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On the top-weight rational cohomology of Ag

MADELINE BRANDT

JULIETTE BRUCE

MELODY CHAN

MARGARIDA MELO

GWYNETH MORELAND

COREY WOLFE

We compute the top-weight rational cohomology of Ag for g D 5, 6 and 7, and we give some vanishing
results for the top-weight rational cohomology of A8;A9 and A10. When g D 5 and g D 7, we exhibit
nonzero cohomology groups of Ag in odd degree, thus answering a question highlighted by Grushevsky.
Our methods develop the relationship between the top-weight cohomology of Ag and the homology of
the link of the moduli space of principally polarized tropical abelian varieties of rank g. To compute the
latter we use the Voronoi complexes used by Elbaz-Vincent, Gangl and Soulé. In this way, our results
make a precise connection between the rational cohomology of Sp2g.Z/ and GLg.Z/. Our computations
also give natural candidates for compactly supported cohomology classes of Ag in weight 0 that produce
the stable cohomology classes of the Satake compactification of Ag in weight 0, under the Gysin spectral
sequence for the latter space.

14K10, 14T90; 14F25

1 Introduction

Let Ag be the moduli stack of principally polarized complex abelian varieties of dimension g. It is well
known that Ag is a separated Deligne–Mumford stack, isomorphic to the quotient of the Siegel upper
half-plane Hg under the action of the integral symplectic group Sp2g.Z/. Therefore Ag is smooth of
dimension d D

�
gC1

2

�
, but it is not proper for g > 0. Since Ag is a complex algebraic variety, the rational

cohomology groups of Ag admit a weight filtration in the sense of mixed Hodge theory, with graded
pieces GrW

j H �.AgIQ/ which may appear for j from 0 to 2d . We refer to the piece of weight 2d as the
top-weight rational cohomology of Ag.

The orbifold Euler characteristic and the stable cohomology of Ag are classically understood; see for
instance Borel [6] and Harder [29]. However, the full cohomology ring H �.AgIQ/ is a mystery even for
small g. The cases when g � 2 are classically known, and the case when g D 3 is the work of Hain [27].
The full cohomology ring for g � 4 is already unknown, though when g D 4, much information can be

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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498 Madeline Brandt, Juliette Bruce, Melody Chan, Margarida Melo, Gwyneth Moreland and Corey Wolfe

determined from Hulek and Tommasi [31; 32], where the complete Betti tables for both the Voronoi and
the perfect cone compactifications of A4 are computed. In particular, the top-weight cohomology of A4

vanishes; see Remark 6.7.

We compute the top-weight rational cohomology of Ag for 2� g � 7. For gD 3 and 4, our computations
agree with the above-mentioned results of Hain and of Hulek and Tommasi, respectively. Our first main
result is then the following.

Theorem A The top-weight rational cohomology of Ag for g D 5, 6 and 7 is

GrW
30 H k.A5IQ/D

�
Q if k D 15; 20;

0 else ,

GrW
42 H k.A6IQ/D

(
Q if k D 30;

0 else ,

GrW
56 H k.A7IQ/D

�
Q if k D 28; 33; 37; 42;

0 else.

This answers an open question of Grushevsky [24, Open Problem 7], who asked whether Ag ever has
nonzero odd cohomology.

For broader context, recall that from the description of Ag as the quotient ŒHg=Sp2g.Z/�, it is a rational
classifying space for the integral symplectic group Sp2g.Z/. Thus, H�.AgIQ/ŠH�.Sp2g.Z/IQ/. The
situation is analogous to that of the moduli space of curves Mg, which is a rational classifying space for the
mapping class group Modg via its action on Teichmüller space. Moreover, in both cases, we find ourselves
in the advantageous situation that Mg and Ag are smooth and separated Deligne–Mumford stacks with
coarse moduli spaces which are algebraic varieties, permitting Deligne’s mixed Hodge theory to be applied
to study the rational cohomology of these groups. The results of this paper use this algebrogeometric
perspective to find new nonzero classes in a canonical quotient of H�.Sp2g.Z/IQ/: the top-weight
quotient, in the sense of mixed Hodge theory. (Recall that in general, the rational cohomology of a
complex algebraic variety X of dimension d admits a weight filtration with graded pieces GrW

j H k.X IQ/.
GrW

j H k.X IQ/ vanishes whenever j > 2d , so GrW
2d H k.X IQ/ is referred to as the top-weight part

of H k.X IQ/.)

Indeed, in this paper, we develop methods for studying Ag that are analogous to those employed in Chan,
Galatius and Payne [12] for Mg. The moduli spaces Ag admit toroidal compactifications A†

g , which are
proper Deligne–Mumford stacks; see Faltings and Chai [23, Theorem 5.7]. The compactifications A†

g

are associated to admissible decompositions † of �rt
g, the rational closure of the cone of positive definite

quadratic forms in g variables; see Section 2.3. The same data is also used to construct the moduli
space A

trop;†
g of tropical abelian varieties of dimension g in the category of generalized cone complexes;

see Section 2.6.

Geometry & Topology, Volume 28 (2024)



On the top-weight rational cohomology of Ag 499

Then for any admissible decomposition † of �rt
g and for each i � 0, and writing LA

trop;†
g for the link of

the cone point of A
trop;†
g , there is a canonical identification

zHi�1.LA
trop;†
g IQ/Š GrW

2d H 2d�i.AgIQ/:

This statement can be deduced from Odaka and Oshima [40, Corollary 2.9] (see pages 24–25 of op. cit.);
since the language is different, and in order to be self-contained, we give a short proof in Theorem 3.1.
Briefly, there exist admissible decompositions † for which A†

g is a smooth simple normal crossings com-
pactification of Ag whose boundary complex is identified with LA

trop;†
g . However, the homeomorphism

type of LA
trop;†
g is independent of †: see Section 3 or [39, Remark A.14]. The conclusion follows by

applying the generalization to Deligne–Mumford stacks, spelled out in Chan, Galatius and Payne [12], of
Deligne’s comparison theorems in mixed Hodge theory; see Theorem 3.1.

We then compute the topology of A
trop;†
g by considering the perfect or first Voronoi toroidal compactifi-

cation AP
g and its tropical version A

trop;P
g , associated to the perfect cone decomposition (Fact 2.6). This

decomposition is very well studied and enjoys interesting combinatorial properties, which are well suited
for our computations. We identify the homology of the link of A

trop;P
g with the homology of the perfect

chain complex P .g/
�

(Definition 4.1, Proposition 4.4), using the framework of cellular chain complexes of
symmetric CW–complexes due to Allcock, Corey and Payne [3].

To compute the homology of the complex P .g/
�

we use a related complex V .g/
�

, called the Voronoi complex.
This was introduced in Elbaz-Vincent, Gangl and Soulé [22] and Lee and Szczarba [36] to compute the
cohomology of the modular groups GLg.Z/ and SLg.Z/. They use the perfect form cell decomposition
of �rt

g, which is invariant under the action of each of these groups, and then relate the equivariant
homology of �rt

g modulo its boundary with the cohomology of GLg.Z/ and SLg.Z/, respectively. For
this purpose, the homology of V .4/

�
was computed by Lee and Szczarba [36] for SL4.Z/ (and we adapt

this computation to the case of GL4.Z/ in this paper), while for g D 5; 6 and 7 the complex V .g/
�

was
computed in [22] with the help of a computer program using lists of perfect forms for g� 7 by Jaquet [34].
In Theorem 4.13 we show that the complexes P .g/

�
and V .g/

�
sit in an exact sequence

(1) 0! P .g�1/
�

! P .g/
�

�
�! V .g/

�
! 0:

This sequence together with the results in [22] are then crucial to get our main result.

In Section 5 we consider a subcomplex of P .g/
�

called the inflation complex and prove that it is acyclic.
Using this result, we show that GrW

g2Cg
H i.AgIQ/D 0 for i > g2, which recovers the vanishing in top

weight of the rational cohomology of Ag in degree above the virtual cohomological dimension (which
for Ag is equal to g2).

For gD8; 9 and 10, full calculations of the top-weight cohomology of Ag are beyond the scope of our com-
putations. However, our computations for gD 7 together with a vanishing result of Dutour Sikirić, Elbaz-
Vincent, Kupers and Martinet [21] allow us to deduce, in Section 6.5, the vanishing of GrW

.gC1/g H �.AgIQ/

in a range slightly larger than what is implied by virtual cohomological dimension bounds.

Geometry & Topology, Volume 28 (2024)
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Theorem B The top-weight rational cohomology of A8, A9 and A10 vanish in the following ranges:

GrW
72 H i.A8IQ/D 0 for i � 60;

GrW
90 H i.A9IQ/D 0 for i � 79;

GrW
110 H i.A10IQ/D 0 for i � 99:

To provide some broader context for our main results on H�.AgIQ/ Š H�.Sp2g.Z/IQ/, we now
highlight two interesting connections: first, to the stable cohomology of Satake compactifications, and
second, to the cohomology of general linear groups GLg.Z/. More details appear in Section 7.

Relationship with the stable cohomology of ASat
g By Poincaré duality, the top-weight cohomology of

Ag studied in this paper admits a perfect pairing with weight 0 compactly supported cohomology of Ag.
These weight 0 classes, in turn, have an interesting, not yet fully understood relationship with the stable
cohomology ring of the Satake compactification ASat

g , whose structure was first understood by Charney
and Lee [14].

Indeed, the stable cohomology ring of ASat
g is freely generated by extensions of the well-known odd

�–classes and by less-understood classes y6; y10; y14; : : : which were proven to be of weight 0 by Chen
and Looijenga in [15]. This predicts the existence of infinitely many top-weight cohomology classes of
Ag as g grows. More precisely, the classes found in the present paper, with Poincaré duality applied,
give natural candidates for the “sources” of the yj in the sense of persisting in a Gysin spectral sequence
relating the compactly supported cohomology groups of the space ASat

g and those of the spaces Ag0 for
g0 � g. See Table 4 at the end of the paper for a summary of everything that is known on the E1 page of
this spectral sequence in weight 0.

This connection was explained to us by O Tommasi and provides significant additional interest in our
main results; we discuss it in detail in Section 7.

Relationship with the cohomology of GLg.Z/ Second, we would like to emphasize the connection
between H�.Sp2g.Z/IQ/ and H�.GLg.Z/I zQ/ provided by our main results, where zQ denotes the
orientation module on the link of the positive definite cone. The possibility of such a connection is
essentially present in [4], but the precise connection employed in this paper, which is a key step in proving
our main Theorems A and B, has been underutilized in the literature.

Indeed, Theorem 4.13 of this paper shows the exactness of the sequence (1) relating the perfect complexes
P .g�1/ and P .g/ on the one hand, and the Voronoi complexes V .g/. Again, these complexes are related
to H�.Sp2g.Z/IQ/ and H�.GLg.Z/IQ/, respectively: precisely, for all k,

H .g
2/�k.GLg.Z/I zQ/ŠHkCg�1.V

.g//

and
Hk�1.P

.g//Š GrW
g2Cg

H g2Cg�k.AgIQ/� H g2Cg�k.AgIQ/:

Geometry & Topology, Volume 28 (2024)
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(See Soulé [43], Elbaz-Vincent, Gangl and Soulé [22, Section 3.4] and Proposition 4.4, respectively). For
example, in view of exactness of (1), it is immediately possible to pass vanishing results on the top-weight
quotient of H�.AgIQ/ and vanishing results on H�.GLg.Z/I zQ/ back and forth. For instance, recall
that Church, Farb and Putman conjectured [16, Conjecture 2] that

H .g
2/�i.SLg.Z/IQ/D 0 for all i < g� 1;

which implies the analogous statement for GLg.Z/ with both Q and zQ coefficients [22, equation (7)].
The conjecture is true for i D 0 by Lee and Szczarba [35], for i D 1 by Church and Putman [17], and for
i D 2 by the recent preprint of Brück, Miller, Patzt, Sroka and Wilson [10], which appeared after the
original version of this paper. As corollaries of these results and the results of this paper, we thus have:

Corollary 1.1 For all g > 0,

GrW
g2Cg

H g2�k.AgIQ/D 0 when k � 2:

This agrees with the gD 9 and gD 10 vanishing results in Theorem B. More generally, the Church–Farb–
Putman conjecture would imply that

GrW
g2Cg

H g2�i.AgIQ/D 0 whenever i < g� 1:

That is, it would imply vanishing of E
p;q
1

in the spectral sequence in Table 4 for all q < p � 1; see
Section 7.

It would be very interesting to find connections to the cohomology of GLg.Z/ that go deeper in the
weight filtration on H�.AgIQ/.

Organization of the paper In Section 2, we give the necessary preliminaries. This includes a discussion
of generalized cone complexes, their links, and their homology. We then discuss admissible decompositions
of the rational closure of the set of positive definite quadratic forms, and focus in particular on the perfect
cone decomposition. We also give a brief introduction to matroids and to perfect cones associated to
matroids. Then, we give some background on the tropical moduli space A

trop;†
g , and on the construction

of toroidal compactifications of Ag out of admissible decompositions.

In Section 3, we prove Theorem 3.1, which relates the top-weight cohomology of Ag to the reduced
rational homology of the link of A

trop;†
g . In Section 4, we show that the perfect chain complex P .g/

�

computes the top-weight cohomology of Ag (Proposition 4.4). We also relate this chain complex to the
Voronoi complex V .g/

�
(Theorem 4.13). In Section 5, we introduce the inflation subcomplex, which we

show is acyclic in Theorem 5.15. We prove an analogous result for the coloop subcomplex C .g/
�

of the
regular matroid complex R.g/

�
, which may be useful for future results.

In Section 6, we put together the results obtained in Section 4 with the computations of Lee and
Szczarba [36] for g D 4 and Elbaz-Vincent, Gangl and Soulé [22] in g D 5; 6 and 7 to describe the
top-weight cohomology of Ag for g D 4; 5; 6 and 7 and to give the above-mentioned bound for the
vanishing of the cohomology of Ag in top weight for g D 8; 9 and 10. This proves Theorems A and B.

Geometry & Topology, Volume 28 (2024)
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In Section 7, we discuss the relationship with the stable cohomology of the Satake compactification,
including some open questions which are partially addressed by our main results and which deserve
further attention.
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2 Preliminaries

In this section we give preliminaries and introduce notation.

2.1 Cones and generalized cone complexes

A rational polyhedral cone � in Rg (or just a cone, for simplicity) is the nonnegative real span of a finite
set of integer vectors v1; v2; : : : ; vn 2 Zg,

� WDR�0hv1; v2; : : : ; vni WD

� nX
iD1

�ivi W �i 2R�0

�
:
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On the top-weight rational cohomology of Ag 503

We assume all cones � � Rg are strongly convex, meaning � contains no nonzero linear subspaces
of Rg. The dimension of � is the dimension of its linear span. The cone � is said to be smooth if it is
possible to choose the generating vectors v1; : : : ; vn so that they are a subset of a Z–basis of Zg. Note
that some sources refer to what we call smooth cones as basic cones. A d–dimensional cone � is said
to be simplicial if it is generated by d vectors which are linearly independent over R. A face of � is
any nonempty subset of � that minimizes a linear functional on Rg. Faces of � are themselves rational
polyhedral cones. A facet is a face of codimension one.

Given cones � 2 Rg and � 0 2 Rg0, a morphism � ! � 0 is a continuous map from � to � 0 obtained as
the restriction of a linear map Rg!Rg0 sending Zg to Zg0. A face morphism is a morphism of cones
� ! � 0 sending � isomorphically to a face of � 0. Notice that isomorphisms of cones are examples of
face morphisms. Denote by Cones the category of cones with face morphisms.

The one-dimensional faces of � are called the extremal rays of � , and there are only finitely many of
these. Given an extremal ray � of � , the semigroup �\Zg is generated by a unique element u� called the
ray generator of �. An automorphism of a strongly convex cone permutes its finitely many ray generators,
and is uniquely determined by this permutation. So, Aut.�/ is finite.

A generalized cone complex (see [1]) is a topological space with a presentation as a colimit X WD lim
��!i2I �i

of an arbitrary diagram of cones � W I! Cones, in which all morphisms of cones are face morphisms.
A morphism .X D lim

��!i2I �i/! .X 0 D lim
��!i2I �

0
i/ is a continuous map f WX ! X 0 such that for each

cone �i in the presentation of X , there exists a cone � 0j in the presentation of X 0 and a morphism of cones
fi W �i! � 0j such that the following diagram commutes:

�i

��

fi
// � 0j

��

X
f
// X 0

We remark that the category of generalized cone complexes is equivalent to the one of stacky fans as
defined in [13, Definition 2.1.7].

2.2 Links of generalized cone complexes

For any cone � �Rg, define the link of � at the origin to be the topological space L� D .� �f0g/=R>0,
where the action of R>0 is by scalar multiplication. Thus L� is homeomorphic to a closed ball of
dimension dim ��1. A face morphism of cones �! � 0 induces a morphism of links L�!L� 0, making
L a functor from Cones to topological spaces.

Let X D lim
��!i2I �i be a generalized cone complex, where � W I!Cones is a diagram of cones. We define

the link of X as the colimit
LX D lim

��!
.L ı �/:

Geometry & Topology, Volume 28 (2024)
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Thus LX is a topological space, equipped with a colimit presentation as above. In fact, LX is a symmetric
CW–complex, by [3, Example 2.4]. The definition of symmetric CW–complex generalizes the symmetric
�–complexes of [12]. Roughly, a symmetric CW–complex is like a CW–complex, except with closed
n–balls replaced by quotients thereof by finite subgroups of the orthogonal group O.n/.

Let X be a finite generalized cone complex, meaning that the indexing category I is equivalent to one
with a finite number of objects and morphisms. We now write down a chain complex isomorphic to the
cellular chain complex of LX , in the sense of [3, Section 4] and [12, Section 3], whose homology is
identified with the singular homology of LX .

For each p � �1, let Conesp.X / denote the finite groupoid whose objects are all .pC1/–dimensional
faces of �i for all i 2 I, with a morphism � ! � 0 for each isomorphism of cones � W � Š�! � 0 such that
the following diagram commutes:

�
�
//

��

� 0

��

X

Let � be a cone in Conesp.X /. We make use of three compatible notions of orientation found in the
literature:

(i) an orientation of � is an orientation of L� (see [36]),

(ii) an orientation of � is an orientation of the suspension of L� (see [3]), and

(iii) an orientation of � is an orientation of R� , the R–linear span of � ; ie it is a choice of ordered basis
for R� , up to a change of basis with positive determinant (see [22]).

For the first two definitions, it is clear that an orientation on � induces an orientation on the faces of � as
well. For the third definition, given a facet � 0 of � , the induced orientation on � 0 is any one such that the
quantity �.� 0; �/, defined as follows, is 1.

Let B D .v1; : : : ; vn; v/, where B0 D .v1; : : : ; vn/ is an orientation of � 0 and v is a ray generator of a
ray of � not contained in � 0. Set �.� 0; �/ to be the sign of the orientation of B in the oriented vector
space R� . Note that this sign does not depend on the choice of v. These definitions are compatible, in
that a choice of orientation under one definition yields a choice of orientation under the other two, and
under this correspondence a cone morphism � ! � is orientation-preserving under one definition if it is
orientation-preserving under all three. Say that � 2 Conesp.X / is alternating if all automorphisms �! �

in Conesp.X / are orientation-preserving on � .

Choose a set �p of representatives of isomorphism classes of alternating cones in Conesp.X /, and for
each � 2 �p fix an orientation !� of � . If �0 is a facet of � , then !� induces an orientation of �0, which
we denote by !� j�0 . Let Cp.LX / be the Q–vector space with basis �p. We define a differential

@ W Cp.LX /! Cp�1.LX /
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by extending linearly on Cp.LX / the following definition: given � 2 �p and � 2 �p�1, set

@.�/� D
X
�0

�.�0; �/;

where �0 ranges over the facets of � that are isomorphic in Conesp�1.X / to �, and where �.�0; �/D˙1

according to whether an isomorphism � W �0! � in Conesp.X / takes the orientation !� j�0 to !� or �!�.
Note that �.�0; �/ is well defined, ie independent of choice of �, precisely because � is alternating.

Let C�.LX / denote the complex

� � �
@
�! Cp.LX /

@
�! Cp�1.LX /

@
�! � � �

@
�! C�1.LX /! 0:

The main proposition in this subsection is the following.

Proposition 2.1 Let X be a finite generalized cone complex. Then C�.LX / is a complex, ie @2 D 0.

(i) If X is connected , we have , for each p � 0,

Hp.C�.LX //Š zHp.LX IQ/:

(ii) More generally, for each p > 0, we have canonical isomorphisms

Hp.C�.LX //ŠHp.LX IQ/;

and for p D 0 we have

H0.C�.LX //Š ker.H0.LX IQ/!Q��1/:

Proposition 2.1 follows from [3, Theorem 4.2], by tracing through their definition of the cellular chain
complex of LX . We give a self-contained proof sketch below.

Proof sketch Write LX .p/ for the p–skeleton of LX , ie the union of the images of L� in X , for �
ranging over cones of dimension at most pC1 in X . By a standard argument analogous to the proof of
[30, Theorem 2.2.27], the complex

(2) � � � !Hp.LX .p/;LX .p�1/
IQ/

ıp
�!Hp�1.LX .p�1/;LX .p�2/

IQ/! � � �

has homology canonically identified with the singular homology of LX . Moreover,

Hp.LX .p/;LX .p�1/
IQ/Š

M
�

Hp

�
.L�/=Aut.�/; .@L�/=Aut.�/IQ

�
;

where � ranges over a set of representatives of isomorphism classes in Conesp.X /. Here Aut.�/ D
IsoConesp.X /.�; �/ is the automorphism group of � in Conesp.X /. Since jAut.�/j is invertible in Q, it
follows that

Hp.LX .p/;LX .p�1/
IQ/Š

M
�

Hp.L�; @L� IQ/Aut.�/;
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and for each � 2 Conesp.X /, we have

Hp.L�; @L� IQ/Aut.�/ Š

�
Q if � is alternating,
0 else,

which identifies Hp.LX .p/;LX .p�1/IQ/ with Cp.LX /.

Remark 2.2 A statement analogous to Proposition 2.1 holds with Q replaced by a commutative ring R,
if the order of Aut.�/ is invertible in R for each � .

Remark 2.3 See also the proofs in [36, Section 3], as well as [22, Section 3.3], which are written in the
special cases of the Voronoi complexes for SLg.Z/ and GLg.Z/, but apply essentially verbatim to prove
Proposition 2.1. The Voronoi complex of GLg.Z/ plays an important role in this paper.

2.3 Admissible decompositions

We now introduce admissible decompositions of the rational closure of the set of positive definite quadratic
forms, which are used in the construction of toroidal compactifications of the moduli space of abelian
varieties, as well as in the construction of the moduli space of tropical abelian varieties.

We denote by R.
gC1

2 / the vector space of quadratic forms in Rg, which we identify with g�g symmetric
matrices with coefficients in R. We denote by �g the cone in R.

gC1
2 / of positive definite quadratic forms.

We define the rational closure of �g to be the set �rt
g of positive semidefinite quadratic forms whose

kernel is defined over Q. The group GLg.Z/ acts on the vector space R.
gC1

2 / of quadratic forms by
h �Q WD hQht , where h 2 GLg.Z/ and ht is its transpose. The cones �g and �rt

g are preserved by this
action of GLg.Z/.

Remark 2.4 A positive semidefinite quadratic form Q in Rg belongs to �rt
g if and only if there exists

h 2 GLg.Z/ such that

hQht
D

�
Q0 0

0 0

�
for some positive definite quadratic form Q0 in Rg0 with 0� g0 � g; see [38, Section 8].

The cones �g and �rt
g are not polyhedral cones. However, one can consider decompositions of these

spaces into rational polyhedral cones, as in the following definition.

Definition 2.5 [38, Lemma 8.3], [23, Chapter IV.2] An admissible decomposition of �rt
g is a collection

†D f��g of rational polyhedral cones of �rt
g such that

(i) if � is a face of �� 2† then � 2†,

(ii) the intersection of two cones �� and �� of † is a face of both cones,

(iii) if �� 2† and h 2 GLg.Z/ then h��ht 2†,
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(iv) the set of GLg.Z/–orbits of cones is finite, and

(v)
S
��2†

�� D�
rt
g.

We say that two cones ��; �� 2† are equivalent if they are in the same GLg.Z/–orbit.

There are three known families of admissible decompositions of�rt
g described for all g: the perfect cone de-

composition, the second Voronoi decomposition, and the central cone decomposition; see [38, Chapter 8].
In this paper, we work with the perfect cone decomposition, which we now describe.

2.4 The perfect cone decomposition

Given a positive definite quadratic form Q, consider the set of nonzero integral vectors where Q attains
its minimum,

M.Q/ WD
˚
� 2 Zg

n f0g WQ.�/�Q.�/ for all � 2 Zg
n f0g

	
:

The elements of M.Q/ are called the minimal vectors of Q. Let �ŒQ� denote the rational polyhedral
subcone of �rt

g given by the nonnegative linear span of the rank-one forms � � � t 2�rt
g for elements �

of M.Q/, ie

(3) �ŒQ� WDR�0h� � �
t
i�2M.Q/:

The rank of the cone �ŒQ� is defined to be the maximum rank of an element of �ŒQ�; in fact the rank
of �ŒQ� is exactly the dimension of the span of M.Q/; see Lemma 4.8.

Fact 2.6 [44] The set of cones

†P
g WD f�ŒQ� WQ is a positive definite form on Rg

g

is an admissible decomposition of �rt
g, known as the perfect cone decomposition.

The quadratic forms Q such that �ŒQ� has maximal dimension
�
gC1

2

�
are called perfect, hence the name

of this admissible decomposition.

Example 2.7 Let us compute †P
2
. In this case, there is a unique perfect form up to GL2.Z/–equivalence,

namely
QD

�
1 1

2
1
2

1

�
:

One can compute that M.Q/D f.˙1; 0/; .0;˙1/; .˙1;�1/g. Thus, up to GL2.Z/–equivalence, there is
a unique perfect cone �ŒQ� of maximal dimension 3, with ray generators�

1 0

0 0

�
;

�
0 0

0 1

�
;

�
1 �1

�1 1

�
:

One may check that for i 2 f0; 1; 2g, all i–dimensional faces of �ŒQ� are GL2.Z/–equivalent; hence there
is a unique perfect cone of each dimension, up to the action of GL2.Z/.

Remark 2.8 The cones �ŒQ� 2†P
g need not be simplicial for g � 4; see [38, page 93].
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2.5 Matroidal perfect cones

We now give a brief introduction to matroids and their associated orbits of perfect cones. Further
background on matroids can be found in [41].

Definition 2.9 A matroid M D .E; C/ on a finite set E is a subset C � P.E/ n f∅g, called the set of
circuits of M, satisfying the following axioms:

(C1) No proper subset of a circuit is a circuit.

(C2) If C1;C2 2 C are distinct and c 2 C1\C2, then .C1[C2/�fcg contains a circuit.

A matroid M D .E; C/ is said to be simple if it has no circuits of length 1 or 2. A matroid M D .E; C/ is
called representable over a field F if there is a matrix A over F such that E bijects to the columns of A

with the circuits C of M indexing the minimal linearly dependent sets of columns of A. The matrix A is
known as an F–representation of M. An automorphism of a matroid is a bijection � WE!E such that
for any subset C �E, C is a circuit of M if and only if �.C / is a circuit of M.

Definition 2.10 A matroid is regular if and only if it is representable over every field.

A matroid M being regular is equivalent to M being representable over R by a totally unimodular matrix
(ie a matrix such that every minor is either �1, 0 or 1). The rank of a regular matroid M is the smallest
number r such that M is representable over R by a r � n totally unimodular matrix for some n; see
[41, Lemma 2.2.21, page 85].

Definition 2.11 Let G be a graph. The graphic matroid M.G/ is the matroid with ground set E.G/

whose circuits are subsets of E.G/ forming a simple cycle of G.

Since graphic matroids are regular, they are representable over fields of any characteristic. This can be
seen directly by constructing the following matrix representing M.G/. Fix an orientation of the edges
of G. Let A.G/ be the jV .G/j � jE.G/j matrix with entries

A.G/ij D

8<:
0 if vi 62 ej ;

�1 if vi is the head of ej ;

1 if vi is the tail of ej :

This matrix represents the matroid M.G/ over any field.

Construction 2.12 Given a simple, regular matroid M of rank � g, choose a g� n totally unimodular
matrix A that represents M over R. Denoting the columns of A by v1; v2; : : : ; vn, we let �A.M /��rt

g

be the rational polyhedral cone

�A.M / WDR�0hv1v
t
1; v2v

t
2; : : : ; vnv

t
ni:

By [37, Theorem 4.2.1], the cone �A.M / is a perfect cone in †P
g.
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The cone �A.M / is uniquely determined by M up to the action of GLg.Z/. In particular, if A and A0 are
two different totally unimodular matrices representing M over R then there exists an element h2GLg.Z/

such that h�A.M /ht D �A0.M /; see [37, Lemma 4.0.5(ii]). We therefore denote the GLg.Z/–orbit
of �A.M / by �.M /.

In the case of graphic matroids, Construction 2.12 can be made very explicit. As this is useful in
Section 6, we take the time to explain it here. Fix g > 0. We now construct cones of †P

g from graphs
on gC 1 vertices. The rows of the .gC 1/ � jE.G/j matrix A.G/ as constructed above are linearly
dependent. Let A�.G/ be the matrix obtained from A.G/ by deleting the last row. The matrices
A.G/ and A�.G/ are both representations of M.G/. Let v1; : : : ; vd be the columns of A�.G/. Then
�.M.G// WDR�0hv1v

t
1
; : : : ; vdv

t
d
i 2†P

g is a perfect cone; see [37, Theorem 4.2.1].

Definition 2.13 The principal cone is �prin
g WD �.M.KgC1//, the cone corresponding to the complete

graph KgC1.

When gD 2, this is the cone discussed in Example 2.7. More generally, for arbitrary g the principal cone
can be defined as the cone corresponding to the quadratic form26664

1 1
2
� � �

1
2

1
2

1 � � � 1
2

:::
:::
: : :

:::
1
2

1
2
� � � 1

37775 :
These two definitions agree by [8, Lemma 6.1.3].

The faces of �prin
g may be understood as follows. Since M.KgC1/ is a simple matroid, the principal cone

in †P
g is simplicial by [8, Theorem 4.4.4(iii)]. Therefore, a codimension i face of the principal cone

comes from a graph obtained by deleting i edges from KgC1.

Remark 2.14 Automorphisms of the graph G give automorphisms of the matroid M.G/, but not all
automorphisms of M.G/ arise in this way. However, if G is 3–connected, then Aut.G/D Aut.M.G//

(this is proved by Whitney in [45]; see [28, Lemmas 1 and 2]). The group Aut.M.G// is isomorphic to
the group of permutations of the rays of �.M.G// induced by elements of GLg.Z/ stabilizing �.M.G//

[11, Theorem 5.10].

2.6 The tropical moduli space A
trop
g

We now introduce the moduli space of tropical abelian varieties, which is a generalized cone complex
constructed in [8] and later worked out in [13]. Our aim is to compute the homology of the link of A

trop
g ,

as this is canonically isomorphic to the top-weight rational cohomology of Ag; see Theorem 3.1.
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Definition 2.15 A principally polarized tropical abelian variety (or, for simplicity, just tropical abelian
variety) of dimension g is a pair AD .Rg=Zg;Q/, where Q is a positive semidefinite symmetric bilinear
form on Rg with rational null space. We say that AD .Rg=Zg;Q/ is pure if Q is positive definite.

Two tropical abelian varieties .Rg=Zg;Q/ and .Rg=Zg;Q0/ are isomorphic if there is an h 2 GLg.Z/

such that Q0 D hQht . The set of isomorphism classes of tropical abelian varieties of dimension g is in
bijective correspondence with the orbits in �rt

g=GLg.Z/.

Given an admissible decomposition † of �rt
g, define a generalized cone complex A

trop;†
g by considering

the stratified quotient of �rt
g with respect to †; see [13, Definition 2.2.2]. Precisely, A

trop;†
g is the

generalized cone complex obtained as the colimit

A
trop;†
g WD lim

��!
f�g�2†

with arrows given by inclusion of faces composed with the action of the group GLg.Z/ on �rt
g: given two

cones �i and �j 2† and h2GLg.Z/ with h�ih
t a face of �j , we consider its associated lattice-preserving

linear map Li;j ;g W �i ,! �j in the diagram. The space A
trop;†
g is the moduli space of tropical abelian

varieties of dimension g with respect to †.

2.7 Toroidal compactifications of the moduli space Ag

In this paper, Ag denotes the moduli stack of principally polarized abelian varieties of dimension g. It is
a smooth Deligne–Mumford algebraic stack of dimension d D

�
gC1

2

�
, and the coarse moduli space of

principally polarized abelian varieties, denoted by Ag, is a quasiprojective variety.

The moduli stack Ag is not proper for g > 0, and there are different constructions of compactifications
of Ag. In particular, it is possible to construct normal crossings compactifications of Ag via the theory of
toroidal compactifications. Both the constructions of Ag and of its toroidal compactifications as algebraic
stacks were achieved in [4] over the complex numbers and in [23] over an arbitrary base. Even though we
work over the complex numbers, we often refer to the constructions in [23] as these are more conveniently
stated within the algebraic category and specifically for moduli of abelian varieties (rather than quotients
of bounded symmetric domains as in [4]).

Let† be an admissible decomposition of�rt
g (in the sense of Definition 2.5). Then one may associate to†

a toroidal compactification A†
g of Ag, which is a proper Deligne–Mumford stack, although in general it

is not smooth. The fact that Ag �A†
g is toroidal means that .Ag;A†

g / is étale-locally isomorphic to a
torus inside a toric variety.

By construction, the toroidal compactification A†
g comes with a stratification into locally closed subsets.

These are in order-reversing bijection, with respect to the order relation given by the closure, with the
GLg.Z/–equivalence classes of the relative interiors of the cones in †. For example, the origin of �rt

g,
which is the unique zero-dimensional cone in every admissible decomposition †, corresponds to the open
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substack Ag, which is the unique stratum of A†
g of maximal dimension d . At the other extreme, the

maximal dimensional cones in † correspond to the zero-dimensional strata of A†
g .

We study the perfect toroidal compactification Aperf
g D A†P

g

g of Ag, ie the toroidal compactification
of Ag associated to the perfect cone decomposition †P

g. The geometric significance of the perfect
cone compactification was highlighted in work of Shepherd-Barron [42], who shows that Aperf

g is the
canonical model of Ag for g � 12. For our purposes it is particularly nice because the number of strata
of codimension l in the boundary of Aperf

g nAg is independent of g if l � g; see [26, Proposition 7.1].

3 A comparison theorem for Ag and A
trop
g

Let † be any admissible decomposition of �rt
g. As mentioned above, we can use † to construct

both a toroidal compactification of Ag, and the generalized cone complex A
trop;†
g , the moduli space

of tropical abelian varieties associated to †. In this section, we record the relationship between the
homology of A

trop;†
g with the top-weight cohomology of Ag, as deduced from Deligne’s comparison

theorems and the framework in [12]. This precise relationship was already remarked by Odaka and
Oshima [40, Corollary 2.9], as we explain further in Remark 3.2, but it is useful to have a self-contained
proof, below.

Theorem 3.1 For each i � 0 and admissible decomposition †, we have a canonical isomorphism

zHi�1.LA
trop;†
g IQ/Š GrW

2d H 2d�i.AgIQ/;

where d D
�
gC1

2

�
is the complex dimension of Ag.

Proof First, by replacing † with another admissible decomposition of �rt
g that refines it, we may assume

that every cone of † is smooth and that it enjoys the following additional property: for any h 2 GLg.Z/

and � 2†, we have that h fixes, pointwise, the cone h�ht \ � . Such a refinement is well known to exist
[23, Chapter IV.2, page 98]. For example, one may be obtained by taking the barycentric refinement,
which is simplicial, and then taking an appropriate smooth refinement which can be constructed as in [18,
Theorem 11.1.9]. The homeomorphism type of LA

trop;†
g is unchanged when passing to a refinement.

Then, by [23, Theorem 5.7], it follows that A†
g is a smooth, separated Deligne–Mumford stack which is

a simple normal crossings compactification of Ag and whose boundary complex is LA
trop;†
g . Now the

desired result follows from the following comparison theorem: we have a canonical isomorphism

zHi�1.�.X � X /IQ/Š GrW
2d H 2d�i.X IQ/

for any normal crossings compactification X � X of smooth, separated Deligne–Mumford stacks over C,
where �.X � X / denotes the boundary complex of the pair .X ;X / and d D dimX is the complex
dimension of X . This comparison theorem follows from Deligne’s mixed Hodge theory [19; 20] in the
case of complex varieties; we refer to [12] for the generalization to Deligne–Mumford stacks.
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Remark 3.2 Let us briefly explain how Theorem 3.1 appears in Odaka [39] and Odaka and Oshima [40],
since the language of those papers is somewhat different. Odaka and Oshima study certain “hybrid”
compactifications of arithmetic quotients �nD of Hermitian symmetric domains. The case of Ag is the
case � D Sp.2g;Z/ and D is the “unit disc” of complex symmetric matrices Z with ZtZ < Idg. The
point is that the boundary of these compactifications is homeomorphic to LAtrop;†

g , so the comparison
statement in [40, Corollary 2.9], which relies on [12], combined with [12, Theorem 2.1], reduces to
Theorem 3.1 in this case.

It is worth emphasizing the independence of choice of the admissible decomposition of †, as remarked
in [39, A.14], that was implicit in the discussion above. More precisely, for any two admissible decompo-
sitions †1 and †2 of �rt

g, we have a homeomorphism of links

LA
trop;†1
g ŠLA

trop;†2
g :

Indeed, it is well known that any two admissible decompositions†1 and†2 admit a common refinement z†
which is an admissible decomposition [23, Chapter IV.2, page 97], and by the construction of Section 2.2,
we have canonical homeomorphisms

LA
trop;†1
g ŠLA

trop;z†
g ŠLA

trop;†2
g :

4 The perfect and Voronoi chain complexes

In computing the top-weight cohomology of Ag there are two chain complexes that play central roles:
the perfect chain complex P .g/

�
and the Voronoi chain complex V .g/

�
. In this section we define both of

these complexes, and show that the homology of the perfect chain complex P .g/
�

computes the top-weight
cohomology of Ag. Further, we show that the perfect and Voronoi complexes are related via a short exact
sequence of chain complexes, which is useful as the Voronoi complex has seen more extensive study;
see [22; 21]. We make use of this short exact sequence to prove our main results in Section 6.

4.1 The perfect chain complex

We first fix some notation, most of which we adapt from Section 2.2. For n 2 Z, let †P
gŒn� be the set

of perfect cones in †P
g of dimension nC 1, and denote the finite set of GLg.Z/–orbits of such cones

by †P
gŒn�=GLg.Z/. We write � � � 0 if and only if � and � 0 lie in the same GLg.Z/–orbit. Recall

that a cone � 2 †P
g is alternating if and only if every element of GLg.Z/ stabilizing � induces an

orientation-preserving cone morphism of � . If � is an alternating cone then every cone in the same
GLg.Z/–orbit as � is alternating. We call such GLg.Z/–orbits alternating. Let �.g/n D �n be a set of
representatives for the alternating elements of †P

gŒn�=GLg.Z/.

For each n and each � 2 �n, choose an orientation !� on � ; the GLg.Z/–action extends this choice to a
choice of orientation on every alternating cone in †P

g. If � � � is an alternating facet of � , denote the
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orientation induced on � by !� j�. Now let �.�; �/ be 1 if the orientation on � agrees with the orientation
induced by � (ie !� D !� j�) and �1 otherwise. Finally, given � 2 �n and � 0 2 �n�1 define

(4) ı.� 0; �/ WD
X

���; ��� 0

�.�; �/;

where the sum is over all facets � of � in the same GLg.Z/–orbit as � 0. With this notation in hand we
can now define the perfect chain complex.

Definition 4.1 The perfect chain complex (P .g/
�
; @�/ is the rational complex defined as follows. For

each n, P
.g/
n is the Q–vector space with basis indexed by �n. The differential @n WP

.g/
n !P

.g/
n�1

is given by

@.e� / WD
X

� 02�n�1

ı.� 0; �/e� 0 :

Notice that P
.g/
n is only possibly nonzero in the range �1� n�

�
gC1

2

�
�1, but even within this range P

.g/
n

may be zero, since alternating perfect cones do not necessarily exist in every dimension; see Example 4.2.
While in many cases ı.� 0; �/ is equal to �1; 0 or 1, this need not always be the case since a cone may
have two or more facets that are GLg.Z/–equivalent.

Example 4.2 When g D 2, recall from Example 2.7 that up to the action of GL2.Z/ there is precisely
one cone of maximal dimension,

�3 WDR�0

��
1 0

0 0

�
;

�
0 0

0 1

�
;

�
1 �1

�1 1

��
:

Since �3 is simplicial, its faces correspond to all subsets of the above ray generators. One can show that
up to the action of GL2.Z/ there is at most one cone in each dimension:

�2 WDR�0

��
1 0

0 0

�
;

�
0 0

0 1

��
; �1 WDR�0

��
1 0

0 0

��
; �0 WDR�0

��
0 0

0 0

��
:

Thus, to determine ��1, �0, �1 and �2, it is enough to see which of �0, �1, �2 and �3 are alternating.
Consider the matrix

AD

�
0 1

1 0

�
:

One can show that A stabilizes both �2 and �3 and that the induced cone morphism is orientation-reversing.
Thus, �1 and �2 are empty. On the other hand, since the action of GL2.Z/ fixes the cone point �0, both
�0 and �1 are alternating. So, ��1 D f�0g and �0 D f�1g. From this we see that the complex P .2/

�
is

P
.2/
2

P
.2/
1

P
.2/
0

P
.2/
�1

P
.2/
�2

0 0 Qhe�1
i Qhe�0

i 0
@0

where @0 sends e�1
to either e�0

or �e�0
depending on the chosen orientations.
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Figure 1: A section of �rt
2 and its perfect cone decomposition.

Remark 4.3 To be precise, the perfect complex P .g/
�

as constructed in Definition 4.1 is only unique up
to isomorphism. In particular, the choice of representatives for �n or reference orientations may result
in different but isomorphic chain complexes. For instance, in Example 4.2, the differential @0 is only
determined up to sign.

The next proposition shows that the perfect complex P .g/
�

is isomorphic to the cellular chain complex
associated to the symmetric CW complex LA

trop;P
g . Thus, by Theorem 3.1, the homology of P .g/

�

computes the top-weight rational cohomology of Ag.

Proposition 4.4 For each i � 0, there exist canonical isomorphisms

Hi�1.P
.g/
�
/Š zHi�1.LA

trop;P
g IQ/Š GrW

2d H 2d�i.AgIQ/;

where A
trop;P
g DA

trop;†P
g

g is the tropical moduli space constructed in Section 2.6.

Proof By construction, P .g/
�

is naturally isomorphic to the cellular chain complex of LA
trop;P
g as defined

in Section 2.2. Observe that the space A
trop;P
g is connected since it deformation retracts to the cone point.

Thus, the first isomorphism then follows from part (i) of Proposition 2.1 and the second isomorphism
follows from Theorem 3.1.

Example 4.5 By Example 4.2, we see that P .2/
�

has trivial homology in all degrees. Thus, Proposition 4.4
recovers the fact that A2 has trivial top-weight cohomology [33].

4.2 The Voronoi complex

Now we introduce a closely related complex, called the Voronoi complex V .g/
�

, as considered in [22; 21].1

We shall soon see that V .g/
�

is a quotient of P .g/
�

, obtained by setting to zero the generators corresponding
to cones contained in the boundary of �rt

g.

1In [22; 21] the Voronoi complex is defined as a complex of free Z–modules, while our definition of Voronoi complex is as a
complex of Q–vector spaces.
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For each n 2Z, let �.g/n D �n be the subset of �n consisting of those cones � such that � \�g ¤∅. For
each � 2 �n, let !� be an orientation of � , and for each � 2 �n�1 define ı.� 0; �/ as before in (4). With
this notation, we can now define the Voronoi complex.

Definition 4.6 The Voronoi chain complex (V .g/
�
; d�/ is the complex where V

.g/
n is the Q–vector space

with basis indexed by �n and the differential dn W V
.g/

n ! V
.g/

n�1
is given by

d.e� / WD
X

� 02�n�1

ı.� 0; �/e� 0 :

Example 4.7 The GL2.Z/–orbits of alternating cones in †P
2

are all contained in �rt
2
n�2. Hence the

Voronoi complex V .2/
�

is zero in all degrees.

There is a natural surjection of chain complexes P .g/
�

�V .g/
�

given by quotienting P
.g/
n by the subcomplex

spanned by those cones contained in �rt
g n�g. Our next goal, achieved in Theorem 4.13, is to show that

the kernel of the map above can naturally be identified with P .g�1/
�

. We begin by noting the following
two lemmas studying those cones lying in �rt

g n�g.

Lemma 4.8 Let � DR�0hv1v
t
1
; : : : ; vnv

t
ni with v1; : : : ; vn 2Zg be a perfect cone. Then � is contained

in �rt
g n�g if and only if dim spanRhv1; v2; : : : ; vni< g.

Lemma 4.9 If � 2†P
g is a perfect cone and � ��rt

g n�g then there is a matrix A 2GLg.Z/ and a cone
� 0 2†P

g0 , where g0 < g and � 0\�g0 ¤∅, with

(5) A�At
D

��
Q0 0

0 0

� ˇ̌̌̌
Q0 2 � 0

�
:

In this situation , say � 0 is a reduction of � .

We now show that, in a sense that we shall make precise, the action of GLg.Z/ on � does not depend on
the ambient matrix size g. For example, given a cone � 2†P

g and a reduction � 0 2†P
g0 of � , we will see

that � is alternating if and only if � 0 is alternating. We begin with the following definition.

Definition 4.10 Given perfect cones �1; �2 2 †
P
g, let Hom�rt

g
.�1; �2/ denote the set of morphisms

� W �1! �2 which are restrictions from the action of GLg.Z/ on �rt
g:

�rt
g �rt

g

�1 �2

X 7!AXAt

�
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The following two results concerning homomorphisms of cones contained in the boundary of �rt
g are

standard and possibly well known to experts. We include proofs here, however, as we are unaware of
suitable references.

Proposition 4.11 If �1; �2 2†
P
g are perfect cones contained in �rt

g n�g and � 0
1
; � 0

2
2†P

g0 are reductions
of �1 and �2 respectively, then there exists a bijection

Hom�rt
g
.�1; �2/

�
 ! Hom�rt

g0
.� 01; �

0
2/:

Proof By Lemma 4.9, we may assume �i are in the form of (5). Then if �0 2Hom�rt
g0
.� 0

1
; � 0

2
/ arises from

the action of a matrix A0 2GLg0.Z/ on �rt
g0 , then extending it by a .g�g0/� .g�g0/ identity matrix gives

a matrix A 2 GLg.Z/ that induces a cone morphism � W �1! �2.

In the other direction, suppose that � 2 Hom�rt
g
.�1; �2/ comes from the action of a matrix A 2 GLg.Z/

on�rt
g. Write Rg0 for the coordinate subspace of Rg of vectors in which the last g�g0 coordinates are zero.

Let �1 DR�0hv1v
t
1
; : : : ; vnv

t
ni. By Lemma 4.8, the vectors v1; : : : ; vn span Rg0 . Since A�1At D �2, it

follows again from Lemma 4.8 that Av1; : : : ;Avn also span Rg0 ; thus A restricts to a map A0 WRg0!Rg0 ,
with A.Zg0/� Zg0 . Similarly, A�1 restricts to .A0/�1 WRg0 !Rg0 , and .A0/�1.Zg0/� Zg0 . Therefore
A0 2 GLg0.Z/ is an invertible integer matrix, with A0� 0

1
.A0/t D � 0

2
.

Finally, a direct computation shows that these constructions are mutual inverses.

As a corollary of Proposition 4.11, the properties of being in the same GLg.Z/–orbit and being alternating
do not depend on g — that is, they are preserved by taking reductions.

Corollary 4.12 Two perfect cones �1; �2 � �
rt
g n�g are in the same GLg.Z/–orbit if and only if

there exists a g0 < g and reductions � 0
1
; � 0

2
2 †P

g0 that are in the same GLg0.Z/–orbit. A perfect cone
� ��rt

g n�g is alternating if and only if there exists a reduction � 0 2†P
g0 which is alternating.

Proof Two perfect cones �1 and �2 are in the same orbit if and only if Hom�rt
g
.�1; �2/ is nonempty. Then

the claim follows from Proposition 4.11, since Hom�rt
g
.�1; �2/ is nonempty if and only if Hom�rt

g0
.� 0

1
; � 0

2
/

is nonempty. Similarly, the proof of Proposition 4.11, applied to � D �1 D �2, shows that � has an
orientation-reversing automorphism if and only if its reduction � 0 does.

Corollary 4.12 allows us to naturally identify the set of GLg.Z/–orbits of alternating perfect cones in
�rt

g n�g with the set of GLg�1.Z/–orbits of alternating perfect cones in �rt
g�1

. Thus, we have the
following theorem.

Theorem 4.13 We have a short exact sequence of chain complexes

0! P .g�1/
�

! P .g/
�

�
�! V .g/

�
! 0:

Proof By construction, the kernel of � W P .g/
n ! V

.g/
n is generated by those basis vectors e� where

� 2 �
.g/
n n�

.g/
n . (Recall that �.g/n denotes a set of representatives of alternating GLg.Z/–orbits of cones
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in †P
g , and �.g/n denotes the subset of those that meet �g.) By Corollary 4.12, such cones are in bijection

with elements of �.g�1/
n . The differentials on P .g/

�
and P .g�1/

�
are defined in the same fashion, so the

result follows.

Theorem 4.13 reflects the stratification of LA
trop
g by the spaces L�g0=GLg0.Z/ for g0 D 1; : : : ;g, which

are rational classifying spaces for GLg0.Z/; this is the underlying geometric reason that it is possible to
relate the cohomology of Ag to that of GLg0.Z/, as we do here. This possible relationship was suggested
in the more general setting of arithmetic quotients of Hermitian symmetric domains in [40, Section 2.4].

5 The inflation complex and the coloop complex

In this section, we define a subcomplex of P .g/
�

, called the inflation complex I .g/
�

. We shall show in
Theorem 5.15 that I .g/

�
is acyclic. This acyclicity result implies a vanishing result for Hk.P

.g/
�
/ in low

degrees, obtained in Corollary 5.16, and it is invoked in the computations in the next section for gD 6 and
g D 7. In Section 5.2, we define an analogous subcomplex, the coloop complex, of the regular matroid
complex, and prove an analogous acyclicity result. The acyclicity of the coloop complex will not be used
in this paper, but should likely be useful for future study of the regular matroid complex.

5.1 The inflation complex

Definition 5.1 (i) Let S � Zg be a finite set. Say v 2 S is a Zg–coloop of S if v is part of a
Z–basis v;w2; : : : ; wg for Zg such that any w 2 S n fvg is in the Z–linear span of w2; : : : ; wg.
Equivalently, v is a Zg–coloop if, up to the action of GLg.Z/, we may write v D .0; : : : ; 0; 1/ and
w D .�; : : : ;�; 0/ for all w 2 S n fvg.

(ii) Now let � D �ŒQ� be a perfect cone in †P
g. Recall that the set M.Q/ of minimal vectors has the

property that v 2M.Q/ if and only if �v 2M.Q/; let M 0.Q/D fv1; : : : ; vng be a choice of one
of fv;�vg for each v 2M.Q/. So

� DR�0hv1v
t
1; : : : ; vnv

t
ni:

We say v 2M 0.Q/ is a coloop of � if v is a Zg–coloop in M 0.Q/.

Remark 5.2 The definition of a Zg–coloop is inspired by the notion of a coloop of a matroid (ie an
element not belonging to any circuit). Indeed, if S � Zg is any finite set and v 2 S , then v being a
Zg–coloop of S implies that v is a coloop of S , considered as vectors in Rg. The converse does not hold:
for example, let .v1; v2/D ..0; 1/; .3; 2//. Then v1 and v2 are coloops of the matroid M.v1; v2/ over R,
but neither is a Z2–coloop.

On the other hand, we prove in Lemma 5.22 that if M is a regular matroid, then M has a coloop if and
only if a totally unimodular matrix A representing M has column vectors with a Zg–coloop, if and only
if �.M / has a coloop in the sense of Definition 5.1(ii).
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Example 5.3 Consider the quadratic form defined by the positive definite matrix

QD

0@2 1
2

1
1
2

1 1
2

1 1
2

1

1A :
The minimum of Q on Z3�f0g is 1 and

M.Q/D f.0;˙1; 0/; .0; 0;˙1/;˙.1; 0;�1/;˙.0; 1;�1/g �R3:

The corresponding perfect cone �ŒQ� has a coloop, in particular, letting

AD

0@ 0 �1 0

0 �1 1

�1 0 1

1A
we see that

A

0@2 1
2

1
1
2

1 1
2

1 1
2

1

1AAt
D

0@1 1
2

0
1
2

1 0

0 0 1

1A
and so M.AQAt / is f.˙1; 0; 0/; .0;˙1; 0/, ˙.1; 1; 0/; .0; 0;˙1/g.

The cone �ŒQ� can also be realized as the matroidal cone �ŒM.G/� where G is the following graph:

The coloop corresponds to the bridge edge of G.

Lemma 5.4 Let S D fv1; : : : ; vng � Zg and suppose that v1 ¤ v2 are both Zg–coloops for S . Then
there is a Z–basis v1; v2; w3; : : : ; wg for Zg such that

v3; : : : ; vn 2 Zhw3; : : : ; wgi:

Proof By restricting to Rhv1; : : : ; vni, we may assume that Rhv1; : : : ; vni DRg. Now the fact that both
v1 and v2, being coloops, are in every basis for Rg chosen from fv1; : : : ; vng, implies that v3; : : : ; vn span
a .g�2/–dimensional subspace V of Rg. Let w3; : : : ; wg be a Z–basis for V \Zg. We need only verify
that v1; v2; w3; : : : ; wg form a Z–basis for Zg. Let x 2 Zg. Since v1; v2; w3; : : : ; wg form a Q–basis,
we have

x D a1v1C a2v2C a3w3C � � �C agwg for some ai 2Q;

and it suffices to show that ai 2 Z for all i D 1; 2; 3; : : : ;g. First, we show a1 2 Z. Since v1 is a Zg–
coloop, after a change of Z–basis, we may assume that v1 D .0; : : : ; 0; 1/ and that v2; : : : ; vn have last
coordinate zero. Since w3; : : : ; wg 2 spanRhv3; : : : ; vni, each wi also has last coordinate zero. Therefore
a1 2Z. By a similar argument, a2 2Z. Then a3w3C� � �Cagwg 2 V \Zg for ai 2Q. But w3; : : : ; wg

is a Z–basis for V \Zg. Therefore it must be that a3; : : : ; ag 2 Z, as desired.
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Corollary 5.5 Let S � Zg�1 be a finite set , and identify Zg�1 with its image in Zg under w 7! .w; 0/.
Then v is a coloop of S if and only if v is a coloop of S [fegg � Zg.

Proof The forward direction is direct from the definitions. For the backward direction, suppose v is a
coloop of S [fegg. Then both v and eg are coloops, so by Lemma 5.4, up to the action of GLg.Z/, we
may assume that v D eg�1 and w D .�; : : : ;�; 0; 0/ for all w 2 S n fvg. Therefore v was a coloop of
S � Zg�1.

Corollary 5.6 A cone with two or more coloops is not alternating. That is , if � D �ŒQ�, where
v ¤ v0 2M 0.Q/ are two distinct coloops , then � is not alternating.

Proof The cone � has an orientation-reversing automorphism induced by an element of GLg.Z/ swapping
the two coloops.

We now describe two operations on cones, inflation and deflation, which add or remove coloops, respec-
tively. Inflation is described in [22, Section 6.1], and can be performed for any cone, but we shall consider
it for the cones in the set †P

g;ncoŒn� defined below.

Recall that †P
gŒn� denotes the set of .nC1/–dimensional perfect cones, and †P

gŒn�=GLg.Z/ denotes the
collection of GLg.Z/–orbits of .nC1/–dimensional perfect cones.

Definition 5.7 We define two subsets of †P
gŒn� as follows:

†P
g;ncoŒn� WD f� 2†

P
gŒn� W rank.�/� g� 1 and � has no coloopg;

†P
g;coŒn� WD f� 2†

P
gŒn� W � has exactly one coloopg:

We then define †P
g;ncoŒn�=GLg.Z/ and †P

g;coŒn�=GLg.Z/ to be the collection of GLg.Z/–orbits of the
respective sets.

We now define inflation and deflation as operations on †P
g;ncoŒn�=GLg.Z/ and †P

g;coŒn�=GLg.Z/, and we
show these operations are well defined in Lemma 5.12.

Definition 5.8 Inflation is the map

ifl W†P
g;ncoŒn�=GLg.Z/!†P

g;coŒnC 1�=GLg.Z/

defined as follows. Given an element of †P
g;ncoŒn�=GLg.Z/, choose a representative

� DR�0hw1w
t
1; : : : ; wkw

t
ki

so that the gth entry of each wi is zero; see Lemma 4.9. Let

z� DR�0hw1w
t
1; : : : ; wkw

t
k ; eget

gi:

Then set ifl.Œ� �/D Œz��.
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Remark 5.9 We check that inflation is well defined in Lemma 5.12. However, we pause to point out
that z� is indeed a perfect cone, as noted in [22, Section 6.1]: if Q 2�g�1 is a positive definite quadratic
form such that �ŒQ�DR�0h zw1 zw

t
1
; : : : ; zwk zw

t
k
i, where zwi denotes the truncation of wi by the last entry,

then the inflation of � is the cone associated to the quadratic form

zQD

�
Q 0

0 m.Q/

�
;

where m.Q/ is the minimum value of Q on Zg�1 n f0g. Moreover, z� has exactly one coloop by
Corollary 5.5 and the fact that � had no coloops.

Example 5.10 Continuing Example 5.3, we see that if Q0 is the positive definite quadratic form

Q0 D

0@1 1
2

1
2

1
2

1 1
2

1
2

1
2

2

1A ;
then M.Q0/ D f˙.1; 0; 0/;˙.0; 1; 0/;˙.1;�1; 0/g. Thus, the cone �ŒQ� is the inflation of �ŒQ0�. We
may describe the cone �ŒQ0� as

�ŒQ0�D

��
Q00 0

0 0

� ˇ̌̌
Q00 2 �

��
1 1

2
1
2

1

���
;

from which we see that �ŒQ0� does not meet �3, but its inflation �ŒQ� does. In general, the inflation of a
perfect cone corresponding to a quadratic form of rank r will itself be a perfect cone corresponding to a
quadratic form of rank r C 1.

Definition 5.11 We define the deflation operation as a map

dfl W†P
g;coŒnC 1�=GLg.Z/!†P

g;ncoŒn�=GLg.Z/

given as follows. Given an element of †P
g;coŒnC 1�=GLg.Z/, pick a GLg.Z/–representative

z� DR�0hw1w
t
1; : : : ; wkw

t
k ; eget

gi;

where each wi is zero in the last coordinate. Let � DR�0hw1w
t
1
; : : : ; wkw

t
k
i. It is routine to check that

� really is a perfect cone, and moreover, it has no coloops by Corollary 5.5. Then we set dfl.Œz��/D Œ� �.
We now show that inflation and deflation are well defined.

Lemma 5.12 For each n 2N, inflation is a well-defined operation on †P
g;ncoŒn�=GLg.Z/, and deflation

is a well-defined operation on †P
g;coŒnC 1�=GLg.Z/. Furthermore , these operations are inverses of each

other.

Proof We start with inflation. Given Œ� � 2 †P
g;ncoŒn�=GLg.Z/, let �1 D R�0hv1v

t
1
; : : : ; vkv

t
k
i and

�2 D R�0hw1w
t
1
; : : : ; wkw

t
k
i be two GLg.Z/–representatives of Œ� � such that the gth entry of each
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of the vi ; wj is zero. By Proposition 4.11, there exist reductions � 0
1

of �1 and � 0
2

of �2 as well as an
A 2 GLg�1.Z/ sending � 0

1
to � 0

2
in �rt

g�1
. Then

A0 D

�
A 0

0 1

�
yields an equivalence between the two inflations.

Now let Œ� � 2†P
g;coŒnC 1�=GLg.Z/. Let

�1 DR�0hv1v
t
1; : : : ; vkv

t
k ; eget

gi; �2 DR�0hw1w
t
1; : : : ; wkw

t
k ; eget

gi

be two GLg.Z/ representatives of Œ� � such that the vi ; wj have gth coordinate zero. Then by the proof of
Proposition 4.11, there exists an A 2 GLg.Z/ such that

Avi D˙wi for i D 1; : : : ; k;

Aeg D˙eg;

possibly after reordering the vi . Indeed, A must take the coloop˙eg to˙eg. Then A gives an equivalence
between the deflations R�0hv1v

t
1
; : : : ; vkv

t
k
i �R�0hw1w

t
1
; : : : ; wkw

t
k
i.

We now have that inflation and deflation are well defined, and it is clear from the definitions that these
two operations are inverses.

Lemma 5.13 Let � DR�0hv1v
t
1
; : : : ; vkv

t
k
i be a perfect cone in †P

g of rank < g with no coloop. Then
Œ� � is alternating if and only if ifl.Œ� �/ is alternating.

Proof We may assume that v1; : : : ; vn have last coordinate 0, so that, letting

z� DR�0hv1v
t
1; : : : ; vkv

t
k ; eget

gi;

we have ifl.�/D z� . We claim there is a natural bijection

(6) Aut.�/ ! Aut.z�/;

where Aut.�/ D Hom�rt
g
.�; �/ (see Definition 4.10) and similarly for Aut.z�/. Moreover, we claim

that (6) takes orientation-preserving/reversing automorphisms of � to orientation-preserving/reversing
automorphisms of z� , respectively.

Given � 2 Aut.�/ arising from a matrix A 2 GLg�1.Z/, the matrix

zAD

�
A 0

0 1

�
yields an automorphism z� of z� . The linear span of z� is the sum of the linear span of � and that of eget

g.
Moreover, z� fixes the ray eget

g of z� and acts on the linear span of � according to A; in particular, z� is
orientation-preserving if and only if � was.
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Next, suppose zA 2 GLg.Z/ induces z� 2 Aut.z�/. Recall that eg is the only coloop of z� , by Corollary 5.5.
Therefore Aeg D˙eg, and hence A induces an automorphism of � . Finally, it is routine to check that
the maps constructed between Aut.�/ and Aut.z�/ are two-sided inverses.

Definition 5.14 Let I .g/
�

be the subcomplex of P .g/
�

which is generated in degree n by cones � 2 �n of
rank � g� 1 and cones of rank g with a coloop.

Theorem 5.15 The chain complex I .g/
�

is acyclic.

Proof By Lemmas 5.12 and 5.13 there is a matching of cones generating I .g/
�

, given by

� !

�
ifl.�/ if � has no coloop;
dfl.�/ if � has a coloop:

Here, we have abused notation slightly, since ifl is an operation on orbits rather than orbit representatives.
Thus, when we write ifl.�/D � 0 for � 2 �n, we mean that � 0 is the unique orbit representative in �nC1

such that ifl.Œ� �/D Œ� 0�. Similarly for deflation.

Now let � be a generator in I .g/
�

of maximal degree; then � must have a coloop v. We claim that
� 0 D dfl.�/ is not a facet of any other generator � ¤ � of I .g/

�
. Indeed, suppose that

� DR�0hv1v
t
1; : : : ; vkv

t
ki

is a generator of I .g/
�

containing � 0 as a facet. If � had a coloop, say vn, then since � 0 has no coloop,
� 0 must not contain the ray vnv

t
n. But

R�0hv1v
t
1; : : : ; vk�1v

t
k�1i

is already a facet of � , so it must be � 0 D dfl.�/D dfl.�/, implying � D � . So � has no coloop. But then
ifl.�/ is a generator of I .g/

�
and it would have higher rank than � .

Thus, the complex I .g/
�

0
spanned by all cones except � and dfl.�/ is a subcomplex. Then we have a short

exact sequence
0! I .g/

�

0
! I .g/

�
! I .g/

�
=I .g/
�

0
! 0;

where I .g/
�
=I .g/
�

0
is isomorphic to 0! � ! dfl.œ/! 0. Hence I .g/

�

0
! I .g/

�
is a quasi-isomorphism.

Repeating this, we deduce inductively that I is quasi-isomorphic to 0.

As a corollary of Theorem 5.15, we are able to prove the following vanishing result for the cohomology
of P .g/

�
in low degrees.

Corollary 5.16 If k � g� 2, then Hk.P
.g/
�
/D 0.

Proof Since the inflation complex I .g/
�

is acyclic by Theorem 5.15, it is enough to show that I
.g/

k
DP

.g/

k

for all k � g� 2. For this, we simply need the well-known fact that the rank of a perfect cone is at most
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its dimension. Indeed, let � D R�0hv1v
t
1
; v2v

t
2
; : : : ; vnv

t
ni 2 †

P
g be an alternating cone of dimension

kC 1. If Q 2 � then
QD �1vi1

vt
i1
C�2vi2

vt
i2
C � � �C�kC1vikC1

vt
ikC1

for some fi1; : : : ; ikC1g � f1; : : : ; ng and some �i 2R�0. In particular, since vjvt
j is a rank-one quadratic

form, this implies that the rank of Q is at most kC1. Thus, if kC1� g�1, then rank.�/ < g, implying
that the orbit of � represents an element of I

.g/

k
.

Remark 5.17 The inflation operation is, of course, a special case of taking the block sum of two perfect
cones. In this way one obtains a product map on chain complexes P .g1/ ˝ P .g2/ ! P .g1Cg2/, and
a corresponding product on homology. This is reminiscent of the result of [25] describing the stable
cohomology of the matroidal partial compactifications Amatr

g via 1–sums of irreducible regular matroids.
Perhaps if one had nonvanishing statements for the latter product, then the cohomology classes detected
in this paper could be used to construct infinite families of top-weight classes in Ag.

Remark 5.18 The proof of Corollary 5.16 shows that any cone of dimension less than or equal to g� 1

does not intersect �g. This implies that Hk.V
.g/
�
/D 0 for all k � g� 2.

Remark 5.19 The virtual cohomological dimension of Ag is

vcd.Ag/D vcd.Sp.2g;Z//D g2

by [7]; see [15]. In particular,

GrW
g2Cg

H i.AgIQ/D 0 for all i > g2;

which is equivalent, setting i D 2 dim.Ag/� j � 1D g2Cg� j � 1, to

Hj .P
.g//D 0 for all j < g� 1:

Corollary 5.16 thus reproves, in a completely different way, the vanishing in top weight of rational
cohomology of Ag in degree above the virtual cohomological dimension.

5.2 The regular matroid complex and inflation

In this section, we introduce two combinatorially defined subcomplexes R.g/
�

and C .g/
�

of P .g/
�

, coming
from regular matroids and regular matroids with coloops, respectively. These are not used further in
this paper. Nevertheless, the matroidal cones in †P

g have geometric significance: Alexeev and Brunyate,
in proving the existence of a compactified Torelli map Mg ! A perf

g , conjectured an open locus on
which A perf

g and AVor
g are isomorphic and on which the two Torelli maps Mg!A perf

g and Mg!AVor
g

agree [2]. The fourth author and Viviani [37] verified their conjecture, showing that the matroidal partial
compactification Amatr

g , whose strata correspond to cones arising from regular matroids, is the largest such
open subset. For possible future use in studying R.g/, we establish in this section that the complex C .g/

�
,

which is a matroid analogue of I .g/
�

, is acyclic.
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Given a cone � 2†P
gŒn�, we say that � is a matroidal cone if and only if there exists a simple, regular

matroid M of rank at most g such that Œ� �D �.M /, where �.M / is as described in Construction 2.12.
Matroidal cones are simplicial. Since the faces of a matroidal cone are themselves matroidal cones, the set
of representatives of alternating cones arising from simple, regular matroids forms a subcomplex of P .g/.

Definition 5.20 The regular matroid complex R.g/
�

is the subcomplex of P .g/
�

generated in degree n by
cones � 2 �n such that � is a matroidal cone.

Remark 5.21 When g D 2 and g D 3, the complexes R.g/
�

and P .g/
�

are in fact equal. It would be
interesting to understand in general how much larger P .g/

�
is compared to R.g/

�
.

Recall that an element e of a matroid M is a coloop if it does not belong to any of the circuits of M ;
equivalently, e is a coloop if it belongs to every base of M. When M is a regular matroid, this is
equivalent to the existence of a totally unimodular matrix AD Œv1; v2; : : : ; vn� representing M such that
vi D .�;�; : : : ;�; 0/ for i D 1; 2; : : : ; n�1 and eD vnD .0; 0; : : : ; 0; 1/. It is worth establishing that the
notions of a matroid coloop and a Zg–coloop agree for matroidal cones, as we show in the next lemma.

Lemma 5.22 Let M be a simple , regular matroid of rank � g. The cone �.M / has a Zg–coloop if and
only if the matroid M has a coloop.

Proof Suppose that �.M / has a Zg–coloop. By definition, there exists a quadratic form Q 2�g such
that Œ�.Q/�D �.M / and M 0.Q/D fv1; v2; : : : ; vng where vi D .�;�; : : : ;�; 0/ for i D 1; : : : ; n�1 and
vn D .0; 0; : : : ; 0; 1/. Then by the construction of �.M /, the matrix A D Œv1; v2; : : : ; vn� is a totally
unimodular matrix representing M over R. Therefore vn is a coloop of the matroid M.

For the other direction, suppose that the regular matroid M on the ground set f1; : : : ; ng is represented by
a full-rank totally unimodular g0 � n matrix AD Œv1; v2; : : : ; vn� for some g0 � g, and that n is a coloop
of M. Then n is in every base of M, so vn is in every full-rank g0 �g0 submatrix of A. Reorder so that
the rightmost g0 �g0 submatrix is full rank; call it B. Then B 2 GLg0.Z/ by total unimodularity of A.
Consider the matrix B�1A, which still represents M. The rightmost g0 �g0 submatrix of B�1A is the
identity. Moreover, each of the first n�g0 columns is of the form .�; : : : ;�; 0/, for otherwise it could
replace the last column in the rightmost square submatrix to form a full-rank square matrix, contradicting
that n was a coloop. This shows that vn is a Zg0–coloop of v1; : : : ; vn 2Zg0 , and after padding by zeroes,
vn is a Zg–coloop of the of v1; : : : ; vn.

Definition 5.23 The coloop complex C .g/
�

is the subcomplex of P .g/
�

generated in degree n by cones
� 2 �n such that � is a matroidal cone and either

(i) the rank of � is < g, or

(ii) the rank of � is equal to g and � has one coloop.
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By Lemma 5.22, the generators for C .g/
�

are the generators of R.g/
�

that are also generators of I .g/
�

; in
summary, we have inclusions of complexes

C .g/
�

R.g/
�

I .g/
�

P .g/
�

Similar to the inflation complex, the coloop complex is acyclic.

Theorem 5.24 The chain complex C .g/
�

is acyclic.

We omit the details of the proof of Theorem 5.24. It is closely analogous to the proof of Theorem 5.15,
the key step being the following lemma.

Lemma 5.25 There is a bijection of sets between�
alternating, regular matroids
of rank < g with 0 coloops

�
�
 !

�
alternating, regular matroids
of rank � g with 1 coloop

�
:

6 Computations on the cohomology of Ag

In this section, we compute the top-weight cohomology of Ag for 3� g � 7, proving Theorem A. When
g D 3, 4 and 5, we do this by studying the cones of †P

g arising from matroids, from which we explicitly
compute the chain complex P .g/

�
. We handle the cases when g D 6 and g D 7 by utilizing the long exact

sequence in homology arising from Theorem 4.13, as well as the fact that the inflation subcomplex I .g/
�

is acyclic; see Theorem 5.15. Additionally, we prove a vanishing result for the top-weight cohomology
of Ag for g D 8, 9 and 10 in Theorem 6.16.

6.1 The complex P
.3/
�

For g D 3, the fact that every perfect cone is matroidal allows us to compute the complex P .3/
�

directly.
Using this description of P .3/

�
, we then compute the top-weight cohomology of A3.

Proposition 6.1 The chain complex P .3/
�

is

P
.3/
5

P
.3/
4

P
.3/
3

P
.3/
2

P
.3/
1

P
.3/
0

P
.3/
�1

0 Q 0 0 0 0 Q Q 0:
�

Proof The only top-dimensional perfect cone of †P
3
=GL3.Z/ is the principal cone �prin

3
coming from the

complete graph K4; see [44, page 151]. The principal cone �prin
3

is alternating because the automorphisms
of K4 are all alternating permutations of its edges, and every automorphism of �prin

3
arises from Aut.K4/

by Remark 2.14. Thus, we have P
.3/
5
ŠQ.
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0 1 2 2 3 3 4 5 6

e1

e2

e3

e4

e5

e1

e2

e3

e5

e4

Figure 2: Top: graphs obtained by deleting the indicated number of edges from K4, giving iso-
morphism classes of graphic matroids. Bottom: an automorphism of M ŒK4nfe6g� interchanging
e4 and e5.

The automorphisms on the codimension i faces of �prin
3

arise from matroids of graphs obtained from K4

by deleting i edges; see Figure 2, top. For i D 1; : : : ; 4, each of the matroids associated to graphs with
i edges removed from K4 has an automorphism given by an odd permutation of the edges; see Figure 2,
bottom, for an example. So we have P

.3/
j D 0 for 1� j � 4. The single ray and vertex of †P

3
=GL3.Z/

are alternating, so P
.3/
j ŠQ for j D 0 and j D�1.

Theorem 6.2 The top-weight cohomology of A3 is

GrW
12 H i.A3IQ/D

�
Q if i D 6;

0 else.

Proof The top-weight cohomology of A3 is the homology of P .3/
�

by Theorem 3.1.

Remark 6.3 Theorem 6.2 agrees with the work of Hain [27], who computes the full cohomology ring
of A3. Hain deduces in particular H 6.A3IQ/DE where E is a mixed Hodge structure that is an extension
0!Q.�3/!E!Q.�6/! 0, where Q.n/ denotes the Tate Hodge structure of dimension one and
weight �2n.

Example 6.4 While we do not need it here, we note that using the fact that all of the perfect cones in †P
3

arise from graphic matroids, one can check that the inflation complex I .3/
�

is

I
.3/
5

I
.3/
4

I
.3/
3

I
.3/
2

I
.3/
1

I
.3/
0

I
.3/
�1

0 0 0 0 0 0 Q Q 0:
�

6.2 The complex P
.4/
�

In this section, we explicitly compute the complex P .4/
�

by using the matroidal description of the principal
cone given in Section 2.5 together with the description of a similar complex for SLg.Z/–alternating cones
described in [36]. We then use P .4/

�
to compute the top-weight cohomology of A4.
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i Ci SL4.Z/–alternating cones of dim iC1 GL4.Z/–alternating?

4 Q �. / no

5 Q �. / no

6 Q �. / yes

8 Q �. / no

9 Q2 �
prin
4

, �.D4/ no

Table 1: SL4.Z/–alternating cones of †P
4
=SL4.Z/.

Proposition 6.5 The chain complex P .4/
�

is

P
.4/
9

P
.4/
8

P
.4/
7

P
.4/
6

P
.4/
5

P
.4/
4

P
.4/
3

P
.4/
2

P
.4/
1

P
.4/
0

P
.4/
�1

0 0 0 Q Q 0 0 0 0 Q Q 0
� �

Proof By Theorem 4.13, we have, in any degree `, that dim P
.4/

`
D dim P

.3/

`
C dim V

.4/

`
. We have

already computed P .3/
�

, so we now compute V .4/
�

. In [36], the authors compute a complex C� which is
generated in degree i by the .iC1/–dimensional SL4.Z/–alternating perfect cones meeting �g up to
SL4.Z/–equivalence. Their results [36, Proposition 3.1] are summarized in the first three columns of
Table 1. The cone �.D4/ is the cone corresponding to the quadratic form

D4 D

26664
1 0 1

2
1
2

0 1 1
2

1
2

1
2

1
2

1 1
2

1
2

1
2

1
2

1

37775 :
For i 62 f4; 5; 6; 8; 9g, they show that Ci D 0.

We now compute the Voronoi complex V .4/
�

. As far as we know, this computation—for GL4.Z/,
as opposed to SL4.Z/—constitutes a small gap in the literature, which we fill here. To obtain the
complex V .4/

�
, we must pass from SL4.Z/ to GL4.Z/. In doing so, two things may happen. First, two

SL4.Z/–inequivalent cones may be GL4.Z/–equivalent. This does not occur by the corollary following
[36, Lemma 4.4]: the GL4.Z/–orbits of cones in †P

4
are equal to the SL4.Z/–orbits. Second, a cone

which is SL4.Z/–alternating may no longer be GL4.Z/–alternating. We now check whether this occurs
for the cones in Table 1.

In degree 9, neither cone is alternating since transposition matrices stabilize these cones but reverse
orientation, as is observed in [36, page 107]. In degrees 4, 5, and 8 the graphic matroids giving rise to
each of the cones in Table 1 have an automorphism coming from an odd permutation of the ground set
elements, so these cones are not alternating. Therefore V

.4/
9
D V

.4/
8
D V

.4/
5
D V

.4/
4
D 0. In degree 6,

the cone �. / is alternating because any automorphism of M. DK4[feg/ fixes e and �.K4/ is
alternating, so V

.4/
6
DQ.
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We now explain the nonzero morphisms. Since V .4/
�

is 0 in degree less than 2, the map P
.4/
0
! P

.4/
�1

is
an isomorphism. We now compute the map P

.4/
6
! P

.4/
5

. We have that P
.4/
6

is generated by one cone
�. DK4[feg/. Its faces are the cones obtained from K4[feg by deleting one edge. Only deleting
the edge e yields a graph which gives an alternating perfect cone, and this cone generates P

.4/
5

. So, this
map is an isomorphism.

Theorem 6.6 The top-weight cohomology GrW
20 H i.A4IQ/ of A4 is 0 for all i .

Proof The top-weight cohomology of A4 is given by the homology of the chain complex P .4/
�

by
Theorem 3.1. This chain complex has no homology.

In fact, our explicit description of P .4/
�

shows that P .4/
�
D I .4/

�
, since every nonzero generator is either of

rank < 4 or has a coloop. The acyclicity of P .4/ is then consistent with Theorem 5.15.

Remark 6.7 Theorem 6.6 can be deduced from the results in [31]. In particular, the weight 0 compactly
supported cohomology of A4 is encoded in the last two columns of [31, Table 1], which describes the first
page of a spectral sequence converging to the cohomology of the second Voronoi compactification AVor

4

of A4. Here, these two columns contain the compactly supported cohomology of two strata of AVor
4

whose union is exactly A4: the fifth column corresponds to the Torelli locus, while the sixth column
corresponds to its complement in A4. By Poincaré duality (10), as described in Section 7, if A4 had
top-weight cohomology it would also have compactly supported cohomology in weight 0. However, even
though there are some undetermined entries in the sixth column of the aforementioned table, a close look
at the table shows that the weight 0 part must vanish. Indeed, there are no weight 0 classes in the table
northwest of the undetermined entries, so any weight 0 classes in the sixth column would persist in the
E1 page of the spectral sequence and yield weight 0 classes of AVor

4
. But this is impossible as AVor

4
is a

smooth compactification of A4.

6.3 The complex P
.5/
�

By using the short exact sequence given in Theorem 4.13, we now compute the complex P .5/
�

. From this
we compute the top-weight cohomology of A5.

Proposition 6.8 The chain complex P .5/
�

is

P
.5/
14

P
.5/
13

P
.5/
12

P
.5/
11

P
.5/
10

P
.5/
9

P
.5/
8

P
.5/
7

0 Q3 Q2 0 Q Q6 Q7 Q 0
@14 @11 @10 @9

P
.5/
6

P
.5/
5

P
.5/
4

P
.5/
3

P
.5/
2

P
.5/
1

P
.5/
0

P
.5/
�1

Q Q 0 0 0 0 Q Q 0:
� �
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Proof By Theorem 4.13, we have in any degree ` that dim P
.5/

`
D dim P

.4/

`
Cdim V

.5/

`
. We have already

computed P .4/
�

, so we now study V .5/
�

, which was computed in [22]. Recall from Section 4.1 that �n

denotes the set of representatives of alternating perfect cones of dimension nC 1. In [22, Table 1], the
cardinality of �n, is given by

n 4 5 6 7 8 9 10 11 12 13 14

j�nj 0 0 0 0 1 7 6 1 0 2 3

In [22, Section 6.2], there is an explicit description of the differential maps.

Since V .5/
�

is supported in degrees > 7, while P .4/
�

is supported in degrees < 7, the differential maps
P
.5/
j ! P

.5/
j�1

for j < 7 are inherited from P .4/
�

, and likewise the differential maps P
.5/
j ! P

.5/
j�1

for
j > 7 are inherited from V .5/

�
.

Theorem 6.9 The top-weight cohomology of A5 is

GrW
30 H i.A5IQ/D

�
Q if i D 15 or 20;

0 else.

Proof By Proposition 6.8 and [22, Theorem 4.3] we have that H9.P
.5/
�
/ D Q and H14.P

.5/
�
/ D Q.

Then by Theorem 3.1, we obtain the desired result.

Remark 6.10 Grushevsky asks if Ag ever has nonzero odd cohomology [24, Open Problem 7].
Theorem 6.9 confirms that A5 does in degree 15. Furthermore, we will see in Theorem 6.12 that
Grushevsky’s question is also answered affirmatively for A7, where

dim GrW
56 H 33.A7IQ/D dim GrW

56 H 37.A7IQ/D 1:

6.4 The top-weight cohomology of A6 and A7

Elbaz-Vincent, Gangl and Soulé in [22, Theorem 4.3]2 computed the homology of the Voronoi com-
plex V .g/

�
for g D 5, 6 and 7. Combining this, together with Proposition 6.8, we are able to compute the

top-weight cohomology of A6 and A7.

Theorem 6.11 The top-weight cohomology of A6 is

GrW
42 H i.A6IQ/D

�
Q if i D 30;

0 else.

Proof By Proposition 4.4, we need to show that H11.P
.6/
�
/ŠQ and Hi.P

.6/
�
/D 0 for i ¤ 11. Consider

the long exact sequence in homology arising from the short exact sequence of chain complexes given in

2Elbaz-Vincent, Gangl and Soulé define the Voronoi complex as a complex of free Z–modules, and in [22, Theorem 4.3] they
compute the integral homology of this complex. Our definition of the Voronoi complex V

.g/
� is a complex of Q–vector spaces,

but this causes no problems as we are only interested in the rational homology of V
.g/
� .
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i Hi.P
.5/
� / Hi.P

.6/
� / Hi.V

.6/
� /

� 16 0 0 0
15 0 0 Q
14 Q 0 0
13 0 0 0
12 0 0 0
11 0 Q Q
10 0 0 Q

9 Q 0 0
� 8 0 0 0

Table 2: The long exact sequence in homology for g D 6.

Theorem 4.13. Combining this with the computation of the homology of V .6/
�

[22, Theorem 4.3] and the
homology of P .5/

�
given in Proposition 6.8, our computation of Hk.P

.6/
�
/ reduces to the four cases in

Table 2.

� Case 1 .i � 8; i D 12; 13; i � 16/ For these values of i , both Hi.P
.5/
�
/ and Hi.V

.6/
�
/ are equal to

zero, so Hi.P
.6/
�
/D 0.

� Case 2 .i D 14; 15/ The long exact sequence in homology gives the exact sequence

0!H15.P
.6/
�
/!Q

ı6
15
��!Q!H14.P

.6/
�
/! 0:

Exactness implies that the connecting homomorphism ı6
15

is either an isomorphism or the zero map. By [22,
Theorem 6.1] we know that inflating the cones in V .5/

�
gives an isomorphism of chain complexes V .6/

�
Š

V .5/
�
Œ1�˚F� for some complex F�. Combining this with [22, Theorem 4.3] shows the nontrivial homology

class in H15.V
.6/
�
/ is the inflation of a nontrivial homology class in H14.V

.5/
�
/. By Proposition 6.8, the

nontrivial homology class in H14.P
.5/
�
/ is the nontrivial homology class in H14.V

.5/
�
/, so H15.V

.6/
�
/

is generated by the inflation of the nontrivial class H14.P
.5/
�
/. By the proof of the acyclicity of the

inflation complex I .g/
�

(Theorem 5.15), this implies the connecting map ı6
15

is an isomorphism. The exact
sequence above then implies that Hk.P

.6/
�
/D 0 for both k D 14 and k D 15.

� Case 3 .i D 11/ H11.P
.5/
�
/ and H10.P

.5/
�
/ vanish, so the long exact sequence in homology gives

0!H11.P
.6/
�
/!Q! 0:

This exactness implies that H11.P
.6/
�
/ is isomorphic to Q.

� Case 4 .i D 9; 10/ By considering the long exact sequence in homology in the range i D 10 to i D 9

we have the exact sequence

0!H10.P
.6/
�
/!Q

ı6
10
��!Q!H9.P

.6/
�
/! 0:

An analysis similar to that in Case 2 shows that connecting map ı6
11

is an isomorphism, implying by
exactness that Hi.P

.6/
�
/D 0 for both i D 9 and i D 10.
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i Hi.P
.6/
� / Hi.P

.7/
� / Hi.V

.7/
� /

� 28 0 0 0
27 0 Q Q
26 0 0 0
25 0 0 0
24 0 0 0
23 0 0 0
22 0 Q Q
21 0 0 0
20 0 0 0
19 0 0 0
18 0 Q Q
17 0 0 0
16 0 0 0
15 0 0 0
14 0 0 0
13 0 Q Q
12 0 0 Q
11 Q 0 0
10 0 0 0

9 0 0 0
� 8 0 0 0

Table 3: The long exact sequence in homology for g D 7.

We now compute the top-weight rational cohomology of A7.

Theorem 6.12 The top-weight cohomology of A7 is

GrW
56 H i.A7IQ/D

�
Q if i D 28; 33; 37; 42;

0 else.

