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Congruences on K–theoretic Gromov–Witten invariants

JÉRÉMY GUÉRÉ

We study K–theoretic Gromov–Witten invariants of projective hypersurfaces using
a virtual localization formula under finite group actions. In particular, it provides
all K–theoretic Gromov–Witten invariants of the quintic threefold modulo 41, up to
genus 19 and degree 40. As an illustration, we give an instance in genus one and
degree one. Applying the same idea to a K–theoretic version of FJRW theory, we
determine it modulo 205 for the quintic polynomial with minimal group and narrow
insertions, in every genus.
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0 Introduction

One of the first achievements of Gromov–Witten (GW) theory is the celebrated formula
of Candelas, de la Ossa, Green and Parkes [4] computing genus-0 invariants of the
quintic threefold in terms of a hypergeometric series solution of a Picard–Fuchs equation.
It was a first instance of mirror symmetry and was proved by Givental [14] and Lian,
Liu and Yau [28].

The K–theoretic version of GW theory, which we refer to as KGW theory, was con-
structed in Lee [25], and it is only recently that mirror symmetry in this context was
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3586 Jérémy Guéré

developed by Givental in his series of preprints starting with [15]. It relates the KGW
generating series to a q–hypergeometric function solution of a finite-difference equation.

Both GW and KGW theories rely on the notion of a perfect obstruction theory (see
Behrend and Fantechi [2]), producing two fundamental objects on the moduli space
Mg;n.X; ˇ/ of stable maps to a given nonsingular variety X, namely the virtual cycle
ŒMg;n.X; ˇ/�

vir living in the Chow ring of the moduli space, and the virtual structure
sheaf Ovir

Mg;n.X ;ˇ/
living in its K–theory of coherent sheaves.

Given insertions yi 2 CH�.X /, or Yi 2K0.X /, and psi-classes  i 2 CH1.Mg;n/, or
psi-bundles ‰i 2K0.Mg;n/, we then form

a WD

nY
iD1

ev�.yi/ � 
di

i and A WD

nO
iD1

ev�.Yi/˝‰
˝di

i ; with di 2 Z;

using evaluation maps. It yields GW and KGW invariants

p�.a � ŒMg;n.X; ˇ/�
vir/ 2Q and p!.A˝Ovir

Mg;n.X ;ˇ/
/ 2 Z;

where p is the projection map to a point along which we take pushforwards in Chow
or in K–theory.1 Each theory has an important feature: the virtual cycle is pure-
dimensional, leading to a degree condition on the insertions for the GW invariant
to be nonzero, and KGW invariants are all integers. Moreover, the two theories are
related via a Hirzebruch–Riemann–Roch theorem (see Tonita [38]), saying that all
KGW invariants of a nonsingular variety X can be reconstructed from the knowledge
of all GW invariants of the DM stacks ŒX=.Z=M Z/� for all M 2 N�; see Givental
[16, Main Theorem].

Let T be a torus. When the variety X carries a nontrivial T –action, so does the
moduli space of stable maps, and the virtual cycle and virtual structure sheaf are
T –equivariant. One then benefits from the virtual localization formula of Graber and
Pandharipande [17] to reduce the computation of invariants to the T –fixed locus, which
greatly simplifies the calculation. Unfortunately, the automorphism group of a smooth
projective hypersurface such as the quintic threefold is finite (except in the special cases
of quadrics, elliptic curves and K3 surfaces), so that there is no nontrivial T –action.

Let G be a finite cyclic group. In this paper, we take advantage of the fact that the
(virtual) localization formula holds with no change under finite group actions. Since
projective hypersurfaces X admit such actions, we can apply it to the study of KGW

1In K–theory, it is also known as the Euler characteristic.
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Congruences on K–theoretic Gromov–Witten invariants 3587

theory of X. However, we still have two difficulties. First, the G–fixed moduli space
is in general quite involved and we cannot guarantee that it is smooth, so even after
applying the virtual localization formula, we may not be able to finish the computation.
Second, the (virtual) localization formula gives an answer in a localized ring. For
instance, the G–equivariant K–theory of a point is isomorphic to the representation
ring R.G/, which in the case of a finite cyclic group of order M yields ZŒX �=.1�X M /.
Instead of providing an answer in R.G/, the (virtual) localization formula only gives
us the image in the localized complexified ring R.G/C;loc, where we invert a maximal
ideal corresponding to a nonzero element in G. The issue with the localized ring is
that the map R.G/!R.G/C;loc is in general not injective. In our example, we have
R.G/C;loc ' C and the map sends X to a given primitive M th root of unity, so that
the nonzero polynomial 1CX C � � � CX M�1 2 R.G/ is sent to 0 2 C. Notice that
when the group is a torus T , the localization map R.T /!R.T /C;loc is injective; that
is why we have no such issue in the previous paragraph.

We overcome the first difficulty by means of an “equivariant quantum Lefschetz theorem”
that we developed for GW theory in [19, Section 2] and that we adapt to KGW theory
and to finite group actions in Section 1; see Theorem 1.6. It compares the G–equivariant
virtual structure sheaf of a hypersurface X � PN to that of the ambient space PN, and
then we use the T –action on the ambient space to apply the virtual localization formula.
However, Theorem 1.6 requires that for every G–fixed stable map from a curve C to X,
all stable components of C are contracted to a point in X. This condition could fail if
the automorphism group of the curve is too big, leading us to impose restrictions on
the genus of the curve and on the degree of the stable map.

The second difficulty is more serious. Indeed, we know the G–equivariant KGW
invariant is of the form a0C a1X C � � �C aM�1X M�1 for some integers ai , and our
goal would be the “nonequivariant” limit a0C � � �C aM�1, but we only have access to
the complex number a0Ca1�C� � �CaM�1�

M�1, where � is a primitive M th root of
unity. Luckily, KGW are integers, so that when M is a prime number, we can sum all
these complex numbers for primitive roots and obtain the KGW invariant modulo M.

As a conclusion, we seek automorphisms of X of prime order with isolated fixed points.
For instance, the quintic threefold can be realized as the zero locus in P4 of the loop
polynomial x4

0
x1C � � �Cx4

4
x0 and the action

� � .x0; : : : ;x4/D .�x0; �
�4x1; �

16x2; �
�64x3; �

256x4/; where � WD e2i�=41;
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3588 Jérémy Guéré

yields an automorphism of X of prime order 41, whose fixed points are coordinate
points. As a result of Corollary 2.9, we obtain2 all KGW invariants of the quintic
threefold up to genus 19 and degree 40, modulo 41.

Remark 0.1 It happens that 41 is the biggest prime number p for which there exists
an automorphism of order p for a smooth quintic hypersurface; see Oguiso and Yu [30].

In Proposition 2.13, we provide an instance of this calculation in genus one. Precisely,
we compute

�

�Ovir
M1;0.X ;1/

1� qE_

�
� .120q2

C 180qC 125/
1� q4� q6

.1� q4/.1� q6/
2 Z=205ZŒŒq��;

where E denotes the Hodge bundle and q is a formal variable, so that the inverse of
1�qE_ is defined as the geometric series in q of general term E�kqk (here E is a line
bundle).

Interestingly, if we can find automorphisms of prime orders for infinitely many primes
and if we can handle the respective localization formulas, then we are able to determine
KGW invariants as integers instead of modulo a prime number. We apply this idea to
elliptic curves. There are indeed p–torsion points for every prime number p, so that a
translation by this point is an automorphism of order p. Furthermore, the localization
formula is trivial since there are no fixed points. We deduce the vanishing of all KGW
invariants of an elliptic curve, with homogeneous insertions.

Similarly to GW theory, Fan, Jarvis and Ruan [12; 11] developed a quantum singularity
theory for Landau–Ginzburg orbifolds. It is known as the FJRW theory and an algebraic
construction has been established by Polishchuk and Vaintrob in [33]. Precisely, they
construct a matrix factorization over the moduli space of .W;G/–spin curves, where
W is a nondegenerate quasihomogeneous polynomial and G is an admissible group of
symmetries. We refer to Guéré [18] for details.

In Section 3, we explain how to construct a K–theoretic version of FJRW theory and
we then pursue the same goal as for KGW theory: compute invariants by applying the
localization theorem under finite group actions. We focus on the quintic polynomial

2It means we write the answer as a sum over dual graphs of contributions involving only KGW invariants
of the point. This computation can be encoded into a computer. Note however that the calculation of KGW
invariants of the point is nontrivial in genus more than two. As explained in Proposition 2.13, we use the
computer for the calculation of an explicit example in genus one.
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with group �5 for clarity of the exposition and we find all its K–theoretic FJRW
invariants with narrow insertions in every genus and modulo 205; see Corollary 3.11.
Here, we do not have restriction bounds on the genus of the curve.

