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We study the dependence of the embedding calculus Taylor tower on the smooth structures of the source
and target. We prove that embedding calculus does not distinguish exotic smooth structures in dimension 4,
implying a negative answer to a question of Viro. In contrast, we show that embedding calculus does
distinguish certain exotic spheres in higher dimensions. As a technical tool of independent interest, we
prove an isotopy extension theorem for the limit of the embedding calculus tower, which we use to
investigate several further examples.
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1 Introduction

We investigate the scope of a certain tool used to study the space Embs.N;M/ of smooth embeddings
from an n–manifold N into an m–manifold M . This investigation has consequences for spaces of
embeddings themselves, as shown by the following result on knots and links, which answers a question
of Viro [42, Section 6] in the negative and improves on a result of Arone and Szymik [3].

Theorem A Let M and M 0 be smooth simply connected compact 4–manifolds. If M and M 0 are
homeomorphic , then , for any k � 0,

Embs
�G
k

S1;M

�
' Embs

�G
k

S1;M 0
�
:
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354 Ben Knudsen and Alexander Kupers

The tool in question is the embedding calculus of Goodwillie and Weiss [16; 46], which, at the coarsest
level, provides a functorial comparison map

Embs.N;M/! T1Embs.N;M/D holim
k

TkEmbs.N;M/;

whose target is assembled from the configuration spaces of N and M and maps among them (details are
reviewed in Section 2). According to one of the main results of the subject (see Goodwillie and Klein [14]
and [16]), this map is a weak equivalence in codimension at least 3; one says that the Taylor tower converges
to the embedding space. In particular, the theorem applies to links in 4–manifolds as in Theorem A.

Little is known about convergence in low codimension. We begin to address this gap by proving that
codimension-0 convergence largely fails in dimension 4.

Theorem B Let M and N be smooth simply connected compact 4–manifolds. If M and N are
homeomorphic , then T1Embs.N;M/¤¿. In particular , if M and N are not also diffeomorphic , then
the map

Embs.N;M/! T1Embs.N;M/

is not a weak equivalence.

In fact, we prove that there are homotopy invertible elements in T1Embs.N;M/, which one should think
of as saying that N and M are diffeomorphic (or at least isotopy equivalent) in the eyes of embedding
calculus.

Theorems A and B arise from a common source. Specifically, the data involved in the constructions of
embedding calculus is a pair of presheaves, one forN and one forM . We show in Theorem 3.18 that these
presheaves are largely insensitive to smooth structure in dimension 4, and the results follow; see Section 4.

The results above might lead one to suspect that embedding calculus is insensitive to smooth structure. The
following contrasting result shows that the situation is not so simple (see Section 5.2 for further examples).

Theorem C For any nD 2j with j � 3, there is an exotic n–sphere † such that T1Embs.†; Sn/D¿.
In particular , the map

Embs.†; Sn/! T1Embs.†; Sn/

is a weak equivalence (both sides are empty).

Thus, embedding calculus distinguishes certain exotic spheres. Alternatively, one can interpret this as a
convergence result in codimension 0. The crucial property distinguishing the exotic spheres of Theorem C
from Sn is that they do not embed in RnC3.

To facilitate the further study of embedding calculus in the potential absence of convergence, we prove an
isotopy extension theorem for T1Embs.�;�/; see Theorem 6.1. We close by demonstrating its utility
with several applications.
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2 Preliminaries

In this section, we gather what facts we need from the theory of embedding calculus, as well as some
standard foundational material on topological manifolds. In our discussion of calculus, we adopt the
perspective of [5], but see [6; 15; 41; 46] for other foundations.

2.1 Embedding calculus

WriteMflds for the simplicial category whose objects are smooth manifolds without boundary, of finite type
and arbitrary dimension. The morphism space MapMflds .N;M/ has as n–simplices commuting diagrams

�n �N �n �M

�n

in which the top map is a neat smooth embedding of manifolds with corners. This category is symmetric
monoidal under disjoint union.

Manifold calculus approximates simplicial presheaves on this category by extrapolating from their values
on disjoint unions of disks of a fixed dimension. More formally, let Disksn�Mflds be the full subcategory
on those objects that are diffeomorphic to a disjoint union of finitely many copies of Rn with its standard
smooth structure. Manifold calculus is the approximation of simplicial presheaves on Mflds by simplicial
presheaves on Disksn. Embedding calculus is the application of manifold calculus to the presheaf of
embeddings into a smooth manifold M . Fixing n, we write EsM for the presheaf on Disksn obtained by
restriction of the representable presheaf on Mflds determined by M ; explicitly,

EsM

�G
k

Rn
�
WD Embs

�G
k

Rn;M

�
:

The reader is warned that our notation does not reflect the choice of n, which should always be clear
from context.
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356 Ben Knudsen and Alexander Kupers

Remark 2.1 Equivalently, writing Esn for the endomorphism operad of Rn with its standard smooth
structure — equivalent to the framed little n–disks operad allowing translation, scaling, rotation and
reflection of the little disks — the simplicial category Psh.Disksn/ of simplicial presheaves on Disksn is
equivalent to the simplicial category of right Esn–modules [5, Section 6].

An embedding N ,!M determines a map EsN ! EsM of presheaves. Since the category Disksn has a
filtration by cardinality of path components, there results a canonical functorial cofiltration on mapping
spaces between presheaves and localizing at the objectwise weak equivalences also on the derived mapping
spaces. In the situation at hand, this cofiltration is called the embedding calculus Taylor tower.

Definition 2.2 (Boavida and Weiss) Let N and M be smooth manifolds of dimension n and m,
respectively. The embedding calculus Taylor tower for smooth embeddings of N into M is the cofiltered
derived mapping space of presheaves on truncations of the simplicial category Disksn:

T�Embs.N;M/ WDMaph
Psh.Disksn/

.EsN ;E
s
M /:

The cofiltered derived mapping space gives rise to a tower of comparison maps

:::

TkC1Embs.N;M/

Embs.N;M/ TkEmbs.N;M/

:::

�kC1

�k

We write T1Embs.N;M/ for the homotopy limit of the tower, which is to say the derived mapping
space of presheaves on the untruncated simplicial category Disksn. One can choose a model for the
derived mapping space such that these constructions are functorial in M;N 2Mflds , there are associative
and unital composition maps, and both functoriality and composition are compatible with the above
comparison maps. See [29, Section 3.3.1] for further discussion of this point.

The following is [16, Theorem 2.3], relying on excision estimates from Goodwillie and Klein [14].

Theorem 2.3 (Goodwillie, Klein and Weiss) The map �k is .3�mC.kC1/.m�n�2//–connected for
k > 0. In particular , if m�n� 3, then �1 is a weak equivalence.

In fact, we may replace n in the above result by the handle dimension hdim.N / of N . Recall that
hdim.N / � h if N is the interior of a manifold which admits a handle decomposition with handles of
index � h only. For example, hdim.Rn/D 0.

Geometry & Topology, Volume 28 (2024)
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If M DN , we write T�Diff.M/� T�Embs.M;M/ for the simplicial subset of homotopy invertible maps.
This distinction may very well be unnecessary; however, even in cases where every self-embedding of M
is a diffeomorphism, we do not know whether every path component of the limit of the Taylor tower is
invertible.

Question 2.4 When are all elements of �0 Maph
Psh.Disksm/

.EsM ;E
s
M / invertible?

2.2 Calculus for manifolds with boundary

We close with a brief description of the modifications necessary to use embedding calculus in the setting of
manifolds with boundary [5, Section 9]. Fixing a smooth manifold Z, we write MfldsZ for the simplicial
category of smooth manifolds with boundary identified with Z by a diffeomorphism, and morphism
spaces given by smooth embeddings that are the identity on Z. In particular, Mflds D Mflds¿. Let
Disksn;Z � MfldsZ be the full subcategory on those objects that are diffeomorphic relative to Z to a
disjoint union of a collar Z � Œ0; 1/ and finitely many copies of Rn.

An object P 2MfldsZ determines a representable presheaf on MfldsZ and we denote its restriction to
Disksn;Z by Es

P;@
. As before, for an object N 2MfldsZ of dimension n, we obtain an approximation

Embs@.N; P /! T�Embs@.N; P /DMaph
Psh.Disksn;Z/

.EsN;@;E
s
P;@/

as a cofiltered derived mapping space of presheaves on Disksn;Z . The conclusion of Theorem 2.3 holds
for this approximation, though handle dimension needs to be replaced by handle dimension relative to Z.

2.3 A simplicial category of topological manifolds

Recall that a topological embedding e W N ! M is locally flat if, for every p 2 N , there exist open
neighborhoods p 2 U and e.U / � V and homeomorphisms U Š Rn and V Š Rm fitting into the
commuting diagram

(1)
N � U V �M

Rn Rm

Š

ejU

Š

j

where j WRn!Rm is the standard inclusion .x1; : : : ; xn/ 7! .x1; : : : ; xn; 0; : : : ; 0/.

The simplicial category Mfldt has objects topological manifolds of finite type and arbitrary dimension,
with the n–simplices of the mapping space MapMfldt .N;M/ given by commuting diagrams

�n �N �n �M

�n

Geometry & Topology, Volume 28 (2024)



358 Ben Knudsen and Alexander Kupers

with the top map a locally flat embedding admitting charts as in (1) that commute with the projection
to �n. This definition is chosen so that the isotopy extension theorem holds.

As every smooth embedding is locally flat as a consequence of the tubular neighborhood theorem,
forgetting the smooth structure defines a simplicial functor from Mflds to Mfldt .

2.4 Microbundles

Microbundles were defined by Milnor in [37] and play the role of vector bundles for topological manifolds.

