p
7!

pX
kD0

�kM=p
D 0:

In conclusion, the (virtual) localization formula successfully computes a G–equivariant
K–class expressed using roots of unity, but we cannot extract the “nonequivariant” limit
corresponding to the map

K0.G; pt/'CŒX �=.1�X M /!C 'K0.pt/; X 7! 1:

Nevertheless, we find a way to extract some information. Indeed, K–theoretic invariants
have another important feature: they are integers. Therefore, when the order of the
group is a prime number p, the defect of injectivity of the map R.G/!R.G/C;loc

amounts to the uncertainty
1CX C � � �CX p�1;

which equals p in the nonequivariant limit X 7! 1. To conclude, we are left with the
desired integer modulo p. Furthermore, if we have several finite actions of different
prime orders, we can increase our knowledge about the result.

Let us go back to the degree-d hypersurface X � PN. The action of G D Z=M Z on
PN leaving X invariant induces a G–action on the moduli spaces of stable maps to
PN and to X, so that their virtual structure sheaves are G–equivariant, namely

Ovir
Mg.PN ;ˇ/

2G0.G;Mg.P
N ; ˇ// and Ovir

Mg.X ;ˇ/
2G0.G;Mg.X; ˇ//:
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By the virtual localization formula, we then obtain

Ovir
Mg.X ;ˇ/

D �!

�Ovir
Mg.X ;ˇ/fix

��1.N vir
�
_
/

�
2G0.G;Mg.X; ˇ//loc;

where � WMg.X; ˇ/
fix ,!Mg.X; ˇ/ denotes the G–fixed locus and N vir

� denotes the
moving part of the perfect obstruction theory on the fixed locus. At last, we get

�.Ovir
Mg.X ;ˇ/

/D �

�Ovir
Mg.X ;ˇ/fix

��1.N vir
�
_
/

�
2C:

The next step is to use Theorem 1.6 to relate this formula to a formula for PN, where
an explicit localization formula is available via the torus action.

2.3 Fixed locus

We easily check all the conditions listed in Section 1.2 but the second:

� every stable component of a fixed stable map is contracted.

We are able to prove it under the following restrictions on genus of the source curve
and degree of the map.

Proposition 2.4 Let G D Z=M Z act on a smooth projective variety X so that , for
every nonzero element h 2 G, the h–fixed locus X h consists of isolated points in X.
Let f W C !X be a stable map corresponding to a G–fixed point in the moduli space
Mg;n.X; ˇ/. We assume

(6) g < 1
2
.p� 1/ and ˇ <M;

where p is the greatest prime divisor of M. Then every stable component of the curve C

is mapped to one of the G–fixed points in X.

Proof First, we claim that if f W C !X is a G–fixed stable map of positive degree,
then the group G is a subgroup of the group Aut.C / of automorphisms of C . Indeed,
let � 2 G be a primitive element. Since the stable map is fixed, we can choose an
automorphism �1 2 Aut.C / of the curve C such that

� �f .x/D f .�1.x// for all x 2 C:

We then define �k WD �
k
1

for any k 2N. Since the degree of the map f is positive and
all but a finite number of points in X are not fixed by any element of G, we can choose
a point x 2 C such that the points

�k
�f .x/D f .�k.x//
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are all distinct for 0� k <M . Since the automorphism �M is an automorphism of the
stable map f , it is of finite order. Thus we can consider the smallest integer K 2N�

such that �K D id, so that we have

�K
�f .x/D f .�K .x//D f .x/;

and the integer M divides the integer K. As a consequence, the map sending 0�k<M

to �k
K=M

embeds the group G in Aut.C /.

Secondly, let us assume C is a stable curve and is not contracted. Since G is a subgroup
of Aut.C /, the prime number p divides the order of Aut.C /. By [29, Proposition 3.6],
we get8 p � 2gC 1, which is a contradiction.

Lastly, we consider the case where C is not a stable curve (and therefore the degree of
the map is positive). Let �f be a dual graph representing the stable map f , where we
represent every stable component of C by a vertex and every unstable component by
an edge. Furthermore, we add on the graph labels to keep track of the genus, number
of markings and degree. It is clear that every automorphism �k of the curve C induces
an automorphism of the dual graph �f . Moreover, for each stable component D of C

whose corresponding vertex is fixed in �C , the restriction fjD WD!X is fixed by the
group G.

We aim to show that the set V>0 of vertices with positive degree is empty. Assume it
is not. Then, if the group G acts on V>0 without fixed points, the total degree of the
map is at least M, which is a contradiction. Therefore, there is at least one fixed point,
ie there exists a stable component D of C such that the restriction fjD is G–fixed.
As we have seen above, the stable component D is then contracted to a point, which
contradicts the fact that its corresponding vertex is in V>0.

Remark 2.5 Proposition 2.4 also holds if the condition g < 1
2
.p� 1/ is replaced by

“for every stable curve of genus less than g, there is no automorphism of order equal
to M ”.

2.4 Equivariant and congruent formulas

Let us apply Theorem 1.6 to our situation.

8The reference is only for g � 2. Nevertheless, it also holds for genus-0 stable curves, as their automor-
phism groups are all trivial. For genus-1 stable curves, the automorphism group is the largest when there
is only one marking. In this case, we have three possibilities: Z=2Z, Z=4Z or Z=6Z. As a consequence,
the prime number p can only be 2 or 3 and is indeed less than 2gC 1D 3.
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Theorem 2.6 Let g, n and ˇ be nonnegative integers. Let X be a degree-d loop
hypersurface in PN and take a subgroup H � Z=M Z of order q acting on X via the
action

(7) k � .x0; : : : ;xN /D .x0; �
kx1; �

k�u2x2; : : : ; �
k�uN xN / for k 2H � Z=M ZI

see Section 2.1. This action depends on the choice of a primitive qth root of unity �.
Moreover , we have the usual T WD .C�/N –action on PN and we see that it extends the
H–action via the embedding ' WH ,!T WD .C�/N sending k to .�k ; �k�u2 ; : : : ; �k�uN /.

Assume the bounds
g < 1

2
.p� 1/ and ˇ < q;

where p is the greatest prime divisor of q. Let A WD
Nn

iD1‰
ai

i ˝ ev�.Yi/ denote some
insertions of Psi-classes and K–classes Yi 2 K0.T;PN / coming from the ambient
space. Then the corresponding H–equivariant K–theoretic GW invariant equals

�T
�
�T
�1.R��f

�O.d//_˝A˝Ovir;T
Mg;n.PN ;ˇ/

�
D �H .A˝Ovir;H

Mg;n.X ;ˇ/
/ 2C:

Precisely, the class �T
�1
.R��f

�O.d//_ is only defined after localization , so we
first apply the virtual localization formula to the left-hand side , then we compute
it in K0.T;Mg;n/loc D K0.Mg;n/˝ C.t1; : : : ; tN / as rational fractions in the T –
equivariant parameters , then we specialize them to .t1; : : : ; tN / D .�; �u2 ; : : : ; �uN /

using ' WH ,! T and obtain a well-defined K–class in K0.Mg;n/˝C. Eventually we
take its Euler characteristic and land in R.H /C;loc ' C, where the last isomorphism
depends on the primitive qth root of unity �.

Remark 2.7 The localization map R.H / ! R.H /C;loc corresponds to the map
ZŒX �=.1�X q/!C sending the variable X to �.

Remark 2.8 In Theorem 2.6, it is important that for every nonzero element h2H , the
h–fixed locus consists of coordinate points in PN. It is guaranteed by Proposition 2.2
and the fact that H � Z=M Z.

Corollary 2.9 We take the same notation and assumptions as in Theorem 2.6. We
further assume that the order q of the group H is a prime number. For each 1� k < q,
denote by Bk 2C the result of Theorem 2.6 when � D e2ik�=q . Then the K–theoretic
GW invariant of X equals

�.A˝Ovir
Mg;n.X ;ˇ/

/��.B1C � � �CBq�1/ 2 Z=qZ:

Geometry & Topology, Volume 27 (2023)



3604 Jérémy Guéré

Proof The H–equivariant Euler characteristic �H .A˝Ovir;H
Mg;n.X ;ˇ/

/ lies in the repre-
sentation ring R.H /' ZŒX �=.1�X q/, so there exist integers a0; : : : ; aq�1 such that

�H .A˝Ovir;H
Mg;n.X ;ˇ/

/D

q�1X
lD0

alX
l
2 ZŒX �=.1�X q/:

Our goal would be to compute

�.A˝Ovir
Mg;n.X ;ˇ/

/D

q�1X
lD0

al 2 Z;

but Theorem 2.6 only gives us
Pq�1

lD0
al�

l 2C. However, since q is a prime number, we
can apply Theorem 2.6 to every primitive qth root of unity �k for 1� k < q. Summing
the various results, we obtain

q�1X
kD1

q�1X
lD0

al�
kl
D qa0�

q�1X
lD0

al 2 Z;

leading to the congruence.

Remark 2.10 Assume the order q of the group H is not a prime number and choose
a nonzero element h 2 H . Even when h is not a primitive element, we can apply
Theorem 2.6 to the subgroup hhi, but we then have the bounds

g < 1
2
.p� 1/ and ˇ < ord.h/;

where ord.h/ denotes the order of the element h, and p is its greatest prime divisor.
In order to obtain the KGW invariant in H , we then need to sum all the results of
Theorem 2.6 for all nonzero elements h 2 H . Therefore, we have to restrict to the
bounds

g < 1
2
.p� 1/ and ˇ < p;

where p is the smallest prime divisor of q.

Example 2.11 For the quintic threefold of Example 2.3, the specialization of equivari-
ant parameters corresponding to G ,! T is

.t0; : : : ; t4/D .1; �; �
�3; �13; ��51/; where �205

D 1:

Moreover, we have a subgroup H WD Z=41Z � Z=205Z, so that by Corollary 2.9,
we are able to compute all KGW invariants modulo 41 up to genus 19 and degree 40.
Moreover, by Remark 2.10, we are able to compute all KGW invariants modulo 205 in
genera 0 and 1 up to degree 4.

Geometry & Topology, Volume 27 (2023)



Congruences on K–theoretic Gromov–Witten invariants 3605

Remark 2.12 Another way to realize the quintic hypersurface in P4 is

X D fx5
0 C � � �Cx5

4 D 0g � P4:

Then the group is .Z=5Z/4, but to ensure that the g–fixed locus consists of isolated
points for every element g of the group, we need to consider the subgroup G D Z=5Z,
acting as

� �x D .x0; �x1; �
2x2; �

3x3; �
4x4/:

Furthermore, we observe that the G–fixed locus is empty. We then deduce that all
KGW invariants in genera 0 and 1 and up to degree 4 vanish modulo 5.

2.5 Example of the quintic threefold

We illustrate Theorem 2.6 and Corollary 2.9 by a computation of the genus-one degree-
one unmarked KGW invariant in the case of the quintic hypersurface in P4, modulo 205.

Proposition 2.13 Let X � P4 be a smooth quintic hypersurface. We find that

�

�Ovir
M1;0.X ;1/

1� qE_

�
� .120q2

C 180qC 125/
1� q4� q6

.1� q4/.1� q6/
2 Z=205ZŒŒq��:

In order to prove Proposition 2.13, we first write the general graph sum formula coming
from torus localization and we then specialize to .g; n; ˇ/D .1; 0; 1/.

Following the general scheme of Theorem 2.6, we compute the K–theoretic class

�T
�
�T
�1.R��f

�O.5//_˝A˝Ovir;T
Mg;n.P4;ˇ/

�
2K0.Mg;n/˝C.t0; : : : ; t4/:

It is done via the standard virtual localization formula of [17], lifted to K–theory, as a
sum over dual graphs. Indeed, the class ��1 is multiplicative in K–theory, just as the
Euler class in cohomology, so that the whole proof of [17, Section 4] holds. Therefore,
we take the same notation as in [17], to which we refer, for instance, for the description
of graphs, except that we take the convention tj D e��j with respect to their T –weights.

Let � be a graph in the localization formula of P4. We denote by M� the associated
moduli space of stable curves and by A� the group of automorphisms coming from
the graph � and from degrees of the edges, so that the corresponding fixed locus in
Mg;n.P4; ˇ/ is the quotient stack ŒM�=A� �; see [17]. The contribution of the graph �
to the localization formula is of the form

�
�
ŒM�=A� �IContr.flags/ �Contr.vertices/ �Contr.edges/

�
;
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where we have

Contr.flags/D
1

1�

�
ti.F /

tj.F /

�1=de

‰F

�

Y
m¤i.F /

1�
ti.F /

tm

1�
t5
i.F /

t4
0

t1

;

Contr.vertices/D

1�
t5
i.v/

t4
0

t1

g.v/X
kD0

.�1/k
�

t5
i.v/

t4
0

t1

�k

ƒkE

�

Y
m¤i.v/

g.v/X
kD0

.�1/k
�

ti.v/

tm

�k

ƒkE

1�
ti.v/

tm

;

Contr.edges/D
deY

aD1

�
2�

�
tj 0

tj

�a=de

�

�
tj

tj 0

�a=de
��1

�

Y
aCbDde

k¤j ;j 0

�
1�

.ta
j tb

j 0/
1=de

tk

��1

�

Y
aCbD5de

�
1�

.ta
j tb

j 0/
1=de

t4
0

t1

�
;

and where we write here the contribution of an edge linking the coordinate points pj

and pj 0 . These formulae follow exactly from [17, Section 4], replacing the Euler class
with the lambda class in K–theory.

Remark 2.14 In the contribution of vertices, we can rewrite the sum in terms of the
lambda-structure as ��u.E/, with u WD t5

i.v/
=t4

0
t1.

Remark 2.15 All individual contributions are in K0.M�/˝C.t1=d
0

; : : : ; t
1=d
4

/d2N� ,
but it is a consequence of the virtual localization formula that the final answer is in
K0.M�/˝C.t0; : : : ; t4/.

Let us now specialize the formula to .g; n; ˇ/D .1; 0; 1/. The graph � has only two
vertices v1 and v2, of respective genera 1 and 0, and one degree-one edge in between.
Moreover, as the vertex v2 has valence one, it corresponds to a free point (not marked,
not a node) rather than to a stable component of the curve. We denote by 0� i1¤ i2� 4

the indices of the coordinate points pi1
and pi2

to which the vertices v1 and v2 are sent
by the stable map. Note also that such a graph has no automorphisms and the moduli
space M� is isomorphic to M1;1. Furthermore, we recall that the Hodge bundle E

over M1;1 is identified with the cotangent line ‰1 at the marking. As a consequence,
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the virtual localization formula equals

X
0�i1¤i2�4

Y
aCbD5

�
1�

ta
i1

tb
i2

t4
0

t1

�
�

2�
ti1

ti2

�
ti2

ti1

�
�

Y
k¤i1;i2

�
1�

ti1

tk
�

ti2

tk
C

ti1
ti2

t2
k

�

��

�
M1;1I

1

1� qE_

Y
m¤i1;i2

�
1�

ti1

tm
‰1

�

1�
t5
i1

t4
0

t1
‰1

�
:

Once we specialize to .t0; : : : ; t4/ D .1; �; ��3; �13; ��51/, where � is any primitive
root of unity of order 41, we notice that denominators never vanish, but the numerator
could vanish; precisely,

1�
ta
i1

tb
i2

t4
0

t1
D 0 ()

�
i2 D i1C 1 and .a; b/D .4; 1/; or
i1 D i2C 1 and .a; b/D .1; 4/;

with the cyclic convention on indices, ie t5 WD t0. Moreover, we have

1�
ti1

ti1C1

‰1 D 1�
t5
i1

t4
0

t1
‰1;

so that the specialization of the localization formula gives

X
0�i1¤i2�4

i2¤i1C1
i1¤i2C1

" Y
aCbD5

�
1�

ta
i1

tb
i2

t4
0

t1

�
�

2�
ti1

ti2

�
ti2

ti1

�
�

Y
k¤i1;i2

�
1�

ti1

tk
�

ti2

tk
C

ti1
ti2

t2
k

�

��

�
M1;1I

1

1� qE_

Y
m¤i1;i1C1;i2

�
1�

ti1

tm
‰1

��#
.t0;:::;t4/D.1;�;��3;�13;��51/

:

By [26, Proposition 2.9], we have

�

�
M1;1I

1

1� qE_
1

1� q1‰1

�
D
.1� qq1/.1� q4� q6� q2

1
q6� q2

1
q8� q4

1
q8C q2q2

1
C q4q4

1
C q6q6

1
C q8q8

1
/

.1� q4/.1� q6/.1� q4
1
/.1� q6

1
/

:
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Hence, we get

�

�
M1;1I

Y
m¤i1;i1C1;i2

�
1�

ti1

tm
‰1

�
1� qE_

�
D

.1� q4� q6/

.1� q4/.1� q6/

Y
m¤i1;i1C1;i2

�
1C

ti1

tm
q

�
:

As a consequence, our formula simplifies as

1�q4�q6

.1�q4/.1�q6/

�

X
0�i1¤i2�4

i2¤i1C1
i1¤i2C1

2666664
Y

aCbD5

�
1�

ta
i1

tb
i2

t4
0

t1

� Y
m¤i1;i1C1;i2

�
1C

ti1

tm
q

�
�

2�
ti1

ti2

�
ti2

ti1

�
�

Y
k¤i1;i2

�
1�

ti1

tk
�

ti2

tk
C

ti1
ti2

t2
k

�
3777775
.t0;:::;t4/D.1;�;��3;�13;��51/

:

Finally, we must take the opposite of the sum of these expressions over all primitive
roots � of order 41. First, we notice that the term inside the sum is a polynomial in q of
degree at most two, so that it is enough to evaluate it at q 2 f0; 1; 2g. Using Sagemath,
we find

�

�Ovir
M1;0.X ;1/

1� qE_

�
� .�85q2

C 590q� 80/
1� q4� q6

.1� q4/.1� q6/

� .38q2
C 16qC 2/

1� q4� q6

.1� q4/.1� q6/
2 Z=41ZŒŒq��:

Furthermore, using Remark 2.12, we obtain the result of Proposition 2.13.

2.6 Special case of elliptic curves

In this section, we use the ideas behind Corollary 2.9 to prove that KGW theory with
homogeneous insertions of an elliptic curve is trivial.

Proposition 2.16 Let E be an elliptic curve. Then for every genus g, degree ˇ,
number of markings n and insertions A WD

Nn
iD1‰

ai

i ˝Yi , with 2g� 2C n> 0 and
Yi 2K0.E/ homogeneous K–classes , the corresponding KGW invariant vanishes:

�.A˝Ovir
Mg;n.E;ˇ/

/D 0:

Proof Let M be the largest possible order of an automorphism of a stable curve of
genus g. Let p be any prime number larger than M C1 and ˇC1. Define G WDZ=pZ
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and take a G–torsion point x 2E. Then the group G acts on the elliptic curve E by
translation y 7! yCx, and for every nonzero element h2G, the h–fixed locus is empty.
By Remark 2.5 and Proposition 2.4, the G–fixed locus in the moduli space of stable
maps Mg;n.E; ˇ/ is empty. Therefore, by the localization formula, the G–equivariant
KGW invariant vanishes, so that we get

�.A˝Ovir
Mg;n.E;ˇ/

/� 0 2 Z=pZ

for the nonequivariant limit. Since it is true for infinitely many prime numbers p, we
obtain the vanishing in Z.

Remark 2.17 Interestingly, KGW invariants are deduced from GW invariants via a
Kawazaki–Riemann–Roch theorem; see [38; 16]. It would be instructive to compare
Proposition 2.16 with GW theory of elliptic curves, which is nontrivial and described
in [31; 32].

Remark 2.18 The same proof holds for abelian varieties. However, when the dimen-
sion of the abelian variety is greater than 2 and the degree-class ˇ is nonzero, there
is a trivial quotient of the obstruction theory, so that both GW and KGW theories are
trivial. However, for degree-0 invariants, GW theory is nontrivial, but KGW theory is.

Remark 2.19 The main idea in the proof of Proposition 2.16 is to use congruence
relations for infinitely many prime numbers. Indeed, if we were able to find, for a
smooth DM stack X, automorphisms of prime orders for infinitely many primes and to
compute the localization formulae, then we would be able to know all KGW invariants
of X. Therefore, a necessary condition is that the automorphism group of X must be
infinite. However, it is not sufficient. For instance, some K3 surfaces have infinitely
many symmetries, but it was shown by [23] that the maximal order of a finite group
acting faithfully on a K3 surface is 3840.

Remark 2.20 Here are a few remarks on finiteness of automorphism groups. For
projective hypersurfaces (except quadrics, elliptic curves, and K3 surfaces), every
automorphism is projective and the automorphism group is finite. All Batyrev Calabi–
Yau (CY) 3–folds have finite automorphism groups [35]. Every projective variety of
general type has finite automorphism group. CY varieties with Picard numbers 1 or 2

have finite automorphism groups. It is expected that most CY varieties with Picard
number more than 4 have infinitely many automorphisms. In particular, it would be
interesting to know whether the Schoen CY 3–fold has automorphisms of prime order
for infinitely many primes and to study its KGW theory; see [21].
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3 K–theoretic FJRW theory

Similarly to KGW theory, we aim in this section to compute the K–theoretic FJRW
invariants of a Landau–Ginzburg (LG) orbifold modulo prime numbers. For simplicity
of the exposition, we focus in this paper on the quintic polynomial with minimal group
of symmetries. However, it is straightforward to apply the same ideas to an LG orbifold
.W;H /, where W is an invertible polynomial and H is an admissible group, as long
as we only insert Aut.W /–invariant states in the correlator. We refer to [18] for details.

3.1 Sketch of Polishchuk–Vaintrob construction

Let W .x1; : : : ;x5/ be a quintic polynomial in five variables and let �5 act on C5

by multiplication by a fifth root of unity. The moduli space used in FJRW theory of
.W; �5/ is the moduli space S1=5

g;n , which parametrizes .C; �1; : : : ; �n;L; �/. Precisely,
the curve C is an orbifold genus-g stable curve with isotropy group �5 at the markings
�1; : : : ; �n and at the nodes (and trivial everywhere else), L is a line bundle on C, and
� W L! !log WD !C.�1C � � �C �n/ is an isomorphism.

Let � be the projection from the universal curve to S1=5
g;n and L be the universal line

bundle. In [33], Polishchuk and Vaintrob constructed resolutions R��.L˚5/D ŒA!B�

by vector bundles over S1=5
g;n such that there exists some morphism

˛ W Sym4A! B_

corresponding to the differentiation of the polynomial W ; see [18] for details. Taking
p W X ! S1=5

g;n to be the total space of the vector bundle A, then the morphism ˛ is
interpreted as a global section of p�B_ over X, and the map ˇ WA! B coming from
the resolution is interpreted as a global section of p�B. As a consequence, we obtain a
Koszul matrix factorization

PV WD f˛; ˇg WD .ƒ�B_; ˛^ � C �ˇ/ 2D.X; ˛.ˇ//

of potential ˛.ˇ/ over the space X, and the support of this matrix factorization is exactly
the moduli space S1=5

g;n .

The moduli space S1=5
g;n has several components depending on the monodromies


 WD .
1; : : : ; 
n/ 2 �
n
5

at the markings; we denote by S1=5
g;n .
 / the corresponding component. Assume all

monodromies are nonzero; this is known as the narrow condition. Then the pairing ˛.ˇ/
is the zero function over X, and the matrix factorization PV becomes a two-periodic
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complex, exact off the moduli space S1=5
g;n .
 /. Therefore, we can define the pushforward

along the projection map p in the category of matrix factorizations, yielding

p�.PV/ 2D.S1=5
g;n .
 /; 0/'Db.S1=5

g;n .
 //;

where on the right we have the derived category of coherent sheaves.

Remark 3.1 If one allows trivial monodromies (ie one considers broad insertions),
then the pairing ˛.ˇ/ does not vanish and we rather end with a functor

ˆ WD�.A

 ;W
 /!DH .S

rig
g;n.
 /; 0/'D.ŒSrig

g;n.
 /=H �/;

U 7! p�.ev�.U /˝PV/;

where we need to consider rigidified moduli spaces; see [33] for details and notation.

In general, to any triangulated category C we associate a Grothendieck group K0.C/ by
taking the free abelian group generated by the objects of the category and then modding
out the relation

ŒA�� ŒB�C ŒC �D 0

for every distinguished triangle A! B! C . Furthermore, any functor f W C1! C2

of triangulated dg categories induces a morphism of groups

f! WK0.C1/!K0.C2/:

When the category is the derived category of coherent sheaves on a smooth DM stack,
we recover the usual K–theory of the stack.

Remark 3.2 If we apply it to the functor of Remark 3.1, we get a morphism of groups

ˆ! WDK0.ˆ/ WK0.D�.A

 ;W
 //!K0.ŒSrig

g;n.
 /=H �/:

Definition 3.3 We define the K–theoretic class

Ovir
S1=5

g;n .
 /
WD p�.PV/ 2K0.S1=5

g;n .
 //

and we call it the virtual structure sheaf of the moduli space S1=5
g;n .
 /.

Definition 3.4 Fix d1; : : : ; dn 2 Z and nontrivial monodromies 
1; : : : ; 
n 2 �5. The
K–theoretic FJRW invariant of the LG orbifold .W; �5/ is

�.‰
˝d1

1
˝ � � �˝‰˝dn

n ˝Ovir
S1=5

g;n .
 /
/ 2 Z;

where � WK0.S1=5
g;n .
 //!K0.pt/DZ is the Euler characteristic and the line bundle‰i

is the relative cotangent line at the i th marked point.
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Remark 3.5 A special feature of the LG orbifold .W; �5/, and more generally when
the polynomial has degree d and the group is �d , is that FJRW invariants do not depend
on the polynomial W, as long as it is nondegenerate with the same weights and degree;
see [12, Proposition 4.1.7]. The same result holds for the K–theoretic version, as it
holds at the matrix factorization level. Hence, we can consider several choices for our
quintic polynomial.

3.2 Invertible polynomials

In the context of mirror symmetry, a well-behaved class of polynomials has been
introduced by Berglund and Hübsch [3]. We say that a polynomial is invertible when
it is nondegenerate and has as many variables as monomials. According to Kreuzer
and Skarke [24], every invertible polynomial is a (Thom–Sebastiani) sum of invertible
polynomials, with disjoint sets of variables, of the following three types:

(8)

Fermat xaC1;

chain of length c x
a1

1
x2C � � �Cx

ac�1

c�1
xc CxacC1

c ; where c � 2;

loop of length l x
a1

1
x2C � � �Cx

al�1

l�1
xl Cx

al

l
x1; where l � 2:

In the case of the quintic polynomial, we have for example the following choices:

(9)

Fermat x5
1 Cx5

2 Cx5
3 Cx5

4 Cx5
5 ; .�5/

5;

loop x4
1x2Cx4

2x3Cx4
3x4Cx4

4x5Cx4
5x1; �1025;

chain x4
1x2Cx4

2x3Cx4
3x4Cx4

4x5Cx5
5 ; �1280;

2–loops x4
1x2Cx4

2x3Cx4
3x1Cx4

4x5Cx4
5x4; �15 ��65;

loop-Fermat x4
1x2Cx4

2x3Cx4
3x4Cx4

4x1Cx5
5 ; �255 ��5;

where on the right we have written the group Aut.W / of diagonal matrices leaving the
polynomial invariant.

Let W be an invertible quintic polynomial and Aut.W / be its maximal group of
diagonal symmetries. Recall that the space X is the total space of the vector bundle A

over the moduli space S1=5
g;n .
 /, and that we have

R��.L˚5/D ŒA! B�:

Therefore, the vector bundles A and B are direct sums of five copies, which we write
as

ADA1˚ � � �˚A5 and B D B1˚ � � �˚B5:
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We then have a natural action of Aut.W / on the vector bundles A and B by rescaling
the fibers. Precisely, the actions on X in the examples (9) are

(10)

Fermat .�1x1; �2x2; �3x3; �4x4; �5x5/; �j D e2i�=5;

loop .�x1; �
�4x2; �

16x3; �
�64x4; �

256x5/; � D e2i�=1025;

chain .�x1; �
�4x2; �

16x3; �
�64x4; �

256x5/; � D e2i�=1280;

2–loops .�1x1; �
�4
1 x2; �

16
1 x3; �2x4; �

�4
2 x5/; �1 D e2i�=65; �2 D e2i�=15;

loop-Fermat .�1x1; �
�4
1 x2; �

16
1 x3; �

�64
1 x4; �2x5/; �1 D e2i�=255; �2 D e2i�=5:

By construction, since the polynomial W is Aut.W /–invariant, the matrix factorization
PV is Aut.W /–equivariant and so is the virtual structure sheaf.

However, we need to be careful when we compute the Aut.W /–fixed locus. Indeed, the
group of automorphisms of a .W; �5/–spin curve .C; �1; : : : ; �n;L/ fixing the coarse
curve of C is �5 � .�5/

#nodes, where the first factor rescales the line bundle L, and the
second factor acts only on the orbifold curve C — it is the so-called ghost automorphism;
see [1, Proposition 7.1.1] and [7, Section 2.1.4]. As a consequence, we would rather
consider the action of the group

G WD Aut.W /=�5

on the space X over the moduli space S1=5
g;n .
 /. Here, the subgroup �5 is generated by

.e2i�=5; : : : ; e2i�=5/ in the Fermat case, by e2i�=5 in the loop and chain cases, and by

.e2i�=5; e2i�=5/ in the 2–loops and loop-Fermat cases.

Unfortunately, we still have too many fixed points. For instance, in the Fermat example,
the point

.C; �1; : : : ; �n;LIx1; 0; : : : ; 0/ 2X

is fixed. Another example is the chain polynomial, for which the point

.C; �1; : : : ; �n;LI 0; : : : ; 0;x5/ 2X

is fixed. In both cases, the G–fixed locus is noncompact. We easily check that, among
all invertible quintic polynomials, the only cases where the G–fixed locus is compact are

� the loop polynomial with group G D Aut.W /=�5 D �205,

� the 2–loops polynomial with group G D .�65 ��15/=�5.

Moreover, the G–fixed locus in the space X equals the base S1=5
g;n .
 /. We are therefore

able to apply the (nonvirtual) localization formula on the smooth space X to get the
next theorem.
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Remark 3.6 It is more convenient to work with cyclic groups. Therefore, in the
2–loops polynomial case, we prefer to use G D �195, where the G–action on X is

.�15x1; �
�60x2; �

240x3; �
65x4; �

�260x5/; where � D e2i�=195:

Definition 3.7 Let l 2 Z. The Adams operation ‰l in K–theory is defined on a line
bundle L over a space S as

‰l.L/ WDL˝l ;

and then extended as a ring homomorphism

‰l
WK0.S/!K0.S/:

Theorem 3.8 Consider the two following situations:

� W is the loop polynomial , G WD �205, � a primitive 205th root of unity , and
.a1; : : : ; a5/D .1;�4; 16;�64; 256/.

� W is the 2–loops polynomial , G WD �195, � is a primitive 195th root of unity ,
and .a1; : : : ; a5/D .15;�60; 240; 65;�260/.

Let g and n be nonnegative integers in the stable range 2g� 2C n> 0, and let 
 2 �n
5

be nontrivial monodromies. Then the G–equivariant virtual structure sheaf equals

(11) Ovir;G
S1=5

g;n .
 /
D exp

� X
l��1

5X
jD1

�aj �l

l
‰l.�R��L/

�
2K0.S1=5

g;n .
 //˝C:

Proof In the G–equivariant K–theory of the space X, the matrix factorization equals

PVD �G
�1p�B_ 2K0.G;X /;

and by the localization formula we get

PVD �!
�
�G
�1

B_

�G
�1

A_

�
D �!.�

G
�1.B

_
�A_// 2K0.G;X /loc

in the localized ring, where � WS1=5
g;n .
 / ,!X is the zero section. Taking the pushforward

along the projection map p, we obtain the G–equivariant virtual structure sheaf

Ovir;G
S1=5

g;n .
 /
D �G
�1.B

_
�A_/ 2K0.G;S1=5

g;n .
 //loc 'K0.S1=5
g;n .
 //˝C:

If V is a vector bundle, we can express the �–structure in terms of Adams operators
via the formula

��p.V
_/D exp

� X
l��1

p�l

l
‰l.V /

�
:
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Moreover, if the action of a group G on the vector bundle V is by rescaling fibers with
� 2G, then

�G
�1.V

_/D ����1.V _/D exp
� X

l��1

�l

l
‰l.V /

�
:

In our situation, we find formula (11).

Remark 3.9 In [18], we define the characteristic class ct WK
0.S/!H�.S/ŒŒt �� by

ct .B �A/D Ch.��t .B
_
�A_//Td.B �A/;

and we then obtain the formula

lim
t!1

5Y
iD1

ctj .�R��L/D cvir 2H�.S1=5
0;n
.
 //

for the FJRW virtual cycle of .W; �5/, where tj WD taj . This formula is only valid in
genus 0 and we do not expect the left-hand side to converge in positive genus when
t ! 1. However, by Theorem 3.8, we see that the formula converges for every genus
when t ! �.

In order to get congruences for the nonequivariant limit, we need to consider a subgroup
of Aut.W / with prime order and whose fixed locus in X is compact. The only invertible
polynomial for which it is possible is the loop polynomial, together with the subgroup
�41 acting on X as

.�41x1; �
37
41x2; �

16
41x3; �

18
41x4; �

6
41x5/; where �41 WD e2i�=41:

Remark 3.10 The prime decomposition of 205 is 5 � 41, so we could also hope for a
congruence modulo 5. However, the subgroup �5 acts trivially on X. Indeed, it acts as

.�5x1; �5x2; �5x3; �5x4; �5x5/; where �5 WD e2i�=5;

which is rescaled by the automorphism group of the .W; �5/–spin curve, so that the
fixed locus is X. Nevertheless, from its definition using the quintic Fermat polynomial,
we observe that the virtual structure sheaf decomposes into five identical summands,
each one corresponding to the so-called 5–spin theory. It is then divisible by five in the
K–theoretic ring with Z coefficients. As a consequence, all FJRW correlators of the
quintic vanish modulo 5.

Corollary 3.11 Let W be the loop polynomial and let

.a1; : : : ; a5/D .1;�4; 16;�64; 256/:

For any nonnegative integers g and n in the stable range 2g � 2C n > 0, nontrivial
monodromies 
 2 �n

5
, and integers d1; : : : ; dn 2 Z, the K–theoretic FJRW invariant
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of .W; �5/,
�.‰

˝d1

1
˝ � � �˝‰˝dn

n ˝Ovir
S1=5

g;n .
 /
/ 2 Z;

equals

�

40X
kD1

�

�
‰
˝d1

1
˝� � �˝‰˝dn

n ˝exp
� X

l��1

5X
jD1

e2i�kl �aj =41

l
‰l.�R��L/

��
2Z=41Z:

Using Remark 3.10, the correlator vanishes modulo 5, and we can then compute it
modulo 205.

Remark 3.12 More generally, the K–class

B41 WD �

40X
kD1

exp
� X

l��1

5X
jD1

e2i�kl �aj =41

l
‰l.�R��L/

�
2K0.G;S1=5

g;n .
 //

lies in the K–theoretic ring with Z–coefficients and we know there exists another
K–class R in K0.G;S1=5

g;n .
 // with Z–coefficients such that

Ovir
S1=5

g;n .
 /
D B41C 41 �R 2K0.G;S1=5

g;n .
 //:

This yields the following formula for the FJRW virtual cycle of .W; �5/:

cvir D

40X
kD1

�
lim

t!�k
41

5Y
iD1

ctj .�R��L/C 41 �Ch.R/
�

Td.�R��L/5 2H�.S1=5
g;n .
 //Q:

However, since the cohomology is taken with Q–coefficients, we do not obtain congru-
ence results on the virtual cycle. An idea would be to guess a formula for the K–class R

as an integral linear combination of (natural) vector bundles over S1=5
g;n .
 /. Since the

virtual cycle is pure-dimensional and the right-hand side of the formula above is most
likely not pure-dimensional when we take a generic R, only special integral coefficients
in this linear combination would work.
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We determine the topology of the moduli space MS1;1.#/ of surfaces of genus one
with a Riemannian metric of constant curvature 1 and one conical point of angle 2�# .
In particular, for # 2 .2m�1; 2mC1/ nonodd, MS1;1.#/ is connected, has orbifold
Euler characteristic � 1

12
m2, and its topology depends on the integer m> 0 only. For

# D 2mC 1 odd, MS1;1.#/ has
˙
1
6
m.mC 1/

�
connected components. For # D 2m

even, MS1;1.#/ has a natural complex structure and it is biholomorphic to H2=Gm
for a certain subgroup Gm of SL.2;Z/ of index m2, which is nonnormal for m> 1.

58D27; 32Q20, 52B70

1. Introduction and main results 3619

2. Voronoi diagrams and the proof of Theorem B 3629

3. Balanced spherical triangles 3645

4. Moduli spaces of spherical tori 3661

5. MS1;1.2m/ and MS.2/1;1.2m/ as Belyi curves 3675

6. Lipschitz topology on MSg;n 3679

Appendix. Monodromy and coaxiality 3695

References 3697

1 Introduction and main results

A spherical metric on a surface S with conical points at the points xDfx1; : : : ; xng2S
is a Riemannian metric of curvature 1 on PS WD S nx such that a neighborhood of xj is
isometric to a cone with a conical angle 2�#j > 0.
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Let us immediately specify what we mean by the moduli space MSg;n.#/ of spherical
surfaces. As a set, MSg;n.#/ parametrizes compact connected oriented surfaces of
genus g with a spherical metric that has conical angles .2�#1; : : : ; 2�#n/ at marked
points x1; : : : ; xn. Two surfaces correspond to the same point of the space if there is a
marked isometry from one to the other. In order to define a topology on MSg;n.#/, we
consider the bi-Lipschitz distance between marked surfaces; see Gromov [15]. Such a
distance defines a metric, and the corresponding topology on MSg;n.#/ is called the
Lipschitz topology; its properties are discussed in Section 6.

As a spherical metric defines a conformal structure on the surface, we have the forgetful
map F WMSg;n.�/!Mg;n, where Mg;n is the moduli space of conformal structures
on .S;x/.

Since a neighborhood of a smooth point on S is isometric to an open set on the sphere
equipped with the standard spherical metric, by an analytic continuation we obtain an
orientation-preserving locally isometric developing map f W PS ! S2. Strictly speaking,
the developing map is defined on the universal cover of PS but it is sometimes convenient
to think of it as a multivalued function on PS .

The developing map defines a representation of the fundamental group of PS to the
group SO.3/ of rotations of the unit sphere S2. The image of this representation is
called the monodromy group.

Our goal is to provide an explicit description of the moduli space MS1;1.#/ of spherical
tori with one conical point.

Spherical tori with one conical point were also studied by Chai, Lin and Wang [2], Chen
and Lin [6], Chen, Kuo and Lin [5], Eremenko [10], Eremenko and Gabrielov [11] and
Lin and Wang [19; 20].

1.1 Main results

Our main results consist of Theorems A–F, which are stated in the next three subsections.

1.1.1 # not an odd integer

Theorem A (topology of MS1;1.#/ for # not odd) Take # 2 .1;1/ that is not an
odd integer and set mD

�
1
2
.# C 1/

˘
. The moduli space MS1;1.#/ of spherical tori

with a conical point of angle 2�# is a connected orientable 2–dimensional orbifold of
finite type with the following properties:
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(i) As a surface , MS1;1.#/ has genus
�
1
12
.m2� 6mC 12/

˘
and m punctures.

(ii) MS1;1.#/ has orbifold Euler characteristic �.MS1;1.#//D� 1
12
m2. Moreover ,

it has at most one orbifold point of order 4 and at most one orbifold point of
order 6. All the other points are orbifold points of order 2.

(iii) MS1;1.#/ has one orbifold point of order 6 if and only if d1.#; 6Z/ > 1.

(iv) MS1;1.#/ has one orbifold point of order 4 if and only if d1.#; 4Z/ > 1.

Note that for # D 2m this theorem gives a positive answer to the question of Chai, Lin
and Wang [2, Question 4.6.6(a)] as to whether MS1;1.2m/ is connected.

We refer to Cooper, Hodgson and Kerckhoff [7] for a general treatment of orbifolds.
In fact we adopt a slightly more general definition of orbifolds that includes the case
in which all points can have orbifold order greater than 1. The definition of orbifold
Euler characteristic is given on page 29 of [7]. This is consistent with the definition
used, for example, in Harer and Zagier [16]. A few properties of the orbifold Euler
characteristic are listed in Remark 4.7.

Note that, in [13], with Gabrielov we used a different convention and we endowed
our moduli spaces with an orbifold structure for which the order of each point is half
the number of automorphisms of the corresponding object. Thus, the orbifold Euler
characteristics computed in [13] are twice the ones that would be obtained following
the convention here.

Remark 1.1 (orbifold structure and isometric involution) For # not odd, spherical
metrics in MS1;1.#/ are invariant under the unique conformal involution � of tori
(see Proposition 2.17). Thus every such spherical torus is a double cover of a spherical
surface of genus 0 with conical points of angles .�#; �; �; �/, and so the moduli space
MS1;1.#/ is homeomorphic to MS0;4

�
1
2
#; 1
2
; 1
2
; 1
2

�
=S3 as a topological space. On the

other hand, the orbifold order of a point in MS1;1.#/ exactly corresponds to the number
of (orientation-preserving) self-isometries of the corresponding spherical torus. This
explains why every point of MS1;1.#/ has even orbifold order, as stated in Theorem A.
Thus MS1;1.#/ is not isomorphic to the orbifold quotient MS0;4

�
1
2
#; 1
2
; 1
2
; 1
2

�
=S3.

An important geometric input on which Theorem A hinges is the notion of balanced
spherical triangles; Theorem B describes the relation between spherical tori and
balanced triangles.
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Definition 1.2 (spherical polygons) A spherical polygonP with angles�.#1; : : : ;#n/
is a closed disk equipped with a Riemannian metric of constant curvature 1, with n
distinguished boundary points x1; : : : ; xn which are called vertices, and such that the
arcs between the adjacent vertices are geodesics forming an interior angle �#i at the i th

vertex. Two polygons are isometric if there is an isometry between them that preserves
the labeling.

Spherical polygons with two or three vertices are called digons or triangles.1

Definition 1.3 (balanced triangles) A spherical triangle � with angles �.#1; #2; #3/
is called balanced if the numbers #1, #2 and #3 satisfy the three triangle inequalities.
If the triangle inequalities are satisfied strictly, we call the triangle strictly balanced. If,
for some permutation .i; j; k/ of .1; 2; 3/, we have #i D #j C#k , we call the triangle
semibalanced. If #i > #j C#k for some i , we call the triangle unbalanced.

Semibalanced triangles are called marginal in Eremenko and Gabrielov [12] and [13].

Whenever a spherical triangle is realized as a subset of a surface, we will induce on
it the orientation of the surface. We will say that two oriented spherical surfaces (or
polygons) are conformally isometric (or congruent) if there is an orientation-preserving
isometry from one surface (or polygon) to the other.

Terminology (integral angles) Throughout the paper angles will be measured in
radians. Nevertheless, an angle 2�# at a conical point of a spherical surface is called
integral if # 2 Z>0; similarly, an angle �# at a vertex of a spherical polygon is called
integral if # 2 Z>0.

Now we describe a construction that will be omnipresent:

Construction 1.4 To each spherical triangle � with vertices x1, x2 and x3 one
can associate a spherical torus T .�/ with one conical point by taking a conformally
isometric triangle�0 with vertices x01, x02 and x03 and isometrically identifying each side
xixj with the side x0jx

0
i (in such a way that xi is identified to x0j and xj is identified

to x0i ) for i; j 2 f1; 2; 3g. The angle at the conical point of T .�/, which corresponds
to the vertices of the triangles, is twice the sum of the angles of �. If � is endowed
with an orientation, then T .�/ canonically inherits an orientation.

1We note that spherical triangles in the sense of our definition are sometimes called Schwarz–Klein
triangles to distinguish them from triangles understood as broken geodesic lines on the sphere; see for
instance [12].
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To state the next result we need two more notions. Let T be a spherical torus with
one conical point. An isometric orientation-reversing involution on T will be called a
rectangular involution if its set of fixed points consists of two connected components.
By a geodesic loop 
 based at a conical point x we mean a loop based at x which is
geodesic in PT D T n fxg and which passes through x only at its endpoints.

Theorem B (canonical decomposition of a spherical torus for nonodd #) Let .T; x/
be a spherical torus with one conical point of angle 2�# such that # 2 .1;1/n.2ZC1/.

(i) If T does not have a rectangular involution , then there exists a unique (up to a
reordering) triple of geodesic loops .
1; 
2; 
3/ based at x that cuts T into two
congruent strictly balanced spherical triangles.

(ii) If T has a rectangular involution , there exist exactly two (unordered ) triples
of geodesic loops such that each of them cuts T into two congruent balanced
triangles. Moreover , such triangles are semibalanced. These two triples are
exchanged by the rectangular involution.

We recall that, by Mondello and Panov [23, Section 4], the Voronoi graph associated to
a spherical surface with n conical points decomposes such a surface into the union of n
topological disks with one conical point each. Indeed, the role of this Voronoi graph is
analogous to the role of the critical graph of a Jenkins–Strebel differential (a procedure
that allows one to build a spherical surface out of a Jenkins–Strebel differential is
described by Song, Cheng, Li and Xu [26]).

In order to prove Theorem B, we note that the complement of the Voronoi graph of the
spherical torus .T; x/ is one disk, and that this disk can be further split into two congruent
triangles using the conformal involution of the torus. As a consequence of Theorem B,
to each spherical torus T one can associate an essentially unique balanced spherical
triangle �.T /. Such uniqueness will permit us to reduce the description of the moduli
space MS1;1.#/ to that of the moduli space of balanced triangles of area �.# � 1/.

1.1.2 # an odd integer The case when # is an odd integer is quite different, as not
all spherical metrics are invariant under the unique (nontrivial) conformal involution �
of the tori. We begin by stating our result for metrics that are �–invariant:

Theorem C (topology of MS1;1.2mC 1/� ) Fix an integer m� 1 and consider the
moduli space MS1;1.2mC1/� of tori with a �–invariant spherical metric of area 4m� .

(a) As a topological space , MS1;1.2mC1/� is homeomorphic to the disjoint union
of
˙
1
6
m.mC 1/

�
2–dimensional open disks.
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(b) MS1;1.2mC 1/� is naturally endowed with the structure of a 2–dimensional
orbifold with

˙
1
6
m.mC 1/

�
connected components , which can be described as

follows:

(b-i) If m 6� 1 .mod 3/, then all components are isomorphic to the quotient D of
V�2D fy 2R3

C
j y1Cy2Cy3D 2�g by the trivial Z2–action. Hence , every

point of MS1;1.2mC 1/� has orbifold order 2.

(b-ii) If m� 1 .mod 3/, then one component is isomorphic to the quotient D0 of
V�2 by Z2�A3, where Z2 acts trivially and A3 acts by cyclically permuting
the coordinates of V�2, and all the other components are isomorphic to D.
Hence , one point of MS1;1.2mC 1/� has orbifold order 6 and all the other
points have order 2.

Remark 1.5 Similarly to Remark 1.1, as a topological space MS1;1.2mC 1/� is
homeomorphic to MS0;4

�
m C 1

2
; 1
2
; 1
2
; 1
2

�
=S3 (though they are not isomorphic as

orbifolds). Thus, Theorem C has a connection with the results of Chai, Lin and Wang [2],
Chen and Lin [6], Eremenko [10], Eremenko and Gabrielov [11] and Lin and Wang [20].

The following description of the moduli space of tori with metrics that are not necessarily
�–invariant will be deduced from Theorem C:

Theorem D (topology of MS1;1.2mC 1/) For each positive integer m, the moduli
space MS1;1.2m C 1/ is a 3–dimensional orbifold with

˙
1
6
m.m C 1/

�
connected

components.

(i) Ifm 6� 1 .mod 3/, then all components of MS1;1.2mC1/ are isomorphic to the
quotient M of V�2 �R by the involution .y; t/ 7! .y;�t /.

(ii) If m � 1 .mod 3/, then one component of MS1;1.2mC 1/ is isomorphic to
the quotient M0 of V�2 � R by Z2 � A3, where Z2 acts via the involution
.y; t/ 7! .y;�t / and the alternating group A3 acts by cyclically permuting the
coordinates of V�2. All the other components are isomorphic to M.

The locus MS1;1.2mC 1/� of �–invariant metrics correspond to t D 0.

In order to understand what happens for spherical metrics that are not necessarily
�–invariant, we recall:

Definition 1.6 (coaxiality) A monodromy is coaxial if and only if it is contained
inside a one-parameter subgroup SO.3;R/. A spherical surface is called coaxial if its
monodromy is.

Geometry & Topology, Volume 27 (2023)
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Note that every spherical metric with nontrivial coaxial monodromy on a surface
belongs to a 1–parameter family of metrics that induce the same CP1–structure; we
will say that metrics in the same 1–parameter family are projectively equivalent.

In the present case, a spherical metric on a torus T with one conical point of angle
2�# has nontrivial monodromy. Moreover, the monodromy is coaxial if and only
if # is odd. This fact is proven in [2, Theorem 5.2] and can be also deduced by
combining the observations of Li, Song and Xu [18, page 8] with Chen, Wang, Wu
and Xu [4, Proposition 1.4]. We reprove this statement using an argument based on
monodromy considerations (see Corollary A.2).

The above discussion shows that every spherical surface in MS1;1.2mC1/ belongs to
a 1–parameter family of projectively equivalent metrics, which thus traces a copy of R

inside MS1;1.2mC1/. Moreover, in every family there exists exactly one metric which
is �–invariant (see Proposition 2.17). For this reason MS1;1.2mC 1/� is isomorphic
to the moduli space MS1;1.2mC 1/=proj of projective classes of spherical tori of
area 4m� , and so MS1;1.2mC 1/ is 3–dimensional.

Another major difference from the nonodd case concerns the forgetful map: for #
nonodd, the forgetful map MS1;1.#/!M1;1 is proper (see Mondello and Panov [23])
and surjective, whereas this is not so for odd # ; see Lin and Wang [19]. The boundary
of MS1;1.2m C 1/=proj inside the space of CP1–structures describes interesting
real-analytic curves (see [2]) that are investigated in the sequel to this paper [13].

Theorems C and D will rely on the following result, which links moduli spaces of tori
to moduli spaces of balanced triangles with integral angles:

Theorem E (canonical decomposition of a spherical torus with odd #) Fix a spherical
torus with one conical point of angle 2�.2mC 1/. In the same projective class there
exists a unique spherical torus .T; x/ that admits an isometric orientation-preserving
involution. Also , there exists a unique collection of three geodesic loops .
1; 
2; 
3/
based at x that cuts T into two congruent balanced spherical triangles � and �0 with
integral angles �.m1; m2; m3/.

1.1.3 # an even integer Our final main result concerns moduli spaces MS1;1.2m/
where m is a positive integer. It is known (see Chai, Lin and Wang [2] and Eremenko
and Tarasov [14]) that these moduli spaces have a natural holomorphic structure with
respect to which they are compact Riemann surfaces with punctures. This is the unique
conformal structure which makes the forgetful map to M1;1 holomorphic. With this
structure MS1;1.2m/ is an algebraic curve.

Geometry & Topology, Volume 27 (2023)



3626 Alexandre Eremenko, Gabriele Mondello and Dmitri Panov

Theorem F (MS1;1.2m/ is a Belyi curve) For each integer m > 0 there exists a
subgroup Gm < SL.2;Z/ of index m2 such that the orbifold MS1;1.2m/ is biholo-
morphic to the quotient H2=Gm. Such Gm is nonnormal for m > 1. Moreover ,
the points in H2=Gm that project to the geodesic ray Œi;1/ in the modular curve
H2=SL.2;Z/ correspond to tori T such that the triangle �.T / has one integral angle.

1.2 Analytic representation of spherical metrics

Let .T; x/ be a spherical torus with a conical singularity at x of angle 2�# . The
pullback of the spherical metric via the universal cover C D zT ! T has area element
eujdzj2. Then the function u satisfies the nonlinear PDE

(1) �uC 2eu D 2�.# � 1/ıƒ;

where ıƒ is the sum of delta functions over the lattice ƒ and T is biholomorphic
to C=ƒ. So our results describe the moduli spaces of pairs .ƒ; u/, where u is a
ƒ–periodic solution of (1).

Equation (1) is the simplest representative of the class of “mean field equations”, which
have important applications in physics; see Tarantello [27].

The general solution of (1) can be expressed in terms of a function f WC!CP1, the
developing map, which is related to the conformal factor u by

uD log
4jf 0j2

.1Cjf j2/2
:

The developing map f D w1=w2 is the ratio of two linearly independent solutions w1
and w2 of the Lamé equation

(2) w00 D
�
#2�1

4
} � c

�
w;

where } is the Weierstrass function of the latticeƒ and c 2C is an accessory parameter.
So our results can be also interpreted as a description of the moduli space of projective
structures on tori whose monodromies are subgroups of SO.3;R/.

Most of the known results on spherical tori are formulated in terms of (1) and (2).
For example, it is proved in Chen and Lin [3] that when # is not an odd integer, then
the Leray–Schauder degree of the nonlinear operator in (1) equals

�
1
2
.# C 1/

˘
. An

especially well-studied case is the classical Lamé equation (2) where # is an integer;
see [2; 13]. Solutions of (2) with odd integer # are special functions of mathematical
physics; see Maier [21] and Whittaker and Watson [29].
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1.3 The idea of the proof of Theorem A

Here we give a brief summary of the proof of Theorem A, since various parts of it
stretch through the whole paper. Fix # > 1 not odd and consider spherical tori with a
conical point of angle 2�# , and area 2�.# � 1/.

� By Proposition 2.17(i), on every torus the unique nontrivial conformal involution is
an isometry.

� Every spherical torus is obtained by gluing two isometric copies of a spherical
balanced triangle with labeled vertices in an essentially unique way (Theorem B,
proven in Section 2.4). This result has a clear refinement for tori with a 2–marking
(namely, a labeling of its 2–torsion points); see Construction 4.5.

� The doubled space MT ˙bal.#/ of balanced triangles of area �.# � 1/ is the double
of the space MT bal.#/ of balanced triangles of area �.# �1/ and it describes oriented
balanced triangles up to some identifications that only involve semibalanced triangles
(Definition 3.21).

� The space MT bal.#/ is an orientable connected surface with boundary, and its
topology is completely determined (see Proposition 3.20) and so is the topology of
MT ˙bal.#/; see Proposition 3.22.

� As a topological space, the space MS.2/1;1.#/ of isomorphism classes of 2–marked
tori is homeomorphic to MT ˙bal.#/; see Theorem 6.5.

� As an orbifold, MS.2/1;1.#/ is isomorphic to the quotient of MT ˙bal.#/ by the trivial
Z2–action. This allows us to determine the topology and the orbifold Euler characteristic
of MS.2/1;1.#/; see Theorem 4.8.

� The map MS.2/1;1.#/ ! MS1;1.#/ that forgets the 2–marking is an unramified
orbifold S3–cover, where S3 acts on MS.2/1;1.#/ by permuting the 2–markings (see
Remark 6.28). This allows us to describe the points in MS1;1.#/ of orbifold order
greater than 2 (Proposition 4.4) and to determine the topology and the orbifold Euler
characteristic of MS1;1.#/; see Theorem A, proved towards the end of Section 4.1.

1.4 Content of the paper

The relation between spherical tori with one conical point and balanced spherical
triangles is established in Section 2, which culminates in the proof of Theorem B. The
section contains a careful analysis of the Voronoi graph of a torus and of the action of
the unique nontrivial conformal involution � on its spherical metric.
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In Section 3 we describe the topology of the space of balanced triangles of area �.#�1/
and of its double, separately considering the cases # nonodd and # odd. Here we
visualize the space of spherical triangles with assigned area, which is a manifold, by
looking at its image (which we call a carpet) through the angle map ‚. The balanced
carpet will turn out to be a useful tool in computing the topological invariants of the
space of balanced triangles.

In Section 4 we describe the topology of the moduli spaces of spherical tori with one
conical point, endowed with the Lipschitz metric (which we study in Section 6). For #
nonodd, we first establish a homeomorphism between the doubled space of balanced
triangles and the topological space of 2–marked tori using tools from Section 6. Then
we prove Theorem A. For # odd, we first prove Theorem E using results from Sections
2 and 3, which immediately allows us to prove part (a) of Theorem C. Then we endow
our moduli space of �–invariant spherical tori with a 2–dimensional orbifold structure
and prove part (b) of Theorem C. Finally, using one-parameter projective deformations
of �–invariant spherical metrics, we put a 3–dimensional orbifold structure on the
moduli space of (not necessarily �–invariant) tori and prove Theorem D.

In Section 5 we analyze the moduli space of tori with # even, and prove Theorem F
by identifying it to a Hurwitz space of covers of CP1 branched at three points. This
permits us to exhibit this moduli space as a Belyi curve and to characterize tori that sit
on the 1–dimensional skeleton of its dessin.

Section 6 deals with properties of the Lipschitz metric on moduli spaces of spherical
surfaces with conical points with area bounded from above. The main result of the
section is Theorem 6.3 on properness of the inverse of the systole function. Then the
treatment is specialized to tori with one conical point of angle 2�# with # nonodd
(or with # odd and a �–invariant metric). The section culminates with establishing
the homeomorphism between the space of 2–marked tori and the doubled space of
balanced triangles, needed in Section 4. A last remark explains how to use such results
to endow our moduli spaces with an orbifold structure.

In the short appendix we prove a general SU.2/–lifting theorem for the monodromy of
a spherical surface, and we apply it to the cases of # odd and # even to explain their
special features.
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2 Voronoi diagrams and the proof of Theorem B

In this section we will study the Voronoi graphs of spherical tori .T; x; #/ with one
conical point and prove Theorem B.

2.1 Properties of Voronoi graphs, functions and domains

In this subsection we recall the definition of a Voronoi graph [23, Section 4] and apply
it to spherical tori with one conical point.

Definition 2.1 (Voronoi function and Voronoi graph) Let S be a surface with a
spherical metric and conical points x. The Voronoi function VS W S ! R is defined
as VS .p/ WD d.p;x/. The Voronoi graph �.S/ is the locus of points p 2 PS at which
the distance d.p;x/ is realized by two or more geodesic arcs joining p to x. We will
simply write � D �.S/ when no ambiguity is possible. The Voronoi domains of S
are connected components of the complement S n �.S/. Each Voronoi domain Di
contains a unique conical point xi and this point is the closest conical point to all the
points in the domain.

Various properties of Voronoi functions, graphs and domains of spherical surfaces were
proven in [23, Section 4], and Proposition 2.3 lists some of the facts needed here. To
formulate the last two properties we need one more definition:

Definition 2.2 (convex star-shaped polygons) LetD be a disk with a spherical metric,
containing a unique conical point x 2 D, such that its boundary is composed of a
collection of geodesic segments. We say that D is a convex and star-shaped polygon if
any two neighboring sides of D meet under an interior angle smaller than � and for
any point p 2D there is a unique geodesic segment that joins x with p.

Proposition 2.3 (basic properties of the Voronoi function and graph) Let S be a
spherical surface of genus g with conical points x1; : : : ; xn.

(i) The Voronoi function is bounded from above by � , namely VS < � .

(ii) The Voronoi graph �.S/ is a graph with geodesic edges embedded in S and
contains at most �3�. PS/D 6g� 6C 3n edges.
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(iii) The valence of each vertex of �.S/ is at least three. For any point p 2 �.S/ its
valence coincides with the multiplicity �p, ie there exist exactly �p geodesic
segments in S of length VS .p/ that join p with conical points of S .

(iv) The metric completion of each Voronoi domain2 is a convex and star-shaped
polygon with a unique conical point in its interior.

(v) Let 
 be an open edge of �.S/. Let Di and Dj be two Voronoi domains
adjacent to 
 . Let � �Di and �0 �Dj be the two triangles with one vertex
xi or xj , respectively, and opposite side 
 . Then � and �0 are anticonformally
isometric by an isometry fixing 
 .