Proof We compute the homology of P .7/
�

in a similar fashion to the proof of Theorem 6.11, by considering
the long exact sequence in homology arising from the short exact sequence of chain complexes given
in Theorem 4.13. Table 3 records the homology of P .6/

�
and V .7/

�
, which are given in Table 2 and

[22, Theorem 4.3], respectively.

Both Case 1 .i ¤ 11; 12; 13; 18; 22; 27/ and Case 2 .i D 13; 18; 22; 27/ follow from the exactness of the
long exact sequence on homology in a manner analogous to Cases 1 and 3 in the proof of Theorem 6.11.

For Case 3 .i D 11; 12/, the long exact sequence in homology gives the exact sequence

0!H12.P
.7/
�
/!Q

ı7
12
��!Q!H11.P

.7/
�
/! 0:

Now ı7
12

is either an isomorphism or it is the zero map. As discussed in [22, Section 6.3], the nontrivial
homology class in H12.V

.7/
�
/ is the inflation of a nontrivial homology class in H11.V

.6/
�
/. However, since
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by the proof of Theorem 6.11, the nontrivial homology class in H11.P
.6/
�
/ is the nontrivial homology

class in H11.V
.6/
�
/, this implies that H12.V

.7/
�
/ is generated by the inflation of the nontrivial class

H11.P
.6/
�
/. By the proof of the acyclicity of the inflation complex I .g/ (Theorem 6.11), this implies the

connecting map ı7
12

is an isomorphism. The exact sequence above then implies Hk.P
.7/
�
/D 0 for i D 11

and i D 12.

Theorem A now follows directly from Theorems 6.6, 6.9, 6.11 and 6.12. As a corollary of this we are
able to deduce the top-weight Euler characteristic of Ag for 2� g � 7.

Corollary 6.13 The top-weight Euler characteristic of Ag for 2� g � 7 is

�top.Ag/D

�
1 if g D 3; 6

0 if g D 2; 4; 5; 7:

Remark 6.14 One can also deduce the top-weight Euler characteristic of Ag for 5� g � 7 directly from
the numbers listed in [22, Figures 1 and 2]. It would be interesting to know whether a closed formula for
the top-weight Euler characteristic of Ag exists in general.

Remark 6.15 We have established

(7) GrW
.gC1/g H g.g�1/.AgIQ/¤ 0

for gD 3; 5; 6 and 7 (gD 3 also follows from [27]). We ask whether (7) holds for all g � 5. Equivalently,
the question is whether H2g�1.P

.g// ¤ 0 for all g � 5. The connection to the stable cohomology of
the Satake compactification, as summarized in Table 4, gives evidence for this question, as explained in
Section 7; see Question 7.1. We also note the possible relationship with the main theorems of [12] on the
rational cohomology of Mg, which use the fact that H2g�1.G

.g//¤ 0 for gD 3 and g � 5; see [9], [46]
and [12, Theorem 2.7]. We leave this interesting investigation as an open question.

6.5 Results for g � 8

While full calculations for the top-weight cohomology of Ag in the range g � 8 are beyond the scope of
current computations, we can nevertheless use our previous computation of the top-weight cohomology
of A7 together with a vanishing result of [21] to show that the top-weight cohomology of A8;A9 and A10

vanishes in a certain range slightly larger than what is given by the virtual cohomological dimension.

Theorem 6.16 The top-weight rational cohomology of A8, A9 and A10 vanishes in the ranges

(8)

GrW
72 H i.A8IQ/D 0 for i � 60;

GrW
90 H i.A9IQ/D 0 for i � 79;

GrW
110 H i.A10IQ/D 0 for i � 99:
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Proof By Theorem 4.5 of [21] for g D 8; 9 and 10 the homology Hi.V
.g/
�
/D 0 for i � 11, and further,

H12.V
.8/
�
/D 0. Considering the long exact sequence in homology

� � � !HiC1.V
.g/
�
/
ı
�!Hi.P

.g�1/
�

/!Hi.P
.g/
�
/!Hi.V

.g/
�
/! � � �

coming from the short exact sequence of chain complexes given in Theorem 4.13, we see that this
vanishing implies that

Hi.P
.7/
�
/ŠHi.P

.8/
�
/ŠHi.P

.9/
�
/ŠHi.P

.10/
�

/ for i � 10

and H11.P
.7/
�
/ŠH11.P

.8/
�
/. By our computation of the homology of P .7/

�
in the proof of Theorem 6.12

we know that Hi.P
.7/
�
/D 0 for all i � 12, implying that for gD 8; 9 and 10, the homology Hi.P

.g/
�
/D 0

for i � 10, and further, H11.P
.8/
�
/D 0. The result now follows from Proposition 4.4.

Remark 6.17 These vanishing bounds for g D 8; 9; 10 are slightly larger than the bounds provided by
Corollary 5.16, equivalently, the fact that vcdAg D g2 (see Remark 5.19), which imply that

GrW
72 H i.A8IQ/D 0 for i � 65,

GrW
90 H i.A9IQ/D 0 for i � 82,

GrW
110 H i.A10IQ/D 0 for i � 101:

The result for g D 10, however, is subsumed by the more general fact that the top-weight cohomology
of Ag vanishes in degrees 0 and 1 below the vcd, as we shall note in Section 7 below.

7 Relationship with the stable cohomology of ASat
g

Our results on the existence of certain top-weight cohomology classes of Ag can be related to results
of Chen and Looijenga [15] and Charney and Lee [14] which predict that, as g grows, there should be
infinitely many of these classes. This connection was brought to our attention by O Tommasi, and we
thank her for explaining her ideas to us in detail.

Recall that Ag admits a compactification ASat
g , called the Satake or Baily–Borel compactification, first

constructed as a projective variety by Baily and Borel in [5]. This compactification can be seen as a
minimal compactification in the sense that it admits a morphism from all toroidal compactifications of Ag.
The reader interested in learning more about the vast literature on Ag and its compactifications can look at
the very nice surveys [24; 32]. There are natural maps ASat

g !ASat
gC1

, and the groups H k.ASat
g IQ/ stabilize

for k < g; see [14]. Moreover, as Charney and Lee prove, the stable cohomology ring H �.ASat
1 IQ/ of

the Satake compactifications is freely generated by the classes �i for i odd, and the classes y4jC2 for
j D 1; 2; 3; : : : , where y4jC2 is in degree 4j C 2. Here, the �–classes extend the i th Chern class of the
Hodge bundle on Ag; in particular they are algebraic, and hence never have weight 0. But the classes
yj have weight 0, as proven recently by Chen and Looijenga [15]. This result is very important in the
discussion that follows.
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Recall also that ASat
g admits a stratification by locally closed substacks

ASat
g DAg tAg�1 t � � � tA0:

Thus the spectral sequence on compactly supported cohomology associated to this stratification is

(9) E
p;q
1
DH pCq

c .ApIQ/)H pCq.ASat
g IQ/;

where pD 0; : : : ;g. This spectral sequence may be interpreted in the category of mixed Hodge structures.
Passing to the weight 0 subspace, we see that the existence of the products of the yj classes in the stable
cohomology ring of the Satake compactification implies the existence of infinitely many cohomology
classes in GrW

0 H
j
c .AgIQ/ for all g, and hence by the perfect pairing

(10) GrW
0 H j

c .AgIQ/�GrW
.gC1/g H .gC1/g�j .AgIQ/!Q

provided by Poincaré duality, infinitely many classes GrW
.gC1/g H�.AgIQ/ in top weight.

With Poincaré duality applied, all of the known results on the top-weight cohomology of Ag, including
our Theorems 6.9, 6.11 and 6.12, can thus be summarized in Table 4, which shows the weight 0 part of
the E1 page of the spectral sequence (9).

Implicit in Table 4 is the fact that all terms below the p–axis are zero. This follows from the fact that
vcd.Ag/D vcd.Sp.2g;Z//D g2, or, just as well, from the fact that vcd.GLg.Z//D

�
g
2

�
; see [7]. In fact,

the vanishing below the p–axis as well as in the rows q D 0, 1 and 2, apart from .p; q/D .0; 0/, can be
deduced from the fact that the cohomology of GLg.Z/ with coefficients in zQ vanishes in degrees 0, 1

and 2 below the vcd. Indeed, we have, for all k,

H .g
2/�k.GLg.Z/I zQ/ŠHk.GLg.Z/ISt˝Q/ŠHkCg�1.V

.g//;

where St denotes the Steinberg module [43]; these are all zero when g > 1 for k D 0 (see [35]), k D 1

(see [17]), and kD2 (see [10]). Then Theorem 4.13 implies that also HkCg�1.P
.g//D0 for kD0; 1 and 2

so also GrW
g2Cg

H g2�k.AgIQ/D .GrW
0 H

gCk
c .AgIQ//_ D 0 for g > 0 and k � 2 by Proposition 4.4.

As explained to us by Tommasi, the classes in Theorems 6.9, 6.11 and 6.12, as well as the already-known
class in GrW

12 H 6.A3IQ/ from [27] give natural candidates for classes in GrW
0 H

pCq
c .ApIQ/ that produce

the classes y4jC2 in the spectral sequence (9), in the sense that they persist in the E1 page in the Gysin
spectral sequence for g sufficiently large. Indeed, looking at the p D q diagonal on the E1 page of the
spectral sequence in Table 4, we are led to ask:

Question 7.1 (i) Is GrW
0 H

2g
c .AgIQ/¤ 0 for g D 3 and all g � 5?

(ii) Do these cohomology classes produce the stable cohomology classes in GrW
0 H �.ASat

1 IQ/?

(iii) Is GrW
0 H k

c .AgIQ/D 0 for k < 2g?

As discussed in the introduction, an affirmative answer to the third question in the range k < 2g�1 would
be implied by [16, Conjecture 2]. Our Theorems 6.2, 6.9, 6.11 and 6.12 verify the first and third questions
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21 0 0 0 0 0 0 0 Q

20 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 Q

15 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 Q

11 0 0 0 0 0 0 0 0
10 0 0 0 0 0 Q 0 0
9 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 Q

6 0 0 0 0 0 0 Q 0
5 0 0 0 0 0 Q 0 0
4 0 0 0 0 0 0 0 0 0
3 0 0 0 Q 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 � � �

0 Q 0 0 0 0 0 0 0 0 0 0 � � �

0 1 2 3 4 5 6 7 8 9 10 � � �

Table 4: The page E
p;q
1 D GrW

0 H
pCq
c .ApIQ/) GrW

0 H pCq.ASat
g IQ/ of the Gysin spectral

sequence, for g sufficiently large. The blank entries for p � 8 are currently unknown.

for g � 7. They also verify the second question for g D 3 and for g D 5. Indeed, GrW
0 H 6

c .A3IQ/ and
GrW

0 H 10
c .A5IQ/ are the only nonzero terms in the antidiagonals pCqD 6 and pCqD 10, respectively;

so they produce the classes y6 2 GrW
0 H 6.ASat

1 IQ/ and y10 2 GrW
0 H 10.ASat

1 IQ/, respectively. It is
natural to guess that the other terms in Table 4 similarly produce products of the yj : for example, that
GrW

0 H 12
c .A6IQ/ produces y2

6
, and that GrW

0 H 14
c .A7IQ/ produces y14, and so on.

Finally, Tommasi also remarks that the odd-degree classes in weight 0 compactly supported cohomology
of Ag detected so far, namely

GrW
0 H 15

c .A5IQ/; GrW
0 H 19

c .A7IQ/ and GrW
0 H 23

c .A7IQ/;

must of course be killed by a differential on some page of the spectral sequence, since ASat
g has no

weight 0 stable cohomology in odd degrees. This implies the existence of some even-degree classes in
GrW

0 H �c .AgIQ/ which kill the odd-degree classes and which are not related by this spectral sequence to
the products of the yj . It would be very interesting to explicitly identify such classes.
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Algebraic uniqueness of Kähler–Ricci flow limits
and optimal degenerations of Fano varieties

JIYUAN HAN

CHI LI

We prove that for any Fano manifold X , the special R–test configuration that minimizes the H NA–
functional is unique and has a K–semistable Q–Fano central fiber .W; �/. Moreover there is a unique
K–polystable degeneration of .W; �/. As an application, we confirm the conjecture of Chen, Sun and
Wang about the algebraic uniqueness for Kähler–Ricci flow limits on Fano manifolds, which implies
that the Gromov–Hausdorff limit of the flow does not depend on the choice of initial Kähler metrics.
The results are achieved by studying algebraic optimal degeneration problems via new functionals for
real valuations over Q–Fano varieties, which are analogous to the minimization problem for normalized
volumes.
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1 Introduction

Let X be a smooth Fano manifold. It is now known that X admits a Kähler–Einstein metric if and
only if X is K–polystable; see Berman [5], Chen, Donaldson and Sun [25; 26; 27] and Tian [67; 68].
In this paper, we are interested in the case when X is not K–polystable. If X is strictly K–semistable,
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then X admits a unique K–polystable degeneration by Li, Wang and Xu [55]. If X is K–unstable
(ie not K–semistable), several kinds of optimal degenerations have been studied which are related to
continuity methods or geometric flows in the analytic study of canonical metrics. For example, related
to Aubin’s continuity method, there is a (not necessarily unique) special degeneration whose associated
valuation minimizes the ı invariant; see Blum, Liu and Zhou [16] and Székelyhidi [65]. There is also a
unique destabilizing geodesic ray which arises in the study of inverse Monge–Ampère flow (resp. Calabi
flow) and whose associated non-Archimedean metric minimizes an L2–normalized non-Archimedean
Ding invariant (resp. L2–normalized radial Calabi functional); see Donaldson [33], Hisamoto [42] and
Xia [77]. In this paper we are interested in optimal degenerations that arise in the study of Hamilton–Tian
conjecture about the long time behavior of Kähler–Ricci flows. The latter conjecture states that starting
from any Kähler metric ! 2 c1.X /, the normalized Kähler–Ricci converges in the Gromov–Hausdorff
sense to a Kähler–Ricci soliton on a Q–Fano variety X1. The Hamilton–Tian conjecture has been
solved (see Bamler [4], Chen and Wang [29] and Tian and Zhang [70]) and applied to give a proof of the
Yau–Tian–Donaldson conjecture in Chen, Sun and Wang [28].

It is known that X1 coincides with X if and only if there is already a Kähler–Ricci soliton on X ; see
Dervan and Székelyhidi [31] and Tian and Zhu [72]. In general, Chen, Sun and Wang [28] proved the
following phenomenon. The metric degeneration from X to X1 induces a finitely generated filtration F
on RD

L
m H 0.X;�mKX /, and there is a two-step degeneration:

(i) The filtration F as an R–test configuration (see Definition 2.8) degenerates X to a normal Fano
variety W with a torus T–action generated by a holomorphic vector field � . For simplicity, we call
this step the semistable degeneration.

(ii) There is a T–equivariant test configuration of .W; �/ to .X1; �/. We call this step the polystable
degeneration.

As explained in Chen, Sun and Wang [28], this picture is a global analogue of the picture in Donaldson
and Sun’s study [34] of metric tangent cones on Gromov–Hausdorff limits of Fano Kähler–Einstein
manifolds. In [34], Donaldson and Sun conjectured that metric tangent cones depend only on the algebraic
structure near the singularity. This conjecture has been confirmed in a series of works of the second
author with his collaborators (see Li [51], Li and Xu [58; 57] and Li, Wang and Xu [55]), which depends
on the study of the minimization problem of a normalized volume functional over the space of valuations
centered at the singularity; see Li, Liu and Xu [54] for a survey. Analogous to this conjecture on metric
tangent cones, the following conjecture was proposed in [28]:

Conjecture 1.1 The data F , W and X1 depend only on the algebraic structure of X but not on the
initial metric for the Kähler–Ricci flow.

In this paper we will confirm Conjecture 1.1. The idea and method to prove this conjecture are in some
sense parallel to the study of minimizing normalized volumes. However, the correct framework for
achieving this goal has not been established until now. So the second purpose of this paper is to study
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an analogous minimization problem in the global setting, which can be studied for all Q–Fano varieties
possibly singular, and prove various results about it.

The functional we want to minimize is called the H NA–functional of R–test configurations.1 Tian, Zhang,
Zhang and Zhu [69, Proposition 5.1] first introduced the H NA–functional for holomorphic vector fields
in their study of Kähler–Ricci flow on Fano manifolds. This invariant was generalized to any special
R–test configuration by Dervan and Székelyhidi [31], who then used the results of Chen and Wang [29],
Chen, Sun and Wang [28] and He [40] to prove that the semistable degeneration mentioned above
minimizes the H NA–functional among all special R–test configurations; see Remark 2.44. For general
test configurations, such an H NA–functional is a nonlinear version of the non-Archimedean Berman–Ding
functional, and was first explicitly used by Hisamoto in [43] to reprove Dervan and Székelyhidi’s result
using pluripotential theory. Note that in this paper, for the convenience of our argument and comparison
with the case of the ı invariant (or with the ˇ invariant, see equation (107)), we will use the negative of
the sign convention in these previous works.

Conjecture 1.1 follows from two purely algebrogeometric statements for each step of the semistable and
polystable degenerations.

Theorem 1.2 For any Q–Fano variety , the special R–test configuration that minimizes H NA is unique
and its central fiber .W; �/ is K–semistable (Definition 2.49).

Theorem 1.3 If .X; �/ is K–semistable , then there exists a unique K–polystable degeneration.

Corollary 1.4 Conjecture 1.1 is true for any smooth Fano manifold. In particular , the Gromov–Hausdorff
limit X1 for the Kähler–Ricci flow does not depend on the initial metric of the flow.

To prepare for the proof of such results, we will first carry out an algebraic study of the H NA–functional,
which is analogous to the study of the minimization problem for normalized volume or the ı invariant.
We will prove a new interesting fact in Theorem 3.5, that the MMP process devised in [56] decreases the
H NA invariant of test configurations. This requires us to derive new intersection formulas (see (121)) and
derivative formulas for the H NA invariant. The proof of such formulas depends on a fibration technique
in the study of equivariant cohomology. This technique is partly motivated by some construction from
our previous work [39], although there are key differences which require more concrete calculations; see
Remark 3.2.

We will then introduce the following ž–functional on Val.X / the space of valuations on X : for any
v 2 Val.X / with AX .v/ <C1, we define

(1) ž.v/DAX .v/C log
�

1

.�KX /�n

Z
R

e��.�dvol.F .�/v //

�
:

1We will mostly use the notation of non-Archimedean functionals, as advocated in Boucksom, Hisamoto and Jonsson [19].
However, note that H NA here is not the non-Archimedean entropy functional used in [19]. We will not use the non-Archimedean
entropy in this article.
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See Section 4 for details. If AX .v/DC1, then we define ž.v/DC1. The transition from H NA to the
ž–functional is similar to the transition from Ding–Tian’s generalized Futaki invariant to the ˇ–functional
in the literature of K–stability (as first appeared in Li [50], where it was called ‚, and in Fujita [37]).
In other words, ž is a nonlinear version of ˇ and could also be considered as a global analogue of the
normalized volume. Unlike the case of normalized volume functional, the ž invariant is not invariant
under rescaling of valuations. Indeed, we find the following new phenomenon: when restricted to the
ray of multiples of a fixed valuation v 2 Val.X / with A.v/ <C1, it is strictly convex and proper and
its derivative at the origin is exactly ˇ.v/. As a consequence there is a unique minimizer along the ray,
which is nontrivial if and only if ˇ.v/ < 0 (Proposition 4.6). The above MMP result implies that the
minimum can be approached by a sequence of special divisorial valuations. As a consequence, one can
adapt the method developed in [14] to show that there is minimizing valuation which is quasimonomial;
see Theorem 4.10. On the other hand, the H NA invariant for special test configurations is expressed as
the ž invariant; see Lemma 4.2. Combining these discussions, we will prove (see Sections 2.2 and 2.5 for
relevant notation):

Theorem 1.5 For any Q–Fano variety X , we have the identity

(2) inf
F filtration

H NA.F/D inf
.X ;L;a�/ special

.H NA.X ;L; a�//D inf
v2Val.X /

ž.v/:

Moreover , the last infimum is achieved by a quasimonomial valuation.

As in the cases of normalized volume, we conjecture that the minimizer is unique and induces a special
R–test configuration (see Conjecture 4.11)2 whose central fiber (with the induced vector field) must then
be K–semistable by the following result. When X is smooth, by the result of Dervan and Székelyhidi [31]
the existence of such special minimizing valuation is implied by the work of Chen and Wang [29] and
Chen, Sun and Wang [28]. We also note that optimal degenerations (of various kinds) in the toric case
are well studied; see Wang and Zhu [75] for the toric result for Kähler–Ricci flow.

Theorem 1.6 (Theorem 5.2) A special R–test configuration minimizes H NA if and only if its central
fiber is K–semistable.

The uniqueness in Theorem 1.2 about the semistable degeneration is nothing but the result on the
uniqueness of the minimizer of ž among all quasimonomial valuations associated to special R–test
configurations. The proof of this fact uses the technique of initial term degeneration, again motivated
by study of normalized volumes; see Li [50] and Li and Xu [58; 57]. This process essentially reduces
the question to the uniqueness of minimizer of H NA (actually a variant of H NA after the work of Xu
and Zhuang [79]) along an interpolation between a fixed filtration and a weight filtration (induced by a
holomorphic vector field) on the central fiber. The interpolation is constructed by using the rescaling of

2This has recently been confirmed by Blum, Liu, Xu and Zhuang [15].
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twist of the fixed filtration (the twist of filtration is in the sense of Li [52] generalizing Hisamoto [41]),
which we can deal with using the technique of Newton–Okounkov bodies and Boucksom and Jonsson’s
work on the characterization of asymptotically equivalent filtrations. Our valuative formulation is useful
because filtrations associated to valuations are asymptotically equivalent if and only if they are the same
(Corollary 2.28 and Lemma 2.29). Again unlike the case of normalized volumes or the case of the ı
invariant in Blum, Liu and Zhou [16], the minimizing valuation in the current global setting is expected
to be absolutely unique, not just up to rescaling or twisting. This is because of a strict convex property of
the H NA–functional, which goes back to Tian and Zhu’s work in [71] on the uniqueness of Kähler–Ricci
vector fields from the Lie algebra of a torus.

To deal with the polystable step, we first introduce the equivariant version of normalized volumes. Most
results about normalized volumes can be generalized for the equivariant version. Finally we complete the
proof of Theorem 1.3 by adapting the argument in Li, Wang and Xu [55] about uniqueness of K–polystable
degeneration of K–semistable Fano varieties.

To end this introduction, the following table summarizes the quantities used in each of the two steps:

degenerations semistable polystable

valuations Val.X / ValC
��T

C;o

antiderivative H NA, ž cvolg
derivative DNA

�
, Fut� DNA

�
, ˇg

derivative formula (172) (191)

Postscript After we finished the paper, we were informed by F Wang and X Zhu that they use analytic
methods to prove related uniqueness results for Kähler–Ricci flow limits based on their recent work on
the Hamilton–Tian conjecture; see [73; 74].

After this paper appeared, there have been several important developments. In Li and Li [59], based on
the minimization setup and uniqueness results in this paper, the authors calculated nontrivial examples of
limits of Kähler–Ricci flows on some unstable Fano varieties which are compactifications of homogeneous
varieties under some complex reductive group. Very recently, the paper of Blum, Liu, Xu and Zhuang [15]
continues and completes the algebraic study of minimization problem proposed in this paper, based on
the recent breakthrough on the high-rank finite generation conjecture. In particular, Conjecture 4.11 in
our paper is now confirmed in [15].
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2 Preliminaries

2.1 Some notation

Let X be a Q–Fano variety. In this paper for the simplicity of notation, we assume that �KX is Cartier.
The modification to the general Q–Cartier case is straightforward; see eg [52]. For any m; ` 2N, set

Rm WD H 0.X;�mKX /; RD

C1M
mD0

Rm;(3)

Nm D dim Rm; V D .�KX /
�n
D lim

m!C1

Nm

mn=n!
;(4)

R.`/
m WDH 0.X;�m`KX /; R.`/

D

C1M
mD0

R.`/
m :(5)

We will denote by Val.X / the space of real valuations on C.X /, by VVal.X / the set of real valuations v
with AX .v/ <C1, and by X div

Q the set of divisorial valuations, ie the valuations of the form a � ordE

with a � 0 and E a prime divisor over X . A valuation v 2 Val.X / is quasimonomial if there exist a
birational morphism Y !X and a simple normal crossing divisors E D

Sd
iD1 Ei � Y such that v is a

monomial valuation on Y with respect to the local coordinates defining Ei , whose center of v over Y is
an irreducible component of

T
i2J Ei , where J � f1; : : : ; dg is a subset. We denote by QM.Y;E/ the

set of such quasimonomial valuations. We refer to [35; 44] for more details about such quasimonomial
(or equivalently the Abhyankar) valuations.

In this paper, T denotes a complex torus .C�/r D ..S1/r /C that acts effectively on a Q–Fano variety X .
There is a canonical action of T on (any multiple of) �KX . Set

(6) NZ D Hom.C�;T /; NR DNZ˝Z R; MZ D Hom.T ;C�/; MR DMZ˝Z R:

For any � 2NR, we have a valuation wt� 2 Val.X / as follows. For any f 2C.X /D
L
˛2MZ

C.X /˛ ,

(7) wt�.f /Dmin
�
h˛; �i

ˇ̌̌
f D

X
˛

f˛; f˛ ¤ 0

�
:

Moreover, for any m 2 N, we have a weight decomposition induced by the canonical T–action on
.X;�mKX /:

(8) Rm D

M
˛2MZ

.Rm/˛ D .Rm/˛.m/
1

˚ � � �˚ .Rm/˛.m/
Nm

:

Moreover, we will use the following notation for any Q–Fano variety. Let e�z' be an .S1/r –invariant
smooth positively curved Hermitian metric on �KX (eg as the restriction of a Fubini–Study metric under
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an equivariant embedding of X into projective space). We identify any � 2NR with the corresponding
holomorphic vector field on X . Because T–action canonically lifts to an action on �KX , we can set

(9) �z'.�/D�
L�e
�z'

e�z'
:

Then �z'.�/ is a Hamiltonian function of � with respect to ddc z' D .
p
�1=2�/@x@z' � 0:

(10) ��ddc
z' D

p
�1

2�
x@�z'.�/:

Moreover, .z; �/ 7! �z'.�/.z/ is equivalent to the moment map mz' WX !MR whose image is the moment
polytope P of T–action on .X;�KX / which does not depend on the choice of z'. It is known that the
measure

(11)
n!

mn

X
i

dim.Rm/˛.m/
i

� ı
˛
.m/

i
=m

converges weakly to the Duistermaat–Heckman measure .mz'/�.ddc z'/n; see [23] or [8, Proposition 4.1].

For any subset S �Rn, we will use dyS or just dy to denote the Lebesgue measure of S .

2.2 R–test configuration and filtrations

We will use extensively the language of filtrations:

Definition 2.1 [17] A filtration F WD FR� of the graded C–algebra R D
LC1

mD0 Rm consists of a
family of subspaces fF�Rmgx of Rm for each m� 0 with the following properties:

� Decreasing F�Rm � F�0Rm if �� �0.

� Left continuous F�Rm D
T
�0<� F�

0

Rm.

� Multiplicative F�Rm �F�
0

Rm0 � F�C�0RmCm0 for any �; �0 2R and m;m0 2 Z�0.

� Linearly bounded There exist e�; eC 2 Z such that Fme�Rm DRm and FmeCRm D 0 for all
m 2 Z�0.

Similarly one defines filtration on R.`/ for any `� 1 2N.

Example 2.2 Given any valuation v 2 VVal.X /, we have an associated filtration F D Fv:

(12) F�vRm WD fs 2Rm j v.s/� �g:

In particular, if there is a T–action on X , for any � 2 NR, we have a filtration Fwt� associated to the
valuation wt� in (7).

The trivial filtration Ftriv is the filtration associated to the trivial valuation: Fx
trivRm is equal to Rm if

x � 0, and is equal to 0 if x > 0.
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Example 2.3 For any filtration F , we will denote by FZ the filtration defined by F�ZRm D Fd�eRm.

Definition 2.4 [45; 46; 49] We say a valuation v WC.X /!Zn (where Zn is ordered lexicographically)
is a faithful valuation if v.C.X //Š Zn. Note that such a valuation always has at most one-dimensional
leaves (in the sense of [45]): if v.f / D v.g/ for f;g 2 C.X /, then there exists c 2 C� satisfying
v.f C cg/ > v.f /.

Fix such a faithful valuation v. For any t 2R, define the Newton–Okounkov body of the graded linear
series

(13) F .t/ WD F .t/R� WD fF tmRmg

as the closed convex hull of unions of rescaled values of elements from F .t/:

(14) �.F .t//D
C1[
mD1

1

m
v.F tmRm/:

By the theory of Newton–Okounkov bodies [62; 49; 46], we know that

(15) n! � vol.�.F .t///D vol.F .t/R�/D lim
m!C1

dimC FmtRm

mn=n!
:

When t � 0,

(16) �.F .t//DW�v.X;�KX /D�.X /

is associated to the complete graded linear series fRmgm. Following [17], define the concave transform

(17) GF
W�.X /!R; GF .y/D supft j y 2�.F .t//g:

Given any filtration F D fF�Rmg�2R and m 2 Z�0, the successive minima on Rm is the decreasing
sequence

�.m/max D �
.m/
1
� � � � � �

.m/
Nm
D �

.m/
min

defined by
�
.m/
j Dmaxf� 2R j dimC F�Rm � j g:

Theorem 2.5 [17] (i) The function x 7! vol.F .x/R�/1=n is concave on .�1; �max/ and vanishes
on .�max;C1/.

(ii) As m!C1, the Dirac-type measure

(18) �m D
n!

mn

X
i

ı
�
.m/

i
=m
D�

d

dt

dimC FmtH 0.Z;m`0L/

mn=n!

converges weakly to a measure with total mass V D .�KX /
�n:

(19) DH.F/ WD n! � .GF /� dy D�dvol.F .t//;

where dy is the Lebesgue measure on �.X /.
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(iii) The support of the measure DH.F/ is given by supp.DH.F//D Œ�min; �max�, with

�min:D �min.F/ WD infft 2R j vol.F .t// < V g;(20)

�max:D �max.F/ WD lim
m!C1

�
.m/
max

m
D sup

m�1

�
.m/
max

m
:(21)

Moreover , DH.F/ is absolutely continuous with respect to the Lebesgue measure , except perhaps
for a point mass at �max.

Example 2.6 If v 2 Val.X / is quasimonomial, it is shown in [22] that DH is absolutely continuous with
respect to the Lebesgue measure on R, ie there is no Dirac mass at �max.Fv/.

Definition 2.7 Let F be any filtration. For any a> 0 the a–rescaling of F is given by

(22) .aF/�Rm D F�=aRm:

For any b 2R, the b–shift is given by

(23) F.b/�Rm D F��bmRm:

Set

(24) aF.b/D .aF/.b/D a.F.b=a//; ie aF.b/xRm D F .x�bm/=aRm:

We have the easy identities

(25) �.aF.b/.t//D�.F ..t�b/=a//; GaF.b/ D aGF C b; vol.aF.b/.t//D vol.F ..t�b/=a//:

For any fm 2Rm, set

(26) xvF .fm/D supf� j fm 2 F�Rmg Dmaxf�Ifm 2 F�Rmg;

and for any f D
P

m fm 2RD
L

m Rm with fm 2Rm, set

(27) xvF

�X
m

fm

�
DminfxvF .fm/ j fm ¤ 0 2Rmg:

Then xvF is a semivaluation on RD
L

m Rm, satisfying

(28) xvF .f Cg/�minfxvF .f /; xvF .g/g and xvF .fg/� xvF .f / � xvF .g/:

Set

(29) �C.F/ WD f�.m/i jm� 0; 1� i �Nmg:

Denote by �.F/ the group of R generated by �C.F/.
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Definition 2.8 � The extended Rees algebra and associated graded algebra of a filtration F are
defined as

R.F/D
M
m�0

M
�2�.F/

t��F�Rm;(30)

Gr.F/D
M
m�0

M
�2�.F/

t��F�Rm=F>�Rm;(31)

where F>�Rm D ff 2Rm j vF .f / > �g.

� If R.F/ is finitely generated, we say that F is finitely generated and call F an R–test configuration.
In this case, �.F/ is a finitely generated free Abelian group: �.F/ Š Zrk.F/ for some positive
integer rk.F/ 2 Z>0, and we will call rk.F/ the rank of F . Moreover, Gr.F/ is also finitely
generated, and we call the projective scheme Proj.Gr.F//DWXF;0 the central fiber of F .

There is an induced filtration F jXF;0 WD F 0R0 D fF 0R0mg on R0 WD Gr.F/, the homogeneous
coordinate ring of the central fiber:

(32) F 0�R0m D
M
�
.m/

i
��

F�
.m/

i Rm=F>�
.m/

i Rm:

The �.F/ grading of Gr.F/ corresponds to a holomorphic vector field �D �F on the central fiber,
which generates an action by a complex torus of dimension rk.F/.

� We say an R–test configuration F is special if its central fiber XF;0 is a Q–Fano variety and there
is an isomorphism Gr.F/ŠR.XF;0;�KXF;0/DWR

0. In this case, there is a � 2R such that

(33) F 0R0 D F 0wt�R
0.��/:

Remark 2.9 We can naturally extend the above definition to filtrations on R.`/ for any ` 2N�1. Indeed
we will actually identify two filtrations if they induce the same non-Archimedean metric on .X NA;LNA/

with LD�KX . See Definition 2.17.

There are two equivalent geometric descriptions of R–test configurations, which we now explain.

(I) Geometric R–TC I Let � WX ! PN` be a Kodaira embedding by a basis of R` DH 0.X; `.�KX //

for some ` > 0, and let � be a holomorphic vector field on PN`�1 D P .H 0.X; `.�KX /
�/ that generates

an effective holomorphic action on PN`�1 by a torus T of rank r . Then we get a weight decomposition
R` D

L
˛2Zr R`;˛ and a filtration on R` by setting

(34) F�R` D

M
h˛;�i��

R`;˛:

The filtration FR` generates a filtration on FR.`/, which is an R–test configuration F . The following
lemma generalizes the well-known fact for test configurations; see [33; 76; 64].
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Lemma 2.10 Any R–test configuration , which by definition is a finitely generated filtration , is obtained
in this way.

Proof To see this, we assume again that F is generated by FR`. For simplicity of notation, set V DR`

and �i D �
.`/
i . By shifting the filtration, we can normalize �N` D 0 and assume that we have the relation

�1 D � � � D �i1
DW w1 > �i1C1 D � � � D �i2

DW w2
:::
> �ik�2C1 D � � � D �ik�1

DW wk�1

> �ik�1C1 D � � � D �N` DW wk D 0:

In other words, fw1; : : : ; wkg is the set of distinct values of successive minima and we have a usual
filtration,

(35) f0g¨ Fw1V ¨ Fw2V ¨ � � �¨ Fwk D V:

In other words, we can equivalently describe an R–filtration by the language of weighted flags. Fixing a
reference Hermitian inner product H0 on V DR`, we can assign to the flag (35) a decomposition

(36) V D V1˚V2˚ � � �˚Vk ;

where V1 D Fw1V and Vj is the H0–orthogonal complement of Fwj�1V inside FwjV , which has
dimension ij � ij�1 DW dj .

Fix a maximal Q–linearly independent subset of fw1; : : : ; wkg to be

(37) 0>w2 DW �1 > � � �>wpr
DW �r :

So for eachwj we can find a vector of rational numbers ErjD .rj1; : : : ; rjr /2Q such thatwjD
Pr

pD1 rjp�p .
Finding a common multiple D of the denominators of frjp j 1� j � k; 1� p � rg, we set �D �=D and

j̨ DDErj , so that

(38) wj D

rX
pD1

j̨p�p D h j̨ ; �i:

In this way we get a .C�/r representation V , whose weight decomposition is given by (36), where Vj

consists of elements of weight j̨ , and

F�V D
M
h j̨ ;�i�a

Vj D

�
v D

kX
jD1

vj

ˇ̌̌
minfh j̨ ; �i j vj ¤ 0g � �

�
:

From another point of view, let IX � CŒZ1; : : : ;ZN` �D S be the homogeneous ideal of X . For each
d 2N, the T–action induces a representation of T on Sd , the set of degree-d homogeneous polynomials.
The holomorphic vector field � induces an order on the weights of these T–representations. Choosing
a set of homogeneous generators of IX , the initial term with respect to this order generates the ideal
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of XF;0. If �� denotes the one-parameter R–group generated by �, we have the convergence of algebraic
cycles (or schemes)

(39) lim
s!C1

��.s/ ı ŒX �D ŒXF;0�:

So we say that the R–action generated by � degenerates X into a projective scheme XF;0.

By perturbing � 2NR, we can find a sequence of rational vector �k 2NQ converging to �. For k� 1,
�k induces an R–test configuration of rank one with the same central fiber XF;0.

(II) Geometric R–TC II This description is essentially contained in [66, Section 2]. For any R–test
configuration, we set B D Spec.C.�C.F//ŠCr . Then there is a flat family

(40) X D ProjCr .R.F//! B

such that the generic fiber is isomorphic to X and a special fiber isomorphic to XF;0. Set L to be the relative
ample line bundle OX=Cr .1/. Fix m� 0. For any � 2R, we set d�e Dminf�.m/i j �

.m/
i � �g D h˛; �F i

for ˛ 2MZ. Then for any � D .�1; : : : ; �r / 2Cr , we set ��d�e D
Qr

iD1 �
˛i

i , to get

(41) F�Rm D fs 2Rm j �
�d�e
xs extends to a holomorphic section of mL! X g;

where xs is the meromorphic section of mL defined as the pullback of s via the projection .X ;L/�B.C
�/rŠ

.X;�KX /� .C
�/r !X .

Lemma 2.11 If Gr.F/ is an integral domain , then the semivaluation xvF in (26) defines a valuation on the
quotient field of R. Denote by vF the restriction of xvF to C.X /: for f D s1=s2 2C.X / with s1; s2 2Rm,
set

(42) vF .f /D xvF .s1/� xvF .s2/:

Then there exists � > 0 such that F DFvF .��/. In particular , this statement applies to any special R–test
configuration.

Proof Fix any two homogeneous elements si 2 Rmi
for i D 1; 2. Assume that xvF .fi/ D si . Then

s0i 2 R0mi ;xi
. Because Gr.F/ is integral, s0

1
s0
2
¤ 0 2 R0m1Cm2;x1Cx2

, which implies that xvF .s1s2/ D

x1Cx2 D xvF .s1/CxvF .s2/. From this, we easily see that xvF is a real valuation.

Assume f D s1=s2 D zs1=zs2. Then s1 � zs2 D s2 � zs1 and hence xvF .s1/� xvF .s2/D xvF .zs1/� xvF .zs2/. So
vF in (42) is well defined.

For any si ¤ 0 2 Rm with i D 1; 2, by construction xvF .s1/� vF .s1/ D xvF .s2/� xv.s2/. This means
bm WD vF�xvF is constant on Rmnf0g. It is easy to see that �m1

�m2
D�m1Cm2

. So we can set � D�m=m

to get the conclusion.

An R–test configuration with rk.F/D 1 is, up to rescaling, associated to the usual test configuration, a
notion that plays a basic role in the subject of K–stability.
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Definition 2.12 [67; 32; 56] A test configuration of .X;L/ is a triple .X ;L; �/, sometimes just denoted
by .X ;L/, that consists of

� a variety X admitting a C�–action generated by a holomorphic vector field � and a C�–equivariant
morphism � WX!C, where the action of C� on C is given by the standard multiplication generated
by �t@t , and

� a C�–equivariant �–semiample Q–Cartier Q–divisor L on X such that there is an C�–equivariant
isomorphism i� W .X ;L/j��1.Cnf0g/ Š .X;L/�C�.

We denote by . xX ; xL/ the natural compactification of .X ;L/ obtained by adding a trivial fiber at infinity
using the isomorphism i�.

.XC; .�KX /C; �triv/ WD .X �C;�KX �C;�t@t / is called the trivial test configuration. .X ;L; �/ is a
normal test configuration if X is a normal variety.

A normal test configuration .X ;L; �/ is a special test configuration (resp. weakly special) if .X ;X0/ is plt
(resp. if .X ;X0/ is log canonical) and L D �KX C cX0 for some c 2 Q. By inversion of adjunction,
.X ;L; �/ being special is equivalent to the condition that .X0;�KX0

/ is Q–Fano.

Two test configurations .Xi ;Li/ for i D 1; 2 are equivalent if there exists a test configuration .X 0;L0/ and
two C�–equivariant birational morphisms �i W X 0! Xi such that ��

1
L1 D L0 D ��

2
L2.

Assume that G is a reductive complex Lie group acting on .X;L/. A G–equivariant test configuration of
.X;L/ is a test configuration .X ;L; �/ with the following property:

� There is a G–action on .X ;L/ that commutes with the C�–action generated by � and the action

of G on .X ;L/�C C�
i�
Š .X;L/�C� coincides with the fiberwise action of G on (the first factor

of) .X;L/�C�.

As mentioned above, by the work of [76; 65; 19], for any R–test configuration F with rk.F/D 1, there
exists a test configuration .X ;L; �/ and a> 0, such that �.F/Š aZ and F D aF.X ;L;�/. In this case, we
will also denote the R–test configuration F by .X ;L; a�/ and set

(43) F.X ;L;a�/ WD aF.X ;L;�/:

The identity (40) becomes

(44) X D ProjCŒt �

�M
m�0

M
j2Z

t�ajFj Rm

�
:

Conversely, assume .X ;L/ is a test configuration of .X;L WD �KX /. Then we associate to it a filtration
F D F.X ;L/ as in (41); so s 2 F�Rm if and only if t�d�exs extends to a holomorphic section of mL. In
particular, such a construction sets up a one-to-one correspondence between test configurations .X ;L/
with ample L, and R–test configurations F with �.F/� Z; see [19, Proposition 2.15].
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Now assume that .X ;L/ is normal and there is a C�–equivariant birational morphism � WX!XC WDX�C.
Write L D ��LC CD, where LC D p�

1
L. Then by [19, Lemma 5.17], the filtration F has the more

explicit description

(45) F�Rm D

\
E

fs 2H 0.X;mL/ j r.ordE/.s/Cm`0 ordE.D/� xbEg;

where E runs over the irreducible components of the central fiber X0, and bE D ordE.X0/D ordE.t/

while r.ordE/ denotes the restriction of ordE to C.Z/ under the inclusion C.Z/�C.X �C�/DC.X /.

When F D F.X ;�KX ;�/ is associated to a special test configuration, Lemma 2.11 applies. In fact, by [19],
vF D vX0

D r.ordX0
/ and by [50], � DAX .vX0

/, so F.X ;�KX ;�/ D FvX0
.�A.vX0

//. As a consequence,
for any a> 0, by (24) we have the identity

(46) F.X ;�KX ;a�/ D FavX0
.�A.avX0

//:

Note that following Definition 2.8, for any a> 0 we say that .X ;L; a�/ is a special (resp. normal) R–test
configuration if .X ;L; �/ is a special (resp. normal) test configuration.

Note that we use the negative sign �t@t in our Definition 2.12. This sign convention will be convenient
for our subsequent computations, as illustrated in the following simple example.

Example 2.13 Consider the product test configuration .X ;L/ of .P1;OP1.1// induced by the C�–action

t ı ŒZ0;Z1�D ŒZ0; tZ1�:

Let si for i D 0; 1 be two holomorphic sections of H 0.P1;O.1// corresponding to the homogeneous
coordinates Zi for i D 0; 1. Then t acts on the holomorphic sections by t � s0 D s0 and t ı s1 D t�1s1.
The corresponding filtration is given by

(47) F�Rm D Spanfsm�i
0 si

1 j 0� �i � �gI

cf (34). The natural compactification xX can be identified with the Hirzebruch surface P .OP1.1/˚OP1/,
and xL is given by O xX .D1/, where D1 is the divisor at infinity; see [56, Example 3]. The successive
minima are given by f�.m/i g D f�m;�mC 1; : : : ; 0g. In particular, we have

(48)
X

i

�
.m/
i D�

1
2
m2
�

1
2
mD 1

2
xL2m2

C
�

1
2
K�1
xX �
xL� 1

�
m:

Moreover, �D�z @=@z, whose Hamiltonian function is given by �.�/D�jZ1j
2=.jZ1j

2CjZ2j
2/. Note

that �.�/�!FS D dyŒ�1;0� D DH.F/.

Example 2.14 If F is an R–test configuration, then aF.b/ is an R–test configurations for any .a; b/ 2
R>0 �R.

Assume F D F.X ;L;�/ for a test configuration .X ;L; �/. Then as mentioned above, for simplicity of
notation we will identify aF.b/ with the data .X ;LC bX0; a�/.
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For any d > 0 2N, we can consider the normalization of the base change,

(49) .X ;L; �/.d/ WD ..X ;L; �/�C;t!td C/norm
DW .X .d/;L.d/; �.d//:

On the other hand, Zd D he
2�
p
�1=d i ,!C� naturally acts on the .X ;L/ and we can take a quotient

(50) .X ;L; �/=Zd
D .X .1=d/;L.1=d/; �.1=d//

to get a test configuration with a nonreduced central fiber in general.

With this notation, for any a> 0 2Q we then have the natural identification

(51) F.X ;L;�/.a/ D a �F.X ;L;�/ D F.X ;L;a�/:

For a filtration FR�, choose e� and eC as in Definition 2.1. For convenience, we can choose eC D

d�max.FR/e 2 Z. Set e D eC� e� and define (fractional) ideals

Im;� WD IF
m;� WD Image.F�Rm˝OX .�mL/!OX /;(52)

zIm WD zIF
m WD IF

.m;meC/
t�meCCIF

.m;meC�1/t
1�meCC� � �CIF

.m;me�C1/t
�me��1

COX �t
�me� ;(53)

Im WD IF.eC/
m D zIF

m �t
meC D IF

.m;meC/
CIF

.m;meC�1/t
1
C� � �CIF

.m;me�C1/t
me�1

C.tme/�OXC :(54)

Definition–Proposition 2.15 [36, Lemma 4.6] With the above notation , for m sufficiently divisible ,
define the mth approximating test configuration .{XF

m ; {LF
m/ as follows:

(i) {XF
m is the normalization of blowup of X �C along the ideal sheaf IF.eC/

m .

(ii) The semiample Q–divisor is given by

(55) {LF
m D �

�..�KX /�C/�
1

m
EmC eC {X0;

where Em is the exceptional divisor of the normalized blowup.

For simplicity of notation , we also denote the data by .{Xm; {Lm/ if the filtration is clear.

It is easy to see that the filtration F.{Xm;{Lm/
on R.m/ is induced by FZRm under the canonical map

SkRm!Rkm. By [20, Proof of Theorem 4.13], we have the following approximation result.

Proposition 2.16 [20, Proof of Theorem 4.13] With notation as in Definition–Proposition 2.15, the
Duistermaat–Heckmann measures DH.{Xm; {Lm/ converge weakly to DH.F/ as m!C1.

Following Boucksom and Jonsson, it is very convenient to use the non-Archimedean metric defined
by filtrations. Any filtration (in the sense of Definition 2.1) defines a non-Archimedean metric on
LNA!X NA. If we denote by �triv the non-Archimedean metric associated to the trivial filtration, then
any non-Archimedean metric � on LNA is represented by the real valued function � ��triv on X div

Q .
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Definition 2.17 Let F D FR� be a filtration. For any w 2 VVal.X /, define the non-Archimedean metric
associated to F by

.�F
m��triv/.w/D�

1

m
G.w/.zIF

m/D�
1

m
G.w/.IF.eC/

m t�meC/D�
1

m
G.w/.IF.eC/

m /C eC;(56)

.�F
��triv/.w/D�G.w/.zIF

�
/D lim

m!C1
�F

m.w/:(57)

In particular, if v 2 VVal.Z/ and F D Fv, then we write �v D �Fv .

Note that �F
m D �F.{Xm;{Lm/

converges to � as m!C1. Moreover, if (for simplicity) we assume that
SkRm!Rkm is surjective for all k;m� 1, then it is an increasing sequence in the sense that if m1 jm2,
then �F

m1
� �F

m2
. If �F is continuous, then �m converges to � uniformly by Dini’s theorem.

The following transformation rule can be easily verified.

Lemma 2.18 For any filtration F and any .a; b/ 2R>0 �R and v 2X div
Q ,

(58) .�aF.b/��triv/.v/D a.�F ��triv/
�
v

a

�
C b:

2.3 Twist of filtrations

Let F D FR� be a T–equivariant filtration, which means that F�Rm is a T–invariant subspace of Rm

for any x 2R. For ˛ 2MZ DN _Z , denote the weight space by

(59) .Rm/˛ D fs 2Rm j � ı s D �˛s for all � 2 .C�/r g:

Then we have

(60) .F�Rm/˛ WD fs 2 F�Rm j � ı s D �˛sg D F�Rm\ .Rm/˛;

and the decomposition

(61) F�Rm D

M
˛2MZ

.F�Rm/˛:

Definition 2.19 [52] For any � 2NR, the �–twist of F is the filtration F�R� defined by

(62) F�� Rm D

M
˛2MZ

.F�� Rm/˛; where .F�� Rm/˛ WD .F��h˛;�iRm/˛:

Example 2.20 If F is a T–equivariant R–test configuration, then F� is also an R–test configuration.

If F D F.X ;L;a�/ for a test configuration, then we can identify the data F� with the data .X ;L; a�C �/;
see [41]. If � 2 NZ, then .X ;L; a�C �/ is equivalent to the birational image of the .X ;L/ via the
birational transform �� W X Ü X , .z; t/! .��.t/ � z; t/; see [52].

Moreover, if we start with the trivial filtration Ftriv D F.XC;.�KX /C;�t@t /, then .Ftriv/� is equal to Fwt� .
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Definition 2.21 We say that a faithful valuation v in the sense of Definition 2.4 is adapted to the torus
action if for any f 2C.X /˛ we have v.f /D .˛; vrC1.f /; : : : ; vn.f // 2 Zr �Zn�r .

There always exists a faithful valuation that is adapted to the torus action. This can be constructed as
follows. First we choose a T–invariant Zariski-open set U of X as in [3]. Then by the theory of affine
T –varieties as developed in [2], there exists a variety Y of dimension n� r and a polyhedral divisor D
such that

(63) U D Spec˛2MZ
H 0.Y;O.D.˛///:

We can choose a faithful valuation vY on Y (for example via a flag of varieties as in [49]) and define, for
any f 2H 0.Y;O.D.˛//,

(64) v.f /D .˛; vY .f //:

Let v be such a valuation and �D�v.X;�KX / � Rn be the associated Newton–Okounkov body. If
p WRn DRr �Rn�r !Rr denotes the natural projection, then we have

(65) p.�/D P Dmoment map of the T–action on .X;�KX /:

The following lemma was already observed in [81], in which a faithful valuation adapted to the torus
action was constructed using equivariant infinitesimal flags in the sense of [49]. Here we give a different
and direct proof for the reader’s convenience.

For simplicity of notation, we write y D .y1; : : : ;yn/D .y
0;y00/ 2Rr �Rn�r and set

(66) hy0; �i D

rX
iD1

y0i�
i
DW hy; �i:

In the last identity, we identify � 2NR DRr with .�; 0/ 2Rn.

Lemma 2.22 [81] If v is a Zn–valued valuation adapted to the torus action , then for any y 2�.�KX /,

(67) GF� .y/DGF .y/Chy
0; �i:

Proof For any t >GF .y/D �, there exists � > 0 such that y 62�.F .t��//. Let ı1 D dist.y; �.F .t��///.

Choose any f 2 F .tChy
0;�i/m

�
Rm;˛ D F .tChy0;�i/m�h˛;�iRm;˛. Consider two cases:

(i) h˛=m; �i � hy0; �i< �. Then v.f / 2�.t��/, so jv.f /=m�yj � ı1.

(ii) h˛=m; �i � hy0; �i � �. Then jv.f /=m�yj � j˛=m�y0j � �=j�j.

The two cases together imply that y 62�.F .tChy
0;�i/

�
/. So we get the inequality GF� �GF Chy

0; �i.

On the other hand, since F D .F�/�� , we also get GF �GF� �hy
0; �i. So we get the desired identity.

2.4 Asymptotically equivalent filtrations

In this section we recall Boucksom and Jonsson’s characterization in [20; 21] of asymptotically equivalent
filtrations; see also [1].
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For a filtration FRm of Rm, we say that a basis B D fs1; : : : ; sNm
g of Rm is compatible with FRm if

for any � 2R there exists a subset of B that spans F�Rm.

Let Fi D fFiRmg for i D 0; 1 be two filtrations. For each m, we can find a basis B WD fs1; : : : ; sNm
g

of Rm that is compatible with both FiRm with i D 0; 1. We refer to [1; 18] and the discussion in Section 5
for more details. Assume that for each i D 0; 1, we have sk 2 F

�k;i

i nF>�k;i . Then B is an orthogonal
basis for the non-Archimedean norm k � km;i corresponding to Fi : for any s D

P
k aksk 2Rm,

(68) kskm;i D e�maxf�js2F�Rmg Dmax
k
jak j0e��k;i ;

where j � j0 is the trivial norm on C.

Following [24; 20], we define the set of successive minima of F1 with respect to F0 to be the set
f�k;1��k;0g. The following result was proved in [18; 24].

Theorem 2.23 [18; 24] As m!C1, the measures

(69)
n!

mn

NmX
kD1

ı.�k;1��k;0/=m

converge weakly as m!C1 to a relative limit measure , denoted by d� WD d�.F0;F1/.

Corollary 2.24 For any p 2 Œ1;1/, the limit

(70) dp.F0;F1/ WD lim
m!C1

�
n!

mn

NmX
kD1

m�1
j�k;1��k;0j

p

�1=p

exists and is given by

(71) dp.F0;F1/D

�Z
R
j�jp d�.�/

�1=p

:

Definition 2.25 [20, Section 3.6] F0 and F1 are asymptotically equivalent if d2.F0;F1/D 0.

In fact, by [20] the dp are comparable to each other for all p 2 Œ1;1/, and the above equivalence can be
defined by using any p 2 Œ1;C1/.

Theorem 2.26 [20, Theorem 4.16] Assume that X is smooth. Let F0 and F1 be two filtrations on R.
Then F0 and F1 are asymptotically equivalent if and only if �F1

D �F2
.

We also need:

Proposition 2.27 If Fvi
for i D 0; 1 are two R–test configurations associated to two valuations vi 2

VVal.X / for i D 0; 1, then �Fv1
D �Fv2

C c for a constant c 2 R if and only if v1 D v2 (and hence
Fv1
D Fv2

).
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Proof Recall that �Fvi
D limm!C1 �

Fvim is an increasing limit along the subsequence mD 2k , where
for any w 2 Val.X /,

(72) �
Fvi
m .w/D�

1

m
G.w/

�X
�2N

I
Fvi

m;�
t��

�
;

where I
Fvi

m;�
is the base ideal of the sublinear system F�vi

Rm. Note that it is easy to see that v1 D v2 if
and only if a�.v1/D a�.v2/ for any � 2N, where a�.vi/D ff 2OX j vi.f /� �g.

For any d 2N, by choosing m� 1 we can assume that mL˝ad .v1/ is globally generated. Then we get
I
Fv1

m;d
D ad .v1/. From this it is also clear that �Fvi

.vi/D 0. So we get

�cD��Fv1
.v2/���

Fv1

2k .v2/D
1

2k
G.v2/

�X
�

I
Fv1

2k ;�
t��

�
�

1

2k

�
v2.I

Fv1

2k ;d
/�d

�
D

1

2k

�
v2.ad .v1//�d

�
:

Since k can be arbitrarily large, we get �c � 0, ie c � 0. Switching v1 and v2 in the above argument,
we get c � 0. So c D 0. We then have the inequality v2.ad .v1//� d for any d 2N. This easily implies
v2 � v1. Switching v1 and v2, we get v1 � v2. Hence v1 D v2, as required.

Corollary 2.28 Assume that X is smooth. With the same notation as above , if Fv1
is asymptotically

equivalent to Fv2
, then v1 D v2.

More recently, this result has been proved for any Q–Fano variety:

Lemma 2.29 [15, Lemma 3.16; 21, Theorem C] For any Q–Fano variety , if vi for i D 1; 2 are two
valuations in VVal.X / such that Fv1

is asymptotically equivalent to Fv2
, then v1 D v2.

Remark 2.30 In the first version of this paper, Corollary 2.28 was stated for any Q–Fano variety.
However, it has been pointed out by experts that the validity of Theorem 2.26 from [20] for singular
Q–Fano varieties depends on a still conjectural property called continuity of envelopes. Fortunately,
recently, in [15; 21], the result in Lemma 2.29 has been given a direct proof without using the continuity
of envelopes.

2.5 Non-Archimedean invariants of filtrations

For any filtration F on RDR.X;�KX /, we set

LNA.�F /DLNA.F/DLNA
X .F/D inf

v2X div
Q

�
AX .v/C .�F ��triv/.v/

�
;(73)

zS NA.�F /D zS NA.F/D zS NA
X .F/D�log

�
1

V

Z
R

e�� DH.F/
�
D�log

�
n!

V

Z
�

e�GF .y/ dy

�
;(74)

ENA.�F /DENA.F/DENA
X .F/D 1

V

Z
R
� �DH.F/D n!

V

Z
�

GF .y/ dy;(75)

H NA.�F /DH NA.F/DH NA
X .F/DLNA.F/� zS NA.F/;(76)

DNA.�F /DDNA.F/DDNA
X .F/DLNA.F/�ENA.F/:(77)
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The above functionals are by now well known, and we use notation following that in [19; 43]. The
formula involving GF follows from Theorem 2.5(ii).

Proposition 2.31 (see [37; 20; 52]) For a filtration F , with the notation from Definition 2.17, we have
the following convergence: the sequence from Definition–Proposition 2.15 satisfies , for any F 2 f zS ;Eg,

(78) lim
m!C1

F NA.�F
m/D F NA.�F /:

Moreover , we have

(79) lim
m!C1

LNA.�F
m/�LNA.�F /:

Proof By Proposition 2.16 we know that DH.F.Xm;Lm;�m// converges weakly to DH.F/ as m!C1,
from this we easily get the convergence of zS NA and ENA.

The inequality (79) follows easily from the inequality �F
m � �

F .

For our later argument, we will use a different formulation of the LNA–functional studied in [80; 15]. For
any filtration F , denote by IF.x/

�
D fIF

m;mxg the graded sequence of base ideals defined in (52). In [79],
Xu and Zhuang introduced the functional

(80) yLNA.F/D supfx 2R j lct.X I IF.x/
�

/� 1g;

and proved that yLNA.F/�LNA.F/. More recently it has been shown that in fact the two functionals are
identical to each other. More specifically, we will need the following comparison results.

Proposition 2.32 [79, Proposition 4.2 and Theorem 4.3; 15, Lemma 3.8] For any filtration F , we have:

(i) AX .E/ � yL
NA.FordE

/ for any prime divisor E over X , with equality holding if ordE induces a
weakly special test configuration.

(ii) yLNA.F/DLNA.F/ for any filtration F .

For later purposes, we also introduce, for any a> 0,

ENA
k .F/D 1

V

Z
R

xk DH.F/D lim
m!C1

1

Nm

X
i

�
�
.m/
i

m

�k

;(81)

Q.a/.F/D 1

V

Z
R

e�ax DH.F/D 1

V

C1X
kD0

.�1/k

k!
akENA

k .F/;(82)

Q.F/ WDQ.1/.F/:(83)

Note that ENA
1
.F/DENA.F/ and zS NA.F/D�log Q.F/.

For any v2 VVal.X / (resp. test configuration .X ;L; a�/), we will often write F NA.v/ (resp. F NA.X ;L; a�/)
for the above various functionals F NA.F/ with F being the corresponding filtration.

Geometry & Topology, Volume 28 (2024)



Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties 559

Example 2.33 If .X ;L; a�/ is a normal R–test configuration, then we have

ENA.X ;L; a�/D a �
xL�nC1

.nC 1/V
;(84)

LNA.X ;L; a�/D a � .lct.X ;�KX �LIX0/� 1/:(85)

If .X ;X0/ has log canonical singularities and KX CLD
P

i eiEi (which is centered at X0), then

(86) LNA.X ;L; a�/D a �min
i

ei :

Example 2.34 Let F be a special R–test configuration and let .X0; �/D .XF;0; �F / be the corresponding
central fiber. Assume that F jX0

DF 0wt�R
0.��/; see (33). Let z' be any .S1/r –invariant smooth positively

curved Hermitian metric on �KX . Then with the notation as in the paragraph containing (9), we have

LNA
X .F/DLNA

X0
.F jX0

/D

R
X0
�z'.�/e

�z'R
X0

e�z'
� � D��;(87)

ENA
X .F/DENA

X0
.F jX0

/D
1

V

Z
X0

�z'.�/.ddc
z'/n� �;(88)

zS NA
X .F/D zS NA

X0
.F jX0

/D�log
�

1

V

Z
X0

e���.ddc
z'/n
�
� �:(89)

The above identity is well known if F comes from a special test configuration. For more general F , one
can use a sequence of special test configuration to approximate and get the above formula.

Corresponding to (58), we have the following simple transformation rule, which can be checked easily
from the defining expressions of the functionals.

Lemma 2.35 For any .a; b/ 2R>0 �R, we have

LNA.aF.b//D yLNA.aF.b//D aLNA.F/C b;(90)

zS NA.F.b//D zS NA.F/C b;(91)

H NA.F.b//DH NA.F/:(92)

We also note:

Lemma 2.36 The function a 7!H NA.aF/ is a convex function on R�0.

Proof Since LNA.aF/ is linear in a by (90), we just need to show that f .a/ WD � zS NA.aF/ is convex
in a 2R�0. By (25) and (74), we get

f .a/D log
�

n!

V

Z
�

e�aG.y/ dy

�
;
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where G DG.y/DGF .y/. So we can calculate

f 00.a/D

R
�G2e�aG dyR
� e�aG dy

�

�R
�Ge�aG dy

�2�R
� e�aG dy

�2 � 0

by Hölder’s inequality.

Note the first identity in (90) comes from Proposition 2.32. Moreover, combining [52, Lemma 3.10] and
Proposition 2.32, we have the following invariance property under the twisting.

Lemma 2.37 Let F be a T–equivariant filtration. For any � 2NR, we have

(93) LNA.F�/D yLNA.F�/DLNA.F/:

As a consequence , we have

(94) LNA.Fwt� /D
yLNA.Fwt� /D 0:

The following lemma is a prototype uniqueness result in this paper, and can be seen as a generalization
of the uniqueness of Kähler–Ricci soliton vector fields shown by Tian and Zhu [71] (the case when
F D Ftriv). See Section 2.6 for more discussion.

Lemma 2.38 Let F be a T–equivariant filtration. Then the function � 7!H NA.F�/ on NR admits a
unique minimizer.

Proof By (93), LNA.F�/ is constant in �. Using the identity (67) and (74),

� zS NA.F�/D log
�

n!

V

Z
�

e
�GF� .y/ dy

�
D log

�
n!

V

Z
�

e�GF .y/�hy;�i dy

�
:

It is easy to use this expression to show that f .�/ WD � zS NA.F�/ is strictly convex in � 2 NR, which
implies the uniqueness of minimizer. To prove the existence of minimizer, we need to show that f .�/ is
proper, ie limj�j!C1 f .�/DC1. To see this, recall that we have the vanishing

(95)
Z

X

�z'.�/e
�z'
D�

Z
X

L�e
�z'
D 0:

This implies that 0> infX �z'.�/D inf�hy; �i if � ¤ 0, which indeed implies the properness.

Definition 2.39 We say that a filtration F is normalized if

(96) LNA.F/D 0:

A test configuration .X ;L; a�/ is normalized if F.X ;L;a�/ is normalized.

With the above discussion, the following lemma is easy to prove.
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Lemma 2.40 (i) Any special test configuration .X ;�KX / is normalized. More generally, a special
R–test configuration F (see Definition 2.8) if and only if � D 0 in (33).

(ii) For any filtration F , the shift F.�LNA.F// is normalized. If F is normalized , then so are aF for
any a> 0, and any twist F� .

As a consequence of this approximation result in Proposition 2.31, it is convenient for us to introduce:

Definition–Proposition 2.41 For any Q–Fano variety X , we define

(97) h.X /D inf
.X ;L;a�/

H NA.X ;L; a�/D inf
F

H NA.F/;

where .X ;L; a�/ ranges over all test configurations , and F ranges over all filtrations or R–test configura-
tions.

The following lemma is similar to [31, Lemma 2.5].

Lemma 2.42 For any filtration F , we have

(98) zS NA.F/�ENA.F/ and H NA.F/�DNA.F/:

The identities hold true if and only if F.c/ is asymptotically equivalent to the trivial filtration for some
c 2R; see Definition 2.25.

Proof The first inequality, which implies the second, follows from the concavity of the logarithmic func-
tion. When the identity holds, the DH measure DH.F/ is a Dirac measure V �ıc . Then d2.F.c/;Ftriv/D 0,
which by Definition 2.25 means that F.c/ is asymptotically equivalent to the trivial filtration.

Based on the work in [29; 28; 40], Dervan and Székelyhidi proved:

Theorem 2.43 [31] Assume that X is a smooth Fano manifold. There is an identity

(99) h.X / WD inf
.X ;L;a�/ special

H NA.X ;L; a�/D� inf
!2c1.X /

Z
X

h!eh!!n;

where ! ranges over smooth Kähler metrics from c1.X / and h! is the normalized Ricci potential of !.
Moreover , the infimum is achieved by a special test configuration constructed via the Gromov–Hausdorff
limit Kähler–Ricci soliton from [29; 28].

More recently, Hisamoto [43] gave a different proof of (99) based on the destabilizing geodesic rays
constructed from [30].

Remark 2.44 Our sign convention differs from that of Dervan–Székelyhidi and Hisamoto by a minus.
Dervan and Székelyhidi defined a non-Archimedean functional for general R–test configuration by
mimicking Tian’s CM weight (or the so-called Donaldson–Futaki invariant). But in such generality, their
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normalization seems imprecise. Differently from their definition, for any test configuration .X ;L; a�/
one could define

(100) zH NA.X ;L; a�/D a

V
.K xX=P1 � xL�nC xL�nC1/� zS NA.X ;L; a�/:

By the same argument as [19, Proposition 7.32], we have

(101) H NA.X ;L; �/� zH NA.X ;L; �/;

with strict inequality if .X ;L; �/ is anticanonical. Moreover, by (98) we also get

(102) zH NA.X ;L; �/� CM.X ;L; �/D 1

V

�
K xX=P1 � xLn

C
n

nC1
xL�nC1

�
;

with the identity being true only if .X ;L; �/ is trivial. One advantage of H NA over zH NA is that the
former can be defined for any filtration, not necessarily finitely generated. Due to this reason, we will not
use zH NA in this paper.

2.6 g–Ding-stability and Kähler–Ricci solitons

Let F be a T–equivariant filtration. For any � 2R, we have a (finite) decomposition

(103) F�Rm D

M
˛2MZ

F�Rm;˛:

Let P be the moment polytope of .X;�KX / with respect to the T–action. Let g be a smooth positive
function on P . Fix a faithful Zn–valuation that is adapted to the torus action (see Definition 2.21) and let
��Rn be the Okounkov body that satisfies (65): p.�/DP , where p WRn!Rr is the natural projection.
Still denote by g the function p�g on �. Define the g–volume of graded linear series fF .t/Rmg as

volg.F .t// WD lim
m!C1

X
˛

g
�
˛

m

�dimFmtRm;˛

mn=n!
D n! �

Z
�.F.t//

g.y/ dyLeb DW n! � volg.�.F .t///:

Then, as in the g � 1 case, we have the convergence

DHg.F/ WD lim
m!C1

X
˛

g
�
˛

m

�
ı
�
.m;˛/

i
=m
D�dvolg.F .t//D n! � .GF /�.g.y/ dyLeb/:

We also set

Vg WD n! � volg.�/D n! �

Z
�

g.y/ dyLeb D

Z
R

DHg.F/;(104)

ENA
g .F/ WD n!

Vg

Z
�

GF .y/g.y/ dyLeb D
1

Vg

Z
R
� �DHg.F/;(105)

DNA
g .F/ WDLNA.F/�ENA

g .F/:(106)

If .X ;L; �/ is a test configuration, then we set DNA
g .X ;L; �/DDNA

g .F.X ;L;�//.
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Definition 2.45 .X; �/ is g–Ding-semistable if DNA
g .X ;L; �/�0 for any T–equivariant test configuration

.X ;L; �/ of .X;�KX /.

.X; �/ is g–Ding-polystable if it is g–Ding-semistable, and DNA
g .X ;L; �/D 0 for a T–equivariant weakly

special test configuration (see Definition 2.12) only if .X ;L; �/ is a product test configuration.

The following result was proved by adapting the techniques of MMP from [56; 37; 7].

Theorem 2.46 (see [39]) To test the g–Ding-semistability, or the g–Ding-polystability, of .X; �/, it
suffices to test over all special test configurations.

We have the following valuative criterion:

Theorem 2.47 [39] X is g–Ding-semistable if and only if for any v 2 .X div
Q /T , we have

(107) ˇg.v/ WDAX .v/�
1

Vg

Z C1
0

volg.F .t/v / dt � 0:

Now we use our notation to reformulate the holomorphic invariants of Tian and Zhu [71] in the study of
Kähler–Ricci solitons. We refer to [71; 8; 39] for more details and references. Let X be a Q–Fano variety
with an effective T–action. We use the same notation, such as an .S1/r –invariant smooth Hermitian
metric z' on �KX , a moment polytope P �MR, a function �z'.�/D L�e

�z'=e�z' , etc. We identify any
� 2NR with the corresponding holomorphic vector field on X .

A Kähler–Ricci soliton on .X; �/ is a positively curved bounded Hermitian metric e�' on �KX that
satisfies the equation

(108) e'.ddc'/n D e�'.�/;

where �'.�/D �z'.�/C �.' � z'/. Over X reg, ' is smooth [6; 39] and satisfies the identity

(109) Ric.ddc'/� ddc' D�ddc�'.�/:

As a consequence, the family of metrics '.s/ WD ��.s/�' satisfies the normalized Kähler–Ricci flow,

(110) d

ds
ddc'.s/D�Ric.ddc'.s//C ddc'.s/:

For any � 2NR, we set g�.x/D e�hx;�i D e�
Pr

iD1 �
i xi , which is a smooth positive function on P , and

write Fg� as F� for F 2 fL;Dg etc, and V� WDVg� . Tian and Zhu [71] defined a modified Futaki invariant
as an obstruction to the existence of Kähler–Ricci solitons on .X; �/: for any � 2NR,

(111) Fut�.�/ WD �
1

V�

Z
X

�z'.�/e
��z'.�/.ddc

z'/n DDNA
� .wt�/;

where V� D
R
X e��z'.�/.ddc z'/n. The second identity follows by noting that DNA

�
.wt�/ D �ENA

�
.wt�/

because of the vanishing LNA.wt�/D 0.

Remark 2.48 Again, here we have used the negative sign convention compared to [71].
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Fut� does not depend on the choice of z' and .X; �/ admits a KR soliton only if Fut� � 0 on NR.
Moreover, by [71, Lemma 2.2] the soliton vector field is a priori uniquely determined by minimizing the
strictly convex functional (Tian and Zhu didn’t use the logarithm) on NR (see Lemma 2.38), which is the
antiderivative of � 7! Fut�.�/,

(112) � 7! log
�

1

V

Z
X

e��z'.�/.ddc
z'/n
�
D log

�
1

V

Z
R

e�� DH.Fwt� /

�
D� zS NA.wt�/:

Recall also that LNA.wt�/D yLNA.wt�/� 0 on NR; see (94). Combining these discussions we get the
derivative identity

(113) d

ds
H NA.wt�Cs�/D

d

ds
H NA.wt�Cs�/DDNA

� .wt�/D Fut�.�/:

For simplicity of notation, we introduce:

Definition 2.49 We say that .X; �/ is K–semistable (resp. K–polystable) if X is g�–Ding-semistable
(resp. g�–Ding-polystable).

Remark 2.50 Since by Theorem 2.46 it is enough to test the stability on special test configurations,
this definition coincides with the original modified K–(poly)stability adopted by Tian as well as Berman,
Witt and Nyström, and others. To respect the original notation, we will just call .X; �/ K–(poly)stable,
although we will also freely use the notion of Ding-(poly)stability.

By [8; 31], when X is smooth, the Yau–Tian–Donaldson conjecture is true, ie K–polystability is equivalent
to the existence of Kähler–Ricci solitons. For singular X , we proved in [39] a version of the Yau–Tian–
Donaldson conjecture involving Aut.X; �/0–uniform Ding-stability.

3 H NA invariant and MMP

3.1 An intersection formula for higher moments

Let .X ;L; �/ be any normal ample test configuration. Choose a smooth (semipositive) curvature form !

in c1.LjX0
/. Let � be the Hamiltonian function for � with respect to !, so ��! D .

p
�1=2�/ x@� . By the

equivariant Riemann–Roch formula, we get

ENA
k .X ;L/ WDENA

k .F.X ;L//D lim
m!C1

1

Nm

X
i

�
�
.m/
i

m

�k

D
1

V

Z
X0

�k!n:

To motivate our calculations, we will first give a direct proof of two identities which can already be
derived from the above discussion.

Lemma 3.1 We have

ENA
k .X ;L/D 1

V

Z
R

xk DH.F .x//;(114)

ENA.X ;L/DENA
1 .X ;L/D 1

V

xL�nC1

nC 1
:(115)
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Proof When we change L to LC dX0, F is changed to F.d/, and both sides of the above identities
have d added to them. So we can assume that xL is very ample over xX . Then we have

(116) xX D Proj
�M

m�0

C1M
jD0

t�jFj Rm

�
and xLd DO xX .1/.

For simplicity of notation, we write

(117) fk.m/D

NmX
iD1

.�
.m/
i /k D

X
jD0

j k.dimFj Rm� dimFjC1Rm/

D

X
jD1

.j k
� .j � 1/k/ dimFj Rm D

X
jD1

.kj k�1
CO.j k�2// dimFj Rm:

We easily get the identity

(118) ENA
k D

1

V
lim

m!C1

n!

mnCk
fk.m/D

1

V

Z 1
0

kxk�1 vol.F .x/R�/ dx D
1

V

Z
R

xk.�dvol.F .x///:

Moreover, we have the dimension formula

Nm WD h0. xX ;mxL/D
C1X
jD0

dimFj Rm D
mnC1

n!

Z C1
0

vol.F .x/R�/ dxCO.mn/;

which, by the Riemann–Roch formula, gives the identity

(119) 1

V

xL�nC1

nC 1
D

1

V

Z C1
0

vol.F .x/R�/ dx D
1

V

Z C1
0

x DH.F/:

The formula (115) goes back to Mumford’s study of GIT [61], and has also been used in the study of
K–stability. The following result is a generalization of it to higher moments. We will use the following
notation as in [39]. Let C�!CkC1 n f0g ! Pk be the principal C�–bundle and set

(120) . xX Œk�; xLŒk�/ WD .. xX ; xL/� .CkC1
n f0g//=C�:

Remark 3.2 Since the C�–action on xX moves the fiber xX ! P1, the situation here is different from the
situation in [19, Corollary 3.4] or [39], where a similar fiber construction with respect to a vertical torus
action is used.

Proposition 3.3 Let .X ;L/ be a normal ample test configuration. For any k � 1, we have the intersection
formula

(121) ENA
k .X ;L/D 1

V

k!n!

.nC 1/!
.xL Œk�1�/�nCk :
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Proof We use the notation from the above proof and without loss of generality assume that xL is very
ample over xX .

The weights f�˛ j ˛ D 1; : : : ;Nmg and multiplicities of C�–action on H 0. xX ; xL/ are given according to
the isomorphism (44). By the identity (117), the weight of C� on det H 0. xX ;mL/ is given by

(122)
NmX
˛D1

�k�1
˛ D

C1X
jD0

j k�1 dimFj Rm D k�1fk.m/CO.mnCk�1/:

Choose a smooth Kähler metric � 2 c1.xL/ on xX and let ‚ be the Hamiltonian function for �. Then by
the equivariant Riemann–Roch formula, we get

(123) lim
m!C1

.nC 1/!

mnC1

X
˛

�
�˛

m

�k�1

D

Z
xX
‚k�1�nC1

D
.k � 1/!.nC 1/!

.kC n/!

Z
xX Œk�1�

.�C‚t/nCk

D
.k � 1/!.nC 1/!

.kC n/!
.xLŒk�1�/�nCk :

Combining (118), (122) and (123), we get

ENA
k D

1

V
lim
k!

n!

mnCk
k
X
˛

�k�1
˛ D

1

V

k

nC1

.k � 1/!.nC 1/!

.kC n/!
.xLŒk�1�/�nCk

D
1

V

k!n!

.kC n/!
.xLŒk�1�/�nCk :

Recall from (82) that zS NA.X ;L; a�/D�log Q.a/, where

Q.a/
D

1

V

Z
X0

e�a�!n
D

1X
kD0

.�1/kak 1

V

Z
X0

�k

k!
!n
D

X
k

.�1/k
ak

k!
ENA

k :

Proposition 3.4 Let .X ;L�; a�/�2.��;�/ be a family of normal test configurations of .X;�KX /, with a
fixed total space and varying polarization. Assume that X0 D

P
i biEi for irreducible components Ei ,

and that L� is differentiable with respect to �. Then we have the derivative formula

(124) d

d�
zS NA.X ;L; a�/D a

P
i eiQ

.a/
i

Q.a/
;

where Q
.a/
i D .1=V /

R
Ei

e�a�!n.

Proof We use the intersection formula (121) to get

V �
d

d�
ENA

k D
d

d�

k!n!

.kC n/!
.xLŒk�1�/�nCk

D
k!n!

.kC n� 1/!
.xLŒk�1�/�nCk�1

�
PxLŒk�1�

D
k!n!

.kC n� 1/!

X
i

ei

Z
E
Œk�1�

i

.�C‚t/nCk�1
D k

X
i

ei

Z
Ei

�k�1!n;
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where E
Œk�1�
i D .Ei �Ck�1 n f0g/=C�. So we get the desired formula

d

d�
Q.a/

D

X
k

.�1/k
ak

k!

d

d�
ENA

k D

X
kD1

.�1/k
ak

.k � 1/!

X
i

ei
1

V

Z
Ei

�k�1!n

D�a
X

i

ei
1

V

Z
Ei

X
jD0

.�1/j

j !
.a�/j!n

D�a
X

i

ei
1

V

Z
Ei

e�a�!n
D�a

X
i

Q
.a/
i :

The termwise differentiation and the change of summation are valid because of absolute convergence.

3.2 Decreasing of H NA along MMP

Theorem 3.5 Let G be a reductive group and .X ;L; a�/ be a G–equivariant normal test configuration.
There exists a G–equivariant special test configuration .X s;Ls; as�s/ such that

(125) H NA.X ;L; a�/�H NA.X s;Ls; as�s/:

Moreover , if X0 is reduced , then the identity holds true if X is already a special test configuration.

Proof For simplicity of notation, we assume G is trivial. The general case is obtained by running the
G–equivariant MMP in the following arguments.

Step 1 Choose a semistable reduction of X ! C. By this, we mean that there is an integer d and a
G–equivariant log resolution of singularities zX ! X .d1/ WD .X �C;t!td1 C/norm (see (49)) such that
.zX ; zX0/ is simple normal crossing. In particular, X .d1/

0
is reduced. By using the identity (51) and

Lemma 2.35 we easily get

(126) H NA.X .d1/;L.d1/; a�.d1/=d1/DH NA.X ;L; a�/:

Step 2 In this step, we show that there exist d1 2Z>0, a projective birational C�–equivariant morphism
� W X lc! X .d1/ and a normal, ample test configuration .X lc;Llc/=C for .X;L/, such that

(127) H NA.X .d1/;L.d1/; a�.d1/=d1/�H NA.X lc;Llc; a�lc=d1/:

Moreover, if the equality holds, then .X .d1/;L.d1// is isomorphic to .X lc;Llc/, and hence .X ;X0/ is
already log canonical.

We run a C�–equivariant MMP to get a log canonical modification � lc W X lc! X .d1/ such that .X lc;X lc
0
/

is log canonical and KX lc is relatively ample over X .d1/. Set E DKX lc C .� lc/�LD
Pk

iD1 eiX0;i with
e1 � e2 � � � � � ek and Llc

�
D .� lc/�L.d1/C �E. Then since E is relatively ample over X .d1/, L� is

ample over X lc for 0< �� 1. So

LNA.X lc;Llc
� ; a�

lc=d1/D
a

d1
LNA.X lc;Llc

� ; �
lc/D

a

d1
.1C�/e1:

By definition (76), we have

zS NA.X lc;Llc
� ; a�

lc=d1/D�log Q.ad�1
1
/; H NA.X lc;Llc

� ; a�
lc=d1/D

a.1C�/e1

d1

C log Q.ad�1
1
/:
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We then use (124) to calculate

d

d�
H NA.X lc;Llc

� ; a�
lc=d1/D

ae1

d1

�
a

d1

P
i eiQ

.ad�1
1
/

iP
i Q

.ad�1
1
/

i

D�
a

d1

P
i.ei � e1/Q

.ad�1
1
/

i

Q.ad�1
1
/

� 0:

The last identity holds if and only if ei � e1, and hence .X .d1/;L.d1// Š .X lc;Llc/. In this case,
.X .d1/;X .d1/

0
/ is log canonical, which implies that .X ;X0/ is already log canonical, by the pullback

formula for the log differential; see [56, page 210].

Step 3 With the .X lc;Llc/ obtained from the first step, we run a relative MMP with scaling to get a
normal, ample test configuration .X ac;Lac/=P1 for .X;�KX / with .X ac;X ac

0
/ log canonical such that

�KX ac �Q;C Lac. More concretely, we take q � 1 such that Hlc D Llc � .q C 1/�1.Llc CKX lc/ is
relatively ample. Set X 0 D X lc, L0 D Llc, H0 D Hlc and �0 D qC 1. Then KX0 C �0H0 D qL0. We
run a sequence of KX0–MMP over C with scaling of H0. Then we obtain a sequence of models

X 0 Ü X 1 Ü � � �Ü X k

and a sequence of critical values

�iC1 Dminf� jKX i C�Hi is nef over Cg

with qC 1D �0 � �1 � � � � � �k > �kC1 D 1. For any �i � � � �iC1, we let Hi be the pushforward
of H to X i and set

(128) Li
� D

1

��1
.KX i C�Hi/D

1

��1
.KX i CHi/CHi

DW
1

��1
ECHi :

Write E D
Pk

jD1 ejX i
0;j

with e1 � e2 � � � � � ek . Then we have .d=d�/Li
�
D�.1=.�� 1/2/E and

LNA.X i ;Li ; a�i=d1/D
a�

��1
e1:

So we can again use (124) to calculate

d

d�
H NA

�
X i ;Li

�;
a�i

d1

�
D�

a

d1.�� 1/2
e1C

a

d1.�� 1/2

P
i eiQ

.ad�1
1
/

i

Q.ad�1
1
/

D
a

d1.�� 1/2

P
i.ei � e1/Q

.a/
i

Q.a/
� 0:

The last identity holds only if ei � e1, which implies .X lc;Llc/Š .X ac;LacC e1X ac
0
/.

Step 4 With the test configuration .X ac;Lac/ obtained from Step 2, there exists a d22Z>0 and a projective
birational TC �C�–equivariant birational map .X ac/.d2/ Ü X s over P1 such that .X s;�KX s / is a
special test configuration and

(129) H NA
�
X ac;Lac;

a�

d1d2

�
�H NA

�
X s;Ls;

a�s

d1d2

�
:
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As in [56], this is achieved by doing a base change and running an MMP. Let ED�KX s=P1�.�KX 0=P1/.
Then E � 0 by the negativity lemma. So L0

�
D�KX 0=P1 C�E, and

(130) lct
�
X 0;L0�;

a�0

d1d2

�
D

a

d1d2
�e1:

So, as before, we get

d

d�
H NA

�
X 0;L0�;

a�0

d1d2

�
D

a

d1d2
e1�

a

d1d2

P
i eiQ

.ad�1
1
/

i

Q.ad�1
1
/
D�

a

d1d2

P
i.ei � e1/Q

.ad�1
1
/

i

Q.ad�1
1
/

� 0:

The last identity holds only if ei � e1 which implies .X ac;Lac/Š .X s;Ls/.

Corollary 3.6 We have the identity

(131) h.X /D inf
.X ;L;a�/ special

H NA.X ;L; a�/:

Lemma 3.7 For any normal test configuration .X ;L; �/, there exists a unique a� > 0 such that

(132) H NA.X ;L; a��/D inf
c>0

H NA.X ;L; a�/DWH NA
� .X ;L/:

As a consequence , we have

(133) h.X /D inf
.X ;�KX / special

H NA
� .X ;L/:

Proof By taking normalization of a fiber product, without loss of generality we can assume that X
dominates XC WDX �C by a C�–equivariant birational morphism � W X !XC .

Choose a C�–equivariant resolution of singularities � W zX ! X such that the pair .zX ; zX red
0
/ has simple

normal crossing singularities. Set z�D � ı�. Then we can write

KzX D z�
�KXC C

X
i

aiEi C

X
j

a0j E0j ; ��X0 D

X
i

biEi ; ��LD z��.�KXC /C
X

i

ciEi ;

where fEig are irreducible components of zX0 and fE0j g are horizontal exceptional divisors. Then we
have the identity (see [19, Proposition 7.29])

LNA.X ;L/D lct.X ;�.KX CL/IX0/� 1

Dmin
i

�
b�1

i A.X�C;X�f0g/.Ei/C b�1
i ordEi

�X
k

ckEk

��
Dmin

i

1C ai C ci

bi
� 1:

Because H NA is translation-invariant, by adding a multiple of X0 to L we can normalize � D �F to
satisfy LNA.�/D 0. So we get

(134) ci � bi � 1� ai

and, without loss of generality, c1 D b1� 1� a1. So

(135) �min Dmin
i

ci

bi
�

c1

b1

D 1�
a1C 1

b1

D 1�AXC .b
�1
1 ordE1

/D�AX .vE1
/� 0;
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where vE1
WD r.b�1

1
ordE1

/ is the restriction of the valuation ordE1
to the function field C.X /. Here we

used the identity between log discrepancies from [19, Proposition 4.11] and the assumption that X has
log terminal singularities.

Set F D F.X ;L;�/. Then according to (43), we have F.X ;L;a�/ D aF.X ;L;�/. Moreover, by (74), (76)
and (90), we get the expression

f .a/ WDH NA.aF/D aLNA.F/C log
�

1

V

Z C1
�min

e�a� DH.F/
�
:

By Lemma 2.36, f .a/ is convex in a 2 Œ0;C1/. If �min < 0, then f .a/ diverges to C1 as a!C1 by
the above expression. So f .a/ admits a unique minimum over Œ0;C1/.

If �min D 0, then by (135) AX .vE1
/D 0, which implies that vE1

is trivial so that

�max D ordE1

�X
k

ckEk

�
D c1 D 0D �min:

See [19, Theorem 5.16]. This implies that the normal test configuration .X ;L/ is equivalent to a trivial
test configuration and hence H NA.X ;L; a�/� 0.

4 A minimization problem for real valuations

In this section, we will introduce a minimization problem for valuations analogous to the normalized
volume functional in the local setting [51].

Definition 4.1 For any v 2 Val.X /, define

(136) ž.v/D

�
AX .v/� zS

NA.Fv/ if AX .v/ <C1;

C1 otherwise.

Note that by integration by parts we have

(137) e�
zS NA.Fv/ D

1

V

Z
R

e�x DH.Fv/D
1

V

Z C1
0

e�x.�dvol.F .x/v //

D 1�
1

V

Z C1
0

vol.F .x/v R�/e
�x dx � 1;

with identity if and only if v is trivial. So we can rewrite ž.v/ as

(138) ž.v/DAX .v/C log
�

1�
1

V

Z C1
0

e�x vol.F .x/v R�/ dx

�
:

Lemma 4.2 For any v 2X div
Q , we have the inequality

(139) H NA.Fv/� ž.v/:

Moreover , if .X ;�KX ; a�/ is a special test configuration , then equality holds for vD avX0
D a �r.ordX0

/.
(See Definition 2.12.)
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Proof The inequality follows immediately from

(140) inf
w
.A.w/C�v.w//�A.v/C�v.v/DA.v/:

When .X ;�KX ; a�/ is a special test configuration and v D avX0
, then

(141) LNA.X ;�KX ; a�/D aLNA.X ;�KX ; �/D a.lct.X IX0/� 1/D 0:

On the other hand, by (46),

(142) LNA.X ;�KX ; a�/DLNA.Fv.�A.v//DLNA.Fv/�A.v/:

So we get

(143) H NA.Fv/DLNA.Fv/� zS NA.Fv/DA.v/� zS NA.v/D ž.v/:

Lemma 4.3 For any � D �F and v 2X div
Q , we have the inequality

(144) zS .v/C�.v/� zS NA.�/:

Proof We use the same argument as in [52, Section 4.1]. Set  D �.v/. Then by the argument there, we
have �min D �min.F/�  and we can then estimate

e�
zS NA.�/

DQ.�/D
1

V

Z
R

e�x.�dvol.F .x///D e��min �
1

V

Z
�min

e�x vol.F .x/R�/ dx

� e� �
1

V

Z C1


e�x vol.F .x/R�/ dx � e� �
1

V

Z C1


e�x vol.F .x�a/
v / dx

D e� � e�
1

V

Z C1
0

e�x vol.F .t/v / dt D e�
1

V

Z C1
0

e�x.�dvol.F .t/v //

D e��.v/e�
zS NA.v/:

Proposition 4.4 For any Q–Fano variety, we have the identity

(145) h.X /D inf
v2X div

Q

ž.v/:

Proof For any test configuration .X ;L; a�/, by Theorem 3.5 there exists a special test configuration
.X s;Ls; as�s/ such that

(146) H NA.X ;L; a�/�H NA.X s;Ls; as�s/D ž.asvX s
0
/:

The last identity is from Lemma 4.2. This together with Corollary 3.6 implies identity (145).

Alternatively, recall that LNA.�/D infv2X div
Q
.AX .v/C �.v//. So for any � > 0 we can choose v such

that AX .v/C�.v/ <LNA.�/C �. We can then use v in (144) to get

LNA.�/� zS NA.�/�AX .v/C�.v/� �� .�.v/C zS .v//D ž.v/� �:

Since � is arbitrary, we can use (97) to get the identity (145).
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With the identity (145) and Proposition 2.32, we get:

Corollary 4.5 For any Q–Fano variety, we have the equality

(147) h.X /D inf
F

H NA.F/:

The next result should be compared to Lemma 3.7.

Proposition 4.6 For any v 2 VVal.X /, there exists a unique a� D a�.v/� 0 such that

(148) ž.a�v/D inf
a>0

ž.av/DW ž�.v/:

When ˇ.v/ � 0, then a� D 0, so that a�v is the trivial valuation and ž�.v/D 0. Otherwise , a�.v/ > 0

and ž�.v/ < 0.

Proof Consider the function defined on R�0 by

(149) f .a/DA.av/� zS NA.av/D aA.v/C log
�

1

V

Z C1
0

e�x DH.Fav/

�
D aA.v/C log

�
1

V

Z C1
0

e�ax DH.Fv/
�
:

We will show that a 7! f .a/ is convex and goes to C1 as a!C1. Now

f 0.a/DA.v/�

RC1
0 xe�ax DH.Fv/RC1
0 e�ax DH.Fv/

;

f 00.a/D

R
x2e�ax DHR
e�ax DH

�

� R
xe�ax DH

�2� R
e�ax DH

�2 D kx� xxk2L2.d�/
� 0;

where

(150) d� D
e�ax DHR
e�ax DH

and xx D

Z
x d�:

So f 00.a/D 0 if and only if av is trivial. Moreover, f 0.0/DA.v/� .1=V /
RC1

0 x DH.Fv/D ˇ.v/.

On the other hand, f .0/D 0 and we claim that lima!C1 f .a/DC1, which then implies the statement.
To prove this divergence, we set g.x/D V �1=n vol.F .x/R�/1=n. Then g.x/ is decreasing, and concave
on Œ0; �max� by Theorem 2.5. As a consequence, the subset fx 2 R�0 j g

0.x/ existsg is dense in R�0,
by Aleksandrov’s differentiability theorem for concave functions. Fix 0< �� �max such that g0.�/ exists
and g.�/ < g.0/D 1. Setting C D�g0.�/ > 0 and T D .1CC�/=C , define a function

(151) yg.x/D

8<:
1 if x 2 Œ0; ��;

1CC��Cx if x 2 .�;T �;

0 if x 2 .T;C1/:

Then yg.x/� g.x/ over Œ0;C1/, by concavity. Then we calculate to get

(152) a

Z C1
0

ygn.x/e�ax dx D 1� nC mn�1;
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where mk D
R T
� .1CC��Cx/ke�ax dx satisfies

mk D
1

a
e�a�

�
kC

a
mk�1 D

1

a
e�a�

�
kC

a

�
1

a
e�a�

�
.k�1/C

a
mk�2

�
:

Using induction we get mn�1 D a�1e�a�.1CO.a�1//. So

e�
zS NA
.Fav/D 1� a

Z C1
0

gn.x/e�ax dx � 1� a

Z C1
0

ygn.x/e�ax dx

D nC mn�1 D nCa�1e�a�.1CO.a�1//:

So we get � zS NA.Fav/� �log a� a�CO.1/, giving

(153) f .a/D ž.av/� .A.v/� �/a� log aCO.1/;

which approaches C1 as a!C1 if we choose 0< � <A.v/.

Remark 4.7 By the above proof, we get an estimate: for any C1 > 0, there exists a C2 D C2.C1; v/ > 0

such that for any w 2 Val.X / with w � C1v, we have

(154) a�.w/�
C2

A.v/
:

Corollary 4.8 We always have h.X /� 0, with equality holding if and only if h.X /D 0.

Proof By [37; 50], X is K–semistable if and only if ˇ.v/ � 0, which implies ž�.v/D 0. If X is not
K–semistable then there exists v0 such that ˇ.v0/ < 0. By Proposition 4.6, we then have ž�.v0/ < 0, which
implies h.X / < 0.

Lemma 4.9 If v computes h.X /, then v is the unique valuation , up to rescaling , that computes lct.a�.v//.

Proof Recall that lct.a�/D infw A.w/=w.a�.w//. For any w 2 Val.X /, assume that w.a�.v//D a> 0.
Then a�1w � v. By Proposition A.1, the function

w 7! zS NA.w/D�log 1

V

Z
R

e�� DH.Fw/

is strictly increasing on Val.X /. So we use the assumption to get
A.w/

w.a�.v//
DA.a�1w/DA.a�1w/� zS NA.a�1w/C zS NA.a�1w/

�A.v/� zS NA.v/C zS NA.v/DA.v/

D
A.v/

v.a�.v//
:

When the equality holds, then a�1w D v.

We now observe that the method developed in [14] can be used to prove:

Theorem 4.10 For any Q–Fano variety, there exists a minimizing valuation of ž which is quasi-
monomial.
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Since the argument is almost verbatim to [14] except for the continuity property of ž, we just give a
sketch of key points and explain the required continuity of ž in Section 8. Without the properties of ž.S/
explained in Section 8, the existence of a valuation calculating h.X / (but without the quasimonomial
property) can also be obtained using the argument in [11, Section 6].

Proof By Corollary 3.6, h.X /D infE
ž
�.E/, where E ranges over prime divisors over X that induce

special test configurations of .X;�KX /. By [14, Theorem A.2], we know that such an E is an lc place of
an N –complement D of X , where N depends only on the dimension n (this depends on the deep result
of Birkar about the boundedness of Q–complements). So we have

(155) h.X /D inf
v
ž
�.v/;

where v ranges over all divisorial valuations that are lc places of an N –complement. For such a valuation v,
there exists a D 2 .1=N /j�NKX j such that .X;D/ is lc and A.X ;D/.v/D 0. We then parametrize such
Q–divisors as in [14, Proof of Theorem 4.5]. Set W D P .H 0.X;OX .�NKX // and denote by H the
universal divisor on X �W parametrizing divisors in j�NKX j and set D WD .1=N /H . By the lower
semicontinuity of log canonical thresholds, the locus Z D fw 2W j lct.XwIDw/D 1g is locally closed
in W . For each z 2Z, set bz WD infv ž.v/, where v ranges over all v 2 Val.X / with A.X ;Dz /.v/D 0.

Let g W Yz!X be a log resolution of .X;Dz/. Write KY CDYz
D g�.KX CDz/. Consider the section

of the simplicial cone, S WD QM.Yz;DYz
/
T
fv 2 Val.X / jA.v/D 1g. By Proposition 4.6, we know that

for each v 2 S there exists a�.v/ such that infa>0
ž.av/ D ž.a�.v/v/ DW ž�.v/. By Izumi’s estimate

(see [48, Example 11.3.9; 44, Proposition 5.10] for the smooth case, and [51, Section 3] in the klt case),
we know that there exists C1 > 0 such that for any v 2 S we have v � C1 � ordF , where F D

T
i DYz ;i .

Now by the proof of Proposition 4.6 (see Remark 4.7), we know that a�.v/ is uniformly bounded for
any v 2 S. By Proposition A.2, we know that v 7! ž.v/ is continuous on QM.Yz;DYz

/ and hence is
uniformly continuous over compact subsets. We then get the continuity of v 7! ž�.v/ over the compact
set S. So we know that there exists v�z 2 S such that ž�.v�z /Dminv2S ž�.v/ and a�.v

�
z / � v

�
z is then a

minimizer of ž over QM.Yz;DYz
/.

Then as [14, Proof of Theorem 4.5], choose a locally closed decomposition Z D
Sr

iD1 Zi so that Zi is
smooth and there is an étale map Z0i!Zi such that .XZ 0

i
;DZ 0

i
/ admits fiberwise log resolutions. By the

same arguments as [14, Proof of Propositions 4.1 and 4.2], which depend on the deformation invariance of
log plurigenera in the work of Hacon, McKernan and Xu, we know that bz is independent of z 2Zi . So bz

takes finitely many values and there is a z0 2Z such that h.X /Dminz2Z bz D bz0
is computed by v�z0

.

As in the case of normalized volume, we expect the following:

Conjecture 4.11 The minimizer v� is unique , and is special , which means that Fv� is a special R–test
configuration.

Remark 4.12 As [11, Proposition 4.11], using Lemma 4.9 one can show that any divisorial (ie rational
rank one) minimizing valuation is primitive and plt.
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Besides the case of stability threshold treated in [14], in the local setting of normalized volumes, the
existence of quasimonomial minimizers is also known thanks to the work of Blum [10] and Xu [78].
Moreover, one might also be able to adapt the techniques in Xu and Zhuang [80] to the current global
setting to prove the uniqueness of minimizing valuations.3 We will prove in Section 6 the uniqueness of
special minimizers (in a similar spirit to the work in [58; 57; 55]).

5 Initial term degeneration of filtrations

Let F0 be a special R–test configuration of .X;�KX / with central fiber .W WD Proj.Gr.F0//; �0 WD �F0
/.

Let F1 be another filtration of R. We define a filtration on

(156) R0 WDR.W;�KW /D
M
m�0

M
�2�.F0/

t��F�0 Rm=F>�0 Rm DW

M
m�0

R0m

in the following way. Recall that we can write

(157) R0m D
M
˛2MZ

t�h˛;�0iF h˛;�0i

0
Rm=F

>h˛;�0i

0
Rm:

For any f 2Rm, set

(158) inF0
.f /D .t�h˛;�i xf /.0/DW f 0 2 F h˛;�0i

0
Rm=F

>h˛;�0i

0
Rm; where h˛; �0i D vF0

.f /:

For any � 2R, take the Gröbner base-type degeneration

(159) F 0�1 R0m D SpanCfinF0
.f / j f 2 F�1 Rmg �R0m:

Note that because R0 is integral, inF0
.fg/D inF0

.f / � inF0
.g/ if f 2Rm1

and g 2Rm2
. So in this way,

we get a T0–equivariant filtration

(160) F 0�1 R0m D
M
˛2Zr0

F 0�1 R0m;˛:

There is an equivalent way to describe F 0�
1

R0m, as follows. For any f 0 2R0m;˛ , we choose f 2Rm such
that f 0 D t�h˛;�0i xf .0/. Then we have

(161) F 0�1 R0m;˛ D ff
0
2R0m;˛ j f C h 2 F�1 Rm for some h 2 F>h˛;�0i

0
Rmg:

This is well defined since f is determined up to addition by elements from F>h˛;�0i

0
Rm.

Note that this construction allows us to find a basis B D fs1; : : : ; sNm
g of Rm that is compatible with

both F0Rm and F1Rm. Recall that this means that for any � 2R and i D 0; 1, there exists a subset of B
which depends on � and i and is a basis of F�i Rm. To find such a basis, we can first find a basis B0˛ of
R0m;˛ which is compatible with F 0

1
Rm;˛ . Then BD

S
˛ B˛ DW ff

0
1
; : : : ; f 0

Nm
g is a basis compatible with

3This has indeed been recently achieved in [15].
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both F 0
1
Rm and F 0wt�0

R0m. For each f 0
k
2R0m;˛k

, there exists �k 2R such that f 0
k
2F 0�k

1
R0mnF

0>�k

1
R0m.

Then by (161), there exists hk 2 F>h˛k ;�i
0

Rm such that sk WD fk C hk 2 F�k

1
Rm. Moreover, we have

sk 62 F>�k

1
Rm since otherwise in.sk/ D in.fk/ D f

0
k
2 F 0>�k R0m. It is easy to verify that fskg is the

desired basis. So the relative successive minima of F1 with respect to F0 (see [20]) is given by the set
f�k � h˛k ; �0ig, which is the same as the relative successive minima of F 0

1
WD F 0

1
R0 with respect to

F 0
0
WD F 0wt�0

R0. This immediately proves a useful fact:

Lemma 5.1 With the above constructions and notation , we have the identity

(162) dX
2 .F0;F1/D dW

2 .F 00;F
0
1/:

Since the initial term degeneration does not change the dimension of vector spaces, it is clear that the
successive minima of F1 and F 0

1
coincide. As a consequence, we get

(163) zS NA
X .F1/D zS

NA
W .F 01/:

On the other hand, consider the T0–equivariant graded filtration of the Rees algebra R0 WD R.F0/

(see (30)) given by

(164) F 0�R0m;˛ D fs D t�h˛;�i xf 2R0m;˛ j t
�� xf 2R.F1/g:

Then F 0R0 coincides with FR on the generic fiber and coincides with F 0R0 on the central fiber. By the
lower semicontinuity of lct for a family, it is easy to see that yLNA in (80) is also lower semicontinuous for
a family. This is standard if F0 has rank one, which corresponds to a special test configuration; see [47,
Lemma 8.1; 13, Proof of Lemma 6.5]. In general, one can restrict to a generic curve passing through 0 in
the family in Teissier’s construction in the paragraph above Lemma 2.11; alternatively, see Remark 6.2.
So we can get

(165) LNA.F1/D yL
NA
X .F1/� yL

NA
W .F 01/DLNA.F 01/;

where the first and the last identity come from Proposition 2.32. Combining the above discussion, we get
the inequality

(166) H NA
X .F1/�H NA

W .F 01/:

Theorem 5.2 Assume v induces a special R–test configuration Fv of X . Then v is a minimizer of ž

over Val.X / if and only if v is Ding-semistable (or equivalently K–semistable).

Proof For simplicity of notation, set F0 D Fv and .W; �0/ WD .XFv;0; �F0
/ and let T0 be the torus

generated by �0.

We first prove that minimizer is Ding-semistable. Suppose .W; �0/ is not Ding-semistable. Then by
Theorem 2.46 from [39], there exists a T–equivariant special test configuration .W;�KW/ of .W;�KW /

with central fiber Y WDW0 such that

(167) DNA
g .W;�KW/D FutY;�.�/ < 0:
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We can now construct a family of valuations fv�g such that v� induces special test configurations with
central fiber Y and corresponds to a vector field �� D �0C �� on Y . This can be done by using the cone
construction to reduce to the situation in [58, Section 6] or [57, Proof of Theorem 2.64]. Alternatively,
one can use an argument involving the Hilbert scheme as in [55, Proof of Lemma 3.1].

Here we will use the Chow variety to explain this construction. Recall that the Chow point of a cycle
Z�PN�1 of degree d and dimension n corresponds to a divisor in the Grassmannian Gr.N �n�1;CN /

which is the zero scheme of a section:

CH.Z/ 2H 0.Gr.N � n� 1;CN /;O.d//DWM:

CH.Z/ is determined up to rescaling and we call it the Chow coordinate of Z. Let CH.X /, CH.W / and
CH.Y / be the Chow coordinates of X , W and Y , respectively. Denote by ŒCH.X /� the Chow point of X

in the projectivization P .M/, and similarly for Y and W . Since the T–action on PN�1 induces a weight
decomposition MD

L
˛ M˛, we have

(168) lim
s!C1

��.s/ ı ŒCH.X /�D ŒCH.W /� and lim
s!C1

��.s/ ı ŒCH.W /�D ŒCH.Y /�:

If we set

(169) CW�.X /Dminfh˛; �i j CH.X /˛ ¤ 0g and CW�.W /Dminfh˛; �i j CH.W /˛ ¤ 0g;

then

ŒCH.W /�D

� X
˛2IW

CH.X /˛

�
; where IW D f˛ j CH.X /˛ ¤ 0; h˛; �i D CW�.X /g;

ŒCH.Y /�D
� X
˛2IY

CH.W /˛

�
; where IY D f˛ j CH.W /˛ ¤ 0; h˛; �i D CW�.W /g:

Note that IY � IW . For any ˛ 2MZ with CH.X /˛ ¤ 0, we have that h˛; �i � CW�.X /, with equality
if and only if ˛ 2 IW . Similarly, for any ˛ 2MZ with CH.W /˛ ¤ 0 (and hence CH.X /˛ ¤ 0), we have
that h˛; �i �CW�.W /, with equality if and only if ˛ 2 IY . So when 0< �� 1 and for any CH.X /˛ ¤ 0,
we have that h˛; �C ��i � CW�.X /C �CW�.W /, with equality if and only if ˛ 2 IY . So we get

lim
t!0

��C��.t/ ı ŒCH.X /�D lim
t!0

�X
˛

t h˛;�C��iCH.X /˛

�
D ŒCH.Y /�:

So for 0< �� 1, �C �� induces an R–test configuration that degenerates X to Y . By Lemma 2.11, we
get the corresponding valuations v�.

Now we use the identity (113) to get

(170) d

d�

ˇ̌̌
�D0

ž.v�/D
d

d�
H NA

Y .Fwt�C��/D FutY;�.�/ < 0:

But this contradicts the assumption that v0 D v is the minimizer of ž.
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Conversely, we need to show that a Ding-semistable valuation is a minimizer. Let .X ;L; a�/ be any
special test configuration of .X;�KX / and F1 D F.X ;L;a�/ be the associated filtration. We consider the
initial term degeneration of F1 with respect to F0 defined as above. Then we can use (166) to get

H NA
X .F1/�H NA

W .F 01/�H NA
W .Fwt�0

/DH NA.F0/D ž.v/;

where the second inequality follows from the results in Lemma 6.1 in the next section and the assumption
that .W; �0/ is Ding-semistable.

6 Uniqueness of minimizing special R–test configurations

We prove Theorem 1.2 in this section. We first generalize the formula (113). Let .X;�KX ;T ; �/ be the
data as before and F be a T–equivariant filtration. We consider a family of T–equivariant filtrations

(171) Fs D sF..1�s/=s/� for s 2 .0; 1�; with F0 D Fwt� and F1 D F ;

which interpolates Fwt� and F .

Lemma 6.1 For the family of filtrations (171), the following statements hold true:

(i) The map s 7!H NA.Fs/ is smooth and convex. It is affine if and only if GF is a multiple of hx; �i.

(ii) We have the derivative formula

(172) d

ds

ˇ̌̌
sD0

H NA.Fs/D ˇ�.F��/:

To get (113) from (172), we just need to set F D Fwt�C� so that Fs D F�Cs�. Moreover, we fix a
faithful valuation that is adapted to the torus action (see Definition 2.21) and will freely use the associated
Newton–Okounkov body �D�.�KX / of .X;�KX /.

Proof By Lemma 2.22 and (25), as functions on �D�.�KX /, we have

(173) G.s;y/ WDGFs
.y/D .1� s/hy; �iC sGF .y/:

So, by using Lemma 2.35, we get

LNA.Fs/D sLNA.F/;(174)

� zS NA.Fs/D log
�

n!

V

Z
�

e�G.s;y/ dy

�
:(175)

LNA.Fs/ is linear in s and� zS NA.Fs/ is smooth in s. By Hölder’s inequality, � zS NA.Fs/ is strictly convex
in s unless GF is a multiple of hx; �i. This implies that H NA.Fs/DLNA�S NA is convex in s 2 Œ0; 1�.

To see (172), we calculate

d

ds

ˇ̌̌
sD0

H NA.Fs/DLNA.F/C
R
�.hy; �i �GF .y//e

�G.0;y/ dxR
� e�G.0;y/ dy

DLNA.F��/�
n!

V�

Z
�

GF�� .y/e
�hy;�i dy D ˇ�.F��/:

Geometry & Topology, Volume 28 (2024)



Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties 579

Assume that there are two special R–test configurations Fi D fFiRmg for i D 0; 1 of .X;�KX / that
minimize H NA. By Theorem 5.2, the central fibers .W .i/ WD Proj.GrFi

/; �i D �Fi
/ are both Ding-

semistable. Now consider the initial term degeneration of F1 with respect to F0 as in the above section.
We get a T0–equivariant filtration F 0

1
on R0DR.W .0/;�KW .0// and by (166), H NA

X
.F1/�H NA

W .0/.F 01/.

Now, as at the beginning of this section, consider the family of filtrations that interpolates F 0
1

and
Fwt�0

R0 DW F 0wt�0
,

(176) F 0s WD sF 0..1�s/=s/�0
R0:

Applying Lemma 6.1 to .W .0/; �0;F 0s/, we know that D.s/ WDH NA.F 0s/ is convex in s 2 Œ0; 1�. Moreover
we have the relation

(177) D.0/DH NA
W .0/.Fwt�0

/DH NA
X .F0/DH NA

X .F1/�H NA.F 01/DD.1/:

The 3rd identity is by Theorem 5.2, that the Fi for i D 0; 1 both obtain the minimum of H NA.

On the other hand, by (172),
d

ds

ˇ̌̌
sD0

H NA.F 0s/D ˇ�0
.F 0
��0
/� 0:

The last inequality is because .W .0/; �0/ is Ding-semistable.

By convexity of D.s/, we conclude that D.s/ is constant in s and by Lemma 6.1 that GF 0
1
.y/� hy; �0i

for any y 2�0 D�.W .0/;�KW .0// (the Okounkov body of .W .0/;�KW .0//).

By the discussion in previous section, we know that the relative successive minima of F1 with respect to
F0 is the same as the relative successive minima of F 0

1
with respect to F 0wt�0

, which is the same as the
successive minima of F 0

��0
and is given by the difference �k � h˛k ; �0i with the notation there. So we

get by Lemma 5.1 that

d2.F0;F1/
2
D d2.F 00;F

0
1/D lim

m!C1

X
k

.�k � h˛k ; �0i/
2

m2
D lim

m!C1

X
i

�
.m/
i .F 0

��0
/2

m2

D

Z
R
�2 DH.F 0

��0
/2 D

Z
�0

G2
F 0
��0

dy D

Z
�0
.GF 0 � hy; �0i/

2 dy D 0:

By [20], we know that F0 is asymptotically equivalent to F1. By Lemmas 2.11 and 2.29 (see also
Proposition 2.27), we get F0 D F1.

Remark 6.2 Although here we are dealing with filtration of arbitrary ranks, the unique result in this
section (and minimization result in previous section) can also be proved by using r WD rk.F0/–step
degenerations to reduce to the rank-one case. To see this, we first choose f�1; : : : ; �r g 2NQŠQr (where
N D Hom.C�;T0/ as before) such that:

� SpanRf�1; : : : ; �r g DNR.

� For any 1� k � r , �k induces a special test configuration whose central fiber is the same as W .0/.
This is achieved by choosing �k satisfying j�k � �0j � 1.
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By abuse of notation, we denote by F 0
�0

(resp. F 0�1
) the filtration on R D R.X;�KX / corresponding

to the R–test configuration induced by �0 (resp. �1), and also the filtration on R0 DR.W .0/;�KW
.0/

0
/

corresponding to the weight filtration induced by �0 (resp. �k for 2 � k � r ). Set F 0.0/
1
D F1 and

inductively define F 0.k/
1

to be the initial term degeneration of F 0.k�1/
1

with respect to F 0�k
for 1� k � r .

By (166) for the rank-one case, we have

(178) H NA
X .F 0.0/

1
/�H NA

W .0/.F
0.1/
1
/ and H NA

W .0/.F
0.k�1/
1

/�H NA
W .0/.F

0.k/
1

/ for 2� k � r:

So if F1 D F 0.0/
1

obtains the minimum of H NA
X

, then F 0.k/ for any 1� k � r also obtains the minimum
of H NA

W .0/ . Now because F 0.r/ is T0–invariant and F 0
�0
D F 0wt�0

also obtains the minimum of H NA
W .0/ , we

can use Lemma 2.38 to conclude that F 0.r/ D F 0
�0

.

On the other hand, by Lemma 5.1, we get for 2� k � r that

dX
2 .F

0.0/
1
;F 0�1

/D dW .0/

2 .F 0.1/
1
;F 0�1

/ and dW .0/

2 .F 0.k�1/
1

;F 0�k
/D dW .0/

2 .F 0.k/
1

;F 0�k
/:

So for any 1� k � r , we get, by omitting the superscripts and using the triangle inequality,

d2.F
0.k�1/
1

;F 0�0
/� d2.F

0.k�1/
1

;F 0�k
/C d2.F 0�k

;F 0�0
/

D d2.F
0.k/
1

;F 0�k
/C d2.F 0�k

;F 0�0
/

� d2.F
0.k/
1

;F 0�0
/C 2d2.F 0�k

;F 0�0
/:

So we can inductively estimate

d2.F1;F0/D d2.F
0.0/
1
;F 0�0

/� d2.F
0.1/
1
;F 0�0

/C 2d2.F 0�1
;F 0�0

/

� d2.F
0.2/
1
;F 0�0

/C 2.d2.F 0�2
;F 0�0

/C d2.F 0�1
;F 0�0

//
:::

� d2.F
0.r/
1
;F 0�0

/C 2

rX
kD1

d2.F 0�k
;F 0�0

/

D 2

rX
kD1

d2.F 0�k
;F 0�0

/:

Now we can choose �k so that d2.F 0�k
;F 0
�0
/ is arbitrarily small for all 1 � k � r . So we indeed get

d2.F1;F0/D 0, as desired.

7 Cone construction and g–normalized volume

Let X be an n–dimensional Q–Fano variety and for simplicity of notation, assume that �KX is Cartier.
Recall that RD

L
m Rm D

L
H 0.X;m.�KX //. We define the cone

(179) C D C.X;�KX /D SpecCR; oDmD
M
m>0

Rm:

Then .C; o/ is a klt cone singularity.
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Since X admits a C� �T–action, we have a decomposition of the coordinate ring of R,

(180) RD
M
m�0

M
˛2Zr

Rm;˛:

For any T–invariant homogeneous primary ideal a D
L

m

L
˛ am;˛ � R, define the g–colength and

g–multiplicity of a by

coleng.a/D
X
m�0

X
˛

g
�
˛

m

�
dim Rm;˛=am;˛;(181)

multg.a/D lim
k!C1

coleng.a
k/

knC1=.nC 1/!
:(182)

See [63] for the study of such equivariant multiplicity. More generally, let a� D fakgk2N be a graded
sequence of C��T–invariant ideals. We define

(183) multg.a�/D lim
k!C1

coleng.ak/

knC1=.nC 1/!
:

One can use the techniques of Newton–Okounkov bodies to show that the limit exists. To see this, we
can adapt the argument in the work in [46] as follows. First choose a valuation v adapted to the T–action
on X (in the sense of Definition 2.21). We can construct a C��T–invariant ZnC1–valuation on C by

(184) V.f /D .m; v.f // for any f 2Rm:

Denote by C the strongly convex cone which is the closure of the convex hull of the value semigroup V.R/.
To each graded sequence of C��T–invariant ideals a�, one can associate a convex region xP WD xP .a�/�C

such that xP c WD Cn xP is bounded. If we still denote by g.y/ the pullback of function g by the projection
RnC1 DR�Rn!Rn, then multg is given by the weighted volume of the co-convex set xP c ,

(185) multg.a�/D .nC 1/!

Z
xPc

g.y/ dy:

Let ValC;o be the space of real valuations that are centered at o, and by ValC
��T

C;o the subset of C��T–
invariant real valuations in ValC;o. If zC ! C is the blowup of the vertex o 2 X , then the exceptional
divisor on zC is isomorphic to X , and we will denote by ordX the associated divisorial valuation contained
in ValC

��T
C;o .

Let xv 2 ValC
��T

C;o be any C��T–invariant valuation. Then for any � 2R, a�.xv/D ff 2R j xv.f / >mg

is a T–invariant homogeneous primary ideal. Set a�.xv/D am.xv/ and define (see [35] for the g D 1 case)

volg.xv/ WDmultg.a�.v//D lim
m!C1

coleng.a�.xv//

�nC1=.nC 1/!
:

We define the following equivariant version of normalized volume [51]:

cvolg W ValC
��T

C;o !R>0[fC1g; cvolg.xv/D
�

AC .xv/
nC1 � volg.xv/ when AC .xv/ <C1;

C1 otherwise.
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By using the same argument as in the study of normalized volumes, one can generalize almost all the
results about normalized volume to work for the g–normalized volume functional. Here we just write
down a few results that we need in the next section. We have the following equivariant version of an
identity from [60].

Lemma 7.1 With the above notation , we have the identity

(186) inf
xv

cvolg.xv/D inf
a

lct.a/n �multg.a/D inf
a�

lct.a�/n �multg.a�/;

where xv ranges over C��T–invariant valuations , and a (resp. a�) ranges over C��T–invariant ideals
(resp. graded sequences of C��T–invariant ideals).

This is proved by using exactly the same argument. For the reader’s convenience, we give the short proof.

Proof For any xv 2 VValC;o, we have

(187) lct.a�.xv//n �multg.a�.xv//�
�

AC .xv/

xv.a�/

�n

volg.xv/DAC .xv/
n volg.xv/:

Conversely, for any graded sequence of ideals a�, let xw 2 VValC;o be the valuation that calculates lct.a�/,
which exists by [44]. By multiplying by a constant, we can assume 1 D xw.a�/ D infm xw.am/=m. So
am � am. xw/, which implies multg.a�/�multg.a�. xw//D volg. xw/. Then we get

(188) lct.a�/n �multg.a�/D
�

AC . xw/

xw.a�/

�n

�multg.a�/�AC . xw/
n
� volg. xw/Dcvolg. xw/:

For any v 2X div
Q and � > 0, we denote by xv� the C�–invariant valuation on C given by

(189) xv�

�X
i

fi t
i

�
Dmin

i
.v.fi/C � i/:

By using the same calculation as in [50], we get:

Theorem 7.2 The g–volume of xv� is given by the formula

(190) volg.xv� /D
1

�nC1
Vg � .nC 1/

Z C1
0

volg.FvR.x//
dx

.xC �/nC2
:

We have the following criterion for g–Ding-semistability, which generalizes the results in [50; 53; 58]
about normalized volumes.

Theorem 7.3 The pair .X; �/ is g–Ding-semistable if and only if ordX obtains the minimum of cvolg
over ValC

��T
C;o .
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Proof For any v 2 .X div
Q /T , consider ws WD .sv/.1�s/AX .v/ 2 ValC

��T
C;o . Then w0 D AX .v/xv0 and

w1 D v. We also have AC .ws/�AX .v/. Set

f .s/Dcvol.ws/DAC .ws/
nC1 volg.ws/

DAX .v/
nC1

�
Vg

.1� s/nC1AX .v/nC1
� .nC 1/

Z C1
0

volg.FvR.x//
s dx

.sxC .1� s/AX .v//nC2

�
DAX .v/

nC1

Z C1
0

�dvolg.FvR.x//

.sxC .1� s/AX .v//nC1
:

Then f .s/ is a convex function in s 2 Œ0; 1�. Its derivative at s D 0 is given by

(191) f 0.0/DAX .v/
nC1

�
.nC 1/

Vg

AX .v/nC1
� .nC 1/

Z C1
0

volg.FvR.x// dx
1

AX .v/nC2

�
D

nC 1

AX .v/Vg

�
AX .v/�

1

Vg

Z C1
0

volg.FvR.x// dx

�
D

nC 1

AX .v/Vg
�ˇg.v/:

With this and Theorem 2.47, we can easily derive the conclusion as in [50].

Remark 7.4 By the same argument as in the case of normalized volume [12; 78], one shows that
g–Ding-semistability is Zariski-open for a T–equivariant family of Fano varieties.

8 Uniqueness of polystable degeneration

In this section, we prove Theorem 1.3. The proof is verbatim the same as the proof of the existence and
uniqueness of K–polystable degenerations for any K–semistable Q–Fano varieties, as proved in [55];
see also [16]. Indeed, we just need to carry out the same argument by using the equivariant version of
normalized volume and the modified Futaki invariant Fut� , etc. To avoid redundancy, we only sketch the
key steps and refer to [55; 16] for more details.

Assume that .X; �/ is semistable and admits two polystable degenerations via two special test configura-
tions .X .i/;�KX .i// for i D 0; 1. Take cones fiberwise to get a special test configuration of Fano cones
.C.i//; �.i//, where �.i/ is the radial vector field.

Let Ek be the Kollár component (see [58] for the definition) obtained by blowing up the vertex of C.0/

with weight .k; 1/. Then we havecvolg.Ek/Dcvolg.ordX /CO.k�2/:

Set a� D fa`.Ek/g. Then

lct.a�/D
A.Ek/

ordEk
.a�/
DA.Ek/DW ck DO.k/; lct.X; a�/n �multg.a�/Dcvolg.Ek/:
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Consider the initial degeneration of a� with respect to C.1/,

(192) in.a`/D spanCfin.f /; f 2 a`.Ek/g:

Using the preservation of co-length under initial term degeneration, we get

lctn.C.1/
0
; in.a�//�

cvolg.ordX .1/
0
/

multg.in.a�//
D

Vg

multg.a�/

D
Vgcvolg.Ek/

lct.a�/n D
Vg

VgCO.k�2/
lct.a�/n

D .1CO.k�2//ck D ck CO.k�1/:

Let Zk ! C.0/ be the extraction of Ek , and let Zk �C� be the product along C.1/ n C.1/
0
Š C �C�

with exceptional divisor Ek . Let B� D fB`g be ideal on the total space C.1/ obtained by the above
degenerating a`. Then we have

A.C.1/; ck.1� �k
�1/B�; Ek/DA.C; ck.1� �k

�1/a�;Ek/D �k
�1ck D �O.1/;(193)

lct.C.1/
0
; ck.1� �k

�1/in.a�//� c�1
k .1� �k�1/.ck CO.k�1//D 1� �k�1

CO.k�2/:(194)

By inversion of adjunction,

(195) lct.C.1/; ck.1� �k
�1/B�/� 1� �k�1

CO.k�2/:

When 0< �� 1, by [9], we can extract the divisor Ek over C.1/. By the same argument as [55], we get
the commutative diagram

(196)

C
.1/
0

C0.1/

��

!!

C
C.1/ �Z.1/

k
 �E.1/

k
oo

C.0/ Zk EkDEk�A1

��

}}

Zk  Ek
oo

X
.1/
0

X 0.1/

��

X
X .1/
oo

X .0/

��

X 0
0

X
.0/
0

X 0.0/
oo

C 0
0

==

C
.0/
0C0.0/

oo

aa

Zk;0 Ek
oo

By the same argument as in [55], we know that both test configurations X 0.i/ for i D 0; 1 are weakly
special and have vanishing Fut� invariant. By [39], we know that both of them are special and hence
X
.1/
0
ŠX 0

0
ŠX

.0/
0

by the polystability of X
.i/
0

.

The existence part can again be proved by the similar arguments as in [55], which deals with the case
when � D 0. We just sketch the arguments. If .X; �/ is K–polystable, then we are done. Otherwise, we
can find a nontrivial T–equivariant special test configuration such that the central fiber (with the vector
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field �) has a vanishing Fut� invariant. By [55, Proof of Lemma 3.1], we know that the central fiber is
K–semistable, and has an effective action by a larger torus. If the central fiber is K–polystable, then we
are done again. Otherwise, we can continue this process, which must stop since the dimension of the
torus is bounded by the dimension of X .

Proof of Corollary 1.4 By the work of Chen, Sun and Wang in [28], which is based on the resolution of
the Hamilton–Tian conjecture [29], we get a special R–test configuration F ss with central fiber .W; �/,
and a special test configuration of .W; �/ with central fiber .X1; �/, which admits a Kähler–Ricci soliton
and hence is K–polystable. By the work of Dervan and Székelyhidi [31], F ss obtains the minimum h.X /.
The statement follows directly from Theorems 1.2 and 1.3.

Remark 8.1 The fact that F ss obtains the minimum also follows from the K–semistability of .W; �/

and Theorem 5.2. The K–semistability of .W; �/ follows from the same degeneration argument as used
in [58], or the Zariski-openness of K–semistability as pointed out in Remark 7.4.

Remark 8.2 As in the more general setting of [55] or [52], the algebraic results in this paper can be
generalized to the log Fano case in a straightforward way.

Appendix Properties of zS .v/

Recall that by (137), for any valuation v 2 VVal.X / we have

(197) Q.v/ WDQ.Fv/D e�
zS NA.Fv/ D 1�

1

V

Z T .v/

0

e�x vol.F .x/v R�/ dx DW 1�‰.v/;

where, for simplicity of notation, we have written

(198) T .v/D �max.Fv/ and ‰.v/D
1

V

Z T .v/

0

e�x vol.F .x/v R�/ dx:

Proposition A.1 The function v 7!‰.v/ is strictly increasing on VVal.X /. In other words , if v � w, then
‰.v/�‰.w/, with the identity true only if v D w. As a consequence , v 7! zS .v/ is strictly increasing on
Val.X /.

This is proved as in [11, Proof of Proposition 3.15] (which is based on an argument in the local case
from [58]). We sketch the argument for the reader’s convenience.

Proof First, by using Theorem 2.5, we can show that

(199) ‰.v/D lim
m!C1

1

mNm

X
j�1

e�j=m dimFj
vRm:

Suppose that v � w but v ¤ w. Then by rescaling v;w and LD�KX , we can assume that there exists
s 2H 0.X;L/ with w.s/D p 2N� and v.s/� p�1. Then, arguing as in [11, Proof of Proposition 3.15],
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we have

(200) dim.Fj
wRm=Fj

vRm/�
X

1�i�minfj=p;mg

dim.Fj�ip
v Rm=Fj�ipC1

v Rm�i/:

One the other hand, with C DmaxfT .v/;T .w/g, we getX
j�1

dim e�j=m.Fj
wRm�Fj

vRm/� e�C
X
j�1

.Fj
wRm�Fj

vRm/

� e�C
X

1�i�m

X
j�pi

.dimFj�ip
v Rm�i �Fj�ipC1

v Rm�i/

D e�C
X

1�i�m

dim Rm�i :

So we conclude
‰.v/�‰.w/� e�C lim

m!C1

1

mNm

X
1�i�m

dim Rm�i > 0:

Let � W Y ! X be a proper birational morphism with Y a regular and E D
P

i Ei a reduced simple
normal crossing divisor.

Proposition A.2 The function v 7!Q.v/ is continuous on QM.Y;E/.

We use the same strategy as [14, Proposition 2.4]. As noted in [38], for any v 2 Val.X /, we have
A.v/=T .v/� ˛.X / > 0, which implies, with C D ˛.X /�1,

(201) T .v/� CA.v/:

Lemma A.3 For any v 2 Val.X /, we have the inequality

(202) ‰.v/� CA.v/:

Proof Since vol.F .x/R�/� V , we immediately get

‰.v/�

Z T .v/

0

e�x dx D 1� e�T .v/
� T .v/� CA.v/;

where we used the inequality 1� e�x � x for any x 2R�0, and the inequality (201).

Similarly to [38; 11], we introduce the approximation

Qm.F/D
1

Nm

X
i

e��
.m/

i
=m
D

1

Nm

Z C1
0

e�x=md.� dimFxRm/(203)

D 1�
1

Nm

Z �
.m/
max .F/=m

0

e�x dimFxmRm dx DW 1�‰m.F/;(204)

where we set

(205) ‰m.v/D
1

Nm

Z �
.m/
max

0

e�x dimFxmRm dx D
1

Nm

Z T .v/

0

e�x dimFxmRm dx:
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Similarly to [38; 11], for any valuation v 2 Val.X / we have the identity

(206) Qm.v/DQm.Fv/Dmin
fsj g

1

Nm

NmX
jD1

e�v.sj /=m;

where the minimum is taken over all bases s1; : : : ; sNm
of H 0.X;�mKX /.

For any s WD fs1; : : : ; sNm
g 2H 0.X;�mKX /

Nm , define a function

(207) 's.v/ WD

NmX
jD1

e�v.sj /=m:

By the same argument as in [14, Proof of Lemma 2.5], the set of functions f's.v/js 2R
Nm
m g is finite. So

Qm is continuous on QM.Y;E/.

As in [14, Proof of Proposition 2.4], the continuity of ‰ and hence Q follows easily from the following
proposition, which we prove by using the techniques developed in [11; 13].

Lemma A.4 (i) For any v 2 Val.X / with A.v/ <C1, we have the convergence

(208) lim
m!C1

‰m.v/D‰.v/:

(ii) For any � > 0 and any C1 > 0, there exists C2 > 0 and m0 > 0 such that if v 2 Val.X / satisfies
A.v/ < C1, we have

(209) j‰m.Fv/�‰.Fv/j � �

for all m divisible by m0.

Proof The first statement follows from Theorem 2.5(ii). We focus on the second statement.

Note that e�G is convex and 0� e�G � 1. By [11, Lemma 2.2], for any �0 > 0 there exists m0.�
0/ such

that for any m�m0,

(210)
Z
�

e�G d�m �

Z
�

e�G dy � �0:

By the same argument as [11, Proof of Lemma 2.9], we get

(211) Qm.Fv/�
mn

Nm

Z
�

e�G d�m:

Note that limm!C1mn=Nm D V . So for any � > 0 there exists m0 such that for any m�m0,

(212) Qm.Fv/�
n!

V

Z
�

e�G dy � � DQ.Fv/� �:

We need to prove the other direction of inequality. Following [11], define a graded linear series

(213) zF .t/m;pRmp WDH 0
�
X;mpL˝ b.jFmtRmj/p

�
;
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where b.jFmtRmj/ is the base ideal of the sublinear system F tmRm. Set

(214) z‰m.F/D
Z T .v/

0

e�t vol.zF .t/m;�/ dt:

By [11, Proposition 5.13], there exists aD a.X;�KX / > 0 such that for all t 2Q>0 with mt > A.v/,
we have, with t 0 D t �m�1.at CA.v//,

(215)
�

m�a

m

�nC1
vol.F .t/

�
/�

1

mn
vol.zF .t

0/
m;�/:

So we can estimate as in [11, Proof of Proposition 5.15] to get

z‰m.v/�
�

m�a

m

�nC1
�
‰.v/� e.aT .v/CA.v//=m

Z A.v/=.m�a/

0

vol.F .t//
V

e�tdt

�
�

�
m�a

m

�nC1�
‰.v/� eCA.v/=m A.v/

m�a

�
:

From this it is easy to get
‰.v/� z‰m.v/� C

A.v/

m
:

To compare with ‰m, we further set

(216) F .x/m;p D Im
�
SpFmxRm!H 0.X;pmL/

�
:

By [13, Propositions 5.14 and 3.2], there exists a positive constant C > 0 independent of v such that for
all x � T .v/�CA.v/=m, we have vol.F .x/m;�/D vol.zF .x/m;�/. So as in [13, Proof of Proposition 5.15], we
get

‰.v/� z‰m.v/CC
A.v/

m
D

1

V

Z T .v/

0

vol.zF .x/m;�/

mn
e�x dxC

CA.v/

m

�
1

V

Z T .v/�CA.v/=m

0

vol.F .x/m;�/

mn
e�x dxC

CA.v/

m

�
1

V

Z T .v/

0

vol.F .x/m;�/

mn
e�x dxC

CA.v/

m
:

For the second inequality we used the estimate that, as m!C1,Z T .v/

T .v/�CA.v/=m

e�x dx D e�.T .v/�CA.v/=m/
� e�T .v/

� eCA.v/=m
� 1DO

�
A.v/

m

�
:

Fixing any � > 0, by choosing m� 1 and p� 1 we have (see [13, equation (5.6)]):

(217)
ˇ̌̌̌
vol.F .x/m;�/

mnV
�

dimF .x/m;p

Nmp

ˇ̌̌̌
< �:

Finally we can estimate as in [13, Proof of Theorem 5.13]: for m� 1,

‰.v/�
1

V

Z T .v/

0

vol.F .x/m;�/

mn
e�x dxC

CA.v/

m
�

Z C1
0

dimF .x/m;p

Nmp
e�x dxC �T .v/C

CA.v/

m

�

Z C1
0

dimFpmxRm

Nmp
e�x dxC 2�A.v/D‰.v/C 2�A.v/:
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In the third inequality, we used again the inequality 1� e�T .v/ � T .v/. Since � > 0 is arbitrary, we get
the conclusion.
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We study the space of measured laminations ML on a closed surface from the valuative point of view.
We introduce and study a notion of Newton polytope for an algebraic function on the character variety.
We prove, for instance, that trace functions have unit coefficients at the extremal points of their Newton
polytope. Then we provide a definition of tangent space at a valuation and show how the Goldman Poisson
bracket on the character variety induces a symplectic structure on this valuative model for ML. Finally,
we identify this symplectic space with previous constructions due to Thurston and Bonahon.
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Introduction

The algebra of functions on the character variety Let S be a closed oriented surface of genus g � 2.
Its character variety X is the quotient of the space Hom.�1.S/;SL2.C// by the equivalence relation
identifying �1 and �2 if and only if tr �1. /D tr �2. / for all  2 �1.S/. By construction, it is an affine
variety whose ring of functions CŒX � is generated by the trace functions t W � 7! tr �. / for  2 �1.S/.
The function t only depends on the conjugacy class of  up to inversion, that is, on the free homotopy
class of the corresponding unoriented loop.
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These trace functions are not algebraically independent: the famous identity

tr.AB/C tr.AB�1/D tr.A/ tr.B/

for A;B 2 SL2.C/ implies, for instance, that if ˛ and ˇ represent simple loops intersecting once, then

t˛tˇ D t C tı;

where  and ı are elements in �1.S/ representing the simple curves obtained by smoothing the intersection
between ˛ and ˇ in the two possible ways.

This phenomenon generalizes as follows. Given a multiloop ˛, that is, a multiset f˛1; : : : ; ˛ng of nontrivial
loops ˛i 2 �1.S/, the function t˛ D t˛1

t˛2
� � � t˛n

can be uniquely decomposed as a linear combination

(1) t˛ D
X

m�t�;

where each � is a multicurve, that is, a (possibly empty) multiloop represented by pairwise disjoint,
simple, nontrivial loops. This means that the set MC of multicurves indexes a linear basis for the algebra
of characters CŒX �, which is privileged from the topological viewpoint; it is also invariant under the
(algebraic) automorphism group of CŒX �, as we proved in [12].

It is an old problem to understand the algebraic structure of CŒX �, whose study was initiated by Fricke
and Vogt in the late 19th century, and revisited in the seventies by the work of Procesi, Horowitz and
Magnus among others; see Magnus [11] for a review. One approach is to investigate the coefficients m�

of the functions t˛.

In this article, we define the Newton set �.t˛/�MC of t˛, in analogy with the extremal points of the
ordinary Newton polytope of a polynomial, as follows.

Definition (Newton set) For f D
P

m�t� decomposed in the basis of multicurves, we define its
support as Supp.f /D f� 2MC jm� ¤ 0g.

We say that � 2 Supp.f / is extremal in f if there exists a multicurve � such that i.�; �/ > i.�; �/ for all
� 2 Supp.f / distinct from �.

The Newton set �.f / is the set of extremal multicurves in f .

In this definition, i. � ; � / denotes the geometric intersection number, and standard properties of measured
laminations imply that � can be replaced by a simple curve or a measured lamination. Our first result is
the following.

Theorem A (trace functions are unitary) For every multiloop ˛ D f˛1; : : : ; ˛ng, the function t˛ is
unitary in the sense that m� D˙1 for all � 2�.t˛/.

Geometry & Topology, Volume 28 (2024)
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To introduce our next result, recall that the algebra of functions CŒX � carries a natural Poisson bracket stem-
ming from the Atiyah–Bott–Weil–Petersson–Goldman symplectic structure on X. Following Goldman [7],
for ˛; ˇ 2 �1.S/ it is given by the formula

(2) ft˛; tˇg D
X

p2˛\ˇ

�p.t˛pˇp
� t˛pˇ

�1
p
/;

where the sum ranges over all intersection points p between transverse representatives for ˛[ˇ, and �p
is the sign of such an intersection, while p̨ and p̌ denote the homotopy classes of ˛ and ˇ based at p.

Our second result interprets the coefficients of ff;gg at the extremal multicurves of fg in terms of
Thurston’s PL–symplectic structure on the space ML of measured laminations in S .

Theorem B (extremal structure constants for the Poisson bracket) Let � and � be two multicurves.
For � 2�.t�t�/ we set E� D f� 2ML j i.�; �/D i.�; �/C i.�; �/g. These closed subsets of ML form a
piecewise linear partition of ML with disjoint interiors.

For Thurston’s symplectic structure , the Poisson bracket fi�; i�g of the length functions defined by
i�.�/D i.�; �/ is equal to the coefficient of t� in ft�; t�g almost everywhere in E� .

Let us illustrate the theorem with the following example. The curves shown in Figure 1 satisfy t˛tˇ D

tc1
tc3
C tc2

tc4
� t � tı and ft˛; tˇg D 2tı�2t , so we find that �.t˛tˇ/D fc1[c3; c2[c4; ; ıg, whereas

�.ft˛; tˇg/D f; ıg.

The Newton set of t˛tˇ decomposes ML into 4 domains, where i.˛[ˇ; �/ is equal to the intersection
of � with c1 [ c3 or c2 [ c4 or  or ı, respectively. In the interior of these domains, ft˛; tˇg takes the
values 0, 0, �2 and 2, respectively.

Strong relations between the symplectic structures on X and ML had already been observed, for instance
in Papadopoulos and Penner [17] or Sözen and Bonahon [22]. Theorem B can be related to a formula for
fi�; i�g obtained in Bonahon [1, Proposition 6] by degenerating Wolpert’s “cosine formula”. However,
our approach is algebraic in the sense that it uses valuations instead of Teichmüller theory.

Beyond these two results, the purpose of this article is to investigate the space of measured laminations
from the valuative viewpoint, in particular its symplectic structure. This study was motivated by a new

c1 c2

c3c4

˛

ˇ
 ı

Figure 1: Product and Poisson bracket in a sphere with four punctures.
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characterization of valuations associated to measured laminations that we obtained in [12]. We devote the
remaining part of this introduction to an overview of our motivations, as well as the intermediate results
that we obtained while revisiting the theory of measured laminations from the valuative viewpoint, since
we believe they are of independent interest. We take this as an opportunity to recall general ideas for the
benefit of a wide audience.

The Newton polytope A leading analogy in this article is to think of the collection .t�/ as a monomial
basis in a polynomial algebra, keeping in mind that it is not stable under multiplication.

Consider the degree degd defined for d 2Rn on the algebra CŒt1; : : : ; tn� by

degd

�X
�

m�t�
�
Dmaxfh�; di jm� ¤ 0g;

where t� D t
�1

1
� � � t

�n
n , and h � ; � i stands for the usual scalar product. This degree is (the opposite of)

a monomial valuation. For P 2 CŒt1; : : : ; tn�, a monomial t� is an extremal point of its usual Newton
polytope �.P / if m� ¤ 0 and for some d 2Rn the maximum defining degd is attained uniquely at t�.

Our starting point is to replace the degree degd by the valuation associated to a measured lamination �
in S . For us a valuation will be a map v W CŒX �! f�1g [R satisfying v.fg/ D v.f /C v.g/ and
v.f Cg/�maxfv.f /; v.g/g for all f;g 2CŒX �. We choose this convention, which is opposite to the
usual one, to avoid crowding too many signs. In the general language of valuations (see for instance
Vaquié [25]), our valuations are centered at infinity on the affine variety X as they take nonnegative values
on the ring CŒX � of characters.

In a groundbreaking series of articles starting with [14], Morgan and Shalen showed that the character
variety X can be compactified using valuations, in the spirit of the Riemann–Zariski compactification. In
particular, the space of measured laminations, viewed as Thurston’s compactification of Teichmüller space,
can be embedded in the space of valuations on CŒX � with values in an archimedean group. However, this
embedding used a degeneration process and is not completely explicit: if v is the valuation associated to
a lamination �, we clearly have v.t�/D i.�; �/, but it was not clear what v.f / should be for a general
element f 2CŒX �.

In our previous article [12], we showed that the space of measured laminations ML can be identified with
the space of simple valuations v WCŒX �! f�1g[R�0. The word simple means monomial with respect
to the multicurve basis in the sense that the following holds:

(3) v
�X

m�t�

�
Dmaxfv.t�/ jm� ¤ 0g:

This justifies our definition for the Newton set of f D
P

m�t� as the set of � 2 Supp.f / such that the
maximum in (3) is attained uniquely at t� for some v 2ML.

For a concrete example, consider the particular case of a multiloop ˛ contained in an incompressible pair
of pants P � S . The subsurface P contains only three simple curves, its boundary components, and they
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do not intersect each other. Denoting by t1; t2; t3 the trace functions along these components, we have
t˛ 2 ZŒt1; t2; t3�. This polynomial is often called the Fricke polynomial and has been much studied; see
[11, Section 2.2]. Now any valuation associated to a measured lamination on S restricts to a monomial
valuation on CŒt1; t2; t3�, and we find that our Newton set corresponds to the extremal points of the usual
Newton polytope. Even for such ˛ � P , it is not easy to determine �.t˛/ from the ˛i 2 �1.S/, and the
unitarity property is not an obvious one.

It is worth noticing that we only talk about the Newton set and not about the Newton polytope, as we do
not know any reasonable notion of convexity in ML. However, we can define the dual Newton polytope
of a function f 2CŒX � as ��.f /D fv 2ML j v.f /� 1g. Moreover, we could define the poset of faces
of �.f / using the order structure. Its combinatorics may be a promising land of investigation, but we did
not go further in that direction.

Symplectic and combinatorial volumes of dual polytopes This paragraph only serves motivational
purposes and does not claim new results; it may be skipped harmlessly.

Thurston’s symplectic form on ML provides a notion of volume; thus we may ask for the topological
meaning of the volume Vol��.t˛/ when ˛ is a multiloop.

When ˛ is a filling multiloop, a celebrated theorem of M Mirzakhani [13], extended by Rafi and
Souto [21], estimates the number of elements in its orbit under the modular group Mod.S/ as a bound on
their complexity tends to infinity. More precisely, fix another filling multiloop ˇ, and denote by mg > 0

the volume of the moduli space of hyperbolic metrics on S for the Weil–Petersson form. The theorem
claims the following:

lim
r!1

Cardf' 2Mod.S/ j i.ˇ; '.˛//� rg

r6g�6
D

Vol��.tˇ/Vol��.t˛/
mg

:

The identification between measured laminations and simple valuations implies, using equation (3), that
the Newton dual polytope ��.f / of f 2 CŒX � equals the intersection of ��.t�/ for � 2�.f /. These
“elementary cones” ��.t�/D fv 2ML j v.t�/ � 1g are described by explicit sets of linear inequalities
in any PL chart of ML, and the volume of their intersection is computable. This yields a constructive
procedure to compute Mirzakhani’s constant Vol��.t˛/, and shows that it depends only on �.t˛/. It also
shows that these volumes are rational.

A different motivation is that this Newton set, as the usual one, could have applications to the problem of
counting solutions of algebraic equations in X. We wonder for instance if it helps estimating the number of
solutions to a system of 6g�6 equations ti

D xi , where 1; : : : ; 6g�6 2 �1.S/ and x1; : : : ;x6g�6 2C.
This could have interesting applications to three-dimensional topology, for instance to evaluate the number
of points in the SL2.C/–character variety of �1.M / for a 3–manifold M from a Heegaard decomposition.

Measured laminations as valuations In this article we study measured laminations using the tools of
valuation theory. There are two well-known invariants for an archimedean valuation v: its rational rank,
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defined as the dimension of the Q–vector space generated by the groupƒv of its values (that is, differences
of lengths for the corresponding measured lamination), and the transcendence degree of its residue field kv .
These invariants are related by the celebrated Abhyankar inequality, rat rk.v/C tr deg.kv/� 6g�6. Here
we will show the following.

Proposition A (characterizing strict valuations) For a valuation v associated to a measured lamination �,
the following properties are equivalent :

(i) Distinct multicurves � and � have distinct lengths: i.�; �/¤ i.�; �/.

(ii) The residue field of C.X / at v has transcendence degree 0, or kv DC.

(iii) The Q–vector space generated by the set of lengths i.�; �/ for � 2MC has dimension 6g� 6.

The first property implies that v defines a total order on the set of multicurves, so the max in equation (3)
will always be strict, which is why they deserve to be called strict valuations. They played a prominent role
in our previous article, where we showed that almost all valuations are strict (in the measure-theoretical
sense). They will be equally important in this paper, as property (ii) enables us to define the residual
value at v of a function f 2C.X / satisfying v.f /� 0. Combined with property (iii), it shows that strict
valuations are Abhyankar in the sense that his inequality is an equality. We wonder whether any measured
lamination gives rise to an Abhyankar valuation.

We have not come across strict valuations in the literature. Instead we encounter maximal measured
laminations, which are those whose support cannot be enlarged. In this article, we characterize the
valuations associated to maximal laminations as being acute: for any ˛; ˇ 2 �1.S/ n f1g we never have
v.t˛tˇ/D v.t˛ˇ/D v.t˛ˇ�1/, so that these quantities are the lengths for the edges of an acute isosceles
triangle. We will show that a valuation v� is acute if and only if any time we smooth a self-intersection
of a multiloop which is taut (minimally intersecting in its homotopy class), the two resulting multiloops
have distinct �–lengths. This property plays a crucial role in the proof of the unitarity theorem. We also
show that any strict valuation is acute, and wonder if the reciprocal statement is true.

Tangent spaces and Thurston’s symplectic structure The space of measured laminations is a PL–
manifold but does not carry any sensible smooth structure (for which intersection numbers have smooth
variations), so there is no symplectic structure in the usual sense. However, Thurston showed that
most points (maximal laminations) have a well-defined tangent space endowed with a nondegenerate
skew-symmetric form; see [19, Chapter 3].

In this article we propose a straightforward notion for the tangent space TvML at a valuation, and show
that when v is strict, it coincides with the space Hom.ƒv;R/, which has dimension rat rk.v/D 6g� 6.
Then we show how the Goldman Poisson bracket induces a “residual Poisson bracket” at any strict
valuation v, thus endowing TvML with a symplectic structure. For future reference we shall name this
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topology/geometry dynamics algebra

measured foliation
measured geodesic laminations

action of �1.S/ on a real tree simple valuation

length function translation length trace function

filling/aperiodic lamination free action positive valuation

maximal lamination trivalent tree acute valuation

? ? strict valuation

Table 1

model after Goldman. This uses the crucial fact that given f;g 2CŒX �, we have v.ff;gg/� v.fg/ for
all v 2ML. This property amounts to the inverse inclusion of the dual polytopes ��.ff;gg/���.fg/.

Finally, we provide precise identifications between this symplectic vector space and two other existing
models in the literature, which we now pass under review. In the work of Morgan and Shalen, the key
notion relating measured laminations and valuations is the action of �1.S/ on real trees. We may represent
this dynamical point of view as lying between the two others as in Table 1, which the reader may use as a
dictionary.

For future reference, we name the symplectic vector spaces appearing naturally from each of those
approaches after Thurston, Bonahon and Goldman, respectively.

Goldman’s model It is given by the residual Poisson bracket on TvML, which we introduced briefly. It
will be described with more detail in the body of the paper.

Thurston’s model One can associate to a maximal measured lamination � a ramified 2–fold covering
S 0! S , known as the orientation cover of the lamination. The group H 1.S 0;R/ splits into a symmetric
and antisymmetric part with respect to the involution of the covering S 0! S . The space H 1.S 0;R/�

with the cup-product form is the geometric model for T�ML.

Bonahon’s model If we consider a trivalent real tree T with a free and minimal action of �1.S/, we can
consider the space of functions c W V .T /2!R on the set of pairs of trivalent vertices of T which satisfy

(i) c.x;y/D c.y;x/,

(ii) c.x;y/D c.x; z/C c.z;y/ if z belongs to the geodesic joining x to y,

(iii) c.˛x; ˛y/D c.x;y/ for all ˛ 2 �1.S/.

Again, this space has a natural antisymmetric form related to the cyclic orientation of T at every trivalent
vertex. It is equivalent to the space of transverse cocycles introduced by Bonahon; see [2, page 240]. The
identification between Thurston’s and Bonahon’s models is well known but all proofs we encountered
use auxiliary structures like train tracks. At the end of the article, we provide “invariant” proofs for the
following result.
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Theorem C (symplectomorphisms) There are natural isomorphisms of symplectic vector spaces be-
tween the models of Thurston , Bonahon and Goldman.

In particular, we provide a new construction of independent interest, reminiscent of Milnor’s join
construction, which, starting from a trivalent real tree, produces a space homotopically equivalent to the
covering S 0. We may wonder which of these three symplectic identifications persist for more general
actions of Fuchsian groups on real trees.

Acknowledgements We wish to thank Francis Bonahon, Chris Leininger and Maxime Wolff for useful
discussions around this project, as well as Patrick Popescu-Pampu for his reading. We are also very
grateful to the referee for numerous corrections and suggestions.

1 Background

1.1 Algebra of functions on the character variety

Let S be a closed connected and oriented surface of genus g � 1. We denote by X the character variety
of S , which is the algebraic quotient of its representation variety Hom.�1.S/;SL2.C// by the conjugacy
action of SL2.C/, defined as the spectrum of the algebra of invariant functions:

CŒX �DCŒHom.�1.S/;SL2.C//�
SL2.C/:

A celebrated result of Procesi presents generators and relations for this algebra (which holds for any
finitely generated group). It appears in the form presented here in [3, Proposition 9.1]. For ˛ 2 �1.S/,
we denote by t˛ 2CŒX � the trace function given by t˛.Œ��/D tr �.˛/.

Theorem 1 (Procesi) The algebra CŒX � is generated by the t˛ for ˛ 2 �1.S/. The ideal of relations is
generated by t1� 2 and t˛tˇ � t˛ˇ � t˛ˇ�1 for all ˛; ˇ 2 �1.S/.

Definition 2 A multiloop in S is a class of continuous maps f W �! S from compact 1–dimensional
manifolds � to S which are not homotopic to a constant on any component. We consider it modulo the
relation declaring f equivalent to f 0 W � 0! S when there is a homeomorphism � W � ! � 0 such that
f 0 ı� is homotopic to f . We allow the empty multiloop .� D∅/.

A multicurve is a multiloop which is represented by an embedding. We denote by MC the set of
multicurves.

A multiloop amounts to a finite multiset f˛1; : : : ; ˛ng of nontrivial conjugacy classes in �1.S/ considered
up to inversion: we define t˛ D

Qn
iD1 t˛i

, in particular t∅ D 1. The components of a multicurve must be
noncontractible, simple and pairwise disjoint.

Applying the trace relation recursively to reduce the number of self intersections in multiloops, one may
deduce part of the following theorem [20]. The linear independence requires more work.

Theorem 3 The family .t�/�2MC forms a linear basis of the algebra CŒX �.
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1.2 Deriving the Poisson algebra from the Kauffman algebra

The multiplication and the Poisson bracket on CŒX � appear naturally as byproducts of the Kauffman
algebra K.S;R/ over some ring R containing an invertible element A. Recall that a banded link in an
oriented 3–manifold is the image by a tame embedding of a finite union of oriented annuli.

As an R–module, the Kauffman algebra is the quotient of the free module over isotopy classes of banded
links L in S � Œ0; 1�, by the submodule generated by Kauffman’s local skein relations

Œ[L�D .�A2
�A�2/ŒL� and ŒL��DAŒLC�CA�1ŒL��;

where L�;LC;L� are banded links differing in a ball as shown in Figure 2.

The product is given by stacking two banded links one above the other. Precisely,

ŒL0�ŒL1�D Œˆ0.L0/[ˆ1.L1/�; where ˆi.x; t/D
�
x; 1

2
.t C i/

�
:

Any multicurve � on S can be seen as a banded link Œ�� in S�Œ0; 1� by considering a tubular neighborhood
S �

˚
1
2

	
, often called its blackboard framing.

We sum up what we need to know about skein algebras in the following theorem.

Theorem 4 Using the previous notation:

(i) The module K.S;R/ is a free R–module generated by multicurves.

(ii) The algebra K.S;C/ with AD�1 is commutative , and there is an isomorphism K.S;C/!CŒX �

defined by sending the blackboard framing Œ�� of a multicurve � 2MC to .�1/j�jt�, where j�j
denotes the number of components of �.

(iii) The map sending a multicurve to its blackboard framing yields an isomorphism of CŒA˙1�–modules
K.S;C/˝CŒA˙1�'K.S;CŒA˙1�/. In this setting , we have

ff;gg D
1

2

d

dA

�
fg�gf

�
AD�1

:

These algebras were introduced independently by Przytycki and Turaev. The assertions in part (i), in
part (ii) and the isomorphism of part (iii) are [20, Fact 4.1, Fact 2.7 and Theorem 2.8]. Part (ii) is also
proved in [4]. Finally, the last formula appears in [5].

L� LC L�

Figure 2: Local skein relation.
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Let us explain Theorem 4(i) more precisely. Given a diagram D for a banded link L�S�Œ0; 1�, we denote
by C its set of crossings. For any map � W C ! f˙1g, let w� D

P
c �.c/ and consider the diagram D�

obtained after smoothing each crossing c 2 C according to the sign �.c/, and removing the n� trivial
components which appear in the result. The following formula holds in K.S;R/:

(4) ŒL�D
X

� WC!f˙1g

.�A2
�A�2/n�Aw� ŒD� �;

which, after grouping terms corresponding to a same diagram ŒD� �, yields the decomposition of ŒL� in
the basis of multicurves. This formula sheds light on the product of two multicurves �; �: intuitively, the
product is obtained by taking the union �[ � and summing over all possible smoothings.

By Theorem 4(ii), we deduce that the algebra CŒX � has a linear basis indexed by trace functions of
multicurves. At AD�1, the class of ŒL� does not change if we change a crossing. Hence, we can replace
the notion of banded link with the simpler notion of multiloop that we defined previously.

The Kauffman algebra is not completely necessary for our purposes. However, we find it conceptually
useful for the following reasons. It transforms the trace relation into a local relation whose sign is
more convenient (for instance while performing successive diagrammatic computations), and a better
understanding of the product in terms of smoothings. It also provides a simple reason as to why the
Goldman bracket actually satisfies the Jacobi relation: this comes from Theorem 4(iii) and the obvious
associativity of multiplication in the Kauffman algebra. Finally, in the context of this article, it provides
an alternative formula for the Poisson bracket which enlightens Theorem B. Indeed, a smoothing � which
is extremal for Œ˛�Œˇ� in K.S;R/ is also extremal for the Poisson bracket ft˛; tˇg in CŒX �. Its coefficient
in the former is ˙1 by Theorem A, and we will interpret its coefficient ˙w� in the latter as a residual
Poisson bracket.

2 Measured laminations and simple valuations

2.1 Simple valuations

It is well known that a measured lamination � on S is characterized by the length i.�;  / it assigns to every
simple curve  . This “functional” point of view can be extended to define a map v� WCŒX �!f�1g[R�0

satisfying v.0/D�1 and for all f D
P

m�t� decomposed in the multicurve basis,

(5) v�.f /Dmaxfi.�; �/ jm� ¤ 0g;

where i.�; �/ D i.�; �1/C � � � C i.�; �n/ for a multicurve � with components �1; : : : ; �n. By [12,
Proposition 1.2], equation (5) is coherent with the fact that for any ˛ 2 �1.S/, not necessarily simple, we
actually have v�.t˛/D i.�; ˛/. Let us recall [12, Definition 1.1].

Definition 5 A simple valuation on CŒX � is a map v WCŒX �! f�1g[R�0 satisfying:

(i) v.f /D�1 if and only if f D 0.
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(ii) v.fg/D v.f /C v.g/ for all f;g 2CŒX �.

(iii) If f D
P

m�t� then v.f /Dmaxfv.t�/ jm� ¤ 0g.

The following characterization was of fundamental importance in [12]: it yields a homeomorphism
between the space of simple valuations and ML, both topologies being defined by simple convergence for
the evaluations of multicurves.

Theorem 6 (Marché–Simon) The simple valuations on CŒX � are precisely the v� for � 2ML.

In this paper we only consider simple valuations, so we write v 2ML and � 2ML interchangeably.

The maximality condition of Definition 5 implies that for any f;g 2 CŒX �, we have v.f C g/ �

maxfv.f /; v.g/g, with equality if v.f /¤ v.g/. Given a multiloop ˛ with a self-intersection p, the two
smoothings at p give multiloops ˛C and ˛� and the trace relation reads t˛ D˙t˛C ˙ t˛� . Hence any
valuation v satisfies v.t˛/�maxfv.t˛C/; v.t˛�/g. The following lemma was proven by Dylan Thurston
in [23], and removes the condition v.t˛C/¤ v.t˛�/ for the equality to hold. We provide an independent
proof in Section 5, which relies on the geometry of real trees.

Lemma 7 (smoothing lemma) Let ˛ be a taut multiloop , having a self-intersection p with smoothings
˛C and ˛�. For any v 2ML we have v.t˛/Dmaxfv.t˛C/; v.t˛�/g.

Still, it will prove useful to consider valuations v for which we always have v.t˛C/¤ v.t˛�/. This holds
over subsets of full measure in ML, as we now explain.

2.2 Acute valuations

We say that a simple valuation v D v� 2ML is positive if v.f / > 0 for all nonconstant f 2 CŒX �. It
is equivalent to saying that i.�; ˛/ > 0 for all ˛ 2 �1.S/, or i.�; �/ > 0 for all simple curves �. Such
measured laminations are called filling or aperiodic in the literature.

We now introduce the notion of acute valuation, which will happen to be equivalent to the notion of
maximal measured geodesic lamination, as we will show in Proposition 27.

Definition 8 A simple valuation v 2ML is called acute if it is positive and for any nontrivial ˛; ˇ 2�1.S/,
we do not have v.t˛ˇ/D v.t˛tˇ/D v.t˛ˇ�1/.

Lemma 9 (unique smoothing) A positive simple valuation v� 2ML is acute if and only if for every taut
multiloop ˛, and smoothings ˛˙ at a self-intersection , we have

i.�; ˛C/¤ i.�; ˛�/:
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This justifies the terminology: v 2 ML is acute when for every such a multiloop ˛, we have either
v.˛/D v.˛C/ > v.˛�/ or v.˛/D v.˛�/ > v.˛C/, so the values v.˛/; v.˛C/; v.˛�/ are the lengths of
an acute isosceles triangle with one shortest edge corresponding to either v.˛�/ or v.˛C/.

Proof Suppose v 2ML is acute. By decomposing ˛ into connected components, we observe that the
smoothing concerns at most two of them, and the proof reduces to the following cases.

(i) Either ˛ is a single loop, self-intersecting at p. Denote by ; ı 2 �1.S;p/ the elements such that
˛ is homotopic to  ı. The tautness assumption implies that  and ı are nontrivial. Depending on
the combinatorics of the intersection, one smoothing is homotopic to  ı�1 and the other to the
union  [ ı. If v.tı�1/D v.t tı/ then, from the acute property, v.tı/ differs from them, which
contradicts the smoothing lemma (Lemma 7).

(ii) Otherwise the multiloop ˛ has two components intersecting at p. We denote by ; ı 2 �1.S;p/

the (nontrivial) homotopy classes of the two components. Again, ˛C and ˛� are homotopic to  ı
and  ı�1; the reasoning is the same.

Conversely, suppose ˛; ˇ 2 �1.S/ are nontrivial. If they are powers of a same element, say ˛ D  n

and ˇ D m, then v.t˛ˇ/ D jnCmjv.t / and v.t˛ˇ�1/ D jn �mjv.t /. As v.t / > 0, the equality
v.t˛ˇ/D v.t˛tˇ/D v.t˛ˇ�1/ implies mnD 0, which is impossible.

Consider a hyperbolic structure on S , so that ˛ and ˇ act on zS 'H2 by hyperbolic translations along
distinct axes A˛ and Aˇ, respectively.

(i) If A˛\Aˇ D fpg, then p projects to a point on ˛\ˇ. The smoothings at p are ˛ˇ and ˛ˇ�1. The
assumption i.�; ˛ˇ/¤ i.�; ˛ˇ�1/ says that v satisfies the condition v.t˛tˇ/¤ v.t˛ˇ�1/, ensuring
that of Definition 8.

(ii) If A˛ \Aˇ D ∅, then up to replacing ˇ with ˇ�1, we may assume the axes point in the same
direction. Now, the axes of ˛ˇ and ˇ˛ intersect at a point p. This point projects to a self-
intersection of ˛ˇ which, after smoothing, gives alternatively ˛[ˇ and ˛ˇ�1. The assumption
i.�; ˛[ˇ/¤ i.�; ˛ˇ�1/ says that v satisfies the condition v.t˛tˇ/¤ v.t˛ˇ�1/, ensuring that of
Definition 8.

2.3 Strict valuations

A simple valuation v can be extended to C.X / by v.f=g/D v.f /� v.g/. We define its valuation ring
Ov D ff 2 C.X / j v.f / � 0g, which has a unique maximal ideal Mv D ff 2 C.X / j v.f / < 0g and
residue field kv DOv=Mv.

Lemma 10 A simple valuation v D v� satisfies kv DC if and only if for all distinct multicurves �; � we
have i.�; �/¤ i.�; �/.

Following [12], we will refer to them as strict valuations. We showed in [12, Lemma 3.4] that the set of
nonstrict valuations has zero measure in ML.
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Proof Suppose that kv D C and consider two distinct multicurves � and �. If v.t�/ D v.t�/ then
t�=t� 2Ov nMv , so there exists �2C� such that t�=t���2Mv thus v.t�=t���/< 0. But this implies
v.t���t�/ < v.t�/, which contradicts the third condition in Definition 5.

Conversely, suppose that v takes distinct values on distinct multicurves and pick f D P=Q 2Ov nMv.
Then v.P /D v.Q/, so the decompositions of P and Q in the basis of multicurves must be of the form
P D at�CP 0 and QD bt�CQ0 with a; b 2C� and v.P 0/; v.Q0/ < v.t�/. This gives

f D
at�CP 0

bt�CQ0
D

aCP 0=t�

bCQ0=t�
D

a

b
mod Mv:

For a simple valuation v D v�, the set of values ƒCv D v.CŒX � n f0g/ coincides with

ƒCv D fi.�; �/ j � 2MCg

by condition (iii) in Definition 5, and has the structure of an abelian semigroup by condition (ii) in
Definition 5. Its associated group is ƒv D v.C.X /�/ and consists of differences of �–lengths.

When v is strict, the map � 7! i.�; �/ is a bijection between MC and ƒCv . It is enlightening to think
about the semigroup structure on multicurves obtained by pulling back the addition in ƒCv in the following
way. Let � and � be two multicurves, viewed as elements of K.S;C/. All smoothings of �[ � are
multicurves � with i.�; �/� i.�; �/C i.�; �/ and equality holds for exactly one of them corresponding
to the “sum of � and � with respect to v”.

We define the rational rank of v to be rat rk.v/D dimQƒv ˝Q. It satisfies the following Abhyankar
inequality (see [16])

rat rk.v/C tr deg.kv/� dim X;

from which we deduce that if a simple valuation has maximal rational rank, that is rat rk.v/D dim X ,
then it is strict.

Proof of Proposition A By Lemma 10, we know that the first two properties of the proposition are
equivalent. The Abhyankar inequality gives the implication rat rk.v/D 6g� 6D) tr deg.kv/D 0. The
reverse implication will follow from the results of the remaining sections. Precisely, given a strict
valuation v, we will define a tangent space TvML whose dimension is rat rk.v/. Then, we will show
successively that this tangent space is isomorphic to the Bonahon and Thurston models. It is well known
that the latter has dimension 6g� 6, proving the last step of the proposition.

3 Newton polytopes of trace functions

This section relies on the following lemma, whose proof is postponed to Section 5.

Lemma 11 The set of acute valuations has full measure in ML.
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Definition 12 Let v 2ML be any simple valuation and f 2CŒX � any function decomposed as
P

m�t�

in the multicurve basis.

� The multicurve � 2 Supp.f / is v–extremal in f if v.t�/ < v.t�/ for every other � 2 Supp.f /.

� The multicurve � is extremal in f if it is v–extremal in f for some v.

� The Newton set of f is the subset �.f /�MC of extremal curves in f .

� The function f is unitary if m� D˙1 for any extremal multicurve in f .

Observe that if v is strict, then � is v–extremal in f if and only if v.f /D v.t�/. Moreover, the density
of strict valuations in ML implies that a multicurve is extremal in f if and only if it is v–extremal in f
for some strict v.

3.1 Trace functions are unitary

Theorem 13 (unitarity) If ˛ is a multiloop in S , then t˛ is unitary.

Proof Let v be a strict acute valuation and � be the unique multicurve such that v.t˛/ D v.t�/. We
must prove that m� D ˙1. We proceed by induction on the number of intersections of ˛. If there
are none, then the result is obvious. Otherwise, put ˛ in taut position and consider its smoothings at
an intersection. Lemma 7 and the assumption that v is acute imply that v.t˛C/ ¤ v.t˛�/. One can
suppose that v.t˛/D v.t˛C/ > v.t˛�/. The coefficient of t� in t˛ is the same as in ˙t˛C , so the induction
hypothesis yields the result.

Remark If we represent a taut multiloop as the projection of a banded link L in S � Œ0; 1�, we may
decompose it in the basis of multicurves �2K.S;ZŒA˙�/ with blackboard framing. Then, the coefficient
of� in L is equal to AnC�n� , where n˙ counts the number of˙–resolutions performed while transforming
L into �. At A D �1, we find the sign .�1/s for the extremal coefficient, where s is the number of
self-intersections of ˛. The proof is the same, using the skein relation inductively.

Remark We know from [24] that MC indexes another basis .t 0�/ of CŒX � for which the multiplicative
structure constants are positive. The change of basis from .t�/ to .t 0�/ is triangular, in the sense that if
�Df�1; : : : ; �kg as a multiset, then t 0� is a polynomial in the t�j with leading monomial˙t�1

� � � t�k
. In

this basis, the analogous notion of Newton set will be the same (that is, indexed by the same multicurves),
and its extremal coefficients will be 1.

Corollary 14 Any strict valuation is acute.

Proof Let v be a strict valuation and consider a taut multiloop ˛. Suppose v.t˛C/D v.t˛�/. Then t˛C
and t˛� must have the same v–extremal multicurve �. This defines an open condition on v 2ML, namely
that v.t�/ > v.t�/ for all � 2�.t˛� t˛C/ n f�g. But simple acute valuations are dense in ML so the same
will hold for some acute valuation, contradicting Lemma 9. The conclusion follows from the converse
part of that lemma.
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3.2 Extremal multicurves of t�t� and ft�; t�g

Let � and � be multicurves in S and consider a taut immersion �[ � for their union. Note that such an
immersion is unique up to isotopy and permutations of parallel strands. This follows from the methods
and results of [8], specifically Theorem 2.1 and the discussion following Example 2.4.

We define the embedding L�.�/ obtained by smoothing all intersections of �[ � with a left turn as we
travel along a segment of � and meet a segment of �. Smoothing all intersections with a right turn would
yield L�.�/.

This is the product considered by Luo in [10]; in particular his Lemma 8.1 shows that L�.�/ is a
multicurve (it has no trivial components) and his Theorem 2.1 describes several of its properties.

Proposition 15 Let � and � be multicurves. The multicurves L�.�/ and L�.�/ are extremal for the
product t�t� , and if i.�; �/ > 0 then they are distinct.

Proof If i.�; �/D 0 then L�.�/D �[ � DL�.�/ and the statement follows.

Now suppose i.�; �/ > 0. We first observe that among all smoothings of the union � [ �, those
which maximize v� are precisely L�.�/ and L�.�/. Indeed, we know from [10, Theorem 2.1(iii)]
that i.�;L�.�//D i.�; �/D i.�;L�.�//, but any other smoothing � is made of segments of � and �
which somewhere alternate between a left turn and right turn, thus forming a bigon with � so that
i.�; �/ < i.�; �/. The fact that L�.�/¤L�.�/ can be obtained from [10, Corollary 8.2], which proves
i.L�.�/;L�.�//D 2i.�; �/.

We deduce from the preceding discussion and the multiplication formula (4) that the distinct multicurves
L�.�/ and L�.�/ both appear in the decomposition of t�t� , and are the only two maximizers of v�. The
condition v�.L�.�//D v�.L�.�// defines on � 2ML a codimension-1 PL–subset; see [12, Lemma 1.6]
for a proof. Hence a slight perturbation of the valuation v� off that subset in one direction or the other
shows that L�.�/ and L�.�/ are indeed extremal terms in the product.

Corollary 16 If � and � are multicurves such that i.�; �/ > 0, then L�.�/ and L�.�/ are extremal in
the Poisson bracket ft�; t�g, and their coefficients in the basis of multicurves are equal to˙i.�; �/.

Proof We may deduce this using Theorem 4, which derives the Poisson bracket from the commutator in
the skein algebra, but let us detail the computation without referring to the skein product.

For this, apply the Goldman formula (2) to the multiloops ˛ and ˇ, and for each p 2 ˛\ˇ, decompose
the terms t˛pˇp

and t˛pˇ
�1
p

in the basis of multicurves � 2MC, to find

ft˛; tˇg D
X
�

w� t� D
X
�

�X
��

Y
p

��.p/

�
t� ;
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where w� D
P
��

Q
p ��.p/ is the sum over the smoothings �� W ˛ \ ˇ! f˙1g of ˛ [ ˇ yielding the

multiloop � .

Now suppose that ˛ D � and ˇ D � are multicurves with i.�; �/ > 0, and consider the multicurves �
indexing the sum that are obtained by smoothing all intersections of �[ �. Reasoning as in the proof of
Proposition 15, we find that L�.�/ and L�.�/ both index a term corresponding to a unique smoothing
map �� which is constant, equal to 1 or �1.

Remark In the next section, we will prove that extremal coefficients of ft�; t�g which are also extremal
for t�t� are values of the Thurston Poisson bracket fi�; i�g� for � 2ML, as announced in Theorem B.
Our approach consists in reinterpreting the Thurston Poisson bracket fi�; i�g� as a residual value ft�; t�gv
of the Goldman Poisson bracket at v D v�.

The previous corollary shows that the (residual) Poisson bracket of multicurves determines their intersection
number by the formula

i.�; �/Dmaxffi�; i�g� j � 2MLg:

4 Residual Poisson structure on ML

4.1 Tangent space

Recall that ML embeds in the space of real functions on CŒX �� DCŒX � n f0g. We thus define its tangent
space at v as the set of maps

� D
d

ds

ˇ̌̌
sD0

vs WCŒX �
�
!R;

where vs is a family of simple valuations depending on a parameter s 2 Œ0; �Œ starting at v0 D v, such that
the map s 7! vs.t / is differentiable for every curve  .

Observe that the pair .v; �/ W CŒX ��! Œ0;C1/�R satisfies all the axioms in Definition 5 of simple
valuations provided the maximum is taken with respect to the lexicographic ordering. When v is a strict
valuation, the lexicographic ordering depends only on the first coordinate and everything becomes much
easier. As we only deal with the strict case, we consider straight away the following as a definition.

Definition 17 Let v 2ML be a strict valuation. We define TvML to be the set of group homomorphisms
� WC.X /�!R satisfying the property that, for any function f 2CŒX � decomposed as f D

P
m�t� in

the linear basis of multicurves,

(6) �.f /D �.t�/; where � is v–extremal in f:

We will refer to this definition of the tangent space as the Goldman model. In this section, we define a
symplectic structure on it, and will relate it to the models of Thurston and Bonahon introduced later on.

Geometry & Topology, Volume 28 (2024)



Valuations on the character variety: Newton polytopes and residual Poisson bracket 609

Proposition 18 For any strict valuation we have a sequence of natural isomorphisms

TvMLD Hom.ƒCv ;R/D Hom.ƒv;R/D Hom.ƒv˝Q;R/D Hom.C.X /�=O�v ;R/;

where Hom is understood first as the space of semigroup homomorphisms , and then as the space of group
homomorphisms. In particular , TvML has dimension rat rk.v/ (which is � dim X ).

Proof Recall that the map � 7! v.t�/ is a bijection between the set of multicurves and ƒCv . We
have v.t�/C v.t�/ D v.t�/, where � is the v–extremal multicurve in t�t� . Given � 2 TvML, the map
v.t�/ 7! �.t�/ is by construction a homomorphism of semigroups ƒCv !R, and this construction can
easily be reversed, giving the isomorphism TvML D Hom.ƒCv ;R/. The remaining isomorphisms are
purely formal, noticing that O�v is the kernel of the group homomorphism v WC.X /�!R.

Definition 19 For f 2C.X /, we define the differential of the map v 7! v.f / at v by

dv logf W TvML!R; dv logf .�/D �.f /:

We introduced the log to make the formula dv log.fg/D dv logf C dv log g look more natural.

By Proposition 18, the elements dv logf span T �v ML. More precisely, we obtain a basis by letting f
range over a family of multicurves whose v–lengths form a basis of ƒv˝Q.

4.2 Residual Poisson structure

Proposition 20 For all f;g 2CŒX � and v 2ML, we have v.ff;gg/� v.f /C v.g/.

Proof By linearity of the Poisson bracket, it is sufficient to prove the inequality for f D t� and g D t� ,
where � and � are multicurves. Then, by the Leibnitz formula, it is sufficient to prove it for curves �
and �. Suppose that � and � are in taut position and apply Goldman’s formula (2). It is sufficient to prove
that for any p 2 �\ � we have v.t�p�p � t�p�

�1
p
/� v.t�t�/, but this is a consequence of the smoothing

lemma (Lemma 7).

Given a strict valuation v 2ML, the preceding proposition allows us to define the residual Poisson bracket
at v in the following way.

Definition 21 For f;g 2CŒX � and v 2ML strict, we define ff;ggv 2 kv DC by

ff;ggv D
ff;gg

fg
mod Mv:

Proposition 22 There is an element �v 2ƒ2TvML representing this Poisson structure , in the sense that
for any f;g 2CŒX �, we have

ff;ggv D h�v; dv log.f /^ dv log.g/i:
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Proof Let us fix f and consider the map F W CŒX �! C defined by F.g/D ff;ggv. By the Leibnitz
identity, this map satisfies F.g1g2/DF.g1/CF.g2/ and thus extends to an element of Hom.C.X /�;C/,
and we must first show that it vanishes on O�v . Any g 2O�v can be written g D ˛C h with ˛ 2C� and
v.h/ < 0. We compute

F.g/D
ff; ˛C hg

f .˛C h/
D
ff; hg

f .˛C h/
:

Since v.h/<0 we have v.f .˛Ch//Dv.f /Cv.˛Ch/Dv.f /, and with Proposition 20, v.ff; hg/<v.f /;
thus F.g/ 2Mv, and the claim is proved. What we have shown implies that there exists an element
�f 2 TvML such that F.g/D h�f ; dv log gi. As the Poisson bracket is antisymmetric, the same is true
with the variables interchanged, and the conclusion follows.

5 Actions of �1.S / on real trees

A real tree is a metric space T such that any two points x;y 2 T are joined by a unique injective segment.
Recall that S is a closed oriented surface of genus g � 2. We consider real trees with an action of �1.S/

that is minimal, in the sense that the only subtrees T 0 � T satisfying T 0 � T 0 for all  2 �1.S/ are ∅
and T .

The action of an element ˛ 2 �1.S/ on T either fixes a point and is called elliptic; otherwise it is a
hyperbolic translation along an axis A˛ with positive translation length l.˛/Dminfd.x; ˛x/ j x 2 T g,
and d.x; ˛x/D l.˛/ if and only if x 2A˛.

We face the following alternative. If all elements of �1.S/ act elliptically, then they have a common fixed
point; the minimality assumption implies that T is reduced to a point. If at least one element of �1.S/

acts hyperbolically, then the union of all translation axes forms an invariant subtree (see [18]), which
equals T by the minimality assumption.

An action of �1.S/ is free when only the trivial element of �1.S/ has a fixed point, or equivalently when
l.˛/ > 0 for all nontrivial ˛ 2 �1.S/. It is small when the stabilizer of any nontrivial segment in T is
cyclic. This condition appears naturally in the following important results.

Theorem 23 (Culler and Morgan) For real trees T1 and T2 with small minimal actions of �1.S/, there
exists an equivariant isometry ˆ W T1! T2 if and only if l1.˛/D l2.˛/ for all ˛ 2 �1.S/.

Theorem 24 (Thurston, Skora) To any measured lamination � 2ML one can associate a “dual tree” T�

together with a small minimal action of �1.S/ on T� such that l.˛/ D 2i.�; ˛/ for all ˛ 2 �1.S/.
Conversely, any tree with a small and minimal action of �1.S/ is produced in this way.

Let us briefly outline the construction of the dual tree to a measured lamination, in the case where � is
filling (or equivalently when the simple valuation v� is positive).
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First represent the filling measured lamination � on S by a measured geodesic lamination for some fixed
hyperbolic metric, and lift it in zS to obtain a �1.S/–invariant measured geodesic lamination z�. Following
[15, Section 2.3], the tree T� is the quotient of zS by the equivalence relation whose classes are given
either by the closure of a connected component of zS n z� or else by a leaf of z� which is not contained in
the previous classes. The quotient map f W zS ! T� is clearly �1.S/–equivariant.

To describe the complement of a point x 2T�, consider its preimage f �1.fxg/. If it consists of a geodesic
leaf of z�, then T� nfxg has two connected components. Otherwise it is isometric to the closure of an ideal
hyperbolic polygon with k sides, so T� n fxg has k > 2 components, and x is called a branch point of T .
In any case the connected components of T� n fxg have a cyclic orientation which is �1.S/–invariant.
These local cyclic orientations match together to give a global cyclic orientation on the Gromov boundary
of T�. See [26] for more details.

The map f W zS ! T� is not proper, so does not extend to the Gromov boundary. A nontrivial element
˛ 2 �1.S/ acts on zS 'H2 by hyperbolic translation along an axis which is transverse to �, and thus
crosses every leaf at most once. Hence the projection f maps it bijectively to a geodesic in T which, by
equivariance, coincides with the axis A˛. Hence we can associate to the attractive and repulsive points
of ˛ in @H2D @�1.S/ the corresponding endpoints of A˛ in @T . This partially defined map between the
Gromov boundaries of �1.S/ and T is �1.S/–equivariant, orientation-preserving and independent of the
initial hyperbolic metric.

We recall the following proposition from [6], which we will use repeatedly.

Proposition 25 Let  and ı be two hyperbolic isometries acting on a real tree T with axes A and Aı.
Then one of the following holds.

(i) If A \Aı D∅ then l. ı/D l. /C l.ı/C 2D where D is the distance between A and Aı.

(ii) If A \Aı ¤∅, we denote by D 2 Œ0;C1� the length of the intersection.

(a) If D > 0 and the translation directions of  and ı on A \Aı coincide , or if D D 0, then
l. ı/D l. /C l.ı/.

(b) If D > 0 and the translation directions of  and ı on A \Aı are opposite , then we have
l. ı/ < l. /C l.ı/.

Corollary 26 Let  and ı be two hyperbolic isometries acting on a real tree T with axes A and Aı.
When the segment A \Aı has positive length , we may compare the translation directions of  and ı: let
cosign.; ı/D˙1 beC1 if they coincide and �1 if they differ. One of the following holds:

l. /C l.ı/ < l. ı/D l. ı�1/ if A \Aı D∅.( [ ı)

l. ı/D l. /C l.ı/D l. ı�1/ if A \Aı is reduced to a point.(equil)

l. ı�1/ < l. /C l.ı/D l. ı/ if l.A \Aı/ > 0 and cosign.; ı/D 1.( ı�1)

l. ı/ < l. /C l.ı/D l. ı�1/ if l.A \Aı/ > 0 and cosign.; ı/D�1.( ı)
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To illustrate how we will apply this corollary, let us propose a new proof of the smoothing lemma, which
does not rely on the equivalence between measured laminations and simple valuations (that we showed
in [12] using the smoothing lemma).

Notice that the equivalence between measured laminations � and simple valuations v recovers the
smoothing lemma, because for a taut multiloop ˛ we have for obvious geometric reasons i.�; ˛/ �

maxfi.�; ˛C/; i.�; ˛�/g, and as t˛ D˙t˛C ˙ t˛� we have v�.t˛/�maxfv�.t˛C/; v�.t˛�/g.

Proof of the smoothing lemma (Lemma 7) Let us represent our measured lamination � by an action of
�1.S/ on a tree T . Fix a hyperbolic metric on S to identify zS 'H2.

Consider a taut multiloop ˛ with a self-intersection point p, which may either be a self-intersection
of a single component or an intersection between two components. We wish to prove that i.�; ˛/ D

maxfi.�; ˛C/; i.�; ˛�/g.

Suppose first that p is the intersection point between two components which we write as ; ı 2 �1.S;p/.
Lift  and ı in zS ' H2 starting from zp to obtain geodesics z and zı which intersect only at zp and
transversely at zp. Consequently, their endpoints are linked in @H2 with respect to the cyclic orientation.
As the same holds for the endpoints of A and Aı in @T , we must have A \Aı ¤∅, so we are not in
case ( [ ı) of Corollary 26, whence l. /C l.ı/Dmaxfl. ı/; l. ı�1/g.

Suppose now that p is the self-intersection point of a single component of ˛ which we may decompose
as  ı for ; ı 2 �1.S;p/. Lift  and ı in H2 starting from zp to obtain quasigeodesics z and zı. They
intersect only at zp because, using the monodromy homomorphism associated to the developing map,
another intersection point would imply an equality of the form m D ın for some m; n > 0, which is
impossible. The projection map zS ! S is a local diffeomorphism, so the germs of arcs .z [ zı; zp/ and
. [ ı;p/ are topologically equivalent. Hence, up to inversion and exchange of  and ı, the endpoints
of z and zı in @H2 have cyclic order .C; �; ıC; ı�/ as shown in Figure 3. Consequently we are not in
case . ı/ of Corollary 26, whence l. ı/Dmaxfl. /C l.ı/; l. ı�1/g.

ı

p zp

z
zı

Figure 3: Configuration of axes at a self-crossing.
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5.1 Trivalent real trees

Recall that a point x in a real tree is a branch point if T nfxg has at least three connected components. We
will denote by V .T / the set of branch points of T . A real tree is trivalent if any branch point disconnects
it into three connected components.

A measured geodesic lamination � is called maximal if there is no measured geodesic lamination whose
support is strictly bigger; or equivalently if the regions in its complement S n � are isometric to the
interiors of ideal hyperbolic triangles.

Proposition 27 Let T be a real tree with a free minimal action of �1.S/, associated to a filling measured
lamination �. Denote by v the associated positive valuation.

The following are equivalent :

(i) v is acute.

(ii) T is trivalent.

(iii) � is maximal.

Proof .1/() .2/ Suppose T is trivalent. Let ˛ and ˇ be nontrivial elements in �1.S/ and consider
their translation axes A˛;Aˇ � T . From Corollary 26, we find that l.˛ˇ/D l.˛ˇ�1/D l.˛/C l.ˇ/ holds
only when A˛ and Aˇ meet in exactly one point, which is forbidden by the trivalence assumption. Thus
v is acute.

Conversely, suppose T is not trivalent. Consider a branch point x 2 T with valency k > 3. We denote by
C1; : : : ;Ck the components of T n fxg. They decompose the Gromov boundary of T into disjoint open
subsets @C1; : : : ; @Ck . It is known that the set of pairs of ends of axes A for  2 �1.S/ form a dense
subset of @T � @T . One proof consists in considering the sequence of fixed points for the elements ˛ˇn:
the attractive points converge to the image by ˛ of the attractive point of ˇ and the repulsive points to the
repulsive point of ˇ. By minimality, the set of repulsive points of all ˇ’s is dense in @T , and again by
minimality the images of a given attractive point by all ˛’s is dense in @T . Thus we can find two axes
A˛ and Aˇ whose ends are respectively in @C1� @C3 and @C2� @C4. These two axes meet exactly at x,
and Corollary 26 implies that l.˛ˇ/D l.˛ˇ�1/D l.˛/C l.ˇ/, showing that v is not acute.

.3/() .2/ Recall from the construction of the dual tree T to a filling measured geodesic lamination
� � S that the valency of a branch point in T is equal to the number of sides of the corresponding
hyperbolic ideal polygon in zS n z�. Hence T is trivalent if and only if � is maximal.

It is well known that the set of maximal laminations has a full measure in ML; see [9, Lemma 2.3]. Hence
Proposition 27 implies the following corollary.

Corollary 28 The set of acute simple valuations has a full measure in ML.

Geometry & Topology, Volume 28 (2024)



614 Julien Marché and Christopher-Lloyd Simon

5.2 Bonahon cycles

Let T be a trivalent real tree with a free and minimal action of � D �1.S/. To define its tangent space in
the “moduli space” of such objects, imagine the combinatorial structure as being fixed while the distance
function undergoes an infinitesimal deformation. Restricting attention to the variation of the distance
between branch points, we obtain a symmetric map c WV .T /2!R, which is �1.S/–invariant and satisfies
c.x;y/D c.x; z/C c.z;y/ whenever z belongs to the geodesic joining x to y. We will refer to these
maps as Bonahon cocycles and introduce them formally using a dual approach.

Definition 29 We define the space B.T / as the real vector space generated by pairs .x;y/ of elements
in V .T / subject to the following relations:

(i) .x;y/D .y;x/ for all x;y 2 V .T /.

(ii) .x;y/D .x; z/C .z;y/ if z belongs to the geodesic joining x to y.

The group � D �1.S/ acts linearly on B.T / by g.x;y/ D .gx;gy/, and Bonahon cocycles are the
elements of Hom�.B.T /;R/D Hom.B.T /� ;R/, where B.T /� is the space of coinvariants.

Proposition 30 There is a unique alternating bilinear form � on B.T / such that for all pairs .x;y/ and
.z; t/ in V .T /2 we have:

(i) .x;y/ � .z; t/D 0 if the geodesics from x to y and from z to t are disjoint.

(ii) .x; z/ � .z;y/D 1
2
� if z belongs to the geodesic from x to y, where � D˙1 is the cyclic order of

the components .hx; h; hy/ of T n fzg such that x 2 hx and y 2 hy .

Proof The intersection of .x;y/ and .z; t/ is either empty or has the form .a; b/. Decomposing .x;y/
and .z; t/ into segments involving a and b as in Figure 4, we are reduced, by bilinearity and antisymmetry,
to cases (i) or (ii). This proves both uniqueness and existence.

It is an amusing exercise to show that this pairing is nondegenerate. Instead we will deduce it from
Poincaré duality in Thurston’s model in Section 6. Indeed, we are interested in the space B.T /� endowed
with the following pairing obtained by averaging the previous one, whose nondegeneracy will thus follow
from standard arguments in cohomology.
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Proposition 31 The following sum is finite , and it defines an alternating bilinear pairing on B.T /� :

.x;y/ �� .z; t/D
X

g2�1.S/

.x;y/ �g.z; t/:

Proof We only have to prove finiteness of the sum. For that, we view T as the dual tree to a maximal
measured lamination � on S . The vertices x;y; z; t correspond to ideal triangles in zS ' H2: choose
x0;y0; z0; t0 in each one of them. Since �1.S/ acts properly on H2, the geodesics Œx0;y0� and gŒz0; t0�

are disjoint for all but a finite number of g 2 �1.S/. When they are disjoint, their projections in the tree
are disjoint or meet as in the middle case of Figure 4, so their intersection vanishes.

We shall prove in Section 6 that B.T /� is the antisymmetric part of H1. zS ;R/, where zS is the orientation
covering of the measured lamination �, thus recovering Thurston’s original point of view on the tangent
space T�ML.

5.3 The symplectomorphism theorem

Fix a strict valuation v 2ML, and recall it identifies the set of multicurves with ƒCv . Let T be a real tree
with a free and minimal action of �1.S/ representing v, so that l.˛/D 2v.t˛/ for all ˛ 2 �1.S/.

Lemma 32 The distance between two branch points in T belongs to ƒv.

Proof This lemma can be deduced from repeated applications of Proposition 25. For instance, the
distance between two disjoint axes A and Aı can be written D D 1

2
.l. ı/� l. /� l.ı// and hence

belongs to ƒv . Instead, we may prove it as a direct consequence of a more conceptual construction for Tv

using Bass–Serre theory: we refer to formula (3) in [16, Section 4.1].

Given � 2TvMLDHom.ƒv;R/, we define a corresponding c� 2Hom�.B.T /;R/ by setting c�.x;y/D
1
2
�.d.x;y//, where d is the distance in T . As d is �1.S/–invariant, c is also, and the identity c.x; z/D

c.x;y/C c.y; z/ for y between x and z follows from the triangular equality satisfied by d . In other
words, there is a well-defined map

(7) ‰ W TvML! Hom�.B.T /;R/; � 7! c� :

Proposition 33 The map ‰ induces an isomorphism TvML' Hom�.B.T /;R/.

Proof The linearity of ‰ is obvious. We first prove injectivity: suppose c� D 0. For any nontrivial
˛ 2 �1.S/, choose a branch point x on its axis A˛ so that the translation length satisfies l.˛/D 2v.t˛/D

d.x; ˛x/. As c�.x; ˛x/ D 1
2
�.d.x; ˛x// we get �.v.t˛// D 0, but ƒv is generated by the v.t˛/ for

˛ 2 �1.S/, so � D 0.
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This suggests the construction of the inverse, but this time we think of � as a map � WC.X /�=O�v !R.
Given c 2 Hom�.B.T /;R/, we define �.t˛/D c.x; ˛x/ for any simple curve ˛, where x is any branch
point in A˛ (by additivity of c, this does not depend on the branch point). We extend � to any multicurve
by linearity. Finally for any f 2 CŒX �� we set �.f / D �.t�/, where � is the v–extremal multicurve
in f . The point is to show that � indeed belongs to TvML: as it satisfies equation (6) by construction, it
remains to prove that it is multiplicative.

We first show that the defining property �.t /D c.x; x/ extends to all loops  2 �1.S/ by induction
on the number of self-intersections. Suppose  has n > 0 intersections. Let p be one of them and
denote by ˛ and ˇ the two elements of �1.S;p/ such that  D ˛ˇ. Since v is acute, we have either
v.t˛ˇ�1/ < v.t˛/C v.tˇ/D v.t˛ˇ/ or v.t˛/C v.tˇ/ < v.t˛ˇ�1/D v.t˛ˇ/, and we apply either case (2)(i)
or case (1) of [18, Proposition 1.6] (which are unmodified in [6]).

In the first case, the axes A˛ and Aˇ intersect along a segment xy such that both isometries push x

in the direction of y, and we have x 2 A˛ˇ. If l.ˇ/ � d.x;y/ then l.˛ˇ/ D d.x; ˛ˇx/ D d.x;y/C

d.y; ˛y/Cd.˛y; ˛ˇx/, whence c.x; ˛ˇx/D c.x;y/Cc.y; ˛y/Cc.y; ˇx/D c.y; ˛y/Cc.x; ˇx/, with
x 2Aˇ and y 2A˛ . If l.ˇ/� d.x;y/ then d.x; ˛ˇx/D d.x; ˇx/C d.ˇx; ˛ˇx/ whence c.x; ˛ˇx/D

c.x; ˇx/C c.z; ˛z/ with z D ˇx 2A˛. Each time, the induction hypothesis applies, showing that both
definitions of �.t / coincide.

In the second case, the axes A˛ and Aˇ are disjoint: let xy be the geodesic joining them, and note that x

also belongs to the axes of ˛ˇ and ˛ˇ�1. By the induction hypothesis, �.t˛ˇ�1/ is equal to c.x; ˛ˇ�1x/.
Then d.x; ˛ˇ�1x/Dd.x; ˛ˇx/, whence c.x; ˛ˇ�1x/D c.x; ˛ˇx/ and 2�.t˛ˇ/D c.x; ˛ˇx/ as claimed.

To finish the proof, we must consider f;g 2CŒX � and show that v.fg/D v.f /Cv.g/. If � and � are the
v–extremal multicurves of f and g, then the v–extremal multicurve of fg is that of t�t� , denoted by �.
We must show that �.t�t�/D �.t�/D �.t�/C�.t�/. Let us prove more generally that if ˛D ˛1[� � �[˛n

is a multiloop then �.t˛/D �.t˛1
/C� � �C�.t˛n

/, reasoning by induction on the self-intersection number
of ˛.

If the components j̨ are disjoint, we may replace each one of them by its v–extremal smoothing, which
remain disjoint, and the result follows from the definition of �. Hence suppose that ˛1 and ˛2 intersect at p.
Up to changing the orientation of ˛2, we can suppose that v.t˛1˛2

/D v.t˛1
/C v.t˛2

/. The computation
in the first case at the beginning of the proof shows that �.t˛1˛2

/ D �.t˛1
/C �.t˛2

/. We also have
�.t˛1˛2

t˛3
� � � t˛n

/D �.t˛1˛2
/C�.t˛3

/C � � �C�.t˛n
/ by the induction hypothesis.

Theorem 34 The isomorphism ‰� W B.T /� ! T �v ML preserves the symplectic form.

Explicitly,‰�.x; ˛x/Ddv log t˛ for all ˛2�1.S/ and any branch point x 2A˛ . Indeed for all � 2TvML,
equation (7) and Definition 19 yield

‰.�/.x; ˛x/D 1
2
�.d.x; ˛x//D �.t˛/D dv log.t˛/.�/:
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� D�1
A˛Aˇ

AˇA˛

� D 1
AˇA˛

A˛Aˇ

Figure 5: Sign rule for the axes.

Proof Let ˛; ˇ 2 �1.S/ represent two simple curves in S . We must prove that for x 2A˛ and y 2Aˇ ,
ft˛; tˇgv D h�v; dv log t˛ ^ dv log tˇi equals .x; ˛x/ �� .y; ˇy/. If i.˛; ˇ/D 0 then both quantities are
null. Otherwise, put ˛[ˇ in taut position.

We first compute the sum defining ft˛; tˇgv, in which every intersection p 2 ˛ \ ˇ contributes to a
term �p.t˛pˇp

� t˛pˇ
�1
p
/t�1
˛ t�1

ˇ
mod Mv. The set ˛ \ ˇ is in bijection with pairs of intersecting lifts

.z̨; ž/� zS � zS modulo the diagonal action of �1.S/. These lifts correspond bijectively to axes of the
form .Az̨;A ž/ in T through the equivariant map f W zS ! T which preserves the cyclic orientations on
the boundaries. Fixing representatives ˛; ˇ 2 �1.S/, every such pair is represented by some .A˛;gAˇ/

for a unique g 2 h˛in�=hˇi. Using again Proposition 25, we can rewrite

(8) ft˛; tˇgv D
X

g2h˛in�=hˇi

�.A˛;gAˇ/D
X

g2h˛in�=hˇi

�.A˛;Agˇg�1/;

where �.A˛;Aˇ/D˙1 if A˛ and Aˇ are as in Figure 5, and �.A˛;Aˇ/D 0 in any other configuration.
Notice that this formula does not depend on the orientations of the axes, but on their cyclic orders at the
branch points of the tree.

To end the proof, we fix x 2 A˛ and y 2 Aˇ to compare formula (8) with
P

g2�.x; ˛x/ � .gy;gˇy/.
Grouping them depending on the class of g in h˛in�=hˇi, we are reduced to the following equality,
which is easily checked:

�.A˛;Aˇ/D
X

m;n2Z

.˛nx; ˛nC1x/ � .ˇmy; ˇmC1y/:

6 Identifying the symplectic tangent models

Following [19, Section 3.2], we recall Thurston’s description for the tangent space to ML at a maximal
measured lamination �. We start with an orientation covering p W S 0! S , which is a ramified covering of
degree 2 with one ramification point in each triangle of the complement S n�, and such that the preimage
p�1.�/ is naturally cooriented (meaning that its normal bundle is oriented). By the Gauss–Bonnet
theorem, the set R of ramification points has 4g � 4 elements and the monodromy of the covering is
a homomorphism � W �1.S nR/! f˙1g, which is nontrivial around each ramification point. For later
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purposes, it will be useful to consider the orbifold So where ramification points are thought as conical
singularities of order 2.

Let H1.S
0;R/˙ be the symmetric and antisymmetric part of H1.S

0;R/ with respect to the involution
of the covering: they are orthogonal for the intersection form. Hence (half) the intersection form
restricted to H1.S

0;R/� is nondegenerate. We shall refer to this symplectic space as Thurston’s model for
T �
�

ML. We can avoid introducing the covering by considering instead the homology group H1.S
o;R�/

with coefficients in the �1.S
o/–module R together with the action given by  :x D �. /x. The twisted

intersection product H1.S
o;R�/�H1.S

o;R�/!H0.S
o;R/DR coincides with the previous definition

for Thurston’s model. We will stick to this point of view in the sequel.

Let T be a trivalent real tree endowed with a free minimal action of �1.S/, which is dual to a measured
geodesic lamination �. In the next section we first recover a model for So which depends only on T : our
space will be an infinite dimensional CW–complex homotopic to So. As a consequence, its fundamental
group is canonically attached to T and its homology will be easy to compute from T . We will use
it extensively to prove that the Bonahon model B.T /� and Thurston model H1.S

o;R�/ are naturally
isomorphic symplectic vector spaces.

6.1 A homotopical construction of the orbifold tree

6.1.1 Idea of the construction We first construct a space corresponding to the tree T with an orbifold
singularity of order 2 at every branch point. As the topology of T induced by the metric is not given by a
cell structure, our first task is to build a cellular model of T .

To motivate our construction, let us begin with the following analogy: suppose we wish to replace the real
line R, with its usual topology, by a CW–complex whose 0–cells consist of the set Q of rationals with
the discrete topology. We may first add a 1–cell between every pair of distinct 0–cells to make the space
connected. This creates a 1–cycle for every triple of distinct rational points, so we attach a 2–cell to each
of those in order to make the space simply connected. Now every 4–tuple of rationals form the vertices of
a 2–cycle, to which we attach a 3–cell, and so on. In the limit, we obtain Milnor’s join construction EQ,
which is a space homotopic to R endowed with a free and proper action of Q.

We shall play a similar game, replacing R by the real tree T , and Q by its set of branch points V .T /. We
first attach a 1–cell to every pair of distinct branch points. However, we close the triangle .x;y; z/ only if
x;y; z 2 V .T / belong to a same geodesic in T . Then we go on similarly in higher dimensions, so that
our space will resemble EQ in restriction to any geodesic of T . At this stage, we have a space on which
�1.S/ acts freely and properly. As it is contractible, its quotient by �1.S/ is homotopic to S . Next comes
the orbifold singularities: in homotopy theory, this is represented by a K.Z=2; 1/–space, that is, RP1.
It remains to blow up the preceding construction at every branch point and insert an infinite-dimensional
projective space. This construction may look complicated but we shall do it in one shot and few lines
below.
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Figure 6: Attaching a 3–cell in T o.

6.1.2 Formal construction A half-edge of T is a pair .x; h/ consisting of a branch point x of T and
a connected component h of T n fxg; we sometimes just write h, as it determines x. Let us construct
a CW–complex T o whose 0–skeleton is the set of half-edges of T . First, we attach a 1–cell denoted
by .h; k/ between every pair of half-edges incident to the same branch point x 2 V .T /. Now at every
branch point x, the incident half-edges h1; h2; h3 form a triangle homeomorphic to RP1, along which
we attach a copy of RP1. For the moment, T o is a disjoint union of infinite projective spaces indexed
by the set of branched points V .T /; we call it the orbifold part.

Now, we add a connecting part, as suggested in Figure 6. Fix � > 0 small enough, say 1
3

. Consider a finite
set W of branch points fx0; : : : ;xng aligned on a geodesic of T , and denote by hi and ki the half-edges
incident to xi containing (a nonempty) part of that geodesic. The n–cell

�W D

�
.rx/x2W 2 Œ0; 1� ��

W
ˇ̌̌ X

x2W

rx D 1

�
is a truncated simplex, and there is an obvious inclusion �W 0 ��W when W 0 �W . The face of �W

truncated at xi corresponds to the set �xi

W
of families .rx/ satisfying rxi

D 1� �. We attach �xi

W
to the

orbifold part of T o through the map W n fxig ! fhi ; kig sending the branch point xj to the half-edge
based at xi which contains xj , as in Figure 6. The 1–cells �fx;yg will be called edges and denoted
by .x;y/.

As promised, the action of �1.S/ on T o is now proper, so that we may form the quotient†oDT o=�1.S/.
The following lemma shows that†o and So are homotopic. Interestingly, the proof consists in constructing
an equivariant map F WT o! zSo, which plays the role of a (nonexistent) retraction for the map f W zS!T .

Lemma 35 Let zSo be the covering of the orbifold So corresponding to the kernel of the natural map
�1.S

o/ ! �1.S/. There exists a �1.S/–equivariant map F W T o ! zSo which induces a homotopy
equivalence between †o and So.

Proof To define F , represent T as the dual tree to a measured geodesic lamination �, and consider
the collection of circles inscribed in each triangle of the complement S n�: they lift to a collection of
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Figure 7: Lifting a geodesic to H2 (done with Geogebra).

circles Cx in zS 'H2 indexed by x 2V .T /. Moreover, the half-edges incident to x correspond bijectively
to the three intersection points of Cx with the leaves of the lamination; see Figure 7.

The covering zSo is obtained from H2 by drilling out the interior of Cx and gluing back a copy of RP1

along RP1 ' Cx for every x 2 V .T /. By construction, the orbifold So is homotopic to the quotient
zSo=�1.S/.

We now proceed to the construction of an equivariant map F WT o! zSo. There is already an identification
between the orbifold parts of both spaces, so that we are left to define the map F on the connecting part.

For every pair .x;y/ 2 V .T /2, we must define a path F.x;y/ in zSo connecting the points of Cx and
Cy identified to the endpoints hx; hy of .x;y/ in T o. A first guess would be to consider the geodesic
path  between the points hx and hy . This path actually projects to the geodesic joining x to y in T .
However, it may intersect a forbidden circle Cz , in which case it enters its circumscribed ideal triangle
�z by one side and leaves it by another. Call pz the ideal vertex at the intersection of these two sides.
We can homotope  inside �z to a path avoiding Cz which stays on the side containing pz ; see Figure 7.

Moreover, we can choose those paths in such a way that F is �1.S/–equivariant. Let us now consider
a triple of points x; z;y lying on a geodesic of T in that order. We have defined F.x; z/, F.z;y/ and
F.x;y/: it is not hard to see that the region enclosed by the three arcs and the boundary of Cz does not
contain any other circle, hence it can be filled by a triangle: this extends F to the 2–skeleton of T o. This
procedure can be continued to define an equivariant map F WT o! zSo, which induces a map F W†o!So.

We would like to show that F is a homotopy equivalence. The space zSo is Eilenberg–Mac Lane, and
Lemma 36 below shows that so is T o, hence it is sufficient to prove that F induces an isomorphism
between fundamental groups. Behold the following commutative diagram, and observe that the five
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lemma reduces the statement to showing that F� is an isomorphism:

0 // �1.T
o/

F�
��

// �1.†
o/ //

F�
��

�1.S/ // 0

0 // �1. zS
o/ // �1.S

o/ // �1.S/ // 0

This last statement is clear from the fact that �1.T
o/ and �1. zS

o/ are both isomorphic to a free product
of copies of Z=2Z indexed by V .T /; see again Lemma 36.

6.2 Homology of T o

The homology of T o can be computed from its finite subcomplexes, which are easy to understand thanks
to the following lemma. For a finite set W � V .T /, let T o

.W /
be the union of cells involving W only:

a cell belongs to T o
.W /

when all its 0–faces are of the form .x; h/ for x 2W . We define T o
W

to be the
subcomplex of T o

.W /
whose connecting part reduces to the 1–cells .x;y/ for x;y 2W such that there

is no other element in W on the geodesic joining them. In more intuitive terms, T o
W

is a collection of
RP1 indexed by W , connected in a tree-like fashion given by the embedding of W in T .

Lemma 36 For all finite W � V .T /, the cell complex T o
.W /

retracts by deformation on T o
W

.

Proof We define the retraction by induction on the maximal dimension of the truncated simplices
�U � T o

.W /
. Let U D fx0; : : : ;xng correspond to one of them, it is the intersection of W with a geodesic

in T . We retract �U by deformation onto the union of �U 0 for U 0 � U ranging over all subsets which
do not contain both x0 and xn. This procedure stops when U D fx;yg and x and y are closest neighbors
in W .

We define a 1–cochain � 2 C 1.T o; f˙1g/ sending every 1–cell of T o to �1. It is a cocycle because
the 2–cells of T o, being either hexagons (orbifold part) or squares (contained in some �W for W of
cardinality 3), have an even number of 1–faces. The geometric idea underlying this definition is that any
half-edge stands for a local coorientation of the lamination z�, say pointing to the closest singular point.
Following an edge e in T o (transverse to z�), we arrive at the other end with the opposite coorientation,
giving �.e/D�1.

This cocycle defines a homomorphism � W �1.T
o/!R and we denote by R� the vector space R with

the action :x D �. /x. Our first task is to compute the homology of T o with coefficients in R and R�.

Lemma 37 We have Hk.T
o;R/D 0 if k ¤ 0, Hk.T

o;R�/D 0 if k ¤ 1, and

H1.T
o;R�/' B.T /:
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Proof Observe that T oD lim
��!

T o
.W /

as W exhausts the finite subsets of the countable set of branch points
V .T / and by Lemma 36, T o

.W /
retracts by deformation on T o

W
, thus H�.T

o;R˙/D lim
��!

H�.T
o
W
;R˙/.

We may forget about the cocycle � while computing the untwisted real homology, and further retract the
space T o

W
onto a wedge of infinite projective spaces. Thus H0.T

o
W
;R/D R and Hk.T

o
W
;R/D 0 for

k > 0, so the same holds for T o.

We now return to the twisted homology of T o
W

. For this we consider the double cover T 0
W
! T o

W

corresponding to � and compute the untwisted homology of the total space: it splits into the ˙1–
eigenspaces of the involution, which coincide with H�.T

o
W
;R˙/, respectively. The space T 0

W
is homotopy

equivalent to a graph with vertex set W , and two edges above each edge e of T o
W

connecting its endpoints
with opposite orientations, as shown below:

�

''

�

��

x 55

��

gg

y
uu

GG

�

GG

It follows that H0.T
0
W
;R/DR and Hk.T

0
W
;R/D 0 if k > 1. Moreover H1.T

0
W
;R/ has a basis formed

by the cycles c.x;y/ 2H1.T
0
W
;R/ indexed by the edges .x;y/ of T 0

W
, which consist in making a round

trip from x to y, following the arrows. The Galois involution of T 0
W

exchanges the orientation of c.x;y/,
so H1.T

o
W
;R�/ is freely generated by pairs .x;y/ where x and y are closest neighbors in W .

Taking the limit as W converges to V .T /, we obtain Hk.T
o;R�/D 0 for k D 0 and k > 1. If an edge

.x;y/ gets subdivided into .x; z/ and .z;y/ as W increases, we have c.x;y/D c.x; z/C c.z;y/, which
is compatible with the equality .x;y/D .x; z/C .z;y/, and provides the desired isomorphism for the
inductive limit of H1.T

o
W
;R�/.

6.3 Homology of the quotient †o D T o=�

Let us write � D �1.S/ for short. The cocycle � on T o is �–invariant, so it induces a homomorphism
�1.†

o/!f˙1g that we also denote by �. The �–equivariant homotopy equivalence between †o and So

thus yields a homomorphism �1.S
o/! f˙1g. By the remark following Lemma 36, this homomorphism

is the coorientation monodromy of �, so its kernel corresponds to the covering S 0! So. Consequently,
we may deduce the homology of So with coefficients in R˙� from that of †o with the same coefficients.

The 2–fold covering S 0 of So ramified over R satisfies �.S 0/ D 2�.S/ � .4g � 4/ D 8 � 8g by the
Riemann–Hurwitz formula. As H�.S

o;R˙/DH�.S
0;R/˙, we get that H�.S

o;R/DH�.S;R/, whereas
Hk.S

o;R�/D 0 if k ¤ 1 and dim H1.S
o;R�/D 6g� 6.
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On the other hand, we can compute H�.T
o=�;R˙/ from H�.T

o;R˙/ using the Cartan–Leray spectral
sequence. Its second page is E2

p;q DHp.�;Hq.T
o;R˙// and converges to HpCq.†

o;R˙/. Lemma 37
implies that, with both coefficients, the second page has only one line, whence the isomorphisms

H�.†
o;R/DH�.�;R/DH�.S;R/ and H�.†

o;R�/DH��1.�;B.T //:

This yields the proposition that we are after.

Proposition 38 Given a maximal measured lamination � with associated covering S 0! S and corre-
sponding tree T , there is a natural isomorphism

H1.S
0;R/� DH1.†

o;R�/DH0.�;B.T //D B.T /� :

We also have Hk.�;B.T //D 0 for k D 1; 2. Observe that from Poincaré duality we get H2.�;B.T //D
H 0.�;B.T // D B.T /� D 0. It is not surprising that B.T / has no invariant cycles as � acts freely
on V .T /. We do not have a similar explanation for the vanishing of H 1.�;B.T //.

6.4 Intersection form

In the commutative diagram
zS 0

zp
//

�
��

zSo

�

��

S 0
p
// So

the first column is a Galois covering of surfaces with group � . We have the identifications

H1. zS
0;R/� DH1. zS

o;R�/DH1.T
o;R�/D B.T / and H1.S

0;R/� DH1.S
o;R�/D B.T /� :

Proposition 39 The isomorphisms H1. zS
0;R/� D B.T / and H1.S

0;R/� D B.T /� preserve the sym-
plectic forms.

Proof Let us begin with the first isomorphism. Recall that we defined an equivariant map F W T o! zSo:
it sends the cell .x;y/ to a path F.x;y/ joining the orbifold points corresponding to x and y and
avoiding all other orbifold points. As the homology of the orbifold part of T o with coefficients R�

vanishes identically, these paths actually define cycles in H1. zS
o;R�/, which in H1. zS

0;R/ are represented
geometrically by c.x;y/D zp�1.F.x;y//� zS 0. Notice that these cycles have a natural orientation (given
by the coorientation of the lifted lamination z�0).

Recalling the definition of the pairing in B.T / given in Proposition 30, it suffices to compute c.x;y/�c.z; t/

in the case where .x;y/ and .z; t/ are disjoint or consecutive.

In the first case, the cycles c.x;y/ and c.z; t/ are also disjoint, so their intersection vanishes. In the
second case, the cycles c.x; z/ and c.z;y/ only intersect in a neighborhood of z which looks like the
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Figure 8: Double covering over a branching point.

right-hand side of Figure 8. The lifted cycles c.x; z/ and c.z;y/ go straight through the intersection point,
oriented as shown. Analyzing the two possible cases, we find that the signs coincide.

Let us now consider the quotient. We showed in Section 6.3 that H1.S
0;R/DH1. zS

0;R/� . The result
follows from the fact that the intersection form on H1.S

0;R/ coincides with the averaged intersection
form on H1.S

0;R/.
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The local (co)homology theorems for equivariant bordism

MARCO LA VECCHIA

We generalize the completion theorem for equivariant MUG–module spectra for finite extensions of a
torus to compact Lie groups using the splitting of global functors proved by Schwede. This proves a
conjecture of Greenlees and May.

55N91, 55P91, 55Q91, 57R85

1 Overview

1.1 Introduction

A completion theorem establishes a close relationship between equivariant cohomology theory and its
nonequivariant counterpart. It takes various forms, but in favourable cases it states that

.E�G/
^
JG
ŠE�.BG/;

where E is a G–spectrum, E�
G

is the associated equivariant cohomology theory and JG is the augmentation
ideal (Definition 3.6).

The first such theorem is the Atiyah–Segal completion theorem for complex K-theory [4]. This is especially
favourable because the coefficient ring KU �G DR.G/Œv; v�1� is well understood, and in particular it is
Noetherian, and so in this case we can view the theorem as the calculation of the cohomology of the
classifying space. The good behaviour for all groups permits one to make good use of naturality in the
group, and indeed [4] uses this to give a proof for all compact Lie groups G. Previous partial results were
proved by Atiyah and Hirzebruch in [2; 3]. The result raised the question of what other theories enjoy a
completion theorem, and the case of equivariant complex cobordism was considered soon afterwards,
with Löffler giving a proof in the abelian case [16]. The fact that the coefficient ring MU �G is not known
explicitly means that this cannot be viewed as a computation of the cohomology of the classifying space.
The fact that the coefficient ring is unknown and not Noetherian was an obstacle to extensions. Despite
the algebraic complexity of the coefficients, Segal made the remarkable conjecture that stable cohomotopy
should satisfy the completion theorem, and this was proved for finite groups by Carlsson [6], building on
important earlier work (see eg Adams, Gunawardena and Miller [1], Carlsson [5], Laitinen [13], Lin [14],
Lin, Davis, Mahowald and Adams [15], Ravenel [20], Segal and Stretch [24] and Stretch [25]).
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628 Marco La Vecchia

In this case, the conclusion can only be viewed as a calculation of the cohomotopy of classifying spaces
in degrees 0 and below, but the structural content in positive degrees is equally striking. In the course of
understanding this, there was a focus on understanding completion in various ways. From a homotopical
point of view this led to the connection between completion and local cohomology and the definition of
local homology (see Greenlees and May [9]), which is the derived version of completion. More precisely,
for a Noetherian ring R and an ideal I , the local homology (resp. cohomology) groups H I

� .RIM /

(resp. H�
I
.RIM /) of an R–module M calculate the left (resp. right) derived functors of completion

(resp. I–power torsion); see [9] (resp. Hartshorne [12]). This derived approach led to a new proof of
the Atiyah–Segal completion theorem and also its counterpart in homology; see Greenlees [8]. This in
turn reopened the question of the completion theorem and local cohomology theorem for MU , but now
with the challenges shifted from the formal behaviour to the algebraic behaviour: the formal structure of
the proof of the local cohomology theorem for KU applies precisely for MU , but the difficulty is that,
since MU �G is not Noetherian, it is not clear that the relevant ideals are finitely generated. Accordingly,
Greenlees and May [10] isolated the formal argument and observed that if one could find a “sufficiently
large” finitely generated ideal (Definition 3.8) of MU �G , the local cohomology and completion theorems
would hold for MU . They went on to codify and use the structure of MU as a global spectrum to define
and apply multiplicative norm maps, and hence construct “sufficiently large” finitely generated ideals in
the case when the identity component of G is a torus. This led to the proof of local cohomology and
completion theorems for MU for these groups. Much more recently, Schwede has studied global spectra
more systematically [21], and in particular used the global structure of MU in a more sophisticated way
to show that tautological unitary Euler classes are regular and give rise to various splittings [22].

More precisely, he proves that for every n we have a short sequence

0!MU ��2n
U.n/

eU.n/.�n/
������!MU �U.n/

resU.n/

U.n�1/
������!MU �U.n�1/! 0

which is split exact, and, denoting by pk W U.k/�U.n� k/! U.k/ the projection to the first factor, the
composite

MU �U.k/
p�

k
��!MU �U.k/�U.n�k/

trU.n/

U.k/�U.n�k/
���������!MU �U.n/

is split injective when restricted to the kernel of the restriction map

MU �U.k/!MU �U.k�1/:

These two facts together imply that the augmentation ideal JU.n/ can be explicitly described as generated
by the elements s

U.n/

U.k/
.eU.k/.�k// for k D 1; : : : n (Corollary 4.1), where s

U.n/

U.k/
WMU �U.k/!MU �U.n/ is a

section of resU.n/

U.k/
. Our contribution is to show that, for every compact Lie group G that embeds in U.n/,

the finitely generated ideal resU.n/
G

.JU.n// � MU �G is “sufficiently large” (Corollary 5.2). This is a
consequence of Schwede’s results as we will see in Section 5. Working in the highly structured category
of G–equivariant MUG–modules guarantees that we can define (Definition 3.3) a homotopical version of
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the stable Koszul complex for the ideal I D resU.n/
G

.JU.n//�MU �G , which we denote by K1.I/, and
for an MUG–module M we set

�I .M /DK1.I/^R M

(Definition 3.4). By a formal argument, we can then construct a morphism

� WEGC ^M ! �I .M /

(Construction 3.7) of G–equivariant MUG–modules.

Theorem 1.1 Let G be a compact Lie group with a faithful representation of dimension n, and M an
MUG–module. Then the canonical map

� WEGC ^M ! �I .M /

is an equivalence of G–equivariant MUG–module spectra.

This proves [10, Conjecture 1.4]. As a corollary, we obtain a local cohomology theorem which can be
interpreted as a “derived completion theorem” for every compact Lie group.

Corollary 1.2 Let G be a compact Lie group with a faithful representation of dimension n, M an
MUG–module , X a based G–space and I D resU.n/

G
.JU.n//�MU �G . Then there are spectral sequences

H�I .M
G
� .X //)M G

� .EGC ^X / and H I
� .M

�
G.X //)M �

G.EGC ^X /:

Since I has n generators , the local cohomology and homology are concentrated in degrees � n.

Organization

We start with a preliminary section where we introduce the notation and some basic facts of equivariant
and global orthogonal spectra. In Section 3 we review the classical statement. This section is only needed
to recall basic constructions and state the main theorem that we will prove in Section 5. In Section 4
we review Schwede’s splitting [22, Theorem 1.4, page 5] and his corollary that ensures the regularity of
certain Euler classes [22, Corollary 3.2, page 10]. Finally, in Section 5 we prove that the augmentation
ideal JU.n/ is sufficiently large. This will imply the completion theorem [10, Theorem 1.3, page 514] for
U.n/ and for any compact Lie group G.
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2 Notation, conventions and facts

2.1 Spaces

By a space we mean a compactly generated space as introduced in [18]. We will denote by T (resp. T�)
the category of spaces (resp. pointed spaces) with continuous maps (resp. based maps). For a compact
Lie group G, TG denotes the category of G–spaces and G–equivariant maps. (Equivariant) mapping
spaces and (based) homotopy classes of (based) maps are defined as usual, and are denoted by map. � ; � /
and Œ � ; � �, respectively.

2.1.1 Universal spaces A family of subgroups of a group G is a collection of subgroups closed under
conjugation and taking subgroups. When G is a compact Lie group, a universal G–space for a family F

of closed subgroups is a G–CW–complex EF such that:

� All isotropy groups of EF belong to the family F.

� For every H 2 F the space EFH is weakly contractible.

We denote by zEF the reduced mapping cone of the collapse map EFC! S0 which sends EF to the
nonbasepoint of S0. Any two such universal G–spaces are G–homotopy equivalent; hence we will refer
to EF as the universal space for the family F. Note that Efeg DEG.

2.2 Algebra

For a graded commutative ring A and a finitely generated ideal I D .a1; : : : ; an/ of A, we let K�1.I/ be
the graded cochain complex O

iD1;:::;n

.A!AŒ1=ai �/;

where A and AŒ1=ai � sit in homological degrees 0 and 1, respectively, and the tensor product is over the
ring A. If N is a graded A–module, the local cohomology groups are defined as

H
s;t
I
.AIN /DH s;t .K�1.I/˝N /:

When A is Noetherian, the functor H�
I
.AI � / calculates the right derived functors of the torsion functor

�I .N /D fn 2N such that IknD 0 for some kg:

The main references for the theory of local cohomology are [11; 12]. Dually, we let the local homology
groups be

H I
s;t .AIN /DHs;t

�
Hom. zK�1.I/;N /

�
;

where zK�1.I/ is an A–free chain complex quasi-isomorphic to K�1.I/; see [9]. When A is Noetherian
and N is free or finitely generated, then the functor H I

k
.AI � / calculates the left derived functors of the

I–adic completion functor. In particular, under these assumptions

H I
k .AIN /Š

�
N ^

I
if k D 0;

0 otherwise:
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2.3 Spectra

A spectrum will be an orthogonal spectrum, and we will denote by Sp the category of orthogonal spectra
as defined in [21, Definition 3.1.3, page 230]. The category Sp is closed symmetric monoidal with respect
to the smash product � ^ �. We will denote by map. � ; � / the right adjoint of the smash product. Sp is also
cotensored over T�, ie for every based space A and every spectrum X a mapping spectrum between these
two is defined. We will also use the notation map. � ; � / in this case. The definitions in the equivariant
case are similar.

2.4 Global and equivariant stable homotopy categories

We let GH and SHG denote respectively the global stable homotopy category and the G–equivariant
stable homotopy category for a compact Lie group G. The first can be realized as a localization of
the category of orthogonal spectra at the class of global equivalences [21, Definition 4.1.3, page 352]
as constructed in [21, Theorem 4.3.18, page 400], and the second as a localization at the class of ��–
isomorphisms of the category of G–orthogonal spectra as constructed in [17, Theorem 4.2, page 47].
Hence,

SHG Š SpG Œ.��–isos/�1� and GHŠ SpŒ.global equivalences/�1�:

Both global equivalences and ��–isomorphisms are weak equivalences of stable model structures; see [21,
Theorem 4.3.17, page 398] for the global case and [17, Theorem 4.2, page 47] for the equivariant one. This
implies that both categories GH and SHG come with a preferred structure of triangulated categories, and
we denote by † the shift functor in both cases. The derived smash product of Sp (resp. SpG) endows the
category GH (resp. SHG) with a closed symmetric monoidal structure. For every compact Lie group G

there is a forgetful functor .�/G W GH! SHG obtained from the point–set level functor of endowing
a global spectrum with the trivial G–action. This functor is strong symmetric monoidal and exact; see
[21, Theorem 4.5.24, page 450].

Homotopy groups are defined for equivariant spectra and for global spectra as usual [21, page 232]. In
both cases, for a fixed X and k, the system of homotopy groups f�H

k
.X /gH�G has a lot of additional

structure. For G–spectra, f�H
k
.X /gH�G is a Mackey functor [21, Definition 3.4.15, page 319]; for global

spectra, f�G
k
.X /gG compact Lie is a global functor [21, Definition 4.2.2, page 369].

If we fix a compact Lie group G and a G–spectrum X , the functor

�G
k W SHG! Ab

is corepresented by the pair .†kS; id/, ie we have a natural isomorphism

(1) SHG.†
kS;X /Š �G

k .X /:

A similar statement holds in the global setting; refer to [21, Theorem 4.4.3, page 412]. Finally, for a
G–spectrum X , we adopt the convention

X G
� D �

G
� .X /; X �G DX G

��:
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632 Marco La Vecchia

2.5 Global complex cobordism

Since our work concerns the complex bordism ring, we recollect here some facts about this theory. We
will write MU for the global Thom ring spectrum defined in [21, Example 6.1.53] which is a model
for the homotopical equivariant bordism MUG introduced by tom Dieck in [7] for every compact Lie
group G. The global theory MU has the structure of an ultracommutative ring spectrum in the sense of
[21, Definition 5.1.1, page 463]; this assures that, for every compact Lie group G, the category of MUG–
modules is symmetric monoidal. For every compact Lie group G and for every unitary representation V ,
a Thom class �G.V / 2MU 2n

G .SV / is defined, where nD dimC.V /. The Euler class eG.V / 2MU 2n
G is

by definition the image of the Thom class along the fixed point inclusion S0! SV . If V has nontrivial
G–fixed points, then the previous inclusion is G–nullhomotopic, and hence eG.V /D 0 if V G ¤ f0g. On
the other hand, tom Dieck showed that if V G D f0g then the Euler class eG.V / is a nonzero element in
MU 2n

G [7, Corollary 3.2, page 352].

The theory MU has an equivariant Thom isomorphism for every unitary representation V

(2) MU 0
G.S

kCV /ŠMU�k�2n
G

given by RO.G/–graded multiplication with the Thom class �G.V /, where n D dimC.V /. This iso-
morphism takes the multiplication by the class an defined in Section 4 to multiplication by the Euler class
of the representation V .

3 Classical statement

We recall some basic constructions that can be found in [10]. To make sense of them, we need to work
with highly structured equivariant ring spectra known as E1 ring G–spectra or commutative SG–algebras.
In particular, all the constructions below are well defined for RDMUG . We refer to [10, page 511] for
a more detailed explanation and bibliography.

Construction 3.1 Let R 2 SHG be a G–ring spectrum as explained above. By (1), every element of RG
n

specifies by adjunction a morphism ˛ W S!†�nR in SHG . We let

Q̨ WR!†�nR

be the composition
R ˛^R
���!†�nR^RŠ†�n.R^R/

†�n�
����!†�nR;

where � WR^R!R is the multiplication of R. This defines a morphism in SHG , and we let

(3) RŒ1=˛� WD telescope.R Q̨
�!†�nR †�n Q̨

����!†�2nR! � � � /

be the mapping telescope of the iterates of Q̨ .

Remark 3.2 The mapping telescope in Construction 3.1 models the sequential homotopy colimit in SHG .
For a discussion of homotopy colimits in SHG , refer to [19, Appendix C, page 160].
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Definition 3.3 Let R and ˛ be as above and let I D .˛1; : : : ; ˛n/ be an ideal in RG
� . We define

K1.˛/ WD fib.R!RŒ1=˛�/ and K1.I/ WDK.˛1/^R � � � ^R K.˛n/:

Definition 3.4 Let M be an R–module and I �RG
� be a finitely generated ideal. Then we define

�I .M /DK1.I/^R M and .M /^I DmapR.K1.I/;M /:

Remark 3.5 There is a spectral sequence of local cohomology

H�I .R
G
� IM

G
� /) �I .M /G� ;

and there is a spectral sequence of local homology

H I
� .R

G
� IM

G
� /) ..M /^I /

�
G :

Note that when M DR we obtain the spectral sequence that computes K1.I/
G
� ; see [10].

Definition 3.6 Let G be a compact Lie group and R be an orthogonal G–spectrum. The augmentation
ideal JG of R at G is the kernel of

resG
1 WR

G
� !R�:

Construction 3.7 By construction of RŒ1=˛�, if ˛ 2 JG then

resG
1 RŒ1=˛�' 0:

Hence, applying the restriction to the fibre sequence

�̨ R!R!RŒ1=˛�;

we obtain a fibre sequence in which the third term is contractible. This implies, by the long exact sequence
in homotopy groups induced by a fibre sequence of spectra, that the canonical map

resG
1 .�̨ R/D �resG

1
.˛/ resG

1 R '
�! resG

1 R

is an equivalence. The same argument applies for an ideal I �RG
� , giving an equivalence

resG
1 .�I R/D �resG

1
.I / resG

1 R '
�! resG

1 R:

Smashing the above morphism with the universal G–space EGC, we obtain an equivalence

EGC ^�I R!EGC ^R

in SHG . Inverting this and composing with the collapse map EGC ^�I R
coll^�I R
������! S0 ^�I RŠ �I R,

we obtain a zigzag

EGC ^R EGC ^�I R �I R;
'

�

which defines a morphism of R–modules in SHG .
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We now turn our attention to MU (Section 2.5) and we recall what it means for an ideal of the ring
MU �G to be “sufficiently large”. This is the key property to assure that the E2–page of a specific spectral
sequence that appears in the proof of Theorem 3.10 is zero.

Definition 3.8 [10, Definition 2.4, page 517] An ideal I �MU �G is sufficiently large at H if there
exists a nonzero complex representation V of H such that V H Df0g and the Euler class eH .V /2MU 2n

H

is in the radical
p

resG
H
.I/, where nD dimC.V /. The ideal I is sufficiently large if it is sufficiently large

at all closed subgroups H ¤ 1 of G.

Remark 3.9 Being sufficiently large is transitive with respect to subgroup inclusion, ie if I �MU G
� is

sufficiently large then so is resG
H
.I/�MU �H .

Theorem 3.10 [10, Theorem 2.5, page 518] Let G be a compact Lie group. Then , for any sufficiently
large finitely generated ideal I � JG ,

� WEGC ^MUG! �I MUG

is an equivalence in SHG . Therefore ,

EGC ^M ! �I .M / and .M /^I !map.EGC;M /

are equivalences for any MUG–module M .

Proof Here, we only give a sketch of the argument, following the main reference. The point is that, if
I �MU �G is sufficiently large, then resG

H
I �MU �H is also sufficiently large. Moreover, since every

descending sequence of compact Lie groups stabilizes, we can use induction and assume that the theorem
holds for any proper closed subgroup of G. Passing to the cofibre of the map �, it is enough to show that

�G
� .
zEG ^�I MUG/D 0:

We then let P be the family of proper subgroups of G and let EP be the universal space associated to P.
Since

zEP^S0
! zEP^ zEG

is an equivalence, it suffices to show that zEP^K.I/ is contractible. Let U be a complete complex
G–universe and define U? to be the orthogonal complement of the G–fixed points UG in U. Then,

colimV 2U? SV

is a model for zEP. We can then compute

�G
� .
zEP^�I MUG/D �

G
� ..colimV 2U? SV /^�I MUG/Š colimV 2U? �

G
� .S

V
^�I MUG/

Š colimV 2U? �
G
��jV j.�I MUG/Š �

G
� .�I MUG/ŒfeG.V /

�1
gV 2U? �:

Localizing the spectral sequence in Remark 3.5,

H�I .MU G
� /) �G

� .�I MUG/;
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away from the Euler classes, we obtain another spectral sequence

H�I .MU G
� /ŒfeG.V /

�1
gV 2U? �) �G

� .�I MUG/ŒfeG.V /
�1
gV 2U? �:

Since local cohomology of a ring at an ideal becomes zero when localized by inverting an element in that
ideal, we obtain that the E2–term of the spectral sequence is zero for I sufficiently large. This proves
the claim.

Remark 3.11 As stated in [10, Theorem 2.5, page 518], the previous theorem holds more generally
for all commutative SG–algebras (or E1 ring G–spectra) which are equivariantly complex oriented and
have natural Thom isomorphisms for unitary G–representations. For example, the theorem holds for
equivariant K–theory.

The paper [10] proceeds by constructing a sufficiently large subideal of the augmentation ideal JG

whenever G is a finite group or a finite extension of a torus using “norm maps” [10, Section 3].

Here is where our approach differs from the classical one. In fact, we do not make use of norm maps, and
the strategy to construct a sufficiently large subideal of JG splits in two steps:

Step 1 We use Schwede’s splitting (4) to prove that JU.n/ is generated by “Euler classes”. Thanks to
this, we prove that JU.n/ is sufficiently large (Proposition 5.1).

Step 2 Using the fact that any compact Lie group embeds into a unitary group U.N / for N sufficiently
large, we conclude that resU.N /

G
JU.N / is a sufficiently large subideal of JG for any compact Lie

group G by Remark 3.9.

4 Schwede’s splitting

We recall that a global functor F associates to every compact Lie group G an abelian group F.G/, and
this association is contravariantly functorial with respect to continuous group homomorphisms. Moreover,
for every closed subgroup inclusion H < G, a transfer map trG

H
W F.H /! F.G/ is defined. This data

needs to satisfy some relations that can be found in [21, page 373]. In [22, Theorem 1.4, page 5], Schwede
proves that, for any global functor F , the restriction homomorphism

resU.n/

U.n�1/
W F.U.n//! F.U.n� 1//

is a split epimorphism. He then deduces a splitting of global functors when evaluated on the unitary
group U.n/. Explicitly, the splitting takes the form

(4) F.U.n//Š F.e/˚
M

kD1;:::;n

Ker
�
resU.k/

U.k�1/
W F.U.k//! F.U.k � 1//

�
:

The most important application of the splitting for us is when the global functor comes from the homotopy
groups of an orthogonal spectrum. In fact, for every global stable homotopy type X , that is, an object
in GH, we have a global functor

��.X /.G/D �
G
� .X /:
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The splitting then tells us that, for every k � n, the group �U.k/
� .X / is a natural summand of �U.n/

� .X /.
In this case, a more explicit description of the right-hand side of the splitting is available. In fact, let �n

be the tautological representation of U.n/ and let

an 2 �
U.n/
0

.†1S�n/

be the Euler class of �n, ie the element represented by the inclusion S0! S�n . Then the short sequence

0! �
U.n/
�C�n

.X /
an
�! �

U.n/
� .X /

resU.n/

U.n�1/
������! �

U.n�1/
� .X /! 0

is exact [22, Corollary 3.1, page 10].

When X DMU , the equivariant Thom isomorphism identifies the previous short exact sequence with
the following short exact sequence:

0!MU ��2n
U.n/

eU.n/.�n/
������!MU �U.n/

resU.n/

U.n�1/
������!MU �U.n�1/! 0:

Moreover, we have the following corollary:

Corollary 4.1 Let JU.n/ be the augmentation ideal of MU
U.n/
� (see Definition 3.6), and let s

U.n/

U.k/
be a

section of resU.n/

U.k/
(see [22, Construction 1.3, page 4]). Then

JU.n/ D
�
s

U.n/

U.k/
.eU.k/.�k// j k D 1; : : : ; n

�
;

and , in particular ,
resU.n/

U.k/
JU.n/ D JU.k/

for all k � n.

Proof This is just the combination of the splitting (4) and the short exact sequence above.

Remark 4.2 Since the forgetful functor .�/G W GH! SHG is strong symmetric monoidal and exact,
the global splitting (4) at the unitary group translates in a splitting in SHG .

Remark 4.3 Schwede [23, Definition 1.1] gives an explicit construction of the sections s
U.n/

U.k/
, and he

shows that the resulting elements

s
U.n/

U.1/
eU.1/.�1/; s

U.n/

U.2/
eU.2/.�2/; : : : ; s

U.n/

U.n�1/
eU.n�1/.�n�1/

are “genuine equivariant Chern classes”. In particular, they map to the classical Chern classes under the
bundling map

MU �U.n/!MU �.BU.n//;

and they have similar naturality properties [23, Theorem 1.3].

5 The main result

Proposition 5.1 JU.n/ �MUU.n/ is sufficiently large.
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Proof Let H be a closed subgroup of U.n/. We need to show that there exists a nonzero complex
H–representation with no nontrivial fixed points, the Euler class of which is in

p
resU.n/

H
.JU.n//. We

will actually show that there is no need to take radicals in this case. Consider

V D resU.n/
H

�n� .resU.n/
H

�n/
H ;

and let k D dimC.V /. Note that k D 0 if and only if H D 1. We claim that the Euler class eH .V / is in
resU.n/

H
JU.n/. If k D n, then V D resU.n/

H
�n and

eH .V /D resU.n/
H

.eU.n/�n/ 2 resU.n/
H

JU.n/;

and the claim holds.

Now let k > 0. We choose an orthonormal basis .x1; : : : ;xn�k/ of .resU.n/
H

�n/
H and a unitary matrix

g 2U.n/ that sends the canonical basis of Cn to any other orthonormal basis that has as last n�k vectors
.x1; : : : ;xn�k/. Then, for any h 2H ,

hg
D

0@ Qh 0

0 Idn�k

1A ;
where hg D g�1hg and Qh 2 U.k/.

This implies that V is conjugate to the H g–representation resU.k/
H g .�k/. Letting g? WMU �H g !MU �H be

the conjugation action (see the relations in [21, Definition 3.4.15, page 319]), we pass to Euler classes,
obtaining the relation

eH .V /D g?
�
eH g.resU.k/

H g .�k//
�
:

We then compute the right-hand side of the last equation:

g?
�
eH g.resU.k/

H g .�k//
�
D g?

�
resU.k/

H g .eU.k/.�k//
�
D g?

�
resU.n/

H g

�
s

U.n/

U.k/
.eU.k/.�k//

��
D resU.n/

H

�
s

U.n/

U.k/
.eU.k/.�k//

�
:

In the second equality we have used the chosen section s
U.n/

U.k/
(Corollary 4.1), and in the last one the formula

g? ı resU.n/
H g D resU.n/

H

(again, see the relations in [21, Definition 3.4.15, page 319]). By Corollary 4.1, it is clear that
resU.n/

H

�
s

U.n/

U.k/
.eU.k/.�k//

�
2 resU.n/

H
JU.n/, and hence we have proved the claim. Since, by construction,

eH .V / is nonzero, we conclude that JU.n/ is sufficiently large at H .

We now let G be any compact Lie group. Since every compact Lie group has a faithful representation,
G is isomorphic to a closed subgroup of U.n/ where n is the dimension of a chosen faithful representation
of G. Then we have the following corollary:

Corollary 5.2 The ideal resU.n/
G

JU.n/ � JG is a sufficiently large finitely generated ideal. Hence ,
Theorem 3.10 (the completion theorem) holds for any compact Lie group G if we choose ID resU.n/

G
JU.n/.
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Proof By transitivity of restrictions, the ideal resU.n/
G

JU.n/ is sufficiently large and is contained in JG .
The completion theorem then holds by the argument above.

Remark 5.3 Proposition 5.1 and Theorem 1.1 hold more generally for all global MU –modules.

Remark 5.4 The subideal J D resU.n/
G

JU.n/ of JG is not special. Indeed, if I is any other finitely
generated subideal of JG containing J , then

�I MUG ' �J MUG and .MUG/
^
I ' .MUG/

^
J :

In fact, Theorem 3.10 implies that the MUG–modules K1.I/ and �I M are independent of the choice
of I .
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Configuration spaces of disks in a strip, twisted algebras,
persistence, and other stories
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We give Z–bases for the homology and cohomology of the configuration space of n unit disks in an
infinite strip of width w, first studied by Alpert, Kahle and MacPherson. We also study the way these
spaces evolve both as n increases (using the framework of representation stability) and as w increases
(using the framework of persistent homology). Finally, we include some results about the cup product in
the cohomology and about the configuration space of unordered disks.

55R80; 16S15, 18A25, 55N31, 57Q70

1. Introduction 641

2. Combinatorial and algebraic setup 648

3. Homology of weighted no-.kC1/-equal spaces 655

4. Decomposing cell.n; w/ into layers 660

5. Betti number growth function 668

6. Cohomology ring 670

7. Persistent homology 677

8. Relations in the twisted algebra and FId–modules 680

9. Configuration spaces of unordered disks 686

10. Open questions and further directions 693

Appendix. Computer calculations for small n 694

References 697

1 Introduction

The configuration space of n labeled unit-diameter disks in an infinite strip of width w is denoted by
config.n; w/; Figure 1 depicts an example configuration. Specifically, parametrizing the configurations in
terms of the centers of the disks, config.n; w/ is the set of points .x1; y1; : : : ; xn; yn/ 2 R2n such that
.xi � xj /

2C .yi � yj /
2 � 1 for all i and j, and such that 1

2
� yi � w �

1
2

for all i . We would like to
describe the topology of config.n; w/.
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n
� � �
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5

Figure 1: The configuration space config.n; w/ is the set of ways to arrange n disjoint labeled
disks of width 1 in R� Œ0; w�.

The topology of the configuration space of n points in the plane has been well understood since the work
of Arnold [1969] and F Cohen [1976]; see [Sinha 2013] for an overview. Recently, there has been interest
in more “physical” models in which the points have thickness and are constrained to lie in a bounded
region, drawing inspiration from both statistical physics (as explained by Diaconis [2009]) and robotics
(as explained by Farber [2008]). In the first, one imagines molecules of a substance as hard balls and
extracts information about states of matter from the way they move past each other. In the latter, one can
imagine a number of robots coordinating their movements so that they can travel to different points in a
constrained region without bumping against each other; this amounts to a motion planning problem in a
disk configuration space.

The topology of disk configuration spaces was first studied mathematically by Baryshnikov, Bubenik
and Kahle [Baryshnikov et al. 2014] and experimentally by Carlsson et al. [2012]. While these papers
represent real progress, trying to fully understand even the connected components of these spaces seems
daunting; see [Kahle 2012]. Further work has taken two approaches to simplifying the question. One is to
replace the disks by polygons, such as squares or hexagons, as in [Alpert 2020; Alpert et al. 2023]. The
topology of the resulting configuration spaces is closely related to that of disk configuration spaces; in
particular, it captures any of their topology that “survives for a long time” as disks grow or shrink. This
observation can be formalized using persistent homology.

While it is simpler in some respects than that of disk configuration spaces, the topology of polygon
configuration spaces still seems very difficult to understand. A more radical simplification, it turns out, is
to remove the side walls of the rectangle, replacing it with the infinite strip, an idea introduced by Alpert,
Kahle and MacPherson [Alpert et al. 2021]. That paper defines the spaces config.n; w/ and computes the
asymptotic growth of the rank of Hj .config.n; w// as n increases, up to a constant factor depending on
j and w. This turns out to be exponential unless the strip is wide compared to j.

In this paper, we present a number of results about the topology of config.n; w/ and related spaces. The
majority of the paper seeks to understand H�.config.n; w/IZ/, and its dependence on n and w, in greater
resolution and from a more algebraic perspective. For fixed n and w, we find a geometrically motivated
basis for this homology. All the classes in this basis can be assembled out of a small number of classes
involving a small number of disks, depending only on w; we make this idea precise using some algebraic
machinery due to Sam and Snowden [2017]. We also track the appearance and disappearance of homology
classes as the width of the strip changes, using the machinery of persistent homology.
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The paper includes several additional results proven using similar methods. We give a basis for the
cohomology of config.n; w/ and make progress in understanding its cup product. We explore the possibility
of FId–module structures on the homology of hard disk configuration spaces and no-.kC1/-equal spaces.
Finally, we discuss the topology of the configuration space of unordered disks in a strip.

1.1 Main results

We now discuss our main results in greater detail, starting with a description of the homology of
config.n; w/ for fixed w and all n.

Theorem A For fixed w, H�.config.�; w/IZ/ forms a finitely generated , noncommutative twisted
algebra whose generators live in H�3w=2�2.config

�
�
3
2
w;w

�
IZ/.

This contrasts with the classical family of configuration spaces of points in the plane, which forms a
commutative but infinitely generated twisted algebra.

Informally, Theorem A means that Hj .config.n; w/IZ/ is spanned by cycles built as follows:

(1) Separate the n disks into groups of at most 3
2
w.

(2) Place the groups in some order along the strip.

(3) Label the disks in some way using the numbers 1 through n.

(4) Let each group do its own thing, without interacting with the others.

The things a group can do — elementary cycles — come in two types: 1 to w disks can form a wheel, and
wC 1 to 3

2
w disks can form a filter. If z1 and z2 are elementary cycles, we refer to the act of placing

them next to each other as the concatenation product, denoted by z1 j z2.

A wheel of k disks has k� 1 circular degrees of freedom generated by the rotation of concentric disks,
making for a cycle represented by a T k�1.

A filter consists of r � 3 wheels with k > w disks total such that each wheel is made of at least k�w
disks; the wheels are ordered. The filter can move as follows. Every wheel can perform its rotations

7
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6
23

1

116 23
7

7
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23

Figure 2: Some configurations of a wheel with five disks. The first configuration gives a canonical
(up to switching the first two) ordering of the disks.
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Figure 3: The wheels in a filter always cross over and under each other in the same order. This
figure shows a filter with three wheels of size 1 and one wheel of size 3. The resulting cycle is an
S2 �T 2.

independently, for a total of k� r degrees of freedom; each wheel can also move back and forth along
the strip, crossing over each other in order. Any r � 1 wheels can have the same x–coordinate (since they
contain at most w disks total) but all r cannot. This creates an Sr�2 inside the configuration space; thus,
the whole .k�2/–cycle is represented by an Sr�2 �T k�r .

For some purposes, it makes sense to consider filters with r D 2: such a filter consists of two wheels b1
and b2 that don’t commute, and can be written as b2 j b1� b1 j b2.

Our next theorem gives a basis from among the cycles generated in this way.

Theorem B H�.config.n; w/IZ/ is free abelian and has a basis consisting of concatenations of wheels
and filters with r � 2. We say one wheel ranks above another if it has more disks , or has the same number
of disks and its largest disk label is greater. A cycle is in the basis if and only if :

(i) Each wheel is ordered so that the largest label comes first.

(ii) The wheels inside each filter are in ascending order by largest label (regardless of the number of
disks).

(iii) Adjacent wheels not inside a filter are ordered from higher to lower rank.

(iv) Every wheel immediately to the left of a filter ranks above the least wheel in the filter.

This combinatorial structure admits a natural interpretation via homotopical algebra. Notice that
config.n; w/ naturally embeds in config.n; w C 1/, forming a filtration. The union of this filtration
is the classical configuration space config.n/ of n points in the plane, which turns out to be homotopy
equivalent to config.n; n/. The algebraic structure of H�.config.�// was considered by Arnold [1969]
and Cohen [1976], who showed (in our terms) that it is a commutative but infinitely generated twisted
algebra whose generators are wheels of all degrees.

For any two wheels in config.n/, we have a choice of commuting them “over” or “under”. However, if
we order all the wheels (for example, in ascending order by largest label) and make them cross over each
other in order, then they commute in a homotopy coherent way: informally, this means that concatenated
cycles can be permuted in any sequence, or all at the same time, and that all such paths in the space of
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Figure 4: A basic 14–cycle in config.24; 5/ represented by an S1 �S0 �S2 �T 12: the three red
boxes are filters giving an S1, an S0 and an S2 respectively, and there are 11 additional circular
degrees of freedom from spinning the wheels (in black). We also remark: (a) If the disks 10 and
3 switched places, this would no longer represent a basic cycle, by property (iv) in Theorem B.

(b) The single disk 10 can move freely past all the disks to its left. So, in a basic cycle, it has to
appear all the way on the right.

cycles in config.n/ are homotopic.1 Just as filters with two wheels are commutators of wheels, other
filters can then be thought of as nontrivial “higher commutators” that obstruct this homotopy coherence.

These higher commutators appear and disappear as we move up the filtration, increasing w, while wheels
of size k are born when wD k and stay forever. This observation can be made precise by considering the
filtration’s persistent homology.

Theorem C The basic cycles listed in Theorem B form a ZŒt �–basis for the module PH�.config.n;�/IZ/.
Every bar born at time w is either infinite or dies by time 2w.

1.2 Proof ideas

We analyze config.n; w/ by relating it to a class of simpler spaces. The no-.wC1/-equal space of n points
in R, which we denote by nowC1.n;R/, is the subspace of Rn in which at most w of the coordinates are
the same. The topology of this space is fairly easy to understand, although it is related to more complicated
questions about hyperplane arrangements; see [Björner and Welker 1995]. The space config.n; w/ projects
onto nowC1.n;R/ by forgetting the y–coordinates of the disks. Conversely, for every ordering on the
numbered disks, there is an injective map from the no-.wC1/-equal space to the configuration space of
the strip in which the disks, when they meet, go around each other “in order” from top to bottom. Each
subspace generated in this way is actually a retract of config.n; w/.

However, in many places, two such injections coincide. For example, if we transpose two neighboring
disks a and b , then the two injections coincide everywhere except for an open neighborhood of the
codimension-1 subspace of the no-.wC1/-equal space where a and b coincide. Abstractly, we can
think of this subspace as a “weighted” no-.wC1/-equal space with n� 1 symbols, of which one has
weight 2. Write nowC1.n� 1;W/ for this space; W represents the set of weights of different points.

1Unfortunately, these choices cannot be made equivariantly with respect to relabeling, which underlies the seemingly unavoidable
nonequivariance of many of our results.
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In the example, the subspace has codimension 1, so its neighborhood looks like nowC1.n�1;W/� .0; 1/;
we can decompose the union of the images of the two injections into a copy of nowC1.n� 1;W/� Œ0; 1�

glued onto nowC1.n/. We will see that we can model config.n; w/ by breaking it up into layers that
similarly look like thickened weighted no-.wC1/-equal spaces.

To compute the homology of config.n; w/, we write it as a direct sum of homology groups of weighted
no-.wC1/-equal spaces. We use combinatorics (specifically, discrete Morse theory) to compute the
homology of these spaces.

1.3 Additional results

Besides Theorems A, B and C, the paper includes a number of other results about config.n; w/ and related
spaces.

Counting the basis elements Theorem B gives us a way to compute formulas for the Betti numbers
of config.n; w/. We describe a finite computation for each j and w that gives a formula for the rank of
Hj .config.n; w/IZ/ as a function of n, and we show that this function is a sum of products of polynomial
and exponential functions.

The cohomology of config.n; w/ We can represent cohomology classes in H j .config.n; w/IZ/ via
Poincaré–Lefschetz duality as .2n�j /–dimensional compact submanifolds of the configuration space.
We give a basis for the cohomology, showing that it is a basis by exploiting the pairing with homology.
The main goal of the section is to gain some understanding of the cup product in the cohomology ring,
which is fairly complicated and has many indecomposable elements — in contrast with H�.config.n/IZ/,
which is generated as a ring by one-dimensional classes whose pairing with homology measures the
winding of two points around each other; see [Sinha 2013]. All higher-dimensional classes are linear
combinations of cup products of these.

On the other hand, in config.n; w/, pairing with cup products often cannot distinguish between h j h0

and h0 jh, where h and h0 are homology classes. In such cases, a cohomology class which pairs nontrivially
with the commutator is perforce indecomposable. This observation allows us to prove Theorem 6.4:

Theorem The ring H�.config.n; w/IZ/ has indecomposables

(a) only in degree 1 when w D 2;

(b) in every degree between 1 and
�
1
2
n
˘

and no others when w D 3;

(c) in degree 1 and in every degree between w � 1 and
�
1
2
.nCw � 3/

˘
and no degree greater than

n�dn=.w� 1/e when w � 4.

Other algebraic structures One possible operation which takes j –cycles in config.n; w/ to j –cycles in
config.nC1;w/ is inserting a singleton disk. If this operation were well defined, then config.�; w/ would
be an FI–module, one of the central objects of study in representation stability. However, since some
cycles do not commute with singletons, there may be several nonequivalent ways of inserting a singleton,
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separated by “barriers”. In some cases, if these several ways are in turn well defined, this can be formalized
via an FId–module structure. We show that Hj .nokC1.�;R/IZ/ and Hj .config.�; 2/IZ/ have natural
FId–module structures for appropriate d . On the other hand, for w D 3 we give an example which
suggests that the notion of a “barrier” is not well defined and therefore there is no natural FId–module
structure on Hj .config.�; w/IZ/ for w � 3.

Another strategy to pin down explicitly the algebraic structure of H�.config.�; w/IZ/ is to write down a
presentation for the twisted algebra using generators and relations. Category theory dictates that generators
and relators in this situation are not just elements but Sn–representations for various n. We write down the
generators and relations for H�.config.�; 2/IZ/, but already there is some extra difficulty because of the
failure of Maschke’s theorem integrally. A potential avenue for future research is to write down relations
for H�.config.�; w/IQ/ and explore the implications for the multiplicity of various Sn–representations
in Hj .config.n; w/IQ/.

Unordered disks We also discuss the homology of the configuration space of unordered disks, that
is, the quotient space config.n; w/=Sn. Taking this quotient produces a large amount of torsion in the
homology, so, instead of trying to write down all the torsion, we compute homology with coefficients
in Fp and Q. (In the bulk of the paper, we use coefficients in Z.) The concatenation product can still
be defined in this case and gives H�.config.�; w/=S�/ the structure of a bigraded algebra over the base
field. We compute a basis for the homology and give generators and relations for this algebra.

Structure of the paper

Section 2 contains preliminaries, including descriptions of the cell complexes we study and the algebraic
framework we use in Theorem A. Sections 3 and 4 prove Theorem B, with Theorem A as a consequence;
Section 3 addresses the homology of weighted no-.kC1/-equal spaces, and Section 4 proves its relationship
to homology of configuration spaces of disks in a strip. This is the core technical content of the paper.

The rest of the sections are largely independent of each other and may appeal to different audiences (eg
Section 6 to those interested in motion planning, and Section 8 to experts in representation stability).
Section 5 concerns finding a formula for the Betti numbers, by counting the basis elements from Theorem B.
Section 6 describes aspects of the cup product structure of the cohomology of our configuration spaces.
Section 7 proves Theorem C about how the homology changes with w, the width of the strip. Section 8
concerns additional algebraic properties, in particular the question of whether our homology groups form
FId–modules. Section 9 characterizes the homology with field coefficients in the case of unordered disks.
Finally, Section 10 lists some questions for further study.
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2 Combinatorial and algebraic setup

For the purpose of computation, Alpert et al. [2021] replace the configuration space config.n; w/ by a
homotopy-equivalent cell complex cell.n; w/. We use the same complex; we also use the same method
to find a cell complex P.n;W; k/ that is homotopy equivalent to the weighted no-.kC1/-equal space
nokC1.n;W/. In the case of ordinary, unweighted no-.kC1/-equal spaces this recovers a result of [Björner
2008].

In this section, we define the complexes cell.n; w/ and P.n;W; k/ and describe various algebraic
structures on their cells which induce a similar structure on their homology. In particular, we introduce
twisted algebras and show that, for each w, H�.config.�; w// and H�.nowC1.�;R// are examples. In
the remainder of the paper, unless otherwise specified, homology and cohomology are always computed
with coefficients in Z.

2.1 The complex cell.n/

The cell complex cell.n; w/ is defined as a subcomplex of a cell complex cell.n/ described in [Blagojević
and Ziegler 2014]. The complex cell.n/ is defined in terms of the permutohedron P.n/, which is the
.n�1/–dimensional polytope in Rn equal to the convex hull of the nŠ points with coordinates 1; 2; : : : ; n
in some order. The faces of P.n/ can be labeled by partitions of f1; 2; : : : ; ng, where the sets of the
partition are ordered but the elements of each set are unordered. We refer to each set of the partition as a
block. For instance, each vertex is labeled by a sequence of n singleton blocks, and the top-dimensional
face is labeled by the one block f1; 2; : : : ; ng. Given any permutation � 2 Sn, thought of as an ordering
on f1; 2; : : : ; ng, we can order the elements of each block according to � . Then, to write out the label of
a given face, we can write out the elements of each block in order, with vertical bars between blocks. We
refer to a label of this form as a symbol. For example, the following is a symbol with four blocks that
could come from the ordering 4� 5� 6� 7� 8� 1� 2� 3:

.7 2 j 6 j 4 5 1 j 8 3/:

To define cell.n/, we start with nŠ copies of P.n/, one for each � 2 Sn. For the copy of P.n/ associated
with � , we use � to label each face of that copy of P.n/ by a symbol. Then, whenever faces from multiple
different copies of P.n/ have the same symbol, we identify those faces. For instance, all copies of P.n/
have the same vertices, but each of them has its own distinct top-dimensional face. In this way, cell.n/
has exactly one cell for every possible symbol on f1; 2; : : : ; ng.
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Figure 5: We can imagine each symbol of cell.n; w/ as a configuration in config.n; w/, where the
numbers in each block are the labels in a column of disks. Pictured are configurations representing
the symbol .7 2 j 6 j 4 5 8 1 3/ and its face .7 2 j 6 j 4 5 1 j 8 3/.

The incidence relation on cells of cell.n/ can be deduced from the geometry, or can be described explicitly
on symbols as follows. A cell f in cell.n/ is a face of the boundary of a cell g if g can be obtained
from f by deleting a bar and shuffling the entries of the two neighboring blocks, preserving the ordering
of the entries in each block. For example, one shuffle of 4 6 1 j7 3 2 would be 7 4 6 3 1 2. A d–dimensional
cell consists of n� d blocks.

Informally, we think of the elements of each block of a given symbol as the labels of disks in a vertical
stack in config.n; w/, as in Figure 5. Accordingly, as a way to specify that no more than w disks should
be in each vertical stack, we define cell.n; w/ to be the subcomplex of cell.n/ consisting of all cells for
which every block has at most w elements.

To describe the relationship between cell.n; w/ and config.n; w/, we start by defining config.n; w/ more
precisely as the set of configurations of n ordered open disks of diameter 1=w in the strip R� .0; 1/.
This is a subspace of the set of configurations of n ordered distinct points in R� .0; 1/ such that no more
than w points are on any vertical line, and [Alpert et al. 2021, Theorem 3.3] constructs a deformation
retraction between the two spaces. Thus, we abuse notation and use config.n; w/ to mean configurations
of points with no more than w vertically aligned. We use config.n/ to mean configurations of points
either in R� .0; 1/ or in R2, not distinguishing between these homotopy equivalent spaces.

Theorem 2.1 There is an affine embedding of the barycentric subdivision of cell.n/ into config.n/ such
that , for each w, the restriction to cell.n; w/ maps into config.n; w/ and is a homotopy equivalence.

Proof We use the following description of config.n/ in coordinates:

config.n/D f.x1; : : : ; xn; y1; : : : ; yn/ 2Rn � .0; 1/n j .xi ; yi /¤ .xj ; yj / if i ¤ j g:

To define the map on a point p in cell.n/, we need to specify x–coordinates and y–coordinates, as well
as check the condition .xi ; yi /¤ .xj ; yj /.

Let p be an arbitrary point in cell.n/. It is in at least one of the permutohedra P.n/ that constitute cell.n/,
and P.n/ is embedded in Rn, so in this sense p has coordinates in Rn. We set the x–coordinates of the
image of p to be these coordinates of p in Rn.
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For the y–coordinates, we start with the case where p is the barycenter of a cell in cell.n/. To set each yi ,
we find the location of the number i in the symbol of the cell of p. If i appears as the l th element of a
block of size k, we set yi to be .k� l C 1/=.nC 1/. In other words, for each block of size k we set the
y–coordinates of the points in the block, in order, to be k=.nC 1/; .k � 1/=.nC 1/; : : : ; 1=.nC 1/. To
assign y–coordinates when p is not a barycenter, we extend the map so that its restriction to each simplex
of the barycentric subdivision of cell.n/ is affine.

Note that, in any given cell, away from the barycenter, the y–coordinates of the points in each block
remain in order. This is because, in the closure of our cell, blocks may merge but may not separate,
and, when merging, the elements from each smaller block remain in order. This implies that our map is
injective, because different points with the same x–coordinates are distinguished by their y–coordinates,
which in each block appear in the same order as in the corresponding symbol from cell.n/.

To check that the resulting map lands in config.n/, suppose that we have a point p for which xi D xj .
The permutohedron coordinates imply that in the symbol of the cell of p, the numbers i and j are in the
same block, and so the note in the previous paragraph implies that yi ¤ yj . Thus, the image of p is in
config.n/.

To show that the map is a homotopy equivalence, for each symbol ˛ from cell.n/, as in [Alpert et al. 2021]
we define the corresponding open set U˛ � config.n/ to be the set of points .x1; : : : ; xn; y1; : : : ; yn/ in
Rn � .0; 1/n such that:

� Whenever i appears before j in the same block, we have yi > yj .

� Whenever i appears before j in different blocks, we have xi < xj .

� If k and l are in the same block, and k0 and l 0 are in different blocks (with k0 and l 0 not necessarily
distinct from k and l), then we have

jxk � xl j< jxk0 � xl 0 j:

We claim that the union of U˛ where ˛ ranges over the symbols from cell.n; w/ is config.n; w/. If ˛ is
a symbol of cell.n; w/, then U˛ is contained in config.n; w/ because points from different blocks have
different x–coordinates, so no more than w points can be vertically aligned. For the reverse inclusion,
every element of config.n; w/ is in some U˛, because we can construct ˛ by taking the blocks to be
the sets of points with the same y–coordinate, ordering the blocks from left to right, and ordering the
elements of each block from top to bottom.

Each U˛ is an open convex set, and [Alpert et al. 2021, Theorem 3.4] proves that the nerve of this
open cover of config.n; w/ is the barycentric subdivision of cell.n; w/. Thus, because our map sends
the barycenter of each cell ˛ into a point of the corresponding open set U˛, our map is a homotopy
equivalence for each w.
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2.2 Signs of the boundary operator

In order to study the integral cellular chain complex of cell.n; w/, we need to specify orientations on
cells and signs for the boundary operator. To describe these, we first generalize slightly. Observe that the
entries of a symbol don’t have to be the numbers 1 through n, but can be any n–element set. So, for any
finite set A, we have a complex cell.A/. (Similarly, we will sometimes write P.A/ for the permutohedron
whose coordinates are indexed by elements of A.) Moreover, there is a cellular map

jW cell.A/� cell.B/! cell.AtB/

which takes a pair of symbols to the symbol obtained by putting them next to each other with a bar in
between. We call this the concatenation product.

Any cell in cell.n/ is either top-dimensional or a concatenation product. We define the boundary operator
on a top-dimensional cell g by taking the coefficient of a cell f D a j b in @g to be

.�1/length.a/
� sign.permutation g 7! ab/:

On a cell g1 jg2, we define @ via a Leibniz rule:

.2.2/ @.g1 jg2/D @g1 jg2C .�1/
dim.g1/g1 j @g2:

This defines an injective chain complex homomorphism on cellular chains,

jW C�.cell.A//˝C�.cell.B//! C�.cell.AtB//;

using the standard tensor product on chain complexes, where the differential is defined by

@.a˝ b/D @a˝ bC .�1/degaa˝ @b:

Proposition 2.3 (a) The boundary operator defined above satisfies @2 D 0.

(b) The Sn–action on cell.n/ induced by permutations of Œn� preserves orientations of cells.

These two features will allow us to define a twisted algebra structure on H�.cell.�//.

Proof Let g be a cell in cell.n/.

First, suppose that g is top-dimensional, and let e be a codimension-2 face of g. Then e D e1 j e2 j e3,
where e1, e2 and e3 are blocks. There are two intermediate faces between e and g, which we denote by
f D b j e3 and f 0 D e1 j b0. We compare

sign.e in @f / � sign.f in @g/ and sign.e in @f 0/ � sign.f 0 in @g/;

and we show that these two products are opposite signs. This will show that @2g D 0.

If we consider just the contribution from the signs of the permutations, both products give the sign of the
permutation relating e and g, so those contributions are equal. For the contribution from the Leibniz rule,
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only the incidence between e and f 0 involves splitting a block that is not the first, so that incidence has a
sign contribution of

.�1/dim.e1/ D .�1/length.e1/�1

from the Leibniz rule, and all the other incidences have a sign contribution of 1 from the Leibniz rule.
Finally, the contribution from the length of the first block gives

.�1/length.b/Clength.e1/ D .�1/length.e2/

for the path through f and .�1/length.e1/Clength.e2/ for the path through f 0. Taking the product of all of
these, we see that the two paths give opposite signs.

If g is not top-dimensional, then g is a concatenation product g1 jg2, in which case we use a standard
argument. The Leibniz rule gives

@2.g1 jg2/D @
2g1 jg2C Œ.�1/

dim.g1/C .�1/dim.@g1/� � @g1 j @g2Cg1 j @
2g2;

which is zero by induction on the number of blocks of g. This proves (a).

For (b), notice that the definitions of the signs of the boundary operator do not use any particular ordering
on the numbers 1 through n. Therefore, they are invariant with respect to permutations. Since the
Sn–action preserves signs of 0–cells, it preserves signs of all cells.

2.3 Twisted algebra structure

Let FB be the category of finite sets and bijective maps. Then cell.�/ is a functor from FB to the category
of cell complexes and cellwise maps (an FB–complex, for short). (This is just a categorical way of
saying that there is a cellular Sn–action on cell.n/.) In particular, the cellular chains C�.cell.�// form an
FB–chain complex. Moreover, we can define a tensor product (the Day convolution) on FB–objects in a
monoidal category by

.F ˝G/.S/D
M

AtBDS

F.A/˝F.B/:

A unital monoid object with respect to this tensor product is called a twisted algebra (see [Sam and
Snowden 2012] for a detailed discussion of twisted commutative algebras). In plain English, a twisted
algebra is a family of objects An for n D 0; 1; : : : (eg abelian groups) equipped with the following
structure:

� Each An is equipped with an Sn–action.

� For every partition of f1; : : : ; ng into subsets of size i and j, there is a “multiplication”Ai˝Aj!An.
For different partitions, these multiplications commute with the Sn–action on An.

� There is a unit in A0 such that multiplying by it induces the identity map on An.
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The observations about the differential in Section 2.2 show that the concatenation product

jW Ci .cell.A//˝Cj .cell.B//! CiCj .cell.AtB//

makes C�.cell.�// into a (noncommutative) differential graded twisted algebra, or dgta, whose unit is
the unique 0–cell . / in C�.cell.∅//. (By definition, a dgta is simply a twisted algebra in the category
of chain complexes. The fact that the multiplication maps Ai ˝Aj ! An are chain maps forces the
differential to satisfy a Leibniz rule such as (2.2).) The homology of a dgta naturally forms a graded
twisted algebra. The graded twisted algebra H�.cell.�// is well understood since the work of Cohen in
the 1970s and is in fact commutative; see eg [Miller and Wilson 2019, Theorem 3.4].

We are most interested in the subcomplex cell.n; w/ consisting of cells whose blocks each have size at
mostw. Since the concatenation product of two such cells again has the same property, C�.cell.�; w// is a
sub-dgta ofC�.cell.�//. Our goal in this paper is to understand the graded twisted algebraH�.cell.�; w//,
and in particular to show that it is finitely generated.

2.4 The permutohedron and no-.kC1/-equal spaces

The difference between cell.n/ and P.n/ is that in cell.n/ the numbers within a block are ordered and
in P.n/ they are not. This gives a natural projection cell.n/! P.n/ (forget the ordering of entries inside
each block) and, for every global ordering of 1; : : : ; n, an injective map P.n/! cell.n/ (arrange the
entries in each block in the given order).

P.n/ is a polytope, and is in particular contractible. As with cell.n/, we can filter P.n/ by the largest
size of a block, producing a sequence of complexes P.n; k/. These are homotopy equivalent to the
no-.kC1/-equal space of n points in R, as pointed out by Björner [2008, Theorem 2.4]; their homology
was computed first by Björner and Welker [1995]. As with cell.n; w/, C�.P.�; k// naturally has a dgta
structure which induces a graded twisted algebra structure on H�.P.�; k//. From the results of [Björner
and Welker 1995], one sees that this is finitely generated, and in fact just has two generators: one in
degree 0 (a point) and one in degree k� 1 (the boundary of a P.kC 1/). We recover this, together with a
set of relations, in Section 8.

However, we are interested in a somewhat more complicated structure. Let FBW be the category of
weighted finite sets and weight-preserving bijections. That is, every element is associated with a natural
number, which is its weight. Then, given a weighted set .A;W 2NA/, there is a complex P.A;W; k/

which consists of all the cells for which the sum total weight of every block is at most k. The following
generalization of [Björner 2008, Theorem 2.4] follows by the same argument:

Theorem 2.4 The complex P.A;W; k/ is homotopy equivalent to the weighted no-.kC1/-equal space
nokC1.A;W/ of jAj points in R with weights W, that is , the space of configurations of jAj points in R

such that no set of coincident points has total weight greater than k.
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Remark 2.5 The functor C�.P.�; k// is an FBW–chain complex, and in fact an FBW–dga. That is, we
can define a tensor product on FBW–objects in a monoidal category by

.F ˝G/.S;W/D
M

.A;WA/t.B;WB/D.S;W/

F.A;WA/˝F.B;WB/;

and the concatenation product on C�.P.�; k// then makes it into a monoid object. This in turn makes
H�.P.�; k// into a graded FBW–algebra. Once one makes all this precise, Theorem 3.4 can be interpreted
as showing that this algebra is finitely generated for every k, analogously to our results about cell.�; w/.

2.5 Generators and relations for twisted algebras

The above discussion deduces the following facts:

Theorem 2.6 The sequences of graded abelian groups H�.cell.�//, H�.cell.�; w// and H�.P.�; k//
admit the structure of graded twisted algebras.

To demonstrate Theorem A, we will show that wheels and filters form a finite generating set for
H�.cell.�; w//. Later we will also give presentations of H�.cell.�; 2// and H�.P.�; k// by generators
and relations. To make this precise, we define a free twisted algebra functor F� from FB–modules to
twisted algebras as the left adjoint to the forgetful functor U� from twisted algebras to FB–modules;
such a functor always exists for monoids in a reasonable monoidal category [Mac Lane 1998, VII.3,
Theorem 2]. Informally, a basis element for a free twisted algebra on a set fVig of representations of
various Sni

is specified by a list of basis vectors of the various Vi , each labeled by a set of ni labels; one
takes products by concatenating these lists and retaining the labels.

If A is a twisted algebra, we say an FB–submoduleG�A generates A if the induced morphism F�G!A

is surjective; A is finitely generated if it has a finite-dimensional generating module G. A presentation of
a twisted algebra A by generators and relations formally consists of a coequalizer diagram

F�R
r

0
�!
�! F�G! A;

where G and R are FB–modules of generators and relations, respectively, and r W F�R ! F�G is
an FB–module homomorphism [Riehl 2017, Section 5.4]. By the adjunction, it suffices to provide a
homomorphism R! U�F�G, ie to describe the relators of A as linear combinations of words in G.

Informally, to prove finite generation, it’s enough to provide a finite number of elements whose closure
under multiplication and Sn–action is all of A. However, to provide a full description of a presentation,
one must also understand the Sn–action on the generators. To show that A is presented by a generating
set G with relations R, it is enough to show that A is generated by G and that every product of elements
of G can be reduced to a basis element of A via the relators.
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3 Homology of weighted no-.kC1/-equal spaces

In the previous section, we showed that the space nokC1.n;W/ retracts to a subcomplex P.n;W; k/ of
the permutohedron P.n/. To compute the homology of P.n;W; k/, we use a discrete gradient vector
field on P.n/.

3.1 Discrete Morse theory

In any cell complex, the cellular homology comes from a chain complex generated by the cells; very
broadly, discrete Morse theory gives a way to decompose the chain complex as a direct sum of a chain
complex that has no homology (which we discard) and a chain complex generated by a smaller subset of
cells, the critical cells. To compute the homology exactly, we need to

(1) reduce to the smaller chain complex;

(2) show that the differentials in the smaller chain complex are all zero, so that the homology has a
Z–basis in bijection with the set of critical cells.

The basic definitions in discrete Morse theory are as follows. In any polyhedral cell complex, we say
that cell f is a face of cell g if f is in the boundary of g and dimf D dimg� 1, and we say that g is a
coface of f if f is a face of g. A discrete vector field on a polyhedral cell complex is a set V of pairs of
cells Œf; g� such that f is a face of g and each cell can be in at most one pair; an example is shown in
Figure 6. A discrete vector field V is gradient if there are no closed V –walks. A V –walk is a sequence
of pairs Œf1; g1�; : : : ; Œfr ; gr � with Œfi ; gi � 2 V such that each fiC1 is a face of gi other than fi . The
V –walk is closed if fr D f1.

A cell is critical with respect to a discrete gradient vector field V if the cell is not in any pair in V. The
fundamental theorem of discrete Morse theory [Forman 2002] states that there is a cell complex that is a

1 j 2 j 3

2 j 1 j 32 j 3 j 1

3 j 2 j 1

3 j 1 j 2 1 j 3 j 2

21 j 3

2 j 31

32 j 1

3 j 21

31 j 2

1 j 32

' 3 j 2 j 1 1 j 32

Figure 6: A discrete gradient vector field consists of a set of disjoint pairs of cells, each pair
incident and of consecutive dimensions. The complex is homotopy equivalent to one in which the
paired cells are collapsed, and only the critical (unpaired) cells remain.
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strong deformation retraction of the original cell complex in which there is one cell per critical cell of V.
Thus, we can compute the homology groups Hj .P.n;W; k// by defining discrete gradient vector fields
and computing the homology of the collapsed chain complexes generated by the critical cells.

Our cell complexes cell.n; w/ are not polyhedral cell complexes because, for instance, there are distinct
cells with the same boundary. However, discrete Morse theory still gives an isomorphism on homology
between the original chain complex and the collapsed chain complex as long as the following property
holds: for each pair Œf; g� of the discrete gradient vector field, the coefficient of f in the boundary of g
is a unit in our coefficient ring, in this case ˙1 because we are using coefficients in Z. In cell.n; w/,
every coefficient in every boundary map is ˙1, so this property holds automatically. Alternatively, the
barycentric subdivision of cell.n; w/ is a polyhedral cell complex, so our arguments could be adapted to
work with the barycentric subdivision instead. Thus, we proceed with the discrete Morse theory as if
cell.n; w/ were a polyhedral cell complex.

One way to define a discrete gradient vector field on a cell complex is by defining a total ordering on all
the cells. Given a total ordering, the resulting vector field contains a pair Œf; g� if and only if both f is
the greatest face of g and g is the least coface of f (and, for nonpolyhedral complexes, we also require
the coefficient of f in the boundary of g to be a unit). One can prove that this vector field is gradient
(see [Bauer 2021, Remark 3.7]).

One advantage of doing the construction in this way is that there is a simple criterion guaranteeing that the
discrete gradient vector field forms a perfect Morse function. The term “perfect Morse function” refers to
the case where, on the collapsed chain complex generated by the critical cells, the differential is zero,
so the critical cells form a basis for the homology of the complex. The following general lemma shows
that it suffices to construct, for each critical cell e, a cycle z.e/ such that e is its maximum cell and has
coefficient equal to a unit in the coefficient ring. It turns out that such cycles automatically represent
linearly independent homology classes. In our main theorems we use the lemma with Z coefficients, and
in Section 9 we use it with field coefficients Q and Fp.

Lemma 3.1 Let X be any finite cell complex with a total ordering on the cells , giving a discrete gradient
vector field. Let R be a ring of coefficients. Suppose there is a collection of cellular cycles with the
following properties:

� The cycles in our collection are in bijection with the critical cells of the discrete gradient vector
field. For each critical cell e, we denote the corresponding cycle by z.e/.

� Under the total ordering , the greatest of all the cells appearing with nonzero coefficient in the
cellular chain z.e/ is the cell e.

� The coefficient of e in the chain z.e/ is a unit in R.

Then the homology classes of the cycles z.e/ form an R–basis for H�.X IR/.
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Proof For any pair Œf; g� in the discrete vector field, we refer to f as a “match-up cell” and refer to g as
a “match-down cell”. We also define z0.f / to be the boundary of g; we know that f is the greatest cell
appearing in z0.f /, and that it has unit coefficient because of how we have defined the discrete vector
field from the ordering.

First, we show that every j–cycle z is an R–linear combination of cycles z.e/ and z0.f /, where e
ranges over the critical j –cells and f ranges over the match-up j –cells. This follows from the following
observation: if a match-down cell g is the greatest cell in a j –chain, then, in the boundary of that chain,
the corresponding match-up cell f appears with nonzero coefficient, because g is the least coface of f,
so no other cell in the chain has f as a face. Thus, for any j–cycle z, the greatest cell of z cannot
be a match-down cell. It is either a critical cell e or a match-up cell f, so we subtract the appropriate
multiple of z.e/ or z0.f / to get a new cycle with lesser maximum. Repeating this process gives us z as a
linear combination of cycles z.e/ and z0.f /, so, because each z0.f / is a boundary, this implies that z is
homologous to a linear combination of the cycles z.e/ only.

To show the uniqueness, we need to show that no nontrivial linear combination of cycles z.e/ is null-
homologous. Because the cycles z.e/ and z0.f / have distinct maxima, they are linearly independent. Thus,
it suffices to show that, if a j –cycle z is a boundary, it is a linear combination of the boundaries z0.f /. To
see this, we look at the set of all .jC1/–chains. The chains z.e/, z0.f / and g (as e ranges over all critical
.jC1/–cells, f ranges over all match-up .jC1/–cells, and g ranges over all match-up .jC1/–cells)
form an R–basis for the set of all .jC1/–chains, because they have distinct maxima equal to the set of
all j–cells. When we apply the boundary map to this basis, the cycles z.e/ and z0.f / map to zero, and
the match-down cells g map to the j –dimensional boundaries z0.f /. Thus, indeed, every j –dimensional
boundary is a linear combination of these boundaries z0.f /.

Thus, every homology class in H�.X/ can be written as an R–linear combination of the homology classes
of the cycles z.e/, and the combination is unique.

3.2 Discrete gradient vector fields on permutohedra

In what follows, we define a total ordering on all of P.n/, the polyhedral complex that contains P.n;W; k/

as a subcomplex. We use the resulting discrete gradient vector fields to compute the homology, by analyzing
the critical cells and constructing cycles dual to each one.

Recall that the cells of P.n/ are in bijection with ordered partitions of Œn� into blocks. We say the weight
of a block is the sum of the weights of its elements. A block is a singleton if it only has one element. We
assign some blocks to leader–follower pairs by walking left to right. A block is a follower if it follows a
singleton (its leader) whose element is smaller than any of the follower’s elements and which is not itself
a follower. Then a total ordering � on cells with symbols f and g is given by looking at the first block at
which they differ. Let’s call the two blocks fi and gi . Then the ordering is given as follows:

(i) If fi is a follower and gi is not, then f � g.
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(2)

(2)
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(4)
13 (2)

7 5
1

(3)
12
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10 2

Figure 7: The 3–cycle in no6.13;W/, with weights indicated by circle size and in parentheses,
corresponding to the critical cell .6 j 8 11 j 9 j 13 j 7 j 5 j 1 j 3 4 12 j 10 j 2/. The red boxes enclose
leader–follower pairs and indicate the boundaries of a P.3/, a P.2/, and a P.4/, respectively;
thus, the cycle as a whole is represented by an S1 �S0 �S2.

(ii) If fi and gi are both followers, then they are ordered by number of elements, and then arbitrarily
(eg in lexicographic order) if they have the same number of elements.

(iii) If fi and gi are not followers, then we order their elements from largest to smallest; they are then
ordered lexicographically, but according to a backwards order on the “alphabet”. That is,

3� 3 2� 3 2 1� 3 1� 2� 2 1� 1:

Lemma 3.2 A cell in P.n;W; k/ is critical if and only if every block is either

(a) a singleton which is not a follower , or

(b) a follower such that its weight and that of its leader add up to at least kC 1.

Proof We claim that the matching of the other cells is as follows. We look at the first block where a
given cell does not match the characterization of critical given above. There are two possibilities:

� The block is a follower and, together with its leader, has total weight at most k. In that case, the
cell matches up to the cell in which the follower and its leader are combined.

� The block is not a follower or a singleton; if preceded by a nonfollower singleton, it has at least
one element smaller than that singleton. Then the cell matches down to the cell where the least
element of the block is split off into its own block which comes before the rest. This is now a
leader–follower pair, and its leader is not also a follower.

If f matches up to g, then g matches down to f, because the new combined block cannot be a follower
(otherwise the leader in f would also be a follower, contradicting the definition of leader). Similarly, if g
matches down to f, then f matches up to g. Thus, the match-up and match-down cells pair to form a
discrete vector field.

It remains to show that this discrete vector field is induced by our ordering. Let f be a match-down cell
and g be the corresponding match-up cell. We need to show f is the greatest face of g and g is the least
coface of f.
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To show that f is the greatest face of g, consider the result of splitting any earlier block of g. Because g
looks like a critical cell at that stage, that block is a follower; after splitting, it is shorter and is still a
follower, so it is smaller by property (ii) of the ordering. In contrast, among ways to split the kth block
another way, or to split a later block, f is the greatest because it is the only one for which the kth block
begins with the least element of the kth block of g (here we apply properties (i) and (iii)).

To show that g is the least coface of f, consider the result of combining any earlier blocks of f. Because
f looks like a critical cell at that stage, the two blocks would be nonfollower singletons in decreasing
order, so the combined block would be larger, not be a follower, and have the same first element as the
first of the two singletons; therefore, the new block is larger by property (iii). In contrast, among ways to
combine later blocks of f, g is the least because it is the only one that increases the first element of the
kth block (again applying property (iii)).

3.3 Basis for homology

We now give a basis for the homology of P.A;W; k/ for an n–element set A, thereby demonstrating that
it is free abelian. By Lemma 3.1, it is sufficient to exhibit a cycle for every critical cell such that the
critical cell is the largest cell in the cycle. The construction implicitly relies on an ordering on A; for it to
work, we must fix an ordering so that WD .w1; : : : ; wn/ satisfies

.3.3/ w1 � w2 � � � � � wn:

Every critical cell e is a concatenation product of nonfollower singletons and leader–follower pairs
.bi jbiC1/. We now build a corresponding cycle z.e/2P.A;W; k/. For a cell consisting of one singleton,
the cycle will simply be the corresponding 0–cell. Now suppose e consists of a single leader–follower
pair .b1 j b2/. Then our cycle z.e/ will be the boundary of the top cell .b1b2/ of P.A/. Since by (3.3)
each element of b2 has greater or equal weight to the singleton b1, every cell in the boundary is a cell of
P.A;W; k/. Moreover, .b1 j b2/ is the highest cell of z.e/ according to our total ordering, since b1 is the
highest-ranked block.

For a general critical cell, we define z by requiring that

z.e/D z.e1 j e2/D z.e1/ j z.e2/

for any splitting e D e1 j e2 which does not split a leader–follower pair. Here z.ei / is defined based on
the ordering on Ai � A inherited from A. To see that e is the highest cell in the resulting cycle, note that
the ordering on cells depends on the first block in which two cells differ. For any two cells in z.e/, this
block will be a leader and the above argument will apply.

It is clear also that all the nonzero coefficients of z.e/ are ˙1. We have now proved:

Theorem 3.4 Suppose that W D .w1; : : : ; wn/ is a nondecreasing sequence of weights. Then the
homology H�.P.n;W; k// is free abelian , with a basis given by the classes of the cycles z.e/, where e
ranges over all cells whose blocks are of the following two types:
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(a) a singleton which is not a follower;

(b) a follower such that its weight and that of its leader add up to at least kC 1.

Translating these cellular cycles into cycles in nokC1.n;W/, we get the following picture:

� Singletons and leader–follower pairs correspond to points and groups of points arranged in order
along the line.

� Every leader–follower pair corresponds to a set of r points moving back and forth of which any
r � 1 can coincide, but all r cannot.

4 Decomposing cell.n; w/ into layers

In this section we will prove Theorems A and B by expressing H�.cell.n; w// in terms of the homology
of weighted no-.wC1/-equal spaces. To this end, we assign an ordering to the top-dimensional cells of
cell.n/. For a lower-dimensional cell, its layer will be indexed by the first top-dimensional cell containing
it; this is when that cell appears in the complex when we think of the complex as glued, in order, out of
its top-dimensional cells. Recall that these top cells are identified with permutations in Sn.

The intersections of layers of cell.n/ with cell.n; w/ form the layers of cell.n; w/. We will show
that H�.cell.n; w// is a direct sum of pieces which appear once each subsequent layer is glued on.
Topologically, the layer associated to a permutation � 2 Sn is a copy of P.n� r;W; w/� Œ0; 1�r , where
r and W depend on � , which is glued on along P.n� r;W; w/� @Œ0; 1�r ; the combinatorial structure
is rather more complicated. It follows (once homological triviality of the gluing is established) that the
added summand of Hj .cell.n; w// is in bijection with elements of Hj�r.P.n� r;W; w//. The main
technical result of this section states:

Theorem 4.1 The homology of cell.n; w/ decomposes as

H�.cell.n; w//D
M
�2Sn

H��#�
�
P.n� #�;W.�/; w/

�
:

We will define #� and W.�/ combinatorially.

From the configuration space point of view, the new cycles in layer � are those basic cycles from
Theorem B that have a particular collection of wheels (irrespective of how those wheels are grouped
into filters). The bijection above is given by replacing wheels of k disks by points of weight k. Thus,
for example, this bijection in an appropriate layer takes the 14–cycle depicted in Figure 4 to the 3–cycle
depicted in Figure 7.

The decomposition depends in a crucial way on the ordering of labels of disks; it is not at all equivariant
with respect to the Sn–action on cell.n; w/. Therefore, the methods of this section will tell us little about
the Sn–module structure on the homology.
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4.1 Combinatorial description of layers

Given a cell in cell.n/ broken up into blocks, we further (deterministically) break up each block into
wheels: each entry of a block is the axle of a wheel if it is the largest entry of the block up to that point,
and the wheel consists of the axle and all the following smaller entries before the next axle.

Proposition 4.2 Given a symbol f, the following represent the same permutation �.f / of Œn�:

(i) The lexicographically least shuffle of f. A shuffle is a permutation in which the order of every
block is preserved.

(ii) The permutation obtained by arranging all the wheels , regardless of block , in ascending order by
axle.

Proof The first number in the lexicographically least shuffle is an axle, because the first element of
every block is an axle. Thus, it must be the least axle. The remaining elements of the wheel of that
axle are less than that axle and thus are also less than all the other axles. Thus, the next numbers in the
lexicographically least shuffle are the remaining elements of the first wheel. Repeating the same argument
for each wheel, we deduce inductively from left to right that the two permutations are identical.

For example, the symbol
f D .7 2 j 6 j 4 5 8 1 3/

has five wheels: 7 2, 6, 4, 5 and 8 1 3; and therefore �.f /D 4 5 6 7 2 8 1 3. We say that f is in the layer
L.�.f // of cell.n/, or of cell.n; w/. By Proposition 4.2, being in a given layer is equivalent to having a
given set of wheels. We also write

#� D n� the number of wheels of �:

Notice that #� is the dimension of the lowest-dimensional cells of L.�/, in which every wheel is its own
block.

Let g be a boundary cell of f. Then one of the following holds:

(1) The splitting of a block to make g respects the wheels of f : each wheel goes completely into one
of the new blocks. Then g 2 L.�.f //.

(2) At least one wheel of f is decomposed into two or more wheels of g. Then �.g/ � �.f /
lexicographically.

Thus, we can build up cell.n/ or cell.n; w/ by gluing each subsequent layer, in lexicographical order,
onto the union of the previous ones. In other words, the layers define a filtration by subcomplexes

L.� �/D
[
���

L.�/:

Now, for each cell of L.�/, we can obtain a cell of P.fwheels of �g/ with the same block structure,
replacing each wheel by a single label.
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Proposition 4.3 The k–cells of the layer L.�/ of cell.n; w/ are in incidence-preserving bijection with
the .k�#�/–cells of the complex P.n� #�;W.�/; w/, where W.�/ consists of the cardinalities of the
wheels of � . In particular , the cells of the layer L.�/ of cell.n/ are in incidence-preserving bijection with
those of P.n� #�/.

Proof All cells of L.�/ have exactly the same wheels, and the elements of each wheel always appear
consecutively. Thus, given a symbol in L.�/, we can view it as a sequence of these wheels, separated
by vertical bars between blocks. The resulting new symbol is a symbol of P.n� #�;W.�/; w/, because
instead of n numbers in each symbol we have n� #� wheels. If the cell of the original symbol has
dimension k, it has n� 1� k bars, so the cell of the new symbol also has n� 1� k bars, and thus has
dimension n� #� � 1� .n� 1� k/D k� #� .

As in option (1) above, cell g in L.�/ is a boundary cell of f in L.�/ if and only if a block in f is
split to form g such that each wheel in the block is assigned entirely to the left or entirely to the right.
Reinterpreting the symbols to be sequences of wheels, this is the same as the criterion for incidence in
P.n� #�;W.�/; w/.

In fact, this bijection is not just combinatorial, but can be understood from several points of view: via
cellular maps, cellular chains or configurations. In the next subsection, we will construct an injective
cellular map

Œ0; 1�#� �P.n� #�;W.�/; w/! cell.n; w/

which matches each product of Œ0; 1�#� with an .k�#�/–cell to a k–cell in L.�/. In particular, the image
of
˚
1
2

	#�
�P.n� #�;W.�/; w/ forms a “core” or “spine” inside the layer, as illustrated in Figure 8. In

.3 j 2 j 1 j 4/

.3 j 1 j 2 j 4/

.4 j 2 j 1 j 3/

.4 j 2 1 j 3/

.4 j 1 j 2 j 3/

.1 j 4 j 2 j 3/
.1 j 2 j 4 j 3/

.4 j 2 j 3 j 1/

.3 j 2 j 4 j 1/
.3 j 4 j 2 j 1/

.1 j 3 j 2 j 4/

.3 4 j 2 1/

.2 1 j 3 4/

Figure 8: The layer of cell.4; 3/ corresponding to the permutation � D 2 1 3 4. Selected cells are
labeled, and the core (a copy of P.3;W.�/; 3/, which is the boundary of a P.3/) is highlighted in
red. The image of spin�;3 is combinatorially the double of the layer along the top and bottom: in
the additional cells, 2 1 is replaced by 1 2.
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fact, this will be the restriction of a (likewise injective and cellular) map

spin�;w W T
#�
�P.n� #�;W.�/; w/! L.� �/

to one top cell of the torus. Here T #� is given a product cell structure induced by a cell structure on S1

with two vertices and two edges. In turn, spin�;w is the restriction of a map

spin� W T
#�
�P.n� #�/! cell.n/:

From the point of view of cellular chains, spin�;w induces a chain map

i� W C��#�
�
P.n� #�;W.�/; w/

�
! C�.L.� �//

via

i� .z/D spin�;w.ŒT
#� �� z/:

In the other direction, we get a surjective chain map

p� W C�.L.� �//! C��#�
�
P.n� #�;W.�/; w/

�
in which cells of L.< �/ (defined as L.< �/D

S
��� L.�/) are sent to 0 and cells of L.�/ are sent to

cells of P.n� #�;W.�/; w/, up to sign. From the above discussion, one sees that p� ı i� D id. Together
p� and i� give a splitting

.4.4/ H�.L.� �//ŠH�.L.< �//˚H��#�
�
P.n� #�;W.�/; w/

�
:

This implies Theorem 4.1, once we produce the map spin� .

Finally, from the configuration point of view, the map spin�;w associates a configuration in the weighted
no-.wC1/-equal space to a torus of configurations obtained by replacing points of weight r by wheels of
size r and spinning those wheels. This also describes the action of i� on cycles. For example, when

� D 3 7 5 9 8 10 13 4 15 17 14 18 20 21 12 2 22 16 23 6 11 1 24 19;

i� sends the 3–cycle in Figure 7 to the 14–cycle in Figure 4. For points in the core, the disks in the wheel
are in the “standard” vertically ordered position.

Remark 4.5 Instead of using the splitting, one can prove Theorem 4.1 directly by constructing a discrete
gradient vector field and applying Lemma 3.1. Put a total ordering � on the cells of cell.n; w/ as follows:

(i) If �.g/� �.f /, then g � f.

(ii) If �.g/D �.f /, then use the previously defined ordering on the set of cells of P.n�#�;W.�/; w/.
This ordering is based on an ordering on the wheels of � ; for this we order first by number of
elements, then by axle.
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This induces a discrete gradient vector field on cell.n; w/ which restricts to that on P.n� #�;W.�/; w/

on each layer. The images of the bases for H�
�
P.n� #�;W.�/; w/

�
under i� for all � give us a set of

cycles to which we can apply Lemma 3.1.

For later reference, we describe the set of critical cells of this discrete gradient vector field in a self-
contained way. Order wheels in a layer first according to their number of elements and then according
to their largest element (axle). A block is a unicycle if it consists of a single wheel, that is, if its largest
element comes first. We assign some blocks to leader–follower pairs by walking left to right: a block is a
follower if it follows a unicycle (its leader) which is not itself a follower and whose wheel is smaller than
any of the follower’s wheels. A cell of cell.n; w/ is critical if every block is either

(i) a unicycle which is not a follower, or

(ii) a follower such that it and its leader have at least wC 1 elements in total.

4.2 Maps between permutohedra

To complete the proof of Theorem 4.1, we must still describe the map

spin� W T
#�
�P.n� #�/! cell.n/:

Informally, points in P.n�#�/ encode positions of the wheels of � relative to each other, whereas points
in the torus encode positions of disks inside the wheels, which can vary as in Figure 2. In particular,
the image of spin� will be the union of the 2#� top-dimensional cells obtained from � by “spinning its
wheels”, that is, by applying permutations such as those depicted in Figure 9.

To make this precise, we start with the following lemma:

Lemma 4.6 Let A be a finite set and a, b and c additional symbols not in A. Then there is a map

� W Œ0; 1��P.A[fag/! P.A[fb; cg/

with the following properties:

(i) It is a homeomorphism and a cellular map. That is , it sends every k–face to a disk which is a union
of k–faces.

7
1
11
6
23

1
23
6

11
7

7
6

23
11
1

Figure 9: Some configurations of a wheel with five disks which give different orderings, the first
of which is the “name” of the wheel.
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Figure 10: The permutohedron P.4/ and the homeomorphism � W Œ0; 1� � P.3/! P.4/. The
images of

˚
1
2

	
�P.3/ (red) and f1g �P.3/ (blue) are highlighted.

(ii) It is equivariant with respect to the Z=2Z–actions given by t 7! �t on the domain and b$ c on
the codomain.

(iii) For each cell � of P.A[fag/, �.Œ0; 1���/ is the cell of P.A[fb; cg/ with the same blocks except
that a is replaced in its block by b and c.

(iv) It takes f0g �P.A[ fag/ to the union of those cells in which b and c are contained in separate
blocks with b preceding c. Similarly, it takes f1g�P.A[fag/ to the union of those cells in which
c precedes b.

Before proving the lemma, we use it to construct spin� . First, notice that, for any ordering of A[fb; cg,
the lemma gives us a well-defined map to the corresponding top cell of cell.A[fb; cg/. In particular, if
we are instead given an ordering of A[ fag we have two choices: we can replace a by b c or by c b.
Moreover, these choices coincide on f0; 1g �P.A[fag/. Identifying the two subspaces gives a map

S1 �P.A[fag/! cell.A[fb; cg/:

Since top cells of cell.A[fag/ correspond to orderings of A[fag, this gives us a map

spin W S1 � cell.A[fag/! cell.A[fb; cg/:

The equivariance of � means that spin is well defined.

We build spin� by iterating the map spin. Start by thinking ofP.n�#�/ as a top cell of cell.fwheels of �g/.
At each step, we replace a wheel with k elements by a singleton and a wheel with k�1 elements, applying
spin to this splitting.

From this description, it is evident that

spin�
�
P.n� #�;W.�/; w/

�
D spin� .P.n//\ cell.n; w/:

Proof of Lemma 4.6 In the proof, we will use a slightly different notation than in the statement of the
lemma: we will replace the finite set A by f1; : : : ; n� 2g and the symbols a, b and c by n� 1, n� 1
and n, respectively. This lets us write coordinates in Rn more easily.
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The permutohedron P.n/ is a zonotope, that is, the Minkowski sum of a set of line segments. We refer to
[Ziegler 1995, Section 7.3] for known facts about zonotopes.

The standard permutohedron P.n/ is the zonotope in Rn which is the Minkowski sum of the
�
n
2

�
segments

connecting every pair of standard unit basis vectors. That is,

P.n/D

� X
1�i<j�n

aij ei C .1� aij /ej

ˇ̌̌
0� aij � 1

�
:

Evidently, choosing a different set of n linearly independent vectors in any Euclidean space gives a
linearly equivalent polytope. Less obviously, the combinatorial structure of a zonotope only depends on
the oriented matroid associated to the set of line segments. In particular, changing the lengths of the line
segments without changing their direction does not change the combinatorial structure.

We use this fact to prove the following:

Lemma 4.7 The polytope Z.n/D P.n/\fxn�1 D xng is combinatorially equivalent to P.n� 1/.

Proof We first show that Z.n/ can also be written as

.4.8/

� X
1�i<j�n

aij ei C .1� aij /ej

ˇ̌̌
0� aij � 1; ai.n�1/ D ain; a.n�1/n D

1
2

�
� P.n/:

Indeed, suppose that z 2Z.n/, so that

zD
X

1�i<j�n

bij ei C .1� bij /ej 2 P.n/

and zn�1 D zn. If we switch en�1 and en in this formula, we get z back. We can get an expression as
in (4.8) by averaging these two expressions for z, getting

ai.n�1/ D ain D
1
2
.bi.n�1/C bin/; a.n�1/n D

1
2
:

From (4.8), we see that Z.n/ is the zonotope generated by the segments

ei $ ej for 1� i < j � n� 2 and en�1C en$ 2ei for 1� i � n� 2:

This zonotope is combinatorially equivalent to one in which segments en�1C en$ 2ei are replaced by
1
2
.en�1C en/$ ei . This in turn is linearly equivalent to P.n� 1/.

The lemma gives us an injective map �1=2 W P.n� 1/! P.n/ which is a homeomorphism onto its image;
it remains to extend it to � W Œ0; 1��P.n� 1/! P.n/. We do this by letting

�.t; x/D �1=2.x/CR.x/.2t � 1/.en� en�1/;

where R.x/ is the maximum value for which the image still lies in P.n/. Property (ii) of the lemma
follows immediately from this definition.

To show that � is the desired map, we must show it is a homeomorphism. To prove injectivity, it suffices to
show that R.x/ is always positive. But in fact R.x/� 1

2
, since we can always vary a.n�1/n. Surjectivity
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follows from the fact that P.n/ is convex and symmetric about the hyperplane Z.n/. Finally, � can only
be discontinuous if R ı ��1

1=2
W Z.n/! R is discontinuous, but convexity of P.n/ implies that this is a

convex function, and therefore continuous. Continuity of the inverse likewise follows from the fact that
the reciprocal of this function is continuous.

Next we show that � is cellular. Given a face � of P.n� 1/, we know that �1=2.�/ is a face of Z.n/ cut
out by a half-space of the hyperplane fxn�1 D xng. Extending this half-space orthogonally to Rn, we
obtain the half-space that cuts out the face �.Œ0; 1�� �/ of P.n/. It follows that �.f0g � �/ and �.f1g � �/
are also unions of faces of P.n/ of the appropriate dimension: specifically, each facet of �.Œ0; 1�� �/
which is not the image of Œ0; 1�� � for some facet � of � is contained in one of those two, depending on
whether xn�1� xn is positive or negative for points in that facet.

To show properties (iii) and (iv), we recall the relationship between symbols of cells and the zonotope
structure. Namely, points in a face corresponding to a given symbol are those which can be expressed asX

1�i<j�n

aij ei C .1� aij /ej ;

where aij is 0 if j is in a later block than i and 1 if i is in a later block than j. When i and j are in the
same block, aij can be anything in Œ0; 1�.

From the proof of Lemma 4.7, it follows that �1=2 maps a face with a given symbol into a face with the
same symbol with n added to the same block as n� 1. Since � is cellular, this shows (iii). Property (iv)
then also follows from our argument that � is cellular.

4.3 Proofs of main theorems

Proof of Theorem B Combining the arguments in Section 3 and the proof of Theorem 4.1, we find a
basis forH�.cell.n; w//: for each permutation � 2Sn and each basic cycle z ofHj

�
P.n�#�;W.�/; w/

�
,

it contains the cycle i� .z/. The exact set of cycles we get depends on the correspondence between wheels
of � and elements of Œn� #��; to make this concrete, we order the wheels first by size and then by axle.

Geometrically, the correspondence z 7! i� .z/ matches

� points moving in R to wheels moving in R� Œ0; w�;

� points moving through each other to wheels moving over and above each other, with the wheel
with the smaller axle on top.

We now verify the numbered conditions of Theorem B:

� Condition (i) follows from the way we split � into wheels.

� Condition (ii) follows from the definition of the layer L.�/.

� Conditions (iii) and (iv) follow from Lemma 3.2 and the ordering of the wheels.
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Proof of Theorem A Every basic cycle is a concatenation product of wheels and filters. It is enough to
show that there are finitely many (unlabeled) types of wheels and filters in config.�; w/, and that these
have at most 3

2
w disks and generate cycles of dimension at most 3

2
w� 2.

A wheel consists of at most w disks, and a wheel with k disks generates a .k�1/–cycle. Filters with at
least three wheels have at most 3

2
w disks, and a filter with k disks generates a .k�2/–cycle. Filters with

two wheels b1 and b2 can be written as b2 jb1�b1 jb2, and do not need to be counted separately. Therefore,
H�.config.�; w// is spanned by concatenation products of cycles in H�3=2w�2

�
config

�
�
3
2
w;w

��
.

Every wheel with the same number of disks has the same shape, and there are finitely many shapes of
filters of width w. Therefore, H�.config.�; w// is finitely generated as a twisted algebra.

5 Betti number growth function

Alpert et al. [2021] examine the growth of the dimension of Hj .config.n; w// for fixed j and w and
varying n, and show that it is asymptotically polynomial times exponential. Having computed a basis
for homology, we can now answer the question, is the dimension exactly equal to a polynomial times
an exponential? The answer is that it is a sum of such functions, each with a different base of the
exponential. The polynomials are integer-valued, and the theory of finite difference calculus states that
every integer-valued polynomial in n is an integer linear combination of binomial coefficient functions

�
n
a

�
for various a. Thus, in this section we prove the following theorem:

Theorem 5.1 For fixed j and w, as a function of n the dimension of Hj .config.n; w// is an integer
linear combination of terms of the form

�
n
a

�
bn�a, where a and b are nonnegative integers.

Note that the case b D 0 is permitted, and represents the function that is equal to 1 when nD a, and 0
otherwise.

Our proof counts the critical cells from Remark 4.5, and decomposes them into concatenation products
of factors that are easier to count. To describe how the counts transform under concatenation product,
we introduce the following terminology. A cell family F consists of, for each n, a set Fn of cells from
cell.n/. Its counting function f .n/ is the number of cells in Fn. The concatenation product F jG of cell
families F and G is the cell family consisting of all concatenation products of a cell in F with a cell
in G, taken with all possible disk labelings that preserve the order within each factor.2 The following
lemma shows that, to prove our theorem, it suffices to consider separately the various independent factors
of a concatenation product:

Lemma 5.2 Let F and G be two cell families , such that their counting functions f .n/ and g.n/ are
integer linear combinations of terms of the form

�
n
a

�
bn�a, where a and b are nonnegative integers.

Suppose that , for every element of their concatenation product F jG, there is only one way to write it as

2This is closely related to the Day convolution defined in Section 2.3, except that F and G need not be FB–subsets of the FB–set
of cells of cell.�/, and in our application will not be Sn–equivariant.
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the concatenation of an element of F and an element of G. Then the counting function of F jG is also an
integer linear combination of terms of the form

�
n
a

�
bn�a.

Proof Let f jg denote the counting function of F jG. Then we have

.f jg/.n/D
X

iCjDn

� iCj
i

�
f .i/g.j /;

which we refer to as the labeled convolution of f and g. Exponential generating functions are convenient
for dealing with these labeled convolutions; given the exponential generating functions

P
i f .i/x

i=iŠ for f
and

P
j g.j /x

j =j Š for g, their product gives the exponential generating function
P
n.f j g/.n/x

n=nŠ

for f jg.

We can compute the labeled convolution of two terms
�
n
a1

�
b
n�a1

1 and
�
n
a2

�
b
n�a2

2 by converting them
to exponential generating functions, taking the product, and then converting the product back. The
exponential generating function of

�
n
a

�
bn�a isX

n

�n
a

�
bn�a

xn

nŠ
D

X
n

xa

aŠ

.bx/n�a

.n� a/Š
D
xa

aŠ
ebx;

so the product of exponential generating functions of
�
n
a1

�
b
n�a1

1 and
�
n
a2

�
b
n�a2

2 is

xa1Ca2

a1Ša2Š
e.b1Cb2/x D

�a1Ca2
a1

� xa1Ca2

.a1C a2/Š
e.b1Cb2/x;

and so the labeled convolution of
�
n
a1

�
b
n�a1

1 and
�
n
a2

�
b
n�a2

2 is�a1Ca2
a1

�� n

a1Ca2

�
.b1C b2/

n�.a1Ca2/:

(This identity can also be verified by constructing sets counted by each of the counting functions.)

Using this lemma, we are ready to prove Theorem 5.1.

Proof of Theorem 5.1 Given j and w, the critical cells from Remark 4.5 form a cell family, and we
want to find the counting function of this cell family. To do this, it helps to count the ways to distribute
the singletons separately from counting the ways to arrange the larger wheels. We define a skyline to be a
critical cell for which the only singleton blocks are leaders of a filter. Given any critical cell, we can find
its associated skyline by deleting all the nonleader singletons and then shifting the disk labels down so
they are consecutive. For fixed j and w, there are only finitely many possible skylines among the critical
cells. Thus, it suffices to count the cell family consisting of all critical cells with a given skyline.

For each skyline, its cell family is the concatenation product of other cell families. We define a tadpole to
be a critical cell with exactly one filter, which is at the far right, and we define a tail to be a critical cell
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with no filters. Every critical cell can be written uniquely as a concatenation of some number of tadpoles
and possibly one tail on the right. Thus, it suffices to count the cell family consisting of all tadpoles with
a given skyline, and the cell family consisting of all tails with a given skyline.

A tadpole with a singleton as the leader of its filter may have other singletons to the left, but a tadpole
with a larger wheel as the leader of its filter may not have any singletons. Thus, given a tadpole skyline,
if the leader of its filter is not a singleton, the counting function of its cell family returns 1 when the input
is the number of disks in the skyline, and 0 otherwise. If the leader of its filter is a singleton, then, for any
tadpole with that skyline, the leader of the filter must be disk 1. If k is the total number of disks in the
skyline, then the counting function of the tadpole skyline family is

�
n�1
k�1

�
, representing the number of

ways to choose which disk labels appear in the skyline. Given a tail skyline, if k is the total number of
disks in the skyline (possibly 0), the counting function of its cell family is

�
n
k

�
.

Thus, for each skyline with a given j and w, we can compute the counting function of its cell family by
taking the labeled convolution of the counting functions of its tadpole skyline and tail skyline factors.
Because each factor has the desired form, so does the labeled convolution, by Lemma 5.2. The counting
function of the family of all critical cells is the sum of the counting functions of all the skylines, and so it
also has the desired form.

6 Cohomology ring

We now give a basis for H j .config.n; w// and describe the cup product structure in terms of that basis.
We use a similar strategy to that used in [Alpert et al. 2021] to find a lower bound for the dimensions
of homology groups. The main tool is Poincaré–Lefschetz duality: for a compact 2n–manifold with
boundary .M; @M/,

H j .M/ŠH2n�j .M; @M/:

Moreover, when homology classes are realized by submanifolds (as they will be in our case), then:

(i) The pairing between classes in H j .M/ and Hj .M/ is given by the transverse signed intersection
number between classes in H2n�j .M; @M/ and Hj .M/.

(ii) The cup product between classes in H i .M/ and H j .M/ is given by the transverse intersection
map

t WH2n�i .M; @M/˝H2n�j .M; @M/!H2n�i�j .M; @M/:

While config.n; w/ as previously described is not a compact 2n–manifold with boundary, we can define
a homotopy equivalent compact manifold with boundary:

Definition Let M.n;w/ � R2n be the configuration space of open disks of radius 1 in a strip of any
finite length N > n and width wC " for any 0 < " < 1.
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The boundary consists of those configurations in which a disk touches either another disk or the boundary
of the strip. It has corners, but every point of the boundary has a neighborhood homeomorphic to a
half-space. (Without the addition of ", a boundary configuration with w vertically aligned disks would
not have a neighborhood homeomorphic to a half-space.)

Alternatively, in an open manifold without boundary (such as the space of configurations of n points
in R� .0; 1/ of which no more than w are vertically aligned, as used in Theorem 2.1), Poincaré duality
gives an isomorphismH j .M/ŠHBM

2n�j .M/. HereHBM
� indicates Borel–Moore homology, the homology

of the complex of locally finite chains; this is isomorphic to the homology of a compactification relative
to the added points.

6.1 Basis for cohomology

We will describe a basis for H2n�j .M.n;w/; @M.n;w// by associating basis elements to critical j –cells
of cell.n; w/, as described in Remark 4.5. Given a critical cell with symbol f, we define the submanifold
V.f /�M.n;w/ as the set of configurations such that:

(i) The disks in each block of � are lined up vertically in order.

(ii) If a block b1 comes before b2 in f, they have at least wC 1 elements combined, and one of them
is a follower, then the column of disks labeled by elements of b1 is to the left of that labeled by
elements of b2.

To see that this is a submanifold, and that moreover @V.f /D V.f /\@M.n;w/, notice that two columns
of disks which have at least wC 1 elements combined cannot move past each other while still satisfying
condition (i).

To show that this is a basis, we describe the intersection pairing between these submanifolds and our
generators of Hj .config.n; w//.

Lemma 6.1 Let f and g be symbols of critical cells of cell.n; w/. Write Z.g/ for the basic cycle
corresponding to g. Then:

(a) V.g/ tZ.g/D˙1.

(b) If V.g/ tZ.f /¤ 0, then g � f according to the ordering in Remark 4.5.

From the lemma, we see that, under the ordering of the critical cells by �, the intersection pairing is
described by a triangular matrix. Therefore, the V.g/ form a basis for H2n�j .M.n;w/; @M.n;w//.

Proof We use the embedding of Theorem 2.1 to associate V.g/ to a cellular j –cocycle �.g/ in cell.n; w/.
The value of �.g/ on a j –cell is given by the signed intersection number of the embedded cell with V.g/.

Suppose that a symbol h is in the support of �.g/. By comparing condition (i) of the definition of V.g/
to the construction of the embedding in Theorem 2.1, we see that f must have the same set of blocks
as g, although possibly in a different order; in particular, h and g are in the same layer. Moreover, the
barycenter of h is the unique point of intersection. Condition (ii) restricts the possible orderings.
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Now suppose that h¤ g. We look at the first block, say hi and gi , where they differ. This means that hi is
a block which occurs later in gi , say gj . The structure of critical cells gives us the following possibilities:

� The block gi is a follower in g, and gj is not. Since gi is a follower, it and gi�1 have at least
wC 1 elements in total. On the other hand, condition (ii) implies that gi and gj have at most
w elements in total, so gi�1 has more elements than gj . Since gj is not a follower, it must be a
unicycle. Then gi�1 � gj D hi in the ordering on wheels, implying that hi is not a follower in h.
Therefore, g � h.

� There are no followers between gi and gj , inclusive. Then gj and gi are both unicycles and gj �gi
in the ordering on wheels. Therefore, hi is not a follower and hi � gi . Because the ordering on
cells uses the reverse ordering on wheels, g � h.

� There is at least one follower between gi and gj , and it is not gi . But gj can’t be a follower,
because if it were, V.g/ could not contain configurations with gj to the left of its leader. Then gj
and the first follower after gi appear in opposite orders in g and h, so gj must have fewer elements
than the first leader after gi . Since gj is not a follower, it is a unicycle, and the ordering implies
that it must also have fewer elements than gi . Thus, hi � gi , and therefore g � h.

In other words, we always have that g � h. On the other hand, we know that, if a cell h is in the support
of Z.f /, then h� f. Therefore, g � f. This proves (b).

From this we also know that g is the unique cell which is in the support of both �.g/ and Z.g/. Since
the coefficient in both cases is ˙1, this proves (a).

6.2 Cup product structure

The cup product structure of H�.config.n; w// is complicated, with many indecomposables as well as
many nontrivial products. We start with some simple observations. First, the cohomology algebra of
H�.config.n// is well understood: it is generated by one-dimensional classes. A good description is
given in [Sinha 2013]. Secondly, the pullback of H�.config.n// to H�.config.n; w// along the inclusion
map is a subalgebra and contains all classes of degree less than w � 1. That means that all classes in
Hw�1.config.n; w// which are not pullbacks fromHw�1.config.n// are indecomposable. These include
the basis elements corresponding to critical cells which have one leader–follower pair with wC 1 total
elements and in which all other blocks are singletons.

In higher degrees, the story is more complicated. Recall that our basic cocycles are carved out using three
kinds of relations: coincidence between the x–coordinates of two disks, vertical ordering of elements
within a block, and horizontal ordering between blocks. When we take a cup product, the coincidences
from both factors accumulate; see Table 1 for some examples. Likewise, when two blocks are ordered in
a product, the ordering must be “inherited” from one of the factors. If many pairs of blocks are ordered,
this may force the cohomology class to be indecomposable.
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�.2 1 j 6 j 5 j 4 j 3/[ �.3 2 j 6 j 5 j 4 j 1/D �.3 2 1 j 6 j 5 j 4/

�.3 2 j 6 j 5 j 4 j 1/[ �.3 1 j 6 j 5 j 4 j 2/D �.3 2 1 j 6 j 5 j 4/C �.3 1 2 j 6 j 5 j 4/

�.3 2 1 j 6 j 5 j 4/[ �.5 4 j 6 j 3 j 2 j 1/D �.3 2 1 j 5 4 j 6/

�.5 4 j 6 2 3 j 1/[ �.4 1 j 6 j 5 j 3 j 2/D �.5 4 1 j 6 2 3/:

Table 1: Some examples of nontrivial cup products in config.6; 4/. These are easy to deduce
using intersections of dual cycles.

The last example in Table 1 illustrates an important class of decomposable cohomology classes: those
associated to critical cells consisting of only two blocks, where the total number of elements is at least
w C 2. In other words, a filter with more than w C 1 elements always pairs with a decomposable
cohomology class.

We also describe an important set of cases in which cup products are zero.

Proposition 6.2 If there is a pair of labels i and j which are contained in the same block in both f
and g, then V.f / t V.g/D∅.

Proof If the two labels are in opposite orders in the two blocks, then the intersection of the two cycles
is empty. If they are in the same order, then the intersection may be nonempty, but we can move it off
itself by moving every point of V.f / slightly in the xi–direction (say, move the point p by a distance of
"d.p; @M.n;w// for some " > 0 small enough). After this operation, V.f /\V.g/ lies in the boundary
of M.n;w/.

In all other cases, we can compute cup products by looking at the intersections of the associated
submanifolds.

Proposition 6.3 If no two blocks in f and g have two labels in common , then V.f / and V.g/ intersect
transversely.

Proof Locally, V.f / and V.g/ are linear subspaces of config.n/, cut out by the linear equations
constraining the x–coordinates in each block to coincide. Thus, the dimension of V.f / is n (for
the y–coordinates) plus the number of blocks in f (for the x–coordinates), and similarly for V.g/.
In the intersection, we imagine starting with the constraints for V.f / and including the constraints
for V.g/ one block at a time. Each block of size k in g merges k different blocks in f into one, so
the net change in the number of blocks is 1 � k. In total, the number of blocks in V.f / \ V.g/ is
#blocks.f /C#blocks.g/�n, so the local codimension of V.f /\V.g/ is 2n�#blocks.f /�#blocks.g/,
which equals codimV.f /C codimV.g/.

Finally, we show that there are many indecomposable elements in H�.config.n; w//, but that they do not
occur in the very highest degrees.
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Theorem 6.4 The ring H�.config.n; w// has indecomposables

(a) only in degree 1 when w D 2;

(b) in every degree between 1 and
�
1
2
n
˘

and no others when w D 3;

(c) in degree 1 and in every degree between w � 1 and
�
1
2
.nCw � 3/

˘
and no degree greater than

n�dn=.w� 1/e when w � 4.

When w � 4, indecomposables also seem to occur in most degrees below n�dn=.w� 1/e, but perhaps
not all.

Proof We first show that every class of degree greater than n�dn=.w�1/e is decomposable. The proof
does not depend on w. Every cell with fewer than dn=.w� 1/e blocks has a block with w elements, and
therefore V.f /�M.n;w/ satisfies an equation of the form xi1 D � � � D xiw . Therefore, it is enough to
show:

Lemma 6.5 Suppose that V � M.n;w/ is a connected compact submanifold of dimension at most
2n�w, satisfying @V � @M.n;w/, which is cut out by relations of the form xi D xj , yi <yj and xi <xj .
Suppose furthermore that V satisfies xi1 D � � � D xiw for some set of indices i1; : : : ; iw . Then V is the
transverse intersection of two proper compact submanifolds satisfying @V � @M.n;w/.

Proof Define W1 to be the connected component of fxi1 D � � � D xiwg which contains V ; this exists
since V is connected. The defining relations of W1 are:

� xik D xil for each k ¤ l .

� yik < yil or yik > yil for each k ¤ l .

� xj < xik or xj > xik whenever j ¤ ik for any k.

Let W2 be the submanifold cut out by all defining relations of V which involve pairs of points constrained
to be to the same side of xi1 ; : : : ; xiw . Then V DW1 \W2, since every necessary relation defining V
is a defining relation of either W1 or W2. Moreover, by counting the number of defining equalities, we
immediately see that the intersection is transverse.

Applying this to each connected component of V.f /, we get a decomposition of the corresponding
cohomology class as a sum of cup products.

We now build indecomposable cocycles when w � 4; the proof for wD 3 will be similar, but not identical.
We will show that basic cocycles corresponding to critical cells of certain shapes are indecomposable.
Specifically, we consider a critical cell f which starts with some number r of blocks with two elements,
followed by one block (a follower) with w� 1 elements, and where the remaining blocks are singletons.
The degree of such an f is r Cw� 2, and r can be any number between 1 and 1

2
.n�wC 1/, giving us

all degrees between w� 1 and
�
1
2
.nCw� 3/

˘
. It is clear that there are critical cells of any such shape;

in particular, we select f to be the cell with all entries in order from greatest to least.
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We will show that the corresponding cohomology class �.f / is indecomposable by induction on r . We
will do this by constructing a cycle with which �.f / pairs nontrivially, but any decomposable class pairs
trivially.

To construct this cycle, first let R be the set of blocks of f which are left of the follower. For any
subset S �R, there is a critical cell fS in which the blocks in S are moved to the right of the follower,
and otherwise the ordering on blocks is the same. Let ZS be the concatenation product of the toroidal
cycles obtained by interpreting each block as a wheel and spinning it. This cycle is represented by a
map gS W T rCw�2! config.n; w/. The ZS represent linearly independent homology classes, since they
generate a 2r–dimensional subspace of HrCw�2.config.n; w//: for every S �R, the basic cycle Z.fS /
is a linear combination of them, given by ZS itself if S D R, or otherwise the difference between ZS
and ZS 0 , where S 0 is the union of S with the greatest block not in S. We will show that, for every
decomposable class �,

.6.6/
X
S�R

.�1/jS jh�;ZS i D 0:

In particular, � cannot pair nontrivially with exactly one of the cycles ZS . On the other hand, �.f / pairs
nontrivially with ZS if and only if S D∅.

It is enough to show this equation holds for every pairwise cup product, �D ˛[ˇ. We study the pullbacks
of such a pairwise cup product along each gS . Suppose that ˛ is of degree p, and write

T rCw�2 D
Y

i2RtR0

S1i ;

where R0 is the set of degrees of freedom of the .w�1/–element wheel. To understand g�S˛, it is enough
to understand how it pairs with T P D

Q
i2P S

1
i for each p–element set P �RtR0. Then

.6.7/ h�;ZS i D
X

PtQDRtR0

hg�S˛; ŒT
P �i � hg�Sˇ; ŒT

Q�i:

We now show that these decompositions are not independent for different S.

Lemma 6.8 If P \R0 ¤R0, then hg�S˛; ŒT
P �i is the same for every S.

Proof It suffices to show that the pushforward cycles .gS /�ŒT P � are homologous regardless of S. In fact,
the corresponding maps T P ! config.n; w/ are homotopic. We can compress the allowed movements of
the .w�1/–element wheel into a subset of the strip of width w � 2, letting wheels of width 2 pass by.
Clearly, wheels of width 2 can also pass by each other since we are assuming w � 4. Using this set of
motions, we can construct a homotopy between any two such maps.

Lemma 6.9 If P \R0 DR0, then hg�S˛; ŒT
P �i D hg�S 0˛; ŒT

P �i whenever .S 4S 0/\P D∅ (where4
indicates symmetric difference).

Geometry & Topology, Volume 28 (2024)



676 Hannah Alpert and Fedor Manin

Proof Again, it suffices to show that .gS /�ŒT P � and .gS 0/�ŒT P � are homologous, and again the
corresponding maps T P ! config.n; w/ are homotopic. We can build the homotopy by moving the
individual disks of blocks not in P around the .w�1/–element set.

Together, the lemmas imply that, for any pair of nonempty complementary sets P;Q � R tR0, the
quantity

hg�S˛; ŒT
P �i � hg�Sˇ; ŒT

Q�i

is independent of whether i 2 S for at least one i 2R. In particular,X
S�R

.�1/jS jhg�S˛; ŒT
P �i � hg�Sˇ; ŒT

Q�i D 0:

From here we get (6.6) by summing over all pairs P and Q and using (6.7).

Finally, we deal with the case w D 3. In this case, we consider critical cells composed of r two-element
blocks (with the bigger element first) followed by n� 2r singletons for some 1� r �

�
1
2
n
˘

. Such a cell
is critical if and only if the singletons are in reverse order. In particular, every permutation � of the set of
two-element blocks gives a critical cell f� . For each � 2 Sr , let Z� be an r–cycle, represented by a map
g� W T

r ! config.n; w/, obtained by arranging the blocks in the order dictated by � and spinning each
of them. These cycles are linearly independent in homology since the basic cycles Z.f� / are all linear
combinations of them.

We now define a function � W Sr ! Z. Consider the expression Œ � � � ŒŒ1; 2�; 3�; � � � r�. If � cannot be
obtained from this by commuting some of the brackets (equivalently, by spinning the wheel 1 2 � � � r , as in
Figure 9), then �.�/D 0. If it can, then �.�/D .�1/c , where c is the number of commutations required.
We will show that, for every decomposable class �,

.6.10/
X
�2Sr

�.�/h�;Z� i D 0:

In particular, � cannot pair nontrivially with exactly one of theZ� , and therefore there is an indecomposable
class of degree r .

It is enough to show the equation for every pairwise cup product, � D ˛[ˇ. Write T r D
Qr
iD1 S

1
i ; for

every P � f1; : : : ; rg, write T P D
Q
i2P S

1
i . Then

.6.11/ h�;Z� i D
X

PtQDf1;:::;rg

hg��˛; ŒT
P �i � hg��ˇ; ŒT

Q�i:

Once again, these decompositions are not independent for different � :

Lemma 6.12 Whenever � and � impose the same ordering on elements of P,

hg��˛; ŒT
P �i D hg�� ˛; ŒT

P �i:
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Proof To show that .g� /�ŒT P � is homologous to .g� /�ŒT P �, we construct a homotopy between the
corresponding maps T P ! config.n; w/. This involves moving around the individual disks of the blocks
not in P to make sure they are in the right order.

The lemma implies that, for any pair of nonempty complementary sets P;Q � f1; : : : ; rg,

hg��˛; ŒT
P �i � hg��ˇ; ŒT

Q�i D hg�� ˛; ŒT
P �i � hg�� ˇ; ŒT

Q�i

if � and � differ by commuting one of the brackets of Œ � � � ŒŒ1; 2�; 3�; � � � r�, specifically the innermost
bracket in which the right side is in Q if 1 2 P, or vice versa. In particular,X

�2Sr

�.�/hg��˛; ŒT
P �i � hg��ˇ; ŒT

Q�i D 0:

From here we get (6.10) by summing over all pairs P and Q and using (6.11).

7 Persistent homology

The majority of this paper has investigated the properties of config.n; w/ as we increase n and keep w
fixed. But we can also look at what happens when w grows. Since config.n; w/ naturally injects into
config.n; wC 1/, forming a filtration, the right framework for understanding this is persistent homology,
which considers homology for all w at once, together with the maps induced by the inclusions. We give a
short introduction to the machinery; for more details, see [Edelsbrunner and Harer 2008; Zomorodian
and Carlsson 2005].

Specifically, we can regard
L
w H�.config.n; w// as a ZŒt �–module in which multiplication by t

corresponds to applying the maps H�.config.n; w// ! H�.config.n; w C 1// induced by the inclu-
sions config.n; w/ ,! config.n; wC 1/. We denote this ZŒt �–module by PH�.config.n;�//. Similarly,L
w H

�.config.n; w// is a ZŒt �–module in which multiplication by t corresponds to applying the pullback
mapsH�.config.n; w//!H�.config.n; w�1//, and we denote this ZŒt �–module by PH�.config.n;�//.

A cyclic summand of PH�.config.n;�// or PH�.config.n;�// is generated by a single element that is
nonzero for some interval of values of w. It is standard to refer to a cyclic summand as a bar, and to
the endpoints of the corresponding interval as the values w of its birth and death. A decomposition of
PH�.config.n;�// or PH�.config.n;�// into cyclic summands means selecting Z–bases for the various
values of w in a way that agrees with the maps between the values of w.

The fundamental theorem for modules over a PID guarantees that a persistence module with coefficients
in a field will always decompose into cyclic summands. No such guarantee exists for integral persistence
modules: for example, one could have a single class born at one time and later become divisible by 2,
yielding a module isomorphic to the ideal .2; t/� ZŒt �.

Theorems 7.1 and 7.4, which we state and prove below, together prove Theorem C.
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Theorem 7.1 The homology basis elements described in Theorem B induce a decomposition of
PH�.config.n;�// as the direct sum of cyclic ZŒt �–modules. The cohomology basis elements from
Section 6.1 give a decomposition of PH�.config.n;�// as the direct sum of cyclic ZŒt �–modules.

To prove the theorem, it suffices to show that, when a given basis element stops being in the basis, it also
becomes zero in homology or cohomology. To verify this for homology, we show the corresponding
statement for weighted no-.wC1/-equal spaces.

Theorem 7.2 For the weighted no-.wC1/-equal spaces , the homology basis elements from Theorem B
give a ZŒt �–basis for PH�.no�.n;W//.

Proof Recall that a basic cycle consists of a product of single vertices corresponding to singletons and
boundaries of permutohedral cells corresponding to leader–follower pairs.

The key fact is that, as we increase w, a particular cell stays critical as long as, for every leader–follower
pair, the weights add up to at least wC 1. But, once they add up to only w for some leader–follower
pair, that means that the corresponding permutohedron boundary is filled in, and so the cycle becomes a
boundary. Therefore, every cell of P.n/ which is critical in P.n;W; w/ for some w corresponds to a
direct summand of the persistence module.

Proof of Theorem 7.1 Theorem 7.1 follows easily from Theorem 7.2. This is because the splitting

H�.cell.n; w//D
M
�2Sn

H��#�
�
P.n� #�;W.�/; w/

�
of Theorem 4.1 is natural with respect to increasing w (even on the chain level, as one readily sees).
Therefore,

PH�.cell.n;�//D
M
�2Sn

PH��#�
�
P.n� #�;W.�/;�/

�
:

In particular, an element leaves the basis exactly when one of its filters has the wheel sizes adding up
to at most w, and the correspondence with the no-.wC1/-equal homology proves that the element is
null-homologous in this case.

For cohomology, the restriction map H�.config.n; w//!H�.config.n; w�1// corresponds to intersect-
ing each basis element V.g/ of H2n��.M.n;w/; @M.n;w// with the smaller space M.n;w� 1/. When
w gets too small for V.g/ to be in the basis, it is because some block of g has more than w elements; thus,
the intersection of V.g/ with this M.n;w/ is empty, and the restricted cohomology class is zero. Thus, it
is also true for cohomology that, when a given element stops being in the basis, it becomes zero.

Remark 7.3 We can also explore how the persistence module structure on homology and cohomology
interacts with other structures we have discussed:
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(1) Cohomological persistence does not play nicely with the cup product structure: frequently a class
is born indecomposable at time w and becomes decomposable at time w� 1. For example, in the
notation of the previous section, we have the relation

�.5 4 j 6 2 3 j 1/[ �.4 1 j 6 j 5 j 3 j 2/D �.5 4 1 j 6 2 3/

in config.6; 3/ and config.6; 4/, but �.5 4 1 j 6 2 3/ is indecomposable in config.6; 5/.

(2) The concatenation product is perfectly well defined on persistence modules. So we can think of
PH�.config.�;�// as a graded twisted algebra in ZŒt �–modules! The ZŒt �–module structure of
this algebra is relatively easy to understand, as we have seen above, but it does not interact in a
nice way with the symmetric group action. Moreover, unlike the algebras H�.config.�; w// for
fixed w, it is not finitely generated as an algebra. For these reasons, we do not study this structure
further.

7.1 Asymptotics of the persistence module

A main goal of [Alpert et al. 2021] was to understand the growth of Betti numbers of config.n; w/ as n
increases. Now that we have described the persistence module of config.n;�/, we can refine this: as the
number of disks increases, we keep track of the number of bars of different lengths. It turns out that the
number of short bars grows faster and eventually dominates the number of longer bars. We make this
precise in the following theorem:

Theorem 7.4 Each ZŒt �–basis element of PH�.config.n;�// born at w D w0 either persists for all
w > w0 or dies by w D 2w0. For each j and w0, either the maps

Hj .config.n; w0//!Hj .config.n; w//

are isomorphisms for all w > w0 and all n, or the fraction of basis elements of Hj .config.n; w0// that
persist to Hj .config.n; w0C 1// approaches 0 as n approaches1.

We note that, because each homology basis element is matched to a cohomology basis element in the same
degree with the same birth and death, the theorem for homology immediately implies a corresponding
statement for cohomology, which we do not include here.

For the second statement of Theorem 7.4, it helps to have an asymptotic estimate of the dimension of
Hj .config.n; w// as n approaches1. Examining the basis for homology and estimating the number of
elements recovers the following theorem:

Theorem 7.5 [Alpert et al. 2021] If w � 2 and 0� j � w� 2, then the inclusion of config.n; w/ into
the configuration space of points in the plane induces an isomorphism on Hj . If w � 2 and j � w� 1,
then there are positive constants c1 and c2, depending on w and j, such that the following is true. Write
j D q.w� 1/C r with q � 1 and 0� r < w� 1. Then

c1 �n
qwC2r.qC 1/n � dimHj .config.n; w//� c2 �nqwC2r.qC 1/n:
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Proof of Theorem 7.4 The basis elements that persist indefinitely are those with no filters. Each filter
can be written as a leader–follower pair, and any leader–follower pair that appears at time w0 has total
weight at most 2w0, because the leader block has at most the weight of the follower block. Thus, it only
remains a filter until at most w D 2w0. This proves the first statement of the theorem.

For the second statement, by Theorem 7.5 it suffices to show that, for j � w� 1, the number of basis
elements of Hj .config.n; w// that persist to Hj .config.n; wC 1// grows polynomially in n. We observe
that, if a filter for w contains any wheel of size 1, then its total size is wC 1, so it does not remain a
filter for wC 1. Thus, in any basis element of Hj .config.n; w// that persists, every filter must contain
only wheels of size at least 2. One rule for being a basis element is “Every wheel immediately to the
left of a filter is greater than the least wheel in the filter”, so this then implies that, in any basis element
of Hj .config.n; w// that persists, all of the wheels of size 1 appear to the right of all other wheels and
filters.

To estimate the number of such basis elements, we simply count the cell symbols that end with (at
least) n� 2j singleton blocks in descending order. There are

�
n
2j

�
� .2j /Š � 22j�1 such symbols, and that

function grows polynomially in n. Because the total number of basis elements of Hj .config.n; w// grows
exponentially in n, asymptotically almost all of the basis elements do not persist to wC 1.

8 Relations in the twisted algebra and FId–modules

The twisted algebra structure of H�.cell.�; w// is unusual because many pairs of elements do not
commute. In particular, there are some elements that do not commute with the 0–cycles coming from
a single disk; we think of these as barriers that prevent singleton disks from passing back and forth.
This noncommuting with singleton 0–cycles is the main reason for Theorem 7.5: a given homology
element in degree j can be written as the concatenation product of up to bj=.w� 1/c barriers, giving up
to 1Cbj=.w� 1/c nonequivalent ways to insert a new disk as a singleton.

One algebraic object that exhibits this kind of exponential growth is an FId–module. The best example
for understanding the idea of an FId–module is the j th homology of the configuration space of n disks
on the disjoint union of d planes. Each additional disk can be added to any of the d planes. Sam and
Snowden [2017] define FId–modules for the first time. Ramos [2017] shows that finitely generated
FId–modules satisfy a notion of generalized representation stability, and [2019] that the homology groups
of a certain kind of graph configuration space are finitely generated FId–modules.

We show in this section that the homology of unweighted no-.wC1/-equal spaces and of config.n; 2/ are
both FId–modules. On the other hand, we give an example to show that the homology of config.n; w/
for w > 2 is probably not well described via FId–modules, since there seems to be no consistent way of
decomposing homology classes as products of barriers.

Formally, the category FId has one object Œn�D f1; : : : ; ng for each natural number n. The morphisms
are pairs .'; c/, where ' is an injection, say from Œn� to Œm�, and c is a d–coloring on the complement of
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1 2 3

2

1 2 3 4

1

1 2 3 4 5

D

1 2 3

2 1

1 2 3 4 5

Figure 11: To compose two morphisms in FId , we have .'0; c0/ ı .'; c/ D .'0 ı '; c00/, where
c00.i/ is equal to c0.i/ if i is not in the image of '0 (for instance, i D 3 has color 1 in the example
shown) and is equal to c.'0�1.i// if i is in the image of '0 (for instance, i D 2 has color 2 in the
composition because c.1/D 2 and '0.1/D 2).

the image of '; that is, c is a map from Œm�n'.Œn�/ to a set of size d , which in this paper we choose to be
f0; 1; : : : ; d � 1g. The morphisms compose as illustrated in Figure 11: for each element colored by the
first morphism, in the composition, the image of that element under the second morphism is the one that
gets that color. (In the picture, the color of a given element is shown in a diamond just above the element.)
More formally, if .'; c/ W Œn1�! Œn2� and .'0; c0/ W Œn2�! Œn3� are two morphisms, then we have

.'0; c0/ ı .'; c/D .'0 ı'; c00/;

where c00.i/ is equal to c0.i/ if i … '0.Œn2�/, and is equal to c.'0�1.i// if i 2 '0.Œn2�/.

An FId–module M over a commutative ring k is defined to be a functor from FId to k–modules; that is,
we have a k–module Mn for each n, and for each .'; c/ W Œn�! Œm� we have a corresponding k–module
map .'; c/� WMn!Mm. Here we use k DZ. An FId–module is finitely generated if there exists a finite
set of elements x1; : : : ; xr 2

F1
nD1Mn such that the only FId–submodule of M containing x1; : : : ; xr is

M itself. Figure 12 sketches the FIjC1–module structure for Hj .config.n; 2//; the colors of the disks,
shown in the picture as the numbers in the diamonds, indicate where to insert the disks between barriers.

1 2 3 4 5

1 2 3 4 5 6 7 8

1 0 1

6 5 2

3

1 7 8

4

3 2

1

5

4

Figure 12: When applying this FI3–morphism to a class in H2.config.5; 2//, we insert the disks
with color k labels immediately after the kth circling pair.
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8.1 No-.wC1/-equal spaces

Theorem 8.1 The graded twisted algebra H�.nowC1.�// has a presentation with two generators and
two relations. The generators are the representations spanned by a singleton 0–cycle and the .w�1/–cycle
@.1 2 � � �wC 1/; these are trivial representations of S1 and SwC1, respectively. The relations are that two
singletons commute and , for each .wC2/–block , taking the signed sum of the boundaries of those facets
that have a .wC1/–block in them gives zero.

Proof The fact that our proposed generators do generate comes automatically from the description of
the basis. To show that the relations are true, we know that @2 D 0, in particular when applied to a
.wC2/–block, so the signed sum of the boundaries of all facets of the .wC2/–block gives zero. The
facets that have no .wC1/–block in them are cells in P.n;w/, so their boundaries are null-homologous;
thus, the sum of the boundaries of the remaining facets gives zero in homology.

To show that the specified relations are sufficient, we take every product of generators that is not in
the basis and use the specified relations to write it in terms of the basis. First we may assume that
consecutive singletons are always in descending order, using the relation that commutes singletons. Then,
if a generator is not in the basis, some boundary of a .wC1/–block must be immediately preceded by
a singleton that is less than every element of the .wC1/–block. If we combine those elements to form
a .wC2/–block, this substring of our generator is the boundary of one facet of the .wC2/–block, and
the boundaries of all the other facets are in the basis. Thus, applying the relation replaces a nonbasis
substring of our generator by a sum of basis substrings. Applying the relations repeatedly from left to
right rewrites our original nonbasis generator in terms of the basis.

Theorem 8.2 For each j a multiple of w � 1, the homology groups Hj .nowC1.�// form a finitely
generated FId–module for d D 1C j=.w� 1/.

Proof The FId–module structure is as follows. Suppose we have an FId–morphism from Œm� to Œn� with
n � m. For any element of Hj .nowC1.m//, we write it in terms of the generators from Theorem 8.1.
We apply the relabeling injection and, for each additional number with color i 2 f0; 1; : : : ; j=.w� 1/g,
we insert an element of that color into each summand between the i th and the .iC1/st factors of the
generator that look like the boundary of a .wC1/–block (rather than a singleton). The result is an element
of Hj .nowC1.n//.

To show that this map on homology is well defined, we need to show that, if we write an element of
Hj .nowC1.m// in terms of the generators in two different ways, the resulting elements of Hj .nowC1.n//
are the same. To see this, suppose that we apply a relation to an original generator. The same relation can
just as easily be applied after the relabeling and insertion, just by moving the new singletons past old
singletons so that they are out of the way. Thus, applying the relation does not change which homology
class we get.
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The fact that the maps respect composition of FId–morphisms is automatic once we use the fact that
consecutive singletons commute. Thus, we have an FId–module. It is finitely generated by the basis of
Hj
�
nowC1.j.wC 1//

�
.

A proof along similar lines shows that the homology of weighted no-.wC1/-equal spaces can be written
as a direct sum, with each summand equal to the span of the generators with a particular number of filters.
This allows us to insert weight-1 points between the filters in a well-defined way. However, the result is
not formally an FId–module (or a direct sum of them) in a reasonable way, because relabeling cannot
permute points of different weights without leaving the no-.wC1/-equal space. Because the statement of
the theorem would be cumbersome, we do not include the details.

8.2 Disks in a strip of width w D 2

Essentially the same proofs as for the no-.wC1/-equal spaces give generators and relations for the
configuration spaces for w D 2, which then give its homology an FId–module structure.

Theorem 8.3 The graded twisted algebra H�.config.�; 2// has a presentation with three generators and
three relations. The generators are:

(1) H0.config.1; 2//Š Z, ie a singleton 0–cycle on which S1 acts trivially.

(2) H1.config.2; 2//Š Z, ie a 2–wheel on which S2 acts trivially. Write this as w.1; 2/D 2 1C 1 2.

(3) The two-dimensional representation of S3 spanned by the cycles

z.1; 2; 3/D
2

31 and z.1; 3; 2/D
2

31

in H1.config.3; 2//, where transpositions in S3 act by switching the two basis vectors. This
representation is irreducible over Z, but over Q it splits into the direct sum of a trivial representation
and a sign representation.

The relations are:

(1) The singletons commute: a j b D b j a.

(2) The relation induced by boundaries of 4–cells in cell.4/.

(3) The relation , in H1.cell.3; 2//,

z.1; 2; 3/Cz.1; 3; 2/D 1 jw.2; 3/Cw.2; 3/ j1C2 jw.3; 1/Cw.3; 1/ j2C3 jw.1; 2/Cw.1; 2/ j3:

Rationally, one can use the sign representation in H1.config.3; 2// as a generator, removing the need for
the third relation.

Proof We first establish a basis for H�.config.n; 2// consisting of concatenation products of (1), (2)
and (3). We use the same critical cells as in Remark 4.5, but interpret them differently: leader–follower
pairs of the form a jb c where a<b < c become z.a; b; c/ factors, while the rest of the blocks individually
yield singletons and 2–wheels.
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To show that the generators and relations are valid, it suffices to show:

(i) Any concatenation product of generators can be written as a sum of basis elements by rewriting
via the relations.

(ii) Every element of the basis from Theorem B can be written as a sum of concatenation products of
the new generators.

Together, the two steps imply that the new basis spans H�.config.n; w//; since it has the same cardinality
as the old basis, this shows that it is indeed a basis. The first step then implies that the provided relations
are sufficient.

To see (ii), we note that

.8.4/ @.a b c/C z.a; b; c/D w.b; c/ j aC b jw.c; a/Cw.a; b/ j c:

In this fashion we obtain filters of singletons. We already know that every filter of a singleton and a
2–wheel is given by an expression of the form

a jw.b; c/�w.b; c/ j a:

Every element of the old basis is a concatenation product of these two types of cycles as well as singletons
and 2–wheels.

To see (i), note first that, in the description of the basis, the 2–wheels separate the strip into intervals that
do not interact with each other or with the 2–wheels; that is, the requirements for being a basis element
are the same as the requirements for each of these intervals individually to give a basis element. Then, to
rewrite a product of generators in terms of basis elements, we only need to rewrite products of singletons
and 3–disk generators.

Relation (3) allows us to eliminate 3–disk generators that are in the “wrong” order. Equation (8.4) lets us
turn relation (2) into a way to eliminate subwords of the form a j z.b; c; d/ where a < b < c < d . Thus,
we can rewrite every product of singletons and 3–disk generators in normal form using the same method
as in Theorem 8.1.

Theorem 8.5 For each j, the homology groups Hj .config.�; 2// form a finitely generated FIjC1–
module.

Proof Every generator of Hj .config.n; 2// has exactly j factors of types (2) and (3). We define the
FIjC1–module structure as follows: to insert a new disk of color i 2 f0; 1; : : : ; j g into a generating cycle,
we insert it as a singleton 0–cycle between the i th and .iC1/st factors of type (2) or (3) of the generator.

As in Theorem 8.2, the relations can be applied either before or after the insertion, so the FIjC1–module
structure is well defined. The basis of Hj .config.3j; 1// gives a finite generating set for the FIjC1–
module.
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8.3 Disks in a strip of width w > 2

We say that an element of H�.config.n; w// is a barrier if the two ways to concatenate it with a 1–disk
0–cycle represent different homology classes. The wheels of size w are barriers, as are any filters that
contain a wheel of size 1. Because the homology H�.config.n; w// is generated by concatenations of
wheels and filters, we can count the number of barriers in each generator.

The following proposition implies that counting barriers is not well defined on arbitrary homology classes
in H�.config.n; w//. As mentioned above, this suggests that the structure of H�.config.n; w// is not
well described by FId–modules.

Proposition 8.6 There is a nontrivial element of H4.config.8; 3// that is simultaneously a sum of
nonbarrier generators , a sum of one-barrier generators , and a sum of two-barrier generators.

As a warm-up before proving the proposition, we consider the case of nD 4, w D 3 and � D 2 1 4 3.
Then P.n� #�;W.�/; w/ is a no-.wC1/-equal space with two points of weight 2, which we denote by
Œ2 1� and Œ4 3�. Then, because i� is a chain map, we have

i�
�
@.Œ2 1�Œ4 3�/

�
D @

�
i� .Œ2 1�Œ4 3�/

�
:

The left-hand side is the sum (with some signs) of the two ways to concatenate the wheels 2 1 and 4 3,
whereas the right-hand side is the sum (with some signs) of the four cycles @.2 1 4 3/, @.2 1 3 4/, @.1 2 4 3/,
and @.1 2 3 4/, each of which can be thought of as an image under the S4–relabeling of @.1 2 3 4/, which,
for width w D 3, is a filter with four wheels each containing one disk, and is a barrier.

Proof of Proposition 8.6 Let � D 2 1 4 3 6 5 8 7. Then P.n� #�;W.�/; w/ is a no-.wC1/-equal space
with four points of weight 2, which we denote by Œ2 1�, Œ4 3�, Œ6 5� and Œ8 7�. We can apply any element
� 2 S4 to any chain in C�

�
P.n� #�;W.�/; w/

�
by permuting these four labels of points.

To construct our cycle, we take

z D
X
�2S4

sign.�/ � i�
�
�.Œ2 1� j Œ4 3� j Œ6 5� j Œ8 7�/

�
:

That is, we take the signed sum of all of the ways to concatenate the four wheels 2 1, 4 3, 6 5 and 8 7.
Each of these summands is already a basis element, although they differ as to which pairs are considered
filters of two wheels. Thus, their sum is nonzero in homology, and none of these wheels is a barrier, so it
is a sum of nonbarrier generators.

To write our element z as a sum of one-barrier cycles, we pair up all elements � in S4 that differ by
swapping the middle two wheels. One such pair gives

i�
�
Œ2 1� j @.Œ4 3�Œ6 5�/ j Œ8 7�

�
;
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which concatenates the wheels 2 1 (on the left) and 8 7 (on the right) to the cycle

i�
�
@.Œ4 3�Œ6 5�/

�
D @

�
i� .Œ4 3�Œ6 5�/

�
;

which is a sum (with some signs) of relabelings of the barrier filter @.3 4 5 6/. In this way we can write
our element z as a sum of generators, each one a concatenation of a 2–wheel, a barrier filter, and another
2–wheel.

To write our element z as a sum of two-barrier cycles, we group the elements � in S4 into quadruples:
permutations get grouped together if they differ by swapping the first two and/or the last two wheels. One
such quadruple gives

i�
�
@.Œ2 1�Œ4 3�/ j @.Œ6 5�Œ8 7�/

�
D˙@

�
i� .Œ2 1�Œ4 3�/

�
j @
�
i� .Œ6 5�Œ8 7�/

�
;

which, similar to the computation above, is a sum of generators, each one a concatenation of two barrier
filters.

9 Configuration spaces of unordered disks

The configuration space of n unordered disks of diameter 1 in a strip of width w is the quotient of
config.n; w/ by the action of Sn that permutes the disk labels, and it is homotopy equivalent to the
quotient of cell.n; w/ by the action of Sn. Because the action is cellular and free, this quotient is a cell
complex, which we call ucell.n; w/. In this section, we compute the homology of ucell.n; w/ (and thus
of the configuration space of unordered disks in a strip) with field coefficients, using the discrete Morse
theory methods from Section 3. In the version of discrete Morse theory that applies here, we do not need
to assume that the coefficients of the boundary map are ˙1, as is true for polyhedral cell complexes, but
only that these coefficients are units. We use field coefficients throughout this section, so all nonzero
coefficients are automatically units.

The concatenation product

Hj .ucell.n; w//˝Hj 0.ucell.n0; w//!HjCj 0.ucell.nCn0; w//

is well defined since there is no need to choose labels for the disks. Therefore, for any ring R,
H�.ucell.�; w/IR/ forms a noncommutative bigraded R–algebra.

The cells of ucell.n; w/ are labeled by symbols as in cell.n; w/, but the numbers in the symbols become
indistinguishable; the only remaining information is the sizes of blocks, which we also refer to as weights.
We notate them all by ı, and use exponents to denote the weights of the blocks. For instance, in cell.3/
we have

@.1 2 3/D�1 j 2 3C 2 j 1 3� 3 j 1 2C 2 3 j 1� 1 3 j 2C 1 2 j 3;

and the corresponding relation in ucell.3/ is

@.ı3/D�ı j ııCı j ıı� ı j ııCıı j ı� ıı j ıCıı j ı D �ı j ııCıı j ı:
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The following lemma describes all the coefficients of these boundary maps:

Lemma 9.1 In ucell.n/, the coefficient of the face ık j ın�k in the boundary of the cell ın can be
described as follows:

� If k and n� k are both odd , the coefficient is 0.

� If nD 2n0 is even and k D 2k0 is even , the coefficient is
�
n0

k0

�
.

� If nD 2n0C 1 is odd and k D 2k0 is even , the coefficient is
�
n0

k0

�
.

� If nD 2n0C 1 is odd and k D 2k0C 1 is odd , the coefficient is �
�
n0

k0

�
.

Proof Consider the cell 1 2 � � �n in cell.n/. In its boundary, there are
�
n
k

�
cells that project to ık j ın�k

in ucell.n/, and our task is to add up all of their signs. The sign of each such face is .�1/k times the sign
of the corresponding permutation.

We pair up the numbers 1 and 2, 3 and 4, and so on, pairing up n�1 and n if n is even, or leaving only n
unpaired if n is odd. We can match and cancel faces of 1 2 � � �n with opposite signs in the following way.
Given a face, if 1 and 2 are in different blocks, then swapping them gives another face with opposite sign.
Similarly, if 1 and 2 are in the same block, but 3 and 4 are in different blocks, then swapping 3 and 4
gives another face with opposite sign. In this way, for each face for which a pair of numbers is split up,
we match and cancel it with another such face by finding the first pair of numbers that is split up, and
swapping those numbers.

The remaining faces have 1 and 2 in the same block, 3 and 4 in the same block, and so on, and each one
corresponds to an even permutation, so the total sign is .�1/k . If k and n�k are both odd, then there are
no such faces. If k D 2k0 is even and there are n0 pairs, then the faces all have positive sign, and there are�
n0

k0

�
of them. And, if k D 2k0C 1 is odd and there are n0 pairs, then the faces all have negative sign, and

there are
�
n0

k0

�
of them.

9.1 Discrete Morse theory on ucell.n; w/ with Q coefficients

When ordering the cells to produce a discrete gradient vector field, part of the ordering will be chosen
later to be lexicographical. Thus, we need to compute the lexicographically least way to split each block.

Lemma 9.2 The lexicographically least face of the cell ın in ucell.n/ with nonzero coefficient is given
as follows. If n is odd , the least face is ı1 j ın�1. If n is even and greater than 2, the least face is ı2 j ın�2.
In the case nD 2, the cell ı2 is a cycle.

Proof If n is odd, then the coefficient of the face ı1 j ın�1 is �
�
.n�1/=2

0

�
D�1. If n> 2 is even, then the

coefficient of the face ı1jın�1 is zero, but the coefficient of the face ı2jın�2 is
�
.n�2/=2

1

�
D
1
2
.n�2/¤0.

Definition Two consecutive blocks in a symbol in ucell.n; w/ form a leader–follower pair in character-
istic 0 if they have the form ı1 j ı2k

0

or ı2 j ı2k
0

for some k0.
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Theorem 9.3 There is a discrete gradient vector field on ucell.n; w/ such that the critical cells are in
bijection with a basis for H�.ucell.n; w/IQ/. The critical cells are described as follows:

� For w D 2, every cell.

� For w D 3, the concatenation of zero or more blocks ı2, followed by zero or more singletons ı1.

� For w > 2 even , the concatenation of zero or more copies of ı2 j ıw or strings ending in ı1 j ıw ,
followed by the concatenation of zero or more singletons ı1. For each string ending in ı1 j ıw , it
consists of an optional ı2, followed by zero or more singletons ı1, followed by the pair ı1 j ıw .

� For w > 3 odd , the concatenation of zero or more pairs ı2 j ıw�1, followed by an optional ı2,
followed by zero or more singletons ı1.

Proof The proof is similar to the proof of Theorem 3.4, which finds a basis for homology of weighted
no-.wC1/-equal spaces. Informally, we construct a discrete vector field that pairs cells as follows: given
a symbol, we read it from left to right, and find the first place where either there is a block of weight
greater than 2, in which case we match down by breaking it into a leader–follower pair; or there is a
leader–follower pair of total weight at most w, in which case we match up by merging it into one block.

The cells that remain unpaired are those for which every leader–follower pair has total weight greater
than w and all other blocks are either ı1 or ı2. We observe that, if w is even, the only possibilities for
leader–follower pairs in critical cells are ı1 j ıw and ı2 j ıw , because the total weight must exceed w
while the weight of the follower block must be even and at most w. For the same reason, if w is odd,
the only possible leader–follower pair in a critical cell is ı2 j ıw�1. We also observe that there are no
instances of either ı1 j ı2 for w � 3, or ı2 j ı2 for w � 4, because these would be leader–follower pairs.
Combining these observations, we deduce that the critical cells must have the form given in the theorem
statement.

More formally, to check that this discrete vector field is gradient, we exhibit an ordering that produces it.
We order the cells of ucell.n; w/ as follows: if f and g are two cells, we find the first block where they
differ, and order according to this first differing block in f and g:

� a follower block is less than a nonfollower;

� two follower blocks are ordered in increasing order of weight; and

� two nonfollower blocks are ordered in decreasing order of weight.

Then we pair up two cells f and g, with f a face of g, if f is the greatest face of g and g is the least
coface of f. One can check that this pairing agrees with the pairing described informally above, and thus
that the critical cells match the desired description.

To check that the resulting critical cells correspond to a basis, by Lemma 3.1 it suffices to find a cycle z.e/
for each critical cell e such that e is the greatest cell in z.e/. Because we are using coefficients in Q, we
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do not have to worry about whether the coefficient is a unit, as long as it is nonzero. To construct z.e/, we
take the concatenation product of the following cycles: for each block that is not in a leader–follower pair,
it is already a cycle, and, for each leader–follower pair, as our cycle we take the boundary of the block
resulting from merging the pair. Note that every cell of this boundary that has a nonzero coefficient has
block weight at most w, because the original leader–follower pair is one of the two faces with the most
unbalanced block weights in this boundary. Because our leader–follower pair is the lexicographically
least face of the merged block, and our ordering is the reverse of lexicographical for nonfollowers, we see
that e is the greatest cell in z.e/. This implies that the cells z.e/ form a basis for H�.ucell.n; w/IQ/.

Corollary 9.4 The homology H�.ucell.�; w/IQ/ forms a bigraded algebra over Q under concatenation
product. It has the following generators:

(1) the singleton block ı1;

(2) the block ı2;

(3) for w > 3, the cycle @.ıwC1/; and

(4) for w > 2 even , the cycle @.ıwC2/.

It has the following relations:

(1) the singleton block ı1 commutes with ı2 for all w � 3;

(2) the singleton block ı1 commutes with @.ıwC1/ for all odd w > 3; and

(3) the symbol ı2 j ı2 is null-homologous for all w � 4.

Proof The description of the basis shows that the specified generators do generate.

Relation (1) is true because the boundary of the cell ı3 is �ı1 j ı2Cı2 j ı1. Relation (2) comes from the
relation @2.ıwC2/D 0 on ucell.n/; when w is odd, expanding @.ıwC2/ gives �ı1 j ıwC1CıwC1 j ı1

plus a sum of cells in ucell.n; w/, so applying @ again gives our desired homology relation. Relation (3)
is true because ı2 j ı2 is the only face of ı4 with nonzero coefficient.

The relations are enough to transform an arbitrary product of generators into one of our basis cycles.

Corollary 9.5 For fixed j and w, the Betti numbers ǰ .ucell.n; w/IQ/ as a function of n grow with an
upper bound of O.nq/, where q D bj=.w� 1/c. If w is odd , the Betti numbers either are 0 for all n or
are 1 for all sufficiently large n. If w is even , the Betti numbers either are 0 for all n or grow as ‚.nq/,
and the latter case holds for all j � .w� 1/.w� 3/.

Proof Deleting nonleader singleton blocks ı1 from a critical cell gives a critical cell with smaller n, and,
for each j and w, there are finitely many ways to form one of these “skyline” critical cells that have no
nonleader singletons. For each skyline critical cell, the only places to insert singletons are at the end (that
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is, on the right side) and immediately before the leader–follower pair ı1 j ıw , which exists only if w is
even. Thus, if w is odd, then, for all sufficiently large n, the Betti number ǰ .ucell.n; w/IQ/ is constant,
equal to the number of skyline critical cells for j and w, which is 1 if j is congruent to 0 or 1 mod w�1,
and 0 otherwise.

If w is even, for each j we claim that either there is a skyline with bj=.w� 1/c instances of ı1 j ıw , or
there is no skyline at all. We write j as q.w� 1/C r , with 0� r � w� 2. To construct the critical cell,
if r � q, we concatenate r instances of ı2 j ı1 j ıw and then q� r instances of ı1 j ıw . If r D qC 1, we
concatenate q instances of ı2 j ı1 j ıw , followed by one instance of ı2. If r > qC 1, there is no way to
build a critical cell of dimension j, because all blocks that contribute to the dimension are either ıw ,
contributing w� 1, or ı2, contributing 1, and there can be at most qC 1 instances of ı2.

Given a skyline critical cell with n0 disks and k instances of ı1 j ıw , the number of critical cells with
n disks arising from this skyline is

�
n�n0Ck

k

�
, corresponding to the number of ways to arrange n� n0

additional singletons and k dividers. This is a polynomial in n of degree k. If w is even, for each j either
there is no skyline, or there is a skyline with q D bj=.w� 1/c instances of ı1 j ıw , which is the largest
possible k. Thus, the Betti numbers grow like either 0 or ‚.nq/.

In the case where w is even and j � .w� 1/.w� 3/, the quotient q is at least w� 3 and the remainder r
is at most w� 2, so the case r > qC 1 is impossible, and the Betti numbers grow like ‚.nq/.

9.2 Discrete Morse theory on ucell.n; w/ with Fp coefficients

Using coefficients mod p, our strategy for computing the homology is the same as with Q coefficients, but
the answer becomes more complicated because we need to account for divisibility of binomial coefficients.

Lemma 9.6 For any prime p, the lexicographically least face of the cell ın in ucell.n/ with coefficient
not divisible by p is given as follows. If n is odd , the least face is ı1 j ın�1. If n is even , then we write n
as 2pk � a, where a is not divisible by p, and the least face is ı2p

k

j ı2p
k.a�1/.

Proof If n is odd, then the coefficient of the face ı1 j ın�1 is �
�
.n�1/=2

0

�
D�1, which is a unit in any Fp .

If nD 2pk �a is even, then the faces of ın have coefficients
�pka
k0

�
for various k0. These are the coefficients

of .xC y/p
ka � .xp

k

C yp
k

/a mod p, using the Frobenius homomorphism. These coefficients are 0
unless pk divides k0, and the coefficient

�pka

pk

�
is congruent mod p to

�
a
1

�
D a, which is a unit in Fp.

Definition Two consecutive blocks in a symbol in ucell.n; w/ form a leader–follower pair in character-
istic p if they have the form ı1 j ı2k

0

for some k0, or the form ı2p
k

j ı2p
k.a�1/ for some k � 0 and a not

divisible by p. We assign the pairs disjointly from left to right, so that, once a block is a follower in a
pair with the previous block, it cannot also be a leader in a pair with the next block.
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Theorem 9.7 For each prime p, there is a discrete gradient vector field on ucell.n; w/with Fp coefficients
such that the critical cells are in bijection with a basis for H�.ucell.n; w/IFp/. The critical cells are those
with the properties that every leader–follower pair has total weight greater than w, and every block that is
not a follower is either ı1 or has the form ı2p

k

for some k � 0. These properties imply that consecutive
blocks that are not followers appear in decreasing order of weight , weakly decreasing if pD 2 and strictly
decreasing if p ¤ 2, except for singleton blocks ı1 which may occur consecutively for any p.

Proof The proof is exactly analogous to that of Theorem 9.3, which addresses the case of Q coefficients.
As in that proof, our discrete vector field is informally described by reading each symbol from left to
right, breaking down any block of weight other than 1 or 2pk into a leader–follower pair, and combining
any leader–follower pair of total weight at most w.

We can describe the resulting critical cells more concretely as follows. To find all possibilities for
leader–follower pairs in critical cells, for each k � 0 such that 2pk �w, we find the least multiple of 2pk

greater than w. If this multiple is not divisible by 2pkC1, it has the form 2pka for a not divisible by p,
and the leader–follower pair ı2p

k

j ı2p
k.a�1/ may appear in a critical cell. We know that 2pk.a� 1/

is at most w, otherwise it would contradict the selection of 2pka as the least multiple of 2pk greater
than w. If the least multiple of 2pk greater than w is divisible by 2pkC1, there is no leader–follower pair
beginning with 2pk that may appear in a critical cell. In addition, if w is even, the leader–follower pair
ı1 j ıw may appear in a critical cell.

For each critical cell, we can imagine dividing the symbol into strings, where the followers are the dividers.
Each string consists of blocks ı1 and/or ı2p

k

for various k � 0, with constraints on the multiplicities
and order because they may not form leader–follower pairs. The pair of blocks ı2p

k

j ı2p
k

forms a
leader–follower pair if p ¤ 2, so it may not appear in one of these strings; if p D 2, it does not form a
leader–follower pair, so it may appear. The pairs ı1 j ı2p

k

for k � 0 and ı2p
k

j ı2p
l

for k < l do form
leader–follower pairs regardless of p, so they may not appear in one of these strings. Thus, if p D 2,
each string is an arbitrary sequence of blocks ı1 and ı2p

k

, any number of each, in weakly decreasing
order. If p ¤ 2, each string is an arbitrary sequence of any number of blocks ı1 and at most one of each
block ı2p

k

, in decreasing order. Note that, given a leader–follower pair, in the string preceding it, the
blocks cannot have smaller weight than the leader, because of the condition that the entire string including
the leader should be in decreasing order.

To complete the proof formally, we use the same ordering on cells of ucell.n; w/ as in the proof of
Theorem 9.3, except with the characteristic p definition of leader–follower pairs. The resulting discrete
gradient vector field agrees with the informal description above. We define cycles z.e/ as in the proof
of Theorem 9.3: for each leader–follower pair, we take the boundary of the block in ucell.n/ resulting
from merging the pair, while each block not in a leader–follower pair is already a cycle, and we take
the concatenation product of all these cycles to get z.e/. Applying Lemma 3.1, we conclude that the
cells z.e/ form a basis for H�.ucell.n; w/IFp/.
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Corollary 9.8 For each prime p, the homology H�.ucell.�; w/IFp/ forms a bigraded algebra over Fp
under concatenation product. It has the following generators:

(1) the singleton block ı1;

(2) the block ı2p
k

for each k � 0 with 2pk � w;

(3) if w is even but not equal to 2pk for any k � 0, the cycle @.ıwC1/; and

(4) the cycle @.ın
0

/, where n0 is the least multiple of 2pk greater than w, for each k � 0 such that
2pk � 1

2
w; in this case , we let k.n0/ denote the power of p in the prime factorization of n0.

It has the following relations:

(1) the singleton block ı1 commutes with ı2p
k

whenever 1C 2pk � w;

(2) the singleton block ı1 commutes with @.ın
0

/ whenever 1Cn0� 2pk.n
0/ � w;

(3) if p ¤ 2, then ı2p
k

j ı2p
k

is null-homologous whenever 4pk � w;

(4) we have ı2p
l

j ı2p
k

D�.ı2p
k

j ı2p
l

/ whenever 2pl C 2pk � w and k ¤ l ; and

(5) the block ı2p
l

commutes with @.ın
0

/ whenever 2pl Cn0� 2pk.n
0/ � w.

Proof The description of the basis shows that the specified generators do generate.

Relation (1) is true because the boundary of the cell ı1C2p
k

mod p is �ı1 j ı2p
k

C ı2p
k

j ı1. All
other faces have coefficients of 0, because

�pk

k0

�
� 0 mod p unless k0 is 0 or pk . Relation (2) comes

from the relation @2.ı1Cn
0

/D 0 on ucell.n/; expanding @.ı1Cn
0

/ gives �ı1 j ın
0

Cın
0

j ı1 plus a sum
of cells in ucell.n; w/, so applying @ again gives our desired homology relation. Relation (3) is true
because ı2p

k

j ı2p
k

is the only face of ı4p
k

with nonzero coefficient mod p when p ¤ 2. (If p D 2,
then ı4p

k

is a cycle.) To see that relation (4) is true, if l < k, the faces of ı2p
lC2pk

have coefficients�pl .1Cpk�l /

plk0

�
�
�1Cpk�l

k0

�
for various k0. The coefficients for k0D 1 and k0D pk�l are both 1 mod p and

are the coefficients of ı2p
l

jı2p
k

and ı2p
k

jı2p
l

. The other coefficients are all 0 mod p, because Pascal’s
triangle identity gives

�1Cpk�l

k0

�
D
�pk�l

k0�1

�
C
�pk�l

k0

�
, which is 0 mod p unless k0 is 0, 1, pk�l �1 or pk�l .

Relation (5) comes from the relation @2.ı2p
lCn0/D 0; using similar reasoning to relation (4), we find

that the only faces of @.ı2p
lCn0/ with nonzero coefficient have the form ık

0

j ı2p
lCn0�k0 , where k0 is

congruent to either 0 or 2pl mod 2pk . Thus, @.ı2p
lCn0/ is ı2p

l

j ın
0

Cın
0

j ı2p
l

plus a sum of cells in
ucell.n; w/, and then we may apply @ again, keeping in mind that the sign convention for the Leibniz
rule gives a negative sign to the term ı2p

l

j @.ın
0

/.

The relations are enough to transform an arbitrary product of generators so that consecutive nonfollower
blocks are in decreasing order, strictly decreasing if p ¤ 2. The resulting cycle is in our basis.

Corollary 9.9 For fixed j, w and prime p, the Betti numbers ǰ .ucell.n; w/IFp/ as a function of n
grow with an upper bound of O.nq/, where q D bj=.w � 1/c. If w is odd , the Betti numbers become
eventually constant in n; if w is even and j � .w� 1/.w� 3/, the Betti numbers grow as ‚.nq/.
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Proof As in Corollary 9.5, we can delete nonleader singleton blocks ı1 from each critical cell to form
one of finitely many “skylines”. To recover all critical cells with a given skyline, we insert singletons ı1

either on the far right, or immediately preceding a leader–follower pair ı1 j ıw , which can only exist if w
is even. In this case, the maximum possible number of such pairs is q D bj=.w� 1/c, so, summing over
all skylines, we find that the total Betti number is eventually equal to the number of skylines if w is odd,
and is bounded above by O.nq/ if w is even.

In the case where j � .w�1/.w�3/, we can construct a skyline critical cell with q instances of ı1 jıw in
exactly the same way as in Corollary 9.5. The existence of such a skyline implies that ǰ .ucell.n; w/IFp/
grows with a lower bound of �.nq/, matching the upper bound.

10 Open questions and further directions

(1) One generalization of the disks in a strip configuration spaces is the following. Let E ! B be
a locally trivial bundle, and consider the configuration space of n distinct points in E such that each
fiber of the bundle may contain at most w of them. What do our methods say about the homology
of this configuration space? We predict that, if some neighborhoods in B are one-dimensional, then
the homology exhibits the same noncommutativity as that of disks in a strip, but that, if B is every-
where at least two-dimensional, then the homology of the configuration space is a finitely generated
FI–module.

(2) The representation stability properties of the configuration space of n points on a given manifold
come in some sense from the special case where the manifold is Euclidean space; the special case can
be considered a local model. In particular, when the manifold has an end, the homology of the manifold
configuration space, considered for all n at once, is a module over the twisted commutative algebra given
by the homology of the Euclidean configuration space. The algebra acts by inserting cycles near infinity
in the end of the manifold. Does our disks-in-a-strip configuration space act as a local model for other
configuration spaces, for which the homology exhibits similar finite generation properties due to its being
a module? For instance, what can we say about the homology of the configuration space of disks in the
product of an interval with a noncompact 1–complex, such as the union of three rays with a common
starting point?

(3) Our proof that H�.config.n; w// is finitely generated as a twisted noncommutative algebra relies
on fully computing H�.config.n; w// and exhibiting the generators. Is there a more abstract algebraic
framework that would prove finite generation without computing the homology?

(4) Having described H�.config.n; w//, but not at all equivariantly, we can ask about its Sn–action
by permuting the disk labels. In its decomposition into irreducible representations of Sn, how do the
multiplicities grow in n? For finitely generated twisted noncommutative algebras in general, by what
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patterns can the multiplicities grow? In particular, can one use presentations by generators and relations
as in Section 8 to recover this information?

Appendix Computer calculations for small n

In [Alpert et al. 2021], the Betti numbers of config.n; w/ were computed for n� 8 using off-the-shelf
software for computing persistent homology. This involved running the software on the complex cell.8/,
which has over 5 million cells. In general, cell.n/ has 2n�1nŠ cells.

We wrote a Python script that harnesses Theorems B and C to compute the persistence diagram of
H�.cell.n;�//. Although the runtime still grows as nŠ, this is faster than the above method by an
exponential factor; for n D 12, the script ran on a laptop in less than 90 minutes. Figures 13, 14, 15
and 16 show a graphical representation of the resulting persistence diagram. We would like to thank
Matthew Kahle for making the first version of this series of figures.

0 1 2 3 4 5 6 7 8 9 10 11 12 1

� 479001599
� 1

PH0

� 114621
� 66

PH1

� 45412532
� 1485
� 1485
� 560779
� 440

PH2

� 862284291
� 142065
� 13860
� 9638904
� 15840
� 15840
� 2476046
� 2970

PH3

0 1 2 3 4 5 6 7 8 9 10 11 12 1

Figure 13: The persistent homology for the configuration space of 12 disks of unit diameter in
a strip of width w. The thickness of a bar in the barcode is proportional to the logarithm of the
multiplicity, and the exact multiplicity is in the rightmost column.

Geometry & Topology, Volume 28 (2024)



Configuration spaces of disks in a strip, twisted algebras, persistence, and other stories 695

0 1 2 3 4 5 6 7 8 9 10 11 12 1

� 1696133670
� 21992355
� 51975
� 299874146
� 498960
� 36960
� 203280
� 32689536
� 97020
� 83160
� 9654226
� 19008

PH4

� 372989925
� 56469105
� 62370
� 1102128291
� 8854560
� 554400
� 1108800
� 171699220
� 2234925
� 332640
� 956340
� 93580608
� 565488
� 399168
� 32678834
� 110880

PH5

� 7474005
� 10395
� 1528982070
� 54802440
� 7638400
� 2571800
� 1051597536
� 18426870
� 3326400
� 623700
� 5197500
� 341009900
� 8759520
� 1330560
� 3326400
� 218407992
� 2893275
� 1663200
� 93586558
� 570240

PH6

0 1 2 3 4 5 6 7 8 9 10 11 12 1

Figure 14: The persistent homology for the configuration space of 12 disks of unit diameter in
a strip of width w. The thickness of a bar in the barcode is proportional to the logarithm of the
multiplicity, and the exact multiplicity is in the rightmost column.

Geometry & Topology, Volume 28 (2024)



696 Hannah Alpert and Fedor Manin

0 1 2 3 4 5 6 7 8 9 10 11 12 1

� 186832800
� 95356800
� 17371200
� 2032800
� 1073067996
� 101211495
� 14968800
� 3742200
� 12370050
� 565141500
� 43659000
� 7983360
� 3991680
� 13970880
� 500107300
� 26756730
� 4928000
� 9424800
� 390893448
� 11579040
� 5702400
� 218405507
� 2494800

PH7

� 5667200
� 246400
� 159667200
� 65835000
� 61871040
� 6860700
� 10187100
� 763088964
� 67858560
� 19958400
� 11975040
� 4790016
� 26078976
� 442480500
� 67626405
� 14784000
� 9979200
� 24948000
� 470726300
� 53519400
� 14731200
� 19958400
� 479001732
� 34656930
� 14968800
� 390894173
� 8870400

PH8

0 1 2 3 4 5 6 7 8 9 10 11 12 1

Figure 15: The persistent homology for the configuration space of 12 disks of unit diameter in
a strip of width w. The thickness of a bar in the barcode is proportional to the logarithm of the
multiplicity, and the exact multiplicity is in the rightmost column.
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0 1 2 3 4 5 6 7 8 9 10 11 12 1

� 6237000
� 1247400
� 43110144
� 15966720
� 7983360
� 4790016
� 12773376
� 121118976
� 31392900
� 15030400
� 9979200
� 15966720
� 30381120
� 154719180
� 46316160
� 14731200
� 17107200
� 28512000
� 201857920
� 53426835
� 30270240
� 27442800
� 302786748
� 69325080
� 26611200
� 479001601
� 23950080

PH9

� 6652800
� 6652800
� 13685760
� 13685760
� 16216200
� 14968800
� 30405760
� 17740800
� 69337521
� 23950080
� 302786759
� 43545600

PH10

� 39916800PH11

0 1 2 3 4 5 6 7 8 9 10 11 12 1

Figure 16: The persistent homology for the configuration space of 12 disks of unit diameter in
a strip of width w. The thickness of a bar in the barcode is proportional to the logarithm of the
multiplicity, and the exact multiplicity is in the rightmost column.
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Closed geodesics with prescribed intersection numbers

YANN CHAUBET

Let .†; g/ be a closed oriented negatively curved surface, and fix a simple closed geodesic ?. We give
the asymptotic growth as L!C1 of the number of primitive closed geodesics of length less than L
intersecting ? exactly n times, where n is fixed positive integer. This is done by introducing a dynamical
scattering operator associated to the surface with boundary obtained by cutting † along ? and by using
the theory of Pollicott–Ruelle resonances for open systems.

37D40

1 Introduction

Let .†; g/ be a closed oriented connected negatively curved Riemannian surface, and denote by P the set
of its oriented primitive closed geodesics. For L> 0 define

N.L/D #f 2 P W `./6 Lg;

where, for  2P , we denote by `./ its length. Then a classical result obtained by Margulis [31] states that

N.L/�
ehL

hL
as L!1;

where h > 0 is the topological entropy of the geodesic flow of .†; g/.

Our purpose here is to provide a similar asymptotic result for closed geodesics satisfying certain intersection
constraints. Namely, let ? be a simple closed geodesic of .†; g/. For any  2 P , we denote by i.; ?/
the geometric intersection number between  and ? (see Section 2.1), and we set

N.n;L/D #f 2 P W `./6 L and i.; ?/D ng:

We first state a result assuming ? is not separating, in the sense that † n ? is connected.

Theorem 1 Assume that ? is not separating. Then there are c? > 0 and h? 2 �0; hŒ such that , for any
n> 1,

(1-1) N.n;L/�
.c?L/

n

nŠ

eh?L

h?L
as L!1:

The number h? in the above statement is the topological entropy of the geodesic flow .'t / of .†; g/
when restricted to the trapped set

K? D f.x; v/ 2 S† W �.'t .x; v// 2† n ? for t 2Rg;
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where the closure is taken in S† and � W S†!† is the natural projection. Also, we provide in Section 7
a description of the constant c? in terms of the Pollicott–Ruelle resonant states of the geodesic flow of
the compact surface with boundary †? obtained by cutting † along ?.

By using a classical large deviation result by Kifer [25] and Bonahon’s intersection form [6], one is
able to show that a typical closed geodesic  satisfies i.; ?/� I?`./ for some I? > 0 not depending
on  (see Proposition 8.1 for a precise statement). In particular, Theorem 1 is a statement about very
uncommon closed geodesics.

The asymptotics (1-1) for nD 0 is well known and follows from the work of Dal’bo [12] and from the
growth rate of periodic orbits of axiom A flows obtained by Parry and Pollicott [35] (see Section 2.5).
However, to the best of our knowledge, the result is new for n > 0. Note that it would be tempting to sum
the right-hand side of (1-1) over n in order to recover the asymptotic growth of N.L/— for example, one
could hope that h?C c? D h— but if L is fixed, the left-hand side of (1-1) vanishes whenever n is large
enough, and it is very unlikely that such an equality holds.

If ? is separating then i.; ?/ is even, and we have the following result:

Theorem 2 Suppose that ? separates † in two surfaces , †1 and †2. Let hj 2 �0; hŒ denote the entropy
of the open system .†j ; gj†j / and set h? Dmax.h1; h2/. Then there is c? > 0 such that , for each n> 1,
as L!C1,

N.2n;L/�

8̂<̂
:
.c?L/

n

nŠ

eh?L

h?L
if h1 ¤ h2;

2
.c?L

2/n

.2n/Š

eh?L

h?L
if h1 D h2:

As before, the number hj is defined as the topological entropy of the geodesic flow restricted to the
trapped set

Kj D f.x; v/ 2 S† W �.'t .x; v// 2†j n ? for t 2Rg;

where the closure is taken in S†.

We also have an equidistribution result, as follows. Set

@? D f.x; v/ 2 S† W x 2 ?g and � D S?[fz 2 @? W 't .z/ 2 S† n @? for t > 0g;

where S? D f.x; v/ 2 @? W v 2 Tx?g. We define the scattering map S W @? n�! @? by

S.z/D '`.z/.z/; `.z/D infft > 0 W 't .z/ 2 @?g for z 2 @? n�:

For any n 2N>1 we set

�n D @? n fz 2 @? n� W S
k.z/ 2 @? n� for k D 1; : : : ; n� 1g;

which is a closed set of Lebesgue measure zero, and

`n.z/D `.z/C � � �C `.S
n�1.z// for z 2 @? n�n:
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Theorem 3 Assume that ? is not separating and let n> 1. For any f 2 C1.@?/, the limit

lim
L!C1

1

N.n;L/

X
2P

i.;?/Dn

1

#I?./

X
z2I?./

f .z/

exists , where , for any  2 P , the set I?./D f.x; v/ 2 S W x 2 ?g consists of the incidence vectors of
 along ?. This formula defines a probability measure �n on @?, whose support is contained in �n.

Of course, a similar statement holds even if ? is separating, though we will not explicitly state it here.
As for c?, we will provide a full description of �n in terms of the Pollicott–Ruelle resonant states of the
geodesic flow of .†?; g/ for the resonance h? in Section 7. Here, as before, †? is the compact surface
with boundary obtained by cutting † along ? (see Section 2.5).

Strategy of proof

A key ingredient used in the proof of Theorems 1, 2 and 3 is the scattering operator S.s/ W C1.@?/!
C1.@? n�/, which is defined by

S.s/f .z/D f .S.z//e�s`.z/ for z 2 @? n� and s 2C:

As a first step (which is of independent interest; see the corollary on page 714), we prove that, for any
�2C1c .@?nS?/, the family s 7!�S.s/� extends to a meromorphic family of operators S.s/ WC1.@?/!
D0.@?/ on the whole complex plane (here D0.@?/ denotes the space of distributions on @?), whose poles
are contained in the set of Pollicott–Ruelle resonances of the geodesic flow of the surface with boundary
.†?; g/; see Section 2.6 for the definition of those resonances. In this context, the existence of such
resonances follows from the work of Dyatlov and Guillarmou [15], and we relate S.s/ with the resolvent
of the geodesic flow (see Proposition 3.2). By using the microlocal structure of the resolvent of the
geodesic flow provided by [15], we are moreover able to prove that the composition .�S.s/�/n is well
defined for any n> 1, as well as its superflat trace (meaning that we also look at the action of S.s/ on
differential forms, see Section 3.4), which reads

(1-2) tr[s Œ.�S.s/�/
n�D n

X
i.;?/Dn

`#./

`./
e�s`./

Y
z2I?./

�2.z/;

where the products runs over all closed geodesics (not necessarily primitive)  with i.; ?/Dn, and `#./

is the primitive length of  . This formula will be obtained by using the Atiyah–Bott trace formula [3],
though our scattering map S has singularities that we have to deal with. Furthermore, using a priori bounds
on the growth of N.n;L/ (obtained in Section 4 by purely geometric techniques coming from the theory
of CAT.�1/ spaces), we prove that s 7! tr[s Œ.�S.s/�/n� has a pole of order n at s D h? provided that �
has enough support. For this step, we crucially use the fact that the asymptotics for N.0;L/ is already
known, although we could recover it by using the modern techniques introduced in [15] without going
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through the scattering maps. Finally, letting the support of 1�� be very close to S?, and estimating the
growth of geodesics having n intersections with ? with at least one small angle, we are able to derive
Theorems 1 and 2 from a classical Tauberian theorem of Delange [14].

Related works

As mentioned before, the case nD 0 follows from work of Parry and Pollicott [35] which is based on
important contributions of Bowen [9; 10], as the geodesic flow on .†?; g/ can be seen as an axiom A
flow; see Lemma 2.5 below and [15, Section 6.1]. For counting results on noncompact Riemann surfaces,
see also the works of Sarnak [43], Guillopé [21] or Lalley [27]. We refer to the work of Paulin, Pollicott
and Schapira [37] for counting results in more general settings.

We also mention a result by Pollicott [39] which says that, if .†; g/ is of constant curvature �1 and if ?
is not separating,

(1-3)
1

N.L/

X
2P
`./6L

i.; ?/� I?L

for some I? > 0. Roughly speaking, this means that the average intersection number between ? and
closed geodesics of length not greater than L is about I?L. We will show that this result also holds in
our context (see Section 8.2).

Lalley [26], Pollicott [40] and Anantharaman [1] investigated the asymptotic growth of the number of
closed geodesics satisfying some homological constraints (see also Phillips and Sarnak [38] and Katsuda
and Sunada [24] for the constant curvature case). They showed that, for any homology class � 2H1.†;Z/,

#f 2 P W `./6 L and Œ�D �g � CehL=LgC1

for some C > 0 independent of � , where g is the genus of † and h > 0 is the topological entropy of the
geodesic flow of .†; g/. Such asymptotics are obtained by studying L–functions associated to some
characters of H1.†;Z/. However, our problem is very different in nature; indeed, fixing a constraint
in homology boils down to fixing algebraic intersection numbers, whereas here we are interested in
geometric intersection numbers. In particular, L–functions are not well suited for this situation.

In the context of hyperbolic surfaces (ie surfaces with constant negative curvature�1), Mirzakhani [32; 33]
computed the asymptotic growth of closed geodesics with prescribed self-intersection numbers. Namely,
for any k 2N,

#f 2 P W `./6 L and i.; /D kg � ckL
6.g�1/;

where i.; / denotes the self-intersection number of  ; see also Erlandsson and Souto [17].

Note that our scattering map S defined above shares some similarities with the Sinai billiard map [44].
Similarly to the map S , which is not defined on the singularity set � , the billiard map is not continuous
near some singular set consisting in grazing trajectories. In particular, it is plausible that recent functional
analytic techniques developed by Baladi, Demers and Liverani [5] (see also Baladi and Demers [4]), as
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the Sinai billiard map could be used to define an intrinsic spectrum of resonances for the transfer operator
associated to S (without going through the resolvent of the geodesic flow of S†?).

We finally mention that the techniques presented herein allow one to obtain the asymptotic growth of
closed geodesics for which several intersection numbers (with a family pairwise disjoint simple closed
curves) are prescribed. However, such an extension requires more work, and for simplicity we will focus
here on the case where we are given only one simple geodesic. The aforementioned generalization will
be the subject of subsequent work.

Organization of the paper

The paper is organized as follows. In Section 2 we introduce some geometric and dynamical tools. In
Section 3 we introduce the dynamical scattering operator, which is a central object in this paper, and we
compute its flat trace. In Section 4 we prove a priori bounds on N.n;L/. In Section 5 we use a Tauberian
argument to estimate certain quantities. In Section 6 we prove Theorems 1 and 2. In Section 7 we prove
Theorem 3. Finally, in Section 8 we show that a typical closed geodesic  satisfies i.; ?/� I?`./ for
some I? > 0.
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2 Geometric preliminaries

We recall here some classical geometric and dynamical notions, and introduce the Pollicott–Ruelle
resonances that will arise in our situation. Throughout the article, .†; g/ will denote a closed connected
oriented Riemannian surface of negative curvature.

2.1 Geometric intersection numbers

For any two loops ˛; ˇ WR=Z!†, the geometric intersection number between ˛ and ˇ is defined by

i.˛; ˇ/D inf
˛0�˛;ˇ 0�ˇ

j˛\ˇj;

where the infimum runs over all loops ˛0 and ˇ0 freely homotopic to ˛ and ˇ, respectively, and

j˛\ˇj D f.�; � 0/ 2 .R=Z/2 W ˛.�/D ˇ.� 0/g:
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It is well known that, in every nontrivial free homotopy class of loops c, there is a unique oriented closed
geodesic c 2 c which minimizes the length among curves in c. In fact, closed geodesics also minimize
intersection numbers, as follows:

Lemma 2.1 Let 1 and 2 be any two nontrivial oriented closed geodesics , and assume that 1 (resp. 2)
is not freely homotopic to a power of 2 (resp. 1). Then

i.1; 2/D j1\ 2j:

The above result is rather classical, but for the reader’s convenience we provide a proof in Appendix A.

2.2 Structural equations

Here we recall some classical facts from [45, Section 7.2] about geometry of surfaces. Denote by
M D S†D f.x; v/ 2 T† W kvkg D 1g the unit tangent bundle of †, and by X the geodesic vector field
on M , that is, the generator of the geodesic flow ' D .'t /t2R of .†; g/, acting on M . The Liouville
one-form ˛ on M is defined by

h˛.z/; �i D hd.x;v/�.�/; vi for z D .x; v/ 2M and � 2 T.x;v/M;

where � WM !† is the natural projection. Then ˛ is a contact form (that is, ˛^ d˛ is a volume form
on M ) and it turns out that X is the Reeb vector field associated to ˛, meaning that

�X˛ D 1 and �X d˛ D 0;

where � denotes the interior product.

We also set ˇ DR�
�=2
˛, where, for � 2R, R� WM !M is the rotation of angle � in the fibers. Finally

we denote by  the connection one-form, defined as the unique one-form on M satisfying

�V D 1; d˛ D  ^ˇ and dˇ D� ^˛;

where V is the vertical vector field, that is, the vector field generating .R� /�2R. Then .˛; ˇ;  / is a
global frame of T �M , and we denote by H the unique vector field on M such that .X;H; V / is the dual
frame of .˛; ˇ;  /. We then have the commutation relations

ŒV; X�DH; ŒV;H�D�X and ŒX;H�D .� ı�/V;

where � is the Gauss curvature of .†; g/.

2.3 The Anosov property

It is known, by the work of Anosov [2], that the flow .'t / is hyperbolic. That is, for any z 2M there is a
d't–invariant splitting

TzM DRX.z/˚Es.z/˚Eu.z/
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which depends continuously on z, and has the property that, for any norm k � k on TM , there exist C; � >0
such that

kd't .z/vk6 Ce��tkvk for v 2Es.z/; t > 0 and z 2M;
and

kd'�t .z/vk6 Ce��tkvk for v 2Eu.z/; t > 0 and z 2M:

In fact, Es.z/˚ Eu.z/ D ker˛.z/ and there exist two continuous functions r˙ W M ! R such that
˙r˙ > 0 and

Es.z/DR.H.z/C r�V.z// and Eu.z/DR.H.z/C rCV.z// for z 2M:

Moreover, the functions r˙ are differentiable along the flow direction, and they satisfy the Riccati equation

˙Xr˙C r
2
˙C � ı� D 0;

where � is the curvature of †.

We will denote by T �M DE�0 ˚E
�
s ˚E

�
u the splitting defined by

E�0 .Eu˚Es/D 0; E�s .Es˚E0/D 0; E�u.Eu˚E0/D 0:

(Here the bundle RX is denoted by E0.) Then we have E�0 DR˛ and

(2-1) E�s DR.r�ˇ� /; E�u DR.rCˇ� /:

Note that this decomposition does not coincide with the usual dual decomposition, but it is motivated by
the fact that covectors in E�s (resp. E�u ) are exponentially contracted in the future (resp. in the past) by
the symplectic lift ˆt of 't , which is defined by

(2-2) ˆt .z; �/D .'t .z/; d't .z/�> � �/ for .z; �/ 2 T �M and t 2R;

where �> denotes the inverse transpose. We have the following lemma:

Lemma 2.2 [13, Section 3.2] If t ¤ 0, we have �Vˆt .ˇ/¤ 0 and �Hˆt . /¤ 0.

2.4 A nice system of coordinates

In what follows, we write
@? D f.x; v/ 2M W x 2 ?g D S†j? :

Lemma 2.3 There exists a tubular neighborhood U of @? in M , and coordinates .�; �; �/ on U with

U ' .R=`?Z/� � .�ı; ı/� � .R=2�Z/� ;

where `? is the length of ?, and such that

j�.z/j D distg.�.z/; ?/ and Sz†D f.�.z/; �.z/; �/ W � 2R=2�Zg for z 2 U:

Moreover , in these coordinates , on f�D 0g,

X D cos.�/@� C sin.�/@�; H D�sin.�/@� C cos.�/@�; V D @� ;

and
˛ D cos.�/ d� C sin.�/ d�; ˇ D�sin.�/ d� C cos.�/ d�;  D d�:
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Proof For � 2R=`?Z we set .x� ; v� /D '� .?.0/; P?.0//. We now define, for ı > 0 small enough,

‰.�; �; �/DR���=2'�.x� ; �.x� // for .�; �; �/ 2R=`?Z� .�ı; ı/�R=2�Z;

whereR� WS†!S† is the rotation of angle � and �.x� /DR�=2v� . Then d‰.�; 0; �/ is injective for any �
and � . Indeed, @� .�ı‰/.�; 0; �/Dv� and @�.�ı‰/.�; 0; �/D�.x� /. Thus d‰.�; 0; �/ WR@�˚R@�!T†

is injective. Moreover, @� .� ı‰/.�; 0; �/D 0 and @�‰.�; 0; �/D V.‰.�; 0; �//¤ 0. Thus d‰.�; 0; �/
is injective for any � and � , and furthermore, if ı > 0 is small enough, ‰ W U !M is an immersion. In
particular, since .�; �/ 7!‰.�; 0; �/ is clearly injective, we obtain that ‰jU is a diffeomorphism onto its
image provided that ı is chosen small enough.

Because V D @� and �V ˛D �V ˇD 0, we may write ˛.�; 0; �/D a.�; �/ d�Cb.�; �/ d� and ˇ.�; 0; �/D
a0.�; �/ d� C b0.�; �/ d� for some smooth functions a, a0, b and b0. Now, since d˛ D  ^ˇ, we obtain
LV ˛ D �V d˛ D ˇ, and similarly LV ˇ D�˛. Thus, a0 D @�a, b0 D @�b and

@2�aC aD 0; @2�bC b D 0:

In consequence, a.�; �/ D a1.�/ cos � C a2.�/ sin � and b.�; �/ D b1.�/ cos � C b2.�/ sin � for some
smooth functions a1, a2, b1 and b2. Moreover, by definition of the coordinates .�; �; �/, one has

(2-3) X.�; 0; 0/D @� and X
�
�; 0; 1

2
�
�
D @�:

Therefore a1 D b2 D 1 and a2 D b1 D 0. We thus get the desired formulae for ˛ and ˇ. Now, writing
 D a00 d� C b00 d�C d� and using LV D 0, we obtain @�a00 D @�b00 D 0. As �X D 0 we obtain
a00 D b00 D 0 by (2-3). The formulae for X , H and V follow.

Remark 2.4 If Q@D f�D 0g, then, for any z D .�; 0; �/ 2 @,

Tz Q@DRV.z/˚R.cos.�/X.z/� sin.�/H.z// and N �z
Q@DR.sin.�/˛.z/C cos.�/ˇ.z//:

2.5 Cutting the surface along ?

As mentioned in the introduction, we may see † n ? as the interior of a compact surface †? with
boundary consisting of two copies of ?. By gluing two copies of the annulus U obtained in the preceding
subsection on each component of the boundary of †?, we construct a slightly larger surface †ı �†?
whose boundary is identified with the boundary of U (see Figure 1).

Lemma 2.5 The surface †ı has strictly convex boundary, in the sense that the second fundamental form
of the boundary @†ı with respect to its outward normal pointing vector is strictly negative.

Proof In the coordinates .�; �/ given by Lemma 2.3, the metric g has the form

(2-4) d�2Cf .�; �/ d�2

for some f > 0 satisfying @�f .�; 0/D 0. Indeed, if r is the Levi-Civita connection, one has

d
d�
h@�; @� i D hr@�@�; @� iC h@�;r@�@� i D h@�;r@�@�i D

1

2

d
d�
h@�; @�i D 0;
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†

�D�ı�D ı

†ı

?

Figure 1: The surfaces † (on the left) and †ı (on the right) in the case where ? is not separating.
In †, the darker region corresponds to the neighborhood �.U / of ?.

since r@�@�D 0 (indeed, � 7! .�; �/ is a geodesic curve). Thus h@� ; @�i D h@� ; @�ij�D0D 0. In particular,
g has the form (2-4) with f .�; �/D h@� ; @� i, and we have @�f .�; 0/D @�h@� ; @� i D 2@� h@�; @� ij�D0D 0
(indeed, since � 7! .�; 0/ is a geodesic curve, r@�@� D 0 on f� D 0g). In those coordinates, the scalar
curvature reads

�.�; �/D
�@2�f .�; �/

f .�; �/
:

As � < 0, we get @2�f > 0, which gives ˙@�f > 0 on f˙� > 0g. The second fundamental form of @†ı
with respect to @� is defined by

hr@�@� ; @�i D �
1
2
@�f .�; �/;

which concludes the proof, since @� is outward pointing (resp. inward pointing) on f� D ıg (resp.
f�D�ıg).

Lemma 2.6 In the coordinates given by Lemma 2.3,

˙X2� > 0 on f˙� > 0g:

Proof Since, in the coordinates .�; �/, the metric g has the form (2-4), the Christoffel symbols of g are
given by

���� D �
�
�� D 0 and ���� D�

1
2
@�f:

In particular, if t 7! .�.t/; �.t// is a geodesic path,

R�.t/� 1
2
@�f .�.t/; �.t//D 0:

Because @�f .�; 0/D 0 and �@2�f=f D � < 0, we obtain that ˙@�f > 0 whenever ˙� > 0.

2.6 The resolvent of the geodesic flow for open systems

In what follows, we denote by ��.Mı/ the set of differential forms on Mı and by ��c.Mı/ the elements
of ��.Mı/ whose support is contained in the interior of Mı . Here Mı D S†ı is the unit tangent bundle
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of †ı . The set of currents on Mı , denoted by D0�.Mı/, is defined as the topological dual of ��c.Mı/.
Note that we have an inclusion ��.Mı/ ,! D0�.Mı/ via the pairing

hu; vi D

Z
Mı

u^ v for u; v 2��.Mı/:

The geodesic flow ' on M induces a flow on Mı D S†ı , which we still denote by '. We set

@˙Mı D f.x; v/ 2 @Mı W ˙hv; �ı.x/i> 0g and @0Mı D f.x; v/ 2 @Mı W ˙hv; �ı.x/i D 0g;

where �ı.x/ is the unit vector orthogonal to @†ı , based at x, and pointing outward. Next, define

`˙;ı.z/D infft > 0 W '˙t .z/ 2 @Mıg for z 2 int.Mı/[ @�Mı ;

and `˙;ı.z/D 0 for z 2 @˙Mı [@0Mı , where int.Mı/ denotes the interior of Mı . The numbers `˙;ı.z/
are the first exit times of z in the future and in the past. We also set

�̇ ;ı D fz 2Mı W `�.z/DC1g and Kı D �
C

ı
\��ı ;

and we define the operators R˙;ı.s/ by

(2-5) R˙;ı.s/!.z/D˙

Z `�;ı.z/

0

'��t!.z/e
�ts dt for z 2Mı and ! 2��c.Mı/;

which are well defined as operators from ��c.Mı/ to C
�
Mı ;

V
�
T �Mı

�
whenever Re.s/� 1, where

C
�
Mı ;

V
�
T �Mı

�
denotes the space of continuous differential forms on Mı . Note that our convention

of R˙;ı.s/ differs from that of [18]. The operator RC;ı.s/ (resp. R�;ı.s/) is the resolvent of LX in the
future (resp. in the past) for the spectral parameter s. More precisely,

(2-6) .LX ˙ s/R˙;ı.s/D Id��c.Mı/;

and for any .u; v/ 2��c.Mı n��;ı/��
�

c.Mı n�C;ı/,

(2-7)
Z
Mı

.RC;ı.s/u/^ v D�

Z
Mı

u^R�;ı.s/v:

Indeed, for such u and v, there is L> 0 such that

(2-8) supp.u/� f`C;ı 6 Lg and supp.v/� f`�;ı 6 Lg:

In particular, the forms RC;ı.s/u and R�;ı.s/v are smooth up to the boundary of Mı . Indeed, (2-8)
implies that, for any z 2Mı and t 2 Œ0; `�;ı.z/�,

'��tu.z/¤ 0 D) t 6 L:

Therefore, for any z 2Mı ,

RC;ı.s/u.z/D

Z `�;ı.z/

0

'��tu.z/e
�ts dt D

Z min.`�;ı.z/;LC1/

0

'��tu.z/e
�ts dt;

and thus RC;ıu is smooth, since '��tu.z/D 0 if L6 t 6 `�;ı.z/. Similarly, R�;ı.s/v is smooth. Finally,
note that supp.RC;ı.s/u/\ @Mı � @CMı and supp.R�;ı.s/v/\ @Mı � @�Mı . In particular, Stokes’
formula and (2-6) imply (2-7).
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Because the boundary of †ı is strictly convex, it follows from [15, Proposition 6.1] that the family of
operators R˙.s/ extends to a meromorphic family of operators

R˙;ı.s/ W�
�

c.Mı/! D0�.Mı/

satisfying

(2-9) WF0.R˙;ı.s//��.T
�Mı/[‡˙;ı [ .E

�
˙;ı �E

�
�;ı/;

where �.T �Mı/ is the diagonal in T �Mı �T
�Mı ,

‡˙;ı D f.ˆt .z; �/; .z; �// 2 T
�.Mı �Mı/ W 06˙t 6 `˙;ı.z/ and hX.z/; �i D 0g;

and where
E�
C;ı DE

�
u j�C

ı

; E�
�;ı DE

�
s j�
�
ı
:

Here, we write

WF0.R˙;ı.s//D f.z; �; z
0; � 0/ 2 T �.Mı �Mı/ W .z; �; z

0;�� 0/ 2WF.R˙;ı.s//g;

where WF is the classical Hörmander wavefront set [23, Section 8]. In fact, by (2-9) we mean that
s 7!R˙.s/ is meromorphic as a map C!D0� 0

˙
.Mı�Mı/— we identifyR˙.s/ and its Schwartz kernel —

where �̇ is given by the right-hand side of (2-9), � 0
˙
D f.z; �; z0;�� 0/ W .z; �; z0;�� 0/ 2 �̇ g, and where

D0
� 0
˙

.Mı �Mı/D fR 2 D0.Mı �Mı/ WWF.R/� � 0˙g

is endowed with its natural topology; see [23, Definition 8.2.2].

Near any s0 2C, we have the expansion

R˙;ı.s/D Y˙;ı.s/C

J.s0/X
jD1

.X ˙ s0/
j�1…˙;ı.s0/

.s� s0/j
;

where Y˙;ı.s/ is holomorphic near s D s0 and …˙;ı.s0/ is a finite-rank projector satisfying

WF0.…˙;ı.s0//�E
�
˙;ı �E

�
�;ı and supp.…˙;ı.s0//� �

˙
ı ��

�

ı
;

where we identified …˙;ı.s0/ and its Schwartz kernel.

2.7 Restriction of the resolvent on the geodesic boundary

For any " > 0, define the open sets

A˙;" D f`˙;ı > "g\ f`�;ı > 0g � int.Mı/;

and notice that, if " is small, Mı=2 � A˙;". Then we have diffeomorphisms '˙" W A˙;"! A�;", which
induce maps

'�˙" W D
0�.A�;"/! D0�.A˙;"/:
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Using a slight abuse of notation, we will still denote by '�
˙" W D

0�.Mı/! D0�.A˙;"/ the composition of
'�
˙" with the inclusion D0�.Mı/ ,! D0�.A�;"/, which is given by the restriction. Let

@D @.S†?/D f.x; v/ 2Mı W x 2 ? t ?g

and @0 D S? tS? � @.

Lemma 2.7 For any " > 0 small enough , we have

WF.'��"R˙;ı.s//\N
�.@� @/D∅;

where
N �.@� @/D f.z0; � 0; z; �/ 2 T �.Mı �Mı/ W h�

0; Tz0@i D h�; Tz@i D 0g:

Proof We prove the statement for RC;ı.s/. By (2-9) and multiplicativity of wavefront sets (see
[23, Theorem 8.2.14]),

(2-10) WF0.'��"RC;ı.s//��"[‡
"
C;ı [ .E

�
C;ı �E

�
�;ı/;

where
�" D f.ˆ".z; �/; .z; �// W .z; �/ 2 T

�Mıg

and
‡"
C;ı D f.ˆt .z; �/; .z; �// W "6 t 6 `C;ı.z/; hX.z/; �i D 0g:

Now assume that there is „D .z0; � 0; z; �/ lying in

N �.@� @/\ .�"[‡
"
C;ı [ .E

�
C;ı �E

�
�;ı//:

If „ 2�", then necessarily z; z0 2 @0, because '".@ n @0/\ @D ∅ whenever " > 0 is smaller than the
injectivity radius of the manifold.1 We thus have � 2N �z @DRˇ.z/ by Remark 2.4; now ˆ".ˇ.z// does
not lie in Rˇ.'".z// by Lemma 2.2, and therefore � D 0.

If„2‡"
C;ı

, then there is T > " such thatˆT .z; �/D .z0; � 0/with h�; X.z/iD0. However, by Remark 2.4,
if .z; �/ 2N �z @ and h�; X.z/i D 0, then z 2 @0. Thus by what precedes, � D 0.

Finally, (2-1) and Remark 2.4 imply that N �@\E�
˙;ı
� f0g. Thus we have shown that

WF0.'��"RC;ı.s//\N
�.@� @/D∅;

which is equivalent to the conclusion of the lemma.2

Remark 2.8 This estimate together with [23, Theorem 8.2.4] imply that the operator ���X'��"RC;ı.s/��
is well defined and satisfies

WF.���X'��"RC;ı.s/��/� d.�� �/>WF.'��"RC;ı.s//;

1Let x 2 @†. If .x; v/ 2 @ n @0 satisfies that .y; w/D '".x; v/ 2 @, then the exponential map at x is not injective on the closed
ball B.0; "/ � Tx† of radius ", since �.'"0.x; v0//D y for some v0 2 Sx† tangent to @† and some "0 2 Œ0; "�. This follows
from the fact that @† is totally geodesic.
2Since the set f.z; �; z0; � 0/ W .z; �; z0;�� 0/ 2N �.@� @/g coincides with N �.@� @/, we may use WF or WF0 interchangeably.
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where � W @ ,! Mı and � � � W @ � @ ,! Mı �Mı are the inclusions. Indeed, the Schwartz kernel of
���X'

�
�"RC;ı.s/�� coincides with the pullback by �� � of the kernel of �X'��"RC;ı.s/. It also follows

from [23, Theorem 8.2.14] that the operator ���X'��"RC;ı.s/ maps

D0�N�@.Mı/! D0�.@/
continuously.

Here the pushforward �� W��.@/!D0�C1.Mı/ is defined as follows. If u 2�k.@/, we define the current
��u 2 D0kC1.Mı/ by

h��u; vi D

Z
@

u^ ��v; v 2�n�k�1.Mı/:

3 The scattering operator

In this section we introduce the dynamical scattering operator S˙.s/ associated to our problem. By
relating the scattering operator to the resolvent described above, we are able to compute its wavefront set.
In consequence, the composition .�S˙.s//n is well defined for � 2 C1c .@ n @0/, and we give a formula
for its flat trace.

For each x 2 @†?, let �.x/ be the normal outward pointing vector to the boundary of †?, and set

@˙ D f.x; v/ 2 @ W ˙h�.x/; vig > 0g:

3.1 First definitions

We define the exit times in the future and in the past by

`˙.z/D infft > 0 W '˙t .z/ 2 @g for z 2M n .@˙[ @0/;

and we declare that `˙.z/D1 whenever z 2 @˙[ @0. Then we set

�̇ D fz 2M W `�.z/DC1g:

The set �C (resp. ��/ is the set of points of M which are trapped in the past (resp. in the future). The
scattering map S˙ W @� n��! @˙ n �̇ is defined by

S˙.z/D '˙`˙.z/.z/ for z 2 @� n��;

and satisfies S˙ ıS� D Id@˙n�̇ . For s 2C, the scattering operator

S˙.s/ W��c.@� n��/!��c.@˙ n �̇ /

is given by
S˙.s/! D .S��!/e

�s`�. � / for ! 2��c.@� n��/:

Remark 3.1 If Re.s/ is large enough, S˙.s/ extends as a map

C 0
�
@;
V
�
T �@

�
! C 0

�
@;
V
�
T �@

�
;
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where C 0
�
@;
V
�
T �@

�
is the space of continuous forms on @, by declaring that

S˙.s/!.z/D S��!.z/e
�s`�.z/ if z 2 @˙ n �̇

and S˙.s/!.z/D 0 otherwise. Indeed, by Lemma 3.8 and (3-16), there is C > 0 such that

kS��!.z/k6 CeC`�.z/k!k1 for z 2 @˙ n �̇ and ! 2��.M/;

where k!k1 is the uniform norm on C 0
�
M;

V
�
T �M

�
.

3.2 The scattering operator via the resolvent

In this section we will see that S˙.s/ can be computed in terms of the resolvent. More precisely, we have
the following result:

Proposition 3.2 For any Re.s/ large enough ,

S˙.s/D .�1/N e˙"s���X'��"R˙;ı.s/��

as maps ��c.@ n @0/! D0�.@/, where N W��.@/!N is the degree operator. That is , N.w/D k if w is a
k–form.

As a consequence of this proposition, Remark 2.8 and the continuity of the pullback [23, Theorem 8.2.4],

.�� �/� W D0��̇ ;"
.Mı �Mı/! D0�.@� @/;

where �̇ ;" is the right-hand side of (2-10), we get:

Corollary The scattering operator s 7! S˙.s/ W��.@ n @0/! D0�.@/ extends as a meromorphic family
of s 2C with poles of finite rank , with poles contained in the set of Pollicott–Ruelle resonances of LX ,
that is , the set of poles of s 7!R˙;ı.s/.

Before proving Proposition 3.2, we start with an intermediate result:

Lemma 3.3 We have S˙.s/D .�1/N e˙"s���X'��"R˙;ı.s/�� as maps

��c.@� n��/! D0�.@˙ n �̇ /:

Remark 3.4 (i) Proposition 3.2 is not a direct consequence of Lemma 3.3. Indeed, the operator
Q";˙.s/D .�1/N e˙"s���X'��"R˙;ı.s/�� could hide some singularities near �̇ ; Proposition 3.2
tells us that this is not the case, at least far from @0.

(ii) A consequence of Proposition 3.2 is that Q";˙.s/ is identically zero on @˙ (in the sense that
Q";˙.s/uD 0 whenever supp.u/� @˙), as is the case for S˙.s/. This can be seen directly from
using the fact that

supp.'��"R˙;ı.s/��u/� f't .z/ W z 2 supp.u/ and "6˙t 6 `˙;ı.z/g:
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Proof Let u2��c.@�n��/, and U 0� @� be a neighborhood of suppu such that U 0 does not intersect @0.
Let " > 0 be small enough that

z 2 @� D) `C.z/ > ":

The existence of such an " follows from the fact that, for each x2@†, the exponential map expx WTx†!†

is injective on B.0; "/ � Tx† whenever " > 0 is small enough (independent of x). Note also that, for
every z 2 @�,

�.'t .z// 2†ı n†? for � `�;ı.z/ < t < 0;

by Lemma 2.6. Next, let us set

U D f.t; z/ 2R�U 0 W �`�;ı.z/ < t < "g:

Then U is diffeomorphic to a tubular neighborhood of U 0 in Mı via .t; z/ 7! 't .z/.3 Let � 2 C1.R/ be
such that �� 1 near ��1; 0� and �� 0 on

�
1
2
";C1

�
. Set, in the above coordinates,

 .t; z/D �.t/e�tsu.z/ 2
V
�
T �.t;z/Mı ;

where we see u.z/ as a form in T �
.t;z/

M by declaring �@tu.z/D 0. We extend  by 0 on M , and we set

� D  �RC;ı.s/.LX C s/ :

Then � is smooth by (2-5), since supp \�� D∅. Moreover .LX C s/� D 0, and we have

�j@� D u and �j@C D SC.s/u;

where SC.s/D SC.s/j��c.@�n��/. Let h 2��c.Mı n�C;ı/, so that R�;ı.s/h is smooth (see the discussion
following (2-7)). We have, by (2-6) and (2-7),Z

Mı
� ^ hD

Z
Mı
 ^ h�

Z
Mı
RC;ı.s/.LX C s/ ^ hD

Z
Mı
 ^ hC

Z
Mı
.LX C s/ ^R�;ı.s/h

D

Z
Mı
 ^ h�

Z
Mı
 ^ .LX � s/R�;ı.s/hC

Z
@Mı

�X . ^R�;ı.s/h/

D

Z
@Mı

�X . ^R�;ı.s/h/D .�1/
deg 

Z
@�;ı

 ^ �XR�;ı.s/h;

since �X D 0 and  has no support near @C;ı . Now we let ˆ W @� ! @�;ı be defined by ˆ.z/ D
'�`�;ı.z/.z/. Assume that the support of h does not intersect U . Then a change of variable gives

ˆ�.�XR�;ı.s/h/j@�;ı D �XR�;ı.s/he
�s`�;ı. � /:

As we have ˆ�. j@�;ı /D . j@�/e
Cs`�;ı. � / D ueCs`�;ı. � / by definition of  , we obtain

(3-1)
Z
Mı
� ^ hD .�1/degu

Z
@�
u^ ��.�XR�;ı.s/h/:

Now because .LX � s/R�;ı.s/h D h, we get .LX � s/R�;ı.s/h D 0 near U , and thus '�"R�;ı.s/h D
e"sR�;ı.s/h near U . Let v 2��c.@C n�C/. Then U \ supp.v/D ∅ (because supp.v/ � @C n�C). As

3The map G W .t; z/ 7! 't .z/ is clearly smooth on U . By Lemma 2.6, t 7! �.'t .z// is strictly increasing for z 2 @�. Therefore,
by uniqueness of the integral curves of X , we see that G is injective. The inverse of G is given by G�1.z0/D .t.z0/; z.z0//,
where t .z0/D infft > 0 W 't .z

0/ 2 @g and z.z0/D '�t.z0/.z0/, which is smooth on G.U / by the implicit function theorem.
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WF.��v/�N �@, we may find hn 2��c.Mı n�C;ı/, for n 2N, such that hn! ��v in D0�
N�@

.Mı/, and
with the property that supp.hn/\U D∅.4 Then applying (3-1) to hD hn and letting n!1 yields5Z

@C

.SC.s/u/^ v D .�1/degue�"s
Z
@�

u^ ���X'
�
"R�;ı.s/��v;

because �j@C D SC.s/u. Since
R
@C

SC.s/u^ v D
R
@�
u^S�.s/v, we obtain

S�.s/D .�1/degue�"s���X'
�
"R�;ı.s/��

as maps��c.@Cn�C/!��c.@�n��/. We can replaceX by�X to obtain the desired formula for SC.s/.

Proof of Proposition 3.2 Let u 2 ��.@ n @0/ and write uD u.�; �/ 2 T �
.�;�/

@. Let � 2 C1c .R; Œ0; 1�/
be such that

R
R �D 1, �.0/¤ 0, �� 0 on R n

�
�
1
2
ı; 1
2
ı
�

and � > 0 on
�
�
1
2
ı; 1
2
ı
�
. For n 2N>1 we set

�n D n�.n � /, so that �n converges to the Dirac measure on R as n!C1. We define un 2��c.Mı/ in
the .�; �; �/ coordinates by

un D �n.�/u.�; �/^ d�:

Then un! .�1/N ��u in D0
N�@

.Mı/, since @D f�D 0g. In particular, setting

fn D �
�'��"�XRC;ı.s/un for n> 1;

Remark 2.8 gives that fn! .�1/N ��'��"�XRC;ı.s/��u in D0�.@/. Moreover, if Re.s/ is large enough, then
for any n 2N, we have .�1/N ��'��"�XRC;ı.s/un 2 C

0
�
Mı ;

V
�
T �Mı

�
and thus fn 2 C 0

�
@;
V
�
T �@

�
.

Then we claim that fn! SC.s/u is in D0�.@ n @0/ when n!C1, where we recall that

SC.s/u.z/D
�
S��u.z/e

�s`�.z/ if z 2 @C n�C;
0 if not:

Let F D
˚
j�j6 1

2
ı
	
. Since the neighborhood

˚
j�j< 1

2
ı
	

is strictly convex, there exists L> 0 such that,
for any z 2 F and T > 0 with '�T .z/ 2 F , we have

(3-2) '�t .z/ … F for all t 2 �0; T Œ D) T > L:

Next, take z 2 @C n�C. Then the set ft 2 Œ"; `�;ı.z/� W '�t .z/ 2 F g is a finite union of closed intervals,
say

ft > " W '�t .z/ 2 F g D

K.z/[
kD0

Œak.z/; bk.z/�;

with ak.z/ 6 bk.z/ 6 C1 and bk.z/ < akC1.z/ for every k. We set �.t/ D �.'�t .z// for any t > 0,
and we take any smooth norm k � k on

V
�
T �Mı . Note that un D �n.�/u1. Moreover, if z 2Mı and

t < `�ı.z/, we have

(3-3) k'��tu1.z/k6 Cku1.'�tz/k exp.C jt j/

4For example, we may take hn.�; �; �/D �n.�/v.�; �/^ d�, where �n 2 C1c .��ı; ıŒ/ converges to the Dirac measure.
5Here we use that ���X'�"R�;ı .s/hn! ���X'

�
"R�;ı .s/��v in D0�.@/ as n!1 by Remark 2.8, since hn! ��v in D0�

N�@
.Mı /.
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for some C > 0. Let �0 > 0 small and h 2 C1.Mı ; Œ0; 1�/ such that hD 1 on suppu1 and

(3-4) h.�; �; �/D 0 when dist.�; �Z/ < �0:

(Such an h exists if �0 is small enough, since u 2 ��.@ n @0/.) Then there is c D c.�0/ > 0 such that
jX�j> c on supp h, by Lemma 2.3. In particular, if Re.s/ > C , then, by (3-3) and (3-4),

kfn.z/k6
Z `�;ı.z/

"
.�n ı �/.'�t .z//k'

�
�t .�Xu1/.z/ke

�ts dt

6 Ckuk1
K.z/P
kD0

e.C�s/ak.z/
Z bk.z/

ak.z/
�n.�.t//h.'�t .z// dt

6 Cc�1kuk1
K.z/P
kD0

e.C�s/ak.z/
Z bk.z/

ak.z/
�n.�.t//jX�.'�t .z//j dt:

Of course, for t < `�;ı.z/, we have X�.'�t .z//D �0.t/. Moreover, by Lemma 2.6, ˙X2� > 0 if˙� > 0.
Thus we may separate each interval Œak.z/; bk.z/� into two subintervals on which j�0j> 0, and change
variables to get Z bk.z/

ak.z/
�n.�.t//j�

0.t/j dt 6 2
Z

R
�n.�/ d� 6 2:

By (3-2), ak.z/> kL for any k. Therefore we obtain

(3-5) kfn.z/k6
2kuk1

1� e.C�Re.s//L
for z 2 @C n�C and n> 1:

Moreover, if z 2 @�, we have that t 7! �.'�t .z// is strictly increasing for any z 2 @� by Lemma 2.6.
Thus we may reproduce the argument made above to obtain that (3-5) also holds for z 2 @�. Finally, it is
shown in [18, Section 2.4] that Leb.�C\ @C/D 0.6 In particular, since each fn is a continuous, (3-5)
holds for any z 2 .@C[ @�/ n�C D @.

Next, let v 2��.@/. By Lemma 2.6, the set f'�t .z/ W t > "g is included in f�> �.'�".z//g for any z 2 @�.
In particular, as supp.un/! @ when n!1, we have fn.z/! 0 for z 2 @�. By dominated convergence
we get, as n!1, Z

@�
fn ^ v! 0:

Next, let � > 0, and �˙ 2 C1c .@˙ n �̇ / such that

(3-6) �� � 1 on supp.�C ıSC/ and vol.supp.1��C// < �:

Such functions exist, as Leb.�C\ @/D 0. We haveZ
@C
fn ^ v D

Z
@C
�Cfn ^ vC

Z
@C
.1��C/fn ^ v:

6Actually, Section 2.4 of [18] says that Leb.�C;ı \ @C;ı /D 0. However, Jı W z 7! '`C;ı.z/.z/ realizes a local diffeomorphism
@C! Jı .@C;ı /, and we have Jı .�C/� �C;ı .
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Note that fnD Qfn on supp�C, where Qfn is defined exactly as fn, replacing u by QuD��u2��.@�n��/.
By Lemma 3.3, Q";C.s/ QuD SC.s/ Qu, and since Qfn!Q";C.s/ Qu, we haveZ

@C

�Cfn ^ v D

Z
@C

�C Qfn ^ v!

Z
@C

�CSC.s/ Qu^ v D
Z
@C

�CSC.s/u^ v;

where we used that SC.s/uD SC.s/ Qu on supp�C. On the other hand, as the forms fn are uniformly
bounded by (3-5) and the discussion below, there is C > 0 such that, for any n> 1,ˇ̌̌̌Z

@C

.1��C/SC.s/u^ v
ˇ̌̌̌
< C� and

ˇ̌̌̌Z
@C

.1��C/fn ^ v

ˇ̌̌̌
< C�;

where we used the second part of (3-6). Summarizing the above facts, we obtain that, for n> 1 big enough,ˇ̌̌̌Z
@

fn ^ v�

Z
@

SC.s/u^ v
ˇ̌̌̌
6 4C�:

Thus, fn! SC.s/u in D0�.@/.

3.3 Composing the scattering maps

Recall that @ has two connected components @.1/ and @.2/ that we can identify in a natural way. We denote
by  W @! @ the map exchanging those components via this identification (in particular,  .@˙/D @�),
and we set

zS˙.s/D  � ıS˙.s/:

Also we denote by ‰ D T �@! T �@ the symplectic lift of  to T �@; that is,

‰.z; �/D . .z/; d �>z �/ for .z; �/ 2 T �@:

Lemma 3.5 Let � 2 C1c .@ n @0/. Then for any n > 1, the composition .�zS˙.s/�/n, which is well
defined from C 0

�
@;
V
�
T �@

�
to C 0

�
@;
V
�
T �@

�
for Re.s/ large and holomorphic with respect to s by

Remark 3.1, admits a meromorphic continuation as a family of operators ��.@/! D0�.@/.

Proof We prove the lemma for SC.s/. First, assume that nD 2. According to [23, Theorem 8.2.14], it
suffices to show that A1\B1 D∅, where for n> 1 we set

(3-7)
An D f.z; �/ W .z

0; 0; z; �/ 2WF0
�
.�zS˙.s//n

�
for some z0 2 @g;

Bn D f.z; �/ W .z; �; z
0; 0/ 2WF

�
.�zS˙.s//n

�
for some z0 2 @g:

By Proposition 3.2 and Remark 2.8,

(3-8) WF0.�SC.s/�/jsupp.���/ � d.�� �/>.�"[‡"C;ı [ .E
�
C;ı �E

�
�;ı//;

where �" and ‡"
C;ı

are defined as in the proof of Lemma 2.7. Note that in the coordinates of Lemma 2.3,
�.z/D .�; 0; �/ 2 @ for any z D .�; �/ 2 @, and thus

d�>.z; �/D �� d� C �� d� for �D �� d� C �� d�C �� d� 2 T �z M:
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As � is supported far from @0, we have .'".z0/; z0/…@�@ for any z02 supp� (see for example Lemma 2.6),
and, for any � 2 T �z0Mı such that hX.z0/; �i D 0, we have

(3-9) d�>.z0; �/D 0 D) �D 0

by Lemma 2.3, since @0 D f.�; 0; �/ W � 2 �Zg. This implies that A1 is contained in E�
�;@

, while B1
is contained in ‰.E�

C;@
/ where E�

C;@
D .d�/>.E�

C;ı
/. Now we claim that ‰.E�

C;@
/\E�

�;@
� f0g far

from @0. By Lemma 2.3 and Section 2.3, for any z D .�; 0; �/ 2 @.j /\ �̇ ,

E�
C;@.z/DR.d�/>z .rC.z/ˇ.z/� .z//DR.�sin.�/rC.z/ d� � d�/;

since �.�; �/ D .�; 0; �/. Then rC. .z// ¤ r�.z/ for all z. Indeed, the contrary would mean that
Es.z

0/\Eu.z
0/¤ f0g for some z0 2M (represented by both z and  .z/ in Mı ), which is not possible.

Now we have sin.�/ ¤ 0 for z … @0. As a consequence, (3-7) is true, since supp� \ @0 D ∅. This
concludes the case nD 2, and by [23, Theorem 8.2.14] we also have the bound

WF0
�
.�zSC.s/�/2

�
�
�
WF0.�zSC.s/�/ ıWF0.�zSC.s/�/

�
[ .B1 � 0/[ .0�A1/;

where 0 denotes the zero section in T �@, with A1 �E��;@ and B1 �‰.E�C;@/, and where, for any conical
subsets ‡1; ‡2 � T �.M �M/, we write

‡1 ı‡2 D f.x1; �1; x2; �2/ W .x1; �1; y; �/ 2 ‡1 and .y; �; x2; �2/ 2 ‡2 for some .y; �/g:

Note that, if we set
E�s;@˙

D d�>.E�s j@˙/ and E�u;@˙
D d�>.E�u j@˙/;

we have A1 �E�s;@� and B1 �‰.E�u;@C/DE
�
u;@�

.

We proceed by induction, assuming that, for some n> 2, the composition .�zS˙.s//n is well defined with
the bound

(3-10) WF0
�
.�zSC.s//n

�
�
�
WF0.�zSC.s/�/n�1 ıWF0.�zSC.s/�/

�
[ .Bn�1 � 0/[ .0�A1/;

and that An�1 �E�s;@� and Bn�1 �E�u;@� . This formula implies that the set An is included in˚
.z;�/2T �@ W.z0;0;z00;�/2WF0

�
.�zSC.s/�/n�1

�
and .z00;�;z;�/2WF0.�zSC.s/�/ for some z0;z002@

	
[A1:

We have An�1 � E�s;@� , and note that ‰.E�
C;@
/ � E�

u;@�
and E�

u;@�
\ E�

s;@�
D f0g. Moreover, as

mentioned above, '".z0/ … @ whenever z0 2 supp.�/. Thus we obtain, by (3-8),

An � f.z; �/ W .z
00; �; z; �/ 2 d.�� �/>.‡"

C;ı/ for some � 2‰.E�s;@�/g[A1:

Now suppose .z00; �; z; �/ 2 d.�� �/>.‡"
C;ı
/ with z00; z 2 supp�. Note that ‰.E�

s;@�
/DE�

s;@C
and thus,

if � 2 ‰.E�
s;@�

/\ d�.z00/> kerX.z00/, then � D d�.z00/> Q� for some Q� 2 E�s .z
00/ by (3-9). Since E�s is

preserved by ˆ�t , we obtain .z; �/ 2 d�>.E�s /. In particular, this yields An �E�s;@� . Reversing the roles
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of .�zSC.s//n�1 and �zSC.s/ in (3-10), we get that Bn is included in

f.z;�/2T �@ W.z;�;z0;��/2WF.�zSC.s/�/ and .z0;�;z00;0/2WF
�
.�zSC.s/�/n�1

�
for some z0;z002@g

[B1:

Proceeding as above, one gets Bn � E�u;@� . Finally, Bn \ A1 D ∅, since E�
u;@�
\ E�

s;@�
on supp�

by (3-9). As a consequence, the composition .�zSC.s/�/nC1 D .�zSC.s/�/n ı .�zSC.s/�/ is well defined
by [23, Theorem 8.2.14], and (3-10) holds with n replaced by nC 1.

Remark 3.6 Using (3-10) inductively, one can actually show that WF0
�
.�zSC.s/�/n

�
is contained in

d.O�� O�/>z�";C, where

z�";C D f. ŷ t .z; �/; .z; �// W z; O't .z/ 2 S†j? \ O�.supp�/; hX.z/; �i D 0; t > "g[ .E�u �E
�
s /jsupp.���/:

Here (and only here), in order to avoid confusion, we denote by O' (resp. ŷ t ) the complete geodesic flow
on M D S† (resp. the symplectic lift of the geodesic flow on T �M ), and by O� W @! S†j? ,!M the
identification of both components of @.

3.4 The flat trace of the scattering operator

Let A W��.@/! D0�.@/ be an operator such that WF0.A/\�.T �@/D∅, where �.T �@/ is the diagonal
in T �.@� @/. Then by [23, Theorem 8.2.4], the pullback ���KA is well defined, where �� W z 7! .z; z/ is
the diagonal inclusion and KA 2 D03.@� @/ is the Schwartz kernel of A, defined byZ

@

Au^ v D

Z
@�@

KA ^�
�
1u^�

�
2 v for u; v 2��.@/;

where �j W @� @! @ is the projection on the j th factor (for j D 1; 2). We then define the (super)flat trace
of A by

�tr[sAD h�
�
�KA; 1i:

In fact, one can show that

(3-11) �tr[s.A/D
2X
kD0

.�1/k tr[.Ak/;

where tr[ is the transversal trace of Atiyah and Bott [3] and Ak is the operator

Ak W C
1
�
@;
Vk

T �@
�
! D0

�
@;
Vk

T �@
�

induced by A on the space of k–forms (see also [16, Section 2.4] for an introduction to the flat trace).

The purpose of this section is to compute the flat trace of S˙.s/. In what follows, for any closed geodesic
 WR=`Z!†, we will write

I?./D fz 2 S†j? W z D ..�/; P.�// for some � 2R=`Zg

for the set of incidence vectors of  along ?, and

I?;˙./D p
�1
? .I?.//\ @�;

where p? W S†?! S† is the natural projection.
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Proposition 3.7 Let � 2 C1c .@ n @0/. For any n > 1, the operator .�zS˙.s//n has a well-defined flat
trace , and for Re.s/ big enough ,

(3-12) tr[s
�
.�zS˙.s/�/n

�
D n

X
i.;?/Dn

`#./

`./
e�s`./

� Y
z2I?;˙./

�2.z/

�̀ ./=`#./

;

where the sum runs over all (not necessarily primitive) closed geodesics  of .†; g/ such that i.; ?/Dn.
Here `./ is the length of  and `#./ its primitive length.

This formula should be compared with the formula

tr[s..�f
��/n/D

X
2Pern.f /

m#./ sgn.det.1�P //
�Y
z2

�2.z/

�n=m#./

;

which is valid for any smooth Anosov diffeomorphism f WZ!Z of a closed manifoldZ and �2C1.Z/.
Here f � W C1.Z/! C1.Z/ is the pullback operator, Pern.f / is the set of n–periodic orbits of f ,
m#./ is the minimal period of  and P is the linearized Poincaré map of  (that is, P D df .z/
for z 2 ). Note that the above sum is finite, unlike the sum in (3-12). This is due to the fact that S˙ is
singular at �̇ , which allows S˙ to have an infinite number of n–periodic points.

Proof The proof that the intersection

(3-13) WF0
�
.�zS˙.s/�/n

�
\�.T �@/

is empty follows from the estimate in Remark 3.6, since E�u \E
�
s D f0g and dO�.z/> W kerX.O�.z//! T �z @

is injective for any z 2 supp.�/.

For any n> 1, we define the set z�n
˙
� @ by

{z�n˙ D fz 2 @ W . zS˙/
k.z/ is well defined for k D 1; : : : ; ng;

where zS D  ıS . Equivalently,

z�1˙ D �̇ and z�nC1
˙
D z�n˙\ .

zS�/
n.�̇ n z�n�/

for n> 1. Also, we set

(3-14) Q̀
˙;n.z/D `˙.z/C `˙. zS˙.z//C � � �C `˙. zS

n�1
˙ .z// for z 2 {z�n˙;

where `˙.z/D infft > 0 W '˙t .z/ 2 @g, with the convention that Q̀˙;n.z/DC1 if z 2 z�n
˙

. We will need
the following:

Lemma 3.8 Let n> 1. For any k > 1, there exists Ck;n > 0 such that

kdk`˙;n.z/k6 Ck;n exp.Ck;n`˙;n.z// for z 2 {z�n˙:

Proof By induction on n, using (3-14) and the fact that S˙.{z�n˙/ D {z�n�1
˙

, we see that the lemma
reduces to proving the estimate

(3-15) kdk`˙.z/k6 Ck exp.Ck`˙.z// for z 2 {z�1˙:
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In what follows, Ck is a constant depending only on k, which may change at each line. First, notice that
kdk't .z/k 6 Cke

Ck jt j for any t 2 R and z 2Mı such that 't .z/ 2Mı , for some constant Ck; see for
example [8, Proposition A.4.1]. Moreover,

dS˙.z/D dŒ'`˙.z/�.z/CX.S˙.z// d`˙.z/ for z 2 {z�1˙:

By induction we obtain that, for any k,

(3-16) kdkS˙.z/k6 Ck exp.Ck`˙.z//CCk
kX

jD1

kdj `˙.z/kmj with mj 2N for j D 1; : : : ; k

for any z 2 {z�1
˙

. Let .�; �; �/ be the coordinates defined near @ given by Lemma 2.3. Then �.S˙.z//D 0
for z 2 z�˙1 , and thus

(3-17) .X�/.S˙.z// d`˙.z/D�d�.S˙.z// ı dŒ'`˙.z/�.z/ for z 2 {z�1˙:

Let z … z�˙1 ; Lemma 2.3 gives

(3-18) .X�/.S˙.z//D sin
�
�.S˙.z//

�
:

Set z0 D S˙.z/, and write .�.t/; �.t// D �.'�t .z0//, so that �.0/ D 0. By the proof of Lemma 2.6,
t 7! j�.t/j is strictly increasing (indeed z … z�˙1 and thus P�.0/D˙X�.z0/¤ 0), and whenever j�.t/j6 1

2
ı,

(3-19) R�.t/DG.�.t/; �.t//

for some smooth function G 2 C1
�
.R=`?Z/� �

�
�
1
2
ı; 1
2
ı
�
�

�
satisfying G.�; 0/D 0 and @�G.�; �/ > 0.

If D D supj@�Gj, we have jG.�; �/j 6 Dj�j and thus j R�.t/j 6 Dj�.t/j, with �.0/ D R�.0/ D 0 and
P�.0/D˙X�.S˙.z//. By comparing the solution of (3-19) with the solutions of Ry.t/DDy.t/, we obtain

j�.t/j6 jX�.z0/j sh.Dt/:

In particular, j�.t/j< 1
2
ı whenever jX�.S˙.z//j sh.Dt/ < 1

2
ı, and thus sh.D`�.z0//> 1

2
ıjX�.z0/j. By

(3-18), we conclude that there is C > 0 such that

(3-20)
ˇ̌
sin
�
�.S˙.z//

�ˇ̌
> C exp.�C`˙.z// for z 2 {z�1˙:

We therefore obtain, for any z 2 z�˙1 ,

kd`˙.z/k6 C�1 exp.C`˙.z//kd�.S˙.z//k � kdŒ'`˙.z/�.z/k6 CeC`˙.z/:

Now, repeatedly using (3-16), (3-17) and (3-20), we obtain (3-15) by induction on k.

Consider Q� 2 C1.R; Œ0; 1�/ such that Q� � 1 on ��1; 1� and Q� � 0 on Œ2;C1Œ, and set Q�L.z/ D
Q�.`˙;n.z/�L/ for z 2 @. Then Q�L 2 C1c .@ n z�

n
˙
/, and by (3-11) we see that the Atiyah–Bott trace

formula [3, Corollary 5.4] reads in our case

(3-21) h���K�;˙;n.s/; Q�Li D
X

. zS�/n.z/Dz

e�s`˙;n.z/ Q�L.z/

n�1Y
kD0

�2.. zS�/
k.z//;
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where K�;˙;n.s/ is the Schwartz kernel of .�S˙.s//n. Indeed, a simple computation (for example in the
spirit of [16, Appendix B]7) shows that, for any diffeomorphism f W @! @ with isolated nondegenerate
fixed points,

(3-22) tr[.Fk/D
X

f .z/Dz

tr
Vk df .z/

jdet.1� df .z//j
;

where Fk W �k.@/ ! �k.@/ is defined by Fk! D f �! and
Vk df .z/ is the map induced by df .z/

on
Vk

T �z @. Since
P
k.�1/

k tr
�Vk df .z/

�
D det.1� df .z//, it holds that

(3-23) tr[s.F /D
X
k

.�1/kC1 tr[.Fk/D�
X

f .z/Dz

sgn det.1� df .z//:

Now note that Q�L.�zS˙.s/�/n is by definition the operator given by

(3-24) ! 7! Q�L. � /

� nY
kD1

.� ı . zS�/
k/.� ı . zS�/

k�1/

�
e�s`˙;n. � /. zS�/

n�w:

Moreover, sgn det.1�d. zS�/n.z//D�1 for any z such that . zS�/n.z/Dz. Indeed, for such a z, d. zS�/n.z/
is conjugated to the linearized Poincaré map

Pz D d.'`˙;n.z//.z/jEu.z/˚Es.z/;

which satisfies det.1�Pz/ < 0 as the matrix of Pz in the decomposition Eu.z/˚Es.z/ reads
�
�
0

0
��1

�
for

some � > 1 (since 't preserves the volume form ˛^ d˛). Finally, by (3-13), the pairing in the left-hand
side of (3-21) is well defined; moreover, the proof of (3-22) can be revisited for the operator (3-24) thanks
to the introduction of our cutoff functions Q�L and �, yielding (3-21).

As L!C1, the right-hand side of (3-21) converges to

n
X

i.;?/Dn

`#./

`./
e�s`./

� Y
z2I?;˙./

�2.z/

�̀ ./=`#./

;

since for any closed geodesic  WR=Z!† such that i.; ?/D n,

#fz 2 @ W z D ..�/;  0.�// for some �g D n
`#./

`./
:

Note that the sum converges whenever Re.s/ is large enough by Margulis’ asymptotic formula, given in the
introduction. It remains to see that hi��K�;˙;n.s/; 1� Q�Li! 0 as L!C1. Note that Lemma 3.8 gives

(3-25) kdk Q�Lk6 Cke
CkL:

By Remark 3.1, if s0 > 0 is large enough, one has S˙.s0/ W��.@/!C 0
�
@;
V
�
T �@

�
. Also, for any s 2C

with Re.s/ > 0,

(3-26) S˙.s0C s/w D .S˙.s0/w/e�s`˙. � / for w 2��.@/:

7Actually, in the aforementioned reference, the authors deal with flows, but the diffeomorphism case is even simpler.
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Let N 2 N such that ���K�;˙;n.s0/ extends as a continuous linear form on CN .@/. Then applying
Lemma 3.8, we see that if Re.s/ is large enough, the function exp.�s`˙;n. � // lies in CN .@/. Thus, the
product e�s`˙;n. � /���K�;˙;n.s0/ is well defined and by (3-25) we have

jhe�s`˙;n. � /���K�;˙;n.s0/; .1� Q�L/ij D jh�
�
�K�;˙;n.s0/; .1� Q�L/e

�s`˙;n. � /ij

6 Ck.1� Q�L/e
�s`˙;n. � /kCN .@/ 6 CN e

.CN�Re.s//L;

since `˙;n >L on supp.1� Q�L/. Therefore, to obtain that hi��K�;˙;n.s0C s/; 1� Q�Li! 0 as L!C1,
it suffices to show that

e�s`˙;n. � /���K�;˙;n.s0/D �
�
�K�;˙;n.s0C s/:

This equality is a consequence of (3-26) and Lemma B.1, since we can take s arbitrarily large.

Recall from Remark 3.6 that s 7! .�zS˙.s/�/n admits a meromorphic continuation in D03
� 0
";˙

.@�@/, where
� 0";˙ does not intersect the conormal to the diagonal in @� @. In particular:

Corollary The function s 7! �˙;�;n.s/ defined for Re.s/� 1 by the right-hand side of (3-12) extends to
a meromorphic function on the whole complex plane.

To prove Theorem 1, we wish to use a standard Tauberian argument near the first pole of �˙;�;n to obtain
the growth of N.n;L/. Indeed, it is known (see Section 5) that s 7!R˙;ı.s/ has a simple pole at s D h?.
However, since �˙;�;n is given by the trace of the nth self-composition of the restriction of R˙;ı to @,
it is not clear a priori that �˙;�;n will have a singularity at s D h?. In the next section we obtain some
a priori bounds on N.n;L/; this will imply that �˙;�;n indeed has a pole at s D h?, of order n.

4 A priori bounds on the growth of geodesics with fixed intersection number
with ?

The purpose of this section is to get a priori bounds on N.1;L/— and N.2;L/ in the case where ? is
separating — using Parry and Pollicott’s bound for axiom A flows [35].

Choose some point x? 2 ?. Let g be the genus of † and .a1; b1; : : : ; ag; bg/ be a basis of generators
of †, so that the fundamental group of † is the finitely presented group given by

(4-1) �1.†/D ha1; b1; : : : ; ag; bg; Œa1; b1� � � � Œag; bg�D 1i;

where we set �1.†/D �1.†; x?/ for some choice of x? 2 ? (see Figure 2 for the case where ? is not
separating, and Figure 4 otherwise).
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x?

b1 b2

† a2

a1 †?
b1

a2
x?

a1 Nx?

Figure 2: The generators a1; b1; : : : ; ag; bg of �1.†/ (on the left) and the generators a1; b1; : : : ; ag

of �1.†?/ (on the right) when gD 2. Here ? is assumed to be not separating and is represented
by a2 in �1.†/.

4.1 The case ? is not separating

Up to applying a diffeomorphism to †, we may assume that ? is represented by ag 2 �1.†/. The
cut surface †? is a topological surface of genus g� 1 with 2 punctures, and the fundamental group8

�1.†?/D �1.†?; x?/ is the free group given by ha1; b1; : : : ; agi, which follows from the fact that †? is
homotopically equivalent to a connected sum of 2g� 1 circles. We refer to Figure 2 for a picture of the
generators and the choice of x?. By the presentation of �1.†/ given above, we have

(4-2) bgagb
�1
g D a

0
g where a0g D Œa1; b1� � � � Œag�1; bg�1�ag;

and note that a0g also defines an element of �1.†?/.

Lemma 4.1 The map q? W†?!† given by the identification of the boundary components of †? induces
a map q?;� W �1.†?/! �1.†/, which is injective.

Proof Let hagi (resp. ha0gi) be the infinite cyclic subgroup of �1.†?/ generated by ag (resp. a0g). Then
by (4-1) and (4-2), the group �1.†/ is the HNN9 extension �1.†?/�� of �1.†?/ with respect to the
isomorphism � W ha0gi ! hagi given by �.a0g/ D ag, that is, �1.†?/�� is the finitely presented group
defined by

�1.†?/�� D ha1; b1; : : : ; ag; t W t
�1a0gt D agiI

see [30, Section IV.2]. Now the map q?;� W �1.†?/! �1.†/ coincides with the natural map �1.†?/!
�1.†?/�� , and this map is injective by [30, Theorem IV.2.1].

We may see the cut surface †? as the convex core of a complete, noncompact, negatively curved
surface, with funnels. Indeed, by Lemma 4.1, the group �1.†?/ can be thought of as a subgroup
of �1.†/, and the convex core of the infinite surface †e? D �1.†?/nz† is canonically isometric to †?
(here z† is a universal cover of †). Another way to obtain this is by gluing two arbitrary funnels as
follows. Recall that near each connected component of the boundary @†? � †ı we have coordinates

8Here, in order not to burden the notation, we still denote by x? 2 †? a lift of x? 2 † by the natural map q? W †?! †; see
Figure 2.
9HNN refers to the authors Graham Higman, Bernhard Neumann and Hanna Neumann [22].
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.�; �/ 2 R=`?Z� � Œ�ı; ı�� given by Lemma 2.3, for which @†? D f� D 0g and @†ı D f� D ıg. In
those coordinates, the metric has the form d�2 C f .�; �/ d�2 for some smooth function f satisfying
@�f .�; 0/D 0 and �.�; �/D�@2�f .�; �/=f .�; �/. Then we arbitrarily extend f to a smooth function on
.R=`?Z/� � Œ�ı;C1Œ so that, for some constants c; C > 0,

c 6
@2�f

f
6 C:

By gluing the funnels .R=`?Z/� Œ0;1Œ and †? along the corresponding connected components, we
obtain a complete negatively curved surface†e?, whose metric in the funnels is given by d�2Cf .�; �/ d�2.
We will again denote by .'t / the geodesic flow on the unit tangent bundle S†e? of †e?.

Let z†? denote the universal cover of †e? and let Qx? 2 z†? be such that �. Qx?/D x?, where � W z†?!†e?
is the natural projection. Then �1.†e?; x?/ D �1.†?/ acts on z†? by deck transformations so that
†e? ' �1.†?/n

z†?. Moreover, Lemma 2.6 implies that the recurrent set of the geodesic flow on S†e? is
compact and included in S†?; thus �1.†?/ is convex–cocompact in the sense of [12]. The aforementioned
lemma also implies that every closed geodesic in †e? which is not contained in @†? is actually contained
in the interior of †?.

It is well known that there is a one-to-one correspondence between oriented closed geodesics on †e? (all
of them belonging to †?) and the set of free homotopy classes of loops in †e?. The latter set is itself in
one-to-one correspondence with the set of conjugacy classes of �1.†?/. We set

`?.w/D dist. Qx?; w Qx?/ for w 2 �1.†?/;

where the distance comes from the metric ��g on z†?. For any w 2 �1.†?/, we denote by Œw� the
associated conjugacy class of �1.†?/. Note that if Œw� denotes the unique geodesic in the free homotopy
class of w (which is represented by the conjugacy class Œw�), we have `.Œw�/6 `?.w/. We also denote by

(4-3) wl.w/Dminfn> 0 W w D ˛1 � � �˛n with j̨ 2Lg n fbg; b
�1
g gg

the word length of an element w 2 �1.†?/, where Lg D
Sg
kD1
fak; a

�1
k
; bk; b

�1
k
g. We will say that a

word ˛1 � � �˛k with j̨ 2Lg is reduced if j̨ ¤ . j̨C1/
�1 for any j D 1; : : : ; k � 1. As �1.†?/ is free,

for each w 2 �1.†?/, there is exactly one reduced word ˛1 � � �˛n such that nD wl.w/; see [30, page 4].
It follows from the Milnor–Švarc lemma [11, Proposition I.8.19] that, for some constant D > 0,

(4-4) 1

D
wl.w/�D 6 `?.w/6Dwl.w/CD for w 2 �1.†?/:

Also, as �1.†?/ is convex cocompact, we have the classical orbital counting (see [42, paragraphe 1.F
and corollaire 2])

(4-5) #fw 2 �1.†?/ W `?.w/6 Lg � Aeh?L as L!1

for some A > 0, where h? > 0 is the topological entropy of the geodesic flow of .†e?; g/ restricted to the
trapped set

Ke? D f.x; v/ 2 S†
e
? W 't .x; v/ 2 S†? for t 2Rg:
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In fact, h? > 0 also coincides with the entropy of the geodesic flow of .†; g/ restricted to the trapped set
K? mentioned in the introduction,

K? D f.x; v/ 2 S† W �.'t .x; v// 2† n ? for t 2Rg;

where the closure is taken in S† and Ke? D p
�1
? .K?/, where p? W S†?! S† is the natural map given

by the identification of both components of @S†?.

4.1.1 Lower bound In this section we will prove:

Proposition 4.2 If ? is not separating , then there is C > 0 such that , for any L large enough ,

N.1;L/> C
eh?L

L
:

Note that Theorem 1 actually gives N.1;L/� c?eh?L, so Proposition 4.2 is not sharp. We could obtain
a better bound with the methods presented in Section 4.2, which deals with the separating case; however,
Proposition 4.2 will be sufficient for our purposes (see Remarks 5.2, 5.3 and 5.4).

Lemma 4.3 Take w;w0 2 �1.†?/. Then Œwbg�D Œw
0bg� as conjugacy classes of �1.†/ if and only if

w D angw
0a0�ng in �1.†?/ for some n 2 Z.

Proof If w D angw
0bga

�n
g b�1g , then clearly wbg and w0bg are conjugate in �1.†; x?/. Reciprocally,

assume that Œwbg�D Œw
0bg�. We may find smooth paths  and  0 representing respectively the elements

wbg and w0bg, with i.; ?/ D i. 0; ?/ D 1 and such that the intersections  \ ? and  0 \ ? are
transverse. As Œwbg�D Œw

0bg�, the loops  and  0 lie in the same free homotopy class. Thus there is a
smooth homotopy H W Œ0; 1��R=Z!† such that H.0; � /D  and H.1; � /D  0. We may assume that
H is transverse to ? (see for example [20, Corollary, page 73]) in the sense that

dH.s; �/.T.s;�/.Œ0; 1��R=Z//CTH.s;�/? D TH.s;�/† for H.s; �/ 2 ?:

In particular, H�1.?/ is a smooth submanifold of Œ0; 1��R=Z. As  and  0 intersect ? transversally
exactly once, H�1.?/\ .fj g�R=Z/D fj g�fŒ0�g for j D 0; 1 (here Œ0� is sent to x? by both  and  0).
Thus, necessarily, there exists an embedding F W Œ0; 1�! Œ0; 1��R=Z such that Im.F /�H�1.?/ and
F.j /D .j; Œ0�/ for j D 0; 1 (see Figure 3). Write F D .S; T /, and define

zH.s; t/DH
�
S.s/; ŒT .s/C t �

�
for .s; t/ 2 Œ0; 1�� Œ0; 1�:

It is immediate to check that zH realizes a homotopy between  and  0, and we have zH.s;0/DH.F.s//2?
for any s 2 Œ0; 1�. For any s, let us denote by cs the path Œ0; 1� 3 u 7! zH.su; 0/ which links x? to
H
�
S.s/; ŒT .s/�

�
within ?. The continuous family of paths s 7! s , where s is given by the concatenation

c�1s
zH.s; � /cs , realizes a continuous interpolation between 0 D  and 1 D c�11  0c1. As S.1/D 1 and

T .1/D Œ0� we have c1.0/D c1.1/D x?, and since c1.u/ 2 ? for each u 2 Œ0; 1� we get c1 D a�ng for
some n 2Z. This yields wbgD a

n
gw
0bga

�n
g in �1.†/, and thus wD angw

0a0�ng , where the equality stands
in �1.†/. By Lemma 4.1, this equality actually holds in �1.†?/.

Geometry & Topology, Volume 28 (2024)



728 Yann Chaubet

H�1.?/

f0g �R=Z

f1g �R=Z

Figure 3: Proof of Lemma 4.3. The path linking .0; Œ0�/ 2 f0g �R=Z to .1; Œ0�/ is the image of F .

Proof of Proposition 4.2 In what follows, C is a constant that may change at each line. For any
w 2 �1.†?/ and n 2 Z, by (4-4),

(4-6) `?.a
n
gwa

0�n
g /> 1

D
wl.angwa

0�n
g /�D:

Let w0 be the unique reduced word such that w0 D wa0�ng . Then write w0 D a�kg w00 for some w00, where
jkj is maximal, and note that necessarily jkj6 wl.w/C 1, since a0g D Œa1; b1� � � � Œag�1; bg�1�ag. Then

wl.angwa
0�n
g /D jnj � jkjCwl.w00/D jnj � 2jkjCwl.w0/> jnj � 2.wl.w/C 1/Cwl.w0/:

Now the triangle inequality for wl gives .4.g� 1/C 1/jnj Dwl.a0�ng /6 wl.w0/Cwl.w�1/, and thus we
obtain wl.angwa

0�n
g />C jnj�C wl.w/�C for each n. Injecting this in (4-6) yields (for some different C )

`?.a
n
gwa

0�n
g /> C jnj �C wl.w/�C for n 2 Z:

In particular, for any L and w such that `?.w/6 L, by (4-4),

(4-7) jfn 2 Z W `?.a
n
gwa

0�n
g /6 Lgj6 CLCC:

Now, for w 2�1.†?/ set Cw Dfangwa0�ng W n2Zg��1.†?/, and denote by C the set fCw Ww 2�1.†?/g.
For C 2 C , we set `?.C/D infw2C `?.w/. Then by Lemma 4.3, we have a well-defined and injective map

fC 2 C W `?.C/6 Lg ! f 2 P1 W `./6 LCC g; Cw 7! Œwbg�;

where P1 denotes the set of primitive geodesics  such that i.; ?/D 1.10 In particular we get, with
(4-7) and (4-5),

(4-8) N.1;L/> jfC 2 C W `?.C/6 L�C gj> 1

CLCC

X
C2C

`?.C/6L�C

jfw 2 C W `?.w/6 L�C gj

D
1

CLCC
jfw 2 �1.†?/ W `?.w/6 L�C gj> 1

CLCC
exp.h?.L�C//;

where the equality comes from the fact that �1.†?/ is the disjoint union of the subsets C with C 2 C .

10Each class Œwbg� defines a geodesic in P1. Indeed, it follows from Lemma 2.1 that i.Œwbg�; ?/6 1. On the other hand, the
absolute value of the algebraic intersection number between wbg and ag is 1, and this implies that there is at least one intersection
point between Œwbg� and ?, since the algebraic intersection number is preserved by free homotopies.
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x?

a1
b2

a2

?
†1

†2

b1

Figure 4: The generators a1; b1; : : : ; ag; bg of �1.†/. Here ? is assumed to be separating and
g1 D g2 D 1.

4.1.2 Upper bound Each  2 P1 with `./ 6 L lies in the free homotopy class of w0b˙1g for some
w0 2 �1.†?; x?/ and `?.w/6 LCC . In particular, (4-5) gives the bound

N.1;L/6 C exp.h?L/

for large L. Now let  2 P2 with `./6L. Then we may find a deformation of the loop  into a loop  0

which is represented by the conjugacy class of wb˙1g w0b˙1g in �1.†/ for some w;w0 2 �1.†?/. This
deformation can be made so that `?.w/C `?.w0/6 LCC . Thus,

N.2;L/6 C
X

w;w 02�1.†?/
`?.w/C`?.w

0/6LCC

16
LCCX
kD0

C exp.h?k/C exp.h?.LCC � k//6 C 0L exp.h?L/:

Iterating this process, we finally get, for large L,

N.n;L/6 CLn�1 exp.h?L/:

4.2 The case ? is separating

In this section we assume ? is separating, and we write † n ? D†1 t†2, where the surfaces †j are
connected. Up to applying a diffeomorphism to †, we may assume that ? represents the class

(4-9) Œa1; b1� � � � Œag1 ; bg1 �D Œag; bg�
�1
� � � Œag1C1; bg1C1�

�1
2 �1.†/

(see Figure 4). Here g1 is the genus of the surface †1, and the genus g2 of †2 satisfies g1C g2 D g.

We set �1.†/D �1.†; x?/ and �1.†j /D �1.†j ; x?/ for j D 1; 2 (we see †j as a compact surface with
boundary ? so that x? lives on both surfaces). Then �1.†1/ and �1.†2/ are the free groups generated
by a1; b1; : : : ; ag1 ; bg1 and ag1C1; bg1C1; : : : ; ag; bg, respectively, and we denote by w?;1 and w?;2 the
two natural words given by (4-9) representing ? in �1.†1/ and �1.†2/, respectively. Note that we have
a well-defined map

�1.†1/��1.†2/! �1.†/; .w1; w2/ 7! w2w1;

given by the composition of two curves.
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Lemma 4.4 For j D 1; 2, the map qj;� W �1.†j /! �1.†/ induced by the inclusion †j ,!† is injective.

Proof For j D 1; 2 let hw?;j i be the infinite cyclic group of �1.†j / generated by w?;j , and let
� W hw?;1i! hw?;2i be the isomorphism given by �.w?;1/Dw?;2. By (4-1), the group �1.†/ is the free
product with amalgamation �1.†1/�� �1.†2/, that is, the finitely presented group given by

�1.†1/�� �1.†2/D fa1; b1; : : : ; ag; bg W w?;1 D �.w?;1/gI

see [30, Section IV.2]. With this representation, the map qj;� coincides with the natural map �1.†j /!
�1.†1/�� �1.†2/, which is injective by [30, Theorem IV.2.6].

For any w 2 �1.†/, we will denote by Œw� its conjugacy class and by w the unique geodesic of †
such that w is isotopic to any curve in w (in fact we will often identify Œw� and w ). Let .z†; Qg/ be the
universal cover of .†; g/, and choose Qx? 2 z† some lift of x?. Then �1.†/ acts as deck transformations
on z† and we will write

`?.w/D distz†. Qx?; w Qx?/ for w 2 �1.†/:

As in the preceding subsection, we have the orbital counting

(4-10) #fwj 2 �1.†j / W `?.wj /6 Lg � Aj e
hjL as L!1 for j D 1; 2

for some A1; A2 > 0, where hj > 0 is the topological entropy of the geodesic flow restricted to the
trapped set

Kj D f.x; v/ 2 S†
ı
j W 't .x; v/ 2 S†

ı
j for t 2Rg;

where †ıj D†j n @†j for j D 1; 2.

4.2.1 Lower bound Unlike the case where ? is not separating, we will need a better lower bound.
Namely, we prove here the following result:

Proposition 4.5 Assume that ? is separating and that h1 D h2 D h?. Then there is C > 0 such that , for
L large enough ,

(4-11) N.2;L/>
CLeh?L

log.L/4
:

If h1 ¤ h2 we have , for L large enough and h? Dmax.h1; h2/,

(4-12) N.2;L/>
Ceh?L

log.L/2
:

Note that Theorem 2 givesN.2;L/�CLeh?L if h1D h2 andN.2;L/�Ceh?L if h1¤ h2. In particular,
Proposition 4.5 gives a bound which is sharp up to a logarithmic loss, whereas in Proposition 4.2, we had
a linear loss. Indeed, obtaining a sharper bound is important here, because a linear defect would not be
sufficient to obtain Theorem 2 in the case h1 D h2 — at least with our methods. If h1 ¤ h2, a linear loss
would nevertheless be sufficient, but our proof of (4-11) actually gives (4-12) without too much effort.
We refer to Remarks 5.2, 5.3 and 5.4 for a more detailed discussion about the importance of (4-11).
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The strategy to prove Proposition 4.5 is the following. We wish to construct enough closed geodesics
intersecting ? exactly twice by considering conjugacy classes of the form Œw2w1� where wj 2�1.†j / for
j D 1; 2. Lemma 4.6 will tell us that, if wj is not a power of w?;j for j D 1; 2, then the closed geodesic
representing Œw2w1� indeed intersects ? exactly twice. Next, in Lemma 4.7, we describe the injectivity
defect of the map .w1; w2/ 7! Œw2w1�. Finally, in Proposition 4.8, we show that this injectivity defect is
not too harmful in the sense that there are not too many wj ; w0j 2 �1.†j / such that Œw2w1�D Œw02w

0
1�.

This will allow us to obtain the desired bound with a logarithmic loss.

Lemma 4.6 For two elements wj 2 �1.†j / for j D 1; 2, we have i.w2w1 ; ?/D 2 except if wj Dwk?;j
in �1.†j / for some k 2 Z and j 2 f1; 2g, in which case i.w2w1 ; ?/D 0.

Proof Let  WR=Z!† be a smooth curve in the free homotopy class of w2w1 such that

f� 2R=Z W .�/ 2 ?g D f�1; �2g for some �1 ¤ �2 2R=Z:

We may also choose  so that  jŒ�1;�2� (resp.  jŒ�2;�1�) is homotopic to some representative 1 W Œ0; 1�!†1

of w1 (resp. some representative 2 W Œ0; 1�!†2 of w2) relative to ?, meaning that there is a homotopy
between  jŒ�1;�2� and 1 with endpoints (not necessarily fixed) in ?. Here Œ�1; �2��R=Z is the interval
linking �1 and �2 in the counterclockwise direction.

As w2w1 minimizes the quantity i.; ?/ for  2 Œw2w1 � (see Lemma 2.1) we have either i.w2w1 ; ?/D0
or i.w2w1 ; ?/D 2. If i.w2w1 ; ?/D 0, then there exists a homotopy H W Œ0; 1��R=Z!† such that
H.0; � /D  and H.1; � /D  , so that H.1; �/ … ? for any � . As in the proof of Lemma 4.3, we may
assume that H is transverse to ?, in the sense that

dH.s; �/.T.s;�/.Œ0; 1��R=Z//CTH.s;�/? D TH.s;�/† for H.s; �/ 2 ?;

so that the preimage
H�1.?/� Œ0; 1��R=Z

is an embedded submanifold of Œ0; 1� �R=Z (see Figure 5). As H�1.?/ \ fs D 0g D f�1; �2g and
H�1.?/ \ fs D 1g D ∅, it follows that there is an embedding F W Œ0; 1� ! Œ0; 1� � R=Z such that
F.0/D .0; �1/, F.1/D .0; �2/ and

F.t/ 2H�1.?/ for t 2 Œ0; 1�:

As F is an embedding, F is homotopic (by a homotopy which preserves the endpoints) either to JŒ�1;�2�
or to JŒ�2;�1�, where JŒ�;� 0� W Œ0; 1�! Œ0; 1��R=Z is the natural map that sends Œ0; 1� to f0g � Œ�; � 0�. We
may assume without loss of generality that F � JŒ�1;�2�. In particular, writing F D .S; T /, the map T is
homotopic to IŒ�1;�2� D p2 ı JŒ�1;�2�, where p2 W Œ0; 1��R=Z!R=Z is the projection over the second
factor. This means that there is G W Œ0; 1�� Œ0; 1�!R=Z such that, for any s; t 2 Œ0; 1�,

G.s; 0/D �1; G.s; 1/D �2; G.0; t/D �1C t .�2� �1/ and G.1; t/D T .t/:
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H�1.?/

f0g �R=Z

f1g �R=Z

.0; �1/
.0; �2/

Figure 5: Proof of Lemma 4.6. The path linking .0; �1/ to .0; �2/ is the image of F .

Now we set zH.s; t/DH.sS.t/; G.s; t// for s; t 2 Œ0; 1�. Then

zH.0; t/D .�1C t .�2� �1// and zH.1; t/D .H ıF /.t/ for t 2 Œ0; 1�;

zH.s; 0/DH.0; �1/D x1 and zH.s; 1/DH.0; �2/D x2 for s 2 Œ0; 1�:

We conclude that t 7!  jŒ�1;�2�.�1C t .�2� �1//, and thus 1, is homotopic (relative to ?) to some curve
contained in ?. Thus w1Dwk? , for some k 2Z, in �1.†/. As the inclusion �1.†j /!�1.†/ is injective
by Lemma 4.4, the lemma follows.

Now, we need to understand when the geodesics given by Œw2w1� and Œw02w
0
1� are the same. This is the

purpose of the following:

Lemma 4.7 Take wj ; w0j 2 �1.†j / for j D 1; 2 such that i.Œw2w1�; ?/D 2. Then Œw2w1�D Œw02w
0
1�

as conjugacy classes of �1.†/ if and only if there are p; q 2 Z such that

(4-13) w2 D w
p
?;2w

0
2w

q
?;2 and w1 D w

�q
?;1w

0
1w
�p
?;1:

Proof Again, let  WR=Z!† be a smooth curve intersecting ? transversely such that

f� 2R=Z W .�/ 2 ?g D f�1; �2g for some �1 ¤ �2 2R=Z;

with .Œ�1; �2�/ � †1 and .Œ�2; �1�/ � †2. Let xj D .�j / for j D 1; 2, and chose arbitrary paths cj
contained in ? linking xj to x?. Note that all the preceding choices can be made so that the curve
1Dc2 jŒ�1;�2�c

�1
1 (resp. 2Dc1 jŒ�2;�1�c

�1
2 ) representswp?w1w

q
? (resp.w�q? w2w

�p
? ) for some p; q2Z.

We may proceed in the same way to obtain  0, � 01, � 02, c01, c02, p0 and q0 so that the same properties hold
with w1 and w2 replaced by w01 and w02. By hypothesis,  is freely homotopic to  0. Thus we may find a
smooth map H W Œ0; 1��R=Z!† such that H.0; � /D  and H.1; � /D  0. As in Lemma 4.6, H may
be chosen to be transverse to ?, so that

H�1.?/� Œ0; 1��R=Z
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is a finite union of smooth embedded submanifolds of Œ0; 1��R=Z. Let .x; �/ W†!R=Z� .�"; "/ be
coordinates near ? such that f� D 0g D ? and j�j D dist.?; � /, and such that f.�1/j�1� > 0g �†j .
As H�1.?/\fs D 0g D f�1; �2g and H�1.?/\fs D 1g D f� 01; �

0
2g, we have two smooth embeddings

F1; F2 W Œ0; 1�! Œ0; 1� �R=Z such that Fj .Œ0; 1�/ � H�1.?/ and Fj .0/ D .0; �j / for j D 1; 2, with
Fj .1/D �

0
1 or � 02 (indeed we have i.; ?/D 2 and thus there is a path in H�1.?/ linking fs D 0g to

fs D 1g, since otherwise we could proceed as in the proof of Lemma 4.6 to obtain that i.; ?/D 0). In
fact, F1.1/D .1; � 01/ and F2.1/D .1; � 02/, which we shall prove later. Set Fj D .Sj ; Tj / and

zH.s; t/DH
�
.1� t /S1.s/C tS2.s/; T1.s/C t .T2.s/�T1.s//

�
for s; t 2 Œ0; 1�:

Then

zH.0; t/D .�1C t .�2� �1// and zH.1; t/D  0.� 01C t .�
0
2� �

0
1// for t 2 Œ0; 1�;

zH.s; 0/DH.S1.s/; T1.s// and zH.s; 1/DH.S2.s/; T2.s// for s 2 Œ0; 1�:

For j D 1; 2, let cj .s/; s 2 Œ0; 1� be paths, contained in ? depending continuously on s and linking Tj .s/
to x?, such that cj .0/D cj . Then the construction of zH shows that

c2.0/ jŒ�1;�2�c1.0/
�1
� c2.1/

0
jŒ� 01;�

0
2�
c1.1/

�1;

and reversing the role of �1 and �2 in the constructions made above,

c1.0/ jŒ�2;�1�c2.0/
�1
� c1.1/

0
jŒ� 02;�

0
1�
c2.1/

�1:

Thus we obtain

w
p
?w1w

q
? D c2.1/c

0�1
2 w

p0

? w
0
1w

q0

? c
0
1c1.1/

�1 and w
�q
? w2w

�p
? D c1.1/c

0�1
1 w

�q0

? w2w
�p0

? c02c2.1/
�1;

which is the conclusion of Lemma 4.7 as the paths c1.1/c0�11 and c2.1/c0�12 are contained in ? (and,
again, the inclusions �1.†j /! �1.†/ for j D 1; 2 are injective).

Thus it remains to show that Fj .1/D .1; � 0j / for j D 1; 2. We extend � into a smooth function � W†!R

such that .�1/j�1� > 0 on †j n?. There exists a continuous path G W Œ0; 1�! .Œ0; 1��R=Z/nH�1.?/

such that

G.0/ 2 f0g � ��1; �2Œ and G.1/ 2 f1g � .R=Z n f� 01; �
0
2g/:

(Indeed, otherwise it would mean that there is a continuous path in Œ0; 1��R=Z linking .0; �1/ to .0; �2/,
which would imply, as in Lemma 4.6, that i.; ?/D 0.) In particular, �ıH ıG >0 since �.H.0; �// > 0
for � 2 ��1; �2Œ. Thus necessarily G.1/ 2 f1g � �� 01; �

0
2Œ, since �.H.1; �// < 0 for � 2 �� 02; �

0
1Œ. Now, as

Im.F1/\ Im.F2/D∅ (again, if the intersection was not empty we could find a path linking .0; �1/ to
.0; �2/), we have that G.1/ lies in �T1.1/; T2.1/Œ. Since .� ıH ıG/.1/ > 0, it follows that T1.1/D � 01
and T2.1/D � 02.

The above lemma motivates the next result:
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Proposition 4.8 There is a constant C > 0 such that the following holds. For any w 2 �1.†j / such that
w is not a power of w?;j , there are pw ; qw 2 Z such that if w0 D wpw?;jww

qw
?;j ,

(4-14) `?.w
p
?;jw

0w
q
?;j /> .jpjC jqj/`.?/C `?.w

0/�C for p; q 2 Z:

In what follows, for any x; y 2 z† we will denote by Œx; y� the unique geodesic segment joining x and y.
Before starting the proof of Proposition 4.8, we state a classical result valid in negatively curved spaces:

Lemma 4.9 For each ı > 0 there exists a constant C > 0 such that the following holds. For any sequence
of geodesic segments Œx0; x1�; Œx1; x2�; Œx2; x3� in z† such that dist.x1; x2/ > ı and such that the angle
between Œxj�1; xj � and Œxj ; xjC1� is equal to˙1

2
� for j D 1; 2,

(4-15) dist.x0; x3/> dist.x0; x1/C dist.x1; x2/C dist.x2; x3/�C:

We will need the following intermediate result:

Fact 4.10 For any " > 0 there is C > 0 such that , for any pairwise distinct points x; y; z 2 z† such that
the absolute value of the angle (taken in ���; ��) between Œx; y� and Œy; z� is not smaller than ", we have

dist.x; z/> dist.x; y/C dist.y; z/�C:

Proof We prove the result by comparing z† with a model space of constant curvature, as follows. Let
a D dist.x; y/, b D dist.y; z/, c D dist.x; z/ and  D †.Œx; y�; Œy; z�/. Let z†k be a simply connected
complete Riemannian surface with constant curvature �k2 < 0 such that � 6 �k2 everywhere for some
k > 0 (recall that � is the curvature of †). Consider any points Nx; Ny; Nz 2 z†k such that

distk. Nx; Ny/D a; distk. Ny; Nz/D b and †.Œ Nx; Ny�; Œ Ny; Nz�/D ;

where distk is the distance in z†k , and set Nc D distk.x; z/. Then by a classical trigonometric formula for
spaces of constant negative curvature (see [11, I.2.7]),

ch.k Nc/D ch.ka/ ch.kb/� sh.ka/ sh.kb/ cos./:

As  2 ���; �� n ��"; "Œ, we have cos./6 1� � for some � 2 �0; 1Œ depending on ". Thus

ch.k Nc/> � ch.ka/ ch.kb/:

Using 1
2

exp.t/6 ch.t/6 exp.t/ for t > 0, one gets

Nc > aC bC
log
�
1
4
�
�

k
:

As the scalar curvature of z† is everywhere not greater than �k2, the space z† is a CAT.�k2/ space; see
[11, Theorem II.4.1]. In particular, by comparison, one obtains c > Nc (see [11, Proposition II.1.7]), which
concludes the proof.
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Figure 6: Proof of Lemma 4.9.

Proof of Lemma 4.9 Let x0, x1, x2 and x3 be as in the statement. For j D 0; 1; 2 we set dj D
dist.xj ; xjC1/. We first assume one of the numbers d0 or d2 is not greater than ı, say d0 6 ı. Then
Fact 4.10 (applied with x D x1, y D x2 and z D x3) yields dist.x1; x3/> d1C d2�C , and thus

dist.x0; x3/> dist.x1; x3/� dist.x0; x1/> d1C d2CC � d0 > d0C d1C d2CC � 2ı:

Therefore we may assume that d0; d2 > ı. Applying Fact 4.10 for the points x0, x1 and x2 yields

(4-16) dist.x0; x2/> d0C d1�C:

For any pairwise distinct x; y; z 2 z†, we denote by �.x; y; z/ the triangle generated by x, y and z. Then
as d0; d1 > ı, the triangle �.x0; x1; x2/ contains some triangle �.x; y; z/ with a right angle at y and
dist.x; y/D dist.y; z/D ı (namely, y D x1, x 2 Œx1; x0� and z 2 Œx1; x2�). Clearly the area j�.x; y; z/j
of �.x; y; z/ is bounded from below by some constant D>0 depending only on ı > 0 (indeed, it suffices
to verify this property for x, y and z lying in a compact set given by a finite union of fundamental
domains of †). Therefore, j�.x0; x1; x2/j>D. Let ˛ and ˇ be the angles of �.x0; x1; x2/ at x0 and x2,
respectively (see Figure 6). Let Q�g bet the Riemannian measure of z†, and Q� its scalar curvature. Then,
by the Gauss–Bonnet formula [29, Theorem 9.3],Z

�.x0;x1;x2/

Q� d Q�g C 1
2
� C .� �˛/C .� �ˇ/D 2�:

This gives

ˇ 6 1
2
� �˛� k2j�.x0; x1; x2/j6 1

2
� � k2D:

Therefore the angle between Œx0; x2� and Œx2; x3� is not smaller than k2D. In particular, we may apply
Fact 4.10 to get dist.x0; x3/> dist.x0; x2/C d2�C for some C depending only on k2D. Combining
this with (4-16), we conclude the proof.

Proof of Proposition 4.8 We fix j 2 f1; 2g and write w?Dw?;j for simplicity. Let w 2 �1.†j / be such
that w ¤ wk? for any k. Then w is not the trivial element, and thus it is hyperbolic. Recall that .z†; Qg/ is
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Figure 7: Proof of Proposition 4.8.

the universal cover of .†; g/ and that �1.†/ acts by deck transformations on z†. For any u 2 �1.†/nf1g,
we denote by

u˙ D lim
k!C1

u˙k.z/

the two distinct fixed points of u in the boundary at infinity @1 z† of z† (here z denotes any point
in z†). We also denote by Au the translation axis of u, that is, the unique complete geodesic of .z†; Qg/
converging towards uC (resp. u�) in the future (resp. in the past). Note that Aww?w�1 D wAw? . As
the conjugacy classes Œww?w�1� and Œw?� both represent the geodesic ?, we have either Aw? D wAw?
or Aw? \wAw? D ∅. Since w is not a power of w?, we necessarily have Aw? \wAw? D ∅. Write
? D f's.z?/ W s 2 Œ0; `.?/�g for some z? D .x?; v?/ 2M . By hyperbolicity of the geodesic flow, there
is ı > 0 such that the following holds. For any z 2M such that infs2R distM .z; 's.z?//6 ı,

(4-17) '`.?/.z/D z D) z D 's.z?/ for some s 2R:

As `.Œww?w�1�/D `.Œw?�/D `.?/, we obtain

(4-18) dist.Aw? ; wAw?/> ı:

Let Qx 2 Aw? and Qy 2 wAw? be the unique points such that dist. Qx; Qy/ D dist.Aw? ; wAw?/, and take
p; q 2Z. Then dist. Qx; Qy/> ı by (4-18), and thus we may apply Lemma 4.9 with the sequence of geodesic
segments Œw�p? Qx?; Qx�, Œ Qx; Qy�, Œ Qy;ww

q
? Qx?� to obtain

dist.wwq? Qx?; w
�p
? Qx?/> dist.wwq? Qx?; Qy/C dist. Qy; Qx/C dist. Qx;w�p? Qx?/�C

for some C > 0 independent of w, p and q (see Figure 7). Next, let pw ; qw 2 Z such that

dist. Qx;w�pw? Qx?/ < `.?/ and dist. Qy;wwqw? Qx?/ < `.?/:

Then, for any p; q 2 Z,

dist. Qx;w�p? Qx?/> jp�pw j`.?/� `.?/ and dist. Qy;wwq? Qx?/> jq� qw j`.?/� `.?/;
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which yields

dist.wp?ww
q
? Qx?; Qx?/> .jp�pw jC jq� qw j/`.?/C dist. Qx; Qy/�C � 2`.?/:

Finally, we note that

dist. Qx; Qy/> dist.wwqw? Qx?; w
�pw
? Qx?/� 2`.?/D `?.w

pw
? ww

qw
? /� 2`.?/:

Building on Lemmata 4.6 and 4.7 and Proposition 4.8, we prove Proposition 4.5:

Proof of Proposition 4.5 In what follows, C is a positive constant independent of L that may change
at each line. First, assume that h1 D h2 D h?. For j D 1; 2 we denote by hw?;j i D fwn?;j W n 2 Zg the
infinite cyclic subgroup of �1.†j / generated by w?;j , and we set �1.†j /? D �1.†j / n hw?;j i. Since
`?.w

n
?;j /D jnj`.?/, there is C such that, for any large L,

(4-19) C�1eh?L 6N?;j .L/6 Ceh?L

by (4-10), where N?;j .L/D #fw 2 �1.†j /? W `?.w/6 Lg. For w 2 �1.†j /?, we set

Cw D fw
p
?ww

q
? W p; q 2 Zg � �1.†j /?;

and we define Cj D fCw W w 2 �1.†j /?g. Note that the elements C 2 Cj are pairwise disjoint, and thus
we have a partition

F
C2Cj

C of �1.†j /?. We also write

`?.C/D inff`?.w/ W w 2 Cg for C 2 Cj with j D 1; 2:

Then Proposition 4.8 yields

#fw 2 C W `?.w/6 Lg6 C.L� `?.C/CC/2

for any C 2 Cj such that `?.C/6 L. Thus

N?;j .L/D
X
C2Cj

`?.C/6L

#fw 2 C W `?.w/6 Lg6 C
X
C2Cj

`?.C/6L

.L� `?.C/CC/2:

Let ˇ > 0 be a large number. Then

(4-20)
X
C2Cj

`?.C/6L�ˇ logL

.L� `?.C/CC/2 6 .LCC/2 #fC 2 Cj W `?.C/6 L�ˇ logLg:

However, using (4-19), we obtain

#fC 2 Cj W `?.C/6 L�ˇ logLg6N?;j .L�ˇ logL/6 CL�h?ˇeh?L:

In particular, if h?ˇ > 2, and if Aˇ .L/ denotes the left-hand side of (4-20), we have the bound Aˇ .L/�
N?;j .L/ as L!1. Thus, for large L,

C�1N?;j .L/6
X
C2Cj

`?.C/2ŒL�ˇ logL;L�

.L� `?.C/CC/2 6 .ˇ logLCC/2 #fC 2 Cj W "L6 `.C/6 Lg;
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where " > 0 is any small number. This finally yields, for any large L,

(4-21) #fC 2 Cj W "L6 `.C/6 Lg>
C�1eh?L

.ˇ logLCC/2
:

For any C 2 Cj , we choose some wC 2 C such that `?.wC/D `?.C/. Then Lemmata 4.6 and 4.7 imply
that we have a well-defined and injective map

C1 �C2! f 2 P W i.; ?/D 2g; .C1; C2/ 7! ŒwC2wC1 �� wC2wC1
:

Obviously, `.w2w1/6 `?.w1/C `?.w2/ for any w1 and w2, and thus we get, for large L,

N.2;L/> #f.C1; C2/2C1�C2 W `?.C1/C`?.C2/6L and `?.C1/; `?.C2/> "Lg

>
X

C12C1
"L6`?.C1/6L

#fC2 2C2 W "L6 `?.C2/6L�`?.C1/g>
X

C12C1
"L6`?.C1/6L

C�1eh?.L�`?.C1//�
ˇ log.L�`?.C1//CC

�2 :
For simplicity, in what follows we will use the notation f .`/DC�1eh?`=.ˇ log.`/CC/2 andN.C1; L/D
#fC 2 Cj W "L6 `.C/6Lg. Fix some large number �> 0. Note that, if � is large enough, there is C > 0
(depending on �) such that, for any large `,

(4-22) f .`C�/�f .`/> C�1f .`/:

There holds

(4-23) N.2;L/> C�1
X

k2Œ"L=�;L=��

�
N.C1; k�/�N.C1; .k� 1/�/

�
f .L� .k� 1/�/

> C�1
X

k2Œ"L=�C1;L=��1�

N.C1; k�/
�
f .L� .k� 1/�/�f .L� k�/

�
�N.C1; "LC�/f .L� "L/;

where we used an Abel transformation in the last inequality. Next, note that by (4-19), one hasN.C1; L/6
N?;1.L/6 Ceh?L. This yields

(4-24) N.C1; "LC�/f .L� "L/DO.eh?L/

as L!1. On the other hand, (4-22) gives, for any large L,X
k2Œ"L=�C1;L=��1�

N.C1; k�/
�
f .L� .k� 1/�/�f .L� k�/

�
>

X
k2Œ"L=�C1;L=��1�

N.C1; k�/f .L� k�/

> C�1
X

k2Œ"L=�C1;L=��1�

eh?k�

.ˇ log.k�/CC/2
eh?.L�k�/

.ˇ log.L� k�/CC/2
>
C�1Leh?L.1� "/

2�.log.L/CC/4
:

We conclude the proof of Proposition 4.5 for the case h1D h2 by combining this last estimate with (4-23)
and (4-24).
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If h1 ¤ h2, say h1 > h2 (the case h1 < h2 is identical), one is able to obtain the desired bound by
considering, for example, the injective map C1! f 2 P W i.; ?/D 2g given by C 7! ŒagwC� and by
using (4-21).

4.2.2 Upper bound Clearly, each  2 P2 with `./6 L may be represented by the conjugacy class of
w1w2 for some wj 2 �1.†j / with `?.w1/C `?.w2/6 LCC . Therefore, (4-5) implies

N.2;L/6 #f.w1; w2/ 2 �1.†1/��1.†2/ W `?.w1/C `?.w2/6 LCC g

6
LCCX
kD0

C exp.h1k/ exp.h2.L� kCC//;

which gives, for large L, if h? Dmax.h1; h2/,

N.2;L/6
�
CL exp.h?L/ if h1 D h2;
C exp.h?L/ if h1 ¤ h2:

Iterating this process we obtain (with C depending on n)

N.2n;L/6
�
CL2n�1 exp.h?L/ if h1 D h2;
CLn�1 exp.h?L/ if h1 ¤ h2:

4.3 Relative growth of closed geodesics with a small intersection angle

For xD ?.�/2 Im.?/, we let v?.x/D P?.�/. For any �>0 small, we consider the numberN.n; �; L/D
#P�;n.L/, where P�;n.L/ is the set of closed geodesics  WR=`./Z!† of length not greater than L,
intersecting ? exactly n times, and such that there is t 2R=`./Z with .t/ 2 Im.?/ and

angle
�
P.t/; v?..t//

�
< � or angle

�
P.t/;�v?..t//

�
< �:

The purpose of this section is to prove the following estimate:

Lemma 4.11 Let n > 1. For any "; L0 > 0, there exists �0 > 0 such that , for any � 2 �0; �0Œ and any
large L,

(4-25) N.1; �; L/6 4N.1;L�L0/ and N.n; �; L/6 "Ln�1 exp.h?L/

if ? is not separating , and

(4-26) N.2; �; L/6 4N.2;L�L0/ and N.2n; �; L/6
�
"L2n�1 exp.h?L/ if h1 D h2;
"Ln�1 exp.h?L/ if h1 ¤ h2;

if ? is separating.

Proof We first prove the lemma when ? is assumed not separating. Let  W Œ0; `./�!† be an element
of P�;n.L/ parametrized by arc length. Let 06 t1 < t2 < � � �< tn < `./ be such that .tj / 2 Im.?/. For
every j D 1; : : : ; n, we choose a path cj contained in Im.?/ of length not greater than `.?/ that links
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xj D .tj / to x?. Recall that we have a map q? W †?! † given by the identification of the boundary
components of †?. Write q�1? .x?/D fx?; Nx?g, where we chose some x? 2†? with q?.x?/D x?, as in
Section 4.1. Then  is freely homotopic to the composition

w1w2 � � �wn; where wj D cjC1 jŒtj ;tjC1�c
�1
j 2 �1.†/ for j D 1; : : : ; n;

with the convention that tnC1 D `./ and cnC1 D c1. Note also that

`?.wj /6 jtjC1� tj jC 2`.?/:

In fact, the elements wj actually define elements of the space �1.†?; fx?; Nx?g/, that is, the space of
equivalence classes of paths c W Œ0; 1�!†? with c.0/; c.1/ 2 fx?; Nx?g, where two paths are equivalent if
they are homotopic via a homotopy preserving the endpoints. The space �1.†?; fx?; Nx?g/ is not a group
(we may not be able to concatenate two paths); however, we have a natural map �1.†?; fx?; Nx?g/!�1.†/.
In particular, for any u1; : : : ; un 2 �1.†?; fx?; Nx?g/, the composition un � � �u1 is well defined in �1.†/.
For any u 2 �1.†?; fx?; Nx?g/, we will denote by `?.u/ the infimum of the lengths of curves in the
equivalence class u.

Up to reparametrizing of  , we may assume that t1D 0, and either †.v; v?/ < � or †.v;�v?/ < �, where
we set xD .0/, v?D v?.x/ and vD P.0/. We will first assume that †.v; v?/ < �. Let L0 > 0 be a large
number and " > 0 be small. By continuity of the geodesic flow .'t /, there is �0 > 0 such that, if � < �0,

distM .'t .v/; 't .v?//6 " for t 2 Œ0; L0�:

Let K be a positive integer such that K 2 ŒL0=`.?/� 1;L0=`.?/�, so that

dist†
�
�.'K`.?/.v//; x

�
< ":

Let cK be a path in † of length not greater than " linking �.'K`.?/.v// and x. Then, if " > 0 is small
enough,11

c1cK jŒ0;K`.?/�c
�1
1 D a

K
g in �1.†/:

In particular, w1 D w01a
K
g in �1.†/, where w01 D c2 jŒK`.?/;t2�c

�1
K c�11 . Note also that

`?.w
0
1/6 jt2�K`.?/jC 2`.?/C ";

where w01 is seen as an element of �1.†?; fx?; Nx?g/. Note that if we had assumed †.v;�v?/ < �, we
would have obtained the same factorization with a�Kg instead of aKg . Next, let

AK;n.L/D

�
.w1; : : : ; wn/ 2 �1.†?; fx?; Nx?g/

n
W

nX
jD1

`?.wj /6 LC .2n�K/`.?/C "

�
;

11If " > 0 is small enough, we have the following property. For any x 2† and L> 0, if we are given two paths c; c0 W Œ0; L�!†

such that c.0/D c0.0/D c.L/D c0.L/D x and dist†.c.t/; c0.t// < ", then c and c0 define the same element in �1.†; x/.
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and consider the map ‰K;n;˙ W AK;n.L/ ! P given by .w1; : : : ; wn/ 7! Œw1 � � �wna
˙K
g �. Then the

discussion above shows that

P�;n.L/� Im.‰K;n;C/[ Im.‰K;n;�/:

In particular, N.n; �; L/ 6 2 #AK;n.L/. Next, we obtain a bound on AK;n.L/ as follows. Let c? be a
path connecting Nx? and x? in †?, so that the image of c�1? in �1.†/ is bg (see Figure 2). Then it is not
hard to see that, for any w 2 �1.†?; fx?; Nx?g/, there is u 2 �1.†?; x?/ such that w can be written as

u; c?u; uc�1? or c?uc
�1
?

(depending on the endpoints of w), with `?.u/6 `?.w/C 2`.c?/. This immediately gives

#AK;1.L/6 4 #fu 2 �1.†?/ W `?.u/6 Lg6 C exp.h?L/:

As in Section 4.1.2, we obtain, for some Cn > 0 depending only n,

#AK;n.L/6 CnL
n�1 exp.h?.L�L0//;

where we used that K`.?/> L0� `.?/. This proves the second part of (4-25). For the first part, we
proceed as follows. With the notation of the proof of Proposition 4.5, one has well-defined maps

‰K;1;˙;r ; ‰K;1;˙;l W fC 2 C W `?.w/6 L�K`.?/g ! f 2 P1 W `./6 LC 2C g;

given respectively by C 7! Œa˙Kg wbg� and C 7! Œb�1g wa˙Kg �, where w is any element of C. Next, we
remark that the above discussion implies that every  2 P�;1.L/ can be written as

Œa˙Kg wbg� or Œb�1g wa˙Kg �

for some w 2 �1.†?/ with `?.w/ 6 L�K`.?/CC . Therefore the union of the images of the maps
‰K;1;˙;r and ‰K;1;˙;l contains P�.LC 2C /, and thus

N.1; �; L/6 4 #fC 2 C W `?.w/6 L�K`.?/C 2C g6 4N.1;L�K`.?/C 3C /;

where we used the first inequality of (4-8). This gives the first part of (4-25).

Next, assume that ? is separating. Then, as above, every  W Œ0; `./�!† such that  2P2n;�.L/ can be
written as a composition w1;1w1;2 � � �w1;nw2;n for some wk;j 2�1.†k/ for kD 1; 2 and j D 1; 2; : : : ; n,
with

nX
jD1

`?.w2;j /C `?.w1;j /6 `./C 4n`.?/:

Now, if � is small, we may proceed as before to obtain (up to reparametrization of  ) thatw1;1Dw˙K?;1 w
0
1;1

or w1;1 D w01;1w
˙K
?;1 for some w01;1 2 �1.†1/ with

`?.w
0
1;1/6 `?.w1;1/�K`.?/CC:
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Here K is a large number depending on � (ie such that K !1 as �! 0) and C > 0 is a constant
independent of  and K. Thus we get

N.2n; �; L/

6C #
�
.w1;1; w2;1; : : : ; w1;n; w2;n/ Wwk;j 2�1.†k/;

nX
jD1

`?.w1;j /C`?.w2;j /6L�K`.?/CCn
�
:

Then we obtain the second part of (4-26) by proceeding as in Section 4.2.2. For the first part of (4-26),
we proceed as follows. For wj 2 �1.†j /?, we define

Cw1;w2 D f.w
0
1; w

0
2/ W Œw

0
1w
0
2�D Œw1w2�g

and `?.Cw1;w2/D inff`?.w01/C `?.w
0
2/ W .w

0
1; w

0
2/ 2 C.w1;w2/g. We also introduce the notation C1;2 D

fCw1;w2 W wj 2 �1.†j /?g. By Lemmata 4.6 and 4.7, we have well-defined maps

‰K;1;˙;r ; ‰K;1;˙;l W fC 2 C1;2 W `?.Cw1;w2/6 L�K`.?/g ! f 2 P2 W `./6 Lg

given respectively by C 7! Œw1w
˙K
?;1 w2� and C 7! Œw˙K?;1 w1w2�. By the discussion above, the union of

the images of those maps contains P2;�.L/. Therefore

N.2; �; L/6 4 #fC 2 C1;2 W `?.Cw1;w2/6 L�K`.?/g6 4N.2;L�K`.?//;

where we used Lemmata 4.6 and 4.7 again in the last inequality. The first part of (4-26) follows.

5 A Tauberian argument

The goal of this section is to give an asymptotic growth of the quantity

N˙.n; �; t/D
X
2P

i.?;/Dn
`./6t

I?;˙.; �/

as t !C1, where � 2 C1c .@ n @0/ and I?;˙.; �/D
Q
z2I?;˙./

�2.z/.

5.1 The case ? is not separating

By [15, Theorem 3 and Section 6.2], the zeta function

�†?.s/D
Y
2P?

.1� e�s`.//

extends meromorphically to the whole complex plane, and moreover we may write

�0†?.s/

�†?.s/
D

2X
kD0

.�1/k tr[.e˙"s'��"R˙;ı.s/j�kc .Mı/\ker �X
/;

where the flat trace is computed on Mı . Here P? denotes the set of primitive closed geodesics of .†?; g/.
By [12], we may apply [35, Proposition 9] (see also [36, Theorem 9.1]) to obtain that �†? is holomorphic
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in fRe.s/ > h?g, except for a simple pole at s D h?, where h? > 0 is the topological entropy of the
geodesic flow of .†?; g/ restricted to its trapped set. Write the Laurent expansion given in Section 2.6 of
R˙;ı.s/ near s D h? as

R˙;ı.s/D Y˙;ı.s/C
…˙;ı.h?/

s� h?
C

J.h?/X
jD2

.X ˙ h?/
j�1…˙;ı.h?/

.s� h?/j
W��c.Mı/! D0�.Mı/:

By [15, (5.8)], we have tr[.e˙"h?'�
�"…˙;ı.h?//D rank…˙;ı.h?/ and

tr[.'��".X ˙ h?/
j…˙;ı.h?//D 0 for j D 1; : : : ; J.h?/� 1:

We write �k D �kc .Mı/ and �k0 D �k \ ker �X . Then, by [18, Propositions 2.4 and 4.4], the map
s 7!R˙;ı.s/j�00

has no pole in fRe.s/ > 0g. Since �20 D�
0
0 ^ d˛, and R˙;ı.s/j�20 DR˙;ı.s/j�00 ^ d˛

(because '�t ˛D ˛), it follows that s 7!R˙;ı.s/j�20
has no poles in fRe.s/ > 0g. In particular, the residue

of �0†?.s/=�†?.s/ at sD h? is given by rank.…˙;ı.h?/j�10/, and since �†?.s/ has a simple pole at sD h?,
this residue is equal to 1. Therefore,

rank.…˙;ı.h?/j�10/D 1:

In particular, .X ˙ h?/j…˙;ı D 0 for each j D 1; : : : ; J.h?/� 1. As R˙;ı.s/ commutes with �X , it
preserves the spaces �k0 . Writing �k D�k0 ˚˛^�

k�1
0 we have, for any w D uC˛^ v with �XuD 0

and �Xv D 0,

…˙;ı.h?/j�2.uC˛^ v/D…˙;ı.h?/j�20
.u/C˛^…˙;ı.h?/j�10

.v/:

Thus …˙;ı.h?/j�2 D ˛ ^ �X…˙;ı.h?/j�10
. By Proposition 3.2 and the fact that '�

˙"…˙;ı.h?/ D

e˙"h?…˙;ı.h?/, we have, near s D h?,

(5-1) �zS˙.s/�D �Y˙.s/�C
� ����X…˙;ı.h?/���

s� h?
;

where s 7! Y˙.s/ is holomorphic in a neighborhood of h?. We write

…˙;@ D  
����X…˙;ı.h?/�� W�

�.@/! D0�.@/:

Then, by what precedes, and since �X…˙;ı.h?/j�1 D 0, we obtain that rank.…˙;@/6 1. Finally, for any
� 2 C1c .@ n @0/, we set

c˙.�/D tr[s.�…˙;@�/:

Lemma 5.1 Let � 2 C1c .@ n @0/ be such that c˙.�/ > 0. Then

N˙.n; �; t/�
.c˙.�/t/

n

nŠ

eh?t

h?t
as t !C1:

Proof Because �…˙;@ is of rank one, it follows that tr[s..�…˙;@/
n/D c˙.�/

n for any n> 1 (since the
flat trace of a finite-rank operator coincides with its usual trace), and thus

tr[s
�
.�zS˙.s/�/n

�
D

c˙.�/
n

.s� h?/n
CO..s� h?/�nC1/ as s! h?:

Geometry & Topology, Volume 28 (2024)



744 Yann Chaubet

Note that here we implicitly used the fact that the flat trace of products of the form

(5-2) .�Y˙.s/�/
k1.�…˙;@�/

`1.�Y˙.s/�/
k2.�…˙;@�/

`2 � � �

makes sense. Indeed, note that both WF.�…˙;@�/ and WF.�Y˙.s/�/ are contained in WF.�zS˙.s/�/
by (5-1) and Cauchy’s integral formula. Thus we may reproduce the proofs of Lemma 3.5, Remark 3.6
and Proposition 3.7 to obtain that the composition (5-2) is well defined and that its flat trace makes sense.
Next, set �n;�.s/D tr[s

�
.�zS˙.s/�/n

�
and

gn;�.t/D
X
2P

i.;?/Dn

`#./
X
k>1

k`./6t

I?;˙.; �/
k for t > 0:

Now, if Gn;�.s/D
RC1
0 gn;�.t/e

�ts dt , a simple computation leads to

Gn;�.s/D
1

s

X
i.;?/Dn

`#./e�s`./I?;˙.; �/
`./=`#./

D�
�0n;�.s/

ns
;

where the last equality comes from Proposition 3.7. Using the expansion

�0n;�.s/D�nc˙.�/
n.s� h?/

�.nC1/
CO..s� h?/�n/ as s! h?;

we obtain
Gn;�.h?s/D

c˙.�/
n

hnC2? .s� 1/nC1
CO..s� h?/�n/ as s! h?:

Then, applying the Tauberian theorem of Delange [14, théorème III],

1

h?
gn;�

�
t

h?

�
�
c˙.�/

n

hnC2?

et

nŠ
tn as t !C1;

and so

(5-3) gn;�.t/�
.c˙.�/t/

n

nŠh?
exp.h?t /:

Now note that, if Pn is the set of primitive closed geodesics  with i.; ?/D n,

gn;�.t/6
X
2Pn
`./6t

`./

�
t

`./

�
I?;˙.; �/6 tN.n; �; t/:

As a consequence,

(5-4) lim inf
t!C1

N˙.n; �; t/
nŠh?t

.c˙.�/t/neh?t
> 1:

For the other bound, we use the a priori bound, obtained in Section 4.1.2,

(5-5) N˙.n; �; t/6N.n; t/6 Ctn

nŠ

eh?t

h?t

to deduce that, for any � > 1,

(5-6) lim sup
t!C1

N˙

�
n; �;

t

�

�nŠ
tn
h?t

eh?t
D 0:
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Now we may write

(5-7) N˙.n; �; t/DN˙

�
n; �;

t

�

�
C

X
2P

i.?;/Dn
t=�6`./6t

I?;˙.; �/

6N˙

�
n; �;

t

�

�
C
�

t

X
2P

i.?;/Dn
t=�6`./6t

I?;˙.; �/`./6N˙

�
n; �;

t

�

�
C
�

t
gn;�.t/;

which gives, with (5-3) and (5-6),

lim sup
t!C1

N˙.n; �; t/
nŠ

.c˙.�/t/n
h?t

eh?t
6 �:

As � > 1 is arbitrary, the lemma is proven.

Remark 5.2 If we assume that c˙.�/D 0, then with the notation of the above proof, the map s 7! �1;�.s/

has no pole on the line fRe.s/Dh?g. In particular, we may reproduce the arguments of the aforementioned
proof, replacing gn;�.t/ by gn;�.t/C exp.h?t /, to obtain that s 7!

R1
0 .gn;�.t/C exp.h?t // exp.�ts/ dt

has a pole of order 1 at s D h?, which implies that gn;�.t/C exp.h?t /� exp.h?t / as t !1. This gives
gn;�.t/�t!1 exp.h?t /, and hence

N˙.1; �; t/�
exp.h?t /

t
as t !1;

where we used the last line of (5-7) and (5-5). Note that this bound is incompatible with the one provided
by Proposition 4.2; this will help us to prove that c˙.�/ > 0, by showing that N.1; t/ can be controlled
by N˙.1; �; t/ whenever � has enough support (see Section 6.1).

5.2 The case ? is separating

In this case, †ı consists of two surfaces, †.1/
ı

and †.2/
ı

. We write Mı DM
.1/

ı
tM

.2/

ı
, where M .j /

ı
D

S†
.j /

ı
for j D 1; 2, and @D @.1/t @.2/ with @.j / �M .j /

ı
. Note that, if zS.j /˙ .s/ denotes the restriction of

zS˙.s/ to @.j /, we have

zS.1/˙ .s/ W�
�.@.1//! D0�.@.2// and zS.2/˙ .s/ W�

�.@.2//! D0�.@.1//:

As in Section 5.1,

�zS.j /˙ .s/�D �Y
.j /
˙
.s/�C

�…
.j /

˙;@
�

s� hj
as s! hj ;

with rank.….j /
˙;@
/D 1. Here Y .j /

˙
.s/ is holomorphic near s D hj and hj is the topological entropy of the

geodesic flow of †.j /
ı

. As before, fix � 2 C1c .@ n @0/.
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5.2.1 The case h1 ¤ h2 We may assume h1 > h2, and we define

c˙.�/D tr[s.�zS
.2/

˙ .h1/�
2…

.1/

˙;@
�/:

Because ….1/
˙;@

is of rank one, tr[s
�
.�zS.2/˙ .h1/�2…

.1/

˙;@
�/n

�
D c˙.�/

n for any n> 1, and thus, by cyclicity
of the flat trace (indeed the flat trace coincides with the real trace for operators of finite rank), as s! h1,

tr[s
�
.�zS˙.s/�/2n

�
D tr[s

�
.�zS.1/˙ .s/�

2 zS.2/˙ .s/�/
n
C .�zS.2/˙ .s/�

2 zS.1/˙ .s/�/
n
�

D
2c˙.�/

n

.s� h1/n
CO..s� h1/�nC1/:

Now we may proceed exactly as in Section 5.1 to obtain that, if c˙.�/ > 0,

N˙.2n; �; t/�
.c˙.�/t/

n

nŠ

eh?t

h?t
as t !C1:

Remark 5.3 (continuation of Remark 5.2) If h1 ¤ h2 and if we assume that c˙.�/D 0, then the map
s 7! tr[s

�
.�zS˙.s/�/2

�
has no pole on the line fRe.s/D h?g. As in Remark 5.2, this yields

(5-8) N˙.2; �; t/�
exp.h?t /

t
as t !1:

Again, the bound given in Proposition 4.5 is incompatible with (5-8) — in fact, even a weaker bound (say,
a lower bound with a linear loss with respect to Theorem 2) would be incompatible with (5-8) for the
case h1 ¤ h2 — and this will imply that c˙.�/ is positive.

5.2.2 The case h1 D h2 D h? In that case, by writing c˙.�/D tr[s.�…
.1/

˙;@
�…

.2/

˙;@
/, we have

tr[s
�
.�zS˙.s/�/2n

�
D

2c˙.�/
n

.s� h?/2n
CO..s� h?/�2nC1/ as s! h?:

Again, provided that c˙.�/¤ 0, we may proceed exactly as in Section 5.1 to obtain

N˙.2n; �; t/� 2
.c˙.�/t

2/n

.2n/Š

eh?t

h?t
:

Remark 5.4 (continuation of Remark 5.3) If h1 D h2 and c˙.�/ D 0, then the function s 7!

tr[s
�
.�zS˙.s/�/2

�
might have a pole at s D h?, of order at most 1. Therefore, reproducing the arguments

of Section 5.1, we obtain

(5-9) N˙.2; �; t/DO.exp.h?t // as t !1:

Note that here, assuming c˙.�/D 0 only wins us a factor of t for the bound on N˙.2; �; t/ (with respect
to the asymptotics of Theorem 2), whereas in Remarks 5.2 and 5.3 we could win a bit more. This is
why we need a lower bound on N.2;L/ which is sharp up to a sublinear loss for the case where h1 D h2
(see Proposition 4.5 and the comments below). Indeed, we will see that N.2; t/ can be controlled by
N˙.2; �; t/ whenever � has enough support; hence, Proposition 4.5 will contradict (5-9), yielding again
c˙.�/ > 0 (see Section 6.2).
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6 Proof of Theorems 1 and 2

In this section we prove Theorems 1 and 2. We will apply the asymptotic growth we obtained in the last
section to some appropriate sequence of functions in C1c .@ n @0/. Let F 2 C1.R; Œ0; 1�/ be an even
function such that F � 0 on Œ�1; 1� and F � 1 on ��1;�2�[ Œ2;C1Œ. For any small � > 0, set

F�.t/D
X
k2Z

F
�
t�k�

�

�
:

Then F� is 2�–periodic and it induces a function F� WR=2�Z!R>0. In the coordinates from Lemma 2.3,
we define

��.z/D F�.�/ for z D .�; 0; �/ 2 @:

Then �� 2 C1c .@ n @0/ for any � > 0 small; the function �� is introduced in order to forget about
trajectories passing at distance not greater than � from the “glancing set” S?.

6.1 The case ? is not separating

Recall from Section 4 that we have the a priori bounds

(6-1) C�1
eh?L

h?L
6N.1;L/6 Ceh?L

for L large enough. This estimate implies the following fact:12

8" > 0 9L0 > 0 8L1 > 0 9L> L1 N.1;L�L0/6 "N.1;L/:

In particular, we see with the first part of (4-25) in Lemma 4.11 that, for any � > 0 small enough,

(6-2) lim inf
L!C1

N.1; �; L/

N.1;L/
6 1

2
;

where N.1; �; L/ is as defined in Section 4.3.

For � > 0 small and L > 0, neither c˙.��/ nor N˙.n; ��; L/ (see Section 5.1) depend on ˙, since F
is an even function. We denote them simply by c.�/ and N.n; ��; L/, respectively. Then we claim that
c.�/ > 0 if � > 0 is small enough. Indeed, if c.�/D 0, then Remark 5.2 implies

(6-3) N.1; ��; L/�
exp.h?L/
h?L

as L!C1:

On the other hand, N.1;L/DN.1; ��; L/CR.�;L/ with

R.�;L/DN.1;L/�N.1; ��; L/6N.1; 2�;L/;

12If it does not hold, then there is an " > 0 such that, for any L0 > 0, there is an L1 such that, for any n > 0, it holds that
" < N.1;L1CnL0/=N.1;L1C .nC 1/L0/, which gives N.1;L1C .nC 1/L0/"n <N.1;L1/ for each n. Now, if L0 is large
enough, we see that (6-1) cannot hold, by making n!1.
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and thus, if � is small enough, (6-2) gives

lim sup
L!C1

N.1; ��; L/

N.1;L/
> 1

2
:

Since C�1 exp.h?L/=L6N.1;L/ for large L, (6-3) cannot hold, and thus c.�/ > 0.

In particular, we can apply Lemma 5.1 to get limLN.n; ��; L/.nŠ=.c.�/L/n/.h?L=eh?L/ D 1. As
N.n;L/>N.n; ��; L/, for L large enough,

C�1
Ln

nŠ

eh?L

h?L
6N.n;L/6 C

Ln

nŠ

eh?L

h?L

(the upper bound comes from Section 4.1.2). Let " > 0. Then the above estimate combined with the
second part of (4-25) in Lemma 4.11 implies that, for � > 0 small enough,

lim sup
L

R.n; �; L/
nŠ

Ln
h?L

eh?L
< ";

where R.n; �; L/DN.n;L/�N.n; ��; L/. Writing N.n; ��; L/6N.n;L/6N.n; ��; L/CR.n; �; L/,
we obtain

c.�/n 6 lim inf
L

N.n;L/
nŠ

Ln
h?L

eh?L
6 lim sup

L

N.n;L/
nŠ

Ln
h?L

eh?L
6 c.�/nC "

for any � small enough (depending on "Š). As " > 0 is arbitrary, we finally get

N.n;L/�
.c?L/

n

nŠ

eh?L

h?L
as L!C1;

where c? D lim�!0 c.�/ <C1 (the limit exists as � 7! c.�/ is nonincreasing and bounded by above
by (6-1)).

6.2 The case ? is separating

6.2.1 The case h1 ¤ h2 In this case, recall from Section 4 that we have the bound

C�1eh?L

log.L/2
6N.2;L/6 Ceh?L

for L large enough. In particular, using (4-26) in Lemma 4.11 and Remark 5.3, we may proceed exactly
as in Section 6.1 to obtain

N.2n;L/�
.c?L/

n

nŠ

eh?L

h?L
as L!C1;

where c? D lim�!0 c˙.��/.

6.2.2 The case h1 D h2 D h? In this case, recall from Section 4 that we have the bound

C�1Leh?L

log.L/4
6N.2;L/6 CLeh?L
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for L large enough. In particular, using Lemma 4.11 and Remark 5.4, we may proceed exactly as in
Section 6.1 to obtain

N.2n;L/� 2
.c?L/

n

.2n/Š

eh?L

h?L
as L!C1;

where c? D lim�!0 c˙.��/.

7 A Bowen–Margulis type measure

7.1 Description of the constant c?

In this subsection we describe the constant c? in terms of Pollicott–Ruelle resonant states of the open
system .Mı ; 't /, assuming for simplicity that ? is not separating. By Section 2.6, since …˙;ı.h?/ is of
rank one (see Section 5.1), we may write

…˙;ı.h?/j�1.Mı/ D u˙˝ .˛^ s�/ for u˙ 2 D01E�
˙;ı

.Mı/ and s� 2 D01E�
�;ı

.Mı/;

with supp.u˙; s˙/� �̇ ;ı and u˙; s� 2 ker.�X /. Using the Guillemin trace formula [19] and the Ruelle
zeta function �†? , we see that the Bowen–Margulis measure �0 (see [9]) of the open system .Mı ; 't /,
which is given by Bowen’s formula

�0.f /D lim
L!C1

X
2Pı
`./6L

1

`./

Z `./

0

f ..�/; P.�// d� for f 2 C1c .Mı/;

coincides with the distribution f 7! tr[s.f …˙;ı.h//D
R
Mı
f u˙^˛^s�. Note that supp.u˙^˛^s�/�K?,

where K? � S†? is the trapped set. On the other hand, by definition of …˙;@,

c? D lim
�!0

tr[s.��…˙;@/D� lim
�!0

Z
@

�� 
���u˙ ^ �

�s�:

7.2 A Bowen–Margulis type measure

In what follows we set S?†D f.x; v/ 2 S† W x 2 ?g and, for any primitive geodesic  WR=`./Z!†,

I?./D fz 2 S?† W z D ..�/; P.�// for some �g:

For any n> 1, we define the set �n � S?† by

{�n D fz 2 S?† W . zS˙/k.z/ is well defined for k D 1; : : : ; ng:

Also, we set `n.z/Dmax.`C;n.z/; `�;n.z//, where

`˙;n.z/D `˙.z/C `˙. zS˙.z//C � � �C `˙. zS
n�1
˙ .z// for z 2 {�n;

and `˙.z/D infft > 0 W '˙t .z/ 2 S?†g.

We will now prove Theorem 3, which says that, for any f 2 C1.S?†/, the limit

(7-1) �n.f /D lim
L!C1

1

N.n;L/

X
2Pn

1

n

X
z2I?./

f .z/
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exists and defines a probability measure �n on S?† supported in �n. We will also prove that, in the
nonseparating case,

(7-2) �n.f /D c
�n
? lim

�!0
tr[s.f .��…˙;@��/

n/;

where c? > 0 is the constant appearing in Theorem 1. Note that here we identify f with its lift p�?f
(which is a function on @), so that the above formula makes sense (recall that p? W S†?! S† is the
natural projection which identifies both components of @S†? D @). Of course, a similar formula holds in
the nonseparating case, but we omit it here.

Proof of Theorem 3 Let f 2 C1.S?†/ be a nonnegative function. Then, reproducing the arguments
in the proof of Proposition 3.7, for Re.s/ big enough,

tr[s
�
f .�� zS˙.s/��/n

�
D

X
i.;?/Dn

� X
z2I?./

f .z/

�
e�s`./I?.; ��/;

where �� is as defined in Section 6 and I?.; ��/ D I?;˙.; ��/ (see Section 5; this does not depend
on ˙, as the function F used to construct �� is even). Now, as f is nonnegative, we may proceed exactly
as in Section 5, replacing gn;�.t/ by

gn;��;f .t/D
X
2P

i.;?/Dn

� X
z2I?./

f .z/

� X
k>1

k`./6t

I?.; ��/ for t > 0;

to obtain that

(7-3) lim
L!1

nŠ

Ln
h?L

eh?L

X
2P

i.?;/Dn
`./6L

� X
z2I?./

f .z/

�
I?.; ��/D RessDh? tr[s

�
f .�� zS˙.s/��/n

�
:

We denote by �n;�.f / the left-hand side of (7-3). Then � 7! �n;�.f / is a nonnegative and nonincreasing
function which is bounded by above by ncn?kf k1 by Theorem 1. In particular, the formula

�n.f /D lim
�!0

1

ncn?
�n;�.f / for f 2 C1.S?†;R>0/

defines a measure �n on S?† whose total mass is not greater than 1. In fact, its total mass is equal to 1,
since, by definition of c?,

�n.1/D lim
�!0

nc˙.��/
n

ncn?
D 1:

Let " > 0. Then, for each f 2 C1.S?†;R>0/, one has, by Lemma 4.11,X
2P

i.?;/Dn
`./6L

� X
z2I?./

f .z/

�
.1� I?.; ��//6 nN.n; �; L/kf k1 6 "nN.n;L/kf k1
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for large L whenever � is small enough. In particular, setting

�Cn .f /D lim sup
L

Af .n; L/

nN.n;L/
and ��n .f /D lim inf

L

Af .n; L/

nN.n;L/
;

where
Af .n; L/D

X
2P

i.?;/Dn
`./6L

� X
z2I?./

f .z/

�
;

we see that, for each " > 0 and � small depending on ",

j�˙n .f /� �n;�.f /j6 "kf k1:

Indeed, setting

Af .n; �; L/D
X
2P

i.?;/Dn
`./6L

� X
z2I?./

f .z/

�
I?.; ��/;

we have
lim sup
L

ˇ̌̌̌�
1

nN.n;L/
�

nŠLn

ncn?e
h?L

�
Af .n; �; L/

ˇ̌̌̌
D 0

by Theorem 1, since Af .n; �; L/6nN.n;L/. Now we may let �! 0 to get j�˙n .f /��n.f /j6 "kf k1;
since " is arbitrary, this yields �˙n .f /D �n.f /. This implies that the limit (7-1) exists, and moreover
(7-2) holds by (7-3) (provided that ? is not separating).

Next, take a general f 2C1.S?†/, which we no longer assume to be nonnegative. Choose some smooth
functions fı;˙, ı 2 �0; 1Œ with the property that kf � .fı;CC fı;�/k1 6 ı and ˙fı;˙ > 0, and write
fıDfıCCfı� . By nonnegativeness of˙fı;˙, the arguments above imply thatAfı .n; L/=.nN.n;L//!
�n.fı/ as L!1. On the other hand, jAf .n; L/�Afı .n; L/j6 Ajf �fı j.n; L/6 ınN.n;L/. Letting
L!1, this yields

�n.fı/� ı 6 lim inf
L

Af .n; L/

nN.n;L/
6 lim sup

L

Af .n; L/

nN.n;L/
6 �n.fı/C ı:

Since �n.fı/! �n.f / as ı! 0, (7-1) and (7-2) are valid for f .

Finally, if f 2 C1c .S?† n�n/ then there is L> 0 such that

`n.z/6 L for z 2 supp.f /:

In particular, for any  2 P such that i.; ?/D n and `./ > L, we have f .z/D 0 for any z 2 I?./.
This shows that �n.f /D 0, and the support condition for �n follows.

8 A large deviation result

The goal of this section, which is independent of the rest of the paper, is to prove the following result,
which is a consequence of a classical large deviation result by Kifer [25]:
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Proposition 8.1 There exists I? > 0 such that the following holds. For any " > 0, there are C; ı > 0 such
that , for large L,

(8-1)
1

N.L/
#
�
 2 P W `./6 L and

ˇ̌̌̌
i.; ?/

`./
� I?

ˇ̌̌̌
> "

�
6 C exp.�ıL/:

In fact, I? D 4i. xm; ı?/, where i is Bonahon’s intersection form [6], ı? is the Dirac measure on ? and
xm is the renormalized Bowen–Margulis measure on M (here we see the intersection form as a function
on the space of '–invariant measures on S†, as described below). Lalley [28] showed a similar result for
self-intersection numbers; see also [41] for self-intersection numbers with prescribed angles.

8.1 Bonahon’s intersection form

Let M'.S†/ be the set of finite positive measures on S† invariant by the geodesic flow, endowed with
the vague topology. For any closed geodesic  , we denote by ı 2M'.S†/ the Lebesgue measure of 
parametrized by arc length (thus of total mass `./). Let � 2M'.S†/ be the Liouville measure, that is,
the measure associated to the volume form 1

2
˛^ d˛.

Proposition 8.2 (Bonahon [7]; see also Otal [34]) There exists a continuous function

i WM'.S†/�M'.S†/!RC

which is additive and positively homogeneous with respect to each variable and such that i.�; �/ D
2� vol.†/ and

i.ı ; ı 0/D i.; 
0/ and i.�; ı /D 2`./;

for any closed geodesics  and  0.

Remark 8.3 (i) Actually, Bonahon’s intersection form is a pairing on the space of geodesic currents.
This space is naturally identified with the space of '–invariant measures on S† which are also
invariant by the flip R W .x; v/ 7! .x;�v/. By i.�; �0/ for general �; �0 2M'.S†/ we simply mean
i.ˆ.�/;ˆ.�0// where ˆ W � 7! �CR�� (note that 'tRDR'�t for t 2R).

(ii) The formulae for i.�; �/ and i.�; ı / differ from [7]; this is due to our convention, since here the
Liouville measure � corresponds to twice the Liouville current considered in [7].

8.2 Large deviations

For any � 2M'.S†/ we denote by h.�/ the measure-theoretical entropy of ' with respect to �. Then
we have the following result:

Proposition 8.4 (Kifer [25]) Let F �M1
'.S†/ be a closed set , where M1

'.S†/ is the set of '–
invariant probability measures on S†. Then

lim sup
L

1

L
log

1

N.L/
#
�
 2 P W `./6 L and

ı

`./
2 F

�
6 sup
�2F

h.�/� h;

where h is the entropy of the geodesic flow.
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Proof of Proposition 8.1 We denote by xm 2M1
'.S†/ the unique probability measure of maximal

entropy, that is,

xmD lim
L!C1

X
2P
`./6L

ı

`./
;

where the convergence holds in the weak sense. Let " > 0. Define

F" D f� 2M1
'.S†/ W ji.�; ı?/� i. xm; ı?/j> "g:

Then F" is closed in M1
'.S†/, and thus compact by the Banach–Alaoglu theorem, and xm 2 {F" so that

ı D h� sup�2F" h.�/ > 0. In particular, for large L,

1

N.L/
#
�
 2 P W

ı

`./
2 F"

�
6 C exp.�ı0L/

for some 0<ı0<ı andC >0. Now, by Proposition 8.2, ı=`./2F" gives ji.; ?/=`./�i. xm; ı?/j>".
Let I? D i. xm; ı?/. Then it is a well-known fact that xm has full support in S†, which implies I? > 0 by
definition of i. xm; ı?/; see [34].

Remark 8.5 (i) It is not hard to see that Proposition 8.1 implies

1

N.L/

X
`./6L

i.; ?/� I?L

as L!C1. Thus we recover [39, Theorem 4].

(ii) If .†; g/ is hyperbolic, then xm is the renormalized Liouville measure and, with Proposition 8.2,
we find

I? D
`.?/

2�2.g� 1/
:

(iii) If " < I? then every closed geodesic  which does not intersect ? satisfies ı=`./ 2 F". In
particular, the right-hand side of (8-1) is bounded from below by C exp..h? � h/L/, where we
used that N.0;L/� exp.h?L/=h?L and N.L/� exp.hL/=hL as L!1.

Appendix A Closed geodesics minimize intersection numbers

In this section we prove Lemma 2.1. We proceed by contradiction and assume that i.1; 2/ < j1\ 2j.
As 1 and 2 are not powers of each other, the images of 1 and 2 intersect transversally (otherwise their
images would coincide by uniqueness of the geodesic equation). Since i.1; 2/ < j1\2j, we may find
loops j̨ WR=Z!† for j D 1; 2 with j̨ � j and j˛1\˛2j< j1\ 2j, and we may moreover assume
that ˛1 and ˛2 intersect transversally. Let Hj W Œ0; 1��R=Z! † for j D 1; 2 be smooth homotopies
between j and j̨ , and define H W Œ0; 1��R=Z�R=Z!†�† by setting

H.s; �1; �2/D .H1.s; �1/;H2.s; �2// for .s; �1; �2/ 2 Œ0; 1��R=Z�R=Z:
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Let �.†/D f.x; x/ W x 2†g be the diagonal in †. Then H.0; � / and H.1; � / are transverse to �.†/, in
the sense that, for every k D 0; 1 and .�1; �2/ 2R=Z�R=Z with H.k; �1; �2/ 2�.†/,

dH.k; �1; �2/T.k;�1;�2/.R=Z�R=Z/CTH.k;�1;�2/�.†/D TH.k;�1;�2/.†�†/:

In particular, by [20, Corollary page 73] we may assume that H is globally transverse to �.†/, so that
H�1.�.†// is a smooth 1–dimensional submanifold of Œ0; 1�� .R=Z/2. Now

j1\ 2j D jH
�1.�.†//\ .f0g � .R=Z/2/j and j˛1\˛2j D jH

�1.�.†//\ .f1g � .R=Z/2/j:

Since j1\ 2j> j˛1\˛2j and because H�1.�.†// is smooth, we may find a smooth path c W Œ0; 1�!
Œ0; 1�� .R=Z/2 such that c.0/¤ c.1/ and

Im.c/�H�1.�.†// and c.0/; c.1/ 2 f0g � .R=Z/2:

Write cD .S; T1; T2/ for some smooth functions S W Œ0; 1�! Œ0; 1� and Tj W Œ0; 1�!R=Z, and for u2 Œ0; 1�
define the path cu D .uS; T1; T2/ W Œ0; 1�! Œ0; 1�� .R=Z/2. Let xk DH.c.k// 2† for k D 0; 1. Then
define the paths

ǰ;u D �j ıH ı cu W Œ0; 1�!† for j D 1; 2 and u 2 Œ0; 1�;

where �1; �2 W†�†!† are the projections over the first and second factor, respectively. As c1D c and
Im.c/�H�1.�.†//, we have ˇ1;1 D ˇ2;1. In particular, the paths ˇ1;0 and ˇ2;0 are homotopic within
the space of curves linking x0 and x1, since for each u, one has ǰ;u.k/D xk for j D 1; 2 and k D 0; 1.
Moreover, the paths ˇ1;0 and ˇ2;0 are subpaths of 1 and 2, respectively, and are in particular geodesic
paths. Let z† be a universal cover of † and take Qx0 2 z† a lift of x0. For j D 1; 2, let Q̌j W Œ0; 1�! z† be
the unique lift of ǰ;0 starting at Qx0. Then Q̌1.1/D Q̌2.1/ since the paths ǰ;0 for j D 1; 2 are homotopic
in † via a homotopy preserving endpoints. In particular, we have found two distinct geodesic segments
of z† joining Qx0 and Q̌0.1/ (the image of the paths Q̌j;0 for j D 1; 2 cannot coincide since c.0/¤ c.1/
and the intersection 1 \ 2 is transverse). Thus the exponential map exp Qx0 W T Qx0 z†! z† at Qx0 is not a
diffeomorphism, and z† cannot be negatively curved by virtue of the Cartan–Hadamard theorem (see for
example [29, Theorem 11.5]). This completes the proof.

Appendix B An elementary fact about pullbacks of distributions

Lemma B.1 Let K 2D0.Rd �Rd / be a compactly supported distribution. We assume that WF.K/� � ,
where � � T �.Rd �Rd / is a closed conical subset such that

� \N ��D∅; where N ��D f.x; �; x;��/ W .x; �/ 2 T �Rd g:

In particular , the pullback i�K, where i W x 7! .x; x/, is well defined. Then , for N 2N>1 large enough ,
the following holds. Let u 2 CNc .R

d / and assume that the pullback i�.��1uK/ is well defined , where
�1 W .x; x/ 7! x is the projection on the first factor. Then

i�.��1u �K/D u � i
�K:
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Proof LetK" 2C1.Rd �Rd /; "2 �0; 1�, be a sequence of distributions supported in a fixed compact set
such that K"!K in D0�.R

d �Rd /. Let � 0 � T �.Rd �Rd / be an open conical subset containing N ��.
AsK" is compactly supported, we may assume that jt�qj>ı0 for any .t; q/2��� 0 such that jt jD jqjD1
for some ı0 > 0. By definition of the convergence in D0�.R

d �Rd / (see [23, Definition 8.2.2]), for every
N there is CN > 0 such that, for any " > 0 small enough,

(B-1) j yK".q/j6 CN hqi
�N for q 2 � 0:

Let � 00 � � 0 be another open conical subset containing N ��, and let ı > 0 be such that, for any q 2 � 00

and t 2R2d ,

(B-2) jt � qj< ıjqj D) t 2 � 0:

Then, for any q 2 � 00,

.2�/2d j2K"��1u.q/j6
Z

R2dt
j yK".t/j � j

b��1u.q� t /j dt

6
Z
jt�qj<ıjqj

j yK".t/j � j
b��1u.q� t /j dt C

Z
jt�qj>ıjqj

j yK".t/j � j
b��1u.q� t /j dt:

Let N1; N2 2N>1 and hti D
p
1Cjt j2. Then, using (B-1), (B-2) and Peetre’s inequality, and assuming

that u 2 CN2c .Rd / with N2 > 2d C 1,Z
jt�qj<ıjt j

j yK".t/j � j
b��1u.q� t /j dt 6 CN1;N2

Z
jt�qj<ıjqj

hti�N1hq� ti�N2 dt

6 C 0N1;N2hqi
�N1CN2

Z
Rd
hti�N2 dt:

On the other hand, if k is the order of K and N3 2N>1 is such that u 2 CN3c .Rd /, thenZ
jt�qj>ıjqj

j yK".t/j � j
b��1u.q� t /j dt 6 Ck;N3

Z
jt�qj>ıjqj

htikhq� ti�N3

6 C 0k;N3hqi
�N3C.kC2dC1/

Z
R2d
hti�2d�1 dt:

Therefore, if u 2 CN .Rd / with N D kC 2d C 1CN 0,

(B-3) .2�/2d j2K"��1u.q/j6 CN hqi
�N 0 for q 2 � 00:

Note that, for ' 2 C1c .R
d /,

hi�.K"�
�
1u/; 'i D

Z
Rdx
'.x/

Z
Rd
�
�Rd�

2K"��1u.�; �/eix.�C�/ d� d� dx:

Indeed, (B-3) shows that the integral in .�; �/ converges near N �� if N 0 > 2d C 1, and far from N ��

we can use the stationary phase method to get enough convergence in .�; �/, so the above integral makes
sense as an oscillatory integral and coincides with hi�.K"��1u/; 'i, since this formula is obviously true if
u is smooth. Moreover, all the above estimates are uniform in " and thus, letting "! 0, we obtain the
desired result, since obviously i�.K"��1u/D u.i

�K"/ for each " 2 �0; 1�.
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We compute the moduli of endomorphisms of the de Rham and crystalline cohomology functors, viewed
as a cohomology theory on smooth schemes over truncated Witt vectors. As applications of our result,
we deduce Drinfeld’s refinement of the classical Deligne–Illusie decomposition result for de Rham
cohomology of varieties in characteristic p > 0 that are liftable to W2, and prove further functorial
improvements.
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1 Introduction

Let A be a ring and let X be a smooth A–scheme. The algebraic de Rham cohomology is a cohomology
theory designed by Grothendieck. It is defined functorially by sending X to the hypercohomology of the
de Rham complex ��

X=A
. The de Rham complex ��

X=A
is not just a complex, but also has the structure

of a sheaf of commutative differential graded algebras. One can therefore view the output of de Rham
cohomology as a commutative algebra object in the derived 1–category D.A/, which we denote by
CAlg.D.A//. This way, one obtains a functor dR. � /=A W Algsm

A ! CAlg.D.A//, which sends any smooth
A–algebra R to dRR=A 2 CAlg.D.A//. Our primary goal here is to study endomorphisms of this functor.

Studying properties of the de Rham cohomology theory as a functor is interesting for a number of reasons.
From a technical point of view, in certain situations, showing that the de Rham cohomology functor has
no nontrivial automorphisms has been used as a key tool by Bhatt, Lurie and Mathew [7] and Li and
Liu [21] to prove that certain constructions are functorially isomorphic. Further, in [24] Mondal showed
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that one can reconstruct the theory of crystalline cohomology as the unique deformation of de Rham
cohomology theory viewed as a functor defined on smooth Fp–schemes.

From a different perspective, any property enjoyed by the de Rham cohomology functor will in particular
be enjoyed by de Rham cohomology of every smooth algebraic variety. For example, if the functor
dR. � /=A has many endomorphisms, one potentially obtains many interesting endomorphisms of the
de Rham cohomology of any smooth algebraic variety, which could be useful for making interesting
geometric conclusions. The classical study and usage of the Frobenius operator on de Rham or crystalline
cohomology theory is an instance of such a perspective.

Our main motivating questions, which can be seen as a “moduli” enhancement of the question of
endomorphisms of the de Rham cohomology functor, are the following:

(1) Given a ring A, what is the endomorphism monoid1 of the functor dR that sends any smooth
A–algebra R to dRR=A 2 CAlg.D.A//?

(2) More generally, letting B be an arbitrary A–algebra, what is the endomorphism monoid of the
analogous functor R 7! dRR=A˝AB 2 CAlg.D.B//?

(3) Finally, consider the presheaf2 (of monoids) on .A–Alg/op that sends an A–algebra B to the
endomorphism monoid in previous question. Is it represented by a (monoid) scheme? If so, what
is the representing monoid scheme?

We address the above questions when ADWn.k/ for any perfect ring k, where Wn.k/ denotes the ring
of n–truncated Witt vectors. We expect the methods to be extendable to more general base rings but we
do not pursue that direction further here.

A foretaste of the main theorem

For simplicity, let us focus now on the case where AD Z=pn or Zp and B is an Fp–algebra.

Theorem 1.1 (special case of Theorem 4.24, the main theorem) (1) WhenADFp, the endomorphism
monoid of dR. � /=A˝AB is N.Spec.B//, where N denotes the constant monoid scheme associated
with the natural numbers.

(2) However , when AD Z=pn for n� 2, the endomorphism monoid of dR. � /=A˝AB is a semidirect
product of N.Spec.B// with a group W.B/�ŒF �, the Frobenius kernel of the unit group in W.B/.

Remark 1.2 (1) Roughly speaking, whenADZ=pn for n�2, Theorem 1.1 says that the endomorphism
monoid of dR is very large. More precisely, Theorem 1.1 provides an action of W �ŒF � on the mod p
de Rham cohomology of a variety liftable to W2. Recently, Drinfeld has also observed an action of
W �ŒF � on the mod p de Rham cohomology, using his (and, independently, Bhatt and Lurie’s) theory of
“prismatization”. The main new ingredient of Theorem 1.1 is to go beyond this action and classify all the

1A priori we get a monoid object in spaces rather than an actual monoid. But in the cases of interest to us, this space is discrete;
see Lemmas 3.3 and 4.2.
2Mathew pointed out to us that this presheaf is automatically an fpqc sheaf by flat descent.
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endomorphisms. Interestingly, our proof of Theorem 1.1 does not make any use of prismatization, and only
uses the stacky approach to de Rham cohomology theory in positive characteristic that already appeared
in work of Drinfeld [13]. However, while the stacky approach (including the theory of prismatization)
helps in constructing the endomorphisms, it does not a priori offer any strategy to prove that they are all
the endomorphisms. To achieve this, we employ some very different additional techniques in the proof
of Theorem 1.1, such as the theory of affine stacks due to Toën [29], a version of the topos-theoretic
cotangent complex (see Appendix A) due to Illusie [17], and some explicit computations when necessary.

(2) The W �ŒF � action resulting from Theorem 1.1 will be utilized to prove a strengthened version of
the Deligne–Illusie decomposition; see Theorem 1.6. See Corollary 1.7 for an application of the full
classification offered by Theorem 1.1.

(3) From the above calculation, one finds that, for ADZ=pn, the association B 7! End.dR. � /=A˝AB/
defines a sheaf of monoids representable by a scheme denoted by End1;n. The representing monoid
scheme depends on AD Z=pn and stabilizes when n� 2.

The stabilization we refer to means the following: Observe that we have a natural commutative diagram

Algsm
Z=pn

dR˝B ''

mod pn�1

// Algsm
Z=pn�1

dR˝Bvv

CAlg.D.B//

which induces a sequence of maps of schemes

End1;1! End1;2! � � � ! End1;n! � � � :

Our theorem says the first map is a closed immersion, and all subsequent maps are isomorphisms.

Remark 1.3 The representing monoid scheme stabilizes as soon as A leaves characteristic p; this
indicates that the functorial Frobenius endomorphism is solely responsible for the rigidity of de Rham
cohomology theory in characteristic p.

Regarding endomorphisms of de Rham cohomology itself, we also get the following:

Theorem 1.4 (special case of Proposition 3.5) When AD Zp, the endomorphism monoid of dR^. � /=A
is N, given by powers of the Frobenius.

Here the dR^ denotes the p–adic derived de Rham cohomology theory; see Bhatt [3]. The fact that there
is no automorphism of p–adic derived de Rham cohomology theory when the base ring is p–complete
and p–torsion-free was observed by Li and Liu [21, Theorem 3.14].

Remark 1.5 In both cases ADFp and Zp above, we only see powers of the Frobenius as endomorphisms
of the (p–adic) de Rham cohomology, but this is for two different reasons: when AD Fp it is due to the
existence of the Frobenius endomorphism on the category of A–algebras, whereas for AD Zp it comes
from the fact that A is p–torsion-free, so a certain huge group scheme has no nontrivial A–valued point.
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762 Shizhang Li and Shubhodip Mondal

In Theorem 4.24 we work in a more general setting. Namely we calculate the moduli of endomorphisms
of crystalline cohomology theory, leading to sheaves Endm;n (see Corollary 4.27 for the precise statement).
The result is similar: the Frobenius endomorphisms that people “knew and loved” correspond to the monoid
underlying the connected components of the whole endomorphism monoid. In fact, there is a distinguished
point in each component which corresponds to a power of the Frobenius endomorphism. Furthermore, the
identity component also stabilizes to a large and mysterious group scheme (see Definition 4.14), which
demands further investigations (see Remark 4.30). One surprising feature is that the above group scheme
is nonflat over the base in the general setting of crystalline cohomology.

Application to the Deligne–Illusie decomposition

As an application of the W �ŒF �–action, Drinfeld observed a refinement of the Deligne–Illusie decomposi-
tion, which was communicated to us by Bhatt (see Bhatt and Lurie [5, Example 4.7.17 and Remark 4.7.18;
6, Remark 5.16]): since �p �W �ŒF �, the mod p de Rham cohomology of varieties liftable to W2 has the
structure of a �p–representation. It is easy to see that the W �ŒF �–action preserves conjugate filtration.
Then one needs to show that the i th graded piece of conjugate filtration is pure of weight i 2 Z=p as a
�p–representation. In [5; 6], this statement is proven by establishing a relation between theW �ŒF �–action
and the “Sen operator” defined in loc. cit. In Theorem 5.4, we use a more direct argument to check that
the weight statement holds for the W �ŒF �–action coming from our Theorem 1.1.

Theorem 1.1, coupled with the calculation of weights from Theorem 5.4 as above, immediately implies
the following improvement of results due to Achinger and Suh [1, Theorem 1.1], which in turn is a
strengthening of Deligne and Illusie’s result [12, corollaire 2.4]. In particular, our approach gives a proof,
different from Bhatt and Lurie’s, of the following result, which does not make any use of prismatization:

Theorem 1.6 (Bhatt and Lurie [6] and Drinfeld; see Corollary 5.6) Let k be a perfect ring of charac-
teristic p > 0, let X be a smooth scheme over W2.k/, and let a � b � aC p � 1. Then the canonical
truncation �Œa;b�.��Xk=k

/ splits. Moreover , the splitting is functorial in the lift X of Xk .

Since our calculation shows the endomorphism monoid of mod p de Rham cohomology stabilizes afterW2,
philosophically it says that further liftability overWn for n> 2 provides no extra knowledge on the mod p
de Rham cohomology.

It is still an open problem whether there exists a smooth variety X (necessarily of dimension dimX > p)
over k which lifts to W2.k/ for which the de Rham complex is not decomposable.3 Using Theorem 1.1,
we obtain a somewhat negative result in this direction: we show that the de Rham complex of smooth
varieties over k liftable toW2.k/ does not completely decompose in a functorial manner as a commutative
algebra object in the derived category.

3A counterexample has recently been constructed by Petrov [27].
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Corollary 1.7 (see Proposition 4.29) There is no functorial splitting

dR.�˝W2.k/k/=k '

M
i2N�0

Grconj
i .dR.�˝W2.k/k/=k/

as a functor from smooth W2.k/–algebras to CAlg.D.k//.

The above statement was also observed by Mathew. His idea for a proof does not use the full calculation
of endomorphism monoids as in Theorem 1.1, whereas for us it is a consequence of that calculation.

Lastly, one may wonder if the Drinfeld splitting agrees with the Deligne–Illusie splitting (which
has an 1–categorical functorial enhancement; see Kubrak and Prikhodko [20, Theorem 1.3.21 and
Proposition 1.3.22]). Both splittings are obtained from the splitting of the first conjugate filtration via an
averaging process; see step (a) in Deligne and Illusie’s proof of [12, théorème 2.1]. To guarantee that the
above two splittings are functorially the same, we show the following uniqueness:

Theorem 1.8 (see Theorem 5.10 for the precise statement) There is a unique functorial splitting (as
Filconj
0 –modules)

Filconj
1 .dR.�˝W2.k/k/=k/D Filconj

0 .dR.�˝W2.k/k/=k/˚Grconj
1 .dR.�˝W2.k/k/=k/:

In particular, the Deligne–Illusie splitting of Kubrak and Prikhodko [20], the Drinfeld splitting of Bhatt
and Lurie [5; 6], and the splitting induced by Theorem 1.1 must all agree.

Outline of the proof of Theorem 1.1

Let us briefly outline the key ingredients in the proof of Theorem 1.1. In doing so, we will also give a
rough outline of the paper. For simplicity, let us fix AD Z=pn, and let B be an Fp–algebra.

(0) Theorem 1.4 is within reach of the quasisyntomic descent techniques introduced by Bhatt, Morrow and
Scholze [9]; see Section 3. We also use quasisyntomic descent techniques to show that the endomorphism
spaces of interest to us are actually discrete (see Lemmas 3.3 and 4.2).

(1) For Theorem 1.1(2), we need to make use of the stacky approach to de Rham or crystalline cohomology
due to Drinfeld [13; 14], which can be seen as a positive-characteristic analogue of Simpson’s de
Rham stack; see Simpson [28]. Here we use a compressed version of the stacky approach: the functor
dR. � /=A˝A B is built as the unwinding (see Section 2.4) of an A–algebra stack over BI this stack is
denoted by A1;dR

B (we often omit B to ease the notation). This unwinding construction is a variant of a
construction used by Mondal [24, Section 3]. Note the amusing switch of roles played by A and B: the
de Rham cohomology theory is a cohomology theory for varieties over A with coefficient ring being B ,
whereas the stack A1;dR

B is an A–algebra object over B .

(2) It turns out that the underlying stack A1;dR is an affine stack, in the sense of Toën [29]. Roughly
speaking, for affine stacks one can pass to the “ring” of derived global sections in a lossless manner.
Using this property, in Proposition 4.4 we show that End.dR. � /=A˝AB/' EndA–Alg–St.A

1;dR
B /. Here the

latter endomorphisms are taken in the category of A–algebra stacks over B .
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764 Shizhang Li and Shubhodip Mondal

(3) Using the description of A1;dR as the quotient stack ŒW=pW �, where W denotes the ring scheme of
p–typical Witt vectors, in Section 4.2 we construct “enough” endomorphisms of dR. � /=A˝AB and show
that the endomorphism monoid is at least as big as Theorem 1.1 claims.

(4) To finish the proof of Theorem 1.1, one needs to show that there are no endomorphisms other than
the ones already constructed. To do so, we interpret an endomorphism of the algebra stack A1;dR as a
deformation of an endomorphism of the sheaf of rings �0.A1;dR/. We know that (see Proposition 4.20)
�0.A

1;dR
B /DGa;B because B is an Fp–algebra. Then we use the formalism of topos-theoretic cotangent

complexes due to Illusie [17] (see Appendix A) to understand this deformation problem. This is carried
out in Theorem 4.24, where we use the cotangent complex and the transitivity triangle to finish calculating
the desired endomorphism monoid.

Remark 1.9 Let A and B be as above. Combining steps (2) and (3), an endomorphism of the functor
End.dR. � /=A˝AB/ is the same datum as a natural endomorphism ofW.S/=Lp, as an animatedA–algebra,
for every (discrete) B–algebra S .
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2 Stacky approach to de Rham cohomology

The goal of this section is to describe the stacky approach to de Rham cohomology theory due to
Drinfeld [13]. Roughly, given a scheme X , Drinfeld constructed a stack XdR such that R�.XdR;O/
recovers the de Rham cohomology R�dR.X/. This should be seen as a positive characteristic variant of
the earlier construction of the de Rham stack due to Simpson [28].

For our purposes, we will need to work with a certain compressed version of this construction. Our
goal is to consider a single stack with enough structure encoded, which can naturally “unwind” itself to
construct the stack XdR for every scheme X . To this end, we will begin by discussing quasi-ideals (see
[14, Section 3.1; 24, Section 3.2]) and ring stacks, which formulates exactly the kind of extra structures
on a stack one needs to work with in order to use the unwinding machine. After that, we will discuss the
construction of this unwinding functor, and explain how to build a cohomology theory from a ring stack
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in general. We will then discuss the particular ring stack A1;dR which gives rise to de Rham cohomology
theory via this construction. For later application, the fact that the stack A1;dR is an affine stack in the
sense of [29] will be of particular importance to us. Therefore we will record the relevant definitions in
this section as well.

2.1 Quasi-ideals

Definition 2.1 (quasi-ideals) Let R be a ring and M be an R–module equipped with a map d WM !R

of R–modules which satisfies d.x/ �yD d.y/ �x for any pair x; y 2M . Such a data d WM !R satisfying
the aforementioned condition will be called a quasi-ideal in R, or simply a quasi-ideal.

A morphism of quasi-ideals .d1 WM1!R1/! .d2 WM2!R2/ is defined to be a pair of maps a WM1!M2

and b WR1!R2 such that the following compatibilities hold:

(1) d2aD bd1.

(2) a.r1m1/D b.r1/a.m1/.

(3) b is a ring homomorphism.

(4) a is linear.

In other words, we want a commutative diagram

M1 M2

R1 R2

d1

a

d2

b

such that b is a ring homomorphism and a is an R1–module map M1 ! b�M2. The category of
quasi-ideals will be denoted by QID.

Construction 2.2 (quasi-ideal as a simplicial abelian group) Given a quasi-ideal .d WM ! R/, we
obtain a map t W T WDM �R! R given by .m; r/ 7! r C d.m/. There is another map s WM �R! R

given by .m; r/ 7! r . There is also a degeneracy map e WR!M �R given by r 7! .0; r/. Lastly, there
is a map c W T �R;s;t T ! T given by

.r;m/� .r 0; m0/ 7! .r;mCm0/;

where t .r;m/D s.r 0; m0/ so that .r;m/�.r 0; m0/2T �R;s;t T . Therefore we obtain a groupoid denoted by

M �R!! R:

Note that the morphisms s, t , c and e are morphisms of abelian groups, so one can actually convert the
above data into a 1–truncated simplicial abelian group.

In the construction below, we explain how to attach a 1–truncated simplicial ring or a ring groupoid from
the data of a quasi-ideal.
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Construction 2.3 (quasi-ideal as a simplicial commutative ring) Let d WM !R be a quasi-ideal. We
have already defined a groupoid

M �R!! R;

which can also be thought of as a 1–truncated simplicial abelian group. Next, we give a ring structure on
M �R. We define .m1; r1/ � .m2; r2/ WD .r2m1C r1m2C d.m1/m2; r1r2/. Now, as one easily checks,
the morphisms s, t , c and e in the definition of the groupoid

M �R!! R

are all ring homomorphisms with respect to the ring structure on M �R defined above. The above data
can be converted into a 1–truncated simplicial commutative ring.

Definition 2.4 (quasi-ideals in schemes) Let R be a ring scheme and M be a module scheme over R
equipped with a map d WM !R of R–module schemes. This data will be called a quasi-ideal in R if
d.x/ �y D d.y/ � x for scheme-theoretic points x; y 2M .

A morphism between quasi-ideals in schemes is defined in a way similar to Definition 2.1.

Finally, let us give some examples of quasi-ideals that will be used later on. For more details on these
examples, we refer the reader to [14, Sections 3.2–3.5] or [24, Section 2.2].

Example 2.5 Let G]
a!Ga denote the quasi-ideal obtained by taking the divided power envelope of the

origin inside Ga.

Example 2.6 Let B be any ring on which p is nilpotent. Then the functor S ! S[ WD lim
 ��F

S=p is
representable by the affine ring scheme SpecBŒx1=p

1

�, which will be denoted by Gperf
a .

Example 2.7 Let Gperf;]
a !Gperf

a denote the quasi-ideal obtained by taking the divided power envelope
of the closed subscheme defined by the ideal .p; x/ inside Gperf

a compatibly with the existing divided
powers of p.

Example 2.8 Let W denote the ring scheme of p–typical Witt vectors. By taking the kernel of the
Frobenius F , one obtains a quasi-ideal W ŒF �!Ga, which is isomorphic to G]

a!Ga as a quasi-ideal
in Ga.

Example 2.9 By considering the multiplication by p map on W , one obtains a quasi-ideal W �p
��!W .

2.2 Ring stacks

We begin by collecting some notation. If C and D denote two1–categories which have finite products,
then the category of finite product preserving functors will be given by Fun�.C;D/. Let PolyA denote
the category of finitely generated polynomial algebras over A.

Definition 2.10 (animated ring objects in a category) Let C be an1–category with products. Animated
A–algebra objects in C , denoted by ARings.C /A, is defined to be the category Fun�.Polyop

A ; C /.
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In the case where C is the1–category of spaces, then the above definition with A D Z recovers the
usual category of animated rings.

Remark 2.11 The1–category of animated rings has all small colimits. Given a simplicial commutative
ring, one can take the colimit over the simplex category and obtain an animated ring. In particular, given
a quasi-ideal, one can apply Construction 2.3 and obtain an animated ring.

Definition 2.12 (prestacks) The1–category of prestacks over a fixed (discrete) base ring B , denoted
by PreStB , is defined to be the category of functors Fun.AlgB ;S/, where AlgB is the category of discrete
B–algebras and S is the1–category of spaces.

We note that even though we do not impose any sheafiness conditions, the examples of stacks we consider
will all be (hypercomplete) fpqc sheaves of spaces.

Definition 2.13 (A–algebra prestacks over Spec.B/) The category ofA–algebra prestacks over Spec.B/,
denoted by A–Alg–PreStB , is defined to be the category of animated A–algebra objects in the category
PreStB .

Remark 2.14 Another way to define the category A–Alg–PreStB is as Fun.AlgB ;ARingsA/. However,
this is equivalent to the definition considered above since we have natural equivalence of categories

Fun.AlgB ;ARingsA/' Fun.AlgB ;Fun�.Polyop
A ;S//' Fun�.Polyop

A ;Fun.AlgB ;S//

' Fun�.Polyop
A ;PreStB/:

The middle equivalence uses the fact that product in functor category is calculated termwise; the precise
1–categorical (dual) assertion can be found in [23, Corollary 5.1.2.3].

Construction 2.15 (cone of a quasi-ideal) In view of Remark 2.14 and Construction 2.3, it follows
that, given a quasi-ideal d WM !R in schemes, the quotient prestack ŒR=M� (under the additive action
of M on the ring scheme R by translation via d ) has the structure of a ring prestack. In the context of
this paper, we will consider associated ring stacks of such ring prestacks, obtained by fpqc sheafification.

Example 2.16 We will see later that all the examples of quasi-ideals from Section 2.1 have the same cone.

2.3 Affine stacks

We will also use the notion of affine stacks due to Toën [29]. Here we will recall its definition and basic
properties very briefly, in the language of1–categories. To that end, we start by fixing an ordinary base
ringB . Let coSCRB denote the1–category of cosimplicial rings overB arising from the simplicial model
structure defined in [29, Theorem 2.1.2]; to construct the associated1–category from the simplicial model
category, one looks at the fibrant simplicial category obtained from the subcategory of fibrant–cofibrant
objects inside the given simplicial model category, and applies the simplicial nerve construction, which
produces an1–category by [23, Proposition 1.1.5.10]. It follows from [23, Corollary 4.2.4.8] that the
1–category coSCRB has all small limits and colimits.
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Definition 2.17 (affine stacks) An object Y of PreStB is called an affine stack over B if there is an object
C 2 coSCRB such that Y is the restriction of the functor hC W coSCRB! S corepresented by C along the
inclusion AlgB! coSCRB . The full subcategory of such objects inside PreStB is denoted by AffStacksB .

Remark 2.18 It follows from the definition that the category of affine stacks is stable under small
limits; see [29, Proposition 2.2.7]. Also, by [29, Lemma 1.1.2, Proposition 2.2.2], an affine stack
is a hypercomplete fpqc sheaf of spaces. The key property of affine stacks that will be useful for
us is the fact that taking the derived global section functor induces an equivalence of 1–categories
AffStacksB ' coSCRop

B ; see [29, Corollary 2.2.3].

Remark 2.19 Even though the definition of the subcategory of affine stacks AffStacksB inside PreStB
a priori depends on the category coSCRB , the notion of being an affine stack is intrinsic: being an affine
stack is a property that can be formulated only by using the fpqc topology and the category of ordinary
rings. See [29, Theorem 2.2.9] for a more precise formulation of this statement using Bousfield localization.
A posteriori, the same intrinsic property carries over to the1–category coSCRB , which makes it rather
special compared to certain other related categories, such as the1–category of derived rings or E1–rings.

Example 2.20 An affine scheme is clearly an affine stack. More precisely, the category AffB of affine
schemes over B embeds fully faithfully inside the category AffStacksB of affine stacks over B .

Example 2.21 The stacks K.Ga; m/ for m� 0 are examples of affine stacks [29, Lemma 2.2.5]. On the
other hand, K.Gm; m/ is not an affine stack for any m> 0. By [29, Corollary 2.4.10], for pointed and
connected stacks over a field, being an affine stack is equivalent to the sheaf of all the higher homotopy
groups being representable by unipotent affine group schemes (possibly of infinite type).

Remark 2.22 We denote by St^B the 1–category of hypercomplete fpqc sheaves of spaces (see
[23, Section 6.5] for a discussion of hypercomplete1–topos). Translating the results [29, Lemma 1.1.2,
Proposition 2.2.2, Corollary 2.2.3] into the language of1–categories, we obtain a colimit-preserving
functor St^B ! coSCRop

B . There is also a natural colimit-preserving functor PreStB ! St^B , and the
composite functor denoted by R�. � ;O/ W PreStB ! coSCRop

B gives us the “derived global section
functor”. By construction, R�. � ;O/ W PreStB! coSCRop

B preserves all small colimits. By Definition 2.12
and [23, Lemma 5.1.5.5, Proposition 5.1.5.6], it follows that R�. � ;O/ can be simply described as the
left Kan extension of the functor AffB ! coSCRop

B (along the inclusion of categories AffB ! PreStB )
which sends an affine scheme to its underlying ring of global sections. This checks the compatibility of
two a priori different ways of defining the derived global section functor.

Remark 2.23 Suppose that Y is an affine stack over B which is corepresented by C 2 coSCRB (see
Definition 2.17). As noted in Remark 2.18, Y is a hypercomplete fpqc sheaf of spaces. According
to [29, Corollary 2.2.3] and Remark 2.22, we have a natural isomorphism R�.Y;O/' C in coSCRB .
Unwrapping all the definitions and using the equivalence AffStacksB'coSCRop

B , we obtain the categorical
implication that the identity functor coSCRB! coSCRB is naturally equivalent to the right Kan extension
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of the inclusion AlgB ! coSCRB along itself. Roughly speaking this means that, for any C 2 coSCRB ,
we have a natural isomorphism

C '
�

lim
 ��
C!A

A is discrete

A
�
2 coSCRB :

Remark 2.24 The observation in Remark 2.23 regarding right Kan extension implies that if D is any
1–category and F W coSCRB!D is a functor that is a right adjoint, then F is naturally equivalent to the
right Kan extension of the composite functor AlgB! coSCRB!D along the inclusion AlgB! coSCRB .

2.4 Unwinding ring stacks

In this section, we describe how to unwind4 the data of a ring stack to obtain a cohomology theory. This
construction is an1–categorical enhancement of [24, Example 3.0.1] and we will call this the unwinding
of a given ring stack. The construction only uses basic categorical principles such as Kan extensions, and
the necessary foundations can be found in [23].

Construction 2.25 (unwinding) We will construct a functor

Un W A–Alg–PreStB ! Fun
�
ARingsA;CAlg.D.B//

�
:

Here CAlg.D.B// denotes the commutative algebra objects in the derived1–category D.B/. We think
of the objects in the right-hand side as “algebraic cohomology theories”.

We begin by noting that by definition A–Alg–PreStB ' Fun�.Polyop
A ;PreStB/. By Kan extension, there

is a derived global section functor R� W PreStB ! CAlg.D.B//op. By composition, we get a functor

A–Alg–PreStop
B ! Fun

�
PolyA;CAlg.D.B//

�
:

Now we can perform a left Kan extension along the inclusion PolyA! ARingsA to obtain the desired
unwinding functor

Un W A–Alg–PreStop
B ! Fun

�
ARingsA;CAlg.D.B//

�
:

Example 2.26 When ADB and Y 2 PreStB is taken to be the ring scheme Ga;B , the functor Un.Ga;B/

is simply the forgetful functor ARingsA! CAlg.D.B//.

Below we will study compatibility of the unwinding construction with restriction of scalars. More
precisely, let Y 2A–Alg–PreStB . Let A0!A be a map of discrete rings. Then there is an obvious functor

res W A–Alg–PreStB ! A0–Alg–PreStB :

Let Y 0 WD res.Y/ 2 A0–Alg–PreStB . Applying the unwinding construction, we obtain two functors
Un.Y/ W ARingsA ! CAlg.D.B// and Un.Y 0/ W ARingsA0 ! CAlg.D.B//. Note that we also have a
natural functor (given by the derived tensor product) L WARingsA0!ARingsA. In this setup, we have the
following compatibility:

4A similar construction has been used by Bhatt in [4], under the name transmutation.
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Proposition 2.27 We have Un.Y/ ıL' Un.Y 0/ in Fun
�
ARingsA;CAlg.D.B//

�
.

Proof Since L is obtained by left Kan extension of the composite functor PolyA0
`
�! PolyA! ARingsA,

it would be enough to prove Un.Y/ ı `' Un.Y 0/ in Fun
�
PolyA;CAlg.D.B//

�
. By Construction 2.25,

Y is classified by a functor U W Polyop
A ! PreStB and Y 0 is classified by U 0 W Polyop

A0 ! PreStB ; for our
purpose, it would be enough to prove that U ı `op ' U 0. By Remark 2.14, it would be enough to prove
that the restriction of scalar functor ARingsA! ARingsA0 is induced by `op under the identifications
ARingsA ' Fun�.Polyop

A ;S/ and ARingsA0 ' Fun�.Polyop
A0 ;S/. But that follows from adjunction.

Notation 2.28 If k is a perfect field of characteristic p and Y is a Wn.k/–algebra stack for 1� n�1,
then we will use Y.1/ to denote the Wn.k/–algebra stack obtained by restriction of scalars along the Witt
vector Frobenius Wn.k/!Wn.k/; see Proposition 2.27.

Remark 2.29 Here the Frobenius twist Y.1/ of a stack Y will not play an important role, because we
always work over a perfect field and are interested in the question of endomorphisms of the stacks. Since
it also does not change the underlying stack, for the most part we will ignore this Frobenius twist.

Example 2.30 Proposition 2.27 shows that the Frobenius twisted forgetful functor

R 7!R.1/ WDR˝k;Frob k

from ARingsk ! CAlg.D.k// is the unwinding of G.1/

a;k
. The relative Frobenius R.1/ ! R can be

obtained by unwinding the map of k–algebra stacks Ga;k!G.1/

a;k
induced by the Frobenius.

2.5 De Rham cohomology via unwinding

In this section, we will describe how to use the unwinding construction to recover de Rham or crystalline
cohomology functors. To this end, let n;m � 1 be two arbitrary positive integers and let p be a fixed
prime. Further, we fix a perfect ring k of characteristic p. Let Wr.k/ denote the ring of r–truncated Witt
vectors. Using crystalline cohomology, or more precisely its derived variant (see Definition 2.31 below),
one obtains certain functors denoted by

dRm;n W ARingsWn.k/
! CAlg

�
D.Wm.k//

�
;

which we loosely still call de Rham cohomology functors and specify the n and m. To define them, one
really needs to use a deformation of the de Rham cohomology functor, ie the crystalline cohomology
functors.

The following essentially already appeared in 7, Section 10.2; 9, Section 8.2].

Definition 2.31 Let P be a finitely generated polynomial Wn.k/–algebra. Then define dRm;n.P / WD
R�crys.P0=Wm.k//, where P0 denotes the mod p reduction of P . We denote by dRm;n the left Kan
extension of the above functor from finitely generated polynomials to all animated Wn.k/–algebras which
takes values in CAlg

�
D.Wm.k//

�
.
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We use this notation as we believe the crystalline cohomology is secretly a disguise of derived de Rham
cohomology; see [3, Proposition 3.27; 21, Proposition 2.11] for instances of this perspective. Our goal is
to describe dRm;n as the unwinding of a certain object in Wn.k/–Alg–PreStWm.k/.

Definition 2.32 Let W denote the ring scheme over Spec.Wm.k// underlying the p–typical Witt vectors.
Using the Artin–Hasse homomorphism W.k/!W.W.k//, one can view W as a W.k/–algebra scheme.
Then d WW .1/ �p��!W .1/ defines a quasi-ideal in schemes. By considering its cone, one obtains a k–algebra
stack over Spec.Wm.k//, which can be regarded as a Wn.k/–algebra stack over Spec.Wm.k// via the
natural map Wn.k/ � k. We denote the resulting Wn.k/–algebra stack over Spec.Wm.k// by A1;dR

m;n.
When n is fixed, we will use A1;dR

B to denote the pullback of A1;dR
m;n to SpecB for a Wm.k/–algebra B .

Remark 2.33 The above definition gives a generalization of the definition of A1;dR as an Fp–algebra
stack due to Drinfeld to the more general case of an arbitrary perfect ring k. To do this, one crucially
needs to use the Artin–Hasse natural transformation W. � /!W.W. � //. One can abstractly construct
this natural transformation by realizing the functor W as a right adjoint to the inclusion of the category of
delta rings inside all rings.

Proposition 2.34 The stack underlying A1;dR
m;n is an affine stack.

Proof Indeed, the stack underlying A1;dR
m;n is obtained by taking the cone of d WW �p

��!W , which is the
same as the fiber of the induced map BW !BW . Since affine stacks are closed under limits, it would be
enough to show that BW is an affine stack. This follows from the proof of [26, Proposition 3.2.7]. Let us
give a rough sketch of their argument. Let Wn denote the ring scheme underlying n–truncated p–typical
Witt vectors. Using that certain obstructions vanish, one first argues that BW ' lim

 ��
BWn. Therefore, it

is enough to prove that BWn is an affine stack for all n. To do so, one argues by induction on n. Using
the short exact sequence

0!Ga!WnC1!Wn! 0;

one sees that BWnC1 is classified by a map BWn!K.Ga; 2/. More precisely, we have a fiber sequence

BWnC1 �

BWn K.Ga; 2/

Since the stacks K.Ga; m/ are affine stacks for m� 0, we are done by induction.

Remark 2.35 The above argument can be modified to more generally show that K.W;m/ is an affine
stack for all m� 0. Consequently, one can show that the abelian group stack A1;dRŒm� is also an affine
stack for all m� 0. We have R�dR.K.Ga; m//'R�.A1;dRŒm�;O/ for all m� 0.

Proposition 2.36 [6, Remark 7.9; 25] We have a natural isomorphism Un.A1;dR
m;n/' dRm;n.
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Proof By Proposition 2.27, the proof reduces to nD 1. Further, by [24, Theorem 1.1.1], one can reduce to
mD1. Let us now explain the proof of the natural isomorphism Un.A1;dR

1;1 /'dR1;1. By construction of the
unwinding functor, it would be enough to show that the restricted functors dR1;1 W Polyk! CAlg.D.k//
and Un.A1;dR

1;1 / W Polyk ! CAlg.D.k// are naturally isomorphic. Note that we have a natural functor
coSCRk ! CAlg.D.k// of 1–categories, and by construction Un.A1;dR

1;1 / lifts to give a functor, still
denoted by Un.A1;dR

1;1 / W Polyk! coSCRk . By quasisyntomic descent, dR1;1 also lifts to give a functor,
still denoted by dR1;1 WPolyk! coSCRk . It would be enough to prove that these two functors are naturally
isomorphic.

By considering gr0 of the Hodge filtration on de Rham cohomology and quasisyntomic descent, there is
a natural arrow dR1;1! � in the category Fun.Polyk; coSCRk/, where � W Polyk! coSCRk denotes the
natural inclusion functor.

Note that the derived global sections of A1;dR
1;1 agree with dR1;1.kŒx�/ in coSCRk . For this, one can use

the identification Cone.G]
a ! Ga/ ' Cone.W �p

��! W / and the Čech–Alexander complex. Since, by
Proposition 2.34, A1;dR

1;1 is an affine stack, it follows that the functors Un.A1;dR
1;1 / W Polyk! coSCRk and

dR1;1 W Polyk! coSCRk preserve finite coproducts. In order to check that they are naturally isomorphic,
it is enough to do so for the functors Un.A1;dR

1;1 /
0 W ARingsk! coSCRk and dR01;1 W ARingsk! coSCRk

obtained by left Kan extension along Polyk! ARingsk .

By [23, Proposition 5.5.8.15], the functors Un.A1;dR
1;1 /

0 and dR01;1 both preserve small colimits. Similarly,
by left Kan extension, � WPolyk! coSCRk extends to a colimit-preserving functor �0 WARingsk! coSCRk .
By the adjoint functor theorem, all of these functors have right adjoints. Let Un.A1;dR

1;1 /
0R, dR01;1

R and
�0R denote the right adjoints to Un.A1;dR

1;1 /
0, dR01;1 and �0, respectively. It would be enough to prove that

Un.A1;dR
1;1 /

0R ' dR01;1
R.

Let Un.A1;dR
1;1 /

0R
ı , dR01;1

R
ı and �0Rı denote the restrictions of the functors Un.A1;dR

1;1 /
0R, dR01;1

R and �0R,
respectively, along the inclusion of categories Algk! coSCRk . For our purpose, by considering right Kan
extensions as explained in Remark 2.24, it would be enough to prove that Un.A1;dR

1;1 /
0R
ı ' dR01;1

R
ı . Note

that they are both functors from Algk to ARingsk . Further, for an S 2 Algk , we have �0Rı .S/ D S ,
which identifies with the S–valued points of the ring scheme Ga. Thus we have a natural arrow
�0Rı 'Ga! dR01;1

R
ı in Fun.Algk;ARingsk/, where Ga is viewed as an object of Fun.Algk;ARingsk/

by considering its functor of points. We note the following lemma:

Lemma 2.37 The fiber F of the map Ga! dR01;1
R
ı identifies with the Ga–module scheme G]

a.

Proof To see this, we note that dR01;1
R
ı can be viewed as a ring stack whose underlying stack, by

construction, is the affine stack corresponding to the object dR01;1.kŒx�/ 2 coSCRk . Therefore, the stack
underlying F is given by the affine stack corresponding to the cosimplicial ring obtained by the pushout
k tdR01;1.kŒx�/

kŒx� in coSCRk . Since A1;dR
1;1 is an affine stack and R�.A1;dR

1;1 ;O/' dR01;1.kŒx�/, it follows

that k tdR01;1.kŒx�/
kŒx�'R�.G]

a;O/'Dx.kŒx�/, where Dx.kŒx�/ denotes the divided power envelope
of kŒx� at the ideal .x/. In particular, the pushout is a discrete ring, and the stack underlying F is an
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affine scheme. Let dR.kŒx�/ denote the object of CAlg.D.k// underlying dR01;1.kŒx�/. Then there is a
natural map

k˝dR.kŒx�/ kŒx�! k tdR01;1.kŒx�/
kŒx�

in CAlg.D.k//. We have an isomorphism k˝dR.kŒx�/ kŒx�' dRk=kŒx�, where dRk=kŒx� denotes derived
de Rham cohomology. By [3, Lemma 3.29], it follows that dRk=kŒx�'Dx.kŒx�/ and the natural map above
is an isomorphism. We note that Spec.k˝dR.kŒx�/kŒx�/'Spec.dRk=kŒx�/ also has the structure of a group
scheme, where the multiplication is induced by functoriality of dRk=. � / along the map kŒx�!kŒx�˝kkŒx�

given by x 7!x˝1C1˝x. Moreover, Spec.dRk=kŒx�/ has the structure of a Ga–equivariant group scheme,
where the Ga–action is given by the map kŒx�' dRkŒx�=kŒx�! dRk=kŒx�˝k kŒx�'Dx.kŒx�/˝k kŒx�
which is induced by functoriality of derived de Rham cohomology applied to the diagram

kŒx� kŒx�

kŒx�˝ kŒx� kŒx�

x!x

x!x˝x x!0

x˝1!0;1˝x!x

Using the explicit description of the induced maps, one explicitly verifies that Spec.dRk=kŒx�/ is naturally
isomorphic to G]

a as a Ga–module scheme. Further, by applying functoriality along the diagrams
mentioned earlier, we see that the map of schemes F ! Spec.dRk=kŒx�/ induced by the natural map
k˝dR.kŒx�/ kŒx�! k tdR01;1.kŒx�/

kŒx� above is actually a Ga–equivariant map of group schemes. Since
we have already noted that k˝dR.kŒx�/ kŒx�! ktdR01;1.kŒx�/

kŒx� is an isomorphism, this shows that F is

indeed isomorphic to G]
a as a Ga–module scheme, as desired.

Now we have obtained a natural map A1;dR
1;1 ' Cone.G]

a ! Ga/! dR01;1
R
ı of k–algebra stacks, ie as

objects in the category Fun.Algk;ARingsk/. We have already noted that their underlying stacks are
isomorphic. Thus we obtain an isomorphism A1;dR

1;1 ' dR01;1
R
ı . Since the stack underlying A1;dR

1;1 is an
affine stack, it follows that Un.A1;dR

1;1 /
0R
ı 'A1;dR

1;1 as objects of Fun.Algk;ARingsk/. This constructs the
isomorphism Un.A1;dR

1;1 /
0R
ı ' dR01;1

R
ı , which finishes the proof.

The following fact was used in the above proof, which uses compatibility of two models of the k–algebra
stack A1;dR over Spec.W.k//.

Proposition 2.38 [14, 3.5.1] There is an isomorphism of k–algebra stacks over Spec.W.k//:

Cone.G]
a!Ga/' Cone.W .1/ �p

��!W .1//:

The k–algebra structure on the source comes from the natural maps W.k/!Ga and W.k/ 17!p�V.1/��������!

W ŒF �. To see that the two underlying abelian group stacks are the same, notice that we always have
FV D p on the p–typical Witt ring, and hence we get a factorization

W .1/ �p
//

V $$

W .1/

W
F

;;
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One then applies the octahedral axiom to the above triangle. The fact that it induces an algebra isomorphism
can be seen, using the fact that F is an algebra homomorphism. Said differently, one pulls back the
quasi-ideal W .1/ �p��!W .1/ along W F

�!W .1/ to build the intermediate model relating the above two
models.

Remark 2.39 There is a natural map of k–algebra stacks Ga ! A1;dR whose unwinding provides a
natural transformation dR.S/! S , which corresponds to the natural projection onto the gr0 of the Hodge
filtration on de Rham cohomology. There is also a natural map A1;dR! �0.A1;dR/DG.1/

a of k–algebra
stacks which unwinds to the natural transformation S .1/ ! dR.S/ induced by Fil0 of the conjugate
filtration; see Proposition 4.20.

Now we will see that the quasi-ideal Gperf;]
a ! Gperf

a that appears in [24, Proposition 4.0.11] gives a
third model of the k–algebra stack A1;dR over Spec.W.k//; see also [13]. First, we will make some
preparations. Below we always fix a positive integer m.

Lemma 2.40 On the fpqc site of Z=pm, we have R lim
 ��F

W ' lim
 ��F

W , which is representable by an
affine scheme. Moreover , its functor of points can be described as B 7!W.B[/.

We denote the affine scheme representing lim
 ��F

W by W perf. This scheme can be given an W.k/–algebra
scheme structure when viewed over Spec.Wm.k//.

Proof The first assertion follows from [10, Example 3.1.7 and Proposition 3.1.10] and the fact that F
on W is faithfully flat. The inverse limit of affine schemes is again affine. For the last claim, we consider
the following diagram of fpqc sheaves as a pro-object:

� � � // W3
F
// W2

F
// W1

� � � // W4
F
//

R

OO

W3
F
//

R

OO

W2

R

OO

� � � // W5
F
//

R

OO

W4
F
//

R

OO

W3

R

OO

:::

R

OO

:::

R

OO

:::

R

OO

Taking the limit vertically and then horizontally gives us lim
 ��F

W . Next we take limit horizontally and
then vertically instead. Taking limits horizontally, we obtain the sheaf that sends B to lim

 ��F
Wr.B/, which

is canonically identified with W.B[/ by [8, Lemma 3.2] (with � in loc. cit. being p). The vertical map R
is actually an isomorphism now, also by [8, Lemma 3.2]. This gives lim

 ��F
W.B/'W.B[/, as desired.

Recall that F on W induces a map A1;dR ! Frobk;�A1;dR of k–algebra stacks which we will again
denote by F . We may untwist the Frobenius using the inverse of the Frobenius on k on the source of this
map. Therefore we get a k–algebra structure on the stack lim

 ��F
.A1;dR/.
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Lemma 2.41 We have an isomorphism of k–algebra stacks Gperf
a ' lim

 ��F
.A1;dR/ over Spec.Wm.k//.

Proof By Lemma 2.40, we see that

R lim
 ��
F

.A1;dR/D Cone
�
R lim
 ��
F

W
�p
��!R lim

 ��
F

W
�
D Cone.W perf �p

��!W perf/;

and its functor of points is given by B 7! B[. Hence lim
 ��F

.A1;dR/ is isomorphic to Gperf
a as a k–algebra

stack (and in fact is a scheme).

Therefore we get a map of k–algebra stacks Gperf
a !A1;dR over Spec.Wm.k//.

Lemma 2.42 The map of (k–algebra) stacks f WGperf
a !A1;dR is faithfully flat.

Proof We look at the diagram of k–algebra stacks

W perf //

##

Gperf
a

{{

A1;dR

and observe that the horizontal and the left arrow are faithfully flat, and hence the right arrow is faithfully
flat as well.

Let K be the quasi-ideal in Gperf
a given by the kernel of f . Then Lemma 2.42 implies that f gives rise to

an isomorphism of k–algebra stacks Cone.K!Gperf
a /'A1;dR. This is what we called the third model

of A1;dR; to complete the description, it remains to understand the quasi-ideal K.

Proposition 2.43 K is isomorphic to Gperf;]
a as a quasi-ideal in Gperf

a . In particular , as k–algebra stacks ,
Cone.Gperf;]

a !Gperf
a /'A1;dR.

Proof This assertion follows from applying the (derived) crystalline cohomology functor R�crys to the
pushout diagram

k kŒx1=p
1

�=x

kŒx� kŒx1=p
1

�

x 7!0

and noting that global sections of Gperf;]
a recover R�crys.kŒx

1=p1 �=x/ and R�crys preserves the pushout
diagram.

Remark 2.44 Using the above methods, let us sketch a quick proof of a result due to Bhatt, Lurie and
Mathew [7, Proposition 10.3.1]; see also [24, Proposition 4.0.7]. Under Proposition 2.36, Example 2.26
and Remark 2.39, the assertion amounts to studying endomorphisms of A1;dR respecting the natural map
Ga!A1;dR. By Proposition 2.38, it is enough to show that the quasi-ideal G]

a!Ga has no nontrivial
endomorphism as a quasi-ideal in Ga. This follows directly from graded Cartier duality [24, Section 2.4].
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Remark 2.45 The definition of A1;dR as a k–algebra stack differs from Cone.W �p
��!W / by a Frobenius

twist. Indeed, the latter unwinds to Hodge–Tate cohomology (or a suitable base change of prismatic
cohomology) [11] which is the Frobenius descent of de Rham cohomology (or crystalline cohomology);
see Proposition 2.27.

3 Endomorphisms of de Rham cohomology, I

The quasisyntomic descent technique introduced in [9] is a powerful tool in calculating endomorphisms
of de Rham cohomology functors in various settings. We will illustrate them in this section.

Let A!B be a map of derived p–complete rings with bounded p1–torsion. In this section, we consider
the functor that, for a derived p–complete A–algebra R, is defined by

.dR y̋AB/.R/ WD dRR=A y̋AB 2 CAlg.D.B//;

where dRR=A denotes the p–adic derived de Rham complex of R relative to A and y̋ denotes the derived
p–completed tensor product. If B D A, we simply denote the functor by dR.

We are interested in the space of endomorphisms of this functor, viewed (by left Kan extension) as an
object in the1–category of functors from the1–category of derived p–complete animated rings to
CAlg.D.B//. Let qSynA denote the small quasisyntomic site of A which consists of algebras that are
quasisyntomic over A and the covers given by quasisyntomic covers; see [9, Section 4.2].

Proposition 3.1 (see [9, Example 5.12]) The functor dR y̋AB , when restricted to qSynA, defines a
quasisyntomic sheaf.

Proof It suffices to check this after going derived modulo p, so we are reduced to checking the following:
given R! S a faithfully flat quasisyntomic map of algebras in qSynA with Čech nerve S�, there is an
isomorphism

dRR=A˝AB=p ' lim.dRS�=A˝AB=p/;

where B=p is the animated ring B ˝Z Fp. By base change of derived de Rham cohomology, this is
equivalent to showing

dR.R˝AB=p/=.B=p/ ' lim.dR.S�˝AB=p/=.B=p//:

See [19, pages 33–35] for a discussion of derived de Rham cohomology of maps of animated rings. To
prove the above isomorphism, we employ the conjugate filtration [19, Construction 2.3.12] (with base
ring Fp). The conjugate filtration is exhaustive and uniformly bounded above by �1, and hence it suffices
to prove that its graded pieces satisfy similar quasisyntomic descent. Using the description of graded
pieces of conjugate filtration, we are finally reduced to showingVi

ALR=A˝A '�.B=p/' lim
�Vi

S� LS�=A˝A '�.B=p/
�
:

Here '�.B=p/ expresses the A–module structure on B=p which is given by A! B ! B=p
'
�! B=p.

Proposition 3.2 finishes the proof.
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Proposition 3.2 (flat descent for “tensored” cotangent complex) Fix a base ringA. For each n�0 and an
object M 2D.A/, the functorR 7!

Vn
R LR=A˝AM is an fpqc sheaf with values in the1–categoryD.A/.

Proof One simply runs through the proof of [9, Theorem 3.1] and sees that it works in this generality.
For convenience of the reader, let us illustrate the proof when n D 1. Let R! S be a faithfully flat
map of A–algebras with Čech nerve S�. Using the transitivity triangle associated to A!R! S� and
applying the exact functor . � /˝AM , we get a cosimplicial exact triangle

LR=A˝R S
�
˝AM ! LS�=A˝AM ! LS�=R˝AM:

We are therefore reduced to showing:

� The map R! S� induces an isomorphism LR=A˝AM ! lim LR=A˝AM ˝R S
�.

� lim LS�=R˝AM D 0.

The first item follows from fpqc descent along R!S by considering LR=A˝AM 2D.R/. The second is
proved via a few reduction steps. By the convergence of the Postnikov filtration, it is enough to show that
lim�i .LS�=R˝AM/'0 inD.R/ for an arbitrary i 2Z, which will be fixed from now. Again, by faithfully
flat descent, it suffices to check that .lim�i .LS�=R˝AM//˝R S ' lim.�i .LS�=R˝AM/˝R S/ '

lim�i .LS�=R˝R S˝AM/' 0. Let S! T � denote the base change of R! S� along R! S . By base
change for cotangent complex, we need to show that lim�i .LT �=S˝AM/' 0. Since S!T � is the Čech
nerve of the map S! S˝RS , which admits a section, it follows that S! T � is a homotopy equivalence
of cosimplicial S–algebras. Now we observe that F WD �i .L. � /=S ˝AM/ is a functor from the category
of S–algebras to the category of abelian groups. Therefore the cosimplicial abelian group F.T �/ is
homotopy equivalent to F.S/. Since F.S/' 0, we obtain lim�i .LT �=S ˝AM/' 0, as desired.

As a consequence, let us record a result that says that the space of endomorphisms is actually discrete, ie
the homotopy groups in degrees above zero are trivial for every choice of basepoints.

Lemma 3.3 The space of endomorphisms End.dR y̋AB/ is discrete.

Proof First observe that dR y̋AB is left Kan extended from its restriction to the category of p–completely
finitely generated polynomial A–algebras. Hence the restricted functor has the same space of endo-
morphisms. Since our functor dR y̋AB is a sheaf on the quasisyntomic site of A and since p–completed
polynomial A–algebras are quasisyntomic over A, restricting our functor to the full subcategory of
A–algebras consisting of algebras that are quasisyntomic over A again computes the same endomorphism
space. Recall that, since the quasisyntomic site of A admits a basis consisting of large quasisyntomic A–
algebras (see [11, Definition 15.1]), we may restrict our (base-changed) de Rham cohomology functor to
this basis and compute the space of endomorphisms there. But now the values of the de Rham cohomology
functor are p–completely flat A–algebras, and hence the base-changed de Rham cohomology functor
has values which are discrete B–algebras [9, Lemma 4.6]. Consequently the space of endomorphisms
is discrete.
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If Spf.A/ has a disconnection, then the space of endomorphisms will be the product of endomorphism
spaces on each subset giving rise to the disconnection. Hence, without loss of generality, let us only treat
those A with connected formal spectrum. The following simple lemma will be used later, so let us record
it here:

Lemma 3.4 Let A0 be an idempotent-free Fp–algebra. Let q be a power of p. If every element a 2 A0
satisfies aq D a, then A0 is a subfield inside Fq .

In the rest of this section we will compute the space of endomorphisms in two cases:

Case I A is the Witt ring of an idempotent-free characteristic-p perfect algebra k and B D A.

Case II A is a perfect Fp–algebra and B is an arbitrary A–algebra.

Building on the method of [7, Sections 10.3 and 10.4], Case I is essentially worked out in the proof of
[21, Theorem 3.14]; let us state a slightly more general result:

Proposition 3.5 Assume that A is p–torsion free , p–adically complete , and Spec.A=p/ is reduced and
connected. Then

End.dR/D
�

FrobN
q if AD Zq WDW.Fq/;

id otherwise:

In [21, Section 2.3], a Frobenius map is constructed on p–adic derived de Rham cohomology when the
base is a p–torsion free ı–ring, and it is semilinear with respect to the Frobenius on the base ı–ring. The
Frobq appearing above is the corresponding power of the Frobenius associated with the base ı–ring Zq;
one checks easily that it is Zq–linear as desired.

Proof Let us use Perf to denote the full subcategory of those A–algebras which are of the form
AhX

1=p1

h
j h 2H i where H is a set. The proof of [21, Theorem 3.14] shows that

� restricting our de Rham cohomology functor to Perf, we get an injection of endomorphism monoids,

� the restricted de Rham cohomology functor has endomorphism monoid given by a submonoid in Z,

� an element n2Z above is characterized by its effect onRDAhX1=p
1

i, which sendsX 7!Xp
n

, and

� the image of the restriction map is contained in N � Z.

Let us assume that q D pn is in the image of the restriction map. Let RD AhX1=p
1

i. Take any a 2 A
and let us contemplate the map R!R=.X�a/. The induced map of de Rham cohomology is the natural
inclusion R D AhX1=p

1

i !D, where D is the algebra obtained by p–completely adjoining divided
powers of X � a to R. Extending the map X 7!Xq from R to D is the same as requiring the image of
X � a to have divided powers. Since in D=p we have Xp D ap, we see that Xq � aD aq � aCp � d
for some d 2D. The condition now becomes that aq � a admits divided powers, as .p/ always admits
divided powers. One can use the natural surjection D!R=.X �a/ to see that an element a0 2A admits
divided powers if and only if its image in D admits divided powers. Therefore the condition becomes
that aq � a 2 A should admit divided powers for all a 2 A. The above implies that in A=p we have

Geometry & Topology, Volume 28 (2024)



On endomorphisms of the de Rham cohomology functor 779

.xq � x/p D 0 for all x 2 A=p, since A=p is assumed to be reduced. This is equivalent to all of its
elements satisfying xq D x. Now we use Lemma 3.4 to conclude that A=p is actually a subalgebra of Fq ,
and hence A must be the Witt ring of a perfect subfield inside Fq .

Remark 3.6 Our argument excludes the existence of the q–Frobenius if there is an element a 2 A such
that aq � a does not admit divided powers. For instance, if A=p has a transcendental element over Fp,
then there is no functorial endomorphism except for the identity, as claimed in [21, Remark 3.15(3)]. It
remains unclear to us, for instance, if the p–Frobenius can exist when AD ZpŒ

p
p�.

Next we turn to Case II, which concerns the (base-changed) de Rham cohomology theory on algebras
over a perfect ring of characteristic p. Once again the quasisyntomic descent approach helps us prove the
following statement (see Proposition 4.10):

Proposition 3.7 Let us either

(1) assumeA is an Fp–algebra andB is anA–algebra , and consider the cohomology theory dR˝AB; or

(2) assume AD k is a perfect Fp–algebra and B is a Wm.k/–algebra , and consider the cohomology
theory dRm;1˝Wm.k/B .

Then the endomorphism monoid of the cohomology theory is a submonoid of N.Spec.B//, where N

stands for the constant monoid scheme of natural numbers with 1 corresponding to the Frobenius.

Proof We largely follow the strategy from the proof of [21, Theorem 3.14]. Let us temporarily denote
the cohomology theory by F .

Note that in both cases F defines a quasisyntomic sheaf on qSynA. For (1) this is Proposition 3.1,5 and
for (2) this is Proposition 4.1. Therefore we can restrict ourselves to the category of QRSP A–algebras to
compute the endomorphism monoid.

Next we reduce to one particular QRSPA–algebra: RDAŒX1=p
1

�=.X/. To make the reduction, apply the
trick in the proof of [11, Proposition 7.10] or [21, Theorem 3.14] to see that, for any QRSP A–algebra S ,
there exists an explicit QRSP A–algebra S 0 D AŒX1=p

1

i I i 2 I �=.fj I j 2 J /, where fj is an ind-regular
sequence in AŒX1=p

1

i I i 2 I �, together with a surjection R0! R inducing a surjection of their values
of the cohomology theory. Hence, for any functorial endomorphism, its effect on F.S/ is determined
by that on F.S 0/. Finally, for each j 2 J , there exists a map R! S 0 sending X`=p

n

to .f 1=p
n

j /`. The
image of F.R/ under these maps generates F.S 0/, therefore the effect of a functorial endomorphism is
determined by its effect on F.R/.

Lastly we need to understand the effect of a potential functorial endomorphism f on D WD F.R/ D
D.x/.BŒx

1=p1 �/, the divided power envelope of .x/ in BŒx1=p
1

�. From the last four paragraphs of
the proof of [21, Theorem 3.14], we see there is a finite disconnection of Spec.B/ such that on the
j th component f .x`/D x`�p

nj for some natural number nj . Arguing componentwise, we may assume

5Since A is p–torsion we can drop the p–completion of the tensor product.
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without loss of generality that f .x`/D x`�p
N

for some natural number N ; we need to show that this
extends uniquely (assuming functoriality) to the whole of D. The algebra D admits a natural grading;
considering the functoriality given by the map R! R˝A AŒt

1=p1 � sending x` to x`˝ t` shows that
f must multiply the degree by pN . Now we claim that, for every n 2N, the effect of f on the set of
degree < pnC1 parts of D is determined by the effect of f on the set of degree < pn parts of D, which
will finish the proof. To that end, notice that the degree < pnC1 parts are generated by pnC1.x/ and
the degree < pn parts. Finally, we look at the map AŒx1=p

1

�=.X/! AŒy1=p
1

; z1=p
1

�=.y; z/ given by
x`=p

i

7! .y1=p
i

C z1=p
i

/`. By comparing the coefficients of pnCN .y/ � pnCN .p�1/.z/ of the equation
obtained from functoriality, one sees that the effect of f on pnC1.x/ is pinned down by its effect on
pn.x/ and pn.p�1/.x/.

To illustrate the last sentence of the above proof, let us take nD 0 and see how to pin down the effect of
f on p.x/. The functoriality gives us a commutative diagram

D
f

//

x 7!.yCz/
��

D

x 7!.yCz/
��

D˝B D
f˝f

// D˝B D

Tracing through commutativity for the element p.x/, we get that, if f .p.x//D c � pNC1.x/ then

c � pNC1.y/C
X

1�j�p�1

1

j Š.p� j /Š
yp

N

� zp
N .p�1/

C c � pNC1.z/D c �
X

iCjDpNC1

i .y/j .z/:

Therefore yp
N

� .zp
N .p�1/=.p� 1/Š/D c � pN .y/ � pN .p�1/.z/ in D˝B D, which clearly pins down

c D
.pN /Š � .pN .p� 1//Š

.p� 1/Š
:

Similar to Proposition 3.5, if we make a reducedness assumption on B=p then we can further decide
which powers of the Frobenius can appear depending on the size of B=p. In Proposition 4.10, using the
stacky approach, we will say precisely which powers of the Frobenius are allowed in terms of the map
k! B[ for Proposition 3.7(2); see Remark 4.8.

4 Endomorphisms of de Rham cohomology, II

In this section, we use a stacky approach to calculate endomorphisms of de Rham and crystalline
cohomology functors in situations where it seems difficult to use only quasisyntomic descent methods.

4.1 Unwinding equivalence

We fix two integers n;m � 1 and a perfect algebra k as before. The goal of this section is to study
endomorphisms of the functor

dRm;n W ARingsWn.k/
! CAlg

�
D.Wm.k//

�
:
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First, we will formulate this as a moduli problem. Let S be a discrete test Wm.k/–algebra. We can define
a functor Endm;n by

Endm;n.S/ WD End.dRm;n˝Wm.k/ S/:

This defines a functor Endm;n from Wm.k/–algebras to spaces, which a priori is a prestack. Let us study
the base-changed crystalline cohomology theory; similar to Proposition 3.1 we have the following:

Proposition 4.1 The functor dRm;n˝Wm.k/ S , when restricted to qSynWn.k/
, defines a quasisyntomic

sheaf.

Proof Denote the derived crystalline cohomology functor relative to W by dR1;n. Then we have
dRm;n ˝Wm.k/ S ' dR1;n ˝W.k/ S . Using the previous description and the fact that W.k/ is p–
torsion free, to check the quasisyntomic sheaf property it suffices to work derived modulo p. Since
.dR1;n˝W.k/ S/=Lp ' dR1;n˝k .S=Lp/, we may reduce to the case where m D n D 1 and S is a
1–truncated animated k–algebra. The proof of Proposition 3.1 works verbatim in this setting as well.

Lemma 4.2 The space of endomorphisms End.dRm;n˝Wm.k/ S/ is discrete.

Proof Similar to the proof of Lemma 3.3, since dRm;n ˝Wm.k/ S defines a quasisyntomic sheaf by
Proposition 4.1, the claim follows from the fact that, for a large quasisyntomic Wn.k/–algebra R, the
value .dRm;n˝Wm.k/ S/.R/D dRm;n.R/˝Wm.k/ S is a discrete algebra.

On the other hand, let us consider the stack A1;dR, which will always be viewed as a Wn.k/–algebra stack
over Wm.k/ in this section. We define the following prestack, capturing the endomorphisms of this stack
along with the extra algebra structure:

Notation 4.3 For a test Wm.k/–algebra S , let us use Sm;n.S/ to denote the space (groupoid) of
endomorphisms of the stack A1;dR

.S;n/
WDA1;dR

m;n �SpecWm.k/ SpecS as a Wn.k/–algebra stack over SpecS .

Proposition 4.4 (unwinding equivalence) The unwinding functor induces an isomorphism of prestacks

Un WSm;n ' Endm;n:

Proof Unwinding provides a map from the left-hand side to the right-hand side. To show that it is
an isomorphism, let us fix a test Wm.k/–algebra S . The Wn.k/–algebra stack A1;dR

S by definition is an
object of Fun�.Polyop

Wn.k/
;StacksS /. Since A1;dR

S is an affine stack (Proposition 2.34) and the category
AffStacksS is a full subcategory of StacksS , which is closed under small limits, we note that A1;dR

S

is classified by an object of the full subcategory Fun�.Polyop
Wn.k/

;AffStacksS /. By Remark 2.18, the
global section functor induces an equivalence of1–categories AffStacksS ' coSCRop

S , where the latter
denotes the 1–category of cosimplicial S–algebras. Therefore A1;dR

S can be equivalently viewed as
an object of Fun.PolyWn.k/

; coSCRS /. Hence endomorphisms of A1;dR
S as a Wn.k/–algebra stack can

be computed as endomorphisms of the classifying object, which we may call G, inside the category
Fun.PolyWn.k/

; coSCRS /.
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Now we look at the S–valued points of Endm;n. By properties of left Kan extensions, this is given by
endomorphisms of dRm;n˝Wm.k/ S as a functor from PolyWn.k/

to CAlg.D.S//. We can also left Kan
extend along the inclusion PolyWn.k/

! qSynWn.k/
and equivalently consider endomorphisms of the

functor H W qSynWn.k/
! CAlg.D.S//. By Proposition 4.1, we see that H is a quasisyntomic sheaf.

A basis for the quasisyntomic topology on qSynWn.k/
is given by flat algebras overWn.k/whose reduction

modulo p is a QRSP algebra over k. The category of such algebras will be denoted by QRSPWn.k/.
On such algebras, the functor H takes values in discrete rings. By properties of right Kan extension,
we obtain that the functor H has a canonical enrichment as a functor H W qSynWn.k/

! coSCRS and
endomorphisms can also be calculated in the category Fun.qSynWn.k/

; coSCRS /. By Proposition 2.36,
we see that restricting along PolyWn.k/

! qSynWn.k/
now realizes G as the canonical enrichment of

dRm;n˝Wm.k/ S . By properties of left Kan extension, the endomorphisms of H can also be computed as
endomorphisms of G in the category Fun.PolyWn.k/

; coSCRS /, which finishes the proof.

Proposition 4.5 The functor Sm;n W AlgWm.k/
! S is an fpqc sheaf. In fact , it is a sheaf of sets.

Proof This follows from Lemma 4.2 and the fact that A1;dR is an fpqc stack.

Before we proceed further, let us make the following definition. Let m� 1 be an arbitrary integer fixed
as before. Then Gperf

a represents an fpqc sheaf of rings on the category of Wm.k/–algebras.

Definition 4.6 We define a sheaf Frobk WAlgWm.k/
! Sets to be the subsheaf of Homk–Alg.G

perf
a ;Gperf

a /

such that, if B is a Wm.k/–algebra, then Frobk.B/ is the set of k–algebra scheme maps Gperf
a;B !Gperf

a;B

which is induced by an algebra map BŒx1=p
1

�! BŒx1=p
1

� that sends x to
P
i bix

pi

, where the sum
ranges over a finite subset in Z�0. The sheaf Frobk naturally has the structure of a commutative monoid.

Notation 4.7 For a Wm.k/–algebra B , we write the symbol Frobi to mean an element of i 2 Frobk.B/.
We also write FrobiCj to denote the composition of Frobi and Frobj .

Remark 4.8 We note that Frobk is a subsheaf of the sheafification of the constant monoid N. In fact, they
are equal when k D Fp , but this is not always the case. One can compute that, given a Wm.k/–algebra B ,
we have

Frobk.B/D Homk.Ga;B[ ;Ga;B[/:

In very concrete terms, the right-hand side above is the set of pairs .P; i/, where P is a partition
B D

Q
j2J Bj and i D .ij / is a function on Spec.B/, which is constant on each Spec.Bj / taking values

in N, satisfying the condition that the map Wm.k/[ D k! B[j factors through a subfield of the finite
field F

p
ij .

Consequently, one finds that when k is a perfect field, the sheaf Frobk is representable by either the
constant monoid scheme N or the singleton f0g, depending on whether k is finite or not.
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Proposition 4.9 There is an isomorphism of sheaf of monoids over k

S1;1 ' Frobk :

Proof Let k be a perfect ring. Let B be an arbitrary k–algebra. By Remark 4.8, our goal is to show
that End.dR˝L

k
B/ is just given by Homk.Ga;B ;Ga;B/, where Ga;B is regarded as a k–algebra scheme

over B . For the proof, we will use another k–algebra, which we denote by Gperf
a;B . More explicitly, Gperf

a is
represented by the affine scheme SpecBŒx1=p

1

�; see Example 2.6. Note that we have a natural injection
of sets i W Homk.Ga;B ;Ga;B/! Homk.G

perf
a;B ;G

perf
a;B/.

Let us first construct a map ' W End.dR˝L
k
B/ ! Homk.G

perf
a;B ;G

perf
a;B/. We note that dR restricts to

a functor on the full subcategory of k–algebras, which we denote by Polyperf=k , which consists of
perfections of finite-type polynomial algebras over k. If R 2 Polyperf=k; then dRR=k˝k B ' R˝k B ,
which defines a functor from Polyperf=k to Alg =B sending R to R˝k B . This basically classifies perfect
k–algebra ring schemes over SpecB , and any endomorphism of dR˝L

k
B induces an endomorphism

of this perfect k–algebra ring scheme over SpecB , which is just given by Gperf
a;B . This constructs the

required map '.

We know that any element in End.dR˝L
k
B/ is uniquely determined by a map f of A1;dR as a k–algebra

stack over SpecB . We also note that there is a natural map Gperf
a ! A1;dR of k–algebra stacks over

SpecB (from now on we will omit the B from the subscript to ease our notation). By functoriality of
S 7! Sperf and the fact that this perfection construction commutes with colimits, it follows that the map f
lifts to give a map as below:

Gperf
a Gperf

a

A1;dR A1;dR

Of

f

Let u WGperf
a !Ga denote the natural map of k–algebra schemes. Then the fiber of the map Gperf

a !A1;dR

identifies with u�W ŒF �; see [24, Proposition 2.2.6]. Therefore, f is given by a map of the quasi-ideal in
Gperf
a given by u�W ŒF �!Gperf

a , which is of the form of a commutative diagram

u�W ŒF � Gperf
a

u�W ŒF � Gperf
a

t '.f /

In the above, t is required to be a Gperf
a –module map once the target is given the appropriate Gperf

a –
module structure via restricting scalars along '.f /. Now inspecting the above diagram at the level of
global sections yields that the map ' must factor through i , ie '.f / must be induced by an element of
s 2 Homk.Ga;Ga/. From this, it follows that the previous commutative diagram is uniquely determined
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by a commutative diagram
W ŒF � Ga

W ŒF � Ga

t 0 s

In the above, t is required to be a Ga–module map once the target is given the appropriate Ga–module
structure via restricting scalars along '. In order to understand the map t 0, we can therefore apply graded
Cartier duality [24, Section 2.4]. We note that W ŒF �� D Ga, and thus we get a map of graded group
schemes t 0� W Ga ! Ga, where the source group scheme Ga receives its grading via the Ga–module
structure induced by restriction of scalars along s. By easy degree considerations, it follows that there
exists a unique Ga–module map t 0 which fits into the above commutative diagram. Therefore, we obtain
the natural bijection End.dR˝L

k
B/' Homk.Ga;B ;Ga;B/, as desired.

Proposition 4.10 For any m� 1, there is a natural isomorphism of sheaf of monoids over Wm.k/

Sm;1 ' Frobk :

Proof Let B be a Wm.k/–algebra. There is a k–algebra scheme over B , which we denote by Gperf
a;B ,

whose underlying affine scheme is SpecBŒx1=p
1

�. As in the proof of Proposition 4.9, one also obtains
a map ' W End.dR˝Wm.k/ B/! Homk.G

perf
a;B ;G

perf
a;B/. It follows from going modulo p and applying

Proposition 4.9 that ' actually factors to give a map, again denoted by ' WEnd.dR˝Wm.k/B/!Frobk.B/.
We will argue that this map is a bijection.

By using the stack A1;dR and the natural map Gperf
a !A1;dR in a way similar to the proof of Proposition 4.9,

this amounts to the more concrete assertion that there is a unique map t of quasi-ideals in Gperf
a as in

Gperf;]
a Gperf

a

Gperf;]
a Gperf

a

t �.x/

Here x 2 Frobk.B/ and � W Frobk.B/! Homk.G
perf
a;B ;G

perf
a;B/ denotes the natural inclusion. Let us write

U for the coordinate ring of Gperf;]
a . Then U is an NŒ1=p�–graded Hopf algebra over B . It is also a free

algebra over B , where all the homogeneous components are free of rank 1 over B . As a graded B–algebra,
U is generated by the basis elements in degree pi for i 2 Z. It is enough to check that, for a fixed
x 2 Frobk.B/, there exists a unique map t which gives a map of quasi-ideals as above. The existence is
clear from definition of Gperf;]

a (Example 2.7) by applying the divided power envelope construction. For the
uniqueness, we note that once x is fixed, the above diagram forces the homogeneous elements of degree pi

for i � 0 to be mapped uniquely. The rest follows from inspecting the comultiplication of U and induction
on i (see last paragraph of the proof of Proposition 3.7, as well as the discussion after that proof).
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Remark 4.11 It is possible to prove Proposition 4.10 by using the methods from [24, Section 3.4],
which would essentially amount to proving a similar statement about the quasi-ideal Gperf;]

a !Gperf
a . It is

also possible to reduce to the same statement about quasi-ideals directly from Lemma 2.41 by using the
compatibility of the map induced on the animated ring W.S/=Lp via the Frobenius on W.S/ with the
natural Frobenius operator on any animated k–algebra. This implies that any endomorphism of A1;dR, as
a k–algebra stack, lifts along the map Gperf

a !A1;dR obtained by taking perfection. This lifting property
fails for endomorphisms of A1;dR as a W2.k/–algebra stack, leading to extra endomorphisms, as will be
constructed in Section 4.2.

4.2 Construction of endomorphisms

This subsection describes the construction of “enough” endomorphisms of de Rham cohomology. Our
strategy is to crucially exploit the unwinding equivalence proven in Proposition 4.4 to pass to the world of
ring stacks and do a small explicit construction there. We will begin by fixing notation and making some
definitions. Since we are interested in endomorphisms, we will ignore the Frobenius twist introduced in
Notation 2.28.

Notation 4.12 In this section, we work with a perfect ring k of characteristic p > 0. We fix two
integers n;m� 1. We will use W to denote the Witt ring scheme over the fixed base Wm.k/. Since m
and n are fixed, we will denote A1;dR

.m;n/
simply by A1;dR when no confusion is likely to occur.

Definition 4.13 We will let W Œp� denote the group scheme underlying the kernel of the multiplication
by p map on W .

Definition 4.14 We will let .1CW Œp�/� denote the monoid scheme underlying x 2W satisfying pxDp.
The multiplication on this monoid scheme is given by simply using the multiplication underlying the ring
scheme structure on W .

Proposition 4.15 Let B be a p–nilpotent ring. Then the monoid scheme .1CW Œp�/� over Spec.B/ is a
group scheme.

Proof This amounts to saying that, for any ring S with pm D 0 in S for some m, if x 2W.S/ satisfies
px D p then x must be a unit in the ring W.S/. Recall that we have a short exact sequence

0!W.p �S/!W.S/!W.S=p/! 0;

where W.p �S/ denotes the Witt ring associated with the ideal (viewed as a nonunital ring) p �S . Since
pm D 0 in S , the ideal W.p �S/ is nilpotent. Therefore it suffices to show the image of x in W.S=p/
is a unit, and hence we have reduced to the case where S is of characteristic p. Since p D V.1/ in this
case, the condition on x reads V.F.x//D x �V.1/D V.1/. Injectivity of V shows that F.x/D 1, which
implies that x is a unit.
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Construction 4.16 Now we will begin our construction of endomorphisms of A1;dR as a Wn.k/–algebra
stack (over the base Wm.k/, which is fixed for this section) when n� 2. Since Definition 2.32 constructs
the above stack as the cone of the quasi-ideal d W W �p

��! W , we will explicitly construct maps at the
quasi-ideal level, which can be done purely 1–categorically. We note that there is a natural structure map
.W.k/

�p
��! W.k//! .W

�p
��! W / of quasi-ideals, which describes the structure of .W �p

��! W / as a
quasi-ideal over k. In the language of quasi-ideals, the natural map Wn.k/! k can be written as a map
.W.k/

�pn

���!W.k//! .W.k/
�p
��!W.k//, as described below:

W W

W.k/ W.k/

W.k/ W.k/

�p

�p

�pn

�pn�1

We will construct maps of the quasi-ideal d W W �p
��! W over the quasi-ideal W.k/ �p

n

���! W.k/, as
described above. Let F be a homomorphism of the W.k/–algebra scheme W . A quasi-ideal map from
d WW

�p
��!W to itself can be defined by giving a W –linear map u WW ! F�W which makes the diagram

below commutative:
W W

W W

u

�p

F

�p

However, we need to make sure that such a map respects the additional structure of being a map of
quasi-ideals over W.k/ �p

n

���!W.k/, ie the following diagram needs to commute:

W W

W W

W.k/ W.k/

u

�p

F

�p
�pn�1

�pn

�pn�1

As one checks, for any n � 2, the only condition this imposes is that pu.1/ D p. This provides the
following map, which we wanted to construct:

.1CW Œp�/� �F !Sm;n:

Further, for any n � 2, the above map is clearly an injection by construction. We point out that it is
possible to do such a construction for every W.k/–algebra map F of the ring scheme W . Let S be a
Wm.k/–algebra. Then the element of Sm;n.B/ constructed above will be denoted by u � F , where u
is understood to be an element u.1/ 2 .1CW Œp�/�.B/. By construction, we see that the composition
.u; F 0/ ı .v; F / is equal to .uF 0.v/; F 0F /.
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Remark 4.17 In the above picture, if we let nD 1 then u.1/ is forced by the diagram to be equal to 1,
and one does not get the extra endomorphisms that were constructed above for n� 2.

Proposition 4.18 Let .1CW Œp�/� denote the group scheme as above. There is an injection of (sheaves)`
i2Frobk

.1CW Œp�/� �Frobi ! Endm;n when n� 2.

Proof This follows from Proposition 4.4 and Construction 4.16.

Remark 4.19 Letting B be a Wm.k/–algebra, we construct two natural maps

Frobk.B/! EndW.k/.W
.1/
B /! Frobk.B/:

The first arrow follows from the explicit description given in Remark 4.8, and we simply send powers
of the Frobenius to powers of the Frobenius on the Witt ring scheme. To exhibit the second arrow, note
that any element in EndW.k/.W

.1/
B / induces an element in Endk.ŒW

.1/
B =p�/ ' Endk.A

1;dR
B /, which is

equivalent to Frobk.B/ by Proposition 4.10. One easily checks that the composition of the two maps
gives the identity on Frobk.B/.

4.3 Calculation of the endomorphism monoid

Throughout this subsection, we will fix k to be a perfect algebra as before. Let ADWn.k/, and let B be
a k–algebra. In this subsection, we will show that we have found all the endomorphisms of dRm;n; more
precisely, the injection in Proposition 4.18 is an isomorphism.

We need some preparations, starting with understanding the homotopy sheaves associated with A1;dR.
Since A1;dR is a 1–stack, we only need to understand �0 and �1. Once again, we remind the readers that,
since we are interested in endomorphisms, we will ignore the Frobenius twist introduced in Notation 2.28.

Proposition 4.20 For a test algebra S :

(1) A1;dR.S/DW.S/=Lp, where W.S/=Lp denotes the animated ring obtained by quotienting W.S/
by p. We note that the object in the category of animated modules underlying W.S/=Lp can be
simply described as Cofib.W.S/ �p��!W.S//.

(2) The sheaf �1.A1;dR/ is representable byW Œp�, the ideal scheme of p–torsion in the ring schemeW .

(3) Over a characteristic-p base , the sheaf �0.A1;dR/ is representable by Ga, where the induced map
W !Ga is given by the natural projection to the zeroth Witt coordinate.

Proof (1) By definition, we need to prove that the presheaf P.S/ WDW.S/=Lp is already an fpqc sheaf
of animated rings. It is enough to show that P.S/ WD Cofib.W.S/ �p��! W.S// is a sheaf of animated
modules. By noting that Cofib.W.S/ �p��!W.S//D fib.W.S/Œ1� �p��!W.S/Œ1�/, we see that it is enough
to prove that the functor Q.S/ WDW.S/Œ1� is a sheaf of connective animated modules. For this, we only
need to show that H 1

fpqc.SpecS;W /D 0.
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To this end, note that W D lim
 ��n

Wn. By [10, Example 3.1.7 and Proposition 3.1.10] and the fact that F
on W is faithfully flat, W D R lim

 ��n
Wn. Thus R�fpqc.SpecS;W /D R lim

 ��n
R�fpqc.SpecS;Wn/. Now

one notes that Wn has a finite filtration with the graded pieces being equal to Ga. Thus

R�fpqc.SpecS;W /DR lim
 ��
n

R�fpqc.SpecS;Wn/DR lim
 ��
n

�.SpecS;Wn/DR lim
 ��
n

Wn.S/

D lim
 ��
n

Wn.S/DW.S/:

In particular, H 1
fpqc.SpecS;W /D 0, as desired.

(2) This follows from (1).

(3) In the Witt ring of a characteristic-p ring, p D VF . The conclusion follows, since F WW !W is an
fpqc surjection.

In general, �0.A1;dR/ is given by the sheaf of discrete k–algebras W=p. However, if the base is not of
characteristic p, this sheaf stops being representable, as noted below. Nevertheless, Lemma 4.23 will
help us extract the necessary information from �0.A1;dR/.

Proposition 4.21 Let B be a ring such that p … .p2/ and let S D Spec.B/. The sheaf

F WD �0.Cone.G]
a;S !Ga;S //' �0.A

1;dR/

is not representable by an algebraic space over S .

Proof The isomorphism follows from Proposition 2.38. Since both Ga and G]
a are affine schemes, the

hypothetical representing algebraic space would be quasicompact and quasiseparated. Below we show
there cannot be such a qcqs algebraic space.

It suffices to prove the statement for B=p2. Hence we may assume p2 D 0 in B . Since the restriction of
our sheaf to B=p–algebras is represented by the affine scheme Ga;B=p , using [2, Tag 07V6] we see that
the sheaf would in fact be represented by an affine scheme over S . Let us denote its ring of functions
by R. The natural map Ga;S! Spec.R/ induces a map R!BŒt�. Reducing the ring map modulo p, we
see that the image is B=pŒtp�. This implies that an element of the form tpCp �g must be in the image.
On the other hand, we claim that the image of the ring map itself is contained in ff 2 BŒt� j f 0.t/D 0g.
Indeed, the two compositions

Spec.BŒt; ��=�2/ t 7!t�����!
t 7!tC�
�����! Spec.BