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We show that the moduli space MX .v/ of Gieseker stable sheaves on a smooth cubic threefold X with
Chern character v D

�
3;�H;�1

2
H 2; 1

6
H 3

�
is smooth and of dimension four. Moreover, the Abel–Jacobi

map to the intermediate Jacobian of X maps it birationally onto the theta divisor ‚, contracting only a
copy of X �MX .v/ to the singular point 0 2‚.

We use this result to give a new proof of a categorical version of the Torelli theorem for cubic threefolds,
which says that X can be recovered from its Kuznetsov component Ku.X /�Db.X /. Similarly, this leads
to a new proof of the description of the singularity of the theta divisor, and thus of the classical Torelli
theorem for cubic threefolds, ie that X can be recovered from its intermediate Jacobian.
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1 Introduction

Moduli spaces of sheaves provide examples of algebraic varieties with an interesting and rich geometry
and they have been widely studied in the past few decades. In particular, there are many strong results
regarding moduli spaces on surfaces, while the situation on threefolds is less understood. We refer to
Huybrechts and Lehn [23] for a more detailed account of the theory, which has been revolutionized by
the introduction of stability conditions on triangulated categories by Bridgeland [12].

Perhaps the main player of the seminal paper by Clemens and Griffiths [14] on the geometry of cubic
threefolds is the theta divisor ‚ of its intermediate Jacobian J.X /. Various authors have studied
parametrizations of the theta divisor by moduli spaces of sheaves; see Artebani, Kloosterman and
Pacini [3], Beauville [9] and Iliev [24].

In this paper, we find a new, and in a sense most efficient, parametrization of this type: a smooth
four-dimensional moduli space of stable sheaves isomorphic to the desingularization of the theta divisor.

Let X � P4 be a smooth cubic threefold over C and H the hyperplane section. Let MX .v/ be the moduli
space of Gieseker-semistable sheaves on X with Chern character v WD

�
3;�H;�1

2
H 2; 1

6
H 3

�
.

Theorem 7.1 The moduli space MX .v/ is smooth and irreducible of dimension 4. More precisely,
it is the blowup of ‚ in its unique singular point. The exceptional divisor is isomorphic to the cubic
threefold X itself , and parametrizes non-locally-free sheaves in MX .v/.

Moduli space in the Kuznetsov component

The original motivation for our analysis of the moduli space MX .v/ comes from the study of moduli
spaces of stable objects in a full triangulated subcategory Ku.X /�Db.X / called the Kuznetsov component.
It is defined through the semiorthogonal decomposition

Db.X /D hKu.X /;OX ;OX .H /i:

See Kuznetsov [25] for details on the decomposition and on the Kuznetsov component.

Stability conditions on Ku.X / have been constructed in Bernardara, Macrì, Mehrotra and Stellari [11]
and Bayer, Lahoz, Macrì and Stellari [5]. These stability conditions are Serre-invariant, which roughly
means that stability of an object is preserved by the action of the Serre functor of Ku.X /; see Section 8
for the precise definition. This property allows us to study stability of objects irrespective of the specific
construction of stability conditions.

The class v in Theorem 7.1 is chosen as the class of the projection KP of a skyscraper sheaf OP for a
point P 2X , which is defined by the short exact sequence

0!KP !O˚4
! IP .1/! 0:

Geometry & Topology, Volume 28 (2024)



The desingularization of the theta divisor of a cubic threefold as a moduli space 129

These are the non-locally-free torsion-free slope-stable sheaves appearing in Theorem 7.1, and we show
that they are also stable as objects of Ku.X / with respect to any Serre-invariant stability condition. Hence,
the moduli space M� .v/ of � -stable objects in Ku.X / of Chern character v contains X , yet its expected
dimension is four. This was our first clue that this moduli space is of interest. Indeed, our next result says
that the moduli spaces M� .v/ and MX .v/ agree entirely.

Theorem 1.1 (Theorem 8.7 and Proposition 8.10) Let � be an arbitrary Serre-invariant stability
condition on Ku.X /. Then the moduli space M� .v/ is isomorphic to the moduli space MX .v/.

To summarize, we project the structure sheaf of a point into the Kuznetsov component and take its moduli
space. It obviously contains X but is bigger. It is the resolution of the theta divisor, with X as the
exceptional divisor. Thus, we recover X from Ku.X / or from the intermediate Jacobian, ie we obtain
new proofs of both the categorical and classical Torelli theorem for cubic threefolds:

Theorem 1.2 (Corollary 7.6 and Theorem 8.1) Let X1 and X2 be smooth cubic threefolds. The
following are equivalent :

(i) X1 and X2 are isomorphic.

(ii) Ku.X1/ and Ku.X2/ are equivalent as triangulated categories.

(iii) J.X1/ and J.X2/ are isomorphic as principally polarized abelian varieties.

Proof ideas

The proof of Theorem 7.1 relies on two classical ingredients. Firstly, we use the fact that any irreducible
theta divisor is normal, due to Ein and Lazarsfeld [16]. Secondly, we use a characterization of the theta
divisor of the intermediate Jacobian in terms of twisted cubics; see Proposition 2.2. This was proved by
Beauville in [9], but it can also be deduced from the description of ‚ as differences of lines in Clemens
and Griffiths [14]; see Remark 2.3.

The strategy to prove Theorem 7.1 is to vary the notion of stability and reach a detailed description of
the objects that belong to the moduli space MX .v/ through wall-crossing. Since X has Picard rank one,
Gieseker stability cannot be varied. This is where the derived category comes into play in the form of
tilt-stability introduced in Bridgeland [13] for K3 surfaces, and then further generalized to other surfaces
and threefolds in Arcara and Bertram [2] and Bayer, Macrì and Toda [7]. In fact, we give a complete
description of the wall and chamber structure; see Section 6. Once a set-theoretic description of MX .v/

has been reached, we use standard deformation theory arguments in Corollary 6.9 to deduce that it is
smooth and of dimension four.

To prove Theorem 8.7, we first show the claim for the specific stability condition constructed in Bayer,
Lahoz, Macrì and Stellari [5] which are Serre-invariant by Pertusi and Yang [35]. We then prove in
a completely separate argument that our moduli space is independent of the choice of Serre-invariant
stability conditions � . The essential ingredient in this last argument is the weak Mukai lemma from [35].

Geometry & Topology, Volume 28 (2024)
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Related work

In the recent paper [1], Altavilla, Petković and Rota studied moduli spaces of some torsion sheaves in
the Kuznetsov components of Fano threefolds with Picard rank one and index two. In the case of cubic
threefolds they study M� .ŒS

2.KP /�/ (S is the Serre functor on Ku.X /), but do not obtain our detailed
geometric description. A key difference is that in their case the moduli space in the Kuznetsov component
is different from the moduli space of Gieseker-semistable sheaves.

Classical Torelli is the implication (iii) D) (i) in Theorem 1.2, which was first proved in Clemens and
Griffiths [14]. The implication (ii) D) (iii) was first established in Bernardara, Macrì, Mehrotra and
Stellari [11, Theorem 1.1], where it was shown that the Fano variety of lines F.X / can be recovered
from Ku.X / as a moduli space of stable objects. Thus, one obtains the intermediate Jacobian J.X / as
the Albanese variety of F.X /. A more recent argument for (ii) D) (iii) can be deduced from Perry’s
categorical construction of intermediate Jacobians [34, Section 5.3], when the equivalence is given by
a Fourier–Mukai kernel on X1 � X2. Instead, our paper gives a very direct geometric argument for
(ii) D) (i), as well as a variant of the proof of classical Torelli via the description of the singularity of
theta divisor implied by Theorem 7.1.

Since this article originally appeared on the arXiv, Feyzbakhsh and Pertusi [17] and Zhang [40] proved
uniqueness of Serre-invariant stability conditions on Ku.X /. Proposition 8.10 in the last section could
now be obtained as an immediate corollary.
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2 Cubic threefolds and intermediate Jacobians

Let X �P4 be a smooth cubic threefold. In their celebrated article [14], Clemens and Griffiths introduced
the intermediate Jacobian of X . It is the complex torus defined as

J.X / WDH 2;1.X /_=H3.X;Z/DH 1.�2
X /
_=H3.X;Z/:

It turns out that J.X / is a principally polarized abelian variety of dimension five.

Let fZbgb2B be a family of 1–cycles over a variety B. The choice of a basepoint b0 2 B leads to an
Abel–Jacobi map ‰B W B! J.X / as follows. For any b 2 B the cycle Zb �Zb0

has degree 0, ie it is
homologically trivial, and can be written as the boundary @� for a 3–chain � . The integral

R
� is an

element in H 1;2.X /_ whose class in J.X / is the image of the Abel–Jacobi map. By [19, Theorem 2.20]
the map ‰B is algebraic along the smooth locus of B.

If Zb D C is a smooth curve, then the induced morphism on tangent spaces has been described by
Welters; see [39, Section 2]. Recall that the tangent space of the Hilbert scheme at C is naturally given
by H 0.NC=X /, where NC=X is the normal bundle. The tangent space of J.X / at any point is given by
H 1;2.X /_ DH 1.�2

X
/_. By definition, the infinitesimal Abel–Jacobi map

 C WH
0.NC=X /!H 1.�2

X /
_

is the map of tangent spaces induced by ‰B. We get a dual morphism

 _C WH
1.�2

X /!H 0.NC=X /
_:

Lemma 2.1 The following diagram is commutative and has exact rows and columns:

0

��

H 0.IC .H //

��

H 0.OX .H //
Š

//

��

H 1.�2
X
/

 _
C

��

H 0.NC=P4.�2H // // H 0.OC .H // // H 0.NC=X /
_

Proof This is mostly [39, Lemma 2.8] and the preceding construction of the morphisms. The map
H 0.OX .H //!H 1.�2

X
/ is the connecting morphism in a long exact sequence

H 0.�3
P4 ˝OX .3H //!H 0.OX .H //!H 1.�2

X /!H 1.�3
P4 ˝OX .3H //:

The wedge product induces a perfect pairing �3
P4˝�P4 !OP4.�5/. Therefore, �3

P4 D TP4.�5/. For
i D 0; 1 we have

H i.TP4 ˝OX .�2H //D 0:
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Recall that the Lefschetz hyperplane theorem says that the hyperplane section H 2 Pic.X / generates
the Picard group. One can use twisted cubics to characterize the theta divisor of J.X /. A proof of the
following result can be found in [9, Proposition 5.2]. Let T be the open locus of smooth twisted cubics in
the Hilbert scheme of X , and let T be its closure.

Proposition 2.2 The Abel–Jacobi map ' W T ! J.X / with basepoint of class H 2 is algebraic. Its image
is a theta divisor ‚� J.X / and its generic fiber is isomorphic to P2.

Remark 2.3 Proposition 2.2 can be deduced from the description of ‚ as differences of lines as well.
We give a rough sketch of the argument here.

Let F be the Fano variety of lines on X . According to [14] the morphism F �F ! J.X / that maps
.L;L0/ 7! ŒL�� ŒL0� is generically a 6-to-1 cover of ‚.

Since a twisted cubic C �X lies in a unique cubic surface Y �X , the morphism T ! J.X / factors via
the moduli space F of pairs .D;Y /, where Y is a cubic surface and D is the divisor class of a twisted
cubic. The generic fiber of the morphism T ! F is given by P .H 0.OY .D//D P2. Indeed, OY .D/ is
the pullback of OP2.1/ if Y is written as the blowup of six general points in P2.

If D is the class of a twisted cubic on a smooth cubic surface, then D �H 2 can be written as the
difference of two lines on a cubic surface. Therefore, the Abel–Jacobi morphism maps onto ‚. Moreover,
there are precisely six ways to write D�H 2 as the difference of two lines. Together with the fact that
F �F ! J.X / is generically a 6-to-1 cover of ‚, we get that F !‚ has degree 1.

Lemma 2.4 Let P1 Š C �X � P4 be a twisted cubic. Then

NC=P4 DOP1.5/˚2
˚OP1.3/; h0.NC=X /D 6 and h1.NC=X /D 0:

In particular , the Hilbert scheme T is smooth of dimension six.

Proof We have a short exact sequence

0!NC=P3 DOP1.5/˚2
!NC=P4 !NP3=P4 ˝OC DOP1.3/! 0:

Since Ext1.OP1.3/;OP1.5//D 0, we get NC=P4 D OP1.5/˚2˚OP1.3/. Next, we have a short exact
sequence

0!NC=X !NC=P4 DOP1.5/˚2
˚OP1.3/!NX=P4 ˝OC DOP1.9/! 0:

Thus, NC=X has degree 4 and can only be OP1.m/˚OP1.4�m/ for some �1 � m � 5. The claim
about the cohomology of NC=X holds for each of them.

Lemma 2.5 Along the locus of smooth curves T � T , the Abel–Jacobi morphism ' has differential of
rank four.

Proof Let C �X be a smooth twisted cubic. Clearly, restriction maps H 0.OX .H //ŠC5 surjectively
onto H 0.OC .H //ŠC4. By Lemma 2.4, we have h0.NC=P4.�2H //Dh0.OP1.�1/˚2˚OP1.�3//D0.

Geometry & Topology, Volume 28 (2024)
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By Lemma 2.1, we get a commutative diagram

C5 Š
//

����

H 1.�2
X
/

 _
C

��

C4 � � // H 0.NC=X /
_

Therefore,  _
C

has rank four.

The singularities of the theta divisor were computed in [33, page 348]. Another proof was given in
[8, Main Theorem and Proposition 2]. We will not need this full description and instead rely only on
normality.

Theorem 2.6 [16, Theorem 1] Any irreducible theta divisor of an abelian variety is normal.

Lemma 2.7 Up to numerical equivalence , the Todd class of X is td.X / D
�
1;H; 2

3
H 2; 1

3
H 3

�
. In

particular , for any E 2 Db.X /,

�.E/D ch3.E/CH � ch2.E/C
2
3
H 2
� ch1.E/C

1
3
H 3
� ch0.E/:

Proof By Kodaira vanishing H i.OX /D 0 for i ¤ 0, and therefore, �.OX /D 1. By the Hirzebruch–
Riemann–Roch Theorem we get td3.X / D �.OX / D

1
3
H 3. Similarly, Kodaira vanishing implies

H i.OX .�H //D 0 for i ¤ 0. Again by Hirzebruch–Riemann–Roch,

0D �.OX .�H //D�1
6
H 3
CH � 1

2
H 2
� td2.X / �H C

1
3
H 3:

Since X has Picard rank one, this is only possible if td2.X /D
2
3
H 2.

Lemma 2.8 The numerical Chow ring CH�n .X / has a basis given by 1, H , 1
3
H 2 and 1

3
H 3. In particular ,

if E 2 Db.X /, then ch2.E/ 2
1
6
H 2 �Z, and ch3.E/ 2

1
6
H 3 �Z.

Proof Since Pic.X / is generated by H , the group CH2
n.X / is generated by a rational multiple of H 2.

A general hyperplane section of X is a smooth cubic surface, which contains lines. The class of such a
line is 1

3
H 2. Since H 3 D 3, the class has to be indivisible. Since 1

3
H 3 is the class of a point, the group

CH3
n.X / must be generated by it.

The claim about second Chern characters follows directly from ch2.E/D
1
2
c2

1
.E/� c2.E/. The claim

about ch3.E/ follows from Lemma 2.7 and the fact that �.E/ 2 Z.

3 Divisors on hyperplane sections

We need to understand the singularities that can occur on hyperplane sections of X .

Proposition 3.1 Any cubic hyperplane section Y D V \X � P4 is normal and integral.

Geometry & Topology, Volume 28 (2024)
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Proof Since hypersurfaces satisfy condition S2, by Serre’s condition [10, Section 031S], it is enough to
show that Y has isolated singularities. Assume for contradiction that Y contains a curve C of singular
points. Let F and x be the defining equations of X and V , respectively. Then @F=@x is a homogeneous
degree 2 polynomial and hence vanishes somewhere along C . At such a point, all partial derivatives of F

vanish, hence it is a singular point of X , a contradiction.

In order to deal with singular hyperplane sections, we need to recall the relation between Weil divisors
and rank-one reflexive sheaves on integral normal varieties. This is very similar to the standard relation
between line bundles and Cartier divisors. We refer to [10, Tag 0EBK] or [36] for proofs of the following
facts. They can also be found in [22] in more generality.

Let Y be a normal integral projective variety. By Cl.Y / we denote the group of Weil divisors modulo
rational equivalence. For two rank-one reflexive sheaves L1;L2 2Coh.Y / we can define a new rank-one
reflexive sheaf by .L1˝L2/

__. This defines a group law for rank-one reflexive sheaves on Y, where
inverses are given by L 7! L_. For any effective prime divisor D one can define a rank-one reflexive
sheaf OY .D/ WD I_

D
. This can be linearly extended to any divisor.

Proposition 3.2 (i) The group of isomorphism classes of rank-one reflexive sheaves is isomorphic to
Cl.Y / under the homomorphism D 7!OY .D/.

(ii) To every nonzero section s 2H 0.L/ of a rank-one reflexive sheaf L, one can associate an effective
divisor D on Y.

(iii) For any effective Weil divisor D on Y, there is a section s 2H 0.OY .D// such that the associated
divisor is given by D.

(iv) Two sections s1; s2 2H 0.L/ define the same divisor if they satisfy s1 D �s2 for some � 2C�.

4 Notions of stability

In this section, we recall a number of notions of stability for sheaves. Let X be a smooth projective
threefold, and let H be an ample divisor on X .

Definition 4.1 [32; 38] (i) For any E 2 Coh.X /, the Mumford–Takemoto slope is defined as

�.E/ WD

8<:
H 2 � ch1.E/

H 3 � ch0.E/
for ch0.E/¤ 0,

C1 for ch0.E/D 0.

(ii) A sheaf E 2 Coh.X / is slope-(semi)stable if for any nontrivial proper subsheaf F ,! E the
inequality �.F / < .�/�.E=F / holds.
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The desingularization of the theta divisor of a cubic threefold as a moduli space 135

From the definition it follows immediately that if Pic.X / D Z � H and E is slope-semistable with
gcd

�
ch0.E/;H

2 ch1.E/=H
3
�
D 1, then E is slope-stable.

While slope-stability suffices to construct moduli spaces of vector bundles on curves, a refinement is
necessary in higher dimensions.

Definition 4.2 We define a preorder on the polynomial ring RŒm� as follows.

(i) For all nonzero f 2RŒm�, we have f � 0.

(ii) If deg.f / > deg.g/ for nonzero f;g 2RŒm�, then f � g.

(iii) Let deg.f /D deg.g/ for nonzero f;g 2RŒm�, and let af and ag be the leading coefficients of f
and g, respectively. Then f � g if and only if f .m/=af � g.m/=ag for all m� 0.

(iv) If f;g 2RŒm� with f � g and g � f , we write f � g.

For any E 2 Coh.X /, we denote its Hilbert polynomial and the terms ˛i.E/ by

P .E;m/ WD �.E.mH //D

3X
iD0

˛i.E/m
i :

Moreover, let P2.E;m/D
P3

iD1 ˛i.E/m
i .

Definition 4.3 (i) The sheaf E is Gieseker-(semi)stable if for all nontrivial proper subsheaves F �E,
the inequality P .F;m/� .�/P .E;m/ holds.

(ii) The sheaf E is 2–Gieseker-(semi)stable if for all nontrivial proper subsheaves F �E, the inequality
P2.F;m/� .�/P2.E=F;m/ holds.

Note that for 2–Gieseker-semistability we could have equivalently asked P2.F;m/� P2.E;m/, but for
2–Gieseker-stability, P2.F;m/� P2.E;m/ is a stronger condition that is almost never fulfilled for all
such subsheaves. These notions imply each other as follows:

slope-stable +3 2–Gieseker-stable +3 Gieseker-stable

��
slope-semistable 2–Gieseker-semistableks Gieseker-semistableks

The intermediate notion of 2–Gieseker stability is not classical and will just appear in the technical parts
of our arguments.

Due to [18; 30; 31; 37] there exists a projective moduli space MX .v/ parametrizing S–equivalence
classes of Gieseker-semistable sheaves with Chern character v. Here two semistable sheaves are called
S–equivalent if they have the same stable factors, up to order and isomorphism, in their Jordan–Hölder
filtrations:
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Proposition 4.4 [23, Proposition 1.5.2] Any Gieseker-semistable sheaf E 2 Coh.X / has a filtration

0DE0 ,!E1 ,! � � � ,!En DE

such that the factors Ai WDEi=Ei�1 are Gieseker-stable with P .Ai ;m/�P .E;m/ for i D 1; : : : ; n. The
sheaf

nM
iD1

Ai

is uniquely determined (up to isomorphism) by E.