Proof (i) This is proven in [23, Lemma 4.2].

(ii) This is proven in [23, Lemma 4.5 and Corollary 4.7].

(iii) The valence of vertices is at least three by [23, Corollary 4.7]. The valence of a
point on �.S/ coincides with its multiplicity by [23, Lemma 4.5].

(iv) The convexity is proven in [23, Lemma 4.8]. The fact that each domain is star-
shaped follows from the fact that each point p in it can be joined, by a unique geodesic
segment of length VS .p/, with the conical point. Such a segment varies continuously
with p, since VS .p/ < � .

(v) To find the isometry between � and �0 just notice that by definition each point
p 2 
 can be joined by two geodesics of the same length with xi and xj . Also these
two geodesics intersect 
 under the same angle. The isometry between the triangles is
obtained by the map exchanging each pair of such geodesics.

Example 2.4 (Voronoi graph in a sphere with three conical points) Let S be a sphere
with three conical points. It follows from Proposition 2.3(ii) that the Voronoi graph
�.S/ is either a trefoil graph, an eight graph or an eyeglasses graph; see Figure 1.
Indeed, �.S/ splits S into three disks, and it has at most three edges.

The next definition and remark explain how to define Voronoi functions and graphs for
spherical polygons, mimicking Definition 2.1.

Definition 2.5 (Voronoi function and graph of a polygon) Let P be a spherical
polygon with vertices x. Then the Voronoi function VP W P ! R is defined as

2The metric completion can differ from the closure of the domain inside S ; see the rightmost example in
Figure 2.
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Figure 1: Voronoi graphs on a sphere with three conical points. From left to
right: the trefoil, the eight graph and the eyeglass graph.

VP .p/ WD d.p;x/. The Voronoi graph �.P / of P consists of points p of two types:
first, the points for which there exist at least two geodesic segments of length d.p;x/
that join p with x, and second, the points p on @P for which the closest vertex of P
does not lie on the edge to which p belongs.

Remark 2.6 (doubling a polygon: Voronoi function and graph) To each spherical
polygon P one can associate a sphere S.P / with conical singularities by doubling3 P
across its boundary. Such a sphere has an anticonformal isometry that exchanges P
and its isometric copy P 0, and fixes their boundary. It is easy to see that the function
VS.P / restricts to VP on P � S and to VP 0 on P 0 � S . One can also check that the
Voronoi graph �.S.P // is the union �.P /[ �.P 0/. As a result, the statements of
Proposition 2.3 have their analogues for spherical polygons.

The following lemma gives an efficient criterion permitting one to verify whether a
given geodesic graph on a spherical surface is in fact its Voronoi graph:

Lemma 2.7 (Voronoi graph criterion) Let S be a spherical surface of genus g with
conical points x1; : : : ; xn and let � 0.S/ � S be a finite graph with geodesic edges
embedded in S . Then � 0.S/D �.S/ if and only if the following two conditions hold :

(a) S n � 0.S/ is a union of disks whose metric completions are convex and star-
shaped polygons each with a unique conical point in its interior.

(b) For each point p 2 � 0.S/ all geodesic segments that join p with some conical
point of S and intersect � 0.S/ only at p have the same length.

Proof Since by Proposition 2.3 the graph �.S/ satisfies the conditions (a) and (b),
we only need to prove the “only if” direction.

3Given a topological spaceX and a closed subsetA, the doubling ofX alongA is obtained fromX�f0; 1g

by making the identification .a; 0/� .a; 1/ for every a 2 A.
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For each conical point xi let Di be the Voronoi domain of xi (namely the connected
component of S n�.S/ that contains xi ), and let D0i be the component of S n� 0.S/
containing xi . Let’s assume, for contradiction, that there is a point p 2 Di that is
not contained in D0i . By definition of Di there is a unique geodesic segment 
.p/
of length VS .p/ that joins p with xi . Denote by 
 0.p/ the connected component of
the intersection 
.p/\D0i that contains xi and let p0 …D0i be the point in its closure.
Clearly p0 belongs to � 0.S/. By (a) each component of S n� 0.S/ is star-shaped, so
using (b) we get a second (different from 
 0.p/) geodesic segment of length VS .p0/
that joins p0 with a conical point. Hence p0 2 �.S/, which contradicts the fact that p0

is in Di .

We proved that Di �D0i for each i . It follows that Di DD0i , hence � 0.S/D �.S/.

Lemma 2.8 (Voronoi graphs of a sphere with three conical points) Let S be a sphere
with three conical points xi of conical angles 2�#i .

(i) �.S/ is a trefoil if and only if #1, #2 and #3 satisfy the triangle inequality
strictly.

(ii) �.S/ is an eight graph if and only if #i D #j C#k for some permutation .i; j; k/
of f1; 2; 3g.

(iii) �.S/ is an eyeglasses graph if and only if #i > #j C#k for some permutation
.i; j; k/ of f1; 2; 3g.

(iv) In cases (i) and (ii) the vertices of �.S/ are equidistant from x1, x2 and x3. In
case (iii) the vertices of �.S/ are not equidistant from x1, x2 and x3.

Proof It is enough to prove the “only if” parts of claims (i), (ii) and (iii); the cases are
mutually exclusive and so the “if” part will follow.

For the proof of the “only if” part, all three cases are treated in a similar way. Let us
consider, for example, the case when �.S/ is a trefoil graph. Let’s show that in this
case the #i satisfy the triangle inequality strictly. Denote the two vertices of �.S/ by A
and B . The three edges of �.S/ cut S into three Voronoi disks, each of which contains
one conical point. Let us denote these three segments of �.S/ by 
1, 
2 and 
3, as
shown in the leftmost picture in Figure 2. Let us join each of the xi with the vertices
A and B by geodesics xiA and xiB of lengths VS .A/ and VS .B/, respectively. These
geodesic segments are depicted in gray.

Consider now the spherical quadrilaterals Ax3Bx1, Ax1Bx2 and Ax2Bx3 into which
the gray geodesics cut S . It follows from Proposition 2.3(v) for i; j 2 f1; 2; 3g that the

Geometry & Topology, Volume 27 (2023)



Moduli of spherical tori with one conical point 3633

x1

x2x3

1


2

3

A

B

x1

x2

x3

1


2

A

x1

x2

x3


1


2


3

A

B

Figure 2: Three types of spheres.

angles of AxiBxj at xi and xj are equal. This implies that #1, #2 and #3 satisfy the
triangle inequality strictly.

(ii)–(iii) One treats the cases when �.S/ is an eight graph or an eyeglasses graph in a
similar way; the corresponding pictures are shown in Figure 2.

(iv) This is clear from the way �.S/ is embedded in S ; see Figure 2. In particular,
if �.S/ is an eyeglasses graph, d.A; x1/ D d.A; x3/ < d.A; x2/ and d.B; x2/ D
d.B; x3/ < d.B; x1/.

2.2 The circumcenters of balanced triangles

It is well known that the circumcenter of a Euclidean triangle� is contained in� if and
only if � is not obtuse. Moreover, in the case when � is right-angled, the circumcenter
is the midpoint of the hypotenuse. It is also a classical fact that the circumcenter of a
Euclidean triangle is the point of intersection of the axes4 of its sides. The next theorem
is a generalization of the above statements to spherical triangles. By an involutive
triangle we mean a triangle that admits an anticonformal isometric involution that fixes
one vertex and exchanges the other two.5

Theorem 2.9 (circumcenters of balanced triangles) Let � be a spherical triangle
with vertices x1, x2 and x3.

(i) The triangle � contains a point O equidistant from x1, x2 and x3 if and only if
� is balanced.

4The axis of a segment is the perpendicular through the midpoint of such segment.
5Note that every Euclidean or hyperbolic isosceles triangle admits an isometric involution exchanging the
equal sides. This is not the case for spherical triangles; for example the triangle with angles 52� , 132 �
and 9

2� is equilateral but clearly has no symmetries.
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(ii) The point O (equidistant from x1, x3 and x3) is in the interior of � if and only
if � is strictly balanced. The point O is the midpoint of a side of � if and only
if � is semibalanced.

(iii) If � is strictly balanced , then the geodesic segments Ox1, Ox2 and Ox3 cut �
into three involutive triangles.

(iv) Suppose that � is semibalanced and the angle †xi D �#i is the largest one.
Then O is the midpoint of the side opposite to xi , and xiO cuts � into two
involutive triangles.

To prove this theorem we need the following lemma.

Lemma 2.10 (some isosceles triangles are involutive triangles) Let � be a spherical
triangle with vertices q1, q2 and q3 and denote by jqiqj j the length of the side qiqj .
Suppose that jq1q2j D jq1q3j< � and †q1 < 2� . Then there is an isometric reflection
� of � that fixes q1 and exchanges q2 with q3. In particular , †q2 D†q3. Moreover ,
� pointwise fixes a geodesic segment that joins q1 with the midpoint of q2q3 and splits
� into two isometric triangles. Furthermore , jq2q3j< 2� .

Proof First, let †q1 D � . In this case � can be isometrically identified with a digon
so that q1 is identified with the midpoint of one of its sides. Since each digon has an
isometric reflection fixing the midpoints of both sides, the lemma holds.

From now on we assume that †q1¤� . Consider the unique spherical triangle �0�S2

with vertices q01, q02 and q03 such that jq01q
0
2j D jq

0
1q
0
3j D jq1q2j, †q

0
1 D †q1, and

Area.�0/ < 2� . We will show that�0 admits an isometric embedding into� that sends
q0i to qi . This will prove the lemma since this implies that � is isometric to a triangle
obtained by gluing a digon to the side q02q

0
3 of �0. And such a triangle clearly has an

isometric reflection � . This will also prove that jq2q3j < 2� , since jq02q
0
3j < 2� and

either jq2q3j D jq02q
0
3j or jq2q3jC jq02q

0
3j D 2� .

To prove the existence of the embedding, denote by � W �! S2 the developing map
of triangle �. We may assume that �.qi /D q0i , �.q1q2/D q

0
1q
0
2 and �.q1q3/D q01q

0
3.

Note that � sends q2q3 to the unique6 geodesic circle that contains �.q2/ and �.q3/.
Hence, it is not hard to see that the preimages of �0 in � form a union of some number
of isometric copies of �0. One of them, containing sides q1q2 and q1q3 of �, is the
embedding we are looking for.

6This circle is unique since †q1 ¤ � , and also it intersects the segments q01q
0
2 and q01q

0
3 only at the points

q02 and q03.
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Remark 2.11 This lemma is sharp in the sense that neither of the two conditions
jq1q2j D jq1q3j< � and †q1 < 2� can be dropped.

Proof of Theorem 2.9 (i) Let S.�/ be the sphere obtained by doubling � across its
boundary, ie by gluing � with the triangle �0 that is anticonformally isometric to �.
Then, by Remark 2.6, the graph �.S.�// is the union of �.�/ with �.�0/.

Suppose first that � contains a point O equidistant from all the xi . Then, since the
restriction of VS.�/ to � equals V�, we see that O is equidistant from xi on S as
well. So, by Proposition 2.3(iii), the point O corresponds to a vertex of �.S.�// of
multiplicity at least 3. Furthermore, by Lemma 2.8(iv), we conclude that �.S/ is either
a trefoil or an eight graph. Hence, again by Lemma 2.8, the triangle � is balanced.

Suppose now that � is balanced, ie #1, #2 and #3 satisfy the triangle inequality.
Then, by Lemma 2.8(i)–(ii), the graph �.S.�// is a trefoil or a eight graph, and so
by Lemma 2.8(iv) there is a point O in S equidistant from all xi . It follows that �
contains such a point as well.

(ii) We first prove the “only if” direction. Suppose that O is in the interior of �.
Then �.S.�// has two vertices of valence 3. So according to (i), �.S.�// is a trefoil.
Hence, � is strictly balanced by Lemma 2.8(i).

Suppose that O is on the boundary of �. Without loss of generality assume that O
is on the side of � opposite to x1. For i D 1; 2; 3 let 
i be the geodesic segment of
length V�.O/ that joins O with xi . Let 
 0i be the image of 
i in �0 � S.�/ under
the anticonformal involution. Since the multiplicity of O in �.S/ is at most 4, we
conclude that 
2 D 
 02 and 
3 D 
 03. Hence, O is the midpoint of the side x2x3.

To prove the “if” direction, one needs to apply Lemma 2.8(iv). Indeed, if � is strictly
balanced, �.S.�// has two vertices of multiplicity 3 and one of them lies in �. If �
is semibalanced, �.S.�// has one vertex and it has to lie on the boundary of �.

(iii) Since� is strictly balanced, by (ii) there is a pointO in the interior of� equidistant
from points x1, x2 and x3. Since V�.O/ < � , we have jOx1j D jOx1j D jOx3j< � .
Hence all three isosceles triangles xiOxj are involutive triangles by Lemma 2.10.

(iv) This proof is identical to the proof of (iii).

Remark 2.12 Theorem 2.9 can be used to construct the Voronoi graph �.�/ of a
balanced triangle � with vertices x1, x2 and x3. Indeed, according to this theorem,
the geodesic segments Oxi cut � into three or two involutive triangles, and, using a
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Figure 3: Voronoi graphs of balanced triangles.

variation of Lemma 2.7, one can show that �.�/ is the union of symmetry axes of
these triangles; see Figure 3.

We will see that some results we are interested in about balanced triangles indeed
concern the following class of triangles.

Definition 2.13 (short-sided triangles) A spherical triangle short-sided if all its sides
have length li < 2� . In this case, we set Nli WDmin.li ; 2� � li /.

Theorem 2.9 has two simple corollaries:

Corollary 2.14 (balanced triangles are short-sided) Let � be a balanced triangle
with vertices x1, x2 and x3. Then � is short-sided , ie jxixj j< 2� .

Proof Let us treat the case when � is strictly balanced. The semibalanced case is
similar. By Theorem 2.9(iii), the triangle � can be cut into three involutive triangles
xiOxj , where†O <2� and jOxi jD jOxj j<� . Applying Lemma 2.10 to the triangle
xiOxj , we conclude that jxixj j< 2� .

Corollary 2.15 (short geodesic in a balanced triangle) Let � be a balanced triangle
with vertices x1, x2 and x3. Suppose that fi; j; kg D f1; 2; 3g, ordered so that the value
Nlk Dmin.jxixj j; 2� � jxixj j/ is minimal. Then there is a geodesic segment 
� in �
that joins xi with xj and is such that `.
�/ D Nlk � 2

3
� , which in fact realizes the

minimum distance between distinct vertices.

Proof Let us again treat the case when � is strictly balanced. Let xiOxj be three
involutive triangles into which� is cut. Consider the developing map � W�!S2. Then,
for each fi; j; kg D f1; 2; 3g, the value Nlk is equal to the distance between �.xi / and
�.xj / on S2, and so d.xi ; xj /� d.�.xi /; �.xj //D Nlk . For this reason, it is not hard to
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see that the minimum of the value Nlk is attained for the triangle xiOxj for which the
angle at O is the minimal one. In particular, in such a triangle the angle at O is at
most 2

3
� . It follows that there is a geodesic segment 
� in such a triangle xiOxj of

length less than 2
3
� that joins xi and xj . Since it cuts out of xiOxj a digon with one

side xixj , we conclude that `.
�/D Nlk D d.xi ; xj /.

2.3 Isometric conformal involutions on tori

In this short section we prove the following useful proposition:

Lemma 2.16 (invariance of projective structures on one-pointed tori) Let .T; x/ be
a flat one-pointed torus and let � be its unique nontrivial conformal involution. Then
every projective structure on T whose Schwarzian derivative has at worst a double pole
at x is invariant under � .

Proof We represent our torus T as C=ƒ, where ƒ is a lattice in C, and suppose that
x corresponds to the lattice points. We also endow T with the corresponding projective
structure.

The involution � pulls back to the map z 7! �z on zT DC. The Schwarzian derivative
(see for example [25]) of a projective structure is a quadratic differential on the torus T .
By hypothesis, it has at worst a double pole at x. The vector space of such quadratic
differentials is 2–dimensional, generated by the constants and the Weierstrass elliptic
function. Hence, all its elements are invariant under the involution � , and so are all
solutions of the associated Schwarz equations. As a consequence, all such projective
structures are �–invariant.

Proposition 2.17 (spherical metrics and conformal involution) Let � be the unique
conformal involution of a spherical torus T that fixes the unique conical point x.

(i) If # … 2ZC 1, then � is an isometry.

(ii) If # 2 2Z C 1, then each projective equivalence class of spherical metrics
is parametrized by a copy of R, on which � acts as an orientation-reversing
diffeomorphism. Thus , � is an isometry for a unique spherical metric in its
projective equivalence class.

Proof Consider the projective structure associated to a spherical metric on .T; x/. By
Lemma 2.16, such projective structure is �–invariant.
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(i) Every spherical metric is noncoaxial by Corollary A.2, and so in each projective
equivalence class there is at most one spherical metric. Hence, this metric must be
invariant under � .

(ii) Fix a spherical metric h in MS1;1.2mC 1/. Let zPT be the universal cover of PT
and let yT be its completion. Denote by Oxi the points in @ yT D yT n zPT which project to
x 2 T . Pick a developing map � for h, which in fact extends to O� W yT ! S2 ŠCP1, and
let � be the associated monodromy representation.

By Corollary A.2, the monodromy � is coaxial but nontrivial. Fix an element ˛ of
�1.T / such that �.˛/D eX ¤ I with X 2 su2. Up to conjugation, we can assume that
12CP1 is the attracting point and 0 2CP1 is the repelling point for �.˛/0 WD eiX .
The orbits of the group .etX / on CP1nf0;1g will be called “parallels” and the unique
geodetic orbit will be called the “equator”.

First, we claim that O�. Oxi /¤ 0;1 for all Oxi 2 @ yT , and they all sit on the same parallel. In
fact, the holomorphic vector field z.@=@z/ on CP1 is invariant for the monodromy, and
so its pullback descends to a nonzero holomorphic vector field V on PT , possibly with
a pole in x. If O�. Oxi / 2 f0;1g, then V would have a zero at x, contradicting �.T /D 0.
The second assertion is clear, since O�.@ yT / is an orbit for the action of the monodromy.

Second, note that all spherical metrics .ht /t2R projectively equivalent to h have devel-
oping maps et � and monodromy representation �. Thus, up to replacing h by some ht0 ,
we can assume that O�.@ yT / is contained inside the equator.

The function d WCP1! Œ0; �� that measures the distance from the repelling point of
�.˛/0 is invariant for the monodromy action, and so its pullback via �t to yT descends
to a function dt W T ! Œ0; ��. We observe that t can be recovered from dt .x/ via
et D 1

2
tan.dt .x//.

Now, .�ı�/.˛/D�.˛/�1D e�X . Thus, when considering the developing map .et �/ı�
with monodromy representation � ı � , the attracting point of .� ı �/.˛/0 is 0 and the
repelling point is 1. It follows that the distance of .et O�/ ı �.x/ D et O�.x/ from the
repelling point1 is ��dt .x/. Hence, .et �/ı� is a developing map for h�t . It follows
that � acts on the family of metrics .ht /t2R by sending ht to h�t , and so fixing the
unique metric h0 whose developing map sends @ yT to the equator. It follows that � acts
on .T; x; ht / as an isometry if and only if t D 0.

Proposition 2.17(ii) was also proved in [2, Theorem 5.2]; see also [11, Theorem 1].
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2.4 Proof of Theorem B

The goal of this section is to prove Theorem B and to make preparations for the proof
of Theorem C. Throughout the section we will mainly consider the class of tori that
have a conformal isometric involution. By Proposition 2.17, we know that such an
involution exists automatically in the case when the conical angle is not 2�.2mC 1/.
We start with the following simple lemma:

Lemma 2.18 (points of � fixed by a conformal isometric involution) Let S be a
spherical surface with conical points x that admits an isometric conformal involution � .
Let p be a point in PS DS nx fixed by � . Then p belongs to �.S/, its multiplicity �p is
even , and there exist exactly 1

2
�p geodesic segments or loops7 of lengths 2VS .p/ < 2�

based at x and passing through p. The point p cuts each such geodesic segment into
two halves of equal length.

Proof Consider any geodesic segment 
 of length VS .p/ that joins p with one of the
conical points. Since �.
/ ¤ 
 we see that p belongs to �.S/. If p is not a vertex
of �.S/, then 
 and �.
/ are the only two geodesic segments of length VS .p/ that join
p with x. Clearly, since � is a conformal involution the union 
 [ �.
/ is a geodesic
segment or loop based at x. Its length is less than 2� by Proposition 2.3(i).

The case when p is a vertex of �.S/ is similar. Since � is a conformal involution and it
sends �.S/ to �.S/ we see that the valence of p in �S is even. By Proposition 2.3(iii)
the number �p of geodesic segments of length VS .p/ that join p with x is equal to
this valence. Clearly, altogether these �p segments form 1

2
�p geodesic segments (or

loops) of length 2VS .p/, all of which have midpoint p.

Now we concentrate on the case of spherical tori with one conical point. It will be
convenient for us to recall first the construction of hexagonal and square flat tori.

Example 2.19 (hexagonal and square flat tori) Let T6 and T4 be the flat tori obtained
by identifying opposite sides of a regular flat hexagon and a square, respectively. Denote
by �6 � T6 and �4 � T4 the graphs formed by the images of the polygons’ boundaries.
Then it is easy to check that �6 and �4 are Voronoi graphs in T6 and T4 with respect to
the images of the centers of the polygons.

Lemma 2.20 (Voronoi graph of a spherical torus) Let T be a spherical torus with
one conical point and let � be its Voronoi graph. Then � is either a trefoil or an eight

7We always assume that a geodesic loop or segment can intersect x only at its endpoints.
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graph. In the first case the pair .T; �/ is homeomorphic to the pair .T6; �6/. In the
second case it is homeomorphic to the pair .T4; �4/.

Proof By [23, Corollary 4.7] the Voronoi graph � has at most three edges and two
vertices. Since the complement to the Voronoi graph is a disk, the graph has at least
two edges.

Suppose first that � has three edges. By [23, Corollary 4.7] the vertices of � have
multiplicity at least 3, so � is a trivalent graph with two vertices, ie a trefoil or an
eyeglasses graph. Note that the punctured torus PT is homeomorphic to a thickening
Th.�/ of � , and such Th.�/ is uniquely determined by choosing a cyclic ordering of
the half-edges incident at each vertex of � . Now, up to isomorphism, such a cyclic
ordering is unique for the eyeglass graph, and its thickening is homeomorphic to a
three-punctured sphere. Hence � must be a trefoil.

It is easy to see that Th.�/ can be endowed with a metric such that, if we cut along � ,
we obtain a flat regular hexagon with its center removed. If cTh.�/ is the completion
of Th.�/ obtained by adding one point, then .T6; �6/ is homeomorphic to .cTh.�/; �/,
which in turn is homeomorphic to .T; �/.

The case when � has two edges is similar.

The following is the main proposition on which the proof of Theorem B relies:

Proposition 2.21 (from tori to balanced triangles) Let .T; x/ be a spherical torus
with one conical point x and suppose that T has a nontrivial isometric conformal
involution � . Let �.T / be the Voronoi graph of T .

(i) Suppose �.T / is a trefoil. Then � permutes the two vertices of �.T / and fixes
the midpoints p1, p2 and p3 of the three edges of �.T /. Moreover , there exist
exactly three �–invariant simple geodesic loops 
1, 
2 and 
3 based at x such that

i intersects �.T / orthogonally at pi . These geodesic loops cut the torus into
the union of two congruent strictly balanced triangles that are exchanged by � .

(ii) Suppose �.T / is an eight graph with the vertex A. Then � fixes the vertex and
the midpoints p1 and p2 of the two edges of �.T /. Moreover there exist four
�–invariant simple geodesic loops 
1, 
2, �1 and �2 based at x and uniquely
characterized by the following properties: each geodesic 
i intersects �.T /
orthogonally at pi , and each geodesic �i passes through A and has length
2d.A; x/. Moreover , for i D 1; 2, the triple of loops .
1; 
2; �i / cuts T into the
union of two congruent semibalanced triangles that are exchanged by � .
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Figure 4: The trefoil case.

(iii) T has a rectangular involution if and only if its Voronoi graph is an eight graph.
For a torus T with a rectangular involution , the triangles into which 
1, 
2 and
�1 cut T are reflections of the triangles into which 
1, 
2 and �2 cut T .

Proof (i) Since � is an isometry of T it sends �.T / to itself. Let’s denote the vertices
of �.T / by A and B . Since their valence is 3 and � is a conformal isometric involution,
� can fix neither A nor B . Indeed, since � is of order 2, if � fixed A then it would
fix at least one half-edge outgoing from A, and so it would be the identity. Hence �
permutes A and B , which implies in particular that A and B are at the same distance
from x.

Next, since � is an orientation-preserving involution and �.T / is a trefoil, from simple
topological considerations it follows that � sends each edge 
i of �.T / into itself. It
follows that the midpoints of the edges p1, p2 and p3 are fixed by � .

Let us now cut T along �.T / and consider the completion D of the obtained open disk.
Clearly D is a spherical hexagon with the conical point x in its interior. Moreover, �
induces an isometric involution on D without fixed points on @D. It follows that �
sends each vertex of D to the opposite one.

Next, let’s denote the vertices of D by A1, B2, A3, B1, A2 and B3, as is shown in
Figure 4. Here all the points Ai correspond to A and Bi to B when we reassemble T
from the disk. In a similar way we mark midpoints of the sides of D by p0i and p00i .

According to Lemma 2.18, for each i there is a geodesic loop 
i of length 2d.pi ; x/
based at x for which pi is the midpoint. Let us show that 
1, 
2 and 
3 cut T into two
equal strictly balanced triangles whose vertices are identified to the point x.
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Figure 5: The eight graph case.

Indeed, the first triangle, which we will call �A, is assembled from three quadrilaterals
A1p

00
3xp

0
2, A2p001xp

0
3 and A3p002xp

0
1. The second triangle �B is assembled from the

remaining three quadrilaterals. Clearly �.�A/ D �B , so these two triangles are
congruent.

Finally, �A is strictly balanced according to Theorem 2.9(i). Indeed the point A lies in
the interior of �A and is at distance d.A; x/ from all the vertices of �A.

(ii) Let us now consider the case when �.T / is an eight graph with a vertex labeled
by A. Clearly, A is fixed by � since this is the unique point of �.T / of valence 4.

As before, we see that the midpoints p1 and p2 of the two edges of �.T / are fixed
by � , and this gives us two �–invariant geodesic loops 
1 and 
2. To construct �1
and �2 we apply Lemma 2.18 to the point A.

Now let us cut T along the Voronoi graph �.T / and consider the completion D of the
obtained open disk. Clearly this disk is a quadrilateral with one conical point in the
interior. Let us mark the vertices of this quadrilateral and the midpoints of its edges as
shown in Figure 5.

As before, the loops 
1, 
2 and �1 cut T into two congruent triangles, exchanged
by � . To show that these triangles are semibalanced consider one of these triangles
obtained as a union of two triangles A1xp002 and A3xp001 and the quadrilateral xp01A2p

0
2.

To assemble this triangle one has to identify the pairs of sides .A1p002 ; A2p
0
2/ and

.A2p
0
1; A3p

00
1/. The resulting triangle is semibalanced by Theorem 2.9(ii).
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(iii) Suppose first that �.T / is an eight graph. Then we are in the setting of case (ii)
of this proposition. Let us construct an involution �1 of D that pointwise fixes 
1. We
define �1 so that �1.A1/D A2 and �1.A3/D A4. Then in order show that �1 extends
to D it is enough to show that the triangle A1xA4 is isometric to A2xA3 and that the
geodesic 
1 is the axis of symmetry of both triangles A1xA2 and A3xA4. The former
statement follows from Proposition 2.3(v). To prove the latter statement, note again that
A1xA2 is isometric to A4xA3 by Proposition 2.3(v) and then compose this isometry
with � . This induces the desired reflections on both triangles A1xA2 and A4xA3. The
involution �2 fixing 
2 is constructed in the same way.

Suppose now that T has a rectangular involution � . Let us show that �.T / is an eight
graph. Since � is a rectangular involution, its fixed locus is a union of two disjoint
geodesic loops. One of these loops passes through x while the other one, say �, is a
simple smooth closed geodesic. For any point p 2 � there exist at least two length-
minimizing geodesic segments that join it with x (they are exchanged by � ). It follows
that � lies in �.T /. And since a trefoil graph can’t contain a smooth simple closed
geodesic, we conclude that �.T / is an eight graph.

Later we will need the following, which is a part of the proof of Proposition 2.21:

Remark 2.22 Suppose we are in case (ii) of Proposition 2.21. Consider the four
sectors into which geodesic loops �1 and �2 cut a neighborhood of x. Then, for each
i D 1; 2, the geodesic loop 
i bisects two of these sectors.

The final preparatory proposition of this subsection is the converse to Proposition 2.21:

Proposition 2.23 (from balanced triangles to tori) Let � be a balanced triangle and
let �0 be a triangle congruent to it. Let T .�/ be the torus obtained by identifying the
sides of � and �0 through orientation-reversing isometries.

(i) The Voronoi graph �.T .�// coincides with the union in T .�/ of �.�/ and
�.�0/.

(ii) If � is strictly balanced then the Voronoi graph �.T .�// has two vertices. More-
over , the images of the three sides of � in T .�/ coincide with three canonical
geodesic loops 
1, 
2 and 
3 on T .�/ constructed in Proposition 2.21(i).

(iii) If � is semibalanced then �.T .�// has one vertex. Moreover , the images of the
three sides of � in T .�/ coincide with three canonical geodesic loops 
1, 
2
and �i on T .�/ constructed in Proposition 2.21(ii). Here the side of � opposite
to the largest angle of � corresponds to �i .
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Figure 6: Two isomorphic triangles � and �0.

Proof (i) Assume first that � is strictly balanced. Let L� be the graph obtained as the
union �.�/[�.�0/. In order to prove that L� D �.T .�//, it is enough to show that L�
satisfies properties (a) and (b) of Lemma 2.7.

Recall that by Theorem 2.9(ii) there is a point O in the interior of � that is equidistant
from the points xi . Denote by pi and p0i the midpoints of sides opposite to xi and x0i , as
in Figure 6. Then, by Remark 2.12, �.�/ is the union of the segmentsOpi and �.�0/ is
the union of the segments Op0i . It follows that T .�/n L� is convex and star-shaped with
respect to x, which means that property (a) of Lemma 2.7 holds. As for property (b), it
holds since �.�/ and �.�0/ are Vornoi graphs of � and �0.

The case when � is semibalanced is treated in the same way, so we omit it.

(ii) Since� is strictly balanced, it follows from (i) that �.T .�// has two vertices. Now,
it follows from (i) that for any permutation fi; j; kg the side xixj � T .�/ intersects
an edge of �.T .�// at its midpoint and it is orthogonal to it at this point. Hence, by
Proposition 2.21(ii), each geodesic xixj coincides with the geodesic loop 
k .

(iii) The proof of this result is similar to case (ii) and we omit it.

Remark 2.24 Proposition 2.23 does not hold for any unbalanced triangle. Indeed,
if � is unbalanced one can still construct a torus T .�/ from � and its copy of �0.
However, the union of the Voronoi graphs of � and �0 will be an eyeglasses graph
in T .�/. Such a graph can never be the Voronoi graph of a torus with one conical point.

Proof of Theorem B Let T be a spherical torus with one conical point of angle 2�#
with # … 2ZC 1. By Proposition 2.17, there exists a conformal isometric involution �
on T . Hence we can apply Proposition 2.21. In particular, by Proposition 2.21(iii), the
torus T has a rectangular involution if and only if �.T / is an eight graph.
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(i) The Voronoi graph �.T / of T is a trefoil, and we get a collection of three
geodesics 
1, 
2 and 
3 that cut T into two congruent strictly balanced triangles.
Such a collection of geodesics is unique on T by Proposition 2.23.

(ii) The Voronoi graph �.T / is an eight graph, and by Proposition 2.21 we get two
triples of geodesics, .
1; 
2; �1/ and .
1; 
2; �2/, both cutting T into two congruent
semibalanced triangles. Again, it follows from Proposition 2.23 that these two triples
are the only ones that cut T into two isometric balanced triangle, and they are exchanged
by the rectangular involution.

3 Balanced spherical triangles

The main goal of this section is to describe the space of balanced spherical triangles
with assigned area. To do this, we recall in Section 3.1 several theorems describing
the inequalities satisfied by the angles of spherical triangles. We also give an explicit
constructions of such triangles. Section 3.2 is mainly expository. It recalls the results
from [12] that the space MT of all (unoriented) spherical triangles has the structure of a
3–dimensional real-analytic manifold. From this we deduce that the space of balanced
triangles of a fixed noneven area is a smooth-bordered surface. In Section 3.3 we
describe a natural cell decomposition of the space MT bal.#/ of all balanced triangles
of fixed area �.# � 1/ with # … 2ZC 1.

3.1 The shape of spherical triangles

We start this section by recalling the classifications [9] of spherical triangles. In fact,
such triangles are in one-to-one correspondence with spheres with a spherical metric
with three conical points, provided we exclude spheres and triangles with all integral
angles. Indeed, for each S2 with a spherical metric and three conical points that are
not all integral, there is a unique isometric anticonformal involution � such that S2=�
is a spherical triangle. Conversely, for each spherical triangle � we can take the sphere
S.�/ formed by gluing together two copies of �.

It will be useful to introduce the following notation:

Notation Let Z3e be the subset of Z3 consisting of triples .n1; n2; n3/with n1Cn2Cn3
even. By d1 we denote the `1–distance in R3 defined by d1.v;w/ D

P
i jvi �wi j.

If a spherical triangle has angles �.#1; #2; #3/, then we call .#1; #2; #3/ 2 R3 its
associated angle vector.

Geometry & Topology, Volume 27 (2023)



3646 Alexandre Eremenko, Gabriele Mondello and Dmitri Panov

.0; 0; 0/ .1; 0; 0/

.0; 0; 1/

.2; 1; 0/

.0; 1; 2/

.1; 2; 2/

.2; 2; 1/

#1

#2
#3

Figure 7: Angle vectors of spherical triangles.

We collect the results into three subsections, depending on the number of integral
angles, recalling that there cannot be a triangle with exactly two integral angles.

3.1.1 Triangle with no integral angle The first result we want to recall from [9] is
the following:

Theorem 3.1 (triangles with nonintegral angles [9]) Suppose #1, #2 and #3 are
positive and not integers. A spherical triangle with angles �.#1; #2; #3/ exists if and
only if

(3) d1..#1; #2; #3/;Z
3
e/ > 1:

Moreover , such a triangle is unique , when it exists.

The unique triangle with three nonintegral angles �.#1; #2; #3/ will be denoted by
�.#1; #2; #3/.

Remark 3.2 Let us decipher (3). Note that the subset d1..#1; #2; #3/;Z3e/� 1�R3

is a union of octahedra of diameter 2 centered at points of Z3e . The complement to this
set is a disjoint union of open tetrahedra, each contained in a unit cube with integer
vertices. This collection of tetrahedra is invariant under translations of R3 by elements
of Z3e . Theorem 3.1 states that if a point .#1; #2; #3/ 2 R3>0 lies in one of these
tetrahedra, the corresponding spherical triangle exists and is unique. Figure 7 depicts
the union of six such tetrahedra in the octant R3>0.
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Section 3.1.2 of [22] contains an explicit construction of balanced spherical triangles.
In fact, this was used previously by Klein [17].

3.1.2 Triangles with one integral angle The second result we wish to recall from [9]
is the following:

Theorem 3.3 (triangles with one integral angle [9]) If #1 is an integer and #2 and #3
are not integers , then a spherical triangle with angles �.#1; #2; #3/ exists if and only if
at least one of the following conditions is satisfied :

(a) j#2�#3j is an integer n of opposite parity from #1 and nD j#2�#3j � #1� 1.

(b) #2C#3 is an integer n of opposite parity from #1 and nD #2C#3 � #1� 1.

Moreover , when the #i satisfy (a) or (b ) there is a one-parameter family of triangles
with angles �.#1; #2; #3/ that is parametrized by the length jx1x2j (or jx1x3j).

It is obvious that triangles satisfying the hypotheses of Theorem 3.3(b) are never
balanced.

Remark 3.4 It is easy to see that, in the case when a triple .#1; #2; #3/ of positive
numbers satisfies the triangle inequality and the integrality constraints of Theorem 3.3(a),
there are integers n1; n2; n3 � 0 and a number � 2 .0; 1/ such that #1 D n2Cn3C 1,
#2 D n1Cn3C � and #3 D n1Cn2C � .

Finally, we give a full description of balanced triangles with exactly one integral angle:

Proposition 3.5 (balanced triangles with one integral angle) Let � be a balanced
spherical triangle with vertices x1, x2 and x3 and angles �.#1; #2; #3/, where #1 is
an integer while #2 and #3 are not integers. Let n1, n2, n3 and � be as in Remark 3.4.
Then the following hold :

(i) jx2x3j D � .

(ii) There is a unique pair of geodesic segments 
12; 
13��, with j
12jCj
13jD� ,
that cut � into three domains. The first is a digon with angles �n3 bounded by
the sides x1x2 and 
13. The second is a digon with angles �n2 bounded by the
sides x1x3 and 
13. The third is a triangle with sides 
12, 
13 and x2x3, and
angles �.� Cn1; � Cn1; 1/ opposite to the sides.

(iii) All balanced triangles with angles �.#1; #2; #3/ are parametrized by the interval
.0; �/, where one can choose either jx1x2j or 2� � jx1x2j as a parameter ,
depending on whether n3 is even or odd.
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Proof (i) Since� is balanced, by Corollary 2.14 we have jx1x2j; jx2x3j; jx3x1j<2� .
Consider the developing map � W�! S2. Since #1 is integer, the images �.x1x2/ and
�.x1x3/ belong to one great circle C in S2. At the same time, since the angle #2 is not
an integer, the image �.x2x3/ does not belong to C . This means that �.x2/ and �.x3/
are opposite points on S2, and so jx2x3j D � .

(ii) Since jx2x3j D � by part (i), there exists a maximal digon embedded in �, with
one edge equal to x2x3. The other edge of such a digon must pass through x1 by
maximality, and so it is the concatenation of two geodesics, 
12 from x1 to x2 and 
13
from x1 to x3, that form an angle � at x1. It is easy to see that these are the geodesics
we are looking for. The uniqueness of 
12 and 
13 follows, because n1 and � are
uniquely determined.

(iii) This follows from part (ii).

The next lemma is a partial converse to Proposition 3.5(i).

Lemma 3.6 (balanced triangles with one edge of length �) Let � be a balanced
spherical triangle with vertices x1, x2 and x3 and angles �.#1; #2; #3/. Suppose that
jx2x3j D � . Then #1 is an integer.

Proof Consider the developing map � W�! S2. Since jxixj j< 2� by Corollary 2.14,
we see that �.xi /¤ �.xj / for i ¤ j . In order to show that #1 is an integer, it is enough
to prove that both images �.x1x2/ and �.x1x3/ lie on the same great circle. But this is
clear, since the points �.x2/ and �.x3/ are opposite on S2, while �.x1/ is different from
both points.

The last lemma concerns semibalanced triangles.

Lemma 3.7 (semibalanced triangles with one integral angle) Suppose � is a semi-
balanced triangle with angles �.#1; #2; #3/.

(i) If #i is an integer , then #1C#2C#3 is an even integer 2m and #j and #k are
half-integers.

(ii) If #1C#2C#3 D 2m, then one , #i , is an integer and the other two , #j and #k ,
are half-integers.

Proof Without loss of generality, we can assume that #1 D #2C #3. So certainly
#1C #2C #3 cannot be an odd integer. It follows from [9, Theorem 2] that #1, #2
and #3 cannot be three integers.
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(i) Note that #2 cannot be an integer, because the relation #1�#3D #2 would violate
Theorem 3.3(a). Similarly, #3 cannot be an integer. Hence #1 is an integer, and so
Theorem 3.3(a) implies that #2 and #3 are half-integers.

(ii) Our hypotheses imply that #1 Dm is an integer. By (i), we obtain that #2 and #3
are half-integers.

3.1.3 Triangles with three integral angles We begin by giving a description of all
triangles with integral angles.

Proposition 3.8 (triangles with three integral angles) For any spherical triangle �
with integral angles �.m1; m2; m3/:

(i) There exists a unique triple .n1; n2; n3/ of nonnegative integers such that m1 D
n2Cn3C 1, m2 D n3Cn1C 1 and m3 D n1Cn2C 1. Moreover , there exist
unique geodesic segments 
12; 
23; 
13 � �, with j
12j C j
23j C j
13j D 2� ,
that join points xi and cut � into the following four domains:
– the central disk �0 isometric to a half-sphere and bounded by segments 
12,

23 and 
13;

– digons B1, B2 and B3, where each Bi is bounded by segments 
jk and xjxk
and has angle �ni .

(ii) The space of triangles with angles �.n1; n2; n3/ can be identified with the set of
triples of positive numbers .l12; l13; l23/ satisfying l12C l23C l13 D 2� (where
the lij are interpreted as the lengths of the sides of �0).

(iii) All sides of� are shorter than 2� . Moreover , there is at most one side of length � .

Proof (i) Consider the developing map: � W�! S2. Since all the angles of � are
integral, all its sides are sent to one great circle on S2. The full preimage of this
circle cuts � into a collection of hemispheres. It is easy to see that only one of these
hemispheres contains all three conical points; this is the disk �0 in �. The conical
points cut the boundary of the disk into three geodesic segments, 
12, 
23 and 
13.
The complement of �0 in � is the union of the three digons B1, B2 and B3.

(ii) It is clear from (i) that � is uniquely defined by the three lengths lij D j
ij j as
well as n1, n2 and n3. Conversely, for each positive triple lij with l12C l23C l13D 2�
and each integer triple .n1; n2; n3/, one constructs a unique spherical triangle.

(iii) Since j
12jC j
23jC j
31j D 2� , all the 
ij are shorter than 2� . If nk D 0, then
xixj D 
ij . If nk > 0, then xixj bounds a digon Bk with angles �nk . In both cases,
xixj has length j
ij j (if nk is even) or 2� � j
ij j (if nk is odd). Thus, jxixj j < 2� .
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Moreover, suppose that one of the sides xixj , say x2x3, has length � . It follows that
j
23j D � and so j
12j; j
13j < � . As a consequence, x1x2 and x1x3 have length
different from � .

Remark 3.9 (existence of balanced triangles with integral angles) If .m1; m2; m3/
is a triple of positive integers that satisfies the triangle inequality, then there exist
integers n1; n2; n3 � 0 such that mi D 1Cnj Cnk for fi; j; kg D f1; 2; 3g. Then the
construction described in Proposition 3.8(i) shows that there exists a balanced spherical
triangle with angles �.m1; m2; m3/.

We thus obtain a characterization of such triangles (see also [9; 12]):

Corollary 3.10 (balanced triangles of area 2m�) Let � be a triangle.

(i) If � has integral angles �.m1; m2; m3/, then � is strictly balanced and it has
area 2m� with mD 1

2
.m1Cm2Cm3� 1/ 2 Z.

(ii) If � has area 2m� for some integerm>0 and it is balanced , then� has integral
angles �.m1; m2; m3/, with m1Cm2Cm3 D 2mC 1.

Proof (i) By Proposition 3.8, the central disk �0 has angles �.1; 1; 1/ and so it is
strictly balanced. Since � is obtained from �0 by gluing digons along its edges, � is
strictly balanced. The second claim is a consequence of [9, Theorem 2].

(ii) Suppose that � has angles �.#1; #2; #3/. Since Area.�/D �.#1C#2C#3�1/,
we see that #1C #2C #3 D 2mC 1. It follows easily that d1..#1; #2; #3/;Z3e/D 1.
Hence, from Theorem 3.1, we conclude that at least one of the #i , say #1, is an integer.

Assume, for contradiction, that #2 and #3 are not integers, and so we are in the setting
of Theorem 3.3. The possibility (b) can’t hold because � is balanced. Assume that
possibility (a) holds, in which case #2�#3 is an integer, and #1C#2�#3 is odd. But
then, since #1C#2C#3 is also odd, we see that #3 is an integer. This is a contradiction.

We conclude that all the #i are integers.

3.1.4 Final considerations The last statement of the section can be derived in many
ways. Here we obtain it as a consequence of Theorems 3.1 and 3.3 and Proposition 3.8:

Corollary 3.11 (triangles are determined the side lengths and angles) Let � be a
spherical triangle with angles �.#1; #2; #3/, and let li be the length of the side opposite
to the vertex xi . Then � is uniquely determined by the #i and li .
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Proof If none of the #i is an integer, then � is uniquely determined by .#1; #2; #3/
by Theorem 3.1.

If #1 is an integer while #2 and #3 are not integers, then the triangle � is uniquely
determined by the angles #i and the length l3 by Theorem 3.3.

If #1, #2 and #3 are integers, then it follows from Proposition 3.8 that all triangles
with angles #i are uniquely determined by the lengths of their sides.

3.2 The space of spherical triangles and its coordinates

Let us denote by MT be space of all (unoriented) spherical triangles with vertices
labeled by x1, x2 and x3, up to isometries that preserve the labeling. This space has a
natural topology induced by the Lipschitz distance (see Section 6). We will denote by #1,
#2, #3, l1, l2 and l3 the functions on MT defined by requiring that �#i .�/ is the angle
of the spherical triangle � at xi and li .�/ is the length of the side of � opposite to xi .

By Corollary 3.11, the map ‰ WMT !R6 that associates to each triangle its angles
and side lengths is one-to-one onto its image. Moreover:

Theorem 3.12 (space of spherical triangles [12, Theorem 1.2]) Let MT be the space
of spherical triangles. The image ‰.MT / � R6 is a smooth connected orientable
real-analytic 3–dimensional submanifold of R6.

This theorem says that the space MT has the structure of a smooth connected analytic
manifold, and moreover at each point � 2MT one can choose three functions among
the #i and li as local analytic coordinates. It also follows from Theorem 3.12 that
formulas of spherical trigonometry, that are usually stated for convex spherical triangles,
hold for all spherical triangles. In particular, for any permutation .i; j; k/ of .1; 2; 3/
and any � 2MT , the following cosine formula for lengths holds:8

(4) cos li sin.�#j / sin.�#k/D cos.�#i /C cos.�#j / cos.�#k/:

Lemma 3.13 (some coordinates on the space MT ) Consider the functions #1, #2
and #3 on MT .

(i) The functions #1, #2 and #3 form global analytic coordinates on the (open
dense) subset of MT consisting of triangles with nonintegral angles.

(ii) Suppose � 2MT is short-sided and the angle sum #1.�/C#2.�/C#3.�/ is
not an odd integer. Then the function #1C#2C#3 has nonzero differential at �.

8Indeed, an analytic function vanishing on an open subset of an irreducible analytic variety vanishes
identically.
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Proof (i) Consider the projection map from ‰.MT / to the angle space R3. Accord-
ing to Theorem 3.1, this map is one-to-one over the subset of .#1; #2; #3/ in R3>0 that
satisfy (3). We need to show that this projection is in fact a diffeomorphism over this
set. However, using the cosine formula (4) and the fact that none of the #i are integers,
we see that the lengths li depend analytically on the #i .

(ii) As mentioned just before Section 3.1.1, there cannot be a spherical triangle with
exactly two integral angles. Moreover, Proposition 3.8(i) implies that � cannot have
three integral angles if #1.�/C #2.�/C #3.�/ is not an odd integer. Thus � can
have at most one integral angle.

If all the #i are not integers, the statement follows immediately from (i). Suppose
finally that exactly one of the #i , say #1, is an integer. Then, since � is short-sided,
using exactly the same reasoning as in the proof of Proposition 3.5(i), we deduce that
li D � . Now, for any � > 0, we can glue the digon with two sides of length � and
angles �� to the side x2x3 of �. The family of triangles thus constructed, which
depends on � , determines a straight segment in ‰.MT / starting from ‰.�/, and the
linear function #1C#2C#3 restricted to this segment has nonzero derivative.

Definition 3.14 (spaces of triangles with assigned area) For any # > 1 we denote
by MT .#/ �MT the surface consisting of triangles with #1C #2C #3 D # . We
denote by MT bal.#/ and MT sh.#/ the subsets of balanced and short-sided triangles,
respectively.

The following statement is a corollary of Theorem 3.12 and Lemma 3.13:

Corollary 3.15 (space of balanced triangles with assigned area) For any # > 1,
the set MT bal.#/ is a nonsingular real-analytic orientable bordered submanifold of
the manifold MT of all spherical triangles. The boundary of MT bal.#/ consists of
semibalanced triangles.

Proof Suppose first that #1C#2C#3D 2mC1. Balanced spherical triangles of area
2m� are classified in Corollary 3.10 and Proposition 3.8. They have integral angles,
and each connected component forms an open Euclidean triangle in R6. Clearly such
a subset of MT �R6 is a smooth submanifold.

Assume now that # D #1C#2C#3 is not an odd integer. Clearly MT sh is an open
subset of MT , and so we deduce from Lemma 3.13(ii) that MT sh.#/ is an open smooth
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2–dimensional submanifold of MT . The set MT bal.#/ is contained in MT sh.#/ and
its boundary is composed of semibalanced triangles. We need to show that such triangles
form a smooth curve in MT sh.#/.

Let � 2MT sh.#/ be a semibalanced triangle, say #1 D #2C#3. If #1, #2 and #3 are
not integers, from Lemma 3.13(i) it follows immediately that the curve #1�#2�#3D 0
is smooth in a neighborhood of �. Suppose that one of the #i is an integer. Then we
are in the setting of Lemma 3.7. In particular, by Lemma 3.7(i), #1C#2C#3 D 2m.
But then, applying Lemma 3.7(ii), all semibalanced triangles in MT bal.2m/ have one
integral and two half-integral angles. Such triangles are governed by Proposition 3.5,
and their image under the map ‰ forms a collection of straight segments in R6. It
follows that semibalanced triangles form a smooth curve in MT sh.2m/.

Finally, let’s show that MT bal.#/ is orientable. This is clear if # is an odd integer,
because a disjoint union of open triangles is orientable. If # is not an odd integer,
it suffices to show that MT bal.#/ can be co-oriented, since MT is orientable. A
co-orientation can indeed be chosen since the function #1C#2C#3 D # has nonzero
differential along the surface MT bal.#/ by Lemma 3.13(ii).

3.3 Balanced spherical triangles of fixed area

The goal of this section is to describe the topology of the moduli space MT bal.#/ of
balanced triangles with marked vertices of fixed area �.# � 1/, where # > 1. To better
visualize the structure of this space, we introduce the following object:

Definition 3.16 (angle carpet) Take # > 1 such that # … 2ZC1. The angle carpet is
the subset of the plane ….#/ WD f.#1; #2; #3/ 2R3>0 j #1C#2C#3 D #g consisting
of points such that there exists a spherical triangle with angles �.#1; #2; #3/, and is
denoted by Crp.#/. Points in Crp.#/ with one integral coordinate are called nodes. The
balanced angle carpet is the subset Crpbal.#/ WD Crp.#/\Bal.#/, where Bal.#/D
f.#1; #2; #3/ j #i � #j C #kg. A node in Crpbal.#/ is internal if it does not lie on
@Bal.#/.

Now we separately treat the cases # not odd and # odd.

3.3.1 Case # not odd Throughout the section, assume # … 2ZC 1. We will denote
by MT Z

bal.#/ the subset of MT bal.#/ consisting of triangles with at least one integral
angle. By Proposition 3.5, this subset is a disjoint union of smooth open intervals in
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.0; 0; 3:5/

.0; 3:5; 0/

.3:5; 0; 0/

Figure 8: The angle carpet Crp
�
7
2

�
, composed of 16 open triangles and 12

nodes. The shaded area represents points in Bal.#/.

MT bal.#/. We will see that it cuts MT bal.#/ into a union of topological disks. This
decomposition is very well reflected in the structure of the associated balanced carpet,
as we will see below.

The carpet Crp.#/ is composed of a disjoint union of open triangles with a subset
of their vertices (the nodes). In order to better visualize such carpets, we will often
identify Crp.#/ with its projection to the horizontal .#1; #2/–plane. Figure 8 shows
the projection of Crp.3:5/. It is a union of 16 disjoint open triangles (singled out by
inequality (3) of Theorem 3.1) and a subset of 12 nodes (governed by condition (a) of
Theorem 3.3) marked as black dots. Figure 9 depicts the projection of balanced angle
carpets for five different values of # .

The following lemma is a consequence of Theorems 3.1 and 3.3:

Lemma 3.17 (description of the angle carpets) Take # 2 .1;1/ n f2ZC 1g and set
mD

�
1
2
.# C 1/

˘
.

(i) Crp.#/ is the union of 4m2 open triangles with 3m2 nodes .#1; #2; #3/ such
that the unique integer coordinate #i of a node satisfies #i � j#j �#kjC 2l C 1
for some integer l � 0.

(ii) All points .#1; #2; #3/ 2 Bal.#/ with one positive integer coordinate are nodes
in Crpbal.#/. Hence , the balanced carpet Crpbal.#/ is a connected set.
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mD 1

# D 1:5

mD 1

# D 2

mD 2

# D 3:5

mD 3

# D 6
mD 4

# D 8

H

Q

node

Figure 9: Balanced carpets for # D 1:5; 2; 3:5; 6; 8.

(iii) The balanced carpet Crpbal.#/ intersects E open triangles and it contains N
internal nodes , where

E D

�
m2 if # � 2m;
m2C 3m if # > 2m;

N D

�3
2
m.m� 1/ if # � 2m;
3
2
m.mC 1/ if # > 2m.

Hence E �N D�1
2
m.m� 3/.

(iv) There exists a point in Crpbal.#/ with noninteger coordinates at which #2 D #3.

Proof (i) Let us split the carpet into two subsets. The first subset consists of points
such that none of the coordinates #i are integers, and the second subset is where one
of the coordinates #i is an integer.

It is clear that the first subset is the union of open triangles given by intersecting the
plane #1 C #2 C #3 D # with the open tetrahedra that are given by inequality (3)
of Theorem 3.1. Since this plane does not pass through any vertex of the tetrahedra
for # nonodd, it follows that the number of triangles only depends on m, and so we
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can compute it for # D 2m. Look at the projection of Crp.2m/ inside the .#1; #2/–
plane and enumerate the open triangles as follows: to points of type

�
0; l C 1

2

�
with

l 2f0; 1; : : : ; 2m�1g we can associate a unique triangle, and to points of type
�
n; lC 1

2

�
with n 2 f1; : : : ; 2m� 1g and l 2 f0; : : : ; 2m�n� 1g we can associate two triangles.
The number of such triangles is thus 4m2.

The second subset is governed by Theorem 3.3. Since #1C #2C #3 D # is not an
odd integer, only the nodes that satisfy condition (a) of Theorem 3.3 lie in Crp.#/.
Again it’s enough to count the nodes for # D 2m. Suppose first that #1 is an integer.
We must have j2#2 C #1 � 2mj D j#2 � #3j D #1 � 1 � 2l for some integer l . If
#1 2 f1; 2; : : : ; mg, then #2 2 1

2
C fm� #1; : : : ; m� 1g and so we have 1

2
m.mC 1/

nodes. If #1 2 fmC 1; : : : ; 2m� 1g, then #2 2 12 Cf0; : : : ; 2m� 1� #1g and so we
have 1

2
m.m� 1/ nodes. Thus, we have m2 nodes with integral #1, and we conclude

that we have 3m2 nodes in total.

(ii) Again, it is enough to consider the case where # D 2m. In the balanced carpet,
#i �m for all i and so the first claim follows from the above enumeration of the nodes.
Hence, Crpbal.#/ is connected.

(iii) Let us first consider N . For # D 2m the enumeration in part (i) shows that N D
3
2
m.m�1/. If # <2m, thenN does not change. If # >2m, thenN D 3

2
m.m�1/C3m,

and the extra 3m is exactly the number of nodes sitting in @Bal.2m/.

As for E, the enumeration in (i) for # D 2m shows that 4E D 4m2, and so E Dm2.
For # < 2m, the value of E does not change. For # > 2m, there 3m extra triangles
intersected by Bal.#/, which is exactly the number of nodes sitting in @Bal.2m/.

(iv) The point with #1D 1
4
.cC3/ and #2D #3Dm� 38.1�c/ belongs to the interior

of Crpbal.#/ and it is not a node.

In order to understand the topology of MT bal.#/, we consider the natural projection
map ‚ WMT bal.#/! Crpbal.#/ that sends � to .#1.�/; #2.�/; #3.�//.

Analysis of the map‚ By Lemma 3.17, the balanced carpet Crpbal.#/ consists of E
polygons fPlg, bounded by some semibalanced edges that sit in @Bal.#/ and some
nodes. Note that we are considering Pl as closed subsets of Crpbal.#/; in fact, Pl
is not a closed subset of the plane ….#/ as it misses the edges sitting on the lines
#i D aC

1
2
.cC1/ with i 2 f1; 2; 3g and a2 f0; 1; : : : ; m�1g. Such edges will be called

ideal edges. In Figure 10 the polygon Pl on the right has two nodes, one semibalanced
edge and three ideal edges. (Note that a node can be semibalanced too.)
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semibalanced edge semibalanced edge

yPl Pl

strip
strip

nodal
edges

nodal edge

MT .#/
Crp.#/

‚

Figure 10: The map ‚. Unmarked edges are ideal edges.

For each polygon Pl , the real blow-up yPl of Pl at its nodes is obtained from Pl by
replacing each node by an open interval (nodal edge). The natural projection yPl ! Pl

contracts each nodal edge to the corresponding node. (Note that a nodal edge can also
be semibalanced.) For every l we can fix a realization of yPl inside R2 as the union of an
open convex polygon with some of its open edges (nodal edges and semibalanced edges).
Again, such a yPl is not a closed subset of R2, as it misses the edges corresponding to
the ideal edges of Pl . Such missing edges will be referred to as the ideal edges of yPl .
In Figure 10 the polygon yPl has two nodal edges, one semibalanced edge and three
ideal edges.

We recall that MT bal.#/ is a surface by Corollary 3.15 and its boundary consists of
semibalanced triangles, and that the map ‚ contracts each open interval in MT Z

bal.#/

to a node by Proposition 3.5 and it is a homeomorphism elsewhere by Lemma 3.13(i).

It is easy then to see that‚�1.Pl nfnodesg/ is homeomorphic to yPl nfnodesg. Suppose
now that two distinct polygons Pl and Ph intersect in a node N# . The preimage ‚�1. N#/
is an open segment and ‚�1.Pl [Ph/ is homeomorphic to the space obtained from
yPl t yPh by identifying the nodal edges that correspond to N# .

To understand this identification, choose an orientation of MT bal.#/ in a neighborhood
of‚�1. N#/ and an orientation of the plane….#/, so that Pl and yPl inherit an orientation
from ….#/, and each nodal edge of yPl inherits an orientation from yPl . Together with
Corollary 3.15, the last paragraph of the proof of [12, Proposition 4.7] shows that ‚ is
orientation-preserving on one of the two polygons Pl or Ph and orientation-reversing
on the other. Hence, the two nodal edges corresponding to N# are identified through a
map that preserves their orientation; we can also prescribe that such an identification is
a homothety in the chosen realizations of yPl and yPh.
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Part of the above analysis can be rephrased:

Lemma 3.18 The space MT bal.#/ is homeomorphic to the real blow-up of Crpbal.#/

at its nodes.

A further step in describing the topology of MT bal.#/ is to study its ends:

Construction 3.19 (the strips Si;a.#/) As remarked above, every ideal edge of Pl
has equation #i D aC 1

2
.cC1/ for some a 2 f0; : : : ; m�1g and i 2 f1; 2; 3g. Viewing

yPl inside R2, an open thickening of the corresponding ideal edge intersects yPl in a
region Sli;a.#/ homeomorphic to Œ0; 1��R, where f0; 1g �R corresponds to portions
of nodal or semibalanced segments. In every yPl , such thickenings can be chosen so
that the corresponding regions are disjoint and their ends f0g �R and f1g �R cover
1
4

of the corresponding nodal or semibalanced segment. The complement inside yPl
of such strips is clearly compact. (One example of the region Sli;a.#/ is illustrated in
Figure 10 on the left: it is the darker thickening of the horizontal ideal edge of yPl .)

