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Codimension 2 contact submanifolds are the natural generalization of transverse knots to contact manifolds
of arbitrary dimension. We construct new invariants of codimension 2 contact submanifolds. Our main
invariant can be viewed as a deformation of the contact homology algebra of the ambient manifold. We
describe various applications of these invariants to contact topology. In particular, we exhibit examples
of codimension 2 contact embeddings into overtwisted and tight contact manifolds which are formally
isotopic but fail to be isotopic through contact embeddings. We also give new obstructions to certain
relative symplectic and Lagrangian cobordisms.
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2 Laurent Côté and François-Simon Fauteux-Chapleau

1 Introduction

1.1 Overview

The purpose of this paper is to introduce new invariants of codimension 2 contact submanifolds. Given
a closed, co-oriented contact manifold .Y; �/ and a codimension 2 contact submanifold V with trivial
normal bundle, our main construction produces a unital, Z=2-graded QŒU �-algebra

(1-1) CH�.Y; �; V I r/:

Here rD .˛V ; �; r/ is a triple consisting of

(i) a nondegenerate contact form ˛V on V inducing �V WD �jV \T V ,

(ii) a trivialization � of NY=V , and

(iii) a real number r > 0.

This triple is required to satisfy certain conditions (stated in Definition 3.3), and should be viewed as
encoding a choice of Reeb dynamics in an infinitesimally small neighborhood of V. The (nonempty) set
of all such triples is denoted by R.Y; �; V /.

The invariant (1-1) can be viewed as a deformation of the contact homology algebra CH�.Y; �/, as
explained in Remark 1.1 below. In particular, U is a formal variable and there is a natural map

(1-2) evUD1 W CH�.Y; �; V I r/! CH�.Y; �/

obtained by setting U D 1.

The algebra CH�.Y; �; V I r/ is generated by (good) Reeb orbits for an auxiliary nondegenerate contact
form � on .Y; �/. See Pardon [61, Definition 2.59] for the notion of a good Reeb orbit; all nondegenerate
Reeb orbits are good except for certain even-degree covers of simple Reeb orbits with odd Conley–Zehnder
index. The form � is required to be adapted to r 2 R.Y; �; V /, which means in particular that V is
preserved by the Reeb flow of �; see Definition 3.4.

The differential is defined as in ordinary contact homology by counting pseudoholomorphic curves
in the symplectization yY, where the additional U variable keeps track of the intersection number of
curves with the symplectization yV � yY. More precisely, we fix an almost complex structure J W �! �

which is compatible with the symplectic form d� and preserves �jV \T V � T Y jV . We then consider
yJ –holomorphic curves in yY, where yJ D�@t˝�CR�˝dtCJ. The differential is defined on generators

by (roughly)1 the formula

(1-3) d./D
X

ˇ2�2. yY ;t1t���tl /

#M.ˇ/U
yV �ˇC��.ˇ;V / 1 : : : l ;

1Strictly speaking, (1-3) should be refined as follows: (i) one should indicate that the virtual moduli counts depend on a choice
of “virtual perturbation data”; (ii) one should indicate that the counts depend on the order of a certain group of automorphisms of
the triple .; 1 t � � � t l ; ˇ/ which acts on  by the identity; (iii) one must specify signs (or, more invariantly and following
Pardon [61], orientations lines). See (6-7) for the precise formula.
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Homological invariants of codimension 2 contact submanifolds 3

where  is a positive orbit (ie associated to the convex end of the symplectization) and 1; : : : ; l are
negative orbits (ie associated to the concave end). We define ��.ˇ; V /D #fi � V g to be the number of
negative orbits of ˇ which are contained in V.

We denote by M.ˇ/ the compactification of the moduli space M.ˇ/ of yJ –holomorphic curves in the
class ˇ. Such moduli spaces are in general nontransversally cut out, so the moduli counts #M.ˇ/

appearing in (1-3) are defined as in Pardon’s construction [60; 61] of contact homology, via his theory of
virtual fundamental cycles. In particular, #M.ˇ/ is nonzero only for moduli spaces of virtual dimension
zero. Finally, the pairing .���/ is a count of intersections between yV and ˇ, which was introduced by
Siefring [64; 54].

We also construct a closely related invariant

(1-4) eCH�.Y; �; V I r/;

which we call reduced. This is a unital, Z=2–graded Q–algebra which is generated by Reeb orbits in
the complement of V. The differential counts pseudoholomorphic curves which do not intersect yV. For
appropriately chosen pairs r; r0 2R.Y; �; V /, we have a morphism of Q–algebras

(1-5) CH�.Y; �; V I r
0/! eCH�.Y; �; V I r/:

The invariant eCH�.�I�/ is called reduced because it carries less information (in particular, it does not
involve taking the kernel of an augmentation as in, for instance, reduced singular homology). However, it
is easier to compute.

Remark 1.1 The QŒU �–algebra CH�.Y; �; V I r/ can be viewed as a deformation of the contact homology
Q–algebra CH�.Y; �/ in the following way. First, recall that for a ring R and a differential graded R–
algebra .A; d/, a (formal) deformation of .A; d/ is the data of a differential dt WD d C td1C t2d2C � � �
on the RŒŒt ��–algebra AŒŒt �� satisfying the graded Leibnitz rule, where each di is an endomorphism of A;
see Gerstenhaber and Wilkerson [30]. Now, let us set U D et in (1-3) and expand in t . We then get

(1-6) d./D
X
ˇ

1X
kD0

tk � .#M.ˇ// �
. yV �ˇC��.ˇ; V //k

kŠ
1 � � � l :

Thus CH�.Y; �; V I r/ is indeed a deformation of ordinary contact homology, which can be recovered by
sending t ! 0. In the case where ��.ˇ; V /D 0, the coefficient

#M.ˇ/ �
. yV �ˇC��.ˇ; V //k

kŠ
D #M.ˇ/ �

. yV �ˇ/k

kŠ

could be interpreted as a count of rigid pseudoholomorphic curves which send k marked points in the
source to the pseudoholomorphic divisor yV.
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4 Laurent Côté and François-Simon Fauteux-Chapleau

1.2 Energy and positivity of intersection

In order to ensure that (1-3) defines a differential over QŒU �, we need to ensure that yV �ˇC��.ˇ; V /� 0
whenever #M.ˇ/¤ 0. If M.ˇ/ is nonempty2 and at least one of the asymptotic orbits of ˇ is disjoint
from V, then this is a consequence of the familiar phenomenon of positivity of intersection. Indeed, in this
case, ˇ admits a yJ –holomorphic representative u which is not contained in yV. Positivity of intersection
then implies that yV �ˇ D yV �u� 0.

The situation is more complicated when all of the asymptotic orbits of ˇ are contained in V. Indeed, in
this case, the yJ –holomorphic representatives of ˇ may be contained in yV and positivity of intersection
fails in general. However, one can show that there is a universal lower bound on the intersection number,

(1-7) yV �ˇ � ���.ˇ; V /:

This explains the appearance of the correction term ��.ˇ; V / in (1-3).

In order to construct CH�.Y; �; V I r/, it is not enough to define a differential: one also needs to define
continuation maps, composition homotopies, etc. These maps are defined by counting curves in more
complicated setups. For example, the continuation map is obtained by counting curves in a suitably
marked exact relative symplectic cobordism . yX; y�;H/.3 More precisely, one obtains an algebra map
similar to (1-3) by counting yJ –holomorphic curves in . yX; y�/ weighted by their intersection number
with H , for a compatible almost complex structure yJ which agrees with yJ˙ near the ends.

Unfortunately, for an arbitrary relative symplectic cobordism, a lower bound of the type (1-7) fails to hold.
A key step in constructing the invariants (1-1) is to identify a sufficiently large class of relative symplectic
cobordisms for which such a lower bound does hold. This leads us to introduce notions of energy for
exact symplectic cobordisms and almost complex structures on exact relative symplectic cobordisms.
These energy notions are developed in Section 6 and are of central importance in this paper.

We prove that a lower bound as in (1-7) holds under a certain condition which relates the behavior of �˙

near V ˙ to the energy of yJ. We also prove analogous statements for other related setups. This allows
us to prove that CH�.Y; �; V I r/ is well-defined, ie it does not depend on the auxiliary contact form and
almost complex structure. We also prove that an exact relative symplectic cobordism . yX; y�;H/ induces a
map

(1-8) CH�.Y
C; �C; V CI rC/! CH�.Y

�; ��; V �I r�/

provided that a certain inequality is satisfied, where the inequality involves r˙ and the energy of the
(sub)cobordism H � . yX; y�/.

2Since [61] uses virtual techniques to define contact homology without making any transversality assumptions, it is possible for
the compactification M.ˇ/ to be nonempty even if M.ˇ/ is empty. Positivity of intersection still holds when this happens, but
the proof requires a bit more work. Details can be found in Sections 5.3 and 7.2.
3An exact relative symplectic cobordism is the data of an exact symplectic cobordism . yX; y�/ which looks like . yY˙; y�˙/ near
the ends, together with a codimension 2 symplectic submanifold H � yX which looks like yV ˙ near the ends; see Definition 2.17
for the details.
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Homological invariants of codimension 2 contact submanifolds 5

Energy considerations play a similarly central role in our construction of the reduced invariant eCH�.�I�/.
Although the continuation map for the reduced invariant does not count curves contained in H , one needs
to ensure that sequences of curves disjoint from H does not degenerate into H . This requires hypotheses
on the energy of the relevant cobordism. In general, the arguments involved in constructing CH�.�I�/
and eCH�.�I�/ turn out to be very similar.

Energy is not in general well-behaved under gluing symplectic cobordisms, unless one of them happens
to be a symplectization. As a result, cobordism maps cannot be composed arbitrarily. This lack of
functoriality of the invariants (1-1) and (1-4) can be remedied by considering variants of these invariants
which are obtained by taking certain (co)limits over r 2R.Y; �; V /; see Section 8.3. These variants are
fully functorial but also seem harder to compute.

Remark 1.2 The apparent failure of positivity of intersection in the absence of energy bounds is not a
deficiency of our method: if one could define maps (1-8) without additional hypotheses involving energy
and the r˙, then this would imply that (1-1) and (1-4) are independent of r. To see that this cannot hold in
general, consider an “irrational ellipsoid” E.r1; r2/Dfz 2C2 j�jz1j

2=r1C�jz2j
2=r2� 1g�R4, where

r1=r2 is irrational. Following Hutchings [41, Section 4.2], there are exactly two families of Reeb orbits
fk1 gk2NC and fk2 gk2NC , where 1i � fzi D 0g \ @E.r1; r2/ and ki denotes the k–fold cover of 1i .
These orbits generate the (ordinary) contact homology of the 3–sphere, but the Conley–Zehnder indices
of the ki are highly sensitive to r1 and r2. If we could define the contact homology of the complement of
(say) 11 , then it would be generated by the k2 . One can verify that this is not an invariant, since changing
the ri does not change the contactomorphism type of S3�11 , but drastically changes the indices of the k2 .

1.3 Legendrian invariants and the surgery formula

Contact homology is one of many invariants which can be constructed using the framework of Symplectic
Field Theory (SFT). SFT was first introduced by Eliashberg, Givental and Hofer [24] and provides (among
other things) a conjectural mechanism for constructing invariants in symplectic and contact topology by
counting punctured pseudoholomorphic curves in symplectic manifolds with cylindrical ends.

In some of the later sections of this paper, we discuss how the invariants (1-1) and (1-4) are related to
other SFT-type invariants. For computational purposes, it is particularly useful to explore the behavior
of the invariants (1-1) and (1-4) under Weinstein handle attachment, following the work of Bourgeois,
Ekholm and Eliashberg [7].

To this end, we introduce analogs of (1-1) and (1-4) for Legendrian submanifolds. With .Y; �; V / as
above, suppose that ƒ� .Y �V; �/ is a Legendrian submanifold. We then define (under mild topological
assumptions) invariants

(1-9) L.Y; �; V;ƒI r/ and zL.Y; �; V;ƒI r/:

The first invariant can be thought of as a deformation of the Chekanov–Eliashberg dg algebra ofƒ� .Y; �/,
while the second invariant is a reduced version.
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6 Laurent Côté and François-Simon Fauteux-Chapleau

We describe a conjectural surgery exact sequence which relates (linearized versions of) the invariants
(1-1), (1-4) and (1-9) under Weinstein handle attachments. This surgery exact sequence is an analog
of the conjectural surgery exact sequence for linearized contact homology of Bourgeois, Ekholm and
Eliashberg [7, Theorem 5.2].

Remark 1.3 The main invariants of this paper, (1-1) and (1-4), are constructed fully rigorously using
Pardon’s virtual perturbation framework [61]. However, our discussion of the surgery formula (and of the
Legendrian invariants therein) requires certain transversality assumptions which are essentially the same
as in [7]. We fully expect that if [7] can be made rigorous using Pardon’s techniques [61], then extending
this to our context should pose no substantial additional difficulties.

For the reader’s convenience, all statements in this paper which depend on unproved assumptions are
labeled by a star. The proofs of starred statements depend only on a limited set of assumptions, which are
clearly identified in the text.

One could also attempt to define the invariants in this paper using other perturbation frameworks such as
the polyfolds of Hofer, Wysocki and Zehnder [36; 37; 38] or the techniques of Ekholm [20], but we do
not pursue this here.

1.4 Applications to contact and Legendrian embeddings

Transverse knots are important objects of study in three-dimensional contact topology. The notion of a
codimension 2 contact embedding generalizes transverse knots to contact manifolds of arbitrary dimension.
However, until recently, it was not understood whether the high-dimensional theory of codimension 2
contact embeddings is interesting from the perspective of contact topology, or whether it reduces entirely
to differential topology.

Definition 1.4 Given a pair of contact manifolds .V 2m�1; �/ and .Y 2n�1; �/, a contact embedding is a
smooth embedding

(1-10) i W .V; �/! .Y; �/

such that i�.�i.V / \ di.T V // D �. Such a map is also referred to as an isocontact embedding in the
literature (see eg Casals and Etnyre [10], Eliashberg and Mishachev [25] and Pancholi and Pandit [59]),
but we will not use this terminology. A contact submanifold V � .Y; �/ is a submanifold with the property
that �jV \T V is a contact structure.

Observe that if 2n� 1D 3 and 2m� 1D 1 in the above definition, then we recover the familiar notion of
a (parametrized) transverse knot. The following basic examples of codimension 2 contact embeddings
will play an important role in this paper.

Example 1.5 (cf Definition 3.11 and [31]) Let � W Y �B! S1 be an open book decomposition which
supports the contact structure � on Y. Then the binding B � .Y; �/ is a codimension 2 contact submanifold.

Geometry & Topology, Volume 28 (2024)



Homological invariants of codimension 2 contact submanifolds 7

Example 1.6 (see Definition 10.1 and Definition 3.1 in [10]) Let .Y; �/ be a contact manifold and let
ƒ ,! Y be a Legendrian embedding. Then the Weinstein neighborhood theorem furnishes an embedding

(1-11) �.ƒ/ W .@.D�ƒ/; �std/ ,! .Y; �/;

which is canonical up to isotopy through codimension 2 contact embeddings. We refer to �.ƒ/ as the
contact pushoff of ƒ ,! Y. By abuse of notation, we will routinely identify �.ƒ/ with its image.

As is customary in contact and symplectic topology, there is a notion of a formal contact embedding. This
notion encodes certain necessary bundle-theoretic conditions which must be satisfied by any (genuine)
contact embedding. It is then natural to seek to understand to what extent the space of genuine contact
embeddings of .V; �/ into .Y; �/ differs from the space of formal contact embeddings.

In the case that V is a closed manifold of codimension at least 4 with respect to Y, or open and of
codimension at least 2, then an h-principle due to Gromov (see Theorem 12.3.1 and Remark 12.3 of
Eliashberg and Mishachev [25]) implies that the space of contact embeddings is essentially equivalent
to the space of formal contact embeddings. Thus, in these settings, the theory of contact embeddings
reduces to differential topology.

In contrast, a breakthrough result due to Casals and Etnyre [10] shows that this h-principle fails in general
for codimension 2 contact embeddings of closed manifolds. More precisely, for n� 3, Casals and Etnyre
[10, Theorem 1] exhibited a pair of contact embeddings of .D�Sn�1; �/D @1.T �Sn�1; �can/ into the
standard contact sphere .S2n�1; �std/ which are formally isotopic but are not isotopic through contact
embeddings (here and throughout the paper, @1.�/ denotes the ideal contact boundary). Building on
these methods, Zhou [70] recently proved that there are in fact infinitely many formally isotopic contact
embeddings of @1.T �Sn�1; �can/ into the standard contact sphere which are not isotopic through contact
embeddings, provided n� 4.

There has also been recent work to establish existence results for codimension 2 contact embeddings under
certain conditions; see Lazarev [48] and Pancholi and Pandit [59]. This culminates in a full existence
h-principle for codimension 2 contact embeddings due to Casals, Pancholi and Presas [13], which states
that any formal codimension 2 contact embedding is formally isotopic to a genuine contact embedding.

The invariants constructed in this paper can be used to distinguish pairs of formally isotopic contact
embeddings which are not isotopic through contact embeddings. We illustrate two types of applications,
applying, respectively, to contact embeddings into overtwisted contact manifolds, and into the standard
contact sphere.

Let us begin with the overtwisted case. In Construction 12.6, we describe a procedure for constructing pairs
of formally isotopic contact embeddings into certain overtwisted contact manifolds which are not isotopic
through contact embeddings. Here is a special case of this construction: let .Y; �/ be an overtwisted
contact manifold and fix an open book decomposition for .Y; B; �/ which supports �; see Section 3.3.

Geometry & Topology, Volume 28 (2024)



8 Laurent Côté and François-Simon Fauteux-Chapleau

Let i W B ! Y be the tautological inclusion of the binding. Using the relative h–principle for contact
structures of Borman, Eliashberg and Murphy [5, Theorem 1.2], it can be shown that there exists a
codimension 2 contact embedding j WB! Y which is formally isotopic to i , and such that .Y �j.B/; �/
is overtwisted. (Construction 12.6 is more general, but this is the most important example.)

Theorem 1.7 (see Theorem 12.7) Let i , j and .Y; �/ be constructed according to Construction 12.6,
where .Y; �/ is an overtwisted contact manifold and i and j are (formally isotopic) contact embeddings.
Then i and j are not isotopic through contact embeddings. In fact , i is not isotopic to any reparametrization
of j in the source , meaning that i.V / and j.V / are not isotopic as codimension 2 contact submanifolds
of .Y; �/.

Theorem 1.7 can be proved using either of the invariants (1-1) or (1-4). To the best of our knowledge,
it cannot be proved in general using invariants already in the literature. However, in the special case
where i.B/ is the binding of an open book decomposition (ie the example sketched above), then the
conclusion of Theorem 1.7 follows from the fact that the complement of the binding of an open book
decomposition is tight. This later fact is due to Etnyre and Vela-Vick [28, Theorem 1.2] in dimension 3; in
higher dimensions, it follows from work of Klukas [45, Corollary 3], who proved (following an outline of
Wendl [67, Remark 4.1]) the stronger statement that any local filling obstruction (such as an overtwisted
disk) in a closed contact manifold must intersect the binding of any supporting open book.

In some cases (see Corollary 12.10), the embeddings i and j in fact coincide with the contact pushoffs of
Legendrian embeddings. It is not hard to show that an isotopy of Legendrian embeddings induces an
isotopy of their contact pushoffs. Thus the invariants (1-1) and (1-4) also distinguish certain Legendrian
embeddings in overtwisted contact manifolds. To our knowledge, these embeddings cannot in general be
distinguished using invariants already in the literature; see Remark 1.11.

Our second application concerns codimension 2 contact embeddings into the standard contact spheres
.S4n�1; �std/. More precisely, we use the reduced invariant (1-4) to distinguish formally isotopic contact
embeddings of .S�S2n�1; �/D @1.T �S2n�1; �can/ into .S4n�1; �std/, thus reproving the main result
of Casals and Etnyre [10, Theorem 1] in dimensions 4n� 1 for n > 1.

Theorem* 1.8 (see Theorem* 12.18) Let .V; �/ be the ideal boundary of .T �S2n�1; �can/. Then for
n > 1, there exists a pair of formally isotopic contact embeddings

(1-12) i0; i1 W .V; �/! .S4n�1; �std/

which are not isotopic through contact embeddings.

The embeddings we exhibit turn out to coincide with those exhibited by Casals and Etnyre in their proof
of [10, Theorem 1.1], although this fact is not entirely obvious; see Remark 12.21. However, the methods
for distinguishing them are completely different. Casals and Etnyre consider double branched covers
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Homological invariants of codimension 2 contact submanifolds 9

along the contact submanifolds i0.V / and i1.V /. Using symplectic homology, they prove that these
branched covers do not admit the same fillings. This implies that i0.V / and i1.V / cannot be isotopic,
since otherwise they would have contactomorphic branched covers.

In contrast, our proof of Theorem* 1.8 uses the invariant eCH�.�I�/ introduced in this paper. Roughly
speaking, we prove Theorem* 1.8 by partially computing (linearizations of) eCH�.�I�/ associated to
the two embeddings under consideration, and observing that they do not match. Our computations rely
crucially on our version of the surgery formula discussed in Section 1.3 as well as the well-definedness
of the invariants therein. This explains why this theorem statement is starred, following the convention
stated in Remark 1.3. We also remark that although Theorem* 1.8 only applies to spheres of dimension
4n�1, we expect that the same invariant also distinguishes embeddings into spheres of dimension 4n�3.
However, proving this would likely require more involved computations than those carried out in this paper.

1.5 Applications to symplectic and Lagrangian cobordisms

Consider a pair of contact manifolds .Y ˙; �˙/ and codimension 2 contact submanifolds .V ˙; �˙jV˙/�
.Y ˙; �˙/. An exact relative symplectic cobordism from .Y C; �C; V C/ to .Y �; ��; V �/ is a triple
. yX; y�;H/, where . yX; y�/ is an exact symplectic cobordism from .Y C; �C/ to .Y �; ��/ and H � yX is a
codimension 2 symplectic submanifold which coincides near the ends with the symplectization of V ˙;
see Definition 2.17.4 In the special case where yX is the symplectization of Y ˙ and H is diffeomorphic
to R�V ˙, we speak of a symplectic concordance from V C to V �. These notions were first considered
by Bowden in his PhD thesis [9]. Using gauge theory, he exhibited certain restrictions on symplectic
cobordisms between transverse links in contact 3–manifolds [9, Section 7].

The following theorem gives a constraint on exact symplectic cobordisms between certain pairs of
codimension 2 contact submanifolds of an ambient overtwisted manifold. To the best of our knowledge,
this is the first negative result in the literature on relative symplectic cobordisms in dimensions greater
than three.

Theorem 1.9 Let V D i.B/ and V 0 D j.B/ be the codimension 2 contact submanifolds of the over-
twisted contact manifold .Y; �/ as described in Construction 12.6. Then there does not exist an exact
relative symplectic cobordism . yX; y�;H/ from .Y; �; V 0/ to .Y; �; V / with H 1.H; .�1; 0� � V IZ/ D

H 2.H; .�1; 0��V IZ/D 0. In particular , there is no symplectic concordance from V 0 to V.

One can similarly consider Lagrangian cobordisms and concordances between Legendrian submanifolds.
An exact Lagrangian cobordism from .Y C; �C; ƒC/ to .Y �; ��; V �/ is a triple . yX; y�;L/, where . yX; y�/ is
an exact symplectic cobordism from .Y C; �C/ to .Y �; ��/ and L� yX is a Lagrangian submanifold which

4Note that our convention of regarding a cobordism as going from the convex end to the concave end is consistent with [61], but
differs from most of the contact topology literature.
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10 Laurent Côté and François-Simon Fauteux-Chapleau

coincides near the ends with the Lagrangian cone of ƒ˙; see Definition 2.20. If yX is the symplectization
of Y � and LDR�ƒ�, one speaks of a Lagrangian concordance from ƒC to ƒ�.

The theory of Lagrangian cobordisms has been extensively developed in the literature from various
perspectives; see eg Chantraine, Dimitroglou Rizell, Ghiggini and Golovko [15], Ekholm [19], Ekholm,
Honda and Kálmán [23] and Sabloff and Traynor [63]. While much is known in .R2nC1; �std/ and certain
other tight contact manifolds, we are not aware of any results constraining cobordisms and concordances in
overtwisted contact manifolds; see Remark 1.11. The next theorem provides a first result in this direction.

Theorem 1.10 Let ƒ and ƒ0 be the Legendrian submanifolds of the overtwisted contact manifold .Y; �/
as constructed in Construction 12.9. Then ƒ0 is not concordant to ƒ.

In contrast, a result of Eliashberg and Murphy [26, Theorem 2.2] implies that ƒ is concordant to ƒ0.

Remark 1.11 It is a basic fact that exact Lagrangian cobordisms induce morphisms on Legendrian contact
homology which behave well under composition of cobordisms; see Etnyre and Ng [27, Section 5.1]. This
leads to a myriad of interesting obstructions to the existence of Lagrangian cobordisms and concordances.
One can also obtain many interesting obstructions using finite-dimensional invariants (which are closely
related to Legendrian contact homology) coming from generating functions or sheaf theory; see eg Li [49]
and Sabloff and Traynor [63].

One drawback of these approaches is that they are necessarily blind on overtwisted contact manifolds.
Indeed, even if Legendrian contact homology could be rigorously defined in full generality following
the framework of Eliashberg, Givental and Hofer [24, Section 2.8], it would provide no information for
Legendrians in overtwisted contact manifolds: being a module over the contact homology algebra, it
would vanish. In contrast, the invariants developed in this paper do give information about Legendrians
even in the overtwisted case.

Our final application states that certain Lagrangian concordances cannot be displaced from a codimension 2
symplectic submanifold. More precisely, let .Y; �/D obd.T �Sn�1; id/ and let V � Y be the binding of
the open book. Let ƒ� Y be the zero section of a page and let ƒ0 be obtained by stabilizing ƒ in the
complement of V. It can be shown (see Casals and Murphy [11, Proposition 2.9]) that ƒ� .Y; �/ is a
loose Legendrian; hence ƒ and ƒ0 are Legendrian isotopic in .Y; �/ and, in particular, concordant.

Theorem* 1.12 Any Lagrangian concordance from ƒ0 to ƒ must intersect the symplectization of V.

In contrast, work of Eliashberg and Murphy [26, Theorem 2.2] implies that there exists a Lagrangian
concordance from ƒ to ƒ0 which is disjoint from the symplectization of V. Our proof of Theorem* 1.12
uses the deformed versions of the Chekanov–Eliashberg dg algebra in (1-9). Hence the statement is
starred according to the convention stated in Section 1.3.
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Homological invariants of codimension 2 contact submanifolds 11

1.6 Context and related invariants

The invariants constructed in this paper, when specialized to contact 3–manifolds, are related to other
invariants in the literature. The most closely related invariant is due to Momin [53]. Given a contact
3–manifold .Y 3; �/, Momin considers the set of pairs .�; L/ where � is a contact form and L � Y is
a link of Reeb orbits of �. Two such pairs .�; L/ and .�0; L0/ are said to be equivalent if LD L0 and
each component orbit (and all its multiple covers) has the same Conley–Zehnder index. Under certain
assumptions on .Y; �;L/, Momin defines an invariant which we denote by CHmo

�
.Y; Œ.�; L/�/. This is a

Z–graded Q–vector space which depends only on Y and the equivalence class of .�; L/.

The invariant constructed by Momin is in general distinct from the invariants described in this paper. In
particular, he considers cylindrical contact homology, whereas we work with ordinary contact homology.
However, in the special case where .Y 3; �/ is the standard contact sphere — or more generally a subcritical
Stein manifold with c1.�/D 0— and L� .Y; �/ is a collection of Reeb orbits which bound a symplectic
submanifold H � B4, then we expect that

(1-13) CHmo
�
.Y; Œ�; L�/D eCH z�

�
.Y; �; LI r/

for suitable r which depends on the equivalence class of .�; L/. Here the right-hand side of (1-13) denotes
the linearization of eCH�.Y; �; LI r/ with respect to an augmentation z� induced by the relative filling
.B4; �std;H/; recall that an augmentation of a dg algebra is a morphism to the ground ring, viewed as a
dg algebra concentrated in degree zero. See Section 9.3 for details.

Momin’s work has led to beautiful applications to Reeb dynamics on contact 3–manifolds; see eg Alves
and Pirnapasov [3] and Hryniewicz, Momin and Salomão [40]. It would be interesting to explore whether
the invariants developed in this paper can be used in studying Reeb dynamics in higher dimensions.

Another related invariant is Hutchings’ “knot-filtered” embedded contact homology [41]. The setting for
this invariant is a contact 3–manifold .Y; �/ with H1.Y IZ/D 0. Given a transverse knot L� .Y; �/ and
an irrational parameter � 2R�Q, Hutchings defines a filtration on embedded contact homology with
values in ZCZ� which is an invariant of .L; �/. The basic idea is to choose a contact form � D ker�
so that L is a Reeb orbit, and to filter the generators of embedded contact homology by their linking
number with L. Positivity of intersection considerations imply that the differential decreases the linking
number for orbits which are disjoint from L. However, the situation is more complex when the differential
involves L, which explains why the filtration is only valued in ZCZ� .

One could presumably carry over Hutchings’ construction to the context of (cylindrical) contact homology
in dimension 3. We expect that the resulting invariant would carry related information to the one defined
by Momin or to the invariants constructed in this paper. However, we do not have a precise formulation
of what this relationship should be.

We remark that the invariants introduced by Momin and Hutchings are built using techniques from
4–dimensional symplectic topology which cannot be generalized to higher dimensions. In contrast, the
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12 Laurent Côté and François-Simon Fauteux-Chapleau

invariants introduced in this paper are constructed by a different approach, which ultimately relies on
Pardon’s robust virtual fundamental cycles package [60].

In a slightly different direction, we also wish to highlight work of Ekholm, Etnyre, Ng and Sullivan [21],
which is similar in spirit to the present work. Recall that the knot contact homology of a framed link
K �R3 is an invariant which can be defined as the Legendrian dg algebra of the conormal lift of K; see
Ekholm, Etnyre, Ng and Sullivan [22] and Ng [56]. If K is a transverse knot with respect to the standard
contact structure, the authors define in [21] a two-parameter deformation of knot contact homology by
weighting holomorphic curve counts by their intersection number with a pair of canonically defined
complex submanifolds in the symplectization. The resulting deformed dg algebra is an invariant of the
transverse knot type of K. Unfortunately, we do not know a precise relationship between this invariant
and the ones introduced in this paper.

Notation and conventions All manifolds in this paper are assumed to be smooth. If M is a manifold, a
ball B �M is an open subset diffeomorphic to the open unit disk and whose closure is embedded and
diffeomorphic to the closed unit disk. If .M;!/ is symplectic, a Darboux ball B �M is a ball which is
symplectomorphic to the open unit disk equipped with (some rescaling of) the standard symplectic form.

Unless otherwise specified, all contact manifolds considered in this paper are compact without boundary
and co-oriented. Given such a contact manifold .Y; � D ker�/, the Reeb vector field associated to the
contact form � will be denoted by R�. We will let �V WD �jV \T V denote the contact structure induced
by � on a contact submanifold V � .Y; �/.

Acknowledgements We thank Yasha Eliashberg for suggesting this project, and for many helpful
discussions. We also benefited from discussions and correspondence with Cédric De Groote, Georgios
Dimitroglou Rizell, Sheel Ganatra, Oleg Lazarev, Josh Sabloff and Kyler Siegel. We are grateful to John
Etnyre for pointing us to multiple useful references. Finally, we wish to thank the referee for many helpful
comments and suggestions.

Côté was partially supported by a Stanford University Benchmark Graduate Fellowship and by the
National Science Foundation under grant DMS-1926686.

2 Geometric preliminaries

2.1 Symplectic cobordisms

Let .Y; �/ be a closed co-oriented contact manifold. The symplectization of .Y; �/ is the exact symplectic
manifold .SY; �Y / where SY � T �Y is the total space of the bundle of positive contact forms on Y (ie a
point .p; ˛/2T �Y is in SY if and only if ˛ WTpY !R vanishes on �p and the induced map TpY=�p!R
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is an orientation-preserving isomorphism) and �Y is the restriction of the tautological Liouville form on
T �Y. Given a choice of positive contact form ˛ for .Y; �/, there is a canonical identification

(2-1) �˛ W .R�Y; e
s˛/! .SY; �Y /

given by �˛.s; p/D .p; es p̨/. We will refer to . yY ; y̨/ WD .R�Y; es˛/ as the symplectization of .Y; ˛/.

A subset U � SY will be called a neighborhood of C1 (resp. of �1) if it contains �˛.ŒN;1/� Y /
(resp. �˛..�1;�N��R) for N > 0 sufficiently large — note that this notion doesn’t depend on the
choice of ˛.

Definition 2.1 Given a contactomorphism f W .Y; �/! .Y; �/, we define its symplectic lift

(2-2) zf W .SY; �Y /! .SY; �Y /; .p; ˛/ 7! .f .p/; ˛ ı .dfp/
�1/:

One can verify that zf ��Y D�Y, so zf is in particular a symplectomorphism. There is a canonical bijection
between

(i) contact vector fields on .Y; �/,

(ii) sections of T Y=�,

(iii) linear Hamiltonians on the symplectization (recall that H is linear if ZH DH , where Z denotes
the Liouville vector field).

The correspondence between (i) and (ii) is clear; the correspondence between (ii) and (iii) takes
a section � to the Hamiltonian H.p; ˛/ D ˛.�.p//. In particular, the symplectic lift of a (time-
dependent) family of contactomorphisms is induced by a (time-dependent) family of linear Hamiltonians;
cf [14, Proposition 2.2].

Definition 2.2 Let .Y C; �C/ and .Y �; ��/ be closed co-oriented contact manifolds. An exact symplectic
cobordism from .Y C; �C/ to .Y �; ��/ is an exact symplectic manifold . yX; y�/ equipped with embeddings

eC W SY C! yX;(2-3)

e� W SY �! yX;(2-4)

satisfying the properties

� .e˙/�y�D �Y˙ , and

� there exists a neighborhood UC � SY C of C1 and a neighborhood U� � SY � of �1 such
that the restriction of e˙ to U˙ is proper, the images eC.UC/ and e�.U�/ are disjoint and the
complement yX n .eC.UC/[ e�.U�// is compact.

Geometry & Topology, Volume 28 (2024)



14 Laurent Côté and François-Simon Fauteux-Chapleau

Definition 2.3 (cf [61, Section 1.3]) Let .Y C; �C/ and .Y �; ��/ be closed manifolds equipped with
contact forms. A (strict) exact symplectic cobordism from .Y C; �C/ to .Y �; ��/ is an exact symplectic
manifold . yX; y�/ equipped with embeddings

eC WR�Y C! yX;(2-5)

e� WR�Y �! yX;(2-6)

satisfying the properties

� .e˙/�y�D y�˙, and

� there exists anN 2R such that the restrictions of eC to ŒN;1/�Y C and of e� to .�1;�N��Y �

are proper and that the images eC.ŒN;1/�Y C/ and e�..�1;�N��Y �/ are disjoint and together
cover a neighborhood of infinity (ie the complement of their union is compact).

Notation 2.4 Let . yX; y�/ be an exact symplectic cobordism from .Y C; �C/ to .Y �; ��/ in the sense of
Definition 2.2. Given any choice of contact forms �˙ on .Y ˙; �˙/, one can obtain from yX a cobordism
from .Y C; �C/ to .Y �; ��/ in the sense of Definition 2.3 by precomposing the embeddings (2-3)–(2-4)
with the canonical identifications R� Y ˙! SY ˙ induced by �˙. We will denote this cobordism by
. yX; y�/�

C

��
, or simply by yX�

C

��
when this creates no ambiguity.

Similarly, any cobordism . yX; y�/ in the sense of Definition 2.3 can be viewed as a cobordism in the sense
of Definition 2.2 as well.

Remark 2.5 In light of the above discussion, Definitions 2.2 and 2.3 are essentially equivalent. However,
it will be convenient for us to be able to discuss symplectic cobordisms without fixing a particular choice
of contact forms on the ends, so we adopt Definition 2.2 as our main definition moving forward.

Example 2.6 (symplectizations) The symplectization .SY; �Y / of a contact manifold .Y; �/ is canoni-
cally endowed with the structure of an exact symplectic cobordism in the sense of Definition 2.2 by letting
eC D e� D id. The additional data of a pair of contact forms �C and �� for .Y; �/ endows .SY; �Y /
with the structure of a strict exact symplectic cobordism in the sense of Definition 2.3, and we write
.SY; �Y /

�C

��
.

Definition 2.7 Let . yX01; y�01/ and . yX12; y�12/ be exact symplectic cobordisms from .Y 0; �0/ to .Y 1; �1/
and from .Y 1; �1/ to .Y 2; �2/, respectively. Fix a real number t � 0 and let �t W SY 1! SY 1 denote
multiplication by et . The t–gluing of yX01 and yX12, denoted by yX01#t yX12, is the smooth manifold
obtained by gluing yX01 and yX12 along the maps

SY 1 yX01

SY 1 yX12

(2-4)

�t

(2-3)
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Since ��t �Y 1 D e
t�Y 1 , there is, for any s 2R, a Liouville form on yX01#t yX12 which agrees with etCsy�01

on yX01 and with esy�12 on yX12. We will denote it by y�01 #t;s y�12. Note that . yX01 #t yX12; y�01 #t;s y�12/
is canonically equipped with the structure of an exact symplectic cobordism from .Y 0; �0/ to .Y 2; �2/
via the embeddings

SY 0
��t�s
����! SY 0

(2-3)
��! yX01! yX01 #t yX12;

SY 2
��s
����! SY 2

(2-4)
��! yX02! yX01 #t yX12:

The precise choice of s doesn’t really matter since the forms y�01 #t;s y�12 for s 2 R are all constant
multiples of each other. When t D 0, it is natural to choose s D 0, and we will denote the resulting
cobordism simply by . yX01 # yX12; y�01 # y�12/. There is no obvious choice for t > 0, but for the sake
of definiteness we set y�01 #t y�12 WD y�01 #t;�t=2 y�12 and will refer to . yX01 #t yX12; y�01 #t y�12/ as “the”
t–gluing of . yX01; y�01/ and . yX12; y�12/.

Remark 2.8 When t D s D 0, it follows directly from the definition that the gluing operation is
associative:

�
. yX01 # yX12/ # yX23; .y�01 # y�12/ # y�23

�
and

�
yX01 # . yX12 # yX23/; y�01 # .y�12 # y�23/

�
are

canonically isomorphic.

Remark 2.9 Multiplication by et on SY corresponds to translation by t in the R coordinate under the
identification SY ŠR�Y induced by a choice of contact form on Y. Definition 2.7 is therefore consistent
with the notion of “t–gluing” in [61, Section 1.5].

Definition 2.10 Let . yX1; y�1/ and . yX2; y�2/ be cobordisms from .Y C; �C/ to .Y �; ��/. An isomorphism
of exact symplectic cobordisms � W . yX1; y�1/! . yX2; y�2/ consists of a diffeomorphism � W yX1! yX2 such
that ��y�2 D y�1 and which is compatible with the ends in the sense that the diagram

yX1

SY C SY �

yX2

�

(2-3)

(2-3)

(2-4)

(2-4)

commutes.

Example 2.11 Let . yX; y�/ be an exact symplectic cobordism from .Y C; �C/ to .Y �; ��/. Then for
any t � 0 and s 2 R, the glued cobordisms .SY C #t yX; �YC #t;s y�/ and . yX #t SY �; y� #t;s �Y�/ are
canonically isomorphic to . yX; y�/.

Definition 2.12 A one-parameter family of exact symplectic cobordisms from .Y C; �C/ to .Y �; ��/ is a
manifold yX equipped with a family of Liouville forms fy�tgt2I (where I � R is an interval), together
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16 Laurent Côté and François-Simon Fauteux-Chapleau

with embeddings

eCt W SY
C
! yX;(2-7)

e�t W SY
�
! yX;(2-8)

as in Definition 2.2. We will always assume that the family is fixed at infinity, meaning that for every
compact subinterval Œa; b�� I ,

� fy�tgt2Œa;b� is constant outside of a compact subset of yX , and

� feCt gt2Œa;b� (resp. fe�t gt2Œa;b�) is independent of t on some neighborhood ofC1 in SY C (resp. of
�1 in SY �).