Moreover, any sheaf E has a Harder–Narasimhan filtration into Gieseker-semistable factors.

Proposition 4.5 [23, Theorem 1.3.4] Let E 2 Coh.X /. There is a unique filtration

0DE0 ,!E1 ,! � � � ,!En DE

such that the factors Ai WDEi=Ei�1 are Gieseker-semistable with

P .A1;m/� P .A2;m/� � � � � P .An;m/:

Based on Bridgeland stability on surfaces, the notion of tilt stability was introduced in [7]. It is not quite
a Bridgeland stability condition, but it turns out to suffice for our purposes. The basic idea is to change
the category in which subobjects are taken when defining stability. This is done via the theory of tilting
introduced in [20]. As before, let X be a smooth projective threefold with an ample divisor H .

Definition 4.6 For any ˇ 2R, we define two full additive subcategories of Coh.X /:

Fˇ.X / WD fE 2 Coh.X / W any slope-semistable factor F of E satisfies �.F /� ˇg;

Tˇ.X / WD fE 2 Coh.X / W any slope-semistable factor F of E satisfies �.F / > ˇg:

The category
Cohˇ.X / WD hTˇ.X /;Fˇ.X /Œ1�i

is the full additive subcategory of those E 2 Db.X / for which H0.E/ 2 Tˇ.X /, H�1.E/ 2 Fˇ.X / and
Hi.E/D 0 for all i ¤�1; 0.

Note that Hom.T;F /D 0 for all T 2 Tˇ.X / and F 2 Fˇ.X /, by semistability. It is well known that the
category Cohˇ.X / is abelian. A sequence of morphisms

0!A! B! C ! 0

in Cohˇ.X / is a short exact sequence if and only if the induced sequence

A! B! C !AŒ1�

is a distinguished triangle in Db.X /.
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To simplify notation, we define for any E 2Db.X / its twisted Chern character chˇ.E/ WD ch.E/ � e�ˇH .
Note that when ˇ 2 Z, this is nothing but ch.E˝OX .�ˇH //.

Definition 4.7 For ˛ > 0, ˇ 2R and E 2 Cohˇ.X /, we define a slope function

�˛;ˇ.E/ WD
H � chˇ

2
.E/� 1

2
˛2H 3 � chˇ

0
.E/

H 2 � chˇ
1
.E/

;

where again division by zero needs to be interpreted as C1. Analogously to slope-stability, an object
E 2 Cohˇ.X / is called �˛;ˇ–(semi)stable if for all nontrivial proper subobjects F ,!E in Cohˇ.X / the
inequality �˛;ˇ.F / < .�/ �˛;ˇ.E=F / holds.

If it is clear from context, we will sometimes abuse notation and write tilt-(semi)stable instead of
�˛;ˇ–(semi)stable. Note that by definition, any E 2 Cohˇ.X / satisfies H 2 � chˇ

1
.E/� 0. Therefore, this

function plays the same role in Cohˇ.X / as the rank does in Coh.X /.

As previously, Harder–Narasimhan filtrations exist. However, note that a version of Jordan–Hölder
filtrations exists, but the stable factors are not unique up to order.

The notion of 2–Gieseker stability occurs as a limit of tilt stability as follows.

Proposition 4.8 [13, Proposition 14.2] Let E 2 Db.X / and ˇ < �.E/. Then E 2 Cohˇ.X / and E is
�˛;ˇ–(semi )stable for ˛� 0 if and only if E 2 Coh.X / and E is 2–Gieseker-(semi )stable.

The statement in [13] is for K3 surfaces, but the same proof works in our setting. If ˇ > �.E/ the
situation is slightly more complicated. The following proposition is a combination of [6, Lemma 2.7] and
[27, Proposition 3.1].

Proposition 4.9 Take a �˛;ˇ–semistable object E 2 Cohˇ.X /. If ˇ ¤ �.E/, then H�1.E/ is a reflexive
sheaf , and if ˇ � �.E/ and ˛� 0, then H�1.E/ is a torsion-free slope-semistable sheaf and H0.E/ is
supported in dimension less than or equal to one.

Semistable sheaves satisfy the Bogomolov inequality; see [23, Theorem 3.4.1]. A version for tilt stability
was proved in [7, Corollary 7.3.2].

Theorem 4.10 (Bogomolov inequality) Let E 2 Cohˇ.X / be �˛;ˇ–semistable. Then

�H .E/ WD .H
2
� ch1.E//

2
� 2.H 3

� ch0.E//.H � ch2.E//� 0:

Most applications of tilt stability come from varying .˛; ˇ/ and determining what that means for the
stability of a given set of objects. We visualize the parameter space of tilt stability, .˛; ˇ/ 2 R2 with
˛ > 0, as the upper half-plane via i˛Cˇ. For a given class v 2K0.X /, it turns out that there is a locally
finite wall and chamber structure such that stability only changes as we cross a wall. These walls are
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ˇ

˛

�˛;ˇ.v/D 0

Figure 1: Walls are nested semicircles or a unique vertical wall (Theorem 4.12(ii)).

either semicircles with center on the ˇ–axis or vertical lines; see Figures 1 and 2. In the following, we
recall what this means formally.

For v 2 K0.X / we write ch.v/, �.v/, �˛;ˇ.v/ and �.v/ to mean the appropriate versions where E is
replaced by v.

Definition 4.11 For v;w 2K0.X /, we define

W .v; w/ WD f.˛; ˇ/ 2R>0 �R W �˛;ˇ.v/D �˛;ˇ.w/g:

The set W .v; w/ is a numerical wall if W .v; w/¤∅ and W .v; w/¤R>0�R, ie if it is a proper nontrivial
subset of the upper half-plane.

Numerical walls in tilt stability have a rather simple structure, as shown in [28]:

Theorem 4.12 (nested wall theorem) Let v 2K0.X / with �.v/� 0.

(i) A numerical wall for v is either a semicircle centered along the ˇ–axis , or a vertical line parallel to
the ˛–axis in the upper half-plane.

ˇ

˛ ˇ D
H � ch2.v/

H 2 � ch1.v/

Figure 2: Walls are nested semicircles (Theorem 4.12(iii)).
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(ii) If ch0.v/¤ 0, then there is a unique numerical vertical wall for v given by ˇD�.v/. The remaining
numerical walls for v are split into two sets of nested semicircles , whose apexes lie on the hyperbola
�˛;ˇ.v/D 0. In particular , no two distinct walls intersect.

(iii) If ch0.v/D 0 and H 2 � ch1.v/¤ 0, then every numerical wall for v is a semicircle , whose apex
lies on the ray ˇ D .H � ch2.v//=.H

2 � ch1.v//.

The following is a well-known consequence of the fact that walls do not intersect.

Corollary 4.13 Let

0! F !E!G! 0

be a short exact sequence of �˛;ˇ–semistable objects in Cohˇ0.X / for some .˛0; ˇ0/ 2W .F;E/. Then
this is a short exact sequence of �˛;ˇ–semistable objects in Cohˇ.X / for any .˛; ˇ/ 2W .E;F /.

Definition 4.14 Let v 2K0.X /. A numerical wall W for v is called an actual wall for v if there is a
short exact sequence

0! F !E!G! 0

of �˛;ˇ–semistable objects in Cohˇ.X / for one .˛; ˇ/2W .F;E/ such that W DW .F;E/ and ch.E/Dv.

The above corollary implies that this is a short exact sequence in Cohˇ.X / for all .˛; ˇ/ 2 W .F;E/.
Determining walls is the key technique in this paper. It will allow us to classify sheaves with certain Chern
characters in terms of short exact sequences; see Theorem 6.1. Note that the condition W .F;E/¤R>0�R

implies �˛;ˇ.F / > �˛;ˇ.E/ on one side of such a wall. We say that the short exact sequence

0! F !E!G! 0;

or sometimes the wall W .F;E/, destabilizes E.

Proposition 4.15 [6, Appendix A] If an actual wall is induced by a short exact sequence of tilt-semistable
objects 0! F !E!G! 0, then

�H .F /C�H .G/��H .E/;

and equality can only occur if either F or G is a sheaf supported in dimension zero.

It turns out that walls of large radius can only be induced by subobjects of small rank. The following
precise statement is close to [15, Proposition 8.3]. A proof of this version can be found in [29, Lemma 2.4]
for the case of nonnegative ranks. The case of nonpositive ranks has the exact same proof, with reversed
signs.
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Proposition 4.16 Assume that an object E is destabilized by a semicircular wall induced by a subobject
F ,!E or quotient E� F with ch0.F / > ch0.E/� 0 or ch0.F / < ch0.E/� 0. Then the radius � of
W .F;E/ satisfies

�2
�

�H .E/

4.H 3 � ch0.F //.H 3 � ch0.F /�H 3 � ch0.E//
:

Tilt stability interacts nicely with the derived dual D. � / WD RHom. � ;OX /Œ1�.

Proposition 4.17 [7, Proposition 5.1.3] Suppose that E 2 Cohˇ.X / is a �˛;ˇ–semistable object with
�˛;ˇ.E/¤1. Then there is a �˛;�ˇ–semistable object zE 2 Coh�ˇ.X /, a torsion sheaf T supported in
dimension zero , and a distinguished triangle

zE!D.E/! T Œ�1�! zEŒ1�:

The following proposition seems to be well known to experts, but we could find no proof in the literature.

Proposition 4.18 Let E 2 Coh.X / be torsion-free. Then EŒ1� is tilt-stable along the vertical wall
ˇ D �.E/ if and only if E is slope-stable and reflexive. In particular , slope-stable reflexive sheaves do
not get destabilized along the vertical wall.

Proof If E is slope-unstable, then E 62 Coh�.E/.X /. Assume that E is strictly slope-semistable. Then
there is a short exact sequence of slope-semistable sheaves

0! F !E!G! 0

such that �.F /D �.G/. Taking a shift by one, this becomes a short exact sequence in Coh�.E/.X / with
�˛;�.E/.F Œ1�/D �˛;�.E/.GŒ1�/.

Assume that E is not reflexive, but slope-stable. Then we have a short exact sequence in Coh�.E/.X /
given by

0! T !EŒ1�!E__Œ1�! 0;

where T is a nontrivial sheaf supported in dimension less than or equal to one. However, this sequence
makes EŒ1� strictly tilt-semistable along ˇ D �.E/.

Assume conversely that E is a slope-semistable reflexive sheaf. Then it is an object in Coh�.E/.X / of
maximal phase, and in particular tilt-semistable. If it is strictly semistable, then it admits a short exact
sequence

0! F !EŒ1�!GŒ1�! 0;

where F , GŒ1�, H�1.F /Œ1� and H0.F / are also of maximal phase. In particular, H�1.F / and G are
torsion-free and slope-semistable of slope �.E/, and H0.F / has support of dimension at most one.

Consider the long exact sequence

0!H�1.F /!E!G!H0.F /! 0:
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Since we assume that E is strictly stable, this is a contradiction unless H�1.F /D 0. Taking duals we get
an exact sequence

0!G_!E_! Ext1.F;OX /:

Since F is supported in dimension less than or equal to one, this implies Ext1.F;OX /D 0 and G_ŠE_.
Hence, E ¨G DG__ DE__, a contradiction to E being reflexive.

From now on, we assume X �P4 is a smooth cubic threefold. In the later sections, we need the following
result of [26, Proposition 3.2], which improves the Bogomolov inequality in the case of a Fano threefold
of Picard rank one. Be aware that our notation differs from Li’s.

Theorem 4.19 Let E be a tilt-stable with ch0.E/¤ 0 for some ˛ > 0, ˇ 2R. If �1
2
��H .E/�

1
2

, then

H � ch2.E/

H 3 � ch0.E/
� 0:

In the case of cubic threefolds, direct sums of line bundles can be detected among semistable sheaves or
objects by their Chern characters, as follows.

Proposition 4.20 (i) If E is slope-semistable , or �˛;ˇ–semistable for some ˛ > 0 and ˇ < 0, with
ch.E/D .r; 0; 0; eH 3/ where r > 0, then e � 0. If , additionally, e D 0, then E ŠO˚r

X
.

(ii) If E is �˛;ˇ–semistable for some ˛ > 0 and ˇ > 0, with ch.E/D .�r; 0; 0; eH 3/ where r > 0, then
e D 0 and E ŠO˚r

X
Œ1�.

Proof In either case, Proposition 4.15 and �.E/D 0 imply that E has no semicircular walls.

We first claim that the only slope-stable reflexive sheaf of class .r; 0; 0; eH 3/ is OX . Assume otherwise.
By Proposition 4.18, such an E is also stable at the vertical wall ˇ D 0, and thus, it is �˛;ˇ–stable for
all ˛ > 0 and ˇ 2 R. Since �0;ˇ.E/ D �

1
2
ˇ > �1

2
ˇ � 1 D �0;ˇ.OX .�2H /Œ1�/ and both objects are

stable for ˛� 1 and ˇ 2 .�2; 0/, we have Ext2.OX ;E/D Hom.E;OX .�2H /Œ1�/D 0. Similarly, from
�˛;ˇ–stability for ˛� 1 and ˇ 2 .0; 2/ we obtain Ext2.E;OX /DHom.OX .2H /;EŒ1�/D 0. However, at
least one of �.OX ;E/D rC3e or �.E;OX /D r �3e is positive, and so E admits a morphism from OX

or a morphism to OX . As both are reflexive and slope-stable of slope 0, this shows E ŠOX .

Now consider an object E as in case (i). Then EŒ1� is �˛;0–semistable. By Proposition 4.18, its
Jordan–Hölder factors are either of the form F Œ1� for a slope-stable reflexive sheaf F with ch.F / D
.rF ; 0; dF H 2; eF H 3/, or a torsion sheaf supported in dimension � 1. In fact, Proposition 4.15 shows
dF D 0 in the former case, and thus, F D OX by the previous case, and that the torsion sheaves are
supported in dimension zero. As �3e is the total length of the torsion sheaves, we get e � 0. If e D 0, all
factors are isomorphic to OX Œ1� and the claim follows from Ext1.OX ;OX /D 0.
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In case (ii), we again consider a Jordan–Hölder filtration with respect to �˛;0–stability. Let Ei ,!EiC1 be
the first filtration step where the quotient EiC1=Ei is a zero-dimensional torsion sheaf T , should one exist.
Then Ei DOX Œ1�

˚k for some k > 0. Since Ext1.T;OX Œ1�/DH 1.T /_ D 0, we have EiC1 DEi ˚T ,
and so T is a subobject of E. This contradicts stability of E for ˇ> 0. Thus, EDOX Œ1�

˚r , as claimed.

5 Construction of sheaves

In this section, we introduce the sheaves that make up our moduli space MX .v/. It turns out that all of
them are at least reflexive, and the generic one is a vector bundle. From now on X � P4 is an arbitrary
smooth cubic threefold.

Let Y �X be an arbitrary hyperplane section, D be an effective Weil divisor on Y, and V �H 0.OY .D//

be a nontrivial subspace. Then we define ED;V 2 Db.X / to be the cone of the induced morphism
OX ˝V !OY .D/. Moreover, let ED;V WDH�1.ED;V /. Hence, we have a long exact sequence

0!ED;V !OX ˝V !OY .D/!H0.ED;V /! 0:

If V DH 0.OY .D//, we will drop V , and just write ED and ED .

Lemma 5.1 The sheaf ED;V is slope-stable and reflexive. If , additionally, H0.ED;V /D 0, then ED;V is
a vector bundle.

Proof The quotient .OX ˝V /=ED;V embeds into OY .D/. Since Y is integral by Proposition 3.1, the
sheaf .OX ˝V /=ED;V must be supported on Y. Therefore, ch�1.ED;V /D .dim V;�H / is primitive and
it is enough to show that ED;V is slope-semistable. If not, let F �ED;V be the slope-semistable subsheaf
in the Harder–Narasimhan filtration of ED;V . Then �.F />�.ED;V / and the quotient ED;V =F is torsion-
free. Since F is also a subsheaf of OX ˝V , we must have �.F /D 0. Let ch.F /D .r; 0; dH 2; eH 3/. The
quotient .OX ˝V /=F satisfies ch..OX ˝V /=F /D .dim V � r; 0;�dH 2;�eH 3/. By the snake lemma
this quotient is either torsion-free or has a torsion subsheaf purely supported on Y. However, if it is not
torsion-free, then its torsion-free quotient would destabilize OX ˝V , a contradiction. As a torsion-free
quotient of OX ˝V with slope zero, .OX ˝V /=F has to be slope-semistable as well.

The classical Bogomolov inequalities �H .F /� 0 and �H ..OX ˝V /=F /� 0 imply d D 0. Applying
Proposition 4.20 to both F and .OX ˝ V /=F implies e D 0, and finally, F D O˚r

X
. However, by

construction, ED;V has no global sections, a contradiction.

To see that ED;V is reflexive it suffices to show that Extq.ED;V ;OX /D 0 for q � 2 and Ext1.ED;V ;OX /

is supported in dimension zero. If additionally Ext1.ED;V ;OX /D 0, then ED;V is a vector bundle.

Clearly, Extq.OX ˝ V;OX / D 0 for q ¤ 0. Because OY .D/ is a rank-one reflexive sheaf on the
codimension one subvariety Y, the quotient .OX ˝V /=ED;V �OY .D/ is purely supported on Y. We
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can use [23, Proposition 1.1.10] to see that Extq..OX ˝ V /=ED;V ;OX / D 0 for all q ¤ 1; 2, and
Ext2..OX ˝ V /=ED;V ;OX / is supported in dimension zero. The long exact sequence obtained from
dualizing the short exact sequence

(1) 0!ED;V !OX ˝V ! .OX ˝V /=ED;V ! 0

implies the required vanishings.

If additionally H0.ED;V /D 0, then .OX ˝V /=ED;V DOY .D/ is a reflexive sheaf on the codimension-
one subvariety Y, and we can use [23, Proposition 1.1.10] again to see that Ext2.OY .D/;OX /D 0. The
same long exact sequence as above now implies Ext1.ED;V ;OX /D 0.

Note that we will use this lemma for the case ch.OY .D//D
�
0;H; 1

2
H 2;�1

6
H 3

�
. It will turn out that

in this case h0.OY .D//D 3 for any such D (see Theorem 6.1) and we will choose V DH 0.OY .D//.
Moreover, we will show that in that case H0.ED/D 0, ie OY .D/ is globally generated; see Theorem 6.1.
A straightforward computation shows that in this example ch.ED/D

�
3;�H;�1

2
H 2; 1

6
H 3

�
.

Corollary 5.2 Let P 2X . Then h0.IP .H //D 4 and the sheaf KP defined through the exact sequence

(2) 0!KP !O˚4
X
! IP .H /! 0

satisfies ch.KP /D
�
3;�H;�1

2
H 2; 1

6
H 3

�
. Moreover , KP is reflexive and slope-stable , and locally free

except at P .

Proof By choosing an embedding KP ,!O˚3
X

we get a short exact sequence

0!KP !O˚3
X
! IP=Y .H /! 0

for some hyperplane section Y. The statement then follows from Lemma 5.1 by choosing D DH and
V DH 0.IP=Y .H //�H 0.OY .H //.

From the defining short exact sequence (2) one immediately sees that KP is locally free away from P

(as it is the kernel of a surjective map of vector bundles), and not locally free at P (as Ext2.OP ;KP /D

Ext1.OP ; IP .H //¤ 0).

6 Variation of stability

In this section, we investigate semistable sheaves with Chern character

v WD
�
3;�H;�1

2
H 2; 1

6
H 3

�
:

The main goal is to use wall-crossing to prove the following theorem, which gives a set-theoretic
description of the moduli space MX .v/.
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Theorem 6.1 (i) Suppose that D is a Weil divisor on a (possibly singular) hyperplane section Y with
ch.OY .D// D

�
0;H; 1

2
H 2;�1

6
H 3

�
. Then OY .D/ is globally generated , and h0.OY .D// D 3.

In particular , there exists a smooth twisted cubic C in Y of class D.

(ii) A sheaf E with Chern character v is Gieseker-semistable if and only if it is either equal to the
reflexive sheaf KP for a point P 2X as in (2), or the vector bundle ED for a Weil divisor D on a
hyperplane section Y �X as in (1) with ch.OY .D//D

�
0;H; 1

2
H 2;�1

6
H 3

�
.