Definition 2.5 A retractive space is a map � W E ! B of topological spaces together with a section
� W B!E.

The spaces E and B are referred to as the total space and base space, and the maps � and � as projection
and zero section. Via the zero section, we identify B with its image in E, and we abusively refer to this
image also as the zero section. We abusively refer to a retractive space simply by the letter E.

Definition 2.6 A map F WE1!E2 of retractive spaces is a continuous map F WE1!E2 such that the
dashed filler exists in the commuting diagram

B1 E1 B1

B2 E2 B2

�1

f F

�1

f

�2 �2

Note that the map F determines the map f D �2 ıF ı �1. When we wish to emphasize the latter, we
say that F is a map of retractive spaces over f , or over B in the case f D idB . Retractive spaces and
morphisms between them form a category, Retr.

Definition 2.7 A microbundle is a retractive space E such that, for every b 2 B , there is an open
neighborhood b 2 U �E and a homeomorphism U Š �.U /�Rn such that the diagram

U

�.U / �.U /

�.U /�Rn

Š

��

commutes, where the bottom left map is induced by the inclusion of the origin and the bottom right is
projection onto the first factor.

Example 2.8 The prototypical example of a microbundle is the tangent microbundle of a topological
manifold — see Definition 2.13 below or [37, Example (3)].
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The homeomorphisms which appear in the previous definition are called microbundle charts. Note that,
by invariance of domain, the parameter n in Definition 2.7 is locally constant.

If E is a retractive space, so is any open neighborhood W of the zero section. The set of germs of maps
E1!E2 of retractive spaces is the colimit

colim
B1�U�E1

HomRetr.U;E2/;

over the poset of open subsets U of E1 containing B1, which may be composed as follows:

colim
B1�U�E1

HomRetr.U;E2/� colim
B2�V�E2

HomRetr.V;E3/ .F1; F2/

colim
B1�U�E1;B2�V�E2

HomRetr.U;E2/�HomRetr.V;E3/

colim
B1�W�E1

HomRetr.W;E3/ F2 ıF1jF�11 .V /

o

This composition is easily checked to be associative and unital.

Definition 2.9 A map F WE1!E2 of microbundles is a germ of a map of retractive spaces such that,
for every b 2 B1, there are microbundle charts around b and F.b/ fitting into the commuting diagram

U1 U2

�.U1/�Rn1 �.U1/�Rn2

Š

F jU1

Š

f j�.U1/�j

where j WRn1 !Rn2 is the standard inclusion and f W B1! B2 the map on base spaces induced by F .

Note that maps of microbundles are fiberwise embeddings.

Remark 2.10 When E1 and E2 are microbundles of the same fixed dimension, this definition reduces
to [37, Definition 6.3].

Example 2.11 The prototypical example of a map of microbundles is the topological derivative of a
locally flat embedding — see Definition 2.14 below.

It is easy to check that maps of microbundles are closed under composition of germs of maps of retractive
spaces, so we obtain a category Mic of numerable microbundles as a subcategory of the category Retr of
retractive spaces.
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A retractive space E with base B can be pulled back along a continuous map f W A! B to give a
retractive space f �E with base A; in the commutative diagram

A f �E A

B E B

f f

� �

the right-hand square is a pullback square, and the section A! f �E is induced by the maps id W A! A

and � ı f W A!E. This exhibits a canonical map of retractive spaces f �E!E. If E is a microbundle,
then f �E is so as well, and the canonical map is a map of microbundles [37, Section 3]. Given a
microbundle E with base B and a topological space X , we let X �E!X �B denote the pullback of E
along the projection X �B! B .

Microbundles form a simplicial category Mic via the declaration

MapMic.E1; E2/n WD HomMic.�
n
�E1; E2/:

Concretely, an n–simplex F W�n �E1!E2 can be described as a germ near the zero section �n �B1
of a commutative diagram

�n �E1 �n �E2

�n �B1 �n �B2

�n

.�1;F /

.�1;f /

with the additional properties that

(i) .�1; F / preserves the zero section, and

(ii) with respect to suitable microbundle charts, .�1; F / is given by the germ of

.id; f /jU1 � j W U1 �Rn1 ! U2 �Rn2

with j the standard inclusion.

Using that every topological horn is a retract of the corresponding topological simplex, it is easy to see
that these mapping objects are Kan complexes.

Microbundles adhere to a covering homotopy theorem analogous to the classical result for vector bundles
and fiber bundles, which has the following consequence. In it, Top denotes the simplicial category with
objects topological spaces and morphism spaces the singular simplicial sets of mapping spaces.

Lemma 2.12 The natural map MapMic.E1; E2/!MapTop.B1; B2/ is a Kan fibration with fiber over
f W B1 ! B2 canonically isomorphic to the simplicial subset of MapMic.E1; f

�E2/ with underlying
map idB1 .
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Proof We check that the map MapMic.E1; E2/!MapTop.B1; B2/ is a Kan fibration, as the identification
of the fiber is straightforward. To check the lifting property in a commutative diagram

ƒn
k

MapMic.E1; E2/

�n MapTop.B1; B2/

we first, by gluing, represent the top map by a map of microbundlesF Wƒn
k
�E1!E2 (here, and throughout,

we employ the same notation for a simplicial set and its geometric realization). We similarly represent
the bottom map by an extension of the map f underlying F to a continuous map g W�n �B1! B2.

Let us denote by zF , Qf and Qg the maps obtained from F , f and g using the homeomorphism of pairs

.�n; ƒnk/Š .�
n�1
� Œ0; 1�;�n�1 � f0g/:

Under this identification, the lifting problem at hand is equivalent to extending a map of microbundles
zF W�n�1�E1! Qf �E2 over �n�1�B1 to �n�1� Œ0; 1��E1! Qg�E2 over �n�1� Œ0; 1��B1. By the

microbundle homotopy covering theorem [37, Theorem 3.1], there is an isomorphism of microbundles
' W Qg�E2 Š Qf

�E2 � Œ0; 1� over �n�1 � Œ0; 1��B1. It is now evident that the desired extension exists, as
we may form the product of zF with Œ0; 1� and apply '�1.

2.5 Topological tangency

We come now to the motivating example of a microbundle, the “tangent bundle” of a topological manifold
[37, Lemma 2.1].

Definition 2.13 Let M be a topological manifold. The topological tangent bundle of M , denoted
by T tM , is the retractive space

M �
�!M �M �

�!M;

where � is the projection onto the first factor

To verify that T tM is a microbundle, it suffices, by locality, to assume M DRm, in which case we may
appeal to the commuting diagram

Rm �Rm .x; y/

Rm Rm

Rm �Rm .x; y � x/

Š

��

A smooth embedding has a derivative, and likewise a locally flat embedding ' WN !M has a topological
derivative.
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Definition 2.14 If ' WN !M is a locally flat embedding, the topological derivative T t' W T tN ! T tM

of ' is the map of microbundles

N N �N N

M M �M M

�

'

�

'�' '

� �

To verify that T t' is a map of microbundles, we may, by locality, assume that ' is the standard inclusion
Rn ,! Rm, in which case the bundle chart constructed above implies the claim. Thus, we obtain a
simplicial functor T t WMfldt !Mic

2.6 Comparing tangent bundles

We write Vec for the simplicial category of numerable vector bundles and maps of vector bundles, which
for us are always fiberwise linear injections. Specifically, given vector bundles E1! B1 and E2! B2,
an n–simplex of MapVec.E1; E2/ is a commuting diagram

E1 ��
n E2 ��

n

B1 ��
n B2 ��

n

�n

in which the top map is a fiberwise linear injection. As before, these mapping spaces are Kan complexes.

We record the following standard consequence of the covering homotopy theorem for vector bundles
[19, Theorem 4.3], whose proof proceeds along the lines of Lemma 2.12.

Lemma 2.15 The natural map MapVec.E1; E2/!MapTop.B1; B2/ is a Kan fibration with fiber over
f W B1 ! B2 canonically isomorphic to the simplicial subset of MapVec.E1; f

�E2/ with underlying
map idB1 .

Vector bundles are in particular microbundles, and assigning to a vector bundle its underlying microbundle
extends to a simplicial functor Mic! Vec.

We now have two ways of extracting a microbundle from a smooth manifold M : first, by considering its
tangent bundle TM as a microbundle; second, by forgetting the smooth structure and considering T tM .
To compare these, we use the following construction:

Construction 2.16 Fix a Riemannian metric on the smooth manifold M . The t D 1 exponential map is
defined on a neighborhood U of the zero section, and the assignment

expM W TM � U ! T tM; .p; v/ 7! .p; exp.p; v//

defines a map of retractive spaces.
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Proposition 2.17 (Milnor [37, Theorem 2.2]) The map of Construction 2.16 defines an isomorphism of
microbundles TM ��! T tM .

3 Formally smooth manifolds

The first goal of this section is to factor the forgetful functor from smooth to topological manifolds as in
the commuting diagram

Mflds Mfldt

Mfldr Mfldf

'

The simplicial category Mfldr is a category of Riemannian manifolds under embeddings respecting the
metric up to specified homotopy. It is introduced because Construction 2.16 requires a Riemannian metric.
As a result of the homotopy equivalence between O.n/ and GL.n/, the leftmost functor is an equivalence,
and the role of Mfldr is as a convenient proxy for Mflds . The simplicial category Mfldf is a category of
formally smooth manifolds, which is to say manifolds equipped with vector bundle refinements of their
topological tangent bundles.

The second goal of this section is to prove Theorem 3.18, which asserts that all information detectable by
embedding calculus is contained in Mfldf .