It follows that, for fixed i 2 f1; 2; 3g and a 2 f0; 1; : : : ; m� 1g, the regions fSli;a.#/g
glue to give a strip Si;a.#/ homeomorphic to Œ0; 1��R, with f0; 1g�R corresponding
to semibalanced triangles. Thus there are 3m disjoint such strips, each one associated
to a pair .i; a/.

We are now ready to completely determine the topology of the space MT bal.#/:

Proposition 3.20 (topology of the space of balanced triangles with assigned area)
Suppose that # D 2mC c where c 2 .�1; 1/.

(i) MT bal.#/ is a connected orientable smooth-bordered surface of finite type whose
boundary is the set of semibalanced triangles.

(ii) The boundary of MT bal.#/ is a union of 3m disjoint open intervals.

(iii) The surface MT bal.#/ has 3m ends , namely the strips Si;a.#/. Each strip
corresponds in Crpbal.#/ to a line #iDaC12.cC1/ for some a2f0; 1; : : : ; m�1g
and i 2 f1; 2; 3g. Moreover , each Si;a.#/ is homeomorphic to Œ0; 1��R and
f0; 1g �R corresponds to semibalanced triangles.

(iv) The Euler characteristic of MT bal.#/ is �.MT bal.#//D�
1
2
m.m� 3/.

Proof (i) Thanks to Corollary 3.15 we only need to prove that MT bal.#/ is connected
and of finite type. Since the balanced carpet Crpbal.#/ is connected by Lemma 3.17(ii)
and consists of finitely many nodes and polygons, both claims follow from Lemma 3.18.
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(ii) It will be enough to show that the set of semibalanced triangles with angles #1,
#2 and #3, satisfying #1 D #2 C #3 and #1 C #2 C #3 D # , is a union of m open
intervals. In case cD 0 these m intervals correspond to m types of triangles with angles
�
�
m; 1

2
C l; 1

2
Cm� l � 1

�
where l 2 Œ0;m� 1� is an integer number. In case c ¤ 0

these intervals correspond to the intersection of the line #1 D #2C #3 with m open
triangles of the carpet Crp.#/.

(iii) This follows from Construction 3.19.

(iv) The internal part of MT bal.#/ is an orientable surface without boundary, and so
the Euler characteristic of its cohomology with compact support coincides with its
Euler characteristic by Poincaré duality. Decompose the interior of MT bal.#/ into a
finite union of open 1–cells MT Z

bal.#/ (corresponding to internal nodes in the balanced
carpet) and open 2–cells (corresponding to the intersection of Bal.#/with open triangles
in the carpet). By Lemma 3.17(iii), the space MT bal.#/ is a union of E open 2–cells
and N open 1–cells. Thus, its Euler characteristic is E �N D�1

2
m.m� 3/.

Let us now consider balanced triangles (with labeled vertices, as usual) endowed with an
orientation. We stress that the orientation and the labeling of the vertices are unrelated.
Let MT Cbal.#/ be the set of oriented balanced triangles of area �.# � 1/ in which the
vertices are labeled anticlockwise, and let MT �bal.#/ be the analogous space in which
the vertices are labeled clockwise. Both sets can be given the topology induced by
the identification with MT bal.#/. The space of oriented balanced triangles is then
MT Cbal.#/tMT �bal.#/.

Definition 3.21 (doubled space of balanced triangles) The doubled space of balanced
triangles of area �.#�1/ is the space MT ˙bal.#/ obtained from MT Cbal.#/tMT �bal.#/

by identifying an oriented semibalanced triangle � to the triangle obtained from � by
reversing its orientation.

It follows that MT ˙bal.#/ is homeomorphic to the double of MT bal.#/.

Proposition 3.22 (the doubled space of balanced triangles of assigned area) Let
# > 1 be a nonodd real number and let mD

�
1
2
.# C 1/

˘
.

(i) MT ˙bal.#/ is a connected orientable surface of finite type , without boundary.

(ii) MT ˙bal.#/ has Euler characteristic �m2, genus 1
2
.m � 1/.m � 2/, and 3m

punctures.
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(iii) The action of S3 by relabeling the vertices of the triangles consists of orientation-
preserving homeomorphisms of MT ˙bal.#/.

(iv) The action of S3 on the set of punctures of MT ˙bal.#/ has m orbits of length 3.

Proof (i) This is a consequence Proposition 3.20(i), since MT ˙bal.#/ is the double
of MT bal.#/.

(ii) Since MT ˙bal.#/ is an orientable surface without boundary, the Euler characteristic
agrees with the Euler characteristic with compact support. By Proposition 3.20(ii),
MT bal.#/ has boundary consisting of 3m open segments. Hence, �.MT ˙bal.#// D

2�.MT bal.#//� 3mD�m.m� 3/� 3mD�m
2.

By Proposition 3.20(iii), each end of MT bal.#/ is associated to a strip Sia.#/ with
a 2 f0; 1; : : : ; mg and i 2 f1; 2; 3g, and it is homeomorphic to Œ0; 1��R, so it doubles
to punctured disk S1 �R inside MT ˙bal.#/, which will be denoted by E ia.#/. Hence,
we obtain 3m punctures. The genus of g.MT ˙bal.#//D 1�

3
2
m� 1

2
�.MT ˙bal.#// is

then easily computed.

(iii) Choose an arbitrary orientation of MT ˙bal.#/. We want to show that every transpo-
sition .i j / 2 S3 acts on MT ˙bal.#/ through an orientation-preserving homeomorphism.
Consider, for instance, the transposition .2 3/, that sends a triangle in MT Cbal.#/ with
nonintegral angles .#1; #2; #3/ to the triangle in MT �bal.#/ with nonintegral angles
.#1; #3; #2/. Since MT Cbal.#/ and MT �bal.#/ have opposite orientations when viewed
as subsets of MT ˙bal.#/, it is enough to show that .2 3/ acts on MT bal.#/ by reversing
its orientation.

By Lemma 3.17(iv), there exists a point in Crpbal.#/ with noninteger coordinates
.#1; #2; #2/, and so a corresponding balanced triangle � in MT ˙bal.#/. It is clear that
the transformation .#1; #2; #3/ 7! .#1; #3; #2/ of Crpbal.#/ reverses the orientation at
.#1; #2; #2/. Hence, .23/ acts on MT bal.#/ by reversing its orientation.

(iv) Each orbit of the S3–action on the ends E ia.#/ is of type fE1a .#/; E2a .#/; E3a .#/g.
Since a 2 f0; 1; : : : ; m� 1g, there are m orbits of length 3.

3.3.2 Case # odd The case where # D 2mC 1 for some integer m � 0 is much
easier to handle.

Lemma 3.23 (description of the balanced carpet) The balanced carpet Crpbal.2mC1/

consists of 1
2
m.mC 1/ internal nodes.
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Proof Triangles in MT bal.2mC 1/ have area 2m� by the Gauss–Bonnet theorem.
By Corollary 3.10 and Remark 3.9, the balanced carpet Crpbal.2mC1/ consists just of
triples .#1; #2; #3/ 2 Z3 such that #1C#2C#3 D 2mC 1 and 1 � #i �m for all i .
It is easy to see that such points are 1

2
m.mC 1/ internal nodes.

This easily leads to the description of the moduli space of balanced triangles:

Proposition 3.24 (topology of the space of balanced triangles) MT bal.2mC 1/ is
diffeomorphic to the disjoint union of 1

2
m.mC 1/ copies of the open 2–simplex V�2.

Proof Fix .#1; #2; #3/ 2Crpbal.2mC1/. By Proposition 3.8, the locus of triangles �
in MT bal.2mC 1/ with #i .�/D #i for i D 1; 2; 3 is real-analytically diffeomorphic
to the set of triples .l1; l2; l3/ 2 .0; 2�/3 such that l1C l2C l3 D 2� , which is clearly
homothetic to V�2. The conclusion then follows from Lemma 3.23.

Let Crp˙bal.2mC 1/ be the disjoint union of two copies of Crpbal.2mC 1/. Namely
its elements are of type .# ; �/, where # 2 Crp˙bal.2mC 1/ and � D ˙1. We denote
by MT ˙bal.2m C 1/ the doubled space of spherical triangles of area 2m� and by
‚˙ WMT ˙bal.2mC 1/! Crp˙bal.2mC 1/ the map that sends an oriented triangle � to
.#.�/; �.�//, where �.�/D 1 if the vertices of � are numbered anticlockwise, and
�.�/D�1 otherwise.

Proposition 3.25 (topology of the doubled space of balanced triangles) The space
MT ˙bal.2mC1/ is diffeomorphic to Crp˙bal.2mC1/�

V�2, namely to the disjoint union
of m.mC 1/ open 2–simplices. The permutation group S3 that relabels the vertices of
a triangle in MT ˙bal.2mC 1/ acts on an element .# ; �;y/ of Crp˙bal.2mC 1/�

V�2 by
permuting the coordinates of # and y , and through its sign on �.

Proof The first claim relies on Proposition 3.24. The others are straightforward.

4 Moduli spaces of spherical tori

The goal of this section is to describe the topology of the moduli space MS1;1.#/ and
so to prove Theorem A (case # nonodd) and Theorems C and D (case # odd).

We recall that, by isomorphism between two spherical tori, we mean an orientation-
preserving isometry. We refer to Section 6 for the definition of Lipschitz distance and
topology on MS1;1.#/ and MS.2/1;1.#/ needed below.
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The object of our interest is the following:

Definition 4.1 (MS1;1.#/ as a topological space) The space MS1;1.#/ is the set
of isomorphism classes of spherical tori with one conical point of angle 2�# , endowed
with the Lipschitz topology.

In order to prove Theorem A it will be convenient to introduce the notion of 2–marking:

Definition 4.2 (2–marking) A 2–marking of a spherical torus T with one conical
point x is a labeling of its nontrivial 2–torsion points or, equivalently, an isomorphism
H1.T IZ2/Š .Z2/2.

There is a bijective correspondence between isomorphisms � W .Z2/2!H1.T IZ2/

and orderings of the three nontrivial elements of H1.T IZ2/, sending � to the triple
.�.e1/; �.e2/; �.e1Ce2//. In fact, the action of SL.2;Z2/ on 2–markings corresponds
to the S3–action that permutes the orderings. If the torus T has a spherical metric with
conical point x, the nontrivial conformal involution � fixes x and its three nontrivial
2–torsion points. The above ordering is then equivalent to the labeling of these three
points. In this case, an isomorphism between two 2–marked spherical tori is an
orientation-preserving isometry compatible with the 2–markings.

Definition 4.3 (MS.2/1;1 as a topological space) The space MS.2/1;1.#/ is the set
isomorphisms classes of 2–marked spherical tori with one conical point of angle 2�# ,
endowed with the Lipschitz topology.

In Remark 6.28 we show that MS1;1.#/ and MS.2/1;1.#/ can be given the structure
of orbifolds in such a way that the map MS.2/1;1.#/ !MS1;1.#/ that forgets the
2–marking is a Galois cover with group S3 (which is unramified in the orbifold sense).

4.1 The case when # is not an odd integer

Because of the relevance for the orbifold structure of the moduli spaces we are interested
in, we first classify all possible automorphisms of spherical tori with one conical point:

Proposition 4.4 (automorphisms group of a spherical torus (# nonodd)) Suppose
that # … 2Z C 1. For any spherical torus .T; x/ of area 2�.# � 1/, the group of
automorphisms GT is isomorphic to Z2, Z4 or Z6.

(i) A torus with automorphism group Z6 exists if and only if d1.#; 6Z/ > 1.

(ii) A torus with automorphism group Z4 exists if and only if d1.#; 4Z/ > 1.
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(iii) For each # , there can be at most one torus with automorphism group Z4 and one
torus with automorphism group Z6.

(iv) The subgroup of GT of automorphisms that fix the 2–torsion points of T is
isomorphic to Z2 and generated by the conformal involution.

In Figure 9 we have highlighted with Q or H the triples ‚.�/ such that T .�/ has
automorphism group isomorphic to Z4 or Z6, respectively.

Proof Recall that, by Proposition 2.17, each torus has an automorphism of order 2,
namely the conformal involution. Clearly this involution fixes the 2–torsion points of
the torus. This implies (iv) and it proves that jGT j is even.

To bound the automorphism group we note that the action of GT fixes x and preserves
the conformal structure on T . Hence, when jGT j > 2, the torus T is biholomorphic
to either T4 DC=.Z˚ �4Z/ or T6 DC=.Z˚ �6Z/, where �k D exp.2�i=k/, and its
automorphism group is isomorphic to Z4 (generated by the multiplication by �4) or
to Z6 (generated by the multiplication by �6), respectively.

Let us now prove the existence part of (i) and (ii).

(i) Suppose that d1.#; 6Z/>1. According to Theorem 3.1, this condition is equivalent
to the existence of a spherical triangle � with angles 1

3
�# . Such a triangle has a

rotational Z3–symmetry. It follows that the torus T .�/ has an automorphism of order 6.

(ii) Suppose that d1.#; 4Z/>1. According to Theorem 3.1, this condition is equivalent
to the existence of a spherical triangle � with angles �

�
1
2
#; 1
4
#; 1
4
#
�
. This triangle

has a reflection, ie an anticonformal isometry that exchanges two vertices of angles
1
4
�# . Gluing two copies of � along the edge that faces the angle 1

2
�# , we obtain a

quadrilateral with four edges of the same length and four angles 1
2
�# . It is easy to see

that such a quadrilateral has a rotational Z4–symmetry, and so T .�/ has an order-4
automorphism.

Now let .T; x; #/ be any spherical torus with jGT j> 2, and let us show that it has to
be one of the two tori constructed above. Consider two cases.

First, suppose that the Voronoi graph �.T / is a trefoil. In this case, by Proposition 2.21
and Theorem B, there is a unique collection of three geodesic loops .
1; 
2; 
3/ based
at x that cuts T into two isometric strictly balanced triangles � and �0. This collection
is sent by GT to itself, and so jGT j is divisible by three; hence jGT j D 6. It is easy to
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see then that the subgroup Z3 �GT sends � to itself and permutes its vertices. So �
has angles 1

3
�# and so we are in case (i). Since 1

3
# cannot be integer, this also proves

the uniqueness of a torus with automorphism group Z6.

Suppose now that the Voronoi graph �.T / is an eight graph. Again by Proposition 2.21
and Theorem B, there is a canonical collection of four geodesic loops 
1, 
2, �1
and �2. Since GT sends the pair .�1; �2/ to itself, we see that geodesics �1 and �2 cut a
neighborhood of x into four sectors of angles 1

2
�# . The same holds for the pair of loops


1 and 
2. Since, by Remark 2.22, each 
i bisects two sectors formed by �1 and �2,
we see that, taken together, the geodesics 
1, 
2, �1 and �2 cut a neighborhood of x
into eight sectors of angles 1

4
�# . Hence, 
1, 
2 and �1 cut � into two semibalanced

triangles with angles �
�
1
2
#; 1
4
#; 1
4
#
�
, and so we are in case (ii). The uniqueness of a

torus with automorphism group Z4 follows from the uniqueness of an isosceles triangle
with angles �

�
1
2
#; 1
4
#; 1
4
#
�
.

We recall in more detail the construction mentioned in the introduction:

Construction 4.5 Consider the maps of sets

MT ˙bal.#/
T .2/

���!

�.2/
 ���MS.2/1;1.#/:

The map T .2/ is defined by sending an oriented triangle � to the torus T .�/, where
we mark by pi the midpoint of the side opposite to the vertex xi of �.

As for �.2/, we proceed as follows. Let .T; x;p/ be a torus with its order-2 points
marked by p1, p2 and p3.

Suppose first that T does not have a rectangular involution. By Theorem B, there
is a unique collection of three geodesics loops 
i that cuts T into two congruent
strictly balanced triangles � and �0. We enumerate the geodesics so that each pi
is the midpoint of 
i . Next, we label the vertices of � by x1, x2 and x3 so that xi
is opposite to 
i . Hence, we associate to T a unique strictly balanced triangle with
enumerated vertices. If the vertices of � go in anticlockwise order, we associate to �
the corresponding point in the interior of MT Cbal.#/, otherwise we associate to � a
point in the interior of MT �bal.#/.

Suppose now that T has a rectangular involution. Then, by Theorem B, the torus T can
be cut into two isomorphic semibalanced triangles in two different ways. At the same
time, the rectangular involution sends one pair to the other by reversing the orientation
and fixing the labeling of the vertices. This means that the two points associated to T
in the boundaries of MT Cbal.#/ and MT �bal.#/ are identified in MT ˙bal.#/.
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At this point we have the tools to prove the following preliminary fact:

Lemma 4.6 (T .2/ is bijective) The map T .2/ WMT ˙bal.#/!MS.2/1;1.#/ is a bijection
and �.2/ is its inverse.

Proof It is very easy to see that T .2/ ı�.2/ is the identity of MS.2/1;1.#/. Conversely,
�.2/ ıT .2/ is the identify of MT ˙bal.#/ by Theorem B.

Remark 4.7 (orbifold Euler characteristic) We recall from the introduction that we
are using the definition of orbifold Euler characteristic given by [7, page 29]. We are
particularly interested in two properties enjoyed by the orbifold Euler characteristic:

(a) If Y! Z is an orbifold cover of degree d , then �.Y/D d ��.Z/.

(b) If Y is a connected orientable 2–dimensional orbifold with underlying topological
space Y , then

�.Y/D 1

ord.Y/�.Y /�
X
y

�
1

ord.Y/ �
1

ord.y/

�
;

where ord.Y/ is the orbifold order of a general point of Y , ord.y/ is the orbifold
order of y 2 Y , and the sum ranges over points y 2 Y that have orbifold order
strictly greater than ord.Y/.

Since we only compute � for 2–dimensional connected orientable orbifolds, property (b)
could even be taken as a definition.

The main ingredient for the proof of Theorem A is to show that the map T .2/ is a
homeomorphism, so, as a topological space, MS.2/1;1.#/ is a surface. As a consequence,
we can endow MS.2/1;1.#/ with an orbifold structure (as done in Remark 6.28) in such a
way that every point has orbifold order 2, which is consistent with Proposition 4.4(iv).

Theorem 4.8 (moduli space of spherical tori with 2–marking) Let # > 1 be a real
number such that # … 2ZC 1 and let m D

�
1
2
.# C 1/

˘
. As a topological space ,

MS.2/1;1.#/ has the following properties:

(i) The map T WMT ˙bal.#/!MS.2/1;1.#/ is a homeomorphism , and so MS.2/1;1.#/
is a connected orientable surface of finite type without boundary.

(ii) It has genus 1
2
.m� 1/.m� 2/ and 3m punctures.

(iii) The group S3 that permutes the 2–torsion points of a torus acts on MS.2/1;1.#/ by
orientation-preserving homeomorphisms.

(iv) The action of S3 on the set of punctures of MS.2/1;1.#/ has m orbits of length 3.
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As an orbifold , MS.2/1;1.#/ is isomorphic to the quotient of its underlying topological
space by the trivial Z2–action , and its orbifold Euler characteristic is �1

2
m2.

Proof The map T .2/ is bijective by Lemma 4.6, and in fact a homeomorphism by
Theorem 6.5. Hence, (i)–(iv) follow from Proposition 3.22(i)–(iv). The orbifold
structure was described just above the statement of the theorem: the involution � is the
only nontrivial automorphism of a point in MS.2/1;1.#/ by Proposition 4.4(iv), and it acts
trivially on MT ˙bal.#/. Hence, MS.2/1;1.#/ is isomorphic to the quotient of MT ˙bal.#/

by the trivial Z2–action. As a consequence, the orbifold Euler characteristic satisfies
�.MS.2/1;1.#//D

1
2
�.MT ˙bal.#//.

As above, we can endow MS1;1.#/ with an orbifold structure as in Remark 6.28, in
such a way that the orbifold order of a point in MS1;1.#/ agrees with the number of
automorphisms of the corresponding spherical torus.

Proof of Theorem A By Remark 6.28, the map MS.2/1;1.#/!MS1;1.#/ that forgets
the 2–marking is an unramified S3–cover of orbifolds. Hence, MS1;1.#/ is a smooth
connected 2–dimensional orbifold of finite type by Theorem 4.8(i), and orientability
follows from Proposition 4.4.

(ii)–(iv) Clearly �.MS1;1.#// D �.MS.2/1;1.#//=jS3j D �
1
12
m2 by Theorem 4.8.

Also, (iii)–(iv) and the remaining claim of (ii) are established in Proposition 4.4.

(i) The space MS1;1.#/ has m punctures by Theorem 4.8(ii) and (iv). Moreover, its
(nonorbifold) Euler characteristic is 2

�
1
12
�m2C �

�
, where � 2

˚
0; 1
4
; 1
3
; 7
12
D
1
4
C
1
3

	
.

Indeed, a point of order 4 in MS1;1.#/ contributes to � with 1
4
D

1
2
�
1
4

and a
point of order 6 contributes with 1

3
D

1
2
�
1
6

. Hence, the genus of MS1;1.#/ is
1� 1

2

�
mC 2

�
�
1
12
m2C �

��
D
�
1
6
.m2� 6mC 12/

˘
.

Let us finish this subsection with a simple corollary of Theorem 4.8. As a topological
space, we denote by MS.2/1;1.#/ the unique smooth compactification of the surface
MS.2/1;1.#/ obtained by filling in the 3m punctures. As above, we endow MS.2/1;1.#/
with the orbifold structure given by taking the quotient of its underlying topological
space by the trivial Z2–action.

Corollary 4.9 (a cell decomposition of MS.2/1;1.#/) Suppose that # D 2mCc, where
c 2 .�1; 1/. As a topological space , MS.2/1;1.#/ has the following properties:

(i) It is a compact connected orientable surface of genus 1
2
.m� 1/.m� 2/.
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(ii) It has a natural structure of a CW complex, where

– its 0–cells are the 3m added points;

– its 1–cells are formed by tori T such that �.T / is ether a semibalanced
triangle , or a triangle with one integral angle;

– its 2–cells are the complement of the union of the 0–cells and 1–cells.

Moreover , for c � 0, the cell decomposition is a triangulation into 2m2 triangles.

Proof Let us comment on the last claim, since the other claims are rather immediate
after Theorem 4.8. Recall that in the proof of Proposition 3.20(iv), for c � 0, we
constructed a decomposition of MT bal.#/ into the union of 3

2
m.mC 1/ 1-cells and

m2 2-cells. One can check that each of theses m2 cells has exactly three 1–cells in its
boundary. Hence, we get a triangulation of the topological space MS.2/1;1.#/.

Note, however, that for c >0 the total number of 2–cells is 2m2C6m, and the additional
6m cells are digons rather than triangles.

4.2 The case when # is an odd integer

In this subsection we prove Theorems C and D. Our first step will be to prove Theorem E,
from which part (a) of Theorem C is easily obtained.

Proof of Theorem E According to Proposition 2.17, there is a unique curvature-1
metric on T with angle 2�.2mC 1/ in a given projective equivalence class, which is
invariant under the conformal involution � of T . Hence we can apply Proposition 2.21
to T endowed with such a �–invariant metric. According to this proposition, there
exist three geodesic loops based at the conical point x that cut T into two isometric
balanced triangles � and �0. By the Gauss–Bonnet formula Area.�/ D 2�m, and
so we can apply Corollary 3.10 to obtain that � is a balanced triangle with angles
2�.m1; m2; m3/ where m1Cm2Cm3 D 2mC 1.

This result directly allows us to describe MS1;1.2mC 1/� as a topological space:

Proof of Theorem C(a) As in the proof of Theorem E, we can associate to each torus
with a �–invariant metric a unique oriented balanced spherical triangle with integral
angles and unmarked vertices. Clearly an orientation on a triangle is equivalent to a
numbering of its vertices up to cyclic permutations, and this correspondence determines
a bijective map

T WMT bal.2mC 1/=A3!MS1;1.2mC 1/� ;
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# D 3; mD 1

# D 5; mD 2 # D 7; mD 3 # D 9; mD 4

H

node

Figure 11: Angle carpets for # D 2mC 1 an odd integer.

where the alternating group A3 acts by relabeling the vertices of the triangle. Arguments
entirely analogous to the ones used in Theorem 6.5(ii) show that T is continuous and
proper, and hence a homeomorphism of topological spaces.

By Proposition 3.24, the space MT bal.2mC 1/ is homeomorphic to the disjoint union
of 1

2
m.mC 1/ copies of the open standard simplex V�2. Each component represents

triangles of angles �.m1; m2; m3/ with m1Cm2Cm3D 2mC1, where .m1; m2; m3/
is a triple of positive integers that satisfy the three triangle inequalities (see Figure 11).

Consider two cases:

(i) Suppose that m 6� 1 .mod 3/. In this case, the integer 2mC 1 is not divisible by
3 and so neither of the spherical triangles in MT bal.2mC 1/ has all equal angles. It
follows that the action of A3 does not send any component to itself. So the number of
components of MS1;1.2mC 1/� is 1

6
m.mC 1/ and each one is homeomorphic to the

open 2–disk V�2.

(ii) Suppose that m � 1 .mod 3/. Then the component corresponding to triangles
with angles m1 D m2 D m3 D

1
3
.2mC 1/ is the only one that is sent to itself. It

contains a unique point fixed by A3, namely the equilateral spherical triangle, and the
quotient of this component by A3 is homeomorphic to an open 2–disk. All the other
1
2
.m.mC 1/� 2/ components of MT bal.2mC 1/ are nontrivially permuted by A3;

hence, they give 1
6
.m.mC 1/� 2/ components of MS1;1.2mC 1/� homeomorphic

to V�2. Therefore the total number of connected components of MS1;1.2mC 1/� is
1
6
.m.mC 1/C 4/.
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The rest of the subsection is devoted to a careful analysis of the orbifold structures on
our moduli spaces, the proof of part (b) of Theorem C and the proof of Theorem D.

4.2.1 Voronoi graphs and decorations The orbifold structure on our moduli spaces
is defined in Remark 6.28, but a more explicit interpretation of the structure for moduli
spaces of tori of area 4m� relies on the notion of decoration.

We begin with a simple lemma:

Lemma 4.10 (Voronoi graphs of tori of area 4m�) The Voronoi graph �.T / of a
spherical torus T of area 4m� has two vertices and three edges of lengths .2mi C 1/�
for integers mi � 0. The two vertices are exchanged by the conformal involution � .
Also , projectively equivalent spherical metrics on a torus have the same Voronoi graph.

Proof Consider first the case m D 1. A spherical triangle �0 with vertices x1, x2
and x3 of angles .�; �; �/ is isometric to a hemisphere, and its circumcenter O is at
distance 1

2
� from the boundary of the hemisphere. So the rotations of the hemisphere

that take xi to xj fix O . A torus T0 with a �–invariant metric h of area 4� is isometric
to T .�0/ and so it has three edges and two vertices. Since � fixes the Voronoi graph
�.T0/ and pointwise fixes the conical point and the midpoints of the three edges of
�.T0/, it does not fix any other point. In particular, � exchanges the two vertices of
�.T0/. Moreover, the vertices of �.T0/ are at distance 1

2
� from @�0, and so the edges

of �.T0/ have length � . It follows that a (multivalued) developing map for T0 sends the
vertices of �.T0/ to the two fixed points O and O 0 for the monodromy, and the edges
of �.T0/ to meridians running between O and O 0. Note that another spherical metric
on T0 projectively equivalent to h is obtained by postcomposing the developing map of
h by a Möbius transformation that fixes O and O 0. Since such transformations preserve
the meridians between O and O 0, the two metrics have the same Voronoi graph.

Suppose now m> 1. By Theorem E and Proposition 3.8, a torus T with �–invariant
metric of area 4m� is obtained from a torus T0 D T .�0/ of area 4� as above by
gluing a sphere Si with two conical points of angles 2m� at distance jxjxkj along the
geodesic segment xjxk of T0. The conclusion then follows from the analysis of the
case mD 1.

In order to make the role of the conformal involution � in Constructions 4.14 and 4.16
below more transparent, we will need:

Definition 4.11 (decorations on strictly balanced tori) A decoration v of a spherical
torus .T; x/ is a vertex v of its Voronoi graph �.T /.
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The main reason for introducing decorations relies on the following fact:

Lemma 4.12 (rigidity of 2–marked decorated spherical tori) Decorated 2–marked
spherical tori of area 4m� have nontrivial automorphisms.

Proof Being an isometry, an automorphism is in particular biholomorphic. It is a
classical fact that the only nontrivial biholomorphism of a 2–marked conformal torus
.T; x/ is the involution � . By Lemma 4.10, the Voronoi graph �.T / has two vertices
and they are exchanged by � .

As a consequence, we obtain the following modular interpretation of MS.2/1;1.2mC 1/
as a topological space:

Remark 4.13 The topological space MS.2/1;1.2mC1/ is the moduli space of decorated
2–marked spherical tori of area 4m� .

By Lemma 4.10, � induces an action �� on MS.2/1;1.2mC1/ by sending .T;p; v; h/ to
.T;p; v; ��h/. Since � W .T;p; v; ��h/! .T;p; �.v/; h/ is an isomorphism, we also
have ��.T;p; v; h/D .T;p; �.v/; h/.

4.2.2 Moduli spaces of �–invariant spherical metrics of area 4m� Similarly to
Section 4.1, we first discuss the space of decorated 2–marked tori:

Construction 4.14 (tori with �–invariant metrics) If � is the unique (nontrivial)
conformal involution of a conformal torus, denote by MS.2/1;1.2mC 1/

� the set of 2–
marked decorated tori .T; x;p/with a �–invariant spherical metric of angle .2mC1/2�
at x. We recall that triangles in MT ˙bal.2mC 1/ have area 2m� and integral angles
and they are strictly balanced. We then define the maps

MT ˙bal.2mC 1/
T .2/

���!

�.2/
 ���MS.2/1;1.2mC 1/

�

as in Construction 4.5. In particular, T .2/ sends an oriented triangle � to the 2–marked
torus T .�/ obtained as the union of � and �0, with the decoration given by the vertex
of �.T .�// that sits inside �.

We easily have the following preliminary result:

Theorem 4.15 (moduli space of 2–marked �–invariant tori of area 4m�) For m> 0
an integer , the space MS.2/1;1.2mC 1/

� of decorated 2–marked tori with a �–invariant
spherical metric has the following properties:
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(i) The map T .2/ WMT ˙bal.2mC1/!MS.2/1;1.2mC1/
� is a homeomorphism , with

inverse �.2/.

(ii) MS.2/1;1.2mC 1/
� is a disjoint union of m.mC 1/ open 2–disks V�2.

(iii) S3 acts on MS.2/1;1.2mC 1/
� by permuting its components. If m 6� 1 .mod 3/,

then all orbits have length 6. If m� 1 .mod 3/, then one orbit has length 2 and
all the others have length 6.

(iv) The action of �� on the topological space MS.2/1;1.2mC 1/
� is trivial.

As an orbifold , the moduli space of 2–marked tori with a �–invariant spherical metric
is isomorphic to the quotient of MT ˙bal.2mC 1/ by the trivial Z2–action.

Proof (i) It is very easy to see that T .2/ ı�.2/ is the identity on MS.2/1;1.2mC 1/
� .

Conversely �.2/ ıT .2/ is the identify on MT ˙bal.2mC 1/ by Theorem E. Hence T .2/

is bijective. Moreover, T .2/ is a homeomorphism by Theorem 6.5.

(ii)–(iii) These follow from Propositions 3.25 and 3.24.

(iv) This is clear, since � is an isomorphism between the 2–marked decorated spherical
tori .T;p; v; h/ and .T;p; v; ��h/.

In view of Remark 6.28, the final claim follows from (iv).

Now we discuss the moduli space MS1;1.2mC 1/� of �–invariant spherical tori:

Proof of Theorem C(b) Recall MS1;1.2mC 1/� is endowed with a 2–dimensional
orbifold structure by Remark 6.28. By Theorem 4.15(i), the space MT ˙bal.2mC 1/

is isomorphic to the moduli space of decorated 2–marked tori with a �–invariant
metric. Fix such a torus. Then 2–markings are permuted by S3 and the decorations
are exchanged by � . Hence, the moduli space MS1;1.2mC 1/� is isomorphic (as
an orbifold) to the quotient of MT ˙bal.2mC 1/ by S3 � h1; ��i. By Proposition 3.25,
this quotient can be identified to MT bal.2mC 1/=A3 � Z2, where the alternating
group A3 acts by cyclically relabeling the vertices of the triangles and Z2 acts trivially
by Theorem 4.15(iv). By Proposition 3.24, the space MT bal.2mC 1/ consists of
1
2
m.mC 1/ connected components and is diffeomorphic to Crpbal.2mC 1/�

V�2.

Consider two cases.

(b-i) Suppose 2mC 1 is not divisible by 3. In this case, neither of the spherical
triangles in MT bal.2mC1/ have all equal angles, so the action of A3 does not send any
component to itself. So the number of components of MS1;1.2mC1/� is 1

6
m.mC1/
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and each one is homeomorphic to the quotient D of V�2 by the trivial Z2–action, and
so all points have orbifold order 2.

(b-ii) Suppose 2mC1 is divisible by 3. Then the component corresponding to triangles
with anglesm1Dm2Dm3D 1

3
.2mC1/ is the only one that is sent to itself. It contains

a unique point fixed by A3, namely the equilateral spherical triangle. This point gives
rise to an orbifold point of order 6 on MS1;1.2mC1/� , which belongs to a component
homeomorphic to the quotient D0 of V�2 by Z2 �A3, where Z2 acts trivially. All the
other 1

2
m.mC 1/� 1 components are nontrivially permuted by A3, and they are all

homeomorphic to D. Hence, there are
˙
1
6
m.mC 1/

�
connected components, and all

points except the equilateral spherical triangle have orbifold order 2.

4.2.3 Moduli spaces of spherical metrics of area 4m� In order to treat spherical
metrics that are not �–invariant, we need a further construction.

Construction 4.16 Given a point O 2 S2, let R 2 su.2/ be the unique element with
tr.R2/D�1

2
that generates anticlockwise rotations of S2 at O .

We view the topological space MS.2/1;1.2mC 1/ as a moduli space of decorated, 2–
marked tori and we define the pair of maps

MT ˙bal.2mC 1/�R
„
�!
�
 �MS.2/1;1.2mC 1/

as follows.

In order to define„, let� be an oriented triangle in MT ˙bal.2mC1/ and fix a developing
map � for � that sends its circumcenter v to O 2 S2. Extend � to the universal cover
of the torus T .�/, which has a �–invariant metric h, and is given a 2–marking as in
Construction 4.5. For every t 2R, the map eitR ı � W zT ! S2 has the same equivariance
of �, and so the pullback of the metric of S2 via such a map descends to a spherical
metric ht on T . We then define „.T; x;p; v; h; t/ WD .T; x;p; v; ht /.

In order to define �, consider a 2–marked decorated spherical torus .T; x;p; v; Oh/,
whose metric Oh is not necessarily invariant under the conformal involution � . Its
developing map � W zT ! S2 has monodromy contained in a 1–parameter subgroup
that fixes O D �. Qv/, where Qv is a lift of v, and a maximal circle E. Note that points
in eitRE sit at constant distance arctan.2e�t / from O and that the distance from O

corresponds to the distance function dv W T ! Œ0; �� from the vertex v. Thus we also
have the function t D �log tan

�
1
2
dv
�
W T ! Œ�1;1�. We remark that a developing

map of ��.T; x;p; v; Oh/ can be obtained by postcomposing � with an isometry of S2

that exchanges O with �O . Hence, t ı�� D�t . It follows that Oh is �–invariant if and
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S2

�.�0/

�.�/

# D 3; mD 1



ˇ

˛

˛

ˇ

exp.tR/

exp.i tR/
aC bC c D 2�

O

Figure 12: The developing map � for T .�/ n .˛[ˇ/, where � is a triangle
with # D 3 and edges ˛, ˇ and 
 of lengths a, b and c. The two congruent
triangles � and �0 are mapped to antipodal hemispheres, and their edges are
mapped to the separating equator.

only if t .x/D 0, namely �. Qx/ 2E for any lift Qx of x. It is easy to see that the modified
developing map e�it.x/R ı � has the same invariance as � and sends Qx to E. Hence, the
round metric on S2 pulls back and descends to a �–invariant metric h on T . We define
�.T; x;p; v; Oh/ WD�.2/.T; x;p; v; h; t.x//.

Before proceeding, we need a very simple lemma:

Lemma 4.17 (Lipschitz constant of projective transformations) For every t 2R, the
transformation eitR of S2 has (bi )Lipschitz constant cosh.t/. Moreover , along the
maximal circle E it has Lipschitz constant 1=cosh.t/.

Proof If O is the origin of C and 2jdzj=.1C jzj2/ is the spherical line element,
then the transformation eitR can be written as z 7! e�tz. Through the map eitR the
metric decreases the most at E D fjzj D 1g, where the Lipschitz constant is exactly
1=cosh.t/.

The first fact about Construction 4.16 is the following:

Proposition 4.18 (the homeomorphism „) The map „ is a homeomorphism and �
is its inverse.
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Proof It is routine to check that the maps „ and � are set-theoretic inverses of each
other. Note that the restriction of „ to MT ˙bal.2mC 1/� f0g is a homeomorphism by
Theorem 4.15(i). Hence, the continuity of „ follows from Lemma 4.17.

To show that „ is proper, consider a diverging sequence in MT ˙bal.2mC1/�R, which
we can assume to be contained in a fixed connected component. By Proposition 3.25, an
element of this component can be identified by a quadruple .l1; l2; l3; t /with 0<li <2�
and l1C l2C l3 D 2� . A sequence of quadruples diverges if and only if some Nli ! 0

or if jt j !1 (up to subsequences). Since the systole of the triangle corresponding to
.l1; l2; l3/ is minfNlig by Lemma 6.24, the systole of the torus „.l1; l2; l3; t / is at most
minfNlig= log cosh.t/! 0 by Lemma 4.17. It follows that „ sends diverging sequences
to diverging sequences by Theorem 6.3.

Since MS.2/1;1.2mC 1/ is a manifold by Proposition 4.18, it can be endowed with an
orbifold structure as in Remark 6.28. We then have the following preliminary result:

Theorem 4.19 (moduli space of 2–marked tori of area 4m�) For m> 0 an integer ,
the moduli space MS.2/1;1.2mC 1/ of 2–marked tori with spherical metric of area 4m�
has the following properties:

(i) As an orbifold , it is isomorphic to the quotient of MT ˙bal.2mC 1/�R by the
action of the involution �� that flips the sign of the R factor. Hence it consists of
m.mC 1/ components isomorphic to V�2 � .R=f˙1g/.

(ii) The locus in MS.2/1;1.2mC 1/ of metrics that are invariant under the conformal
involution � corresponds to MT ˙bal.2mC 1/� f0g.

(iii) The group S3 that permutes the 2–torsion points of the torus acts trivially on R

and as in Proposition 3.25 on MT ˙bal.2mC 1/.

Proof (i) The action of � is described in Construction 4.16. The claim follows from
Theorem 4.15(i) and Proposition 4.18.

(ii) This is also clear by Construction 4.16.

(iii) This follows by noting that relabeling the 2–torsion points does not affect the
decoration.

Proof of Theorem D The forgetful map MS.2/1;1.2mC 1/!MS1;1.2mC 1/ is an
unramified S3–cover of orbifolds. By Theorem 4.19 such a quotient can be identified to
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.MT bal.2mC 1/�R/=.A3 �Z2/, where Z2 acts by flipping the sign of the R factor,
and the alternating group A3 acts by cyclically relabeling the vertices of the triangles.

The rest of argument is entirely analogous to the one used in the proof of Theorem C.

5 MS1;1.2m/ and MS.2/
1;1
.2m/ as Belyi curves

The goal of this section is to identify the moduli spaces MS1;1.2m/ and MS.2/1;1.2m/
with Belyi curves, and to relate their cell decompositions constructed in Corollary 4.9
with the corresponding dessins. We recall [2, Section 2; 14] that these two spaces
have a canonical complex structure. This structure is the unique one with respect
to which the forgetful maps to M1;1 and M.2/

1;1 are holomorphic. We also recall
that the compactification MS.2/1;1.2m/, obtained from MS.2/1;1.2m/ by filling in the
3m punctures, has orbifold structure that makes it isomorphic to the quotient of its
underlying topological space (which is in fact a Riemann surface) by the trivial Z2–
action. The respective forgetful maps extend to the smooth compactifications of all the
four orbifolds.

The following definition slightly differs from the usual definition of a dessin d’enfant,
though it is very similar in spirit.

Definition 5.1 (Belyi functions and dessins) A Belyi function is a holomorphic map
 W S !CP1 from a compact Riemann surface S to the complex projective line CP1,
ramified only over points 0, 1 and1. The dessin associated to  is the 3–partite graph
embedded in S obtained as the preimage of the real line RP1 �CP1 under  .

The dessin of  can also be seen as the 1–skeleton of the triangulation of S whose open
cells are the preimages through  of the two open disks into which RP1 cuts CP1.

The main result of this section concerns the underlying Riemann surface MS.2/1;1.2m/:

Theorem 5.2 (the topological space MS.2/1;1.2m/ as a Belyi curve) Let m be a
positive integer. Then there is a holomorphic Belyi map  Bel WMS.2/1;1.2m/! CP1

of degree m2 from the Riemann surface underlying MS.2/1;1.2m/ with the following
properties:

(i) The preimage of CP1nf0; 1;1g under  Bel coincides with the Riemann surface
MS.2/1;1.2m/.

(ii) The cycle type of ramification of  Bel over points f0; 1;1g is .1; 3; : : : ; 2m�1/.
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(iii) The dessin of  Bel is composed of tori T such that the triangle �.T / has one
integral angle. In particular , the triangulation given by this dessin is the one
described in Corollary 4.9.

Definition 5.3 (Klein group and Klein sphere) The Klein group K4 is the subgroup
of diagonal matrices in SO.3;R/. The Klein sphere SKl is the sphere with three conical
points .y1; y2; y3/ of angles .�; �; �/, obtained by taking the quotient of the unit
sphere S2 by the action of K4 Š Z2 ˚Z2. We denote by SKl.R/ the circle in SKl

which is invariant under the unique antiholomorphic isometric involution of SKl.

Using the conformal structure on SKl given by the spherical metric, we can view SKl

as CP1, where y1 D 0, y2 D 1 and y3 D1, and SKl.R/ as RP1.

Remark 5.4 (Klein sphere as a doubled triangle) The Klein sphere SKl can also be
obtained by doubling the spherical triangle � with angles .�; �; �/ across its boundary.
This way @� corresponds to the circle SKl.R/ in SKl. Recall that, in the triangle
with three angles � , each vertex is at distance exactly 1

2
� from each point of the

opposite side. For this reason, points of SKl.R/ are exactly the points on SKl that are
at distance 1

2
� from one conical point.

The key result to parametrize spherical tori using a Hurwitz space is the following:

Proposition 5.5 (tori of area .2m � 1/� cover the Klein sphere) Let .T; x/ be a
spherical torus with a conical point of angle 4�m and with points of order 2 marked
by p1, p2 and p3. There exists a unique branched cover map 'Kl W T ! SKl of degree
4m�2which is a local isometry outside of branching points , and such that 'Kl.pi /Dyi .
Moreover , 'Kl.x/¤ yi for i D 1; 2; 3.

Proof We first construct the map and then count its degree. Recall [2, Proposition 1.5.1]
that the image of the monodromy map � W �1.T; x/! SO.3;R/ is the Klein group (see
also Corollary A.3). Consider the developing map � W zT ! S2 from the universal cover
zT of T . This map is equivariant with respect to the action of �1.T; x/ on zT by deck
transformation and on S2 by the monodromy representation. Hence, by taking the
quotient, we get a map 'Kl W T ! SKl Š S2=K4.

We now prove that the constructed map 'Kl sends points pi to the three distinct orbifold
points of SKl. This will permit us to label these three points so that 'Kl.pi /D yi . In
order to do this, consider the order-two automorphisms � of T and denote by S the
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quotient T=� . The surface S is a sphere with three conical points of angle � that are
the images of the points pi , and one conical point of angle 2�m. Let us take a lift
Qx 2 zT of x and let Q� be the lift of � to zT that fixes Qx. Since the conical angle at x
is an even multiple of 2� , the maps � and � ı Q� coincide in a neighborhood of Qx. It
follows that � is Q�–invariant and the map 'Kl descends to a map '0Kl W S ! SKl. Now,
by construction, the map '0Kl is a local isometry outside of ramification points. This
implies that all three conical points of angle � on S are sent by '0Kl to conical points of
angle � on SKl. Finally, to see that the images of the three conical points are distinct,
we use the fact that the monodromy of S is generated by three loops winding simply
around these points, and that it is isomorphic to K4. Hence, we proved that points
'Kl.pi / in SKl are the three distinct conical points of SKl, and so we can label each
'Kl.pi / by yi . This finishes the construction of the map. Its uniqueness is clear.

To prove that deg.'Kl/D 4m� 2, we use the fact that 'Kl is a local isometry outside
of branching points, so deg.'Kl/D Area.T /=Area.SKl/D 2�.2m� 1/=� D 4m� 2.
Finally, if 'Kl mapped x to some yi , its local degree at x would be .4m�/=� D 4m >
deg.'Kl/. This contradiction proves the last claim.

Corollary 5.6 (moduli space of 2–marked tori as a Hurwitz space) As a differentiable
orbifold , the moduli space MS.2/1;1.2m/ is isomorphic to the Hurwitz space Hm of
connected degree 4m� 2 covers , ramified over points 0, 1 and 1 with cyclic type
.2; : : : ; 2/, and over �¤ 0; 1;1 with cyclic type .1; : : : ; 1; 2m/.

Proof To construct MS.2/1;1.2m/!Hm we use Proposition 5.5, which associates to
each spherical torus .T; x/ a 2–marking of the branched cover 'Kl W T ! SKl. Using
the conformal structure on SKl given by the spherical metric, we view it as CP1, where
y1 D 0, y2 D 1 and y3 D1. By Proposition 5.5, we know that �D 'Kl.x/¤ 0; 1;1.
To find the cyclic type of ramification over points .0; 1;1; �/, we recall that the map
'Kl is a local isometry outside of the branching locus, and so for each preimage of the
points 0, 1 and1 the map has branching of order 2. Finally, there is only one conical
point in the preimage of �, hence the cyclic type over � is .1; : : : ; 1; 2m/.

To define the inverse map Hm!MS.2/1;1.2m/, for each ramified cover T !CP1ŠSKl

with the prescribed cyclic type we pull back the spherical metric of SKl to T . By
Proposition 5.5, the 2–torsion points of T are mapped to y1, y2 and y3, and we call pi
the unique 2–torsion point of T that is sent to yi .

In view of Corollary 5.6, we can give MS.2/1;1.2m/ the unique structure of a complex-
analytic orbifold that makes the isomorphism MS.2/1;1.2m/ŠHm complex-analytic.
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Now, there are two interesting holomorphic maps. The first map F W Hw !M1;1

sends a cover .T; x/! .CP1; �/ to the isomorphism class of .T; x/, and so it has finite
fibers. Since F can be interpreted as the forgetful map MS.2/1;1.2m/!M1;1, which is
proper and surjective (see [23]), the map F is a finite (possibly branched) holomorphic
cover. The second map  Bel WHw!CP1 nf0; 1;1g sends a .4m�2/–cover branched
over 0, 1, 1 and � with cyclic types .22m�1/, .22m�1/, .22m�1/ and .2m; 12m�2/
to �. Since the cyclic types are fixed,  Bel is a finite unramified cover. In view of the
complex isomorphism between Hw and MS.2/1;1.2m/, we have proven:

Corollary 5.7 (MS.2/1;1.2m/ covers the 3–punctured sphere) The map

 Bel WMS.2/1;1.2m/!CP1 n f0; 1;1g

is a finite unramified holomorphic cover.

We need one last lemma:

Lemma 5.8 (dessin of  Bel) A torus T in the topological space MS.2/1;1.2m/ belongs
to the dessin of  Bel if and only if the balanced triangle �.T / has one integral angle.

Proof Let us prove the “if” direction. Suppose that � has an integral angle. Then
it has one side of length � . This means that, for some i , the distance on T from x

to pi is 1
2
� . This means that the distance on SKl between yi and 'Kl.x/ is 1

2
� . Using

Remark 5.4, we deduce that 'Kl.x/ belongs to SKl.R/. By the definition of the dessin
of  Bel, we see that T belongs to the dessin.

Let us now prove the “only if” direction. Suppose that 'Kl.x/ belongs to SKl.R/. For
example, assume 'Kl.x/ 2 y1y2. Let 
3 be the geodesic loop on T based at x whose
midpoint is p3. Since half of this geodesic is projected by 'Kl to the segment that joins
y3 with the segment y1y2, we see that j
3j D � . From Lemma 3.6, it follows that the
angle of � opposite to 
3 is integral.

Proof of Theorem 5.2 (i) The ramified cover is the extension of the cover constructed
in Corollary 5.7 to the compactified spaces.

(ii) Recall MS.2/1;1.2m/ is glued from two copies of MT bal.2m/ and that MT bal.2m/

is obtained by gluing m2 polygons yPl as in Figure 10 (see also the case # D 6 in
Figure 9). Let us call each connected component of CP1 nRP1 a “hemisphere” and
the intersection of a neighborhood of p with a closed hemisphere a “half-neighborhood”
of a point p 2RP1. Recall now, from Construction 3.19, that the ends of MS.2/1;1.2m/
are described by the strips Si;a.2m/ with i D 1; 2; 3 and 0� a �m� 1. It is easy to
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see that the “length” of the strip Si;a.2m/, namely the number of regions Sli;a.2m/
such a strip is made of, is exactly 2.2aC 1/.

By Lemma 5.8, the finite unramified cover  Bel maps the interior of each yPl onto
a hemisphere, and the three nodal edges of yPl are mapped to RP1 n f0; 1;1g. It
follows that, up to labeling the coordinates,  Bel maps each region Sl1;a.2m/ to a
half-neighborhood of 0. Hence,  Bel maps a strip S1;a.2m/ of length 2.2aC 1/ onto
a (punctured) neighborhood of 0 with degree 2aC 1. It follows that the cycle type
ramification of  Bel over 0 is .1; 3; 5; : : : ; 2m� 1/. Analogous considerations hold for
the cycle type ramification over 1 and over1.

(iii) This is proven in Lemma 5.8.

Proof of Theorem F To prove this result we will realize MS1;1.2m/ as an unramified
orbifold cover of the modular curve H2=SL.2;Z/. Recall that in Theorem 5.2 we
constructed the unramified covering map  Bel of degree m2 from the topological space
MS.2/1;1.2m/ to CP1 n f0; 1;1g. Note that the quotient of CP1 n f0; 1;1g by the
trivial Z2–action is an orbifold isomorphic to H2=�.2/, where

�.2/D fA 2 SL.2;Z/ j A� I .mod 2/g:

So the above cover can be promoted to an unramified cover of orbifolds MS.2/1;1.2m/!
H2=�.2/ of the same degree.

The symmetric group S3 acts on MS.2/1;1.2m/ by relabeling the 2–torsion points of the
tori, and it acts on H2=�.2/ through the isomorphism S3 Š SL.2;Z/=�.2/.

Since MS.2/1;1.2m/=S3 DMS1;1.2m/ as orbifolds, the covering map then descends
to an unramified orbifold covering MS1;1.2m/!H2=SL.2;Z/ of degree m2. Note
that the cycle type ramification of this cover at infinity is .1; 3; : : : ; 2m � 1/ by
Theorem 5.2(ii). It follows that, for m> 1, such a cover is not Galois and so Gm is not
a normal subgroup.

The last claim follows from Theorem 5.2(iii), noting that the real locus RP1nf0; 1;1g

inside CP1 n f0; 1;1gŠH2=�.2/ descends to fŒi t � j t � 1g inside H2=SL.2;Z/.

6 Lipschitz topology on MSg;n

In this section we define a natural topology on the set of spherical surfaces with conical
singularities and establish some of its basic properties. We choose the approach using
Lipschitz distance, described, for example in [15, Example on page 71].
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We first recall the definition of the Lipschitz distance between two marked metric spaces:

Definition 6.1 Let .X; x1; : : : ; xnI dX / and .Y; y1; : : : ; ynI dY / be two metric spaces
with distinct marked points xi and yi . The Lipschitz distance between them is defined by

dL..X;x/; .Y;y//D inf
f

log maxfdil.f /; dil.f �1/g;

where
dil.f /D sup

p1¤p22X

dY .f .p1/; f .p2//

dX .p1; p2/

and the infimum runs over bi-Lipschitz homeomorphisms between X and Y that send
each xi to yi . The value maxfdil.f /; dil.f �1/g is called the bi-Lipschitz constant of
the map f .

Furthermore, we say that a map f WX ! Y is a bi-Lipschitz embedding with constant
c � 1 if, for any two points x1; x2, we have

c�1 � dY .f .x1/; f .x2//� dX .x1; x2/� c � dY .f .x1/; f .x2//:

We will denote by MSg;n the space of genus-g surfaces with n marked conical points
up to a marked isometry. By MSg;n.�A/ we denote the subspace of surfaces with area
bounded by A > 0. To state the main two results of this section we recall the notion of
the systole of a spherical surface:

Definition 6.2 (systole) The systole sys.S/ of a spherical surface S is the half length
of the shortest geodesic segment or geodesic loop on S whose endpoints are conical
points of S .

The systole sys.P / of a spherical polygon P is the minimum of half-distances between
all vertices of P and the distances between a vertex of P with the unions of edges
not adjacent to the vertex. Such a systole is clearly equal to the systole of the sphere
obtained by doubling P along its boundary.

Let MS�sg;n.�A/ be the subspace of MSg;n.�A/ of surfaces with systole at least s.

Theorem 6.3 MSg;n is a complete metric space with respect to Lipschitz distance.
The function sys.S/�1 is proper on MSg;n.�A/ in the Lipschitz topology.

Let us denote by MPn the space of all spherical polygons with n cyclically labeled
vertices up to isometries that preserve the labeling. We have the following similar
result:
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Corollary 6.4 The space MPn of spherical polygons with n vertices is complete with
respect to Lipschitz distance. For any positive A > 0, the function sys�1.P / is proper
on the subset MPn of polygons with area at most A.

To prove Theorem 6.3, we show that surfaces from MS�sg;n.�A/ admit triangulations
into a finite number of relatively large triangles. This is done in Theorem 6.23, which
itself relies on Delaunay triangulations, constructed in Proposition 6.15. The proof of
Corollary 6.4 is similar.

As an application of Theorem 6.3 and Corollary 6.4, we get a result on the topology of
the space MS.2/1;1.#/ of 2–marked tori induced by Lipschitz metric L:

Theorem 6.5 (i) Suppose # is not odd. Then T .2/ WMT ˙bal.#/! .MS.2/1;1.#/;L/
is a homeomorphism of surfaces.

(ii) Let m be a positive integer. Then T .2/ WMT ˙bal.2mC1/! .MS.2/1;1.2mC1/
� ;L/

is a homeomorphism of surfaces.

Recall that the bijective map T .2/ was defined in Construction 4.5, whereas the Lipschitz
distance between two 2–marked tori is measured among maps that preserve 2–marking.

6.1 Lipschitz metric and its basic properties

Here we collect basic results concerning the Lipschitz metric, with an emphasis on
spherical surfaces.

Lemma 6.6 Lipschitz distance defines a metric on the space MSg;n of spherical
surfaces of genus g with n conical points.

Proof Let .S;x; h/ and .S 0;x0; h0/ be genus-g spherical surfaces with n conical points.
Let’s show that dL.S; S 0/ <1, ie that there is a bi-Lipschitz map ' W .S;x/! .S 0;x0/.
By definition, every point xi has a contractible neighborhood Ui with polar coordinates
.ri ; �i / on which hD dr2i C#

2
i r
2
i d�

2
i , and similarly for the points x0i . Pick a small

" > 0 such that the subsets Ui ."/ D fri � "g � Ui and U 0i ."/ D fr
0
i � "g � U

0
i are

compact. Define a map 'i WUi ."/!U 0i ."/ such that it is the identity in polar coordinates.
Manifestly, 'i has bi-Lipschitz constant maxf# 0i=#i ; #i=#

0
ig, and it is a diffeomorphism

away from xi . Moreover, it can be extended to a homeomorphism ' W .S;x/! .S 0;x0/

that is a diffeomorphism from PS to PS 0. Such a map is clearly bi-Lipschitz.

Note that dL.S; S 0/D 0 if and only if S and S 0 are isometric by [1, Theorem 7.2.4].

All the other properties of the metric are obvious.
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Definition 6.7 The Lipschitz topology on the moduli space MSg;n of spherical sur-
faces is the topology induced by the Lipschitz metric.

The next lemma explains how differences in the values of conical angles of two surfaces
affects the Lipschitz distance between them.

Lemma 6.8 (continuity of angle functions) Let U and U 0 be neighborhoods of
conical points x and x0 with conical angles # and # 0. Suppose f W U ! U 0 is a
bi-Lipschitz homeomorphism. Then

(5) maxfdil.f /; dil.f �1/g �max
�
#

# 0
;
# 0

#

�1=2
:

In particular , functions #i WMSg;n!RC are continuous for the Lipschitz topology.

Proof After scaling by a large constant and passing to the limit, we can assume
that the metrics on U and U 0 are flat; moreover both U and U 0 are flat cones with
conical angles 2�# and 2�# 0, respectively. Note that as a result, the limit quantity
maxfdil.f /; dil.f �1/g can only decrease. Replacing f by f �1 if necessary, we can
assume that # � # 0.

Let us now reason by contradiction. Assume that (5) is not satisfied. Consider the
radius-1 circle S1 centered at x on U . Since dil.f �1/ < .# 0=#/1=2, the image f .S1/
lies at distance c from x0, where c > .#=# 0/1=2. Hence, l.f .S1// � 2�c# 0. At the
same time,

dil.f /�
l.f .S1//

l.S1/
D
l.f .S1//

2�#
�
2�c# 0

2�#
>

�
# 0

#

�1=2
:

This contradicts our assumption.

Lemma 6.9 (continuity of systole function) Let .S; h/ and .S 0; h0/ be spherical
surfaces from MSg;n such that dL.S; S 0/� d . Then

e�d sys.S; h/� sys.S 0; h0/� ed sys.S; h/:

In particular , the function sys WMSg;n!RC is continuous for the Lipschitz topology.

Proof Let S be a spherical surface with conical points x1; : : : ; xn. According to [23],
sys.S/ is equal to the minimum of half-distances between conical points and half-
lengths of all (rectifiable) simple loops based at some conical point xi contained in
PS [ xi and noncontractible in PS [ xi . Any bi-Lipschitz homeomorphism f from S to
S 0 that sends conical points xi of S to the corresponding points x0i of S 0 also sends
rectifiable loops based at xi to rectifiable loops based at x0i . By definition, for any
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" > 0, there exists a homeomorphism f" W S ! S 0 with bi-Lipschitz constant edC".
This clearly explains the above inequalities.

6.2 Injectivity radius

Here we prove Proposition 6.11, which gives an estimate on the injectivity radius of
points on spherical surfaces in terms of the value of the Voronoi function and the systole
of the surface.

Definition 6.10 Let S be a spherical surface and y 2 PS be a nonconical point. The
injectivity radius inj.y/ is the supremum of r such that S contains an isometric copy
of a spherical disk of radius r embedded in S and centered at y.

For a conical point xi 2 S , the injectivity radius is defined to be the minimum of all
distances from xi to other conical points and half lengths of geodesic loops based at xi .

Proposition 6.11 Let S be a spherical surface with conical angles 2�.#1; : : : ; #n/.
Then , for any y 2 PS ,

(6) inj.y/�min.sys.S/;VS .y/;min
i
#iVS .y//:

Moreover:

(i) If inj.y/ < VS .y/, then there exists a closed geodesic loop 
 � PS of length
2 inj.y/ based at y. Also , l.
/D 2 inj.y/ < � .

(ii) If VS .y/ > 1
2
� then inj.y/D VS .y/.