Two cobordisms . yX0; y�0/ and . yX1; y�1/ are said to be deformation equivalent if there exists a one-
parameter family . yW ; y�t /t2Œ0;1� such that . yX0; y�0/ is isomorphic to . yW ; y�0/ and . yX1; y�1/ is isomorphic
to . yW ; y�1/. The deformation class of a cobordism . yX; y�/ will be denoted by Œ yX; y��.

Lemma 2.13 Given a pair of cobordisms . yX01; y�01/ and . yX12; y�12/ as in Definition 2.7, the glued
cobordisms . yX01 #t yX12; y�01 #t y�12/t2Œ0;1/ form a one-parameter family.5 Similarly, there is a one-
parameter family . yX01 #t yX12; y�01 #t;s y�12/s2R for any fixed t � 0. In particular , we have that the
deformation class Œ yX01 #t yX12; y�01 #t;s y�12� is independent of both t and s.

Proof We will construct a two-parameter family �t;s W yX01# yX12! yX01#t yX12 of diffeomorphisms, with
�0;0D id, such that the forms ��t;s.y�

01 #t;s y�12/ agree with y�01#y�12 outside of a compact set (depending
on t; s) and form a smooth family.

In order to simplify the notation, we fix contact forms �i on .Y i ; � i / for i D 0; 1; 2, so that we can view
the symplectization of Y i as a product R� Y i . For C > 0 sufficiently large, we can decompose the
cobordisms yX01 and yX12 as

yX01 D .�1; 1��Y 1[ xX01[ ŒC;1/�Y 0;(2-9)

yX12 D .�1;�C ��Y 2[ xX12[ Œ�1;1/�Y 1;(2-10)

where xX01 � yX01 is a compact submanifold with boundary f1g�Y 1 tfC g�Y 0, and similarly for xX12.
This induces a decomposition of yX01 #t yX12 of the form

(2-11) yX01 #t yX12 D .�1;�C ��Y 2[ xX12[ Œ�1; t C 1��Y 1[ xX01[ ŒC;1/�Y 0

for any t � 0. Hence, in order to define �t;s , it suffices to make a choice of

� a smooth family of diffeomorphisms ft W Œ�1; 1�! Œ�1; t C 1� which coincide with the identity
near �1 and with translation by t near 1,

5Strictly speaking, the underlying manifold of yX01 #t yX12 depends on t , so in order to obtain a family in the sense of
Definition 2.12 one needs to choose suitable diffeomorphisms yX01 #t yX12 Š yX01 # yX12.
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� a smooth family of diffeomorphisms gt;s W ŒC;1/! ŒC;1/ which coincide with the identity near
C and with translation by �t � s at infinity, and

� a smooth family of diffeomorphisms ht;s W .�1;�C � ! .�1;�C � which coincide with the
identity near �C and with translation by �s at infinity.

We of course also require that f0, g0;0 and h0;0 be the identity on their respective domains.

Proposition 2.14 The deformation class of . yX01 # yX12; y�01 # y�12/ only depends on the deformation
classes of . yX01; y�01/ and . yX12; y�12/.

Proof Let . yW 01; y�01;s/s2Œ0;1� and . yW 12; y�12;s/s2Œ0;1� be one-parameter families of exact symplectic
cobordisms from .Y 0; �0/ to .Y 1; �1/ and from .Y 1; �1/ to .Y 2; �2/, respectively. The negative end (2-8)
of . yW 01; y�01;s/ will be denoted by e�s W SY

1! yW 01 and the positive end (2-7) of . yW 12; y�12;s/ will
be denoted by eCs W SY

1! yW 12. By definition, we can find a neighborhood UC � SY 1 of C1 and
a neighborhood U� � SY 1 such that the restriction of e˙s to U˙ is independent of s. This common
restriction will be denoted by e˙.

Fix a large t > 0 so that the intersection V WD ��1t .U
C/\U� is nonempty. Let yW 01 #V yW 12 be the

space obtained by gluing yW 01 n e�.U� nV / and yW 12 n eC.UC n�t .V // along the maps

V yW 01 n e�.U� nV /

UC yW 12 n eC.UC n�t .V //

e�

�t

eC

As a smooth manifold, yW 01 #V yW 12 is canonically identified with yW 01 #t yW 12. Thus we can view
y�01;s#t y�12;s as a Liouville form on yW 01#V yW 12 for each s, making . yW 01#V yW 12; y�01;s#t y�12;s/s2Œ0;1�
into a one-parameter family of cobordisms. In particular, it follows that . yW 01 #t yW 12; y�01;0 #t y�12;0/
and . yW 01 #t yW 12; y�01;1 #t y�12;1/ are deformation equivalent.

Corollary 2.15 There is a well-defined gluing operation on deformation classes of exact symplectic
cobordisms given by

(2-12) Œ yX01; y�01� # Œ yX12; y�12�D Œ yX01 #t yX12; y�01 #t;s y�12�

for any t � 0 and s 2R.

Proposition 2.16 The gluing operation (2-12) is associative.

Proof This follows from Remark 2.8.
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We now discuss submanifolds in exact symplectic cobordisms. Let V � .Y; �/ be a contact submanifold.
There is a canonical embedding

(2-13) .SV; �V /! .SY; �Y /

which takes a pair .p; p̨/ 2 SV to the unique pair .p; z̨p/ 2 SY such that z̨p.w/ D p̨.w/ for some
(and hence any) w 2 TpV n .�p \TpV /.

Definition 2.17 Let V C � .Y C; �C/ and V � � .Y �; ��/ be contact submanifolds of the same co-
dimension, and let . yX; y�/ be an exact symplectic cobordism from .Y C; �C/ to .Y �; ��/. We say that
a smooth submanifold H � yX is cylindrical with ends V ˙ if it is closed (as a subset) and there exist
neighborhoods U˙ � SY ˙ of ˙1 such that

(2-14) .e˙/�1.H/\U˙ D SV ˙\U˙;

where e˙ W SY ˙! yX are the ends (2-3)–(2-4) of . yX; y�/.

If H is a symplectic cylindrical submanifold of . yX; y�/, then we say that . yX; y�;H/ is an exact relative
symplectic cobordism from .Y C; �C; V C/ to .Y �; ��; V �/. Note that in this case, the restrictions of e˙

to SV ˙\U˙ endow .H; y�jH / with the structure of an exact symplectic cobordism from .V C; �C
VC
/ to

.V �; ��V �/.

Example 2.18 If V is a contact submanifold of .Y; �/, then, as noted above, SV can be viewed as a
symplectic submanifold of .SY; �Y /, and .SY; �Y ; SV / is canonically endowed with the structure of an
exact relative symplectic cobordism in the sense of Definition 2.17 by letting eC D e� D id.

Notation 2.19 Let yX , y� and H be as in Definition 2.17. As explained in Notation 2.4, a choice of
contact forms ker�˙ D �˙ endows . yX; y�/ with the structure of a strict relative symplectic cobordism.
We analogously speak of a strict relative exact symplectic cobordism and write . yX; y�;H/�

C

��
when we

wish to emphasize that we are fixing contact forms �˙ on the ends.

Let ƒ� .Y; �/ be a Legendrian submanifold. The Lagrangian cone of ƒ is the Lagrangian submanifold

(2-15) LD f.p; ˛/ 2 SY � T �Y j p 2ƒg � .SY; �Y /:

Definition 2.20 Let ƒC � .Y C; �C/ and ƒ� � .Y �; ��/ be Legendrian submanifolds and let . yX; y�/
be an exact symplectic cobordism from .Y C; �C/ to .Y �; ��/. We say that a Lagrangian submanifold
L � . yX; y�/ is cylindrical with ends ƒ˙ if it is closed (as a subset) and there exist neighborhoods
U˙ � SY ˙ of ˙1 such that

(2-16) .e˙/�1.L/\U˙ D L˙\U˙;

where e˙ W SY ˙! yX are the ends (2-3)–(2-4) of . yX; y�/ and L˙ are the Lagrangian cones of ƒ˙.

A triple . yX; y�;L/ is called an (exact) Lagrangian cobordism from .Y C; �C; ƒC/ to .Y �; ��; ƒ�/.
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Definition 2.21 The set of equivalence classes of cylindrical codimension 2 submanifolds of yX with
ends V ˙, where two submanifolds are equivalent if they are isotopic via a compactly supported (smooth)
isotopy, will be denoted by �2n�2. yX; V C tV �/.

Definition 2.22 A contact submanifold V � .Y; �/ is said to be a strong contact submanifold if it is
(setwise) invariant under the Reeb flow of � on Y. We will also say that . yX; y�;H/�

C

��
is a strong relative

exact symplectic cobordism if both V C� .Y C; �C/ and V �� .Y �; ��/ are strong contact submanifolds.

Definition 2.23 Let . yX01; y�01;H 01/ and . yX12; y�12;H 12/ be exact relative symplectic cobordisms from
.Y 0; �0; V 0/ to .Y 1; �1; V 1/ and from .Y 1; �1; V 1/ to .Y 2; �2; V 2/, respectively. For any sufficiently
large real number t � 0, H 01 #t H 12 sits naturally inside . yX01 #t yX12; y�01 #t y�12/ as a symplectic
submanifold, and . yX01 #t yX12; y�01 #t y�12;H 01 #t H 12/ is a relative cobordism from .Y 0; �0; V 0/ to
.Y 2; �2; V 2/. We will refer to it as the t–gluing of . yX01; y�01;H 01/ and . yX12; y�12;H 12/.

Definition 2.24 Let . yX1; y�1;H 1/ and . yX2; y�2;H 2/ be relative cobordisms from .Y C; �C; V C/ to
.Y �; ��; V �/. An isomorphism of exact relative symplectic cobordisms � W . yX1; y�1;H 1/! . yX2; y�2;H 2/

is an isomorphism � W . yX1; y�1/! . yX2; y�2/ in the sense of Definition 2.10 which maps H 1 diffeomor-
phically onto H 2.

Example 2.25 Suppose that . yX; y�;H/ is an exact relative symplectic cobordism from .Y C; �C; V C/

to .Y �; ��; V �/. Then for any t � 0, the glued cobordisms .SY C; �YC ; SV
C/ #t . yX; y�;H/ and

. yX; y�;H/ #t .SY �; �Y� ; SV �/ are defined and canonically isomorphic to . yX; y�;H/.

Definition 2.26 A one-parameter family of exact relative symplectic cobordisms from .Y C; �C; V C/ to
.Y �; ��; V �/ is a manifold yX equipped with a family of Liouville forms fy�tgt2I , a family of symplectic
submanifolds H t � . yX; y�t /, and embeddings

eCt W SY
C
! yX;(2-17)

e�t W SY
�
! yX;(2-18)

as in Definition 2.17. We will always assume that the family is fixed at infinity, meaning that for every
compact subinterval Œa; b�� I ,

� fy�tgt2Œa;b� and fH tgt2Œa;b� are constant outside of a compact subset of yX , and

� feCt gt2Œa;b� (resp. fe�t gt2Œa;b�) is independent of t on some neighborhood ofC1 in SY C (resp. of
�1 in SY �).

Two relative cobordisms . yX0; y�0;H 0/ and . yX1; y�1;H 1/ are said to be deformation equivalent if there
exists a one-parameter family . yW ; y�t ; Kt /t2Œ0;1� such that . yX0; y�0;H 0/ is isomorphic to . yW ; y�0; K0/
and . yX1; y�1;H 1/ is isomorphic to . yW ; y�1; K1/. The deformation class of a cobordism . yX; y�;H/ will
be denoted by Œ yX; y�;H�.
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Example 2.27 Given . yX01; y�01;H 01/ and . yX12; y�12;H 12/ as in Definition 2.23, the glued cobordisms
. yX01 #t yX12; y�01 #t y�12;H 01 #t H 12/t2ŒN;1/ form a one-parameter family for N > 0 sufficiently large.
Similarly, for any fixed t� 0, . yX01 #t yX12; y�01 #t;s y�12;H 01 #t H 12/s2R is a one-parameter family. As
in Lemma 2.13, it follows that the deformation class

(2-19) Œ yX01 #t yX12; y�01 #t;s y�12;H 01 #t H 12�

is independent of t � 0 and s 2R.

Proposition 2.28 The deformation class of . yX01 #t yX12; y�01 #t y�12;H 01 #t H 12/ only depends on the
deformation classes of . yX01; y�01;H 01/ and . yX12; y�12;H 12/.

Proof The proof of Proposition 2.14 also works in the relative case as long as t > 0 is chosen large
enough.

Corollary 2.29 There is a well-defined gluing operation on deformation classes of exact relative sym-
plectic cobordisms given by

(2-20) Œ yX01; y�01;H 01� # Œ yX12; y�12;H 12�D Œ yX01 #t yX12; y�01 #t;s y�12;H 01 #t H 12�

for any t � 0 and s 2R.

Proposition 2.30 The gluing operation (2-20) is associative.

Proof Let . yX i;iC1; y�i;iC1;H i;iC1/ be a relative cobordism from .Y i ; � i ; V i / to .Y iC1; � iC1; V iC1/
for i 2 f0; 1; 2g, and fix t1; t2 � 0. Note that

�
. yX01 #t1 yX

12/ #t2 yX
23; .H 01 #t1 H

12/ #t2 H
23
�

and�
yX01 #t1 . yX

12 #t2 yX
23/;H 01 #t1 .H

12 #t2 H
23/
�

can be canonically identified as pairs of smooth
manifolds. Hence, it suffices to show that there exist s1; s2 2R such that

(2-21) .y�01 #t1;s1 y�
12/ #t2;s2 y�

23
D y�01 #t1;s1 .y�

12 #t2;s2 y�
23/:

One can easily see from Definition 2.7 that taking s1 D 0 and s2 D�t2 works.

2.2 Homotopy classes of asymptotically cylindrical maps

Definition 2.31 [68, Section 6.1] Suppose that . yX; y�/ is an exact symplectic cobordism from .Y C; �C/

to .Y �; ��/. Given a closed surface † and finite subsets pC;p��† (corresponding respectively to posi-
tive and negative punctures), a smooth map u W†�.pCtp�/! yX is said to be asymptotically cylindrical
if it converges exponentially near each puncture z 2 pC tp� to a trivial cylinder over a Reeb orbit.

More precisely, given any choice of translation invariant metric on R�Y ˙, we require that there exist
a choice of holomorphic cylindrical coordinates near each z 2 p˙ such that u takes the form

(2-22) u.s; t/D exp.P s;z.t// h.s; t/

for jsj large, where z is a Reeb orbit of period P and h.s; t/ is a vector field which decays to zero with
all its derivatives as jsj !1 (ie these properties hold for s� 0 if z 2 pC and for s� 0 if z 2 p�).
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Remark 2.32 There is also a notion of an asymptotically cylindrical submanifold which will not be
needed in this paper.

Definition 2.33 (cf [61, Section 1.2(I)]) Let . yX; y�/ be an exact symplectic cobordism from .Y C; �C/

to .Y �; ��/ and let �˙ be a finite set of Reeb orbits in .Y ˙; �˙/.

By truncating the ends of yX , we obtain a compact submanifold X0 � yX with boundary @X0 D Y CtY �.
We define the set of homotopy classes �2. yX;�C t��/ by

(2-23) �2. yX;�
C
t��/ WD Œ.S; @S/; .X0; �

C
t��/�=Diff.S; @S/;

where S is a compact connected oriented surface of genus 0 equipped with a homeomorphism @S !

�C t��, and Diff.S; @S/ is the group of diffeomorphisms of S which fix @S pointwise. (The notation
Œ�;�� here stands for homotopy classes of maps of pairs.)

Remark 2.34 The right-hand side of (2-23) is independent of the choice of truncation X0 up to canonical
bijection. In the case where . yX; y�/D .R�Y; es�/ is the symplectization of a contact manifold .Y; �/,
we can take X0 D f0g �Y and (2-23) becomes identical to [61, equation (1.2)].

For any choice of truncation X0 � yX , there is a canonical retraction � W yX !X0 induced by quotienting
by the Liouville flow (more precisely, one should quotient by the backwards Liouville flow at the positive
end and by the forwards Liouville flow at the negative end). If u W†�.pCtp�/! yX is an asymptotically
cylindrical map, then the composition � ıu can be extended to a map

(2-24) xu W .†; @†/! .X0; �
C
t��/;

where† is a compactification of†�.pCtp�/ obtained by adding one boundary circle for each puncture.
The homotopy class Œu� 2 �2. yX;�C t��/ of u is defined to be the equivalence class of (2-24).

Definition 2.35 Let . yX; y�;L/ be an exact Lagrangian cobordism from .Y C; �C; ƒC/ to .Y �; ��; ƒ�/;
see Definition 2.20.

Given a surface with boundary † and finite subsets pC;p� � int.†/ and cC; c� 2 @†, a smooth map
u W†� .p˙[ c˙/ is said to be cylindrical if it converges asymptotically near each interior puncture to a
trivial cylinder over a Reeb orbit, and it converges exponentially near each boundary puncture to a trivial
strip over a Reeb chord.

Let �˙ be a finite set of Reeb orbits in .Y ˙; �˙/ and let �ƒ˙ be a finite ordered set of Reeb chords
of ƒ˙ � .Y ˙; �˙/. We let p˙ be a finite set equipped with bijections ˙ W p˙ ! �˙ and we let
c D cC t c� be a finite ordered set equipped with order-preserving bijections a˙ W c˙! �ƒ˙ . We let

(2-25) �2. yX I�ƒC ; �ƒ� ; �
C; ��/

be the set of equivalence classes of maps from†�.p˙[c˙/ to yX which are asymptotic to ˙p at p 2p˙

(resp. a˙c at c 2 c˙), where two such maps u; v are equivalent if there exists a compactly supported
diffeomorphism � of †� .p˙[ c˙/ such that u and v ı� are homotopic (through cylindrical maps).
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3 Reeb dynamics near a codimension 2 contact submanifold

3.1 The Conley–Zehnder index

A hermitian vector bundle .E; J; !/ is a vector bundle E together with an almost complex structure J
and a symplectic structure ! such that J is compatible with !. An asymptotic operator on a hermitian
vector bundle .E; J; !/ over S1 is a real-linear differential operator A W �.E/! �.E/ which, in some
(and hence any) unitary trivialization, takes the form

(3-1) A W C1.S1;R2n/! C1.S1;R2n/; � 7! �J@t��S.t/�;

where t 2 S1 and S W S1! End.R2n/ is a loop of symmetric matrices. The asymptotic operator A is
said to be nondegenerate if 0 is not an eigenvalue.

Fix a hermitian vector bundle .E; J; !/ over S1 and a unitary trivialization � . Given a nondegenerate
asymptotic operator A, we can obtain a nondegenerate path of symplectic matrices by solving the ordinary
differential equation

(3-2) .�J@t �S.t//‰.t/D 0; ‰.0/D id:

Conversely, given a nondegenerate path of symplectic matrices, we can recover a nondegenerate asymptotic
operator by solving (3-2) for S.t/.

The Conley–Zehnder index CZ.A/D CZ.‰/ 2 Z is an integer-valued invariant which can be associated
equivalently to a nondegenerate asymptotic operator equipped with a unitary trivialization � or to a
nondegenerate path of symplectic matrices. It only depends on � up to homotopy through unitary
trivializations. We refer the reader to [68, Section 3.4] or [33] for a detailed overview of the Conley–
Zehnder index.

Definition 3.1 Let .Y; � D ker�/ be a contact manifold and let  be a Reeb orbit of period P > 0,
parametrized so that �. 0/D P . Given a choice of d�–compatible almost complex structure J on � , we
can define the asymptotic operator A W �.

��/! �.��/ by A D�J.rt �PrR�/, where r is some
symmetric connection on Y.

The Conley–Zehnder index of a Reeb orbit  relative to a trivialization � of �� will be denoted by
CZ� ./ WD CZ� .A /.

Let us now consider a contact manifold .Y 2n�1; �Dker�/ and a strong contact submanifold .V 2n�3; �jV /.
Observe that the contact distribution splits naturally along V as

(3-3) �jV D �j
>
V ˚ �j

?
V ;

where �j>V D �jV \T V and �j?V is the symplectic orthogonal complement of �j>V � �jV with respect to d�.
Suppose that J is a d�–compatible almost complex structure on � which respects the splitting (3-3).
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Let  WS1!V be a Reeb orbit. Since J respects the above splitting, then so does the associated asymptotic
operator, which we can therefore write as A DA> ˚A? . If we choose a unitary trivialization � of �j
which is also compatible with the splitting, we can define CZ�T ./ WDCZ� .A> / and CZ�N ./ WDCZ� .A? /.
We call these respectively the tangential and normal Conley–Zehnder indices of  with respect to � .

We define the integers

˛
� I�
N ./ WD bCZ�N ./=2c;(3-4)

˛
� IC
N ./ WD dCZ�N ./=2e:(3-5)

Let pN ./D ˛
� IC
N ./�˛

� I�
N ./ 2 f0; 1g be the (normal) parity of  , and observe that it is independent

of the choice of trivialization. We have

(3-6) CZ�N ./D 2˛
� I�
N ./CpN ./D 2˛

� IC
N ./�pN ./;

from which it also follows that pN ./� CZ�N ./ mod 2.

There is a canonical isomorphism

(3-7) �j?V
��!NY=V ;

where NY=V denotes the normal bundle of V � Y. If .V; �V /� .Y; �/ are co-oriented and hence oriented,
then NY=V is also oriented and (3-7) is orientation-preserving. If we assume that NY=V is trivial, then it
follows that (3-7) induces a bijection between homotopy classes of trivializations of NY=V compatible
with the orientation and homotopy classes of unitary trivializations on �j?V . Since the Conley–Zehnder
index only depends on the homotopy class of unitary trivializations, we may define CZ�N ./ with respect
to any homotopy class of trivializations � of NY=V compatible with the orientation.

3.2 Normal dynamics and adapted contact forms

We now state some important definitions, which will be used throughout this paper.

Definition 3.2 A trivial-normal contact pair (or just TN contact pair) is a datum .Y; �; V / consisting
of a closed co-oriented contact manifold .Y; �/ and a co-oriented codimension 2 contact submanifold
V � .Y; �/ with trivial normal bundle NY=V .

An important example of a TN contact pair is the binding of a contact open book decomposition; see
Definition 3.10. A choice of (homotopy class of) trivialization � on NY=V is called a framing and we say
that .V; �/� Y is a framed codimension 2 submanifold. Note that we do not assume in Definition 3.2
that V and Y are nonempty. For future reference, we let �∅ denote the unique contact structure on the
empty set.

Definition 3.3 Given a TN contact pair .Y; �; V / with V nonempty, let R.Y; �; V / be the set of triples
rD .˛V ; �; r/ where

� ˛V 2�
1.V / is a nondegenerate contact form for .V; �V /,
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� � is a homotopy class of trivializations of NY=V (ie a framing) which is compatible with the
orientation, and

� r > 0 is a strictly positive real number, and we have .1=r/Z\ S.˛V /D ∅, where S.˛V / is the
action spectrum of ˛V .

If V D ∅ (with Y possibly also empty), we define R.Y; �;∅/ D f.˛∅; �∅; 0/g, where ˛∅ and �∅ are
understood as a contact form and normal trivialization on the empty set.

Definition 3.4 Given a TN contact pair .Y; �; V / and rD .˛V ; �; r/ 2R.Y; �; V /, we say that a contact
form ker�D � is adapted to r if

� � is nondegenerate,

� �jV D ˛V ,

� V is a strong contact submanifold of .Y; �/ (see Definition 2.22), and

� we have CZ�N ./D 1C 2brPc for all Reeb orbits  � V , where P is the period of  .

In the case that V D∅, any contact form � is considered to be adapted to the unique element .˛∅; �∅; 0/2
R.Y; �;∅/. Given a contactomorphism f W .Y; �; V /! .Y 0; � 0; V 0/, we write f�r D .f�˛V ; f��; r/ 2
R.Y 0; � 0; V 0/. If �t W V ! Y is an isotopy of contact embeddings where �0 is the tautological embedding
V

id
�! V � Y and �1.V / D V 0, then �t extends to a family of contactomorphisms ft . We then write

.�1/�r WD .f1/�r; this is independent of the choice of extension.

We say that � is positive elliptic near V ¤∅ if it is adapted to some rD .˛V ; �; r/ 2R.Y; �; V /; we refer
to r > 0 as the rotation parameter.

Remark 3.5 Our insistence on allowing the case where Y D ∅ in the above definitions is explained
by the need to treat Liouville manifolds as special cases of Liouville cobordisms in the arguments of
Section 7.

We will prove in Proposition 3.9 that adapted contact forms always exist, ie for any TN contact pair
.Y; �; V / and r D .˛V ; �; r/ 2 R.Y; �; V / there exists a contact form adapted to r. The first step is to
construct a suitable local model.

Construction 3.6 For 0 < � � 1, let D2 �R2 be the standard disk of radius � (in the sequel, we will
often denote this disk by D2� ). Let .V; ˛V / be a contact manifold and let � W D2! R>0 be a smooth
positive function which has a nondegenerate critical point at 0 and satisfies �.0/D 1. We define

(3-8) ˛
�
V D

1

�
.˛V C�D2/;

where �D2 D
1
2
.x dy�y dx/ is the usual Liouville form on D2. This is a contact form on V �D2 whose

restriction to V D V � f0g coincides with ˛V . Its Reeb vector field is given by

(3-9) R� D .� �ZD2�/RV CX� ;
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where ZD2 D
1
2
.x@xCy@y/ is the Liouville vector field of �D2 and X� D�.@y�/@xC .@x�/@y is the

Hamiltonian vector field of � with respect to the symplectic form !D2 D d�D2 . Our assumptions on �
imply that R� DRV on V � f0g, so that .V; ˛V / is a strong contact submanifold of .V �D2; ˛�V /. We
will let

(3-10) S� D

�
@xx�.0/ @yx�.0/

@xy�.0/ @yy�.0/

�
2R2�2

denote the Hessian of � at the origin. Since S� is symmetric and nondegenerate, its eigenvalues are real
and nonzero, so its signature Sign.S�/ is one of 0;˙2. We will say that � is hyperbolic if Sign.S�/D 0,
positive elliptic if Sign.S�/D 2 and negative elliptic if Sign.S�/D�2. In the elliptic case, we define
c� D

p
det.S�/=.2�/; this is a positive real number since det.S�/ > 0. Finally, we note that the splitting

.��/jV D .��/j
>
V ˚ .��/j

?
V — see equation (3-3) — is given by .��/j>V D �V and .��/j?V D T0D

2. We will
let �� denote the trivialization of .��/j?V by f@x; @yg.

We say that ˛�V is nondegenerate on V if every Reeb orbit of ˛V is nondegenerate when viewed as a
Reeb orbit of ˛�V .

Proposition 3.7 Carrying over the notation of Construction 3.6, suppose that ˛V is nondegenerate. If �
is elliptic , then ˛�V is nondegenerate on V if and only if .1=c�/Z\ S.˛V /D∅, where S.˛V / denotes
the action spectrum of ˛V .

Proof Let  be a Reeb orbit of period P contained in V. Recall that  is nondegenerate if and only if its
asymptotic operator is nondegenerate. Choose a trivialization � and an almost complex structure J on
.��/j which preserve the splitting .��/j D .�V /j ˚T0D2 and coincide with �� and J0 respectively
on T0D2, where J0 denotes the standard almost complex structure on R2 D T0D2. The asymptotic
operator A is compatible with this splitting and can therefore be written as A D A> ˚ A

?
 . The

tangential part A> is nondegenerate since it coincides with the asymptotic operator of  as a Reeb orbit
in V. The normal part A? is given explicitly by

(3-11) A? D�J0@t �P �S�

(this follows from a short computation using the formula for the Reeb vector field R� in Construction 3.6).
Define a path‰ of symplectic matrices by‰.t/D exp.tP �J0S�/. ThenA? is nondegenerate if and only if
‰.1/ doesn’t have 1 as an eigenvalue. If � is elliptic, then the eigenvalues of‰.1/ are exp.˙iP

p
det.S�//.

Hence,  is nondegenerate if and only if P
p

det.S�/ is not an integer multiple of 2� , ie P … .1=c�/Z. It
follows that �� is nondegenerate if and only if .1=c�/Z\S.˛V /D∅, as claimed.

The important feature of Construction 3.6 is that the normal Conley–Zehnder indices of the Reeb orbits
in V can be computed explicitly.
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Proposition 3.8 Assume ˛�V is nondegenerate on V. If � is elliptic , then

(3-12) CZ��N ./D˙.1C 2bc�Pc/

for every Reeb orbit  contained in V, where P > 0 denotes the period of  and the sign is C or �
depending on whether � is positive elliptic or negative elliptic.

Proof We have CZ��N ./ D CZ.‰/, where ‰.t/ D exp.tP � J0S�/ is the path of symplectic matrices
defined in the proof of Proposition 3.7; see [68, Section 3.4]. Proposition 41 of [33] implies that

(3-13) CZ.‰/D˙.1C 2bc�P c/

if Sign.S�/D˙2.

Proposition 3.9 Fix a TN contact pair .Y; �; V / and an element rD .˛V ; �; r/ 2R.Y; �; V /. Then there
exists a contact form � on .Y; �/ which is adapted to r.

Proof Let � be as in Construction 3.6. The standard neighborhood theorem for contact submanifolds
(see [29, Theorem 2.5.15]) implies that the inclusion map V ! Y extends to a contact embedding
� W .V �D2� ; ker.˛�V //! .Y; �/ such that ��� is homotopic to �� , for some � > 0 sufficiently small. Hence
there exists a contact form � for � such that ��� D ˛

�
V near V. In addition to choosing � so that �

is adapted to r, we also need to make sure that � can be modified away from V so that it becomes
nondegenerate. By [2, Theorem 13], this can be achieved by choosing a � such that the following two
conditions are satisfied:

� ˛
�
V is nondegenerate on V .

� All the Reeb orbits of ˛�V in V �D2� are contained in V.

Let us set � D 1C�r.x2Cy2/. Proposition 3.7 implies that ˛�V is nondegenerate on V since

c� D

p
.2�r/2

2�
D r:

Since R� DRV CX� , every Reeb orbit  of ˛�V is of the form  D .V ; �/, where V is an orbit of RV
and � is an orbit of X� with the same period P > 0. From the formula X� D�2�ry@xC 2�rx@y , we
see that if � were not constant, we would have P 2 .1=r/Z, contradicting our assumption on r ; see
Definition 3.3. Thus  is contained in V.

3.3 Open book decompositions

In this section, we consider normal Reeb dynamics for bindings of open book decompositions. We begin
by recalling the definition of an open book decomposition; we refer to [62, Section A.1; 29, Section 4.4.2]
for a historically informed survey of this theory.
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Definition 3.10 An open book decomposition .Y; B; �/ of a closed, oriented n–manifold Y consists of
the following data:

(i) An oriented, closed, codimension 2 submanifold B � Y with trivial normal bundle.

(ii) A fibration � W Y �B! S1 which coincides with the angular coordinate in some neighborhood
B � f0g � B �D2 D B � f.x; y/ j x2Cy2 < 1g.

The submanifold B � Y is called the binding and the fibers of � are called pages.

Observe that the data of an open book decomposition induces a natural trivialization of the normal bundle
to the binding. We also recall what it means for an open book decomposition to support a contact structure.

Definition 3.11 [31] Given an odd-dimensional manifold Y 2n�1, an open book decomposition .Y; B; �/
is said to support a contact structure � if there exists a contact form � D ker˛ such that the following
properties hold:

(i) The restriction of ˛ to B is a contact form.

(ii) The restriction of d˛ to any page ��1.�/ is a symplectic form.

(iii) The orientation of B induced by ˛ coincides with the orientation of B as the boundary of the
symplectic manifold .P� ; d˛/, where P� D ��1.�/ is any page.

Such a contact form is called a Giroux form (and is also said in the literature to be adapted to the open
book decomposition).

Remark 3.12 Condition (ii) in the above definition is equivalent to the Reeb vector field of ˛ being
transverse to the pages.

For future convenience, we state the following definition.

Definition 3.13 Let G be the set of TN contact pairs .Y; �; V / having the property that � is supported by
an open book decomposition � W Y �V ! S1 with binding V.

Lemma 3.14 Let .Y; B; �/ be an open book decomposition supporting the contact structure �. Let ˛B
be a contact form for .B; �B/ and let f W Œ0; 1/!R be a positive smooth function such that f .0/D 1 and
f 0.r/ < 0 for r > 0. Then there exists a Giroux form ˛ and an embedding � W B �D2� ! Y (for some
small � > 0) with the following properties:

(1) ˛jB D ˛B .

(2) The projection � ı� is given by .r; �/ 7! � on B �D2� �B � f0g.

(3) ��˛ D f .r/.˛jB C�D2/.
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Proof The proof is in two steps. First, we will show that there exists a Giroux form z̨ such that z̨jB D˛B .
Second, we will construct ˛ by modifying z̨ so that (1)–(3) are satisfied.

Step 1 Let ˛0 be an arbitrary Giroux form for .Y; B; �/. Since ˛0jB and ˛B define the same contact
structure, we can write ˛B D .1Ch/.˛0jB/ for some smooth function h WB!R. We may assume without
loss of generality that h� 0 everywhere, since any positive constant multiple of ˛0 is also a Giroux form.

It is shown in the proof of [18, Proposition 2] that there exists a tubular neighborhood B �D2� of the
binding on which � D � and ˛0 D g.˛0jB C�D2/, where g W B �D2� !R is a positive smooth function
satisfying g � 1 on B � f0g, �D2 D

1
2
.x dy � y dx/ and � > 0 is a suitably small constant. Note that

g.˛0jB C�D2/ is a Giroux form on .B �D2� ; B � f0g; � D �/ if and only if @g=@r < 0 for r > 0.

Let � W Œ0; ��!R be a nonincreasing smooth function such that �.r/D 1 for r near 0 and �.r/D 0 for r
near �. Set zg WD .1C�.r/h/g. Then @r zgD @r� �hgC .1C�h/ �@rg < 0. Now we define z̨ by replacing
g with zg.

Step 2 By the previous step, we may fix a Giroux form z̨ so that z̨jB D ˛B . Appealing again to the
proof of [18, Proposition 2], there exists a tubular neighborhood B �D2�0 of the binding on which � D �
and z̨ D .z̨jBC�D2/, where  WB�D2�0!R is a positive smooth function satisfying  � 1 on B�f0g,
�D2 D

1
2
.x dy � y dx/ and �0 > 0 is a suitably small constant. Again, we have that .z̨jB C�D2/ is a

Giroux form on .B �D2�0 ; B � f0g; � D �/ if and only if @=@r < 0 for r > 0.

Let ı W B �D2�0 !R be a positive smooth function such that ı D f near B � f0g, ı D  near B � @D2�0 ,
and @rı < 0 for r > 0. Let ˛ be the unique contact form on Y which coincides with z̨ outside the image
of � and satisfies ��˛ D ı.z̨jB C�D2/. Then ˛ is a Giroux form and satisfies conditions (1)–(3).

Corollary 3.15 Consider an open book decomposition .Y; B; �/ which supports a contact structure � and
let � denote the induced trivialization of the normal bundle of B � Y. Choose an element rD .˛B ; �; r/ 2
R.Y; �; B/. Then there exists a Giroux form ˛ which is adapted to r; see Definition 3.4.

Proof Let � D �r and define f .s/ D .1C �s2/�1 for s 2 Œ0; 1/. Since f .0/ D 1 and f 0.s/ < 0, it
follows that there exists a Giroux form z̨ satisfying the conditions stated in Lemma 3.14. As we observed
in the proof of Proposition 3.9, there exists a neighborhood U of B with the properties that

� z̨ is nondegenerate on U , and

� all the Reeb orbits in U are contained in B .

According to [2, Theorem 13], we can obtain a nondegenerate contact form by multiplying z̨ by a smooth
function g W Y ! RC with g � 1 near B . Moreover, we can assume that g� 1 is arbitrarily C 1–small
and hence that g z̨ is still a Giroux form.

Since g z̨ D ˛ near B , it follows that .g z̨/jB D ˛B and that B is a strong contact submanifold with respect
to g z̨. Finally, the last point in Definition 3.4 can be verified just as in the proof of Proposition 3.8.
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4 Standard setups and tree categories.

Contact homology is defined in [61] by counting pseudoholomorphic curves (and, more generally,
pseudoholomorphic buildings) in four setups. To keep track of the combinatorics of these curves, Pardon
introduces certain categories of decorated trees. We briefly review this formalism here, referring the
reader to [61, Section 2.1] for details.

4.1 Standard setups

Setup I A datum D for Setup I consists of a triple .Y; �; J /, where Y is a closed manifold, � is a
nondegenerate contact form on Y and J is a d�–compatible almost complex structure on � D ker�.

Setup II A datum DD .DC;D�; yX; y�; yJ / for Setup II consists of

� data D˙ D .Y ˙; �˙; J˙/ as in Setup I,

� an exact symplectic cobordism . yX; y�/ with positive end .Y C; �C/ and negative end .Y �; ��/, and

� a dy�–tame almost complex structure yJ on yX which agrees with yJ˙ at infinity.

Setup III A datum DD .DC;D�; . yX; y�t ; yJ t /t2Œ0;1�/ for this setting consists of

� data D˙ D .Y ˙; �˙; J˙/ as in Setup I,

� a family of exact symplectic cobordisms . yX; y�t /t2Œ0;1� with positive end .Y C; �C/ and negative
end .Y �; ��/, and

� a dy�t–tame almost complex structure yJ t on yX which agrees with yJ˙ at infinity.

Note that for every t0 2 Œ0; 1�, there is a datum DtDt0 D .DC;D�; yX; y�t0 ; yJ t0/ as in Setup II.

Setup IV A datum DD .D01;D12; . yX02;t ; y�02;t ; yJ 02;t /t2Œ0;1// for this setting consists of

� data

D01 D .D0;D1; yX01; y�01; yJ 01/ and D12 D .D1;D2; yX12; y�12; yJ 12/

as in Setup II, where Di D .Y i ; �i ; J i / for i D 0; 1; 2,

� a family of exact symplectic cobordisms . yX02;t ; y�02;t /t2Œ0;1/ with positive end .Y 0; �0/ and
negative end .Y 2; �2/, which for t large coincides with the t–gluing of . yX01; y�01/ and . yX12; y�12/,
and

� a dy�02;t–tame almost complex structure yJ 02;t on yX02;t which agrees with yJ 0 and yJ 2 at infinity,
and is induced by yJ 01 and yJ 02 for t large.
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4.2 Trees

For each setup, Pardon [61, Section 2.1] defines a category S� for � D I; II; III; IV, which depends
on some datum D. Each object T 2 S is a decorated tree (or forest) representing a certain class of
pseudoholomorphic curves (or more generally of buildings). Geometrically, the vertices correspond to
curves, edges correspond to asymptotic orbits, and the decorations keep track of additional information
(such as the homology classes of the components, and their “level” in the SFT compactification).

A morphism of trees in S� consists of two pieces of data. First, a contraction of some edges, with the
important caveat that only certain contractions are allowed, which depend on the decorations on the tree.
Second, one specifies some additional data on external edges, which depends on the decorations of the
external edges. Geometrically, a morphism of trees correspond to gluing holomorphic curves, and the
data which one specifies on the external edges encodes different ways of moving asymptotic markers.
For T 2 S�, we let Aut.T / denote the group of automorphisms of T . Given a morphism T 0! T , we let
Aut.T 0=T /� Aut.T 0/ be the subgroup of automorphisms of T 0 which are compatible with T 0! T .

In each category S�, there is an operation called concatenation whose input is a collection of trees
(satisfying certain conditions, and with additional matching data), and whose output is a single tree.
Geometrically, concatenations of trees correspond to “stacking” holomorphic buildings. The precise rules
for concatenations are rather involved and depend on the individual setups.

Remark 4.1 A datum D for Setups II, III, IV determines multiple categories of trees: this is because
such a datum itself contains (by definition) data for multiple setups. We always follow the notation of
[61, Section 2.1] to denote the resulting tree categories. So, for example, if DD .DC;D�; yX; y�; yJ / is a
datum for Setup II, we write SII WD SII.D/, SCI WD SI.DC/ and S�I WD SI.D�/. Similarly, a datum for
Setup III determines categories SIII;StD0II , StD1II , S˙I , and a datum for Setup IV determines categories
SIV, S01II , S12II , S0I , S1I , S2I .

4.3 Virtual moduli counts

To an object T 2 S�, we can associate a moduli space M.T / [61, Section 2.3] which carries an action of
Aut.T /— this action corresponds geometrically to changing asymptotic markers. Note that T 2 S� has a
well-defined notion of index and virtual dimension [61, Definition 2.42]. The compactified moduli space
M.T / is defined by (see [61, Definition 2.13])

(4-1) M.T / WD
G
T 0!T

M.T 0/=Aut.T 0=T /:

Theorem 1.1 in [61] provides a perturbation datum � 2 ‚�.D/ and associated virtual moduli counts
#M.T /vir

�
2Q (which are zero for vdim.T /¤ 0) satisfying the master equations

(4-2) 0D
X

codim.T 0=T /D1

1

jAut.T 0=T /j
#M.T 0/vir

�
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and

(4-3) #M.#iTi /vir
� D

1

jAut.fTigi=#iTi /j

Y
i

#M.Ti /
vir
� :

By standard arguments, this can be used to define the various maps involved in the definition of contact
homology (such as the differential d ) and show that they satisfy the expected relations (such as d2 D 0);
see [61, Section 1.7].

5 Intersection theory for punctured holomorphic curves

5.1 Definition of the Siefring intersection number

We will make use in this paper of an intersection theory for asymptotically cylindrical maps and sub-
manifolds. The four-dimensional theory was constructed by Siefring [64] and assigns an integer to a
pair of asymptotically cylindrical maps in a 4–dimensional symplectic cobordism; see also the book by
Wendl [69]. The higher-dimensional theory, also due to Siefring, assigns an integer to the pairing of
a codimension 2 (asymptotically) cylindrical hypersurface with a (asymptotically) cylindrical map. A
detailed overview can be found in [54].

Consider a strong exact symplectic cobordism . yX; y�/ from .Y C; �C/ to .Y �; ��/. Let .V ˙; �˙jV /�
.Y ˙; �˙/ be strong contact submanifolds and letH � yX be a codimension 2 submanifold with cylindrical
ends V C tV �.

We let � denote a choice of trivialization of �˙j?
V˙

along every Reeb orbit in V ˙. We require that
the trivialization along a multiply covered orbit be pulled back from the chosen trivialization along the
underlying simple orbit. Let u W†� .pCu tp�u /!

yX be a map which is positively/negatively asymptotic
at z 2 p˙u to the Reeb orbit z . Now set

(5-1) u �� H WD u
�
�H;

where u� is a perturbation of u which is transverse to H and constant with respect to � at infinity, and
.� ��/ is the usual algebraic intersection number for transversely intersecting smooth maps. While (5-1)
depends on the choice of trivialization � , Siefring showed that this count can be corrected so as to become
independent of � . This leads to the following definition.

Definition 5.1 [54, Section 2] The generalized (or Siefring) intersection number u�H 2 Z of u and
H is defined by

(5-2) u�H D u �� H C
X
z2p

C
u

˛
� I�
N .z/�

X
z2p�u

˛
� IC
N .z/:

Proposition 5.2 The intersection number u � H only depends on the equivalence classes of u in
�2. yX;�

C t��/, and H in �2n�2. yX; V C tV �/; see Definition 2.21.
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Proof The intersection number u� �H is clearly invariant under compactly supported isotopies of H .

Given a truncation X0 � yX , we can proceed as in Section 2.2 to associate to u� a map xu� W†!X0. Let
H0 DH \X0. If we choose X0 sufficiently large (so that H is cylindrical in its complement), then H0
will be a submanifold with boundary @H0 DH0\ @X0 D V C tV �. Note that xu� �H0 only depends on
Œu� 2 �2. yX;�

C t��/. Moreover, we have xu� �H0 D u� �H ; indeed, if X0 is sufficiently large, then the
intersections of xu� with H0 are exactly the same as those of u� with H .

5.2 Positivity of intersection

We now discuss positivity of intersection for the Siefring intersection number. Given a contact manifold
.Y; � D ker�/ and an almost complex structure J on �, we adopt the usual convention of letting yJ
denote the induced almost complex structure on the symplectization. An almost complex structure on a
cobordism . yX; y�/ between two contact manifolds .Y ˙; �˙/ is called cylindrical if it agrees at infinity
with yJ˙ for some choice of d�˙–compatible almost complex structures J˙ on ker.�˙/.

Proposition 5.3 [54, Corollary 2.3 and Theorem 2.5] Let . yX; y�/ be an exact symplectic cobordism
from .Y C; �C/ to .Y �; ��/. Let u and H denote an asymptotically cylindrical map and a cylindrical
submanifold of codimension 2 in yX , respectively.

Suppose that u and H are yJ –holomorphic for some cylindrical almost complex structure yJ on yX which
is compatible with dy�. If the image of u is not contained in H , then Im.u/\H is a finite set and

(5-3) u�H � u �H:

(Note that, by ordinary positivity of intersection for two pseudoholomorphic submanifolds, this implies
that u�H � 0, and that Im.u/ and H are disjoint if u�H D 0.)

When the image of u is contained inH, positivity of intersection does not hold. The following computation,
which will be useful to us later, is one example of this. The notation y refers to the trivial cylinder
R�S1! yY over the Reeb orbit  ; similarly, yV D R� V � yY is the cylinder over the strong contact
submanifold V.

Corollary 5.4 Let  be a Reeb orbit in Y. If  is contained in V, then

(5-4) y � yV D�pN ./:

Proof By definition,

(5-5) y � yV D y� � yV C˛
� I�
N ./�˛

� IC
N ./:

We can choose the perturbation y� so that its image is disjoint from yV. The result follows since
˛
� IC
N ./�˛

� I�
N ./D pN ./ by definition.

Remark 5.5 If  is disjoint from V, then y � yV D 0.
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Corollary 5.4 shows that positivity of intersection fails for curves contained in yV. However, we still have
a lower bound on the intersection number u� yV when uD y is a trivial cylinder, namely, y � yV � �1
since pN ./ 2 f0; 1g. In the remainder of this section, we show that if .Y; �; V / is a TN contact pair and
� is positive elliptic near V, then the intersection number u� yV is bounded below for all asymptotically
cylindrical curves u contained in yV. We also give an analogous result for cylindrical submanifolds of
symplectic cobordisms H � . yX;!/ with trivial normal bundle.

Proposition 5.6 Fix a TN contact pair .Y; �; V / and a datum r D .˛V ; �; r/ 2 R.Y; �; V /. Consider
a contact form � on .Y; �/ which is adapted to r, and an almost complex structure J on � which is
compatible with d� and which preserves �V . Suppose that u is a yJ –holomorphic curve whose image is
entirely contained in yV. If � is positive elliptic near V, then u� yV � 1�pu, where pu denotes the number
of punctures (positive and negative) of u.

Proof We have by definition that

˛
� I�
N .z/D bCZ�N .z/=2c D brPzc for z 2 pCu ;(5-6)

˛
� IC
N .z/D dCZ�N .z/=2e D 1CbrPzc for z 2 p�u ;(5-7)

where Pz denotes the period of the Reeb orbit z . Using the trivial bounds x� 1 < bxc � x and the fact
that u� � yV D 0, we obtain

(5-8) u� yV >
X
z2p

C
u

.rPz � 1/�
X
z2p�u

.1C rPz/� �puC r

� X
z2p

C
u

Pz �
X
z2p�u

Pz

�
:

The fact that u is yJ –holomorphic implies that
P
z2p

C
u
Pz �

P
z2p�u

Pz is nonnegative; see [68, page 60].
Thus u� yV � 1�pu, as desired.

We will need an analog of Proposition 5.6 for cobordisms. Note that if V � Y is a codimension 2 contact
submanifold, then the normal bundle of yV DR�V �R�Y D yY can be identified with the pullback of
�j?V under the projection yV ! V . Hence, any trivialization � of �j?V induces a trivialization of the normal
bundle of yV, which we will denote by y� .

Proposition 5.7 Fix TN contact pairs .Y ˙; �˙; V ˙/ and elements r˙D.˛˙V ; �
˙; r˙/2R.Y ˙; �˙; V ˙/.

Let �˙ be contact forms on .Y ˙; �˙/ which are adapted to r˙, and let . yX; y�;H/�
C

��
be a strong rela-

tive symplectic cobordism from .Y C; �C; V C/ to .Y �; ��; V �/. We assume that there exists a global
trivialization � of the normal bundle of H which coincides with y�˙ near˙1.

Let yJ be an almost complex structure on yX which is cylindrical and compatible with d�˙ outside a
compact set , and such that H is yJ –holomorphic. Let u be an asymptotically cylindrical map in yX which
is yJ –holomorphic and whose image is entirely contained in H . Following the notation of Proposition 5.6,
if �C is positive elliptic near V C, then u �H > �puC r

C
P
z2p

C
u
Pz � r

�
P
z2p�u

Pz . In particular ,
u�H � 0 if u has no negative puncture.
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Proof We have

(5-9) u�H D u� �H C
X
z2p

C
u

˛
� I�
N .z/�

X
z2p�u

˛
� IC
N .z/:

We can choose the perturbation u� so that it is disjoint from H , so u� �H D 0. We now argue as in
Proposition 5.6 to find that

(5-10) u�H >
X
z2p

C
u

.rCPz � 1/�
X
z2p�u

.1C r�Pz/� �puC r
C
X
z2p

C
u

Pz � r
�
X
z2p�u

Pz :

5.3 The intersection number for buildings

In this section, we use Siefring’s intersection theory to define an intersection number for buildings of
asymptotically cylindrical maps and buildings of asymptotically cylindrical codimension 2 submanifolds.
Since the differences between SI, SII, SIII and SIV don’t matter for this purpose, we start by defining a
category yS of labeled trees which only keeps track of the information needed for intersection theory; in
particular, there are obvious “forgetful” functors S�! yS.

The category yS D yS.f yX ij gij / depends on the following data:

(i) An integer m� 0 and a collection of mC 1 co-oriented contact manifolds .Y i ; � i /, each equipped
with a choice of contact form �i for 0� i �m.

(ii) For each pair of integers 0� i � j �m, an exact symplectic cobordism . yX ij ; y�ij / with positive
end .Y i ; � i / and negative end .Y j ; �j /. We require that yX i i D SY i be the symplectization of Y i

and that yX ik D yX ij # yXjk for i � j � k; this makes sense in light of Remark 2.8.

An object T 2 yS is a finite directed forest, ie a finite collection of finite directed trees. We require that
every vertex has a unique incoming edge. Edges which are adjacent to only one vertex are allowed; we
will refer to them as input or output edges depending on whether they are missing a source or a sink. The
other edges will be called interior edges. We also have the following decorations:

� For each edge e 2 E.T /, a symbol �.e/ 2 f0; : : : ; mg such that �.e/ D 0 for input edges and
�.e/Dm for output edges, together with a Reeb orbit e in .Y �.e/; ��.e//.

� For each vertex v 2 V.T /, a pair �.v/D .�C.v/;��.v// 2 f0; : : : ; mg2 such that �C.v/� ��.v/,
and a homotopy class ˇv 2 �2. yX�.v/; eC.v/ t fe�ge�2E�.v//, where eC.v/ denotes the unique
incoming edge of v andE�.v/ denotes its set of outgoing edges. We require that �.eC.v//D�C.v/
and �.e�/D ��.v/ for every e� 2E�.v/.

Remark 5.8 Geometrically, these decorations specify how different curves and orbits fit together to
form a holomorphic building. For example, suppose mD 1 and T is a tree with one vertex v and one
input edge e. If �.e/D 0 and �.v/D 00, then T describes a curve in SY 0 with one positive puncture
and no negative punctures. If �.e/D 0 and �.v/D 01, then T describes a curve in yX01 with one positive
puncture and no negative punctures. This labeling scheme of course follows [61, Section 2.1].
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We will let �CT and ��T denote the collections of Reeb orbits associated to the input and output edges of
an object T 2 yS. In the case where T is a tree, the unique element of �CT will be denoted by CT .

A morphism � W T ! T 0 consists of a contraction of the underlying forests (meaning that T 0 is identified
with the forest obtained by contracting a certain subset of the interior edges of T ) subject to the following
conditions:

� For every noncontracted edge e 2E.T /, we require that �.�.e//D �.e/ and �.e/ D e.

� For every vertex v 2 V.T /, we have �C.�.v//� �C.v/ and ��.�.v//� ��.v/.

� For every vertex v0 2 V.T 0/, we require that ˇv0 D #�.v/Dv0ˇv.

Note that for any morphism T ! T 0, we have �CT D �
C

T 0 and ��T D �
�
T 0 .

Remark 5.9 For every T 2 yS, we get a morphism T ! Tmax by contacting all of the interior edges of T .
Each component of Tmax is a tree with a unique vertex. In the case where T is connected, we will write
ˇT WD #vˇv 2 �2. yX0m; CT t�

�
T / for the homotopy class labeling the unique vertex of Tmax. Note that

for every morphism T ! T 0, we have Tmax D T
0

max. In particular, if T and T 0 are trees, then ˇT D ˇT 0 .

Definition 5.10 Let T 2 yS and let fTigi denote its connected components. The intersection number
T �H of T with a codimension 2 cylindrical submanifold H � yX0m is defined to be

(5-11) T �H D
X
i

ˇTi �H:

By Proposition 5.2, this intersection number only depends on the class of H in �2n�2. yX0m; V 0 tV m/.
By Remark 5.9, it is “invariant under gluing”:

Proposition 5.11 Let T; T 0 2 yS. If there exists a morphism T ! T 0, then T �H D T 0 �H .

Suppose now that mD 0, so that objects T 2 yS represent buildings of curves in the symplectization yY of
a single contact manifold .Y; �/ WD .Y 0; �0/, and that H D yV WDR�V is the trivial cylinder over some
strong contact submanifold V � Y of codimension 2. In that case, the intersection number T �H can be
expressed more explicitly as follows.

Proposition 5.12 For any T 2 yS, we have

(5-12) T � yV D
X

v2V.T /

ˇv � yV �
X

e2E int.T /

ye � yV :

Proof The proof will be by induction on the number of interior edges. If this number is zero, then (5-12)
is true by definition. Otherwise, pick an edge e 2E int.T / and contract it to obtain a morphism � W T ! T 0

where T 0 has one less interior edge than T . We can assume inductively that T 0 satisfies (5-12). Since
T � yV D T 0 � yV, it suffices to show that

(5-13) ˇvC �
yV Cˇv� � yV � ye � yV D ˇv0 � yV ;

where vC and v� are the source and sink of e, respectively, and v0 D �.vC/D �.v�/.
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To do this, start by picking curves u˙ W†˙! yY representing the classes ˇv˙ . Fix a choice of cylindrical
coordinates near the positive puncture of u� and near the negative puncture of uC corresponding to e.
We can assume that u˙ is cylindrical at infinity, so that there exists a constant C > 0 such that

(5-14) u˙.s; t/D .Pe � s; e.t// for � s � C;

where Pe is the period of the orbit corresponding to e. Now let

†C D†C n ..�1;�3C /�S1/;(5-15)

†� D†� n ..3C;1/�S1/;(5-16)

and let †D †C #†� be obtained by identifying Œ�3C;�C ��S1 � †C with ŒC; 3C ��S1 � †� via
translation by 4C . The curve uC #u� W†! yY which is given by �2CPe ıuC on †C and ��2CPe ıu�
on †� (where �s W yY ! yY denotes translation by s) then represents the homotopy class ˇvC #ˇv� D ˇv0 .

Choose a trivialization � of �j?V along the relevant Reeb orbits and use it to produce perturbations u�
˙

and
.uC # u�/� as in Section 5.1. We can do this in such a way that .uC # u�/� is obtained by gluing u�

C

and u��. Then

(5-17) .uC #u�/� � yV D u�C � yV Cu
�
� �
yV ;

so

.uC #u�/� yV D u�C � yV Cu
�
� �
yV C˛

� I�
N .C/�

X
z2p�uC#u�

˛
� IC
N .z/

D u�C �
yV Cu�� �

yV C˛
� I�
N .C/C˛

� IC
N .e/�

X
z2p�uC

˛
� IC
N .z/�

X
z2p�u�

˛
� IC
N .z/

D uC � yV Cu� � yV C˛
� IC
N .e/�˛

� I�
N .e/

D uC � yV Cu� � yV CpN .e/:

We have p.e/D�ye � yV by Corollary 5.4, so this implies that

(5-18) ˇv0 � yV D .uC #u�/� yV D uC � yV Cu� � yV � ye � yV D ˇvC � yV Cˇv� � yV � ye � yV;

as desired.

Definition 5.13 Given T 2 yS, we say that T is representable by a holomorphic building if there exists
a d�–compatible almost complex structure J on � such that, for every vertex v 2 V.T /, the homotopy
class ˇv 2 �2. yY ; eC.v/ t fe�ge�2E�.v// admits a yJ –holomorphic representative. We say that T is
representable by a yJ –holomorphic building if we wish to specify yJ.

Corollary 5.14 Let T 2 yS. Suppose that there exists a morphism T 0! T and a d�–compatible almost
complex structure J on � such that T 0 is representable by a yJ –holomorphic building. Suppose also that
yV is yJ –holomorphic. If � is positive elliptic near V, then T � yV � ���.T; V /, where ��.T; V / denotes
the number of output edges e of T such that e is contained in V.
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Proof By Proposition 5.11, T � yV D T 0 � yV. By Proposition 5.12,

(5-19) T 0 � yV D
X

v2V.T 0/

ˇv � yV �
X

e2E int.T 0/

ye � yV :

According to Proposition 5.3, we have ˇv � yV � 0, unless the holomorphic representative of ˇv is entirely
contained in yV, in which case Proposition 5.6 tells us that ˇv � yV ��#E�.v/. By Corollary 5.4, we have

(5-20) �#E�.v/D
X

e2E�.v/

ye � yV :

Given v 2 V.T 0/, let us denote by ��.v; V / the number of output edges e 2 E�.v/ such that e � V .
Appealing again to Proposition 5.12, we have

(5-21) T 0� yV D
X

v2V.T 0/

ˇv � yV �
X

e2E int.T 0/

ye � yV

D

X
v2V.T 0/

�
ˇv � yV �

X
e2E�.v/

ye � yV

�
C

X
e2E�.T /

ye � yV

D

X
v2V.T 0/

.ˇv � yV C�
�.v; V //���.T 0; V /

� ���.T; V /;

where we have used the fact that T and T 0 have the same exterior edges in the last line. This completes
the proof.

More generally, suppose we are given the following data, where m is now allowed to be any nonnegative
integer:

� For each 0� i �m, a strong contact submanifold V i � Y i of codimension 2.

� For each 0� i � j �m, a homotopy class �ij 2�2n�2. yX ij ; V i tV j /. We require that �i i WD Œ yVi �
be the homotopy class of yV i DR�V i , and that �ik D �ij # �jk for any i � j � k.

Let � WD �0m 2�2n�2. yX0m; V 0 tV m/.

Proposition 5.15 Let T 2 yS. Then

(5-22) T � �D
X

v2V.T /

ˇv � ��.v/�
X

e2E int.T /

ye � yV�.e/:

Proof We will say a vertex v 2 V.T / is a symplectization vertex if �.v/D i i for some i , and we will call
it a cobordism vertex otherwise. This induces a partition E int.T /DEss.T /tEsc.T /tEcc.T / of the set
of interior edges according to the types of the vertices they are adjacent to — here the superscripts s and c
stand for “symplectization” and “cobordism”, respectively. Similarly, the set of exterior edges admits a
partition Eext.T /DEs.T /tEc.T /.
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We can (and will) assume without loss of generality that Ess.T / is empty. Indeed, let T ! T 0 be the
morphism obtained by contracting all the edges in Ess.T /. Replacing T with T 0 doesn’t change the
left-hand side of (5-22) by Proposition 5.11 and doesn’t change the right-hand side by Proposition 5.12.

Let I D V.T /tEc.T /tEcc.T / and choose a family of curves fuigi2I with the following properties:

� For each v 2 V.T /, uv is a curve in the homotopy class ˇv which is cylindrical at infinity.

� For each e 2Ec.T /tEcc.T /, ue D ye is the trivial cylinder over the Reeb orbit e.

For t >0 sufficiently large, we can glue the ui to obtain a curve u inX00#tX01#tX11#t � � �#tXmmŠX0m

representing T . We can also choose representatives Hij of �ij so that Hi i D yVi and H WDH0m coincides
with H00 #t H01 #t � � � #t Hmm.

As in the proof of Proposition 5.12, we can choose perturbations u� and fu�i g so that

(5-23) u� �H D
X
i2I

u�i �Hi ;

where Hi WD H�.v/ for i D v 2 V.T / and Hi WD yV�.e/ for i D e 2 Ec.T / tEcc.T /. The differenceP
i ui �Hi �u�H is therefore equal to

(5-24)
X

e2E sc.T /tE c.T /

˛
� I�
N .e/�˛

� IC
N .e/C 2

X
e2E cc.T /

˛
� I�
N .e/�˛

� IC
N .e/

D

X
e2E sc.T /tE c.T /

ye � yV�.e/C 2
X

e2E cc.T /

ye � yV�.e/

D

X
e2E int.T /

ye � yV�.e/C
X

e2Ec.T /tE cc.T /

ye � yV�.e/:

Since ui �Hi D ye � yV�.e/ for i D e 2Ec.T /tEcc.T /, we conclude that

(5-25) u�H D
X

v2V.T /

uv �H�.v/�
X

e2E int.T /

ye � yV�.e/;

which implies (5-22).

Definition 5.16 Given T 2 yS, we say that T is representable by a holomorphic building if for every
vertex v 2 V.T /, there exists an adapted almost complex structure yJ v on yX�.v/ such that

ˇv 2 �2. yX
�.v/; eC.v/ t fe�ge�2E�.v// and ��.v/ 2�2n�2. yX

�.v/; V �
C.v/
tV �

�.v//

admit yJ v–holomorphic representatives.

Proposition 5.17 Let T 2 yS. Suppose that there exists a morphism T 0! T where T 0 is representable
by a holomorphic building. Suppose that �i is positive elliptic near V i for all 0� i �m, and let ri > 0
be the rotation parameter; see Definition 3.4. If ˇv � ��.v/ � �#fE�.v/g, then T � � � ���.T; V m/.
(Recall that � WD �0m.)
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Proof By Proposition 5.11, we have T � �D T 0 � �. Given v 2 V.T 0/, let us denote by ��.v; V �
�.v//

the number of output edges e 2E�.v/ such that e � V �
�.v/.

Arguing as in the proof of Corollary 5.14, we obtain from Proposition 5.15 that

(5-26) T 0 � yV D
X

v2V.T 0/

ˇv � ��.v/�
X

e2E int.T 0/

ye � yV�.e/

D

X
v2V.T 0/

�
ˇv � ��.v/�

X
e2E�.v/

ye � yV�.e/

�
C

X
e2E�.T 0/

ye � yV�.e/

D

X
v2V.T 0/

.ˇv � yV C #��.v; V �
�.v///���.T 0; V /

� ���.T; V /;

where we have used the fact that T and T 0 have the same exterior edges in the last line. This completes
the proof.

5.4 The intersection number for cycles

For future reference, we collect some basic facts about intersection numbers for cycles in oriented
manifolds. This subsection takes places entirely in the smooth category and does not involve any contact
topology.

Definition 5.18 Let M be an oriented, compact manifold of dimension n, possibly with boundary. Let
S1; S2 �M be disjoint closed embedded submanifolds of M. (We allow the Si to intersect @M, in which
case the Si are required to be embedded submanifolds after enlarging M by a collar). Then we can define
a pairing

(5-27) � �� WHk.M; S1IZ/�Hn�k.M; S2IZ/! Z; .A;B/ 7! A �B;

where A �B is a signed count of intersections between cycles representing A and B . More precisely, we
represent cycles by C1 chains; by general position, these chains may be assumed to intersect transversally
after an arbitrarily small perturbation which does not affect their homology class. It is a folklore result,
which is beyond the scope of this paper, that the resulting count is well-defined and graded-symmetric;
see eg [32, Section 2.3].

We note that the intersection number in Definition 5.18 could be defined under much milder hypotheses,
but this is not necessary for our purposes. If A and B are (the pushforward of the fundamental class of)
oriented manifolds, then A �B coincides with the usual intersection number for submanifolds. By abuse
of notation, we will view the intersection pairing as being defined on both homology classes and oriented
submanifolds.
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Definition 5.19 Fix a closed manifold Y of dimension m� 3 and a closed codimension 2 submanifold
V � Y. Suppose that H1.Y IZ/DH2.Y IZ/D 0.

Let  W S1 ! Y � V be a loop with embedded image. The linking number of  with respect to V is
denoted by linkV ./ and defined by

(5-28) linkV ./ WD V �C ;

where C is a cycle bounding  (which exists since H1.Y IZ/ D 0). This is well-defined due to our
assumption that H2.Y IZ/D 0.

Suppose now that ƒ � Y �V is a submanifold with �0.ƒ/D �1.ƒ/D 0. Let c W Œ0; 1�! Y �V be a
path with embedded image having the property that c.0/; c.1/ 2ƒ. Let xc W S1! Y �V be a loop with
embedded image obtained by connecting c.1/ to c.0/ by a path in ƒ. The (path) linking number of c
with respect to V is denoted by linkV .cIƒ/ and is defined by setting

(5-29) linkV .cIƒ/ WD V �Cxc ;

where Cxc is a cycle bounding xc. This is independent of xc since �1.ƒ/D 0, and independent of Cxc since
H2.Y IZ/D 0.

Remark 5.20 Fix an open book decomposition .Y; B; �/ and let  W S1! Y �B be a loop. Then it is
not hard to show that we have linkB./D deg.� ı /.

Similarly, supposeƒ�Y is a submanifold which is contained in a page of .Y; B; �/. Let c W Œ0; 1�!Y �B

be a path with the property that c.0/; c.1/ 2ƒ. Then the composition � ı c W Œ0; 1�! S1 induces a map
xc W Œ0; 1�=f0; 1g ! S1. We then have linkB.cIƒ/D deg xc:

Lemma 5.21 Let Y ˙ be oriented manifolds with Y C ¤∅ and let B˙ � Y ˙ be oriented submanifolds.
Let W be an oriented , smooth cobordism from Y C to Y � and let H �W be an oriented subcobordism
from BC to B�, ieH is an embedded submanifold which admits a collar neighborhood near the boundary
of W. Suppose that H1.Y ˙IZ/DH2.Y ˙IZ/DH2.W; Y CIZ/D 0.

Let † be a Riemann surface with kC 1 boundary components labeled C; �1 ; : : : ; 
�
k

. Suppose that
u W .†; @†/! .W; @W / is a smooth map sending C into Y C�BC and �i into Y ��B�.

Then

(5-30) linkBC.
C/�

kX
iD1

linkB�.�i /DH �u.†/;

where we have identified the boundary components of † with the restriction of u to these components.
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Proof Choose a 2–chain B� 2 C2.Y �IZ/ with @B� D �1 [ � � � [ 
�
k

. Glue B� to u.†/ along the �i
and call the resulting chain C 2 C2.W IZ/. We now have H �C DH �u.†/C

Pk
iD1 linkB�.�i /.

By the long exact sequence of the triple .W; Y C; C/ and our assumption that H2.W; Y CIZ/ D 0,
the natural map H2.Y; CIZ/ ! H2.W; 

CIZ/ is surjective. Let zC 2 H2.Y C; CIZ/ be a lift of
C 2H2.W; 

CIZ/. Then H �C DH � zC D BC � zC D linkBC.
C/:

Lemma 5.22 We carry over the setup and notation from Lemma 5.21. In addition to the data considered
there , let ƒ˙�Y ˙�B˙ be an oriented , smooth submanifold and let ƒ�W be an oriented subcobordism
from ƒC to ƒ� which is disjoint from H . We suppose in addition that �0.ƒ˙/D �1.ƒ˙/D 0.

Let † be a closed , oriented surface of genus zero with sC1 boundary components labeled �; 1; : : : ; n.
For � 2NC, we place 2� disjoint marked points on �, thus partitioning � into 2� subintervals. Let us
label these subintervals by the symbols cC; b01; c�1 ; b12; c

�
2 ; : : : ; b.��1/� ; c

�
� ; b�0, in the order induced

by the orientation.

Suppose now that u W .†; @†/! .W; @W [ƒ/ is a smooth map sending .cC; @cC/ into .Y C�BC; ƒC/,
sending .c�i ; @c

�
i / into .Y ��B�; ƒ�/, sending bi.iC1/ into ƒ, and sending the �i into Y ��B�.

Then

(5-31) linkBC.c
C
IƒC/�

�X
iD1

linkB�.c�i Iƒ
�/�

sX
iD1

linkB�.�i /DH �u�Œ†�;

where we have again identified the boundary components of † with the restriction of u to these compo-
nents.

6 Energy and twisting maps

6.1 Twisting maps

In order to define invariants of codimension 2 contact submanifolds, we will proceed as follows. First, we
will use Siefring’s intersection theory to define maps  W S!R. Here R could be any Q–algebra, though
we will only use RDQŒU � and RDQ. We will then use these maps to define “twisted” moduli counts

(6-1) # M.T /vir
WD #M.T /vir

� .T / 2R:

The maps  will have the property that

 .T 0/D  .T / for every morphism T 0! T , and(6-2)

 .#iTi /D
Y
i

 .Ti /;(6-3)

which implies that the master equations (4-2) and (4-3) still hold if #Mvir is replaced by # Mvir.
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The properties which must be satisfied by the maps  in order to obtain twisted counts which are suitable
for defining our invariants can be conveniently axiomatized in the notion of a twisting map. We now
define precisely this notion in each of the four setups.

Setup I Fix a datum D for Setup I. Let S¤∅I denote the full subcategory of SI spanned by objects T for
which the moduli space M.T / is nonempty.

Definition 6.1 Let R be a Q–algebra. The set ‰I.DIR/ of R–valued twisting maps consists of all maps
 W S¤∅I .D/!R satisfying the following two properties:

� For any morphism T 0! T ,  .T 0/D  .T /.

� For any concatenation fTigi ,  .#iTi /D
Q
i  .Ti /.

Fix a twisting map  2‰I.DIR/. Let

(6-4) CC�.Y; �;  /� WD
M
n�0

SymnR

� M
2Pgood

o

�
be the free supercommutative Z=2–graded unital R–algebra generated by the good Reeb orbits. The
grading of a Reeb orbit is given by its parity, which is defined as

(6-5) j j D sign det.I �A / 2 f˙1g D Z=2;

where A is the linearized Poincaré return map of � along  ; see [61, Section 2.13]. Recall that a Reeb
orbit is good if and only if it is not bad; a Reeb orbit  is bad if it is an even multiple of some simple
Reeb orbit s such that  and s have different parity [61, Definition 2.49].

Theorem 1.1 of [61] provides a set of perturbation data ‚I.D/ and associated virtual moduli counts
#MI.T /

vir
�
2Q satisfying (4-2) and (4-3). We define the twisted moduli counts

(6-6) # MI.T /
vir
� WD #MI.T /

vir
� � .T / 2R:

It follows easily from Definition 6.1 that the twisted moduli counts also satisfy (4-2) and (4-3). We may
therefore endow CC�.Y; �;  /� with a differential d ;J;� which is given by

(6-7) d ;J;� .oC/D
X

�.T /D1

1

jAut.T /j
� # MI.T /

vir
� o�� ;

where the sum is over all trees T 2 SI .D/ representing curves with positive orbit C and negative orbits
��! Pgood.

The homology of .CC�.Y; �;  /�; d ;J;� / is a supercommutative Z=2–graded unital R–algebra, which is
denoted by

(6-8) CH�.Y; �;  /�;J;� :
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Setup II Fix a datum D for Setup II. Suppose now we are given a map of Q–algebras m WRC!R�
and twisting maps  ˙ 2‰I.D˙IR˙/.

Definition 6.2 The set ‰II.DI C;  �/ consists of all maps  W S¤∅II .D/!R� satisfying the following
two properties:

� For any morphism T 0! T ,  .T 0/D  .T /.

� For any concatenation fTigi ,

(6-9)  .#iTi /D
� Y
Ti2S

C
I

m. C.Ti //

�� Y
Ti2SII

 .Ti /

�� Y
Ti2S�I

 �.Ti /

�
:

Fix a twisting map  2‰II.DI C;  �/. Theorem 1.1 of [61] provides a set of perturbation data ‚II.D/
together with a forgetful map

(6-10) ‚II.D/!‚I.DC/�‚I.D�/

and associated virtual moduli counts #MII.T /
vir
�
2Q. We define the twisted moduli counts

(6-11) # MII.T /
vir
� WD #MII.T /

vir
� � .T / 2R

�:

For any � 2‚II.D/ mapping to .�C; ��/ 2‚I.DC/�‚I.D�/, we obtain a unital RC–algebra map

(6-12) ˆ. yX; y�; / yJ ;� W CC�.Y
C; �C;  C/�C;JC;�C ! CC�.Y

�; ��;  �/��;J�;�� ;

which maps oC to

(6-13)
X

�.T /D0

1

jAut.T /j
� # MII.T /

vir
� o�� ;

with the sum over all trees T 2 SII.D/ representing curves with positive orbit C and negative orbits
��!Pgood.Y

�/. This is a chain map, since it follows from Definition 6.2 that the twisted moduli counts
satisfy (4-2) and (4-3).

Setup III Fix a datum D for Setup III. There are three types of concatenations fTigi in SIII D SIII.D/:

(1) fTig � SCI tStD0II tS�I , in which case s.#iTi /D f0g.

(2) fTig � SCI tStD1II tS�I , in which case s.#iTi /D f1g.

(3) fTig � SCI tSIII tS�I and Ti 2 SIII for a unique i D i0, in which case s.#iTi /D s.Ti0/.

(Here S˙I ;S
t2f0;1g
II ;SIII are tree categories determined by D, following the notation of [61, Section 2.1].)

Suppose now we are given a map of Q–algebras m WRC!R� and twisting maps  ˙ 2‰I.D˙IR˙/,
 0 2‰II.DtD0I C;  �/ and  1 2‰II.DtD1I C;  �/.
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Definition 6.3 The set ‰III.DI 0;  1/ consists of all maps  W S¤∅III .D/!R� satisfying the following
properties:

� For any morphism T 0! T ,  .T 0/D  .T /.

� For any concatenation fTigi of the first type,

(6-14)  .#iTi /D
� Y
Ti2S

C
I

m. C.Ti //

�� Y
Ti2StD0II

 0.Ti /

�� Y
Ti2S�I

 �.Ti /

�
:

� For any concatenation fTigi of the second type,

(6-15)  .#iTi /D
� Y
Ti2S

C
I

m. C.Ti //

�� Y
Ti2StD1II

 1.Ti /

�� Y
Ti2S�I

 �.Ti /

�
:

� For any concatenation fTigi of the third type,

(6-16)  .#iTi /D
� Y
Ti2S

C
I

m. C.Ti //

�
 .Ti0/

� Y
Ti2S�I

 �.Ti /

�
:

Fix a twisting map  2‰III.DI 0;  1/. Theorem 1.1 of [61] provides a set of perturbation data ‚III.D/
together with a forgetful map ‚III.D/!‚II.D0/�‚I.DC/�‚I.D�/‚II.D1/ and associated virtual moduli
counts #MIII.T /

vir
�
2Q; note that the fiber product is defined with respect to (6-10). We define the twisted

moduli counts

(6-17) # MIII.T /
vir
� WD #MIII.T /

vir
� � .T / 2R

�:

If . yX; y�t / is a family of exact cobordisms, then for any � 2‚III.D/, we obtain an RC–linear map

(6-18) K. yX; f�tgt ;  / yJ t ;� W CC�.Y
C; �C;  C/�C;JC;�C ! CC�C1.Y

�; ��;  �/��;J�;��

which sends the monomial
Q
i2I oC

i

to

(6-19)
X

vdim.fTi gi2I /D0

1

jAut.fTigi2I /j
� # MIII.fTigi2I /

vir
�

Y
i2I

o��
i
;

with the sum over trees Ti 2 SIII.D/ with positive orbit Ci and negative orbits ��i ! Pgood.Y
�/.

Equations (4-2) and (4-3) applied to the twisted moduli counts imply that this is a chain homotopy between
ˆ. yX; y�0;  0/ yJ 0;�0 and ˆ. yX; y�1;  1/ yJ 1;�1 and hence that the induced maps on homology

(6-20) CH�.Y
C; �C;  C/�C;JC;�C CH�.Y

�; ��;  �/��;J�;��

ˆ. yX;y�0; 0/ yJ0;�0

ˆ. yX;y�1; 1/ yJ1;�1

are equal.
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Setup IV Fix a datum D for Setup IV. There are three types of concatenations fTigi in SIV D SIV.D/:

(1) fTig � S0I tS02II tS2I , in which case s.#iTi /D f0g.

(2) fTig � S0I tS01II tS1I tS12II tS2I . in which case s.#iTi /D f1g;

(3) fTig � S0I tSIV tS2I and Ti 2 SIV for a unique i D i0, in which case s.#iTi /D s.Ti0/.

(We again follow the notation of [61, Section 2.1] for tree categories determined by D.) Suppose now we
are given maps of Q–algebras m01 WR0!R1 and m12 WR1!R2, and twisting maps

(6-21)
 i 2‰I.Di IRi / for i D 0; 1; 2;

 ij 2‰II.Dij I i ;  j / for ij D 01; 12; 02:

Set m02 Dm12 ım01 WR0!R2.

Definition 6.4 The set ‰IV.DI f ij g/ consists of all maps  W S¤∅IV .D/!R2 satisfying the following
properties:

� For any morphism T 0! T ,  .T 0/D  .T /.

� For any concatenation fTigi of the first type,

(6-22)  .#iTi /D
� Y
Ti2S0I

m02. 0.Ti //

�� Y
Ti2S02II

 02.Ti /

�� Y
Ti2S2I

 2.Ti /

�
:

� For any concatenation fTigi of the second type,

(6-23)  .#iTi /D
� Y
Ti2S0I

m02. 0.Ti //

�� Y
Ti2S01II

m12. 01.Ti //

�� Y
Ti2S1I

m12. 1.Ti //

�

�

� Y
Ti2S12II

 12.Ti /

�� Y
Ti2S2I

 2.Ti /

�
:

� For any concatenation fTigi of the third type,

(6-24)  .#iTi /D
� Y
Ti2S0I

m02. 0.Ti //

�
 .Ti0/

� Y
Ti2S2I

 2.Ti /

�
:

Fix a twisting map  2‰IV.DI f ij g/. Theorem 1.1 of [61] provides a set of perturbation data ‚IV.D/
together with a forgetful map ‚IV.D/ ! ‚II.D02/ �‚I.D0/�‚I.D2/ .‚II.D01/ �‚I.D1/ ‚II.D12// and
associated virtual moduli counts #MIV.T /

vir
�
2Q — here again, the fiber product is defined using (6-10).

We define the twisted moduli counts

(6-25) # MIV.T /
vir
� WD #MIV.T /

vir
� � .T / 2R

2:
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As in the previous section, we obtain an R0–linear map

(6-26) CC�.Y
0; �0;  0/�0;J 0;�0 ! CC�C1.Y

2; �2;  2/�2;J 2;�2 ;

which is a chain homotopy between the maps

ˆ. yX02; y�02;  02/ yJ 02;�02 and ˆ. yX12; y�12;  12/ yJ 12;�12 ıˆ.
yX01; y�01;  01/ yJ 01;�01 ;

so that we get the commuting diagram

(6-27)
CH�.Y

1; �1;  1/�1;J 1;�1

CH�.Y
0; �0;  0/�0;J 0;�0 CH�.Y

2; �2;  2/�2;J 2;�2

ˆ. yX12;y�12; 12/ yJ12;�12

ˆ. yX02;y�02; 02/ yJ02;�02

ˆ. yX01;y�01; 01/ yJ01;�01

6.2 The energy of a (strict) symplectic cobordism

In this section, we introduce a notion of energy for (families of strict) exact symplectic cobordisms, and
for certain classes of almost complex structures.

Notation 6.5 Recall that a strict exact symplectic cobordism from .Y C; �C/ to .Y �; ��/ is the data of
an exact symplectic cobordism . yX; y�/ and embeddings

(6-28) e˙ W .R�Y ˙; y�˙/! . yX; y�/;

which preserve the Liouville forms and satisfy certain additional properties stated in Definition 2.3.
When we consider strict exact symplectic cobordisms in this section, we will routinely abuse notation by
identifying subsets of R�Y ˙ with their image under e˙. We hope that this abuse will make this section
easier to read without introducing any substantial ambiguities.

We begin with the following definition.

