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We first show that a Kähler cone appears as the tangent cone of a complete expanding gradient Kähler–
Ricci soliton with quadratic curvature decay with derivatives if and only if it has a smooth canonical
model (on which the soliton lives). This allows us to classify two-dimensional complete expanding
gradient Kähler–Ricci solitons with quadratic curvature decay with derivatives. We then show that any
two-dimensional complete shrinking gradient Kähler–Ricci soliton whose scalar curvature tends to zero
at infinity is, up to pullback by an element of GL.2;C/, either the flat Gaussian shrinking soliton on C2

or the U.2/–invariant shrinking gradient Kähler–Ricci soliton of Feldman, Ilmanen and Knopf on the
blowup of C2 at one point. Finally, we show that up to pullback by an element of GL.n;C/, the only
complete shrinking gradient Kähler–Ricci soliton with bounded Ricci curvature on Cn is the flat Gaussian
shrinking soliton, and on the total space of O.�k/! P n�1 for 0< k < n is the U.n/–invariant example
of Feldman, Ilmanen and Knopf. In the course of the proof, we establish the uniqueness of the soliton
vector field of a complete shrinking gradient Kähler–Ricci soliton with bounded Ricci curvature in the
Lie algebra of a torus. A key tool used to achieve this result is the Duistermaat–Heckman theorem from
symplectic geometry. This provides the first step towards understanding the relationship between complete
shrinking gradient Kähler–Ricci solitons and algebraic geometry.
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268 Ronan J Conlon, Alix Deruelle and Song Sun

1 Introduction

1.1 Overview

A Ricci soliton is a triple .M;g;X /, where M is a Riemannian manifold with a complete Riemannian
metric g and a complete vector field X satisfying the equation

(1-1) Ric.g/C 1
2
LX g D 1

2
�g

for some � 2 f�1; 0; 1g. If X Drgf for some real-valued smooth function f on M, then we say that
.M;g;X / is gradient. In this case, the soliton equation (1-1) reduces to

(1-2) Ric.g/CHessg.f /D
1
2
�g:

If g is complete and Kähler with Kähler form !, then we say that .M;g;X / (or .M; !;X /) is a
Kähler–Ricci soliton if the vector field X is complete and real holomorphic and the pair .g;X / satisfies

(1-3) Ric.g/C 1
2
LX g D �g

for � as above. If g is a Kähler–Ricci soliton and if X Drgf for some real-valued smooth function f
on M, then we say that .M;g;X / is gradient. In this case, one can rewrite the soliton equation (1-3) as

(1-4) �! C i@x@f D �!;

where �! is the Ricci form of !.

For Ricci solitons and Kähler–Ricci solitons .M;g;X /, the vector field X is called the soliton vector
field. Its completeness is guaranteed by the completeness of g; see Zhang [69]. If the soliton is gradient,
then the smooth real-valued function f satisfying X Drgf is called the soliton potential. It is unique
up to a constant. Finally, a Ricci soliton and a Kähler–Ricci soliton are called steady if �D 0, expanding
if �D�1, and shrinking if �D 1 in equations (1-1) and (1-3), respectively.

The study of Ricci solitons and their classification is important in the context of Riemannian geometry.
For example, they provide a natural generalisation of Einstein manifolds. Also, to each soliton, one
may associate a self-similar solution of the Ricci flow (see Chow and Knopf [14, Lemma 2.4]), which
are candidates for singularity models of the flow. The difference in normalisations between (1-1) and
(1-3) reflects the difference between the constants preceding the Ricci term in the Ricci flow and the
Kähler–Ricci flow when one takes this dynamic point of view.

In this article, we are concerned with complete expanding and shrinking gradient Kähler–Ricci solitons.
We consider primarily complete shrinking (resp. expanding) gradient Kähler–Ricci solitons with quadratic
curvature decay (resp. with derivatives) as this assumption greatly simplifies the situation and already
imposes some constraints on the solitons in question. Indeed, it is known that any complete shrinking
(resp. expanding) gradient Ricci soliton whose curvature decays quadratically (resp. with derivatives)
along an end must be asymptotic to a cone with a smooth link along that end; see Chen and Deruelle [12],
Chow and Lu [15], Kotschwar and Wang [43] and Siepmann [62]. Furthermore, any complete shrinking
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Classification results for expanding and shrinking gradient Kähler–Ricci solitons 269

(resp. expanding) Ricci soliton whose Ricci curvature decays to zero (resp. quadratically with derivatives)
at infinity must have quadratic curvature decay (resp. with derivatives) at infinity (see Deruelle [27]
and Munteanu and Wang [53]) and consequently must be asymptotically conical along each of its ends.
Kotschwar and Wang [44] have then shown that any two complete shrinking gradient Ricci solitons
asymptotic along some end of each to the same cone with a smooth link, must in fact be isometric. Thus, at
least for shrinking gradient Ricci solitons, classifying those that are complete with Ricci curvature decaying
to zero at infinity reduces to classifying their possible asymptotic cone models. Here we are principally
concerned with the classification of complete shrinking (resp. expanding) gradient Kähler–Ricci solitons
whose curvature tensor has quadratic decay (resp. with derivatives). Such examples of expanding type have
been constructed in Conlon and Deruelle [19] on certain equivariant resolutions of Kähler cones, whereas
such examples of shrinking type include the flat Gaussian shrinking soliton on Cn and those constructed
by Feldman, Ilmanen and Knopf [30] on the total space of the holomorphic line bundles O.�k/ over Pn�1

for 0< k < n. These shrinking solitons are U.n/–invariant and in complex dimension two, they yield two
known examples of complete shrinking gradient Kähler–Ricci solitons with scalar curvature tending to
zero at infinity: the flat Gaussian shrinking soliton on C2 and the aforementioned U.2/–invariant example
of Feldman, Ilmanen and Knopf on the blowup of C2 at the origin. One of our main results is that in fact,
up to pullback by an element of GL.2;C/, these are the only two examples of complete shrinking gradient
Kähler–Ricci solitons with scalar curvature tending to zero at infinity in two complex dimensions. Other
examples of complete (and indeed incomplete) shrinking gradient Kähler–Ricci solitons with quadratic
curvature decay have been constructed on the total space of certain holomorphic vector bundles; see for
example Dancer and Wang [23], Futaki and Wang [34], Li [47] and Yang [68].

1.2 Main results

1.2.1 General structure theorem Our first result concerns the structure of complete shrinking (respec-
tively expanding) gradient Kähler–Ricci solitons .M;g;X / with quadratic curvature decay (resp. with
derivatives). By “quadratic curvature decay with derivatives”, we mean that the curvature Rm.g/ of the
Kähler–Ricci soliton g satisfies

Ak.g/ WD sup
x2M

j.rg/k Rm.g/jg.x/dg.p;x/
2Ck <1 for all k 2N0;

where dg.p; � / denotes the distance to a fixed point p 2M with respect to g.

Theorem A (general structure theorem) Let .M;g;X / be a complete expanding (resp. shrinking)
gradient Kähler–Ricci soliton of complex dimension n � 2 with complex structure J whose curvature
Rm.g/ satisfies

Ak.g/ WD sup
x2M

j.rg/k Rm.g/jg.x/ dg.p;x/
2Ck <1 for all k 2N0 (resp. for k D 0);

where dg.p; � / denotes the distance to a fixed point p 2M with respect to g. Then:

(a) .M;g/ has a unique tangent cone at infinity .C0;g0/.
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270 Ronan J Conlon, Alix Deruelle and Song Sun

(b) There exists a Kähler resolution � WM ! C0 of C0 with exceptional set E with g0 Kähler with
respect to J0 WD ��J such that

(i) the Kähler form ! of g and the curvature form ‚ of the hermitian metric on KM (resp. �KM )
induced by ! satisfy

(1-5)
Z

V

.i‚/k ^!dimC V�k > 0

for all positive-dimensional irreducible analytic subvarieties V �E and for all integers k such
that 1� k � dimC V ;

(ii) the real torus action on C0 generated by J0r@r extends to a holomorphic isometric torus action
of .M;g;J /, where r denotes the radial coordinate of g0;

(iii) d�.X /D r@r .

(c) With respect to � , we have

j.rg0/k.��g�g0�Ric.g0//jg0
� Ckr�4�k for all k 2N0;

(resp. j.rg0/k.��g�g0CRic.g0//jg0
� Ckr�4�k for all k 2N0/:

In the expanding case, this theorem provides a converse to [19, Theorem A]. Also notice that this theorem
rules out the existence of shrinking (resp. expanding) gradient Kähler–Ricci solitons with quadratic
curvature decay (resp. with derivatives) on smoothings of Kähler cones in contrast to the behaviour in
the Calabi–Yau case [20]. This degree of flexibility for expanding and shrinking gradient Kähler–Ricci
solitons is essentially ruled out due to the requirement of having a conical holomorphic soliton vector
field. Finally, it has recently been shown by Kotschwar and Wang [44, Corollary 1.3] that the isometry
group of the link of the asymptotic cone of a complete shrinking gradient Kähler–Ricci soliton with
quadratic curvature decay embeds into the isometry group of the soliton itself; compare with statement
(b)(ii) of the theorem above.

1.2.2 Application to expanding gradient Kähler–Ricci solitons As an application of Theorem A,
we exploit the uniqueness [38, Proposition 8.2.5] of canonical models of normal varieties to obtain a
classification theorem for complete expanding gradient Kähler–Ricci solitons whose curvature decays
quadratically with derivatives. This provides a partial answer to question 7 of [30, Section 10].

Corollary B (strong uniqueness for expanders) Let .C0;g0/ be a Kähler cone of complex dimension
n� 2 with radial function r . Then there exists a unique (up to pullback by biholomorphisms) complete
expanding gradient Kähler–Ricci soliton .M;g;X /, whose curvature Rm.g/ satisfies

(1-6) Ak.g/ WD sup
x2M

j.rg/k Rm.g/jg.x/dg.p;x/
2Ck <1 for all k 2N0;

where dg.p; � / denotes the distance to a fixed point p 2M with respect to g, with tangent cone .C0;g0/

if and only if C0 has a smooth canonical model. When this is the case ,

(a) M is the smooth canonical model of C0, and
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(b) there exists a resolution map � WM ! C0 such that d�.X /D r@r and

j.rg0/k.��g�g0�Ric.g0//jg0
� Ckr�4�k for all k 2N0:

This corollary yields an algebraic description of those Kähler cones appearing as the tangent cone of
a complete expanding gradient Kähler–Ricci soliton with quadratic curvature decay with derivatives —
such cones are precisely those admitting a smooth canonical model. In general, the canonical model will
be singular and in particular, for a two-dimensional cone, it is obtained by contracting all exceptional
curves with self-intersection .�2/ in the minimal resolution. Applying Corollary B to this case yields
a classification of two-dimensional complete expanding gradient Kähler–Ricci solitons with quadratic
curvature decay with derivatives.

Corollary C (classification of two-dimensional expanders) Let .C0;g0/ be a two-dimensional Kähler
cone with radial function r . Then there exists a unique (up to pullback by biholomorphisms) two-
dimensional complete expanding gradient Kähler–Ricci soliton .M;g;X / whose curvature Rm.g/
satisfies

Ak.g/ WD sup
x2M

j.rg/k Rm.g/jg.x/dg.p;x/
2Ck <1 for all k 2N0;

where dg.p; � / denotes the distance to a fixed point p 2M with respect to g, with tangent cone .C0;g0/

if and only if C0 is biholomorphic to one of :

(I) C2=� , where � is a finite subgroup of U.2/ acting freely on C2 n f0g that is generated by the
matrix �

e2�i=p 0
0 e2�iq=p

�
;

where p and q coprime integers with p > q > 0, and after writing

q

p
D r1�

1

r2�
1

� � � �
1

rk

we have that rj > 2 for j D 1; : : : ; k.

(II) L�, the blowdown of the zero section of a negative line bundle L! C over a proper curve C of
genus g > 0.

(III) L�=G, where G is a nontrivial finite group of automorphisms of a proper curve C of genus g > 0

and L� is the blowdown of the zero section of a G–invariant negative line bundle L! C over C

with G acting freely on L� except at the apex , such that the (unique) minimal good resolution
� WM !L�=G contains no .�1/– or .�2/–curves.
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272 Ronan J Conlon, Alix Deruelle and Song Sun

When this is the case ,

(a) there exists a resolution map � WM ! C0 such that d�.X /D r@r and

j.rg0/k.��g�g0�Ric.g0//jg0
� Ckr�4�k for all k 2N0;

and

(b) � WM ! C0 is

(i) the minimal resolution � WM !C2=� when C0 is as in (I);

(ii) the blowdown map � WL!L� when C0 is as in (II);

(iii) the minimal good resolution � WM !L�=G when C0 is as in (III).

Note that the Kähler cones of item (III) here are (up to analytic isomorphism) in one-to-one correspondence
with the following data, which encodes the exceptional set of the minimal good resolution � WM!L�=G:

� A weighted dual graph which is a star comprising a central vertex with n branches, with n � 1,
each of finite length, with the j th vertex of the i th branch labelled with an integer bij � 3 and
the central curve labelled with an integer b � 1. The central vertex represents the curve C of
genus g > 0 with self-intersection �b and the j th vertex of the i th branch represents a P1 with
self-intersection �bij . The intersection matrix given by this graph must be negative-definite. There
is a numerical criterion to determine when this is the case.

� The analytic type of C .

� A negative line bundle on C of degree �b (which is the normal bundle of C in M ).

� n marked points on C .

The algebraic equations of C0 can be reconstructed from this data by the ansatz in [59, Section 5].

1.2.3 Application to shrinking gradient Kähler–Ricci solitons Tian and Zhu [64] showed that the
soliton vector field of a compact shrinking gradient Kähler–Ricci soliton is unique up to holomorphic
automorphisms of the underlying complex manifold. The method of proof there involved defining a
weighted volume functional F which was strictly convex and was shown to be in fact independent of the
metric structure of the soliton. The soliton vector field was then characterised as the unique critical point
of this functional.

Tian and Zhu’s proof breaks down in the noncompact case due to the fact that, in general, one cannot a
priori guarantee that the weighted volume functional (defined analytically in terms of a certain integral) is
well-defined on a noncompact Kähler manifold, let alone investigate its convexity properties. Our key
observation to circumvent this difficulty is to apply the Duistermaat–Heckman theorem from symplectic
geometry, which provides a localisation formula to express the weighted volume functional in terms of an
algebraic formula involving only the fixed point set of a torus action. This latter algebraic formula is
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much more amenable. Combined with a version of Matsushima’s theorem [50] for complete noncompact
shrinking gradient Kähler–Ricci solitons (cf Theorem 5.1) and Iwasawa’s theorem [39], we are able to
implement Tian and Zhu’s strategy of proof for the compact case to obtain the following noncompact
analogue of their uniqueness result.

Theorem D (uniqueness of the soliton vector field for shrinkers) Let M be a noncompact complex
manifold with complex structure J endowed with the effective holomorphic action of a real torus T.
Denote by t the Lie algebra of T. Then there exists at most one element � 2 t that admits a complete
shrinking gradient Kähler–Ricci soliton .M;g;X / with bounded Ricci curvature with X Drgf D�J �

for a smooth real-valued function f on M.

We expect that the assumption of bounded Ricci curvature is superfluous in the statement of this theorem
and that, given the uniqueness of the soliton vector field in the Lie algebra of the torus here, the
corresponding shrinking gradient Kähler–Ricci soliton is also unique up to automorphisms of the complex
structure commuting with the flow of the soliton vector field.

Not only does the Duistermaat–Heckman theorem imply the uniqueness of the soliton vector field in our
case, it also provides a formula to compute the unique critical point of the weighted volume functional, the
point at which the soliton vector field is achieved. Using this formula, we compute explicitly the soliton
vector field of a shrinking gradient Kähler–Ricci soliton with bounded Ricci curvature on Cn and on the
total space of O.�k/ over Pn�1 for 0< k < n; see Examples A.6 and A.8, respectively. This recovers
the polynomials of Feldman, Ilmanen and Knopf [30, equation (36)]. Having identified the soliton vector
field on these manifolds, we then use our noncompact version of Matsushima’s theorem (Theorem 5.1)
together with an application of Iwasawa’s theorem [39] to deduce that, up to pullback by an element of
GL.n;C/, the corresponding soliton metrics have to be invariant under the action of U.n/. Consequently,
thanks to a uniqueness theorem of Feldman, Ilmanen and Knopf [30, Proposition 9.3], up to pullback by
an element of GL.n;C/, the shrinking gradient Kähler–Ricci soliton must be the flat Gaussian shrinking
soliton if on Cn, or the unique U.n/–invariant shrinking gradient Kähler–Ricci soliton constructed by
Feldman, Ilmanen and Knopf [30] if on the total space of O.�k/ over Pn�1 for 0< k < n.

In the complex two-dimensional case, we are actually able to identify the underlying complex manifold
of a shrinking gradient Kähler–Ricci soliton whose scalar curvature tends to zero at infinity as either C2

or C2 blown up at the origin using the fact that the soliton, if nontrivial, has an asymptotic cone with
strictly positive scalar curvature. Using a classification theorem for Sasaki manifolds in real dimension
three (see Belgun [4]) and the fact that a shrinking Kähler–Ricci soliton can only contain .�1/–curves in
complex dimension two, this is enough to identify the asymptotic cone at infinity as C2, from which the
identification of the underlying complex manifold easily follows. Combined with the above discussion,
this yields a complete classification of such solitons in two complex dimensions.

These conclusions are summarised in the following theorem.
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Theorem E (classification of shrinkers) Let .M;g;X / be a complete shrinking gradient Kähler–Ricci
soliton.

(1) If M D Cn and g has bounded Ricci curvature , then up to pullback by an element of GL.n;C/,
.M;g;X / is the flat Gaussian shrinking soliton.

(2) If M is the total space of O.�k/ over Pn�1 for 0 < k < n and g has bounded Ricci curvature ,
then up to pullback by an element of GL.n;C/, .M;g;X / is the unique U.n/–invariant shrinking
gradient Kähler–Ricci soliton constructed by Feldman , Ilmanen and Knopf [30].

(3) If dimC M D 2 and the scalar curvature of g tends to zero at infinity, then up to pullback by
an element of GL.2;C/, .M;g;X / is the flat Gaussian shrinking soliton on C2 or the unique
U.2/–invariant shrinking gradient Kähler–Ricci soliton constructed by Feldman , Ilmanen and
Knopf [30] on the total space of O.�1/ over P1.

As exemplified in complex dimension two, in contrast to the expanding case, not many Kähler cones
appear as tangent cones of complete shrinking gradient Kähler–Ricci solitons.

Outline of paper We begin in Section 2 by recalling the basics of Kähler cones, Ricci and Kähler–Ricci
solitons, metric measure spaces, and the relevant algebraic geometry that we require. We also mention
some important properties of the soliton vector field and of real vector fields that commute with the soliton
vector field. In Section 3, we prove Theorem A for expanding gradient Kähler–Ricci solitons. The proof
for shrinking Kähler–Ricci solitons is verbatim. By a theorem of Siepmann [62, Theorem 4.3.1], under
our curvature assumption, a complete expanding gradient Ricci soliton flows out of a Riemannian cone.
Our starting point is to prove some preliminary lemmas before providing a refinement of Siepmann’s
theorem, namely Theorem 3.8, where, in the course of its proof, we construct a diffeomorphism between
the cone and the end of the Ricci soliton using the flow of the soliton vector field that encapsulates the
asymptotics of the soliton along the end. We then show in Proposition 3.10 that if the soliton is Kähler,
then the cone is Kähler with respect to a complex structure that makes the aforementioned diffeomorphism
a biholomorphism. In Theorem 3.11, this biholomorphism is then shown to extend to an equivariant
resolution with the properties as stated in Theorem A.

In the first part of Section 4, we use Theorem A to prove Corollary B. This also requires an application
of previous work from [19]. In the latter part of Section 4, we apply Corollary B to two-dimensional
expanding gradient Kähler–Ricci solitons to conclude the statement of Corollary C, making use of the
classification of two-dimensional Kähler cones, namely Theorem 2.5.

From Section 5 onwards, we turn our attention exclusively to complete shrinking gradient Kähler–Ricci
solitons. We begin in Section 5.1 by proving a Matsushima-type theorem stating that the Lie algebra of
real holomorphic vector fields commuting with the soliton vector field may be written as a direct sum.
This is the statement of Theorem 5.1. Our proof of this theorem follows a manner similar to the proof of
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Matsushima’s theorem on Kähler–Einstein Fano manifolds as presented in [40, Proof of Theorem 5.1,
page 95]. After deriving some properties of the automorphism groups of a complete shrinking gradient
Kähler–Ricci soliton .M;g;X /, we then apply Theorem 5.1 to prove the maximality of a certain compact
Lie group acting on M. This is the content of Corollary 5.11.

We continue in Section 5.2 by showing in Proposition 5.12 that every real holomorphic Killing vector
field on M admits a Hamiltonian potential satisfying a certain linear equation. This allows us to define
a moment map in Definition 5.13, which is used in the definition of the weighted volume functional
in Definition 5.14. The weighted volume functional is vital in proving the uniqueness statement of
Theorem D, namely that the soliton vector field of a complete shrinking gradient Kähler–Ricci soliton
with bounded Ricci curvature in the Lie algebra of a torus is unique. The weighted volume functional is
the same as that defined by Tian and Zhu [64], although in our situation it is defined as an integral over the
noncompact manifold M. This is compensated for by the fact that the domain of definition of the weighted
volume functional is restricted to an open cone in the Lie algebra of the torus. Several important properties
of the weighted volume functional are then derived in Lemma 5.16, including the crucial fact that it has a
unique critical point in its open cone of definition given by the complex structure applied to the soliton
vector field X. We conclude this subsection by taking note of the fact that the Duistermaat–Heckman
formula may be used to compute the weighted volume functional. In particular, it follows that the weighted
volume functional is independent of the complete shrinking gradient Kähler–Ricci soliton.

In Section 5.3, we prove the uniqueness statement of Theorem D, which has been recalled in the statement
of Theorem 5.18. The proof of this theorem follows as in [64, page 322] using Iwasawa’s theorem [39]
and the corollary of Matsushima’s theorem, namely Corollary 5.11 discussed above. Section 5.4 then
comprises an application of Theorems A and D to classify complete shrinking gradient Kähler–Ricci
solitons with bounded Ricci curvature on Cn and on the total space of O.�k/! Pn�1 for 0 < k < n.
This completes the proof of items (1) and (2) of Theorem E.

In Section 6, we show that the underlying complex manifold M of a two-dimensional shrinking gradient
Kähler–Ricci soliton with scalar curvature decaying to zero at infinity is either C2 or C2 blown up at the
origin. This is the statement of Theorem 6.1. Combined with items (1) and (2) of Theorem E, Theorem 6.1
suffices to prove item (3) of Theorem E. The proof of Theorem 6.1 relies on first identifying the underlying
complex space of the tangent cone. The fact that any nonflat shrinking gradient Ricci soliton has positive
scalar curvature implies that the same property holds true on the tangent cone. From this we can identify
the cone as a quotient of C2. Theorem A then tells us that M is a resolution of this cone which, by virtue
of the shrinking Kähler–Ricci soliton equation, can only contain .�1/–curves. It turns out that the only
possibility is that the cone is biholomorphic to C2 and M is as stated in Theorem 6.1.

We conclude the paper in Section 7 with some closing remarks and open problems. In Section A.1 in the
appendix, we recall the statement of the Duistermaat–Heckmann theorem on a noncompact symplectic
manifold in Theorem A.3 as presented in [60]. We also provide an outline of its proof in Section A.3
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after introducing some preliminaries in Section A.2. We then use it to compute the weighted volume
functional and its unique critical point on Cn, on the total space of O.�k/ over Pn�1 for 0< k < n, and
on certain holomorphic line bundles over Fano manifolds in Section A.4. In Section A.5, we characterise
algebraically, in the setting of asymptotically conical Kähler manifolds, those elements in the Lie algebra
of a torus that admit a Hamiltonian potential that is proper and bounded below. A precise statement
is given in Theorem A.10. For such elements of the Lie algebra of the torus, the weighted volume
functional is defined. Finally, in Section A.6, we show directly that the weighted volume functional is
defined on a complete shrinking gradient Kähler–Ricci soliton with bounded Ricci curvature without
appealing to the Duistermaat–Heckman theorem. This conclusion follows from the estimates we derive
in Proposition A.13 on the growth of those Hamiltonian potentials that are proper and bounded below.
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2 Preliminaries

2.1 Riemannian cones

For us, the definition of a Riemannian cone will take the following form.

Definition 2.1 Let .S;gS / be a closed Riemannian manifold. The Riemannian cone C0 with link S

is defined to be R>0 �S with metric g0 D dr2˚ r2gS up to isometry. The radius function r is then
characterised intrinsically as the distance from the apex in the metric completion.

The following is a simple computation.

Lemma 2.2 Let .S;gS / be a closed Riemannian manifold of real dimension m and let .C0;g0/ be the
Riemannian cone with link S and radial function r . Then the Ricci curvature Ric.gS / of gS and the Ricci
curvature Ric.g0/ of the cone metric g0 over .S;gS / are related by

Ric.g0/D Ric.gS /� .m� 1/gS :
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In particular , the scalar curvatures Rg0
and RgS

of g0 and gS respectively are related by

Rg0
D

1

r2
.RgS

�m.m� 1//:

2.2 Kähler cones

We may further impose that a Riemannian cone is Kähler, as the next definition demonstrates.

Definition 2.3 A Kähler cone is a Riemannian cone .C0;g0/ such that g0 is Kähler, together with a
choice of g0–parallel complex structure J0. This will in fact often be unique up to sign. We then have a
Kähler form !0.X;Y /D g0.J0X;Y /, and !0 D

1
2
i@x@r2 with respect to J0.

The vector field r@r is real holomorphic and � WDJ0r@r is real holomorphic and Killing [49, Appendix A].
This latter vector field is known as the Reeb vector field. The closure of its flow in the isometry group of
the link of the cone generates the holomorphic isometric action of a real torus on C0 that fixes the apex of
the cone. We call a Kähler cone “quasiregular” if this action is an S1–action (and, in particular, “regular”
if this S1–action is free), and “irregular” if the action generated is that of a real torus of rank > 1.

Every Kähler cone is affine algebraic.

Theorem 2.4 For every Kähler cone .C0;g0;J0/, the complex manifold .C0;J0/ is isomorphic to the
smooth part of a normal algebraic variety V �CN with one singular point. In addition , V can be taken to
be invariant under a C�–action .t; z1; : : : ; zN / 7! .tw1z1; : : : ; t

wN zN / such that all of the wi are positive
integers.

This can be deduced from arguments written down by van Coevering in [17, Section 3.1].

Kähler cones of complex dimension two have been classified.

