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Homological invariants of codimension 2 contact submanifolds

LAURENT CÔTÉ

FRANÇOIS-SIMON FAUTEUX-CHAPLEAU

Codimension 2 contact submanifolds are the natural generalization of transverse knots to contact manifolds
of arbitrary dimension. We construct new invariants of codimension 2 contact submanifolds. Our main
invariant can be viewed as a deformation of the contact homology algebra of the ambient manifold. We
describe various applications of these invariants to contact topology. In particular, we exhibit examples
of codimension 2 contact embeddings into overtwisted and tight contact manifolds which are formally
isotopic but fail to be isotopic through contact embeddings. We also give new obstructions to certain
relative symplectic and Lagrangian cobordisms.
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2 Laurent Côté and François-Simon Fauteux-Chapleau

1 Introduction

1.1 Overview

The purpose of this paper is to introduce new invariants of codimension 2 contact submanifolds. Given
a closed, co-oriented contact manifold .Y; �/ and a codimension 2 contact submanifold V with trivial
normal bundle, our main construction produces a unital, Z=2-graded QŒU �-algebra

(1-1) CH�.Y; �; V I r/:

Here rD .˛V ; �; r/ is a triple consisting of

(i) a nondegenerate contact form ˛V on V inducing �V WD �jV \T V ,

(ii) a trivialization � of NY=V , and

(iii) a real number r > 0.

This triple is required to satisfy certain conditions (stated in Definition 3.3), and should be viewed as
encoding a choice of Reeb dynamics in an infinitesimally small neighborhood of V. The (nonempty) set
of all such triples is denoted by R.Y; �; V /.

The invariant (1-1) can be viewed as a deformation of the contact homology algebra CH�.Y; �/, as
explained in Remark 1.1 below. In particular, U is a formal variable and there is a natural map

(1-2) evUD1 W CH�.Y; �; V I r/! CH�.Y; �/

obtained by setting U D 1.

The algebra CH�.Y; �; V I r/ is generated by (good) Reeb orbits for an auxiliary nondegenerate contact
form � on .Y; �/. See Pardon [61, Definition 2.59] for the notion of a good Reeb orbit; all nondegenerate
Reeb orbits are good except for certain even-degree covers of simple Reeb orbits with odd Conley–Zehnder
index. The form � is required to be adapted to r 2 R.Y; �; V /, which means in particular that V is
preserved by the Reeb flow of �; see Definition 3.4.

The differential is defined as in ordinary contact homology by counting pseudoholomorphic curves
in the symplectization yY, where the additional U variable keeps track of the intersection number of
curves with the symplectization yV � yY. More precisely, we fix an almost complex structure J W �! �

which is compatible with the symplectic form d� and preserves �jV \T V � T Y jV . We then consider
yJ –holomorphic curves in yY, where yJ D�@t˝�CR�˝dtCJ. The differential is defined on generators

by (roughly)1 the formula

(1-3) d./D
X

ˇ2�2. yY ;t1t���tl /

#M.ˇ/U
yV �ˇC��.ˇ;V / 1 : : : l ;

1Strictly speaking, (1-3) should be refined as follows: (i) one should indicate that the virtual moduli counts depend on a choice
of “virtual perturbation data”; (ii) one should indicate that the counts depend on the order of a certain group of automorphisms of
the triple .; 1 t � � � t l ; ˇ/ which acts on  by the identity; (iii) one must specify signs (or, more invariantly and following
Pardon [61], orientations lines). See (6-7) for the precise formula.

Geometry & Topology, Volume 28 (2024)



Homological invariants of codimension 2 contact submanifolds 3

where  is a positive orbit (ie associated to the convex end of the symplectization) and 1; : : : ; l are
negative orbits (ie associated to the concave end). We define ��.ˇ; V /D #fi � V g to be the number of
negative orbits of ˇ which are contained in V.

We denote by M.ˇ/ the compactification of the moduli space M.ˇ/ of yJ –holomorphic curves in the
class ˇ. Such moduli spaces are in general nontransversally cut out, so the moduli counts #M.ˇ/

appearing in (1-3) are defined as in Pardon’s construction [60; 61] of contact homology, via his theory of
virtual fundamental cycles. In particular, #M.ˇ/ is nonzero only for moduli spaces of virtual dimension
zero. Finally, the pairing .���/ is a count of intersections between yV and ˇ, which was introduced by
Siefring [64; 54].

We also construct a closely related invariant

(1-4) eCH�.Y; �; V I r/;

which we call reduced. This is a unital, Z=2–graded Q–algebra which is generated by Reeb orbits in
the complement of V. The differential counts pseudoholomorphic curves which do not intersect yV. For
appropriately chosen pairs r; r0 2R.Y; �; V /, we have a morphism of Q–algebras

(1-5) CH�.Y; �; V I r
0/! eCH�.Y; �; V I r/:

The invariant eCH�.�I�/ is called reduced because it carries less information (in particular, it does not
involve taking the kernel of an augmentation as in, for instance, reduced singular homology). However, it
is easier to compute.

Remark 1.1 The QŒU �–algebra CH�.Y; �; V I r/ can be viewed as a deformation of the contact homology
Q–algebra CH�.Y; �/ in the following way. First, recall that for a ring R and a differential graded R–
algebra .A; d/, a (formal) deformation of .A; d/ is the data of a differential dt WD d C td1C t2d2C � � �
on the RŒŒt ��–algebra AŒŒt �� satisfying the graded Leibnitz rule, where each di is an endomorphism of A;
see Gerstenhaber and Wilkerson [30]. Now, let us set U D et in (1-3) and expand in t . We then get

(1-6) d./D
X
ˇ

1X
kD0

tk � .#M.ˇ// �
. yV �ˇC��.ˇ; V //k

kŠ
1 � � � l :

Thus CH�.Y; �; V I r/ is indeed a deformation of ordinary contact homology, which can be recovered by
sending t ! 0. In the case where ��.ˇ; V /D 0, the coefficient

#M.ˇ/ �
. yV �ˇC��.ˇ; V //k

kŠ
D #M.ˇ/ �

. yV �ˇ/k

kŠ

could be interpreted as a count of rigid pseudoholomorphic curves which send k marked points in the
source to the pseudoholomorphic divisor yV.

Geometry & Topology, Volume 28 (2024)



4 Laurent Côté and François-Simon Fauteux-Chapleau

1.2 Energy and positivity of intersection

In order to ensure that (1-3) defines a differential over QŒU �, we need to ensure that yV �ˇC��.ˇ; V /� 0
whenever #M.ˇ/¤ 0. If M.ˇ/ is nonempty2 and at least one of the asymptotic orbits of ˇ is disjoint
from V, then this is a consequence of the familiar phenomenon of positivity of intersection. Indeed, in this
case, ˇ admits a yJ –holomorphic representative u which is not contained in yV. Positivity of intersection
then implies that yV �ˇ D yV �u� 0.

The situation is more complicated when all of the asymptotic orbits of ˇ are contained in V. Indeed, in
this case, the yJ –holomorphic representatives of ˇ may be contained in yV and positivity of intersection
fails in general. However, one can show that there is a universal lower bound on the intersection number,

(1-7) yV �ˇ � ���.ˇ; V /:

This explains the appearance of the correction term ��.ˇ; V / in (1-3).

In order to construct CH�.Y; �; V I r/, it is not enough to define a differential: one also needs to define
continuation maps, composition homotopies, etc. These maps are defined by counting curves in more
complicated setups. For example, the continuation map is obtained by counting curves in a suitably
marked exact relative symplectic cobordism . yX; y�;H/.3 More precisely, one obtains an algebra map
similar to (1-3) by counting yJ –holomorphic curves in . yX; y�/ weighted by their intersection number
with H , for a compatible almost complex structure yJ which agrees with yJ˙ near the ends.

Unfortunately, for an arbitrary relative symplectic cobordism, a lower bound of the type (1-7) fails to hold.
A key step in constructing the invariants (1-1) is to identify a sufficiently large class of relative symplectic
cobordisms for which such a lower bound does hold. This leads us to introduce notions of energy for
exact symplectic cobordisms and almost complex structures on exact relative symplectic cobordisms.
These energy notions are developed in Section 6 and are of central importance in this paper.

We prove that a lower bound as in (1-7) holds under a certain condition which relates the behavior of �˙

near V ˙ to the energy of yJ. We also prove analogous statements for other related setups. This allows
us to prove that CH�.Y; �; V I r/ is well-defined, ie it does not depend on the auxiliary contact form and
almost complex structure. We also prove that an exact relative symplectic cobordism . yX; y�;H/ induces a
map

(1-8) CH�.Y
C; �C; V CI rC/! CH�.Y

�; ��; V �I r�/

provided that a certain inequality is satisfied, where the inequality involves r˙ and the energy of the
(sub)cobordism H � . yX; y�/.

2Since [61] uses virtual techniques to define contact homology without making any transversality assumptions, it is possible for
the compactification M.ˇ/ to be nonempty even if M.ˇ/ is empty. Positivity of intersection still holds when this happens, but
the proof requires a bit more work. Details can be found in Sections 5.3 and 7.2.
3An exact relative symplectic cobordism is the data of an exact symplectic cobordism . yX; y�/ which looks like . yY˙; y�˙/ near
the ends, together with a codimension 2 symplectic submanifold H � yX which looks like yV ˙ near the ends; see Definition 2.17
for the details.

Geometry & Topology, Volume 28 (2024)



Homological invariants of codimension 2 contact submanifolds 5

Energy considerations play a similarly central role in our construction of the reduced invariant eCH�.�I�/.
Although the continuation map for the reduced invariant does not count curves contained in H , one needs
to ensure that sequences of curves disjoint from H does not degenerate into H . This requires hypotheses
on the energy of the relevant cobordism. In general, the arguments involved in constructing CH�.�I�/
and eCH�.�I�/ turn out to be very similar.

Energy is not in general well-behaved under gluing symplectic cobordisms, unless one of them happens
to be a symplectization. As a result, cobordism maps cannot be composed arbitrarily. This lack of
functoriality of the invariants (1-1) and (1-4) can be remedied by considering variants of these invariants
which are obtained by taking certain (co)limits over r 2R.Y; �; V /; see Section 8.3. These variants are
fully functorial but also seem harder to compute.

Remark 1.2 The apparent failure of positivity of intersection in the absence of energy bounds is not a
deficiency of our method: if one could define maps (1-8) without additional hypotheses involving energy
and the r˙, then this would imply that (1-1) and (1-4) are independent of r. To see that this cannot hold in
general, consider an “irrational ellipsoid” E.r1; r2/Dfz 2C2 j�jz1j

2=r1C�jz2j
2=r2� 1g�R4, where

r1=r2 is irrational. Following Hutchings [41, Section 4.2], there are exactly two families of Reeb orbits
fk1 gk2NC and fk2 gk2NC , where 1i � fzi D 0g \ @E.r1; r2/ and ki denotes the k–fold cover of 1i .
These orbits generate the (ordinary) contact homology of the 3–sphere, but the Conley–Zehnder indices
of the ki are highly sensitive to r1 and r2. If we could define the contact homology of the complement of
(say) 11 , then it would be generated by the k2 . One can verify that this is not an invariant, since changing
the ri does not change the contactomorphism type of S3�11 , but drastically changes the indices of the k2 .

1.3 Legendrian invariants and the surgery formula

Contact homology is one of many invariants which can be constructed using the framework of Symplectic
Field Theory (SFT). SFT was first introduced by Eliashberg, Givental and Hofer [24] and provides (among
other things) a conjectural mechanism for constructing invariants in symplectic and contact topology by
counting punctured pseudoholomorphic curves in symplectic manifolds with cylindrical ends.

In some of the later sections of this paper, we discuss how the invariants (1-1) and (1-4) are related to
other SFT-type invariants. For computational purposes, it is particularly useful to explore the behavior
of the invariants (1-1) and (1-4) under Weinstein handle attachment, following the work of Bourgeois,
Ekholm and Eliashberg [7].

To this end, we introduce analogs of (1-1) and (1-4) for Legendrian submanifolds. With .Y; �; V / as
above, suppose that ƒ� .Y �V; �/ is a Legendrian submanifold. We then define (under mild topological
assumptions) invariants

(1-9) L.Y; �; V;ƒI r/ and zL.Y; �; V;ƒI r/:

The first invariant can be thought of as a deformation of the Chekanov–Eliashberg dg algebra ofƒ� .Y; �/,
while the second invariant is a reduced version.

Geometry & Topology, Volume 28 (2024)



6 Laurent Côté and François-Simon Fauteux-Chapleau

We describe a conjectural surgery exact sequence which relates (linearized versions of) the invariants
(1-1), (1-4) and (1-9) under Weinstein handle attachments. This surgery exact sequence is an analog
of the conjectural surgery exact sequence for linearized contact homology of Bourgeois, Ekholm and
Eliashberg [7, Theorem 5.2].

Remark 1.3 The main invariants of this paper, (1-1) and (1-4), are constructed fully rigorously using
Pardon’s virtual perturbation framework [61]. However, our discussion of the surgery formula (and of the
Legendrian invariants therein) requires certain transversality assumptions which are essentially the same
as in [7]. We fully expect that if [7] can be made rigorous using Pardon’s techniques [61], then extending
this to our context should pose no substantial additional difficulties.

For the reader’s convenience, all statements in this paper which depend on unproved assumptions are
labeled by a star. The proofs of starred statements depend only on a limited set of assumptions, which are
clearly identified in the text.

One could also attempt to define the invariants in this paper using other perturbation frameworks such as
the polyfolds of Hofer, Wysocki and Zehnder [36; 37; 38] or the techniques of Ekholm [20], but we do
not pursue this here.

1.4 Applications to contact and Legendrian embeddings

Transverse knots are important objects of study in three-dimensional contact topology. The notion of a
codimension 2 contact embedding generalizes transverse knots to contact manifolds of arbitrary dimension.
However, until recently, it was not understood whether the high-dimensional theory of codimension 2
contact embeddings is interesting from the perspective of contact topology, or whether it reduces entirely
to differential topology.

Definition 1.4 Given a pair of contact manifolds .V 2m�1; �/ and .Y 2n�1; �/, a contact embedding is a
smooth embedding

(1-10) i W .V; �/! .Y; �/

such that i�.�i.V / \ di.T V // D �. Such a map is also referred to as an isocontact embedding in the
literature (see eg Casals and Etnyre [10], Eliashberg and Mishachev [25] and Pancholi and Pandit [59]),
but we will not use this terminology. A contact submanifold V � .Y; �/ is a submanifold with the property
that �jV \T V is a contact structure.

Observe that if 2n� 1D 3 and 2m� 1D 1 in the above definition, then we recover the familiar notion of
a (parametrized) transverse knot. The following basic examples of codimension 2 contact embeddings
will play an important role in this paper.

Example 1.5 (cf Definition 3.11 and [31]) Let � W Y �B! S1 be an open book decomposition which
supports the contact structure � on Y. Then the binding B � .Y; �/ is a codimension 2 contact submanifold.

Geometry & Topology, Volume 28 (2024)



Homological invariants of codimension 2 contact submanifolds 7

Example 1.6 (see Definition 10.1 and Definition 3.1 in [10]) Let .Y; �/ be a contact manifold and let
ƒ ,! Y be a Legendrian embedding. Then the Weinstein neighborhood theorem furnishes an embedding

(1-11) �.ƒ/ W .@.D�ƒ/; �std/ ,! .Y; �/;

which is canonical up to isotopy through codimension 2 contact embeddings. We refer to �.ƒ/ as the
contact pushoff of ƒ ,! Y. By abuse of notation, we will routinely identify �.ƒ/ with its image.

As is customary in contact and symplectic topology, there is a notion of a formal contact embedding. This
notion encodes certain necessary bundle-theoretic conditions which must be satisfied by any (genuine)
contact embedding. It is then natural to seek to understand to what extent the space of genuine contact
embeddings of .V; �/ into .Y; �/ differs from the space of formal contact embeddings.

In the case that V is a closed manifold of codimension at least 4 with respect to Y, or open and of
codimension at least 2, then an h-principle due to Gromov (see Theorem 12.3.1 and Remark 12.3 of
Eliashberg and Mishachev [25]) implies that the space of contact embeddings is essentially equivalent
to the space of formal contact embeddings. Thus, in these settings, the theory of contact embeddings
reduces to differential topology.

In contrast, a breakthrough result due to Casals and Etnyre [10] shows that this h-principle fails in general
for codimension 2 contact embeddings of closed manifolds. More precisely, for n� 3, Casals and Etnyre
[10, Theorem 1] exhibited a pair of contact embeddings of .D�Sn�1; �/D @1.T �Sn�1; �can/ into the
standard contact sphere .S2n�1; �std/ which are formally isotopic but are not isotopic through contact
embeddings (here and throughout the paper, @1.�/ denotes the ideal contact boundary). Building on
these methods, Zhou [70] recently proved that there are in fact infinitely many formally isotopic contact
embeddings of @1.T �Sn�1; �can/ into the standard contact sphere which are not isotopic through contact
embeddings, provided n� 4.

There has also been recent work to establish existence results for codimension 2 contact embeddings under
certain conditions; see Lazarev [48] and Pancholi and Pandit [59]. This culminates in a full existence
h-principle for codimension 2 contact embeddings due to Casals, Pancholi and Presas [13], which states
that any formal codimension 2 contact embedding is formally isotopic to a genuine contact embedding.

The invariants constructed in this paper can be used to distinguish pairs of formally isotopic contact
embeddings which are not isotopic through contact embeddings. We illustrate two types of applications,
applying, respectively, to contact embeddings into overtwisted contact manifolds, and into the standard
contact sphere.

Let us begin with the overtwisted case. In Construction 12.6, we describe a procedure for constructing pairs
of formally isotopic contact embeddings into certain overtwisted contact manifolds which are not isotopic
through contact embeddings. Here is a special case of this construction: let .Y; �/ be an overtwisted
contact manifold and fix an open book decomposition for .Y; B; �/ which supports �; see Section 3.3.

Geometry & Topology, Volume 28 (2024)



8 Laurent Côté and François-Simon Fauteux-Chapleau

Let i W B ! Y be the tautological inclusion of the binding. Using the relative h–principle for contact
structures of Borman, Eliashberg and Murphy [5, Theorem 1.2], it can be shown that there exists a
codimension 2 contact embedding j WB! Y which is formally isotopic to i , and such that .Y �j.B/; �/
is overtwisted. (Construction 12.6 is more general, but this is the most important example.)

Theorem 1.7 (see Theorem 12.7) Let i , j and .Y; �/ be constructed according to Construction 12.6,
where .Y; �/ is an overtwisted contact manifold and i and j are (formally isotopic) contact embeddings.
Then i and j are not isotopic through contact embeddings. In fact , i is not isotopic to any reparametrization
of j in the source , meaning that i.V / and j.V / are not isotopic as codimension 2 contact submanifolds
of .Y; �/.

Theorem 1.7 can be proved using either of the invariants (1-1) or (1-4). To the best of our knowledge,
it cannot be proved in general using invariants already in the literature. However, in the special case
where i.B/ is the binding of an open book decomposition (ie the example sketched above), then the
conclusion of Theorem 1.7 follows from the fact that the complement of the binding of an open book
decomposition is tight. This later fact is due to Etnyre and Vela-Vick [28, Theorem 1.2] in dimension 3; in
higher dimensions, it follows from work of Klukas [45, Corollary 3], who proved (following an outline of
Wendl [67, Remark 4.1]) the stronger statement that any local filling obstruction (such as an overtwisted
disk) in a closed contact manifold must intersect the binding of any supporting open book.

In some cases (see Corollary 12.10), the embeddings i and j in fact coincide with the contact pushoffs of
Legendrian embeddings. It is not hard to show that an isotopy of Legendrian embeddings induces an
isotopy of their contact pushoffs. Thus the invariants (1-1) and (1-4) also distinguish certain Legendrian
embeddings in overtwisted contact manifolds. To our knowledge, these embeddings cannot in general be
distinguished using invariants already in the literature; see Remark 1.11.

Our second application concerns codimension 2 contact embeddings into the standard contact spheres
.S4n�1; �std/. More precisely, we use the reduced invariant (1-4) to distinguish formally isotopic contact
embeddings of .S�S2n�1; �/D @1.T �S2n�1; �can/ into .S4n�1; �std/, thus reproving the main result
of Casals and Etnyre [10, Theorem 1] in dimensions 4n� 1 for n > 1.

Theorem* 1.8 (see Theorem* 12.18) Let .V; �/ be the ideal boundary of .T �S2n�1; �can/. Then for
n > 1, there exists a pair of formally isotopic contact embeddings

(1-12) i0; i1 W .V; �/! .S4n�1; �std/

which are not isotopic through contact embeddings.

The embeddings we exhibit turn out to coincide with those exhibited by Casals and Etnyre in their proof
of [10, Theorem 1.1], although this fact is not entirely obvious; see Remark 12.21. However, the methods
for distinguishing them are completely different. Casals and Etnyre consider double branched covers
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along the contact submanifolds i0.V / and i1.V /. Using symplectic homology, they prove that these
branched covers do not admit the same fillings. This implies that i0.V / and i1.V / cannot be isotopic,
since otherwise they would have contactomorphic branched covers.

In contrast, our proof of Theorem* 1.8 uses the invariant eCH�.�I�/ introduced in this paper. Roughly
speaking, we prove Theorem* 1.8 by partially computing (linearizations of) eCH�.�I�/ associated to
the two embeddings under consideration, and observing that they do not match. Our computations rely
crucially on our version of the surgery formula discussed in Section 1.3 as well as the well-definedness
of the invariants therein. This explains why this theorem statement is starred, following the convention
stated in Remark 1.3. We also remark that although Theorem* 1.8 only applies to spheres of dimension
4n�1, we expect that the same invariant also distinguishes embeddings into spheres of dimension 4n�3.
However, proving this would likely require more involved computations than those carried out in this paper.

1.5 Applications to symplectic and Lagrangian cobordisms

Consider a pair of contact manifolds .Y ˙; �˙/ and codimension 2 contact submanifolds .V ˙; �˙jV˙/�
.Y ˙; �˙/. An exact relative symplectic cobordism from .Y C; �C; V C/ to .Y �; ��; V �/ is a triple
. yX; y�;H/, where . yX; y�/ is an exact symplectic cobordism from .Y C; �C/ to .Y �; ��/ and H � yX is a
codimension 2 symplectic submanifold which coincides near the ends with the symplectization of V ˙;
see Definition 2.17.4 In the special case where yX is the symplectization of Y ˙ and H is diffeomorphic
to R�V ˙, we speak of a symplectic concordance from V C to V �. These notions were first considered
by Bowden in his PhD thesis [9]. Using gauge theory, he exhibited certain restrictions on symplectic
cobordisms between transverse links in contact 3–manifolds [9, Section 7].

The following theorem gives a constraint on exact symplectic cobordisms between certain pairs of
codimension 2 contact submanifolds of an ambient overtwisted manifold. To the best of our knowledge,
this is the first negative result in the literature on relative symplectic cobordisms in dimensions greater
than three.

Theorem 1.9 Let V D i.B/ and V 0 D j.B/ be the codimension 2 contact submanifolds of the over-
twisted contact manifold .Y; �/ as described in Construction 12.6. Then there does not exist an exact
relative symplectic cobordism . yX; y�;H/ from .Y; �; V 0/ to .Y; �; V / with H 1.H; .�1; 0� � V IZ/ D

H 2.H; .�1; 0��V IZ/D 0. In particular , there is no symplectic concordance from V 0 to V.

One can similarly consider Lagrangian cobordisms and concordances between Legendrian submanifolds.
An exact Lagrangian cobordism from .Y C; �C; ƒC/ to .Y �; ��; V �/ is a triple . yX; y�;L/, where . yX; y�/ is
an exact symplectic cobordism from .Y C; �C/ to .Y �; ��/ and L� yX is a Lagrangian submanifold which

4Note that our convention of regarding a cobordism as going from the convex end to the concave end is consistent with [61], but
differs from most of the contact topology literature.
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10 Laurent Côté and François-Simon Fauteux-Chapleau

coincides near the ends with the Lagrangian cone of ƒ˙; see Definition 2.20. If yX is the symplectization
of Y � and LDR�ƒ�, one speaks of a Lagrangian concordance from ƒC to ƒ�.

The theory of Lagrangian cobordisms has been extensively developed in the literature from various
perspectives; see eg Chantraine, Dimitroglou Rizell, Ghiggini and Golovko [15], Ekholm [19], Ekholm,
Honda and Kálmán [23] and Sabloff and Traynor [63]. While much is known in .R2nC1; �std/ and certain
other tight contact manifolds, we are not aware of any results constraining cobordisms and concordances in
overtwisted contact manifolds; see Remark 1.11. The next theorem provides a first result in this direction.

Theorem 1.10 Let ƒ and ƒ0 be the Legendrian submanifolds of the overtwisted contact manifold .Y; �/
as constructed in Construction 12.9. Then ƒ0 is not concordant to ƒ.

In contrast, a result of Eliashberg and Murphy [26, Theorem 2.2] implies that ƒ is concordant to ƒ0.

Remark 1.11 It is a basic fact that exact Lagrangian cobordisms induce morphisms on Legendrian contact
homology which behave well under composition of cobordisms; see Etnyre and Ng [27, Section 5.1]. This
leads to a myriad of interesting obstructions to the existence of Lagrangian cobordisms and concordances.
One can also obtain many interesting obstructions using finite-dimensional invariants (which are closely
related to Legendrian contact homology) coming from generating functions or sheaf theory; see eg Li [49]
and Sabloff and Traynor [63].

One drawback of these approaches is that they are necessarily blind on overtwisted contact manifolds.
Indeed, even if Legendrian contact homology could be rigorously defined in full generality following
the framework of Eliashberg, Givental and Hofer [24, Section 2.8], it would provide no information for
Legendrians in overtwisted contact manifolds: being a module over the contact homology algebra, it
would vanish. In contrast, the invariants developed in this paper do give information about Legendrians
even in the overtwisted case.

Our final application states that certain Lagrangian concordances cannot be displaced from a codimension 2
symplectic submanifold. More precisely, let .Y; �/D obd.T �Sn�1; id/ and let V � Y be the binding of
the open book. Let ƒ� Y be the zero section of a page and let ƒ0 be obtained by stabilizing ƒ in the
complement of V. It can be shown (see Casals and Murphy [11, Proposition 2.9]) that ƒ� .Y; �/ is a
loose Legendrian; hence ƒ and ƒ0 are Legendrian isotopic in .Y; �/ and, in particular, concordant.

Theorem* 1.12 Any Lagrangian concordance from ƒ0 to ƒ must intersect the symplectization of V.

In contrast, work of Eliashberg and Murphy [26, Theorem 2.2] implies that there exists a Lagrangian
concordance from ƒ to ƒ0 which is disjoint from the symplectization of V. Our proof of Theorem* 1.12
uses the deformed versions of the Chekanov–Eliashberg dg algebra in (1-9). Hence the statement is
starred according to the convention stated in Section 1.3.
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1.6 Context and related invariants

The invariants constructed in this paper, when specialized to contact 3–manifolds, are related to other
invariants in the literature. The most closely related invariant is due to Momin [53]. Given a contact
3–manifold .Y 3; �/, Momin considers the set of pairs .�; L/ where � is a contact form and L � Y is
a link of Reeb orbits of �. Two such pairs .�; L/ and .�0; L0/ are said to be equivalent if LD L0 and
each component orbit (and all its multiple covers) has the same Conley–Zehnder index. Under certain
assumptions on .Y; �;L/, Momin defines an invariant which we denote by CHmo

�
.Y; Œ.�; L/�/. This is a

Z–graded Q–vector space which depends only on Y and the equivalence class of .�; L/.

The invariant constructed by Momin is in general distinct from the invariants described in this paper. In
particular, he considers cylindrical contact homology, whereas we work with ordinary contact homology.
However, in the special case where .Y 3; �/ is the standard contact sphere — or more generally a subcritical
Stein manifold with c1.�/D 0— and L� .Y; �/ is a collection of Reeb orbits which bound a symplectic
submanifold H � B4, then we expect that

(1-13) CHmo
�
.Y; Œ�; L�/D eCH z�

�
.Y; �; LI r/

for suitable r which depends on the equivalence class of .�; L/. Here the right-hand side of (1-13) denotes
the linearization of eCH�.Y; �; LI r/ with respect to an augmentation z� induced by the relative filling
.B4; �std;H/; recall that an augmentation of a dg algebra is a morphism to the ground ring, viewed as a
dg algebra concentrated in degree zero. See Section 9.3 for details.

Momin’s work has led to beautiful applications to Reeb dynamics on contact 3–manifolds; see eg Alves
and Pirnapasov [3] and Hryniewicz, Momin and Salomão [40]. It would be interesting to explore whether
the invariants developed in this paper can be used in studying Reeb dynamics in higher dimensions.

Another related invariant is Hutchings’ “knot-filtered” embedded contact homology [41]. The setting for
this invariant is a contact 3–manifold .Y; �/ with H1.Y IZ/D 0. Given a transverse knot L� .Y; �/ and
an irrational parameter � 2R�Q, Hutchings defines a filtration on embedded contact homology with
values in ZCZ� which is an invariant of .L; �/. The basic idea is to choose a contact form � D ker�
so that L is a Reeb orbit, and to filter the generators of embedded contact homology by their linking
number with L. Positivity of intersection considerations imply that the differential decreases the linking
number for orbits which are disjoint from L. However, the situation is more complex when the differential
involves L, which explains why the filtration is only valued in ZCZ� .

One could presumably carry over Hutchings’ construction to the context of (cylindrical) contact homology
in dimension 3. We expect that the resulting invariant would carry related information to the one defined
by Momin or to the invariants constructed in this paper. However, we do not have a precise formulation
of what this relationship should be.

We remark that the invariants introduced by Momin and Hutchings are built using techniques from
4–dimensional symplectic topology which cannot be generalized to higher dimensions. In contrast, the
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invariants introduced in this paper are constructed by a different approach, which ultimately relies on
Pardon’s robust virtual fundamental cycles package [60].

In a slightly different direction, we also wish to highlight work of Ekholm, Etnyre, Ng and Sullivan [21],
which is similar in spirit to the present work. Recall that the knot contact homology of a framed link
K �R3 is an invariant which can be defined as the Legendrian dg algebra of the conormal lift of K; see
Ekholm, Etnyre, Ng and Sullivan [22] and Ng [56]. If K is a transverse knot with respect to the standard
contact structure, the authors define in [21] a two-parameter deformation of knot contact homology by
weighting holomorphic curve counts by their intersection number with a pair of canonically defined
complex submanifolds in the symplectization. The resulting deformed dg algebra is an invariant of the
transverse knot type of K. Unfortunately, we do not know a precise relationship between this invariant
and the ones introduced in this paper.

Notation and conventions All manifolds in this paper are assumed to be smooth. If M is a manifold, a
ball B �M is an open subset diffeomorphic to the open unit disk and whose closure is embedded and
diffeomorphic to the closed unit disk. If .M;!/ is symplectic, a Darboux ball B �M is a ball which is
symplectomorphic to the open unit disk equipped with (some rescaling of) the standard symplectic form.

Unless otherwise specified, all contact manifolds considered in this paper are compact without boundary
and co-oriented. Given such a contact manifold .Y; � D ker�/, the Reeb vector field associated to the
contact form � will be denoted by R�. We will let �V WD �jV \T V denote the contact structure induced
by � on a contact submanifold V � .Y; �/.

Acknowledgements We thank Yasha Eliashberg for suggesting this project, and for many helpful
discussions. We also benefited from discussions and correspondence with Cédric De Groote, Georgios
Dimitroglou Rizell, Sheel Ganatra, Oleg Lazarev, Josh Sabloff and Kyler Siegel. We are grateful to John
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comments and suggestions.

Côté was partially supported by a Stanford University Benchmark Graduate Fellowship and by the
National Science Foundation under grant DMS-1926686.

2 Geometric preliminaries

2.1 Symplectic cobordisms

Let .Y; �/ be a closed co-oriented contact manifold. The symplectization of .Y; �/ is the exact symplectic
manifold .SY; �Y / where SY � T �Y is the total space of the bundle of positive contact forms on Y (ie a
point .p; ˛/2T �Y is in SY if and only if ˛ WTpY !R vanishes on �p and the induced map TpY=�p!R
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is an orientation-preserving isomorphism) and �Y is the restriction of the tautological Liouville form on
T �Y. Given a choice of positive contact form ˛ for .Y; �/, there is a canonical identification

(2-1) �˛ W .R�Y; e
s˛/! .SY; �Y /

given by �˛.s; p/D .p; es p̨/. We will refer to . yY ; y̨/ WD .R�Y; es˛/ as the symplectization of .Y; ˛/.

A subset U � SY will be called a neighborhood of C1 (resp. of �1) if it contains �˛.ŒN;1/� Y /
(resp. �˛..�1;�N��R) for N > 0 sufficiently large — note that this notion doesn’t depend on the
choice of ˛.

Definition 2.1 Given a contactomorphism f W .Y; �/! .Y; �/, we define its symplectic lift

(2-2) zf W .SY; �Y /! .SY; �Y /; .p; ˛/ 7! .f .p/; ˛ ı .dfp/
�1/:

One can verify that zf ��Y D�Y, so zf is in particular a symplectomorphism. There is a canonical bijection
between

(i) contact vector fields on .Y; �/,

(ii) sections of T Y=�,

(iii) linear Hamiltonians on the symplectization (recall that H is linear if ZH DH , where Z denotes
the Liouville vector field).

The correspondence between (i) and (ii) is clear; the correspondence between (ii) and (iii) takes
a section � to the Hamiltonian H.p; ˛/ D ˛.�.p//. In particular, the symplectic lift of a (time-
dependent) family of contactomorphisms is induced by a (time-dependent) family of linear Hamiltonians;
cf [14, Proposition 2.2].

Definition 2.2 Let .Y C; �C/ and .Y �; ��/ be closed co-oriented contact manifolds. An exact symplectic
cobordism from .Y C; �C/ to .Y �; ��/ is an exact symplectic manifold . yX; y�/ equipped with embeddings

eC W SY C! yX;(2-3)

e� W SY �! yX;(2-4)

satisfying the properties

� .e˙/�y�D �Y˙ , and

� there exists a neighborhood UC � SY C of C1 and a neighborhood U� � SY � of �1 such
that the restriction of e˙ to U˙ is proper, the images eC.UC/ and e�.U�/ are disjoint and the
complement yX n .eC.UC/[ e�.U�// is compact.
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Definition 2.3 (cf [61, Section 1.3]) Let .Y C; �C/ and .Y �; ��/ be closed manifolds equipped with
contact forms. A (strict) exact symplectic cobordism from .Y C; �C/ to .Y �; ��/ is an exact symplectic
manifold . yX; y�/ equipped with embeddings

eC WR�Y C! yX;(2-5)

e� WR�Y �! yX;(2-6)

satisfying the properties

� .e˙/�y�D y�˙, and

� there exists anN 2R such that the restrictions of eC to ŒN;1/�Y C and of e� to .�1;�N��Y �

are proper and that the images eC.ŒN;1/�Y C/ and e�..�1;�N��Y �/ are disjoint and together
cover a neighborhood of infinity (ie the complement of their union is compact).

Notation 2.4 Let . yX; y�/ be an exact symplectic cobordism from .Y C; �C/ to .Y �; ��/ in the sense of
Definition 2.2. Given any choice of contact forms �˙ on .Y ˙; �˙/, one can obtain from yX a cobordism
from .Y C; �C/ to .Y �; ��/ in the sense of Definition 2.3 by precomposing the embeddings (2-3)–(2-4)
with the canonical identifications R� Y ˙! SY ˙ induced by �˙. We will denote this cobordism by
. yX; y�/�

C

��
, or simply by yX�

C

��
when this creates no ambiguity.

Similarly, any cobordism . yX; y�/ in the sense of Definition 2.3 can be viewed as a cobordism in the sense
of Definition 2.2 as well.

Remark 2.5 In light of the above discussion, Definitions 2.2 and 2.3 are essentially equivalent. However,
it will be convenient for us to be able to discuss symplectic cobordisms without fixing a particular choice
of contact forms on the ends, so we adopt Definition 2.2 as our main definition moving forward.

Example 2.6 (symplectizations) The symplectization .SY; �Y / of a contact manifold .Y; �/ is canoni-
cally endowed with the structure of an exact symplectic cobordism in the sense of Definition 2.2 by letting
eC D e� D id. The additional data of a pair of contact forms �C and �� for .Y; �/ endows .SY; �Y /
with the structure of a strict exact symplectic cobordism in the sense of Definition 2.3, and we write
.SY; �Y /

�C

��
.

Definition 2.7 Let . yX01; y�01/ and . yX12; y�12/ be exact symplectic cobordisms from .Y 0; �0/ to .Y 1; �1/
and from .Y 1; �1/ to .Y 2; �2/, respectively. Fix a real number t � 0 and let �t W SY 1! SY 1 denote
multiplication by et . The t–gluing of yX01 and yX12, denoted by yX01#t yX12, is the smooth manifold
obtained by gluing yX01 and yX12 along the maps

SY 1 yX01

SY 1 yX12

(2-4)

�t

(2-3)
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Since ��t �Y 1 D e
t�Y 1 , there is, for any s 2R, a Liouville form on yX01#t yX12 which agrees with etCsy�01

on yX01 and with esy�12 on yX12. We will denote it by y�01 #t;s y�12. Note that . yX01 #t yX12; y�01 #t;s y�12/
is canonically equipped with the structure of an exact symplectic cobordism from .Y 0; �0/ to .Y 2; �2/
via the embeddings

SY 0
��t�s
����! SY 0

(2-3)
��! yX01! yX01 #t yX12;

SY 2
��s
����! SY 2

(2-4)
��! yX02! yX01 #t yX12:

The precise choice of s doesn’t really matter since the forms y�01 #t;s y�12 for s 2 R are all constant
multiples of each other. When t D 0, it is natural to choose s D 0, and we will denote the resulting
cobordism simply by . yX01 # yX12; y�01 # y�12/. There is no obvious choice for t > 0, but for the sake
of definiteness we set y�01 #t y�12 WD y�01 #t;�t=2 y�12 and will refer to . yX01 #t yX12; y�01 #t y�12/ as “the”
t–gluing of . yX01; y�01/ and . yX12; y�12/.

Remark 2.8 When t D s D 0, it follows directly from the definition that the gluing operation is
associative:

�
. yX01 # yX12/ # yX23; .y�01 # y�12/ # y�23

�
and

�
yX01 # . yX12 # yX23/; y�01 # .y�12 # y�23/

�
are

canonically isomorphic.

Remark 2.9 Multiplication by et on SY corresponds to translation by t in the R coordinate under the
identification SY ŠR�Y induced by a choice of contact form on Y. Definition 2.7 is therefore consistent
with the notion of “t–gluing” in [61, Section 1.5].

Definition 2.10 Let . yX1; y�1/ and . yX2; y�2/ be cobordisms from .Y C; �C/ to .Y �; ��/. An isomorphism
of exact symplectic cobordisms � W . yX1; y�1/! . yX2; y�2/ consists of a diffeomorphism � W yX1! yX2 such
that ��y�2 D y�1 and which is compatible with the ends in the sense that the diagram

yX1

SY C SY �

yX2

�

(2-3)

(2-3)

(2-4)

(2-4)

commutes.

Example 2.11 Let . yX; y�/ be an exact symplectic cobordism from .Y C; �C/ to .Y �; ��/. Then for
any t � 0 and s 2 R, the glued cobordisms .SY C #t yX; �YC #t;s y�/ and . yX #t SY �; y� #t;s �Y�/ are
canonically isomorphic to . yX; y�/.

Definition 2.12 A one-parameter family of exact symplectic cobordisms from .Y C; �C/ to .Y �; ��/ is a
manifold yX equipped with a family of Liouville forms fy�tgt2I (where I � R is an interval), together
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with embeddings

eCt W SY
C
! yX;(2-7)

e�t W SY
�
! yX;(2-8)

as in Definition 2.2. We will always assume that the family is fixed at infinity, meaning that for every
compact subinterval Œa; b�� I ,

� fy�tgt2Œa;b� is constant outside of a compact subset of yX , and

� feCt gt2Œa;b� (resp. fe�t gt2Œa;b�) is independent of t on some neighborhood ofC1 in SY C (resp. of
�1 in SY �).

Two cobordisms . yX0; y�0/ and . yX1; y�1/ are said to be deformation equivalent if there exists a one-
parameter family . yW ; y�t /t2Œ0;1� such that . yX0; y�0/ is isomorphic to . yW ; y�0/ and . yX1; y�1/ is isomorphic
to . yW ; y�1/. The deformation class of a cobordism . yX; y�/ will be denoted by Œ yX; y��.

Lemma 2.13 Given a pair of cobordisms . yX01; y�01/ and . yX12; y�12/ as in Definition 2.7, the glued
cobordisms . yX01 #t yX12; y�01 #t y�12/t2Œ0;1/ form a one-parameter family.5 Similarly, there is a one-
parameter family . yX01 #t yX12; y�01 #t;s y�12/s2R for any fixed t � 0. In particular , we have that the
deformation class Œ yX01 #t yX12; y�01 #t;s y�12� is independent of both t and s.

Proof We will construct a two-parameter family �t;s W yX01# yX12! yX01#t yX12 of diffeomorphisms, with
�0;0D id, such that the forms ��t;s.y�

01 #t;s y�12/ agree with y�01#y�12 outside of a compact set (depending
on t; s) and form a smooth family.

In order to simplify the notation, we fix contact forms �i on .Y i ; � i / for i D 0; 1; 2, so that we can view
the symplectization of Y i as a product R� Y i . For C > 0 sufficiently large, we can decompose the
cobordisms yX01 and yX12 as

yX01 D .�1; 1��Y 1[ xX01[ ŒC;1/�Y 0;(2-9)

yX12 D .�1;�C ��Y 2[ xX12[ Œ�1;1/�Y 1;(2-10)

where xX01 � yX01 is a compact submanifold with boundary f1g�Y 1 tfC g�Y 0, and similarly for xX12.
This induces a decomposition of yX01 #t yX12 of the form

(2-11) yX01 #t yX12 D .�1;�C ��Y 2[ xX12[ Œ�1; t C 1��Y 1[ xX01[ ŒC;1/�Y 0

for any t � 0. Hence, in order to define �t;s , it suffices to make a choice of

� a smooth family of diffeomorphisms ft W Œ�1; 1�! Œ�1; t C 1� which coincide with the identity
near �1 and with translation by t near 1,

5Strictly speaking, the underlying manifold of yX01 #t yX12 depends on t , so in order to obtain a family in the sense of
Definition 2.12 one needs to choose suitable diffeomorphisms yX01 #t yX12 Š yX01 # yX12.
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� a smooth family of diffeomorphisms gt;s W ŒC;1/! ŒC;1/ which coincide with the identity near
C and with translation by �t � s at infinity, and

� a smooth family of diffeomorphisms ht;s W .�1;�C � ! .�1;�C � which coincide with the
identity near �C and with translation by �s at infinity.

We of course also require that f0, g0;0 and h0;0 be the identity on their respective domains.

Proposition 2.14 The deformation class of . yX01 # yX12; y�01 # y�12/ only depends on the deformation
classes of . yX01; y�01/ and . yX12; y�12/.

Proof Let . yW 01; y�01;s/s2Œ0;1� and . yW 12; y�12;s/s2Œ0;1� be one-parameter families of exact symplectic
cobordisms from .Y 0; �0/ to .Y 1; �1/ and from .Y 1; �1/ to .Y 2; �2/, respectively. The negative end (2-8)
of . yW 01; y�01;s/ will be denoted by e�s W SY

1! yW 01 and the positive end (2-7) of . yW 12; y�12;s/ will
be denoted by eCs W SY

1! yW 12. By definition, we can find a neighborhood UC � SY 1 of C1 and
a neighborhood U� � SY 1 such that the restriction of e˙s to U˙ is independent of s. This common
restriction will be denoted by e˙.

Fix a large t > 0 so that the intersection V WD ��1t .U
C/\U� is nonempty. Let yW 01 #V yW 12 be the

space obtained by gluing yW 01 n e�.U� nV / and yW 12 n eC.UC n�t .V // along the maps

V yW 01 n e�.U� nV /

UC yW 12 n eC.UC n�t .V //

e�

�t

eC

As a smooth manifold, yW 01 #V yW 12 is canonically identified with yW 01 #t yW 12. Thus we can view
y�01;s#t y�12;s as a Liouville form on yW 01#V yW 12 for each s, making . yW 01#V yW 12; y�01;s#t y�12;s/s2Œ0;1�
into a one-parameter family of cobordisms. In particular, it follows that . yW 01 #t yW 12; y�01;0 #t y�12;0/
and . yW 01 #t yW 12; y�01;1 #t y�12;1/ are deformation equivalent.

Corollary 2.15 There is a well-defined gluing operation on deformation classes of exact symplectic
cobordisms given by

(2-12) Œ yX01; y�01� # Œ yX12; y�12�D Œ yX01 #t yX12; y�01 #t;s y�12�

for any t � 0 and s 2R.

Proposition 2.16 The gluing operation (2-12) is associative.

Proof This follows from Remark 2.8.
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We now discuss submanifolds in exact symplectic cobordisms. Let V � .Y; �/ be a contact submanifold.
There is a canonical embedding

(2-13) .SV; �V /! .SY; �Y /

which takes a pair .p; p̨/ 2 SV to the unique pair .p; z̨p/ 2 SY such that z̨p.w/ D p̨.w/ for some
(and hence any) w 2 TpV n .�p \TpV /.

Definition 2.17 Let V C � .Y C; �C/ and V � � .Y �; ��/ be contact submanifolds of the same co-
dimension, and let . yX; y�/ be an exact symplectic cobordism from .Y C; �C/ to .Y �; ��/. We say that
a smooth submanifold H � yX is cylindrical with ends V ˙ if it is closed (as a subset) and there exist
neighborhoods U˙ � SY ˙ of ˙1 such that

(2-14) .e˙/�1.H/\U˙ D SV ˙\U˙;

where e˙ W SY ˙! yX are the ends (2-3)–(2-4) of . yX; y�/.

If H is a symplectic cylindrical submanifold of . yX; y�/, then we say that . yX; y�;H/ is an exact relative
symplectic cobordism from .Y C; �C; V C/ to .Y �; ��; V �/. Note that in this case, the restrictions of e˙

to SV ˙\U˙ endow .H; y�jH / with the structure of an exact symplectic cobordism from .V C; �C
VC
/ to

.V �; ��V �/.

Example 2.18 If V is a contact submanifold of .Y; �/, then, as noted above, SV can be viewed as a
symplectic submanifold of .SY; �Y /, and .SY; �Y ; SV / is canonically endowed with the structure of an
exact relative symplectic cobordism in the sense of Definition 2.17 by letting eC D e� D id.

Notation 2.19 Let yX , y� and H be as in Definition 2.17. As explained in Notation 2.4, a choice of
contact forms ker�˙ D �˙ endows . yX; y�/ with the structure of a strict relative symplectic cobordism.
We analogously speak of a strict relative exact symplectic cobordism and write . yX; y�;H/�

C

��
when we

wish to emphasize that we are fixing contact forms �˙ on the ends.

Let ƒ� .Y; �/ be a Legendrian submanifold. The Lagrangian cone of ƒ is the Lagrangian submanifold

(2-15) LD f.p; ˛/ 2 SY � T �Y j p 2ƒg � .SY; �Y /:

Definition 2.20 Let ƒC � .Y C; �C/ and ƒ� � .Y �; ��/ be Legendrian submanifolds and let . yX; y�/
be an exact symplectic cobordism from .Y C; �C/ to .Y �; ��/. We say that a Lagrangian submanifold
L � . yX; y�/ is cylindrical with ends ƒ˙ if it is closed (as a subset) and there exist neighborhoods
U˙ � SY ˙ of ˙1 such that

(2-16) .e˙/�1.L/\U˙ D L˙\U˙;

where e˙ W SY ˙! yX are the ends (2-3)–(2-4) of . yX; y�/ and L˙ are the Lagrangian cones of ƒ˙.

A triple . yX; y�;L/ is called an (exact) Lagrangian cobordism from .Y C; �C; ƒC/ to .Y �; ��; ƒ�/.

Geometry & Topology, Volume 28 (2024)



Homological invariants of codimension 2 contact submanifolds 19

Definition 2.21 The set of equivalence classes of cylindrical codimension 2 submanifolds of yX with
ends V ˙, where two submanifolds are equivalent if they are isotopic via a compactly supported (smooth)
isotopy, will be denoted by �2n�2. yX; V C tV �/.

Definition 2.22 A contact submanifold V � .Y; �/ is said to be a strong contact submanifold if it is
(setwise) invariant under the Reeb flow of � on Y. We will also say that . yX; y�;H/�

C

��
is a strong relative

exact symplectic cobordism if both V C� .Y C; �C/ and V �� .Y �; ��/ are strong contact submanifolds.

Definition 2.23 Let . yX01; y�01;H 01/ and . yX12; y�12;H 12/ be exact relative symplectic cobordisms from
.Y 0; �0; V 0/ to .Y 1; �1; V 1/ and from .Y 1; �1; V 1/ to .Y 2; �2; V 2/, respectively. For any sufficiently
large real number t � 0, H 01 #t H 12 sits naturally inside . yX01 #t yX12; y�01 #t y�12/ as a symplectic
submanifold, and . yX01 #t yX12; y�01 #t y�12;H 01 #t H 12/ is a relative cobordism from .Y 0; �0; V 0/ to
.Y 2; �2; V 2/. We will refer to it as the t–gluing of . yX01; y�01;H 01/ and . yX12; y�12;H 12/.

Definition 2.24 Let . yX1; y�1;H 1/ and . yX2; y�2;H 2/ be relative cobordisms from .Y C; �C; V C/ to
.Y �; ��; V �/. An isomorphism of exact relative symplectic cobordisms � W . yX1; y�1;H 1/! . yX2; y�2;H 2/

is an isomorphism � W . yX1; y�1/! . yX2; y�2/ in the sense of Definition 2.10 which maps H 1 diffeomor-
phically onto H 2.

Example 2.25 Suppose that . yX; y�;H/ is an exact relative symplectic cobordism from .Y C; �C; V C/

to .Y �; ��; V �/. Then for any t � 0, the glued cobordisms .SY C; �YC ; SV
C/ #t . yX; y�;H/ and

. yX; y�;H/ #t .SY �; �Y� ; SV �/ are defined and canonically isomorphic to . yX; y�;H/.

Definition 2.26 A one-parameter family of exact relative symplectic cobordisms from .Y C; �C; V C/ to
.Y �; ��; V �/ is a manifold yX equipped with a family of Liouville forms fy�tgt2I , a family of symplectic
submanifolds H t � . yX; y�t /, and embeddings

eCt W SY
C
! yX;(2-17)

e�t W SY
�
! yX;(2-18)

as in Definition 2.17. We will always assume that the family is fixed at infinity, meaning that for every
compact subinterval Œa; b�� I ,

� fy�tgt2Œa;b� and fH tgt2Œa;b� are constant outside of a compact subset of yX , and

� feCt gt2Œa;b� (resp. fe�t gt2Œa;b�) is independent of t on some neighborhood ofC1 in SY C (resp. of
�1 in SY �).

Two relative cobordisms . yX0; y�0;H 0/ and . yX1; y�1;H 1/ are said to be deformation equivalent if there
exists a one-parameter family . yW ; y�t ; Kt /t2Œ0;1� such that . yX0; y�0;H 0/ is isomorphic to . yW ; y�0; K0/
and . yX1; y�1;H 1/ is isomorphic to . yW ; y�1; K1/. The deformation class of a cobordism . yX; y�;H/ will
be denoted by Œ yX; y�;H�.

Geometry & Topology, Volume 28 (2024)



20 Laurent Côté and François-Simon Fauteux-Chapleau

Example 2.27 Given . yX01; y�01;H 01/ and . yX12; y�12;H 12/ as in Definition 2.23, the glued cobordisms
. yX01 #t yX12; y�01 #t y�12;H 01 #t H 12/t2ŒN;1/ form a one-parameter family for N > 0 sufficiently large.
Similarly, for any fixed t� 0, . yX01 #t yX12; y�01 #t;s y�12;H 01 #t H 12/s2R is a one-parameter family. As
in Lemma 2.13, it follows that the deformation class

(2-19) Œ yX01 #t yX12; y�01 #t;s y�12;H 01 #t H 12�

is independent of t � 0 and s 2R.

Proposition 2.28 The deformation class of . yX01 #t yX12; y�01 #t y�12;H 01 #t H 12/ only depends on the
deformation classes of . yX01; y�01;H 01/ and . yX12; y�12;H 12/.

Proof The proof of Proposition 2.14 also works in the relative case as long as t > 0 is chosen large
enough.

Corollary 2.29 There is a well-defined gluing operation on deformation classes of exact relative sym-
plectic cobordisms given by

(2-20) Œ yX01; y�01;H 01� # Œ yX12; y�12;H 12�D Œ yX01 #t yX12; y�01 #t;s y�12;H 01 #t H 12�

for any t � 0 and s 2R.

Proposition 2.30 The gluing operation (2-20) is associative.

Proof Let . yX i;iC1; y�i;iC1;H i;iC1/ be a relative cobordism from .Y i ; � i ; V i / to .Y iC1; � iC1; V iC1/
for i 2 f0; 1; 2g, and fix t1; t2 � 0. Note that

�
. yX01 #t1 yX

12/ #t2 yX
23; .H 01 #t1 H

12/ #t2 H
23
�

and�
yX01 #t1 . yX

12 #t2 yX
23/;H 01 #t1 .H

12 #t2 H
23/
�

can be canonically identified as pairs of smooth
manifolds. Hence, it suffices to show that there exist s1; s2 2R such that

(2-21) .y�01 #t1;s1 y�
12/ #t2;s2 y�

23
D y�01 #t1;s1 .y�

12 #t2;s2 y�
23/:

One can easily see from Definition 2.7 that taking s1 D 0 and s2 D�t2 works.

2.2 Homotopy classes of asymptotically cylindrical maps

Definition 2.31 [68, Section 6.1] Suppose that . yX; y�/ is an exact symplectic cobordism from .Y C; �C/

to .Y �; ��/. Given a closed surface † and finite subsets pC;p��† (corresponding respectively to posi-
tive and negative punctures), a smooth map u W†�.pCtp�/! yX is said to be asymptotically cylindrical
if it converges exponentially near each puncture z 2 pC tp� to a trivial cylinder over a Reeb orbit.

More precisely, given any choice of translation invariant metric on R�Y ˙, we require that there exist
a choice of holomorphic cylindrical coordinates near each z 2 p˙ such that u takes the form

(2-22) u.s; t/D exp.P s;z.t// h.s; t/

for jsj large, where z is a Reeb orbit of period P and h.s; t/ is a vector field which decays to zero with
all its derivatives as jsj !1 (ie these properties hold for s� 0 if z 2 pC and for s� 0 if z 2 p�).
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Remark 2.32 There is also a notion of an asymptotically cylindrical submanifold which will not be
needed in this paper.

Definition 2.33 (cf [61, Section 1.2(I)]) Let . yX; y�/ be an exact symplectic cobordism from .Y C; �C/

to .Y �; ��/ and let �˙ be a finite set of Reeb orbits in .Y ˙; �˙/.

By truncating the ends of yX , we obtain a compact submanifold X0 � yX with boundary @X0 D Y CtY �.
We define the set of homotopy classes �2. yX;�C t��/ by

(2-23) �2. yX;�
C
t��/ WD Œ.S; @S/; .X0; �

C
t��/�=Diff.S; @S/;

where S is a compact connected oriented surface of genus 0 equipped with a homeomorphism @S !

�C t��, and Diff.S; @S/ is the group of diffeomorphisms of S which fix @S pointwise. (The notation
Œ�;�� here stands for homotopy classes of maps of pairs.)

Remark 2.34 The right-hand side of (2-23) is independent of the choice of truncation X0 up to canonical
bijection. In the case where . yX; y�/D .R�Y; es�/ is the symplectization of a contact manifold .Y; �/,
we can take X0 D f0g �Y and (2-23) becomes identical to [61, equation (1.2)].

For any choice of truncation X0 � yX , there is a canonical retraction � W yX !X0 induced by quotienting
by the Liouville flow (more precisely, one should quotient by the backwards Liouville flow at the positive
end and by the forwards Liouville flow at the negative end). If u W†�.pCtp�/! yX is an asymptotically
cylindrical map, then the composition � ıu can be extended to a map

(2-24) xu W .†; @†/! .X0; �
C
t��/;

where† is a compactification of†�.pCtp�/ obtained by adding one boundary circle for each puncture.
The homotopy class Œu� 2 �2. yX;�C t��/ of u is defined to be the equivalence class of (2-24).

Definition 2.35 Let . yX; y�;L/ be an exact Lagrangian cobordism from .Y C; �C; ƒC/ to .Y �; ��; ƒ�/;
see Definition 2.20.

Given a surface with boundary † and finite subsets pC;p� � int.†/ and cC; c� 2 @†, a smooth map
u W†� .p˙[ c˙/ is said to be cylindrical if it converges asymptotically near each interior puncture to a
trivial cylinder over a Reeb orbit, and it converges exponentially near each boundary puncture to a trivial
strip over a Reeb chord.

Let �˙ be a finite set of Reeb orbits in .Y ˙; �˙/ and let �ƒ˙ be a finite ordered set of Reeb chords
of ƒ˙ � .Y ˙; �˙/. We let p˙ be a finite set equipped with bijections ˙ W p˙ ! �˙ and we let
c D cC t c� be a finite ordered set equipped with order-preserving bijections a˙ W c˙! �ƒ˙ . We let

(2-25) �2. yX I�ƒC ; �ƒ� ; �
C; ��/

be the set of equivalence classes of maps from†�.p˙[c˙/ to yX which are asymptotic to ˙p at p 2p˙

(resp. a˙c at c 2 c˙), where two such maps u; v are equivalent if there exists a compactly supported
diffeomorphism � of †� .p˙[ c˙/ such that u and v ı� are homotopic (through cylindrical maps).
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3 Reeb dynamics near a codimension 2 contact submanifold

3.1 The Conley–Zehnder index

A hermitian vector bundle .E; J; !/ is a vector bundle E together with an almost complex structure J
and a symplectic structure ! such that J is compatible with !. An asymptotic operator on a hermitian
vector bundle .E; J; !/ over S1 is a real-linear differential operator A W �.E/! �.E/ which, in some
(and hence any) unitary trivialization, takes the form

(3-1) A W C1.S1;R2n/! C1.S1;R2n/; � 7! �J@t��S.t/�;

where t 2 S1 and S W S1! End.R2n/ is a loop of symmetric matrices. The asymptotic operator A is
said to be nondegenerate if 0 is not an eigenvalue.

Fix a hermitian vector bundle .E; J; !/ over S1 and a unitary trivialization � . Given a nondegenerate
asymptotic operator A, we can obtain a nondegenerate path of symplectic matrices by solving the ordinary
differential equation

(3-2) .�J@t �S.t//‰.t/D 0; ‰.0/D id:

Conversely, given a nondegenerate path of symplectic matrices, we can recover a nondegenerate asymptotic
operator by solving (3-2) for S.t/.

The Conley–Zehnder index CZ.A/D CZ.‰/ 2 Z is an integer-valued invariant which can be associated
equivalently to a nondegenerate asymptotic operator equipped with a unitary trivialization � or to a
nondegenerate path of symplectic matrices. It only depends on � up to homotopy through unitary
trivializations. We refer the reader to [68, Section 3.4] or [33] for a detailed overview of the Conley–
Zehnder index.

Definition 3.1 Let .Y; � D ker�/ be a contact manifold and let  be a Reeb orbit of period P > 0,
parametrized so that �. 0/D P . Given a choice of d�–compatible almost complex structure J on � , we
can define the asymptotic operator A W �.

��/! �.��/ by A D�J.rt �PrR�/, where r is some
symmetric connection on Y.

The Conley–Zehnder index of a Reeb orbit  relative to a trivialization � of �� will be denoted by
CZ� ./ WD CZ� .A /.

Let us now consider a contact manifold .Y 2n�1; �Dker�/ and a strong contact submanifold .V 2n�3; �jV /.
Observe that the contact distribution splits naturally along V as

(3-3) �jV D �j
>
V ˚ �j

?
V ;

where �j>V D �jV \T V and �j?V is the symplectic orthogonal complement of �j>V � �jV with respect to d�.
Suppose that J is a d�–compatible almost complex structure on � which respects the splitting (3-3).
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Let  WS1!V be a Reeb orbit. Since J respects the above splitting, then so does the associated asymptotic
operator, which we can therefore write as A DA> ˚A? . If we choose a unitary trivialization � of �j
which is also compatible with the splitting, we can define CZ�T ./ WDCZ� .A> / and CZ�N ./ WDCZ� .A? /.
We call these respectively the tangential and normal Conley–Zehnder indices of  with respect to � .

We define the integers

˛
� I�
N ./ WD bCZ�N ./=2c;(3-4)

˛
� IC
N ./ WD dCZ�N ./=2e:(3-5)

Let pN ./D ˛
� IC
N ./�˛

� I�
N ./ 2 f0; 1g be the (normal) parity of  , and observe that it is independent

of the choice of trivialization. We have

(3-6) CZ�N ./D 2˛
� I�
N ./CpN ./D 2˛

� IC
N ./�pN ./;

from which it also follows that pN ./� CZ�N ./ mod 2.

There is a canonical isomorphism

(3-7) �j?V
��!NY=V ;

where NY=V denotes the normal bundle of V � Y. If .V; �V /� .Y; �/ are co-oriented and hence oriented,
then NY=V is also oriented and (3-7) is orientation-preserving. If we assume that NY=V is trivial, then it
follows that (3-7) induces a bijection between homotopy classes of trivializations of NY=V compatible
with the orientation and homotopy classes of unitary trivializations on �j?V . Since the Conley–Zehnder
index only depends on the homotopy class of unitary trivializations, we may define CZ�N ./ with respect
to any homotopy class of trivializations � of NY=V compatible with the orientation.

3.2 Normal dynamics and adapted contact forms

We now state some important definitions, which will be used throughout this paper.

Definition 3.2 A trivial-normal contact pair (or just TN contact pair) is a datum .Y; �; V / consisting
of a closed co-oriented contact manifold .Y; �/ and a co-oriented codimension 2 contact submanifold
V � .Y; �/ with trivial normal bundle NY=V .

An important example of a TN contact pair is the binding of a contact open book decomposition; see
Definition 3.10. A choice of (homotopy class of) trivialization � on NY=V is called a framing and we say
that .V; �/� Y is a framed codimension 2 submanifold. Note that we do not assume in Definition 3.2
that V and Y are nonempty. For future reference, we let �∅ denote the unique contact structure on the
empty set.

Definition 3.3 Given a TN contact pair .Y; �; V / with V nonempty, let R.Y; �; V / be the set of triples
rD .˛V ; �; r/ where

� ˛V 2�
1.V / is a nondegenerate contact form for .V; �V /,

Geometry & Topology, Volume 28 (2024)



24 Laurent Côté and François-Simon Fauteux-Chapleau

� � is a homotopy class of trivializations of NY=V (ie a framing) which is compatible with the
orientation, and

� r > 0 is a strictly positive real number, and we have .1=r/Z\ S.˛V /D ∅, where S.˛V / is the
action spectrum of ˛V .

If V D ∅ (with Y possibly also empty), we define R.Y; �;∅/ D f.˛∅; �∅; 0/g, where ˛∅ and �∅ are
understood as a contact form and normal trivialization on the empty set.

Definition 3.4 Given a TN contact pair .Y; �; V / and rD .˛V ; �; r/ 2R.Y; �; V /, we say that a contact
form ker�D � is adapted to r if

� � is nondegenerate,

� �jV D ˛V ,

� V is a strong contact submanifold of .Y; �/ (see Definition 2.22), and

� we have CZ�N ./D 1C 2brPc for all Reeb orbits  � V , where P is the period of  .

In the case that V D∅, any contact form � is considered to be adapted to the unique element .˛∅; �∅; 0/2
R.Y; �;∅/. Given a contactomorphism f W .Y; �; V /! .Y 0; � 0; V 0/, we write f�r D .f�˛V ; f��; r/ 2
R.Y 0; � 0; V 0/. If �t W V ! Y is an isotopy of contact embeddings where �0 is the tautological embedding
V

id
�! V � Y and �1.V / D V 0, then �t extends to a family of contactomorphisms ft . We then write

.�1/�r WD .f1/�r; this is independent of the choice of extension.

We say that � is positive elliptic near V ¤∅ if it is adapted to some rD .˛V ; �; r/ 2R.Y; �; V /; we refer
to r > 0 as the rotation parameter.

Remark 3.5 Our insistence on allowing the case where Y D ∅ in the above definitions is explained
by the need to treat Liouville manifolds as special cases of Liouville cobordisms in the arguments of
Section 7.

We will prove in Proposition 3.9 that adapted contact forms always exist, ie for any TN contact pair
.Y; �; V / and r D .˛V ; �; r/ 2 R.Y; �; V / there exists a contact form adapted to r. The first step is to
construct a suitable local model.

Construction 3.6 For 0 < � � 1, let D2 �R2 be the standard disk of radius � (in the sequel, we will
often denote this disk by D2� ). Let .V; ˛V / be a contact manifold and let � W D2! R>0 be a smooth
positive function which has a nondegenerate critical point at 0 and satisfies �.0/D 1. We define

(3-8) ˛
�
V D

1

�
.˛V C�D2/;

where �D2 D
1
2
.x dy�y dx/ is the usual Liouville form on D2. This is a contact form on V �D2 whose

restriction to V D V � f0g coincides with ˛V . Its Reeb vector field is given by

(3-9) R� D .� �ZD2�/RV CX� ;
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where ZD2 D
1
2
.x@xCy@y/ is the Liouville vector field of �D2 and X� D�.@y�/@xC .@x�/@y is the

Hamiltonian vector field of � with respect to the symplectic form !D2 D d�D2 . Our assumptions on �
imply that R� DRV on V � f0g, so that .V; ˛V / is a strong contact submanifold of .V �D2; ˛�V /. We
will let

(3-10) S� D

�
@xx�.0/ @yx�.0/

@xy�.0/ @yy�.0/

�
2R2�2

denote the Hessian of � at the origin. Since S� is symmetric and nondegenerate, its eigenvalues are real
and nonzero, so its signature Sign.S�/ is one of 0;˙2. We will say that � is hyperbolic if Sign.S�/D 0,
positive elliptic if Sign.S�/D 2 and negative elliptic if Sign.S�/D�2. In the elliptic case, we define
c� D

p
det.S�/=.2�/; this is a positive real number since det.S�/ > 0. Finally, we note that the splitting

.��/jV D .��/j
>
V ˚ .��/j

?
V — see equation (3-3) — is given by .��/j>V D �V and .��/j?V D T0D

2. We will
let �� denote the trivialization of .��/j?V by f@x; @yg.

We say that ˛�V is nondegenerate on V if every Reeb orbit of ˛V is nondegenerate when viewed as a
Reeb orbit of ˛�V .

Proposition 3.7 Carrying over the notation of Construction 3.6, suppose that ˛V is nondegenerate. If �
is elliptic , then ˛�V is nondegenerate on V if and only if .1=c�/Z\ S.˛V /D∅, where S.˛V / denotes
the action spectrum of ˛V .

Proof Let  be a Reeb orbit of period P contained in V. Recall that  is nondegenerate if and only if its
asymptotic operator is nondegenerate. Choose a trivialization � and an almost complex structure J on
.��/j which preserve the splitting .��/j D .�V /j ˚T0D2 and coincide with �� and J0 respectively
on T0D2, where J0 denotes the standard almost complex structure on R2 D T0D2. The asymptotic
operator A is compatible with this splitting and can therefore be written as A D A> ˚ A

?
 . The

tangential part A> is nondegenerate since it coincides with the asymptotic operator of  as a Reeb orbit
in V. The normal part A? is given explicitly by

(3-11) A? D�J0@t �P �S�

(this follows from a short computation using the formula for the Reeb vector field R� in Construction 3.6).
Define a path‰ of symplectic matrices by‰.t/D exp.tP �J0S�/. ThenA? is nondegenerate if and only if
‰.1/ doesn’t have 1 as an eigenvalue. If � is elliptic, then the eigenvalues of‰.1/ are exp.˙iP

p
det.S�//.

Hence,  is nondegenerate if and only if P
p

det.S�/ is not an integer multiple of 2� , ie P … .1=c�/Z. It
follows that �� is nondegenerate if and only if .1=c�/Z\S.˛V /D∅, as claimed.

The important feature of Construction 3.6 is that the normal Conley–Zehnder indices of the Reeb orbits
in V can be computed explicitly.
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Proposition 3.8 Assume ˛�V is nondegenerate on V. If � is elliptic , then

(3-12) CZ��N ./D˙.1C 2bc�Pc/

for every Reeb orbit  contained in V, where P > 0 denotes the period of  and the sign is C or �
depending on whether � is positive elliptic or negative elliptic.

Proof We have CZ��N ./ D CZ.‰/, where ‰.t/ D exp.tP � J0S�/ is the path of symplectic matrices
defined in the proof of Proposition 3.7; see [68, Section 3.4]. Proposition 41 of [33] implies that

(3-13) CZ.‰/D˙.1C 2bc�P c/

if Sign.S�/D˙2.

Proposition 3.9 Fix a TN contact pair .Y; �; V / and an element rD .˛V ; �; r/ 2R.Y; �; V /. Then there
exists a contact form � on .Y; �/ which is adapted to r.

Proof Let � be as in Construction 3.6. The standard neighborhood theorem for contact submanifolds
(see [29, Theorem 2.5.15]) implies that the inclusion map V ! Y extends to a contact embedding
� W .V �D2� ; ker.˛�V //! .Y; �/ such that ��� is homotopic to �� , for some � > 0 sufficiently small. Hence
there exists a contact form � for � such that ��� D ˛

�
V near V. In addition to choosing � so that �

is adapted to r, we also need to make sure that � can be modified away from V so that it becomes
nondegenerate. By [2, Theorem 13], this can be achieved by choosing a � such that the following two
conditions are satisfied:

� ˛
�
V is nondegenerate on V .

� All the Reeb orbits of ˛�V in V �D2� are contained in V.

Let us set � D 1C�r.x2Cy2/. Proposition 3.7 implies that ˛�V is nondegenerate on V since

c� D

p
.2�r/2

2�
D r:

Since R� DRV CX� , every Reeb orbit  of ˛�V is of the form  D .V ; �/, where V is an orbit of RV
and � is an orbit of X� with the same period P > 0. From the formula X� D�2�ry@xC 2�rx@y , we
see that if � were not constant, we would have P 2 .1=r/Z, contradicting our assumption on r ; see
Definition 3.3. Thus  is contained in V.

3.3 Open book decompositions

In this section, we consider normal Reeb dynamics for bindings of open book decompositions. We begin
by recalling the definition of an open book decomposition; we refer to [62, Section A.1; 29, Section 4.4.2]
for a historically informed survey of this theory.
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Definition 3.10 An open book decomposition .Y; B; �/ of a closed, oriented n–manifold Y consists of
the following data:

(i) An oriented, closed, codimension 2 submanifold B � Y with trivial normal bundle.

(ii) A fibration � W Y �B! S1 which coincides with the angular coordinate in some neighborhood
B � f0g � B �D2 D B � f.x; y/ j x2Cy2 < 1g.

The submanifold B � Y is called the binding and the fibers of � are called pages.

Observe that the data of an open book decomposition induces a natural trivialization of the normal bundle
to the binding. We also recall what it means for an open book decomposition to support a contact structure.

Definition 3.11 [31] Given an odd-dimensional manifold Y 2n�1, an open book decomposition .Y; B; �/
is said to support a contact structure � if there exists a contact form � D ker˛ such that the following
properties hold:

(i) The restriction of ˛ to B is a contact form.

(ii) The restriction of d˛ to any page ��1.�/ is a symplectic form.

(iii) The orientation of B induced by ˛ coincides with the orientation of B as the boundary of the
symplectic manifold .P� ; d˛/, where P� D ��1.�/ is any page.

Such a contact form is called a Giroux form (and is also said in the literature to be adapted to the open
book decomposition).

Remark 3.12 Condition (ii) in the above definition is equivalent to the Reeb vector field of ˛ being
transverse to the pages.

For future convenience, we state the following definition.

Definition 3.13 Let G be the set of TN contact pairs .Y; �; V / having the property that � is supported by
an open book decomposition � W Y �V ! S1 with binding V.

Lemma 3.14 Let .Y; B; �/ be an open book decomposition supporting the contact structure �. Let ˛B
be a contact form for .B; �B/ and let f W Œ0; 1/!R be a positive smooth function such that f .0/D 1 and
f 0.r/ < 0 for r > 0. Then there exists a Giroux form ˛ and an embedding � W B �D2� ! Y (for some
small � > 0) with the following properties:

(1) ˛jB D ˛B .

(2) The projection � ı� is given by .r; �/ 7! � on B �D2� �B � f0g.

(3) ��˛ D f .r/.˛jB C�D2/.
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Proof The proof is in two steps. First, we will show that there exists a Giroux form z̨ such that z̨jB D˛B .
Second, we will construct ˛ by modifying z̨ so that (1)–(3) are satisfied.

Step 1 Let ˛0 be an arbitrary Giroux form for .Y; B; �/. Since ˛0jB and ˛B define the same contact
structure, we can write ˛B D .1Ch/.˛0jB/ for some smooth function h WB!R. We may assume without
loss of generality that h� 0 everywhere, since any positive constant multiple of ˛0 is also a Giroux form.

It is shown in the proof of [18, Proposition 2] that there exists a tubular neighborhood B �D2� of the
binding on which � D � and ˛0 D g.˛0jB C�D2/, where g W B �D2� !R is a positive smooth function
satisfying g � 1 on B � f0g, �D2 D

1
2
.x dy � y dx/ and � > 0 is a suitably small constant. Note that

g.˛0jB C�D2/ is a Giroux form on .B �D2� ; B � f0g; � D �/ if and only if @g=@r < 0 for r > 0.

Let � W Œ0; ��!R be a nonincreasing smooth function such that �.r/D 1 for r near 0 and �.r/D 0 for r
near �. Set zg WD .1C�.r/h/g. Then @r zgD @r� �hgC .1C�h/ �@rg < 0. Now we define z̨ by replacing
g with zg.

Step 2 By the previous step, we may fix a Giroux form z̨ so that z̨jB D ˛B . Appealing again to the
proof of [18, Proposition 2], there exists a tubular neighborhood B �D2�0 of the binding on which � D �
and z̨ D .z̨jBC�D2/, where  WB�D2�0!R is a positive smooth function satisfying  � 1 on B�f0g,
�D2 D

1
2
.x dy � y dx/ and �0 > 0 is a suitably small constant. Again, we have that .z̨jB C�D2/ is a

Giroux form on .B �D2�0 ; B � f0g; � D �/ if and only if @=@r < 0 for r > 0.

Let ı W B �D2�0 !R be a positive smooth function such that ı D f near B � f0g, ı D  near B � @D2�0 ,
and @rı < 0 for r > 0. Let ˛ be the unique contact form on Y which coincides with z̨ outside the image
of � and satisfies ��˛ D ı.z̨jB C�D2/. Then ˛ is a Giroux form and satisfies conditions (1)–(3).

Corollary 3.15 Consider an open book decomposition .Y; B; �/ which supports a contact structure � and
let � denote the induced trivialization of the normal bundle of B � Y. Choose an element rD .˛B ; �; r/ 2
R.Y; �; B/. Then there exists a Giroux form ˛ which is adapted to r; see Definition 3.4.

Proof Let � D �r and define f .s/ D .1C �s2/�1 for s 2 Œ0; 1/. Since f .0/ D 1 and f 0.s/ < 0, it
follows that there exists a Giroux form z̨ satisfying the conditions stated in Lemma 3.14. As we observed
in the proof of Proposition 3.9, there exists a neighborhood U of B with the properties that

� z̨ is nondegenerate on U , and

� all the Reeb orbits in U are contained in B .

According to [2, Theorem 13], we can obtain a nondegenerate contact form by multiplying z̨ by a smooth
function g W Y ! RC with g � 1 near B . Moreover, we can assume that g� 1 is arbitrarily C 1–small
and hence that g z̨ is still a Giroux form.

Since g z̨ D ˛ near B , it follows that .g z̨/jB D ˛B and that B is a strong contact submanifold with respect
to g z̨. Finally, the last point in Definition 3.4 can be verified just as in the proof of Proposition 3.8.
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4 Standard setups and tree categories.

Contact homology is defined in [61] by counting pseudoholomorphic curves (and, more generally,
pseudoholomorphic buildings) in four setups. To keep track of the combinatorics of these curves, Pardon
introduces certain categories of decorated trees. We briefly review this formalism here, referring the
reader to [61, Section 2.1] for details.

4.1 Standard setups

Setup I A datum D for Setup I consists of a triple .Y; �; J /, where Y is a closed manifold, � is a
nondegenerate contact form on Y and J is a d�–compatible almost complex structure on � D ker�.

Setup II A datum DD .DC;D�; yX; y�; yJ / for Setup II consists of

� data D˙ D .Y ˙; �˙; J˙/ as in Setup I,

� an exact symplectic cobordism . yX; y�/ with positive end .Y C; �C/ and negative end .Y �; ��/, and

� a dy�–tame almost complex structure yJ on yX which agrees with yJ˙ at infinity.

Setup III A datum DD .DC;D�; . yX; y�t ; yJ t /t2Œ0;1�/ for this setting consists of

� data D˙ D .Y ˙; �˙; J˙/ as in Setup I,

� a family of exact symplectic cobordisms . yX; y�t /t2Œ0;1� with positive end .Y C; �C/ and negative
end .Y �; ��/, and

� a dy�t–tame almost complex structure yJ t on yX which agrees with yJ˙ at infinity.

Note that for every t0 2 Œ0; 1�, there is a datum DtDt0 D .DC;D�; yX; y�t0 ; yJ t0/ as in Setup II.

Setup IV A datum DD .D01;D12; . yX02;t ; y�02;t ; yJ 02;t /t2Œ0;1// for this setting consists of

� data

D01 D .D0;D1; yX01; y�01; yJ 01/ and D12 D .D1;D2; yX12; y�12; yJ 12/

as in Setup II, where Di D .Y i ; �i ; J i / for i D 0; 1; 2,

� a family of exact symplectic cobordisms . yX02;t ; y�02;t /t2Œ0;1/ with positive end .Y 0; �0/ and
negative end .Y 2; �2/, which for t large coincides with the t–gluing of . yX01; y�01/ and . yX12; y�12/,
and

� a dy�02;t–tame almost complex structure yJ 02;t on yX02;t which agrees with yJ 0 and yJ 2 at infinity,
and is induced by yJ 01 and yJ 02 for t large.
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4.2 Trees

For each setup, Pardon [61, Section 2.1] defines a category S� for � D I; II; III; IV, which depends
on some datum D. Each object T 2 S is a decorated tree (or forest) representing a certain class of
pseudoholomorphic curves (or more generally of buildings). Geometrically, the vertices correspond to
curves, edges correspond to asymptotic orbits, and the decorations keep track of additional information
(such as the homology classes of the components, and their “level” in the SFT compactification).

A morphism of trees in S� consists of two pieces of data. First, a contraction of some edges, with the
important caveat that only certain contractions are allowed, which depend on the decorations on the tree.
Second, one specifies some additional data on external edges, which depends on the decorations of the
external edges. Geometrically, a morphism of trees correspond to gluing holomorphic curves, and the
data which one specifies on the external edges encodes different ways of moving asymptotic markers.
For T 2 S�, we let Aut.T / denote the group of automorphisms of T . Given a morphism T 0! T , we let
Aut.T 0=T /� Aut.T 0/ be the subgroup of automorphisms of T 0 which are compatible with T 0! T .

In each category S�, there is an operation called concatenation whose input is a collection of trees
(satisfying certain conditions, and with additional matching data), and whose output is a single tree.
Geometrically, concatenations of trees correspond to “stacking” holomorphic buildings. The precise rules
for concatenations are rather involved and depend on the individual setups.

Remark 4.1 A datum D for Setups II, III, IV determines multiple categories of trees: this is because
such a datum itself contains (by definition) data for multiple setups. We always follow the notation of
[61, Section 2.1] to denote the resulting tree categories. So, for example, if DD .DC;D�; yX; y�; yJ / is a
datum for Setup II, we write SII WD SII.D/, SCI WD SI.DC/ and S�I WD SI.D�/. Similarly, a datum for
Setup III determines categories SIII;StD0II , StD1II , S˙I , and a datum for Setup IV determines categories
SIV, S01II , S12II , S0I , S1I , S2I .

4.3 Virtual moduli counts

To an object T 2 S�, we can associate a moduli space M.T / [61, Section 2.3] which carries an action of
Aut.T /— this action corresponds geometrically to changing asymptotic markers. Note that T 2 S� has a
well-defined notion of index and virtual dimension [61, Definition 2.42]. The compactified moduli space
M.T / is defined by (see [61, Definition 2.13])

(4-1) M.T / WD
G
T 0!T

M.T 0/=Aut.T 0=T /:

Theorem 1.1 in [61] provides a perturbation datum � 2 ‚�.D/ and associated virtual moduli counts
#M.T /vir

�
2Q (which are zero for vdim.T /¤ 0) satisfying the master equations

(4-2) 0D
X

codim.T 0=T /D1

1

jAut.T 0=T /j
#M.T 0/vir

�
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and

(4-3) #M.#iTi /vir
� D

1

jAut.fTigi=#iTi /j

Y
i

#M.Ti /
vir
� :

By standard arguments, this can be used to define the various maps involved in the definition of contact
homology (such as the differential d ) and show that they satisfy the expected relations (such as d2 D 0);
see [61, Section 1.7].

5 Intersection theory for punctured holomorphic curves

5.1 Definition of the Siefring intersection number

We will make use in this paper of an intersection theory for asymptotically cylindrical maps and sub-
manifolds. The four-dimensional theory was constructed by Siefring [64] and assigns an integer to a
pair of asymptotically cylindrical maps in a 4–dimensional symplectic cobordism; see also the book by
Wendl [69]. The higher-dimensional theory, also due to Siefring, assigns an integer to the pairing of
a codimension 2 (asymptotically) cylindrical hypersurface with a (asymptotically) cylindrical map. A
detailed overview can be found in [54].

Consider a strong exact symplectic cobordism . yX; y�/ from .Y C; �C/ to .Y �; ��/. Let .V ˙; �˙jV /�
.Y ˙; �˙/ be strong contact submanifolds and letH � yX be a codimension 2 submanifold with cylindrical
ends V C tV �.

We let � denote a choice of trivialization of �˙j?
V˙

along every Reeb orbit in V ˙. We require that
the trivialization along a multiply covered orbit be pulled back from the chosen trivialization along the
underlying simple orbit. Let u W†� .pCu tp�u /!

yX be a map which is positively/negatively asymptotic
at z 2 p˙u to the Reeb orbit z . Now set

(5-1) u �� H WD u
�
�H;

where u� is a perturbation of u which is transverse to H and constant with respect to � at infinity, and
.� ��/ is the usual algebraic intersection number for transversely intersecting smooth maps. While (5-1)
depends on the choice of trivialization � , Siefring showed that this count can be corrected so as to become
independent of � . This leads to the following definition.

Definition 5.1 [54, Section 2] The generalized (or Siefring) intersection number u�H 2 Z of u and
H is defined by

(5-2) u�H D u �� H C
X
z2p

C
u

˛
� I�
N .z/�

X
z2p�u

˛
� IC
N .z/:

Proposition 5.2 The intersection number u � H only depends on the equivalence classes of u in
�2. yX;�

C t��/, and H in �2n�2. yX; V C tV �/; see Definition 2.21.
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Proof The intersection number u� �H is clearly invariant under compactly supported isotopies of H .

Given a truncation X0 � yX , we can proceed as in Section 2.2 to associate to u� a map xu� W†!X0. Let
H0 DH \X0. If we choose X0 sufficiently large (so that H is cylindrical in its complement), then H0
will be a submanifold with boundary @H0 DH0\ @X0 D V C tV �. Note that xu� �H0 only depends on
Œu� 2 �2. yX;�

C t��/. Moreover, we have xu� �H0 D u� �H ; indeed, if X0 is sufficiently large, then the
intersections of xu� with H0 are exactly the same as those of u� with H .

5.2 Positivity of intersection

We now discuss positivity of intersection for the Siefring intersection number. Given a contact manifold
.Y; � D ker�/ and an almost complex structure J on �, we adopt the usual convention of letting yJ
denote the induced almost complex structure on the symplectization. An almost complex structure on a
cobordism . yX; y�/ between two contact manifolds .Y ˙; �˙/ is called cylindrical if it agrees at infinity
with yJ˙ for some choice of d�˙–compatible almost complex structures J˙ on ker.�˙/.

Proposition 5.3 [54, Corollary 2.3 and Theorem 2.5] Let . yX; y�/ be an exact symplectic cobordism
from .Y C; �C/ to .Y �; ��/. Let u and H denote an asymptotically cylindrical map and a cylindrical
submanifold of codimension 2 in yX , respectively.

Suppose that u and H are yJ –holomorphic for some cylindrical almost complex structure yJ on yX which
is compatible with dy�. If the image of u is not contained in H , then Im.u/\H is a finite set and

(5-3) u�H � u �H:

(Note that, by ordinary positivity of intersection for two pseudoholomorphic submanifolds, this implies
that u�H � 0, and that Im.u/ and H are disjoint if u�H D 0.)

When the image of u is contained inH, positivity of intersection does not hold. The following computation,
which will be useful to us later, is one example of this. The notation y refers to the trivial cylinder
R�S1! yY over the Reeb orbit  ; similarly, yV D R� V � yY is the cylinder over the strong contact
submanifold V.

Corollary 5.4 Let  be a Reeb orbit in Y. If  is contained in V, then

(5-4) y � yV D�pN ./:

Proof By definition,

(5-5) y � yV D y� � yV C˛
� I�
N ./�˛

� IC
N ./:

We can choose the perturbation y� so that its image is disjoint from yV. The result follows since
˛
� IC
N ./�˛

� I�
N ./D pN ./ by definition.

Remark 5.5 If  is disjoint from V, then y � yV D 0.
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Corollary 5.4 shows that positivity of intersection fails for curves contained in yV. However, we still have
a lower bound on the intersection number u� yV when uD y is a trivial cylinder, namely, y � yV � �1
since pN ./ 2 f0; 1g. In the remainder of this section, we show that if .Y; �; V / is a TN contact pair and
� is positive elliptic near V, then the intersection number u� yV is bounded below for all asymptotically
cylindrical curves u contained in yV. We also give an analogous result for cylindrical submanifolds of
symplectic cobordisms H � . yX;!/ with trivial normal bundle.

Proposition 5.6 Fix a TN contact pair .Y; �; V / and a datum r D .˛V ; �; r/ 2 R.Y; �; V /. Consider
a contact form � on .Y; �/ which is adapted to r, and an almost complex structure J on � which is
compatible with d� and which preserves �V . Suppose that u is a yJ –holomorphic curve whose image is
entirely contained in yV. If � is positive elliptic near V, then u� yV � 1�pu, where pu denotes the number
of punctures (positive and negative) of u.

Proof We have by definition that

˛
� I�
N .z/D bCZ�N .z/=2c D brPzc for z 2 pCu ;(5-6)

˛
� IC
N .z/D dCZ�N .z/=2e D 1CbrPzc for z 2 p�u ;(5-7)

where Pz denotes the period of the Reeb orbit z . Using the trivial bounds x� 1 < bxc � x and the fact
that u� � yV D 0, we obtain

(5-8) u� yV >
X
z2p

C
u

.rPz � 1/�
X
z2p�u

.1C rPz/� �puC r

� X
z2p

C
u

Pz �
X
z2p�u

Pz

�
:

The fact that u is yJ –holomorphic implies that
P
z2p

C
u
Pz �

P
z2p�u

Pz is nonnegative; see [68, page 60].
Thus u� yV � 1�pu, as desired.

We will need an analog of Proposition 5.6 for cobordisms. Note that if V � Y is a codimension 2 contact
submanifold, then the normal bundle of yV DR�V �R�Y D yY can be identified with the pullback of
�j?V under the projection yV ! V . Hence, any trivialization � of �j?V induces a trivialization of the normal
bundle of yV, which we will denote by y� .

Proposition 5.7 Fix TN contact pairs .Y ˙; �˙; V ˙/ and elements r˙D.˛˙V ; �
˙; r˙/2R.Y ˙; �˙; V ˙/.

Let �˙ be contact forms on .Y ˙; �˙/ which are adapted to r˙, and let . yX; y�;H/�
C

��
be a strong rela-

tive symplectic cobordism from .Y C; �C; V C/ to .Y �; ��; V �/. We assume that there exists a global
trivialization � of the normal bundle of H which coincides with y�˙ near˙1.

Let yJ be an almost complex structure on yX which is cylindrical and compatible with d�˙ outside a
compact set , and such that H is yJ –holomorphic. Let u be an asymptotically cylindrical map in yX which
is yJ –holomorphic and whose image is entirely contained in H . Following the notation of Proposition 5.6,
if �C is positive elliptic near V C, then u �H > �puC r

C
P
z2p

C
u
Pz � r

�
P
z2p�u

Pz . In particular ,
u�H � 0 if u has no negative puncture.
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Proof We have

(5-9) u�H D u� �H C
X
z2p

C
u

˛
� I�
N .z/�

X
z2p�u

˛
� IC
N .z/:

We can choose the perturbation u� so that it is disjoint from H , so u� �H D 0. We now argue as in
Proposition 5.6 to find that

(5-10) u�H >
X
z2p

C
u

.rCPz � 1/�
X
z2p�u

.1C r�Pz/� �puC r
C
X
z2p

C
u

Pz � r
�
X
z2p�u

Pz :

5.3 The intersection number for buildings

In this section, we use Siefring’s intersection theory to define an intersection number for buildings of
asymptotically cylindrical maps and buildings of asymptotically cylindrical codimension 2 submanifolds.
Since the differences between SI, SII, SIII and SIV don’t matter for this purpose, we start by defining a
category yS of labeled trees which only keeps track of the information needed for intersection theory; in
particular, there are obvious “forgetful” functors S�! yS.

The category yS D yS.f yX ij gij / depends on the following data:

(i) An integer m� 0 and a collection of mC 1 co-oriented contact manifolds .Y i ; � i /, each equipped
with a choice of contact form �i for 0� i �m.

(ii) For each pair of integers 0� i � j �m, an exact symplectic cobordism . yX ij ; y�ij / with positive
end .Y i ; � i / and negative end .Y j ; �j /. We require that yX i i D SY i be the symplectization of Y i

and that yX ik D yX ij # yXjk for i � j � k; this makes sense in light of Remark 2.8.

An object T 2 yS is a finite directed forest, ie a finite collection of finite directed trees. We require that
every vertex has a unique incoming edge. Edges which are adjacent to only one vertex are allowed; we
will refer to them as input or output edges depending on whether they are missing a source or a sink. The
other edges will be called interior edges. We also have the following decorations:

� For each edge e 2 E.T /, a symbol �.e/ 2 f0; : : : ; mg such that �.e/ D 0 for input edges and
�.e/Dm for output edges, together with a Reeb orbit e in .Y �.e/; ��.e//.

� For each vertex v 2 V.T /, a pair �.v/D .�C.v/;��.v// 2 f0; : : : ; mg2 such that �C.v/� ��.v/,
and a homotopy class ˇv 2 �2. yX�.v/; eC.v/ t fe�ge�2E�.v//, where eC.v/ denotes the unique
incoming edge of v andE�.v/ denotes its set of outgoing edges. We require that �.eC.v//D�C.v/
and �.e�/D ��.v/ for every e� 2E�.v/.

Remark 5.8 Geometrically, these decorations specify how different curves and orbits fit together to
form a holomorphic building. For example, suppose mD 1 and T is a tree with one vertex v and one
input edge e. If �.e/D 0 and �.v/D 00, then T describes a curve in SY 0 with one positive puncture
and no negative punctures. If �.e/D 0 and �.v/D 01, then T describes a curve in yX01 with one positive
puncture and no negative punctures. This labeling scheme of course follows [61, Section 2.1].
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We will let �CT and ��T denote the collections of Reeb orbits associated to the input and output edges of
an object T 2 yS. In the case where T is a tree, the unique element of �CT will be denoted by CT .

A morphism � W T ! T 0 consists of a contraction of the underlying forests (meaning that T 0 is identified
with the forest obtained by contracting a certain subset of the interior edges of T ) subject to the following
conditions:

� For every noncontracted edge e 2E.T /, we require that �.�.e//D �.e/ and �.e/ D e.

� For every vertex v 2 V.T /, we have �C.�.v//� �C.v/ and ��.�.v//� ��.v/.

� For every vertex v0 2 V.T 0/, we require that ˇv0 D #�.v/Dv0ˇv.

Note that for any morphism T ! T 0, we have �CT D �
C

T 0 and ��T D �
�
T 0 .

Remark 5.9 For every T 2 yS, we get a morphism T ! Tmax by contacting all of the interior edges of T .
Each component of Tmax is a tree with a unique vertex. In the case where T is connected, we will write
ˇT WD #vˇv 2 �2. yX0m; CT t�

�
T / for the homotopy class labeling the unique vertex of Tmax. Note that

for every morphism T ! T 0, we have Tmax D T
0

max. In particular, if T and T 0 are trees, then ˇT D ˇT 0 .

Definition 5.10 Let T 2 yS and let fTigi denote its connected components. The intersection number
T �H of T with a codimension 2 cylindrical submanifold H � yX0m is defined to be

(5-11) T �H D
X
i

ˇTi �H:

By Proposition 5.2, this intersection number only depends on the class of H in �2n�2. yX0m; V 0 tV m/.
By Remark 5.9, it is “invariant under gluing”:

Proposition 5.11 Let T; T 0 2 yS. If there exists a morphism T ! T 0, then T �H D T 0 �H .

Suppose now that mD 0, so that objects T 2 yS represent buildings of curves in the symplectization yY of
a single contact manifold .Y; �/ WD .Y 0; �0/, and that H D yV WDR�V is the trivial cylinder over some
strong contact submanifold V � Y of codimension 2. In that case, the intersection number T �H can be
expressed more explicitly as follows.

Proposition 5.12 For any T 2 yS, we have

(5-12) T � yV D
X

v2V.T /

ˇv � yV �
X

e2E int.T /

ye � yV :

Proof The proof will be by induction on the number of interior edges. If this number is zero, then (5-12)
is true by definition. Otherwise, pick an edge e 2E int.T / and contract it to obtain a morphism � W T ! T 0

where T 0 has one less interior edge than T . We can assume inductively that T 0 satisfies (5-12). Since
T � yV D T 0 � yV, it suffices to show that

(5-13) ˇvC �
yV Cˇv� � yV � ye � yV D ˇv0 � yV ;

where vC and v� are the source and sink of e, respectively, and v0 D �.vC/D �.v�/.
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To do this, start by picking curves u˙ W†˙! yY representing the classes ˇv˙ . Fix a choice of cylindrical
coordinates near the positive puncture of u� and near the negative puncture of uC corresponding to e.
We can assume that u˙ is cylindrical at infinity, so that there exists a constant C > 0 such that

(5-14) u˙.s; t/D .Pe � s; e.t// for � s � C;

where Pe is the period of the orbit corresponding to e. Now let

†C D†C n ..�1;�3C /�S1/;(5-15)

†� D†� n ..3C;1/�S1/;(5-16)

and let †D †C #†� be obtained by identifying Œ�3C;�C ��S1 � †C with ŒC; 3C ��S1 � †� via
translation by 4C . The curve uC #u� W†! yY which is given by �2CPe ıuC on †C and ��2CPe ıu�
on †� (where �s W yY ! yY denotes translation by s) then represents the homotopy class ˇvC #ˇv� D ˇv0 .

Choose a trivialization � of �j?V along the relevant Reeb orbits and use it to produce perturbations u�
˙

and
.uC # u�/� as in Section 5.1. We can do this in such a way that .uC # u�/� is obtained by gluing u�

C

and u��. Then

(5-17) .uC #u�/� � yV D u�C � yV Cu
�
� �
yV ;

so

.uC #u�/� yV D u�C � yV Cu
�
� �
yV C˛

� I�
N .C/�

X
z2p�uC#u�

˛
� IC
N .z/

D u�C �
yV Cu�� �

yV C˛
� I�
N .C/C˛

� IC
N .e/�

X
z2p�uC

˛
� IC
N .z/�

X
z2p�u�

˛
� IC
N .z/

D uC � yV Cu� � yV C˛
� IC
N .e/�˛

� I�
N .e/

D uC � yV Cu� � yV CpN .e/:

We have p.e/D�ye � yV by Corollary 5.4, so this implies that

(5-18) ˇv0 � yV D .uC #u�/� yV D uC � yV Cu� � yV � ye � yV D ˇvC � yV Cˇv� � yV � ye � yV;

as desired.

Definition 5.13 Given T 2 yS, we say that T is representable by a holomorphic building if there exists
a d�–compatible almost complex structure J on � such that, for every vertex v 2 V.T /, the homotopy
class ˇv 2 �2. yY ; eC.v/ t fe�ge�2E�.v// admits a yJ –holomorphic representative. We say that T is
representable by a yJ –holomorphic building if we wish to specify yJ.

Corollary 5.14 Let T 2 yS. Suppose that there exists a morphism T 0! T and a d�–compatible almost
complex structure J on � such that T 0 is representable by a yJ –holomorphic building. Suppose also that
yV is yJ –holomorphic. If � is positive elliptic near V, then T � yV � ���.T; V /, where ��.T; V / denotes
the number of output edges e of T such that e is contained in V.
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Proof By Proposition 5.11, T � yV D T 0 � yV. By Proposition 5.12,

(5-19) T 0 � yV D
X

v2V.T 0/

ˇv � yV �
X

e2E int.T 0/

ye � yV :

According to Proposition 5.3, we have ˇv � yV � 0, unless the holomorphic representative of ˇv is entirely
contained in yV, in which case Proposition 5.6 tells us that ˇv � yV ��#E�.v/. By Corollary 5.4, we have

(5-20) �#E�.v/D
X

e2E�.v/

ye � yV :

Given v 2 V.T 0/, let us denote by ��.v; V / the number of output edges e 2 E�.v/ such that e � V .
Appealing again to Proposition 5.12, we have

(5-21) T 0� yV D
X

v2V.T 0/

ˇv � yV �
X

e2E int.T 0/

ye � yV

D

X
v2V.T 0/

�
ˇv � yV �

X
e2E�.v/

ye � yV

�
C

X
e2E�.T /

ye � yV

D

X
v2V.T 0/

.ˇv � yV C�
�.v; V //���.T 0; V /

� ���.T; V /;

where we have used the fact that T and T 0 have the same exterior edges in the last line. This completes
the proof.

More generally, suppose we are given the following data, where m is now allowed to be any nonnegative
integer:

� For each 0� i �m, a strong contact submanifold V i � Y i of codimension 2.

� For each 0� i � j �m, a homotopy class �ij 2�2n�2. yX ij ; V i tV j /. We require that �i i WD Œ yVi �
be the homotopy class of yV i DR�V i , and that �ik D �ij # �jk for any i � j � k.

Let � WD �0m 2�2n�2. yX0m; V 0 tV m/.

Proposition 5.15 Let T 2 yS. Then

(5-22) T � �D
X

v2V.T /

ˇv � ��.v/�
X

e2E int.T /

ye � yV�.e/:

Proof We will say a vertex v 2 V.T / is a symplectization vertex if �.v/D i i for some i , and we will call
it a cobordism vertex otherwise. This induces a partition E int.T /DEss.T /tEsc.T /tEcc.T / of the set
of interior edges according to the types of the vertices they are adjacent to — here the superscripts s and c
stand for “symplectization” and “cobordism”, respectively. Similarly, the set of exterior edges admits a
partition Eext.T /DEs.T /tEc.T /.
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We can (and will) assume without loss of generality that Ess.T / is empty. Indeed, let T ! T 0 be the
morphism obtained by contracting all the edges in Ess.T /. Replacing T with T 0 doesn’t change the
left-hand side of (5-22) by Proposition 5.11 and doesn’t change the right-hand side by Proposition 5.12.

Let I D V.T /tEc.T /tEcc.T / and choose a family of curves fuigi2I with the following properties:

� For each v 2 V.T /, uv is a curve in the homotopy class ˇv which is cylindrical at infinity.

� For each e 2Ec.T /tEcc.T /, ue D ye is the trivial cylinder over the Reeb orbit e.

For t >0 sufficiently large, we can glue the ui to obtain a curve u inX00#tX01#tX11#t � � �#tXmmŠX0m

representing T . We can also choose representatives Hij of �ij so that Hi i D yVi and H WDH0m coincides
with H00 #t H01 #t � � � #t Hmm.

As in the proof of Proposition 5.12, we can choose perturbations u� and fu�i g so that

(5-23) u� �H D
X
i2I

u�i �Hi ;

where Hi WD H�.v/ for i D v 2 V.T / and Hi WD yV�.e/ for i D e 2 Ec.T / tEcc.T /. The differenceP
i ui �Hi �u�H is therefore equal to

(5-24)
X

e2E sc.T /tE c.T /

˛
� I�
N .e/�˛

� IC
N .e/C 2

X
e2E cc.T /

˛
� I�
N .e/�˛

� IC
N .e/

D

X
e2E sc.T /tE c.T /

ye � yV�.e/C 2
X

e2E cc.T /

ye � yV�.e/

D

X
e2E int.T /

ye � yV�.e/C
X

e2Ec.T /tE cc.T /

ye � yV�.e/:

Since ui �Hi D ye � yV�.e/ for i D e 2Ec.T /tEcc.T /, we conclude that

(5-25) u�H D
X

v2V.T /

uv �H�.v/�
X

e2E int.T /

ye � yV�.e/;

which implies (5-22).

Definition 5.16 Given T 2 yS, we say that T is representable by a holomorphic building if for every
vertex v 2 V.T /, there exists an adapted almost complex structure yJ v on yX�.v/ such that

ˇv 2 �2. yX
�.v/; eC.v/ t fe�ge�2E�.v// and ��.v/ 2�2n�2. yX

�.v/; V �
C.v/
tV �

�.v//

admit yJ v–holomorphic representatives.

Proposition 5.17 Let T 2 yS. Suppose that there exists a morphism T 0! T where T 0 is representable
by a holomorphic building. Suppose that �i is positive elliptic near V i for all 0� i �m, and let ri > 0
be the rotation parameter; see Definition 3.4. If ˇv � ��.v/ � �#fE�.v/g, then T � � � ���.T; V m/.
(Recall that � WD �0m.)
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Proof By Proposition 5.11, we have T � �D T 0 � �. Given v 2 V.T 0/, let us denote by ��.v; V �
�.v//

the number of output edges e 2E�.v/ such that e � V �
�.v/.

Arguing as in the proof of Corollary 5.14, we obtain from Proposition 5.15 that

(5-26) T 0 � yV D
X

v2V.T 0/

ˇv � ��.v/�
X

e2E int.T 0/

ye � yV�.e/

D

X
v2V.T 0/

�
ˇv � ��.v/�

X
e2E�.v/

ye � yV�.e/

�
C

X
e2E�.T 0/

ye � yV�.e/

D

X
v2V.T 0/

.ˇv � yV C #��.v; V �
�.v///���.T 0; V /

� ���.T; V /;

where we have used the fact that T and T 0 have the same exterior edges in the last line. This completes
the proof.

5.4 The intersection number for cycles

For future reference, we collect some basic facts about intersection numbers for cycles in oriented
manifolds. This subsection takes places entirely in the smooth category and does not involve any contact
topology.

Definition 5.18 Let M be an oriented, compact manifold of dimension n, possibly with boundary. Let
S1; S2 �M be disjoint closed embedded submanifolds of M. (We allow the Si to intersect @M, in which
case the Si are required to be embedded submanifolds after enlarging M by a collar). Then we can define
a pairing

(5-27) � �� WHk.M; S1IZ/�Hn�k.M; S2IZ/! Z; .A;B/ 7! A �B;

where A �B is a signed count of intersections between cycles representing A and B . More precisely, we
represent cycles by C1 chains; by general position, these chains may be assumed to intersect transversally
after an arbitrarily small perturbation which does not affect their homology class. It is a folklore result,
which is beyond the scope of this paper, that the resulting count is well-defined and graded-symmetric;
see eg [32, Section 2.3].

We note that the intersection number in Definition 5.18 could be defined under much milder hypotheses,
but this is not necessary for our purposes. If A and B are (the pushforward of the fundamental class of)
oriented manifolds, then A �B coincides with the usual intersection number for submanifolds. By abuse
of notation, we will view the intersection pairing as being defined on both homology classes and oriented
submanifolds.
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Definition 5.19 Fix a closed manifold Y of dimension m� 3 and a closed codimension 2 submanifold
V � Y. Suppose that H1.Y IZ/DH2.Y IZ/D 0.

Let  W S1 ! Y � V be a loop with embedded image. The linking number of  with respect to V is
denoted by linkV ./ and defined by

(5-28) linkV ./ WD V �C ;

where C is a cycle bounding  (which exists since H1.Y IZ/ D 0). This is well-defined due to our
assumption that H2.Y IZ/D 0.

Suppose now that ƒ � Y �V is a submanifold with �0.ƒ/D �1.ƒ/D 0. Let c W Œ0; 1�! Y �V be a
path with embedded image having the property that c.0/; c.1/ 2ƒ. Let xc W S1! Y �V be a loop with
embedded image obtained by connecting c.1/ to c.0/ by a path in ƒ. The (path) linking number of c
with respect to V is denoted by linkV .cIƒ/ and is defined by setting

(5-29) linkV .cIƒ/ WD V �Cxc ;

where Cxc is a cycle bounding xc. This is independent of xc since �1.ƒ/D 0, and independent of Cxc since
H2.Y IZ/D 0.

Remark 5.20 Fix an open book decomposition .Y; B; �/ and let  W S1! Y �B be a loop. Then it is
not hard to show that we have linkB./D deg.� ı /.

Similarly, supposeƒ�Y is a submanifold which is contained in a page of .Y; B; �/. Let c W Œ0; 1�!Y �B

be a path with the property that c.0/; c.1/ 2ƒ. Then the composition � ı c W Œ0; 1�! S1 induces a map
xc W Œ0; 1�=f0; 1g ! S1. We then have linkB.cIƒ/D deg xc:

Lemma 5.21 Let Y ˙ be oriented manifolds with Y C ¤∅ and let B˙ � Y ˙ be oriented submanifolds.
Let W be an oriented , smooth cobordism from Y C to Y � and let H �W be an oriented subcobordism
from BC to B�, ieH is an embedded submanifold which admits a collar neighborhood near the boundary
of W. Suppose that H1.Y ˙IZ/DH2.Y ˙IZ/DH2.W; Y CIZ/D 0.

Let † be a Riemann surface with kC 1 boundary components labeled C; �1 ; : : : ; 
�
k

. Suppose that
u W .†; @†/! .W; @W / is a smooth map sending C into Y C�BC and �i into Y ��B�.

Then

(5-30) linkBC.
C/�

kX
iD1

linkB�.�i /DH �u.†/;

where we have identified the boundary components of † with the restriction of u to these components.
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Proof Choose a 2–chain B� 2 C2.Y �IZ/ with @B� D �1 [ � � � [ 
�
k

. Glue B� to u.†/ along the �i
and call the resulting chain C 2 C2.W IZ/. We now have H �C DH �u.†/C

Pk
iD1 linkB�.�i /.

By the long exact sequence of the triple .W; Y C; C/ and our assumption that H2.W; Y CIZ/ D 0,
the natural map H2.Y; CIZ/ ! H2.W; 

CIZ/ is surjective. Let zC 2 H2.Y C; CIZ/ be a lift of
C 2H2.W; 

CIZ/. Then H �C DH � zC D BC � zC D linkBC.
C/:

Lemma 5.22 We carry over the setup and notation from Lemma 5.21. In addition to the data considered
there , let ƒ˙�Y ˙�B˙ be an oriented , smooth submanifold and let ƒ�W be an oriented subcobordism
from ƒC to ƒ� which is disjoint from H . We suppose in addition that �0.ƒ˙/D �1.ƒ˙/D 0.

Let † be a closed , oriented surface of genus zero with sC1 boundary components labeled �; 1; : : : ; n.
For � 2NC, we place 2� disjoint marked points on �, thus partitioning � into 2� subintervals. Let us
label these subintervals by the symbols cC; b01; c�1 ; b12; c

�
2 ; : : : ; b.��1/� ; c

�
� ; b�0, in the order induced

by the orientation.

Suppose now that u W .†; @†/! .W; @W [ƒ/ is a smooth map sending .cC; @cC/ into .Y C�BC; ƒC/,
sending .c�i ; @c

�
i / into .Y ��B�; ƒ�/, sending bi.iC1/ into ƒ, and sending the �i into Y ��B�.

Then

(5-31) linkBC.c
C
IƒC/�

�X
iD1

linkB�.c�i Iƒ
�/�

sX
iD1

linkB�.�i /DH �u�Œ†�;

where we have again identified the boundary components of † with the restriction of u to these compo-
nents.

6 Energy and twisting maps

6.1 Twisting maps

In order to define invariants of codimension 2 contact submanifolds, we will proceed as follows. First, we
will use Siefring’s intersection theory to define maps  W S!R. Here R could be any Q–algebra, though
we will only use RDQŒU � and RDQ. We will then use these maps to define “twisted” moduli counts

(6-1) # M.T /vir
WD #M.T /vir

� .T / 2R:

The maps  will have the property that

 .T 0/D  .T / for every morphism T 0! T , and(6-2)

 .#iTi /D
Y
i

 .Ti /;(6-3)

which implies that the master equations (4-2) and (4-3) still hold if #Mvir is replaced by # Mvir.
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The properties which must be satisfied by the maps  in order to obtain twisted counts which are suitable
for defining our invariants can be conveniently axiomatized in the notion of a twisting map. We now
define precisely this notion in each of the four setups.

Setup I Fix a datum D for Setup I. Let S¤∅I denote the full subcategory of SI spanned by objects T for
which the moduli space M.T / is nonempty.

Definition 6.1 Let R be a Q–algebra. The set ‰I.DIR/ of R–valued twisting maps consists of all maps
 W S¤∅I .D/!R satisfying the following two properties:

� For any morphism T 0! T ,  .T 0/D  .T /.

� For any concatenation fTigi ,  .#iTi /D
Q
i  .Ti /.

Fix a twisting map  2‰I.DIR/. Let

(6-4) CC�.Y; �;  /� WD
M
n�0

SymnR

� M
2Pgood

o

�
be the free supercommutative Z=2–graded unital R–algebra generated by the good Reeb orbits. The
grading of a Reeb orbit is given by its parity, which is defined as

(6-5) j j D sign det.I �A / 2 f˙1g D Z=2;

where A is the linearized Poincaré return map of � along  ; see [61, Section 2.13]. Recall that a Reeb
orbit is good if and only if it is not bad; a Reeb orbit  is bad if it is an even multiple of some simple
Reeb orbit s such that  and s have different parity [61, Definition 2.49].

Theorem 1.1 of [61] provides a set of perturbation data ‚I.D/ and associated virtual moduli counts
#MI.T /

vir
�
2Q satisfying (4-2) and (4-3). We define the twisted moduli counts

(6-6) # MI.T /
vir
� WD #MI.T /

vir
� � .T / 2R:

It follows easily from Definition 6.1 that the twisted moduli counts also satisfy (4-2) and (4-3). We may
therefore endow CC�.Y; �;  /� with a differential d ;J;� which is given by

(6-7) d ;J;� .oC/D
X

�.T /D1

1

jAut.T /j
� # MI.T /

vir
� o�� ;

where the sum is over all trees T 2 SI .D/ representing curves with positive orbit C and negative orbits
��! Pgood.

The homology of .CC�.Y; �;  /�; d ;J;� / is a supercommutative Z=2–graded unital R–algebra, which is
denoted by

(6-8) CH�.Y; �;  /�;J;� :
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Setup II Fix a datum D for Setup II. Suppose now we are given a map of Q–algebras m WRC!R�

and twisting maps  ˙ 2‰I.D˙IR˙/.

Definition 6.2 The set ‰II.DI C;  �/ consists of all maps  W S¤∅II .D/!R� satisfying the following
two properties:

� For any morphism T 0! T ,  .T 0/D  .T /.

� For any concatenation fTigi ,

(6-9)  .#iTi /D
� Y
Ti2S

C
I

m. C.Ti //

�� Y
Ti2SII

 .Ti /

�� Y
Ti2S�I

 �.Ti /

�
:

Fix a twisting map  2‰II.DI C;  �/. Theorem 1.1 of [61] provides a set of perturbation data ‚II.D/
together with a forgetful map

(6-10) ‚II.D/!‚I.DC/�‚I.D�/

and associated virtual moduli counts #MII.T /
vir
�
2Q. We define the twisted moduli counts

(6-11) # MII.T /
vir
� WD #MII.T /

vir
� � .T / 2R

�:

For any � 2‚II.D/ mapping to .�C; ��/ 2‚I.DC/�‚I.D�/, we obtain a unital RC–algebra map

(6-12) ˆ. yX; y�; / yJ ;� W CC�.Y
C; �C;  C/�C;JC;�C ! CC�.Y

�; ��;  �/��;J�;�� ;

which maps oC to

(6-13)
X

�.T /D0

1

jAut.T /j
� # MII.T /

vir
� o�� ;

with the sum over all trees T 2 SII.D/ representing curves with positive orbit C and negative orbits
��!Pgood.Y

�/. This is a chain map, since it follows from Definition 6.2 that the twisted moduli counts
satisfy (4-2) and (4-3).

Setup III Fix a datum D for Setup III. There are three types of concatenations fTigi in SIII D SIII.D/:

(1) fTig � SCI tS
tD0
II tS�I , in which case s.#iTi /D f0g.

(2) fTig � SCI tS
tD1
II tS�I , in which case s.#iTi /D f1g.

(3) fTig � SCI tSIII tS�I and Ti 2 SIII for a unique i D i0, in which case s.#iTi /D s.Ti0/.

(Here S˙I ;S
t2f0;1g
II ;SIII are tree categories determined by D, following the notation of [61, Section 2.1].)

Suppose now we are given a map of Q–algebras m WRC!R� and twisting maps  ˙ 2‰I.D˙IR˙/,
 0 2‰II.DtD0I C;  �/ and  1 2‰II.DtD1I C;  �/.
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Definition 6.3 The set ‰III.DI 0;  1/ consists of all maps  W S¤∅III .D/!R� satisfying the following
properties:

� For any morphism T 0! T ,  .T 0/D  .T /.

� For any concatenation fTigi of the first type,

(6-14)  .#iTi /D
� Y
Ti2S

C
I

m. C.Ti //

�� Y
Ti2StD0II

 0.Ti /

�� Y
Ti2S�I

 �.Ti /

�
:

� For any concatenation fTigi of the second type,

(6-15)  .#iTi /D
� Y
Ti2S

C
I

m. C.Ti //

�� Y
Ti2StD1II

 1.Ti /

�� Y
Ti2S�I

 �.Ti /

�
:

� For any concatenation fTigi of the third type,

(6-16)  .#iTi /D
� Y
Ti2S

C
I

m. C.Ti //

�
 .Ti0/

� Y
Ti2S�I

 �.Ti /

�
:

Fix a twisting map  2‰III.DI 0;  1/. Theorem 1.1 of [61] provides a set of perturbation data ‚III.D/
together with a forgetful map ‚III.D/!‚II.D0/�‚I.DC/�‚I.D�/‚II.D1/ and associated virtual moduli
counts #MIII.T /

vir
�
2Q; note that the fiber product is defined with respect to (6-10). We define the twisted

moduli counts

(6-17) # MIII.T /
vir
� WD #MIII.T /

vir
� � .T / 2R

�:

If . yX; y�t / is a family of exact cobordisms, then for any � 2‚III.D/, we obtain an RC–linear map

(6-18) K. yX; f�tgt ;  / yJ t ;� W CC�.Y
C; �C;  C/�C;JC;�C ! CC�C1.Y

�; ��;  �/��;J�;��

which sends the monomial
Q
i2I oC

i

to

(6-19)
X

vdim.fTi gi2I /D0

1

jAut.fTigi2I /j
� # MIII.fTigi2I /

vir
�

Y
i2I

o��
i
;

with the sum over trees Ti 2 SIII.D/ with positive orbit Ci and negative orbits ��i ! Pgood.Y
�/.

Equations (4-2) and (4-3) applied to the twisted moduli counts imply that this is a chain homotopy between
ˆ. yX; y�0;  0/ yJ 0;�0 and ˆ. yX; y�1;  1/ yJ 1;�1 and hence that the induced maps on homology

(6-20) CH�.Y
C; �C;  C/�C;JC;�C CH�.Y

�; ��;  �/��;J�;��

ˆ. yX;y�0; 0/ yJ0;�0

ˆ. yX;y�1; 1/ yJ1;�1

are equal.
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Setup IV Fix a datum D for Setup IV. There are three types of concatenations fTigi in SIV D SIV.D/:

(1) fTig � S0I tS
02
II tS

2
I , in which case s.#iTi /D f0g.

(2) fTig � S0I tS
01
II tS

1
I tS

12
II tS

2
I . in which case s.#iTi /D f1g;

(3) fTig � S0I tSIV tS2I and Ti 2 SIV for a unique i D i0, in which case s.#iTi /D s.Ti0/.

(We again follow the notation of [61, Section 2.1] for tree categories determined by D.) Suppose now we
are given maps of Q–algebras m01 WR0!R1 and m12 WR1!R2, and twisting maps

(6-21)
 i 2‰I.Di IRi / for i D 0; 1; 2;

 ij 2‰II.Dij I i ;  j / for ij D 01; 12; 02:

Set m02 Dm12 ım01 WR0!R2.

Definition 6.4 The set ‰IV.DI f ij g/ consists of all maps  W S¤∅IV .D/!R2 satisfying the following
properties:

� For any morphism T 0! T ,  .T 0/D  .T /.

� For any concatenation fTigi of the first type,

(6-22)  .#iTi /D
� Y
Ti2S0I

m02. 0.Ti //

�� Y
Ti2S02II

 02.Ti /

�� Y
Ti2S2I

 2.Ti /

�
:

� For any concatenation fTigi of the second type,

(6-23)  .#iTi /D
� Y
Ti2S0I

m02. 0.Ti //

�� Y
Ti2S01II

m12. 01.Ti //

�� Y
Ti2S1I

m12. 1.Ti //

�

�

� Y
Ti2S12II

 12.Ti /

�� Y
Ti2S2I

 2.Ti /

�
:

� For any concatenation fTigi of the third type,

(6-24)  .#iTi /D
� Y
Ti2S0I

m02. 0.Ti //

�
 .Ti0/

� Y
Ti2S2I

 2.Ti /

�
:

Fix a twisting map  2‰IV.DI f ij g/. Theorem 1.1 of [61] provides a set of perturbation data ‚IV.D/
together with a forgetful map ‚IV.D/ ! ‚II.D02/ �‚I.D0/�‚I.D2/ .‚II.D01/ �‚I.D1/ ‚II.D12// and
associated virtual moduli counts #MIV.T /

vir
�
2Q — here again, the fiber product is defined using (6-10).

We define the twisted moduli counts

(6-25) # MIV.T /
vir
� WD #MIV.T /

vir
� � .T / 2R

2:
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As in the previous section, we obtain an R0–linear map

(6-26) CC�.Y
0; �0;  0/�0;J 0;�0 ! CC�C1.Y

2; �2;  2/�2;J 2;�2 ;

which is a chain homotopy between the maps

ˆ. yX02; y�02;  02/ yJ 02;�02 and ˆ. yX12; y�12;  12/ yJ 12;�12 ıˆ.
yX01; y�01;  01/ yJ 01;�01 ;

so that we get the commuting diagram

(6-27)
CH�.Y

1; �1;  1/�1;J 1;�1

CH�.Y
0; �0;  0/�0;J 0;�0 CH�.Y

2; �2;  2/�2;J 2;�2

ˆ. yX12;y�12; 12/ yJ12;�12

ˆ. yX02;y�02; 02/ yJ02;�02

ˆ. yX01;y�01; 01/ yJ01;�01

6.2 The energy of a (strict) symplectic cobordism

In this section, we introduce a notion of energy for (families of strict) exact symplectic cobordisms, and
for certain classes of almost complex structures.

Notation 6.5 Recall that a strict exact symplectic cobordism from .Y C; �C/ to .Y �; ��/ is the data of
an exact symplectic cobordism . yX; y�/ and embeddings

(6-28) e˙ W .R�Y ˙; y�˙/! . yX; y�/;

which preserve the Liouville forms and satisfy certain additional properties stated in Definition 2.3.
When we consider strict exact symplectic cobordisms in this section, we will routinely abuse notation by
identifying subsets of R�Y ˙ with their image under e˙. We hope that this abuse will make this section
easier to read without introducing any substantial ambiguities.

We begin with the following definition.

Definition 6.6 Let . yX; y�/ be a strict exact symplectic cobordism from .Y C; �C/ to .Y �; ��/. A Type A
cobordism decomposition is the data of a pair of hypersurfaces

(6-29) H� D f�C�g �Y � and HC D fCCg �Y C

for C˙ 2R, such that

(6-30) ..�1;�C�/�Y
�/\ ..CC;1/�Y

C/D∅:

The intersection in (6-30) takes place inside yX ; if Y � D∅, we set H� D∅, C� D 0 and we consider
that (6-30) is tautologically satisfied. We let †. yX; y�/D†. yX; y�I�C; ��/ be the set of all such Type A
cobordism decompositions.

Remark 6.7 Since we are working with strict cobordisms, the real numbers C˙ 2 R are uniquely
determined by the hypersurfaces H˙. The data of the pair .H�;HC/ is therefore equivalent to the data
of the pair .C�; CC/.

Geometry & Topology, Volume 28 (2024)



Homological invariants of codimension 2 contact submanifolds 47

Definition 6.8 Let . yX; y�/ be as in Definition 6.6 and let � 2†. yX; y�/ be a Type A cobordism decompo-
sition. We let E.�/ WD C�CCC be the energy of the decomposition � . We define

(6-31) E. yX; y�/D E. yX; y�I�C; ��/ WD inf
�2†. yX;y�/

E.�/ 2R[f�1g

to be the energy of . yX; y�/; this is well-defined since a cobordism decomposition clearly always exists.
We note that the energy may in general be negative.

Given C 2R, let †. yX; y�/<C �†. yX; y�/ (resp. � C ) denote the subset of cobordism decompositions of
energy strictly less than C (resp. at most C ).

Lemma 6.9 (energy of a symplectization) Suppose that . yX; y�/D .SY; �Y / is a symplectization which
is endowed with the canonical structure of a (strict) exact symplectic cobordism from .Y; �C/ to .Y; ��/;
see Example 2.6. Fix f W Y !R such that �C D ef ��. Then E.SY; �Y /� �minf .

Proof Let e˙ W .R�Y; y�˙/! .SY; �Y / be the canonical identifications induced by �˙. Let HCDf0g�Y
in the coordinates induced by eC. This means that HCD f.f .y/; y/ j y 2 Y g �R�Y in the coordinates
induced by e�. Now given any C� > �minf , we can let H� D f�C�g �Y in the coordinates induced
by e�. It follows that E.SY; y�Y /� C�. Since C� > �minf was arbitrary, the claim follows.

Remark 6.10 If we assume in addition that �CD ��, then it is easy to verify that in fact E.SY; �Y /D 0.

Lemma 6.11 We have E. yX; y�/D�1 if and only if Y � D∅.

Proof Suppose that Y � is nonempty and choose a cobordism decomposition � for . yX; y�/ given by
a pair of hypersurfaces H�;HC � yX . Let .X; �/ be the truncated Liouville cobordism with negative
boundary H� and positive boundary HC. Observe that the image of the negative boundary under the
Liouville flow must touch the positive boundary in some finite time T < 1— indeed, this follows
from the fact that .X; �/ has finite volume. Given any other cobordism decomposition � 0, we now have
E.� 0/� E.�/�T .

Suppose now that Y � is empty. Then (6-30) is a vacuous condition. Since the backwards Liouville flow
of any slice fCCg �Y C is defined for all time, it follows that we can find a cobordism decomposition of
arbitrarily negative energy.

Lemma 6.12 Fix a strict exact symplectic cobordism . yX; y�/ from .Y C; �C/ to .Y �; ��/. Then
†. yX; y�/<C �†. yX; y�/ is

(a) nonempty for C > E. yX; y�/,

(b) path-connected for all C 2R. (Note that the empty set is path-connected.)

If moreover . yX; y�/ D .SY; �Y / is a symplectization and �C D ��, then †. yX; y�/�0 is nonempty and
path-connected.
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Proof Note first that (a) is tautologically true. Next, note that (b) is obvious when Y � D∅. It therefore
remains to prove (b) under the assumption that Y � ¤∅.

Let us consider a pair of cobordism decompositions �; � 0 2 †. yX; y�/<C . By definition, � and � 0 are
entirely determined by the constants �C�; CC 2R (resp. �C 0�; C

0
C

), where we are following the notation
of Definition 6.6.

Suppose first that�C�D�C 0�. Up to relabeling � and � 0, we can assume thatCC�C 0C. Now just translate
C 0
C

in the negative direction until C 0
C
DCC. This translation defines a one-parameter family of cobordism

decompositions taking � 0 to � , whose energy is clearly bounded by max.E.�/; E.� 0//D E.� 0/ < C . An
analogous argument works if we now suppose CC D C 0C and �C� ¤�C 0�.

Suppose finally that �C�¤�C 0� and CC¤C 0C. Up to relabeling � and � 0, we can assume that CC<C 0C.
If�C 0�<�C�, then we translate�C 0� in the positive direction until�C 0�D�C�. If instead�C�<�C 0�,
then we simultaneously translate �C� and CC in the positive direction until either �C� D �C 0� or
CC D C

0
C

. This takes us back to the case treated in the previous paragraph.

Finally, if . yX; y�/D .SY; �Y / is a symplectization with �C D ��, then any Type A cobordism decompo-
sition � 2†. yX; y�/�0 has vanishing energy (Remark 6.10) and is equivalent to a choice of hypersurface
HDH� DHC D f zC �Y g. The space of such choices is in natural bijection with R, so it is in particular
nonempty and connected.

Definition 6.13 Let . yX; y�t /t2Œ0;1� be a one-parameter family of (strict) exact symplectic cobordisms;
cf Definition 2.12. A one-parameter family of Type A cobordism decompositions is just the data of a
family of hypersurfaces

(6-32) H�.t/D f�C�.t/g �Y � and HC.t/D fCC.t/g �Y C

such that

(6-33) ..�1;�C�.t//�Y
�/\ ..CC.t/;1/�Y

C/D∅:

(If Y � D∅, we again set H�.t/D∅, C�.t/D 0 and we consider that (6-33) is tautologically satisfied.)
We let †. yX; y�t /t2Œ0;1� be the set of all such families of cobordism decompositions. (Note that †. yX; y�t0/
is a Type A cobordism decomposition for each fixed choice of t0.)

Definition 6.14 With the notation as above, with define the energy of a family of Type A cobordism
decompositions � 2†. yX; y�t /t2Œ0;1� to be E.�/ WD supt .C�.t/CCC.t//.

Let . yX01; y�01/ (resp. . yX12; y�12/) be a strict exact symplectic cobordism from .Y 0; �0/ to .Y 1; �1/
(resp. from .Y 1; �1/ to .Y 2; �2/). Let . yX; y�t /t2Œ0;1/ be a one-parameter family of strict exact symplectic
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cobordisms which agrees for t � a large enough with the t–gluing . yX01 #t yX12; y�01 #t y�02/t2Œa;1/; see
Definition 2.7. For t � a, note that there are canonical Liouville embeddings

�0;t W . yX
01; y�01/

�t=2
����! . yX01; et=2y�01/ ! . yX01 #t yX12; y�01 #t y�02/;

�2;t W . yX
12; y�12/

��t=2
����! . yX12; e�t=2y�12/! . yX01 #t yX12; y�01 #t y�02/:

Definition 6.15 A Type B cobordism decomposition of . yX; y�t /t2Œ0;1/ is the data of a family of hyper-
surfaces

(6-34) H2.t/D f�C2.t/g �Y 2 and H0.t/D fC0.t/g �Y 0;

and a Liouville embedding .Œ�C1.t/; zC1.t/��Y 1; es�1/ ,! . yX; y�t / such that

(6-35) .�1;�C2.t//�Y
2; .�C1.t/; zC1.t//�Y

1 and .C0.t/;1/�Y
0

are pairwise disjoint. (In the case that Y � D∅, we set H2.t/D∅ and C2.t/D 0, and replace (6-35) by
the condition that .�C1.t/; zC1.t//�Y 1 and .C0.t/;1/�Y 0 are pairwise disjoint.)

We let

(6-36) H1.t/D f�C1.t/g �Y 1 and zH1.t/D f zC1.t/g �Y 1:

This data is required to satisfy the following hypotheses:

(1) zC1.0/D�C1.0/.

(2) For t large enough, H0 and zH1.t/ (resp. H1.t/ and H2.t/) are in the image of the canonical
embedding �0;t (resp. �2;t ). Moreover, their preimages define a Type A decomposition on . yX01; y�01/
(resp. on . yX12; y�12/) which is independent of t .

We let †B.. yX; y�t /t2Œ0;1// denote the set of all such cobordism decompositions. We will write †.�/
instead of †B.�/ when the subscript is understood from the context. As in Remark 6.7, note that the
data of the hypersurfaces H2.t/, H1.t/, zH01.t/ and H0.t/ is equivalent to the data of the constants C2.t/,
C1.t/, zC1.t/ and C0.t/.

Definition 6.16 It follows from property (1) of Definition 6.15 that a Type B cobordism decomposi-
tion �02 2 †B.. yX; y�t /t2Œ0;1// induces a Type A cobordism decomposition � 2 †A. yX; y�0/ by taking
H� DH2.0/ and HC DH0.0/. We say that � is induced at zero by �02.

Similarly, it follows from property (2) of Definition 6.15 that a Type B cobordism decomposition
�02 2 †B.. yX; y�t /t2Œ0;1// induces a pair of Type A decompositions �01 2 †A. yX01; y�01/ and �12 2
†A. yX

02; y�02/. We say that the pair .�01; �12/ is induced at infinity by �02.
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Definition 6.17 With the notation as above, we define the energy of a Type B cobordism decomposition
� 2†B. yX; y�t / to be E.�/ WD supt .C2.t/CC0.t/�C1.t/� zC1.t//. We let

(6-37) E. yX; y�t / WD inf
�2†B. yX;y�t /

E.�/ 2R[f�1g:

Given C 2R, let †. yX; y�t /<C �†. yX; y�t / (resp. � C ) denote the subset of Type B cobordism decom-
positions of energy strictly less than C (resp. at most C ).

The following lemma asserts that our notions of energy for Type A and Type B decompositions are
compatible with the map which associates to a Type B decomposition the Type A decomposition induced
at zero or infinity. It will be used implicitly in the sequel.

Lemma 6.18 Let �02 be a Type B cobordism decomposition. Suppose that � is induced at zero by �02

and that .�01; �12/ is induced at infinity. Then E.�/� E.�02/ and E.�01/C E.�12/� E.�02/.

Proof The first claim follows from (1) in Definition 6.15 and the definition of energy for Type A and
Type B cobordism decomposition. The second claim follows similarly from (2) in Definition 6.15.

Corollary 6.19 We have E. yX; y�t /D�1 if and only if Y 2 D∅.

Proof One direction follows from Lemmas 6.11 and 6.18. The other one can be checked by inspection,
using the backwards Liouville flow as in the proof of the corresponding statement in Lemma 6.11.

Definition 6.20 Suppose that . yX; y�/ and . yX 0; y�0/ are exact symplectic cobordisms. For C 2 R, let
†A.. yX; y�/; . yX

0; y�0//<C �†A. yX; y�/�†A. yX; y�/ (resp. .�/�C ) be the subspace of pairs .�; � 0/ of Type A
cobordism decompositions such that E.�/C E.� 0/ < C (resp. � C ).

Lemma 6.21 Given C 2 R such that †.X02;t ; y�02;t /<C is nonempty, the map which associates to a
decomposition �02 2†.X02;t ; y�02;t /<C the pair .�01; �12/ 2†A.. yX01; y�01/; . yX12; y�12//<C induced
by �02 at infinity is surjective. If �0 D �1 D �2 and . yX01; y�01/; . yX12; y�12/ are symplectizations , the
same statement holds with � in place of <.

Proof Choose a Type B decomposition z�02. Let .z�01; z�12/ be the Type A decompositions induced by
z�02 at infinity. According to Definition 6.15, this means that there exists a T > 0 so that for t � T , we
have that H0.t/ and zH1.t/ are independent of t after pulling back via the canonical embedding �01 (and
similarly H1.t/ and H2.t/ are independent of t after pulling back by �12). By a routine modification of
the arguments of Lemma 6.12(b), one can now construct a Type B decomposition �02 so that �02t D z�

02
t

for t 2 Œ0; T �, E.�02/� E.z�02/ and �02 induces the pair .�01; �12/.
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Lemma 6.22 Suppose that . yX02;t ; y�02;t / is the .t C T /–gluing of two exact symplectic cobordisms
. yX01; y�01/ and . yX12; y�12/, for T � 0 an arbitrary fixed constant and t 2 Œ0;1/ a parameter; see
Definition 2.7 for the definition of this gluing and Lemma 2.13 for the parametric version. Suppose
that either . yX01; y�01/ or . yX12; y�12/ is a symplectization; see Example 2.6. Then E. yX02;t ; y�02;t / D
E. yX01; y�01/C E. yX12; y�12/.

Proof By Lemma 6.11 and Corollary 6.19, we may assume that yX12 has a nonempty negative end.

We only treat the case where . yX01; y�01/ is a symplectization and T D 0, since the other cases are
analogous.

Choose �01 so that E.�01/� E. yX01; y�01/C �, and choose �12 so that E.�12/� E. yX12; y�12/C �. Let
zX01 � yX01 and zX12 � yX12 be the Liouville subdomains which determine the Type A decompositions
�01 and �12, respectively.

Note that yX02;t comes equipped with tautological embeddings �0;t W yX01! yX02;t and �2;t W yX12! yX02;t ;
see Definition 2.7. For T 0 large enough and t � T 0, note that �0;t .H0�/ is in the image of �2;t .H2C/ under
the Liouville flow. These hypersurfaces therefore bound Liouville domains .Œ�C1.t/; zC1.t/��Y 1; es�1/.

Let f W Œ0;1/! R be a function which equals �.C1.T 0/C zC1.T 0// on Œ0; T 0�, is nondecreasing on
ŒT 0; T 0 C 1� and is zero on ŒT 0 C 1;1/. Let �f W yX01 � Œ0;1/ ! yX01 be defined by �f .x; t/ D
�01
f .t/CT 0C1�t

.x/, where �01t is the time-t Liouville flow on yX01. Now define a map x�0;t W yX01! yX02;t

by letting x�0;t .x/D �0;t ı �f .x; t/.

We now define the data of a Type B cobordism decomposition by letting

(6-38) H2.t/D �2;t .H2�/; H1.t/D �2;t .H2C/; zH1 Dx�0;t .H0�.t//; H0 Dx�0;t .H0C.t//:

One can check that this data indeed defines a Type B cobordism decomposition, which has energy precisely
equal to E.�01/C E.�12/� E. yX01; y�01/C E. yX12; y�12/C 2�. Since � was arbitrary, we conclude that
E. yX02;t ; y�02;t /� E. yX01; y�01/C E. yX12; y�12/.

We now discuss almost complex structures for Setups II–IV.

Setup II Fix a datum DD .DC;D�; yX; y�; yJ / for Setup II, with D˙ D .Y ˙; �˙; J˙/. Let .V ˙; �˙/�
.Y ˙; �˙/ be framed codimension 2 contact submanifolds; let ˛˙ WD �˙jV˙ and assume that V ˙ is a
strong contact submanifold with respect to �˙. Let J˙ be d�˙–compatible almost complex structures
on �˙ � T Y ˙ which preserve �˙\T V ˙.

LetH � yX be a codimension 2 symplectic submanifold such that . yX; y�;H/ is an exact relative symplectic
cobordism from .Y C; �C; V C/ to .Y �; ��; V �/. We will also consider (see Notation 2.4) the strict
symplectic cobordisms . yX; y�/�

C

��
and .H; y�jH /˛

C

˛� .
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Definition 6.23 Fix a Type A cobordism decomposition � 2†.H; y�jH /, which is specified by a pair of
hypersurfaces H� D f�C�g �V � and HC D fCCg �V C. We say that an almost complex structure yJ
on yX is adapted to � if the following properties hold:

� yJ is compatible with dy�,

� yJ coincides with yJ˙ near the ends (where yJ˙ is the canonical cylindrical almost complex structure
induced on . yY ; y�˙/ by J˙),

� H � yX is a yJ –complex hypersurface,

� yJ preserves ker˛C�T V C on ŒC2;1/�V C (resp. preserves ker˛��T V � on .�1;�C1��V �)
and the induced almost complex structure is d˛C–compatible (resp. d˛�–compatible).

In the case that V � D∅, the conditions involving V � are considered to be vacuously satisfied.

Definition 6.24 Given an almost complex structure yJ on . yX; y�/ we define its energy

(6-39) E. yJ / WD inffE.�/ j � 2†.H; y�jH /; yJ is adapted to �g 2R[f˙1g:

We define E. yJ /D1 if yJ is not adapted to any cobordism decomposition.

Let J . yX; y�;H/<C (resp. � C ) be the set of almost complex structures of energy less than C (resp. at
most C ). Let J . yX; y�;H/ WD J . yX; y�;H/<1 be the set of almost complex structures adapted to some
decomposition � 2†. yH; y�jH /.

Lemma 6.25 The set J . yX; y�;H/<C is

(a) nonempty for C > E.H; y�jH /, and

(b) path-connected for all C 2R. (Note that the empty set is path-connected.)

If moreover .H; y�jH /D .SV; �V / is a symplectization and ˛C D ˛�, then J . yX; y�;H/�0 is nonempty
and path-connected.

Proof To prove (a), it is enough to show that given any cobordism decomposition � , there exists an
almost complex structure adapted to it, ie meeting the conditions of Definition 6.23. To prove (b), it
follows from Lemma 6.12 that it is enough to prove a similar statement in families: namely, if f�tgt2Œa;b�
is a family of cobordism decompositions and Ja and Jb are almost complex structures adapted to �a
and �b , respectively, then there is a family fJtgt2Œa;b� adapted to �t . All of these statements can be
proved by standard arguments, using the fact that the space of almost complex structures compatible with
a given symplectic structure can be viewed as the space of sections of a bundle with contractible fibers;
see eg [52, Proposition 2.6.4].

If ˛CD ˛� and .H; y�jH / is a symplectization, then Lemma 6.12 implies that †.H; y�jH /�0 is nonempty
and path-connected. Hence the same arguments involving extensions of almost complex structures imply
that J . yX; y�;H/�0 is nonempty and path-connected.
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Setup IV Fix a datum D for Setup IV. We write DD .D01;D12; . yX02;t ; y�02;t ; yJ 02;t /t2Œ0;1//, where

D01 D .D0;D1; yX01; y�01; yJ 01/;

D12 D .D1;D2; yX12; y�12; yJ 12/;

Di D .Y i ; �i ; J i / for i D 0; 1; 2:

Let .V i ; � i /� .Y i ; �/ be framed codimension 2 contact submanifolds; set ˛V i D �
i jV i and assume that

V i are strong contact submanifolds with respect to �i . Let

H 01
� yX01; H 12

� yX12 and .H 02;t
� yX02;t /t2Œ0;1/

be cylindrical symplectic submanifolds such that . yX02;t ; y�02;t ;H 02;t /t2Œ0;1/ is a family of relative
symplectic cobordisms that agrees for t large with the t–gluing of the relative symplectic cobordisms
. yX01; y�01;H 01/ and . yX12; y�12;H 12/. Note that fH 02;tg forms a family of Liouville manifolds with
respect to (the restriction of) y�02;t .

Definition 6.26 Fix a Type B cobordism decomposition �02 2 †B. yH 02;t ; y�
02;t

H02;t /. Recall that �02

consists of the data of hypersurfaces

H2.t/Df�C2.t/g�V 2; H1.t/Df�C1.t/g�V 1; zH1.t/Df zC1.t/g�V 1; H0.t/DfC0.t/g�V 0:

We say that an almost complex structure yJ 02;t is adapted to �02 if the following properties hold:

� yJ 02;t is compatible with dy�02;t .

� yJ 02;t coincides with yJ 0 (resp. yJ 2) near the positive (resp. negative) end.

� H 02;t is a yJ 02;t–complex hypersurface. yJ 02;t is compatible with the restriction of dy�02;t toH 02;t ,
and

� yJ 02;t preserves ker˛0 on ŒC0.t/;1/ � V 0, and preserves ker˛1 on Œ�C1.t/; zC1.t/� � V1, and
preserves ker˛2 on .�1;�C2.t/� � V2/. Moreover, the induced almost complex structure is
d˛0–compatible, d˛1–compatible, and d˛2–compatible.

In the case that V 2 D∅, all conditions involving V 2 are considered to be vacuously satisfied.

Definition 6.27 Given a family of almost complex structures yJt , we define its energy by

(6-40) E. yJt / WD inffE.�/ j � 2†. yX02;t ; y�02;t /; yJt is adapted to �g 2R[f˙1g:

If yJt is not adapted to any cobordism decomposition, we set E. yJt /D1.

Let J . yX02;t ; y�02;t ;H 02;t / be the set of almost complex structures adapted to some Type B decomposition
� 2†B.H

02;t ; y�02;t jH02;t /. For C 2R, let J . yX02;t ; y�02;t ;H 02;t /<C (resp. � c) be the set of all such
decompositions having energy less than C (resp. at most C ).

Let J .. yX01; y�01/; . yX12; y�12//<C � J . yX01; y�01/�J . yX12; y�12/ (resp. � C ) be the subspace of pairs
.J; J 0/ with the property that E.J /C E.J 0/ < C (resp. � C ).
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The following lemma is an analog of Lemma 6.25 and can be proved by similar arguments.

Lemma 6.28 The set J . yX02;t ; y�02;t ;H 02;t /<C is nonempty for C > E. yX02;t ; y�02;t ;H 02;t /. If more-
over ˛0 D ˛1 D ˛2 and .H 01; y�01jH01/; .H 12; y�12jH12/ and .H 02;t ; y�02;t jH02;t / are symplectizations ,
then J . yX02;t ; y�02;t ;H 02;t /�0 is nonempty.

We will also need the following lemma, which follows from Lemma 6.21 and standard arguments for
extending compatible almost complex structures.

Lemma 6.29 Suppose that J . yX02;t ; y�02;t ;H 02;t /<C is nonempty. The map that associates to an almost
complex structure yJt 2 J . yX02;t ; y�02;t ;H 02;t /<C the pair . yJ 01; yJ 12/ 2 J .. yX01; y�01/; . yX12; y�12//<C
is surjective for all C > 0.

If moreover ˛0 D ˛1 D ˛2, and .H 01; y�01jH01/, .H 12; y�12jH12/ and .H 02;t ; y�02;t jH02;t / are symplecti-
zations , then the same statement holds for C D 0 with � in place of <.

7 Enriched setups and twisted moduli counts

7.1 Enriched setups

The construction of invariants of codimension 2 contact submanifolds in this paper follows the same
general scheme as Pardon’s construction of contact homology. However, we work with a class of “enriched”
Setups I*–IV*, which contain more information than the standard Setups I–IV considered by Pardon and
reviewed in Section 4.1.

We will show in Section 7.2 that the data associated to our enriched setups give rise to twisting maps.
These twisting maps are constructed using Siefring’s intersection theory, and will be used to define
“twisted” moduli counts, following the construction of Section 6.1.

Given a datum D for any of Setups I*–IV*, there is a “forgetful functor” which allows one to view D as a
datum of Setups I–IV. However, it is not the case that every datum of Setups I–IV admits an enrichment.
Nevertheless, we will show in Section 8.1 that the class of enriched data is large enough for the purpose
of defining invariants in the spirit of contact homology.

Setup I* A datum DD ..Y; �; V /; r; �; J / for Setup I* consists of

� a TN contact pair .Y; �; V /,

� an element rD .˛V ; �; r/ 2R.Y; �; V /,

� a contact form ker�D � which is adapted to r, and

� an almost complex structure J which is compatible with d� and preserves �V .

Observe that there is a “forgetful functor” from Setup I* to Setup I which remembers .Y; �; J / but forgets
V and r. One has analogous forgetful functors for the other setups.
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Setup II* A datum DD .DC;D�; yX; y�;H; yJ / for Setup II* consists of

� data D˙ D ..Y ˙; �˙; V ˙/; r˙; �˙; J˙/ for Setup I*, where we write r˙ D .˛˙V ; �
˙; r˙/,

� an exact relative symplectic cobordism . yX; y�;H/ with positive end .Y C; �C; V C/ and negative
end .Y �; ��; V ˙/, and

� an dy�–tame almost complex structure yJ on yX which agrees with yJ˙ at infinity.

This datum is moreover subject to the conditions that

� there exists a trivialization of the normal bundle of H which restricts to �C (resp. ��) on the
positive (resp. negative) end, and

� E. yJ / <1 and rC � eE. yJ/r�.

Setup III* A datum DD .DC;D�; yX; y�t ;H t ; yJ t /t2Œ0;1� for Setup III* consists of

� data D˙ D ..Y ˙; �˙; V ˙/; r˙; �˙; J˙/ for Setup I*,

� a family of exact relative symplectic cobordisms . yX; y�t ; yH t / for t 2 Œ0; 1�, with positive end
.Y C; �C; V C/ and negative end .Y �; ��; V �/, and

� a family dy�t–tame almost complex structures yJ t on yX , which agree with yJ˙ at infinity.

This datum is moreover subject to the conditions that

� there exists a trivialization of the normal bundle of H which restricts to �C (resp. ��) on the
positive (resp. negative) end, and

� E. yJ t / <1 and rC � eE. yJ
t /r�.

Setup IV* A datum DD .D01;D12; . yX02;t ; y�02;t ;H 02;t ; yJ 02;t /t2Œ0;1// for Setup IV* consists of

� data Di D ..Y i ; � i ; V i /I ri ; �i ; J i / for Setup I* for i D 0; 1; 2,

� a datum D01 D .D0;D1; yX01; y�01;H 01; yJ 01/ for Setup II*,

� a datum D12 D .D1;D2; yX12; y�12;H 12; yJ 12/ for Setup II*, and

� a family of cylindrical symplectic submanifolds H 02;t � yX02;t for t 2 Œ0;1/, such that

. yX02;t ; y�02;t ;H 02;t /t2Œ0;1/

is a family of exact relative symplectic cobordisms that agrees for t large with the t–gluing of the
relative symplectic cobordisms . yX01; y�01;H 01/ and . yX12; y�12;H 12/.

This datum is moreover subject to the conditions that

� there exists a trivialization of the normal bundle of H 02;t which restricts to �0 (resp. �2) on the
positive (resp. negative) end,

� there exists a trivialization of the normal bundle of H 01 which restricts to �0 (resp. �1) on the
positive (resp. negative) end,
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� there exists a trivialization of the normal bundle of H 12 which restricts to �1 (resp. �2) on the
positive (resp. negative) end,

� E. yJ 02;t / <1; E. yJ 01/ <1 and E. yJ 12/ <1, and

� r0 � eE.
yJ 02;t /r2; r0 � eE. yJ

01/r1; and r1 � eE. yJ
12/r2.

We note that the requirement in Setups II*–IV* that the almost complex structures have finite energy is
of course vacuous if r�, r1 and r2 are nonzero (or equivalently, V �, V1 and V2 are nonempty).

7.2 Twisting maps associated to enriched setups

In this section, we construct twisting maps on the contact homology algebra. These maps depend on
geometric data involving codimension 2 contact submanifolds and relative symplectic cobordisms.

Setup I* Let DD ..Y; �; V /; r; �; J / be a datum for Setup I*, where rD .˛V ; �; r/. There is an obvious
functor from SI.D/ to the category yS. yY / defined in Section 5.3. We therefore have a well-defined
intersection number T � yV for T 2 SI.D/. We now introduce twisting maps associated to the above setup.

Definition 7.1 We define a map  V .T / W S
¤∅
I .D/!QŒU � by

(7-1)  V .T /D U
T� yVC��.T;V /;

where ��.T; V / denotes the number of output edges e of T such that the corresponding Reeb orbit e is
contained in V. Corollary 5.14 ensures that the exponents appearing in these definitions are nonnegative.

Remark 7.2 Corollary 5.14 only applies to trees T such that M.T /¤∅. This is why the definition of
twisting maps only requires them to be defined on S¤∅ and not on the whole category S.

Definition 7.3 We define a map z V W S
¤∅
I .D/!Q by

(7-2) z V .T /D

�
1 if T � yV D 0 and jej \V D∅ for every e 2E.T /,
0 otherwise.

We must now check that the maps in Definitions 7.1 and 7.3 satisfy the axioms of Definition 6.1.

Proposition 7.4 The map  V introduced in Definition 7.1 is a twisting map.

Proof It follows from Proposition 5.11 that  V .T /D  V .T 0/ for any morphism T ! T 0.

Let fTigi be a concatenation in S¤∅I . We need to show that  V .#iTi /D
Q
i  V .Ti /, ie

(7-3) .#iTi /� yV C��.#iTi ; V /D
X
i

Ti � yV C�
�.Ti ; V /:
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We assume V ¤ ∅ (otherwise there is nothing to say). Since the contact form � is positive-elliptic
near V, we have pN ./ D 1 for every Reeb orbit  contained in V by Proposition 3.8. Remark 5.5
and Corollary 5.4 therefore imply that y � yV is equal to �1 if  is contained in V and 0 otherwise. By
Proposition 5.12, this means that

(7-4) T � yV D
X

v2V.T /

ˇv � yV C�
int.T; V /

for all T 2 SI, where � int.T; V / denotes the number of edges e 2E int.T / such that e is contained in V.
Equation (7-3) is therefore equivalent to

(7-5) � int.#iTi ; V /C��.#iTi ; V /D
X
i

.� int.Ti ; V /C�
�.Ti ; V //:

The result now follows from the observation that there is a (canonical) label-preserving bijection between
E int.#iTi /[E�.#iTi / and

S
i .E

int.Ti /[E
�.Ti //— this is an immediate consequence of the definition:

every interior edge of Tj corresponds to an interior edge of #iTi , and every output edge of Tj corresponds
either to an interior or an output edge of #iTi depending on whether it is identified with another edge in
the concatenation or not.

It will be convenient to introduce the following definition.

Definition 7.5 Given a tree T 2 SI, a vertex v 2 V.T / is mean if it is an interior vertex and jej � V for
all e 2 eC.v/tE�.v/. All other vertices are said to be nice. These sets are denoted by Vm.T /� V.T /
and Vn.T /� V.T /, respectively.

Remark 7.6 This notion of nice/mean vertices is purely auxiliary (and has nothing to do with good/bad
Reeb orbits!). Geometrically, mean vertices correspond to holomorphic buildings which have intermediate
orbits intersecting yV. Nice orbits do not affect the intersection number of the building, but mean orbits do
affect it and must therefore be treated carefully (hence the adjective).

Proposition 7.7 The map z V introduced in Definition 7.3 is a twisting map.

Proof Fix a tree T 2 S¤∅I . We first show that z V .T 0/ D z V .T / for any tree T 0 2 S¤∅I admitting a
morphism T 0! T . Observe that we may assume without loss of generality that T 0 is representable by a
yJ –holomorphic building; see Definition 5.13. Indeed, since T; T 0 2 S¤∅I , there exists T 00! T 0! T such

that T 00 is representable by a yJ –holomorphic building. So we may as well prove that z V .T 00/D z V .T 0/
and z V .T 00/D z V .T /.

Let us therefore fix T 0 2 S¤∅I such that T 0 is representable by a yJ –holomorphic building, and a morphism
T 0! T . It follows from Proposition 5.11 that T 0� yV D T � yV. Note that T 0 and T have the same exterior
edges. If one of these edges is contained in V, then z V .T 0/D z V .T /D 0. So we can assume that the
exterior edges of T 0 and T are not contained in V.
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Suppose now that T 0 has an interior edge contained in V. For i D 0; 1; 2, let Xi � 0 be the number of
edges e 2E.T 0/ such that jej � V and e is adjacent to exactly i mean vertices. By assumption, we have
X2CX1CX0 � 1. According to Proposition 5.12, we have

(7-6) T 0 � yV D
X

v2Vn.T 0/

ˇv � yV C
X

v2Vm.T 0/

ˇv � yV CX2CX1CX0:

According to Proposition 5.3, we also have that
P
v2Vn.T 0/

ˇv � yV � 0— here we use the fact that
T 0 is representable by a yJ –holomorphic building. If there are no mean vertices, then we have thatP
v2Vm.T 0/

ˇv � yV D 0, X1DX2D 0 and X0 � 1. So T 0� yV > 0. If there exists at least one mean vertex,
observe that we haveX2�#Vm.T 0/�1. Moreover, given v2Vm.T 0/, Proposition 5.6 together with the fact
that T 0 is representable by a yJ –holomorphic building imply that ˇv � yV � 1�pv , where pv is the number
of edges adjacent to v. It follows that

P
v2Vm.T 0/

ˇv� yV CX2CX1� .#Vm.T 0/�X1�2X2/CX2CX1D
#Vm.T 0/�X2 � 1. It thus follows again that T 0 � yV > 0. We conclude that z H .T 0/D z H .T /D 0 if T 0

has an interior edge contained in V.