In [18], we compute genus-0 FJRW invariants of chain polynomials using a character-
istic class3 ct WK

0.S/!H�.S/ŒŒt ��, which we can define for a line bundle L over a
smooth DM stack S as

ct .L/D Ch.��tL
_/Td.L/D c1.L/ �

ec1.L/� t

ec1.L/� 1
;

and then extend multiplicatively. Genus-0 FJRW invariants of a chain polynomial
x

a1

1
x2C � � �Cx

aN

N
are then equal to

(1) cvir D lim
t!1

NY
jD1

ctj .�R��Lj /; with g D 0;

where tj WD t .�a1/���.�aj�1/ and R��Lj are the derived pushforwards of the universal
line bundles over the moduli space of .W;G/–spin curves. It is remarkable that such a
limit exists and the author has wondered since then whether other limits could exist, for
instance when t tends to some root of unity. Interestingly, we prove4 for the quintic loop
polynomial with group �5 and narrow insertions that such a limit exists for all genus
when t tends to a 41st root of unity �41. It then converges to a Z=41Z–equivariant
version of the FJRW virtual cycle, defined as follows. The two-periodic complex
obtained from the Polishchuk–Vaintrob matrix factorization naturally decouples as
a direct sum of 41 two-periodic complexes.5 Each one of them provides a (virtual)
cycle ak , for 0� k � 40, and we define

c
Z=41Z
vir WD

40X
kD0

ak�
k
41 D lim

t!�41

NY
jD1

ctj .�R��Lj /; with g � 0:

We easily find similar results for other loop polynomials.

3Polishchuk and Vaintrob’s definition of the virtual cycle in FJRW theory involves a Koszul complex of
vector bundles; see [33]. The class ct then appears naturally from the definition of the Koszul complex, as
it involves exterior powers of vector bundles. Note also that c1 recovers the top Chern class of a vector
bundle.
4The restriction to the group �5 is not necessary and we could consider other admissible groups. However,
if one takes the maximal group �1025, then the action of Z=41Z becomes trivial and gives no result.
5Precisely, the k th two-periodic complex is the one containing vector bundles SymkC41�l A_

1
, with l 2N,

in the notation of [18].
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3590 Jérémy Guéré

As a conclusion, we mention a future line of research. Chiodo and Ruan [9] and
Chiodo, Iritani and Ruan [8] studied the so-called genus-0 Landau–Ginzburg/Calabi–
Yau (LG/CY) correspondence, which provides a striking relation between GW theory
of a projective hypersurface and FJRW theory of the defining polynomial. Following
Chiodo and Ruan [10], there is a similar correspondence in higher genus as well.
Since we expect the LG/CY correspondence to hold in K–theory as well, it would be
interesting to probe a K–theoretic version for the quintic threefold, up to genus 19,
degree 40, and modulo 41.

Another question we may ask is: what information do we get on GW invariants of the
quintic threefold up to genus 19? The quintic threefold X is special, its virtual cycle
(with no markings) is 0–dimensional, so that a lot of its GW invariants vanish. In fact,
they are all deduced from some rational numbers ng;d 2Q for nonnegative integers g

and d , corresponding to its GW invariants without markings. As a consequence, we
expect some simplifications in the Hirzebruch–Riemann–Roch theorem of Tonita [38]
and Givental [16], and to find formulas expressing KGW invariants of X in terms of
the ng;d . Moreover, it is proven in Fan and Lee [13], Guo, Janda and Ruan [20] and
Chang, Guo and Li [5] that all values of ng;d are expressed in terms of low degrees,
where 5d � 2g� 2. Up to genus 19, there are exactly 61 unknowns:

n4;1; n5;1; : : : ; n18;6; n19;7 2Q:

As we are able to compute all KGW invariants modulo 41 up to genus 19 and degree 40,
we expect a lot of relations among these 61 unknowns. Moreover, KGW is not restricted
by a degree condition on insertions, so we can also insert K–classes from P4, yielding
indeed infinitely many relations among these 61 unknowns. Of course, we do not know
yet how many of these relations are nontrivial. It would also be enlightening to express
KGW invariants in terms of BPS numbers, which are integers as well; see [22] for a
formula in genus zero.

Notation In this paper, we work over the complex numbers. We denote by G0.X /

the Grothendieck group of coherent sheaves on a DM stack X and by K0.X / the
Grothendieck ring of vector bundles on X. If a linear algebraic group G acts on X, then
we denote by G0.G;X / and K0.G;X / the Grothendieck groups of G–equivariant
coherent sheaves and vector bundles. They are identified when X is smooth, by
Thomason [36]. When X is a point, then it equals the representation ring R.G/ of the
group G. The G–fixed locus inside X is denoted by X G . For an element h 2G, we

Geometry & Topology, Volume 27 (2023)
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denote by X h the h–fixed locus. If V and W are G–equivariant vector bundles over X,
then we denote by

�G
�t .V �W /D

X
k;l�0

.�1/kƒkV ˝SymlW tkCl
2K0.G;X /ŒŒt ��

the lambda-structure in K–theory. We extend multiplicatively the notation to any
element V 2 K0.G;X /. When we forget the group action, we simply denote it by
��t .V / 2K0.X /ŒŒt ��.

Let G be a diagonalizable group. The complexified representation ring R.G/C WD

R.G/˝C is identified with the coordinate ring O.G/ of G. Hence, for every h 2G,
there is a corresponding maximal ideal mh �R.G/C . Let

G0.G;X /loc WDG0.G;X /˝Z R.G/C;mh
;

K0.G;X /loc WDK0.G;X /˝Z R.G/C;mh

denote the localizations. Assume X is smooth and let � WX h �X be the inclusion of
the h–fixed locus. The localization theorem says

(2) AD �!

�
��A

�G
�1
.N _� /

�
2K0.G;X /loc for all A 2K0.G;X /locI

see Thomason [37]. Note that �G
�1

is the evaluation of the formula above at t D 1. In
general, it is not defined in K0.G;X / and it is only partially defined in K0.G;X /loc.
Precisely, for a vector bundle V , the term �G

�1
.V / is invertible if V has no G–fixed

part. This is the case in equation (2).

Equation (2) is in particular true for finite groups G, even though the localization
map R.G/C ! R.G/loc is not injective in that case. Moreover, we can relax the
smoothness condition on X. Indeed, if X is singular but carries a G–equivariant perfect
obstruction theory ŒE�1!E0�, then there is a G–equivariant virtual structure sheaf
Ovir;G

X
2 G0.G;X /; see Lee [25]. The obstruction theory pulls back to the G–fixed

locus X G and we denote by N vir
� 2K0.G;X G/ the K–theoretic class of the dual of its

G–moving part. The G–fixed part gives a perfect obstruction theory on X G and yields
a virtual structure sheaf Ovir

X G . Furthermore, we have the virtual localization formula

(3) Ovir;G
X
D �!

� Ovir
X G

�G
�1
.N vir
�
_
/

�
2G0.G;X /loc:

See Qu [34, Theorem 3.3] for the proof in the case where the group is a torus T , but the
same proof holds word for word when we replace T by any diagonalizable group G. In
particular, it applies to the moduli space M.X / of stable maps to a smooth DM stack X .

Geometry & Topology, Volume 27 (2023)



3592 Jérémy Guéré

Here, we specify the genus, the degree and the number of markings as Mg;n.X ; ˇ/
when needed.

The letters GW stand for Gromov–Witten and KGW for K–theoretic Gromov–Witten.

1 Equivariant quantum Lefschetz theorem

This section is a generalization of [19, Section 2] to K–theory and to more general
group actions. The main result is an “equivariant quantum Lefschetz” theorem which
is of first importance in the next section.

1.1 Virtual localization formula

Let G be a linear algebraic group and X be a smooth DM stack equipped with a
G–action. The moduli space M.X / of stable maps to X carries a G–action, a G–
equivariant perfect obstruction theory, and thus a G–equivariant virtual structure sheaf
Ovir;G

M.X / 2G0.G;M.X //.

Denote by � WM.X /G ,!M.X / the embedding of the G–fixed locus. By definition,
the virtual normal bundle N vir

� 2K0.G;M.X /G/ is the moving part of the pullback of
the perfect obstruction theory to the fixed locus.6 The virtual localization formula (3)
states

Ovir;G
M.X / D �!