(iii) If inj.y/ < VS .y/ and so VS .y/� 1
2
� , then at least one of the following holds:

(a) inj.y/ > sys.S/.
(b) There exists i such that #i < 1

2
and inj.y/ >mini #iVS .y/.

We will need one lemma to prove this result:

Lemma 6.12 Let D be a spherical disk with one conical point x in its interior. Suppose
that the boundary 
 of D satisfies `.
/ < 2� and 
 is a geodesic loop with a unique
nonsmooth point y. Then there is an orientation-reversing isometric involution � on D.

Proof Note first that the angle at x is not an integer, otherwise the univalent developing
map from D to S2 would send 
 onto a great circle. Consider the sphere S obtained
from D by doubling along 
 , and denote by �
 the corresponding isometric involution.
Since not all conical angles of S are integers, there exists a unique anticonformal
isometry � of S fixing its conical points. Clearly � commutes with �
 , and so � leaves

 � S invariant. Hence � induces the desired involution on D � S .

Geometry & Topology, Volume 27 (2023)



3684 Alexandre Eremenko, Gabriele Mondello and Dmitri Panov

Proof of Proposition 6.11 Since clearly inj.y/ � VS .y/, (6) immediately follows
from (iii), so we only need to prove (i)–(iii).

(i) Since inj.y/ < VS .y/, the existence of a geodesic loop of length 2 inj.y/, based at
y is straightforward. Indeed, the midpoint of such a loop is a point at distance inj.y/
from y, where the disk centered at y of radius inj.y/ touches itself. One can check
that l.
/ � � , since otherwise there would be points close to the midpoint of 
 that
could be joined with y by two distinct geodesic segments of length less than inj.y/.
To see that inj.y/ < 1

2
� we note that, in case inj.y/D 1

2
� , the boundary of the open

disk centered at y of radius 1
2
� is a closed geodesic to which the disk is adjacent twice.

This means that S is a standard RP2, which is impossible since S is orientable.

(ii) Assume VS .y/ > 1
2
� and suppose, for contradiction, that inj.y/ < VS .y/. Let 


be a geodesic constructed in (i). Let 2�� and 2�.1� �/ be the angles into which 

cuts the neighborhood of y, and assume, without loss of generality, that � � 1

2
.

Take a point O 2 S2 and consider a spherical kite OP1QP2 in S2 with †O D 2�� ,
†P1D†P2D

1
2
� and l.ŒOP1�/D l.ŒOP2�/D 1

2
l.
/. Since � � 1

2
and l.ŒOP1�/� 1

2
� ,

one can check that l.ŒOQ�/� 1
2
� . In particular, the kite lies in the interior of a disk

Dr centered at O for any r 2
�
1
2
�;VS .y/

�
. Since VS .y/ > r , there exists a locally

isometric immersion � WDr! PS such that �.O/D y. By precomposing � with a rotation,
we can arrange so that � sends the sides OP1 and OP2 to 
 , and �.P1/D �.P2/ is the
midpoint of 
 . It is clear then that the segments P1Q and P2Q are sent by � to the
same geodesic segment in PS . It follows that � is not a locally isometric immersion in
any neighborhood of Q. This is a contraction.

(iii) Since inj.y/ < VS .y/, by (i) there is a simple geodesic loop 
 on PS based at y
of length 2 inj.y/ < � . We will consider separately two possibilities, depending on
whether 
 is essential (it doesn’t bound on PS a disk with at most one puncture) on PS .

If 
 is essential on PS , it follows from [23] that inj.y/D 1
2
l.
/ > sys.S/, and so we

are in case (a).

Let’s assume now that 
 is nonessential on PS . Then 
 encircles on S a disk D with at
most one conical point in its interior. Since l.
/ < � by (i), the disk D should contain
exactly one conical point, which we denote by xi . Denote by 2�� the angle that 

forms at y in D.

Suppose first that � � 1
2

. In this case 
 forms a convex boundary of the surface S nD.
Thanks to this, using exactly the same method as in [23, Corollary 3.11], one proves
that l.
/ > 2 sys.S/, and we are in case (a).
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Suppose now � < 1
2

. Since `.
/<� , we can apply Lemma 6.12 toD to get its isometric
involution � . This involution fixes the midpoint p of 
 , and fixes two geodesic segments
yxi and pxi that cut D into two isometric right-angled spherical triangles. Let yp
be one of two halves of 
 . The segments yxi , pxi and yp border a triangle xiyp in
D with †xi D �#i , †y D 1

2
�� and †p D 1

2
� . Since the side yp of the triangle is

shorter than � and two adjacent angles are less than � , the triangle is convex. Since
jyxi j > jypj, we have �i < 1

2
. Applying the sine rule to the triangle xiyp we get

sin.jypj/D sin.�#i / sin.jxiyj/. Hence

inj.y/D jypj> sin.�#i / sin.jxiyj/ > 2#i sin.VS .y// >
4

�
#iVS .y/;

which proves that we are in case (b).

6.3 Equivalence of Lipschitz and analytic topologies on MT

In this section we prove that Lipschitz distance between triangles induces the same
topology on MT as the topology induced by the embedding in R6 described in
Theorem 3.12.

Definition 6.13 The relative Lipschitz distance dL (or L–distance) between two
spherical triangles is the infimum of log max.dil.f /; dil.f �1// over all the marked
bi-Lipschitz homeomorphisms f W�1!�2 that restrict to a homothety on each edge
of �1.

The L–distance defines a metric on the space MT of spherical triangles, which we call
the L–metric. We have the following natural statement.

Proposition 6.14 The topologies defined on MT by the L– and L–metrics coincide
with the analytic topology given by the angle–side length embedding ‰ WMT !R6.

Proof Note that the side lengths of � are clearly continuous functions in both the
L and L topologies. The angles of � are continuous in these topologies thanks to
Lemma 6.8, applied to the double of �. Furthermore the L–distance is greater than or
equal to the L–distance. Hence, the L–topology is finer than the L–topology, which
is finer than the analytic topology. For this reason, we only need to show that, for
any spherical triangle � and a sequence of triangles �i converging to � in R6 (ie
in the analytic topology), we have lim dL.�i ; �/D 0. This claim can be proven by
exhibiting explicit bi-Lipschitz maps between spherical triangles. We will only treat
the case when � is short-sided, since this is the only case needed for our purposes.
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Following [12, Lemma 4.1], denote by U the open subset of MT consisting of triangles
with angles �#i , where #i < 2. This subset consists of spherical triangles that admit an
isometric embedding into S2. In particular, U lies in MT sh, the space of all short-sided
triangles. We first prove that the L–topology coincides with the analytic topology on U .

For two spherical triangles � D x1x2x3 and �0 D x01x
0
2x
0
3 embedded into S2 with

incenters I� and I�0 , respectively, define the incentric map ˆ W�!�0 as the unique
map satisfying:

� ˆ.xi /D x
0
i , ˆ.I�/Dˆ.I�0/.

� ˆ is a homothety on each edge xixj .

� For any point p 2 @�, ˆ sends the geodesic segment pI�0 to a geodesic segment
and restricts to a homothety on it.

Suppose now we have a sequence of embedded triangles �i 2 U whose angles and
side lengths converge to those of � 2U . Then it is not hard to see that the bi-Lipschitz
constant of the incentric maps ˆ W�i !� tends to 1. Hence �i converges to � in the
L–topology as well. This proves the statement for U .

Let us denote by Uklm �MT sh the subspace of triangles which can be obtained from
an embedded triangle � by repeated gluing of k� 1, l � 1 and m� 1 hemispheres to
the sides x1x2, x2x3 and x3x1, respectively, of �. From [12, Theorem 4.7 and Lemma
5.2] it follows that the sets Uklm give an open cover of MT sh. At the same time, the
incentric map ˆ between any two triangles � and �0 from U can be naturally extended
to a map ẑ W Q�! Q�0 between triangles with attached hemispheres. Namely, a radius
of each hemisphere is sent isometrically to a radius and the restriction of ẑ to both
sides of each hemisphere are homotheties. Since the Lipschitz constants of ˆ and ẑ

clearly coincide, the statement about the topologies is proven for each Uklm, and so
for the whole space MT sh.

6.4 Delaunay triangulations

We now turn to triangulations of spherical surfaces into convex spherical triangles. We
will not require the triangulation to induce the structure of a simplicial complex on the
surface. In particular, a triangle can be adjacent to a vertex up to three times, and to an
edge up to two times.

The first result is a variation of the famous Delaunay triangulations of the plane [8]
(see also [24, Section 14] for a modern exposition).
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Proposition 6.15 (Delaunay triangulations) Let S be a spherical surface with conical
points x1; : : : ; xn, some of which might have angle 2� . Suppose that the Voronoi
function VS is bounded by 1

2
� . Then there exists a triangulation of S into convex

spherical triangles with the following “empty circle” property: for each triangle xixjxk
of the triangulation , there exists a vertex v 2 �.S/ at equal distance r from xi , xj
and xk such that d.xl ; v/� r for all l 2 f1; : : : ; ng.

The proof will follow the proof by Thurston of a similar result [28, Proposition 3.1]
concerning triangulations of surfaces with flat metric and conical singularities. We will
need the following elementary lemma:

Lemma 6.16 Let D;D0 � S2 be two disks of radius less than 1
2
� . Let x1; x2 2 @D

and x01; x
0
2 2 @D

0 be four distinct points. Suppose x1 and x2 don’t lie in the interior
of D0, and x01 and x02 don’t lie in the interior of D. Then the geodesic segments
x1x2 �D and x01x

0
2 �D

0 are disjoint in S2.

Proof If D and D0 are disjoint, there is nothing to prove. Suppose D and D0 intersect,
and let y1 and y2 be the two points of intersection of the boundary circles @D and @D0.
Let 
 be the unique great circle on S2 passing through y1 and y2. It is now easy to see
that the complementsDnD0 andD0nD lie in different hemispheres of S2 with respect
to 
 . It follows that the segments x1x2 and x01x

0
2 also lie in different hemispheres, and

so they can intersect only in their endpoints. However, the points xi and x0i are distinct,
so x1x2 and x01x

0
2 are disjoint.

Proof of Proposition 6.15 The proof closely follows the proof of [28, Proposition 3.1].
Let �.S/ be the Voronoi graph of S . Let us first explain how to associate to each edge
e � �.S/ a dual geodesic segment Le with conical endpoints.

Let p 2 �.S/ be a point in the interior of an edge e � �.S/, and set r D VS .p/. Then
there exists a locally isometric immersion �p WDr ! S , from a radius r < 1

2
� spherical

disk, that sends the center of Dr to p. Exactly two of the boundary points of Dr , say y
and z, are sent to two conical points xi and xj of S . Denote by Le the image �p.yz/. It
is easy to see that the segment Le is independent of the choice of p 2 e.

Let us now deduce from Lemma 6.16 that, for any two edges e; e0 � �S , their dual
edges Le and Le0 do not intersect in their interior points. This is similar the proof of
[28, Proposition 3.1]. Let D and D0 be the disks immersed in S that correspond to
e and e0. Assume, for contradiction, that Le and Le0 intersect in their interior point p.
Consider the (multivalued) developing map � W S! S2. The images of D and D0 under
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this map are embedded disks, and the images of Le and Le0 are chords of these disks,
intersecting in �.p/. This contradicts Lemma 6.16. Indeed, the endpoints of Le are
conical points that belong to @D nD0, and the endpoints of Le0 are conical points that
belong to @D0 nD. Hence, Lemma 6.16 is applicable to the 4–tuple �.D; Le;D0; Le0/.

Next, we associate to each vertex v of �.S/ a convex polygon embedded in S whose
edges Le1; : : : ; Lek are dual to the half-edges of �.S/ adjacent to v. To do so, consider
the immersion �v WDr ! S of a disk of radius r D VS .v/ that sends the center of Dr
to v. There will be exactly k points, say y1; : : : ; yk , on @Dr whose images in S are
conical points. Let Pv be the convex hull of the points yi in Dr . Then the map �v is an
embedding on the interior VPv of the polygon Pv; it may identify some vertices and it
may identify an edge to at most one other edge of Pv.

Our last observation is that the union of the �v. VPv/ over all vertices v of �.S/ coincides
with the complement in S of the union of edges Le. Indeed, since the edges Le can only
intersect at endpoints, each �v. VPv/ is a connected component of the complement of
edges Le. At the same time, each edge Le is adjacent to one or two open polygons �v. VPv/
corresponding to the vertices of the edge e dual to Le. It follows that polygons �v.Pv/
cover the whole S .

Finally, if some of convex polygons �v.Pv/ are not triangles, we subdivide them by
diagonals into a collection of triangles. This gives the desired triangulation of S , where
for each triangle xixjxk , the point v is the corresponding vertex of the Voronoi graph.

Remark 6.17 Let � be a triangle from a Delaunay triangulation with vertices xi , xj
and xk , and let v be the corresponding vertex of �.S/. Then the circumscribed radius
of � is equal to VS .v/D d.v; xi /.

6.4.1 Compact subsets of MSg;n.�A/ In this subsection we prove Proposition 6.22,
which singles out a class of compact subsets of MSg;n.�A/ consisting of surfaces that
admit triangulations into triangles of bounded shapes.

Definition 6.18 (.l; r/–bounded triangles and surfaces) Fix constants l 2 .0; �/ and
r 2

�
0; 1
2
�
�
. We say that a convex spherical triangle is .l; r/–bounded if all its sides have

length at least l and its circumscribed circle has radius at most r . A spherical surface
is .l; r/-bounded if it admits a triangulation into .l; r/–bounded spherical triangles.

We will denote by MT l;r the subset of MT consisting of .l; r/–bounded triangles.

Remark 6.19 (compactness of MT l;r ) The set MT l;r is compact in the analytic
topology of MT . Indeed, let �i � S2 be a sequence of convex triangles from MT l;r
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with vertices .xi1; x
i
2; x

i
3/. Passing to a subsequence, we can assume that the sequences

of vertices converge to x1, x2 and x3. We have jxixj j � l , and the circle on S2

containing x1, x2 and x3 has radius at most r . Hence x1x2x3 is a triangle from MT l;r .

Definition 6.20 (space of .l; r/–triangulated surfaces) Let � be a combinatorial type
of triangulations of a genus-g surface with n marked points such that the marked
points are vertices of the triangulation. Denote by Y �

l;r
.�A/ the set of all spherical

surfaces of area at most A with a chosen triangulation of type � consisting of .l; r/–
bounded triangles. The L–distance between two triangulated surfaces from Y

�

l;r
.�A/

is the Lipschitz distance with respect to all the maps that send the triangulation to the
triangulation and restrict to homotheties on the edges.

We recall that, given a compact surface S of genus g with n marked points x, there
always exists a triangulation of S whose set of vertices contains x as in Definition 6.20.
Indeed, it is possible to pick a point b 2 S and 2g loops f
j g based at b such that
no 
j passes through x and S n

S
j 
j is a topological disk. This shows that .S;x/

can be obtained from a 2g–gon P with n marked points x0 in its interior via pairwise
identification of its edges. Thus, every triangulation of P whose vertices include x0

descends to a triangulation of S whose vertices include x. The existence of such a
triangulation of P is obvious.

Lemma 6.21 The set Y �
l;r
.�A/ is compact in the L–metric.

Proof From Remark 6.19 and Proposition 6.14 it follows that the subset MT l;r �MT
of .l; r/–bounded triangles is compact in the L metric. At the same time, Y �

l;r
.�A/ can

be identified with a closed subset of the set of .MT l;r/j�j, where j�j is the number of
triangles in �.

Proposition 6.22 (L–compactness of .l; r/–bounded surfaces) Fix A > 0, l 2 .0; �/
and r 2

�
0; 1
2
�
�
. Then the subset Xl;r.�A/ of MSg;n.�A/ consisting of .l; r/–

bounded surfaces is compact in the Lipschitz topology. The analogous statement holds
for MPn.�A/.

Proof Since the area of an .l; r/–bounded triangle is bounded from below, there exists
only a finite number of combinatorial triangulations � of surfaces from MSg;n.�A/.
Note that, for each �, the natural map Y �

l;r
.�A/ ! MSg;n.�A/, that forgets the

triangulation is continuous since it contracts the metric. Hence Xl;r.�A/ is a finite
union of images of compact sets under continuous maps.
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6.5 Properness of the function sys.S /�1 on MSg;n.�A/

In this section we deduce Theorem 6.3 and Corollary 6.4 from the following result.

Theorem 6.23 (bounded Delaunay triangulations) For any s > 0:

(i) Any spherical surface from MS�sg;n can be triangulated into
�
1
2
s; 1
4
�
�
–bounded

spherical triangles.

(ii) Any spherical polygon P with sys.P /� s can be triangulated into
�
f .s/; 1

4
�
�
–

bounded spherical triangles , where f is a positive and continuous function.

Proof of Theorem 6.3 We start with the properness of sys�1. Since sys WMSg;n!RC
is continuous by Lemma 6.9, the subset MS�sg;n.�A/ is closed inside MSg;n.�A/.
Furthermore, MS�sg;n.�A/ is contained in the subset Xs=2;�=4.�A/ of MSg;n.�A/
consisting of

�
1
2
s; 1
4
�
�
–bounded surfaces by Theorem 6.23(i). Since Xs=2;�=4.�A/ is

compact by Proposition 6.22, it follows that MS�sg;n.�A/ is compact too, and so the
restriction of sys�1 to MSg;n.�A/ is proper.

For the completeness of MSg;n, it is enough to show that, for every r > 0 and spherical
surface S in MSg;n, the closed ball B.S; r/ D fS 0 2MSg;n j dL.S; S 0/ � rg is
compact. By Lemma 6.9, B.S; r/ is contained in MS�sg;n.�A/ with s D e�r sys.S/
and AD e2r Area.S/. Since MS�sg;n.�A/ was shown above to be compact and B.S; r/
is closed, it follows that B.S; r/ is compact.

Proof of Corollary 6.4 The proof is identical to the proof of Theorem 6.3, where
instead of using Theorem 6.23(i) one applies Theorem 6.23(ii).

Proof of Theorem 6.23 (i) We will prove that, for any S 2MS�sg;n, there exists a col-
lection of regular points xnC1; : : : ; xnCm 2 S , such that the surface .S; x1; : : : ; xnCm/
has the following three properties:

(a) For any i ¤ j , d.xi ; xj /� 1
2
s for all i ¤ j 2 f1; : : : ; nCmg.

(b) For each i the injectivity radius of xi on S is at least 1
4
s.

(c) For any x 2 S there is a point xi such that d.x; xi /� 1
4
� .

Before proving this claim, let us explain why the statement of the theorem follows
from it. Indeed, suppose that we have such a collection of points. Then let us consider
the Delaunay triangulation of S with respect to points x1; : : : ; xnCm that exists thanks
to Proposition 6.15. We claim that all the triangles of the triangulation are

�
1
2
s; 1
4
�
�
–

bounded. Indeed, by condition (c) and Remark 6.17, each such triangle is isometric to
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a triangle that can be inscribed in a circle of radius at most 1
4
� . At the same time, by

conditions (a) and (b), all sides of the triangle have length at least 1
2
s.

Let us now show how to find such a collection of points xnC1; : : : ; xnCm 2 S . We will
add points xnC1; : : : ; xnCm by induction. Note first that x1; : : : ; xn satisfy conditions
(a) and (b). Suppose that there is a point x 2 S at distance more than 1

4
� from

x1; : : : ; xn. Let us denote this x by xnC1, and let us show that .S; x1; : : : ; xnC1/
satisfies conditions (a) and (b) for m D 1. Note that by [23, Lemma 3.10] we have
sys.S/� 1

2
� , which means 1

4
� � 1

2
s, and so when we add xnC1 we don’t violate (a).

It remains to show that the injectivity radius of xnC1 of S is at least 1
4
s. We apply (6)

from Proposition 6.11 to get

inj.xnC1/�min
�
s; 1
4
�;min

i
#i
1
4
�
�
:

But, by [23, Lemma 3.13], we know that sys.S/�mini #i� . So we get inj.xnC1/� 1
4
s.

Hence, condition (b) is satisfied for x1; : : : ; xnC1. In this way we can go on adding
points xnCi until condition (c) is satisfied. Indeed, the process must terminate since the
1
8
s–neighborhoods of points xnCi are disjoint disks on S and the area of S is finite.

(ii) To prove the second part of the theorem we work with the double S.P / of P . We
construct a collection of regular points xnC1; : : : ; xnCm 2 S.P / such that the surface
.S.P /; x1; : : : ; xnCm/ has the following four properties:

(o) The set of points xi is invariant under the isometric involution � of S.P /.

(a) For any i ¤ j , d.xi ; xj /� 1
4
s for all i ¤ j 2 f1; : : : ; nCmg.

(b) For each i the injectivity radius of xi on S is at least 1
8
s.

(c) For any x 2 S there is a point xi such that d.x; xi /� 1
4
� .

Let us explain how to make the first step. Consider P and @P as subsets of S.P /.
Suppose there is a point y 2 S.P / at distance greater than 1

4
� from x1; : : : ; xn. If its

distance from @P is more than 1
8
� , we set xnC1 D y and xnC2 D �.y/. In this case

conditions (o)–(b) are still satisfied for points x1; : : : ; xnC2, since d.xnC1; xnC2/� 1
4
� .

Suppose now that d.y; @P /< 1
8
� . Let y0 be a point on @P closest to y and set xnC1Dy0.

Clearly the distance from xnC1 to x1; : : : ; xn is at least 1
8
� . For this reason, as in (i),

conditions (b) and (c) are still satisfied. This finishes the first step.

Now, we repeat the above step until we get a collection of points x1; : : : ; xnCm in S.P /
that satisfy conditions (o)–(c). As in the proof of Proposition 6.15, we get a canonical
decomposition of S.P / into convex spherical polygons, invariant under the action
of � , and such that each polygon has side lengths at least 1

4
s and can be inscribed in a
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circle of radius at most 1
4
� . Those polygons whose interior doesn’t intersect @P should

be further cut into triangles by diagonals. Suppose that the interior of a polygon Q
intersects @P . Then �.Q/ D Q, and using a �–invariant subset of diagonals of Q,
one can cut it into a union of triangles exchanged by � and either a triangle or a
trapezoid Q0 satisfying �.Q0/ D Q0. If Q0 is a triangle, we take Q0 \ P as one of
the triangles of the triangulation of P . If Q0 is a trapezoid, we subdivide further
Q0 \ P into two triangles along a diagonal. It is not hard to see that the resulting
triangles are

�
f .s/; 1

4
�
�
–bounded for some positive function f .s/. That concludes the

decomposition of P into triangles.

6.6 Systole of balanced triangles

In this section we calculate the systole of a balanced triangle and show that, for a
balanced triangle �, we have sys.�/D sys.T .�//.

Lemma 6.24 Let � be a balanced spherical triangle with vertices x1, x2 and x3. Then

(7) 2 sys.�/Dmin
i;j

�
min.jxixj j; 2� � jxixj j/

�
:

Moreover:

(i) For any vertex xi of �, the distance to the opposite side xixj is larger than sys.�/.

(ii) Let p 2 @� be a point that is not a vertex of �. Suppose that � is a geodesic
segment in� that joins p with xi and doesn’t belong to @�. Then l.�/> sys.�/.

(iii) There exists a geodesic segment 
� � � of length 2 sys.�/ that joins two
vertices of �.

Proof We will first prove statements (i)–(iii) and then will deduce (7).

(i) Let us show that, for any p in x2x3, we have d.p; x1/> sys.�/. From Remark 2.12
it follows that p lies either in the Voronoi domain of x2 or of x3. Assume the former.
Then, by definition of Voronoi domains, d.p; x1/� d.p; x2/.

Suppose first that the strict inequality d.p; x1/ > d.p; x2/ holds. Applying the triangle
inequality to the points x1, x2 and p and using d.x1; x2/� 2 sys.�/, we get

d.p; x1/� d.x1; x2/� d.p; x2/ > d.x1; x2/� d.p; x1/� 2 sys.�/� d.p; x1/:

It follows that d.p; x1/ > sys.�/.

Suppose now that d.p; x1/ D d.p; x2/. Then, by Remark 2.12, � is semibalanced,
p is the midpoint of the segment x1x2, and there is a geodesic segment x1p that joins
x1 with p. It is clear then that 2jx1pj D jx1pjC jx2pj> 2d.x1; x2/� 2 sys.�/.
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(ii) Consider two cases. If p lies on the side of � opposite to xi then by (i) we have
`.�/� d.xi ; p/ > sys.�/. Suppose now p lies on a side adjacent to xj . In this case �
cuts out of � a digon with angles less than � (since p is an interior point of an edge).
So e.�/D � and the statement follows from Corollary 2.15.

(iii) Using (i) and Definition 6.2, we see that 2 sys.S/Dmini;j d.xi ; xj /. Hence there
is a geodesic segment 
� of length 2 sys.S/ that joins two vertices of �.

To prove (7), take the geodesic 
� given by (iii). It cuts out of � a digon, one of
whose sides is a side xixj of the triangle �. If follows that either 2 sys.�/D jxixj j
or 2� � jxixj j. This shows that 2 sys.�/ is no smaller than the right-hand expression
in (7). The opposite inequality follows immediately from Corollary 2.15.

Lemma 6.25 For any balanced triangle � and the corresponding spherical torus
.T .�/; x/, we have sys.�/D sys.T .�//. Conversely, for any spherical torus T and
the corresponding balanced spherical triangle �.T /, we have sys.T /D sys.�.T //.

Proof The first and the second statements are equivalent, so we prove just the first. By
Lemma 6.24(iii), there is a geodesic segment 
� in � of length 2 sys.�/ that joins two
vertices of�. Such a 
� is embedded as a geodesic loop in T .�/, which clearly implies
sys.�/ � sys.T .�//. To get sys.�/ � sys.T .�//, let 
T.�/ be the systole geodesic
loop in T .�/, and let �1 and �2 be two balanced triangles isometric to � from which
T .�/ is glued. It will be enough to prove that 
T.�/ lies entirely in�1 or�2. Assume,
for contradiction, that this is not so. Then 
T.�/ contains two subsegments � and �0

whose interiors lie in the interior of �1 or �2 and which satisfy the conditions of
Lemma 6.24(ii). Applying this lemma, we get l.
T.�// � l.�/C l.�0/ > 2 sys.�/,
which contradicts the established inequality sys.�/� sys.T .�//.

Corollary 6.26 The function sys.�/�1 D 2mini;j
�
min.jxi ; xj j; 2� � jxi ; xj j/

��1 is
proper on MT bal.#/ in the analytic topology.

Proof The function sys.�/�1 is proper on MT .#/ in the L–topology by Corollary 6.4.
At the same time, by Proposition 6.14, the L–topology and the analytic topology
coincide on MT bal.#/.

6.7 Proof of Theorem 6.5

Here we finally prove Theorem 6.5, concerning 2–marked tori. We note first that
Theorem 6.3 holds for 2–marked tori as well; namely, the function sys�1 is proper in
the Lipschitz topology on the space MS.2/1;1.�A/ of such tori of area at most A.
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We will use the following standard lemma, whose proof we omit:

Lemma 6.27 Let X and Y be locally compact Hausdorff topological spaces and let
' WX ! Y be a continuous bijective map.

(i) If ' is proper then it is a homeomorphism.

(ii) Suppose there exist proper functions sX W X ! R and sY W Y ! R such that
sX D sY ı'. Then ' is a homeomorphism.

Proof of Theorem 6.5 (i) By Proposition 3.22(i) MT ˙bal.#/ is a surface, so we need
to show that T .2/ is a homeomorphism. To show we can apply Lemma 6.27, we note:

(a) Every bi-Lipschitz map �!�0 that restricts to a homothety on the edges gives
rise to a �–equivariant bi-Lipschitz map T .2/.�/! T .2/.�0/ with the same
Lipschitz constant. Hence, the map T .2/ is contracting with respect to the L–
metric on MT ˙bal.#/, namely dL.T .2/.�/; T .2/.�0// � dL.�;�

0/. It follows
that T .2/ is continuous. Moreover, T .2/ is bijective by Lemma 4.6.

(b) Since MT ˙bal.#/ is a surface it is locally compact, and the function sys�1 is
proper on it by Corollary 6.26.

(c) The space .MS.2/1;1.#/;L/ is locally compact, and the function sys�1 is proper
on it by Theorem 6.3.

(d) The map T .2/ preserves the function sys�1 by Lemma 6.25.

To sum up, the map T .2/ satisfies all the properties of Lemma 6.27, which proves the
claim.

(ii) The proof of this claim is the same and so we omit it.

Remark 6.28 (orbifold structures on MS1;1.#/ and MS.2/1;1.#/) Let MS.4/1;1.#/
be the set of spherical tori T endowed with a 4–marking, namely an isomorphism
H1.T IZ4/ Š .Z4/2. We endow MS.4/1;1.#/ with the Lipschitz distance measured
among maps between tori that respect the 4–marking. Since 4–marked tori have
no nontrivial conformal automorphisms, MS.4/1;1.#/ is a moduli space for such 4–
marked tori. It is easy to see that the forgetful map MS.4/1;1.#/ !MS.2/1;1.#/ is a
local isometry, and in fact an unramified Galois cover with group K=f˙1g, where
K D ker.SL.2;Z4/! SL.2;Z2//.

Assume first that # is not odd. The space MS.2/1;1.#/ is an orientable surfaces of finite
type by Theorem 6.5 and Proposition 3.22(i), and so the same holds for MS.4/1;1.#/. We
endow MS.2/1;1.#/ with the orbifold structure given by MS.4/1;1.#/=K, and MS1;1.#/
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with the orbifold structure MS.4/1;1.#/=SL.2;Z4/. As a consequence, MS.2/1;1.#/!
MS1;1.#/ is an unramified Galois cover with group SL.2;Z2/Š S3.

Assume that # D 2mC1 is odd. Again, MS.2/1;1.2mC1/
� is a disjoint union of finitely

many 2–dimensional disks by Theorem 6.5 and Proposition 3.25, and so the same holds
for the moduli space MS.4/1;1.2mC 1/

� . The same argument as in Construction 4.16
shows that MS.4/1;1.2mC 1/ fibers over MS.4/1;1.2mC 1/

� with fiber R, and so is a 3–
dimensional manifold. We then put on MS.2/1;1.2mC1/ and MS1;1.2mC1/ the orbifold
structures induced by MS.2/1;1.2mC 1/DMS.4/1;1.2mC 1/=K and MS1;1.2mC 1/D
MS.4/1;1.2mC 1/=SL.2;Z4/. We put a similar structure on the moduli spaces of �–
invariant metrics.

In all cases, the orbifold order of a point in such moduli spaces is the number of
automorphisms of the corresponding (possibly marked) spherical torus.

Appendix Monodromy and coaxiality

In this section we prove that a spherical torus with one conical point of angle 2�# is
coaxial if and only if # is an odd integer. This was already shown in [2].

In order to prove this, we recall that monodromy representation of spherical surfaces
can be lifted to SU.2/:

Proposition A.1 (lift of the monodromy to SU.2/) Let .S;x/ be a spherical surface
with conical points of angles 2�# and let p 2 PS be a basepoint. Let . zPS; Qp/ be
a universal cover of . PS; p/, endowed with the pullback spherical metric , and let
� W zPS ! S2 ŠCP1 be an associated developing map with monodromy representation
� W �1. PS; p/! SO3.R/. Then there exists a lift O� W �1. PS; p/! SU.2/ of � such that

(a) the developing map � extends to the completion yS of zPS and each point of yS n zPS
corresponds to a loop based at p that simply winds about some xj ,

(b) if 
j 2�1. PS; p/ is a loop that simply winds about xj corresponding to a point Oxj
in ySn zPS , then O�.
j /2SU.2/ acts on the complex line �. Oxj /�C2 as multiplication
by ei�.#j�1/.

Moreover , two such lifts multiplicatively differ by a homomorphism �1.S; p/!f˙I g.

Proof In [22, Proposition 2.12] the statement was proven for a surface S of genus 0.
For a surface of arbitrary genus, the proof of existence for a lift is analogous, with
minor modifications. In particular, D will be the complement S n fqg of an unmarked
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point q in S , and the vector field V is chosen to be nowhere vanishing on D and have
vanishing order 2� 2g at q, so that the unit normalized vector field yV on D has even
winding number about q.

Finally, two lifts certainly differ by multiplication by a homomorphism�. PS; p/!f˙I g.
Since the eigenvalues of the monodromy about the punctures are fixed by (b), such a
homomorphism factors through �.S; p/! f˙I g.

We use the above SU.2/–lifting property to characterize 1–punctured tori .S; x/ with
integral angles. In order to do that, choose standard generators f˛; ˇ; 
g of �1. PS/ such
that 
 D Œ˛; ˇ�. Given a spherical metric on .S; x/, its monodromy representation �
can be lifted to an SU2–valued representation O� by Proposition A.1. Write AD O�.˛/,
B D O�.ˇ/ and C D O�.
/, and note that C has eigenvalues e˙i�.#�1/.

Corollary A.2 (monodromy of tori with odd #) Let .S; x/ be a spherical torus with
one conical point of angle 2�# . Then its monodromy is nontrivial. Moreover .S; x/
has coaxial monodromy if and only if # is an odd integer.

Proof As for the first claim, if the monodromy of .S; x/ were trivial, then the develop-
ing map of .S; x/ would descend to a cover S ! S2 ramified at x only. This is clearly
absurd.

As for the second claim, the monodromy � is coaxial if and only if O� is. On the other
hand, since elements in SU.2/ are diagonalizable, O� is coaxial if and only if it is abelian.
Finally, O� is abelian if and only if O�.
/D I , which implies that # is an odd integer.

Corollary A.3 (monodromy of tori with even #) Let .S; x/ be a spherical torus with
one conical point of angle 2�# . Then the monodromy of .S; x/ is isomorphic to the
Klein group K4 ŠZ=2˚Z=2 if and only if # is an even integer. In this case , the three
nontrivial elements in the monodromy group are rotations of angle � along mutually
orthogonal axes of S2.

Proof The monodromy is isomorphic to K4 if and only if

�.˛/2 D �.ˇ/2 D Œ�.˛/; �.ˇ/�D I:

If # is even an even integer, then C D �I . Up to conjugacy, we can assume that
A is diagonal. The relation AB D �BA gives that A has eigenvalues ˙i and B has
zero entries on the diagonal. It follows that A2 D B2 D�I , and so �.˛/2 D �.ˇ/2 D
Œ�.˛/; �.ˇ/�D I . It can be observed that A, B and AB act on S2 as rotations of angle
� along mutually orthogonal axes.
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Conversely, suppose the monodromy is isomorphic to the Klein group. Then C D˙I
and so # must be integral, but # cannot be odd by Corollary A.2. Hence, # is even.
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The derivative map for diffeomorphism of disks: an example

DIARMUID CROWLEY

THOMAS SCHICK

WOLFGANG STEIMLE

We prove that the derivative map d W Diff@.Dk/! �kSOk , defined by taking the
derivative of a diffeomorphism, can induce a nontrivial map on homotopy groups.
Specifically, for k D 11 we prove that the following homomorphism is nonzero:

d� W �5Diff@.D11/! �5�
11SO11 Š �16SO11:

As a consequence we give a counterexample to a conjecture of Burghelea and Lashof
by giving an example of a nontrivial vector bundle E over a sphere which is trivial as
a topological Rk–bundle (the rank of E is k D 11 and the base sphere is S17).

The proof relies on a recent result of Burklund and Senger which determines the
homotopy 17–spheres bounding 8–connected manifolds, the plumbing approach
to the Gromoll filtration due to Antonelli, Burghelea and Kahn, and an explicit
construction of low-codimension embeddings of certain homotopy spheres.

57R50, 57S05; 57R60

1 Introduction

The derivative map

d W Diff@.D
k/!Map..Dk ; @Dk/; .SOk ; Id//'�

kSOk ; f 7! .x 7!Dxf /;

is a basic invariant of the diffeomorphism group of the k–disk; in fact the first-order
approximation in the embedding calculus approach to the diffeomorphism group.
While dQ W Diff@.Dk/Q! .�kSOk/Q, the rationalisation of d , is nullhomotopic, as
we explain in Section 3, much less is known about the derivative map d integrally. For
example, to the best of our knowledge, it was not yet known whether the map induced
by d on homotopy groups,

d� W �iDiff@.D
k/! �iCkSOk ;
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was ever nontrivial. Burghelea and Lashof showed that d� vanishes for i D 0; 1. At odd
primes p, they also showed that d� D 0 provided i < k�3 and they made a conjecture
equivalent to the claim that this holds for p D 2 as well [6, Conjecture, page 40].
Burghelea and Lashof also report A’Campo informing them about a proof that d� D 0

for i D 2 (however, a written proof has not appeared).

Using smoothing theory, or an explicit geometric construction we introduce here, the
map d� admits an interpretation as describing the normal bundle of certain homotopy
spheres embedded in euclidean space. Combining this interpretation with recent results
of Burklund and Senger and the refined plumbing construction of Antonelli, Burghelea
and Kahn, we obtain a counterexample to the conjecture of Burghelea and Lashof.

In more detail, in [3; 4] Antonelli, Burghelea and Kahn constructed families of diffeo-
morphisms of the disk using a pairing

� W �pSOq�a˝�qSOp�b! �aCbC1Diff@.D
pCq�a�b�1/

for 0 � a � q and 0 � b � p, refining Milnor’s plumbing pairing; see below. Now
�8SO6 Š Z=24 (see [12, page 162]) and we have:

Theorem 1.1 Let � 2 �8SO6 Š Z=24 be a generator. The image of �.�; �/ under the
derivative map

d� W �5Diff@.D
11/! �16SO11

is nonzero.

Using Morlet’s smoothing theory isomorphism, the derivative map d� on �k is identified
with the boundary map

@ W �nCkC1PLk=Ok ! �nCkSOk

of the fibration sequence SOk!SPLk!PLk=Ok (and this allows for our interpretation
of [6, Conjecture, page 40] in terms of the derivative map). We conclude that the map
SO11 ! SPL11 is not injective on �16. More specifically, if �11 W S

11 ! BSO11

represents the tangent bundle of the 11–sphere and f W S17 ! S11 represents the
unique nontrivial homotopy class (see [21, Proposition 5.11]), we have:

Corollary 1.2 The pullback f ��11 is a nontrivial vector bundle which becomes trivial
as an R11–bundle , even when considered as a bundle with structure group SPL11.
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To the best of our knowledge, this is the first example of a nontrivial vector bundle over
a sphere which is known to be trivial as a topological Rn–bundle. Milnor famously gave
examples of nontrivial vector bundles over Moore spaces, for example the Moore space
M.Z=7; 7/ D S7 [7 D8, which are trivial as Rn–bundles [17, Lemma 9.1]. These
examples are stable bundles over 4–connected spaces and so the vector bundles are
trivial as piecewise linear bundles too.
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2 Proofs

In this section we give the proofs of Theorem 1.1 and Corollary 1.2. We first recall
Gromoll’s map AD C ı� from [9],

A W �n�kDiff@.D
k/

�
�! �0Diff@.D

n/
C
�!‚nC1;

where ‚nC1 is the group of homotopy .nC1/–spheres. The first map � includes
fibrewise diffeomorphisms of Dn�k �Dk into all diffeomorphisms, and the second C

uses a diffeomorphism of Dn � Sn as a datum to clutch two .nC1/–disks and make a
homotopy sphere.1

Lemma 2.1 For any Œ � 2 �n�kDiff@.Dk/, the homotopy sphere A.Œ �/ 2 ‚nC1

admits an embedding into RnCkC1 whose normal bundle is classified (up to possible
sign) by d�.Œ �/ 2 �nSOk Š �nC1BSOk .

We will offer two proofs of this result; one by an explicit geometric construction and a
more abstract one by the classification of smoothings through Rourke and Sanderson’s
theory of block bundles.

Next we recall that in [16, Section 1], Milnor constructed exotic spheres by plumbing
linear disk bundles and taking the boundary sphere; this construction gives rise to a
pairing

�M W �pSOq˝�qSOp!‚pCqC1:

1The map C is denoted by † in [8].

Geometry & Topology, Volume 27 (2023)



3702 Diarmuid Crowley, Thomas Schick and Wolfgang Steimle

By [3, Proposition 3.1], the pairing of Antonelli, Burghelea and Kahn refines this
pairing in the sense that we have a commutative diagram

(1)

�pSOq�a˝�qSOp�b
�

//

��

�aCbC1Diff@.DpCq�a�b�1/

A

��

�pSOq˝�qSOp
�M

// ‚pCqC1

where the map on the left is the tensor product of the canonical stabilisations. We now
consider the homotopy 17–sphere

†�;� WDA.�.�; �//;

recalling that � 2 �8SO6ŠZ=24 denotes a generator. By the commutativity of (1) and
the definition of �M , †�;� is the boundary of an 8–connected compact 18–manifold
and so by a recent result of Burklund and Senger [7, Theorem 1.4] its image under the
normal invariant map ‚17! coker.J17/ must be either 0 or Œ��4�. We will show:

Lemma 2.2 The homotopy sphere †�;� represents Œ��4� 2 coker.J17/.

We deduce from this that every embedding †�;� ,!S28 has a nontrivial normal bundle.
Indeed, recall that the map ‚17! coker.J17/ is obtained by embedding a homotopy
17–sphere into some euclidean space with trivial normal bundle, and performing the
Pontryagin–Thom collapse as to obtain an element in �s

17
which is well-defined modulo

the image of J . Now, assuming by contradiction that †�;� embeds into S28 with trivial
normal bundle, then Œ��4� would have a representative in �28S11. However, this
contradicts the computations of Toda [21, Theorem 12.17 and Proposition 12.20] on
the stabilisation map �28S11! �s

17
, which we display below:

�28S11 D Z=2..�2�/11/˚ Z=2..�17/11/˚ Z=2..��/11/

�� 		 �� zz

�s
17
D Z=2.�2�/˚ Z=2.�17/˚ Z=2.��/˚ Z=2.��4/

Here the notation is such that an element .ı/11 stabilises to ı and the stable class �2�

generates im.J17 W �17.SO/! �s
17
/. Lemma 2.1 then implies that d�.�.�; �// ¤ 0,

which concludes the proof of Theorem 1.1, modulo Lemmas 2.1 and 2.2.

To prove Corollary 1.2 we note that by Lemma 2.1 the normal bundle �.†�;� � S28/

has clutching function ˙d�.�.�; �// 2 �16SO11 and d�.�.�; �//¤ 0 by Theorem 1.1.
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Moreover, d�.�.�; �// maps to 0 2 �16SPL11; this is explained following Theorem 1.1
using the exact sequence ��C1.PL11=O11/

d�
�! ��.SO11/ �! ��.SPL11/. Now by

Antonelli [2], the normal bundle of every homotopy 17–sphere embedded in euclidean
space in codimension 12 is zero. Hence

�.†�;� � S28/ 2 ker.�17BSO11! �17BSO12/D im.�17S11
! �17BSO11/;

where the last map is induced by the classifying map of the tangent bundle of the
11–sphere.

It remains to prove Lemmas 2.1 and 2.2.

Proof of Lemma 2.1 Choose a smooth map  WDn�k �Dk !Dk representing the
class Œ �2�n�k.Diff@.Dk//, ie for x2Dn�k we have that x WD .x;�/2Diff@.Dk/,
and  x D IdDk for x 2 @Dn�k . Then �.Œ �/ is represented by

‰ WDk
�Dn�k

!Dk
�Dn�k ; .x;y/ 7! .x;  .x;y//;

and A.Œ �/ is represented by the homotopy sphere †nC1
‰

obtained by gluing two copies
of DnC1 along the boundary using the diffeomorphism ‰. Note also that the image
of Œ � under the derivative map is represented by d W Dn�k �Dk ! Glk.R/ with
d .x;y/DDy x .

For technical reasons, we actually assume without loss of generality that the maps are
the identity maps in a neighbourhood of the boundaries.

We construct an explicit embedding � W †
nC1
‰

,! SnCkC1 of †nC1
‰

, compute the
normal bundle of this embedding and show explicitly that it is obtained by clutching
with d .

As might be expected, given that all our data is on disks (and trivial near the bound-
ary of the disks), we actually produce an interesting embedding � of DnC1 D

Dn�k �Dk � Œ0; 1� into DnCkC1 D Dn�k �Dk �Dk � Œ0; 1�, which has standard
form near the boundary, and then obtain an embedding of †nC1

‰
by gluing with a

standard embedding of DnC1 into DnCkC1 in the appropriate way.

The desired embedding � is explicitly given by

� WD
n�k
�Dk

� Œ0; 1�!Dn�k
�Dk

�Dk
� Œ0; 1�;

.x;y; t/ 7! .x; ˛.t/y; ˇ.t/ x.y/; t/:

Here, ˛; ˇ W Œ0; 1�! Œ0; 1� are smooth maps such that ˛.t/D 1 for t < 0:6 and ˛.t/D 0

for t > 0:9, and ˇ.t/D ˛.1� t/.
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This is evidently a smooth embedding whose image we denote by S , and we let
@S D � .@D

nC1/. Then @S � @DnCkC1: to see this, observe that if either the x– or
the t–coordinate is in the boundary, then the first or fourth coordinate of the image point
is so, too. For each t 2 Œ0; 1�, then ˛.t/D 1 or ˇ.t/D 1. If y 2 @Dk , then therefore
either the second or the third component of the image point is in the boundary (or both).
As @.Dn�k �Dk � Œ0; 1�/ is the union of those points with at least one component in
the boundary, this proves the claim.

We also note that the subset @S � @DnCkC1 is in fact independent of  (as  is fixed
to be the identity map near the boundary). Let us identify this image set @S with
Sn D @.Dn�k �Dk � Œ0; 1�/ via the restriction of �Id to @.Dn�k �Dk � Œ0; 1�/.

Then � jW @.Dn�k �Dk � Œ0; 1�/! @.Dn�k �Dk �Dk � Œ0; 1�/ is supported on the
disk Dn�k �Dk � f1g, where it is given by ‰. Therefore, we can glue two copies of
Dn�k �Dk �Dk � Œ0; 1� along the boundary by the identity map to obtain SnCkC1,
and the embeddings � in one copy and �Id in the other glue together to form the desired
embedding of †nC1

‰
into SnCkC1.

Strictly speaking, one has to round the corners off to get an actual smooth embedding.
This can easily be achieved, as  is the identity in a neighbourhood of the boundaries.
We omit spelling out the somewhat cumbersome details.

It remains to compute the normal bundle of the embedding. To do this, we first compute
the differential

D� W .D
n�k
�Dk

� Œ0; 1�/� .Rn�k
˚Rk

˚R/! S � .R
n�k
˚Rk

˚Rk
˚R/

to be given in each fibre by

D.x;y;t/� D

0BB@
1 0 0

0 ˛.t/ ˛0.t/y

ˇ.t/ @x ˇ.t/ d ˇ0.t/ x.y/

0 0 1

1CCA :
We obtain an explicit trivialisation of the normal bundle of this embedding via the
fibrewise linear map covering � ,

� WDn�k
�Dk

� Œ0; 1��Rk
! S � .R

n�k
˚Rk

˚Rk
˚R/;

�.x;y;t/ D

0BB@
0

�ˇ.t/.d /�1

˛.t/

0

1CCA :
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To observe that this really describes the normal bundle, for dimension reasons we just
have to check that the image of � intersects the tangent bundle of S , ie the image
of D� , trivially. It is clear that �.v/ can only be equal to a tangent vector of the
form .0; ˛.t/w; ˇ.t/ d .w/; 0/ for w 2 Rk . This implies ˛.t/v D ˇ.t/ d .w/ and
�ˇ.t/v D ˛.t/ d .w/; the two equations imply ˛.t/2v D �ˇ.t/2v and finally (as
˛.t/2C ˇ.t/2 > 0) then v D 0 and then also w D 0. It follows that the image of �
represents the normal bundle of S in DnCkC1.

For the other half-disk which produces the embedding of †nC1
‰

into SnCkC1, we
obtain a trivialisation of the normal bundle by the same recipe, replacing  by Id. We
observe then that we obtain the global normal bundle by gluing these two explicitly
chosen normal subbundles of TDnCkC1 along the boundary, where they coincide. The
trivialisations differ precisely on the half-disk �.Dn�k�Dk�f1g/, and there they differ
by the derivative map d . On the other half-disk, the two trivialisations coincide.

Consequently, the normal bundle of the embedding � is obtained by clutching with d ,
precisely as claimed, and the lemma is proved.

Remark 2.3 It is tempting to hope that the explicit geometric construction of d� as the
normal bundle of the embedding � can be used to get some new information about d�.
On the other hand, the information obtained by the formulas in the proof given above
seems rather limited. At least in the case where  lies in the image of � , we present
Conjecture 3.1 below on d� ı � .

Proof of Lemma 2.2 Let A18
8

denote the group of bordism classes relative boundary
of 8–connected 18–manifolds with boundary a homotopy sphere, which are defined in
[23, Section 17]. Specifically, elements of A18

8
are represented by compact oriented

8–connected 18–manifolds W with boundary a homotopy sphere, and W1 is bordant to
W2 if there is an h–cobordism Y between their boundaries such that the closed manifold
W1[Y [�W2 bounds an 8–connected 19–manifold. According to [23, Section 17]
and [22, Theorem 2(5)], we have an isomorphism

(2) A18
8 ! Z=2˚Z=2; ŒW � 7! .ˆ.'W /; 'W .y�W //:

Here 'W WH9.W IZ/! Z=2 is a quadratic refinement of the mod 2 intersection form
defined as follows. By [22, Lemma 2], representing an integral homology class by an
embedded sphere and taking its normal bundle gives rise to a quadratic map

˛W WH9.W IZ/! �8SO9:
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Since the stabilisation map S W �8SO9! �8SOD Z=2 is split surjective with kernel
Z=2, from ˛W we obtain a quadratic map 'W W H9.W IZ/ ! Z=2 with values in
Z=2D ker.S/ by fixing a splitting of �8SO9. The first component of (2) is the Arf
invariant of 'W and we next define the second component. Let S˛W WH9.W IZ/!

Z=2D �8.SO/ be the composition of ˛W with the stabilisation map S above. Using
[22, Lemma 2] again, we see that S˛W is a homomorphism. Define �W 2H9.W IZ=2/

to be the Poincaré dual of

S˛W 2 Hom.H9.W IZ/;Z=2/DH 9.W IZ=2/ŠH 9.W; @W IZ=2/:

The second component of (2) is given by evaluating 'W on any integral lift y�W of �W .

Let S3.�/2�8SO9 be the image of � 2�8SO6 under the inclusion SO6!SO9. By the
commutativity of (1),†�;� is the boundary of the Milnor plumbing W of S3.�/2�8SO9

with itself, and we compute 'W .y�W / as follows: with H9.W IZ/D Z.x/˚Z.y/ the
normal bundles obtained from representing x and y by embeddings are both given by
S3.�/. We conclude that 'W .x/D 'W .y/. Moreover, we may use that in this basis
the intersection form �W of W has matrix�

0 1

�1 0

�
:

Furthermore, S3.�/ stabilises to a generator of �8SO, by Lemma 2.4 below. Thus,
S˛W maps both x and y to a generator and so we may take y�W D xC y. We now
compute that

'W .y�W /D 'W .xCy/D 'W .x/C'W .y/„ ƒ‚ …
D0

C�2.�W .x;y//D 1;

where �2 denotes reduction mod 2.

Now, taking the homotopy sphere on the boundary defines a homomorphism

(3) @ WA18
8 !‚17:

From the short exact sequence

0! bP18.D Z=2/!‚17! coker.J17/! 0

and [7, Theorem 1.4], we see that the image of the map @ from (3) consists of precisely
4 different elements, so the map @ is injective. Each of the bP–spheres is the boundary
of a manifold P which satisfies S˛P D 0 and therefore 'P .y�P / D 0 and it follows
that the element W from above must map under @ to a non-bP–sphere, which then
represents Œ��4� in view of [7, Theorem 1.4].

Geometry & Topology, Volume 27 (2023)



The derivative map for diffeomorphism of disks: an example 3707

Lemma 2.4 The map Z=24Š �8SO6! �8SOŠ Z=2 is surjective.

Proof By [14, Theorem 1.4], .Z=2/3Š �8SO8! �8SOŠZ=2 is onto and therefore
has a kernel of 4 elements. (We refer to [12] for the computation of the relevant
homotopy groups.) On the other hand, .Z=2/2 Š �8SO7 ! �8SO8 is injective (its
cokernel injects into �8.S

7/Š Z=2) and so has an image of 4 elements. These two
subgroups do not coincide: Since the maximal number of pointwise linearly independent
vector fields on S9 is 1 [1, Theorem 1.1], the tangent bundle of S9 defines an element
in �8SO8 that is not in the image of �8SO7 but maps to 0 2 �8SO.

Therefore, .Z=2/2 Š �8SO7! �8SO is surjective and has a kernel of precisely two
elements; similarly the image of Z=24 Š �8SO6 ! �8SO7 Š .Z=2/2 consists of
precisely two elements (its cokernel injects into �8S6 Š Z=2), and we are left to
show that these two subgroups do not agree. To see this, we consider the element
a WD .2
 /7�7 where .2
 /7 is a generator of Z Š �7SO7 and �7 W S

8 ! S7 is the
nontrivial class: By [14, Theorem 1.4], .2
 /7 stabilises to an element divisible by 2
and so a is in the kernel of the stabilisation; and it does not lift to �8SO6 by the
commutativity of the following diagram with exact rows:

�7SO7
//

�7

��

�7S6 //

�7Š

��

�6SO6 .D 0/

�8SO6
// �8SO7

// �8S6

We conclude this section by giving the promised second proof of Lemma 2.1. To
this end we recall from [18, Section 6] that a smoothing of SnC1 in SnCkC1 consists
of a smooth manifold W and a PL homeomorphism H W W ! SnCkC1, such that
† WDH�1.SnC1/�W is a smooth submanifold, and such that H is concordant to the
identity smoothing of SnCkC1; and recall the group dk

nC1
of concordance classes of

such smoothings.2 We note that up to diffeomorphism, W is a standard sphere mapping
to SnCkC1 by a PL homeomorphism concordant to the identity, so that elements
of dk

nC1
are represented by PL homeomorphisms H W SnCkC1! SnCkC1 which are

concordant to the identity (ie orientation-preserving). Note also that † is a homotopy
.nC1/–sphere, oriented through the PL homeomorphism h WDH j†, which is smoothly
embedded into SnCkC1.
2The group dk

nC1 is denoted by �k
nC1

in [18]. We have used different notation, to avoid confusion with
the notation �nC1

k
for the subgroups of the Gromoll filtration.
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There are two obvious homomorphisms out of dk
nC1

,

‚nC1
F
 � dk

nC1
�
�! �nC1BSOk ;

the left one mapping the class of H to the diffeomorphism class of †, and the right
one to the classifying map of the normal bundle of †� SnCkC1 (where, as usual, we
identify a homotopy sphere up to homotopy equivalence with a standard sphere using
the given orientation). Then, Lemma 2.1 is clearly implied by the following result:

Lemma 2.5 There exists a group homomorphism B W �n�kDiff@.Dk/! dk
nC1

such
that the following diagram commutes up to possible signs:

�n�kDiff@.Dk/
d�

//

B
��

A

xx

�nSOk

Š

��

‚nC1 dk
nC1

F
oo

�
// �nC1BSOk

Proof We recall the homotopy equivalence

Mk W Diff@.D
k/!�kC1PLk=SOk

of Morlet (see [5, Theorem 4.4]) and consider the diagram

(4)

�0Diff@.Dn/

.Mn/�

��

C Š

%%

�n�kDiff@.Dk/
�

oo
d�

//

.Mk/�
��

�nSOk

�nC1PLk=Ok

zi
��

S

vv

@
// �nSOk

�nC1PL=O �nC1
fPLk=Ok

zS
oo

@
// �nSOk

‚nC1

‰Š

OO

dk
nC1

Š

OO

F
oo

�
// �nC1BSOk

Š

OO

Here ‰ is the map which sends a homotopy sphere † to the element represented by the
tangent PL microbundle of the mapping cylinder cyl.h W†! SnC1/ of an orientation-
preserving PL homeomorphism h, along with its linear structure induced by the smooth
structure of † on the † end of the cylinder and its canonical trivialisation at the
SnC1 end. The map‰ is an isomorphism by surgery theory; see eg [15, Theorem 6.48].
The map dk

nC1
! �nC1

fPLk=Ok is an isomorphism by [18, Corollary 6.7]: it is defined
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by sending the class of .H; h/ W .SnCkC1; †nC1/! .SnCkC1;SnC1/ to the normal
block bundle �cyl of cyl.h/ inside cyl.H / along with its linear reduction at the†nC1 end
of the cylinder and its canonical trivialisation at the other end. Finally, the map zS is ob-
tained from the fact that the inclusion PL!fPL is an equivalence [19, Corollary 5.5(ii)];
that is, there is no essential difference between stable PL (micro)bundles and stable
block bundles.

We claim that the lower left square of (4) is commutative up to sign. To see this, we may
assume, increasing k if necessary, that the normal block bundle �cyl is given by a PL
microbundle. Then, the sum of the two composites, applied to Œ.H; h/�, is represented
by the direct sum microbundle T cyl.h/˚�cyl over cyl.h/ along with its linear reduction
at the front end and its canonical trivialisation at the other end. But now, we have
an isomorphism T cyl.h/ ˚ �cyl Š T cyl.H /jcyl.h/ of microbundles which extends
isomorphisms T†˚ �†�SnCkC1 Š TSnCkC1j† and TSnC1 ˚ �SnC1�SnCkC1 Š

TSnCkC1jSnC1 of vector bundles.

Since H is PL isotopic to the identity (being an orientation-preserving PL homeomor-
phism of the sphere), we conclude that the sum of the two composite maps, applied to
Œ.H; h/�, represents the zero element.

All other parts of this diagram commute up to possible signs: the commutativity of the
squares on the right and of the triangle in the middle follows from the definitions. That
Mn� ı�D S ıMk� follows from [8, Lemma 2.5], and that Mn� D‰ ıC is proven in
[8, Lemma 2.7]. The lemma now follows by a diagram chase.

3 Concluding remarks

In this section we discuss some of the background to our results and state a conjecture
about the map d� ı � .

(1) The homotopy fibre of d W Diff@.Dk/! �kSOk is the H–space Difffr
@ .D

k/ of
framing-preserving diffeomorphisms. It is the loop space of the classifying space
BDifffr

@ .D
k/, which features in the recent work of Kupers and Randal-Williams [13] on

the rational homotopy groups of Diff@.Dk/. We see that d is rationally trivial because
the Alexander trick implies that d becomes nullhomotopic after composition with the
natural map�kSOk!�kSPLk . It is well known that .SOk/Q is Eilenberg–Mac Lane,
detected by the suspensions of the rational Pontryagin classes and rational Euler class.
Since these classes are defined on .SPLk/Q, it follows that .SOk/Q is a homotopy
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retract of .SPLk/Q. If �k
0
X denotes the connected component of the constant map,

then it follows that .�k
0

SOk/Q '�
k
0
.SOk/Q is a homotopy retract of .�k

0
SPLk/Q,

showing that the map d W Diff@.Dk/!�k
0

SOk is rationally nullhomotopic.

(2) The proof of Theorem 1.1 relies on the fact that the normal bundle of any embedding
†�;� ,!S28 is nontrivial. Despite the elementary argument we give for this in Section 2,
computing the normal bundle of an embedding of a homotopy sphere g W †nC1 ,!

SnCkC1 is a subtle problem. Provided one is in the metastable range n < 2k�4,
Haefliger [10] proved that the isotopy class of g depends only on the diffeomorphism
type of †, so that, in particular, the normal bundle is independent of the choice of
embedding. Hsiang, Levine and Sczarba [11] proved that the latter statement holds
even for n< 2k�2, defined the homomorphism

�k
nC1 W‚nC1! �nC1BSOk ; † 7! �.†� SnCkC1/; where n< 2k � 2;

and proved that �13
16
¤ 0; ie the exotic 16–sphere embeds into S29 with nontrivial

normal bundle. Then Antonelli [2] made a systematic study of normal bundles of
homotopy spheres in the metastable range, which includes the statement that �11

17
¤ 0.

