Download this article
 Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
On endomorphisms of the de Rham cohomology functor

Shizhang Li and Shubhodip Mondal

Geometry & Topology 28 (2024) 759–802
Bibliography
1 P Achinger, J Suh, Some refinements of the Deligne–Illusie theorem, Algebra Number Theory 17 (2023) 465 MR4564764
2 P Belmans, A J de Jong, others, The Stacks project, electronic reference (2005–)
3 B Bhatt, p–adic derived de Rham cohomology, preprint (2012) arXiv:1204.6560
4 B Bhatt, Prismatic F–gauges, lecture notes (2022)
5 B Bhatt, J Lurie, Absolute prismatic cohomology, preprint (2022) arXiv:2201.06120
6 B Bhatt, J Lurie, The prismatization of p–adic formal schemes, preprint (2022) arXiv:2201.06124
7 B Bhatt, J Lurie, A Mathew, Revisiting the de Rham–Witt complex, 424, Soc. Math. France (2021) MR4275461
8 B Bhatt, M Morrow, P Scholze, Integral p–adic Hodge theory, Publ. Math. Inst. Hautes Études Sci. 128 (2018) 219 MR3905467
9 B Bhatt, M Morrow, P Scholze, Topological Hochschild homology and integral p–adic Hodge theory, Publ. Math. Inst. Hautes Études Sci. 129 (2019) 199 MR3949030
10 B Bhatt, P Scholze, The pro-étale topology for schemes, from: "De la géométrie algébrique aux formes automorphes, I" (editors J B Bost, P Boyer, A Genestier, L Lafforgue, S Lysenko, S Morel, B C Ngo), Astérisque 369, Soc. Math. France (2015) 99 MR3379634
11 B Bhatt, P Scholze, Prisms and prismatic cohomology, Ann. of Math. 196 (2022) 1135 MR4502597
12 P Deligne, L Illusie, Relèvements modulo p2 et décomposition du complexe de de Rham, Invent. Math. 89 (1987) 247 MR0894379
13 V Drinfeld, A stacky approach to crystals, preprint (2018) arXiv:1810.11853
14 V Drinfeld, Prismatization, preprint (2020) arXiv:2005.04746
15 V Drinfeld, A 1–dimensional formal group over the prismatization of Spf p, preprint (2021) arXiv:2107.11466
16 J M Fontaine, W Messing, p–adic periods and p–adic étale cohomology, from: "Current trends in arithmetical algebraic geometry" (editor K A Ribet), Contemp. Math. 67, Amer. Math. Soc. (1987) 179 MR0902593
17 L Illusie, Complexe cotangent et déformations, I, 239, Springer (1971) MR0491680
18 K Kato, On p–adic vanishing cycles (application of ideas of Fontaine–Messing), from: "Algebraic geometry" (editor T Oda), Adv. Stud. Pure Math. 10, North-Holland (1987) 207 MR0946241
19 D Kubrak, A Prikhodko, p–adic Hodge theory for Artin stacks, preprint (2021) arXiv:2105.05319
20 D Kubrak, A Prikhodko, Hodge-to–de Rham degeneration for stacks, Int. Math. Res. Not. 2022 (2022) 12852 MR4475269
21 S Li, T Liu, Comparison of prismatic cohomology and derived de Rham cohomology, J. Eur. Math. Soc. (2023)
22 J Lurie, Derived algebraic geometry, (2004)
23 J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) MR2522659
24 S Mondal, 𝔾aperf–modules and de Rham cohomology, Adv. Math. 409 (2022) 108691 MR4483247
25 S Mondal, Reconstruction of the stacky approach to de Rham cohomology, Math. Z. 302 (2022) 687 MR4480206
26 T Moulinos, M Robalo, B Toën, A universal Hochschild–Kostant–Rosenberg theorem, Geom. Topol. 26 (2022) 777
27 A Petrov, Non-decomposability of the de Rham complex and non-semisimplicity of the Sen operator, preprint (2023) arXiv:2302.11389
28 C Simpson, Homotopy over the complex numbers and generalized de Rham cohomology, from: "Moduli of vector bundles" (editor M Maruyama), Lecture Notes in Pure and Appl. Math. 179, Dekker (1996) 229 MR1397992
29 B Toën, Champs affines, Selecta Math. 12 (2006) 39 MR2244263