Theorem 2.5 [4, Theorem 8; 59, Theorem 1.1] Let C0 be a Kähler cone of complex dimension two.
Then C0 is biholomorphic to either

(i) C2=� , where � is a finite subset of U.2/ acting freely on C2 n f0g,

(ii) the blowdown L� of the zero section of a negative line bundle L ! C over a smooth proper
curve C of genus g with g > 0, or

(iii) L�=G, where G is a nontrivial finite group of automorphisms of a proper curve C of genus g > 0

and L� is the blowdown of the zero section of a G–invariant negative line bundle L! C over C

with G acting freely on L� except at the apex.

In cases (ii) and (iii), the corresponding Reeb vector field is quasiregular and is generated by a scaling of
the standard S1–action on the fibres of L.
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Any automorphism of a resolution of a Kähler cone preserves the exceptional set of the resolution.

Lemma 2.6 Let � WM ! C0 be a resolution of a Kähler cone C0 with exceptional set E. Denote by J

the complex structure on M. Then for any automorphism � of .M;J /, it holds that �.E/ � E. In
particular , real holomorphic vector fields on M are tangent to E.

Such an automorphism of .M;J / therefore descends to an automorphism of the cone fixing the apex.

Proof If � is an automorphism of .M;J /, then �ı� WM!C0 is also a resolution of C0. The exceptional
set of this resolution is then a compact analytic subset of M. Since E is the maximal compact analytic
subset of M, we must have that .� ı �/�1.o/�E, where o denotes the apex of C0, ie ��1.E/�E.

The holomorphic torus action on a Kähler cone leads to the notion of an equivariant resolution.

Definition 2.7 Let C0 be a Kähler cone with complex structure J0, let � WM ! C0 be a resolution of
C0, and let G be a Lie subgroup of the automorphism group of .C0;J0/ fixing the apex of C0. We say
that � WM ! C0 is an equivariant resolution with respect to G if the action of G on C0 extends to a
holomorphic action on M in such a way that �.g �x/D g ��.x/ for all x 2M and g 2G.

Such a resolution of a Kähler cone always exists; see [41, Proposition 3.9.1].

A closed Riemannian manifold .S;gS / is Sasaki if and only if its Riemannian cone is a Kähler cone [8],
in which case we identify .S;gS / with the level set fr D 1g of its corresponding Kähler cone, r here
denoting the radial function of the cone. The restriction of the Reeb vector field to this level set induces
a nonzero vector field � � J0r@r jfrD1g on S . Let � denote the gS –dual one-form of �. Then we get a
gS –orthogonal decomposition TS D D˚ h�i, where D is the kernel of � and h�i is the R–span of �
in TS , and correspondingly a decomposition of the metric gS as gS D �˝ �CgT, where gT D gS jD.
The metric gT is invariant under the flow of � and induces a Riemannian metric on the local leaf space of
the foliation of S induced by the flow of �. We call gT the transverse metric. We can then define the
transverse scalar curvature RT and the transverse Ricci curvature RicT as the corresponding curvatures
of gT . We also get an induced transverse complex structure J T on the local leaf space of the foliation
with respect to which gT is Kähler given by the restriction of the complex structure of the cone to D. In
particular, RicT will be J T –invariant. We have the following relationships between the various curvatures.

Lemma 2.8 [8, Theorem 7.3.12] Let .S;gS / be a real .2nC1/–dimensional Sasaki manifold. Then the
following identities hold :

(i) Ric.gS /.X; �/D 2n�.X / for any vector field X.

(ii) Ric.gS /.X;Y /D RicT .X;Y /� 2gS .X;Y / for any vector fields X;Y 2 D.
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In particular, we deduce:

Corollary 2.9 Let .S;gS / be a real .2nC1/–dimensional Sasaki manifold with scalar curvature RgS
.

Then
RT
DRgS

C 2n:

2.3 Canonical models

Resolutions of Kähler cones that are consistent with admitting an expanding Kähler–Ricci soliton are of
the following type.

Definition 2.10 [38, Definition 8.2.4] A partial resolution � WM ! C0 of a normal isolated singularity
x 2 C0 is called a canonical model if

(i) M has at worst canonical singularities, and

(ii) KM is �–ample.

Note that the choice of partial resolution � is part of the data here. The existence of a canonical model
� WM ! C0 is guaranteed by [7] and it is unique up to isomorphisms over C0 [38, Proposition 8.2.5].
We have the following criterion to determine when KM is �–ample.

Theorem 2.11 (Nakai’s criterion for a mapping [46, Corollary 1.7.9]) Let � WM ! C0 be a proper
morphism of schemes. A Q–divisor D on M is �–ample if and only if .DdimC V � V / > 0 for every
irreducible subvariety V �M of positive dimension that maps to a point in C0.

In particular, in complex dimension two, item (ii) of Definition 2.10 implies that the exceptional set of
the canonical model cannot contain any .�1/– or .�2/–curves.

In our case, C0 will be a Kähler cone, hence is affine algebraic, and x will be the apex of the cone. As
the next lemma shows, the canonical model of C0 is quasiprojective.

Lemma 2.12 Let � WM ! C0 be the canonical model of a Kähler cone C0. Then M is quasiprojective.

Proof From Theorem 2.4, we see that C0 admits an affine embedding that is invariant under a C�–action
with positive integer weights. Taking the weighted projective closure of C0 with respect to this action,
we obtain a projective compactification C0 of C0 by adding an ample divisor D at infinity. In particular,
C0 will have at worst orbifold singularities along D. Let � WN ! C0 denote the canonical model of C0.
By construction, N is projective and the restricted map � jN WN ! C0, where N WDN n ��1.D/, is a
canonical model of C0. By uniqueness of canonical models, M must be biholomorphic to N , hence N

provides a projective compactification of M obtained by adjoining the set ��1.D/ to M at infinity. M is
therefore quasiprojective, as claimed.

Geometry & Topology, Volume 28 (2024)



280 Ronan J Conlon, Alix Deruelle and Song Sun

In addition, uniqueness of the canonical model implies that when smooth, the canonical model of a Kähler
cone is equivariant with respect to the torus action on C0 generated by the flow of J0r@r .

Lemma 2.13 Let C0 be a Kähler cone with complex structure J0 and radial function r and let � WM!C0

denote the canonical model of C0. If M is smooth , then the resolution � WM ! C0 is equivariant with
respect to the holomorphic isometric torus action on C0 generated by J0r@r . In particular , there exists a
holomorphic vector field X on M such that d�.X /D r@r .

Proof Let T denote the torus generated by the flow of J0r@r and let TC denote its complexification.
We will show that the holomorphic action of TC on C0 lifts to a holomorphic action on M.

For h 2 TC , let  h W C0! C0 denote the corresponding automorphism. Since  h ı� WM ! C0 is again
a canonical model and since � WM ! C0 is unique up to isomorphisms over C0 [38, Proposition 8.2.5],
there exists a unique biholomorphism z h WM !M such that � ı z h D  h ı� . This is the desired lift
of  h. Thus, we have a well-defined map � W TC �M !M defined by �.h;x/ D z h.x/. Since z h

coincides with  h off of the exceptional set E of the resolution � WM ! C0, the map �jTC�.MnE/ is
holomorphic. We wish to show that � is holomorphic globally.

To this end, let h 2 TC , let x 2 E, let y D z h.x/ 2 E, let Bx be an open ball in a chart containing x

with x in its interior and let By be an open ball in a chart containing y with y in its interior. Since z h is
continuous, by shrinking Bx if necessary we may assume that z h.Bx/�By . Let U be a neighbourhood
of h in TC such that z h0.Bx nE/ � By for all h0 2 U. Again, this is possible because �jTC�.MnE/

is continuous. Then since z h0 WM !M is itself continuous and preserves E for each fixed h0 2 U

and since Bx \E lies in the closure of Bx nE, we have, after shrinking Bx further if necessary, that
z h0.Bx/� By for all h0 2 U.

Next, let N" WD fx 2 C0 j r.x/ < "g for " > 0. Then N" n fog is foliated by disjoint punctured discs,
obtained as the orbits in N" n fog of a C�–action from within TC . The open set yN" WD ��1.N"/ will then
be a neighbourhood of E in M with yN" nE foliated by disjoint punctured discs. Let B0x �Bx be an open
ball containing x strictly contained in Bx such that @Bx \ @B

0
x D∅, and let " > 0 be sufficiently small

that each point of . yN"\B0x/ nE is contained in a punctured holomorphic disk of radius " which itself is
contained in . yN"\Bx/nE. Let V WD yN"\B0x . Then this is an open neighbourhood of x in M and each
point z 2 V nE will lie on a unique punctured holomorphic disk, which we shall denote by Dz . We have
that Dz � . yN" \Bx/ nE and that @Dz � Bx \ @ yN" �M nE. Let Dz denote the closure of Dz in M.
Since z h0 WM !M is holomorphic for each fixed h0 2 U, after localising, we see from the maximum
principle that for all z 2 V nE and all h0 2 U,

j z h0.z/j � sup
w2Dz

j z h0.w/j � sup
fw2@Dzg

j z h0.w/j � sup
fw2Bx\@ yN"g

j�.h0; w/j � C

for some constant C > 0, where the last inequality follows from the fact that �jTC�.MnE/ is holomorphic,
hence continuous. Thus, �jU�.V nE/ is a bounded holomorphic function. Since E \ V is an analytic
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subset of V, it follows from the Riemann extension theorem that �jU�.V nE/ has a unique extension to a
holomorphic function z� W U �V ! By . Due to the fact that �.h0; � / WM !M is holomorphic for each
fixed h0 2 TC , we have from uniqueness of holomorphic extensions that z�.h0; � /D �.h0; � / W V !By for
all h0 2U so that in fact z� D �jU�V . Thus, we see that �jU�V is holomorphic. Since being holomorphic
is a local property, this suffices to show that � W TC �M !M is holomorphic, as desired.

2.4 Minimal models

We consider two types of resolution of a normal isolated singularity of complex dimension two, the first
being the minimal resolution.

Definition 2.14 [38, Definition 7.1.14] A resolution � WM !C0 of a normal isolated singularity x 2C0

is called a minimal resolution if for every resolution � 0 WM 0! C0 of C0 there exists a unique morphism
' WM 0!M such that � 0 factors as � 0 D � ı'.

By definition, if there exists a minimal resolution, then it is unique up to isomorphisms over C0. The
following shows that there exists a minimal resolution for two-dimensional isolated normal singularities.

Theorem 2.15 [38, Theorem 7.1.15] Assume that dimC C0 D 2. A resolution � W M ! C0 of an
isolated normal singularity x 2 C0 is the minimal resolution if and only if ��1.fxg/ does not contain a
.�1/–curve. In particular , there exists a minimal resolution.

We also consider “good” resolutions. We henceforth follow [56; 59].

Definition 2.16 A resolution � WM ! C0 of a normal isolated surface singularity x 2 C0 is called
good if

(i) all of the components of the exceptional divisor of � WM!C0 are smooth and intersect transversely;

(ii) not more than two components pass through any given point;

(iii) two different components intersect at most once.

It is known that there is a unique resolution which is minimal among all good resolutions for two-
dimensional isolated normal singularities [45, Theorem 5.12], which we henceforth refer to as the
“minimal good resolution” (not to be confused with the “minimal resolution”). In general, the minimal
resolution of a two-dimensional isolated normal singularity will not be the minimal good resolution of
the singularity; by Theorem 2.15, the two coincide precisely when the minimal good resolution does not
contain any .�1/–curves.

For the Kähler cones of Theorem 2.5(ii), the minimal good resolution is given by � WL!L�, that is,
by contracting the zero section of L. By adjunction, this resolution will be the canonical model of the
singularity.
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As for the Kähler cones of Theorem 2.5(iii), the situation is slightly more complicated. The minimal
good resolution of L�=G is obtained as follows. A partial resolution is given by the induced map
� WL=G!L�=G between the quotient spaces. The variety L=G will only have isolated cyclic quotient
singularities along the exceptional set of � [59, Lemma 3.5], which comprises a single curve C of genus
g > 0. Each of these cyclic quotient singularities has a minimal resolution with exceptional set a string
of P1’s. Resolving them with this resolution then yields the minimal good resolution of L�=G, the
exceptional set of which will then comprise the curve C (of genus g> 0) with branches of P1’s stemming
from finitely many points of C . The original singularity is determined up to analytic isomorphism by this
data which can be succinctly stored in a “weighted dual graph”. This we now explain.

The weighted dual graph of a good resolution is a graph each vertex of which represents a component of
the exceptional divisor, weighted by self-intersection. Two vertices are connected if the corresponding
components intersect.

In our case, the weighted dual graph of the minimal good resolution of L�=G is represented by a star,
that is, a connected tree where at most one vertex is connected to no more than two other vertices. C itself
is contained in the exceptional set of the minimal good resolution, hence one of the vertices of the star
will represent C . We call C the central curve. The connected components of the graph minus the central
curve are called the branches of the graph and are indexed by i , where 1 � i � n. The curves of the
i th branch are denoted by Cij for 1 � j � ri , where Ci1 intersects C and Cij intersects Ci;jC1. Let
b D�C:C and bij D�Cij :Cij . Then bij � 2 and b � 1. Finally, set

di

ei
D bi1�

1

bi2�
1

: : :
1

biri

with ei < di and ei and di relatively prime. Then one has:

Theorem 2.17 [59, Theorem 2.1] The singularity L�=G with G nontrivial is determined up to analytic
isomorphism by the following data:

(i) The weighted dual graph of the minimal good resolution.

(ii) The analytic type of the central curve C (of genus g > 0).

(iii) The conormal bundle of C in the resolution.

(iv) The n points Pi D C \Ci1 on C with n� 1.

Conversely, given any data as above , there exists a unique singularity of the form L�=G having this data ,
provided that the intersection matrix given by the graph in (i) is negative-definite; this condition can be
written as

b�

nX
iD1

ei

di
> 0:
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Indeed, the algorithm that recovers the algebraic equations cutting out L�=G is laid out in [59, Section 5].
However, it does not identify the group G.

For the Kähler cones of Theorem 2.5(iii), the minimal good resolution does not contain any .�1/–curves,
hence it coincides with the minimal model of the singularity. Moreover, since the central curve has
trivial or negative anticanonical bundle, adjunction tells us that the canonical model is obtained from the
minimal good resolution by further contracting all of its .�2/–curves. However, the result of this will
be singular unless the minimal good resolution does not contain any .�2/–curves. Thus, the canonical
model will be smooth and coincide with the minimal good resolution if the minimal good resolution
does not contain any .�2/–curves. Conversely, if the canonical model of the singularity is smooth, then,
since it cannot contain any .�1/–curves, it coincides with the minimal model, which itself coincides
with the minimal good resolution for the cones in question, so that the minimal good resolution does not
contain any .�2/–curves since the canonical model cannot contain any .�2/–curves. Combining this
observation with Theorem 2.17, we are able to characterise those cones of Theorem 2.5(iii) that admit a
smooth canonical model.

Proposition 2.18 A Kähler cone of Theorem 2.5(iii) admits a smooth canonical model if and only if the
minimal good resolution does not contain any .�2/–curves. These cones are in one-to-one correspondence
with the data (i)–(iv) listed in Theorem 2.17 with the intersection matrix of the graph in (i) being negative-
definite and with the labels bij of this graph being � 3. Moreover , the canonical model and the minimal
resolution of such a cone are given by the minimal good resolution.

2.5 Ricci solitons

Recall the definitions given at the beginning of Section 1.1. For a gradient Kähler–Ricci soliton .M;g;X /

with complex structure J, the vector field JX is Killing by [32, Lemma 2.3.8]. We also have the following
asymptotics on the soliton potential of a complete expanding gradient Ricci soliton with quadratic Ricci
curvature decay.

Proposition 2.19 Let .M n;g;rgf / be a complete expanding gradient Ricci soliton of real dimension n,
ie 2 Ric.g/�Lrgf .g/D �g. If jRic.g/jg D O.dg.p; � /

�2/, where dg.p; � / denotes the distance to a
fixed point p 2M, then the function .�f / is equivalent to 1

4
dg.p; � /

2 as dg.p; � / tends toC1.

Proof See [12] or [62, Lemma 4:2:1].

Because of Proposition 2.19, we prefer to deal with an asymptotically positive soliton potential. Henceforth,
an expanding gradient Ricci soliton will be a triple .M;g;X /, where X D rgf for some real-valued
smooth function f on M, such that the equation

(2-1) 2 Ric.g/�LX g D�g

Geometry & Topology, Volume 28 (2024)



284 Ronan J Conlon, Alix Deruelle and Song Sun

is satisfied. When the Ricci curvature of g decays quadratically, the bound of Proposition 2.19 on f may
then be given as

(2-2) 1
4
d2

g.p;x/� c1dg.p;x/� c2 � f .x/�
1
4
d2

g.p;x/C c1dg.p;x/C c2;

where p 2M is fixed and c1 and c2 are positive constants depending on p. In particular, f is proper
under the assumption of quadratic Ricci curvature decay on the expanding soliton metric.

In the case of a shrinking gradient Ricci soliton, the quadratic growth of the soliton potential is always
satisfied without further conditions on the decay of the Ricci tensor at infinity. More precisely, one has
the following.

Theorem 2.20 Let .M;g;X / be a complete noncompact shrinking gradient Ricci soliton satisfying (1-1)
with �D 1, with soliton vector field X Drgf for a smooth real-valued function f WM !R. Then the
following properties hold true.

(i) Growth of the soliton potential [11, Theorem 1.1] For x 2M, f satisfies the estimates

1
4
.dg.p;x/� c1/

2
�C � f .x/� 1

4
.dg.p;x/C c2/

2

for some C > 0, where dg.p; � / denotes the distance to a fixed point p 2M with respect to g.
Here , c1 and c2 are positive constants depending only on the real dimension of M and the geometry
of g on the unit ball Bp.1/ based at p.

(ii) Polynomial volume growth [11, Theorem 1.2] For each x 2M, there exists a positive constant
C > 0 such that

volg.Br.x//� Crn for r> 0 sufficiently large;

where nD dimR M .

(iii) Regularity at infinity If the curvature tensor decays quadratically, ie if A0.g/ <C1, then the
soliton metric has quadratic curvature decay with derivatives , ie Ak.g/ <C1 for all k 2N.

Proof References for items (i) and (ii) have been provided above. Item (iii) concerning the covariant
derivatives of the curvature tensor follows from Shi’s estimates for ancient solutions of the Ricci flow;
see [43, Section 2:2:3] for a proof.

Remark 2.21 The regularity at infinity stated in Theorem 2.20(iii) does not hold for expanding gradient
Ricci solitons; see [26] for examples of expanding gradient Ricci solitons coming out of metric cones
with a finite amount of regularity at infinity.

The next lemma collects together some well-known Ricci soliton identities concerning expanding gradient
Ricci solitons and shrinking gradient Kähler–Ricci solitons that we require. Their proofs are standard.
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Lemma 2.22 (Ricci soliton identities) Let .M;g;X / be a shrinking gradient Kähler–Ricci soliton
of complex dimension n satisfying (1-4) with � D 1 (resp. an expanding gradient Ricci soliton of real
dimension n satisfying (2-1)) with soliton vector field X D rgf for a smooth real-valued function
f WM !R. Then the trace and first-order soliton identities are:

�!f C
1
2
Rg D n .resp. ��gf CRg D�

1
2
n/;

r
gRg � 2 Ric.g/.X /D 0 .resp. rgRgC 2 Ric.g/.X /D 0/;

jr
gf j2CRg � 2f D const: .resp. jrgf j2CRg �f D const:/;

where Rg denotes the scalar curvature of g and jrgf j2 WD gij@if @jf .

Remark 2.23 We henceforth normalise the soliton potential f of a shrinking gradient Kähler–Ricci
soliton of complex dimension n satisfying (1-4) with �D 1 so that jrgf j2CRg �2f D 2n. The choice
of constant 2n is dictated by the following equation satisfied by f :

�!f �
1
2
X �f D�f:

This choice of constant also implies that f C n is nonnegative on M , since the scalar curvature Rg of g

is necessarily nonnegative.

Kähler cones are quasiprojective. This property is inherited by complete expanding and shrinking gradient
Kähler–Ricci solitons on resolutions of Kähler cones.

Proposition 2.24 Let .M;g;X / be a complete expanding or shrinking gradient Kähler–Ricci soliton on
a resolution � WM ! C0 of a Kähler cone C0. Then M is quasiprojective.

Proof We prove this proposition in the case that .M;g;X / is an expanding gradient Kähler–Ricci soliton.
The proof for the shrinking case is similar.

As explained in the proof of Lemma 2.12, by adding an appropriate ample divisor D to C0 at infinity,
we obtain a projective compactification C0 of C0 so that C0 will have at worst orbifold singularities
along D. Using D, we then compactify M at infinity to obtain a compact complex orbifold M such that
M DM nD. We claim that M admits an ample line bundle, hence is projective.

Indeed, since the normal orbibundle of D in C0 is positive, the normal orbibundle of D in M will also
be positive, hence by the proof of [21, Lemma 2.3], we may endow the line orbibundle ŒD� on M with a
nonnegatively curved hermitian metric with strictly positive curvature on some tubular neighbourhood U

of D in M . Next note that the curvature of the hermitian metric h induced on KM by the expanding
gradient Kähler–Ricci soliton metric g is ��! , where �! is the Ricci form of the Kähler form ! associated
to g. Let f denote the soliton potential so that X Drgf . Then by virtue of the expanding soliton equation,
the curvature of the hermitian metric ef h on KM is precisely the Kähler form ! of g. In particular, the
curvature of ef h on KM is a positive form. Extend the hermitian metric ef h on KM to a hermitian
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metric on KM by amalgamating ef h with an arbitrary hermitian metric on KM jU using an appropriate
bump function supported on U. Then the line orbibundle KM CpŒD� will be ample for p sufficiently
large. A high tensor power of the resulting line orbibundle will then be an ample line bundle on M so
that M is projective and M is quasiprojective, as claimed.

Finally, note that to each complete gradient Ricci soliton, one can associate a Ricci flow that evolves via
diffeomorphisms and scaling. We describe this picture for an expanding gradient Ricci soliton next.

For a complete expanding gradient Ricci soliton .M;g;X / with soliton potential f , set

g.t/ WD t'�t g for t > 0;

where 't is a family of diffeomorphisms generated by the gradient vector field �1
t
X with '1 D id, ie

(2-3)
@'t

@t
.x/D�

rgf .'t .x//

t
with '1 D id:

Then @tg.t/D�2 Ric.g.t// for t > 0, g.1/D g, and if we define f .t/D '�t f so that f .1/D f , then
g.t/ satisfies

(2-4) Ric.g.t//�Hessg.t/ f .t/C
g.t/

2t
D 0 for all t > 0:

Taking the divergence of this equation and using the Bianchi identity yields

(2-5) Rg.t/Cjr
g.t/f .t/j2g.t/�

f .t/

t
D

C1

t

for some constant C1, where Rg.t/ denotes the scalar curvature of g.t/.

Similarly, for a complete expanding gradient Kähler–Ricci soliton with Kähler form !, one obtains a
solution of the Kähler–Ricci flow @t!.t/ D ��!.t/, where �!.t/ denotes the Ricci form of !.t/. The
difference in normalisations between (1-2) and (1-4) is accounted for by the fact that the constant preceding
the Ricci term in the Ricci flow is �2 and that preceding the Ricci term in the Kähler–Ricci flow is �1.
In the same way that a Kähler–Ricci flow yields a solution of the Ricci flow and, vice versa, a solution of
the Ricci flow which is Kähler yields a solution of the Kähler–Ricci flow, the same holds true for gradient
Ricci solitons and gradient Kähler–Ricci solitons. Indeed, a solution .M;g;X / of (1-4) yields a solution
of (1-2) by replacing g with 2g and composing (1-4) with the complex structure in the first arguments.
Conversely, a solution .M;g;X / of (1-2) for which g is Kähler and X is real holomorphic defines a
solution of (1-4) after replacing g with 1

2
g and composing (1-2) with the complex structure in the first

arguments.

2.6 Properties of the soliton vector field

In this subsection, we provide sufficient conditions for which the zero set of the soliton vector field of
a complete shrinking gradient Kähler–Ricci soliton is compact. We begin with the following simple
observation.
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Lemma 2.25 Let .M;g;X / be a complete shrinking gradient Kähler–Ricci soliton with bounded scalar
curvature. Then the zero set of X is compact.

Proof With f denoting the soliton potential, the boundedness of the scalar curvature Rg of g together
with the properness of f as a consequence of Theorem 2.20(i) imply that 2f �Rg is proper. From the
soliton identity jrgf j2CRg D 2f (see Lemma 2.22), we then see that the function jrgf j2 is proper.
The compactness of the zero set of X is now immediate.

In the case that M is in addition “1–convex”, meaning that M carries a plurisubharmonic exhaustion
function which is strictly plurisubharmonic outside of a compact set, we can be more precise. Since a
1–convex space is in particular holomorphically convex, M in this case will admit a “Remmert reduction”
p WM !M 0 [36], ie a proper holomorphic map p WM !M 0 onto a normal Stein space M 0 with finitely
many isolated singularities obtained by contracting the maximal compact analytic subset E of M. As a
Stein space with only finitely many isolated singularities, [3, Theorem 3.1] asserts that M 0 admits an
embedding h WM 0!CP into CP for some P 2N. We have:

Proposition 2.26 Let .M;g;X / be a complete shrinking gradient Kähler–Ricci soliton of complex
dimension n with bounded scalar curvature. Assume that M is 1–convex with maximal compact analytic
subset E. Then the zero set of X is compact and

(i) if E D∅, then the zero set of X comprises a single point and M is biholomorphic to Cn;

(ii) if E ¤∅, then the zero set of X is contained in E.

Before we prove this proposition, an auxiliary result is required, which will be used several times
throughout.

Proposition 2.27 Let .N;g/ be a complete Riemannian manifold and let u WN !R be a C 2 function
that is proper and bounded below. Assume that the flow �x.t/ of rgu with �x.0/ D x 2 N exists for
all t 2 .�1; 0�. Then , for any x 2N , the orbit .�x.t//t�0 accumulates in the critical set of u, ie for all
sequences .ti/i diverging to �1, there exists a subsequence .t 0i/i such that .�t 0

i
.x//i converges to a point

x1 2N satisfying .rgu/.x1/D 0.

Proof Let x2N and let .�x.t//t�0 denote the flow ofrgu which passes through x at tD0 and is defined
for all nonpositive times. Since @t�x.t/D .r

gu/.�x.t//, the function t 2 .�1; 0� 7! u.�x.t// 2R is a
nondecreasing function and for all nonpositive times t ,

(2-6) u.x/�u.�x.t//D

Z 0

t

jr
guj2g.�x.�// d� � 0:

In particular, the orbit .�x.t//t�0 lies in the sublevel set fy 2M j u.y/� u.x/g of u, which is compact
since u is proper and bounded below. Moreover, since u.�x.t// is bounded from below, the estimate
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(2-6) implies that the function � 2 .�1; 0� 7! jrguj2.�x.�// 2R is integrable on .�1; 0�; that is,

(2-7)
Z 0

�1

jr
guj2.�x.�// d� <C1:

Now, since u is C 2 and the orbit .�x.t//t�0 lies in a compact subset of M, the function � 2 .�1; 0� 7!
jrguj2.�x.�// 2R is Lipschitz, ie there is a positive constant C such thatˇ̌

jr
guj2.�x.t//� jr

guj2.�x.s//
ˇ̌
� C jt � sj for all s; t 2 .�1; 0�:

This fact, together with (2-7), implies that lim�!�1 jrguj.�x.�//D 0. This allows us to conclude that
any accumulation point of .�x.t//t�0 lies in the critical set of u.

Proof of Proposition 2.26 Let f denote the soliton potential and let M0.X / denote the zero set of X, a
set which is compact by Lemma 2.25. Our first claim encapsulates the structure of M0.X /.

Claim 2.28 Each connected component of M0.X / is a smooth compact complex submanifold of M

contained in a level set of f .

Proof Let J denote the complex structure of M and let F be a connected component of M0.X /. Then
since F is locally the zero set of the holomorphic vector field X 1;0D

1
2
.X�iJX /, it is a complex-analytic

subvariety of M. Furthermore, as a connected component of the zero set of the Killing vector field JX,
it is a totally geodesic submanifold by [40, Theorem 5.3, page 60]. Hence F is a smooth complex
submanifold of M.

Next observe that along any geodesic 
 .t/ in F , we have for the soliton potential f ,

d

dt
f .
 .t//D df .
 0.t//D g.X; 
 0.t//D 0;

so that f is constant on F . Consequently, F is contained in a level set of f . From Theorem 2.20(i), we
know that f is proper so that the level sets of f are compact. Thus, as a closed subset of a compact set,
F is compact. G

Now note that, by [31, Proof of Lemma 1], f is a Morse–Bott function on M. The critical submanifolds
of f are precisely the connected components of M0.X /. Since M is Kähler, the Morse indices — ie the
number of negative eigenvalues of Hess.f /— of the critical submanifolds are all even [31]. Write

M0.X /DM .0/
[

n[
kD1

M .2k/;

where M .j/ denotes the disjoint union of the critical submanifolds of M0.X / of index j . As a consequence
of Claim 2.28, we see that each connected component of M0.X /, being a compact complex submanifold
of M, is either contained in the maximal compact analytic subset E of M or is an isolated point contained
in M nE. Suppose that there exists an isolated point x 2M .j/\ .M nE/ for some j � 2.
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Using ideas from [13, page 3332] in this paragraph, we see from [10] that the holomorphic vector field
X 1;0 is linearisable at each of its critical points, meaning in particular that there exist local holomorphic
coordinates .z1; : : : ; zn/ centred at x such that X 1;0 D

Pn
jD1 aj zj@zj with aj 2R for all j D 1; : : : ; n.

Since Hess.f / has at least one negative eigenvalue at x, we have that ai < 0 for some i . Without loss of
generality, we may assume that i D n so that an < 0. Now, clearly the orbits of JX on the zn–axis are all
periodic. Fix one such orbit � W S1!M . Then we can construct a map R W S1.'R=T Z/�R!M by
defining R.s; t/ to be �t .�.s//, where �t is the integral curve of the negative gradient flow of f and T is
the period of the orbit of � . Since ŒX;JX �D 0, R is holomorphic and after reparametrising, extends to a
nontrivial holomorphic map xR WC!M with xR.0/D x by the Riemann removable singularity theorem.

Since f is decreasing along its negative gradient flow and is bounded from below, we see that f . xR.z//
is bounded for all z 2C. Hence, by properness of f , the set f xR.z/ j z 2Cg is contained in a compact
subset of M. Letting p WM !M 0 denote the Remmert reduction of M and recalling that M 0 admits an
embedding h WM 0!CP into CP for some P 2N, we therefore obtain a bounded nontrivial holomorphic
map h ıp ı xR WC!CP . By Liouville’s theorem, such a map is constant. This is a contradiction. Thus
M0.X /\ .M nE/, if nonempty, is contained in M .0/.

The next claim concerns the structure of M .0/.

Claim 2.29 M .0/ is a nonempty , connected , compact complex submanifold of M that comprises the
global minima of f .

Proof M .0/ is clearly nonempty since f attains a global minimum and, as a closed subset of the compact
set M0.X /, comprises finitely many connected, compact, complex submanifolds of M by Claim 2.28.
To see that M .0/ comprises one connected component only, recall that the soliton vector field X is
complete. Then by Proposition 2.27, for any point x 2M, the forward orbit of the negative gradient
flow of f beginning at x converges to a point of M0.X /. This gives rise to a stratification of M, namely
M D

Fn
kD0 W s.M .2k//, where

W s.M .2k//D
˚
x 2M j lim

t!�1
�x.t/ 2M .2k/

	
;

�x WR!M here denoting the gradient flow of f beginning at x. Note that

W s.M .0//DM
� nG

kD1

W s.M .2k//:

Now, since M0.X / is compact, for each k, W s.M .2k// comprises finitely many connected components,
each of which is an open submanifold of M of real dimension 2n � 2k; see [1, Proposition 3.2].
The complement of finitely many submanifolds of real codimension at least two in a connected manifold
is still connected. Hence W s.M .0//, and consequently M .0/, is connected. Finally, since M .0/ contains
all of the local minima of f and, comprising only one connected component, is contained in a level set
of f by Claim 2.28, it must be the set of global minima of f . G
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Now, we have already established the fact that M0.X /\ .M nE/, if nonempty, is contained in M .0/.
Thus, if E D ∅, then, since M0.X / is nonempty as f attains a global minimum, we must have that
M0.X / DM .0/, so that M0.X / is a nonempty, connected, compact complex submanifold of M by
Claim 2.29. Since M is affine if E D∅, we deduce that M0.X / must comprise a single point if E D∅.
It then follows from [10] that M is biholomorphic to Cn if E D∅. This is case (i) of the proposition.

Next consider the case when E¤∅. If M0.X /\ .M nE/D∅, then M0.X /�E and we are in case (ii)
of the proposition. So, to derive a contradiction, suppose that E¤∅ and M0.X /\.M nE/¤∅. In light
of the above, we must have that M .0/\E D∅ and that M0.X /\ .M nE/DM .0/, which comprises
a single point x, say. Moreover,

�Sn
jD1 M .2j/

�
\E ¤∅ since otherwise M would be biholomorphic

to Cn by [10], thereby yielding a contradiction. Thus, noting that f .M .0// is the global minimum value
of f by Claim 2.29, let A be the smallest critical value of f with A> f .M .0// and let y 2 f �1.fAg/.
Then we must have that y 2M .k/ �E for some k � 2 by what we have just said. As before, we can
construct a holomorphic map xR W C ! M with xR.0/ D y. Since f is decreasing along its negative
gradient flow and since there are no critical values of f in the open interval .f .M .0//;A/, we see from
Proposition 2.27 that necessarily limz!C1

xR.z/D x. The Riemann removable singularity theorem then
applies and allows us to extend xR to a holomorphic map xR0 W P1!M . Since x ¤ y and x 62E, what
we have constructed is a nontrivial holomorphic curve in M that is not contained in E. This contradicts
the maximality of E. Thus, cases (i) and (ii) of the proposition are the only two possibilities that can
occur. This completes the proof.

2.7 Properties of real vector fields commuting with the soliton vector field

In this subsection, we mention some properties of real vector fields that commute with the soliton vector
field on a complete shrinking gradient Kähler–Ricci soliton. As the next proposition demonstrates, a
bound on the Ricci curvature yields control on the growth of the norm of these vector fields.

Proposition 2.30 Let .M;g;X / be a complete shrinking gradient Kähler–Ricci soliton with bounded
Ricci curvature , and let dg.p; � / denote the distance to a fixed point p 2M with respect to g. Then there
exists a> 0 such that jY j2g.x/DO.dg.p;x/

a/ for every real vector field Y on M with ŒX;Y �D 0.

Remark 2.31 The growth rate obtained in Proposition 2.30 will be sharpened in Claim A.14 for
real holomorphic vector fields commuting with X, as exemplified by shrinking cylinders of the form
Cn�k �N 2k , where Cn�k is endowed with its Gaussian soliton metric and where N 2k supports a closed
Kähler–Einstein metric of positive scalar curvature.

Proof Let j � j denote the norm with respect to g and let Ric denote the Ricci curvature of g. Since jRicj
is bounded so that the scalar curvature of g is bounded, it follows from Lemma 2.25 that the zero set of X

is contained in a compact subset of M. For A> 0, let K WD f �1.Œ2A; 4A�/ and N D f �1..�1; 3A�/.
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Since f is proper and bounded below as a consequence of Theorem 2.20(i), K and N are compact subsets
of M. Choose A sufficiently large so that all of the critical points of f are contained in f �1..�1;A�/

and so that A > supM jRgj. Let 
x.t/ denote the integral curve of X with 
x.0/D x 2M. We begin
with the following claim.

Claim 2.32 Let y 2M nN . Then there exists x 2K and t0 > 0 such that y D 
x.t0/.

That is to say, every point of M nN lies on an integral curve of X passing through K.

Proof For y 2M nK, we see from the soliton identity jrgf j2CRg D 2f that

d

dt
f .
y.t//D jr

gf j2g.
y.t//D 2f .
y.t//�Rg.
y.t//:

Using the upper bound on jRgj, we deduce thatˇ̌̌
d

dt
f .
y.t//� 2f .
y.t//

ˇ̌̌
� 2A:

Integrating this differential inequality for t < 0 then yields the inequalities

(2-8) .f .y/CA/e2t
�A� f .
y.t//� .f .y/�A/e2t

CA for t < 0:

Set
t0 D�

1

2
ln
�

3A

f .y/CA

�
> 0:

Then from (2-8) we see that

2A� f .
y.�t0//� 3A

�
f .y/�A

f .y/CA

�
CAD 3A

�
1�

2A

f .y/CA

�
CA� 4A:

Thus, y D 
x.t0/ where x D 
y.�t0/ 2K. This proves the claim. G

Next observe that

LX .jY j
2/D .LX g/.Y;Y /D g.Y;Y /�Ric.Y;Y /D jY j2�Ric.Y;Y /:

For x 2M a point where X ¤ 0, let h.t/ WD jY j2.
x.t//. Then we can rewrite the previous equation as

h0.t/D h.t/�Ric.Y;Y /.
x.t//;

so that

(2-9)
h0.t/

h.t/
D 1�

Ric.Y;Y /.
x.t//

h.t/
:

Analysing the error term here, we have that

Ric.Y;Y /.
x.t//

h.t/
D

Ric.Y;Y /
jY j2

:
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Since jRicj is bounded by assumption, we then have thatˇ̌̌̌
Ric.Y;Y /
jY j2

ˇ̌̌̌
� C

for a constant C > 0, so that (2-9) gives us the boundˇ̌̌̌
h0.t/

h.t/

ˇ̌̌̌
� 2a

for some a> 0. Solving this for t > 0 yields

�2at � ln.h.t//� ln.h.0//� 2at;

so that, in particular,
h.t/� jY j2.x/e2at for all t > 0:

Hence,

(2-10) jY j2.
x.t//� jY j
2.x/e2at for all t > 0:

Let y 2M nN . Then by Claim 2.32, there is an x 2K and t0 > 0 such that y D 
x.t0/. Applying the
above inequality to this choice of x and t0, we deduce that

jY j2.y/� jY j2.x/e2at0 :

Now, as in the proof of Claim 2.32, we have thatˇ̌̌
d

dt
f .
x.t//� 2f .
x.t//

ˇ̌̌
� 2A:

Integrating this for t > 0 yields the fact that

.f .x/�A/e2t
CA� f .
x.t//� .f .x/CA/e2t

�A for all t > 0:

Since x2K so that f .x/�2A, we see from the left-hand side of this inequality that f .
x.t//�A.1Ce2t /,
so that

(2-11) e2t
�
f .
x.t//

A
� 1 for all t > 0:

Plugging this into (2-10) and setting t D t0 results in the bound

jY j2.y/� jY j2.x/e2at0 � jY j2.x/

�
f .y/

A
� 1

�a

� .sup
K

jY j2/

�
f .y/

A
� 1

�a

:

Since K is compact and f grows quadratically with respect to the distance to a fixed point p 2M by
Theorem 2.20(i), we arrive at the estimate

jY j.z/� c1dg.p; z/
a
C c2 for all z 2M

for some positive constants c1; c2 > 0. This leads to the desired conclusion.

Remark 2.33 In the case that the Ricci curvature decays quadratically at infinity, the constant a may be
taken to be equal to 2 in Proposition 2.30.
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We can also show that such vector fields are complete when the zero set of the soliton vector field is
compact.

Lemma 2.34 Let .M;g;X / be a complete shrinking gradient Kähler–Ricci soliton. Assume that the
zero set of X is compact (which , by Lemma 2.25, is the case when the scalar curvature of g is bounded ).
Then every real vector field Y on M with ŒX;Y �D 0 is complete.

Proof Let Y be as in the statement of the lemma and let K be any compact subset of M containing the
zero set of X in its interior. Then note the following:

� Since K is compact, there exists "0 > 0 such that the flow of Y beginning at any point of K exists
on the open interval .�"0; "0/.

� By Proposition 2.27, for any p 2M, there exists T .p/ > 0 such that the image of p under the
forward flow of �X for time T will be contained in K.

Consequently, for any point p 2M, by flowing first along �X into K for time T .p/, then flowing along Y,
then flowing along X for time T, one sees from the fact that ŒX;Y �D 0 that the flow of Y beginning at any
point of M exists on the interval .�"0; "0/. This observation suffices to prove the completeness of Y.

2.8 Basics of metric measure spaces

We take the following from [33]; the notions introduced in this section will be used in Section 5.1.

A smooth metric measure space is a Riemannian manifold endowed with a weighted volume.

Definition 2.35 A smooth metric measure space is a triple .M;g; e�f dVg/, where .M;g/ is a complete
Riemannian manifold with Riemannian metric g, dVg is the volume form associated to g, and f WM !R

is a smooth real-valued function.

A shrinking gradient Ricci soliton .M;g;X / with X Drgf naturally defines a smooth metric measure
space .M;g; e�f dVg/. On such a space, we define the weighted Laplacian �f by

�f u WD�u�g.rgf;ru/

on smooth real-valued functions u 2 C1.M;R/. There is a natural L2–inner product h � ; � iL2
f

on the
space L2

f
of square-integrable smooth real-valued functions on M with respect to the measure e�f dVg,

defined by
hu; viL2

f
WD

Z
M

uv e�f dVg for u; v 2L2
f :

As one can easily verify, the operator �f is self-adjoint with respect to h � ; � iL2
f

.

In the Kähler case, we have:

Definition 2.36 If .M;g; e�f dVg/ is a smooth metric measure space and .M;g/ is Kähler, we say that
.M;g; e�f dVg/ is a Kähler metric measure space.
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A shrinking gradient Kähler–Ricci soliton naturally defines such a space.

Unlike the real case, on a Kähler metric measure space we have the weighted x@–Laplacian �f defined on
smooth complex-valued functions u 2 C1.M;C/ by

�f u WD�x@u� .r
1;0u/f D gi x|@2

i x|u�gi x| .@if /.@x|u/:

This may be a complex-valued function even if u is real-valued. We define a hermitian inner product on
the space C1

0
.M;C/ by

hu; viL2
f
WD

Z
M

uxv e�f dVg for u; v 2 C10 .M;C/:

Then �f is symmetric with respect to this inner product. In fact, we have thatZ
M

.�f u/xv e�f dVg D

Z
M

u�f v e�f dVg D�

Z
M

g.x@u; x@v/ e�f dVg D�h
x@u; x@viL2

f
;

where
g.x@u; x@v/D gi x| .@x|u/.@ixv/:

See [33] for further details.

3 Proof of Theorem A

We first consider Theorem A in the expanding case.

3.1 Construction of a map to the tangent cone

By a result of Siepmann [62, Theorem 4.3.1], a complete expanding gradient Ricci soliton .M;g;X /

with quadratic curvature decay with derivatives has a unique tangent cone along each end. We first prove
a series of lemmas before providing a refinement of Siepmann’s result in Theorem 3.8 by using the flow
of the soliton vector field X to construct a diffeomorphism between each end of the expanding Ricci
soliton and its tangent cone .C0;g0/ along that end, with respect to which r@r pushes forward to 2X

(here r denotes the radial coordinate of g0), and with respect to which g�g0�Ric.g0/DO.r�4/ with
derivatives.

Our set-up in this section is as follows:

.M;g;X / is a complete expanding gradient Ricci soliton with soliton vector field X Drgf

for a smooth real-valued function f WM !R such that for some point p 2M and all k 2N0,

Ak.g/ WD sup
x2M

j.rg/k Rm.g/jg.x/dg.p;x/
2Ck <1;

where Rm.g/ denotes the curvature of g and dg.p;x/ denotes the distance between p and x

with respect to g.

The diffeomorphisms .'t /t2.0;1� will be as in (2-3). We begin with:
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Lemma 3.1 The one-parameter family of functions .tf ı't /t>0 converges to a nonnegative continuous
real-valued function q.x/ WD limt!0C tf .'t .x// on M as t ! 0C.

Proof Since
@

@t
f .'t .x//D�

jrgf j2g.'t .x//

t
;

so that
@

@t
.tf .'t .x///D .f � jr

gf j2g/.'t .x//DRg.'t .x//;

by the soliton identities for expanding gradient Ricci solitons (see Lemma 2.22), where Rg denotes the
scalar curvature of g, we see after integrating that

(3-1) tf .'t .x//� sf .'s.x//D

Z t

s

Rg.'� .x// d� for 0< s � t:

Since Rg is bounded on M, it follows that for all x 2M,

(3-2) jtf .'t .x//� sf .'s.x//j � C.t � s/ for 0< s � t

for some positive constant C . Thus, ft.f ı 't /gt2.0;1� is a Cauchy sequence in C 0.M / and hence
converges uniformly as t ! 0C to a continuous real-valued function q on M as in the statement of the
lemma.

To see that q.x/� 0 for all x 2M, note from the soliton identities that

tf .'t .x//D t jX j2.'t .x//C tRg.'t .x//� tRg.'t .x//� t inf
M

Rg

since t 2 .0; 1� and Rg is bounded from below. Letting t ! 0C in this inequality yields the desired
conclusion.

For a> 0, set

Ma WD
˚
x 2M j lim

t!0C
tf .'t .x// > a

	
; M0 WD

˚
x 2M j lim

t!0C
tf .'t .x// > 0

	
:

In view of (3-2) and the consequences discussed thereafter, the sets M0 and Ma are well-defined for
a> 0. Furthermore, note that

� Ma and M0 are preserved by 't for all t 2 .0; 1� and a > 0, since 'ts D 't ı 's for all positive
times s and t .

Hence for any a� 0, t.f ı't / defines a family of smooth functions t.f ı't / WMa!R for t 2 .0; 1�.

Lemma 3.2 As t ! 0C, t.f ı't / converges to q in C1loc .M0/. In particular , q is smooth on M0.

Proof For each a > 0, [62, Lemma 4.3.3] ensures that along the Ricci flow g.t/ defined by g, the
norm of the curvature tensor Rmg.t/ of g.t/ is bounded with respect to g.t/ when restricted to Ma. In
particular, there exists a positive constant C (depending on a) such that for all t 2 .0; 1�,

sup
x2Ma

jRic.g.t//jg.t/.x/� C:
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By definition of a Ricci flow, this implies that the metrics .g.t//t2.0;1� are uniformly equivalent, ie there
exists a positive constant C (that may vary from line to line) such that

(3-3) C�1g.x/� g.t/.x/� Cg.x/ for all t 2 .0; 1�; x 2Ma:

An induction argument (see [62, Lemma 4.3.6]) then shows that for all x 2Ma, t 2 .0; 1� and k � 0,

j.rg/k.g.t//jg.x/� C.k; a/:

Similarly, one obtains that

(3-4) j.rg/k.Rmg.t//jg.x/� C.k; a/

for all x 2Ma, t 2 .0; 1� and k � 0. As a consequence,

(3-5) j.rg/k.tf .'t .x///jg � C.k; a/

for all x 2Ma, t 2 .0; 1� and k � 0. Indeed, by (3-1) with t D 1 and s D t ,

f .x/� tf .'t .x//D

Z 1

t

Rg.'s.x// ds D

Z 1

t

sRg.s/.x/ ds for all t 2 .0; 1�; x 2M:

In particular, by deriving k times at a point x 2Ma, we see that

.rg/k.t'�t f /D .r
g/kf �

Z 1

t

s.rg/kRg.s/ ds for all t 2 .0; 1�;

which implies the desired inequality (3-5) after invoking (3-4). As a result, t.f ı 't / converges in
C1loc .M0/ as t ! 0C, so that q is smooth on M0, as claimed.

Since 't preserves Ma for every a> 0, we also have that for any a� 0, the Ricci flow g.t/ determined
by g, namely g.t/ WD t'�t g, defines a family of smooth metrics on Ma for all t 2 .0; 1�. This family
converges in C1loc .M0/ as t ! 0C as well.

Lemma 3.3 The family of metrics g.t/ converges to a Riemannian metric zg0 in C1loc .M0/ as t ! 0C.
Moreover , zg0 D 2 Hesszg0

q.

Proof From the definition of the Ricci flow, one deduces from the curvature bounds (3-4) that g.t/ is a
Cauchy sequence in C k.Ma/ for every k � 0 and a> 0, hence converges uniformly locally as t! 0C in
C k.M0/ for every k � 0 to a Riemannian metric zg0 on M0. To see that zg0 D 2 Hesszg0

q, multiply (2-4)
across by t and take the limit as t! 0C, recalling that limt!0C tf .t/D q in C1loc .M0/ by Lemma 3.2.

We have the following properties of q.

Lemma 3.4 The function q is proper and bounded below.

Proof Lemma 3.1 already implies that q is nonnegative. In particular, it is bounded from below. Now,
one sees from the quadratic growth of the soliton potential f given by (2-2) that for p in the critical set
of the soliton potential f ,

1
4
d2

g.t/.p;x/� c1

p
tdg.t/.p;x/� c2t � tf .'t .x//�

1
4
d2

g.t/.p;x/C c1

p
tdg.t/.p;x/C c2t
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for all t > 0 and x 2M , for some constants c1; c2 > 0, where dg.t/ denotes the distance with respect
to g.t/. Using this inequality and taking the limit as s! 0C in (3-2), one finds that

(3-6) 1
4
d2

g.t/.p;x/� c1

p
tdg.t/.p;x/� c2t � q.x/� 1

4
d2

g.t/.p;x/C c1

p
tdg.t/.p;x/C c2t

for all t > 0 and x 2 M , for some constants c1; c2 > 0 that may now vary from line to line. Thus,
q.x/!C1 as x!1 and the result follows.

Moreover, we have:

Lemma 3.5 On M0,

(i) jr zg0qj2
zg0
D q, so that the integral curves of r zg0.2

p
q/ on M0 are geodesics , and

(ii) r zg0q DX.

In particular , X is nowhere vanishing on M0.

Proof To prove the first part of (i), namely that jr zg0qj2
zg0
D q, we multiply equation (2-5) across by t2

and take the limit as t! 0C. Next, let 
x.t/ denote the integral curve of r zg0.2
p

q/ with 
x.0/Dx 2M0.
Then 
x.t/ remains in M0 for t � 0. Indeed, so long as t � 0 is such that 
x.t/ lies in M0, we have that

@t .2
p

q/.
x.t//D zg0

�
r
zg0.2
p

q/;r zg0.2
p

q/
�
.
x.t//D jr

zg0.2
p

q/j2
zg0
.
x.t//D 1:

After integrating, we deduce that .2
p

q/.
x.t// > 0 for t � 0, as desired. To see that these integral curves
are in fact geodesics with respect to the metric zg0, we compute: for any t � 0 and for any tangent vector v
to M0 at 
x.t/, we have that

(3-7) zg0.r
zg0

P
x.t/
P
x.t/; v/D zg0

�
r
zg0

rzg0 .2
p

q/
r
zg0.2
p

q/; v
�
j
x.t/

D Hesszg0
.2
p

q/
�
r
zg0.2
p

q/; v
�
j
x.t/

:

Since zg0 D 2 Hesszg0
q on M0 by Lemma 3.3, we also have the identity

1
2
zg0 D Hesszg0

q D Hesszg0
.
p

q/2 D .2
p

q/Hesszg0
.
p

q/C 2d.
p

q/˝ d.
p

q/:

Plugging this into (3-7) then leads to the following sequence of equalities on M0:

.2
p

q/.
x.t// � zg0

�
r
zg0

P
x.t/
P
x.t/; v

�
D zg0

�
r
zg0.2
p

q/; v
�
j
x.t/

� 4
�
d.
p

q/˝ d.
p

q/
��
r
zg0.2
p

q/; v
�
j
x.t/

D zg0

�
r
zg0.2
p

q/; v
�
j
x.t/

� jr
zg0.2
p

q/j2
zg0
.
x.t// � zg0

�
r
zg0.2
p

q/; v
�
j
x.t/

D 0;

where we have used in the last line the already established fact that jr zg0.2
p

q/j2
zg0
D 1 on M0.

As for part (ii), let 't be as in (2-3). Then on compact subsets of M0, we have that

r
zg0q D lim

t!0C
r

g.t/.tf .t//D lim
t!0C

r
t'�t g.t'�t f /

D lim
t!0C

1

t
r
'�t g.t'�t f /D lim

t!0C
r
'�t g.'�t f /

D lim
t!0C

'�t .r
gf /D lim

t!0C
'�t X D lim

t!0C
X DX;
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where the penultimate equality follows from the fact that 't is generated by the flow of �.1=t/X and
LX X D 0.

The above observations then imply:

Lemma 3.6 M has only finitely many ends.

Proof For any a> 0, q is a smooth function on Ma by Lemma 3.2. Furthermore, by Lemma 3.5, q has
no critical points in Ma. Consequently, using the Morse flow . 

q
t /t�0 associated to q, one sees that all

the level sets of q of the form q�1.fbg/ with b � b0 for some b0 2 R large enough are diffeomorphic.
Since q is proper by Lemma 3.1, such level sets are compact and the map

 q
W .0;C1/� q�1.fb0g/! q�1..b0;C1//; .t;x/ 7!  

q
t .x/;

is a diffeomorphism of a neighbourhood of M at infinity. Again, since q is proper, the level set q�1.fb0g/

is compact hence has a finite number of connected components. Thus, M has a finite number of ends.

Our final lemma is then:

Lemma 3.7 There exists A> 0 such that for all c >A, the intersection of each end of M with q�1.fcg/

is compact , connected , and nonempty.

Proof By Lemma 3.6, M has only a finite number of ends. Thus, since q is proper and bounded below
by Lemma 3.4, there exists A > 0 such that all of the ends of M are contained in M n q�1..�1;A�/.
For any c > A, the intersection of q�1.fcg/ with each end of M is then compact and nonempty and
comprises one connected component only since, as a consequence of Lemma 3.5, q is strictly increasing
along the flow lines of the (nowhere vanishing) vector field X on M0.

Using the above lemmas, we can now construct our map to the tangent cone at infinity.