� Ovir
M.X /G

�G
�1
.N vir
�
_
/

�
2G0.G;M.X //loc:

1.2 Enhancement of the group

Let G � T be an embedding of linear algebraic groups and X ,! P be an embedding
of smooth DM stacks equipped with a G–action. We assume that

� the G–fixed loci of X and of P are equal;

� for every G–fixed stable map to P , all stable components of the source curve
are sent to PG ;

� P is equipped with a T –action extending the G–action;

� the normal bundle of X ,! P is the pullback of a T –equivariant vector bundle
N over P;

� X is the zero locus of a G–invariant section of the vector bundle N ; and
6The perfect obstruction theory admits a global presentation by a two-term complex of vector bundles,
hence the virtual normal bundle is an element in K0 rather than an element in G0.
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� the vector bundle N is convex up to two markings, ie for every stable map
f W C ! P , where C is a smooth genus-0 orbifold curve with at most two
markings, we have H 1.C; f �N /D 0.

Let us first consider the G–fixed loci of the moduli spaces of stable maps and observe
the fibered diagram

M.X /G M.P/G

M.P/M.X /

j

z��

zj

Writing i W X ,! P , we have a G–equivariant short exact sequence

0! TX ! i�TP ! i�N ! 0

inducing a distinguished triangle

(4) R��f
�TX !R��f

�TP !R��f
�N ! .R��f

�TX /Œ1�:

Note that their duals are parts of the perfect obstruction theories of M.X / and of
M.P/, the remaining parts being the perfect obstruction theory of the moduli space of
stable curves itself.

The term E WDR��f
�N , pulled back to M.P/G , has a fixed and a moving part, that

we denote respectively by Efix and Emov.

Proposition 1.1 The fixed part Efix is a vector bundle over the fixed moduli space
M.P/G .

Proof Let f W C! P be a stable map belonging to M.P/G . We denote by � W C! C

the coarse map. It is enough to prove that

H 1.C; ��f
�N /fix

D 0:

Take the normalization � W C �! C of the curves at all their nodes. We have

C �
D

G
i2I

C fix
i t

G
j2J

C nf
j ;

where the superscripts refer respectively to fixed/nonfixed components of C � under
the map f . In particular, nonfixed components are unstable curves, ie the projective
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line with one or two special points. By the normalization exact sequence, we obtain an
exact sequenceM

nodes

H 0.node; f �N jnode/!H 1.C; ��f
�N /!H 1.C � ; ����f

�N /! 0;

with

H 1.C � ; ����f
�N /D

M
i2I

H 1.C fix
i ; ����f

�N /˚
M
j2J

H 1.C nf
j ; �

���f
�N /:

Since the normal bundle has a nontrivial G–action once restricted to the fixed locus
of X (or equivalently of P), we have

H 0.node; f �N jnode/
fix
D 0 and H 1.C fix

i ; ����f
�N /fix

D 0:

Therefore, it remains to see the vanishing of H 1 for nonfixed unstable curves C nf
j ,

for j 2 J . The curve C nf
j is isomorphic to P1 with either one or two markings, hence

H 1.C nf
j ; �

���f
�N /D 0 by our assumption of convexity up to two markings.

Denote by Ovir
M.P/G the virtual structure sheaf obtained by the G–fixed part of the

perfect obstruction theory R��f
�TP .

Proposition 1.2 We have

j!Ovir
M.X /G D �

G
�1.E_fix/˝Ovir

M.P/G 2G0.M.P/G/:

Furthermore , in the localized equivariant K–theoretic ring , we have

1

�G
�1
.N vir
�
_
/
D j �

�
�G
�1
.Emov

_/

�G
�1
.N vir
z�

_
/

�
2K0.G;M.P/G/loc:

Proof It follows from the standard proof using convexity; we recall here the main
arguments.

The DM stack X is the zero locus of a G–invariant section of the vector bundle N over
the ambient space P . This section induces a map s from the moduli space of stable
maps to P to the direct image cone ��f �N ; see [6, Definition 2:1]. Since the moduli
space M.P/G is fixed by the action of G, it maps to the fixed part of the direct image
cone, that is, the vector bundle Efix. Hence we have the fibered diagram

M.X /G M.P/G

EfixM.P/G

j

s

0

Geometry & Topology, Volume 27 (2023)
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where the bottom map is the embedding as the zero section. The fixed part of the
distinguished triangle (4) gives a compatibility datum of perfect obstruction theories
for the fixed moduli spaces. Functoriality of the virtual structure sheaf gives

0!Ovir
M.P/G DOvir

M.X /G I

see [34]. Applying the projection formula via the map j on both sides and using the
Koszul resolution gives the first result. The second part of the statement follows from
the moving part of the distinguished triangle (4).

By the virtual localization formula, the G–equivariant virtual structure sheaf satisfies

zj!Ovir;G
M.X / D

zj!�!

� Ovir
M.X /G

�G
�1
.N vir
�
_
/

�
Dz�!j!

�
Ovir

M.X /G ˝ j �
�
�G
�1
.Emov

_/

�G
�1
.N vir
z�

_
/

��

Dz�!

�
�G
�1.Efix

_/˝Ovir
M.P/G ˝

�G
�1
.Emov

_/

�G
�1
.N vir
z�

_
/

�

Dz�!

�
�G
�1.E_/˝

Ovir
M.P/G

�G
�1
.N vir
z�

_
/

�
;

where equalities happen in G0.G;M.P//loc.

Remark 1.3 If it were defined, the right-hand side would equal

�G
�1.R��f

�N /_˝Ovir;G
M.P/;

using the virtual localization formula, but it is not clear that the G–lambda class of
R��f

�N is defined in G0.G;M.P//loc. However, we say that �G
�1
.R��f

�N /_ is
defined after localization7 to mean that its pullback to the fixed locus is defined.

Now, we aim to extend the right-hand side of the equality to the T action. The inclusion
of groups G ,! T yields a morphism

�� WG0.T;M.P//!G0.G;M.P//;

under which we get
��.Ovir;T

M.P//DOvir;G
M.P/:

Unfortunately, the map �� is only partially defined when we localize equivariant
parameters: the denominators could be nonzero in the T –localization but vanish in
the G–localization. It is easier to work out this issue on the fixed locus of the moduli
space.

7We find this definition for the formal quintic; see [27].
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Let M.P/T ,!M.P/ denote the T –fixed locus of the moduli space. In particular, we
have the inclusion y� WM.P/T ,!M.P/G . We notice that the moduli space M.P/G is
stable under the T –action from M.P/ and that the map y� is T –equivariant. Moreover,
we have a T –equivariant virtual structure sheaf

Ovir;T
M.P/G 2G0.T;M.P/G/

and the equality

��.Ovir;T
M.P/G /DOvir

M.P/G 2G0.G;M.P/G/:

By the virtual localization formula, we have

Ovir;T
M.P/G Dy�!

� Ovir
M.P/T

�T
�1
.N vir
y�

_
/

�
2G0.T;M.P/G/loc:

Furthermore, in K–theory on the space M.P/T we have the equality

(5) N vir
z�ıy�
Dy��N vir

z� CN vir
y�
:

Indeed, let F be the pullback of the perfect obstruction theory from M.P/ to M.P/T.
By definition, the virtual normal bundle N vir

z�ıy�
is the T –moving part Fmov, which

decomposes as FmovDFmov
fix CFmov

mov , where the subscript denotes the G–fixed/moving
part. By definition, the virtual normal bundley��N vir

z�
is the G–moving part of F , ie Fmov

mov ,
since there is no G–moving T –fixed part in F . The virtual normal bundle N vir

y�
identifies

with Fmov
fix .

Remark 1.4 The virtual normal bundle N vir
z�

is defined on M.P/G and we have a
well-defined equality

��.�
T
�1.N

vir
z�

_
/�1/D �G

�1.N
vir
z�

_
/�1
2K0.G;M.P/G/loc:

We also have seen the G–decomposition E D EfixC Emov over M.P/G with Efix being
a T –equivariant vector bundle. Indeed, the vector bundle N over P is T –equivariant,
thus so are E and Efix. As a consequence, the equality

��.�
T
�1.E//D �G

�1.E/ 2K0.G;M.P/G/loc

is well defined.

Proposition 1.5 Consider the well-defined class

CT WDy�
�.�T
�1.E_//˝

Ovir
M.P/T

�T
�1
.N vir
z�ıy�

_
/
2G0.T;M.P/T /loc:
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Then its pushforward under the inclusion y� equals

y�!.CT /D �
T
�1.E_/˝

Ovir;T
M.P/G

�T
�1
.N vir
z�

_
/
2G0.T;M.P/G/loc:

In particular , we have

��.y�!.CT //D �
G
�1.E_/˝

Ovir
M.P/G

�G
�1
.N vir
z�

_
/
2G0.G;M.P/G/loc:

Proof By the virtual localization above and equation (5), we have

y�!.CT /D �
T
�1.E_/˝y�!

� Ovir
M.P/T

�T
�1
.N vir
z�ıy�

_
/

�

D �T
�1.E_/˝y�!