Note that since ch1.E/D�H , any Gieseker-semistable sheaf of class v is slope-stable. The argument
will essentially boil down to a detailed analysis of the numerical wall W defined by

(3) ˛2
C
�
ˇ� 1

2

�2
D

1
4
:

At this wall, the short exact sequences (2) and (1) become destabilizing short exact sequences in Cohˇ.X /
in the form

0!OY .D/!ED Œ1�!OX Œ1�
˚3
! 0 and 0! IP .H /!KP Œ1�!OX Œ1�

˚4
! 0:

Moreover, we can show that every object gets destabilized, and the destabilizing short exact sequence
must be of one of these types; see Lemma 6.8.

6.1 Classification of some torsion sheaves

In this section, we prove the following proposition.

Proposition 6.2 The wall W of equation (3) is the unique actual wall in tilt stability for objects G with
Chern character ch.G/D

�
0;H; 1

2
H 2;�1

6
H 3

�
.

(i) Above W the moduli space of tilt-semistable objects is the moduli space of Gieseker-semistable
sheaves , and contains precisely the following two types of sheaves G:

(a) G D IP=Y .H / for Y 2 jH j and P 2 Y , and

(b) G DOY .D/, where D is a Weil divisor on some Y 2 jH j.

(ii) Below W the moduli space of tilt-semistable objects contains precisely the following two types of
objects G:

(a) the unique nontrivial extensions

(4) 0!OX Œ1�!GP ! IP .H /! 0

for points P 2X , and

(b) G DOY .D/, where D is a Weil divisor on some Y 2 jH j.

We start by dealing with slightly more general objects without fixing ch3.
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Lemma 6.3 The wall W of equation (3) is the unique actual wall in tilt stability for objects G with
Chern character ch�2.G/D

�
0;H; 1

2
H 2

�
. If G is strictly semistable along W, then any Jordan–Hölder

filtration of G is given by either

0! IZ .H /!G!OX Œ1�! 0 or 0!OX Œ1�!G! IZ .H /! 0;

where Z �X is a zero-dimensional subscheme of length 1
6
H 3� ch3.G/.

Proof All walls for
�
0;H; 1

2
H 2

�
intersect the vertical ray ˇ D 1

2
. If G is strictly semistable along some

numerical wall intersecting ˇ D 1
2

, then there is a short exact sequence in Coh1=2.X / of tilt-semistable
objects

0!A!G! B! 0

with equal tilt-slope. Let ch�2.A/D .r; cH; dH 2/. By definition of Coh1=2.X / and the fact that neither
A nor B can have infinite tilt-slope, we get

0<H 2
� ch1=2

1
.A/DH 3

�
c � 1

2
r
�
<H 2

� ch1=2
1
.G/DH 3:

Therefore, c D 1
2
r C 1

2
, and in particular, r is odd. We will deal with the case r < 0. If r > 0, then B has

negative rank and one simply has to exchange the roles of A and B in the following argument.

For
�
˛; 1

2

�
2W .A;G/ we have

�˛2r C 2d � 1
4
r � 1

2
D �˛;1=2.A/D �˛;1=2.G/D 0:

Since ˛2 > 0, this implies d < 1
8
r C 1

4
. The fact

0�
�H .A/

.H 3/2
D�2dr C 1

4
r2
C

1
2
r C 1

4

implies d � 1
8
r C .1=8r/C 1

4
. Since d 2 1

6
Z, these restrictions on d are only possible for r 2 f�1;�3g.

If r D �3, then ch�2.A/ D
�
�3;�H;�1

6
H 2

�
. This case is immediately ruled out by Theorem 4.19.

If r D �1, then ch�2.A/ D .�1; 0; 0/, and by Proposition 4.20, we know A D OX Œ1�. Then ch.B/ D�
1;H; 1

2
H 2; ch3.G/

�
. By Proposition 4.15, there is no semicircular wall for B, and by Proposition 4.8,

the object B has to be a 2–Gieseker-stable sheaf. Since ch.B.�H // D
�
1; 0; 0; ch3.G/�

1
6
H 3

�
, the

remaining statement follows by applying Proposition 4.20 to B.�H /.

The next step is to gain further control over the third Chern character.

Lemma 6.4 Let G be a �˛;ˇ–semistable object with ch�2.G/ D
�
0;H; 1

2
H 2

�
. Then ch3.G/ �

1
6
H 3.

If ch3.G/D
1
6
H 3 and .˛; ˇ/ is above W, then G ŠOY .H / for some Y 2 jH j.

Proof We may assume ch3.G/�
1
6
H 3. By Lemma 6.3, the only possible wall is given by W. Therefore,

G has to be tilt-semistable along W. Since W lies below the numerical wall W .G;OX .�H /Œ1�/, we get
ext2.OX .H /;G/D hom.G;OX .�H /Œ1�/D 0. Thus,

hom.OX .H /;G/� �.OX .H /;G/D ch3.G/C
1
6
H 3 > 0:
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Therefore, W is a wall for G and by Lemma 6.3, the destabilizing sequence is

0!OX .H /!G!OX Œ1�! 0:

This implies G DOY .H / for some Y 2 jH j and ch3.G/D
1
6
H 3.

Proof of Proposition 6.2 Assume that G is strictly tilt-semistable along W. Then Lemma 6.3 splits our
problem into two cases.

Firstly, assume that G fits into a nonsplitting short exact sequence

0! IP .H /!G!OX Œ1�! 0

for a point P 2 X . Then clearly G D IP=Y .H / for some Y 2 jH j. This object is tilt-stable above W,
and tilt-unstable below W by precisely this sequence.

Secondly, assume that G fits into a nonsplitting short exact sequence

(5) 0!OX Œ1�!G! IP .H /! 0

for some P 2 X . By Serre duality, Ext1.IP .H /;OX Œ1�/ D h1.IP .�H // D 1 and hence, there is a
unique G for each P 2 X . Clearly, this object is tilt-unstable above W. Assume it is also tilt-unstable
below W. Then there is a short exact sequence 0!A!G! B! 0 destabilizing G below the wall.
However, G is strictly semistable at W, and by Lemma 6.3, this implies B DOX Œ1�. However, that means
the short exact sequence (5) splits, a contradiction.

Lastly, assume that G is �˛;ˇ–stable for all .˛; ˇ/. By Proposition 4.17, D.G/ lies in a distinguished
triangle

(6) zG!D.G/! T Œ�1�! zGŒ1�;

where T is a torsion sheaf supported in dimension zero and zG 2 Coh�ˇ.X / is �˛;�ˇ–semistable. If
ch3.T /D t , then ch. zG/D

�
0;H;�1

2
H 2;�1

6
H 3C t

�
. Thus, zG is a pure sheaf supported on a hyperplane

section Y 2 jH j. We can compute

ch. zG˝OX .H //D
�
0;H; 1

2
H 2;�1

6
H 3
C t
�
:

Thus, Lemma 6.4 gives t D 0 or t D 1, and if t D 1, then zG˝OX .H /ŠOY .H /, ie zG ŠOY .H /. Hence
there is a nontrivial morphism OX !

zG. Since hom.OX ;T Œ�i �/D 0 for i > 0, The triangle (6) shows
that there is a nontrivial morphism OX !D.G/. Dualizing this morphism leads to a nontrivial morphism
G!OX Œ1�. However, this is in contradiction to the assumption that G is stable along W.

If t D 0, then D.G/D zG is a sheaf, so Extq.G;OX /D 0 for q > 1. Thus, [23, Proposition 1.1.10] implies
that G is reflexive and supported on a hyperplane section Y 2 jH j. This means G DOY .D/ for some
Weil divisor D on Y.
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6.2 Set-theoretic description of the moduli space

We now prepare the proof of Theorem 6.1.

Lemma 6.5 There are no walls along ˇ D �1 for tilt-semistable objects E with Chern character
ch�2.E/D

�
3;�H;�1

2
H 2

�
.

Proof Assume there is such a wall induced by a short exact sequence

0!A!E! B! 0

with ch�1
�2.A/D .r;xH;yH 2/. Then

0<H � ch�1
1 .A/D xH 3 <H � ch�1

1 .E/D 2H 3

implies x D 1. By exchanging the roles of A and B if necessary, we may assume r � 2.

Using �H .A/ � 0 we get y � 1=2r . A straightforward computation shows that there exists ˛ > 0

with �˛;�1.A/ D �˛;�1.E/ if and only if y > 0. Since y 2 1
6
Z, this is only possible if y D 1

6
and

r 2 f2; 3g. Both cases ch�1
�2.A/D

�
3;H; 1

6
H 2

�
and ch�1

�2.A/D
�
2;H; 1

6
H 2

�
are directly ruled out by

Theorem 4.19.

Proposition 6.6 Take a slope-stable sheaf E of Chern character .3;�H; ch2; ch3/. Then H � ch2��
1
2
H 3,

and if ch2 �H D�
1
2
H 3, then ch3 �

1
6
H 3. In particular , this implies that any slope-stable sheaf of Chern

character v is a reflexive sheaf.

Proof Since E is slope-stable, the classical Bogomolov inequality gives

�H .E/D .H
3/2� 2.3H 3/.H � ch2.E//� 0;

which implies H �ch2.E/�
1
6
H 3. The case H �ch2.E/D

1
6
H 3 is immediately ruled out by Theorem 4.19.

Since c2.E/D
1
2
H 2� ch2.E/ has to be an integral class, we are left to rule out H � ch2.E/D�

1
6
H 3.

Assume H � ch2.E/ D �
1
6
H 3. We may assume that E is a reflexive sheaf. If not, we replace it by

the double dual E__, which satisfies H � ch2.E/ � H � ch2.E
__/. By the first part of the argument

H � ch2.E
__/D�1

6
H 3 holds as well.

We first show that ext2.E;E/D 0. Since H 3 � ch�1=2
1

.E/D 1
2
H , any destabilizing subobject F � E

along ˇD�1
2

must satisfy H 3 �ch�1=2
1

.F /D 1
2
H or H 3 �ch�1=2

1 .F /D 0. Thus, either F or the quotient
E=F have infinite tilt-slope, a contradiction. This means E is �˛;�1=2–stable for all ˛ > 0.