Theorem 3.8 (map to the tangent cone for expanding Ricci solitons) Let A> 0 be as in Lemma 3.7,
let � WM0! RC be defined by � WD 2

p
q, and let S WD ��1.fcg/ for any c > 0 with 1

4
c2 > A (so that

the intersection of each end of M with S is compact , connected , and nonempty). Then there exists
a diffeomorphism � W .c;1/�S !Mc2=4 such that g0 WD �

�zg0 D dr2C r2gS=c
2 and d �.r@r / D 2X,

where r is the coordinate on the .c;1/–factor and gS is the restriction of zg0 to S . Moreover , along
Mc2=4, we have that

(3-8) j.rg0/k.��g�g0� 2 Ric.g0//jg0
DO.r�4�k/ for all k 2N0:

In particular , .M;g/ has a unique tangent cone along each end.

Geometry & Topology, Volume 28 (2024)



Classification results for expanding and shrinking gradient Kähler–Ricci solitons 299

Proof To prove the first part of this statement, we follow the proof of [22, Theorem 1.7.2].

We have that Hesszg0
.�2/D 2zg0 from Lemma 3.3 and we know from Lemma 3.5(i) that jr zg0�2j2

zg0
D 4�2

is constant along the level sets of � and that the integral curves of r zg0� are geodesics. Then we have that

r
zg0�2

D 2�r zg0� and Hesszg0
.�2/D 2d�2

C 2�Hesszg0
.�/;

so that
2zg0 D Hesszg0

.�2/D 2d�2
C 2�Hesszg0

.�/:

Hence,
Hesszg0

.�/D
zg0

�
on the zg0–orthogonal complement of r zg0�.

On the other hand, zg0 D d�2C zg� with zg� the restriction of zg0 to the level set of �, and

L
rzg0�zg� D L

rzg0�.zg0� d�2/D 2 Hesszg0
.�/� 16�d�2

D
2zg�

�
C

�
2

�
� 16�

�
d�2;

so that

L
rzg0�zg� D

2zg�

�
on the zg0–orthogonal complement of r zg0�:

Thus,

(3-9) L�rzg0�zg� D 2zg� on the zg0–orthogonal complement of r zg0�:

Next define a map � W .c;1/�S !Mc2=4 by

.r;x/ 7!ˆx.r � c/;

where ˆx. � / denotes the flow of r zg0� with ˆx.0/ D x. By choice of c, this map is well-defined.
Moreover, d �.@r / D r

zg0� by construction, and since �.ˆx.t// D t C c, we have that ��� D r so that
d �.r@r /D �r

zg0�D 2X. In this new frame, we thus have that

��zg0 D dr2
C ��zg�;

where we find from (3-9) that

Lr@r
��zg� D 2��zg� on the ��zg0–orthogonal complement of @r :

Hence, ��zg� D r2gS=c
2 so that ��zg0 D dr2C r2gS=c

2, as claimed.

As for the fact that (3-8) holds true along Mc2=4, we have from Young’s inequality applied to (3-6) that

(3-10) C�1dg.t/.p;x/�C
p

t � �.x/� Cdg.t/.p;x/CC
p

t for all t 2 .0; 1�; x 2M0:

Using this, we can now prove an estimate less sharp than (3-8).

Claim 3.9 For all x 2Mc2=4 and k 2N0,

(3-11) j.rg/k.g� zg0/jg.x/� Ck�.x/
�2�k :
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Proof Let us prove the claim first for k D 0. Since the curvature tensor of g (and hence that of g.s/)
decays quadratically with derivatives, we have that for any p in the critical set of f and for any x 2Mc2=4,

jg� zg0jg.x/�

Z 1

0

j@sg.s/jg.x/ ds � C

Z 1

0

jRic.g.s//jg.x/ ds � C

Z 1

0

dg.s/.p;x/
�2 ds � C�.x/�2;

where we have used (3-3) and (3-10) after increasing C if necessary.

As for the case k D 1, we must work slightly harder. Recall that if T is a tensor on M, then rg.t/T D

rgT Cg.t/�1 �rg.g.t/�g/�T , since at the level of Christoffel symbols, one has that

�.g.t//kij D �.g/
k
ij C

1
2
g.t/km

�
r

g
i .g.t/�g/jmCr

g
j .g.t/�g/im�r

g
m.g.t/�g/ij

�
:

Thus, for all x 2Mc2=4 and t 2 .0; 1�, we have that

@t jr
g.g.t/�g/j2g.x/� �4jrg Ric.g.t//jg.x/jrg.g.t/�g/jg.x/

� �4
�
jr

g.t/ Ric.g.t//jg.x/C
�
j.rg
�r

g.t//Ric.g.t//jg.x/
��
jr

g.g.t/�g/jg.x/

� �C
�
dg.t/.p;x/

�3
Cj.rg

�r
g.t//Ric.g.t//jg.x/

�
jr

g.g.t/�g/jg.x/

� �C
�
�.x/�3

Cjr
g.g.t/�g/jg.x/jRic.g.t//jg.x/

�
jr

g.g.t/�g/jg.x/

� �C
�
�.x/�3

Cjr
g.g.t/�g/jg.x/

�
jr

g.g.t/�g/jg.x/

� �C jrg.g.t/�g/j2.x/�C�.x/�6;

where C denotes a positive constant that may vary from line to line, and where we used Young’s inequality
in the last line. Recalling that jrg.g.t/�g/j2g D 0 when t D 1, one can integrate the previous differential
inequality between a time t 2 .0; 1/ and t D 1 to obtain

jr
g.g.t/�g/j2g.x/� C�.x/�6 for x 2Mc2=4; t 2 .0; 1�;

for some positive constant C uniform in time. This fact implies the desired estimate (3-11) for k D 1 by
letting t ! 0C.

The cases k � 2 are proved by induction on k. G

It follows from Claim 3.9 that

j.r zg0/k.g� zg0/jzg0
� Ck�

�2�k for all k 2N0;

so that, after pulling back by �, we have that

j.rg0/k.��g�g0/jg0
� Ckr�2�k for all k 2N0:

We now prove (3-8). To this end, recall that 't .x/ satisfies

@'t

@t
.x/D�

rgf .'t .x//

t
and '1 D id:
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Since 4rgf Drg0�2 D 2�rg0� by Lemma 3.5(ii), we have that

d

dt
�.'t .x//D d�j't .x/

�
@'t

@t
.x/

�
D d�j't .x/

�
�
rgf .'t .x//

t

�
D�

�.'t .x//

2t
d�j't .x/

.rg0�j't .x/
/D�

�.'t .x//

2t
;

so that

(3-12) �.'t .x//D
�.x/

t1=2
:

Let y't .x/ satisfy
@y't

@t
.x/D�

r

2t

@

@r
.y't .x// and y'1 D id:

Then since d �.r@r /D 2X, we have that � ı y't D 't ı �, and in light of (3-12), we see that y'�t r D r=t1=2,
so that t y'�t g0 D g0. Recall that the Ricci flow g.t/ defined by g is given by g.t/D t'�t g for t 2 .0; 1�.
Together with the scaling properties of the norm induced on tensors by g0 and the invariance of the
Levi-Civita connection under rescalings, these observations imply that

j.r y'
�
t g0/k.��g.t/�g0/jy'�t g0

.x/D j.rt�1g0/k.��g.t/�g0/jt�1g0
.x/

D t1C.k=2/
j.rg0/k.��g.t/�g0/jg0

.x/;

so that

j.rg0/k.��g.t/�g0/jg0
.x/D t�1�k=2

j.r y'
�
t g0/k.��g.t/�g0/jy'�t g0

.x/

D t�1�k=2
� t j.r y'

�
t g0/k.y'�t �

�g� y'�t g0/jy'�t g0
.x/

D t�1�k=2
� t j.rg0/k.��g�g0/jg0

.y't .x//

� Ck t � t�1�k=2
� .r.y't .x///

�2�k

D Ck t � t�1�k=2
� t1Ck=2.r.x//�2�k for all k 2N0I

that is,
j.rg0/k.��g.t/�g0/jg0

.x/� Ck t r�2�k for all k 2N0:

In particular,
j.rg0/k.Ric.��g.t//�Ric.g0//jg0

� Ck t r�4�k for all k 2N0;

which is clear from the expression of the components of the Ricci curvature in local coordinates. Conse-
quently, we have the improved estimate

j.rg0/k.��g�g0�2 Ric.g0//jg0
.x/�Ck

Z 1

0

ˇ̌
.rg0/k

�
Ric.��g.s//�Ric.g0/

�ˇ̌
g0
.x/ ds�Ckr.x/�4�k :

This is precisely (3-8).

Thus, an expanding gradient Ricci soliton M with quadratic curvature decay with derivatives has a unique
tangent cone C0 along each of its ends V. Moreover, there is a diffeomorphism

� W C0 nK! V;
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where K � C0 is a compact subset containing the apex of C0, induced by the flow of the vector field
2X=�. The statement of Theorem 3.8 is verbatim the same for expanding gradient Kähler–Ricci solitons,
except that d �.r@r /D X rather than 2X and 2 Ric.g0/ is replaced by Ric.g0/ in (3-8), accounting for
the difference in normalisation between Ricci solitons and Kähler–Ricci solitons.

3.2 Existence of a resolution map to the tangent cone

In the case that .M;g;X / is a complete expanding gradient Kähler–Ricci soliton with quadratic curvature
decay with derivatives, the soliton potential is proper [12], hence M has only one end V [52] with tangent
cone C0 along the end. (Also note from [52] that any complete shrinking gradient Kähler–Ricci soliton
has only one end without any curvature assumption on the metric.) Along V, we have from Theorem 3.8
the diffeomorphism � W C0 nK ! V for K � C0 a compact subset containing the apex of C0. As we
will now see, the inverse of this map actually extends to define a resolution � WM ! C0 with respect to
which d�.X /D r@r . We first show that � is a biholomorphism with respect to a complex structure on C0

that makes the cone metric g0 Kähler. As the next proposition demonstrates, the Kählerity of the soliton
implies this fact.

Proposition 3.10 Let .M;g;X / be a complete expanding gradient Kähler–Ricci soliton with complex
structure J such that for some point p 2M and all k 2N0,

Ak.g/ WD sup
x2M

j.rg/k Rm.g/jg.x/dg.p;x/
2Ck <1;

where Rm.g/ denotes the curvature of g and dg.p;x/ denotes the distance between p and x with
respect to g. For the unique end V of M, let zg0 D limt!0C g.t/ be the limit of the Kähler–Ricci
flow g.t/ defined by .M;g;X /, let .C0;g0/ be the unique tangent cone along V with radial function r

and let � W .C0 nK;g0/! .V; zg0/, for K � C0 compact containing the apex of C0, be the isometry of
Theorem 3.8. Then .C0;g0/ is a Kähler cone with respect to ��J. In particular , � W .C0 nK; ��J /! .V;J /

is a biholomorphism.

Proof Since limt!0C g.t/ D zg0 smoothly on compact subsets of V and g.t/ is Kähler with respect
to J, we have that on V,

r
zg0J D lim

t!0C
r

g.t/J D 0;

so that zg0 is Kähler with respect to J. The metric g0 is therefore Kähler with respect to ��J away from a
compact subset of C0. Recall that the radial vector field on a Kähler cone is holomorphic with respect to
its complex structure. Thus, r@r is holomorphic on the subset of C0 for which ��J is defined. Flowing
along �r@r then extends ��J to a global complex structure on C0, with respect to which g0 is Kähler.

In fact the converse of Proposition 3.10 holds true for shrinking gradient Kähler–Ricci solitons; see [42]
for details.
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The previous proposition implies that M is 1–convex. This property is what allows us to extend the
biholomorphism ��1 to a resolution � WM ! C0 that is equivariant with respect to the torus action on C0

generated by the flow of J0r@r . The details are contained in the next theorem.

Theorem 3.11 Let .M;g;X / be a complete expanding gradient Kähler–Ricci soliton with complex
structure J such that for some point p 2M and all k 2N0,

Ak.g/ WD sup
x2M

j.rg/k Rm.g/jg.x/dg.p;x/
2Ck <1;

and let .C0;g0/ be its unique tangent cone with radial function r and complex structure J0. Then there
exists a holomorphic map � WM ! C0 that is a resolution of C0 with the property that d�.X / D r@r .
Furthermore , the holomorphic isometric real torus action on .C0;g0;J0/ generated by J0r@r extends to a
holomorphic isometric torus action of .M;g;J /.

Proof The proof of Theorem 3.11 comprises several steps. From Proposition 3.10, we know that
along the unique end V of M, there is a biholomorphism � W C0 nK! V for K � C0 a compact subset
containing the apex of C0. Thus, by [20, Lemma 2.15], this in particular implies that M is 1–convex,
hence holomorphically convex, so that there is a Remmert reduction p WM !M 0 of M. Recall that
this is a proper holomorphic map p WM !M 0 from M onto a normal Stein space M 0 with finitely
many isolated singularities obtained by contracting the maximal compact analytic subset of M. By
construction, M 0 is biholomorphic to M outside compact sets, therefore we have a biholomorphism
given by F WD p ı � W fx 2 C0 j r.x/ >Rg !M 0 nK0 for some compact subset K0 �M 0 and for some
R> 0. We claim that this biholomorphism extends globally.

Claim 3.12 The biholomorphism F W fx 2 C0 j r.x/ > Rg !M 0 nK0 extends to a biholomorphism
F W C0!M 0.

Proof Since M 0, as a Stein space with finitely many isolated singularities, admits an embedding
h WM 0!CP for some P by [3, Theorem 3.1], we have a holomorphic function

h ıF W fx 2 C0 j r.x/ >Rg !CP :

Since C0 is in particular an example of a Stein space, this holomorphic function extends to a unique
holomorphic function F WC0!CP by Hartogs’ theorem for Stein spaces [61, Theorem 6.6]. The fact that
F .C0/�M 0 follows from Hartogs’ theorem. To show that F is in fact a biholomorphism, we construct
an inverse map F�1 WM 0! C0 as an extension of the map

F�1
WM 0
nK0! fx 2 C0 j r.x/ >Rg

by applying the previous argument beginning with the fact that C0 is affine algebraic. G

Thus, the Remmert reduction of M is actually C0, ie the composition � WD F�1 ı p WM ! C0 is a
proper holomorphic map contracting the maximal compact analytic subset E of M to obtain the cone C0.
Denote the connected components of E by E1; : : : ;Ek . Then � contracts each Ei to a point pi 2C0 and
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restricts to a biholomorphism � WM nE! C0 n fp1; : : : ;pkg. We next show that � defines a resolution
of C0 for which d�.X /D r@r . Note that at infinity, � D .p ı �/�1 ıp D ��1.

Claim 3.13 The map � WDF�1 ıp WM ! C0 is a resolution of C0 with respect to which d�.X /D r@r .

Proof Consider the biholomorphism � WM nE! C0 n fp1; : : : ;pkg. This map allows us to lift the
holomorphic vector field r@r to a holomorphic vector field Y WD .d�/�1.r@r / on M nE. Since at infinity
� D ��1, and so identifies the vector field r@r on C0 with the vector field X on M outside compact
subsets of each, Y will agree with X outside of a compact subset of M. Thus, analyticity implies that
X D Y on M nE. The next observation is that since the flow lines of Y (and hence X ) foliate M nE,
the flow of X must preserve E. Via � therefore, the flow of X induces a flow on C0 that fixes the
points p1; : : : ;pk , where as before each pi denotes the image of a connected component Ei of E �M

under � . The result of this induced flow on C0 is a holomorphic vector field yX that coincides with r@r

on C0 n fp1; : : : ;pkg and which is equal to zero at each pi . By analyticity again, yX D r@r , so that
E comprises one connected component only, which is mapped to the apex of the cone by � . Thus,
� WM ! C0 is a resolution of the singularity of the cone, and the vector field X on M is an extension of
.d�/�1.r@r / from M nE to M so that d�.X /D r@r , as claimed. G

The resolution � WM ! C0 is clearly equivariant with respect to the flow of J0r@r on C0 and the flow
of JX on M. We wish to show next that � WM !C0 is in fact equivariant with respect to the holomorphic
isometric torus action on C0 induced by the flow of J0r@r and that the lift of this torus action to M acts
isometrically on g. This will conclude the proof of Theorem 3.11.

Claim 3.14 The holomorphic isometric torus action on .C0;g0/ generated by J0r@r extends to a
holomorphic isometric action of .M;g;J / so that , in particular , � WM ! C0 is equivariant with respect
to this torus action.

Proof Consider the isometry group of .M;g/ that fixes E endowed with the topology induced by
uniform convergence on compact subsets of M. By the Arzelà–Ascoli theorem, this is a compact Lie
group. Taking the closure of the flow of JX in this group therefore yields the holomorphic isometric
action of a torus T on .M;J;g/. Since the action of T preserves E, this action pushes down via � to a
holomorphic action of T on C0 fixing the apex o of C0. Now, by Theorem 3.8, after noting again that
� D ��1 at infinity, we see that the soliton metric g and the cone metric g0 are asymptotic at infinity.
Therefore these metrics are quasi-isometric on C0 nK, where K � C0 is any compact subset of C0

containing the apex o of C0, so that uniform convergence on compact subsets of C0 n fog measured with
respect to g and g0 are equivalent. Recall that d�.X /D r@r , so that the flow of J0r@r is dense in T and
the flow of J0r@r is isometric with respect to g0. Consequently, every automorphism of .C0;J0/ induced
by T is obtained as a limit of automorphisms of .C0 n fog;g0;J0/ with respect to uniform convergence
on compact subsets measured using g0. Since a uniform limit of isometries is itself an isometry, it follows
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that T acts isometrically with respect to g0 on C0 n fog, so that the action of T on C0 preserves the slices
of C0 and defines a torus in the isometry group of the link of C0 in which the flow of J0r@r is dense.
This final observation concludes the proof of the claim and Theorem 3.11.

3.3 Conclusion of the proof of Theorem A

We now conclude the proof of Theorem A for complete expanding gradient Kähler–Ricci solitons. Con-
clusion (a) follows from [62, Theorem 4.3.1], whereas the Kählerity of .C0;g0/ as stated in conclusion (b)
follows from Proposition 3.10. The remainder of conclusion (b), apart from (b)(i), then follows from
Theorem 3.11. Conclusion (c) follows from Theorem 3.8 after noting that � D ��1 at infinity as above.

As for conclusion (b)(i), the Kähler form ! of the expanding gradient Kähler–Ricci soliton satisfies the
expanding soliton equation �!C i@x@f D�! on M, where �! is the Ricci form of ! and f is the soliton
potential. In H 2.M /, this equation yields Œ��! �D Œ!�. Since i�! is the curvature form ‚ resulting from
the hermitian metric on KM induced by !, we have that Œi‚�D Œ��! �D Œ!�, so that (1-5) is seen to hold
true for the expanding soliton Kähler form ! and the curvature form i‚ it induces on KM .

For a complete shrinking gradient Ricci soliton .M;g;X / with soliton potential f , we define a Kähler–
Ricci flow via

g.t/D�t'�t g for t < 0;

where 't is a family of diffeomorphisms generated by the gradient vector field �.1=t/X with '�1D id, ie

@'t

@t
.x/D�

rgf .'t .x//

t
with '�1 D id:

Then .@g=@t/.t/ D �2 Ric.g.t// for t < 0 and g.�1/ D g. Such a soliton with quadratic curvature
decay has quadratic curvature decay with derivatives by Theorem 2.20(iii), and hence, as proved in
[43, Sections 2.2–2.3], has a unique tangent cone at infinity. These observations provide the starting
point for the proof of Theorem A for complete shrinking gradient Kähler–Ricci solitons with quadratic
curvature decay. The proof then follows the proof for the expanding case, verbatim.

4 Classification results for expanding gradient Kähler–Ricci solitons with
quadratic curvature decay with derivatives

4.1 Proof of Corollary B

Let .M;g;X / be a complete expanding gradient Kähler–Ricci soliton satisfying (1-6) with tangent cone
.C0;g0/, as in Corollary B. Let ! denote the Kähler form of g.

To see that M is the canonical model of C0, note first that Theorem A asserts that there is a Kähler
resolution � WM ! C0 with exceptional set E such that

(4-1)
Z

V

.i‚/k ^!dimC V�k > 0
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for all positive-dimensional irreducible analytic subvarieties V �E of � WM ! C0 and for all integers k

such that 1� k � dimC V, where ‚ denotes the curvature form of the hermitian metric on KM induced
by !. In particular, (4-1) implies that Z

V

.i‚/k ^!dimC V�k > 0

for all positive-dimensional irreducible algebraic subvarieties V � E and for all integers k such that
1� k � dimC V. Setting k D dimC V, we then see thatZ

V

.i‚/dimC V > 0 for every irreducible algebraic subvariety V �E of positive dimension.

But since M is quasiprojective by Proposition 2.24, this is the same as saying that

.DdimC V
�V / > 0 for every irreducible algebraic subvariety V �E of positive dimension,

where D is now a canonical divisor of M. Nakai’s criterion for a mapping (Theorem 2.11) now tells us
that KM is �–ample, so that by definition, � WM ! C0 is the canonical model of C0. Hence C0 has a
smooth canonical model, namely M.

Conversely, suppose that .C0;g0/ is a Kähler cone with radial function r and with a smooth canonical
model � WM !C0. We begin by explaining that [19, Theorem A] holds true without hypothesis (b) of that
theorem. This hypothesis was required in the proof of [19, Proposition 3.2] to show that LX! D i@x@�X ,
where ! is the Kähler form of [19, Proposition 3.1], X is the lift of the radial vector field on the cone,
and �X is a smooth real-valued function. The following claim asserts that this in fact always holds true.

Claim 4.1 Let .C0;g0/ be a Kähler cone with complex structure J0 and radial function r and let
� WM ! C0 be an equivariant resolution with respect to the real torus action on C0 generated by J0r@r .
Let X be the unique holomorphic vector field on M with d�.X /D r@r and let ! be the Kähler form of
[19, Proposition 3.1]. Then LX! D i@x@�X for a smooth real-valued function �X WM !R.

Proof Denote the complex structure of M by J and let X 1;0 D
1
2
.X � iJX /. Then since LJX! D 0

by construction, we have that

(4-2) 1
2
LX! D

1
2
d.!yX /D d.!yX 1;0/:

Now by construction, ! takes the form ! D i z‚hC i@x@u, where u WM ! R is a smooth real-valued
function and z‚h is the average over the action of the torus on M of the curvature form ‚h of a hermitian
metric h on KM . Thus,

(4-3) !yX 1;0
D i z‚hyX 1;0

C ix@.X 1;0
�u/:

Studying the term i z‚hyX 1;0, let nD dimC M , let � be a local holomorphic volume form on M, ie a
nowhere vanishing locally defined holomorphic .n; 0/–form (defined in some local holomorphic coordinate
chart, for example), and set

v WDX 1;0
� log.k�k2h/�

LX 1;0�

�
;
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where k � kh denotes the norm with respect to h. We claim that v is independent of the choice of � and
hence is globally defined. Indeed, any other local holomorphic volume form takes the form q� for some
holomorphic function q. Then

X 1;0
� log.kq�k2h/�

LX 1;0.q�/

q�
DX 1;0

� log jqj2CX 1;0
� log.k�k2h/�

.X 1;0 � q/�C qLX 1;0�

q�

DX 1;0
� log.k�k2h/�

LX 1;0�

�
CX 1;0

� log jqj2�
X 1;0 � q

q„ ƒ‚ …
D0

DX 1;0
� log.k�k2h/�

LX 1;0�

�
;

as required. Next observe that

i‚hyX 1;0
D�ix@

�
X 1;0

� log.k�k2h/
�
D�ix@

�
X 1;0

� log.k�k2h/�
LX 1;0�

�

�
D�ix@v;

since .LX 1;0�/=� is a holomorphic function. Averaging this equation over the action of T then yields
the fact that i z‚hyX 1;0 D ix@zv for a smooth function zv on M. Plugging this into (4-2), we thus see from
(4-3) that

LX! D 2d.ix@.zvCX 1;0
�u//D i@x@.2.zvCX 1;0

�u//:

Hence LX! D i@x@�X , where �X WD 2 Re.zvCX 1;0 �u/, because LX! is a real .1; 1/–form and i@x@ is a
real operator. G

Remark 4.2 The existence of the function v satisfying i‚hyX 1;0 D�ix@v is essentially due to the fact
that X has a canonical lift to the total space of KM and ‚h is the curvature form of a hermitian metric
on KM .

Returning now to our smooth canonical model � WM ! C0 of C0, we will verify the hypotheses of
[19, Theorem A] (apart from the redundant hypothesis (b) of this theorem) for this resolution to show
that M admits a complete expanding gradient Kähler–Ricci soliton g with the desired asymptotics.
By Lemma 2.13, the radial vector field r@r on C0 lifts to a holomorphic vector field X on M with
d�.X /D r@r , and by Lemma 2.12, M is quasiprojective, hence Kähler. Moreover, there exists a Kähler
form � on M and a hermitian metric on KM with curvature form ‚ such that

(4-4)
Z

V

.i‚/k ^ �dimC V�k > 0

for all positive-dimensional irreducible analytic subvarieties V contained in the exceptional set E of
� WM ! C0 and for all integers k such that 1� k � dimC V. Indeed, proceeding as in [25], let � be the
curvature form of a very ample line bundle L on the projective variety which contains M as an open
subset and let ‚ be the curvature form of the hermitian metric induced on KM by � . Then observe that
for any analytic subvariety V �E of dimension k,

(4-5)
Z

V

.i‚/k ^ �dimC V�k
D

Z
V\H1\���\HdimC V�k

.i‚/k
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for generic members H1; : : : ;HdimC V�k of the linear system jLj, so that V \H1\� � �\Hdim V�k �E is
an irreducible subvariety of dimension k. Since E is projective (as M is quasiprojective), this intersection
is a projective algebraic variety by Chow’s theorem. The right-hand side of (4-5) may therefore be written
as Dk � .V \H1\ � � � \Hdim V�k/, where D is a canonical divisor of M. By definition of the canonical
model, KM is �–ample, which by Nakai’s criterion for a mapping (see Theorem 2.11) implies that this
intersection is strictly positive. Thus, we have that (4-4) holds true for the Kähler form � and the curvature
form ‚ that it induces on KM . The hypotheses required for the application of [19, Theorem A] are
therefore satisfied and so M admits a complete expanding gradient Kähler–Ricci soliton .M;g;X / with

j.rg0/k.��g�g0�Ric.g0//jg0
� Ckr�4�k for all k 2N0;

as required.