� Ovir
M.P/T

y��.�T
�1
.N vir
z�

_
//˝�T

�1
.N vir
y�

_
/

�

D
�T
�1
.E_/

�T
�1
.N vir
z�

_
/
˝y�!

� Ovir
M.P/T

�T
�1
.N vir
y�

_
/

�
D

�T
�1
.E_/˝Ovir;T

M.P/G

�T
�1
.N vir
z�

_
/

:

The last sentence follows from the following property of ��. Let Z be a DM stack
with a T –action and take A 2 K0.T;Z/loc, B 2 G0.T;Z/loc, a 2 K0.G;Z/loc and
b 2 G0.G;Z/loc. If ��.A/ D a and ��.B/ D b are well-defined equalities, then
��.A˝B/ is well defined and equals the localized class a˝ b.

The pushforward maps z�! and �� commute when the latter is well defined. Precisely,
the map z� is T –equivariant and for any localized class C 2G0.T;M.P/G/loc such that
��.C / is well defined in G0.G;M.P/G/loc, the localized class z�!.C / is well defined
under �� and we have

z�!��.C /D ��z�!.C / 2G0.G;M.P//loc:

1.3 Equivariant quantum Lefschetz formula

Summarizing our discussion, we obtain the following.

Theorem 1.6 (equivariant quantum Lefschetz) Let X ,! P be a G–equivariant
embedding of smooth DM stacks satisfying assumptions listed at the beginning of this
section. Then we have

zj!Ovir;G
M.X / D ��

�
�T
�1.R��f

�N /_˝Ovir;T
M.P/

�
2G0.G;M.P//loc;
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where zj is the embedding of moduli spaces and �� is the specialization of T –equivariant
parameters into G–equivariant parameters. Here, the T –equivariant lambda class
�T
�1
.R��f

�N /_ is defined after localization; see Remark 1.3.

Proof Using previous equalities, we get

zj!Ovir;G
M.X / Dz�!

�
�G
�1.E_/˝

Ovir
M.P/G

�G
�1
.N vir
z�

_
/

�
D ��z�!y�!

�
y��.�T

�1.E_//˝
Ovir

M.P/T

�T
�1
.N vir
z�ıy�

_
/

�
:

Following Remark 1.3, the meaning of “defined after localization” is precisely

��
�
�T
�1.R��f

�N /_˝Ovir;T
M.P/

�
D ��

�
�T
�1.R��f

�N /_˝z�!y�!
� Ovir

M.P/T

�T
�1
.N vir
z�ıy�

_
/

��

D ��z�!y�!

�
y��.�T

�1.E_//˝
Ovir

M.P/T

�T
�1
.N vir
z�ıy�

_
/

�
:

2 K–theoretic Gromov–Witten theory

2.1 Automorphisms of loop hypersurfaces

Let X be a smooth degree-d hypersurface in PN. K–theoretic Gromov–Witten (KGW)
theory is invariant under smooth deformations, so that we can choose any degree-d
homogeneous polynomial P to define X, as long as it satisfies the Jacobian criterion
for smoothness. Here, we will focus on loop polynomials, ie we take

X WD fxd�1
0 x1C � � �Cxd�1

N x0 D 0g � PN :

Let M WD j1� .1� d/NC1j=d and consider on PN the Z=M Z–action

� � .x0; : : : ;xN /D .x0; �x1; �
u2x2; : : : ; �

uN xN /;

where u0 WD 0 and ujC1 WD 1� .d � 1/uj . We have .d � 1/uN � 1 modulo M , so
that the hypersurface X is Z=M Z–invariant. Explicitly, we have

uj D

j�1X
lD0

.1� d/l and M D

NX
lD0

.1� d/l :

Notation 2.1 Let M1 WDM and

MjC1 WD
Mj

gcd.ujC1;Mj /
for 1� j <N:

We write M WDMN and G WD Z=M Z.
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Proposition 2.2 The group G acts on PN, leaves the hypersurface X invariant , and
for all nonzero g 2 G, the g–fixed locus in PN consists of all coordinate points.
Furthermore , assuming the Calabi–Yau condition N C1D d and assuming d is a prime
number , then we have M DM . It holds in particular for the quintic hypersurface in P4.

Proof By the construction of M, we see that every uj with 1 � j � N is coprime
with M. It implies that every pairwise difference ui �uj is coprime with M. Indeed,
let 0� i < j �N , then we have

uj �ui D .1� d/iuj�i ;

so that it is enough to prove that d � 1 is coprime with M. If a nonzero integer p

divides M and d � 1, then it divides M , and from its expression in terms of powers of
d � 1, we get 1� 0 modulo p, so that p D 1.

Therefore, we have, for all 0� i < j �N and all 0< k <M ,

�kui ¤ �kuj ; where � D e2i�=M ;

and hence the statement about the fixed locus.

For the second statement, let d D N C 1 be a prime number. Then we have M � 0

modulo d . Thus, if we have kuj � 0 modulo M , then we have kuj � 0 modulo d .
But uj � j modulo d , so that k D 0. As a consequence, every uj is coprime with M ,
and M DM .

Example 2.3 We realize the quintic hypersurface in P4 as

P D x4
0x2C � � �Cx4

4x0:

Then the group is G D .Z=205Z/, acting as

� �x D .x0; �x1; �
�3x2; �

13x3; �
�51x4/:

2.2 Virtual localization formula

Gromov–Witten (GW) theory of PN and its K–theoretic version is computed by
the virtual localization formula under the natural action of the torus T D .C�/N.
Unfortunately, there are in general no nontrivial torus-actions preserving a smooth
degree-d hypersurface X, leading to many difficulties in the computation of its GW
and KGW invariants. Nevertheless, we have an action of the finite group G on X.
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In cohomology or in Chow theory, the action of the finite group G is useless with respect
to the localization formula. Indeed, we have, for example, AG

� .pt/DC. On the other
hand, we have K0.G; pt/DR.G/, the representation ring of the group G. Moreover,
there exists in K–theory a (virtual) localization formula under finite group actions.

Unfortunately, the (virtual) localization formula does not give a result in K0.G; pt/,
but in a localized ring where we invert equivariant parameters. For instance, in the
case of an abelian group G D Z=M Z, the representation ring (taken with complex
coefficients) is

R.G/C 'CŒX �=.1�X M /;

and the multiplicative set we use for localization is generated by

f1�X; : : : ; 1�X M�1
g:

As a consequence, the localized ring is isomorphic to C and the map R.G/C !

R.G/C;loc is not injective. Precisely, the map sends X to a primitive M th root of
unity �, so that for every prime divisor p of M, the polynomial

pX
kD0

X kM=p
7!

pX
kD0

�kM=p
D 0:

In conclusion, the (virtual) localization formula successfully computes a G–equivariant
K–class expressed using roots of unity, but we cannot extract the “nonequivariant” limit
corresponding to the map

K0.G; pt/'CŒX �=.1�X M /!C 'K0.pt/; X 7! 1:

Nevertheless, we find a way to extract some information. Indeed, K–theoretic invariants
have another important feature: they are integers. Therefore, when the order of the
group is a prime number p, the defect of injectivity of the map R.G/!R.G/C;loc

amounts to the uncertainty
1CX C � � �CX p�1;

which equals p in the nonequivariant limit X 7! 1. To conclude, we are left with the
desired integer modulo p. Furthermore, if we have several finite actions of different
prime orders, we can increase our knowledge about the result.

Let us go back to the degree-d hypersurface X � PN. The action of G D Z=M Z on
PN leaving X invariant induces a G–action on the moduli spaces of stable maps to
PN and to X, so that their virtual structure sheaves are G–equivariant, namely

Ovir
Mg.PN ;ˇ/

2G0.G;Mg.P
N ; ˇ// and Ovir

Mg.X ;ˇ/
2G0.G;Mg.X; ˇ//:
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By the virtual localization formula, we then obtain

Ovir
Mg.X ;ˇ/

D �!

�Ovir
Mg.X ;ˇ/fix

��1.N vir
�
_
/

�
2G0.G;Mg.X; ˇ//loc;

where � WMg.X; ˇ/
fix ,!Mg.X; ˇ/ denotes the G–fixed locus and N vir

� denotes the
moving part of the perfect obstruction theory on the fixed locus. At last, we get

�.Ovir
Mg.X ;ˇ/

/D �

�Ovir
Mg.X ;ˇ/fix

��1.N vir
�
_
/

�
2C:

The next step is to use Theorem 1.6 to relate this formula to a formula for PN, where
an explicit localization formula is available via the torus action.

2.3 Fixed locus

We easily check all the conditions listed in Section 1.2 but the second:

� every stable component of a fixed stable map is contracted.