By Proposition 4.18, the object EŒ1� is tilt-stable for ˇ D 0 and ˛� 0. Since H 3 � ch1.EŒ1�/DH 3, the
same type of argument as above shows that there cannot be any wall along ˇ D 0. Hence, E.�2H /Œ1� is
�˛;ˇ–stable for ˇ D�2 and any ˛ > 0.
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A straightforward computation shows that W .E;E.�2H /Œ1�/ intersects both the vertical lines ˇ D�2

and ˇ D �1
2

. Therefore, E and E.�2H /Œ1� are tilt-stable for any .˛; ˇ/ 2 W .E;E.�2H /Œ1�/ and
have the same phase, and thus, ext2.E;E/ D hom.E;E.�2H /Œ1�/ D 0. Since E is stable, we know
hom.E;E/D 1 and hence, 3D �.E;E/D 1� ext1.E;E/� ext3.E;E/� 1, a contradiction.

Now assume H � ch2 D �
1
2
H 3. We know E 2 Cohˇ.X / is �˛;ˇ–stable for ˛ � 0 and ˇ < �1

3
. By

Lemma 6.5, we have that E is �˛;�1–stable for any ˛ > 0. One can easily compute

�0;�1.OX .�2H /Œ1�/ < �0;�1.E/;

which implies h2.E/ D hom.E;OX .�2H /Œ1�/ D 0. Moreover, since �.E/ D �1
3
< �.OX /, we get

hom.OX ;E/D 0. Therefore, �.E/D ch3.E/�
1
6
H 3 � 0, as claimed.

Lastly, assume that a slope-stable sheaf E of Chern character v is not reflexive. We have a short exact
sequence

0!E!E__! T ! 0:

Since E__ is also slope-stable, and both H � ch2.E/ and H � ch3.E/ are maximal, one gets ch.E/ D
ch.E__/. This is only possible if T D 0.

To prove Theorem 6.1, we start in the large volume limit.

Lemma 6.7 Take ˇ >�1
3

. An object zE 2Cohˇ.X / of Chern character �v is �˛;ˇ–semistable for ˛� 0

if and only if zE ŠEŒ1� for a slope-stable reflexive sheaf E.

Proof Take a �˛;ˇ–semistable object zE of class�v. Proposition 4.9 implies that H�1. zE/ is a slope-stable
reflexive sheaf and H0. zE/ is a torsion sheaf supported in dimension � 1. Therefore,

ch.H�1. zE//D
�
3;�H;�1

2
H 2
C ch2.H0. zE//; 1

6
H 3
C ch3.H0. zE//

�
:

By Proposition 6.6, this is only possible if ch2.H0. zE//D ch3.H0. zE//D 0, ie H0. zE/ = 0.

Conversely, any slope-stable reflexive sheaf E of class v is �˛;ˇ–stable for ˛� 0 and ˇ < �.E/D�1
3

.
Proposition 4.18 implies that EŒ1� is �˛;ˇ–stable for ˛� 0 and ˇ > �.E/D�1

3
.

Next, we move down from the large volume limit and investigate walls for objects of class �v. Note that
all walls to the right of the vertical wall must intersect ˇ D�1

3
.

Lemma 6.8 The wall W of equation (3) is the unique actual wall for objects with Chern character �v to
the right of the vertical wall. There are no tilt-semistable objects below W. Any tilt-semistable zE with
Chern character �v fits into one of the following two cases:

(i) zE fits into a short exact sequence

0!OY .D/! zE!O˚3
X
Œ1�! 0;

where D is a Weil divisor on hyperplane section Y 2 jH j.
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(ii) zE fits into a short exact sequence

0! IP .H /! zE!O˚4
X
Œ1�! 0;

where P 2X .

Proof Let zE be a tilt-semistable object with Chern character �v. Let W 0 be a wall strictly above W

induced by a short exact sequence 0! F ! zE!G! 0. Then the wall W 0 contains points .˛; 0/ with
˛ > 0. In particular, 0<H � ch1.F / <H � ch1. zE/DH 3, a contradiction.

Since the wall W .OX .2H /; zE/ is larger than W, we get hom. zE;OX Œ3�/D hom.OX .2H /; zE/D 0 and

hom. zE;OX Œ1�/D hom. zE;OX /C ext2. zE;OX /��. zE;OX /� ��. zE;OX /D 3:

Clearly, any morphism zE!OX Œ1� destabilizes zE below W.

Let r WD hom. zE;OX Œ1�/� 3. We get a short exact sequence of tilt-semistable objects along W given by

0!G! zE!O˚r
X
Œ1�! 0:

If r � 4, then Proposition 4.16 says
1

4
�

1

r.r � 3/
;

ie r � 4. For r D 4, we get ch.G.�H //D
�
1; 0; 0;�1

3
H 3

�
and so G D IP .H / for some P 2X .

If r D 3, then ch.G/ D
�
0;H; 1

2
H 2;�1

6
H 3

�
. Assume G is not of the form OY .D/ for some Weil

divisor D on a hyperplane section Y 2 jH j. Then Proposition 6.2 implies that G has to be strictly
semistable along our wall W. Since zE is tilt-semistable above the wall, we know Hom.OX Œ1�;E/D 0.
Therefore, Lemma 6.3 shows that there is a short exact sequence

0! IP .H /!G!OX Œ1�! 0

for a point P 2X . But then there is an inclusion IP .H / ,! zE and we are in the second case.

Proof of Theorem 6.1 Let D be a Weil divisor on a hyperplane section Y 2 jH j with ch.OY .D//D�
0;H; 1

2
H 2;�1

6
H 3

�
. By Proposition 6.2, the sheaf OY .D/ is tilt-stable for all ˛ > 0 and ˇ 2 R.

A straightforward computation shows that the numerical wall W .OY .D/;OX .�2H /Œ1�/ is nonempty,
and therefore, h2.OY .D//D hom.OY .D/;OX .�2H /Œ1�/D 0. We conclude

h0.OY .D//D �.OY .D//C h1.OY .D//C h3.OY .D//� �.OY .D//D 3:

We pick a three-dimensional subspace V � h0.OY .D// to get an object ED;V 2 Db.X / as in Section 5.
By Lemma 5.1, the sheaf ED;V DH�1.ED;V / is slope-stable and reflexive. If H0.ED;V /¤ 0, then ED;V

has a Chern character in contradiction to Proposition 6.6. This shows that OY .D/ is globally generated.

Since ED;V is slope-stable, we know h0.ED;V /D0 and h3.ED;V /Dhom.ED;V ;OX .�2H //D0. More-
over, as in the proof of Proposition 6.6 we get h2.ED;V /D 0. This implies h1.ED;V /D��.ED;V /D 0.
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The long exact sequence obtained from taking sheaf cohomology of

0!ED;V !OX ˝V !OY .D/! 0

implies H i.OY .D//D 0 for i > 0 and h0.OY .D//D 3. Therefore, V DH 0.OY .D// and for each D

there is a unique slope-stable sheaf ED DED;V .

Let U � Y be the smooth locus of Y. By Proposition 3.1, we know that Y is normal, and therefore,
Y nU has dimension zero. In particular, a general section of OY .D/ leads to a curve completely contained
in U . Since we work in characteristic 0, we can use a version of Bertini’s theorem [21, Corollary III.10.9,
Remark III.10.9.1, Remark III.10.9.2] on the open subset U to see that a general section cuts out a smooth
curve C . By adjunction,

ch.KC /D ch.OY .�H CD/jD/D ch.OY .�H CD//� ch.OY .�H //

D
�
0;H;�1

2
H 2;�1

6
H 3

�
�
�
0;H;�3

2
H 2; 7

6
H 3

�
D
�
0; 0;H 2;�4

3
H 3

�
;

which shows that C is of degree 3 with �.KC /D �1, ie a twisted cubic. This completes the proof of
part (i).

For part (ii), we already showed in Corollary 5.2 that KP is slope-stable for any P 2X . Conversely, if E

is slope-stable, we can immediately conclude by Lemma 6.8.

As a consequence we can already infer that our moduli space MX .v/ is smooth.

Corollary 6.9 Every Gieseker-semistable sheaf E with ch.E/D
�
3;�H;�1

2
H 2; 1

6
H 3

�
satisfies

Exti.E;E/D

8<:
C if i D 0;

C4 if i D 1;

0 otherwise.

In particular , the moduli space MX .v/ is smooth and 4–dimensional.

Proof Since .3;�H / is primitive, we know that E is slope-stable. Therefore, hom.E;E/D 1. Moreover,
we must have Ext3.E;E/D Hom.E;E.�2H //_ D 0. By Lemma 6.5, the sheaf E is �˛;�1–stable for
any ˛ > 0. Proposition 6.6 shows that E.�2H / is reflexive, so its shift E.�2H /Œ1� lies in the heart
CohˇD�1.X / and it is �˛;�1–stable for any ˛ > 0 by Lemma 6.8. Since

�0;�1.E/D 0> �1
2
D �0;�1.E.�2H /Œ1�/;

we get Ext2.E;E/D Hom.E;E.�2H /Œ1�/D 0. We can conclude that

ext1.E;E/D hom.E;E/��.E;E/D 4:

7 Proof of the main theorem

Recall that MX .v/ is the moduli space of Gieseker-semistable sheaves with Chern character

v WD
�
3;�H;�1

2
H 2; 1

6
H 3

�
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and MX .v/�MX .v/ is the open locus of Gieseker-semistable vector bundles. The aim of this section is
to prove the following theorem.

Theorem 7.1 The moduli space MX .v/ is smooth and irreducible of dimension 4. Moreover , there
is an Abel–Jacobi morphism ‰ WMX .v/! J.X / sending E 7! zc2.E/�H 2, whose image is a theta
divisor ‚ in the intermediate Jacobian J.X /. The theta divisor has a unique singular point , and MX .v/

is the blowup of ‚ in this point. The exceptional divisor is isomorphic to the cubic threefold X itself.

We have already shown that MX .v/ is smooth of dimension 4 in Corollary 6.9. By Proposition 2.2, the
image of ' W T ! J.X / is ‚� J.X /, where T is the open locus of smooth twisted cubics in the Hilbert
scheme of X , and T is its closure. By Theorem 2.6, we know that ‚ is normal.

Proposition 7.2 There is a surjective map '0 W T !MX .v/ that sends a twisted cubic C to the vector
bundle EC . The map 'jT W T ! J.X / factors through '0:

T
'jT

""

'0

{{

MX .v/
‰jMX .v/

// J.X /

Therefore , the image of ‰ WMX .v/! J.X / is ‚� J.X /.