We are left with the case where T 0 and hence T have no edges contained in V. It is then immediate that
z V .T

0/D z V .T /.

We now show that any concatenation fTigi satisfies z V .#iTi /D
Q
i
z V .Ti /. If one of the Ti has an edge

contained in V, then #iTi also has an edge contained in V and we have z V .#iTi / D
Q
i
z V .Ti / D 0.

If none of the Ti have an edge contained in V, then the same is true for #iTi . Hence Proposition 5.12
implies that #iTi � yV D

P
i Ti �

yV. By positivity of intersection (Proposition 5.3),
P
i Ti �

yV D 0 if and
only if Ti � yV D 0 for all i . It then follows that z V .#iTi /D

Q
i
z V .Ti /.

Setup II* Fix a datum DD .DC;D�; yX;H; y�; yJ / for Setup II*, where we write

D˙ D ..Y ˙; �˙; V ˙/; r˙; �˙; J˙/ and r˙ D .˛˙; �˙; r˙/:

We now introduce the following twisting maps.

Definition 7.8 We define a map  H W S
¤∅
II .D/!QŒU � by

(7-7)  H .T /D U
T�HC��.T;V �/:

Definition 7.9 We define a map z H W S
¤∅
II .D/!Q by

(7-8) z H .T /D

�
1 if T �H D 0 and jej \V ˙ D∅ for every e 2E.T /;
0 otherwise.

We need to verify that the above definitions satisfy the axioms of twisting maps. The first step is to prove
that the  H .T / are nonnegative powers of U . This is the content of Corollary 7.12, whose proof requires
some preparatory lemmas. (In the next two lemmas, P† always denotes an arbitrary punctured Riemann
surface.)
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Lemma 7.10 For n� 1, suppose that ˇ 2 �2
�
yX; C t

�Sn
iD1 

�
i

��
is represented by a yJ –holomorphic

curve u W P†! yX which is contained in H . Then PC� e�E. yJ/
�Pn

iD1 P
�
i

�
� 0, where PC (resp. P�i ) is

the period of C � .Y C; �C/ (resp. the period of �i � .Y
�; ��/).

Proof The claim is trivial if E. yJ /D1, so let us assume that yJ 2 J . yX; y�;H/. We may therefore fix a
Type A decomposition � of .H; �H /, which is specified by a pair of hypersurfaces H� D f�C1g �V �

and HC D fCCg �V C.

It will be convenient to define the regions R� WD .�1;�C1� � V
�, RC WD ŒC2 � 1/ � V

C and
zH DH � .int.R�/[ int.RC//. Let us first assume that u is transverse to the boundary of zH . Consider

now the sum

(7-9)
Z
u�1.R�/

e�C1u�d˛�C

Z
u�1. zH/

u�dy�C eC2
Z
u�1.RC/

u�d˛C:

Each summand is nonnegative due to the fact that u is yJ –holomorphic and that yJ is adapted to � .
By Stokes’ theorem, the sum of the integrals is eC2PC � e�C1

�Pn
iD1 P

�
i

�
� 0. This implies that

PC � e�E.�/
�Pn

iD1 P
�
i

�
.

If u is not transverse to the boundary of zH , observe by Sard’s theorem that transversality can be achieved
for a sequence of domains zHn WD zH [ Œ�C n1 ;�C1� [ ŒC2; C

n
2 �, where fC ni g

1
nD0 is monotonically

decreasing and C ni ! Ci . It is easy to verify that yJ is still adapted to the Type A decompositions
induced by the boundary of zHn, so the above argument goes through and passing to the limit gives
PC � e�E.�/

�Pn
iD1 P

�
i

�
.

The lemma now follows from the definition of E. yJ /.

Lemma 7.11 For n� 0, suppose that ˇ 2 �2. yX; C t .
Sn
iD1 

�
i // is represented by a yJ –holomorphic

curve u W P†! yX . (Note that unlike in Lemma 7.10, we allow nD 0 in which case the union is interpreted
as being empty.) Then ˇ �H � �nu, where nu is the total number of negative punctures of u contained
in V � � Y �.

Proof According to Proposition 5.3, we only need to consider the case where the image of u is contained
in H . By definition of a datum for Setup II*, the trivializations �˙ extend to a global trivialization � of
the normal bundle of H , which implies that u� �H D 0. Using the fact that u� �H D 0, we have (see
Definition 5.1 and the proof of Proposition 5.6)

(7-10) u�H D ˛
� I�
N .C/�

nX
iD1

˛
� IC
N .�i /D bCZ�N .

C/=2c�

nX
iD1

dCZ�N .
�
i /=2e

D brCPCc�

nX
iD1

br�Pic;

where the sum is interpreted as zero if u has no negative punctures.

Geometry & Topology, Volume 28 (2024)



60 Laurent Côté and François-Simon Fauteux-Chapleau

We may assume that n � 1 and r� > 0 (otherwise the lemma is automatic). Let pu D nuC 1 be the
total number of punctures (positive and negative) of u contained in V ˙ � Y ˙. Using the trivial bounds
x� 1 < bxc � x, we obtain

(7-11) u�H > .rCPC� 1/�

nX
iD1

.1C r�P�i /D�puC r
CPC� r�

nX
iD1

P�i :

Using now Lemma 7.10 and the fact that rC � eE. yJ/r�, we have

(7-12) �puC r
CPC� r�

nX
iD1

P�i � �puC r
C��E.

yJ/
nX
iD1

P�i � r
�

nX
iD1

P�i � �pu:

The claim follows.

Corollary 7.12 We have T �H � ���.T; V �/ for any T 2 S¤∅II .D/. Hence  H .T / 2QŒU �.

Proof Since T 2 S¤∅II .D/, there exists T 0! T such that T 0 is representable by a holomorphic building.
Since the Siefring number is invariant under gluing (Proposition 5.11), we may assume that T is repre-
sentable by a holomorphic building. We now apply Proposition 5.17: it therefore suffices to check that
for each v 2 T , the intersection number ˇv � ��.v/ is bounded below by �#fE�.v/g. In the case that
�.v/D 01, this follows from Lemma 7.11. In the case that �.v/D 00 or �.v/D 11, this follows either
from Lemma 7.11 or (more directly) from Proposition 5.6.

Proposition 7.13 Let fTigi be a concatenation in SII. Then we have

( #i Ti /�H C��.#iTi ; V �/

D

X
Ti2S

C
I

.Ti � yV
C
C��.Ti ; V

C//C
X
Ti2SII

.Ti �H C�
�.Ti ; V

�//C
X
Ti2S�I

.Ti � yV
�
C��.Ti ; V

�//:

Proof As in the proof of Proposition 7.4, our assumptions imply that y �V ˙ D �1 if  is contained
in V ˙ and 0 otherwise. By Proposition 5.15, we have

(7-13) T �H D
X

v2V.T /
�.v/D00

ˇv � yV
C
C

X
v2V.T /
�.v/D01

ˇv �H C
X

v2V.T /
�.v/D11

ˇv � yV
�
C� int.T; V C/C� int.T; V �/

for all T 2 SII. By applying this formula to T D #iTi (and also using (7-4)), we see that it suffices to
prove that

(7-14) � int.#iTi ; V C/C� int.#iTi ; V �/C��.#iTi ; V �/

D

X
Ti2S

C
I

� int.Ti ; V
C/C��.Ti ; V

C/C
X
Ti2SII

� int.Ti ; V
C/C� int.Ti ; V

�/C��.Ti ; V
�/

C

X
Ti2S�I

� int.Ti ; V
�/C��.Ti ; V

�/:
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As in the proof of Proposition 7.4, this is just a matter of understanding how the edges of #iTi are obtained
from the edges of the Ti , following the discussion in [61, Section 2.2]. More precisely, let us check that
every edge counted on the right-hand side of (7-14) is also counted on the left-hand side. Note that under
concatenation, interior edges remain interior edges. Output edges either remain output edges, or they
become interior edges. The output edges corresponding to ��.Ti ; V C/ for Ti 2 SCI must all become
interior edges of #iTi : indeed, any such output edge has label �.e/D 0, but the output edges of #iTi have
label �.e/D 1. These output edges are thus counted in � int.#iTi ; V C/.

The output edges corresponding to ��.Ti ; V �/ for Ti 2 SII may either become interior edges of #iTi (in
which case they are counted in � int.#iTi ; V �/), or remain output edges (in which case they are counted in
��.#iTi ; V �/). Similarly, the output edges corresponding to ��.Ti ; V �/ for Ti 2 S�I may either become
interior edges of #iTi (counted in � int.#iTi ; V �/) or remain output edges (counted in ��.#iTi ; V �/).

Corollary 7.14 Under the assumptions of Proposition 7.13,  H 2‰II.DI VC ;  V �/.

Proof Proposition 5.11 implies that  H .T /D  H .T 0/ for any morphism T ! T 0. Proposition 7.13
implies that  H acts correctly on concatenations.

We now want to show that z H is a twisting map. We will need the following definition.

Definition 7.15 Given a tree T 2 SII, a vertex v 2 V.T / is mean if it is an interior vertex and jej � V ˙

for all e 2 eC.v/tE�.v/. All other vertices are said to be nice. These sets are denoted by Vm.T /�V.T /
and Vn.T /� V.T /, respectively.

Proposition 7.16 Under the assumptions of Definition 7.9, z H 2‰II.DI z VC ; z V �/.

Proof Consider a tree T 0 2 S¤∅II with a morphism T 0! T . We wish to show that z H .T 0/D z H .T /. As
in the proof of Proposition 7.7, we may assume that T 0 is representable by a building; see Definition 5.16.

It follows from Proposition 5.11 that T 0 �H D T �H . Note that T 0 and T have the same exterior edges.
If one of these edges is contained in V ˙, then z H .T 0/D z H .T /D 0. So we can assume that the exterior
edges of T 0 and T are not contained in V ˙.

Suppose now that T 0 has an interior edge contained in V ˙. Arguing as in the proof of Proposition 7.7,
let Xi � 0 for i D 0; 1; 2 denote the number of edges e 2E.T 0/ such that jej � V ˙ and e is adjacent to
exactly i mean vertices. By assumption X0CX1CX2 � 1. By Proposition 5.15, we have

(7-15) T 0 �H D
X

v2Vn.T 0/

ˇv �HvC
X

v2Vm.T 0/

ˇv �HvCX2CX1CX0;

where we write Hv D yV C if �.v/D 00, Hv DH if �.v/D 01 and Hv D yV � if �.v/D 11. According to
Proposition 5.6 and the fact that T 0 is representable by a building, we have that

P
v2Vn.T 0/

ˇv �Hv � 0.
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If there are no mean vertices, then
P
v2Vm.T 0/

ˇv �Hv DX1 DX2 D 0 and X0 � 1. Hence T 0 �H � 1.
If there exists at least one mean vertex, observe that X2 � #Vm.T 0/� 1. According to Lemma 7.11
and the fact that T 0 is representable by a building, we have that

P
v2Vm.T /

ˇv �Hv C X2 C X1 �

#Vm.T 0/�X1�2X2CX2CX1D #Vm.T 0/�X2� 1. It thus follows again that T 0� yV � 1. We conclude
that z V .T 0/D z V .T /D 0 if T 0 has an interior edge contained in V ˙.

We are left with the case where T 0 and hence T have no edges contained in V ˙. It’s then immediate that
z H .T

0/D z H .T /.

If fTigi is a concatenation, then the argument is the same as in the proof of Proposition 7.7 (using
Proposition 5.15 instead of Proposition 5.12).

Setup III* Fix a datum DD .DC;D�; yX; y�t ;H t ; yJ t /t2Œ0;1� for Setup III*, where

D˙ D ..Y ˙; �˙; V ˙/; r˙; �˙; J˙/:

We now introduce the following twisting maps.

Definition 7.17 We define a map  H t W S¤∅III .D/!QŒU � by

(7-16)  H t .T /D U T�H
tC��.T;V �/:

Definition 7.18 We define a map z H t W S¤∅III .D/!Q by

(7-17) z H t .T /D

�
1 if T �H t D 0 and jej \V ˙ D∅ for every e 2E.T /,
0 otherwise.

There is no difference between SIII and SII from the point of view of the intersection theory defined in
Section 5.3. It can therefore be shown by essentially the same arguments as in the previous section that
the above definitions do indeed satisfy the axioms for twisting maps.

Corollary 7.19 We have  H t 2‰III.DI H0 ;  H1/ and z H t 2‰III.DI z H0 ; z H1/.

Setup IV* Fix datum DD .D01;D12; . yX02;t ; y�02;t ;H 02;t ; yJ 02;t /t2Œ0;1// for Setup IV*. Here,

� D01 D .D0;D1; yX01; y�01;H 01; yJ 01/ is a datum for Setup II*,

� D12 D .D1;D2; yX12; y�12;H 12; yJ 12/ is a datum for Setup II*, and

� Di D ..Y i ; � i ; V i /I ri ; �i ; J i / is a datum for Setup I* for i D 0; 1; 2.

We introduce the following twisting maps.

Definition 7.20 We define  H02;t W S¤∅IV .D/!QŒU � by

(7-18)  H02;t .T /D U T��C�
�.T;V 2/:
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Definition 7.21 We define z H02;t W S¤∅IV .D/!Q by

(7-19) z H02;t .T /D

�
1 if T � �D 0 and jej \V i D∅ for all e 2E.T / and i 2 f0; 1; 2g,
0 otherwise.

We need to show that the powers of U appearing in Definition 7.20 are nonnegative. This will be the
content of Corollary 7.24, which requires some preparatory lemmas.

Lemma 7.22 For n� 1, suppose that u W P†! yX02;t is yJ 02;t–holomorphic with positive orbit C and
negative orbits

Sn
iD1 

�
i . Then we have PC�e�E. yJ

02;t /
P
i P
�
i � 0, where PC (resp. P�i ) is the period

of C � V 0 (resp. �i � V
2).

Proof The proof is analogous to that of Lemma 7.10. If E. yJ 02;t / D 1, the result is trivial. Hence
we may assume that yJ 02;t 2 J . yX02;t ; y�02;t ;H 02;t / and fix a Type B cobordism decomposition �02;t

of .H 02;t ; y�02;t jH02;t / to which yJ 02;t is adapted. The decomposition �02;t is specified by a family of
hypersurfaces

H2.t/Df�C2.t/g�V 2; H1.t/Df�C1.t/g�V 1; zH1.t/Df zC1.t/g�V 1; H0.t/D fC0.t/g �V 0:

It will be convenient to define the regions R2.t/D .�1;�C2.t/��V 2; R0.t/D ŒC0.t/;1/�V 0 and
R1.t/D Œ�C1.t/; zC1.t/��V

1.

Suppose first that R1.t/ is empty. Then zC1.t/ C C1.t/ D 0, and hence E.�02;t / D C0.t/ C C2.t/.
Hence E.�02;t / coincides with the energy of �02;t if it is viewed as a Type A cobordism decomposition
(Definition 6.8) by forgetting C1 and zC1. Hence, when R1.t/ is empty, the claim reduces to Lemma 7.10.

We now assume that R1.t/ is nonempty. We suppose that zH 02;t
12 t

zH
02;t
01 are the connected components

of X02;t � int
�
R2.t/[R1.t/[R0.t/

�
. Let us first assume that the image of u intersects the boundaries

of zH 02;t
01 and zH 02;t

12 transversally. We then have the following computations:

�

Z
u�1.R2.t//

u�˛2 D

Z
u�1.H2.t//

u�˛2�

nX
iD1

P�i � 0,

�

Z
u�1.H

02;t
21 /

u�d.es˛2/D e
�C1.t/

Z
u�1.H1.t//

u�˛1� e
�C2.t/

Z
u�1.H2.t//

u�˛2 � 0,

�

Z
u�1.R1.t//

u�˛1 D

Z
u�1.zH1.t//

u�˛1�

Z
u�1.H1.t//

u�˛1 � 0,

�

Z
u�1. zH

02;t
01 /

u�d.es˛1/D e
C0.t/

Z
u�1.H0.t//

u�˛0� e
zC1.t/

Z
u�1.zH1.t//

u�˛1 � 0,

�

Z
u�1.R0.t//

u�˛0 D P
C
i �

Z
u�1.H0.t//

u�˛0 � 0.
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After appropriate rescalings, these terms form a telescoping sum. We find that

PC� eC2.t/CC0.t/�C1.t/�
zC1.t/

X
i

P�i D P
C
� e�E.�

02;t /
X
i

P�i � 0:

Suppose now that the image of u does not intersect the boundaries of zH 02;t
01 and zH 02;t

12 transversally. For
�n # 0, set

R
.n/
2 WD.�1;�C2.t/��n��V

2; R
.n/
0 D ŒC0.t/C�n;1/�V

0; R
.n/
1 D Œ�C1.t/C�n;

zC1.t/��n��V
1:

By Sard’s theorem, we may assume by choosing �n appropriately that u intersects the boundary of the
R
.n/
i transversally. Now repeat the above argument with R.n/i in place of Ri .t/. This yields the inequality

PC� eC2.t/CC0.t/�C1.t/�
zC1.t/C4�n

P
i P
�
i � 0. The claim now follows by passing to the limit.

Lemma 7.23 For n� 0, suppose that u W P†! yX02;t is a yJ 02;t–holomorphic curve in the homotopy class
ˇ 2 �2

�
yX02;t ; C t

�Sn
iD1 

�
i

��
for t <1. Then ˇ � ŒH 02;t � � �nu, where nu is the total number of

negative punctures. (Note that unlike in Lemma 7.22, we allow nD 0 here, in which case the union is
interpreted as being empty.)

Proof We argue as in the proof of Lemma 7.11. It is enough to consider the case where the image of u
is contained in H 02;t . The trivialization � extends to a global trivialization along H 02;t , implying that
ˇ �� H

02;t D 0.

We thus have

u�H 02;t
D ˛

� I�
N .C/�

nX
iD1

˛
� IC
N .�i /D bCZ�N .

C/=2c�

nX
iD1

dCZ�N .
�
i /=2e

D br0P
C
c�

nX
iD1

CbrPic;

where the sum is interpreted as zero if u has no negative punctures. Thus the lemma is verified if nD 0
or r2 D 0. It remains only to consider the case where n� 1 and r2 > 0.

Using the trivial bounds x� 1 < bxc � x, we obtain

u� yV >
X
z2p

C
u

.r0Pz � 1/�
X
z2p�u

.1C r2Pz/� �puC e
E.�02/r2

� X
z2p

C
u

Pz

�
� r2

X
z2p�u

Pz :

It follows from Lemma 7.22 that e yJ
02;t

r2
�P

z2p
C
u
Pz
�
� r2

P
z2p�u

Pz � 0. The claim follows.

Corollary 7.24 We have that T � �C��.T; V 2/� 0.

Proof We need to consider two cases. If s.T / 2 Œ0;1/, then the claim follows by combining
Proposition 5.17 and Lemma 7.23. If s.T / D f1g, then the argument is the same as in the proof
of Corollary 7.12.
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Proposition 7.25 Let fTigi be a concatenation in SIV of type (2) in Setup IV on page 45. Then we have

( #i Ti /� �C��.T; V 2/

D

X
Ti2S0I

.Ti � yV
0
C��.Ti ; V

0//C
X
Ti2S01II

.Ti �H
01
C��.Ti ; V

1//C
X
Ti2S1I

.Ti � yV
1
C��.Ti ; V

1//

C

X
Ti2S12II

.Ti �H
12
C��.Ti ; V

2//C
X
Ti2S2I

.Ti � yV
2
C��.Ti ; V

2//:

Proof As in the proof of Proposition 7.4, our assumptions imply that y � V j D �1 if  is contained
in V j and 0 otherwise. Proposition 5.15 implies that

.#iTi /� �

D

X
v2V.#iTi /
�.v/D00

ˇv � yV
0
C

X
v2V.#iTi /
�.v/D01

ˇv �H
01
C

X
v2V.#iTi /
�.v/D11

ˇv � yV
1
C

X
v2V.#iTi /
�.v/D12

ˇv �H
12
C

X
v2V.#iTi /
�.v/D22

ˇv � yV
2

C� int.#iTi ; V 0/C� int.#iTi ; V 1/C� int.#iTi ; V 2/:

As in the proof of Proposition 7.13, it follows that the result is equivalent to

� int.#iTi ; V 0/C� int.#iTi ; V 1/C� int.#iTi ; V 2/C��.T; V 2/

D

X
Ti2S0I

� int.Ti ; V
0/C��.Ti ; V

0/C
X
Ti2S01II

� int.Ti ; V
0/C� int.Ti ; V

1/C��.Ti ; V
1/

C

X
Ti2S1I

� int.Ti ; V
1/C��.Ti ; V

1/C
X
Ti2S12II

� int.Ti ; V
1/C� int.Ti ; V

2/C��.Ti ; V
2/

C

X
Ti2S2I

� int.Ti ; V
2/C��.Ti ; V

2/;

which is a consequence of the way the edges of #iTi are obtained from the edges of the Ti .

Corollary 7.26 We have  H02;t 2‰IV.DI H01 ;  H12 ;  H02;0/ and we have that

z H02;t 2‰IV.DI z H01 ; z H12 ; z H02;0/:

Proof Proposition 7.25 shows that  H02;t acts correctly on concatenations of type (2); the proof
that  H02;t behaves well with respect to the other two types of concatenation is virtually identical.
Proposition 5.11 implies that  H02;t .T /D  H02;t .T 0/ for any morphism T ! T 0. The argument that
z H02;t .T /D z H02;t .T 0/ is essentially the same as the proof of Proposition 7.16, except that we appeal
to Lemma 7.23 instead of Lemma 7.11.

The results from the previous sections can be conveniently packaged into the following theorem.
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Theorem 7.27 (cf [61, Theorem 1.1]) Let D be a datum for any one of Setups I*–IV*. Then there
exists a set of perturbation data ‚.D/ and twisted moduli counts

# M.T /vir
� 2QŒU � and # z M.T /vir

� 2Q

for � 2‚.D/ and T 2 S�.D/ for �D I; II; III; IV, satisfying the obvious analogs of (i)–(v) in Theorem 1.1
in [61].

Proof There is a forgetful functor taking a datum for the enriched setups I*–IV* (Section 7.1) to
a datum for the standard Setups I–IV (Section 4.1). So the set of perturbation data is furnished by
[61, Theorem 1.1]. We showed in Section 7.2 a datum for Setups I*–IV* gives rise to twisting maps, from
which we may define our twisted moduli counts as in Section 6.1. The properties (i)–(iv) are tautological
and (v) is a consequence of the axioms of twisting maps, as explained in Section 6.1.

8 Construction of the main invariants

In this section, we construct the invariants which are the central objects of this paper. To the data of a TN
contact pair .Y; �; V / and an element r 2R.Y; �; V /, we associate a unital, Z=2–graded QŒU �–algebra

(8-1) CH�.Y; �; V I r/:

There is a natural map to ordinary contact homology CH�.Y; �; V I r/! CH�.Y; �/ given by setting
U D 1.

A contactomorphism f W .Y; �; V /! .Y 0; � 0; V 0/ induces an identification

CH�.Y; �; V I r/D CH�.Y
0; � 0; V 0If�r/:

An exact relative symplectic cobordism . yX; y�;H/ from .Y C; �C; V C/ to .Y �; ��; V �/ satisfying an
energy condition induces a map CH�.Y C; �C; V CI rC/! CH�.Y

�; ��; V �I r�/. Unfortunately, our
notions of energy are not well behaved under compositions of arbitrary relative symplectic cobordisms,
so the composition of maps is not always defined.

We also define a reduced version of (8-1), which only counts Reeb orbits in the complement of a
codimension 2 submanifold, and certain “asymptotic invariants” which have good functoriality properties.

8.1 Construction and basic properties of the invariants

The following subsection is entirely parallel to [61, Section 1.7]. More precisely, Pardon constructs
(ordinary) contact homology by applying [61, Theorem 1.1.] to data from Setups I–IV. We construct our
new invariants by applying Theorem 7.27 to data from Setups I*–IV*.
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Setup I* Fix a TN contact pair .Y; �; V / and an element r 2R.Y; �; V /. According to Proposition 3.9,
we may choose a contact form � D ker� which is adapted to r. Let J W �! � be a d�–compatible almost
complex structure which preserves �V . We therefore obtain a datum D for Setup I*. Theorem 7.27 applied
to D furnishes a Z=2–graded, unital QŒU �–algebra

(8-2) CH�.Y; �; V I r/�;J;�

for any choice of perturbation datum � 2‚I.D/; cf (6-7) and (6-8).

Setup II* Fix pairs D˙ D ..Y ˙; �˙; V ˙/; r˙; �˙; J˙/ of data for Setup I*, where we write r˙ D

.˛˙; �˙; r˙/. Let . yX; y�;H/ be an exact relative symplectic cobordism with positive end .Y C; �C; V C/
and negative end .Y �; ��; V �/, and suppose that there exists a trivialization of the normal bundle of H
which restricts to �˙ on the positive/negative end.

Proposition 8.1 Suppose that rC > eE.H;y�jH /r�. Then there is an induced map on homology

(8-3) ˆ. yX; y�;H/ yJ ;� W CH �.Y
C; �C; V CI rC/�C;JC;�C ! CH �.Y

�; ��; V �I r�/��;J�;�� :

If ˛C D ˛� and .H; y�jH / is a symplectization , then the same conclusion holds provided that rC � r�.

Proof According to Lemma 6.25, we can choose an almost complex structure yJ on yX which is dy�–
compatible and agrees with yJ˙ at infinity, and is such that rC � eE. yJ/r�. We thus obtain a datum
DD .DC;D�; yX;H; y�; yJ / for Setup II*.

Given .�C; ��/ 2‚I.DC/�‚I.D�/, Theorem 7.27 thus provides a perturbation datum � 2‚II.D/ with
� 7! .�C; ��/, and twisted moduli counts which give rise to the map (8-3); cf (6-12).

Setup III* We have the following proposition.

Proposition 8.2 Under the assumptions of Proposition 8.1, the map (8-3) is independent of the pair . yJ ; �/.

Proof Let . yJ0; �0/ and . yJ1; �1/ be two possible choices of such pairs. Let us first treat the case where
.H; y�jH / is not a symplectization. For any � > 0, Lemma 6.25 provides an interpolating family of almost
complex structures f yJtgt2Œ0;1� such that E. yJt / � max.E. yJ0/; E. yJ1//C �. Choosing � small enough so
that rC > eE. yJt /r�, we thus get a datum D for Setup III*.

Theorem 7.27 now provides perturbation data � 2‚III.D/ mapping to .�0; �1/, and a chain homotopy
between the maps ˆ. yX; y�;H/ yJ0;�0 and ˆ. yX; y�;H/ yJ1;�1 ; cf (6-18) and (6-20).

If ˛C D ˛� and .H; y�jH / is a symplectization, then Lemma 6.25 implies that we may repeat the above
argument for a family of almost complex structures yJt which have vanishing energy. Tracing through the
proof, it is straightforward to check that the desired conclusion goes through provided that rC � r�.
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Setup IV* Let us consider data zDD .zD01; zD12; . yX02;t ; y�02;t /t2Œ0;1//, where

zD01 D .D0;D1; yX01; y�01;H 01/;

zD12 D .D1;D2; yX12; y�12;H 12/;

Di D ..Y i ; � i ; V i /; ri ; �i ; J i / for i D 0; 1; 2:

Here zD01, zD12 and zD are “partial data” for Setups II* and IV*, since they do not contain any information
about almost complex structures. These “partial data” are assumed to obey all the axioms stated in
Section 7.1 which do not involve complex structures.

The Di are (ordinary) data for Setup I*.

Proposition 8.3 Suppose that the following conditions hold :

� r0 > e
E.H02;t ;y�02;t j

H02;t
/r2,

� r0 > e
E.H01;y�01j

H01
/r1,

� r1 > e
E.H12;y�12j

H12
/r2.

Then the following diagram commutes:

CH�.Y
1; �1; V 1I r1/�1;J 1;�1

CH�.Y
0; �0; V 0I r0/�0;J 0;�0 CH�.Y

2; �2; V 2I r2/�2;J 2;�2

ˆ. yX12;y�12;H12/

ˆ. yX02;y�02;H02/

ˆ. yX01;y�01;H01/

If ˛0 D ˛1 D ˛2 and if .H 01; y�01jH01/, .H 12; y�12jH12/ and .H 02;t ; y�02;t jH02;t / are symplectizations ,
then the conclusion still holds if we only assume that ri � rj for i � j .

Proof According to Lemma 6.28, one can choose a family of almost complex structures yJ 02;t so that
r0>e

E. yJ 02;t /r2. Moreover, by Lemma 6.29, one may also assume that r0>eE.
yJ 01/r1 and r1>eE.

yJ 12/r2,
where J 01 and J 12 are the almost complex structures induced at infinity by J 02;t . We therefore
obtain a datum for Setup IV* by considering D01 D .zD01; yJ 01/;D12 D .zD12; yJ 12/ and DD .zD; yJ 02;t /.
Theorem 7.27 applied to D now implies the commutativity of the above diagram; cf (6-27).

Under the additional hypotheses that ˛0D ˛1D ˛2 and that the relevant cobordisms are symplectizations,
Lemmas 6.28 and 6.29 allow us to work with (families of) almost complex structures with vanishing
energy. Retracing through the above argument, we find that the desired conclusion follows if ri � rj for
i � j .

Proposition 8.4 Let . yX; y�;H/ be a relative symplectic cobordism from .Y C; �C; V C/ to .Y �; ��; V �/.
Let . yV ˙; y�˙

yV
/ be the Liouville structure induced on yV ˙ from the canonical Liouville structure of the

symplectization . yY ˙; �Y˙/. For i 2 f1; 2g, consider elements r˙i 2 R.Y ˙; �˙; V ˙/ and let �˙i be a
contact form on Y ˙ which is adapted to r˙i . Suppose finally that we have:
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(1) rCi > e
E.H;y�jH /r�i .

(2) rC1 > e
E. yVC;y�C

yV
/
rC2 and r�1 > e

E. yV �;y��
yV
/
r�2 .

Then the following diagram commutes:

CH �.Y
C; �C; V CI rC1 /�C1 ;JC;�C

CH �.Y
C; �C; V CI rC2 /�C2 ;JC;�C

CH �.Y
�; ��; V �I r�1 /��1 ;J�;�� CH �.Y

�; ��; V �I r�2 /��2 ;J�;��

ˆ. yX;y�;H/

ˆ. yYC; yVC/

ˆ. yX;y�;H/

ˆ. yY�; yV �/

As usual , if ˛C1 D ˛
�
1 D ˛

C
2 D ˛

�
2 and .H; y�jH / is a symplectization , then it is enough to assume that

rCi � r
�
i ; r
C
1 � r

C
2 and r�1 � r

�
2 .

Proof Observe first that the conditions (1) and (2) along with Proposition 8.1 ensure that the maps
appearing in the commutative diagram are well-defined. Let us now consider the strict exact symplectic
cobordisms . yX; y�;H/

�
C

1

��1
and . yY �; ��2 ; yV

�/
��1
��2

. For t 2 Œ0;1/ and T0 > 0 large enough, we can con-

sider their .t C T0/–gluing . yX t ; y�t ;H t /; cf Definition 2.23. According to Lemma 6.22, we have that
(cf Notation 2.19)

(8-4) E..H t ; y�t jH t /
˛
C

1

˛�2
/D E..H; y�jH /

˛
C

1

˛�1
/C E.. yV �; y��

yV
/
˛�1
˛�2
/:

It then follows from (1) and (2) that rC1 > e
E..H t ;y�t jHt /

˛
C
1
˛�
2
/
r�2 .

We can now appeal to Proposition 8.3, which implies that the composition ˆ. yY ; yV �/ ıˆ. yX; y�;H/
agrees with the map induced by . yX0; y�0;H 0/D . yX; y�;H/

�
C

1

��2
; see Example 2.11. The same argument

shows that composition along the upper right-hand side of the diagram agrees with the map induced by
. yX; y�;H/

�
C

1

��2
. This proves the claim.

We obtain the following corollary by putting together the results of the previous section.

Corollary 8.5 Consider a TN contact pair .Y; �; V / and fix an element r 2 R.Y; �; V /. Let D˙ D
.Y; �; V /; r; �˙; J˙/ be a pair of data for Setup I* , and fix �˙ 2‚I.Y

˙; �˙; J˙/.

The map

(8-5) ˆ. yY ; y�; yV / W CH �.Y; �; V I r/�C;JC;�C ! CH �.Y; �; V I r/��;J�;��

defined in Proposition 8.1 is an isomorphism.

Proof In light of Proposition 8.4 and Lemma 6.9, it’s enough to consider the case �C D �� D � and
JC D J� D J. Let � 2 ‚II. yY ; y�; yJ / be a lift of .�C; ��/ under the forgetful map ‚II. yY ; y�; yJ / !
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‚I.Y; �; J /�‚I.Y; �; J /. The proof of [61, Lemma 1.2] can be adapted to show that the map

(8-6) ˆ. yY ; y�; yV / yJ ;� W CC �.Y; �; V I r/�;J;�C ! CC �.Y; �; V I r/�;J;��

is an isomorphism of chain complexes: one simply needs to observe that the twisted counts of trivial
cylinders coincide with the usual counts.

We now arrive at the definition of our main invariants.

Definition 8.6 (full invariant) Consider a TN contact pair .Y; �; V / and choose an element r2R.Y; �; V /.
Let

(8-7) CH �.Y; �; V I r/

be the limit (or equivalently the colimit) of fCH �.Y; �; V I r/�;J;�g�;J;� along the maps (8-5). Proposition
8.4 and Corollary 8.5 imply that CH �.Y; �; V I r/ is canonically isomorphic to CH �.Y; �; V I r/�;J;� for
any admissible choice of .�; J; �/.

Given s 2Q, define

(8-8) CHUDs
�

.Y; �; V I r/ WD CH�.Y; �; V I r/˝QŒU �Q;

where the map QŒU �!Q sends U 7! s. There is a natural evaluation morphism of QŒU �–algebras

(8-9) evUDs W CH�.Y; �; V I r/! CHUDs
�

.Y; �; V I r/:

It follows tautologically from the construction that CHUD1
�

.Y; �; V I r/ D CH�.Y; �/. The invariant
CH�.Y; �; V I r/ therefore admits a QŒU � algebra morphism to ordinary contact homology (which is
viewed as a QŒU �–algebra by letting U act by the identity).

We can also define a “reduced” variant of the invariants (8-7), which are based on the twisting map z .
These invariants are naturally Q–algebras (as opposed to QŒU �–algebras) and only take into account
Reeb orbits in the complement of the codimension 2 submanifold.

More precisely, given a datum ..Y; �; V /; r; �; J / for Setup I*, we may proceed as in Setup I* in Section 8.1
and let

(8-10) .eCC �.Y; �; V I r/�; d z ;J;� /
be the complex generated by the (good) Reeb orbits not contained in V � Y , for some perturbation
datum � 2‚I.D/. By repeating the above arguments with the twisting maps z � in place of the twisting
maps  �, one can establish the obvious analogs of Proposition 8.4 and Corollary 8.5. In particular, given
choices of data .�C; JC; �C/ and .��; J�; ��/ as in Corollary 8.5, there is an isomorphism

(8-11) ˆ. yY ; y�; yV / W eCH�.Y; �; V I r/�C;JC;�C ! eCH�.Y; �; V I r/�C;JC;�C :
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Definition 8.7 (reduced invariant) Consider a TN contact pair .Y; �; V / and fix an element r2R.Y; �; V /.
Let

(8-12) eCH�.Y; �; V I r/
be the limit (or equivalently the colimit) of the algebras feCH�.Y; �; V I r/�;J;�g�;J;� along the maps
(8-11).

For future reference, we record the following corollary of the above discussion.

Corollary 8.8 Let .Y ˙; �˙; V ˙/ be TN contact pairs , and choose elements r˙ D .˛˙; �˙; r˙/ 2

R.Y ˙; �˙; V ˙/. Let . yX; y�;H/ be an exact relative symplectic cobordism with positive end .Y C; �C;V C/
and negative end .Y �; ��;V �/, and suppose that �C and �� extend to a global trivialization of the normal
bundle of H . If rC � eE..H;y�jH /

˛C

˛� /r�, then there is an induced map

(8-13) ˆ. yX; y�;H/ W CH�.Y
C; �C; V CI rC/! CH�.Y

�; ��; V �I r�/:

Similarly, suppose that . yX; y�t ;H t /t2Œ0;1� is a family of exact relative symplectic cobordisms with
ends .V ˙; �˙; V ˙/ and such that �˙ extends to a global trivialization of the normal bundle of H t . If
rC � eE.H

t ;.y�t /jHt /r�, then

(8-14) ˆ. yX; y�0;H 0/Dˆ. yX; y�1;H 1/:

The analogous statement holds for the reduced invariants eCH�.�/.

8.2 (Bi)gradings

The Z=2–grading by parity on the deformed invariants CH�.�/; eCH�.�/ shall be referred to as the
homological grading. As in the case of (ordinary) contact homology, the homological grading can be
lifted to a Z–grading under certain topological assumptions. We will also to refer to this Z–grading as
the homological grading when it exists.

Definition 8.9 [61, Section 1.8] Let .Y 2n�1; �; V / be a TN contact pair and choose r 2 R.Y; �; V /.
Suppose that H1.Y IZ/ D 0 and c1.�/ D 0. Then the homological Z=2–grading lifts to a canonical
Z–grading defined on generators by

(8-15) j j D CZ� ./Cn� 3;

where � is any trivialization of the contact distribution along  — this is independent of � due to our
assumption that c1.�/D 0.

Remark 8.10 In Definition 8.9, our assumption that c1.�/D 0 is equivalent to the statement that the
canonical bundle ƒn�1C � is trivial. The grading in general depends on a trivialization of the canonical
bundle; however, our assumption that H1.Y IZ/D 0 along with the universal coefficients theorem implies
that H 1.Y IZ/D 0. Hence the canonical bundle admits a unique trivialization.
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Lemma 8.11 (see [61, equation (2.50)]) With the notation of Corollary 8.8, suppose thatH1.Y ˙IZ/D0
and that c1.�˙/ D c1.TX/ D 0. Then the cobordism maps described in Corollary 8.8 preserve the
homological Z–grading.

Under certain topological assumptions, the reduced invariant eCH�.�I�/ admits an additional Z–grading,
which we will refer to as the linking number grading.

Definition 8.12 Let .Y; �; V / be a TN contact pair and choose r2R.Y; �; V /. Suppose that H1.Y IZ/D
H2.Y IZ/D 0. Then the linking number grading j � jlink on eCH�.Y; �; V I r/ is given on generators by

(8-16) j jlink D linkV ./:

(See Definition 5.19.) The linking number grading of a word of generators is then defined to be the
sum of the linking number grading of each letter. One can verify using Lemma 5.21 that this grading is
well-defined.

We let

(8-17) eCH�;�.Y; �; V I r/
be the (super)commutative bigraded Q–algebra, where

� the first bullet refers to the homological Z–grading (which exists in view of our topological
assumption and the universal coefficients theorem, see Definition 8.9);

� the second bullet refers to the linking number Z–grading.

We sometimes drop the second grading in our notation, so the reader should keep in mind that the notation
eCH�.�I�/ always refers to the homological grading.

We have the following lemma as a consequence of Lemmas 5.21 and 8.11.

Lemma 8.13 With the notation of Corollary 8.8, suppose that H1.Y ˙IZ/DH2.X; Y CIZ/D 0. Then
the cobordism maps described in Corollary 8.8 preserve the linking number Z–grading. If we also have
that c1.�˙/D c1.TX/D 0, then the cobordism maps preserve the .Z�Z/–bigrading (8-17).

8.3 Asymptotic invariants

Given a TN contact pair .Y; �; V / and a trivialization � of the normal bundle NY=V , let

(8-18) R� .Y; �; V /D frD.˛; � 0; r 0/ 2R.Y; �; V / j � 0D�g �R.Y; �; V /:

We equip R� .Y; �; V / with a preorder6 � defined by setting .˛�V ; �; r
�/� .˛CV ; �; r

C/ if rC� e�minf r�,
where ˛CV D e

f ˛�V . We let �op denote the opposite preorder.

6A preorder on a set is a binary relation which is reflexive and transitive. Equivalently, a preordered set is a category with at most
one morphism from any object x to any other object y.
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We now define a functor F.Y; �; V / from the preordered set .R� .Y; �; V /;�op/ to the category of QŒU �–
algebras. On objects, the functor takes r to CH �.Y; �; V I r/. It remains to define the functor on morphisms.

Given elements r˙ D .˛˙V ; �; r
˙/ 2R� .Y; �; V /, let �˙ be a contact form on Y which is adapted to r˙.

Consider the symplectization . yY ; y�; yV /�
C

��
. If r� � rC, then Lemma 6.9 and Propositions 8.1 and 8.4

imply that there is a map

(8-19) ˆ. yY ; y�; yV / W CH�.Y; �; V I r
C/! CH�.Y; �; V I r

�/:

This defines F.Y; �; V / on morphisms. One can check using Proposition 8.4 that F.Y; �; V / is indeed a
functor.

We can similarly define a functor FC.Y; �; V / from .R� .Y; �; V /;�op/ to the category of Q–algebras
using eCH�.�/.

Definition 8.14 (asymptotic invariants) Noting that the category of QŒU �–algebras is complete and
cocomplete, we denote by

(8-20) CH
 ��

�.Y; �; V I �/ and CH
��!

�.Y; �; V I �/

the limit (resp. colimit) of the QŒU �–algebras fCH�.Y; �; V I r/g over the preordered set .R� .Y; �; V /;�op/.
We let eCH

 ��
�.Y; �; V I �/ and eCH

��!
�.Y; �; V I �/ be defined similarly over the category of Q–algebras.

It’s easy to check that .R� .Y; �; V /;�op/ is a filtered preordered set. In particular, (co)limits can be
computed by restricting to (co)final subsets. In contrast to the invariants defined in Section 8.1, the
asymptotic invariants are fully functorial under compositions of arbitrary relative symplectic cobordisms
which respect normal trivializations. (A verification of this is tedious and essentially consists of repeating
the arguments of Section 8.1 — the key is that the energy conditions can always be satisfied by sending
the rotation parameter to zero or infinity.)

8.4 Mixed morphisms

Consider a TN contact pair .Y; �; V / and elements r˙ D .˛˙; �˙; r˙/ 2R.Y; �; V /. In this section, we
exhibit a Q–algebra map

(8-21) CHUD0
�

.Y; �; V I rC/! eCH�.Y; �; V I r�/
under certain assumptions on rC and r�. Precomposing with (8-9) gives a Q–algebra map

(8-22) CH�.Y; �; V I r
C/! eCH�.Y; �; V I r�/:

Let us begin by considering a datum D D .DC;D�; yX;H; y�; yJ / for Setup II*, where we let D˙ D
..Y; �; V /; r˙; �˙; J˙/.
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Definition 8.15 We define a map  mix W S
¤∅
II .D/!Q by

(8-23)  mix.T /D

�
1 if T � yV D 0 and jej \V � D∅ for every e 2E.T /;
0 otherwise.

Proposition 8.16 The map  mix.�/ is a twisting map provided that the following properties hold :

(i) rC � 2eE.
yJ/r�, and

(ii) rC > 2=Rmin
˛ , where Rmin

˛ denotes the smallest action of all Reeb orbits of ˛.

We need the following lemma for proving Proposition 8.16.

Lemma 8.17 Suppose that ˇ 2 �2
�
yY ; C t

�Sn
iD1 

�
i

��
is represented by a yJ –holomorphic curve

u W P†! yX contained in yV. Suppose also that rC and r� satisfy assumptions (i) and (ii) in Definition 8.15.
Then ˇ � yV � 2�pu, where pu is the total number of punctures (positive and negative) of u contained
in V ˙.

Proof By Lemma 7.10, we have rCPC�r�
Pn
iD1 P

�
i � r

CPC�r�PCeE.
yJ/�PC.rC�r�eE.

yJ//�

Rmin
˛ ..rC=2� r�eE.

yJ//C rC=2/�Rmin
˛ rC=2� 1. The lemma now follows from Proposition 5.7.

Definition 8.18 Given a tree T 2 S¤∅II , we say that a vertex v 2 V.T / is mean if all adjacent edges are
contained in V ˙. Otherwise, we say that v 2 V.T / is nice. We denote by Vb.T / (resp. Vn.T /) the set of
mean (resp. nice) vertices of T .

Proof of Proposition 8.16 Choose a tree T 0 2 S¤∅II . Let T 0 ! T be a morphism. It follows from
Proposition 5.11 that T 0 � yV D T � yV. If T 0 has no edges contained in V �, then neither does T 0 and we
see that  mix.T

0/D  mix.T /.

Let us now suppose that T 0 has an edge contained in V �. Note that T 0 and T have the same exterior
edges. If one of these edges is contained in V �, then  mix.T

0/D  mix.T /D 0. Let us therefore assume
that the exterior edges of T 0 and T are not contained in V �.

We are left with the case where T 0 has at least one interior edge contained in V �. If T 0 had no mean
vertices, then it would follow from Proposition 5.15 that there are no interior edges contained in V ˙,
which is a contradiction. It follows that T 0 has at least one mean vertex. Let E int

b
.T 0/�E int.T 0/ be the

set of interior edges which occur as an outgoing edge of some mean vertex. According to Proposition 5.15,
we have

T 0 � yV D
X

v2Vn.T 0/

ˇv � yV C
X

v2Vm.T 0/

ˇv � yV CjE
int.T 0/�E int

b .T
0/jC jE int

b .T
0/j

�

X
v2Vm.T 0/

ˇv � yV CjE
int
b .T

0/j

D

X
v2Vm.T 0/

.ˇv � yV Cp
�
v /;
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where p�v denotes the number of outgoing edges of v. (Here, we have used the fact that the outgoing
edges of a mean vertex are all interior edges, which follows from our assumption that the exterior edges
of T 0 and T are not contained in V �.) It now follows from Lemma 8.17 and the fact that T 0 has at least
one mean vertex that

P
v2Vm.T 0/

.ˇv � yV Cpv/�
P
v2Vm.T 0/

.2�pvCp
�
v /�

P
v2Vm.T 0/

1� 1. Hence
 mix.T

0/D  mix.T /D 0. This completes the proof that  mix.T
0/D  mix.T /.

If fTigi is a concatenation, then the argument is the same as in the proof of Proposition 7.13 since every
edge in #iTi appears in at least one of the Ti .

Proposition 8.19 Consider a TN contact pair .Y; �; V / and elements r˙ D .˛˙; �˙; r˙/ 2R.Y; �; V /.
If r 0 > 2eE. yV ;y�j yV /r� and rC > 2=Rmin

˛ , then there is a map of Q–algebras

(8-24) CHUD0
�

.Y; �; V I rC/! eCH�.Y; �; V I r�/:

Proof The argument is essentially the same as the proof of Proposition 8.1. Choose data of Type I*
D˙ D ..Y; �; V /; r˙; �˙; J˙/. Now consider the symplectization . yY ; y�; yV /. Lemma 6.25 furnishes an
almost complex structure yJ on yY which is dy�–compatible and agrees with yJ˙ at infinity, and such that
rC � eE.

yJ/r�. It now follows as in Setup II of Section 6.1 that we have a Q–algebra chain map

(8-25) ˆ. yY ; y�; mix/ yJ ;‚ W CC
UD0
�

.Y; �; V I r0/JC;�C !eCC �.Y; �; V I r/J�;��
for perturbation data ‚ 7! .�C; ��/.

Remark 8.20 The proof of Proposition 8.19 does not show that (8-24) is independent of auxiliary
choices (ie yJ ; J˙; ‚; �˙). To show this, one needs to extend the definition of the twisting map  mix to
Setups III* and IV*. One can then prove analogs of Theorem 7.27 and Corollary 8.8 for  mix. All of the
ingredients for this are already in place, but we omit the details since Proposition 8.19 is sufficient for our
applications.

Corollary 8.21 Suppose that eCH�.Y; �; V I r/ ¤ 0 for some r D .˛V ; �; r/ 2 R.Y; �; V /. Letting r0 D

.˛0V ; �
0; r 0/, we have CH�.Y; �; V I r0/¤ 0 if r 0 is large enough. In particular , CH

 ��
�.Y; �; V I �/¤ 0.

9 Augmentations and linearized invariants

9.1 Differential graded algebras

Let R be a commutative ring containing Q. The following two categories occur naturally in contact
topology: the category cdga of unital Z–graded (super)commutative dg R–algebras; the category dga of
unital Z–graded associative dg R–algebras. When we speak of a dg algebra, we mean an object of either
one of these categories.
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Let us say that a dg algebra is action-filtered if the underlying graded algebra is the free algebra on a free
graded module U having the following property: U admits a basis fx˛ j ˛ 2Ag for some well-ordered
set A such that dx˛ is a sum of words in the letters xˇ for ˇ < ˛. Note that the dg algebras which arise
in Symplectic Field Theory are naturally action-filtered by Reeb length.

The categories cdga and dga each carry a model structure described by Hinich [34] (see also Section 1.11
of [66]) with the following properties:

(i) the weak equivalences are the quasi-isomorphisms, and

(ii) all objects are fibrant and the set of cofibrant objects includes all objects which are action-filtered.7

Note that in any model category, there is a notion of two maps being left (resp. right) homotopic, defined
in terms of cylinder (resp. path) objects [35, Section 7.3.1]. These notions coincide on objects which are
fibrant and cofibrant.

We let hcdga and hdga be the associated homotopy categories: the objects are those objects of cdga
(resp. dga) which are fibrant and cofibrant, and the morphisms are the homotopy classes of morphisms in
cdga (resp. dga). In particular, hcdga and hdga contain all action-filtered dg algebras.

An augmentation of a dg R–algebra A is a morphism of dg algebras � W A! R, where R is viewed
as a dg algebra concentrated in degree 0. A dg algebra equipped with an augmentation is said to be
augmented. We let cdga=R and dga=R be the overcategory of augmented objects, which naturally inherit
model structures. We let hcdga=R (resp. hdga=R) be the associated homotopy categories.

Definition 9.1 Given an augmented dg algebra � W .A; d/ ! R, we consider the graded R–module
A� WD ker �=.ker �/2. The differential d descends to a differential d� on A�. The resulting differential
graded module .A�; d�/ is called the linearization8 of .A; d/ at the augmentation �.

It follows from the definition that linearization defines a functor from cdga=R (resp. dga=R) to the
category of chain complexes of R–modules. It is an important fact that this functor is left Quillen
[51, Proposition 12.1.7], and therefore induces a functor of homotopy categories. We state this as a
corollary:

Corollary 9.2 Linearization defines a functor from hcdga=R (resp. hdga=R) to the homotopy category
of chain complexes of R–modules.

7Both [34] and [51] work in the setting of dg algebras over operads. The categories cdga and dga are, respectively, the category
of dg algebras over the operads uComm and uAss (u stands for unital), so they can be treated on equal footing. A good reference
for the material in this section, which mostly avoids operadic language (but only treats the case of cdga), is [47].
8The linearization is sometimes also called the “indecomposable quotient” in the rational homotopy theory literature. In the
contact topology literature, one also often encounters an equivalent construction of the linearization in which one twists the
differential by the augmentation; see [57, Remark 2.8].
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In particular, Corollary 9.2 implies that homotopic augmentations of action-filtered dg algebras induce
isomorphic linearizations. Special cases of this statement have already appeared in the Legendrian contact
homology literature; see eg [58, Section 5.3.2].

Remark 9.3 Let .A; d/ be a dg algebra, where A is the free R–algebra generated by the set fx˛ j ˛ 2Ag.
Let � WA!R be the unique R–algebra map sending the generators x˛ to zero. Then � is an augmentation
if and only if dx˛ is contained in the ideal .xˇ j ˇ 2A/ for all ˛ 2A (or equivalently, if and only if the
differential has no constant term). If � is an augmentation, it is called the zero augmentation.

Suppose now that .A; d/ is the (possibly deformed) contact algebra of some contact manifold, ie .A; d/
is the commutative R–algebra generated by good Reeb orbits (for RDQ or QŒU �) and the differential
is defined as in Section 6.1. Suppose that � W A! R is the zero augmentation. Then ker � is the free
R–module generated by (good) Reeb orbits, and d� counts curves with one input and one output (ie d� is
defined as in (6-7), where the sum is restricted to curves with j��j D 1). It follows that the homology
of the complex .A�; d�/ can be interpreted as the (possibly deformed) cylindrical contact homology.
This latter invariant admits a rigorous definition for contact structures under certain assumptions, such
as the existence of a contact form with no contractible Reeb orbits; see [4; 42] in dimension 3 and
[61, Section 1.8] in general.

9.2 Cyclic homology

Definition 9.4 (cf [17]) Let S be a countable, well-ordered set equipped with a map j � j W S ! Z. Let
ADRhSi be the free Z–graded R–algebra generated by S , where the Z–grading is induced by extending
j � j multiplicatively.

Let d W A! A be a differential of degree �1. Let xA WD A=R, and consider the cyclic permutation map
� W xA! xA which is defined on monomials by �.1 � � � l/D .�1/j1j.j2jC���Cjl j/2 � � � l1 and extended
R–linearly. Let xA� WD xA=.1� �/ be the Z–graded R–module of coinvariants. Observe that d passes to
the quotient. We denote the induced differential by d � .

We now define

(9-1) HC�.A/ WDH�. xA
� ; d � /;

and refer to this invariant as the reduced cyclic homology of the dg algebra .A; d/.

Remark 9.5 Definition 9.4 agrees with other definitions of reduced cyclic homology of dg algebras
(such as [50, Section 5.3]) which may be more familiar to the reader, when both are defined. We adopt
the present definition for consistency with [7].

In the special case where A is the Chekanov–Eliashberg dg algebra of a Legendrian knot in a contact mani-
fold satisfying the assumptions of [7, Section 4.1], the algebraic invariants considered in [7, Section 4] can
be translated as follows: LHcyc.A/DHC�.A/, LHHoC.A/DHH�.A/ and LHHo.A/DHH�.A/. Here
HH�.�/ and HH�.�/ denote, respectively, Hochschild homology and reduced Hochschild homology.
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We record the following computation which will be useful to us later on.

Lemma 9.6 Under the assumptions of Definition 9.4, if .A; d/ is acyclic , then

(9-2) HCk.A/D

�
R if k is odd and positive ,
0 otherwise.

Proof Let us first prove the lemma under the assumption that S is a finite set. Note first that the
Hochschild homology of an acyclic finitely generated dg algebra vanishes identically. Moreover, we have
an exact triangle

(9-3) RŒ0�!HH�.A/!HH�.A/
Œ�1�
��!;

which implies that HH�.A/ is just a copy of R concentrated in degree 1.

We now consider the following Gysin-type exact triangle (see [7, Proposition 4.9]):

(9-4) HC�.A/
Œ�2�
��!HC�.A/

ŒC1�
��!HH�.A/

Œ0�
��! :

The desired result now follows immediately by induction, using (9-4) and the fact that HC�.A/ vanishes
in sufficiently large positive and negative degrees due to our finiteness hypotheses. We remark that
(9-4) is constructed from a spectral sequence, whose convergence can only be verified under finiteness
assumptions.

Let us now drop our assumption that S is a finite set. We instead consider an exhaustion of S by finite
subsets S .1/ � S .2/ � � � � � S . Let .A.k/; d /� .A; d/ be the dg subalgebra generated by S .k/. One can
readily verify that

(9-5) lim
��!

HC�.A
.k//DHC�.lim

��!
A.k//DHC�.A/:

Observe that .A.k/; d / is acyclic for k large enough and satisfies the assumption of Definition 9.4. Since
we have already proved the lemma under the assumption that S is finite, it is enough to prove that the
natural maps HC�.A.k//!HC�.A

.kC1// are isomorphisms for k large enough.

To this end, note that the exact triangles (9-3) and (9-4) can be shown to be functorial under morphisms
of bounded dg algebras. Since quasi-isomorphisms induce isomorphisms on Hochschild homology,
it follows from (9-3) that the natural map HH�.A.k// ! HH�.A

.kC1// is an isomorphism. Since
HH�.A

.k//DHH�.A
.kC1// is concentrated in degree 1, and since HCi .A.k// and HCi .A.kC1// vanish

for ji j sufficiently large, the desired claim can be checked by inductively applying the five lemma; cf [50,
Section 2.2.3].

9.3 Augmentations from relative fillings

According to the philosophy of [24], contact homology is supposed to be well-defined as a differential
graded Q–algebra up to strict isomorphism. However, [61] only proves that contact homology is well-
defined as a graded Q–algebra, ie after passing to homology. Similarly, the invariants introduced in
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Section 8 are merely graded R–algebras for RDQ or QŒU �. For the purpose of linearizing the invariants
of Section 8, we saw in Section 9.1 that the following intermediate assumption — weaker than what is
conjectured in [24] but stronger than what is proved in [61] — is sufficient:

Assumption 9.7 The constructions of Section 8 can be lifted to the category hcdga. (That is, cobordisms
induce a unique morphism of commutative dg algebras up to homotopy, and composition of cobordism is
functorial up to homotopy.)

The rest of this section depends on the unproved Assumption 9.7; all statements which depend on this
assumption are therefore starred, in accordance with the convention stated in the introduction.

Definition* 9.8 Fix a TN contact pair .Y; �; V / and an element r 2R.Y; �; V /. Let

(9-6) A.Y; �; V I r/ 2QŒU �–hcdga

be the limit (or equivalently the colimit) of the dg algebras f.CC�.Y; �; V I r/�; d ;J;� /g�;J;� under the
lifts of the maps (8-5) which are furnished by Assumption 9.7. We also analogously define

(9-7) zA.Y; �; V I r/ 2Q–hcdga:

Remark 9.9 (bigradings) With the notation of Definition* 9.8, suppose thatH1.Y IZ/DH2.Y IZ/D 0.
Combining Assumption 9.7 with the discussion of Section 8.2, it then follows that zA.Y; �; V I r/ is a
.Z�Z/–bigraded differential algebra, where the differential has bidegree .�1; 0/.

Definition* 9.10 Given an augmentation � WA.Y; �; V I r/!QŒU �, we let A�.Y; �; V I r/ be the linearized
chain complex (in the sense of Definition 9.1) with respect to � and let CH �

�
.Y; �; V I r/ be the resulting

homology.

We have analogous invariants in the reduced case, which are denoted by zAz�.Y; �; V I r/ and eCH z�
�
.Y; �; V I r/

for an augmentation z� W zA.Y; �; V I r/!Q.

Definition 9.11 Given a contact manifold .Y; �/ and a codimension 2 contact submanifold V, a relative
filling . yX; y�;H/ is a relative symplectic cobordism from .Y; �; V / to the empty set.

Let . yX; y�;H/ be a relative filling of .Y; �; V / and fix r2R.Y; �; V /. Suppose � extends to a normal trivial-
ization ofH . Then Lemma 8.11 and Assumption 9.7 furnish an augmentation �. yX; y�;H/ WA.Y; �; V I r/!
QŒU �. Similarly, we have an augmentation z�. yX; y�;H/ W zA.Y; �; V I r/!Q.

If we suppose that H1.Y IZ/DH2.Y IZ/DH2.X; Y IZ/D 0 and c1.TX/D 0, then Lemma 8.13 and
Assumption 9.7 imply that z�. yX; y�;H/ preserves the .Z�Z/–bigrading defined in Remark 9.9. It follows
that the linearized complex

(9-8) zAz�.Y; �; V I r/
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inherits a .Z�Z/–bigrading with differential of bidegree .�1; 0/. Hence

(9-9) eCH z�
�
.Y; �; V I r/

is a .Z�Z/–bigraded Q–vector space.

We end this section by collecting some lemmas which will be useful later. The reader is referred to
Section 3.3 for a review of open book decompositions.

Lemma* 9.12 Suppose that . yW ; y�;H/ is a relative filling of .Y; �; V /. Suppose that V is the binding
of an open book decomposition .Y; V; �/ which supports �. Fix an element rD .˛V ; �; r/ 2R.Y; �; V /,
where � is the canonical trivialization induced by the open book.

Suppose that H admits a normal trivialization which restricts to � . Suppose also that H1.Y IZ/ D
H2.Y IZ/DH2.W; Y IZ/D 0 and that c1.T W /D 0. Then the augmentation

(9-10) z� W zA.Y; �; V I r/!Q

is the zero augmentation. In particular , it depends only on . yW ; y�/ and not on H .

Proof It is shown in Corollary 3.15 that there exists a nondegenerate contact form ˛ for .Y; �/ which is
adapted to r and has the property that all Reeb orbits are transverse to the pages of the open book decom-
position. Given auxiliary choices of almost complex structures and perturbation data, the augmentation z�
counts (possibly broken) holomorphic planes u which are asymptotic to a Reeb orbit  disjoint from H ,
and such that Œu��H D 0. However, our topological assumptions and Lemma 5.21 implies that Œu��H
is precisely the linking number of  with the binding V, which is strictly positive by assumption; see
Remark 5.20.

Lemma* 9.13 Let . yX; y�;H/ and . yX 0; y�0;H 0/ be relative symplectic fillings of .Y; �; V / and .Y 0; � 0; V 0/.
Let f W .Y; �; V /! .Y 0; � 0; V 0/ be a contactomorphism. Suppose that there exists a symplectomorphism
� W . yX; y�/! . yX 0; y�0/ which coincides near infinity with the induced map zf W SY ! SY 0.

Given any r 2R.Y; �; V /, the following diagram commutes:

(9-11)

CH�.Y; �; V I r/ QŒU �

CH�.Y
0; � 0; V 0If�r/ QŒU �

CH�.Y
0; � 0; V 0If�r/ QŒU �

ˆ. yX;y�;H/

D

ˆ. yX 0;��y�;�.H//

D

ˆ. yX 0;y�0;�.H//

The analogous statement holds for eCH�.�/, with Q in place of QŒU �. In addition , if H1.Y IZ/ D
H2.Y IZ/D0 and c1.TX/D0, then all arrows can be assumed to preserve the bigrading in Definition 8.12.
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Proof The commutativity of the top square is essentially tautological; more precisely, it follows from
the functoriality of the moduli counts in Theorem 7.27. The commutativity of the bottom square follows
from the observation that � preserves the Liouville form outside a compact set. Hence . yX 0; ��y�/ and
. yX 0; y�0/ are deformation equivalent. It follows by Corollary 8.8 that they induce the same morphism on
homology. The fact that the maps preserve the bigradings on eCH.�I�/ (under the above topological
assumptions) is a consequence on Lemma 8.13.

Corollary* 9.14 Let . yX; y�;H/ (resp. . yX; y�;H 0/) be relative fillings for .Y; �; V / (resp. .Y; �; V 0/).
Suppose that V is the binding of an open book decomposition of .Y; �/ and fix rD .˛; �; r/ 2R.Y; �; V /,
where � is induced by the open book. Let f W .Y; �; V /! .Y; �; V 0/ be a contactomorphism.

Suppose that H1.Y IZ/DH2.Y IZ/DH2.X; Y IZ/D 0 and that c1.TX/D 0. Then

(9-12) eCH z�
�;�.Y; �; V I r/D eCH z�0

�;�.Y; �; V
0
If�r/;

where both augmentations are induced by the relative fillings and the .Z�Z/–bigrading is defined in
Definition 8.12.

Proof Indeed, since the lift of a contactomorphism to the symplectization is a Hamiltonian symplec-
tomorphism, it is easy to construct a symplectic automorphism of .X; dy�/ satisfying the conditions of
Lemma* 9.13; see eg [14, Section 3.2]. The claim now follows from Lemma* 9.12.

10 Invariants of Legendrian submanifolds

10.1 Invariants of contact pushoffs

Definition 10.1 (see Definition 3.1 in [10]) Let .Y; �/ be a contact manifold and let ƒ ,! Y be a
Legendrian embedding. By the Weinstein neighborhood theorem, the map extends to an embedding
Op.ƒ/� .J 1ƒ; �std/! .Y; �/, where Op.ƒ/� .J 1ƒ; �std/ denotes an open neighborhood of the zero
section.

Let �.ƒ/ be the induced codimension 2 contact embedding

(10-1) �.ƒ/ W @.D��;gƒ/D @.D
�
�;gƒ/� 0� T

�ƒ�RD J 1ƒ ,! .Y; �/:

Here D��;gƒ is the sphere bundle of covectors of length � with respect to some metric g, which is a
contact manifold with respect to the restriction of the canonical 1–form on T �ƒ. We refer to �.ƒ/ as the
contact pushoff of ƒ ,! Y.

Standard arguments establish that the contact pushoff is canonical up to isotopy through codimension 2
contact embeddings. By abuse of notation, we will routinely identify �.ƒ/ with its image. Observe that it
follows that CH�.Y; �; �.ƒ/I r/ and eCH�.Y; �; �.ƒ/I r/ can be viewed as invariants of ƒ.
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10.2 Deformations of the Chekanov–Eliashberg dg algebra

In the spirit of the previous sections, we now consider deformations of the Chekanov–Eliashberg dg algebra
of a Legendrian induced by a codimension 2 contact submanifold. We begin with some preliminary
definitions.

Definition 10.2 Let ƒ � .Y; �/ be a Legendrian submanifold. Given a contact form ker˛ D �, con-
sider a Reeb chord c W Œ0; R�! Y. The linearized Reeb flow defines a path of symplectomorphisms
Pr W �jc.0/! �jc.r/. We say that the Reeb chord c is nondegenerate if PR.Tc.0/ƒ/\Tc.R/ƒD f0g.

Definition 10.3 (cf Section 2.1 in [7]) With the notation of Definition 10.2, let
Vn�1

C .�; d˛/ be the
canonical bundle of � and suppose that it admits a trivialization � . Let ƒ1; : : : ; ƒk be an enumeration of
the components of ƒ. Suppose that each ƒi has vanishing Maslov class.

Suppose first of all that k D 1 (ie ƒ is connected). Given a nondegenerate Reeb chord c, pick a path c�
in ƒ connecting c.R/ to c.0/. Observe that

Vn�1
Tc�ƒi �

Vn�1
C .�; d˛/ is a path of Lagrangian

subspaces along c�. We call this path Lc� . The map Pr also defines a path of Lagrangian subspacesVn�1 Pr.Tc.0/ƒi /�
Vn�1

C .�; d˛/ along c. We call this path Lc .

Let zc D c� � c be obtained by concatenating c� and c (the concatenation is from left to right). Now
consider the path of Lagrangian subspaces Lzc D Lc� �Lc �PC, where PC is a positive rotation from
PR.Tc.0/ƒ/ to Tc.R/ƒ (this is well-defined by our assumption that c is nondegenerate).

The Conley–Zehnder index for chords of c with respect to � is denoted by CZC;� .c/ and defined by

(10-2) CZC;� .c/D �� .Lzc/;

where�� .�/ is the Maslov index with respect to � ; see [52, Theorem 2.3.7]. This definition is independent
of the choice of c� due to our assumption that ƒ has vanishing Maslov class. Note also that the resulting
index depends on � , but its parity does not.

In the case that k > 1, the definition of the Conley–Zehnder index for chords is more complicated, and
depends on additional choices. We refer the reader to [7, Section 2.1] — we warn the reader that there is
a typo in the formula stated there: the correct formula for the Conley–Zehnder index for chords should
read CZC;� .c/D jcj � 1D .����ƒ.x1//=� C .n� 1/=2.

Remark 10.4 It may happen that a Reeb orbit can also be viewed as a Reeb chord with same starting
and end point. In this case, we have in general that CZC.c/¤ CZ.c/.

Let us now consider a TN contact pair .Y; �; V / and a Legendrian submanifold ƒ� .Y �V; �/. We let
ƒ1; : : : ; ƒk be an enumeration of the connected components of ƒ. As in Definition 10.3, we assume that
the ƒi have vanishing Maslov class.
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Definition/Assumption* 10.5 (cf Proposition 2.8.2 in [24]) Fix r 2R.Y; �; V /. Let us also choose the
following additional data:

� A contact form � 2 �1.Y / which is adapted to r and has the property that all Reeb orbits and
ƒ–Reeb chords are nondegenerate.

� A d�–compatible almost complex structure J on � which preserves T V .

Given a class ˇ 2 �2. yY I cC; ��ƒ ; �
�/, we let

(10-3) M.cC; ��ƒ ; �
�
Iˇ/J

be the moduli space of connected yJ –holomorphic curves, modulo R–translation representing the class ˇ.
(Here we follow the notation of Section 2.2, where cC is a Reeb chord of ƒ� .Y; �/, ��ƒ D fc

�
1 ; : : : ; c

�
� g

is an ordered collections of (not necessarily distinct) Reeb chords, and �� is a collection of Reeb orbits.)
Since V � .Y �ƒ;�/ is a strong contact submanifold, a straightforward extension of Siefring’s intersection
theory defines an intersection number yV �ˇ 2 Z.

Let us now consider the semisimple ring

(10-4) RD
kM
iD1

QŒU �;

and let e1; : : : ; ek be the idempotents corresponding to the unit in each summand.

Let CL�.Y; �; V;ƒI r/� be the free R algebra generated by (good) Reeb orbits of .Y; ˛/ and Reeb chords
of ƒ, subject to the following relations:

� 12 D .�1/
j1jj2j21 for Reeb orbits a and b.

� If cij is a Reeb chord from ƒi to ƒj , then ekcij el D ıjkcij ıil .

We assume that there exists a suitable virtual perturbation framework compatible with [61], so that we
can define a differential dJ (squaring to zero) on generators as follows:

� For a Reeb chord cC, we let

(10-5) dJ .c
C/D

X 1

jAutj
#M.cC; ��ƒ ; �

�
Iˇ/JU

yV �ˇc�1 � � � c
�
� 1 � � � s;

where the sum is over choices of ˇ 2 �2. yY I cC; ��ƒ ; �
�/ for all possible choices of ��ƒ and ��.

� For a Reeb orbit  , we let dJ ./ be the usual deformed contact homology differential, as described
in Section 8.1.

We assume that .CL�.Y; �; V;ƒI r/�; dJ / is independent of � and J up to canonical isomorphism in
QŒU �–hdga. We denote the resulting object by

(10-6) L.Y; �; V;ƒI r/

and we let CH�.Y; �; V;ƒI r/ be its homology. We assume that L.Y; �; V;ƒI r/ satisfies the limited
functoriality described in Proposition* 10.7.
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Definition/Assumption* 10.6 (cf Proposition 2.8.2 in [24]) Carrying over the hypotheses and notation
from Definition/Assumption* 10.5, let us consider the semisimple ring

(10-7) zRD
kM
iD1

Q;

where we again let e1; : : : ; ek be the idempotents corresponding to the unit in each summand.

We let fCL�.Y; �; V;ƒI r/� be the free zR algebra generated by (good) Reeb orbits of .Y; ˛/ which are not
contained in V and ƒ Reeb chords, subject to the following relations:

� 12 D .�1/
j1jj2j21 for Reeb orbits a and b.

� If cij is a Reeb chord from ƒi to ƒj , then ekcij el D ıjkcij ıil .

This algebra is again Z=2–graded in general, and Z–graded when the canonical bundle is trivialized.
We assume again that there exists a suitable virtual perturbation framework so that one can define a
differential zdL (squaring to zero) on generators as follows:

� For a Reeb chord cC, we let

(10-8) dJ .c
C/D

X 1

jAutj
#M.cC; ��ƒ ; �

�
Iˇ/J ı. yV �ˇ/c

�
1 � � � c

�
� 1 � � � s;

where ı W R! f0; 1g satisfies ı.0/ D 1 and ı.s/ D 0 for s ¤ 0 and the sum is over all possible
choices of homotopy classes as in Definition/Assumption* 10.5.

� For a Reeb orbit  , we let zdJ ./ be the reduced contact homology differential associated to the
twisted moduli counts # z M, which only counts curves disjoint from yV .

We assume that .fCL�.Y; �; V;ƒI r/�; zdJ / is independent of �; J up to canonical isomorphism in Q–hdga.
We denote the resulting object by

(10-9) zL.Y; �; V;ƒI r/

and we let CH�.Y; �; V;ƒI r/ be its homology. We also assume that zL.Y; �; V;ƒI r/ satisfies the limited
functoriality described in Proposition* 10.7.

Proposition* 10.7 (cf Corollary 8.8) Let .Y ˙; �˙; V ˙/ be TN contact pairs and choose elements
r˙ D .˛˙; �˙; r˙/ 2R.Y ˙; �˙; V ˙/. Consider an exact relative symplectic cobordism . yX; y�;H/ with
positive end .Y C; �C; V C/ and negative end .Y �; ��; V �/, and suppose that �C and �� extend to a
global trivialization of the normal bundle of H .

Suppose that L� . yX; y�;H/ is a cylindrical Lagrangian submanifold which is disjoint from H , with ends
ƒ˙ � .Y ˙�V ˙; �˙/.
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If rC � eE..H;y�H /
˛C

˛� /r�, then there is an induced map

(10-10) ˆ. yX; y�;H;L/ W L.Y C; �C; V CI rC/! L.Y �; ��; V �I r�/:

The analogous statement holds for the reduced invariants zL.�/.

Definition* 10.8 Let � WA.Y; �; V I r/!QŒU � be an augmentation. Then we let

(10-11) L�.Y; �; V;ƒI r/ WD L.Y; �; V;ƒI r/˝A.Y;�;V Ir/QŒU �;

with differential dL˝1. The structure maps implicit in forming the tensor product (10-11) are, respectively,
furnished by the inclusion A.Y; �; V I r/�L.Y; �; V;ƒI r/ and the augmentation � WA.Y; �; V I r/!QŒU �.
The resulting tensor product is naturally also a differential graded QŒU � algebra.

We similarly define

(10-12) zLz�.Y; �; V;ƒI r/ WD zL.Y; �; V;ƒI r/˝ zA.Y;�;V Ir/Q;

using the maps zA.Y; �; V I r/� zL.Y; �; V;ƒI r/ and z� W zA.Y; �; V I r/!Q, which is naturally a differential
graded Q–algebra.

Remark 10.9 The algebra L�.Y; �; V;ƒI r/ is the twisted analog of the Legendrian homology dg algebra
(or Chekanov–Eliashberg dg algebra) described in [7, Section 4.1].

We now discuss gradings on the above Legendrian invariants.

Definition* 10.10 Let .Y; �; V / be a TN contact pair and choose r 2R.Y; �; V /. Let ƒ � .Y � V; �/
be a Legendrian submanifold. Suppose that H1.Y IZ/ D 0 and that c1.�/ D 0. Then the Legendrian
homological Z=2–grading of L.Y; �; V;ƒI r/ (resp. zL.Y; �; V;ƒI r/) lifts to a canonical Z–grading given
on orbits by (8-15) and given on chords by

(10-13) jcj D CZC;� .c/� 1;

which is well-defined due to our topological assumptions.

The invariants L�.Y; �; V;ƒI r/, HC.L�.Y; �; V;ƒI r//, zL�.Y; �; V;ƒI r/ and HC. zL�.Y; �; V;ƒI r// in-
herit a Z–grading, which we also refer to as the homological grading.

Lemma* 10.11 With the notation of Proposition* 10.7, suppose that H1.Y ˙IZ/D 0 and that w2.L/D
c1.�

˙/D c1.TX/D 0. Then the cobordism maps described in Proposition* 10.7 preserve the Legendrian
homological Z–grading.

As in Section 8.2, there is also a linking number Z–grading on the reduced Legendrian invariants under
certain topological assumptions.
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Definition* 10.12 Let .Y; �; V / be a TN contact pair and choose r 2R.Y; �; V /. Let ƒ � .Y; �/ be a
Legendrian submanifold. Suppose that H1.Y IZ/DH2.Y IZ/D �0.ƒ/D �1.ƒ/D 0. Then the linking
number grading j � jlink on zL.Y; �; V;ƒI r/ is given on Reeb chords by

(10-14) jcjlink D linkV .cIƒ/:

It is given on Reeb orbits by (8-16). The grading is extended to arbitrary words by defining the grading
of a word to be the sum of the gradings of its letters. One can verify using Lemma 5.22 that this grading
is well-defined.

We let

(10-15) zL�;�.Y; �; V;ƒI r/

be the bigraded differential Q–algebra of bidegree .�1; 0/, where

� the first bullet refers to the (Legendrian) homological Z–grading (which is well-defined in view of
our topological assumptions and the universal coefficients theorem, see Definition* 10.10), and

� the second bullet refers to the (Legendrian) linking number grading.

We also have the following lemma, which follows from Lemma* 10.11 and Lemma 5.22.

Lemma* 10.13 With the notation of Proposition* 10.7, suppose that H1.Y ˙IZ/ D H2.Y
˙IZ/ D

H2.X; Y
CIZ/D 0 and �0.ƒ˙/D�1.ƒ˙/D 0. Then the cobordism maps described in Proposition* 10.7

preserve the linking number Z–grading. In the case that we also have w2.ƒ˙/D c1.�˙/D c1.TX/D 0,
then the cobordism maps preserve the .Z�Z/–bigrading (10-15).

Corollary* 10.14 Consider a TN contact pair .Y; �; V / and an element r2R.Y; �; V /. Letƒ� .Y; �/ be
a Legendrian submanifold. Let .W; �;H/ be a relative filling for .Y; �; V / and let z� W zA.Y; �; V I r/!Q

be the induced augmentation. Suppose that H1.Y IZ/DH2.Y IZ/DH2.W; Y IZ/D 0, that �0.ƒ/D
�1.ƒ/D 0 and that w2.ƒ/D c1.�/D c2.T W /D 0.

Then

(10-16) zLz�
�;�.Y; �; V I r/

inherits the structure of a .Z�Z/–bigraded Q–algebra with differential of bidegree .�1; 0/. Moreover ,

(10-17) HC�;�. zLz�.Y; �; V I r//

inherits the structures of a .Z�Z/–bigraded Q–vector space.

Proof According to Lemma 5.21 and our topological hypotheses, the augmentation z� preserves the
linking number. The first claim follows. For the second claim, note that both the homological grading and
linking number grading are preserved by the cyclic permutation operator � , and hence pass to reduced
cyclic homology; see Definition 9.4.
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10.3 The effect of Legendrian surgery

The familiar procedure of attaching a handle in differential topology can be performed in the symplectic
category. There are various essentially equivalent approaches to doing this in the literature. For concrete-
ness, we exclusively follow in this paper the construction described in [46, Section 3.1], which we now
summarize.

Construction 10.15 (attaching a handle) Let .X2n0 ; �0/ be a Liouville cobordism with positive boundary
.Y 2n�10 ; �0 D ker.�0jY0//. Let ƒ � .Y0 � V; �0/ be an isotropic sphere with trivialized conformal
symplectic normal bundle (the latter condition is vacuous if ƒ is a Legendrian). Choose an arbitrary open
neighborhood U of ƒ, which we refer to as the attaching region.

We may now glue a model handle H along Y0 inside U , following the detailed construction given in
[46, Section 3.1]. The gluing is carried out by identifying the Liouville flow near ƒ with the flow on H .
We note that this gluing procedure involves some auxiliary choices, which we do not state here.

The outcome of the procedure (for any of the above auxiliary choices) is a Liouville cobordism .X; �/

with positive boundary .Y; �D ker.�jY //. We say that this domain is obtained from .X0; �0/ by attaching
a handle along ƒ, or Legendrian surgery on ƒ. As is well-known from differential topology, Y differs
from Y0 by surgery along ƒ.

In [7], Bourgeois, Ekholm and Eliashberg study the effect of handle attachment on various flavors of
symplectic and contact homology. In particular, they describe conjectural exact sequences which govern
the change in these invariants and describe the moduli spaces of holomorphic curves which should underlie
the existence of these exact sequences. In Theorem/Assumption* 10.16 below (see also Remark 10.17),
we state an analog of the surgery exact sequence for linearized contact homology in [7, Theorem 5.1].
The proofs sketched in [7, Section 6] also apply mutatis mutandis in the present setting, so will not be
repeated. As discussed in Section 1.3, we expect that if [7, Theorem 5.1] can be made rigorous in the
setting of Pardon’s VFC package, it should pose no substantial additional difficulties to also establish
Theorem/Assumption* 10.16.

To set the stage for Theorem/Assumption* 10.16, let .Y 2n�10 ; �0/ be a contact manifold and let V � .Y0; �0/
be a codimension 2 contact submanifold with trivial normal bundle. Let .X0; �0/ be a Liouville domain
with positive boundary .Y0; � D ker�0/ and let H0 � .X; �0/ be a symplectic submanifold which is
preserved setwise by the Liouville flow near @X0 D Y0 and such that @H D V .

Letƒ� .Y0�V; �0/ be an isotropic sphere with trivialized conformal symplectic normal bundle (the latter
condition is vacuous if ƒ is a Legendrian). Let .X; �/ be the Liouville domain obtained by attaching a
Weinstein handle along ƒ according to Construction 10.15 and let .Y; � D ker�/ be the positive boundary.
We may assume that the attaching region is disjoint from V � Y0. By abuse of notation, we therefore
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view V as a codimension 2 contact submanifold of .Y0; �0/ and .Y; �/ and view H0 as a submanifold
of X0 and X . We also identify R.Y0; �0; V /DR.Y; �; V /.

We let . yX0; y�0;H/ be the completion of .X0; �0;H0/, and let . yX; y�;H/ be the completion of .X; �;H0/.
There are natural (strict) markings e0 WR�Y0! yX0 taking .t; y0/ 7!  0t .y0/ and e WR�Y ! yX taking
.t; y/ 7!  t .y0/, where  0 (resp.  ) is the Liouville flow in yX0 (resp. in yX ).

Finally, in order to have well-defined homological Z–gradings, we assume thatH1.Y0IZ/DH1.Y IZ/D0
and that c1.TX0/D c1.TX/D 0.

Theorem/Assumption* 10.16 (cf Theorem 5.1 in [7]) With the above setup and r 2 R.Y; �; V /,
consider the augmentations z�.. yX0; y�0;H/; e0/ W zA.Y; �; V /!Q and z�.. yX; y�;H/; e/ W zA.Y; �; V /!Q.
If ƒ is a Legendrian sphere , we have the following exact triangle , where the top horizontal arrow is the
natural map induced by an exact relative symplectic cobordism:

(10-18)

eCH z�
��.n�3/

.Y; �; V I r/ eCH z�0
��.n�3/

.Y0; �0; V I r/

HC�. zLz�0.Y0; �0; V;ƒI r//

Œ�1�

If ƒ is an isotropic sphere of dimension k � n� 2, then we have that

(10-19) H�
�
Cone

�eCH z�
��.n�3/.Y; �; V I r/!

eCH z�0
��.n�3/

.Y0; �0; V I r/
��
D

�
Q if � D n� kC 2N;
0 otherwise.

Remark 10.17 There is a natural analog of Theorem/Assumption* 10.16 involving the invariants
CH

�0
��.n�3/

.Y0; �0; V I r/, CH �
��.n�3/

.Y; �; V I r/ and HC�.L�0.Y0; �0; V;ƒI r// which we also expect to
hold. We do not state it here since we do not use it in this paper.

Remark 10.18 With the setup of Theorem/Assumption* 10.16, let us in addition assume thatH2.Y0IZ/D
H2.X0; Y0/ D H2.Y IZ/ D H2.X; Y IZ/ D 0. Then Lemma 8.13 and Corollary* 10.14 provide an
additional linking number Z–grading on the invariants appearing in the surgery exact sequences.

The resulting .Z�Z/–bigrading is preserved by the maps in the surgery exact sequence. Indeed,
Lemma 8.13 ensures the top horizontal map preserves the linking number Z–grading. The bottom
right map counts holomorphic disks with one positive interior puncture, k negative boundary punctures,
and with boundary mapping to Sƒ (the relevant moduli space is described in [7, Section 2.6]). Hence
one can readily verify (cf Lemma 5.22) that this map also preserves the linking number grading. Finally,
the bottom left map is defined algebraically as the connecting map in the long exact sequence. Since the
internal differentials of the relevant chain complexes preserve the linking number grading, this connecting
map does too.
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11 Some computations

11.1 Vanishing results

Recall that a contact manifold .Y 2n�1; �/ is said to be overtwisted if it contains an overtwisted disk; see
[5, Section 1]. In general, if .Y; �/ is overtwisted and C � Y is a closed subset, then .Y �C; �/ may not
be overtwisted.

Theorem 11.1 Suppose that .Y; �; V / is a TN contact pair such that .Y �V; �/ is overtwisted. Given
any element r 2R.Y; �; V /, we have

(11-1) CH�.Y; �; V I r/D eCH�.Y; �; V I r/D 0:

We collect some definitions which will be useful in proving Theorem 11.1. Let almU.n�1/.S
2n�1/ be the

set of almost-contact structures on S2n�1; see Definition 12.1. It follows by the main theorem of [5] that
almU.n�1/.S

2n�1/ is in canonical correspondence with the set of overtwisted contact structures on the
sphere, a fact which will be used implicitly in the proof of Theorem 11.1.

A folklore result in contact topology (see eg [12, Section 6]) states that for any fixed element ˇ 2
almU.n�1/.S

2n�1/, the operation of connected sum endows almU.n�1/.S
2n�1/ with a group structure

with identity element ˇ. The isomorphism class of the resulting group is moreover independent of ˇ.
Since these facts are not to our knowledge available in the literature, we have provided careful proofs in
the appendix.

For the remainder of this section, we fix ˇ 2 almU.n�1/.S
2n�1/ to be the almost-contact structure induced

by the standard contact structure on the sphere. Given a pair of contact manifolds .M1; ˛1/ and .M2; ˛2/,
one can also consider their connected sum .M1 #M2; ˛1 # ˛2/, which is obtained by gluing-in a neck
along Darboux balls in M1;M2. This operation is discussed in Remark A.10. As noted there, the two
a priori different notions of a connected sum of (almost-)contact manifolds commute with the forgetful
map from contact manifolds to almost-contact manifolds.

Proof of Theorem 11.1 It is enough to prove that the invariants vanish for a particular choice of
nondegenerate contact form z̨ on Y which is adapted to r. To construct such a form, we follow arguments
of Bourgeois and Van Koert in [8, Section 6.2].

Using Construction 3.6, we define an auxiliary contact form ˛ in a small neighborhood N of V with the
property that V is a strong contact submanifold and that ˛ is adapted to r. After possibly shrinking N , we
can assume that .Y �N ; �/ is overtwisted. We now extend ˛ arbitrarily to a globally defined, nondegenerate
contact form on .Y; �/. (Since ˛V is nondegenerate, Construction 3.6 produces a nondegenerate contact
form on N , so it extends unproblematically to a global nondegenerate contact form.)
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Choose a Darboux ball B � Y whose closure is disjoint from N . Let B 0 � B be a smaller Darboux
ball and let AD B � xB 0. Let ˇ0 denote the almost-contact structure on B obtained by restricting � . Let
almU.n�1/.B;AIˇ0/ be the set of almost-contact structures on B agreeing with ˇ0 near A. The group
almU.n�1/.S

2n�1/ acts on almU.n�1/.B;AIˇ0/ by connect-summing with an almost-contact sphere
along a disk whose closure is disjoint from A.

We now appeal to work of Bourgeois and van Koert: in [8, Section 2.2], they construct a special contact
form ˛L on the sphere S2n�1 (this form turns out to be overtwisted by [12], although we won’t need
this). They prove [8, Sections 2–5] that ˛L admits a Reeb orbit  which bounds a single, transversally
cut-out J –holomorphic plane, for some suitable J on the symplectization.

We now form the connected sum of .S2n�1; ˛L/ with .Y; ˛/, where we assume that the gluing happens
entirely inside of B 0. Bourgeois and van Koert (following earlier work of Ustilovsky [65]) explain how to
perform this connected sum so that the orbit  survives, and still has the property that it bounds a single
transversally cut-out plane (basically, one can suitably adjust the neck to ensure that the plane cannot
cross the neck; see [8, Section 6.2]).

Finally, we connect sum with another overtwisted contact sphere .S2n�1; ˛0L/ so that .B; ˛ #˛L #˛0LjB/
is formally contact isotopic to .B; ˛jB/, through a contact isotopy fixed near A. Note that we may freely
assume that the two connected sums happen in disjoint regions of B 0, so they do not interfere with each
other. Unwinding the definitions, this means that there exists a diffeomorphism WB!B#S2n�1#S2n�1

fixed near the boundary and a formal contact isotopy from ker �.˛ #˛L #˛0L/jB to �B D ker˛jB , which
is fixed near A.

If we extend  to a diffeomorphism Y ! Y #S2n�1 #S2n�1 by letting it be the identity outside of B ,
we observe that ker �.˛ #˛L #˛0L/ is formally isotopic to � D ker˛. Moreover, these contact structures
agree on Y � B � N . Since .Y � N ; �/ is overtwisted, it follows from the relative h-principle for
overtwisted contact structures (see [5, Theorem 1.2]) that there is a smooth isotopy �t fixed on N so that
z̨ WD ��1 

�.˛ #˛L #˛0L/ is a contact form for .Y; �/. By construction, z̨ D ˛ on N , so z̨ is adapted to r.
Finally, it follows from the above discussion that CH�.Y; �; V I r/ vanishes when we compute it using the
form z̨ (since  bounds a rigid plane). An analogous argument shows that eCH�.Y; �; V I r/ vanishes as
well.

We also state a vanishing result for the deformed Chekanov–Eliashberg dg algebra of certain loose
Legendrians. To set the notation, let us now assume that .Y; �; V / is an arbitrary TN contact pair and fix
r 2R.Y; �; V /.

Proposition* 11.2 Suppose that ƒ� .Y �V; �/ is a loose Legendrian submanifold. Then L.Y; �; V;ƒI r/
and zL.Y; �; V;ƒI r/ are acyclic. Given augmentations � WA.Y; �; V I r/!QŒU � and z� W zA.Y; �; V I r/!Q,
the invariants L�.Y; �; V;ƒI r/ and zL�.Y; �; V;ƒI r/ are also acyclic.
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Proof The argument is the same as that which shows that the (undeformed) Chekanov–Eliashberg
dg algebra of a loose Legendrian is acyclic (see eg [55, Section 5]): up to Legendrian isotopy in Y �V , we
can find a chord c of arbitrarily small action which bounds a single half-disk. This disk can be assumed
to stay in a small ball disjoint from V for action reasons. Hence we have d.c/D 1.

11.2 Nonvanishing results: bindings of open books

The following theorem is the main result of this section.

Theorem 11.3 Consider a TN contact pair .Y; �; V /. Suppose that Y admits an open book decomposition
.Y; B; �/ which supports the contact structure � and realizes V D B as its binding. Viewing .B; �/ as
a framed contact submanifold , where � denote the trivialization of B � Y induced by the open book
decomposition , we have

(11-2) eCH�.Y; �; BI r/¤ 0
for any rD .˛B ; �; r/ 2R.Y; �; B/.

By combining Theorem 11.3 with Corollary 8.21, we obtain the following result.

Corollary 11.4 Under the hypotheses of Theorem 11.3, if r 0 is large enough and we write r0D .˛B ; �; r
0/,

then

(11-3) CH�.Y; �; BI r
0/¤ 0:

Proof of Theorem 11.3 According to Corollary 3.15, the open book decomposition .Y; B; �/ supports a
nondegenerate Giroux form ˛ which is adapted to r for any rD .˛B ; �; r/ 2R.Y; �; B/.

Consider the algebra eCC �.Y; �; BI r/ generated by (good) Reeb orbits of ˛ not contained in B . After
fixing an almost complex structure J W �! � which is compatible with d˛ and preserves �jB , and a choice
of perturbation data � 2‚I..Y; �; B/; ˛; J /, we get a differential dJ D d. z B ; J; �/ and the homology of
the resulting chain complex is (canonically isomorphic to) eCH�.Y; �; BI r/.
Let us suppose for contradiction that eCH�.Y; �; BI r/ D 0. This means that 1 is in the image of the
differential. By the Leibnitz rule, this implies that there exists some good Reeb orbit  W S1! Y and a
relative homotopy class ˇ 2 �2.Y; / such that the twisted moduli count of planes positively asymptotic
to  in the homotopy class ˇ is nonzero. To state this more formally in the language of Section 5.3, let
T 2 SI..Y; �; B/; ˛; J / be the tree with a single input edge e and a single vertex v, where e is decorated
with the Reeb orbit  and v is decorated with the ˇ 2 �2.Y; /. Then we have that z B.T /¤ 0.

In particular, this implies that M.T /¤∅. Hence there exists T 0! T such that T 0 is representable by a
J –holomorphic building. The proof of Proposition 7.7 shows that we may assume that T 0 does not have
any edges contained in B (since otherwise we would have z B.T 0/D z B.T /D 0).
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It follows by Proposition 5.12 that T 0 � yB D
P
v2V.T 0/ ˇv �

yB , and Corollary 5.14 implies that all the
terms on the right-hand side are nonnegative. Since z B.T 0/D z B.T /¤ 0, it follows by definition of the
reduced twisting maps that T 0 � yV D 0. Hence ˇv � yB D 0 for all v 2 V.T 0/.

For topological reasons, there exists zv 2 V.T 0/ such that zv has a single incoming edge and no outgoing
edges. Hence zv is represented by a J –holomorphic plane u which is asymptotic to some Reeb orbit z . By
positivity of intersection (see Proposition 5.3) and the fact that ˇzv � yB D 0, the image of u is contained in
R�.Y nB/. Thus z is contractible in Y nB , which implies that the composition � ı z WS1! Y nB!S1

has degree 0. This is a contradiction: since ˛ is a Giroux form, �ız must be an immersion by Remark 3.12,
and hence have nonzero degree.

We also state a vanishing result for the (reduced) Chekanov–Eliashberg dg algebra introduced in
Section 10.2.

Theorem* 11.5 Let .Y; �; V / be a TN contact pair and let ƒ� .Y �V; �/ be a Legendrian submanifold.
Suppose that � supports an open book decomposition � with binding B D V such that ƒ is contained in a
single page. Let � be the trivialization of NY=V induced by the open book. Then we have

(11-4) zL.Y; �; V;ƒI r/¤ 0:

Proof The proof is identical to that of Theorem 11.3; namely, one argues that the image of any Reeb
orbit or chord under the differential cannot contain a term of degree zero, which immediately implies the
claim.

We note that is was proved by Honda and Huang [39, Corollary 1.3.3] that any Legendrian ƒ in a contact
manifold .Y; �/ is contained in the page of some compatible open book decomposition. Hence it follows
from Theorem* 11.5 that every Legendrian is tight in the complement of some codimension 2 contact
submanifold.

11.3 Explicit computations in open books

We now perform certain explicit computations in open book decompositions which will be used in
applications in the next sections. We assume throughout this section that n� 4. This assumption is needed
for the purpose of obtaining a .Z�Z/–bigrading on eCH.�/; see Lemma 11.6 and Corollary 12.17.

Let us endow Sn�1 with a Riemannian metric h having the property that all geodesics are nondegenerate.
Such metrics, which are typically referred to as “bumpy” in the literature, are generic in the space of
Riemannian metrics; see [1] or [44, 3.3.9]. It can be shown [1] that any manifold endowed with a bumpy
metric admits a closed geodesic of minimal length. We let � > 0 be the length of the shortest geodesic of
.Sn�1; h/.
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To set the stage for this section, it will be useful to recall some general facts about coordinate systems.
Given a system of local coordinates .q1; : : : ; qm/ on some manifoldM, the dual coordinates .p1; : : : ; pm/
in the fibers of the T �M are characterized by the property that

(11-5) T �M 3 .q;p/D .q1; : : : ; qm; p1; : : : ; pm/D

mX
iD1

pidqi :

Unless otherwise indicated, a pair .q;p/ refers to a system of local coordinates in the cotangent bundle
of a manifold, where p is dual to q.

It will sometimes also be useful to work with Riemannian normal coordinates. Recall that on a Riemannian
manifold .M; g/, a system of normal coordinates .x1; : : : ; xm/ has the property that for any vector a2TxM,
the path � 7! at is a geodesic. If .q1; : : : ; qn/ is a system of Riemannian normal coordinates, then the
path t 7! ..t/; P[/ can be written in coordinates .q;p/ as

(11-6) t 7! .at; a/ 2 T �M:

We now introduce a Liouville manifold which will be studied throughout the remainder of this section.
For a > 0, define

(11-7) . yW0; y�
a/D

�
D2 �T �Sn�1; y�a WD

1

a
s2 d� C�std

�
;

where we have chosen local coordinates .s; �; q;p/. We emphasize that the Liouville structure depends
on the parameter a > 0.

Let � W yW0!R be the function

(11-8) �.s; �; q;p/D s2Ckpk2:

We consider the Liouville domain

(11-9) .W0; �
a/D .f� � 1g; �a WD y�ajW0/

and its contact-type boundary

(11-10) .Y0; �0/D .f�D1g; �D ker�0/;

where �0 D .y�a/jY0 is the induced contact form. Consider also the codimension 2 contact submanifold

(11-11) V D f�D1; sD0g � .Y0; �0/

and the Legendrian

(11-12) ƒ WD f�D1; �D constant; sD1; kpkD0g:

We define ˛ WD .�0/jV and let � be the trivialization of NY0=V , which is unique by Lemma 11.6. We set

(11-13) rD .˛; �; a/ 2R.Y0; �0; V /:

Finally, we let H D f0g �T �Sn�1 � yW0.
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Observe that r depends on our choice of a > 0. More generally, the contact form �0D .y�
a/jY0 on .Y0; �0/

obviously depends on a > 0. The plan is now to study the Reeb dynamics on .Y0; �0/ with respect to this
contact form. By taking a� 0 large enough, we will be able to obtain a sufficiently good understanding
of the Reeb dynamics to compute the invariant eCH.Y0; �0; V I r/ in low degrees; see Proposition* 11.17.

Lemma 11.6 The manifolds W0 and Y0 have vanishing first and second homology and cohomology with
Z–coefficients. In addition , we have H 1.V IZ/D 0 and w2.ƒ/D 0.

Proof The first claim is proved in Corollary 12.17. To compute H 1.V IZ/, note that V is the sphere
bundle associated to T �Sn�1. Hence, we have a fibration Sn�2 ,! V ! Sn�1 giving rise to a Gysin
sequence

(11-14) � � � !Hk.Sn�1IZ/!Hk.V IZ/!Hk�.n�2/.Sn�1IZ/! � � � :

Taking k D 1 immediately gives the desired result since n� 4. Finally, note that ƒD Sn�1, which has
vanishing homology (with any coefficients) in degrees 1� i � n� 2. Hence w2.ƒ/D 0 for n� 4.

Observe that there is a natural marking

(11-15) e0 WR�Y0! . yW0; y�
a;H/; .t; y/ 7!  t .y/;

where  .�/ is the Liouville flow associated to y�a.

This endows . yW0; y�a;H/ with the structure of a (strict) relative exact symplectic cobordism. We thus
obtain an augmentation

(11-16) z�0 W zA.Y0; �0; V I r/!Q:

It follows from Lemma 11.6 and the discussion following Definition* 9.10 that zA.Y0; �0; V I r/ and
zAz�0.Y0; �0; V I r/ admit a .Z�Z/–bigrading.

We now analyze the structure of .Y0; �0/ in more detail. First, observe that .Y0�V; �0jY0�V / is strictly
contactomorphic to

(11-17)
�
S1 �D�Sn�1; ˛V WD

1

a
.1�kpk2/ d� C�std

�
via the map

(11-18) S1 �D�Sn�1! Y0�V; .�; q;p/ 7!
�p
1�kpk2; �; q;p

�
;

whereD�Sn�1Df.q;p/2T �Sn�1 j kpk<1g. We let N �Y0 denote the image of S1�Sn�1 under this
map; equivalently, N D fkpkD0g. The complement .Y0�N ; �0jY0�N / is strictly contactomorphic to�

B �U; ˛N WD
1

a
.x dy �y dx/C

p
1� x2�y2˛U

�
;
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where B �R2 denotes the open unit disk and .U; ˛U / denotes the unit cotangent bundle of .Sn�1; h/,
equipped with the contact form ˛U WD �std induced by the canonical Liouville form on T �Sn�1. A
contactomorphism is given by

(11-19) B �U ! Y0�N ; .x; y; q;p/ 7!
�
x; y; q;

p
1� x2�y2p

�
:

Observe that the size of the tubular neighborhood B �U depends on our choice of a > 0.

Our first task is to study the Reeb orbits of �0 which are in the complement of N . In particular, we wish
to show that they are nondegenerate for a generic choice of a, and moreover that their Conley–Zehnder
indices depend linearly on a. This is the content of Proposition 11.7 and Corollary 11.8 below.

Proposition 11.7 Let U WR=Z! U be a Reeb orbit of ˛U of period PU . Then:

(A) The map

(11-20) 1 WR=Z! B �U; t 7! .0; 0; U .t//;

is a Reeb orbit of ˛N of period P1 WD PU .

(B) Given any r0 2 .0; 1/ and integers m; n > 0 such that

(11-21)
aPU

4�
p
1� r20

D
m

n
;

the map

(11-22) 2 WR=Z! B �U; t 7! .r0 cos.2�mt/; r0 sin.2�mt/; U .nt//;

is a Reeb orbit of ˛N of period

P2 WD .2� r
2
0 /
2�m

a
D .2� r20 /

nPU

2
p
1� r20

:

Every Reeb orbit of ˛N is of the form (A) or (B) for some choice of U , r0, m and n.

If ˛U is nondegenerate and a satisfies

(11-23) a�1 …
[

q2Q>0

1

4�
p
q
S.˛U /;

where S.˛U / � R is the action spectrum of ˛U , then ˛N is nondegenerate. Moreover , given any
trivialization �0 of �U ker.˛U /, there exist trivializations �i of �i ker.˛N / for i D 1; 2 such that

CZ�1.1/D 1C 2
�
P1a

4�

�
CCZ�0.U /;(11-24)

CZ�2.2/D 1C 2
�

P2a

�.2� r20 /
2

�
CCZ�0.nU /:(11-25)

If �0 extends to a disk spanning U , then �i extends to a disk spanning i .
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Proof The Reeb vector field of ˛N is given by

(11-26) R˛N D
1

2� x2�y2
.a.x@y �y@x/C 2

q
1� x2�y2RU /;

where RU denotes the Reeb vector field of ˛U (recall that a > 0 is a constant fixed above). A simple
computation shows that 1 and 2 are Reeb orbits with periods as claimed, and that there are no other
orbits.

Note that the contact structure � D ker.˛N / splits as

(11-27) � D he1; e2i˚ ker.˛U /;

where e1 and e2 are the vector fields on B �U defined by

e1 D @xC
y

a
p
1� x2�y2

RU ;(11-28)

e2 D @y �
x

a
p
1� x2�y2

RU :(11-29)

In particular, given a trivialization �0 of �U ker.˛U /, we get trivializations �1 D h�1 e1; 
�
1 e2i˚ �0 and

�2 D h
�
2 e1; 

�
2 e2i˚ �

n
0 of �1 � and �2 �, where �n0 denotes the trivialization of .nU /

� ker.˛U / induced
by �0.

We have

Le1R˛N D�@x
�

ay

2� x2�y2

�
e1C @x

�
ax

2� x2�y2

�
e2(11-30)

D
a

.2� x2�y2/2

�
�2xye1C .2C x

2
�y2/e2

�
;

Le2R˛N D @y
�

ay

2� x2�y2

�
e1� @y

�
ax

2� x2�y2

�
e2(11-31)

D
a

.2� x2�y2/2

�
�.2� x2Cy2/e1C 2xye2

�
:

Moreover, for any vector field X on U such that X 2 ker.˛U /, we have

(11-32) LXR˛N D
2
p
1� x2�y2

2� x2�y2
LXRU :

Hence, if ‰i .t/ W �i .0/! �i .t/ denotes the linearized Reeb flow along i (viewed as a matrix via the
trivialization �i ) for i D 1; 2, then ‰0i .t/D Si .t/‰i .t/ with

S1.t/D
aPU

2

�
0 �1

1 0

�
˚PUSU .t/;(11-33)

S2.t/D
2�m

2� r20

�
�r20 sin.4�mt/ �2C r20 cos.4�mt/
2C r20 cos.4�mt/ r20 sin.4�mt/

�
˚nPUSU .nt/;(11-34)

where SU .t/ is the matrix such that the linearized Reeb flow‰U W .�U /U .0/! .�U /U .t/ ofRU along U
satisfies ‰0U .t/D PUSU .t/‰U .t/.
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It follows that CZ�1.1/DCZ. 1/CCZ�0.U / and CZ�2.2/DCZ. 2/CCZ�0.nU /, where  1 and  2
are paths of 2� 2 matrices given by  i .t/D exp.Pi .t// with

P1.t/D t
aPU

2

�
0 �1

1 0

�
;(11-35)

P2.t/D

Z t

0

2�m

2� r20

�
�r20 sin.4�ms/ �2C r20 cos.4�ms/
2C r20 cos.4�ms/ r20 sin.4�ms/

�
ds;(11-36)

D
2�m

2� r20

0B@ r20
4�m

.cos.4�mt/� 1/ �2t C
r20
4�m

sin.4�mt/

2t C
r20
4�m

sin.4�mt/ �
r20
4�m

.cos.4�mt/� 1/

1CA :
Note that P1.t/ and P2.t/ are diagonalizable with eigenvalues ˙2�i�1.t/ and ˙2�i�2.t/, respectively,
where

�1.t/D t
aPU

4�
;(11-37)

�2.t/D
1

2� r20

r
4m2t2�

r40
8�2

.1� cos.4�mt//:(11-38)

It follows that ker. i .t/�Id/ is either R2 or 0, depending on whether �i .t/ is an integer or not. Assumption
(11-23) implies that �i .1/ is not an integer and hence that  i .1/ doesn’t have 1 as an eigenvalue, ie  i is
nondegenerate. This is clear for �1.1/; to check this for �2.1/, note that it follows from (11-21) that

(11-39) �2.1/D
2m

2� r20
D

2m

1C
n2a2P 2U
.4�/2m2

D
2m3.4�/2

.4�/2m2Cn2a2P 2U
:

If this expression were integral, then the reciprocal would be rational; hence n2a2P 2U =.2m
3.4�/2/ would

be rational, contradicting Assumption (11-23).

Since �J0P 0i .t/ is positive-definite for all t , it follows from [33, Proposition 52] that

(11-40) CZ. i /D 1C 2 #ft 2 .0; 1/ j �i .t/ 2 Zg:

Since �i is strictly increasing with �i .0/D 0 and �i .1/ …Z, the right-hand side is equal to 1C 2b�i .1/c.
Thus

CZ. 1/D 1C 2
�
aPU

4�

�
D 1C 2

�
aP1

4�

�
;(11-41)

CZ. 2/D 1C 2
�
2m

2� r20

�
D 1C 2

�
aP2

�.2� r20 /
2

�
;(11-42)

as desired.
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Corollary 11.8 Suppose that  is a closed Reeb orbits of .Y0; � D ker�0/ which is contained in the
complement of N � Y0. Then

(11-43) CZ� ./ >
j
a�

�

k
;

where � is a trivialization which extends to a spanning disk and � > 0 is as on page 92.

Proof It is well-known that the Reeb orbits on U correspond bijectively to geodesics on .Sn�1; h/;
with our normalization, the action of a closed Reeb orbit equals twice the length of the corresponding
unit-speed geodesic; see eg [29, Section 1.5]. Moreover, according to [24, Proposition 1.7.3], given a
Reeb orbit z which corresponds to a geodesic  , we have

(11-44) �M ./D CZ� .z/;

where �M is the Morse index of the geodesic and � extends to a spanning disk; see Remark 11.9. Since
the Morse index of a geodesic is nonnegative by definition, the corollary follows from Proposition 11.7.

Remark 11.9 The trivialization considered in [24, Proposition 1.7.3] is in fact constructed as follows.
Choose a spanning disk zv WD2! U � T �Sn�1 for z and let v WD � ı zv, where � W T �Sn�1! Sn�1

is the projection. Let f�1; : : : ; �n�1g be a trivialization of v�TSn�1. For points � W zx 7! x, let
QxIzx W�

�1.x/!Tzx.�
�1.x// be the canonical identification. Now define z� ipDQv.p/Izv.p/�p for p 2D2.

Then fz�1; : : : ; z�n�1g defines a Lagrangian subbundle of the symplectic vector bundle .zv�.�/; d�0/.
Hence it induces a unique trivialization of zv�� , which restricts on the boundary to a trivialization of z�� .

We now turn to the Reeb dynamics near N . Recall from page 94 that N is contained in .Y0�V; �0/,
which is strictly contactomorphic to .S1 �D�Sn�1; ˛V /, where ˛V D .1=a/.1�kpk2/ d� C�std.

Lemma 11.10 Let q D .q1; : : : ; qn�1/ be Riemannian normal coordinates in some open set U �
.Sn�1; h/ and let p D .p1; : : : ; pn/ be the dual coordinates. The Reeb vector field of ˛V is given by

(11-45) R˛V D
1

1Ckpk2

�
a@� C 2

X
i;j

hijpi@qj �
X
i;j;k

pipj @kh
ij @pk

�
on S1 �D�U . (Here we follow the convention of using superscripts .hij / D .hij /

�1 to denote the
coefficients of the metric induced by h on T �Sn�1.)

Proof A direct computation using the formulas

˛V D
1

a

�
1�

X
i;j

pipjh
ij

�
d� C

X
i

pi dqi ;(11-46)

d˛V D�
2

a

X
i;j

hijpi dpj ^ d� �
1

a

X
i;j;k

pipj @kh
ij dqk ^ d� C

X
i

dpi ^ dqi(11-47)

shows that ˛V .R˛V /D 1 and d˛V .R˛V ;�/D 0.
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Lemma 11.11 Consider the map � W Y0 � V ! S1 given by �.s; �; q; p/ D � . Then the pair .V; �/
defines an open book decomposition of Y. Moreover , �0 is a Giroux form for the contact structure
�0 D ker�0.

Proof It is clear that .V; �/ defines an open book decomposition of Y. To verify that �0 is a Giroux
form, observe by Lemma 11.10 that the Reeb vector field is transverse to the pages of � . The claim then
follows by combining Definition 3.11 and Remark 3.12.

By Lemma 11.10, the map 0 W R=Z! S1 �D�U given by the formula 0.t/ D .2�t; 0; 0/ defines a
simple Reeb orbit in Y0. Let k0 denote its k–fold cover. There is an obvious trivialization �0 of �jk0
given by

(11-48) �0 D f@p1 ; : : : ; @pn�1 ; @q1 ; : : : ; @qn�1g:

Let � be the trivialization of �jk0 defined as

(11-49) �Dfsin.2�kt/@q1Ccos.2�kt/@p1 ; @p2 ; : : : @pn ; cos.2�kt/@q1�sin.2�kt/@p1 ; @q2 ; : : : ; @qng:

Observe that � extends to a disk spanning 0 in Y0.

Lemma 11.12 With respect to the trivialization �0, the linearized Reeb flow along k0 is given by the
matrix

(11-50)
�

1 0
2t 1

�
;

where each entry of this matrix should be viewed as an .n�1/� .n�1/ diagonal matrix.

Proof Note that �0 can be extended to a trivialization z�0 of ker.˛V / over S1 �D�U , where

(11-51) z�0 D

�
@p1 ; : : : ; @pn�1 ; @q1 �

ap1

1�kpk2
@� ; : : : ; @qn�1 �

apn�1

1�kpk2
@�

�
:

Using the formula for R˛V given in Lemma 11.10, one can easily compute

L@piR˛V jpD0;qD0 D 2@qi ;(11-52)

L@qi�.api=.1�kpk2// @�R˛V jpD0;qD0 D 0:(11-53)

Hence, the matrix A.t/ representing the linearized Reeb flow �k0 .0/
! �k0 .t/

with respect to the trivial-
ization �0 is given by

(11-54) A.t/D exp
�
t

�
0 0

2 0

��
D

�
1 0

2t 1

�
;

where each entry should be interpreted as a multiple of the .n�1/� .n�1/ identity matrix.
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Corollary 11.13 The Robbin–Salamon index satisfies

(11-55) �
�0
RS.

k
0 /D

1
2
.n� 1/:

Hence ,

(11-56) ��RS.
k
0 /D

1
2
.n� 1/C 2k:

Proof The first computation follows from [33, Proposition 54]; there is a sign change due to the fact that
the matrix we are considering is the transpose of that considered in [33, Proposition 54], but the proof is
entirely analogous. The second computation follows from the fact (see the proof of Lemma 57 in [33])
that the Robbin–Salamon index satisfies the so-called “loop property”, ie given a path of symplectic
matrices � W Œ0; 1�! Sp.2n;R/ with �.0/D �.1/D id, and given a path  W Œ0; 1�! Sp.2n;R/, we have

(11-57) �RS.� /D �RS. /C 2�.�/;

where � is the Maslov index of the path.

By Lemma 11.10, N D fkpkD0g is preserved by the Reeb flow and is foliated by Reeb orbits in a
Morse–Bott family.

Given � > 0 which will be fixed later, let U� D fkpk < �g \ Y0. This is a neighborhood of N , which
we identify with S1 �D�� S

n�1 via the contactomorphism defined on page 94. Let f W U�! R be the
function corresponding under this identification to

(11-58) S1 �D�� S
n�1
!R; .�; q;p/ 7! �.kpk/g.q/;

where g is a perfect Morse function on Sn�1 and � WR! Œ0; 1� is a smooth bump function with �.x/D 1
for x near 0 and �.x/D 0 for x > �=2; cf [6, Section 2.2].

Lemma 11.14 Fix P > 0. If � is small enough , all closed Reeb orbits of .Y0; �0/ which are contained
in U� �N have action at least P .

We now consider a perturbed contact form �ı WD .1C ıf /�0. Since f is compactly supported in U� , the
form �ı can be viewed as a contact form both on U� and on Y0.

Lemma 11.15 Fix P > 0. If � and ı are small enough , then there are exactly two simple Reeb orbits
in U� with action < P . We label them a and b , and they correspond respectively to the minimum and
maximum of f .

Proof Combine Lemma 11.14 with the argument of [6, Lemma 2.3].
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Lemma 11.16 Let P > 0 be as in Lemma 11.15. After possibly further shrinking � and ı, we may
assume that any Reeb orbit of .Y0; �ı/ contained in U� and having Conley–Zehnder index (measured
with respect to a trivialization which extends to a spanning disk ) less than P=a is a multiple of a or b .
In addition , we have

CZ� .ka /D �
�
RS.

k
0 /�

1
2
.n� 1/C inda.ıf /D 2k;(11-59)

CZ� .kb /D �
�
RS.

k
0 /�

1
2
.n� 1/C indb.ıf /D .n� 1/C 2k:(11-60)

Proof First of all, observe by Lemma 11.10 that the boundary of U� is preserved by the Reeb flow of �0.
It follows that the Reeb flow of �0 has “bounded return time”, in the terminology of [6, Definition 2.5].

Next, it follows from (11-56) that the Robbin–Salamon index of any Reeb orbit  contained in the
Morse–Bott submanifold N D fkpkD0g � Y0 satisfies

(11-61) �RS./D
1
2
.n� 1/C 2wind./D 1

2
.n� 1/C 2Ta;

where P is the length of  . It follows that these orbits satisfy “index positivity” (with constant 2=a), in
the terminology of [6, Definition 2.6].

The first claim now follows from [6, Lemma 2.7]. The index computations follow by combining (11-56)
with [6, Lemma 2.4].

We now put together the above results. For any integer N > 0, let us define

(11-62) †1N D fk 2 Z j 0 < k < N; k eveng;

and let

(11-63) †2N D fk 2 Z j k < N; k D n� 1C 2j for j � 1g:

Proposition* 11.17 Given any N > 0, there exists A > 0 such that

(11-64) CHUD0
k�.n�3/.Y0; �0; V I r/D

eCHk�.n�3/.Y0; �0; V I r/

D

8<:
Q˚Q if k 2†1N \†

2
N ;

Q if k 2†1N [†
2
N � .†

1
N \†

2
N /;

0 if k …†1N [†
2
N and k < N;

whenever a > A. (Recall from (11-13) that r depends on a > 0 and hence on N > 0.)

Proof According to Corollary 11.8, we may fix A> 0 large enough so that all Reeb orbits for .Y0; �0/
in the complement of N � Y0 have index at least N . We now choose � and ı small enough so that the
conclusions of Lemma 11.16 hold with P DN . Since fı is compactly supported in U� , we find that the
only Reeb orbits of .Y0; �ı/ having index less than N are multiples of a and b .
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According to (11-59) and (11-60), it is now enough to check that the differential vanishes on the set

�N D f
ka
a ; 

kb
b
j CZ� .kaa / < N;CZ� .kb

b
/ < N g:

To see this, observe that for  2�N we have

(11-65) CZ� ./D 2wind./ mod .n� 1/:

Suppose that there exists a homotopy class ˇ of curves of index 1 with yV � ˇ D 0. Then the linking
number of the positive puncture equals the sum of the linking numbers of the negative punctures. Hence,
by (11-65), the index of the positive puncture equals the sum of the indices of the negative punctures
mod .n�1/. Since ˇ has index 1, this means that 1D 0 mod .n�1/. This is a contradiction since n>2.

Corollary* 11.18 Let N > 0 be as in Proposition* 11.17. Then for all integers k < N we have

(11-66) eCH z�0
k�.n�3/

.Y0; �0; V I r/D eCHk�.n�3/.Y0; �0; V I r/;
where the right-hand side was computed in Proposition* 11.17.

We now turn out attention to computing certain Legendrian invariants. Let ƒ � .Y0; �0/ be defined
as above; see (11-12). Recall that the relative symplectic filling . yW0; y�0;H/ gives an augmentation
z�0 W zA.Y0; �0; V I r/!Q.

It follows from Corollary* 10.14 and Lemma 11.6 that zLz�0.Y0; �0; V;ƒI r/ is a .Z�Z/–bigraded algebra
with differential of bidegree .�1; 0/, and thatHC�;�. zLz�.Y; �; V I r// is a .Z�Z/–bigraded Q–vector space.

We now have the following computation.

Proposition* 11.19 Given a positive integer N � 1, let

(11-67)
M
j�N

zLz�0
�;j .Y0; �0; V;ƒI r/�

zLz�0.Y0; �0; V;ƒI r/

be the bigraded submodule of elements of winding number at most N. Then this submodule can be
generated by products of total winding number � N of Reeb chords fakgk2NC and fbkgk2NC , where
jakj D 2k� 1 and jbkj D n� 2C 2k. (Note that we do not say anything about the differential.)

Proof Since .Y0�V; �0/ is strictly contactomorphic to .S1 �D�Sn�1; ˛V /, we have that .Y0�V; �ı/
is strictly contactomorphic to .S1 �D�Sn�1; ˛ı WD.1C ıf /˛V /.

Recall that f depends on a positive real parameter � > 0, which can be taken to be arbitrarily small.
Moreover, the restriction of f to the Legendrian ƒD f0g �Sn�1 is equal to g, a Morse function with
exactly two critical points: one minimum a and one maximum b.

Geometry & Topology, Volume 28 (2024)



Homological invariants of codimension 2 contact submanifolds 103

Let c denote either a or b. As in Lemma 11.16, we let c denote the simple Reeb chord (which is also
a Reeb orbit) passing through c, and let kc denote its k–fold cover. Observe first of all that all Reeb
chords for ƒ are contained in U� – this follows from the fact that f is compactly supported in U�; see
page 100. Hence, as in Lemma 11.14, if we assume that � > 0 is small enough, then there exists P > 0

large enough so that all Reeb chords of action greater than P have winding number greater than N. By a
routine adaptation of Lemma 11.15 (or rather the proof of [6, Lemma 2.3]), one concludes that the only
Reeb chords of winding number less than or equal to N are the ka and k

b
.

We can assume without loss of generality that there are normal coordinates q D .q1; : : : ; qn�1/ defined
in a neighborhood Uc �ƒ of c in which g is given by

(11-68) g D g.c/C �

n�1X
iD1

q2i ;

where � D 1 if c D a, and � D�1 if c D b. The Reeb vector field of ˛ı is given by

(11-69) R˛ı D
1

1C ıf
R˛C

2�ı

.1C ıf /2

X
i

�
qi �

2pi

1Ckpk2

X
j;k

hjkpkqj

�
@pi

on S1 �D�Uc for kpk sufficiently small, ie satisfying �.kpk/D 1. We will now show that for every
k � 1, the indices of ka and k

b
as Reeb chords are given by

(11-70) CZC.ka /D 2k and CZC.kb /D 2kCn� 1:

Hence, setting ak D ka and bk D kb , we have

jakj D CZC.ak/� 1D 2k� 1;

jbkj D CZC.bk/� 1D 2kCn� 2;
as desired.

To compute CZC.kc /, we start by computing the linearized Reeb flow along kc with respect to the
trivialization �0; see (11-48). We proceed as in Lemma 11.12: we have

L@piR˛ı
ˇ̌
pD0;qD0

D
2

1C ıg.c/
@qi ;(11-71)

L@qi�.api=.1�kpk2// @�R˛ı
ˇ̌
pD0;qD0

D �
2ı

.1C ıg.c//2
@pi :(11-72)

Hence, the matrix A.t/ representing the linearized Reeb flow �kc .0/
! �kc .t/

with respect to the trivial-
ization �0 satisfies A0.t/D SA.t/ with

(11-73) S D

0B@ 0 �
2ı

.1Cıg.c//2

2

1Cıg.c/
0

1CA ;
where each entry should be interpreted as a multiple of the .n�1/� .n�1/ identity matrix.
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Setting �D 2ı=.1C ıg.c//2 and � D 2=.1C ıg.c// for ease of notation, it follows that

(11-74) A.t/D exp.tS/D

8̂̂̂̂
<̂
ˆ̂̂:

 
cosh.t

p
��/

p
�=� sinh.t

p
��/p

�=� sinh.t
p
��/ cosh.t

p
��/

!
if � D 1, 

cos.t
p
��/ ��=� sin.t

p
��/

�=� sin.t
p
��/ cos.t

p
��/

!
if � D�1.

(Note that �; � > 0 if ı is sufficiently small.)

Let L.t/� �kc .t/ be the path of Lagrangian subspaces obtained by applying the linearized Reeb flow to
the tangent space Tcƒ� �c and let zL.t/ be the loop obtained by closing up L.t/ by a positive rotation.
Since Tcƒ is represented by �

0

In�1

�
in the trivialization �0, L.t/ is represented by

A.t/

�
0

In�1

�
:

In the two-dimensional case (ie n� 1D 1), one can easily deduce (eg using the standard properties of the
Maslov index stated in [52, Theorem 2.3.7]) that

(11-75) ��0.zL.t//D

�
0 if � D 1,
1 if � D�1.

In general, L.t/ splits as a direct sum of n� 1 copies of the two-dimensional case, so the additivity
property of the Maslov index [52, Theorem 2.3.7] implies that

(11-76) ��0.zL.t//D

�
0 if � D 1,
n� 1 if � D�1.

According to Definition 10.3 and the definition of the Maslov index [52, Theorem 2.3.7], we have
CZC.kc /D �

� .ƒn�1C
zƒ/D �� .zL.t//, where � is a trivialization of the contact structure along kc which

extends to a spanning disk. For example, we can take � to be the trivialization defined in equation (11-49).
The difference �� .zL.t//���0.zL.t// is equal to twice the Maslov index of the loop of symplectic matrices
relating � and �0, ie

(11-77) �� .zL.t//���0.zL.t//D 2�

�
cos.2�kt/ �sin.2�kt/
sin.2�kt/ cos.2�kt/

�
D 2k:

It follows that

(11-78) CZC.ka /D 2k and CZC.kb /D 2kCn� 1;

as desired.

It will be useful to record the following consequence of the above computation.
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Corollary* 11.20 Suppose that n� 4 is even. Then we have

(11-79) rkHC2n;2. zLz�0.Y0; �0; V;ƒI r//D 1:

Proof Indeed, note that the generators described in Proposition* 11.19 satisfy link.ak/D link.bk/D k.
It thus follows that

(11-80) CC2n�1;2. zL�.Y0; �0; V I r//D CC2nC1;2. zL�.Y0; �0; V I r//D 0:

On the other hand, CC2n;2. zL�.Y0; �0; V I r// is generated by the word b1b1.

12 Applications to contact topology

12.1 Contact and Legendrian embeddings

We begin by introducing some standard definitions in the theory of contact and Legendrian embeddings.

Definition 12.1 Given a smooth manifold Y 2n�1, a formal contact structure (or almost-contact structure)
is the data of a pair .�; !/, where �� T Y is a codimension 1 distribution and ! 2�2.Y / is a 2–form
whose restriction to � is nondegenerate. A formal contact structure is said to be genuine if it is induced
by a contact structure.

If Y 2n�1 is orientable, then a formal contact structure is the same thing as a lift of the classifying map
Y ! BSO.2nC 1/ to a map Y ! B.U.n/� id/D BU.n/.

Definition 12.2 (see Definition 2.2 in [10]) Let .Y 2n�1; � D ker˛/ be a contact manifold. Given a
formal contact manifold .V 2m�1; �; !/ where 1�m� n� 1, a formal (iso)contact embedding is a pair
.f; Fs/ where

� Fs is a fiberwise injective bundle map T V ! T Y defined for s 2 Œ0; 1�,

� f W V ! Y is a smooth map and df D F0, and

� F1 defines a fiberwise conformally symplectic map .�; !/! .�; d˛/.

Observe that the above properties are independent of the choice of contact form ˛.

Two formal contact embeddings i0; i1 W .V; �; !/! .Y; �/ are said to be formally isotopic if they can be
connected by a family fitgt2Œ0;1� of formal contact embeddings.

A (genuine) contact embedding .V; �/! .Y; �/ is simply a smooth embedding � W V ! Y such that
��.�/D ��.V /. In particular, every contact embedding induces a formal contact embedding by taking
Fs D F0 D df .
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Definition 12.3 (see Definition 2.1 in [10]) Let .Y 2n�1; �/ be a contact manifold. Given a smooth
n–dimensional manifold ƒ, a formal Legendrian embedding is a pair .f; Fs/ where

� Fs is a fiberwise injective bundle map T V ! T Y defined for s 2 Œ0; 1�,

� df D F0, and

� im.F1/� �.

Two formal Legendrian embeddings are said to be formally isotopic if they can be connected by a family
of Legendrian embeddings. A (genuine) Legendrian embedding ƒ! .Y; �/ is a smooth embedding
� Wƒ! Y such that d�.Tƒ/� � � T Y. In particular, a Legendrian embedding canonically induces a
formal Legendrian embedding.

We now review some foundational facts about loose Legendrians. Recall that a Legendrianƒ in a (possibly
noncompact) contact manifold .Y; �/ of dimension at least five is defined to be loose if it admits a loose
chart. For concreteness, we adopt as our definition of a loose chart the one given in [16, Section 7.7].

Loose Legendrians satisfy the following h-principle due to Murphy [55, Theorem 1.2]: given a pair
of loose Legendrian embeddings f0; f1 W ƒ! .Y; �/ which are formally isotopic, then f0 and f1 are
genuinely isotopic, ie isotopic through Legendrian embeddings.

Given an arbitrary Legendrian submanifold ƒ0 in a contact manifold .Y0; �0/ of dimension at least five,
one can perform a local modification, called stabilization, which makes ƒ0 loose without changing the
formal isotopy class of the tautological embedding ƒ0

id
�! ƒ0. This modification can be realized in

multiple essentially equivalent ways. In this paper, we will take as our definition of stabilization any
construction which satisfies the properties stated in the following lemma.

Lemma 12.4 Given a Legendrian submanifold ƒ� .Y0; �0/ and an open set U � Y0 such that U \ƒ0
is nonempty , there exists a Lagrangian embedding f1 W ƒ0 ! Y which is formally isotopic to the
tautological embedding ƒ0

id
�! ƒ0 via a family of formal Legendrian embeddings f.ft ; F ts /gt2Œ0;1�

which are independent of t on ƒ0\ .Y �U/. We put ƒ WD f1.ƒ0/ and say that ƒ is the stabilization
of ƒ0 inside U.

Proof To construct ƒ, we follow the procedure described in [16, Section 7.4]. As the reader may verify,
this construction can be assumed to happen entirely inside a suitably chosen Darboux chart U � U. In
addition, the construction depends on the choice of a function f ; using that Y has dimension at least
five, we may (and do) assume that �.ff � 1g/D 0. To construct the formal isotopy, we simply follow
the proof of [16, Proposition 7.23] (using the assumption that �.ff � 1g/ D 0). The argument there
is entirely local, so that the isotopy can be assumed to be fixed outside of U (and in particular, outside
of U ).
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12.2 Embeddings into overtwisted contact manifolds

We begin with the following proposition.

Proposition 12.5 Suppose that .Y; �/ is an overtwisted contact manifold and let

(12-1) i W .V; �/! .Y; �/

be a formal contact embedding. Then there exists an open subset �� Y such that Y �� is overtwisted ,
and a genuine contact embedding

(12-2) j W .V; �/!�� .Y; �/

such that i and j are formally contact isotopic in .Y; �/.

Proof We will assume for simplicity that V is connected, but the proof can easily be generalized. Let
Dot � .Y; �/ be an overtwisted disk. Let ft be a family of formal contact embeddings such that f0 is the
underlying smooth map induced by i , and Im.f1/\Dot D∅. Let �� Y be a connected open subset
such that Im.f1/����� Y �Dot. According to [5, Proposition 3.8], we can assume by choosing �
large enough that .�; �/ is overtwisted.

For purely algebrotopological reasons, there exists a family �t of formal contact structures on Y with the
following properties:

� �0 D �,

� �t is constant in the complement of �, and

� �1 is a genuine contact structure in a neighborhood V �� of Im.f1/, and f1 is a genuine contact
embedding with respect to �1.

Since �1 is genuine on V [ .Y ��/, it follows from the relative h-principle for overtwisted contact
structures [5, Theorem 1.2] that �1 is homotopic to a genuine overtwisted contact structure through a
homotopy fixed on V [ .Y ��/. Thus we may as well assume in the third property above that �1 is
genuine everywhere.

Since .�; �/ is overtwisted, it follows from [5, Theorem 1.2] that there exists a homotopy z�t of genuine
contact structures such that z�0 D �0 D �, z�1 D �1 and z�t is independent of t on Y ��.

By Gray’s theorem, there is an ambient isotopy  t W Y ! Y which is fixed on Y �� and has the property
that  �t z�t D z�0 D �0. The composition  �11 ıf1 is in the same class of formal contact embeddings as f1,
and gives the desired genuine embedding.

We now describe a procedure for constructing pairs of codimension 2 contact embeddings in overtwisted
manifolds which are formally isotopic but fail to be isotopic as contact embeddings.
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Construction 12.6 Let .Y 2n�10 ; �0/ be a closed, overtwisted contact manifold and let .Y0; B; �/ be an
open book decomposition which supports �0. Let i0 W .B; .�0/B/! .Y0; �0/ be the tautological embedding
of the binding and let j0 W .B; .�0/B/! .Y0; �0/ be a contact embedding with overtwisted complement
which is formally isotopic to i0 (the existence of such an embedding follows from Proposition 12.5). Let
Dot � Y0 be an overtwisted disk which is disjoint from j0.B/.

Choose an open subset U � Y0 whose closure is disjoint from i0.B/[ j0.B/[Dot, and such that i0
and j0 are formally isotopic in the complement of U . Now let .Y; �/ be obtained by attaching handles of
arbitrary index along isotropic submanifolds contained inside U ; see Construction 10.15. We let . yX; y�/
denote the resulting Weinstein cobordism with positive end .Y; �/ and negative end .Y0; �/.

Observe that .Y; �/ is still overtwisted and that i0 and j0 can also be viewed as codimension 2 contact
embeddings into .Y; �/. We denote these latter embeddings by i; j W .B; .�0/B/! .Y; �/. By construction,
the embeddings i and j are formally isotopic.

Theorem 12.7 The embeddings i and j which arise from Construction 12.6 are not genuinely isotopic. In
fact , i is not genuinely isotopic to any reparametrization of j in the source , meaning that the codimension 2
submanifolds .i.B/; �i.B//; .j.B/; �j.B// are not contact isotopic.

Proof According to Corollary 8.8, the cobordism . yX; y�/ induces a map of unital Q–algebras

eCH�.Y; �; BI r/! eCH�.Y0; �0; BI r/
for any element r2R.Y0; �0;B/�R.Y; �;B/. Moreover, Theorem 11.3 implies that eCH�.Y0; �0;BI r/¤0
for appropriate r 2R.Y; �; B/. It follows that eCH�.Y; �; BI r/¤ 0.

If we assume that .i.B/; �i.B//; .j.B/; �j.B// are isotopic as codimension 2 contact submanifolds, then
eCH�.Y; �; BI r/DeCH�.Y; �; j.B/I r0/ for some datum r0 2R.Y; �; j.B//. On the other hand, observe that
.Y � j.B/; �/ is overtwisted by construction. Hence Theorem 11.1 implies eCH�.Y; �; j.B/I r0/D 0.

Example 12.8 By a well-known theorem of Giroux and Mohsen [29, Theorem 7.3.5], any contact
manifold .Y; �/ admits an open book decomposition .Y; B; �/ which supports � . Hence Construction 12.6
and Theorem 12.7 can be applied to any overtwisted contact manifold.

We also consider the following modification of Construction 12.6.

Construction 12.9 Let .Y 2n�10 ; �0/ be a closed, overtwisted contact manifold and let .Y0; B; �/ be an
open book decomposition which supports �0. Suppose that there exists a Legendrian submanifold ƒ� Y0
such that B D �.ƒ/ is a contact pushoff of ƒ. Let Dot � Y0 be an overtwisted disk.

Let U1 � Y0 �B �Dot be an open ball which intersects ƒ. Let ƒ0 � .Y0; �0/ be obtained by stabiliz-
ing ƒ inside U1; see Lemma 12.4. Let U2 be the union of U1 with a tubular neighborhood of ƒ. Let
V 0 D �.ƒ0/� U2 be a choice of contact pushoff for ƒ0.
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Let i0 W .B; .�0/B/! .Y0; �0/ be the tautological embedding. By [10, Lemma 3.4], i0 is formally isotopic
to some codimension 2 contact embedding j0 W .B; .�0/B/! .Y0; �0/, where j0.B/DB 0. Choose such a
formal isotopy and let T � Y0 be its trace.

Let U � Y0 be an open set whose closure is disjoint from T [ U2 [Dot. As in Construction 12.6, let
.Y; �/ be obtained by attaching handles of arbitrary index along some collection of isotropics inside U .
Let . yX; y�/ denote the resulting Weinstein cobordism with positive end .Y; �/ and negative end .Y0; �/.

It follows from our choice of U that .Y; �/ is overtwisted and that ƒ, ƒ0, V and V 0 can be viewed as
submanifolds of .Y; �/. It also follows that ƒ0 is the stabilization of ƒ as submanifolds of .Y; �/, and that
V (resp. V 0) is the contact pushoff of ƒ (resp. ƒ0).

Corollary 12.10 The submanifolds .V; �V / and .V 0; �V 0/ are not isotopic through codimension 2 contact
submanifolds. Hence the Legendrian submanifolds ƒ;ƒ0 � .Y; �/ are not isotopic through Legendrian
submanifolds.

Proof The proof of the first statement is identical to that of Theorem 12.7. The second statement follows
from the fact that V and V 0 are, respectively, the contact pushoff of ƒ and ƒ0.

Example 12.11 Let .Y0; �0/ D obd.T �Sn�1; ��1/, where ��1 is a left-handed Dehn twist. Note by
[12, Theorem 1.1] that .Y0; �0/ is overtwisted — in fact, .Y; �/ is contactomorphic to .S2n�1; �ot/. Let
P D T �Sn�1� Y0 be a page of the open book and let ƒ� .Y0; �0/ be the Legendrian which corresponds
to the zero section of P . Then the binding of the open book decomposition is also a contact pushoff of ƒ.
We may therefore apply Construction 12.9 to this data.

Remark 12.12 Consider the special case of Constructions 12.6 and 12.9 where U is empty, ie one does
not attach any handles. In this case, Theorem 12.7 and Corollary 12.10 are essentially equivalent to the
statement that the binding of an open book decomposition is tight, ie must intersect any overtwisted
disk. This statement was proved in dimension 3 by Etnyre and Vela-Vick [28, Theorem 1.2]; the higher-
dimensional case follows from work of Klukas [45, Corollary 3], who proved (following an outline of
Wendl [67, Remark 4.1]) the stronger fact that a local filling obstruction (such as an overtwisted disk) in
a closed contact manifold must intersect the binding of any supporting open book.

12.3 Contact embeddings into the standard contact sphere

In this section, we exhibit examples of pairs of codimension 2 contact embeddings into tight contact
manifolds which are formally isotopic but are not isotopic through genuine contact embeddings. We
begin with the following construction.

Construction 12.13 Let .Y 2n�10 ; �0/ be a contact manifold for n�3. Let V � .Y0; �0/ be a codimension 2
contact submanifold and let ƒ� .Y0; �0/ be a loose Legendrian such that ƒ\V D∅.
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Choose an open ball U � Y0 such that .U ;U \ƒ/ is a loose chart for ƒ. Next, choose an open ball
O � Y0�V �U . (By definition of a loose chart, U \ƒ is a proper subset of ƒ, so it is clear that such
choices exist.)

Let ƒ0 be obtained by stabilizing ƒ inside O. It follows from Lemma 12.4 that ƒ and ƒ0 are formally
isotopic via a formal isotopy fixed outside of O.

According to Lemma 12.14 below, we can (and do) fix a contactomorphism f W .Y0; �0/! .Y0; �0/ with
the following properties:

(1) f is isotopic to the identity,

(2) f .ƒ/Dƒ0, and

(3) the tautological contact embedding i 00 W .V; .�0/V / ! .Y0 � ƒ
0; �0/ is formally isotopic to the

embedding i 01 WD f ı i
0
0 W .V; .�0/V /! .Y0�ƒ

0; �0/. (We emphasize here that the formal isotopy
is contained in the open contact manifold .Y0�ƒ0; �0/.)

Finally, let .Y; �/ be obtained by attaching a Weinstein n–handle along ƒ0 � .Y0; �0/ as described in
Construction 10.15. We assume without loss of generality that the attaching regionƒ0�V disjoint from V

and f .V /, and that i 00 and i 01 are formally isotopic in Y0 � V . We let � W Y0 � V ,! Y be the canonical
inclusion.

Let

(12-3) i0 D � ı i
0
0 W .V; �V /! .Y; �/

be the tautological contact embedding and define

(12-4) i1 WD � ı i
0
1 W .V; �V /! .Y; �/:

It is an immediate consequence of (3) and our choice of V that i0 and i1 are formally isotopic.

Lemma 12.14 With the notation of Construction 12.13, there exists a contactomorphism f W .Y0; �0/!

.Y0; �0/ satisfying the properties (1)–(3) stated in Construction 12.13.

Proof Recall that U is disjoint from O. Recall also that .U ;U\ƒ/ is a loose chart forƒ, which means in
particular that U deformation retracts onto U \ƒ. Using these two facts, it is not hard to verify that there
exists a family of formal contact embeddings jt W .V; .�0/V /! .Y0; �0/ for t 2 Œ0; 1�, with the following
properties:

� j0 D i
0
0,

� jt .V / is disjoint from O[ƒ for all t 2 Œ0; 1�, and

� j1.V / is disjoint from U [O[ƒ.
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By the h–principle for loose Legendrian embeddings [55, Theorem 1.2], there exists a global contact
isotopy �t for t 2 Œ0; 1� such that �0 D Id and �1.ƒ/ D ƒ0. By the Legendrian isotopy extension
theorem [29, Theorem 2.6.2], this isotopy can be assumed to be compactly supported and constant in a
neighborhood W of j1.V /, where W is disjoint from U [O[ƒ.

Let f WD�1 and observe that f satisfies (1)–(2). Observe that f ıjt defines a formal contact isotopy from
f ı i 00 D i

0
1 to j1 in the complement of ƒ0 D f .ƒ/. Since i 00 is formally isotopic to j1 in the complement

of ƒ0 �ƒ[O, we find that f satisfies (3).

It will be useful to record the following basic observation, which is a consequence of the fact stated in
Definition 2.1 that an isotopy of contactomorphisms induces a Hamiltonian isotopy of symplectizations.

Lemma 12.15 (cf Definition 2.1) Let . yX; y�/ be a relative cobordism from .Y C; �C/ to .Y �; ��/.
Given contactomorphisms f ˙ W .Y ˙; �˙/! .Y ˙; �˙/ which are contact isotopic to the identity, there is
a symplectomorphism F W . yX; y�/! . yX; y�/ which agrees near infinity with the lifts zf ˙ W .SY ˙; �Y˙/!
.SY ˙; �Y˙/.

Let us now return to the geometric setup considered in Section 11.3. In particular, we let

(12-5) . yW0; y�
a/ WD

�
D2 �T �Sn�1;

1

a
r2d� C�std

�
;

where a > 0 is a constant which will be fixed later; see (11-7).

We let .W0; �a/, .Y0; �0D ker�0/, V �Y0, ƒ�Y0 andH Df0g�T �Sn�1 be defined as in Section 11.3.
Note that ƒ is a loose Legendrian according to [11, Proposition 2.9].

Construction 12.13 applied to the above data produces a contactomorphism f W .Y0; �0/! .Y0; �0/, a
Liouville domain .X; �/ with positive contact boundary .Y; � D ker�/, and a pair of formally isotopic
contact embeddings i0; i1 W .V; �V /! .Y; �/.

Let rD .˛; �; a/2R.Y0; �0; V /, where ˛ WD .�0/jV and the trivialization � is unique sinceH 1.V IZ/D 0;
see Corollary 12.17. We let r0D ..i 01/�˛; �; a/2R.Y0; �0; V /, where i 01 is defined as in Construction 12.13
and � is again unique. Since the surgery resulting from Construction 12.13 is away from V and i 01.V /,
we may identify R.Y; �; V /DR.Y0; �0; V / and R.Y; �; i1.V //DR.Y0; �0; i

0
1.V //.

As in Section 11.3, let e0 WR�Y0! . yW0; y�0;H/ be the canonical marking furnished by the Liouville
flow and let z�0 W zA.Y0; �0; V I r/!Q be the associated augmentation.

By Lemma 12.15, there is a symplectomorphism  W . yW0; y�a/! . yW0; y�a/ which coincides near infinity
with the lift zf WSY0!SY0. LetH 0� yW0 be a symplectic submanifold which is cylindrical at infinity and
coincides with the symplectization of f .V /D i 01.V / on Œ0;1/�Y0. Such a surface can be constructed
by taking the backwards Liouville flow of  .H/.

Let z�00 W zA.Y0; �0; i
0
1.V /I r

0/! Q be the augmentation induced by the relative symplectic cobordism
.. yW0; y�a;H

0/; z�0/.
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Observe that .Y0; �0; V / 2 G and hence also .Y0; f��0; f .V //D .Y0; �0; i 01.V // 2 G; see Definition 3.13.
The following lemma shows that we also have .Y; �; i1.V // 2 G.

Lemma 12.16 Up to contactomorphism , .Y; �/D ob.T �Sn�1; �S /D .S2n�1; �std/, where �S denotes
a right-handed Dehn twist. Moreover , the first contactomorphism can be assumed to take i1.V / to the
binding of the open book decomposition ob.T �Sn�1; �S /.

Proof By construction, there is an open book decomposition of .Y0; �0/ agreeing (up to contactomor-
phism) with ob.T �Sn�1; id/, such that i1.V / is the binding and ƒ0 is the zero section of a page. Note
now that attaching a handle to the zero section of a page of .Y0; �0/D ob.T �Sn�1; id/ simply changes
the monodromy of the open book by a positive Dehn twist [46, Theorem 4.6]. Hence, i1.V / is the binding
of ob.T �Sn�1; �S /D .S2n�1; �std/.

Corollary 12.17 The manifolds Y0, W0, Y and W have vanishing first and second homology and
cohomology with Z–coefficients. Hence the same is also true for the pairs .W0; Y0/ and .W; Y /. Finally,
we have H 1.V IZ/D 0.

Proof By construction, W is obtained by attaching a handle of index n to W0. The union of the core and
co-core of this handle has codimension n. Hence, for i � n� 2, we have Hi .W0IZ/DHi .W IZ/ and
Hi .Y0IZ/DHi .Y IZ/. Now,W0 is homotopy equivalent to Sn�1 by definition, while Y is homeomorphic
to S2n�1 by Lemma 12.16. Since n � 4, it follows that Y0, W0, Y and W have vanishing first and
second homology. The vanishing of cohomology in the same degrees follows by the universal coefficients
theorem for cohomology. The vanishing of H 1.V IZ/ was proved in Lemma 11.6.

As a result of Corollary 12.17, Definition 8.12, Lemma 8.13 and Definition* 10.12, the invariants
considered in the proof of Theorem* 12.18 below, as well as the maps between these invariants, are all
canonically .Z�Z/–bigraded.

Theorem* 12.18 For n � 4 even and a� 0 large enough , the contact embeddings i0; i1 W .V; �V /!
.Y; �/D .S2n�1; �std/ are not isotopic through contact embeddings.

Proof We suppose for contradiction that i0 and i1 are isotopic through contact embeddings. This means
that there exists a contactomorphism g W .Y; �; V / ! .Y; �; i1.V //. It follows by Lemma 12.16 that
.Y; �; V / 2 G.

According to Corollary* 11.18 (and the description of the generators in Proposition* 11.17), we may
(and do) fix a� 0 large enough that

(12-6) eCH z�0
k�.n�3/;2

.Y0; �0; V I r/D

�
Z if k D 4; 4C .n� 1/;
0 otherwise.

In particular, since n� 4, we have

(12-7) eCH z�0
2n�.n�3/;2

.Y0; �0; V I r/D eCH z�0
2nC1�.n�3/;2

.Y0; �0; V I r/D 0:
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Since .Y0; �0; V / 2 G, it follows by Corollary* 9.14 that

(12-8) eCH z�0
�;� .Y0; �0; V I r/D eCH z�

0
0
�;� .Y0; �0; i1.V /I r

0/:

Similarly, it follows by Definition/Assumption* 10.6 that

(12-9) zLz�0
�;�.Y0; �0; V;ƒI r/D zL

z�00
�;�.Y0; �0; i1.V /;ƒ

0
I r0/:

Let e WR�Y ! yW be the canonical marking and consider the resulting relative filling .. yW ; y�;H/; e/. Let
z� W zA.Y; �; V I r/!Q be the induced augmentation. Let � W . yW ; y�;H/! . yW ; y�;H/ be a symplectomor-
phism which agrees with the lift of g near infinity. Let z�0 W zA.Y; �; i1.V /I r0/!Q be the augmentation
induced by .. yW ; y�;H 0/; e/. Then according to Lemma* 9.13 and Corollary* 9.14, we have

(12-10) eCH z�
�;�.Y; �; V I r/D eCH z�0

�;�.Y; �; i1.V /I r
0/:

It then follows by Lemma* 12.19 that eCH z�
2n�.n�3/;2

.Y; �; V I r/¤ 0. Hence Lemma* 12.20 implies that

(12-11) eCH z�0
2n�.n�3/;2

.Y0; �0; V I r/¤ 0:

This contradicts (12-7).

Lemma* 12.19 We have

(12-12) eCH z�02n�.n�3/;2.Y; �; i1.V /I r0/¤ 0:

Proof On the one hand, Corollary* 11.20 and (12-9) imply that

(12-13) rkHC2n;2. zLz�
0
0.Y0; �0; i1.V /;ƒ

0
I r0//D 1:

On the other hand, by (12-7) and (12-8), we have that

(12-14) eCH z�
0
0

2n�.n�3/;2
.Y0; �0; i1.V /I r

0/D eCH z�
0
0

2nC1�.n�3/;2
.Y0; �0; i1.V /I r

0/D 0:

It then follows by Theorem/Assumption* 10.16 and Remark 10.18 that

(12-15) eCH z�02n�.n�3/;2.Y; �; i1.V /I r0/'HC2n;2. zLz�
0
0.Y0; �0; i1.V /;ƒ

0
I r0//:

This proves the claim.

Lemma* 12.20 The natural map

(12-16) eCH z�2n�.n�3/;2.Y; �; V I r/! eCH z�0
2n�.n�3/;2

.Y0; �0; V I r/

is injective.

Proof Since ƒ0 is loose in Y0�V , it follows by Proposition* 11.2 and Lemma 9.6 that

(12-17) HC2k.Lz�0.Y0; �0; V;ƒ0I r//D 0

for all k 2 Z. The lemma thus follows from Theorem/Assumption* 10.16 and Remark 10.18.
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Remark 12.21 One can slightly tweak Construction 12.13 so that ƒ and ƒ0 are disjoint and ƒ[ƒ0 is a
loose Legendrian link. One can then upgrade Lemma 12.14 to require that f .ƒ/Dƒ0 and f .ƒ0/Dƒ
in (2) of Construction 12.13. In particular, this means thatƒ0 is a stabilization ofƒ, andƒ is a stabilization
of ƒ0.

Let us apply this tweaked construction to the setup considered in Construction 12.13, where .Y0; �0/D
ob.T �Sn�1; id/ for n� 4, V � .Y0; �0/ is the binding and ƒ� .Y0; �0/ is the zero section of a page. It is
well known that the zero section of a page in ob.T �Sn�1; id/ is the standard Legendrian unknot. Hence
Lemma 12.16 implies that i1.V / is the pushoff of the standard unknot. By construction, it now also
follows that i0.V / is the contact pushoff of a stabilization of the unknot. Theorem* 12.18 thus provides
an alternative way to distinguish (for n� 4 even) the basic example considered by Casals and Etnyre in
[10, Section 5].

12.4 Relative symplectic and Lagrangian cobordisms

In this final section, we exhibit some constraints on relative symplectic and Lagrangian cobordisms. In
particular, we prove the results which were advertised in Section 1.5 of the introduction.

Proof of Theorem 1.9 Suppose for contradiction that such a relative symplectic cobordism exists.
According to Theorem 11.3, we have eCH�.Y; �; V I r/¤ 0 for some rD .˛; �; r/ 2R.Y; �; V /, which we
now view as fixed. According to Theorem 11.1, we also have eCH�.Y; �; V 0I r0/D0 for all r0 D .˛0; � 0; r 0/2
R.Y; �; V 0/. Choose r0 depending on our previous choice of r so that r 0 � eE..H;�H /

˛0

˛ /r . Then
Corollary 8.8 along with our topological assumptions on H furnishes a unital Q–algebra map

(12-18) eCH�.Y; �; V 0I r0/! eCH�.Y; �; V I r/:
This gives the desired contradiction.

In contrast to Theorem 1.9, we expect that one could prove that V is concordant to V 0 by adapting work
of Eliashberg and Murphy [26], but we do not pursue this here. Note that we could also have proved
Theorem 1.9 using the full invariant CH�.�I�/ instead of its reduced counterpart.

For Lagrangian cobordisms, we have the following result.

Proposition 12.22 Let .Y; �/ be a contact manifold. Let ƒ and ƒ0 be Legendrian knots such that
H 1.�.ƒ0/IZ/DH 2.�.ƒ0/IZ/D 0. Suppose that .SY; �Y ; L/ is a Lagrangian concordance fromƒ0 toƒ.
Given rD .˛; �; r/ 2R.Y; �; �.ƒ//, there is a map of Q–algebras

(12-19) eCH�.Y; �; �.ƒ0/I r0/! eCH�.Y; �; �.ƒ/I r/
for some r0 D .˛0; � 0; r 0/ 2 R.Y; �; �.ƒ0//. (A similar statement holds for the nonreduced invariants
CH�.�/.)
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Proof Observe that the trivial Lagrangian cobordism LDR�ƒ�R�Y admits a “symplectic push-off”
�.L/ WD R� �.ƒ/ � R� Y. It follows by the Lagrangian neighborhood theorem that any Lagrangian
concordance .SY; �Y ; L/ also admits a symplectic push-off .SY; �Y ;H/, which is a relative symplectic
cobordism from .Y; �; �.ƒ0// to .Y; �; �.ƒ//. Fix ˛0 arbitrarily and choose r 0 so that r 0 � eE..H;�H /

˛0

˛ /r

(note that � 0 is unique since H 1.�.ƒ0/IZ/D 0). The claim now follows from Corollary 8.8.

Proof of Theorem 1.10 Suppose for contradiction that ƒ0 is concordant to ƒ. As in the proof of
Corollary 12.10, we have

(12-20) eCH�.Y; �; �.ƒ/I r/¤ 0

for a suitable choice r 2 R.Y; �; �.ƒ//. On the other hand, we have eCH�.Y; �; �.ƒ0/I r0/ D 0 for all
r0 2R.Y; �; �.ƒ0//. This gives a contradiction in view of Proposition 12.22.

We end by exhibiting examples of Lagrangian cobordisms which cannot be displaced from a codimension 2
symplectic submanifold.

Construction 12.23 Let .Y0; �0/D obd.T �Sn�1; id/ for n� 3. Let V � .Y0; �0/ be the binding and let
ƒ � .Y0; �0/ be the zero section of a page, which is a loose Legendrian by [11, Proposition 2.9]. Let
U1 � Y0�V be a small ball which intersects ƒ in an .n�1/–ball and let ƒ0 be obtained by stabilizing ƒ
inside U1.

Let U2 � Y0 � .V [ƒ[ U1/ be an open subdomain. Let .Y; �/ be obtained by attaching a sequence
of handles along isotropics contained in U2. Observe that V , ƒ and ƒ0 can be viewed as submanifolds
of both Y0 and Y ; we will not distinguish these embeddings in our notation. We let . yX; y�; yV / be the
associated relative symplectic cobordism from .Y; �; V / to .Y0; �0; V /.

Proof of Theorem* 1.12 We can identify R.Y0; �0; V / D R.Y; �; V /. According to Theorem* 11.5,
L.Y0; �0; V;ƒI r/¤ 0 for suitable r2R.Y0; �0; V /. In contrast, L.Y; �; V;ƒ0I r/D 0 by Proposition* 11.2,
since ƒ0 is loose in Y �V by construction. By Proposition* 10.7, the existence of a concordance from ƒ0

to ƒ which doesn’t intersect yV would imply that there is a unital map of QŒU �–algebras

(12-21) L.Y; �; V;ƒ0I r/! L.Y0; �0; V;ƒI r/:

This gives a contradiction.