Definition 6.6 Let . yX; y�/ be a strict exact symplectic cobordism from .Y C; �C/ to .Y �; ��/. A Type A
cobordism decomposition is the data of a pair of hypersurfaces

(6-29) H� D f�C�g �Y � and HC D fCCg �Y C

for C˙ 2R, such that

(6-30) ..�1;�C�/�Y
�/\ ..CC;1/�Y

C/D∅:

The intersection in (6-30) takes place inside yX ; if Y � D∅, we set H� D∅, C� D 0 and we consider
that (6-30) is tautologically satisfied. We let †. yX; y�/D†. yX; y�I�C; ��/ be the set of all such Type A
cobordism decompositions.

Remark 6.7 Since we are working with strict cobordisms, the real numbers C˙ 2 R are uniquely
determined by the hypersurfaces H˙. The data of the pair .H�;HC/ is therefore equivalent to the data
of the pair .C�; CC/.
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Definition 6.8 Let . yX; y�/ be as in Definition 6.6 and let � 2†. yX; y�/ be a Type A cobordism decompo-
sition. We let E.�/ WD C�CCC be the energy of the decomposition � . We define

(6-31) E. yX; y�/D E. yX; y�I�C; ��/ WD inf
�2†. yX;y�/

E.�/ 2R[f�1g

to be the energy of . yX; y�/; this is well-defined since a cobordism decomposition clearly always exists.
We note that the energy may in general be negative.

Given C 2R, let †. yX; y�/<C �†. yX; y�/ (resp. � C ) denote the subset of cobordism decompositions of
energy strictly less than C (resp. at most C ).

Lemma 6.9 (energy of a symplectization) Suppose that . yX; y�/D .SY; �Y / is a symplectization which
is endowed with the canonical structure of a (strict) exact symplectic cobordism from .Y; �C/ to .Y; ��/;
see Example 2.6. Fix f W Y !R such that �C D ef ��. Then E.SY; �Y /� �minf .

Proof Let e˙ W .R�Y; y�˙/! .SY; �Y / be the canonical identifications induced by �˙. Let HCDf0g�Y
in the coordinates induced by eC. This means that HCD f.f .y/; y/ j y 2 Y g �R�Y in the coordinates
induced by e�. Now given any C� > �minf , we can let H� D f�C�g �Y in the coordinates induced
by e�. It follows that E.SY; y�Y /� C�. Since C� > �minf was arbitrary, the claim follows.

Remark 6.10 If we assume in addition that �CD ��, then it is easy to verify that in fact E.SY; �Y /D 0.

Lemma 6.11 We have E. yX; y�/D�1 if and only if Y � D∅.

Proof Suppose that Y � is nonempty and choose a cobordism decomposition � for . yX; y�/ given by
a pair of hypersurfaces H�;HC � yX . Let .X; �/ be the truncated Liouville cobordism with negative
boundary H� and positive boundary HC. Observe that the image of the negative boundary under the
Liouville flow must touch the positive boundary in some finite time T < 1— indeed, this follows
from the fact that .X; �/ has finite volume. Given any other cobordism decomposition � 0, we now have
E.� 0/� E.�/�T .

Suppose now that Y � is empty. Then (6-30) is a vacuous condition. Since the backwards Liouville flow
of any slice fCCg �Y C is defined for all time, it follows that we can find a cobordism decomposition of
arbitrarily negative energy.

Lemma 6.12 Fix a strict exact symplectic cobordism . yX; y�/ from .Y C; �C/ to .Y �; ��/. Then
†. yX; y�/<C �†. yX; y�/ is

(a) nonempty for C > E. yX; y�/,
(b) path-connected for all C 2R. (Note that the empty set is path-connected.)

If moreover . yX; y�/ D .SY; �Y / is a symplectization and �C D ��, then †. yX; y�/�0 is nonempty and
path-connected.
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Proof Note first that (a) is tautologically true. Next, note that (b) is obvious when Y � D∅. It therefore
remains to prove (b) under the assumption that Y � ¤∅.

Let us consider a pair of cobordism decompositions �; � 0 2 †. yX; y�/<C . By definition, � and � 0 are
entirely determined by the constants �C�; CC 2R (resp. �C 0�; C

0
C

), where we are following the notation
of Definition 6.6.

Suppose first that�C�D�C 0�. Up to relabeling � and � 0, we can assume thatCC�C 0C. Now just translate
C 0
C

in the negative direction until C 0
C
DCC. This translation defines a one-parameter family of cobordism

decompositions taking � 0 to � , whose energy is clearly bounded by max.E.�/; E.� 0//D E.� 0/ < C . An
analogous argument works if we now suppose CC D C 0C and �C� ¤�C 0�.

Suppose finally that �C�¤�C 0� and CC¤C 0C. Up to relabeling � and � 0, we can assume that CC<C 0C.
If�C 0�<�C�, then we translate�C 0� in the positive direction until�C 0�D�C�. If instead�C�<�C 0�,
then we simultaneously translate �C� and CC in the positive direction until either �C� D �C 0� or
CC D C

0
C

. This takes us back to the case treated in the previous paragraph.

Finally, if . yX; y�/D .SY; �Y / is a symplectization with �C D ��, then any Type A cobordism decompo-
sition � 2†. yX; y�/�0 has vanishing energy (Remark 6.10) and is equivalent to a choice of hypersurface
HDH� DHC D f zC �Y g. The space of such choices is in natural bijection with R, so it is in particular
nonempty and connected.

Definition 6.13 Let . yX; y�t /t2Œ0;1� be a one-parameter family of (strict) exact symplectic cobordisms;
cf Definition 2.12. A one-parameter family of Type A cobordism decompositions is just the data of a
family of hypersurfaces

(6-32) H�.t/D f�C�.t/g �Y � and HC.t/D fCC.t/g �Y C

such that

(6-33) ..�1;�C�.t//�Y
�/\ ..CC.t/;1/�Y

C/D∅:

(If Y � D∅, we again set H�.t/D∅, C�.t/D 0 and we consider that (6-33) is tautologically satisfied.)
We let †. yX; y�t /t2Œ0;1� be the set of all such families of cobordism decompositions. (Note that †. yX; y�t0/
is a Type A cobordism decomposition for each fixed choice of t0.)

Definition 6.14 With the notation as above, with define the energy of a family of Type A cobordism
decompositions � 2†. yX; y�t /t2Œ0;1� to be E.�/ WD supt .C�.t/CCC.t//.

Let . yX01; y�01/ (resp. . yX12; y�12/) be a strict exact symplectic cobordism from .Y 0; �0/ to .Y 1; �1/
(resp. from .Y 1; �1/ to .Y 2; �2/). Let . yX; y�t /t2Œ0;1/ be a one-parameter family of strict exact symplectic
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cobordisms which agrees for t � a large enough with the t–gluing . yX01 #t yX12; y�01 #t y�02/t2Œa;1/; see
Definition 2.7. For t � a, note that there are canonical Liouville embeddings

�0;t W . yX
01; y�01/

�t=2
����! . yX01; et=2y�01/ ! . yX01 #t yX12; y�01 #t y�02/;

�2;t W . yX
12; y�12/

��t=2
����! . yX12; e�t=2y�12/! . yX01 #t yX12; y�01 #t y�02/:

Definition 6.15 A Type B cobordism decomposition of . yX; y�t /t2Œ0;1/ is the data of a family of hyper-
surfaces

(6-34) H2.t/D f�C2.t/g �Y 2 and H0.t/D fC0.t/g �Y 0;

and a Liouville embedding .Œ�C1.t/; zC1.t/��Y 1; es�1/ ,! . yX; y�t / such that

(6-35) .�1;�C2.t//�Y
2; .�C1.t/; zC1.t//�Y

1 and .C0.t/;1/�Y
0

are pairwise disjoint. (In the case that Y � D∅, we set H2.t/D∅ and C2.t/D 0, and replace (6-35) by
the condition that .�C1.t/; zC1.t//�Y 1 and .C0.t/;1/�Y 0 are pairwise disjoint.)

We let

(6-36) H1.t/D f�C1.t/g �Y 1 and zH1.t/D f zC1.t/g �Y 1:

This data is required to satisfy the following hypotheses:

(1) zC1.0/D�C1.0/.

(2) For t large enough, H0 and zH1.t/ (resp. H1.t/ and H2.t/) are in the image of the canonical
embedding �0;t (resp. �2;t ). Moreover, their preimages define a Type A decomposition on . yX01; y�01/
(resp. on . yX12; y�12/) which is independent of t .

We let †B.. yX; y�t /t2Œ0;1// denote the set of all such cobordism decompositions. We will write †.�/
instead of †B.�/ when the subscript is understood from the context. As in Remark 6.7, note that the
data of the hypersurfaces H2.t/, H1.t/, zH01.t/ and H0.t/ is equivalent to the data of the constants C2.t/,
C1.t/, zC1.t/ and C0.t/.

Definition 6.16 It follows from property (1) of Definition 6.15 that a Type B cobordism decomposi-
tion �02 2 †B.. yX; y�t /t2Œ0;1// induces a Type A cobordism decomposition � 2 †A. yX; y�0/ by taking
H� DH2.0/ and HC DH0.0/. We say that � is induced at zero by �02.

Similarly, it follows from property (2) of Definition 6.15 that a Type B cobordism decomposition
�02 2 †B.. yX; y�t /t2Œ0;1// induces a pair of Type A decompositions �01 2 †A. yX01; y�01/ and �12 2
†A. yX

02; y�02/. We say that the pair .�01; �12/ is induced at infinity by �02.
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Definition 6.17 With the notation as above, we define the energy of a Type B cobordism decomposition
� 2†B. yX; y�t / to be E.�/ WD supt .C2.t/CC0.t/�C1.t/� zC1.t//. We let

(6-37) E. yX; y�t / WD inf
�2†B. yX;y�t /

E.�/ 2R[f�1g:

Given C 2R, let †. yX; y�t /<C �†. yX; y�t / (resp. � C ) denote the subset of Type B cobordism decom-
positions of energy strictly less than C (resp. at most C ).

The following lemma asserts that our notions of energy for Type A and Type B decompositions are
compatible with the map which associates to a Type B decomposition the Type A decomposition induced
at zero or infinity. It will be used implicitly in the sequel.

Lemma 6.18 Let �02 be a Type B cobordism decomposition. Suppose that � is induced at zero by �02

and that .�01; �12/ is induced at infinity. Then E.�/� E.�02/ and E.�01/C E.�12/� E.�02/.

Proof The first claim follows from (1) in Definition 6.15 and the definition of energy for Type A and
Type B cobordism decomposition. The second claim follows similarly from (2) in Definition 6.15.

Corollary 6.19 We have E. yX; y�t /D�1 if and only if Y 2 D∅.

Proof One direction follows from Lemmas 6.11 and 6.18. The other one can be checked by inspection,
using the backwards Liouville flow as in the proof of the corresponding statement in Lemma 6.11.

Definition 6.20 Suppose that . yX; y�/ and . yX 0; y�0/ are exact symplectic cobordisms. For C 2 R, let
†A.. yX; y�/; . yX

0; y�0//<C �†A. yX; y�/�†A. yX; y�/ (resp. .�/�C ) be the subspace of pairs .�; � 0/ of Type A
cobordism decompositions such that E.�/C E.� 0/ < C (resp. � C ).

Lemma 6.21 Given C 2 R such that †.X02;t ; y�02;t /<C is nonempty, the map which associates to a
decomposition �02 2†.X02;t ; y�02;t /<C the pair .�01; �12/ 2†A.. yX01; y�01/; . yX12; y�12//<C induced
by �02 at infinity is surjective. If �0 D �1 D �2 and . yX01; y�01/; . yX12; y�12/ are symplectizations , the
same statement holds with � in place of <.

Proof Choose a Type B decomposition z�02. Let .z�01; z�12/ be the Type A decompositions induced by
z�02 at infinity. According to Definition 6.15, this means that there exists a T > 0 so that for t � T , we
have that H0.t/ and zH1.t/ are independent of t after pulling back via the canonical embedding �01 (and
similarly H1.t/ and H2.t/ are independent of t after pulling back by �12). By a routine modification of
the arguments of Lemma 6.12(b), one can now construct a Type B decomposition �02 so that �02t D z�

02
t

for t 2 Œ0; T �, E.�02/� E.z�02/ and �02 induces the pair .�01; �12/.
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Lemma 6.22 Suppose that . yX02;t ; y�02;t / is the .t C T /–gluing of two exact symplectic cobordisms
. yX01; y�01/ and . yX12; y�12/, for T � 0 an arbitrary fixed constant and t 2 Œ0;1/ a parameter; see
Definition 2.7 for the definition of this gluing and Lemma 2.13 for the parametric version. Suppose
that either . yX01; y�01/ or . yX12; y�12/ is a symplectization; see Example 2.6. Then E. yX02;t ; y�02;t / D
E. yX01; y�01/C E. yX12; y�12/.

Proof By Lemma 6.11 and Corollary 6.19, we may assume that yX12 has a nonempty negative end.

We only treat the case where . yX01; y�01/ is a symplectization and T D 0, since the other cases are
analogous.

Choose �01 so that E.�01/� E. yX01; y�01/C �, and choose �12 so that E.�12/� E. yX12; y�12/C �. Let
zX01 � yX01 and zX12 � yX12 be the Liouville subdomains which determine the Type A decompositions
�01 and �12, respectively.

Note that yX02;t comes equipped with tautological embeddings �0;t W yX01! yX02;t and �2;t W yX12! yX02;t ;
see Definition 2.7. For T 0 large enough and t � T 0, note that �0;t .H0�/ is in the image of �2;t .H2C/ under
the Liouville flow. These hypersurfaces therefore bound Liouville domains .Œ�C1.t/; zC1.t/��Y 1; es�1/.

Let f W Œ0;1/! R be a function which equals �.C1.T 0/C zC1.T 0// on Œ0; T 0�, is nondecreasing on
ŒT 0; T 0 C 1� and is zero on ŒT 0 C 1;1/. Let �f W yX01 � Œ0;1/ ! yX01 be defined by �f .x; t/ D
�01
f .t/CT 0C1�t

.x/, where �01t is the time-t Liouville flow on yX01. Now define a map x�0;t W yX01! yX02;t

by letting x�0;t .x/D �0;t ı �f .x; t/.

We now define the data of a Type B cobordism decomposition by letting

(6-38) H2.t/D �2;t .H2�/; H1.t/D �2;t .H2C/; zH1 Dx�0;t .H0�.t//; H0 Dx�0;t .H0C.t//:

One can check that this data indeed defines a Type B cobordism decomposition, which has energy precisely
equal to E.�01/C E.�12/� E. yX01; y�01/C E. yX12; y�12/C 2�. Since � was arbitrary, we conclude that
E. yX02;t ; y�02;t /� E. yX01; y�01/C E. yX12; y�12/.

We now discuss almost complex structures for Setups II–IV.

Setup II Fix a datum DD .DC;D�; yX; y�; yJ / for Setup II, with D˙ D .Y ˙; �˙; J˙/. Let .V ˙; �˙/�
.Y ˙; �˙/ be framed codimension 2 contact submanifolds; let ˛˙ WD �˙jV˙ and assume that V ˙ is a
strong contact submanifold with respect to �˙. Let J˙ be d�˙–compatible almost complex structures
on �˙ � T Y ˙ which preserve �˙\T V ˙.

LetH � yX be a codimension 2 symplectic submanifold such that . yX; y�;H/ is an exact relative symplectic
cobordism from .Y C; �C; V C/ to .Y �; ��; V �/. We will also consider (see Notation 2.4) the strict
symplectic cobordisms . yX; y�/�

C

��
and .H; y�jH /˛

C

˛� .
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Definition 6.23 Fix a Type A cobordism decomposition � 2†.H; y�jH /, which is specified by a pair of
hypersurfaces H� D f�C�g �V � and HC D fCCg �V C. We say that an almost complex structure yJ
on yX is adapted to � if the following properties hold:

� yJ is compatible with dy�,

� yJ coincides with yJ˙ near the ends (where yJ˙ is the canonical cylindrical almost complex structure
induced on . yY ; y�˙/ by J˙),

� H � yX is a yJ –complex hypersurface,

� yJ preserves ker˛C�T V C on ŒC2;1/�V C (resp. preserves ker˛��T V � on .�1;�C1��V �)
and the induced almost complex structure is d˛C–compatible (resp. d˛�–compatible).

In the case that V � D∅, the conditions involving V � are considered to be vacuously satisfied.

Definition 6.24 Given an almost complex structure yJ on . yX; y�/ we define its energy

(6-39) E. yJ / WD inffE.�/ j � 2†.H; y�jH /; yJ is adapted to �g 2R[f˙1g:

We define E. yJ /D1 if yJ is not adapted to any cobordism decomposition.

Let J . yX; y�;H/<C (resp. � C ) be the set of almost complex structures of energy less than C (resp. at
most C ). Let J . yX; y�;H/ WD J . yX; y�;H/<1 be the set of almost complex structures adapted to some
decomposition � 2†. yH; y�jH /.

Lemma 6.25 The set J . yX; y�;H/<C is

(a) nonempty for C > E.H; y�jH /, and

(b) path-connected for all C 2R. (Note that the empty set is path-connected.)

If moreover .H; y�jH /D .SV; �V / is a symplectization and ˛C D ˛�, then J . yX; y�;H/�0 is nonempty
and path-connected.

Proof To prove (a), it is enough to show that given any cobordism decomposition � , there exists an
almost complex structure adapted to it, ie meeting the conditions of Definition 6.23. To prove (b), it
follows from Lemma 6.12 that it is enough to prove a similar statement in families: namely, if f�tgt2Œa;b�
is a family of cobordism decompositions and Ja and Jb are almost complex structures adapted to �a
and �b , respectively, then there is a family fJtgt2Œa;b� adapted to �t . All of these statements can be
proved by standard arguments, using the fact that the space of almost complex structures compatible with
a given symplectic structure can be viewed as the space of sections of a bundle with contractible fibers;
see eg [52, Proposition 2.6.4].

If ˛CD ˛� and .H; y�jH / is a symplectization, then Lemma 6.12 implies that †.H; y�jH /�0 is nonempty
and path-connected. Hence the same arguments involving extensions of almost complex structures imply
that J . yX; y�;H/�0 is nonempty and path-connected.
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Setup IV Fix a datum D for Setup IV. We write DD .D01;D12; . yX02;t ; y�02;t ; yJ 02;t /t2Œ0;1//, where

D01 D .D0;D1; yX01; y�01; yJ 01/;
D12 D .D1;D2; yX12; y�12; yJ 12/;
Di D .Y i ; �i ; J i / for i D 0; 1; 2:

Let .V i ; � i /� .Y i ; �/ be framed codimension 2 contact submanifolds; set ˛V i D �
i jV i and assume that

V i are strong contact submanifolds with respect to �i . Let

H 01
� yX01; H 12

� yX12 and .H 02;t
� yX02;t /t2Œ0;1/

be cylindrical symplectic submanifolds such that . yX02;t ; y�02;t ;H 02;t /t2Œ0;1/ is a family of relative
symplectic cobordisms that agrees for t large with the t–gluing of the relative symplectic cobordisms
. yX01; y�01;H 01/ and . yX12; y�12;H 12/. Note that fH 02;tg forms a family of Liouville manifolds with
respect to (the restriction of) y�02;t .

Definition 6.26 Fix a Type B cobordism decomposition �02 2 †B. yH 02;t ; y�
02;t

H02;t /. Recall that �02

consists of the data of hypersurfaces

H2.t/Df�C2.t/g�V 2; H1.t/Df�C1.t/g�V 1; zH1.t/Df zC1.t/g�V 1; H0.t/DfC0.t/g�V 0:

We say that an almost complex structure yJ 02;t is adapted to �02 if the following properties hold:

� yJ 02;t is compatible with dy�02;t .

� yJ 02;t coincides with yJ 0 (resp. yJ 2) near the positive (resp. negative) end.

� H 02;t is a yJ 02;t–complex hypersurface. yJ 02;t is compatible with the restriction of dy�02;t toH 02;t ,
and

� yJ 02;t preserves ker˛0 on ŒC0.t/;1/ � V 0, and preserves ker˛1 on Œ�C1.t/; zC1.t/� � V1, and
preserves ker˛2 on .�1;�C2.t/� � V2/. Moreover, the induced almost complex structure is
d˛0–compatible, d˛1–compatible, and d˛2–compatible.

In the case that V 2 D∅, all conditions involving V 2 are considered to be vacuously satisfied.

Definition 6.27 Given a family of almost complex structures yJt , we define its energy by

(6-40) E. yJt / WD inffE.�/ j � 2†. yX02;t ; y�02;t /; yJt is adapted to �g 2R[f˙1g:

If yJt is not adapted to any cobordism decomposition, we set E. yJt /D1.

Let J . yX02;t ; y�02;t ;H 02;t / be the set of almost complex structures adapted to some Type B decomposition
� 2†B.H

02;t ; y�02;t jH02;t /. For C 2R, let J . yX02;t ; y�02;t ;H 02;t /<C (resp. � c) be the set of all such
decompositions having energy less than C (resp. at most C ).

Let J .. yX01; y�01/; . yX12; y�12//<C � J . yX01; y�01/�J . yX12; y�12/ (resp. � C ) be the subspace of pairs
.J; J 0/ with the property that E.J /C E.J 0/ < C (resp. � C ).
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The following lemma is an analog of Lemma 6.25 and can be proved by similar arguments.

Lemma 6.28 The set J . yX02;t ; y�02;t ;H 02;t /<C is nonempty for C > E. yX02;t ; y�02;t ;H 02;t /. If more-
over ˛0 D ˛1 D ˛2 and .H 01; y�01jH01/; .H 12; y�12jH12/ and .H 02;t ; y�02;t jH02;t / are symplectizations ,
then J . yX02;t ; y�02;t ;H 02;t /�0 is nonempty.

We will also need the following lemma, which follows from Lemma 6.21 and standard arguments for
extending compatible almost complex structures.

Lemma 6.29 Suppose that J . yX02;t ; y�02;t ;H 02;t /<C is nonempty. The map that associates to an almost
complex structure yJt 2 J . yX02;t ; y�02;t ;H 02;t /<C the pair . yJ 01; yJ 12/ 2 J .. yX01; y�01/; . yX12; y�12//<C
is surjective for all C > 0.

If moreover ˛0 D ˛1 D ˛2, and .H 01; y�01jH01/, .H 12; y�12jH12/ and .H 02;t ; y�02;t jH02;t / are symplecti-
zations , then the same statement holds for C D 0 with � in place of <.

7 Enriched setups and twisted moduli counts

7.1 Enriched setups

The construction of invariants of codimension 2 contact submanifolds in this paper follows the same
general scheme as Pardon’s construction of contact homology. However, we work with a class of “enriched”
Setups I*–IV*, which contain more information than the standard Setups I–IV considered by Pardon and
reviewed in Section 4.1.

We will show in Section 7.2 that the data associated to our enriched setups give rise to twisting maps.
These twisting maps are constructed using Siefring’s intersection theory, and will be used to define
“twisted” moduli counts, following the construction of Section 6.1.

Given a datum D for any of Setups I*–IV*, there is a “forgetful functor” which allows one to view D as a
datum of Setups I–IV. However, it is not the case that every datum of Setups I–IV admits an enrichment.
Nevertheless, we will show in Section 8.1 that the class of enriched data is large enough for the purpose
of defining invariants in the spirit of contact homology.

Setup I* A datum DD ..Y; �; V /; r; �; J / for Setup I* consists of

� a TN contact pair .Y; �; V /,

� an element rD .˛V ; �; r/ 2R.Y; �; V /,

� a contact form ker�D � which is adapted to r, and

� an almost complex structure J which is compatible with d� and preserves �V .

Observe that there is a “forgetful functor” from Setup I* to Setup I which remembers .Y; �; J / but forgets
V and r. One has analogous forgetful functors for the other setups.
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Setup II* A datum DD .DC;D�; yX; y�;H; yJ / for Setup II* consists of

� data D˙ D ..Y ˙; �˙; V ˙/; r˙; �˙; J˙/ for Setup I*, where we write r˙ D .˛˙V ; �
˙; r˙/,

� an exact relative symplectic cobordism . yX; y�;H/ with positive end .Y C; �C; V C/ and negative
end .Y �; ��; V ˙/, and

� an dy�–tame almost complex structure yJ on yX which agrees with yJ˙ at infinity.

This datum is moreover subject to the conditions that

� there exists a trivialization of the normal bundle of H which restricts to �C (resp. ��) on the
positive (resp. negative) end, and

� E. yJ / <1 and rC � eE. yJ/r�.

Setup III* A datum DD .DC;D�; yX; y�t ;H t ; yJ t /t2Œ0;1� for Setup III* consists of

� data D˙ D ..Y ˙; �˙; V ˙/; r˙; �˙; J˙/ for Setup I*,

� a family of exact relative symplectic cobordisms . yX; y�t ; yH t / for t 2 Œ0; 1�, with positive end
.Y C; �C; V C/ and negative end .Y �; ��; V �/, and

� a family dy�t–tame almost complex structures yJ t on yX , which agree with yJ˙ at infinity.

This datum is moreover subject to the conditions that

� there exists a trivialization of the normal bundle of H which restricts to �C (resp. ��) on the
positive (resp. negative) end, and

� E. yJ t / <1 and rC � eE. yJ
t /r�.

Setup IV* A datum DD .D01;D12; . yX02;t ; y�02;t ;H 02;t ; yJ 02;t /t2Œ0;1// for Setup IV* consists of

� data Di D ..Y i ; � i ; V i /I ri ; �i ; J i / for Setup I* for i D 0; 1; 2,

� a datum D01 D .D0;D1; yX01; y�01;H 01; yJ 01/ for Setup II*,

� a datum D12 D .D1;D2; yX12; y�12;H 12; yJ 12/ for Setup II*, and

� a family of cylindrical symplectic submanifolds H 02;t � yX02;t for t 2 Œ0;1/, such that

. yX02;t ; y�02;t ;H 02;t /t2Œ0;1/

is a family of exact relative symplectic cobordisms that agrees for t large with the t–gluing of the
relative symplectic cobordisms . yX01; y�01;H 01/ and . yX12; y�12;H 12/.

This datum is moreover subject to the conditions that

� there exists a trivialization of the normal bundle of H 02;t which restricts to �0 (resp. �2) on the
positive (resp. negative) end,

� there exists a trivialization of the normal bundle of H 01 which restricts to �0 (resp. �1) on the
positive (resp. negative) end,
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� there exists a trivialization of the normal bundle of H 12 which restricts to �1 (resp. �2) on the
positive (resp. negative) end,

� E. yJ 02;t / <1; E. yJ 01/ <1 and E. yJ 12/ <1, and

� r0 � eE.
yJ 02;t /r2; r0 � eE. yJ

01/r1; and r1 � eE. yJ
12/r2.

We note that the requirement in Setups II*–IV* that the almost complex structures have finite energy is
of course vacuous if r�, r1 and r2 are nonzero (or equivalently, V �, V1 and V2 are nonempty).

7.2 Twisting maps associated to enriched setups

In this section, we construct twisting maps on the contact homology algebra. These maps depend on
geometric data involving codimension 2 contact submanifolds and relative symplectic cobordisms.

Setup I* Let DD ..Y; �; V /; r; �; J / be a datum for Setup I*, where rD .˛V ; �; r/. There is an obvious
functor from SI.D/ to the category yS. yY / defined in Section 5.3. We therefore have a well-defined
intersection number T � yV for T 2 SI.D/. We now introduce twisting maps associated to the above setup.

Definition 7.1 We define a map  V .T / W S¤∅I .D/!QŒU � by

(7-1)  V .T /D U
T� yVC��.T;V /;

where ��.T; V / denotes the number of output edges e of T such that the corresponding Reeb orbit e is
contained in V. Corollary 5.14 ensures that the exponents appearing in these definitions are nonnegative.

Remark 7.2 Corollary 5.14 only applies to trees T such that M.T /¤∅. This is why the definition of
twisting maps only requires them to be defined on S¤∅ and not on the whole category S.

Definition 7.3 We define a map z V W S¤∅I .D/!Q by

(7-2) z V .T /D

�
1 if T � yV D 0 and jej \V D∅ for every e 2E.T /,
0 otherwise.

We must now check that the maps in Definitions 7.1 and 7.3 satisfy the axioms of Definition 6.1.

Proposition 7.4 The map  V introduced in Definition 7.1 is a twisting map.

Proof It follows from Proposition 5.11 that  V .T /D  V .T 0/ for any morphism T ! T 0.

Let fTigi be a concatenation in S¤∅I . We need to show that  V .#iTi /D
Q
i  V .Ti /, ie

(7-3) .#iTi /� yV C��.#iTi ; V /D
X
i

Ti � yV C�
�.Ti ; V /:
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We assume V ¤ ∅ (otherwise there is nothing to say). Since the contact form � is positive-elliptic
near V, we have pN ./ D 1 for every Reeb orbit  contained in V by Proposition 3.8. Remark 5.5
and Corollary 5.4 therefore imply that y � yV is equal to �1 if  is contained in V and 0 otherwise. By
Proposition 5.12, this means that

(7-4) T � yV D
X

v2V.T /

ˇv � yV C�
int.T; V /

for all T 2 SI, where � int.T; V / denotes the number of edges e 2E int.T / such that e is contained in V.
Equation (7-3) is therefore equivalent to

(7-5) � int.#iTi ; V /C��.#iTi ; V /D
X
i

.� int.Ti ; V /C�
�.Ti ; V //:

The result now follows from the observation that there is a (canonical) label-preserving bijection between
E int.#iTi /[E�.#iTi / and

S
i .E

int.Ti /[E
�.Ti //— this is an immediate consequence of the definition:

every interior edge of Tj corresponds to an interior edge of #iTi , and every output edge of Tj corresponds
either to an interior or an output edge of #iTi depending on whether it is identified with another edge in
the concatenation or not.

It will be convenient to introduce the following definition.

Definition 7.5 Given a tree T 2 SI, a vertex v 2 V.T / is mean if it is an interior vertex and jej � V for
all e 2 eC.v/tE�.v/. All other vertices are said to be nice. These sets are denoted by Vm.T /� V.T /
and Vn.T /� V.T /, respectively.

Remark 7.6 This notion of nice/mean vertices is purely auxiliary (and has nothing to do with good/bad
Reeb orbits!). Geometrically, mean vertices correspond to holomorphic buildings which have intermediate
orbits intersecting yV. Nice orbits do not affect the intersection number of the building, but mean orbits do
affect it and must therefore be treated carefully (hence the adjective).

Proposition 7.7 The map z V introduced in Definition 7.3 is a twisting map.

Proof Fix a tree T 2 S¤∅I . We first show that z V .T 0/ D z V .T / for any tree T 0 2 S¤∅I admitting a
morphism T 0! T . Observe that we may assume without loss of generality that T 0 is representable by a
yJ –holomorphic building; see Definition 5.13. Indeed, since T; T 0 2 S¤∅I , there exists T 00! T 0! T such

that T 00 is representable by a yJ –holomorphic building. So we may as well prove that z V .T 00/D z V .T 0/
and z V .T 00/D z V .T /.

Let us therefore fix T 0 2 S¤∅I such that T 0 is representable by a yJ –holomorphic building, and a morphism
T 0! T . It follows from Proposition 5.11 that T 0� yV D T � yV. Note that T 0 and T have the same exterior
edges. If one of these edges is contained in V, then z V .T 0/D z V .T /D 0. So we can assume that the
exterior edges of T 0 and T are not contained in V.
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Suppose now that T 0 has an interior edge contained in V. For i D 0; 1; 2, let Xi � 0 be the number of
edges e 2E.T 0/ such that jej � V and e is adjacent to exactly i mean vertices. By assumption, we have
X2CX1CX0 � 1. According to Proposition 5.12, we have

(7-6) T 0 � yV D
X

v2Vn.T 0/

ˇv � yV C
X

v2Vm.T 0/

ˇv � yV CX2CX1CX0:

According to Proposition 5.3, we also have that
P
v2Vn.T 0/

ˇv � yV � 0— here we use the fact that
T 0 is representable by a yJ –holomorphic building. If there are no mean vertices, then we have thatP
v2Vm.T 0/

ˇv � yV D 0, X1DX2D 0 and X0 � 1. So T 0� yV > 0. If there exists at least one mean vertex,
observe that we haveX2�#Vm.T 0/�1. Moreover, given v2Vm.T 0/, Proposition 5.6 together with the fact
that T 0 is representable by a yJ –holomorphic building imply that ˇv � yV � 1�pv , where pv is the number
of edges adjacent to v. It follows that

P
v2Vm.T 0/

ˇv� yV CX2CX1� .#Vm.T 0/�X1�2X2/CX2CX1D
#Vm.T 0/�X2 � 1. It thus follows again that T 0 � yV > 0. We conclude that z H .T 0/D z H .T /D 0 if T 0

has an interior edge contained in V.

We are left with the case where T 0 and hence T have no edges contained in V. It is then immediate that
z V .T

0/D z V .T /.

We now show that any concatenation fTigi satisfies z V .#iTi /D
Q
i
z V .Ti /. If one of the Ti has an edge

contained in V, then #iTi also has an edge contained in V and we have z V .#iTi / D
Q
i
z V .Ti / D 0.

If none of the Ti have an edge contained in V, then the same is true for #iTi . Hence Proposition 5.12
implies that #iTi � yV D

P
i Ti �

yV. By positivity of intersection (Proposition 5.3),
P
i Ti �

yV D 0 if and
only if Ti � yV D 0 for all i . It then follows that z V .#iTi /D

Q
i
z V .Ti /.

Setup II* Fix a datum DD .DC;D�; yX;H; y�; yJ / for Setup II*, where we write

D˙ D ..Y ˙; �˙; V ˙/; r˙; �˙; J˙/ and r˙ D .˛˙; �˙; r˙/:

We now introduce the following twisting maps.

Definition 7.8 We define a map  H W S¤∅II .D/!QŒU � by

(7-7)  H .T /D U
T�HC��.T;V �/:

Definition 7.9 We define a map z H W S¤∅II .D/!Q by

(7-8) z H .T /D

�
1 if T �H D 0 and jej \V ˙ D∅ for every e 2E.T /;
0 otherwise.

We need to verify that the above definitions satisfy the axioms of twisting maps. The first step is to prove
that the  H .T / are nonnegative powers of U . This is the content of Corollary 7.12, whose proof requires
some preparatory lemmas. (In the next two lemmas, P† always denotes an arbitrary punctured Riemann
surface.)
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Lemma 7.10 For n� 1, suppose that ˇ 2 �2
�
yX; C t

�Sn
iD1 

�
i

��
is represented by a yJ –holomorphic

curve u W P†! yX which is contained in H . Then PC� e�E. yJ/
�Pn

iD1 P
�
i

�
� 0, where PC (resp. P�i ) is

the period of C � .Y C; �C/ (resp. the period of �i � .Y
�; ��/).

Proof The claim is trivial if E. yJ /D1, so let us assume that yJ 2 J . yX; y�;H/. We may therefore fix a
Type A decomposition � of .H; �H /, which is specified by a pair of hypersurfaces H� D f�C1g �V �
and HC D fCCg �V C.

It will be convenient to define the regions R� WD .�1;�C1� � V
�, RC WD ŒC2 � 1/ � V

C and
zH DH � .int.R�/[ int.RC//. Let us first assume that u is transverse to the boundary of zH . Consider

now the sum

(7-9)
Z
u�1.R�/

e�C1u�d˛�C

Z
u�1. zH/

u�dy�C eC2
Z
u�1.RC/

u�d˛C:

Each summand is nonnegative due to the fact that u is yJ –holomorphic and that yJ is adapted to � .
By Stokes’ theorem, the sum of the integrals is eC2PC � e�C1

�Pn
iD1 P

�
i

�
� 0. This implies that

PC � e�E.�/
�Pn

iD1 P
�
i

�
.

If u is not transverse to the boundary of zH , observe by Sard’s theorem that transversality can be achieved
for a sequence of domains zHn WD zH [ Œ�C n1 ;�C1� [ ŒC2; C

n
2 �, where fC ni g

1
nD0 is monotonically

decreasing and C ni ! Ci . It is easy to verify that yJ is still adapted to the Type A decompositions
induced by the boundary of zHn, so the above argument goes through and passing to the limit gives
PC � e�E.�/

�Pn
iD1 P

�
i

�
.

The lemma now follows from the definition of E. yJ /.

Lemma 7.11 For n� 0, suppose that ˇ 2 �2. yX; C t .
Sn
iD1 

�
i // is represented by a yJ –holomorphic

curve u W P†! yX . (Note that unlike in Lemma 7.10, we allow nD 0 in which case the union is interpreted
as being empty.) Then ˇ �H � �nu, where nu is the total number of negative punctures of u contained
in V � � Y �.

Proof According to Proposition 5.3, we only need to consider the case where the image of u is contained
in H . By definition of a datum for Setup II*, the trivializations �˙ extend to a global trivialization � of
the normal bundle of H , which implies that u� �H D 0. Using the fact that u� �H D 0, we have (see
Definition 5.1 and the proof of Proposition 5.6)

(7-10) u�H D ˛
� I�
N .C/�

nX
iD1

˛
� IC
N .�i /D bCZ�N .

C/=2c�

nX
iD1

dCZ�N .
�
i /=2e

D brCPCc�

nX
iD1

br�Pic;

where the sum is interpreted as zero if u has no negative punctures.
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We may assume that n � 1 and r� > 0 (otherwise the lemma is automatic). Let pu D nuC 1 be the
total number of punctures (positive and negative) of u contained in V ˙ � Y ˙. Using the trivial bounds
x� 1 < bxc � x, we obtain

(7-11) u�H > .rCPC� 1/�

nX
iD1

.1C r�P�i /D�puC r
CPC� r�

nX
iD1

P�i :

Using now Lemma 7.10 and the fact that rC � eE. yJ/r�, we have

(7-12) �puC r
CPC� r�

nX
iD1

P�i � �puC r
C��E.

yJ/
nX
iD1

P�i � r
�

nX
iD1

P�i � �pu:

The claim follows.

Corollary 7.12 We have T �H � ���.T; V �/ for any T 2 S¤∅II .D/. Hence  H .T / 2QŒU �.

Proof Since T 2 S¤∅II .D/, there exists T 0! T such that T 0 is representable by a holomorphic building.
Since the Siefring number is invariant under gluing (Proposition 5.11), we may assume that T is repre-
sentable by a holomorphic building. We now apply Proposition 5.17: it therefore suffices to check that
for each v 2 T , the intersection number ˇv � ��.v/ is bounded below by �#fE�.v/g. In the case that
�.v/D 01, this follows from Lemma 7.11. In the case that �.v/D 00 or �.v/D 11, this follows either
from Lemma 7.11 or (more directly) from Proposition 5.6.

Proposition 7.13 Let fTigi be a concatenation in SII. Then we have

( #i Ti /�H C��.#iTi ; V �/

D

X
Ti2S

C
I

.Ti � yV
C
C��.Ti ; V

C//C
X
Ti2SII

.Ti �H C�
�.Ti ; V

�//C
X
Ti2S�I

.Ti � yV
�
C��.Ti ; V

�//:

Proof As in the proof of Proposition 7.4, our assumptions imply that y �V ˙ D �1 if  is contained
in V ˙ and 0 otherwise. By Proposition 5.15, we have

(7-13) T �H D
X

v2V.T /
�.v/D00

ˇv � yV
C
C

X
v2V.T /
�.v/D01

ˇv �H C
X

v2V.T /
�.v/D11

ˇv � yV
�
C� int.T; V C/C� int.T; V �/

for all T 2 SII. By applying this formula to T D #iTi (and also using (7-4)), we see that it suffices to
prove that

(7-14) � int.#iTi ; V C/C� int.#iTi ; V �/C��.#iTi ; V �/

D

X
Ti2S

C
I

� int.Ti ; V
C/C��.Ti ; V

C/C
X
Ti2SII

� int.Ti ; V
C/C� int.Ti ; V

�/C��.Ti ; V
�/

C

X
Ti2S�I

� int.Ti ; V
�/C��.Ti ; V

�/:
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As in the proof of Proposition 7.4, this is just a matter of understanding how the edges of #iTi are obtained
from the edges of the Ti , following the discussion in [61, Section 2.2]. More precisely, let us check that
every edge counted on the right-hand side of (7-14) is also counted on the left-hand side. Note that under
concatenation, interior edges remain interior edges. Output edges either remain output edges, or they
become interior edges. The output edges corresponding to ��.Ti ; V C/ for Ti 2 SCI must all become
interior edges of #iTi : indeed, any such output edge has label �.e/D 0, but the output edges of #iTi have
label �.e/D 1. These output edges are thus counted in � int.#iTi ; V C/.