Proof Let C be a twisted cubic in X . Then it lies in a unique hyperplane section Y. There is a short
exact sequence

0!OY !OY .C /! T ! 0;

where T is a sheaf supported on C with rank one. Therefore, ech�2.OY .C // D
�
0;H;C � 1

2
H 2

�
and we get ech�2.EC / D

�
3;�H; 1

2
H 2 � C

�
. It follows that zc2.EC / D C . Thus, the composition

‰jMX .v/ ı'
0 W T !MX .v/! J.X / is the Abel–Jacobi map ' W T ! J.X / restricted to T . Surjectivity

of '0 is a direct consequence of Theorem 6.1.

Lemma 7.3 The morphism i W X !MX .v/ that maps P 7!KP is an embedding with normal bundle
OX .�H /.

Proof We interpret X as the moduli spaces of twisted ideal sheaves IP .H / for all P 2X . By definition
of KP , we have a canonical short exact sequence

(7) 0!KP !O˚4
X
! IP .H /! 0:

The appropriate version in families, considered below, induces the morphism i . It is injective, as P is the
unique point where KP is not locally free by Corollary 5.2.
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Applying Hom. � ;KP / to (7), we get an isomorphism Ext1.KP ;KP / Š Ext2.IP .H /;KP /. Next,
we apply the functor Hom.IP .H /; � / to (7) to show that the induced morphism on tangent spaces
Ext1.IP .H /; IP .H // ,! Ext2.IP .H /;KP / D Ext1.KP ;KP / is an embedding. Since both X and
MX .v/ are smooth, the morphism is an embedding.

To determine the normal bundle, we need a relative version of the previous arguments to determine the
cokernel of this embedding as a line bundle on X . The universal family inducing i is given by the sheaf K
on X �X fitting into the short exact sequence

0! K! p��P4 jX .H /! I�.0;H /! 0;

where p W X �X ! X is the projection to the first factor. The pullback of the tangent bundle via i is
i�TMX .v/

DH1.p�Hom.K;K//. Since p�Hom.p��P4 jX .H /;K/D 0, we have an isomorphism

H1.p�Hom.K;K//DH2.p�Hom.I�.0;H /;K/:

The differential di of i fits into the four-term long exact sequence

0! TX DH1
�
p�Hom.I�.0;H /; I�.0;H //

� di
�!H2

�
p�Hom.I�.0;H /;K/

�
!H2

�
p�Hom.I�.0;H /;p��P4 jX .H //

�
!H2

�
p�Hom.I�.0;H /; I�.0;H //

�
! 0:

Using Grothendieck duality and the projection formula, the third term becomes

�P4 jX .H /˝H1.p�I�.0;�H //_ D�P4 jX .H /˝H0.p�O�.0;�H //_ D�P4 jX .2H /:

A similar computation using the short exact sequence I� ,!OX �OX �O� gives

H2.p�Hom.I�; I�/D�X .2H /

for the fourth term. Thus, the cokernel of di is isomorphic to N_
X=P4.2H /DOX .�H /, as claimed.

Lemma 7.4 The morphism ‰ induces an isomorphism MX .v/!‚ n f0g. Moreover , ‰ contracts the
irreducible divisor MX .v/ nMX .v/ to the zero point. In particular , ‚ is smooth away from 0.

Proof By Lemma 5.1 and Corollary 5.2, the locus MX .v/ nMX .v/ coincides with vector bundles EC

associated to a twisted cubic C . By Lemma 2.5, the map 'jT has full rank four on tangent spaces. Thus,
the commutative diagram in Proposition 7.2 implies that ‰jMX .v/ has full rank four on tangent spaces.
Since MX .v/ is smooth of dimension four, ‰jMX .v/ must be injective on tangent spaces. In particular, the
morphism ‰jMX .v/ must have finite fibers. Since 'jT has generically connected fibers by Proposition 2.2,
the same holds for ‰jMX .v/. Since ‚ is normal, Zariski’s main theorem implies that ‰jMX .v/ is an open
embedding. Since ‚ is singular at the origin, we must have ‰.MX .v//�‚�f0g.

By definition, zc2.KP /DH 2 and we get ‰.KP /D 0. Thus ‰�1.0/DMX .v/ nMX .v/, and the image
of MX .v/ is indeed ‚ n f0g by Proposition 2.2.
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We can finish the proof of Theorem 7.1 with the following lemma.

Lemma 7.5 The formal neighborhood of 0 2 ‚ is isomorphic to the vertex of the affine cone over
X � P4. Moreover , we have an isomorphism MX .v/ D Bl0.‚/. Thus , X is the union of all rational
curves on MX .v/, and the unique divisor contracted by any morphism to a complex abelian variety.

Proof The first two claims are scheme-theoretic enhancements of the set-theoretic statements in the
previous lemma, which hold for any contraction of a divisor with ample conormal bundle to a point. We
will only sketch the arguments.

Since the normal bundle of X �MX .v/ is antiample, by Artin’s contractibility criterion [4, Corollary 6.12]
there is a contraction‰0 WMX .v/!N to an algebraic space N of finite type over C that is an isomorphism
away from X , and contracts X to a point 0 2N . Moreover, by Artin’s construction in [4, Theorem 6.2],
the formal neighborhood of 0 2N is given by the affinization of the formal neighborhood of X �MX .v/.
More precisely, if I is the ideal of X , then it is given by

Spec lim
 ��

n

H 0.X;OMX .v/
=InC1/D Spec lim

 ��
n

M
0�k�n

H 0.X;OX .k//;

ie the completion of the vertex of the affine cone over X . Since the image of every infinitesimal
neighborhood of X under ‰ is affine, it factors via its affinization. Taking the limit, we see that ‰ factors
via ‰0 both in the formal neighborhood of X , and in its complement. Hence (eg by [4, Theorem 3.1])
we get an induced morphism j WN !‚ factoring ‰. As j is bijective on points and has normal target,
it is an isomorphism.

For the last claim, note that X is uniruled, hence the union U of all rational curves in MX .v/ contains X .
If there was any other rational curve C not contained in X , then ‰ W C !‚ is a nonconstant map from a
rational to an abelian variety, a contradiction.

Corollary 7.6 If X1 and X2 are smooth projective threefolds with J.X1/ D J.X2/ as principally
polarized abelian varieties , then X1 DX2.

Proof As in the classical argument, this is an immediate consequence of the description of the singularity
of the theta divisor in Lemma 7.5.

8 Kuznetsov component

The bounded derived category of a cubic threefold X admits a semiorthogonal decomposition

Db.X /D hKu.X /;OX ;OX .1/i;

whose nontrivial part Ku.X / is called the Kuznetsov component. The goal of this section is to give a new
proof of the following theorem.
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Theorem 8.1 Let X1 and X2 be smooth cubic threefolds. Then Ku.X1/ and Ku.X2/ are equivalent as
triangulated categories if and only if X1 and X2 are isomorphic.

Let S be the Serre functor of Ku.X /. By [25, Lemmas 4.1 and 4.2], for any object F 2Ku.X /, we have

(8) S.F /DLOX
.F ˝OX .H //Œ1�;

where LOX
is the left mutation functor with respect to OX . By [11, Proposition 2.7], the numerical

Grothendieck group N .Ku.X // is a two-dimensional lattice

N .Ku.X //Š Z2
Š ZŒI`�˚ZŒS.I`/�;

where I` is the ideal sheaf of a line ` in X . With respect to this basis, the Euler characteristic �.�;�/ on
N .Ku.X // has the form �

�1 �1

0 �1

�
:

For any line ` in X , we know ch.I`/D
�
1; 0;�1

3
H 2; 0

�
. The Chern character of our second basis vector

of ch.Ku.X //, and the action of the Serre functor S on our chosen basis are given as follows.

Lemma 8.2 We have ch.S.I`// D
�
2;�H;�1

6
H 2; 1

6
H 3

�
and ch.S2.I`// D

�
1;�H; 1

6
H 2; 1

6
H 3

�
.

Thus , the class ŒS2.I`/� in N .Ku.X // is equal to ŒS.I`/�� ŒI`�.

Proof By (8) we have ŒS.E/� D �ŒE.H /�C �.E.H //ŒOX � for E 2 Ku.X /. Hence ch.I`.H // D�
1;H; 1

6
H 2;�1

6
H 3

�
and �.I`.H //D 3 imply the formula for ch.S.I`//. The formula for ch.S2.I`//

follows from the last claim, which in turn follows from the Euler characteristic form above with

�.I`;S
2.I`//D �.S

2.I`/;S.I`//D �.S.I`/; I`/D 0D �.ŒI`�; ŒS.I`/�� ŒI`�/;
�.S.I`/;S

2.I`//D �.I`;S.I`//D�1D �.ŒS.I`/�; ŒS.I`/�� ŒI`�/:

For a point P 2 X , the sheaf KP , which is defined through the sequence (2), lies in the Kuznetsov
component Ku.X /.

Lemma 8.3 Let ŒA� be a class in N .Ku.X // such that �.ŒA�; ŒA�/D�3. Then , up to a sign , ŒA� is either
ŒKP �D ŒI`�C ŒS.I`/�, or ŒS.KP /�D�ŒI`�C 2ŒS.I`/�, or ŒS2.Kp/�D�2ŒI`�C ŒS.I`/�.

Let �0
˛;�1=2

D .Coh0
˛;�1=2.X /;Z

0
˛;�1=2

/ be the weak stability condition on Db.X / constructed in
[5, Proposition 2.14]. Here Coh0

˛;�1=2.X / is the usual double tilt and

(9) Z0
˛;�1=2.E/DH 2

� ch�1=2
1

.E/C i
�
H � ch�1=2

2
.E/� 1

2
˛2H 3

� ch0.E/
�
:

As proven in [5, Theorem 6.8], for 0 < ˛� 1 it induces the stability condition �.˛/D .A.˛/;Z.˛//
on Ku.X /, where

A.˛/ WD Coh0
˛;�1=2.X /\Ku.X / and Z.˛/ WDZ0

˛;�1=2jKu.X /:
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Lemma 8.4 There is an embedding MX .v/ ,!M�.˛/.ŒI`�C ŒS.I`/�/ from the moduli space MX .v/

for v D ch.I`/ C ch.S.I`// D
�
3;�H;�1

2
H 2; 1

6
H 3

�
to M�.˛/.ŒI`� C ŒS.I`/�/, which parametrizes

�.˛/–semistable objects in Ku.X / of class ŒI`�C ŒS.I`/� 2N .Ku.X //.