As for the uniqueness of .M;g;X /, let .Mi ;gi ;Xi/ for i D 1; 2 be two complete expanding gradient
Kähler–Ricci solitons satisfying (1-6) with tangent cone .C0;g0/. As initially proved, both M1 and
M2 are equal to the unique (smooth) canonical model M of C0. Moreover, Theorem A asserts that for
i D 1; 2 there exists a resolution map �i WM ! C0 with d�i.Xi/D r@r such that

(4-6) j.rg0/k..�i/�gi �g0�Ric.g0//jg0
� Ckr�4�k for all k 2N0:

The composition H WD �2 ı �
�1
1
W C0 ! C0 induces an automorphism of C0 fixing the vertex. As

in the proof of Lemma 2.13, uniqueness of the canonical model implies that there exists a unique
biholomorphism F WM !M such that �1 ıF DH ı�1. Unravelling the definition of H , this yields the
fact that �1 ıF D �2. Consequently, d�2..dF /�1.X1//D d�1.X1/D r@r so that .dF /�1.X1/DX2.
Furthermore, in light of (4-6), we have that

(4-7) j.rg0/k..�2/�.F
�g1/�g0�Ric.g0//jg0

� Ckr�4�k for all k 2N0:

Thus, .M;F�g1;X2/ and .M;g2;X2/ are two expanding gradient Kähler–Ricci solitons with the
same soliton vector field which from (4-6) for i D 2 and (4-7) in addition satisfy jF�g1 � g2j D

O.r�4/. The uniqueness theorem [19, Theorem C(ii)] therefore applies (where, in studying the proof
of [19, Theorem C(ii)], one sees that finite fundamental group is not actually required) and asserts that
F�g1 D g2. Thus, .M;g;X / is unique up to pullback by biholomorphisms of M, as claimed.

As for the remainder of Corollary B, item (a) is now clear and item (b) follows from Theorem A.

4.2 Proof of Corollary C

Corollary C follows from Corollary B once we identify the two-dimensional Kähler cones that admit
smooth canonical models as those stated in Corollary C(I)–(III) and realise their respective smooth
canonical models as those stated in Corollary C(b)(i)–(iii).

To this end, let C0 be a two-dimensional Kähler cone with a smooth canonical model M. By adjunction,
M cannot contain any .�1/– or .�2/–curves. In particular, by Theorem 2.15, M coincides with the
minimal model of C0. Using this information, we can identify C0 and M as follows.
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Since C0 is a two-dimensional Kähler cone, it must be prescribed as in Theorem 2.5. We henceforth work
on a case-by-case basis. If C0 is as in Theorem 2.5(i), then � must be as prescribed in Corollary C(I)
since M cannot contain any .�2/–curves; indeed, see [48, Figure 2.1 and Theorem 4.1] for details. In
this case, M will be the minimal model of C0 as stated in Corollary C(b)(i). Otherwise, C0 may be as in
Theorem 2.5(ii) which is precisely the statement of Corollary C(II). In this case, the minimal model M is
given as in the statement of Corollary C(b)(ii). Finally, C0 may be as in Theorem 2.5(iii). Those cones of
Theorem 2.5(iii) that admit a smooth canonical model have been identified in Proposition 2.18, which
yields the statement of Corollary C(III). For these cones, the minimal resolution is the minimal good
resolution which identifies M as in the statement of Corollary C(b)(iii).

5 A volume-minimising principle for complete shrinking gradient
Kähler–Ricci solitons

We now focus our attention solely on shrinking gradient Kähler–Ricci solitons for the remainder of
the article. The set-up of this section is as follows. Let .M;g;X / be a complete shrinking gradient
Kähler–Ricci soliton of complex dimension n with complex structure J, Kähler form !, and with soliton
vector field X Drgf for a smooth real-valued function f WM !R. We assume that a real torus T with
Lie algebra t acts holomorphically, effectively and isometrically on .M;g;J /. Then t can be identified
with real holomorphic Killing vector fields on M. We furthermore assume that JX 2 t.

The goal of this section is to prove the uniqueness of the soliton vector field JX in t by characterising
JX as the unique critical point of a soon-to-be-defined weighted volume functional.

5.1 A Matsushima-type theorem

Let autX .M / denote the Lie algebra of real holomorphic vector fields on M that commute with X and
hence JX, and let gX denote the Lie algebra of real holomorphic g–Killing vector fields on M that
commute with X and hence JX. Clearly gX is a Lie subalgebra of autX .M /. In order to prove the
uniqueness of the soliton vector field X, we need to show that the connected component of the identity of
the Lie group of holomorphic isometries of .M;g;J / commuting with the flow of X is maximal compact
in the connected component of the identity of the Lie group of automorphisms of .M;J / commuting with
the flow of X. This fact will follow from the next theorem, an analogue of Matsushima’s theorem [50]
for shrinking gradient Kähler–Ricci solitons stating that the Lie algebra autX .M / is reducible, after we
prove that the aforementioned groups are indeed Lie groups.

Theorem 5.1 (a Matsushima theorem for shrinking Kähler–Ricci solitons) Let .M;g;X / be a com-
plete shrinking gradient Kähler–Ricci soliton with complex structure J endowed with the holomorphic ,
effective , isometric action of a real torus T with Lie algebra t with JX 2 t. If jRic.g/jg is bounded , then
we have that

autX .M /D gX
˚JgX :
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We expect this theorem to hold true without the assumption of bounded Ricci curvature.

The proof of Theorem 5.1 consists of several steps. Beginning with any real holomorphic vector field
Y 2 autX .M /, Hörmander’s L2–estimates allow for a complex-valued potential, that is, a smooth
complex-valued function uY such that Y 1;0 Dr1;0uY , where Y 1;0 is the .1; 0/–part of Y. Thanks to the
defining equation of a shrinking gradient Kähler–Ricci soliton, we can then modify uY by a holomorphic
function if necessary so that �!uY CuY �Y 1;0 �f D 0, where f is the soliton potential with X Drgf .
We further average uY over the action of T so that LJX uY D 0, which results in the commutator relation
.uY /xkfk D .uY /kfxk . Using this, we then apply a Bochner formula followed by an integration by parts
argument to deduce that r0;2xuY D 0 so that r1;0xuY is a holomorphic vector field. The bound on the
norm of the Ricci curvature is required to control the boundary term in the integration by parts argument.
The gradient of the real and imaginary parts of uY will therefore be real holomorphic vector fields so
that, once one applies the complex structure to these vector fields, they become real holomorphic and
Killing. From this, the stated decomposition follows. To conclude that the sum is direct, we make use of
a splitting theorem for shrinking gradient Ricci solitons.

Proof Write h � ; � i, j � j and r, respectively, for the inner product, norm and Levi-Civita connection
determined by g, and let Y 2 autX .M /. Then Y defines a real holomorphic vector field on M with
ŒX;Y �D 0. Take the .1; 0/–part Y 1;0 of Y, ie let Y 1;0 D

1
2
.Y � iJ Y /. Then x@Y 1;0 D 0, so that !yY 1;0

is a x@–closed .0; 1/–form, where ! denotes the Kähler form of g. We first claim that !yY 1;0 admits a
smooth complex potential.

Claim 5.2 There exists a smooth complex-valued function uY on M such that �i!yY 1;0 D x@uY , or
equivalently, such that Y 1;0 Dr1;0uY .

Note that uY is unique up to the addition of a holomorphic function.

Proof Let h denote the metric on �KM induced by !. Then the curvature of the metric e�f h on �KM

is precisely ! by virtue of the defining equation of a shrinking gradient Kähler–Ricci soliton. Treat
!yY 1;0 as a �KM –valued .n; 1/–form. Then since the norm of Ric.g/ is bounded so that jY 1;0j grows
at most polynomially by Proposition 2.30, we see from the growth on f dictated by Theorem 2.20(i)
that the L2–norm of !yY 1;0 measured with respect to e�f h is finite. An application of Hörmander’s
L2–estimates [24, Theorem 6.1, page 376] now yields the desired conclusion. G

Next, contracting (1-4) with �D 1 with Y 1;0 and using the Bochner formula, we see that

�ix@�!uY C ix@.Y 1;0
�f /D ix@uY ;

so that
x@.�!uY CuY �Y 1;0

�f /D 0:

By adding a holomorphic function to uY if necessary, we may therefore assume that

(5-1) �!uY CuY �Y 1;0
�f D 0:

Geometry & Topology, Volume 28 (2024)



Classification results for expanding and shrinking gradient Kähler–Ricci solitons 311

Furthermore, by averaging uY over the action of T, we may assume that LJX uY D 0. These two
operations normalise uY . Notice that

.uY /xkfk D Y 1;0
�f Dr1;0uY �f D

1
2
hruY � iJruY ;X i D

1
2
hruY ;X i;

by virtue of the fact that LJX uY D 0. For the same reason, we also have that

.uY /kfxk D Y 0;1
�f D .r0;1uY / �f D

1
2
hruY ;X i:

Hence,
.uY /xkfk D .uY /kfxk :

In particular, from (5-1) we deduce that

(5-2) �!uY CuY � .uY /kfxk D 0:

Before continuing, we need to establish some estimates on uY together with its covariant derivatives. We
will divide these estimates up into three claims.

Claim 5.3 There exists a positive constant A such that uY .x/DO.dg.p;x/
A/ as dg.p;x/ tends toC1.

Proof By Proposition 2.30, Y 1;0 grows polynomially, ie jY 1;0j.x/DO.dg.p;x/
a/ for some a>0, where

dg.p; � / denotes the distance with respect to g to a fixed point p 2M, so that jx@uY j.x/DO.dg.p;x/
a/.

Then
x@uY .X /D

1
2
.duY .X /C iduY .JX /„ ƒ‚ …

D0

/D 1
2
X �uY :

Thus,

(5-3) jX �uY j D 2jx@uY .X /j DO.dg.p;x/
aC1/:

Let 
x.t/ be an integral curve of X with 
x.0/D x 2M. Then

uY .
x.t//DuY .
x.0//C

Z t

0

d

ds
uY .
x.s// dsDuY .
x.0//C

Z t

0

.X �uY /.
x.s// dsDCCO.e.aC1/t /;

so that, by (2-11) and Theorem 2.20(i),

juY .x/j DO.dg.p;x/
aC1/: G

The next claim concerns the weighted L2–integrability of the total gradient and second covariant derivatives
of u.

Claim 5.4 The gradient ruY and the second covariant derivatives r2uY of uY belong to L2.e�f !n/.

Proof Since �!uY D Y 1;0 �f �uY, the estimate established in Claim 5.3 together with the polynomial
growth of X and Y at infinity show that�!uY is growing at most polynomially at infinity as well. By (5-3),
the same holds true for the drift term X �uY. Therefore the drift Laplacian �!uY �

1
2
X �uY is growing at

most polynomially at infinity ensuring its weighted L2–integrability, ie �!;X uY WD�!uY �
1
2
X �uY 2

L2.e�f !n/. This implies in turn that r Re.uY / and r Im.uY / belong to L2.e�f !n/. Indeed, by
the previous arguments, it suffices to show that if a smooth real-valued function v WM ! R satisfies
v 2L2.e�f !n/ and �!;X v 2L2.e�f !n/, then rv 2L2.e�f !n/.
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To this end, let R be a positive real number and let �R WM ! Œ0; 1� be a cut-off function with compact
support in the geodesic ball Bg.p; 2R/ such that �R D 1 on Bg.p;R/ and jr�Rjg � c=R. Then since
.�!;X /v

2 D 2jrvj2C 2h�!;X v; vi, integration by parts leads to the inequality

2

Z
M

jrvj2�2
R e�f !n

D

Z
M

�!;X v
2�2

Re�f !n
� 2

Z
M

h�!;X v; vi�
2
R e�f !n

D�

Z
M

hrv2;r�2
Rie
�f !n

� 2

Z
M

h�!;X v; vi�
2
R e�f !n

�

Z
M

jrvj2�2
R e�f !n

C
c

R2

Z
M

v2e�f !n
C

Z
M

.j�!;X vj
2
Cjvj2/e�f !n;

which yields Z
M

jrvj2�2
R e�f !n

�
c

R2

Z
M

v2e�f !n
C

Z
M

.j�!;X vj
2
Cjvj2/e�f !n:

One then obtains the expected result for the gradient by letting R tend to C1.

Similarly, for the second covariant derivatives, it suffices to show that if a smooth real-valued function
v WM !R satisfies rv 2L2.e�f !n/ and �!;X v 2L2.e�f !n/, then r2v 2L2.e�f !n/. To this end,
we apply the Bochner formula and use the soliton equation as follows:

(5-4) �!;X jrvj
2
D jr

2vj2C
�
Ric.g/C 1

2
LX g

�
.rv;rv/Chr.�!;X v/;rvi

D jr
2vj2Cjrvj2Chr.�!;X v/;rvi

� jr
2vj2Chr.�!;X v/;rvi:

Next, let �R WM ! Œ0; 1� be the cut-off function defined as above. Then using integration by parts, the
identity (5-4) leads to the inequalities

2

Z
M

jr
2vj2�2

Re�f!n
� 2

Z
M

�!;X jrvj
2�2

R e�f !n
�2

Z
M

hr.�!;X v/;rvi�
2
R e�f!n

D�

Z
M

hrjrvj2;r�2
Rie
�f !n

C2

Z
M

.2j�!;X vj
2�2

RC�!;X vhrv;r�
2
Ri/e

�f!n

�

Z
M

jr
2vj2�2

Re�f!n
C

c

R2

Z
M

jrvj2e�f !n
Cc

Z
M

.j�!;X vj
2
Cjrvj2/e�f!n

for some positive constant c independent of R. Thus,Z
M

jr
2vj2�2

R e�f !n
�

c

R2

Z
M

jrvj2 e�f !n
C

Z
M

.j�!;X vj
2
Cjrvj2/ e�f !n:

The desired result for r2v now follows by letting R tend to C1. G

Finally, we show that some components of the Hessian of xuY vanish identically.

Claim 5.5 The .0; 2/–part r0;2xuY of the Hessian of xuY vanishes identically on M.

Proof For clarity, we suppress the dependence of the potential uY on the vector field Y in what follows.
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Let R> 0 and let �R be a cut-off function as in the proof of Claim 5.4. Reminiscent of [63, equation (2.7)],
from (5-2) we then find, in normal holomorphic coordinates at a point where the Ricci form �! of ! has
components �i x| , that

0D

Z
M

.�!uCu�fxkuk/ixux{ �
2
R e�f !n

D

Z
M

.u
k xki
Cui �fixk

uk �fxkuik/xux{ �
2
R e�f !n

D

Z
M

.u
kixk
� �ixsusCui �fixk

uk �fxkuik/xux{ �
2
R e�f !n since uji x| D uj x| i C �ixsus ,

D

Z
M

.u
ik xk
C .��ixsusCui �fixk

uk/„ ƒ‚ …
D0

�fxkuik/xux{ �
2
R e�f !n

D

Z
M

.u
ik xk
�fxkuik/xux{ �

2
R e�f !n

D

Z
M

.�!;X xux{/xux{ �
2
R e�f !n

D�

Z
M

xux{ x|uij �
2
R e�f !n

�
1

2

Z
M

hx@�2
R;
x@jx@xuj2i e�f !n:

Therefore, by the Cauchy–Schwarz inequality,Z
M

jr
0;2
xuj2! �

2
R e�f !n

� c

Z
M

.jx@�Rjj
x@xuj/ � .�Rjr

2
xuj!/ e�f !n

� c

�Z
M

jr�Rj
2
jrxuj2e�f !n

�1
2
�Z

M

jr
2
xuj2!�

2
Re�f !n

�1
2

for some positive constant c independent of R that may vary from line to line. By Claim 5.4, the previous
inequality leads to the bound Z

M

jr
0;2
xuj2! �

2
R e�f !n

�
c

R

for some positive constant c independent of R. Letting R tend to C1, this shows thatZ
M

jr
0;2
xuj2! e�f !n

D 0;

as desired. G

Consequently, r0;2xuY D 0, from which it follows that r1;0xuY is a holomorphic vector field.

Thus, r1;0uY and r1;0xuY are holomorphic vector fields. Write uY D vY C iwY , where vY and
wY are smooth real-valued functions on M. Then we deduce that r1;0vY D

1
2
.rvY � iJrvY / and

r1;0wY D
1
2
.rwY � iJrwY / are holomorphic. In particular, rvY and rwY are real holomorphic

vector fields on M so that by [32, Lemma 2.3.8], JrvY and JrwY are real holomorphic g–Killing
vector fields. Therefore we have the decomposition

1
2
.Y � iJ Y /D Y 1;0

Dr
1;0uY Dr

1;0.vY C iwY /D
1
2
.rvY CJrwY /�

1
2
i.JrvY �rwY /;

Geometry & Topology, Volume 28 (2024)



314 Ronan J Conlon, Alix Deruelle and Song Sun

so that

(5-5) Y DrvY CJrwY D JrwY CJ.�JrvY /:

Moreover, since LJX uY D 0, we have that LJX vY DLJXwY D 0 so that ŒJX;rvY �D ŒJX;rwY �D 0,
and consequently ŒX;JrvY �D ŒX;JrwY �D 0. Hence JrvY and JrwY lie in gX , leaving (5-5) as
the desired decomposition.

To show that this decomposition is direct, suppose that Z 2 gX \JgX. Then ZDJW, where W and JW

are real holomorphic and Killing. Since W is holomorphic and JW is Killing, rW is symmetric. Since
W is Killing, rW is skew-symmetric. Thus, W is parallel. If W is nontrivial, then by [29, Corollary 3.2],
.M;g/ splits off a line, with W the generator of this line. In particular, we may write M D N �R

for a manifold N with g D gN ˚ dt2 and W D @t , where t is the coordinate on the R–direction and
gN a shrinking Ricci soliton on N . Now the soliton vector field X must split as a direct sum with the
summand in the R–direction necessarily t@t . Since ŒW;X �D 0 as Z 2 gX, this yields a contradiction, so
that W D 0. Hence the stated decomposition of autX .M / is direct.

Since M is noncompact, we need to verify that the various automorphism groups in question are indeed
Lie groups. This is necessary for the applications of Theorem 5.1 that we have in mind. We begin with:

Proposition 5.6 Let .M;g;X / be a complete shrinking gradient Kähler–Ricci soliton with bounded
Ricci curvature. Then there exists a unique connected Lie group AutX0 .M / (endowed with the compact–
open topology) of diffeomorphisms acting effectively on M with Lie algebra autX .M /.

AutX0 .M / is of course the connected component of the identity of the holomorphic automorphisms of M

that commute with the flow of X.

The fact that there is a unique Lie group AutX0 .M / with the stated properties follows from Palais’
integrability theorem [57] (see also [40, Theorem 3.1, page 13]), once we establish the completeness and
finite-dimensionality of autX .M /. However, this theorem only asserts that AutX0 .M / is a Lie group with
respect to the “modified” compact–open topology. In order to see that it is a Lie group with respect to the
compact–open topology, we must appeal to [35, Theorem 5.14], using the fact that AutX0 .M / is closed
with respect to the compact–open topology. Now, the completeness of the vector fields in autX .M / is
clear from Lemma 2.34. As for their finite-dimensionality, we have the following.

Proposition 5.7 Let .M;g;X / be a complete shrinking gradient Kähler–Ricci soliton with bounded
Ricci curvature and let autX .M / denote the space of all real holomorphic vector fields Y on M with
ŒX;Y �D 0. Then autX .M / is finite-dimensional.

Proof We provide an analytic proof of this fact. Letting j � j denote the norm with respect to g and
writing f for the soliton potential, we have a natural norm k � k2

L2
f

on autX .M / defined by

kY k2
L2
f

WD

Z
M

jY j2e�f !n:
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It suffices to show that the unit ball is compact with respect to this norm. To this end, suppose that we
have a sequence .Yi/i�0 with kYikL2

f
D 1. Then by elliptic estimates, we get uniform C k–bounds on

jYi j over a fixed ball Bg.p;R/�M once a C 0–estimate is established. Now, by a Nash–Moser iteration
applied to the norm of Yi , one obtains the estimate

sup
Bg.p;R=2/

jYi j � C.n;R/kYikL2.Bg.p;R//
:

Since kYikL2
f
� 1, then, a fortiori,

sup
Bg.p;R=2/

jYi j � C.n;R/ecR2

kYikL2
f
.Bg.p;R//

� C 0.n;R/:

Finally, according to (the proof) of Proposition 2.30, there is some large radius R0 > 0 such that

(5-6) jYi j.x/� C
�
n; sup

M

jRic.g/j; sup
Bg.p;R0/

jYi j
�
� .dg.p;x/C 1/a for all x 2M;

for some uniform positive constant a, where dg.p;x/ denotes the distance between p and x with respect
to g. Since supBg.p;R0/

jYi j � C.n;R0/, passing to a subsequence if necessary we may assume that
.Yi/i�0 converges to some Y1 on the whole of M in the C1loc .M /–topology. The question is whether
this convergence is strong in the above norm. Thanks to (5-6), given " > 0, there exists some positive
radius R such that for all indices i � 0,

kYikL2
f
.MnBg.p;R//

� ";

since the soliton potential grows quadratically by Theorem 2.20(i), and the volume growth of geodesic
balls is at most polynomial by Theorem 2.20(ii). This shows that if R is chosen sufficiently large,
then the remainder of the norm outside Bg.p;R/ is uniformly small; hence we do indeed have strong
convergence.

Remark 5.8 Munteanu and Wang [51, Theorem 1.4] proved that the space of polynomial growth
holomorphic functions of a fixed degree on a shrinking gradient Kähler–Ricci soliton is finite-dimensional
without assuming a Ricci curvature bound. We therefore expect that the above proposition holds true in
more generality. We also expect that the ring of holomorphic functions of polynomial growth on M is
finitely generated and that M is algebraic, at least under a Ricci bound assumption.

Recall that gX denotes the Lie algebra comprising real holomorphic g–Killing vector fields that commute
with X and hence with JX. We next consider the existence of a Lie group with Lie algebra gX.

Proposition 5.9 Let .M;g;X / be a complete shrinking gradient Kähler–Ricci soliton with bounded
Ricci curvature. Then there exists a unique connected Lie group GX

0
(endowed with the compact–open

topology) of diffeomorphisms acting effectively on M with Lie algebra gX .

Proof Since gX is a Lie subalgebra of the Lie algebra of g–Killing vector fields on M, gX is a finite-
dimensional Lie algebra. Furthermore, vector fields induced by gX on M are complete by Lemma 2.34.
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By Palais’ integrability theorem [57] therefore, there exists a unique connected Lie group GX
0

of diffeo-
morphisms acting effectively on M with Lie algebra gX. GX

0
is precisely the connected component of

the identity of the Lie group of holomorphic isometries on M that commute with the flow of X. Since
GX

0
is closed with respect to the compact–open topology, [35, Theorem 5.14] guarantees that GX

0
is a

Lie group with respect to this topology, as stated.

We next prove that GX
0

is a compact Lie subgroup of AutX0 .M /.

Lemma 5.10 Let .M;g;X / be a complete shrinking gradient Kähler–Ricci soliton with complex
structure J and with soliton vector field X Drgf for a smooth real-valued function f WM !R. Then
elements of gX are tangent to the level sets of f . Moreover , if g has bounded Ricci curvature , then GX

0

is a compact Lie subgroup of AutX0 .M / (with respect to the compact–open topology).

Proof Let Y 2 gX . For the first part of the lemma, we will show that LY f D 0, so that the flow of Y

preserves the level sets of f , thereby forcing Y to be tangent to the level sets of f .

Applying LY to the shrinking Kähler–Ricci soliton equation, we find that i@x@.LY f /D 0. Notice that
since ŒJX;Y �D 0, we have that LJX .LY f /D LY .LJX f /D 0. The function X � .LY f / is therefore
holomorphic. It is also real-valued, hence must be equal to a constant, say X � .LY f / D c0. Since
X Drgf and f has a minimum, we deduce that in fact c0 D 0, so that X � .LY f /D 0.

Next, deriving with respect to the Killing vector field Y the soliton identity from Lemma 2.22, namely

LX f CRg DX �f CRg D jr
gf j2CRg D 2f;

making use of the fact that X and Y commute, we obtain

2LY f D LY .LX f /CLY Rg„ƒ‚…
D0

D LX .LY f /DX � .LY f /;

where we have just seen that this last term vanishes. Hence LY f D 0, as desired.

As for the second part of the lemma, note that under the assumption of bounded Ricci curvature of g, both
GX

0
and AutX0 .M / are Lie groups endowed with the compact–open topology, by Propositions 5.6 and 5.9,

respectively. In addition, GX
0

is a subgroup of AutX0 .M / since gX is a Lie subalgebra of autX .M /.
Compactness of GX

0
with respect to the compact–open topology follows from the Arzelà–Ascoli theorem

because the level sets of f are compact by properness of f and, as we have just seen, are preserved
by GX

0
. Being compact, GX

0
is then a closed subgroup of AutX0 .M /, hence is a compact Lie subgroup

of AutX0 .M /, with everything being relative to the compact–open topology.

Finally, we can now deduce from Theorem 5.1 that GX
0

is a maximal compact Lie subgroup of AutX0 .M /.

Corollary 5.11 Let .M;g;X / be a complete shrinking gradient Kähler–Ricci soliton with bounded Ricci
curvature. Then GX

0
is a maximal compact Lie subgroup of AutX0 .M /.
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Proof First note that GX
0

is a compact Lie subgroup of AutX0 .M / by Lemma 5.10. Now suppose that
GX

0
is not maximal in AutX0 .M /. Then there exists a compact Lie subgroup K of AutX0 .M / strictly

containing G0. In particular, the real dimension of K must be strictly greater than GX
0

. On the Lie algebra
level, since the decomposition of Theorem 5.1 is direct, there exists a nonzero real holomorphic vector Z

in the Lie algebra of K which is not contained in gX , yet is contained in JgX . Since K is compact, the
closure of the flow of Z in K will define a real torus T k of real dimension k in K in which the flow
of Z is dense.

Consider the vector field Z. This is a real holomorphic vector field with JZ Killing. Since a shrinking
soliton has finite fundamental group [67], we have that H 1.M /D 0. Hence JZ admits a Hamiltonian
potential u WM !R so that Z Drgu. If the real dimension k of T is equal to one, then the orbits of Z

are all closed, but a gradient flow has no nontrivial closed integral curves since

d

dt
u.
x.t//D jr

guj2 � 0;

where 
x.t/ denotes the integral curve of Z with 
x.0/D x 2M. Hence k is strictly greater than one.
But this is impossible as well. Indeed, let x be any point of M where Z.x/¤ 0. Then u.
x.t// is an
increasing function of t , so that u.
x.t//�u.x/ > c for some constant c > 0 say, for all t > 1. On the
other hand, since the flow of Z is dense in T, 
x.t/ intersects any neighbourhood of x in M for some
t > 1. This yields another contradiction. Thus, GX

0
is maximal in AutX0 .M /, as claimed.

5.2 The weighted volume functional

Recall that .M;g;X / is a complete shrinking gradient Kähler–Ricci soliton of complex dimension n

with complex structure J, Kähler form ! and soliton vector field X Drgf for f WM !R smooth, and
that by assumption, we have a real torus T with Lie algebra t acting holomorphically, effectively and
isometrically on .M;g;J / with JX 2 t.