3.1 Simplicial categories of Riemannian and formally smooth manifolds

In this section, we have in mind the model of the homotopy pullback of simplicial categories explained in
Section 6.2.4, following [1].

We begin with the construction of Mfldr . We write Met for the simplicial category whose objects are
vector bundles endowed with Riemannian metrics and whose morphisms are fiberwise linear isometries,
which are assembled into simplicial sets in the same manner as in Vec. As before, these mapping spaces
are Kan complexes and we have the following consequence of local triviality:

Lemma 3.1 The natural map MapMet.E1; E2/! MapTop.B1; B2/ is a Kan fibration with fiber over
f W B1 ! B2 canonically isomorphic to the simplicial subset of MapMet.E1; f

�E2/ with underlying
map idB1 .

There is a canonical simplicial forgetful functor from Met to Vec.

Proposition 3.2 The forgetful functor Met!Vec is essentially surjective and induces weak equivalences
on mapping spaces.

Proof The first claim follows from the fact that every numerable vector bundle admits a Riemannian
metric. For the second claim, by Lemmas 2.15 and 3.1 it suffices to show that the maps induced on
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point–set fibers in the commuting diagram

MapMet.E1; E2/ MapVec.E1; E2/

MapTop.B1; B2/ MapTop.B1; B2/

are weak equivalences. By the same results, we may identify the left-hand (resp. right-hand) fiber over f
with the singular simplicial set of the space of sections of the associated bundle of noncompact (resp.
compact) Stiefel manifolds, whose fibers are general linear (resp. orthogonal) groups. The conclusion then
follows as the inclusion of the orthogonal group into the general linear group is a homotopy equivalence.

We use this to define Mfldr , which is a homotopy pullback as in Section 6.2.4.

Definition 3.3 The simplicial category of Riemannian manifolds is the homotopy pullback in the diagram

Mfldr Mflds

Met Vec

T

of simplicial categories over Top.

Notation 3.4 We denote the morphism spaces in Mfldr by Embr.�;�/.

Thus, an object of Mfldr is a smooth manifold with a choice of metric, and a morphism is a fiberwise
isometry covering a smooth embedding, together with a fiberwise homotopy through linear injections to
the derivative of the embedding.

As the following result illustrates, the forgetful functor exhibits Mfldr as a proxy for Mflds . This proxy
is easier to map out of.

Proposition 3.5 The forgetful functor Mfldr ! Mflds is essentially surjective , and induces weak
equivalences on mapping spaces.

Proof The first claim follows from the statement that every smooth manifold admits a Riemannian
metric. The second claim follows from Propositions A.2 and 3.2 and Lemma 2.15.

We continue with the construction of Mfldf , which is a homotopy pullback as in Section 6.2.4.

Definition 3.6 The simplicial category of formally smooth manifolds is the homotopy pullback in the
diagram

Mfldf Mfldt

Vec Mic

T t

of simplicial categories over Top.
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Notation 3.7 We denote the morphism spaces in Mfldf by Embf .�;�/.

Thus, an object of Mfldf is a topological manifold with a vector bundle refinement of its topological
tangent bundle, and a morphism is a fiberwise linear injection covering a topological embedding, together
with a fiberwise homotopy through embeddings to the topological derivative of the embedding.

It remains to construct the functor Mfldr !Mfldf .

Construction 3.8 We obtain Mfldr !Mfldf as an instance of Construction A.4. The requisite data are
the following:

(i) the simplicial functor Mfldr!Met!Vec associating to a Riemannian manifold its tangent bundle,

(ii) the simplicial functor Mfldr!Mflds!Mfldt associating to a Riemannian manifold its underlying
topological manifold,

(iii) the natural isomorphism indicated by the thick arrow between bottom-left and top-right compositions
in the diagram

Mfldr Mflds

Vec Mic

Š

arising from Construction 2.16.

Remark 3.9 Upon restricting to the respective full subcategories of manifolds of dimension different
from 4, the functor of Construction 3.8 becomes an equivalence by smoothing theory [22, Essays IV and V].

3.2 Smooth embeddings of Euclidean spaces

In the next sections, we assemble results on various types of embeddings of Euclidean spaces, which will
be used below in the proof of Theorem 3.18. We begin in the smooth context, where these results are
standard, but we include proofs for the sake of completeness.

Fix a smooth m–manifold M and a natural number 0 < n�m, as well as a point p 2M . We introduce
four simplicial sets, the first three defined as pullbacks of diagrams of the form

X

fpg M

(i) Taking X DMapVec.TRn; TM/ mapping to M by evaluation at the origin followed by projection,
we obtain MapVec;p.TRn; TM/.

(ii) TakingXDMapVec.T0R
n; TM/mapping toM in the same way, we obtain MapVec;p.T0R

n; TM/,
otherwise known as the (noncompact) Stiefel manifold of n–planes in TpM .

Geometry & Topology, Volume 28 (2024)



366 Ben Knudsen and Alexander Kupers

(iii) Fixing an open subset 0 2 U �Rn and taking X D Embs.U;M/ mapping to M by evaluation at
the origin, we obtain Embsp.U;M/.

(iv) Finally, we write Gsp.n;M/ WD colim02U�Rn Embsp.U;M/ for the simplicial set of germs of
smooth embeddings (here U ranges over open subsets containing the origin).

Lemma 3.10 All maps in the commuting diagram

Embsp.R
n;M/ Gsp.n;M/

MapVec;p.TRn; TM/ MapVec;p.T0R
n; TM/

are weak equivalences.

Proof For the top map, the restriction Embsp.R
n;M/! Embsp.U;M/ is a weak equivalence whenever

U is an open ball centered at the origin, since the inclusion U � Rn is isotopic to a diffeomorphism
relative to the origin. The claim now follows from the observation that the subposet of such open balls is
final in the poset of all open neighborhoods of the origin, and both are filtered. For the bottom map, the
claim is a consequence of the contractibility of Rn and the homotopy covering theorem. For the right-hand
map, the claim may be tested on compact families of germs, so we may assume that M DRm. In this
case, the Stiefel manifold includes canonically into Embsp.R

n;Rm/, and composing with the map to
Gsp.n;R

m/ supplies a homotopy inverse. For the left-hand map, the claim follows by two-out-of-three.

We will also have use for a mild generalization of the claim regarding the top map. Let N D
F
i2I Rni

for some finite set I , and fix a collection pi 2M of points for each i 2 I such that pi ¤ pj if i ¤ j . Let
EmbspI .N;M/� Embs.N;M/ be the simplicial subset of embeddings sending the origin in Rni to pi .

Lemma 3.11 The canonical map EmbspI .N;M/!
Q
i2I G

s
pi
.ni ;M/ is a weak equivalence.

Proof The map in question factors through GspI .nI ;M/ WD colimU�N EmbspI .U;M/, where U ranges
over open subsets containing the origin in Rni for every i 2 I . As in the previous argument, the subposet
consisting of the disjoint unions of open balls around the respective origins is final, and both are filtered.
Thus, since the inclusion of such an open set into N is isotopic to a diffeomorphism, the first map is a
weak equivalence. On the other hand, the map

GspI .nI ;M/!
Y
i2I

Gspi .ni ;M/

is an isomorphism; indeed, injectivity is immediate, and surjectivity follows from the observation that any
family of I–tuples of germs parametrized over a compact space (such as a simplex) can be represented by
a family of I–tuples of embeddings whose images are pairwise disjoint at every point of the parameter
space.
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We write ConfI .M/ WD f.pi /i2I j pi ¤ pj if i ¤ j g �M I for the configuration space of particles in M
labeled by I .

Proposition 3.12 Let M be a smooth manifold and N D
F
i2I Rni . The diagram

Embs.N;M/ MapVec.TN; TM/

ConfI .M/ M I

induced by evaluation at the respective origins is homotopy Cartesian.

Proof This square is the outer square in the commuting diagram

Embs.N;M/
Q
i2I Embs.Rni ;M/

Q
i2I MapVec.TRni ; TM/

ConfI .M/ M I M I

so it suffices to verify that each of the inner squares is homotopy Cartesian. The left two vertical maps are
fibrations by the isotopy extension theorem [44, Chapter 6], and the right-hand vertical map is a product
of fibrations, the i th map being the composite of two fibrations

MapVec.TRni ; TM/!MapTop.R
ni ;M/!MapTop.f0g;M/:

Thus, it suffices to establish that the induced maps on fibers are weak equivalences.

For the right-hand square, the map on fibers is a product of weak equivalences by Lemma 3.10. For the
left-hand square, the map on fibers is the top map in the commuting diagram

Embs
pI
.N;M/

Q
i2I Embspi .R

ni ;M/

Q
i2I G

s
pi
.ni ;M/

Q
i2I G

s
pi
.ni ;M/

and the vertical maps are weak equivalences by Lemmas 3.10 and 3.11.

3.3 Topological embeddings of Euclidean spaces

We turn now to the topological versions of these facts, our goal being a description of locally flat
embeddings of Euclidean spaces in terms of microbundle maps and configuration spaces.

TakingM instead to be merely a topological manifold, we define the simplicial sets MapMic;p.TRn; TM/,
MapMic;p.T0R

n; TM/, Embtp.U;M/ and Gtp.n;M/ by replacing smooth embeddings with locally flat
embeddings and vector bundles with microbundles in the definitions of the previous section.
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Lemma 3.13 All maps in the commuting diagram

Embtp.R
n;M/ Gtp.n;M/

MapMic;p.TRn; TM/ MapMic;p.T0R
n; TM/

are weak equivalences. In fact , the right-hand vertical map is an isomorphism.

Proof The claim regarding the right-hand map follows upon inspecting the definitions, and the same
argument as in Lemma 3.10 suffices for the remaining three.