The output edges corresponding to ��.Ti ; V �/ for Ti 2 SII may either become interior edges of #iTi (in
which case they are counted in � int.#iTi ; V �/), or remain output edges (in which case they are counted in
��.#iTi ; V �/). Similarly, the output edges corresponding to ��.Ti ; V �/ for Ti 2 S�I may either become
interior edges of #iTi (counted in � int.#iTi ; V �/) or remain output edges (counted in ��.#iTi ; V �/).

Corollary 7.14 Under the assumptions of Proposition 7.13,  H 2‰II.DI VC ;  V �/.

Proof Proposition 5.11 implies that  H .T /D  H .T 0/ for any morphism T ! T 0. Proposition 7.13
implies that  H acts correctly on concatenations.

We now want to show that z H is a twisting map. We will need the following definition.

Definition 7.15 Given a tree T 2 SII, a vertex v 2 V.T / is mean if it is an interior vertex and jej � V ˙

for all e 2 eC.v/tE�.v/. All other vertices are said to be nice. These sets are denoted by Vm.T /�V.T /
and Vn.T /� V.T /, respectively.

Proposition 7.16 Under the assumptions of Definition 7.9, z H 2‰II.DI z VC ; z V �/.

Proof Consider a tree T 0 2 S¤∅II with a morphism T 0! T . We wish to show that z H .T 0/D z H .T /. As
in the proof of Proposition 7.7, we may assume that T 0 is representable by a building; see Definition 5.16.

It follows from Proposition 5.11 that T 0 �H D T �H . Note that T 0 and T have the same exterior edges.
If one of these edges is contained in V ˙, then z H .T 0/D z H .T /D 0. So we can assume that the exterior
edges of T 0 and T are not contained in V ˙.

Suppose now that T 0 has an interior edge contained in V ˙. Arguing as in the proof of Proposition 7.7,
let Xi � 0 for i D 0; 1; 2 denote the number of edges e 2E.T 0/ such that jej � V ˙ and e is adjacent to
exactly i mean vertices. By assumption X0CX1CX2 � 1. By Proposition 5.15, we have

(7-15) T 0 �H D
X

v2Vn.T 0/

ˇv �HvC
X

v2Vm.T 0/

ˇv �HvCX2CX1CX0;

where we write Hv D yV C if �.v/D 00, Hv DH if �.v/D 01 and Hv D yV � if �.v/D 11. According to
Proposition 5.6 and the fact that T 0 is representable by a building, we have that

P
v2Vn.T 0/

ˇv �Hv � 0.
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If there are no mean vertices, then
P
v2Vm.T 0/

ˇv �Hv DX1 DX2 D 0 and X0 � 1. Hence T 0 �H � 1.
If there exists at least one mean vertex, observe that X2 � #Vm.T 0/� 1. According to Lemma 7.11
and the fact that T 0 is representable by a building, we have that

P
v2Vm.T /

ˇv �Hv C X2 C X1 �

#Vm.T 0/�X1�2X2CX2CX1D #Vm.T 0/�X2� 1. It thus follows again that T 0� yV � 1. We conclude
that z V .T 0/D z V .T /D 0 if T 0 has an interior edge contained in V ˙.

We are left with the case where T 0 and hence T have no edges contained in V ˙. It’s then immediate that
z H .T

0/D z H .T /.

If fTigi is a concatenation, then the argument is the same as in the proof of Proposition 7.7 (using
Proposition 5.15 instead of Proposition 5.12).

Setup III* Fix a datum DD .DC;D�; yX; y�t ;H t ; yJ t /t2Œ0;1� for Setup III*, where

D˙ D ..Y ˙; �˙; V ˙/; r˙; �˙; J˙/:

We now introduce the following twisting maps.

Definition 7.17 We define a map  H t W S¤∅III .D/!QŒU � by

(7-16)  H t .T /D U T�H
tC��.T;V �/:

Definition 7.18 We define a map z H t W S¤∅III .D/!Q by

(7-17) z H t .T /D

�
1 if T �H t D 0 and jej \V ˙ D∅ for every e 2E.T /,
0 otherwise.

There is no difference between SIII and SII from the point of view of the intersection theory defined in
Section 5.3. It can therefore be shown by essentially the same arguments as in the previous section that
the above definitions do indeed satisfy the axioms for twisting maps.

Corollary 7.19 We have  H t 2‰III.DI H0 ;  H1/ and z H t 2‰III.DI z H0 ; z H1/.

Setup IV* Fix datum DD .D01;D12; . yX02;t ; y�02;t ;H 02;t ; yJ 02;t /t2Œ0;1// for Setup IV*. Here,

� D01 D .D0;D1; yX01; y�01;H 01; yJ 01/ is a datum for Setup II*,

� D12 D .D1;D2; yX12; y�12;H 12; yJ 12/ is a datum for Setup II*, and

� Di D ..Y i ; � i ; V i /I ri ; �i ; J i / is a datum for Setup I* for i D 0; 1; 2.

We introduce the following twisting maps.

Definition 7.20 We define  H02;t W S¤∅IV .D/!QŒU � by

(7-18)  H02;t .T /D U T��C�
�.T;V 2/:
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Definition 7.21 We define z H02;t W S¤∅IV .D/!Q by

(7-19) z H02;t .T /D

�
1 if T � �D 0 and jej \V i D∅ for all e 2E.T / and i 2 f0; 1; 2g,
0 otherwise.

We need to show that the powers of U appearing in Definition 7.20 are nonnegative. This will be the
content of Corollary 7.24, which requires some preparatory lemmas.

Lemma 7.22 For n� 1, suppose that u W P†! yX02;t is yJ 02;t–holomorphic with positive orbit C and
negative orbits

Sn
iD1 

�
i . Then we have PC�e�E. yJ

02;t /
P
i P
�
i � 0, where PC (resp. P�i ) is the period

of C � V 0 (resp. �i � V
2).

Proof The proof is analogous to that of Lemma 7.10. If E. yJ 02;t / D 1, the result is trivial. Hence
we may assume that yJ 02;t 2 J . yX02;t ; y�02;t ;H 02;t / and fix a Type B cobordism decomposition �02;t

of .H 02;t ; y�02;t jH02;t / to which yJ 02;t is adapted. The decomposition �02;t is specified by a family of
hypersurfaces

H2.t/Df�C2.t/g�V 2; H1.t/Df�C1.t/g�V 1; zH1.t/Df zC1.t/g�V 1; H0.t/D fC0.t/g �V 0:

It will be convenient to define the regions R2.t/D .�1;�C2.t/��V 2; R0.t/D ŒC0.t/;1/�V 0 and
R1.t/D Œ�C1.t/; zC1.t/��V

1.

Suppose first that R1.t/ is empty. Then zC1.t/ C C1.t/ D 0, and hence E.�02;t / D C0.t/ C C2.t/.
Hence E.�02;t / coincides with the energy of �02;t if it is viewed as a Type A cobordism decomposition
(Definition 6.8) by forgetting C1 and zC1. Hence, when R1.t/ is empty, the claim reduces to Lemma 7.10.

We now assume that R1.t/ is nonempty. We suppose that zH 02;t
12 t

zH
02;t
01 are the connected components

of X02;t � int
�
R2.t/[R1.t/[R0.t/

�
. Let us first assume that the image of u intersects the boundaries

of zH 02;t
01 and zH 02;t

12 transversally. We then have the following computations:

�

Z
u�1.R2.t//

u�˛2 D

Z
u�1.H2.t//

u�˛2�

nX
iD1

P�i � 0,

�

Z
u�1.H

02;t
21 /

u�d.es˛2/D e
�C1.t/

Z
u�1.H1.t//

u�˛1� e
�C2.t/

Z
u�1.H2.t//

u�˛2 � 0,

�

Z
u�1.R1.t//

u�˛1 D

Z
u�1.zH1.t//

u�˛1�

Z
u�1.H1.t//

u�˛1 � 0,

�

Z
u�1. zH

02;t
01 /

u�d.es˛1/D e
C0.t/

Z
u�1.H0.t//

u�˛0� e
zC1.t/

Z
u�1.zH1.t//

u�˛1 � 0,

�

Z
u�1.R0.t//

u�˛0 D P
C
i �

Z
u�1.H0.t//

u�˛0 � 0.
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After appropriate rescalings, these terms form a telescoping sum. We find that

PC� eC2.t/CC0.t/�C1.t/�
zC1.t/

X
i

P�i D P
C
� e�E.�

02;t /
X
i

P�i � 0:

Suppose now that the image of u does not intersect the boundaries of zH 02;t
01 and zH 02;t

12 transversally. For
�n # 0, set

R
.n/
2 WD.�1;�C2.t/��n��V

2; R
.n/
0 D ŒC0.t/C�n;1/�V

0; R
.n/
1 D Œ�C1.t/C�n;

zC1.t/��n��V
1:

By Sard’s theorem, we may assume by choosing �n appropriately that u intersects the boundary of the
R
.n/
i transversally. Now repeat the above argument with R.n/i in place of Ri .t/. This yields the inequality

PC� eC2.t/CC0.t/�C1.t/�
zC1.t/C4�n

P
i P
�
i � 0. The claim now follows by passing to the limit.

Lemma 7.23 For n� 0, suppose that u W P†! yX02;t is a yJ 02;t–holomorphic curve in the homotopy class
ˇ 2 �2

�
yX02;t ; C t

�Sn
iD1 

�
i

��
for t <1. Then ˇ � ŒH 02;t � � �nu, where nu is the total number of

negative punctures. (Note that unlike in Lemma 7.22, we allow nD 0 here, in which case the union is
interpreted as being empty.)

Proof We argue as in the proof of Lemma 7.11. It is enough to consider the case where the image of u
is contained in H 02;t . The trivialization � extends to a global trivialization along H 02;t , implying that
ˇ �� H

02;t D 0.

We thus have

u�H 02;t
D ˛

� I�
N .C/�

nX
iD1

˛
� IC
N .�i /D bCZ�N .

C/=2c�

nX
iD1

dCZ�N .
�
i /=2e

D br0P
C
c�

nX
iD1

CbrPic;

where the sum is interpreted as zero if u has no negative punctures. Thus the lemma is verified if nD 0
or r2 D 0. It remains only to consider the case where n� 1 and r2 > 0.

Using the trivial bounds x� 1 < bxc � x, we obtain

u� yV >
X
z2p

C
u

.r0Pz � 1/�
X
z2p�u

.1C r2Pz/� �puC e
E.�02/r2

� X
z2p

C
u

Pz

�
� r2

X
z2p�u

Pz :

It follows from Lemma 7.22 that e yJ
02;t

r2
�P

z2p
C
u
Pz
�
� r2

P
z2p�u

Pz � 0. The claim follows.

Corollary 7.24 We have that T � �C��.T; V 2/� 0.

Proof We need to consider two cases. If s.T / 2 Œ0;1/, then the claim follows by combining
Proposition 5.17 and Lemma 7.23. If s.T / D f1g, then the argument is the same as in the proof
of Corollary 7.12.
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Proposition 7.25 Let fTigi be a concatenation in SIV of type (2) in Setup IV on page 45. Then we have

( #i Ti /� �C��.T; V 2/

D

X
Ti2S0I

.Ti � yV
0
C��.Ti ; V

0//C
X
Ti2S01II

.Ti �H
01
C��.Ti ; V

1//C
X
Ti2S1I

.Ti � yV
1
C��.Ti ; V

1//

C

X
Ti2S12II

.Ti �H
12
C��.Ti ; V

2//C
X
Ti2S2I

.Ti � yV
2
C��.Ti ; V

2//:

Proof As in the proof of Proposition 7.4, our assumptions imply that y � V j D �1 if  is contained
in V j and 0 otherwise. Proposition 5.15 implies that

.#iTi /� �

D

X
v2V.#iTi /
�.v/D00

ˇv � yV
0
C

X
v2V.#iTi /
�.v/D01

ˇv �H
01
C

X
v2V.#iTi /
�.v/D11

ˇv � yV
1
C

X
v2V.#iTi /
�.v/D12

ˇv �H
12
C

X
v2V.#iTi /
�.v/D22

ˇv � yV
2

C� int.#iTi ; V 0/C� int.#iTi ; V 1/C� int.#iTi ; V 2/:

As in the proof of Proposition 7.13, it follows that the result is equivalent to

� int.#iTi ; V 0/C� int.#iTi ; V 1/C� int.#iTi ; V 2/C��.T; V 2/

D

X
Ti2S0I

� int.Ti ; V
0/C��.Ti ; V

0/C
X
Ti2S01II

� int.Ti ; V
0/C� int.Ti ; V

1/C��.Ti ; V
1/

C

X
Ti2S1I

� int.Ti ; V
1/C��.Ti ; V

1/C
X
Ti2S12II

� int.Ti ; V
1/C� int.Ti ; V

2/C��.Ti ; V
2/

C

X
Ti2S2I

� int.Ti ; V
2/C��.Ti ; V

2/;

which is a consequence of the way the edges of #iTi are obtained from the edges of the Ti .

Corollary 7.26 We have  H02;t 2‰IV.DI H01 ;  H12 ;  H02;0/ and we have that

z H02;t 2‰IV.DI z H01 ; z H12 ; z H02;0/:

Proof Proposition 7.25 shows that  H02;t acts correctly on concatenations of type (2); the proof
that  H02;t behaves well with respect to the other two types of concatenation is virtually identical.
Proposition 5.11 implies that  H02;t .T /D  H02;t .T 0/ for any morphism T ! T 0. The argument that
z H02;t .T /D z H02;t .T 0/ is essentially the same as the proof of Proposition 7.16, except that we appeal
to Lemma 7.23 instead of Lemma 7.11.

The results from the previous sections can be conveniently packaged into the following theorem.
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Theorem 7.27 (cf [61, Theorem 1.1]) Let D be a datum for any one of Setups I*–IV*. Then there
exists a set of perturbation data ‚.D/ and twisted moduli counts

# M.T /vir
� 2QŒU � and # z M.T /vir

� 2Q

for � 2‚.D/ and T 2 S�.D/ for �D I; II; III; IV, satisfying the obvious analogs of (i)–(v) in Theorem 1.1
in [61].

Proof There is a forgetful functor taking a datum for the enriched setups I*–IV* (Section 7.1) to
a datum for the standard Setups I–IV (Section 4.1). So the set of perturbation data is furnished by
[61, Theorem 1.1]. We showed in Section 7.2 a datum for Setups I*–IV* gives rise to twisting maps, from
which we may define our twisted moduli counts as in Section 6.1. The properties (i)–(iv) are tautological
and (v) is a consequence of the axioms of twisting maps, as explained in Section 6.1.

8 Construction of the main invariants

In this section, we construct the invariants which are the central objects of this paper. To the data of a TN
contact pair .Y; �; V / and an element r 2R.Y; �; V /, we associate a unital, Z=2–graded QŒU �–algebra

(8-1) CH�.Y; �; V I r/:

There is a natural map to ordinary contact homology CH�.Y; �; V I r/! CH�.Y; �/ given by setting
U D 1.

A contactomorphism f W .Y; �; V /! .Y 0; � 0; V 0/ induces an identification

CH�.Y; �; V I r/D CH�.Y
0; � 0; V 0If�r/:

An exact relative symplectic cobordism . yX; y�;H/ from .Y C; �C; V C/ to .Y �; ��; V �/ satisfying an
energy condition induces a map CH�.Y C; �C; V CI rC/! CH�.Y

�; ��; V �I r�/. Unfortunately, our
notions of energy are not well behaved under compositions of arbitrary relative symplectic cobordisms,
so the composition of maps is not always defined.

We also define a reduced version of (8-1), which only counts Reeb orbits in the complement of a
codimension 2 submanifold, and certain “asymptotic invariants” which have good functoriality properties.

8.1 Construction and basic properties of the invariants

The following subsection is entirely parallel to [61, Section 1.7]. More precisely, Pardon constructs
(ordinary) contact homology by applying [61, Theorem 1.1.] to data from Setups I–IV. We construct our
new invariants by applying Theorem 7.27 to data from Setups I*–IV*.
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Setup I* Fix a TN contact pair .Y; �; V / and an element r 2R.Y; �; V /. According to Proposition 3.9,
we may choose a contact form � D ker� which is adapted to r. Let J W �! � be a d�–compatible almost
complex structure which preserves �V . We therefore obtain a datum D for Setup I*. Theorem 7.27 applied
to D furnishes a Z=2–graded, unital QŒU �–algebra

(8-2) CH�.Y; �; V I r/�;J;�

for any choice of perturbation datum � 2‚I.D/; cf (6-7) and (6-8).

Setup II* Fix pairs D˙ D ..Y ˙; �˙; V ˙/; r˙; �˙; J˙/ of data for Setup I*, where we write r˙ D

.˛˙; �˙; r˙/. Let . yX; y�;H/ be an exact relative symplectic cobordism with positive end .Y C; �C; V C/
and negative end .Y �; ��; V �/, and suppose that there exists a trivialization of the normal bundle of H
which restricts to �˙ on the positive/negative end.

Proposition 8.1 Suppose that rC > eE.H;y�jH /r�. Then there is an induced map on homology

(8-3) ˆ. yX; y�;H/ yJ ;� W CH �.Y
C; �C; V CI rC/�C;JC;�C ! CH �.Y

�; ��; V �I r�/��;J�;�� :

If ˛C D ˛� and .H; y�jH / is a symplectization , then the same conclusion holds provided that rC � r�.

Proof According to Lemma 6.25, we can choose an almost complex structure yJ on yX which is dy�–
compatible and agrees with yJ˙ at infinity, and is such that rC � eE. yJ/r�. We thus obtain a datum
DD .DC;D�; yX;H; y�; yJ / for Setup II*.

Given .�C; ��/ 2‚I.DC/�‚I.D�/, Theorem 7.27 thus provides a perturbation datum � 2‚II.D/ with
� 7! .�C; ��/, and twisted moduli counts which give rise to the map (8-3); cf (6-12).

Setup III* We have the following proposition.

Proposition 8.2 Under the assumptions of Proposition 8.1, the map (8-3) is independent of the pair . yJ ; �/.

Proof Let . yJ0; �0/ and . yJ1; �1/ be two possible choices of such pairs. Let us first treat the case where
.H; y�jH / is not a symplectization. For any � > 0, Lemma 6.25 provides an interpolating family of almost
complex structures f yJtgt2Œ0;1� such that E. yJt / � max.E. yJ0/; E. yJ1//C �. Choosing � small enough so
that rC > eE. yJt /r�, we thus get a datum D for Setup III*.

Theorem 7.27 now provides perturbation data � 2‚III.D/ mapping to .�0; �1/, and a chain homotopy
between the maps ˆ. yX; y�;H/ yJ0;�0 and ˆ. yX; y�;H/ yJ1;�1 ; cf (6-18) and (6-20).

If ˛C D ˛� and .H; y�jH / is a symplectization, then Lemma 6.25 implies that we may repeat the above
argument for a family of almost complex structures yJt which have vanishing energy. Tracing through the
proof, it is straightforward to check that the desired conclusion goes through provided that rC � r�.
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Setup IV* Let us consider data zDD .zD01; zD12; . yX02;t ; y�02;t /t2Œ0;1//, where

zD01 D .D0;D1; yX01; y�01;H 01/;

zD12 D .D1;D2; yX12; y�12;H 12/;

Di D ..Y i ; � i ; V i /; ri ; �i ; J i / for i D 0; 1; 2:

Here zD01, zD12 and zD are “partial data” for Setups II* and IV*, since they do not contain any information
about almost complex structures. These “partial data” are assumed to obey all the axioms stated in
Section 7.1 which do not involve complex structures.

The Di are (ordinary) data for Setup I*.

Proposition 8.3 Suppose that the following conditions hold :

� r0 > e
E.H02;t ;y�02;t j

H02;t
/r2,

� r0 > e
E.H01;y�01j

H01
/r1,

� r1 > e
E.H12;y�12j

H12
/r2.

Then the following diagram commutes:

CH�.Y
1; �1; V 1I r1/�1;J 1;�1

CH�.Y
0; �0; V 0I r0/�0;J 0;�0 CH�.Y

2; �2; V 2I r2/�2;J 2;�2

ˆ. yX12;y�12;H12/

ˆ. yX02;y�02;H02/

ˆ. yX01;y�01;H01/

If ˛0 D ˛1 D ˛2 and if .H 01; y�01jH01/, .H 12; y�12jH12/ and .H 02;t ; y�02;t jH02;t / are symplectizations ,
then the conclusion still holds if we only assume that ri � rj for i � j .

Proof According to Lemma 6.28, one can choose a family of almost complex structures yJ 02;t so that
r0>e

E. yJ 02;t /r2. Moreover, by Lemma 6.29, one may also assume that r0>eE.
yJ 01/r1 and r1>eE.

yJ 12/r2,
where J 01 and J 12 are the almost complex structures induced at infinity by J 02;t . We therefore
obtain a datum for Setup IV* by considering D01 D .zD01; yJ 01/;D12 D .zD12; yJ 12/ and DD .zD; yJ 02;t /.
Theorem 7.27 applied to D now implies the commutativity of the above diagram; cf (6-27).

Under the additional hypotheses that ˛0D ˛1D ˛2 and that the relevant cobordisms are symplectizations,
Lemmas 6.28 and 6.29 allow us to work with (families of) almost complex structures with vanishing
energy. Retracing through the above argument, we find that the desired conclusion follows if ri � rj for
i � j .

Proposition 8.4 Let . yX; y�;H/ be a relative symplectic cobordism from .Y C; �C; V C/ to .Y �; ��; V �/.
Let . yV ˙; y�˙

yV
/ be the Liouville structure induced on yV ˙ from the canonical Liouville structure of the

symplectization . yY ˙; �Y˙/. For i 2 f1; 2g, consider elements r˙i 2 R.Y ˙; �˙; V ˙/ and let �˙i be a
contact form on Y ˙ which is adapted to r˙i . Suppose finally that we have:
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(1) rCi > e
E.H;y�jH /r�i .

(2) rC1 > e
E. yVC;y�C

yV
/
rC2 and r�1 > e

E. yV �;y��
yV
/
r�2 .

Then the following diagram commutes:

CH �.Y
C; �C; V CI rC1 /�C1 ;JC;�C

CH �.Y
C; �C; V CI rC2 /�C2 ;JC;�C

CH �.Y
�; ��; V �I r�1 /��1 ;J�;�� CH �.Y

�; ��; V �I r�2 /��2 ;J�;��

ˆ. yX;y�;H/

ˆ. yYC; yVC/

ˆ. yX;y�;H/

ˆ. yY�; yV �/

As usual , if ˛C1 D ˛
�
1 D ˛

C
2 D ˛

�
2 and .H; y�jH / is a symplectization , then it is enough to assume that

rCi � r
�
i ; r
C
1 � r

C
2 and r�1 � r

�
2 .

Proof Observe first that the conditions (1) and (2) along with Proposition 8.1 ensure that the maps
appearing in the commutative diagram are well-defined. Let us now consider the strict exact symplectic
cobordisms . yX; y�;H/

�
C

1

��1
and . yY �; ��2 ; yV

�/
��1
��2

. For t 2 Œ0;1/ and T0 > 0 large enough, we can con-

sider their .t C T0/–gluing . yX t ; y�t ;H t /; cf Definition 2.23. According to Lemma 6.22, we have that
(cf Notation 2.19)

(8-4) E..H t ; y�t jH t /
˛
C

1

˛�2
/D E..H; y�jH /

˛
C

1

˛�1
/C E.. yV �; y��

yV
/
˛�1
˛�2
/:

It then follows from (1) and (2) that rC1 > e
E..H t ;y�t jHt /

˛
C
1
˛�
2
/
r�2 .

We can now appeal to Proposition 8.3, which implies that the composition ˆ. yY ; yV �/ ıˆ. yX; y�;H/
agrees with the map induced by . yX0; y�0;H 0/D . yX; y�;H/

�
C

1

��2
; see Example 2.11. The same argument

shows that composition along the upper right-hand side of the diagram agrees with the map induced by
. yX; y�;H/

�
C

1

��2
. This proves the claim.

We obtain the following corollary by putting together the results of the previous section.

Corollary 8.5 Consider a TN contact pair .Y; �; V / and fix an element r 2 R.Y; �; V /. Let D˙ D
.Y; �; V /; r; �˙; J˙/ be a pair of data for Setup I* , and fix �˙ 2‚I.Y

˙; �˙; J˙/.

The map

(8-5) ˆ. yY ; y�; yV / W CH �.Y; �; V I r/�C;JC;�C ! CH �.Y; �; V I r/��;J�;��

defined in Proposition 8.1 is an isomorphism.

Proof In light of Proposition 8.4 and Lemma 6.9, it’s enough to consider the case �C D �� D � and
JC D J� D J. Let � 2 ‚II. yY ; y�; yJ / be a lift of .�C; ��/ under the forgetful map ‚II. yY ; y�; yJ / !
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‚I.Y; �; J /�‚I.Y; �; J /. The proof of [61, Lemma 1.2] can be adapted to show that the map

(8-6) ˆ. yY ; y�; yV / yJ ;� W CC �.Y; �; V I r/�;J;�C ! CC �.Y; �; V I r/�;J;��

is an isomorphism of chain complexes: one simply needs to observe that the twisted counts of trivial
cylinders coincide with the usual counts.

We now arrive at the definition of our main invariants.

Definition 8.6 (full invariant) Consider a TN contact pair .Y; �; V / and choose an element r2R.Y; �; V /.
Let

(8-7) CH �.Y; �; V I r/

be the limit (or equivalently the colimit) of fCH �.Y; �; V I r/�;J;�g�;J;� along the maps (8-5). Proposition
8.4 and Corollary 8.5 imply that CH �.Y; �; V I r/ is canonically isomorphic to CH �.Y; �; V I r/�;J;� for
any admissible choice of .�; J; �/.

Given s 2Q, define

(8-8) CHUDs
�

.Y; �; V I r/ WD CH�.Y; �; V I r/˝QŒU �Q;

where the map QŒU �!Q sends U 7! s. There is a natural evaluation morphism of QŒU �–algebras

(8-9) evUDs W CH�.Y; �; V I r/! CHUDs
�

.Y; �; V I r/:

It follows tautologically from the construction that CHUD1
�

.Y; �; V I r/ D CH�.Y; �/. The invariant
CH�.Y; �; V I r/ therefore admits a QŒU � algebra morphism to ordinary contact homology (which is
viewed as a QŒU �–algebra by letting U act by the identity).

We can also define a “reduced” variant of the invariants (8-7), which are based on the twisting map z .
These invariants are naturally Q–algebras (as opposed to QŒU �–algebras) and only take into account
Reeb orbits in the complement of the codimension 2 submanifold.

More precisely, given a datum ..Y; �; V /; r; �; J / for Setup I*, we may proceed as in Setup I* in Section 8.1
and let

(8-10) .eCC �.Y; �; V I r/�; d z ;J;� /
be the complex generated by the (good) Reeb orbits not contained in V � Y , for some perturbation
datum � 2‚I.D/. By repeating the above arguments with the twisting maps z � in place of the twisting
maps  �, one can establish the obvious analogs of Proposition 8.4 and Corollary 8.5. In particular, given
choices of data .�C; JC; �C/ and .��; J�; ��/ as in Corollary 8.5, there is an isomorphism

(8-11) ˆ. yY ; y�; yV / W eCH�.Y; �; V I r/�C;JC;�C ! eCH�.Y; �; V I r/�C;JC;�C :
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Definition 8.7 (reduced invariant) Consider a TN contact pair .Y; �; V / and fix an element r2R.Y; �; V /.
Let

(8-12) eCH�.Y; �; V I r/
be the limit (or equivalently the colimit) of the algebras feCH�.Y; �; V I r/�;J;�g�;J;� along the maps
(8-11).

For future reference, we record the following corollary of the above discussion.

Corollary 8.8 Let .Y ˙; �˙; V ˙/ be TN contact pairs , and choose elements r˙ D .˛˙; �˙; r˙/ 2

R.Y ˙; �˙; V ˙/. Let . yX; y�;H/ be an exact relative symplectic cobordism with positive end .Y C; �C;V C/
and negative end .Y �; ��;V �/, and suppose that �C and �� extend to a global trivialization of the normal
bundle of H . If rC � eE..H;y�jH /

˛C

˛� /r�, then there is an induced map

(8-13) ˆ. yX; y�;H/ W CH�.Y
C; �C; V CI rC/! CH�.Y

�; ��; V �I r�/:

Similarly, suppose that . yX; y�t ;H t /t2Œ0;1� is a family of exact relative symplectic cobordisms with
ends .V ˙; �˙; V ˙/ and such that �˙ extends to a global trivialization of the normal bundle of H t . If
rC � eE.H

t ;.y�t /jHt /r�, then

(8-14) ˆ. yX; y�0;H 0/Dˆ. yX; y�1;H 1/:

The analogous statement holds for the reduced invariants eCH�.�/.

8.2 (Bi)gradings

The Z=2–grading by parity on the deformed invariants CH�.�/; eCH�.�/ shall be referred to as the
homological grading. As in the case of (ordinary) contact homology, the homological grading can be
lifted to a Z–grading under certain topological assumptions. We will also to refer to this Z–grading as
the homological grading when it exists.

Definition 8.9 [61, Section 1.8] Let .Y 2n�1; �; V / be a TN contact pair and choose r 2 R.Y; �; V /.
Suppose that H1.Y IZ/ D 0 and c1.�/ D 0. Then the homological Z=2–grading lifts to a canonical
Z–grading defined on generators by

(8-15) j j D CZ� ./Cn� 3;

where � is any trivialization of the contact distribution along  — this is independent of � due to our
assumption that c1.�/D 0.

Remark 8.10 In Definition 8.9, our assumption that c1.�/D 0 is equivalent to the statement that the
canonical bundle ƒn�1C � is trivial. The grading in general depends on a trivialization of the canonical
bundle; however, our assumption that H1.Y IZ/D 0 along with the universal coefficients theorem implies
that H 1.Y IZ/D 0. Hence the canonical bundle admits a unique trivialization.
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Lemma 8.11 (see [61, equation (2.50)]) With the notation of Corollary 8.8, suppose thatH1.Y ˙IZ/D0
and that c1.�˙/ D c1.TX/ D 0. Then the cobordism maps described in Corollary 8.8 preserve the
homological Z–grading.

Under certain topological assumptions, the reduced invariant eCH�.�I�/ admits an additional Z–grading,
which we will refer to as the linking number grading.

Definition 8.12 Let .Y; �; V / be a TN contact pair and choose r2R.Y; �; V /. Suppose that H1.Y IZ/D
H2.Y IZ/D 0. Then the linking number grading j � jlink on eCH�.Y; �; V I r/ is given on generators by

(8-16) j jlink D linkV ./:

(See Definition 5.19.) The linking number grading of a word of generators is then defined to be the
sum of the linking number grading of each letter. One can verify using Lemma 5.21 that this grading is
well-defined.

We let

(8-17) eCH�;�.Y; �; V I r/
be the (super)commutative bigraded Q–algebra, where

� the first bullet refers to the homological Z–grading (which exists in view of our topological
assumption and the universal coefficients theorem, see Definition 8.9);

� the second bullet refers to the linking number Z–grading.

We sometimes drop the second grading in our notation, so the reader should keep in mind that the notation
eCH�.�I�/ always refers to the homological grading.

We have the following lemma as a consequence of Lemmas 5.21 and 8.11.

Lemma 8.13 With the notation of Corollary 8.8, suppose that H1.Y ˙IZ/DH2.X; Y CIZ/D 0. Then
the cobordism maps described in Corollary 8.8 preserve the linking number Z–grading. If we also have
that c1.�˙/D c1.TX/D 0, then the cobordism maps preserve the .Z�Z/–bigrading (8-17).

8.3 Asymptotic invariants

Given a TN contact pair .Y; �; V / and a trivialization � of the normal bundle NY=V , let

(8-18) R� .Y; �; V /D frD.˛; � 0; r 0/ 2R.Y; �; V / j � 0D�g �R.Y; �; V /:

We equip R� .Y; �; V / with a preorder6 � defined by setting .˛�V ; �; r
�/� .˛CV ; �; r

C/ if rC� e�minf r�,
where ˛CV D e

f ˛�V . We let �op denote the opposite preorder.

6A preorder on a set is a binary relation which is reflexive and transitive. Equivalently, a preordered set is a category with at most
one morphism from any object x to any other object y.
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We now define a functor F.Y; �; V / from the preordered set .R� .Y; �; V /;�op/ to the category of QŒU �–
algebras. On objects, the functor takes r to CH �.Y; �; V I r/. It remains to define the functor on morphisms.

Given elements r˙ D .˛˙V ; �; r
˙/ 2R� .Y; �; V /, let �˙ be a contact form on Y which is adapted to r˙.

Consider the symplectization . yY ; y�; yV /�
C

��
. If r� � rC, then Lemma 6.9 and Propositions 8.1 and 8.4

imply that there is a map

(8-19) ˆ. yY ; y�; yV / W CH�.Y; �; V I r
C/! CH�.Y; �; V I r

�/:

This defines F.Y; �; V / on morphisms. One can check using Proposition 8.4 that F.Y; �; V / is indeed a
functor.

We can similarly define a functor FC.Y; �; V / from .R� .Y; �; V /;�op/ to the category of Q–algebras
using eCH�.�/.

Definition 8.14 (asymptotic invariants) Noting that the category of QŒU �–algebras is complete and
cocomplete, we denote by

(8-20) CH
 ��

�.Y; �; V I �/ and CH
��!

�.Y; �; V I �/

the limit (resp. colimit) of the QŒU �–algebras fCH�.Y; �; V I r/g over the preordered set .R� .Y; �; V /;�op/.
We let eCH

 ��
�.Y; �; V I �/ and eCH

��!
�.Y; �; V I �/ be defined similarly over the category of Q–algebras.

It’s easy to check that .R� .Y; �; V /;�op/ is a filtered preordered set. In particular, (co)limits can be
computed by restricting to (co)final subsets. In contrast to the invariants defined in Section 8.1, the
asymptotic invariants are fully functorial under compositions of arbitrary relative symplectic cobordisms
which respect normal trivializations. (A verification of this is tedious and essentially consists of repeating
the arguments of Section 8.1 — the key is that the energy conditions can always be satisfied by sending
the rotation parameter to zero or infinity.)

8.4 Mixed morphisms

Consider a TN contact pair .Y; �; V / and elements r˙ D .˛˙; �˙; r˙/ 2R.Y; �; V /. In this section, we
exhibit a Q–algebra map

(8-21) CHUD0
�

.Y; �; V I rC/! eCH�.Y; �; V I r�/
under certain assumptions on rC and r�. Precomposing with (8-9) gives a Q–algebra map

(8-22) CH�.Y; �; V I r
C/! eCH�.Y; �; V I r�/:

Let us begin by considering a datum D D .DC;D�; yX;H; y�; yJ / for Setup II*, where we let D˙ D
..Y; �; V /; r˙; �˙; J˙/.
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Definition 8.15 We define a map  mix W S¤∅II .D/!Q by

(8-23)  mix.T /D

�
1 if T � yV D 0 and jej \V � D∅ for every e 2E.T /;
0 otherwise.

Proposition 8.16 The map  mix.�/ is a twisting map provided that the following properties hold :

(i) rC � 2eE.
yJ/r�, and

(ii) rC > 2=Rmin
˛ , where Rmin

˛ denotes the smallest action of all Reeb orbits of ˛.

We need the following lemma for proving Proposition 8.16.

Lemma 8.17 Suppose that ˇ 2 �2
�
yY ; C t

�Sn
iD1 

�
i

��
is represented by a yJ –holomorphic curve

u W P†! yX contained in yV. Suppose also that rC and r� satisfy assumptions (i) and (ii) in Definition 8.15.
Then ˇ � yV � 2�pu, where pu is the total number of punctures (positive and negative) of u contained
in V ˙.

Proof By Lemma 7.10, we have rCPC�r�
Pn
iD1 P

�
i � r

CPC�r�PCeE.
yJ/�PC.rC�r�eE.

yJ//�

Rmin
˛ ..rC=2� r�eE.

yJ//C rC=2/�Rmin
˛ rC=2� 1. The lemma now follows from Proposition 5.7.

Definition 8.18 Given a tree T 2 S¤∅II , we say that a vertex v 2 V.T / is mean if all adjacent edges are
contained in V ˙. Otherwise, we say that v 2 V.T / is nice. We denote by Vb.T / (resp. Vn.T /) the set of
mean (resp. nice) vertices of T .

Proof of Proposition 8.16 Choose a tree T 0 2 S¤∅II . Let T 0 ! T be a morphism. It follows from
Proposition 5.11 that T 0 � yV D T � yV. If T 0 has no edges contained in V �, then neither does T 0 and we
see that  mix.T

0/D  mix.T /.

Let us now suppose that T 0 has an edge contained in V �. Note that T 0 and T have the same exterior
edges. If one of these edges is contained in V �, then  mix.T

0/D  mix.T /D 0. Let us therefore assume
that the exterior edges of T 0 and T are not contained in V �.

We are left with the case where T 0 has at least one interior edge contained in V �. If T 0 had no mean
vertices, then it would follow from Proposition 5.15 that there are no interior edges contained in V ˙,
which is a contradiction. It follows that T 0 has at least one mean vertex. Let E int

b
.T 0/�E int.T 0/ be the

set of interior edges which occur as an outgoing edge of some mean vertex. According to Proposition 5.15,
we have

T 0 � yV D
X

v2Vn.T 0/

ˇv � yV C
X

v2Vm.T 0/

ˇv � yV CjE
int.T 0/�E int

b .T
0/jC jE int

b .T
0/j

�

X
v2Vm.T 0/

ˇv � yV CjE
int
b .T

0/j

D

X
v2Vm.T 0/

.ˇv � yV Cp
�
v /;
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where p�v denotes the number of outgoing edges of v. (Here, we have used the fact that the outgoing
edges of a mean vertex are all interior edges, which follows from our assumption that the exterior edges
of T 0 and T are not contained in V �.) It now follows from Lemma 8.17 and the fact that T 0 has at least
one mean vertex that

P
v2Vm.T 0/

.ˇv � yV Cpv/�
P
v2Vm.T 0/

.2�pvCp
�
v /�

P
v2Vm.T 0/

1� 1. Hence
 mix.T

0/D  mix.T /D 0. This completes the proof that  mix.T
0/D  mix.T /.

If fTigi is a concatenation, then the argument is the same as in the proof of Proposition 7.13 since every
edge in #iTi appears in at least one of the Ti .

Proposition 8.19 Consider a TN contact pair .Y; �; V / and elements r˙ D .˛˙; �˙; r˙/ 2R.Y; �; V /.
If r 0 > 2eE. yV ;y�j yV /r� and rC > 2=Rmin

˛ , then there is a map of Q–algebras

(8-24) CHUD0
�

.Y; �; V I rC/! eCH�.Y; �; V I r�/:

Proof The argument is essentially the same as the proof of Proposition 8.1. Choose data of Type I*
D˙ D ..Y; �; V /; r˙; �˙; J˙/. Now consider the symplectization . yY ; y�; yV /. Lemma 6.25 furnishes an
almost complex structure yJ on yY which is dy�–compatible and agrees with yJ˙ at infinity, and such that
rC � eE.

yJ/r�. It now follows as in Setup II of Section 6.1 that we have a Q–algebra chain map

(8-25) ˆ. yY ; y�; mix/ yJ ;‚ W CC
UD0
�

.Y; �; V I r0/JC;�C !eCC �.Y; �; V I r/J�;��
for perturbation data ‚ 7! .�C; ��/.

Remark 8.20 The proof of Proposition 8.19 does not show that (8-24) is independent of auxiliary
choices (ie yJ ; J˙; ‚; �˙). To show this, one needs to extend the definition of the twisting map  mix to
Setups III* and IV*. One can then prove analogs of Theorem 7.27 and Corollary 8.8 for  mix. All of the
ingredients for this are already in place, but we omit the details since Proposition 8.19 is sufficient for our
applications.

Corollary 8.21 Suppose that eCH�.Y; �; V I r/ ¤ 0 for some r D .˛V ; �; r/ 2 R.Y; �; V /. Letting r0 D

.˛0V ; �
0; r 0/, we have CH�.Y; �; V I r0/¤ 0 if r 0 is large enough. In particular , CH

 ��
�.Y; �; V I �/¤ 0.

9 Augmentations and linearized invariants

9.1 Differential graded algebras

Let R be a commutative ring containing Q. The following two categories occur naturally in contact
topology: the category cdga of unital Z–graded (super)commutative dg R–algebras; the category dga of
unital Z–graded associative dg R–algebras. When we speak of a dg algebra, we mean an object of either
one of these categories.
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Let us say that a dg algebra is action-filtered if the underlying graded algebra is the free algebra on a free
graded module U having the following property: U admits a basis fx˛ j ˛ 2Ag for some well-ordered
set A such that dx˛ is a sum of words in the letters xˇ for ˇ < ˛. Note that the dg algebras which arise
in Symplectic Field Theory are naturally action-filtered by Reeb length.