We are able to prove it under the following restrictions on genus of the source curve
and degree of the map.

Proposition 2.4 Let G D Z=M Z act on a smooth projective variety X so that , for
every nonzero element h 2 G, the h–fixed locus X h consists of isolated points in X.
Let f W C !X be a stable map corresponding to a G–fixed point in the moduli space
Mg;n.X; ˇ/. We assume

(6) g < 1
2
.p� 1/ and ˇ <M;

where p is the greatest prime divisor of M. Then every stable component of the curve C

is mapped to one of the G–fixed points in X.

Proof First, we claim that if f W C !X is a G–fixed stable map of positive degree,
then the group G is a subgroup of the group Aut.C / of automorphisms of C . Indeed,
let � 2 G be a primitive element. Since the stable map is fixed, we can choose an
automorphism �1 2 Aut.C / of the curve C such that

� �f .x/D f .�1.x// for all x 2 C:

We then define �k WD �
k
1

for any k 2N. Since the degree of the map f is positive and
all but a finite number of points in X are not fixed by any element of G, we can choose
a point x 2 C such that the points

�k
�f .x/D f .�k.x//
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are all distinct for 0� k <M . Since the automorphism �M is an automorphism of the
stable map f , it is of finite order. Thus we can consider the smallest integer K 2N�

such that �K D id, so that we have

�K
�f .x/D f .�K .x//D f .x/;

and the integer M divides the integer K. As a consequence, the map sending 0�k<M

to �k
K=M

embeds the group G in Aut.C /.

Secondly, let us assume C is a stable curve and is not contracted. Since G is a subgroup
of Aut.C /, the prime number p divides the order of Aut.C /. By [29, Proposition 3.6],
we get8 p � 2gC 1, which is a contradiction.

Lastly, we consider the case where C is not a stable curve (and therefore the degree of
the map is positive). Let �f be a dual graph representing the stable map f , where we
represent every stable component of C by a vertex and every unstable component by
an edge. Furthermore, we add on the graph labels to keep track of the genus, number
of markings and degree. It is clear that every automorphism �k of the curve C induces
an automorphism of the dual graph �f . Moreover, for each stable component D of C

whose corresponding vertex is fixed in �C , the restriction fjD WD!X is fixed by the
group G.

We aim to show that the set V>0 of vertices with positive degree is empty. Assume it
is not. Then, if the group G acts on V>0 without fixed points, the total degree of the
map is at least M, which is a contradiction. Therefore, there is at least one fixed point,
ie there exists a stable component D of C such that the restriction fjD is G–fixed.
As we have seen above, the stable component D is then contracted to a point, which
contradicts the fact that its corresponding vertex is in V>0.

Remark 2.5 Proposition 2.4 also holds if the condition g < 1
2
.p� 1/ is replaced by

“for every stable curve of genus less than g, there is no automorphism of order equal
to M ”.

2.4 Equivariant and congruent formulas

Let us apply Theorem 1.6 to our situation.

8The reference is only for g � 2. Nevertheless, it also holds for genus-0 stable curves, as their automor-
phism groups are all trivial. For genus-1 stable curves, the automorphism group is the largest when there
is only one marking. In this case, we have three possibilities: Z=2Z, Z=4Z or Z=6Z. As a consequence,
the prime number p can only be 2 or 3 and is indeed less than 2gC 1D 3.
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Theorem 2.6 Let g, n and ˇ be nonnegative integers. Let X be a degree-d loop
hypersurface in PN and take a subgroup H � Z=M Z of order q acting on X via the
action

(7) k � .x0; : : : ;xN /D .x0; �
kx1; �

k�u2x2; : : : ; �
k�uN xN / for k 2H � Z=M ZI

see Section 2.1. This action depends on the choice of a primitive qth root of unity �.
Moreover , we have the usual T WD .C�/N –action on PN and we see that it extends the
H–action via the embedding ' WH ,!T WD .C�/N sending k to .�k ; �k�u2 ; : : : ; �k�uN /.

Assume the bounds
g < 1

2
.p� 1/ and ˇ < q;

where p is the greatest prime divisor of q. Let A WD
Nn

iD1‰
ai

i ˝ ev�.Yi/ denote some
insertions of Psi-classes and K–classes Yi 2 K0.T;PN / coming from the ambient
space. Then the corresponding H–equivariant K–theoretic GW invariant equals

�T
�
�T
�1.R��f

�O.d//_˝A˝Ovir;T
Mg;n.PN ;ˇ/

�
D �H .A˝Ovir;H

Mg;n.X ;ˇ/
/ 2C:

Precisely, the class �T
�1
.R��f

�O.d//_ is only defined after localization , so we
first apply the virtual localization formula to the left-hand side , then we compute
it in K0.T;Mg;n/loc D K0.Mg;n/˝ C.t1; : : : ; tN / as rational fractions in the T –
equivariant parameters , then we specialize them to .t1; : : : ; tN / D .�; �u2 ; : : : ; �uN /

using ' WH ,! T and obtain a well-defined K–class in K0.Mg;n/˝C. Eventually we
take its Euler characteristic and land in R.H /C;loc ' C, where the last isomorphism
depends on the primitive qth root of unity �.

Remark 2.7 The localization map R.H / ! R.H /C;loc corresponds to the map
ZŒX �=.1�X q/!C sending the variable X to �.

Remark 2.8 In Theorem 2.6, it is important that for every nonzero element h2H , the
h–fixed locus consists of coordinate points in PN. It is guaranteed by Proposition 2.2
and the fact that H � Z=M Z.

Corollary 2.9 We take the same notation and assumptions as in Theorem 2.6. We
further assume that the order q of the group H is a prime number. For each 1� k < q,
denote by Bk 2C the result of Theorem 2.6 when � D e2ik�=q . Then the K–theoretic
GW invariant of X equals

�.A˝Ovir
Mg;n.X ;ˇ/

/��.B1C � � �CBq�1/ 2 Z=qZ:
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Proof The H–equivariant Euler characteristic �H .A˝Ovir;H
Mg;n.X ;ˇ/

/ lies in the repre-
sentation ring R.H /' ZŒX �=.1�X q/, so there exist integers a0; : : : ; aq�1 such that

�H .A˝Ovir;H
Mg;n.X ;ˇ/

/D

q�1X
lD0

alX
l
2 ZŒX �=.1�X q/:

Our goal would be to compute

�.A˝Ovir
Mg;n.X ;ˇ/

/D

q�1X
lD0

al 2 Z;

but Theorem 2.6 only gives us
Pq�1

lD0
al�

l 2C. However, since q is a prime number, we
can apply Theorem 2.6 to every primitive qth root of unity �k for 1� k < q. Summing
the various results, we obtain

q�1X
kD1

q�1X
lD0

al�
kl
D qa0�

q�1X
lD0

al 2 Z;

leading to the congruence.

Remark 2.10 Assume the order q of the group H is not a prime number and choose
a nonzero element h 2 H . Even when h is not a primitive element, we can apply
Theorem 2.6 to the subgroup hhi, but we then have the bounds

g < 1
2
.p� 1/ and ˇ < ord.h/;

where ord.h/ denotes the order of the element h, and p is its greatest prime divisor.
In order to obtain the KGW invariant in H , we then need to sum all the results of
Theorem 2.6 for all nonzero elements h 2 H . Therefore, we have to restrict to the
bounds

g < 1
2
.p� 1/ and ˇ < p;

where p is the smallest prime divisor of q.

Example 2.11 For the quintic threefold of Example 2.3, the specialization of equivari-
ant parameters corresponding to G ,! T is

.t0; : : : ; t4/D .1; �; �
�3; �13; ��51/; where �205

D 1:

Moreover, we have a subgroup H WD Z=41Z � Z=205Z, so that by Corollary 2.9,
we are able to compute all KGW invariants modulo 41 up to genus 19 and degree 40.
Moreover, by Remark 2.10, we are able to compute all KGW invariants modulo 205 in
genera 0 and 1 up to degree 4.
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Remark 2.12 Another way to realize the quintic hypersurface in P4 is

X D fx5
0 C � � �Cx5

4 D 0g � P4:

Then the group is .Z=5Z/4, but to ensure that the g–fixed locus consists of isolated
points for every element g of the group, we need to consider the subgroup G D Z=5Z,
acting as

� �x D .x0; �x1; �
2x2; �

3x3; �
4x4/:

Furthermore, we observe that the G–fixed locus is empty. We then deduce that all
KGW invariants in genera 0 and 1 and up to degree 4 vanish modulo 5.

2.5 Example of the quintic threefold

We illustrate Theorem 2.6 and Corollary 2.9 by a computation of the genus-one degree-
one unmarked KGW invariant in the case of the quintic hypersurface in P4, modulo 205.