As in the smooth case, extending our notation in the obvious way, we have the following generalization:

Lemma 3.14 The canonical map EmbtpI .N;M/!
Q
i2I G

t
pi
.ni ;M/ is a weak equivalence.

Given these inputs and isotopy extension for locally flat embeddings [11] (see [40, Theorem 6.17] for the
variant with parameters), the topological analog of Proposition 3.12 follows by the same argument.

Proposition 3.15 Let M be a topological manifold and N D
F
i2I Rni . The diagram

Embt .N;M/ MapMic.T
tN; T tM/

ConfI .M/ M I

induced by evaluation at the respective origins is homotopy Cartesian.

3.4 Formally smooth embeddings of Euclidean spaces

The key calculation in the proof of Theorem 3.18 is a comparison between Riemannian embeddings and
formally smooth embeddings. We start with a lemma concerning Riemannian embeddings:

Lemma 3.16 Let M be a Riemannian manifold and N D
F
i2I Rni . The diagram

Embr.N;M/ MapMet.TN; TM/

ConfI .M/ M I

induced by evaluation at the respective origins is homotopy Cartesian.
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Proof The upper square of the commuting diagram

Embr.N;M/ MapMet.TN; TM/

Embs.N;M/ MapVec.TN; TM/

MapTop.N;M/

ConfI .M/ M I

is homotopy Cartesian by Propositions 3.2 and 3.5 (they imply that right and left vertical maps, respectively,
are weak equivalences), and the bottom square is homotopy Cartesian by Proposition 3.12.

We come now to the result of interest:

Proposition 3.17 Let M be a Riemannian manifold and N D
F
i2I Rni . Then the canonical map

Embr.N;M/! Embf .N;M/

is a weak equivalence.

Proof Consider the diagram

Embr.N;M/ Embf .N;M/ Embt .N;M/

MapMet.TN; TM/ MapVec.TN; TM/ MapMic.TM; TN/

The right square commutes, but the left square commutes only up to specified homotopy.

The maps from MapVec.TN; TM/ and MapMic.TN; TM/ to MapTop.N;M/ are fibrations by Lemma 2.15,
so Proposition A.2 grants that the right-hand square is homotopy Cartesian. Therefore, since the lower
left-hand map is a weak equivalence by Proposition 3.2, it suffices to show that the outer diagram is also
homotopy Cartesian. By Proposition 3.15 and Lemma 3.16, the vertical homotopy fibers in the outer
diagram are compatibly identified with the homotopy fiber of the inclusion ConfI .M/�M I , and the
claim follows.

3.5 Consequences for embedding calculus

In order to state the main result, we extend our notation in the obvious way by writing Diskfn and Diskrn
for the full subcategories on disjoint unions of finitely many copies of Rn in the appropriate categories of
manifolds, and similarly for derived mapping spaces of simplicial presheaves on these categories.
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Theorem 3.18 Given Riemannian metrics on smooth manifolds M and N , there is a canonical weak
equivalence

T�Embs.N;M/'Maph
Psh.Diskfn /

.EfN ;E
f
M /:

In particular , the embedding calculus Taylor tower depends only on M and N as formally smooth
manifolds.

Remark 3.19 The choice of Riemannian metric on M and N is irrelevant; the space of Riemannian
metrics on a smooth manifold is contractible, and our constructions are continuous in the Riemannian
metric in the sense that a path of Riemannian metrics gives rise to a homotopy of zigzags of maps between
the left- and right-hand sides.

Remark 3.20 Similar methods serve to establish a version of Theorem 3.18 for manifolds M and N
with common boundary Z.

The theorem is an immediate consequence of the following result, which will follow easily from
Proposition 3.17. Write f WDiskrn!Disksn and g WDiskrn!Diskfn for the respective forgetful functors,
and write ˆ WD LgŠf

� for the composite of the (automatically derived) restriction and derived induction
functors pertaining to these maps (a concrete model for the latter is available via a functorial cofibrant
replacement, for example).

Proposition 3.21 Fix n� 0.

(i) The functor ˆ W Psh.Disksn/! Psh.Diskfn / is essentially surjective up to weak equivalence , and
induces weak equivalences on derived mapping spaces.

(ii) For any Riemannian manifold M , there is a canonical weak equivalence ˆ.EsM /' EfM .

Proof By Proposition 3.17, the functors f and g are Dwyer–Kan equivalences and hence so are the
induced maps on presheaf categories [25], implying the first claim. For the second, we observe the zigzag

ˆ.EsM /D LgŠf
�EsM

� � LgŠE
r
M
��! LgŠg

�EfM
��! EfM ;

where the first two weak equivalences follow from Proposition 3.17.

4 Embedding calculus in dimension 4

The goal of this section is to prove Theorems A and B. At the heart of the matter is the question of
deciding when two 4–manifolds are formally diffeomorphic.
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4.1 Formal diffeomorphisms of 4–manifolds

A homeomorphism ' WN !M between formally smooth 4–manifolds has an associated element ks.'/ 2
H 3.N IZ=2/, called the relative Kirby–Siebenmann invariant (in higher dimensions it is sometimes called
the Casson–Sullivan invariant [39]). A definition for smooth 4–manifolds is given in [12, Corollary 8.3D],
and we define it now for formally smooth 4–manifolds.

By [23, Corollary 2], the topological tangent bundles of N and M have essentially unique lifts to R4–
bundles with structure group Top.4/, where we recall that Top.4/ is the space of self-homeomorphisms
of R4. Thus, we have the diagram

BO.4/

M

N BTop.4/

T tM

T fM
T fN

'

T tN

in which the right-hand and bottom triangles may be taken to commute strictly and the outer triangle to
commute up to homotopy. The obstruction to the remaining 3–dimensional cell of the diagram commuting
up to homotopy is the homotopy class of a map from N to Top.4/=O.4/, which is an Eilenberg–Mac Lane
space K.Z=2Z; 3/ through dimension 5 [12, Theorems 8.3B and 8.7A]. By definition, the resulting
obstruction class in H 3.N IZ=2Z/ is ks.'/. The following is immediate:

Proposition 4.1 Suppose ' WN !M is a homeomorphism between formally smooth 4–manifolds. Then
ks.'/ 2H 3.N IZ=2/ vanishes if and only if ' lifts to an isomorphism between N and M in Mfldf .

Corollary 4.2 Let N and M be smooth simply connected compact 4–manifolds. If N and M are
homeomorphic , then N and M are isomorphic in Mfldf .

Proof Choosing a homeomorphism ', we have ks.'/ 2H 3.N IZ=2Z/D 0 by Poincaré duality and the
assumption that N is simply connected.

Remark 4.3 Supposing N and M to be smooth, the sum-stable smoothing theorem in [12, Section 8.6]
asserts that, if ' lifts to an isomorphism between N and M in Mfldf , then N and M are stably
diffeomorphic: there exists g � 0 and a diffeomorphism

Q' WN #g .S2 �S2/
'
�!M #g .S2 �S2/:

The converse is also true, as forming the connected sum with S2 �S2 does not affect the value of the
relative Kirby–Siebenmann invariant.

4.2 Proof of Theorems A and B

The proofs of these theorems are now a matter of stringing weak equivalences together.
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Proof of Theorem A Assuming that N and M are smooth simply connected compact 4–manifolds
which are homeomorphic, we have the equivalences

Embs
�G
k

S1; N

�
' T1Embs

�G
k

S1; N

�
(Theorem 2.3)

'Maph
Psh.Diskf1 /

.EfF
k S

1 ;E
f
N / (Theorem 3.18)

'Maph
Psh.Diskf1 /

.EfF
k S

1 ;E
f
M / (Corollary 4.2)

' T1Embs
�G
k

S1;M

�
(Theorem 3.18)

' Embs
�G
k

S1;M

�
(Theorem 2.3).

Proof of Theorem B Once more assuming that N and M are smooth simply connected compact
4–manifolds, we have

T1Embs.N;M/'Maph
Psh.Diskf4 /

.EfN ;E
f
M / (Theorem 3.18)

'Maph
Psh.Diskf4 /

.EfN ;E
f
N / (Corollary 4.2);

and this last space is nonempty, as it contains the identity. On the other hand, any embedding of N
into M is a diffeomorphism by compactness, so Embs.N;M/ is nonempty if and only if N and M are
diffeomorphic.

Remark 4.4 Our proof of Theorem A implies that, under the same hypotheses, the finite stages
TrEmbs

�F
k S

1; N
�

and TrEmbs
�F

k S
1;M

�
are also weakly equivalent. A related result appears

in [3, Theorem A], where a study of the second stage of the Taylor tower is leveraged to show that, if N
is n–dimensional, the .2n�7/–skeleton of Embs.S1; N / does not depend on the smooth structure of N .

Remark 4.5 The element of T1Embs.N;M/ obtained in the course of the proof of Theorem B is
homotopy-invertible.

4.3 Remarks on the study of smooth 4–manifolds

In this section, we discuss some expected consequences of our results for the study of smooth 4–manifolds.
This discussion is informal and should be taken as motivation for further investigation.

One way to get invariants for smooth manifolds is from configuration space integrals. Pioneered by
Kontsevich [24] and developed subsequently by many authors, this type of invariant is given schematically
by a map of the form

H�.�/!H�.Embs.N;M//;

where � is a combinatorially defined cochain complex of graphs. We will remain vague about the
coefficients and the precise flavor of graph complex in question (there are many options); suffice it to
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say that an element of the graph complex is typically interpreted as a set of instructions for combining
differential forms on compactified configuration spaces.