The categories cdga and dga each carry a model structure described by Hinich [34] (see also Section 1.11
of [66]) with the following properties:

(i) the weak equivalences are the quasi-isomorphisms, and

(ii) all objects are fibrant and the set of cofibrant objects includes all objects which are action-filtered.7

Note that in any model category, there is a notion of two maps being left (resp. right) homotopic, defined
in terms of cylinder (resp. path) objects [35, Section 7.3.1]. These notions coincide on objects which are
fibrant and cofibrant.

We let hcdga and hdga be the associated homotopy categories: the objects are those objects of cdga
(resp. dga) which are fibrant and cofibrant, and the morphisms are the homotopy classes of morphisms in
cdga (resp. dga). In particular, hcdga and hdga contain all action-filtered dg algebras.

An augmentation of a dg R–algebra A is a morphism of dg algebras � W A! R, where R is viewed
as a dg algebra concentrated in degree 0. A dg algebra equipped with an augmentation is said to be
augmented. We let cdga=R and dga=R be the overcategory of augmented objects, which naturally inherit
model structures. We let hcdga=R (resp. hdga=R) be the associated homotopy categories.

Definition 9.1 Given an augmented dg algebra � W .A; d/ ! R, we consider the graded R–module
A� WD ker �=.ker �/2. The differential d descends to a differential d� on A�. The resulting differential
graded module .A�; d�/ is called the linearization8 of .A; d/ at the augmentation �.

It follows from the definition that linearization defines a functor from cdga=R (resp. dga=R) to the
category of chain complexes of R–modules. It is an important fact that this functor is left Quillen
[51, Proposition 12.1.7], and therefore induces a functor of homotopy categories. We state this as a
corollary:

Corollary 9.2 Linearization defines a functor from hcdga=R (resp. hdga=R) to the homotopy category
of chain complexes of R–modules.

7Both [34] and [51] work in the setting of dg algebras over operads. The categories cdga and dga are, respectively, the category
of dg algebras over the operads uComm and uAss (u stands for unital), so they can be treated on equal footing. A good reference
for the material in this section, which mostly avoids operadic language (but only treats the case of cdga), is [47].
8The linearization is sometimes also called the “indecomposable quotient” in the rational homotopy theory literature. In the
contact topology literature, one also often encounters an equivalent construction of the linearization in which one twists the
differential by the augmentation; see [57, Remark 2.8].
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In particular, Corollary 9.2 implies that homotopic augmentations of action-filtered dg algebras induce
isomorphic linearizations. Special cases of this statement have already appeared in the Legendrian contact
homology literature; see eg [58, Section 5.3.2].

Remark 9.3 Let .A; d/ be a dg algebra, where A is the free R–algebra generated by the set fx˛ j ˛ 2Ag.
Let � WA!R be the unique R–algebra map sending the generators x˛ to zero. Then � is an augmentation
if and only if dx˛ is contained in the ideal .xˇ j ˇ 2A/ for all ˛ 2A (or equivalently, if and only if the
differential has no constant term). If � is an augmentation, it is called the zero augmentation.

Suppose now that .A; d/ is the (possibly deformed) contact algebra of some contact manifold, ie .A; d/
is the commutative R–algebra generated by good Reeb orbits (for RDQ or QŒU �) and the differential
is defined as in Section 6.1. Suppose that � W A! R is the zero augmentation. Then ker � is the free
R–module generated by (good) Reeb orbits, and d� counts curves with one input and one output (ie d� is
defined as in (6-7), where the sum is restricted to curves with j��j D 1). It follows that the homology
of the complex .A�; d�/ can be interpreted as the (possibly deformed) cylindrical contact homology.
This latter invariant admits a rigorous definition for contact structures under certain assumptions, such
as the existence of a contact form with no contractible Reeb orbits; see [4; 42] in dimension 3 and
[61, Section 1.8] in general.

9.2 Cyclic homology

Definition 9.4 (cf [17]) Let S be a countable, well-ordered set equipped with a map j � j W S ! Z. Let
ADRhSi be the free Z–graded R–algebra generated by S , where the Z–grading is induced by extending
j � j multiplicatively.

Let d W A! A be a differential of degree �1. Let xA WD A=R, and consider the cyclic permutation map
� W xA! xA which is defined on monomials by �.1 � � � l/D .�1/j1j.j2jC���Cjl j/2 � � � l1 and extended
R–linearly. Let xA� WD xA=.1� �/ be the Z–graded R–module of coinvariants. Observe that d passes to
the quotient. We denote the induced differential by d � .

We now define

(9-1) HC�.A/ WDH�. xA
� ; d � /;

and refer to this invariant as the reduced cyclic homology of the dg algebra .A; d/.

Remark 9.5 Definition 9.4 agrees with other definitions of reduced cyclic homology of dg algebras
(such as [50, Section 5.3]) which may be more familiar to the reader, when both are defined. We adopt
the present definition for consistency with [7].

In the special case where A is the Chekanov–Eliashberg dg algebra of a Legendrian knot in a contact mani-
fold satisfying the assumptions of [7, Section 4.1], the algebraic invariants considered in [7, Section 4] can
be translated as follows: LHcyc.A/DHC�.A/, LHHoC.A/DHH�.A/ and LHHo.A/DHH�.A/. Here
HH�.�/ and HH�.�/ denote, respectively, Hochschild homology and reduced Hochschild homology.
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We record the following computation which will be useful to us later on.

Lemma 9.6 Under the assumptions of Definition 9.4, if .A; d/ is acyclic , then

(9-2) HCk.A/D

�
R if k is odd and positive ,
0 otherwise.

Proof Let us first prove the lemma under the assumption that S is a finite set. Note first that the
Hochschild homology of an acyclic finitely generated dg algebra vanishes identically. Moreover, we have
an exact triangle

(9-3) RŒ0�!HH�.A/!HH�.A/
Œ�1�
��!;

which implies that HH�.A/ is just a copy of R concentrated in degree 1.

We now consider the following Gysin-type exact triangle (see [7, Proposition 4.9]):

(9-4) HC�.A/
Œ�2�
��!HC�.A/

ŒC1�
��!HH�.A/

Œ0�
��! :

The desired result now follows immediately by induction, using (9-4) and the fact that HC�.A/ vanishes
in sufficiently large positive and negative degrees due to our finiteness hypotheses. We remark that
(9-4) is constructed from a spectral sequence, whose convergence can only be verified under finiteness
assumptions.

Let us now drop our assumption that S is a finite set. We instead consider an exhaustion of S by finite
subsets S .1/ � S .2/ � � � � � S . Let .A.k/; d /� .A; d/ be the dg subalgebra generated by S .k/. One can
readily verify that

(9-5) lim
��!

HC�.A
.k//DHC�.lim

��!
A.k//DHC�.A/:

Observe that .A.k/; d / is acyclic for k large enough and satisfies the assumption of Definition 9.4. Since
we have already proved the lemma under the assumption that S is finite, it is enough to prove that the
natural maps HC�.A.k//!HC�.A

.kC1// are isomorphisms for k large enough.

To this end, note that the exact triangles (9-3) and (9-4) can be shown to be functorial under morphisms
of bounded dg algebras. Since quasi-isomorphisms induce isomorphisms on Hochschild homology,
it follows from (9-3) that the natural map HH�.A.k// ! HH�.A

.kC1// is an isomorphism. Since
HH�.A

.k//DHH�.A
.kC1// is concentrated in degree 1, and since HCi .A.k// and HCi .A.kC1// vanish

for ji j sufficiently large, the desired claim can be checked by inductively applying the five lemma; cf [50,
Section 2.2.3].

9.3 Augmentations from relative fillings

According to the philosophy of [24], contact homology is supposed to be well-defined as a differential
graded Q–algebra up to strict isomorphism. However, [61] only proves that contact homology is well-
defined as a graded Q–algebra, ie after passing to homology. Similarly, the invariants introduced in
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Section 8 are merely graded R–algebras for RDQ or QŒU �. For the purpose of linearizing the invariants
of Section 8, we saw in Section 9.1 that the following intermediate assumption — weaker than what is
conjectured in [24] but stronger than what is proved in [61] — is sufficient:

Assumption 9.7 The constructions of Section 8 can be lifted to the category hcdga. (That is, cobordisms
induce a unique morphism of commutative dg algebras up to homotopy, and composition of cobordism is
functorial up to homotopy.)

The rest of this section depends on the unproved Assumption 9.7; all statements which depend on this
assumption are therefore starred, in accordance with the convention stated in the introduction.

Definition* 9.8 Fix a TN contact pair .Y; �; V / and an element r 2R.Y; �; V /. Let

(9-6) A.Y; �; V I r/ 2QŒU �–hcdga

be the limit (or equivalently the colimit) of the dg algebras f.CC�.Y; �; V I r/�; d ;J;� /g�;J;� under the
lifts of the maps (8-5) which are furnished by Assumption 9.7. We also analogously define

(9-7) zA.Y; �; V I r/ 2Q–hcdga:

Remark 9.9 (bigradings) With the notation of Definition* 9.8, suppose thatH1.Y IZ/DH2.Y IZ/D 0.
Combining Assumption 9.7 with the discussion of Section 8.2, it then follows that zA.Y; �; V I r/ is a
.Z�Z/–bigraded differential algebra, where the differential has bidegree .�1; 0/.

Definition* 9.10 Given an augmentation � WA.Y; �; V I r/!QŒU �, we let A�.Y; �; V I r/ be the linearized
chain complex (in the sense of Definition 9.1) with respect to � and let CH �

�
.Y; �; V I r/ be the resulting

homology.

We have analogous invariants in the reduced case, which are denoted by zAz�.Y; �; V I r/ and eCH z�
�
.Y; �; V I r/

for an augmentation z� W zA.Y; �; V I r/!Q.

Definition 9.11 Given a contact manifold .Y; �/ and a codimension 2 contact submanifold V, a relative
filling . yX; y�;H/ is a relative symplectic cobordism from .Y; �; V / to the empty set.

Let . yX; y�;H/ be a relative filling of .Y; �; V / and fix r2R.Y; �; V /. Suppose � extends to a normal trivial-
ization ofH . Then Lemma 8.11 and Assumption 9.7 furnish an augmentation �. yX; y�;H/ WA.Y; �; V I r/!
QŒU �. Similarly, we have an augmentation z�. yX; y�;H/ W zA.Y; �; V I r/!Q.

If we suppose that H1.Y IZ/DH2.Y IZ/DH2.X; Y IZ/D 0 and c1.TX/D 0, then Lemma 8.13 and
Assumption 9.7 imply that z�. yX; y�;H/ preserves the .Z�Z/–bigrading defined in Remark 9.9. It follows
that the linearized complex

(9-8) zAz�.Y; �; V I r/
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inherits a .Z�Z/–bigrading with differential of bidegree .�1; 0/. Hence

(9-9) eCH z�
�
.Y; �; V I r/

is a .Z�Z/–bigraded Q–vector space.

We end this section by collecting some lemmas which will be useful later. The reader is referred to
Section 3.3 for a review of open book decompositions.

Lemma* 9.12 Suppose that . yW ; y�;H/ is a relative filling of .Y; �; V /. Suppose that V is the binding
of an open book decomposition .Y; V; �/ which supports �. Fix an element rD .˛V ; �; r/ 2R.Y; �; V /,
where � is the canonical trivialization induced by the open book.

Suppose that H admits a normal trivialization which restricts to � . Suppose also that H1.Y IZ/ D
H2.Y IZ/DH2.W; Y IZ/D 0 and that c1.T W /D 0. Then the augmentation

(9-10) z� W zA.Y; �; V I r/!Q

is the zero augmentation. In particular , it depends only on . yW ; y�/ and not on H .

Proof It is shown in Corollary 3.15 that there exists a nondegenerate contact form ˛ for .Y; �/ which is
adapted to r and has the property that all Reeb orbits are transverse to the pages of the open book decom-
position. Given auxiliary choices of almost complex structures and perturbation data, the augmentation z�
counts (possibly broken) holomorphic planes u which are asymptotic to a Reeb orbit  disjoint from H ,
and such that Œu��H D 0. However, our topological assumptions and Lemma 5.21 implies that Œu��H
is precisely the linking number of  with the binding V, which is strictly positive by assumption; see
Remark 5.20.

Lemma* 9.13 Let . yX; y�;H/ and . yX 0; y�0;H 0/ be relative symplectic fillings of .Y; �; V / and .Y 0; � 0; V 0/.
Let f W .Y; �; V /! .Y 0; � 0; V 0/ be a contactomorphism. Suppose that there exists a symplectomorphism
� W . yX; y�/! . yX 0; y�0/ which coincides near infinity with the induced map zf W SY ! SY 0.

Given any r 2R.Y; �; V /, the following diagram commutes:

(9-11)

CH�.Y; �; V I r/ QŒU �

CH�.Y
0; � 0; V 0If�r/ QŒU �

CH�.Y
0; � 0; V 0If�r/ QŒU �

ˆ. yX;y�;H/

D

ˆ. yX 0;��y�;�.H//

D

ˆ. yX 0;y�0;�.H//

The analogous statement holds for eCH�.�/, with Q in place of QŒU �. In addition , if H1.Y IZ/ D
H2.Y IZ/D0 and c1.TX/D0, then all arrows can be assumed to preserve the bigrading in Definition 8.12.
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Proof The commutativity of the top square is essentially tautological; more precisely, it follows from
the functoriality of the moduli counts in Theorem 7.27. The commutativity of the bottom square follows
from the observation that � preserves the Liouville form outside a compact set. Hence . yX 0; ��y�/ and
. yX 0; y�0/ are deformation equivalent. It follows by Corollary 8.8 that they induce the same morphism on
homology. The fact that the maps preserve the bigradings on eCH.�I�/ (under the above topological
assumptions) is a consequence on Lemma 8.13.

Corollary* 9.14 Let . yX; y�;H/ (resp. . yX; y�;H 0/) be relative fillings for .Y; �; V / (resp. .Y; �; V 0/).
Suppose that V is the binding of an open book decomposition of .Y; �/ and fix rD .˛; �; r/ 2R.Y; �; V /,
where � is induced by the open book. Let f W .Y; �; V /! .Y; �; V 0/ be a contactomorphism.

Suppose that H1.Y IZ/DH2.Y IZ/DH2.X; Y IZ/D 0 and that c1.TX/D 0. Then

(9-12) eCH z�
�;�.Y; �; V I r/D eCH z�0

�;�.Y; �; V
0
If�r/;

where both augmentations are induced by the relative fillings and the .Z�Z/–bigrading is defined in
Definition 8.12.

Proof Indeed, since the lift of a contactomorphism to the symplectization is a Hamiltonian symplec-
tomorphism, it is easy to construct a symplectic automorphism of .X; dy�/ satisfying the conditions of
Lemma* 9.13; see eg [14, Section 3.2]. The claim now follows from Lemma* 9.12.

10 Invariants of Legendrian submanifolds

10.1 Invariants of contact pushoffs

Definition 10.1 (see Definition 3.1 in [10]) Let .Y; �/ be a contact manifold and let ƒ ,! Y be a
Legendrian embedding. By the Weinstein neighborhood theorem, the map extends to an embedding
Op.ƒ/� .J 1ƒ; �std/! .Y; �/, where Op.ƒ/� .J 1ƒ; �std/ denotes an open neighborhood of the zero
section.

Let �.ƒ/ be the induced codimension 2 contact embedding

(10-1) �.ƒ/ W @.D��;gƒ/D @.D
�
�;gƒ/� 0� T

�ƒ�RD J 1ƒ ,! .Y; �/:

Here D��;gƒ is the sphere bundle of covectors of length � with respect to some metric g, which is a
contact manifold with respect to the restriction of the canonical 1–form on T �ƒ. We refer to �.ƒ/ as the
contact pushoff of ƒ ,! Y.

Standard arguments establish that the contact pushoff is canonical up to isotopy through codimension 2
contact embeddings. By abuse of notation, we will routinely identify �.ƒ/ with its image. Observe that it
follows that CH�.Y; �; �.ƒ/I r/ and eCH�.Y; �; �.ƒ/I r/ can be viewed as invariants of ƒ.
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10.2 Deformations of the Chekanov–Eliashberg dg algebra

In the spirit of the previous sections, we now consider deformations of the Chekanov–Eliashberg dg algebra
of a Legendrian induced by a codimension 2 contact submanifold. We begin with some preliminary
definitions.

Definition 10.2 Let ƒ � .Y; �/ be a Legendrian submanifold. Given a contact form ker˛ D �, con-
sider a Reeb chord c W Œ0; R�! Y. The linearized Reeb flow defines a path of symplectomorphisms
Pr W �jc.0/! �jc.r/. We say that the Reeb chord c is nondegenerate if PR.Tc.0/ƒ/\Tc.R/ƒD f0g.

Definition 10.3 (cf Section 2.1 in [7]) With the notation of Definition 10.2, let
Vn�1

C .�; d˛/ be the
canonical bundle of � and suppose that it admits a trivialization � . Let ƒ1; : : : ; ƒk be an enumeration of
the components of ƒ. Suppose that each ƒi has vanishing Maslov class.

Suppose first of all that k D 1 (ie ƒ is connected). Given a nondegenerate Reeb chord c, pick a path c�
in ƒ connecting c.R/ to c.0/. Observe that

Vn�1
Tc�ƒi �

Vn�1
C .�; d˛/ is a path of Lagrangian

subspaces along c�. We call this path Lc� . The map Pr also defines a path of Lagrangian subspacesVn�1 Pr.Tc.0/ƒi /�
Vn�1

C .�; d˛/ along c. We call this path Lc .

Let zc D c� � c be obtained by concatenating c� and c (the concatenation is from left to right). Now
consider the path of Lagrangian subspaces Lzc D Lc� �Lc �PC, where PC is a positive rotation from
PR.Tc.0/ƒ/ to Tc.R/ƒ (this is well-defined by our assumption that c is nondegenerate).

The Conley–Zehnder index for chords of c with respect to � is denoted by CZC;� .c/ and defined by

(10-2) CZC;� .c/D �� .Lzc/;

where�� .�/ is the Maslov index with respect to � ; see [52, Theorem 2.3.7]. This definition is independent
of the choice of c� due to our assumption that ƒ has vanishing Maslov class. Note also that the resulting
index depends on � , but its parity does not.

In the case that k > 1, the definition of the Conley–Zehnder index for chords is more complicated, and
depends on additional choices. We refer the reader to [7, Section 2.1] — we warn the reader that there is
a typo in the formula stated there: the correct formula for the Conley–Zehnder index for chords should
read CZC;� .c/D jcj � 1D .����ƒ.x1//=� C .n� 1/=2.

Remark 10.4 It may happen that a Reeb orbit can also be viewed as a Reeb chord with same starting
and end point. In this case, we have in general that CZC.c/¤ CZ.c/.

Let us now consider a TN contact pair .Y; �; V / and a Legendrian submanifold ƒ� .Y �V; �/. We let
ƒ1; : : : ; ƒk be an enumeration of the connected components of ƒ. As in Definition 10.3, we assume that
the ƒi have vanishing Maslov class.
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Definition/Assumption* 10.5 (cf Proposition 2.8.2 in [24]) Fix r 2R.Y; �; V /. Let us also choose the
following additional data:

� A contact form � 2 �1.Y / which is adapted to r and has the property that all Reeb orbits and
ƒ–Reeb chords are nondegenerate.

� A d�–compatible almost complex structure J on � which preserves T V .

Given a class ˇ 2 �2. yY I cC; ��ƒ ; �
�/, we let

(10-3) M.cC; ��ƒ ; �
�
Iˇ/J

be the moduli space of connected yJ –holomorphic curves, modulo R–translation representing the class ˇ.
(Here we follow the notation of Section 2.2, where cC is a Reeb chord of ƒ� .Y; �/, ��ƒ D fc

�
1 ; : : : ; c

�
� g

is an ordered collections of (not necessarily distinct) Reeb chords, and �� is a collection of Reeb orbits.)
Since V � .Y �ƒ;�/ is a strong contact submanifold, a straightforward extension of Siefring’s intersection
theory defines an intersection number yV �ˇ 2 Z.

Let us now consider the semisimple ring

(10-4) RD
kM
iD1

QŒU �;

and let e1; : : : ; ek be the idempotents corresponding to the unit in each summand.

Let CL�.Y; �; V;ƒI r/� be the free R algebra generated by (good) Reeb orbits of .Y; ˛/ and Reeb chords
of ƒ, subject to the following relations:

� 12 D .�1/
j1jj2j21 for Reeb orbits a and b.

� If cij is a Reeb chord from ƒi to ƒj , then ekcij el D ıjkcij ıil .

We assume that there exists a suitable virtual perturbation framework compatible with [61], so that we
can define a differential dJ (squaring to zero) on generators as follows:

� For a Reeb chord cC, we let

(10-5) dJ .c
C/D

X 1

jAutj
#M.cC; ��ƒ ; �

�
Iˇ/JU

yV �ˇc�1 � � � c
�
� 1 � � � s;

where the sum is over choices of ˇ 2 �2. yY I cC; ��ƒ ; �
�/ for all possible choices of ��ƒ and ��.

� For a Reeb orbit  , we let dJ ./ be the usual deformed contact homology differential, as described
in Section 8.1.

We assume that .CL�.Y; �; V;ƒI r/�; dJ / is independent of � and J up to canonical isomorphism in
QŒU �–hdga. We denote the resulting object by

(10-6) L.Y; �; V;ƒI r/

and we let CH�.Y; �; V;ƒI r/ be its homology. We assume that L.Y; �; V;ƒI r/ satisfies the limited
functoriality described in Proposition* 10.7.
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Definition/Assumption* 10.6 (cf Proposition 2.8.2 in [24]) Carrying over the hypotheses and notation
from Definition/Assumption* 10.5, let us consider the semisimple ring

(10-7) zRD
kM
iD1

Q;

where we again let e1; : : : ; ek be the idempotents corresponding to the unit in each summand.

We let fCL�.Y; �; V;ƒI r/� be the free zR algebra generated by (good) Reeb orbits of .Y; ˛/ which are not
contained in V and ƒ Reeb chords, subject to the following relations:

� 12 D .�1/
j1jj2j21 for Reeb orbits a and b.

� If cij is a Reeb chord from ƒi to ƒj , then ekcij el D ıjkcij ıil .

This algebra is again Z=2–graded in general, and Z–graded when the canonical bundle is trivialized.
We assume again that there exists a suitable virtual perturbation framework so that one can define a
differential zdL (squaring to zero) on generators as follows:

� For a Reeb chord cC, we let

(10-8) dJ .c
C/D

X 1

jAutj
#M.cC; ��ƒ ; �

�
Iˇ/J ı. yV �ˇ/c

�
1 � � � c

�
� 1 � � � s;

where ı W R! f0; 1g satisfies ı.0/ D 1 and ı.s/ D 0 for s ¤ 0 and the sum is over all possible
choices of homotopy classes as in Definition/Assumption* 10.5.

� For a Reeb orbit  , we let zdJ ./ be the reduced contact homology differential associated to the
twisted moduli counts # z M, which only counts curves disjoint from yV .

We assume that .fCL�.Y; �; V;ƒI r/�; zdJ / is independent of �; J up to canonical isomorphism in Q–hdga.
We denote the resulting object by

(10-9) zL.Y; �; V;ƒI r/

and we let CH�.Y; �; V;ƒI r/ be its homology. We also assume that zL.Y; �; V;ƒI r/ satisfies the limited
functoriality described in Proposition* 10.7.

Proposition* 10.7 (cf Corollary 8.8) Let .Y ˙; �˙; V ˙/ be TN contact pairs and choose elements
r˙ D .˛˙; �˙; r˙/ 2R.Y ˙; �˙; V ˙/. Consider an exact relative symplectic cobordism . yX; y�;H/ with
positive end .Y C; �C; V C/ and negative end .Y �; ��; V �/, and suppose that �C and �� extend to a
global trivialization of the normal bundle of H .

Suppose that L� . yX; y�;H/ is a cylindrical Lagrangian submanifold which is disjoint from H , with ends
ƒ˙ � .Y ˙�V ˙; �˙/.
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If rC � eE..H;y�H /
˛C

˛� /r�, then there is an induced map

(10-10) ˆ. yX; y�;H;L/ W L.Y C; �C; V CI rC/! L.Y �; ��; V �I r�/:

The analogous statement holds for the reduced invariants zL.�/.

Definition* 10.8 Let � WA.Y; �; V I r/!QŒU � be an augmentation. Then we let

(10-11) L�.Y; �; V;ƒI r/ WD L.Y; �; V;ƒI r/˝A.Y;�;V Ir/QŒU �;

with differential dL˝1. The structure maps implicit in forming the tensor product (10-11) are, respectively,
furnished by the inclusion A.Y; �; V I r/�L.Y; �; V;ƒI r/ and the augmentation � WA.Y; �; V I r/!QŒU �.
The resulting tensor product is naturally also a differential graded QŒU � algebra.

We similarly define

(10-12) zLz�.Y; �; V;ƒI r/ WD zL.Y; �; V;ƒI r/˝ zA.Y;�;V Ir/Q;

using the maps zA.Y; �; V I r/� zL.Y; �; V;ƒI r/ and z� W zA.Y; �; V I r/!Q, which is naturally a differential
graded Q–algebra.

Remark 10.9 The algebra L�.Y; �; V;ƒI r/ is the twisted analog of the Legendrian homology dg algebra
(or Chekanov–Eliashberg dg algebra) described in [7, Section 4.1].

We now discuss gradings on the above Legendrian invariants.

Definition* 10.10 Let .Y; �; V / be a TN contact pair and choose r 2R.Y; �; V /. Let ƒ � .Y � V; �/
be a Legendrian submanifold. Suppose that H1.Y IZ/ D 0 and that c1.�/ D 0. Then the Legendrian
homological Z=2–grading of L.Y; �; V;ƒI r/ (resp. zL.Y; �; V;ƒI r/) lifts to a canonical Z–grading given
on orbits by (8-15) and given on chords by

(10-13) jcj D CZC;� .c/� 1;

which is well-defined due to our topological assumptions.

The invariants L�.Y; �; V;ƒI r/, HC.L�.Y; �; V;ƒI r//, zL�.Y; �; V;ƒI r/ and HC. zL�.Y; �; V;ƒI r// in-
herit a Z–grading, which we also refer to as the homological grading.

Lemma* 10.11 With the notation of Proposition* 10.7, suppose that H1.Y ˙IZ/D 0 and that w2.L/D
c1.�

˙/D c1.TX/D 0. Then the cobordism maps described in Proposition* 10.7 preserve the Legendrian
homological Z–grading.

As in Section 8.2, there is also a linking number Z–grading on the reduced Legendrian invariants under
certain topological assumptions.
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Definition* 10.12 Let .Y; �; V / be a TN contact pair and choose r 2R.Y; �; V /. Let ƒ � .Y; �/ be a
Legendrian submanifold. Suppose that H1.Y IZ/DH2.Y IZ/D �0.ƒ/D �1.ƒ/D 0. Then the linking
number grading j � jlink on zL.Y; �; V;ƒI r/ is given on Reeb chords by

(10-14) jcjlink D linkV .cIƒ/:

It is given on Reeb orbits by (8-16). The grading is extended to arbitrary words by defining the grading
of a word to be the sum of the gradings of its letters. One can verify using Lemma 5.22 that this grading
is well-defined.

We let

(10-15) zL�;�.Y; �; V;ƒI r/

be the bigraded differential Q–algebra of bidegree .�1; 0/, where

� the first bullet refers to the (Legendrian) homological Z–grading (which is well-defined in view of
our topological assumptions and the universal coefficients theorem, see Definition* 10.10), and

� the second bullet refers to the (Legendrian) linking number grading.

We also have the following lemma, which follows from Lemma* 10.11 and Lemma 5.22.

Lemma* 10.13 With the notation of Proposition* 10.7, suppose that H1.Y ˙IZ/ D H2.Y
˙IZ/ D

H2.X; Y
CIZ/D 0 and �0.ƒ˙/D�1.ƒ˙/D 0. Then the cobordism maps described in Proposition* 10.7

preserve the linking number Z–grading. In the case that we also have w2.ƒ˙/D c1.�˙/D c1.TX/D 0,
then the cobordism maps preserve the .Z�Z/–bigrading (10-15).

Corollary* 10.14 Consider a TN contact pair .Y; �; V / and an element r2R.Y; �; V /. Letƒ� .Y; �/ be
a Legendrian submanifold. Let .W; �;H/ be a relative filling for .Y; �; V / and let z� W zA.Y; �; V I r/!Q

be the induced augmentation. Suppose that H1.Y IZ/DH2.Y IZ/DH2.W; Y IZ/D 0, that �0.ƒ/D
�1.ƒ/D 0 and that w2.ƒ/D c1.�/D c2.T W /D 0.

Then

(10-16) zLz�
�;�.Y; �; V I r/

inherits the structure of a .Z�Z/–bigraded Q–algebra with differential of bidegree .�1; 0/. Moreover ,

(10-17) HC�;�. zLz�.Y; �; V I r//

inherits the structures of a .Z�Z/–bigraded Q–vector space.

Proof According to Lemma 5.21 and our topological hypotheses, the augmentation z� preserves the
linking number. The first claim follows. For the second claim, note that both the homological grading and
linking number grading are preserved by the cyclic permutation operator � , and hence pass to reduced
cyclic homology; see Definition 9.4.
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10.3 The effect of Legendrian surgery

The familiar procedure of attaching a handle in differential topology can be performed in the symplectic
category. There are various essentially equivalent approaches to doing this in the literature. For concrete-
ness, we exclusively follow in this paper the construction described in [46, Section 3.1], which we now
summarize.

Construction 10.15 (attaching a handle) Let .X2n0 ; �0/ be a Liouville cobordism with positive boundary
.Y 2n�10 ; �0 D ker.�0jY0//. Let ƒ � .Y0 � V; �0/ be an isotropic sphere with trivialized conformal
symplectic normal bundle (the latter condition is vacuous if ƒ is a Legendrian). Choose an arbitrary open
neighborhood U of ƒ, which we refer to as the attaching region.

We may now glue a model handle H along Y0 inside U , following the detailed construction given in
[46, Section 3.1]. The gluing is carried out by identifying the Liouville flow near ƒ with the flow on H .
We note that this gluing procedure involves some auxiliary choices, which we do not state here.

The outcome of the procedure (for any of the above auxiliary choices) is a Liouville cobordism .X; �/

with positive boundary .Y; �D ker.�jY //. We say that this domain is obtained from .X0; �0/ by attaching
a handle along ƒ, or Legendrian surgery on ƒ. As is well-known from differential topology, Y differs
from Y0 by surgery along ƒ.

In [7], Bourgeois, Ekholm and Eliashberg study the effect of handle attachment on various flavors of
symplectic and contact homology. In particular, they describe conjectural exact sequences which govern
the change in these invariants and describe the moduli spaces of holomorphic curves which should underlie
the existence of these exact sequences. In Theorem/Assumption* 10.16 below (see also Remark 10.17),
we state an analog of the surgery exact sequence for linearized contact homology in [7, Theorem 5.1].
The proofs sketched in [7, Section 6] also apply mutatis mutandis in the present setting, so will not be
repeated. As discussed in Section 1.3, we expect that if [7, Theorem 5.1] can be made rigorous in the
setting of Pardon’s VFC package, it should pose no substantial additional difficulties to also establish
Theorem/Assumption* 10.16.

To set the stage for Theorem/Assumption* 10.16, let .Y 2n�10 ; �0/ be a contact manifold and let V � .Y0; �0/
be a codimension 2 contact submanifold with trivial normal bundle. Let .X0; �0/ be a Liouville domain
with positive boundary .Y0; � D ker�0/ and let H0 � .X; �0/ be a symplectic submanifold which is
preserved setwise by the Liouville flow near @X0 D Y0 and such that @H D V .

Letƒ� .Y0�V; �0/ be an isotropic sphere with trivialized conformal symplectic normal bundle (the latter
condition is vacuous if ƒ is a Legendrian). Let .X; �/ be the Liouville domain obtained by attaching a
Weinstein handle along ƒ according to Construction 10.15 and let .Y; � D ker�/ be the positive boundary.
We may assume that the attaching region is disjoint from V � Y0. By abuse of notation, we therefore
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view V as a codimension 2 contact submanifold of .Y0; �0/ and .Y; �/ and view H0 as a submanifold
of X0 and X . We also identify R.Y0; �0; V /DR.Y; �; V /.

We let . yX0; y�0;H/ be the completion of .X0; �0;H0/, and let . yX; y�;H/ be the completion of .X; �;H0/.
There are natural (strict) markings e0 WR�Y0! yX0 taking .t; y0/ 7!  0t .y0/ and e WR�Y ! yX taking
.t; y/ 7!  t .y0/, where  0 (resp.  ) is the Liouville flow in yX0 (resp. in yX ).

Finally, in order to have well-defined homological Z–gradings, we assume thatH1.Y0IZ/DH1.Y IZ/D0
and that c1.TX0/D c1.TX/D 0.

Theorem/Assumption* 10.16 (cf Theorem 5.1 in [7]) With the above setup and r 2 R.Y; �; V /,
consider the augmentations z�.. yX0; y�0;H/; e0/ W zA.Y; �; V /!Q and z�.. yX; y�;H/; e/ W zA.Y; �; V /!Q.
If ƒ is a Legendrian sphere , we have the following exact triangle , where the top horizontal arrow is the
natural map induced by an exact relative symplectic cobordism:

(10-18)

eCH z�
��.n�3/

.Y; �; V I r/ eCH z�0
��.n�3/

.Y0; �0; V I r/

HC�. zLz�0.Y0; �0; V;ƒI r//

Œ�1�

If ƒ is an isotropic sphere of dimension k � n� 2, then we have that

(10-19) H�
�
Cone

�eCH z�
��.n�3/.Y; �; V I r/!

eCH z�0
��.n�3/

.Y0; �0; V I r/
��
D

�
Q if � D n� kC 2N;
0 otherwise.

Remark 10.17 There is a natural analog of Theorem/Assumption* 10.16 involving the invariants
CH

�0
��.n�3/

.Y0; �0; V I r/, CH �
��.n�3/

.Y; �; V I r/ and HC�.L�0.Y0; �0; V;ƒI r// which we also expect to
hold. We do not state it here since we do not use it in this paper.

Remark 10.18 With the setup of Theorem/Assumption* 10.16, let us in addition assume thatH2.Y0IZ/D
H2.X0; Y0/ D H2.Y IZ/ D H2.X; Y IZ/ D 0. Then Lemma 8.13 and Corollary* 10.14 provide an
additional linking number Z–grading on the invariants appearing in the surgery exact sequences.

The resulting .Z�Z/–bigrading is preserved by the maps in the surgery exact sequence. Indeed,
Lemma 8.13 ensures the top horizontal map preserves the linking number Z–grading. The bottom
right map counts holomorphic disks with one positive interior puncture, k negative boundary punctures,
and with boundary mapping to Sƒ (the relevant moduli space is described in [7, Section 2.6]). Hence
one can readily verify (cf Lemma 5.22) that this map also preserves the linking number grading. Finally,
the bottom left map is defined algebraically as the connecting map in the long exact sequence. Since the
internal differentials of the relevant chain complexes preserve the linking number grading, this connecting
map does too.
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11 Some computations

11.1 Vanishing results

Recall that a contact manifold .Y 2n�1; �/ is said to be overtwisted if it contains an overtwisted disk; see
[5, Section 1]. In general, if .Y; �/ is overtwisted and C � Y is a closed subset, then .Y �C; �/ may not
be overtwisted.

Theorem 11.1 Suppose that .Y; �; V / is a TN contact pair such that .Y �V; �/ is overtwisted. Given
any element r 2R.Y; �; V /, we have

(11-1) CH�.Y; �; V I r/D eCH�.Y; �; V I r/D 0:

We collect some definitions which will be useful in proving Theorem 11.1. Let almU.n�1/.S
2n�1/ be the

set of almost-contact structures on S2n�1; see Definition 12.1. It follows by the main theorem of [5] that
almU.n�1/.S

2n�1/ is in canonical correspondence with the set of overtwisted contact structures on the
sphere, a fact which will be used implicitly in the proof of Theorem 11.1.

A folklore result in contact topology (see eg [12, Section 6]) states that for any fixed element ˇ 2
almU.n�1/.S

2n�1/, the operation of connected sum endows almU.n�1/.S
2n�1/ with a group structure

with identity element ˇ. The isomorphism class of the resulting group is moreover independent of ˇ.
Since these facts are not to our knowledge available in the literature, we have provided careful proofs in
the appendix.

For the remainder of this section, we fix ˇ 2 almU.n�1/.S
2n�1/ to be the almost-contact structure induced

by the standard contact structure on the sphere. Given a pair of contact manifolds .M1; ˛1/ and .M2; ˛2/,
one can also consider their connected sum .M1 #M2; ˛1 # ˛2/, which is obtained by gluing-in a neck
along Darboux balls in M1;M2. This operation is discussed in Remark A.10. As noted there, the two
a priori different notions of a connected sum of (almost-)contact manifolds commute with the forgetful
map from contact manifolds to almost-contact manifolds.

Proof of Theorem 11.1 It is enough to prove that the invariants vanish for a particular choice of
nondegenerate contact form z̨ on Y which is adapted to r. To construct such a form, we follow arguments
of Bourgeois and Van Koert in [8, Section 6.2].

Using Construction 3.6, we define an auxiliary contact form ˛ in a small neighborhood N of V with the
property that V is a strong contact submanifold and that ˛ is adapted to r. After possibly shrinking N , we
can assume that .Y �N ; �/ is overtwisted. We now extend ˛ arbitrarily to a globally defined, nondegenerate
contact form on .Y; �/. (Since ˛V is nondegenerate, Construction 3.6 produces a nondegenerate contact
form on N , so it extends unproblematically to a global nondegenerate contact form.)
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Choose a Darboux ball B � Y whose closure is disjoint from N . Let B 0 � B be a smaller Darboux
ball and let AD B � xB 0. Let ˇ0 denote the almost-contact structure on B obtained by restricting � . Let
almU.n�1/.B;AIˇ0/ be the set of almost-contact structures on B agreeing with ˇ0 near A. The group
almU.n�1/.S

2n�1/ acts on almU.n�1/.B;AIˇ0/ by connect-summing with an almost-contact sphere
along a disk whose closure is disjoint from A.

We now appeal to work of Bourgeois and van Koert: in [8, Section 2.2], they construct a special contact
form ˛L on the sphere S2n�1 (this form turns out to be overtwisted by [12], although we won’t need
this). They prove [8, Sections 2–5] that ˛L admits a Reeb orbit  which bounds a single, transversally
cut-out J –holomorphic plane, for some suitable J on the symplectization.

We now form the connected sum of .S2n�1; ˛L/ with .Y; ˛/, where we assume that the gluing happens
entirely inside of B 0. Bourgeois and van Koert (following earlier work of Ustilovsky [65]) explain how to
perform this connected sum so that the orbit  survives, and still has the property that it bounds a single
transversally cut-out plane (basically, one can suitably adjust the neck to ensure that the plane cannot
cross the neck; see [8, Section 6.2]).

Finally, we connect sum with another overtwisted contact sphere .S2n�1; ˛0L/ so that .B; ˛ #˛L #˛0LjB/
is formally contact isotopic to .B; ˛jB/, through a contact isotopy fixed near A. Note that we may freely
assume that the two connected sums happen in disjoint regions of B 0, so they do not interfere with each
other. Unwinding the definitions, this means that there exists a diffeomorphism WB!B#S2n�1#S2n�1

fixed near the boundary and a formal contact isotopy from ker �.˛ #˛L #˛0L/jB to �B D ker˛jB , which
is fixed near A.

If we extend  to a diffeomorphism Y ! Y #S2n�1 #S2n�1 by letting it be the identity outside of B ,
we observe that ker �.˛ #˛L #˛0L/ is formally isotopic to � D ker˛. Moreover, these contact structures
agree on Y � B � N . Since .Y � N ; �/ is overtwisted, it follows from the relative h-principle for
overtwisted contact structures (see [5, Theorem 1.2]) that there is a smooth isotopy �t fixed on N so that
z̨ WD ��1 

�.˛ #˛L #˛0L/ is a contact form for .Y; �/. By construction, z̨ D ˛ on N , so z̨ is adapted to r.
Finally, it follows from the above discussion that CH�.Y; �; V I r/ vanishes when we compute it using the
form z̨ (since  bounds a rigid plane). An analogous argument shows that eCH�.Y; �; V I r/ vanishes as
well.