Proposition 2.13 Let X � P4 be a smooth quintic hypersurface. We find that

�

�Ovir
M1;0.X ;1/

1� qE_

�
� .120q2

C 180qC 125/
1� q4� q6

.1� q4/.1� q6/
2 Z=205ZŒŒq��:

In order to prove Proposition 2.13, we first write the general graph sum formula coming
from torus localization and we then specialize to .g; n; ˇ/D .1; 0; 1/.

Following the general scheme of Theorem 2.6, we compute the K–theoretic class

�T
�
�T
�1.R��f

�O.5//_˝A˝Ovir;T
Mg;n.P4;ˇ/

�
2K0.Mg;n/˝C.t0; : : : ; t4/:

It is done via the standard virtual localization formula of [17], lifted to K–theory, as a
sum over dual graphs. Indeed, the class ��1 is multiplicative in K–theory, just as the
Euler class in cohomology, so that the whole proof of [17, Section 4] holds. Therefore,
we take the same notation as in [17], to which we refer, for instance, for the description
of graphs, except that we take the convention tj D e��j with respect to their T –weights.

Let � be a graph in the localization formula of P4. We denote by M� the associated
moduli space of stable curves and by A� the group of automorphisms coming from
the graph � and from degrees of the edges, so that the corresponding fixed locus in
Mg;n.P4; ˇ/ is the quotient stack ŒM�=A� �; see [17]. The contribution of the graph �
to the localization formula is of the form

�
�
ŒM�=A� �IContr.flags/ �Contr.vertices/ �Contr.edges/

�
;
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where we have

Contr.flags/D
1

1�

�
ti.F /

tj.F /

�1=de

‰F

�

Y
m¤i.F /

1�
ti.F /

tm

1�
t5
i.F /

t4
0

t1

;

Contr.vertices/D

1�
t5
i.v/

t4
0

t1

g.v/X
kD0

.�1/k
�

t5
i.v/

t4
0

t1

�k

ƒkE

�

Y
m¤i.v/

g.v/X
kD0

.�1/k
�

ti.v/

tm

�k

ƒkE

1�
ti.v/

tm

;

Contr.edges/D
deY

aD1

�
2�

�
tj 0

tj

�a=de

�

�
tj

tj 0

�a=de
��1

�

Y
aCbDde

k¤j ;j 0

�
1�

.ta
j tb

j 0/
1=de

tk

��1

�

Y
aCbD5de

�
1�

.ta
j tb

j 0/
1=de

t4
0

t1

�
;

and where we write here the contribution of an edge linking the coordinate points pj

and pj 0 . These formulae follow exactly from [17, Section 4], replacing the Euler class
with the lambda class in K–theory.

Remark 2.14 In the contribution of vertices, we can rewrite the sum in terms of the
lambda-structure as ��u.E/, with u WD t5

i.v/
=t4

0
t1.

Remark 2.15 All individual contributions are in K0.M�/˝C.t1=d
0

; : : : ; t
1=d
4

/d2N� ,
but it is a consequence of the virtual localization formula that the final answer is in
K0.M�/˝C.t0; : : : ; t4/.

Let us now specialize the formula to .g; n; ˇ/D .1; 0; 1/. The graph � has only two
vertices v1 and v2, of respective genera 1 and 0, and one degree-one edge in between.
Moreover, as the vertex v2 has valence one, it corresponds to a free point (not marked,
not a node) rather than to a stable component of the curve. We denote by 0� i1¤ i2� 4

the indices of the coordinate points pi1
and pi2

to which the vertices v1 and v2 are sent
by the stable map. Note also that such a graph has no automorphisms and the moduli
space M� is isomorphic to M1;1. Furthermore, we recall that the Hodge bundle E

over M1;1 is identified with the cotangent line ‰1 at the marking. As a consequence,
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the virtual localization formula equals

X
0�i1¤i2�4

Y
aCbD5

�
1�

ta
i1

tb
i2

t4
0

t1

�
�

2�
ti1

ti2

�
ti2

ti1

�
�

Y
k¤i1;i2

�
1�

ti1

tk
�

ti2

tk
C

ti1
ti2

t2
k

�

��

�
M1;1I

1

1� qE_

Y
m¤i1;i2

�
1�

ti1

tm
‰1

�

1�
t5
i1

t4
0

t1
‰1

�
:

Once we specialize to .t0; : : : ; t4/ D .1; �; ��3; �13; ��51/, where � is any primitive
root of unity of order 41, we notice that denominators never vanish, but the numerator
could vanish; precisely,

1�
ta
i1

tb
i2

t4
0

t1
D 0 ()

�
i2 D i1C 1 and .a; b/D .4; 1/; or
i1 D i2C 1 and .a; b/D .1; 4/;

with the cyclic convention on indices, ie t5 WD t0. Moreover, we have

1�
ti1

ti1C1

‰1 D 1�
t5
i1

t4
0

t1
‰1;

so that the specialization of the localization formula gives

X
0�i1¤i2�4

i2¤i1C1
i1¤i2C1

" Y
aCbD5

�
1�

ta
i1

tb
i2

t4
0

t1

�
�

2�
ti1

ti2

�
ti2

ti1

�
�

Y
k¤i1;i2

�
1�

ti1

tk
�

ti2

tk
C

ti1
ti2

t2
k

�

��

�
M1;1I

1

1� qE_

Y
m¤i1;i1C1;i2

�
1�

ti1

tm
‰1

��#
.t0;:::;t4/D.1;�;��3;�13;��51/

:

By [26, Proposition 2.9], we have

�

�
M1;1I

1

1� qE_
1

1� q1‰1

�
D
.1� qq1/.1� q4� q6� q2

1
q6� q2

1
q8� q4

1
q8C q2q2

1
C q4q4

1
C q6q6

1
C q8q8

1
/

.1� q4/.1� q6/.1� q4
1
/.1� q6

1
/

:
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Hence, we get

�

�
M1;1I

Y
m¤i1;i1C1;i2

�
1�

ti1

tm
‰1

�
1� qE_

�
D

.1� q4� q6/

.1� q4/.1� q6/

Y
m¤i1;i1C1;i2

�
1C

ti1

tm
q

�
:

As a consequence, our formula simplifies as

1�q4�q6

.1�q4/.1�q6/

�

X
0�i1¤i2�4

i2¤i1C1
i1¤i2C1

2666664
Y

aCbD5

�
1�

ta
i1

tb
i2

t4
0

t1

� Y
m¤i1;i1C1;i2

�
1C

ti1

tm
q

�
�

2�
ti1

ti2

�
ti2

ti1

�
�

Y
k¤i1;i2

�
1�

ti1

tk
�

ti2

tk
C

ti1
ti2

t2
k

�
3777775
.t0;:::;t4/D.1;�;��3;�13;��51/

:

Finally, we must take the opposite of the sum of these expressions over all primitive
roots � of order 41. First, we notice that the term inside the sum is a polynomial in q of
degree at most two, so that it is enough to evaluate it at q 2 f0; 1; 2g. Using Sagemath,
we find

�

�Ovir
M1;0.X ;1/

1� qE_

�
� .�85q2

C 590q� 80/
1� q4� q6

.1� q4/.1� q6/

� .38q2
C 16qC 2/

1� q4� q6

.1� q4/.1� q6/
2 Z=41ZŒŒq��:

Furthermore, using Remark 2.12, we obtain the result of Proposition 2.13.

2.6 Special case of elliptic curves

In this section, we use the ideas behind Corollary 2.9 to prove that KGW theory with
homogeneous insertions of an elliptic curve is trivial.

Proposition 2.16 Let E be an elliptic curve. Then for every genus g, degree ˇ,
number of markings n and insertions A WD

Nn
iD1‰

ai

i ˝Yi , with 2g� 2C n> 0 and
Yi 2K0.E/ homogeneous K–classes , the corresponding KGW invariant vanishes:

�.A˝Ovir
Mg;n.E;ˇ/

/D 0:

Proof Let M be the largest possible order of an automorphism of a stable curve of
genus g. Let p be any prime number larger than M C1 and ˇC1. Define G WDZ=pZ
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and take a G–torsion point x 2E. Then the group G acts on the elliptic curve E by
translation y 7! yCx, and for every nonzero element h2G, the h–fixed locus is empty.
By Remark 2.5 and Proposition 2.4, the G–fixed locus in the moduli space of stable
maps Mg;n.E; ˇ/ is empty. Therefore, by the localization formula, the G–equivariant
KGW invariant vanishes, so that we get

�.A˝Ovir
Mg;n.E;ˇ/

/� 0 2 Z=pZ

for the nonequivariant limit. Since it is true for infinitely many prime numbers p, we
obtain the vanishing in Z.