Extrapolating from results in the literature, such as [38; 43], a positive answer to the following general
question is expected:

Question 4.6 Do configuration space integrals factor through the limit of the embedding calculus
Taylor tower?

H�.�/ H�.Embs.N;M//

H�.T1Embs.N;M//

9‹

If Question 4.6 has a positive answer, Theorem 3.18 implies that these invariants cannot distinguish exotic
smooth structures on M by taking N to be homeomorphic but not diffeomorphic to M , unless they are
already not formally diffeomorphic. For example, it would follow that this use of configuration space
integrals can shed no light on the smooth Poincaré conjecture in dimension 4, or at least not directly.

A second use for configuration space integrals, accessed by setting M DN , is to study the classifying
spaces of diffeomorphism groups. Again assuming a positive answer to Question 4.6, Theorem 3.18
implies that this approach is limited to detecting the algebraic topology of formal diffeomorphism groups;
for example, the results of Watanabe [45] on the rational homotopy of BDiff@.D4/ should be interpreted
as results about the automorphisms of D4 as a formally smooth manifold. This change in perspective has
concrete consequences.

Proposition 4.7 If Question 4.6 has a positive answer , then the natural map

Top.4/=O.4/! Top=O

is not a weak equivalence , even after rationalizing.

Proof By [45, Theorem 1.1], configuration space integrals produce many nontrivial classes of positive de-
gree inH�.BDiff@.D4/IR/, which our assumption implies are pulled back fromH�.BT1Diff@.D4/IR/.
A version of Theorem 3.18 with boundary implies that the map Diff@.D4/! T1Diff@.D4/ factors over
the automorphisms of D4 as a formally smooth manifold. By the Alexander trick, the latter are given
by �5Top.4/=O.4/, so Top.4/=O.4/ is not rationally trivial. The claim then follows from the fact that
Top=O is rationally trivial [22, Essay V].

A third use for configuration space integrals lies in distinguishing embeddings. As many open problems
in the topology of smooth 4–manifolds are of this type, Theorem 3.18 likewise rules out the direct use
of configuration space integrals in their solutions. For example, using configuration space integrals to
distinguish isotopy classes of embeddings of S3 into S4 cannot negatively resolve the 4–dimensional
smooth Schoenflies conjecture, as shown by the following result (here, the superscript C indicates
restriction to orientation-preserving embeddings):
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Proposition 4.8 The image of

Embs;C.S3 � .��; �/; S4/! T1Embs;C.S3 � .��; �/; S4/

lies in a single path component.

Proof By Theorem 3.18, it suffices to show that Embf;C.S3� .��; �/; S4/ is path connected. Since the
topological Schoenflies conjecture holds in dimension 4 [7], each locally flat embedding S3�.��; �/ ,!S4

extends to an orientation-preserving locally flat embedding R4 ,! S4. This embedding can be lifted to
one of formally smooth manifolds, since �4.Top.4/=O.4//D 0 [12, Theorems 8.3B and 8.7A]. Thus,
the restriction

Embf;C.R4; S4/! Embf;C.S3 � .��; �/; S4/

is surjective on path components. Finally,

Embf;C.R4; S4/' Embr;C.R4; S4/ (Proposition 3.17)

' Embs;C.R4; S4/ (Proposition 3.5)

' SO.5/ (Lemma 3.10);

and the last space is path connected.

Remark 4.9 Theorem 3.18 and the previous discussion suggests that it may be fruitful to study smooth
4–manifolds by

(a) studying formally smooth 4–manifolds, and, separately,

(b) studying the difference between smooth and formally smooth 4–manifolds.

The study of formally smooth 4–manifolds should be much like that of smooth manifolds in higher
dimensions, since the Whitney trick is available under assumptions on fundamental groups [12]. In
particular, it may be possible to obtain versions of the homological stability and stable homology results of
Galatius and Randal-Williams in this setting (see [13] for a survey). If so, one can study the moduli space
Mf .M/ of formally smooth manifolds isomorphic to M using the methods of homotopy theory, just as
one studies the moduli space Ms.M/ of smooth manifolds diffeomorphic to M in higher dimensions.

Next, we wish to separate the “exotic smooth structures” from the “formally smooth structures” by
defining a moduli space of “exotic” smooth manifolds formally isomorphic to M . Fixing a formally
smooth manifold M , this moduli space is defined as the homotopy fiber

Mex.M/ WD hofiberŒMs.M/!Mf .M/�

over the specified structure. As we argued above, configuration space integrals are likely blind to the
topology of this moduli space.

5 Embedding calculus and exotic spheres

In this section we prove Theorem C, which asserts the existence of exotic n–spheres † for which
T1Embs.†; Sn/D¿.
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5.1 Proof of Theorem C

Our proof uses the following convergence criterion:

Proposition 5.1 Let N1 and N2 be nondiffeomorphic closed smooth n–manifolds and M a smooth m–
manifold into which N1 does not embed. If m�n� 3 and N2 embeds inM , then T1Embs.N1; N2/D¿.
In particular , the map Embs.N1; N2/! T1Embs.N1; N2/ is a weak equivalence.

Proof By Theorem 2.3 and the assumption on N1, the target of the composition map

T1Embs.N1; N2/�T1Embs.N2;M/! T1Embs.N1;M/' Embs.N1;M/

is empty, so the source must be empty as well. The assumption on N2 says that the domain of the map
Embs.N2;M/! T1Embs.N2;M/ is nonempty, so the right factor of the source is also nonempty. Thus
the left factor is empty, as desired.

The heavy lifting is handled by a collage of classical results; see also [35, page 408].

Theorem 5.2 (Hsiang, Levine, Szczarba and Mahowald) If nD 2j with j � 3, then there is an exotic
n–sphere † that does not embed in RnC3.

Proof It suffices to show that there is an exotic n–sphere † that embeds in R2n�3 with nontrivial normal
bundle. Indeed, our assumptions on n imply that n < 2.n� 3/� 1, so [18, Lemma 1.1] then guarantees
that every embedding of † in R2n�3 has nontrivial normal bundle. Since every embedding of † in RnC3

has trivial normal bundle by [36, Corollary], there can be no such embedding, or else the composite

†!RnC3!R2n�3

has trivial normal bundle, a contradiction.

In order to find such a †, it suffices by [18, Theorem 1.2] to find a nonzero element ˛ 2 �n�1.SO.n�3//
annihilated by the maps i W�n�1.SO.n�3//!�n�1.SO/ŠZ and J W�n�1.SO.n�3//!�2n�4.S

n�3/.

When n � 0 .mod 8/ we have �n�1.SO.n � 3// Š Z˚ Z=2 by [20, page 161], with the 2–torsion
generated by the image @.�/ of a generator � 2�n.Sn�3/ŠZ=24Z under the connecting homomorphism

@ W �n.S
n�3/! �n�1 SO.n� 3/

of the fibration sequence SO.n� 3/! SO.n� 2/! Sn�3 [20, Theorem 3(i)].

We now prove that ˛ D @.�/ is in the kernel of both i and J . According to [18, page 176], the composite

�n.S
n�3/ @�! �n�1.SO.n� 3// J�! �2n�4.S

n�3/

is the Whitehead product Œ�;��, where � 2 �n�3.Sn�3/ is a generator. Then i.˛/ 2 �n�1.SO/ Š Z

is torsion, hence zero, while J.˛/ D Œ�; �� D 0 by [34, page 249, (2)] because n D 2j with j � 3
(Theorem 1.1.2(b) of [32] proved there are no other cases).

Proof of Theorem C Set N1 D† as in Theorem 5.2, N2 D Sn and M DRnC3 in Proposition 5.1.
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Given this result, several questions naturally arise.

Question 5.3 Given exotic n–spheres † and †0, is T1Embs.†;†0/ empty whenever † and †0 are not
diffeomorphic?

The argument for Theorem C proves something stronger:

Corollary 5.4 For † as in Theorem C, the map

Embs.†; Sn/! TkEmbs.†; Sn/

is a weak equivalence for any k � n� 4.

Proof By Theorem 2.3, the map Embs.†;RnC3/ ! TkEmbs.†;RnC3/ is a �0–surjection when
k � n�4, and similarly for Sn in place of †, so TkEmbs.†;RnC3/D¿ in this range, and the argument
of Proposition 5.1 applies.

Thus the .n�4/th stage of the embedding calculus Taylor tower can distinguish these exotic smooth
structures. On the other hand, since the first stage is given by bundle maps between tangent bundles, the
fact that exotic spheres have isomorphic tangent bundles shows that the first stage does not depend on the
smooth structure of †. Thus, in the following question, k lies in the range 2� k � n� 4.

Question 5.5 What is the smallest k such that TkEmbs.†; Sn/D¿?

The embedding calculus Taylor tower can be modeled geometrically in terms of stratified maps of bundles
over compactified configuration spaces [6; 41]. Since the first stage of the tower is never empty in the case
at hand, it follows that, in examples where T1Embs.†; Sn/D¿, such a stratified map exists between
compactified configuration spaces of k� 1 points that does not extend to configurations of k points.

Question 5.6 Does the classification of exotic spheres admit an interpretation in terms of stratified
obstruction theory applied to compactified configuration spaces?

5.2 Further examples

We indicate a few other exotic spheres for which the conclusion of Theorem C holds.

Example 5.7 The paper [2] studies the values of n and r for which the quotient of ‚n, the group of
oriented exotic spheres under connected sum, by the subgroup of oriented exotic spheres which embed
in RnCr with trivial normal bundle is nonzero. In particular, [2, Table 1] provides examples of exotic
n–spheres in dimensions nD 17; 18; 32; 33; 34; 37; 38 which do not embed in RnC3.