We also state a vanishing result for the deformed Chekanov–Eliashberg dg algebra of certain loose
Legendrians. To set the notation, let us now assume that .Y; �; V / is an arbitrary TN contact pair and fix
r 2R.Y; �; V /.

Proposition* 11.2 Suppose that ƒ� .Y �V; �/ is a loose Legendrian submanifold. Then L.Y; �; V;ƒI r/
and zL.Y; �; V;ƒI r/ are acyclic. Given augmentations � WA.Y; �; V I r/!QŒU � and z� W zA.Y; �; V I r/!Q,
the invariants L�.Y; �; V;ƒI r/ and zL�.Y; �; V;ƒI r/ are also acyclic.
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Proof The argument is the same as that which shows that the (undeformed) Chekanov–Eliashberg
dg algebra of a loose Legendrian is acyclic (see eg [55, Section 5]): up to Legendrian isotopy in Y �V , we
can find a chord c of arbitrarily small action which bounds a single half-disk. This disk can be assumed
to stay in a small ball disjoint from V for action reasons. Hence we have d.c/D 1.

11.2 Nonvanishing results: bindings of open books

The following theorem is the main result of this section.

Theorem 11.3 Consider a TN contact pair .Y; �; V /. Suppose that Y admits an open book decomposition
.Y; B; �/ which supports the contact structure � and realizes V D B as its binding. Viewing .B; �/ as
a framed contact submanifold , where � denote the trivialization of B � Y induced by the open book
decomposition , we have

(11-2) eCH�.Y; �; BI r/¤ 0
for any rD .˛B ; �; r/ 2R.Y; �; B/.

By combining Theorem 11.3 with Corollary 8.21, we obtain the following result.

Corollary 11.4 Under the hypotheses of Theorem 11.3, if r 0 is large enough and we write r0D .˛B ; �; r
0/,

then

(11-3) CH�.Y; �; BI r
0/¤ 0:

Proof of Theorem 11.3 According to Corollary 3.15, the open book decomposition .Y; B; �/ supports a
nondegenerate Giroux form ˛ which is adapted to r for any rD .˛B ; �; r/ 2R.Y; �; B/.

Consider the algebra eCC �.Y; �; BI r/ generated by (good) Reeb orbits of ˛ not contained in B . After
fixing an almost complex structure J W �! � which is compatible with d˛ and preserves �jB , and a choice
of perturbation data � 2‚I..Y; �; B/; ˛; J /, we get a differential dJ D d. z B ; J; �/ and the homology of
the resulting chain complex is (canonically isomorphic to) eCH�.Y; �; BI r/.
Let us suppose for contradiction that eCH�.Y; �; BI r/ D 0. This means that 1 is in the image of the
differential. By the Leibnitz rule, this implies that there exists some good Reeb orbit  W S1! Y and a
relative homotopy class ˇ 2 �2.Y; / such that the twisted moduli count of planes positively asymptotic
to  in the homotopy class ˇ is nonzero. To state this more formally in the language of Section 5.3, let
T 2 SI..Y; �; B/; ˛; J / be the tree with a single input edge e and a single vertex v, where e is decorated
with the Reeb orbit  and v is decorated with the ˇ 2 �2.Y; /. Then we have that z B.T /¤ 0.

In particular, this implies that M.T /¤∅. Hence there exists T 0! T such that T 0 is representable by a
J –holomorphic building. The proof of Proposition 7.7 shows that we may assume that T 0 does not have
any edges contained in B (since otherwise we would have z B.T 0/D z B.T /D 0).
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It follows by Proposition 5.12 that T 0 � yB D
P
v2V.T 0/ ˇv �

yB , and Corollary 5.14 implies that all the
terms on the right-hand side are nonnegative. Since z B.T 0/D z B.T /¤ 0, it follows by definition of the
reduced twisting maps that T 0 � yV D 0. Hence ˇv � yB D 0 for all v 2 V.T 0/.

For topological reasons, there exists zv 2 V.T 0/ such that zv has a single incoming edge and no outgoing
edges. Hence zv is represented by a J –holomorphic plane u which is asymptotic to some Reeb orbit z . By
positivity of intersection (see Proposition 5.3) and the fact that ˇzv � yB D 0, the image of u is contained in
R�.Y nB/. Thus z is contractible in Y nB , which implies that the composition � ı z WS1! Y nB!S1

has degree 0. This is a contradiction: since ˛ is a Giroux form, �ız must be an immersion by Remark 3.12,
and hence have nonzero degree.

We also state a vanishing result for the (reduced) Chekanov–Eliashberg dg algebra introduced in
Section 10.2.

Theorem* 11.5 Let .Y; �; V / be a TN contact pair and let ƒ� .Y �V; �/ be a Legendrian submanifold.
Suppose that � supports an open book decomposition � with binding B D V such that ƒ is contained in a
single page. Let � be the trivialization of NY=V induced by the open book. Then we have

(11-4) zL.Y; �; V;ƒI r/¤ 0:

Proof The proof is identical to that of Theorem 11.3; namely, one argues that the image of any Reeb
orbit or chord under the differential cannot contain a term of degree zero, which immediately implies the
claim.

We note that is was proved by Honda and Huang [39, Corollary 1.3.3] that any Legendrian ƒ in a contact
manifold .Y; �/ is contained in the page of some compatible open book decomposition. Hence it follows
from Theorem* 11.5 that every Legendrian is tight in the complement of some codimension 2 contact
submanifold.

11.3 Explicit computations in open books

We now perform certain explicit computations in open book decompositions which will be used in
applications in the next sections. We assume throughout this section that n� 4. This assumption is needed
for the purpose of obtaining a .Z�Z/–bigrading on eCH.�/; see Lemma 11.6 and Corollary 12.17.

Let us endow Sn�1 with a Riemannian metric h having the property that all geodesics are nondegenerate.
Such metrics, which are typically referred to as “bumpy” in the literature, are generic in the space of
Riemannian metrics; see [1] or [44, 3.3.9]. It can be shown [1] that any manifold endowed with a bumpy
metric admits a closed geodesic of minimal length. We let � > 0 be the length of the shortest geodesic of
.Sn�1; h/.
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To set the stage for this section, it will be useful to recall some general facts about coordinate systems.
Given a system of local coordinates .q1; : : : ; qm/ on some manifoldM, the dual coordinates .p1; : : : ; pm/
in the fibers of the T �M are characterized by the property that

(11-5) T �M 3 .q;p/D .q1; : : : ; qm; p1; : : : ; pm/D

mX
iD1

pidqi :

Unless otherwise indicated, a pair .q;p/ refers to a system of local coordinates in the cotangent bundle
of a manifold, where p is dual to q.

It will sometimes also be useful to work with Riemannian normal coordinates. Recall that on a Riemannian
manifold .M; g/, a system of normal coordinates .x1; : : : ; xm/ has the property that for any vector a2TxM,
the path � 7! at is a geodesic. If .q1; : : : ; qn/ is a system of Riemannian normal coordinates, then the
path t 7! ..t/; P[/ can be written in coordinates .q;p/ as

(11-6) t 7! .at; a/ 2 T �M:

We now introduce a Liouville manifold which will be studied throughout the remainder of this section.
For a > 0, define

(11-7) . yW0; y�
a/D

�
D2 �T �Sn�1; y�a WD

1

a
s2 d� C�std

�
;

where we have chosen local coordinates .s; �; q;p/. We emphasize that the Liouville structure depends
on the parameter a > 0.

Let � W yW0!R be the function

(11-8) �.s; �; q;p/D s2Ckpk2:

We consider the Liouville domain

(11-9) .W0; �
a/D .f� � 1g; �a WD y�ajW0/

and its contact-type boundary

(11-10) .Y0; �0/D .f�D1g; �D ker�0/;

where �0 D .y�a/jY0 is the induced contact form. Consider also the codimension 2 contact submanifold

(11-11) V D f�D1; sD0g � .Y0; �0/

and the Legendrian

(11-12) ƒ WD f�D1; �D constant; sD1; kpkD0g:

We define ˛ WD .�0/jV and let � be the trivialization of NY0=V , which is unique by Lemma 11.6. We set

(11-13) rD .˛; �; a/ 2R.Y0; �0; V /:

Finally, we let H D f0g �T �Sn�1 � yW0.
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Observe that r depends on our choice of a > 0. More generally, the contact form �0D .y�
a/jY0 on .Y0; �0/

obviously depends on a > 0. The plan is now to study the Reeb dynamics on .Y0; �0/ with respect to this
contact form. By taking a� 0 large enough, we will be able to obtain a sufficiently good understanding
of the Reeb dynamics to compute the invariant eCH.Y0; �0; V I r/ in low degrees; see Proposition* 11.17.

Lemma 11.6 The manifolds W0 and Y0 have vanishing first and second homology and cohomology with
Z–coefficients. In addition , we have H 1.V IZ/D 0 and w2.ƒ/D 0.

Proof The first claim is proved in Corollary 12.17. To compute H 1.V IZ/, note that V is the sphere
bundle associated to T �Sn�1. Hence, we have a fibration Sn�2 ,! V ! Sn�1 giving rise to a Gysin
sequence

(11-14) � � � !Hk.Sn�1IZ/!Hk.V IZ/!Hk�.n�2/.Sn�1IZ/! � � � :

Taking k D 1 immediately gives the desired result since n� 4. Finally, note that ƒD Sn�1, which has
vanishing homology (with any coefficients) in degrees 1� i � n� 2. Hence w2.ƒ/D 0 for n� 4.

Observe that there is a natural marking

(11-15) e0 WR�Y0! . yW0; y�
a;H/; .t; y/ 7!  t .y/;

where  .�/ is the Liouville flow associated to y�a.

This endows . yW0; y�a;H/ with the structure of a (strict) relative exact symplectic cobordism. We thus
obtain an augmentation

(11-16) z�0 W zA.Y0; �0; V I r/!Q:

It follows from Lemma 11.6 and the discussion following Definition* 9.10 that zA.Y0; �0; V I r/ and
zAz�0.Y0; �0; V I r/ admit a .Z�Z/–bigrading.

We now analyze the structure of .Y0; �0/ in more detail. First, observe that .Y0�V; �0jY0�V / is strictly
contactomorphic to

(11-17)
�
S1 �D�Sn�1; ˛V WD

1

a
.1�kpk2/ d� C�std

�
via the map

(11-18) S1 �D�Sn�1! Y0�V; .�; q;p/ 7!
�p
1�kpk2; �; q;p

�
;

whereD�Sn�1Df.q;p/2T �Sn�1 j kpk<1g. We let N �Y0 denote the image of S1�Sn�1 under this
map; equivalently, N D fkpkD0g. The complement .Y0�N ; �0jY0�N / is strictly contactomorphic to�

B �U; ˛N WD
1

a
.x dy �y dx/C

p
1� x2�y2˛U

�
;
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where B �R2 denotes the open unit disk and .U; ˛U / denotes the unit cotangent bundle of .Sn�1; h/,
equipped with the contact form ˛U WD �std induced by the canonical Liouville form on T �Sn�1. A
contactomorphism is given by

(11-19) B �U ! Y0�N ; .x; y; q;p/ 7!
�
x; y; q;

p
1� x2�y2p

�
:

Observe that the size of the tubular neighborhood B �U depends on our choice of a > 0.

Our first task is to study the Reeb orbits of �0 which are in the complement of N . In particular, we wish
to show that they are nondegenerate for a generic choice of a, and moreover that their Conley–Zehnder
indices depend linearly on a. This is the content of Proposition 11.7 and Corollary 11.8 below.

Proposition 11.7 Let U WR=Z! U be a Reeb orbit of ˛U of period PU . Then:

(A) The map

(11-20) 1 WR=Z! B �U; t 7! .0; 0; U .t//;

is a Reeb orbit of ˛N of period P1 WD PU .

(B) Given any r0 2 .0; 1/ and integers m; n > 0 such that

(11-21)
aPU

4�
p
1� r20

D
m

n
;

the map

(11-22) 2 WR=Z! B �U; t 7! .r0 cos.2�mt/; r0 sin.2�mt/; U .nt//;

is a Reeb orbit of ˛N of period

P2 WD .2� r
2
0 /
2�m

a
D .2� r20 /

nPU

2
p
1� r20

:

Every Reeb orbit of ˛N is of the form (A) or (B) for some choice of U , r0, m and n.

If ˛U is nondegenerate and a satisfies

(11-23) a�1 …
[

q2Q>0

1

4�
p
q
S.˛U /;

where S.˛U / � R is the action spectrum of ˛U , then ˛N is nondegenerate. Moreover , given any
trivialization �0 of �U ker.˛U /, there exist trivializations �i of �i ker.˛N / for i D 1; 2 such that

CZ�1.1/D 1C 2
�
P1a

4�

�
CCZ�0.U /;(11-24)

CZ�2.2/D 1C 2
�

P2a

�.2� r20 /
2

�
CCZ�0.nU /:(11-25)

If �0 extends to a disk spanning U , then �i extends to a disk spanning i .
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Proof The Reeb vector field of ˛N is given by

(11-26) R˛N D
1

2� x2�y2
.a.x@y �y@x/C 2

q
1� x2�y2RU /;

where RU denotes the Reeb vector field of ˛U (recall that a > 0 is a constant fixed above). A simple
computation shows that 1 and 2 are Reeb orbits with periods as claimed, and that there are no other
orbits.

Note that the contact structure � D ker.˛N / splits as

(11-27) � D he1; e2i˚ ker.˛U /;

where e1 and e2 are the vector fields on B �U defined by

e1 D @xC
y

a
p
1� x2�y2

RU ;(11-28)

e2 D @y �
x

a
p
1� x2�y2

RU :(11-29)

In particular, given a trivialization �0 of �U ker.˛U /, we get trivializations �1 D h�1 e1; 
�
1 e2i˚ �0 and

�2 D h
�
2 e1; 

�
2 e2i˚ �

n
0 of �1 � and �2 �, where �n0 denotes the trivialization of .nU /

� ker.˛U / induced
by �0.

We have

Le1R˛N D�@x
�

ay

2� x2�y2

�
e1C @x

�
ax

2� x2�y2

�
e2(11-30)

D
a

.2� x2�y2/2

�
�2xye1C .2C x

2
�y2/e2

�
;

Le2R˛N D @y
�

ay

2� x2�y2

�
e1� @y

�
ax

2� x2�y2

�
e2(11-31)

D
a

.2� x2�y2/2

�
�.2� x2Cy2/e1C 2xye2

�
:

Moreover, for any vector field X on U such that X 2 ker.˛U /, we have

(11-32) LXR˛N D
2
p
1� x2�y2

2� x2�y2
LXRU :

Hence, if ‰i .t/ W �i .0/! �i .t/ denotes the linearized Reeb flow along i (viewed as a matrix via the
trivialization �i ) for i D 1; 2, then ‰0i .t/D Si .t/‰i .t/ with

S1.t/D
aPU

2

�
0 �1

1 0

�
˚PUSU .t/;(11-33)

S2.t/D
2�m

2� r20

�
�r20 sin.4�mt/ �2C r20 cos.4�mt/
2C r20 cos.4�mt/ r20 sin.4�mt/

�
˚nPUSU .nt/;(11-34)

where SU .t/ is the matrix such that the linearized Reeb flow‰U W .�U /U .0/! .�U /U .t/ ofRU along U
satisfies ‰0U .t/D PUSU .t/‰U .t/.
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It follows that CZ�1.1/DCZ. 1/CCZ�0.U / and CZ�2.2/DCZ. 2/CCZ�0.nU /, where  1 and  2
are paths of 2� 2 matrices given by  i .t/D exp.Pi .t// with

P1.t/D t
aPU

2

�
0 �1

1 0

�
;(11-35)

P2.t/D

Z t

0

2�m

2� r20

�
�r20 sin.4�ms/ �2C r20 cos.4�ms/
2C r20 cos.4�ms/ r20 sin.4�ms/

�
ds;(11-36)

D
2�m

2� r20

0B@ r20
4�m

.cos.4�mt/� 1/ �2t C
r20
4�m

sin.4�mt/

2t C
r20
4�m

sin.4�mt/ �
r20
4�m

.cos.4�mt/� 1/

1CA :
Note that P1.t/ and P2.t/ are diagonalizable with eigenvalues ˙2�i�1.t/ and ˙2�i�2.t/, respectively,
where

�1.t/D t
aPU

4�
;(11-37)

�2.t/D
1

2� r20

r
4m2t2�

r40
8�2

.1� cos.4�mt//:(11-38)

It follows that ker. i .t/�Id/ is either R2 or 0, depending on whether �i .t/ is an integer or not. Assumption
(11-23) implies that �i .1/ is not an integer and hence that  i .1/ doesn’t have 1 as an eigenvalue, ie  i is
nondegenerate. This is clear for �1.1/; to check this for �2.1/, note that it follows from (11-21) that

(11-39) �2.1/D
2m

2� r20
D

2m

1C
n2a2P 2U
.4�/2m2

D
2m3.4�/2

.4�/2m2Cn2a2P 2U
:

If this expression were integral, then the reciprocal would be rational; hence n2a2P 2U =.2m
3.4�/2/ would

be rational, contradicting Assumption (11-23).

Since �J0P 0i .t/ is positive-definite for all t , it follows from [33, Proposition 52] that

(11-40) CZ. i /D 1C 2 #ft 2 .0; 1/ j �i .t/ 2 Zg:

Since �i is strictly increasing with �i .0/D 0 and �i .1/ …Z, the right-hand side is equal to 1C 2b�i .1/c.
Thus

CZ. 1/D 1C 2
�
aPU

4�

�
D 1C 2

�
aP1

4�

�
;(11-41)

CZ. 2/D 1C 2
�
2m

2� r20

�
D 1C 2

�
aP2

�.2� r20 /
2

�
;(11-42)

as desired.
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Corollary 11.8 Suppose that  is a closed Reeb orbits of .Y0; � D ker�0/ which is contained in the
complement of N � Y0. Then

(11-43) CZ� ./ >
j
a�

�

k
;

where � is a trivialization which extends to a spanning disk and � > 0 is as on page 92.

Proof It is well-known that the Reeb orbits on U correspond bijectively to geodesics on .Sn�1; h/;
with our normalization, the action of a closed Reeb orbit equals twice the length of the corresponding
unit-speed geodesic; see eg [29, Section 1.5]. Moreover, according to [24, Proposition 1.7.3], given a
Reeb orbit z which corresponds to a geodesic  , we have

(11-44) �M ./D CZ� .z/;

where �M is the Morse index of the geodesic and � extends to a spanning disk; see Remark 11.9. Since
the Morse index of a geodesic is nonnegative by definition, the corollary follows from Proposition 11.7.

Remark 11.9 The trivialization considered in [24, Proposition 1.7.3] is in fact constructed as follows.
Choose a spanning disk zv WD2! U � T �Sn�1 for z and let v WD � ı zv, where � W T �Sn�1! Sn�1

is the projection. Let f�1; : : : ; �n�1g be a trivialization of v�TSn�1. For points � W zx 7! x, let
QxIzx W�

�1.x/!Tzx.�
�1.x// be the canonical identification. Now define z� ipDQv.p/Izv.p/�p for p 2D2.

Then fz�1; : : : ; z�n�1g defines a Lagrangian subbundle of the symplectic vector bundle .zv�.�/; d�0/.
Hence it induces a unique trivialization of zv�� , which restricts on the boundary to a trivialization of z�� .

We now turn to the Reeb dynamics near N . Recall from page 94 that N is contained in .Y0�V; �0/,
which is strictly contactomorphic to .S1 �D�Sn�1; ˛V /, where ˛V D .1=a/.1�kpk2/ d� C�std.

Lemma 11.10 Let q D .q1; : : : ; qn�1/ be Riemannian normal coordinates in some open set U �
.Sn�1; h/ and let p D .p1; : : : ; pn/ be the dual coordinates. The Reeb vector field of ˛V is given by

(11-45) R˛V D
1

1Ckpk2

�
a@� C 2

X
i;j

hijpi@qj �
X
i;j;k

pipj @kh
ij @pk

�
on S1 �D�U . (Here we follow the convention of using superscripts .hij / D .hij /

�1 to denote the
coefficients of the metric induced by h on T �Sn�1.)

Proof A direct computation using the formulas

˛V D
1

a

�
1�

X
i;j

pipjh
ij

�
d� C

X
i

pi dqi ;(11-46)

d˛V D�
2

a

X
i;j

hijpi dpj ^ d� �
1

a

X
i;j;k

pipj @kh
ij dqk ^ d� C

X
i

dpi ^ dqi(11-47)

shows that ˛V .R˛V /D 1 and d˛V .R˛V ;�/D 0.
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Lemma 11.11 Consider the map � W Y0 � V ! S1 given by �.s; �; q; p/ D � . Then the pair .V; �/
defines an open book decomposition of Y. Moreover , �0 is a Giroux form for the contact structure
�0 D ker�0.

Proof It is clear that .V; �/ defines an open book decomposition of Y. To verify that �0 is a Giroux
form, observe by Lemma 11.10 that the Reeb vector field is transverse to the pages of � . The claim then
follows by combining Definition 3.11 and Remark 3.12.

By Lemma 11.10, the map 0 W R=Z! S1 �D�U given by the formula 0.t/ D .2�t; 0; 0/ defines a
simple Reeb orbit in Y0. Let k0 denote its k–fold cover. There is an obvious trivialization �0 of �jk0
given by

(11-48) �0 D f@p1 ; : : : ; @pn�1 ; @q1 ; : : : ; @qn�1g:

Let � be the trivialization of �jk0 defined as

(11-49) �Dfsin.2�kt/@q1Ccos.2�kt/@p1 ; @p2 ; : : : @pn ; cos.2�kt/@q1�sin.2�kt/@p1 ; @q2 ; : : : ; @qng:

Observe that � extends to a disk spanning 0 in Y0.

Lemma 11.12 With respect to the trivialization �0, the linearized Reeb flow along k0 is given by the
matrix

(11-50)
�

1 0
2t 1

�
;

where each entry of this matrix should be viewed as an .n�1/� .n�1/ diagonal matrix.

Proof Note that �0 can be extended to a trivialization z�0 of ker.˛V / over S1 �D�U , where

(11-51) z�0 D

�
@p1 ; : : : ; @pn�1 ; @q1 �

ap1

1�kpk2
@� ; : : : ; @qn�1 �

apn�1

1�kpk2
@�

�
:

Using the formula for R˛V given in Lemma 11.10, one can easily compute

L@piR˛V jpD0;qD0 D 2@qi ;(11-52)

L@qi�.api=.1�kpk2// @�R˛V jpD0;qD0 D 0:(11-53)

Hence, the matrix A.t/ representing the linearized Reeb flow �k0 .0/
! �k0 .t/

with respect to the trivial-
ization �0 is given by

(11-54) A.t/D exp
�
t

�
0 0

2 0

��
D

�
1 0

2t 1

�
;

where each entry should be interpreted as a multiple of the .n�1/� .n�1/ identity matrix.
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Corollary 11.13 The Robbin–Salamon index satisfies

(11-55) �
�0
RS.

k
0 /D

1
2
.n� 1/:

Hence ,

(11-56) ��RS.
k
0 /D

1
2
.n� 1/C 2k:

Proof The first computation follows from [33, Proposition 54]; there is a sign change due to the fact that
the matrix we are considering is the transpose of that considered in [33, Proposition 54], but the proof is
entirely analogous. The second computation follows from the fact (see the proof of Lemma 57 in [33])
that the Robbin–Salamon index satisfies the so-called “loop property”, ie given a path of symplectic
matrices � W Œ0; 1�! Sp.2n;R/ with �.0/D �.1/D id, and given a path  W Œ0; 1�! Sp.2n;R/, we have

(11-57) �RS.� /D �RS. /C 2�.�/;

where � is the Maslov index of the path.

By Lemma 11.10, N D fkpkD0g is preserved by the Reeb flow and is foliated by Reeb orbits in a
Morse–Bott family.

Given � > 0 which will be fixed later, let U� D fkpk < �g \ Y0. This is a neighborhood of N , which
we identify with S1 �D�� S

n�1 via the contactomorphism defined on page 94. Let f W U�! R be the
function corresponding under this identification to

(11-58) S1 �D�� S
n�1
!R; .�; q;p/ 7! �.kpk/g.q/;

where g is a perfect Morse function on Sn�1 and � WR! Œ0; 1� is a smooth bump function with �.x/D 1
for x near 0 and �.x/D 0 for x > �=2; cf [6, Section 2.2].

Lemma 11.14 Fix P > 0. If � is small enough , all closed Reeb orbits of .Y0; �0/ which are contained
in U� �N have action at least P .

We now consider a perturbed contact form �ı WD .1C ıf /�0. Since f is compactly supported in U� , the
form �ı can be viewed as a contact form both on U� and on Y0.

Lemma 11.15 Fix P > 0. If � and ı are small enough , then there are exactly two simple Reeb orbits
in U� with action < P . We label them a and b , and they correspond respectively to the minimum and
maximum of f .

Proof Combine Lemma 11.14 with the argument of [6, Lemma 2.3].
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Lemma 11.16 Let P > 0 be as in Lemma 11.15. After possibly further shrinking � and ı, we may
assume that any Reeb orbit of .Y0; �ı/ contained in U� and having Conley–Zehnder index (measured
with respect to a trivialization which extends to a spanning disk ) less than P=a is a multiple of a or b .
In addition , we have

CZ� .ka /D �
�
RS.

k
0 /�

1
2
.n� 1/C inda.ıf /D 2k;(11-59)

CZ� .kb /D �
�
RS.

k
0 /�

1
2
.n� 1/C indb.ıf /D .n� 1/C 2k:(11-60)

Proof First of all, observe by Lemma 11.10 that the boundary of U� is preserved by the Reeb flow of �0.
It follows that the Reeb flow of �0 has “bounded return time”, in the terminology of [6, Definition 2.5].

Next, it follows from (11-56) that the Robbin–Salamon index of any Reeb orbit  contained in the
Morse–Bott submanifold N D fkpkD0g � Y0 satisfies

(11-61) �RS./D
1
2
.n� 1/C 2wind./D 1

2
.n� 1/C 2Ta;

where P is the length of  . It follows that these orbits satisfy “index positivity” (with constant 2=a), in
the terminology of [6, Definition 2.6].

The first claim now follows from [6, Lemma 2.7]. The index computations follow by combining (11-56)
with [6, Lemma 2.4].

We now put together the above results. For any integer N > 0, let us define

(11-62) †1N D fk 2 Z j 0 < k < N; k eveng;

and let

(11-63) †2N D fk 2 Z j k < N; k D n� 1C 2j for j � 1g:

Proposition* 11.17 Given any N > 0, there exists A > 0 such that

(11-64) CHUD0
k�.n�3/.Y0; �0; V I r/D

eCHk�.n�3/.Y0; �0; V I r/

D

8<:
Q˚Q if k 2†1N \†

2
N ;

Q if k 2†1N [†
2
N � .†

1
N \†

2
N /;

0 if k …†1N [†
2
N and k < N;

whenever a > A. (Recall from (11-13) that r depends on a > 0 and hence on N > 0.)

Proof According to Corollary 11.8, we may fix A> 0 large enough so that all Reeb orbits for .Y0; �0/
in the complement of N � Y0 have index at least N . We now choose � and ı small enough so that the
conclusions of Lemma 11.16 hold with P DN . Since fı is compactly supported in U� , we find that the
only Reeb orbits of .Y0; �ı/ having index less than N are multiples of a and b .
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According to (11-59) and (11-60), it is now enough to check that the differential vanishes on the set

�N D f
ka
a ; 

kb
b
j CZ� .kaa / < N;CZ� .kb

b
/ < N g:

To see this, observe that for  2�N we have

(11-65) CZ� ./D 2wind./ mod .n� 1/:

Suppose that there exists a homotopy class ˇ of curves of index 1 with yV � ˇ D 0. Then the linking
number of the positive puncture equals the sum of the linking numbers of the negative punctures. Hence,
by (11-65), the index of the positive puncture equals the sum of the indices of the negative punctures
mod .n�1/. Since ˇ has index 1, this means that 1D 0 mod .n�1/. This is a contradiction since n>2.

Corollary* 11.18 Let N > 0 be as in Proposition* 11.17. Then for all integers k < N we have

(11-66) eCH z�0
k�.n�3/

.Y0; �0; V I r/D eCHk�.n�3/.Y0; �0; V I r/;
where the right-hand side was computed in Proposition* 11.17.

We now turn out attention to computing certain Legendrian invariants. Let ƒ � .Y0; �0/ be defined
as above; see (11-12). Recall that the relative symplectic filling . yW0; y�0;H/ gives an augmentation
z�0 W zA.Y0; �0; V I r/!Q.

It follows from Corollary* 10.14 and Lemma 11.6 that zLz�0.Y0; �0; V;ƒI r/ is a .Z�Z/–bigraded algebra
with differential of bidegree .�1; 0/, and thatHC�;�. zLz�.Y; �; V I r// is a .Z�Z/–bigraded Q–vector space.

We now have the following computation.

Proposition* 11.19 Given a positive integer N � 1, let

(11-67)
M
j�N

zLz�0
�;j .Y0; �0; V;ƒI r/�

zLz�0.Y0; �0; V;ƒI r/

be the bigraded submodule of elements of winding number at most N. Then this submodule can be
generated by products of total winding number � N of Reeb chords fakgk2NC and fbkgk2NC , where
jakj D 2k� 1 and jbkj D n� 2C 2k. (Note that we do not say anything about the differential.)

Proof Since .Y0�V; �0/ is strictly contactomorphic to .S1 �D�Sn�1; ˛V /, we have that .Y0�V; �ı/
is strictly contactomorphic to .S1 �D�Sn�1; ˛ı WD.1C ıf /˛V /.

Recall that f depends on a positive real parameter � > 0, which can be taken to be arbitrarily small.
Moreover, the restriction of f to the Legendrian ƒD f0g �Sn�1 is equal to g, a Morse function with
exactly two critical points: one minimum a and one maximum b.
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Let c denote either a or b. As in Lemma 11.16, we let c denote the simple Reeb chord (which is also
a Reeb orbit) passing through c, and let kc denote its k–fold cover. Observe first of all that all Reeb
chords for ƒ are contained in U� – this follows from the fact that f is compactly supported in U�; see
page 100. Hence, as in Lemma 11.14, if we assume that � > 0 is small enough, then there exists P > 0

large enough so that all Reeb chords of action greater than P have winding number greater than N. By a
routine adaptation of Lemma 11.15 (or rather the proof of [6, Lemma 2.3]), one concludes that the only
Reeb chords of winding number less than or equal to N are the ka and k

b
.

We can assume without loss of generality that there are normal coordinates q D .q1; : : : ; qn�1/ defined
in a neighborhood Uc �ƒ of c in which g is given by

(11-68) g D g.c/C �

n�1X
iD1

q2i ;

where � D 1 if c D a, and � D�1 if c D b. The Reeb vector field of ˛ı is given by

(11-69) R˛ı D
1

1C ıf
R˛C

2�ı

.1C ıf /2

X
i

�
qi �

2pi

1Ckpk2

X
j;k

hjkpkqj

�
@pi

on S1 �D�Uc for kpk sufficiently small, ie satisfying �.kpk/D 1. We will now show that for every
k � 1, the indices of ka and k

b
as Reeb chords are given by

(11-70) CZC.ka /D 2k and CZC.kb /D 2kCn� 1:

Hence, setting ak D ka and bk D kb , we have

jakj D CZC.ak/� 1D 2k� 1;

jbkj D CZC.bk/� 1D 2kCn� 2;
as desired.

To compute CZC.kc /, we start by computing the linearized Reeb flow along kc with respect to the
trivialization �0; see (11-48). We proceed as in Lemma 11.12: we have

L@piR˛ı
ˇ̌
pD0;qD0

D
2

1C ıg.c/
@qi ;(11-71)

L@qi�.api=.1�kpk2// @�R˛ı
ˇ̌
pD0;qD0

D �
2ı

.1C ıg.c//2
@pi :(11-72)

Hence, the matrix A.t/ representing the linearized Reeb flow �kc .0/
! �kc .t/

with respect to the trivial-
ization �0 satisfies A0.t/D SA.t/ with

(11-73) S D

0B@ 0 �
2ı

.1Cıg.c//2

2

1Cıg.c/
0

1CA ;
where each entry should be interpreted as a multiple of the .n�1/� .n�1/ identity matrix.
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Setting �D 2ı=.1C ıg.c//2 and � D 2=.1C ıg.c// for ease of notation, it follows that

(11-74) A.t/D exp.tS/D

8̂̂̂̂
<̂
ˆ̂̂:

 
cosh.t

p
��/

p
�=� sinh.t

p
��/p

�=� sinh.t
p
��/ cosh.t

p
��/

!
if � D 1, 

cos.t
p
��/ ��=� sin.t

p
��/

�=� sin.t
p
��/ cos.t

p
��/

!
if � D�1.

(Note that �; � > 0 if ı is sufficiently small.)

Let L.t/� �kc .t/ be the path of Lagrangian subspaces obtained by applying the linearized Reeb flow to
the tangent space Tcƒ� �c and let zL.t/ be the loop obtained by closing up L.t/ by a positive rotation.
Since Tcƒ is represented by �

0

In�1

�
in the trivialization �0, L.t/ is represented by

A.t/

�
0

In�1

�
:

In the two-dimensional case (ie n� 1D 1), one can easily deduce (eg using the standard properties of the
Maslov index stated in [52, Theorem 2.3.7]) that

(11-75) ��0.zL.t//D

�
0 if � D 1,
1 if � D�1.

In general, L.t/ splits as a direct sum of n� 1 copies of the two-dimensional case, so the additivity
property of the Maslov index [52, Theorem 2.3.7] implies that

(11-76) ��0.zL.t//D

�
0 if � D 1,
n� 1 if � D�1.

According to Definition 10.3 and the definition of the Maslov index [52, Theorem 2.3.7], we have
CZC.kc /D �

� .ƒn�1C
zƒ/D �� .zL.t//, where � is a trivialization of the contact structure along kc which

extends to a spanning disk. For example, we can take � to be the trivialization defined in equation (11-49).
The difference �� .zL.t//���0.zL.t// is equal to twice the Maslov index of the loop of symplectic matrices
relating � and �0, ie

(11-77) �� .zL.t//���0.zL.t//D 2�

�
cos.2�kt/ �sin.2�kt/
sin.2�kt/ cos.2�kt/

�
D 2k:

It follows that

(11-78) CZC.ka /D 2k and CZC.kb /D 2kCn� 1;

as desired.

It will be useful to record the following consequence of the above computation.
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Corollary* 11.20 Suppose that n� 4 is even. Then we have

(11-79) rkHC2n;2. zLz�0.Y0; �0; V;ƒI r//D 1:

Proof Indeed, note that the generators described in Proposition* 11.19 satisfy link.ak/D link.bk/D k.
It thus follows that

(11-80) CC2n�1;2. zL�.Y0; �0; V I r//D CC2nC1;2. zL�.Y0; �0; V I r//D 0:

On the other hand, CC2n;2. zL�.Y0; �0; V I r// is generated by the word b1b1.

12 Applications to contact topology

12.1 Contact and Legendrian embeddings

We begin by introducing some standard definitions in the theory of contact and Legendrian embeddings.

Definition 12.1 Given a smooth manifold Y 2n�1, a formal contact structure (or almost-contact structure)
is the data of a pair .�; !/, where �� T Y is a codimension 1 distribution and ! 2�2.Y / is a 2–form
whose restriction to � is nondegenerate. A formal contact structure is said to be genuine if it is induced
by a contact structure.

If Y 2n�1 is orientable, then a formal contact structure is the same thing as a lift of the classifying map
Y ! BSO.2nC 1/ to a map Y ! B.U.n/� id/D BU.n/.

Definition 12.2 (see Definition 2.2 in [10]) Let .Y 2n�1; � D ker˛/ be a contact manifold. Given a
formal contact manifold .V 2m�1; �; !/ where 1�m� n� 1, a formal (iso)contact embedding is a pair
.f; Fs/ where

� Fs is a fiberwise injective bundle map T V ! T Y defined for s 2 Œ0; 1�,

� f W V ! Y is a smooth map and df D F0, and

� F1 defines a fiberwise conformally symplectic map .�; !/! .�; d˛/.

Observe that the above properties are independent of the choice of contact form ˛.

Two formal contact embeddings i0; i1 W .V; �; !/! .Y; �/ are said to be formally isotopic if they can be
connected by a family fitgt2Œ0;1� of formal contact embeddings.

A (genuine) contact embedding .V; �/! .Y; �/ is simply a smooth embedding � W V ! Y such that
��.�/D ��.V /. In particular, every contact embedding induces a formal contact embedding by taking
Fs D F0 D df .
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Definition 12.3 (see Definition 2.1 in [10]) Let .Y 2n�1; �/ be a contact manifold. Given a smooth
n–dimensional manifold ƒ, a formal Legendrian embedding is a pair .f; Fs/ where

� Fs is a fiberwise injective bundle map T V ! T Y defined for s 2 Œ0; 1�,

� df D F0, and

� im.F1/� �.

Two formal Legendrian embeddings are said to be formally isotopic if they can be connected by a family
of Legendrian embeddings. A (genuine) Legendrian embedding ƒ! .Y; �/ is a smooth embedding
� Wƒ! Y such that d�.Tƒ/� � � T Y. In particular, a Legendrian embedding canonically induces a
formal Legendrian embedding.

We now review some foundational facts about loose Legendrians. Recall that a Legendrianƒ in a (possibly
noncompact) contact manifold .Y; �/ of dimension at least five is defined to be loose if it admits a loose
chart. For concreteness, we adopt as our definition of a loose chart the one given in [16, Section 7.7].

Loose Legendrians satisfy the following h-principle due to Murphy [55, Theorem 1.2]: given a pair
of loose Legendrian embeddings f0; f1 W ƒ! .Y; �/ which are formally isotopic, then f0 and f1 are
genuinely isotopic, ie isotopic through Legendrian embeddings.

Given an arbitrary Legendrian submanifold ƒ0 in a contact manifold .Y0; �0/ of dimension at least five,
one can perform a local modification, called stabilization, which makes ƒ0 loose without changing the
formal isotopy class of the tautological embedding ƒ0

id
�! ƒ0. This modification can be realized in

multiple essentially equivalent ways. In this paper, we will take as our definition of stabilization any
construction which satisfies the properties stated in the following lemma.

Lemma 12.4 Given a Legendrian submanifold ƒ� .Y0; �0/ and an open set U � Y0 such that U \ƒ0
is nonempty , there exists a Lagrangian embedding f1 W ƒ0 ! Y which is formally isotopic to the
tautological embedding ƒ0

id
�! ƒ0 via a family of formal Legendrian embeddings f.ft ; F ts /gt2Œ0;1�

which are independent of t on ƒ0\ .Y �U/. We put ƒ WD f1.ƒ0/ and say that ƒ is the stabilization
of ƒ0 inside U.

Proof To construct ƒ, we follow the procedure described in [16, Section 7.4]. As the reader may verify,
this construction can be assumed to happen entirely inside a suitably chosen Darboux chart U � U. In
addition, the construction depends on the choice of a function f ; using that Y has dimension at least
five, we may (and do) assume that �.ff � 1g/D 0. To construct the formal isotopy, we simply follow
the proof of [16, Proposition 7.23] (using the assumption that �.ff � 1g/ D 0). The argument there
is entirely local, so that the isotopy can be assumed to be fixed outside of U (and in particular, outside
of U ).
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12.2 Embeddings into overtwisted contact manifolds

We begin with the following proposition.

Proposition 12.5 Suppose that .Y; �/ is an overtwisted contact manifold and let

(12-1) i W .V; �/! .Y; �/

be a formal contact embedding. Then there exists an open subset �� Y such that Y �� is overtwisted ,
and a genuine contact embedding

(12-2) j W .V; �/!�� .Y; �/

such that i and j are formally contact isotopic in .Y; �/.

Proof We will assume for simplicity that V is connected, but the proof can easily be generalized. Let
Dot � .Y; �/ be an overtwisted disk. Let ft be a family of formal contact embeddings such that f0 is the
underlying smooth map induced by i , and Im.f1/\Dot D∅. Let �� Y be a connected open subset
such that Im.f1/����� Y �Dot. According to [5, Proposition 3.8], we can assume by choosing �
large enough that .�; �/ is overtwisted.