(3) Concerning A’Campo’s claim that d� vanishes for i D 2, we note that, since
�13

16
¤ 0, Lemma 2.1 entails that if A’Campo’s claim holds, then the exotic 16–sphere

does not lie in the image of the map A W�2Diff@.D13/!‚16DZ=2. This is consistent
with computations we have made for the refined plumbing pairing

� W �8SO6˝�7SO8! �2Diff@.D
13/;

which show that A ı � D 0, even though �M W �8SO7˝�7SO8!‚16 is nontrivial, a
statement which can be deduced from [20, Satz 12.1].

(4) Finally, we present a conjectural description of the homomorphism

d� ı � W �pSOq�a˝�qSOp�b! �pCqSOpCq�a�b�1

in purely homotopy-theoretic terms.

Let h W�iSOj!�i.S
j�1/ be the map induced by the canonical projection SOj!Sj�1.

For maps f WW ! X and f W Y !Z let f � g WW �Y ! X �Z be their join. Let
@ W�mC1.S

k/!�mSOk denote the boundary map in the homotopy long exact sequence
of the fibration SOk ! SOkC1! Sk . For compactness, we use the notation

p0 WD p� b and q0 WD q� a
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and let �1 2 �pSOq0 and �2 2 �qSOp0 . Then we have

h.�1/ 2 �p.S
q0�1/; h.�2/ 2 �qSp0�1 and h.�1/� h.�2/ 2 �pCqC1.S

p0Cq0�1/;

so that @
�
h.�1/� h.�2/

�
2 �pCqSOp0Cq0�1.

In addition, we have the J–homomorphisms

Jp;q0 W �pSOq0 ! �pCq0S
q0 and Jq;p0 W �qSOp0 ! �qCp0S

p0 ;

and we can suspend in the target of each of these to get the homomorphisms

†a
ıJp;q0 W �pSOq0 ! �pCqSq and †b

ıJq;p0 W �qSOp0 ! �pCqSp:

We then take compositions with the maps induced by �i for i D 1; 2 and the inclusions
ip0 W SOp0! SOp0Cq0�1 and iq0 W SOq0! SOp0Cq0�1. Hence we have homomorphisms

�2� W �pSOq0
†aıJp;q0

�����! �pCqSq �2�
��! �pCqSOp0

ip0�
��! �pCqSOp0Cq0�1;

�1� W �qSOp0
†bıJq;p0

�����! �pCqSp �1�
��! �pCqSOq0

iq0�
��! �pCqSOp0Cq0�1:

Conjecture 3.1 Up to sign , the homomorphism

d� ı � W �pSOq0 ˝�qSOp0 ! �pCqSOp0Cq0�1

is given by

d�.�.�1; �2//D @
�
h.�1/� h.�2/

�
C �1�.�2/C �2�.�1/:

We briefly discuss Conjecture 3.1 in light of Theorem 1.1 and Corollary 1.2. For
� 2 �8SO6 a generator, h.�/ 2 �8S5 Š �s

3
is again a generator and we choose � so

that h.�/D �5. Hence Conjecture 3.1 gives d�.�.�; �//D @.�5 � �5/C 2��.�/. Now
�16S8 Š .Z=2/4, which entails that 2��.�/D 0 and the proof of Corollary 1.2 shows
that d�.�.�; �// D @.�2

11
/. Since �5 � �5 D �2

11
, Conjecture 3.1 is consistent with

Theorem 1.1 and Corollary 1.2, with both giving the same nonzero expression for
d� ı � W �8SO6˝�8SO6! �16SO11.
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On self-shrinkers of medium entropy in R4

ALEXANDER MRAMOR

We study smooth asymptotically conical self-shrinkers in R4 with Colding–Minicozzi
entropy bounded above by ƒ1.

53A10, 53E10

1 Introduction

Self-shrinkers are basic singularity models for the mean curvature flow, and, in the
noncompact case, nongeneric ones (generic ones being generalized round cylinders
Sk.
p

2k/�Rn�k) are expected to often be asymptotically conical. Our purpose is to
understand the topology of smooth self-shrinkers M 3 �R4 with Colding–Minicozzi
entropy �.M /, discussed in Section 2, bounded above by ƒ1, the entropy of the
round circle.

Our main result is, in part, inspired by arguments of Bernstein and L Wang [3],
Hershkovits and White [21], Ilmanen and White [24], Mramor [28], Mramor and
S Wang [29] and White [39]. The basic idea is that by considering renormalized
mean curvature flows out of (appropriate perturbations of) asymptotically conical self-
shrinkers, we may use the entropy assumption to constrain which types of singularities
may occur. This has strong implications for how topology may change under the flow.
This is useful because topology can, in a sense, be used to “trap” the flow. On the other
hand, the flow must clear out; these two principles can then be combined to constrain
the topology of the self-shrinker in question.

Theorem 1.1 Suppose M 3 � R4 is a smooth 2–sided asymptotically conical self-
shrinker with entropy less than ƒ1 and k ends. Then it is diffeomorphic to S3 with k

3–balls removed and replaced with k copies of S2�RC attached along their respective
boundaries. If k D 1 then M 'R3, and in particular this is the case when �.M /�ƒ2.
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3716 Alexander Mramor

This extends to the noncompact case joint work of the author and S Wang [29] on
compact self-shrinkers M n � RnC1 when n D 3, where they showed that, for each
n� 3, closed self-shrinkers M n with ƒ.M / < ƒn�2 are diffeomorphic to Sn. This in
turn extends a result of Colding, Ilmanen, Minicozzi, and White [9], which says closed
self-shrinkers with entropy less than ƒn�1 Œ ƒn�2 are diffeomorphic to Sn, hence
weakening the assumed entropy bound. In a similar manner, the result above extends
(in a weaker sense than the compact case) a result of Bernstein and L Wang [4] for non-
compact shrinkers in R4, where they showed (amongst other results; see Corollary 1.4
therein), for asymptotically conical self-shrinkers M 3 � R4 satisfying �.M / � ƒ2,
the stronger conclusion that they are diffeomorphic to R3. Our argument does at least
recover their statement, as discussed at the end of the proof. With the round cylinder
in mind, our conclusion seems likely to be sharp in this sense, although it could be
possible that a shrinker in R4 with this entropy bound has more than one end precisely
when it is a cylinder.

In this dimension and under this entropy bound, we remark that generic mean curvature
flow through neck-pinch singularities has been established by Chodosh, Choi, Man-
toulidis and Schulze [7; 8], so for some applications of the flow (see for instance Daniels-
Holgate [12]) the study of self-shrinkers in this regime is unnecessary. However, besides
its intrinsic interest, this result might still be of use in understanding singularity along
nongeneric flows, which could imaginably occur, for instance, in problems involving
families of flows (although to the author’s knowledge, potential fattening is a more
serious concern). It also paints an explicit picture of how a perturbation of a nongeneric
flow might only develop neck-pinch singularities, by some copies of the S2 �RC in
the statement above pinching off before, roughly speaking, the S3 factor collapses to
a point (as opposed to handles prematurely pinching off a more complicated model).

An important extra difficulty to consider in the noncompact case versus the closed case
is that, a priori, nontrivial topology may be “lost” to spatial infinity under the flow
without being properly understood. To illustrate this concern by an admittedly crude
thought experiment, a hypothetical translator asymptotically modeled on T 2�R would
never develop a singularity, and hence its topology would never be “encountered” as
a high curvature region in the flow. In particular it seems, for nD 3, asymptotically
conical self-shrinkers could a priori have a complicated link. Our first task, and really
most of the work of this paper, will be to show that in fact the link is simple.

Theorem 1.2 Suppose M 3 � R4 is a smooth 2–sided asymptotically conical self-
shrinker with entropy less than ƒ1. Then its link L is homeomorphic to a union of S2.

Geometry & Topology, Volume 27 (2023)
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As an indication of why one might argue this is reasonable, consider that, in general, the
link L of a shrinker M n �RnC1 is of dimension n� 1, so an entropy bound of ƒn�2

on M n implies morally that its link is low-entropy; for a submanifold N k �RkC1, we
say N is low entropy if �.N / < ƒk�1 (hence the title of paper, since ƒk�2 >ƒk�1,
as discussed in the next section). These compact surfaces with this entropy bound, at
least in low dimensions (nD 2; 3), are known to be spheres.

The dimension bound assumption is for topological reasons1 that perhaps indicate a
deficit in knowledge and finesse more than any true difficulty. Potentially providing
a sliver of hope that this is the case, Ilmanen and White [24] showed lower bounds
for the densities of area-minimizing cones in terms of the topology of their link in
every dimension. The area-minimizing property there is employed by using a foliation
near the cone by minimal surfaces, which are used as barriers in a mean curvature flow
argument (at a high level our argument is similar to theirs). Since cones are noncompact,
this is clearly the same sort of result as ours.

For instance, one might hope to directly modify our argument in the next higher
dimension (nD4) because simply connected 3–manifolds are spherical by the resolution
of the 3D Poincaré conjecture by Perelman [30; 31; 32] — we use the corresponding
(much easier) fact for surfaces below to classify the link. As an example of why this
simple criterion alone doesn’t seem to immediately lead to a proof of the corresponding
statement for nD 4, a potential issue (to the author’s understanding) in this dimension
is that the link could be a nontrivial homology sphere — below we use that nonspherical
oriented surfaces have nontrivial homology in a seemingly essential way. For higher
dimensions, of course, there are higher-dimensional versions of the Poincaré conjec-
ture, as verified by Freedman [14] and Smale [33]; this naturally seems even more
complicated, for a number of reasons, than the nD 4 case just discussed.

Acknowledgements The author is supported by an AMS–Simons travel grant and
thanks them for their generosity, as well as the referee for their careful reading and
critique.

2 Preliminaries

Let X WM!N nC1 be an embedding of M realizing it as a smooth closed hypersurface
of N , which by abuse of notation we also refer to as M . Then the mean curvature flow

1In the argument we use the classification of surfaces, Alexander’s theorem, and Dehn’s lemma, which are
dimension-dependent. In a probably less essential way, the 3D Poincaré conjecture is also used.
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Mt of M is given by (the image of) X WM � Œ0;T /!N nC1 satisfying the following,
where � is the outward normal:

(2-1) dX

dt
D EH D�H�; X.M; 0/DX.M /:

By the comparison principle, singularities occur often, which makes their study impor-
tant. To study these singularities, one may parabolically rescale about the developing
high curvature region to obtain an ancient flow defined for times .�1;T �; when
the basepoint is fixed, this is called a tangent flow blowup which will be modeled on
self-shrinkers. By Huisken monotonicity [22] these are surfaces equivalently defined as

(1) M n �RnC1 satisfying H � 1
2
hX; �i D 0, where X is the position vector;

(2) minimal surfaces in the Gaussian metric Gij D e�jxj
2=.2n/ıij ; or

(3) surfaces M which give rise to ancient flows Mt that move by dilations by setting
Mt D

p
�tM .

(These notions all make sense at least when the shrinker is smooth, but some definitions
apply in the varifold sense as well.) As is well known, the second variation formula
for area shows there are no stable minimal surfaces in Ricci positive manifolds; see,
for instance, Chapter 1 of [10]. This turns out to also be true for minimal surfaces
of polynomial volume growth in Rn endowed with the Gaussian metric as discussed
in [11]. To see why this is so, the Jacobi operator for the Gaussian metric is given by

(2-2) LD�CjAj2� 1
2
hX;r. � /iC 1

2
:

The extra 1
2

term is essentially the reason such self-shrinkers are unstable in the Gaussian
metric. For example, owing to the constant term it’s clear in the compact case that one
could simply plug in the function “1” to get a variation with Lu > 0 which doesn’t
change sign, implying that the first eigenvalue is negative. In fact, every properly
embedded shrinker has polynomial volume growth by Q Ding and Y L Xin:

Theorem 2.1 [13, Theorem 1.1] Any complete noncompact properly immersed
self-shrinker M n in RnCm has Euclidean volume growth at most.

We combine these facts below to conclude that the self-shrinker we find in some cases
must in fact be unstable.

The mean curvature flow is best understood in the mean convex case because it turns
out, under quite weak assumptions, the only possible shrinkers are generalized cylinders
Sk �Rn�k . This is especially so for 2–convex surfaces (�1C�2 > 0), and a surgery

Geometry & Topology, Volume 27 (2023)
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theory with this convexity condition similar to the Ricci flow with surgery has been
carried out. For the mean curvature flow with surgery, one finds, for a 2–convex
surface M , curvature scales Hth < Hneck < Htrig such that when H DHtrig at some
point p and time t the flow is stopped, and suitable points where H �Hneck are found to
do surgery where “necks” (at these points the surface will be approximately cylindrical)
are cut and caps are glued in. The high curvature regions are topologically identified
as Sn or Sn�1 �S1 and discarded, and the low curvature regions will have curvature
bounded on the order of Hth. The flow is then restarted and the process repeated.

It was initially established for compact 2–convex hypersurfaces in RnC1 where n� 3 by
Huisken and Sinestrari in [23], and their approach was later extended to the case nD 2

by Brendle and Huisken in [5], where 2–convexity is mean convexity. A somewhat
different approach covering all dimensions simultaneously was given later by Haslhofer
and Kleiner in [17] shortly afterwards. Haslhofer and Ketover then showed several
years later in Section 8 of [15], en route to proving their main result, that the mean
curvature flow with surgery can be applied to compact mean convex hypersurfaces in
general ambient manifolds. Important to this article, the author with S Wang established
it for (compact) mean convex hypersurfaces with entropy less than ƒn�2 in the sense
of Colding and Minicozzi.

In [10], Colding and Minicozzi introduced their important notion of entropy, which is
defined as the supremum of translated and rescaled Gaussian densities; indeed, consider
a hypersurface†k �R`. Then, given x0 2R` and r > 0, define the functional Fx0;r by

(2-3) Fx0;r .†/D
1

.4�r/k=2

Z
†

e�jx�x0j
2=.4r/ d�:

(When x0 D
E0 and r D 1, this is just a normalization of area in the Gaussian metric.)

Colding and Minicozzi then define the entropy �.†/ of a submanifold to be the
supremum over all Fx0;r functionals:

(2-4) �.†/D sup
x0;r

Fx0;r .†/:

The aforementioned Huisken monotonicity [22] implies that this quantity is in fact
monotone under the flow, and because it is defined as a supremum over rescalings and
recenterings, it also controls the nature of singularities encountered along the flow;
see [9; 2; 3; 4] for instance. Note that surfaces of polynomial volume growth have
finite entropy.

Geometry & Topology, Volume 27 (2023)
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The current state of knowledge of mean curvature flow singularities approached from
an entropy perspective seems to be “quantized” by the entropy ƒk of round spheres as
we now discuss. By a calculation of Stone [34] we have

ƒ1 >
3
2
>ƒ2 > � � �>ƒn!

p
2:

So far in the literature, many results using an entropy condition assume that the
submanifold M under consideration satisfies �.M / < ƒn�1, which seems to most
often be referred to as a low or small entropy condition. The next natural entropy
condition to consider then is a bound by ƒn�2, which we refer to as a medium entropy
bound; one might expect studying surfaces with this entropy bound to be tractable
because morally it implies that mean convex singularities encountered will be 2–convex,
which as implied above in the discussion on surgery are the easiest to consider/flow
through (after convex ones). Indeed this philosophy was carried out in the compact
case in the joint work with S Wang [29] (“low” in its title refers to what we define as
medium). An important observation for our argument is that this philosophy can be
extended to the noncompact setting, but there are significant new issues to consider. For
instance, in the noncompact case the asymptotics of the submanifold in question matter.

Throughout this article we will say an end E of a self-shrinker is asymptotically conical
if E satisfies lim�!1 ��1E D C.E/ in C1loc .R

nC1 n 0/ for C.E/ a regular cone
in RnC1. A similar definition can be made for asymptotically cylindrical ends, and
by results of L Wang [35], for nD 2 every end of a self-shrinker of finite topology is
either asymptotically conical or cylindrical (with multiplicity one). Naturally, one says
a self-shrinker is asymptotically conical if every end is. Considering singular/GMT
extensions of shrinkers and asymptotically conical ends in a natural way, under suitable
entropy assumptions and assumptions on the underlying measure, the support of the
shrinker and asymptotic cone can be shown to be smooth (so asymptotically conical as
in the sense above); see [4, Propositions 3.2 and 3.3; 8, Lemma 2.1]. In particular, our
theorem applies to asymptotically conical (in the weak sense) shrinkers which arise as
blowups under our entropy assumption in R4. Note, since ƒ1< 2, that the convergence
will be with multiplicity one.

In the same paper where they introduced entropy, Colding and Minicozzi showed the
only singularities which morally shouldn’t be able to be perturbed away are the mean
convex ones, the generalized round cylinders Sk.

p
2k/�Rn�k , called round because

the spherical factor is a standard round sphere of a radius appropriate to satisfy the
shrinker equation. In particular, other singularity models should be able to be perturbed
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away, so round cylinders are called generic singularity models. Their numbers are few
(only n of them), whereas for instance in R3 there are self-shrinkers are of arbitrarily
large genus by [25], so one could say most self-shrinkers are nongeneric.

Concerning nongeneric singularity models, the no-cylinder conjecture of Ilmanen says
that the types of ends shouldn’t be “mixed” in that if there is a single cylindrical end
then M is a cylinder, so one expects that “most” self-shrinkers in R3 are asymptotically
conical (see [36] for a partial result confirming this). Extending this conjecture to the
next higher dimension, this provides our justification with the above paragraph in mind
for the claim that self-shrinkers are “often” asymptotically conical — it is also quite
convenient for analytical reasons.

Returning to flows through singularities, an important advantage of the mean curvature
flow with surgery is that the topological change across discontinuous times, when necks
are cut and high curvature regions discarded, is easy to understand. A disadvantage
is that it isn’t quite a Brakke flow (a geometric measure theory formulation of the
mean curvature flow) and so does not immediately inherit some of the consequences
thereof, but at least it is closely related to the level set flow by results of Lauer [26]
and Head [19; 20] which, in the nonfattening case, is (modulo some technicalities). In
their work they show that surgery converges to the level set flow in Hausdorff distance
(and in fact in the varifold sense, as Head shows) as the surgery parameters degenerate
(ie as one lets Hth !1). This connection is useful for us because deep results of
White [38] show that a mean convex LSF will converge to a (possibly empty) stable
minimal surface long-term.

As mentioned above, mean curvature flow with surgery in a curved ambient setting
(at least for 3–manifolds and bounded geometry) has been already accomplished by
Haslhofer and Ketover, but some extra care is needed for the Gaussian metric, especially
in the noncompact case. This is because the metric is poorly behaved at infinity (as
one sees from the calculation of its scalar curvature), which introduces some analytic
difficulties for using the flow, so instead we consider the renormalized mean curvature
flow (which we’ll abbreviate RMCF) defined by

(2-5) dX

dt
D EH C 1

2
X:

Here, as before, X is the position vector on M . It is related to the regular mean
curvature flow by the following reparametrization; this allows one to transfer many
deep theorems on the MCF to the RMCF. Suppose that Mt is a mean curvature flow on
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Œ�1;T / for �1< T � 0 (T D 0 is the case for a self-shrinker). Then the renormalized
flow �M� of Mt , defined on Œ0;�log.�T //, is given by

(2-6) yX� D e�=2X�e�� ; � D�log .�t/:

Up to any finite time the reparametrization is bounded and preserves many properties
of the regular MCF, like the avoidance principle and that entropy is monotone under
the RMCF. With this in mind, the author showed in his previous article [28] that one
can then construct a flow with surgery using the RMCF on suitable perturbations of
noncompact self-shrinkers, and that as one lets the surgery parameters degenerate,
indeed the surgery converges to the level set flow when n D 2. This can be readily
combined with the aforementioned joint work with S Wang [29] to show the following:

Theorem 2.2 Let M n � RnC1 be a smoothly asymptotically conical hypersurface
such that H � 1

2
hX; �i � c.1C jX j2/�˛ for some constants c; ˛ > 0 and choice of

normal such that �.M / <ƒn�2. Then denoting by K the region bounded by M whose
outward normal corresponds to the choice of normal on M , the level set flow Mt of M

with respect to the renormalized mean curvature flow satisfies:

(1) The flow is inward , in that Kt1
� Kt2

for any t1 > t2, considering the corre-
sponding motion of K.

(2) Mt is the Hausdorff limit of surgery flows Sk
t with initial data M .

(3) Mt is a forced Brakke flow (with forcing term given by position vector).

Here ˛–noncollapsedness means there are inner and outer osculating balls of radius
proportional to the shrinker mean curvature, and this has many consequences; see [1; 16].
The assumption on the asymptotics are conditions for which shrinker mean convexity
is preserved and existence of an entropy-decreasing perturbation of a self-shrinker
smoothly asymptotic to a cone can always be assumed to satisfy this by work of
Bernstein and L Wang in [3]. We use this theorem (often implicitly) below with nD 3

when we discuss the flow of M .

HG , the mean curvature in the Gaussian metric, is related to the renormalized mean
curvature by HG D ejxj

2=4
�
H � 1

2
hX; �i

�
, and as a result the time limit of the flow

defined in the theorem above by White’s theory for mean convex MCF (in particular [38])
will be a stable self-shrinker if nonempty. It will also have finite entropy by Huisken
monotonicity, and hence have polynomial volume growth. As a result, either by the
instability results mentioned above or by the Frenkel theorem for self-shrinkers given
in the appendix of [7], we have the following:
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Lemma 2.3 Let Mt be the flow defined in Theorem 2.2. Then limt!1Mt D∅.

Lastly, note that by switching our choice of normal and using minimality (in the
Gaussian metric) of the original surface we may shrinker mean convex perturb either
inward or outward (for a 2–sided surface, of course, the distinction is somewhat
arbitrary) to study its topology as observed in [3; 21] — this idea is critical to our
argument and we will make our choice of perturbation depending on which case we
are considering in the argument below.

3 Proof of Theorem 1.2

Note, by the entropy assumption (in particular that ƒ1 < 2), that M is embedded,
and hence its link is too. Without loss of generality for this section, the link L is
connected. Supposing L is not diffeomorphic to S2, there exists some R1� 0 such
that M \ S.0;R/ WD LR is not diffeomorphic to S2 for R > R1 and that, by the
asymptotically conical assumption, LR 'LR1

for all R>R1. By the classification
of surfaces (note that LR is orientable, which can be seen by projecting the normal of
M \S.0;R/ onto TS.0;R/, giving a section of the normal bundle of LR , which has
no kernel because the sphere intersects M transversely) LR is topologically a connect
sum of tori which bounds domains (not necessarily handlebodies) KR;K

c
R
� S.0;R/.

Fixing a choice of R>R1, consider a standard generator 
 �LR of H1.LR/; that is,
writing LR as a connect sum of tori, 
 is homotopic to one of the two generators of a
single one of the tori. Note that 
 is also homotopically nontrivial in LR . We consider
two cases: either 
 is homotopically trivial in M or not. Without loss of generality,

 is embedded and smooth as well.

3.1 Case 1: 
 is nullhomotopic in M

Since 
 is homotopically trivial in M , it bounds a disc D in M ; suppose D �

M \B.0;R2/. Hence, for any embedded curve 
 0 � LR0 isotopic (in M ) to 
 for
R0 >R2, 
 0 is nullhomotopic in M \B.0;R0/ and hence bounds an embedded disc
D0�M \B.0;R0/ by Dehn’s lemma (see [18]) — Dehn’s lemma gives a PL embedded
disc, but when 
 0 is smooth note that D0 can be taken to be smooth as well by the
Whitney approximation theorem [27]. The idea is, morally, such discs serve as barriers
in a sense to keep the flow of (a perturbation of) M “propped” up. The following
indicates which domain M bounds to perturb and flow into:
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S3

S2 �S1

LR

LR







D

Figure 1: This figure illustrates toy examples one might imagine for Case 1
(left) and Case 2 (right), considered when LR is a standardly embedded torus.
In the first case, 
 2 @.M \ B.0;R// is nullhomotopic in M , and hence
bounds an embedded disc D �M \B.0;R/ by Dehn’s lemma.

Lemma 3.1 In one of KR or Kc
R

the curve 
 is not homotopically trivial.

Proof It seems one could probably use the Mayer–Vietoris sequence and Hurewicz
isomorphism here as in the proof of Theorem 1 in [21], but we present a more geometric
argument. Suppose, for the sake of contradiction, it were homotopically trivial in
both simultaneously. By Dehn’s lemma, 
 bounds PL embedded (of course, in fact,
smooth) discs D1 �KR and D2 �Kc

R
which intersect along 
 , giving an embedded

S2�S3. Since 
 is smooth their union gives a PL embedded S2, and so by Alexander’s
theorem (see [18]) D1[D2 then bounds a (PL embedded) 3–ball B � S3. From its
construction, LR intersects B in one boundary component, namely 
 . In particular,

 is homologically trivial in LR, giving a contradiction.

Of course, the lemma applies equally for 
 0 homotopic to 
 in LR0 for R0 >R>R1.
After potentially relabeling, 
 is homotopically nontrivial in KR . In this case, consider
a shrinker mean convex perturbation of M , as constructed in [3], which descends
(ie intersecting with S.0;R/) to a perturbation of LR into KR, and consider the
corresponding renormalized flow Mt (recalling that we can choose which direction
to flow into, as discussed in the preliminaries). This flow likewise descends to a flow
.LR/t of LR . Note though that, although Mt is an RMCF, .LR/t isn’t necessarily (to
the author’s knowledge) an easily described flow in S.0;R/, but we will still find it
profitable to consider.

By Lemma 2.3, Mt must leave every bounded set in some finite time, and hence .LR/t

must eventually become empty. Denote this time by T . We will play it off against the
next two lemmas, the first essentially that the disc we find by Dehn’s lemma persists:
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Lemma 3.2 For any � > 0, one can pick R sufficiently large that , for t 2 Œ0; � �, there
will be a smoothly embedded curve x
t � .LR/t isotopic to 
 which bounds a smoothly
embedded disc D t � B.0;R/\Mt .

Proof With the construction of the flow by surgery flows given in Theorem 2.2 in
mind, we first show, for exposition, that this holds for an approximating surgery flow
St of M . Since the LR0 are all diffeomorphic for R0 large, there is clearly an initial
choice of curve x
 which is isotopic to 
 . Up to the first surgery time and in between
surgery times when the surgery flow is smooth, this curve is just given by restricting
the motion of .LR/t along x
 because, for R large enough, .LR/t will be a graph
over .LR/0 by pseudolocality and Theorem 2.2(3) on Œ0; � � (in particular, x
t can be
taken to be embedded and smoothly vary) for times in Œ0; � �. Concerning the bounded
disc for smooth times, the flow is an isotopy which restricts to an isotopy of the disc
(modding out tangential components of the flow). Now consider a surgery time ts < � ;
we must check that after surgery x
ts

still bounds a disc. Again by pseudolocality
for all surgery necks N , N \S.0;R/ is empty, and similarly all N must be within
B.0;R/. Considering a cap C in the surgery procedure, since it is topologically a
ball, the intersection of Dts

with @C ' S2 is a disjoint union of closed curves which
bound discs by the Schoenflies theorem (without loss of generality Dt enters all caps
transversely). Surgering along these discs gives a union of S2 along with a new disc
whose boundary is x
ts

(essentially filling in the part of the disc between the end and
the “closest” surgery necks). In particular, x
ts

continues to bound a disc after surgery.
Note that it’s conceivable at this stage that the discarded copies of S2 bound nontrivial
topology of Mt , so the Dt do not necessarily form an isotopic family of discs, a priori.

Now we discuss how to show the curve x
 from the previous paragraph always bounds a
disc in the limiting flow. What one might first wish for is to take a limit (by compactness)
of the discs as the surgery parameters degenerate, but if the limiting disc enters a singular
region of the flow it could potentially complicate things, so it’s best if the disc is taken
to avoid it completely. There is also the matter of boundedness along this sequence of
discs needed to apply a compactness theorem, which suggests it’s best, in terms of the
disc, to work only within the context of the level set flow.

To begin, we consider high curvature points we might encounter as we travel sufficiently
deep within a high curvature region (loosely speaking) from a low curvature region, as
in our situation of a disc starting from an end (where x
 is) approaching a singularity in
the interior of B.0;R/. At points where, say, H �Hcan, referring to parameters in the
canonical neighborhood theorem (see [17], noting that here we suppress some notation),
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one can find nearby “neck-like” points (see Proposition 3.2 in [17]) in any corresponding
ancient model that could appear irrespective of surgery parameters. Intuitively a surgery
flow near such a point is modeled locally by a neck or a cap bordered by a neck facing
towards the low curvature region. With the Hausdorff convergence in mind then, one
can use Arzelà–Ascoli to pass to the limit on these bounded curvature regions for the
surgery flows to see that the level set flow always has necks where H �Hcan as one
approaches a singular region of the level set flow from a low curvature one (of course,
these are smooth points as well). These necks on the level set flow give points to surger
the disc as we did for the surgery flows; in this case, we perform the surgery on the disc
whenever one of its points is in a region of the level set flow where, say, H D 10Hcan.
Note that between these times the disc varies continuously since it is within a region of
the level set flow of bounded curvature, and that the disc can be taken to be smooth at
all times since it is surgered on along cross sections of necks of bounded curvature.

Without using Dehn’s lemma (and, in particular, with repeating the argument in higher
dimensions in mind), it seems the intersection of the disc with the boundary of the cap
could be much more complicated, although naively it seems likely that 
 would remain
homotopically trivial. We will pit this lemma against the definition of the time T using
the following lemma, which says the discs must “leave” the end no matter what:

Lemma 3.3 With x
 and � as in Lemma 3.2, after potentially taking R larger , there
is an � > 0 such that , in B.0;R� �/c \Mt , the curve x
t isn’t nullhomotopic and so
doesn’t bound a disc B.0;R� �/c \Mt . In particular , the disc Dt from the previous
lemma satisfies that Dt \S.0;R� �/ is nonempty on Œ0; � �.

Proof Denote by K the region M bounds which includes KR . Note then that, for R

large enough, B.0;R��/c\K'KR�ŒR��;1/, and in particular x
 is homotopically
nontrivial in this domain since it is homotopically nontrivial in KR . If, for some time
t 2 Œ0; � �, x
t is nullhomotopic in B.0;R� �/c \Mt , then in particular x
t bounds (the
image of) a disc in B.0;R� �/c \Kt . By the set monotonicity of the flow, ie that
Kt �K, we get in fact that x
t and hence x
 are nullhomotopic in B.0;R� �/c \K,
giving a contradiction.

Applying the above lemmas with � D T C 1, we see that we arrive at a contradiction.
Considering a time t 2 .T;T C 1/ and the disc Dt given from Lemma 3.2, the disc,
by Lemma 3.3, must have nonempty intersection with S.0;R� �/. On the other hand,
it cannot pass through S.0;R/ because .LR/t D ∅ for t > T . This completes the
argument in this case.

Geometry & Topology, Volume 27 (2023)



On self-shrinkers of medium entropy in R4 3727

3.2 Case 2: 
 is homotopically nontrivial in M

This case is easier in a sense, because we may directly apply the deep ideas of White [39],
in particular Theorems 1.1 and 5.2 therein. Specialized to our setting, a consequence
is that if K is a smooth mean convex set (and compact as stated in Theorem 1.1, but
this can also apply in the noncompact case as long as singularities occur only in a
bounded ball for the time it is applied, by Theorem 5.2) in a Riemannian manifold N of
dimension 4 (in particular, less than 7), then if a curve in Kc is initially homotopically
nontrivial and later becomes contractible in .Kc/t , a singularity of the form S1 �S2

must have occurred, contradicting the entropy bound. Here we will consider N to be a
subset of R4 (possibly all of R4, depending on which case we are in below) endowed
with the Gaussian metric, so the flow constructed is more precisely a mean convex
foliation. However, the flow is monotone, satisfies the Brakke regularity theorem and
the singular set dimension results of White [37], and all the singularities are modeled
on round cylinders so the results of the paper apply — this is essentially the upshot of
Hershkovits and White [21] (although they phrase things entirely in terms of the RMCF),
where they study the interplay of entropy and topology for compact self-shrinkers.

There are two possible cases for 
 : that 
 is homotopically nontrivial in one of the
components K or Kc of R4 it bounds, or not. First suppose that 
 is homotopically
nontrivial in (at least) one of K or Kc , say Kc to align with White’s terminology.
Consider then a nontrivial curve 
 in Kc . Since 
 is contractible in R4, the correspond-
ing homotopy gives that it bounds a (continuous image of, perhaps not embedded)
disc D — note that this disc must intersect K. Perturbing and flowing into K by
Lemma 2.3, eventually we must have D �Kc

t , say, by T , implying by this time that

 0 is nullhomotopic in Kc

t . By pseudolocality [6] there is an R� 0 such that, near
S.0;R/, Mt is a smooth flow which intersects the sphere transversely, so defining
N D B.0;R/, Section 5 of White [39] implies a singularity modeled on S1 �R2

formed, contradicting the entropy bound.

Now we consider the possibility that 
 is homotopically trivial in both K and Kc ; this
naively seems to be a more exotic case than above, but we are unsure it can be ruled out
a priori by purely topological reasoning. Then 
 2M bounds a disc in both K and Kc .
Picking essentially arbitrarily (only to align with White’s notation), we define zN to be
the union of K and Kc\M � Œ0; �/� (ie a collar of M ), where � is the normal pointing
away from K and � > 0 is some number small enough that the � level set of the collar is
also embedded in R4. Note that this collar region retracts onto M ; the utility of this is
that now 
 is a homotopically nontrivial curve in Kc\ zN � zN ¨ R4. Consider, as in the
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previous paragraph, a disc D �K bounding 
 and flow out of Kc into K (that the disc
can be taken to be contained in a single component, and hence in N , is why we split this
up into cases). As above, Lemma 2.3 (this still applies since the flow of Mt is the same
considered in R4 or zN ) gives that eventually D�Kc

t \
zN — call this time T . Let R�0

be large enough that Mt intersects S.0;R/ only transversely and as a smooth flow; again
such an R exists by pseudolocality. Defining N D zN \B.0;R/ and noting that 
 is still
homologically nontrivial in Kc\ zN \B.0;R/, Section 5 of [39] gives that a singularity
modeled on S1 �R2 must have formed (in fact, by time T ), giving a contradiction.

4 Proof of Theorem 1.1

By the Frenkel property for self-shrinkers, M must be connected. By Theorem 1.2
there exists R sufficiently large that M \B.0;R/ is diffeomorphic to a connected
2–sided hypersurface N 3 whose boundary consists of a number of 2–spheres along
each of which an end homeomorphic to S2 �RC is attached, where by ends here we
mean, for an appropriate choice of R, disjoint connected components of M nB.0;R/

which are diffeomorphic to half cylinders over distinct (for distinct ends) connected
components of the link; such an R exists since M is asymptotically conical, and the
convergence is multiplicity one. The point is to confirm that N is simply connected.
Then, by capping off each component of N (considering N as an intrinsically defined
manifold, as a hypersurface in R4 it seems some ends could be “parallel”, which would
preclude doing this at least in an embedded way) with a 3–ball, we obtain a closed
connected simply connected 3–manifold zN which, by the resolution of the 3D Poincaré
conjecture, is diffeomorphic to S3. If there is a homotopically nontrivial curve on N

and hence M , by the Seifert–Van Kampen theorem and Theorem 1.2 we can proceed
directly as we do in the second case of the proof above using [39], giving the first part
of Theorem 1.1. Note that, with surgery for compact manifolds in mind, one should be
able to argue directly with a bit more work that zN is diffeomorphic to either S3 or a
connect sum of S2 �S1, the latter of which could subsequently be ruled out, avoiding
the use of the Poincaré conjecture — this seems to be naturally a more robust line of
reasoning for considering higher-dimensional versions of our statement.

When the number of ends is equal to one, M is diffeomorphic to R3 as a consequence of
Alexander’s theorem, as noted in [4]. Now suppose that �.M /<ƒ2 (we will discuss the
case of equality afterwards) and M had (at least) two ends, labeled E1 and E2. Fixing
an R in our definition of end given in the paragraph above, consider a curve 
 WR!M

Geometry & Topology, Volume 27 (2023)



On self-shrinkers of medium entropy in R4 3729

such that for s sufficiently negative 
 .s/ 2E1 and for s sufficiently positive 
 .s/ 2E2.
With this in mind, intersect M with an embedded hypersurface P 'R3 such that

(i) E1 lies on one side of P and E2 lies on the other side,

(ii) P intersects M transversely, and

(iii) P \M is compact.

This is always possible by the asymptotically conical assumption. Denote by P \M

the surface S ; note that S is closed since its compact and M is boundaryless. Similarly,
denote the bounded portion of P that S bounds by KS . By perturbing and flowing M

so that, restricted to N , the flow is into KS (using (ii)) we see, as above, by Lemma 2.3
that St is eventually empty. Because of this, one may argue that a singularity of Mt

must occur which disconnects E1 from E2 along 
 ; note that by using large spheres as
barriers far along the ends toward spatial infinity (or, alternatively, pseudolocality), for
any given finite time there will be points originating from E1 and E2 on one side of P

and the other, respectively. In other words, one end can’t flow from one side of P to the
other in finite time, so a singularity which disconnects M must indeed occur. Clearly
such a singularity must be modeled on S2 �R, which has entropy ƒ2, contradicting
�.M / < ƒ2. In the case �.M /Dƒ2, we note that the perturbation of Bernstein and
Wang we used strictly decreases entropy placing us in the case of strict inequality.
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1 Introduction

Despite being widely used in Riemannian geometry — see, for example, Burago, Burago
and Ivanov [4] and Petersen [30] — very little is known in terms of the exact value of
the Gromov–Hausdorff distance between two given spaces. In a closely related vein,
Gromov [16, page 141] poses the question of computing/estimating the value of the
box distance �1.S

m;Sn/ (a close relative of dGH) between spheres (viewed as metric
measure spaces). In [14], Funano provides asymptotic bounds for this distance via an
idea due to Colding (see the discussion preceding Proposition 1.2).

The Gromov–Hausdorff distance is also a natural choice for expressing the stability of
invariants in applied algebraic topology — see Carlsson and Mémoli [5; 6; 7] — and has
also been invoked in applications related to shape matching — see Bronstein, Bronstein
and Kimmel [3] and Mémoli and Sapiro [25; 27] — as a notion of dissimilarity between
shapes.

We consider the problem of estimating the Gromov–Hausdorff distance dGH.Sm;Sn/

between spheres (endowed with their round/geodesic distance). In particular we show
that in some cases, topological ideas related to the Borsuk–Ulam theorem yield lower
bounds which turn out to be tight.

1.1 Basic definitions

The Gromov–Hausdorff distance — see Edwards [12] and Gromov [16] — between
two bounded metric spaces .X; dX / and .Y; dY / is defined as

dGH.X;Y / WD inf dH.f .X /;g.Y //;

where dH denotes the Hausdorff distance between subsets of the ambient space Z and
the infimum is taken over all isometric embeddings f and g of X and Y , respectively,
into Z, and over all metric spaces Z. We will henceforth denote by Mb the collection
of all bounded metric spaces.

It is known that dGH defines a metric on compact metric spaces up to isometry [16].
A standard reference is [4]. A useful property is that whenever .X; dX / is a com-
pact metric space and, for some ı > 0, a subset A � X is a ı–net for X , then
dGH

�
.X; dX /; .A; dX jA�A/

�
� ı.

Given two sets X and Y , a correspondence between them is any relation R�X �Y

such that �X .R/DX and �Y .R/D Y where �X WX �Y !X and �Y WX �Y ! Y
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are the canonical projections. Given two bounded metric spaces .X; dX / and .Y; dY /,
and any nonempty relation R�X �Y , its distortion is defined as

dis.R/ WD sup
.x;y/;.x0;y0/2R

jdX .x;x
0/� dY .y;y

0/j:

Remark 1.1 In particular, the graph of any map  W X ! Y is a relation graph. /
between X and Y and this relation is a correspondence whenever  is surjective. The
distortion of the relation induced by  will be denoted by dis. /.

A theorem of Kalton and Ostrovskii [18] proves that the Gromov–Hausdorff distance
between any two bounded metric spaces .X; dY / and .Y; dY / is equal to

(1) dGH.X;Y / WD
1
2

inf
R

dis.R/;

where R ranges over all correspondences between X and Y . It was also observed
in [18] that

(2) dGH.X;Y /D
1
2

inf
'; 

maxfdis.'/; dis. /; codis.';  /g;

where ' WX ! Y and  W Y !X are any (not necessarily continuous) maps, and

codis.';  / WD sup
x2X ;y2Y

jdX .x;  .y//� dY .'.x/;y/j

is the codistortion of the pair .';  /.

Known results on dGH.S
m;Sn/ We will find it useful to refer to the infinite matrix g

such that for m; n 2N WDN [f1g,

gm;n WD dGH.S
m;Sn/I

see Figure 2.

The following lower bound for gm;n, obtained via simple estimates for covering and
packing numbers based on volumes of balls, is in the same spirit as a result by Colding
[10, Lemma 5.10].1 By vn.�/ we denote the normalized volume of an open ball of
radius � 2 .0; �� on Sn (so that the entire sphere has volume 1). Colding’s approach
yields:

Proposition 1.2 For all integers 0<m< n,

dGH.S
m;Sn/� �m;n WD

1
2

sup
�2.0;��

�
v�1

n ı vm

�
1
2
�
�
� �

�
:

1Funano used a similar idea in [14] to estimate Gromov’s box distance between metric measure space
representations of spheres.
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We relegate the proof of this proposition to Section 3.

Example 1.3 (lower bound for g1;2 via Colding’s idea) In this case, mD 1 and nD 2,
the lower bound provided by Proposition 1.2 above is sup�2.0;��.arccos.1��=�/��/,
which is approximately equal to and bounded below by 0:1605. Thus, g1;2 � 0:0802.
See Remark 1.9 for a comparison with a new lower bound which also arises from
covering/packing arguments via the Lyusternik–Schnirelmann theorem.

In contrast, in this paper, via techniques which include both certain topological ideas
leading to lower bounds and the precise construction of correspondences with matching
(and hence optimal) distortion, we prove results which imply (see Proposition 1.16
below) that, in particular, g1;2 D

�
3
' 1:0472, which is about 13 times larger than the

value obtained by the method above. In [26, Example 5.3] the lower bound g1;2 �
�
12

was obtained via a calculation involving Gromov’s curvature sets K3.S
1/ and K3.S

2/.
Finally, via considerations based on Katz’s precise calculation [19] of the filling radius
of spheres — see Lim, Mémoli and Okutan [21, Corollary 9.3] — yields that g1;n �

�
6

for all n�2 as well as other lower bounds for gm;n for general m<n which are not tight.
In a related vein, in [17] Ji and Tuzhilin determine the precise value of dGH.Œ0; ��;S1/

between an interval of length � > 0 and the circle (with geodesic distance).

1.2 Overview of our results

The diameter of a bounded metric space .X; dX / is the number

diam.X / WD sup
x;x02X

dX .x;x
0/:

For m 2N we view the m–dimensional sphere,

Sm
WD f.x1; : : : ;xmC1/ 2RmC1

j x2
1 C � � �Cx2

mC1 D 1g;

as a metric space by endowing it with the geodesic distance: for any two points
x;x0 2 Sm,

dSm.x;x0/ WD arccos.hx;x0i/D 2 arcsin
�

1
2
dE.x;x

0/
�
;

where dE denotes the canonical Euclidean metric inherited from RmC1.

Note that for mD 0 this definition yields that S0 consists of two points at distance � ,
and that S1 is the unit sphere in `2 with distance given in the expression above.
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Sn

�
2

S1

�
2

S0

�
2

Figure 1: Propositions 1.5 and 1.6 encode the peculiar fact that all triangles
in .Mb; dGH/ with vertices S0;S1, and Sn (for 0< n<1/ are equilateral.

Remark 1.4 First recall [4, Chapter 7] that, for any two bounded metric spaces X

and Y , one always has dGH.X;Y /�
1
2

maxfdiam.X /; diam.Y /g. This means that

(3) dGH.S
m;Sn/� �

2
for all 0�m� n�1:

We first prove the following two propositions, which establish that the above upper
bound is tight in certain extremal cases:

Proposition 1.5 (distance to S0; Chowdhury and Mémoli [9, Proposition 1.2]) For
any integer n� 1,

dGH.S
0;Sn/D �

2
:

Proposition 1.6 (distance to S1) For any integer m� 0,

dGH.S
m;S1/D �

2
:

Proposition 1.5 can be proved as follows: any correspondence between S0 and Sn

induces a closed cover of Sn by two sets; then, by the Lyusternik–Schnirelmann
theorem, one of these blocks must contain two antipodal points. Proposition 1.6 can be
proved in a similar manner; see Figure 1.

Remark 1.7 When taken together, Remark 1.4 and Propositions 1.5 and 1.6 above
might suggest that the Gromov–Hausdorff distance between any two spheres of different
dimension is �

2
. In fact, this is true for the following continuous version of dGH:

d cont
GH .X;Y / WD

1
2

inf
'0; 0

maxfdis.'0/; dis. 0/; codis.'0;  0/g;

where '0 WX ! Y and  0 W Y !X 0 are continuous maps.
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Indeed, suppose that n>m� 1. Then, by the Borsuk–Ulam theorem — see Munkholm
[28, Theorem 1] or Matoušek [24, page 29] — for any continuous '0 W Sn ! Sm,
there must be two antipodal points with the same image under '0; that is, there is an
x 2 Sn such that '0.x/ D '0.�x/. This implies that dis.'0/ D � , and consequently
d cont

GH .S
n;Sm/� �

2
. The reverse inequality can be obtained by choosing constant maps

'0 and  0 in the above definition; thus implying that

d cont
GH .S

m;Sn/D �
2
:

In contrast, we prove the following result for the standard Gromov–Hausdorff distance:

Theorem A dGH.Sm;Sn/ < �
2

for all 0<m< n<1.

The Borsuk–Ulam theorem implies that, for any positive integers n>m and for any
given continuous function ' W Sn! Sm, there exist two antipodal points in the higher
dimensional sphere which are mapped to the same point in the lower dimensional
sphere. This forces the distortion of any such continuous map to be � . In contrast,
in order to prove Theorem A, we exhibit, for every pair of positive numbers m and n

with m< n, a continuous antipode-preserving surjection from Sm to Sn with distortion
strictly bounded above by � , which implies the claim since the graph of any such
surjection is a correspondence between Sm and Sn; see Remark 1.1. The proof relies
on ideas related to space-filling curves and spherical suspensions.

The standard Borsuk–Ulam theorem is however still useful for obtaining additional
information about the Gromov–Hausdorff distance between spheres. Indeed, via
Lemma 3.2 and the triangle inequality for dGH, one can prove the following general
lower bound:

Proposition 1.8 For any 1�m< n<1,

dGH.S
m;Sn/� �m;n WD

�
2
� covSm.nC 1/:

Above, for any integer k � 1, and any compact metric space X , covX .k/ denotes the
k th covering radius of X ,

(4) covX .k/ WD inffdH.X;P / j P �X such that jP j � kg:

Remark 1.9 Both of the lower bounds, �m;n and �m;n, from Propositions 1.2 and 1.8,
respectively, implement covering/packing ideas and as such it is interesting to compare
them:
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(1) Note that, since covS1.3/D �
3

, we have �1;2 D
�
6

, which is about 6.5 times larger
than �1;2 � 0:0802 (see Example 1.3).

(2) Computing �m;n in general requires knowledge of the covering radius covSm.k/

of spheres which is currently only known for k �mC 2; see Cho [8, Theorem 3.2]. In
contrast, computing �m;n can be done (in principle) for any m< n given that we have
the explicit formula vm.�/D .Vol.Sm�1/=Vol.Sm//

R �
0 .sin �/m�1 d� , which is valid

for every positive integer m and � 2 Œ0; ��; see Gray [15].

(3) The lower bound �m;n is more widely applicable than �m;n, which originates
from the Lyusternik–Schnirelman theorem (see below) and the underlying ideas are in
principle only applicable when one of the two metric spaces is a sphere.2 Indeed, see
Colding [10] and Furano [14] for estimates of the Gromov–Hausdorff distance between
Riemannian manifolds satisfying upper and lower bounds on curvature obtained by
combining volume comparison theorems with techniques similar to those used in
proving Proposition 1.2.

(4) Through [8, Theorem 3.2] it is known that covSm.mC2/D��arccos.�1=.mC1//

for m�1. Therefore, when nDmC1, the lower bound �m;mC1 given by Proposition 1.8
becomes arccos.�1=.mC1//� �

2
for m� 1, which tends to zero as m goes to infinity.

It is not known whether or not �m;mC1 has the same behavior.

As an immediate corollary, we obtain the following result, which complements both
Proposition 1.6 and Theorem A:

Corollary 1.10 Given any positive integer m and " > 0, there exists an integer
nD n.m; "/ >m such that

dGH.S
m;Sn/� �

2
� ":

Remark 1.11 For small " > 0 one can estimate the value of n above as

nD n.m; "/DO."�m/:

The results above motivate the following two questions:

Question I Is it true that , for fixed m � 1, dGH.Sm;Sn/ is nondecreasing for all
n�m?
2This can be ascertained by inspecting the proof of Proposition 1.8 in Section 3.2.
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gD

S0 S1 S2 S3 SmC1 Sn S1

S0

S1

S2

S3

Sm

S1

�
3

�
3

1
2
�2

known

knownD �
2

2
�

1
2
�m;

1
2
�m

�
2
�
qm;n;

�
2

�

Figure 2: The matrix g such that gm;n WD dGH.Sm;Sn/. According to
Remark 1.4 and Corollary 1.12, all nonzero entries of the matrix g are
in the range

�
�
4
; �

2

�
. In the figure, �m D arccos.�1=.m C 1// is the

edge length of the regular geodesic simplex inscribed in Sm, �m is the
diameter of a face of the regular geodesic simplex in Sm — see (5) — and
qm;n Dmax

˚
1
2
�m;

�
2
� covSm.nC 1/

	
.

Question II Fix m� 1 and " > 0. Find (optimal ) estimates for

km."/ WD inf
˚
k � 1 j dGH.S

m;SmCk/� �
2
� "

	
:

Via the Lyusternik–Schnirelmann theorem, Proposition 1.8 above depends on the
classical Borsuk–Ulam theorem which, in one of its guises [24, Theorem 2.1.1], states
that there is no continuous antipode-preserving map g W Sn! Sn�1. As a consequence,
if g W Sn ! Sn�1 is any antipode-preserving map, then g cannot be continuous. A
natural question is how discontinuous is any such g forced to be. This question was
actually tackled in 1981 by Dubins and Schwarz [11], who proved that the modulus of
discontinuity ı.g/ of any such g needs to be suitably bounded below. These results are
instrumental for proving Theorem B below; see Section 5 and Appendix A for details
and for a concise proof of the main theorem from [11] (following a strategy outlined
by Matoušek in [24]).
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For each m 2N let �m denote the edge length (with respect to the geodesic distance)
of a regular mC 1 simplex inscribed in Sm,

�m WD arccos
�
�1

mC1

�
;

which is monotonically decreasing in m. For example,

�0 D �; �1 D
2�
3
; �2 D arccos

�
�

1
3

�
� 0:608�; lim

m!1
�m D

�
2
:

Then we have the following lower bound which will turn out to be optimal in some
cases:

Theorem B (lower bound via geodesic simplices) For all integers 0<m< n,

dGH.S
m;Sn/� 1

2
�m:

Moreover , for any map ' W Sn! Sm, we have that dis.'/� �m.

From the above, we have the following general lower bound:

Corollary 1.12 For all integers 0<m< n, dGH.Sm;Sn/� �
4

.

This corollary of course implies that the sequence of compact metric spaces .Sn/n2N

is not Cauchy.

Remark 1.13 The lower bound for dGH.Sm;Sn/ given by Theorem B coincides with
the filling radius of Sm; see Katz [19, Theorem 2]. This lower bound is twice the one
obtained via the stability of Vietoris–Rips persistent homology [21, Corollary 9.3].

Note that covS1.k/� �=k, which can be seen by considering the vertices of a regular
polygon inscribed in S1 with k sides. Combining this fact with Proposition 1.8,
Theorem B, and the fact that �1 D 2�

3
, one obtains the following special claim for the

entries in the first row of the matrix g:

Corollary 1.14 For all n> 1, dGH.S1;Sn/� � �max
˚

1
3
; 1

2
.n� 1/=.nC 1/

	
.

Remark 1.15 This implies that, whereas dGH.S1;Sn/ � �
3

for n 2 f2; 3; 4; 5g, one
has the larger lower bound dGH.S1;S6/� 5�

14
> �

3
. Propositions 1.16 and 1.18 below

establish that actually dGH.S1;S2/D dGH.S1;S3/D �
3

.
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Finally, in order to prove that dGH.S1;S2/ D �
3

, we combine Theorem B with an
explicit construction of a correspondence between S1 and S2 as follows. Let H�0.S

2/

denote the closed upper hemisphere of S2. Then the following proposition shows that
there exists a correspondence between S1 and H�0.S

2/ with distortion at most 2�
3

.
A correspondence between S1 and S2 (see Figure 7) with the same distortion is then
obtained via a certain odd (ie antipode-preserving) extension of the aforementioned
correspondence (see Lemma 5.7):

Proposition 1.16 There exists

(1) a correspondence between S1 and H�0.S
2/, and

(2) a correspondence between S1 and S2,

both of which have distortion at most 2�
3

. In particular , together with Theorem B, this
implies dGH.S1;S2/D �

3
.

Even though we do not state it explicitly, in a manner similar to Proposition 1.16, all
correspondences constructed in Propositions 1.18, 1.19 and 1.20 below also arise from
odd extensions of correspondences between the lower dimensional sphere and the upper
hemisphere of the larger dimensional sphere (see their respective proofs).

Remark 1.17 Also, by combining the first claim of Proposition 1.16 and Example
1.24(4) below (which is analogous to the claim of Theorem B but tailored to the case
of Sm versus H�0.S

m/), one concludes that dGH.S1;H�0.S
2//D 1

2
�1 D

�
3

.

Via a construction somewhat reminiscent of the Hopf fibration, we prove that there
exists a correspondence between the 3–dimensional sphere and the 1–dimensional
sphere with distortion at most 2�

3
. By applying suitable rotations in R4, the proof of

the following proposition extends the (a posteriori) optimal correspondence between
S1 and S2 constructed in the proof of Proposition 1.16 (see Figure 10):

Proposition 1.18 There exists a correspondence between S1 and S3 with distortion
at most 2�

3
. In particular , together with Theorem B, this implies dGH.S1;S3/D �

3
.

Finally, we were able to compute the exact value of the distance between S2 and
S3 by producing a correspondence whose distortion matches the one implied by the
lower bound in Theorem B. This correspondence is structurally different from the
ones constructed in Propositions 1.16 and 1.18 and arises by partitioning S3 into 32
regions whose diameter is (necessarily) bounded above by �2 and which satisfy suitable
pairwise constraints (see Section 2.2):
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Proposition 1.19 There exists a correspondence between S2 and S3 with distortion
at most �2. In particular , together with Theorem B, this implies dGH.S2;S3/D 1

2
�2.

Keeping in mind Remark 1.15 and Propositions 1.16 and 1.18, we pose the following:

Question III Is it true that dGH.S1;Sn/D �
3

for n 2 f4; 5g?

Theorem B and Propositions 1.16 and 1.19 lead to formulating the following conjecture:

Conjecture 1 For all m 2N, dGH.Sm;SmC1/D 1
2
�m.

Note that when mD 1 and mD 2, Conjecture 1 reduces to Propositions 1.16 and 1.19,
respectively. Moreover, the conjecture would imply that limm!1 dGH.Sm;SmC1/D �

4
.

While trying to prove Conjecture 1, we were able to prove the following weaker result
via an explicit construction of a certain correspondence generalizing the one constructed
in the proof of Proposition 1.16:

Proposition 1.20 For any positive integer m > 0, there exists a correspondence
between Sm and SmC1 with distortion at most �m, where

(5) �m WD

�
arccos.�.mC 1/=.mC 3// if m is odd;
arccos.�

p
m=.mC 4// if m is even:

Here , �m is the diameter of a face of the regular geodesic m–simplex in Sm; see
Figure 8 and the discussion in Section 6.2.

This correspondence arises from a partition of SmC1 into 2.mC 2/ regions which
are induced by two antipodal regular simplices inscribed in Sm, the equator of SmC1

(see Figure 7 for the case mD 1, a case in which this correspondence turns out to be
optimal).

Corollary 1.21 For any positive integer m> 0, dGH.Sm;SmC1/� 1
2
�m.

Remark 1.22 Note that �m� �m for any m> 0 and �1D �1, so Proposition 1.20 gener-
alizes Proposition 1.16. However, since 1:9106� �2<�2�2:1863, by Proposition 1.19
we see that Corollary 1.21 is not tight when mD 2. Also, since �m <� , Corollary 1.21
gives a quantitative version of the claim in Theorem A when nDmC 1.

Remark 1.23 Combining Theorem B and Proposition 1.8, we obtain a generalization
of the bound given in Corollary 1.14: for all 1�m< n,

(6) dGH.S
m;Sn/�max

˚
1
2
�m;

�
2
� covSm.nC 1/

	
DW qm;n:
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Question IV Formula (6) and Remark 1.15 motivate the following question: for m� 1

large , find the rate at which the number3

ndiag.m/ WDmax
n
n>m

ˇ̌
covSm.nC 1/� 1

2
arccos

�
1

mC1

�o
grows with m. The reason for the notation ndiag.m/ is that this number provides an
estimate for a band around the principal diagonal of the matrix g (see Figure 2) inside
of which one would hope to prove that

dGH.S
m;Sn/D 1

2
�m for all n 2 fmC 1; : : : ; ndiag.m/g:

1.3 Additional results and questions

Besides what we have described so far, this paper includes a number of other results
about Gromov–Hausdorff distances between spaces closely related to spheres.

1.3.1 Spheres with Euclidean distance Some of the ideas described above (for
spheres with geodesic distance) can be easily adapted to provide bounds for the distance
between half spheres with geodesic distance, and between spheres with Euclidean
distance. However, there is evidence that this phenomenon is subtle and to the best of
our knowledge, there is no complete translation between the geodesic and Euclidean
cases. This is exemplified by the following.

Let Sn
E denote the unit sphere with the Euclidean metric dE inherited from RnC1. Then,

via Remark 1.17 and Corollary 9.8(2) (which provides a bridge between geodesic
distortion and Euclidean distortion via the sine function), we have that

dGH.S
1
E;H�0.S

2
E//� sin

�
dGH.S

1;H�0.S
2//
�
D

p
3

2
:

Despite this, in Proposition 9.10 we were able to construct a correspondence between
these two spaces with distortion strictly smaller than

p
3. This suggests that Euclidean

analogues of Theorem B may not be direct consequences; see Section 9 for other related
results.

This motivates posing the following question:

Question V Determine gE
m;n WD dGH.Sm

E ;S
n
E/ for all integers 1�m< n.

It should however be noted that by Corollary 9.8 we have gE
m;n � sin.gm;n/, which

renders Proposition 1.20 immediately applicable, yielding gE
m;mC1

� sin
�

1
2
�m

�
.

3Note that �m D � � arccos.1=.mC 1//.
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1.3.2 A stronger version of Theorem B By inspecting the proof of Theorem B, we
actually have Theorem C which subsumes these results in a much greater degree of
generality. Indeed, via this theorem one can obtain the following estimates:

Example 1.24 The following lower bounds hold:

(1) dGH.Œ0; ��;Sn/� �
3

for any n� 2.

(2) dGH.S1;S2 � � � � �S2/� �
3

for any number of S2 factors.

(3) dGH.Sm;H�0.S
n//� 1

2
�m whenever 0<m< n<1.

(4) dGH.H�0.S
m/;H�0.S

n//� 1
2
�m whenever 0<m< n<1.

(5) dGH.P;S2/� �
3

for any finite P � S1. Compare to the �
2

lower bound given in
Lemma 3.2.

(6) dGH.P3;H�0.S
2// D �

3
, where P3 is the three-point metric space with all

interpoint distances equal to 2�
3

. Also dGH.P6;S
2/D �

3
, where P6 is the six-

point metric space corresponding to a regular hexagon inscribed in S1. These are
consequences of (5) and small modifications of the correspondences constructed
in Proposition 1.16.

Theorem C Let bounded metric spaces X and Y be such that , for some positive
integer m,

(i) X can be isometrically embedded into Sm, and

(ii) H�0.S
mC1/ can be isometrically embedded into Y .

Then:

(1) dGH.X;Y /�
1
2
�m.

(2) Moreover , dis.�/� �m for any map � W Y !X .

Remark 1.25 Example 1.24(1) also holds for n D 1, albeit this is not implied by
Theorem C. The fact that dGH.Œ0; ��;S1/� �

3
follows from [17, Theorem 4.10] and it

also follows from the proof of [20, Lemma 2.3]; see Appendix B.

Organization

In Section 2 we review some preliminaries.

The proof of Proposition 1.2 on a lower bound for gm;n involving the normalized volume
of open balls is given in Section 3.1, whereas those of Propositions 1.5 (establishing
the precise value of g0;n), 1.6 (establishing the precise value of gm;1), and 1.8 (on a
lower bound for gm;n involving the covering radius) are given in Section 3.2.
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The proof of Theorem A, establishing that gm;n <
�
2

(for any 0<m< n<1), is given
in Section 4, whereas those of Theorem B, on a lower bound for gm;n deduced from a
discontinuous version of the Borsuk–Ulam theorem, and Theorem C (a generalization
of Theorem B) are given in Section 5.

The proofs of Propositions 1.16, establishing the precise value of g1;2, and 1.20, on
an upper bound involving the diameter of a face of a geodesic simplex, are given in
Section 6.

Proposition 1.18, establishing the precise value of g1;3, is proved in Section 7, and
Proposition 1.19, establishing the precise value of g2;3, is proved in Section 8.

The case of spheres with Euclidean distance is discussed in Section 9.

Finally, this paper has three appendices. Appendix A provides a succinct and self con-
tained proof of the version of Borsuk–Ulam’s theorem due to Dubins and Schwarz [11]
which is instrumental for proving Theorem B and related results. Appendix B establishes
that the Gromov–Hausdorff distance between the n–dimensional sphere and an interval
is always bounded below by �

3
, and Appendix C provides some results about the

Gromov–Hausdorff distance between regular polygons.

Additional aspects of this project (such as computational experiments and further
constructions of correspondences) are described in [22; 23].
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2 Preliminaries

Given a metric space .X; dX / and ı > 0, a ı–net for X is any A � X such that for
all x 2 X there exists a 2 A with dX .x; a/ � ı. The diameter of X is diam.X / WD
supx;x02X dX .x;x

0/.

Recall [4, Chapter 2] that complete metric space .X; dX / is a geodesic space if and
only if it admits midpoints: for all x;x0 2X there exists z 2X such that

dX .x; z/D dX .x
0; z/D 1

2
dX .x;x

0/:
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We henceforth use the symbol � to denote the one point metric space. It is easy to
check that dGH.�;X /D

1
2

diam.X / for any bounded metric space X . From this, and
the triangle inequality for the Gromov–Hausdorff distance, it then follows that for all
bounded metric spaces X and Y ,

(7) dGH.X;Y /�
1
2
jdiam.X /� diam.Y /j:

2.1 Notation and conventions about spheres

Finally, let us collect and introduce important notation and conventions which will be
used throughout this paper (except for Section 7). For each nonnegative integer m 2N,
we define

� Sm WD f.x1; : : : ;xmC1/ 2RmC1 j x2
1
C � � �Cx2

mC1
D 1g (m–sphere);

� H�0.S
m/ WD f.x1; : : : ;xmC1/ 2 Sm j xmC1 � 0g (closed upper hemisphere);

� H>0.S
m/ WD f.x1; : : : ;xmC1/ 2 Sm j xmC1 > 0g (open upper hemisphere);

� H�0.S
m/ WD f.x1; : : : ;xmC1/ 2 Sm j xmC1 � 0g (closed lower hemisphere);

� H<0.S
m/ WD f.x1; : : : ;xmC1/ 2 Sm j xmC1 < 0g (open lower hemisphere);

� E.Sm/ WD f.x1; : : : ;xmC1/ 2 Sm j xmC1 D 0g (equator of sphere);

� BmC1 WD f.x1; : : : ;xmC1/ 2RmC1 j x2
1
C � � �Cx2

mC1
� 1g (unit closed ball);

� yBmC1 WD f.x1; : : : ;xmC1/ 2 RmC1 j jx1j C � � � C jxmC1j � 1g (unit cross-
polytope).

Also, Sm, H�0.S
m/, H>0.S

m/, H�0.S
m/, H<0.S

m/ and E.Sm/ are all equipped
with the geodesic metric dSm . Observe that Sm and E.SmC1/ are isometric. We will
denote by

(8) �m W S
m
! SmC1; .x1; : : : ;xmC1/ 7! .x1; : : : ;xmC1; 0/;

the canonical isometric embedding from Sm into SmC1.

2.2 A general construction of correspondences

Assume X and Y are compact metric spaces such that X
�
,�! Y isometrically, eg

Sm ,! Sn for m� n.

As mentioned in Remark 1.1, any surjection  W Y � X gives rise to a correspondence
between X and Y . The following simple construction of such a  will be used
throughout this paper. Given k 2 N, assume Pk D fB1; : : : ;Bi ; : : : ;Bkg is any
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partition of Y n �.X / and Xk D fx1; : : : ;xi ; : : : ;xkg are any k points in X . Then
define  W Y � X by  j�.X / WD ��1 and  jBi

WD xi for each 1 � i � k. It then
follows that the distortion of this correspondence is

dis. /DmaxfA;B;C g;
where

� A WDmaxi diam.Bi/,
� B WDmaxi¤j maxy2Bi ;y02Bj

jdX .xi ;xj /� dY .y;y
0/j, and

� C WDmaxi maxx2X ;y2Bi
jdX .x;xi/� dY .�.x/;y/j.

This pattern will be used several times in this paper.

3 Some general lower bounds

3.1 The proof of Proposition 1.2

For a metric space X and � > 0, let NX .�/ denote the minimal number of open balls of
radius � needed to cover X . Also, let CX .�/ denote the maximal number of pairwise
disjoint open balls of radius 1

2
� that can be placed in X . NX and CX are usually

referred to as the covering number and the packing number, respectively.

Note that the covering radius covX — see (4) — and the covering number NX are
related by

covX .k/D inff� > 0 WNX .�/� kg:

The following stability property of NX . � / and CX . � / is classical and can be used to
obtain estimates for the Gromov–Hausdorff distance between spheres:

Proposition 3.1 [30, page 299] If X and Y are metric spaces and dGH.X;Y / < �

for some � > 0, then for all � � 0,

(1) NX .�/�NY .�C 2�/, and

(2) CX .�/� CY .�C 2�/.

Recall that vn.�/ is the normalized volume of an open ball or radius � on Sn.

Proof of Proposition 1.2 The proof that

dGH.S
m;Sn/� �m;n WD

1
2

sup
�2.0;��

�
v�1

n ı vm

�
1
2
�
�
� �

�
for any 0<m< n<1 is by contradiction. We first state two claims that we prove at
the end.

Geometry & Topology, Volume 27 (2023)



The Gromov–Hausdorff distance between spheres 3749

Claim 1 For any � > 0 and n� 1, the packing number satisfies CSn.�/�
�
vn

�
1
2
�
���1.

Claim 2 For any � > 0 and n� 1, the covering number NSn.�/ satisfies

1�NSn.�/ � vn.�/:

Assuming the claims above, suppose that n >m � 1 and � WD dGH.Sm;Sn/ < �m;n.
Pick " > 0 small enough such that �C 1

2
" < �m;n.

Since dGH.Sm;Sn/ < �C 1
2
", from Proposition 3.1, the fact that for NX .�/� CX .�/

for any compact metric space X and any � > 0, and Claim 1, we have that

NSn.�C 2�C "/�NSm.�/� CSm.�/�
�
vm

�
1
2
�
���1

:

Now, from Claim 2 we obtain that, for all � 2 Œ0; ��,

1�NSn.�C 2�C "/ � vn.�C 2�C "/�
vn.�C 2�C "/

vm

�
1
2
�
� :

Then, for all � 2 Œ0; ��, we must have

�C 1
2
"� 1

2

�
v�1

n ı vm

�
1
2
�
�
� �

�
:

Then, in particular, �C 1
2
"� �m;n, a contradiction.

Proof of Claim 1 Let k D CSn.�/ and let x1; : : : ;xk 2 Sn be such that

B
�
xi ;

1
2
�
�
\B

�
xj ;

1
2
�
�
D∅

for all i ¤ j . Thus,
Sk

iD1 B.xi ;
1
2
�/� Sn, and

Vol.Sn/� volSn

� k[
iD1

B
�
xi ;

1
2
�
��
D k � vn

�
1
2
�
�
�Vol.Sn/:

Proof of Claim 2 Fix N DNSn.�/ and x1; : : : ;xN 2Sn such that
SN

iD1 B.xi ; �/DSn.
Then

Vol.Sn/� volSn

� N[
iD1

B.xi ; �/

�
�N � vn.�/ �Vol.Sn/:

3.2 Other lower bounds and the proofs of Propositions 1.5 and 1.6

Recall the following corollary to the Borsuk–Ulam theorem [24]:

Theorem D (Lyusternik–Schnirelmann) Let n 2N and fU1; : : : ;UnC1g be a closed
cover of Sn. Then there is an i0 2 f1; : : : ; nC 1g such that Ui0

contains two antipodal
points.
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The lemma below will be useful in what follows:

Lemma 3.2 For any integer m� 1 and any finite metric space P with cardinality at
most mC 1, we have dGH.Sm;P /� �

2
.

Remark 3.3 Lemma 3.2 and Remark 1.4 imply that for each integer n� 1, we have
dGH.Sn;P /D �

2
for any finite metric space P with jP j � nC 1 and diam.P /� � .

Proof Suppose m � 1 is given. We prove that dGH.Sm;P / � �
2

for any finite set
P of size at most mC 1. Assume that R is an arbitrary correspondence between Sm

and P . We claim that dis.R/� � , from which the proof will follow. For each p 2 P ,
let R.p/ WD fz 2 Sm j .z;p/2Rg. Then fR.p/� Sm jp 2Pg is a closed cover of Sm.
Since jP j �mC1, Theorem D yields that diam.R.p0//D� for some p0 2P . Finally,
the claim follows since dis.R/�maxp2P diam.R.p//.

By a refinement of the proof of Lemma 3.2 above one obtains:

Corollary 3.4 Let R be any correspondence between a finite metric space P and S1.
Then dis.R/� � . In particular , dGH.P;S1/�

�
2

.

Proof As in the proof of Lemma 3.2, the correspondence R induces a closed cover
of S1. Thus, it induces a closed cover of any finite dimensional sphere SjP j�1 � S1.
The claim follows from Theorem D.

Notice that if P has diameter at most � , then dGH.P;S1/ D
�
2

(see Remarks 1.4
and 3.3). In Appendix C we consider a scenario which is thematically connected with
Remark 3.3 and Corollary 3.4, namely the determination of the Gromov–Hausdorff
distance between a finite metric space and a sphere. Appendix C fully resolves this
question for the case of S1 and (the vertex set of) inscribed regular polygons.

By a small modification of the proof of Corollary 3.4, we obtain the following stronger
claim:

Proposition 3.5 Let X be any totally bounded metric space. Then dGH.X;S1/�
�
2

.

Proof Fix any " > 0 and let P" � X be a finite "–net for X . Then, by the triangle
inequality for dGH and Corollary 3.4,

dGH.X;S
1/� dGH.S

1;P"/� dGH.X;P"/�
�
2
� ";

which implies the claim since " > 0 was arbitrary.
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Proof of Proposition 1.5 That dGH.S0;Sn/D �
2

for any integer n� 1 follows from
Lemma 3.2 and Remark 1.4.

Proof of Proposition 1.6 That dGH.Sm;S1/D �
2

for any nonnegative integer m<1

follows from Proposition 3.5 and Remark 1.4.

Proof of Proposition 1.8 We prove that dGH.Sm;Sn/� �m;n WD
�
2
� covSm.nC 1/

for any 1�m< n<1.

Let P be any subset Sm with cardinality not exceeding nC 1. Since the Hausdorff
distance satisfies dH.P;Sm/ � dGH.P;Sm/, and by the triangle inequality for the
Gromov–Hausdorff distance, we have

dH.P;S
m/C dGH.S

m;Sn/� dGH.P;S
m/C dGH.S

m;Sn/� dGH.P;S
n/:

Since diam.P /� � , by Remark 3.3 we have that dGH.P;Sn/D �
2

. Hence, from the
above,

dH.P;S
m/C dGH.S

m;Sn/� �
2

for any P � Sm with jP j � nC 1. By the definition of the covering radius (see (4)),
we obtain the claim by taking the infimum over all possible such choices of P .

4 The proof of Theorem A

The Borsuk–Ulam theorem implies that, for any positive integers n>m and for any
given continuous map ' W Sn ! Sm, there exists two antipodal points in the higher
dimensional sphere which are mapped to the same point in the lower dimensional
sphere.

We now prove that, in contrast, there always exists a surjective, antipode-preserving,
and continuous map  m;n from the lower dimensional sphere to the higher dimensional
sphere.

Theorem E For all integers 0 < m < n <1, there exists an antipode-preserving
continuous surjection

 m;n W S
m � Sn;

ie  m;n.�x/D� m;n.x/ for every x 2 Sm.

With this theorem, the proof of Theorem A, stating that dGH.Sm;Sn/ < �
2

for all
0<m< n<1, now follows:
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Proof of Theorem A Let  m;n W Sm � Sn be the map given in Theorem E. Recall
that the graph of a surjective map can be seen as a correspondence and let Rm;n WD

graph. m;n/. In order to prove the claim, it is enough to verify that

dis.Rm;n/D dis. m;n/ < �:

Since  m;n is continuous and Sm is compact, the supremum in the definition of
distortion is a maximum,

dis. m;n/D max
x;x02Sm

jdSm.x;x0/� dSn. m;n.x/;  m;n.x
0//j:

Let x0;x
0
0
2 Sm attain the maximum above. Note that we may assume that x0 ¤ x0

0
,

for otherwise we would have dGH.Sm;Sn/� 1
2

dis.Rm;n/D
1
2

dis. m;n/D 0, which
would imply that dGH.Sm;Sn/ D 0, ie that Sm and Sn are isometric, which is a
contradiction since m¤ n.

Assume first that x0
0
¤�x0. In this case,

0< dSm.x0;x
0
0/ < � and 0� dSn. m;n.x0/;  m;n.x

0
0//� �:

Thus,
jdSm.x0;x

0
0/� dSn. m;n.x0/;  m;n.x

0
0//j< �:

Assume now that x0
0
D�x0. In this case, dSm.x0;x

0
0
/DdSn. m;n.x0/;  m;n.x

0
0
//D�

since  m;n is antipode-preserving. Thus, in this case we also have

0D jdSm.x0;x
0
0/� dSn. m;n.x0/;  m;n.x

0
0//j< �:

Remark 4.1 The antipode-preserving property of  m;n given in Theorem E is stronger
than what we need for the purpose of proving Theorem A. Indeed, all one needs is that
 m;n.x/¤  m;n.�x/ for every x 2 Sm.

The goal for the rest of this section is to prove Theorem E.

Spherical suspensions and space-filling curves are key technical tools, which we now
review.

Space-filling curves

The existence of the space-filling curves is well known [29]:

Theorem F (space-filling curve) There exists a continuous and surjective map

H W Œ0; 1�� Œ0; 1�2:
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�
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1

�
�
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�
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�
12

�
6

�
4

Figure 3: The continuous surjection �1 W
�
0; �

4

�
� Conv.e1; e2; e3/.

In the sequel, we will use the notation Conv.v1; v2; : : : ; vd / to denote the convex hull
of vectors v1; v2; : : : ; vd .

By resorting to space-filling curves, one can prove the following proposition, which
will be crucial in the sequel:

Proposition 4.2 There exists an antipode-preserving continuous surjection

 1;2 W S
1 � S2:

Proof Recall the definition of the 3–dimensional cross-polytope,

yB3
WD Conv.e1;�e1; e2;�e2; e3;�e3/�R3;

where e1 D .1; 0; 0/, e2 D .0; 1; 0/, and e3 D .0; 0; 1/. Then its boundary @yB3, which
consists of eight triangles

Conv.e1; e2; e3/; Conv.e1; e2;�e3/; : : : ;Conv.�e1;�e2;�e3/;

is homeomorphic to S2.

Now, divide S1 into eight closed circular arcs with equal length �
4

. In other words, let�
0; �

4

�
;
�
�
4
; �

2

�
;
�
�
2
; 3�

4

�
;
�

3�
4
; �
�
;
�
�; 5�

4

�
;
�

5�
4
; 3�

2

�
;
�

3�
2
; 7�

4

�
;
�

7�
4
; 2�

�
be those eight regions. Of course, we are identifying 0 and 2� here.
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Note that we are able to build a continuous and surjective map

�1 W
�
0; �

4

�
� Conv.e1; e2; e3/ such that �1.0/D e1 and �1

�
�
4

�
D e2

as follows: since Conv.e1; e2; e3/ is homeomorphic to Œ0; 1�2, by Theorem F there
exists a continuous and surjective map �0

1
from

�
�
12
; �

6

�
to Conv.e1; e2; e3/; then, we

extend its domain by using linear interpolation between e1 and �0
1

�
�
12

�
, and e2 and

�0
1

�
�
6

�
to give rise to �1 — see Figure 3.

By using an analogous procedure, we construct continuous and surjective maps

�2 W
�
�
4
; �

2

�
� Conv.�e1; e2; e3/ such that �2

�
�
4

�
D e2 and �2

�
�
2

�
D e3;

�3 W
�
�
2
; 3�

4

�
� Conv.e1;�e2; e3/ such that �3

�
�
2

�
D e3 and �3

�
3�
4

�
D�e2;

�4 W
�

3�
4
; �
�

� Conv.�e1;�e2; e3/ such that �4

�
3�
4

�
D�e2 and �4.�/D�e1:

Next, we construct the remaining continuous and surjective maps by suitably reflecting
the ones already constructed,

�5 W
�
�; 5�

4

�
� Conv.�e1;�e2;�e3/ such that �5.x/ WD ��1.�x/;

�6 W
�

5�
4
; 3�

2

�
� Conv.e1;�e2;�e3/ such that �6.x/ WD ��2.�x/;

�7 W
�

3�
2
; 7�

4

�
� Conv.e1; e2;�e3/ such that �7.x/ WD ��3.�x/;

�8 W
�

7�
4
; 2�

�
� Conv.�e1; e2;�e3/ such that �8.x/ WD ��4.�x/:

Finally, by gluing all the eight maps �i , we build an antipode-preserving continuous
and surjective map x 1;2 W S

1 � @yB3. Using the canonical (closest point projection)
homeomorphism between @yB3 and S2, we finally have the announced  1;2 W S

1 � S2.
It is clear from its construction that the map  1;2 is continuous, surjective, and antipode-
preserving. Figure 4 depicts the overall structure of the map  1;2.

Spherical suspensions

Suppose m; n 2N and a map f W Sm! Sn are given. Then one can lift this map f
to a map from SmC1 to SnC1 in the following way: observe that an arbitrary point in
SmC1 can be expressed as .p sin �; cos �/ for some p 2 Sm and � 2 Œ0; ��; then the
spherical suspension of f is the map

Sf W SmC1
! SnC1; .p sin �; cos �/ 7! .f .p/ sin �; cos �/:

Lemma 4.3 If the map f WSm �Sn is continuous , surjective and antipode-preserving ,
then Sf W SmC1 � SnC1 is also continuous , surjective and antipode-preserving.
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e3

e2

e1

e2

�e2

�e1

�e2

�e3

�1

�2�3

�4

�5

�6 �7

�8

 1;2 �e1

e3

�e3

�e2 e1 e2 �e1

Figure 4: Structure of the map  1;2 constructed in Proposition 4.2. Inside
each arc, the map is defined via a space-filling curve. For simplicity, S2 is
“cartographically” depicted.

Proof Continuity and surjectivity are clear from the construction. Since f is antipode-
preserving, we know that f .�p/D�f .p/ for every p 2 Sm. Hence,

Sf .�p sin �;�cos �/D Sf .�p sin.� � �/; cos.� � �//

D .f .�p/ sin.� � �/; cos.� � �//

D .�f .p/ sin �;�cos �/

D�.f .p/ sin �; cos �/

D�Sf .p sin �; cos �/

for any p 2 Sm and � 2 Œ0; ��. Thus, Sf is also antipode-preserving.

We now use induction to obtain:

Corollary 4.4 For any integer m > 0, there exists a continuous , surjective , and
antipode-preserving map

 m;.mC1/ W S
m � SmC1:

Proof Proposition 4.2 guarantees the existence of  1;2. For general m, it suffices to
apply Lemma 4.3 inductively.

The following lemma is obvious:

Lemma 4.5 Suppose that l;m; n 2 N, and maps f W Sl � Sm and g W Sm � Sn

are given such that both f and g are continuous , surjective , and antipode-preserving.
Then their composition g ı f W Sl � Sn is also continuous , surjective , and antipode-
preserving.
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The proof of Theorem E

We are now ready to prove Theorem E, which states that there exists an antipode-
preserving continuous surjection  m;n W Sm � Sn for any 0<m< n<1.

Proof of Theorem E By Corollary 4.4, there are continuous, surjective, and antipode-
preserving maps  m;.mC1/;  .mC1/;.mC2/; : : : ;  .n�1/;n. Then, by Lemma 4.5, the
map

 m;n WD  .n�1/;n ı � � � ı .mC1/;.mC2/ ı m;.mC1/

is also continuous, surjective, and antipode-preserving.

5 A Borsuk–Ulam theorem for discontinuous functions and
the proof of Theorem B

Definition 5.1 (modulus of discontinuity) Let X be a topological space, Y be a
metric space, and f WX ! Y be any function. Then we define ı.f /, the modulus of
discontinuity of f, by

ı.f / WD inffı�0 jeach x 2X has an open neighborhood Ux with diam.f .Ux//�ıg:

Remark 5.2 Of course, ı.f /D 0 if and only if f is continuous.

It turns out that the modulus of discontinuity is a lower bound for distortion:

Proposition 5.3 Let � W .X; dX /! .Y; dY / be a map between two metric spaces. Then

ı.�/� dis.�/:

Proof If dis.�/ D 1, then the proof is trivial, so suppose dis.�/ <1. Now, fix
arbitrary x 2 X and " > 0. Consider the open ball Ux WD B

�
x; 1

2
"
�
. Then, for any

x0;x00 2 Ux ,

dY .�.x
0/; �.x00//� dX .x

0;x00/CjdX .x
0;x00/� dY .�.x

0/; �.x00//j< dis.�/C ";

so diam.�.Ux// � dis.�/C ". Since x is arbitrary, this implies ı.�/ � dis.�/C ".
Since " is arbitrary, we have the required inequality.

The following variant of the Borsuk–Ulam theorem, due to Dubins and Schwarz, is the
main tool used in the proof of Theorem B.
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Theorem G [11, Theorem 1] For each integer n> 0, the modulus of discontinuity of
any function f W Bn! Sn�1 that maps every pair of antipodal points on the boundary
of Bn onto antipodal points on Sn�1 is not less than �n�1.

In Appendix A we provide a concise self-contained proof of this result based on ideas
by Arnold Waßmer; see Matoušek [24, page 41].

We immediately have:

Corollary 5.4 [11, Corollary 3] For each integer n> 0, the modulus of discontinuity
of any function g W Sn! Sn�1 which maps every pair of antipodal points on Sn onto
antipodal points on Sn�1 is not less than �n�1.

We provide a detailed proof of this result for completeness.

Proof Consider the map

ˆ W Bn
! Sn; .x1; : : : ;xn/ 7!

�
x1; : : : ;xn;

p
1� .x2

1 C � � �Cx2
n/
�
:

Obviously, ˆ is continuous and its image is H�0.S
n/. Now, fix an arbitrary ı � 0 such

that for every x 2Sn, there exists an open neighborhood Ux of x with diam.g.Ux//� ı.

Now, fix an arbitrary x0 2 Bn. Then ˆ�1.Uˆ.x0// is an open neighborhood of x0, and

diam
�
g ıˆ.ˆ�1.Uˆ.x0///

�
� diam.g.Uˆ.x0///� ı:

Since x0 is arbitrary, this means that ı � ı.g ıˆ/. Moreover, since g ıˆ is antipode-
preserving, ı.g ıˆ/� �n�1 by Theorem G. Hence, we conclude that ı � �n�1. Finally,
since ı was arbitrary, by taking the infimum we conclude that

ı.g/� �n�1:

Corollary 5.5 For each integer n> 0, any function g W Sn! Sn�1 which maps every
pair of antipodal points on Sn onto antipodal points on Sn�1 satisfies dis.g/� �n�1.

Proof Apply Corollary 5.4 and Proposition 5.3.

5.1 The proof of Theorem B

We are almost ready to prove Theorem B, which establishes dGH.Sm;Sn/� 1
2
�m for

any 0<m< n<1.
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Figure 5: From left to right, the blue sets represent A.S0/, A.S1/ and A.S2/.
The figure also shows their antipodes in dark gray. See Definition 5.6.

For each integer n� 1, recall the natural isometric embedding of Sn�1 to the equator
E.Sn/ of Sn,

�n�1 W S
n�1 ,! Sn; .x1; : : : ;xn/ 7! .x1; : : : ;xn; 0/:

Also, let us define the sets A.Sn/�Sn (which we will sometimes refer to as “helmets”)
for n 2N:

Definition 5.6 (definition of A.Sn/) Let

A.S0/ WD f1g and A.S1/ WD f.cos �; sin �/ 2 S1
j � 2 Œ0; �/g:

Moreover, for general n� 1, define, inductively,

A.Sn/ WDH>0.S
n/[ �n�1.A.S

n�1//:

See Figure 5 for an illustration. Observe that, for any n� 0,

A.Sn/\ .�A.Sn//D∅ and A.Sn/[ .�A.Sn//D Sn:

The following lemma is simple but critical. Given any map � W Sn ! Sn�1 it will
permit constructing an antipode-preserving map �� with at most the same distortion.

Lemma 5.7 For any m; n � 0, let ∅ ¤ C � Sn satisfy C \ .�C / D ∅ and let
� W C ! Sm be any map. Then the extension �� of � to the set C [ .�C / defined by

�� W C [ .�C /! Sm; x 7! �.x/; �x 7! ��.x/ for x 2 C;

is antipode-preserving and satisfies dis.��/D dis.�/.
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Proof By definition, �� is antipode-preserving. Now, fix arbitrary x;x0 2 C . Then

jdSn.x;�x0/�dSm.��.x/; ��.�x0//j D j.��dSn.x;x0//�.��dSm.�.x/; �.x0///j

D jdSn.x;x0/�dSm.�.x/; �.x0//j

� dis.�/
and

jdSn.�x;�x0/�dSm.��.�x/; ��.�x0//jDjdSn.x;x0/�dSm.�.x/; �.x0//j�dis.�/:

This implies dis.��/D dis.�/.

Corollary 5.8 For each n2Z>0 and any map � WSn!Sn�1, there exists an antipode-
preserving map �� W Sn! Sn�1 such that dis.��/� dis.�/.

Proof Consider the restriction of � to A.Sn/ and apply Lemma 5.7.

Finally, we are ready to prove Theorem B.

Proof of Theorem B Let 0 < m < n < 1. We first prove the second claim of
Theorem B that dis.�/� �m for any map � W Sn! Sm. Suppose to the contrary, so that
there is a map Qg W Sn! Sm with dis. Qg/ < �m. By restriction, this map induces a map
g W SmC1! Sm such that dis.g/ < �m. By applying Corollary 5.8, one can modify g

into an antipode-preserving map Og W SmC1! Sm with dis. Og/ < �m, which contradicts
Corollary 5.5. This yields the proof of the second claim of Theorem B.

Now, in order to prove the first claim of Theorem B that dGH.Sm;Sn/� 1
2
�m, suppose

that � is a correspondence between Sm and Sn with dis.�/ < �m. Pick any function
g W Sn! Sm such that .g.x/;x/ 2 � for every x 2 Sn. This implies that

dis.g/� dis.�/ < �m;

which contradicts the second claim. This proves the first claim.

5.2 The proof of Theorem C

By carefully inspecting the proof of Theorem B, one can extract the much stronger
Theorem C.

Proof of Theorem C We will actually prove slightly stronger result. Suppose

(i) X can be isometrically embedded into Sm, and

(ii) A.SmC1/ (note that A.SmC1/�H�0.S
mC1/) can be isometrically embedded

into Y .
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e3

C.U /

S1

U

Figure 6: The cone C.U / for a subset U of S1.

Now, we prove that dGH.X;Y /�
1
2
�m. Moreover, dis.�/� �m for any map � W Y !X .

We first prove the second claim. Suppose to the contrary, so that there is a map
Qg W Y !X with dis. Qg/ < �m. Then, since A.SmC1/ is isometrically embedded in Y

and X is isometrically embedded in Sm by the assumption, one can construct a map
g W A.SmC1/! Sm with dis.g/ < �m. Hence, with the aid of Lemma 5.7, one can
modify this g into an antipode-preserving map Og W SmC1 ! Sm with dis. Og/ < �m,
which contradicts Corollary 5.5. This yields the proof of the second claim.

Now, in order to prove the first claim, use the same argument used in the proof of
Theorem B.

6 The proofs of Propositions 1.16 and 1.20

To prove Propositions 1.16 and 1.20, we need to define a few notions.

Definition 6.1 For any nonempty U �Sn�1, we define the cone of U , as the following
subset of Sn �RnC1:

C.U / WD
˚
cos � � enC1C sin � � �n�1.u/ 2H�0.S

n/ j u 2 U and � 2
�
0; �

2

�	
;

where enC1 D .0; 0; � � � ; 0; 1/ 2RnC1 is the north pole of Sn. See Figure 6.

Lemma 6.2 For any nonempty U � Sn�1,

diam.C.U //D
��

2
if diam.U /� �

2
;

diam.U / if diam.U /� �
2
:
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Proof Recall that

C.U / WD
˚
cos � � enC1C sin � � �n�1.u/ 2H�0.S

n/ j u 2 U and � 2
�
0; �

2

�	
:

Now, for u; v 2 U and �; � 0 2
�
0; �

2

�
, consider the inner product

hcos � � enC1C sin � � �n�1.u/; cos � 0 � enC1C sin � 0 � �n�1.v/i

D cos � cos � 0Chu; vi � sin � sin � 0:

Hence, if hu; vi � 0,

hcos � � enC1C sin � � �n�1.u/; cos � 0 � enC1C sin � 0 � �n�1.v/i � 0;

so dSn.cos � � enC1C sin � �u; cos � 0 � enC1C sin � 0 � v/� �
2

.

If hu; vi � 0, cos � cos � 0Chu; vi � sin � sin � becomes decreasing in � and � 0. Hence,
it is minimized for � D � 0 D �

2
. Therefore,

hcos � � enC1C sin � � �n�1.u/; cos � 0 � enC1C sin � 0 � �n�1.v/i � hu; vi;

so dSn.cos � � enC1 C sin � � �n�1.u/; cos � 0 � enC1 C sin � 0 � �n�1.v// � dSn�1.u; v/,
which completes the proof.

Definition 6.3 (geodesic convex hull) Given a nonempty subset A� Sn, its geodesic
convex hull convSn.A/ is defined to be the smallest subset of Sn containing A such that
for any two points in the set, all minimizing geodesics between them are also contained
in the set. It is clear that when A is contained in an open hemisphere,

convSn.A/D f…Sn.c/ j c 2 conv.A/g;

where …Sn.p/ WD p=kpk for p ¤ 0 and …Sn.p/ WD 0 otherwise.

In what follows we will prove Proposition 1.20 after proving Proposition 1.16. The
proof of the former proposition generalizes the construction used in the proof of the latter
one, and as a consequence Proposition 1.16 (which exhibits a correspondence between
S2 and S1) is a special case of Proposition 1.20 (which constructs a correspondence
between SmC1 and Sm).

With the goal of making the construction more understandable, we have however
decided to first present a detailed proof of Proposition 1.16 since the optimal R2;1

correspondence constructed therein is used in the proof of Proposition 1.18 in order to
construct an optimal correspondence R3;1. After this we provide a streamlined proof
of Proposition 1.20.
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6.1 The proof of Proposition 1.16

We will find an upper bound for dGH.S1;H�0.S
2// (resp. dGH.S1;S2/) by construct-

ing a specific correspondence between S1 and H�0.S
2/ (resp. S1 and S2). This

correspondence is inspired by the case mD 1 of certain surjective maps from SmC1

to Sm [11, Scholium 1] developed in the course of the authors’ study of the modulus
of discontinuity of antipode-preserving maps between spheres. In spite of the fact that
these maps will in general fail to yield tight upper bounds for distortion, they still permit
giving nontrivial upper bounds for gm;mC1. This will be explained in Section 6.2.

Proof of Proposition 1.16 We will prove both claims: that there exists

(1) a correspondence between S1 and H�0.S
2/, and

(2) a correspondence between S1 and S2,

both of which have distortion at most 2�
3

in an intertwined way.

In order to prove the first claim, it is enough to find a surjective map Q�2;1WH�0.S
2/�S1

(resp. �2;1 WS
2 � S1) such that dis. Q�2;1/� �1D

2�
3

(resp. dis.�2;1/� �1D
2�
3

) since
this map gives rise to a correspondence zR2;1 WDgraph. Q�2;1/ (resp. R2;1 WDgraph.�2;1/)
with dis. zR2;1/D dis. Q�2;1/� �1 (resp. dis.R2;1/D dis.�2;1/� �1).

Let
u1 WD .1; 0; 0/; u2 WD

�
�

1
2
;
p

3
2
; 0
�
; u3 WD

�
�

1
2
;�
p

3
2
; 0
�
:

Note that fu1;u2;u3g are the vertices of a regular triangle inscribed in E.S2/. We
divide the open upper hemisphere H>0.S

2/ into three regions by using the Voronoi

N3 N2

N1

S1

S2 S3

v1

v2 v3

u1

u2u3

Figure 7: The surjection �2;1 W S2 � S1 constructed in Proposition 1.16. In
the figure, Si WD �Ni and vi WD �u1 for i D 1; 2; 3. The equator of S2 is
mapped to itself under the map (via the identity map).
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partitions induced by these three points. Precisely, for each i D 1; 2; 3 we define the set

Ni WD fx 2H>0.S
2/ j dS2.x;ui/� dS2.x;uj / if j ¤ i and dS2.x;ui/ < dS2.x;uj / if j < ig:

See Figure 7 for an illustration of the construction.

Observe that Ni D C
�
ConvS1.f��1

1
.�uj / 2 S1 j j ¤ ig/

�
for each i D 1; 2; 3. Since

ConvS1.f��1
1
.�uj / 2 S1 j j ¤ ig/ is just the shortest geodesic between the two points

f�1.�uj / 2 S1 j j ¤ ig with length �1 D 2�
3

, diam.Ni/ � �1 by Lemma 6.2 for any
i D 1; 2; 3.

We now construct a map Q�2;1 WH�0.S
2/! S1,

Q�2;1.p/ WD

�
��1
1
.ui/ if p 2Ni ;

��1
1
.p/ if p 2E.S2/:

Let us prove that the distortion of Q�2;1 is less than or equal to �1. We break the study
of the value of

jdS2.p; q/� dS1. Q�2;1.p/; Q�2;1.q//j

for p; q 2H�0.S
2/ into several cases:

(1) Suppose p 2 Ni and q 2 Nj . If i D j , then 0 � dS2.p; q/ � �1 and Q�2;1.p/ D
Q�2;1.q/D �

�1
m .ui/, so dS1. Q�2;1.p/; Q�2;1.q//D 0. Hence,

jdS2.p; q/� dS1. Q�2;1.p/; Q�2;1.q//j � �1:

If i ¤ j , then 0� dS2.p; q/� � and dS1. Q�2;1.p/; Q�2;1.q//D �1, so

jdS2.p; q/� dS1. Q�2;1.p/; Q�2;1.q//j � �1:

(2) Suppose p 2Ni and q 2E.S2/. Then

jdS2.p; q/� dS1. Q�2;1.p/; Q�2;1.q//j D jdS2.p; q/� dS1.��1
1 .ui/; �

�1
1 .q//j

D jdS2.p; q/� dS2.ui ; q/j

� dS2.p;ui/� �1:

(3) Suppose p; q 2E.S2/. Then Q�2;1.p/D �
�1
1
.p/ and Q�2;1.q/D �

�1
1
.q/. Hence,

jdS2.p; q/� dS1. Q�2;1.p/; Q�2;1.q//j D 0� �1:

This implies that dis. Q�2;1/� �1. Observe that Q�2;1 is the identity on E.S2/, so Q�2;1 is
surjective.
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For the second claim, by applying Lemma 5.7 to Q�2;1jA.S2/, we construct a map
�2;1 W S

2 � S1 such that dis.�2;1/D dis. Q�2;1/� �1. Moreover, by construction, �2;1

is obviously surjective and antipode-preserving.

Remark 6.4 The antipode-preserving property of �2;1 will be useful for the proof of
Proposition 1.18.

6.2 The proof of Proposition 1.20

One can prove Proposition 1.20 using a generalization of the approach used in the
proof of Proposition 1.16.

Remark 6.5 (diameter of faces of geodesic simplices) Let fu1; : : : ;umC2g be the
vertices of a regular .mC1/–simplex inscribed in Sm. Let

Fm WD ConvSm.fu1; : : : ;umC1g/:

In other words, Fm is just a face of the geodesic regular simplex inscribed in Sm, where
the length of each edge is �m D arccos.�1=.mC 1//.

The diameter of Fm can be determined by applying a result by Santaló [31, Lemma 1]:

diam.Fm/D �m WD

�
arccos.�.mC 1/=.mC 3// if m is odd;
arccos.�

p
m=.mC 4// if m is even:

As proved by Santaló, this diameter is realized either by the distance between the circum-
center of the geodesic convex hull of Aodd

m WD fu1; : : : ;u.mC1/=2g and the circumcenter
of the geodesic convex hull of Bodd

m WD fu.mC3/=2; : : : ;umC1g if m is odd, or by the dis-
tance between the circumcenter of the geodesic convex hull of Aeven

m WD fu1; : : : ;um=2g

and the circumcenter of the geodesic convex hull of Beven
m WD fu.mC2/=2; : : : ;umC1g

if m is even. See Figure 8.

Observe that, in general,
�m � �m � 2.� � �m/:

Note that as m goes to infinity, �m goes to �
2

, �m goes to � , and 2.� � �m/ also goes
to � .

Remark 6.6 Let fu1; : : : ;umC2g � Sm be the vertices of a regular .mC1/–simplex
inscribed in Sm. Let V1; : : : ;VmC2 be the Voronoi partition of Sm induced by these
vertices. Then Vi D ConvSm.f�uj W j ¤ ig/ (so Vi is congruent to Fm in Remark 6.5)
for each i D 1; : : : ;mC 2. Here is a proof:
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u1 u2

u3

�1

u1 u2

u3

u4

�2

p2;3

Figure 8: The diameter of a face Fm of a geodesic simplex; the cases mD 1

and mD 2. When mD 1, Aodd
1 Dfu1g and Bodd

1 Dfu2g. When mD 2 (on the
right), Aeven

2
D fu1g, Beven

2
D fu2;u3g and the circumcenter of the geodesic

convex hull of Beven
2 is the point p2;3, ie diam.F2/D �2 D dS2.u1;p2;3/.

Without loss of generality, one can assume i D 1. Observe that

V1 D fx 2 Sm
j dSm.x;u1/� dSm.x;uj / for all j ¤ 1g:

Now fix arbitrary x 2 ConvSm.f�uj j j ¤ 1g/. Then x D v=kvk where

v D

mC2X
jD2

�j .�uj /

and the �j are nonnegative coefficients such that
PmC2

jD2 �j D 1. Then

hx;u1i D
1

kvk
�

1

mC 1
�

mC2X
jD2

�j D
1

kvk
�

1

mC 1

and, for any k ¤ 1,

hx;uki D
1

kvk
�

�
�1C

1

mC 1
�

X
2�j�mC2

j¤k

�j

�
:

Hence, this implies hx;u1i � hx;uki, so dSm.x;u1/ � dSm.x;uk/ for any k ¤ 1.
Therefore, x 2 V1 and ConvSm.f�uj W j ¤ 1g/� V1.

For the other direction, fix an arbitrary x 2 V1. Since f�u2; : : : ;�umC2g is a basis
of RmC1, there is a unique set of coefficients fcig

mC2
iD2

such that x D
PmC2

iD2 ci.�ui/.
Then one can check ci D ..mC 1/=.mC 2//.hx;u1i � hx;uii/ for i D 2; : : : ;mC 2

by using the fact
PmC2

iD1 hx;uii D
˝
x;
PmC2

iD1 ui

˛
D hx; 0i D 0, and [13, Theorem 5.27]
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(the fact that
PmC2

iD1 ui D 0 can be easily checked by the induction on m). Note that
ci � 0 since hx;u1i � hx;uii. Hence, if we define

�i WD
ciPmC2

jD2 cj

D
1

mC2

�
1�
hx;uii

hx;u1i

�
for each i D 2; : : : ;mC 2 and v WD

PmC2
iD2 �i.�ui/, then x D v=kvk. Therefore,

x 2 ConvSm.f�uj j j ¤ 1g/ and V1 � ConvSm.f�uj j j ¤ 1g/. Hence, V1 D

ConvSm.f�uj W j ¤ 1g/, as we claimed.

Proof of Proposition 1.20 We construct a surjective and antipode-preserving map

�.mC1/;m W S
mC1 � Sm

with
dis.�.mC1/;m/� �m:

Let fu1; : : : ;umC2g be the vertices of a regular .mC1/–simplex inscribed in E.SmC1/.
We divide open upper hemisphere H>0.S

mC1/ into mC2 regions by using the Voronoi
partitions induced by these mC 2 vertices. Precisely, for each i D 1; : : : ;mC 2 we
define the set

Ni WD
˚
p 2H>0.S

mC1/ j dSmC1.p;ui/� dSmC1.p;uj / for all j ¤ i

and dSmC1.p;ui/ < dSmC1.p;uj / for all j < i
	
:

Observe that NiDC.Vi/, where fV1; : : : ;VmC2g is the Voronoi partition of Sm induced
by

f��1
m .u1/; : : : ; �

�1
m .umC2/g:

Hence, by Lemma 6.2 and Remarks 6.5 and 6.6, one concludes that diam.Ni/� �m

for any i D 1; : : : ;mC 2.

We now construct a map Q�.mC1/;m WA.S
mC1/! Sm by

Q�.mC1/;m.p/ WD

�
��1
m .ui/ if p 2Ni ;

��1
m .p/ if p 2 �m.A.Sm//:

In order to prove that the distortion of Q�.mC1/;m is less than or equal to �m we break
the study of the value of

jdSmC1.p; q/� dSm. Q�.mC1/;m.p/; Q�.mC1/;m.q//j

for p; q 2A.SmC1/ into several cases:
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(1) Suppose p 2Ni and q 2Nj . If i D j , then dSmC1.p; q/� �m and Q�.mC1/;m.p/D
Q�.mC1/;m.q/D �

�1
m .ui/, so dSm. Q�.mC1/;m.p/; Q�.mC1/;m.q//D 0. Hence,

jdSmC1.p; q/� dSm. Q�.mC1/;m.p/; Q�.mC1/;m.q//j � �m:

If i ¤ j , then dSmC1.p; q/� � and dSm. Q�.mC1/;m.p/; Q�.mC1/;m.q//D �m, so that

jdSmC1.p; q/� dSm. Q�.mC1/;m.p/; Q�.mC1/;m.q//j � �m � �m:

(2) Suppose p 2Ni and q 2 �m.A.Sm//. Then

jdSmC1.p; q/� dSm. Q�.mC1/;m.p/; Q�.mC1/;m.q//j

D jdSmC1.p; q/� dSm.��1
m .ui/; �

�1
m .q//j

D jdSmC1.p; q/� dSmC1.ui ; q/j

� dSmC1.p;ui/� �m:

(3) Suppose p; q2 �m.A.Sm//. Then Q�.mC1/;m.p/Dp and Q�.mC1/;m.p/Dq. Hence,

jdSmC1.p; q/� dSm. Q�.mC1/;m.p/; Q�.mC1/;m.q//j D 0� �m:

This implies that dis. Q�.mC1/;m/� �m. Finally, by applying Lemma 5.7 to Q�.mC1/;m,
we construct the map �.mC1/;m W S

mC1 � Sm such that

dis.�.mC1/;m/D dis. Q�.mC1/;m/� �m:

Moreover, by construction, �.mC1/;m is obviously surjective and antipode-preserving.
Therefore,

dGH.S
m;SmC1/� 1

2
�m:

Remark 6.7 Even though during the proof of Proposition 1.20 we only established
the fact that dis.�.mC1/;m/ � �m, one can check that dis.�.mC1/;m/ is exactly equal
to �m, since one can choose two points p; q 2Ni such that dSmC1.p; q/ is arbitrarily
close to �m.

7 The proof of Proposition 1.18

In this section, we will prove Proposition 1.18 by constructing a specific correspondence
between S1 and S3 with distortion less than or equal to �1D 2�

3
. The construction of this

correspondence is based on the optimal correspondence R2;1 D graph.�2;1/ between
S1 and S2 identified in the proof of Proposition 1.16 given in Section 6.1 and some
ideas reminiscent of the Hopf fibration. We will define a surjective map �3;1 WS

3 � S1

by suitably “rotating” the (optimal) surjection �2;1 W S
2 � S1; see Figure 9.
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S3

S2

q

˛q

pq

�3;1

T˛q�2;1.pq/

pq
S2

�2;1

S1

�2;1.pq/

˛q

Figure 9: The definition of �3;1: given q 2S3nS2 there exists a unique angle
˛q 2 .0; �/ and unique point pq 2 S2 n S1 such that q D T˛q pq; then we
consider the point �2;1.pq/ 2 S1 and define �3;1.q/ WD T˛q�2;1.pq/. That
�3;1.q/ 2 S1 follows from Lemma 7.2(2).

Overview of the construction of �3;1 The diagram below describes the construction
of the map �3;1 at a high level:

S3 S1

S2 � Œ0; �/ S1 � Œ0; �/

h

�3;1

�2;1�id

T�

To an arbitrary q 2S3, we will be able to assign both a corresponding point pq 2S2 and
an angle ˛q 2 Œ0; �/ giving rise to a map h WS3!S2� Œ0; �/ such that h.q/ WD .pq; ˛q/.
Also, T� W S1� Œ0; �/� S1 will be a map such that for each ˛ 2 Œ0; �/, T˛ is a rotation
of S1 by an angle ˛. Then, as described in the diagram, for q 2 S3, �3;1.q/ will be
defined as T˛q

.�2;1.pq//. Figures 9 and 10 illustrate the construction.

Note that there is a certain degree of similarity between the map �1 ı h W S3 � S2

(where �1 is the canonical projection from S2� Œ0; �/ to S2) and the “Hopf fibration”,
in the sense that the set .�1ıh/

�1.fp;�pg/ is isometric to S1 for p 2S2nS1 (whereas
.�1 ı h/�1.fpg/D fpg for p 2 S1).

Details The following coordinate representations will be used throughout this section:4

� S1 WD f.x;y; 0; 0/ 2R4 W x2Cy2 D 1g,

4In comparison to the coordinate representation specified in Section 2, here we are embedding S1, S2,
and S3 into R4 in such a way that the embeddings S1 ,! S2 ,! S3 are also specific.
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� S2 WD f.x;y; z; 0/ 2R4 W x2Cy2C z2 D 1g,

� S3 WD f.x;y; z; w/ 2R4 W x2Cy2C z2Cw2 D 1g.

Also, we will use the map �2;1 WS
2 � S1 and the regions N1;N2;N3�S2 constructed

in the proof of Proposition 1.16; see Section 6.1.

Remark 7.1 The following simple observations will be useful later. See Figure 7.

(1) diam.Ni/� �1 D
2�
3

for any i D 1; 2; 3. (This fact has been already mentioned
during the proof of Proposition 1.20.)

(2) If p D .x;y; z; 0/ 2 Ni and q D .a; b; c; 0/ 2 Nj for .i; j / D .1; 2/, .2; 3/ or
.3; 1/ (resp. .i; j /D .2; 1/, .3; 2/ or .1; 3/), then bx � ay � 0 (resp. � 0) and
�2;1.p/ and �2;1.q/ are in clockwise (resp. counterclockwise) order.

Now, for any ˛ 2R, consider the rotation matrix

T˛ WD

0BB@
cos˛ �sin˛ 0 0

sin˛ cos˛ 0 0

0 0 cos˛ �sin˛
0 0 sin˛ cos˛

1CCA :
For any p 2 S3, T˛p denotes the result of matrix multiplication by viewing p as a
4 by 1 column vector according to the coordinate system described at the beginning of
this section.

The following basic properties of these rotation matrices will be useful soon.

Lemma 7.2 Let ˛; ˇ 2R. Then:

(1) For any q 2 S3 n S1, there is a unique pq 2 S2 n S1 and a unique ˛q 2 Œ0; �/

such that q D T˛q
pq . In particular , ˛q D 0 if and only if q 2 S2 nS1.

(2) S1 and S3 are invariant with respect to the action of the rotation matrices T˛.

(3) T˛Tˇ D T˛Cˇ.

(4) dS3.T˛ p;T˛ q/D dS3.p; q/ for any p; q 2 S3.

(5) dS3.T˛ p;p/D ˛ for any p 2 S3 and ˛ 2 Œ0; ��.

(6) dS3.T˛.�p/;p/D � �˛ for any p 2 S3 and ˛ 2 Œ0; ��.
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Proof (1) Let q D .x0;y0; z0; w0/ 2 S3 n S1. Since q is not in S1, we know that
.z0/2C .w0/2 > 0. Then there exists a unique ˛q 2 Œ0; �/ and z 2R n f0g such that�

z0

w0

�
D

�
cos˛q �sin˛q

sin˛q cos˛q

��
z

0

�
I

ie z2 D .z0/2C .w0/2. Then this ˛q is the required angle and we choose the unique
point pq D .x;y; z; 0/ 2 S2 nS1 such that0BB@

x0

y0

z0

w0

1CCAD
0BB@

cos˛q �sin˛q 0 0

sin˛q cos˛q 0 0

0 0 cos˛q �sin˛q

0 0 sin˛q cos˛q

1CCA
0BB@

x

y

z

0

1CCA :
Since T˛q

is the identity matrix when ˛q D 0, it is clear that ˛q D 0 if and only if
q 2 S2 nS1.

(2) Obvious.

(3) Obvious.

(4) This item is equivalent to the condition hT˛p;T˛qi D hp; qi, and it can be easily
checked by direct computation.

(5) This item is equivalent to the condition hT˛p;pi D cos˛, and it can be easily
checked by direct computation.

(6) This item is equivalent to the condition hT˛.�p/;piD�cos˛, and it can be easily
checked by direct computation.

Additional details and the proof of Proposition 1.18 We need a few more definitions
and technical lemmas for the proof of Proposition 1.18. We in particular make the
following definitions for notational convenience:

� For any p; q 2 S2,

Ep;q W Œ0; ��! Œ�1; 1�; ˛ 7! hT˛p; qi:

� For any p; q 2 S2,

Fp;q W Œ0; ��!R; ˛ 7! dS3.T˛p; q/�˛:

� For any p; q 2 S2,

Gp;q W Œ0; ��!R; ˛ 7! dS3.T˛ p; q/C˛:
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Lemma 7.3 For any p D .x;y; z; 0/ 2 S2 nS1 and q D .a; b; c; 0/ 2 S2:

(1) Ep;q.˛/ 2 .�1; 1/ for any ˛ 2 .0; �/.

(2) .E0p;q.˛//
2C .Ep;q.˛//

2 � 1 for any ˛ 2 Œ0; ��.5

(3) Fp;q is a nonincreasing function. Thus , �dS2.p; q/� Fp;q.˛/� dS2.p; q/ for
any ˛ 2 Œ0; ��.

(4) Gp;q is a nondecreasing function. Thus , dS2.p; q/�Gp;q.˛/� 2� �dS2.p; q/

for any ˛ 2 Œ0; ��.

Proof (1) Suppose not, so that Ep;q.˛/D˙1. This implies that T˛pD q or �q 2S2.
This cannot be true because ˛ 2 .0; �/ and, by Lemma 7.2(1), T˛p 2 S3 nS2. So this
is a contradiction; hence, Ep;q.˛/ 2 .�1; 1/.

(2) As a result of direct computation, we know that

Ep;q.˛/D hp; qi cos˛C .bx� ay/ sin˛:

Here, observe that bx�ay is the 3rd coordinate of the cross product .x;y; z/�.a; b; c/.
In particular, this implies jbx�ayj�k.x;y; z/�.a; b; c/kD sinˇ where hp; qiDcosˇ.
Therefore,

.E0p;q.˛//
2
C .Ep;q.˛//

2
D hp; qi2C .bx� ay/2 � cos2 ˇC sin2 ˇ D 1:

(3) Note that Fp;q.˛/D arccos.Ep;q.˛//�˛. Hence, for any ˛ 2 .0; �/,

F 0p;q.˛/D�
E0p;q.˛/p

1� .Ep;q.˛//
2
� 1:

Observe that this expression is well defined by (1). Also, by (2),

.E0p;q.˛//
2
C .Ep;q.˛//

2
� 1 () �E0p;q.˛/�

p
1� .Ep;q.˛//

2

() F 0p;q.˛/D�
E0p;q.˛/p

1� .Ep;q.˛//
2
� 1� 0:

Hence, Fp;q is a nonincreasing function. Also, since Fp;q.0/D dS2.p; q/ and

Fp;q.�/D dS3.T�p; q/�� D dS2.�p; q/�� D .��dS2.p; q//�� D�dS2.p; q/;

we have that
�dS2.p; q/� Fp;q.˛/� dS2.p; q/:

5Here E0pq denotes the derivative of Ep;q .
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(4) Note that Gp;q.˛/D arccos.Ep;q.˛//C˛. Hence, for any ˛ 2 .0; �/,

G0p;q.˛/D�
E0p;q.˛/p

1� .Ep;q.˛//
2
C 1:

Observe that this expression is well defined by (1). Also, by (2),

.E0p;q.˛//
2
C .Ep;q.˛//

2
� 1 () E0p;q.˛/�

p
1� .Ep;q.˛//

2

() G0p;q.˛/D�
E0p;q.˛/p

1� .Ep;q.˛//
2
C 1� 0:

Hence, Gp;q is nondecreasing function. Also, since Gp;q.0/D dS2.p; q/ and

Gp;q.�/DdS3.T�p; q/C�DdS2.�p; q/C�D .��dS2.p; q//C�D2��dS2.p; q/;

we have that
dS2.p; q/�Gp;q.˛/� 2� � dS2.p; q/:

Lemma 7.4 For any p D .x;y; z; 0/; q D .a; b; c; 0/ 2 S2 nS1:

(1) If p 2Ni and q 2Nj for .i; j /D .1; 2/, .2; 3/ or .3; 1/, then

dS3.T2�=3p; q/� 2�
3
:

(2) If p 2Ni and q 2Nj for .i; j /D .2; 1/, .3; 2/ or .1; 3/, then

dS3.T�=3p; q/� �
3
:

Proof (1) First, observe that bx� ay � 0 by Remark 7.1(2). Hence,

Ep;q

�
2�
3

�
D hT2�=3p; qi D �1

2
hp; qiC

p
3

2
.bx� ay/� �1

2
hp; qi � �1

2
:

Therefore,

dS3.T2�=3p; q/D arccos
�
Ep;q

�
2�
3

��
� arccos

�
�

1
2

�
D

2�
3
:

(2) The proof of this case is similar to the proof of (1), so we omit it.

Proof of Proposition 1.18 It is enough to find a surjective map �3;1 WS
3 �S1 such that

dis.�3;1/� �1D
2�
3

, since this map gives rise to a correspondence R3;1 WD graph.�3;1/

with dis.R3;1/D dis.�3;1/� �1.

We construct the required surjective map �3;1 W S
3 � S1 as

q 7!

�
�2;1.q/ if q 2 S2;

T˛q
�2;1.pq/ if q 2 S3 nS2 and q D T˛q

pq for the unique such
˛q 2 .0; �/ and pq 2 S2

nS1:
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T˛p 2 S3

Ni p

�Ni
�p

�ui

ui

�3;1.T˛p/ WD T˛�2;1.p/

Figure 10: The definition of the map �3;1 via the map �2;1. The point T˛p

on S3 is mapped to the point T˛�2;1.p/ on S1. The antipode-preserving map
�2;1 maps the whole region Ni to the point ui .

Note that �3;1 is surjective, since �3;1jS2 D �2;1 and �2;1 is surjective.

See Figures 9 and 10 for an explanation of the construction of the map �3;1.

Let us now verify that

jdS3.q; q0/� dS1.�3;1.q/; �3;1.q
0//j � �1

for every q; q0 2 S3. Without loss of generality, we can assume that q D T˛p and
q0 D Tˇp0 for some p;p0 2 S2 and 0� ˇ � ˛ < � . Then

jdS3.q; q0/� dS1.�3;1.q/; �3;1.q
0//j

D jdS3.T˛p;Tˇp0/� dS1.T˛�2;1.p/;Tˇ�2;1.p
0//j

D jdS3.T.˛�ˇ/p;p
0/� dS1.T.˛�ˇ/�2;1.p/; �2;1.p

0//j:

Hence, it is enough to prove

(9)
ˇ̌
dS3.T˛p; q/� dS1.T˛�2;1.p/; �2;1.q//

ˇ̌
� �1

for any p; q 2 S2 and ˛ 2 Œ0; �/.

If p 2 S1, then �2;1.p/D p. Hence,

jdS3.T˛p; q/� dS1.T˛�2;1.p/; �2;1.q//j D jdS3.T˛p; q/� dS1.T˛p; �2;1.q//j

� dS3.q; �2;1.q//� �1;
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where the last inequality holds by Remark 7.1(1). One can carry out a similar computa-
tion if q 2 S1. So let’s assume p D .x;y; z; 0/; q D .a; b; c; 0/ 2 S2 nS1. Since �2;1

is antipode-preserving, it is enough to check inequality (9) only for p; q 2H>0.S
2/.

We do this by following the same idea as in the proof of Lemma 5.7.

We do a case-by-case analysis:

(1) Suppose p 2Ni and q 2Nj for .i; j /D .1; 2/, .2; 3/ or .3; 1/. By Remark 7.1(2),
the two points �2;1.p/ and �2;1.q/ are in clockwise order. Hence,

dS1.T˛�2;1.p/; �2;1.q//D

�2�
3
�˛ if ˛ 2

�
0; 2�

3

�
;

˛� 2�
3

if ˛ 2
�

2�
3
; �
�
:

Consider first the case when ˛ 2
�
0; 2�

3

�
. We have to prove that

�
2�
3
� dS3.T˛p; q/�

�
2�
3
�˛

�
�

2�
3
:

Equivalently, we have to prove

0�Gp;q.˛/�
4�
3
:

The left-hand side inequality is obvious since Gp;q.˛/�dS2.p; q/�0 by Lemma 7.3(4).
The right-hand side inequality is true by Lemmas 7.3(4) and 7.4(1).

Next, consider the case when ˛ 2
�

2�
3
; �
�
. We have to prove

�
2�
3
� dS3.T˛p; q/�

�
˛� 2�

3

�
�

2�
3
:

Equivalently, we have to prove

�
4�
3
� Fp;q.˛/� 0:

The left inequality is obvious since Fp;q.˛/� �dS2.p; q/� �4�
3

by Lemma 7.3(3).
The right-hand side inequality is true by Lemmas 7.3(3) and 7.4(1).

(2) Suppose p 2Ni and q 2Nj for .i; j /D .2; 1/, .3; 2/ or .1; 3/. This is almost the
same as case (1) except we use Lemma 7.4(2).

(3) Suppose p; q 2 Ni for i D 1; 2; 3. In this case, dS1.T˛�2;1.p/; �2;1.q// D ˛,
which follows from �2;1.p/D �2;1.q/ and Lemma 7.2(5). Hence, we have to show

�
2�
3
� dS3.T˛p; q/�˛ D Fp;q.˛/�

2�
3
:

But this is obvious by Remark 7.1(1) and Lemma 7.3(3).

Thus, indeed dis.�3;1/� �1.
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8 The proof of Proposition 1.19

In this section we provide a construction of an optimal correspondence, R3;2, between
S3 and S2. The structure of this correspondence is different from those described in the
proofs of Propositions 1.16 and 1.20. As a matter of fact, as Remark 6.7 mentions, the
distortion of the surjection �.mC1/;m W S

mC1 � Sm constructed in Proposition 1.20 is
exactly equal to �m. Since �2 < �2, this means that a different construction is required
for the case mD 2.

Let u1, u2, u3 and u4 be the vertices of a regular tetrahedron inscribed in S2 (ie
hui ;uj i D �

1
3
D cos �2 for any i ¤ j ). We consider

u1 D .1; 0; 0/; u2 D
�
�

1
3
; 2
p

2
3
; 0
�
;

u3 D
�
�

1
3
;�
p

2
3
;
p

2p
3

�
; u4 D

�
�

1
3
;�
p

2
3
;�
p

2p
3

�
:

Now, let V1;V2;V3;V4 � S2 be the Voronoi partition of S2 induced by u1, u2, u3,
and u4. Then, for each i , Vi is the spherical convex hull of the set

f�uj 2 S2
j j 2 f1; 2; 3; 4g n figg:

Let

r WD arccos
�

2
p

2
3

�
:

For i ¤ j 2 f1; 2; 3; 4g, let ui;j be the point on the shortest geodesic between ui and
�uj such that dS2.ui ;ui;j /D r . See Figure 11 for an illustration of V1.

�2

r

u1

�u2

�u3

�u4

u1;2

u1;3u1;4

Figure 11: V1. All the sides of the spherical triangle V1 (determined by the
three points �u2, �u3, and �u4) have the same length �2.
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Remark 8.1 One can directly compute the coordinates

u1;2 D
�

2
p

2
3
;�1

3
; 0
�
; u1;3 D

�
2
p

2
3
; 1

6
;� 1

2
p

3

�
; u1;4 D

�
2
p

2
3
; 1

6
; 1

2
p

3

�
;

u2;1 D
�
�

4
p

2
9
; 7

9
; 0
�
; u2;3 D

�
�

p
2

9
; 17

18
;� 1

2
p

3

�
; u2;4 D

�
�

p
2

9
; 17

18
; 1

2
p

3

�
:

Lemma 8.2 For any i ¤ j 2 f1; 2; 3; 4g, the following hold :

(1) hui;k ;ui;li D
5
6

for any k ¤ l 2 1; 2; 3; 4 n fig.

(2) hui;k ;uj ;ki D
5

54
for any k 2 1; 2; 3; 4 n fi; j g.

(3) hui;k ;uj ;li D �
2

27
for any k ¤ l 2 1; 2; 3; 4 n fi; j g.

(4) hui;k ;uj ;ii D �
25
54

for any k 2 1; 2; 3; 4 n fi; j g.

(5) hui;j ;uj ;ii D �
23
27

.

(6) hui ;uj ;ki D �

p
2

9
for any k 2 1; 2; 3; 4 n fi; j g.

(7) hui ;uj ;ii D �
4
p

2
9

.

Proof By symmetry, without loss of generality one can assume i D 1 and j D 2. Then
use the coordinate values given in Remark 8.1.

Next, for each i , let fVi;j � Vi j j 2 f1; 2; 3; 4g n figg be the Voronoi partition of Vi

induced by fui;j 2 Vi j j 2 f1; 2; 3; 4g n figg.

From now on, in this section, we will identify S2 with E.S3/� S3. Then obviously

H�0.S
3/D C.V1/[ C.V2/[ C.V3/[ C.V4/:

Moreover, for any i 2 f1; 2; 3; 4g and ˛ 2
�
0; �

2

�
, we divide C.Vi/ into

� Ctop
˛ .Vi/ WD fp 2 C.Vi/ j dSnC1.e4;p/� ˛g,

� Cbot
˛ .Vi/ WD fp 2 C.Vi/ j dSnC1.e4;p/ > ˛g,

� Cbot
˛ .Vi;j / WD fp 2 C.Vi/ j dSnC1.e4;p/ > ˛ and �.p/ 2 Vi;j g for any j in
f1; 2; 3; 4g n fig,

where

� WH�0.S
3/ n fe4g !E.S3/D S2; .x;y; z; w/ 7!

1
p

1�w2
.x;y; z; 0/;
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Ctop
˛ .V1/

Cbot
˛ .V1/

e4
˛

u1

�u2

�u3

�u4
u1;2

u1;3

u1;4

Cbot
˛ .V1;2/

Cbot
˛ .V1;3/

Cbot
˛ .V1;4/

u1

�u2

�u3

�u4

Ctop
˛ .V1/ and Cbot

˛ .V1/. Cbot
˛ .V1;2/, Cbot

˛ .V1;3/, and Cbot
˛ .V1;4/.

Figure 12: The regions into which C.V1/ is split.

is the orthogonal projection onto the equator. Then obviously

C.Vi/D Ctop
˛ .Vi/[

[
j2f1;2;3;4gnfig

Cbot
˛ .Vi;j /

for each i 2 f1; 2; 3; 4g. See Figure 12 for illustrations of Ctop
˛ .V1/, Cbot

˛ .V1/, Cbot
˛ .V1;2/,

Cbot
˛ .V1;3/, and Cbot

˛ .V1;4/.

Lemma 8.3 For p; q 2H�0.S
3/, the following inequalities hold :

(1) If p; q 2 Ctop
˛ .Vi/ for some i 2 f1; 2; 3; 4g, then

hp; qi � cos2 ˛� 1p
3

sin2 ˛ D
�
1C 1p

3

�
cos2 ˛� 1p

3
:

In particular , this is equivalent to

dS3.p; q/� arccos
��

1C 1p
3

�
cos2 ˛� 1p

3

�
:

(2) If p 2 Ctop
˛ .Vi/ and q 2 Cbot

˛ .Vj ;i/ for some i ¤ j 2 f1; 2; 3; 4g, then

hp; qi �

q
2
3

cos2 ˛C 1
3
:

In particular , this is equivalent to

dS3.p; q/� arccos
�q

2
3

cos2 ˛C 1
3

�
:

(3) If p 2 Cbot
˛ .Vi;k/ and q 2 Cbot

˛ .Vj ;i/ for distinct i; j ; k 2 f1; 2; 3; 4g, then

hp; qi �
�
1� 1p

3

�
cos2 ˛C 1p

3
:
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In particular , this is equivalent to the condition

dS3.p; q/� arccos
��

1� 1p
3

�
cos2 ˛C 1p

3

�
:

(4) If p 2 Cbot
˛ .Vi;j / and q 2 Cbot

˛ .Vj ;i/ for some i ¤ j 2 f1; 2; 3; 4g, then

hp; qi � cos2 ˛:

In particular , this is equivalent to

dS3.p; q/� arccos.cos2 ˛/:

Proof We express p and q as

p D cos � � e4C sin � � �2.x/; q D cos � 0 � e4C sin � 0 � �2.y/;

where e4 D .0; 0; 0; 1/ for some �; � 0 2
�
0; �

2

�
and x;y 2 S2. Then

hp; qi D cos � cos � 0Chx;yi sin � sin � 0:

(1) If p; q 2 Ctop
˛ .Vi/ for some i 2 f1; 2; 3; 4g, then we can assume x;y 2 Vi and

�; � 0 2 Œ0; ˛�. Hence,

hp; qi � cos � cos � 0� 1p
3

sin � sin � 0 � cos2 ˛� 1p
3

sin2 ˛ D
�
1C 1p

3

�
cos2 ˛� 1p

3
;

where the first inequality holds because hx;yi � � 1p
3

, by Remark 6.5, and the second
holds since cos � cos � 0Chx;yi sin � sin � 0 is decreasing in both � and � 0.

(2) If p 2 Ctop
˛ .Vi/ and q 2 Cbot

˛ .Vj ;i/ for some i ¤ j 2 f1; 2; 3; 4g, then we can assume
x 2 Vi , y 2 Vj ;i , � 2 Œ0; ˛�, and � 0 2

�
˛; �

2

�
. Now, consider two cases separately.

If hx;yi � 0, then cos � cos � 0Chx;yi sin � sin � 0 is decreasing with respect to both �
and � 0. Hence,

hp; qi � cos 0 cos˛Chx;yi sin 0 sin˛ D cos˛:

If hx;yi � 0, observe that

hp; qi D .1� hx;yi/ cos � cos � 0Chx;yi cos.� 0� �/:

If we view � 0 as a variable on
�
˛; �

2

�
,

@

@� 0
�
.1� hx;yi/ cos � cos � 0Chx;yi cos.� 0� �/

�
D�.1� hx;yi/ cos � sin � 0� hx;yi sin.� 0� �/� 0:
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Hence, hp; qi is maximized when � 0 D ˛. So hp; qi � cos � cos˛Chx;yi sin � sin˛.
Now, if we view � as a variable and take a derivative,

@

@�
.cos � cos˛Chx;yi sin � sin˛/D�sin � cos˛Chx;yi cos � sin˛:

One can easily check that

�sin � cos˛Chx;yi cos � sin˛
�
� 0 if � 2 Œ0; �0�;

� 0 if � 2 Œ�0; ˛�;

where �0 is the unique critical point satisfying tan �0 D hx;yi tan˛. Hence,

cos � cos˛Chx;yi sin � sin˛

is maximized when � D �0. Hence,

hp; qi � cos � cos˛Chx;yi sin � sin˛ �
p

cos2 ˛Chx;yi2 sin2 ˛:

Note that hx;yi � 1p
3

since x 2 Vi and y 2 Vji (this value 1p
3

can be achieved when
x is the midpoint of �uk and �ul for k ¤ l 2 f1; 2; 3; 4g n fi; j g and y D uj ). Hence,
one can conclude

hp; qi �

q
cos2 ˛C 1

3
sin2 ˛ D

q
2
3

cos2 ˛C 1
3
:

Since obviously cos˛ �
q

cos2 ˛C 1
3

sin2 ˛ D

q
2
3

cos2 ˛C 1
3

, this completes the
proof of this case.

(3) If p 2 Cbot
˛ .Vi;k/ and q 2 Cbot

˛ .Vj ;i/ for distinct i; j ; k 2 f1; 2; 3; 4g, then one can
assume x 2 Vi;k , y 2 Vj ;i , and �; � 0 2

�
˛; �

2

�
. Now, consider two cases separately.

If hx;yi � 0, then cos � cos � 0Chx;yi sin � sin � 0 is decreasing with respect to both �
and � 0. Hence,

hp; qi � cos2 ˛Chx;yi sin2 ˛ � cos2 ˛:

If hx;yi � 0, without loss of generality, one can assume � � � 0. Also, observe that

hp; qi D .1� hx;yi/ cos � cos � 0Chx;yi cos.� � � 0/:

If we view � as a variable on
�
� 0; �

2

�
,

@

@�

�
.1� hx;yi/ cos � cos � 0Chx;yi cos.� � � 0/

�
D�.1� hx;yi/ sin � cos � 0� hx;yi sin.� � � 0/

� 0:
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Hence, hp; qi is maximized when � D � 0. So hp; qi � cos2 � 0Chx;yi sin2 � 0. Now,
if we view � 0 as a variable and take a derivative,

@

@� 0
.cos2 � 0Chx;yi sin2 � 0/D�2.1� hx;yi/ cos � 0 sin � 0 � 0:

Therefore, cos2 � 0Chx;yi sin2 � 0 is maximized when � 0 D ˛. Hence,

hp; qi � cos2 ˛Chx;yi sin2 ˛:

Note that hx;yi � 1p
3

as in the proof of the previous case. Hence, finally we get
hp; qi� cos2 ˛C 1p

3
sin2 ˛D

�
1� 1p

3

�
cos2 ˛C 1p

3
. Since cos2 ˛ is obviously smaller

than cos2 ˛C 1p
3

sin2 ˛D
�
1� 1p

3

�
cos2 ˛C 1p

3
, this completes the proof of this case.

(4) If p 2 Cbot
˛ .Vi;j / and q 2 Cbot

˛ .Vj ;i/ for some i ¤ j 2 f1; 2; 3; 4g, then one can
assume x 2 Vi;j , y 2 Vj ;i , and �; � 0 2

�
˛; �

2

�
. Since hx;yi � 0 always in this case,

cos � cos � 0 C hx;yi sin � sin � 0 is decreasing with respect to both � and � 0. Hence,
hp; qi is maximized when � D � 0 D ˛. Therefore,

hp; qi � cos2 ˛Chx;yi sin2 ˛ � cos2 ˛:

Finally, we are ready to construct the map

Q�˛3;2 WH>0.S
3/!S2; p 7!

�
ui if p 2 Ctop

˛ .Vi/ for some i 2 f1;2;3;4g;

ui;j if p 2 Cbot
˛ .Vi;j / for some i ¤ j 2 f1;2;3;4g:

Proposition 8.4 For ˛ 2
�
0; �

2

�
such that cos2 ˛ 2

�p
3�1

3C
p

3
; 7

9

�
,

dis
�
Q�˛3;2

�
� �2:

Proof We need to checkˇ̌
dS3.p; q/� dS2

�
Q�˛3;2.p/;

Q�˛3;2.q/
�ˇ̌
� �2

for any p; q 2H>0.S
3/. We carry out a case-by-case analysis.

(1) Suppose p; q 2 C.Vi/ for some i 2 f1; 2; 3; 4g. Without loss of generality, one can
assume i D 1. Then

dS2

�
Q�˛3;2.p/;

Q�˛3;2.q/
�
� diam.fu1;u1;2;u1;3;u1;4g/D arccos 5

6
< �2

by Lemma 8.2(1). Therefore,

dS2

�
Q�˛3;2.p/;

Q�˛3;2.q/
�
� dS3.p; q/� arccos 5

6
< �2:

So it is enough to prove dS3.p; q/�dS2

�
Q�˛
3;2
.p/; Q�˛

3;2
.q/
�
� �2. But, for this direction,

we need more subtle case-by-case analysis.
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(a) Suppose p; q 2 Ctop
˛ .V1/. Then Q�˛

3;2
.p/D Q�˛

3;2
.q/D u1. Also, by Lemma 8.3(1)

and the choice of ˛,

dS3.p; q/� arccos
��

1C 1p
3

�
cos2 ˛� 1p

3

�
� �2:

Hence,

dS3.p; q/� dS2

�
Q�˛3;2.p/;

Q�˛3;2.q/
�
D dS3.p; q/� �2:

(b) If p 2 Ctop
˛ .V1/ and q 2 Cbot

˛ .V1/, then Q�˛
3;2
.p/D u1 and Q�˛

3;2
.q/D u1;j for some

j 2 f2; 3; 4g. Therefore,

dS3.p; q/� dS2

�
Q�˛3;2.p/;

Q�˛3;2.q/
�
� arccos

�
�

1p
3

�
� arccos

�
2
p

2
3

�
< �2:

(c) Suppose p; q 2 Cbot
˛ .V1/.

(i) If p; q 2 Cbot
˛ .V1;j / for some j 2 f2; 3; 4g, then Q�˛

3;2
.p/D Q�˛

3;2
.q/D u1;j . Also,

it is easy to check the diameter of Cbot
˛ .V1;j / is �

2
. Hence,

dS3.p; q/� dS2

�
Q�˛3;2.p/;

Q�˛3;2.q/
�
D dS3.p; q/� �

2
< �2:

(ii) If p 2 Cbot
˛ .V1;k/ and p 2 Cbot

˛ .V1;l/ for some k ¤ l 2 f2; 3; 4g, then

dS2

�
Q�˛3;2.p/;

Q�˛3;2.q/
�
D dS2.u1;k ;u1;l/D arccos

�
5
6

�
by Lemma 8.2(1). Therefore,

dS3.p; q/� dS2

�
Q�˛3;2.p/;

Q�˛3;2.q/
�
� arccos

�
�

1p
3

�
� arccos

�
5
6

�
< �2:

(2) Suppose p 2 C.Vi/ and q 2 C.Vj / for some i ¤ j 2 f1; 2; 3; 4g. Without loss of
generality, one can assume i D 1 and j D 2. Then, by Lemma 8.2,

dS2

�
Q�˛3;2.p/;

Q�˛3;2.q/
�
� arccos

�
5

54

�
> arccos

�
1
3

�
:

Therefore,

dS3.p; q/� dS2

�
Q�˛3;2.p/;

Q�˛3;2.q/
�
< � � arccos

�
1
3

�
D �2:

So, it is enough to prove dS2

�
Q�˛
3;2
.p/; Q�˛

3;2
.q/
�
�dS3.p; q/� �2. Again we need more

subtle case-by-case analysis.

(a) If p 2 Ctop
˛ .V1/ and q 2 Ctop

˛ .V2/, then Q�˛
3;2
.p/ D u1 and Q�˛

3;2
.q/ D u2, so

dS2

�
Q�˛
3;2
.p/; Q�˛

3;2
.q/
�
D dS2.u1;u2/D �2. Thus,

dS2

�
Q�˛3;2.p/;

Q�˛3;2.q/
�
� dS3.p; q/� �2:
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(b) Suppose p 2 Ctop
˛ .V1/ and q 2 Cbot

˛ .V2/.

(i) If q 2 Cbot
˛ .V2;j / for some j 2 f3; 4g, then, by Lemma 8.2(6),

dS2

�
Q�˛3;2.p/;

Q�˛3;2.q/
�
D dS3.u1;u2;j /D arccos

�
�

p
2

9

�
:

Hence,

dS2

�
Q�˛3;2.p/;

Q�˛3;2.q/
�
� dS3.p; q/� arccos

�
�

p
2

9

�
< �2:

(ii) If q 2 Cbot
˛ .V2;1/ then dS2

�
Q�˛
3;2
.p/; Q�˛

3;2
.q/
�
D dS2.u1;u2;1/D arccos

�
�

4
p

2
9

�
by Lemma 8.2(7). Moreover, by Lemma 8.3(2) and the choice of ˛,

dS3.p; q/� arccos
�q

2
3

cos2 ˛C 1
3

�
> arccos

�
2
p

2
3

�
;

which implies

dS2

�
Q�˛3;2.p/;

Q�˛3;2.q/
�
� dS3.p; q/ < arccos

�
�

4
p

2
9

�
� arccos

�
2
p

2
3

�
D �2:

(c) Suppose p 2 Cbot
˛ .V1/ and q 2 Cbot

˛ .V2/. Considering symmetry, there are basically
four subcases:

(i) If p 2 Cbot
˛ .V1;3/ and q 2 Cbot

˛ .V2;3/, then, by Lemma 8.2(2),

dS2

�
Q�˛3;2.p/;

Q�˛3;2.q/
�
D dS2.u1;3;u2;3/D arccos

�
5

54

�
:

Hence,

dS2

�
Q�˛3;2.p/;

Q�˛3;2.q/
�
� dS3.p; q/� arccos

�
5

54

�
< �2:

(ii) If p 2 Cbot
˛ .V1;3/ and q 2 Cbot

˛ .V2;4/, then, by Lemma 8.2(3),

dS2

�
Q�˛3;2.p/;

Q�˛3;2.q/
�
D dS2.u1;3;u2;4/D arccos

�
�

2
27

�
:

Hence,

dS2

�
Q�˛3;2.p/;

Q�˛3;2.q/
�
� dS3.p; q/� arccos

�
�

2
27

�
< �2:

(iii) If p 2 Cbot
˛ .V1;3/ and q 2 Cbot

˛ .V2;1/, then, by Lemma 8.2(4),

dS2

�
Q�˛3;2.p/;

Q�˛3;2.q/
�
D dS2.u1;3;u2;1/D arccos

�
�

25
54

�
:

Moreover, by Lemma 8.3(3) and the choice of ˛,

dS3.p; q/� arccos
��

1� 1p
3

�
cos2 ˛C 1p

3

�
> arccos

�
�

25
54

�
� �2:
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Hence,
dS2. Q�˛3;2.p/;

Q�˛3;2.q//� dS3.p; q/ < �2:

(iv) If p 2 Cbot
˛ .V1;2/ and q 2 Cbot

˛ .V2;1/, then, by Lemma 8.2(5),

dS2

�
Q�˛3;2.p/;

Q�˛3;2.q/
�
D dS2.u1;2;u2;1/D arccos

�
�

23
27

�
:

Moreover, by Lemma 8.3(4) and the choice of ˛,

dS3.p; q/� arccos.cos2 ˛/� arccos
�

7
9

�
:

Hence,

dS2

�
Q�˛3;2.p/;

Q�˛3;2.q/
�
� dS3.p; q/� arccos

�
�

23
27

�
� arccos

�
7
9

�
D �2:

Lemma 8.5 For any p 2H>0.S
3/, dS3

�
p; Q�˛

3;2
.p/

�
�
�
2

.

Proof Without loss of generality, one can assume p 2 C.V1/. Then one can express p

as pD cos � �e4C sin � � �2.x/, where e4D .0; 0; 0; 1/ for some � 2
�
0; �

2

�
and x 2 V1.

Moreover, since Q�˛
3;2
.p/ 2 fu1;u1;2;u1;3;u1;4g,˝

p; Q�˛3;2.p/
˛
D
˝
x; Q�˛3;2.p/

˛
� sin �:

Also, it is easy to check that
˝
x; Q�˛

3;2
.p/

˛
� 0 (more precisely, hu1;xi �

1
3

and
hu1;j ;xi �

p
2

9
for any x 2N1 with j ¤ 1). This implies

˝
p; Q�˛

3;2
.p/

˛
� 0; hence we

have the required inequality.

We are now ready to prove Proposition 1.19.

Proof of Proposition 1.19 It is enough to find a surjective map �3;2 W S
3 � S2 such

that dis.�3;2/� �2 since this map gives rise to the correspondence R3;2 WD graph.�3;2/

with dis.R3;2/D dis.�3;2/� �2.

Let
O�˛3;2 WA.S

3/! S2; p 7!

�
Q�˛
3;2
.p/ if p 2H>0.S

3/;

p if p 2 �2.A.S
2//:

We claim that dis. O�˛
3;2
/D dis. Q�˛

3;2
/. To check this, it is enough to show thatˇ̌

dS3.p; q/� dS2. O�˛3;2.p/;
O�˛3;2.q//

ˇ̌
� �2

for any p 2H>0.S
3/ and q 2 �2.A.S

2//. But, this is true sinceˇ̌
dS3.p; q/� dS2

�
O�˛3;2.p/;

O�˛3;2.q/
�ˇ̌
D
ˇ̌
dS3.p; q/� dS2

�
O�˛3;2.p/; q

�ˇ̌
� dS3

�
p; O�˛3;2.p/

�
;
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and dS3

�
p; O�˛

3;2
.p/

�
D dS3

�
p; Q�˛

3;2
.p/

�
�
�
2
<�2 for any p 2H>0.S

3/ by Lemma 8.5.
Hence, dis

�
O�˛
3;2

�
D dis

�
Q�˛
3;2

�
. Finally, apply Lemma 5.7 to construct a surjective map

�3;2 W S
3 � S2. Then

dis.�3;2/D dis
�
O�˛3;2

�
D dis

�
Q�˛3;2

�
� �2

by Proposition 8.4.

9 The Gromov–Hausdorff distance between spheres with
Euclidean metric

For any nonempty subset X � Sn, let XE denote the metric space with the inherited
Euclidean metric. In particular, Sn

E will denote the unit sphere with the Euclidean
metric dE inherited from RnC1. A natural question is: what is the value of

gE
m;n WD dGH.S

m
E ;S

n
E/

for 0�m< n�1? We found that, interestingly, these values do not always directly
follow from those of gm;n.

Any correspondence R between Sm and Sn can of course be regarded as a correspon-
dence between Sm

E and Sn
E. Throughout this section, let dis.R/ denote the distortion

with respect to the geodesic metric (as usual), and let disE.R/ denote the distortion
with respect to the Euclidean metric.

The following are direct extensions of parallel results for spheres with geodesic distance:

Remark 9.1 As in Remark 1.4, for all 0�m� n�1,

dGH.S
m
E ;S

n
E/� 1:

Lemma 9.2 For any integer m� 1 and any finite metric space P with cardinality at
most mC 1, we have dGH.Sm

E ;P /� 1.

Proof Fix an arbitrary correspondence R between Sm
E and P . Then one can prove

that disE.R/� 2 as in the proof of Lemma 3.2 (via the aid of Lyusternik–Schnirelmann
theorem). Since R is arbitrary, one can conclude dGH.Sm

E ;P /� 1.

Corollary 9.3 Let R be any correspondence between a finite metric space P and S1E .
Then disE.R/� 2. In particular , dGH.P;S1E /� 1.

Proof See the proof of Corollary 3.4.
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Proposition 9.4 Let X be any totally bounded metric space. Then dGH.X;S1E /� 1.

Proof Follow the idea of the proof of Proposition 3.5.

Proposition 9.5 For any n� 1, dGH.S0
E;S

n
E/D 1.

Proof Apply Remark 9.1 and Lemma 9.2.

Proposition 9.6 For any integer m� 0, dGH.Sm
E ;S

1
E /D 1.

Proof Apply Remark 9.1 and Proposition 9.4.

The following lemma permits bounding disE.R/ via dis.R/:

Lemma 9.7 Let 0�m< n�1, and let R be an arbitrary nonempty relation between
Sm

E and Sn
E. Then

disE.R/� 2 sin
�

1
2

dis.R/
�
:

Proof First of all, note that dis.R/ WD sup.x;y/;.x0;y0/2R jdSm.x;x0/�dSn.y;y0/j�� ,
since both diam.Sm/ and diam.Sn/ are at most � . Fix arbitrary .x;y/; .x0;y0/ 2 R.
Then

dE.x;x
0/D 2 sin

�
1
2
dSm.x;x0/

�
D 2 sin

�
1
2
dSm.x;x0/� 1

2
dSn.y;y0/C 1

2
dSn.y;y0/

�
D 2 sin

�
1
2
dSm.x;x0/� 1

2
dSn.y;y0/

�
cos
�

1
2
dSn.y;y0/

�
C 2 cos

�
1
2
dSm.x;x0/� 1

2
dSn.y;y0/

�
sin
�

1
2
dSn.y;y0/

�
� 2 sin

�
1
2
jdSm.x;x0/� dSn.y;y0/j

�
C 2 sin

�
1
2
dSn.y;y0/

�
D 2 sin

�
1
2
jdSm.x;x0/� dSn.y;y0/j

�
C dE.y;y

0/;

where the inequality follows since cos
�

1
2
dSm.x;x0/� 1

2
dSn.y;y0/

�
2 Œ0; 1�.

Hence,
dE.x;x

0/� dE.y;y
0/� 2 sin

�
1
2
jdSm.x;x0/� dSn.y;y0/j

�
:

Similarly, one can also prove

dE.y;y
0/� dE.x;x

0/� 2 sin
�

1
2
jdSm.x;x0/� dSn.y;y0/j

�
:

Therefore,

jdE.x;x
0/� dE.y;y

0/j � 2 sin
�

1
2
jdSm.x;x0/� dSn.y;y0/j

�
:

Since .x;y/; .x0;y0/ 2R were arbitrary, this leads to the required conclusion.
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Corollary 9.8 For any 0�m< n�1:

(1) dGH.Sm
E ;S

n
E/� sin.dGH.Sm;Sn//.

(2) In more generality , for any X �Sm and Y �Sn, dGH.XE;YE/� sin.dGH.X;Y //.

Corollary 9.9 dGH.Sm
E ;S

n
E/ < 1 for all 0<m¤ n<1.

Proof Invoke Corollary 9.8 and Theorem A.

Given the above, and that we proved g1;2 D
�
3

and g2;3 D
1
2
�2, one might expect that

gE
1;2
D dGH.S1

E;S
2
E/ D sin

�
�
3

�
D

p
3

2
and similarly that gE

2;3
D

p
2p
3

. However, rather
surprisingly, we were able to construct a correspondence RE between S1

E and H�0.S
2
E/

such that disE.RE/ <
p

3 (see Proposition 9.10 and its proof in Section 9.1). This
correspondence then naturally induces a function �E WA.S2

E/! S1
E from the “helmet”

on S2
E into S1

E also with disE.�E/ <
p

3.

Proposition 9.10 dGH.S
1
E;H�0.S

2
E// <

p
3

2
.

This proposition was motivated by Ilya Bogdanov’s answer [2] to a MathOverflow
question regarding the Gromov–Hausdorff distance between S1

E and the unit disk in R2.

We now discuss the possibility that the correspondence RE described above permits
proving that, in fact, dGH.S1

E;S
2
E/ <

p
3

2
via extending RE into a correspondence

between S2
E and S1

E much in the same way that we did so in the case of spheres with
their geodesic distance (see Lemma 5.7).

By the same method of proof as that of Corollary 5.5 (giving the lower bound dis.g/��n
for any antipode-preserving map g W Sn! Sn�1), one obtains the following Euclidean
analogue:

Corollary 9.11 For each integer n> 0, any function g W Sn
E! Sn�1

E which maps every
pair of antipodal points on Sn

E onto antipodal points on Sn�1
E satisfies

disE.g/�

r
2C

2

n
:

Remark 9.12 (extending Lemma 5.7 to the case of spheres with Euclidean metric)
Lemma 5.7 was instrumental in our quest for lower bounds for the Gromov–Hausdorff
distance between spheres with the geodesic distance. It is natural to attempt to obtain a
suitable version of that result to the case of the Euclidean metric. However, there is a
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caveat. Indeed, one should not expect to be able to prove a version in which disE.�
�/

is equal to dis.�/ where � WA.Sn
E/! Sm

E and �� is its antipode-preserving extension
obtained via the “helmet trick” (as described in the statement of Lemma 5.7). If this
was the case, then the antipode-preserving extension ��E of the function �E mentioned
above would satisfy

(10) disE.�
�
E / <

p
3:

However, note that Corollary 9.11 implies that, in the case of spheres with Euclidean
distance, any antipode-preserving map  W SmC1

E ! Sm
E must satisfy

disE. /�

r
2C

2

mC1
:

In particular, it must be that disE. /�
p

3 for any antipode-preserving map WS2
E!S1

E,
and this would contradict (10).

Still, as we describe next, there is a suitable generalization of Lemma 5.7 which yields
nontrivial lower bounds (see Proposition 9.16).

Lemma 9.13 If ja� bj DW ı 2 Œ0; 2� for some a; b 2 Œ0; 2�, thenˇ̌p
4� a2�

p
4� b2

ˇ̌
�
p
ı.4� ı/;

and the inequality is tight.

Proof The claim is obvious if ı D 0. Henceforth, we will assume that ı > 0. Observe
that ˇ̌p

4� a2�

p
4� b2

ˇ̌
D

ja2� b2j
p

4� a2C
p

4� b2

D ja� bj �
aC b

p
4� a2C

p
4� b2

� ı �
4� ı
p

4ı� ı2

D
p
ı.4� ı/:

Finally, the equality holds if aD 2 and b D 2� ı, or aD 2� ı and b D 2.

Lemma 9.14 For any m; n � 0, let ∅ ¤ C � Sn
E satisfy C \ .�C / D ∅ and let

� W C ! Sm
E be any map. Then the extension �� of � to the set C [ .�C / defined by

�� W C [ .�C /! Sm; x 7! �.x/; �x 7! ��.x/ for x 2 C;

is antipode-preserving and satisfies disE.�
�/�

p
disE.�/.4� disE.�//.
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Proof By definition, �� is antipode-preserving. Now, fix arbitrary x;x0 2 C . Then

jdE.x;�x0/� dE.�
�.x/; ��.�x0//j

D j

p
4� .dE.x;x

0//2�
p

4�
�
dE.�.x/; �.x

0//
�2
j

�

p
jdE.x;x

0/� dE.�.x/; �.x
0//j
�
4� jdE.x;x

0/� dE.�.x/; �.x
0//j
�

�
p

disE.�/.4� disE.�//

and

jdE.�x;�x0/� dE.�
�.�x/; ��.�x0//j D jdE.x;x

0/� dE.�.x/; �.x
0//j � disE.�/:

Hence,

disE.�
�/�max

˚
disE.�/;

p
disE.�/.4� disE.�//

	
D
p

disE.�/.4� disE.�//:

Corollary 9.15 For each n2Z>0 and any map � WSn
E!Sn�1

E , there exists an antipode-
preserving map �� W Sn

E! Sn�1
E such that disE.�

�/�
p

disE.�/.4� disE.�//.

Proof Consider the restriction of � to the “helmet” A.Sn/ (see Section 5.1) and apply
Lemma 9.14.

Proposition 9.16 For all integers 0<m< n,

dGH.S
m
E ;S

n
E/�

1

2

�
2�

r
2�

2

mC1

�
�

1

2
:

Proof Suppose to the contrary that dGH.Sm
E ;S

n
E/ <

1
2
.2�

p
2� 2=.mC 1//. This

implies that there exist a correspondence � between Sm
E and Sn

E such that disE.�/ <
1
2
.2 �

p
2� 2=.mC 1//. Moreover, since n � mC 1, SmC1

E can be isometrically
embedded in Sn

E, so we are able to construct a map g W SmC1
E ! Sm

E in the following
way: for each x 2 SmC1

E � Sn
E, choose g.x/ 2 Sm

E such that .g.x/;x/ 2 � . Then
disE.g/ < .2�

p
2� 2=.mC 1// as well. By applying Corollary 9.15, one can modify

this g into an antipode-preserving map Og W SmC1
E ! Sm

E with

disE. Og/�
p

disE.g/.4� disE.g// <

r
2C

2

mC1
;

which contradicts Corollary 9.11.

Note that in contrast to the case of geodesic distances (where the upper bound given
by Proposition 1.16 and the lower bound given by Theorem B agree when mD 1 and
nD 2), Proposition 9.16 yields gE

1;2
�

1
2

, which is strictly smaller than the upper bound
p

3
2

provided by Corollary 9.8 and Proposition 1.16.
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9.1 The proof of Proposition 9.10

The proof will be based on a geometric construction which is illustrated in Figures 13
and 14.

Proof To prove the claim, note that it is enough to construct a correspondence RE

between S1
E and H�0.S

2
E/ such that disE.RE/ <

p
3.

First, let u1; : : : ;u7 be the vertices of a regular heptagon inscribed in S1. Let vi WD�ui

for i D 1; : : : ; 7. See Figure 13 for a description.

Second, divide H�0.S
2
E
/ into seven regions A1; : : : ;A7 as in Figure 14. The precise

“disjointification” (on the boundary) of the seven regions is not relevant to the analysis
that follows, as it is easy to check.

Now, choose ai 2 Ai for each i D 1; : : : ; 7 in the following way, where ˛ is some
number which is very close to

p
3

2
but still strictly smaller than

p
3

2
(for example, choose

˛ D 0:866):

a1D

�q
1�

�p
1�˛2C2�

p
3
�2
;
p

1�˛2C2�
p

3; 0

�
� .0:640511; 0:767949; 0/;

a2D

�
0;
p

1�˛2C2�
p

3;

q
1�

�p
1�˛2C2�

p
3
�2�
� .0; 0:767949; 0:640511/;

a3D
�
0;
p

1�˛2; ˛
�
� .0; 0:5; 0:866/;

u1

u2

u3

u4u5

u6

u7

v1

v2

v3

v4 v5

v6

v7

Figure 13: The points v1; : : : ; v7 and u1; : : : ;u7. These arise from two
antipodal regular heptagons inscribed in S1.

Geometry & Topology, Volume 27 (2023)



3790 Sunhyuk Lim, Facundo Mémoli and Zane Smith

x

y

z

p� pC

q� qC

a1
a2

a3

a4

a5

a6 a7

A1

A2

A3 A4

A5

A6 A7

Figure 14: View from above of the seven regions A1; : : : ;A7 of H�0.S2
E/.

All lines shown in the figure (which are projections of circular arcs) are
aligned with the either the x or y axis. Also, p˙ D .˙˛;

p
1�˛2; 0/ and

q˙ D .˙˛;�
p

1�˛2; 0/.

a4D .0; 0; 1/;

a5D

�
0;�

�p
1�˛2C�6�

p
3
�
;

q
1�

�p
1�˛2C�6�

p
3
�2�

� .0;�0:717805; 0:696244/;

a6D

�
0;�

�p
1�˛2C�6�

p
3C�5�

p
3
�
;

q
1�

�p
1�˛2C�6�

p
3C�5�

p
3
�2�

� .0;�0:787692; 0:616069/;

a7D

�q
1�

�p
1�˛2C�6�

p
3C�5�

p
3
�2
;�
�p

1�˛2C�6�
p

3C�5�
p

3
�
; 0

�
� .0:616069;�0:787692; 0/;

where �k WD
p

2� 2 cos.k�=7/ for k 2 f1; : : : ; 7g.

One can directly check that the following seven conditions are satisfied:

(1) dE.Ai ;Aj / > �6�
p

3 for any i; j 2 f1; : : : ; 7g with ji � j j D 3.

(2) dE.ai ; aj / > �6�
p

3 for any i; j 2 f1; : : : ; 7g with ji � j j D 2.

(3) dE.ai ; aj / > 2�
p

3 for any i; j 2 f1; : : : ; 7g with ji � j j D 3.
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(4) dE.Ai ; aj / > �5�
p

3 for any i; j 2 f1; : : : ; 7g with ji � j j D 2.

(5) dE.Ai ; aj / > 2�
p

3 for any i; j 2 f1; : : : ; 7g with ji � j j D 3.

(6) diam.Ai/ <
p

3 for any i 2 f1; : : : ; 7g.

(7) dE.ai ; aj / <
p

3 for any i; j 2 f1; : : : ; 7g with ji � j j D 1.

In what follows, for two points v;w 2 S1 with dE.v; w/ < 2, >vw will denote the
(unique) shortest circular arc determined by these two points.

Now we define a correspondence RE by

RE WD

7[
iD1

f.ui ;y/ W y 2Aig[

7[
iD1

f.x; ai/ W x 2
>viC3viC4g:

We now prove that disE.RE/ <
p

3:

First, let us prove that

sup
.x;y/;.x0;y0/2RE

.dE.x;x
0/� dE.y;y

0// <
p

3:

For this we verify the inequality dE.x;x
0/� dE.y;y

0/ <
p

3 for all cases induced by
the structure of the correspondence RE :

(1) If .x;y/; .x0;y0/2fuig�Ai for some i2f1; : : : ;7g, then dE.x;x
0/DdE.ui ;ui/D0.

(2) If .x;y/ 2 fuig �Ai and .x0;y0/ 2 fuj g �Aj for some i; j 2 f1; : : : ; 7g with
ji � j j D 1, then dE.x;x

0/D dE.ui ;uj /D �2 <
p

3.

(3) If .x;y/ 2 fuig �Ai and .x0;y0/ 2 fuj g �Aj for some i; j 2 f1; : : : ; 7g with
ji � j j D 2, then dE.x;x

0/D dE.ui ;uj /D �4 <
p

3.

(4) If .x;y/ 2 fuig �Ai and .x0;y0/ 2 fuj g �Aj for some i; j 2 f1; : : : ; 7g with
ji � j j D 3, then dE.x;x

0/ D dE.ui ;uj / D �6 >
p

3. However, since dE.Ai ;Aj / >

�6�
p

3 by condition (1) above, we have dE.x;x
0/� dE.y;y

0/ <
p

3.

(5) If .x;y/; .x0;y0/ 2>viC3viC4 � faig for some i 2 f1; : : : ; 7g, then dE.x;x
0/ �

diam.>viC3viC4/D �2 <
p

3.

(6) If .x;y/2>viC3viC4�faig and .x0;y0/2>vjC3vjC4�faj g for some i; j 2f1; : : : ; 7g

with ji � j j D 1, then dE.x;x
0/� diam.>viC3viC4[

>vjC3vjC4/D �4 <
p

3.

(7) If .x;y/ 2>viC3viC4 � faig and .x0;y0/ 2>vjC3vjC4 � faj g for some i; j 2

f1; : : : ; 7g with ji �j j D 2, then dE.x;x
0/� diam.>viC3viC4[

>vjC3vjC4/D �6 >
p

3.
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However, since dE.y;y
0/ D dE.ai ; aj / > �6 �

p
3 by condition (2) above, we have

dE.x;x
0/� dE.y;y

0/ <
p

3.

(8) If .x;y/2>viC3viC4�faig and .x0;y0/2>vjC3vjC4�faj g for some i; j 2f1; : : : ; 7g

with ji � j j D 3, then, since dE.y;y
0/D dE.ai ; aj / > 2�

p
3 by condition (3) above,

we have dE.x;x
0/� dE.y;y

0/ < 2� .2�
p

3/D
p

3.

(9) If .x;y/ 2 fuig � Ai and .x0;y0/ 2>viC3viC4 � faig for some i 2 f1; : : : ; 7g,
then ui 2

>viC3viC4. Hence, dE.x;x
0/ D dE.ui ;x

0/ � diam.>viC3viC4/ <
p

3. So
dE.x;x

0/� dE.y;y
0/ <
p

3.

(10) If .x;y/ 2 fuig �Ai and .x0;y0/ 2>vjC3vjC4 � faj g for some i; j 2 f1; : : : ; 7g

with ji � j j D 1, then dE.x;x
0/D dE.ui ;x

0/� diam.fuig[
>vjC3vjC4/D �3 <

p
3.

(11) If .x;y/2fuig�Ai and .x0;y0/2>vjC3vjC4�faj g for some i; j 2f1; : : : ; 7gwith
ji�j jD2, then dE.x;x

0/DdE.ui ;x
0/�diam.fuig[

>vjC3vjC4/D�5>
p

3. However,
since dE.Ai ; aj / > �5�

p
3 by condition (4) above, dE.x;x

0/� dE.y;y
0/ <
p

3.

(12) If .x;y/ 2 fuig �Ai and .x0;y0/ 2>vjC3vjC4 � faj g for some i; j 2 f1; : : : ; 7g

with ji � j j D 3, then, since dE.Ai ; aj / > 2�
p

3 by condition (5) above, we have
dE.x;x

0/� dE.y;y
0/ <
p

3.

Next, we prove
sup

.x;y/;.x0;y0/2RE

.dE.y;y
0/� dE.x;x

0// <
p

3;

for which we verify the inequality dE.x;x
0/� dE.y;y

0/ <
p

3 in a number of cases.

(1) If .x;y/; .x0;y0/ 2 fuig�Ai for some i 2 f1; : : : ; 7g, then, since diam.Ai/ <
p

3

by condition (6) above, dE.y;y
0/ <
p

3, so dE.y;y
0/� dE.x;x

0/ <
p

3.

(2) If .x;y/ 2 fuig �Ai and .x0;y0/ 2 fuj g �Aj for some i; j 2 f1; : : : ; 7g with
ji�j j D 1, then dE.x;x

0/D dE.ui ;uj /D �2 and dE.y;y
0/�dE.x;x

0/� 2��2<
p

3.

(3) If .x;y/ 2 fuig �Ai and .x0;y0/ 2 fuj g �Aj for some i; j 2 f1; : : : ; 7g with
ji�j j D 2, then dE.x;x

0/D dE.ui ;uj /D �4 and dE.y;y
0/�dE.x;x

0/� 2��4<
p

3.

(4) If .x;y/ 2 fuig �Ai and .x0;y0/ 2 fuj g �Aj for some i; j 2 f1; : : : ; 7g with
ji�j j D 3, then dE.x;x

0/D dE.ui ;uj /D �6 and dE.y;y
0/�dE.x;x

0/� 2��6<
p

3.

(5) If .x;y/; .x0;y0/ 2>viC3viC4 � faig for some i 2 f1; : : : ; 7g, then dE.y;y
0/ D

dE.ai ; ai/D 0.

(6) If .x;y/2>viC3viC4�faig and .x0;y0/2>vjC3vjC4�faj g for some i; j 2f1; : : : ; 7g

with ji � j j D 1, then, since dE.ai ; aj / <
p

3 by condition (7) above, we have
dE.y;y

0/� dE.x;x
0/D dE.ai ; aj /� dE.x;x

0/ <
p

3.
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(7) If .x;y/2>viC3viC4�faig and .x0;y0/2>vjC3vjC4�faj g for some i; j 2f1; : : : ; 7g

with ji � j j D 2, then dE.x;x
0/� �2. Hence, dE.y;y

0/� dE.x;x
0/� 2� �2 <

p
3.

(8) If .x;y/2>viC3viC4�faig and .x0;y0/2>vjC3vjC4�faj g for some i; j 2f1; : : : ; 7g

with ji � j j D 3, then dE.x;x
0/� �4. Hence, dE.y;y

0/� dE.x;x
0/� 2� �4 <

p
3.

(9) If .x;y/ 2 fuig�Ai and .x0;y0/ 2>viC3viC4�faig for some i 2 f1; : : : ; 7g, then,
since ai 2Ai and diam.Ai/<

p
3 by condition (6), we have dE.y;y

0/�dE.x;x
0/<
p

3.

(10) If .x;y/ 2 fuig �Ai and .x0;y0/ 2>vjC3vjC4 � faj g for some i; j 2 f1; : : : ; 7g

with ji � j j D 1, then dE.x;x
0/� �1. Hence, dE.y;y

0/� dE.x;x
0/� 2� �1 <

p
3.

(11) If .x;y/ 2 fuig �Ai and .x0;y0/ 2>vjC3vjC4 � faj g for some i; j 2 f1; : : : ; 7g

with ji � j j D 2, then dE.x;x
0/� �3. Hence, dE.y;y

0/� dE.x;x
0/� 2� �3 <

p
3.

(12) If .x;y/2fuig�Ai and .x0;y0/2>vjC3vjC4�faj g for some i; j 2f1; : : : ; 7gwith
ji �j j D 3: Observe that dE.x;x

0/� �5. Hence, dE.y;y
0/�dE.x;x

0/� 2��5 <
p

3.

Hence, disE.RE/ <
p

3, as required.

Appendix A A succinct proof of Theorem G

In this appendix we provide a proof of Theorem G following a strategy suggested by
Matoušek in [24, page 41] and due to Arnold Waßmer.

Lemma A.1 If a simplex contains 0 2 Rn and all of its vertices lie on Sn�1, then
there are vertices u and v of the simplex such that dSn�1.u; v/� �n�1.

Proof We give the proof here for completeness — the proof is basically the same as
that of [11, Lemma 1]. Let u1; : : : ;unC1 be (not necessarily distinct) vertices of a
simplex such that their convex hull contains the origin 0 2 Rn. Therefore, there are
nonnegative numbers �1; : : : ; �nC1 such that

PnC1
iD1 �nD 1 and 0D

PnC1
iD1 �iui . Then

0D





nC1X
iD1

�iui





2

D

X
i¤j

�i�j hui ;uj iC

nC1X
iD1

�2
i :

Moreover, since 0�
P

i¤j .�i ��j /
2 D 2n

PnC1
iD1 �

2
i � 2

P
i¤j �i�j ,

nC1X
iD1

�2
i �

1

n

X
i¤j

�i�j :
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Hence,
0�

X
i¤j

�i�j

�
hui ;uj iC

1

n

�
:

Thus, there must be some distinct i and j such that hui ;uj i � �1=n, so that

dSn�1.ui ;uj /� arccos
�
�

1

n

�
D �n�1:

Below, the notation V .T / for a triangulation T of the cross-polytope yBn will denote
its set of vertices.

Lemma A.2 Let T be a triangulation of the cross-polytope yBn which is antipodally
symmetric at the boundary (ie if � � @yBn is a simplex in T , then �� � @yBn is also
in T ), and let g W V .T /! Sn�1 be a mapping that satisfies g.�v/ D �g.v/ 2 Sn�1

for all vertices v 2 V .T / lying on the boundary of yBn. Then there exist vertices
u; v 2 V .T / with dSn�1.g.u/;g.v//� �n�1.

Proof By Lemma A.1 it is enough to show that some simplex fv1; : : : ; vmg of T

satisfies
0 2 Conv.g.v1/;g.v2/; : : : ;g.vm//:

Suppose not; then one can construct the continuous map � W yBn!Rn n f0g such that
�.a1u1C� � �Camum/ WD a1g.u1/C� � �Camg.um/, where fu1; : : : ;umg is a simplex
of T , a1; : : : ; am2 Œ0; 1�, and

Pm
iD1 aiD1. Next, one can construct the continuous map

O� W yBn!Sn�1 such that O�.x/ WD �.x/=k�.x/k for each x 2 yBn. Moreover, this map O�
is antipode-preserving on the boundary since if x 2 @yBn satisfies xDa1v1C� � �Camvm

where fv1; : : : ; vmg is a simplex of @yBn, then �.x/D a1g.v1/C � � � C amg.vm/ and
�.�x/D a1g.�v1/C � � � C amg.�vm/, so �.�x/D��.x/. This is a contradiction
to the classical Borsuk–Ulam theorem since O� ı˛�1 W Bn! Sn�1 is continuous and
antipode-preserving on the boundary, where (below, for a vector v we denote by kvk1
its 1–norm)

˛ W yBn
! Bn; x 7!

�
.0; : : : ; 0/ if x D .0; : : : ; 0/;

xkxk1=kxk otherwise;

is the natural bi-Lipschitz homeomorphism between yBn and Bn from the unit cross-
polytope to the closed unit ball.

Now we are ready to prove Theorem G.

Proof of Theorem G Let f W Bn! Sn�1 be a map that is antipode-preserving on
the boundary of Bn. Now, fix an arbitrary ı � 0 such that for any x 2 Bn there exists
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an open neighborhood Ux of x with diam.f .Ux// � ı. Fix " > 0 smaller than the
Lebesgue number of the open covering fUxgx2Bn .

Let ˛ W yBn ! Bn be the natural (fattening) homeomorphism used in the proof of
Lemma A.2. One can construct a triangulation T of yBn satisfying the following two
properties:

(1) T is antipodally symmetric on the boundary of yBn.

(2) T is fine enough that k˛.u/�˛.v/k � " for any two adjacent vertices u and v.

Then, by Lemma A.2, there exist adjacent vertices u and v such that

dSn�1.f ı˛.u/; f ı˛.v//� �n�1:

Choose xD˛.u/ and yD˛.v/. Because of the choice of ", both x and y are contained
in some Ux . Hence, ı � diam.f .Ux// � �n�1, which concludes as in the proof of
Corollary 5.4.

Appendix B The Gromov–Hausdorff distance between a
sphere and an interval

To make this paper self-contained, we include a proof of the following proposition.

Proposition B.1 Let n be any positive integer. Then dis.f / � 2�
3

for any function
f W Sn!R.

As a consequence , dGH.Sn; I/� �
3

for any interval I �R.

Proof Note that it is enough to prove the claim for nD 1. We adapt an argument from
the proof of [20, Lemma 2.3].

Fix an arbitrary " > 0. Consider an antipodally symmetric triangulation of S1 with
vertex set V � S1 such that dS1.p; q/ � " for any two adjacent vertices p; q 2 V .
Then let Qf W S1! I be the linear interpolation of f jV W V ! I . Now, by the classical
Borsuk–Ulam theorem, there exists x 2 S1 such that Qf .x/ D Qf .�x/. Let p; q 2 V

be such that x 2>pq. Then I \ J ¤ ∅ where I is the closed interval between f .p/
and f .q/, and J is the closed interval between f .�p/ and f .�q/ (since I and J both
contain Qf .x/D Qf .�x/). Without loss of generality, we can assume that f .�p/ 2 I .
Now, let

r WD

�
p if jf .�p/�f .p/j � jf .�p/�f .q/j;

q if jf .�p/�f .p/j> jf .�p/�f .q/j:
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Then jf .�p/�f .r/j � 1
2

length.I/� 1
2
.dis.f /C "/. Hence,

� � "� dS1.�p:r/� dis.f /Cjf .�p/�f .r/j � 3
2

dis.f /C 1
2
";

so dis.f /� 2�
3
� ".

Appendix C Regular polygons and S1

In this appendix we compute the distance between regular polygons and also between
the circle and a regular polygon.

The following map from metric spaces to metric spaces will be useful. For a metric
space .X; dX /, consider the pseudo-ultrametric space .X;uX / where uX WX �X !R

is defined by

.x;x0/ 7! uX .x;x
0/ WD inf

n
max

0�i�n�1
dX .xi ;xiC1/

ˇ̌
x D x0; : : : ;xn D x0 for some n� 1

o
:

Now, define U .X / to be the quotient metric space induced by .X;uX / under the
equivalence x � x0 if and only if uX .x;x

0/D 0. One then has the following, whose
proof we omit:

Proposition C.1 For any path-connected metric space X it holds that U .X /D �.

We also have the following result, establishing that U WMb!Mb is 1–Lipschitz:

Theorem H [7] For all bounded metric spaces X and Y ,

dGH.X;Y /� dGH.U .X /;U .Y //:

For each integer n� 3, let Pn be the regular polygon with n vertices inscribed in S1.
We also let P2 D S0. Furthermore, we endow Pn with the restriction of the geodesic
distance on S1. We then have:

Proposition C.2 (dGH between S1 and inscribed regular polygons) For all n� 2,

dGH.S
1;Pn/D

�

n
:

Proof That dGH.S1;Pn/� �=n can be obtained as follows: by Theorem H,

dGH.S
1;Pn/� dGH.U .S

1/;U .Pn//;
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but, since U .S1/D � by Proposition C.1, and U .Pn/ is isometric to the metric space
over n points with all nonzero pairwise distances equal to 2�=n, from the above
inequality and (7) we have dGH.S1;Pn/ �

1
2

diam.U .Pn// D �=n. The inequality
dGH.S1;Pn/� �=n follows from the fact that dGH.S1;Pn/� dH.S1;Pn/D �=n.

Note that, if S1 and Pn are both endowed with the Euclidean distance (respectively
denoted by S1

E and .Pn/E), then, in analogy with Proposition C.2, we have the following
proposition which solves a question posed in [1]. The proof is slightly different from
that of Proposition C.2.

Proposition C.3 For all n� 2, dGH.S1
E; .Pn/E/D sin.�=n/.

Proof One can prove dGH.S1
E; .Pn/E/ � sin.�=n/ by invoking U as in the proof

of Proposition C.2. In order to prove dGH.S1
E; .Pn/E/ � sin.�=n/, let us construct a

specific correspondence R between S1
E and .Pn/E. Let u1; : : : ;un be the vertices of

.Pn/E, and V1; : : : ;Vn be the Voronoi regions of S1 induced by u1; : : : ;un. Now let

R WD

n[
iD1

Vi � fuig:

Then we claim disE.R/� 2 sin.�=n/. To prove this, it is enough to check the following
two conditions via standard trigonometric identities:

(1) 2 sin.k�=n/� 2 sin..k � 1/�=n/� 2 sin.�=n/ for 1� k �
�

1
2
n
˘

.

(2) 2� 2 sin
��

1
2
n
˘
�=n

�
� 2 sin.�=n/.

Hence, dGH.S1
E; .Pn/E/� sin.�=n/.

We now pose the following question and provide partial information about it in
Proposition C.5:

Question VI Determine , for all m; n 2N, the value of pm;n WD dGH.Pm;Pn/.

Remark C.4 By simple arguments, which we omit, one can prove that p2;3 D
�
3

,
p2;4 D

�
4

, p2;5 D
2�
5

and p2;6 D
�
3

. Also Proposition C.2 indicates that p2;n tends
to �

2
as n!1. Then these calculations imply that n 7! p2;n is not monotonically

increasing towards �
2

; cf Question I.

Proposition C.5 For any integer 0<m<1, pm;mC1 D �=.mC 1/.
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Proof First, let us prove that pm;mC1 � �=.mC1/. We construct a correspondence R

between Pm and PmC1 such that dis.R/� 2�=.mC1/. Let u1; : : : ;um be the vertices
of Pm and v1; : : : ; vm; vmC1 be the vertices of PmC1. Consider the correspondence

R WD

m[
iD1

f.um; vm/g[ f.um; vmC1/g:

Then, for any i; j 2 f1; : : : ;mg,

jdS1.ui ;uj /� dS1.vi ; vj /j

D

ˇ̌̌
2�

m
�minfji � j j;m� ji � j jg �

2�

mC1
�minfji � j j;mC 1� ji � j jg

ˇ̌̌
D

ˇ̌̌
2�k

m
�

2�k

mC1

ˇ̌̌
or
ˇ̌̌
2�k

m
�

2�.kC1/

mC1

ˇ̌̌ �
for some 0� k �

�
1
2
m
˘�

D
2�k

m.mC1/
or 2�

mC1

�
1�

k

m

� �
for some 0� k �

�
1
2
m
˘�

�
2�

mC1
:

Also, for any i 2 f1; : : : ;mg,

jdS1.ui ;um/� dS1.vi ; vmC1/j

D

ˇ̌̌
2�

m
�minfm� i; ig�

2�

mC1
�minfmC 1� i; ig

ˇ̌̌
D

ˇ̌̌
2�k

m
�

2�k

mC1

ˇ̌̌
or
ˇ̌̌
2�k

m
�

2�.kC1/

mC1

ˇ̌̌ �
for some 0� k �

�
1
2
m
˘�

D
2�k

m.mC1/
or 2�

mC1

�
1�

k

m

� �
for some 0� k �

�
1
2
m
˘�

�
2�

mC1
:

Hence, one concludes that dis.R/� 2�=.mC 1/.

Next, let us prove that pm;mC1 � �=.mC 1/. Fix an arbitrary correspondence R

between Pm and PmC1. Then there must be a vertex ui of Pm, and two vertices vj
and vk of PmC1 such that .ui ; vj /; .ui ; vk/ 2R. Hence,

dis.R/� jdS1.ui ;ui/� dS1.vj ; vk/j D
2�

mC1
:

Since R is arbitrary, one concludes that pm;mC1 � �=.mC 1/.
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Contact three-manifolds with exactly two simple Reeb orbits

DANIEL CRISTOFARO-GARDINER
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MICHAEL HUTCHINGS

HUI LIU

It is known that every contact form on a closed three-manifold has at least two simple
Reeb orbits, and a generic contact form has infinitely many. We show that if there are
exactly two simple Reeb orbits, then the contact form is nondegenerate. Combined
with a previous result, this implies that the three-manifold is diffeomorphic to the
three-sphere or a lens space, and the two simple Reeb orbits are the core circles of
a genus-one Heegaard splitting. We also obtain further information about the Reeb
dynamics and the contact structure. For example, the Reeb flow has a disk-like global
surface of section and so its dynamics are described by a pseudorotation, the contact
structure is universally tight, and in the case of the three-sphere the contact volume
and the periods and rotation numbers of the simple Reeb orbits satisfy the same
relations as for an irrational ellipsoid.

37J99, 53E50; 53D42

1 Introduction

1.1 Statement of results

Let Y be a closed oriented three-manifold. Recall that a contact form on Y is a 1–form �

on Y such that �^ d� > 0. A contact form � has an associated Reeb vector field R
defined by the equations

d�.R; � /D 0; �.R/D 1:

A Reeb orbit is a periodic orbit of R, ie a map


 WR=TZ! Y; 
 0.t/DR.
.t//;

for some T > 0, modulo reparametrization of the domain by translations. The number
T is the period, also called the symplectic action, of 
 . We say that the Reeb orbit 
 is
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simple if the map 
 is an embedding. Every Reeb orbit is the k–fold cover of a simple
Reeb orbit for some positive integer k.