Example 5.8 According to [30], the generators of ‚n for nD 8; 9; 10 do not embed in RnC3.

In general, the homotopy-theoretic problem indicated by the proof of Theorem 5.2, which we believe to
be of independent interest, remains open.
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Question 5.9 Which elements of �n�1.SO.n� 3// lie in the common kernel of

i W �n�1.SO.n� 3//! �n�1.SO/ and J W �n�1.SO.n� 3//! �2n�4.S
n�3/‹

One can also vary the target in Theorem C.

Example 5.10 In [21, Theorem I] it is proven that an oriented exotic n–sphere †0 embeds in RnC2

if and only if it represents an element of the subgroup bPnC1 � ‚n of oriented exotic n–spheres that
bound a stably parallelizable .nC1/–manifold. In the proof of Theorem C, all we used about Sn is that it
embeds in RnC3, so the same argument gives us that

T1Embs.†;†0/D¿

whenever †0 represents an element of bPnC1 and † is as in Examples 5.7 and 5.8. (It is also true for †
as in Theorem 5.2, but for even n the group bPnC1 is always trivial.)

6 Isotopy extension for embedding calculus

Fix manifolds M and N of equal dimension n, a compact smooth submanifold P �N of codimension 0,
and an embedding e of P in M . Even though P is not an object of Mflds we can still define the presheaf
Embs.�; P /, obtain a corresponding presheaf EsP on Disksn, and define T1Embs.P;M/ to be the derived
mapping space Maph

Psh.Disksn/
.EsP ;E

s
M / of presheaves on Disksn. The goal of this section is to prove the

following result:

Theorem 6.1 Let M , N and P be as above. If hdim.P /� dim.M/� 3 or P D
F
I D

n for some finite
set I , then the diagram

T1Embs@.N n VP ;M n VP / T1Embs.N;M/

� T1Embs.P;M/

is homotopy Cartesian , where the bottom map is induced by the embedding e.

Removing the symbol T1 from the statement, one obtains the conclusion of the usual isotopy extension
theorem [44, Chapter 6], an important tool in the study of spaces of embeddings and diffeomorphisms.
Thus, Theorem 6.1 asserts that isotopy extension holds for limits of Taylor towers.

Remark 6.2 (i) We will see that the top horizontal map is the extension-by-identity map, as in
Section 6.1.2.

(ii) In this theorem, two different incarnations of embedding calculus occur; the top left-hand corner uses
the version for presheaves on Mflds@P , while the two right-hand corners use the version for presheaves
on Mflds .
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(iii) SinceP and VP are isotopy equivalent, the inclusion VP!P induces a weak equivalence of presheaves
Embs.�; VP /! Embs.�; P /, and thus a weak equivalence T1Embs.P;M/! T1Embs. VP ;M/. Under
the hypotheses of the theorem, the latter has the weak homotopy type of Embs. VP ;M/ by Theorem 2.3.

(iv) A more technical hypothesis guaranteeing the conclusion of the theorem is that, for all k � 0,
Embs

�
VP t

F
kD

n;M
�
! T1Embs

�
VP t

F
kD

n;M
�

is a weak equivalence.

(v) Isotopy extension for embedding calculus generalizes to spaces of neat embeddings of manifolds
with corners. Here the input is as follows: N and M are manifolds of equal dimension n with fixed
embedding @N ! @M , and P �N is a neatly embedded compact smooth submanifold of codimension 0
with corners whose boundary @P is the union of @0P D @P \ @N and a submanifold @1P , which meets
at the subset of corners of P . Fixing a neat embedding e W P !N which is equal to the given embedding
near @0P , we have the homotopy Cartesian square

T1Embs@1P[@Nn V@0P .N n VP ;M n VP / T1Embs@N .N;M/

� T1Embs@0P .P;M/

The argument is essentially the same as that given below, but with more involved notation.

6.1 Proof of Theorem 6.1

6.1.1 Complete Weiss covers We begin with a discussion of a well-known form of locality enjoyed by
embedding calculus.

Definition 6.3 Let X be a topological space and 1 � k �1. A collection of open subsets U of X is
a Weiss k–cover if every finite subset of X with cardinality � k is contained in some element of U . A
Weiss k–cover U is complete if it contains a Weiss k–cover of

T
U2U0 U for every finite subset U0 � U .

The following result asserts that Tk has descent for complete Weiss k–covers. The intended application is
to k D1 and Es

M;@
.

Lemma 6.4 Let N be a smooth manifold and 1 � k � 1. If F is a presheaf on MfldZ and U is a
complete Weiss k–cover of N , each element of which contains @N , then the natural map

TkF.N/! holim
U2U

TkF.U /

is a weak equivalence.

Proof Since derived mapping spaces convert homotopy colimits in the source to homotopy limits, it
suffices to show that the natural map

hocolim
U2U

EsU;@! EsN;@
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is a weak equivalence of presheaves on the full subcategory Disksn;Z;�k whose objects are diffeomorphic
to a disjoint union of Z � Œ0; 1/ and finitely many but at most k copies of Rn. Since homotopy colimits
of presheaves are computed pointwise, it suffices to check the corresponding claim for

Embs@

�
Z � Œ0; 1/t

G
I

Rn;�

�
for every finite set I of cardinality � k.

Assume first that Z D¿. Given a configuration fpigi2I 2 ConfI .N / to serve as a basepoint, consider
the commuting diagramQ

i2I Embspi .R
n; N /

Q
i2I MapVec;pi .TRn; TN /

Embs
�F

I Rn; N
�

E

ConfI .N / ConfI .N /

where E D MapVec.TRn; TN /I jConfI .N/. As in the proof of Lemma 3.16, the vertical columns are
fibration sequences and the top map is a weak equivalence, so the middle map is so. The same remarks
apply after replacing N by U . The claim follows upon observing that the natural map

hocolim
U2U

EjU !E

is a weak equivalence by [10, Proposition 4.6], since the collection fConfI .U /gU2U is a complete cover
of ConfI .N / in the sense of [10, Definition 4.5].

In the general case, consider the commuting diagram

hocolim
U2U

Embs@
�
Z � Œ0; 1/t

F
I Rn; U

�
Embs@

�
Z � Œ0; 1/t

F
I Rn; N

�

hocolim
U2U

Embs
�F

I Rn; VU
�

Embs
�F

I Rn; VN
�

where the vertical arrows are induced by restriction. Since the collection f VU gU2U is a complete Weiss
k–cover of VN , the bottom arrow is a weak equivalence by the previous case. Since Embs@.Z � Œ0; 1/; N /
is contractible and N is isotopy equivalent to its interior, isotopy extension implies that the right-hand
map is an equivalence, and the same considerations applied to U show that the left-hand map is as well,
implying the claim.

Remark 6.5 The map F ! TkF can be described as homotopy sheafification with respect to Weiss
k–covers [5, Theorem 1.2].
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6.1.2 Extension-by-identity maps Suppose M , N and P are manifolds with a common boundary Z.
Then we can form the manifolds M [@ P and N [@ P , and construct an extension-by-identity map

Embs@.N;M/! Embs.N [@ P;M [@ P /:

Lemma 6.6 There is a dashed map making the following diagram commute up to preferred homotopy:

Embs@.N;M/ Embs.N [@ P;M [@ P /

T1Embs@.N;M/ T1Embs.N [@ P;M [@ P /

Proof Consider the map

Embs@.�;M/! Embs.�[@ P;M [@P P /

of presheaves on Disksn;Z induced by extension-by-identity, postcomposed with

Embs.�[@ P;M [@ P /! T1Embs.�[@ P;M [@ P /:

As the target satisfies descent for complete Weiss1–covers by construction, and T1Embs@.�;M/ is the
homotopy sheafification of Embs@.�;M/ with respect to Weiss1–covers by Remark 6.5, this factors
essentially uniquely over T1Embs@.�;M/. Evaluating at N , we get the desired diagram.

6.1.3 Proof of Theorem 6.1 We proceed by applying Lemma 6.4 with k D1 and F D Es
M;@

to a
convenient cover. Write DP�N for the collection of open subsets U of N that are disjoint unions of a
finite number of open balls in N nP together with a collar neighborhood of P . In other words, U is
diffeomorphic, relative to P , to the manifold

.P [ @P Œ0; 1//t
G
I

Rn

for some finite set I .

The reader is invited to check that DP�N is a complete Weiss cover of N . This cover also has the
following pleasant property:

Lemma 6.7 The poset DP�N is contractible.

Proof Let CP�N �DP�N denote the full subposet spanned by the objects, so that the inclusion P ,!U

is 0–connected, ie an object of CP�N is simply a collar neighborhood of P . A retraction and right adjoint
to the inclusion of this subcategory is obtained by sending U to the component of U containing P . The
claim now follows upon noting that CP�N is contractible, being cofiltered.

Remark 6.8 By adapting [31, Section 5.5.2], something much stronger can be shown, namely that
DP�N is final in a sifted1–category.
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We now prove the isotopy extension theorem.

Proof of Theorem 6.1 Suppose first that hdim.P /� dim.M/� 3. Restricting to U 2 DP�N induces
the commuting diagram

T1Embs@.N n VP ;M n VP / holim
U2DP�N

T1Embs@.U n VP ;M n VP / holim
U2DP�N

Embs@.U n VP ;M n VP /

T1Embs.N;M/ holim
U2DP�N

T1Embs.U;M/ holim
U2DP�N

Embs.U;M/

T1Embs.P;M/ holim
U2DP�N

T1Embs.P;M/ holim
U2DP�N

Embs.P;M/

.1/ .4/

.2/ .5/

.3/ .6/

where the top vertical maps are given by extension-by-identity and the bottom vertical maps by restriction
to P .