Proof According to Lemma 6.5 there is no wall for objects of Chern character v to the left of the vertical
wall. Thus, E is �˛;�1=2–stable for any ˛ > 0. Since �0

˛;�1=2
is just a rotation of �˛;�1=2, we obtain

that E is �0
˛;�1=2

–stable. By Theorem 6.1(ii), the sheaf E 2 Ku.X / lies in the Kuznetsov component.
Thus, E is �.˛/–stable. Note that the object E could be destabilized by objects with Z0

˛;�1=2
D 0 after

rotation. But we know that these are all sheaves supported in dimension zero and would not be in Ku.X /
and therefore, E is stable after restriction to Ku.X /.

Corollary 5.6 of [35] implies that the stability condition �.˛/ is S–invariant, ie S � �.˛/D �.˛/ � zg for
zg 2 fGLC.2;R/. Thus, there is an isomorphism

(10) S WM�.˛/.2ŒI`�� ŒS.I`/�/!M�.˛/.ŒI`�C ŒS.I`/�/; E 7! S.E/:

The following proposition is a slight strengthening of [1, Theorem 1.2], which describes all elements of
the moduli space. The idea of the proof is the same as [1, Lemma 2.2].

Proposition 8.5 Any �.˛/–semistable object in Ku.X / of class 2ŒI`�� ŒS.I`/� is of the form GŒ2k� for
k 2 Z, where G is either equal to GP .�H / described in (4) for a point P 2 X , or OY .D�H /, where
D is a Weil divisor on some Y 2 jH j.

Proof Lemma 8.2 implies ch.G/ D
�
0;H;�1

2
H 2;�1

6
H 3

�
. Since G is �.˛/–semistable, its shift

GŒ2k� lies in the heart A.˛/ for some k 2 Z. We know its image under the stability function Z.˛/

is equal to �H 3, so it has maximum phase in the heart A.˛/, which immediately implies GŒ2k� is
�0
˛;�1=2

–semistable. We claim that GŒ2k� has no subobject Q 2 Coh0
˛;�1=2 with Z0

˛;�1=2
.Q/ D 0,

so it is �˛;�1=2–semistable. Assume for a contradiction that there is such a subobject Q. By the
definition of Coh0

˛;�1=2.X /, it is a sheaf supported in dimension zero. Thus, hom.OX ;Q/¤ 0. Since
OX 2 Coh0

˛;�1=2.X /, we have hom.OX ; .GŒ2k�=Q/Œ�1�/D 0. Therefore, hom.OX ;GŒ2k�/¤ 0, which
is not possible because GŒ2k� 2 Ku.X /. Finally, since GŒ2k� is �˛;�1=2–semistable for 0< ˛� 1, the
claim follows by Proposition 6.2(ii).

Remark 8.6 Since the class 2ŒI`�� ŒS.I`/� is primitive in N .Ku.X //, any �.˛/–semistable object of
this class is �.˛/–stable if we choose ˛ sufficiently small.

We now describe the image of the semistable objects G 2M�.˛/.2ŒI`��ŒS.I`/�/ under the Serre functor S .
If G DGP .�H /, then by (4), we know there is a distinguished triangle

OX Œ1�!GP ! IP .H /!OX Œ2�;

Geometry & Topology, Volume 28 (2024)



156 A Bayer, S V Beentjes, S Feyzbakhsh, G Hein, D Martinelli, F Rezaee and B Schmidt

which gives LOX
.GP /DLOX

.IP .H //DKP Œ1�, so

(11) S.GP /DKP Œ2�:

If G DOY .D�H /, then G.H /DOY .D/ is of class
�
0;H; 1

2
H 2;�1

6
H 3

�
, and lies in a distinguished

triangle
O˚3

X
!OY .D/!ED Œ1�!O˚3

X
Œ1�:

Thus,

(12) S.G/DLOX
.OY .D//Œ1�DLOX

.ED Œ1�/Œ1�DED Œ2�:

Combining (11) and (12) with Lemma 8.4 implies the next result.

Theorem 8.7 The moduli space M�.˛/.ŒI`� C ŒS.I`/�/ is isomorphic to the moduli space MX .v/

parametrizing Gieseker-stable sheaves of class v.

The next step is to show that we can replace �.˛/ by any S–invariant stability condition on Ku.X /.

Lemma 8.8 [35, Lemmas 5.8 and 5.10] Let � be an S–invariant stability condition on Ku.X / and
F 2 Ku.X / be �–semistable of phase '.F /. Then

(i) '.F / < '.S.F // < '.F /C 2,

(ii) dim Ext1.F;F /� 2.

For cubic threefolds, we also have a weak version of the Mukai lemma for K3 surfaces.

Lemma 8.9 (weak Mukai lemma [35, Lemma 5.11]) Let � be an S–invariant stability condition. Let
A!E! B be a triangle in Ku.X / such that hom.A;B/D 0 and the �–semistable factors of A have
phase greater than or equal to the phase of the �–semistable factors of B. Then

dimC Ext1.A;A/C dimC Ext1.B;B/� dimC Ext1.E;E/:

Proposition 8.10 Let �1 and �2 be two S–invariant stability conditions on Ku.X /. An object E2Ku.X /
of class ŒI`�C ŒS.I`/� is �1–stable if and only if it is �2–stale.

Proof By [35, Proposition 4.6], I` and S.I`/ are �–stable with respect to any S–invariant stability
condition. Thus, Lemma 8.8 implies that

(13) '� .I`/ < '� .S.I`// < '� .I`/C 2:

Take a �1–stable object E 2 Ku.X / of class ŒI`�C ŒS.I`/�. Since �1 is S–invariant, Lemma 8.8 gives

'�1
.E/ < '�1

.S.E// < '�1
.E/C 2:

Thus, for i < 0 or i � 2, we get

hom.E;EŒi �/D hom.EŒi �;S.E//D 0:
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Since E is �1–stable, we get hom.E;E/D 1, which gives

hom.E;EŒ1�/D��.E;E/C 1D 4:

Suppose now for a contradiction that E is �2–unstable. There is a distinguished triangle of destabilizing
objects F1!E!F2!F1Œ1�with respect to �2. We may assume F1 is �2–semistable. Thus, Lemma 8.8
implies that

(14) hom.F1;F1Œ1�/� 2:

Since the phase of F1 is bigger than the phase of �2–semistable factors of F2, we have

(15) hom.F1;F2/D 0:

Thus, the weak Mukai lemma (Lemma 8.9) implies

hom.F1;F1Œ1�/C hom.F2;F2Œ1�/� hom.E;EŒ1�/D 4:

By (14), we get hom.F2;F2Œ1�/� 2. If hom.F2;F2Œ1�/D 0 or 1, then all its �2–semistable factors would
satisfy the same property by the weak Mukai lemma (Lemma 8.9), which is not possible by Lemma 8.8.
Therefore,

hom.F1;F1Œ2�/D hom.F2;F2Œ1�/D 2;

and [35, Lemma 5.12] implies that F1 and F2 are �2–stable. This gives �.Fi ;Fi/ D �1 for i D 1; 2,
so ŒFi � is either ˙ŒI`�, or ˙ŒS.I`/�, or ˙.ŒS.I`/�� ŒI`�/. Since there are only 2 stable factors and the
object E is of class ŒI`�C ŒS.I`/�, the destabilizing objects must be of class ŒI`� and ŒS.I`/�. Thus,
[35, Proposition 4.6] implies that the destabilizing objects are I`Œ2k� and S.I`0/Œ2k 0� for two lines `; `0

and integers k; k 0 2 Z.

Let F1 D I`Œ2k� and F2 D S.I`0/Œ2k 0�. Since E is �1–stable, we have '�1
.F1/ < '�1

.F2/, thus (13)
gives k � k 0. But F1 and F2 are the destabilizing objects with respect to �2, hence '�2

.F1/ > '�2
.F2/

and (13) gives k 0C 1 � k, which is not possible. By a similar argument, we reach a contradiction if
F1 D S.I`0/Œ2k 0� and F2 D I`Œ2k�. Finally, note that E cannot be strictly �2–semistable because the
phases of I`Œ2k� and S.I`/Œ2k 0� cannot be equal, by (13).

Proof of Theorem 8.1 As a cubic threefold has free Picard group of rank one, the first implication is
obvious. As for the second implication, assume there is an exact equivalence ˆ W Ku.X1/! Ku.X2/.
Lemma 8.3 implies that, up to composing with a power of the Serre functor of Ku.X1/ and shift functor,
we may assume Œˆ�.KP /�D ŒKP 0 � for points P and P 0 in X1 and X2, respectively. Take an S–invariant
stability condition � on Ku.X1/. Theorem 8.7 and Proposition 8.10 imply that

(16) MX1
.v/ŠM� .Ku.X1/; ŒKP �/ŠM'�� .Ku.X2/; ŒKP 0 �/:

Since the Serre functor commutes with autoequivalences, ' � � is an S–invariant stability condition
on Ku.X2/. Thus, Theorem 8.7 gives

M'�� .Ku.X2/; ŒKP 0 �/ŠMX2
.v/:
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Combining this with (16) gives MX1
.v/ŠMX2

.v/. By Lemma 7.5, we know X1 and X2 are the unique
exceptional divisors of MX1

.v/ and MX2
.v/ which get contracted by any map to a complex abelian

variety. Thus, X1 ŠX2.

List of symbols

X smooth cubic threefold in P 4 over C

H the ample generator of Pic.X /
Y a hyperplane section of X

Db.X / bounded derived category of coherent sheaves on X

Ku.X / the Kuznetsov component inside Db.X /

CH�.X / the Chow ring of X

CH�n .X / the numerical Chow ring of X , obtained as CH�.X / modulo numerical equivalence
Hi.E/ the i th cohomology sheaf of a complex E 2 Db.X /

H i.E/ the i th sheaf cohomology group of a complex E 2 Db.X /

ch.E/ total Chern character of an object E 2 Db.X / up to numerical equivalence
c.E/ total Chern class of an object E 2 Db.X / up to numerical equivalenceech.E/ total Chern character of an object E 2 Db.X / up to rational equivalence
zc.E/ total Chern class of an object E 2 Db.X / up to rational equivalence

ch�l .E/ .ch0.E/; : : : ; chl .E//ech�l .E/ .ech0.E/; : : : ;echl .E//
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