Remark 2.17 Interestingly, KGW invariants are deduced from GW invariants via a
Kawazaki–Riemann–Roch theorem; see [38; 16]. It would be instructive to compare
Proposition 2.16 with GW theory of elliptic curves, which is nontrivial and described
in [31; 32].

Remark 2.18 The same proof holds for abelian varieties. However, when the dimen-
sion of the abelian variety is greater than 2 and the degree-class ˇ is nonzero, there
is a trivial quotient of the obstruction theory, so that both GW and KGW theories are
trivial. However, for degree-0 invariants, GW theory is nontrivial, but KGW theory is.

Remark 2.19 The main idea in the proof of Proposition 2.16 is to use congruence
relations for infinitely many prime numbers. Indeed, if we were able to find, for a
smooth DM stack X, automorphisms of prime orders for infinitely many primes and to
compute the localization formulae, then we would be able to know all KGW invariants
of X. Therefore, a necessary condition is that the automorphism group of X must be
infinite. However, it is not sufficient. For instance, some K3 surfaces have infinitely
many symmetries, but it was shown by [23] that the maximal order of a finite group
acting faithfully on a K3 surface is 3840.

Remark 2.20 Here are a few remarks on finiteness of automorphism groups. For
projective hypersurfaces (except quadrics, elliptic curves, and K3 surfaces), every
automorphism is projective and the automorphism group is finite. All Batyrev Calabi–
Yau (CY) 3–folds have finite automorphism groups [35]. Every projective variety of
general type has finite automorphism group. CY varieties with Picard numbers 1 or 2

have finite automorphism groups. It is expected that most CY varieties with Picard
number more than 4 have infinitely many automorphisms. In particular, it would be
interesting to know whether the Schoen CY 3–fold has automorphisms of prime order
for infinitely many primes and to study its KGW theory; see [21].
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3 K–theoretic FJRW theory

Similarly to KGW theory, we aim in this section to compute the K–theoretic FJRW
invariants of a Landau–Ginzburg (LG) orbifold modulo prime numbers. For simplicity
of the exposition, we focus in this paper on the quintic polynomial with minimal group
of symmetries. However, it is straightforward to apply the same ideas to an LG orbifold
.W;H /, where W is an invertible polynomial and H is an admissible group, as long
as we only insert Aut.W /–invariant states in the correlator. We refer to [18] for details.

3.1 Sketch of Polishchuk–Vaintrob construction

Let W .x1; : : : ;x5/ be a quintic polynomial in five variables and let �5 act on C5

by multiplication by a fifth root of unity. The moduli space used in FJRW theory of
.W; �5/ is the moduli space S1=5

g;n , which parametrizes .C; �1; : : : ; �n;L; �/. Precisely,
the curve C is an orbifold genus-g stable curve with isotropy group �5 at the markings
�1; : : : ; �n and at the nodes (and trivial everywhere else), L is a line bundle on C, and
� W L! !log WD !C.�1C � � �C �n/ is an isomorphism.

Let � be the projection from the universal curve to S1=5
g;n and L be the universal line

bundle. In [33], Polishchuk and Vaintrob constructed resolutions R��.L˚5/D ŒA!B�

by vector bundles over S1=5
g;n such that there exists some morphism

˛ W Sym4A! B_

corresponding to the differentiation of the polynomial W ; see [18] for details. Taking
p W X ! S1=5

g;n to be the total space of the vector bundle A, then the morphism ˛ is
interpreted as a global section of p�B_ over X, and the map ˇ WA! B coming from
the resolution is interpreted as a global section of p�B. As a consequence, we obtain a
Koszul matrix factorization

PV WD f˛; ˇg WD .ƒ�B_; ˛^ � C �ˇ/ 2D.X; ˛.ˇ//

of potential ˛.ˇ/ over the space X, and the support of this matrix factorization is exactly
the moduli space S1=5

g;n .

The moduli space S1=5
g;n has several components depending on the monodromies


 WD .
1; : : : ; 
n/ 2 �
n
5

at the markings; we denote by S1=5
g;n .
 / the corresponding component. Assume all

monodromies are nonzero; this is known as the narrow condition. Then the pairing ˛.ˇ/
is the zero function over X, and the matrix factorization PV becomes a two-periodic
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complex, exact off the moduli space S1=5
g;n .
 /. Therefore, we can define the pushforward

along the projection map p in the category of matrix factorizations, yielding

p�.PV/ 2D.S1=5
g;n .
 /; 0/'Db.S1=5

g;n .
 //;

where on the right we have the derived category of coherent sheaves.

Remark 3.1 If one allows trivial monodromies (ie one considers broad insertions),
then the pairing ˛.ˇ/ does not vanish and we rather end with a functor

ˆ WD�.A

 ;W
 /!DH .S

rig
g;n.
 /; 0/'D.ŒSrig

g;n.
 /=H �/;

U 7! p�.ev�.U /˝PV/;

where we need to consider rigidified moduli spaces; see [33] for details and notation.

In general, to any triangulated category C we associate a Grothendieck group K0.C/ by
taking the free abelian group generated by the objects of the category and then modding
out the relation

ŒA�� ŒB�C ŒC �D 0

for every distinguished triangle A! B! C . Furthermore, any functor f W C1! C2

of triangulated dg categories induces a morphism of groups

f! WK0.C1/!K0.C2/:

When the category is the derived category of coherent sheaves on a smooth DM stack,
we recover the usual K–theory of the stack.

Remark 3.2 If we apply it to the functor of Remark 3.1, we get a morphism of groups

ˆ! WDK0.ˆ/ WK0.D�.A

 ;W
 //!K0.ŒSrig

g;n.
 /=H �/:

Definition 3.3 We define the K–theoretic class

Ovir
S1=5

g;n .
 /
WD p�.PV/ 2K0.S1=5

g;n .
 //

and we call it the virtual structure sheaf of the moduli space S1=5
g;n .
 /.

Definition 3.4 Fix d1; : : : ; dn 2 Z and nontrivial monodromies 
1; : : : ; 
n 2 �5. The
K–theoretic FJRW invariant of the LG orbifold .W; �5/ is

�.‰
˝d1

1
˝ � � �˝‰˝dn

n ˝Ovir
S1=5

g;n .
 /
/ 2 Z;

where � WK0.S1=5
g;n .
 //!K0.pt/DZ is the Euler characteristic and the line bundle‰i

is the relative cotangent line at the i th marked point.
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Remark 3.5 A special feature of the LG orbifold .W; �5/, and more generally when
the polynomial has degree d and the group is �d , is that FJRW invariants do not depend
on the polynomial W, as long as it is nondegenerate with the same weights and degree;
see [12, Proposition 4.1.7]. The same result holds for the K–theoretic version, as it
holds at the matrix factorization level. Hence, we can consider several choices for our
quintic polynomial.

3.2 Invertible polynomials

In the context of mirror symmetry, a well-behaved class of polynomials has been
introduced by Berglund and Hübsch [3]. We say that a polynomial is invertible when
it is nondegenerate and has as many variables as monomials. According to Kreuzer
and Skarke [24], every invertible polynomial is a (Thom–Sebastiani) sum of invertible
polynomials, with disjoint sets of variables, of the following three types:

(8)

Fermat xaC1;

chain of length c x
a1

1
x2C � � �Cx

ac�1

c�1
xc CxacC1

c ; where c � 2;

loop of length l x
a1

1
x2C � � �Cx

al�1

l�1
xl Cx

al

l
x1; where l � 2:

In the case of the quintic polynomial, we have for example the following choices:

(9)

Fermat x5
1 Cx5

2 Cx5
3 Cx5

4 Cx5
5 ; .�5/

5;

loop x4
1x2Cx4

2x3Cx4
3x4Cx4

4x5Cx4
5x1; �1025;

chain x4
1x2Cx4

2x3Cx4
3x4Cx4

4x5Cx5
5 ; �1280;

2–loops x4
1x2Cx4

2x3Cx4
3x1Cx4

4x5Cx4
5x4; �15 ��65;

loop-Fermat x4
1x2Cx4

2x3Cx4
3x4Cx4

4x1Cx5
5 ; �255 ��5;

where on the right we have written the group Aut.W / of diagonal matrices leaving the
polynomial invariant.