For each U 2DP�N , the rightmost column is a fibration sequence by the usual isotopy extension theorem.
Since all have e W P ,!M as a basepoint, it remains a fibration sequence after taking homotopy limits.
The claim will follow upon verifying that each of the numbered arrows is a weak equivalence. For the
maps (1) and (2) this follows from Lemma 6.4 applied with k D 1 and F D Es

Mn VP;@
or F D EsM ,

respectively; for (3) from Lemma 6.7; for (5) and (6) from Theorem 2.3 and our assumption on P ; and
for (4) from the Yoneda lemma.

The only modification in the case P D
F
I Rn is for the sixth arrow, which is now an equivalence by the

Yoneda lemma.

6.2 Applications of isotopy extension

We now give some applications of Theorem 6.1.

6.2.1 Rephrasing Question 5.3 Let † and †0 be exotic n–spheres. Fixing disks Dn �†;†0, we write
D† WD†n VD

n for the corresponding exotic disk with boundary identified with @Dn, and similarly forD†0 .

Corollary 6.9 There is a fibration sequence

T1Embs@.D
n
†;D

n
†0/! T1Embs.†;†0/!O.nC 1/

with fiber taken over the identity.

Proof We apply Theorem 6.1 with N D †, M D †0 and P D Dn. The tangent bundle of an exotic
sphere is isomorphic to that of the standard sphere (a well-known consequence of [9, Proposition 5.4(iv)]),
so Embs.Dn; †0/ is weakly equivalent to the orthogonal frame bundle of TSn, which is homeomorphic
to O.nC 1/.
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To connect to results about the groups ‚n, we consider a version of Question 5.3 for oriented exotic
n–spheres and orientation-preserving embeddings. This question is essentially equivalent: given two
oriented exotic n–spheres† and†0, then T1Embs.†;†0/ contains an element which reverses orientation
(this is well defined since T1 maps to T1 via bundle maps) if and only if T1Embs;C.†;†0/ ¤ ¿,
where †0 denotes †0 with opposite orientation. As before, we use a superscript C to denote orientation-
preserving embeddings.

Corollary 6.10 Let † and †0 be oriented exotic n–spheres. Then T1Embs;C.†;†0/ is nonempty if
and only if T1Embs@.D

n
†;D

n
†0/ is nonempty.

Proof This follows directly from the oriented version of the fibration sequence in Corollary 6.9:

T1Embs@.D
n
†;D

n
†0/! T1Embs;C.†;†0/! SO.nC 1/:

Let us define a relation on ‚n by saying

Œ†��T1 Œ†
0� () T1Embs;C.†;†0/¤¿:

Lemma 6.11 This is an equivalence relation , and is compatible with addition on ‚n.

Proof It is easy to see it is reflexive and transitive, so we prove it is symmetric. To do so, we claim that
T1Embs;C.†;†0/¤ ¿ if and only if T1Embs;C.† #†0; Sn/¤ ¿. Using the previous corollary, the
statement is equivalent to

T1Embs@.D
n
†;D

n
†0/¤¿ () T1Embs@.D

n

†#†0
;Dn/¤¿:

This follows from the fact that the operation of boundary connected sum with Dn
†0

, which is an instance
of extension-by-identity, induces a map

T1Embs@.D
n
†;D

n
†0/! T1Embs@.D

n

†#†0
;Dn/

with homotopy inverse given by the boundary connected sum with Dn†0 . For symmetry we use that,
by reversing orientations on both the domain and target, T1Embs;C.† #†0; Sn/ ¤ ¿ if and only if
T1Embs;C.† #†0; Sn/¤¿, and that Sn has an orientation-reversing self-diffeomorphism.

We now prove �T1 is compatible with the addition in ‚n. By taking the boundary connected sum with
Dn†00 or Dn

†00
, we obtain that T1Embs@.D

n
†;D

n
†0/¤¿ if and only if T1Embs@.D

n
†#†00 ;D

n
†0#†00/¤¿, so

Œ†��T1 Œ†
0� () Œ†�C Œ†00��T1 Œ†

0�C Œ†00�:

Example 6.12 For † as in Theorem C, T1Embs.Sn; †/D¿.

Example 6.13 The subset fŒ†� 2‚n j Œ†��T1 ŒS
n�g is a subgroup.
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The results of [6] shed some light on the space T1Embs@.D
n
†;D

n
†0/. Their statement involves the operad

En of little n–disks and its derived automorphisms.

Proposition 6.14 There is a fibration sequence

T1Embs@.D
n
†;D

n
†0/!X !X 0

with X an �nO.n/–torsor and X 0 an �nAuth.En/–torsor with preferred basepoint.

Proof According to [6, Theorem 1.1] (with modifications for manifolds with boundary as in [6, Section 6]),
there is a homotopy Cartesian square

T1Embs@.D
n
†;D

n
†0/ Y

MapVec;@.TD
n
†; TD

n
†0/ Y 0

where Y is contractible [6, Theorem 1.4] and Y 0 is a mapping space between certain “local configuration
categories.” We require only two pieces of information about Y 0: it is the space of compactly supported
sections of a bundle over Dn†, and the fibers are weakly equivalent to Auth.En/ by [6, Theorem 1.2].
These facts give the identification of the right-hand term, and the identification of the middle term follows
from the aforementioned fact about tangent bundles of exotic spheres.

The action of O.n/ on the little n–disks operad by rotation gives a map O.n/! Auth.En/. We do not
know much about its effect on homotopy groups. Nevertheless, using our results on exotic spheres, we
can say the following:

Corollary 6.15 The map O.n/! Auth.En/ is not surjective on �n when nD 2j with j � 3.

Proof Let † be an exotic n–sphere as in Theorem 5.2. Looping the map O.n/! Auth.En/, we obtain
a map �nO.n/! �nAuth.En/, and the torsor structures on the domain and target of X ! X 0 are
compatible with this. If the map O.n/!Auth.En/ were surjective on �n, Proposition 6.14 would imply
that X !X 0 is surjective on path components, and hence T1Embs@.D

n
†;D

n/¤¿. Corollary 6.10 then
implies a contradiction of Theorem 5.2.

Remark 6.16 The map in question is injective on �n, at least when n is sufficiently large. Restricting to
the .n�1/–sphere of binary operations in En and suspending produces the right-hand map in O.n/!
Auth.En/! Auth�.S

n/ whose composite is the unstable J –homomorphism, which is injective on �n for
n� 40 [33].

6.2.2 Morlet’s theorem for T1 Setting † D †0 D Sn we draw the following conclusion, with
Auth.En/=O.n/ notation for the homotopy fiber of BO.n/! BAuth.En/.
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Corollary 6.17 There are weak equivalences

T1Diff@.D
n/'�nC1Auth.En/=O.n/ and T1Diff.Sn/'O.nC 1/��nC1Auth.En/=O.n/:

Proof When †D†0 D Sn, we have Dn† DD
n
†0 DD

n. In the fibration sequence

T1Embs@.D
n;Dn/!�nO.n/!�nAuth.En/

from Proposition 6.14, the basepoint is provided by the constant map at the identity. So T1Embs@.D
n;Dn/

is the fiber of a map of n–fold loop spaces over the unit, and hence it is grouplike. This implies that
T1Diff@.Dn/D T1Embs@.D

n;Dn/, and the first claim follows. The second claim then follows from
Corollary 6.9, using the splitting provided by the natural action of O.nC 1/ on Sn.

This result is to be compared to the classical theorem of Morlet, which asserts the same conclusion with
T1 removed and Auth.En/ replaced by Top.n/; see eg [8, Theorem 4.4(b); 22, Essay V]. Unlike Morlet’s
theorem, our results are valid even for nD 4.

Example 6.18 Since Aut.E2/'O.2/ [17, Theorem 8.5], we conclude that Diff.S2/! T1Diff.S2/ is
a weak equivalence, furnishing another example of convergence in codimension 0. In fact, embedding
calculus always converges for diffeomorphisms of surfaces, by [26, Theorem A].

6.2.3 Rephrasing the Weiss fibration sequence Consider a manifold M with @M D Sn�1 and disc
Dn � M such that @M \Dn D Dn�1 � @Dn; that is, the disk meets the boundary of M in half its
boundary. Then there is a fibration sequence which — informally speaking — describes Diff@.M/ as built
from Diff@.Dn/ and a certain space of self-embeddings of M [28, Section 4; 47, Remark 2.1.2]. We will
use Theorem 6.1 to reformulate this result.

Let T1DiffŠ@ .M/ � T1Diff@.M/ denote the union of the path components lying in the image of
Diff@.M/. The following result asserts that, with suitable assumptions on M , the homotopy fiber

M 7! hofiberŒBDiff@.M/! BT1DiffŠ@ .M/�;

which we think of as the “error term” involved in applying embedding calculus to diffeomorphisms, is
independent of M .

Corollary 6.19 Let M be a 2–connected compact smooth manifold of dimension n�6with @M DSn�1.
The diagram

BDiff@.Dn/ BDiff@.M/

BT1DiffŠ@ .D
n/ BT1DiffŠ@ .M/

is homotopy Cartesian.
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Proof Fix an embedded closed disk Dn�1 � @M , and let Embs@=2.M/ denote the simplicial monoid
of self-embeddings of M fixing Dn�1 pointwise. There is the grouplike submonoid Embs;Š

@=2
.M/ �

Embs@=2.M/ given by the union of the path components lying in the image of Diff@.M/. By naturality
properties of embedding calculus (see [27, Sections 3 and 4] for a detailed proof of these), the diagram

BDiff@.Dn/ BDiff@.M/ BEmbs;Š
@=2
.M/

BT1DiffŠ@ .D
n/ BT1DiffŠ@ .M/ BT1Embs;Š

@=2
.M/

commutes. In [28, Lemma 3.14] it is verified that M has handle dimension at most n�3 relative to Dn�1,
so the right-hand vertical map is a weak equivalence (strictly speaking, to apply embedding calculus as
discussed above we must remove the complement of Dn�1 in Sn�1, which gives homotopy equivalent
spaces). By isotopy extension (see [28, Theorem 4.17; 47, Remark 2.1.2]) the top row is a fibration
sequence, and the bottom row is a fibration sequence by Theorem 6.1 (using the extension explained in
Remark 6.2(v)).