In order to make sense of the weighted volume functional of a shrinking gradient Kähler–Ricci soliton,
we need to define a moment map for the action of T on M. This comes down to showing that every
element of t admits a real Hamiltonian potential, as demonstrated in the next proposition. Such a potential
exists essentially because T acts by isometries and H 1.M /D 0. However, a Hamiltonian potential is
only defined up to a constant. Therefore a normalisation is required to determine the potential uniquely.
We normalise so that the potential lies in the kernel of a certain linear operator, precisely the condition
required to show that JX is the unique critical point of the weighted volume functional.

Proposition 5.12 In the above situation , let Y 2 t so that Y defines a real holomorphic g–Killing vector
field on M with ŒX;Y �D 0. Then there exists a unique smooth real-valued function uY WM !R with
LJX uY D 0 such that �!uY CuY C

1
2
.J Y / �f D 0 and duY D�!yY.

Proof Let Z WD �J Y. Then Z is real holomorphic and JZ is g–Killing. Since a shrinking soliton
has finite fundamental group [67], we have that H 1.M /D 0. This implies that there exists a smooth
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real-valued function uY WM!R such that ZDrguY . Then duY ıJ D�!yZ. Let Z1;0D
1
2
.Z�iJZ/.

Then we have that

!yZ1;0
D

1
2
!yZ � 1

2
i!yJZ D�1

2
duY ıJ C 1

2
iduYD

1
2
i.duY C iduY ıJ /D ix@uY ;

ie x@.�iuY /D�!yZ1;0. After noting from the proof of Lemma 5.10 that Y 2 t implies that Y �f D 0,
we automatically have that LJX uY D 0. Using the Bochner formula, contracting (1-4) with �D 1 with
Z1;0 then results in

�ix@�!uY C ix@.Z1;0
�f /D ix@uY :

In other words,
x@.�!uY CuY �Z1;0

�f /D 0:

Now, the fact that LJX uY D 0 implies that

0D duY .JX /D g.rguY ;JX /D g.Z;JX /D�g.JZ;X /D�df .JZ/D�.JZ/ �f:

In particular, �!uY CuY �Z1;0 �f is a real-valued holomorphic function, hence is equal to a constant.
By subtracting this constant from uY and plugging in the definition of Z, we arrive at our desired
normalisation of uY , namely

�!uY CuY C
1
2
.J Y / �f D 0:

Since uY is defined up to a constant, this condition determines uY uniquely.

With this proposition, we can now define our moment map for the action of T on M.

Definition 5.13 Let h � ; � i denote the natural pairing between t and t�. Then we define the moment map
� WM ! t� for the action of T on M as follows: for x 2M , �.x/ is defined by the equation

uY .x/D h�.x/;Y i for all Y 2 t;

where uY is such that rguY D�J Y, LJX uY D 0 and �!uY CuY C
1
2
.J Y / �f D 0.

We next define the weighted volume functional for complete shrinking gradient Kähler–Ricci solitons.

Definition 5.14 (weighted volume functional, see [64, equation (2.3)]) Let .M;g;X / be a complete
shrinking gradient Kähler–Ricci soliton of complex dimension n with complex structure J, Kähler form !,
and with soliton vector field X Drgf for a smooth real-valued function f WM !R, endowed with the
holomorphic, effective, isometric action of a real torus T with Lie algebra t and with a compact fixed
point set. Let � denote the moment map of the action as prescribed in Definition 5.13 and assume that
JX 2 t. Let Y 2 t and let uY WD h�;Y i be the Hamiltonian potential of Y, so that LJX uY D 0 and

(5-7) �!uY CuY C
1
2
.J Y / �f D 0:

Finally, let
ƒ WD fY 2 t j uY is proper and bounded belowg � t:
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Then the weighted volume functional F Wƒ!R>0 is defined by

F.Y /D

Z
M

e�h�;Y i!n
D

Z
M

e�uY !n:

The set ƒ is an open cone in t which is determined by the image of M under �; see Proposition A.4
for details. Since f grows quadratically at infinity by Theorem 2.20(i), we know that it is also proper.
Hence JX, which by assumption lies in t, lies in ƒ, so that ƒ is nonempty. Thus, by the Duistermaat–
Heckman theorem (Theorem A.3), F is seen to be well-defined. (Proposition A.13 provides an alternative
argument, without using the Duistermaat–Heckman theorem, for why F is well-defined.) As the next
lemma shows, the value of F is also independent of the choice of shrinking gradient Kähler–Ricci soliton.
This relies on the normalisation (5-7) of the Hamiltonian potentials.

Lemma 5.15 Let .M;gi ;Xi/ for iD1; 2 be two shrinking gradient Kähler–Ricci solitons , both satisfying
the hypotheses of Definition 5.14 with respect to a fixed real torus T. Let Fi denote the weighted volume
functional of .M;gi ;Xi/ and let ƒi denote the domain of Fi . Then F1 D F2 on ƒ1\ƒ2.

Proof Let !i denote the Kähler form of gi and let Y 2ƒ1\ƒ2. Write u
.i/
Y

for the Hamiltonian potential
of Y with respect to !i . Then analysing the expression given in Theorem A.3 for each Fi , namely (A-1),
one sees that the right-hand side depends only on the value of u

.i/
Y

on the (compact) zero set M0.Y /

of Y and integrals over this set with respect to !i . Now, the normalisation condition (5-7) infers that
on M0.Y /, u

.i/
Y
D ��!i

u
.i/
Y
D � div.Y /, a quantity that, on M0.Y /, is independent of the choice of

metric. Moreover, du
.i/
Y
D�!iyY so u

.i/
Y

is evidently constant on each connected component of M0.Y /.
Thus, we deduce that u

.1/
Y
D u

.2/
Y

on M0.Y /, both being equal to a fixed constant on each connected
component of M0.Y /. As for the integrals on the right-hand side of (A-1), these involve integrating a
closed form !i over the compact boundary-less set M0.Y /. Both being shrinking Kähler–Ricci solitons,
!1 and !2 lie in the same cohomology class, hence integrating over M0.Y / with respect to either !1 or
!2 does not change the value of the integral. This brings us to the desired conclusion.

We next list some more elementary properties of F , in particular the desired property that characterises
JX as the unique critical point of F . Here our normalisation of the Hamiltonian potentials also comes
into play.

Lemma 5.16 (volume-minimising principle) Let .M;g;X / be a complete shrinking gradient Kähler–
Ricci soliton of complex dimension n with Kähler form ! and with soliton vector field X Drgf for a
smooth real-valued function f WM !R, endowed with the holomorphic , effective , isometric action of a
real torus T with Lie algebra t. Assume that JX 2 t and that the Ricci curvature of g is bounded. Then

(i) F is strictly convex on ƒ, and

(ii) JX is the unique critical point of F in ƒ.

Geometry & Topology, Volume 28 (2024)



320 Ronan J Conlon, Alix Deruelle and Song Sun

Remark 5.17 The boundedness of the scalar curvature of g guarantees here that F is well-defined on ƒ.
Indeed, this is clear from the Duistermaat–Heckman theorem (Theorem A.3) after noting that the zero set
of X, which contains the fixed point set of T as a closed subset, is compact by Lemma 2.25.

Proof of Lemma 5.16 (i) Let Y1;Y2 2ƒ. Then the line segment tY1C.1� t/Y2; t 2 Œ0; 1�, is contained
in ƒ because ƒ is convex, as one sees from its definition. Moreover, by the linearity of the moment map,
we have that

utY1C.1�t/Y2
D tuY1

C .1� t/uY2
for all t 2 Œ0; 1�:

Thus, since the function x 2R 7! e�x 2R is strictly convex, we find that

F.t �Y1C .1� t/ �Y2/ < t �F.Y1/C .1� t/ �F.Y2/ for all t 2 .0; 1/; unless Y1 D Y2:

(ii) As a strictly convex function on the convex set ƒ, F has at most one critical point. The claim is that
this critical point is obtained at JX. Indeed, let Y 2 t and let uY denote the Hamiltonian potential of Y,
normalised so that �!uY CuY C

1
2
.J Y / �f D 0. Recall that �J.JX /Drgf , so that

dJX F.Y /D�

Z
M

uY e�f !n:

Let R be a positive real number and let �R WM ! Œ0; 1� be a cut-off function with compact support in the
geodesic ball Bg.p; 2R/ such that �R D 1 on Bg.p;R/ and jr�Rjg � c=R for some c > 0. Then, using
integration by parts, we have thatˇ̌̌̌Z

M

uY �
2
R e�f !n

ˇ̌̌̌
D

ˇ̌̌̌Z
M

�
�!uY C

1
2
.J Y / �f

�
�2

R e�f !n

ˇ̌̌̌
D

ˇ̌̌̌
1

2

Z
M

.�g �r
gf � /uY �

2
R e�f !n

ˇ̌̌̌
D

1

2

ˇ̌̌̌Z
M

g
�
ruY ;r.�

2
R/
�
e�f !n

ˇ̌̌̌

�
1

2

�Z
M

jruY j
2e�f !n

�1
2
�Z

M

jr.�2
R/j

2e�f !n

�1
2

D

�Z
M

jruY j
2e�f !n

�1
2

.jr�Rj
2
j�Rj

2e�f !n/
1
2

�
c2

R2

�Z
M

jruY j
2e�f !n

�1
2
�Z

M

e�f !n

�1
2

;

where the fact that ruY 2L2.e�f !n/ follows as in the proof of Claim 5.4. Letting R!C1, we see
that dJX F.Y /D 0, as required.

The main tool we use to compute the weighted volume functional is the Duistermaat–Heckman theorem.
The statement of this theorem and a discussion have been relegated to the appendix. It expresses the
weighted volume functional in terms of data determined by the induced action on M of the element Y 2ƒ.
In particular, this data is independent of the metric !. Consequently, F is independent of the particular
shrinking gradient Kähler–Ricci soliton. It is this observation that will allow us to ascertain the uniqueness
of the soliton vector field X under certain assumptions. This is the content of the next subsection.
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5.3 A general uniqueness theorem

As an application of Corollary 5.11, we prove the uniqueness statement of Theorem D for the soliton
vector field X of a shrinking gradient Kähler–Ricci soliton, the precise statement of which we now recall
below.

Theorem 5.18 (Theorem D) Let M be a noncompact complex manifold with complex structure J,
endowed with the effective holomorphic action of a real torus T. Denote by t the Lie algebra of T. Then
there exists at most one element � 2 t that admits a complete shrinking gradient Kähler–Ricci soliton
.M;g;X / with bounded Ricci curvature , with X D rgf D �J � for a smooth real-valued function f
on M.

The outline of the proof of this theorem is as follows. Suppose that M admitted two soliton vector fields
X1 and X2. Then the maximal tori in the Lie groups AutXi

0
.M / for i D 1; 2 will be conjugate to T by

Iwasawa’s theorem [39]. After choosing an appropriate gauge, JX1 and JX2 will then be contained in
the Lie algebra t of T and both vector fields will be critical points of their respective weighted volume
functional. But since the weighted volume functional is independent of the shrinking Kähler–Ricci
soliton by the Duistermaat–Heckman theorem, both weighted volume functionals must coincide, so that
JX1 D JX2 by uniqueness of the critical point.

Proof Suppose that M admitted two complete shrinking gradient Kähler–Ricci solitons, .M;gi ;Xi/ for
i D 1; 2, with bounded Ricci curvature and with Xi Dr

gifi for fi WM !R smooth such that Xi D�J �i

for �i 2 t. Let G
Xi

0
denote the connected component of the identity of the group of holomorphic isometries

of .M;gi ;J / that commute with the flow of Xi . Corollary 5.11 then asserts that G
Xi

0
is a maximal

compact Lie subgroup of the Lie group AutXi

0
.M /, the connected component of the identity of the group of

automorphisms of .M;J / that commute with the flow of Xi . Denote by Ti the maximal real torus in G
Xi

0
.

Then Ti is maximal in AutXi

0
.M /. For each v 2 t, we have that Œv; �i �D 0, so that Œv;Xi �D 0. Hence each

element of T commutes with the flow of Xi and so T itself is a Lie subgroup of AutXi

0
.M /. Without

loss of generality, we may assume that T is maximal in AutXi

0
.M /. Then, by Iwasawa’s theorem [39],

there exists an element ˛i 2 AutXi

0
.M / such that ˛iTi˛

�1
i D T . Since ˛i commutes with the flow of Xi ,

necessarily d˛�1
i .Xi/ D Xi . Moreover, ˛�i gi is invariant under T. Thus, .M; zgi ; zXi/ with zgi D ˛

�
i gi

and zXi D d˛�1
i .Xi/ is a T –invariant shrinking gradient Kähler–Ricci soliton with soliton vector field

zXi DXi D�J �i as before. Hence, by considering this pullback, we may assume that each .M;gi ;Xi/

is invariant under T.

Now, by assumption we have that �1; �2 2 t. Since the corresponding Hamiltonian potentials are the
soliton potentials, which themselves are proper and bounded below, we have that �i 2 ƒi � t, where
ƒi denotes the open cone of elements of t admitting Hamiltonian potentials with respect to the Kähler
form !i of gi that are proper and bounded below. We wish to show that �1; �2 2 ƒ1 \ƒ2 ¤ ∅. The
result will then follow from an application of the Duistermaat–Heckman theorem. So let u1 denote the
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Hamiltonian potential of �1 D JX1 with respect to g2, that is, rg2u1 D X1, and for x 2M, let 
1.t/

denote the integral curve of X1 through x at t D 0. Then we have that

u1.
1.t//D u1.
1.0//C

Z t

0

du1. P
1.s// ds

D u1.x/C

Z t

0

g2.X1;X1/.
1.s// ds

D u1.x/C

Z t

0

jX1j
2
g2
.
1.s// ds:

Since g1 has bounded Ricci curvature, so that the zero set of X1 is compact by Lemma 2.25, and since
each forward orbit of the negative gradient flow of f1 converges to a point in the zero set of X1 by
Proposition 2.27, it is clear that every point of M lies on an integral curve of X1 passing through a
fixed compact set. Thus, we see that u1 is bounded from below. For t 2 Œ0; 1�, consider the vector field
Yt WD t�1C .1� t/�2. The Hamiltonian potential of Y0 with respect to g2 is f2, whereas that of Y1 is u1.
By linearity of the moment map, the Hamiltonian potential of Yt with respect to g2 is ht WD tu1C.1�t/f2.
Since u1 is bounded from below and f2 is proper, ht is proper and bounded below for t 2 Œ0; 1/, so that
Yt 2ƒ2 for t 2 Œ0; 1/. In a similar manner, one can show that Yt 2ƒ1 for t 2 .0; 1�. The upshot is that
Yt 2ƒ1\ƒ2 ¤∅ for t 2 .0; 1/ with �1; �2 2ƒ1\ƒ2.

Define a real-valued function F on Œ0; 1� as follows: F.t/ WD F2.Yt / if t 2 Œ0; 1/ and F.t/ WD F1.Yt / if
t 2 .0; 1�, where Fi is the weighted volume functional with respect to !i . Then F is well-defined as both
F1 and F2 are well-defined because of the Ricci curvature bound (see Remark 5.17) and by Lemma 5.15
they are equal on ƒ1\ƒ2. Moreover, F is convex and continuous on Œ0; 1� and strictly convex on .0; 1/.
Finally, observe that

F.0/D F2.�2/� min
Œ0;1/

F2 � F2.Yt /D F1.Yt /

for every t 2 .0; 1/. By letting t tend to 1, one sees that F.0/� F.1/. By symmetry, one also sees that
F.1/ � F.0/, which implies that F.1/ D F.0/ D minŒ0;1� F . Since F is convex, F must be constant
on Œ0; 1�, which contradicts the fact that F is strictly convex on .0; 1/ unless .Yt /t2.0;1/ is reduced to a
single point, ie unless �1 D �2. This concludes the proof.

5.4 Shrinking gradient Kähler–Ricci solitons on Cn and O.�k/! P n�1 for 0 < k < n

Using Theorem D, we are now able to classify shrinking gradient Kähler–Ricci solitons with bounded
Ricci curvature on Cn and on the total space of the line bundle O.�k/! Pn�1 for 0 < k < n, and in
doing so, prove items (1) and (2) of Theorem E.

Theorem 5.19 (items (1) and (2) of Theorem E) Let .M;g;X / be a complete shrinking gradient
Kähler–Ricci soliton with bounded Ricci curvature.

(1) If M D Cn, then up to pullback by an element of GL.n;C/, .M;g;X / is the flat Gaussian
shrinking soliton.
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(2) If M is the total space of the line bundle O.�k/! Pn�1 for 0 < k < n, then up to pullback by
an element of GL.n;C/, .M;g;X / is the unique U.n/–invariant shrinking gradient Kähler–Ricci
soliton constructed by Feldman , Ilmanen and Knopf [30] on this complex manifold.

Proof Let f denote the soliton potential of X , so that f WM ! R is a smooth real-valued function
with X D rgf , and let M be as in item (1) or (2) of the theorem. We make no distinction as of yet.
Denote the complex structure of M by J and let GX

0
denote the connected component of the identity of

the holomorphic isometries of .M;J;g/ that commute with the flow of X. Since g has bounded Ricci
curvature, GX

0
is a compact Lie group by Lemma 5.10, hence the closure of the flow of JX in GX

0
yields

the holomorphic isometric action of a real torus T on .M;J;g/ with Lie algebra t containing JX. Since
M is 1–convex by [20, Lemma 2.15] and the Ricci curvature of g is bounded, Proposition 2.26 tells us
that the zero set of X, and correspondingly the fixed-point set of T, comprises a single point in item (1)
and is contained in the zero section of the line bundle in item (2). Furthermore, Proposition 2.27 implies
that each forward orbit of the negative gradient flow of f converges to a point in this fixed-point set. By
contracting the zero section of the line bundle in item (2), we see that the action of T on M induces an
action of T on Cn=Zk for k D 1; : : : ; n� 1, as appropriate with fixed-point set the apex, and that this
action further lifts to an action of T on Cn with an isolated fixed point. The lift of X to Cn then defines
a holomorphic vector field on Cn with J0X 2 t, where J0 denotes the standard complex structure on Cn,
and with each forward orbit of �X converging to this isolated fixed point.

By [17, Section 3.1], we may choose global holomorphic coordinates .z1; : : : ; zn/ on Cn with respect to
which the action of T on Cn is linear, that is, lies in GL.n;C/. These coordinates descend to coordinates
on Cn=Zk , then lift to coordinates on M with respect to which the action of T on M lies in GL.n;C/.
Without loss of generality, we may assume that T is maximal in GL.n;C/. Then we still have that
JX 2 t. Since any two maximal tori in GL.n;C/ are conjugate by Iwasawa’s theorem [39], there exists
˛ 2 GL.n;C/ such that ˛T˛�1 is equal to fdiag.ei�1 ; : : : ; ei�n/ j �i 2Rg. By considering ˛�!, we can
therefore assume that JX lies in the Lie algebra t of a torus of the form T Dfdiag.ei�1 ; : : : ; ei�n/ j�i 2Rg

acting on M. We will then have induced coordinates .�1; : : : ; �n/ on t, where .1; 0; : : : ; 0/2 t will generate
the vector field Im.z1@z1

/ on M, and so on.

Since the fixed-point set of T is compact, we can now apply Theorem D, which tells us that there is at
most one element of t that admits a complete shrinking gradient Kähler–Ricci soliton with bounded Ricci
curvature. On Cn, we have the flat Gaussian shrinking soliton and Feldman, Ilmanen and Knopf [30] have
constructed a complete shrinking gradient Kähler–Ricci soliton with bounded Ricci curvature on M for
M as in item (2) of the theorem. In all cases, the soliton vector field X of these solitons satisfies JX 2 t,
and each is proportional to .1; : : : ; 1/ in our coordinates on t. Therefore we deduce that JX D �.1; : : : ; 1/

for some � > 0, so that on M, we have 1
2
.X � iJX / D �zi@zi

. The automorphism group of .M;J /

commuting with the flow of this vector field is precisely the Lie group GL.n;C/. Thus, Corollary 5.11
asserts that GX

0
is maximal compact in GL.n;C/ and so, by Iwasawa’s theorem [39] again, there exists
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ˇ 2 GL.n;C/ such that ˇGX
0
ˇ�1 D U.n/. The .1; 1/–form ˇ�! will then be U.n/–invariant and by

[30, Proposition 9.3], the only such complete shrinking gradient Kähler–Ricci soliton on M is the flat
Gaussian shrinking soliton if M DCn, and that constructed by Feldman, Ilmanen and Knopf if M is as
in item (2) of the theorem.

6 The underlying manifold of a two-dimensional shrinking gradient
Kähler–Ricci soliton

Item (3) of Theorem E will result from items (1) and (2) of Theorem E once we establish the following
theorem.

Theorem 6.1 Let .M;g;X / be a two-dimensional complete shrinking gradient Kähler–Ricci soliton
whose scalar curvature decays to zero at infinity. Then C0 is biholomorphic to C2, and M is biholomorphic
to either C2 or C2 blown up at one point.

The key observation in proving this theorem is that the scalar curvature of the asymptotic cone is strictly
positive if the shrinking soliton is not flat. Since we are working in complex dimension two, this allows
us to identify the tangent cone at infinity as a quotient singularity using a classification theorem of Belgun
[4, Theorem 8] for 3–dimensional Sasaki manifolds. The fact that M is a resolution of C0 by Theorem A,
combined with the fact that the exceptional set of this resolution must contain only .�1/–curves as
imposed by the shrinking Kähler–Ricci soliton equation, then allows us to identify M and C0.

6.1 Properties of shrinking Ricci solitons

We begin by noting some important features of shrinking Ricci solitons that we require in this section.
We have the following condition on the scalar curvature of a shrinking gradient Ricci soliton.

Theorem 6.2 [16] Let .M;g;X / be a complete noncompact nonflat shrinking gradient Ricci soliton
with scalar curvature Rg. Then for any given point o 2 M, there exists a constant C > 0 such that
Rg.x/dg.x; o/

2 > C�1 wherever dg.x; o/ > C , where dg denotes the distance function with respect
to g.

This yields the following condition on the scalar curvature of an asymptotic cone of a shrinking Ricci
soliton.

Corollary 6.3 Let .M;g;X / be a complete noncompact nonflat shrinking gradient Ricci soliton with
tangent cone .C0;g0/ along an end. Then the scalar curvature Rg0

of the cone metric g0 is strictly
positive.

Proof The tangent cone at infinity is obtained as a Gromov–Hausdorff limit of a pointed sequence
.M;gk ; o/ WD .M; ��2

k
g; o/ for o 2M fixed, where �k!1 as k!1. By our asymptotic assumption,

the tangent cone is unique and this process recovers the asymptotic cone .C0;g0/. Indeed, an arbitrary
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point p 2C0 with r.p/D r0> 0 is associated with a sequence pk!p, where dg.o;pk/D �kr0!1 as
k!1, where r denotes the radial coordinate of g0 and dg denotes the distance measured with respect
to g. In particular, we see that

Rg0
.p/D lim

k!1
R��2

k
g.pk/D lim

k!1
�2

kRg.pk/;

where R��2
k

g denotes the scalar curvature of the rescaled metric ��2
k

g. Using the lower bound of
Theorem 6.2, we then have that

Rg0
.p/D lim

k!1
�2

kRg.pk/ > lim
k!1

�2
k
C�1

dg.o;pk/
2
D lim

k!1

�2
k
C�1

.�kr0/2
D

1

C r2
0

> 0

for some positive constant C . Since p is arbitrary, it follows that Rg0
> 0 away from the apex of C0, as

claimed.

6.2 Proof of Theorem 6.1

Let .M;g;X / be a complete noncompact shrinking gradient Kähler–Ricci soliton of complex dimension
nC 1 with quadratic curvature decay and with tangent cone along its end the Kähler cone .C0;g0/ given
by Theorem A. Let r denote the radial function of the cone. Then the link of the cone fr D 1g, which we
denote by .S;gS /, is a Sasaki manifold of real dimension 2nC 1 foliated by the orbits of the flow of � ,
the restriction of the Reeb vector field of the cone to its link.

We know from [58, Theorem 3] that if the scalar curvature Rg of g is zero at a point, then .M;g/ is
isometric to Euclidean space. So we henceforth assume that Rg ¤ 0 everywhere, so that .M;g/ is nonflat.
Then Corollary 6.3 tells us that the scalar curvature of the cone Rg0

is strictly positive. Next we see from
Lemma 2.2 that RgS

> 2n.2nC 1/ and so it follows from Corollary 2.9 that

RT > 2n.2nC 1/C 2nD 4n.nC 1/:

Identification of C0 In our case, .M;g;X / is of complex dimension two and the scalar curvature of g

decays to zero at infinity. By [54], the scalar curvature decay implies that the norm of the curvature tensor
of g decays quadratically. Thus, the above applies with n D 1 and we have the lower bound RT > 8.
From the classification of 3–dimensional Sasaki manifolds by Belgun [4, Theorem 8], it then follows that
C0 is biholomorphic to C2=� , with � a finite subgroup of U.2/ acting freely on C2 n f0g. We next wish
to show that � D fidg.

Recall from Theorem A that there is a resolution � WM !C0 of the singularity of C0 with d�.X /D r@r .
Since C0 is biholomorphic to C2=� for � � U.2/ a finite subgroup acting freely on C2 n f0g, it is
in particular a rational singularity. It is well-known that the exceptional set of a resolution of such a
singularity contains a string of P1’s [9, Lemma 1.3]. Since g is a shrinking Kähler–Ricci soliton, each of
these P1’s must have self-intersection .�1/ by adjunction. Moreover, since C0 is obtained from M by
blowing down all of these .�1/–curves, C0 must in fact be smooth at the apex, so that � D fidg and C0

is biholomorphic to C2.
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Identification of M It follows that M is then an iterated blowup of C2 at the origin containing only
.�1/–curves. The only iterated blowups of C2 at the origin containing complex curves of this type are
C2 and C2 blown up at one point, since any further iterated blowup would introduce at least one P1 with
self-intersection .�k/ for some k � 2. The conclusion is then that M must be biholomorphic to either
C2 or C2 blown up at one point.

7 Concluding remarks

We conclude with a discussion of future directions of research emanating from the results within this
paper.

7.1 The conjectural picture

The results on shrinking gradient Kähler–Ricci solitons presented here allow us to speculate on possible
deeper connections between such metrics and algebraic geometry. In the compact case, Berman, Witt
and Nystrom [6] gave an algebraic formula for the weighted volume functional and its derivative. We
generalise this result to the noncompact case under suitable assumptions, making use of the results of
Wu [66]. We begin with the definition of an anticanonically polarised Kähler manifold, the underlying
complex manifold of a shrinking Kähler–Ricci soliton.

Definition 7.1 An anticanonically polarised Kähler manifold is a Kähler manifold M admitting a Kähler
form ! together with a hermitian metric on �KM with curvature form ‚ such thatZ

V

.i‚/k ^!dimC V�k > 0

for all positive-dimensional irreducible compact analytic subvarieties V of M and for all integers k such
that 1� k � dimC V.

By [25, Theorem 4.2], a compact anticanonically polarised Kähler manifold is a Fano manifold. Moreover,
any shrinking Kähler–Ricci soliton naturally lives on an anticanonically polarised Kähler manifold.