The three-dimensional case of the Weinstein conjecture, which was proved in full
generality by Taubes [42], asserts that a contact form on a closed three-manifold has at
least one Reeb orbit; see [28] for a survey. It was further shown in [11] that a contact
form on a closed three-manifold has at least two simple Reeb orbits. This lower bound
is the best possible without further hypotheses:

Example 1.1 Recall that if Y is a compact hypersurface in R4 DC2 which is “star-
shaped” (transverse to the radial vector field), then the standard Liouville form

(1-1) �D
1

2

2X
iD1

.xi dyi �yi dxi /

restricts to a contact form on Y . If Y is the three-dimensional ellipsoid

@E.a; b/D

�
z 2C2

ˇ̌̌ �jz1j2
a
C
�jz2j

2

b
D 1

�
and if a=b is irrational, then there are exactly two simple Reeb orbits, corresponding
to the circles in Y where z2 D 0 and z1 D 0, with periods a and b, respectively.

One can also take quotients of the above irrational ellipsoids by finite cyclic group
actions to obtain contact forms on lens spaces with exactly two simple Reeb orbits.

It is conjectured that, in fact, every contact form on a closed connected three-manifold
has either two or infinitely many simple Reeb orbits. This was proved by Colin,
Dehornoy and Rechtman [8] for contact forms that are nondegenerate (see the definition
below), extending a result of [12]. It was also shown by Irie [35] that, for a C1–generic
contact form on a closed three-manifold, there are infinitely many simple Reeb orbits,
and moreover their images are dense in the three-manifold.

The goal of this paper is to give detailed information about the “exceptional” case of
contact forms on a closed three-manifold with exactly two simple Reeb orbits.

To state the first result, let �DKer.�/ denote the contact structure determined by �. This
is a rank-2 vector bundle with a linear symplectic form d�. If 
 WR=TZ! Y is a Reeb
orbit, then the derivative of the time T flow of R restricts to a symplectic linear map

(1-2) P
 W .�
.0/; d�/! .�
.0/; d�/;

which we call the linearized return map. We say that 
 is nondegenerate if 1 is not
an eigenvalue of P
 ; this condition is invariant under reparametrization of 
 . We say

Geometry & Topology, Volume 27 (2023)
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that the contact form � is nondegenerate if all Reeb orbits (including nonsimple ones)
are nondegenerate. The set of nondegenerate contact forms is residual in the set of
all contact forms with the C1–topology. The Reeb orbit 
 is called hyperbolic if P

has eigenvalues in R n f˙1g. The Reeb orbit 
 is called elliptic if the eigenvalues
of P
 are of the form e˙2�i� , and irrationally elliptic if moreover � is irrational. If

 is irrationally elliptic, then 
 and all of its covers are nondegenerate, because the
linearized return map for the k–fold cover of 
 has eigenvalues e˙2�ik� .

Many results about Reeb dynamics and related questions assume some kind of non-
degeneracy hypothesis or allow only certain kinds of degeneracies. One of the main
points of the present work is that we can derive our results without making any such
assumption.

Theorem 1.2 Let Y be a closed three-manifold , and let � be a contact form on Y
with exactly two simple Reeb orbits. Then � is nondegenerate and , moreover , both
simple Reeb orbits are irrationally elliptic.

Theorem 1.2 might seem surprising in view of known results about critical points of
real-valued functions on finite-dimensional manifolds. For example, on the two-torus
the minimal number of critical points is three, and when there are only three critical
points they cannot all be nondegenerate. We refer the reader to Remark 1.12 for related
discussion.

As a corollary of Theorem 1.2, we obtain the following topological constraint:

Corollary 1.3 Let Y be a closed three-manifold , and let � be a contact form on Y with
exactly two simple Reeb orbits. Then Y is diffeomorphic to a lens space.1 Moreover ,
the two simple Reeb orbits are the core circles of a genus-one Heegaard splitting of Y .

Proof This was shown in [33, Theorem 1.3 and Section 4.8] under the additional
hypothesis that � is nondegenerate. By Theorem 1.2, this nondegeneracy automatically
holds.

Remark 1.4 A special case of Theorem 1.2, where Y is a compact convex hypersurface
in R4 with the restriction of the standard Liouville form (1-1), was previously shown
by Wang, Hu and Long [45, Theorem 1.4].

1Here and below our convention is that S3 is a lens space, but S1 �S2 is not.
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We also obtain additional dynamical information. To state the result, recall that the
contact volume of .Y; �/ is defined by

vol.Y; �/ WD
Z
Y

�^ d�:

Theorem 1.5 Let Y be a lens space and let � be a contact form on Y with exactly two
simple Reeb orbits , 
1 and 
2. Then:

(a) Let pD j�1.Y /j<1, let Ti 2R denote the period of 
i , and let �i 2R denote
the “Seifert rotation number” of 
i ; see Definition 4.3. Then

vol.Y; �/D pT1T2 D T 21 =�1 D T
2
2 =�2:

(b) � is dynamically convex, and the contact structure � D Ker.�/ is universally
tight.2

Example 1.6 For the ellipsoid in Example 1.1, we have T1 D a, T2 D b, �1 D a=b,
�2D b=a, pD 1, and volD ab. Thus Theorem 1.5(a) implies that if Y D S3, then the
periods Ti , the rotation numbers �i , and the contact volume satisfy the same relations as
for an ellipsoid. For Y D S3, under the additional assumptions that � is nondegenerate
and � is the standard contact structure, it was previously shown by Bourgeois, Cieliebak
and Ekholm [5] and Gürel [19] that “action–index relations” hold, implying that the
periods Ti and rotation numbers �i satisfy the same relations as for an ellipsoid. The
equation volD T1T2 that we prove in this case answers [4, Question 2].

Remark 1.7 There exist contact forms on S3 with exactly two simple Reeb orbits
which are not strictly contactomorphic to ellipsoids. One way to see this is to start from
Katok’s construction [37] of Finsler metrics on S2 with exactly two closed geodesics,
such that the Liouville measure on the unit tangent bundle is ergodic for the geodesic
flow. Such a geodesic flow can then be lifted to a Reeb flow on the standard contact
3–sphere with the same properties. Another way to see this is by Albers, Geiges and
Zehmisch [1], who showed that the pseudorotations from Fayad and Katok [15] can
be realized as the return map on a disk-like global surface of section for a Reeb flow
on the standard contact 3–sphere with precisely two periodic orbits; see Section 1.3
below. On the other hand, Helmut Hofer has suggested to the authors in private

2Recall that a contact form on a three-manifold Y with c1.�/j�2.Y / D 0 is called dynamically convex
if CZ.
/ � 3 for every contractible Reeb orbit 
 , where CZ denotes the Conley–Zehnder index (see
Section 2.2) computed with respect to a trivialization which extends over a disc bounded by 
 . A contact
structure on Y is universally tight if its pullback to the universal cover of Y is tight.

Geometry & Topology, Volume 27 (2023)



Contact three-manifolds with exactly two simple Reeb orbits 3805

correspondence (2021) that perhaps imposing the additional condition that the rotation
numbers of the two Reeb orbits are Diophantine forces the contact form to be strictly
contactomorphic to an ellipsoid; see Fayad and Krikorian [16, Question 6].

Remark 1.8 As shown by Honda [23, Proposition 5.1] (see Cornwell [10, page 17]
for more explanation), each lens space has either one or two universally tight contact
structures up to isotopy, and when there are two they are contactomorphic (and one is
obtained from the other by reversing its orientation). Consequently, in Theorem 1.5(b),
the contact structure is contactomorphic to a “standard” contact structure on the lens
space obtained as in Example 1.1. In particular, universally tight contact structures on
lens spaces are precisely the ones that admit contact forms with exactly two simple
Reeb orbits. Some other results obtaining information about contact structures from
Reeb dynamics can be found in work by Etnyre and Ghrist [14], Hofer, Wysocki and
Zehnder [20; 22], and [24].

Remark 1.9 We also obtain information about the knot types of the simple Reeb
orbits 
1 and 
2. It follows from the Heegaard splitting in Corollary 1.3 that these are
p–unknotted. We further show in Section 5 that their self-linking number is �1 when
p D 1; similar arguments show that, for general p, their rational self-linking number,
as defined by Baker and Etnyre [2], equals �1=p.

1.2 Outline of the proofs

We now briefly describe the proofs of Theorems 1.2 and 1.5.

A key ingredient in these proofs, as well as in the related papers [11; 12], is the “volume
property” in embedded contact homology, which was proved in [13]. The embedded
contact homology (ECH) of .Y; �/ is the homology of a chain complex which is built out
of Reeb orbits, and whose differential counts (mostly) embedded pseudoholomorphic
curves in R�Y ; see the lecture notes [30] and the review in Section 2. The version
of the volume property that we will use here asserts that if Y is a closed connected
3–manifold with a contact form �, then

lim
k!1

c�k .Y; �/
2

k
D 2 vol.Y; �/:

Here f�kg is a “U –sequence” in ECH, and c�k is a “spectral invariant” associated to �k ,
which is the total symplectic action of a certain finite set of Reeb orbits determined
by �k; these notions are reviewed in Section 2.

Geometry & Topology, Volume 27 (2023)
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The outline of the proof of Theorem 1.2 is as follows. Let 
1 and 
2 denote the two
simple Reeb orbits, and let T1 and T2 denote their periods. Simple applications of
the volume property from [11; 12] (just using the k1=2 growth rate of the spectral
invariants and not the exact relation with contact volume) show that the homology
classes Œ
i � 2H1.Y / are torsion, and the ratio T1=T2 is irrational. A more precise use
of the volume property then gives the relations

(1-3) �i D
T 2i

vol.Y; �/
; `.
1; 
2/D

T1T2

vol.Y; �/
;

where �i 2 R is the Seifert rotation number that appears in Theorem 1.5(a), while
`.
1; 
2/2Q is the linking number of 
1 and 
2; see Definition 4.2. The proof of (1-3)
also depends on a new estimate for the behavior of the ECH index (the grading on the
ECH chain complex) under perturbations of possibly degenerate contact forms, which
is proved in Section 3.

The equations (1-3) imply the relations

(1-4) �1 D `.
1; 
2/
T1

T2
; �2 D `.
1; 
2/

T2

T1
:

Since `.
1; 
2/ is rational and T1=T2 is irrational, it follows that �1 and �2 are irrational.
This implies that 
1 and 
2 are irrationally elliptic (see Section 4.4), which completes
the proof of Theorem 1.2.

The Heegaard decomposition in Corollary 1.3 implies that `.
1; 
2/D 1=p, and com-
bined with (1-4) this proves Theorem 1.5(a). The proof of Theorem 1.5(b) uses
additional calculations in Section 5 to deduce dynamical convexity and universal
tightness from information about the numbers �i .

1.3 Pseudorotations

The contact forms studied here are analogous to “pseudorotations”, defined in various
ways as maps in some class with the minimum number of periodic orbits. For example,
according to Ginzburg and Gürel [18] a Hamiltonian pseudorotation of CP n is defined
to be a Hamiltonian symplectomorphism of CP n with n C 1 fixed points and no
other periodic points; see eg Le Roux and Seyfaddini [39], Shelukhin [41] and Çineli,
Ginzburg and Gürel [7] for generalizations to other symplectic manifolds. More
classically, we consider here pseudorotations of the open or closed disk defined as
area-preserving homeomorphisms with one fixed point and no other periodic points;
see eg Bramham [6] and Fayad and Katok [15].

Geometry & Topology, Volume 27 (2023)
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In fact, there is a direct connection between the contact forms considered here and
pseudorotations of the closed disk. Recall that given a closed three-manifold Y with a
contact form �, a disk-like global surface of section for the Reeb flow is an immersed
disk, with boundary on a Reeb orbit, embedded and transverse to the Reeb flow in the
interior, such that the Reeb flow starting at any point in Y hits the disk both forwards
and backwards in time.

Corollary 1.10 Let Y be a closed three-manifold , and let � be a contact form on Y
with exactly two simple Reeb orbits. Then both orbits bound disk-like global surfaces of
section whose associated return maps define smooth pseudorotations of the open disk.

Proof By Theorem 1.2, Corollary 1.3 and Theorem 1.5, Y is a lens space and �
is nondegenerate and dynamically convex. As explained in Remark 1.9, both orbits
are p–unknotted, with self-linking number �1=p. Hence, the result follows from
[24, Theorem 1.12].

Remark 1.11 Conversely, as mentioned above, at least some pseudorotations of the
closed disk can be “suspended” to contact forms on S3 with exactly two simple Reeb
orbits; see Albers, Geiges and Zehmisch [1].

Remark 1.12 It is shown by Collier, Kerman, Reiniger, Turmunkh and Zimmer [9] —
see also Franks [17] — that, for a Hamiltonian pseudorotation of CP 1, each fixed point
is strongly nondegenerate, meaning that the linearized return map and its higher powers
are nondegenerate, and moreover the fixed points are irrationally elliptic, similarly to
Theorem 1.2. It is an open question whether every pseudorotation of CP n for n > 1 is
strongly nondegenerate, and one can ask analogous questions for pseudorotations of
more general symplectic manifolds.

Remark 1.13 For pseudorotations ofD2, in many cases, Joly [36] and Pirnapasov [40]
proved identities related to Theorem 1.5(a).

Remark 1.14 One can arrange in the statement of Corollary 1.10 that the first return
maps on the obtained disk-like global surfaces of section extend smoothly to the
boundary and preserve a smooth 2–form that defines an area form in the interior.
Moreover, one can conjugate such a return map by a homeomorphism to obtain a
pseudorotation of the closed disk which is smooth in the interior.
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2 Preliminaries

In this section we review the material about embedded contact homology that is needed
for the proofs of Theorems 1.2 and 1.5. We include a new, slight extension of the
definition of the ECH index to degenerate contact forms.

Throughout this section fix a closed oriented three-manifold Y and a contact form �

on Y , and let � D Ker.�/ denote the associated contact structure.

2.1 Topological preliminaries

We now recall some topological notions we will need, following the treatment in [27].
These were originally introduced in a slightly different context in [26].

Definition 2.1 An orbit set is a finite set of pairs ˛ D f.˛i ; mi /g where the ˛i are
distinct simple Reeb orbits, and the mi are positive integers. We define the homology
class of the orbit set ˛ by

Œ˛�D
X
i

mi Œ˛i � 2H1.Y /:

Definition 2.2 If ˛ D f.˛i ; mi /g and ˇ D f. ǰ ; nj /g are orbit sets with Œ˛� D Œˇ�,
define H2.Y; ˛; ˇ/ to be the set of 2–chains Z in Y with @Z D

P
i mi˛i �

P
j nj ǰ ,

modulo boundaries of 3–chains. The set H2.Y; ˛; ˇ/ is an affine space over H2.Y /.

Given orbit sets ˛ and ˇ as above, let Z 2H2.Y; ˛; ˇ/, and let � be a homotopy class
of symplectic trivialization of the contact structure � over the Reeb orbits ˛i and ǰ .
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Definition 2.3 (see [27, Section 2.5]) Define the relative first Chern class

c� .˛; ˇ;Z/ 2 Z

as follows. Let S be a compact oriented surface with boundary and let f W S ! Y

be a smooth map representing the class Z. Let  be a section of f �� which, on
each boundary component, is nonvanishing and constant with respect to � . Define
c� .˛; ˇ;Z/ to be the algebraic count of zeroes of  .

Definition 2.4 [27, Section 2.7] An admissible representative ofZ 2H2.Y; ˛; ˇ/ is a
smooth map f W S! Œ�1; 1��Y where S is a compact oriented surface with boundary,
the restriction of f to @S consists of positively oriented covers of f1g �˛i with total
multiplicity mi and negatively oriented covers of f�1g � ǰ with total multiplicity nj ,
the composition of f with the projection Œ�1; 1��Y ! Y represents the class Z, the
restriction of f to the interior of S is an embedding, and f is transverse to f�1; 1g�Y .

Definition 2.5 [27, Section 2.7] If Z;Z0 2H2.Y; ˛; ˇ/, define the relative intersec-
tion pairing

Q� .Z;Z
0/ 2 Z

as follows. Let S and S 0 be admissible representatives ofZ andZ0, respectively, whose
interiors are transverse and do not intersect near the boundary. Define

(2-1) Q� .Z;Z
0/D #.int.S/\ int.S 0//�

X
i

`� .�
C
i ; �

C
i

0
/C

X
j

`� .�
�
j ; �

�
j
0/:

Here # denotes the signed count of intersections, while the remaining terms are linking
numbers defined as follows. For � > 0 small, the intersection of S with f1� �g � Y
consists of the union over i of a braid �Ci in a neighborhood of ˛i (see Section 3.1),
while the intersection of S with f�1C �g �Y consists of the union over j of a braid
��j in a neighborhood of ǰ . Likewise, S 0 determines braids �Ci

0
and ��j

0. The notation
`� indicates the linking number in a neighborhood of ˛i or ǰ computed using the
trivialization � ; see [27, Section 2.6] for details and sign conventions.

When Z DZ0, we write3

Q� .˛; ˇ;Z/DQ� .Z;Z/:

3An alternative equivalent definition of Q� .˛; ˇ;Z/ is given in [30, Section 3.3], which does not include
the linking number terms in (2-1). There the admissible representatives S and S 0 are required to satisfy
additional conditions which force these linking number terms to be zero.
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As explained in [27], the relative first Chern class c� .˛; ˇ;Z/ and the relative self-
intersection number Q� .˛; ˇ;Z/ depend only on ˛, ˇ, Z and � . Moreover, if we
change Z by adding A 2H2.Y /, then

c� .˛; ˇ;ZCA/� c� .˛; ˇ;Z/D hc1.�/; Ai;(2-2)

Q� .˛; ˇ;ZCA/�Q� .˛; ˇ;Z/D 2Œ˛� �A:(2-3)

Remark 2.6 If 
 is a third orbit set, if � is a trivialization of � over the Reeb orbits in
˛, ˇ and 
 , and if W 2H2.Y; ˇ; 
/, then we have the additivity properties

c� .˛; ˇ;Z/C c� .ˇ; 
;W /D c� .˛; 
;ZCW /;

Q� .˛; ˇ;Z/CQ� .ˇ; 
;W /DQ� .˛; 
;ZCW /:

Note also that the definition of c� makes sense more generally if the ˛i and ǰ are
transverse knots. Likewise the definition of Q� makes sense if the ˛i and ǰ are knots
and � is an oriented trivialization of their normal bundles.

2.2 The ECH index

Let 
 W R=TZ! Y be a Reeb orbit and let � be a symplectic trivialization of 
��.
The derivative of the time t Reeb flow from �
.0/ to �
.t/, with respect to � , is a
2�2 symplectic matrix ˆ.t/. The family of symplectic matrices fˆ.t/gt2Œ0;T � induces
a family of diffeomorphisms of S1 in the universal cover of Diff.S1/, which has a
dynamical rotation number, here denoted by �� .
/ 2R. We call this real number the
rotation number of 
 with respect to � and denote it by �� .
/ 2R; it depends only on

 and the homotopy class of � . When �� .
/ … 12Z, the eigenvalues of the linearized
return map (1-2) are e˙2�i�� .
/.

Definition 2.7 Define the Conley–Zehnder index

(2-4) CZ� .
/D b�� .
/cC d�� .
/e 2 Z:

Remark 2.8 The above definition agrees with the usual Conley–Zehnder index when

 is nondegenerate. When 
 is degenerate, it is common to give a different definition
of the Conley–Zehnder index, as the minimum of the Conley–Zehnder indices of
nondegenerate perturbations of 
 , and this will sometimes differ from our definition
by 1. For our purposes, especially to obtain an estimate as in Proposition 3.1 below
(possibly with a different constant), it does not matter which of these definitions of the
Conley–Zehnder index we use for degenerate Reeb orbits.
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Notation 2.9 If ˛ D f.˛i ; mi /g is an orbit set and if � is a trivialization of � over all
of the Reeb orbits ˛i , define

(2-5) CZI� .˛/D
X
i

miX
kD1

CZ� .˛ki /:

Here 
k denotes the kth iterate of 
 .

Definition 2.10 Let ˛ and ˇ be orbit sets with Œ˛�D Œˇ�2H1.Y /, andZ 2H2.Y; ˛; ˇ/.
Define the ECH index

(2-6) I.˛; ˇ;Z/D c� .˛; ˇ;Z/CQ� .˛; ˇ;Z/CCZI� .˛/�CZI� .ˇ/ 2 Z:

The above agrees with the usual definition of the ECH index — see eg [30, Section 3.4] —
when the contact form is nondegenerate. It is explained, for example in [27, Section 2.8],
why I.˛; ˇ;Z/ depends only on ˛, ˇ and Z, and not on � . Moreover, it follows from
(2-2) and (2-3) that, if we change Z by adding A 2H2.Y /, then

(2-7) I.˛; ˇ;ZCA/� I.˛; ˇ;Z/D hc1.�/C 2PD.�/; Ai;

where � D Œ˛�D Œˇ� 2H1.Y / and PD denotes the Poincaré dual. By Remark 2.6,

(2-8) I.˛; ˇ;Z/C I.ˇ; 
;W /D I.˛; 
;ZCW /:

2.3 Embedded contact homology

In this subsection assume that the contact form � is nondegenerate. Let � 2H1.Y /.
We now review how to define the embedded contact homology ECH�.Y; �; �/. More
details may be found in [30].

Definition 2.11 An ECH generator is an orbit set ˛ D f.˛i ; mi /g such that mi D 1
whenever ˛i is hyperbolic.

Definition 2.12 Define ECC�.Y; �; �/ to be the vector space4 over Z=2 generated
by ECH generators ˛ with Œ˛� D � . This vector space has a relative Z=d–grading,
where d denotes the divisibility of c1.�/C 2PD.�/ 2H 2.Y IZ/; if ˛ and ˇ are two
generators, then their grading difference is I.˛; ˇ;Z/ mod d for any Z 2H2.Y; ˛; ˇ/.
This makes sense by (2-7) and (2-8).
4It is also possible to use Z coefficients, as explained in [32, Section 9], but this has not been necessary
for the applications of ECH so far.
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Remark 2.13 In the special case where c1.�/ 2H 2.Y IZ/ is torsion and � D 0, the
chain complex ECC�.Y; �; 0/ has a canonical absolute Z–grading defined by

I.˛/D I.˛;∅; Z/ 2 Z

for any Z 2H2.Y; ˛;∅/. This is well defined by (2-7).

Definition 2.14 An almost complex structure J on R�Y is �–compatible if J@s DR,
where s denotes the R coordinate, J is invariant under the R action on R � Y by
translation of s, and J.�/D �, rotating positively with respect to d�.

If J is a generic �–compatible almost complex structure, one defines a differential

@J W ECC�.Y; �; �/! ECC��1.Y; �; �/

whose coefficient from ˛ to ˇ is a count of “J –holomorphic currents” that represent
classes Z 2H2.Y; ˛; ˇ/ with ECH index I.˛; ˇ;Z/D 1; see [30, Section 3] for details.
It is shown in [31] that @2J D 0. The embedded contact homology ECH�.Y; �; �; J / is
defined to be the homology of the chain complex .ECC�.Y; �; �/; @J /. A theorem of
Taubes [43], tensored with Z=2, asserts that there is a canonical isomorphism

(2-9) ECH�.Y; �; �; J /D bHM��.Y; s� CPD.�//˝Z=2;

where the right-hand side is a version of Seiberg–Witten Floer cohomology as defined
by Kronheimer and Mrowka [38], and s� is a spin-c structure on Y determined by �.
In particular, ECH depends only5 on the triple .Y; �; �/, and so we can denote it by
ECH�.Y; �; �/.

When Y is connected, there is also a well-defined “U –map”

(2-10) U W ECH�.Y; �; �/! ECH��2.Y; �; �/:

This is induced by a chain map

UJ;z W .ECC�.Y; �; �/; @J /! .ECC��2.Y; �; �/; @J /

which counts J –holomorphic currents with ECH index 2 passing through a generic
basepoint z 2R�Y . The assumption that Y is connected implies that the induced map
on homology does not depend on the choice of basepoint z; see [33, Section 2.5] for
details. Taubes showed in [44, Theorem 1.1] that under the isomorphism (2-9), the map
on homology induced by UJ;z agrees with a corresponding map on Seiberg–Witten
Floer cohomology. We thus obtain a well-defined U –map (2-10).

5In a sense, ECH does not depend on the contact structure either; see [30, Remark 1.7] for explanation.
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Definition 2.15 A U –sequence for � is a sequence f�kgk�1 where each �k is a
nonzero homogeneous class in ECH�.Y; �; �/, and U�kC1 D �k for each k � 1.

We will need the following nontriviality result for the U –map, which is proved by
combining Taubes’ isomorphism (2-9) with results from Kronheimer and Mrowka [38]:

Proposition 2.16 [12, Proposition 2.3] If c1.�/C 2PD.�/ 2H 2.Y IZ/ is torsion ,
then a U –sequence for � exists.

2.4 Spectral invariants

If ˛ D f.˛i ; mi /g is an orbit set, define its symplectic action by

A.˛/D
X
i

mi

Z
˛i

�:

Note here that
R
˛i
� agrees with the period of ˛i , because �.R/D 1.

Assume now that � is nondegenerate. For L 2 R, define ECCL� .Y; �; �/ to be the
subspace of ECC�.Y; �; �/ spanned by ECH generators ˛ with symplectic action
A.˛/ < L. It follows from the definition of “�–compatible almost complex structure”
that @J maps ECCL to itself; see [30, Section 1.4]. We define the filtered ECH to be
the homology of this subcomplex, which we denote by ECHL� .Y; �; �/. The inclusion
of chain complexes induces a map

{L W ECHL� .Y; �; �/! ECH�.Y; �; �/:

It is shown in [34, Theorem 1.3] that the filtered homology ECHL� .Y; �; �/ and the
map {L do not depend on the choice of J . However, unlike the usual ECH, filtered
ECH does depend on the contact form � and not just on the contact structure �.

Definition 2.17 [29] If 0¤ � 2 ECH�.Y; �; �/, define the spectral invariant

c� .Y; �/D inffL j � 2 Im.{L/g 2R:

An equivalent definition is that c� .Y; �/ is the minimum L such that the class � can
be represented by a cycle in the chain complex .ECC�.Y; �; �/; @J / which is a sum
of ECH generators each having symplectic action � L. In particular, by definition,
c� .Y; �/DA.˛/ for some ECH generator ˛ with Œ˛�D � .
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We can change the contact form �, without changing the contact structure �, by
multiplying � by a smooth function f W Y !R>0. As explained in [11, Section 2.5],
it turns out that even when � is degenerate, one can still define c� .Y; �/ as a limit of
spectral invariants c� .Y; fn�/ where fn� is nondegenerate and fn! 1 in C 0.

These spectral invariants have the following important properties:

Proposition 2.18 Let Y be a closed connected three-manifold , and let � be a (possibly
degenerate) contact form on Y . Then:

(a) If 0¤ � 2 ECH�.Y; �; �/, then

c� .Y; �/DA.˛/

for some orbit set ˛ with Œ˛�D � .

(b) If � 2 ECH�.Y; �; �/ and U� ¤ 0, then

(2-11) cU� .Y; �/� c� .Y; �/:

If there are only finitely many simple Reeb orbits , then the inequality (2-11) is
strict.

(c) Volume property If c1.�/C 2PD.�/ 2H 2.Y IZ/ is torsion , and if f�kgk�1
is a U –sequence for � , then

lim
k!1

c�k .Y; �/
2

k
D 2 vol.Y; �/:

Proof As noted above, part (a) holds by definition when � is nondegenerate, and
in the degenerate case it follows from a compactness argument for Reeb orbits; see
[11, Lemma 3.1(a)].

If � is nondegenerate, then since the chain map UJ;z counts J –holomorphic curves
it decreases symplectic action like the differential, so strict inequality in (2-11) holds.
The not necessarily strict inequality (2-11) in the degenerate case follows by a limiting
argument. The fact that (2-11) is strict for degenerate contact forms with only finitely
many simple Reeb orbits6 is proved by a more subtle compactness argument for
holomorphic curves in [11, Lemma 3.1(b)].

Part (c), the most nontrivial part, is a special case of [13, Theorem 1.3].

6The equality cU� .Y; �/D c� .Y; �/ is possible for degenerate contact forms with infinitely many simple
Reeb orbits. This happens, for example, for some classes � when Y is an ellipsoid @E.a; b/ with a=b
rational.

Geometry & Topology, Volume 27 (2023)



Contact three-manifolds with exactly two simple Reeb orbits 3815

3 The ECH index and perturbations

The goal of this section is to prove Proposition 3.1 below, which gives an upper bound
on how much the ECH index can change when one perturbs the contact form. This is
an important ingredient in the proof of Theorems 1.2 and 1.5.

To state the proposition, let � be a contact form on a closed three-manifold Y , and let
�n D fn� be a sequence of contact forms with fn! 1 in C 2. In the case of interest,
� will be degenerate, while each of the contact forms �n will be nondegenerate.

Fix an orbit set ˛D f.˛i ; mi /g for �, and let N be a disjoint union of tubular neighbor-
hoodsNi of the simple Reeb orbits ˛i . Consider a sequence of orbit sets ˛.n/ for �n that
converges to ˛ as currents. In particular this implies that if n is sufficiently large, and if
we write ˛0D˛.n/, then ˛0 is contained inN , and its intersection withNi is homologous
in Ni to mi˛i . There is then a unique W˛ 2H2.Y; ˛0; ˛/ that is contained in N .

Likewise fix an orbit set ˇDf. ǰ ; nj /g for � along with disjoint tubular neighborhoods
of the simple Reeb orbits ǰ , and consider a sequence of orbit sets ˇ.n/ for �n that
converges to ˇ as currents. Then, for k sufficiently large, writing ˇ0 D ˇ.n/, we obtain
a distinguished Wˇ 2H2.Y; ˇ0; ˇ/.

For fixed large n there is now a bijection

H2.Y; ˛; ˇ/'H2.Y; ˛
0; ˇ0/

sending Z 2H2.Y; ˛; ˇ/ to

Z0 DZCW˛ �Wˇ 2H2.Y; ˛
0; ˇ0/:

Proposition 3.1 With the notation as above , for fixed orbit sets ˛ and ˇ, if n is
sufficiently large , then

jI.˛; ˇ;Z/� I.˛0; ˇ0; Z0/j � 2

�X
i

mi C
X
j

nj

�
:

Here I.˛; ˇ;Z/ denotes the ECH index for �, and I.˛0; ˇ0; Z0/ denotes the ECH index
for �n.

3.1 Reduction to a local statement

We now reduce Proposition 3.1 to a local statement, Proposition 3.3, below.

Let 
 be an oriented knot in Y , and let N be a tubular neighborhood of 
 with an
identification N ' S1 �D2. By a “braid in N with d strands”, we mean an oriented
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knot in N which is positively transverse to the D2 fibers and which intersects each
fiber d times.

Definition 3.2 � A weighted braid in N with m strands is a finite set of pairs
� D f.�i ; mi /g where the �i are disjoint braids in N with di strands, the mi are
positive integers and

P
i midi Dm.

� If � is an oriented trivialization of the normal bundle of 
 , then for i ¤ j there is
a well-defined linking number `� .�i ; �j / 2 Z, as discussed in Section 2.1. Similarly,
for each i there is a well-defined writhe w� .
i / 2 Z; see [27, Section 2.6]. Define the
writhe of the weighted braid � by

(3-1) w� .�/D
X
i

m2i w� .�i /C
X
i¤j

mimj `� .�i ; �j /:

Suppose now that 
 is a simple Reeb orbit for �, and that the normal bundle identification
N ' S1 �D2 above is chosen so that the Reeb vector field for � is transverse to the
D2 fibers. If �0 D f � with f sufficiently C 2 close to 1, then the Reeb vector field for
�0 in N is also transverse to the D2 fibers. Suppose that this is the case.

Let 
 0Df.
 0
k
; mk/g be an orbit set for �0 which is contained inN . We can regard 
 0 as a

weighted braid withm strands for some positive integerm. Also note that a trivialization
� of 
�� extends to a trivialization of � over the entire tubular neighborhoodN , and thus
canonically induces a homotopy class of trivialization � 0 of � over the Reeb orbits 
 0

k
.

We can now state:

Proposition 3.3 With the notation as above , if �0 is sufficiently C 2 close to � and if

 0 is sufficiently close to m
 as a current , then

(3-2)
ˇ̌̌̌
�w� .


0/�CZI� 0.

0/C

mX
lD1

CZ� .
 l/
ˇ̌̌̌
� 2m:

Proof of Proposition 3.1 assuming Proposition 3.3 By shrinking the tubular neighbor-
hoods, we can assume without loss of generality that the chosen tubular neighborhood
of each orbit ˛i or ǰ has an identification with S1 �D2, in which the Reeb flow of �
is transverse to the D2 fibers.

In the orbit set ˛0, each pair .˛i ; mi / gets replaced by an orbit set ˛0i which represents
a weighted braid with mi strands in the tubular neighborhood of ˛i . Likewise, each
pair . ǰ ; nj / gets replaced by an orbit set ˇ0j which represents a weighted braid with
nj strands in the tubular neighborhood of ǰ . Let � be a homotopy class of symplectic
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trivializations of � over the Reeb orbits ˛i and ǰ . As in Proposition 3.3, this canonically
induces a homotopy class of symplectic trivializations � 0 over the Reeb orbits in the
orbit sets ˛0i and ˇ0j .

Because � and � 0 extend to a trivialization of � over the tubular neighborhoods containing
W˛ and Wˇ , it follows from the definition of the relative first Chern class that

(3-3) c� 0.˛0; ˇ0; Z0/D c� .˛; ˇ;Z/:

By Proposition 3.3, if n is sufficiently large, then

(3-4)

ˇ̌̌̌
�w� .˛

0
i /�CZI� 0.˛

0
i /C

miX
kD1

CZ� .˛ki /
ˇ̌̌̌
� 2mi ;

ˇ̌̌̌
�w� .ˇ

0
j /�CZI� 0.ˇ

0
j /C

njX
lD1

CZ� .ˇlj /
ˇ̌̌̌
� 2nj :

By (2-6), (3-3) and (3-4), to complete the proof of Proposition 3.1 it is enough to show

(3-5) Q� 0.˛0; ˇ0; Z0/DQ� .˛; ˇ;Z/C
X
i

w� .˛
0
i /�

X
j

w� .ˇ
0
j /:

To prove (3-5), by Remark 2.6 it is enough to show

Q� .˛
0; ˛;W˛/D

X
i

w� .˛
0
i /; Q� .ˇ

0; ˇ;Wˇ /D
X
j

w� .ˇ
0
j /:

Since the chosen tubular neighborhoods of the Reeb orbits of ˛i are disjoint, and the
chosen tubular neighborhoods of the Reeb orbits of ǰ are disjoint, the above equations
follow from Lemma 3.4.

Lemma 3.4 Let �Df.�i ; mi /g be a weighted braid with m strands as in Definition 3.2.
Let W be the unique relative homology class in H2.N; �; .
;m//. Then

(3-6) Q� .�; .
;m/;W /D w� .�/:

Here � defines a trivialization of the vertical tangent bundle of N ! 
 which then
induces a trivialization of the normal bundle of each braid �i .

Proof We can make an admissible representative S for W — see Definition 2.4 —
whose intersection with f1��g�N consists of mi parallel (with respect to � ) copies of
each �i , and which shrinks radially towards 
 as the Œ�1; 1� coordinate on Œ�1; 1��N
goes down to �1. We can make another such admissible representative S 0, disjoint
from S , whose intersection with f1� �g �N is parallel to the first and which likewise
shrinks radially towards 
 . Then in (2-1), the intersection number term vanishes. The
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first linking number term in (2-1) also vanishes, as it is a sum of linking numbers of
braids in neighborhoods of the �i ; for each i , the braid from S and the braid from S 0,
with respect to � , are trivial and parallel, and thus have linking number zero. The
second linking number term in (2-1) is a linking number in a neighborhood of 
 and
equals w� .�/.

3.2 The structure of the braids

To prove Proposition 3.3, let 
 be a simple Reeb orbit of �, let N be a tubular neigh-
borhood of 
 as in Definition 3.2, and let � be a trivialization of 
�� . Let � denote the
rotation number �� .
/ 2R.

Suppose first that � is irrational. Then the Reeb orbit 
 and all of its covers are
nondegenerate. Consequently, when �0 is sufficiently C 2 close to �, there is a unique
Reeb orbit 
 00 for �0 close (as a current) to 
 , and for n large the only possibility for
the orbit set 
 0 is that it is the singleton set 
 0 D f.
 00; m/g. In this case Proposition 3.3
holds because w� .
 0/D 0 and the left-hand side of (3-2) is zero.

The nontrivial case of Proposition 3.3 is when the rotation number � is rational. In this
case we need to investigate the braids that can arise in 
 0. The idea in what follows is
to first analyze the case where the rotation number is an integer, and then reduce the
general case to this one by taking an appropriate cover of a neighborhood of 
 .

We start with the case where the rotation number is an integer. Here the picture is
simple: each braid has just one strand, and the linking number of any two braids is
given by the rotation number. More precisely:

Lemma 3.5 With the above notation , suppose that the rotation number � is an integer a.
Let �n D fn� with fn! 1 in C 2. Then:

(a) For a fixed positive integer d , if f˛ng is a sequence where each ˛n is a simple
Reeb orbit for �n in N which is a braid with d strands , with ˛n converging
as currents to d
 as n!1, then d D 1, and in particular the writhe w� .˛n/
equals 0 for n large enough.

(b) Given two sequences of simple Reeb orbits f˛ng and fˇng as in (a) with ˛n¤ˇn
for each n, if n is sufficiently large , then the linking number `� .˛n; ˇn/ equals a.

This lemma is proved in Section 3.3 below. We now consider the case where the rotation
number is a rational number a=b that is not an integer. Here there is a similarly nice
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picture: each new simple Reeb orbit that can appear can be treated, for our purposes,
like an .a; b/ torus braid; see also Remark 3.7. More precisely:

Lemma 3.6 With the above notation , suppose that the rotation number is � D a=b,
where a and b are relatively prime integers with b > 1. Let �n D fn� with fn! 1

in C 2. Then:

(a) For n sufficiently large , there is a unique simple Reeb orbit 
 00 for �n that is
close to 
 as a current.

(b) For a fixed integer d > 1, if f˛ng is a sequence where each ˛n is a simple Reeb
orbit for �n inN which is a braid with d strands , with ˛n converging as currents
to d
 as n!1, then d D b, the writhe w� .˛n/ equals a.b�1/, and the linking
number `� .
 00; ˛n/ equals a.

(c) Given two sequences of Reeb orbits f˛ng and fˇng as in (b) with ˛n ¤ ˇn for
each n, if n is sufficiently large , then the linking number `� .˛n; ˇn/ equals ab.

Remark 3.7 In Lemma 3.6(b), we expect that one can further show that if n is
sufficiently large then ˛n is an .a; b/ torus braid around 
 00; however, we do not need this.

Proof of Lemma 3.6 assuming Lemma 3.5 Part (a) holds because the Reeb orbit 

is nondegenerate.

To prove part (b), we first note that, by the same argument as for (a), we must have
that d � b, because for 0 < d < b the d th iterate of 
 has rotation number da=b … Z.

Now let zN denote the b–fold cyclic cover of the tubular neighborhood N , with the
pullback of the contact form �n. There is a unique simple Reeb orbit z
 00 in zN whose
projection to N is a b–fold cover of 
 00. In addition, by lifting the Reeb orbit ˛n to a
Reeb trajectory in zN and extending it by the Reeb flow if needed, we obtain a simple
Reeb orbit Q̨n in zN whose projection to N is a cover of ˛n. By Lemma 3.5(a), if n
is sufficiently large, then Q̨n is a braid with one strand in zN , hence ˛n has at most b
strands. Thus, d D b. By Lemma 3.5(b) we have `� . z
 00; Q̨n/D a in zN , and it follows
that `� .
 00; ˛n/D a.

We now compute the writhe w� .˛n/. There are b possibilities for the Reeb orbit Q̨n
in the previous paragraph, which we denote by �l for l 2 Z=b, ordered so that the
Z=b action on zN by deck transformations sends �l to �lC1. The writhe w� .˛n/ is a
signed count of crossings of two strands of ˛n. Each such crossing corresponds to a
crossing of some �l with some �l 0 for l ¤ l 0, as well as crossings of �lCp with �l 0Cp
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for p D 1; : : : ; b� 1, obtained from the first crossing by deck transformations. On the
other hand, the linking number of �l with �l 0 is one half the signed count of crossings
of �l with �l 0 . Thus we obtain

w� .˛n/D
1

b

X
l¤l 0

`� .�l ; �l 0/D
1

b
b.b� 1/aD a.b� 1/:

Here we are using Lemma 3.5(b) to get that `� .�l ; �l 0/D a when l ¤ l 0.

We now prove (c). Similarly to the previous calculation, each crossing counted by the
linking number `� .˛n; ˇn/ corresponds to b crossings of some lift of ˛n (extended to
a simple Reeb obit) with some lift of ˇn (extended to a simple Reeb orbit). Thus the
linking number we want is 1=b times the sum of the linking number of each of the b
extended lifts of ˛n with each of the b extended lifts of ˇn, which is .1=b/b2aD ab.

Proof of Proposition 3.3 As explained above, we can assume that � D a=b, where a
and b are relatively prime integers with b > 0. When a=b …Z, the orbit set 
 0 consists
of the orbit 
 00 from Lemma 3.6(a) with multiplicity m0 for some m0 � 0, together
with orbits 
 0

k
for k ¤ 0 with multiplicities mk > 0. When a=b 2 Z the same is true

except that we do not necessarily have a unique 
 00 and we can take m0 D 0. Since
each 
 0

k
for k ¤ 0 is close to a b–fold cover of 
 , we have

(3-7) m0C b
X
k¤0

mk Dm:

By (3-1) and Lemmas 3.5 and 3.6, if �0 is sufficiently C 2 close to � and if 
 0 is
sufficiently close to m
 as a current, then

(3-8) w� .

0/D a.b� 1/

X
k¤0

m2kC 2am0
X
k¤0

mkC ab
X

0¤k¤k0¤0

mkm
0
k :

Now we consider Conley–Zehnder indices. By (2-5),

(3-9) CZI� 0.

0/D

m0X
lD1

CZ� 0..
 00/
l/C

X
k¤0

mkX
lD1

CZ� 0..
 0k/
l/:

For a positive integer l �m, if �0 is sufficiently close to �, then with respect to � the
Reeb orbit .
 00/

l has rotation number close to .a=b/l , and each Reeb orbit .
 0
k
/l for

k ¤ 0 has rotation number close to al . Then, by (2-4) and (3-9),ˇ̌̌̌
CZI� 0.


0/�

m0X
lD1

2al

b
�

X
k¤0

mkX
lD1

2al

ˇ̌̌̌
�m0C

X
k¤0

mk :
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It follows from this and (3-7) that

(3-10)
ˇ̌̌̌
CZI� 0.


0/�
a

b
.m20Cm0/� a

X
k¤0

.m2kCmk/

ˇ̌̌̌
�m:

Finally, by (2-4), ˇ̌̌̌ mX
lD1

CZ� .
 l/�
a

b
.m2Cm/

ˇ̌̌̌
�m:

Then, by (3-7),

(3-11)
ˇ̌̌̌ mX
lD1

CZ� .
 l/�
a

b
.m20Cm0/� a.2m0C 1/

X
k¤0

mk � ab

�X
k¤0

mk

�2 ˇ̌̌̌
�m:

Combining (3-8), (3-10) and (3-11) gives the desired estimate (3-2).

3.3 Perturbations of degenerate flows

To conclude the proof of Proposition 3.3 we now prove Lemma 3.5.

As in the statement of the lemma, let 
 be a simple Reeb orbit of � of period T , and
let �n D fn�, where fn! 1 in C 2. Let �t and �tn denote the time t flows of the Reeb
vector fields for � and �n, respectively. Let p 2 
 , and let P
 W �p ! �p denote the
linearized return map (1-2).

Lemma 3.8 Let f.pn; Tn/gnD1;::: be a sequence in Y � .0;1/ satisfying:

(c1) �
Tn
n .pn/D pn! p.

(c2) �
Tn=j
n .pn/¤ pn for all integers j � 2 and all n.

(c3) Tn! T1 2 Œ0;1/.

Then one of the following alternatives holds:

(a1) T1 D T .

(a2) T1 D Td for some integer d � 2, and the eigenvalues of P
 that are roots of
unity of degree d generate multiplicatively all roots of unity of order d .

Proof This is a special case of a result of Bangert [3, Proposition 1] for C 1 flows.

In the situation of Lemma 3.5, more can be said:

Corollary 3.9 Suppose that the eigenvalues of P
 are real and positive. Let f.pn; Tn/g
be a sequence satisfying conditions (c1), (c2) and (c3) of Lemma 3.8. Then alternative
(a2) does not hold.
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Proof The only root of unity that can be an eigenvalue of P
 is 1, hence the set of
eigenvalues of P
 does not generate multiplicatively the group of roots of unity of
order d when d � 2.

Proof of Lemma 3.5 Part (a) follows from Corollary 3.9.

To prove part (b), fix a diffeomorphism ˆ from the tubular neighborhood N of 
 to
.R=TZ/�C such that 
 corresponds to .R=TZ/�f0g, the Reeb vector field Rn of �n
is transverse to the C fibers for n sufficiently large (assume that n is this large below),
and the derivative of ˆ in the normal direction along 
 agrees with the trivialization � .
We omit the diffeomorphism ˆ from the notation below and write points in N using
the coordinates .t; z/ 2 .R=TZ/�C.

By part (a), by taking n large enough we can assume that ˛n and ˇn have the same
period as 
 . After reparametrization, the Reeb orbit ˛n is given by a map

R=TZ! .R=TZ/�C; t 7! .t; Ǫn.t//;

where Ǫn WR=TZ!C. Likewise the Reeb orbit ˇn is given by a map Ǒn WR=TZ!C.
We have

(3-12) `� .˛n; ˇn/D wind. Ǫn� Ǒn/;

where the right-hand side denotes the winding number of the loop

Ǫn�
Ǒ
n WR=TZ!C�:

We now compute the right-hand side of (3-12). There is a convex neighborhood U of 0
in C such that, if n is sufficiently large (which we assume below), then the following
two conditions hold: First, Ǫn.0/; Ǒn.0/ 2 U . Second, for each t 2 Œ0; T � there is a
well-defined map  tn WU !C such that, for z 2U , the flow of the Reeb vector field Rn
starting at .0; z/ first hits ftg �C at the point .t;  tn.z//. In particular, it follows from
the definition that

(3-13) Ǫn.t/D  
t
n. Ǫn.0//;

Ǒ
n.t/D  

t
n.
Ǒ
n.0//:

Now consider the derivative of  tn, which we denote by

D tn W U �C!C:

By (3-13), we may apply the fundamental theorem of calculus to the function

s 7!  tn.s Ǫn.0/C .1� s/
Ǒ
n.0//
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to obtain

(3-14) Ǫn.t/� Ǒn.t/D

Z 1

0

D tn.s Ǫn.0/C .1� s/
Ǒ
n.0/; Ǫn.0/� Ǒn.0// ds:

By the convergence of �n, if n is sufficiently large (which we assume below), then
the amount that D tn.s Ǫn.0/C .1 � s/ Ǒn.0/; � / rotates any vector as compared to
D tn.0; � / can be made arbitrarily small. It follows that the integrand in (3-14), and
hence Ǫn.t/� Ǒn.t/, has positive inner product withD tn.0; Ǫn.0/� Ǒn.0//. Thus, the
right-hand side of (3-12) differs by less than 1

4
from the rotation number (the change

in argument divided by 2�) of the path

(3-15) Œ0; T �!C�; t 7!D tn.0; Ǫn.0/�
Ǒ
n.0//:

The rotation number of the linearized Reeb flow along 
 differs from the rotation
number of any individual vector by less than 1

2
. Hence, by again applying convergence

of the �n as above, if n is sufficiently large then the rotation number of the path (3-15)
differs by less than 1

2
from a. Since the right-hand side of (3-12) is an integer which

differs by less than 3
4

from a, it must equal a.

4 Two simple Reeb orbits implies nondegenerate

We now prove Theorem 1.2. Throughout this section assume that Y is a closed
connected three-manifold and � is a contact form on Y with exactly two simple Reeb
orbits 
1 and 
2 of periods T1 and T2, respectively.

4.1 The homology classes of the Reeb orbits

Lemma 4.1 The classes Œ
i � 2H1.Y / and c1.�/ 2H 2.Y IZ/ are torsion.

Proof We use a similar argument to the proof of [12, Theorem 1.7].

Since every oriented three-manifold is spin, we can choose � 2 H1.Y / such that
c1.�/C 2PD.�/ D 0 2 H 2.Y IZ/. By Proposition 2.16, there exists a U –sequence
f�kg�1 for � . Write ck D c�k .Y; �/ 2R.

By Proposition 2.18(a),
ck Dm1;kT1Cm2;kT2

for some nonnegative integers m1;k and m2;k , and furthermore

(4-1) m1;kŒ
1�Cm2;kŒ
2�D � 2H1.Y /:
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By Proposition 2.18(b), the sequence fckg is strictly increasing. It then follows from
(4-1) that there are infinitely many integral linear combinations of Œ
1� and Œ
2� that
have the same value in H1.Y /. Thus the kernel of the map

(4-2) Z2!H1.Y /; .m1; m2/ 7!m1Œ
1�Cm2Œ
2�;

has rank at least 1.

In fact, the kernel of the map (4-2) must have rank at least 2; otherwise ck would grow
at least linearly in k, contradicting the sublinear growth in the volume property in
Proposition 2.18(c). It follows that Œ
1� and Œ
2� are torsion. Since c1.�/C2PD.�/D 0,
we deduce that c1.�/ is also torsion.

4.2 Computing the ECH index

If m1 and m2 are nonnegative integers, we use the notation 
m11 

m2
2 to indicate the

orbit set f.
1; m1/; .
2; m2/g, with the element .
i ; mi / omitted when mi D 0. Write
˛D


m1
1 


m2
2 . If Œ˛�D0, then it follows from Remark 2.13 and Lemma 4.1 that I.˛/2Z

is defined. We now give an explicit computation of I.˛/, following [33, Section 4.7].

Definition 4.2 Define the linking number

(4-3) `.
1; 
2/ WD
`.


l1
1 ; 


l2
2 /

l1l2
2Q;

where l1 and l2 are positive integers such that li Œ
i �D 02H1.Y /, and on the right-hand
side ` denotes the usual integer-valued linking number of disjoint nullhomologous loops.

Definition 4.3 For i D 1; 2, define the Seifert rotation number �i 2R as follows. Let
� be a trivialization of � over 
i . Let �i;� D �� .
i / 2R denote the rotation number of

i with respect to � . Let li be a positive integer such that li Œ
i �D 0. Define

(4-4) Qi;� WD
Q� .


li
i /

l2i
2Q;

where Q� .

li
i / is shorthand for Q� .


li
i ;∅; Z/ for any Z 2H2.Y; 


li
i ;∅/. Note that

Qi;� does not depend on Z by (2-3), and it does not depend on li either because Q� is
quadratic in the relative homology class. Finally, define

(4-5) �i WDQi;� C �i;� 2R:

The number �i does not depend on the choice of trivialization � by the change of
trivialization formulas in [27, Section 2].

Geometry & Topology, Volume 27 (2023)



Contact three-manifolds with exactly two simple Reeb orbits 3825

Remark 4.4 When 
i is nullhomologous, one can alternatively describe �i as follows.
Let † be a Seifert surface spanned by 
i . There is a distinguished homotopy class of
trivialization � 0 of � over 
i , the “Seifert framing”, for which the normal vector to †
has winding number zero around 
i . We have Qi;� 0 D 0 by [27, Lemma 3.10]. It then
follows that �i D �� 0.
i /. In the general case when 
i is rationally nullhomologous,
one can similarly describe �i as the rotation number with respect to a rational framing
of 
i determined by a rational Seifert surface.

Lemma 4.5 If m1Œ
1�Cm2Œ
2�D 0 2H1.Y /, then

(4-6) I.

m1
1 


m2
2 /D �1m

2
1C�2m

2
2C 2`.
1; 
2/m1m2CO.m1Cm2/:

Proof Let li be a positive integer with li Œ
i �D 0. Similarly to (4-4), define

ci;� WD
c� .


li
i /

li
2Q;

where c� .

li
i / is shorthand for c� .


li
i ;∅; Z/ for any Z 2H2.Y; 


li
i ;∅/. Then ci;� does

not depend on Z by (2-2) since c1.�/ is torsion, and it is independent of the choice
of li because c� is linear in the relative homology class Z.

It follows from the definition of the ECH index and the facts that c� and Q� are linear
and quadratic in the relative homology class (see [33, Section 4.2]) that

I.

m1
1 


m2
2 /D

2X
iD1

.mici;�Cm
2
iQi;� /C2m1m2`.
1; 
2/C

2X
iD1

miX
kD1

.bk�i;�cCdk�i;�e/;

where Qi;� and �i;� are as in (4-5). Plugging in the approximation

2X
iD1

miX
kD1

.bk�i;�cC dk�i;�e/D

2X
iD1

m2i �i;� CO.m1Cm2/

then gives (4-6).

4.3 Using the volume property

Lemma 4.6 The Seifert rotation numbers and linking number are given by

�i D
T 2i

vol.Y; �/
; `.
1; 
2/D

T1T2

vol.Y; �/
:

Proof Both sides of the above equations are invariant under scaling the contact form
by a positive constant, so we may assume without loss of generality that vol.Y; �/D 1.
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By Proposition 2.16 and Lemma 4.1, we can choose a U –sequence f�kgk�1 for � D 0.
Since the U map has degree �2, there is a constant C 2 Z such that, for each positive
integer k, the class �k has grading C C 2k. By Proposition 2.18(a), for each positive
integer k there are nonnegative integers m1;k and m2;k such that

(4-7) c�k .Y; �/Dm1;kT1Cm2;kT2:

By the volume property of Proposition 2.18(c),

(4-8) 2k D .m1;kT1Cm2;kT2/
2
C o.k/:

Fix k and write ˛k D 

m1;k
1 


m2;k
2 . If �0 is a sufficiently C 2 close nondegenerate per-

turbation of �, then by the same compactness argument that proves Proposition 2.18(a)
there is an orbit set ˛0

k
close to ˛k as a current such that I.˛0

k
/D C C 2k (and alsoR

˛0
k
�0 is close to c�k .Y; �/, although we do not need this). By Proposition 3.1,

C C 2k D I.˛k/CO.m1;kCm2;k/:

Combining this with Lemma 4.5, we get

(4-9) 2k D �1m
2
1;kC�2m

2
2;kC 2`.
1; 
2/m1;km2;kCO.m1;kCm2;k/:

Putting together (4-8) and (4-9),

.�1�T
2
1 /m

2
1;kC .�2�T

2
2 /m

2
2;kC 2.`.
1; 
2/�T1T2/m1;km2;k

DO.m1;kCm2;k/C o.k/:

Consequently, if the sequence .m2;k=m1;k/k�1 has an accumulation point S 2 Œ0;1�,
then the line in the .x; y/–plane of slope S through the origin is in the null space of
the quadratic form

f .x; y/D .�1�T
2
1 /x

2
C .�2�T

2
2 /y

2
C 2.`.
1; 
2/�T1T2/xy:

To complete the proof of the lemma, it now suffices to show that the sequence
.m2;k=m1;k/k�1 has at least three accumulation points, as then the quadratic form
f must vanish identically. We claim that in fact this sequence has infinitely many
accumulation points.

If the sequence has only finitely many accumulation points S1; : : : ; Sn, then for every
� > 0 there exists R> 0 such that every point .m1;k; m2;k/ is contained in the union of
the disk x2Cy2 �R2 and the cones around the lines of slope S1; : : : ; Sn with angular
width �.
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Since limk!1 c2�k=k D 2, and since the points .m1;k; m2;k/ are pairwise distinct
by Proposition 2.18(b), by (4-7) it follows that, for large L, the number of points
.m1;k; m2;k/ contained in the triangle T1x C T2y � L for x � 0 and y � 0 is
approximately 1

2
L2. As a result, there exists ı > 0 such that, for all L sufficiently large,

the fraction of lattice points in the above triangle that are contained in the sequence
.m1;k; m2;k/k�1 is at least ı. This gives a contradiction if � in the previous paragraph
is chosen sufficiently small.

4.4 Completing the proof of nondegeneracy

Proof of Theorem 1.2 The ratio T1=T2 is irrational7 by [11, Theorem 1.3]. Also,
`.
1; 
2/ is rational by the definition (4-3). It then follows from Lemma 4.6 that �1
and �2 are irrational.

By (4-5), since Qi;� is rational, it follows that the rotation number �i;� is irrational.
Then P
i has eigenvalues e˙2�i�i;� , so the Reeb orbits 
i are irrationally elliptic. As
explained in Section 1.1, it follows that all covers of 
i are nondegenerate, so � is
nondegenerate.

5 Additional dynamical information

To finish up, we now prove Theorem 1.5.

To prepare for the proof, recall that if Y is a closed oriented three-manifold, if � is
a contact structure on Y with c1.�/ D 0 2 H 2.Y IZ/, and if 
 is a nullhomologous
transverse knot, then the self-linking number sl.
/ 2 Z is defined to be the difference
between the Seifert framing (see Remark 4.4) and the framing given by a global
trivialization of �. In the notation of Section 4.2,

(5-1) sl.
/DQ� .
/� c� .
/;

where � is any trivialization of �j
 .

Now suppose that 
 above is a simple Reeb orbit. Let �.
/ 2 R denote the rotation
number of 
 with respect to the Seifert framing as in Section 4.2, and let �.
/ 2 R

denote the rotation number of 
 with respect to a global trivialization of � . Also, let

CZ.
/D b�.
/cC d�.
/e 2 Z

7The proof is simple: if T1=T2 is rational, T1 and T2 are both integer multiples of a single number, so
Proposition 2.18(b) implies that the spectral invariants associated to a U –sequence grow at least linearly,
contradicting the volume property.
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denote the Conley–Zehnder index of 
 with respect to a global trivialization. It follows
from (5-1) that

(5-2) �.
/D �.
/C sl.
/:

Proof of Theorem 1.5 By Corollary 1.3, 
1 and 
2 are the core circles of a genus-one
Heegaard splitting of Y . It follows from this topological description that `.
1; 
2/D1=p.
Part (a) of the theorem then follows from Lemma 4.6.

To prove part (b), suppose first that Y D S3. We know from Theorem 1.2 that �
is nondegenerate and there are no hyperbolic Reeb orbits. Then � is tight, because
otherwise [21, Theorem 1.4] would give a hyperbolic Reeb orbit. Moreover, it follows
from [25, Theorem 1.3], combined with [21, Theorem 1.4] and the fact that there are
no Reeb orbits with CZD 2 (since Reeb orbits with even Conley–Zehnder index have
integer rotation number and thus are hyperbolic), that one of the simple Reeb orbits,
say 
1, satisfies sl.
1/ D �1 and CZ.
1/ D 3, and is the binding of an open book
decomposition with pages that are disk-like global surfaces of section for the Reeb
flow. The return map on a page preserves an area form with finite total area, and hence
it has a fixed point by Brouwer’s translation theorem. This fixed point corresponds to
the simple Reeb orbit 
2, which is transverse to the pages of the open book. Since,
on S3 n 
1, the tangent spaces of the pages define a distribution that is isotopic to �
keeping transversality with the Reeb direction, sl.
2/ D �1. Since CZ.
1/ D 3, we
have �.
1/ 2 .1; 2/, so, by (5-2), �1 2 .0; 1/. By Lemma 4.6 as used in (1-4), we have
�1�2 D 1, so �2 > 1. By (5-2), again, �.
2/ > 2. It follows that all iterates of 
1
and 
2 have � > 1, so � is dynamically convex.

To prove part (b) in the general case, let Q� denote the pullback of the contact form �

to the universal cover S3 of Y . It follows from the Heegaard decomposition that 
1
and 
2 each have order p in �1.Y /. Consequently Q� has exactly two simple Reeb orbits
Q
1 and Q
2, which project to 
1 and 
2 as p–fold coverings. By the previous paragraph,
.S3; Q�/ is dynamically convex and tight, and it follows that .Y; �/ is dynamically
convex and universally tight.
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