Let W be an invertible quintic polynomial and Aut.W / be its maximal group of
diagonal symmetries. Recall that the space X is the total space of the vector bundle A

over the moduli space S1=5
g;n .
 /, and that we have

R��.L˚5/D ŒA! B�:

Therefore, the vector bundles A and B are direct sums of five copies, which we write
as

ADA1˚ � � �˚A5 and B D B1˚ � � �˚B5:
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We then have a natural action of Aut.W / on the vector bundles A and B by rescaling
the fibers. Precisely, the actions on X in the examples (9) are

(10)

Fermat .�1x1; �2x2; �3x3; �4x4; �5x5/; �j D e2i�=5;

loop .�x1; �
�4x2; �

16x3; �
�64x4; �

256x5/; � D e2i�=1025;

chain .�x1; �
�4x2; �

16x3; �
�64x4; �

256x5/; � D e2i�=1280;

2–loops .�1x1; �
�4
1 x2; �

16
1 x3; �2x4; �

�4
2 x5/; �1 D e2i�=65; �2 D e2i�=15;

loop-Fermat .�1x1; �
�4
1 x2; �

16
1 x3; �

�64
1 x4; �2x5/; �1 D e2i�=255; �2 D e2i�=5:

By construction, since the polynomial W is Aut.W /–invariant, the matrix factorization
PV is Aut.W /–equivariant and so is the virtual structure sheaf.

However, we need to be careful when we compute the Aut.W /–fixed locus. Indeed, the
group of automorphisms of a .W; �5/–spin curve .C; �1; : : : ; �n;L/ fixing the coarse
curve of C is �5 � .�5/

#nodes, where the first factor rescales the line bundle L, and the
second factor acts only on the orbifold curve C — it is the so-called ghost automorphism;
see [1, Proposition 7.1.1] and [7, Section 2.1.4]. As a consequence, we would rather
consider the action of the group

G WD Aut.W /=�5

on the space X over the moduli space S1=5
g;n .
 /. Here, the subgroup �5 is generated by

.e2i�=5; : : : ; e2i�=5/ in the Fermat case, by e2i�=5 in the loop and chain cases, and by

.e2i�=5; e2i�=5/ in the 2–loops and loop-Fermat cases.

Unfortunately, we still have too many fixed points. For instance, in the Fermat example,
the point

.C; �1; : : : ; �n;LIx1; 0; : : : ; 0/ 2X

is fixed. Another example is the chain polynomial, for which the point

.C; �1; : : : ; �n;LI 0; : : : ; 0;x5/ 2X

is fixed. In both cases, the G–fixed locus is noncompact. We easily check that, among
all invertible quintic polynomials, the only cases where the G–fixed locus is compact are

� the loop polynomial with group G D Aut.W /=�5 D �205,

� the 2–loops polynomial with group G D .�65 ��15/=�5.

Moreover, the G–fixed locus in the space X equals the base S1=5
g;n .
 /. We are therefore

able to apply the (nonvirtual) localization formula on the smooth space X to get the
next theorem.
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Remark 3.6 It is more convenient to work with cyclic groups. Therefore, in the
2–loops polynomial case, we prefer to use G D �195, where the G–action on X is

.�15x1; �
�60x2; �

240x3; �
65x4; �

�260x5/; where � D e2i�=195:

Definition 3.7 Let l 2 Z. The Adams operation ‰l in K–theory is defined on a line
bundle L over a space S as

‰l.L/ WDL˝l ;

and then extended as a ring homomorphism

‰l
WK0.S/!K0.S/:

Theorem 3.8 Consider the two following situations:

� W is the loop polynomial , G WD �205, � a primitive 205th root of unity , and
.a1; : : : ; a5/D .1;�4; 16;�64; 256/.

� W is the 2–loops polynomial , G WD �195, � is a primitive 195th root of unity,
and .a1; : : : ; a5/D .15;�60; 240; 65;�260/.

Let g and n be nonnegative integers in the stable range 2g� 2C n> 0, and let 
 2 �n
5

be nontrivial monodromies. Then the G–equivariant virtual structure sheaf equals

(11) Ovir;G
S1=5

g;n .
 /
D exp

� X
l��1

5X
jD1

�aj �l

l
‰l.�R��L/

�
2K0.S1=5

g;n .
 //˝C:

Proof In the G–equivariant K–theory of the space X, the matrix factorization equals

PVD �G
�1p�B_ 2K0.G;X /;

and by the localization formula we get

PVD �!
�
�G
�1

B_

�G
�1

A_

�
D �!.�

G
�1.B

_
�A_// 2K0.G;X /loc

in the localized ring, where � WS1=5
g;n .
 / ,!X is the zero section. Taking the pushforward

along the projection map p, we obtain the G–equivariant virtual structure sheaf

Ovir;G
S1=5

g;n .
 /
D �G
�1.B

_
�A_/ 2K0.G;S1=5

g;n .
 //loc 'K0.S1=5
g;n .
 //˝C:

If V is a vector bundle, we can express the �–structure in terms of Adams operators
via the formula

��p.V
_/D exp

� X
l��1

p�l

l
‰l.V /

�
:

Geometry & Topology, Volume 27 (2023)



Congruences on K–theoretic Gromov–Witten invariants 3615

Moreover, if the action of a group G on the vector bundle V is by rescaling fibers with
� 2G, then

�G
�1.V

_/D ����1.V _/D exp
� X

l��1

�l

l
‰l.V /

�
:

In our situation, we find formula (11).

Remark 3.9 In [18], we define the characteristic class ct WK
0.S/!H�.S/ŒŒt �� by

ct .B �A/D Ch.��t .B
_
�A_//Td.B �A/;

and we then obtain the formula

lim
t!1

5Y
iD1

ctj .�R��L/D cvir 2H�.S1=5
0;n
.
 //

for the FJRW virtual cycle of .W; �5/, where tj WD taj . This formula is only valid in
genus 0 and we do not expect the left-hand side to converge in positive genus when
t ! 1. However, by Theorem 3.8, we see that the formula converges for every genus
when t ! �.

In order to get congruences for the nonequivariant limit, we need to consider a subgroup
of Aut.W / with prime order and whose fixed locus in X is compact. The only invertible
polynomial for which it is possible is the loop polynomial, together with the subgroup
�41 acting on X as

.�41x1; �
37
41x2; �

16
41x3; �

18
41x4; �

6
41x5/; where �41 WD e2i�=41:

Remark 3.10 The prime decomposition of 205 is 5 � 41, so we could also hope for a
congruence modulo 5. However, the subgroup �5 acts trivially on X. Indeed, it acts as

.�5x1; �5x2; �5x3; �5x4; �5x5/; where �5 WD e2i�=5;

which is rescaled by the automorphism group of the .W; �5/–spin curve, so that the
fixed locus is X. Nevertheless, from its definition using the quintic Fermat polynomial,
we observe that the virtual structure sheaf decomposes into five identical summands,
each one corresponding to the so-called 5–spin theory. It is then divisible by five in the
K–theoretic ring with Z coefficients. As a consequence, all FJRW correlators of the
quintic vanish modulo 5.

Corollary 3.11 Let W be the loop polynomial and let

.a1; : : : ; a5/D .1;�4; 16;�64; 256/:

For any nonnegative integers g and n in the stable range 2g � 2C n > 0, nontrivial
monodromies 
 2 �n

5
, and integers d1; : : : ; dn 2 Z, the K–theoretic FJRW invariant
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of .W; �5/,
�.‰

˝d1

1
˝ � � �˝‰˝dn

n ˝Ovir
S1=5

g;n .
 /
/ 2 Z;

equals

�

40X
kD1

�

�
‰
˝d1

1
˝� � �˝‰˝dn

n ˝exp
� X

l��1

5X
jD1

e2i�kl �aj =41

l
‰l.�R��L/

��
2Z=41Z:

Using Remark 3.10, the correlator vanishes modulo 5, and we can then compute it
modulo 205.

Remark 3.12 More generally, the K–class

B41 WD �

40X
kD1

exp
� X

l��1

5X
jD1

e2i�kl �aj =41

l
‰l.�R��L/

�
2K0.G;S1=5

g;n .
 //

lies in the K–theoretic ring with Z–coefficients and we know there exists another
K–class R in K0.G;S1=5

g;n .
 // with Z–coefficients such that

Ovir
S1=5

g;n .
 /
D B41C 41 �R 2K0.G;S1=5

g;n .
 //:

This yields the following formula for the FJRW virtual cycle of .W; �5/:

cvir D

40X
kD1

�
lim

t!�k
41

5Y
iD1

ctj .�R��L/C 41 �Ch.R/
�

Td.�R��L/5 2H�.S1=5
g;n .
 //Q:

However, since the cohomology is taken with Q–coefficients, we do not obtain congru-
ence results on the virtual cycle. An idea would be to guess a formula for the K–class R

as an integral linear combination of (natural) vector bundles over S1=5
g;n .
 /. Since the

virtual cycle is pure-dimensional and the right-hand side of the formula above is most
likely not pure-dimensional when we take a generic R, only special integral coefficients
in this linear combination would work.
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