Under certain criteria, we can write an algebraic formula for the weighted volume functional.

Proposition 7.2 Let .M; !/ be a (possibly noncompact) Kähler manifold of complex dimension n with
Kähler form ! on which there is a Hamiltonian action of a real torus T with moment map � WM ! t�,
where t is the Lie algebra of T and t� its dual. Assume that the fixed-point set of T is compact and that

(i) H p.M;O.�kKM //D 0 for all p > 0 and for all k sufficiently large , and

(ii) ! is the curvature form of a hermitian metric on �KM .
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If there exists an element �0 2 t such that the component of the moment map u�0
D h�; �0i is proper and

bounded below, then

(7-1)
Z

M

e�h�;�i
!n

n!
D lim

k!1

1

kn
char H 0.M;O.�kKM //

�
�

k

�
for all � in an open cone ƒ� t.

In this situation, the character char H 0.M;O.�kKM // is well-defined by [66]. Moreover, it follows
from [55, Theorem 4.5] that the vanishing condition (i) holds true for any 1–convex anticanonically
polarised Kähler manifold and condition (ii) holds true for any shrinking gradient Kähler–Ricci soliton.
In particular, if .M; !;X / is a complete shrinking gradient Kähler–Ricci soliton with Ricci curvature
decaying to zero at infinity, endowed with the holomorphic, effective, isometric action of a real torus T

with Lie algebra t containing JX, then the above theorem applies. The volume minimising principle
(Lemma 5.16) then tells us that for such a soliton, the unique minimum of the weighted volume functional
is obtained at JX.

Before we present the proof of equation (7-1), it is necessary to introduce some notation. Our notation
will mostly follow [66]. We denote by M T the fixed-point set of T in M. By assumption, this is
compact. If nonempty, it is a complex submanifold of M. Let F be the set of connected components
of M T. Then M T D

S
˛2F M T

˛ , where M T
˛ is the component labelled by ˛ 2 F . Let n˛ D dimC M T

˛

and let N˛ ! M T
˛ be the holomorphic normal bundle of M T

˛ in M. T acts on N˛ preserving the
base M T

˛ pointwise. The weights of the isotropy representation on the normal fibre remain constant
within any connected component. Let ` be the integral lattice in the Lie algebra t of T, let `� � t�

denote the dual lattice, and let �˛;i 2 `� n f0g for 1 � i � n� n˛ be the isotropy weights on N˛. The
hyperplanes .�˛;i/? � t cut t into open polyhedral cones called action chambers [60]. Choose an action
chamber C . We define �C

˛ as the number of weights �˛;i 2 C �, where C � is the dual cone in t� defined
by C � D f� 2 t� j h�;C i> 0g. Let N C

˛ be the direct sum of the subbundles corresponding to the weights
�˛;i 2C �. Then N˛ DN C

˛ ˚N�C
˛ . The rank of the holomorphic vector bundle N C

˛ is �C
˛ ; that of N�C

˛

is ��C
˛ D n� n˛ � �

C
˛ .

Proof of Proposition 7.2 For k 2 N sufficiently large, the vanishing assumption (i) together with
[66, equation (3.41)] implies that

char H 0.M;O.�kKM //D
X
˛2F

.�1/n�n˛��
C
˛

Z
M T
˛

chT

�
�kKM jM T

˛
˝ det.N�C

˛ /

det.1� .N C
˛ /
�/˝ det.1�N�C

˛ /

�
td.M T

˛ /;

where, if R is a finite-dimensional representation of T,

1

det.1�R/
WD

1M
mD0

Symm.R/;
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and where chT denotes the equivariant Chern character. For a fixed ˛ 2 F , we therefore have that

chT

�
�kKM jM T

˛
˝ det.N�C

˛ /

det.1� .N C
˛ /
�/˝ det.1�N�C

˛ /

�
td.M T

˛ /

D chT .�kKM jM T
˛
/ chT

�
1

det.1� .N C
˛ /
�/

�
chT

�
1

det.1�N�C
˛ /

�
chT .det.N�C

˛ // td.M T
˛ /:

Now,
td.M T

˛ /D 1C 1
2
c1.�KM T

˛
/C � � � :

Analysing the term chT .�kKM jM T
˛
/, we have by adjunction that

KM jM T
˛
DKM T

˛
� det.N˛/;

so that
�kKM jM T

˛
D .�kKM T

˛
/C k det.N˛/:

Now, M T
˛ is fixed under the action of T and so the action of T on �kKM T

˛
is trivial. The torus T

therefore acts on �kKM jM T
˛

as multiplication by ek
Pn�n˛

iD1
�˛;i , where n˛ is the dimension of M T

˛ . Thus,
we have that

cT
1 .�kKM jM T

˛
/D kc1.�KM jM T

˛
/C k

n�nX̨
iD1

�˛;i ;

where cT
1

is the equivariant first Chern class, so that

chT .�kKM jM T
˛
/

�
�

k

�
D e

cT
1
.�kKM jM T

˛
/.�=k/

D e
kc1.�KM jM T

˛
/
e
Pn�n˛

iD1
�˛;i .�/:

Next analysing the second term, we may write N C
˛ D

L
fij�˛;i2C�gL˛;i , where L˛;i is the line subbundle

of N˛ with isotropy weight �˛;i . Then we have that

1

det.1� .N C
˛ /
�/
D

1M
mD0

Symm..N C
˛ /
�/D

O
fij�˛;i2C�g

1

det.1�L�˛;i/
;

so that

chT

�
1

det.1� .N C
˛ /
�/

�
D chT

� O
fij�˛;i2C�g

1

det.1�L�˛;i/

�
D

Y
fij�˛;i2C�g

chT

�
1

det.1�L�˛;i/

�
:

Now observe that, for each i ,

chT

�
1

det.1�L�˛;i/

�
D chT

� 1M
mD0

Symm.L�˛;i/

�
D chT

� 1M
mD0

.L�˛;i/
m

�

D

1X
mD0

.chT .L�˛;i//
m
D

1X
mD0

.e��˛;iCc1.L
�
˛;i
//m

D
1

1� e��˛;iCc1.L
�
˛;i
/
:
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Hence,
chT

�
1

det.1� .N C
˛ /
�/

�
D

Y
fij�˛;i2C�g

1

1� e��˛;iCc1.L
�
˛;i
/
:

Consequently,

chT

�
1

det.1� .N C
˛ /
�/

��
�

k

�
D

Y
fij�˛;i2C�g

1

1� e�.1=k/�˛;i .�/�c1.L˛;i /

D

Y
fij�˛;i2C�g

1

1�
�
1C

�
�

1

k
�˛;i.�/� c1.L˛;i/

�
C

1P
lD2

1

l!

�
�

1

k
�˛;i.�/� c1.L˛;i/

�l �
D

Y
fij�˛;i2C�g

1

1

k
�˛;i.�/C c1.L˛;i/�

1P
lD2

1

l!

�
�

1

k
�˛;i.�/� c1.L˛;i/

�l

D

Y
fij�˛;i2C�g

k

�˛;i.�/C kc1.L˛;i/� k
1P

lD2

1

l!

�
�

1

k
�˛;i.�/� c1.L˛;i/

�l

D

Y
fij�˛;i2C�g

k

�˛;i.�/

�
1C

kc1.L˛;i/

�˛;i.�/
C

k

�˛;i.�/

1P
lD2

.�1/lC1

l !

�
1

k
�˛;i.�/C c1.L˛;i/

�l
� :

Now, �
1

k
�˛;i.�/C c1.L˛;i/

�l
D c1.L˛;i/

l
C

l

k
c1.L˛;i/

l�1�˛;i.�/CO.k�2/;

so that

k
�

1

k
�˛;i.�/C c1.L˛;i/

�l
D kc1.L˛;i/

l
C lc1.L˛;i/

l�1�˛;i.�/CO.k�1/:

Since l � 2, we have that

k

�˛;i.�/

1X
lD2

.�1/lC1

l !

� 1

k
�˛;i.�/C c1.L˛;i/

�l
DO.k/c1.L˛;i/

2P1C c1.L˛;i/P2CO.k�1/;

where P1 and P2 are polynomials in c1.L˛;i/. Therefore, we see that

chT

�
1

det.1� .N C
˛ /
�/

��
�

k

�
D

Y
fij�˛;i2C�g

k

�˛;i.�/

�
1C
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�˛;i.�/
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D k�
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Y
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1C

kc1.L/

�˛;i.�/
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CO.k/c1.L˛;i/2P1C c1.L˛;i/P2CO.k�1/

:
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A similar argument also shows that

chT

�
1

det.1�N�C
˛ /

��
�

k

�
D .�k/n�n˛��

C
˛

Y
fij�˛;i2�C�g

1

�˛;i.�/

�
1C

kc1.L˛;i/

�˛;i.�/

�
CO.k/c1.L˛;i/2Q1C c1.L˛;i/Q2CO.k�1/

for polynomials Q1 and Q2 in c1.L˛;i/.

Finally,

chT .det.N�C
˛ //D ecT

1
.det.N�C

˛ //
D e

c1.det.N�C
˛ //C

P
fij�˛;i2�C�g �˛;i ;

so that

chT .det.N�C
˛ //

�
�

k

�
D e

c1.N
�C
˛ /C.1=k/

P
fij�˛;i2�C�g �˛;i .�/:

Putting all of the above observations together, we find that

1

kn
char H 0.M;O.�kKM //

�
�

k

�

D

X
˛2F

.�1/n�n˛��
C
˛

kn

Z
M T
˛

chT

�
�kKM jM T
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˝ det.N�C

˛ /

det.1� .N C
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�/˝ det.1�N�C

˛ /

�
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�
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X
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1

�˛;i.�/

�
1C
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n�n˛Y
iD1

1

�˛;i.�/Y
fij�˛;i2C�g

1

1C
kc1.L˛;i/
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/C � � �

�

��!
k!1

X
˛2F

Z
M T
˛

e
c1.�KM jMT

˛
/
e
Pn�n˛

iD1
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where, in taking the limit, we use the fact that any integrand involving terms not of the form kj�j for �j

a real .j ; j /–form vanishes. The result now follows from an application of Theorem A.3, making use of
assumption (ii) of the proposition.

Given this proposition, it is tempting to define a notion of K–stability that characterises algebraically the
existence of a shrinking gradient Kähler–Ricci soliton on a complete anticanonically polarised Kähler
manifold M endowed with a complete holomorphic vector field following the strategy as implemented in
the Fano case. For this purpose, we make the following definition.

Definition 7.3 Let M be a quasiprojective manifold endowed with the effective holomorphic action of a
real torus T whose fixed-point set is compact. Denote by t the Lie algebra of T, let OM .M / denote the
global algebraic sections of the structure sheaf of M, and write

OM .M /D
M
˛2t�

H˛

for the weight decomposition under the action of T. Then we say that a vector field Y 2 t on M is positive
if ˛.Y / > 0 for all ˛ 2 t� such that H˛ ¤∅ and ˛ ¤ 0.

Remark 7.4 If � WM ! C0 is a quasiprojective equivariant resolution of a Kähler cone .C0;g0/ with
respect to the holomorphic isometric torus action on .C0;g0/ generated by the flow of the Reeb vector
field of g0, and g is a Kähler metric on M that is asymptotic to g0 and with respect to which the induced
torus action on .M;g/ is isometric and Hamiltonian, then in the terminology just introduced, the weighted
volume functional F for .M;g/ is defined on the open cone of positive vector fields in the Lie algebra of
the torus if this open cone is nonempty. This fact follows from Theorem A.3 after noting Theorem A.10.

Roughly speaking, one considers equivariant degenerations (or test configurations) of the pair .M;X /,
where M is a quasiprojective anticanonically polarised Kähler manifold with complex structure J endowed
with the holomorphic effective action of a real torus T whose fixed-point set is compact, and where X is
a vector field on M with JX a positive vector field lying in the Lie algebra of T. Then one defines a
Futaki invariant in the usual manner as the derivative of the algebraic realisation of the weighted volume
functional which is given by the right-hand side of (7-1). Of course, one must verify that this formula
is well-defined in general. One subsequently defines .M;X / as above to be K–stable if and only if the
Futaki invariant is nonnegative on all test configurations, and positive if and only if the test configuration
is nontrivial. This then allows one to make the following conjecture generalising the Yau–Tian–Donaldson
conjecture for Fano manifolds.

Conjecture 7.5 Let M be a quasiprojective anticanonically polarised Kähler manifold endowed with the
holomorphic effective action of a real torus T whose fixed-point set is compact. Denote by t the Lie algebra
of T and let X be a vector field on M such that JX 2 t is a positive vector field. Then M admits a com-
plete shrinking gradient Kähler–Ricci soliton with soliton vector field X if and only if .M;X / is K–stable.
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Thus, in light of this conjecture, one may view an anticanonically polarised Kähler manifold as a
“noncompact Fano manifold”. (In a similar manner, one may also define a noncompact manifold of
general type, etc.) We expect that the well-developed machinery in the study of Kähler–Einstein metrics
may be suitably adapted to study this conjecture. We leave this for future work.

7.2 Open problems

There are also various other interesting open problems that we raise here.

(1) Is a complete expanding or shrinking gradient Kähler–Ricci soliton necessarily algebraic (or quasi-
projective)? In particular, is the canonical ring of an expanding gradient Kähler–Ricci soliton finitely
generated? Is the anticanonical ring of a shrinking gradient Kähler–Ricci soliton finitely generated?
What we can say here is that if the curvature tensor of a shrinking gradient Kähler–Ricci soliton decays
quadratically, or if that of an expanding gradient Kähler–Ricci soliton decays quadratically with derivatives,
then the soliton lives on a resolution of a Kähler cone by Theorem A, hence is quasiprojective by
Proposition 2.24.

(2) Is there at most one complete shrinking Kähler–Ricci soliton for a given holomorphic vector field on
an anticanonically polarised Kähler manifold up to automorphisms of the complex structure commuting
with the flow of the vector field? More speculatively, is a complete shrinking Kähler–Ricci soliton on such
a manifold unique up to automorphisms of the complex structure? A noncompact Kähler manifold may
admit many nonisometric complete expanding gradient Kähler–Ricci solitons even for a fixed holomorphic
soliton vector field, as demonstrated by [19, Theorem A].

(3) What are the constraints on a Kähler cone to appear as the tangent cone of a complete shrinking
gradient Kähler–Ricci soliton with quadratic curvature decay? Is the underlying complex manifold of
the shrinking soliton then determined uniquely by its tangent cone? By Theorem A, we know that the
shrinking soliton must live on a resolution of its tangent cone that is, moreover, an anticanonically polarised
Kähler manifold. For complete expanding gradient Kähler–Ricci solitons with quadratic curvature decay
with derivatives, we know from Corollary B that a Kähler cone appears as the tangent cone if and only if
the Kähler cone has a smooth canonical model (on which the soliton lives).

(4) Related to the previous question, modulo automorphisms of the complex structure, how many
shrinking gradient Kähler–Ricci solitons with quadratic curvature decay have a given affine cone appearing
as the underlying complex space of the tangent cone? For C2, we have shown in Theorem E that the
answer is two; C2 only appears as the underlying complex space of the tangent cone of the flat Gaussian
shrinking soliton on C2 and of the U.2/–invariant shrinking gradient Kähler–Ricci soliton of Feldman,
Ilmanen and Knopf on C2 blown up at a point [30]. In general, we expect the answer to be finitely many
for any given affine cone. By Corollary B, the answer to this question for complete expanding gradient
Kähler–Ricci solitons with quadratic curvature decay with derivatives is infinitely many for any given
affine cone admitting a smooth canonical model.
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(5) In Corollary B, we have seen that when the canonical model of a Kähler cone is smooth, it admits a
complete expanding gradient Kähler–Ricci soliton. Is this also true when the canonical model is singular?
(We thank John Lott for raising this question.)

(6) Let M be a complete quasiprojective Kähler manifold endowed with the holomorphic Hamiltonian
action of a real torus T with Lie algebra t whose fixed-point set is compact. Are the elements of t admitting
Hamiltonian potentials that are proper and bounded below precisely those elements in t that are positive
in the sense of Definition 7.3? Equivalently, does the open cone of positive vector fields in t coincide
with the open cone int.C.�.M //0/� t of Proposition A.4? These questions have an affirmative answer in
the setting of asymptotically conical Kähler manifolds; see Theorem A.10 for a precise statement.

(7) Does Theorem D still hold true without the assumption of bounded Ricci curvature?

(8) Given a complete shrinking gradient Kähler–Ricci soliton .M;g;X /, is the zero set of X always
compact? As demonstrated in Lemma 2.25, this is the case if g has bounded scalar curvature.

(9) Let M be a complete Kähler manifold endowed with the holomorphic Hamiltonian action of a real
torus T with Lie algebra t whose fixed-point set is compact. By the Duistermaat–Heckman theorem
(Theorem A.3), the weighted volume functional F is defined on the open coneƒ of elements of t admitting
Hamiltonian potentials that are proper and bounded below. Is F necessarily proper on ƒ? If so, then it
would have a unique minimiser on ƒ. Properness of the volume functional on the set of normalised Reeb
vector fields of a Sasaki manifold was shown in [37, Proposition 3.3].

Appendix The Duistermaat–Heckman theorem

A.1 Statement of the theorem

The material in this section has been taken verbatim from various sources in the literature, including
[5; 28; 49; 60]. We begin with the definition of a moment map, which is required for the statement of the
Duistermaat–Heckman theorem.

Definition A.1 Let .M; !/ be a symplectic manifold and let T be a real torus acting on .M; !/ by
symplectomorphisms. Denote by t the Lie algebra of T and by t� its dual. Then we say that the action
of T is Hamiltonian if there exists a smooth map � WM ! t� such that for all � 2 t, �!y� D du� , where
u�.x/D h�.x/; �i for all � 2 t and x 2M. We call � the moment map of the T –action and we call u�

the Hamiltonian (potential) of �.

Notice that u� is invariant under the flow of �. Indeed, we have that

L�u� D du�y� D�!.�; �/D 0:

Consequently, each integral curve of � must be contained in a level set of u� .
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Now consider the Hamiltonian action of a real torus T of rank s on a symplectic manifold .M; !/ of real
dimension 2n. Identify T with .S1/s � .C�/s and introduce complex coordinates .�1; : : : ; �s/ on T via
this identification. This induces coordinates .�1; : : : ; �s/2Rs on the Lie algebra t of T, where .�1; : : : ; �s/

corresponds to the vector
Ps

iD1 �i.@=@�i/, each @=@�i the vector field on M induced by the coordinate
�i on T. For � 2 t with coordinates .b1; : : : ; bs/, say, the flow on M generated by � will have a fixed-point
set M0.�/ corresponding to the zero set of the vector field �. This set has the following properties.

Proposition A.2 [5, Proposition 7.12] The connected components fFig of M0.�/ are smooth submani-
folds of M. The dimensions of different connected components do not have to be the same. The normal
bundles Ei of the Fi in M are orientable vector bundles with even-dimensional fibres.

For a disconnected component F of M0.�/ of real codimension 2k in M, let � W F !M denote the
inclusion. Then ��! is a symplectic form on F so that F is a symplectic submanifold of M. The normal
bundle E of F in M has the structure of a symplectic vector bundle and will have real dimension 2k. We
denote this induced symplectic form on E by � . The flow of � will generate a fibre-preserving linear action
L� WE!E on E , which is an automorphism of E leaving � invariant in the infinitesimal sense. We introduce
an almost complex structure I W E! E , ie an automorphism of E such that I2D�id, commuting with L�

and compatible with � in the sense that �.I � ; � / defines an inner product on E . This gives E the structure
of a complex vector bundle over F with L� an automorphism of E preserving the complex structure.

Next, denote by u1; : : : ;uR 2Zs � t� the weights of the induced representation of t on E . Then we have
a direct sum decomposition of vector bundles

E D
RM
�D1

E�;

where
E� WD fv 2 E j .ei�1 ; : : : ; ei�s / � v D u�.�1; : : : ; �s/Iv for all .�1; : : : ; �n/ 2 tg:

Each E� is a vector bundle of rank 2n�, say. Clearly we must have k D
PR
�D1 n�. Consider now

the complex vector bundle E1;0 of complex dimension k, endowed with the action of L� extended by
C–linearity. Then we have an induced decomposition

E1;0
D

RM
�D1

E1;0
�
;

where L� acts on the �th factor by iu�.b1; : : : ; bn/, and so the action of L� on E1;0 will take the form

L� D i diag.1n1
u1.b/; : : : ; 1nR

uR.b//;

where 1n� denotes the n� � n� identity matrix and b D .b1; : : : ; bs/ are the coordinates of �. Thus,

det
�

L�

i

�
D

RY
�D1

u�.b/
n� :

Note that this is homogeneous of degree k in b.
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We next choose any L�–invariant connection on E1;0 with curvature matrix �. Finally, for a polyhedral
set U of a vector space V, we define the asymptotic cone

C.U / WD fv 2 V j there is a v0 2 V such that v0C tv 2 U for t > 0 sufficiently largeg;

and for a subset W of V, we define the dual cone W 0 WD f˛ 2 V � j ˛.W /�R�0g. Now we can state the
Duistermaat–Heckman theorem.

Theorem A.3 (the Duistermaat–Heckman theorem [60, Theorem 2.2]) Let .M; !/ be a (possibly
noncompact) symplectic manifold of real dimension 2n with symplectic form ! on which there is a
Hamiltonian action of a real torus T with moment map � WM ! t�, where t is the Lie algebra of T and
t� its dual. Assume that the fixed-point set of T is compact. If there exists an element �0 2 t such that the
component of the moment map u�0

D h�; �0i is proper and bounded below, then

(A-1)
Z

M

e�h�;�i
!n

n!
D

X
F2M0.�/

Z
F

e��
�h�;�ie�

�!

det
�

L� ��

2� i

�
for all � in the open cone int.C.�.M //0/ � t, where the sum on the right-hand side is taken over the
connected components F of the zero set M0.�/ of �.

Under the assumptions on the moment map � as in the theorem, �.M / is a proper polyhedral set in t�

and the elements of int.C.�.M //0/� t are characterised as follows.

Proposition A.4 [60, Proposition 1.4] Under the assumptions on T and � as in Theorem A.3,
u� D h�; �i is proper if and only if � 2 ˙ int.C.�.M //0/ � t. Moreover , if � 2 int.C.�.M //0/ � t,
then u�.M /D Œm� ;C1/ for a suitable m� 2R.

That is, elements of int.C.�.M //0/ are precisely those elements of t whose Hamiltonian is proper
and bounded below. Notice that this cone is nonempty because it contains �0 by assumption. Then
for each � 2 int.C.�.M //0/, each connected component of the zero set M0.�/ of � must be compact
because u� D h�; �i is proper, and moreover, it must contain a fixed point of the torus action by
[60, Proposition 1.2]. Hence, since the fixed-point set of T is assumed to be compact in Theorem A.3,
the sum on the right-hand side of (A-1) is over a finite set and so is itself finite for all such �.

Now, the sum on the right-hand side of (A-1) is over each connected component F of the zero set M0.�/

of �. The determinant is a k � k determinant and should be expanded formally into a differential form of
mixed degree. Moreover, the inverse is understood to mean one should expand this formally in a Taylor
series, as is standard in index theory. We next study the right-hand side of (A-1) in more detail.

Under the decomposition

E1;0
D

RM
�D1

E1;0
�
;
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let �� be the component of the curvature matrix of �E corresponding to E�. Then we have that

det
�

L� ��

2� i

�
D det

�
L�

2� i

�
det.1� .L�/�1�/D det

�
L�

2� i

� RY
�D1

det.1� .L�/�1��/:

Fix one of the bundles E�. Then

det.1� .L�/�1��/D det.1Cwi��/D
X
a�0

ca.E�/wa
2H�.F;R/;

where w D 1=u�.b/ and ca.E�/ are the Chern classes of E� for 0� a� n� with c0 D 1. Thus,

det
�

L� ��

2� i

�
D

RY
�D1

u�.b/
n�

�X
a�0

ca.E�/wa

�
:

In particular, if F is an isolated fixed point, in which case k D n and E is the trivial bundle, then we
may write the n (possibly indistinct) weights as u1; : : : ;un. The Chern classes and the measure e�

�!

contribute nontrivially, and we arrive at the contribution

e��
�h�;�i

RY
�D1

1

u�.b/
n�

of an isolated fixed point to the Duistermaat–Heckman formula.

We next wish to sketch the proof of Theorem A.3. Before we do so, however, we must first discuss
invariant forms on a symplectic manifold.

A.2 Invariant forms

Consider a symplectic manifold .M; !/ of real dimension 2n endowed with the Hamiltonian action of
a real torus T. For � in the Lie algebra t of T, denote by �k

�
.M / the space of smooth k–forms on M

which are invariant under the flow of �, ie ˛ 2�k
�
.M / if and only if L�˛ D 0. The wedge product of

two invariant forms is also invariant, therefore we have an algebra ��
�
.M / of invariant forms on M. We

define the equivariant derivative d� on ��
�
.M / by

d�˛ D d˛�˛y�:

This derivative has the properties that d2
�
D 0 and

d�.˛^ˇ/D d�˛^ˇC .�1/p˛^ d�ˇ

for ˛ a p–form and ˇ another differential form.

For ˛ 2��
T
.M /, we can write

˛ D ˛Œ0�C˛Œ1�C � � �C˛Œ2n�;
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with ˛Œi� a differential form of degree i in ��
T
.M /. Then integration of invariant forms is defined by

integrating over the highest-degree part of the form, ieZ
W��T .M /!R;

Z
˛ WD

Z
M

˛Œ2n�:

This leads to a version of Stokes’ theorem for invariant forms: if an invariant form ˛ is d�–exact, ie if
˛ D d�ˇ for another form ˇ, then ˛Œ2n� D dˇŒ2n�1�, since contracting with � decreases the degree of a
form. We then have that Z

M

˛ WD

Z
M

˛Œ2n� D

Z
M

dˇŒ2n�1� D

Z
@M

ˇŒ2n�1�:

Recall that M0.�/ denotes the zero locus on M of � 2 t.

Lemma A.5 Let ˛ 2��
�
.M / be d�–closed. Then ˛Œ2n� is exact on M nM0.�/.

Proof Let � be a one-form on M nM0.�/ such that

(A-2) L�� D 0 and �y� ¤ 0:

Such a one-form can be constructed explicitly. Indeed, let g be a T –invariant Riemannian metric on M,
let z� be any nonzero positive smooth function times �, and define

�.v/D g.z�; v/ for any vector field v on M.