6.2.4 An example of convergence in handle codimension 2 We finish with an example of the conver-
gence of the embedding calculus Taylor tower in handle codimension 2. For the sake of readability, we
omit some details regarding boundary conditions; for example, strictly speaking, to apply embedding
calculus as discussed above, one must remove parts of S2 D @D3 not in @0D1C;�.

Let D3 �R3 be the closed unit disk, which contains the interval

D1 D f.x1; 0; 0/ j x1 2 Œ�1; 1�g

as a submanifold with boundary. We let

R3C WD f.x1; x2; x3/ j x1 � 0g

denote the half-plane and set D1
C
WDD1\R3

C
. This is a manifold with boundary given by the union of

the two points @0D1C D f.0; 0; 0/g DD
0 and @1D1C WD f.1; 0; 0/g DD

1
C
\S2.

The situation we will be interested in is obtained by “thickening” to codimension 0 the following simpler
situation. By isotopy extension, there is a fibration sequence

Embs@.D
1
C;D

3/! Embs@1.D
1
C;D

3/! Embs.D0;D3/;

where the fiber is taken over the inclusion. As the middle term is contractible, we obtain the weak
equivalence Embs@.D

1
C
;D3/ ��!�Embs.D0;D3/' �, a space-level version of the light bulb trick.

We now “thicken” all the submanifolds involved to codimension 0. Fixing a small � > 0, we replace
D0 by D3� and D1

C
by the union of D3� with a closed 1

2
�–neighborhood of D1

C;� in D3. We let C
denote the closure of D1

C;� n
VD3� in D1

C;� , essentially a cylinder. Its boundary intersects the larger sphere
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D3

D1
C

�@0D
1
C

� @1D
1
C

D3

D3�

C

Figure 1: Left: the subspaces of D3 involved in the earlier part of Section 6.2.4. Right: the
subspaces of D3 involved in the latter part of Section 6.2.4. The shaded region is D1

C;� .

in @0D1C;� WD D
1
C;� \ S

2 and the smaller sphere in @1D1C;� WD D
1
C;� \ S

2
� \R3

C
. As before, isotopy

extension produces a fibration sequence with contractible middle term, whence the weak equivalence

Embs@0[@1.C;D
3
n VD3� /

��!�Embs.D3� ;D
3/'�O.3/:

We now show that embedding calculus captures this homotopy type; specifically, the left-hand vertical
map is a weak equivalence in the commuting diagram

Embs@0[@1.C;D
3 n VD3� / Embs@1.D

1
C;�;D

3/ Embs.D3� ;D
3/

T1Embs@0[@1.C;D
3 n VD3� / T1Embs@1.D

1
C;�;D

3/ T1Embs.D3� ;D
3/

giving an example of convergence in codimension 2. Since D3 has handle dimension 0, isotopy extension
for embedding calculus — or, rather, the extension to neat embeddings of manifolds with corners — implies
that the bottom row is also a fibration sequence, so it suffices to show that the middle and right-hand vertical
maps are weak equivalences, both of which follow from the Yoneda lemma. For the latter map, we use that
the inclusion of the interiorD3� induces a weak equivalence T1Embs.D3� ;D

3/'T1Embs. VD3� ;D
3/. For

the former, we may similarly replace the source in T1Embs.D1
C;�;D

3/ with an open collar on @1D1C;� .

Remark 6.20 These results generalize from dimension 3 to arbitrary dimension n � 3 by changing
notation; this says that embedding calculus converges in codimension 2 for embeddings of Dn�3 �C in
Dn�3 � .D3 n VD3� /.

Appendix Homotopy pullbacks of simplicial categories

In this appendix, we discuss a simplicial variant of a construction introduced in [1, Section 9] for
topological categories.
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Suppose given the solid commuting diagram of simplicial categories

A�hC B B

C

A Top

G

PB

PCF

PA

where Top denotes the simplicial category of topological spaces. Via the structure functors to Top, objects
and morphisms in A, B and C have underlying spaces and maps.

Construction A.1 We define a simplicial category A�hC B as follows:

(i) The objects of A�hC B are triples .A;B; f /, where A 2A and B 2 B are objects with the same
underlying space, and f W F.A/!G.B/ is an isomorphism with underlying map the identity.

(ii) An n–simplex in the mapping space from .A1; B1; f1/ to .A2; B2; f2/ is a triple .';  ; /, where
' 2MapA.A1; A2/n and  2MapB.B1; B2/n have the same underlying simplex in Top, and  is
a path f2 ıF.'/)G. / ıf1 in .MapC.F.A1/; G.B2//

�1/n covering the constant path.

(iii) Composition is induced by composition in A, B and C, and the diagonal of �1.

The notation A�hCB is justified by the following result, whose proof we defer to the end of this subsection
and may be skipped on a first reading.

Proposition A.2 Suppose that

(i) the simplicial sets MapB.B1; B2/ and MapC.F.A1/; G.B2// are Kan complexes , and

(ii) the structure maps MapB.B1; B2/ ! MapTop.PB.B1/; PB.B2// and MapC.F.A1/; G.B2// !
MapTop.PA.A1/; PB.B2// are Kan fibrations.

The diagram

MapA�hCB..A1; B1; f1/; .A2; B2; f2// MapB.B1; B2; /

MapA.A1; A2/ MapC.F.A1/; G.B2//
is homotopy Cartesian.

Note that the diagram in question commutes only up to specified homotopy.

Remark A.3 Proposition A.2 implies that A�hC B is often the homotopy pullback of A and B over C in
the Bergner model structure on simplicial categories [4]; specifically, we require the assumptions of the
proposition to hold for all objects, and we require that Ho.PB/ and Ho.PC/ be isofibrations. Therefore, we
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think of A�hC B as a (particularly convenient) model for the pullback of1–categories, whose homotopy
theory is captured by the Bergner model structure.

Construction A.4 Suppose A, B and C are as above. Let D be a simplicial category equipped with
simplicial functors H W D! A and K W D! B over Top, together with the natural isomorphism � in
the diagram

D B

A C

H

K

G
�

F

We obtain a functor D!A2 �
h
C2

B2 as follows:

(i) The object D 2D is sent to the triple .H.D/;K.D/; �D/.

(ii) The n–simplex � 2MapD.D1;D2/ is sent to the triple consisting of H.�/, K.�/ and the constant
path at �D2 ıH.�/DK.�/ ı�D1 .

To prove Proposition A.2, it will be convenient to put ourselves in a more general setting. Suppose we
have the commutative diagram of simplicial sets

X

Z Y

W

g
pX

pZ

h

pY

Write P for the standard model of the homotopy pullback of X and Z over Y ; explicitly, P is the limit
of the diagram

X Y �
1

Z

Y Y

g ev1ev0 h

Finally, write P0 for the pullback in the diagram

P0 P

W W �1

�

q

where the bottom arrow is the inclusion of the constant maps and q is the composition of the projection to
Y �

1

with .pY /�
1

. We think of P0 as the subspace of the homotopy pullback lying over constant paths
in W . In the example of interest, X , Y and Z are mapping spaces in the relevant simplicial categories,
and W is the corresponding mapping space in Top.
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The topological analog of the following result is asserted in [1, Section 9]. We include a proof for the
sake of completeness.

Lemma A.5 If pY and pZ are fibrations , then � is a weak equivalence.

Proof Given the solid commuting diagram

@�n P0

�n P

�

we will produce the dashed arrow making the top triangle commute and the bottom triangle commute up
to homotopy fixing @�n. First, using the assumption that pZ is a fibration, we solve the lifting problem

�n ��0 t@�n��0 @�
n ��1 P Z

�n ��1 W

pZ

where the bottom map is the adjunct of the composite �n! P ! Y �
1

!W �1 , and the left-hand map
is induced by the inclusion of the vertex 0. Composing with h and passing back through the adjunction,
we obtain the top map in the commuting diagram

�n Y �
1

P Y �
1

Y

ev0

ev1

There is an induced map �n �ƒ21! Y , and we use the assumption that pY is a fibration to solve the
lifting problem

�n �ƒ21 t@�n�ƒ21
@�n ��2 Y

�n ��2 �n ��1 W

pY

Restricting to the third face of �2, we obtain by adjunction the middle map in the commuting diagram

�n

X Y �
1

Z

Y Y

g ev1ev0 h
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where the left-hand map is the composite �n! P !X , and the right-hand map is the restriction of our
earlier lift �n ��1!Z to the vertex 1. The resulting map �n! P factors through P0 and restricts
to the original map on @�n by construction. Also by construction, the right-hand square of the above
diagram comes equipped with a homotopy relative to @�n, which furnishes the desired homotopy.

Proof of Proposition A.2 The first assumption guarantees that the standard model for the homotopy
pullback has the correct weak equivalence type. The second assumption permits the invocation of
Lemma A.5, which guarantees that the canonical map from MapA�hCB..A1; B1; f1/; .A2; B2; f2// to the
standard model for the homotopy pullback is a weak equivalence.
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