We remark that Construction 12.23 could be generalized in various directions without affecting the validity
of Theorem* 1.12, but we do not pursue this here.
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Appendix Connected sums of almost-contact manifolds

Let G be a connected9 subgroup of SO.n/. An almost G–structure on a smooth oriented manifold M is
a homotopy class of maps M ! BG lifting the classifying map of the tangent bundle of M :

BG

M BSO.n/
TM

An almost G–manifold is a manifold equipped with an almost G–structure.

Example A.1 Taking G D U.n/ � SO.2n/ yields the usual notion of an almost complex manifold.
Almost-contact manifolds correspond to G D U.n/� SO.2nC 1/.

If the n–dimensional sphere Sn admits an almost G–structure, a result of Kahn [43, Theorem 2] implies
that for any two n–dimensional almost G–manifolds M and N, there exists an almost G–structure on
M #N which is compatible with the given ones on M and N in the complement of the disks used to
form the connected sum. In general, this structure is not unique, so the connected sum M #N is not
well-defined as an almost G–manifold. However, we will show in Section A.1 that a choice of almost
G–structure ˇ on Sn induces a canonical almost G–structure on the connected sum of any two almost
G–manifolds. Hence, any such ˇ gives rise to a connected sum operation .M;N / 7!M #ˇ N for almost
G–manifolds. Moreover, the set of almost G–structures on Sn forms a group under this operation (with
identity ˇ). In Section A.2, we will show that this group acts on the set of almost G–structures of any
n–dimensional almost G–manifold.

A.1 Connected sums of almost G–manifolds

Let Sn be the unit sphere in RnC1, equipped with its standard orientation as the boundary of the unit
disk DnC1. We will write its points as pairs .x; z/ 2Rn �R. Define

D� D
˚
.x; z/ 2 Sn j z < 1

2

	
; DCD

˚
.x; z/ 2 Sn j z > �1

2

	
; ADD�\DC; C˙DD˙ nA:

Note that D� and DC are open disks, C� and CC are closed disks, A is an open annulus, and Sn D
D�[DC D C� tAtCC.

Let M and N be smooth connected oriented n–dimensional manifolds. Choose orientation-preserving
embeddings iC WDC!M and i� WD�!N. We define the connected sum M #N DM #iC;i� N by

M #N D
�
M n iC.CC/tN n i�.C�/

�
=�;

where iC.x/� i�.x/ for every x 2 A.

9This assumption is used in the proof of Proposition A.6.
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We will now explain how to construct a classifying map for the tangent bundle of M #N . The following
elementary fact from topology will be useful.

Proposition A.2 Let i W A! X be a cofibration. Assume A is contractible. Then for any connected
space Y and continuous maps F WX ! Y and f W A! Y, there exists a map F 0 WX ! Y homotopic to F
such that F 0 ı i D f .

Let �S W Sn! BSO.n/ be a classifying map for TSn. Let �M and �N be classifying maps for TM and
TN such that �M ı iC D �S jDC and �N ı i� D �S jD� (such maps always exist by Proposition A.2).
Define �M#N to be the unique map M #N ! BSO.n/ which coincides with �M on M n iC.CC/ and
with �N on N n i�.C�/.

Proposition A.3 The map �M#N is a classifying map for T .M #N/.

We start with an easy topological lemma.

Lemma A.4 Let E be an oriented vector bundle over a manifold M n and let i W Dn ! M n be an
embedding. Then any automorphism of i�E can be extended to an automorphism of E.

Proof Let � be an automorphism of i�E. Since Dn is contractible, we can trivialize i�E and think
of � as a map Dn ! GLC.n/. Clearly �j@Dn is nullhomotopic, and since GLC.n/ is connected, we
can extend � to a map z� WDn2 ! GLC.n/ which is constant with value Id 2 GLC.n/ near @Dn2 . Using a
tubular neighborhood of i.@Dn/�M, we can also extend i to an embedding zi WDn2 !M n. Then z� gives
us an automorphism of zi�E which is equal to the identity over a neighborhood of @Dn2 �D

n
2 and hence

extends trivially to an automorphism of E.

Proof of Proposition A.3 Let zn! BSO.n/ be the universal bundle over BSO.n/. We want to show
that the tangent bundle T .M #N/ of the connected sum is isomorphic to ��M#N zn.

T .M # N/ is obtained by gluing T .M n iC.CC// and T .N n i�.C�// along the maps diC W TA !
T .M n iC.CC// and di� W TA! T .N n i�.C�//. Because of our assumption that �M ı iC D �S jDC and
�N ı i�D �S jD� , we have that ��M#N zn is obtained by gluing .�M jMniC.CC//

�zn and .�N jNni�.C�//
�zn

along bundle maps .�S jA/�zn ! .�M jMniC.CC//
�zn and .�S jA/�zn ! .�N jNni�.C�//

�zn covering
iC WA!M n iC.CC/ and i� WA!N n i�.C�/, respectively. Hence, in order to show that T .M #N/ is
isomorphic to ��M#N zn, it suffices to construct a commutative diagram

T .M n iC.CC// .�M jMniC.CC//
�zn

TA .�S jA/
�zn

T .N n i�.C�// .�N jNni�.C�//
�zn

diC

di�

where the horizontal arrows are bundle isomorphisms.
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Start by fixing an isomorphism � W TSn! ��S zn, and let the middle arrow of the diagram be the restriction
of � to TA. To get the top and bottom arrows, it suffices to find bundle isomorphisms completing the
following commutative squares:

TM ��M zn

TDC .�S jDC/
�zn

diC

�

TD� .�S jD�/
�zn

TN ��N zn

di�

�

This is possible by Lemma A.4.

We are now ready to define the connected sum of two almost G–manifolds.

Definition A.5 Suppose that Sn admits an almost G–structure, and fix a choice ˇ of one such structure.
Let ˇM and ˇN be almost G–structures on M and N respectively. We define an almost G–structure
ˇM #ˇ ˇN on M #N as follows.

Pick maps z�S W Sn! BG, z�M WM ! BG and z�N WN ! BG representing ˇ, ˇM and ˇN , respectively.
By Proposition A.2, we can assume that z�M ı iCD z�S jDC and z�N ı i�D z�S jD� . Hence, there is a unique
map

z�M#N D z�M #z�S z�N WM #N ! BG

which coincides with z�M onM niC.CC/ and with z�N onN ni�.C�/. By Proposition A.3, the composition

M #N
z�M#N
��! BG �! BSO.n/

is a classifying map for T .M #N/. Hence, we can (and do) define ˇM #ˇ ˇN to be the homotopy class
of z�M#N .

Proposition A.6 The almost G–structure ˇM #ˇ ˇN is well-defined , ie independent of the choice of z�S ,
z�M and z�N .

Proof Let z�jS , z�jM and z�jN represent ˇ, ˇM and ˇN , respectively, where j 2 f0; 1g. As in Definition A.5,
we assume that z�jM ı iC D z�

j
S jDC

and z�jN ı i� D z�
j
S jD�

.

Fix a homotopy z� tS between z�0S and z�1S . We will show that there exist homotopies z� tM and z� tN such that
z� tM ı iC D z�

t
S jDC

and z� tN ı i� D z�
t
S jD�

. This implies that z�0M#N is homotopic to z�1M#N and hence that
ˇM #ˇ ˇN is well-defined.

Pick an arbitrary homotopy h WM � I ! BG between z�0M and z�1M and define a map

g WDC � @I
2
! BG
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by g.x; t; 0/ D h.iC.x/; t/, g.x; 0; s/ D z�0S .x/, g.x; 1; s/ D z�
1
S .x/ and g.x; t; 1/ D z� tS .x/. We can

extend g to a map yg WDC � I 2! BG since the obstruction to doing so lies in

H 2.DC � I
2;DC � @I

2
I�1.BG//Š �1.BG/Š �0.G/;

which is trivial by our assumption that G is connected.

Let

f W
�
M � .I � f0g[ f0g � I [f1g � I /

�
[
�
iC.DC/� I

2
�
! BG

be defined by

� f .x; t; 0/D h.x; t/, f .x; 0; s/D z�0M .x/ and f .x; 1; s/D z�1M .x/ for x 2M ,

� f .x; t; s/D yg.i�1
C
.x/; t; s/ for x 2 iC.DC/.

Since iC WDC!M is a cofibration, the domain of f is a retract of M � I 2. We can therefore extend f
to a map yf WM � I 2! BG. Restricting yf to M � I � f1g then provides us with a homotopy z� tM such
that z� tM ı iC D z�

t
S jDC

.

The same argument gives us a homotopy z� tN such that z� tN ı i� D z�
t
S jD�

, so this completes the proof.

Definition A.7 If M D .M; ˇM / and N D .N; ˇN / are almost G–manifolds, their connected sum (with
respect to ˇ) is the almost G–manifold M #ˇ N WD .M #N;ˇM #ˇ ˇN /.

As usual, there is an ambiguity in the notation M #ˇ N since the construction of the connected sum
involves a choice of embeddings iC WDC!M, i� WD�! N . However, the result is independent of
these choices up to the appropriate notion of equivalence, as one would expect.

Definition A.8 A diffeomorphism of almost G–manifolds f W .M; ˇM /! .N; ˇN / consists of a smooth
diffeomorphism f WM !N such that f �ˇN D ˇM .

Proposition A.9 The connected sum M #ˇ N is well-defined up to diffeomorphism of almost G–
manifolds. More precisely , given any orientation-preserving embeddings iC; jC W DC ! M and
i�; j� WD�!N , there exists an orientation-preserving diffeomorphism � WM #iC;i� N !M #jC;j� N
such that

��.ˇM #jC;j�;ˇ ˇN /D ˇM #iC;i�;ˇ ˇN

for any almost G–structures ˇM and ˇN on M and N .

Proof This follows from the isotopy extension theorem as in the smooth case.
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Remark A.10 (connected sums of contact manifolds) Suppose that .M1; ˛1/ and .M2; ˛2/ are contact
manifolds. Then one can form the connected sum .M1 #M2; ˛1 #˛2/, which is also a contact manifold.
The connected sum is obtained by choosing Darboux balls in M1;M2 and connecting them by a “neck”.
This operation can also be understood as a contact surgery along a 0–sphere. We refer to [8, Section 6.2]
and [46, Section 3] for more details.

Let ˇ 2 almU.n/.S2n�1/ be the almost-contact structure induced by the standard contact structure on the
sphere. Then the operation of connected sum (with respect to ˇ) of almost U.n�1/–manifolds defined in
Definition A.7, and the operation of connected sum of contact manifolds described above, commute with
the forgetful map from contact manifolds to almost-contact manifolds. This can be shown as in the proof
of Proposition A.3, replacing BSO.n/ with BU.n� 1/.

The main properties of the connected sum in the smooth case have analogs for almost G–manifolds:

Proposition A.11 Let M , N and P be connected almost G–manifolds of dimension n, and let ˇ and ˇ0

be almost G–structures on Sn. Then:

(1) M #ˇ .Sn; ˇ/ŠM.

(2) .M #ˇ N/ #ˇ 0 P ŠM #ˇ .N #ˇ 0 P /.

Proof If one takes i� WD�! Sn to be the inclusion map, then the connected sum M # Sn is canon-
ically identified with M as a smooth manifold. If one further takes z�N D z�S in Definition A.5, then
this identification is compatible with the almost G–structures on M # Sn and M. This proves that
M #ˇ .Sn; ˇ/ŠM.

To prove that .M #ˇ N/ #ˇ P ŠM #ˇ .N #ˇ P /, choose embeddings iC W DC !M , i� W D� ! N ,
jC WDC!N and j� WD�! P . If we assume that i� and jC have disjoint images, then i� induces an
embedding D�!N #jC;j� P , jC induces an embedding DC!M #iC;i� N , and there is a canonical
identification of smooth manifolds

.M #iC;i� N/ #jC;j� P ŠM #iC;i� .N #jC;j� P /:

Moreover, this identification is compatible with the almost G–structures in the sense that for any choice
of maps z�S , z� 0S , z�M , z�N and z�P , the following diagram commutes:

.M #iC;i� N/ #jC;j� P

BG

M #iC;i� .N #jC;j� P /

Š

.z�M #z�S z�N /#z�0S
z�P

z�M #z�S .z�N #
z�0
S
z�P /
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A.2 The group of almost G–structures on the sphere

We will denote the set of almostG–structures on a manifoldM by almG.M/. More generally, ifA�M is
a closed subset and ˇ0 is an almost G–structure on some open neighborhood of A, then almG.M;AIˇ0/

will denote the set of almost G–structures on M which agree with ˇ0 near A.

In this section, we will show that #ˇ is a group operation on almG.S
n/, with ˇ as identity element. The

resulting group will be denoted by alm
ˇ
G.S

n/. We will then show that almˇG.S
n/ acts on almG.M/, and

more generally on almG.M;AIˇ0/ if M nA is connected.

Proposition A.12 Given any ˇ1 2 almG.Sn/, there exists a ˇ2 2 almG.Sn/ such that ˇ1 #ˇ ˇ2 D ˇ.

Proof Recall the decomposition SnDC�[A[CC introduced at the beginning of Section A.1. We will
use the notation h��; �A; �Ci to denote the unique (assuming it exists) map Sn! BG which coincides
with the given maps �� W C�! BG, �A W xA! BG and �C W CC! BG on C�, xA and CC, respectively.

Let z�S D h��S ; �
A
S ; �

C

S i be a representative for ˇ. Given ˇ1 and ˇ2 in almG.S
n/, we can choose repre-

sentatives of the form h��1 ; �
A
S ; �

C

S i and h��S ; �
A
S ; �

C
2 i by Proposition A.2. Then ˇ1 #ˇ ˇ2 is represented

by h��1 ; �
A
S ; �

C
2 i. Hence, all we need to show is that for any ��1 W C�! BG, there exists �C2 W CC! BG

such that h��1 ; �
A
S ; �

C
2 i is homotopic to z�S . This again follows from Proposition A.2.

Corollary A.13 We have that .almG.Sn/; #ˇ / is a group with identity ˇ.

Proof This follows from Propositions A.11 and A.12.

Remark A.14 The group .almG.Sn/; #ˇ / is independent of ˇ up to isomorphism. Indeed, given any
x; y; ˇ; ˇ0 2 almG.S

n/, it follows from Proposition A.11 that

.x #ˇ ˇ
0/ #ˇ 0 .y #ˇ ˇ

0/D .x #ˇ .ˇ
0 #ˇ 0 y// #ˇ ˇ

0
D .x #ˇ y/ #ˇ ˇ

0;

which implies that the map

.almG.S
n/; #ˇ /! .almG.S

n/; #ˇ 0/; x 7! x #ˇ ˇ
0;

is a group isomorphism.

Given orientation-preserving embeddings iC WDC!M and i� WD�! Sn, the results of Section A.1
give us a well-defined map

almG.M/� alm
ˇ
G.S

n/! almG.M #iC;i� S
n/:

For the remainder of this section, we will take i� to be the inclusion map D� ,! Sn. Then M #iC;i� S
n

is canonically identified with M (regardless of what iC is) and we get a map

(A-1) almG.M/� alm
ˇ
G.S

n/! almG.M/:
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By Proposition A.11, this is a group action. Note that the diffeomorphism � WM !M appearing in the
statement of Proposition A.9 (applied to N D Sn) can be chosen to be isotopic to the identity, which
implies that the map (A-1) is independent of iC.

If we assume that the image of the embedding iC WDC!M is disjoint from A, then it follows directly
from Definition A.5 that the subset almG.M;AIˇ0/ � almG.M/ is invariant under the map (A-1). If
M nA is connected, then the resulting action on almG.M;AIˇ0/ doesn’t depend on the choice of iC.
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We show that the moduli space MX .v/ of Gieseker stable sheaves on a smooth cubic threefold X with
Chern character v D
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�
is smooth and of dimension four. Moreover, the Abel–Jacobi

map to the intermediate Jacobian of X maps it birationally onto the theta divisor ‚, contracting only a
copy of X �MX .v/ to the singular point 0 2‚.

We use this result to give a new proof of a categorical version of the Torelli theorem for cubic threefolds,
which says that X can be recovered from its Kuznetsov component Ku.X /�Db.X /. Similarly, this leads
to a new proof of the description of the singularity of the theta divisor, and thus of the classical Torelli
theorem for cubic threefolds, ie that X can be recovered from its intermediate Jacobian.
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1 Introduction

Moduli spaces of sheaves provide examples of algebraic varieties with an interesting and rich geometry
and they have been widely studied in the past few decades. In particular, there are many strong results
regarding moduli spaces on surfaces, while the situation on threefolds is less understood. We refer to
Huybrechts and Lehn [23] for a more detailed account of the theory, which has been revolutionized by
the introduction of stability conditions on triangulated categories by Bridgeland [12].

Perhaps the main player of the seminal paper by Clemens and Griffiths [14] on the geometry of cubic
threefolds is the theta divisor ‚ of its intermediate Jacobian J.X /. Various authors have studied
parametrizations of the theta divisor by moduli spaces of sheaves; see Artebani, Kloosterman and
Pacini [3], Beauville [9] and Iliev [24].

In this paper, we find a new, and in a sense most efficient, parametrization of this type: a smooth
four-dimensional moduli space of stable sheaves isomorphic to the desingularization of the theta divisor.

Let X � P4 be a smooth cubic threefold over C and H the hyperplane section. Let MX .v/ be the moduli
space of Gieseker-semistable sheaves on X with Chern character v WD

�
3;�H;�1

2
H 2; 1

6
H 3

�
.

Theorem 7.1 The moduli space MX .v/ is smooth and irreducible of dimension 4. More precisely,
it is the blowup of ‚ in its unique singular point. The exceptional divisor is isomorphic to the cubic
threefold X itself , and parametrizes non-locally-free sheaves in MX .v/.

Moduli space in the Kuznetsov component

The original motivation for our analysis of the moduli space MX .v/ comes from the study of moduli
spaces of stable objects in a full triangulated subcategory Ku.X /�Db.X / called the Kuznetsov component.
It is defined through the semiorthogonal decomposition

Db.X /D hKu.X /;OX ;OX .H /i:

See Kuznetsov [25] for details on the decomposition and on the Kuznetsov component.

Stability conditions on Ku.X / have been constructed in Bernardara, Macrì, Mehrotra and Stellari [11]
and Bayer, Lahoz, Macrì and Stellari [5]. These stability conditions are Serre-invariant, which roughly
means that stability of an object is preserved by the action of the Serre functor of Ku.X /; see Section 8
for the precise definition. This property allows us to study stability of objects irrespective of the specific
construction of stability conditions.

The class v in Theorem 7.1 is chosen as the class of the projection KP of a skyscraper sheaf OP for a
point P 2X , which is defined by the short exact sequence

0!KP !O˚4
! IP .1/! 0:
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These are the non-locally-free torsion-free slope-stable sheaves appearing in Theorem 7.1, and we show
that they are also stable as objects of Ku.X / with respect to any Serre-invariant stability condition. Hence,
the moduli space M� .v/ of � -stable objects in Ku.X / of Chern character v contains X , yet its expected
dimension is four. This was our first clue that this moduli space is of interest. Indeed, our next result says
that the moduli spaces M� .v/ and MX .v/ agree entirely.

Theorem 1.1 (Theorem 8.7 and Proposition 8.10) Let � be an arbitrary Serre-invariant stability
condition on Ku.X /. Then the moduli space M� .v/ is isomorphic to the moduli space MX .v/.

To summarize, we project the structure sheaf of a point into the Kuznetsov component and take its moduli
space. It obviously contains X but is bigger. It is the resolution of the theta divisor, with X as the
exceptional divisor. Thus, we recover X from Ku.X / or from the intermediate Jacobian, ie we obtain
new proofs of both the categorical and classical Torelli theorem for cubic threefolds:

Theorem 1.2 (Corollary 7.6 and Theorem 8.1) Let X1 and X2 be smooth cubic threefolds. The
following are equivalent :

(i) X1 and X2 are isomorphic.

(ii) Ku.X1/ and Ku.X2/ are equivalent as triangulated categories.

(iii) J.X1/ and J.X2/ are isomorphic as principally polarized abelian varieties.

Proof ideas

The proof of Theorem 7.1 relies on two classical ingredients. Firstly, we use the fact that any irreducible
theta divisor is normal, due to Ein and Lazarsfeld [16]. Secondly, we use a characterization of the theta
divisor of the intermediate Jacobian in terms of twisted cubics; see Proposition 2.2. This was proved by
Beauville in [9], but it can also be deduced from the description of ‚ as differences of lines in Clemens
and Griffiths [14]; see Remark 2.3.

The strategy to prove Theorem 7.1 is to vary the notion of stability and reach a detailed description of
the objects that belong to the moduli space MX .v/ through wall-crossing. Since X has Picard rank one,
Gieseker stability cannot be varied. This is where the derived category comes into play in the form of
tilt-stability introduced in Bridgeland [13] for K3 surfaces, and then further generalized to other surfaces
and threefolds in Arcara and Bertram [2] and Bayer, Macrì and Toda [7]. In fact, we give a complete
description of the wall and chamber structure; see Section 6. Once a set-theoretic description of MX .v/

has been reached, we use standard deformation theory arguments in Corollary 6.9 to deduce that it is
smooth and of dimension four.

To prove Theorem 8.7, we first show the claim for the specific stability condition constructed in Bayer,
Lahoz, Macrì and Stellari [5] which are Serre-invariant by Pertusi and Yang [35]. We then prove in
a completely separate argument that our moduli space is independent of the choice of Serre-invariant
stability conditions � . The essential ingredient in this last argument is the weak Mukai lemma from [35].
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Related work

In the recent paper [1], Altavilla, Petković and Rota studied moduli spaces of some torsion sheaves in
the Kuznetsov components of Fano threefolds with Picard rank one and index two. In the case of cubic
threefolds they study M� .ŒS

2.KP /�/ (S is the Serre functor on Ku.X /), but do not obtain our detailed
geometric description. A key difference is that in their case the moduli space in the Kuznetsov component
is different from the moduli space of Gieseker-semistable sheaves.

Classical Torelli is the implication (iii) D) (i) in Theorem 1.2, which was first proved in Clemens and
Griffiths [14]. The implication (ii) D) (iii) was first established in Bernardara, Macrì, Mehrotra and
Stellari [11, Theorem 1.1], where it was shown that the Fano variety of lines F.X / can be recovered
from Ku.X / as a moduli space of stable objects. Thus, one obtains the intermediate Jacobian J.X / as
the Albanese variety of F.X /. A more recent argument for (ii) D) (iii) can be deduced from Perry’s
categorical construction of intermediate Jacobians [34, Section 5.3], when the equivalence is given by
a Fourier–Mukai kernel on X1 � X2. Instead, our paper gives a very direct geometric argument for
(ii) D) (i), as well as a variant of the proof of classical Torelli via the description of the singularity of
theta divisor implied by Theorem 7.1.

Since this article originally appeared on the arXiv, Feyzbakhsh and Pertusi [17] and Zhang [40] proved
uniqueness of Serre-invariant stability conditions on Ku.X /. Proposition 8.10 in the last section could
now be obtained as an immediate corollary.
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2 Cubic threefolds and intermediate Jacobians

Let X �P4 be a smooth cubic threefold. In their celebrated article [14], Clemens and Griffiths introduced
the intermediate Jacobian of X . It is the complex torus defined as

J.X / WDH 2;1.X /_=H3.X;Z/DH 1.�2
X /
_=H3.X;Z/:

It turns out that J.X / is a principally polarized abelian variety of dimension five.

Let fZbgb2B be a family of 1–cycles over a variety B. The choice of a basepoint b0 2 B leads to an
Abel–Jacobi map ‰B W B! J.X / as follows. For any b 2 B the cycle Zb �Zb0

has degree 0, ie it is
homologically trivial, and can be written as the boundary @� for a 3–chain � . The integral

R
� is an

element in H 1;2.X /_ whose class in J.X / is the image of the Abel–Jacobi map. By [19, Theorem 2.20]
the map ‰B is algebraic along the smooth locus of B.

If Zb D C is a smooth curve, then the induced morphism on tangent spaces has been described by
Welters; see [39, Section 2]. Recall that the tangent space of the Hilbert scheme at C is naturally given
by H 0.NC=X /, where NC=X is the normal bundle. The tangent space of J.X / at any point is given by
H 1;2.X /_ DH 1.�2

X
/_. By definition, the infinitesimal Abel–Jacobi map

 C WH
0.NC=X /!H 1.�2

X /
_

is the map of tangent spaces induced by ‰B. We get a dual morphism

 _C WH
1.�2

X /!H 0.NC=X /
_:

Lemma 2.1 The following diagram is commutative and has exact rows and columns:

0

��

H 0.IC .H //

��

H 0.OX .H //
Š

//

��

H 1.�2
X
/

 _
C

��

H 0.NC=P4.�2H // // H 0.OC .H // // H 0.NC=X /
_

Proof This is mostly [39, Lemma 2.8] and the preceding construction of the morphisms. The map
H 0.OX .H //!H 1.�2

X
/ is the connecting morphism in a long exact sequence

H 0.�3
P4 ˝OX .3H //!H 0.OX .H //!H 1.�2

X /!H 1.�3
P4 ˝OX .3H //:

The wedge product induces a perfect pairing �3
P4˝�P4 !OP4.�5/. Therefore, �3

P4 D TP4.�5/. For
i D 0; 1 we have

H i.TP4 ˝OX .�2H //D 0:
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Recall that the Lefschetz hyperplane theorem says that the hyperplane section H 2 Pic.X / generates
the Picard group. One can use twisted cubics to characterize the theta divisor of J.X /. A proof of the
following result can be found in [9, Proposition 5.2]. Let T be the open locus of smooth twisted cubics in
the Hilbert scheme of X , and let T be its closure.

Proposition 2.2 The Abel–Jacobi map ' W T ! J.X / with basepoint of class H 2 is algebraic. Its image
is a theta divisor ‚� J.X / and its generic fiber is isomorphic to P2.

Remark 2.3 Proposition 2.2 can be deduced from the description of ‚ as differences of lines as well.
We give a rough sketch of the argument here.

Let F be the Fano variety of lines on X . According to [14] the morphism F �F ! J.X / that maps
.L;L0/ 7! ŒL�� ŒL0� is generically a 6-to-1 cover of ‚.

Since a twisted cubic C �X lies in a unique cubic surface Y �X , the morphism T ! J.X / factors via
the moduli space F of pairs .D;Y /, where Y is a cubic surface and D is the divisor class of a twisted
cubic. The generic fiber of the morphism T ! F is given by P .H 0.OY .D//D P2. Indeed, OY .D/ is
the pullback of OP2.1/ if Y is written as the blowup of six general points in P2.

If D is the class of a twisted cubic on a smooth cubic surface, then D �H 2 can be written as the
difference of two lines on a cubic surface. Therefore, the Abel–Jacobi morphism maps onto ‚. Moreover,
there are precisely six ways to write D�H 2 as the difference of two lines. Together with the fact that
F �F ! J.X / is generically a 6-to-1 cover of ‚, we get that F !‚ has degree 1.

Lemma 2.4 Let P1 Š C �X � P4 be a twisted cubic. Then

NC=P4 DOP1.5/˚2
˚OP1.3/; h0.NC=X /D 6 and h1.NC=X /D 0:

In particular , the Hilbert scheme T is smooth of dimension six.

Proof We have a short exact sequence

0!NC=P3 DOP1.5/˚2
!NC=P4 !NP3=P4 ˝OC DOP1.3/! 0:

Since Ext1.OP1.3/;OP1.5//D 0, we get NC=P4 D OP1.5/˚2˚OP1.3/. Next, we have a short exact
sequence

0!NC=X !NC=P4 DOP1.5/˚2
˚OP1.3/!NX=P4 ˝OC DOP1.9/! 0:

Thus, NC=X has degree 4 and can only be OP1.m/˚OP1.4�m/ for some �1 � m � 5. The claim
about the cohomology of NC=X holds for each of them.

Lemma 2.5 Along the locus of smooth curves T � T , the Abel–Jacobi morphism ' has differential of
rank four.

Proof Let C �X be a smooth twisted cubic. Clearly, restriction maps H 0.OX .H //ŠC5 surjectively
onto H 0.OC .H //ŠC4. By Lemma 2.4, we have h0.NC=P4.�2H //Dh0.OP1.�1/˚2˚OP1.�3//D0.
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By Lemma 2.1, we get a commutative diagram

C5 Š
//

����

H 1.�2
X
/

 _
C

��

C4 � � // H 0.NC=X /
_

Therefore,  _
C

has rank four.

The singularities of the theta divisor were computed in [33, page 348]. Another proof was given in
[8, Main Theorem and Proposition 2]. We will not need this full description and instead rely only on
normality.

Theorem 2.6 [16, Theorem 1] Any irreducible theta divisor of an abelian variety is normal.

Lemma 2.7 Up to numerical equivalence , the Todd class of X is td.X / D
�
1;H; 2

3
H 2; 1

3
H 3

�
. In

particular , for any E 2 Db.X /,

�.E/D ch3.E/CH � ch2.E/C
2
3
H 2
� ch1.E/C

1
3
H 3
� ch0.E/:

Proof By Kodaira vanishing H i.OX /D 0 for i ¤ 0, and therefore, �.OX /D 1. By the Hirzebruch–
Riemann–Roch Theorem we get td3.X / D �.OX / D

1
3
H 3. Similarly, Kodaira vanishing implies

H i.OX .�H //D 0 for i ¤ 0. Again by Hirzebruch–Riemann–Roch,

0D �.OX .�H //D�1
6
H 3
CH � 1

2
H 2
� td2.X / �H C

1
3
H 3:

Since X has Picard rank one, this is only possible if td2.X /D
2
3
H 2.

Lemma 2.8 The numerical Chow ring CH�n .X / has a basis given by 1, H , 1
3
H 2 and 1

3
H 3. In particular ,

if E 2 Db.X /, then ch2.E/ 2
1
6
H 2 �Z, and ch3.E/ 2

1
6
H 3 �Z.

Proof Since Pic.X / is generated by H , the group CH2
n.X / is generated by a rational multiple of H 2.

A general hyperplane section of X is a smooth cubic surface, which contains lines. The class of such a
line is 1

3
H 2. Since H 3 D 3, the class has to be indivisible. Since 1

3
H 3 is the class of a point, the group

CH3
n.X / must be generated by it.

The claim about second Chern characters follows directly from ch2.E/D
1
2
c2

1
.E/� c2.E/. The claim

about ch3.E/ follows from Lemma 2.7 and the fact that �.E/ 2 Z.

3 Divisors on hyperplane sections

We need to understand the singularities that can occur on hyperplane sections of X .

Proposition 3.1 Any cubic hyperplane section Y D V \X � P4 is normal and integral.
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Proof Since hypersurfaces satisfy condition S2, by Serre’s condition [10, Section 031S], it is enough to
show that Y has isolated singularities. Assume for contradiction that Y contains a curve C of singular
points. Let F and x be the defining equations of X and V , respectively. Then @F=@x is a homogeneous
degree 2 polynomial and hence vanishes somewhere along C . At such a point, all partial derivatives of F

vanish, hence it is a singular point of X , a contradiction.

In order to deal with singular hyperplane sections, we need to recall the relation between Weil divisors
and rank-one reflexive sheaves on integral normal varieties. This is very similar to the standard relation
between line bundles and Cartier divisors. We refer to [10, Tag 0EBK] or [36] for proofs of the following
facts. They can also be found in [22] in more generality.

Let Y be a normal integral projective variety. By Cl.Y / we denote the group of Weil divisors modulo
rational equivalence. For two rank-one reflexive sheaves L1;L2 2Coh.Y / we can define a new rank-one
reflexive sheaf by .L1˝L2/

__. This defines a group law for rank-one reflexive sheaves on Y, where
inverses are given by L 7! L_. For any effective prime divisor D one can define a rank-one reflexive
sheaf OY .D/ WD I_

D
. This can be linearly extended to any divisor.

Proposition 3.2 (i) The group of isomorphism classes of rank-one reflexive sheaves is isomorphic to
Cl.Y / under the homomorphism D 7!OY .D/.

(ii) To every nonzero section s 2H 0.L/ of a rank-one reflexive sheaf L, one can associate an effective
divisor D on Y.

(iii) For any effective Weil divisor D on Y, there is a section s 2H 0.OY .D// such that the associated
divisor is given by D.

(iv) Two sections s1; s2 2H 0.L/ define the same divisor if they satisfy s1 D �s2 for some � 2C�.

4 Notions of stability

In this section, we recall a number of notions of stability for sheaves. Let X be a smooth projective
threefold, and let H be an ample divisor on X .

Definition 4.1 [32; 38] (i) For any E 2 Coh.X /, the Mumford–Takemoto slope is defined as

�.E/ WD

8<:
H 2 � ch1.E/

H 3 � ch0.E/
for ch0.E/¤ 0,

C1 for ch0.E/D 0.

(ii) A sheaf E 2 Coh.X / is slope-(semi)stable if for any nontrivial proper subsheaf F ,! E the
inequality �.F / < .�/�.E=F / holds.
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From the definition it follows immediately that if Pic.X / D Z � H and E is slope-semistable with
gcd

�
ch0.E/;H

2 ch1.E/=H
3
�
D 1, then E is slope-stable.

While slope-stability suffices to construct moduli spaces of vector bundles on curves, a refinement is
necessary in higher dimensions.

Definition 4.2 We define a preorder on the polynomial ring RŒm� as follows.

(i) For all nonzero f 2RŒm�, we have f � 0.

(ii) If deg.f / > deg.g/ for nonzero f;g 2RŒm�, then f � g.

(iii) Let deg.f /D deg.g/ for nonzero f;g 2RŒm�, and let af and ag be the leading coefficients of f
and g, respectively. Then f � g if and only if f .m/=af � g.m/=ag for all m� 0.

(iv) If f;g 2RŒm� with f � g and g � f , we write f � g.

For any E 2 Coh.X /, we denote its Hilbert polynomial and the terms ˛i.E/ by

P .E;m/ WD �.E.mH //D

3X
iD0

˛i.E/m
i :

Moreover, let P2.E;m/D
P3

iD1 ˛i.E/m
i .

Definition 4.3 (i) The sheaf E is Gieseker-(semi)stable if for all nontrivial proper subsheaves F �E,
the inequality P .F;m/� .�/P .E;m/ holds.

(ii) The sheaf E is 2–Gieseker-(semi)stable if for all nontrivial proper subsheaves F �E, the inequality
P2.F;m/� .�/P2.E=F;m/ holds.

Note that for 2–Gieseker-semistability we could have equivalently asked P2.F;m/� P2.E;m/, but for
2–Gieseker-stability, P2.F;m/� P2.E;m/ is a stronger condition that is almost never fulfilled for all
such subsheaves. These notions imply each other as follows:

slope-stable +3 2–Gieseker-stable +3 Gieseker-stable

��
slope-semistable 2–Gieseker-semistableks Gieseker-semistableks

The intermediate notion of 2–Gieseker stability is not classical and will just appear in the technical parts
of our arguments.

Due to [18; 30; 31; 37] there exists a projective moduli space MX .v/ parametrizing S–equivalence
classes of Gieseker-semistable sheaves with Chern character v. Here two semistable sheaves are called
S–equivalent if they have the same stable factors, up to order and isomorphism, in their Jordan–Hölder
filtrations:
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Proposition 4.4 [23, Proposition 1.5.2] Any Gieseker-semistable sheaf E 2 Coh.X / has a filtration

0DE0 ,!E1 ,! � � � ,!En DE

such that the factors Ai WDEi=Ei�1 are Gieseker-stable with P .Ai ;m/�P .E;m/ for i D 1; : : : ; n. The
sheaf

nM
iD1

Ai

is uniquely determined (up to isomorphism) by E.

Moreover, any sheaf E has a Harder–Narasimhan filtration into Gieseker-semistable factors.

Proposition 4.5 [23, Theorem 1.3.4] Let E 2 Coh.X /. There is a unique filtration

0DE0 ,!E1 ,! � � � ,!En DE

such that the factors Ai WDEi=Ei�1 are Gieseker-semistable with

P .A1;m/� P .A2;m/� � � � � P .An;m/:

Based on Bridgeland stability on surfaces, the notion of tilt stability was introduced in [7]. It is not quite
a Bridgeland stability condition, but it turns out to suffice for our purposes. The basic idea is to change
the category in which subobjects are taken when defining stability. This is done via the theory of tilting
introduced in [20]. As before, let X be a smooth projective threefold with an ample divisor H .

Definition 4.6 For any ˇ 2R, we define two full additive subcategories of Coh.X /:

Fˇ.X / WD fE 2 Coh.X / W any slope-semistable factor F of E satisfies �.F /� ˇg;

Tˇ.X / WD fE 2 Coh.X / W any slope-semistable factor F of E satisfies �.F / > ˇg:

The category
Cohˇ.X / WD hTˇ.X /;Fˇ.X /Œ1�i

is the full additive subcategory of those E 2 Db.X / for which H0.E/ 2 Tˇ.X /, H�1.E/ 2 Fˇ.X / and
Hi.E/D 0 for all i ¤�1; 0.

Note that Hom.T;F /D 0 for all T 2 Tˇ.X / and F 2 Fˇ.X /, by semistability. It is well known that the
category Cohˇ.X / is abelian. A sequence of morphisms

0!A! B! C ! 0

in Cohˇ.X / is a short exact sequence if and only if the induced sequence

A! B! C !AŒ1�

is a distinguished triangle in Db.X /.

Geometry & Topology, Volume 28 (2024)



The desingularization of the theta divisor of a cubic threefold as a moduli space 137

To simplify notation, we define for any E 2Db.X / its twisted Chern character chˇ.E/ WD ch.E/ � e�ˇH .
Note that when ˇ 2 Z, this is nothing but ch.E˝OX .�ˇH //.

Definition 4.7 For ˛ > 0, ˇ 2R and E 2 Cohˇ.X /, we define a slope function

�˛;ˇ.E/ WD
H � chˇ

2
.E/� 1

2
˛2H 3 � chˇ

0
.E/

H 2 � chˇ
1
.E/

;

where again division by zero needs to be interpreted as C1. Analogously to slope-stability, an object
E 2 Cohˇ.X / is called �˛;ˇ–(semi)stable if for all nontrivial proper subobjects F ,!E in Cohˇ.X / the
inequality �˛;ˇ.F / < .�/ �˛;ˇ.E=F / holds.

If it is clear from context, we will sometimes abuse notation and write tilt-(semi)stable instead of
�˛;ˇ–(semi)stable. Note that by definition, any E 2 Cohˇ.X / satisfies H 2 � chˇ

1
.E/� 0. Therefore, this

function plays the same role in Cohˇ.X / as the rank does in Coh.X /.

As previously, Harder–Narasimhan filtrations exist. However, note that a version of Jordan–Hölder
filtrations exists, but the stable factors are not unique up to order.

The notion of 2–Gieseker stability occurs as a limit of tilt stability as follows.

Proposition 4.8 [13, Proposition 14.2] Let E 2 Db.X / and ˇ < �.E/. Then E 2 Cohˇ.X / and E is
�˛;ˇ–(semi )stable for ˛� 0 if and only if E 2 Coh.X / and E is 2–Gieseker-(semi )stable.

The statement in [13] is for K3 surfaces, but the same proof works in our setting. If ˇ > �.E/ the
situation is slightly more complicated. The following proposition is a combination of [6, Lemma 2.7] and
[27, Proposition 3.1].

Proposition 4.9 Take a �˛;ˇ–semistable object E 2 Cohˇ.X /. If ˇ ¤ �.E/, then H�1.E/ is a reflexive
sheaf , and if ˇ � �.E/ and ˛� 0, then H�1.E/ is a torsion-free slope-semistable sheaf and H0.E/ is
supported in dimension less than or equal to one.

Semistable sheaves satisfy the Bogomolov inequality; see [23, Theorem 3.4.1]. A version for tilt stability
was proved in [7, Corollary 7.3.2].

Theorem 4.10 (Bogomolov inequality) Let E 2 Cohˇ.X / be �˛;ˇ–semistable. Then

�H .E/ WD .H
2
� ch1.E//

2
� 2.H 3

� ch0.E//.H � ch2.E//� 0:

Most applications of tilt stability come from varying .˛; ˇ/ and determining what that means for the
stability of a given set of objects. We visualize the parameter space of tilt stability, .˛; ˇ/ 2 R2 with
˛ > 0, as the upper half-plane via i˛Cˇ. For a given class v 2K0.X /, it turns out that there is a locally
finite wall and chamber structure such that stability only changes as we cross a wall. These walls are
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ˇ

˛

�˛;ˇ.v/D 0

Figure 1: Walls are nested semicircles or a unique vertical wall (Theorem 4.12(ii)).

either semicircles with center on the ˇ–axis or vertical lines; see Figures 1 and 2. In the following, we
recall what this means formally.

For v 2 K0.X / we write ch.v/, �.v/, �˛;ˇ.v/ and �.v/ to mean the appropriate versions where E is
replaced by v.

Definition 4.11 For v;w 2K0.X /, we define

W .v; w/ WD f.˛; ˇ/ 2R>0 �R W �˛;ˇ.v/D �˛;ˇ.w/g:

The set W .v; w/ is a numerical wall if W .v; w/¤∅ and W .v; w/¤R>0�R, ie if it is a proper nontrivial
subset of the upper half-plane.

Numerical walls in tilt stability have a rather simple structure, as shown in [28]:

Theorem 4.12 (nested wall theorem) Let v 2K0.X / with �.v/� 0.

(i) A numerical wall for v is either a semicircle centered along the ˇ–axis , or a vertical line parallel to
the ˛–axis in the upper half-plane.

ˇ

˛ ˇ D
H � ch2.v/

H 2 � ch1.v/

Figure 2: Walls are nested semicircles (Theorem 4.12(iii)).
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(ii) If ch0.v/¤ 0, then there is a unique numerical vertical wall for v given by ˇD�.v/. The remaining
numerical walls for v are split into two sets of nested semicircles , whose apexes lie on the hyperbola
�˛;ˇ.v/D 0. In particular , no two distinct walls intersect.

(iii) If ch0.v/D 0 and H 2 � ch1.v/¤ 0, then every numerical wall for v is a semicircle , whose apex
lies on the ray ˇ D .H � ch2.v//=.H

2 � ch1.v//.

The following is a well-known consequence of the fact that walls do not intersect.

Corollary 4.13 Let

0! F !E!G! 0

be a short exact sequence of �˛;ˇ–semistable objects in Cohˇ0.X / for some .˛0; ˇ0/ 2W .F;E/. Then
this is a short exact sequence of �˛;ˇ–semistable objects in Cohˇ.X / for any .˛; ˇ/ 2W .E;F /.

Definition 4.14 Let v 2K0.X /. A numerical wall W for v is called an actual wall for v if there is a
short exact sequence

0! F !E!G! 0

of �˛;ˇ–semistable objects in Cohˇ.X / for one .˛; ˇ/2W .F;E/ such that W DW .F;E/ and ch.E/Dv.

The above corollary implies that this is a short exact sequence in Cohˇ.X / for all .˛; ˇ/ 2 W .F;E/.
Determining walls is the key technique in this paper. It will allow us to classify sheaves with certain Chern
characters in terms of short exact sequences; see Theorem 6.1. Note that the condition W .F;E/¤R>0�R

implies �˛;ˇ.F / > �˛;ˇ.E/ on one side of such a wall. We say that the short exact sequence

0! F !E!G! 0;

or sometimes the wall W .F;E/, destabilizes E.

Proposition 4.15 [6, Appendix A] If an actual wall is induced by a short exact sequence of tilt-semistable
objects 0! F !E!G! 0, then

�H .F /C�H .G/��H .E/;

and equality can only occur if either F or G is a sheaf supported in dimension zero.

It turns out that walls of large radius can only be induced by subobjects of small rank. The following
precise statement is close to [15, Proposition 8.3]. A proof of this version can be found in [29, Lemma 2.4]
for the case of nonnegative ranks. The case of nonpositive ranks has the exact same proof, with reversed
signs.
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Proposition 4.16 Assume that an object E is destabilized by a semicircular wall induced by a subobject
F ,!E or quotient E� F with ch0.F / > ch0.E/� 0 or ch0.F / < ch0.E/� 0. Then the radius � of
W .F;E/ satisfies

�2
�

�H .E/

4.H 3 � ch0.F //.H 3 � ch0.F /�H 3 � ch0.E//
:

Tilt stability interacts nicely with the derived dual D. � / WD RHom. � ;OX /Œ1�.

Proposition 4.17 [7, Proposition 5.1.3] Suppose that E 2 Cohˇ.X / is a �˛;ˇ–semistable object with
�˛;ˇ.E/¤1. Then there is a �˛;�ˇ–semistable object zE 2 Coh�ˇ.X /, a torsion sheaf T supported in
dimension zero , and a distinguished triangle

zE!D.E/! T Œ�1�! zEŒ1�:

The following proposition seems to be well known to experts, but we could find no proof in the literature.

Proposition 4.18 Let E 2 Coh.X / be torsion-free. Then EŒ1� is tilt-stable along the vertical wall
ˇ D �.E/ if and only if E is slope-stable and reflexive. In particular , slope-stable reflexive sheaves do
not get destabilized along the vertical wall.

Proof If E is slope-unstable, then E 62 Coh�.E/.X /. Assume that E is strictly slope-semistable. Then
there is a short exact sequence of slope-semistable sheaves

0! F !E!G! 0

such that �.F /D �.G/. Taking a shift by one, this becomes a short exact sequence in Coh�.E/.X / with
�˛;�.E/.F Œ1�/D �˛;�.E/.GŒ1�/.

Assume that E is not reflexive, but slope-stable. Then we have a short exact sequence in Coh�.E/.X /
given by

0! T !EŒ1�!E__Œ1�! 0;

where T is a nontrivial sheaf supported in dimension less than or equal to one. However, this sequence
makes EŒ1� strictly tilt-semistable along ˇ D �.E/.

Assume conversely that E is a slope-semistable reflexive sheaf. Then it is an object in Coh�.E/.X / of
maximal phase, and in particular tilt-semistable. If it is strictly semistable, then it admits a short exact
sequence

0! F !EŒ1�!GŒ1�! 0;

where F , GŒ1�, H�1.F /Œ1� and H0.F / are also of maximal phase. In particular, H�1.F / and G are
torsion-free and slope-semistable of slope �.E/, and H0.F / has support of dimension at most one.

Consider the long exact sequence

0!H�1.F /!E!G!H0.F /! 0:

Geometry & Topology, Volume 28 (2024)



The desingularization of the theta divisor of a cubic threefold as a moduli space 141

Since we assume that E is strictly stable, this is a contradiction unless H�1.F /D 0. Taking duals we get
an exact sequence

0!G_!E_! Ext1.F;OX /:

Since F is supported in dimension less than or equal to one, this implies Ext1.F;OX /D 0 and G_ŠE_.
Hence, E ¨G DG__ DE__, a contradiction to E being reflexive.

From now on, we assume X �P4 is a smooth cubic threefold. In the later sections, we need the following
result of [26, Proposition 3.2], which improves the Bogomolov inequality in the case of a Fano threefold
of Picard rank one. Be aware that our notation differs from Li’s.

Theorem 4.19 Let E be a tilt-stable with ch0.E/¤ 0 for some ˛ > 0, ˇ 2R. If �1
2
��H .E/�

1
2

, then

H � ch2.E/

H 3 � ch0.E/
� 0:

In the case of cubic threefolds, direct sums of line bundles can be detected among semistable sheaves or
objects by their Chern characters, as follows.

Proposition 4.20 (i) If E is slope-semistable , or �˛;ˇ–semistable for some ˛ > 0 and ˇ < 0, with
ch.E/D .r; 0; 0; eH 3/ where r > 0, then e � 0. If , additionally, e D 0, then E ŠO˚r

X
.

(ii) If E is �˛;ˇ–semistable for some ˛ > 0 and ˇ > 0, with ch.E/D .�r; 0; 0; eH 3/ where r > 0, then
e D 0 and E ŠO˚r

X
Œ1�.

Proof In either case, Proposition 4.15 and �.E/D 0 imply that E has no semicircular walls.

We first claim that the only slope-stable reflexive sheaf of class .r; 0; 0; eH 3/ is OX . Assume otherwise.
By Proposition 4.18, such an E is also stable at the vertical wall ˇ D 0, and thus, it is �˛;ˇ–stable for
all ˛ > 0 and ˇ 2 R. Since �0;ˇ.E/ D �

1
2
ˇ > �1

2
ˇ � 1 D �0;ˇ.OX .�2H /Œ1�/ and both objects are

stable for ˛� 1 and ˇ 2 .�2; 0/, we have Ext2.OX ;E/D Hom.E;OX .�2H /Œ1�/D 0. Similarly, from
�˛;ˇ–stability for ˛� 1 and ˇ 2 .0; 2/ we obtain Ext2.E;OX /DHom.OX .2H /;EŒ1�/D 0. However, at
least one of �.OX ;E/D rC3e or �.E;OX /D r �3e is positive, and so E admits a morphism from OX

or a morphism to OX . As both are reflexive and slope-stable of slope 0, this shows E ŠOX .

Now consider an object E as in case (i). Then EŒ1� is �˛;0–semistable. By Proposition 4.18, its
Jordan–Hölder factors are either of the form F Œ1� for a slope-stable reflexive sheaf F with ch.F / D
.rF ; 0; dF H 2; eF H 3/, or a torsion sheaf supported in dimension � 1. In fact, Proposition 4.15 shows
dF D 0 in the former case, and thus, F D OX by the previous case, and that the torsion sheaves are
supported in dimension zero. As �3e is the total length of the torsion sheaves, we get e � 0. If e D 0, all
factors are isomorphic to OX Œ1� and the claim follows from Ext1.OX ;OX /D 0.
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In case (ii), we again consider a Jordan–Hölder filtration with respect to �˛;0–stability. Let Ei ,!EiC1 be
the first filtration step where the quotient EiC1=Ei is a zero-dimensional torsion sheaf T , should one exist.
Then Ei DOX Œ1�

˚k for some k > 0. Since Ext1.T;OX Œ1�/DH 1.T /_ D 0, we have EiC1 DEi ˚T ,
and so T is a subobject of E. This contradicts stability of E for ˇ> 0. Thus, EDOX Œ1�

˚r , as claimed.

5 Construction of sheaves

In this section, we introduce the sheaves that make up our moduli space MX .v/. It turns out that all of
them are at least reflexive, and the generic one is a vector bundle. From now on X � P4 is an arbitrary
smooth cubic threefold.

Let Y �X be an arbitrary hyperplane section, D be an effective Weil divisor on Y, and V �H 0.OY .D//

be a nontrivial subspace. Then we define ED;V 2 Db.X / to be the cone of the induced morphism
OX ˝V !OY .D/. Moreover, let ED;V WDH�1.ED;V /. Hence, we have a long exact sequence

0!ED;V !OX ˝V !OY .D/!H0.ED;V /! 0:

If V DH 0.OY .D//, we will drop V , and just write ED and ED .

Lemma 5.1 The sheaf ED;V is slope-stable and reflexive. If , additionally, H0.ED;V /D 0, then ED;V is
a vector bundle.

Proof The quotient .OX ˝V /=ED;V embeds into OY .D/. Since Y is integral by Proposition 3.1, the
sheaf .OX ˝V /=ED;V must be supported on Y. Therefore, ch�1.ED;V /D .dim V;�H / is primitive and
it is enough to show that ED;V is slope-semistable. If not, let F �ED;V be the slope-semistable subsheaf
in the Harder–Narasimhan filtration of ED;V . Then �.F />�.ED;V / and the quotient ED;V =F is torsion-
free. Since F is also a subsheaf of OX ˝V , we must have �.F /D 0. Let ch.F /D .r; 0; dH 2; eH 3/. The
quotient .OX ˝V /=F satisfies ch..OX ˝V /=F /D .dim V � r; 0;�dH 2;�eH 3/. By the snake lemma
this quotient is either torsion-free or has a torsion subsheaf purely supported on Y. However, if it is not
torsion-free, then its torsion-free quotient would destabilize OX ˝V , a contradiction. As a torsion-free
quotient of OX ˝V with slope zero, .OX ˝V /=F has to be slope-semistable as well.

The classical Bogomolov inequalities �H .F /� 0 and �H ..OX ˝V /=F /� 0 imply d D 0. Applying
Proposition 4.20 to both F and .OX ˝ V /=F implies e D 0, and finally, F D O˚r

X
. However, by

construction, ED;V has no global sections, a contradiction.

To see that ED;V is reflexive it suffices to show that Extq.ED;V ;OX /D 0 for q � 2 and Ext1.ED;V ;OX /

is supported in dimension zero. If additionally Ext1.ED;V ;OX /D 0, then ED;V is a vector bundle.

Clearly, Extq.OX ˝ V;OX / D 0 for q ¤ 0. Because OY .D/ is a rank-one reflexive sheaf on the
codimension one subvariety Y, the quotient .OX ˝V /=ED;V �OY .D/ is purely supported on Y. We
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can use [23, Proposition 1.1.10] to see that Extq..OX ˝ V /=ED;V ;OX / D 0 for all q ¤ 1; 2, and
Ext2..OX ˝ V /=ED;V ;OX / is supported in dimension zero. The long exact sequence obtained from
dualizing the short exact sequence

(1) 0!ED;V !OX ˝V ! .OX ˝V /=ED;V ! 0

implies the required vanishings.

If additionally H0.ED;V /D 0, then .OX ˝V /=ED;V DOY .D/ is a reflexive sheaf on the codimension-
one subvariety Y, and we can use [23, Proposition 1.1.10] again to see that Ext2.OY .D/;OX /D 0. The
same long exact sequence as above now implies Ext1.ED;V ;OX /D 0.

Note that we will use this lemma for the case ch.OY .D//D
�
0;H; 1

2
H 2;�1

6
H 3

�
. It will turn out that

in this case h0.OY .D//D 3 for any such D (see Theorem 6.1) and we will choose V DH 0.OY .D//.
Moreover, we will show that in that case H0.ED/D 0, ie OY .D/ is globally generated; see Theorem 6.1.
A straightforward computation shows that in this example ch.ED/D

�
3;�H;�1

2
H 2; 1

6
H 3

�
.

Corollary 5.2 Let P 2X . Then h0.IP .H //D 4 and the sheaf KP defined through the exact sequence

(2) 0!KP !O˚4
X
! IP .H /! 0

satisfies ch.KP /D
�
3;�H;�1

2
H 2; 1

6
H 3

�
. Moreover , KP is reflexive and slope-stable , and locally free

except at P .

Proof By choosing an embedding KP ,!O˚3
X

we get a short exact sequence

0!KP !O˚3
X
! IP=Y .H /! 0

for some hyperplane section Y. The statement then follows from Lemma 5.1 by choosing D DH and
V DH 0.IP=Y .H //�H 0.OY .H //.

From the defining short exact sequence (2) one immediately sees that KP is locally free away from P

(as it is the kernel of a surjective map of vector bundles), and not locally free at P (as Ext2.OP ;KP /D

Ext1.OP ; IP .H //¤ 0).

6 Variation of stability

In this section, we investigate semistable sheaves with Chern character

v WD
�
3;�H;�1

2
H 2; 1

6
H 3

�
:

The main goal is to use wall-crossing to prove the following theorem, which gives a set-theoretic
description of the moduli space MX .v/.
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Theorem 6.1 (i) Suppose that D is a Weil divisor on a (possibly singular) hyperplane section Y with
ch.OY .D// D

�
0;H; 1

2
H 2;�1

6
H 3

�
. Then OY .D/ is globally generated , and h0.OY .D// D 3.

In particular , there exists a smooth twisted cubic C in Y of class D.

(ii) A sheaf E with Chern character v is Gieseker-semistable if and only if it is either equal to the
reflexive sheaf KP for a point P 2X as in (2), or the vector bundle ED for a Weil divisor D on a
hyperplane section Y �X as in (1) with ch.OY .D//D

�
0;H; 1

2
H 2;�1

6
H 3

�
.

Note that since ch1.E/D�H , any Gieseker-semistable sheaf of class v is slope-stable. The argument
will essentially boil down to a detailed analysis of the numerical wall W defined by

(3) ˛2
C
�
ˇ� 1

2

�2
D

1
4
:

At this wall, the short exact sequences (2) and (1) become destabilizing short exact sequences in Cohˇ.X /
in the form

0!OY .D/!ED Œ1�!OX Œ1�
˚3
! 0 and 0! IP .H /!KP Œ1�!OX Œ1�

˚4
! 0:

Moreover, we can show that every object gets destabilized, and the destabilizing short exact sequence
must be of one of these types; see Lemma 6.8.

6.1 Classification of some torsion sheaves

In this section, we prove the following proposition.

Proposition 6.2 The wall W of equation (3) is the unique actual wall in tilt stability for objects G with
Chern character ch.G/D

�
0;H; 1

2
H 2;�1

6
H 3

�
.

(i) Above W the moduli space of tilt-semistable objects is the moduli space of Gieseker-semistable
sheaves , and contains precisely the following two types of sheaves G:

(a) G D IP=Y .H / for Y 2 jH j and P 2 Y , and

(b) G DOY .D/, where D is a Weil divisor on some Y 2 jH j.

(ii) Below W the moduli space of tilt-semistable objects contains precisely the following two types of
objects G:

(a) the unique nontrivial extensions

(4) 0!OX Œ1�!GP ! IP .H /! 0

for points P 2X , and

(b) G DOY .D/, where D is a Weil divisor on some Y 2 jH j.

We start by dealing with slightly more general objects without fixing ch3.
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Lemma 6.3 The wall W of equation (3) is the unique actual wall in tilt stability for objects G with
Chern character ch�2.G/D

�
0;H; 1

2
H 2

�
. If G is strictly semistable along W, then any Jordan–Hölder

filtration of G is given by either

0! IZ .H /!G!OX Œ1�! 0 or 0!OX Œ1�!G! IZ .H /! 0;

where Z �X is a zero-dimensional subscheme of length 1
6
H 3� ch3.G/.

Proof All walls for
�
0;H; 1

2
H 2

�
intersect the vertical ray ˇ D 1

2
. If G is strictly semistable along some

numerical wall intersecting ˇ D 1
2

, then there is a short exact sequence in Coh1=2.X / of tilt-semistable
objects

0!A!G! B! 0

with equal tilt-slope. Let ch�2.A/D .r; cH; dH 2/. By definition of Coh1=2.X / and the fact that neither
A nor B can have infinite tilt-slope, we get

0<H 2
� ch1=2

1
.A/DH 3

�
c � 1

2
r
�
<H 2

� ch1=2
1
.G/DH 3:

Therefore, c D 1
2
r C 1

2
, and in particular, r is odd. We will deal with the case r < 0. If r > 0, then B has

negative rank and one simply has to exchange the roles of A and B in the following argument.

For
�
˛; 1

2

�
2W .A;G/ we have

�˛2r C 2d � 1
4
r � 1

2
D �˛;1=2.A/D �˛;1=2.G/D 0:

Since ˛2 > 0, this implies d < 1
8
r C 1

4
. The fact

0�
�H .A/

.H 3/2
D�2dr C 1

4
r2
C

1
2
r C 1

4

implies d � 1
8
r C .1=8r/C 1

4
. Since d 2 1

6
Z, these restrictions on d are only possible for r 2 f�1;�3g.

If r D �3, then ch�2.A/ D
�
�3;�H;�1

6
H 2

�
. This case is immediately ruled out by Theorem 4.19.

If r D �1, then ch�2.A/ D .�1; 0; 0/, and by Proposition 4.20, we know A D OX Œ1�. Then ch.B/ D�
1;H; 1

2
H 2; ch3.G/

�
. By Proposition 4.15, there is no semicircular wall for B, and by Proposition 4.8,

the object B has to be a 2–Gieseker-stable sheaf. Since ch.B.�H // D
�
1; 0; 0; ch3.G/�

1
6
H 3

�
, the

remaining statement follows by applying Proposition 4.20 to B.�H /.

The next step is to gain further control over the third Chern character.

Lemma 6.4 Let G be a �˛;ˇ–semistable object with ch�2.G/ D
�
0;H; 1

2
H 2

�
. Then ch3.G/ �

1
6
H 3.

If ch3.G/D
1
6
H 3 and .˛; ˇ/ is above W, then G ŠOY .H / for some Y 2 jH j.

Proof We may assume ch3.G/�
1
6
H 3. By Lemma 6.3, the only possible wall is given by W. Therefore,

G has to be tilt-semistable along W. Since W lies below the numerical wall W .G;OX .�H /Œ1�/, we get
ext2.OX .H /;G/D hom.G;OX .�H /Œ1�/D 0. Thus,

hom.OX .H /;G/� �.OX .H /;G/D ch3.G/C
1
6
H 3 > 0:

Geometry & Topology, Volume 28 (2024)



146 A Bayer, S V Beentjes, S Feyzbakhsh, G Hein, D Martinelli, F Rezaee and B Schmidt

Therefore, W is a wall for G and by Lemma 6.3, the destabilizing sequence is

0!OX .H /!G!OX Œ1�! 0:

This implies G DOY .H / for some Y 2 jH j and ch3.G/D
1
6
H 3.

Proof of Proposition 6.2 Assume that G is strictly tilt-semistable along W. Then Lemma 6.3 splits our
problem into two cases.

Firstly, assume that G fits into a nonsplitting short exact sequence

0! IP .H /!G!OX Œ1�! 0

for a point P 2 X . Then clearly G D IP=Y .H / for some Y 2 jH j. This object is tilt-stable above W,
and tilt-unstable below W by precisely this sequence.

Secondly, assume that G fits into a nonsplitting short exact sequence

(5) 0!OX Œ1�!G! IP .H /! 0

for some P 2 X . By Serre duality, Ext1.IP .H /;OX Œ1�/ D h1.IP .�H // D 1 and hence, there is a
unique G for each P 2 X . Clearly, this object is tilt-unstable above W. Assume it is also tilt-unstable
below W. Then there is a short exact sequence 0!A!G! B! 0 destabilizing G below the wall.
However, G is strictly semistable at W, and by Lemma 6.3, this implies B DOX Œ1�. However, that means
the short exact sequence (5) splits, a contradiction.

Lastly, assume that G is �˛;ˇ–stable for all .˛; ˇ/. By Proposition 4.17, D.G/ lies in a distinguished
triangle

(6) zG!D.G/! T Œ�1�! zGŒ1�;

where T is a torsion sheaf supported in dimension zero and zG 2 Coh�ˇ.X / is �˛;�ˇ–semistable. If
ch3.T /D t , then ch. zG/D

�
0;H;�1

2
H 2;�1

6
H 3C t

�
. Thus, zG is a pure sheaf supported on a hyperplane

section Y 2 jH j. We can compute

ch. zG˝OX .H //D
�
0;H; 1

2
H 2;�1

6
H 3
C t
�
:

Thus, Lemma 6.4 gives t D 0 or t D 1, and if t D 1, then zG˝OX .H /ŠOY .H /, ie zG ŠOY .H /. Hence
there is a nontrivial morphism OX !

zG. Since hom.OX ;T Œ�i �/D 0 for i > 0, The triangle (6) shows
that there is a nontrivial morphism OX !D.G/. Dualizing this morphism leads to a nontrivial morphism
G!OX Œ1�. However, this is in contradiction to the assumption that G is stable along W.

If t D 0, then D.G/D zG is a sheaf, so Extq.G;OX /D 0 for q > 1. Thus, [23, Proposition 1.1.10] implies
that G is reflexive and supported on a hyperplane section Y 2 jH j. This means G DOY .D/ for some
Weil divisor D on Y.
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6.2 Set-theoretic description of the moduli space

We now prepare the proof of Theorem 6.1.

Lemma 6.5 There are no walls along ˇ D �1 for tilt-semistable objects E with Chern character
ch�2.E/D

�
3;�H;�1

2
H 2

�
.

Proof Assume there is such a wall induced by a short exact sequence

0!A!E! B! 0

with ch�1
�2.A/D .r;xH;yH 2/. Then

0<H � ch�1
1 .A/D xH 3 <H � ch�1

1 .E/D 2H 3

implies x D 1. By exchanging the roles of A and B if necessary, we may assume r � 2.

Using �H .A/ � 0 we get y � 1=2r . A straightforward computation shows that there exists ˛ > 0

with �˛;�1.A/ D �˛;�1.E/ if and only if y > 0. Since y 2 1
6
Z, this is only possible if y D 1

6
and

r 2 f2; 3g. Both cases ch�1
�2.A/D

�
3;H; 1

6
H 2

�
and ch�1

�2.A/D
�
2;H; 1

6
H 2

�
are directly ruled out by

Theorem 4.19.

Proposition 6.6 Take a slope-stable sheaf E of Chern character .3;�H; ch2; ch3/. Then H � ch2��
1
2
H 3,

and if ch2 �H D�
1
2
H 3, then ch3 �

1
6
H 3. In particular , this implies that any slope-stable sheaf of Chern

character v is a reflexive sheaf.

Proof Since E is slope-stable, the classical Bogomolov inequality gives

�H .E/D .H
3/2� 2.3H 3/.H � ch2.E//� 0;

which implies H �ch2.E/�
1
6
H 3. The case H �ch2.E/D

1
6
H 3 is immediately ruled out by Theorem 4.19.

Since c2.E/D
1
2
H 2� ch2.E/ has to be an integral class, we are left to rule out H � ch2.E/D�

1
6
H 3.

Assume H � ch2.E/ D �
1
6
H 3. We may assume that E is a reflexive sheaf. If not, we replace it by

the double dual E__, which satisfies H � ch2.E/ � H � ch2.E
__/. By the first part of the argument

H � ch2.E
__/D�1

6
H 3 holds as well.

We first show that ext2.E;E/D 0. Since H 3 � ch�1=2
1

.E/D 1
2
H , any destabilizing subobject F � E

along ˇD�1
2

must satisfy H 3 �ch�1=2
1

.F /D 1
2
H or H 3 �ch�1=2

1 .F /D 0. Thus, either F or the quotient
E=F have infinite tilt-slope, a contradiction. This means E is �˛;�1=2–stable for all ˛ > 0.

By Proposition 4.18, the object EŒ1� is tilt-stable for ˇ D 0 and ˛� 0. Since H 3 � ch1.EŒ1�/DH 3, the
same type of argument as above shows that there cannot be any wall along ˇ D 0. Hence, E.�2H /Œ1� is
�˛;ˇ–stable for ˇ D�2 and any ˛ > 0.
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A straightforward computation shows that W .E;E.�2H /Œ1�/ intersects both the vertical lines ˇ D�2

and ˇ D �1
2

. Therefore, E and E.�2H /Œ1� are tilt-stable for any .˛; ˇ/ 2 W .E;E.�2H /Œ1�/ and
have the same phase, and thus, ext2.E;E/ D hom.E;E.�2H /Œ1�/ D 0. Since E is stable, we know
hom.E;E/D 1 and hence, 3D �.E;E/D 1� ext1.E;E/� ext3.E;E/� 1, a contradiction.

Now assume H � ch2 D �
1
2
H 3. We know E 2 Cohˇ.X / is �˛;ˇ–stable for ˛ � 0 and ˇ < �1

3
. By

Lemma 6.5, we have that E is �˛;�1–stable for any ˛ > 0. One can easily compute

�0;�1.OX .�2H /Œ1�/ < �0;�1.E/;

which implies h2.E/ D hom.E;OX .�2H /Œ1�/ D 0. Moreover, since �.E/ D �1
3
< �.OX /, we get

hom.OX ;E/D 0. Therefore, �.E/D ch3.E/�
1
6
H 3 � 0, as claimed.

Lastly, assume that a slope-stable sheaf E of Chern character v is not reflexive. We have a short exact
sequence

0!E!E__! T ! 0:

Since E__ is also slope-stable, and both H � ch2.E/ and H � ch3.E/ are maximal, one gets ch.E/ D
ch.E__/. This is only possible if T D 0.

To prove Theorem 6.1, we start in the large volume limit.

Lemma 6.7 Take ˇ >�1
3

. An object zE 2Cohˇ.X / of Chern character �v is �˛;ˇ–semistable for ˛� 0

if and only if zE ŠEŒ1� for a slope-stable reflexive sheaf E.

Proof Take a �˛;ˇ–semistable object zE of class�v. Proposition 4.9 implies that H�1. zE/ is a slope-stable
reflexive sheaf and H0. zE/ is a torsion sheaf supported in dimension � 1. Therefore,

ch.H�1. zE//D
�
3;�H;�1

2
H 2
C ch2.H0. zE//; 1

6
H 3
C ch3.H0. zE//

�
:

By Proposition 6.6, this is only possible if ch2.H0. zE//D ch3.H0. zE//D 0, ie H0. zE/ = 0.

Conversely, any slope-stable reflexive sheaf E of class v is �˛;ˇ–stable for ˛� 0 and ˇ < �.E/D�1
3

.
Proposition 4.18 implies that EŒ1� is �˛;ˇ–stable for ˛� 0 and ˇ > �.E/D�1

3
.

Next, we move down from the large volume limit and investigate walls for objects of class �v. Note that
all walls to the right of the vertical wall must intersect ˇ D�1

3
.

Lemma 6.8 The wall W of equation (3) is the unique actual wall for objects with Chern character �v to
the right of the vertical wall. There are no tilt-semistable objects below W. Any tilt-semistable zE with
Chern character �v fits into one of the following two cases:

(i) zE fits into a short exact sequence

0!OY .D/! zE!O˚3
X
Œ1�! 0;

where D is a Weil divisor on hyperplane section Y 2 jH j.
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(ii) zE fits into a short exact sequence

0! IP .H /! zE!O˚4
X
Œ1�! 0;

where P 2X .

Proof Let zE be a tilt-semistable object with Chern character �v. Let W 0 be a wall strictly above W

induced by a short exact sequence 0! F ! zE!G! 0. Then the wall W 0 contains points .˛; 0/ with
˛ > 0. In particular, 0<H � ch1.F / <H � ch1. zE/DH 3, a contradiction.

Since the wall W .OX .2H /; zE/ is larger than W, we get hom. zE;OX Œ3�/D hom.OX .2H /; zE/D 0 and

hom. zE;OX Œ1�/D hom. zE;OX /C ext2. zE;OX /��. zE;OX /� ��. zE;OX /D 3:

Clearly, any morphism zE!OX Œ1� destabilizes zE below W.

Let r WD hom. zE;OX Œ1�/� 3. We get a short exact sequence of tilt-semistable objects along W given by

0!G! zE!O˚r
X
Œ1�! 0:

If r � 4, then Proposition 4.16 says
1

4
�

1

r.r � 3/
;

ie r � 4. For r D 4, we get ch.G.�H //D
�
1; 0; 0;�1

3
H 3

�
and so G D IP .H / for some P 2X .

If r D 3, then ch.G/ D
�
0;H; 1

2
H 2;�1

6
H 3

�
. Assume G is not of the form OY .D/ for some Weil

divisor D on a hyperplane section Y 2 jH j. Then Proposition 6.2 implies that G has to be strictly
semistable along our wall W. Since zE is tilt-semistable above the wall, we know Hom.OX Œ1�;E/D 0.
Therefore, Lemma 6.3 shows that there is a short exact sequence

0! IP .H /!G!OX Œ1�! 0

for a point P 2X . But then there is an inclusion IP .H / ,! zE and we are in the second case.

Proof of Theorem 6.1 Let D be a Weil divisor on a hyperplane section Y 2 jH j with ch.OY .D//D�
0;H; 1

2
H 2;�1

6
H 3

�
. By Proposition 6.2, the sheaf OY .D/ is tilt-stable for all ˛ > 0 and ˇ 2 R.

A straightforward computation shows that the numerical wall W .OY .D/;OX .�2H /Œ1�/ is nonempty,
and therefore, h2.OY .D//D hom.OY .D/;OX .�2H /Œ1�/D 0. We conclude

h0.OY .D//D �.OY .D//C h1.OY .D//C h3.OY .D//� �.OY .D//D 3:

We pick a three-dimensional subspace V � h0.OY .D// to get an object ED;V 2 Db.X / as in Section 5.
By Lemma 5.1, the sheaf ED;V DH�1.ED;V / is slope-stable and reflexive. If H0.ED;V /¤ 0, then ED;V

has a Chern character in contradiction to Proposition 6.6. This shows that OY .D/ is globally generated.

Since ED;V is slope-stable, we know h0.ED;V /D0 and h3.ED;V /Dhom.ED;V ;OX .�2H //D0. More-
over, as in the proof of Proposition 6.6 we get h2.ED;V /D 0. This implies h1.ED;V /D��.ED;V /D 0.
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The long exact sequence obtained from taking sheaf cohomology of

0!ED;V !OX ˝V !OY .D/! 0

implies H i.OY .D//D 0 for i > 0 and h0.OY .D//D 3. Therefore, V DH 0.OY .D// and for each D

there is a unique slope-stable sheaf ED DED;V .

Let U � Y be the smooth locus of Y. By Proposition 3.1, we know that Y is normal, and therefore,
Y nU has dimension zero. In particular, a general section of OY .D/ leads to a curve completely contained
in U . Since we work in characteristic 0, we can use a version of Bertini’s theorem [21, Corollary III.10.9,
Remark III.10.9.1, Remark III.10.9.2] on the open subset U to see that a general section cuts out a smooth
curve C . By adjunction,

ch.KC /D ch.OY .�H CD/jD/D ch.OY .�H CD//� ch.OY .�H //

D
�
0;H;�1

2
H 2;�1

6
H 3

�
�
�
0;H;�3

2
H 2; 7

6
H 3

�
D
�
0; 0;H 2;�4

3
H 3

�
;

which shows that C is of degree 3 with �.KC /D �1, ie a twisted cubic. This completes the proof of
part (i).

For part (ii), we already showed in Corollary 5.2 that KP is slope-stable for any P 2X . Conversely, if E

is slope-stable, we can immediately conclude by Lemma 6.8.

As a consequence we can already infer that our moduli space MX .v/ is smooth.

Corollary 6.9 Every Gieseker-semistable sheaf E with ch.E/D
�
3;�H;�1

2
H 2; 1

6
H 3

�
satisfies

Exti.E;E/D

8<:
C if i D 0;

C4 if i D 1;

0 otherwise.

In particular , the moduli space MX .v/ is smooth and 4–dimensional.

Proof Since .3;�H / is primitive, we know that E is slope-stable. Therefore, hom.E;E/D 1. Moreover,
we must have Ext3.E;E/D Hom.E;E.�2H //_ D 0. By Lemma 6.5, the sheaf E is �˛;�1–stable for
any ˛ > 0. Proposition 6.6 shows that E.�2H / is reflexive, so its shift E.�2H /Œ1� lies in the heart
CohˇD�1.X / and it is �˛;�1–stable for any ˛ > 0 by Lemma 6.8. Since

�0;�1.E/D 0> �1
2
D �0;�1.E.�2H /Œ1�/;

we get Ext2.E;E/D Hom.E;E.�2H /Œ1�/D 0. We can conclude that

ext1.E;E/D hom.E;E/��.E;E/D 4:

7 Proof of the main theorem

Recall that MX .v/ is the moduli space of Gieseker-semistable sheaves with Chern character

v WD
�
3;�H;�1

2
H 2; 1

6
H 3

�
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and MX .v/�MX .v/ is the open locus of Gieseker-semistable vector bundles. The aim of this section is
to prove the following theorem.

Theorem 7.1 The moduli space MX .v/ is smooth and irreducible of dimension 4. Moreover , there
is an Abel–Jacobi morphism ‰ WMX .v/! J.X / sending E 7! zc2.E/�H 2, whose image is a theta
divisor ‚ in the intermediate Jacobian J.X /. The theta divisor has a unique singular point , and MX .v/

is the blowup of ‚ in this point. The exceptional divisor is isomorphic to the cubic threefold X itself.

We have already shown that MX .v/ is smooth of dimension 4 in Corollary 6.9. By Proposition 2.2, the
image of ' W T ! J.X / is ‚� J.X /, where T is the open locus of smooth twisted cubics in the Hilbert
scheme of X , and T is its closure. By Theorem 2.6, we know that ‚ is normal.

Proposition 7.2 There is a surjective map '0 W T !MX .v/ that sends a twisted cubic C to the vector
bundle EC . The map 'jT W T ! J.X / factors through '0:

T
'jT

""

'0

{{

MX .v/
‰jMX .v/

// J.X /

Therefore , the image of ‰ WMX .v/! J.X / is ‚� J.X /.

Proof Let C be a twisted cubic in X . Then it lies in a unique hyperplane section Y. There is a short
exact sequence

0!OY !OY .C /! T ! 0;

where T is a sheaf supported on C with rank one. Therefore, ech�2.OY .C // D
�
0;H;C � 1

2
H 2

�
and we get ech�2.EC / D

�
3;�H; 1

2
H 2 � C

�
. It follows that zc2.EC / D C . Thus, the composition

‰jMX .v/ ı'
0 W T !MX .v/! J.X / is the Abel–Jacobi map ' W T ! J.X / restricted to T . Surjectivity

of '0 is a direct consequence of Theorem 6.1.

Lemma 7.3 The morphism i W X !MX .v/ that maps P 7!KP is an embedding with normal bundle
OX .�H /.

Proof We interpret X as the moduli spaces of twisted ideal sheaves IP .H / for all P 2X . By definition
of KP , we have a canonical short exact sequence

(7) 0!KP !O˚4
X
! IP .H /! 0:

The appropriate version in families, considered below, induces the morphism i . It is injective, as P is the
unique point where KP is not locally free by Corollary 5.2.
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Applying Hom. � ;KP / to (7), we get an isomorphism Ext1.KP ;KP / Š Ext2.IP .H /;KP /. Next,
we apply the functor Hom.IP .H /; � / to (7) to show that the induced morphism on tangent spaces
Ext1.IP .H /; IP .H // ,! Ext2.IP .H /;KP / D Ext1.KP ;KP / is an embedding. Since both X and
MX .v/ are smooth, the morphism is an embedding.

To determine the normal bundle, we need a relative version of the previous arguments to determine the
cokernel of this embedding as a line bundle on X . The universal family inducing i is given by the sheaf K
on X �X fitting into the short exact sequence

0! K! p��P4 jX .H /! I�.0;H /! 0;

where p W X �X ! X is the projection to the first factor. The pullback of the tangent bundle via i is
i�TMX .v/

DH1.p�Hom.K;K//. Since p�Hom.p��P4 jX .H /;K/D 0, we have an isomorphism

H1.p�Hom.K;K//DH2.p�Hom.I�.0;H /;K/:

The differential di of i fits into the four-term long exact sequence

0! TX DH1
�
p�Hom.I�.0;H /; I�.0;H //

� di
�!H2

�
p�Hom.I�.0;H /;K/

�
!H2

�
p�Hom.I�.0;H /;p��P4 jX .H //

�
!H2

�
p�Hom.I�.0;H /; I�.0;H //

�
! 0:

Using Grothendieck duality and the projection formula, the third term becomes

�P4 jX .H /˝H1.p�I�.0;�H //_ D�P4 jX .H /˝H0.p�O�.0;�H //_ D�P4 jX .2H /:

A similar computation using the short exact sequence I� ,!OX �OX �O� gives

H2.p�Hom.I�; I�/D�X .2H /

for the fourth term. Thus, the cokernel of di is isomorphic to N_
X=P4.2H /DOX .�H /, as claimed.

Lemma 7.4 The morphism ‰ induces an isomorphism MX .v/!‚ n f0g. Moreover , ‰ contracts the
irreducible divisor MX .v/ nMX .v/ to the zero point. In particular , ‚ is smooth away from 0.

Proof By Lemma 5.1 and Corollary 5.2, the locus MX .v/ nMX .v/ coincides with vector bundles EC

associated to a twisted cubic C . By Lemma 2.5, the map 'jT has full rank four on tangent spaces. Thus,
the commutative diagram in Proposition 7.2 implies that ‰jMX .v/ has full rank four on tangent spaces.
Since MX .v/ is smooth of dimension four, ‰jMX .v/ must be injective on tangent spaces. In particular, the
morphism ‰jMX .v/ must have finite fibers. Since 'jT has generically connected fibers by Proposition 2.2,
the same holds for ‰jMX .v/. Since ‚ is normal, Zariski’s main theorem implies that ‰jMX .v/ is an open
embedding. Since ‚ is singular at the origin, we must have ‰.MX .v//�‚�f0g.

By definition, zc2.KP /DH 2 and we get ‰.KP /D 0. Thus ‰�1.0/DMX .v/ nMX .v/, and the image
of MX .v/ is indeed ‚ n f0g by Proposition 2.2.
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We can finish the proof of Theorem 7.1 with the following lemma.

Lemma 7.5 The formal neighborhood of 0 2 ‚ is isomorphic to the vertex of the affine cone over
X � P4. Moreover , we have an isomorphism MX .v/ D Bl0.‚/. Thus , X is the union of all rational
curves on MX .v/, and the unique divisor contracted by any morphism to a complex abelian variety.

Proof The first two claims are scheme-theoretic enhancements of the set-theoretic statements in the
previous lemma, which hold for any contraction of a divisor with ample conormal bundle to a point. We
will only sketch the arguments.

Since the normal bundle of X �MX .v/ is antiample, by Artin’s contractibility criterion [4, Corollary 6.12]
there is a contraction‰0 WMX .v/!N to an algebraic space N of finite type over C that is an isomorphism
away from X , and contracts X to a point 0 2N . Moreover, by Artin’s construction in [4, Theorem 6.2],
the formal neighborhood of 0 2N is given by the affinization of the formal neighborhood of X �MX .v/.
More precisely, if I is the ideal of X , then it is given by

Spec lim
 ��

n

H 0.X;OMX .v/
=InC1/D Spec lim

 ��
n

M
0�k�n

H 0.X;OX .k//;

ie the completion of the vertex of the affine cone over X . Since the image of every infinitesimal
neighborhood of X under ‰ is affine, it factors via its affinization. Taking the limit, we see that ‰ factors
via ‰0 both in the formal neighborhood of X , and in its complement. Hence (eg by [4, Theorem 3.1])
we get an induced morphism j WN !‚ factoring ‰. As j is bijective on points and has normal target,
it is an isomorphism.

For the last claim, note that X is uniruled, hence the union U of all rational curves in MX .v/ contains X .
If there was any other rational curve C not contained in X , then ‰ W C !‚ is a nonconstant map from a
rational to an abelian variety, a contradiction.

Corollary 7.6 If X1 and X2 are smooth projective threefolds with J.X1/ D J.X2/ as principally
polarized abelian varieties , then X1 DX2.

Proof As in the classical argument, this is an immediate consequence of the description of the singularity
of the theta divisor in Lemma 7.5.

8 Kuznetsov component

The bounded derived category of a cubic threefold X admits a semiorthogonal decomposition

Db.X /D hKu.X /;OX ;OX .1/i;

whose nontrivial part Ku.X / is called the Kuznetsov component. The goal of this section is to give a new
proof of the following theorem.
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Theorem 8.1 Let X1 and X2 be smooth cubic threefolds. Then Ku.X1/ and Ku.X2/ are equivalent as
triangulated categories if and only if X1 and X2 are isomorphic.

Let S be the Serre functor of Ku.X /. By [25, Lemmas 4.1 and 4.2], for any object F 2Ku.X /, we have

(8) S.F /DLOX
.F ˝OX .H //Œ1�;

where LOX
is the left mutation functor with respect to OX . By [11, Proposition 2.7], the numerical

Grothendieck group N .Ku.X // is a two-dimensional lattice

N .Ku.X //Š Z2
Š ZŒI`�˚ZŒS.I`/�;

where I` is the ideal sheaf of a line ` in X . With respect to this basis, the Euler characteristic �.�;�/ on
N .Ku.X // has the form �

�1 �1

0 �1

�
:

For any line ` in X , we know ch.I`/D
�
1; 0;�1

3
H 2; 0

�
. The Chern character of our second basis vector

of ch.Ku.X //, and the action of the Serre functor S on our chosen basis are given as follows.

Lemma 8.2 We have ch.S.I`// D
�
2;�H;�1

6
H 2; 1

6
H 3

�
and ch.S2.I`// D

�
1;�H; 1

6
H 2; 1

6
H 3

�
.

Thus , the class ŒS2.I`/� in N .Ku.X // is equal to ŒS.I`/�� ŒI`�.

Proof By (8) we have ŒS.E/� D �ŒE.H /�C �.E.H //ŒOX � for E 2 Ku.X /. Hence ch.I`.H // D�
1;H; 1

6
H 2;�1

6
H 3

�
and �.I`.H //D 3 imply the formula for ch.S.I`//. The formula for ch.S2.I`//

follows from the last claim, which in turn follows from the Euler characteristic form above with

�.I`;S
2.I`//D �.S

2.I`/;S.I`//D �.S.I`/; I`/D 0D �.ŒI`�; ŒS.I`/�� ŒI`�/;

�.S.I`/;S
2.I`//D �.I`;S.I`//D�1D �.ŒS.I`/�; ŒS.I`/�� ŒI`�/:

For a point P 2 X , the sheaf KP , which is defined through the sequence (2), lies in the Kuznetsov
component Ku.X /.

Lemma 8.3 Let ŒA� be a class in N .Ku.X // such that �.ŒA�; ŒA�/D�3. Then , up to a sign , ŒA� is either
ŒKP �D ŒI`�C ŒS.I`/�, or ŒS.KP /�D�ŒI`�C 2ŒS.I`/�, or ŒS2.Kp/�D�2ŒI`�C ŒS.I`/�.

Let �0
˛;�1=2

D .Coh0
˛;�1=2.X /;Z

0
˛;�1=2

/ be the weak stability condition on Db.X / constructed in
[5, Proposition 2.14]. Here Coh0

˛;�1=2.X / is the usual double tilt and

(9) Z0
˛;�1=2.E/DH 2

� ch�1=2
1

.E/C i
�
H � ch�1=2

2
.E/� 1

2
˛2H 3

� ch0.E/
�
:

As proven in [5, Theorem 6.8], for 0 < ˛� 1 it induces the stability condition �.˛/D .A.˛/;Z.˛//
on Ku.X /, where

A.˛/ WD Coh0
˛;�1=2.X /\Ku.X / and Z.˛/ WDZ0

˛;�1=2jKu.X /:
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Lemma 8.4 There is an embedding MX .v/ ,!M�.˛/.ŒI`�C ŒS.I`/�/ from the moduli space MX .v/

for v D ch.I`/ C ch.S.I`// D
�
3;�H;�1

2
H 2; 1

6
H 3

�
to M�.˛/.ŒI`� C ŒS.I`/�/, which parametrizes

�.˛/–semistable objects in Ku.X / of class ŒI`�C ŒS.I`/� 2N .Ku.X //.

Proof According to Lemma 6.5 there is no wall for objects of Chern character v to the left of the vertical
wall. Thus, E is �˛;�1=2–stable for any ˛ > 0. Since �0

˛;�1=2
is just a rotation of �˛;�1=2, we obtain

that E is �0
˛;�1=2

–stable. By Theorem 6.1(ii), the sheaf E 2 Ku.X / lies in the Kuznetsov component.
Thus, E is �.˛/–stable. Note that the object E could be destabilized by objects with Z0

˛;�1=2
D 0 after

rotation. But we know that these are all sheaves supported in dimension zero and would not be in Ku.X /
and therefore, E is stable after restriction to Ku.X /.

Corollary 5.6 of [35] implies that the stability condition �.˛/ is S–invariant, ie S � �.˛/D �.˛/ � zg for
zg 2 fGLC.2;R/. Thus, there is an isomorphism

(10) S WM�.˛/.2ŒI`�� ŒS.I`/�/!M�.˛/.ŒI`�C ŒS.I`/�/; E 7! S.E/:

The following proposition is a slight strengthening of [1, Theorem 1.2], which describes all elements of
the moduli space. The idea of the proof is the same as [1, Lemma 2.2].

Proposition 8.5 Any �.˛/–semistable object in Ku.X / of class 2ŒI`�� ŒS.I`/� is of the form GŒ2k� for
k 2 Z, where G is either equal to GP .�H / described in (4) for a point P 2 X , or OY .D�H /, where
D is a Weil divisor on some Y 2 jH j.

Proof Lemma 8.2 implies ch.G/ D
�
0;H;�1

2
H 2;�1

6
H 3

�
. Since G is �.˛/–semistable, its shift

GŒ2k� lies in the heart A.˛/ for some k 2 Z. We know its image under the stability function Z.˛/

is equal to �H 3, so it has maximum phase in the heart A.˛/, which immediately implies GŒ2k� is
�0
˛;�1=2

–semistable. We claim that GŒ2k� has no subobject Q 2 Coh0
˛;�1=2 with Z0

˛;�1=2
.Q/ D 0,

so it is �˛;�1=2–semistable. Assume for a contradiction that there is such a subobject Q. By the
definition of Coh0

˛;�1=2.X /, it is a sheaf supported in dimension zero. Thus, hom.OX ;Q/¤ 0. Since
OX 2 Coh0

˛;�1=2.X /, we have hom.OX ; .GŒ2k�=Q/Œ�1�/D 0. Therefore, hom.OX ;GŒ2k�/¤ 0, which
is not possible because GŒ2k� 2 Ku.X /. Finally, since GŒ2k� is �˛;�1=2–semistable for 0< ˛� 1, the
claim follows by Proposition 6.2(ii).

Remark 8.6 Since the class 2ŒI`�� ŒS.I`/� is primitive in N .Ku.X //, any �.˛/–semistable object of
this class is �.˛/–stable if we choose ˛ sufficiently small.

We now describe the image of the semistable objects G 2M�.˛/.2ŒI`��ŒS.I`/�/ under the Serre functor S .
If G DGP .�H /, then by (4), we know there is a distinguished triangle

OX Œ1�!GP ! IP .H /!OX Œ2�;
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which gives LOX
.GP /DLOX

.IP .H //DKP Œ1�, so

(11) S.GP /DKP Œ2�:

If G DOY .D�H /, then G.H /DOY .D/ is of class
�
0;H; 1

2
H 2;�1

6
H 3

�
, and lies in a distinguished

triangle
O˚3

X
!OY .D/!ED Œ1�!O˚3

X
Œ1�:

Thus,

(12) S.G/DLOX
.OY .D//Œ1�DLOX

.ED Œ1�/Œ1�DED Œ2�:

Combining (11) and (12) with Lemma 8.4 implies the next result.

Theorem 8.7 The moduli space M�.˛/.ŒI`� C ŒS.I`/�/ is isomorphic to the moduli space MX .v/

parametrizing Gieseker-stable sheaves of class v.

The next step is to show that we can replace �.˛/ by any S–invariant stability condition on Ku.X /.

Lemma 8.8 [35, Lemmas 5.8 and 5.10] Let � be an S–invariant stability condition on Ku.X / and
F 2 Ku.X / be �–semistable of phase '.F /. Then

(i) '.F / < '.S.F // < '.F /C 2,

(ii) dim Ext1.F;F /� 2.

For cubic threefolds, we also have a weak version of the Mukai lemma for K3 surfaces.

Lemma 8.9 (weak Mukai lemma [35, Lemma 5.11]) Let � be an S–invariant stability condition. Let
A!E! B be a triangle in Ku.X / such that hom.A;B/D 0 and the �–semistable factors of A have
phase greater than or equal to the phase of the �–semistable factors of B. Then

dimC Ext1.A;A/C dimC Ext1.B;B/� dimC Ext1.E;E/:

Proposition 8.10 Let �1 and �2 be two S–invariant stability conditions on Ku.X /. An object E2Ku.X /
of class ŒI`�C ŒS.I`/� is �1–stable if and only if it is �2–stale.

Proof By [35, Proposition 4.6], I` and S.I`/ are �–stable with respect to any S–invariant stability
condition. Thus, Lemma 8.8 implies that

(13) '� .I`/ < '� .S.I`// < '� .I`/C 2:

Take a �1–stable object E 2 Ku.X / of class ŒI`�C ŒS.I`/�. Since �1 is S–invariant, Lemma 8.8 gives

'�1
.E/ < '�1

.S.E// < '�1
.E/C 2:

Thus, for i < 0 or i � 2, we get

hom.E;EŒi �/D hom.EŒi �;S.E//D 0:
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Since E is �1–stable, we get hom.E;E/D 1, which gives

hom.E;EŒ1�/D��.E;E/C 1D 4:

Suppose now for a contradiction that E is �2–unstable. There is a distinguished triangle of destabilizing
objects F1!E!F2!F1Œ1�with respect to �2. We may assume F1 is �2–semistable. Thus, Lemma 8.8
implies that

(14) hom.F1;F1Œ1�/� 2:

Since the phase of F1 is bigger than the phase of �2–semistable factors of F2, we have

(15) hom.F1;F2/D 0:

Thus, the weak Mukai lemma (Lemma 8.9) implies

hom.F1;F1Œ1�/C hom.F2;F2Œ1�/� hom.E;EŒ1�/D 4:

By (14), we get hom.F2;F2Œ1�/� 2. If hom.F2;F2Œ1�/D 0 or 1, then all its �2–semistable factors would
satisfy the same property by the weak Mukai lemma (Lemma 8.9), which is not possible by Lemma 8.8.
Therefore,

hom.F1;F1Œ2�/D hom.F2;F2Œ1�/D 2;

and [35, Lemma 5.12] implies that F1 and F2 are �2–stable. This gives �.Fi ;Fi/ D �1 for i D 1; 2,
so ŒFi � is either ˙ŒI`�, or ˙ŒS.I`/�, or ˙.ŒS.I`/�� ŒI`�/. Since there are only 2 stable factors and the
object E is of class ŒI`�C ŒS.I`/�, the destabilizing objects must be of class ŒI`� and ŒS.I`/�. Thus,
[35, Proposition 4.6] implies that the destabilizing objects are I`Œ2k� and S.I`0/Œ2k 0� for two lines `; `0

and integers k; k 0 2 Z.

Let F1 D I`Œ2k� and F2 D S.I`0/Œ2k 0�. Since E is �1–stable, we have '�1
.F1/ < '�1

.F2/, thus (13)
gives k � k 0. But F1 and F2 are the destabilizing objects with respect to �2, hence '�2

.F1/ > '�2
.F2/

and (13) gives k 0C 1 � k, which is not possible. By a similar argument, we reach a contradiction if
F1 D S.I`0/Œ2k 0� and F2 D I`Œ2k�. Finally, note that E cannot be strictly �2–semistable because the
phases of I`Œ2k� and S.I`/Œ2k 0� cannot be equal, by (13).

Proof of Theorem 8.1 As a cubic threefold has free Picard group of rank one, the first implication is
obvious. As for the second implication, assume there is an exact equivalence ˆ W Ku.X1/! Ku.X2/.
Lemma 8.3 implies that, up to composing with a power of the Serre functor of Ku.X1/ and shift functor,
we may assume Œˆ�.KP /�D ŒKP 0 � for points P and P 0 in X1 and X2, respectively. Take an S–invariant
stability condition � on Ku.X1/. Theorem 8.7 and Proposition 8.10 imply that

(16) MX1
.v/ŠM� .Ku.X1/; ŒKP �/ŠM'�� .Ku.X2/; ŒKP 0 �/:

Since the Serre functor commutes with autoequivalences, ' � � is an S–invariant stability condition
on Ku.X2/. Thus, Theorem 8.7 gives

M'�� .Ku.X2/; ŒKP 0 �/ŠMX2
.v/:
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Combining this with (16) gives MX1
.v/ŠMX2

.v/. By Lemma 7.5, we know X1 and X2 are the unique
exceptional divisors of MX1

.v/ and MX2
.v/ which get contracted by any map to a complex abelian

variety. Thus, X1 ŠX2.

List of symbols

X smooth cubic threefold in P 4 over C

H the ample generator of Pic.X /
Y a hyperplane section of X

Db.X / bounded derived category of coherent sheaves on X

Ku.X / the Kuznetsov component inside Db.X /

CH�.X / the Chow ring of X

CH�n .X / the numerical Chow ring of X , obtained as CH�.X / modulo numerical equivalence
Hi.E/ the i th cohomology sheaf of a complex E 2 Db.X /

H i.E/ the i th sheaf cohomology group of a complex E 2 Db.X /

ch.E/ total Chern character of an object E 2 Db.X / up to numerical equivalence
c.E/ total Chern class of an object E 2 Db.X / up to numerical equivalenceech.E/ total Chern character of an object E 2 Db.X / up to rational equivalence
zc.E/ total Chern class of an object E 2 Db.X / up to rational equivalence

ch�l .E/ .ch0.E/; : : : ; chl .E//ech�l .E/ .ech0.E/; : : : ;echl .E//
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Coarse-median preserving automorphisms

ELIA FIORAVANTI

This paper has three main goals.

First, we study fixed subgroups of automorphisms of right-angled Artin and Coxeter groups. If ' is an
untwisted automorphism of a RAAG, or an arbitrary automorphism of a RACG, we prove that Fix' is
finitely generated and undistorted. Up to replacing ' with a power, we show that Fix' is quasiconvex
with respect to the standard word metric. This implies that Fix' is a virtual retract and a special group in
the sense of Haglund and Wise.

By contrast, there exist “twisted” automorphisms of RAAGs for which Fix' is undistorted but not of
type F (hence not special), of type F but distorted, or even infinitely generated.

Secondly, we introduce the notion of “coarse-median preserving” automorphism of a coarse median group,
which plays a key role in the above results. We show that automorphisms of RAAGs are coarse-median
preserving if and only if they are untwisted. On the other hand, all automorphisms of Gromov-hyperbolic
groups and right-angled Coxeter groups are coarse-median preserving. These facts also yield new or more
elementary proofs of Nielsen realisation for RAAGs and RACGs.

Finally, we show that, for every special group G (in the sense of Haglund and Wise), every infinite-order,
coarse-median preserving outer automorphism ofG can be realised as a homothety of a finite-rank median
space X equipped with a “moderate” isometric G–action. This generalises the classical result, due to
Paulin, that every infinite-order outer automorphism of a hyperbolic group H projectively stabilises a
small H–tree.
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1 Introduction

This paper is inspired by the following, at first sight unrelated, questions.

Question 1 Given a finitely generated group G and ' 2 AutG, what is the structure of the subgroup of
fixed points Fix' �G?

Question 2 Given a finitely generated group G and ' 2 AutG, when can we realise ' as a homothety
of a nonpositively curved metric space X equipped with a “nice” G–action by isometries?

Our motivation comes from the theory of automorphisms of free groups. When G D Fn, a complete
answer to Question 1 was first conjectured by Peter Scott in 1978, and later proved — after work by
Dyer and Scott [46], Jaco and Shalen [72], Gersten [56; 57], Culler [36], Goldstein and Turner [58],
Cooper [33] and Cohen and Lustig [32], among others — by Bestvina and Handel [12]:

For every ' 2 AutFn, the fixed subgroup Fix' � Fn is generated by at most n elements.

In particular, Fix' is finitely generated, free, and quasiconvex in Fn.

Bestvina and Handel’s proof is based on the extension of several ideas of Nielsen–Thurston theory from
surfaces to graphs. Specifically, every homotopy equivalence between finite graphs is homotopic to a
(relative) train track map [12; 11]. This result is also a key ingredient in providing the following answer
to Question 2, by Gaboriau, Jaeger, Levitt and Lustig [53]:

For every ' 2 AutFn, there exists an action by homotheties Fn Ì' Z Õ T , where T is an
R–tree and the restriction Fn Õ T is isometric , minimal , and has trivial arc-stabilisers.

If ' is exponentially growing, then Fn Õ T has dense orbits and Fix' is elliptic.

We are interested in Question 2 because of its connections to Question 1. Indeed, if one admits the
existence of an Fn–tree as above, it is possible to give more elementary proofs of the Scott conjecture,
which are completely independent of the complicated machinery of train tracks and instead rely on an
“index theory” for Fn–trees; see Gaboriau, Levitt and Lustig [55] and Gaboriau and Levitt [54].

More generally, a satisfactory answer to Question 2 was obtained by Paulin [88] for all Gromov-hyperbolic
groups G. If � 2 OutG has infinite order, then it can be similarly realised as a homothety of a small
G–tree, ie an R–tree with a minimal isometric G–action such that no G–stabiliser of an arc contains a
copy of the free group F2.

Paulin’s proof is abstract in nature, but his result can be pictured quite concretely in the case when
G D �1.S/ for a closed surface S : Thurston [97] showed that � is induced by a homeomorphism of S
that preserves a projective measured singular foliation on S ; the R–tree T can then be constructed by
lifting this singular foliation to the universal cover zS and considering its leaf space.
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It is natural to wonder if the above discussion is specific to hyperbolic groups. This might be suggested by
the fact that automorphism groups of one-ended hyperbolic groups can essentially be understood in terms
of mapping class groups of finite-type surfaces (see Levitt [78] and Sela [93]), for which Nielsen–Thurston
theory is available.

In recent years, the study of outer automorphisms of groups other than �1.S/ and Fn has gained significant
traction. The groups OutA� — where A� is a right-angled Artin group (RAAG) — are particularly
appealing in this context, as they can exhibit a variety of interesting behaviours ranging between the
extremal cases of OutFn and Out Zn D GLnZ.

One may look at the large body of work on OutFn hoping to extract a blueprint that will direct the
study of the groups OutA� . This has proved a successful approach in some cases, remarkably with
the definition of analogues of Outer Space (see Bregman, Charney and Vogtmann [20] and Charney,
Stambaugh and Vogtmann [25]) and its consequences for the study of homological properties. However,
there are limits to such analogies: in practice, techniques that are tailored to general RAAGs and based
on induction on the complexity of the graph � seem to provide the most effective approach to many
problems; see for instance Charney and Vogtmann [27; 28], Day and Wade [43], Day, Sale and Wade [42]
and Guirardel and Sale [61].

Our aim is to investigate Questions 1 and 2 when G is a RAAG or, more generally, a cocompactly
cubulated group. These are just two of the many basic questions that have been fully solved for OutFn,
but have so far remained out of the limelight for the groups OutA� .

One quickly realises that it is necessary to impose some restrictions on ' 2 AutA� if the two questions
are to be fruitfully addressed. To begin with, it is not hard to construct automorphisms of F2 �Z whose
fixed subgroup is infinitely generated (Example 4.13), which would prevent us from relying on the tools
of geometric group theory in relation to Question 1. In addition, when G D Zn, it should heuristically
always be possible to equivariantly collapse the space X in Question 2 to a copy of R, which forces
' 2 GLnZ to have a positive eigenvalue.

We choose to consider the subgroup of untwisted automorphisms U.A�/�AutA� , which was introduced
by Day in [41] (with the name of “long-range automorphisms”) and further studied by Charney, Stambaugh
and Vogtmann [25] and Hensel and Kielak [69]. This can be defined as the subgroup generated by a
certain subset of the Laurence–Servatius generators for AutA� (see Laurence [75] and Servatius [94]),
excluding generators that “resemble” too closely elements of GLnZ.

The subgroup U.A�/ � AutA� displays stronger similarities to AutFn and often makes up a large
portion of the entire group AutA� . For instance, U.Fn/DAutFn and U.A�/ always contains the kernel
of the homomorphism AutA� ! GLnZ induced by the .AutA�/–action on the abelianisation of A� .

Our first result is a novel, coarse geometric characterisation of untwisted automorphisms. This will play
a fundamental role in addressing both Questions 1 and 2 in the rest of the paper.
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Recall that every right-angled Artin group A� is equipped with a median operator � WA3� !A� coming
from the fact that A� is naturally identified with the 0–skeleton of a CAT.0/ cube complex (the universal
cover of its Salvetti complex); see Chepoi [31]. Thus, one can consider those automorphisms of A� with
respect to which � is coarsely equivariant.

More generally, it makes sense to study such automorphisms for any coarse median group .G;�/. This
remarkably broad class of groups was introduced by Bowditch in [15] and contains all Gromov-hyperbolic
groups, as well as all groups admitting a geometric action on a CAT.0/ cube complex, and all hierarchically
hyperbolic groups in the sense of Behrstock, Hagen and Sisto [6, Definition 1.21].

Definition An automorphism ' of a coarse median group .G;�/ is coarse-median preserving1 (CMP)
if there exists a constant C � 0 such that

'.�.g1; g2; g3//�C �.'.g1/; '.g2/; '.g3// for all g1; g2; g3 2G;

where x �C y means d.x; y/� C with respect to some fixed word metric d on G.

It is easy to see that CMP automorphisms form a subgroup of AutG containing all inner automorphisms.2

Thus, it makes sense to speak of CMP outer automorphisms, as this property does not depend on the
specific lift to AutG.

It turns out that, in the setting of right-angled Artin groups, CMP automorphisms coincide with untwisted
automorphisms, perhaps explaining the closer analogy between U.A�/ and AutFn. In particular, every
element of AutFn is CMP, while only a finite subgroup of Aut Zn is CMP.

More precisely, we have the following. We endow right-angled Artin/Coxeter groups with the coarse
median structure induced by the action on the universal cover of the Salvetti/Davis complex.

Proposition A (1) All automorphisms of hyperbolic groups are CMP.

(2) All automorphisms of right-angled Coxeter groups are CMP.

(3) Automorphisms of right-angled Artin groups are CMP if and only if they are untwisted.

Part (1) is due to the fact that hyperbolic groups admit a unique coarse median structure, which was
shown in [83]; see Example 2.28 below. That CMP automorphisms of RAAGs are untwisted can be easily
deduced from the proof, due to Laurence [75], that elementary automorphisms generate the automorphism
group. We prove the rest of Proposition A in Section 3.4.

1This terminology is motivated in Section 2.6; see Remark 2.25.
2Here it is important that our definition of coarse median group (Definition 2.24) is slightly stronger than Bowditch’s original
definition [15], in that we require � to be coarsely G–equivariant. The difference between the two notions is analogous to the
distinction between hierarchically hyperbolic groups and groups that are just a hierarchically hyperbolic space.
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Our first result on Question 1 applies to all CMP automorphisms of cocompactly cubulated groups,
ie those groups that admit a proper cocompact action on a CAT.0/ cube complex.

We remark that, in addition to Proposition A, examples of CMP automorphisms of cubulated groups are
provided by [52, Theorem E], which characterises when a generalised Dehn twist preserves the coarse
median structure induced by the cubulation.

Theorem B Let G be a cocompactly cubulated group , with the induced coarse median structure. If
' 2 AutG is coarse-median preserving , then:

(1) Fix' is finitely generated and undistorted in G.

(2) Fix' is itself cocompactly cubulated.

Both parts of this result fail badly for “twisted” automorphisms of right-angled Artin groups. For every
finite graph � , there exist automorphisms  2 Aut.A� �Z/ with Fix D BB� �Z, where BB� �A�
denotes the Bestvina–Brady subgroup [8]; see Example 4.13. When finitely generated, BB� is quadratically
distorted in A� as soon as A� is directly irreducible and noncyclic; see Tran [98]. Even when Fix is
finitely generated and undistorted, one can ensure that Fix not be of type F , which implies that Fix 
is not cocompactly cubulated. These examples can be easily extended to RAAGs that do not split as
products.

We emphasise that the cubulation of Fix' provided by Theorem B does not arise from a convex subcomplex
of the cubulation of G in general, but just from a median subalgebra of it; see Section 2.2 for a definition.
In fact, the subgroup Fix' need not be quasiconvex in G, as can be observed for the automorphism
' 2 Aut Z2 that swaps the standard generators, where Fix' is the diagonal subgroup of Z2.

Nevertheless, in many situations, Fix' does turn out to be quasiconvex in the ambient group. We prove this
fact in the context of right-angled Artin and Coxeter groups, where it has the remarkable consequence that
Fix' is a retract of a finite-index subgroup of the ambient group; see Haglund and Wise [68, Section 6].

Theorem C Consider the right-angled Artin group A� or the right-angled Coxeter group W� . There
are finite-index subgroups U0.A�/� U.A�/ and Aut0W� �AutW� such that , for any automorphism '

lying in either of these subgroups:

(1) Fix' is quasiconvex in A� or W� with respect to their standard word metric , ie geodesics in their
standard Cayley graph with endpoints in Fix' stay uniformly close to Fix'.

(2) In particular , Fix' is a virtual retract and it is a special group in the Haglund–Wise sense.

For the experts, the finite-index subgroups in Theorem C are generated by the elementary automorphisms
known as inversions, folds and partial conjugations; see Section 3.4 and Remark 3.27. Quasiconvexity
of Fix' can alternatively be characterised saying that Fix' acts properly and cocompactly on a convex
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subcomplex of the universal cover of the Salvetti/Davis complex, or, again, in coarse median terms; see
Definition 2.30, Remark 2.31 and Lemma 3.2.

In light of Theorem C, it is only natural to wonder what isomorphism types of special groups can arise as
Fix', and whether their complexity can be bounded in any way in terms of the ambient group, in the
spirit of Scott’s conjecture. We only provide a very partial result on these questions (Corollary E), leaving
a more detailed treatment for later work. The main proof ingredient, which we believe is of independent
interest, is the following construction of U0.A�/–invariant Bass–Serre trees for most right-angled Artin
groups.

Proposition D Let A� be directly irreducible , freely irreducible and noncyclic. Then there exists an
amalgamated product splitting A� DAC �A0

A�, with A˙ and A0 parabolic subgroups of A� , such that
the corresponding Bass–Serre tree A� Õ T is U0.A�/–invariant. That is: for every ' 2 U0.A�/, there
exists an isometry f W T ! T satisfying f ıg D '.g/ ıf for all g 2A� .

Corollary E Consider a right-angled Artin group A� and ' 2 U0.A�/.

(1) If A� splits as a direct product A1 �A2, then '.Ai /DAi and Fix' D Fix'jA1
�Fix'jA2

.

(2) If A� is directly irreducible , then the subgroup Fix' �A� splits as a (possibly trivial ) finite graph
of groups with vertex and edge groups of the form Fix'jP , for proper parabolic subgroups P �A�
with '.P /D P and 'jP 2 U0.P /.

The same two results hold for right-angled Coxeter groups W� and automorphisms ' 2 Aut0W� .

We now turn to Question 2, which is the second main focus of the paper. Recall that Paulin [88] showed
that, for every Gromov-hyperbolic group G, every infinite-order element of OutG can be realised as a
homothety of a small, isometric G–tree.

Our main result on Question 2, generalises Paulin’s theorem to CMP automorphisms of special groups G,
in the Haglund–Wise sense [68; 90]. This is a broad class of groups including right-angled Artin groups,
finite-index subgroups of right-angled Coxeter groups, as well as free and surface groups and a number
of other hyperbolic examples.

Note that small G–actions on R–trees are not the right notion to consider in this context. Indeed, if
a special group G has a small action on an R–tree T , then every arc stabiliser is free abelian and the
work of Rips and Bestvina–Feighn implies that G splits over an abelian subgroup; see Bestvina and
Feighn [10, Theorem 9.5]. However, there exist special groups that admit an infinite-order CMP outer
automorphism, but do not split over any abelian subgroup (eg the RAAG A� with � as in Figure 1, by
Groves and Hull [59]).

In fact, due to the lack of hyperbolicity, it is reasonable to expect that R–trees will need to be replaced by
higher-dimensional analogues.
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Figure 1

The correct setting seems to be provided by the simultaneous generalisation of R–trees and CAT.0/ cube
complexes known as median spaces. These are those metric spaces .X; d/ such that, for all x1; x2; x3 2X ,
there exists a unique point m.x1; x2; x3/ (known as their median) satisfying

d.xi ; xj /D d.xi ; m.x1; x2; x3//C d.m.x1; x2; x3/; xj / for all 1� i < j � 3:

A connected median space X is said to have rank � r if all its locally compact subsets have topological
dimension � r . Rank-1 connected median spaces are precisely R–trees.

The following is our main result on Question 2 (a more general statement for infinite abelian subgroups of
OutG is Theorem 7.25). Note that, although higher-rank median spaces are never nonpositively curved,
they always admit a canonical, bi-Lipschitz equivalent CAT.0/ metric;3 see Bowditch [17].

Theorem F Let G be the fundamental group of a compact special cube complex. Suppose G has trivial
centre. Let � 2 OutG be infinite-order and coarse-median preserving. Then:

(1) There is a geodesic , finite-rank median space X and an action by homotheties G Ì� Z ÕX .

(2) The restriction G ÕX is isometric , minimal , with unbounded orbits , and “moderate”.

(3) If ' 2 AutG represents �, then the subgroup Fix' �G fixes a point of X .

(4) If � and ��1 are subexponentially growing , then the action G Ì� Z ÕX is isometric.

As for actions on R–trees, we say that G ÕX is minimal if X does not contain any proper, G–invariant
convex subsets. We propose the notion of “moderate” action on a median space as a higher-rank
generalisation of the notion of small action on an R–tree.

Definition (moderate actions) Let G be a group and X be a median space.

(1) A k–cube in X is a median subalgebra C �X isomorphic to the product f0; 1gk .

(2) An isometric action G ÕX is moderate if, for every k � 1 and every k–cube C �X , the subgroup
of G fixing C pointwise contains a copy of Zk in its centraliser.

Any 2–element subset of X is a 1–cube. Thus, if G is hyperbolic and GÕX is moderate, the intersection
of any two point-stabilisers must be virtually cyclic. In particular, if G is torsionfree hyperbolic and T
is an R–tree, then the action G Õ T is moderate if and only if it is small. We remark that, when G is
hyperbolic, the space X provided by Theorem F is indeed an R–tree.

3The reader should keep in mind the case of Rn, where the `1 metric is median and the Euclidean metric is CAT.0/.
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We would like to emphasise that Theorem F does not provide any lower bounds to the rank of the median
space X . In particular, we still do not have an answer to the following:

Question 3 (1) Can we always take the median space X in Theorem F to be an R–tree?

(2) If G is a directly and freely irreducible RAAG, can we even take X to be a simplicial tree?

We have seen that, when A� is directly and freely irreducible, Proposition D yields a U0.A�/–invariant
simplicial A�–tree. However, it remains unclear if such a simplicial tree can always be taken to be
moderate and, more importantly, if it can be constructed so that Fix' is elliptic.

We conclude this overview by highlighting two more results. These fall outside the main purpose of this
text, but they are almost immediate consequences of the techniques used in this paper and we find them
of independent interest. We prove them at the end of Section 4.2.

Recall that the property of being cocompactly cubulated does not, in general, pass to finite-index overgroups.
Many examples of this are provided by crystallographic groups (see Hagen [62]): for instance, the .3; 3; 3/
triangle group has Z2 as a finite-index subgroup, but it is not itself cocompactly cubulated.

The following is a criterion for cubulating finite-index overgroups. Its proof is loosely inspired by the idea
of Guirardel cores (see Guirardel [60] and Hagen and Wilton [65]), but it requires none of the technical
machinery. Instead, it is a simple consequence of Proposition 4.1 (or the earlier result of Bowditch
[18, Proposition 4.1]).

Corollary G Let G be a group with a cocompactly cubulated finite-index subgroup H . Suppose that
the coarse median structure on G induced by the cubulation of H is G–invariant (it is automatically
H–invariant). Then G is cocompactly cubulated.

Along with Proposition A, the previous corollary implies the following version of Nielsen realisation for
automorphisms of right-angled Artin and Coxeter groups.

Corollary H (Nielsen realisation for RA�Gs) Consider one of the following two settings:

(1) A centreless right-angled Artin group G DA� and a finite subgroup F � OutA� contained in the
projection to outer automorphisms of the untwisted subgroup U.A�/� AutA� .

(2) A centreless right-angled Coxeter group G DW� and any finite subgroup F � OutW� .

In either case , F can be realised as a group of automorphisms of a compact , nonpositively curved , cube
(orbi )complex Q with G D �1Q.

Part (2) is new, while part (1) is originally due to Hensel and Kielak [69]. When F � U0.A�/, they
constructed Q quite explicitly via a glueing construction, ensuring that dimQD dimX� . By comparison,
our approach does not offer much control on dimension (except dimQ � #F � dimX� ), but it provides a
much more elementary proof of the existence of some Q.

Geometry & Topology, Volume 28 (2024)



Coarse-median preserving automorphisms 169

We expect our complex Q to be special, but this would require additional arguments in the proof (the only
delicate point being lack of interosculations). We also think it should be possible to “trim” Q into having
the optimal dimension dimX� by relying on the “panel collapse” procedure of Hagen and Touikan [64]
(or small variations thereof), but the details seem too technical to be discussed here.

1.1 On the proof of Theorems B and C

The two theorems are proved in Section 4 under the aliases of Theorem 4.10 and Corollaries 4.34 and 4.35.

Regarding Theorem B, the starting observation is that Fix' is an approximate median subalgebra of
the group G; see Definition 2.33 and Lemma 2.35. Fixing a proper cocompact action on a CAT.0/ cube
complex G Õ Z , the proof then takes place in three steps.

(1) If a subgroupH �G is an approximate median subalgebra,H is finitely generated (Proposition 4.11).
We prove this by relying on a straightforward adaptation of an argument due to Paulin [86] in the context
of hyperbolic groups. Paulin’s argument is itself a generalisation of Cooper’s proof [33] in the case when
the group G is free (a result originally due to Gersten [57] from the early 80s).

(2) Approximate median subalgebras of CAT.0/ cube complexes are always at finite Hausdorff distance
from actual median subalgebras (Proposition 4.1 or [18, Proposition 4.1]).

(3) Applying the previous step toH–orbits in Z , we obtain anH–invariant median subalgebraM �Z.0/

such that H ÕM is cofinite. Along with the fact that H is finitely generated, this yields a cocompact
cubulation that quasi-isometrically embeds into Z (Lemma 4.12), though not necessarily as a convex
subcomplex.

A similar strategy gives a new proof of W Neumann’s result [82] that fixed subgroups of automorphisms of
hyperbolic groups are quasiconvex; see also Minasyan and Osin [81]. Indeed, recall that, although not all
hyperbolic groups are cocompactly cubulated, they are all coarse median, and all their automorphisms '
are CMP by Proposition A. It is easy to see that all coarsely connected, approximate median subalgebras
of hyperbolic spaces are quasiconvex. As above, this implies that Fix' is quasiconvex.

When dealing with nonhyperbolic groups, quasiconvexity is significantly harder to ensure and the proof
of Theorem C requires additional work. Namely, assuming that ' 2U0.A�/ or ' 2Aut0W� , we need to
show that .Fix'/–orbits in the Salvetti complex X� or Davis complex Y� are quasiconvex (in the coarse
median sense; see Definition 2.30, Remark 2.31 and Lemma 3.2).

The proof of this is based on a quasiconvexity criterion for median subalgebras of CAT.0/ cube com-
plexes (Proposition 4.25). The most important ingredients are the fact that X� and Y� do not contain
“infinite staircases” (Section 4.3), and certain properties that distinguish elements of U0.A�/ and Aut0W�

from more general CMP automorphisms in U.A�/ and AutW� (Lemmas 4.30 and 4.32).
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We conclude by mentioning that other important tools for the study of undistortion and quasiconvex-
ity of subgroups of cubulated groups were recently developed by Beeker and Lazarovich in [2] and
[3, Theorem 1.2(2)], and Dani and Levcovitz [38, Theorem A], based on extensions of the classical
machinery of Stallings folds [95; 96] from graphs to higher-dimensional cube complexes. These techniques
play no role in our arguments, but it is possible that they can be used to give alternative proofs of certain
special cases of Theorems B and C.

1.2 On the proof of Theorem F

Keeping the case of OutFn in mind, as described eg in Gaboriau, Jaeger, Levitt and Lustig [53, Section 2],
there are two main obstacles to overcome:

(a) No good analogue of (relative) train track maps is available to represent homotopy equivalences
between nonpositively curved cube complexes.

(b) It is not known if (isometric) actions on finite-rank median spaces are completely determined
by their length function. There are results of this type for actions on R–trees (see Culler and
Morgan [37]) and cube complexes (see Beyrer and Fioravanti [13; 14]), but their extension to a
general median setting would require some significantly new ideas.

The proof of Theorem F is made up of two main steps, which we now describe. In this sketch, we restrict
our attention to the construction of the homothetic action G Ì� Z ÕX (parts (1) and (2) of the theorem).
Parts (3) and (4) follow, respectively, from parts (1) and (2) of Remark 7.27.

Let G be a special group, let Z be a CAT.0/ cube complex, and let � WG!AutZ be the homomorphism
corresponding to a proper, cocompact, cospecial action GÕZ . Equip G with the coarse median structure
arising from Z . Let ' 2AutG be a coarse-median preserving automorphism projecting to an infinite-order
element of OutG.

Step 1 There exist a finite-rank median space X , an isometric action G ÕX with unbounded orbits , and
a homeomorphism H WX !X satisfying H ıg D '.g/ ıH for all g 2G.

In order to prove this, we consider the sequence of homomorphisms �n WD � ı'n and the sequence of
G–actions on cube complexes G Õ Zn that they induce. We then fix a nonprincipal ultrafilter !, choose
basepoints pn 2 Zn and scaling factors �n > 0, and consider the ultralimit

.X; p/ WD lim
!
.�nZn; pn/:

This is easily seen to be a finite-rank median space and, for a suitable choice of pn and �n, the actions
G Õ Zn converge to an isometric action G ÕX with unbounded orbits.

So far this is just a classical Bestvina–Paulin construction; see Bestvina [7] and Paulin [85]. The actual
subtleties lie in the definition of the map H W X ! X . By the Milnor–Schwarz lemma, there exists a
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quasi-isometry h W Z ! Z satisfying h ı g D '.g/ ı h for all g 2 G. We would like to define H as
the ultralimit of the corresponding sequence of quasi-isometries Zn! Zn, but this might displace the
basepoint p 2X by an infinite amount.

In order to rule out this eventuality, we rely on an argument similar to the one used in Paulin [88] for
hyperbolic groups. On closer inspection, Paulin’s argument only requires the following property, which is
satisfied by nonelementary hyperbolic groups.

Definition Let G be a infinite group with a (fixed) Cayley graph .G; d /. We say that G is uniformly
nonelementary (UNE) if there exists a constant c > 0 with the following property. For every finite
generating set S �G and for all x; y 2 G, we have

d.x; y/� c �max
s2S

Œd.x; sx/C d.y; sy/�:

The important part of this definition is that the constant c does not depend on the generating set S . Note
that the UNE property is independent of the specific choice of G; cf Definition 2.36.

Our main contribution to Step 1 is the proof of the following fact (Corollary 7.23), which is potentially of
independent interest.

Theorem I Let G be the fundamental group of a compact special cube complex. If G has trivial centre ,
then G is uniformly nonelementary.

Now, let m W X3! X denote the median operator of the median space X . The fact that ' 2 AutG is
coarse-median preserving easily implies that the homeomorphism H W X ! X arising from the above
construction satisfies H.m.x; y; z//Dm.H.x/;H.y/;H.z// for all x; y; z 2X . However, H need not
be a homothety at this stage.

Step 2 There exists a G–invariant (pseudo)metric � W X �X ! Œ0;C1/ such that .X; �/ is a median
space with the same median operator m, and H is a homothety with respect to �.

SinceH WX!X preserves the median operatorm, there is an action ofH on the space of all G–invariant
median pseudometrics on X that induce m. More precisely, we show that H gives a homeomorphism of
a certain space of (projectivised) median pseudometrics on X , and that the latter is a compact absolute
retract (AR). The existence of the required pseudometric � then follows from the Lefschetz fixed point
theorem for homeomorphisms of compact ANRs. This is discussed mainly in Sections 6.2 and 7.4; see
especially Corollaries 6.23 and 7.24.

Once the pseudometric � is obtained, we can pass to the quotient metric space to obtain a genuine median
space.
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1.3 Further questions

We would like to highlight four questions raised by our results.

As mentioned earlier, every hyperbolic group admits a unique coarse median structure (Definition 2.22).
At the opposite end of the spectrum, any RAAG for which U.A�/ has infinite index in AutA� will admit
infinitely many A�–invariant coarse median structures.

Right-angled Coxeter groups W� seem to place themselves in between these two extremal situations: they
can admit infinitely many distinct coarse median structures — eg because every RAAG is a finite-index
subgroup of a RACG; see Davis and Januszkiewicz [40] — but it is not clear which of these structures are
W�–invariant. For instance, Proposition A(2) implies that all Coxeter generating sets of W� give rise to
the same coarse median structure (which fails for Artin generating sets of A� ).

Question 4 Does each RACG W� have only finitely many W�–invariant coarse median structures?

As an example of why one might expect this kind of rigidity, we suggest looking at the difference between
the RAAG Zn and the RACG .D1/n, whereD1 is the infinite dihedral group. The space of Zn–invariant
coarse median structures on Zn (equivalently, on Rn) is uncountable, simply because it is endowed with a
natural GLnR–action and we can consider the orbit of the standard structure. However, of the structures
in this orbit, only finitely many are .D1/n–invariant.

The second question naturally arises from Theorem C and was already mentioned above:

Question 5 Consider ' 2 U0.A�/ or ' 2 Aut0W� .

(1) What isomorphism types of special groups can arise as Fix' for some choice of ' and �? When
' 2 U0.A�/, is Fix' itself a right-angled Artin group?

(2) Can we bound the “complexity” of Fix' in terms of #�.0/, in the spirit of Scott’s conjecture?

Regarding part (1) of Question 5, note that every RAAG can arise as the fixed subgroup of some element
of U0.A�/, simply because we can always take 'D id. One can easily construct more elaborate examples
using this observation as a starting point.

One can also wonder about fixed subgroups of automorphisms of general coarse median groups G.
By Lemma 2.35, this reduces to understanding subgroups that are approximate median subalgebras
(Definition 2.33). We study these subgroups when G is cocompactly cubulated (Theorem 4.10), but some
of our arguments should work more generally (especially the proof of Proposition 4.11).

Question 6 Let .G;�/ be a finite-rank coarse median group. Let a subgroup H �G be an approximate
median subalgebra.

(1) Is H finitely generated?

(2) Is H undistorted? Which properties of G does H retain?
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For instance, whenG is hierarchically hyperbolic, I do not know ifH must be finitely generated. However,
assuming that it is, the second part of the question has a positive answer: H is undistorted and hierarchically
hyperbolic. This is evident from Bowditch’s axioms (B1)–(B10) for (weak) hierarchically hyperbolic
spaces [18, Section 7] and the coarse median characterisation of hierarchy paths [18, Theorem 1.1].

We emphasise that our definition of coarse median group (Definition 2.24) is slightly stronger than
Bowditch’s original definition [15], in that we require � to be coarsely G–equivariant.

Our last question regards UNE groups. It is clear that UNE groups have finite centre, and it is not hard to
show that nonelementary hyperbolic groups are UNE. All other examples of UNE groups that we are
aware of are provided by Theorem I.

Are there other interesting examples or nonexamples of UNE groups? Given the proof of Theorem I, a
positive answer to the following seems likely:

Question 7 Are hierarchically hyperbolic groups with finite centre UNE?

Outline of the paper

Section 2 mostly contains background material on median algebras, cube complexes and coarse median
groups. An exception is Section 2.4, which reviews some of the results of [51]. The latter will be helpful,
mostly in Sections 6 and 7, for some of the more technical arguments in the proof of Theorem F.

In Section 3, we consider cocompactly cubulated groups G and study a notion of convex-cocompactness
for subgroups ofG, which is a special instance of quasiconvexity in coarse median spaces (Definition 2.30).
Section 3.2 studies cyclic, convex-cocompact subgroups of RAAGs (whose generators we call label-
irreducible). Section 3.4 contains the proof of Proposition A.

Section 4 is concerned with fixed subgroups of CMP automorphisms. First, Sections 4.1 and 4.2 are
devoted to the proof of Theorem B. Then Section 4.3 studies staircases in cube complexes, allowing us to
formulate a quasiconvexity criterion for median subalgebras in Section 4.4. Finally, Section 4.5 restricts
to Salvetti and Davis complexes, proving Theorem C.

Section 5 is completely independent from the subsequent part of the paper and can be safely skipped. It
only contains the proof of Proposition D and Corollary E.

Finally, Sections 6 and 7 are the most technical parts of the paper and they contain the bulk of the proof
of Theorem F. In Section 6, we consider group actions on finite-rank median algebras and develop a
criterion for the existence of a (projectively) invariant metric (as required for Step 2 of the proof sketch
for Theorem F). In Section 7, we study ultralimits of actions on Salvetti complexes, in order to obtain the
properties needed to apply the results of Section 6. Theorems F and I are proved in Section 7.4.
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2 Preliminaries

2.1 Frequent notation and identities

Throughout the paper, all groups will be equipped with the discrete topology. Thus, we will refer to
properly discontinuous actions on topological spaces simply as proper actions.

If G is a group and F �G is a subset, we denote by hF i the subgroup of G generated by F . We denote
by ZG.F / the centraliser of the subset F , ie the subgroup of elements of G commuting with all elements
of F .

If .X; d/ is a metric space, A � X is a subset, and R � 0 is a real number, we denote by NR.A/ the
closed R–neighbourhood of A. If x; y 2X , we write x �R y with the meaning of d.x; y/�R.

Consider a group action on a set G ÕX . If � is a G–invariant pseudometric on X , we write, for every
x 2X , g 2G, and F �G,

`.g; �/D inf
x2X

�.x; gx/; �
�
F .x/Dmax

f 2F
�.x; f x/; x�

�
F D inf

x2X
�
�
F .x/:

When X is a metric space and we do not name its metric explicitly, we also write `.g;X/, �XF and x�XF . If
X is equipped with several G–actions originating from homomorphisms �n WG! IsomX , we will write
`.g; �n/, �

�n

F , x��n

F in order to avoid confusion.

If S �G is a finite generating set, we denote by j � jS and k � kS the associated word length and conjugacy
length, respectively:

jgjS D inffk j g D s1 � � � � � sk; si 2 S
˙
g and kgkS D inf

h2G
jhgh�1jS :

The following useful identities will be repeatedly used in this text. We consider a G–action on a set X , a
G–invariant pseudometric �, a point x 2X , and finite generating sets S; S1; S2 �G. We have

�.x; gx/� jgjS � �
�
S .x/; `.g; �/� kgkS � x�

�
S ; �

�
S1
.x/� jS1jS2

� �
�
S2
.x/;

where we have defined jS1jS2
WDmaxs2S1

jsjS2
.
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2.2 Median algebras

In this and the next section, we only fix notation and prove a few simple facts that do not appear elsewhere
in the literature. For a comprehensive introduction to median algebras and median spaces, the reader can
consult [29, Sections (2)–(4)], [15, Sections (4)–(6)] and [50, Section 2].

A median algebra is a pair .M;m/, where M is a set and m W M 3 ! M is a map satisfying, for all
a; b; c; x 2M ,

m.a; a; b/D a; m.a; b; c/Dm.b; c; a/Dm.b; a; c/; m.m.a; x; b/; x; c/Dm.a; x;m.b; x; c//:

The third identity, usually known as the 4–point condition, is sometimes replaced by a different identity
involving 5 points (for instance, in [89; 29; 15; 50]). The equivalence of the two conditions [74; 1] is
quite nontrivial, but not required in the rest of the paper.

A map � W M ! N between median algebras is a median morphism if, for all x; y; z 2 M , we have
�.m.x; y; z//Dm.�.x/; �.y/; �.z//. We denote by AutM the group of median automorphisms of M .
Throughout the paper, all group actions on median algebras will be by (median) automorphisms, unless
stated otherwise.

A subset S�M is a median subalgebra ifm.S�S�S/�S . A subsetC �M is convex ifm.C�C�M/�

C . Helly’s lemma states that any finite family of pairwise-intersecting convex subsets of M has nonempty
intersection [89, Theorem 2.2]. We say that C is gate-convex if it admits a gate-projection, ie a map
�C WM ! C with the property that m.z; �C .z/; x/ D �C .z/ for all x 2 C and z 2M . Gate-convex
subsets are convex, and convex subsets are median subalgebras. Each gate-convex subset admits a unique
gate-projection, and gate-projections are median morphisms.

The interval I.x; y/ between points x; y 2M is defined as the set fz 2M jm.x; y; z/D zg. Note that
I.x; y/ is gate-convex with projection given by the map z 7!m.x; y; z/. Intervals can be used to give an
alternative description of convexity: a subset C �M is convex if and only if I.x; y/�C for all x; y 2C .

A halfspace is a subset h�M such that both h and h� WDM n h are convex and nonempty. A wall is a
set of the form wD fh; h�g, where h and h� are halfspaces. We say that w is the wall bounding h, and
that h and h� are the halfspaces associated to w.

Two halfspaces h1 and h2 are transverse if all four intersections h1\ h2, h�1 \ h2, h1\ h�2 and h�1 \ h�2
are nonempty. If w1 and w2 are the walls bounding h1 and h2, we also say that w1 is transverse to w2

and h2. If U and V are sets of walls or halfspaces, we say that U and V are transverse if every element
of U is transverse to every element of V . If H is a set of halfspaces, we write H� WD fh� j h 2Hg.

We denote by W .M/ and H .M/, respectively, the set of all walls and all halfspaces of M . Given subsets
A;B �M , we write

H .AjB/D fh 2H .M/ j A� h�; B � hg; W .AjB/D fw 2W .M/ jw\H .AjB/¤∅g:
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If w1 and w2 are walls bounding disjoint halfspaces h1 and h2, we set

W .w1jw2/ WDW .h1jh2/ n fw1;w2g:

If A;B �M are nonempty, then H .AjB/ admits minimal elements under inclusion. This follows from
Zorn’s lemma since, for every totally ordered subset C �H .AjB/, the intersection of all halfspaces in C

is again a halfspace in H .AjB/. Note that any two minimal elements h1; h2 2H .AjB/ are transverse,
since h1\ h2 and h�1 \ h�2 are nonempty and there is no inclusion relation between h1 and h2.

If w 2W .AjB/, we say that the wall w separates A and B . Any two disjoint convex subsets of M are
separated by at least one wall [89, Theorem 2.8]; in particular, distinct points of M are always separated
by a wall.

Given a subset A�M , we also introduce

HA.M/ WD fh 2H .M/ j h\A¤∅; h�\A¤∅g; WA.M/ WD fw 2W .M/ jw�HA.M/g:

Equivalently, a wall w lies in WA.M/ if and only if it separates two points of A.

Remark 2.1 If U �H .M/ and V �H .N / are subsets, we say that a map � W U ! V is a morphism of
pocsets if, for all h; k 2 U with h� k, we have �.h/� �.k/ and �.h�/D �.h/�.

Every median morphism � WM !N induces a morphism of pocsets �� WH�.M/.N /!H .M/ defined
by ��.h/ D ��1.h/. When � WM ! N is surjective, we obtain a map �� W H .N /! H .M/ that is
injective and preserves transversality.

Remark 2.2 (1) If S � M is a subalgebra, we have a map resC W HC .M/ ! H .C / given by
resC .h/D h\C . This is a morphism of pocsets and, by [15, Lemma 6.5], it is a surjection.

(2) If C �M is convex, then the map resC is also injective and it preserves transversality. In particular,
the sets H .C / and HC .M/ are naturally identified in this case.
Indeed, if h; k 2HC .M/ are intersecting halfspaces, Helly’s lemma guarantees that h\C and
k\C intersect too. Moreover, we have hD k if and only if h\ k� and h�\ k are empty.

(3) If C is gate-convex with projection �C , then resC ı��C D idH .C/ and ��C ı resC D idHC .M/.

If C1; C2 �M are gate-convex subsets with gate-projections �1; �2, then H .xjCi /DH .xj�i .x// for
all x 2M . We say that x1 2 C1 and x2 2 C2 are a pair of gates if �2.x1/D x2 and �1.x2/D x1. Pairs
of gates always exist and satisfy H .x1jx2/DH .C1jC2/.

The standard k–cube is the finite set f0; 1gk equipped with the median operator m determined by a
majority vote on each coordinate. A subset S �M is a k–cube if it is a median subalgebra isomorphic to
the standard k–cube. In particular, any subset of M with cardinality 2 is a 1–cube.
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Remark 2.3 An important example of median algebra is provided by the 0–skeleton of any CAT.0/ cube
complex X ; see [31]. The vertex set of any k–cell of X is a k–cube in the above sense, but the converse
does not hold. For instance, in the standard tiling of Rn, every set of the form fa1; b1g � � � � � fan; bng
with ai < bi is a k–cube according to the above notion. To avoid confusion, when dealing with cube
complexes we will refer to k–cubes in X .0/ as generalised k–cubes.

The rank of M , denoted by rkM , is the largest cardinality of a set of pairwise-transverse walls of M .
Equivalently, rkM is the supremum of the integers k such that M contains a k–cube (assuming rkM is
at most countable); see [15, Proposition 6.2]. We will be exclusively interested in median algebras of
finite rank.

We will need the following criterion, which summarises Lemmas 2.9 and 2.11 in [51]. If H�H .M/,
we denote by

T
H�M the intersection of all halfspaces in H.

Lemma 2.4 Let M be a finite-rank median algebra. Partially order H .M/ by inclusion.

(1) Let H�H .M/ be a set of pairwise intersecting halfspaces. Suppose that every chain in H admits
a lower bound in H. Then

T
H is a nonempty convex subset of M .

(2) A convex subset C �M is gate-convex if and only if there does not exist a chain C �HC .M/

such that
T

C is nonempty and disjoint from C .

If A�M is a subset, we denote by hAi the median subalgebra generated by A, ie the smallest subalgebra
of M containing A. We also denote by HullA the smallest convex subset of M that contains A; this
coincides with the intersection of all halfspaces of M that contain A.

The sets hAi and HullA are best understood in terms of the following operators:

M.A/DM1.A/ WDm.A�A�A/; MnC1.A/ WDM.Mn.A//;

J .A/D J 1.A/ WDm.A�A�M/D
[
x;y2A

I.x; y/; J nC1.A/ WD J .J n.A//:

It is clear that HullAD
S
n�1 J n.A/ and hAi D

S
n�1Mn.A/.

Remark 2.5 When rkM D r is finite, [15, Lemma 6.4] shows that already J r.A/D HullA. A similar
result holds for hAi and the operator M (see Proposition 4.2 below), but its proof will require considerable
work.

If M1 and M2 are median algebras, we denote by M1 �M2 their product. This is the median algebra
with underlying set M1 �M2 and the only median operator for which both coordinate projections are
median morphisms.

The set W .M1�M2/ is naturally partitioned into two transverse subsets W1 and W2. A wall lies in W1 if
and only if it separates two points in one (equivalently, every) fibre M1 � f�g; halfspaces associated to
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walls in W1 are unions of fibres f�g�M2. The set W2 is defined similarly, swapping the roles played by
the two indices. Since all fibres are gate-convex in M1 �M2, Remark 2.2 gives natural identifications
between Wi and W .Mi /.

In finite rank, product splittings can be completely characterised in terms of walls. The following is
[51, Lemma 2.12]; also see [23, Lemma 2.5] in the special case of cube complexes.

Lemma 2.6 For a finite-rank median algebra M , the following are equivalent :

(1) M splits as a product of median algebras M1 �M2, where neither Mi is a singleton.

(2) There exists a partition W .M/DW1 tW2, where the Wi are nonempty and transverse.

When this happens , the set Wi is identified with W .Mi / as described above.

2.3 Compatible metrics on median algebras

A metric space .X; d/ is a median space if, for all x1; x2; x3 2X , there exists a unique pointm.x1; x2; x3/
in X such that

d.xi ; xj /D d.xi ; m.x1; x2; x3//C d.m.x1; x2; x3/; xj /

for all 1� i < j � 3. In this case, the map m WX3!X gives a median algebra .X;m/.

Remark 2.7 (rank of median spaces) We define the rank of X as the rank of the underlying median
algebra .X;m/. If X is a connected median space, then this notion of rank coincides with the supremum
of the topological dimensions of the locally compact subsets of X . The latter is the definition of rank that
we used in the introduction. One inequality follows from Theorem 2.2 and Lemma 7.6 in [15], while the
other from [17, Proposition 5.6].

For the purposes of this paper, it is convenient to think of median spaces in terms of the following notion.
Let M be a median algebra.

Definition 2.8 A pseudometric � WM �M ! Œ0;C1/ is compatible if, for every x; y; z 2M ,

�.x; y/D �.x;m.x; y; z//C �.m.x; y; z/Cy/:

Thus, we can equivalently define median spaces as pairs .M; d/, where M is a median algebra and d is a
compatible metric on M .

We write D.M/ and PD.M/, respectively, for the sets of all compatible metrics and all compatible
pseudometrics on M . In the presence of a group action G ÕM , we write DG.M/ and PDG.M/ for the
subsets of G–invariant (pseudo)metrics (or just Dg.M/ and PDg.M/ if G D hgi).
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To avoid confusion, we will normally denote compatible metrics by the letter ı, and general compatible
pseudometrics by the letter �.

Consider a gate-convex subset C �M and its gate-projection �C WM ! C . For every pseudometric
� 2 PD.M/, the maps �C WM ! C and m WM 3!M are 1–Lipschitz, in the sense that

�.�C .x/; �C .y//� �.x; y/; �.m.x; y; z/;m.x0; y0; z0//� �.x; x0/C �.y; y0/C �.z; z0/:

This can be proved as in Lemma 2.13 and Corollary 2.15 of [29]. In addition, gate-projections are
nearest-point projections, in the sense that �.x; �C .x//D �.x; C / for all x 2M .

If ı 2 D.M/ and .M; ı/ is complete, then a subset C �M is gate-convex if and only if it is convex and
closed in the topology induced by ı; see [29, Lemma 2.13].

If M is the 0–skeleton of a CAT.0/ cube complex X , then a natural compatible metric on M is given by
the restriction of the combinatorial metric on X : this is just the intrinsic path metric of the 1–skeleton
of X . All cube complexes in this paper will be implicitly endowed with their combinatorial metric, rather
than the CAT.0/ metric. All geodesics will be assumed to be combinatorial geodesics.

Remark 2.9 A halfspace-interval is a set of the form H .xjy/�H .M/ for x; y 2M . Let B.M/�

2H .M/ denote the �–algebra generated by halfspace-intervals. We say that a subset H � H .M/ is
B–measurable if it lies in B.M/.

Every � 2 PD.M/ induces a measure �� on B.M/ such that ��.H .xjy//D �.x; y/ for all x; y 2M ;
see eg [29, Theorem 5.1]. If � 2 PDG.M/, then �� is G–invariant.

Lemma 2.10 Let .X; d/ be a median space. Let A�X be a subset such that J .A/�NR.A/ for some
R � 0. Then , for every D � 0, we have

J .ND.A//�N2DCR.A/:

In addition , if rkX D r , we have HullA�N2rR.A/.

Proof If z 2 J .ND.A//, there exist x; y 2 ND.A/ and z 2 I.x; y/. Consider points x0; y0 2 A with
d.x; x0/; d.y; y0/�D. Set z0 Dm.x0; y0; z/. Since z0 2 J .A/, we have d.z0; A/�R. Furthermore,

d.z; z0/D d.m.x; y; z/;m.x0; y0; z//� d.x; x0/C d.y; y0/� 2D:

In conclusion, d.z; A/� d.z; z0/C d.z0; A/� 2DCR, as required.

Proceeding by induction, it is straightforward to obtain J i .A/�N.2i�1/R.A/ for every i � 0. If rkX D r ,
we have HullAD J r.A/ by Remark 2.5, hence HullA�N.2r�1/R.A/�N2rR.A/.
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2.4 Convex cores in median algebras

In this subsection, we collect a few facts proved in [51] extending the notion of “essential core”
[23, Section 3] from actions on cube complexes to general actions on finite-rank median algebras (even
with no invariant metric or topology). These results will only play a role in the proofs of Theorems F
and I (especially in Sections 6 and 7). The reader only interested in the other results mentioned in the
introduction can safely read this subsection with CAT.0/ cube complexes in mind, just to familiarise
themselves with our notation.

Let M be a median algebra of finite rank r .

Definition 2.11 We say that g 2 AutM acts

(10) nontransversely if there does not exist a wall w 2W .X/ such that w and gw are transverse;

(20) stably without inversions if there do not exist n 2 Z and h 2H .X/ with gnhD h�.

An action G ÕM by automorphisms is

(1) nontransverse if every g 2G acts nontransversely;

(2) without wall inversions if every g 2G acts stably without inversions;

(3) essential if, for every h 2H .M/, there exists g 2G with gh ¨ h.

Remark 2.12 If there exists ı 2 DG.M/ such that .M; ı/ is connected, then G ÕM is without wall
inversions. This follows from [50, Proposition B] when .M; ı/ is complete, and from [51, Remark 4.3] in
general.

Keeping the notation of [51], each action G ÕM determines sets of halfspaces

H1.G/ WD fh 2H .M/ j 9g 2G such that gh ¨ hg;

H1=2.G/ WD fh 2H .M/ nH1.G/ j 9g 2G such that gh�\ h� D∅ and gh¤ h�g;

H0.G/ WD fh 2H .M/ j 8g 2G either gh 2 fh; h�g or gh and h are transverseg:

As observed in [51, Section 3.1], we have a G–invariant partition

H .M/DH0.G/tH1.G/tH1=2.G/tH1=2.G/�:

We write W1.G/ and W0.G/ for the sets of walls bounding the halfspaces in H1.G/ and H0.G/.

Definition 2.13 The reduced core C.G/ is the intersection of all halfspaces lying in H1=2.G/.

We adopt the convention that C.G/DM when H1=2.G/ is empty. We will write C.G;M/ (and H�.G;M/,
W�.G;M/) if it is necessary to specify the ambient median algebra. We just write C.g/ (and H�.g/,
W�.g/) if G D hgi.

Geometry & Topology, Volume 28 (2024)



Coarse-median preserving automorphisms 181

Theorem 2.14 [51] Let G be finitely generated and let G ÕM be without wall inversions.

(1) The reduced core C.G/ is nonempty, G–invariant and convex.

Suppose in addition that DG.M/¤∅.

(2) There is a G–fixed point in M if and only if H1.G/D∅.

(3) The sets W1.G/ and W0.G/ are transverse and WC.G/.M/DW0.G/tW1.G/.

(4) The resulting partition of W .C.G// gives a product splitting C.G/ D C0.G/� C1.G/. The nor-
maliser of the image of G in AutM leaves C.G/ invariant , preserving the two factors. The action
G Õ C1.G/ is essential , while G Õ C0.G/ fixes a point.

Proof We just refer the reader to the relevant statements in [51]. Part (1) follows from Theorem 3.17(2).
The two implications in part (2) are obtained from Proposition 3.23(2) and Lemma 4.5(1), respectively.
Part (3) is a consequence of Lemma 4.5 and Lemma 3.22(2). Finally, part (4) follows from Remark 3.16
and the previous parts.

Remark 2.15 If G acts on a CAT.0/ cube complex X and M DX .0/, then the action G Õ C1.G/ in
Theorem 2.14(4) is easily identified as the G–essential core of Caprace and Sageev; cf [23, Section 3.3].
In particular, note that Theorem 2.14 strengthens [23, Proposition 3.5], showing that the G–essential core
always embeds G–equivariantly as a convex subcomplex of X .

Theorem 2.16 If g 2 AutM acts nontransversely and stably without inversions , then

(1) the reduced core C.g/ is gate-convex, and

(2) for every x 2M and every � 2 PDg.M/, we have �.x; gx/D `.g; �/C 2�.x; C.g//.

Proof Part (1) is [51, Proposition 3.36] and part (2) is [51, Proposition 4.9(3)].

Note that C.G/ is not gate-convex in general, even when G Õ M is an isometric action of a finitely
generated free group on a complete R–tree. See [51, Example 3.37].

Remark 2.17 Part (2) of Theorem 2.16 implies that, if ı 2 Dg.M/ and .M; ı/ is a geodesic space, then
g is semisimple: either g fixes a point of M or g translates along a hgi–invariant geodesic.

The next two remarks will only be needed in Section 7.

Remark 2.18 Let g 2 AutM act nontransversely and stably without inversions, with Dg.M/¤∅.

(1) Each h 2H1.g/ satisfies
T
n2Z g

nhD∅; see [51, Lemma 4.5(1)].
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(2) A halfspace h lies in h 2 H0.g/ if and only if gh D h, and it lies in H1.g/ if and only if either
gh ¨ h or gh © h. This follows from Remarks 3.33 and 3.34 in [51], after observing that
H1.g/�HC.g/.M/ (eg by part (1) of this remark).

(3) Let N �M be a hgi–invariant median subalgebra. By Remark 2.2, intersecting the halfspaces
of M with N , we obtain a surjective restriction map resN WHN .M/!H .N /. Parts (1) and (2)
show that:

� If h 2H0.g;M/\HN .M/, then g � resN .h/D resN .h/ and resN .h/ 2H0.g;N /.
� If h 2H1=2.g;M/\HN .M/, then either resN .h/ 2H1=2.g;N / or g � resN .h/D resN .h/�.

� We have H1.g;M/�HN .M/ and resN .H1.g;M//DH1.g;N /.

Remark 2.19 Let g 2 AutM act nontransversely and stably without inversions. Let �� be the measure
introduced in Remark 2.9. Part (2) of Theorem 2.16 shows that `.g; �/D ��.H .xjgx// for any x 2 C.g/.
In view of parts (1) and (2) of Remark 2.18, the set H .xjgx/tH .gxjx/ is a B–measurable fundamental
domain for the action hgiÕ H1.g/. It follows that, for any fundamental domain � 2 B.M/ for the
action hgiÕ H1.g/, we have `.g; �/D 1

2
��.�/.

2.5 Two constructions involving cube complexes

2.5.1 Restriction quotients Restriction quotients of CAT.0/ cube complexes were originally introduced
in [23, page 860]. Our interest is due to the fact that the Salvetti blowups and collapses from [25] are a
particular instance of this construction, which can actually be phrased purely in median-algebra terms.
This is mainly needed in the proof of Proposition A(3) in Section 3.4, though it will also be useful in
Sections 3.1 and 7.3.

A map f WX ! Y between cube complexes is said to be cubical if, on every cube c �X , it factors as a
projection of c onto one of its faces, followed by an isomorphism onto a cube of Y .

Let X be a CAT.0/ cube complex. The carrier of a hyperplane w 2 W .X/ is the smallest convex
subcomplex of X that contains all edges crossing w. It naturally splits as a product C � Œ0; 1�, where
C � f0g and C � f1g are convex subcomplexes of X on the two sides of w.

Given a hyperplane w 2 W .X/, we can construct a new CAT.0/ cube complex Y by collapsing w: we
remove from X the interior of the carrier C �.0; 1/ and we identify the isomorphic subcomplexes C �f0g
and C � f1g. The natural collapse map X ! Y is a cubical map.

Now, consider a set of hyperplanes U � W .X/. The restriction quotient of X determined by U is the
CAT.0/ cube complex X.U/ obtained by collapsing all hyperplanes in W .X/nU (which usually involves
infinitely many collapses). It has one vertex for every connected component of the complement in X of
the union of the hyperplanes in U , with two vertices joined by an edge exactly when the corresponding
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components are separated by a single element of U . Let �U WX !X.U/ be the natural collapse, which is
again a cubical map.

If G Õ X is an action and the subset U � W .X/ is G–invariant, then the restriction quotient X.U/ is
also equipped with a natural G–action and the collapse map �U is G–equivariant.

Proposition 2.20 Consider CAT.0/ cube complexes X; Y and a surjective cubical map � WX! Y . Then
the following are equivalent :

(1) There exists a subset U�W .X/ and an isomorphism Y ŠX.U/with respect to which � corresponds
to the natural collapse �U WX !X.U/.

(2) For every vertex v 2 Y , the preimage ��1.v/ is a convex subcomplex of X .

(3) The restriction � WX .0/! Y .0/ is a median morphism.

If X and Y are equipped with G–actions and � is G–equivariant , then the set U is G–invariant.

Proof The equivalence of (1) and (2) was shown in [71, Theorem 4.4]. Fibres of median morphisms
between median algebras are always convex, so (3) implies (2). Finally, (1) D) (3) can be shown by
observing that single hyperplane-collapses are median morphisms.

2.5.2 Roller boundaries In two proofs (Proposition 4.11 and, briefly, Lemma 3.13), we will need the
notion of Roller boundary of a CAT.0/ cube complex X , denoted by @X . We list here the (well-known)
properties that we will use.

The 0–skeleton of any CAT.0/ cube complex X has a natural structure of median algebra; see for instance
[31, Theorem 6.1] and [89, Theorem 10.3]. The `1 metric on X , denoted by d , is a compatible metric in
the sense of Definition 2.8. Thus, the pair .X .0/; d / is a median space. The notions of “halfspace” and
“wall” coincide with the usual notion of halfspace and hyperplane in CAT.0/ cube complexes. Thus, we
write W .X/ and H .X/ with the meaning of W .X .0// and H .X .0//.

We can embed X .0/ ,! 2H .X/ by mapping each vertex v to the subset �v �H .X/ of halfspaces that
contain it. This is a median morphism if we endow 2H .X/ with the structure of median algebra given by

m.�1; �2; �3/D .�1\ �2/[ .�2\ �3/[ .�3\ �1/:

The space 2H .X/ is compact with the product topology, and we can consider the closure X of X .0/

inside it. We define the Roller boundary @X as the set X nX .0/.

For us, the only important facts will be:

(1) The subset X DX t @X � 2H .X/ is a median subalgebra and X .0/ is convex in X .

(2) The median m WX3!X is continuous with respect to the topology that X inherits from 2H .X/.
With this topology,X is compact and totally disconnected. IfX is locally finite, the subsetX .0/�X
is discrete.
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(3) If h2H .X/, its closure xh inside X is gate-convex. In fact, xh and h� are complementary halfspaces
of the median algebra X . The gate-projection �h WX !xh takes X .0/ to h.

(4) Two halfspaces h; k 2H .X/ are said to be strongly separated if h\ kD∅ and no halfspace of X
is transverse to both h and k; see [4]. If h and k are strongly separated, then the gate-projection
�h WX !xh maps xk to a single point.