This is well-defined on M nM0.�/ as �, and hence z�, are nonzero on this set, and is easily seen to satisfy
(A-2). We can then invert d�� on M nM0.�/ using a geometric series:

.d��/
�1
D

1

.d� � �y�/
D

1

.�y�/..�y�/�1d� � 1/
D�.�y�/�1

� .�y�/�2d� � .�y�/�3.d�/2� � � � :

Note that this geometric series is finite because the .d�/k vanish if 2k > 2nD dim M , and we have that

d�� ^ .d��/
�1
D 1:

Applying d� to this yields
d�� ^ d�..d��/

�1/D 0:

Further taking the wedge product with .d��/�1 on the left then leaves us with

d� Œ.d��/
�1�D 0:

Define � by
� WD � ^ .d��/

�1
^˛:

Then, since d�˛ D 0 by assumption, we have that

d�� D d�� ^ .d��/
�1
^˛ D ˛:

Taking the highest-degree part of each side of this equality, we obtain the result.
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A.3 Sketch of the proof of Theorem A.3

Since the left-hand side of (A-1) is analytic on int.C.�.M //0/� t, it suffices to prove (A-1) for rational
elements in this open cone. So let � 2 int.C.�.M //0/ be rational and recall that the zero set M0.�/

of � is compact because the fixed-point set of T is compact by assumption; see the discussion after
Proposition A.4. Write � D t� for some integral point � 2 int.C.�.M //0/ and some t > 0, and let
H WD h�; �i denote the Hamiltonian of �, which serves as a moment map of the induced S1–action of
fei�g on M. Recall that H is a proper function bounded from below and so must tend to infinity as
x!1 in M.

Next, observe that

e!�tH
D e�tH

�
1C!C � � �C

!n

n!

�
2��� .M /;

d�e
!�tH

D e!�tH .d�.! � tH //D e!�tH .�d.tH /�!y�/D te!�tH .�dH �!y�/D 0;

so that e!�tH is d�–closed. An immediate consequence of Lemma A.5 is therefore that e�tH!n=n! is
exact off of the zero set M0.�/ of �. Indeed, fix a T –invariant metric g on M. Then tracing through the
proof of Lemma A.5, we see that

e�tH !n

n!
D d�Œ2n�1�; where � D � ^ .d��/

�1
^ e!�tH and � D g.z�; � /;

with z� denoting any nonzero positive function times �. We take z� D �=g.�; �/ in what follows.

Let F denote each of the connected components of M0.�/ and recall that each is a smooth submanifold
of M. Using the exponential map of the T –invariant metric g on M, we obtain a diffeomorphism  

from a neighbourhood U of the zero section of the normal bundle E of F in E onto a neighbourhood
 .U / of F in M. For " > 0, denote by B" the "–ball bundle in E and by S" its boundary. Since M0.�/

is compact and H.x/!C1 as x!1 in M, we have by Stokes’ theorem that

(A-3)
Z

M

e�tH !n

n!
D lim

a!C1
lim
"!0

Z
H�1..�1;a�/n[F2M0.�/

 .B"/

e�tH !n

n!

D lim
a!C1

lim
"!0

Z
H�1..�1;a�/n[F2M0.�/

 .B"/

d�Œ2n�1�

D lim
"!0

X
F2M0.�/

Z
 .S"/

�Œ2n�1�C lim
a!C1

Z
H�1.a/

�Œ2n�1�;

where we recall the fact that H is proper and that a is a regular value of H for all a sufficiently large
by [60, Proposition 1.2] because the fixed-point set of the torus action is compact, so that H�1.a/ is a
smooth compact submanifold of M for all such values of a.

Now, we have that

�Œ2n�1� D�e�tH � ^

n�1X
jD0

.d�/j

.�y�/jC1
^

!n�1�j

.n� 1� j /!
D�e�tH � ^

n�1X
jD0

.d�/j

tjC1
^

!n�1�j

.n� 1� j /!
;
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where again � D g.�; � /=g.�; �/. For one connected component F 2M0.�/ of codimension k, say, as in
the proof of the Duistermaat–Heckman formula in the compact case [28], the only summand contributing
to
R
 .S"/

�Œ2n�1� in the limit as "! 0 is the one with j D k � 1. Therefore, computing as in [28], one
sees that

(A-4) lim
"!0

Z
 .S"/

�Œ2n�1� D� lim
"!0

Z
F

e�tH � ^
.d�/k�1

tk
^

!n�k

.n� k/!

D� lim
"!0

Z
F

e�tH z� ^ .d z�/k�1
^

!n�k

.n� k/!

D
e��
�.tH /e�

�!

det
�

1

2� i
.L� ��/

� ;
where z� D g.�; � /=g.�; �/ on the second line.

We finally deal with the term lima!C1

R
H�1.a/ �Œ2n�1�. Since every a sufficiently large is a regular value

of H , the moment map of the S1–action fei�g, the set H�1.a/ is a connected compact submanifold of M

on which the S1–action is locally free. Let Ma DH�1.a/=S1 be the symplectic quotient with canonical
symplectic form !a. The preimage H�1.a/! Ma then has the structure of a orbibundle over Ma.
Moreover, since a is a regular value of H , there exists a number ı > 0 such that H�1..a� ı; aC ı//

is diffeomorphic to H�1.a/� .�ı; ı/. With respect to this diffeomorphism, the symplectic form ! on
H�1.a/� .�ı; ı/ is, up to an exact form, equal to

˛^ dH � .H � a/FaC!a

for one (and hence any) connection one-form ˛ on the orbibundle H�1.a/!Ma with curvature Fa. Now,
when restricted to H�1.a/, one can verify that !jH�1.a/ D !a, that � jH�1.a/ DW ˛ defines a connection
1–form, and that d� jH�1.a/DWFa is the curvature form of ˛, so that d�� jH�1.a/DFa�t . So we have thatZ

H�1.a/

�Œ2n�1� D

Z
H�1.a/

� ^ .d��/
�1
^ e!�tH

D

Z
H�1.a/

˛^ .Fa� t/�1
^ e!a�ta

D�
e�ta

t

Z
Ma

�
1�

Fa

t

��1

^ e!a

D�

n�1X
jD1

e�ta

tjC1

Z
Ma

!
n�1�j
a

.n� 1� j /!
^Fj

a :

As a!C1, the cohomology class of !a depends linearly on a [28; 65], whereas that of Fa remains fixed
since the topology of the bundle H�1.a/!Ma does not change as a runs through a set of regular values.
So the integral over Ma here is a polynomial in a. Consequently,

R
H�1.a/ �Œ2n�1�! 0 exponentially as

a!C1. Thus, combining this fact with (A-3) and (A-4), and noting that tH D h�; �i, we arrive at the
desired conclusion.
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A.4 Examples

We next consider some simple examples and see what formula (A-1) yields for the weighted volume
functional F .

Example A.6 Let M DCn and consider the action of the maximal torus

T D fdiag.ei�1; : : : ; ei�n/ j �i 2Rg

in GL.n;C/ acting on M with induced coordinates .�1; : : : ; �n/ on the Lie algebra t of T, where
.1; 0; : : : ; 0/2 t generates the vector field Im.z1@z1

/ on M, etc. The fixed-point set of T is clearly compact.

For any Y 2 f.�1; : : : ; �n/ 2 t j �i > 0g and for any T –invariant complete shrinking gradient Kähler–Ricci
soliton .M; !;X / with X D rgf for f WM ! R smooth, let uY be the Hamiltonian potential of Y

normalised as in Definition 5.13, so that, in particular, �!uY CuY C
1
2
.J Y / �f D 0. Then

�uY .0/D .�!uY /.0/C
1
2
..J Y / �f /.0/„ ƒ‚ …

D0

D div.Y /D
X

j

�j ;

and so the Duistermaat–Heckman theorem yields

F.�1; : : : ; �n/D

Z
M

e�uY !n
D

Y
j

��1
j � e

P
j �j :

Since this function is symmetric in its components, its unique critical point must be of the form �.1; : : : ; 1/

for some � > 0. It is then easy to show that �D 1. The corresponding shrinking gradient Kähler–Ricci
soliton is the flat Gaussian shrinking soliton on Cn.

Example A.7 Let M be C2 blown up at the origin and again consider the action of the maximal torus
T D fdiag.ei�1 ; ei�2/ j �1; �2 2Rg in GL.2;C/ acting on M, with induced coordinates .�1; �2/ on the
Lie algebra t of T, where .1; 0/ 2 t generates the vector field Im.z1@z1

/ on M, etc. In this case, the
weighted volume functional is given by

F W f.�1; �2/ 2 t j �1; �2 > 0g !R>0; F.�1; �2/D

8<:
e�1

.�1��2/�2
C

e�2

.�2��1/�1
if �1 ¤ �2;

e�1.��1
1
C ��2

1
/ if �1 D �2:

Again by symmetry, the unique critical point of F here must have �1 D �2, and a computation shows
that �1 D �2 D

p
2 in this case. The corresponding shrinking gradient Kähler–Ricci soliton is that of

Feldman, Ilmanen and Knopf [30] on this space.

Example A.8 More generally, let M be the total space of the line bundle O.�k/ over Pn�1 for
0 < k < n and consider the induced action of the maximal torus T D fdiag.ei�1 ; : : : ; ei�n/ j �i 2 Rg

in GL.n;C/ acting on M, with induced coordinates .�1; : : : ; �n/ on the Lie algebra t of T, where
.1; 0; : : : ; 0/ 2 t generates the vector field Im.z1@z1

/ on M, etc. In this case, the weighted volume
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functional F W f.�1; : : : ; �n/ 2 t j �i > 0g !R>0 is given by

F.�1; : : : ; �n/D

nX
iD1

e.kC1�n/�iC
P
j¤i �j

k�i

Q
j¤i

.�j � �i/

D

nP
iD1

.�1/iC1
Q

j¤i

�j

Q
k;l¤i; k>l

.�k � �l/e
.kC1�n/�iC

P
j¤i �j

k
nQ

iD1

�i

Q
i<j

.�i � �j /

if �k ¤ �l for k ¤ l .

Again, by symmetry, the unique critical point of F here must satisfy �1 D � � � D �n. By taking limits,
one can write down an expression for F when this is the case. Differentiating the resulting expression
and setting it equal to zero, one obtains the polynomials of [30, equation (36)]. For example, in low
dimensions, when �1 D � � � D �n DW �, we obtain the formulae for F in Table 1. The corresponding
shrinking gradient Kähler–Ricci solitons are those of Feldman, Ilmanen and Knopf [30] on these spaces.

Example A.9 Let L be the total space of a negative holomorphic line bundle over a Fano manifold D of
complex dimension n. By adjunction, in order for L to admit a shrinking gradient Kähler–Ricci soliton,
we must have c1.�KD˝L/>0. Assuming that this is the case, consider the action of the torus T given by
rotating the fibres of L. We have an induced coordinatew on the Lie algebra t of T, where 12 twill generate
the vector field Im.zi@zi

/ in a local trivialising chart of L. The zero set of every element of t will be D, the
zero section of L, and in this case the weighted volume functional F on the domain f�2 t j�>0g is given by

F.�/D

Z
Dn

e�e�
�!

�

�
1C

c1.L/

�

� D e�

�

Z
Dn

e�
�!

�
1C

c1.L/

�

��1

D
e�

�

Z
Dn

e�
�!

�
1�

c1.L
�/

�

��1

(A-5)

D
e�

�

Z
Dn

�
1C!C

!2

2!
C � � �

��
1C

c1.L
�/

�
C

c1.L
�/2

�2
C � � �

�
D

e�

�

Z
Dn

nX
iD0

!i

i !
^

�
c1.L

�/n�i

�n�i

�
D

e�

�

nX
iD0

1

�n�ii !

Z
Dn

!i
^ c1.L

�/n�i

D
e�

�nC1

nX
iD0

�i

i !

Z
Dn

c1.K
�1
D ˝L/i ^ c1.L

�/n�i :

This formula in particular applies to the total space of the line bundle O.�k/ over Pn�1 for 0< k < n.
Its relationship to the formulae of Example A.8 is as follows. On the total space of O.�k/, we have two
torus actions, one given by the standard action of a torus T1 rotating the fibres of O.�k/, and another
given by the action of a torus T2 induced from the standard torus action on O.�1/ that rotates the fibres.
The formulae of Example A.8 with �1 D � � � D �n are given with respect to the action of T2, whereas
formula (A-5) is with respect to T1. Consequently, the formulae of Example A.8 with �1 D � � � D �n are
given by F.k�/, where F is as in (A-5).
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line bundle F.�/

O.�1/! P 1
.�C 1/e�

�2

O.�1/! P 2
.2�2C 2�C 1/e�

�3

O.�2/! P 2
.�2C 2�C 2/e2�

�3

O.�1/! P 3
.9�3C 9�2C 6�C 2/e�

�4

O.�2/! P 3
.4�3C 6�2C 6�C 3/e2�

�4

O.�3/! P 3
.�3C 3�2C 6�C 6/e3�

�4

Table 1

A.5 The domain of definition of the weighted volume functional

By Theorem A.3 and Proposition A.4, we see that the weighted volume functional F is defined on the
open cone ƒ of elements of the Lie algebra of the torus admitting Hamiltonian potentials that are proper
and bounded below if ƒ is nonempty. In this subsection, we characterise ƒ algebraically in the setting of
asymptotically conical Kähler manifolds.

Our precise set-up is as follows. Let .C0;g0/ be a Kähler cone with apex o, complex structure J0, and
radial function r such that g0 D dr2C r2gS for a Riemannian metric gS on the link S D fr D 1g of C0.
Let � WM ! C0 be a quasiprojective resolution of C0 that is equivariant with respect to the holomorphic
isometric action on C0 of the torus T with Lie algebra t generated by � WD J0r@r , and let g be a Kähler
metric on M with

(A-6) j��g�g0jg0
DO.r�2/;

with respect to which T acts isometrically in a Hamiltonian fashion with moment map � WM ! t�. Write
uY .x/ WD h�.x/;Y i for x 2M for the Hamiltonian potential of Y 2 t, so that duY D�!yY, where !
is the Kähler form of g, and set

ƒ WD fY 2 t j uY is proper and bounded belowg:

Next, let OM .M / (resp. OC0
.C0/) denote the global algebraic sections of the structure sheaf of M

(resp. of C0), and write
OM .M /D

M
˛2t�

H˛

for the weight decomposition under the action of T. Then we have:
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Theorem A.10 In the above situation ,

ƒD fY 2 t j ˛.Y / > 0 for all ˛ 2 t� such that H˛ ¤∅ and ˛ ¤ 0g:

Proof Let E denote the exceptional set of the resolution � WM ! C0. In what follows, we will identify
M nE with C0 n f0g via � . Let us begin by making some useful observations. Let X be the unique
vector field on M such that d�.X /D r@r . Then d�.JX /D �, where J denotes the complex structure
on M, so that JX 2 t and ŒX;Y �D 0 for every Y 2 t. Then we have:

Lemma A.11 Let Y 2 t, so that Y defines a real holomorphic g–Killing vector field on M with
ŒX;Y �D 0. Then Y is tangent to the level sets of r on C0 n fog.

Proof Since T acts isometrically on g and g0, Y will define a holomorphic g0–Killing vector field
on C0. We claim that such a vector field is tangent to the level sets of r . Indeed, simply note that

0D LY g0 D d.Y � r/˝ dr C dr ˝ d.Y � r/C 2rdr.Y /gS C r2LY gS :

Then, plugging � into both arguments on the right-hand side and observing that

ŒY; ��D ŒY;Jr@r �D ŒY;JX �D J ŒY;X �D 0

along the end of C0 since Y is holomorphic, we arrive at the fact that

�dr.Y /D 1
2
r.LY gS /.�; �/D

1
2
r
�
LY .gS .�; �//� 2gS .ŒY; ��; �/

�
D 0;

as required.

We now demonstrate that

ƒ� fY 2 t j ˛.Y / > 0 for all ˛ 2 t� such that H˛ ¤∅ and ˛ ¤ 0g:

To this end, let Y 2ƒ, so that the Hamiltonian potential uY of Y is proper and bounded below, let f be
a nonconstant holomorphic function on M on which Y acts with weight � so that J Y .f /D��f , let
x 2M nE be a point where f .x/¤ 0, and denote by 
x.t/ the flow line of �J Y with 
x.0/D x. Then

d

dt
f .
x.t//D �f .
x.t//;

so that

(A-7) f .
x.t//D f .x/e
��t for all t < 0:

Now, by definition, we have that �J Y DrguY and so from Proposition 2.27 we deduce that there is a
sequence ti!�1 as i!C1 such that .
x.ti//i converges to a point x1 2M satisfying rgu.x1/D 0.
Since the fixed-point set of T is contained in E, we must have that x1 2 E. Let xi WD 
x.ti/. Then
plugging ti into (A-7) yields the fact that

jf .xi/j D jf .x/je
��ti ��!

i!1

�
C1 if � < 0;

0 if � > 0.

Since xi! x1 2E as i !1, we conclude from the maximum principle that � > 0, as required.
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Next we show that

(A-8) fY 2 t j ˛.Y / > 0 for all ˛ 2 t� such that H˛ ¤∅ and ˛ ¤ 0g �ƒ:

By [20, Lemma 2.15], M is 1–convex. By construction, then, � WM !C0 will be the Remmert reduction
of M. In particular, we have that ��OC0

.C0/D OM .M / by the properties of the Remmert reduction.
Since � WM !C0 is equivariant with respect to the action of T, we thus see that Y 2 t acts with weight �
on f 2OC0

.C0/ if and only if it acts with weight � on the unique lift ��f of f to OM .M /. Applying
[18, Proposition 2.7], we therefore deduce that

fY 2 t j gS .Y; �/ > 0g D fY 2 t j ˛.Y / > 0 for all ˛ 2 t� such that H˛ ¤∅ and ˛ ¤ 0g:

Consequently, in order to prove the inclusion (A-8), it suffices to show that

fY 2 t j gS .Y; �/ > 0g �ƒ:

This inclusion is established by the following proposition.

Proposition A.12 Let Y 2 fZ 2 t j gS .Z; �/.x/ > 0 for all x 2Sg with Hamiltonian potential uY . Then
uY � cr2 along the end of C0 for some c > 0. In particular , uY is proper and bounded below.

Proof Let x 2 fr D 1g and let 
x.t/ denote the integral curve of X, the vector field on M satisfying
d�.X /D r@r , with 
x.0/D x. Then we have that

(A-9) uY .
x.t//D uY .
x.0//C

Z t

0

duY . P
x.s// ds

D uY .x/C

Z t

0

g.�J Y;X /.
x.s// ds

D uY .x/C

Z t

0

g.Y;JX /.
x.s// ds:

Next observe that since Y 2 t, Y is tangent to the level sets of r by Lemma A.11. Hence, the asymptotics
(A-6) give us that

g.Y;JX /.
x.s//D g0.Y;JX /C

DO.1/‚ …„ ƒ
O.r�2/jY jg0

jJX jg0

DO.1/C r.
x.s//
2gS .Y; �/

DO.1/C r.x/2e2sgS .Y; �/;

where the final equality follows from the fact that r.
x.s//D r.x/es because
@

@s
.r.
x.s///D r.
x.s// and 
x.0/D x:

Plugging this into (A-9) yields

uY .
x.t//D uY .x/C
1
2
r.x/2gS .Y; �/.e

2t
� 1/CO.t/

D uY .x/�
1
2
gS .Y; �/r.x/

2
C

1
2
gS .Y; �/r.
x.t//

2
CO.ln r.
x.t///

� cr.
x.t//
2

along the end of C0 for some c > 0, since gS .Y; �/ > 0. From this, the assertion follows.
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A.6 Coercive estimates on Hamiltonian potentials

The goal of this subsection is to prove sharp positive bounds on the growth of the Hamiltonian potential of
a real holomorphic Killing vector field on a complete shrinking gradient Kähler–Ricci soliton .M;g;X /

that commutes with the soliton vector field X under certain conditions. Since H 1.M /D 0 by [67], such
a vector field always admits a Hamiltonian potential. Let ! denote the Kähler form of g and recall that
for each real holomorphic Killing vector field Y on M commuting with X, the Hamiltonian uY of Y is
normalised so that �!uY CuY C

1
2
J Y �f D 0. Since duY D�!yY by definition, one sees that

(A-10) �!uY CuY D�
1
2
g.J Y;X /D 1

2
g.ruY ;X /D

1
2
X �uY ;

an identity that shall prove useful in what follows. We will prove:

Proposition A.13 Let .M;g;X / be a complete shrinking gradient Kähler–Ricci soliton with bounded
Ricci curvature with soliton vector field X Drgf for a smooth real-valued function f WM !R. Let Y

be a real holomorphic Killing vector field on M commuting with X and assume that the Hamiltonian
potential uY of Y is proper and bounded below. Then there exist positive constants c1 and c2 such that
c1f � uY � c2f outside of a compact set.

As a consequence of this proposition, we see, without appealing to the Duistermaat–Heckman theorem,
that the weighted volume functional is defined on a complete shrinking gradient Kähler–Ricci soliton
.M;g;X / with bounded Ricci curvature on those elements admitting a Hamiltonian potential that is
proper and bounded below in the Lie algebra of any torus that acts in a holomorphic Hamiltonian fashion
on M and contains the flow of JX, where J denotes the complex structure of M.

Proof Let j � jg denote the norm with respect to g. The following claim provides a sharp growth rate on
jY jg which improves Proposition 2.30 for real holomorphic vector fields commuting with X.

Claim A.14 There exists a positive constant c such that jY j2g � cf outside a compact set.

Proof We start by taking note of the following crucial equation that holds pointwise on M and is
independent of the soliton structure. For a real holomorphic vector field Y, it holds that

�gY CRic.Y /D 0:

This observation is due to Lichnerowicz and its proof can be found for instance in [2, Proposition 4:79].
Since we allow Y to commute with X, Y satisfies the elliptic equation

�gY �rX Y CY D�gY �rX Y CRic.Y /CrY X D 0;

where we have used the soliton equation (1-4) with �D 1. Recall also that �gf �X �f D�2f .
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Using these facts, we compute

(A-11) .�g �X � /

�
jY j2g

f

�
D 2f �1

jrY j2g � 2
jY j2g

f
CjY j2g.�g �X � /f �1

C 2g.rg
jY j2g;r

gf �1/

� �2
jY j2g

f
C
jY j2g

f

�
�
.�g �r

gf � /f

f
C 2
jrgf j2

f 2

�
� 2g

�
r

g

�
jY j2g

f

�
;rg lnf

�
� 2jrg lnf j2

jY j2g

f

� �2g

�
r

g

�
jY j2g

f

�
;rg lnf

�
;

a computation valid on the set where f is strictly positive. For " > 0 a given constant and a> 0 a constant
such that jY j2g DO.f a/ (see Proposition 2.30), we consider the function jY j2g �f

�1� "f a defined on
the complement of a compact set of the form ff � C.n/g such that f is strictly positive on ff � C.n/g.
By Proposition 2.30, we know that

lim
f!C1

.jY j2g �f
�1
� "f a/D�1;

so that this function attains a maximum on the set ff � C.n/g. Now, if f � 2.aC 1/, then using (A-11),
we compute that

.�g �X � /

�
jY j2g

f
� "f a

�
� �2g

�
r

g

�
jY j2g

f
� "f a

�
;rg lnf

�
C "af a

�
2� .aC 1/

jrgf j2

f 2

�
� �2g

�
r

g

�
jY j2g

f
� "f a

�
;rg lnf

�
C "af a

�
2� .aC 1/

2

f

�
> �2g

�
r

g

�
jY j2g

f
� "f a

�
;rg lnf

�
;

where we used the first-order soliton identity from Lemma 2.22 in the penultimate inequality. As
already noted, jY j2g � f

�1 � "f a attains a maximum on ff � C.n/g and so the maximum principle
applied to this function implies that it must attain its maximum at a point on the boundary of the set
ff �maxf2.aC 1/;C.n/gg. In particular, we find that

(A-12) jY j2g �f
�1
�"f a

� max
fDC.a;n/

.jY j2g �f
�1
�"f a/� max

fDC.a;n/
.jY j2g �f

�1/DC.a; n/ max
fDC.a;n/

jY j2g;

where C.a; n/ is a positive constant that may vary from line to line. As the right-hand side of (A-12) is
independent of ", by letting " tend to 0 on the left-hand side, we reach the desired conclusion. G

Since jruY jg D jJ Y jg D jY jg, one obtains the expected growth on uY by integrating the estimate
on jY jg established in the previous claim.

We next prove the lower bound on uY . First notice that since uY is proper and bounded below, uY is
strictly positive outside a sufficiently large compact set of the form ff � c0g. Recall from Remark 2.23 that

Geometry & Topology, Volume 28 (2024)



Classification results for expanding and shrinking gradient Kähler–Ricci solitons 347

the normalisation of f is determined by the soliton identities, which in this case yield�gf �X �f D�2f .
Using f as a barrier function together with (A-10), we compute the weighted Laplacian of the difference
of the inverses of uY and f on the region where this difference makes sense. We have

(A-13)
�
�! �

1
2
X �

�� 1

uY

�
C

f

�
D

1

uY

�
C

f
C 2
jruY j

2

u3
Y

� 2C
jrf j2

f 3
;

where C is a positive constant to be specified later. Assume that the function u�1
Y
�Cf �1 attains its

maximum at an interior point x0 of a domain of the form fr1 � f � r2g with r1 sufficiently large so that
both uY and f are strictly positive. At such a point x0, one sees that r.u�1

Y
�Cf �1/.x0/D 0, and from

the maximum principle that
0�

�
�! �

1
2
X �

�� 1

uY

�
C

f

�
.x0/:

This information, together with (A-13), implies that at x0,

0�
1

uY

�
C

f
C 2
jruY j

2

u3
Y

� 2C
jrf j2

f 3
D

1

uY

�
C

f
C 2uY jru�1

Y j
2
� 2Cf jrf �1

j
2

D
1

uY

�
C

f
C 2uY C 2

jrf �1
j
2
� 2Cf jrf �1

j
2
D

�
1

uY

�
C

f

�
.1� 2C uY f jrf

�1
j
2/

D

�
1

uY

�
C

f

��
1� 2C

uY

f 3
jrf j2

�
:

Next, using the fact that jrf j2 grows quadratically by the soliton identities, we see from the upper bound
on uY that on M,

2C
uY

f 3
jrf j2 �

2Cd

f

for some positive constant d uniform in r1 and r2. In particular, the term .1�2C uY f
�3jrf j2/ is positive

on fr1 � f � r2g as long as 2Cf �1d is strictly less than 1, or equivalently, as long as C < .2d/�1r1.

In summary, for any heights r1 < r2 and any constant C such that C < .2d/�1r1, we have that

max
r1�f�r2

�
1

uY

�
C

f

�
�max

�
0; max
fDr1

�
1

uY

�
C

f

�
; max
fDr2

�
1

uY

�
C

f

��
:

Since uY (and f ) tend to C1 as f approaches C1, one sees, by letting r2 tend to C1, that

(A-14) max
r1�f

�
1

uY

�
C

f

�
�max

�
0; max
fDr1

�
1

uY

�
C

f

��
:

We choose C and r1 so that the right-hand side of (A-14) is nonpositive and so that C < .2d/�1r1. This
is possible because by properness of uY , there exists some positive height r1 such that minfDr1

uY � 4d .
Then for C WD .4d/�1r1, we have that C < .2d/�1r1 and

max
fDr1

�
1

uY

�
C

f

�
� 0;

as desired. This completes the proof of the proposition.
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