For purely algebrotopological reasons, there exists a family �t of formal contact structures on Y with the
following properties:

� �0 D �,

� �t is constant in the complement of �, and

� �1 is a genuine contact structure in a neighborhood V �� of Im.f1/, and f1 is a genuine contact
embedding with respect to �1.

Since �1 is genuine on V [ .Y ��/, it follows from the relative h-principle for overtwisted contact
structures [5, Theorem 1.2] that �1 is homotopic to a genuine overtwisted contact structure through a
homotopy fixed on V [ .Y ��/. Thus we may as well assume in the third property above that �1 is
genuine everywhere.

Since .�; �/ is overtwisted, it follows from [5, Theorem 1.2] that there exists a homotopy z�t of genuine
contact structures such that z�0 D �0 D �, z�1 D �1 and z�t is independent of t on Y ��.

By Gray’s theorem, there is an ambient isotopy  t W Y ! Y which is fixed on Y �� and has the property
that  �t z�t D z�0 D �0. The composition  �11 ıf1 is in the same class of formal contact embeddings as f1,
and gives the desired genuine embedding.

We now describe a procedure for constructing pairs of codimension 2 contact embeddings in overtwisted
manifolds which are formally isotopic but fail to be isotopic as contact embeddings.
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Construction 12.6 Let .Y 2n�10 ; �0/ be a closed, overtwisted contact manifold and let .Y0; B; �/ be an
open book decomposition which supports �0. Let i0 W .B; .�0/B/! .Y0; �0/ be the tautological embedding
of the binding and let j0 W .B; .�0/B/! .Y0; �0/ be a contact embedding with overtwisted complement
which is formally isotopic to i0 (the existence of such an embedding follows from Proposition 12.5). Let
Dot � Y0 be an overtwisted disk which is disjoint from j0.B/.

Choose an open subset U � Y0 whose closure is disjoint from i0.B/[ j0.B/[Dot, and such that i0
and j0 are formally isotopic in the complement of U . Now let .Y; �/ be obtained by attaching handles of
arbitrary index along isotropic submanifolds contained inside U ; see Construction 10.15. We let . yX; y�/
denote the resulting Weinstein cobordism with positive end .Y; �/ and negative end .Y0; �/.

Observe that .Y; �/ is still overtwisted and that i0 and j0 can also be viewed as codimension 2 contact
embeddings into .Y; �/. We denote these latter embeddings by i; j W .B; .�0/B/! .Y; �/. By construction,
the embeddings i and j are formally isotopic.

Theorem 12.7 The embeddings i and j which arise from Construction 12.6 are not genuinely isotopic. In
fact , i is not genuinely isotopic to any reparametrization of j in the source , meaning that the codimension 2
submanifolds .i.B/; �i.B//; .j.B/; �j.B// are not contact isotopic.

Proof According to Corollary 8.8, the cobordism . yX; y�/ induces a map of unital Q–algebras

eCH�.Y; �; BI r/! eCH�.Y0; �0; BI r/
for any element r2R.Y0; �0;B/�R.Y; �;B/. Moreover, Theorem 11.3 implies that eCH�.Y0; �0;BI r/¤0
for appropriate r 2R.Y; �; B/. It follows that eCH�.Y; �; BI r/¤ 0.

If we assume that .i.B/; �i.B//; .j.B/; �j.B// are isotopic as codimension 2 contact submanifolds, then
eCH�.Y; �; BI r/DeCH�.Y; �; j.B/I r0/ for some datum r0 2R.Y; �; j.B//. On the other hand, observe that
.Y � j.B/; �/ is overtwisted by construction. Hence Theorem 11.1 implies eCH�.Y; �; j.B/I r0/D 0.

Example 12.8 By a well-known theorem of Giroux and Mohsen [29, Theorem 7.3.5], any contact
manifold .Y; �/ admits an open book decomposition .Y; B; �/ which supports � . Hence Construction 12.6
and Theorem 12.7 can be applied to any overtwisted contact manifold.

We also consider the following modification of Construction 12.6.

Construction 12.9 Let .Y 2n�10 ; �0/ be a closed, overtwisted contact manifold and let .Y0; B; �/ be an
open book decomposition which supports �0. Suppose that there exists a Legendrian submanifold ƒ� Y0
such that B D �.ƒ/ is a contact pushoff of ƒ. Let Dot � Y0 be an overtwisted disk.

Let U1 � Y0 �B �Dot be an open ball which intersects ƒ. Let ƒ0 � .Y0; �0/ be obtained by stabiliz-
ing ƒ inside U1; see Lemma 12.4. Let U2 be the union of U1 with a tubular neighborhood of ƒ. Let
V 0 D �.ƒ0/� U2 be a choice of contact pushoff for ƒ0.
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Let i0 W .B; .�0/B/! .Y0; �0/ be the tautological embedding. By [10, Lemma 3.4], i0 is formally isotopic
to some codimension 2 contact embedding j0 W .B; .�0/B/! .Y0; �0/, where j0.B/DB 0. Choose such a
formal isotopy and let T � Y0 be its trace.

Let U � Y0 be an open set whose closure is disjoint from T [ U2 [Dot. As in Construction 12.6, let
.Y; �/ be obtained by attaching handles of arbitrary index along some collection of isotropics inside U .
Let . yX; y�/ denote the resulting Weinstein cobordism with positive end .Y; �/ and negative end .Y0; �/.

It follows from our choice of U that .Y; �/ is overtwisted and that ƒ, ƒ0, V and V 0 can be viewed as
submanifolds of .Y; �/. It also follows that ƒ0 is the stabilization of ƒ as submanifolds of .Y; �/, and that
V (resp. V 0) is the contact pushoff of ƒ (resp. ƒ0).

Corollary 12.10 The submanifolds .V; �V / and .V 0; �V 0/ are not isotopic through codimension 2 contact
submanifolds. Hence the Legendrian submanifolds ƒ;ƒ0 � .Y; �/ are not isotopic through Legendrian
submanifolds.

Proof The proof of the first statement is identical to that of Theorem 12.7. The second statement follows
from the fact that V and V 0 are, respectively, the contact pushoff of ƒ and ƒ0.

Example 12.11 Let .Y0; �0/ D obd.T �Sn�1; ��1/, where ��1 is a left-handed Dehn twist. Note by
[12, Theorem 1.1] that .Y0; �0/ is overtwisted — in fact, .Y; �/ is contactomorphic to .S2n�1; �ot/. Let
P D T �Sn�1� Y0 be a page of the open book and let ƒ� .Y0; �0/ be the Legendrian which corresponds
to the zero section of P . Then the binding of the open book decomposition is also a contact pushoff of ƒ.
We may therefore apply Construction 12.9 to this data.

Remark 12.12 Consider the special case of Constructions 12.6 and 12.9 where U is empty, ie one does
not attach any handles. In this case, Theorem 12.7 and Corollary 12.10 are essentially equivalent to the
statement that the binding of an open book decomposition is tight, ie must intersect any overtwisted
disk. This statement was proved in dimension 3 by Etnyre and Vela-Vick [28, Theorem 1.2]; the higher-
dimensional case follows from work of Klukas [45, Corollary 3], who proved (following an outline of
Wendl [67, Remark 4.1]) the stronger fact that a local filling obstruction (such as an overtwisted disk) in
a closed contact manifold must intersect the binding of any supporting open book.

12.3 Contact embeddings into the standard contact sphere

In this section, we exhibit examples of pairs of codimension 2 contact embeddings into tight contact
manifolds which are formally isotopic but are not isotopic through genuine contact embeddings. We
begin with the following construction.

Construction 12.13 Let .Y 2n�10 ; �0/ be a contact manifold for n�3. Let V � .Y0; �0/ be a codimension 2
contact submanifold and let ƒ� .Y0; �0/ be a loose Legendrian such that ƒ\V D∅.
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Choose an open ball U � Y0 such that .U ;U \ƒ/ is a loose chart for ƒ. Next, choose an open ball
O � Y0�V �U . (By definition of a loose chart, U \ƒ is a proper subset of ƒ, so it is clear that such
choices exist.)

Let ƒ0 be obtained by stabilizing ƒ inside O. It follows from Lemma 12.4 that ƒ and ƒ0 are formally
isotopic via a formal isotopy fixed outside of O.

According to Lemma 12.14 below, we can (and do) fix a contactomorphism f W .Y0; �0/! .Y0; �0/ with
the following properties:

(1) f is isotopic to the identity,

(2) f .ƒ/Dƒ0, and

(3) the tautological contact embedding i 00 W .V; .�0/V / ! .Y0 � ƒ
0; �0/ is formally isotopic to the

embedding i 01 WD f ı i
0
0 W .V; .�0/V /! .Y0�ƒ

0; �0/. (We emphasize here that the formal isotopy
is contained in the open contact manifold .Y0�ƒ0; �0/.)

Finally, let .Y; �/ be obtained by attaching a Weinstein n–handle along ƒ0 � .Y0; �0/ as described in
Construction 10.15. We assume without loss of generality that the attaching regionƒ0�V disjoint from V

and f .V /, and that i 00 and i 01 are formally isotopic in Y0 � V . We let � W Y0 � V ,! Y be the canonical
inclusion.

Let

(12-3) i0 D � ı i
0
0 W .V; �V /! .Y; �/

be the tautological contact embedding and define

(12-4) i1 WD � ı i
0
1 W .V; �V /! .Y; �/:

It is an immediate consequence of (3) and our choice of V that i0 and i1 are formally isotopic.

Lemma 12.14 With the notation of Construction 12.13, there exists a contactomorphism f W .Y0; �0/!

.Y0; �0/ satisfying the properties (1)–(3) stated in Construction 12.13.

Proof Recall that U is disjoint from O. Recall also that .U ;U\ƒ/ is a loose chart forƒ, which means in
particular that U deformation retracts onto U \ƒ. Using these two facts, it is not hard to verify that there
exists a family of formal contact embeddings jt W .V; .�0/V /! .Y0; �0/ for t 2 Œ0; 1�, with the following
properties:

� j0 D i
0
0,

� jt .V / is disjoint from O[ƒ for all t 2 Œ0; 1�, and

� j1.V / is disjoint from U [O[ƒ.
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By the h–principle for loose Legendrian embeddings [55, Theorem 1.2], there exists a global contact
isotopy �t for t 2 Œ0; 1� such that �0 D Id and �1.ƒ/ D ƒ0. By the Legendrian isotopy extension
theorem [29, Theorem 2.6.2], this isotopy can be assumed to be compactly supported and constant in a
neighborhood W of j1.V /, where W is disjoint from U [O[ƒ.

Let f WD�1 and observe that f satisfies (1)–(2). Observe that f ıjt defines a formal contact isotopy from
f ı i 00 D i

0
1 to j1 in the complement of ƒ0 D f .ƒ/. Since i 00 is formally isotopic to j1 in the complement

of ƒ0 �ƒ[O, we find that f satisfies (3).

It will be useful to record the following basic observation, which is a consequence of the fact stated in
Definition 2.1 that an isotopy of contactomorphisms induces a Hamiltonian isotopy of symplectizations.

Lemma 12.15 (cf Definition 2.1) Let . yX; y�/ be a relative cobordism from .Y C; �C/ to .Y �; ��/.
Given contactomorphisms f ˙ W .Y ˙; �˙/! .Y ˙; �˙/ which are contact isotopic to the identity, there is
a symplectomorphism F W . yX; y�/! . yX; y�/ which agrees near infinity with the lifts zf ˙ W .SY ˙; �Y˙/!
.SY ˙; �Y˙/.

Let us now return to the geometric setup considered in Section 11.3. In particular, we let

(12-5) . yW0; y�
a/ WD

�
D2 �T �Sn�1;

1

a
r2d� C�std

�
;

where a > 0 is a constant which will be fixed later; see (11-7).

We let .W0; �a/, .Y0; �0D ker�0/, V �Y0, ƒ�Y0 andH Df0g�T �Sn�1 be defined as in Section 11.3.
Note that ƒ is a loose Legendrian according to [11, Proposition 2.9].

Construction 12.13 applied to the above data produces a contactomorphism f W .Y0; �0/! .Y0; �0/, a
Liouville domain .X; �/ with positive contact boundary .Y; � D ker�/, and a pair of formally isotopic
contact embeddings i0; i1 W .V; �V /! .Y; �/.

Let rD .˛; �; a/2R.Y0; �0; V /, where ˛ WD .�0/jV and the trivialization � is unique sinceH 1.V IZ/D 0;
see Corollary 12.17. We let r0D ..i 01/�˛; �; a/2R.Y0; �0; V /, where i 01 is defined as in Construction 12.13
and � is again unique. Since the surgery resulting from Construction 12.13 is away from V and i 01.V /,
we may identify R.Y; �; V /DR.Y0; �0; V / and R.Y; �; i1.V //DR.Y0; �0; i

0
1.V //.

As in Section 11.3, let e0 WR�Y0! . yW0; y�0;H/ be the canonical marking furnished by the Liouville
flow and let z�0 W zA.Y0; �0; V I r/!Q be the associated augmentation.

By Lemma 12.15, there is a symplectomorphism  W . yW0; y�a/! . yW0; y�a/ which coincides near infinity
with the lift zf WSY0!SY0. LetH 0� yW0 be a symplectic submanifold which is cylindrical at infinity and
coincides with the symplectization of f .V /D i 01.V / on Œ0;1/�Y0. Such a surface can be constructed
by taking the backwards Liouville flow of  .H/.

Let z�00 W zA.Y0; �0; i 01.V /I r0/! Q be the augmentation induced by the relative symplectic cobordism
.. yW0; y�a;H

0/; z�0/.

Geometry & Topology, Volume 28 (2024)



112 Laurent Côté and François-Simon Fauteux-Chapleau

Observe that .Y0; �0; V / 2 G and hence also .Y0; f��0; f .V //D .Y0; �0; i 01.V // 2 G; see Definition 3.13.
The following lemma shows that we also have .Y; �; i1.V // 2 G.

Lemma 12.16 Up to contactomorphism , .Y; �/D ob.T �Sn�1; �S /D .S2n�1; �std/, where �S denotes
a right-handed Dehn twist. Moreover , the first contactomorphism can be assumed to take i1.V / to the
binding of the open book decomposition ob.T �Sn�1; �S /.

Proof By construction, there is an open book decomposition of .Y0; �0/ agreeing (up to contactomor-
phism) with ob.T �Sn�1; id/, such that i1.V / is the binding and ƒ0 is the zero section of a page. Note
now that attaching a handle to the zero section of a page of .Y0; �0/D ob.T �Sn�1; id/ simply changes
the monodromy of the open book by a positive Dehn twist [46, Theorem 4.6]. Hence, i1.V / is the binding
of ob.T �Sn�1; �S /D .S2n�1; �std/.

Corollary 12.17 The manifolds Y0, W0, Y and W have vanishing first and second homology and
cohomology with Z–coefficients. Hence the same is also true for the pairs .W0; Y0/ and .W; Y /. Finally,
we have H 1.V IZ/D 0.

Proof By construction, W is obtained by attaching a handle of index n to W0. The union of the core and
co-core of this handle has codimension n. Hence, for i � n� 2, we have Hi .W0IZ/DHi .W IZ/ and
Hi .Y0IZ/DHi .Y IZ/. Now,W0 is homotopy equivalent to Sn�1 by definition, while Y is homeomorphic
to S2n�1 by Lemma 12.16. Since n � 4, it follows that Y0, W0, Y and W have vanishing first and
second homology. The vanishing of cohomology in the same degrees follows by the universal coefficients
theorem for cohomology. The vanishing of H 1.V IZ/ was proved in Lemma 11.6.

As a result of Corollary 12.17, Definition 8.12, Lemma 8.13 and Definition* 10.12, the invariants
considered in the proof of Theorem* 12.18 below, as well as the maps between these invariants, are all
canonically .Z�Z/–bigraded.

Theorem* 12.18 For n � 4 even and a� 0 large enough , the contact embeddings i0; i1 W .V; �V /!
.Y; �/D .S2n�1; �std/ are not isotopic through contact embeddings.

Proof We suppose for contradiction that i0 and i1 are isotopic through contact embeddings. This means
that there exists a contactomorphism g W .Y; �; V / ! .Y; �; i1.V //. It follows by Lemma 12.16 that
.Y; �; V / 2 G.

According to Corollary* 11.18 (and the description of the generators in Proposition* 11.17), we may
(and do) fix a� 0 large enough that

(12-6) eCH z�0
k�.n�3/;2

.Y0; �0; V I r/D

�
Z if k D 4; 4C .n� 1/;
0 otherwise.

In particular, since n� 4, we have

(12-7) eCH z�0
2n�.n�3/;2

.Y0; �0; V I r/D eCH z�0
2nC1�.n�3/;2

.Y0; �0; V I r/D 0:
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Since .Y0; �0; V / 2 G, it follows by Corollary* 9.14 that

(12-8) eCH z�0
�;� .Y0; �0; V I r/D eCH z�

0
0
�;� .Y0; �0; i1.V /I r

0/:

Similarly, it follows by Definition/Assumption* 10.6 that

(12-9) zLz�0
�;�.Y0; �0; V;ƒI r/D zL

z�00
�;�.Y0; �0; i1.V /;ƒ

0
I r0/:

Let e WR�Y ! yW be the canonical marking and consider the resulting relative filling .. yW ; y�;H/; e/. Let
z� W zA.Y; �; V I r/!Q be the induced augmentation. Let � W . yW ; y�;H/! . yW ; y�;H/ be a symplectomor-
phism which agrees with the lift of g near infinity. Let z�0 W zA.Y; �; i1.V /I r0/!Q be the augmentation
induced by .. yW ; y�;H 0/; e/. Then according to Lemma* 9.13 and Corollary* 9.14, we have

(12-10) eCH z�
�;�.Y; �; V I r/D eCH z�0

�;�.Y; �; i1.V /I r
0/:

It then follows by Lemma* 12.19 that eCH z�
2n�.n�3/;2

.Y; �; V I r/¤ 0. Hence Lemma* 12.20 implies that

(12-11) eCH z�0
2n�.n�3/;2

.Y0; �0; V I r/¤ 0:

This contradicts (12-7).

Lemma* 12.19 We have

(12-12) eCH z�02n�.n�3/;2.Y; �; i1.V /I r0/¤ 0:

Proof On the one hand, Corollary* 11.20 and (12-9) imply that

(12-13) rkHC2n;2. zLz�
0
0.Y0; �0; i1.V /;ƒ

0
I r0//D 1:

On the other hand, by (12-7) and (12-8), we have that

(12-14) eCH z�
0
0

2n�.n�3/;2
.Y0; �0; i1.V /I r

0/D eCH z�
0
0

2nC1�.n�3/;2
.Y0; �0; i1.V /I r

0/D 0:

It then follows by Theorem/Assumption* 10.16 and Remark 10.18 that

(12-15) eCH z�02n�.n�3/;2.Y; �; i1.V /I r0/'HC2n;2. zLz�
0
0.Y0; �0; i1.V /;ƒ

0
I r0//:

This proves the claim.

Lemma* 12.20 The natural map

(12-16) eCH z�2n�.n�3/;2.Y; �; V I r/! eCH z�0
2n�.n�3/;2

.Y0; �0; V I r/

is injective.

Proof Since ƒ0 is loose in Y0�V , it follows by Proposition* 11.2 and Lemma 9.6 that

(12-17) HC2k.Lz�0.Y0; �0; V;ƒ0I r//D 0

for all k 2 Z. The lemma thus follows from Theorem/Assumption* 10.16 and Remark 10.18.
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Remark 12.21 One can slightly tweak Construction 12.13 so that ƒ and ƒ0 are disjoint and ƒ[ƒ0 is a
loose Legendrian link. One can then upgrade Lemma 12.14 to require that f .ƒ/Dƒ0 and f .ƒ0/Dƒ
in (2) of Construction 12.13. In particular, this means thatƒ0 is a stabilization ofƒ, andƒ is a stabilization
of ƒ0.

Let us apply this tweaked construction to the setup considered in Construction 12.13, where .Y0; �0/D
ob.T �Sn�1; id/ for n� 4, V � .Y0; �0/ is the binding and ƒ� .Y0; �0/ is the zero section of a page. It is
well known that the zero section of a page in ob.T �Sn�1; id/ is the standard Legendrian unknot. Hence
Lemma 12.16 implies that i1.V / is the pushoff of the standard unknot. By construction, it now also
follows that i0.V / is the contact pushoff of a stabilization of the unknot. Theorem* 12.18 thus provides
an alternative way to distinguish (for n� 4 even) the basic example considered by Casals and Etnyre in
[10, Section 5].

12.4 Relative symplectic and Lagrangian cobordisms

In this final section, we exhibit some constraints on relative symplectic and Lagrangian cobordisms. In
particular, we prove the results which were advertised in Section 1.5 of the introduction.

Proof of Theorem 1.9 Suppose for contradiction that such a relative symplectic cobordism exists.
According to Theorem 11.3, we have eCH�.Y; �; V I r/¤ 0 for some rD .˛; �; r/ 2R.Y; �; V /, which we
now view as fixed. According to Theorem 11.1, we also have eCH�.Y; �; V 0I r0/D0 for all r0 D .˛0; � 0; r 0/2
R.Y; �; V 0/. Choose r0 depending on our previous choice of r so that r 0 � eE..H;�H /

˛0

˛ /r . Then
Corollary 8.8 along with our topological assumptions on H furnishes a unital Q–algebra map

(12-18) eCH�.Y; �; V 0I r0/! eCH�.Y; �; V I r/:
This gives the desired contradiction.

In contrast to Theorem 1.9, we expect that one could prove that V is concordant to V 0 by adapting work
of Eliashberg and Murphy [26], but we do not pursue this here. Note that we could also have proved
Theorem 1.9 using the full invariant CH�.�I�/ instead of its reduced counterpart.

For Lagrangian cobordisms, we have the following result.

Proposition 12.22 Let .Y; �/ be a contact manifold. Let ƒ and ƒ0 be Legendrian knots such that
H 1.�.ƒ0/IZ/DH 2.�.ƒ0/IZ/D 0. Suppose that .SY; �Y ; L/ is a Lagrangian concordance fromƒ0 toƒ.
Given rD .˛; �; r/ 2R.Y; �; �.ƒ//, there is a map of Q–algebras

(12-19) eCH�.Y; �; �.ƒ0/I r0/! eCH�.Y; �; �.ƒ/I r/
for some r0 D .˛0; � 0; r 0/ 2 R.Y; �; �.ƒ0//. (A similar statement holds for the nonreduced invariants
CH�.�/.)
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Proof Observe that the trivial Lagrangian cobordism LDR�ƒ�R�Y admits a “symplectic push-off”
�.L/ WD R� �.ƒ/ � R� Y. It follows by the Lagrangian neighborhood theorem that any Lagrangian
concordance .SY; �Y ; L/ also admits a symplectic push-off .SY; �Y ;H/, which is a relative symplectic
cobordism from .Y; �; �.ƒ0// to .Y; �; �.ƒ//. Fix ˛0 arbitrarily and choose r 0 so that r 0 � eE..H;�H /

˛0

˛ /r

(note that � 0 is unique since H 1.�.ƒ0/IZ/D 0). The claim now follows from Corollary 8.8.

Proof of Theorem 1.10 Suppose for contradiction that ƒ0 is concordant to ƒ. As in the proof of
Corollary 12.10, we have

(12-20) eCH�.Y; �; �.ƒ/I r/¤ 0

for a suitable choice r 2 R.Y; �; �.ƒ//. On the other hand, we have eCH�.Y; �; �.ƒ0/I r0/ D 0 for all
r0 2R.Y; �; �.ƒ0//. This gives a contradiction in view of Proposition 12.22.

We end by exhibiting examples of Lagrangian cobordisms which cannot be displaced from a codimension 2
symplectic submanifold.

Construction 12.23 Let .Y0; �0/D obd.T �Sn�1; id/ for n� 3. Let V � .Y0; �0/ be the binding and let
ƒ � .Y0; �0/ be the zero section of a page, which is a loose Legendrian by [11, Proposition 2.9]. Let
U1 � Y0�V be a small ball which intersects ƒ in an .n�1/–ball and let ƒ0 be obtained by stabilizing ƒ
inside U1.

Let U2 � Y0 � .V [ƒ[ U1/ be an open subdomain. Let .Y; �/ be obtained by attaching a sequence
of handles along isotropics contained in U2. Observe that V , ƒ and ƒ0 can be viewed as submanifolds
of both Y0 and Y ; we will not distinguish these embeddings in our notation. We let . yX; y�; yV / be the
associated relative symplectic cobordism from .Y; �; V / to .Y0; �0; V /.

Proof of Theorem* 1.12 We can identify R.Y0; �0; V / D R.Y; �; V /. According to Theorem* 11.5,
L.Y0; �0; V;ƒI r/¤ 0 for suitable r2R.Y0; �0; V /. In contrast, L.Y; �; V;ƒ0I r/D 0 by Proposition* 11.2,
since ƒ0 is loose in Y �V by construction. By Proposition* 10.7, the existence of a concordance from ƒ0

to ƒ which doesn’t intersect yV would imply that there is a unital map of QŒU �–algebras

(12-21) L.Y; �; V;ƒ0I r/! L.Y0; �0; V;ƒI r/:

This gives a contradiction.

We remark that Construction 12.23 could be generalized in various directions without affecting the validity
of Theorem* 1.12, but we do not pursue this here.
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Appendix Connected sums of almost-contact manifolds

Let G be a connected9 subgroup of SO.n/. An almost G–structure on a smooth oriented manifold M is
a homotopy class of maps M ! BG lifting the classifying map of the tangent bundle of M :

BG

M BSO.n/
TM

An almost G–manifold is a manifold equipped with an almost G–structure.

Example A.1 Taking G D U.n/ � SO.2n/ yields the usual notion of an almost complex manifold.
Almost-contact manifolds correspond to G D U.n/� SO.2nC 1/.

If the n–dimensional sphere Sn admits an almost G–structure, a result of Kahn [43, Theorem 2] implies
that for any two n–dimensional almost G–manifolds M and N, there exists an almost G–structure on
M #N which is compatible with the given ones on M and N in the complement of the disks used to
form the connected sum. In general, this structure is not unique, so the connected sum M #N is not
well-defined as an almost G–manifold. However, we will show in Section A.1 that a choice of almost
G–structure ˇ on Sn induces a canonical almost G–structure on the connected sum of any two almost
G–manifolds. Hence, any such ˇ gives rise to a connected sum operation .M;N / 7!M #ˇ N for almost
G–manifolds. Moreover, the set of almost G–structures on Sn forms a group under this operation (with
identity ˇ). In Section A.2, we will show that this group acts on the set of almost G–structures of any
n–dimensional almost G–manifold.

A.1 Connected sums of almost G–manifolds

Let Sn be the unit sphere in RnC1, equipped with its standard orientation as the boundary of the unit
disk DnC1. We will write its points as pairs .x; z/ 2Rn �R. Define

D� D
˚
.x; z/ 2 Sn j z < 1

2

	
; DCD

˚
.x; z/ 2 Sn j z > �1

2

	
; ADD�\DC; C˙DD˙ nA:

Note that D� and DC are open disks, C� and CC are closed disks, A is an open annulus, and Sn D
D�[DC D C� tAtCC.

Let M and N be smooth connected oriented n–dimensional manifolds. Choose orientation-preserving
embeddings iC WDC!M and i� WD�!N. We define the connected sum M #N DM #iC;i� N by

M #N D
�
M n iC.CC/tN n i�.C�/

�
=�;

where iC.x/� i�.x/ for every x 2 A.

9This assumption is used in the proof of Proposition A.6.
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We will now explain how to construct a classifying map for the tangent bundle of M #N . The following
elementary fact from topology will be useful.

Proposition A.2 Let i W A! X be a cofibration. Assume A is contractible. Then for any connected
space Y and continuous maps F WX ! Y and f W A! Y, there exists a map F 0 WX ! Y homotopic to F
such that F 0 ı i D f .

Let �S W Sn! BSO.n/ be a classifying map for TSn. Let �M and �N be classifying maps for TM and
TN such that �M ı iC D �S jDC and �N ı i� D �S jD� (such maps always exist by Proposition A.2).
Define �M#N to be the unique map M #N ! BSO.n/ which coincides with �M on M n iC.CC/ and
with �N on N n i�.C�/.

Proposition A.3 The map �M#N is a classifying map for T .M #N/.

We start with an easy topological lemma.

Lemma A.4 Let E be an oriented vector bundle over a manifold M n and let i W Dn ! M n be an
embedding. Then any automorphism of i�E can be extended to an automorphism of E.

Proof Let � be an automorphism of i�E. Since Dn is contractible, we can trivialize i�E and think
of � as a map Dn ! GLC.n/. Clearly �j@Dn is nullhomotopic, and since GLC.n/ is connected, we
can extend � to a map z� WDn2 ! GLC.n/ which is constant with value Id 2 GLC.n/ near @Dn2 . Using a
tubular neighborhood of i.@Dn/�M, we can also extend i to an embedding zi WDn2 !M n. Then z� gives
us an automorphism of zi�E which is equal to the identity over a neighborhood of @Dn2 �D

n
2 and hence

extends trivially to an automorphism of E.

Proof of Proposition A.3 Let zn! BSO.n/ be the universal bundle over BSO.n/. We want to show
that the tangent bundle T .M #N/ of the connected sum is isomorphic to ��M#N zn.

T .M # N/ is obtained by gluing T .M n iC.CC// and T .N n i�.C�// along the maps diC W TA !
T .M n iC.CC// and di� W TA! T .N n i�.C�//. Because of our assumption that �M ı iC D �S jDC and
�N ı i�D �S jD� , we have that ��M#N zn is obtained by gluing .�M jMniC.CC//

�zn and .�N jNni�.C�//
�zn

along bundle maps .�S jA/�zn ! .�M jMniC.CC//
�zn and .�S jA/�zn ! .�N jNni�.C�//

�zn covering
iC WA!M n iC.CC/ and i� WA!N n i�.C�/, respectively. Hence, in order to show that T .M #N/ is
isomorphic to ��M#N zn, it suffices to construct a commutative diagram

T .M n iC.CC// .�M jMniC.CC//
�zn

TA .�S jA/
�zn

T .N n i�.C�// .�N jNni�.C�//
�zn

diC

di�

where the horizontal arrows are bundle isomorphisms.
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Start by fixing an isomorphism � W TSn! ��S zn, and let the middle arrow of the diagram be the restriction
of � to TA. To get the top and bottom arrows, it suffices to find bundle isomorphisms completing the
following commutative squares:

TM ��M zn

TDC .�S jDC/
�zn

diC

�

TD� .�S jD�/
�zn

TN ��N zn

di�

�

This is possible by Lemma A.4.

We are now ready to define the connected sum of two almost G–manifolds.

Definition A.5 Suppose that Sn admits an almost G–structure, and fix a choice ˇ of one such structure.
Let ˇM and ˇN be almost G–structures on M and N respectively. We define an almost G–structure
ˇM #ˇ ˇN on M #N as follows.

Pick maps z�S W Sn! BG, z�M WM ! BG and z�N WN ! BG representing ˇ, ˇM and ˇN , respectively.
By Proposition A.2, we can assume that z�M ı iCD z�S jDC and z�N ı i�D z�S jD� . Hence, there is a unique
map

z�M#N D z�M #z�S z�N WM #N ! BG

which coincides with z�M onM niC.CC/ and with z�N onN ni�.C�/. By Proposition A.3, the composition

M #N
z�M#N
��! BG �! BSO.n/

is a classifying map for T .M #N/. Hence, we can (and do) define ˇM #ˇ ˇN to be the homotopy class
of z�M#N .

Proposition A.6 The almost G–structure ˇM #ˇ ˇN is well-defined , ie independent of the choice of z�S ,
z�M and z�N .

Proof Let z�jS , z�jM and z�jN represent ˇ, ˇM and ˇN , respectively, where j 2 f0; 1g. As in Definition A.5,
we assume that z�jM ı iC D z�

j
S jDC

and z�jN ı i� D z�
j
S jD�

.

Fix a homotopy z� tS between z�0S and z�1S . We will show that there exist homotopies z� tM and z� tN such that
z� tM ı iC D z�

t
S jDC

and z� tN ı i� D z�
t
S jD�

. This implies that z�0M#N is homotopic to z�1M#N and hence that
ˇM #ˇ ˇN is well-defined.

Pick an arbitrary homotopy h WM � I ! BG between z�0M and z�1M and define a map

g WDC � @I
2
! BG
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by g.x; t; 0/ D h.iC.x/; t/, g.x; 0; s/ D z�0S .x/, g.x; 1; s/ D z�
1
S .x/ and g.x; t; 1/ D z� tS .x/. We can

extend g to a map yg WDC � I 2! BG since the obstruction to doing so lies in

H 2.DC � I
2;DC � @I

2
I�1.BG//Š �1.BG/Š �0.G/;

which is trivial by our assumption that G is connected.

Let

f W
�
M � .I � f0g[ f0g � I [f1g � I /

�
[
�
iC.DC/� I

2
�
! BG

be defined by

� f .x; t; 0/D h.x; t/, f .x; 0; s/D z�0M .x/ and f .x; 1; s/D z�1M .x/ for x 2M ,

� f .x; t; s/D yg.i�1
C
.x/; t; s/ for x 2 iC.DC/.

Since iC WDC!M is a cofibration, the domain of f is a retract of M � I 2. We can therefore extend f
to a map yf WM � I 2! BG. Restricting yf to M � I � f1g then provides us with a homotopy z� tM such
that z� tM ı iC D z�

t
S jDC

.

The same argument gives us a homotopy z� tN such that z� tN ı i� D z�
t
S jD�

, so this completes the proof.

Definition A.7 If M D .M; ˇM / and N D .N; ˇN / are almost G–manifolds, their connected sum (with
respect to ˇ) is the almost G–manifold M #ˇ N WD .M #N;ˇM #ˇ ˇN /.

As usual, there is an ambiguity in the notation M #ˇ N since the construction of the connected sum
involves a choice of embeddings iC WDC!M, i� WD�! N . However, the result is independent of
these choices up to the appropriate notion of equivalence, as one would expect.

Definition A.8 A diffeomorphism of almost G–manifolds f W .M; ˇM /! .N; ˇN / consists of a smooth
diffeomorphism f WM !N such that f �ˇN D ˇM .

Proposition A.9 The connected sum M #ˇ N is well-defined up to diffeomorphism of almost G–
manifolds. More precisely , given any orientation-preserving embeddings iC; jC W DC ! M and
i�; j� WD�!N , there exists an orientation-preserving diffeomorphism � WM #iC;i� N !M #jC;j� N
such that

��.ˇM #jC;j�;ˇ ˇN /D ˇM #iC;i�;ˇ ˇN

for any almost G–structures ˇM and ˇN on M and N .

Proof This follows from the isotopy extension theorem as in the smooth case.
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Remark A.10 (connected sums of contact manifolds) Suppose that .M1; ˛1/ and .M2; ˛2/ are contact
manifolds. Then one can form the connected sum .M1 #M2; ˛1 #˛2/, which is also a contact manifold.
The connected sum is obtained by choosing Darboux balls in M1;M2 and connecting them by a “neck”.
This operation can also be understood as a contact surgery along a 0–sphere. We refer to [8, Section 6.2]
and [46, Section 3] for more details.

Let ˇ 2 almU.n/.S2n�1/ be the almost-contact structure induced by the standard contact structure on the
sphere. Then the operation of connected sum (with respect to ˇ) of almost U.n�1/–manifolds defined in
Definition A.7, and the operation of connected sum of contact manifolds described above, commute with
the forgetful map from contact manifolds to almost-contact manifolds. This can be shown as in the proof
of Proposition A.3, replacing BSO.n/ with BU.n� 1/.

The main properties of the connected sum in the smooth case have analogs for almost G–manifolds:

Proposition A.11 Let M , N and P be connected almost G–manifolds of dimension n, and let ˇ and ˇ0

be almost G–structures on Sn. Then:

(1) M #ˇ .Sn; ˇ/ŠM.

(2) .M #ˇ N/ #ˇ 0 P ŠM #ˇ .N #ˇ 0 P /.

Proof If one takes i� WD�! Sn to be the inclusion map, then the connected sum M # Sn is canon-
ically identified with M as a smooth manifold. If one further takes z�N D z�S in Definition A.5, then
this identification is compatible with the almost G–structures on M # Sn and M. This proves that
M #ˇ .Sn; ˇ/ŠM.

To prove that .M #ˇ N/ #ˇ P ŠM #ˇ .N #ˇ P /, choose embeddings iC W DC !M , i� W D� ! N ,
jC WDC!N and j� WD�! P . If we assume that i� and jC have disjoint images, then i� induces an
embedding D�!N #jC;j� P , jC induces an embedding DC!M #iC;i� N , and there is a canonical
identification of smooth manifolds

.M #iC;i� N/ #jC;j� P ŠM #iC;i� .N #jC;j� P /:

Moreover, this identification is compatible with the almost G–structures in the sense that for any choice
of maps z�S , z� 0S , z�M , z�N and z�P , the following diagram commutes:

.M #iC;i� N/ #jC;j� P

BG

M #iC;i� .N #jC;j� P /

Š

.z�M #z�S z�N /#z�0S
z�P

z�M #z�S .z�N #
z�0
S
z�P /
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A.2 The group of almost G–structures on the sphere

We will denote the set of almostG–structures on a manifoldM by almG.M/. More generally, ifA�M is
a closed subset and ˇ0 is an almost G–structure on some open neighborhood of A, then almG.M;AIˇ0/

will denote the set of almost G–structures on M which agree with ˇ0 near A.

In this section, we will show that #ˇ is a group operation on almG.S
n/, with ˇ as identity element. The

resulting group will be denoted by alm
ˇ
G.S

n/. We will then show that almˇG.S
n/ acts on almG.M/, and

more generally on almG.M;AIˇ0/ if M nA is connected.

Proposition A.12 Given any ˇ1 2 almG.Sn/, there exists a ˇ2 2 almG.Sn/ such that ˇ1 #ˇ ˇ2 D ˇ.

Proof Recall the decomposition SnDC�[A[CC introduced at the beginning of Section A.1. We will
use the notation h��; �A; �Ci to denote the unique (assuming it exists) map Sn! BG which coincides
with the given maps �� W C�! BG, �A W xA! BG and �C W CC! BG on C�, xA and CC, respectively.

Let z�S D h��S ; �
A
S ; �

C

S i be a representative for ˇ. Given ˇ1 and ˇ2 in almG.S
n/, we can choose repre-

sentatives of the form h��1 ; �
A
S ; �

C

S i and h��S ; �
A
S ; �

C
2 i by Proposition A.2. Then ˇ1 #ˇ ˇ2 is represented

by h��1 ; �
A
S ; �

C
2 i. Hence, all we need to show is that for any ��1 W C�! BG, there exists �C2 W CC! BG

such that h��1 ; �
A
S ; �

C
2 i is homotopic to z�S . This again follows from Proposition A.2.

Corollary A.13 We have that .almG.Sn/; #ˇ / is a group with identity ˇ.

Proof This follows from Propositions A.11 and A.12.

Remark A.14 The group .almG.Sn/; #ˇ / is independent of ˇ up to isomorphism. Indeed, given any
x; y; ˇ; ˇ0 2 almG.S

n/, it follows from Proposition A.11 that

.x #ˇ ˇ
0/ #ˇ 0 .y #ˇ ˇ

0/D .x #ˇ .ˇ
0 #ˇ 0 y// #ˇ ˇ

0
D .x #ˇ y/ #ˇ ˇ

0;

which implies that the map

.almG.S
n/; #ˇ /! .almG.S

n/; #ˇ 0/; x 7! x #ˇ ˇ
0;

is a group isomorphism.

Given orientation-preserving embeddings iC WDC!M and i� WD�! Sn, the results of Section A.1
give us a well-defined map

almG.M/� alm
ˇ
G.S

n/! almG.M #iC;i� S
n/:

For the remainder of this section, we will take i� to be the inclusion map D� ,! Sn. Then M #iC;i� S
n

is canonically identified with M (regardless of what iC is) and we get a map

(A-1) almG.M/� alm
ˇ
G.S

n/! almG.M/:
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By Proposition A.11, this is a group action. Note that the diffeomorphism � WM !M appearing in the
statement of Proposition A.9 (applied to N D Sn) can be chosen to be isotopic to the identity, which
implies that the map (A-1) is independent of iC.

If we assume that the image of the embedding iC WDC!M is disjoint from A, then it follows directly
from Definition A.5 that the subset almG.M;AIˇ0/ � almG.M/ is invariant under the map (A-1). If
M nA is connected, then the resulting action on almG.M;AIˇ0/ doesn’t depend on the choice of iC.
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