The reader can consult [47, Sections 2.3–2.4] and [50, Theorem 4.14] for more details on facts (1)–(3).
Fact (4) follows, for example, from Corollary 2.22 and Lemma 2.23 in [49].

2.6 Coarse median structures

Coarse median spaces were introduced by Bowditch in [15]. We present the following equivalent definition
from [83].

Definition 2.21 Let X be a metric space. A coarse median on X is a map � WX3!X for which there
exists a constant C � 0 such that, for all a; b; c; x 2X , we have

(1) �.a; a; b/D a and �.a; b; c/D �.b; c; a/D �.b; a; c/,

(2) �.�.a; x; b/; x; c/�C �.a; x; �.b; x; c//,

(3) d.�.a; b; c/; �.x; b; c//� Cd.a; x/CC .

Note that part (2) of the definition is an approximate version of the 4–point condition, from our definition
of median algebras at the beginning of Section 2.2.

There is an appropriate notion of rank also for coarse median spaces. Since this notion will play no
significant role in our paper (except when we briefly mention it at the end of Section 7.1), we simply
refer the reader to [15; 83; 84] for more details.

The following notion of coarse median structure is different from the one in [84, Definition 2.8], but it is
hard to imagine this being cause for confusion.

Definition 2.22 Two coarse medians �1; �2 WX3!X are at bounded distance if there exists a constant
C � 0 such that �1.x; y; z/�C �2.x; y; z/ for all x; y; z 2 X . A coarse median structure on X is an
equivalence class Œ�� of coarse medians pairwise at bounded distance. A coarse median space is a pair
.X; Œ��/ where X is a metric space and Œ�� is a coarse median structure on it.

Remark 2.23 Let f W X ! Y be a quasi-isometry with a coarse inverse denoted by f �1 W Y ! X . If
� WX3!X is a coarse median on X , then

.f��/.x; y; z/ WD f
�
�.f �1.x/; f �1.y/; f �1.z//

�
is a coarse median on Y . If Œ�1�D Œ�2�, then Œf��1�D Œf��2�.
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If QI.X/ is the group of quasi-isometries X ! X up to bounded distance (as defined for example
in [44, Definition 8.22]), the above defines a natural left action of QI.X/ on the set of coarse median
structures on X .

Definition 2.24 A coarse median group is a pair .G; Œ��/ where G is a finitely generated group equipped
with a word metric and Œ�� is a G–invariant coarse median structure on G.

The requirement that Œ�� be G–invariant can be equivalently stated as follows: for each g 2 G, there
exists a constant C.g/� 0 such that g�.g1; g2; g3/�C.g/ �.gg1; gg2; gg3/ for all g1; g2; g3 2G.

Note that Definition 2.24 is stronger than Bowditch’s original definition from [15], which did not ask for
Œ�� to be G–invariant. Definition 2.24 is better suited to our needs in this paper, but it is not QI–invariant
or even commensurability-invariant (unlike Bowditch’s).

These two definitions of coarse median group parallel the notions of HHS and HHG from [5; 6]. Namely,
every hierarchically hyperbolic group is a coarse median group in the sense of Definition 2.24, while
any group that admits a structure of hierarchically hyperbolic space is coarse median in the sense of
Bowditch [19] (we will simply refer to these as “groups with a coarse median structure”).

Remark 2.25 If G is finitely generated, any group automorphism ' WG!G is bi-Lipschitz with respect
to any word metric on G. The resulting homomorphism AutG! QI.G/ defines an .AutG/–action on
the set of coarse median structures on G that takes G–invariant structures to G–invariant structures. If
.G; Œ��/ is a coarse median group, then every inner automorphism of G fixes Œ��, and we obtain an action
of OutG on the .AutG/–orbit of Œ��.

Definition 2.26 Let .G; Œ��/ be a coarse median group. We say that � 2 OutG (or ' 2 AutG) is
coarse-median preserving if it fixes Œ��. We denote by Out.G; Œ��/ � OutG and Aut.G; Œ��/ � AutG
the subgroups of coarse-median preserving automorphisms.

Thus ' 2 AutG is coarse-median preserving exactly when, fixing a word metric on G, there exists a
constant C � 0 such that, for all gi 2G,

'.�.g1; g2; g3//�C �.'.g1/; '.g2/; '.g3//:

Remark 2.27 Let G Õ X be a proper cocompact action on a CAT.0/ cube complex. Any orbit map
o WG!X is a quasi-isometry that can be used to pull back the median operator m WX3!X to a coarse
median structure Œ�X � WD o�1� Œm� on G. It is straightforward to check that Œ�X � is independent of all
choices involved (though the notation is slightly improper, as Œ�X � does depend on the specific G–action
on X ). We refer to Œ�X � as the coarse median structure induced by G ÕX .
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Let us write gx for the action of g 2G on x 2X according to G ÕX . Then, every ' 2AutG gives rise
to a twisted G–action on X , which we denote by G ÕX' , and is defined as g � x D '�1.g/x. Note that
'�Œ�X �D Œ�X' � and thus ' Out.G; Œ�X �/'�1 D Out.G; Œ�X' �/.

Each of the structures Œ�X' � is G–invariant. In particular, .G; Œ�X �/ is a coarse median group.

Example 2.28 Every geodesic Gromov-hyperbolic space X is equipped with a natural coarse median
structure Œ�� represented by the operators � that map each triple .x; y; z/ to an approximate incentre
for a geodesic triangle with vertices x; y; z; cf [15, Section 3]. In fact, by [83, Theorem 4.2], this is
the only coarse median structure that X can be endowed with. It follows that Œ�� is preserved by every
quasi-isometry of X .

In particular, all automorphisms of Gromov-hyperbolic groups are coarse-median preserving. Alternatively,
it is not hard to prove this last fact directly, relying on the Morse lemma and the observation that group
automorphisms are quasi-isometries with respect to any word metric.

Example 2.29 Equipping Zn with the median operator � associated to its `1 metric, we obtain a coarse
median group .Zn; Œ��/. An automorphism ' 2Aut Zn DGLnZ is coarse-median preserving if and only
if it lies in the signed permutation group O.n;Z/� GLnZ, ie if it can be realised as an automorphism
of the standard tiling of Rn by unit cubes. This will follow from Proposition A(3) once we prove it in
Section 3.4 (though it also is easily shown by hand).

We end this subsection with the definitions of quasiconvex subsets and approximate median subalgebras,
which will play an important role in Sections 3 and 4.

Definition 2.30 Let .X; Œ��/ be a coarse median space. A subset A�X is quasiconvex if there exists
R � 0 such that �.A�A�X/�NR.A/.

This notion is clearly independent of the chosen representative � of the structure Œ��. Moreover, by
Definition 2.21(3), if subsets A and B have finite Hausdorff distance, then A is quasiconvex if and only if
B is.

By Example 2.28, Definition 2.30 extends the usual notion of quasiconvexity in hyperbolic spaces.
The next remark shows that this is also the notion of quasiconvexity appearing in the statement of
Theorem C. We will discuss in Section 3.1 other equivalent notions of quasiconvexity in (nonhyperbolic)
cube complexes.

Remark 2.31 Let G be a right-angled Artin/Coxeter group. Let G ÕX be the action on the universal
cover of the Salvetti/Davis complex and let Œ�X � be the induced coarse median structure on G, as in
Remark 2.27. Recall that, for a subset A � X .0/, the set J .A/ D �X .A�A�X/ is the union of all
geodesics joining points of A.
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Since the standard Cayley graph of G is precisely the 1–skeleton of X , a subgroup H �G is quasiconvex
as defined in the statement of Theorem C if and only if we have J .H �x/�NR.H �x/ for some x 2X and
R� 0. This is clearly equivalent to quasiconvexity of H with respect to the coarse median structure Œ�X �.

Remark 2.32 If X is a finite-rank median space, then a subset A � X is quasiconvex if and only if
dHaus.A;HullA/ <C1. This follows from Lemma 2.10.

A similar, weaker notion is that of approximate median subalgebra.

Definition 2.33 Let .X; Œ��/ be a coarse median space. A subset A � X is an approximate median
subalgebra if there exists R � 0 such that �.A�A�A/�NR.A/.

Again, the definition only depends on the structure Œ�� and passes on to all subsets of X at finite Hausdorff
distance from A. An analogue of Remark 2.32 also holds, but it is more complicated and will be discussed
in Section 4.1.

If ' is a coarse-median preserving automorphism of a coarse median group .G; Œ��/, the fixed subgroup
Fix' �G is in general not quasiconvex (for instance, consider the automorphism of Z2 that swaps the
standard generators). However, it is always an approximate median subalgebra, as the next two lemmas
show. This will be important in the proof of Theorem B.

Lemma 2.34 Let G be a finitely generated group and let d be a word metric on G. For every ' 2AutG,
there exist functions �1; �2 WN!R>0, with �1 linear , such that , for every g 2G,

�1
�
d.g; '.g//

�
� d.g;Fix'/� �2

�
d.g; '.g//

�
:

Proof For the first inequality, note that ' WG!G is C–bi-Lipschitz with respect to d , for some constant
C � 0. If g0 2 Fix' is an element closest to g, we have

d.g; '.g//� d.g; g0/C d.'.g0/; '.g//� .1CC/ � d.g; g0/D .1CC/ � d.g;Fix'/:

Thus, we can take �1.t/ WD t=.1CC/.

Regarding the second inequality, suppose for the sake of contradiction that there does not exist a function �2
so that it is satisfied. Then, there exist elements gn 2G with d.gn;Fix'/!C1, but d.gn; '.gn//�D
for some D � 0. Passing to a subsequence, we can assume that '.gn/D gnx for some x 2G and all n.
Thus gng�1m 2 Fix', hence d.gn;Fix'/D d.gm;Fix'/ for all n;m� 0, contradicting the fact that the
distances d.gn;Fix'/ diverge.

Lemma 2.35 Let .G; Œ��/ be a coarse median group. If ' 2 Aut.G; Œ��/, then Fix' �G is an approxi-
mate median subalgebra.
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Proof Since ' 2 Aut.G; Œ��/, there is a constant C such that

'.�.x; y; z//�C �.'.x/; '.y/; '.z// for all x; y; z 2G:

Thus, if x; y; z 2 Fix', we have '.�.x; y; z//�C �.x; y; z/. Lemma 2.34 gives a constant C 0 such that
d.�.x; y; z/; Fix'/� C 0 for all x; y; z 2 Fix', as required.

2.7 UNE actions and groups

The following (seemingly novel) notion will play an important role in the proof of Theorem F, especially
in Sections 6.2, 7.1 and 7.4.

Definition 2.36 Let G be a finitely generated group and let .X; d/ be a (pseudo)metric space.

(1) An isometric action G Õ X is uniformly nonelementary (UNE) if there exists a constant c > 0
with the following property. For every finite generating set S �G and for all x; y 2X ,

d.x; y/� c � Œ�dS .x/C �
d
S .y/�:

We say that G ÕX is c–uniformly nonelementary (c–UNE) when we need to specify c.

(2) An infinite group G is UNE if it admits a UNE, proper, cocompact action on a geodesic metric
space.

The previous definition differs slightly from the one given in the introduction, but it is easily seen to be
equivalent.

Remark 2.37 If G is infinite and an action G Õ X is proper and cocompact, then there exists � > 0
such that, for every generating set S �G and every x 2X , we have �dS .x/� �.

Along with the Milnor–Schwarz lemma, this can be used to show that a group is UNE if and only if every
proper, cocompact action on a geodesic space is UNE. Equivalently, if the action of G on its locally finite
Cayley graphs is UNE.

Example 2.38 (1) Nonelementary hyperbolic groups are UNE (for instance, this is implicitly shown
in the last two paragraphs of the proof of [88, Lemme 3.1]).

(2) Fundamental groups of compact special cube complexes with finite centre are UNE. We will obtain
this in Corollary 7.23.

(3) UNE groups have finite centre.
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3 Cubical convex-cocompactness

This section is devoted to convex-cocompact subgroups of cocompactly cubulated groups (Definition 3.1).
First, in Section 3.1, we discuss the relationship between convex-cocompactness and coarse median
quasiconvexity. Then, Section 3.2 discusses basic properties of cyclic, convex-cocompact subgroups of
RAAGs. Finally, Proposition A is proved in Section 3.4.

The reader who is not interested in the proofs of Theorems F and I can safely skip Section 3.3, which is
devoted to some of the finer properties of convex-cocompact subgroups of RAAGs and is more technical.
Its results will only be needed in Section 7.

3.1 Cubical convex-cocompactness in general

LetGÕX be a proper cocompact action on a CAT.0/ cube complex. In particular,X is finite-dimensional
and locally finite.

Definition 3.1 A subgroupH �G is convex-cocompact in GÕX if there exists anH–invariant, convex
subcomplex C �X that is acted upon cocompactly by H .

Despite the similarity in terminology, we emphasise that the above is much weaker than the notion of
“boundary convex-cocompactness” due to Cordes and Durham [34]. For instance, all convex-cocompact
subgroups of RAAGs are free if we consider the Cordes–Durham notion [73], whereas every special
group is a convex-cocompact subgroup of some RAAG acting on its Salvetti complex according to
Definition 3.1; see [68].

Let Œ�X � be the coarse median structure on G induced by G Õ X as in Remark 2.27. Recall that
quasiconvex subsets of coarse median spaces were introduced in Definition 2.30. For the notion of
H–essential core, see Remark 2.15 or [23, Section 3.3].

The following is just a restating of some well-known facts. The equivalence of the first two parts is due
to Haglund; see [66, Theorem H] and [91].

Lemma 3.2 The following are equivalent for a subgroup H �G:

(1) H is convex-cocompact in G ÕX .

(2) H is quasiconvex in .G; Œ�X �/.

(3) H is finitely generated and acts cocompactly on the H–essential core of H ÕX .

Proof Let us begin with the equivalence of (1) and (2). Picking a vertex v 2X , condition (2) holds if and
only if there exists a constant R0 such that m.H �v;H �v;G �v/�NR0.H �v/. Since G acts cocompactly
and m is 1–Lipschitz in each component, this is equivalent to the existence of R00 with

J .H � v/Dm.H � v;H � v;X/�NR00.H � v/:

It is clear that this holds when (1) is satisfied, so (1) D) (2).
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Conversely, if (2) holds, then H � v is quasiconvex in X and Remark 2.32 implies that Hull.H � v/ is at
finite Hausdorff distance from H � v. Since X is locally finite, this means that H acts cocompactly on
Hull.H � v/, hence H is convex-cocompact.

We now show the equivalence of (1) and (3). First, if C �X is convex and H–invariant, the H–essential
core of H ÕX is a restriction quotient of C (as defined in Section 2.5). Thus, if H acts cocompactly
on C , it also acts cocompactly on the H–essential core. Moreover, the action H Õ C is proper and
cocompact, which implies that H is finitely generated. This proves (1) D) (3).

Conversely, letX 0 be the cubical subdivision. SinceH is finitely generated andH ÕX 0 has no inversions,
the essential core of H ÕX 0 embeds H–equivariantly as a convex subcomplex of X 0; see Remark 2.15.
This shows that (3) D) (1).

Recalling that automorphisms of G are bi-Lipschitz with respect to word metrics on G, the equivalence
of (1) and (2) in Lemma 3.2 has the following straightforward consequence.

Corollary 3.3 If ' 2Aut.G; Œ�X �/, then a subgroup H �G is convex-cocompact in G ÕX if and only
if '.H/ is.

Example 3.4 If G is Gromov-hyperbolic, then a subgroup H �G is convex-cocompact in G ÕX if
and only if H is quasiconvex in G (again since (1)() (2) in Lemma 3.2). In particular, the notion of
convex-cocompactness is independent of the chosen cubulation of G in this case. A quick look at the
standard cubulation of Z2 immediately shows that the latter does not hold in general.

3.2 Label-irreducible elements in RAAGs

This subsection studies convex-cocompact cyclic subgroups of right-angled Artin groups. Let � be a
finite simplicial graph. Let ADA� be a RAAG and X D X� the universal cover of its Salvetti complex.
Set r D dimX .

The Cayley graph of A corresponding to the standard generating set �.0/ is naturally identified with the
1–skeleton of the CAT.0/ cube complex X . Thus, every edge of X is labelled by a vertex of � . Observing
that edges crossing the same hyperplane have the same label, we obtain a map  WW .X /! �.0/.

We can apply the discussion in Section 2.4 to the standard action A Õ X (or, to be precise, the action on
the 0–skeleton of X ). Every element of A acts nontransversely and stably without inversions. For every
g 2A n f1g, the reduced core C.g/ is the union of all axes of g.

A hyperplane of X lies in W1.g/ if and only if it is crossed by one (equivalently, all) axis of g. Hyperplanes
lie in W0.g/when they are preserved by g; equivalently, when they are transverse to all elements of W1.g/,
or, again, when they separate two axes of g.
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The factor C1.g/ is hgi–equivariantly isomorphic to the convex hull in X of any axis of g. The factor
C0.g/ is fixed pointwise by g and it is isomorphic to Xƒ, where ƒ� � is the maximal subgraph all of
whose vertices are joined by an edge to all vertices in .W1.g//.

For a simplicial graph �, we denote by �o the opposite of �. This the graph that has the same vertex set
as � and an edge between two vertices exactly when they are not connected by an edge in �.

Definition 3.5 Consider g 2A n f1g.

(1) We define �.g/ WD .W1.g//� �
.0/. These are precisely the standard generators of A that appear

in the cyclically reduced words representing elements conjugate to g.

(2) We say that g is label-irreducible if the full subgraph of � spanned by �.g/ does not split as a
nontrivial join (ie its opposite graph is connected). Equivalently, g is contracting [26] within a
parabolic subgroup of A.

Two label-irreducible elements g; h 2 A are independent if hg; hi 6' Z. If g; h are independent and
commute, then hg; hi'Z2. We will also use the following result of Servatius; see eg [94, Proposition III.1].

Lemma 3.6 If g; h 2 A are commuting , independent , label-irreducible elements , then every vertex
of �.g/ is joined to every vertex of �.h/ by an edge of � .

To each element g 2A, we can associate a canonical collection of label-irreducible elements g1; : : : ; gk ,
called the label-irreducible components of g, as shown in the next result.

Lemma 3.7 (label-irreducible components) For every element g 2A, the following hold.

(1) We can write g D g1 � � � � � gk for pairwise-commuting , pairwise-independent label-irreducibles
gi 2A. In addition , 0� k � r and the gi are unique up to permutation.

(2) The sets W1.gi / are transverse to each other and W1.gi /�W0.gj / for i ¤ j . In addition ,

W1.g/DW1.g1/t � � � tW1.gk/; `.g;X /D `.g1;X /C � � �C `.gk;X /;

C1.g/' C1.g1/� � � � � C1.gk/; C.g/D C.g1/\ � � � \ C.gk/:

(3) Centralisers satisfyZA.g/DZA.g1/\� � �\ZA.gk/. Moreover , ZA.g/ splits as the direct product
of a parabolic subgroup of A and a copy of Zk freely generated by roots of g1; : : : ; gk .

Proof Since label-irreducibility is invariant under taking conjugates, we assume throughout the proof
that g is cyclically reduced. If g is the identity, we can simply take k D 0 and the entire lemma holds
trivially. Suppose instead that g ¤ 1.

We begin with part (1). Let ƒ1; : : : ; ƒk be the connected components of the subgraph of �o spanned
by �.g/. In � , every vertex of ƒi is joined by an edge to every vertex of ƒj with j ¤ i . Thus, permuting
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the letters in a word representing g, we can write g D g1 � � � � �gk , where each gi is cyclically reduced
and �.gi / D ƒ

.0/
i . The elements gi commute pairwise and, since each ƒi is connected, they are all

label-irreducible. It is clear that gi and gj are independent for i ¤ j .

Uniqueness of the gi up to permutations follows from the fact that, by Lemma 3.6, �.g1/; : : : ; �.gk/
must coincide with the vertex sets of ƒ1; : : : ; ƒk in any such decomposition of g. Furthermore, choosing
a vertex from each ƒi , we obtain a k–clique in � , so k � r . This proves part (1).

We now prove part (2). Since gi is cyclically reduced, there exists a (combinatorial) axis ˛i � X�.gi /

through the identity. Note that the product X�.g1/ � � � � �X�.gk/ � X is preserved by all gi and that
each gi leaves invariant every hyperplane of X�.gj / for all j ¤ i . Thus, the sets W1.gi / are transverse to
each other and W1.gi /�W0.gj / for i ¤ j . The equality W1.g/DW1.g1/t � � �tW1.gk/ now follows
by observing that ˛1�� � ��˛k contains an axis of g. The product splitting of C1.g/ can be deduced from
the transverse partition of W1.g/ using Lemma 2.6.

If �i is a fundamental domain for the hgi i–action on W1.gi /, the previous paragraph implies that
�1 t � � � t�k is a fundamental domain for the hgi–action on W1.g/. Taking cardinalities, this shows
that `.g;X /D `.g1;X /C � � �C `.gk;X /. Finally, the characterisation of C.g/ can be deduced from the
fact that this is the set of points of X that realise the translation length `.g;X /.

We conclude with part (3). The inclusion ZA.g1/ \ � � � \ ZA.gk/ � ZA.g/ is clear. Conversely,
if h 2 A commutes with g, uniqueness in part (1) implies that the elements hgih�1 coincide with
the gi up to permutation. Since �.hgih�1/ D �.gi /, it follows that hgih�1 D gi for each i . Hence
h 2 ZA.g1/ \ � � � \ ZA.gk/, as required. The last statement is Servatius’ centraliser theorem from
[94, Section III].

Remark 3.8 For every H �A, there exists a finite subset F �H such that ZA.H/DZA.F /.

Indeed, we have observed in Lemma 3.7(3) that the centraliser of every element of A splits as a product of
a free abelian group and a parabolic subgroup of A. It follows that every descending chain of centralisers
of subsets of A eventually stabilises, since this is true of chains of parabolics.

We conclude this subsection by showing that label-irreducibles are precisely those elements g 2A such
that the subgroup hgi is convex-cocompact in A Õ X . After a couple of preliminary results, this is shown
below in Lemma 3.11.

Lemma 3.9 Every connected full subgraph ƒ� �o has diameter � 2r � 1.

Proof Suppose towards a contradiction that there exist vertices x; y 2 ƒ and a shortest path � � ƒ
joining them, with � made up of 2r edges. Let �i be the i th vertex of �o met by � , with �0 D x and
�2r D y. Since � is shortest and ƒ is full, no two of the r C 1 vertices �0; �2; : : : ; �2r are joined by an
edge of �o. Thus, they form an .r C 1/–clique in � , contradicting the fact that r D dimX .
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Lemma 3.10 Let g 2A be label-irreducible. Then , for every u 2W1.g/, there exists a point x 2 C.g/
such that W .xjgx/�W .ujg4r�2u/. In particular , .W .ujg4r�2u//D �.g/.

Proof Pick a point y on an axis of g so that u 2W .yjgy/. Set x D g2r�1y and consider a hyperplane
w 2 W .xjgx/. Since g is label-irreducible, the full subgraph of �o spanned by �.g/ is connected. By
Lemma 3.9, there exists a sequence �0D .u/; �1; : : : ; �kD .w/ of vertices in �.g/ such that k� 2r�1
and consecutive �i are not joined by an edge of � . Set �j D �k for k < j � 2r � 1.

For 0� i � 2r � 1, pick a hyperplane wi 2W .giyjgiC1y/ with .wi /D �i , making sure that w0 D u

and w2r�1 D w. Since �i and �iC1 are not joined by an edge, the hyperplanes wi and wiC1 are not
transverse. Since these hyperplanes are all crossed by an axis of g, we conclude that each wi separates
the wj with j < i from those with j > i . In particular, u and w are not transverse.

The same argument shows that w and g4r�2u are not transverse, hence w 2 W .ujg4r�2u/. Since
w 2W .xjgx/ was arbitrary, we have shown that W .xjgx/�W .ujg4r�2u/.

Lemma 3.11 (1) If g is label-irreducible and ˛�X is an axis , then dHaus.˛;Hull˛/� .8r�4/`.g;X /.

(2) An element g 2A n f1g is label-irreducible if and only if hgi is convex-cocompact in A Õ X .

Proof Assuming part (1), we first prove part (2). Using the third characterisation of convex-cocompactness
in Lemma 3.2 and the fact that C1.g/ is equivariantly isomorphic to Hull˛, part (1) shows that label-
irreducible elements are convex-cocompact. Conversely, if g is not label-irreducible, the nontrivial
splitting of C1.g/ provided by Lemma 3.7(2) implies that hgi cannot act cocompactly on C1.g/.

Let us now prove part (1). Considering a point p 2Hull˛, it is enough to obtain the inequality d.p; ˛/�
.8r � 4/`.g;X /.

Every element of HHull˛.X / intersects ˛ in a subray. Let HC be the subset of halfspaces intersecting ˛
in a positive subray (ie containing all points gnz with n � 0, for a suitable choice of z 2 ˛). Any two
maximal halfspaces lying in HC and not containing p are transverse. It follows that there are only finitely
many such maximal halfspaces, which we denote by h1; : : : ; hk .

A negative subray of ˛ is contained in h�1 \ � � � \ h�
k

, so we can pick a point x 2 ˛ \ h�1 \ � � � \ h�
k

. In
particular, x does not lie in any halfspaces of HC that do not contain p; hence H .xjp/�HC. Let y 2 ˛
be the point with d.x; p/ D d.x; y/ and H .xjy/ � HC. Setting m D m.x; p; y/, we note that every
j 2H .mjp/ is transverse to every k 2H .mjy/. Indeed, m 2 j� \ k�, p 2 j\ k� and y 2 j� \ k, while
j\ k is nonempty because j and k both lie in HC.

Now, suppose for the sake of contradiction that d.p; y/ > .8r � 4/`.g;X /. Since we chose y with
d.x; p/Dd.x; y/, we have d.p;m/Dd.m; y/> .4r�2/`.g;X /. Now W .pjm/�WHull˛.X /DW1.g/,
a set on which hg4r�2i acts with exactly .4r � 2/`.g;X / orbits. Thus, there exists a hyperplane u 2

W .pjm/ such that g4r�2u 2 W .pjm/. Lemma 3.10 implies that .W .pjm// D �.g/. Similarly, we
obtain .W .mjy//D �.g/. This contradicts the fact that W .pjm/ is transverse to W .mjy/.
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3.3 More on convex-cocompactness in RAAGs

The results in this subsection will only be used in Section 7 and can be skipped by the reader uninterested
in the proof of Theorems F and I.

First, we discuss additional properties of label-irreducible elements of RAAGs. Our aim is obtaining
uniform control on the extent to which axes of distinct label-irreducibles can track each other. The
main result here is Lemma 3.13, along with its direct consequence Corollary 3.14. Both results will be
fundamental building blocks in the proof that centreless special groups are UNE.

Then, in the second part of the subsection, we study general convex-cocompact subgroups of RAAGs,
proving only a couple of simple properties related to label-irreducible components.

3.3.1 Additional properties of label-irreducible elements We maintain the notation introduced at the
beginning of Section 3.2. Recall that r D dimX .

Recall that the carrier of a hyperplane w 2 W .X / is the smallest convex subcomplex of X that contains
all edges crossing w. A hyperplane of X separates two points in the carrier of w if and only if it is either
equal or transverse to w. If two hyperplanes u and w have intersecting carriers, then they are transverse if
and only if .u/ and .w/ are joined by an edge of � .

Lemma 3.12 If g; h 2A and �.g/� 
�
WC.g/.X /\WC.h/.X /

�
, then C.g/\ C.h/¤∅.

Proof Suppose for the sake of contradiction that C.g/ and C.h/ are disjoint. Then there exists a
hyperplane v separating them, which we pick so that the carrier of v intersects C.g/. This guarantees that
g admits an axis ˛ that intersects the carrier of v.

Since v separates C.g/ and C.h/, it is transverse to WC.g/.X /\WC.h/.X /, so the vertex .v/ is connected
by an edge of � to all elements of �.g/. Observing that all hyperplanes crossed by ˛ are labelled by
elements of �.g/ and recalling that ˛ intersects the carrier of v, we deduce that all hyperplanes crossed
by ˛ are transverse to v. In other words, v is transverse to W1.g/, hence v 2W0.g/�WC.g/.X /. This is
the required contradiction.

Lemma 3.13 Let g; h 2 A be label-irreducible. If there exist hyperplanes u;w 2 W .X / such that
fu; g4ru;w; h4rwg �W1.g/\W1.h/, then hg; hi ' Z.

Proof The proof will consist of three steps.

Step 1 We can assume that 1 2AŠ X .0/ lies in C.g/\ C.h/, and that �.g/D �.h/D �.0/.

Since W1.g/\W1.h/ contains any hyperplane separating two of its elements, we have W .ujg4r�2u/�

W1.g/\W1.h/. Lemma 3.10 yields

�.g/D .W .ujg4r�2u//� .W1.g/\W1.h//� �.h/:
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One the one hand, this allows us to apply Lemma 3.12 and deduce that C.g/\ C.h/¤∅. On the other,
this shows that �.g/� �.h/ and the inclusion �.h/� �.g/ is obtained similarly, so �.g/D �.h/.

Conjugating g and h by any x 2 C.g/\ C.h/, we can assume that 1 2 C.g/\ C.h/. Equivalently, g and h
are cyclically reduced, so they lie in the parabolic subgroup A�.g/DA�.h/�A. Replacing A with A�.g/
does not alter the properties in the statement of the lemma, so we can assume that �.g/D �.h/D �.0/.

Step 2 Assume without loss of generality that `.g;X /� `.h;X /. Possibly replacing g and h with their
inverses and conjugating them , there exists a geodesic � � X from 1 to g such that

� the union � WD
S
i�0 g

i� is a ray and contains h and h2 (viewing 1; g; h; h2 as vertices of X ), and

� if � � � is the arc joining 1 to h, then h � � is the arc of � joining h to h2.

Let k 2H .X / be a halfspace bounded by h4r�2w 2W1.g/\W1.h/. Possibly replacing g and/or h with
their inverses, we have gk ¨ k and hk ¨ k. Since �.0/ D �.h/, Lemma 3.10 shows that w and h4r�2w
are strongly separated in X .

The subray contained in k� of any (combinatorial) axis of g defines a point � in the Roller boundary @X
such that g� D � and � 2 h�4rC2k� (recall that this halfspace is bounded by w). Similarly, there exists
� 2 @X with h�D � and � 2 h�4rC2k�. Since the halfspaces h�4rC2k� and k are strongly separated, the
gate-projections of � and � to k coincide and they are a vertex x 2 C.g/\ C.h/. Conjugating g and h
by x, we can assume that x D 1.

Label k1 © k2 © � � �© km the elements of H .1jh2/ bounded by hyperplanes with label .w/. Set k0 WD k

and observe that km D h2k, which is bounded by h4rw 2W1.g/\W1.h/. In conclusion,

�; � … h�4rC2k © kD k0 © k1 © � � �© km D h
2k:

Note that the hyperplanes bounding the ki all lie in W1.g/\W1.h/. Since 1 2 C.g/\ C.h/, there exist
an axis of h and an axis of g each crossing all hyperplanes bounding the ki . Hence there exist 1� t � s
such that gkj D kjCt for all 0� j �m� t , and hki D kiCs for all 0� i �m� s.

Let xi be the gate-projection of xD 1 to ki . Note that this is also the gate-projection to ki of � and �. Since
g� D � and h�D �, we must have gxj D xjCt and hxi D xiCs for all 1� j �m� t and 1� i �m� s.
In particular, since x0 D 1, we have hD xs , h2 D x2s D xm and g D xt .

Observe that each xi is also the gate-projection to ki of each xj with j < i . Thus, we can construct a
(combinatorial) geodesic � from 1 to g by concatenating arbitrary geodesics �j from xj to xjC1 for
0� j < t . The union �D

S
i�0 g

i� is a ray since 12 C.g/. Let k; l � 1 be the integers with 0� s�kt < t
and 0 � 2s � lt < t . Since � contains the points g�khD xs�kt and g�lh2 D x2s�lt , it is clear that h
and h2 lie on the ray �.

Finally, note that we can choose the geodesics �j so that the following compatibility condition is satisfied:
whenever there exist f 2A and 0� i; j < t with f xi D xj and f xiC1 D xjC1, we have f�i D �j . This
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is possible because the action A Õ X is free and so the element f is uniquely determined by i and j
(when it exists). Now, given 0� j < s, the arc of the ray � joining xsCj to xsCjC1 is precisely gaj �bj

,
where sC j D aj t C bj and 0 � bj < t . The element g�aj h maps xj and xjC1 to xbj

and xbjC1, so
it takes �j to �bj

by our construction. Thus h�j D gaj �bj
is contained in � for every 0 � j < s. This

proves the second condition in the statement of Step 2.

Step 3 We have hg; hi ' Z.

Let S Š �.0/ be the standard generating set of A. Let F.S/ be the free group freely generated by S , and
let � WF.S/!A be the surjective homomorphism that takes each generator of F.S/ to the corresponding
standard generator of A. Let wg 2 F.S/ be the word spelled by the labels of the edges met moving
from 1 to g along the geodesic � . Let wh 2 F.S/ be the word spelled moving from 1 to h along the ray
�D

S
i�0 g

i� . It is clear that �.wg/D g and �.wh/D h.

From Step 2, we have wh D w
p
g a for some p � 1 and an initial subword a of wg , and w2h D w

pC1
g ab

for some word b such that wpC1g ab is reduced in F.S/. It follows that wpg aw
p
g aD w

pC1
g ab in F.S/,

where both sides of the equality are reduced words. Looking at the first .pC 1/jwg jC jaj letters on the
left, we deduce that awg Dwga. Hence hwg ; whi D hwg ; ai is a cyclic subgroup of F.S/. We conclude
that hg; hi D �

�
hwg ; whi

�
' Z.

Corollary 3.14 Consider two elements g; h 2A. Suppose that g is label-irreducible. Assume in addition
that one of the following conditions is satisfied :

(1) There exists w 2W1.g/ such that h preserves w and g4rw.

(2) There exist hyperplanes u;w 2W .X / with fu;w; h4ru; g4rwg �W1.g/\W1.h/.

Then g and h commute in A.

Proof Assume first that there exists w 2 W1.g/ such that w and g4rw are preserved by h. Then
fw; g4rwg D fw; .hgh�1/4rwg � W1.g/ \W1.hgh

�1/. Since g and hgh�1 are label-irreducible,
Lemma 3.13 implies that hg; hgh�1i ' Z. Observing that `.g;X / D `.hgh�1;X /, we deduce that
hgh�1 must coincide with either g or g�1. The second option cannot occur in a right-angled Artin group,
hence hgh�1 D g, as required.

Suppose now that there exist hyperplanes u;w with fu;w; h4ru; g4rwg �W1.g/\W1.h/. In light of
Lemma 3.7(2), there exist (possibly equal) irreducible components h1; h2 of h, such that fu; g4rug �
W1.g/\W1.h1/ and fw; h4rwg D fw; h4r2 wg �W1.g/\W1.h2/.

Since g is label-irreducible and .W .ujg4ru// D �.g/ by Lemma 3.10, no element of W1.g/ can be
transverse to both u and g4ru. Hence h1 D h2, otherwise W1.h1/ and W1.h2/ would be transverse.
Thus fu; g4ru;w; h4r2 wg �W1.g/\W1.h2/ and Lemma 3.13 yields hg; h2i ' Z. Now, a power of g
coincides with a power of h2, hence it commutes with h. It follows that g and h commute.
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We conclude with the following lemma, which is actually independent from the notion of label-irreducibility
and from the discussion in the rest of this subsection, albeit in a similar spirit.

Lemma 3.15 Consider elements g1; g2 2A and vertices x1; x2 2 X such that the two sets W .xi jgixi /

are transverse. Then g1 and g2 commute and we have W1.gi /�W0.gj / for i ¤ j .

Proof We begin with the following observation:

Claim For w2W .X / and x; y 2X , the hyperplane w is transverse to W .xjy/ if and only if every vertex
in the set .W .xjy// is joined by an edge of � to every vertex in the set f.w/g[ .W .xjw//.

Proof Suppose first that w is transverse to W .xjy/. Then, since every hyperplane in W .wjx/ is disjoint
from w, we have W .wjx/� W .wjx; y/. Since W .xjy/ is transverse to W .wjx; y/, it is also transverse
to fwg [W .wjx/. It follows that every vertex in .W .xjy// is joined by an edge to every vertex in
f.w/g[ .W .xjw//, as required.

Suppose now instead that w is disjoint from a hyperplane u2W .xjy/. Choosing u so that it is closest to w,
we can assume that no hyperplane of W .xjy/ separates w and u. If the carriers of w and u intersect, then
.w/ and .u/ cannot be joined by an edge, as u and w are disjoint. Otherwise, there exists a hyperplane
v 2W .ujw/ such that its carrier intersects the carrier of u; in particular, .u/ and .v/ are not joined by
an edge. Since v does not separate x and y, we must have v 2W .wjx; y/, hence .v/ 2 .W .xjw//, as
required. G

Consider for a moment g 2A, x 2 X and n� 1. Since W .xjgnx/ is contained in the union W .xjgx/[

� � �[W .gn�1xjgnx/, we have .W .xjgnx//� .W .xjgx//. Thus, the claim implies that a hyperplane w
is transverse to W .xjgx/ if and only if it is transverse to

S
n2Z W .xjgnx/.

Now, consider the situation in the statement of the lemma. If x0i is the gate-projection of xi to C.gi /,
we have W .x0i jgix

0
i /� W .xi jgixi / and W1.gi /D

S
n2Z W .x0i jg

n
i x
0
i /. It follows that the sets W1.g1/

and W1.g2/ are transverse, or, equivalently, W1.gi / � W0.gj / for i ¤ j . This implies that g1 and
g2 commute (for instance, by decomposing gi into label-irreducible components as in Lemma 3.7 and
applying Corollary 3.14).

3.3.2 Convex-cocompact subgroups of RAAGs Again, we keep the notation from Section 3.2. We
will simply say that a subgroup G �A is convex-cocompact when G is convex-cocompact for the action
A Õ X (in the sense of Definition 3.1).

Lemma 3.16 Let G �A be convex-cocompact. If g 2G and g D a1 � � � � � ak is its decomposition into
label-irreducible components ai 2A, then there exists m� 1 such that all ami lie in G.

Geometry & Topology, Volume 28 (2024)



198 Elia Fioravanti

Proof Let A�G be a free abelian subgroup containing a power of g, such that no finite-index subgroup
of A is contained in a free abelian subgroup of G of higher rank. Since G is convex-cocompact,
Theorem 3.6 in [100] shows that there exists a convex, A–invariant, A–cocompact subcomplex Y � X
that splits as a product L1� � � � �Lp , where A'Zp and each Li is a quasiline. Replacing each Li with
a subcomplex, we can assume that all quasilines are A–essential.

Note that Y must contain an axis of g in X , hence its convex hull, which is isomorphic to:

C1.g/D C1.a1/� � � � � C1.ak/:

Since each ai is label-irreducible, Lemma 3.11 shows that C1.ai / is an irreducible quasiline. Up to
permuting the factors of Y , we can thus assume that Li ' C1.ai / for 1� i � k, where k � p.

Since the Li are locally finite, none of the groups AutLi contains subgroups isomorphic to Z2. It follows
that every projection of Zp ' A�

Q
i AutLi to a product of .p� 1/ factors must have nontrivial kernel.

Equivalently, there exist elements hi 2 A such that hi acts loxodromically on Li , and fixes pointwise
each Lj with j ¤ i . For each 1� i � k, the elements hi and ai stabilise a common copy of Li ' C1.ai /
inside Y , and act freely and cocompactly on it. It follows that hi and ai are commensurable, hence a
power of ai lies in A�G. This concludes the proof.

The exponent m in Lemma 3.16 can be chosen independently of g 2G due to the following.

Remark 3.17 Suppose that G � A is convex-cocompact and, more precisely, that there exists a G–
invariant, convex subcomplex Y � X such that the action G Õ Y .0/ has q orbits. Then, for every g 2A
such that hgi \G ¤ f1g, there exists 1� k � q such that gk 2G.

Indeed, consider N � 1 such that gN 2G. Since Y is G–invariant and acted upon without inversions, it
contains an axis ˛ for gN ; see [67]. Every axis of a power of g is, in fact, also an axis of g (this property
is specific to the action A Õ X ). Thus, picking any x 2 ˛, we have gix 2 Y for all i 2 Z. Hence there
exist 0� i < j � q such that gix and gjx are in the same G–orbit. Since A acts freely on X , we have
gj�i 2G and 0 < j � i � q.

3.4 CMP automorphisms of right-angled groups

This subsection is devoted to the proof of Proposition A. Automorphisms of hyperbolic groups were
already discussed in Example 2.28, so we are only concerned with right-angled Artin/Coxeter groups.

Let � be a finite simplicial graph. Let A D A� and W DW� be, respectively, the right-angled Artin
group and the right-angled Coxeter group defined by � .

We identify with �.0/ the standard generating sets of A and W . The standard Cayley graphs of A
and W are 1–skeleta of CAT.0/ cube complexes: the universal covers of the Salvetti and Davis complex,
respectively. Thus, A and W are each endowed with a natural median operator �� .
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Remark 3.18 We have g ���.x; y; z/ D ��.gx; gy; gz/ for all elements g; x; y; z in A or W . This
implies that .A; Œ�� �/ and .W; Œ�� �/ are coarse median groups, in the sense of Definition 2.24.

Unlike hyperbolic groups, A and W can admit infinitely many different coarse median structures. For
this reason, we will never omit the subscript in �� , in order to emphasise that this is the coarse median
structure provided by the standard generating set of A or W . Other Artin/Coxeter generating sets can
a priori give different coarse median structures; it will be a consequence of Proposition A(2) that this
does not actually happen in the Coxeter case.

It was shown by Laurence [75], Servatius [94] and Corredor and Gutierrez [35] that AutA and AutW
are generated by finitely many elementary automorphisms. These take the same form in both cases.

� Graph automorphisms Every automorphism of the graph � gives a permutation of the standard
generating sets that defines an automorphism of A and W .

� Inversions �v for each v 2 �.0/. We have �v.v/D v�1 and �v.u/D u for all u 2 �.0/ n fvg.

� Partial conjugations �w;C for w 2 �.0/ and a connected component C of � n stw. We have
�w;C .u/D w

�1uw if u 2 C .0/ and �w;C .u/D u if u 2 �.0/ nC .

� Transvections �v;w for v;w 2 �.0/ with lk v � stw. They are defined by �v;w.v/ D vw and
�v;w.u/D u for all u 2 �.0/ n fvg.
We refer to �v;w as a fold if v and w are not joined by an edge (equivalently, lk v � lkw), and as a
twist if v and w are joined by an edge (equivalently, st v � stw).

Remark 3.19 Graph automorphisms and inversions can be realised as automorphisms of the Sal-
vetti/Davis complex, so they preserve the operator �� (hence the coarse median structure Œ�� �).

In the case of right-angled Artin groups, the following class of automorphisms was introduced by Day [41]
and Charney, Stambaugh and Vogtmann [25].

Definition 3.20 An automorphism ' 2 AutA is untwisted if it lies in the subgroup U.A/ � AutA
generated by graph automorphisms, inversions, partial conjugations and folds.

We now proceed to prove parts (2) and (3) of Proposition A. We will treat separately the Coxeter and
Artin cases, as the simplest arguments appear to be quite different in spirit. Still, in both situations, the
following basic observation is important.

Remark 3.21 Let a group G act properly and cocompactly on two CAT.0/ cube complexes X and Y .
Let Œ�X � and Œ�Y � be the induced coarse median structures on G. If there exists an equivariant restriction-
quotient map � WX!Y , then Œ�X �D Œ�Y �. This is immediate from the third characterisation of restriction
quotients in Proposition 2.20.
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3.4.1 The Coxeter case Here our aim is to prove that all elements of AutW preserve the coarse median
structure Œ�� �. We will achieve this by showing that all elementary automorphisms of W restrict to
graph automorphisms on certain finite-index Coxeter subgroups of W . This guarantees that they are all
coarse-median preserving.

Given a vertex w 2 � , we denote by �.�;w/ the double of � n fwg along lkw. More precisely, �.�;w/
is obtained from two disjoint copies of the graph � n fwg by identifying the two subgraphs corresponding
to lkw. We continue to denote by lkw the resulting subgraph of �.�;w/, even though w does not appear
in �.�;w/ and so this is not the link of any vertex of �.�;w/.

Let ˛w WW!Z=2Z be the homomorphism that maps w to the generator of Z=2Z, and all other standard
generators of W to the identity.

Lemma 3.22 Consider a vertex w 2 � . Then:

(1) ker˛w is generated by fx j x 2 � n fwgg t fw�1yw j y 2 � n stwg.

(2) This is a Coxeter generating set giving an isomorphism between ker˛w and W�.�;w/.

(3) The coarse median structure Œ��.�;w/� induced on ker˛w by this isomorphism with W�.�;w/

coincides with the restriction of the coarse median structure Œ�� � on W .

Proof The first two parts are a straightforward application of the normal form for words in Coxeter
groups; see eg [39, Chapter 3.4]. We instead focus on part (3).

Let Y� and Y�.�;w/ be the universal covers of the Davis complexes of W and W�.�;w/. We aim to show
that, under the above identification between ker˛w and W�.�;w/, the standard action W�.�;w/ÕY�.�;w/
is a restriction quotient of the action ker˛w Õ Y� . This proves the lemma, since, by Remark 3.21, the
two actions then induce the same coarse median structure on ker˛w .

First, if��Y� is a fundamental domain for the W–action, note that�[w� is a fundamental domain for
ker˛w ÕY� . In addition, observe that ker˛w contains the entire W–stabiliser of a hyperplane u2W .Y�/
precisely when .u/ … stw. Thus, the orbit W �u is made up of two .ker˛w/–orbits of hyperplanes when
.u/ … stw, while it is a single .ker˛w/–orbit when .u/ 2 stw. Combining these two observations, the
reader should convince themselves that, starting with the action ker˛w Õ Y� and collapsing the single
orbit of hyperplanes u with .u/Dw, we obtain precisely the action W�.˛;w/ Õ Y�.˛;w/, as required.

Proposition 3.23 All automorphisms of W preserve the coarse median structure Œ�� �.

Proof Recall that AutW is generated by graph automorphisms, partial conjugations and transvections,
as defined above. We have already noticed in Remark 3.19 that graph automorphisms are coarse-median
preserving. We make two additional observations.
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� Every partial conjugation �w;C preserves the subgroup ker˛w �W . The restriction of �w;C to ker˛w
is a graph automorphism with respect to the identification ker˛w 'W�.�;w/ constructed in Lemma 3.22.

Indeed, the connected component C � � n stw gets doubled to two connected components C 0; C 00 of the
graph �.�;w/ n lkw. These two subgraphs correspond to the sets of generators C .0/ and w�1C .0/w
for ker˛w . The automorphism �w;C swaps these two sets of generators, while fixing all generators of
ker˛w corresponding to vertices of �.�;w/ n .C 0 [C 00/. This is realised by an automorphism of the
graph �.�;w/.

� Every transvection �v;w preserves ker˛v �W . The restriction of �v;w to ker˛v is a product of partial
conjugations with respect to the identification ker˛v 'W�.�;v/.

Indeed, if x2�nfvg, we have �v;w.x/Dx and �v;w.v�1xv/Dw�1.v�1xv/w. SettingA WD � n st v � � ,
we have �.�; v/D lk v tA0 tA00, where the subgraphs A0; A00 correspond, respectively, to the subsets
A.0/; v�1A.0/v �W . Let w0 2 A0 be the vertex originating from w 2 � . The set A00 is a union of
connected components of�.�; v/n lk v. Since lk v� stw in � , we have lk v� stw0 in�.�; v/, hence A00

is also a union of connected components of �.�; v/ n stw0. The composition of the partial conjugations
�w 0;C 2AutW�.�;v/, as C ranges through these connected components, is precisely the restriction of �v;w
to ker˛v.

Now, in view of Lemma 3.22 and Remark 3.19, partial conjugations and transvections each preserve
the restriction of the coarse median structure Œ�� � to a finite-index subgroup of W . Since finite-index
subgroups are coarsely dense in W , this implies that these automorphisms actually preserve Œ�� � itself,
proving the proposition.

3.4.2 The Artin case We begin by showing that untwisted automorphisms of A preserve the coarse
median structure Œ�� �. I present a proof that was suggested to me by Ric Wade, as it is much simpler
than my original brute-force argument.

The main ingredient is the construction of Salvetti blowups from the work of Charney, Stambaugh
and Vogtmann [25], which we record in the following lemma. Restriction quotients were discussed in
Section 2.5.

Lemma 3.24 Let ' 2 U.A�/ be a fold or partial conjugation. Then there exists a proper cocompact
action on a CAT.0/ cube complex A� ÕZ and two restriction-quotient maps �1; �2 WZ! X� such that ,
for all g 2A� , we have �1 ıg D g ı�1 and �2 ıg D '.g/ ı�2.

Proof This holds more generally when ' is a �–Whitehead automorphism, as defined at the beginning of
[25, Section 2.3]. Our statement is a straightforward rephrasing of [25, Lemma 3.2] in terms of universal
covers.

Corollary 3.25 Automorphisms in U.A/ preserve the coarse median structure Œ�� �.
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Proof Let ' 2U.A�/ be a fold or partial conjugation. Let the action A� ÕZ and maps �1; �2 WZ!X�
be as provided by Lemma 3.24, and let Œ�Z � be the coarse median structure on A� induced by Z. Since
�1 is A�–equivariant, Remark 3.21 guarantees that Œ�� �D Œ�Z �.

On the other hand, �2 becomes A�–equivariant if we endow X� with the '–twisted action: using the
notation from Remark 2.27, this corresponds to replacing X� with X '

�1

� , which induces the coarse median
structure .'�1/�Œ�� � on A� . Thus, another application of Remark 3.21 yields .'�1/�Œ�� �D Œ�Z �. We
conclude that '�Œ�� �D Œ�� �.

This shows that all folds and partial conjugations preserve Œ�� �. Graph automorphisms and inversions
are also coarse-median preserving, by Remark 3.19. Since these four types of elementary automorphisms
generate U.A/, this proves the corollary.

In order to complete the proof of Proposition A(3), we are left to show that all coarse-median preserving
automorphisms of A are untwisted. This can be easily deduced from the work of Laurence [75], as we
now describe.

Proposition 3.26 If ' 2 AutA preserves the coarse median structure Œ�� �, then ' 2 U.A/.

Proof In the terminology of [75, Section 2], an automorphism ' 2 AutA is conjugating if it preserves
the conjugacy class of each standard generator v 2 � . More generally, ' is simple if, for every v 2 � , the
image '.v/ is label-irreducible and v 2 �.'.v//; compare [75, Definition 5.3] and Definition 3.5 in our
paper.

Consider a coarse-median preserving automorphism ' D '0. By [75, Corollary to Lemma 4.5], there
exists a graph automorphism  1 such that, setting '1 WD  1', we have v 2 �.'1.v// for every generator
v 2 � . Since graph automorphisms are coarse-median preserving, '1 is again coarse-median preserving.
By Corollary 3.3 and Lemma 3.11(2), the element '1.v/ is label-irreducible for every v 2 � . Thus, '1 is
simple.

By the proofs of [75, Lemma 6.8] and [75, Corollary to Lemma 6.6], there exists a product of inversions,
folds and partial conjugations  2 such that '2 WD '1 2 is conjugating. Finally, by [75, Theorem 2.2], the
automorphism '2 is a product of partial conjugations. This shows that ' 2 U.A/, as required.

3.4.3 Pure automorphisms We end this subsection by introducing the subgroups U0.A/� U.A/ and
Aut0W � AutW generated by inversions, folds and partial conjugations (no graph automorphisms or
twists, in both cases). These are the subgroups appearing in the statements of Theorem C and Proposition D,
and we will study them further in Sections 4.5 and 5. For the time being, we limit ourselves to a few
quick observations.
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Remark 3.27 The subgroups U0.A/ � U.A/ and Aut0W � AutW have finite index. In the Coxeter
case, see eg [92, Proposition 1.2]. In the Artin case, it suffices to observe that U0.A/ is normalised by all
graph automorphisms, and that the latter generate a finite subgroup of U.A/.

Remark 3.28 Although they do not appear in our chosen generating set for U0.A/, graph automorphisms
of A can still lie in U0.A/. Indeed, confusing � 2Aut� with the induced � 2AutA, we have � 2U0.A/
if and only if lk �.v/D lk v for every v 2 � .

The “only if” part follows from Lemma 4.30. For the “if” part, it suffices to show that � 2U0.A/ whenever
� swaps two vertices of � with the same link and fixes the rest of � . In this case, � is a product of 3 folds
and 3 inversions, as described at the end of the proof of [43, Proposition 3.3].

Lemma 3.29 If '.A�/DA� for a full subgraph �� � and ' 2 U0.A/, then 'jA�
2 U0.A�/.

Proof We begin with a general observation. As in the proof of Proposition 3.26, we can write ' D �'1,
where � is a graph automorphism and '1 is a simple automorphism of A. Moreover, simple automorphisms
are products of inversions, folds and partial conjugations, so '1 2 U0.A/. We conclude that � 2 U0.A/,
and Remark 3.28 shows that lk �.v/D lk v for every v 2 � .

If v 2�, then v 2 �.'1.v// because '1 is simple. Thus

�.v/ 2 �.�.'1.v///D �.�'1.v//D �.'.v//��:

We deduce that �.�/D�, and Remark 3.28 shows that � jA�
2 U0.A�/. Since � and ' preserve A�,

so does '1, and it suffices to show that '1jA�
2 U0.A�/.

It is clear that '1jA�
is a simple automorphism of A�, so the fact that '1jA�

2 U0.A�/ follows again
from [75] as in the proof of Proposition 3.26.

4 Fixed subgroups of CMP automorphisms

This section is devoted to fixed subgroups of coarse-median preserving automorphisms of cocompactly
cubulated groups. Theorem B is proved in Sections 4.1 and 4.2, where we study the properties of those
subgroups of cocompactly cubulated groups that are approximate median subalgebras; see Theorem 4.10.
At the end of Section 4.2, we also prove Corollaries G and H.

Then in Sections 4.3 and 4.4, we develop a quasiconvexity criterion for approximate median subalgebras
of cube complexes (Proposition 4.25). This is used to prove Theorem C in Section 4.5; see Corollaries 4.34
and 4.35.

The reader interested only in Theorems F and I can just read the proof that Fix' is finitely generated
(Proposition 4.11) and skip the rest of this section in its entirety.
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4.1 Approximate median subalgebras

The goal of this subsection is to show that approximate median subalgebras (Definition 2.33) of median
spaces stay close to actual subalgebras. This is an important ingredient in the proofs of Theorem B and
Corollaries G and H, which will be discussed in the next subsection.

Shortly after the first draft of this paper appeared on arXiv, it was pointed out to me by Mark Hagen that a
similar result appears in the work of Bowditch [18, Proposition 4.1], which I was not aware of. Although
Propositions 4.1 and 4.2 below are more general and our proofs seem different, I want to emphasise that
Bowditch’s result would suffice for all applications in this paper.

Proposition 4.1 If X is a finite-rank median space and A� X is an approximate median subalgebra ,
then dHaus.A; hAi/ <C1.

The only focus of this subsection will actually be the next result, which provides an analogue of Remark 2.5.
From it, it is straightforward to deduce Proposition 4.1 proceeding as in Lemma 2.10, which we leave to
the reader.

Proposition 4.2 There exists a function h WN!N with the following property. IfM is a median algebra
of rank r and A�M is a subset , then hAi DMh.r/.A/.

We now obtain a sequence of lemmas leading up to Proposition 4.8, which proves Proposition 4.2.

Let M be a median algebra. We denote by M .M/ the collection of subsets of M of one of these three
forms:

� h, where h is a halfspace;

� h[ k, where h and k are transverse halfspaces;

� h[ k, where h and k are disjoint halfspaces.

Elements of M .M/ are to median subalgebras what halfspaces of M are to convex subsets. More
precisely, the following is a straightforward characterisation of the median subalgebra generated by a
subset A�M ; see for instance [99, II.4.25.7].

Lemma 4.3 For every subset A�M , the median subalgebra hAi �M is the intersection of all elements
of M .M/ containing A.

We will make repeated use of the following observation, without explicit mention:

Lemma 4.4 Given points a; b; c; d 2M , the three sets W .a; bjc; d/, W .a; cjb; d/ and W .a; d jb; c/ are
transverse to each other.
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x1

x2

x3

x4

x5

Figure 2: A pentagonal configuration in the 0–skeleton of a CAT.0/ square complex.

It is also convenient to give a name to the situation in Figure 2.

Definition 4.5 An ordered 5–tuple .x1; x2; x3; x4; x5/ 2M 5 is a pentagonal configuration if the five
sets W .xi�1; xi ; xiC1jxiC2; xiC3/ are all nonempty (indices are taken mod 5).

This requirement is invariant under cyclic permutations of the 5 points. Also note that, setting Wi WD

W .xi�1; xi ; xiC1jxiC2; xiC3/, the sets Wi and WiC1 are transverse for all i mod 5.

Lemma 4.6 Suppose that rkM � 2. Consider x 2 M with x D m.m.a1; a2; a3/; b; c/ for points
ai ; b; c 2M . Then one of the following happens:

� There exists 1� i � 3 such that x Dm.ai ; b; c/.

� There exist 1� i < j � 3 such that either x Dm.ai ; aj ; b/ or x Dm.ai ; aj ; c/.

� We have x Dm.a1; a2; a3/.

� The points a1; a2; a3; b; c can be ordered to form a pentagonal configuration.

Proof Set nD m.a1; a2; a3/. Consider the projections xai D m.ai ; b; c/ to the interval I.b; c/. Since
gate-projections are median morphisms, we have x Dm.xa1; xa2; xa3/.

Claim 1 If we are not in the 1st or 3rd case , we can assume that the four sets W .xjxa1/, W .xjxa2/,
W .xjxa3/ and W .a1; a2jb; c/ are all nonempty, and that W .a1; cja2; b/D∅.

Proof If one of the sets W .xjxai / is empty, then x D xai and we are in the 1st case. On the other
hand, if the sets W .ai ; aj jb; c/ are all empty for i ¤ j , then we are in the 3rd case. Indeed, since
W .njb; c/�

S
i<j W .ai ; aj jb; c/, we have n 2 I.b; c/, hence x Dm.n; b; c/D nDm.a1; a2; a3/.

Thus, up to permuting the ai , we can assume that W .a1; a2jb; c/ ¤ ∅. Since this is transverse to the
transverse sets W .a1; bja2; c/ and W .a1; cja2; b/, one of the latter must be empty. Swapping b and c if
necessary, we can assume that it is W .a1; cja2; b/. G

Claim 2 If we are not in the 4th case either , we can further assume that W .a1; a2; bja3; c/D∅.
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Proof Note that the assumptions in Claim 1 are left unchanged if we simultaneously swap b$ c and
a1$ a2. Thus, it suffices to show that we can suppose that at least one of the two sets W .b; a1; a2jc; a3/

and W .a1; a2; cja3; b/ is empty.

In order to do so, we assume that W .b; a1; a2jc; a3/ and W .a1; a2; cja3; b/ are both nonempty and show
that .b; a1; a2; c; a3/ is a pentagonal configuration. This places us in the 4th case.

Since W .a1; cja2; b/D∅ and x Dm.xa1; xa2; xa3/, where xai is the projection of ai to I.b; c/, we have

W .a2; c; a3jb; a1/�W .xa2; xa3jxa1/DW .xjxa1/¤∅;

W .a3; b; a1ja2; c/� W .xa3; xa1jxa2/DW .xjxa2/¤∅:

Moreover, since W .a1; a3jb; c/ is transverse to the nonempty transverse subsets W .b; a1; a2jc; a3/ and
W .a1; a2; cja3; b/, we have W .a1; a3jb; c/D∅. Hence W .c; a3; bja1; a2/DW .c; bja1; a2/¤∅. G

Claim 3 Under these assumptions , we have W .xjm.a1; a3; c//D W .b; cja1; a3/.

Proof By the properties of gate-projections, the set W .bjc/ does not intersect any of the sets W .ai jxai /.
Thus, since x Dm.xa1; xa2; xa3/, we must have

W .xjm.a1; a3; c//\W .bjc/DW .m.a1; a2; a3/jm.a1; a3; c//\W .bjc/

DW .a1ja3/\W .a2jc/\W .bjc/

DW .a1; a2; bja3; c/tW .a2; a3; bja1; c/D∅;

where we have used Claims 1 and 2 at the very end. Since x 2 I.b; c/, we have W .xjb; c/D∅. Thus,

W .xjm.a1; a3; c//D W .x; b; cjm.a1; a3; c//DW .b; cja1; a3/: G

In order to conclude the proof of the lemma, suppose for the sake of contradiction that we are not in the
2nd case, in addition to the assumptions of the claims. Then, Claim 3 implies

∅¤W .xjm.a1; a3; c//DW .b; cja1; a3/:

On the other hand, since W .a1; cja2; b/ and W .a1; a2; bja3; c/ are empty by Claims 1 and 2,

∅¤W .xjxa1/DW .xa2; xa3jxa1/D W .c; a2; a3jb; a1/�W .c; a3jb; a1/;

∅¤W .xjxa3/DW .xa1; xa2jxa3/D W .a1; a2; cja3; b/�W .a1; cja3; b/:

Since the three sets W .b; cja1; a3/, W .c; a3jb; a1/, W .a1; cja3; b/ are pairwise transverse, this violates
the assumption that rkM � 2. This proves the lemma.

Corollary 4.7 If T1 and T2 are rank-1 median algebras , then hAi DM.A/ for all A� T1 �T2.
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Proof The product T1 �T2 does not contain any pentagonal configurations. Otherwise, there would be
walls w1;w2;w3;w4;w5 with each wi transverse to wiC1. If w1 originates from the factor T1, say, then
w2 must originate from T2 and, continuing like this, w5 again originates from T1. Since w5 and w1 are
transverse, this would contradict the fact that rkT1 D 1.

Thus, the 4th case of Lemma 4.6 never occurs, hence M2.A/DM.A/ for all A� T1 �T2.

For the next result, let us consider the functions f; g; h WN!N given by

f .n/D 22
n

; g.n/D 1Cf
�
1
2
n.n� 1/

�
; h.n/D ng.n/Cn:

Proposition 4.8 Given a median algebra M and a subset A�M , the following hold :

(1) If #A� n, then hAi DMf .n/.A/.

(2) If M can be embedded in a product of d rank-1 median algebras , then hAi DMg.d/.A/.

(3) If rkM � r , then hAi DMh.r/.A/.

Proof Part (1) is immediate from most constructions of the free median algebra on the set A; for instance,
see [15, Lemma 4.2] and the subsequent paragraph.

Regarding part (2), let us fix an injective median morphism M ,! T1�� � ��Td , where the Ti have rank 1.
Let �ij WM ! Ti �Tj denote the composition with the projection to Ti �Tj . Given x 2M , Lemma 4.3
implies that x 2 hAi if and only if �ij .x/ 2 h�ij .A/i for all 1� i < j � d .

Since each �ij is a median morphism, Corollary 4.7 shows that

h�ij .A/i DM.�ij .A//D �ij .M.A//:

Thus, given x 2 hAi, there exist points mij 2M.A/ such that �ij .x/D �ij .mij /. It follows that

x 2 hfmij j 1� i < j � dgi:

Since there are at most 1
2
d.d � 1/ distinct points mij , part (1) yields

hfmij j 1� i < j � dgi DMg.d/�1.fmij j 1� i < j � dg/�Mg.d/�1.M.A//DMg.d/.A/:

Hence hAi �Mg.d/.A/.

Finally, let us prove part (3). Since rkhAi � rkM , we can safely assume that M D hAi. Consider two
points a; b 2M and recall that the gate-projection �ab WM ! I.a; b/ is given by �ab.x/Dm.a; b; x/.
By Dilworth’s lemma, the interval I.a; b/�M can be embedded in a product of r rank-1 median algebras
for all a; b 2M ; cf [16, Proposition 1.4].

If B �M is a subset with hBi DM and a; b 2 B , then part (2) yields

I.a; b/D �ab.M/D �ab.hBi/D h�ab.B/i DMg.r/.�ab.B//D �ab.Mg.r/.B//�Mg.r/C1.B/:
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It follows that J .B/�Mg.r/C1.B/ for every subset B �M with hBi DM . Observing that

J kC1.B/D J .J k.B//�Mg.r/C1.J k.B//;

we inductively obtain Jm.B/�Mm.g.r/C1/.B/ for all m� 1. In particular, by Remark 2.5,

hAi � HullAD J r.A/�Mr.g.r/C1/.A/DMh.r/.A/:

This concludes the proof of the proposition.

Remark 4.9 The bounds provided by Proposition 4.8 are highly nonsharp. For instance, if rkM � 2,
a slightly more careful use of Lemma 4.6 would show that hAi DM2.A/ for every A�M , while the
proposition only gives hAi DM244.A/. For the purposes of this paper, we only care that such bounds
exist and only depend on the rank of M .

4.2 Approximate subalgebras of cubulated groups

This subsection is devoted to the proof of Theorem B and to a few examples of how this result can fail
for automorphisms that do not preserve the coarse median structure (Example 4.13). Towards the end, we
use similar techniques to prove Corollaries G and H.

Our main focus will be the following result. Recall that, if ' is a coarse-median preserving automorphism
of a cocompactly cubulated group, Lemma 2.35 guarantees that the subgroup Fix' is an approximate
median subalgebra. Thus, Theorem B immediately follows from:

Theorem 4.10 Let G ÕX be a proper cocompact action on a CAT.0/ cube complex. Let Œ�X � be the
induced coarse median structure on G. If a subgroup H � G is an approximate median subalgebra of
.G; Œ�X �/, then:

(1) H is finitely generated and undistorted in G.

(2) H admits a proper cocompact action on a CAT.0/ cube complex.

As a first step, we need to show that the subgroup H in Theorem 4.10 is finitely generated. The proof of
this is a straightforward adaptation of an argument due to Cooper and Paulin [33; 86] for fixed subgroups
of automorphisms of hyperbolic groups.

Proposition 4.11 Let G ÕX be a proper cocompact action on a CAT.0/ cube complex. If a subgroup
H �G is an approximate median subalgebra of .G; Œ�X �/, then H is finitely generated.

Proof Fix a base vertex p 2X . The main observation is the following:

Claim If xn 2H �p is a diverging sequence , then there exists an element h 2H such that d.p; hxn/ <
d.p; xn/ holds for infinitely many values of n.
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Proof Since H is an approximate median subalgebra of .G; Œ�X �/, there exists L � 0 such that all
medians of points in H �p lie in the L–neighbourhood of H �p in X .

Passing to a subsequence, we can assume that the vertices xn converge to a point in the Roller boundary
� 2 @X . Recalling that X .0/ is discrete in the Roller compactification and that the median map is
continuous, there exist integers M.n/� 0 such that, for every m�M.n/, we have

m.p; xn; �/Dm.p; xn; xm/:

In particular, there exist elements hn 2H such that hnp is L–close to m.p; xn; �/.

Now, since xn! � , the medians m.p; xn; �/ diverge, and so do the points hnp. In particular, there exist
indices i < j such that

d.p; hip/C 2L < d.p; hjp/:

Since, for m�M.j /, the point hjp is L–close to the median m.p; xj ; xm/, we also have

d.p; hjp/C d.hjp; xm/� d.p; xm/C 2L:

In conclusion, setting h WD hih�1j , we obtain, for all m�M.j /,

d.p; hxm/D d.p; hih
�1
j xm/� d.p; hip/C d.hip; hih

�1
j xm/D d.p; hip/C d.hjp; xm/

� d.p; hip/C d.p; xm/� d.p; hjp/C 2L

< d.p; xm/: G

Now, suppose for the sake of contradiction that H is not finitely generated. Write H as the union of an
infinite ascending chain of subgroups H1 ŒH2 Œ � � � , where HnC1 D hHn; hnC1i for some hnC1 2H .
Possibly replacing hnC1, we can assume that the point xnC1 WD hnC1p minimises the distance to p
within the set HnhnC1 �p.

The claim provides an element h 2 H such that d.p; hxn/ < d.p; xn/ occurs infinitely often. Since
h 2H , there exists N � 0 such that h 2Hn for all n�N . This contradicts the fact that xnC1 minimises
the distance to p within Hn � xnC1 for n�N .

Along with Propositions 4.1 and 4.11, the following is the only missing ingredient in the proof of
Theorem 4.10. We refer the reader to the proof sketched in the introduction.

Lemma 4.12 Let GÕX be a proper cocompact action on a CAT.0/ cube complex. Consider a subgroup
H � G. Suppose that there exists an H–invariant median subalgebra M � X .0/ such that the action
H ÕM is cofinite. Then:

(1) H is finitely generated and undistorted in G.

(2) H admits a proper cocompact action on a CAT.0/ cube complex.
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Proof Halfspaces and hyperplanes of the cube complex X , as usually defined, correspond exactly to
halfspaces and hyperplanes of the median algebra X .0/. As customary, we write H .X/ and W .X/ to
mean H .X .0// and W .X .0//. By Remark 2.2(1), we have a natural surjection resM WHM .X/!H .M/.

Since H acts cofinitely on the subalgebra M , it is an approximate median subalgebra of .G; Œ�X �/ and
Proposition 4.11 implies that H is finitely generated. Thus, every H–orbit in X is coarsely connected
and, since H ÕM is cofinite, M is coarsely connected as well. It follows that there exists a uniform
upper bound m to the cardinality of the fibres of the map resM .

As in [89, Section 10; 31, Theorem 6.1], we can construct a CAT.0/ cube complex X.M/ such that M
is naturally isomorphic to the median algebra X.M/.0/. Given x; y 2M , let us denote by d.x; y/ and
dM .x; y/ their distance in the 1–skeleta of X and X.M/, respectively.

By construction, dM .x; y/ coincides with the number of walls of M separating x and y. It follows from
the above discussion on resM that

dM .x; y/� d.x; y/�m � dM .x; y/

for all x; y 2 M . Thus, the identification between X.M/.0/ and M � X .0/ gives a quasi-isometric
embedding X.M/!X that is equivariant with respect to the inclusion H ,!G.

The action H Õ .M; dM / is cofinite by assumption, and it follows from the above inequalities that it is
also proper. This shows that the induced action H ÕX.M/ is proper and cocompact, proving part (2).
The Milnor–Schwarz Lemma now implies that the inclusion H ,! G is a quasi-isometric embedding,
which proves part (1).

Proof of Theorem 4.10 For any vertex p 2 X , the orbit H �p is an approximate median subalgebra
of X . By Proposition 4.1, the subalgebra M WD hH �pi is at finite Hausdorff distance from H �p. Since
X is locally finite, it follows that the action H Õ M is cofinite, hence Lemma 4.12 shows that H is
finitely generated, undistorted and cocompactly cubulated.

As discussed above, this completes the proof of Theorem B. The next example shows that, even for
automorphisms of RAAGs, all of the claims in the statement of Theorem B can fail if the automorphism
does not preserve the coarse median structure.

Example 4.13 Here is a recipe to construct automorphisms with unpleasant fixed subgroups. Consider a
group G and a homomorphism ˛ WG! Z. These data define an automorphism  2 Aut.G �Z/ by the
formula

 .g; n/ WD .g; nC˛.g//:

It is clear that Fix D ker˛�Z.

Now, consider the situation where G is a right-angled Artin group A� and ˛ WA� ! Z takes all standard
generators to C1. The resulting automorphism  2 Aut.A� �Z/ is a product of finitely many twists (as
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defined in Section 3.4) and we have Fix D BB� �Z, where BB� denotes the Bestvina–Brady subgroup
of A� ; see [8].

We apply this construction to obtain examples where Fix fails to have the three properties provided by
Theorem B.

(1) The subgroup BB� is finitely generated if and only if � is connected [80]. For instance, there exists
 2 Aut.F2 �Z/ such that Fix is not finitely generated.

(2) If A� is freely irreducible, directly irreducible and noncyclic, then BB� is finitely generated and
quadratically distorted [98, Theorem 1.1]. This gives examples where Fix is finitely generated,
but distorted.

(3) As shown in [8, Main Theorem], the finiteness properties and homological finiteness properties
of BB� are governed by the homology and homotopy groups of the flag simplicial complex L�
determined by � . The same is true of Fix D BB� �Z; see [79; 22]. In particular, if L� is not
contractible, then Fix is not of type F (hence not cocompactly cubulated, since there is no torsion).
This can even be achieved while ensuring that Fix' is undistorted: by [98, Theorem 1.1], it suffices
to make sure that A� splits as a product.

We emphasise that, by embedding A� � Z as a parabolic subgroup of a larger RAAG and suitably
extending the automorphism  , we can ensure that all these bad behaviours also occur for automorphisms
of irreducible RAAGs.

We conclude this subsection by proving Corollaries G and H. All that is required is Proposition A,
Proposition 4.1 and (part of) Lemma 4.12.

Proof of Corollary G Let H � G be a finite-index subgroup with a proper cocompact action on a
CAT.0/ cube complex H ÕX . Replacing H with a finite-index subgroup, it is not restrictive to suppose
that H CG. By our assumption, the conjugation action GÕH preserves the coarse median structure Œ��
induced on H by H ÕX .

It is well-known that the concept of induced representation can be generalised to actions on metric spaces;
see eg [21, Section 2.1] or [9, Section 2.2]. In our context, this yields a proper action G ÕX1� � � � �Xn,
where n is the index of H in G and each Xi is isomorphic to X . Since H is normal, each factor is
preserved by H and each action H ÕXi can be made equivariantly isomorphic to H ÕX by twisting it
by an automorphism of H corresponding to a conjugation by an element of G.

Since Œ�� is preserved by the conjugation action G ÕH , it is the coarse median structure induced by
all the cubulations H Õ Xi . This implies that, for every finite subset A � X .0/, the orbit H �A is an
approximate median subalgebra. Since H is normal, we can choose a finite subset A�X .0/ so that H �A
is G–invariant. Proposition 4.1 guarantees that the G–invariant median subalgebra M WD hH �Ai is at
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finite Hausdorff distance from H �A. Since each Xi is locally finite, this implies that the action G ÕM

is cofinite.

Since M is a discrete median algebra, the natural CAT.0/ cube complex X.M/ with M as its 0–skeleton
(as in [89, Section 10] or [31, Theorem 6.1]) gives the required cocompact cubulation of G. Here
properness of the G–action on X.M/ can be checked as in the proof of Lemma 4.12, using the fact
that M is coarsely connected to conclude that X.M/ and

Q
Xi induce bi-Lipschitz equivalent metrics

on M .

Proof of Corollary H Let G D A� or G D W� . Consider a finite subgroup F � OutG as in the
statement. Let � WAutG!OutG be the quotient projection. Our goal is to construct a proper, cocompact
action on a CAT.0/ cube complex ��1.F / Õ Y . We can then take Q to be the quotient of Y by the
finite-index normal subgroup G ' ker� C ��1.F /.

Let G ÕX be the standard action on the universal cover of the Salvetti/Davis complex. In both cases,
Proposition A shows that F preserves the coarse median structure on G induced by this action. Thus,
Corollary G provides the required proper cocompact action ��1.F /Õ Y .

4.3 Staircases in cube complexes

In the rest of Section 4, our goal is to obtain a quasiconvexity criterion for median subalgebras of cube
complexes, which will lead to the proof of Theorem C. Ultimately, we will restrict to universal covers of
Davis/Salvetti complexes for right-angled groups and an important point will be that they do not admit
infinite staircases.

In this subsection, we study staircases in general CAT.0/ cube complexes.

Definition 4.14 Let M be a median algebra.

(1) A length-n staircase in M is the data of two chains of halfspaces h1 © � � �© hn and k1 © � � �© kn

such that hi is transverse to kj for j � i , while kiC1 ¨ hi .

(2) The staircase length of M is the supremum of n 2N such that M has a length-n staircase.

Figure 3 depicts part of a staircase of length � 5.

When speaking of staircases in relation to a CAT.0/ cube complex X , we always refer to the median
algebra M DX .0/. Note that the above notion of staircase seems to be a bit more general than the one in
[63, page 51]: given hyperplanes bounding halfspaces as in Definition 4.14, there might not be a convex
subcomplex of X with exactly these hyperplanes.

In view of the following discussion, it is convenient to introduce a notation for gate-projections to
intervals. Given a median algebra M and points x; y 2M , we denote by �xy WM ! I.x; y/ the map
�xy.z/Dm.x; y; z/.
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Lemma 4.15 Let M be a median algebra of rank r and staircase length d . If there exist halfspaces
k1 © � � �© kn and points x; y 2 k�1 such that �xy.k1/© � � �© �xy.kn/, then n� 2rd .

Proof The sets Ci WD �xy.ki / are convex, for instance by [50, Lemma 2.2(1)]. Since CiC1 ¨ Ci , there
exist halfspaces hi 2H .M/ such that hi 2HCi

.M/ and CiC1 � hi .

Since both hi and h�i intersect Ci � I.x; y/, we have hi 2H .xjy/tH .yjx/ for all i . Possibly swapping
x and y, we can assume that at least n=2 of the hi lie in H .xjy/. By Dilworth’s lemma, there exist
k � n=2r and indices i1< � � �< ik such that hi1 ; : : : ; hik lie in H .xjy/ and no two of them are transverse.
Up to reindexing, we can assume that these are h1; : : : ; hk .

Since Cj is contained in hi if and only if j > i , we must have h1 © � � �© hk . Note that y 2 hi \ k�j and
x 2 h�i \ k�j for all i; j . If j � i , we have hi 2HCj

.X/, hence hi \ kj and h�i \ kj are both nonempty.
This shows that hi and kj are transverse for j � i , while the fact that CiC1 � hi implies that kiC1 � hi .
In conclusion, the hi and kj form a length-k staircase with k � n=2r . Since M has staircase length d ,
we have n� 2rk � 2rd .

Lemma 4.16 Let X be a CAT.0/ cube complex of dimension r and staircase length d . Consider vertices
x; y 2X and z 2 I.x; y/. Let ˛ � I.x; z/ be a (combinatorial ) geodesic from x to z. Then the median
subalgebra M DX .0/\ I.x; y/\��1xz .˛/ has staircase length � d.1C 2r2/.

Proof Since �xz.y/D z and x; z 2 ˛, the three points x; y; z all lie in M . Since M � I.x; y/, every
wall of M separates x and y. Recall that we use the notation H .X/ and W .X/ with the meaning of
H .X .0// and W .X .0//.

Claim 1 If u; v 2W .M/ separate x and z, then u and v are not transverse.

Proof Pick halfspaces yh;yk 2H .X/\H .xjz/ such that h WD yh\M 2H .M/ is bounded by u and
k WD yk\M is bounded by v; this is possible by Remark 2.2(1). The intersections yh\ ˛ and yk\ ˛ are
subsegments of ˛ containing z. Without loss of generality, we have yh\˛ �yk\˛. Then yh\yk�\˛ D∅,
hence ∅D yh\yk�\M D h\ k�, proving the claim. G
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Claim 2 If yh;yk 2H .zjy/ are halfspaces of X , then yh and yk are transverse if and only if yh\M and
yk\M are transverse halfspaces of M .

Proof Since �xz.I.z; y//D fzg, the vertex set of the interval I.z; y/�X is entirely contained in M .
Thus, I.z; y/ is a convex subset of both X and M . Remark 2.2(2) then shows that yh and yk are transverse
if and only if yh\ I.z; y/ and yk\ I.z; y/ are transverse, if and only if yh\M and yk\M are transverse. G

Now, suppose thatM contains a length-n staircase. ThusM has halfspaces h1© � � �©hn and k1© � � �© kn

such that each hi is transverse to all kj with j � i , while kiC1 � hi .

Since kn � hn�1 � h1, we have either fh1; kng �H .xjy/ or fh1; kng �H .yjx/. If we replace all hi
and kj with k�n�iC1 and h�n�jC1, respectively, we obtain another length-n staircase. Thus, we can assume
that fh1; kng �H .xjy/. It follows that all hi and kj lie in H .xjy/.

Let 0 � a; b � n be the largest indices such that z 2 hi and z 2 kj hold for 1 � i � a and 1 � j � b.
Since h1 and k1 are transverse, Claim 1 shows that they cannot both lie in H .xjz/. Thus minfa; bg D 0.
Since kaC2 � haC1, we have z … kaC2, hence b � aC 1. In conclusion, either b D 0, or .a; b/D .0; 1/.

The halfspaces hi ; kj with i; j >maxfa; bg all lie in H .zjy/ and form a staircase of length n�maxfa; bg.
By Remark 2.2(1) and Claim 2, this determines a staircase of halfspaces of X . Since X has staircase
length d , we deduce that n�maxfa; bg � d .

If b D 1 and aD 0, we get n� d C 1 and we are done. If instead b D 0, then n� aCd and the proof is
completed with the following claim:

Claim 3 If b D 0, then a � 2r2d .

Proof As a recap, M has halfspaces h1 © � � �© ha in H .xjz; y/ and k1 © � � �© ka in H .x; zjy/ forming
a length-a staircase. By Remark 2.2(1), there exist halfspaces yhi ;ykj 2H .X/ such that hi D yhi \M and
ki Dyki \M .

By Dilworth’s lemma, there exist a0 � a=r and indices 1� j1 < � � �< ja0 � a such that no two among
ykj1
; : : : ;ykja0

are transverse. Thus, up to reindexing, we can assume that yk1 © � � �© yka0 .

Now, since the hi and kj form a staircase in M and yhi 2H .xjz/, we have, for every 1� j � a0,

� ∅D h�j \ kjC1 D yh
�
j \
ykjC1\M , hence �xz.ykjC1/\yh�j \˛ D∅;

� ∅¤ h�j \ kj D yh
�
j \
ykj \M , hence �xz.ykj /\yh�j \˛ ¤∅.

Note moreover that x; z 2 yk�1 . If we had a0 > 2rd , Lemma 4.15 would imply that there exists j with
�xz.ykj /D �xz.ykjC1/. However, �xz.ykj / intersects yh�j \˛ while �xz.ykjC1/ does not.

We conclude that a � ra0 � 2r2d , as required. G

As discussed before Claim 3, this proves the lemma.

Geometry & Topology, Volume 28 (2024)



Coarse-median preserving automorphisms 215

Recall that, if � is a finite simplicial graph, X� and Y� denote the universal covers, respectively, of the
Salvetti complex for A� and the Davis complex for W� .

Lemma 4.17 The staircase length of X� and Y� is at most #�.0/.

Proof We only run the proof for X� , since the argument for Y� is identical. The important property,
shared by both complexes, is that there is a map  WW .X�/! �.0/ such that, if u; v are hyperplanes with
intersecting carriers, then u and v are transverse if and only if .u/ and .v/ are joined by an edge of
� . For simplicity, let us extend the map  to H .X�/, simply by composing it with the two-to-one map
H .X�/!W .X�/ pairing each halfspace with its hyperplane.

Consider halfspaces h1 © � � �© hn and k1 © � � �© kn such that hi is transverse to all kj with j � i , while
kiC1 ¨ hi . We define the following subsets of �.0/:

�j WD .k
�
1/[ .W .k�1jkj //[f.kj /g:

It is clear that �j � �jC1 for all j � 1. The lemma is immediate from the following claim:

Claim We have �j ¨ �jC1 for all j � 1.

Suppose for the sake of contradiction that, for some j � 1, we have �jC1 D �j .

Given j 2H .h�j jkjC1/, we have j\ k1 � kjC1 ¤ ∅. Moreover, j� \ k1 ¤ ∅ and j� \ k�1 ¤ ∅, since j�

contains h�j , which is transverse to k1. Thus, for each j 2H .h�j jkjC1/, there are only two possibilities:
either

(a) j\ k�1 D∅, hence j� k1 and j 2H .k�1jkjC1/; or

(b) j is transverse to k1.

Note that no halfspace of type (a) can contain a halfspace of type (b). Moreover, each j of type (b)
is also transverse to kj : we have j\ kj � kjC1 ¤ ∅, j\ k�j � j\ k�1 ¤ ∅, j� \ kj � h�j \ kj ¤ ∅ and
j�\ k�j � j�\ k�1 ¤∅. Thus, every j of type (b) is transverse to the set H .k�1jkj /[fk

�
1; kj g.

Now, consider a maximal chain of halfspaces j1 © � � �© jm in H .h�j jkjC1/ with m� 0. We can enlarge
this chain by adding j0 WD hj and jmC1 D kjC1, which are, respectively, of type (b) and (a). Thus, there
exists an index 0� k �m such that j0; : : : ; jk are of type (b) and jkC1; : : : ; jmC1 are of type (a). Since
the chain is maximal, the set W .j�

k
jjkC1/ is empty. Thus, since jk and jkC1 are not transverse, the labels

.jk/ and .jkC1/ are not joined by an edge of � .

However, since �jC1 D �j , we have

.jkC1/ 2 .W .k�1jkjC1//[f.k
�
1/; .kjC1/g D .W .k�1jkj //[f.k

�
1/; .kj /g;

while jk is transverse to H .k�1jkj /[fk
�
1; kj g, a contradiction. This proves the claim and lemma.
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4.4 A quasiconvexity criterion for median subalgebras

In this subsection, we provide a criterion (Proposition 4.25) for when a median subalgebra M of a
CAT.0/ cube complex X is quasiconvex. The subalgebra M will be required to satisfy two conditions,
edge-connectedness and weak quasiconvexity, which we study separately in the next two subsections.

4.4.1 Edge-connected median subalgebras Let X be a CAT.0/ cube complex.

Definition 4.18 A subset A � X .0/ is edge-connected if, for all x; y 2 A, there exists a sequence of
points x1; : : : ; xn 2 A such that x1 D x, xn D y and, for all i , the points xi and xiC1 are joined by an
edge of X .

Remark 4.19 If A�X .0/ is edge-connected, then there do not exist distinct halfspaces h; k 2HA.X/

with h\AD k\A. Indeed, the intersections h\ k and h� \ k� would both be nonempty, so, possibly
swapping h and k, we would either have h ¨ k or h and k would be transverse. However, since A is
edge connected and intersects both h\ k and h�\ k�, we must have A\ h�\ k¤∅ if h ¨ k, and either
A\ h�\ k¤∅ or A\ h\ k� ¤∅ if h and k are transverse. This contradicts the fact that h\AD k\A.

Lemma 4.20 For a median subalgebra M �X .0/, the following are equivalent :

(1) M is edge-connected.

(2) For all x; y 2M , there exists a geodesic ˛ �X joining x and y such that ˛\X .0/ �M .

(3) The restriction map resM WHM .X/!H .M/ is injective.

Proof The implication (2) D) (1) is clear and the implication (1) D) (3) follows from Remark 4.19.
Let us show that (3) D) (2).

SinceM is a discrete median algebra, it is isomorphic to the 0–skeleton of a CAT.0/ cube complexX.M/;
see [31, Theorem 6.1] or [89, Section 10]. Given x; y 2 M , let ˇ � X.M/ be a geodesic joining x
and y, and let x1 D x; x2; : : : ; xn D y be the elements of ˇ \M as they appear along ˇ. Since the
restriction map resM WHM .X/!H .M/ is injective, there is only one hyperplane wi 2W .X/ separating
xi and xiC1, that is, these two points are joined by an edge of X . If i ¤ j , then wi ¤ wj , or ˇ
would cross the corresponding wall of M twice. We conclude that there exists a geodesic ˛ �X with
˛\M D fx1; : : : ; xng.

By the 3rd characterisation in Lemma 4.20, edge-connected subalgebras can be viewed as a middle ground
between general median subalgebras and convex subcomplexes; cf part (2) of Remark 2.2.

Lemma 4.21 If A�X .0/ is an edge-connected subset , then hAi is an edge-connected subalgebra.

Proof Suppose for the sake of contradiction that hAi is not edge-connected. Then there exist distinct
halfspaces h; k 2 HhAi.X/ with h \ hAi D k \ hAi by Lemma 4.20. Note that h; k 2 HA.X/, and
h�\ k\AD∅ and h\ k�\AD∅. In particular, h\AD k\A, which violates Remark 4.19.
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Lemma 4.22 Let M � X .0/ be an edge-connected median subalgebra. Let C � X be a convex
subcomplex with gate-projection � WX ! C . Then:

(1) �.M/ is an edge-connected subalgebra of C .0/.

(2) If N � �.M/ is an edge-connected subalgebra , then M \��1.N / is edge-connected as well.

Proof If vertices x; y 2X are joined by an edge, then either �.x/ and �.y/ are joined by an edge or
they are equal. Thus, part (1) is immediate from definitions.

Let us address part (2). Consider two points x; y 2M \ ��1.N /. Since N is edge-connected, there
exists a geodesic ˛ � C joining �.x/ and �.y/ with ˛\C .0/ �N ; see Lemma 4.20. It suffices to show
that M \��1.˛/ is edge-connected.

In fact, since ��1.v/\M ¤ ∅ for every vertex v 2 ˛, it suffices to show that M \ ��1.e/ is edge-
connected for every edge e� ˛. In other words, we can suppose that �.x/ and �.y/ are joined by an edge
e � C . Since M is edge-connected, there exists a geodesic ˇ �X joining x and y with ˇ\X .0/ �M .
Since � is a median morphism, the projection �.ˇ/ is the image of a geodesic from �.x/ to �.y/,
ie �.ˇ/D e. Thus ˇ\X .0/ �M \��1.e/, concluding the proof.

4.4.2 Weakly quasiconvex median subalgebras Let X be a CAT.0/ cube complex.

Definition 4.23 A subset A�X .0/ is weakly quasiconvex if there exists a function � WN!N such that,
for all a; b; p 2X .0/ with W .pja/ transverse to W .pjb/, we have

d.p;A/� �
�
maxfd.a; A/; d.b; A/g

�
:

Remark 4.24 (1) If A � X .0/ is quasiconvex in the sense of Definition 2.30, then A is weakly
quasiconvex. Indeed, suppose that J .A/�NR.A/ and set D Dmaxfd.a; A/; d.b; A/. If W .pja/

and W .pjb/ are transverse, then p 2 I.a; b/. Thus, p 2 J .ND.A// and Lemma 2.10 yields
d.p;A/� 2DCRDW �.D/.

(2) If A;B �X .0/ have finite Hausdorff distance, then A is weakly quasiconvex if and only if B is.
This is straightforward, observing that � can always taken to be weakly increasing.

The following is the main result of this subsection.

Proposition 4.25 If X has finite dimension and finite staircase length , then every edge-connected ,
weakly quasiconvex median subalgebra M �X .0/ is quasiconvex.

Proposition 4.25 fails for cube complexes of infinite staircase length, as the next example shows.
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Example 4.26 Consider the standard structure of cube complex on R2. Let ˛ be the geodesic line
through all points .n; n/ and .nC 1; n/ with n 2 Z. Let X � R2 be the subcomplex that lies above ˛,
including ˛ itself. Note that X is a 2–dimensional CAT.0/ cube complex of infinite staircase length, and
˛ � X is an edge-connected median subalgebra that is not quasiconvex. It is not hard to see that ˛ is
weakly quasiconvex with �.t/D 2t .

The next lemma essentially proves the 2–dimensional case of Proposition 4.25.

Lemma 4.27 Suppose that dimX D 2 and that X has staircase length d . Let M � X .0/ be an edge-
connected median subalgebra. Consider x; y 2M and z 2X .0/\ I.x; y/. Then there exist 0� k � d
and vertices z0; z1; z2; : : : ; zk 2 I.x; y/ and w1; : : : ; wk 2 I.x; y/ such that

� z0 D z, while zk 2M and w1; : : : ; wk 2M ;

� the sets W .zi jwiC1/� W .X/ and W .zi jziC1/� W .X/ are transverse for all 0� i � k� 1.

Proof If z 2M , we can simply take k D 0. If z …M , we begin with the following observation:

Claim We can assume that there exist transverse hyperplanes u 2 W .x; zjy/ and v 2 W .y; zjx/ such
that x; z lie in the carrier of u and y; z lie in the carrier of v.

Proof Up to replacing x and y with other points in the interval I.x; y/, we can assume that there do not
exist points x0; y0 2 I.x; y/ with z 2 I.x0; y0/, except for fx0; y0g D fx; yg.

Since M is edge-connected, there exists a point x0 2M \ I.x; y/ such that x and x0 are separated by a
single hyperplane u 2 W .X/. By the above assumption on x and y, we must have z … I.x0; y/, hence
∅¤W .zjx0; y/DW .z; xjx0; y/� fug. It follows that W .z; xjx0; y/D fug.

Observing that W .zju/ � W .zjx0; y/D W .z; xjx0; y/D fug, we conclude that W .zju/ is empty. This
shows that the carrier of u contains z, while it is clear that it also contains x. The existence of v is
obtained similarly. Finally, since v 2W .y; zjx/ and v¤ u, we must have v 2W .y; zjx; x0/. Recalling
that u 2W .z; xjx0; y/, this shows that u and v are transverse. G

Now, the sets H .zjx/ and H .zjy/ are transverse, respectively, to u and v. Since dimX D 2, the set
H .zjx/ is a descending chain h1 © � � �© hm, and H .zjy/ is a descending chain k1 © � � �© kn. Note that
k1 and h1 are bounded, respectively, by u and v, as depicted in Figure 4.

Since h1 and k1 are transverse, there exists a function � W f1; : : : ; mg!f1; : : : ; ng such that hi is transverse
to kj if and only if 1� j � �.i/. Note that �.1/D n and that � is weakly decreasing.

Let 1� i1 < � � �< ik�1 <m be all indices i with �.iC1/ < �.i/. Also define ik WDm and set �s WD �.is/
for simplicity. Since the halfspaces h�ik ; : : : ; h

�
i1

and k�k
; : : : ; k�1

form a length-k staircase, while X has
staircase length d , we must have k � d .
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h1

his
hisC1
hisC1

k1 k�sC1

uzk D x

y D w1z0 D z

zs

z1

Figure 4

Set z0 D z and w1 D y. For 1 � s � k, let zs 2 I.x; y/ be the point with H .zjzs/D fh1; : : : ; hisg. In
particular, zk D x 2M . Since M is edge-connected, there exist points

wsC1 2M \ his \ h�isC1\ k��sC1C1
:

Observing that H .zsjwsC1/ � fk1; : : : ; k�sC1
g is transverse to H .zsjzsC1/ D fhisC1; : : : ; hisC1

g, this
completes the proof of the lemma.

The next lemma allows us to reduce the proof of Proposition 4.25 to the 2–dimensional case.

Lemma 4.28 Let X have dimension r and staircase length d . Let M � X .0/ be an edge-connected
median subalgebra. For all points x; y 2M and z 2 X .0/ \ I.x; y/, there exists a median subalgebra
N �X .0/\ I.x; y/ with the following properties:

� x; y; z 2N and rkN � 2.

� N has staircase length � d.1C 2r2/2.

� N and N \M are edge-connected.

Proof Let �xz WX ! I.x; z/ be the gate-projection and note that �xz.y/D z. By Lemma 4.22(1), the
projection �xz.M/ is an edge-connected median subalgebra containing x and z. Thus there exists a
(combinatorial) geodesic ˛ � I.x; z/ joining x and z with ˛\X .0/ � �xz.M/.

By Lemma 4.22(2), the median subalgebrasN 0 WD��1xz .˛/\I.x; y/\X
.0/ andM\N 0 are edge-connected.

Lemma 4.16 shows that N 0 has staircase length � d.1C 2r2/, while it is clear that rkN 0 � dimX D r .

Note that x; y; z 2 N 0. Since �xz.I.z; y//D fzg, the entire interval I.z; y/\X .0/ is contained in N 0.
Consider the projection �zy WX ! I.z; y/. Since M \N 0 is edge-connected, Lemma 4.22 again shows
that the projection �zy.M \N 0/ is edge-connected, and we can join y and z by a geodesic ˇ with
ˇ\X .0/ � �zy.M \N

0/. Repeating the above argument, we see that N WDN 0\��1yz .ˇ/ has staircase
length � d.1C 2r2/2, that N and N \M are edge-connected, and that x; y; z 2N (recall that N 0 is a
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finite median algebra, so it is naturally identified with the 0–skeleton of a CAT.0/ cube complex and we
can run the above argument in this cube complex).

We are left to show that rkN � 2. Since x; y 2N � I.x; y/, every wall of N either separates x from y; z,
or it separates x; z from y. If two walls of N separate x and z, then they are not transverse; cf Claim 1
during the proof of Lemma 4.16. The same is true of walls separating z and y. This implies that rkN � 2,
concluding the proof.

Proof of Proposition 4.25 Let X have dimension r and staircase length d . Let M be an edge-connected,
weakly quasiconvex subalgebra. We will show that dHaus.I.x; y/;M \ I.x; y// remains uniformly
bounded as x and y vary in M , which implies that M is quasiconvex.

Consider x; y 2M and z 2X .0/\I.x; y/. By Lemma 4.28, the points x; y; z lie in a median subalgebra
N �X .0/\ I.x; y/ such that N and N \M are edge-connected, rkN � 2, and N has staircase length
� d.1C 2r2/2.

Viewing N as the vertex set of a finite CAT.0/ cube complex and applying Lemma 4.27 to M \N , there
exist points z0 D z; z1; : : : ; zk�1 2 N and zk; w1; : : : ; wk 2 N \M with k � d.1C 2r2/2, such that
each wall of N separating zi and ziC1 is transverse to every wall of N separating zi and wiC1. The same
is true of hyperplanes of X separating these points.

Since M is weakly quasiconvex, it admits a function � as in Definition 4.23. Without loss of generality,
we can take � to be weakly increasing. Then, since d.wi ;M/D 0, we have

d.z;M/�maxf�.d.z1;M//; �.0/g �maxf�2.d.z2;M//; �2.0/; �.0/g

� � � � �maxf�k.0/; : : : ; �2.0/; �.0/g:

The last constant only depends on d , r and �, so this proves that M is quasiconvex.

4.5 Fixed subgroups in right-angled groups

In this subsection, we combine the results of the previous two subsections to prove Theorem C.

Let � be a finite simplicial graph. Our focus will be on the right-angled Artin group AD A� and the
universal cover of its Salvetti complex X D X� . Throughout, we will identify AŠ X .0/.

However, all results and proofs in this subsection (except for Remark 4.29) immediately extend to right-
angled Coxeter groups W DW� and Davis complexes Y� , without requiring any adaptations. We suggest
that the reader keep track of this as they make their way through the results, in view of Corollary 4.35
below. The relevant properties shared by RAAGs and RACGs are:

� The Cayley graph of A/W associated to the standard generators (vertices of �) is the 1–skeleton
of a CAT.0/ cube complex (the universal cover of the Salvetti/Davis complex) of finite staircase
length (Lemma 4.17).
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� Hyperplanes are labelled by vertices of � and labels of transverse hyperplanes are joined by an
edge of � .

� Elementary automorphisms of A and W (as defined in Section 3.4) have the same form with respect
to standard generators.

We are interested in the subgroups U0.A/� U.A/ and Aut0W � AutW generated by inversions, folds
and partial conjugations, as defined at the end of Section 3.4.

Given a subset �� �.0/, it is convenient to introduce the notation

�? D
\
v2�

lk v:

Remark 4.29 It is not hard to observe that a subgroup of A is an intersection of stabilisers of hyperplanes
of X if and only if it is conjugate to a subgroup of the form A�? for some �� � .

Although we will not be using this remark in the present paper, we find it interesting in relation to
Lemma 4.30 below: elements of U0.A/ permute hyperplane-stabilisers while preserving labels.

Statements similar to the next lemma have been widely used in the literature, eg in [24, Proposition 3.2;
27, Proposition 3.2; 28, Section 3]). Compared to these references, we get a slightly stronger result
because here we are only concerned with untwisted automorphisms.

Lemma 4.30 For every ' 2 U0.A/ and �� � , the subgroups A�? and '.A�?/ are conjugate.

Proof It suffices to prove the lemma for elementary generators. It is clear that it holds for inversions, so
we are left to consider folds and partial conjugations.

If �v;w is a fold, then �v;w.A�?/ D A�? . This is immediate if v … �?. If instead v 2 �?, we have
�� lk v � lkw, hence w 2�?.

If �w;C is a partial conjugation, then �w;C .A�?/ is either A�? or w�1A�?w. This is clear if �?

intersects at most one connected component of � n stw. Suppose instead that �? intersects two distinct
components of � n stw. Then, for every a 2 �, the fact that �? � lk a implies that a 2 lkw. Thus,
w 2�? and �w;C .A�?/DA�? in this case.

Corollary 4.31 For every ' 2 U0.A/ and g 2A, we have �.'.g//? D �.g/?.

Proof It suffices to show that �.'.g//? � �.g/? for all ' 2 U0.A/ and g 2 A. Note that g has a
conjugate in A�.g/ � A�.g/?? . Thus, Lemma 4.30 implies that a conjugate of '.g/ lies in A�.g/?? .
This shows that �.'.g//� �.g/??, hence �.'.g//? � �.g/??? D �.g/?, as required.

For the next results, recall that we are identifying elements of A and vertices of X .
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Lemma 4.32 For every ' 2 U0.A/, there exists a constant K.'/ with the following property. For all
x; y 2A, at most K.'/ among the hyperplanes in W .'.x/j'.y// have label outside .W .xjy//??.

Proof It suffices to show that, for every g 2A, at most K.'/ among the hyperplanes in W .1j'.g// have
label outside .W .1jg//??.

Since � has only finitely many subsets, Lemma 4.30 shows that there exists a constant K 0.'/ with the
following property. For every �� � there exists x� 2A with '.A�?/D x�A�?x�1� and jx�j �K 0.'/.
Here j � j denotes word length with respect to the standard generators.

Now, consider g 2A and set �.g/ WD .W .1jg//?. Then g 2A�.g/? and the above observation shows
that all but 2jx�.g/j hyperplanes in W .1j'.g// have label in �.g/?. Taking K.'/ WD 2K 0.'/, this
concludes the proof.

Proposition 4.33 If ' 2 U0.A/, the subgroup Fix' is a weakly quasiconvex subset of X .0/ ŠA.

Proof Consider vertices a; b; p 2 X with W .pja/ transverse to W .pjb/. Set

D WDmaxfd.a;Fix'/; d.b;Fix'/g:

Let K DK.'/ be as in Lemma 4.32, let �1; �2 be the functions provided by Lemma 2.34 (without loss of
generality, strictly increasing), and let C be a constant such that

'.m.x; y; z//�C m.'.x/; '.y/; '.z// for all x; y; z 2 X :

Let us write a0; b0; p0 for '.a/; '.b/; '.p/. Since W .pja/ and W .pjb/ are transverse, we have p 2 I.a; b/,
so W .pja; b/D∅. Observing thatm.a0; b0; p0/�C '.m.a; b; p//Dp0, we also have #W .p0ja0; b0/� C .
Finally, by the first inequality in Lemma 2.34, we have a0 �D0 a and b0 �D0 b, where D0 WD ��11 .D/.

Putting together these inequalities, we obtain

#W .pjp0/D #W .pja0; b0; p0/C #W .p; a0jb0; p0/C #W .p; b0ja0; p0/C #W .p; a0; b0jp0/

� #W .pja; b/C 2D0C #W .p; a0jb; p0/CD0C #W .p; b0ja; p0/CD0C #W .a0; b0jp0/

� #W .p; a0jb; p0/C #W .p; b0ja; p0/CC C 4D0:

By Lemma 4.32, at most K elements of W .a0jp0/ have label in .W .ajp//?. Since W .pja/ and W .pjb/

are transverse, we deduce that #W .p; a0jb; p0/�K and, similarly, #W .p; b0ja; p0/�K. We conclude
that

d.p; '.p//D #W .pjp0/� 2KCC C 4D0:

Lemma 2.34 gives d.p;Fix'/� �2.2KCC C 4 � ��11 .D//, as required by Definition 4.23.

Corollary 4.34 For every ' 2 U0.A/, the subgroup Fix' is convex-cocompact in A Õ X .
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Proof Set H WD Fix'. By Theorem B, H is finitely generated, so there exists R � 0 such that NR.H/
is edge-connected, viewed as a subset of X . By Lemma 4.21, the median subalgebra M WD hNR.H/i is
edge-connected. Since H is an approximate median subalgebra by Lemma 2.35, Proposition 4.1 shows
that M is at finite Hausdorff distance from H . Since H is weakly quasiconvex by Proposition 4.33,
so is M .

Finally, X has finite staircase length by Lemma 4.17. We have shown that M � X .0/ is edge-connected
and weakly quasiconvex, so Proposition 4.25 implies that M is quasiconvex. By Lemma 2.10, HullM is
at finite Hausdorff distance from M , which is at finite Hausdorff distance from H . This implies that H
acts cocompactly on the convex subcomplex HullM � X .

The discussion in this subsection immediately extends to right-angled Coxeter groups W and the finite-
index subgroup Aut0W � AutW generated by folds and partial conjugations.

Corollary 4.35 For every ' 2 Aut0W , the subgroup Fix' is convex-cocompact in W Õ Y , where Y is
the universal cover of the Davis complex.

Recalling Lemma 3.2 and Remark 2.31, the previous two corollaries prove Theorem C.

5 Invariant splittings of RAAGs

This section only contains the proofs of Proposition D and Corollary E, which are independent from all
other results mentioned in the introduction.

Let � be a finite simplicial graph and let ADA� be the corresponding right-angled Artin group. All results
and proofs in this section immediately extend to the right-angled Coxeter group W� and automorphisms
in Aut0W� . We encourage the reader to verify this as they go through the material, emphasising that
only Lemmas 5.3 and 5.4 and Corollary 5.10 require any kind of attention, as all other results in this
section are purely about the finite graph � .

The following is Proposition D from the introduction.

Proposition 5.1 Let A be directly irreducible , freely irreducible and noncyclic. Then there exists an
amalgamated product splitting ADAC �A0

A�, with A˙ and A0 parabolic subgroups of A, such that the
corresponding Bass–Serre tree A Õ T is U0.A/–invariant. That is , for every ' 2 U0.A/, there exists an
isometry f W T ! T satisfying f ıg D '.g/ ıf for all g 2A.

Proposition 5.1 follows from Corollary 5.4 and Proposition 5.5 below. The latter will be proved right
after Lemma 5.9.
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Given a partition �.0/DƒCtƒtƒ�, we write AC WDAƒtƒC and A� WDAƒtƒ� for simplicity. If ƒ˙

are nonempty and d.ƒC; ƒ�/� 2 (where d denotes the graph metric on �), then the partition corresponds
to a splitting as amalgamated product,

ADAC �Aƒ
A�:

We denote by A Õ Tƒ the Bass–Serre tree of this splitting. This will not cause any ambiguity related to
possible different choices of the sets ƒ˙ in the following discussion.

We are interested in partitions of �.0/ that satisfy a certain list of properties.

Definition 5.2 A partition �.0/ DƒC tƒtƒ� into three nonempty subsets is good if:

(i) d.ƒC; ƒ�/� 2, where d is the graph metric on � .

(ii) For every � 2 f˙g and w 2ƒ�, there does not exist v 2ƒtƒ�� with lk v � lkw[ƒ�.

(iii) For every � 2 f˙g and w 2ƒ�, the subgraph of � spanned by .ƒtƒ��/ n stw is connected.

We will simply write � DƒC tƒtƒ�, rather than �.0/ DƒC tƒtƒ�.

The motivation for Definition 5.2 comes from the next lemma and the subsequent corollary. Definition 5.2
actually contains slightly stronger requirements than what is strictly necessary to the two results: this will
facilitate the inductive construction of good partitions of graphs � .

Lemma 5.3 Let � DƒC tƒtƒ� be a good partition. For every  2 U0.A/, there exists ' 2 U0.A/
representing the same outer automorphism and simultaneously satisfying '.AC/DAC and '.A�/DA�
(hence also '.Aƒ/DAƒ).

Proof Inversions preserve AC and A�. Given vertices v;w 2 � with lk v � lkw, condition (ii) implies
that either w 2ƒ, or fv;wg �ƒC, or fv;wg �ƒ�. Thus, folds also preserve AC and A�.

We are left to prove the lemma in the case when  is a partial conjugation �w;C . If w 2ƒ, it is clear that
�w;C preserves AC and A�. Thus, let us assume without loss of generality thatw 2ƒC. By condition (iii),
the set ƒ[ƒ� intersects a unique connected component K � � n stw.

If K ¤ C , then �w;C is the identity on A�, so A˙ are both preserved. If K D C , then �w;C represents
the same outer automorphism as �w�1;K1

� � � �w�1;Kk
, where K1; : : : ; Kk are the connected components

of � n stw other than K. Again, the latter is the identity on A�, so A˙ are preserved.

This shows that Tƒ is invariant under twisting by elements of U0.A/:

Corollary 5.4 Let � D ƒC t ƒ t ƒ� be a good partition. For every ' 2 U0.A/, there exists an
automorphism f W Tƒ! Tƒ satisfying f ıg D '.g/ ıf for all g 2A.
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Proof If ' is inner, we can take f to coincide with an element of A. If '.AC/DAC and '.A�/DA�,
the statement is also clear, since the Bass–Serre tree can be defined in terms of cosets of A˙. By
Lemma 5.3, every element of U0.A/ is a product of two automorphisms of these two types.

Our next goal is to show that good partitions (almost) always exist. We say that � is irreducible if it does
not split as a nontrivial join (equivalently, the opposite graph �o is connected).

Proposition 5.5 If � is connected , irreducible and not a singleton , then � admits a good partition.

Proposition 5.5 and Corollary 5.4 immediately imply Proposition 5.1, as well as the analogous result for
right-angled Coxeter groups.

Before proving Proposition 5.5, we need to obtain a few lemmas.

Lemma 5.6 If � is connected and diam�.0/ � 3, there exists a good partition of � .

Proof Let x; y 2� be arbitrary vertices with d.x; y/� 3. Let Cy be the connected component of � nst x
that contains y. Similarly, let Cx be the connected component of � n sty that contains x.

Since d.x; y/� 3, we have st x\ sty D∅, hence sty �Cy and st x �Cx . Since � is connected, � nCx
is also connected. Note that st x and � nCx are disjoint and y 2 � nCx . This implies that � nCx � Cy .
In conclusion, � D Cx [Cy .

Note that, if z 2 �.0/ and lk z\Cy D∅, we cannot have z 2Cy . Indeed, this would imply that Cy D fzg
and lk z � st x. Since y 2 Cy , we would then have y D z and lky � st x, contradicting the fact that � is
connected and d.x; y/� 3.

Thus, we can define

ƒC WD fz 2 �.0/ j st z\CyD∅g D fz 2 �.0/ j lk z\CyD∅g;

ƒ� WD fz 2 �.0/ j st z\CxD∅g D fz 2 �.0/ j lk z\CxD∅g;

ƒ WD �.0/ n .ƒC tƒ�/:

Note that x 2ƒC and y 2ƒ�. If z 2ƒC and w 2ƒ�, we have st z\ stwD∅, since � DCx [Cy . This
shows that d.ƒC; ƒ�/ � 3. Since � is connected, we also conclude that ƒ¤ ∅. We are left to verify
conditions (ii) and (iii) of Definition 5.2.

If v 2 ƒ, then lk v intersects both Cx and Cy . Since Cy is disjoint from lkw [ƒC for every w 2 ƒC

(and similarly with Cx and ƒ�), this implies condition (ii) when v 2ƒ. On the other hand, the case with
v 2ƒ�� is immediate from the fact that d.ƒC; ƒ�/� 3 and � is connected.

Finally, let us check condition (iii). Without loss of generality, we can suppose that w 2ƒC. Note that
Cy is connected, contained in .ƒtƒ�/ n stw, and it intersects the link of every point of ƒ. Moreover,
since ƒ�\Cx D∅ and � D Cx [Cy , we have ƒ� � Cy . This shows that .ƒtƒ�/ n stw is connected,
concluding the proof.
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When the previous lemma cannot be applied, we will construct a good partition of � inductively, extending
good partitions on subgraphs. We now prove a sequence of three lemmas aimed precisely at this, after
which we will give the argument for Proposition 5.5.

For x 2 �.0/, let � n x be the graph obtained by removing x and all open edges incident to x.

Lemma 5.7 Let � n x D�C t�t�� be a good partition. Then one of the following happens:

(1) There exist w 2�C and z 2�� with lk x � lk z\ lkw.

(2) The partition of � with ƒC D�C t fxg, ƒD�, ƒ� D�� is good.

(3) The partition of � with ƒC D�C, ƒD�t fxg, ƒ� D�� is good.

(4) The partition of � with ƒC D�C, ƒD�, ƒ� D�� t fxg is good.

Proof We begin with the following observation:

Claim If there exists w 2�C such that lk x � lkw[�C, we are either in case (1) or in case (2).

Proof We assume that we are not in case (1) and show that the partition of � in case (2) is good. We
need to verify conditions (i)–(iii) from Definition 5.2.

Since d.�C; ��/ � 2 (both in � n x and in �), the set �� is disjoint from lkw [�C. Since lk x �
lkw[�C, it follows that ��\ st x D∅, hence d.ƒC; ƒ�/� 2. This proves condition (i).

If condition (ii) fails, there exist u 2 ƒ� and v 2 ƒtƒ�� with lk v � lku[ƒ�. Since the partition of
� n x is good, we must have either v D x or uD x. If v D x, then u 2�� and

lk x � .lku[��/\ .lkw[�C/D lku\ lkw;

which lands us in case (1). If instead uD x, we have v 2�t�� with

lk v � lk x[ƒC � lkw[�C[fxg:

This violates condition (ii) for the partition of � n x.

Finally, suppose that condition (iii) fails. Thus, there exists u2ƒ� such that .ƒtƒ��/nstu is disconnected.
Since the partition of � n x is good, this can happen only in two ways: either uD x, or u 2ƒ� and x is
isolated in .ƒtƒC/ n stu. In the latter case, we have lk x � lku[��, which again leads to case (1).

Suppose instead that uD x and let us show that .ƒtƒ�/ n st x D .�t��/ n lk x is connected. Since
lk x� lkw[�C, the set .�t��/nlk x contains .�t��/nlkw. The latter is connected, as the partition
of � nx satisfies condition (iii). Since condition (ii) is satisfied, every point of .�t��/\ lkwD�\ lkw
is joined by an edge to a point of � n .lkw[ƒC/D .�t��/ n lkw. Thus, the star of every point of
.�t��/ n lk x intersects the connected set .�t��/ n lkw, proving that .�t��/ n lk x is connected.
This completes the proof of the claim. G

Geometry & Topology, Volume 28 (2024)



Coarse-median preserving automorphisms 227

By the claim, if there exist either w 2�C with lk x � lkw[�C or z 2�� with lk x � lk z[��, then
we are in cases (1), (2) or (4). In order to conclude the proof of the lemma, let us suppose that neither of
the two inclusions is satisfied. We will show that the partition in case (3) is good.

Condition (i) is clear. Condition (ii) is immediate from the corresponding condition for � n x and our
assumption that lk x be not contained in any subsets as in the previous paragraph.

Suppose that condition (iii) fails. Then there exists u 2 ƒ� such that .ƒtƒ��/ n stu is disconnected.
Without loss of generality, we have u 2 ƒC. Since the partition of � n x satisfies condition (iii), the
point x must be isolated in .ƒtƒ�/ n stu. Hence lk x � lku[�C, again violating our assumption.

Lemma 5.8 Let � be an irreducible graph , and let x 2 � be a vertex such that there does not exist
y 2�.0/nfxg with lk x� lky. Suppose that �nx is reducible. Then the partition of � given byƒCDfxg,
ƒD lk x, ƒ� D � n st x is good.

Proof Write � n x as a join of nonempty subgraphs �1 and �2. Since � is irreducible, there exist points
a1 2 �1 n lk x and a2 2 �2 n lk x. Condition (i) is clear.

In order to verify condition (ii), we need to exclude the existence of w 2 ƒ� and v 2 ƒ tƒ�� with
lk v � lkw[ƒ� . If � D� and v 2ƒ, then x lies in lk v, but not in lkw[ƒ�. If � D� and v D x, then
lk x is disjoint from ƒ�, and it cannot be contained in the link of any point of � nx by our hypotheses. If
�DC, then lkw[ƒ� D st x, which cannot contain the link of any point of � nx, as it does not contain a1
and a2.

Finally, let us show that, for every w 2ƒ� , the set .ƒtƒ��/ n stw is connected. If � DC, this amounts
to showing that � n st x is connected. This is immediate, since every point of � nx is joined by an edge to
either a1 or a2, and these two points are themselves joined by an edge. If instead �D�, we need to show
that st x n stw is connected for every w 2 � n st x. This is also clear since this set is a cone over x.

Consider the equivalence relation on �.0/ where v � w if and only if lk v D lkw. We define a graph x�
with a vertex for every �–equivalence class Œv�� � and an edge joining Œv� and Œw� exactly when v and
w are joined by an edge (this is independent of the chosen representatives).

It is clear that x� is again a simplicial graph, with at most as many vertices as � . We denote by r W �! x�
the natural morphism of graphs.

Lemma 5.9 (1) � is irreducible if and only if x� is irreducible.

(2) If � has at least one edge , then � is connected if and only if x� is connected.

(3) If x� DƒC tƒtƒ� is a good partition , then so is � D r�1.ƒC/t r�1.ƒ/t r�1.ƒ�/.

Proof Parts (1) and (2) are straightforward, so we only prove part (3).

Consider a good partition x� DƒCtƒtƒ�. It is clear that the partition of � satisfies condition (i), while
condition (ii) follows from the observation that lk r.x/D r.lk x/ for every x 2 � .
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Finally, we verify condition (iii). Given w 2 r�1.ƒ�/, observe that r maps the subgraph

.r�1.ƒ/t r�1.ƒ��// n stw

onto the connected graph .ƒtƒ��/n st r.w/. As in part (2), this shows that .r�1.ƒ/t r�1.ƒ��//n stw
is connected, possibly except the case when .ƒtƒ��/ n st r.w/ is a singleton. The latter is ruled out by
the fact that the partition of x� satisfies condition (ii).

Proof of Proposition 5.5 We proceed by induction on the number of vertices of � . Since no graph with
at most 3 vertices satisfies the hypotheses of the proposition, the base step is trivially satisfied. For the
inductive step, we consider a connected irreducible graph � with at least 4 vertices, and assume that the
proposition is satisfied by all graphs with fewer vertices than � .

If diam�.0/ � 3, we can simply appeal to Lemma 5.6. If the graph x� defined above has fewer vertices
than � , then we can use the inductive hypothesis and Lemma 5.9. Thus, we can assume that � D x� and
diam�.0/ D 2.

Pick a vertex x 2� whose link is maximal under inclusion. Since �D x� , there does not exist y 2�.0/nfxg
with lk x D lky. If � n x is reducible, Lemma 5.8 then shows that � admits a good partition. If � n x
were disconnected, then the fact that diam�.0/ D 2 would imply that lk x D � n x, contradicting the
assumption that � is irreducible.

In conclusion, � n x is connected, irreducible, not a singleton, and it has fewer vertices than � . We
conclude by applying the inductive hypothesis and Lemma 5.7 (case (1) of the latter is ruled out by our
choice of x).

The previous results prove Proposition 5.1. The following is Corollary E from the introduction:

Corollary 5.10 Consider ' 2 U0.A/.

(1) If A splits as a direct product A1 �A2, then '.Ai /DAi and Fix' D Fix'jA1
�Fix'jA2

.

(2) If A is directly irreducible , then the subgroup Fix' �A splits as a (possibly trivial ) finite graph of
groups with vertex and edge groups of the form Fix'jP , for proper parabolic subgroups P � A
with '.P /D P and 'jP 2 U0.P /.

Proof For simplicity, set H WD Fix'. We distinguish three cases.

Case 1 (A is not directly irreducible) Let us write AD A�A1 � � � � �Am, where A is a free abelian
group and Ai are directly irreducible (noncyclic) right-angled Artin groups. This corresponds to a splitting
of � as a join of a complete subgraph and irreducible subgraphs �1; : : : ; �m.

Since ' 2 U0.A/, we have '.Ak/DAk and 'jAk
2 U0.Ak/ for every 1� k �m, and 'jA is a product

of inversions. Indeed, this is clear for inversions, folds and partial conjugations.

Thus H DA0�H1�� � ��Hm, where Hi D Fix.'jAi
/ and A0 is a standard direct factor of A. This proves

part (1) of the corollary.
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Case 2 (A is not freely irreducible) Write AD F �A1 � � � � �Am, where F is a free group and Ai are
freely irreducible (noncyclic) right-angled Artin groups of lower complexity. SinceH is finitely generated
by Theorem B, Kurosh’s theorem guarantees that H decomposes as a free product H DL�H1�� � ��Hn,
where L is a finitely generated free group and each Hi is a finitely generated subgroup of some giAki

g�1i
with gi 2A and 1� ki �m.

By Grushko’s theorem, the subgroup '.Ak/ is conjugate to some Ak0 for every 1 � k � m. Since '
fixes the nontrivial subgroup Hi � giAki

g�1i pointwise, we must have '.giAki
g�1i /D giAki

g�1i for
1� i � n.

Consider the automorphism  i 2U0.A/ defined by  i .x/D g�1i '.gixg
�1
i /gi . Note that  i .Aki

/DAki

and Fix i jAki
D g�1i Higi . By Lemma 3.29, we have  i jAki

2 U0.Aki
/. This proves part (2) of the

corollary in the freely reducible case.

Case 3 (A is freely and directly irreducible) We can assume that A 6' Z. By Proposition 5.5, � admits
a good partition � DƒCtƒtƒ�. By Corollary 5.4, there exists f 2AutTƒ satisfying f ıgD '.g/ıf
for all g 2A.

If H is elliptic in Tƒ, we have H � V , where V is the A–stabiliser of some vertex of Tƒ. The existence
of the automorphism f 2 AutTƒ guarantees that all subgroups 'n.V / with n 2 Z are A–stabilisers
of vertices of Tƒ; in particular, they are all conjugate to either AC or A�. We conclude that H is
contained in the h'i–invariant parabolic subgroup P WD

T
n2Z '

n.V /. Thus, we have H D Fix'jP and,
by Lemma 3.29, 'jP 2 U0.P /. This proves the corollary in this case, with H splitting as a trivial graph
of groups.

Suppose instead that H is not elliptic in Tƒ and denote by TH � Tƒ the H–minimal subtree. Since H is
finitely generated, the action H Õ TH is cocompact and gives a splitting of H as a (nontrivial) finite
graph of groups. We are left to understand vertex-stabilisers of the action H Õ TH .

As f normalises H in AutTƒ, we have f .TH /D TH . It is convenient to distinguish two subcases.

Case 3a (f is elliptic in Tƒ) Since f commutes with every element ofH , the tree TH is fixed pointwise
by f . For every v 2 TH , its A–stabiliser Av satisfies '.Av/DAv and is conjugate to either AC or A�.
By Lemma 3.29, we have 'jAv

2 U0.Av/, proving the corollary in this case.

Case 3b (f is loxodromic in Tƒ) Let ˛ � Tƒ be the axis of f . Since f commutes with every element
of H , the geodesic ˛ must be H–invariant and every nonloxodromic element of H fixes ˛ pointwise.
Note that TH cannot be a singleton, or f would be elliptic. Thus, TH D ˛ and H contains a shortest
loxodromic element h 2H . Moreover, H DH0 Ì hhi, where H0 is the kernel of the action H Õ ˛.

Let Q �A be the intersection of the A–stabilisers of the vertices of ˛. Being an intersection of parabolic
subgroups, Q is itself a (possibly trivial) parabolic subgroup of A. Since f .˛/D ˛, we have '.Q/DQ
and H0 D Fix'jQ. Lemma 3.29 guarantees that 'jQ 2 U0.Q/. Thus, the HNN splitting H DH0 Ì hhi
is as required by the corollary.
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Remark 5.11 In Case 3b of the proof of Corollary 5.10, we can actually say more on the structure of
H D Fix'. Specifically, H DH0 � hhi and h can be taken to be label-irreducible.

Indeed, since h˛ D ˛, the element h lies in the normaliser of Q in A, which is a subgroup of the form
Q �Q0 (since Q is parabolic in A). If h D h1 � � � hk is the decomposition of h into label-irreducible
components, every hi lies in either Q or Q0. Since ' is coarse-median preserving and fixes h, it must
permute the hi ; Corollary 4.31 then shows that '.hi /D hi for every i . Thus, all the label-irreducible
components of h that lie in Q actually lie in H0. Up to replacing h, we can assume that all hi lie in Q0;
in particular, h lies in Q0, hence it commutes with H0. Since H D Fix' is generated by H0 and h, we
must then have k D 1, ie h is label-irreducible.

In relation to Theorem C, it is natural to wonder if the proof of Corollary 5.10 can be used to give an
alternative, inductive argument showing that Fix' is convex-cocompact in A for every ' 2 U0.A/. In
light of Remark 5.11, the only problematic situation is the one in Case 3a.

Unfortunately, cubical convex-cocompactness does not seem to be well-behaved with respect to graph-of-
groups constructions, as the next example shows.

Example 5.12 Let � be the graph in Figure 5. Consider the subgroup H D hayx�1; xbyi � A� .
We have an amalgamated product splitting A� D ha; x; yi �hx;yi hb; x; yi, which induces a splitting
H D hayx�1i�hxbyi 'F2. The subgroups hayx�1i and hxbyi are convex-cocompact, as they are each
generated by a single label-irreducible element.

However, H is not convex-cocompact in A: the element aby2 lies in H , but no power of its label-
irreducible components ab and y2 does (which, for instance, violates Lemma 3.16).

6 Projectively invariant metrics on finite-rank median algebras

In this section, we initiate the lengthy proof of Theorem F, which will be completed in Section 7. Our
main goal here is to formulate a criterion, for a group U and a subgroup G � U , guaranteeing that a
U –action on a finite-rank median algebra admits a G–invariant compatible pseudometric for which U
acts by homotheties (Corollary 6.23). An important tool will be the Lefschetz fixed point theorem for
compact ANRs.

Throughout the section, M denotes a fixed median algebra of finite rank r .
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6.1 Multibridges

The bridge of two gate-convex sets was first studied in [4; 30] for CAT.0/ cube complexes and in
[49, Section 2.2] for general median algebras. We will need an extension of this concept to arbitrary finite
collections of gate-convex subsets: multibridges.

We briefly motivate why. As a recurring setup in the rest of the paper (especially in Sections 6.2.3 and 7.4),
we will often find ourselves studying a group G � AutM with a finite generating subset S �G and a
G–invariant compatible pseudometric � on M . It will be important to understand which points of M are
moved as little as possible by all elements of S , ie which points realise the quantity x��S from Section 2.1. It
turns out that the set of such points does not depend much on the specific pseudometric �, and can instead
be characterised purely in terms of the median-algebra structure on M , using the notion of multibridge
(Propositions 6.9 and 6.11).

Let C1; : : : ; Ck �M be gate-convex subsets, with gate-projections �i WM !Ci . Let H�H .M/ be the
set of halfspaces that contain at least one Ci and intersect each Ci . Then we have a partition

H .M/D .HtH�/t
� \
1�i�k

HCi
.M/

�
t

� [
1�i;j�k

H .Ci jCj /
�
:

If i ¤ j , the sets HCi
.M/\HCj

.M/ and H .Ci jCj / are transverse. Thus, every halfspace in the second
set of the above partition of H .M/ is transverse to every halfspace in the third set.

Lemma 6.1 The intersection of all halfspaces in H is a nonempty convex subset of M .

Proof We will prove this by appealing to Lemma 2.4(1). It is clear that the elements of H intersect
pairwise. Let us show that, for every chain C �H, the set k WD

T
C is again an element of H.

Note that there exist 1 � i0 � k and a cofinal subset C 0 � C consisting of halfspaces containing Ci0 .
Thus, Ci0 � k and k is nonempty. Since k is the intersection of a chain of halfspaces, both k and k� are
convex. It follows that k is a halfspace of M .

For every h 2 C � H, the fact that h intersects each Ci implies that �i .h/ D h\Ci ; see for instance
[50, Lemma 2.2(1)]. Recalling that k D

T
C , we deduce that �i .k/ � k \ Ci for 1 � i � k, hence k

intersects all Ci . Since we have already seen that Ci0 � k, we conclude that k 2H, as required.

Definition 6.2 The intersection BD B.C1; : : : ; Ck/�M of all halfspaces in H is the multibridge of the
gate-convex sets C1; : : : ; Ck .

For every k 2H .M/ nH�, the set Ht fkg is again pairwise-intersecting. Hence, Lemma 2.4(1) yields

HB.M/DH .M/ n .HtH�/D
�\

HCi
.M/

�
t

�[
H .Ci jCj /

�
:
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We have already observed that the two sets in this partition are transverse. By Remark 2.2(2) and
Lemma 2.6, we obtain a natural product splitting

B D B== �B?; where HB==
.M/D

\
HCi

.M/ and HB?.M/D
[

H .Ci jCj /:

We can view B== and B? as subsets of M by identifying them with any fibre of the splitting of B.

Lemma 6.3 The sets B, B== and B? are gate-convex in M .

Proof Since each Ci is gate-convex, Lemma 2.4(2) shows that, for every chain C �
T

HCi
.M/, eitherT

C is empty in M , or
T

C 2
T

HCi
.M/. Hence B== is gate-convex in M .

If C �
S

H .Ci jCj / is a chain, a cofinal subset of C is contained in a single H .Ci jCj /. HenceT
C 2H .Ci jCj /. Invoking again Lemma 2.4(2), this shows that B? is gate-convex.

Every chain in HB.M/ has a cofinal subset contained in either
T

HCi
.M/ or

S
H .Ci jCj /. One last

application of Lemma 2.4(2) shows that B is gate-convex.

Corollary 6.4 If C1; : : : ; Ck �M are gate-convex subsets , their multibridge B D B.C1; : : : ; Ck/ is a
gate-convex subset of M enjoying the following properties:

(1) B splits as a product B== �B? with HB==
.M/D

T
HCi

.M/ and HB?.M/D
S

H .Ci jCj /.

(2) Each fibre f�g�B? intersects all of the Ci .

Proof The only statement that has not already been proved is part (2). If it were false, there would exist
an index i and h 2H .M/ such that Ci � h and f�g�B? � h�. Since Ci � h, we have h …HB==

.M/, so
B � h�. Hence h� 2H, contradicting the fact that Ci � h.

Recall the notation PD.M/ and D.M/ for compatible (pseudo)metrics, as in Section 2.3.

Remark 6.5 If � 2 PD.M/ and x; y 2 B lie in the same fibre B== � f�g, then �.x; Ci /D �.y; Ci / for
all 1 � i � k. Indeed, since H .xjy/ �HB==

.M/D
T

HCi
.M/, we have W .xjCi /D W .yjCi / and it

follows (eg by Remark 2.9) that �.x; �i .x//D �.y; �i .y// for every � 2 PD.M/.

Remark 6.6 If � 2 PD.M/, then �.x;B/� r �maxi �.x; Ci / for every x 2M .

In order to see this, let h1; : : : ; hk be the minimal elements of H .xjB/. Since the hi are pairwise
transverse and rkM D r , we have k � r . Each hi must lie in H, hence there exists an index ji such that
Cji
� hi . It follows that:

H .xjB/�
[

H .xjhi /�
[

H .xjCji
/:

Hence �.x;B/� k �maxi �.x; Ci /� r �maxi �.x; Ci /.
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Remark 6.7 If ı 2 D.M/ and .M; ı/ is complete, then B? is compact in .M; ı/.

In order to prove this, let xi;j 2 Ci and xj;i 2 Cj be a pair of gates for all distinct 1� i; j � k. Let K be
the convex hull of the finite set F D fxi;j j 1� i; j � kg. Recall that K D J r.F / by Remark 2.5, so it
follows from [50, Corollary 2.20] that K is compact.

We have K \B ¤ ∅. Otherwise, the set H .KjB/ would be nonempty and contained in H. However,
each element of H contains some Ci , so it cannot be disjoint from K.

Finally, observing that HK.M/ contains the set[
H .xi;j jxj;i /D

[
H .Ci jCj /DHB?.M/;

we deduce that K \B must contain a fibre f�g�B?. Since B? is gate-convex, it must be a closed subset
of K, hence it is compact too.

Now, let S �AutM be a finite set of automorphisms acting nontransversely and stably without inversions.
By Theorem 2.16(1), the reduced cores C.s/ of s 2 S are all gate-convex. Let B.S/ be their multibridge.

Definition 6.8 We refer to B.S/ as the multibridge of the finite set S � AutM .

Recalling the notation introduced in Section 2.1, we have:

Proposition 6.9 Let S � AutM be a finite set of automorphisms acting nontransversely and stably
without inversions. The multibridge B.S/ is gate-convex and , for all � 2 PD.M/hSi:

(1) We have ��S .�B.x//� �
�
S .x/ for all x 2M , where �B WM ! B.S/ is the gate-projection.

(2) �
�
S . � / is constant on each fibre B==.S/� f�g.

(3) If ı 2 D.M/hSi and .M; ı/ is complete , then there exists z 2 B.S/ with �ıS .x/D x�
ı
S .

Proof Since the multibridge B.S/ intersects each C.s/, we have H .�B.x/jC.s//�H .xjC.s// for all
x 2 M . Hence �.�B.x/; C.s// � �.x; C.s//. Theorem 2.16(2) now implies that ��S .�B.x// � �

�
S .x/,

proving part (1). By Remark 6.5, if x; y 2 B.S/ lie in the same fibre B==.S/� f�g, then �.x; C.s// D
�.y; C.s//. This proves part (2). Finally, part (3) follows from the previous two parts and Remark 6.7.

Example 6.10 Let G D ha; bi be the free group over two generators. Let T be the standard Cayley
graph of G, with all edges of length 1. Let .X; ı/ be the (incomplete) median space obtained by removing
from T all midpoints of edges. Then, taking S D fa; bab�1g � G � IsomX , there is no point x 2 X
with �ıS .x/D x�

ı
S D 2.

Our interest in multibridges is due to the following result, which helps us understand the behaviour on M
of the functions ��S . � / for � 2 PD.M/hSi.
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Proposition 6.11 Let S � AutM be a finite set of automorphisms acting nontransversely and stably
without inversions. Recall that r D rkM . Then , the following hold for every � 2 PD.M/hSi:

(1) If s1; s2 2 S , then �.C.s1/; C.s2//� x�
�
S .

(2) If s 2 S and x 2 B.S/, then �.x; C.s//� rx��S .

(3) If x 2 B.S/, then ��S .x/� .2r C 1/x�
�
S .

(4) The �–diameter of each fibre f�g�B?.S/ is at most r2x��S .

(5) If x 2M , then �.x;B.S//� 1
2
r�
�
S .x/.

(6) For any x 2M and any fibre P D B==.S/� f�g, we have �.x; P /� 2r2��S .x/.

Proof We begin with part (1). For every x 2M , we have

W .C.s1/jC.s2//DW .x; C.s1/jC.s2//tW .C.s1/jC.s2/; x/�W .xjC.s1//tW .xjC.s2//:

Along with Theorem 2.16(2), this implies that

1
2
�.C.s1/; C.s2//�maxf�.x; C.s1//; �.x; C.s2//g � 1

2
maxf�.x; s1x/; �.x; s2x/g � 1

2
�
�
S .x/:

Part (1) follows by taking an infimum over x 2M .

Let us prove part (2). If x 2 B.S/ and s 2 S , Corollary 6.4(2) implies that H .xjC.s// is contained
in the union of the sets H .C.t/jC.s// with t 2 S n fsg. The maximal halfspaces in H .xjC.s// are
pairwise transverse, so there are at most r of them. Hence, there exist t1; : : : ; tr 2 S such that � WDS
i H .C.ti /jC.s// contains every maximal element of H .xjC.s//. In particular, H .xjC.s// � � and

part (1) yields �.x; C.s//� rx��S .

Part (3) of the proposition now follows from Theorem 2.16(2):

�
�
S .x/Dmax

s2S
Œ`.s; �/C 2�.x; C.s//��max

s2S
Œx�
�
S C 2rx�

�
S �D .2r C 1/x�

�
S :

Regarding part (4), consider two points x; y lying in the same fibre f�g�B?.S/. Let h1; : : : ; hk be the
minimal elements of H .xjy/. Since rkM D r , we have k � r . By definition of B?.S/, there exist
elements si 2 S with C.si /� hi . Thus,

H .xjy/�
[

H .xjhi /�
[

H .xjC.si //:

Using part (2) of the proposition, it follows that �.x; y/� k �maxs �.x; C.s//� krx�
�
S � r

2x�
�
S .

Finally, part (5) is a consequence of Remark 6.6 and the fact, due to Theorem 2.16(2), that ��S .x/ �
2�.x; C.s// for every s 2 S . Part (6) is obtained by combining parts (4) and (5):

�.x; P /� �.x;B.S//C r2x��S �
r
2
�
�
S .x/C r

2
x�
�
S � 2r

2�
�
S .x/:
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6.2 Promoting median automorphisms to homotheties

Recall that M is a median algebra of finite rank r . In this subsection, we consider subgroups G C U �

AutM , with the goal of constructing G–invariant compatible pseudometrics � 2 PDG.M/ with respect
to which U acts by homotheties and G is nonelliptic. In general, this will only be possible after passing
to a subalgebra of M . The final result in this direction is Corollary 6.23.

Our main technical tools are the notion of multibridge (exploited in Lemma 6.22) and the Lefschetz fixed
point theorem applied to projectivisations of certain cones C in the topological vector space PDG.M/

(Proposition 6.17). Some extra work is required in order to ensure that our cones C have compact
projectivisation and that they only contain pseudometrics � for which G acts nonelliptically (ie x��S > 0
for some/any generating set S �G).

6.2.1 Preliminaries on normed spaces and ARs

Definition 6.12 Let V be a real vector space.

(1) A cone is a convex subset C � V that is closed under multiplication by scalars in Œ0;C1/.

(2) A positive cone is a cone C � V for which C n f0g is convex. Equivalently, C \ .�C/D f0g.

(3) The projectivisation P .C/ of a cone C is the quotient of C n f0g obtained by identifying points that
differ by multiplication by a scalar.

Given a countable probability space .�; �/ and a function f W�!R, recall that

kf k1 D
X
!2�

jf .!/j�.!/ and kf k1 D sup
!2�

jf .!/j:

We denote by `1.�; �/ and `1.�/ the spaces of functions where k � k1 and k � k1 are finite, respectively.

The next result collects a few simple observations that will be useful later in this subsection. In particular,
part (3) will be our compactness criterion for projectivised cones: we only need to ensure that k � k1 and
k � k1 are bi-Lipschitz equivalent on the cone. This is one of the reasons we are forced to work with both
norms k � k1 and k � k1.

Lemma 6.13 Let .�; �/ be a countable set with a fully supported probability measure.

(1) We have `1.�/� `1.�; �/ and k � k1 � k � k1.

(2) The topology of .`1.�; �/; k � k1/ is finer than the topology of pointwise convergence on �. The
converse holds on those subsets of `1.�; �/ where k � k1 is bounded.

(3) Let C � `1.�; �/ be a positive cone that is closed in the topology of k � k1. Suppose that there
exists c > 0 such that kf k1 � c � kf k1 for all f 2 C. Then P .C/ is compact with respect to the
quotient topology induced by k � k1.
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Proof Part (1) is clear. The two halves of part (2) follow respectively from the inequalities

jf .!/j�.f!g/� kf k1 and kf k1 �
X
x2F

jf .x/j�.fxg/Ckf k1 � �.� nF /;

which hold for all f 2 `1.�; �/, all ! 2� and every finite subset F ��.

Finally, let us prove part (3). If S is the unit sphere in `1.�; �/, then P .C/ is homeomorphic to C\S . Since
the latter is metrisable, it suffices to show that every sequence .fk/k � C\S has a converging subsequence.
Since kfkk1 � c � kfkk1 D c, the sequence .fk.!//k takes values in the compact interval Œ�c; c� for all
! 2�. Since � is countable, a diagonal argument allows us to replace .fk/k with a subsequence that
converges pointwise to a function f W�! Œ�c; c�. Thus, part (2) shows that kfk � f k1! 0. Since C is
closed in `1.�; �/, we have f 2 C \S , as required.

Definition 6.14 A metrisable topological space X is an absolute retract (AR) if it enjoys the following
property. For every metrisable topological space Y and every closed subset A� Y homeomorphic to X ,
there exists a continuous retraction Y ! A.

The following summarises the key properties of ARs that we will need.

Theorem 6.15 (1) Let X be a compact AR. Then every continuous map f WX !X has a fixed point.

(2) Let .E; k � k/ be a normed space. If C � E is any positive cone , then P .C/ is an AR (with the
quotient of the norm topology of E).

Proof Part (1) is a consequence of the Lefschetz fixed point theorem for compact ANRs [76; 77]. See
for instance Theorem III.7.4 and Section I.6 in [70] for a clear statement.

If S is the unit sphere in the normed space E, then P .C/ is homeomorphic to C \S . Recall that every
convex subset of a normed space is an AR; see for example [45, Corollary 4.2] or Corollary II.14.2 and
Theorem III.3.1 in [70]. Every retract of an AR is again an AR; see [70, Proposition 7.7]. Thus, part (2)
is immediate from the observation that C \S is a retract of the convex set C n f0g.

6.2.2 Finding a projectively invariant metric Let M be a countable, finite-rank median algebra.
Consider a finite set S �AutM and let G �AutM be the subgroup that it generates. Let ˛ 2AutM be
an element that normalises G.

Consider the locally convex real vector space E.M/DRM�M , endowed with the topology of pointwise
convergence on M �M . We have a continuous linear action AutM Õ E.M/ given by

. �f /.x; y/D f . �1.x/;  �1.y// for all  2 AutM; all f 2 E.M/ and all x; y 2M:
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Remark 6.16 The sets PD.M/ and PDG.M/ (introduced in Section 2.3) are closed positive cones
in E.M/. In addition, PD.M/ is .AutM/–invariant and PDG.M/ is h˛i–invariant.

Although D.M/[f0g also is a positive cone, it is only closed when M is a single point.

Given a function c WM �M ! .0;C1/, consider the (not necessarily convex) subset

PDGc .M/ WD f� 2 PDG.M/ j �.x; y/� c.x; y/ � x�
�
S for all x; y 2M g:

As we shall see, this serves two purposes: on the one hand all closed cones in PDGc .M/ have compact
projectivisation; on the other, they only contain pseudometrics with x��S > 0 (except for �D 0).

Our main aim in this subsection is to prove the following result:

Proposition 6.17 Suppose that , for some c WM �M ! .0;C1/, there exists a nontrivial h˛i–invariant
cone C � PDGc .M/ that is closed in E.M/ with respect to the topology of pointwise convergence. Then
there exists � 2 C n f0g such that x��S > 0 and ˛ � �D �� for some � > 0.

In order to prove the proposition, let us fix a probability measure � on M with full support. Given a
function c WM �M ! .0;C1/, for f 2 E.M/ we define

kf kc1 WD
X

x;y2M

jf .x; y/j

c.x; y/
�.x/�.y/ and kf kc1 WD sup

x;y2M

jf .x; y/j

c.x; y/
:

Note that kf kc1 is a norm on the subspace E1c .M/� E.M/ where it is finite. (The same is true of kf kc1,
but this will not be relevant to us.)

Remark 6.18 Rescaling functions f 2 E.M/ by c, we map E1c .M/ onto `1.M �M;� ˝ �/ linearly
isometrically, while taking kf kc1 to kf k1. Thus, we can apply Lemma 6.13 in this context.

Lemma 6.19 Consider a function c WM �M ! .0;C1/.

(1) The subset PDGc .M/� E.M/ is closed under pointwise convergence.

(2) There exists a constant c > 0 (depending on c and � ) such that , for every � 2 PDGc .M/,

k�kc1 � k�k
c
1 � x�

�
S � c � k�k

c
1:

Proof We begin with part (1). First, observe that the function � 7! x��S is upper-semicontinuous. Indeed,
if �n 2 PDG.M/ converge pointwise to some � 2 PDG.M/, then, for every x 2M ,

max
s2S

�.x; sx/D lim
n!C1

max
s2S

�n.x; sx/� lim sup
n!C1

x�
�n

S :

Hence x��S � lim sup x��n

S , which proves upper-semicontinuity. Now, if �n 2 PDGc .M/, then

�.x; y/D lim
n!C1

�n.x; y/� lim sup
n!C1

c.x; y/ � x�
�n

S � c.x; y/ � x�
�
S

for all x; y 2M . Along with Remark 6.16, this yields � 2 PDGc .M/, proving part (1).
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Regarding part (2), the first inequality is in Lemma 6.13(1) and the second is immediate from the fact
that � 2 PDGc .M/. In order to prove the third one, choose any point x0 2M . Then

x�
�
S D inf

x2M
max
s2S

�.x; sx/�max
s2S

�.x0; sx0/� k�k
c
1 �max

s2S

c.x0; sx0/

�.fx0g/�.fsx0g/
:

The constant appearing on the rightmost side is positive and well-defined, since c takes positive values
and � has full support. This concludes the proof.

Proof of Proposition 6.17 We want to apply the Lefschetz fixed point theorem to ˛ W P .C/! P .C/.

Since C � PDG.M/, the cone C is actually a positive cone. By Lemma 6.19(2), the set C is contained in
E1c .M/. Thus, Theorem 6.15(2) shows that the projectivisation P .C/, endowed with the quotient topology
induced by k � kc1, is an AR.

Since C � E1c .M/ is closed in the topology of pointwise convergence, the first half of Lemma 6.13(2)
guarantees that C is also closed in the topology of k � kc1. Thus, by Lemmas 6.19(2) and 6.13(3), the
projectivisation P .C/ is compact.

We are left to show that the action h˛iÕ C is continuous with respect to the topology of k � kc1. Note that,
by Lemma 6.19(2), ˛ takes k � kc1–bounded subsets of C � PDGc .M/ to k � kc1–bounded subsets of C:

k˛ � �kc1 � x�
˛��
S D inf

x2M
max
s2S

�.˛�1x; ˛�1sx/D x�
�

˛�1S˛
� j˛�1S˛jS � x�

�
S � cj˛

�1S˛jS � k�k
c
1:

Since the topology given by k � kc1 is metrisable, it suffices to show that ˛ W C! C is sequentially continuous.
Let �n 2 C be a sequence that k � kc1–converges to � 2 C. By Lemma 6.13(2), �n converges to � pointwise.
Since the action AutM Õ E.M/ is continuous, the sequence ˛ � �n converges to ˛ � � pointwise. Note
that the set f�ngn�0[f�g is k � kc1–bounded and, by the above observation, so must be f˛ ��ngn�0[f˛�g.
By Lemma 6.19(2), this set is also k � kc1–bounded, so Lemma 6.13(2) shows that ˛ � �n k � kc1–converges
to ˛ � �, as required.

In conclusion, ˛ induces a homeomorphism of the compact AR P .C/. Theorem 6.15(1) yields an h˛i–
fixed point Œ�� 2 P .C/. The fact that x��S > 0 is clear since � 2 PDGc .M/ n f0g.

In fact, Proposition 6.17 can be easily generalised to extensions of G by abelian groups.

Corollary 6.20 Let U � AutM be a countable subgroup such that G C U , with abelian quotient U=G;
let p W U ! A be the quotient projection. Suppose that , for some c, there exists a nontrivial , U –invariant,
closed cone C � PDGc .M/. Then there exists � 2 C n f0g with x��S > 0 and a homomorphism � W A!

.R>0;�/ such that u � �D �.p.u//� for all u 2 U .

Proof Let faigi�0 be a generating set for A. Consider the subgroups An WD hai j i < ni and Un WD
p�1.An/; in particular, A0 D f1g and U0 D G. We will show by induction on n � 0 that there exist
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nontrivial, U –invariant, closed cones Cn � PDGc .M/ and homomorphisms �n WAn! .R>0;�/ such that
u � �D �n.p.u//� for all � 2 Cn and u 2 Un. As base step, set C0 WD C.

Regarding the inductive step, suppose that we have constructed Cn and �n. By Proposition 6.17, there
exists a point Œ�nC1� 2 P .Cn/ fixed by p�1.anC1/. In fact, since Un acts trivially on P .Cn/, the
entire group UnC1 fixes Œ�nC1� and there exists a homomorphism �nC1 W AnC1! .R>0;�/ such that
u � �nC1 D �nC1.p.u//�nC1 for all u 2 UnC1. We can then define CnC1 as the closed cone

f� 2 Cn j u � �D �nC1.p.u//� for all u 2 UnC1g:

Since U Õ C factors through the abelian group A, this cone is U –invariant, as required.

Finally, when A is not finitely generated, note that the intersection of the descending chain Cn is not
just f0g. This is because, as we observed in the proof of Proposition 6.17, the sets P .Cn/ are compact.
This concludes the proof.

6.2.3 Universal uniform nonelementarity Let G ÕM be an action by automorphisms on a median
algebra of finite rank r . Consider the following strengthening of Definition 2.36 in the context of
compatible metrics on median algebras.

Definition 6.21 The action G Õ M is universally uniformly nonelementary (WNE) if there exists a
constant c > 0 such that, for every � 2 PDG.M/, the action G Õ .M; �/ is c–UNE.

This may seem an impossibly strong requirement to impose on G ÕM , but we will see in Corollary 7.24
that many actions arising from ultralimits of Salvetti complexes are WNE.

Lemma 6.22 Let G � AutM be generated by a finite set S of automorphisms acting nontransversely
and stably without inversions. Let G C U � AutM . Pick a point q in the multibridge B.S/�M and let
M�M be the median subalgebra generated by the orbit U � q. Then:

(1) There exists c1 WM! .0;C1/ such that ��S .x/� c1.x/ � x�
�
S for all � 2 PDG.M/ and x 2M.

(2) If G ÕM is WNE , there exists c2 WM�M! .0;C1/ such that �.x; y/ � c2.x; y/ � x�
�
S for all

� 2 PDG.M/ and x; y 2M.

Proof We only prove part (1), since part (2) then follows by setting c2.x; y/ WD c � .c1.x/C c1.y//, for a
constant c as in Definition 6.21.

If part (1) holds for points x; y; z 2M, then it holds for their median m.x; y; z/. Indeed, we can take
c1.m.x; y; z//D c1.x/C c1.y/C c1.z/ and we have

�
�
S .m.x; y; z//Dmax

s2S
�.m.x; y; z/;m.sx; sy; sz//

�max
s2S

Œ�.x; sx/C �.y; sy/C �.z; sz/�

� �
�
S .x/C �

�
S .y/C �

�
S .z/� Œc1.x/C c1.y/C c1.z/� � x�

�
S :
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Thus, it suffices to prove part (1) for x 2 U � q. Since q 2 B.S/, we have uq 2 B.uSu�1/ for all u 2 U .
Moreover, sinceU normalisesG, the set uSu�1 is just another generating set ofG. By Proposition 6.11(3),
we have

�
�
S .uq/� jS juSu�1 � �

�

uSu�1.uq/� jS juSu�1 � .2r C 1/x�
�

uSu�1

� jS juSu�1 � .2r C 1/ � juSu�1jS � x�
�
S :

So we can take c1.uq/D .2r C 1/ � jS juSu�1 � juSu�1jS . This concludes the proof.

Corollary 6.23 Let G � AutM be generated by a finite set S of automorphisms acting nontransversely
and stably without inversions. Suppose that G ÕM is WNE and that DG.M/¤∅. Consider a countable
subgroup U � AutM such that G C U and U=G is abelian. Then there exist a nonempty, countable ,
U –invariant , median subalgebra M � M , a pseudometric � 2 PDG.M/ n f0g with x��S > 0, and a
homomorphism � W U ! .R>0;�/ (trivial on G) with u � �D �.u/� for all u 2 U .

Proof Define the median subalgebra M�M as in the statement of Lemma 6.22. Since M is generated
by a countable set, it is itself countable. The restriction map

resM W PD.M/! PD.M/

takes PDG.M/ into PDG.M/ without decreasing the value of x��S . Thus, in the notation of Section 6.2.2,
Lemma 6.22(2) yields

resM.PDG.M//� PDGc2
.M/:

Choose ı 2DG.M/ and let C �DG.M/ be the smallest cone containing the U –orbit of ı. In other words,
C is the convex hull of U � ı, saturated under multiplication by nonnegative scalars. Then resM.C/ is a
nontrivial U –invariant cone contained in PDGc2

.M/.

Its closure resM.C/ � E.M/ in the topology of pointwise convergence is also a U –invariant cone. By
Lemma 6.19(1), this is still contained in the set PDGc2

.M/. We can thus apply Corollary 6.20, obtaining
� 2 resM.C/ n f0g with x��S > 0, and a homomorphism � W U ! .R>0;�/ such that u � �D �.u/� for all
u 2 U .

7 Ultralimits and coarse-median preserving automorphisms

In this section we prove Theorem I (Corollary 7.23) and complete the proof of Theorem F (Theorem 7.25).
Both results will follow quickly once we prove Theorem 7.21 in Section 7.4, which can be viewed as the
main goal of this entire section.

This theorem claims that, in many cases, if G ÕM is an action of a special group on a median algebra, �
is a G–invariant compatible pseudometric and C is a large k–cube in M , then any subset of G that moves
all points in C by a lot less than the “size” of C must commute with a copy of Zk sitting inside G. This
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result holds, for instance, for co-special cubulations of G, ultralimits of these, and subalgebras thereof,
with uniform constants that are independent of the specific choice of �.

The case k D 1 thus implies that all these actions are WNE (Definition 6.21) and that centreless special
groups are UNE (Definition 2.36). The cases with k > 1 ensure that the actions on median spaces that we
will construct for Theorem F are moderate, as defined in the introduction.

7.1 The Bestvina–Paulin construction

As sketched in the introduction, the first step in the proof of Theorem F will involve a standard Bestvina–
Paulin construction, with some additional issues caused by the lack of hyperbolicity. In this subsection,
we discuss the role played by UNE groups (Definition 2.36) in addressing these issues.

Consider a group G, a geodesic metric space .X; d/, and a homomorphism � WG! IsomX inducing a
proper cocompact action G ÕX (we simply write gx rather than �.g/ � x).

7.1.1 The classical Bestvina–Paulin construction Fix a finite generating set S �G and let j � jS be
the induced word length on G. Denote by � W AutG! OutG the quotient projection. Given g; h 2G,
we write cŒg�.h/ WD ghg�1.

Every group automorphism ' W G ! G is bi-Lipschitz with respect to j � jS . By the Milnor–Schwarz
lemma, ' induces a quasi-isometry z' WX !X satisfying z' ı �.g/D �.'.g// ı z' for all g 2G.

Consider a sequence 'n 2 AutG and set �n WD � ı'n for all n� 0. Pick basepoints pn 2X with

�
�n

S .pn/�x�
�n

S � 1:

We introduce the quantities �n WD 1=x�
�n

S to simplify the notation.

Assumption 7.1 In the rest of Section 7.1, we assume that no two elements of the sequence �.'n/2OutG
coincide. A classical argument due to Bestvina and Paulin (see eg [7] and [87, page 338]) then guarantees
that �n! 0 for n!C1.

Fix a nonprincipal ultrafilter ! and consider the ultralimit .X! ; d! ; p!/D lim!.X; �nd; pn/. We have a
homomorphism �! WG! IsomX! obtained as ultralimit of the actions �n, namely

�!.g/ � .xn/D .�n.g/ � xn/D .'n.g/xn/

for all g 2G and .xn/ 2X! . This is well-defined since

lim
!
�nd.'n.g/xn; pn/� lim

!
�nŒd.'n.g/xn; 'n.g/pn/C d.'n.g/pn; pn/�

� lim
!
�nŒd.xn; pn/CjgjS � �

�n

S .pn/�

D d!..xn/; p!/CjgjS <C1:

One easily checks that ��!

S .p!/D x�
�!

S D 1, so the action G ÕX! induced by �! does not have a global
fixed point.
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7.1.2 Automorphisms of UNE groups Suppose for a moment that we are in the special case where
there exists ' 2 AutG such that 'n D 'n for all n � 0 (thus �n D � ı 'n). We want to show that '
induces a map ˆ WX!!X! with the property that ˆ ı �!.g/D �!.'.g// ıˆ for all g 2G. A natural
attempt is setting ˆ..xn//D .z'.xn// for all .xn/ 2 X! . However, for this to be well-defined we need
lim! �nd.z'.pn/; pn/ <C1.

We are actually interested in the following more general setting.

Assumption 7.2 Let N �OutG be a subgroup with infinite centre Z.N/. Let 'n 2AutG be a sequence
that is mapped by the projection � WAutG!OutG to a sequence of pairwise distinct elements in Z.N/.
Consider again �n D � ı'n as above.

If  2 ��1.N /, then �. / commutes with each �.'n/. For every n 2 Z, choose gn; 2G with

'n ı D cŒgn; � ı ı'n:

We are about to prove that, if G is UNE,  induces a well-defined map �. / WX!!X! given by

�. /..xn//D .gn; z .xn//:

(Recall that z WX !X is the quasi-isometry induced by  .) We essentially use the same argument as
[88, pages 154–156], replacing hyperbolicity with the UNE condition.

The proof of this result is quite technical. On a first read, we suggest restricting to the situation where
N ' Z and the automorphisms  and 'n are all powers of a given automorphism, in which case the
elements gn; can all be taken to be the identity and our strategy boils down to what is described
right before Assumption 7.2. This case is sufficient for Theorem F, though not for the more general
Theorem 7.25 below.

Proposition 7.3 Suppose that G is UNE. Let N �OutG and 'n 2AutG be as in Assumption 7.2. Then
there exists a homomorphism � W��1.N /!HomeoX! that extends �! , in the sense that �.cŒg�/D�!.g/
for every g 2G. Every homeomorphism in the image of � is bi-Lipschitz.

Proof Consider an element  2 ��1.N /. Let L� 1 be a constant such that z WX !X is an .L;L/–
quasi-isometry and such that  WG!G is L–bi-Lipschitz with respect to j � jS .

Step 1 The map �. / described above is a well-defined bi-Lipschitz homeomorphism of X! .

Since z is a quasi-isometry and �n ! 0, it suffices to show that �. / is a well-defined map, ie that
lim! �nd.gn; z .pn/; pn/ is finite.
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We begin by observing that, since 'n ı D cŒgn; � ı ı'n and z ı �.g/D �. .g// ı z ,

�
�n

S .gn; 
z .pn//Dmax

s2S
d.'n.s/gn; z .pn/; gn; z .pn//Dmax

s2S
d..cŒgn; �

�1'n/.s/ z .pn/; z .pn//

Dmax
s2S

d. z .. �1cŒgn; �
�1'n/.s/pn/; z .pn//Dmax

s2S
d. z .'n 

�1.s/pn/; z .pn//

� L �max
s2S

d.'n 
�1.s/pn; pn/CLD L �max

s2S
d.�n. 

�1.s// �pn; pn/CL

� L �max
s2S
j �1.s/jS � �

�n

S .pn/CL� L
2
� �
�n

S .pn/CL:

Now, since G is UNE, there exists a constant c > 0 such that, for every generating set T � G and all
x; y 2X , we have d.x; y/� c � .��T .x/C �

�
T .y//. For T D 'n.S/, we obtain

lim
!
�nd.gn; z .pn/; pn/� c � lim

!
�n.�

�

'n.S/
.gn; z .pn//C �

�

'n.S/
.pn//

D c � lim
!
�n.�

�n

S .gn; 
z .pn//C �

�n

S .pn//

� c.L2C 1/ � lim
!
�n�

�n

S .pn/ <C1:

Step 2 The map � is a homomorphism.

Since G is UNE, Example 2.38(3) shows that the centre Z.G/ � G is finite. Then, since G acts
cocompactly on X , there exists a constant M such that d.x; zx/�M for all x 2X and z 2Z.G/. Given
 1;  2 2N , we can take

�

 1 2 D z 1 z 2. Moreover,

cŒgn; 1 2
� 1 2'n D 'n 1 2 D cŒgn; 1

� 1'n 2

D cŒgn; 1
� 1cŒgn; 2

� 2'n

D cŒgn; 1
�cŒ 1.gn; 2

/� 1 2'n:

Hence gn; 1 2
and gn; 1

 1.gn; 2
/ differ by multiplication by an element of Z.G/. It follows that, for

every x 2X , we have d.gn; 1 2
x; gn; 1

 1.gn; 2
/x/�M . Thus, for every .xn/ 2X! ,

�. 1 2/..xn//D .gn; 1 2

�

 1 2.xn//D .gn; 1
 1.gn; 2

/ z 1. z 2.xn///

D .gn; 1
z 1.gn; 2

z 2.xn///D �. 1/..gn; 2
z 2.xn///

D �. 1/�. 2/..xn//:

Step 3 We have �.cŒg�/D �!.g/ for all g 2G.

Since cŒg� W G ! G is at bounded distance from left multiplication by g, the quasi-isometry ecŒg� is at
bounded distance from �.g/. Moreover, observing that

cŒ'n.g/� ı'n D 'n ı cŒg�D cŒgn;cŒg�� ı cŒg� ı'n;

we deduce that cŒ'n.g/g�1�D cŒgn;cŒg��, hence gn;cŒg� 2Z.G/'n.g/g�1. Thus, for every .xn/ 2X! ,

�.cŒg�/..xn//D .gn;cŒg�ecŒg�.xn//D .gn;cŒg�gxn/D .'n.g/g�1gxn/D .'n.g/xn/D �!.g/..xn//:
This concludes the proof of the proposition.
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In the special case where there exists ' 2AutG such that 'nD 'n and N D h�.'/i, we have ��1.N /'
.G=Z.G//Ì' Z and we obtain:

Corollary 7.4 Suppose that G is UNE and that �.'/2OutG has infinite order. Take 'nD 'n. Then the
map ˆ WX! !X! given by ˆ..xn//D .z'.xn// is a well-defined bi-Lipschitz homeomorphism of X!
satisfying ˆ ı �!.g/D �!.'.g// ıˆ for all g 2G.

7.1.3 Coarse-median preserving automorphisms of UNE groups Suppose now that X admits a
coarse median � of finite rank r . We can define a map �! WX3!!X! by setting �!..xn/; .yn/; .zn//D
.�.xn; yn; zn//. It was shown in [15, Section 9] that �! is well-defined and the pair .X! ; �!/ is a median
algebra of rank � r .

If the coarse median structure Œ�� is fixed by G Õ X , then the action G Õ X! is by automorphisms
of the median algebra .X! ; �!/. Moreover, if an automorphism  2 ��1.N / � AutG is such that z 
fixes Œ��, then �. / 2 Aut.X! ; �!/. Note that, although the metric d! on X! is G–invariant, it needs
not be preserved by �. /.

Remark 7.5 If the space X is coarse median but not median, the metric d! may not be compatible
with �! (in the sense of Definition 2.8). However, it was shown by Zeidler [101, Proposition 3.3] that
there always exists a metric ı 2 DG.X! ; �!/ such that .X! ; ı/ is complete, geodesic, and bi-Lipschitz
equivalent to .X! ; d!/. Theorem 2.14(2) and the fact that G does not fix a point in X! then imply that G
acts on .X! ; ı/ with unbounded orbits (alternatively, one can appeal to [17]).

This is only tangentially relevant to us as we will only be interested in ultralimits of CAT.0/ cube
complexes in the forthcoming subsections.

Summing up the above discussion:

Corollary 7.6 Let G be a UNE group. Let N � OutG be a subgroup with infinite centre. Let .X; Œ��/
be a geodesic coarse median space of finite rank r . Let G ÕX be a proper cocompact action fixing the
coarse median structure Œ��. Suppose that the quasi-isometries of X induced by the elements of ��1.N /
also preserve Œ��.

Then there exists a complete , geodesic median space X! of rank � r , and an action ��1.N /ÕX! by
bi-Lipschitz homeomorphisms that preserve the underlying median-algebra structure. The composition
G!G=Z.G/ ,! ��1.N /ÕX! is an isometric G–action with unbounded orbits.

7.2 Equivariant embeddings in products of R–trees

Let M be a median algebra and G ÕM an action by median automorphisms. In the rest of Section 7,
we will be interested in situations where M can be embedded G–equivariantly into a finite product of
R–trees. We reserve this subsection for a few general remarks on this setting.
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Definition 7.7 An R–tree is a geodesic, rank-1 median space.

This is equivalent to the usual definition of R–trees as geodesic metric spaces where every geodesic
triangle is a tripod. We stress that R–trees are not required to be complete.

The next remark collects various simple observations for later use.

Remark 7.8 Consider isometric G–actions on R–trees T1; : : : ; Tk . Equip T1�� � ��Tk with the diagonal
G–action. Let f D .fi / WM ,!

Q
Ti be a G–equivariant, injective median morphism.

(1) The image f .M/ is a median subalgebra of
Q
i Ti . The set of halfspaces of the median algebraQ

i Ti is naturally identified with the disjoint union
F
i H .Ti /.

Every halfspace of Ti is either open or closed. Open halfspaces are precisely the single connected
components of the sets Ti n fpg, as p varies through all points of Ti (including when Ti n fpg is
connected). Closed halfspaces are precisely the complements of open halfspaces.

If we let Hi �H .M/ be the set of halfspaces of the form f �1i .h/ with h 2H .Ti /, then the Hi cover
H .M/ by Remark 2.2(1). However, the Hi are usually not pairwise disjoint.

(2) Since the sets Hi are G–invariant and no two halfspaces in the same Hi are transverse, we see that
each g 2G must act nontransversely on M .

(3) Suppose that, for all i , all x 2 Ti and all g 2G, we have g2x D x if and only if gx D x. Then the
action G ÕM has no wall inversions.

Indeed, suppose instead that there exists h 2H .M/ such that ghD h�. Pick i such that h 2Hi , and
choose k 2H .Ti / with f �1i .k/D h. Then gk\ k and gk�\ k� are disjoint from the hgi–invariant median
subalgebra fi .M/. Note that we cannot have gk� k or gk� k, so, without loss of generality, gk\ kD∅.
It follows that fi .M/� k[gk, hence g is elliptic and fixes a unique point p in the convex hull of k[gk.
We conclude that g2kD k, hence the points on the arc connecting p to k are fixed by g2, but not by g.
This is a contradiction.

(4) Suppose that g acts on M stably without wall inversions. By Remark 2.18(2) and Theorem 2.14(3),
a halfspace h 2H .M/ lies in the set HC.g/.M/ if and only if either h ¨ gh, or h ¨ g�1h, or hD gh.

It follows that, for every i , either g is loxodromic in Ti and fi .C.g;M// is contained in its axis, or g is
elliptic in Ti and fixes fi .C.g;M// pointwise.

Now, let us fix a nonprincipal ultrafilter !. Let the group G be generated by a finite subset S . Consider a
sequence of actions by automorphism on median algebras G ÕMn, along with metrics ın 2 DG.Mn/

and basepoints pn 2Mn. Suppose moreover that

max
s2S

sup
n
ın.spn; pn/ <C1:
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Define .M! ; ı! ; p!/ WD lim!.Mn; ın; pn/. The setM! becomes a median algebra if we endow it with the
operator m..xn/; .yn/; .zn//D .m.xn; yn; zn//. We have an action by median automorphisms G ÕM!

given by g.xn/D .gxn/. Finally, note that ı! 2DG.M!/, and that .M! ; ı!/ is a complete median space
(every ultralimit of metric spaces is complete).

Given a sequence of subsets An �Mn, we will employ the notation

lim
!
An WD f.xn/ 2M! j xn 2 An for !–all ng D f.yn/ 2M! j lim

!
ın.yn; An/D 0g:

Note that lim! An is a (possibly empty) closed subset of .M! ; ı!/ for any sequence of subsets An �Mn.
It is also clear that lim! An �M! is convex as soon as An �Mn is convex for !–all n.

Fix an integer k � 1. Suppose that each action G ÕMn is equipped with a G–equivariant, ın–isometric
embedding fnD .f in / WMn ,!

Q
i T

i
n , where

Q
i T

i
n is a product of k R–trees endowed with an isometric,

diagonal G–action as in Remark 7.8. (We have switched the index i from subscript to superscript to avoid
confusion.)

It is straightforward to check that the ultralimits lim!.T in ; f
i
n .pn// yield isometric G–actions on R–trees

T i! and a G–equivariant, ı!–isometric embedding f! D .f i!/ WM! ,!
Q
i T

i
! .

Lemma 7.9 Consider the above setting. For every g 2G, we have

(1) `.g; T i!/D lim! `.g; T in/ and C.g; T i!/D lim! C.g; T in/ for all 1� i � k.

If , in addition , .Mn; ın/ is a geodesic space for !–all n, then .M! ; ı!/ is geodesic and

(2) `.g; ı!/D lim! `.g; ın/ and C.g;M!/D lim! C.g;Mn/.

Proof We only prove part (2), since part (1) is a special case of it.

By Remarks 2.12 and 7.8(2), each g 2G acts on M! stably without inversions and nontransversely; the
same is true of the action on !–all Mn. Theorem 2.16(2) shows that, for every x D .xn/ 2M! , we have

ı!.x; gx/D lim
!
ın.xn; gxn/D lim

!
Œ`.g; ın/C 2ın.xn; C.g;Mn//�� lim

!
`.g; ın/:

Hence `.g; ı!/ � lim! `.g; ın/. By Theorem 2.16(1), the sets C.g;Mn/ are gate-convex. If yn is the
gate-projection of the basepoint pn 2Mn to C.g;Mn/, we have

lim
!
ın.yn; pn/D lim

!
ın.pn; C.g;Mn//� lim

!

1
2
ın.pn; gpn/ <C1:

It follows that we have a well-defined point y D .yn/ 2M! and that ı!.y; gy/D lim! `.g; ın/. This
shows that `.g; ı!/D lim! `.g; ın/.

Finally, since C.g;M!/ is gate-convex, it is a closed subset of the complete median space .M! ; ı!/.
Thus a point x D .xn/ 2M! lies in C.g;M!/ if and only if ı!.x; C.g;M!//D 0, which happens if and
only if ı!.x; gx/D `.g; ı!/ (again by Theorem 2.16). Equivalently, x lies in C.g;M!/ if and only if
lim! ın.xn; C.g;Mn//D 0, ie if and only if x 2 lim! C.g;Mn/. This concludes the proof.
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Lemma 7.10 Consider again the above setting , with .Mn; ın/ geodesic for !–all n. Consider two
elements g; h 2G and s � 1.

(1) Suppose that , for some w 2 W .M!/, we have fw; gswg �W1.g;M!/\W1.h;M!/. Then , for
!–all n, there exists wn 2W .Mn/ such that fwn; gswng �W1.g;Mn/\W1.h;Mn/.

(2) If there exist walls u; v 2W1.g;M!/ such that fu; gsug is transverse to fv; gsvg, then , for !–all n,
there exist un; vn 2W1.g;Mn/ such that fun; gsung is transverse to fvn; gsvng.

Proof We begin with some general observations. We have already noted in Lemma 7.9 that .M! ; ı!/ is
connected, hence g and h act stably without inversions. By parts (1) and (4) of Remark 7.8, each wall
of M! arises from a wall of (at least) one of the trees T i! . Moreover, each projection f i!.C.g;M!// is
either fixed pointwise by g or it is a hgi–invariant geodesic (and similarly for h).

We now prove part (1). By the above discussion, there exist an index i and v 2 W .T i!/ such that
fv; gsvg �W1.g; T

i
!/\W1.h; T

i
!/. Thus, g and h are both loxodromic in T i! , which implies that they

are loxodromic in !–all T in . Let ˛! ; ˛n and ˇ! ; ˇn be the axes in T i! ; T
i
n of g and h, respectively. By

Lemma 7.9, we have ˛! D lim! ˛n and ˇ! D lim! ˇn. Since ˛! and ˇ! both cross v and gsv, they
must share a segment of length �C s � `.g; T i!/ for some � > 0.

If y and z are the endpoints of this segment, we can write y D .yn/D .y0n/ and z D .zn/D .z0n/ with
yn; zn 2 ˛n and y0n; z

0
n 2 ˇn. Denoting by ıin the metric of T in , we have

lim
!
ıin.yn; y

0
n/D lim

!
ıin.zn; z

0
n/D 0 and lim

!
ıin.yn; zn/D lim

!
ıin.y

0
n; z
0
n/D �C s � lim! `.g; T in/:

Hence ˛n and ˇn share a segment �n of length > s � `.g; T in/ for !–all n. It follows that there exists a
wall vn 2W .T in/ such that �n crosses vn and gsvn. Hence fvn; gsvng �W1.g; T

i
n/\W1.h; T

i
n/, and it

is clear that vn determines a wall wn of M with fwn; gswng �W1.g;Mn/\W1.h;Mn/.

We now prove part (2). By Remark 7.8(4), u and v determine halfspaces h; k 2H .M!/ satisfying gh ¨ h

and gk ¨ k. Since fu; gsug and fv; gsvg are transverse, Helly’s lemma implies that there exist points

x 2 gsh\gsk\ C.g;M!/; y 2 gsh\ k�\ C.g;M!/;

z 2 h�\gsk\ C.g;M!/; w 2 h�\ k�\ C.g;M!/:

Suppose that u and v arise from trees T i! and T j! , where g has axes ˛i and ˛j , respectively. Then the
points f i!.x/; f

i
!.y/; f

i
!.z/; f

i
!.w/ lie on ˛i , and ff i!.x/; f

i
!.y/g is separated from ff i!.z/; f

i
!.w/g by

a segment of length > s � `.g; T i!/. Similarly, ff j! .x/; f
j
! .z/g and ff j! .y/; f

j
! .w/g are separated by a

subsegment of ˛j of length > s � `.g; T j! /.

Writing x D .xn/, y D .yn/, z D .zn/ and w D .wn/, it follows that, for !–all n, there exist walls
u0n 2W1.g; T

i
n/ and v0n 2W1.g; T

j
n / such that

fu0n; g
su0ng � W .f in .xn/; f

i
n .yn/jf

i
n .zn/; f

i
n .wn//;

fv0n; g
sv0ng � W .f jn .xn/; f

j
n .zn/jf

j
n .yn/; f

j
n .wn//:

Thus u0n; v
0
n induce un; vn 2W1.g;Mn/ with fun; gsung transverse to fvn; gsvng; cf Lemma 4.4.
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7.3 Ultralimits of convex-cocompact actions on Salvettis

Let � be a finite simplicial graph, A D A� the associated right-angled Artin group, and X D X� the
universal cover of its Salvetti complex. Denote by d the `1 metric on X and set r D dimX . Fix a
nonprincipal ultrafilter !.

When we speak convex-cocompactness in A from now on (Definition 3.1), this is always meant with
respect to the standard action AÕX . Note that a group G is isomorphic to a convex-cocompact subgroup
of a right-angled Artin group if and only if G is the fundamental group of a compact special cube
complex [68]. In particular, G must be torsionfree and finitely generated.

In the rest of Section 7 we make the following assumption.

Assumption 7.11 Let G �A be a convex-cocompact subgroup. Let Y � X be a G–invariant, convex
subcomplex on which G acts with exactly q orbits of vertices. Let Œ�� be the induced coarse median
structure on G. Consider a sequence 'n 2 Aut.G; Œ��/. Denote by � WG ,!A the standard inclusion and
set �n D � ı'n.

We say for simplicity that g 2G is label-irreducible if �.g/ is a label-irreducible element of A.

Remark 7.12 If g 2G is label-irreducible, then Corollary 3.3 and Lemma 3.11(2) show that �n.g/ 2A
is label-irreducible for all n� 0.

Let S � G be a finite generating set. Choose basepoints pn 2 Yn with ��n

S .pn/ D x�
�n

S and define
ın WD d=x�

�n

S 2D
G.X /. For ease of notation, let us write G Õ Xn and G Õ Yn for the actions of G on X

and Y induced by the homomorphism �n.

Recall that  W W .X /! �.0/ is the map pairing each hyperplane with its label. For every v 2 �.0/,
the hyperplanes in �1.v/ are pairwise disjoint. Hence there is a natural simplicial tree T v (usually
locally infinite) that is dual to the collection �1.v/. In the terminology of Section 2.5, the tree T v is the
restriction quotient of X associated to �1.v/�W .X /.

In particular, we have an A–equivariant, surjective median morphism �v W X ! T v taking cubes to edges
or vertices, and an A–equivariant, isometric median morphism .�v/ W X ,!

Q
v2� T v.

Let T vn denote the tree T v equipped with the twisted G–action induced by �n and with its graph metric
rescaled by x��n

S . We obtain a G–equivariant, ın–isometric embedding .�vn / W Xn ,!
Q
v2� T vn .

Thus, our setting is a special case of the one in the second part of Section 7.2 (after Remark 7.8). If the
automorphisms 'n are pairwise distinct in OutG, then we are also in a special case of Section 7.1, but
we do not make this assumption for the moment.
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As in Section 7.2, the sequence of actions GÕXn with metrics ın and basepoints pn yields a limit action
G Õ X! , along with a metric ı! 2 DG.X!/, a basepoint p! 2 X! , and a G–equivariant, ı!–isometric
embedding .�v!/ W X! ,!

Q
v2� T v! . The pair .X! ; ı!/ is a complete, geodesic median space of rank � r .

We now prove a sequence of fairly straightforward lemmas regarding the action of G on X! and its
median subalgebras. After that comes the most important part of this subsection, which is concerned with
the notion of cubical configurations (Definition 7.17).

Lemma 7.13 Consider label-irreducible elements g; h 2G.

(1) If there exist walls u and w with fu;w; h4ru; g4rwg �W1.g;X!/\W1.h;X!/, then hg; hi ' Z.

(2) There do not exist walls u;w 2W1.g;X!/ such that fu; g4rug is transverse to fw; g4rwg.

Proof We begin with part (1). By Lemma 7.10(1), there exist hyperplanes un;wn 2 W .Xn/ for some n,
such that fun;wn; h4run; g4rwng�W1.g;Xn/\W1.h;Xn/. Since �n.g/ and �n.h/ are label-irreducible
by Remark 7.12, Lemma 3.13 guarantees that hg; hi ' Z.

Regarding part (2), if there existed such walls, Lemma 7.10(2) would yield hyperplanes un;wn 2W .Xn/
for some n, such that the sets fun; g4rung and fwn; g4rwng were transverse and both contained in
W1.g;Xn/. This would violate Lemma 3.10, since �n.g/ is label-irreducible.

Lemma 7.14 For every G–invariant median subalgebra M � X! , we have:

(1) The action G ÕM has no wall inversions.

(2) Each element g 2G is elliptic (resp. loxodromic) in M if and only if it is in X! .

Proof Part (2) follows from part (1). Indeed, note that H1.g;M/D∅ if and only if H1.g;X!/D∅,
for instance by Remark 2.18(3). Since the action G ÕM has no inversions, Theorem 2.14(2) then shows
that g is elliptic/loxodromic in M if and only if it is X! .

Regarding part (1), we will need the following observation:

Claim Let an action G Õ .T! ; d!/ be the ultralimit of a sequence of actions on R–trees G Õ .Tn; dn/.
Suppose in addition that g 2G is loxodromic in !–all Tn. Then , for all k 2 Z n f0g and all x 2 T! , the
point x is fixed by gk if and only if it is fixed by g.

Proof Let ˛n be the axis of g in Tn and consider a point y D .yn/ 2 T! . Then

dn.yn; g
kyn/D `.g

k; Tn/C 2dn.yn; ˛n/� `.g; Tn/C 2dn.yn; ˛n/D dn.yn; gyn/:

It follows that d!.y; gky/� d!.y; gy/ for all k 2 Z n f0g, which proves the claim. G
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Now, we will deduce that the action G ÕM has no wall inversions from Remark 7.8(3). We need to
show that, for every v 2 � , every x 2 T v! and every g 2G, we have g2x D x if and only if gx D x. If
�n.g/ is loxodromic in T vn for !–all n, this follows from the claim. If instead �n.g/ is elliptic in T vn for
!–all n, then it follows from the observation that edge-stabilisers for the action G Õ T vn are closed under
taking roots in G (since they are hyperplane-stabilisers for G Õ Xn).

Lemma 7.15 Consider g 2 G such that its label-irreducible components g1; : : : ; gk also lie in G
(in general , they only lie in A). Then , for every G–invariant median subalgebra M � X! :

(1) We have a partition W1.g;M/DW1.g1;M/t � � � tW1.gk;M/.

(2) Each wall in W1.gi ;M/ is preserved by each gj with j ¤ i .

(3) The sets W1.g1;M/; : : : ;W1.gk;M/ are transverse to each other.

(4) We have C.g;M/D C.g1;M/\ � � � \ C.gk;M/ and C.gm;M/D C.g;M/ for all m� 1.

(5) For every � 2 PDG.M/, we have `.g; �/D `.g1; �/C � � �C `.gk; �/.

Proof Let us prove parts (1) and (2) first, except for disjointness of the sets W1.gi ;M/, which will
follow from part (3). Note that it suffices to consider the case when M D X! . Indeed, by Remark 2.2,
we have a surjection resM W WM .X!/! W .M/ and, by Remark 2.18(3), a wall w 2 WM .X!/ lies in
W1.g;X!/ if and only if resM .w/ lies in W1.g;M/.

In fact, Remark 7.8(1) shows that it suffices to prove parts (1) and (2) “for the trees T v! ”, ie prove that,
for every v 2 � , we have W1.g; T v! / D W1.g1; T v! / [ � � � [W1.gk; T v! /, and that gj fixes the set
W1.gi ; T v! / pointwise for j ¤ i .

Note that distinct components gi cannot be loxodromic in the same tree T v! . Otherwise they would have
the same axis, since they commute, and Lemma 7.13(1) would give a contradiction. Thus, at most one of
the sets W1.g1; T v! /; : : : ;W1.gk; T v! / can be nonempty, for each v.

Recalling that g D g1 � � �gk and that the gi commute pairwise, we conclude that either W1.g; T v! /
is empty, or it coincides with W1.giv ; T v! /, where giv is the only label-irreducible component that is
loxodromic in T v! . If j ¤ iv , then gj is elliptic in T v! and, since it commutes with giv , it must fix pointwise
its entire axis. In particular, gj preserves every wall in the set W1.giv ; T v! /. This proves parts (1) and (2),
except for disjointness of the sets W1.gi ;M/.

In order to prove part (3), note that part (2) shows that W1.gi ;M/ � W0.gj ;M/ for i ¤ j . By
Lemma 7.14(1), the action G Õ M has no wall inversions. Thus W1.gi ;M/ and W1.gj ;M/ are
transverse by Theorem 2.14(3). In particular, W1.gi ;M/ and W1.gj ;M/ are disjoint, which completes
the proof of part (1).

Regarding part (4), it suffices to prove the statements for M DX! . Indeed, G acts nontransversely on X!
and without inversions onM , so we have C.g;M/DM \C.g;X!/, for instance by [51, Proposition 3.40].
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The same holds for the gi . Now, Lemma 7.9(2) implies that C.g;X!/ coincides with
T
i C.gi ;X!/ and

C.gm;X!/, since this is true for convex cores in all Xn (recall Lemma 3.7(2) and Remark 7.12).

Finally, we prove part (5). Parts (1) and (2) imply that a B–measurable fundamental domain for the
action hgiÕ H1.g;M/ can be constructed as the disjoint union of B–measurable fundamental domains
for the actions hgi iÕ H1.gi ;M/. Since G ÕM has no wall inversions, translation lengths coincide
with a measure of these fundamental domains (Remark 2.19) and part (5) follows.

Lemma 7.16 Let M � X! be a G–invariant median subalgebra with a pseudometric � 2 PDG.M/.
Consider an element g 2G and a point x 2M .

(1) For every m� 1, we have �.x; gx/� �.x; gmx/.

(2) If h 2G is a label-irreducible component of g, then �.x; hx/� �.x; gx/.

Proof Recall that the action G Õ M is nontransverse by Remark 7.8(2), and without inversions by
Lemma 7.14(1). Thus, Theorem 2.16(2) guarantees that �.x; gx/D `.g; �/C 2�.x; C.g;M//.

Now, part (1) is obtained by observing that `.gm; �/ D m � `.g; �/ and C.gm;M/ D C.g;M/, which
follow from Remark 2.19 and Lemma 7.15(4), respectively. For part (2), it suffices to recall that
C.g;M/� C.h;M/ and `.h; �/� `.g; �/, as shown in parts (4) and (5) of Lemma 7.15.

We now introduce cubical configurations, which will be important in the proof of Theorem 7.21, hence
in those of Theorems F and I. The idea is that large cubes in X! that are moved very little by a subset
F �G will give rise to cubical configurations in X! (Lemma 7.22).

After the definition, we will see how to transfer cubical configurations from X! to X (Lemma 7.18) and
how to use them to construct large abelian subgroups in the centraliser ZG.F / (Lemma 7.19).

Definition 7.17 Consider an action on a median algebra GÕM and a finite subset F �G. An .s; t; F /–
cubical configuration of width m� 1 in M is the datum of nonempty subsets U1; : : : ;Us �W .M/, walls
v1; : : : ; vt 2W .M/ and a partition F D F0 t fg1; : : : ; gtg such that

(1) the sets U1; : : : ;Us; fv1; gm1 v1g; : : : ; fvt ; g
m
t vtg are transverse to each other and their union is

contained in W0.f;M/ for every f 2 F0,

(2) for each 1� j � t , we have fvj ; gmj vj g �W1.gj ;M/, while W0.gj ;M/ contains U1; : : : ;Us and
all sets fvj 0 ; gmj 0vj 0g with j 0 ¤ j .

We refer to U1; : : : ;Us as the static sets and to g1; : : : ; gt as the skewering elements.

The proof of the next result is quite similar in spirit to that of Lemma 7.9, but we repeat it for the reader’s
convenience, since it is a bit more technical.

We denote by Y! � X! the convex subset obtained as lim! Yn. A subset C �W .Y / is a chain if it is the
set of hyperplanes associated to a set of halfspaces that is totally ordered by inclusion.
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Lemma 7.18 Suppose that the sequence 'n is not !–constant. Let F � G be a finite subset of label-
irreducible elements such that no two of them generate a cyclic subgroup. Suppose that Y! admits an
.s; t; F /–cubical configuration of width � 4r with skewering elements g1; : : : ; gt .

Then , for !–all n, there exists a .�; �; 'n.F //–cubical configuration of width � 4r in Y such that
� C � D sC t and the 'n.gi / are skewering elements (hence � � t and � � s). In addition , the static sets
of this configuration can be taken to be arbitrarily long chains of hyperplanes.

Proof Let the cubical configuration in Y! consist of static sets U1; : : : ;Us , walls v1; : : : ; vt and the
partition F D F0 t fg1; : : : ; gtg. It suffices to assume that each Ui is a singleton fuig. Recall that the
action G Õ Y! is nontransverse by Remark 7.8(2), and without inversions by Remark 2.12.

By Remark 7.8(1), there exist vertices u1; : : : ; us; v1; : : : ; vt 2 � such that the walls ui and vj arise from
walls xui 2W .T ui

! / and xvj 2W .T vj

! /, respectively. Note that each xui is preserved by all elements of F ,
while xvj and g4rj xvj are preserved by F n fgj g and cross the axis of gj in T vj

! .

Claim There exist nontrivial arcs ˛i � T ui
! and ǰ � T vj

! , with endpoints ˛˙i and ˇ˙j , such that :

(a) Each ˛i is fixed by F and each ǰ is fixed by F n fgj g.

(b) ǰ is contained in the axis of gj in T vj

! and it has length > 4r � `.gj ; T
vj

! /.

(c) These arcs induce transverse sets of walls of Y! . More precisely , for every .�; �/ 2 f˙gs � f˙gt ,
there exists a point x�;� 2 Y! such that , for all i and j , the nearest-point projection of �ui

! .x
�;� /

to ˛i is ˛�i

i , and the nearest-point projection of �vj

! .x
�;� / to ǰ is ˇ�jj .

Proof The walls ui ; vj 2W .Y!/ correspond to halfspaces u˙i ; v
˙
j 2H .Y!/, which we label so that, for

each j , the halfspaces v�j and g4rj vCj are disjoint. Since the sets fuig and fvj ; g4rj vj g are all transverse
to each other, Helly’s lemma allows us to find points x�;� 2 Y! so that x�;� lies in u�i

i for all i and so
that, for all j , it lies in v�j if �j D� and in g4rj vCj if �j DC.

For each i , there exists a point qi 2 T ui
! such that one of the two halfspaces associated to xui is a connected

component �i of T ui
! n fqig; in particular, �i is open. Since G acts on Y! without inversions, F fixes qi

and leaves �i invariant. Since F is finite, it fixes nontrivial arc of T ui
! with one endpoint equal to qi and

the other lying in �i . We let ˛i be this arc, possibly shrinking it a bit to ensure that the finitely many
points �ui

! .x
�;� / have the correct projections to ˛i .

Finally, consider an index 1 � j � t . The set of points x�;� with �j D � is contained in v�j , whereas
the set of points x�;� with �j DC is contained in g4rj vCj . Note that either �vj

! .v
�
j / or �vj

! .g
4r
j vCj / is

an open halfspace of T vj

! . It follows that the set of points �vj

! .x
�;� / with �j D � is separated by the

set of points �vj

! .x
�;� / with �j D C by an arc ǰ that is contained in the axis of gj in T vj

! and has
length > 4r � `.gj ; T

vj

! /. Since F n fgj g preserves the halfspaces v�j and g4rj vCj , we can shrink ǰ a bit
to ensure that it is fixed by F n fgj g, while retaining length > 4r � `.gj ; T vj

! /. This concludes the proof
of the claim. G
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Now, it is straightforward to approximate, for !–all n, the data provided by the claim by arcs ˛i .n/� T ui
n ,

ǰ .n/� T vj

n and points x�;�n 2 Yn satisfying analogous conditions.

Here we need to account for the fact that some elements of F that are elliptic in one of the trees T �! might
be loxodromic in the trees T �n , with translation lengths converging to zero. In any case, we can ensure
that the following are satisfied:

(a0) For all f 2 F and 1 � i � s, either f fixes ˛i pointwise, or ˛i is contained in the axis of f in
T ui
n and has length > 4r � `.f; T ui

n /; the same holds for f 2 F n fgj g and ǰ .

(b0) ǰ .n/ is contained in the axis of gj in T vj

n and it has length > 4r � `.gj ; T
vj

n /.

(c0) The nearest-point projection of �ui
n .x

�;�
n / to ˛i .n/ is ˛�i

i .n/, and the nearest-point projection of
�
vj

n .x
�;�
n / to ǰ .n/ is ˇ�jj .n/.

Fix a value of n such that the above are satisfied. Condition (c0) implies that the subsets of W .Yn/

corresponding to the arcs ˛i .n/ and ǰ .n/ are all transverse to each other. Hence:

� Each f 2 F fixes all arcs ˛i .n/; ǰ .n/ except at most one. Otherwise, conditions (a0) and (b0)
would yield w;w0 2W1.f; Yn/ such that fw; f 4rwg and fw0; f 4rw0g are transverse. Along with
Lemma 3.10, this would contradict label-irreducibility of �n.f / (Remark 7.12).

� Each of the arcs ˛i .n/; ǰ .n/ is fixed by all elements of F except at most one. Indeed, if
neither of f1; f2 2 F fixed a given arc, then the same conditions would yield w1;w2 such
that fw1; f 4r1 w1;w2; f

4r
2 w2g �W1.f1; Yn/\W1.f2; Yn/. Since �n.f1/ and �n.f2/ are label-

irreducible, Lemma 3.13 would then imply that hf1; f2i ' Z, contradicting our assumptions.

In conclusion, up to reordering, there exists 0� � � s such that, for 1� i � � , the arcs ˛i .n/ are fixed by
the whole F , while, for � < i � s, there exists fi 2 F such that fi contains ˛i .n/ in its axis and ˛i .n/
is fixed by F n ffig. We obtain a .�; �; F /–cubical configuration of width � 4r in Yn, where the static
sets are given by the hyperplanes of Yn originating from the arcs ˛i .n/ with i � � , while the skewering
elements are f�C1; : : : ; fs and g1; : : : ; gt (thus, � D sC t � � ).

This immediately translates into a .�; �; 'n.F //–cubical configuration of width � 4r in Y . The fact that
the static sets can be taken with arbitrarily large cardinality is also immediate, recalling that, since 'n is
not !–constant, the scaling factors x��n

S diverge; cf Assumption 7.1 above.

The next result only requires the material in Section 3.3 for its proof. However, it is best stated in terms
of cubical configurations, as defined above.

Recall that q is the number of orbits of vertices for the action G Õ Y .

Lemma 7.19 Let F �G be a finite set of label-irreducible elements. Suppose that there is an .s; t; F /–
cubical configuration of width � 4r in Y , where all the static sets are chains , each containing � q
hyperplanes. Then the centraliser ZG.F / contains a copy of Zk with k D sC t .
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Proof Let the cubical configuration consist of static sets U1; : : : ;Us , hyperplanes v1; : : : ; vt and the
partition F D F0 t fg1; : : : ; gtg.

Form a set U 0i by adding to Ui all hyperplanes of Y that separate hyperplanes of Ui . This guarantees
that there exist vertices xi ; yi 2 Y such that W .xi jyi / D U 0i . The sets U 0i and fvj ; g4rj vj g are still all
transverse to each other and the elements of F still fix each U 0i pointwise.

Since #W .xi jyi /� #Ui � q, any geodesic joining xi to yi must contain two points in the same G–orbit.
Thus, there exist zi 2 Y and hi 2G n f1g with W .zi jhizi /� U 0i for all 1� i � s.

Lemma 3.15 shows that the hi commute pairwise. In addition, for every f 2 F , we have W .zi jhizi /�

U 0i �W0.f /, which is transverse to W1.f /. Since W1.f / contains W .zjf z/ for any z 2 C.f /, another
application of Lemma 3.15 guarantees that hi and f commute. Finally, for 1� j � t , the hyperplanes
vj and g4rj vj are preserved by all elements of F n fgj g. Since gj is label-irreducible, Corollary 3.14(1)
implies that gj commutes with every element of F .

In conclusion, we have shown that the subgroup generated by A WD fh1; : : : ; hs; g1; : : : ; gtg is abelian
and contained in ZG.F /. We are left to show that A is a basis for hAi.

Observe that vj is preserved by all elements of A n fgj g, but lies in W1.gj /. Similarly, there exist
hyperplanes ui 2W .zi jhizi / that are preserved by A n fhig, but lie in W1.hi /. If a product hm1

1 � � � h
ms
s �

g
n1

1 � � �g
nt

t represents the identity, then it must preserve all hyperplanes ui and vj , which implies that
mi D 0 and nj D 0 for all i; j . This concludes the proof.

7.4 Ultralimits of Salvettis and the WNE property

This subsection is devoted to the proof of Theorems F and I. We keep the exact same setting as the
previous subsection:

Assumption 7.20 Let G �A be a convex-cocompact subgroup. Let Y � X be a G–invariant, convex
subcomplex on which G acts with q orbits of vertices. Set r D dimX . Denote by d the `1 metric on X
and Y . Let Œ�� be the induced coarse median structure on G.

Consider a sequence 'n 2 Aut.G; Œ��/. Denote by � WG ,!A the standard inclusion and set �n D � ı'n.
Fixing a nonprincipal ultrafilter !, define X! , Xn, Yn and Y! D lim! Yn as in Section 7.3.

The following result is the coronation of our efforts from Section 3.3 and the previous portion of Section 7.
Its second part (with k D 1) proves Theorem I, while its first part is the last remaining ingredient in the
proof of Theorem F (together with Corollary 6.23).

Theorem 7.21 Let F �G be a finite subset and suppose that one of the following holds.

(1) Let 'n not be !–constant. Let M � Y! be a G–invariant median subalgebra and consider � 2
PDG.M/. There exists a k–cube C �M such that , for any two distinct points x; y 2 C ,

�.x; y/ > 4r2q � Œ�
�
F .x/C �

�
F .y/�:
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(2) There exists a (generalised ) k–cube C � Y .0/ such that , for any two distinct points x; y 2 C ,

d.x; y/ >
�
2r2qC 1

2
rq �maxf4r; qg

�
� Œ�dF .x/C �

d
F .y/�:

Then the centraliser ZG.F / contains a copy of Zk .

The theorem will follow quickly from Lemma 7.22 below, which constructs a cubical configuration in Y!
(in case (1)) or directly in Y (in case (2)). Indeed, we can then use Lemma 7.18 to always obtain a cubical
configuration in Y , and this yields the required copy of Zk in ZG.F / by Lemma 7.19.

Lemma 7.22 Consider the setting of Theorem 7.21. There exists an .s; t; F 0/–cubical configuration
of width � 4r in Y! (in case (1)) or in Y (in case (2)), where sC t D k and F 0 � G is a finite subset
with ZG.F 0/DZG.F /. All elements of F 0 are label-irreducible and no two of them generate a cyclic
subgroup.

In addition , in case (2), the static sets are chains of hyperplanes of cardinality � q.

Proof We prove the lemma simultaneously in the two cases of the theorem. In fact, in this proof it is
irrelevant whether the 'n are !–constant or not, so we can view case (2) as a special instance of case (1)
by taking 'n � idG , Y! D Y , M D Y .0/ and �D d .

Recall that, by Remark 7.8(2) and Lemma 7.14(1), the action G Õ M is nontransverse and without
inversions. We begin by constructing the finite subset F 0 �G.

Claim 1 There exists F 0 �G such that ZG.F 0/DZG.F /, all elements of F 0 are label-irreducible and
no two of them generate a cyclic subgroup. In addition , ��F 0.x/� q � �

�
F .x/ for all x 2M .

Proof Let a1; : : : ; aN 2A be a choice of generator for each maximal cyclic subgroup of A that contains
a label-irreducible component of an element of F . Let mi � 1 be the smallest integer such that ami

i

lies in G; by Lemma 3.16, mi is well-defined and, by Remark 3.17, we have 1 � mi � q. Define
F 0 WD fa

mi

i j 1� i �N g.

It is clear that every element of F 0 is label-irreducible and that any two elements of F 0 generate a noncyclic
subgroup. Since all nontrivial powers of any given element of A have the same centraliser, Lemma 3.7(3)
implies that ZG.F 0/DZG.F /.

For every ai , there exist n� 1 and f 2 F such that ani is a label-irreducible component of f . Thus anmi

i

is a label-irreducible component of f mi . Applying Lemma 7.16, it follows that

�.x; a
mi

i x/� �.x; a
nmi

i x/� �.x; f mix/�mi � �.x; f x/� q � �.x; f x/� q � �
�
F .x/:

Hence ��F 0.x/� q � �
�
F .x/ for all x 2M , as required. G
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Now, consider the multibridge B.F 0/�M introduced in Definition 6.8. Pick any fibre P DB==.F 0/�f�g.
Let �P WM ! P be the gate-projection.

Claim 2 The set C 0 WD �P .C / is again a k–cube and , for all distinct points x0; y0 2 C 0, we have
�.x0; y0/� 4r2 � x�

�
F 0 . Under the assumptions of case (2), we further have �.x0; y0/� rq � x��F 0 .

Proof If x; y 2C are distinct, note that we have �.x; y/> 4r2q � Œ��F .x/C�
�
F .y/� under the assumptions

of both case (1) and case (2). Also recall that, by Proposition 6.11(6), we have �.x; �P .x//� 2r2 ��
�
F 0.x/

for all x 2M . Combining these inequalities with Claim 1, we obtain

�.�P .x/; �P .y//� �.x; y/� 2r
2
� Œ�

�
F 0.x/C �

�
F 0.y/�

> 4r2q � Œ�
�
F .x/C �

�
F .y/�� 2r

2
� Œ�

�
F 0.x/C �

�
F 0.y/�

� 2r2 � Œ�
�
F 0.x/C �

�
F 0.y/�� 4r

2
� x�
�
F 0 :

In particular, distinct points of C project to distinct points of C 0, which guarantees that C 0 is again a
k–cube. Moreover, �.x0; y0/� 4r2 � x��F 0 whenever x0; y0 are distinct points of C 0.

Under the assumptions of case (2), we also have �.x; y/ > .2r2qC rq2=2/ � Œ��F .x/C �
�
F .y/� for all

x; y 2 C . Using this instead of �.x; y/ > 4r2q � Œ��F .x/C �
�
F .y/� in the above chain of inequalities, we

obtain �.�P .x/; �P .y//� rq � x�
�
F 0 , as required. G

Let fC 0i;�; C
0
i;Cg be the k pairs of opposite codimension-1 faces of C 0. Setting Hi WDH .C 0i;�jC

0
i;C/, we

obtain sets of halfspaces H1; : : : ;Hk �H .M/ that are transverse to each other. If �� is the measure
introduced in Remark 2.9, we have ��.Hi / > 4r2 � x�

�
F 0 by Claim 2.

The set Hi can be partitioned into at most r measurable subsets such that no two halfspaces in the same
subset are transverse; this follows from Corollary A.3, proved in the appendix (note that D.M/ ¤ ∅
since D.X!/¤∅, even though � is just a pseudometric). Define H0i �Hi as the subset with the largest
measure among those in this partition. No two halfspaces in H0i are transverse, and

��.H0i /�
1

r
� ��.Hi / > 4r � x�

�
F 0 :

Let U 0i � W .M/ be the set of walls associated to H0i . Recall that

U 0i �WC 0.M/�WP .M/�
\
f 2F 0

WC.f /.M/D
\
f 2F 0

�
W1.f;M/tW0.f;M/

�
:

Since the sets W1.f;M/ and W0.f;M/ are transverse, while no two walls in U 0i are transverse, we must
have either U 0i � W1.f;M/ or U 0i � W0.f;M/ for every index i and element f 2 F 0. Consider the
partitions F 0 D Fi tF?i such that U 0i �W1.f;M/ if f 2 Fi and U 0i �W0.f;M/ if f 2 F?i .

Claim 3 We have #Fi � 1 for all 1� i � k, and Fi \Fj D∅ for i ¤ j .
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Proof For every f 2 F 0, we have

��.H0i / > 4r � x�
�
F 0 � 4r � `.f; �/D `.f

4r ; �/:

If U 0i �W1.f;M/, it follows that there exists a wall w 2 U 0i such that f 4rw� U 0i .

Thus, if f; g 2 Fi , there exist walls w and w0 such that fw; f 4rw;w0; g4rw0g �W1.f;M/\W1.g;M/.
By Remarks 2.2(1) and 2.18(3), there is an analogous inclusion involving walls of X! , so Lemma 7.13(1)
yields hf; gi ' Z. Since f; g 2 F 0, this means that f D g. Hence #Fi � 1.

Suppose towards a contradiction that there exists f 2 Fi \Fj . Then there are walls wi ;wj such that
fwi ; f

4rwig � U 0i and fwj ; f 4rwj g � U 0j . In particular, the subsets fwi ; f 4rwig and fwj ; f 4rwj g are
transverse to each other and contained in W1.f;M/. Again, Remarks 2.2(1) and 2.18(3) give walls of X!
with the same properties, which contradicts Lemma 7.13(2). G

Up to permuting the sets U 0i , we can assume that there exists an index 0 � s � k such that Fi D∅ for
1� i � s, while Fi D ffig for s < i � k and pairwise-distinct elements fi 2 F 0. This all follows from
Claim 3. Each f 2 F 0 preserves every wall in U 0i except if i > s and f D fi . In addition, the proof of
Claim 3 gives walls vi for i > s, such that fvi ; f 4ri vig � U 0i �W1.fi ;M/. Also recall that the sets U 0i
are all transverse to each other.

This gives an .s; k� s; F /–cubical configuration of width � 4r in M , where U 01; : : : ;U
0
s are the static sets

and fsC1; : : : ; fk are the skewering elements. Since M � Y! , it is straightforward to transfer this to a
cubical configuration in Y! with the same parameters using Remarks 2.2(1) and 2.18(3). This completes
the proof of the lemma in Case (1).

In Case (2), we are left to show that the static sets U 01; : : : ;U
0
s contain at least q hyperplanes each. Recall

that M D Y .0/ and �D d , so �� is just the counting measure. By Claim 2, we have #H0i D ��.H
0
i / �

.1=r/��.Hi /� q � x�
�
F 0 � q, which concludes the proof since #H0i D #U 0i .

Combining Lemmas 7.18, 7.19 and 7.22, we can finally prove Theorem 7.21.

Proof of Theorem 7.21 Our goal is to construct an .s; t; F 00/–cubical configuration of width � 4r in Y ,
where sCt D k, the centraliserZG.F 00/ is isomorphic toZG.F /, all elements of F 00 are label-irreducible,
and all static sets are chains of hyperplanes of cardinality � q. If we manage to do this, then Lemma 7.19
guarantees that ZG.F /'ZG.F 00/ contains the required copy of Zk .

In case (2) of the theorem, a cubical configuration with these properties is provided by Lemma 7.22. In
case (1), we first apply Lemma 7.22 to obtain an .s; t; F 0/–cubical configuration of width � 4r in Y! ,
where ZG.F 0/D ZG.F /. Then we obtain the required cubical configuration in Y from Lemma 7.18,
with F 00 D 'n.F 0/ for some n; this is the only place where it is important that 'n is not !–constant.
Since ZG.F 00/D 'n.ZG.F 0//'ZG.F /, this proves the theorem.
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The following two corollaries collect the key takeaways from Theorem 7.21 that we will need in the rest
of the paper.

Corollary 7.23 Every special group with trivial centre is UNE (Definition 2.36).

Proof Let G be a special group with trivial centre. Embed G as a convex-cocompact subgroup of a
RAAG and apply Theorem 7.21(2), taking k D 1 and letting F be an arbitrary generating set for G. This
shows that the proper cocompact action G Õ Y is UNE, hence G is a UNE group.

Corollary 7.24 Consider the setting of Assumption 7.20. Suppose that the 'n are pairwise distinct.

(1) If C � Y! is a k–cube and H �G fixes C pointwise , then ZG.H/ contains a copy of Zk .

(2) Let G have trivial centre. Then , for every G–invariant median subalgebra M � Y! , the action
G ÕM is WNE (in the sense of Definition 6.21).

Proof By Remark 3.8, it suffices to prove part (1) under the additional assumption that H is finitely
generated. So let us suppose that H is generated by a finite set F that fixes the k–cube C . We have
observed in Section 7.3 that D.X!/G ¤∅. Applying Theorem 7.21(1) to any choice of � 2 D.Y!/G , we
obtain the required copy of Zk inside ZG.F /DZG.H/.

Part (2) also follows from Theorem 7.21(1), setting k D 1 and letting F generate G.

The following implies parts (1) and (2) of Theorem F as a special case; parts (3) and (4) are obtained
below in Remark 7.27. Note that the essentiality requirement in Theorem 7.25(3) is equivalent to the
minimality requirement in Theorem F(2), because of [51, Theorem C].

Recall that we denote by � WAutG!OutG the quotient projection. If G has trivial centre and A�OutG
is a subgroup, we have G C ��1.A/ and ��1.A/=G ' A.

Theorem 7.25 Let G �A be a convex-cocompact subgroup with trivial centre. Let Œ�� be the induced
coarse median structure on G. Let A� Out.G; Œ��/ be an infinite abelian subgroup. Then there exists an
action ��1.A/ÕX with the following properties:

(1) X is a geodesic median space X with rkX � r .

(2) ��1.A/ÕX is an action by homotheties.

(3) The restriction G ÕX is isometric , essential and with unbounded orbits.

(4) If C �X is a k–cube and H �G fixes C pointwise , then ZG.H/ contains a copy of Zk .

Proof Consider a sequence of pairwise distinct automorphisms 'n 2 A and set �n D � ı'n. Choose a
finite generating set S �G and consider the action G Õ Y! as in Section 7.3.

Corollary 7.23 shows that G is UNE. Thus, denoting by AutY! the group of automorphisms of the
underlying median algebra, Proposition 7.3 yields a homomorphism � W ��1.A/! AutY! that extends
the isometric action G Õ Y! .
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By Corollary 7.24(2), the action G Õ Y! is WNE. Thus, Corollary 6.23 yields a nonempty, countable,
��1.A/–invariant, median subalgebra M� Y! , and a pseudometric � 2PDG.M/nf0g for which x��S > 0
and ��1.A/Õ .M; �/ is homothetic.

Let .Mı; ı/ be the quotient median space obtained by identifying points x; y 2M with �.x; y/D 0. By
Remark 2.1, we have rkMı � rkM � rkX! � r . Since x�ıS D x�

�
S > 0, the action G Õ Mı does not

have a global fixed point. Moreover, since the action G Õ M has no wall inversions by Lemma 7.14(1),
the action G Õ Mı also has no inversions. Theorem 2.14(2) then guarantees that G acts on Mı with
unbounded orbits.

Theorem 7.21(1) (applied to the pseudometric � on M) shows that G Õ Mı satisfies part (4). Thus, we
are only left to ensure that the median space is geodesic and the action essential.

In order to make our space geodesic, note that the homothetic ��1.A/–action extends to the metric
completion Mı of Mı. This is a median space of rank � r by [29, Proposition 2.21] and [50, Lemma 2.5].
Note that G Õ Mı still satisfies part (4) because of Theorem 7.21(1). Now, “filling in cubes” as in
[48, Corollary 2.16], the space Mı embeds into a complete, connected median space Z of the same rank.
By [17, Lemma 4.6], the space Z is geodesic. The isometric G–action extends to Z and one can similarly
check that so does the homothetic ��1.A/–action.

Summing up, we have constructed an action ��1.A/ Õ Z that satisfies conditions (1)–(4), possibly
except essentiality of the G–action (in addition, Z is complete). By Theorem 2.14(4), there exists a
��1.A/–invariant, nonempty, convex subset K �Z and a ��1.A/–invariant splitting K DK0�K1 such
that the action G ÕK1 is essential. We conclude by taking X DK1. (Note that K is not closed in Z in
general, so we may have lost completeness along the way.)

Remark 7.26 In Theorem 7.25, we cannot both require the space X to be complete and the action
G ÕX to be essential. There is a very good reason for this.

Consider the special case where G is hyperbolic. Then Y! is an R–tree, which forces X to also be an
R–tree. Note that an isometric action on an R–tree is essential if and only if it is minimal.

Let us show that, if G is a finitely generated group and G Õ T is a minimal action on a complete R–tree
not isometric to R, then no homothety ˆ W T ! T with factor �¤ 1 can normalise G.

If G is generated by s1; : : : ; sk and x 2 T is any point, the union of all segments gŒx; six� with g 2G
is a G–invariant subtree. Since G Õ T is minimal, T must be covered by the segments gŒx; six�. In
particular, the action GÕT is cocompact. Ifˆ normalised G, then every orbit of GÕT would be dense;
see eg [88, Proposition 3.10]. Since T 6'R, this implies that each segment gŒx; six� is nowhere-dense.
This violates Baire’s theorem, since a complete metric space cannot be covered by countably many
nowhere-dense subsets.

I learned this argument from [54, Example II.6].
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The following proves parts (3) and (4) of Theorem F.

Remark 7.27 Consider the special case of Theorem 7.25 withADZ, generated by an outer automorphism
� 2 Out.G; Œ��/. Picking a representative ' 2 Aut.G; Œ��/, we have ��1.A/ D G Ì' Z. The theorem
gives an isometric action G ÕX and a homothety H WX !X of factor � such that H ıg D '.g/ ıH
for all g 2G. We keep the notation of the proof of Theorem 7.25.

(1) Each g 2 Fix' is elliptic in X . Indeed, Lemma 7.9 shows that g is elliptic in X! , since `.'n.g/;X /
does not diverge. Lemma 7.14(2) then implies that g is elliptic in M, and it is clear that a fixed point
in M will translate into a fixed point in X .

Recalling that Fix' is finitely generated by Theorem B, Theorem 2.14(2) actually implies that Fix' has
a global fixed point x0 2X . This proves Theorem F(3).

(2) Fix a finite generating set S �G. Recall from Section 2.1, that we denote conjugacy length by k � kS .
Let ƒ.'/ be the maximal exponential growth rate of the quantity k'n.g/k1=nS ,

ƒ.'/ WD sup
g2G

lim sup
n!C1

k'n.g/k
1=n
S :

Note that ƒ.'/ is independent of the generating set S . For every g 2G, we have

�n`.g;X/D `.HngH�n; X/D `.'n.g/; X/� k'n.g/kS � x�
X
S ;

where the last inequality follows from the identities in Section 2.1. Since there exist elements g 2G with
`.g;X/ > 0, we deduce that ��ƒ.'/ and, similarly, ��1 �ƒ.'�1/.

If ' has subexponential growth (in the sense that ƒ.'/ D ƒ.'�1/ D 1), then these inequalities force
�D 1. Hence the homothetic action G Ì' Z ÕX provided by Theorem 7.25 is actually isometric, which
proves Theorem F(4).

Appendix Measurable partitions of halfspace-intervals

This appendix is devoted to the proof of Corollary A.3 below. This is needed in the proof of Theorem 7.21
in order to get the exact constant 4r2q, and could be avoided if we contented ourselves with the worse
bound 4rq � #�.0/. However, Corollary A.3 is important in the general theory of median spaces and we
think it is likely to prove useful elsewhere.

Let M be a median algebra. Given a subset P �M �M , let us write HP WD
S
.x;y/2P H .xjy/.

Lemma A.1 Every subset P � Œ0; 1�n � Œ0; 1�n contains a countable subset �� P with H� DHP .

Proof First, we prove the case nD 1. We can assume that x < y for every .x; y/ 2 P .

Let �.P /� Œ0; 1� be the union of the closed arcs I.x; y/ with .x; y/ 2 P . Let D.P / be the set of points
that lie in the interior of �.P /, but not in the interior of any arc I.x; y/ with .x; y/ 2 P . Thus each
point of �.P / lies either in the frontier of �.P /, or in the interior of some I.x; y/, or in the set D.P /,
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and these three possibilities are disjoint. There is a unique partition of �.P / into maximal segments Ji
(closed, open, or half-open) such that

� the interior of Ji does not intersect D.P /, and

� if Ji intersects the interior of I.x; y/ for some .x; y/ 2 P , then I.x; y/� Ji .

Observe that HP D
F
i HJi

.Œ0; 1�/\H .0j1/.

It is classical to see that there exists a countable subset � � P with �.�/ D �.P /. Note that D.�/
is countable and it contains D.P /. Adding to � countably many pairs in P , we can thus ensure that
D.�/D D.P /. Hence, P and � determine the same the segments Ji , and HP DH�.

Now consider a general n� 1. Let Ii � Œ0; 1�n be the segment where all coordinates but the i th vanish.
Let �i W Œ0; 1�n! Ii be the coordinate projections. Setting Pi WD .�i ��i /.P /� Œ0; 1�n� Œ0; 1�n, we have
HP D

S
i HPi

. By the case nD 1, there exist countable subsets �i � Pi with H�i
DHPi

. Choosing
countable sets �0i �P with .�i ��i /.�0i /D�i , we have H�i

�H�0
i
�HP . Hence, taking � WD

S
i �
0
i ,

we obtain HP DH�.

Recall that B.M/ is the �–algebra generated by halfspace-intervals, as in Remark 2.9.

Lemma A.2 Suppose that M � Œ0; 1�n is a median subalgebra containing the points 0 D .0; : : : ; 0/
and 1 D .1; : : : ; 1/. Let �i W M ! Œ0; 1� denote the coordinate projections. Then the induced maps
��i WH .Œ0; 1�/!H .M/ (as in Remark 2.1) map B–measurable sets to B–measurable sets.

Proof Since ��i is injective, we have

��i .H .Œ0; 1�/ nE/D ��i .H .0j1//[��i .H .1j0// n��i .E/

for every E � H .Œ0; 1�/. Thus, it suffices to show that, for all 0 � a < b � 1, the set ��i H .ajb/ is
B–measurable.

Let a0 and b0 be, respectively, the infimum and the maximum of �i .M/ \ Œa; b�. Pick sequences of
elements a0 � anC1 < an < bn < bnC1 � b

0 so that an; bn 2 �i .M/ and an ! a0, bn ! b0. These
sequences can be empty if �i .M/\ Œa; b�D∅, or consist of single elements if a0; b0 2 �i .M/. Then

��i H .ajb/D
[
��i H .anjbn/[f�

�1
i ..a; 1�/g[ f��1i .Œb; 1�/g:

Observing that singletons are B–measurable, it suffices to show that, for every x; y 2 M , the set
��i H .�i .x/j�i .y// is B–measurable.

This means that it actually suffices to prove that the sets ��i H .0j1/ are B–measurable. We will achieve
this by showing that each set H .M/ n��i H .0j1/ is a countable union of halfspace-intervals.

Note that h2H .M/ lies in ��i H .Œ0; 1�/ if and only if the projections �i .h/ and �i .h�/ are disjoint. Thus,
h lies in H .M/n��i H .0j1/ if and only if there exist x; y 2M such that h2H .xjy/ and �i .x/��i .y/.
This gives a subset P �M �M with H .M/ n��i H .0j1/DHP .
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In view of Lemma A.1 and Remark 2.2(1), there exists a countable subset �� P with H� DHP . This
concludes the proof.

The following would be an immediate consequence of Dilworth’s lemma, were it not for the measurability
requirement.

Corollary A.3 Let X be a median space of finite rank r . For all x; y 2X , there exists a B–measurable
partition H .xjy/DH1 t � � � tHr such that no two halfspaces in the same Hi are transverse.

Proof Taking the metric completion of X and applying [50, Proposition 2.19], we obtain an isometric
embedding � W I.x; y/ ,!Rr . The image of � is contained in a product J1 � � � � �Jr of compact intervals
Ji �R, which is isomorphic to the median algebra Œ0; 1�r . Let �i WM ! Ji be the composition of � with
the projection to Ji , and set H0i WDH .xjy/\��i .H .Ji //. We have H .xjy/DH01[ � � � [H0r , no two
halfspaces in the same H0i are transverse, and each H0i is B–measurable by Lemma A.2. We conclude by
taking Hi WDH0i n .H

0
1[ � � � [H0i�1/.
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We first show that a Kähler cone appears as the tangent cone of a complete expanding gradient Kähler–
Ricci soliton with quadratic curvature decay with derivatives if and only if it has a smooth canonical
model (on which the soliton lives). This allows us to classify two-dimensional complete expanding
gradient Kähler–Ricci solitons with quadratic curvature decay with derivatives. We then show that any
two-dimensional complete shrinking gradient Kähler–Ricci soliton whose scalar curvature tends to zero
at infinity is, up to pullback by an element of GL.2;C/, either the flat Gaussian shrinking soliton on C2

or the U.2/–invariant shrinking gradient Kähler–Ricci soliton of Feldman, Ilmanen and Knopf on the
blowup of C2 at one point. Finally, we show that up to pullback by an element of GL.n;C/, the only
complete shrinking gradient Kähler–Ricci soliton with bounded Ricci curvature on Cn is the flat Gaussian
shrinking soliton, and on the total space of O.�k/! P n�1 for 0< k < n is the U.n/–invariant example
of Feldman, Ilmanen and Knopf. In the course of the proof, we establish the uniqueness of the soliton
vector field of a complete shrinking gradient Kähler–Ricci soliton with bounded Ricci curvature in the
Lie algebra of a torus. A key tool used to achieve this result is the Duistermaat–Heckman theorem from
symplectic geometry. This provides the first step towards understanding the relationship between complete
shrinking gradient Kähler–Ricci solitons and algebraic geometry.
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1 Introduction

1.1 Overview

A Ricci soliton is a triple .M;g;X /, where M is a Riemannian manifold with a complete Riemannian
metric g and a complete vector field X satisfying the equation

(1-1) Ric.g/C 1
2
LX g D 1

2
�g

for some � 2 f�1; 0; 1g. If X Drgf for some real-valued smooth function f on M, then we say that
.M;g;X / is gradient. In this case, the soliton equation (1-1) reduces to

(1-2) Ric.g/CHessg.f /D
1
2
�g:

If g is complete and Kähler with Kähler form !, then we say that .M;g;X / (or .M; !;X /) is a
Kähler–Ricci soliton if the vector field X is complete and real holomorphic and the pair .g;X / satisfies

(1-3) Ric.g/C 1
2
LX g D �g

for � as above. If g is a Kähler–Ricci soliton and if X Drgf for some real-valued smooth function f
on M, then we say that .M;g;X / is gradient. In this case, one can rewrite the soliton equation (1-3) as

(1-4) �! C i@x@f D �!;

where �! is the Ricci form of !.

For Ricci solitons and Kähler–Ricci solitons .M;g;X /, the vector field X is called the soliton vector
field. Its completeness is guaranteed by the completeness of g; see Zhang [69]. If the soliton is gradient,
then the smooth real-valued function f satisfying X Drgf is called the soliton potential. It is unique
up to a constant. Finally, a Ricci soliton and a Kähler–Ricci soliton are called steady if �D 0, expanding
if �D�1, and shrinking if �D 1 in equations (1-1) and (1-3), respectively.

The study of Ricci solitons and their classification is important in the context of Riemannian geometry.
For example, they provide a natural generalisation of Einstein manifolds. Also, to each soliton, one
may associate a self-similar solution of the Ricci flow (see Chow and Knopf [14, Lemma 2.4]), which
are candidates for singularity models of the flow. The difference in normalisations between (1-1) and
(1-3) reflects the difference between the constants preceding the Ricci term in the Ricci flow and the
Kähler–Ricci flow when one takes this dynamic point of view.

In this article, we are concerned with complete expanding and shrinking gradient Kähler–Ricci solitons.
We consider primarily complete shrinking (resp. expanding) gradient Kähler–Ricci solitons with quadratic
curvature decay (resp. with derivatives) as this assumption greatly simplifies the situation and already
imposes some constraints on the solitons in question. Indeed, it is known that any complete shrinking
(resp. expanding) gradient Ricci soliton whose curvature decays quadratically (resp. with derivatives)
along an end must be asymptotic to a cone with a smooth link along that end; see Chen and Deruelle [12],
Chow and Lu [15], Kotschwar and Wang [43] and Siepmann [62]. Furthermore, any complete shrinking
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(resp. expanding) Ricci soliton whose Ricci curvature decays to zero (resp. quadratically with derivatives)
at infinity must have quadratic curvature decay (resp. with derivatives) at infinity (see Deruelle [27]
and Munteanu and Wang [53]) and consequently must be asymptotically conical along each of its ends.
Kotschwar and Wang [44] have then shown that any two complete shrinking gradient Ricci solitons
asymptotic along some end of each to the same cone with a smooth link, must in fact be isometric. Thus, at
least for shrinking gradient Ricci solitons, classifying those that are complete with Ricci curvature decaying
to zero at infinity reduces to classifying their possible asymptotic cone models. Here we are principally
concerned with the classification of complete shrinking (resp. expanding) gradient Kähler–Ricci solitons
whose curvature tensor has quadratic decay (resp. with derivatives). Such examples of expanding type have
been constructed in Conlon and Deruelle [19] on certain equivariant resolutions of Kähler cones, whereas
such examples of shrinking type include the flat Gaussian shrinking soliton on Cn and those constructed
by Feldman, Ilmanen and Knopf [30] on the total space of the holomorphic line bundles O.�k/ over Pn�1

for 0< k < n. These shrinking solitons are U.n/–invariant and in complex dimension two, they yield two
known examples of complete shrinking gradient Kähler–Ricci solitons with scalar curvature tending to
zero at infinity: the flat Gaussian shrinking soliton on C2 and the aforementioned U.2/–invariant example
of Feldman, Ilmanen and Knopf on the blowup of C2 at the origin. One of our main results is that in fact,
up to pullback by an element of GL.2;C/, these are the only two examples of complete shrinking gradient
Kähler–Ricci solitons with scalar curvature tending to zero at infinity in two complex dimensions. Other
examples of complete (and indeed incomplete) shrinking gradient Kähler–Ricci solitons with quadratic
curvature decay have been constructed on the total space of certain holomorphic vector bundles; see for
example Dancer and Wang [23], Futaki and Wang [34], Li [47] and Yang [68].

1.2 Main results

1.2.1 General structure theorem Our first result concerns the structure of complete shrinking (respec-
tively expanding) gradient Kähler–Ricci solitons .M;g;X / with quadratic curvature decay (resp. with
derivatives). By “quadratic curvature decay with derivatives”, we mean that the curvature Rm.g/ of the
Kähler–Ricci soliton g satisfies

Ak.g/ WD sup
x2M

j.rg/k Rm.g/jg.x/dg.p;x/
2Ck <1 for all k 2N0;

where dg.p; � / denotes the distance to a fixed point p 2M with respect to g.

Theorem A (general structure theorem) Let .M;g;X / be a complete expanding (resp. shrinking)
gradient Kähler–Ricci soliton of complex dimension n � 2 with complex structure J whose curvature
Rm.g/ satisfies

Ak.g/ WD sup
x2M

j.rg/k Rm.g/jg.x/ dg.p;x/
2Ck <1 for all k 2N0 (resp. for k D 0);

where dg.p; � / denotes the distance to a fixed point p 2M with respect to g. Then:

(a) .M;g/ has a unique tangent cone at infinity .C0;g0/.
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(b) There exists a Kähler resolution � WM ! C0 of C0 with exceptional set E with g0 Kähler with
respect to J0 WD ��J such that

(i) the Kähler form ! of g and the curvature form ‚ of the hermitian metric on KM (resp. �KM )
induced by ! satisfy

(1-5)
Z

V

.i‚/k ^!dimC V�k > 0

for all positive-dimensional irreducible analytic subvarieties V �E and for all integers k such
that 1� k � dimC V ;

(ii) the real torus action on C0 generated by J0r@r extends to a holomorphic isometric torus action
of .M;g;J /, where r denotes the radial coordinate of g0;

(iii) d�.X /D r@r .

(c) With respect to � , we have

j.rg0/k.��g�g0�Ric.g0//jg0
� Ckr�4�k for all k 2N0;

(resp. j.rg0/k.��g�g0CRic.g0//jg0
� Ckr�4�k for all k 2N0/:

In the expanding case, this theorem provides a converse to [19, Theorem A]. Also notice that this theorem
rules out the existence of shrinking (resp. expanding) gradient Kähler–Ricci solitons with quadratic
curvature decay (resp. with derivatives) on smoothings of Kähler cones in contrast to the behaviour in
the Calabi–Yau case [20]. This degree of flexibility for expanding and shrinking gradient Kähler–Ricci
solitons is essentially ruled out due to the requirement of having a conical holomorphic soliton vector
field. Finally, it has recently been shown by Kotschwar and Wang [44, Corollary 1.3] that the isometry
group of the link of the asymptotic cone of a complete shrinking gradient Kähler–Ricci soliton with
quadratic curvature decay embeds into the isometry group of the soliton itself; compare with statement
(b)(ii) of the theorem above.

1.2.2 Application to expanding gradient Kähler–Ricci solitons As an application of Theorem A,
we exploit the uniqueness [38, Proposition 8.2.5] of canonical models of normal varieties to obtain a
classification theorem for complete expanding gradient Kähler–Ricci solitons whose curvature decays
quadratically with derivatives. This provides a partial answer to question 7 of [30, Section 10].

Corollary B (strong uniqueness for expanders) Let .C0;g0/ be a Kähler cone of complex dimension
n� 2 with radial function r . Then there exists a unique (up to pullback by biholomorphisms) complete
expanding gradient Kähler–Ricci soliton .M;g;X /, whose curvature Rm.g/ satisfies

(1-6) Ak.g/ WD sup
x2M

j.rg/k Rm.g/jg.x/dg.p;x/
2Ck <1 for all k 2N0;

where dg.p; � / denotes the distance to a fixed point p 2M with respect to g, with tangent cone .C0;g0/

if and only if C0 has a smooth canonical model. When this is the case ,

(a) M is the smooth canonical model of C0, and
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(b) there exists a resolution map � WM ! C0 such that d�.X /D r@r and

j.rg0/k.��g�g0�Ric.g0//jg0
� Ckr�4�k for all k 2N0:

This corollary yields an algebraic description of those Kähler cones appearing as the tangent cone of
a complete expanding gradient Kähler–Ricci soliton with quadratic curvature decay with derivatives —
such cones are precisely those admitting a smooth canonical model. In general, the canonical model will
be singular and in particular, for a two-dimensional cone, it is obtained by contracting all exceptional
curves with self-intersection .�2/ in the minimal resolution. Applying Corollary B to this case yields
a classification of two-dimensional complete expanding gradient Kähler–Ricci solitons with quadratic
curvature decay with derivatives.

Corollary C (classification of two-dimensional expanders) Let .C0;g0/ be a two-dimensional Kähler
cone with radial function r . Then there exists a unique (up to pullback by biholomorphisms) two-
dimensional complete expanding gradient Kähler–Ricci soliton .M;g;X / whose curvature Rm.g/
satisfies

Ak.g/ WD sup
x2M

j.rg/k Rm.g/jg.x/dg.p;x/
2Ck <1 for all k 2N0;

where dg.p; � / denotes the distance to a fixed point p 2M with respect to g, with tangent cone .C0;g0/

if and only if C0 is biholomorphic to one of :

(I) C2=� , where � is a finite subgroup of U.2/ acting freely on C2 n f0g that is generated by the
matrix �

e2�i=p 0
0 e2�iq=p

�
;

where p and q coprime integers with p > q > 0, and after writing

q

p
D r1�

1

r2�
1

� � � �
1

rk

we have that rj > 2 for j D 1; : : : ; k.

(II) L�, the blowdown of the zero section of a negative line bundle L! C over a proper curve C of
genus g > 0.

(III) L�=G, where G is a nontrivial finite group of automorphisms of a proper curve C of genus g > 0

and L� is the blowdown of the zero section of a G–invariant negative line bundle L! C over C

with G acting freely on L� except at the apex , such that the (unique) minimal good resolution
� WM !L�=G contains no .�1/– or .�2/–curves.
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When this is the case ,

(a) there exists a resolution map � WM ! C0 such that d�.X /D r@r and

j.rg0/k.��g�g0�Ric.g0//jg0
� Ckr�4�k for all k 2N0;

and

(b) � WM ! C0 is

(i) the minimal resolution � WM !C2=� when C0 is as in (I);

(ii) the blowdown map � WL!L� when C0 is as in (II);

(iii) the minimal good resolution � WM !L�=G when C0 is as in (III).

Note that the Kähler cones of item (III) here are (up to analytic isomorphism) in one-to-one correspondence
with the following data, which encodes the exceptional set of the minimal good resolution � WM!L�=G:

� A weighted dual graph which is a star comprising a central vertex with n branches, with n � 1,
each of finite length, with the j th vertex of the i th branch labelled with an integer bij � 3 and
the central curve labelled with an integer b � 1. The central vertex represents the curve C of
genus g > 0 with self-intersection �b and the j th vertex of the i th branch represents a P1 with
self-intersection �bij . The intersection matrix given by this graph must be negative-definite. There
is a numerical criterion to determine when this is the case.

� The analytic type of C .

� A negative line bundle on C of degree �b (which is the normal bundle of C in M ).

� n marked points on C .

The algebraic equations of C0 can be reconstructed from this data by the ansatz in [59, Section 5].

1.2.3 Application to shrinking gradient Kähler–Ricci solitons Tian and Zhu [64] showed that the
soliton vector field of a compact shrinking gradient Kähler–Ricci soliton is unique up to holomorphic
automorphisms of the underlying complex manifold. The method of proof there involved defining a
weighted volume functional F which was strictly convex and was shown to be in fact independent of the
metric structure of the soliton. The soliton vector field was then characterised as the unique critical point
of this functional.

Tian and Zhu’s proof breaks down in the noncompact case due to the fact that, in general, one cannot a
priori guarantee that the weighted volume functional (defined analytically in terms of a certain integral) is
well-defined on a noncompact Kähler manifold, let alone investigate its convexity properties. Our key
observation to circumvent this difficulty is to apply the Duistermaat–Heckman theorem from symplectic
geometry, which provides a localisation formula to express the weighted volume functional in terms of an
algebraic formula involving only the fixed point set of a torus action. This latter algebraic formula is

Geometry & Topology, Volume 28 (2024)



Classification results for expanding and shrinking gradient Kähler–Ricci solitons 273

much more amenable. Combined with a version of Matsushima’s theorem [50] for complete noncompact
shrinking gradient Kähler–Ricci solitons (cf Theorem 5.1) and Iwasawa’s theorem [39], we are able to
implement Tian and Zhu’s strategy of proof for the compact case to obtain the following noncompact
analogue of their uniqueness result.

Theorem D (uniqueness of the soliton vector field for shrinkers) Let M be a noncompact complex
manifold with complex structure J endowed with the effective holomorphic action of a real torus T.
Denote by t the Lie algebra of T. Then there exists at most one element � 2 t that admits a complete
shrinking gradient Kähler–Ricci soliton .M;g;X / with bounded Ricci curvature with X Drgf D�J �

for a smooth real-valued function f on M.

We expect that the assumption of bounded Ricci curvature is superfluous in the statement of this theorem
and that, given the uniqueness of the soliton vector field in the Lie algebra of the torus here, the
corresponding shrinking gradient Kähler–Ricci soliton is also unique up to automorphisms of the complex
structure commuting with the flow of the soliton vector field.

Not only does the Duistermaat–Heckman theorem imply the uniqueness of the soliton vector field in our
case, it also provides a formula to compute the unique critical point of the weighted volume functional, the
point at which the soliton vector field is achieved. Using this formula, we compute explicitly the soliton
vector field of a shrinking gradient Kähler–Ricci soliton with bounded Ricci curvature on Cn and on the
total space of O.�k/ over Pn�1 for 0< k < n; see Examples A.6 and A.8, respectively. This recovers
the polynomials of Feldman, Ilmanen and Knopf [30, equation (36)]. Having identified the soliton vector
field on these manifolds, we then use our noncompact version of Matsushima’s theorem (Theorem 5.1)
together with an application of Iwasawa’s theorem [39] to deduce that, up to pullback by an element of
GL.n;C/, the corresponding soliton metrics have to be invariant under the action of U.n/. Consequently,
thanks to a uniqueness theorem of Feldman, Ilmanen and Knopf [30, Proposition 9.3], up to pullback by
an element of GL.n;C/, the shrinking gradient Kähler–Ricci soliton must be the flat Gaussian shrinking
soliton if on Cn, or the unique U.n/–invariant shrinking gradient Kähler–Ricci soliton constructed by
Feldman, Ilmanen and Knopf [30] if on the total space of O.�k/ over Pn�1 for 0< k < n.

In the complex two-dimensional case, we are actually able to identify the underlying complex manifold
of a shrinking gradient Kähler–Ricci soliton whose scalar curvature tends to zero at infinity as either C2

or C2 blown up at the origin using the fact that the soliton, if nontrivial, has an asymptotic cone with
strictly positive scalar curvature. Using a classification theorem for Sasaki manifolds in real dimension
three (see Belgun [4]) and the fact that a shrinking Kähler–Ricci soliton can only contain .�1/–curves in
complex dimension two, this is enough to identify the asymptotic cone at infinity as C2, from which the
identification of the underlying complex manifold easily follows. Combined with the above discussion,
this yields a complete classification of such solitons in two complex dimensions.

These conclusions are summarised in the following theorem.
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Theorem E (classification of shrinkers) Let .M;g;X / be a complete shrinking gradient Kähler–Ricci
soliton.

(1) If M D Cn and g has bounded Ricci curvature , then up to pullback by an element of GL.n;C/,
.M;g;X / is the flat Gaussian shrinking soliton.

(2) If M is the total space of O.�k/ over Pn�1 for 0 < k < n and g has bounded Ricci curvature ,
then up to pullback by an element of GL.n;C/, .M;g;X / is the unique U.n/–invariant shrinking
gradient Kähler–Ricci soliton constructed by Feldman , Ilmanen and Knopf [30].

(3) If dimC M D 2 and the scalar curvature of g tends to zero at infinity, then up to pullback by
an element of GL.2;C/, .M;g;X / is the flat Gaussian shrinking soliton on C2 or the unique
U.2/–invariant shrinking gradient Kähler–Ricci soliton constructed by Feldman , Ilmanen and
Knopf [30] on the total space of O.�1/ over P1.

As exemplified in complex dimension two, in contrast to the expanding case, not many Kähler cones
appear as tangent cones of complete shrinking gradient Kähler–Ricci solitons.

Outline of paper We begin in Section 2 by recalling the basics of Kähler cones, Ricci and Kähler–Ricci
solitons, metric measure spaces, and the relevant algebraic geometry that we require. We also mention
some important properties of the soliton vector field and of real vector fields that commute with the soliton
vector field. In Section 3, we prove Theorem A for expanding gradient Kähler–Ricci solitons. The proof
for shrinking Kähler–Ricci solitons is verbatim. By a theorem of Siepmann [62, Theorem 4.3.1], under
our curvature assumption, a complete expanding gradient Ricci soliton flows out of a Riemannian cone.
Our starting point is to prove some preliminary lemmas before providing a refinement of Siepmann’s
theorem, namely Theorem 3.8, where, in the course of its proof, we construct a diffeomorphism between
the cone and the end of the Ricci soliton using the flow of the soliton vector field that encapsulates the
asymptotics of the soliton along the end. We then show in Proposition 3.10 that if the soliton is Kähler,
then the cone is Kähler with respect to a complex structure that makes the aforementioned diffeomorphism
a biholomorphism. In Theorem 3.11, this biholomorphism is then shown to extend to an equivariant
resolution with the properties as stated in Theorem A.

In the first part of Section 4, we use Theorem A to prove Corollary B. This also requires an application
of previous work from [19]. In the latter part of Section 4, we apply Corollary B to two-dimensional
expanding gradient Kähler–Ricci solitons to conclude the statement of Corollary C, making use of the
classification of two-dimensional Kähler cones, namely Theorem 2.5.

From Section 5 onwards, we turn our attention exclusively to complete shrinking gradient Kähler–Ricci
solitons. We begin in Section 5.1 by proving a Matsushima-type theorem stating that the Lie algebra of
real holomorphic vector fields commuting with the soliton vector field may be written as a direct sum.
This is the statement of Theorem 5.1. Our proof of this theorem follows a manner similar to the proof of
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Matsushima’s theorem on Kähler–Einstein Fano manifolds as presented in [40, Proof of Theorem 5.1,
page 95]. After deriving some properties of the automorphism groups of a complete shrinking gradient
Kähler–Ricci soliton .M;g;X /, we then apply Theorem 5.1 to prove the maximality of a certain compact
Lie group acting on M. This is the content of Corollary 5.11.

We continue in Section 5.2 by showing in Proposition 5.12 that every real holomorphic Killing vector
field on M admits a Hamiltonian potential satisfying a certain linear equation. This allows us to define
a moment map in Definition 5.13, which is used in the definition of the weighted volume functional
in Definition 5.14. The weighted volume functional is vital in proving the uniqueness statement of
Theorem D, namely that the soliton vector field of a complete shrinking gradient Kähler–Ricci soliton
with bounded Ricci curvature in the Lie algebra of a torus is unique. The weighted volume functional is
the same as that defined by Tian and Zhu [64], although in our situation it is defined as an integral over the
noncompact manifold M. This is compensated for by the fact that the domain of definition of the weighted
volume functional is restricted to an open cone in the Lie algebra of the torus. Several important properties
of the weighted volume functional are then derived in Lemma 5.16, including the crucial fact that it has a
unique critical point in its open cone of definition given by the complex structure applied to the soliton
vector field X. We conclude this subsection by taking note of the fact that the Duistermaat–Heckman
formula may be used to compute the weighted volume functional. In particular, it follows that the weighted
volume functional is independent of the complete shrinking gradient Kähler–Ricci soliton.

In Section 5.3, we prove the uniqueness statement of Theorem D, which has been recalled in the statement
of Theorem 5.18. The proof of this theorem follows as in [64, page 322] using Iwasawa’s theorem [39]
and the corollary of Matsushima’s theorem, namely Corollary 5.11 discussed above. Section 5.4 then
comprises an application of Theorems A and D to classify complete shrinking gradient Kähler–Ricci
solitons with bounded Ricci curvature on Cn and on the total space of O.�k/! Pn�1 for 0 < k < n.
This completes the proof of items (1) and (2) of Theorem E.

In Section 6, we show that the underlying complex manifold M of a two-dimensional shrinking gradient
Kähler–Ricci soliton with scalar curvature decaying to zero at infinity is either C2 or C2 blown up at the
origin. This is the statement of Theorem 6.1. Combined with items (1) and (2) of Theorem E, Theorem 6.1
suffices to prove item (3) of Theorem E. The proof of Theorem 6.1 relies on first identifying the underlying
complex space of the tangent cone. The fact that any nonflat shrinking gradient Ricci soliton has positive
scalar curvature implies that the same property holds true on the tangent cone. From this we can identify
the cone as a quotient of C2. Theorem A then tells us that M is a resolution of this cone which, by virtue
of the shrinking Kähler–Ricci soliton equation, can only contain .�1/–curves. It turns out that the only
possibility is that the cone is biholomorphic to C2 and M is as stated in Theorem 6.1.

We conclude the paper in Section 7 with some closing remarks and open problems. In Section A.1 in the
appendix, we recall the statement of the Duistermaat–Heckmann theorem on a noncompact symplectic
manifold in Theorem A.3 as presented in [60]. We also provide an outline of its proof in Section A.3
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after introducing some preliminaries in Section A.2. We then use it to compute the weighted volume
functional and its unique critical point on Cn, on the total space of O.�k/ over Pn�1 for 0< k < n, and
on certain holomorphic line bundles over Fano manifolds in Section A.4. In Section A.5, we characterise
algebraically, in the setting of asymptotically conical Kähler manifolds, those elements in the Lie algebra
of a torus that admit a Hamiltonian potential that is proper and bounded below. A precise statement
is given in Theorem A.10. For such elements of the Lie algebra of the torus, the weighted volume
functional is defined. Finally, in Section A.6, we show directly that the weighted volume functional is
defined on a complete shrinking gradient Kähler–Ricci soliton with bounded Ricci curvature without
appealing to the Duistermaat–Heckman theorem. This conclusion follows from the estimates we derive
in Proposition A.13 on the growth of those Hamiltonian potentials that are proper and bounded below.
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2 Preliminaries

2.1 Riemannian cones

For us, the definition of a Riemannian cone will take the following form.

Definition 2.1 Let .S;gS / be a closed Riemannian manifold. The Riemannian cone C0 with link S

is defined to be R>0 �S with metric g0 D dr2˚ r2gS up to isometry. The radius function r is then
characterised intrinsically as the distance from the apex in the metric completion.

The following is a simple computation.

Lemma 2.2 Let .S;gS / be a closed Riemannian manifold of real dimension m and let .C0;g0/ be the
Riemannian cone with link S and radial function r . Then the Ricci curvature Ric.gS / of gS and the Ricci
curvature Ric.g0/ of the cone metric g0 over .S;gS / are related by

Ric.g0/D Ric.gS /� .m� 1/gS :
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In particular , the scalar curvatures Rg0
and RgS

of g0 and gS respectively are related by

Rg0
D

1

r2
.RgS

�m.m� 1//:

2.2 Kähler cones

We may further impose that a Riemannian cone is Kähler, as the next definition demonstrates.

Definition 2.3 A Kähler cone is a Riemannian cone .C0;g0/ such that g0 is Kähler, together with a
choice of g0–parallel complex structure J0. This will in fact often be unique up to sign. We then have a
Kähler form !0.X;Y /D g0.J0X;Y /, and !0 D

1
2
i@x@r2 with respect to J0.

The vector field r@r is real holomorphic and � WDJ0r@r is real holomorphic and Killing [49, Appendix A].
This latter vector field is known as the Reeb vector field. The closure of its flow in the isometry group of
the link of the cone generates the holomorphic isometric action of a real torus on C0 that fixes the apex of
the cone. We call a Kähler cone “quasiregular” if this action is an S1–action (and, in particular, “regular”
if this S1–action is free), and “irregular” if the action generated is that of a real torus of rank > 1.

Every Kähler cone is affine algebraic.

Theorem 2.4 For every Kähler cone .C0;g0;J0/, the complex manifold .C0;J0/ is isomorphic to the
smooth part of a normal algebraic variety V �CN with one singular point. In addition , V can be taken to
be invariant under a C�–action .t; z1; : : : ; zN / 7! .tw1z1; : : : ; t

wN zN / such that all of the wi are positive
integers.

This can be deduced from arguments written down by van Coevering in [17, Section 3.1].

Kähler cones of complex dimension two have been classified.

Theorem 2.5 [4, Theorem 8; 59, Theorem 1.1] Let C0 be a Kähler cone of complex dimension two.
Then C0 is biholomorphic to either

(i) C2=� , where � is a finite subset of U.2/ acting freely on C2 n f0g,

(ii) the blowdown L� of the zero section of a negative line bundle L ! C over a smooth proper
curve C of genus g with g > 0, or

(iii) L�=G, where G is a nontrivial finite group of automorphisms of a proper curve C of genus g > 0

and L� is the blowdown of the zero section of a G–invariant negative line bundle L! C over C

with G acting freely on L� except at the apex.

In cases (ii) and (iii), the corresponding Reeb vector field is quasiregular and is generated by a scaling of
the standard S1–action on the fibres of L.
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Any automorphism of a resolution of a Kähler cone preserves the exceptional set of the resolution.

Lemma 2.6 Let � WM ! C0 be a resolution of a Kähler cone C0 with exceptional set E. Denote by J

the complex structure on M. Then for any automorphism � of .M;J /, it holds that �.E/ � E. In
particular , real holomorphic vector fields on M are tangent to E.

Such an automorphism of .M;J / therefore descends to an automorphism of the cone fixing the apex.

Proof If � is an automorphism of .M;J /, then �ı� WM!C0 is also a resolution of C0. The exceptional
set of this resolution is then a compact analytic subset of M. Since E is the maximal compact analytic
subset of M, we must have that .� ı �/�1.o/�E, where o denotes the apex of C0, ie ��1.E/�E.

The holomorphic torus action on a Kähler cone leads to the notion of an equivariant resolution.

Definition 2.7 Let C0 be a Kähler cone with complex structure J0, let � WM ! C0 be a resolution of
C0, and let G be a Lie subgroup of the automorphism group of .C0;J0/ fixing the apex of C0. We say
that � WM ! C0 is an equivariant resolution with respect to G if the action of G on C0 extends to a
holomorphic action on M in such a way that �.g �x/D g ��.x/ for all x 2M and g 2G.

Such a resolution of a Kähler cone always exists; see [41, Proposition 3.9.1].

A closed Riemannian manifold .S;gS / is Sasaki if and only if its Riemannian cone is a Kähler cone [8],
in which case we identify .S;gS / with the level set fr D 1g of its corresponding Kähler cone, r here
denoting the radial function of the cone. The restriction of the Reeb vector field to this level set induces
a nonzero vector field � � J0r@r jfrD1g on S . Let � denote the gS –dual one-form of �. Then we get a
gS –orthogonal decomposition TS D D˚ h�i, where D is the kernel of � and h�i is the R–span of �
in TS , and correspondingly a decomposition of the metric gS as gS D �˝ �CgT, where gT D gS jD.
The metric gT is invariant under the flow of � and induces a Riemannian metric on the local leaf space of
the foliation of S induced by the flow of �. We call gT the transverse metric. We can then define the
transverse scalar curvature RT and the transverse Ricci curvature RicT as the corresponding curvatures
of gT . We also get an induced transverse complex structure J T on the local leaf space of the foliation
with respect to which gT is Kähler given by the restriction of the complex structure of the cone to D. In
particular, RicT will be J T –invariant. We have the following relationships between the various curvatures.

Lemma 2.8 [8, Theorem 7.3.12] Let .S;gS / be a real .2nC1/–dimensional Sasaki manifold. Then the
following identities hold :

(i) Ric.gS /.X; �/D 2n�.X / for any vector field X.

(ii) Ric.gS /.X;Y /D RicT .X;Y /� 2gS .X;Y / for any vector fields X;Y 2 D.
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In particular, we deduce:

Corollary 2.9 Let .S;gS / be a real .2nC1/–dimensional Sasaki manifold with scalar curvature RgS
.

Then
RT
DRgS

C 2n:

2.3 Canonical models

Resolutions of Kähler cones that are consistent with admitting an expanding Kähler–Ricci soliton are of
the following type.

Definition 2.10 [38, Definition 8.2.4] A partial resolution � WM ! C0 of a normal isolated singularity
x 2 C0 is called a canonical model if

(i) M has at worst canonical singularities, and

(ii) KM is �–ample.

Note that the choice of partial resolution � is part of the data here. The existence of a canonical model
� WM ! C0 is guaranteed by [7] and it is unique up to isomorphisms over C0 [38, Proposition 8.2.5].
We have the following criterion to determine when KM is �–ample.

Theorem 2.11 (Nakai’s criterion for a mapping [46, Corollary 1.7.9]) Let � WM ! C0 be a proper
morphism of schemes. A Q–divisor D on M is �–ample if and only if .DdimC V � V / > 0 for every
irreducible subvariety V �M of positive dimension that maps to a point in C0.

In particular, in complex dimension two, item (ii) of Definition 2.10 implies that the exceptional set of
the canonical model cannot contain any .�1/– or .�2/–curves.

In our case, C0 will be a Kähler cone, hence is affine algebraic, and x will be the apex of the cone. As
the next lemma shows, the canonical model of C0 is quasiprojective.

Lemma 2.12 Let � WM ! C0 be the canonical model of a Kähler cone C0. Then M is quasiprojective.

Proof From Theorem 2.4, we see that C0 admits an affine embedding that is invariant under a C�–action
with positive integer weights. Taking the weighted projective closure of C0 with respect to this action,
we obtain a projective compactification C0 of C0 by adding an ample divisor D at infinity. In particular,
C0 will have at worst orbifold singularities along D. Let � WN ! C0 denote the canonical model of C0.
By construction, N is projective and the restricted map � jN WN ! C0, where N WDN n ��1.D/, is a
canonical model of C0. By uniqueness of canonical models, M must be biholomorphic to N , hence N

provides a projective compactification of M obtained by adjoining the set ��1.D/ to M at infinity. M is
therefore quasiprojective, as claimed.
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In addition, uniqueness of the canonical model implies that when smooth, the canonical model of a Kähler
cone is equivariant with respect to the torus action on C0 generated by the flow of J0r@r .

Lemma 2.13 Let C0 be a Kähler cone with complex structure J0 and radial function r and let � WM!C0

denote the canonical model of C0. If M is smooth , then the resolution � WM ! C0 is equivariant with
respect to the holomorphic isometric torus action on C0 generated by J0r@r . In particular , there exists a
holomorphic vector field X on M such that d�.X /D r@r .

Proof Let T denote the torus generated by the flow of J0r@r and let TC denote its complexification.
We will show that the holomorphic action of TC on C0 lifts to a holomorphic action on M.

For h 2 TC , let  h W C0! C0 denote the corresponding automorphism. Since  h ı� WM ! C0 is again
a canonical model and since � WM ! C0 is unique up to isomorphisms over C0 [38, Proposition 8.2.5],
there exists a unique biholomorphism z h WM !M such that � ı z h D  h ı� . This is the desired lift
of  h. Thus, we have a well-defined map � W TC �M !M defined by �.h;x/ D z h.x/. Since z h

coincides with  h off of the exceptional set E of the resolution � WM ! C0, the map �jTC�.MnE/ is
holomorphic. We wish to show that � is holomorphic globally.

To this end, let h 2 TC , let x 2 E, let y D z h.x/ 2 E, let Bx be an open ball in a chart containing x

with x in its interior and let By be an open ball in a chart containing y with y in its interior. Since z h is
continuous, by shrinking Bx if necessary we may assume that z h.Bx/�By . Let U be a neighbourhood
of h in TC such that z h0.Bx nE/ � By for all h0 2 U. Again, this is possible because �jTC�.MnE/

is continuous. Then since z h0 WM !M is itself continuous and preserves E for each fixed h0 2 U

and since Bx \E lies in the closure of Bx nE, we have, after shrinking Bx further if necessary, that
z h0.Bx/� By for all h0 2 U.

Next, let N" WD fx 2 C0 j r.x/ < "g for " > 0. Then N" n fog is foliated by disjoint punctured discs,
obtained as the orbits in N" n fog of a C�–action from within TC . The open set yN" WD ��1.N"/ will then
be a neighbourhood of E in M with yN" nE foliated by disjoint punctured discs. Let B0x �Bx be an open
ball containing x strictly contained in Bx such that @Bx \ @B

0
x D∅, and let " > 0 be sufficiently small

that each point of . yN"\B0x/ nE is contained in a punctured holomorphic disk of radius " which itself is
contained in . yN"\Bx/nE. Let V WD yN"\B0x . Then this is an open neighbourhood of x in M and each
point z 2 V nE will lie on a unique punctured holomorphic disk, which we shall denote by Dz . We have
that Dz � . yN" \Bx/ nE and that @Dz � Bx \ @ yN" �M nE. Let Dz denote the closure of Dz in M.
Since z h0 WM !M is holomorphic for each fixed h0 2 U, after localising, we see from the maximum
principle that for all z 2 V nE and all h0 2 U,

j z h0.z/j � sup
w2Dz

j z h0.w/j � sup
fw2@Dzg

j z h0.w/j � sup
fw2Bx\@ yN"g

j�.h0; w/j � C

for some constant C > 0, where the last inequality follows from the fact that �jTC�.MnE/ is holomorphic,
hence continuous. Thus, �jU�.V nE/ is a bounded holomorphic function. Since E \ V is an analytic
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subset of V, it follows from the Riemann extension theorem that �jU�.V nE/ has a unique extension to a
holomorphic function z� W U �V ! By . Due to the fact that �.h0; � / WM !M is holomorphic for each
fixed h0 2 TC , we have from uniqueness of holomorphic extensions that z�.h0; � /D �.h0; � / W V !By for
all h0 2U so that in fact z� D �jU�V . Thus, we see that �jU�V is holomorphic. Since being holomorphic
is a local property, this suffices to show that � W TC �M !M is holomorphic, as desired.

2.4 Minimal models

We consider two types of resolution of a normal isolated singularity of complex dimension two, the first
being the minimal resolution.

Definition 2.14 [38, Definition 7.1.14] A resolution � WM !C0 of a normal isolated singularity x 2C0

is called a minimal resolution if for every resolution � 0 WM 0! C0 of C0 there exists a unique morphism
' WM 0!M such that � 0 factors as � 0 D � ı'.

By definition, if there exists a minimal resolution, then it is unique up to isomorphisms over C0. The
following shows that there exists a minimal resolution for two-dimensional isolated normal singularities.

Theorem 2.15 [38, Theorem 7.1.15] Assume that dimC C0 D 2. A resolution � W M ! C0 of an
isolated normal singularity x 2 C0 is the minimal resolution if and only if ��1.fxg/ does not contain a
.�1/–curve. In particular , there exists a minimal resolution.

We also consider “good” resolutions. We henceforth follow [56; 59].

Definition 2.16 A resolution � WM ! C0 of a normal isolated surface singularity x 2 C0 is called
good if

(i) all of the components of the exceptional divisor of � WM!C0 are smooth and intersect transversely;

(ii) not more than two components pass through any given point;

(iii) two different components intersect at most once.

It is known that there is a unique resolution which is minimal among all good resolutions for two-
dimensional isolated normal singularities [45, Theorem 5.12], which we henceforth refer to as the
“minimal good resolution” (not to be confused with the “minimal resolution”). In general, the minimal
resolution of a two-dimensional isolated normal singularity will not be the minimal good resolution of
the singularity; by Theorem 2.15, the two coincide precisely when the minimal good resolution does not
contain any .�1/–curves.

For the Kähler cones of Theorem 2.5(ii), the minimal good resolution is given by � WL!L�, that is,
by contracting the zero section of L. By adjunction, this resolution will be the canonical model of the
singularity.
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As for the Kähler cones of Theorem 2.5(iii), the situation is slightly more complicated. The minimal
good resolution of L�=G is obtained as follows. A partial resolution is given by the induced map
� WL=G!L�=G between the quotient spaces. The variety L=G will only have isolated cyclic quotient
singularities along the exceptional set of � [59, Lemma 3.5], which comprises a single curve C of genus
g > 0. Each of these cyclic quotient singularities has a minimal resolution with exceptional set a string
of P1’s. Resolving them with this resolution then yields the minimal good resolution of L�=G, the
exceptional set of which will then comprise the curve C (of genus g> 0) with branches of P1’s stemming
from finitely many points of C . The original singularity is determined up to analytic isomorphism by this
data which can be succinctly stored in a “weighted dual graph”. This we now explain.

The weighted dual graph of a good resolution is a graph each vertex of which represents a component of
the exceptional divisor, weighted by self-intersection. Two vertices are connected if the corresponding
components intersect.

In our case, the weighted dual graph of the minimal good resolution of L�=G is represented by a star,
that is, a connected tree where at most one vertex is connected to no more than two other vertices. C itself
is contained in the exceptional set of the minimal good resolution, hence one of the vertices of the star
will represent C . We call C the central curve. The connected components of the graph minus the central
curve are called the branches of the graph and are indexed by i , where 1 � i � n. The curves of the
i th branch are denoted by Cij for 1 � j � ri , where Ci1 intersects C and Cij intersects Ci;jC1. Let
b D�C:C and bij D�Cij :Cij . Then bij � 2 and b � 1. Finally, set

di

ei
D bi1�

1

bi2�
1

: : :
1

biri

with ei < di and ei and di relatively prime. Then one has:

Theorem 2.17 [59, Theorem 2.1] The singularity L�=G with G nontrivial is determined up to analytic
isomorphism by the following data:

(i) The weighted dual graph of the minimal good resolution.

(ii) The analytic type of the central curve C (of genus g > 0).

(iii) The conormal bundle of C in the resolution.

(iv) The n points Pi D C \Ci1 on C with n� 1.

Conversely, given any data as above , there exists a unique singularity of the form L�=G having this data ,
provided that the intersection matrix given by the graph in (i) is negative-definite; this condition can be
written as

b�

nX
iD1

ei

di
> 0:
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Indeed, the algorithm that recovers the algebraic equations cutting out L�=G is laid out in [59, Section 5].
However, it does not identify the group G.

For the Kähler cones of Theorem 2.5(iii), the minimal good resolution does not contain any .�1/–curves,
hence it coincides with the minimal model of the singularity. Moreover, since the central curve has
trivial or negative anticanonical bundle, adjunction tells us that the canonical model is obtained from the
minimal good resolution by further contracting all of its .�2/–curves. However, the result of this will
be singular unless the minimal good resolution does not contain any .�2/–curves. Thus, the canonical
model will be smooth and coincide with the minimal good resolution if the minimal good resolution
does not contain any .�2/–curves. Conversely, if the canonical model of the singularity is smooth, then,
since it cannot contain any .�1/–curves, it coincides with the minimal model, which itself coincides
with the minimal good resolution for the cones in question, so that the minimal good resolution does not
contain any .�2/–curves since the canonical model cannot contain any .�2/–curves. Combining this
observation with Theorem 2.17, we are able to characterise those cones of Theorem 2.5(iii) that admit a
smooth canonical model.

Proposition 2.18 A Kähler cone of Theorem 2.5(iii) admits a smooth canonical model if and only if the
minimal good resolution does not contain any .�2/–curves. These cones are in one-to-one correspondence
with the data (i)–(iv) listed in Theorem 2.17 with the intersection matrix of the graph in (i) being negative-
definite and with the labels bij of this graph being � 3. Moreover , the canonical model and the minimal
resolution of such a cone are given by the minimal good resolution.

2.5 Ricci solitons

Recall the definitions given at the beginning of Section 1.1. For a gradient Kähler–Ricci soliton .M;g;X /

with complex structure J, the vector field JX is Killing by [32, Lemma 2.3.8]. We also have the following
asymptotics on the soliton potential of a complete expanding gradient Ricci soliton with quadratic Ricci
curvature decay.

Proposition 2.19 Let .M n;g;rgf / be a complete expanding gradient Ricci soliton of real dimension n,
ie 2 Ric.g/�Lrgf .g/D �g. If jRic.g/jg D O.dg.p; � /

�2/, where dg.p; � / denotes the distance to a
fixed point p 2M, then the function .�f / is equivalent to 1

4
dg.p; � /

2 as dg.p; � / tends toC1.

Proof See [12] or [62, Lemma 4:2:1].

Because of Proposition 2.19, we prefer to deal with an asymptotically positive soliton potential. Henceforth,
an expanding gradient Ricci soliton will be a triple .M;g;X /, where X D rgf for some real-valued
smooth function f on M, such that the equation

(2-1) 2 Ric.g/�LX g D�g
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is satisfied. When the Ricci curvature of g decays quadratically, the bound of Proposition 2.19 on f may
then be given as

(2-2) 1
4
d2

g.p;x/� c1dg.p;x/� c2 � f .x/�
1
4
d2

g.p;x/C c1dg.p;x/C c2;

where p 2M is fixed and c1 and c2 are positive constants depending on p. In particular, f is proper
under the assumption of quadratic Ricci curvature decay on the expanding soliton metric.

In the case of a shrinking gradient Ricci soliton, the quadratic growth of the soliton potential is always
satisfied without further conditions on the decay of the Ricci tensor at infinity. More precisely, one has
the following.

Theorem 2.20 Let .M;g;X / be a complete noncompact shrinking gradient Ricci soliton satisfying (1-1)
with �D 1, with soliton vector field X Drgf for a smooth real-valued function f WM !R. Then the
following properties hold true.

(i) Growth of the soliton potential [11, Theorem 1.1] For x 2M, f satisfies the estimates

1
4
.dg.p;x/� c1/

2
�C � f .x/� 1

4
.dg.p;x/C c2/

2

for some C > 0, where dg.p; � / denotes the distance to a fixed point p 2M with respect to g.
Here , c1 and c2 are positive constants depending only on the real dimension of M and the geometry
of g on the unit ball Bp.1/ based at p.

(ii) Polynomial volume growth [11, Theorem 1.2] For each x 2M, there exists a positive constant
C > 0 such that

volg.Br.x//� Crn for r> 0 sufficiently large;

where nD dimR M .

(iii) Regularity at infinity If the curvature tensor decays quadratically, ie if A0.g/ <C1, then the
soliton metric has quadratic curvature decay with derivatives , ie Ak.g/ <C1 for all k 2N.

Proof References for items (i) and (ii) have been provided above. Item (iii) concerning the covariant
derivatives of the curvature tensor follows from Shi’s estimates for ancient solutions of the Ricci flow;
see [43, Section 2:2:3] for a proof.

Remark 2.21 The regularity at infinity stated in Theorem 2.20(iii) does not hold for expanding gradient
Ricci solitons; see [26] for examples of expanding gradient Ricci solitons coming out of metric cones
with a finite amount of regularity at infinity.

The next lemma collects together some well-known Ricci soliton identities concerning expanding gradient
Ricci solitons and shrinking gradient Kähler–Ricci solitons that we require. Their proofs are standard.
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Lemma 2.22 (Ricci soliton identities) Let .M;g;X / be a shrinking gradient Kähler–Ricci soliton
of complex dimension n satisfying (1-4) with � D 1 (resp. an expanding gradient Ricci soliton of real
dimension n satisfying (2-1)) with soliton vector field X D rgf for a smooth real-valued function
f WM !R. Then the trace and first-order soliton identities are:

�!f C
1
2
Rg D n .resp. ��gf CRg D�

1
2
n/;

r
gRg � 2 Ric.g/.X /D 0 .resp. rgRgC 2 Ric.g/.X /D 0/;

jr
gf j2CRg � 2f D const: .resp. jrgf j2CRg �f D const:/;

where Rg denotes the scalar curvature of g and jrgf j2 WD gij@if @jf .

Remark 2.23 We henceforth normalise the soliton potential f of a shrinking gradient Kähler–Ricci
soliton of complex dimension n satisfying (1-4) with �D 1 so that jrgf j2CRg �2f D 2n. The choice
of constant 2n is dictated by the following equation satisfied by f :

�!f �
1
2
X �f D�f:

This choice of constant also implies that f C n is nonnegative on M , since the scalar curvature Rg of g

is necessarily nonnegative.

Kähler cones are quasiprojective. This property is inherited by complete expanding and shrinking gradient
Kähler–Ricci solitons on resolutions of Kähler cones.

Proposition 2.24 Let .M;g;X / be a complete expanding or shrinking gradient Kähler–Ricci soliton on
a resolution � WM ! C0 of a Kähler cone C0. Then M is quasiprojective.

Proof We prove this proposition in the case that .M;g;X / is an expanding gradient Kähler–Ricci soliton.
The proof for the shrinking case is similar.

As explained in the proof of Lemma 2.12, by adding an appropriate ample divisor D to C0 at infinity,
we obtain a projective compactification C0 of C0 so that C0 will have at worst orbifold singularities
along D. Using D, we then compactify M at infinity to obtain a compact complex orbifold M such that
M DM nD. We claim that M admits an ample line bundle, hence is projective.

Indeed, since the normal orbibundle of D in C0 is positive, the normal orbibundle of D in M will also
be positive, hence by the proof of [21, Lemma 2.3], we may endow the line orbibundle ŒD� on M with a
nonnegatively curved hermitian metric with strictly positive curvature on some tubular neighbourhood U

of D in M . Next note that the curvature of the hermitian metric h induced on KM by the expanding
gradient Kähler–Ricci soliton metric g is ��! , where �! is the Ricci form of the Kähler form ! associated
to g. Let f denote the soliton potential so that X Drgf . Then by virtue of the expanding soliton equation,
the curvature of the hermitian metric ef h on KM is precisely the Kähler form ! of g. In particular, the
curvature of ef h on KM is a positive form. Extend the hermitian metric ef h on KM to a hermitian
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metric on KM by amalgamating ef h with an arbitrary hermitian metric on KM jU using an appropriate
bump function supported on U. Then the line orbibundle KM CpŒD� will be ample for p sufficiently
large. A high tensor power of the resulting line orbibundle will then be an ample line bundle on M so
that M is projective and M is quasiprojective, as claimed.

Finally, note that to each complete gradient Ricci soliton, one can associate a Ricci flow that evolves via
diffeomorphisms and scaling. We describe this picture for an expanding gradient Ricci soliton next.

For a complete expanding gradient Ricci soliton .M;g;X / with soliton potential f , set

g.t/ WD t'�t g for t > 0;

where 't is a family of diffeomorphisms generated by the gradient vector field �1
t
X with '1 D id, ie

(2-3)
@'t

@t
.x/D�

rgf .'t .x//

t
with '1 D id:

Then @tg.t/D�2 Ric.g.t// for t > 0, g.1/D g, and if we define f .t/D '�t f so that f .1/D f , then
g.t/ satisfies

(2-4) Ric.g.t//�Hessg.t/ f .t/C
g.t/

2t
D 0 for all t > 0:

Taking the divergence of this equation and using the Bianchi identity yields

(2-5) Rg.t/Cjr
g.t/f .t/j2g.t/�

f .t/

t
D

C1

t

for some constant C1, where Rg.t/ denotes the scalar curvature of g.t/.

Similarly, for a complete expanding gradient Kähler–Ricci soliton with Kähler form !, one obtains a
solution of the Kähler–Ricci flow @t!.t/ D ��!.t/, where �!.t/ denotes the Ricci form of !.t/. The
difference in normalisations between (1-2) and (1-4) is accounted for by the fact that the constant preceding
the Ricci term in the Ricci flow is �2 and that preceding the Ricci term in the Kähler–Ricci flow is �1.
In the same way that a Kähler–Ricci flow yields a solution of the Ricci flow and, vice versa, a solution of
the Ricci flow which is Kähler yields a solution of the Kähler–Ricci flow, the same holds true for gradient
Ricci solitons and gradient Kähler–Ricci solitons. Indeed, a solution .M;g;X / of (1-4) yields a solution
of (1-2) by replacing g with 2g and composing (1-4) with the complex structure in the first arguments.
Conversely, a solution .M;g;X / of (1-2) for which g is Kähler and X is real holomorphic defines a
solution of (1-4) after replacing g with 1

2
g and composing (1-2) with the complex structure in the first

arguments.

2.6 Properties of the soliton vector field

In this subsection, we provide sufficient conditions for which the zero set of the soliton vector field of
a complete shrinking gradient Kähler–Ricci soliton is compact. We begin with the following simple
observation.
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Lemma 2.25 Let .M;g;X / be a complete shrinking gradient Kähler–Ricci soliton with bounded scalar
curvature. Then the zero set of X is compact.

Proof With f denoting the soliton potential, the boundedness of the scalar curvature Rg of g together
with the properness of f as a consequence of Theorem 2.20(i) imply that 2f �Rg is proper. From the
soliton identity jrgf j2CRg D 2f (see Lemma 2.22), we then see that the function jrgf j2 is proper.
The compactness of the zero set of X is now immediate.

In the case that M is in addition “1–convex”, meaning that M carries a plurisubharmonic exhaustion
function which is strictly plurisubharmonic outside of a compact set, we can be more precise. Since a
1–convex space is in particular holomorphically convex, M in this case will admit a “Remmert reduction”
p WM !M 0 [36], ie a proper holomorphic map p WM !M 0 onto a normal Stein space M 0 with finitely
many isolated singularities obtained by contracting the maximal compact analytic subset E of M. As a
Stein space with only finitely many isolated singularities, [3, Theorem 3.1] asserts that M 0 admits an
embedding h WM 0!CP into CP for some P 2N. We have:

Proposition 2.26 Let .M;g;X / be a complete shrinking gradient Kähler–Ricci soliton of complex
dimension n with bounded scalar curvature. Assume that M is 1–convex with maximal compact analytic
subset E. Then the zero set of X is compact and

(i) if E D∅, then the zero set of X comprises a single point and M is biholomorphic to Cn;

(ii) if E ¤∅, then the zero set of X is contained in E.

Before we prove this proposition, an auxiliary result is required, which will be used several times
throughout.

Proposition 2.27 Let .N;g/ be a complete Riemannian manifold and let u WN !R be a C 2 function
that is proper and bounded below. Assume that the flow �x.t/ of rgu with �x.0/ D x 2 N exists for
all t 2 .�1; 0�. Then , for any x 2N , the orbit .�x.t//t�0 accumulates in the critical set of u, ie for all
sequences .ti/i diverging to �1, there exists a subsequence .t 0i/i such that .�t 0

i
.x//i converges to a point

x1 2N satisfying .rgu/.x1/D 0.

Proof Let x2N and let .�x.t//t�0 denote the flow ofrgu which passes through x at tD0 and is defined
for all nonpositive times. Since @t�x.t/D .r

gu/.�x.t//, the function t 2 .�1; 0� 7! u.�x.t// 2R is a
nondecreasing function and for all nonpositive times t ,

(2-6) u.x/�u.�x.t//D

Z 0

t

jr
guj2g.�x.�// d� � 0:

In particular, the orbit .�x.t//t�0 lies in the sublevel set fy 2M j u.y/� u.x/g of u, which is compact
since u is proper and bounded below. Moreover, since u.�x.t// is bounded from below, the estimate
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(2-6) implies that the function � 2 .�1; 0� 7! jrguj2.�x.�// 2R is integrable on .�1; 0�; that is,

(2-7)
Z 0

�1

jr
guj2.�x.�// d� <C1:

Now, since u is C 2 and the orbit .�x.t//t�0 lies in a compact subset of M, the function � 2 .�1; 0� 7!
jrguj2.�x.�// 2R is Lipschitz, ie there is a positive constant C such thatˇ̌

jr
guj2.�x.t//� jr

guj2.�x.s//
ˇ̌
� C jt � sj for all s; t 2 .�1; 0�:

This fact, together with (2-7), implies that lim�!�1 jrguj.�x.�//D 0. This allows us to conclude that
any accumulation point of .�x.t//t�0 lies in the critical set of u.

Proof of Proposition 2.26 Let f denote the soliton potential and let M0.X / denote the zero set of X, a
set which is compact by Lemma 2.25. Our first claim encapsulates the structure of M0.X /.

Claim 2.28 Each connected component of M0.X / is a smooth compact complex submanifold of M

contained in a level set of f .

Proof Let J denote the complex structure of M and let F be a connected component of M0.X /. Then
since F is locally the zero set of the holomorphic vector field X 1;0D

1
2
.X�iJX /, it is a complex-analytic

subvariety of M. Furthermore, as a connected component of the zero set of the Killing vector field JX,
it is a totally geodesic submanifold by [40, Theorem 5.3, page 60]. Hence F is a smooth complex
submanifold of M.

Next observe that along any geodesic  .t/ in F , we have for the soliton potential f ,

d

dt
f . .t//D df . 0.t//D g.X;  0.t//D 0;

so that f is constant on F . Consequently, F is contained in a level set of f . From Theorem 2.20(i), we
know that f is proper so that the level sets of f are compact. Thus, as a closed subset of a compact set,
F is compact. G

Now note that, by [31, Proof of Lemma 1], f is a Morse–Bott function on M. The critical submanifolds
of f are precisely the connected components of M0.X /. Since M is Kähler, the Morse indices — ie the
number of negative eigenvalues of Hess.f /— of the critical submanifolds are all even [31]. Write

M0.X /DM .0/
[

n[
kD1

M .2k/;

where M .j/ denotes the disjoint union of the critical submanifolds of M0.X / of index j . As a consequence
of Claim 2.28, we see that each connected component of M0.X /, being a compact complex submanifold
of M, is either contained in the maximal compact analytic subset E of M or is an isolated point contained
in M nE. Suppose that there exists an isolated point x 2M .j/\ .M nE/ for some j � 2.
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Using ideas from [13, page 3332] in this paragraph, we see from [10] that the holomorphic vector field
X 1;0 is linearisable at each of its critical points, meaning in particular that there exist local holomorphic
coordinates .z1; : : : ; zn/ centred at x such that X 1;0 D

Pn
jD1 aj zj@zj with aj 2R for all j D 1; : : : ; n.

Since Hess.f / has at least one negative eigenvalue at x, we have that ai < 0 for some i . Without loss of
generality, we may assume that i D n so that an < 0. Now, clearly the orbits of JX on the zn–axis are all
periodic. Fix one such orbit � W S1!M . Then we can construct a map R W S1.'R=T Z/�R!M by
defining R.s; t/ to be �t .�.s//, where �t is the integral curve of the negative gradient flow of f and T is
the period of the orbit of � . Since ŒX;JX �D 0, R is holomorphic and after reparametrising, extends to a
nontrivial holomorphic map xR WC!M with xR.0/D x by the Riemann removable singularity theorem.

Since f is decreasing along its negative gradient flow and is bounded from below, we see that f . xR.z//
is bounded for all z 2C. Hence, by properness of f , the set f xR.z/ j z 2Cg is contained in a compact
subset of M. Letting p WM !M 0 denote the Remmert reduction of M and recalling that M 0 admits an
embedding h WM 0!CP into CP for some P 2N, we therefore obtain a bounded nontrivial holomorphic
map h ıp ı xR WC!CP . By Liouville’s theorem, such a map is constant. This is a contradiction. Thus
M0.X /\ .M nE/, if nonempty, is contained in M .0/.

The next claim concerns the structure of M .0/.

Claim 2.29 M .0/ is a nonempty , connected , compact complex submanifold of M that comprises the
global minima of f .

Proof M .0/ is clearly nonempty since f attains a global minimum and, as a closed subset of the compact
set M0.X /, comprises finitely many connected, compact, complex submanifolds of M by Claim 2.28.
To see that M .0/ comprises one connected component only, recall that the soliton vector field X is
complete. Then by Proposition 2.27, for any point x 2M, the forward orbit of the negative gradient
flow of f beginning at x converges to a point of M0.X /. This gives rise to a stratification of M, namely
M D

Fn
kD0 W s.M .2k//, where

W s.M .2k//D
˚
x 2M j lim

t!�1
�x.t/ 2M .2k/

	
;

�x WR!M here denoting the gradient flow of f beginning at x. Note that

W s.M .0//DM
� nG

kD1

W s.M .2k//:

Now, since M0.X / is compact, for each k, W s.M .2k// comprises finitely many connected components,
each of which is an open submanifold of M of real dimension 2n � 2k; see [1, Proposition 3.2].
The complement of finitely many submanifolds of real codimension at least two in a connected manifold
is still connected. Hence W s.M .0//, and consequently M .0/, is connected. Finally, since M .0/ contains
all of the local minima of f and, comprising only one connected component, is contained in a level set
of f by Claim 2.28, it must be the set of global minima of f . G
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Now, we have already established the fact that M0.X /\ .M nE/, if nonempty, is contained in M .0/.
Thus, if E D ∅, then, since M0.X / is nonempty as f attains a global minimum, we must have that
M0.X / DM .0/, so that M0.X / is a nonempty, connected, compact complex submanifold of M by
Claim 2.29. Since M is affine if E D∅, we deduce that M0.X / must comprise a single point if E D∅.
It then follows from [10] that M is biholomorphic to Cn if E D∅. This is case (i) of the proposition.

Next consider the case when E¤∅. If M0.X /\ .M nE/D∅, then M0.X /�E and we are in case (ii)
of the proposition. So, to derive a contradiction, suppose that E¤∅ and M0.X /\.M nE/¤∅. In light
of the above, we must have that M .0/\E D∅ and that M0.X /\ .M nE/DM .0/, which comprises
a single point x, say. Moreover,

�Sn
jD1 M .2j/

�
\E ¤∅ since otherwise M would be biholomorphic

to Cn by [10], thereby yielding a contradiction. Thus, noting that f .M .0// is the global minimum value
of f by Claim 2.29, let A be the smallest critical value of f with A> f .M .0// and let y 2 f �1.fAg/.
Then we must have that y 2M .k/ �E for some k � 2 by what we have just said. As before, we can
construct a holomorphic map xR W C ! M with xR.0/ D y. Since f is decreasing along its negative
gradient flow and since there are no critical values of f in the open interval .f .M .0//;A/, we see from
Proposition 2.27 that necessarily limz!C1

xR.z/D x. The Riemann removable singularity theorem then
applies and allows us to extend xR to a holomorphic map xR0 W P1!M . Since x ¤ y and x 62E, what
we have constructed is a nontrivial holomorphic curve in M that is not contained in E. This contradicts
the maximality of E. Thus, cases (i) and (ii) of the proposition are the only two possibilities that can
occur. This completes the proof.

2.7 Properties of real vector fields commuting with the soliton vector field

In this subsection, we mention some properties of real vector fields that commute with the soliton vector
field on a complete shrinking gradient Kähler–Ricci soliton. As the next proposition demonstrates, a
bound on the Ricci curvature yields control on the growth of the norm of these vector fields.

Proposition 2.30 Let .M;g;X / be a complete shrinking gradient Kähler–Ricci soliton with bounded
Ricci curvature , and let dg.p; � / denote the distance to a fixed point p 2M with respect to g. Then there
exists a> 0 such that jY j2g.x/DO.dg.p;x/

a/ for every real vector field Y on M with ŒX;Y �D 0.

Remark 2.31 The growth rate obtained in Proposition 2.30 will be sharpened in Claim A.14 for
real holomorphic vector fields commuting with X, as exemplified by shrinking cylinders of the form
Cn�k �N 2k , where Cn�k is endowed with its Gaussian soliton metric and where N 2k supports a closed
Kähler–Einstein metric of positive scalar curvature.

Proof Let j � j denote the norm with respect to g and let Ric denote the Ricci curvature of g. Since jRicj
is bounded so that the scalar curvature of g is bounded, it follows from Lemma 2.25 that the zero set of X

is contained in a compact subset of M. For A> 0, let K WD f �1.Œ2A; 4A�/ and N D f �1..�1; 3A�/.
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Since f is proper and bounded below as a consequence of Theorem 2.20(i), K and N are compact subsets
of M. Choose A sufficiently large so that all of the critical points of f are contained in f �1..�1;A�/

and so that A > supM jRgj. Let x.t/ denote the integral curve of X with x.0/D x 2M. We begin
with the following claim.

Claim 2.32 Let y 2M nN . Then there exists x 2K and t0 > 0 such that y D x.t0/.

That is to say, every point of M nN lies on an integral curve of X passing through K.

Proof For y 2M nK, we see from the soliton identity jrgf j2CRg D 2f that

d

dt
f .y.t//D jr

gf j2g.y.t//D 2f .y.t//�Rg.y.t//:

Using the upper bound on jRgj, we deduce thatˇ̌̌
d

dt
f .y.t//� 2f .y.t//

ˇ̌̌
� 2A:

Integrating this differential inequality for t < 0 then yields the inequalities

(2-8) .f .y/CA/e2t
�A� f .y.t//� .f .y/�A/e2t

CA for t < 0:

Set
t0 D�

1

2
ln
�

3A

f .y/CA

�
> 0:

Then from (2-8) we see that

2A� f .y.�t0//� 3A

�
f .y/�A

f .y/CA

�
CAD 3A

�
1�

2A

f .y/CA

�
CA� 4A:

Thus, y D x.t0/ where x D y.�t0/ 2K. This proves the claim. G

Next observe that

LX .jY j
2/D .LX g/.Y;Y /D g.Y;Y /�Ric.Y;Y /D jY j2�Ric.Y;Y /:

For x 2M a point where X ¤ 0, let h.t/ WD jY j2.x.t//. Then we can rewrite the previous equation as

h0.t/D h.t/�Ric.Y;Y /.x.t//;

so that

(2-9)
h0.t/

h.t/
D 1�

Ric.Y;Y /.x.t//

h.t/
:

Analysing the error term here, we have that

Ric.Y;Y /.x.t//

h.t/
D

Ric.Y;Y /
jY j2

:
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Since jRicj is bounded by assumption, we then have thatˇ̌̌̌
Ric.Y;Y /
jY j2

ˇ̌̌̌
� C

for a constant C > 0, so that (2-9) gives us the boundˇ̌̌̌
h0.t/

h.t/

ˇ̌̌̌
� 2a

for some a> 0. Solving this for t > 0 yields

�2at � ln.h.t//� ln.h.0//� 2at;

so that, in particular,
h.t/� jY j2.x/e2at for all t > 0:

Hence,

(2-10) jY j2.x.t//� jY j
2.x/e2at for all t > 0:

Let y 2M nN . Then by Claim 2.32, there is an x 2K and t0 > 0 such that y D x.t0/. Applying the
above inequality to this choice of x and t0, we deduce that

jY j2.y/� jY j2.x/e2at0 :

Now, as in the proof of Claim 2.32, we have thatˇ̌̌
d

dt
f .x.t//� 2f .x.t//

ˇ̌̌
� 2A:

Integrating this for t > 0 yields the fact that

.f .x/�A/e2t
CA� f .x.t//� .f .x/CA/e2t

�A for all t > 0:

Since x2K so that f .x/�2A, we see from the left-hand side of this inequality that f .x.t//�A.1Ce2t /,
so that

(2-11) e2t
�
f .x.t//

A
� 1 for all t > 0:

Plugging this into (2-10) and setting t D t0 results in the bound

jY j2.y/� jY j2.x/e2at0 � jY j2.x/

�
f .y/

A
� 1

�a

� .sup
K

jY j2/

�
f .y/

A
� 1

�a

:

Since K is compact and f grows quadratically with respect to the distance to a fixed point p 2M by
Theorem 2.20(i), we arrive at the estimate

jY j.z/� c1dg.p; z/
a
C c2 for all z 2M

for some positive constants c1; c2 > 0. This leads to the desired conclusion.

Remark 2.33 In the case that the Ricci curvature decays quadratically at infinity, the constant a may be
taken to be equal to 2 in Proposition 2.30.
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We can also show that such vector fields are complete when the zero set of the soliton vector field is
compact.

Lemma 2.34 Let .M;g;X / be a complete shrinking gradient Kähler–Ricci soliton. Assume that the
zero set of X is compact (which , by Lemma 2.25, is the case when the scalar curvature of g is bounded ).
Then every real vector field Y on M with ŒX;Y �D 0 is complete.

Proof Let Y be as in the statement of the lemma and let K be any compact subset of M containing the
zero set of X in its interior. Then note the following:

� Since K is compact, there exists "0 > 0 such that the flow of Y beginning at any point of K exists
on the open interval .�"0; "0/.

� By Proposition 2.27, for any p 2M, there exists T .p/ > 0 such that the image of p under the
forward flow of �X for time T will be contained in K.

Consequently, for any point p 2M, by flowing first along �X into K for time T .p/, then flowing along Y,
then flowing along X for time T, one sees from the fact that ŒX;Y �D 0 that the flow of Y beginning at any
point of M exists on the interval .�"0; "0/. This observation suffices to prove the completeness of Y.

2.8 Basics of metric measure spaces

We take the following from [33]; the notions introduced in this section will be used in Section 5.1.

A smooth metric measure space is a Riemannian manifold endowed with a weighted volume.

Definition 2.35 A smooth metric measure space is a triple .M;g; e�f dVg/, where .M;g/ is a complete
Riemannian manifold with Riemannian metric g, dVg is the volume form associated to g, and f WM !R

is a smooth real-valued function.

A shrinking gradient Ricci soliton .M;g;X / with X Drgf naturally defines a smooth metric measure
space .M;g; e�f dVg/. On such a space, we define the weighted Laplacian �f by

�f u WD�u�g.rgf;ru/

on smooth real-valued functions u 2 C1.M;R/. There is a natural L2–inner product h � ; � iL2
f

on the
space L2

f
of square-integrable smooth real-valued functions on M with respect to the measure e�f dVg,

defined by
hu; viL2

f
WD

Z
M

uv e�f dVg for u; v 2L2
f :

As one can easily verify, the operator �f is self-adjoint with respect to h � ; � iL2
f

.

In the Kähler case, we have:

Definition 2.36 If .M;g; e�f dVg/ is a smooth metric measure space and .M;g/ is Kähler, we say that
.M;g; e�f dVg/ is a Kähler metric measure space.
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A shrinking gradient Kähler–Ricci soliton naturally defines such a space.

Unlike the real case, on a Kähler metric measure space we have the weighted x@–Laplacian �f defined on
smooth complex-valued functions u 2 C1.M;C/ by

�f u WD�x@u� .r
1;0u/f D gi x|@2

i x|u�gi x| .@if /.@x|u/:

This may be a complex-valued function even if u is real-valued. We define a hermitian inner product on
the space C1

0
.M;C/ by

hu; viL2
f
WD

Z
M

uxv e�f dVg for u; v 2 C10 .M;C/:

Then �f is symmetric with respect to this inner product. In fact, we have thatZ
M

.�f u/xv e�f dVg D

Z
M

u�f v e�f dVg D�

Z
M

g.x@u; x@v/ e�f dVg D�h
x@u; x@viL2

f
;

where
g.x@u; x@v/D gi x| .@x|u/.@ixv/:

See [33] for further details.

3 Proof of Theorem A

We first consider Theorem A in the expanding case.

3.1 Construction of a map to the tangent cone

By a result of Siepmann [62, Theorem 4.3.1], a complete expanding gradient Ricci soliton .M;g;X /

with quadratic curvature decay with derivatives has a unique tangent cone along each end. We first prove
a series of lemmas before providing a refinement of Siepmann’s result in Theorem 3.8 by using the flow
of the soliton vector field X to construct a diffeomorphism between each end of the expanding Ricci
soliton and its tangent cone .C0;g0/ along that end, with respect to which r@r pushes forward to 2X

(here r denotes the radial coordinate of g0), and with respect to which g�g0�Ric.g0/DO.r�4/ with
derivatives.

Our set-up in this section is as follows:

.M;g;X / is a complete expanding gradient Ricci soliton with soliton vector field X Drgf

for a smooth real-valued function f WM !R such that for some point p 2M and all k 2N0,

Ak.g/ WD sup
x2M

j.rg/k Rm.g/jg.x/dg.p;x/
2Ck <1;

where Rm.g/ denotes the curvature of g and dg.p;x/ denotes the distance between p and x

with respect to g.

The diffeomorphisms .'t /t2.0;1� will be as in (2-3). We begin with:
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Lemma 3.1 The one-parameter family of functions .tf ı't /t>0 converges to a nonnegative continuous
real-valued function q.x/ WD limt!0C tf .'t .x// on M as t ! 0C.

Proof Since
@

@t
f .'t .x//D�

jrgf j2g.'t .x//

t
;

so that
@

@t
.tf .'t .x///D .f � jr

gf j2g/.'t .x//DRg.'t .x//;

by the soliton identities for expanding gradient Ricci solitons (see Lemma 2.22), where Rg denotes the
scalar curvature of g, we see after integrating that

(3-1) tf .'t .x//� sf .'s.x//D

Z t

s

Rg.'� .x// d� for 0< s � t:

Since Rg is bounded on M, it follows that for all x 2M,

(3-2) jtf .'t .x//� sf .'s.x//j � C.t � s/ for 0< s � t

for some positive constant C . Thus, ft.f ı 't /gt2.0;1� is a Cauchy sequence in C 0.M / and hence
converges uniformly as t ! 0C to a continuous real-valued function q on M as in the statement of the
lemma.

To see that q.x/� 0 for all x 2M, note from the soliton identities that

tf .'t .x//D t jX j2.'t .x//C tRg.'t .x//� tRg.'t .x//� t inf
M

Rg

since t 2 .0; 1� and Rg is bounded from below. Letting t ! 0C in this inequality yields the desired
conclusion.

For a> 0, set

Ma WD
˚
x 2M j lim

t!0C
tf .'t .x// > a

	
; M0 WD

˚
x 2M j lim

t!0C
tf .'t .x// > 0

	
:

In view of (3-2) and the consequences discussed thereafter, the sets M0 and Ma are well-defined for
a> 0. Furthermore, note that

� Ma and M0 are preserved by 't for all t 2 .0; 1� and a > 0, since 'ts D 't ı 's for all positive
times s and t .

Hence for any a� 0, t.f ı't / defines a family of smooth functions t.f ı't / WMa!R for t 2 .0; 1�.

Lemma 3.2 As t ! 0C, t.f ı't / converges to q in C1loc .M0/. In particular , q is smooth on M0.

Proof For each a > 0, [62, Lemma 4.3.3] ensures that along the Ricci flow g.t/ defined by g, the
norm of the curvature tensor Rmg.t/ of g.t/ is bounded with respect to g.t/ when restricted to Ma. In
particular, there exists a positive constant C (depending on a) such that for all t 2 .0; 1�,

sup
x2Ma

jRic.g.t//jg.t/.x/� C:
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By definition of a Ricci flow, this implies that the metrics .g.t//t2.0;1� are uniformly equivalent, ie there
exists a positive constant C (that may vary from line to line) such that

(3-3) C�1g.x/� g.t/.x/� Cg.x/ for all t 2 .0; 1�; x 2Ma:

An induction argument (see [62, Lemma 4.3.6]) then shows that for all x 2Ma, t 2 .0; 1� and k � 0,

j.rg/k.g.t//jg.x/� C.k; a/:

Similarly, one obtains that

(3-4) j.rg/k.Rmg.t//jg.x/� C.k; a/

for all x 2Ma, t 2 .0; 1� and k � 0. As a consequence,

(3-5) j.rg/k.tf .'t .x///jg � C.k; a/

for all x 2Ma, t 2 .0; 1� and k � 0. Indeed, by (3-1) with t D 1 and s D t ,

f .x/� tf .'t .x//D

Z 1

t

Rg.'s.x// ds D

Z 1

t

sRg.s/.x/ ds for all t 2 .0; 1�; x 2M:

In particular, by deriving k times at a point x 2Ma, we see that

.rg/k.t'�t f /D .r
g/kf �

Z 1

t

s.rg/kRg.s/ ds for all t 2 .0; 1�;

which implies the desired inequality (3-5) after invoking (3-4). As a result, t.f ı 't / converges in
C1loc .M0/ as t ! 0C, so that q is smooth on M0, as claimed.

Since 't preserves Ma for every a> 0, we also have that for any a� 0, the Ricci flow g.t/ determined
by g, namely g.t/ WD t'�t g, defines a family of smooth metrics on Ma for all t 2 .0; 1�. This family
converges in C1loc .M0/ as t ! 0C as well.

Lemma 3.3 The family of metrics g.t/ converges to a Riemannian metric zg0 in C1loc .M0/ as t ! 0C.
Moreover , zg0 D 2 Hesszg0

q.

Proof From the definition of the Ricci flow, one deduces from the curvature bounds (3-4) that g.t/ is a
Cauchy sequence in C k.Ma/ for every k � 0 and a> 0, hence converges uniformly locally as t! 0C in
C k.M0/ for every k � 0 to a Riemannian metric zg0 on M0. To see that zg0 D 2 Hesszg0

q, multiply (2-4)
across by t and take the limit as t! 0C, recalling that limt!0C tf .t/D q in C1loc .M0/ by Lemma 3.2.

We have the following properties of q.

Lemma 3.4 The function q is proper and bounded below.

Proof Lemma 3.1 already implies that q is nonnegative. In particular, it is bounded from below. Now,
one sees from the quadratic growth of the soliton potential f given by (2-2) that for p in the critical set
of the soliton potential f ,

1
4
d2

g.t/.p;x/� c1

p
tdg.t/.p;x/� c2t � tf .'t .x//�

1
4
d2

g.t/.p;x/C c1

p
tdg.t/.p;x/C c2t
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for all t > 0 and x 2M , for some constants c1; c2 > 0, where dg.t/ denotes the distance with respect
to g.t/. Using this inequality and taking the limit as s! 0C in (3-2), one finds that

(3-6) 1
4
d2

g.t/.p;x/� c1

p
tdg.t/.p;x/� c2t � q.x/� 1

4
d2

g.t/.p;x/C c1

p
tdg.t/.p;x/C c2t

for all t > 0 and x 2 M , for some constants c1; c2 > 0 that may now vary from line to line. Thus,
q.x/!C1 as x!1 and the result follows.

Moreover, we have:

Lemma 3.5 On M0,

(i) jr zg0qj2
zg0
D q, so that the integral curves of r zg0.2

p
q/ on M0 are geodesics , and

(ii) r zg0q DX.

In particular , X is nowhere vanishing on M0.

Proof To prove the first part of (i), namely that jr zg0qj2
zg0
D q, we multiply equation (2-5) across by t2

and take the limit as t! 0C. Next, let x.t/ denote the integral curve of r zg0.2
p

q/ with x.0/Dx 2M0.
Then x.t/ remains in M0 for t � 0. Indeed, so long as t � 0 is such that x.t/ lies in M0, we have that

@t .2
p

q/.x.t//D zg0

�
r
zg0.2
p

q/;r zg0.2
p

q/
�
.x.t//D jr

zg0.2
p

q/j2
zg0
.x.t//D 1:

After integrating, we deduce that .2
p

q/.x.t// > 0 for t � 0, as desired. To see that these integral curves
are in fact geodesics with respect to the metric zg0, we compute: for any t � 0 and for any tangent vector v
to M0 at x.t/, we have that

(3-7) zg0.r
zg0

Px.t/
Px.t/; v/D zg0

�
r
zg0

rzg0 .2
p

q/
r
zg0.2
p

q/; v
�
jx.t/

D Hesszg0
.2
p

q/
�
r
zg0.2
p

q/; v
�
jx.t/

:

Since zg0 D 2 Hesszg0
q on M0 by Lemma 3.3, we also have the identity

1
2
zg0 D Hesszg0

q D Hesszg0
.
p

q/2 D .2
p

q/Hesszg0
.
p

q/C 2d.
p

q/˝ d.
p

q/:

Plugging this into (3-7) then leads to the following sequence of equalities on M0:

.2
p

q/.x.t// � zg0

�
r
zg0

Px.t/
Px.t/; v

�
D zg0

�
r
zg0.2
p

q/; v
�
jx.t/

� 4
�
d.
p

q/˝ d.
p

q/
��
r
zg0.2
p

q/; v
�
jx.t/

D zg0

�
r
zg0.2
p

q/; v
�
jx.t/

� jr
zg0.2
p

q/j2
zg0
.x.t// � zg0

�
r
zg0.2
p

q/; v
�
jx.t/

D 0;

where we have used in the last line the already established fact that jr zg0.2
p

q/j2
zg0
D 1 on M0.

As for part (ii), let 't be as in (2-3). Then on compact subsets of M0, we have that

r
zg0q D lim

t!0C
r

g.t/.tf .t//D lim
t!0C

r
t'�t g.t'�t f /

D lim
t!0C

1

t
r
'�t g.t'�t f /D lim

t!0C
r
'�t g.'�t f /

D lim
t!0C

'�t .r
gf /D lim

t!0C
'�t X D lim

t!0C
X DX;
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where the penultimate equality follows from the fact that 't is generated by the flow of �.1=t/X and
LX X D 0.

The above observations then imply:

Lemma 3.6 M has only finitely many ends.

Proof For any a> 0, q is a smooth function on Ma by Lemma 3.2. Furthermore, by Lemma 3.5, q has
no critical points in Ma. Consequently, using the Morse flow . 

q
t /t�0 associated to q, one sees that all

the level sets of q of the form q�1.fbg/ with b � b0 for some b0 2 R large enough are diffeomorphic.
Since q is proper by Lemma 3.1, such level sets are compact and the map

 q
W .0;C1/� q�1.fb0g/! q�1..b0;C1//; .t;x/ 7!  

q
t .x/;

is a diffeomorphism of a neighbourhood of M at infinity. Again, since q is proper, the level set q�1.fb0g/

is compact hence has a finite number of connected components. Thus, M has a finite number of ends.

Our final lemma is then:

Lemma 3.7 There exists A> 0 such that for all c >A, the intersection of each end of M with q�1.fcg/

is compact , connected , and nonempty.

Proof By Lemma 3.6, M has only a finite number of ends. Thus, since q is proper and bounded below
by Lemma 3.4, there exists A > 0 such that all of the ends of M are contained in M n q�1..�1;A�/.
For any c > A, the intersection of q�1.fcg/ with each end of M is then compact and nonempty and
comprises one connected component only since, as a consequence of Lemma 3.5, q is strictly increasing
along the flow lines of the (nowhere vanishing) vector field X on M0.

Using the above lemmas, we can now construct our map to the tangent cone at infinity.

Theorem 3.8 (map to the tangent cone for expanding Ricci solitons) Let A> 0 be as in Lemma 3.7,
let � WM0! RC be defined by � WD 2

p
q, and let S WD ��1.fcg/ for any c > 0 with 1

4
c2 > A (so that

the intersection of each end of M with S is compact , connected , and nonempty). Then there exists
a diffeomorphism � W .c;1/�S !Mc2=4 such that g0 WD �

�zg0 D dr2C r2gS=c
2 and d �.r@r / D 2X,

where r is the coordinate on the .c;1/–factor and gS is the restriction of zg0 to S . Moreover , along
Mc2=4, we have that

(3-8) j.rg0/k.��g�g0� 2 Ric.g0//jg0
DO.r�4�k/ for all k 2N0:

In particular , .M;g/ has a unique tangent cone along each end.
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Proof To prove the first part of this statement, we follow the proof of [22, Theorem 1.7.2].

We have that Hesszg0
.�2/D 2zg0 from Lemma 3.3 and we know from Lemma 3.5(i) that jr zg0�2j2

zg0
D 4�2

is constant along the level sets of � and that the integral curves of r zg0� are geodesics. Then we have that

r
zg0�2

D 2�r zg0� and Hesszg0
.�2/D 2d�2

C 2�Hesszg0
.�/;

so that
2zg0 D Hesszg0

.�2/D 2d�2
C 2�Hesszg0

.�/:

Hence,
Hesszg0

.�/D
zg0

�
on the zg0–orthogonal complement of r zg0�.

On the other hand, zg0 D d�2C zg� with zg� the restriction of zg0 to the level set of �, and

L
rzg0�zg� D L

rzg0�.zg0� d�2/D 2 Hesszg0
.�/� 16�d�2

D
2zg�

�
C

�
2

�
� 16�

�
d�2;

so that

L
rzg0�zg� D

2zg�

�
on the zg0–orthogonal complement of r zg0�:

Thus,

(3-9) L�rzg0�zg� D 2zg� on the zg0–orthogonal complement of r zg0�:

Next define a map � W .c;1/�S !Mc2=4 by

.r;x/ 7!ˆx.r � c/;

where ˆx. � / denotes the flow of r zg0� with ˆx.0/ D x. By choice of c, this map is well-defined.
Moreover, d �.@r / D r

zg0� by construction, and since �.ˆx.t// D t C c, we have that ��� D r so that
d �.r@r /D �r

zg0�D 2X. In this new frame, we thus have that

��zg0 D dr2
C ��zg�;

where we find from (3-9) that

Lr@r
��zg� D 2��zg� on the ��zg0–orthogonal complement of @r :

Hence, ��zg� D r2gS=c
2 so that ��zg0 D dr2C r2gS=c

2, as claimed.

As for the fact that (3-8) holds true along Mc2=4, we have from Young’s inequality applied to (3-6) that

(3-10) C�1dg.t/.p;x/�C
p

t � �.x/� Cdg.t/.p;x/CC
p

t for all t 2 .0; 1�; x 2M0:

Using this, we can now prove an estimate less sharp than (3-8).

Claim 3.9 For all x 2Mc2=4 and k 2N0,

(3-11) j.rg/k.g� zg0/jg.x/� Ck�.x/
�2�k :
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Proof Let us prove the claim first for k D 0. Since the curvature tensor of g (and hence that of g.s/)
decays quadratically with derivatives, we have that for any p in the critical set of f and for any x 2Mc2=4,

jg� zg0jg.x/�

Z 1

0

j@sg.s/jg.x/ ds � C

Z 1

0

jRic.g.s//jg.x/ ds � C

Z 1

0

dg.s/.p;x/
�2 ds � C�.x/�2;

where we have used (3-3) and (3-10) after increasing C if necessary.

As for the case k D 1, we must work slightly harder. Recall that if T is a tensor on M, then rg.t/T D

rgT Cg.t/�1 �rg.g.t/�g/�T , since at the level of Christoffel symbols, one has that

�.g.t//kij D �.g/
k
ij C

1
2
g.t/km

�
r

g
i .g.t/�g/jmCr

g
j .g.t/�g/im�r

g
m.g.t/�g/ij

�
:

Thus, for all x 2Mc2=4 and t 2 .0; 1�, we have that

@t jr
g.g.t/�g/j2g.x/� �4jrg Ric.g.t//jg.x/jrg.g.t/�g/jg.x/

� �4
�
jr

g.t/ Ric.g.t//jg.x/C
�
j.rg
�r

g.t//Ric.g.t//jg.x/
��
jr

g.g.t/�g/jg.x/

� �C
�
dg.t/.p;x/

�3
Cj.rg

�r
g.t//Ric.g.t//jg.x/

�
jr

g.g.t/�g/jg.x/

� �C
�
�.x/�3

Cjr
g.g.t/�g/jg.x/jRic.g.t//jg.x/

�
jr

g.g.t/�g/jg.x/

� �C
�
�.x/�3

Cjr
g.g.t/�g/jg.x/

�
jr

g.g.t/�g/jg.x/

� �C jrg.g.t/�g/j2.x/�C�.x/�6;

where C denotes a positive constant that may vary from line to line, and where we used Young’s inequality
in the last line. Recalling that jrg.g.t/�g/j2g D 0 when t D 1, one can integrate the previous differential
inequality between a time t 2 .0; 1/ and t D 1 to obtain

jr
g.g.t/�g/j2g.x/� C�.x/�6 for x 2Mc2=4; t 2 .0; 1�;

for some positive constant C uniform in time. This fact implies the desired estimate (3-11) for k D 1 by
letting t ! 0C.

The cases k � 2 are proved by induction on k. G

It follows from Claim 3.9 that

j.r zg0/k.g� zg0/jzg0
� Ck�

�2�k for all k 2N0;

so that, after pulling back by �, we have that

j.rg0/k.��g�g0/jg0
� Ckr�2�k for all k 2N0:

We now prove (3-8). To this end, recall that 't .x/ satisfies

@'t

@t
.x/D�

rgf .'t .x//

t
and '1 D id:
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Since 4rgf Drg0�2 D 2�rg0� by Lemma 3.5(ii), we have that

d

dt
�.'t .x//D d�j't .x/

�
@'t

@t
.x/

�
D d�j't .x/

�
�
rgf .'t .x//

t

�
D�

�.'t .x//

2t
d�j't .x/

.rg0�j't .x/
/D�

�.'t .x//

2t
;

so that

(3-12) �.'t .x//D
�.x/

t1=2
:

Let y't .x/ satisfy
@y't

@t
.x/D�

r

2t

@

@r
.y't .x// and y'1 D id:

Then since d �.r@r /D 2X, we have that � ı y't D 't ı �, and in light of (3-12), we see that y'�t r D r=t1=2,
so that t y'�t g0 D g0. Recall that the Ricci flow g.t/ defined by g is given by g.t/D t'�t g for t 2 .0; 1�.
Together with the scaling properties of the norm induced on tensors by g0 and the invariance of the
Levi-Civita connection under rescalings, these observations imply that

j.r y'
�
t g0/k.��g.t/�g0/jy'�t g0

.x/D j.rt�1g0/k.��g.t/�g0/jt�1g0
.x/

D t1C.k=2/
j.rg0/k.��g.t/�g0/jg0

.x/;

so that

j.rg0/k.��g.t/�g0/jg0
.x/D t�1�k=2

j.r y'
�
t g0/k.��g.t/�g0/jy'�t g0

.x/

D t�1�k=2
� t j.r y'

�
t g0/k.y'�t �

�g� y'�t g0/jy'�t g0
.x/

D t�1�k=2
� t j.rg0/k.��g�g0/jg0

.y't .x//

� Ck t � t�1�k=2
� .r.y't .x///

�2�k

D Ck t � t�1�k=2
� t1Ck=2.r.x//�2�k for all k 2N0I

that is,
j.rg0/k.��g.t/�g0/jg0

.x/� Ck t r�2�k for all k 2N0:

In particular,
j.rg0/k.Ric.��g.t//�Ric.g0//jg0

� Ck t r�4�k for all k 2N0;

which is clear from the expression of the components of the Ricci curvature in local coordinates. Conse-
quently, we have the improved estimate

j.rg0/k.��g�g0�2 Ric.g0//jg0
.x/�Ck

Z 1

0

ˇ̌
.rg0/k

�
Ric.��g.s//�Ric.g0/

�ˇ̌
g0
.x/ ds�Ckr.x/�4�k :

This is precisely (3-8).

Thus, an expanding gradient Ricci soliton M with quadratic curvature decay with derivatives has a unique
tangent cone C0 along each of its ends V. Moreover, there is a diffeomorphism

� W C0 nK! V;
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where K � C0 is a compact subset containing the apex of C0, induced by the flow of the vector field
2X=�. The statement of Theorem 3.8 is verbatim the same for expanding gradient Kähler–Ricci solitons,
except that d �.r@r /D X rather than 2X and 2 Ric.g0/ is replaced by Ric.g0/ in (3-8), accounting for
the difference in normalisation between Ricci solitons and Kähler–Ricci solitons.

3.2 Existence of a resolution map to the tangent cone

In the case that .M;g;X / is a complete expanding gradient Kähler–Ricci soliton with quadratic curvature
decay with derivatives, the soliton potential is proper [12], hence M has only one end V [52] with tangent
cone C0 along the end. (Also note from [52] that any complete shrinking gradient Kähler–Ricci soliton
has only one end without any curvature assumption on the metric.) Along V, we have from Theorem 3.8
the diffeomorphism � W C0 nK ! V for K � C0 a compact subset containing the apex of C0. As we
will now see, the inverse of this map actually extends to define a resolution � WM ! C0 with respect to
which d�.X /D r@r . We first show that � is a biholomorphism with respect to a complex structure on C0

that makes the cone metric g0 Kähler. As the next proposition demonstrates, the Kählerity of the soliton
implies this fact.

Proposition 3.10 Let .M;g;X / be a complete expanding gradient Kähler–Ricci soliton with complex
structure J such that for some point p 2M and all k 2N0,

Ak.g/ WD sup
x2M

j.rg/k Rm.g/jg.x/dg.p;x/
2Ck <1;

where Rm.g/ denotes the curvature of g and dg.p;x/ denotes the distance between p and x with
respect to g. For the unique end V of M, let zg0 D limt!0C g.t/ be the limit of the Kähler–Ricci
flow g.t/ defined by .M;g;X /, let .C0;g0/ be the unique tangent cone along V with radial function r

and let � W .C0 nK;g0/! .V; zg0/, for K � C0 compact containing the apex of C0, be the isometry of
Theorem 3.8. Then .C0;g0/ is a Kähler cone with respect to ��J. In particular , � W .C0 nK; ��J /! .V;J /

is a biholomorphism.

Proof Since limt!0C g.t/ D zg0 smoothly on compact subsets of V and g.t/ is Kähler with respect
to J, we have that on V,

r
zg0J D lim

t!0C
r

g.t/J D 0;

so that zg0 is Kähler with respect to J. The metric g0 is therefore Kähler with respect to ��J away from a
compact subset of C0. Recall that the radial vector field on a Kähler cone is holomorphic with respect to
its complex structure. Thus, r@r is holomorphic on the subset of C0 for which ��J is defined. Flowing
along �r@r then extends ��J to a global complex structure on C0, with respect to which g0 is Kähler.

In fact the converse of Proposition 3.10 holds true for shrinking gradient Kähler–Ricci solitons; see [42]
for details.
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The previous proposition implies that M is 1–convex. This property is what allows us to extend the
biholomorphism ��1 to a resolution � WM ! C0 that is equivariant with respect to the torus action on C0

generated by the flow of J0r@r . The details are contained in the next theorem.

Theorem 3.11 Let .M;g;X / be a complete expanding gradient Kähler–Ricci soliton with complex
structure J such that for some point p 2M and all k 2N0,

Ak.g/ WD sup
x2M

j.rg/k Rm.g/jg.x/dg.p;x/
2Ck <1;

and let .C0;g0/ be its unique tangent cone with radial function r and complex structure J0. Then there
exists a holomorphic map � WM ! C0 that is a resolution of C0 with the property that d�.X / D r@r .
Furthermore , the holomorphic isometric real torus action on .C0;g0;J0/ generated by J0r@r extends to a
holomorphic isometric torus action of .M;g;J /.

Proof The proof of Theorem 3.11 comprises several steps. From Proposition 3.10, we know that
along the unique end V of M, there is a biholomorphism � W C0 nK! V for K � C0 a compact subset
containing the apex of C0. Thus, by [20, Lemma 2.15], this in particular implies that M is 1–convex,
hence holomorphically convex, so that there is a Remmert reduction p WM !M 0 of M. Recall that
this is a proper holomorphic map p WM !M 0 from M onto a normal Stein space M 0 with finitely
many isolated singularities obtained by contracting the maximal compact analytic subset of M. By
construction, M 0 is biholomorphic to M outside compact sets, therefore we have a biholomorphism
given by F WD p ı � W fx 2 C0 j r.x/ >Rg !M 0 nK0 for some compact subset K0 �M 0 and for some
R> 0. We claim that this biholomorphism extends globally.

Claim 3.12 The biholomorphism F W fx 2 C0 j r.x/ > Rg !M 0 nK0 extends to a biholomorphism
F W C0!M 0.

Proof Since M 0, as a Stein space with finitely many isolated singularities, admits an embedding
h WM 0!CP for some P by [3, Theorem 3.1], we have a holomorphic function

h ıF W fx 2 C0 j r.x/ >Rg !CP :

Since C0 is in particular an example of a Stein space, this holomorphic function extends to a unique
holomorphic function F WC0!CP by Hartogs’ theorem for Stein spaces [61, Theorem 6.6]. The fact that
F .C0/�M 0 follows from Hartogs’ theorem. To show that F is in fact a biholomorphism, we construct
an inverse map F�1 WM 0! C0 as an extension of the map

F�1
WM 0
nK0! fx 2 C0 j r.x/ >Rg

by applying the previous argument beginning with the fact that C0 is affine algebraic. G

Thus, the Remmert reduction of M is actually C0, ie the composition � WD F�1 ı p WM ! C0 is a
proper holomorphic map contracting the maximal compact analytic subset E of M to obtain the cone C0.
Denote the connected components of E by E1; : : : ;Ek . Then � contracts each Ei to a point pi 2C0 and
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restricts to a biholomorphism � WM nE! C0 n fp1; : : : ;pkg. We next show that � defines a resolution
of C0 for which d�.X /D r@r . Note that at infinity, � D .p ı �/�1 ıp D ��1.

Claim 3.13 The map � WDF�1 ıp WM ! C0 is a resolution of C0 with respect to which d�.X /D r@r .

Proof Consider the biholomorphism � WM nE! C0 n fp1; : : : ;pkg. This map allows us to lift the
holomorphic vector field r@r to a holomorphic vector field Y WD .d�/�1.r@r / on M nE. Since at infinity
� D ��1, and so identifies the vector field r@r on C0 with the vector field X on M outside compact
subsets of each, Y will agree with X outside of a compact subset of M. Thus, analyticity implies that
X D Y on M nE. The next observation is that since the flow lines of Y (and hence X ) foliate M nE,
the flow of X must preserve E. Via � therefore, the flow of X induces a flow on C0 that fixes the
points p1; : : : ;pk , where as before each pi denotes the image of a connected component Ei of E �M

under � . The result of this induced flow on C0 is a holomorphic vector field yX that coincides with r@r

on C0 n fp1; : : : ;pkg and which is equal to zero at each pi . By analyticity again, yX D r@r , so that
E comprises one connected component only, which is mapped to the apex of the cone by � . Thus,
� WM ! C0 is a resolution of the singularity of the cone, and the vector field X on M is an extension of
.d�/�1.r@r / from M nE to M so that d�.X /D r@r , as claimed. G

The resolution � WM ! C0 is clearly equivariant with respect to the flow of J0r@r on C0 and the flow
of JX on M. We wish to show next that � WM !C0 is in fact equivariant with respect to the holomorphic
isometric torus action on C0 induced by the flow of J0r@r and that the lift of this torus action to M acts
isometrically on g. This will conclude the proof of Theorem 3.11.

Claim 3.14 The holomorphic isometric torus action on .C0;g0/ generated by J0r@r extends to a
holomorphic isometric action of .M;g;J / so that , in particular , � WM ! C0 is equivariant with respect
to this torus action.

Proof Consider the isometry group of .M;g/ that fixes E endowed with the topology induced by
uniform convergence on compact subsets of M. By the Arzelà–Ascoli theorem, this is a compact Lie
group. Taking the closure of the flow of JX in this group therefore yields the holomorphic isometric
action of a torus T on .M;J;g/. Since the action of T preserves E, this action pushes down via � to a
holomorphic action of T on C0 fixing the apex o of C0. Now, by Theorem 3.8, after noting again that
� D ��1 at infinity, we see that the soliton metric g and the cone metric g0 are asymptotic at infinity.
Therefore these metrics are quasi-isometric on C0 nK, where K � C0 is any compact subset of C0

containing the apex o of C0, so that uniform convergence on compact subsets of C0 n fog measured with
respect to g and g0 are equivalent. Recall that d�.X /D r@r , so that the flow of J0r@r is dense in T and
the flow of J0r@r is isometric with respect to g0. Consequently, every automorphism of .C0;J0/ induced
by T is obtained as a limit of automorphisms of .C0 n fog;g0;J0/ with respect to uniform convergence
on compact subsets measured using g0. Since a uniform limit of isometries is itself an isometry, it follows
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that T acts isometrically with respect to g0 on C0 n fog, so that the action of T on C0 preserves the slices
of C0 and defines a torus in the isometry group of the link of C0 in which the flow of J0r@r is dense.
This final observation concludes the proof of the claim and Theorem 3.11.

3.3 Conclusion of the proof of Theorem A

We now conclude the proof of Theorem A for complete expanding gradient Kähler–Ricci solitons. Con-
clusion (a) follows from [62, Theorem 4.3.1], whereas the Kählerity of .C0;g0/ as stated in conclusion (b)
follows from Proposition 3.10. The remainder of conclusion (b), apart from (b)(i), then follows from
Theorem 3.11. Conclusion (c) follows from Theorem 3.8 after noting that � D ��1 at infinity as above.

As for conclusion (b)(i), the Kähler form ! of the expanding gradient Kähler–Ricci soliton satisfies the
expanding soliton equation �!C i@x@f D�! on M, where �! is the Ricci form of ! and f is the soliton
potential. In H 2.M /, this equation yields Œ��! �D Œ!�. Since i�! is the curvature form ‚ resulting from
the hermitian metric on KM induced by !, we have that Œi‚�D Œ��! �D Œ!�, so that (1-5) is seen to hold
true for the expanding soliton Kähler form ! and the curvature form i‚ it induces on KM .

For a complete shrinking gradient Ricci soliton .M;g;X / with soliton potential f , we define a Kähler–
Ricci flow via

g.t/D�t'�t g for t < 0;

where 't is a family of diffeomorphisms generated by the gradient vector field �.1=t/X with '�1D id, ie

@'t

@t
.x/D�

rgf .'t .x//

t
with '�1 D id:

Then .@g=@t/.t/ D �2 Ric.g.t// for t < 0 and g.�1/ D g. Such a soliton with quadratic curvature
decay has quadratic curvature decay with derivatives by Theorem 2.20(iii), and hence, as proved in
[43, Sections 2.2–2.3], has a unique tangent cone at infinity. These observations provide the starting
point for the proof of Theorem A for complete shrinking gradient Kähler–Ricci solitons with quadratic
curvature decay. The proof then follows the proof for the expanding case, verbatim.

4 Classification results for expanding gradient Kähler–Ricci solitons with
quadratic curvature decay with derivatives

4.1 Proof of Corollary B

Let .M;g;X / be a complete expanding gradient Kähler–Ricci soliton satisfying (1-6) with tangent cone
.C0;g0/, as in Corollary B. Let ! denote the Kähler form of g.

To see that M is the canonical model of C0, note first that Theorem A asserts that there is a Kähler
resolution � WM ! C0 with exceptional set E such that

(4-1)
Z

V

.i‚/k ^!dimC V�k > 0
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for all positive-dimensional irreducible analytic subvarieties V �E of � WM ! C0 and for all integers k

such that 1� k � dimC V, where ‚ denotes the curvature form of the hermitian metric on KM induced
by !. In particular, (4-1) implies that Z

V

.i‚/k ^!dimC V�k > 0

for all positive-dimensional irreducible algebraic subvarieties V � E and for all integers k such that
1� k � dimC V. Setting k D dimC V, we then see thatZ

V

.i‚/dimC V > 0 for every irreducible algebraic subvariety V �E of positive dimension.

But since M is quasiprojective by Proposition 2.24, this is the same as saying that

.DdimC V
�V / > 0 for every irreducible algebraic subvariety V �E of positive dimension,

where D is now a canonical divisor of M. Nakai’s criterion for a mapping (Theorem 2.11) now tells us
that KM is �–ample, so that by definition, � WM ! C0 is the canonical model of C0. Hence C0 has a
smooth canonical model, namely M.

Conversely, suppose that .C0;g0/ is a Kähler cone with radial function r and with a smooth canonical
model � WM !C0. We begin by explaining that [19, Theorem A] holds true without hypothesis (b) of that
theorem. This hypothesis was required in the proof of [19, Proposition 3.2] to show that LX! D i@x@�X ,
where ! is the Kähler form of [19, Proposition 3.1], X is the lift of the radial vector field on the cone,
and �X is a smooth real-valued function. The following claim asserts that this in fact always holds true.

Claim 4.1 Let .C0;g0/ be a Kähler cone with complex structure J0 and radial function r and let
� WM ! C0 be an equivariant resolution with respect to the real torus action on C0 generated by J0r@r .
Let X be the unique holomorphic vector field on M with d�.X /D r@r and let ! be the Kähler form of
[19, Proposition 3.1]. Then LX! D i@x@�X for a smooth real-valued function �X WM !R.

Proof Denote the complex structure of M by J and let X 1;0 D
1
2
.X � iJX /. Then since LJX! D 0

by construction, we have that

(4-2) 1
2
LX! D

1
2
d.!yX /D d.!yX 1;0/:

Now by construction, ! takes the form ! D i z‚hC i@x@u, where u WM ! R is a smooth real-valued
function and z‚h is the average over the action of the torus on M of the curvature form ‚h of a hermitian
metric h on KM . Thus,

(4-3) !yX 1;0
D i z‚hyX 1;0

C ix@.X 1;0
�u/:

Studying the term i z‚hyX 1;0, let nD dimC M , let � be a local holomorphic volume form on M, ie a
nowhere vanishing locally defined holomorphic .n; 0/–form (defined in some local holomorphic coordinate
chart, for example), and set

v WDX 1;0
� log.k�k2h/�

LX 1;0�

�
;
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where k � kh denotes the norm with respect to h. We claim that v is independent of the choice of � and
hence is globally defined. Indeed, any other local holomorphic volume form takes the form q� for some
holomorphic function q. Then

X 1;0
� log.kq�k2h/�

LX 1;0.q�/

q�
DX 1;0

� log jqj2CX 1;0
� log.k�k2h/�

.X 1;0 � q/�C qLX 1;0�

q�

DX 1;0
� log.k�k2h/�

LX 1;0�

�
CX 1;0

� log jqj2�
X 1;0 � q

q„ ƒ‚ …
D0

DX 1;0
� log.k�k2h/�

LX 1;0�

�
;

as required. Next observe that

i‚hyX 1;0
D�ix@

�
X 1;0

� log.k�k2h/
�
D�ix@

�
X 1;0

� log.k�k2h/�
LX 1;0�

�

�
D�ix@v;

since .LX 1;0�/=� is a holomorphic function. Averaging this equation over the action of T then yields
the fact that i z‚hyX 1;0 D ix@zv for a smooth function zv on M. Plugging this into (4-2), we thus see from
(4-3) that

LX! D 2d.ix@.zvCX 1;0
�u//D i@x@.2.zvCX 1;0

�u//:

Hence LX! D i@x@�X , where �X WD 2 Re.zvCX 1;0 �u/, because LX! is a real .1; 1/–form and i@x@ is a
real operator. G

Remark 4.2 The existence of the function v satisfying i‚hyX 1;0 D�ix@v is essentially due to the fact
that X has a canonical lift to the total space of KM and ‚h is the curvature form of a hermitian metric
on KM .

Returning now to our smooth canonical model � WM ! C0 of C0, we will verify the hypotheses of
[19, Theorem A] (apart from the redundant hypothesis (b) of this theorem) for this resolution to show
that M admits a complete expanding gradient Kähler–Ricci soliton g with the desired asymptotics.
By Lemma 2.13, the radial vector field r@r on C0 lifts to a holomorphic vector field X on M with
d�.X /D r@r , and by Lemma 2.12, M is quasiprojective, hence Kähler. Moreover, there exists a Kähler
form � on M and a hermitian metric on KM with curvature form ‚ such that

(4-4)
Z

V

.i‚/k ^ �dimC V�k > 0

for all positive-dimensional irreducible analytic subvarieties V contained in the exceptional set E of
� WM ! C0 and for all integers k such that 1� k � dimC V. Indeed, proceeding as in [25], let � be the
curvature form of a very ample line bundle L on the projective variety which contains M as an open
subset and let ‚ be the curvature form of the hermitian metric induced on KM by � . Then observe that
for any analytic subvariety V �E of dimension k,

(4-5)
Z

V

.i‚/k ^ �dimC V�k
D

Z
V\H1\���\HdimC V�k

.i‚/k
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for generic members H1; : : : ;HdimC V�k of the linear system jLj, so that V \H1\� � �\Hdim V�k �E is
an irreducible subvariety of dimension k. Since E is projective (as M is quasiprojective), this intersection
is a projective algebraic variety by Chow’s theorem. The right-hand side of (4-5) may therefore be written
as Dk � .V \H1\ � � � \Hdim V�k/, where D is a canonical divisor of M. By definition of the canonical
model, KM is �–ample, which by Nakai’s criterion for a mapping (see Theorem 2.11) implies that this
intersection is strictly positive. Thus, we have that (4-4) holds true for the Kähler form � and the curvature
form ‚ that it induces on KM . The hypotheses required for the application of [19, Theorem A] are
therefore satisfied and so M admits a complete expanding gradient Kähler–Ricci soliton .M;g;X / with

j.rg0/k.��g�g0�Ric.g0//jg0
� Ckr�4�k for all k 2N0;

as required.

As for the uniqueness of .M;g;X /, let .Mi ;gi ;Xi/ for i D 1; 2 be two complete expanding gradient
Kähler–Ricci solitons satisfying (1-6) with tangent cone .C0;g0/. As initially proved, both M1 and
M2 are equal to the unique (smooth) canonical model M of C0. Moreover, Theorem A asserts that for
i D 1; 2 there exists a resolution map �i WM ! C0 with d�i.Xi/D r@r such that

(4-6) j.rg0/k..�i/�gi �g0�Ric.g0//jg0
� Ckr�4�k for all k 2N0:

The composition H WD �2 ı �
�1
1
W C0 ! C0 induces an automorphism of C0 fixing the vertex. As

in the proof of Lemma 2.13, uniqueness of the canonical model implies that there exists a unique
biholomorphism F WM !M such that �1 ıF DH ı�1. Unravelling the definition of H , this yields the
fact that �1 ıF D �2. Consequently, d�2..dF /�1.X1//D d�1.X1/D r@r so that .dF /�1.X1/DX2.
Furthermore, in light of (4-6), we have that

(4-7) j.rg0/k..�2/�.F
�g1/�g0�Ric.g0//jg0

� Ckr�4�k for all k 2N0:

Thus, .M;F�g1;X2/ and .M;g2;X2/ are two expanding gradient Kähler–Ricci solitons with the
same soliton vector field which from (4-6) for i D 2 and (4-7) in addition satisfy jF�g1 � g2j D

O.r�4/. The uniqueness theorem [19, Theorem C(ii)] therefore applies (where, in studying the proof
of [19, Theorem C(ii)], one sees that finite fundamental group is not actually required) and asserts that
F�g1 D g2. Thus, .M;g;X / is unique up to pullback by biholomorphisms of M, as claimed.

As for the remainder of Corollary B, item (a) is now clear and item (b) follows from Theorem A.

4.2 Proof of Corollary C

Corollary C follows from Corollary B once we identify the two-dimensional Kähler cones that admit
smooth canonical models as those stated in Corollary C(I)–(III) and realise their respective smooth
canonical models as those stated in Corollary C(b)(i)–(iii).

To this end, let C0 be a two-dimensional Kähler cone with a smooth canonical model M. By adjunction,
M cannot contain any .�1/– or .�2/–curves. In particular, by Theorem 2.15, M coincides with the
minimal model of C0. Using this information, we can identify C0 and M as follows.
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Since C0 is a two-dimensional Kähler cone, it must be prescribed as in Theorem 2.5. We henceforth work
on a case-by-case basis. If C0 is as in Theorem 2.5(i), then � must be as prescribed in Corollary C(I)
since M cannot contain any .�2/–curves; indeed, see [48, Figure 2.1 and Theorem 4.1] for details. In
this case, M will be the minimal model of C0 as stated in Corollary C(b)(i). Otherwise, C0 may be as in
Theorem 2.5(ii) which is precisely the statement of Corollary C(II). In this case, the minimal model M is
given as in the statement of Corollary C(b)(ii). Finally, C0 may be as in Theorem 2.5(iii). Those cones of
Theorem 2.5(iii) that admit a smooth canonical model have been identified in Proposition 2.18, which
yields the statement of Corollary C(III). For these cones, the minimal resolution is the minimal good
resolution which identifies M as in the statement of Corollary C(b)(iii).

5 A volume-minimising principle for complete shrinking gradient
Kähler–Ricci solitons

We now focus our attention solely on shrinking gradient Kähler–Ricci solitons for the remainder of
the article. The set-up of this section is as follows. Let .M;g;X / be a complete shrinking gradient
Kähler–Ricci soliton of complex dimension n with complex structure J, Kähler form !, and with soliton
vector field X Drgf for a smooth real-valued function f WM !R. We assume that a real torus T with
Lie algebra t acts holomorphically, effectively and isometrically on .M;g;J /. Then t can be identified
with real holomorphic Killing vector fields on M. We furthermore assume that JX 2 t.

The goal of this section is to prove the uniqueness of the soliton vector field JX in t by characterising
JX as the unique critical point of a soon-to-be-defined weighted volume functional.

5.1 A Matsushima-type theorem

Let autX .M / denote the Lie algebra of real holomorphic vector fields on M that commute with X and
hence JX, and let gX denote the Lie algebra of real holomorphic g–Killing vector fields on M that
commute with X and hence JX. Clearly gX is a Lie subalgebra of autX .M /. In order to prove the
uniqueness of the soliton vector field X, we need to show that the connected component of the identity of
the Lie group of holomorphic isometries of .M;g;J / commuting with the flow of X is maximal compact
in the connected component of the identity of the Lie group of automorphisms of .M;J / commuting with
the flow of X. This fact will follow from the next theorem, an analogue of Matsushima’s theorem [50]
for shrinking gradient Kähler–Ricci solitons stating that the Lie algebra autX .M / is reducible, after we
prove that the aforementioned groups are indeed Lie groups.

Theorem 5.1 (a Matsushima theorem for shrinking Kähler–Ricci solitons) Let .M;g;X / be a com-
plete shrinking gradient Kähler–Ricci soliton with complex structure J endowed with the holomorphic ,
effective , isometric action of a real torus T with Lie algebra t with JX 2 t. If jRic.g/jg is bounded , then
we have that

autX .M /D gX
˚JgX :
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We expect this theorem to hold true without the assumption of bounded Ricci curvature.

The proof of Theorem 5.1 consists of several steps. Beginning with any real holomorphic vector field
Y 2 autX .M /, Hörmander’s L2–estimates allow for a complex-valued potential, that is, a smooth
complex-valued function uY such that Y 1;0 Dr1;0uY , where Y 1;0 is the .1; 0/–part of Y. Thanks to the
defining equation of a shrinking gradient Kähler–Ricci soliton, we can then modify uY by a holomorphic
function if necessary so that �!uY CuY �Y 1;0 �f D 0, where f is the soliton potential with X Drgf .
We further average uY over the action of T so that LJX uY D 0, which results in the commutator relation
.uY /xkfk D .uY /kfxk . Using this, we then apply a Bochner formula followed by an integration by parts
argument to deduce that r0;2xuY D 0 so that r1;0xuY is a holomorphic vector field. The bound on the
norm of the Ricci curvature is required to control the boundary term in the integration by parts argument.
The gradient of the real and imaginary parts of uY will therefore be real holomorphic vector fields so
that, once one applies the complex structure to these vector fields, they become real holomorphic and
Killing. From this, the stated decomposition follows. To conclude that the sum is direct, we make use of
a splitting theorem for shrinking gradient Ricci solitons.

Proof Write h � ; � i, j � j and r, respectively, for the inner product, norm and Levi-Civita connection
determined by g, and let Y 2 autX .M /. Then Y defines a real holomorphic vector field on M with
ŒX;Y �D 0. Take the .1; 0/–part Y 1;0 of Y, ie let Y 1;0 D

1
2
.Y � iJ Y /. Then x@Y 1;0 D 0, so that !yY 1;0

is a x@–closed .0; 1/–form, where ! denotes the Kähler form of g. We first claim that !yY 1;0 admits a
smooth complex potential.

Claim 5.2 There exists a smooth complex-valued function uY on M such that �i!yY 1;0 D x@uY , or
equivalently, such that Y 1;0 Dr1;0uY .

Note that uY is unique up to the addition of a holomorphic function.

Proof Let h denote the metric on �KM induced by !. Then the curvature of the metric e�f h on �KM

is precisely ! by virtue of the defining equation of a shrinking gradient Kähler–Ricci soliton. Treat
!yY 1;0 as a �KM –valued .n; 1/–form. Then since the norm of Ric.g/ is bounded so that jY 1;0j grows
at most polynomially by Proposition 2.30, we see from the growth on f dictated by Theorem 2.20(i)
that the L2–norm of !yY 1;0 measured with respect to e�f h is finite. An application of Hörmander’s
L2–estimates [24, Theorem 6.1, page 376] now yields the desired conclusion. G

Next, contracting (1-4) with �D 1 with Y 1;0 and using the Bochner formula, we see that

�ix@�!uY C ix@.Y 1;0
�f /D ix@uY ;

so that
x@.�!uY CuY �Y 1;0

�f /D 0:

By adding a holomorphic function to uY if necessary, we may therefore assume that

(5-1) �!uY CuY �Y 1;0
�f D 0:
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Furthermore, by averaging uY over the action of T, we may assume that LJX uY D 0. These two
operations normalise uY . Notice that

.uY /xkfk D Y 1;0
�f Dr1;0uY �f D

1
2
hruY � iJruY ;X i D

1
2
hruY ;X i;

by virtue of the fact that LJX uY D 0. For the same reason, we also have that

.uY /kfxk D Y 0;1
�f D .r0;1uY / �f D

1
2
hruY ;X i:

Hence,
.uY /xkfk D .uY /kfxk :

In particular, from (5-1) we deduce that

(5-2) �!uY CuY � .uY /kfxk D 0:

Before continuing, we need to establish some estimates on uY together with its covariant derivatives. We
will divide these estimates up into three claims.

Claim 5.3 There exists a positive constant A such that uY .x/DO.dg.p;x/
A/ as dg.p;x/ tends toC1.

Proof By Proposition 2.30, Y 1;0 grows polynomially, ie jY 1;0j.x/DO.dg.p;x/
a/ for some a>0, where

dg.p; � / denotes the distance with respect to g to a fixed point p 2M, so that jx@uY j.x/DO.dg.p;x/
a/.

Then
x@uY .X /D

1
2
.duY .X /C iduY .JX /„ ƒ‚ …

D0

/D 1
2
X �uY :

Thus,

(5-3) jX �uY j D 2jx@uY .X /j DO.dg.p;x/
aC1/:

Let x.t/ be an integral curve of X with x.0/D x 2M. Then

uY .x.t//DuY .x.0//C

Z t

0

d

ds
uY .x.s// dsDuY .x.0//C

Z t

0

.X �uY /.x.s// dsDCCO.e.aC1/t /;

so that, by (2-11) and Theorem 2.20(i),

juY .x/j DO.dg.p;x/
aC1/: G

The next claim concerns the weighted L2–integrability of the total gradient and second covariant derivatives
of u.

Claim 5.4 The gradient ruY and the second covariant derivatives r2uY of uY belong to L2.e�f !n/.

Proof Since �!uY D Y 1;0 �f �uY, the estimate established in Claim 5.3 together with the polynomial
growth of X and Y at infinity show that�!uY is growing at most polynomially at infinity as well. By (5-3),
the same holds true for the drift term X �uY. Therefore the drift Laplacian �!uY �

1
2
X �uY is growing at

most polynomially at infinity ensuring its weighted L2–integrability, ie �!;X uY WD�!uY �
1
2
X �uY 2

L2.e�f !n/. This implies in turn that r Re.uY / and r Im.uY / belong to L2.e�f !n/. Indeed, by
the previous arguments, it suffices to show that if a smooth real-valued function v WM ! R satisfies
v 2L2.e�f !n/ and �!;X v 2L2.e�f !n/, then rv 2L2.e�f !n/.
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To this end, let R be a positive real number and let �R WM ! Œ0; 1� be a cut-off function with compact
support in the geodesic ball Bg.p; 2R/ such that �R D 1 on Bg.p;R/ and jr�Rjg � c=R. Then since
.�!;X /v

2 D 2jrvj2C 2h�!;X v; vi, integration by parts leads to the inequality

2

Z
M

jrvj2�2
R e�f !n

D

Z
M

�!;X v
2�2

Re�f !n
� 2

Z
M

h�!;X v; vi�
2
R e�f !n

D�

Z
M

hrv2;r�2
Rie
�f !n

� 2

Z
M

h�!;X v; vi�
2
R e�f !n

�

Z
M

jrvj2�2
R e�f !n

C
c

R2

Z
M

v2e�f !n
C

Z
M

.j�!;X vj
2
Cjvj2/e�f !n;

which yields Z
M

jrvj2�2
R e�f !n

�
c

R2

Z
M

v2e�f !n
C

Z
M

.j�!;X vj
2
Cjvj2/e�f !n:

One then obtains the expected result for the gradient by letting R tend to C1.

Similarly, for the second covariant derivatives, it suffices to show that if a smooth real-valued function
v WM !R satisfies rv 2L2.e�f !n/ and �!;X v 2L2.e�f !n/, then r2v 2L2.e�f !n/. To this end,
we apply the Bochner formula and use the soliton equation as follows:

(5-4) �!;X jrvj
2
D jr

2vj2C
�
Ric.g/C 1

2
LX g

�
.rv;rv/Chr.�!;X v/;rvi

D jr
2vj2Cjrvj2Chr.�!;X v/;rvi

� jr
2vj2Chr.�!;X v/;rvi:

Next, let �R WM ! Œ0; 1� be the cut-off function defined as above. Then using integration by parts, the
identity (5-4) leads to the inequalities

2

Z
M

jr
2vj2�2

Re�f!n
� 2

Z
M

�!;X jrvj
2�2

R e�f !n
�2

Z
M

hr.�!;X v/;rvi�
2
R e�f!n

D�

Z
M

hrjrvj2;r�2
Rie
�f !n

C2

Z
M

.2j�!;X vj
2�2

RC�!;X vhrv;r�
2
Ri/e

�f!n

�

Z
M

jr
2vj2�2

Re�f!n
C

c

R2

Z
M

jrvj2e�f !n
Cc

Z
M

.j�!;X vj
2
Cjrvj2/e�f!n

for some positive constant c independent of R. Thus,Z
M

jr
2vj2�2

R e�f !n
�

c

R2

Z
M

jrvj2 e�f !n
C

Z
M

.j�!;X vj
2
Cjrvj2/ e�f !n:

The desired result for r2v now follows by letting R tend to C1. G

Finally, we show that some components of the Hessian of xuY vanish identically.

Claim 5.5 The .0; 2/–part r0;2xuY of the Hessian of xuY vanishes identically on M.

Proof For clarity, we suppress the dependence of the potential uY on the vector field Y in what follows.
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Let R> 0 and let �R be a cut-off function as in the proof of Claim 5.4. Reminiscent of [63, equation (2.7)],
from (5-2) we then find, in normal holomorphic coordinates at a point where the Ricci form �! of ! has
components �i x| , that

0D

Z
M

.�!uCu�fxkuk/ixux{ �
2
R e�f !n

D

Z
M

.u
k xki
Cui �fixk

uk �fxkuik/xux{ �
2
R e�f !n

D

Z
M

.u
kixk
� �ixsusCui �fixk

uk �fxkuik/xux{ �
2
R e�f !n since uji x| D uj x| i C �ixsus ,

D

Z
M

.u
ik xk
C .��ixsusCui �fixk

uk/„ ƒ‚ …
D0

�fxkuik/xux{ �
2
R e�f !n

D

Z
M

.u
ik xk
�fxkuik/xux{ �

2
R e�f !n

D

Z
M

.�!;X xux{/xux{ �
2
R e�f !n

D�

Z
M

xux{ x|uij �
2
R e�f !n

�
1

2

Z
M

hx@�2
R;
x@jx@xuj2i e�f !n:

Therefore, by the Cauchy–Schwarz inequality,Z
M

jr
0;2
xuj2! �

2
R e�f !n

� c

Z
M

.jx@�Rjj
x@xuj/ � .�Rjr

2
xuj!/ e�f !n

� c

�Z
M

jr�Rj
2
jrxuj2e�f !n

�1
2
�Z

M

jr
2
xuj2!�

2
Re�f !n

�1
2

for some positive constant c independent of R that may vary from line to line. By Claim 5.4, the previous
inequality leads to the bound Z

M

jr
0;2
xuj2! �

2
R e�f !n

�
c

R

for some positive constant c independent of R. Letting R tend to C1, this shows thatZ
M

jr
0;2
xuj2! e�f !n

D 0;

as desired. G

Consequently, r0;2xuY D 0, from which it follows that r1;0xuY is a holomorphic vector field.

Thus, r1;0uY and r1;0xuY are holomorphic vector fields. Write uY D vY C iwY , where vY and
wY are smooth real-valued functions on M. Then we deduce that r1;0vY D

1
2
.rvY � iJrvY / and

r1;0wY D
1
2
.rwY � iJrwY / are holomorphic. In particular, rvY and rwY are real holomorphic

vector fields on M so that by [32, Lemma 2.3.8], JrvY and JrwY are real holomorphic g–Killing
vector fields. Therefore we have the decomposition

1
2
.Y � iJ Y /D Y 1;0

Dr
1;0uY Dr

1;0.vY C iwY /D
1
2
.rvY CJrwY /�

1
2
i.JrvY �rwY /;
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so that

(5-5) Y DrvY CJrwY D JrwY CJ.�JrvY /:

Moreover, since LJX uY D 0, we have that LJX vY DLJXwY D 0 so that ŒJX;rvY �D ŒJX;rwY �D 0,
and consequently ŒX;JrvY �D ŒX;JrwY �D 0. Hence JrvY and JrwY lie in gX , leaving (5-5) as
the desired decomposition.

To show that this decomposition is direct, suppose that Z 2 gX \JgX. Then ZDJW, where W and JW

are real holomorphic and Killing. Since W is holomorphic and JW is Killing, rW is symmetric. Since
W is Killing, rW is skew-symmetric. Thus, W is parallel. If W is nontrivial, then by [29, Corollary 3.2],
.M;g/ splits off a line, with W the generator of this line. In particular, we may write M D N �R

for a manifold N with g D gN ˚ dt2 and W D @t , where t is the coordinate on the R–direction and
gN a shrinking Ricci soliton on N . Now the soliton vector field X must split as a direct sum with the
summand in the R–direction necessarily t@t . Since ŒW;X �D 0 as Z 2 gX, this yields a contradiction, so
that W D 0. Hence the stated decomposition of autX .M / is direct.

Since M is noncompact, we need to verify that the various automorphism groups in question are indeed
Lie groups. This is necessary for the applications of Theorem 5.1 that we have in mind. We begin with:

Proposition 5.6 Let .M;g;X / be a complete shrinking gradient Kähler–Ricci soliton with bounded
Ricci curvature. Then there exists a unique connected Lie group AutX0 .M / (endowed with the compact–
open topology) of diffeomorphisms acting effectively on M with Lie algebra autX .M /.

AutX0 .M / is of course the connected component of the identity of the holomorphic automorphisms of M

that commute with the flow of X.

The fact that there is a unique Lie group AutX0 .M / with the stated properties follows from Palais’
integrability theorem [57] (see also [40, Theorem 3.1, page 13]), once we establish the completeness and
finite-dimensionality of autX .M /. However, this theorem only asserts that AutX0 .M / is a Lie group with
respect to the “modified” compact–open topology. In order to see that it is a Lie group with respect to the
compact–open topology, we must appeal to [35, Theorem 5.14], using the fact that AutX0 .M / is closed
with respect to the compact–open topology. Now, the completeness of the vector fields in autX .M / is
clear from Lemma 2.34. As for their finite-dimensionality, we have the following.

Proposition 5.7 Let .M;g;X / be a complete shrinking gradient Kähler–Ricci soliton with bounded
Ricci curvature and let autX .M / denote the space of all real holomorphic vector fields Y on M with
ŒX;Y �D 0. Then autX .M / is finite-dimensional.

Proof We provide an analytic proof of this fact. Letting j � j denote the norm with respect to g and
writing f for the soliton potential, we have a natural norm k � k2

L2
f

on autX .M / defined by

kY k2
L2
f

WD

Z
M

jY j2e�f !n:
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It suffices to show that the unit ball is compact with respect to this norm. To this end, suppose that we
have a sequence .Yi/i�0 with kYikL2

f
D 1. Then by elliptic estimates, we get uniform C k–bounds on

jYi j over a fixed ball Bg.p;R/�M once a C 0–estimate is established. Now, by a Nash–Moser iteration
applied to the norm of Yi , one obtains the estimate

sup
Bg.p;R=2/

jYi j � C.n;R/kYikL2.Bg.p;R//
:

Since kYikL2
f
� 1, then, a fortiori,

sup
Bg.p;R=2/

jYi j � C.n;R/ecR2

kYikL2
f
.Bg.p;R//

� C 0.n;R/:

Finally, according to (the proof) of Proposition 2.30, there is some large radius R0 > 0 such that

(5-6) jYi j.x/� C
�
n; sup

M

jRic.g/j; sup
Bg.p;R0/

jYi j
�
� .dg.p;x/C 1/a for all x 2M;

for some uniform positive constant a, where dg.p;x/ denotes the distance between p and x with respect
to g. Since supBg.p;R0/

jYi j � C.n;R0/, passing to a subsequence if necessary we may assume that
.Yi/i�0 converges to some Y1 on the whole of M in the C1loc .M /–topology. The question is whether
this convergence is strong in the above norm. Thanks to (5-6), given " > 0, there exists some positive
radius R such that for all indices i � 0,

kYikL2
f
.MnBg.p;R//

� ";

since the soliton potential grows quadratically by Theorem 2.20(i), and the volume growth of geodesic
balls is at most polynomial by Theorem 2.20(ii). This shows that if R is chosen sufficiently large,
then the remainder of the norm outside Bg.p;R/ is uniformly small; hence we do indeed have strong
convergence.

Remark 5.8 Munteanu and Wang [51, Theorem 1.4] proved that the space of polynomial growth
holomorphic functions of a fixed degree on a shrinking gradient Kähler–Ricci soliton is finite-dimensional
without assuming a Ricci curvature bound. We therefore expect that the above proposition holds true in
more generality. We also expect that the ring of holomorphic functions of polynomial growth on M is
finitely generated and that M is algebraic, at least under a Ricci bound assumption.

Recall that gX denotes the Lie algebra comprising real holomorphic g–Killing vector fields that commute
with X and hence with JX. We next consider the existence of a Lie group with Lie algebra gX.

Proposition 5.9 Let .M;g;X / be a complete shrinking gradient Kähler–Ricci soliton with bounded
Ricci curvature. Then there exists a unique connected Lie group GX

0
(endowed with the compact–open

topology) of diffeomorphisms acting effectively on M with Lie algebra gX .

Proof Since gX is a Lie subalgebra of the Lie algebra of g–Killing vector fields on M, gX is a finite-
dimensional Lie algebra. Furthermore, vector fields induced by gX on M are complete by Lemma 2.34.
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By Palais’ integrability theorem [57] therefore, there exists a unique connected Lie group GX
0

of diffeo-
morphisms acting effectively on M with Lie algebra gX. GX

0
is precisely the connected component of

the identity of the Lie group of holomorphic isometries on M that commute with the flow of X. Since
GX

0
is closed with respect to the compact–open topology, [35, Theorem 5.14] guarantees that GX

0
is a

Lie group with respect to this topology, as stated.

We next prove that GX
0

is a compact Lie subgroup of AutX0 .M /.

Lemma 5.10 Let .M;g;X / be a complete shrinking gradient Kähler–Ricci soliton with complex
structure J and with soliton vector field X Drgf for a smooth real-valued function f WM !R. Then
elements of gX are tangent to the level sets of f . Moreover , if g has bounded Ricci curvature , then GX

0

is a compact Lie subgroup of AutX0 .M / (with respect to the compact–open topology).

Proof Let Y 2 gX . For the first part of the lemma, we will show that LY f D 0, so that the flow of Y

preserves the level sets of f , thereby forcing Y to be tangent to the level sets of f .

Applying LY to the shrinking Kähler–Ricci soliton equation, we find that i@x@.LY f /D 0. Notice that
since ŒJX;Y �D 0, we have that LJX .LY f /D LY .LJX f /D 0. The function X � .LY f / is therefore
holomorphic. It is also real-valued, hence must be equal to a constant, say X � .LY f / D c0. Since
X Drgf and f has a minimum, we deduce that in fact c0 D 0, so that X � .LY f /D 0.

Next, deriving with respect to the Killing vector field Y the soliton identity from Lemma 2.22, namely

LX f CRg DX �f CRg D jr
gf j2CRg D 2f;

making use of the fact that X and Y commute, we obtain

2LY f D LY .LX f /CLY Rg„ƒ‚…
D0

D LX .LY f /DX � .LY f /;

where we have just seen that this last term vanishes. Hence LY f D 0, as desired.

As for the second part of the lemma, note that under the assumption of bounded Ricci curvature of g, both
GX

0
and AutX0 .M / are Lie groups endowed with the compact–open topology, by Propositions 5.6 and 5.9,

respectively. In addition, GX
0

is a subgroup of AutX0 .M / since gX is a Lie subalgebra of autX .M /.
Compactness of GX

0
with respect to the compact–open topology follows from the Arzelà–Ascoli theorem

because the level sets of f are compact by properness of f and, as we have just seen, are preserved
by GX

0
. Being compact, GX

0
is then a closed subgroup of AutX0 .M /, hence is a compact Lie subgroup

of AutX0 .M /, with everything being relative to the compact–open topology.

Finally, we can now deduce from Theorem 5.1 that GX
0

is a maximal compact Lie subgroup of AutX0 .M /.

Corollary 5.11 Let .M;g;X / be a complete shrinking gradient Kähler–Ricci soliton with bounded Ricci
curvature. Then GX

0
is a maximal compact Lie subgroup of AutX0 .M /.
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Proof First note that GX
0

is a compact Lie subgroup of AutX0 .M / by Lemma 5.10. Now suppose that
GX

0
is not maximal in AutX0 .M /. Then there exists a compact Lie subgroup K of AutX0 .M / strictly

containing G0. In particular, the real dimension of K must be strictly greater than GX
0

. On the Lie algebra
level, since the decomposition of Theorem 5.1 is direct, there exists a nonzero real holomorphic vector Z

in the Lie algebra of K which is not contained in gX , yet is contained in JgX . Since K is compact, the
closure of the flow of Z in K will define a real torus T k of real dimension k in K in which the flow
of Z is dense.

Consider the vector field Z. This is a real holomorphic vector field with JZ Killing. Since a shrinking
soliton has finite fundamental group [67], we have that H 1.M /D 0. Hence JZ admits a Hamiltonian
potential u WM !R so that Z Drgu. If the real dimension k of T is equal to one, then the orbits of Z

are all closed, but a gradient flow has no nontrivial closed integral curves since

d

dt
u.x.t//D jr

guj2 � 0;

where x.t/ denotes the integral curve of Z with x.0/D x 2M. Hence k is strictly greater than one.
But this is impossible as well. Indeed, let x be any point of M where Z.x/¤ 0. Then u.x.t// is an
increasing function of t , so that u.x.t//�u.x/ > c for some constant c > 0 say, for all t > 1. On the
other hand, since the flow of Z is dense in T, x.t/ intersects any neighbourhood of x in M for some
t > 1. This yields another contradiction. Thus, GX

0
is maximal in AutX0 .M /, as claimed.

5.2 The weighted volume functional

Recall that .M;g;X / is a complete shrinking gradient Kähler–Ricci soliton of complex dimension n

with complex structure J, Kähler form ! and soliton vector field X Drgf for f WM !R smooth, and
that by assumption, we have a real torus T with Lie algebra t acting holomorphically, effectively and
isometrically on .M;g;J / with JX 2 t.

In order to make sense of the weighted volume functional of a shrinking gradient Kähler–Ricci soliton,
we need to define a moment map for the action of T on M. This comes down to showing that every
element of t admits a real Hamiltonian potential, as demonstrated in the next proposition. Such a potential
exists essentially because T acts by isometries and H 1.M /D 0. However, a Hamiltonian potential is
only defined up to a constant. Therefore a normalisation is required to determine the potential uniquely.
We normalise so that the potential lies in the kernel of a certain linear operator, precisely the condition
required to show that JX is the unique critical point of the weighted volume functional.

Proposition 5.12 In the above situation , let Y 2 t so that Y defines a real holomorphic g–Killing vector
field on M with ŒX;Y �D 0. Then there exists a unique smooth real-valued function uY WM !R with
LJX uY D 0 such that �!uY CuY C

1
2
.J Y / �f D 0 and duY D�!yY.

Proof Let Z WD �J Y. Then Z is real holomorphic and JZ is g–Killing. Since a shrinking soliton
has finite fundamental group [67], we have that H 1.M /D 0. This implies that there exists a smooth
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real-valued function uY WM!R such that ZDrguY . Then duY ıJ D�!yZ. Let Z1;0D
1
2
.Z�iJZ/.

Then we have that

!yZ1;0
D

1
2
!yZ � 1

2
i!yJZ D�1

2
duY ıJ C 1

2
iduYD

1
2
i.duY C iduY ıJ /D ix@uY ;

ie x@.�iuY /D�!yZ1;0. After noting from the proof of Lemma 5.10 that Y 2 t implies that Y �f D 0,
we automatically have that LJX uY D 0. Using the Bochner formula, contracting (1-4) with �D 1 with
Z1;0 then results in

�ix@�!uY C ix@.Z1;0
�f /D ix@uY :

In other words,
x@.�!uY CuY �Z1;0

�f /D 0:

Now, the fact that LJX uY D 0 implies that

0D duY .JX /D g.rguY ;JX /D g.Z;JX /D�g.JZ;X /D�df .JZ/D�.JZ/ �f:

In particular, �!uY CuY �Z1;0 �f is a real-valued holomorphic function, hence is equal to a constant.
By subtracting this constant from uY and plugging in the definition of Z, we arrive at our desired
normalisation of uY , namely

�!uY CuY C
1
2
.J Y / �f D 0:

Since uY is defined up to a constant, this condition determines uY uniquely.

With this proposition, we can now define our moment map for the action of T on M.

Definition 5.13 Let h � ; � i denote the natural pairing between t and t�. Then we define the moment map
� WM ! t� for the action of T on M as follows: for x 2M , �.x/ is defined by the equation

uY .x/D h�.x/;Y i for all Y 2 t;

where uY is such that rguY D�J Y, LJX uY D 0 and �!uY CuY C
1
2
.J Y / �f D 0.

We next define the weighted volume functional for complete shrinking gradient Kähler–Ricci solitons.

Definition 5.14 (weighted volume functional, see [64, equation (2.3)]) Let .M;g;X / be a complete
shrinking gradient Kähler–Ricci soliton of complex dimension n with complex structure J, Kähler form !,
and with soliton vector field X Drgf for a smooth real-valued function f WM !R, endowed with the
holomorphic, effective, isometric action of a real torus T with Lie algebra t and with a compact fixed
point set. Let � denote the moment map of the action as prescribed in Definition 5.13 and assume that
JX 2 t. Let Y 2 t and let uY WD h�;Y i be the Hamiltonian potential of Y, so that LJX uY D 0 and

(5-7) �!uY CuY C
1
2
.J Y / �f D 0:

Finally, let
ƒ WD fY 2 t j uY is proper and bounded belowg � t:
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Then the weighted volume functional F Wƒ!R>0 is defined by

F.Y /D

Z
M

e�h�;Y i!n
D

Z
M

e�uY !n:

The set ƒ is an open cone in t which is determined by the image of M under �; see Proposition A.4
for details. Since f grows quadratically at infinity by Theorem 2.20(i), we know that it is also proper.
Hence JX, which by assumption lies in t, lies in ƒ, so that ƒ is nonempty. Thus, by the Duistermaat–
Heckman theorem (Theorem A.3), F is seen to be well-defined. (Proposition A.13 provides an alternative
argument, without using the Duistermaat–Heckman theorem, for why F is well-defined.) As the next
lemma shows, the value of F is also independent of the choice of shrinking gradient Kähler–Ricci soliton.
This relies on the normalisation (5-7) of the Hamiltonian potentials.

Lemma 5.15 Let .M;gi ;Xi/ for iD1; 2 be two shrinking gradient Kähler–Ricci solitons , both satisfying
the hypotheses of Definition 5.14 with respect to a fixed real torus T. Let Fi denote the weighted volume
functional of .M;gi ;Xi/ and let ƒi denote the domain of Fi . Then F1 D F2 on ƒ1\ƒ2.

Proof Let !i denote the Kähler form of gi and let Y 2ƒ1\ƒ2. Write u
.i/
Y

for the Hamiltonian potential
of Y with respect to !i . Then analysing the expression given in Theorem A.3 for each Fi , namely (A-1),
one sees that the right-hand side depends only on the value of u

.i/
Y

on the (compact) zero set M0.Y /

of Y and integrals over this set with respect to !i . Now, the normalisation condition (5-7) infers that
on M0.Y /, u

.i/
Y
D ��!i

u
.i/
Y
D � div.Y /, a quantity that, on M0.Y /, is independent of the choice of

metric. Moreover, du
.i/
Y
D�!iyY so u

.i/
Y

is evidently constant on each connected component of M0.Y /.
Thus, we deduce that u

.1/
Y
D u

.2/
Y

on M0.Y /, both being equal to a fixed constant on each connected
component of M0.Y /. As for the integrals on the right-hand side of (A-1), these involve integrating a
closed form !i over the compact boundary-less set M0.Y /. Both being shrinking Kähler–Ricci solitons,
!1 and !2 lie in the same cohomology class, hence integrating over M0.Y / with respect to either !1 or
!2 does not change the value of the integral. This brings us to the desired conclusion.

We next list some more elementary properties of F , in particular the desired property that characterises
JX as the unique critical point of F . Here our normalisation of the Hamiltonian potentials also comes
into play.

Lemma 5.16 (volume-minimising principle) Let .M;g;X / be a complete shrinking gradient Kähler–
Ricci soliton of complex dimension n with Kähler form ! and with soliton vector field X Drgf for a
smooth real-valued function f WM !R, endowed with the holomorphic , effective , isometric action of a
real torus T with Lie algebra t. Assume that JX 2 t and that the Ricci curvature of g is bounded. Then

(i) F is strictly convex on ƒ, and

(ii) JX is the unique critical point of F in ƒ.
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Remark 5.17 The boundedness of the scalar curvature of g guarantees here that F is well-defined on ƒ.
Indeed, this is clear from the Duistermaat–Heckman theorem (Theorem A.3) after noting that the zero set
of X, which contains the fixed point set of T as a closed subset, is compact by Lemma 2.25.

Proof of Lemma 5.16 (i) Let Y1;Y2 2ƒ. Then the line segment tY1C.1� t/Y2; t 2 Œ0; 1�, is contained
in ƒ because ƒ is convex, as one sees from its definition. Moreover, by the linearity of the moment map,
we have that

utY1C.1�t/Y2
D tuY1

C .1� t/uY2
for all t 2 Œ0; 1�:

Thus, since the function x 2R 7! e�x 2R is strictly convex, we find that

F.t �Y1C .1� t/ �Y2/ < t �F.Y1/C .1� t/ �F.Y2/ for all t 2 .0; 1/; unless Y1 D Y2:

(ii) As a strictly convex function on the convex set ƒ, F has at most one critical point. The claim is that
this critical point is obtained at JX. Indeed, let Y 2 t and let uY denote the Hamiltonian potential of Y,
normalised so that �!uY CuY C

1
2
.J Y / �f D 0. Recall that �J.JX /Drgf , so that

dJX F.Y /D�

Z
M

uY e�f !n:

Let R be a positive real number and let �R WM ! Œ0; 1� be a cut-off function with compact support in the
geodesic ball Bg.p; 2R/ such that �R D 1 on Bg.p;R/ and jr�Rjg � c=R for some c > 0. Then, using
integration by parts, we have thatˇ̌̌̌Z

M

uY �
2
R e�f !n

ˇ̌̌̌
D

ˇ̌̌̌Z
M

�
�!uY C

1
2
.J Y / �f

�
�2

R e�f !n

ˇ̌̌̌
D

ˇ̌̌̌
1

2

Z
M

.�g �r
gf � /uY �

2
R e�f !n

ˇ̌̌̌
D

1

2

ˇ̌̌̌Z
M

g
�
ruY ;r.�

2
R/
�
e�f !n

ˇ̌̌̌

�
1

2

�Z
M

jruY j
2e�f !n

�1
2
�Z

M

jr.�2
R/j

2e�f !n

�1
2

D

�Z
M

jruY j
2e�f !n

�1
2

.jr�Rj
2
j�Rj

2e�f !n/
1
2

�
c2

R2

�Z
M

jruY j
2e�f !n

�1
2
�Z

M

e�f !n

�1
2

;

where the fact that ruY 2L2.e�f !n/ follows as in the proof of Claim 5.4. Letting R!C1, we see
that dJX F.Y /D 0, as required.

The main tool we use to compute the weighted volume functional is the Duistermaat–Heckman theorem.
The statement of this theorem and a discussion have been relegated to the appendix. It expresses the
weighted volume functional in terms of data determined by the induced action on M of the element Y 2ƒ.
In particular, this data is independent of the metric !. Consequently, F is independent of the particular
shrinking gradient Kähler–Ricci soliton. It is this observation that will allow us to ascertain the uniqueness
of the soliton vector field X under certain assumptions. This is the content of the next subsection.
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5.3 A general uniqueness theorem

As an application of Corollary 5.11, we prove the uniqueness statement of Theorem D for the soliton
vector field X of a shrinking gradient Kähler–Ricci soliton, the precise statement of which we now recall
below.

Theorem 5.18 (Theorem D) Let M be a noncompact complex manifold with complex structure J,
endowed with the effective holomorphic action of a real torus T. Denote by t the Lie algebra of T. Then
there exists at most one element � 2 t that admits a complete shrinking gradient Kähler–Ricci soliton
.M;g;X / with bounded Ricci curvature , with X D rgf D �J � for a smooth real-valued function f
on M.

The outline of the proof of this theorem is as follows. Suppose that M admitted two soliton vector fields
X1 and X2. Then the maximal tori in the Lie groups AutXi

0
.M / for i D 1; 2 will be conjugate to T by

Iwasawa’s theorem [39]. After choosing an appropriate gauge, JX1 and JX2 will then be contained in
the Lie algebra t of T and both vector fields will be critical points of their respective weighted volume
functional. But since the weighted volume functional is independent of the shrinking Kähler–Ricci
soliton by the Duistermaat–Heckman theorem, both weighted volume functionals must coincide, so that
JX1 D JX2 by uniqueness of the critical point.

Proof Suppose that M admitted two complete shrinking gradient Kähler–Ricci solitons, .M;gi ;Xi/ for
i D 1; 2, with bounded Ricci curvature and with Xi Dr

gifi for fi WM !R smooth such that Xi D�J �i

for �i 2 t. Let G
Xi

0
denote the connected component of the identity of the group of holomorphic isometries

of .M;gi ;J / that commute with the flow of Xi . Corollary 5.11 then asserts that G
Xi

0
is a maximal

compact Lie subgroup of the Lie group AutXi

0
.M /, the connected component of the identity of the group of

automorphisms of .M;J / that commute with the flow of Xi . Denote by Ti the maximal real torus in G
Xi

0
.

Then Ti is maximal in AutXi

0
.M /. For each v 2 t, we have that Œv; �i �D 0, so that Œv;Xi �D 0. Hence each

element of T commutes with the flow of Xi and so T itself is a Lie subgroup of AutXi

0
.M /. Without

loss of generality, we may assume that T is maximal in AutXi

0
.M /. Then, by Iwasawa’s theorem [39],

there exists an element ˛i 2 AutXi

0
.M / such that ˛iTi˛

�1
i D T . Since ˛i commutes with the flow of Xi ,

necessarily d˛�1
i .Xi/ D Xi . Moreover, ˛�i gi is invariant under T. Thus, .M; zgi ; zXi/ with zgi D ˛

�
i gi

and zXi D d˛�1
i .Xi/ is a T –invariant shrinking gradient Kähler–Ricci soliton with soliton vector field

zXi DXi D�J �i as before. Hence, by considering this pullback, we may assume that each .M;gi ;Xi/

is invariant under T.

Now, by assumption we have that �1; �2 2 t. Since the corresponding Hamiltonian potentials are the
soliton potentials, which themselves are proper and bounded below, we have that �i 2 ƒi � t, where
ƒi denotes the open cone of elements of t admitting Hamiltonian potentials with respect to the Kähler
form !i of gi that are proper and bounded below. We wish to show that �1; �2 2 ƒ1 \ƒ2 ¤ ∅. The
result will then follow from an application of the Duistermaat–Heckman theorem. So let u1 denote the
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Hamiltonian potential of �1 D JX1 with respect to g2, that is, rg2u1 D X1, and for x 2M, let 1.t/

denote the integral curve of X1 through x at t D 0. Then we have that

u1.1.t//D u1.1.0//C

Z t

0

du1. P1.s// ds

D u1.x/C

Z t

0

g2.X1;X1/.1.s// ds

D u1.x/C

Z t

0

jX1j
2
g2
.1.s// ds:

Since g1 has bounded Ricci curvature, so that the zero set of X1 is compact by Lemma 2.25, and since
each forward orbit of the negative gradient flow of f1 converges to a point in the zero set of X1 by
Proposition 2.27, it is clear that every point of M lies on an integral curve of X1 passing through a
fixed compact set. Thus, we see that u1 is bounded from below. For t 2 Œ0; 1�, consider the vector field
Yt WD t�1C .1� t/�2. The Hamiltonian potential of Y0 with respect to g2 is f2, whereas that of Y1 is u1.
By linearity of the moment map, the Hamiltonian potential of Yt with respect to g2 is ht WD tu1C.1�t/f2.
Since u1 is bounded from below and f2 is proper, ht is proper and bounded below for t 2 Œ0; 1/, so that
Yt 2ƒ2 for t 2 Œ0; 1/. In a similar manner, one can show that Yt 2ƒ1 for t 2 .0; 1�. The upshot is that
Yt 2ƒ1\ƒ2 ¤∅ for t 2 .0; 1/ with �1; �2 2ƒ1\ƒ2.

Define a real-valued function F on Œ0; 1� as follows: F.t/ WD F2.Yt / if t 2 Œ0; 1/ and F.t/ WD F1.Yt / if
t 2 .0; 1�, where Fi is the weighted volume functional with respect to !i . Then F is well-defined as both
F1 and F2 are well-defined because of the Ricci curvature bound (see Remark 5.17) and by Lemma 5.15
they are equal on ƒ1\ƒ2. Moreover, F is convex and continuous on Œ0; 1� and strictly convex on .0; 1/.
Finally, observe that

F.0/D F2.�2/� min
Œ0;1/

F2 � F2.Yt /D F1.Yt /

for every t 2 .0; 1/. By letting t tend to 1, one sees that F.0/� F.1/. By symmetry, one also sees that
F.1/ � F.0/, which implies that F.1/ D F.0/ D minŒ0;1� F . Since F is convex, F must be constant
on Œ0; 1�, which contradicts the fact that F is strictly convex on .0; 1/ unless .Yt /t2.0;1/ is reduced to a
single point, ie unless �1 D �2. This concludes the proof.

5.4 Shrinking gradient Kähler–Ricci solitons on Cn and O.�k/! P n�1 for 0 < k < n

Using Theorem D, we are now able to classify shrinking gradient Kähler–Ricci solitons with bounded
Ricci curvature on Cn and on the total space of the line bundle O.�k/! Pn�1 for 0 < k < n, and in
doing so, prove items (1) and (2) of Theorem E.

Theorem 5.19 (items (1) and (2) of Theorem E) Let .M;g;X / be a complete shrinking gradient
Kähler–Ricci soliton with bounded Ricci curvature.

(1) If M D Cn, then up to pullback by an element of GL.n;C/, .M;g;X / is the flat Gaussian
shrinking soliton.
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(2) If M is the total space of the line bundle O.�k/! Pn�1 for 0 < k < n, then up to pullback by
an element of GL.n;C/, .M;g;X / is the unique U.n/–invariant shrinking gradient Kähler–Ricci
soliton constructed by Feldman , Ilmanen and Knopf [30] on this complex manifold.

Proof Let f denote the soliton potential of X , so that f WM ! R is a smooth real-valued function
with X D rgf , and let M be as in item (1) or (2) of the theorem. We make no distinction as of yet.
Denote the complex structure of M by J and let GX

0
denote the connected component of the identity of

the holomorphic isometries of .M;J;g/ that commute with the flow of X. Since g has bounded Ricci
curvature, GX

0
is a compact Lie group by Lemma 5.10, hence the closure of the flow of JX in GX

0
yields

the holomorphic isometric action of a real torus T on .M;J;g/ with Lie algebra t containing JX. Since
M is 1–convex by [20, Lemma 2.15] and the Ricci curvature of g is bounded, Proposition 2.26 tells us
that the zero set of X, and correspondingly the fixed-point set of T, comprises a single point in item (1)
and is contained in the zero section of the line bundle in item (2). Furthermore, Proposition 2.27 implies
that each forward orbit of the negative gradient flow of f converges to a point in this fixed-point set. By
contracting the zero section of the line bundle in item (2), we see that the action of T on M induces an
action of T on Cn=Zk for k D 1; : : : ; n� 1, as appropriate with fixed-point set the apex, and that this
action further lifts to an action of T on Cn with an isolated fixed point. The lift of X to Cn then defines
a holomorphic vector field on Cn with J0X 2 t, where J0 denotes the standard complex structure on Cn,
and with each forward orbit of �X converging to this isolated fixed point.

By [17, Section 3.1], we may choose global holomorphic coordinates .z1; : : : ; zn/ on Cn with respect to
which the action of T on Cn is linear, that is, lies in GL.n;C/. These coordinates descend to coordinates
on Cn=Zk , then lift to coordinates on M with respect to which the action of T on M lies in GL.n;C/.
Without loss of generality, we may assume that T is maximal in GL.n;C/. Then we still have that
JX 2 t. Since any two maximal tori in GL.n;C/ are conjugate by Iwasawa’s theorem [39], there exists
˛ 2 GL.n;C/ such that ˛T˛�1 is equal to fdiag.ei�1 ; : : : ; ei�n/ j �i 2Rg. By considering ˛�!, we can
therefore assume that JX lies in the Lie algebra t of a torus of the form T Dfdiag.ei�1 ; : : : ; ei�n/ j�i 2Rg

acting on M. We will then have induced coordinates .�1; : : : ; �n/ on t, where .1; 0; : : : ; 0/2 t will generate
the vector field Im.z1@z1

/ on M, and so on.

Since the fixed-point set of T is compact, we can now apply Theorem D, which tells us that there is at
most one element of t that admits a complete shrinking gradient Kähler–Ricci soliton with bounded Ricci
curvature. On Cn, we have the flat Gaussian shrinking soliton and Feldman, Ilmanen and Knopf [30] have
constructed a complete shrinking gradient Kähler–Ricci soliton with bounded Ricci curvature on M for
M as in item (2) of the theorem. In all cases, the soliton vector field X of these solitons satisfies JX 2 t,
and each is proportional to .1; : : : ; 1/ in our coordinates on t. Therefore we deduce that JX D �.1; : : : ; 1/

for some � > 0, so that on M, we have 1
2
.X � iJX / D �zi@zi

. The automorphism group of .M;J /

commuting with the flow of this vector field is precisely the Lie group GL.n;C/. Thus, Corollary 5.11
asserts that GX

0
is maximal compact in GL.n;C/ and so, by Iwasawa’s theorem [39] again, there exists
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ˇ 2 GL.n;C/ such that ˇGX
0
ˇ�1 D U.n/. The .1; 1/–form ˇ�! will then be U.n/–invariant and by

[30, Proposition 9.3], the only such complete shrinking gradient Kähler–Ricci soliton on M is the flat
Gaussian shrinking soliton if M DCn, and that constructed by Feldman, Ilmanen and Knopf if M is as
in item (2) of the theorem.

6 The underlying manifold of a two-dimensional shrinking gradient
Kähler–Ricci soliton

Item (3) of Theorem E will result from items (1) and (2) of Theorem E once we establish the following
theorem.

Theorem 6.1 Let .M;g;X / be a two-dimensional complete shrinking gradient Kähler–Ricci soliton
whose scalar curvature decays to zero at infinity. Then C0 is biholomorphic to C2, and M is biholomorphic
to either C2 or C2 blown up at one point.

The key observation in proving this theorem is that the scalar curvature of the asymptotic cone is strictly
positive if the shrinking soliton is not flat. Since we are working in complex dimension two, this allows
us to identify the tangent cone at infinity as a quotient singularity using a classification theorem of Belgun
[4, Theorem 8] for 3–dimensional Sasaki manifolds. The fact that M is a resolution of C0 by Theorem A,
combined with the fact that the exceptional set of this resolution must contain only .�1/–curves as
imposed by the shrinking Kähler–Ricci soliton equation, then allows us to identify M and C0.

6.1 Properties of shrinking Ricci solitons

We begin by noting some important features of shrinking Ricci solitons that we require in this section.
We have the following condition on the scalar curvature of a shrinking gradient Ricci soliton.

Theorem 6.2 [16] Let .M;g;X / be a complete noncompact nonflat shrinking gradient Ricci soliton
with scalar curvature Rg. Then for any given point o 2 M, there exists a constant C > 0 such that
Rg.x/dg.x; o/

2 > C�1 wherever dg.x; o/ > C , where dg denotes the distance function with respect
to g.

This yields the following condition on the scalar curvature of an asymptotic cone of a shrinking Ricci
soliton.

Corollary 6.3 Let .M;g;X / be a complete noncompact nonflat shrinking gradient Ricci soliton with
tangent cone .C0;g0/ along an end. Then the scalar curvature Rg0

of the cone metric g0 is strictly
positive.

Proof The tangent cone at infinity is obtained as a Gromov–Hausdorff limit of a pointed sequence
.M;gk ; o/ WD .M; ��2

k
g; o/ for o 2M fixed, where �k!1 as k!1. By our asymptotic assumption,

the tangent cone is unique and this process recovers the asymptotic cone .C0;g0/. Indeed, an arbitrary
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point p 2C0 with r.p/D r0> 0 is associated with a sequence pk!p, where dg.o;pk/D �kr0!1 as
k!1, where r denotes the radial coordinate of g0 and dg denotes the distance measured with respect
to g. In particular, we see that

Rg0
.p/D lim

k!1
R��2

k
g.pk/D lim

k!1
�2

kRg.pk/;

where R��2
k

g denotes the scalar curvature of the rescaled metric ��2
k

g. Using the lower bound of
Theorem 6.2, we then have that

Rg0
.p/D lim

k!1
�2

kRg.pk/ > lim
k!1

�2
k
C�1

dg.o;pk/
2
D lim

k!1

�2
k
C�1

.�kr0/2
D

1

C r2
0

> 0

for some positive constant C . Since p is arbitrary, it follows that Rg0
> 0 away from the apex of C0, as

claimed.

6.2 Proof of Theorem 6.1

Let .M;g;X / be a complete noncompact shrinking gradient Kähler–Ricci soliton of complex dimension
nC 1 with quadratic curvature decay and with tangent cone along its end the Kähler cone .C0;g0/ given
by Theorem A. Let r denote the radial function of the cone. Then the link of the cone fr D 1g, which we
denote by .S;gS /, is a Sasaki manifold of real dimension 2nC 1 foliated by the orbits of the flow of � ,
the restriction of the Reeb vector field of the cone to its link.

We know from [58, Theorem 3] that if the scalar curvature Rg of g is zero at a point, then .M;g/ is
isometric to Euclidean space. So we henceforth assume that Rg ¤ 0 everywhere, so that .M;g/ is nonflat.
Then Corollary 6.3 tells us that the scalar curvature of the cone Rg0

is strictly positive. Next we see from
Lemma 2.2 that RgS

> 2n.2nC 1/ and so it follows from Corollary 2.9 that

RT > 2n.2nC 1/C 2nD 4n.nC 1/:

Identification of C0 In our case, .M;g;X / is of complex dimension two and the scalar curvature of g

decays to zero at infinity. By [54], the scalar curvature decay implies that the norm of the curvature tensor
of g decays quadratically. Thus, the above applies with n D 1 and we have the lower bound RT > 8.
From the classification of 3–dimensional Sasaki manifolds by Belgun [4, Theorem 8], it then follows that
C0 is biholomorphic to C2=� , with � a finite subgroup of U.2/ acting freely on C2 n f0g. We next wish
to show that � D fidg.

Recall from Theorem A that there is a resolution � WM !C0 of the singularity of C0 with d�.X /D r@r .
Since C0 is biholomorphic to C2=� for � � U.2/ a finite subgroup acting freely on C2 n f0g, it is
in particular a rational singularity. It is well-known that the exceptional set of a resolution of such a
singularity contains a string of P1’s [9, Lemma 1.3]. Since g is a shrinking Kähler–Ricci soliton, each of
these P1’s must have self-intersection .�1/ by adjunction. Moreover, since C0 is obtained from M by
blowing down all of these .�1/–curves, C0 must in fact be smooth at the apex, so that � D fidg and C0

is biholomorphic to C2.
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Identification of M It follows that M is then an iterated blowup of C2 at the origin containing only
.�1/–curves. The only iterated blowups of C2 at the origin containing complex curves of this type are
C2 and C2 blown up at one point, since any further iterated blowup would introduce at least one P1 with
self-intersection .�k/ for some k � 2. The conclusion is then that M must be biholomorphic to either
C2 or C2 blown up at one point.

7 Concluding remarks

We conclude with a discussion of future directions of research emanating from the results within this
paper.

7.1 The conjectural picture

The results on shrinking gradient Kähler–Ricci solitons presented here allow us to speculate on possible
deeper connections between such metrics and algebraic geometry. In the compact case, Berman, Witt
and Nystrom [6] gave an algebraic formula for the weighted volume functional and its derivative. We
generalise this result to the noncompact case under suitable assumptions, making use of the results of
Wu [66]. We begin with the definition of an anticanonically polarised Kähler manifold, the underlying
complex manifold of a shrinking Kähler–Ricci soliton.

Definition 7.1 An anticanonically polarised Kähler manifold is a Kähler manifold M admitting a Kähler
form ! together with a hermitian metric on �KM with curvature form ‚ such thatZ

V

.i‚/k ^!dimC V�k > 0

for all positive-dimensional irreducible compact analytic subvarieties V of M and for all integers k such
that 1� k � dimC V.

By [25, Theorem 4.2], a compact anticanonically polarised Kähler manifold is a Fano manifold. Moreover,
any shrinking Kähler–Ricci soliton naturally lives on an anticanonically polarised Kähler manifold.

Under certain criteria, we can write an algebraic formula for the weighted volume functional.

Proposition 7.2 Let .M; !/ be a (possibly noncompact) Kähler manifold of complex dimension n with
Kähler form ! on which there is a Hamiltonian action of a real torus T with moment map � WM ! t�,
where t is the Lie algebra of T and t� its dual. Assume that the fixed-point set of T is compact and that

(i) H p.M;O.�kKM //D 0 for all p > 0 and for all k sufficiently large , and

(ii) ! is the curvature form of a hermitian metric on �KM .
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If there exists an element �0 2 t such that the component of the moment map u�0
D h�; �0i is proper and

bounded below, then

(7-1)
Z

M

e�h�;�i
!n

n!
D lim

k!1

1

kn
char H 0.M;O.�kKM //

�
�

k

�
for all � in an open cone ƒ� t.

In this situation, the character char H 0.M;O.�kKM // is well-defined by [66]. Moreover, it follows
from [55, Theorem 4.5] that the vanishing condition (i) holds true for any 1–convex anticanonically
polarised Kähler manifold and condition (ii) holds true for any shrinking gradient Kähler–Ricci soliton.
In particular, if .M; !;X / is a complete shrinking gradient Kähler–Ricci soliton with Ricci curvature
decaying to zero at infinity, endowed with the holomorphic, effective, isometric action of a real torus T

with Lie algebra t containing JX, then the above theorem applies. The volume minimising principle
(Lemma 5.16) then tells us that for such a soliton, the unique minimum of the weighted volume functional
is obtained at JX.

Before we present the proof of equation (7-1), it is necessary to introduce some notation. Our notation
will mostly follow [66]. We denote by M T the fixed-point set of T in M. By assumption, this is
compact. If nonempty, it is a complex submanifold of M. Let F be the set of connected components
of M T. Then M T D

S
˛2F M T

˛ , where M T
˛ is the component labelled by ˛ 2 F . Let n˛ D dimC M T

˛

and let N˛ ! M T
˛ be the holomorphic normal bundle of M T

˛ in M. T acts on N˛ preserving the
base M T

˛ pointwise. The weights of the isotropy representation on the normal fibre remain constant
within any connected component. Let ` be the integral lattice in the Lie algebra t of T, let `� � t�

denote the dual lattice, and let �˛;i 2 `� n f0g for 1 � i � n� n˛ be the isotropy weights on N˛. The
hyperplanes .�˛;i/? � t cut t into open polyhedral cones called action chambers [60]. Choose an action
chamber C . We define �C

˛ as the number of weights �˛;i 2 C �, where C � is the dual cone in t� defined
by C � D f� 2 t� j h�;C i> 0g. Let N C

˛ be the direct sum of the subbundles corresponding to the weights
�˛;i 2C �. Then N˛ DN C

˛ ˚N�C
˛ . The rank of the holomorphic vector bundle N C

˛ is �C
˛ ; that of N�C

˛

is ��C
˛ D n� n˛ � �

C
˛ .

Proof of Proposition 7.2 For k 2 N sufficiently large, the vanishing assumption (i) together with
[66, equation (3.41)] implies that

char H 0.M;O.�kKM //D
X
˛2F

.�1/n�n˛��
C
˛

Z
M T
˛

chT

�
�kKM jM T

˛
˝ det.N�C

˛ /

det.1� .N C
˛ /
�/˝ det.1�N�C

˛ /

�
td.M T

˛ /;

where, if R is a finite-dimensional representation of T,

1

det.1�R/
WD

1M
mD0

Symm.R/;
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and where chT denotes the equivariant Chern character. For a fixed ˛ 2 F , we therefore have that

chT

�
�kKM jM T

˛
˝ det.N�C

˛ /

det.1� .N C
˛ /
�/˝ det.1�N�C

˛ /

�
td.M T

˛ /

D chT .�kKM jM T
˛
/ chT

�
1

det.1� .N C
˛ /
�/

�
chT

�
1

det.1�N�C
˛ /

�
chT .det.N�C

˛ // td.M T
˛ /:

Now,
td.M T

˛ /D 1C 1
2
c1.�KM T

˛
/C � � � :

Analysing the term chT .�kKM jM T
˛
/, we have by adjunction that

KM jM T
˛
DKM T

˛
� det.N˛/;

so that
�kKM jM T

˛
D .�kKM T

˛
/C k det.N˛/:

Now, M T
˛ is fixed under the action of T and so the action of T on �kKM T

˛
is trivial. The torus T

therefore acts on �kKM jM T
˛

as multiplication by ek
Pn�n˛

iD1
�˛;i , where n˛ is the dimension of M T

˛ . Thus,
we have that

cT
1 .�kKM jM T

˛
/D kc1.�KM jM T

˛
/C k

n�nX̨
iD1

�˛;i ;

where cT
1

is the equivariant first Chern class, so that

chT .�kKM jM T
˛
/

�
�

k

�
D e

cT
1
.�kKM jM T

˛
/.�=k/

D e
kc1.�KM jM T

˛
/
e
Pn�n˛

iD1
�˛;i .�/:

Next analysing the second term, we may write N C
˛ D

L
fij�˛;i2C�gL˛;i , where L˛;i is the line subbundle

of N˛ with isotropy weight �˛;i . Then we have that

1

det.1� .N C
˛ /
�/
D

1M
mD0

Symm..N C
˛ /
�/D

O
fij�˛;i2C�g

1

det.1�L�˛;i/
;

so that

chT

�
1

det.1� .N C
˛ /
�/

�
D chT

� O
fij�˛;i2C�g

1

det.1�L�˛;i/

�
D

Y
fij�˛;i2C�g

chT

�
1

det.1�L�˛;i/

�
:

Now observe that, for each i ,

chT

�
1

det.1�L�˛;i/

�
D chT

� 1M
mD0

Symm.L�˛;i/

�
D chT

� 1M
mD0

.L�˛;i/
m

�

D

1X
mD0

.chT .L�˛;i//
m
D

1X
mD0

.e��˛;iCc1.L
�
˛;i
//m

D
1

1� e��˛;iCc1.L
�
˛;i
/
:
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Hence,
chT

�
1

det.1� .N C
˛ /
�/

�
D

Y
fij�˛;i2C�g

1

1� e��˛;iCc1.L
�
˛;i
/
:

Consequently,

chT

�
1

det.1� .N C
˛ /
�/

��
�

k

�
D

Y
fij�˛;i2C�g

1

1� e�.1=k/�˛;i .�/�c1.L˛;i /

D

Y
fij�˛;i2C�g

1

1�
�
1C

�
�

1

k
�˛;i.�/� c1.L˛;i/

�
C

1P
lD2

1

l!

�
�

1

k
�˛;i.�/� c1.L˛;i/

�l �
D

Y
fij�˛;i2C�g

1

1

k
�˛;i.�/C c1.L˛;i/�

1P
lD2

1

l!

�
�

1

k
�˛;i.�/� c1.L˛;i/

�l

D

Y
fij�˛;i2C�g

k

�˛;i.�/C kc1.L˛;i/� k
1P

lD2

1

l!

�
�

1

k
�˛;i.�/� c1.L˛;i/

�l

D

Y
fij�˛;i2C�g

k

�˛;i.�/

�
1C

kc1.L˛;i/

�˛;i.�/
C

k

�˛;i.�/

1P
lD2

.�1/lC1

l !

�
1

k
�˛;i.�/C c1.L˛;i/

�l
� :

Now, �
1

k
�˛;i.�/C c1.L˛;i/

�l
D c1.L˛;i/

l
C

l

k
c1.L˛;i/

l�1�˛;i.�/CO.k�2/;

so that

k
�

1

k
�˛;i.�/C c1.L˛;i/

�l
D kc1.L˛;i/

l
C lc1.L˛;i/

l�1�˛;i.�/CO.k�1/:

Since l � 2, we have that

k

�˛;i.�/

1X
lD2

.�1/lC1

l !

� 1

k
�˛;i.�/C c1.L˛;i/

�l
DO.k/c1.L˛;i/

2P1C c1.L˛;i/P2CO.k�1/;

where P1 and P2 are polynomials in c1.L˛;i/. Therefore, we see that

chT

�
1

det.1� .N C
˛ /
�/

��
�

k

�
D

Y
fij�˛;i2C�g

k

�˛;i.�/

�
1C

kc1.L/

�˛;i.�/

�
CO.k/c1.L˛;i/2P1C c1.L˛;i/P2CO.k�1/

D k�
C
˛

Y
fij�˛;i2C�g

1

�˛;i.�/

�
1C

kc1.L/

�˛;i.�/

�
CO.k/c1.L˛;i/2P1C c1.L˛;i/P2CO.k�1/

:
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A similar argument also shows that

chT

�
1

det.1�N�C
˛ /

��
�

k

�
D .�k/n�n˛��

C
˛

Y
fij�˛;i2�C�g

1

�˛;i.�/

�
1C

kc1.L˛;i/

�˛;i.�/

�
CO.k/c1.L˛;i/2Q1C c1.L˛;i/Q2CO.k�1/

for polynomials Q1 and Q2 in c1.L˛;i/.

Finally,

chT .det.N�C
˛ //D ecT

1
.det.N�C

˛ //
D e

c1.det.N�C
˛ //C

P
fij�˛;i2�C�g �˛;i ;

so that

chT .det.N�C
˛ //

�
�

k

�
D e

c1.N
�C
˛ /C.1=k/

P
fij�˛;i2�C�g �˛;i .�/:

Putting all of the above observations together, we find that

1

kn
char H 0.M;O.�kKM //

�
�

k

�

D

X
˛2F

.�1/n�n˛��
C
˛

kn

Z
M T
˛

chT

�
�kKM jM T

˛
˝ det.N�C

˛ /

det.1� .N C
˛ /
�/˝ det.1�N�C

˛ /

�
td.M T

˛ /

�
�

k

�

D

X
˛2F

1

kn˛

Z
M T
˛

e
kc1.�KM jM T

˛
/
e
Pn�n˛

iD1
�˛;i .�/e

c1.N
�C
˛ /C.1=k/

P
fij�˛;i2�C�g �˛;i .�/

Y
fij�˛;i2C�g

1

�˛;i.�/

�
1C

kc1.L˛;i/

�˛;i.�/

�
CO.k/c1.L˛;i/2P1C c1.L˛;i/P2CO.k�1/Y

fij�˛;i2�C�g

1

�˛;i.�/

�
1C

kc1.L˛;i/

�˛;i.�/

�
CO.k/c1.L˛;i/2Q1C c1.L˛;i/Q2CO.k�1/

td.M T
˛ /

D

X
˛2F

1

kn˛

Z
M T
˛

e
kc1.�KM jM T

˛
/
e
Pn�n˛

iD1
�˛;i .�/e

c1.N
�C
˛ /C.1=k/

P
fij�˛;i2�C�g �˛;i .�/

n�n˛Y
iD1

1

�˛;i.�/Y
fij�˛;i2C�g

1

1C
kc1.L˛;i/

�˛;i.�/
CO.k/c1.L˛;i/2P1C c1.L˛;i/P2CO.k�1/Y

fij�˛;i2�C�g

1

1C
kc1.L˛;i/

�˛;i.�/
CO.k/c1.L˛;i/2Q1C c1.L˛;i/Q2CO.k�1/

�
1C 1

2
c1.�KM T

˛
/C � � �

�

��!
k!1

X
˛2F

Z
M T
˛

e
c1.�KM jMT

˛
/
e
Pn�n˛

iD1
�˛;i .�/

n�n˛Y
iD1

1

�˛;i.�/

�
1C

c1.L˛;i/

�˛;i.�/

� ;
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where, in taking the limit, we use the fact that any integrand involving terms not of the form kj�j for �j

a real .j ; j /–form vanishes. The result now follows from an application of Theorem A.3, making use of
assumption (ii) of the proposition.

Given this proposition, it is tempting to define a notion of K–stability that characterises algebraically the
existence of a shrinking gradient Kähler–Ricci soliton on a complete anticanonically polarised Kähler
manifold M endowed with a complete holomorphic vector field following the strategy as implemented in
the Fano case. For this purpose, we make the following definition.

Definition 7.3 Let M be a quasiprojective manifold endowed with the effective holomorphic action of a
real torus T whose fixed-point set is compact. Denote by t the Lie algebra of T, let OM .M / denote the
global algebraic sections of the structure sheaf of M, and write

OM .M /D
M
˛2t�

H˛

for the weight decomposition under the action of T. Then we say that a vector field Y 2 t on M is positive
if ˛.Y / > 0 for all ˛ 2 t� such that H˛ ¤∅ and ˛ ¤ 0.

Remark 7.4 If � WM ! C0 is a quasiprojective equivariant resolution of a Kähler cone .C0;g0/ with
respect to the holomorphic isometric torus action on .C0;g0/ generated by the flow of the Reeb vector
field of g0, and g is a Kähler metric on M that is asymptotic to g0 and with respect to which the induced
torus action on .M;g/ is isometric and Hamiltonian, then in the terminology just introduced, the weighted
volume functional F for .M;g/ is defined on the open cone of positive vector fields in the Lie algebra of
the torus if this open cone is nonempty. This fact follows from Theorem A.3 after noting Theorem A.10.

Roughly speaking, one considers equivariant degenerations (or test configurations) of the pair .M;X /,
where M is a quasiprojective anticanonically polarised Kähler manifold with complex structure J endowed
with the holomorphic effective action of a real torus T whose fixed-point set is compact, and where X is
a vector field on M with JX a positive vector field lying in the Lie algebra of T. Then one defines a
Futaki invariant in the usual manner as the derivative of the algebraic realisation of the weighted volume
functional which is given by the right-hand side of (7-1). Of course, one must verify that this formula
is well-defined in general. One subsequently defines .M;X / as above to be K–stable if and only if the
Futaki invariant is nonnegative on all test configurations, and positive if and only if the test configuration
is nontrivial. This then allows one to make the following conjecture generalising the Yau–Tian–Donaldson
conjecture for Fano manifolds.

Conjecture 7.5 Let M be a quasiprojective anticanonically polarised Kähler manifold endowed with the
holomorphic effective action of a real torus T whose fixed-point set is compact. Denote by t the Lie algebra
of T and let X be a vector field on M such that JX 2 t is a positive vector field. Then M admits a com-
plete shrinking gradient Kähler–Ricci soliton with soliton vector field X if and only if .M;X / is K–stable.
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Thus, in light of this conjecture, one may view an anticanonically polarised Kähler manifold as a
“noncompact Fano manifold”. (In a similar manner, one may also define a noncompact manifold of
general type, etc.) We expect that the well-developed machinery in the study of Kähler–Einstein metrics
may be suitably adapted to study this conjecture. We leave this for future work.

7.2 Open problems

There are also various other interesting open problems that we raise here.

(1) Is a complete expanding or shrinking gradient Kähler–Ricci soliton necessarily algebraic (or quasi-
projective)? In particular, is the canonical ring of an expanding gradient Kähler–Ricci soliton finitely
generated? Is the anticanonical ring of a shrinking gradient Kähler–Ricci soliton finitely generated?
What we can say here is that if the curvature tensor of a shrinking gradient Kähler–Ricci soliton decays
quadratically, or if that of an expanding gradient Kähler–Ricci soliton decays quadratically with derivatives,
then the soliton lives on a resolution of a Kähler cone by Theorem A, hence is quasiprojective by
Proposition 2.24.

(2) Is there at most one complete shrinking Kähler–Ricci soliton for a given holomorphic vector field on
an anticanonically polarised Kähler manifold up to automorphisms of the complex structure commuting
with the flow of the vector field? More speculatively, is a complete shrinking Kähler–Ricci soliton on such
a manifold unique up to automorphisms of the complex structure? A noncompact Kähler manifold may
admit many nonisometric complete expanding gradient Kähler–Ricci solitons even for a fixed holomorphic
soliton vector field, as demonstrated by [19, Theorem A].

(3) What are the constraints on a Kähler cone to appear as the tangent cone of a complete shrinking
gradient Kähler–Ricci soliton with quadratic curvature decay? Is the underlying complex manifold of
the shrinking soliton then determined uniquely by its tangent cone? By Theorem A, we know that the
shrinking soliton must live on a resolution of its tangent cone that is, moreover, an anticanonically polarised
Kähler manifold. For complete expanding gradient Kähler–Ricci solitons with quadratic curvature decay
with derivatives, we know from Corollary B that a Kähler cone appears as the tangent cone if and only if
the Kähler cone has a smooth canonical model (on which the soliton lives).

(4) Related to the previous question, modulo automorphisms of the complex structure, how many
shrinking gradient Kähler–Ricci solitons with quadratic curvature decay have a given affine cone appearing
as the underlying complex space of the tangent cone? For C2, we have shown in Theorem E that the
answer is two; C2 only appears as the underlying complex space of the tangent cone of the flat Gaussian
shrinking soliton on C2 and of the U.2/–invariant shrinking gradient Kähler–Ricci soliton of Feldman,
Ilmanen and Knopf on C2 blown up at a point [30]. In general, we expect the answer to be finitely many
for any given affine cone. By Corollary B, the answer to this question for complete expanding gradient
Kähler–Ricci solitons with quadratic curvature decay with derivatives is infinitely many for any given
affine cone admitting a smooth canonical model.
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(5) In Corollary B, we have seen that when the canonical model of a Kähler cone is smooth, it admits a
complete expanding gradient Kähler–Ricci soliton. Is this also true when the canonical model is singular?
(We thank John Lott for raising this question.)

(6) Let M be a complete quasiprojective Kähler manifold endowed with the holomorphic Hamiltonian
action of a real torus T with Lie algebra t whose fixed-point set is compact. Are the elements of t admitting
Hamiltonian potentials that are proper and bounded below precisely those elements in t that are positive
in the sense of Definition 7.3? Equivalently, does the open cone of positive vector fields in t coincide
with the open cone int.C.�.M //0/� t of Proposition A.4? These questions have an affirmative answer in
the setting of asymptotically conical Kähler manifolds; see Theorem A.10 for a precise statement.

(7) Does Theorem D still hold true without the assumption of bounded Ricci curvature?

(8) Given a complete shrinking gradient Kähler–Ricci soliton .M;g;X /, is the zero set of X always
compact? As demonstrated in Lemma 2.25, this is the case if g has bounded scalar curvature.

(9) Let M be a complete Kähler manifold endowed with the holomorphic Hamiltonian action of a real
torus T with Lie algebra t whose fixed-point set is compact. By the Duistermaat–Heckman theorem
(Theorem A.3), the weighted volume functional F is defined on the open coneƒ of elements of t admitting
Hamiltonian potentials that are proper and bounded below. Is F necessarily proper on ƒ? If so, then it
would have a unique minimiser on ƒ. Properness of the volume functional on the set of normalised Reeb
vector fields of a Sasaki manifold was shown in [37, Proposition 3.3].

Appendix The Duistermaat–Heckman theorem

A.1 Statement of the theorem

The material in this section has been taken verbatim from various sources in the literature, including
[5; 28; 49; 60]. We begin with the definition of a moment map, which is required for the statement of the
Duistermaat–Heckman theorem.

Definition A.1 Let .M; !/ be a symplectic manifold and let T be a real torus acting on .M; !/ by
symplectomorphisms. Denote by t the Lie algebra of T and by t� its dual. Then we say that the action
of T is Hamiltonian if there exists a smooth map � WM ! t� such that for all � 2 t, �!y� D du� , where
u�.x/D h�.x/; �i for all � 2 t and x 2M. We call � the moment map of the T –action and we call u�

the Hamiltonian (potential) of �.

Notice that u� is invariant under the flow of �. Indeed, we have that

L�u� D du�y� D�!.�; �/D 0:

Consequently, each integral curve of � must be contained in a level set of u� .
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Now consider the Hamiltonian action of a real torus T of rank s on a symplectic manifold .M; !/ of real
dimension 2n. Identify T with .S1/s � .C�/s and introduce complex coordinates .�1; : : : ; �s/ on T via
this identification. This induces coordinates .�1; : : : ; �s/2Rs on the Lie algebra t of T, where .�1; : : : ; �s/

corresponds to the vector
Ps

iD1 �i.@=@�i/, each @=@�i the vector field on M induced by the coordinate
�i on T. For � 2 t with coordinates .b1; : : : ; bs/, say, the flow on M generated by � will have a fixed-point
set M0.�/ corresponding to the zero set of the vector field �. This set has the following properties.

Proposition A.2 [5, Proposition 7.12] The connected components fFig of M0.�/ are smooth submani-
folds of M. The dimensions of different connected components do not have to be the same. The normal
bundles Ei of the Fi in M are orientable vector bundles with even-dimensional fibres.

For a disconnected component F of M0.�/ of real codimension 2k in M, let � W F !M denote the
inclusion. Then ��! is a symplectic form on F so that F is a symplectic submanifold of M. The normal
bundle E of F in M has the structure of a symplectic vector bundle and will have real dimension 2k. We
denote this induced symplectic form on E by � . The flow of � will generate a fibre-preserving linear action
L� WE!E on E , which is an automorphism of E leaving � invariant in the infinitesimal sense. We introduce
an almost complex structure I W E! E , ie an automorphism of E such that I2D�id, commuting with L�

and compatible with � in the sense that �.I � ; � / defines an inner product on E . This gives E the structure
of a complex vector bundle over F with L� an automorphism of E preserving the complex structure.

Next, denote by u1; : : : ;uR 2Zs � t� the weights of the induced representation of t on E . Then we have
a direct sum decomposition of vector bundles

E D
RM
�D1

E�;

where
E� WD fv 2 E j .ei�1 ; : : : ; ei�s / � v D u�.�1; : : : ; �s/Iv for all .�1; : : : ; �n/ 2 tg:

Each E� is a vector bundle of rank 2n�, say. Clearly we must have k D
PR
�D1 n�. Consider now

the complex vector bundle E1;0 of complex dimension k, endowed with the action of L� extended by
C–linearity. Then we have an induced decomposition

E1;0
D

RM
�D1

E1;0
�
;

where L� acts on the �th factor by iu�.b1; : : : ; bn/, and so the action of L� on E1;0 will take the form

L� D i diag.1n1
u1.b/; : : : ; 1nR

uR.b//;

where 1n� denotes the n� � n� identity matrix and b D .b1; : : : ; bs/ are the coordinates of �. Thus,

det
�

L�

i

�
D

RY
�D1

u�.b/
n� :

Note that this is homogeneous of degree k in b.
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We next choose any L�–invariant connection on E1;0 with curvature matrix �. Finally, for a polyhedral
set U of a vector space V, we define the asymptotic cone

C.U / WD fv 2 V j there is a v0 2 V such that v0C tv 2 U for t > 0 sufficiently largeg;

and for a subset W of V, we define the dual cone W 0 WD f˛ 2 V � j ˛.W /�R�0g. Now we can state the
Duistermaat–Heckman theorem.

Theorem A.3 (the Duistermaat–Heckman theorem [60, Theorem 2.2]) Let .M; !/ be a (possibly
noncompact) symplectic manifold of real dimension 2n with symplectic form ! on which there is a
Hamiltonian action of a real torus T with moment map � WM ! t�, where t is the Lie algebra of T and
t� its dual. Assume that the fixed-point set of T is compact. If there exists an element �0 2 t such that the
component of the moment map u�0

D h�; �0i is proper and bounded below, then

(A-1)
Z

M

e�h�;�i
!n

n!
D

X
F2M0.�/

Z
F

e��
�h�;�ie�

�!

det
�

L� ��

2� i

�
for all � in the open cone int.C.�.M //0/ � t, where the sum on the right-hand side is taken over the
connected components F of the zero set M0.�/ of �.

Under the assumptions on the moment map � as in the theorem, �.M / is a proper polyhedral set in t�

and the elements of int.C.�.M //0/� t are characterised as follows.

Proposition A.4 [60, Proposition 1.4] Under the assumptions on T and � as in Theorem A.3,
u� D h�; �i is proper if and only if � 2 ˙ int.C.�.M //0/ � t. Moreover , if � 2 int.C.�.M //0/ � t,
then u�.M /D Œm� ;C1/ for a suitable m� 2R.

That is, elements of int.C.�.M //0/ are precisely those elements of t whose Hamiltonian is proper
and bounded below. Notice that this cone is nonempty because it contains �0 by assumption. Then
for each � 2 int.C.�.M //0/, each connected component of the zero set M0.�/ of � must be compact
because u� D h�; �i is proper, and moreover, it must contain a fixed point of the torus action by
[60, Proposition 1.2]. Hence, since the fixed-point set of T is assumed to be compact in Theorem A.3,
the sum on the right-hand side of (A-1) is over a finite set and so is itself finite for all such �.

Now, the sum on the right-hand side of (A-1) is over each connected component F of the zero set M0.�/

of �. The determinant is a k � k determinant and should be expanded formally into a differential form of
mixed degree. Moreover, the inverse is understood to mean one should expand this formally in a Taylor
series, as is standard in index theory. We next study the right-hand side of (A-1) in more detail.

Under the decomposition

E1;0
D

RM
�D1

E1;0
�
;
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let �� be the component of the curvature matrix of �E corresponding to E�. Then we have that

det
�

L� ��

2� i

�
D det

�
L�

2� i

�
det.1� .L�/�1�/D det

�
L�

2� i

� RY
�D1

det.1� .L�/�1��/:

Fix one of the bundles E�. Then

det.1� .L�/�1��/D det.1Cwi��/D
X
a�0

ca.E�/wa
2H�.F;R/;

where w D 1=u�.b/ and ca.E�/ are the Chern classes of E� for 0� a� n� with c0 D 1. Thus,

det
�

L� ��

2� i

�
D

RY
�D1

u�.b/
n�

�X
a�0

ca.E�/wa

�
:

In particular, if F is an isolated fixed point, in which case k D n and E is the trivial bundle, then we
may write the n (possibly indistinct) weights as u1; : : : ;un. The Chern classes and the measure e�

�!

contribute nontrivially, and we arrive at the contribution

e��
�h�;�i

RY
�D1

1

u�.b/
n�

of an isolated fixed point to the Duistermaat–Heckman formula.

We next wish to sketch the proof of Theorem A.3. Before we do so, however, we must first discuss
invariant forms on a symplectic manifold.

A.2 Invariant forms

Consider a symplectic manifold .M; !/ of real dimension 2n endowed with the Hamiltonian action of
a real torus T. For � in the Lie algebra t of T, denote by �k

�
.M / the space of smooth k–forms on M

which are invariant under the flow of �, ie ˛ 2�k
�
.M / if and only if L�˛ D 0. The wedge product of

two invariant forms is also invariant, therefore we have an algebra ��
�
.M / of invariant forms on M. We

define the equivariant derivative d� on ��
�
.M / by

d�˛ D d˛�˛y�:

This derivative has the properties that d2
�
D 0 and

d�.˛^ˇ/D d�˛^ˇC .�1/p˛^ d�ˇ

for ˛ a p–form and ˇ another differential form.

For ˛ 2��
T
.M /, we can write

˛ D ˛Œ0�C˛Œ1�C � � �C˛Œ2n�;
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with ˛Œi� a differential form of degree i in ��
T
.M /. Then integration of invariant forms is defined by

integrating over the highest-degree part of the form, ieZ
W��T .M /!R;

Z
˛ WD

Z
M

˛Œ2n�:

This leads to a version of Stokes’ theorem for invariant forms: if an invariant form ˛ is d�–exact, ie if
˛ D d�ˇ for another form ˇ, then ˛Œ2n� D dˇŒ2n�1�, since contracting with � decreases the degree of a
form. We then have that Z

M

˛ WD

Z
M

˛Œ2n� D

Z
M

dˇŒ2n�1� D

Z
@M

ˇŒ2n�1�:

Recall that M0.�/ denotes the zero locus on M of � 2 t.

Lemma A.5 Let ˛ 2��
�
.M / be d�–closed. Then ˛Œ2n� is exact on M nM0.�/.

Proof Let � be a one-form on M nM0.�/ such that

(A-2) L�� D 0 and �y� ¤ 0:

Such a one-form can be constructed explicitly. Indeed, let g be a T –invariant Riemannian metric on M,
let z� be any nonzero positive smooth function times �, and define

�.v/D g.z�; v/ for any vector field v on M.

This is well-defined on M nM0.�/ as �, and hence z�, are nonzero on this set, and is easily seen to satisfy
(A-2). We can then invert d�� on M nM0.�/ using a geometric series:

.d��/
�1
D

1

.d� � �y�/
D

1

.�y�/..�y�/�1d� � 1/
D�.�y�/�1

� .�y�/�2d� � .�y�/�3.d�/2� � � � :

Note that this geometric series is finite because the .d�/k vanish if 2k > 2nD dim M , and we have that

d�� ^ .d��/
�1
D 1:

Applying d� to this yields
d�� ^ d�..d��/

�1/D 0:

Further taking the wedge product with .d��/�1 on the left then leaves us with

d� Œ.d��/
�1�D 0:

Define � by
� WD � ^ .d��/

�1
^˛:

Then, since d�˛ D 0 by assumption, we have that

d�� D d�� ^ .d��/
�1
^˛ D ˛:

Taking the highest-degree part of each side of this equality, we obtain the result.
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A.3 Sketch of the proof of Theorem A.3

Since the left-hand side of (A-1) is analytic on int.C.�.M //0/� t, it suffices to prove (A-1) for rational
elements in this open cone. So let � 2 int.C.�.M //0/ be rational and recall that the zero set M0.�/

of � is compact because the fixed-point set of T is compact by assumption; see the discussion after
Proposition A.4. Write � D t� for some integral point � 2 int.C.�.M //0/ and some t > 0, and let
H WD h�; �i denote the Hamiltonian of �, which serves as a moment map of the induced S1–action of
fei�g on M. Recall that H is a proper function bounded from below and so must tend to infinity as
x!1 in M.

Next, observe that

e!�tH
D e�tH

�
1C!C � � �C

!n

n!

�
2��� .M /;

d�e
!�tH

D e!�tH .d�.! � tH //D e!�tH .�d.tH /�!y�/D te!�tH .�dH �!y�/D 0;

so that e!�tH is d�–closed. An immediate consequence of Lemma A.5 is therefore that e�tH!n=n! is
exact off of the zero set M0.�/ of �. Indeed, fix a T –invariant metric g on M. Then tracing through the
proof of Lemma A.5, we see that

e�tH !n

n!
D d�Œ2n�1�; where � D � ^ .d��/

�1
^ e!�tH and � D g.z�; � /;

with z� denoting any nonzero positive function times �. We take z� D �=g.�; �/ in what follows.

Let F denote each of the connected components of M0.�/ and recall that each is a smooth submanifold
of M. Using the exponential map of the T –invariant metric g on M, we obtain a diffeomorphism  

from a neighbourhood U of the zero section of the normal bundle E of F in E onto a neighbourhood
 .U / of F in M. For " > 0, denote by B" the "–ball bundle in E and by S" its boundary. Since M0.�/

is compact and H.x/!C1 as x!1 in M, we have by Stokes’ theorem that

(A-3)
Z

M

e�tH !n

n!
D lim

a!C1
lim
"!0

Z
H�1..�1;a�/n[F2M0.�/

 .B"/

e�tH !n

n!

D lim
a!C1

lim
"!0

Z
H�1..�1;a�/n[F2M0.�/

 .B"/

d�Œ2n�1�

D lim
"!0

X
F2M0.�/

Z
 .S"/

�Œ2n�1�C lim
a!C1

Z
H�1.a/

�Œ2n�1�;

where we recall the fact that H is proper and that a is a regular value of H for all a sufficiently large
by [60, Proposition 1.2] because the fixed-point set of the torus action is compact, so that H�1.a/ is a
smooth compact submanifold of M for all such values of a.

Now, we have that

�Œ2n�1� D�e�tH � ^

n�1X
jD0

.d�/j

.�y�/jC1
^

!n�1�j

.n� 1� j /!
D�e�tH � ^

n�1X
jD0

.d�/j

tjC1
^

!n�1�j

.n� 1� j /!
;

Geometry & Topology, Volume 28 (2024)



Classification results for expanding and shrinking gradient Kähler–Ricci solitons 339

where again � D g.�; � /=g.�; �/. For one connected component F 2M0.�/ of codimension k, say, as in
the proof of the Duistermaat–Heckman formula in the compact case [28], the only summand contributing
to
R
 .S"/

�Œ2n�1� in the limit as "! 0 is the one with j D k � 1. Therefore, computing as in [28], one
sees that

(A-4) lim
"!0

Z
 .S"/

�Œ2n�1� D� lim
"!0

Z
F

e�tH � ^
.d�/k�1

tk
^

!n�k

.n� k/!

D� lim
"!0

Z
F

e�tH z� ^ .d z�/k�1
^

!n�k

.n� k/!

D
e��
�.tH /e�

�!

det
�

1

2� i
.L� ��/

� ;
where z� D g.�; � /=g.�; �/ on the second line.

We finally deal with the term lima!C1

R
H�1.a/ �Œ2n�1�. Since every a sufficiently large is a regular value

of H , the moment map of the S1–action fei�g, the set H�1.a/ is a connected compact submanifold of M

on which the S1–action is locally free. Let Ma DH�1.a/=S1 be the symplectic quotient with canonical
symplectic form !a. The preimage H�1.a/! Ma then has the structure of a orbibundle over Ma.
Moreover, since a is a regular value of H , there exists a number ı > 0 such that H�1..a� ı; aC ı//

is diffeomorphic to H�1.a/� .�ı; ı/. With respect to this diffeomorphism, the symplectic form ! on
H�1.a/� .�ı; ı/ is, up to an exact form, equal to

˛^ dH � .H � a/FaC!a

for one (and hence any) connection one-form ˛ on the orbibundle H�1.a/!Ma with curvature Fa. Now,
when restricted to H�1.a/, one can verify that !jH�1.a/ D !a, that � jH�1.a/ DW ˛ defines a connection
1–form, and that d� jH�1.a/DWFa is the curvature form of ˛, so that d�� jH�1.a/DFa�t . So we have thatZ

H�1.a/

�Œ2n�1� D

Z
H�1.a/

� ^ .d��/
�1
^ e!�tH

D

Z
H�1.a/

˛^ .Fa� t/�1
^ e!a�ta

D�
e�ta

t

Z
Ma

�
1�

Fa

t

��1

^ e!a

D�

n�1X
jD1

e�ta

tjC1

Z
Ma

!
n�1�j
a

.n� 1� j /!
^Fj

a :

As a!C1, the cohomology class of !a depends linearly on a [28; 65], whereas that of Fa remains fixed
since the topology of the bundle H�1.a/!Ma does not change as a runs through a set of regular values.
So the integral over Ma here is a polynomial in a. Consequently,

R
H�1.a/ �Œ2n�1�! 0 exponentially as

a!C1. Thus, combining this fact with (A-3) and (A-4), and noting that tH D h�; �i, we arrive at the
desired conclusion.
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A.4 Examples

We next consider some simple examples and see what formula (A-1) yields for the weighted volume
functional F .

Example A.6 Let M DCn and consider the action of the maximal torus

T D fdiag.ei�1; : : : ; ei�n/ j �i 2Rg

in GL.n;C/ acting on M with induced coordinates .�1; : : : ; �n/ on the Lie algebra t of T, where
.1; 0; : : : ; 0/2 t generates the vector field Im.z1@z1

/ on M, etc. The fixed-point set of T is clearly compact.

For any Y 2 f.�1; : : : ; �n/ 2 t j �i > 0g and for any T –invariant complete shrinking gradient Kähler–Ricci
soliton .M; !;X / with X D rgf for f WM ! R smooth, let uY be the Hamiltonian potential of Y

normalised as in Definition 5.13, so that, in particular, �!uY CuY C
1
2
.J Y / �f D 0. Then

�uY .0/D .�!uY /.0/C
1
2
..J Y / �f /.0/„ ƒ‚ …

D0

D div.Y /D
X

j

�j ;

and so the Duistermaat–Heckman theorem yields

F.�1; : : : ; �n/D

Z
M

e�uY !n
D

Y
j

��1
j � e

P
j �j :

Since this function is symmetric in its components, its unique critical point must be of the form �.1; : : : ; 1/

for some � > 0. It is then easy to show that �D 1. The corresponding shrinking gradient Kähler–Ricci
soliton is the flat Gaussian shrinking soliton on Cn.

Example A.7 Let M be C2 blown up at the origin and again consider the action of the maximal torus
T D fdiag.ei�1 ; ei�2/ j �1; �2 2Rg in GL.2;C/ acting on M, with induced coordinates .�1; �2/ on the
Lie algebra t of T, where .1; 0/ 2 t generates the vector field Im.z1@z1

/ on M, etc. In this case, the
weighted volume functional is given by

F W f.�1; �2/ 2 t j �1; �2 > 0g !R>0; F.�1; �2/D

8<:
e�1

.�1��2/�2
C

e�2

.�2��1/�1
if �1 ¤ �2;

e�1.��1
1
C ��2

1
/ if �1 D �2:

Again by symmetry, the unique critical point of F here must have �1 D �2, and a computation shows
that �1 D �2 D

p
2 in this case. The corresponding shrinking gradient Kähler–Ricci soliton is that of

Feldman, Ilmanen and Knopf [30] on this space.

Example A.8 More generally, let M be the total space of the line bundle O.�k/ over Pn�1 for
0 < k < n and consider the induced action of the maximal torus T D fdiag.ei�1 ; : : : ; ei�n/ j �i 2 Rg

in GL.n;C/ acting on M, with induced coordinates .�1; : : : ; �n/ on the Lie algebra t of T, where
.1; 0; : : : ; 0/ 2 t generates the vector field Im.z1@z1

/ on M, etc. In this case, the weighted volume
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functional F W f.�1; : : : ; �n/ 2 t j �i > 0g !R>0 is given by

F.�1; : : : ; �n/D

nX
iD1

e.kC1�n/�iC
P
j¤i �j

k�i

Q
j¤i

.�j � �i/

D

nP
iD1

.�1/iC1
Q

j¤i

�j

Q
k;l¤i; k>l

.�k � �l/e
.kC1�n/�iC

P
j¤i �j

k
nQ

iD1

�i

Q
i<j

.�i � �j /

if �k ¤ �l for k ¤ l .

Again, by symmetry, the unique critical point of F here must satisfy �1 D � � � D �n. By taking limits,
one can write down an expression for F when this is the case. Differentiating the resulting expression
and setting it equal to zero, one obtains the polynomials of [30, equation (36)]. For example, in low
dimensions, when �1 D � � � D �n DW �, we obtain the formulae for F in Table 1. The corresponding
shrinking gradient Kähler–Ricci solitons are those of Feldman, Ilmanen and Knopf [30] on these spaces.

Example A.9 Let L be the total space of a negative holomorphic line bundle over a Fano manifold D of
complex dimension n. By adjunction, in order for L to admit a shrinking gradient Kähler–Ricci soliton,
we must have c1.�KD˝L/>0. Assuming that this is the case, consider the action of the torus T given by
rotating the fibres of L. We have an induced coordinatew on the Lie algebra t of T, where 12 twill generate
the vector field Im.zi@zi

/ in a local trivialising chart of L. The zero set of every element of t will be D, the
zero section of L, and in this case the weighted volume functional F on the domain f�2 t j�>0g is given by

F.�/D

Z
Dn

e�e�
�!

�

�
1C

c1.L/

�

� D e�

�

Z
Dn

e�
�!

�
1C

c1.L/

�

��1

D
e�

�

Z
Dn

e�
�!

�
1�

c1.L
�/

�

��1

(A-5)

D
e�

�

Z
Dn

�
1C!C

!2

2!
C � � �

��
1C

c1.L
�/

�
C

c1.L
�/2

�2
C � � �

�
D

e�

�

Z
Dn

nX
iD0

!i

i !
^

�
c1.L

�/n�i

�n�i

�
D

e�

�

nX
iD0

1

�n�ii !

Z
Dn

!i
^ c1.L

�/n�i

D
e�

�nC1

nX
iD0

�i

i !

Z
Dn

c1.K
�1
D ˝L/i ^ c1.L

�/n�i :

This formula in particular applies to the total space of the line bundle O.�k/ over Pn�1 for 0< k < n.
Its relationship to the formulae of Example A.8 is as follows. On the total space of O.�k/, we have two
torus actions, one given by the standard action of a torus T1 rotating the fibres of O.�k/, and another
given by the action of a torus T2 induced from the standard torus action on O.�1/ that rotates the fibres.
The formulae of Example A.8 with �1 D � � � D �n are given with respect to the action of T2, whereas
formula (A-5) is with respect to T1. Consequently, the formulae of Example A.8 with �1 D � � � D �n are
given by F.k�/, where F is as in (A-5).
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line bundle F.�/

O.�1/! P 1
.�C 1/e�

�2

O.�1/! P 2
.2�2C 2�C 1/e�

�3

O.�2/! P 2
.�2C 2�C 2/e2�

�3

O.�1/! P 3
.9�3C 9�2C 6�C 2/e�

�4

O.�2/! P 3
.4�3C 6�2C 6�C 3/e2�

�4

O.�3/! P 3
.�3C 3�2C 6�C 6/e3�

�4

Table 1

A.5 The domain of definition of the weighted volume functional

By Theorem A.3 and Proposition A.4, we see that the weighted volume functional F is defined on the
open cone ƒ of elements of the Lie algebra of the torus admitting Hamiltonian potentials that are proper
and bounded below if ƒ is nonempty. In this subsection, we characterise ƒ algebraically in the setting of
asymptotically conical Kähler manifolds.

Our precise set-up is as follows. Let .C0;g0/ be a Kähler cone with apex o, complex structure J0, and
radial function r such that g0 D dr2C r2gS for a Riemannian metric gS on the link S D fr D 1g of C0.
Let � WM ! C0 be a quasiprojective resolution of C0 that is equivariant with respect to the holomorphic
isometric action on C0 of the torus T with Lie algebra t generated by � WD J0r@r , and let g be a Kähler
metric on M with

(A-6) j��g�g0jg0
DO.r�2/;

with respect to which T acts isometrically in a Hamiltonian fashion with moment map � WM ! t�. Write
uY .x/ WD h�.x/;Y i for x 2M for the Hamiltonian potential of Y 2 t, so that duY D�!yY, where !
is the Kähler form of g, and set

ƒ WD fY 2 t j uY is proper and bounded belowg:

Next, let OM .M / (resp. OC0
.C0/) denote the global algebraic sections of the structure sheaf of M

(resp. of C0), and write
OM .M /D

M
˛2t�

H˛

for the weight decomposition under the action of T. Then we have:
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Theorem A.10 In the above situation ,

ƒD fY 2 t j ˛.Y / > 0 for all ˛ 2 t� such that H˛ ¤∅ and ˛ ¤ 0g:

Proof Let E denote the exceptional set of the resolution � WM ! C0. In what follows, we will identify
M nE with C0 n f0g via � . Let us begin by making some useful observations. Let X be the unique
vector field on M such that d�.X /D r@r . Then d�.JX /D �, where J denotes the complex structure
on M, so that JX 2 t and ŒX;Y �D 0 for every Y 2 t. Then we have:

Lemma A.11 Let Y 2 t, so that Y defines a real holomorphic g–Killing vector field on M with
ŒX;Y �D 0. Then Y is tangent to the level sets of r on C0 n fog.

Proof Since T acts isometrically on g and g0, Y will define a holomorphic g0–Killing vector field
on C0. We claim that such a vector field is tangent to the level sets of r . Indeed, simply note that

0D LY g0 D d.Y � r/˝ dr C dr ˝ d.Y � r/C 2rdr.Y /gS C r2LY gS :

Then, plugging � into both arguments on the right-hand side and observing that

ŒY; ��D ŒY;Jr@r �D ŒY;JX �D J ŒY;X �D 0

along the end of C0 since Y is holomorphic, we arrive at the fact that

�dr.Y /D 1
2
r.LY gS /.�; �/D

1
2
r
�
LY .gS .�; �//� 2gS .ŒY; ��; �/

�
D 0;

as required.

We now demonstrate that

ƒ� fY 2 t j ˛.Y / > 0 for all ˛ 2 t� such that H˛ ¤∅ and ˛ ¤ 0g:

To this end, let Y 2ƒ, so that the Hamiltonian potential uY of Y is proper and bounded below, let f be
a nonconstant holomorphic function on M on which Y acts with weight � so that J Y .f /D��f , let
x 2M nE be a point where f .x/¤ 0, and denote by x.t/ the flow line of �J Y with x.0/D x. Then

d

dt
f .x.t//D �f .x.t//;

so that

(A-7) f .x.t//D f .x/e
��t for all t < 0:

Now, by definition, we have that �J Y DrguY and so from Proposition 2.27 we deduce that there is a
sequence ti!�1 as i!C1 such that .x.ti//i converges to a point x1 2M satisfying rgu.x1/D 0.
Since the fixed-point set of T is contained in E, we must have that x1 2 E. Let xi WD x.ti/. Then
plugging ti into (A-7) yields the fact that

jf .xi/j D jf .x/je
��ti ��!

i!1

�
C1 if � < 0;

0 if � > 0.

Since xi! x1 2E as i !1, we conclude from the maximum principle that � > 0, as required.
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Next we show that

(A-8) fY 2 t j ˛.Y / > 0 for all ˛ 2 t� such that H˛ ¤∅ and ˛ ¤ 0g �ƒ:

By [20, Lemma 2.15], M is 1–convex. By construction, then, � WM !C0 will be the Remmert reduction
of M. In particular, we have that ��OC0

.C0/D OM .M / by the properties of the Remmert reduction.
Since � WM !C0 is equivariant with respect to the action of T, we thus see that Y 2 t acts with weight �
on f 2OC0

.C0/ if and only if it acts with weight � on the unique lift ��f of f to OM .M /. Applying
[18, Proposition 2.7], we therefore deduce that

fY 2 t j gS .Y; �/ > 0g D fY 2 t j ˛.Y / > 0 for all ˛ 2 t� such that H˛ ¤∅ and ˛ ¤ 0g:

Consequently, in order to prove the inclusion (A-8), it suffices to show that

fY 2 t j gS .Y; �/ > 0g �ƒ:

This inclusion is established by the following proposition.

Proposition A.12 Let Y 2 fZ 2 t j gS .Z; �/.x/ > 0 for all x 2Sg with Hamiltonian potential uY . Then
uY � cr2 along the end of C0 for some c > 0. In particular , uY is proper and bounded below.

Proof Let x 2 fr D 1g and let x.t/ denote the integral curve of X, the vector field on M satisfying
d�.X /D r@r , with x.0/D x. Then we have that

(A-9) uY .x.t//D uY .x.0//C

Z t

0

duY . Px.s// ds

D uY .x/C

Z t

0

g.�J Y;X /.x.s// ds

D uY .x/C

Z t

0

g.Y;JX /.x.s// ds:

Next observe that since Y 2 t, Y is tangent to the level sets of r by Lemma A.11. Hence, the asymptotics
(A-6) give us that

g.Y;JX /.x.s//D g0.Y;JX /C

DO.1/‚ …„ ƒ
O.r�2/jY jg0

jJX jg0

DO.1/C r.x.s//
2gS .Y; �/

DO.1/C r.x/2e2sgS .Y; �/;

where the final equality follows from the fact that r.x.s//D r.x/es because
@

@s
.r.x.s///D r.x.s// and x.0/D x:

Plugging this into (A-9) yields

uY .x.t//D uY .x/C
1
2
r.x/2gS .Y; �/.e

2t
� 1/CO.t/

D uY .x/�
1
2
gS .Y; �/r.x/

2
C

1
2
gS .Y; �/r.x.t//

2
CO.ln r.x.t///

� cr.x.t//
2

along the end of C0 for some c > 0, since gS .Y; �/ > 0. From this, the assertion follows.
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A.6 Coercive estimates on Hamiltonian potentials

The goal of this subsection is to prove sharp positive bounds on the growth of the Hamiltonian potential of
a real holomorphic Killing vector field on a complete shrinking gradient Kähler–Ricci soliton .M;g;X /

that commutes with the soliton vector field X under certain conditions. Since H 1.M /D 0 by [67], such
a vector field always admits a Hamiltonian potential. Let ! denote the Kähler form of g and recall that
for each real holomorphic Killing vector field Y on M commuting with X, the Hamiltonian uY of Y is
normalised so that �!uY CuY C

1
2
J Y �f D 0. Since duY D�!yY by definition, one sees that

(A-10) �!uY CuY D�
1
2
g.J Y;X /D 1

2
g.ruY ;X /D

1
2
X �uY ;

an identity that shall prove useful in what follows. We will prove:

Proposition A.13 Let .M;g;X / be a complete shrinking gradient Kähler–Ricci soliton with bounded
Ricci curvature with soliton vector field X Drgf for a smooth real-valued function f WM !R. Let Y

be a real holomorphic Killing vector field on M commuting with X and assume that the Hamiltonian
potential uY of Y is proper and bounded below. Then there exist positive constants c1 and c2 such that
c1f � uY � c2f outside of a compact set.

As a consequence of this proposition, we see, without appealing to the Duistermaat–Heckman theorem,
that the weighted volume functional is defined on a complete shrinking gradient Kähler–Ricci soliton
.M;g;X / with bounded Ricci curvature on those elements admitting a Hamiltonian potential that is
proper and bounded below in the Lie algebra of any torus that acts in a holomorphic Hamiltonian fashion
on M and contains the flow of JX, where J denotes the complex structure of M.

Proof Let j � jg denote the norm with respect to g. The following claim provides a sharp growth rate on
jY jg which improves Proposition 2.30 for real holomorphic vector fields commuting with X.

Claim A.14 There exists a positive constant c such that jY j2g � cf outside a compact set.

Proof We start by taking note of the following crucial equation that holds pointwise on M and is
independent of the soliton structure. For a real holomorphic vector field Y, it holds that

�gY CRic.Y /D 0:

This observation is due to Lichnerowicz and its proof can be found for instance in [2, Proposition 4:79].
Since we allow Y to commute with X, Y satisfies the elliptic equation

�gY �rX Y CY D�gY �rX Y CRic.Y /CrY X D 0;

where we have used the soliton equation (1-4) with �D 1. Recall also that �gf �X �f D�2f .
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Using these facts, we compute

(A-11) .�g �X � /

�
jY j2g

f

�
D 2f �1

jrY j2g � 2
jY j2g

f
CjY j2g.�g �X � /f �1

C 2g.rg
jY j2g;r

gf �1/

� �2
jY j2g

f
C
jY j2g

f

�
�
.�g �r

gf � /f

f
C 2
jrgf j2

f 2

�
� 2g

�
r

g

�
jY j2g

f

�
;rg lnf

�
� 2jrg lnf j2

jY j2g

f

� �2g

�
r

g

�
jY j2g

f

�
;rg lnf

�
;

a computation valid on the set where f is strictly positive. For " > 0 a given constant and a> 0 a constant
such that jY j2g DO.f a/ (see Proposition 2.30), we consider the function jY j2g �f

�1� "f a defined on
the complement of a compact set of the form ff � C.n/g such that f is strictly positive on ff � C.n/g.
By Proposition 2.30, we know that

lim
f!C1

.jY j2g �f
�1
� "f a/D�1;

so that this function attains a maximum on the set ff � C.n/g. Now, if f � 2.aC 1/, then using (A-11),
we compute that

.�g �X � /

�
jY j2g

f
� "f a

�
� �2g

�
r

g

�
jY j2g

f
� "f a

�
;rg lnf

�
C "af a

�
2� .aC 1/

jrgf j2

f 2

�
� �2g

�
r

g

�
jY j2g

f
� "f a

�
;rg lnf

�
C "af a

�
2� .aC 1/

2

f

�
> �2g

�
r

g

�
jY j2g

f
� "f a

�
;rg lnf

�
;

where we used the first-order soliton identity from Lemma 2.22 in the penultimate inequality. As
already noted, jY j2g � f

�1 � "f a attains a maximum on ff � C.n/g and so the maximum principle
applied to this function implies that it must attain its maximum at a point on the boundary of the set
ff �maxf2.aC 1/;C.n/gg. In particular, we find that

(A-12) jY j2g �f
�1
�"f a

� max
fDC.a;n/

.jY j2g �f
�1
�"f a/� max

fDC.a;n/
.jY j2g �f

�1/DC.a; n/ max
fDC.a;n/

jY j2g;

where C.a; n/ is a positive constant that may vary from line to line. As the right-hand side of (A-12) is
independent of ", by letting " tend to 0 on the left-hand side, we reach the desired conclusion. G

Since jruY jg D jJ Y jg D jY jg, one obtains the expected growth on uY by integrating the estimate
on jY jg established in the previous claim.

We next prove the lower bound on uY . First notice that since uY is proper and bounded below, uY is
strictly positive outside a sufficiently large compact set of the form ff � c0g. Recall from Remark 2.23 that
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the normalisation of f is determined by the soliton identities, which in this case yield�gf �X �f D�2f .
Using f as a barrier function together with (A-10), we compute the weighted Laplacian of the difference
of the inverses of uY and f on the region where this difference makes sense. We have

(A-13)
�
�! �

1
2
X �

�� 1

uY

�
C

f

�
D

1

uY

�
C

f
C 2
jruY j

2

u3
Y

� 2C
jrf j2

f 3
;

where C is a positive constant to be specified later. Assume that the function u�1
Y
�Cf �1 attains its

maximum at an interior point x0 of a domain of the form fr1 � f � r2g with r1 sufficiently large so that
both uY and f are strictly positive. At such a point x0, one sees that r.u�1

Y
�Cf �1/.x0/D 0, and from

the maximum principle that
0�

�
�! �

1
2
X �

�� 1

uY

�
C

f

�
.x0/:

This information, together with (A-13), implies that at x0,

0�
1

uY

�
C

f
C 2
jruY j

2

u3
Y

� 2C
jrf j2

f 3
D

1

uY

�
C

f
C 2uY jru�1

Y j
2
� 2Cf jrf �1

j
2

D
1

uY

�
C

f
C 2uY C 2

jrf �1
j
2
� 2Cf jrf �1

j
2
D

�
1

uY

�
C

f

�
.1� 2C uY f jrf

�1
j
2/

D

�
1

uY

�
C

f

��
1� 2C

uY

f 3
jrf j2

�
:

Next, using the fact that jrf j2 grows quadratically by the soliton identities, we see from the upper bound
on uY that on M,

2C
uY

f 3
jrf j2 �

2Cd

f

for some positive constant d uniform in r1 and r2. In particular, the term .1�2C uY f
�3jrf j2/ is positive

on fr1 � f � r2g as long as 2Cf �1d is strictly less than 1, or equivalently, as long as C < .2d/�1r1.

In summary, for any heights r1 < r2 and any constant C such that C < .2d/�1r1, we have that

max
r1�f�r2

�
1

uY

�
C

f

�
�max

�
0; max
fDr1

�
1

uY

�
C

f

�
; max
fDr2

�
1

uY

�
C

f

��
:

Since uY (and f ) tend to C1 as f approaches C1, one sees, by letting r2 tend to C1, that

(A-14) max
r1�f

�
1

uY

�
C

f

�
�max

�
0; max
fDr1

�
1

uY

�
C

f

��
:

We choose C and r1 so that the right-hand side of (A-14) is nonpositive and so that C < .2d/�1r1. This
is possible because by properness of uY , there exists some positive height r1 such that minfDr1

uY � 4d .
Then for C WD .4d/�1r1, we have that C < .2d/�1r1 and

max
fDr1

�
1

uY

�
C

f

�
� 0;

as desired. This completes the proof of the proposition.
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Embedding calculus and smooth structures

BEN KNUDSEN

ALEXANDER KUPERS

We study the dependence of the embedding calculus Taylor tower on the smooth structures of the source
and target. We prove that embedding calculus does not distinguish exotic smooth structures in dimension 4,
implying a negative answer to a question of Viro. In contrast, we show that embedding calculus does
distinguish certain exotic spheres in higher dimensions. As a technical tool of independent interest, we
prove an isotopy extension theorem for the limit of the embedding calculus tower, which we use to
investigate several further examples.
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1 Introduction

We investigate the scope of a certain tool used to study the space Embs.N;M/ of smooth embeddings
from an n–manifold N into an m–manifold M . This investigation has consequences for spaces of
embeddings themselves, as shown by the following result on knots and links, which answers a question
of Viro [42, Section 6] in the negative and improves on a result of Arone and Szymik [3].

Theorem A Let M and M 0 be smooth simply connected compact 4–manifolds. If M and M 0 are
homeomorphic , then , for any k � 0,

Embs
�G
k

S1;M

�
' Embs

�G
k

S1;M 0
�
:

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/gt.2024.28.353
http://www.ams.org/mathscinet/search/mscdoc.html?code=58D10, 55P48, 57N35, 57R40
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


354 Ben Knudsen and Alexander Kupers

The tool in question is the embedding calculus of Goodwillie and Weiss [16; 46], which, at the coarsest
level, provides a functorial comparison map

Embs.N;M/! T1Embs.N;M/D holim
k

TkEmbs.N;M/;

whose target is assembled from the configuration spaces of N and M and maps among them (details are
reviewed in Section 2). According to one of the main results of the subject (see Goodwillie and Klein [14]
and [16]), this map is a weak equivalence in codimension at least 3; one says that the Taylor tower converges
to the embedding space. In particular, the theorem applies to links in 4–manifolds as in Theorem A.

Little is known about convergence in low codimension. We begin to address this gap by proving that
codimension-0 convergence largely fails in dimension 4.

Theorem B Let M and N be smooth simply connected compact 4–manifolds. If M and N are
homeomorphic , then T1Embs.N;M/¤¿. In particular , if M and N are not also diffeomorphic , then
the map

Embs.N;M/! T1Embs.N;M/

is not a weak equivalence.

In fact, we prove that there are homotopy invertible elements in T1Embs.N;M/, which one should think
of as saying that N and M are diffeomorphic (or at least isotopy equivalent) in the eyes of embedding
calculus.

Theorems A and B arise from a common source. Specifically, the data involved in the constructions of
embedding calculus is a pair of presheaves, one forN and one forM . We show in Theorem 3.18 that these
presheaves are largely insensitive to smooth structure in dimension 4, and the results follow; see Section 4.

The results above might lead one to suspect that embedding calculus is insensitive to smooth structure. The
following contrasting result shows that the situation is not so simple (see Section 5.2 for further examples).

Theorem C For any nD 2j with j � 3, there is an exotic n–sphere † such that T1Embs.†; Sn/D¿.
In particular , the map

Embs.†; Sn/! T1Embs.†; Sn/

is a weak equivalence (both sides are empty).

Thus, embedding calculus distinguishes certain exotic spheres. Alternatively, one can interpret this as a
convergence result in codimension 0. The crucial property distinguishing the exotic spheres of Theorem C
from Sn is that they do not embed in RnC3.

To facilitate the further study of embedding calculus in the potential absence of convergence, we prove an
isotopy extension theorem for T1Embs.�;�/; see Theorem 6.1. We close by demonstrating its utility
with several applications.
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2 Preliminaries

In this section, we gather what facts we need from the theory of embedding calculus, as well as some
standard foundational material on topological manifolds. In our discussion of calculus, we adopt the
perspective of [5], but see [6; 15; 41; 46] for other foundations.

2.1 Embedding calculus

WriteMflds for the simplicial category whose objects are smooth manifolds without boundary, of finite type
and arbitrary dimension. The morphism space MapMflds .N;M/ has as n–simplices commuting diagrams

�n �N �n �M

�n

in which the top map is a neat smooth embedding of manifolds with corners. This category is symmetric
monoidal under disjoint union.

Manifold calculus approximates simplicial presheaves on this category by extrapolating from their values
on disjoint unions of disks of a fixed dimension. More formally, let Disksn�Mflds be the full subcategory
on those objects that are diffeomorphic to a disjoint union of finitely many copies of Rn with its standard
smooth structure. Manifold calculus is the approximation of simplicial presheaves on Mflds by simplicial
presheaves on Disksn. Embedding calculus is the application of manifold calculus to the presheaf of
embeddings into a smooth manifold M . Fixing n, we write EsM for the presheaf on Disksn obtained by
restriction of the representable presheaf on Mflds determined by M ; explicitly,

EsM

�G
k

Rn
�
WD Embs

�G
k

Rn;M

�
:

The reader is warned that our notation does not reflect the choice of n, which should always be clear
from context.
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Remark 2.1 Equivalently, writing Esn for the endomorphism operad of Rn with its standard smooth
structure — equivalent to the framed little n–disks operad allowing translation, scaling, rotation and
reflection of the little disks — the simplicial category Psh.Disksn/ of simplicial presheaves on Disksn is
equivalent to the simplicial category of right Esn–modules [5, Section 6].

An embedding N ,!M determines a map EsN ! EsM of presheaves. Since the category Disksn has a
filtration by cardinality of path components, there results a canonical functorial cofiltration on mapping
spaces between presheaves and localizing at the objectwise weak equivalences also on the derived mapping
spaces. In the situation at hand, this cofiltration is called the embedding calculus Taylor tower.

Definition 2.2 (Boavida and Weiss) Let N and M be smooth manifolds of dimension n and m,
respectively. The embedding calculus Taylor tower for smooth embeddings of N into M is the cofiltered
derived mapping space of presheaves on truncations of the simplicial category Disksn:

T�Embs.N;M/ WDMaph
Psh.Disksn/

.EsN ;E
s
M /:

The cofiltered derived mapping space gives rise to a tower of comparison maps

:::

TkC1Embs.N;M/

Embs.N;M/ TkEmbs.N;M/

:::

�kC1

�k

We write T1Embs.N;M/ for the homotopy limit of the tower, which is to say the derived mapping
space of presheaves on the untruncated simplicial category Disksn. One can choose a model for the
derived mapping space such that these constructions are functorial in M;N 2Mflds , there are associative
and unital composition maps, and both functoriality and composition are compatible with the above
comparison maps. See [29, Section 3.3.1] for further discussion of this point.

The following is [16, Theorem 2.3], relying on excision estimates from Goodwillie and Klein [14].

Theorem 2.3 (Goodwillie, Klein and Weiss) The map �k is .3�mC.kC1/.m�n�2//–connected for
k > 0. In particular , if m�n� 3, then �1 is a weak equivalence.

In fact, we may replace n in the above result by the handle dimension hdim.N / of N . Recall that
hdim.N / � h if N is the interior of a manifold which admits a handle decomposition with handles of
index � h only. For example, hdim.Rn/D 0.
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If M DN , we write T�Diff.M/� T�Embs.M;M/ for the simplicial subset of homotopy invertible maps.
This distinction may very well be unnecessary; however, even in cases where every self-embedding of M
is a diffeomorphism, we do not know whether every path component of the limit of the Taylor tower is
invertible.

Question 2.4 When are all elements of �0 Maph
Psh.Disksm/

.EsM ;E
s
M / invertible?

2.2 Calculus for manifolds with boundary

We close with a brief description of the modifications necessary to use embedding calculus in the setting of
manifolds with boundary [5, Section 9]. Fixing a smooth manifold Z, we write MfldsZ for the simplicial
category of smooth manifolds with boundary identified with Z by a diffeomorphism, and morphism
spaces given by smooth embeddings that are the identity on Z. In particular, Mflds D Mflds¿. Let
Disksn;Z � MfldsZ be the full subcategory on those objects that are diffeomorphic relative to Z to a
disjoint union of a collar Z � Œ0; 1/ and finitely many copies of Rn.

An object P 2MfldsZ determines a representable presheaf on MfldsZ and we denote its restriction to
Disksn;Z by Es

P;@
. As before, for an object N 2MfldsZ of dimension n, we obtain an approximation

Embs@.N; P /! T�Embs@.N; P /DMaph
Psh.Disksn;Z/

.EsN;@;E
s
P;@/

as a cofiltered derived mapping space of presheaves on Disksn;Z . The conclusion of Theorem 2.3 holds
for this approximation, though handle dimension needs to be replaced by handle dimension relative to Z.

2.3 A simplicial category of topological manifolds

Recall that a topological embedding e W N ! M is locally flat if, for every p 2 N , there exist open
neighborhoods p 2 U and e.U / � V and homeomorphisms U Š Rn and V Š Rm fitting into the
commuting diagram

(1)
N � U V �M

Rn Rm

Š

ejU

Š

j

where j WRn!Rm is the standard inclusion .x1; : : : ; xn/ 7! .x1; : : : ; xn; 0; : : : ; 0/.

The simplicial category Mfldt has objects topological manifolds of finite type and arbitrary dimension,
with the n–simplices of the mapping space MapMfldt .N;M/ given by commuting diagrams

�n �N �n �M

�n

Geometry & Topology, Volume 28 (2024)



358 Ben Knudsen and Alexander Kupers

with the top map a locally flat embedding admitting charts as in (1) that commute with the projection
to �n. This definition is chosen so that the isotopy extension theorem holds.

As every smooth embedding is locally flat as a consequence of the tubular neighborhood theorem,
forgetting the smooth structure defines a simplicial functor from Mflds to Mfldt .

2.4 Microbundles

Microbundles were defined by Milnor in [37] and play the role of vector bundles for topological manifolds.

Definition 2.5 A retractive space is a map � W E ! B of topological spaces together with a section
� W B!E.

The spaces E and B are referred to as the total space and base space, and the maps � and � as projection
and zero section. Via the zero section, we identify B with its image in E, and we abusively refer to this
image also as the zero section. We abusively refer to a retractive space simply by the letter E.

Definition 2.6 A map F WE1!E2 of retractive spaces is a continuous map F WE1!E2 such that the
dashed filler exists in the commuting diagram

B1 E1 B1

B2 E2 B2

�1

f F

�1

f

�2 �2

Note that the map F determines the map f D �2 ıF ı �1. When we wish to emphasize the latter, we
say that F is a map of retractive spaces over f , or over B in the case f D idB . Retractive spaces and
morphisms between them form a category, Retr.

Definition 2.7 A microbundle is a retractive space E such that, for every b 2 B , there is an open
neighborhood b 2 U �E and a homeomorphism U Š �.U /�Rn such that the diagram

U

�.U / �.U /

�.U /�Rn

Š

��

commutes, where the bottom left map is induced by the inclusion of the origin and the bottom right is
projection onto the first factor.

Example 2.8 The prototypical example of a microbundle is the tangent microbundle of a topological
manifold — see Definition 2.13 below or [37, Example (3)].
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The homeomorphisms which appear in the previous definition are called microbundle charts. Note that,
by invariance of domain, the parameter n in Definition 2.7 is locally constant.

If E is a retractive space, so is any open neighborhood W of the zero section. The set of germs of maps
E1!E2 of retractive spaces is the colimit

colim
B1�U�E1

HomRetr.U;E2/;

over the poset of open subsets U of E1 containing B1, which may be composed as follows:

colim
B1�U�E1

HomRetr.U;E2/� colim
B2�V�E2

HomRetr.V;E3/ .F1; F2/

colim
B1�U�E1;B2�V�E2

HomRetr.U;E2/�HomRetr.V;E3/

colim
B1�W�E1

HomRetr.W;E3/ F2 ıF1jF�11 .V /

o

This composition is easily checked to be associative and unital.

Definition 2.9 A map F WE1!E2 of microbundles is a germ of a map of retractive spaces such that,
for every b 2 B1, there are microbundle charts around b and F.b/ fitting into the commuting diagram

U1 U2

�.U1/�Rn1 �.U1/�Rn2

Š

F jU1

Š

f j�.U1/�j

where j WRn1 !Rn2 is the standard inclusion and f W B1! B2 the map on base spaces induced by F .

Note that maps of microbundles are fiberwise embeddings.

Remark 2.10 When E1 and E2 are microbundles of the same fixed dimension, this definition reduces
to [37, Definition 6.3].

Example 2.11 The prototypical example of a map of microbundles is the topological derivative of a
locally flat embedding — see Definition 2.14 below.

It is easy to check that maps of microbundles are closed under composition of germs of maps of retractive
spaces, so we obtain a category Mic of numerable microbundles as a subcategory of the category Retr of
retractive spaces.
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A retractive space E with base B can be pulled back along a continuous map f W A! B to give a
retractive space f �E with base A; in the commutative diagram

A f �E A

B E B

f f

� �

the right-hand square is a pullback square, and the section A! f �E is induced by the maps id W A! A

and � ı f W A!E. This exhibits a canonical map of retractive spaces f �E!E. If E is a microbundle,
then f �E is so as well, and the canonical map is a map of microbundles [37, Section 3]. Given a
microbundle E with base B and a topological space X , we let X �E!X �B denote the pullback of E
along the projection X �B! B .

Microbundles form a simplicial category Mic via the declaration

MapMic.E1; E2/n WD HomMic.�
n
�E1; E2/:

Concretely, an n–simplex F W�n �E1!E2 can be described as a germ near the zero section �n �B1
of a commutative diagram

�n �E1 �n �E2

�n �B1 �n �B2

�n

.�1;F /

.�1;f /

with the additional properties that

(i) .�1; F / preserves the zero section, and

(ii) with respect to suitable microbundle charts, .�1; F / is given by the germ of

.id; f /jU1 � j W U1 �Rn1 ! U2 �Rn2

with j the standard inclusion.

Using that every topological horn is a retract of the corresponding topological simplex, it is easy to see
that these mapping objects are Kan complexes.

Microbundles adhere to a covering homotopy theorem analogous to the classical result for vector bundles
and fiber bundles, which has the following consequence. In it, Top denotes the simplicial category with
objects topological spaces and morphism spaces the singular simplicial sets of mapping spaces.

Lemma 2.12 The natural map MapMic.E1; E2/!MapTop.B1; B2/ is a Kan fibration with fiber over
f W B1 ! B2 canonically isomorphic to the simplicial subset of MapMic.E1; f

�E2/ with underlying
map idB1 .
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Proof We check that the map MapMic.E1; E2/!MapTop.B1; B2/ is a Kan fibration, as the identification
of the fiber is straightforward. To check the lifting property in a commutative diagram

ƒn
k

MapMic.E1; E2/

�n MapTop.B1; B2/

we first, by gluing, represent the top map by a map of microbundlesF Wƒn
k
�E1!E2 (here, and throughout,

we employ the same notation for a simplicial set and its geometric realization). We similarly represent
the bottom map by an extension of the map f underlying F to a continuous map g W�n �B1! B2.

Let us denote by zF , Qf and Qg the maps obtained from F , f and g using the homeomorphism of pairs

.�n; ƒnk/Š .�
n�1
� Œ0; 1�;�n�1 � f0g/:

Under this identification, the lifting problem at hand is equivalent to extending a map of microbundles
zF W�n�1�E1! Qf �E2 over �n�1�B1 to �n�1� Œ0; 1��E1! Qg�E2 over �n�1� Œ0; 1��B1. By the

microbundle homotopy covering theorem [37, Theorem 3.1], there is an isomorphism of microbundles
' W Qg�E2 Š Qf

�E2 � Œ0; 1� over �n�1 � Œ0; 1��B1. It is now evident that the desired extension exists, as
we may form the product of zF with Œ0; 1� and apply '�1.

2.5 Topological tangency

We come now to the motivating example of a microbundle, the “tangent bundle” of a topological manifold
[37, Lemma 2.1].

Definition 2.13 Let M be a topological manifold. The topological tangent bundle of M , denoted
by T tM , is the retractive space

M �
�!M �M �

�!M;

where � is the projection onto the first factor

To verify that T tM is a microbundle, it suffices, by locality, to assume M DRm, in which case we may
appeal to the commuting diagram

Rm �Rm .x; y/

Rm Rm

Rm �Rm .x; y � x/

Š

��

A smooth embedding has a derivative, and likewise a locally flat embedding ' WN !M has a topological
derivative.
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Definition 2.14 If ' WN !M is a locally flat embedding, the topological derivative T t' W T tN ! T tM

of ' is the map of microbundles

N N �N N

M M �M M

�

'

�

'�' '

� �

To verify that T t' is a map of microbundles, we may, by locality, assume that ' is the standard inclusion
Rn ,! Rm, in which case the bundle chart constructed above implies the claim. Thus, we obtain a
simplicial functor T t WMfldt !Mic

2.6 Comparing tangent bundles

We write Vec for the simplicial category of numerable vector bundles and maps of vector bundles, which
for us are always fiberwise linear injections. Specifically, given vector bundles E1! B1 and E2! B2,
an n–simplex of MapVec.E1; E2/ is a commuting diagram

E1 ��
n E2 ��

n

B1 ��
n B2 ��

n

�n

in which the top map is a fiberwise linear injection. As before, these mapping spaces are Kan complexes.

We record the following standard consequence of the covering homotopy theorem for vector bundles
[19, Theorem 4.3], whose proof proceeds along the lines of Lemma 2.12.

Lemma 2.15 The natural map MapVec.E1; E2/!MapTop.B1; B2/ is a Kan fibration with fiber over
f W B1 ! B2 canonically isomorphic to the simplicial subset of MapVec.E1; f

�E2/ with underlying
map idB1 .

Vector bundles are in particular microbundles, and assigning to a vector bundle its underlying microbundle
extends to a simplicial functor Mic! Vec.

We now have two ways of extracting a microbundle from a smooth manifold M : first, by considering its
tangent bundle TM as a microbundle; second, by forgetting the smooth structure and considering T tM .
To compare these, we use the following construction:

Construction 2.16 Fix a Riemannian metric on the smooth manifold M . The t D 1 exponential map is
defined on a neighborhood U of the zero section, and the assignment

expM W TM � U ! T tM; .p; v/ 7! .p; exp.p; v//

defines a map of retractive spaces.
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Proposition 2.17 (Milnor [37, Theorem 2.2]) The map of Construction 2.16 defines an isomorphism of
microbundles TM ��! T tM .

3 Formally smooth manifolds

The first goal of this section is to factor the forgetful functor from smooth to topological manifolds as in
the commuting diagram

Mflds Mfldt

Mfldr Mfldf

'

The simplicial category Mfldr is a category of Riemannian manifolds under embeddings respecting the
metric up to specified homotopy. It is introduced because Construction 2.16 requires a Riemannian metric.
As a result of the homotopy equivalence between O.n/ and GL.n/, the leftmost functor is an equivalence,
and the role of Mfldr is as a convenient proxy for Mflds . The simplicial category Mfldf is a category of
formally smooth manifolds, which is to say manifolds equipped with vector bundle refinements of their
topological tangent bundles.

The second goal of this section is to prove Theorem 3.18, which asserts that all information detectable by
embedding calculus is contained in Mfldf .

3.1 Simplicial categories of Riemannian and formally smooth manifolds

In this section, we have in mind the model of the homotopy pullback of simplicial categories explained in
Section 6.2.4, following [1].

We begin with the construction of Mfldr . We write Met for the simplicial category whose objects are
vector bundles endowed with Riemannian metrics and whose morphisms are fiberwise linear isometries,
which are assembled into simplicial sets in the same manner as in Vec. As before, these mapping spaces
are Kan complexes and we have the following consequence of local triviality:

Lemma 3.1 The natural map MapMet.E1; E2/! MapTop.B1; B2/ is a Kan fibration with fiber over
f W B1 ! B2 canonically isomorphic to the simplicial subset of MapMet.E1; f

�E2/ with underlying
map idB1 .

There is a canonical simplicial forgetful functor from Met to Vec.

Proposition 3.2 The forgetful functor Met!Vec is essentially surjective and induces weak equivalences
on mapping spaces.

Proof The first claim follows from the fact that every numerable vector bundle admits a Riemannian
metric. For the second claim, by Lemmas 2.15 and 3.1 it suffices to show that the maps induced on
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point–set fibers in the commuting diagram

MapMet.E1; E2/ MapVec.E1; E2/

MapTop.B1; B2/ MapTop.B1; B2/

are weak equivalences. By the same results, we may identify the left-hand (resp. right-hand) fiber over f
with the singular simplicial set of the space of sections of the associated bundle of noncompact (resp.
compact) Stiefel manifolds, whose fibers are general linear (resp. orthogonal) groups. The conclusion then
follows as the inclusion of the orthogonal group into the general linear group is a homotopy equivalence.

We use this to define Mfldr , which is a homotopy pullback as in Section 6.2.4.

Definition 3.3 The simplicial category of Riemannian manifolds is the homotopy pullback in the diagram

Mfldr Mflds

Met Vec

T

of simplicial categories over Top.

Notation 3.4 We denote the morphism spaces in Mfldr by Embr.�;�/.

Thus, an object of Mfldr is a smooth manifold with a choice of metric, and a morphism is a fiberwise
isometry covering a smooth embedding, together with a fiberwise homotopy through linear injections to
the derivative of the embedding.

As the following result illustrates, the forgetful functor exhibits Mfldr as a proxy for Mflds . This proxy
is easier to map out of.

Proposition 3.5 The forgetful functor Mfldr ! Mflds is essentially surjective , and induces weak
equivalences on mapping spaces.

Proof The first claim follows from the statement that every smooth manifold admits a Riemannian
metric. The second claim follows from Propositions A.2 and 3.2 and Lemma 2.15.

We continue with the construction of Mfldf , which is a homotopy pullback as in Section 6.2.4.

Definition 3.6 The simplicial category of formally smooth manifolds is the homotopy pullback in the
diagram

Mfldf Mfldt

Vec Mic

T t

of simplicial categories over Top.
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Notation 3.7 We denote the morphism spaces in Mfldf by Embf .�;�/.

Thus, an object of Mfldf is a topological manifold with a vector bundle refinement of its topological
tangent bundle, and a morphism is a fiberwise linear injection covering a topological embedding, together
with a fiberwise homotopy through embeddings to the topological derivative of the embedding.

It remains to construct the functor Mfldr !Mfldf .

Construction 3.8 We obtain Mfldr !Mfldf as an instance of Construction A.4. The requisite data are
the following:

(i) the simplicial functor Mfldr!Met!Vec associating to a Riemannian manifold its tangent bundle,

(ii) the simplicial functor Mfldr!Mflds!Mfldt associating to a Riemannian manifold its underlying
topological manifold,

(iii) the natural isomorphism indicated by the thick arrow between bottom-left and top-right compositions
in the diagram

Mfldr Mflds

Vec Mic

Š

arising from Construction 2.16.

Remark 3.9 Upon restricting to the respective full subcategories of manifolds of dimension different
from 4, the functor of Construction 3.8 becomes an equivalence by smoothing theory [22, Essays IV and V].

3.2 Smooth embeddings of Euclidean spaces

In the next sections, we assemble results on various types of embeddings of Euclidean spaces, which will
be used below in the proof of Theorem 3.18. We begin in the smooth context, where these results are
standard, but we include proofs for the sake of completeness.

Fix a smooth m–manifold M and a natural number 0 < n�m, as well as a point p 2M . We introduce
four simplicial sets, the first three defined as pullbacks of diagrams of the form

X

fpg M

(i) Taking X DMapVec.TRn; TM/ mapping to M by evaluation at the origin followed by projection,
we obtain MapVec;p.TRn; TM/.

(ii) TakingXDMapVec.T0R
n; TM/mapping toM in the same way, we obtain MapVec;p.T0R

n; TM/,
otherwise known as the (noncompact) Stiefel manifold of n–planes in TpM .
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(iii) Fixing an open subset 0 2 U �Rn and taking X D Embs.U;M/ mapping to M by evaluation at
the origin, we obtain Embsp.U;M/.

(iv) Finally, we write Gsp.n;M/ WD colim02U�Rn Embsp.U;M/ for the simplicial set of germs of
smooth embeddings (here U ranges over open subsets containing the origin).

Lemma 3.10 All maps in the commuting diagram

Embsp.R
n;M/ Gsp.n;M/

MapVec;p.TRn; TM/ MapVec;p.T0R
n; TM/

are weak equivalences.

Proof For the top map, the restriction Embsp.R
n;M/! Embsp.U;M/ is a weak equivalence whenever

U is an open ball centered at the origin, since the inclusion U � Rn is isotopic to a diffeomorphism
relative to the origin. The claim now follows from the observation that the subposet of such open balls is
final in the poset of all open neighborhoods of the origin, and both are filtered. For the bottom map, the
claim is a consequence of the contractibility of Rn and the homotopy covering theorem. For the right-hand
map, the claim may be tested on compact families of germs, so we may assume that M DRm. In this
case, the Stiefel manifold includes canonically into Embsp.R

n;Rm/, and composing with the map to
Gsp.n;R

m/ supplies a homotopy inverse. For the left-hand map, the claim follows by two-out-of-three.

We will also have use for a mild generalization of the claim regarding the top map. Let N D
F
i2I Rni

for some finite set I , and fix a collection pi 2M of points for each i 2 I such that pi ¤ pj if i ¤ j . Let
EmbspI .N;M/� Embs.N;M/ be the simplicial subset of embeddings sending the origin in Rni to pi .

Lemma 3.11 The canonical map EmbspI .N;M/!
Q
i2I G

s
pi
.ni ;M/ is a weak equivalence.

Proof The map in question factors through GspI .nI ;M/ WD colimU�N EmbspI .U;M/, where U ranges
over open subsets containing the origin in Rni for every i 2 I . As in the previous argument, the subposet
consisting of the disjoint unions of open balls around the respective origins is final, and both are filtered.
Thus, since the inclusion of such an open set into N is isotopic to a diffeomorphism, the first map is a
weak equivalence. On the other hand, the map

GspI .nI ;M/!
Y
i2I

Gspi .ni ;M/

is an isomorphism; indeed, injectivity is immediate, and surjectivity follows from the observation that any
family of I–tuples of germs parametrized over a compact space (such as a simplex) can be represented by
a family of I–tuples of embeddings whose images are pairwise disjoint at every point of the parameter
space.
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We write ConfI .M/ WD f.pi /i2I j pi ¤ pj if i ¤ j g �M I for the configuration space of particles in M
labeled by I .

Proposition 3.12 Let M be a smooth manifold and N D
F
i2I Rni . The diagram

Embs.N;M/ MapVec.TN; TM/

ConfI .M/ M I

induced by evaluation at the respective origins is homotopy Cartesian.

Proof This square is the outer square in the commuting diagram

Embs.N;M/
Q
i2I Embs.Rni ;M/

Q
i2I MapVec.TRni ; TM/

ConfI .M/ M I M I

so it suffices to verify that each of the inner squares is homotopy Cartesian. The left two vertical maps are
fibrations by the isotopy extension theorem [44, Chapter 6], and the right-hand vertical map is a product
of fibrations, the i th map being the composite of two fibrations

MapVec.TRni ; TM/!MapTop.R
ni ;M/!MapTop.f0g;M/:

Thus, it suffices to establish that the induced maps on fibers are weak equivalences.

For the right-hand square, the map on fibers is a product of weak equivalences by Lemma 3.10. For the
left-hand square, the map on fibers is the top map in the commuting diagram

Embs
pI
.N;M/

Q
i2I Embspi .R

ni ;M/

Q
i2I G

s
pi
.ni ;M/

Q
i2I G

s
pi
.ni ;M/

and the vertical maps are weak equivalences by Lemmas 3.10 and 3.11.

3.3 Topological embeddings of Euclidean spaces

We turn now to the topological versions of these facts, our goal being a description of locally flat
embeddings of Euclidean spaces in terms of microbundle maps and configuration spaces.

TakingM instead to be merely a topological manifold, we define the simplicial sets MapMic;p.TRn; TM/,
MapMic;p.T0R

n; TM/, Embtp.U;M/ and Gtp.n;M/ by replacing smooth embeddings with locally flat
embeddings and vector bundles with microbundles in the definitions of the previous section.
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Lemma 3.13 All maps in the commuting diagram

Embtp.R
n;M/ Gtp.n;M/

MapMic;p.TRn; TM/ MapMic;p.T0R
n; TM/

are weak equivalences. In fact , the right-hand vertical map is an isomorphism.

Proof The claim regarding the right-hand map follows upon inspecting the definitions, and the same
argument as in Lemma 3.10 suffices for the remaining three.

As in the smooth case, extending our notation in the obvious way, we have the following generalization:

Lemma 3.14 The canonical map EmbtpI .N;M/!
Q
i2I G

t
pi
.ni ;M/ is a weak equivalence.

Given these inputs and isotopy extension for locally flat embeddings [11] (see [40, Theorem 6.17] for the
variant with parameters), the topological analog of Proposition 3.12 follows by the same argument.

Proposition 3.15 Let M be a topological manifold and N D
F
i2I Rni . The diagram

Embt .N;M/ MapMic.T
tN; T tM/

ConfI .M/ M I

induced by evaluation at the respective origins is homotopy Cartesian.

3.4 Formally smooth embeddings of Euclidean spaces

The key calculation in the proof of Theorem 3.18 is a comparison between Riemannian embeddings and
formally smooth embeddings. We start with a lemma concerning Riemannian embeddings:

Lemma 3.16 Let M be a Riemannian manifold and N D
F
i2I Rni . The diagram

Embr.N;M/ MapMet.TN; TM/

ConfI .M/ M I

induced by evaluation at the respective origins is homotopy Cartesian.
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Proof The upper square of the commuting diagram

Embr.N;M/ MapMet.TN; TM/

Embs.N;M/ MapVec.TN; TM/

MapTop.N;M/

ConfI .M/ M I

is homotopy Cartesian by Propositions 3.2 and 3.5 (they imply that right and left vertical maps, respectively,
are weak equivalences), and the bottom square is homotopy Cartesian by Proposition 3.12.

We come now to the result of interest:

Proposition 3.17 Let M be a Riemannian manifold and N D
F
i2I Rni . Then the canonical map

Embr.N;M/! Embf .N;M/

is a weak equivalence.

Proof Consider the diagram

Embr.N;M/ Embf .N;M/ Embt .N;M/

MapMet.TN; TM/ MapVec.TN; TM/ MapMic.TM; TN/

The right square commutes, but the left square commutes only up to specified homotopy.

The maps from MapVec.TN; TM/ and MapMic.TN; TM/ to MapTop.N;M/ are fibrations by Lemma 2.15,
so Proposition A.2 grants that the right-hand square is homotopy Cartesian. Therefore, since the lower
left-hand map is a weak equivalence by Proposition 3.2, it suffices to show that the outer diagram is also
homotopy Cartesian. By Proposition 3.15 and Lemma 3.16, the vertical homotopy fibers in the outer
diagram are compatibly identified with the homotopy fiber of the inclusion ConfI .M/�M I , and the
claim follows.

3.5 Consequences for embedding calculus

In order to state the main result, we extend our notation in the obvious way by writing Diskfn and Diskrn
for the full subcategories on disjoint unions of finitely many copies of Rn in the appropriate categories of
manifolds, and similarly for derived mapping spaces of simplicial presheaves on these categories.
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Theorem 3.18 Given Riemannian metrics on smooth manifolds M and N , there is a canonical weak
equivalence

T�Embs.N;M/'Maph
Psh.Diskfn /

.EfN ;E
f
M /:

In particular , the embedding calculus Taylor tower depends only on M and N as formally smooth
manifolds.

Remark 3.19 The choice of Riemannian metric on M and N is irrelevant; the space of Riemannian
metrics on a smooth manifold is contractible, and our constructions are continuous in the Riemannian
metric in the sense that a path of Riemannian metrics gives rise to a homotopy of zigzags of maps between
the left- and right-hand sides.

Remark 3.20 Similar methods serve to establish a version of Theorem 3.18 for manifolds M and N
with common boundary Z.

The theorem is an immediate consequence of the following result, which will follow easily from
Proposition 3.17. Write f WDiskrn!Disksn and g WDiskrn!Diskfn for the respective forgetful functors,
and write ˆ WD LgŠf

� for the composite of the (automatically derived) restriction and derived induction
functors pertaining to these maps (a concrete model for the latter is available via a functorial cofibrant
replacement, for example).

Proposition 3.21 Fix n� 0.

(i) The functor ˆ W Psh.Disksn/! Psh.Diskfn / is essentially surjective up to weak equivalence , and
induces weak equivalences on derived mapping spaces.

(ii) For any Riemannian manifold M , there is a canonical weak equivalence ˆ.EsM /' EfM .

Proof By Proposition 3.17, the functors f and g are Dwyer–Kan equivalences and hence so are the
induced maps on presheaf categories [25], implying the first claim. For the second, we observe the zigzag

ˆ.EsM /D LgŠf
�EsM

� � LgŠE
r
M
��! LgŠg

�EfM
��! EfM ;

where the first two weak equivalences follow from Proposition 3.17.

4 Embedding calculus in dimension 4

The goal of this section is to prove Theorems A and B. At the heart of the matter is the question of
deciding when two 4–manifolds are formally diffeomorphic.
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4.1 Formal diffeomorphisms of 4–manifolds

A homeomorphism ' WN !M between formally smooth 4–manifolds has an associated element ks.'/ 2
H 3.N IZ=2/, called the relative Kirby–Siebenmann invariant (in higher dimensions it is sometimes called
the Casson–Sullivan invariant [39]). A definition for smooth 4–manifolds is given in [12, Corollary 8.3D],
and we define it now for formally smooth 4–manifolds.

By [23, Corollary 2], the topological tangent bundles of N and M have essentially unique lifts to R4–
bundles with structure group Top.4/, where we recall that Top.4/ is the space of self-homeomorphisms
of R4. Thus, we have the diagram

BO.4/

M

N BTop.4/

T tM

T fM
T fN

'

T tN

in which the right-hand and bottom triangles may be taken to commute strictly and the outer triangle to
commute up to homotopy. The obstruction to the remaining 3–dimensional cell of the diagram commuting
up to homotopy is the homotopy class of a map from N to Top.4/=O.4/, which is an Eilenberg–Mac Lane
space K.Z=2Z; 3/ through dimension 5 [12, Theorems 8.3B and 8.7A]. By definition, the resulting
obstruction class in H 3.N IZ=2Z/ is ks.'/. The following is immediate:

Proposition 4.1 Suppose ' WN !M is a homeomorphism between formally smooth 4–manifolds. Then
ks.'/ 2H 3.N IZ=2/ vanishes if and only if ' lifts to an isomorphism between N and M in Mfldf .

Corollary 4.2 Let N and M be smooth simply connected compact 4–manifolds. If N and M are
homeomorphic , then N and M are isomorphic in Mfldf .

Proof Choosing a homeomorphism ', we have ks.'/ 2H 3.N IZ=2Z/D 0 by Poincaré duality and the
assumption that N is simply connected.

Remark 4.3 Supposing N and M to be smooth, the sum-stable smoothing theorem in [12, Section 8.6]
asserts that, if ' lifts to an isomorphism between N and M in Mfldf , then N and M are stably
diffeomorphic: there exists g � 0 and a diffeomorphism

Q' WN #g .S2 �S2/
'
�!M #g .S2 �S2/:

The converse is also true, as forming the connected sum with S2 �S2 does not affect the value of the
relative Kirby–Siebenmann invariant.

4.2 Proof of Theorems A and B

The proofs of these theorems are now a matter of stringing weak equivalences together.
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Proof of Theorem A Assuming that N and M are smooth simply connected compact 4–manifolds
which are homeomorphic, we have the equivalences

Embs
�G
k

S1; N

�
' T1Embs

�G
k

S1; N

�
(Theorem 2.3)

'Maph
Psh.Diskf1 /

.EfF
k S

1 ;E
f
N / (Theorem 3.18)

'Maph
Psh.Diskf1 /

.EfF
k S

1 ;E
f
M / (Corollary 4.2)

' T1Embs
�G
k

S1;M

�
(Theorem 3.18)

' Embs
�G
k

S1;M

�
(Theorem 2.3).

Proof of Theorem B Once more assuming that N and M are smooth simply connected compact
4–manifolds, we have

T1Embs.N;M/'Maph
Psh.Diskf4 /

.EfN ;E
f
M / (Theorem 3.18)

'Maph
Psh.Diskf4 /

.EfN ;E
f
N / (Corollary 4.2);

and this last space is nonempty, as it contains the identity. On the other hand, any embedding of N
into M is a diffeomorphism by compactness, so Embs.N;M/ is nonempty if and only if N and M are
diffeomorphic.

Remark 4.4 Our proof of Theorem A implies that, under the same hypotheses, the finite stages
TrEmbs

�F
k S

1; N
�

and TrEmbs
�F

k S
1;M

�
are also weakly equivalent. A related result appears

in [3, Theorem A], where a study of the second stage of the Taylor tower is leveraged to show that, if N
is n–dimensional, the .2n�7/–skeleton of Embs.S1; N / does not depend on the smooth structure of N .

Remark 4.5 The element of T1Embs.N;M/ obtained in the course of the proof of Theorem B is
homotopy-invertible.

4.3 Remarks on the study of smooth 4–manifolds

In this section, we discuss some expected consequences of our results for the study of smooth 4–manifolds.
This discussion is informal and should be taken as motivation for further investigation.

One way to get invariants for smooth manifolds is from configuration space integrals. Pioneered by
Kontsevich [24] and developed subsequently by many authors, this type of invariant is given schematically
by a map of the form

H�.�/!H�.Embs.N;M//;

where � is a combinatorially defined cochain complex of graphs. We will remain vague about the
coefficients and the precise flavor of graph complex in question (there are many options); suffice it to
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say that an element of the graph complex is typically interpreted as a set of instructions for combining
differential forms on compactified configuration spaces.

Extrapolating from results in the literature, such as [38; 43], a positive answer to the following general
question is expected:

Question 4.6 Do configuration space integrals factor through the limit of the embedding calculus
Taylor tower?

H�.�/ H�.Embs.N;M//

H�.T1Embs.N;M//

9‹

If Question 4.6 has a positive answer, Theorem 3.18 implies that these invariants cannot distinguish exotic
smooth structures on M by taking N to be homeomorphic but not diffeomorphic to M , unless they are
already not formally diffeomorphic. For example, it would follow that this use of configuration space
integrals can shed no light on the smooth Poincaré conjecture in dimension 4, or at least not directly.

A second use for configuration space integrals, accessed by setting M DN , is to study the classifying
spaces of diffeomorphism groups. Again assuming a positive answer to Question 4.6, Theorem 3.18
implies that this approach is limited to detecting the algebraic topology of formal diffeomorphism groups;
for example, the results of Watanabe [45] on the rational homotopy of BDiff@.D4/ should be interpreted
as results about the automorphisms of D4 as a formally smooth manifold. This change in perspective has
concrete consequences.

Proposition 4.7 If Question 4.6 has a positive answer , then the natural map

Top.4/=O.4/! Top=O

is not a weak equivalence , even after rationalizing.

Proof By [45, Theorem 1.1], configuration space integrals produce many nontrivial classes of positive de-
gree inH�.BDiff@.D4/IR/, which our assumption implies are pulled back fromH�.BT1Diff@.D4/IR/.
A version of Theorem 3.18 with boundary implies that the map Diff@.D4/! T1Diff@.D4/ factors over
the automorphisms of D4 as a formally smooth manifold. By the Alexander trick, the latter are given
by �5Top.4/=O.4/, so Top.4/=O.4/ is not rationally trivial. The claim then follows from the fact that
Top=O is rationally trivial [22, Essay V].

A third use for configuration space integrals lies in distinguishing embeddings. As many open problems
in the topology of smooth 4–manifolds are of this type, Theorem 3.18 likewise rules out the direct use
of configuration space integrals in their solutions. For example, using configuration space integrals to
distinguish isotopy classes of embeddings of S3 into S4 cannot negatively resolve the 4–dimensional
smooth Schoenflies conjecture, as shown by the following result (here, the superscript C indicates
restriction to orientation-preserving embeddings):
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Proposition 4.8 The image of

Embs;C.S3 � .��; �/; S4/! T1Embs;C.S3 � .��; �/; S4/

lies in a single path component.

Proof By Theorem 3.18, it suffices to show that Embf;C.S3� .��; �/; S4/ is path connected. Since the
topological Schoenflies conjecture holds in dimension 4 [7], each locally flat embedding S3�.��; �/ ,!S4

extends to an orientation-preserving locally flat embedding R4 ,! S4. This embedding can be lifted to
one of formally smooth manifolds, since �4.Top.4/=O.4//D 0 [12, Theorems 8.3B and 8.7A]. Thus,
the restriction

Embf;C.R4; S4/! Embf;C.S3 � .��; �/; S4/

is surjective on path components. Finally,

Embf;C.R4; S4/' Embr;C.R4; S4/ (Proposition 3.17)

' Embs;C.R4; S4/ (Proposition 3.5)

' SO.5/ (Lemma 3.10);

and the last space is path connected.

Remark 4.9 Theorem 3.18 and the previous discussion suggests that it may be fruitful to study smooth
4–manifolds by

(a) studying formally smooth 4–manifolds, and, separately,

(b) studying the difference between smooth and formally smooth 4–manifolds.

The study of formally smooth 4–manifolds should be much like that of smooth manifolds in higher
dimensions, since the Whitney trick is available under assumptions on fundamental groups [12]. In
particular, it may be possible to obtain versions of the homological stability and stable homology results of
Galatius and Randal-Williams in this setting (see [13] for a survey). If so, one can study the moduli space
Mf .M/ of formally smooth manifolds isomorphic to M using the methods of homotopy theory, just as
one studies the moduli space Ms.M/ of smooth manifolds diffeomorphic to M in higher dimensions.

Next, we wish to separate the “exotic smooth structures” from the “formally smooth structures” by
defining a moduli space of “exotic” smooth manifolds formally isomorphic to M . Fixing a formally
smooth manifold M , this moduli space is defined as the homotopy fiber

Mex.M/ WD hofiberŒMs.M/!Mf .M/�

over the specified structure. As we argued above, configuration space integrals are likely blind to the
topology of this moduli space.

5 Embedding calculus and exotic spheres

In this section we prove Theorem C, which asserts the existence of exotic n–spheres † for which
T1Embs.†; Sn/D¿.
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5.1 Proof of Theorem C

Our proof uses the following convergence criterion:

Proposition 5.1 Let N1 and N2 be nondiffeomorphic closed smooth n–manifolds and M a smooth m–
manifold into which N1 does not embed. If m�n� 3 and N2 embeds inM , then T1Embs.N1; N2/D¿.
In particular , the map Embs.N1; N2/! T1Embs.N1; N2/ is a weak equivalence.

Proof By Theorem 2.3 and the assumption on N1, the target of the composition map

T1Embs.N1; N2/�T1Embs.N2;M/! T1Embs.N1;M/' Embs.N1;M/

is empty, so the source must be empty as well. The assumption on N2 says that the domain of the map
Embs.N2;M/! T1Embs.N2;M/ is nonempty, so the right factor of the source is also nonempty. Thus
the left factor is empty, as desired.

The heavy lifting is handled by a collage of classical results; see also [35, page 408].

Theorem 5.2 (Hsiang, Levine, Szczarba and Mahowald) If nD 2j with j � 3, then there is an exotic
n–sphere † that does not embed in RnC3.

Proof It suffices to show that there is an exotic n–sphere † that embeds in R2n�3 with nontrivial normal
bundle. Indeed, our assumptions on n imply that n < 2.n� 3/� 1, so [18, Lemma 1.1] then guarantees
that every embedding of † in R2n�3 has nontrivial normal bundle. Since every embedding of † in RnC3

has trivial normal bundle by [36, Corollary], there can be no such embedding, or else the composite

†!RnC3!R2n�3

has trivial normal bundle, a contradiction.

In order to find such a †, it suffices by [18, Theorem 1.2] to find a nonzero element ˛ 2 �n�1.SO.n�3//
annihilated by the maps i W�n�1.SO.n�3//!�n�1.SO/ŠZ and J W�n�1.SO.n�3//!�2n�4.S

n�3/.

When n � 0 .mod 8/ we have �n�1.SO.n � 3// Š Z˚ Z=2 by [20, page 161], with the 2–torsion
generated by the image @.�/ of a generator � 2�n.Sn�3/ŠZ=24Z under the connecting homomorphism

@ W �n.S
n�3/! �n�1 SO.n� 3/

of the fibration sequence SO.n� 3/! SO.n� 2/! Sn�3 [20, Theorem 3(i)].

We now prove that ˛ D @.�/ is in the kernel of both i and J . According to [18, page 176], the composite

�n.S
n�3/ @�! �n�1.SO.n� 3// J�! �2n�4.S

n�3/

is the Whitehead product Œ�;��, where � 2 �n�3.Sn�3/ is a generator. Then i.˛/ 2 �n�1.SO/ Š Z

is torsion, hence zero, while J.˛/ D Œ�; �� D 0 by [34, page 249, (2)] because n D 2j with j � 3
(Theorem 1.1.2(b) of [32] proved there are no other cases).

Proof of Theorem C Set N1 D† as in Theorem 5.2, N2 D Sn and M DRnC3 in Proposition 5.1.
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Given this result, several questions naturally arise.

Question 5.3 Given exotic n–spheres † and †0, is T1Embs.†;†0/ empty whenever † and †0 are not
diffeomorphic?

The argument for Theorem C proves something stronger:

Corollary 5.4 For † as in Theorem C, the map

Embs.†; Sn/! TkEmbs.†; Sn/

is a weak equivalence for any k � n� 4.

Proof By Theorem 2.3, the map Embs.†;RnC3/ ! TkEmbs.†;RnC3/ is a �0–surjection when
k � n�4, and similarly for Sn in place of †, so TkEmbs.†;RnC3/D¿ in this range, and the argument
of Proposition 5.1 applies.

Thus the .n�4/th stage of the embedding calculus Taylor tower can distinguish these exotic smooth
structures. On the other hand, since the first stage is given by bundle maps between tangent bundles, the
fact that exotic spheres have isomorphic tangent bundles shows that the first stage does not depend on the
smooth structure of †. Thus, in the following question, k lies in the range 2� k � n� 4.

Question 5.5 What is the smallest k such that TkEmbs.†; Sn/D¿?

The embedding calculus Taylor tower can be modeled geometrically in terms of stratified maps of bundles
over compactified configuration spaces [6; 41]. Since the first stage of the tower is never empty in the case
at hand, it follows that, in examples where T1Embs.†; Sn/D¿, such a stratified map exists between
compactified configuration spaces of k� 1 points that does not extend to configurations of k points.

Question 5.6 Does the classification of exotic spheres admit an interpretation in terms of stratified
obstruction theory applied to compactified configuration spaces?

5.2 Further examples

We indicate a few other exotic spheres for which the conclusion of Theorem C holds.

Example 5.7 The paper [2] studies the values of n and r for which the quotient of ‚n, the group of
oriented exotic spheres under connected sum, by the subgroup of oriented exotic spheres which embed
in RnCr with trivial normal bundle is nonzero. In particular, [2, Table 1] provides examples of exotic
n–spheres in dimensions nD 17; 18; 32; 33; 34; 37; 38 which do not embed in RnC3.

Example 5.8 According to [30], the generators of ‚n for nD 8; 9; 10 do not embed in RnC3.

In general, the homotopy-theoretic problem indicated by the proof of Theorem 5.2, which we believe to
be of independent interest, remains open.
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Question 5.9 Which elements of �n�1.SO.n� 3// lie in the common kernel of

i W �n�1.SO.n� 3//! �n�1.SO/ and J W �n�1.SO.n� 3//! �2n�4.S
n�3/‹

One can also vary the target in Theorem C.

Example 5.10 In [21, Theorem I] it is proven that an oriented exotic n–sphere †0 embeds in RnC2

if and only if it represents an element of the subgroup bPnC1 � ‚n of oriented exotic n–spheres that
bound a stably parallelizable .nC1/–manifold. In the proof of Theorem C, all we used about Sn is that it
embeds in RnC3, so the same argument gives us that

T1Embs.†;†0/D¿

whenever †0 represents an element of bPnC1 and † is as in Examples 5.7 and 5.8. (It is also true for †
as in Theorem 5.2, but for even n the group bPnC1 is always trivial.)

6 Isotopy extension for embedding calculus

Fix manifolds M and N of equal dimension n, a compact smooth submanifold P �N of codimension 0,
and an embedding e of P in M . Even though P is not an object of Mflds we can still define the presheaf
Embs.�; P /, obtain a corresponding presheaf EsP on Disksn, and define T1Embs.P;M/ to be the derived
mapping space Maph

Psh.Disksn/
.EsP ;E

s
M / of presheaves on Disksn. The goal of this section is to prove the

following result:

Theorem 6.1 Let M , N and P be as above. If hdim.P /� dim.M/� 3 or P D
F
I D

n for some finite
set I , then the diagram

T1Embs@.N n VP ;M n VP / T1Embs.N;M/

� T1Embs.P;M/

is homotopy Cartesian , where the bottom map is induced by the embedding e.

Removing the symbol T1 from the statement, one obtains the conclusion of the usual isotopy extension
theorem [44, Chapter 6], an important tool in the study of spaces of embeddings and diffeomorphisms.
Thus, Theorem 6.1 asserts that isotopy extension holds for limits of Taylor towers.

Remark 6.2 (i) We will see that the top horizontal map is the extension-by-identity map, as in
Section 6.1.2.

(ii) In this theorem, two different incarnations of embedding calculus occur; the top left-hand corner uses
the version for presheaves on Mflds@P , while the two right-hand corners use the version for presheaves
on Mflds .
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(iii) SinceP and VP are isotopy equivalent, the inclusion VP!P induces a weak equivalence of presheaves
Embs.�; VP /! Embs.�; P /, and thus a weak equivalence T1Embs.P;M/! T1Embs. VP ;M/. Under
the hypotheses of the theorem, the latter has the weak homotopy type of Embs. VP ;M/ by Theorem 2.3.

(iv) A more technical hypothesis guaranteeing the conclusion of the theorem is that, for all k � 0,
Embs

�
VP t

F
kD

n;M
�
! T1Embs

�
VP t

F
kD

n;M
�

is a weak equivalence.

(v) Isotopy extension for embedding calculus generalizes to spaces of neat embeddings of manifolds
with corners. Here the input is as follows: N and M are manifolds of equal dimension n with fixed
embedding @N ! @M , and P �N is a neatly embedded compact smooth submanifold of codimension 0
with corners whose boundary @P is the union of @0P D @P \ @N and a submanifold @1P , which meets
at the subset of corners of P . Fixing a neat embedding e W P !N which is equal to the given embedding
near @0P , we have the homotopy Cartesian square

T1Embs@1P[@Nn V@0P .N n VP ;M n VP / T1Embs@N .N;M/

� T1Embs@0P .P;M/

The argument is essentially the same as that given below, but with more involved notation.

6.1 Proof of Theorem 6.1

6.1.1 Complete Weiss covers We begin with a discussion of a well-known form of locality enjoyed by
embedding calculus.

Definition 6.3 Let X be a topological space and 1 � k �1. A collection of open subsets U of X is
a Weiss k–cover if every finite subset of X with cardinality � k is contained in some element of U . A
Weiss k–cover U is complete if it contains a Weiss k–cover of

T
U2U0 U for every finite subset U0 � U .

The following result asserts that Tk has descent for complete Weiss k–covers. The intended application is
to k D1 and Es

M;@
.

Lemma 6.4 Let N be a smooth manifold and 1 � k � 1. If F is a presheaf on MfldZ and U is a
complete Weiss k–cover of N , each element of which contains @N , then the natural map

TkF.N/! holim
U2U

TkF.U /

is a weak equivalence.

Proof Since derived mapping spaces convert homotopy colimits in the source to homotopy limits, it
suffices to show that the natural map

hocolim
U2U

EsU;@! EsN;@
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is a weak equivalence of presheaves on the full subcategory Disksn;Z;�k whose objects are diffeomorphic
to a disjoint union of Z � Œ0; 1/ and finitely many but at most k copies of Rn. Since homotopy colimits
of presheaves are computed pointwise, it suffices to check the corresponding claim for

Embs@

�
Z � Œ0; 1/t

G
I

Rn;�

�
for every finite set I of cardinality � k.

Assume first that Z D¿. Given a configuration fpigi2I 2 ConfI .N / to serve as a basepoint, consider
the commuting diagramQ

i2I Embspi .R
n; N /

Q
i2I MapVec;pi .TRn; TN /

Embs
�F

I Rn; N
�

E

ConfI .N / ConfI .N /

where E D MapVec.TRn; TN /I jConfI .N/. As in the proof of Lemma 3.16, the vertical columns are
fibration sequences and the top map is a weak equivalence, so the middle map is so. The same remarks
apply after replacing N by U . The claim follows upon observing that the natural map

hocolim
U2U

EjU !E

is a weak equivalence by [10, Proposition 4.6], since the collection fConfI .U /gU2U is a complete cover
of ConfI .N / in the sense of [10, Definition 4.5].

In the general case, consider the commuting diagram

hocolim
U2U

Embs@
�
Z � Œ0; 1/t

F
I Rn; U

�
Embs@

�
Z � Œ0; 1/t

F
I Rn; N

�

hocolim
U2U

Embs
�F

I Rn; VU
�

Embs
�F

I Rn; VN
�

where the vertical arrows are induced by restriction. Since the collection f VU gU2U is a complete Weiss
k–cover of VN , the bottom arrow is a weak equivalence by the previous case. Since Embs@.Z � Œ0; 1/; N /
is contractible and N is isotopy equivalent to its interior, isotopy extension implies that the right-hand
map is an equivalence, and the same considerations applied to U show that the left-hand map is as well,
implying the claim.

Remark 6.5 The map F ! TkF can be described as homotopy sheafification with respect to Weiss
k–covers [5, Theorem 1.2].
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6.1.2 Extension-by-identity maps Suppose M , N and P are manifolds with a common boundary Z.
Then we can form the manifolds M [@ P and N [@ P , and construct an extension-by-identity map

Embs@.N;M/! Embs.N [@ P;M [@ P /:

Lemma 6.6 There is a dashed map making the following diagram commute up to preferred homotopy:

Embs@.N;M/ Embs.N [@ P;M [@ P /

T1Embs@.N;M/ T1Embs.N [@ P;M [@ P /

Proof Consider the map

Embs@.�;M/! Embs.�[@ P;M [@P P /

of presheaves on Disksn;Z induced by extension-by-identity, postcomposed with

Embs.�[@ P;M [@ P /! T1Embs.�[@ P;M [@ P /:

As the target satisfies descent for complete Weiss1–covers by construction, and T1Embs@.�;M/ is the
homotopy sheafification of Embs@.�;M/ with respect to Weiss1–covers by Remark 6.5, this factors
essentially uniquely over T1Embs@.�;M/. Evaluating at N , we get the desired diagram.

6.1.3 Proof of Theorem 6.1 We proceed by applying Lemma 6.4 with k D1 and F D Es
M;@

to a
convenient cover. Write DP�N for the collection of open subsets U of N that are disjoint unions of a
finite number of open balls in N nP together with a collar neighborhood of P . In other words, U is
diffeomorphic, relative to P , to the manifold

.P [ @P Œ0; 1//t
G
I

Rn

for some finite set I .

The reader is invited to check that DP�N is a complete Weiss cover of N . This cover also has the
following pleasant property:

Lemma 6.7 The poset DP�N is contractible.

Proof Let CP�N �DP�N denote the full subposet spanned by the objects, so that the inclusion P ,!U

is 0–connected, ie an object of CP�N is simply a collar neighborhood of P . A retraction and right adjoint
to the inclusion of this subcategory is obtained by sending U to the component of U containing P . The
claim now follows upon noting that CP�N is contractible, being cofiltered.

Remark 6.8 By adapting [31, Section 5.5.2], something much stronger can be shown, namely that
DP�N is final in a sifted1–category.
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We now prove the isotopy extension theorem.

Proof of Theorem 6.1 Suppose first that hdim.P /� dim.M/� 3. Restricting to U 2 DP�N induces
the commuting diagram

T1Embs@.N n VP ;M n VP / holim
U2DP�N

T1Embs@.U n VP ;M n VP / holim
U2DP�N

Embs@.U n VP ;M n VP /

T1Embs.N;M/ holim
U2DP�N

T1Embs.U;M/ holim
U2DP�N

Embs.U;M/

T1Embs.P;M/ holim
U2DP�N

T1Embs.P;M/ holim
U2DP�N

Embs.P;M/

.1/ .4/

.2/ .5/

.3/ .6/

where the top vertical maps are given by extension-by-identity and the bottom vertical maps by restriction
to P .

For each U 2DP�N , the rightmost column is a fibration sequence by the usual isotopy extension theorem.
Since all have e W P ,!M as a basepoint, it remains a fibration sequence after taking homotopy limits.
The claim will follow upon verifying that each of the numbered arrows is a weak equivalence. For the
maps (1) and (2) this follows from Lemma 6.4 applied with k D 1 and F D Es

Mn VP;@
or F D EsM ,

respectively; for (3) from Lemma 6.7; for (5) and (6) from Theorem 2.3 and our assumption on P ; and
for (4) from the Yoneda lemma.

The only modification in the case P D
F
I Rn is for the sixth arrow, which is now an equivalence by the

Yoneda lemma.

6.2 Applications of isotopy extension

We now give some applications of Theorem 6.1.

6.2.1 Rephrasing Question 5.3 Let † and †0 be exotic n–spheres. Fixing disks Dn �†;†0, we write
D† WD†n VD

n for the corresponding exotic disk with boundary identified with @Dn, and similarly forD†0 .

Corollary 6.9 There is a fibration sequence

T1Embs@.D
n
†;D

n
†0/! T1Embs.†;†0/!O.nC 1/

with fiber taken over the identity.

Proof We apply Theorem 6.1 with N D †, M D †0 and P D Dn. The tangent bundle of an exotic
sphere is isomorphic to that of the standard sphere (a well-known consequence of [9, Proposition 5.4(iv)]),
so Embs.Dn; †0/ is weakly equivalent to the orthogonal frame bundle of TSn, which is homeomorphic
to O.nC 1/.
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To connect to results about the groups ‚n, we consider a version of Question 5.3 for oriented exotic
n–spheres and orientation-preserving embeddings. This question is essentially equivalent: given two
oriented exotic n–spheres† and†0, then T1Embs.†;†0/ contains an element which reverses orientation
(this is well defined since T1 maps to T1 via bundle maps) if and only if T1Embs;C.†;†0/ ¤ ¿,
where †0 denotes †0 with opposite orientation. As before, we use a superscript C to denote orientation-
preserving embeddings.

Corollary 6.10 Let † and †0 be oriented exotic n–spheres. Then T1Embs;C.†;†0/ is nonempty if
and only if T1Embs@.D

n
†;D

n
†0/ is nonempty.

Proof This follows directly from the oriented version of the fibration sequence in Corollary 6.9:

T1Embs@.D
n
†;D

n
†0/! T1Embs;C.†;†0/! SO.nC 1/:

Let us define a relation on ‚n by saying

Œ†��T1 Œ†
0� () T1Embs;C.†;†0/¤¿:

Lemma 6.11 This is an equivalence relation , and is compatible with addition on ‚n.

Proof It is easy to see it is reflexive and transitive, so we prove it is symmetric. To do so, we claim that
T1Embs;C.†;†0/¤ ¿ if and only if T1Embs;C.† #†0; Sn/¤ ¿. Using the previous corollary, the
statement is equivalent to

T1Embs@.D
n
†;D

n
†0/¤¿ () T1Embs@.D

n

†#†0
;Dn/¤¿:

This follows from the fact that the operation of boundary connected sum with Dn
†0

, which is an instance
of extension-by-identity, induces a map

T1Embs@.D
n
†;D

n
†0/! T1Embs@.D

n

†#†0
;Dn/

with homotopy inverse given by the boundary connected sum with Dn†0 . For symmetry we use that,
by reversing orientations on both the domain and target, T1Embs;C.† #†0; Sn/ ¤ ¿ if and only if
T1Embs;C.† #†0; Sn/¤¿, and that Sn has an orientation-reversing self-diffeomorphism.

We now prove �T1 is compatible with the addition in ‚n. By taking the boundary connected sum with
Dn†00 or Dn

†00
, we obtain that T1Embs@.D

n
†;D

n
†0/¤¿ if and only if T1Embs@.D

n
†#†00 ;D

n
†0#†00/¤¿, so

Œ†��T1 Œ†
0� () Œ†�C Œ†00��T1 Œ†

0�C Œ†00�:

Example 6.12 For † as in Theorem C, T1Embs.Sn; †/D¿.

Example 6.13 The subset fŒ†� 2‚n j Œ†��T1 ŒS
n�g is a subgroup.

Geometry & Topology, Volume 28 (2024)



Embedding calculus and smooth structures 383

The results of [6] shed some light on the space T1Embs@.D
n
†;D

n
†0/. Their statement involves the operad

En of little n–disks and its derived automorphisms.

Proposition 6.14 There is a fibration sequence

T1Embs@.D
n
†;D

n
†0/!X !X 0

with X an �nO.n/–torsor and X 0 an �nAuth.En/–torsor with preferred basepoint.

Proof According to [6, Theorem 1.1] (with modifications for manifolds with boundary as in [6, Section 6]),
there is a homotopy Cartesian square

T1Embs@.D
n
†;D

n
†0/ Y

MapVec;@.TD
n
†; TD

n
†0/ Y 0

where Y is contractible [6, Theorem 1.4] and Y 0 is a mapping space between certain “local configuration
categories.” We require only two pieces of information about Y 0: it is the space of compactly supported
sections of a bundle over Dn†, and the fibers are weakly equivalent to Auth.En/ by [6, Theorem 1.2].
These facts give the identification of the right-hand term, and the identification of the middle term follows
from the aforementioned fact about tangent bundles of exotic spheres.

The action of O.n/ on the little n–disks operad by rotation gives a map O.n/! Auth.En/. We do not
know much about its effect on homotopy groups. Nevertheless, using our results on exotic spheres, we
can say the following:

Corollary 6.15 The map O.n/! Auth.En/ is not surjective on �n when nD 2j with j � 3.

Proof Let † be an exotic n–sphere as in Theorem 5.2. Looping the map O.n/! Auth.En/, we obtain
a map �nO.n/! �nAuth.En/, and the torsor structures on the domain and target of X ! X 0 are
compatible with this. If the map O.n/!Auth.En/ were surjective on �n, Proposition 6.14 would imply
that X !X 0 is surjective on path components, and hence T1Embs@.D

n
†;D

n/¤¿. Corollary 6.10 then
implies a contradiction of Theorem 5.2.

Remark 6.16 The map in question is injective on �n, at least when n is sufficiently large. Restricting to
the .n�1/–sphere of binary operations in En and suspending produces the right-hand map in O.n/!
Auth.En/! Auth�.S

n/ whose composite is the unstable J –homomorphism, which is injective on �n for
n� 40 [33].

6.2.2 Morlet’s theorem for T1 Setting † D †0 D Sn we draw the following conclusion, with
Auth.En/=O.n/ notation for the homotopy fiber of BO.n/! BAuth.En/.
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Corollary 6.17 There are weak equivalences

T1Diff@.D
n/'�nC1Auth.En/=O.n/ and T1Diff.Sn/'O.nC 1/��nC1Auth.En/=O.n/:

Proof When †D†0 D Sn, we have Dn† DD
n
†0 DD

n. In the fibration sequence

T1Embs@.D
n;Dn/!�nO.n/!�nAuth.En/

from Proposition 6.14, the basepoint is provided by the constant map at the identity. So T1Embs@.D
n;Dn/

is the fiber of a map of n–fold loop spaces over the unit, and hence it is grouplike. This implies that
T1Diff@.Dn/D T1Embs@.D

n;Dn/, and the first claim follows. The second claim then follows from
Corollary 6.9, using the splitting provided by the natural action of O.nC 1/ on Sn.

This result is to be compared to the classical theorem of Morlet, which asserts the same conclusion with
T1 removed and Auth.En/ replaced by Top.n/; see eg [8, Theorem 4.4(b); 22, Essay V]. Unlike Morlet’s
theorem, our results are valid even for nD 4.

Example 6.18 Since Aut.E2/'O.2/ [17, Theorem 8.5], we conclude that Diff.S2/! T1Diff.S2/ is
a weak equivalence, furnishing another example of convergence in codimension 0. In fact, embedding
calculus always converges for diffeomorphisms of surfaces, by [26, Theorem A].

6.2.3 Rephrasing the Weiss fibration sequence Consider a manifold M with @M D Sn�1 and disc
Dn � M such that @M \Dn D Dn�1 � @Dn; that is, the disk meets the boundary of M in half its
boundary. Then there is a fibration sequence which — informally speaking — describes Diff@.M/ as built
from Diff@.Dn/ and a certain space of self-embeddings of M [28, Section 4; 47, Remark 2.1.2]. We will
use Theorem 6.1 to reformulate this result.

Let T1DiffŠ@ .M/ � T1Diff@.M/ denote the union of the path components lying in the image of
Diff@.M/. The following result asserts that, with suitable assumptions on M , the homotopy fiber

M 7! hofiberŒBDiff@.M/! BT1DiffŠ@ .M/�;

which we think of as the “error term” involved in applying embedding calculus to diffeomorphisms, is
independent of M .

Corollary 6.19 Let M be a 2–connected compact smooth manifold of dimension n�6with @M DSn�1.
The diagram

BDiff@.Dn/ BDiff@.M/

BT1DiffŠ@ .D
n/ BT1DiffŠ@ .M/

is homotopy Cartesian.
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Proof Fix an embedded closed disk Dn�1 � @M , and let Embs@=2.M/ denote the simplicial monoid
of self-embeddings of M fixing Dn�1 pointwise. There is the grouplike submonoid Embs;Š

@=2
.M/ �

Embs@=2.M/ given by the union of the path components lying in the image of Diff@.M/. By naturality
properties of embedding calculus (see [27, Sections 3 and 4] for a detailed proof of these), the diagram

BDiff@.Dn/ BDiff@.M/ BEmbs;Š
@=2
.M/

BT1DiffŠ@ .D
n/ BT1DiffŠ@ .M/ BT1Embs;Š

@=2
.M/

commutes. In [28, Lemma 3.14] it is verified that M has handle dimension at most n�3 relative to Dn�1,
so the right-hand vertical map is a weak equivalence (strictly speaking, to apply embedding calculus as
discussed above we must remove the complement of Dn�1 in Sn�1, which gives homotopy equivalent
spaces). By isotopy extension (see [28, Theorem 4.17; 47, Remark 2.1.2]) the top row is a fibration
sequence, and the bottom row is a fibration sequence by Theorem 6.1 (using the extension explained in
Remark 6.2(v)).

6.2.4 An example of convergence in handle codimension 2 We finish with an example of the conver-
gence of the embedding calculus Taylor tower in handle codimension 2. For the sake of readability, we
omit some details regarding boundary conditions; for example, strictly speaking, to apply embedding
calculus as discussed above, one must remove parts of S2 D @D3 not in @0D1C;�.

Let D3 �R3 be the closed unit disk, which contains the interval

D1 D f.x1; 0; 0/ j x1 2 Œ�1; 1�g

as a submanifold with boundary. We let

R3C WD f.x1; x2; x3/ j x1 � 0g

denote the half-plane and set D1
C
WDD1\R3

C
. This is a manifold with boundary given by the union of

the two points @0D1C D f.0; 0; 0/g DD
0 and @1D1C WD f.1; 0; 0/g DD

1
C
\S2.

The situation we will be interested in is obtained by “thickening” to codimension 0 the following simpler
situation. By isotopy extension, there is a fibration sequence

Embs@.D
1
C;D

3/! Embs@1.D
1
C;D

3/! Embs.D0;D3/;

where the fiber is taken over the inclusion. As the middle term is contractible, we obtain the weak
equivalence Embs@.D

1
C
;D3/ ��!�Embs.D0;D3/' �, a space-level version of the light bulb trick.

We now “thicken” all the submanifolds involved to codimension 0. Fixing a small � > 0, we replace
D0 by D3� and D1

C
by the union of D3� with a closed 1

2
�–neighborhood of D1

C;� in D3. We let C
denote the closure of D1

C;� n
VD3� in D1

C;� , essentially a cylinder. Its boundary intersects the larger sphere

Geometry & Topology, Volume 28 (2024)



386 Ben Knudsen and Alexander Kupers

D3

D1
C

�@0D
1
C

� @1D
1
C

D3

D3�

C

Figure 1: Left: the subspaces of D3 involved in the earlier part of Section 6.2.4. Right: the
subspaces of D3 involved in the latter part of Section 6.2.4. The shaded region is D1

C;� .

in @0D1C;� WD D
1
C;� \ S

2 and the smaller sphere in @1D1C;� WD D
1
C;� \ S

2
� \R3

C
. As before, isotopy

extension produces a fibration sequence with contractible middle term, whence the weak equivalence

Embs@0[@1.C;D
3
n VD3� /

��!�Embs.D3� ;D
3/'�O.3/:

We now show that embedding calculus captures this homotopy type; specifically, the left-hand vertical
map is a weak equivalence in the commuting diagram

Embs@0[@1.C;D
3 n VD3� / Embs@1.D

1
C;�;D

3/ Embs.D3� ;D
3/

T1Embs@0[@1.C;D
3 n VD3� / T1Embs@1.D

1
C;�;D

3/ T1Embs.D3� ;D
3/

giving an example of convergence in codimension 2. Since D3 has handle dimension 0, isotopy extension
for embedding calculus — or, rather, the extension to neat embeddings of manifolds with corners — implies
that the bottom row is also a fibration sequence, so it suffices to show that the middle and right-hand vertical
maps are weak equivalences, both of which follow from the Yoneda lemma. For the latter map, we use that
the inclusion of the interiorD3� induces a weak equivalence T1Embs.D3� ;D

3/'T1Embs. VD3� ;D
3/. For

the former, we may similarly replace the source in T1Embs.D1
C;�;D

3/ with an open collar on @1D1C;� .

Remark 6.20 These results generalize from dimension 3 to arbitrary dimension n � 3 by changing
notation; this says that embedding calculus converges in codimension 2 for embeddings of Dn�3 �C in
Dn�3 � .D3 n VD3� /.

Appendix Homotopy pullbacks of simplicial categories

In this appendix, we discuss a simplicial variant of a construction introduced in [1, Section 9] for
topological categories.
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Suppose given the solid commuting diagram of simplicial categories

A�hC B B

C

A Top

G

PB

PCF

PA

where Top denotes the simplicial category of topological spaces. Via the structure functors to Top, objects
and morphisms in A, B and C have underlying spaces and maps.

Construction A.1 We define a simplicial category A�hC B as follows:

(i) The objects of A�hC B are triples .A;B; f /, where A 2A and B 2 B are objects with the same
underlying space, and f W F.A/!G.B/ is an isomorphism with underlying map the identity.

(ii) An n–simplex in the mapping space from .A1; B1; f1/ to .A2; B2; f2/ is a triple .';  ; /, where
' 2MapA.A1; A2/n and  2MapB.B1; B2/n have the same underlying simplex in Top, and  is
a path f2 ıF.'/)G. / ıf1 in .MapC.F.A1/; G.B2//

�1/n covering the constant path.

(iii) Composition is induced by composition in A, B and C, and the diagonal of �1.

The notation A�hCB is justified by the following result, whose proof we defer to the end of this subsection
and may be skipped on a first reading.

Proposition A.2 Suppose that

(i) the simplicial sets MapB.B1; B2/ and MapC.F.A1/; G.B2// are Kan complexes , and

(ii) the structure maps MapB.B1; B2/ ! MapTop.PB.B1/; PB.B2// and MapC.F.A1/; G.B2// !
MapTop.PA.A1/; PB.B2// are Kan fibrations.

The diagram

MapA�hCB..A1; B1; f1/; .A2; B2; f2// MapB.B1; B2; /

MapA.A1; A2/ MapC.F.A1/; G.B2//
is homotopy Cartesian.

Note that the diagram in question commutes only up to specified homotopy.

Remark A.3 Proposition A.2 implies that A�hC B is often the homotopy pullback of A and B over C in
the Bergner model structure on simplicial categories [4]; specifically, we require the assumptions of the
proposition to hold for all objects, and we require that Ho.PB/ and Ho.PC/ be isofibrations. Therefore, we
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think of A�hC B as a (particularly convenient) model for the pullback of1–categories, whose homotopy
theory is captured by the Bergner model structure.

Construction A.4 Suppose A, B and C are as above. Let D be a simplicial category equipped with
simplicial functors H W D! A and K W D! B over Top, together with the natural isomorphism � in
the diagram

D B

A C

H

K

G
�

F

We obtain a functor D!A2 �
h
C2

B2 as follows:

(i) The object D 2D is sent to the triple .H.D/;K.D/; �D/.

(ii) The n–simplex � 2MapD.D1;D2/ is sent to the triple consisting of H.�/, K.�/ and the constant
path at �D2 ıH.�/DK.�/ ı�D1 .

To prove Proposition A.2, it will be convenient to put ourselves in a more general setting. Suppose we
have the commutative diagram of simplicial sets

X

Z Y

W

g
pX

pZ

h

pY

Write P for the standard model of the homotopy pullback of X and Z over Y ; explicitly, P is the limit
of the diagram

X Y �
1

Z

Y Y

g ev1ev0 h

Finally, write P0 for the pullback in the diagram

P0 P

W W �1

�

q

where the bottom arrow is the inclusion of the constant maps and q is the composition of the projection to
Y �

1

with .pY /�
1

. We think of P0 as the subspace of the homotopy pullback lying over constant paths
in W . In the example of interest, X , Y and Z are mapping spaces in the relevant simplicial categories,
and W is the corresponding mapping space in Top.
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The topological analog of the following result is asserted in [1, Section 9]. We include a proof for the
sake of completeness.

Lemma A.5 If pY and pZ are fibrations , then � is a weak equivalence.

Proof Given the solid commuting diagram

@�n P0

�n P

�

we will produce the dashed arrow making the top triangle commute and the bottom triangle commute up
to homotopy fixing @�n. First, using the assumption that pZ is a fibration, we solve the lifting problem

�n ��0 t@�n��0 @�
n ��1 P Z

�n ��1 W

pZ

where the bottom map is the adjunct of the composite �n! P ! Y �
1

!W �1 , and the left-hand map
is induced by the inclusion of the vertex 0. Composing with h and passing back through the adjunction,
we obtain the top map in the commuting diagram

�n Y �
1

P Y �
1

Y

ev0

ev1

There is an induced map �n �ƒ21! Y , and we use the assumption that pY is a fibration to solve the
lifting problem

�n �ƒ21 t@�n�ƒ21
@�n ��2 Y

�n ��2 �n ��1 W

pY

Restricting to the third face of �2, we obtain by adjunction the middle map in the commuting diagram

�n

X Y �
1

Z

Y Y

g ev1ev0 h
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where the left-hand map is the composite �n! P !X , and the right-hand map is the restriction of our
earlier lift �n ��1!Z to the vertex 1. The resulting map �n! P factors through P0 and restricts
to the original map on @�n by construction. Also by construction, the right-hand square of the above
diagram comes equipped with a homotopy relative to @�n, which furnishes the desired homotopy.

Proof of Proposition A.2 The first assumption guarantees that the standard model for the homotopy
pullback has the correct weak equivalence type. The second assumption permits the invocation of
Lemma A.5, which guarantees that the canonical map from MapA�hCB..A1; B1; f1/; .A2; B2; f2// to the
standard model for the homotopy pullback is a weak equivalence.
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A log Calabi–Yau surface with maximal boundary, or Looijenga pair, is a pair .Y;D/ with Y a smooth
rational projective complex surface and D DD1C � � � CDl 2 j�KY j an anticanonical singular nodal
curve. Under some natural conditions on the pair, we propose a series of correspondences relating five
different classes of enumerative invariants attached to .Y;D/:

(1) the log Gromov–Witten theory of the pair .Y;D/,
(2) the Gromov–Witten theory of the total space of

L
i OY .�Di /,

(3) the open Gromov–Witten theory of special Lagrangians in a Calabi–Yau 3–fold determined by .Y;D/,
(4) the Donaldson–Thomas theory of a symmetric quiver specified by .Y;D/, and
(5) a class of BPS invariants considered in different contexts by Klemm and Pandharipande, Ionel and

Parker, and Labastida, Mariño, Ooguri and Vafa.

We furthermore provide a complete closed-form solution to the calculation of all these invariants.
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1 Introduction

1.1 Looijenga pairs

A log Calabi–Yau surface with maximal boundary, or Looijenga pair, is a pair Y.D/ WD .Y;D/ consisting
of a smooth rational projective complex surface Y and an anticanonical singular nodal curve D D
D1C� � �CDl 2 j�KY j. A prototypical example of Looijenga pair is given by .Y;D/D .P2;D1CD2/
for D1 a line and D2 a conic not tangent to D1.

Looijenga pairs [79] were first systematically studied in relation with resolutions and deformations of
elliptic surface singularities and with degenerations of K3 surfaces; see Friedman and Scattone [41]. More
recently, Looijenga pairs have played an important role as two-dimensional examples for mirror symmetry;
see Barrott [9], Bousseau [13], Gross, Hacking and Keel [53], Hacking and Keating [60], Mandel [81]
and Yu [114; 115] and, for the theory of cluster varieties, Gross, Hacking and Keel [52], Mandel [82] and
Zhou [117]. These new developments have had in return nontrivial applications to the classical geometry
of Looijenga pairs; see Engel [38], Friedman [40] and Gross, Hacking and Keel [53; 54].

1.2 Summary of the main results

In this paper we develop a series of correspondences relating different enumerative invariants associated
to a given Looijenga pair. We start off by giving a very succinct summary of the main objects we will
consider, and the main statements we shall prove.

1.2.1 Geometries Let .Y;D DD1C � � �CDl/ be a Looijenga pair with l � 2. In this paper we will
construct four different geometries out of .Y;D/:

� the log Calabi–Yau surface geometry Y.D/;

� the local Calabi–Yau .lC2/–fold geometry EY.D/ WD Tot
�
OY .�D1/˚ � � �˚OY .�Dl/

�
;

� a noncompact Calabi–Yau threefold geometry canonically equipped with a disjoint union of l � 1
Lagrangians,

Y op.D/ WD
�
Tot
�
O.�Dl/! Y n .D1[ � � � [Dl�1/

�
; L1 t � � � tLl�1

�
;

where Li are fibred over real curves in Di ;

� for l D 2, a noncommutative geometry given by a symmetric quiver Q.Y.D// made from the
combinatorial data of the divisors Di and their intersections.

1.2.2 Enumerative theories Our main focus will be on the enumerative geometry of curves in these
geometries. More precisely, to a Looijenga pair Y.D/ satisfying some natural positivity conditions, we
shall associate several classes of a priori different enumerative invariants:

� log GW All genus log GW invariants of Y.D/, counting curves in the surface Y with maximal
tangency conditions along the divisors Di .

� local GW Genus-zero local GW invariants of the CY .lC2/–fold EY.D/.
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� open GW All genus open GW invariants counting open Riemann surfaces in the CY3–fold
Y op.D/ with l � 1 boundary components mapping to L1 t � � � tLl�1.

� local BPS Genus-zero local BPS invariants of EY.D/, in the form of Gopakumar–Vafa/Klemm–
Pandharipande/Ionel–Parker (GV/KP/IP) BPS invariants.

� open BPS All genus open BPS invariants of Y op.D/, in the form of Labastida–Mariño–Ooguri–
Vafa (LMOV) BPS invariants.

� quiver DT If l D 2, Donaldson–Thomas (DT) invariants of Q.Y.D//.

1.2.3 Correspondences Under some positivity conditions on .Y;D/, we will prove that the invariants
above essentially coincide with one another. In particular, we shall show

(i) an equality between log GW and local GW in genus zero (Theorem 1.4),

(ii) an equality between log GW and open GW in all genera (Theorem 1.5),

(iii) an equality between local BPS and open BPS in genus zero for all l ,

(iv) an equality between local BPS and quiver DT for l D 2, ie when the local geometry EY.D/ is CY4
(Theorem 1.6).

The equality (i) establishes for log CY surfaces a version of a conjecture of van Garrel, Graber and Ruddat
about log and local GW invariants [43], while (ii) and (iv) are new. Equality (iii) follows from (i)–(ii)
after a BPS-type change of variables.

1.2.4 Integrality Furthermore, we shall prove that the enumerative invariants of Looijenga pairs
considered in this paper obey strong integrality constraints (Theorem 1.7), reflecting the conjectured
integrality of the open BPS and local BPS counts. This shows the existence of novel integral structures
underlying the higher-genus log GW theory of Y.D/. Restricting to genus zero, we will obtain as a
corollary an algebrogeometric proof of the conjectured integrality of the genus-zero Gopakumar–Vafa
invariants of the CY .lC2/–fold EY.D/. In particular, for l D 2, this proves for CY4 local surfaces an
integrality conjecture of Klemm and Pandharipande [68, Conjecture 0].

1.2.5 Solutions Moreover, we will completely solve the enumerative counts for these geometries
(Theorems 1.4 and 1.5), by finding explicit closed-form, nonrecursive expressions for the generating
series of the invariants associated to our Looijenga pairs.

The rest of the introduction is organised as follows:

� Section 1.3 sets the stage by giving a self-contained account of the enumerative theories we shall
consider.
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� Section 1.4 illustrates the geometric picture underpinning the web of correspondences explored in
the paper. We spell out the enumerative relations (i)–(iv) in the broadest generality where we believe
them to hold, and describe in detail the geometric heuristics which led us to (i) in Section 1.4.1
(Conjecture 1.1), to (ii) in Section 1.4.2 (Conjectures 1.2 and 1.3), and to (iii)–(iv) in Section 1.4.3.

� Section 1.5 puts these ideas on a rigorous footing. We first place a natural positivity condition on the
irreducible components Di by requiring them to be all smooth and nef; depending on the context,
we often supplement this with a mild condition of “quasi-tameness”, whose rationale is justified
in Sections 1.5.1 and 1.5.2. The statements of the proof of the correspondences, the integrality
results, and the full solutions for our enumerative counts are spelled out in Theorems 1.4–1.7.

� Section 1.6 surveys the implications of our results for related work, with emphasis on the possible
sheaf-theoretic interpretations of the BPS invariants we consider.

1.3 Enumerative problems

1.3.1 Higher-genus log Gromov–Witten invariants Log Gromov–Witten theory, which was developed
by Abramovich and Chen [25; 1] and Gross and Siebert [58], provides a deformation-invariant way to count
curves with prescribed tangency conditions along a normal crossings divisor, by virtual intersection theory
on moduli spaces of stable log maps. For Y.D/ a Looijenga pair whereD has l�2 irreducible components,
we consider rational curves in Y with given degree d 2 H2.Y;Z/ that meet each component Dj in one
point of maximal tangency d �Dj and pass through l � 1 given points in Y . Counting such curves is
an enumerative problem of expected dimension 0 and we denote by N log

0;d
.Y.D// the corresponding log

Gromov–Witten invariants.

For g � 0, the expected dimension of the moduli space of genus g curves in Y with given degree
d 2 H2.Y;Z/ that meet each component Dj in one point of maximal tangency d �Dj and pass through
l�1 given points in Y , is g. On the other hand, assigning to every stable log map f WC!Y.D/ the vector
space H0.C; !C / of sections of the dualising sheaf of the domain curve defines a rank g vector bundle
over the moduli space, called the Hodge bundle, and we denote by �g its top Chern class. We define log
Gromov–Witten invariants N log

g;d
.Y.D// by integration of .�1/g�g over the virtual fundamental class of

the moduli space. For genus gD 0, N log
0;d
.Y.D// recovers the naive count of rational curves but for g > 0,

the log Gromov–Witten invariants N log
g;d
.Y.D// no longer have an obvious interpretation in terms of naive

enumeration of curves. Fixing the degree d and summing over all genera, we define generating series

(1-1) N
log
d
.Y.D//.„/ WD

1�
2 sin

�
1
2
„
��l�2 X

g>0

N
log
g;d
.Y.D//„2g�2Cl :

The term
�
2 sin

�
1
2
„
��2�l is natural from the point of view of the q–refined scattering diagrams of Section 4.

It is accounted for in the correspondence with the open invariants.
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1.3.2 Local Gromov–Witten invariants To a Looijenga pair Y.D/D .Y;D DD1C � � � CDl/, we
associate the .lC2/–dimensional noncompact Calabi–Yau variety EY.D/ WD Tot

�Ll
iD1.OY .�Di //

�
. We

view Y in EY.D/ via the inclusion given by the zero section. We refer to EY.D/ as the local geometry
attached to Y.D/. If each component Di is nef, then for every d 2 H2.Y;Z/ intersecting Di generically,
the moduli space of genus-zero stable maps to EY.D/ of degree d is compact: every stable map to EY.D/
of class d factors through the zero section Y . Thus, it makes sense to consider the local genus-zero
Gromov–Witten invariants N loc

0;d
.Y.D//, which define virtual counts of rational curves in EY.D/ passing

through l � 1 given points in Y .

1.3.3 Higher-genus open Gromov–Witten invariants Let X be a semiprojective toric Calabi–Yau
3–fold, ie a toric Calabi–Yau 3–fold which admits a presentation as the GIT quotient of a vector space
by a torus action; see Hausel and Sturmfels [61]. We will be concerned with a class of Lagrangian
submanifolds of X considered by Aganagic and Vafa [7], which we simply refer to as toric Lagrangians:
symplectically, these are singular fibres of the Harvey–Lawson fibration associated toX. A toric Lagrangian
is diffeomorphic to R2 �S1, and so its first homology group is isomorphic to Z.

We fix L D L1 [ � � � [Ls a disjoint union of toric Lagrangians Li in X. In informal terms, the open
Gromov–Witten theory of .X;L D L1 [ � � � [Ls/ should be a virtual count of maps to X from open
Riemann surfaces of fixed genus, relative homology degree, and boundary winding data around S1 ,!L. A
precise definition of such counts in the algebraic category has been given by Li, Liu, Liu and Zhou [77; 76]
using relative Gromov–Witten theory and virtual localisation. These invariants depend on the choice
of a framing f of L, which is a choice of integer fi for each connected component Li of L. Given
partitions �1; : : : ; �s of lengths `.�1/; : : : ; `.�s/, we denote by OgIˇ I.�1;:::;�s/.X;L; f/ the invariants
defined in [77; 76], which are informally open Gromov–Witten invariants counting connected genus g
Riemann surfaces of class ˇ 2 H2.X;L;Z/ with, for every 1 � i � s, `.�i / boundary components
wrapping Li with winding numbers given by the parts of �i . We package the open Gromov–Witten
invariants Og;ˇ;�1;:::;�s .X;L; f/ into formal generating functions

(1-2) Oˇ I E�.X;L; f/.„/ WD
X
g�0

„
2g�2C`. E�/OgIˇ I E�.X;L; f/;

where `. E�/D
Ps
iD1 `.�i /. We simply denote by OgIˇ .X;L; f/ and Oˇ .X;L; f/.„/ the s–holed open

Gromov–Witten invariants obtained when each partition �i consists of a single part (whose value is then
determined by the class ˇ 2 H2.X;L;Z/).

1.3.4 Quiver DT invariants Let Q be a quiver with an ordered set Q0 of n vertices v1; : : : vn 2 Q0 and
a set of oriented edges Q1 D f˛ W vi ! vj g. We let NQ0 be the free abelian semigroup generated by Q0,
and, for dD

P
divi and eD

P
eivi 2NQ0, we write EQ.d; e/ for the Euler form

(1-3) EQ.d; e/ WD

nX
iD1

diei �
X

˛ W vi!vj

diej :
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Assume that Q is symmetric; that is, for every i and j , the number of oriented edges from vi to vj is
equal to the number of oriented edges from vj to vi . The Euler form is then a symmetric bilinear form.
The motivic DT invariants DTdIi .Q/ of Q are defined by the equality

(1-4)
X
d2Nn

.�q1=2/EQ.d;d/xdQn
iD1.qI q/di

D

Y
d¤0

Y
i2Z

Y
k�0

�
1� .�1/ixdq�k�.iC1/=2

��DTdIi .Q/;

where xd D
Qn
iD1 x

di
i ; see Efimov [34], Kontsevich and Soibelman [70] and Reineke [107]. In other

words, the motivic DT invariants are defined by taking the plethystic logarithm of the generating series of
Poincaré rational functions of the stacks of representations of Q. The numerical DT invariants DTnum

d .Q/

are defined by

(1-5) DTnum
d .Q/ WD

X
i2Z

.�1/iDTd;i .Q/:

According to Efimov [34], the numerical DT invariants DTnum
d .Q/ are nonnegative integers.

1.3.5 Open/closed BPS invariants Gromov–Witten invariants define virtual counts of curves and are
in general rational numbers, but they are well-known to exhibit hidden integrality properties in terms
of underlying BPS counts. The original physics definition, due to Gopakumar and Vafa [48; 47] in the
classical context of closed Gromov–Witten invariants of Calabi–Yau 3–folds, predicted the form of these
counts in terms of degeneracies of BPS particles in four/five dimensions arising from type IIA/M-theory
as D2/M2–branes wrapping 2–cycles in the compactification. A longstanding effort has been made
on multiple fronts to make the physics definition rigorous either using the associated cohomologies of
sheaves (see Katz [64] and Maulik and Toda [90]), stable pairs (see Pandharipande and Thomas [101]),
and direct symplectic methods (see Ionel and Parker [62]). In this paper, we will consider BPS invariants
for genus-zero Gromov–Witten invariants of Calabi–Yau 4–folds and higher-genus open Gromov–Witten
invariants of toric Calabi–Yau 3–folds. As an immediate corollary we obtain a new definition of all genus
BPS invariants of Looijenga pairs (1-21).

Let Y.D/D .Y;D DD1CD2/ be a 2–component Looijenga pair. The corresponding local geometry
EY.D/ is a noncompact Calabi–Yau 4–fold. Following Greene, Morrison and Plesser [50, Appendix B]
and Klemm and Pandharipande in [68, Section 1.1], we define BPS invariants KPd .EY.D// in terms of
the local genus-zero Gromov–Witten invariants N loc

0;d
.Y.D// by the formula

(1-6) KPd .EY.D//D
X
kjd

�.k/

k2
N loc
d=k.Y.D//:

Let X be a toric Calabi–Yau 3–fold, L D L1 [ � � � [ Ls a disjoint union of toric Lagrangian branes
and f a choice of framing. Following Labastida and Mariño [73], Labastida, Mariño and Vafa [74],
Mariño and Vafa [88] and Ooguri and Vafa [100], we define the Labastida–Mariño–Ooguri–Vafa (LMOV)
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log GW
log/local

local GW

KP/IP
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LMOVknots/quivers

quiver DT

refined log/open

open GW

Figure 1: Enumerative invariants of Y.D/ and their mutual relations.

generating function of BPS invariants �d .X;L; f /.q/ 2Q.q1=2/ in terms of the s–holed higher-genus
open Gromov–Witten generating series Oˇ .X;L; f/.„/ by the formula

(1-7) �ˇ .X;L; f/.q/D Œ1�
2
q

� sY
iD1

wi

Œwi �q

�X
kjˇ

�.k/

k
Oˇ=k.X;L; f/.�ik log q/;

where w1; : : : ; ws are the winding numbers around the Lagrangians L1; : : : ; Ls of the boundary compo-
nents of an s–holed Riemann surface with relative homology class ˇ, and where Œn�q WD qn=2� q�n=2

are the q–integers, defined for all integers n.

1.4 The web of correspondences: geometric motivation

The enumerative theories of the previous section have superficially distant flavours, but they will turn out
to be in close and often surprising relation to each other (Figure 1). We start by explaining the general
geometric motivation behind the web of relations below, deferring rigorous statements for the case of
Looijenga pairs to Section 1.5.

1.4.1 From log to local invariants Let .Y;D D D1 C � � � CDl/ be a log smooth pair of maximal
boundary; unless specified at this stage we do not restrict to Y being a surface, and neither do we
impose the condition that .Y;D/ be log Calabi–Yau, nor any positivity conditions on Dj . We will
say that a curve class d 2 H2.Y;Z/ is D–convex if d �Di > 0 for all i , and for every decomposition
d D ŒC1�C � � �C ŒCm� 2 H2.Y;Z/, with each Cj an effective curve, we have Cj �Di � 0 for all i and j .

We begin by introducing some intermediate geometries built from Y.D/: for mD 1; : : : ; l C 1, let

(1-8) Y .m/ WD Tot
�M
k�m

OY .�Dk/
�
;
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and D.m/ be the preimage ��1
�S

k<mDk
�

by the projection � W Y .m/! Y . Note that, by definition,
Y .1/.D.1//D EY.D/ and Y .lC1/.D.lC1//D Y.D/: the geometries Y .m/.D.m// for 1 < m � l consist
of intermediate setups where a log condition is imposed on fDkgk<m, and a local one on fDkgk�m.
For d a D.m/–convex curve class, we denote by N log

0;d
.Y .m/.D.m/// a genus-zero maximal tangency log

GW invariant of class d of Y .m/.D.m// with a choice of point and  –class insertions; see Section 4.1.
D.m/–convexity ensures that this is well-defined, despite Y .m/.D.m// not being proper for m� l .

Assume first that l D 1, ie that D is a smooth divisor. In van Garrel, Graber and Ruddat [43], the
genus-zero local Gromov–Witten invariants of EY.D/ were related to the genus-zero maximal tangency
Gromov–Witten theory of .Y;D/ by the stationary log/local correspondence,

(1-9) N loc
0;d .Y.D//D

.�1/d �D�1

d �D
N

log
0;d
.Y.D//:

The argument of [43] is geometric, and it gives a stronger statement at the level of virtual fundamental
classes: EY.D/ is degenerated to Y �A1 glued along D �A1 to a line bundle over the projective bundle
P .OD˚OD.�D//. This degeneration moves genus-zero stable maps inEY.D/ to genus-zero stable maps
splitting along both components of the central fibre: the degeneration formula then states thatN loc

0;d
.Y.D//

equals the weighted sum over splitting type of the product of invariants associated to each component,
and a careful analysis shows that only one term is nonzero, leading to (1-9). In [43, Conjecture 6.4], a
conjectural cycle-level log-local correspondence was also proposed for simple normal crossing pairs:
we propose here a slight variation of its restriction to stationary invariants and anticanonical D in the
following conjecture.

Conjecture 1.1 (the stationary log/local correspondence for maximal log CY pairs) Suppose that
.Y;D DD1C � � �CDl/ is a log smooth log Calabi–Yau pair of maximal boundary, d a D–convex curve
class , and 1� n<m� l C 1. Then

(1-10) N
log
0;d
.Y .m/.D.m///D

�m�1Y
iDn

.�1/d �DiC1d �Di

�
N

log
0;d
.Y .n/.D.n///:

In particular , when .n;m/D .1; l C 1/,

(1-11) N
log
0;d
.Y.D//D

� lY
iD1

.�1/d �DiC1d �Di

�
N loc
0;d .Y.D//:

When all Dj are nef and .n;m/D .1; l C 1/, this gives the numerical version of [43, Conjecture 6.4] for
point insertions and anticanonical D. When m� nD 1, (1-10) is an extension of the main result of [43]
to the noncompact case.

The extent to which the argument of [43] generalises to the case of simple normal crossings pairs of
Conjecture 1.1 is a somewhat thorny issue. In particular, the cycle-level conjecture of [43, Conjecture 6.4]
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is known to fail in the nonstationary sector for general l , as recently observed in a non-log Calabi–Yau
example by Nabijou and Ranganathan [96]. At the same time, there is a nontrivial body of evidence that
a generalisation of the stationary sector equality (1-9) (ie with descendent point insertions only) might
hold for simple normal crossings log Calabi–Yau pairs Y.D/; see Bousseau, Brini and van Garrel [18]
for a proof for toric orbifold pairs. It is therefore an open question to find the exact boundaries of validity
of the stationary log-local correspondence, and in this paper we chart a conceptual pathway to delineate
them for the (special, but central) case of log Calabi–Yau pairs of Conjecture 1.1, as follows.

At a geometric level, the degeneration of [43] can be generalised to a birational modification of one where
the generic fibre is EY.D/, and the special fibre is obtained by gluing, for each j D 1; : : : ; l , Y � .A1/l

along Dj � .A1/l to a rank l vector bundle over P .ODj ˚ODj .�Dj //. After an (explicit) birational
modification this gives a log smooth family: we describe the details of the degeneration for the case of
surfaces in Section 5.1. When l > 1, instead of the degeneration formula the decomposition formula [2]
applies, expressing N loc

0;d
.Y.D// as a weighted sum of terms, indexed by tropical curves h W�!�, where

� is the dual intersection complex of the central fibre:

(1-12) N loc
0;d .Y.D//D

X
hW �!�

mh

jAut.h/j
N

loc;h
0;d

.Y.D//:

The geometric picture above, and the ensuing decomposition formula (1-12), provides a rather general
and geometrically motivated blueprint to measure the deviation, or lack thereof, of the local invariants
from their expected relation to maximal tangency log invariants in (1-11). As a proof-of-concept step,
and as we shall describe in detail in Section 5.1, in this paper we show how this framework bears fruit in
the context of Looijenga pairs:1 here correction terms indexed by nonmaximal tangency tropical curves
turn out, remarkably, to all individually vanish, whilst the maximal tangency tropical contribution exactly
returns the right-hand side of (1-11).

1.4.2 From log to open invariants Let Y.D/ be a log Calabi–Yau surface. By (1-8), the complement
Y .l/nD.l/ is isomorphic to the total space of O.�Dl/! Y n.D1[� � �[Dl�1/; sinceD is anticanonical,
this is a noncompact Calabi–Yau threefold. We propose that the log invariantsN log

0;d
.Y.D// can be precisely

related to open Gromov–Witten invariants of Y .l/ nD.l/ with boundary in fixed disjoint Lagrangians Lk ,
with k < l , near the divisor D.l/. These Lagrangians should have a specific structure as described in
[8, Section 7], namely they should be fibred over Lagrangians L0

k
in ��1.Dk/ with fibres Lagrangians in

the normal bundle .N��1.Dk/=Y .m//jL0k . Writing L WD
S
k<l Lk and Y op.D/ WD .Y .l/ nD.l/; L/, there

is a natural isomorphism � W Hrel
2 .Y

op.D/;Z/! H2.Y;Z/ induced by the embedding Y .l/ nD.l/ ,! Y .l/

and the identification of winding degrees along Lk with contact orders along Dk ; see Proposition 6.6 for
details.

1It is an intriguing question, and one well beyond the scope of this paper, to test how this philosophy generalises to log Calabi–Yau
varieties of any dimension, and to revisit the non-log Calabi–Yau, nonstationary negative result of [96] in this light.

Geometry & Topology, Volume 28 (2024)



402 Pierrick Bousseau, Andrea Brini and Michel van Garrel

L

P

Figure 2: Exchanging log and open conditions.

Suppose now that there is a well-posed definition2 of genus-zero open GW counts O0Id .Y op.D// as in
Georgieva [45] and Solomon and Tukachinsky [109]. In such a scenario, we expect a close relationship
between these and the log invariant N log

0;d
.Y.D//.

Conjecture 1.2 (log-open correspondence for surfaces) Let Y.D/ be a log Calabi–Yau surface with
maximal boundary and d a D–convex curve class. Then

(1-13) O0I��1.d/.Y
op.D//D

� lY
kD1

.�1/d �Dk�1

d �Dk

�
N

log
0;d
.Y.D//:

There is an intuitive symplectic heuristics behind Conjecture 1.2: removing a tubular neighbourhood
of D.l/ turns pseudoholomorphic log curves in Y .l/ with prescribed tangencies along D.l/ into pseudo-
holomorphic open Riemann surfaces with boundaries in L, with winding numbers determined by the
tangencies; see Figure 2. The relative factor

Q
k<l.�1/

d �Dk�1.d �Dk/
�1 at the level of GW counts in

Conjecture 1.2 can be understood by looking at the simplest example where Y DP1�A1, D1 D f0g �A1

andD2Df1g�A1, where 0;12P1. For the curve class d times the class of P1 we haveN log
0;d
.Y.D//D1,

as there exists a unique degree d cover of P1 fully ramified over two points, and the order d automorphism
group of this cover is killed by the point condition. By Conjecture 1.1, and in particular (1-10) with
mD 2, we deduce that N log

0;d
.Y .2/.D.2///D .�1/d�1=d ; on the other hand, the open geometry Y op.D/

is C3 with a singular Harvey–Lawson Lagrangian L of framing zero (see Construction 6.4): the degree d
multicovers of the unique embedded disk [65, Theorem 7.2] contribute O0I��1.d/.Y

op.D//D 1=d2, from
which the relative factor in (1-13) is recovered.

2An example of this situation (see Construction 6.4) is when, up to deformation, both Y and the divisors Dk (k < l) are toric,
implying that Y op.D/ is a toric Calabi–Yau threefold geometry equipped with framed toric Lagrangians Lk : in this case the
open GW invariants were introduced in Section 1.3.3.
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Much as in Conjecture 1.1, the invariants in Conjecture 1.2 live in different dimensions: (1-13) relates
log invariants of the log CY surface Y.D/ to open invariants of special Lagrangians in a Calabi–Yau
threefold. Note that combining Conjectures 1.1 and 1.2 further gives a surprising conjectural relation

(1-14) O0I��1.d/.Y
op.D//DN loc

0;d .Y.D//;

which equates the GW invariants of the CY3 open geometry Y op.D/ with the local GW invariants of the
CY (l C 2) variety EY.D/.3

We also expect a precise uplift of this picture to higher-genus invariants. For a single irreducible divisor,
an all-genus version of the log-local correspondence of [43] was described in [19, Theorems 1.1–1.2]. Its
generalisation to a log-open correspondence in higher genus for a completely general pair is likely to take
an unwieldy form, but we expect it to be particularly simple for a maximal boundary log Calabi–Yau
surface. Indeed, in the degeneration to the normal cone along Dl , only multiple covers of a P1–fibre
in P .ODl ˚ODl .�Dl// will contribute. The resulting combination of the multiplicity d �Dl in the
degeneration formula with the higher-genus multiple cover contribution

.�1/d �DlC1

.d �Dl/Œd �Dl �q

leads us to predict a precise, and tantalisingly simple q–analogue of Conjecture 1.2.

Conjecture 1.3 (the all-genus log-open correspondence for surfaces) Let Y.D/ be a log CY surface
with maximal boundary and d a D–convex curve class. With notation as in Sections 1.3.1 and 1.3.3, we
have

(1-15) O��1.d/.Y
op.D//.�i log q/D Œ1�l�2q

.�1/d �DlC1

Œd �Dl �q

l�1Y
kD1

.�1/d �DkC1

d �Dk
N

log
d
.Y.D//.�i log q/:

The factor Œ1�l�2q corresponds to the relative normalisation of the higher-genus generating functions in
(1-1) and (1-2). The allusive hints of this section will be put on a rigorous footing in Section 1.5.2.

1.4.3 Quivers and BPS invariants Given Y.DDD1CD2/ a 2–component Looijenga pair, the virtual
count of curves in the noncompact Calabi–Yau 4–fold EY.D/ (see Klemm and Pandharipande [68])
is expected to be expressible in terms of sheaf counting (see Cao, Maulik and Toda [23; 24]). More
precisely, it is expected that the BPS invariants of EY.D/ are extracted from a DT4 virtual fundamental

3The relation (1-14) is in tune with physics expectations from type IIA string theory compactification on R1;1 �X , where X
is a Calabi–Yau fourfold: the low energy effective theory is a N D .2; 2/ QFT, whose effective holomorphic superpotential is
computed by the genus-zero Gromov–Witten invariants of X. Now precisely the same type of holomorphic F–terms can be
engineered by considering D4–branes wrapping special Lagrangians on a Calabi–Yau 3–fold [100]: the superpotential here is a
generating function of holomorphic disk counts with boundary on the Lagrangian three-cycle. It was suggested by Mayr [91]
(see also [4]) that there exist cases where 2d superpotentials can be engineered in both ways, resulting in an identity between
local genus-zero invariants of CY 4–folds and disk invariants of CY 3–folds: the equality in (1-14) asserts just that.
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class associated to the moduli space of one-dimensional coherent sheaves on EY.D/. As coherent sheaves
are often very closely related to modules over quivers, it might be tempting to ask if curve counting
in EY.D/ (and, via the arguments of the previous section, the log/open GW theory of Y.D/) can be
described in terms of some quiver DT theory.

This is more than a suggestive speculation. Consider for example Y D P2 and D DD1CD2 the union
of a line D1 and a conic D2, so that EY.D/ is the total space of OP2.�1/˚OP2.�2/. Let MHiggs

P1
.d; n/

be the moduli space of rank-d , degree-n O.1/–twisted Higgs bundles O˚d
P1
! O˚d

P1
˝OP1.1/ on P1.

The total space of OP1.1/ is the complement of a point in P2, and as P1 has normal bundle O.1/ in P2,
MHiggs

P1
.d; n/ sits as an open part of the moduli space of one-dimensional coherent sheaves on EY.D/.

At the same time, as O.1/ has two sections on P1, MHiggs
P1

.d; n/ is isomorphic to the moduli space of
representations of the quiver with one vertex and two loops. Strikingly, we remark here that this is reflected
into a completely unexpected identity for the corresponding invariants: the Klemm–Pandharipande BPS
invariants of EY.D/ computed in [68, Section 3.2] simultaneously coincide (up to sign) with the DT
invariants of the 2–loop quiver computed in Reineke [107, Theorem 4.2], as well as with the top Betti
numbers4 BHiggs

d
.P1/ WD dim Htop.MHiggs

P1
.d; n/;Q/ of the moduli spaces of O.1/–twisted Higgs bundles

on the line considered in Rayan [106, Section 5]:

(1-16) jKPd .OP2.�1/˚OP2.�2//j DB
Higgs
d

.P1/D DTnum
d .2–loop quiver/

D .1; 1; 1; 2; 5; 13; 35; 100; 300; 925; 2915; 9386; : : : /d :

From a sheafy point of view, this raises the question how the definition of Calabi–Yau 4–fold invariants
from the moduli space of coherent sheaves [23; 24] interacts with the quiver description, and whether
such a startling coincidence is an isolated example — or not.

An upshot of Conjectures 1.1 and 1.2 is a surprising Gromov–Witten-theoretic take on this question:
for l D 2 and when Y op.D/ is an open geometry given by toric Lagrangians in a toric CY3, the quiver
can be reconstructed systematically from the geometry of Y.D/ via a version of the “branes–quivers”
correspondence introduced in Ekholm, Kucharski and Longhi [36; 35], Kucharski, Reineke, Stošić and
Sułkowski [72] and Panfil, Stošić and Sułkowski [102]. According to the open GW/quiver dictionary
of [35], the quiver nodes are identified with basic (in the sense of [36; 35]) embedded holomorphic disks
with boundary on L, edges and self-edges correspond to linking and self-linking numbers of the latter,
and the DT invariants of the quiver return (up to signs) the genus-zero LMOV count of holomorphic disks
obtained as “boundstates” of the basic ones [36, Section 4].

Now, by the q! 1 limit of (1-7), the genus-zero LMOV and GW invariants of Y op.D/ are related to each
other by the same BPS change of variables relating KP invariants and local GW invariants ofEY.D/ in (1-6).
Then a direct consequence of the conjectural open D local GW equality (1-14) is that the KP invariants
of the local CY4–fold EY.D/ coincide with the LMOV invariants of the open CY3 geometry Y op.D/—

4The degree-independence of these Betti numbers, at least for .d; n/D 1, is explained in [106, Section 5].
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which by the branes-quivers correspondence above are in turn DT invariants of a symmetric quiver! In
particular, for the example above of Y D P2 and D D D1CD2 the union of a line and a conic, we
shall find the open geometry Y op.D/ to be three-dimensional affine space with a single toric Lagrangian
at framing one (see Construction 6.4) — and as expected, in this case the quiver construction in [102,
Section 5.1] returns exactly the quiver with one vertex and two loops we had found in (1-16). In general,
this connection leads to some nontrivial implications for the Gopakumar–Vafa/Donaldson–Thomas theory
of CY4 local surfaces from log Gromov–Witten theory, which we describe precisely in Sections 1.6.1
and 1.6.3.

1.5 The web of correspondences: results

In order to state our results, we introduce some notions of positivity for Looijenga pairs. A Looijenga pair
Y.D/D .Y;D DD1C � � �CDl/ is nef if each irreducible component Di of D is smooth and nef: note
that the condition that the components Di are smooth implies in particular that l � 2, and nefness entails
that a generic stable map to Y is D–convex, which implies that the corresponding local Gromov–Witten
invariants are well-defined.

A nef Looijenga pair Y.D/ is tame if either l > 2 or D2i > 0 for all i , and quasi-tame if the associated
local geometry EY.D/ is deformation equivalent to the local geometry EY 0.D0/ associated to a tame
Looijenga pair Y 0.D0/: we explain the relevance of these two properties in Section 1.5.1. As we will
show in Section 2, there are 18 smooth deformation types of nef Looijenga pairs in total, 11 of which are
tame and 15 are quasi-tame. In particular, a nef Looijenga pair Y.D/ is uniquely determined by Y and the
self-intersection numbers D2i , and we sometimes use the notation Y.D21 ; : : : ;D

2
l
/ for Y.D/; see Table 1.

We state our results in a slightly discursive form below, including pointers to their precise versions in the
main body of the text.

1.5.1 The stationary log-local correspondence Our first result establishes the stationary log/local
correspondence of Conjecture 1.1 in the form given by (1-11).

Theorem 1.4 (Theorem 5.1, Lemma 3.1, Theorem 3.3, Theorem 3.5, Proposition 3.6) For every nef
Looijenga pair Y.D/, the genus-zero log invariants N log

0;d
.Y.D// and the genus-zero local invariants

N loc
0;d
.Y.D// are related by

(1-17) N loc
0;d .Y.D//D

� lY
jD1

.�1/d �Dj�1

d �Dj

�
N

log
0;d
.Y.D//:

Moreover , we provide a closed-form solution to the calculation of both sets of invariants in (1-17).

As explained in Section 1.4.1, the key idea to prove Theorem 1.4 is by a degeneration argument, illustrated
in Section 5.1 for l D 2: we follow the general strategy of [43] to deduce log-local relations from a
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degeneration to the normal cone, and we solve in our case of interest the difficulties of the normal-
crossings situation through a detailed study of the tropical curves contributing in the decomposition
formula of Abramovich, Chen, Gross and Siebert [2] for log Gromov–Witten invariants. For l > 2, and
more generally when Y.D/ is tame, it turns out to be more convenient to structure the proof so that an
uplift to the all-genus story, absent in other approaches, is immediate. The notion of tameness is first
shown to be synonymous of finite scattering, and for tame pairs we compute closed-form solutions for
the log Gromov–Witten invariants using tropical geometry, more precisely two-dimensional scattering
diagrams; see Gross [51], Gross, Hacking and Keel [53], Gross, Pandharipande and Siebert [56] and
Mandel [84]. The statement of the theorem for tame cases follows by subsequently comparing with a
closed-form solution of the local theory via Givental-style mirror theorems: the proof follows from a
general statement valid for local invariants of toric Fano varieties in any dimension twisted by a sum
of concave line bundles (Lemma 3.1), and the notion of tameness is shown to coincide here with the
vanishing of quantum corrections to the mirror map. For non-quasi-tame cases, we use a blowup formula
which allows to restrict to the case of highest Picard number; the proof of the equality (1-17) in this case,
in Theorem 3.3, requires a highly nontrivial mirror map calculation.

1.5.2 The all-genus log-open correspondence A notable property of the scattering approach to
Theorem 1.4 for l > 2 (and, in general, for tame Looijenga pairs) is that it can be bootstrapped to
obtain all-genus results for the log invariants through the q–deformed version of the two-dimensional
scattering diagrams of Gross [51], Gross, Hacking and Keel [53], Gross, Pandharipande and Siebert [56]
and Mandel [84] and the general connection between higher-genus log invariants of surfaces with �g–
insertion and q–refined tropical geometry studied in Bousseau [12; 14]. This is key to establishing the
following version of Conjectures 1.2 and 1.3.

Theorem 1.5 (Theorems 4.5, 4.9, 4.10 and 6.7) For every quasi-tame Looijenga pair Y.D/ distinct from
dP3.0; 0; 0/, there exists a triple Y op.D/D .X;L; f/, geometrically related to Y.D/ by Construction 6.4,
where X is a semiprojective toric Calabi–Yau 3–fold , LD L1[ � � � [Ll�1 is a disjoint union of l � 1
toric Lagrangians in X, f is a framing for L, and there exists an isomorphism � WH2.X;L;Z/

�
�!H2.Y;Z/

such that

(1-18) O0I��1.d/.Y
op.D//DN loc

0;d .Y.D//D

lY
iD1

.�1/d �DiC1

d �Di
N

log
0;d
.Y.D//:

Furthermore , if Y.D/ is tame ,

(1-19) O��1.d/.Y
op.D//.�i log q/D Œ1�l�2q

.�1/d �DlC1

Œd �Dl �q

l�1Y
iD1

.�1/d �DiC1

d �Di
N

log
d
.Y.D//.�i log q/:

Moreover , we provide a closed-form solution to the calculation of the invariants in (1-18)–(1-19).

The open geometry Y op.D/ is constructed following the ideas of Section 1.4.2; see Section 6.2 for
full details. Key to the proof of Theorem 1.5 is the fact that quasi-tame Looijenga pairs can always be
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deformed to pairs for which the both surface Y and the divisorsDi with i < l are toric: as we shall explain
in Section 6.2, the corresponding open geometry Y op.D/ is given by suitable Aganagic–Vafa (singular
Harvey–Lawson) Lagrangian branes in a toric Calabi–Yau threefold, whose open Gromov–Witten theory
can be compactly encoded through the topological vertex.5 Conjecture 1.3 then predicts a completely
unexpected relation between the q–scattering and topological vertex formalisms, which Theorem 1.5
establishes for tame pairs. The combinatorics underlying the resulting comparison of invariants is in
general extremely nontrivial: for l D 2, it can be shown to be equivalent to Jackson’s q–analogue of the
Pfaff–Saalschütz summation for the 3�2 generalised q–hypergeometric function.

We furthermore conjecture that the higher-genus log-open correspondence of Theorem 1.5 extends to all
quasi-tame pairs. The scattering diagrams become substantially more complicated in the nontame cases,
and (1-18) translates into an intricate novel set of q–binomial identities: see Conjecture B.3 for explicit
examples.6 The log-local correspondence of Theorem 1.4 establishes their limit for q! 1.

1.5.3 BPS invariants and quiver DT invariants As anticipated in Section 1.4.3, the log/open cor-
respondence of Theorem 1.5 can be leveraged to produce a novel correspondence between log/local
Gromov–Witten invariants and quiver DT theory.

Theorem 1.6 (Theorem 7.3) Let Y.D/ D .Y;D1 CD2/ be a 2–component quasi-tame Looijenga
pair. Then there exists a symmetric quiver Q.Y.D// with �.Y /� 1 vertices and a lattice isomorphism
� W Z.Q.Y.D///0

�
�! H2.Y;Z/ such that

(1-20) DTnum
d .Q.Y.D///D

ˇ̌̌
KP�.d/.EY.D//C

X
i

˛iıd;vi

ˇ̌̌
;

with ˛i 2 f�1; 0; 1g. In particular , KPd .EY.D// 2 Z.

A symplectic proof of the integrality of genus-zero BPS invariants for projective Calabi–Yau 4–folds,
although likely adaptable to the noncompact setting, was given by Ionel–Parker in [62]. In Theorem 1.6,
the integrality for the local Calabi–Yau 4–foldsEY.D/ follows from the identification of the BPS invariants
with DT invariants of a symmetric quiver.7 We construct the symmetric quiver Q.Y.D// by combining
the log-open correspondence given by Theorem 1.5 with a correspondence previously established by
Panfil and Sułkowski [103] between toric Calabi–Yau 3–folds with “strip geometries” and symmetric
quivers; see also Kimura, Panfil, Sugimoto and Sułkowski [67].

Theorem 1.5 associates to a Looijenga pair Y.D/ satisfying Property O the toric Calabi–Yau 3–fold
geometry Y op.D/. Denote by �d .Y.D//.q/ WD���1.d/.Y

op.D//.q/ the open BPS invariants defined

5A conceptual explanation for the exclusion of dP3.0; 0; 0/ from the statement of Theorem 1.5 is given by the notion of
Property O, which we introduce in Definition 6.3.
6After the first version of this paper appeared on the arXiv, we received a combinatorial proof of Conjecture B.3 from
C Krattenthaler [71].
7The equality modulo the integral shift by

P
i ˛i ıd;vi in (1-20) can be traded to an actual equality of absolute values at the

price of considering a larger disconnected quiver zQ, and a corresponding epimorphism z� WZ.zQ.Y.D///0!H2.Y;Z/; see [103].
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in (1-7). In general, for any Looijenga pair we can define

(1-21) �d .Y.D//.q/ WD Œ1�
2
q

� lY
iD1

1

Œd �Di �q

�X
kjd

.�1/d=k�DCl�.k/

Œk�2�lq k2�l
N

log
d=k

.Y.D//.�ik log q/:

When Y.D/ is tame and satisfies Property O, the equivalence of the definitions (1-7) and (1-21) is a
rephrasing of the log-open correspondence of Theorem 1.5 at the level of BPS invariants.

A priori, �d .Y.D//.q/ 2Q.q1=2/. By a direct arithmetic argument, we prove the following integrality
result, which in particular establishes the existence of an integral BPS structure underlying the higher-genus
log Gromov–Witten theory of Y.D/.

Theorem 1.7 (Theorem 8.1) Let Y.D/ be a quasi-tame Looijenga pair. Then

�d .Y.D//.q/ 2 q
� 1
2
gY.D/.d/ZŒq�

for an integral quadratic polynomial gY.D/.d/.

1.5.4 Orbifolds In the present paper, we mainly focus on the study of the finitely many deformation
families of nef Looijenga pairs .Y;D/ with Y smooth. Nevertheless, most of our techniques and results
should extend to the more general setting where we allow Y to have orbifold singularities at the intersection
of the divisors: the log Gromov–Witten theory is then well-defined since Y.D/ is log smooth, and the local
Gromov–Witten theory makes sense by viewing Y and EY.D/ as smooth Deligne–Mumford stacks. There
are infinitely many examples of nef/tame/quasi-tame Looijenga pairs in the orbifold sense. Deferring
a treatment of more general examples to our companion note [17], we content ourselves here to show
in Section 9 that the log-local, log-open and Gromov–Witten/quiver correspondences still hold for the
infinite family of examples obtained by taking Y D P.1;1;n/, the weighted projective plane with weights
.1; 1; n/, and D DD1CD2 with D1 a line passing through the orbifold point and D2 a smooth member
of the linear system given by the sum of the two other toric divisors.

1.6 The web of correspondences: implications

The results of the previous section subsume and were motivated by several disconnected strands of
development in the study of the enumerative invariants in Sections 1.3.1–1.3.5. We briefly describe here
how they relate to and impact ongoing progress in some allied contexts.

1.6.1 BPS structures in log/local GW theory The relation of log GW invariants to BPS invariants
in Theorem 1.7 echoes very similar8 statements relating log GW theory to DT and LMOV invariants in
Bousseau [15; 14], and in particular it partly demystifies the interpretation of log GW partition functions

8A nontrivial difference is that here the log Gromov–Witten invariants are not interpreted as BPS invariants themselves, unlike in
[15; 14], but rather are related to them via (1-21).
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as related to some putative open curve counting theory on a Calabi–Yau 3–fold in [14, Section 9] by
realising the open BPS count in terms of actual, explicit special Lagrangians in a toric Calabi–Yau
threefold. Aside from its conceptual appeal, its power is revealed by some of its immediate consequences:
the Klemm–Pandharipande conjectural integrality [68, Conjecture 0] for local CY4 surfaces follows as a
zero-effort corollary of the log-open correspondence of Theorem 1.5 by constructing the associated quiver
in Theorem 1.6, identifying the KP invariants of the local surface with its DT invariants, and applying
Efimov’s theorem [34].

We note that this chain of connections opens the way to a proof of the Calabi–Yau 4–fold Gromov–
Witten/Donaldson–Thomas correspondence [23; 24], which is an open conjecture even for the simplest
local surfaces. The analysis of the underlying integrality of the q–scattering calculation in Theorem 1.7
furthermore gives, in the limit q! 1, an algebrogeometric version of symplectic results of Ionel and
Parker [62] for Calabi–Yau vector bundles on toric surfaces; and away from this limit, it provides a refined
integrality statement whose enumerative salience for the local theory is hitherto unknown, and worthy of
further study: see Section 1.6.3.

1.6.2 The general log-open correspondence for surfaces Throughout the heuristic description of the
motivation for Conjectures 1.1–1.3, we have been mindful not to impose any nefness condition on the
divisors Di : the only request we made was for the genus-zero obstruction theory of the local theory
to be encoded by a genuine obstruction bundle over the untwisted moduli space. This was taken into
account by the condition of D–convexity for the stable maps: restricting to D–convex maps widens the
horizon of the log/local correspondence of [43] to a vast spectrum of cases which were not accounted
for in previous studies of the correspondence. And indeed, in the broadest generality where the open
invariants can be defined in the algebraic category, the methods proposed here extend straightforwardly
to treat the cases when one or more of the irreducible components Di have negative self-intersection:
Conjectures 1.1–1.3 hold with flying colours in these cases as well, with all l > 2 anticanonical pairs
satisfying Property O that remarkably enjoy the same salient properties of the tame nef pairs, such as
finite scattering, closed-form resummation of the topological vertex, and triviality of the mirror map; their
detailed study will appear in work-in-progress of Brini, van Garrel and Schüler.

The discussion of Section 1.4.2 also opens the door to pushing the log/open correspondence beyond the
maximal contact setting: it is tempting to see how the maximal tangency condition could be removed from
Conjecture 1.2, with the splitting of contact orders amongst multiple points on the same divisor being
translated to windings of multiple boundary disks ending on the same Lagrangian. The multicovering
factor of (1-19) would then be naturally given by a product of individual contact orders/disk windings —
an expectation that the reader can verify to be fulfilled in the basic example presented there of .Y;D/D
.P1�A1;A1[A1/. More generally, the link to the topological vertex and open GW invariants of arbitrary
topology raises a fascinating question how much the topological vertex knows of the log theory of the
surface — and how it can be effectively used in the construction of (quantum) SYZ mirrors.
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1.6.3 Relation to the Cao–Maulik–Toda conjecture Another direction towards a geometric under-
standing of the integrality of KP invariants is provided by sheaf-counting theories for Calabi–Yau 4–folds,
which were originally introduced by Borisov and Joyce [11] (see also Cao and Leung [22]) and have
recently been given an algebraic construction by Oh and Thomas [98]. More precisely, Cao, Maulik
and Toda have conjectured in [24] (resp. in [23]) explicit relations between genus-zero KP invariants
and stable pair invariants (resp. counts of one-dimensional coherent sheaves) on Calabi–Yau 4–folds.
Recently, Cao, Kool and Monavari [21] have checked the conjecture of [24] for low-degree classes on
local toric surfaces; their proof hinges on the solution of the Gromov–Witten/Klemm–Pandharipande side
given by Theorems 1.4 and 1.6 in this paper.

The results of Theorems 1.6 and 1.7 also raise a host of new questions. First and foremost, it would
be extremely interesting to find for local toric surfaces a direct connection between the symmetric
quivers appearing in Theorem 7.3 and the moduli spaces of coherent sheaves appearing in the conjectures
of [24; 23]. Furthermore, since for l D 2 we have KPd .EY.D// D �d .Y.D//, a fascinating direction
would be to find an interpretation of the q–refined invariants �d .Y.D//.q/ in terms of the Calabi–Yau
4–fold EY.D/. A natural suggestion is that �d .Y.D//.q/ should take the form of some appropriately
refined Donaldson–Thomas invariants of EY.D/. As the topic of refined DT theory of Calabi–Yau 4–folds
is still in its infancy, we leave the question open for now.
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2 Nef Looijenga pairs

We start off by establishing some general facts about the classical geometry of nef log Calabi–Yau (CY)
surfaces. We first proceed to classify them in the smooth case, recall some basics of their birational
geometry and the construction of toric models, and describe the structure of their pseudoeffective
cone in preparation for the study of curve counts in them. We then end by introducing the notions of
(quasi)tameness.

Geometry & Topology, Volume 28 (2024)



Stable maps to Looijenga pairs 411

2.1 Classification

We start by giving the following definition.

Definition 2.1 An l–component log CY surface with maximal boundary, or l–component Looijenga pair,
is a pair Y.D/ WD .Y;D DD1C � � � CDl/ consisting of a smooth rational projective surface Y and a
singular nodal anticanonical divisor D that admits a decomposition D DD1C � � �CDl . We say that an
l–component log CY surface is nef if l � 2 and each Di is a smooth, irreducible and nef rational curve.

Examples of log CY surfaces arise when Y is a projective toric surface and D is the complement of the
maximal torus orbit in Y ; we call these pairs toric. By definition, if Y.D/ is nef, Y is a weak Fano surface
together with a choice of distribution of the anticanonical degree amongst components Di preserving the
condition that Di �C � 0 for any effective curve C and all i D 1; : : : ; l with l � 2. We classify these by
recalling some results of di Rocco [33]; see also [27, Section 2] and [28; 29].

Let dPr be the surface obtained from blowing up r � 1 general points in P2. The Picard group of dPr is
generated by the hyperplane class H and the classes Ei of the exceptional divisors. The anticanonical
class is �KdPr D 3H �

Pr
iD1Ei . Recall that a line class on dPr is l 2 Pic.dPr/ such that l2 D �1

and �KdPr � l D 1; for r � 5 and up to permutation of the Ei , they are given by Ei , H �E1 �E2 or
2H �

P5
iD1Ei . Furthermore, for n� 0, denote by Fn the nth Hirzebruch surface. Its Picard group is of

rank 2 generated by the sections C�n (resp. Cn), with self-intersections �n (resp. n), and by the fibre
class f , subject to the relation that C�nCnf DCn. Note that F0' P1�P1 and F1' dP1 is the blowup
of P2 in one point.

Lemma 2.1 [33] Assume that 1� r � 5 and let D 2 Pic.dPr/. Then D is nef if and only if

(i) for r D 1, D � l � 0 for all line classes l and D � .H �E1/� 0,

(ii) for 5� r � 2, D � l � 0 for all line classes l .

2.1.1 l D 2 Let’s start by setting l D 2. With the sole exception of dP4.H; 2H �E1�E2�E3�E4/
versus dP4.H � E1; 2H � E2 � E3 � E4/, the next proposition shows that up to deformation and
permutation of the factors, and assuming that D1 and D2 are nef, Y.D/ is determined by Y and the
self-intersections fD21 ;D

2
2g. We will consequently employ the shorthand notation Y.D/$ Y.D21 ;D

2
2/

to indicate this, making precise which one is meant in the case of dP4.0; 1/.

Proposition 2.2 Let Y.D DD1CD2/ be a 2–component nef log CY surface. Then up to deformation
and interchange of D1 and D2, Y.D1;D2/ is one of the following , abbreviated by Y.D21 ;D

2
2/ except in

cases (4) and (5):

(1) P2.1; 4/,

(2) dPr.1; 4� r/ for 1� r � 3,
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(3) dPr.0; 5� r/ for 1� r � 3,

(4) dP4.H; 2H �E1�E2�E3�E4/,

(5) dP4.H �E1; 2H �E2�E3�E4/,

(6) dP5.0; 0/,

(7) F0.0; 4/,

(8) F0.2; 2/.

Proof A minimal model of Y is given by P2, F0 or Fn for n � 2. By assumption �KY DD1CD2
is nef, ruling out Fn for n > 2. If Y D F0, then the stipulated decompositions of �KF0 are immediate. If
F2 is a minimal model of Y , then Y D F2. In this case, the only possible decomposition of �KF2 into nef
divisors is as D1 D C�2C 2f D C2 and D2 D C2. The resulting pair F2.2; 2/ is deformation equivalent
to F0.2; 2/; see the proof of Proposition 2.6.

Assume now that P2 is a minimal model of Y . If Y D P2, we are done. Otherwise, up to deformation,
we may assume that Y D dPr . Since �KY is nef, r � 9. As D1 and D2 are nef, they are of the form
dH �

Pr
iD1 aiEi for d � 1 and ai � 0. Applying Lemma 2.1, we find that the only nef decompositions

are as follows:

� either D1 DH , D2 D 2H �
Pr
iD1Ei for r � 4,

� or D1 DH �Ej , D2 D 2H �
Pr
i¤j Ei for r � 5.

They are all basepoint-free by [33] (see [27, Lemma 2.7]) and hence a general member will be smooth by
Bertini.

2.1.2 l D 3 Next, we classify the surfaces with l D 3 nef components. The shorthand notation
Y.D21 ;D

2
2 ;D

2
3/ is employed as in the previous section.

Proposition 2.3 Let Y.D DD1CD2CD3/ be a 3–component log CY surface with Y smooth and D1,
D2 and D3 nef. Then up to deformation and permutation of D1, D2 and D3, Y.D21 ;D

2
2 ;D

2
3/ is one of

the following:

(1) P2.1; 1; 1/,

(2) dP1.1; 1; 0/,

(3) dP2.1; 0; 0/,

(4) dP3.0; 0; 0/,

(5) F0.2; 0; 0/.

Proof A minimal model of Y is given by P2, F0 or Fn for n� 2. By assumption �KY DD1CD2CD3
is nef, ruling out Fn for n� 2. For P2, the only possibility is to choose D1;D2;D3 in class H . For F0,
it is to choose D1 DH1CH2 the diagonal and D2 DH1, D3 DH2. Necessarily, all other surfaces are
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given by iterated blowups of the minimal models, keeping the divisors nef, leading to the list. As in the
previous proposition, they are all basepoint-free and thus a general member will be smooth.

2.1.3 l � 4 For l D 4, a minimal model for Y is F0, for which the only possibility is given by D being
its toric boundary. There are no other cases preserving nefness of the divisors. For 5 components or more,
there are no surfaces keeping each divisor nef.

2.2 Toric models

We consider two basic operations on log CY surfaces Y.D/.

� Let zY be the blowup of Y at a node of D and let zD be the preimage of D in zY . Then the log CY
surface . zY ; zD/ is said to be a corner blowup of Y.D/.

� Let zY be the blowup of Y at a smooth point of D. Let zD be the strict transform of D in zY . Then
the log CY surface . zY ; zD/ is said to be an interior blowup of Y.D/.

A corner blowup does not change the complement Y nD, whereas an interior blowup does; accordingly
corner blowups do not change log Gromov–Witten invariants [3].

Definition 2.2 Let � W Y.D/�! Y .D/ be a sequence of interior blowups between log CY surfaces such
that Y .D/ is toric. Then � is said to be a toric model of Y.D/.

We will describe toric models by giving the fan of .Y ;D/ with focus–focus singularities on its rays. A
focus–focus singularity on the ray corresponding to a toric divisor F encodes blowing up F at a smooth
point. Each focus–focus singularity produces a wall and interactions of them create a scattering diagram
Scatt.Y.D//, as we discuss in Section 4.2.

Proposition 2.4 [53, Proposition 1.3] Let Y.D/ be a log CY surface. Then there exist log CY surfaces
zY . zD/ and Y .D/, with the latter toric , and a diagram

(2-1)

zY . zD/

'

{{

�

##

Y.D/ Y .D/

such that ' is a sequence of corner blowups and � is a toric model.

The diagrams as in (2-1) are far from unique, and they are related by cluster mutations [52]. Because of the
invariance of log Gromov–Witten invariants by corner blowups, we can calculate the log Gromov–Witten
invariants of Y.D/ on the scattering diagram Scatt.Y.D// associated to the toric model � .
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2.3 The effective cone of curves

Given Y.D/ a nef log CY surface and d 2A1.Y /, it will be convenient for the discussion in the foregoing
sections to determine numerical conditions for d to be an element of the pseudoeffective cone. If Y D Fn,
NE.Y / is just the monoid generated by C�n and f , so let us assume that Y D dPr. We will write a curve
class d as d0

�
H �

Pr
iD1Ei

�
C
Pr
iD1 diEi . If �.Y / � 2, then the extremal rays of the effective cone

NE.Y / of Y are generated by extremal classes D with D2 � 0, and in the case of del Pezzo surfaces
these are the line and fibre classes described above. Using the classification [27, Examples 2.3 and 2.11],
up to permutation of the Ei and Ej , we find the following lists of generators of extremal rays of NE.Y /:

� If r D 1,

(2-2) E1; H �E1:

� If 2� r � 4,

(2-3) Ei ; H �Ei ; H �Ei �Ej for i ¤ j:

� If r D 5,

(2-4) Ei ; H �Ei ; H �Ei �Ej for i ¤ j; 2H �

5X
iD1

Ei :

Note that the effective cone is closed since it is generated by finitely many elements. The following
proposition can be specialised to the del Pezzo surfaces dPr for r � 5 by setting the corresponding di
to 0 and removing the superfluous equations such as the last one, which only holds for r D 5.

Proposition 2.5 A class d D d0
�
H �

P5
iD1Ei

�
C
P5
iD1 diEi of dP5 is effective if and only if

(2-5) d0 � 0; di � 0; di C dj C dk � d0; di C dj C dkC dl � 2d0; 2di C
X
j¤i

dj � 3d0;

where the i; j; k; l are always pairwise distinct.

The statement follows from the explicit description of the effective cone as generated by extremal rays. A
direct calculation using the Polymake package in Macaulay2 computes the halfspaces defining the cone,
yielding the above inequalities for the effective curves.

2.4 Tame and quasi-tame Looijenga pairs

The computation of curve-counting invariants of nef Looijenga pairs is strongly affected by the number l
of smooth irreducible components of D and the positivity of Di for i D 1; : : : ; l . We spell this out with
the following definition, whose significance will be worked out in Sections 3.1 and 4.2.
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Let Y.D/ be a nef Looijenga pair and let

(2-6) EY.D/ WD Tot
� lM
iD1

OY .�Di /
�

be the total space of the direct sum of the dual line bundles to Di for i D 1; : : : ; l .

Definition 2.3 We call a nef log CY surface .Y;D DD1C � � � CDl/ tame if either l > 2 or D2i > 0
for all i . A nef log CY surface Y.D/ is quasi-tame if EY.D/ is deformation equivalent to EY 0.D0/, with
Y 0.D0/ tame.

We will use the abbreviated notation EY.D21 ;D22/ for the local Calabi–Yau fourfold EY.D1CD2/ associated
by (2-6) to a 2–component log CY surface Y.D21 ;D

2
2/ in the classification of Proposition 2.2. Quasitame

pairs are classified by the following proposition.

Proposition 2.6 The following varieties are deformation-equivalent :

(1) EF0.0;4/, EF0.2;2/ and EF2.2;2/;

(2) EdPr .1;4�r/ and EdPr .0;5�r/, where 1� r � 4.

Proof For the first part of the proposition, denote by H1 and H2 the two generators of the Picard group
of F0 corresponding to the pullbacks of a point in P1 along proj1;2 W F0! P 1. The Euler sequence on P1,
pulled back to F0 along proj1 and tensored by O.�H2/, yields

(2-7) 0!O.�2H1�H2/!O.�H1�H2/˚O.�H1�H2/!O.�H2/! 0:

This determines a family with general fibre the total space of O.�H1�H2/˚O.�H1�H2/ and special
fibre the total space of O.�H2/˚O.�2H1�H2/, hence a deformation between EF0.0;4/ and EF0.2;2/.

Next, consider again the Euler sequence over P1,

(2-8) 0!O.�2/!O.�1/˚O.�1/!O! 0;

and the associated deformation of the total space of O.�1/˚O.�1/ into the total space of O˚O.�2/.
Taking the projectivisation of this family yields a deformation between F0 and F2. In this deformation,
�H1�H2 specialises to �C2. Taking twice the associated line bundles yields the deformation between
EF0.2;2/ and EF2.2;2/.

To prove the second part, assume first that r D 1. We start with the relative (dual) Euler sequence for the
fibration dP1! P1 with distinct sections with image H and E1

(2-9) 0!O!O.H/˚O.E1/!O.H CE1/! 0:

We tensor it with O.�2H/ to obtain

(2-10) 0!O.�2H/!O.�H/˚O.�2H CE1/!O.�H CE1/! 0:

This determines a family with general fibre the total space of O.�H/˚O.�2H CE1/ and special fibre
the total space of O.�2H/˚O.�H CE1/, hence a deformation between EdP1.1;3/ and EdP1.0;4/.
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Y.D/ l K2Y D1 D2 D3 D4 tame quasi-tame

P2.1; 4/ 2 9 H 2H – – X X
F0.2; 2/ 2 8 H1CH2 H1CH2 – – X X
F0.0; 4/ 2 8 H1 H1C 2H2 – – ✗ X
dP1.1; 3/ 2 8 H 2H �E1 – – X X
dP1.0; 4/ 2 8 H �E1 2H – – ✗ X
dP2.1; 2/ 2 7 H 2H �E1�E2 – – X X
dP2.0; 3/ 2 7 H �E1 2H �E2 – – ✗ X
dP3.1; 1/ 2 6 H 2H �E1�E2�E3 – – X X
dP3.0; 2/ 2 6 H �E1 2H �E2�E3 – – ✗ X
dP4.1; 0/ 2 5 H 2H �E1�E2�E3�E4 – – ✗ ✗

dP4.0; 1/ 2 5 H �E1 2H �E2�E3�E4 – – ✗ ✗

dP5.0; 0/ 2 4 H �E1 2H �E2�E3�E4�E5 – – ✗ ✗

P2.1; 1; 1/ 3 9 H H H – X X
F0.2; 0; 0/ 3 8 H1CH2 H1 H2 – X X
dP1.1; 1; 0/ 3 8 H H H �E1 – X X
dP2.1; 0; 0/ 3 7 H H �E1 H �E2 – X X
dP3.0; 0; 0/ 3 6 H �E1 H �E2 H �E3 – X X

F0.0; 0; 0; 0/ 4 8 H1 H2 H1 H2 X X

Table 1: Classification of smooth nef Looijenga pairs.

Dually, we have

(2-11) 0! H0.O.H �E1//! H0.O.H//˚H0.O.2H �E1//! H0.O.2H//;

and a section of O.2H �E1/ in the general fibre gives a section of O.2H/ in the special fibre. Hence
we have a divisor D in the family in class 2H �E1 for the general fibre and of class 2H for the special
fibre. Blowing up a general point of D in the family gives a deformation between EdP2.1;2/ and EdP2.0;3/.
Iterating the process, we obtain the desired deformations.

We summarise the discussion of this section in Table 1. There are 18 smooth deformation types of nef
Looijenga pairs in total, 11 of which are tame and 15 of which are quasi-tame. The three non-quasi-tame
cases occur when Y is a del Pezzo surface of degree 5 or less.

3 Local Gromov–Witten theory

3.1 1–Pointed local Gromov–Witten invariants

In this section, we provide general formulas for the Gromov–Witten invariants with point insertions of toric
Fano varieties in any dimension twisted by a sum of concave line bundles. For the remainder of this section,
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let Y be an n–dimensional smooth projective variety of Picard rank r , let DDD1C� � �CDl 2An�1.Y /
with D 2 j�KY j and each Di smooth and irreducible, and let d be a D–convex curve class.

Let EY.D/ WD Tot
�Ll

iD1.OY .�Di //
�

be as in (2-6) and let �Y W EY.D/ ! Y be the natural projec-
tion. Since d is D–convex, the moduli space M0;m.EY.D/; d / of genus-zero m–marked stable maps
Œf W C !EY.D/� with f�.ŒC �/ D d 2 H2.Y;Z/ is scheme-theoretically the moduli stack M0;m.Y; d/

of stable maps to the base Y , as every stable map to the total space factors through the zero section
Y ,!EY.D/. In particular, M0;m.EY.D/; d / is proper. Consider the universal curve � W C!M0;m.Y; d/,
and denote by f WC!Y the universal stable map. Then H0.C; f �OY .�Di //D0 and we have obstruction
bundles ObDj WD R

1��f
�OY .�Dj /; of rank d �Dj � 1 with fibre H1.C; f �OY .�Dj // over a stable

map Œf WC ! Y �. The virtual fundamental class on M0;m.EY.D/; d / is defined by intersecting the virtual
fundamental class on M0;m.Y; d/ with the top Chern class of

L
j ObDj :

(3-1) ŒM0;m.EY.D/; d /�
vir
WDctop.ObD1/\� � �\ctop.ObDl /\ŒM0;m.Y; d/�

vir
2HmCl�1.M0;m.Y; d/;Q/:

There are tautological classes  i WD c1.Li /, where Li is the i th tautological line bundle on M0;m.Y; d/

whose fibre at Œf W .C; x1; : : : ; xm/! Y � is the cotangent line of C at xi , and we denote by evi the
evaluation maps at the i th marked point. For an effective D–convex curve class d 2H2.Y;Z/, genus-zero
local Gromov–Witten invariants of EY.D/ with point insertions on the base are defined as

N loc
0;d .Y.D// WD

Z
ŒM0;l�1.EY.D/;d/�vir

l�1Y
jD1

ev�j .�
�
Y ŒptY �/;(3-2)

N
loc; 
0;d

.Y.D// WD

Z
ŒM0;1.EY.D/;d/�vir

ev�1.�
�
Y ŒptY �/[ 

l�2
1 ;(3-3)

which we think of as the virtual counts of curves through l � 1 points (resp. 1–point with a  –condition)
on the zero section of the vector bundle EY.D/.

Since D is anticanonical, EY.D/ is a noncompact Calabi–Yau .nCl/–fold. The case nC l D 3 has been
the main focus in the study of local mirror symmetry, and as such it has been abundantly studied in the
literature [26]. It turns out that the lesser studied situation when nC l > 3 has a host of simplifications,
often leading to closed-form expressions for (3-2)–(3-3). We start by fixing some notation which will
be of further use throughout this section. Let T ' .C?/l ˚ EY.D/ be the fibrewise torus action and
denote by �i 2 H.BT /, with i D 1; : : : ; l , its equivariant parameters. Let f�˛g˛ be a graded C–basis for
the nonequivariant cohomology of the image of the zero section Y ,!EY.D/ with deg�˛ � deg�˛C1;
in particular, �1 D 1H.Y /. Its elements have canonical lifts �˛ ! '˛ to T –equivariant cohomology
forming a C.�1; : : : ; �l/ basis for HT .EY.D//. The latter is furthermore endowed with a perfect pairing

(3-4) �EY.D/.'˛; 'ˇ / WD

Z
Y

�˛ [�ˇS
i eT .OY .�Di //

;

with eT denoting the T –equivariant Euler class. In what follows, we will indicate by ��1EY.D/.'˛; 'ˇ / the
inverse of the Gram matrix (3-4).
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Let now � 2 HT .EY.D//. The J –function of EY.D/ is the formal power series

(3-5) J
EY.D/
big .�; z/ WD zC � C

X
d2NE.Y /

X
n2ZC

X
˛;ˇ

��1EY.D/
.'˛; 'ˇ /

nŠ

�
�; : : : ; �;

'˛

z� 

�EY.D/
0;nC1;d

'ˇ ;

where we employed the usual correlator notation for GW invariants,

(3-6) h�1 
k1
1 ; : : : ; �n 

kn
n i

EY.D/
0;n;d

WD

Z
ŒM0;m.EY.D/;d/�vir

Y
i

ev�i .�i / 
ki
i :

Restriction to t D
PrC1
iD1 ti'i and use of the divisor axiom gives the small J –function

(3-7) J
EY.D/
small .t; z/ WD ze

P
ti'i=z

�
1C

X
d2NE.Y /

X
˛;ˇ

��1.'˛; 'ˇ /EY.D/e
t.d/

�
'˛

z.z� 1/

�EY.D/
0;1;d

'ˇ

�
:

Lemma 3.1 Suppose that Y is a toric Fano variety and either nC l D 4 and Di is ample for all i , or
nC l > 4 and Di is nef for all i . Let T WD fTi 2 AdimY�1.Y /g

nCr
iD1 be the collection of its prime toric

divisors , and
Fm
iD1 Si D f1; : : : ; nC rg a length-m partition of nC r such that Di WD

P
j2Si

Tj . For an
effective curve class d 2 NE.Y /, write di WD d �Di and ti WD d �Ti for its intersection multiplicities with
the nef divisors Di and the toric divisors Ti , respectively. Then

(3-8) N
loc; 
0;d

.Y.D1C � � �CDl//D
.�1/

Pl
iD1.di�1/Ql
iD1 di

lY
iD1

� di
ftj gj2Si

�
;

where � k

fij g
m
jD1

�
D

kŠQm
jD1 ij Š

is the multinomial coefficient.

Proof By (3-3) and (3-7), we have

(3-9) N
loc; 
0;d

.Y.D//D
X
ˇ

�.'x̨; 'ˇ /EY.D/ Œz
1�let.d/C

P
ti'i=z'ˇ �J

EY.D/
small .t; z/;

where x̨ is defined by 'x̨ D Œpt�. From (3-4), we have �.'x̨; 'ˇ /EY.D/ D ıx̨1
Ql
iD1 �

�1
i , hence

(3-10) N
loc; 
0;d

.Y.D//D
1Ql
iD1 �i

Œz1�let.d/C
P
ti'i=z1HT .Y /�J

EY.D/
small .t; z/:

The right-hand side can be computed by Givental-style toric mirror theorems. Let �a WD T _a 2 H2.Y / be
the Poincaré dual class of the ath toric divisor of Y , let �i WD c1.O.�Di // be the T –equivariant Chern
class of Di , and let yi with i D 1; : : : ; r C 1 be variables in a formal disk around the origin. Writing
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.x/n WD �.xCn/=�.x/ for the Pochhammer symbol of .x; n/ with n 2 Z, the I–function of EY.D/ is
the HT .EY.D//–valued Laurent series

(3-11) IEY.D/.y; z/ WD zC
Y
i

y
'i=z
i

X
0¤d2NE.Y /

Y
i

y
di
i z

1�l

Q
i �i .�i=zC 1/di�1Q
a.�a=zC 1/ta

;

and its mirror map is their formal O.z0/ coefficient,

(3-12) zt iEY.D/.y/ WD Œz
0'i �I

EY.D/.y; z/:

Then [46; 31; 30]

(3-13) J
EY.D/
small .ztEY.D/.D/.y/; z/D I

EY.D/.y; z/:

Inspecting (3-11) shows that if either nC l > 4, or nC l D 4 and Di is ample, the mirror map does not
receive quantum corrections:

(3-14) zt iEY.D/.y/D logyi :

Therefore, under the assumptions of the lemma,

(3-15) N
loc; 
0;d

.Y.D//D
1Ql
iD1 �i

h
z1�l

Y
i

y
di
i

Y
i

y
'i=z
i 1HT .Y.D//

i
IEY.D/.y; z/

D
1Ql
iD1 �i

h
z1�l

Y
i

y
di
i

i
IEY.D/.y; z/

ˇ̌̌
'˛!0

:

The claim then follows by substituting �aj'˛!0 D 0 and �i j'˛!0 D��i into (3-11).

3.1.1 Quasitame Looijenga pairs Let us now go back to the case of log CY surfaces and specialise
the discussion in the previous section to Y.D/ a tame Looijenga pair. The key observation in the proof of
Lemma 3.1 was that no contributions to the O.z0/ Laurent coefficient of the I–function could possibly
come from any stable maps in any degrees, which is automatic for nC l > 4, and requires that di > 0
when nC l D 4. We can in fact partly relax the condition that Di is ample by just requiring by fiat that
no curves with di D d �Di D 0 contribute to the mirror map. A direct calculation from (3-11) shows
that in the case of nef log CY surfaces with Y a Fano surface, this relaxed assumption coincides with
Y.D/ being tame as in Definition 2.1. Since, by Proposition 2.2, Y is toric for all tame cases, Lemma 3.1
computes (3-3) for all of them.

Example 3.1 Let Y.D/ D P2.1; 4/. Then Lemma 3.1 gives for the degree-d local invariants of the
projective plane

(3-16) N
loc; 
0;d

.Y.D//DN loc
0;d .Y.D//D

.�1/d

2d2

�2d
d

�
:

This recovers a direct localisation calculation by Klemm and Pandharipande in [68, Proposition 2].
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Example 3.2 Let Y.D/D F0.2; 2/ and write d D d1H1C d2H2. Lemma 3.1 yields

(3-17) N
loc; 
0;d

.Y.D//DN loc
0;d .Y.D//D

1

.d1C d2/2

�d1Cd2
d1

�2
as in [68, Proposition 3].

Moreover, if Y.D/ is a quasi-tame Looijenga pair, the Calabi–Yau vector bundle EY.D/ is deformation
equivalent to EY 0.D0/ for some tame Looijenga pair by definition. It therefore carries the same local
Gromov–Witten theory, and the calculation of N loc; 

0;d
.Y.D//DN

loc; 
0;d

.Y 0.D0// from Lemma 3.1 extends
immediately to these cases as well.

3.1.2 Nonquasi-tame Looijenga pairs Lemma 3.1 cannot be immediately extended to non-quasi-tame
pairs Y.D/, as Y is not toric and EY.D/ does not deform to EY 0.D0/ for tame Y 0.D0/. We will proceed
by exhibiting a closed-form solution for the case of lowest anticanonical degree Y.D/D dP5.0; 0/. This
recovers all other cases with l D 2 by blowing down, as per the following.

Proposition 3.2 (blowup formula for local GW invariants) Let Y.D/ be an l–component log CY
surface. Let � W Y 0.D0/! Y.D/ be the l–component log CY surface obtained by an interior blowup at a
general point of D with exceptional divisor E. Let d be a curve class of Y.D/ and let d 0 WD ��d . Then

(3-18) N loc
0;d .Y.D//DN

loc
d 0 .Y

0.D0// and N
loc; 
0;d

.Y.D//DN
loc; 
d 0

.Y 0.D0//:

Proof By [87, Proposition 5.14],

(3-19) x��ŒM0;m.Y
0; d 0/�vir

D ŒM0;m.Y; d/�
vir;

where x� is the morphism between the moduli spaces induced by � . Since E � d 0 D 0,

(3-20) x��ŒM0;m.EY 0.D0/; d
0/�vir
D ŒM0;m.EY.D/; d /�

vir:

Theorem 3.3 With notation as in Proposition 2.5, we have

(3-21) N loc
0;d .dP5.0; 0//D
1X

j1;:::;j4D0

�
.�1/d1Cd2Cd3Cd4Cd5.d1Cd2Cd3Cd4Cd5�3d0Cj1Cj2�1/Š

j1Šj2Šj3Šj4Š.d1Cd2Cd4�2d0Cj1/Š.�d1Cd0�j1�j2/Š.�d3Cd5Cj4/Š

�
.d1Cd4�d0Cj1Cj3�1/Š.d1Cd5�d0Cj2Cj4�1/Š.d4Cd5�d0Cj3Cj4�1/Š

.d1Cd3Cd5�2d0Cj2/Š.�d4Cd0�j1�j3/Š.�d2Cd4Cj3/Š.�d5Cd0�j2�j4/Š

�
1

.d2Cd3�d0�j3�j4/Š..d1Cd4Cd5�2d0Cj1Cj2Cj3Cj4�1/Š/2

�
:
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Sketch of the proof The strategy of the proof runs by deforming dP5 to the blowup of F0 at four
toric points, which is only weak Fano but allows to work torically along the lines of Lemma 3.1 at the
price of extending the pseudoeffective cone by four generators of self-intersection �2. These contribute
nontrivially to the mirror map, alongside curves with zero intersections with the boundary divisors
D1 D H � E1 and D2 D 2H �

P
i¤1Ei . However, the mirror map turns out to be algebraic, and

furthermore it remarkably has a closed-form rational inverse, leading to the final result (3-21). Full details
are given in Appendix A.

Remark 3.4 The final expression (3-21) is significantly more involved than (3-8), to which it reduces
when blowing down to the quasi-tame del Pezzo cases dPk for k � 3 by setting di D d0 for all i � kC 1
using (3-18), since then only the summand with ji D 0 for all i survives. It is also noteworthy that, while
the summands in (3-21) are not symmetric under permutation of the degrees fd2; d3; d4; d5g, the final
sum is highly nonobviously warranted to be S4–invariant since the left-hand side is,9 and we verified this
explicitly in low degrees. The BPS invariants arising from (3-21) should also be integers, and we checked
this is indeed the case for a large sample of nonprimitive classes with multicovers of order up to 11.

3.2 Multipointed local GW invariants

The primary multipoint invariants (3-2) of nef Looijenga pairs with l > 2 can be reconstructed from the
descendent single-insertion invariants (3-3). We shall show how this arises by combining the associativity
of the quantum product with the vanishing of quantum corrections for particular classes.

3.2.1 l D 3 It suffices to compute the invariants for the case of maximal Picard rank, dP3.0; 0; 0/, from
which the other l D 3 cases can be recovered by blowing down.

Theorem 3.5 With notation as in Proposition 2.5, we have

N loc
0;d .dP3.0; 0; 0//D .d20 � d1d0� d2d0� d3d0C d1d2C d1d3C d2d3/N

loc; 
0;d

.dP3.0; 0; 0//;(3-22)

N
loc; 
0;d

.dP3.0; 0; 0//(3-23)

D
.�1/d1Cd2Cd3C1.d1� 1/Š.d2� 1/Š.d3� 1/Š

.d1C d2� d0/Š.d1C d3� d0/Š.d2C d3� d0/Š.d0� d1/Š.d0� d2/Š.d0� d3/Š
:

Proof In the notation of the proof of Lemma 3.1, for i; j D 2; : : : ; 5 the components of the small
J –function of EdP3.0;0;0/ satisfy the quantum differential equations

(3-24) zr'ir'j J
EdP3.0;0;0/

small .t; z/Dr'i?t'j J
EdP3.0;0;0/

small .t; z/;

where ˛ ?t ˇ denotes the small quantum cohomology product, and the cohomology classes

f'1 D 1HT .EdP3.0;0;0//
; : : : ; '5g

9There is an obvious S5 symmetry under permutation of the exceptional classes Ei in Y , which is reduced to an S4 symmetry in
the degrees .d2; d3; d4; d5/ in EY.D/ by the splitting D1 DH �E1, D2 D 2H �E2 �E3 �E4 �E5.
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are denoted as in the proof of Lemma 3.1. We take f'ig5iD2 to be the basis elements of HT .EdP3.0;0;0//

given by lifts to T –equivariant cohomology of the integral Kähler classes dual to fCi 2 H2.dP3;Z/gi
with CiC1 D Ei for i D 1; 2; 3, and C5 D H �E1 �E2 �E3, and an effective curve will be written
d D d0C5C

P3
iD1 diCiC2. From the proof of Lemma 3.1, the small J –function in the tame setting

equates the I–function,

(3-25) J
EdP3.0;0;0/

small .t; z/DX
di>0

e
P3
iD0 tiC2di

"
.�1/d1Cd2Cd3.�2��1/.�3��2/

z2
�
zC�2C�3��5

z

�
�d0Cd1Cd2

�
zC�2C�4��5

z

�
�d0Cd1Cd3

.�4��3/

�
z��1C�2

z

�
d1�1

�
z��2C�3

z

�
d2�1

�
z��3C�4

z

�
d3�1�

zC�3C�4��5

z

�
�d0Cd2Cd3

�
z��2C�5

z

�
d0�d1

�
z��3C�5

z

�
d0�d2

�
z��4C�5

z

�
d0�d3

#
:

By (3-7), the small quantum product can be computed from the O.z�1/ formal Taylor coefficient of
(3-25) as

(3-26) 'i ?t 'j D
X
˛

'˛Œz
�1'˛�@

2
ti tj
J
EdP3.0;0;0/

small .t; z/:

Inspection of (3-25) shows that the right-hand side receives quantum corrections of the form 1=n2 from
curves with either di D ıijn or di D .1� ıij /n and j ¤ 0, n 2NC, with vanishing contributions in all
other degrees. This implies that

(3-27) .@2t5 � @t2@t5 � @t3@t5 � @t4@t5 C @t2@t3 C @t3@t4 C @t2@t4/Œz
�1�J

EdP3.0;0;0/

small .t; z/D 0;

which amounts to

(3-28) '5 ?t '5�

4X
jD2

'5 ?t 'i C

5X
j>iD2

'i ?t 'j D '5['5�

4X
jD2

'5['i C

4X
j>iD2

'i ['j :

It is immediate to verify that the right-hand side is the Poincaré dual of the point class. Therefore,
from (3-24),

(3-29) N loc
0;d .dP3.0; 0; 0//D .d20 � d1d0� d2d0� d3d0C d1d2C d1d3C d2d3/N

loc; 
0;d

.dP3.0; 0; 0//;

and the second equation in the statement follows by Lemma 3.1.

3.2.2 l D 4 In this case D is the toric boundary, and the invariants N loc
0;d
.F0.0; 0; 0; 0// were computed

in [18] by a strategy similar to that of Theorem 3.5. The final result is the following proposition.

Proposition 3.6 [18, Theorem 3.1, Corollary 6.4]

(3-30) N loc
0;d .F0.0; 0; 0; 0//D d

2
1 d

2
2N

loc; 
0;d

.F0.0; 0; 0; 0//D 1:
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Y.D/ N
loc; 
0;d

N loc
0;d
=N

loc; 
0;d

P2.1; 4/
1

2d2

�
2d

d

�
1

F0.2; 2/

F0.0; 4/

�
1

d1C d2

�
d1C d2
d1

��2
1

dP1.1; 1/
dP2.0; 4/

.�1/d1

d0.d1C d0/

�
d0
d1

��
d1C d0
d0

�
1

dP2.1; 2/
dP2.0; 3/

.�1/d0Cd1Cd2

d0.d1C d2/

�
d0
d1

��
d0
d2

��
d1C d2
d0

�
1

dP3.1; 1/
dP3.0; 2/

.�1/d1Cd2Cd3.d0�1/Š.d1Cd2Cd3�d0�1/Š

.d0�d1/Š.d0�d2/Š.d0�d3/Š.d1Cd2�d0/Š.d1Cd3�d0/Š.d2Cd3�d0/Š
1

dP4.1; 0/
dP4.0; 1/

(3-21)
ˇ̌
d5!d0

1

dP5.0; 0/ (3-21) 1

P2.1; 1; 1/
.�1/dC1

d3
d2

F0.2; 0; 0/ �
1

d1d2.d1C d2/

�
d1C d2
d2

�
d1d2

dP1.1; 1; 0/
.�1/d1C1

d20 d1

�
d0
d1

�
d1d0

dP2.1; 0; 0/
.�1/d0Cd1Cd2C1

d0d1d2

�
d0
d1

��
d1

d0� d2

�
d1d2

dP3.0; 0; 0/
.�1/d1Cd2Cd3C1

d1d2d3

�
d1

d0� d2

��
d2

d0� d3

��
d3

d0� d1

�
d20�.d1Cd2Cd3/d0

Cd1d2Cd1d3Cd2d3

F0.0; 0; 0; 0/ 1 d21 d
2
2

Table 2: Local Gromov–Witten invariants of nef Looijenga pairs.

This concludes the calculation of local invariants with point insertions for nef Looijenga pairs. We collate
the results in Table 2.

4 Log Gromov–Witten theory

4.1 Log Gromov–Witten invariants of maximal tangency

Let Y.D/ be an l–component log CY surface with maximal boundary. We endow Y with the divisorial
log structure coming from D. The log structure is used to impose tangency conditions along the
componentsDj ofD. In this paper we will be looking at genus g stable maps into Y of class d 2H2.Y;Z/
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that meet each component Dj in one point of maximal tangency d �Dj . The appropriate moduli space
Mlog
g;m.Y.D/; d/ of maximally tangent basic stable log maps was constructed in all generality in [58; 25; 1].

There are tautological classes  i WD c1.Li / for Li the i ith tautological line bundle on Mlog
g;m.Y.D/; d/

whose fibre at Œf W .C; x1; : : : ; xm/! Y � is the cotangent line of C at xi . Let evi be the evaluation
map at the i th marked point, and for � W C!Mlog

g;m.Y.D/; d/ the universal curve with relative dualising
sheaf !� , denote by E WD ��!� the Hodge bundle, which is a rank g vector bundle on Mlog

g;m.Y.D/; d/.
The gth lambda class is its top Chern class �g WD cg.E/.

We will be concerned with the virtual log GW count of genus g curves in Y of degree d meeting Dj in
one point of maximal tangency d �Dj , passing through l � 1 general points of Y and with insertion �g ,

(4-1) N
log
g;d
.Y.D// WD

Z
ŒMlog
g;l�1

.Y.D/;d/�vir
.�1/g �g

l�1Y
jD1

ev�j .Œpt�/:

Furthermore, we will denote by N log; 
0;d

.Y.D// the genus-zero log GW invariants of maximal tangency
passing through one general point of Y with psi class to the power l � 2,

(4-2) N
log; 
0;d

.Y.D// WD

Z
ŒMlog
0;1.Y.D/;d/�

vir
ev�1.Œpt�/[ l�21 :

It will be useful in the following to define all-genus generating functions for the logarithmic invariants of
Y.D/ at fixed degree,

(4-3) N
log
d
.Y.D//.„/ WD

1�
2 sin

�
1
2
„
��l�2 X

g>0

N
log
g;d
.Y.D//„2g�2Cl :

In the setting of Proposition 2.4, it follows from [3] that N log
g;d
.Y.D// (resp. N log; 

0;d
.Y.D//) equals the

log GW invariant of . zY ; zD/, of class '�d , with maximal tangency along each of the strict transforms
of Di , not meeting the other boundary components and meeting l � 1 general points of zY (resp. one
point with psi class to the power of l � 2). The above numbers are deformation invariant in log smooth
families [85].

4.2 Scattering diagrams

Our main tool for the calculation of (4-1)–(4-2) will be their associated quantum scattering diagrams
and quantum broken lines [83; 14; 13; 32; 16]. In the classical limit, in dimension 2 this is treated in
[56; 53; 51] and in full generality in [57; 55]. The quantum scattering diagram consists of an affine
integral manifold B and a collection of walls d with wall-crossing functions fd. The latter are functions
on open subsets of the mirror.

Let � W . zY ; zD/�! .Y ;D/ be a toric model as in Proposition 2.4 with s interior blowups. Up to deformation,
we may assume that the blowup points are disjoint. Note that s D �top.Y nD/ D �top. zY n zD/ is an
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invariant of the interior. We construct an affine integral manifold B from � as follows. First, we start
with the fan of .Y ;D/. Then, for every interior blowup, we add a focus–focus singularity in the direction
of the corresponding ray. In practice, we introduce cuts connecting the singularities to infinity and we use
charts to identify the complements of the cuts with an open subset of R2.

Let ı1; : : : ; ıs denote the focus–focus singularities andB.Z/ be the set of integral points ofB n fı1; : : : ; ısg.
In the limit where the singularities are sent to infinity, B.Z/ can be identified with the integral points
of the fan of .Y ;D/. The singularity ıj corresponds to an interior blowup on a toric divisor D.ıj / of
.Y ;D/ with exceptional divisor Ej . Viewing the ray of the fan of .Y ;D/ corresponding to D.ıj / as
going from .0; 0/ to infinity, denote by �j its primitive direction.

Each ıj creates a quantum wall dj propagating into the direction ��j and decorated with the wall-crossing
function fdj WD 1C tj z

�j , where tj D t ŒEj � is a formal variable keeping track of the exceptional divisor
and z�j is the tangent monomial xayb if �j D .a; b/. Note that the wall also propagates into the �j
direction (decorated with 1C tj z��j ), but that part of the scattering diagram is not relevant to us.

When two walls meet, this creates scattering: up to perturbation, we may assume that at most two walls dj
and dk come together at one point, which in the following is taken to be the origin for simplicity. We
refer to [56] for the general case and only describe the explicit result in the two cases relevant to us:

� Simple scattering (det.�j ; �k/D˙1) The scattering algorithm draws an additional quantum
wall d in the direction ��j � �k decorated with the function 1C tj tkz�jC�k .

� Infinite scattering (det.�j ; �k/D˙2) The algorithm creates a central quantum wall d in the
direction ��j � �k decorated with the function

(4-4)

1
2
.ind.�jC�k/�1/Y

`D� 1
2
.ind.�jC�k/�1/

.1� q�
1
2
C`tj tkz

�jC�k /�1.1� q
1
2
C`tj tkz

�jC�k /�1;

where ind.�j C �k/ is the index of �j C �k . We then add quantum walls d1; : : : ; dn; : : : in the
directions �.nC 1/�j �n�k decorated with functions

(4-5) 1C tnC1j tnk z
.nC1/�jCn�k ;

for n� 0, as well as quantum walls 1d; : : : ; nd; : : : in the directions �n�j � .nC 1/�k decorated
with functions

(4-6) 1C tnj t
nC1
k

zn�jC.nC1/�k

for n� 0.

The classical scattering algorithm is recovered in the classical limit q
1
2 D 1. Only the central quantum

wall in the case det.�j ; �k/ D ˙2 is different from its classical version, for which the wall-crossing
function specialises to .1� tj tkz�jC�k /�2 ind.�jC�k/.
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If u and u0 are adjacent chambers of B separated by the quantum wall d decorated with fd, we can
define a quantum wall-crossing transformation �d from u to u0 as follows. Denote by nd=u the primitive
orthogonal vector pointing from d into u. Let m be such that hnd=u; mi � 0. For a polynomial a in the
variables tj , consider an expression azm, which we think of as a function on u. Then, writing

(4-7) fd D
X
r�0

crz
r�d ;

where ��d is the primitive direction of d,

(4-8) �d W az
m
7! azm

1
2
.hnd=u;mi�1/Y

`D� 1
2
.hnd=u;mi�1/

�X
r�0

crq
r`zr�d

�
:

Note that in the classical limit q
1
2 D1, we recover the formula for the classical wall-crossing transformation,

which is � cl
d W az

m 7! f
hnd=u;mi
d azm. Writing �d.azm/D

P
i aiz

mi , any summand aizmi is called a result
of quantum transport of azm from u to u0.

The final object we will need is the algebra of quantum broken lines associated to the scattering diagram,
which we describe in the generality needed here; see [55] for full details in the classical limit. Let
B0 WD B n fı1; : : : ; ıs; dj \ dk j for all j; kg. Let zm be an asymptotic monomial, in our case this means
that mD .a; b/¤ .0; 0/, and let p 2 B . Then a quantum broken line ˇ with asymptotic monomial zm

and endpoint p consists of

(1) a directed piecewise straight path in B0 of rational slopes, coming from infinity in the direction �m,
bending only at quantum walls and ending at p;

(2) a labelling of the initial ray by L1 and the successive line segments in order by L2; : : : ; Ls , where
p is the endpoint of Ls;

(3) if Li \LiC1 2 di , then, iteratively defined from 1 to s, the assignment of a monomial aizmi , where

� a1z
m1 D zm,

� aiC1z
miC1 is a result of the quantum transport of aizmi across di ,

� Li is directed in the direction �mi .

Note that if ndi=Li is the primitive orthogonal vector to di pointing into the half-plane containing Li ,
then, as Li is directed in the direction �mi , we have hndi=Li ; mi i � 0, and so the quantum transport of
aiz

mi across di is indeed well-defined. We call aendz
mend D asz

ms the end monomial of ˇ and aend the
end coefficient of ˇ.

If zm is an asymptotic monomial, the theta function #m is the sum of the end monomials of all broken
lines with asymptotic monomial zm and ending at p. Note that a priori #m depends on p, but it is one of
the main results of [55] that it is constant in chambers and transforms from chamber to chamber according
to the wall-crossing transformations.
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We first describe the classical algebra of theta functions, ie we set q
1
2 D 1. For A an element in the algebra

of theta functions, we denote by hA; #mi the coefficient of #m in A; note that hA; #mi is a polynomial in
the tj . Then the identity component h#m1 �#m2 ; #0i is given as the sum of products of end coefficients
a1enda

2
end over all broken lines ˇ1 with asymptotic monomial zm

1

and ˇ2 with asymptotic monomial zm
2

such that m1end D�m
2
end. The identity component h#m1 �#m2 �#m3 ; #0i is given as the sum of products of

end coefficients a1enda
2
enda

3
end over all broken lines ˇ1, ˇ2, ˇ3, with asymptotic monomials zm

1

, zm
2

, zm
3

and such that m1endCm
2
endCm

3
end D 0.

For .Y.DDD1C� � �CDl//, consider the scattering diagram associated to a toric model � coming from
a diagram as in Proposition 2.4,

(4-9)

zY . zD/

'

{{

�

##

Y.D/ Y .D/

Then the proper transform and pushforward of Dj is a toric divisor in Y corresponding to a ray in B . Up
to reordering the indices, we assume that the ray corresponding to Dj is directed by �j .

Proposition 4.1 [84] Let Y.D/ be an l–component log Calabi–Yau surface of maximal boundary. Let
d 2 H2.Y;Z/ be an effective curve class and write ej WD d �'�Ej for j D 1; : : : ; s, where ' is as in (4-9).

� Assume that l D 2. Set m1D .d �D1/�1 andm2D .d �D2/�2. Then N log
0;d
.Y.D// is the coefficient

of
Qs
jD1 t

ej
j in h#m1 �#m2 ; #0i.

� Assume that lD3. Set m1D .d �D1/�1,m2D .d �D2/�2 and m3D .d �D3/�3. Then N log; 
0;d

.Y.D//

is the coefficient of
Qs
jD1 t

ej
j in h#m1 �#m2 �#m3 ; #0i.

We return to the algebra of quantum theta functions. For every m1; m2 and p 2 B0, denote by Cm1;m2
the polynomial in the variables tj with coefficients in ZŒq˙

1
2 � given as the sum of products of end

coefficients a1enda
2
end over all quantum broken lines ˇ1 with asymptotic monomial zm

1

and ˇ2 with
asymptotic monomial zm

2

, with common endpoint p and such that m1end D �m
2
end. The polynomial

Cm1;m2 is independent of the choice of p 2 B0.

Proposition 4.2 Let Y.D/ be an l–component log Calabi–Yau surface of maximal boundary. Let
d 2H2.Y;Z/ be an effective curve class and write ej WD d �'�Ej for j D 1; : : : ; s, where ' is as in (4-9).

� Assume that l D 2. Set m1 D .d �D1/�1 and m2 D .d �D2/�2. Then after the change of variables
q D ei„, the series

(4-10) N
log
d
.Y.D//.„/D

X
g>0

N
log
g;d
.Y.D//„2g

is the „–expansion of the q–polynomial which is the coefficient of
Qs
jD1 t

ej
j in Cm1;m2 .
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� Assume that l D 3. Set m1 D .d �D1/�1, m2 D .d �D2/�2 and m3 D .d �D3/�3. Then after the
change of variables q D ei„, the series

(4-11) N
log
d
.Y.D//.„/D

1

2 sin
�
1
2
„
� X
g>0

N
log
g;d
.Y.D//„2gC1

is the „–expansion of the q–polynomial obtained as the sum over all quantum broken lines ˇ1
with asymptotic monomial zm1 , ˇ2 with asymptotic monomial zm2 , and ˇ3 with asymptotic
monomial zm3 , with common endpoint and such that m1endCm

2
endCm

3
end D 0, of

(4-12)
Œjdet.m1end; m

2
end/j�q

Œ1�q
a1enda

2
enda

3
end:

Here aiendz
miend are the end monomials of the broken lines ˇi and the q–integers Œ � �q are defined in

(4-18) below.

Proof We only give a sketch of the proof as it is an adaptation of the proof of the Frobenius structure
conjecture of [84], which in the setting relevant to us is stated in Proposition 4.1 above.

Recall first the geometric argument of the proof of [84]. The starting point is to consider the degeneration
of [56] of Y.D/ to a toric situation: using toric transversality in the cluster setting, the curves do not
fall into the codimension-one strata of D and one may apply the degeneration formula, expressing
N

log; 
0;d

.Y.D// in terms of log GW invariants of the central fibre, which can in turn be computed via the
toric tropical correspondence theorem [97; 85]. In the scattering diagram, the tropical curves correspond to
constellations of broken lines, and the product of the end coefficients equals the product of the multiplicity
of the tropical curve with the terms coming from the degeneration formula.

To see how this is modified to obtain higher-genus invariants, the study of the degeneration of [56]
is done using the techniques introduced in [14], and then the result follows from the toric tropical
correspondence theorem for higher-genus log Gromov–Witten invariants with �g–insertion proven in [12].
The toric transversality of the log maps in the degeneration is a consequence of the vanishing result of
[12, Lemma 8].

To further encompass two-pointed insertions, one can see that tropically, by [85], a  –class corresponds
to a marked 3–valent vertex with multiplicity 1. In the case of 2–pointed invariants, one can carry out the
same degeneration as above, therefore leading to the same tropical curves in the fan of the central fibre.
The one difference is that previously one 3–valent vertex corresponded to a point with a  –class, and
hence carried multiplicity 1, whereas in the case of 2–pointed invariants this vertex is no longer marked
and carries its Block–Göttsche [10] multiplicity

Œjdet.m1end; m
2
end/j�q

Œ1�q
;

and instead there are two marked 2–valent vertices elsewhere (which do not carry any multiplicity).

Geometry & Topology, Volume 28 (2024)



Stable maps to Looijenga pairs 429

4.2.1 Binomials and q–binomial coefficients In our applications of Propositions 4.1 and 4.2, we will
mostly consider (quantum) broken lines bending along (quantum) walls fd decorated by a function of the
form

(4-13) fd D 1C tz
�d ;

where ��d is the primitive direction of d. By the binomial theorem, we have

(4-14) f
hn;mi
d D .1C tz�d/hn;mi D

hn;miX
kD0

�
hn;mi

k

�
tkzk�d :

Therefore, each application of transport across such a wall will produce a binomial coefficient, and so our
genus-zero log Gromov–Witten invariants will be product of binomial coefficients. By the q–binomial
theorem, we have

(4-15)

1
2
.hn;mi�1/Y

`D� 1
2
.hn;mi�1/

�
1C tq`z�d

�
D

hn;miX
kD0

�
hn;mi

k

�
q

tkzk�d ;

where the q–binomial coefficients

(4-16)
�
N

k

�
q

WD
ŒN �qŠ

Œk�qŠŒ.N � k/�qŠ

are defined in terms of the q–factorials

(4-17) Œn�qŠ WD

nY
jD1

Œj �q;

where the q–integers are

(4-18) Œn�q WD q
n=2
� q�n=2:

It follows that the formulas for the higher-genus log Gromov–Witten invariants N
log
d
.Y.D//.„/ will be

obtained by replacing binomial coefficients by q–binomial coefficients in the formulas for the genus-zero
invariant N log

0;d
.Y.D//.

4.3 Log Gromov–Witten invariants under interior blowup

Proposition 4.3 (blowup formula for log GW invariants) Let Y.D/ be an l–component log CY surface
with maximal boundary. Let � W Y 0.D0/! Y.D/ be the l–component log CY surface with maximal
boundary obtained by an interior blowup at a general point of D with exceptional divisor E. Let d be a
curve class of Y.D/ and let d 0 WD ��d . Then

N
log
g;d
.Y.D//DN

log
g;d 0

.Y 0.D0//;(4-19)

N
log; 
0;d

.Y.D//DN
log; 
0;d 0

.Y 0.D0//:(4-20)
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Proof Let Dj be the irreducible component of D containing the point that we blow up. We consider the
degeneration of Y.D/ to the normal cone of Dj : the fibre over any point of A1�f0g is Y.D/ and the
special fibre over f0g has two irreducible components, which are isomorphic to Y.D/ and a P1–bundle
Pj over Dj , and are glued together along a copy of Dj . Let Dj be the closure of Dj � .A1 � f0g/ in
the total space of the degeneration. After blowing up a section of Dj ! A1, we obtain a family with
fibre Y 0.D0/ over any point of A1�f0g, and special fibre over f0g given by the union of two irreducible
components, which are isomorphic to Y.D/ and to the blowup zPj of Pj at one point. We compare
the invariants N log

g;d
and N log; 

0;d
of Y.D/ and Y 0.D0/ using this degeneration. Following the general

strategy of [14, Section 5], using in particular the vanishing result of [12, Lemma 8] to guarantee toric
transversality of the log maps in the degeneration, we obtain that the invariants of Y.D/ and Y 0.D0/ only
differ by a multiplicative factor coming from multiple covers of a fibre of zPj !Dj . By deformation
invariance, we can assume that this fibre is a smooth P1–fibre, with trivial normal bundle in zPj . Therefore,
the correction factor is an integral over a moduli space of stable log maps to P1 with extra insertion of
the class e.H1.C;OC //D .�1/g�g . Because our genus g invariants already contain an insertion of �g
and �2g D 0 for g > 0 by Mumford’s relation [95], the correction factor only receives contributions from
genus zero. The genus-zero corrections involves degree d �Dj stable log maps to .P1; f0g[ f1g/, fully
ramified over 0 and1. The corresponding moduli space is a point with an automorphism group of order
d �Dj and so contributes 1=.d �Dj /. Because of the extra .d �Dj / multiplicity factor in the degeneration
formula, the total multiplicative correction factor is 1.

As a consequence of Proposition 4.3, if we calculate N log
g;d
.Y.D// and N log; 

0;d
.Y.D// for all g and d ,

then we will know the invariants for all interior blowdowns of Y.D/. Therefore it is enough to cal-
culate the invariant for the cases of highest Picard rank in Propositions 2.2 and 2.3. In the following
section, we calculate the higher-genus log invariants N

log
d
.Y.D//.„/ for all tame Looijenga pairs: using

Proposition 4.3, it is enough to consider the pairs dP3.1; 1/, dP3.0; 0; 0/ and F0.0; 0; 0; 0/, which are
treated in Theorems 4.5, 4.9 and 4.10.

For nontame pairs, the genus-zero invariants can be obtained by combining the log-local correspondence
of Theorem 5.1 and (3-21) in Theorem 3.3 giving the local invariants. For quasi-tame pairs we furthermore
make the following general conjecture for the higher-genus invariants N

log
d
.Y.D//.„/.

Conjecture 4.4 Let Y.D/ and Y 0.D0/ be nef 2–component log CY surfaces with maximal boundary
such that the corresponding local geometries EY.D/ and EY 0.D0/ are deformation equivalent. Then , under
suitable identification of d , we have

(4-21)
� lD2Y
jD1

Œd �D0j �q

�
N

log
d
.Y.D//.„/D

� lD2Y
jD1

Œd �Dj �q

�
N

log
d
.Y 0.D0//.„/:

Conjecture 4.4 holds in the genus-zero, ie q
1
2 D1, limit, as a corollary of the log-local correspondence given

by Theorem 5.1 and of the deformation invariance of local Gromov–Witten invariants. In higher genus,

Geometry & Topology, Volume 28 (2024)



Stable maps to Looijenga pairs 431

Conjecture 4.4 translates to conjectural, new nontrivial q–binomial identities: see eg Conjecture B.3 for
the cases of dP1.0; 4/ and F0.0; 4/.

4.4 Toric models: l D 2

Extending [15, Section 5] we find toric models for all l D 2 nef log Calabi–Yau surfaces except for
F0.2; 2/, which we leave to the reader as an exercise. For each toric model, we draw the corresponding
fans with focus–focus singularities. By [40, Lemma 2.10], a log Calabi–Yau surface with maximal
boundary .Y ;D/ is toric if the sequence of self-intersection numbers of irreducible components of D is
realised as the sequence of self-intersection numbers of toric divisors on a toric surface. Once we have
the toric models, we calculate the part of the scattering diagram relevant to us, and by Proposition 4.1 the
relevant structural coefficients for the multiplication of theta functions yield the maximal tangency log
Gromov–Witten invariants.

4.4.1 Tame pairs: simple scattering By Proposition 4.3, it suffices to consider the case Y.D/ D
dP3.1; 1/. Start with P2.1; 4/. The anticanonical decomposition of D is given by D1 a line and D2 a
smooth conic not tangent to D1. For notational convenience, in what follows we will identify D1 and
D2 (resp. F1 and F2) with their strict transforms (resp. pushforwards) under blowups (resp. blowdowns).

Denote by pt one of the intersection points of D1 and D2 and by L the line tangent to D2 at pt. We blow
up pt, leading to the exceptional divisor F1. We further blow up the intersection of F1 with D2 and write
F2 for the exceptional divisor. Denote the resulting log Calabi–Yau surface with maximal boundary by
.BP2.1; 4/; zD/, where zD is the strict transform of D.

The toric model .P2.1; 4/;D/ is given by blowing down the strict transform of L, so that P2.1; 4/D F2

and D D D1 [ F1 [ F2 [ D2, with F1 the .�2/–curve of F2, D2 a section of self-intersection 2,
and D1 and F2 linearly equivalent to fibre classes. Labelling the toric boundary divisors with their
self-intersections, we obtain the diagram at the left of Figure 3.

To obtain the toric model for dP3.1; 1/, we need to blow up a nontoric point on F2 (thus reproducing L),
and three nontoric points on D2. Tropically, this amounts to introducing a focus–focus singularity on the
ray of F2 and three on the ray of D2 as in Figure 3 to the right. Walls emanate out of these focus–focus
singularities. While they propagate into two directions, for our calculations only one direction matters
(the other ray being close to infinity and thus noninteracting). We perturb the focus–focus singularities
on D2 horizontally.

The cone of curves is generated by H �Ei �Ej for 1� i < j � r and the Ei . In particular, any curve
class d 2 H2.dP3;Z/ can be written as d D d0.H �E1�E2�E3/C d1E1C d2E2C d3E3.

Theorem 4.5 Putting q D ei„, we have

(4-22) N
log
d
.dP3.1; 1//.„/D

�
d3

d0� d1

�
q

�
d3

d0� d2

�
q

�
d0
d3

�
q

�
d1C d2C d3� d0

d3

�
q

:
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D2.2/

D1.0/F1.�2/

F2.0/

D2

D1F1

F2
�

�

�

�

Figure 3: Left: the toric model of P2.1; 4/. Right: the toric model of dP3.1; 1/.

Proof Write t D zŒL� and let ti D zŒEi �. Since D1 DH and D2 D 2H �E1 �E2 �E3, we have the
following intersection multiplicities:

d �D1 D d0; d �D2 D d1C d2C d3� d0 and d �Ei D d0� di :

All of the scattering is simple. The initial wall-crossing functions are drawn in Figure 4, and all
successive functions are easily obtained. We have two broken lines, one coming from the D1–direction
with attaching monomial .xy2/d �D1 and one coming from the D2–direction with attaching monomial
.y�1/d �D2 . Provided we choose our endpoint p to be sufficiently far into the x–direction, Figure 4
contains all the relevant walls. We start from the broken line coming from theD2 direction and summarise
the wall-crossing functions attached to the walls it meets:

1 1C tx�1; 2 1C t t3x
�1y�1; 3 1C t t2x

�1y�1;

4 1C t t1x
�1y�1; 5 1C t2t1t2t3x

�2y�3:

Crossing these walls leads to yd0�d1�d2�d3 mapping to�
d1C d2C d3� d0

k

�
q

�
d1C d2C d3� d0� k

k1

�
q

�
d1C d2C d3� d0� k

k2

�
q

�

�
d1C d2C d3� d0� k

k3

�
q

�
2d1C 2d2C 2d3� 2d0� 3k� k1� k2� k3

k4

�
q

� tkCk1Ck2Ck3C2k4 t
k1Ck4
3 t

k2Ck4
2 t

k3Ck4
1 x�k�k1�k2�k3�2k4 yd0�d1�d2�d3�k1�k2�k3�3k4 :

The intersection multiplicities with the divisors impose the following conditions:

(4-23) kCk1Ck2Ck3C2k4D d0; k1Ck4D d0�d3; k2Ck4D d0�d2; k3Ck4D d0�d1:

Choose as indeterminate k. For the coefficient to be nonzero, 0� k � d1C d2C d3� d0. Then

(4-24)
k4 D kC 2d0� d1� d2� d3; k1 D d1C d2� d0� k;

k2 D d1C d3� d0� k; k3 D d2C d3� d0� k:
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x
y

�

� � �

1C tx�1

1
C
t 1
y
�
1

1
C
t 2
y
�
1

1
C
t 3
y
�
1

yd0�d1�d2�d3

xd0y2d0

1

2

3

4

5

�
p

Figure 4: Scatt dP3.1; 1/.

Hence the sum of the coefficients of the broken lines is
d1Cd2Cd3�d0X

kD0

 �
d1C d2C d3� d0

k

�
q

�
d1C d2C d3� d0� k

d3

�
q

�
d1C d2C d3� d0� k

d2

�
q

�

�
d1C d2C d3� d0� k

d1

�
q

�
2d1C 2d2C 2d3� 2d0� 3k� k1� k2� k3

k4

�
q

!

D

k.d0;d1;d2;d3/X
kD0

 �
d1C d2C d3� d0

k

�
q

�
d1C d2C d3� d0� k

d3

�
q

�
d1C d2C d3� d0� k

d2

�
q

�

�
d1C d2C d3� d0� k

d1

�
q

�
d0

kC 2d0� d1� d2� d3

�
q

!
;

where k.d0; d1; d2; d3/ WDminfd0; d1C d2� d0; d1C d3� d0; d2C d3� d0g.
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Therefore, we obtain

(4-25) N
log
d
.dP3.1; 1//.„/DX

k>0

 �
d1C d2C d3� d0

k

�
q

�
d1C d2C d3� d0� k

d3

�
q

�
d1C d2C d3� d0� k

d2

�
q

�

�
d1C d2C d3� d0� k

d1

�
q

�
d0

kC 2d0� d1� d2� d3

�
q

!
:

Writing the q–binomial coefficients in terms of q–factorials, and changing the indexing variable

k 7! k� d0C
1
2
.d1C d2C d3/;

we have

(4-26)
Œd0�qŠŒd1C d2C d3� d0�qŠ

Œd1�qŠŒd2�qŠŒd3�qŠ

�

X
k

�
1
2
.d1C d2C d3/� k

�
q
Š��

1
2
.d1C d2� d3/� k

�
q
Š
�
1
2
.d1C d3� d2/� k

�
q
Š
�
1
2
.d2C d3� d1/� k

�
q
Š

�
�
k� d0C

1
2
.d1C d2C d3/

�
q
Š
�
kC d0�

1
2
.d1C d2C d3/

�
q
Š
�
:

We re-sum this explicitly using the q–Pfaff–Saalschütz identity10 in the form given in [116, Equation (1q)]:

(4-27)
X
k

ŒaC bC c � k�qŠ

Œa� k�qŠŒb� k�qŠŒc � k�qŠŒk�m�qŠŒkCm�qŠ
D

�
aC b

aCm

�
q

�
aC c

cCm

�
q

�
bC c

bCm

�
q

:

Therefore, specialising (4-27) to aCbD d1, bCcD d3, aCcD d2, aCmD d0�d3, bCmD d0�d2
and cCmD d0� d1, we have

(4-28) N
log
d
.dP3.1; 1//.„/D

Œd0�qŠŒd1C d2C d3� d0�qŠ

Œd1�qŠŒd2�qŠŒd3�qŠ

�
d1

d0� d3

�
q

�
d2

d0� d1

�
q

�
d3

d0� d2

�
q

;

which after elementary simplifications gives (4-22).

Remark 4.6 It follows from the above proof that Theorem 4.5 is in fact equivalent to the q–Pfaff–
Saalschütz identity. In genus zero, Theorem 5.1 applied to dP3.1; 1/ gives a geometric proof of
Theorem 4.5. Thus, we obtain a new geometric, albeit quite indirect, proof of the classical (q D 1)
Pfaff–Saalschütz identity.

4.4.2 Nontame pairs: infinite scattering Figure 19 gives the toric model of F0.0; 4/. For the other
nontame pairs, let 1� r � 5. Then dPr.0; 5� r/ is obtained from P2.1; 4/ by blowing up the first point
on the line D1 and the remaining r � 1 points on the conic D2. Hence we obtain the toric model of
dPr.0; 5� r/ by adding 1 focus–focus singularity on the ray D1 and r � 1 focus–focus singularities on
the ray D2, as in Figure 5. The singularities on the ray of D2 can be perturbed horizontally.

10Unlike [44; 116], we are using q–factorials and q–binomial coefficients symmetric under q 7! q�1. This explains the absence
in the above expression of the power qn

2�k2 , which is present in [116, Equation (1q)].
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D2

D1F1

F2
�

�

�

�

�

�

r � 1

Figure 5: dPr.0; 5� r/.

Write a curve class d 2 H2.dP3.0; 2/;Z/ as d D d0.H �E1�E2�E3/C d1E1C d2E2C d3E3. As
D1 DH �E1 and D2 D 2H �E2 �E3, we get that d �D1 D d1 and d �D2 D d2C d3. As EdP3.0;2/

is deformation equivalent to EdP3.1;1/ by Proposition 2.6, Conjecture 4.4 and Theorem 4.5 give the
following conjecture.

Conjecture 4.7 The generating function N
log
d
.dP3.0; 2//.„/ equals

(4-29)
Œd1�qŒd2C d3�q

Œd0�qŒd1C d2C d3� d0�q

�
d3

d0� d1

�
q

�
d3

d0� d2

�
q

�
d0
d3

�
q

�
d1C d2C d3� d0

d3

�
q

;

where q D ei„.

Theorem 5.1 in Section 5.1 implies that Conjecture 4.7 holds in the classical limit q
1
2 D 1. Direct

scattering computation for dPr.0; 5� r/ with r > 1 are particularly daunting owing to the presence of
infinite scattering, and in particular the final formulas take the shape of somewhat intricate multiple
q–sums, which Conjecture 4.7 predicts should take a remarkably simple q–binomial form. We exemplify
this for the blowdown geometries dP1.0; 4/ and F0.0; 4/ in Section B. For these cases, the specialisation
of Conjecture 4.7 reduces to nontrivial, and apparently novel, conjectural q–binomial identities; see eg
Conjecture B.3.

4.5 Toric models: l D 3

For l D 3, recall from (4-2) (resp. (4-1)) that N log; 
0;d

.Y.D// (resp. N log
0;d
.Y.D//) is the genus-zero log

Gromov–Witten invariant of maximal tangency passing through one point with psi-class (resp. passing
through 2 points). By Proposition 4.3, it is enough to treat dP3.0; 0; 0/ as the other cases are obtained
from it by interior blowdowns. We leave the description of the other toric models as an exercise to the
reader.
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Via Proposition 4.1, the invariant N log; 
0;d

.Y.D// is calculated from the scattering diagram as a structural
coefficient of the product of three theta functions. For each constellation of three broken lines, the union
of these corresponds to a tropical curve in the degeneration encoded by the scattering diagram. It is
counted with multiplicity given by the product of the coefficients of the final monomials of the broken
lines. Using Proposition 4.2, one can compute the generating series N

log
d
.Y.D//.„/ of higher-genus

2–point log Gromov–Witten invariants. The relevant tropical curves are identical to those entering the
computation of N log; 

0;d
.Y.D//. The difference is in the weighting of the tropical curves. For the  class,

the trivalent vertex at the endpoint of the broken lines carry weight 1. For the 2–point invariants, we
consider quantum broken lines, and the trivalent vertex is counted with Block–Göttsche multiplicity.

Let Y.D/D dP3.0; 0; 0/. We take D1 in class H �E3, D2 in class H �E2, D3 in class H �E1 and
d D d0.H �E1 �E2 �E3/C d1E1C d2E2C d3E3. Then d �D1 D d3, d �D2 D d2, d �D3 D d1,
d �E1D d0�d1, d �E2D d0�d2 and d �E3D d0�d3. The calculations of Figure 6 give for the broken
line 1 the contribution

(4-30)
�

d1
d0� d2

�
t
d0�d2
2 x�d1yd2�d0 ;

for the broken line 2 the contribution

(4-31)
�

d2
d0� d3

�
t
d0�d3
3 xd0�d3yd0�d2�d3 ;

and from the broken line 3 the contribution

(4-32)
�

d3
d0� d1

�
t
d0�d1
1 xd3Cd1�d0yd3 :

Taken together, we obtain the following result.

Theorem 4.8 We have

(4-33) N
log; 
0;d

.dP3.0; 0; 0//D
�

d1
d0� d2

��
d2

d0� d3

��
d3

d0� d1

�
:

For the 2–point invariant, the tropical multiplicity at p is

(4-34)
ˇ̌̌̌
det

�
d1 d1C d3� d0

�d2C d0 d3

�ˇ̌̌̌
D jd1d3C d1d2C d2d3� d0d2� d0d1� d0d3C d

2
0 j:

For the invariant to be nonzero, the curve class needs to lie in the effective cone determined (see
Proposition 2.5) by

(4-35) d0 � 0; di � 0; d1C d2C d3 � d0:

Also, for the binomial coefficients to be nonzero, the curve class needs to satisfy the equations

(4-36) 0� d0� d2 � d1; 0� d0� d3 � d2; 0� d0� d1 � d3:
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�
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x�d1
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xd3yd3

3

21
�
p

Figure 6: dP3.0; 0; 0/.

These inequalities determine a cone. Using the Polyhedra package of Macaulay2, in the basis

.H �E1�E2�E3; E1; E2; E3/

we find extremal rays generated by

(4-37) .1; 1; 1; 0/; .1; 1; 0; 1/; .1; 0; 1; 1/; .2; 1; 1; 1/:

Using this as a new basis, we find that the quadratic form in (4-34) is given by

(4-38) xyC xzCyzCw.xCyC z/Cw2;

which is always positive in the cone. Therefore, we have proven the following result.

Theorem 4.9 The generating function N
log
d
.dP3.0; 0; 0//.„/ equals

(4-39)
Œd20 � d1.d0� d2/� d2.d0� d3/� d3.d0� d1/�q

Œ1�q

�
d1

d0� d2

�
q

�
d2

d0� d3

�
q

�
d3

d0� d1

�
q

;

where q D ei„.

4.6 Toric models: l D 4

There is only one 4–component log Calabi–Yau surface with maximal boundary, namely the toric surface
F0.0; 0; 0; 0/. For d D d1H1C d2H2, through tropical correspondence [92; 97; 85; 86], we calculated
in [18] that

(4-40) N
log; 
0;d

.F0.0; 0; 0; 0//D 1 and N
log
0;d
.F0.0; 0; 0; 0//D d

2
1 d

2
2 :
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To obtain the higher-genus invariant, we replace the tropical multiplicities by the Block–Göttsche multi-
plicities [10]. Applying [12] we obtain the following result.

Theorem 4.10 We have

(4-41) N
log
d
.F0.0; 0; 0; 0//.„/D

Œd1d2�
2
q

Œ1�2q
:

5 Log-local correspondence

In this section, we prove the following log-local correspondence theorem.

Theorem 5.1 For every nef Looijenga pair Y.D/, the genus-zero log invariants N log
0;d
.Y.D// and the

genus-zero local invariants N loc
0;d
.Y.D// are related by

(5-1) N loc
0;d .Y.D//D

� lY
jD1

.�1/d �Dj�1

.d �Dj /

�
N

log
0;d
.Y.D//:

The proof will be divided into two parts. In Section 5.1, we prove the result for l D 2 by a degeneration to
the normal cone argument. In Section 5.2, we prove the result for l D 3 and l D 4 by direct comparison
of the local results of Section 3 with the log results of Section 4.

5.1 Log-local for 2 components

For convenience in the following proof, we state separately the case l D 2 of Theorem 5.1.

Theorem 5.2 For every 2–component nef Looijenga pair Y.D/, we have

(5-2) N loc
0;d .Y.D//D

� lY
jD1

.�1/d �Dj�1

.d �Dj /

�
N

log
0;d
.Y.D//:

The proof of Theorem 5.2 takes the remainder of Section 5.1, and is a degeneration argument in log
Gromov–Witten theory.

5.1.1 Construction of the degeneration We first construct the relevant degeneration for a general
l–component nef Looijenga pair Y.D/D .Y;D1C � � �CDl/.

Let x�xY W xY ! A1 be the degeneration of Y to the normal cone of D, obtained by blowing up D � f0g
in Y �A1. Irreducible components of the special fibre xY0 WD x��1xY .0/ are Y and, for every 1 � j � l ,
xPj WDP .O˚NDj jY /, whereNDj jY is the normal bundle toDj in Y . For every double point p 2Dj\Dj 0
of D, a local description of xY0 is given by Figure 7, left. In particular, we have a point p@ in xY0 where
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q
@

@
@

@
@

Figure 7: Left: local description of xY0. Right: toric polyhedral decomposition of R2�0 describing
locally xY0 (fan picture).

the total space xY is singular. This can be seen as follows. Locally near a double point p 2Dj 0 \Dj ,
the degeneration to the normal cone admits a toric description, whose fan is given by the closure of
the cone over the polyhedral decomposition of R2

�0 in Figure 7, right. The point p@ corresponds to the
3–dimensional cone obtained by taking the closure of the cone over the unbounded region of R2

�0 in
Figure 7, right. This cone is generated by four rays, so is not simplicial and so p@ is a singular point.
More precisely, p@ is an ordinary double point in xY . Every singular point of xY is of the form p@ for p a
double point of D.

We resolve the singularities of xY by blowing up the ordinary double points p@, and we obtain a new
degeneration �Y W Y ! A1. The total space Y is now smooth and the special fibre Y0 WD ��1Y .0/ is a
normal crossings divisor on Y . We view Y as a log scheme for the divisorial log structure defined by
Y0 � Y . Viewing A1 as a log scheme for the divisorial log structure defined by f0g �A1, the morphism
�Y W Y!A1 can naturally be viewed as a log smooth log morphism.

Irreducible components of Y0 consist of Y , the strict transform Pj of the xPj for every 1� j � l , and for
every double point p of D the exceptional divisor Sp ' P1 �P1 created by the blowup of p@. Locally
near a double point p 2Dj \Dj 0 , irreducible components of Y0 are glued together as in Figure 8, left.
Locally near p, the total space Y admits a toric description whose fan is the closure of the cone over
the polyhedral decomposition of R2

�0 given in Figure 8, right. We remark that the log structure that we
consider on Y is only partially compatible with this local toric description: one needs to remove from the
toric boundary the horizontal toric divisors in order to obtain the divisorial log structure defined by the
special fibre.

For every 1� j � l , let Dj be the closure in Y of the divisor Dj �.A1�f0g/� Y �.A1�f0g/. We have

(5-3) OY.�Dj /jY0 DOY0

�
�

�
D@j [

[
p2Dj

D@j;p

��
;

where the union is taken over the double points p of D contained in Dj .
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j 0;p
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Sp
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r
@
@

@
@
@@
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Figure 8: Left: local description of Y0. Right: toric polyhedral decomposition of R2�0 describing
locally Y0 (fan picture).

We define V WD Tot
�Ll

jD1OY.�Dj /
�

and denote by �V W V! Y and �V W V!A1 the natural projections.
We also denote by V0 WD ��1V .0/ the special fibre and by �V0 W V0! Y0 the restriction of �V to the special
fibre.

The irreducible components of V0 are

V0;Y WD Tot.O˚lY /;(5-4)

V0;j WD Tot.OPj .�D
@
j /˚O˚.l�1/Pj

/ for every 1� j � l;(5-5)

and, for every double point p 2Dj \Dj 0 of D,

(5-6) V0;p WD Tot.OSp .�D
@
j;p/˚OSp .�D

@
j 0;p/˚O˚.l�2/Sp

/:

We view V as a log scheme for the divisorial log structure defined by V0 � V , and then �V W V ! A1

is naturally a log smooth log morphism. We remark that the log structure on V is the pullback of the
log structure on Y , ie the log morphism �V W V ! Y is strict. In particular, V and Y have identical
tropicalisations.

For every 1 � j � l , we consider the projectivisation P .OY.�Dj /˚OY/ of OY.�Dj / and the corre-
sponding fibrewise compactification

(5-7) P WD P .OY.�D1/˚OY/�Y � � � �Y P .OY.�Dl/˚OY/

of V . We denote by �P WP!Y and �P WP!A1 the natural projections. We also denote by P0 WD�
�1
P
.0/

the special fibre and by �P0 W P0! Y0 the restriction of �P to the special fibre. We denote by P0;Y ,
P0;j and P0;p the irreducible components of P0 obtained by compactification of V0;Y , V0;j and V0;p.

We view P as a log scheme for the divisorial log structure defined by P0 �P , and then �P WP!A1

is naturally a log smooth log morphism. We remark that the log structure on P is the pullback of the
log structure on Y , ie the log morphism �P W P ! Y is strict. In particular, P and Y have identical
tropicalisations.
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Figure 9: Local description of �.

Let � be the polyhedral complex obtained by taking the fibre over 1 of the tropicalisation of �P WP!A1.
Combinatorially, � is the dual intersection complex of the special fibre V0; see Figure 9. Vertices of �
consist of

� vY corresponding to the irreducible component P0;Y ,

� vj corresponding to the irreducible component P0;j for every 1� j � l ,

� vp corresponding to the irreducible component P0;p for every double point p of D.

Edges of � consist of

� eY;j connecting vY and vj for every 1� j � l , corresponding to the divisor P0;Y \P0;j ,

� e
p
j;j 0 connecting vj and vj 0 for every double point p 2 Dj \Dj 0 of D, corresponding to the

component of the divisor P0;j \P0;j 0 containing p,

� ep;j connecting vp and vj for every double point p 2Dj \Dj 0 of D, corresponding to the divisor
P0;j \P0;p, and ep;j 0 connecting vp and vj 0 , corresponding to the divisor P0;j 0 \P0;p.

Faces of � consist of

� a triangle fp of sides eY;j , eY;j 0 , e
p
j;j 0 for every double point p 2Dj \Dj 0 of D, corresponding

to the triple intersection P0;Y \P0;j \P0;j 0 ,

� a triangle gp of sides epj;j 0 , ep;j , ep;j 0 for every double point p 2Dj \Dj 0 of D, corresponding to
the triple intersection P0;p \P0;j \P0;j 0 .

As we are assuming that the components of D form a cycle, the boundary @� of � can be described as

(5-8) @�D
[

1�j�l

.@�/j ;

where for every 1� j � l ,

(5-9) .@�/j WD
[

p2Dj\Dj 0

ep;j :

We view P0 as a log scheme by restriction of the log structure on P . We denote by �P0 WP0! ptN the
corresponding log smooth log morphism to the standard log point. We view the curve class d as a class
on P0 via the embedding Y0! P0 induced by the zero section of V0. Let M0;m.Y

loc.D/; d/ be the
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moduli space of genus-zero class d stable log maps to �P0 WP0! ptN with m marked points with contact
order 0 with P0;Y . Let ŒM0;m.P0; d /�

vir be the corresponding virtual fundamental class, of dimension
l � 1Cm. Using the nefness of the divisors Dj , the condition d �Dj > 0 for every 1� j � l , and the
deformation invariance of log Gromov–Witten invariants, we have

(5-10) N loc
0;d .Y.D//D

Z
ŒM0;l�1.P0;d/�vir

l�1Y
kD1

ev�k.�
�
P0
ŒptY �/;

where evk is the evaluation at the kth interior marked point and ŒptY � is the class of a point on Y � Y0.

5.1.2 Degeneration formula According to the decomposition formula of Abramovich, Chen, Gross
and Siebert [2], we have

(5-11) ŒM0;l�1.P0; d /�
vir
D

X
hW �!�

mh

jAut.h/j
ŒMh

0;l�1.P0; d /�
vir:

The sum is over the genus-zero rigid decorated parametrised tropical curves h W �!�, where � has l �1
unbounded edges, all contracted by h to vY , and the sum of classes attached to the vertices of � is d .
The moduli space Mh

0;l�1
.P0; d / parametrises genus-zero class d stable log maps to �P0 W P0! ptN

marked by h.

Therefore, we have

(5-12) N loc
0;d .Y.D//D

X
hW �!�

mh

jAut.h/j
N

loc;h
0;d

.Y.D//;

where

(5-13) N
loc;h
0;d

.Y.D// WD

Z
ŒMh
0;l�1

.P0;d/�vir

l�1Y
kD1

ev�k.�
�
P0
ŒptY �/;

and evk is the evaluation at the kth marked point. Thus, for every h W � ! �, we have to compute
N

loc;h
d

.Y.D//.

Let �h be a polyhedral complex obtained by refining the polyhedral decomposition of � and containing
the h.�/ in its one-skeleton, ie such that, for every vertex V of � , h.V / is a vertex of �h, and for every
edge E of � , h.E/ is an edge of �h. We denote by Yh0 , Vh0 and Ph

0 the corresponding log modifications
of Y0, V0 and P0. Let Mh

0;l�1
.Ph
0 ; d / the moduli space of stable log maps to Ph

0 marked by h. By the
invariance of log Gromov–Witten invariants under log modification [3], we have

(5-14) N
loc;h
0;d

.Y.D// WD

Z
ŒMh
0;l�1

.Ph0 ;d/�
vir

l�1Y
kD1

ev�k.�
�

Ph0
ŒptY �/:

For every vertex V of � , let PV be the irreducible component of Ph
0 corresponding to the vertex h.V /

of �h. We view PV as a log scheme for the divisorial log structure defined by the divisor @PV , which is
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the union of intersection divisors with the other irreducible components of Ph
0 . Similarly, we define the

component YV of Yh0 and @YV , so that PV is a .P1/l–bundle over YV .

If h.V / 2�h� @�h, then PV is the trivial .P1/l–bundle over YV . If furthermore, h.V / …
Sl
jD1 eY;j ,

then .YV ; @YV / is a toric variety with its toric boundary.

If h.V / 2 ep;j �vp for some p 2Dj \Dj 0 , let D@j;V be the irreducible component of Dj \Yh0 contained
in YV . Then PV is the fibrewise product over YV of the P1–bundle

(5-15) P
�
OYV .�D

@
j;V /˚OYV

�
with the trivial .P1/l�1–bundle. Moreover, .YV ; @YV [D@j;V / is a toric variety with its toric boundary.

If h.V /D vp for some p 2Dj \Dj 0 , then, still denoting by Sp, D@j;p and D@j;p the strict transforms in
Yh0 of Sp, D@j;p, and D@j;p, PV is the fibrewise product over YV D Sp of the P1–bundle

(5-16) P
�
OSp .�D

@
j;p/˚OSp

�
;

of the P1–bundle

(5-17) P
�
OSp .�D

@
j 0;p/˚OSp

�
;

and of the trivial .P1/l�2–bundle. Moreover, .YV ; @YV [D@j;p [D
@
j 0;p/ is a toric variety with its toric

boundary.

For every vertex V of � , let MV be the moduli space of genus-zero stable log maps to Ph
0;V , with class

given by the class decoration of V, and contact orders specified by the local behaviour of h around V.
Our goal is to compute the invariant N loc;h

d
.Y.D// in terms of the virtual classes ŒMV �

vir. We are in a
particularly favourable situation: we consider curves of genus zero and the dual intersection complex �h

has dimension 2. In such case, the degeneration formula in log Gromov–Witten theory has a particular
simple form, as described in Section 6.5.2 of [105]; see also Section 4 of [104] for the corresponding
discussion in the language of exploded manifolds.

We choose a flow on � such that unbounded edges are incoming and such that every vertex has at most
one outgoing edge. Such flow exists as � has genus zero and then there is exactly one vertex, which we
denote by V0, without outgoing incident edge, and which we call the sink of the flow. All vertices distinct
from V0 have exactly one outgoing edge. In fact, for every vertex V of � , we can find such flow with
sink V0 D V .

For every edge E of � , we denote by PE the stratum of Ph
0 dual to E. The stratum PE is a divisor

if E is bounded and is the irreducible component PV if E is unbounded and incident to the vertex V.
For every E, PE is a .P1/l–bundle over a stratum YE of Yh0 , and we denote by �E W PE ! YE the
corresponding projection.

For every edge E incident to a vertex V, we have the evaluation map

(5-18) evV;E WMV !PE :
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For every vertex V distinct from V0, let Ein.V / be the set of incoming incident edges to V, and let EV be
the outgoing incident edge to V. The virtual class ŒMV �

virt defines a map

(5-19) �V W
Y

E2Ein.V /

H�.PE /! H�.PEV /

by

(5-20) �V

� Y
E2Ein.V0/

˛E

�
WD .evV;EV /�

�� Y
E2Ein.V /

ev�V;E ˛E

�
\ ŒMV �

virt
�
:

Note that if Ein.V / is empty, then �V is a map of the form

(5-21) �V WQ! H�.PEV /:

Denote by Ein.V0/ the set of incoming incident edges to V0. The virtual class ŒMV0 �
virt defines a map

(5-22) �V0 W
Y

E2Ein.V0/

H�.PE /!Q

by

(5-23) �V0

� Y
E2Ein.V0/

˛E

�
WD

Z
ŒMV0 �

virt

Y
E2Ein.V0/

ev�V0;E ˛E :

Denote by E1.�/ the set of unbounded edges of � . Composing the maps �V and �V0 , we obtain a map

(5-24) �h W
Y

E2E1.�/

H�.PE /!Q:

For every edge E of � , let ptE 2 H2.YE / be the class of a point on YE . We consider the class
��EptE 2 H2.PE /. The degeneration formula is then

(5-25) N
loc;h
d

.Y.D//D �h

� Y
E2E1.�/

��EptE

�
:

We define a rigid genus-zero parametrised tropical curve xh W x�!� as follows. Let x� be the star-shaped
graph consisting of vertices Vj for 0� j � l , and edges Ej connecting V0 and Vj for 1� j � l . We assign
the length 1=.d �Dj / to the edge Ej . Let xh W x�!� be the piecewise linear map such that xh.V0/D vY
and xh.Vj /D vj for 1� j � l . In particular, we have xh.Ej /D eY;j for 1� j � j . As eY;j has integral
length 1, we deduce that Ej has weight d �Dj . Finally, curve classes decoration of the vertices are given
by: dV0 D d and dVj is equal to .d �Dj / times the class of a P1–fibre of Pj for 1� j � l .

Lemma 5.3 We have

(5-26) N
loc;xh
0;d

.Y.D//D

� lY
jD1

.�1/d �Dj�1

.d �Dj /2

�
N

log
0;d
.Y.D//:
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Proof We choose the flow on � with sink V0. Applying the degeneration formula gives immediately the
result, using the fact that the normal bundle in P0 to a P1–fibre of Pj is O.�1/˚O˚.lC1/ and so the
corresponding multicover contribution is

(5-27)
.�1/d �Dj�1

.d �Dj /2
;

by [20, Proof of Theorem 5.1].

Theorem 5.4 Assume l D 2. Let h W �!� be a rigid decorated parametrised tropical curve as above
with N loc;h

0;d
.Y.D//¤ 0. Then hD xh.

Theorem 5.4 follows from a judicious analysis of the possible topologies of contributing tropical curves,
which we perform in Appendix C. Theorem 5.2 then follows from the combination of Theorem 5.4,
Lemma 5.3, and the decomposition formula using that jAut.xh/j D 1 and mxh D

Ql
jD1.d �Dj /.

5.2 The log-local correspondence for 3 and 4 components

We end the proof of Theorem 5.1 for lD3 and lD4. For lD3, it is enough to treat the case of dP3.0; 0; 0/,
as all the other 3–component cases are obtained from it by blowup, and the result is preserved under
blowup by combination of Propositions 3.2 and 4.3. The result for dP3.0; 0; 0/ follows by comparing the
local result given by Theorem 3.5 with the log result given by Theorem 4.9.

For l D 4, the result follows by comparing the local result given by (3-30) and the log result given
by (4-41).

6 Open Gromov–Witten theory

In this section we relate the quantised scattering calculations of Section 4 to the higher-genus open
Gromov–Witten theory of Aganagic–Vafa A–branes. We first give in Section 6.1 an overview of the
framework of [76] to cast open toric Gromov–Witten theory within the realm of formal relative invariants,
and recall the topological vertex formalism of Aganagic, Klemm, Mariño and Vafa. Our treatment
throughout this section, while self-contained, will keep the level of detail to the necessary minimum, and
we refer the reader to [76; 39] for further details. The reader who is familiar with this material may wish
to skip to Section 6.2, where the stable log counts of Section 4 are related to open Gromov–Witten theory,
with the main statement condensed in Theorem 6.7, and proved in Section 6.3.

In the following, for a partition � ` d of d 2 N we write j�j D d for the order of �, `� D r for the
cardinality of the partitioning set, �� WD

P`�
iD1 �i .�i � 2i C 1/ for its second Casimir invariant, and

let mj .�/ WD #f�i j �i D j g
`�
iD1 and z� WD

Q
j mj .�/Šj

mj .�/. We furthermore denote by P the set of
partitions, and Pd the set of partitions of order d . We will extensively need, particularly in the proof of
Theorem 6.7, some classical results on principally specialised shifted symmetric functions, for which
notation and necessary basic results are collected in Appendix D.
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6.1 Toric special Lagrangians

LetX be a smooth complex toric threefold withKX'OX . If the affinisation morphism to Spec.�.X;OX //
is projective, X can be realised as a symplectic quotient CrC3==G, where G ' U.1/r acts on the affine
coordinates fzigrC3iD1 of CrC3 D SpecCŒz1; : : : ; zrC3� by

.t1; : : : ; tr/ � .z1; : : : ; zrC3/D

� rY
iD1

t
w
.i/
1

i � z1; : : : ;

rY
iD1

t
w
.i/
rC3

i � zrC3

�
;

where w.i/j 2 Z for i D 1; : : : ; r and j D 1; : : : ; r C 3 are the weights of the G–action [61]. This is a
Hamiltonian action with respect to the canonical Kähler form on CrC3,

(6-1) ! WD
i
2

rC3X
iD1

dzi ^ dxzi ;

with moment map

z�.z1; : : : ; zrC3/D

� rC3X
iD1

w
.1/
i jzi j

2; : : : ;

rC3X
iD1

w
.r/
i jzi j

2

�
:

If .t1; : : : ; tk/ 2 H1;1.X IR/' .u.1/r/? is a Kähler class, then X is the geometric quotient

(6-2) X D z��1.t1; : : : ; tr/=G;

with symplectic structure given by the Marsden–Weinstein reduction !t of (6-1) onto the quotient (6-2),
where Œ!t �D .t1; : : : ; tr/ 2 H1;1.X IR/.

We will be concerned with a class of special Lagrangian submanifolds LD L yw;c of .X; !t / constructed
by Aganagic and Vafa [7], which are invariant under the natural Hamiltonian torus action on X. They are
defined by

(6-3)
rC3X
iD1

yw1i jzi j
2
D c;

rC3X
iD1

yw2i jzi j
2
D 0;

rC3X
iD1

arg zi D 0;

with ywai 2 Z,
PrC3
iD1 yw

a
i D 0 and c 2 R. These Lagrangians have the topology of R2 � S1, and they

intersect a unique torus fixed curve CL along an S1: we say that L is an inner (resp. outer) brane if
CL ' P1 (resp. C). Throughout the foregoing discussion we will assume that L is always an outer brane.

Let T ' .C?/2 be the algebraic subtorus of .C?/3 �X acting trivially on KX , and TR ' U.1/
2 be its

maximal compact subgroup. Then by construction any toric Lagrangian L is preserved by TR, which
acts on C � S1 by scaling .�1; �2/ � .w; �/! .�1w; �2�/. Writing �T W X ! R2 ' .u.1/2/� for the
moment map of the TR–action, the union of the 1–dimensional .C?/3 orbit closures of X is mapped
by �T to a planar trivalent metric graph �X whose sets of vertices .�X /0, compact edges .�X /

cp
1 and

noncompact edges .�X /nc
1 correspond to T –fixed points, T –invariant proper curves, and T –invariant

affine lines in X respectively. Since the moment map is an integral quadratic form, the tangent directions
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of the edges have rational slopes in R2: we can explicitly keep track of this information by regarding �X
as a topological graph11 decorated by the assignment to each vertex v 2 .�X /0 of primitive integral lattice
vectors pev 2 Z2, representing the directions of the edges e emanating from v 2 .�X /0. The graph �X is
determined bijectively by the weights w.i/j , and knowing it suffices to reconstruct X.

Remark 6.1 Let †.X/ be the fan of X. As KX 'OX , †.X/ can be described as a cone in R3 over a
polyhedral decomposition of an integral polygon P in R2 � f1g �R3. The graph �X can be obtained as
the dual graph of the polyhedral decomposition of P taking orientations to be outgoing at every vertex.
Conversely, one can recover (the SL.2;Z/–equivalence class of) P �R2 and its decomposition as the
dual polygon of �X , and then †.X/ as the cone in R3 over P �R2 � f1g.

IfL is a toric outer Lagrangian, its image under�T is a point�T .L/ lying on the noncompact edge�T .C /
representing the curve it is incident to. Write eL WD �T .C /, v for its adjacent vertex, and e0L for the
first edge met by moving clockwise from eL with respect to the orientation determined by the plane
containing �X .

Definition 6.1 A framing of L is the choice of an integral vector f such that peLv ^ p
e0L
v D p

eL
v ^ f;

equivalently, f D p
e0L
v �f p

eL
v for some f 2 Z. We say that L is canonically framed if f D 0, ie f D p

e0L
v .

Remark 6.2 By construction, since f ^ p
eL
v > 0, a framing at an outer vertex is always pointing in the

clockwise direction.

Definition 6.2 We call .X;L; f/ a toric Lagrangian triple if

� X is a semiprojective toric CY3 variety,

� LD
F
i L ywi ;ci is a disjoint union of Aganagic–Vafa special Lagrangian submanifolds of X , and

� f is the datum of a framing choice for each connected component of L.

We will write �.X;L;f/ for the graph obtained from �X by the extra decoration of an integral vector incident
to the edge eL representing the toric outer Lagrangian L at framing f; see Figure 10.

Example 6.1 Let w.1/ D .1; 1;�1;�1/, yw.2/ D .1; 0;�1; 0/ and yw.3/ D .0; 1;�1; 0/. For any t ¤ 0,
the corresponding toric variety X is the resolved conifold Tot

�
OP1.�1/˚OP1.�1/

�
, with

R
0�P1 !t D t .

The compact edge e5 corresponds to the P1 given by the zero section of X. The edges ei for i D 1; 2; 3; 4
correspond to the T –invariant A1–fibres above the points Œ1 W 0� and Œ0 W 1� of the P1 base. The weights yw.i/

furthermore determine a toric Lagrangian, whose image in the toric graph lies in e1, and is depicted in
Figure 10 at framing f D p

e5
v1 � p

e1
v1 .

11In doing so we forget the metric information about �X which stems from a choice of a Kähler structure on X : this is
inconsequential for the definition of the invariants in the next section. We thus make a slight abuse of notation, by indicating the
decorated topological graph obtained by forgetting the information about the lengths of the edges by the same symbol �X .
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p
e4
v1

p
e5
v1

p
e1
v1

p
e5
v2

p
e3
v2

p
e2
v2

f

Figure 10: The toric Calabi–Yau graph �.X;L;f/ of the resolved conifold with an outer Lagrangian
at framing f D fcan� p

e1
v1 , ie f D 1.

6.1.1 Open Gromov–Witten invariants In informal terms, the open Gromov–Witten theory of .X;LD
L1 [ � � � [Ls/ for toric Lagrangians Li with i D 1; : : : ; s is a virtual count of maps to X from open
Riemann surfaces of fixed genus, relative homology degree, and boundary winding data around S1 ,! L.
This raises two orders of problems when trying to define these counts in the algebraic category, as the
boundary conditions for the curve counts are imposed in odd real dimension, and the target geometry is
noncompact. A strategy to address both issues simultaneously for framed outer toric Lagrangians, and
which we will follow for the purposes for the paper, was put forward by Li, Liu, Liu and Zhou [76], which
we briefly review below. The main idea in [76] is to replace the toric Lagrangian triple .X;L; f/ by a
formal relative Calabi–Yau pair . yX; yD/, where yX is obtained as the formal neighbourhood along a partial
compactification, specified by L and the framing f, of the toric 1–skeleton of X, and yD D yD1C� � �C yDs
is a formal divisor12 in the partial compactification yX with K yX C

yD D 0, the aim being to trade the
theory of open stable maps with prescribed windings along the boundary circles on L by a theory of
relative stable maps with prescribed ramification profile above torus fixed points in yX , as previously
suggested in [77]. The resulting moduli space Mrel

gIˇ I�1;:::;�s
. yX; yD/ of degree ˇ stable maps from

`.�1/C � � �C`.�s/–pointed, arithmetic genus g nodal curves with ramification profile �i above yDi at
the punctures is a formal Deligne–Mumford stack carrying a perfect obstruction theory ŒT 1! T 2� of
virtual dimension `.�1/C� � �C`.�s/. While the moduli space is not itself proper, it inherits a T ' .C?/2

action from yX with compact fixed loci, and open Gromov–Witten invariants

(6-4) OgIˇ I.�1;:::;�s/.X;L; f/ WD
1

jAut. E�/j

Z
ŒMrel

gIˇI�1;:::;�s
. yX; yD/�vir;T

eT .T 1;m/
eT .T 2;m/

;

where the T i;m for i D 1; 2 denote the moving parts of the obstruction theory, and are defined in a standard
manner by T –virtual localisation [49]. It is a central result of [76] that the Calabi–Yau condition on T
entails that Og;ˇ;.�1;:::;�s/.X;L; f/ are nonequivariantly well-defined rational numbers: the invariants

12See [76, Section 5] for the details of the relevant construction.
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however do depend on the framings fi specified to construct the formal relative Calabi–Yau . yX; yD/, in
keeping with expectations from large N duality [100].

It will be helpful to package the open Gromov–Witten invariants Og;ˇ;�1;:::;�s .X;L; f/ into formal
generating functions. Let x.i/ D .x.i/1 ; x

.i/
2 ; : : :/ for i D 1; : : : ; s be formal variables and for a partition �

define x
.i/
� WD

Q`.�/
jD1 x

.i/
�j . We further abbreviate Ex E� D .x

.1/
�1 ; : : : ; x

.s/
�s /, E�D .�1; : : : ; �s/, j E�j D

P
i j�i j

and `. E�/D
P
i `.�i /, and define the connected generating functions

(6-5)

Oˇ I E�.X;L; f/.„/ WD
X
g

„
2g�2C`. E�/OgIˇ I E�.X;L; f/;

O E�.X;L; f/.Q; „/ WD
X
ˇ

Oˇ; E�.X;L; f/.„/Q
ˇ ;

O.X;L; f/.Q; „; x/ WD
X
E�2.P/s

O E�.X;L; f/.Q; „/Ex E�;

as well as generating functions of disconnected invariants in the winding number and representation bases

(6-6) Z.X;L; f/.Q; „; x/ WD exp .O.X;L; f/.Q; „; x//

DW

X
E�2.P/s

Z E�.X;L; f/.Q; „/Ex E�

DW

X
E�2.P/s

X
E�2.P/s

sY
iD1

��i .�i /

z�i
WE�.X;L; f/.Q; „/Ex E�:

Here ��.�/ denotes the irreducible character of Sj�j evaluated on the conjugacy class labelled by �.
When xD 0, (6-6) reduces to the ordinary generating function of disconnected Gromov–Witten invariants
of X.

6.1.2 The topological vertex The invariants (6-6) can be computed algorithmically to all genera using
the topological vertex of Aganagic, Klemm, Mariño and Vafa [6]. We can succinctly condense this into
the following three statements:

(1) Let X DC3, LD
S3
iD1Li , and Li D L yw.i/;c with yw.i/j D ıi;j � ıi;jC1 mod 3, i D 1; : : : ; 3 be the

outer Lagrangians of C3 as in Figure 11, and fix framing vectors fi for each of them. Then

(6-7) W E�.C
3; L; f/D

3Y
iD1

qfi�.�i /=2.�1/fi j�i jW E�.C
3; L; fcan/;

where q D ei„.

(2) Let .X .1/; L.1/; f.1// and .X .2/; L.2/; f.2// be smooth toric Calabi–Yau 3–folds with framed outer
toric Lagrangians L.i/ D

Ssi
jD1L

.i/
j . Suppose that there exist noncompact edges zei 2 .�.X.i/;L.i/;f.i///

nc
1
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p
e3
v

p
e2
v

p
e1
v

f3

f1

f2

Figure 11: The framed vertex .C3; L1[L2[L3/, depicted with framings f1D p
e2
v , f2D p

e2
v Cp

e3
v

and f3 D p
e1
v .

emanating from vertices zvi 2 .�.X.i/;L.i/;f.i///0 such that�T .L
.i/
si /\zei¤∅, and that moreover, pze1

zv1
D�p

ze2
zv2

and f
.1/
s1 D f

.2/
s2 ; see Figure 12. We can construct a planar trivalent graph �X1[e12X2 decorated with triples

of primitive integer vectors at every vertex by considering the disconnected union of �X.1/ and �X.2/ ,
deleting ze1 and ze2, and adding a compact edge e12 connecting zv1 to zv2. A toric Calabi–Yau 3–graph
reconstructs uniquely a smooth toric CY3 with a T action isomorphic to the T –equivariant formal
neighbourhood of the configuration of rational curves specified by the edges, and we call X the threefold
determined by the glueing procedure such that �X D �X1[e12X2 . In the same vein, the collection of

framed Lagrangians L.i/ on Xi determine framed outer Lagrangians LD
Ss1Cs2�2
iD1 Li on X : we have

canonical projection maps �i W �X ! �X.i/ , and we place an outer Lagrangian brane at framing fj on all
noncompact edges e such that �i .e/\�T .L

.i/
j /¤∅ for some j . Write

E�D .�
.1/
1 ; : : : ; �

.1/
s1�1

; �
.2/
1 ; : : : ; �

.2/
s2�1

/;

E�
.1/
12 D .�

.1/
1 ; : : : ; �

.1/
s1�1

; �12/ and E�12
.2/
D .�

.2/
1 ; : : : ; �

.2/
s2�1

; �T12/:

p
e
.1/
3

v.1/

p
e
.1/
2

v.1/

p
e
.1/
1

v.1/

f
.1/
2

f
.1/
1

f
.1/
3

f
.2/
1

f
.2/
2

f
.2/
3

p
e
.1/
1

v.2/

p
e
.2/
2

v.2/

p
e
.2/
3

v.2/

p
e
.1/
3

v.1/

p
e
.1/
2

v.1/

p
e
.1/
1

v.1/

f
.1/
2

f
.1/
1

f
.2/
1

f
.2/
2

p
e
.2/
1

v.2/

p
e
.2/
2

v.2/

p
e
.2/
3

v.2/

glue

Figure 12: The glueing procedure for the topological vertex. In the notation of the text, we have
s1 D s2 D 3, ze1 D e

.1/
2 , ze2 D e

.2/
3 , ze01 D e

.1/
3 and ze02 D e

.2/
1 .
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Then the following glueing formula holds:

(6-8) W E�.X;L; f/.Q; „/DX
�122P

.�Qˇ12/
j�12jqf12�.�12/=2.�1/f12j�12jW

E�
.1/
12

.X .1/; L.1/; f.1//.Q; „/

�W
E�
.2/
12

.X .2/; L.2/; f.2//.Q; „/:

Here f12 D det.pze01 ; pze02/, where ze0i 2 .�.X;L;f//1 is the first edge met when moving counterclockwise
from zei , and Qˇ12 is the exponentiated Kähler parameter associated to the homology class ˇ12 D
Œ��1T .e12/� 2 H2.X;Z/. The glueing formula (6-8) originally proposed by [6] is derived in [76] as a
consequence of Li’s degeneration formula for relative Gromov–Witten theory [75].

(3) The glueing formula (6-8) allows us to recursively compute open Gromov–Witten invariants of any
toric Lagrangian triple .X;L; f/ starting from those of the framed vertex, ie affine 3–space with framed
toric Lagrangians incident to each coordinate line. The framing transformation (6-7) further reduces the
problem to the knowledge of the open Gromov–Witten invariants of .C3; LD L1 [L2 [L3; f

can/ in
canonical framing fi D fcan

i WD piC1 mod 3. This is given by

(6-9) W�1;�2;�3.C
3; L; fcan/.„/D q�.�1/=2

X
ı2P

s�t1=ı
.q�C�3/s�2=ı.q

�C�t3/s�3.q
�/;

where the shifted skew Schur function s˛=ˇ .q�C / is defined in (D-12). The formula (6-9) follows from
an explicit evaluation of formal relative Gromov–Witten invariants in terms of descendent triple Hodge
integrals. It was first proved in [78; 76] when �3 D∅, and the general case was established in [89].

An immediate consequence of (6-8) and (6-9) is that if i W .X;L; f/ ,! .X 0; L0; f 0/ is an embedding of toric
Lagrangian triples corresponding to an embedding of graphs i# W �.X;L;f/ ,! �.X 0;L0;f0/, where �.X 0;L0;f0/
is obtained from �.X;L;f/ by addition of a single vertex v2 and glueing along a compact edge e12 to a
vertex v1 2 .�.X;L;f//0 by the above procedure, then

(6-10) W E�.X;L; f/.Q; „/DW E�.X
0; L0; f 0/.Q; „/jQˇ12D0

:

6.2 The higher-genus log-open principle

In this section we associate certain toric Lagrangian triples to the geometry of Looijenga pair, under an
additional condition given by the following definition.

Definition 6.3 Let Y.D DD1C � � � CDl/ be a nef Looijenga. We say that it satisfies Property O if
EY.D/ deforms to EY 0.D0/ for a Looijenga pair Y 0.D0 DD01C � � �CD

0
l
/ such that

� Y 0 is a toric surface,

� D0i is a prime toric divisor for all i D 1; : : : ; l � 1, and

� any nontrivial effective curve in Y 0 is D0
l
–convex.
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Example 6.2 Denote by Y 0.D01;D
0
2/ the toric surface whose fan is given by Figure 14, with D01 D

H �E3 and the class of D02 corresponding to the sum of the other rays. Y 0.D01;D
0
2/ is obtained from

P2.1; 4/D P2.D1;D2/ by blowing up a smooth point on D1 and two infinitesimally close points on D2.
Moving the latter two apart (while staying on D2) determines a deformation to dP3.0; 2/. Given nefness
ofD02, it follows that dP3.0; 2/ satisfies Property O. By Proposition 2.6, dP3.1; 1/ also satisfies Property O.
The property holds after blowing down .�1/–curves, including for F0.0; 4/. Applying Proposition 2.6 it
thus also holds for F0.2; 2/ and F2.2; 2/.

Example 6.3 Consider now dP4.D1;D2/ with D21 D 0. Deforming dP4.D1;D2/ to a smooth toric
surface with D1 a toric divisor leads to the fan of Figure 14 with an additional ray in the lower half-plane.
Up to deformation, there are two ways of doing so: by adding a ray either between H �E1�E2 and E2,
or between E2 and E1�E2. Either way, this creates a curve C with C � .�K �D1/ < 0 and therefore
dP4.0; 1/ does not satisfy Property O. The same argument applies to dP5.0; 0/.

Example 6.4 When l > 2, Property O is always satisfied for all surfaces except for dP3.0; 0; 0/. The
only way of deforming dP3 to a toric surface with D1 and D2 toric is to take the fan of Figure 15 and
add a ray in the lower-left quadrant. But this creates a curve C with C � .�K �D1�D2/ < 0, and hence
dP3.0; 0; 0/ does not satisfy Property O.

From Table 1, Property O coincides with quasi-tameness of Y.D/, with the sole exception of dP3.0; 0; 0/.

We make some informal comments about the geometric transition from stable log maps to open maps,
which inform the construction of the open geometries below. This discussion is motivated by [8, Section 7]
and in particular a natural generalisation of [8, Conjecture 7.3]. That description applied to our setting
makes clear the structure of the toric Lagrangians. Denote by .Y;D D D1 C � � � CDl/ a possibly
noncompact log Calabi–Yau variety. For a maximally tangent stable log map to .Y;D/, the expectation is
that maximal tangency dj with Dj can be replaced by an open boundary condition of winding number dj
with a special Lagrangian Lj near Dj . The special Lagrangian needs to have the property that it bounds
a holomorphic disk D in the normal bundle to Dj ; see [8, Section 7]. This property dictates how to
compactify Y nDj : in a toric limit, D is simply the disk used to compactify the edge the framing lies on.
If d is a Dj –convex curve class, then we can alternatively remove the maximal tangency condition by
twisting the geometry by OY .�Dj /. Dj –convexity then guarantees that no maps move into the fibre
direction. To obtain the Calabi–Yau threefold geometry from a surface, we adopt the convention of
twisting by the last divisor Dl .

In the toric limits of Construction 6.4, the choice of framing corresponds to a choice of compactification.
If an outer edge e has framing f , then (see [76, Section 3.2]) the normal bundle of the compactification C
of e is O.f /˚O.�1� f /. In our setting, one line bundle is the normal bundle OC .C 2/ of the curve C
in the surface and the other is the normal bundle OY .�Dl/jC of the curve in the fibre direction. In
Construction 6.4, it follows from our conventions that if the framing points to the interior of the polytope,
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then the normal bundle of C in the surface is O.f /, and if the framing points to the outside of the
polytope, then the normal bundle of C in the surface is O.�1� f /. In particular, from a Looijenga
pair Y.D1; : : : ;Dl/ satisfying Property O, we construct a dual Aganagic–Vafa open Gromov–Witten
geometry via the following construction.

Construction 6.4 Let Y.D1; : : : ;Dl/ be a Looijenga pair satisfying Property O for Y 0.D01; : : : ;D
0
l
/.

Denote by �Y 0 the polytope of Y 0 polarised by �KY 0 . We assume that �Y 0nSj¤l D0j is 2–dimensional
or, equivalently, that D0

l
is not toric, implying l < 4. Denote by ej the edge of �Y 0 corresponding to D0j

for 1 � j � l � 1 and denote by el ; : : : ; elCr the remaining edges. Up to reordering, we may assume
that the ei are oriented clockwise. We construct a toric Lagrangian triple Y op.D/ WD .X;L; f/ as follows.
In �Y 0 remove the edge e1 and replace it by a framing f1 on elCr parallel to e1. By Definition 6.1 and
Remark 6.2, there is a unique way to do so, and f1 points into the interior of �Y 0 . Denote the resulting
graph by �1. If l D 2, add outer edges to �1 so that each vertex satisfies the balancing condition and
denote the resulting toric Calabi–Yau graph by � . If l D 3, in �1 remove the edge e2 and replace it by a
framing on e3 parallel to e2. Denote the resulting graph by �2. Add edges to �2 so that each vertex
satisfies the balancing condition, and denote the resulting toric Calabi–Yau graph by � .

The graph � in Construction 6.4 gives the discriminant locus of the SYZ fibration of the toric Calabi–
Yau threefold X D Tot.KY 0nSj¤l D0j /. The base of the fibration is an R–bundle over the polyhedron
�Y 0n

S
j¤l D

0
j

. The framings determine toric special LagrangiansLj , and the added outer edges correspond
to the toric fibres of O.�D0

l
/. As is readily seen from the fan, f1 (resp. �1� f2) is the degree of the

normal bundle of the divisor in Y 0 corresponding to elCr (resp. to e3). The framing keeps track of the
compactification of Y 0 n

S
j¤l D

0
j .

Remark 6.3 Tangency with more than one point can be incorporated by having parallel framings on
different outer edges.

Remark 6.4 If �Y 0nD01[D02 is not 2–dimensional, then we blow up Y in a smooth point of D such
that the resulting zY . zD/ satisfies Property O. We construct zY op. zD/, and recover the open invariants of
Y.D/ by considering the curve classes that do not meet the exceptional divisor. In particular, for l > 3
we stipulate that Construction 6.4 can be extended through suitable flopping of .�1;�1/–curves in the
toric Calabi–Yau 3–fold geometry. We leave a precise formulation to future work, and develop the sole
example relevant to our paper to illustrate this.

Example 6.5 We adapt the construction to the only nef Looijenga pair with 4 boundary components
F0.H1;H2;H

0
1;H

0
2/. Since �F0 n.H1[H2[H

0
1/

is 1–dimensional, we start by blowing up a smooth point
ofH 01. In a toric deformation, we obtain dP2.0; 0;�1; 0/ with divisorsD01DH1,D02DH2,D03DH

0
1�E

and D04 DH
0
2. We assume that the corresponding e1; : : : ; e5 are ordered clockwise in �dP2 . Start with

the graph �2 from Construction 6.4. Balance the vertices and flop the inner edge. On the inner edge, add
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p
e1
v1

p
e3
v1

p
e2
v1

f1

f2

f3

p
e1
v2p

e5
v2

p
e4
v2

Figure 13: The toric CY3 graph of dPop
2 .0; 0;�1; 0/.

a framing parallel to e3. The result is the graph of Figure 13, with the notational shift f2$D01, f3$D02,
f1$D03. To obtain the graph for F0.0; 0; 0; 0/, we remove the two outer edges that have no framing.
The result is Figure 16.

Lemma 6.5 Let Y.D1; : : : ;Dl/ and Y 0.D01; : : : ;D
0
l
/ be as in Construction 6.4. Then H2.Y;Z/ D

H2.Y 0;Z/ is generated by the divisors corresponding to e3; : : : ; elCr .

Proof In the fan of Y 0, define an ordering of the 2–dimensional cones by letting �i be the cone
corresponding to ei \ eiC1 when 1� i < lC r and �lCr be the cone corresponding to elCr \ e1. Define
cones �i WD �i \

T
j2Ji

�j , where Ji is the set of j > i such that �i \�j is 1–dimensional. Then �1Df0g,
�i is the ray corresponding to eiC1 for 2 � i < l C r and �lCr D �lCr . By [42, Section 5.2, Theorem],
these cones generate H�.Y 0;Z/; hence the divisors corresponding to e3; : : : ; elCr generate H2.Y 0;Z/.

Note that Hrel
2 .Y

op.D/;Z/ is generated by the curve classes Œe� corresponding to inner edges e and by
the relative disk classes ŒDe� corresponding to outer edges e with framings. By the corresponding short
exact sequence, the latter can be identified with ŒS1� 2H1.S1;Z/, where L� S1 D @De and the degrees
in the ŒS1� keep track of the winding numbers. By construction, the e thus described are edges of �Y 0 .

Definition 6.5 Let Y.D1; : : : ;Dl/ and Y 0.D01; : : : ;D
0
l
/ be as in Construction 6.4. Define

(6-11) � W Hrel
2 .Y

op.D/;Z/! H2.Y;Z/

by sending Œe� to the divisor corresponding to e in Y .

Proposition 6.6 The morphism � is an isomorphism.

Proof This is a direct consequence of Lemma 6.5.
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Example 6.6 We continue with Example 6.5. Following Figure 13, denote by ei the edge with framing fi

for i D 1; 2; 3. Generalising Definition 6.5, we define � W Hrel
2 .dPop

2 .0; 0;�1; 0/;Z/
�
�! H2.dP2;Z/ by

(6-12) �Œe1�D ŒD
0
2�D ŒH2�; �Œe2�D ŒD

0
4�E�D ŒH2�E�; �Œe3�D ŒD

0
3�D ŒH1�E�;

which yields an isomorphism.

Theorem 6.7 (the higher-genus log-open principle) Suppose Y.D/ satisfies Property O. Then

(6-13) O0I��1.d/.Y
op.D//DN loc

0;d .Y.D//D

lY
iD1

.�1/d �DiC1

d �Di
N

log
0;d
.Y.D//:

Moreover , if Y.D/ is tame ,

(6-14) O��1.d/.Y
op.D//.�i log q/D Œ1�l�2q

.�1/d �DlC1

Œd �Dl �q

l�1Y
iD1

.�1/d �DiC1

d �Di
N

log
d
.Y.D//.�i log q/:

Remark 6.8 As is evident from Example 6.2, Y op.D/ depends on the toric model and hence is not
unique. However, it can be checked directly for the examples of Table 1 that if .X .1/; L.1/; f.1//
and .X .2/; L.2/; f.2// correspond to two such choices, then there exists a $ W Hrel

2 .X
.1/; L.1/;Z/ ��!

Hrel
2 .X

.2/; L.2/;Z/ such that �.1/ D �.2/ ı$ .

6.3 Proof of Theorem 6.7

In order to work our way to a general Y.D/ satisfying Property O, we first show that if � WY 0.D0/!Y.D/

is an interior blowup, Construction 6.4 implies that the higher-genus open GW invariants O��1.d/.Y
op.D//

satisfy the same blowup formula (4-19) of the log invariants on the right-hand side of (6-14).

Proposition 6.9 (blowup formula for open GW invariants) Let � W zY . zD/! Y.D/ be an interior blowup
of Looijenga pairs with both zY . zD/ and Y.D/ satisfying Property O , and denote by ��op the monomorphism
of abelian groups defined by

(6-15)

H2.Y.D/;Z/

��1

��

� � ��
// H2. zY . zD/;Z/

��1

��

Hrel
2 .Y

op.D/;Z/ �
� �
�
op
// Hrel
2 .
zY op. zD/;Z/

Then Oj .Y
op.D//D O��opj .

zY op. zD// for all j 2 Hrel
2 .Y

op.D/;Z/.

Sketch of the proof We provide an overview here and leave the details to the reader. The claim is proved
by noting that Construction 6.4 implies the following: if Y.D/ is obtained from zY . zD/ by contraction of
a .�1/–curve, then Y op.D/ is an open embedding into a flop of zY op. zD/ along a .�1;�1/–curve. The
resulting nontrivial equality of open Gromov–Witten invariants under restriction on the image of ��op is
then a combination of the invariance of open Gromov–Witten invariants under “forgetting an edge” in
(6-10) and the flop invariance of the topological vertex [69].
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By the previous proposition it then suffices to prove Theorem 6.7 for the pairs Y.D/ of highest Picard
number for each value of l D 2; 3; 4, as all other pairs are recovered from these by blowing-down. We
show this from a direct use of the topological vertex to determine the left-hand side of (6-14). The reader
is referred to Appendix D for notation and basic results for shifted power sums p˛.q�C / and shifted
skew Schur functions s˛=ˇ .q�C / in the principal stable specialisation. The notation f˛; ˇgQ indicates
the symmetric pairing on P of (D-15).

6.3.1 l D 2: holomorphic disks The classification of Propositions 2.2 and 2.3, the deformation
equivalences in Proposition 2.6 and the definition of Property O in Definition 6.3 together imply that if
Y.D DD1C � � �CDl/ and Y.D0 DD01C � � �CD

0
l
/ are l–component Looijenga pairs both satisfying

Property O, then there is a toric model for both with resulting Y op.D/ D Y op.D0/: in other words a
model Y op.D/ for the open geometry only depends on Y and the number of irreducible components
of D. Since 2–component log CY surfaces with maximal boundary come in pairs Y.D/ and Y.D0/ from
Table 1, throughout this section we will simplify notation and write ‡.Y / WD Y op.D/D Y op.D0/ for the
toric Lagrangian triple they share.

By Proposition 6.9, it suffices to consider the case of highest Picard rank Y D dP3. If Y.D/ is either
dP3.1; 1/ or dP3.0; 2/, a toric model for Y is given by the toric surface Y 0 described by the fan of
Figure 14, and in particular D0 DH �E3 is a toric divisor. Therefore Y.D/ satisfies Property O and,
by Remark 6.1, ‡.dP3/ is described by the toric CY3 graph of Figure 14. With conventions as in
Figure 14, let C1 D ��1T .e2/, C2 D ��1T .e5/ and C3 D ��1T .e7/, and for a relative 2–homology class
j 2 H2.‡.dP3/;Z/, write j D j0ŒS1�C

P3
iD1 ji ŒCi �.

We will compute generating functions of higher-genus 1–holed open Gromov–Witten invariants of
‡.dP3/ in class j , using the theory of the topological vertex. For simplicity, we’ll employ the shorthand
notation Oj1;j2;j3Ij0.‡.dP3// (resp. Oj0.‡.dP3//) to denote the generating function Oˇ I�.‡.dP3//
(resp. Oˇ .‡.dP3//) in (6-6) with ˇ D

P3
iD1 ji ŒCi � and �D .j0/ a 1–row partition of length j0. From

H �E3

H �E1�E2

E2

E1�E2

H �E1�E3

E3

p
e2
v2

p
e5
v2p

e4
v2

f

p
e7
v3

p
e5
v3

p
e2
v1p

e1
v1

p
e3
v1

p
e6
v3

p
e7
v4

p
e9
v4

p
e8
v4

Figure 14: ‡.dP3/D dPop
3 .0; 2/D dPop

3 .1; 1/ from the blowup of the plane at three nongeneric
toric points.
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(6-5) and (6-6), we have

(6-16) Oj0.‡.dP3//D
Z.j0/.‡.dP3//
Z∅.‡.dP3//

D

X
�2P

��..j0//

z.j0/

W�.‡.dP3//
W∅.‡.dP3//

D

j0�1X
sD0

.�1/s

j0

W.j0�s;1s/.‡.dP3//
W∅.‡.dP3//

;

where we have used the Murnaghan–Nakayama rule [112, Corollary 7.17.5]

(6-17) ��..j0//D

�
.�1/s if � D .j0� s; 1s/;
0 else:

The framing f in Figure 14 is shifted by one unit f D�1 from the canonical choice fcan D p
e2
v1 . From

(6-7), (6-8) and (6-9), we then have, for any ˛ 2 P , that

(6-18) W˛.‡.dP3//.Q; „/

D .�1/j˛jq�
1
2
�.˛/

�

X
�;�;�;ı;�2P

s�t .�Q1q
�C˛/s˛.q

�/s�=ı.q
�/s�=ı.q

�/Q
j�j
2 s�=�.q

�/s�=�.q
�/s�t .�Q3q

�/

D
.�1/j˛js˛t .q

�/f˛;∅gQ1f˛;∅gQ1Q2f∅;∅gQ3f∅;∅gQ2Q3
f∅;∅gQ2f˛;∅gQ1Q2Q3

;

where we have used (D-13) and, repeatedly, (D-15) to express the sums over partitions in terms of Cauchy
products. Then, specialising to ˛ D .j0� s; 1s/ a hook partition with j0 boxes and sC 1 rows, and using
(D-11) and (D-18), we have

(6-19)
W.‡.dP3//.j0�s;1s/

W.‡.dP3//∅
D
.�1/j0s.sC1;1j0�s�1/.q

�/f.j0�s; 1
s/;∅gQ1f.j0�s; 1s/;∅gQ1Q2

f.j0�s; 1s/;∅gQ1Q2Q3

D
.�1/j0q

� 1
2.
j0
2
/C 12j0s

Œj0�qŒj0�s�1�qŠŒs�qŠ

Qj0�1

kD0
.1�qkQ1q

�s/
Qj0�1

lD0
.1�qlQ1Q2q

�s/Qj0�1
mD0.1�q

mQ1Q2Q3q�s/
:

Replacing this into (6-16) we get

(6-20) Oj0.‡.dP3//.Q; „/

D

j0�1X
sD0

.�1/s

j0

W.j0�s;1s/.‡.dP3//.Q; „/
W∅.‡.dP3//.Q; „/

D
.�1/j0q

� 1
2.
j0
2
/

j0Œj0�qŠ

1X
j1;j2;j3D0

 
q
1
2
j1.j0�1/

�
j0

j1� j2

�
q

�
j0

j2� j3

�
q

�
j0C j3� 1

j3

�
q

� .�1/j1Cj3Q
j1
1 Q

j2
2 Q

j3
3

j0�1X
sD0

�
j0� 1

s

�
q

.�q�j1/sq
1
2
j0s

!

D
.�1/j0

j0Œj0�qŠ

1X
j1;j2;j3

�
j0

j1� j2

�
q

�
j0

j2� j3

�
q

�
j0C j3� 1

j3

�
q

.�1/j1Cj3Q
j1
1 Q

j2
2 Q

j3
3

Œj1� 1�qŠ

Œj1� j0�qŠ
;
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H �E1

H �E2E1

H �E1�E2
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Figure 15: dPop
2 .1; 0; 0/ from dP2 and D1 DH �E1, D2 DH �E2.

where the q–binomial theorem has been used to expand the products in (6-19) and to perform the
summation over s in the last line. Isolating the O.Qj11 Q

j2
2 Q

j3
2 / coefficient yields

(6-21) Oj1;j2;j3Ij0.‡.dP3//.„/D
.�1/j1Cj0Cj3 Œj0�q

j0Œj1�qŒj0C j3�q

�
j0

j1� j2

�
q

�
j0

j2� j3

�
q

�
j0C j3
j3

�
q

�
j1
j0

�
q

:

From Figure 14, the lattice isomorphism � W Hrel
2 .‡.dP3/;Z/! H2.dP3;Z/ in this case reads

(6-22) �ŒS1�D ŒH �E1�E2�; �ŒC1�D ŒE2�; �ŒC2�D ŒE1�E2�; �ŒC3�D ŒH �E1�E3�;

and the change of variables relating the curve degrees .d0; d1; d2; d3/ in H2.dP3;Z/ and the relative
homology variables .j0I j1; j2; j3/ in Hrel

2 .‡.dP3/;Z/ is therefore

(6-23) d0! j0C j3; d1! j2; d2! j1� j2C j3; d3! j0:

Combining the change of variables (6-23) and the log result of (4-22) in Theorem 4.5 returns (6-21),
establishing (6-14) for Y.D/ D dP3.1; 1/. Furthermore, taking the genus-zero limit q! 1 and using
Theorem 5.1, Lemma 3.1 and Proposition 2.6 implies (6-13), completing the proof of Theorem 6.7 for
Y.D/D dP3.D21 ;D

2
2/. Use of Propositions 6.9 and 4.3 then concludes the proof of Theorem 6.7 for any

Y.D/ satisfying Property O with l D 2.

6.3.2 l D 3: holomorphic annuli The 3–component Looijenga pair of highest Picard rank satisfying
Property O is Y.D/D dP2.1; 0; 0/. Taking D1DH �E1, D2DH �E2 we have that Y , D1 and D2 are
toric, and dPop

2 .1; 0; 0/ is described by the toric CY3 graph on the left in Figure 15. Write C D ��1T .e3/,
and for a relative 2–homology class j 2Hrel

2 .dPop
2 .1; 0; 0/;Z/ write j D j1ŒD1�Cj2ŒD2�CjC ŒC �, where

ŒDi � are integral generators of the first homology of the outer Lagrangians incident to edges adjacent to
the vertices vi for i D 1; 2 in Figure 15. As in the previous section, we will write OjC Ij1;j2.dPop

2 .1; 0; 0//

(resp. Oj1;j2.dPop
2 .1; 0; 0//) for the generating function Oˇ; E�.dPop

2 .1; 0; 0// (resp. O E�.dPop
2 .1; 0; 0//),
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with ˇ D jC ŒC � and E�D ..j1/; .j2// a pair of 1–row partitions of length .j1; j2/. From (6-5), (6-6) and
(6-17), we have

(6-24) Oj1;j2.dPop
2 .1; 0; 0//.Q; „/D

Zj1;j2.dPop
2 .1; 0; 0//

Z∅;∅.dPop
2 .1; 0; 0//

�
Z.j1/;∅.dPop

2 .1; 0; 0//Z∅;.j2/.dPop
2 .1; 0; 0//

Z∅;∅.dPop
2 .1; 0; 0//

2

D

j1�1X
s1D0

j2�1X
s2D0

.�1/s1Cs2

j1j2

�
W.j1�s1;1

s1 /;.j2�s2;1
s2 /.dPop

2 .1; 0; 0//

W∅;∅.dPop
2 .1; 0; 0//

�
W.j1�s1;1

s1 /;∅.dPop
2 .1; 0; 0//W∅;.j2�s2;1s2 /.dPop

2 .1; 0; 0//

W∅;∅.dPop
2 .1; 0; 0//

2

�
:

The framings f1 and f2 in Figure 15 are, respectively, shifted by one unit f D �1 from the canonical
choice fcan D p

e3
v1 , and equal to the canonical framing f2 D p

e4
v2 . Then (6-7), (6-8) and (6-9) give

(6-25) W˛ˇ .dPop
2 .1; 0; 0//.Q; „/D .�1/

j˛jq��.˛/=2
X
�;ı;2P

s�t .�q
�C˛Q/s˛.q

�/s�=ı.q
�/sˇ=ı.q

�/

D .�1/j˛js˛t .q
�/f˛;∅gQ

X
ı2P

sˇ t=ıt .�q
��/sıt .�q

�C˛Q/

D .�1/j˛js˛t .q
�/f˛;∅gQsˇ t .�q��;�q�C˛Q/;

where we have used (D-14), (D-7) and (D-15) to perform the summations over partitions. Then, restricting
to ˛ D .j1� s1; 1s1/ and ˇ D .j2� s2; 1s2/,

(6-26) Oj1;j2.dPop
2 .1; 0; 0//.Q; „/

D

j1�1X
s1D0

.�1/j1Cs1Cj2C1

j1j2
s.s1C1;1j1�s1�1/.q

�/

j1�1Y
kD0

.1� qkQq�s1/

� Œp.j2/.�Qq
�C.j1�s1;1

s1 /;�q��/�p.j2/.�Qq
�;�q��/�

D

j1�1X
s1D0

.�1/j1Cs1Cj2C1

j1j2
s.s1C1;1j1�s1�1/.q

�/

j1�1Y
kD0

.1� qkQq�s1/

� Œp.j2/.�Qq
�C.j1�s1;1

s1 //�p.j2/.�Qq
�/�

D

j1�1X
s1D0

.�1/j1Cs1Cj2C1

j1j2
s.s1C1;1j1�s1�1/.q

�/

j1�1Y
kD0

.1� qkQq�s1/.�Qq�s1�
1
2 /j2 Œqj2j1 � 1�

D
.�1/j1C1Qj2 Œj1j2�q

j1j2Œj2Cm�q

j1X
mD0

�
j1
m

�
q

�
j2Cm

j1

�
q

.�Q/m;

where in the first equality we have used (D-3) and (6-17), in the second the fact that for a 1–row partition
˛ D .d/, p.d/.x1; : : : ; xn; : : : Iy1; : : : ; yn; : : : /D p.d/.x1; : : : ; xn; : : : /Cp.d/.y1; : : : ; yn; : : : /, and in
the third equality the fact that the difference of infinite power sums in the term in square brackets telescopes
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to just two terms; the final calculations are repeated applications of the q–binomial theorem. Extracting
the O.QjC / coefficient, we get

(6-27) OjC Ij1;j2.dPop
2 .1; 0; 0//.„/D

.�1/j1C1CjCCj2 Œj1j2�q

j1j2ŒjC �q

�
j1

jC � j2

�
q

�
jC
j1

�
q

:

From Figure 15, the homomorphism of homology groups � W Hrel
2 .dPop

2 .1; 0; 0/;Z/ ! H2.dP2;Z/ is
given by

(6-28) �ŒD1�D ŒE1�; �ŒD2�D ŒE2�; �ŒC �D ŒH �E1�E2�;

and the resulting map of curve degrees is

(6-29) d0! jC ; d1! j1; d2! j2:

Together with the log results given by (4-39) in Theorem 4.9 and the blowup formulas of Propositions 4.3
and 6.9 for the log and open invariants, this proves Theorem 6.7 for l D 3.

6.3.3 l D 4: holomorphic pairs of pants According to Example 6.5, for the only 4–component case
Y.D/D F0.0; 0; 0; 0/, we have that Y op.D/ is given by the 3–dimensional affine space with Aganagic–
Vafa A–branes L.i/ for i D 1; 2; 3 at framing shifted by �1, 0, and �1 ending on the three legs of the
vertex, as in Figure 16. We will be concerned with counts of 3–holed open Gromov–Witten invariants of
Fop
0 .0; 0; 0; 0/, with winding numbers .j1; j1; j2/; see Example 6.6.

The connected generating function, by (6-5) and (6-6), is

(6-30) Oj1;j1;j2.F
op
0 .0; 0; 0; 0//.„/

D Z.j1/.j1/.j2/.F
op
0 .0; 0; 0; 0//�Z.j1/.j1/∅.F

op
0 .0; 0; 0; 0//Z∅∅.j2/.F

op
0 .0; 0; 0; 0//

�Z.j1/∅.j2/.F
op
0 .0; 0; 0; 0//Z∅.j1/∅.F

op
0 .0; 0; 0; 0//

�Z∅.j1/.j2/.F
op
0 .0; 0; 0; 0//Z.j1/∅∅.F

op
0 .0; 0; 0; 0//

C 2Z.j1/∅∅.F
op
0 .0; 0; 0; 0//Z∅.j1/∅.F

op
0 .0; 0; 0; 0//Z∅∅.j2/.F

op
0 .0; 0; 0; 0//;

where, by (6-17),

(6-31) Z.j1/;.j1/;.j2/.F
op
0 .0; 0; 0; 0//

D

X
s0;s1;s2

.�1/s0Cs1Cs2

j 21 j2
W.Fop

0 .0; 0; 0; 0//.j1�s0;1s0 /;.j1�s1;1s1 /;.j2�s2;1s2 /

and, from (6-7) and (6-9),

(6-32) W˛ˇ .F
op
0 .0; 0; 0; 0//D .�1/

j˛jCj j
X
ı

s˛t=ı.q
�C /sˇ=ı.q

�C t /s t .q
�/:
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p
e1
v

p
e3
v

p
e2
v

f1

f2

f3

Figure 16: The toric CY3 graph of Fop
0 .0; 0; 0; 0/.

Elementary manipulations from (6-30)–(6-32) lead to

(6-33) Oj1;j1;j2.F
op
0 .0; 0; 0; 0//.„/

D

X
s0;s1;s2

.�1/s0Cs1Cs2Cj1Cj2

j 21 j2

��
s˛t .q

�C /� s˛t .q
�/
��
sˇ .q

�C t /� sˇ .q
�/
�
s t .q

�/

C

X
ı¤∅

�
s˛t=ı.q

�C /sˇ=ı.q
�C t /� s˛t=ı.q

�/sˇ=ı.q
�/
�
s t .q

�/

�
with

˛ D .j1� s0; 1
s0/; ˇ D .j1� s1; 1

s1/;  D .j2� s2; 1
s2/:

The part of the summation in the middle line, after carrying out the sums over s0, s1 and s2 using (D-3)
and (6-17), is equal to

(6-34)
j2�1X
s2D0

.�1/s2C1Cj2

j 21 j2

�
p.j1/.q

�C.j2�s2;1
s2 //�p.j1/.q

�/
��
p.j1/.q

�C.s2C1;1
j2�s2�1//�p.j1/.q

�/
�

�s.s2C1;1j2�s2�1/.q
�/

D

j2�1X
s2D0

.�1/s2

j 21 j2
.qj1.j2�s2�1=2/�qj1.�s2�1=2//.qj1.s2C1=2/�qj1.s2C1=2�j2//s.j2�s2;1s2 /.q

�/

D
1

j 21 j2

Œj1j2�
2
q

Œj2�q
;

while the part in the last line is equal to zero. Indeed, when ı D ˛t , we have sˇ=ı.x/ D ıˇ˛t (since
j˛j D jˇj D j1 in our case, ˛t � ˇ implies ˛t D ˇ), so the terms appearing in the difference in the second
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row of (6-33) are either individually zero or cancel out each other. When ı ¤ ˛t , we can use Lemma D.1
to expand s˛t=ı.x/ in terms of ordinary Schur functions s�.x/ with j�j D j˛j� jıj: it is easy to see that in
the sum over s0 the contribution labelled by each such Young diagram appears exactly twice and weighted
with opposite signs. Therefore,

(6-35) Oj1;j1;j2.F
op
0 .0; 0; 0; 0//.„/D

1

j 21 j2

Œj1j2�
2
q

Œj2�q
:

By construction from Examples 6.5 and 6.6,

(6-36) d1! j2 and d2! j1;

and comparing with (4-41) gives (6-14), which concludes the proof of Theorem 6.7.

Y.D/ �Y op.D/

P2.1; 4/

dP1.1; 3/

dP1.0; 4/

dP2.1; 2/

dP2.0; 3/

dP3.1; 1/

dP3.0; 2/

F0.2; 2/

F0.0; 4/

Y.D/ �Y op.D/

P2.1; 1; 1/

dP1.1; 1; 0/

dP2.1; 0; 0/

F0.2; 0; 0/

F0.0; 0; 0; 0/

Table 3: Y op.D/ for l–component Looijenga pairs satisfying Property O.
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7 KP and quiver DT invariants

7.1 Klemm–Pandharipande invariants of CY4–folds

Let Z be a smooth projective complex Calabi–Yau variety of dimension four and d 2 H2.Z;Z/. Since
vdimMg;n.Z; d/ D 1� gC n, the only nonvanishing genus-zero primary Gromov–Witten invariants
of Z without divisor insertions are13

(7-1) GW0;d I .Z/ WD

Z
ŒM0;1.Z;d/�vir

ev?1  for  2 H4.Z;Z/:

The same considerations apply to the case ofZ the Calabi–Yau total space of a rank .4�r/ concave vector
bundle on an r–dimensional smooth projective variety. It was proposed by Greene, Morrison and Plesser
in [50, Appendix B] and further elaborated upon by Klemm and Pandharipande in [68, Section 1.1] that a
higher-dimensional version of the Aspinwall–Morrison should conjecturally produce integral invariants
KP0;d .Z/, virtually enumerating rational degree-d curves incident to the Poincaré dual cycle of  ,

(7-2) GW0;d I .Z/D
X
kjd

KP0;d=kI .Z/
k2

:

Conjecture 7.1 (Klemm–Pandharipande) KP0;d I .Z/ 2 Z.

A symplectic proof of Conjecture 7.1 for projective Z, although likely adaptable to the noncompact
setting, was given by Ionel and Parker in [62].

Our main focus will be on Z a noncompact CY4 local surface, ie r D 2. In this case there is a single
generator  D Œpt� for the fourth cohomology of Z, given by the Poincaré dual of the point class on the
zero section, and we will henceforth use the simplified notation KP0;d .Z/ WD KP0;d IŒpt�.Z/.

7.2 Quiver Donaldson–Thomas theory

Let Q be a quiver with an ordered set Q0 of n vertices v1; : : : vn 2 Q0 and a set of oriented edges
Q1D f˛ W vi ! vj g. We let NQ0 be the free abelian semigroup generated by Q0, and for dD

P
divi and

eD
P
eivi 2NQ0, we write EQ.d; e/ for the Euler form

(7-3) EQ.d; e/ WD

nX
iD1

diei �
X

˛ W vi!vj

diej :

We assume in what follows that Q is symmetric; that is, for every i and j , the number of oriented edges
from vi to vj is equal to the number of oriented edges from vj to vi . The Euler form is then a symmetric

13By the same formula, there are nonvanishing elliptic unpointed Gromov–Witten invariants for Z, which will not concern us in
this paper. There are no Gromov–Witten invariants for a CY4 in genus g > 1.
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bilinear form. To C a symmetric bilinear pairing on Zn, we associate the generalised q–hypergeometric
series

(7-4) ˆC .qI x1; : : : ; xn/ WD

1X
d2Nn

.�q1=2/C.d;d/xdQn
iD1.qI q/di

;

where xdD
Qn
iD1 x

di
i . The motivic Donaldson–Thomas partition function associated to the cohomological

Hall algebra of Q (without potential) is the generating function [34]

(7-5) PQ.qI x1; : : : ; xn/ WDˆEQ
.qI x1; : : : ; xn/;

and the motivic DT invariants DTdIi .Q/ of Q are the formal Taylor coefficients in the expansion of its
plethystic logarithm [34; 70; 107],

(7-6) PQ.qI x1; : : : ; xn/D Exp
�
1

Œ1�q

X
d¤0

X
i2Z

DTdIi .Q/x
d.�q1=2/�i

�

D exp
� 1X
nD1

1

nŒn�q

X
d¤0

X
i2Z

DTQ
dIix

nd.�q1=2/�ni
�

D

Y
d¤0

Y
i2Z

Y
k�0

�
1� .�1/ixdq�k�.iC1/=2

��DTdIi .Q/:

It will be of particular interest for us to consider a suitable semiclassical limit of (7-6)

(7-7) y
.i/
Q .x1; : : : ; xn/ WD lim

q!1

PQ.qI x1; : : : ; q
1=2xi ; : : : ; xn/

PQ.qI x1; : : : ; q�1=2xi ; : : : xn/

D lim
q!1

Exp
�X

d¤0

1

Œ1�q

X
i2Z

Œdi �qDTQ
dIix

d.�q1=2/�i
�

D

Y
d¤0

Y
i2Z

.1� xd/�jdjDTnum
d .Q/;

where

(7-8) DTnum
d .Q/ WD

X
i2Z

.�1/iDTd;i .Q/

are the numerical DT invariants. From (7-7), the numerical invariants can be extracted from the logarithmic
primitive of y.i/Q .x/ with respect to xi ,

(7-9)
Z

dxi
xi

logy.i/Q .x/DW
X
d¤0

Ad.Q/x
d;

as

(7-10) Ad.Q/D
X
kjd

DTnum
d=k
.Q/

k2
:
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The generating series

yQ.x1; : : : ; xn/ WD

nY
iD1

y
.i/
Q .x1; : : : ; xn/

has an interpretation as a generating function of Euler characteristics of certain noncommutative Hilbert
schemes Hilbd.Q/ attached to the moduli space of semistable representations of the quiver Q [37; 107],

(7-11) yQ.x1; : : : ; xn/D
X

d2ZQ0

�.Hilbd.Q//x
d
2 ZŒŒx��:

In particular, this implies that
�Pn

iD1 di
�
DTnum

d .Q/ 2Z. More is true [34; 107] by the following theorem.

Theorem 7.2 (Efimov [34]) The numerical Donaldson–Thomas invariants of a symmetric quiver Q
without potential are positive integers , DTnum

d .Q/ 2N.

7.3 KP integrality from DT theory

The genus-zero log-local and log-open correspondences of Theorem 6.7 imply that KP invariants of toric
local surfaces are, up to a sign and possibly an integral shift, numerical DT invariants of a symmetric
quiver. Combined with Theorem 7.2 this gives an algebrogeometric proof of Conjecture 7.1 for

Z D Tot
�
O.�D1/˚O.�D2/! Y

�
:

Theorem 7.3 Let Y.D/ be a 2–component quasi-tame Looijenga pair. Then there exists a symmetric
quiver Q.Y.D// with �.Y /� 1 vertices and a lattice isomorphism � W Z.Q.Y.D///0

�
�! H2.Y;Z/ such

that

(7-12) DTnum
d .Q.Y.D///D

ˇ̌̌
KP�.d/.EY.D//C

X
i

˛iıd;vi

ˇ̌̌
;

with ˛i 2 f�1; 0; 1g. In particular , KPd .EY.D// 2 Z.

Proof The statement is a direct consequence of Theorem 6.7 combined with the strips–quivers correspon-
dence of [103], which we briefly review here in our context. Since Y.D/ is a 2–component quasi-tame pair,
it satisfies Property O by the discussion of Section 6.3. From Lemma D.1 and the proof of Theorem 6.7
(see in particular (6-19)), we have

(7-13)
W.j0/.Y

op.D//.Q; „/

W∅.Y op.D//.Q; „/
D
.�1/fj0q

.fC1=2/
�
j0
2

�
Œj0�qŠ

Qr
iD1.

zQ
.1/
i I q/j0Qs

kD1.
zQ
.2/

k
I q/j0

;

where f is the integral shift of f from canonical framing, .r; s/ are nonnegative integers with rC sC1D
�.Y /�1, and zQi D

QrCs
mD1Q

am;i
m with am;i 2 f�1; 0; 1g for i D 1; : : : ; rC s. Elementary manipulations
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and use of the q–binomial theorem (see [103, Section 4.1]) show that

(7-14)  Y.D/.Q; „; z/ WD
X
j0�0

W.j0/.Y
op.D//.Q; „/

W∅.Y op.D//.Q; „/
zj0

D

Qr
iD1.

zQi I q/1Qs
kD1.

zQrCkI q/1

�ˆC.Y.D//
�
q.r�s�1/=2z; zQ

.1/
1 ; : : : ; zQ.1/r ; q1=2 zQ

.2/
1 ; : : : ; q1=2 zQ.2/s

�
;

where

(7-15) C.Y.D//D

0BBBBBBBBB@

f C 1

r‚ …„ ƒ
1 � � � 1

s‚ …„ ƒ
1 � � � 1

1
:::

1

0 � � � 0
:::

:::

0 � � � 0

0 � � � 0
:::

:::

0 � � � 0

9=;r
1
:::

1

0 � � � 0
:::

:::

0 � � � 0

1 � � � 0
:::

:::

0 � � � 1

9=;s

1CCCCCCCCCA
and moreover, the genus-zero limit of the logarithm of (7-14) is the generating function of disk invariants
of Y op.D/ [5],

(7-16) lim
„!0
„ log Y.D/.Q; „; z/D lim

„!0
„O.Y op.D//.Q; „; x/

ˇ̌
x E�Dz

j0ı E�;.j0/

D

X
ˇ

O0Ij1;:::;jrCsI.j0/.Y
op.D//zj0

rCsY
iD1

Q
ji
i :

The matrix C has nonnegative off-diagonal entries, and ˆC .qI x1; : : : ; xrCsC1/ cannot therefore be
immediately interpreted as a motivic quiver DT partition function. However, writing Q.Y.D// for the
symmetric quiver with adjacency matrix C.Y.D//, we have [103, Appendix A],

(7-17) ˆC.Y.D//.qI x1; : : : ; xrCsC1/D
Y
d¤0

Y
j2Z

Y
k�0

�
1� .�1/j xdq�k�.jC1/=2

��EC.Y.D//
dIj

DˆEQ.Y.D//
.q�1I q�1=2x1; : : : ; q

�1=2xrCsC1/:

The exponents EC.Y.D//dIj are then equal to the motivic DT invariants of Q.Y.D// up to sign. Furthermore,
the numerical DT invariants also agree with the absolute value of EC.Y.D//;num

d WD
P
j .�1/

j EC.Y.D//dIj

[103, Appendix A],

(7-18) DTnum
d .Q.Y.D///D jEC.Y.D//;num

d j:

For j D .j0; j1; : : : ; jrCs/, define now the disk BPS invariants of Y op.D/ by

(7-19) O0;j1;:::;jrCsI.j0/.Y
op.D// WD

X
kjgcd.j0;:::;jrCs/

1

k2
Dj=k.Y

op.D//:
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Y.D/ Q.Y.D//

P2.1; 4/

F0.2; 2/
F0.0; 4/

dP1.1; 3/

dP1.0; 4/

dP2.1; 2/

dP2.0; 3/

dP3.1; 1/

dP3.0; 2/

Table 4: Quivers for 2–component quasi-tame Looijenga pairs.

From (7-13) and (7-16), we have that

D�.d/.Y
op.D//C

X
i

˛iıd;vi D EC.Y.D//;num
d ;

where

˛i D

8<:
0 for i D 1;
�1 for i D 2; : : : ; r C 1;
C1 for i D r C 2; : : : ; r C sC 1;

(7-20)

�.d1; : : : ; drCsC1/D

�
d1;

rCsX
mD1

am;2dmC1; : : : ;

rCsX
mD1

am;rCsdmC1

�
:(7-21)

But by (6-13), Oj .Y op.D//D N loc
�.j /
.Y.D//, and therefore Dj .Y

op.D//D KP�.j /.EY.D//, from which
the claim follows by setting � WD � ı � .

Remark 7.4 Theorem 7.3, combined with Theorem 5.1, resembles previous correspondences identifying
log GW invariants to DT invariants of quivers, and in particular [15], but it differs from them in a number
of key respects: the quiver DT invariants here are identified with the (absolute value of the) BPS invariants
of the local geometry, and therefore imply a finer integrality property of the log invariants via (5-1)
and (7-2). Furthermore, unlike in [15], the motivic refinement is not expected to reconstruct the open
Gromov–Witten count at higher genus, as the higher orders in „ of (7-16) include contributions of open
stable maps with more than one boundary component. A separate discussion of the open BPS structure of
the higher-genus theory is the subject of the next section.

Geometry & Topology, Volume 28 (2024)



468 Pierrick Bousseau, Andrea Brini and Michel van Garrel

Example 7.1 Let Y.D/ D P2.1; 4/. In this case we have r D s D 0, f D 1, and Q.P2.1; 4// is the
2–loop quiver. Moreover, the identification of dimension vectors with curve degrees is simply the identity,
� D id, and the integral shift in (7-12) and (7-20) vanishes, ˛1 D 0. Then, by Theorem 7.3, the absolute
value of the KP invariants of EP2.1;4/ gives the unrefined DT invariants of Q.P2.1; 4//. We can in fact
check directly that KPd .EP2.1;4//D .�1/

dDTnum
d
.Q.P2.1; 4///: according to [107, Theorem 3.2],

(7-22) DTnum
d .Q.P2.1; 4///D

.�1/d

d2

X
kjd

�
�
d

k

�
.�1/k

�2k�1
k�1

�
;

and the result follows from (3-16) and the equality

(7-23) 1

2

�2k
k

�
D
1

2

.2k/Š

.kŠ/2
D
1

2

2k

k

.2k� 1/Š

kŠ.k� 1/Š
D

�2k�1
k�1

�
:

Remark 7.5 (non-quasi-tame pairs) The condition in Theorem 7.3 that Y.D/ is a 2–component quasi-
tame pair is likely to be necessary. For example, for Y.D/ a non-quasi-tame pair, we do not expect that
the result of the finite summation (3-21) can be further simplified down to a form akin to (3-8) as a ratio
of products of factorials, unlike the case of the hypergeometric summations in the proof of Theorem 4.5.
A little experimentation shows that, writing N loc

0;d
.dP5.0; 0//Dm.d/=n.d/ with gcd.m.d/; n.d//D 1,

the numerator m.d/ is divisible by very large primes � 107 for low degrees di � 101 with di ¤ d0 for
i > 0. This creates a tension with m.d/ being a product of factorials with arguments linear in di with
coefficients � 101, as those would be divisible by at most the largest prime in the range � 101� 102. As
generating functions of numerical DT invariants are always generalised hypergeometric functions [102],
and their coefficients are therefore always products of ratios of factorials in the degrees, the KP/DT
correspondence of Theorem 7.3 is unlikely to extend to the non-quasi-tame setting.

Remark 7.6 (l > 2) For l–components pairs with l > 2, a correspondence between quivers and .l�1/–
holed open GW partition functions has received some preliminary investigation in the context of the
links-quivers correspondence [72; 36], where open stable maps are considered with the same colouring by
symmetric Young diagrams for all the connected components of the boundary. The general case of stable
maps with arbitrary windings which is relevant for our purposes may, however, fall outside the remit of
the open BPS/quiver DT correspondence. In particular, suppose that Q is a symmetric quiver such that

PQ.˛1x; : : : ; ˛rx; ˇ1y; : : : ; ˇ2y/D
X
m;n

xmynW.m/;.n/.X;L1[L2; f1; f2/

with ˛i , ˇi 2CŒq� and framed toric special Lagrangians L1, L2 in a Calabi–Yau threefoldX. The simplest
instance is X D C3 and L1, L2 framed toric Lagrangians on different legs: this arises for instance by
considering dPop

1 .1; 1; 0/ and Fop
0 .2; 0; 0/. It is easy to check that the analogue of the semiclassical limit

(7-16) for the annulus generating function would be

(7-24) lim
q!1

DqxD
q
y logPQ.˛1x; : : : ; ˛rx; ˇ1y; : : : ; ˇsy/D

X
j1;j2;ˇ

xj1yj2O0Ij1;j2.X;L1[L2; f1; f2/;
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where Dqx denotes the q–derivative with respect to x. When X D C3, a natural guess in line with the
disk case would be to take Q a quiver with two vertices, with dimension vectors in bijection with winding
numbers along the homology circles in L1 and L2. However it is straightforward to verify from (7-6) that
for rCsD 2, the left-hand side of (7-24) does not have a limit as q! 1 unless Q is disconnected, in which
case the limit is identically zero, and hence disagrees with the right-hand side. Although this may not
necessarily extend to quivers with higher number of vertices and finely tuned identifications of dimension
vectors with winding degrees, it does suggest that a suitable generalisation of the correspondence might
be required to encompass the counts of annuli as well.

8 Higher-genus BPS invariants

For Y.D/ a (not necessarily tame) l–component Looijenga pair satisfying Property O, we define

(8-1) �d .Y.D//.q/ WD Œ1�
2
q

� l�1Y
iD1

d �Di

Œd �Di �q

�X
kjd

�.k/

k
O��1.d=k/.Y

op.D//.�ik log q/;

and for Y.D/ an l–component pair, not necessarily satisfying Property O, we write

(8-2) �d .Y.D//.q/ WD Œ1�
2
q

� lY
iD1

1

Œd �Di �q

�X
kjd

.�1/d=k�DCl Œk�l�2q kl�2�.k/N
log
d=k

.Y.D//.�ik log q/:

The compatibility of (8-1) and (8-2) when Y.D/ satisfies both tameness and Property O follows from
Theorem 6.7. From Table 1 and the discussion following Definition 6.3, any quasi-tame l–component
Looijenga pair either satisfies Property O, or it is tame, or both: in this setting we will take �d .Y.D//.q/
to be either of the applicable definitions (8-1) or (8-2). We further write simply �d .Y.D// for the
genus-zero limit �d .Y.D//.1/,

(8-3) �d .Y.D// WD
1Ql

iD1.d �Di /

X
kjd

.�1/
Pl
iD1 d=k�DiC1

�.k/

k4�2l
N

log
0;d=k

.Y.D//

D

X
kjd

�.k/

k4�l
O0;��1.d=k/.Y

op.D//

D

X
kjd

�.k/

k4�l
N loc
d=k.Y.D//:

A priori we can only expect �d .Y.D// 2 Q and �d .Y.D//.q/ 2 Q.q1=2/. By (8-2) and (8-3), how-
ever, �d .Y.D// and �d .Y.D//.q/ are amenable to a physical interpretation as Labastida–Mariño–
Ooguri–Vafa (LMOV) partition functions [74; 73; 100; 88]. These heuristically count BPS domain
walls in an M–theory compactification on Y op.D/ (see in particular [88, equation 2.10]): writing
�d .Y.D//.q/ D

P
j nd;j .Y.D//q

j , the LMOV invariants nd;j .Y.D// would compute the net de-
generacy of M2–branes with spin j and magnetic and bulk charge specified by d , ending on an M5–brane
wrapped around the framed toric Lagrangian L in Y op.D/D .X;L; f/. From the vantage point of string
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theory, (8-2) (resp. (8-3)) are then expected to be integral Laurent polynomials (resp. integers: for l D 2,
since �d .Y.D// D KPd .EY.D// D D.Y op.D// by (7-2), (7-19), (8-3) and (6-13), this is implied by
Theorem 7.3). The next theorem shows that this is indeed the case.

Theorem 8.1 (the higher-genus open BPS property) Let Y.D/ be a quasi-tame Looijenga pair. Then
�d .Y.D//.q/ 2 q

� 1
2
gY.D/.d/ZŒq� for an integral quadratic polynomial gY.D/.d/.

Clearly, from (4-3) and (8-1)–(8-2), we have �d .q/D�d .q�1/, so Theorem 8.1 implies in particular
that �d .q/ is a Laurent polynomial truncating at O.q˙gY.D/.d/=2/.

To prove Theorem 8.1 we shall need the following two lemmas. Let !d be a primitive d th root of unity.

Lemma 8.2 (the q–Lucas theorem [99]) Let n�m be nonnegative integers. Then

(8-4)
�
n

m

�
!d

D !
1
2
m.m�n/

d

�
bn=dc

bm=dc

��
n� dbn=dc

m� dbm=dc

�
!d

:

In particular , if d jm and d jn, �
n

m

�
!d

D !
1
2
m.m�n/

d

�
n=d

m=d

�
:

Proof See eg [108, Theorem 2.2] for a proof.

Lemma 8.3 Let d jmjn 2 ZC. Then

@q

�
n

m

�
q

ˇ̌̌̌
qD!d

D 0:

Proof For every i < n with d −i we have
�
n
i

�
!d
D 0, since then

(8-5)
�
n� dbn=dc

i � dbi=dc

�
!d

D

�
0

i mod d

�
!d

D 0:

The Cauchy binomial theorem,

(8-6)
nX

mD0

tmq
1
2
m.nC1/

�
n

m

�
q

D

nY
iD1

.1C tqi /;

implies that

(8-7) q
1
2
m.nC1/

�
n

m

�
q

D em.q; : : : ; q
n/;

where ej .x1; : : : ; xn/ is the j th elementary symmetric polynomials in n variables. We differentiate (8-7)
and evaluate at q D !d , where now d jmjn. Write nD abd , mD bd for a; b 2ZC. From (8-6) we find

(8-8) @q
nY
iD1

.1Ctqi /D

nY
iD1

.1Ctqi /

� nX
jD1

jtqj�1

1C tqj

�
D

nX
iD0

t iei .q; : : : ; q
n/ �t

nX
jD1

1X
kD0

j.�t /kqkjCj�1:
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Let us now evaluate at q D !d and take the O.tm/ coefficient on both sides. We have

(8-9) @qem.q; : : : ; q
n/jqD!d D Œt

m�

nX
iD0

t iei .!d ; : : : ; !
n
d / � t

nX
jD1

1X
kD0

j.�t /k!
kjCj�1

d

D Œtbd �

abX
iD0

tdi!
id.nC1/=2

d
!
id.id�n/=2

d

�ab
i

�
� t

nX
jD1

1X
kD0

j.�t /k!
kjCj�1

d

D

b�1X
iD0

!
1
2
id.dC1/

d

�ab
i

� abdX
jD1

j.�1/bd�1�id!
bdj�1�idj

d

D .�1/mC1
n.nC 1/

2!d

b�1X
iD0

.�1/i
�ab
i

�
D
.�1/bCmn.nC 1/

2a!d

�ab
b

�
;

where we have used (8-5) and Lemma 8.2. On the other hand,

(8-10)
@

@q
q
1
2
m.nC1/

�
n

m

�
q

ˇ̌̌̌
qD!d

D
m.nC 1/

2!d
!
m.mC1/=2

d

�ab
b

�
C!

m.nC1/=2

d
@q

�
n

m

�
q

ˇ̌̌̌
qD!d

D
m.nC 1/

2!d
.�1/bCm

�ab
b

�
C!

m.nC1/=2

d
@q

�
n

m

�
q

ˇ̌̌̌
qD!d

;

where in tracking down the last sign factor we have been mindful that .�1/bm D .�1/m since b jm. The
claim then follows by equating (8-9) to (8-10).

Proof of Theorem 8.1 We break up the proof of the theorem by considering each value of l separately.

� (l D 2) It suffices to prove the theorem in the case Y.D/ D dP3.1; 1/, since �d .dP3.1; 1// D
�d .dP3.0; 2// from (8-1) and the discussion of Section 6.3.1, and all other cases are then recovered
from the blowup formulas of Propositions 4.3 and 6.9. Let zd WD gcd.d0; d1; d2; d3/. We first plug (4-22)
into (8-1),

(8-11) �d .dP3.1; 1//.q/D Œ1�2q
X
kj zd

�.k/
.�1/.d1Cd2Cd3/=k

Œd0=k�qk Œ.d1C d2C d3� d0/=k�qk
‚d=k.q

k/;

D
Œ1�2q

Œd0�qŒd1C d2C d3� d0�q

X
kj zd

�.k/.�1/.d1Cd2Cd3/=k‚d=k.q
k/;

where

(8-12) ‚d .q/ WD

�
d0
d1

�
q

�
d1

d0� d2

�
q

�
d1C d2C d3� d0

d1

�
q

�
d1

d0� d3

�
q

:

It is immediate to verify that �d .dP3.1; 1//.q/ 2 q�
1
2
gdP3.1;1/.d/ZŒŒq��, with

(8-13) gdP3.1;1/.d/D 2 .d1C d2C d3� d0/ d0� d
2
1 � d

2
2 � d

2
3 � d1� d2� d3C 2
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since �
n

m

�
q

2 q�m.n�m/=2ZŒq�;
1

Œn�q
2 qn=2ZŒŒq�� and Œm�q 2 q

�m=2ZŒŒq��

as formal Laurent series at qD 0 with truncating principal part for any positive integers n;m. Furthermore,
away from q D 0;1, �d .dP3.1; 1//.q/ 2Q.q1=2/ is a rational function of q1=2 with at worst double
poles possibly at the zeroes of Œd0�qŒd1C d2C d3 � d0�q , namely q D !j

d0
for j D 1; : : : ; d0 � 1, and

q D !
j

d1Cd2Cd3�d0
for j D 1; : : : ; d1Cd2Cd3�d0� 1. We shall now prove that �d .dP3.1; 1//.q/ is

in fact regular on the unit circle.

First off, upon expanding all q–analogues in (8-11) in cyclotomic polynomials,

(8-14) Œn�q D
Y
d jn

ˆd .q/;

it is straightforward to check that [59, Lemma 5.2]

(8-15)
Œgcd.n;m/�q
ŒnCm�q

�
nCm

m

�
q

2 q
1
2
.nCm�nm�gcd.n;m//ZŒq�;

which implies that �d .dP3.1; 1//.q/ is regular on the unit circle outside of f!j
zd
g
zd
jD0, where we recall

that zd WD gcd.d0; d1; d2; d3/. Let now

z�d .dP3.1; 1//.q/ WD
Œd0�qŒd1C d2C d3� d0�q

Œ1�2q
�d

and zdi D di= zd . From Lemma 8.2, we have

(8-16) ‚d=k.!
kj

zd
/

D .�1/.d1Cd2Cd3/j=k
�
zd1�k;j
zd2�k;j

��
zd1�k;j

. zd0� zd2/�k;j

��
. zd1C zd2C zd3� zd0/�k;j

zd1�k;j

��
zd1�k;j

. zd0� zd3/�k;j

�
;

where �k;j D gcd. zd=k; j /. Then

(8-17) z� zd .dP3.1; 1//.!
j

zd
/

D

X
kj zd

�
� zd
k

�
.�1/.

zd1Czd2Czd3/k.jC1/

� zd1� zd=k;j
zd2� zd=k;j

�� zd1� zd=k;j
. zd0� zd2/� zd=k;j

�

�

�
. zd1C zd2C zd3� zd0/� zd=k;j

zd1� zd=k;j

�� zd1� zd=k;j
. zd0� zd3/� zd=k;j

�
:

Consider first zd ¤ 1 and write �p.n/ and rad.n/ for the p–adic valuation and the radical of n 2 ZC,
respectively. Let k j zd and suppose without loss of generality that zd=k has no repeated prime factors,
zd=k D rad. zd=k/. Then, for ! zd ¤ 1, the following trichotomy holds:
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(I) zd=k−j and there exists p0 prime with p0 j zd=k and p0−j .

Let k0 WD kp0. Then k0 j zd , gcd.k0; j / D gcd.k; j /, �. zd=k0/ D ��. zd=k/. Moreover .�1/k
0.jC1/ D

.�1/k.jC1/, which is obvious when p0 is odd, and it also holds when p0 D 2 since in that case j must be
odd. Then the contributions from k0 and k to the sum (8-17) cancel each other.

(II) zd=k jj and there exists p0 < zd such that p0 jd and p0−j .

In this case we have p0− zd=k, p0 jk. Let k0 WDk=p0. Then as before�. zd=k/D��. zd=k0/, .�1/k
0.jC1/D

.�1/k
0.jC1/ and gcd.k0; j /D gcd.k; j /, and the summand corresponding to k0 has opposite sign to the

one corresponding to k in (8-17).

(III) zd=k jj and zd has no prime factor p0−j .

Suppose for simplicity that rad.j /=rad. zd/ is odd, the even case being essentially identical. Then (8-17) is
unchanged upon replacing j DW

Q
pjj p

�p.j / with
Q
pjj;pj zd

p�p.j /, so we may assume rad.j /D rad. zd/.
Let p0 be such that �p0. zd/ > �p0.j / and let k0 WD k=p0. Then once again the contributions of k and k0 to
(8-17) cancel each other.

All in all, the above shows that z�d .dP3.1; 1// vanishes at !j
zd

for all zd > 1 and j D 1; : : : ; zd � 1. But
by Lemma 8.3 these are all double zeroes, and therefore �d .dP3.1; 1// is regular therein. Moreover,
�d .dP3.1; 1// is regular by construction at qD1, where its value is given by replacing all q–expressions in
(8-11) by their classical counterparts. Hence �d .dP3.1; 1// 2QŒq˙1=2� is a rational Laurent polynomial;
but we also know that �.dP3.1; 1//d 2 q

� 1
2
gdP3.1;1/.d/ZŒŒq�� is an integral Laurent series, which thus

truncates at O.q
1
2
gdP3.1;1/.d//. The statement of the theorem follows.

� (l D 3) As before, we prove the statement for Y.D/D dP3.0; 0; 0/ and recover all 3–component pairs
by restriction in the degrees. Let

zd WD gcd.d0; d1; d2; d3/ and yd WD d20 � d0.d1C d2C d3/C d1d2C d1d3C d2d3:

From (4-39),

(8-18) �d .dP3.0; 0; 0//.q/D Œ1�2q
X
kj zd

�.k/k
.�1/.d0Cd1Cd2/=kC1Œ yd=k2�qk

Œd1=k�qŒd2=k�qŒd3=k�qk
„d=k.q

k/;

where

(8-19) „d .q/ WD

�
d1

d0� d2

�
q

�
d2

d0� d3

�
q

�
d3

d0� d1

�
q

:

Outside q D 0;1, the polynomial �d .dP3.0; 0; 0//.q/ has at worst double poles at q D !j
d

only; also it
is verified directly that q

1
2
gdP3.0;0;0/.d/�d has a Taylor expansion at qD 0 with integer coefficients, where

(8-20) gdP3.0;0;0/.d/D gdP3.1;1/.d/:
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For q D 1, the ratios of q–numbers in (8-18) limits to the corresponding classical counterparts, so
�d .dP3.0; 0; 0//.1/ is well-defined. Suppose then q D !j

zd
¤ 1. We have that

(8-21)
Œ yd=k2�qk

Œd1=k�qk Œd2=k�qk Œd3=k�qk
D

bd
kd1d2d3

� !
2j

zd�
q�!

j

zd

�2 C 1

q�!
j

zd

CO.1/
�
:

This is nearly k–independent, save for the factor of k that cancels the one present in the summand of
(8-18). By the same arguments of the previous point, the resulting divisor sumX

kj zd

�.k/.�1/.d0Cd1Cd2/=kC1„d=k.q
k/

vanishes quadratically at !j
zd
, and therefore �d .dP3.0; 0; 0//.q/ is regular on the unit circle, concluding

the proof.

� (l D 4) This consists of the single case Y.D/D F0.0; 0; 0; 0/. Let zd WD gcd.d1; d2/. We have, from
(6-35), that

(8-22) �d .F0.0; 0; 0; 0//.q/D
Œ1�2q

Œd1�2qŒd2�
2
q

X
kj zd

�.k/k2Œd1d2=k
2�2
qk
:

In this case we have

(8-23) gF0.0;0;0;0/.d/D 2.d1d2� d1� d2C 1/:

As before, �d .F0.0; 0; 0; 0//.q/ is a rational function with an integral Taylor–Laurent expansion at qD 0,
order gF0.0;0;0;0/.d/=2 singularities at q D 0;1 and possibly double poles at q D !j

zd
. Expanding (8-22)

at !j
zd

yields

(8-24) �d .F0.0; 0; 0; 0//.q/D
X
kjd

�.k/

�!j
zd
.!
j

zd
� 1/2

.q�!
j

zd
/2
C

2!
j

zd
.!
j

zd
� 1/

q�!
j

zd

�
CO.1/;

which vanishes up to O.1/ since
P
kjd �.k/D 0, hence�d .F0.0; 0; 0; 0//.q/2 q

� 1
2
gF0.0;0;0;0/

.d/ZŒq�.

9 Orbifolds

In [18], we proposed in the context of toric pairs that the log-local principle should extend to Y a possibly
singular Q–factorial projective variety. We expect that this should also hold for nef Looijenga pairs, at
least as long as the orbifold singularities are at the intersection of the divisors: the log GW theory is then
well-defined since Y.D/ is log smooth, and the local GW theory makes sense by viewing Y and EY.D/
as smooth Deligne–Mumford stacks. In particular, introducing singularities gives new infinite lists of
examples of nef/quasi-tame/tame Looijenga pairs.
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We propose that also Theorems 6.7, 7.3 and 8.1 may extend to the orbifold setting. We present the
simplest instance here, and defer a more in-depth discussion, including criteria for the validity of the
orbifold versions of Theorems 6.7, 7.3 and 8.1 to [17].

Example 9.1 Let Y DP.1;1;n/ be the weighted projective plane with weights .1; 1; n/, andDDD1CD2
with D1 a toric line passing through the orbifold point and D2 a smooth member of the linear system
given by the sum of the two other toric divisors. Since D1 �H=n, D2 � .nC 1/=nH and H 2 D n, we
have D21 D 1=n and D22 D .nC1/

2=n. Therefore P.1;1;n/.1=n; .nC1/
2=n/ is a tame orbifold Looijenga

pair.

Local Gromov–Witten invariants of Y.D/ can be computed by the orbifold quantum Riemann–Roch
theorem of [113]: when restricted to point insertions, it gives (3-8) specialised to the case at hand, and
we get

(9-1) N loc
0;d

�
P.1;1;n/

�
1

n
;
.nC 1/2

n

��
D

.�1/nd

.nC 1/d2

�
.nC 1/d

d

�
:

A toric model and a quantised scattering diagram for Y.D/ can be constructed as follows. The fan
of P.1;1;n/ has 1–skeleton given by rays generated by .�1; 0/, .0;�1/ and .1; n/. We may choose
D1 D D.1;n/. Denote by zY the toric blowup obtained by adding a ray in the direction .�1; 1/, and
denote by E the corresponding divisor. Choose zD DD1CD2CE, where we identify D1 and D2 with
their proper transforms. Then zY . zD/! Y.D/ is a corner blowup. The proper transform of D.�1;0/ is a
.�1/–curve, which we contract zY . zD/! Y .D/. Then Y nD has Euler characteristic 0, hence is .C�/2,
and therefore Y .D/ is toric, ie zY . zD/!Y .D/ is a toric model and we are in the setting of Proposition 2.4.
Identifying proper transforms, we have that D DD1CD2CE, with D1 corresponding to the ray .1; n/,
D2 to the ray .0;�1/ and E to the ray .�1; 1/. Applying the SL.2;Z/ transformation

(9-2)
�
1 0

1 1

�
;

we obtain the toric model depicted at left of Figure 17, for which the broken line calculation is straight-
forward. The result is

N
log
0;d

�
P.1;1;n/

�
1

n
;
.nC 1/2

n

��
D

�
.nC 1/d

d

�
;(9-3)

N
log
d

�
P.1;1;n/

�
1

n
;
.nC 1/2

n

��
D

�
.nC 1/d

d

�
q

:(9-4)

To construct

P op
.1;1;n/

�
1

n
;
.nC 1/2

n

�
;

we delete the line D1. Then O.�D2/ is trivial on P.1;1;n/ nD1 D C2, and Tot.KP.1;1;n/nD1/ D C3,
with an outer toric Lagrangian at framing shifted by n. A topological vertex calculation of higher-genus
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x
y

D2

D1

E
�

.1; nC1/

1C tx�1

y�.nC1/d

xdy.nC1/d

� .nC1/d
d

�
tdx�dy�.nC1/d

�
p

Figure 17: Left: Scatt P.1;1;n/. Right: The quiver for Y.D/D P .1; 1; 3/
�
1
3
; 16
3

�
.

1–holed open Gromov–Witten invariants as in Section 6.3.1 shows that

(9-5) Od

�
P op
.1;1;n/

�
1

n
;
.nC 1/2

n

��
D

.�1/nd

dŒ.nC 1/d �q

�
.nC 1/d

d

�
q

:

Equations (9-1), (9-3), (9-4) and (9-5) together imply that Theorems 5.1 and 6.7 extend to this case as well.
The arguments in the proof of Theorem 7.3 also apply verbatim, with Q.P.1;1;n/.1=n; .nC 1/

2=n// the
.nC1/–loop quiver. An interesting consequence is that the integrality statement of Conjecture 7.1 appears
to persist in the orbifold world too. The proof of the higher-genus open BPS property in Theorem 8.1
also carries through to this setting with no substantial modification.

Appendix A Proof of Theorem 3.3

Let Y be the toric surface given by the fan of Figure 18. It is described by the exact sequence

(A-1) 0! Z6

0BBBBBBBBBBBBBB@

1 1 0 0 0 �2

0 0 1 0 0 1

1 0 0 1 0 0

0 0 0 0 1 0

0 1 0 1 0 0

1 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 1

1CCCCCCCCCCCCCCA
�������������! Z8

 
1 1 0 �1 �1 �1 0 1

0 1 1 1 0 �1 �1 �1

!
�����������������������! Z2! 0

showing that Y is a GIT quotient

C8==.C?/6 D .C8
n fxixj D 0g.i;j /¤.1;8/; j¤iC1/=.C

?/6;
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T6 T8

T1

T2

T7

T4

T5

T3

Figure 18: The fan of Bl4 ptsP1 �P1.

with .�1; : : : ; �6/ 2 .C?/6 acting as

(A-2)

0BBBBBBBBBBB@

x1
x2
x3
x4
x5
x6
x7
x8

1CCCCCCCCCCCA
�!

0BBBBBBBBBBB@

�1�2�
�2
6 x1

�3�6x2
�1�4x3
�5x4
�2�4x5
�1�3x6
�4x7
�5�6x8

1CCCCCCCCCCCA
:

There are dominant birational morphisms Y �1
�! P2 and Y �2

�! P1 �P1, obtained by deleting the loci
fxi D 0gi2f2;4;6;7;8g and fx2i D 0g, respectively. Therefore Y ' Bl4ptsP1 �P1, or equivalently, Y is a
five-point toric blowup of P2, and deforms to dP5 upon taking the points in general position. From (A-1)
and Figure 18, in terms of the hyperplane H and exceptional classes Ei 2 Pic.dP5/, the toric divisors
Ti WD fxi D 0g read

(A-3)
T1 DH �E1�E2�E4; T3 DH �E1�E3�E5; T5 DE2�E4; T7 DE3�E5;

T2 DE1; T4 DE4; T6 DH �E2�E3; T8 DE5:

Under this identification the �2–curve classes T2kC1 do not belong to NE.dP5/ (see the discussion of
Section 2.3); however they do have, by construction, effective representatives in A1.Y /, since they are
prime toric divisors.

To write the I–function, we fix the following set of 1
2
Z–generators of A1.Y /:

(A-4) Ci D

�
T2i for i D 1; : : : ; 4;
DiC4 for i D 1; 2;

where D1 DH �E1 D T1CT3C 2T6 and D2 D 2H �E2�E3�E4�E5 D T2CT4CT5CT7�T8.
We will write 'i with .'i ; Cj /D ıij for their dual basis in cohomology, and denote curve classes in this
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basis as d D
P
i
1
2
�iıiCi with ıi 2 Z, and �i D �1 for 1 � i � 4 and �i D 1 otherwise. To write the

twisted I–function IEY.D/ , we need to expand �a D c1.O.Ta// and �i D c1.O.Di // in (3-11), yielding

(A-5) IEY.D/.y; z/DX
ıi2Z

"
y
� 1
2
ı1

1 y
� 1
2
ı2

2 y
� 1
2
ı3

3 y
� 1
2
ı4

4 y
1
2
ı5

5 y
1
2
ı6

6 .�1/ı5Cı6�
1�
2'1

z

�
ı1

�
1�
2'2

z

�
ı2

�
1�
2'3

z

�
ı3

�
1�
2'4

z

�
ı4

�
zC'1C'2C'5

z

�
1
2
.�ı1�ı2Cı5/

.2'6��1/.2'5��2/

�
zC2'6��1

z

�
ı6�1

�
zC2'5��2

z

�
ı5�1

z

�
zC'3C'4C'5

z

�
1
2
.�ı3�ı4Cı5/

�
zC'1C'3C'6

z

�
1
2
.�ı1�ı3Cı6/

�
zC'2C'4C'6

z

�
1
2
.�ı2�ı4Cı6/

#
;

where

(A-6) .a/n D a.aC 1/ � � � .aCn� 1/

is the Pochhammer symbol. By (3-12), the mirror map is extracted as the formal O.z0/ Taylor coefficient
around z D1. We find that the sole contributions to the mirror map arise from multiple covers of our
chosen generators Ci , that is when ıi D 2�in for some n 2NC,

(A-7) zt i .y/D

1X
ıiD1

.2ıi � 1/Š

.ıi Š/2
yıi ;

which is closed-form inverted as

(A-8) yi .t/D
exp t i

.1� exp t i /2
:

Then14

J
EY.D/
small D I

EY.D/.y.t/; z/;

and from (3-10) and (A-5) we find that whenever d ¤ 2�in for n 2NC,

(A-9) N
loc; 
ı1;:::;ı6

.Y.D//D
1

�1�2
Œz�1e

P
ti'i=z1HT .EY.D//�I

EY.D/.y.t/; z/

D Œe
P
i ıi ti �

1X
ı 0
i

S
Œ0�

ı 01;:::;ı
0
6

6Y
iD1

yi .t/
1
2
�iı
0
i ;

14To obtain the small J –function, we should include a string-equation induced shift by multiplying the I–function by an overall
factor of e�1zt

5.y/C�2zt
6.y/=z , in order to guarantee that the small J –function satisfies its defining property to be the unique

family of Lagrangian cone elements with a Laurent expansion of the form zC t CO.1=z/ at z D1. These would result in a
correction of the foregoing discussion for degrees ıi D 0 when i D 1; : : : ; 4. It is justified to ignore this for our purposes: since
d �Di D 0 and O.�Di / is not a concave line bundle, the corresponding invariants are nonequivariantly ill-defined; and any
sensible nonequivariant definition would satisfy automatically the log-local correspondence of Section 5, as the corresponding
log invariants are trivially zero.
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where

(A-10) S
Œ0�

ı 01;:::;ı
0
6

WD
.�1/ı

0
5Cı
0
6.ı05� 1/Š.ı

0
6� 1/Š

ı01Šı
0
2Šı
0
3Šı
0
4Š
�
1
2
.ı05� ı

0
1� ı

0
2/
�
Š
�
1
2
.ı05� ı

0
3� ı

0
4/
�
Š
�
1
2
.ı06� ı

0
1� ı

0
3/
�
Š
�
1
2
.ı06� ı

0
2� ı

0
4/
�
Š
:

The arguments of the factorials in the denominator constrain the range of summation to extend over ıi ¤ 0
alone; in particular the right-hand side is a Taylor series in .y�1=21 ; y

�1=2
2 ; y

�1=2
3 ; y

�1=2
4 ; y

1=2
5 ; y

1=2
6 /,

convergent in a ball centred at y�ii D 0.

We first perform the summation over ı06 to obtain

(A-11)
1X
ı 06D0

S
Œ0�

ı 01;:::;ı
0
6

y
1
2
ı 06

6

D

.�1/ı
0
2Cı
0
4Cı
0
5.ı02C ı

0
4� 1/Š.ı

0
5� 1/Š

�
et6

.et6 C 1/2

�1
2
.ı 02Cı

0
4/

ı01Šı
0
2Šı
0
3Šı
0
4Š
�
1
2
.�ı01C ı

0
2� ı

0
3C ı

0
4/
�
Š
�
1
2
.�ı01� ı

0
2C ı

0
5/
�
Š
�
1
2
.�ı03� ı

0
4C ı

0
5/
�
Š

� 2F1

�
1
2
.ı02C ı

0
4/;

1
2
.ı02C ı

0
4C 1/I

1
2
.�ı01C ı

0
2� ı

0
3C ı

0
4C 2/I

4et6

.et6 C 1/2

�
;

where

(A-12) pFr.a1; : : : ; apI b1; : : : ; br I z/ WD
X
k�0

zk

kŠ

Qp
jD1.aj /kQr
jD1.bj /k

is the generalised hypergeometric function. Applying Kummer’s quadratic transformation,

(A-13) 2F1.a; bI a� bC 1I z/D .zC 1/
�a

2F1

�
a

2
;
aC 1

2
I a� bC 1I

4z

.zC 1/2

�
;

we obtain

(A-14) N
loc; 
ı1;:::;ı6

.Y.D//D Œe
P5
iD1 ıi ti �

1X
ı 0
i

S
Œ1�

ı 01;:::;ı
0
5;ı6

5Y
iD1

yi .t/
1
2
�iı
0
i ;

where

(A-15) S
Œ1�

ı 01;:::;ı
0
5;ı6
WD

.�1/ı
0
2Cı
0
4Cı
0
5.ı05� 1/Š

�
1
2
.ı01C ı

0
3/C ı6� 1

�
Š
�
1
2
.ı02C ı

0
4/C ı6� 1

�
Š

ı01Šı
0
2Šı
0
3Šı
0
4Š
�
1
2
.ı01C ı

0
2C ı

0
3C ı

0
4� 2/

�
Š
�
1
2
.�ı01� ı

0
2C ı

0
5/
�
Š

�
1�

1
2
.�ı03� ı

0
4C ı

0
5/
�
Š
�
�
1
2
ı01�

1
2
ı03C ı6

�
Š
�
�
1
2
ı02�

1
2
ı04C ı6

�
Š
:

Performing the same sequence of operations on the sum over ı05 yields

(A-16) N
loc; 
ı1;:::;ı6

.Y.D//D Œe
P4
iD1 ıi ti �

1X
ı 0
i

S
Œ2�

ı 01;:::;ı
0
4;ı5;ı6

4Y
iD1

yi .t/
1
2
�iı
0
i ;
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where

(A-17) S
Œ2�

ı 01;:::;ı
0
4;ı5;ı6

WD
.�1/ı

0
1Cı
0
4

�
1
2
.ı01Cı

0
2/Cı5�1

�
Š
�
1
2
.ı03Cı

0
4/Cı5�1

�
Š
�
1
2
.ı01Cı

0
3/Cı6�1

�
Š

ı01Šı
0
2Šı
0
3Šı
0
4Š
��
1
2
.ı01Cı

0
2Cı

0
3Cı

0
4�2/

�
Š
�2�
�
1
2
ı01�

1
2
ı02Cı5

�
Š

�

�
1
2
.ı02Cı

0
4/Cı6�1

�
Š�

�
1
2
ı03�

1
2
ı04Cı5

�
Š
�
�
1
2
ı01�

1
2
ı03Cı6

�
Š
�
�
1
2
ı02�

1
2
ı04Cı6

�
Š
:

The final step is to now plug in the mirror maps (A-8) for i D 1; : : : ; 4. This gives

(A-18) N
loc; 
ı1;:::;ı6

.Y.D//D

1X
j1;:::;j4D0

S
Œ3�

ı 01C2j1;:::;ı
0
4C2j4;j1;:::;j4;ı5;ı6

;

where

(A-19) S
Œ3�

ı 01;:::;ı
0
4;j1;:::;j4;ı5;ı6

WD S
Œ2�

ı 01;:::;ı
0
4;ı5;ı6

4Y
iD1

�
ı0i
ji

�
:

The change of basis fC1; : : : ; C6g ! fH �E1 � � � � �E5; E1; : : : E5g in (A-3) and the corresponding
change of variables in the curve degree parameters fı1; : : : ; ı6g ! fd0; : : : ; d5g finally leads to (3-21).

Appendix B Infinite scattering

We compute the invariants of Conjecture 4.7 for the geometries dP1.0; 4/ and F0.0; 4/. This application
of our correspondences predicts new relations for q–hypergeometric sums in Conjecture B.3. We provide
calculations by picture and leave the details to the reader.

Denote by E the exceptional divisor obtained by blowing up a point on D1 in P2.1; 4/. We write a curve
class d 2 H2.dP1.0; 4/;Z/ as d D d0.H �E/C d1E. If d0 D 0 or d1 D 0, then the moduli space of
stable log maps is empty and N

log
d
.dP1.0; 4//.„/ D 0. If d1 > d0, then there are no irreducible curve

classes and N
log
d
.dP1.0; 4//.„/ D 0. The toric model of dP1.0; 4/ is obtained from the toric model of

P2.1; 4/ by adding a focus–focus singularity in the direction of D1. The opposite primitive vectors in the
F2 and D1 directions are 1 D .1; 0/ and 2 D .�1;�2/. Since the absolute value of their determinant is
2 and not 1, there is infinite scattering, which is described in Section 4.2. By choosing our broken lines to
be sufficiently into the x–direction, we can restrict to walls that lie on the halfspace x > 0. Then these
walls have slope .nC 1/1Cn2 D .1;�2n/ for n� 0. The wallcrossing functions attached to them are
1C tnC1tn1 x

�1y2n. The broken line computation is summarised in Figure 20.

Theorem B.1 Let d0 > d1 � 1 and d D d0.H �E/C d1E. Then N
log
d
.dP1.0; 4//.„/ equals

(B-1)
d1X
mD1

X�
2d0
k1

�
q

�
2d0�2.n1�n2/k1

k2

�
q

� � �

�
2d0�2

Pm�1
jD1 .nj�nm/kj

km

�
q

�
2d1
k0

�
q

;

the second summation being over k0 � 0, k1; : : : ; km > 0 and n1 > n2 > � � � > nm > 0 satisfying
k0C

Pm
jD1 kj D d1 and

Pm
jD1 njkj D d0� d1.
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D2

F1D1

F2

�

�

Figure 19: F0.0; 4/.

For the case of F0.0; 4/, let D1 be a line of bidegree .1; 0/ and let D2 be a smooth divisor of bidegree
.1; 2/. Let d be a curve class of bidegree .d1; d2/. We have d �D1 D d2 and d �D2 D 2d1Cd2. Denote
by pt1 (resp. pt2) their intersection points and by L1 (resp. L2) the lines of bidegree .0; 1/ passing
through pt1 (resp. pt2). We blow up pt1 and pt2, leading to exceptional divisors F1 and F2, and blow
down the strict transforms of L1 and L2. The result is the Hirzebruch surface F2 with a focus–focus
singularity on each of the fibrewise toric divisors, as in Figure 19.

Let d be a curve class of bidegree .d1; d2/. The opposite primitive vectors in the F2 and F1 directions
are 1 D .1; 0/ and 2 D .�1;�2/. The absolute value of their determinant is 2, so there is infinite
scattering as described in Section 4.2. We choose p to be in the lower left quadrant with coordinate
.a; b/ for �1� a < 0 and b � 0. This depends on the degree and ensures that the broken lines are
vertical at p. In particular, we can restrict to walls that lie on the halfspace x < 0. Then these walls
have slope .n� 1/1C n2 D .�1;�2n/ for n � 1. The wall-crossing functions attached to them are
1C tn�1tn1 xy

2n. The broken line calculation is summarised in Figure 20.

Theorem B.2 For d1 � 1, the generating function N
log
.d1;d2/

.F0.0; 4//.„/ equals

b 1
2
.
p
1C8d1�1/cX
mD1

X
d1D

Pm
jD1 njkj ;

km;:::;k1>0;
nm>���>n1>0

�
d2C2d1
km

�
q

� � �

�
d2C2ni

Pm
jDi kjC2

Pi�1
jD1 njkj

ki

�
q

� � �

�
d2C2n2

Pm
jD2 kjC2n1k1

k2

�
q

�
d2C2n1

Pm
jD1 kj

k1

�
q

�
d2Pm
jD1 kj

�
q

:

Conjecture 4.4 predicts that the multivariate q–hypergeometric sums of Theorems B.1 and B.2 dramati-
cally simplify to remarkably compact q–binomial expressions. This is expressed by the following new
conjectural q–binomial identities.
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Figure 20: Scattering diagrams of dP1.0; 4/, left, and F0.0; 4/, right.

Conjecture B.3 The q–hypergeometric sums of Theorems B.1 and B.2 are equal to

N
log
d
.dP1.0; 4//.„/D

Œ2d0�q

Œd0�q

�
d0
d1

�
q

�
d0C d1� 1

d0

�
q

;(B-2)

N
log
d
.F0.0; 4//.„/D

Œ2d1C d2�q

Œd2�q

�
d1C d2� 1

d1

�2
q

;(B-3)

where q D ei„.

A proof of the identities of Conjecture B.3 was communicated to us by C Krattenthaler [71]. Note
that the genus-zero log-local correspondence of Theorem 5.1 and the deformation invariance of local
Gromov–Witten invariants give an entirely geometric proof of their classical limit at q D 1.

Appendix C Proof of Theorem 5.4

Recall the notation of Section 5 and let h W �!� be a rigid decorated parametrised tropical curve with
N

loc;h
0;d

.Y.D//¤ 0. Our goal is to prove that hD xh. This will be done by a series of Lemmas constraining
further and further the possible shape of h.

Recall that we are considering a degeneration with special fibre Ph
0 , which is a .P1/l–bundle over the

special fibre Yh0 of a degeneration of the original surface Y . For every vertex V (resp. edge E) of � , the
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corresponding component (resp. node) of a stable log map with tropicalisation h maps to the irreducible
component PV (resp. divisor PE ) of the special fibre Ph

0 . PV (resp. PE ) is a .P1/l–bundle over a
component (resp. divisor) YV (resp. YE ) of Yh0 .

We are considering stable log maps to Ph
0 with l � 1 > 0 marked points mapping to the interior of P0;Y .

So irreducible components containing these marked points map to P0;Y , and the corresponding vertices
of � are mapped to vY by h. Hence, we can choose a flow on � such that unbounded edges are incoming,
such that every vertex has at most one outgoing edge, and such that the sink V0 satisfies h.V0/D vY . For
every vertex V ¤V0, we denote by EV the edge outgoing from V. Following the flow, the maps �V define
a cohomology class ˛E 2H�.PE / for every edge E of � . The degeneration formula can be rewritten as

(C-1) N
loc;h
0;d

.Y.D//D �V0

� Y
E2Ein.V0/

˛E

�
:

When used below, “descendant” and “ancestor” always refer to the ordering on the vertices of � induced
by the flow: a vertex V is “older” than a vertex V 0 if the flow goes from V to V 0.

The proof below consists of three steps. First, in Section C.1, we constrain the form of � near the
boundary @� of the tropicalisation. Then we study the local structure of � near the vertex vY in
Section C.2. Finally, in Section C.3, we combine together the local information obtained near the
boundary and near vY to obtain global control on � .

C.1 Study near the boundary @�

Recall from (5-8) that the boundary @� of � is the union of segments .@�/j indexed by 1� j � l .

Most of the analysis below involves the cohomology classes ˛E 2H?.PE / recursively attached by the
flow to the edges E of � . Geometrically, the class ˛E captures the constraints on the position of the node
dual to the edge E imposed by the ability to glue together the curve components corresponding to vertices
coming before E in the flow. For every edge E of � , we denote by Hj;E 2 H2.PE / the first Chern
class of the tautological line bundle OP.OY.�Dj /jYE˚OYE /

.1/. Geometrically, to have ˛E positively
proportional to Hj;E means that the node corresponding to E is constrained to be in the preimage by the
natural projection PE ! P .OY.�Dj /jYE ˚OYE / of a section of P .OY.�Dj /jYE ˚OYE /.

We will use below the following facts on the classes Hj;E . We have H 2
j;E D�c1.OY.�Dj /jYE /Hj;E . If

h.E/ 6� .@�/j , then OY.�Dj /jYEDOYE and soH 2
j;ED0. If h.E/� .@�/j , then OY.�Dj /jYEDO.�1/,

and so H 2
j;E D .�

�
EptE /Hj;E . If V is a vertex of � with h.V / 2 .@�/j and dV �D@j;V > 0 for some

1� j � l , then, as the line bundle OY.�Dj /jYV DOYV .�D@j;V / has negative degree in restriction to the
curve corresponding to V, this curve is constrained to lie in the zero section of P .OY.�Dj /jYV ˚OYV /,
and so ˛EV is a nonzero multiple of Hj;EV .

Lemma C.1 Let V be a vertex of � with h.V /2 .@�/j for some 1� j � l . Then we have dV �D@j;V >0
if and only if there is an edge E of � incident to V such that h.E/ 6� .@�/j .
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Figure 21: Left: toric fan of YV for V 2 .@�/j �fvj g obtained by adding rays in the lower part
of the toric fan of P1 �P1 (in thick). Right: toric fan of YV for V D vj obtained by adding rays
in the lower part of the toric fan of F

D2
j

(in thick).

Proof First assume that h.V /¤ vj . Then YV can be described as a toric blowup of P1 �P1, where all
the added rays are contained in the lower half-plane of the fan, and where the vertical ray corresponds
to D@j;V ; see Figure 21, left. The lower part of the fan gives a local picture of �h near h.V /. By definition
of the �h, every edge E of � incident to V is mapped by h to one of the rays in the lower part of the fan.
We have h.E/ 6� .@�/j if and only if E is contained in one of the rays in the strict lower part of the fan.
The result then follows from toric homological balancing.

If h.V / D vj , the argument is similar. Recall that we have Dj ' P1. The key point is that Dj is
nef and so D2j � 0. Therefore, YV can be described as a toric blowup of the Hirzebruch surface FD2

j
,

where all the added rays are contained in the lower half-part of the fan, and where the vertical ray, with
self-intersection D2j , corresponds to D@j;V ; see Figure 21, right. The lower part of the fan gives a local
picture of �h near h.V /. By definition of the �h, every edge E of � incident to V is mapped by h to
one of the rays in the lower part of the fan. We have h.E/ 6� .@�/j if and only if h.E/ is contained in on
of the rays in the strict lower part of the fan. As D2j � 0, the lower part of the fan is convex and so the
result follows from toric homological balancing.

Lemma C.2 Let V be a vertex of � with h.V / 2 .@�/j . Assume that there exists an incoming edge E
incident to V such that ˛E is a nonzero multiple of Hj;E . Then h.EV /� .@�/j and ˛EV is a nonzero
multiple of Hj;EV .

Proof If h.EV / 6� .@�/j , then, by Lemma C.1, we have dV �D@j;V > 0 and so ˛EV is proportional to
H 2
j;EV

D 0. Therefore, ˛EV D 0, in contradiction with the assumption N loc;h
d

.Y.D//¤ 0, and so this
does not happen. Hence, we can assume that h.EV /� .@�/j . If d �D@j;V > 0, then ˛EV is a multiple of
H 2
j;EV

D .��EV ptEV /Hj;EV . If d �D@j;V D 0, then ˛EV is a multiple of Hj;EV .

Lemma C.3 Let V be a vertex of � with V ¤ V0 and an incident incoming edge E with ˛E a nonzero
multiple of Hj;E . Then ˛EV is a nonzero multiple of Hj;EV .

Proof If h.V / 2 .@�/j , then the result follows from Lemma C.2. If h.V / … .@�/j , then the result is
clear as the line bundle OY.�Dj /jYV is trivial.
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Lemma C.4 Let V be a vertex of � such that V 2 .@�/j and such that there exists an incoming
edge E incident to V with h.E/ 6� .@�/j . Then ˛EV is a nonzero multiple of Hj;EV , and we have
h.EV / 6� .@�/j .

Proof By Lemma C.1, we have dV �D@j;V > 0, and so ˛EV is a nonzero multiple of Hj;EV . If we had
h.EV /� .@�/j , then by iterative application of Lemma C.2, all the descendants of V would be mapped
by h to .@�/j , in contradiction with the fact that the sink V0 of � is mapped by h to vY .

We say that a vertex V of � is a source if every bounded edge incident to V is outgoing. As we are
assuming that every vertex of � has at most one outgoing edge, a source has a unique bounded incident
edge. For a vertex V of � such that h.V / 2�� @��fvY g, the toric balancing condition holds at h.V /.
As the toric balancing condition cannot hold at a vertex with a unique incident bounded edge, we deduce
that if V is a source of � , then either h.V /D vY or h.V / 2 @�.

Lemma C.5 Let V be a vertex of � such that V is a source and h.V / 2 @�. Then there exists 1� j � l
such that ˛EV is a nonzero multiple of Hj;EV .

Proof We know that h.V /2 .@�/j for at least one j . Assume first that h.V /¤vp for every p2Dj\Dj 0 ,
that is, h.V /2 .@�/j for a unique j . As V is a source, there is a single edge incident to V. By homological
toric balancing (see Figure 21, left), this is possible only if h.EV / is contained in the ray opposite to the
ray corresponding to D@j;V , and in particular we then have dV �D@j;V > 0.

It remains to treat the case where h.V /D vp for some p 2Dj \Dj 0 . In this case, we have h.V /D vp 2
.@�/j \.@�/j 0 . By homological toric balancing (see Figure 21, right), we necessarily have dV �D@k;V >0
for some k 2 fj; j 0g.

Lemma C.6 Let V be a vertex of � such that V is a source , h.V / 2 .@�/j for some 1 � j � l ,
and h.V / ¤ vp for every p 2 Dj \Dj 0 . Then dV is a multiple of the class of a P1–fibre of YV and
h.EV / 6� .@�/j .

Proof Similar to the proof of Lemma C.5.

C.2 Study near the centre vY

Lemma C.7 Let E be a bounded edge of � such that ˛E is not a nonzero multiple of any Hj;E . Then
we have E DEV , where V is a source of � with h.V /D vY .

Proof For a source V of � , we have either h.V /D vY or h.V /2 @�. If one of the source ancestors V of
E had h.V / 2 @�, we would have, by combination of Lemma C.5 and Lemma C.3, that ˛E is a nonzero
multiple of Hj;E for some 1� j � l . Therefore, for every source V that is an ancestor of E, we have
h.V /D vY .

Geometry & Topology, Volume 28 (2024)



486 Pierrick Bousseau, Andrea Brini and Michel van Garrel

Assume by contradiction that there are at least two distinct source ancestors of E. Then there exists a
vertex V which is an ancestor of E where at least two distinct source edges meet. As the source edges are
emitted by sources mapped to vY by h, they can only meet if their images by h are contained in a common
half-line in � with origin vY . If h.V / 2 .@�/j for some j , then ˛EV , and so ˛E by Lemma C.3, would
have been a nonzero multiple of Hj;E by Lemma C.3. Therefore, h.V / 2�� @�. On the other hand,
we have h.V /¤ vY . Therefore, the toric balancing condition applies at h.V / and h.EV / is parallel to
the direction of the incoming edges. Moving h.V / along the common direction of all the edges incident
to V produces a contradiction with the assumed rigidity of h.

Therefore, E admits a unique ancestor source V. So any other vertex of � along the flow from V to E
would have to be a 2–valent vertex, in contradiction with the rigidity of h. We conclude that E DEV .

From now on, we assume that l D 2. In this case, � has a unique unbounded edge, and we choose the
flow such that V0 is the vertex V of � incident to this unbounded edge.

Lemma C.8 The set of bounded edges of � incident to V0 consists of two elements E1 and E2 with
˛E1 D �1H1;E1 and ˛E2 D �2H2;E2 , where �1; �2 2Q�f0g.

Proof It follows from Lemma C.7 that, for every bounded edge E incident to V0, there exists a
1� j � 2 such that ˛E is a nonzero multiple of Hj;E . As the moduli space MV0 contains two P1–factors
corresponding to the two extra directions O˚2Y , the condition N loc;h

d
.Y.D//¤ 0 implies that for every

1� j � 2, there exists at least one bounded edge E incident to V0 with ˛E a nonzero multiple of Hj;E .
As H 2

1 DH
2
2 D 0 on PV0 , for every 1 � j � 2 there is at most one bounded edge incident to V0 with

˛E a nonzero multiple of Hj;E .

Therefore, we have two cases. Either the set of bounded edges incident to V0 consists of one edge E with
˛E a nonzero multiple of H1;EH2;E , or the set of bounded edges incident to V0 consists of two edges
E1 and E2 with ˛E1 a nonzero multiple of H1;E but not of H2;E , and ˛E2 a nonzero multiple of H2;E
but not H1;E .

Let us show that the first case does not arise. If the set of bounded edges incident to V0 consists of a
single element, then the moduli space MV0 has virtual dimension 2. Indeed, the virtual dimension of MV0

is 0C 2, where 0 is the virtual dimension for rational curves in the log Calabi–Yau surface Y intersecting
the boundary divisor D in a single point, and 2 comes from the two extra trivial directions O˚2Y . But we
need to integrate over ŒMV0 �

vir the pullbacks of the class H1;EH2;E (coming from the bounded edge E
incident to V0) and the pullback of ��V0ptY (coming from the unbounded edge incident to V0). Therefore,
the integrand is a class of degree at least 3 > 2, and so this case does not arise if N loc;h

d
.Y.D//¤ 0.

Thus, we are in the second case, where the set of bounded edges incident to V0 consists of two edges E1
and E2 with ˛E1 a nonzero multiple of H1;E but not of H2;E , and ˛E2 a nonzero multiple of H2;E but
not H1;E . In particular, the moduli space MV0 has virtual dimension 3. Indeed, the virtual dimension
of MV0 is 1C 2, where 1 is the virtual dimension for rational curves in the log Calabi–Yau surface Y
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intersecting the boundary divisor D in two points, and 2 comes from the two extra trivial directions O˚2Y .
As we need to integrate over ŒMV0 �

vir the pullbacks of the classes ˛E1 , ˛E2 and ��V0ptY , with deg˛E1 � 1

and deg˛E2 � 1, the condition N loc;h
d

.Y.D//¤ 0 implies that deg˛E1 D deg˛E2 D 1 and so the classes
˛E1 and ˛E2 are scalar multiples of H1;E1 and H2;E2 , respectively.

C.3 End of the proof

It follows from Lemma C.8 that there exists a unique decomposition

� D �1[�2;

where �1 and �2 are connected subgraphs of � such that

(i) V0 is a vertex of both �1 and �2,

(ii) if V is a vertex of � distinct from V0, then V is a vertex of �1 (resp. �2) if and only if the flow
starting at V ends at V0 along the edge E1 (resp. E2).

As � is a graph of genus zero, the intersection �1\�2 consists only of the common vertex V0.

Lemma C.9 For every 1� j � 2, there exists a unique vertex Vj of � such that Vj 2 �j and Vj 2 @�.
Moreover , Vj 2 .@�/j and Vj 0 … .@�/j 0 , where fj; j 0g D f1; 2g.

Proof By symmetry, we can assume j D 1 and j 0 D 2. We first remark that if V is a vertex of �1 such
that V 2 @�, then V 2 .@�/1 and V … .@�/2. Otherwise, there would be a descendant V 0 of V1 such
that h.V 0/ … .@�/2 and h.EV 0/ 6� .@�/2, and so by Lemma C.1, ˛EV 0 would be a nonzero multiple of
H2;EV 0 , and so by Lemma C.3, ˛E1 would be a nonzero multiple of H2;E1 , a contradiction.

As ˛E1 D �1H1;E1 with �1 ¤ 0, it follows from Lemma C.1 that there exists a vertex V1 of �1 such that
V1 2 .@�/1 and h.EV1/ 6� .@�/1. Moreover, there exists a unique vertex with these properties: else, by
Lemma C.3, ˛E1 would be proportional to H 2

1;E1
D 0, a contradiction. Our first remark applied to V1

shows that V1 … .@�/2.

It remains to show that if V is a vertex of �1 such that h.V / 2 .@�/1 n .@�/2, then V D V1. Assume
by contradiction that there exists a vertex V of �1 such that h.V / 2 @� and V ¤ V1. Up to replacing
V by one of its ancestors, we can assume that no ancestor of V is contained in @�. There are now two
cases. First, if V is a source, then, by Lemma C.6, h.EV / 6� .@�/1, and so V D V1 by the uniqueness
of V1, a contradiction. Second, if V is not a source, then there exists an edge E incident to V such
that h.E/ 6� .@�/1, and so by Lemma C.4, h.EV / 6� .@�/1, and so V D V1 by the uniqueness of V1, a
contradiction again.

We now explain how to conclude the proof of Theorem 5.4, that is, show that h D xh. We say that an
edge E of � is radial if h.E/ 6� @� and the direction of h.E/ passes through vY . We claim that all edges
of �1 are radial. Indeed, let V be a vertex of �1 such that V ¤ V1 and h.V / ¤ vY . Then h.V / … @�,
so H 2

1;V D 0, and so there exists at most one edge E incident to V such that ˛E is a nonzero multiple
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of H1;E . On the other hand, edges E such that ˛E is not a nonzero multiple of H1;E are radial by
Lemma C.7. As h.V / … @� and h.V / ¤ vY , the toric balancing condition holds for V, and so if all
incident edges to E except possibly one are radial, then they are in fact all radial.

As all edges of �1 are radial, every vertex V of �1 satisfies either V D V1 or h.V /D vY : else, moving V
in the radial direction would contradict the assumed rigidity of h. In other words, the graph �1 has a very
simple form: a vertex V1 connected by some vertices V such as h.V /D vY . On the other hand, as all
the edges through V1 are radial, it follows from toric homological balancing that the curve class dV1 is a
multiple of the class of a P1–fibre of YV1 and that h.V1/D v1. In this context, the dimension argument of
[43, Lemma 5.4] shows that a nonzero Gromov–Witten invariant is only possible if the curve component
corresponding to the vertex V1 has maximal tangency, that is, if there is a single edge incident to V1. It
follows in particular that V0 is the single vertex of �1 whose image by h is vY . Replacing �1 by �2 in the
previous arguments, we finally obtain that hD xh.

Appendix D Symmetric functions

D.0.1 Partitions and representations of Sn A partition � ` d of a nonnegative integer d 2 N is a
monotone nonincreasing sequence � WD f�igriD1, �1 � �2 � � � � � �r � 0 such that

Pr
iD1 �i D d ; when

d D 0 we write �D∅ for the empty partition. We will often use the shorthand notation

(D-1) f�
n1
1 ; : : : ; �

nk
k
g WD f

n1 times‚ …„ ƒ
�1; : : : ; �1; : : : ;

nk times‚ …„ ƒ
�k; : : : ; �kg

for partitions with repeated entries.

With notation as in the beginning of Section 6, a partition � is bijectively associated to:

� A Young diagram Y� with mj .�/ rows of boxes of length j ; there is a natural involution in the
space of partitions, �! �t , given by transposition of the corresponding Young diagram.

� A conjugacy class C� 2 Conj.Sj�j/ of the symmetric group Sj�j with automorphism group of order
jAutC� j D j�jŠz�, with

z� WD
Y
j

mj .�/Šj
mj .�/:

� An irreducible representation �� 2 Rep.Sd /. For � 2 Conj.Sd /, we write ��.�/ for the irreducible
character Tr��.�/.

� By Schur–Weyl duality, an irreducible representation R� 2 Rep.GLn.C// for n� `�.

We will be concerned with two linear bases of the ring of integral symmetric polynomials in n variables,
ƒn WD ZŒx1; : : : ; xn�Sn, labelled by partitions with `.�/ � n. Write x WD .x1; : : : ; xn/Sn 2 Cn=Sn for
an orbit x of the adjoint action of GLn.C/ (equivalently, the Weyl group action on Cn), and gx for any
element of the orbit. We write

(D-2) p�.x/ WD
Y
i

TrCng
mi .�/
x and s�.x/ WD TrR�.gx/
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for, respectively, the symmetric power function and the Schur function determined by �; we have
ƒn D spanZfp�gf�2P;`��ng D spanZfs�gf�2P;`��ng. These two bases are related as

(D-3) s�.x/D
X
j�jDj�j

��.�/

z�
p�.x/ and p�.x/D

X
j�jDj�j

��.�/s�.x/:

For �;� a pair of partitions, the skew Schur polynomials s�=�.x/ are defined by

(D-4) s�=�.x/D
X
�2P

LR���s�.x/;

where LR��� are the Littlewood–Richardson coefficients R�˝R� DW
L
�`.j�jCj�j/ LR

�
��R�.

Let � Wƒn!ƒnC1 be the monomorphism of rings defined by �.p.i/.x1; : : : ; xn//D p.i/.x1; : : : ; xnC1/.
We define the ring of symmetric functions ƒ WD lim

��!
ƒn as the direct limit under these inclusions, and

denote by the same symbols p�, s� and s�=� the symmetric functions obtained as the images of the power
sums, Schur polynomials and skew Schur polynomials under the direct limit. In the next sections it will be
of importance to formally expand the infinite product

Q
i;j .1� xiyj / 2ƒ˝Zƒ around .x; y/D .0; 0/,

and it is a classical result in the theory of symmetric functions out that this expansion can be cast in
multiple ways in terms of an average over partitions of bilinear expressions of linear generators of ƒ. In
particular, we have the Cauchy identities

(D-5)
X
�2P

s�.x/s�.y/D
Y
i;j

.1� xiyj /
�1 and

X
�2P

s�.x/s�t .y/D
Y
i;j

.1C xiyj /:

A skew generalisation of these [80, Section I.5] is

(D-6)

X
�2P

s�=�.x/s�=�.y/D
Y
i;j

.1� xiyj /
�1
X
�2P

s�=�.x/s�=�.y/;X
�2P

s�t=�.x/s�=�.y/D
Y
i;j

.1C xiyj /
X
�2P

s�t=�.x/s�t=�t .y/:

Another noteworthy sum we will need is [80, Section I.5]

(D-7)
X
ı2P

s�=ı.x/sı=�.y/D s�=�.x; y/;

where s�=�.x; y/ denotes the skew Schur function in the variables .x1; x2; : : : ; xi ; : : : ; y1; y2; : : : ; yi ; : : : /.

D.0.2 Shifted symmetric functions and the principal stable specialisation From these ingredients
and � 2 P , we define a class of Laurent series of a single variable q1=2 obtained by the principal stable
specialisation

(D-8) q Wƒ!QŒŒq�1=2��; f .x1; : : : ; xi ; : : : / 7! f .x1 D q
�1C1=2; : : : ; xn D q

�iC1=2; : : : /:

As is customary in the topological vertex literature, and since �i C 1
2

is the component of the Weyl
vector � of An with respect to the fundamental weight !n�i , we use the shorthand notation f .q�/ WD
f .xi D q

�iC1=2/. For f a power sum or Schur function, f .q�/ converges to a rational function of q1=2.
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In particular,

(D-9) p.d1;:::;dn/.q
�/D

nY
iD1

1

Œdi �q
;

and, for Schur functions, Stanley [110; 111] proved the product formula

(D-10) s�.q
�/D

q
1
4
�.�/Q

.i;j /2�Œh.i; j /�
;

where h.i; j / is the number of squares directly below or to the right of a cell .i; j / (counting .i; j / once)
in the Young diagram of �. For example, when �D .i � j; 1j / is a hook Young diagram with i boxes
and j C 1 rows, this gives

(D-11) s.i�j;1j /.q
�/D

q
1
2..

i
2/�ij /

Œi �qŒi � j � 1�qŠŒj �qŠ
:

More generally, for � 2 P we will consider the shifted power, Schur and skew Schur functions,

(D-12)

p�.q
�C�/ WD p�.xi D q

�iC�iC1=2/;

s�.q
�C�/ WD s�.xi D q

�iC�iC1=2/;

s�=ı.q
�C�/ WD

X
�2P

LR�ı�s�.q
�C�/:

The identities

s�.q
�/D q�.�/=2s�t .q

�/;(D-13)

s�=�.q
�C˛/D s�t=�t .�q

���˛t /(D-14)

follow easily from (D-11), (D-12) and the fact that Littlewood–Richardson coefficients are invariant under
simultaneous transposition of their arguments. Following [63], we introduce the following notation for
the Cauchy infinite products (D-5) in the principal stable specialisation:

(D-15) f˛; ˇgQ WD
Y
i;j�1

.1�Qq�i�jC1C˛iCˇi /D
X
�2P

s�.q
�C˛/s�t .�Qq

�Cˇ /

D

�X
�2P

s�.q
�C˛/s�.Qq

�Cˇ /

��1
:

Finally, we will need to specialise expressions involving skew Schur functions and Cauchy products to
the case of hook Young diagrams. These can be given closed-form q–factorial expressions, as follows.

Lemma D.1 We have

(D-16) LR
.i�r;1r /

ˇ;
D

�
ıi;jCk.ır;sCt C ır;sCtC1/ if ˇ D .j � s; 1s/ and  D .k� t; 1t /;
0 else.
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Moreover ,

s.i�j;1j /= .q
�/D

8<:
q
1
4
.i�k�1/.i�2j�kC2l/

Œi � kC l � j �qŠŒj � l �qŠ
if  D .k� l; 1l/;

0 else;
(D-17)

f.i � j; 1j /;∅gQ
f∅;∅gQ

D

i�1Y
kD0

.1� qkQq�j /D .Qq�j I q/i :(D-18)

The content of the lemma follows from a straightforward application of the Littlewood–Richardson rule in
the case of hook partitions .i � r; 1r/. The product formula15 for the hook skew-Schur functions (D-17)
follows then immediately from (D-11). Finally, (D-18) follows from a straightforward calculation from
(D-15); see [63, Section 3.4] for details.
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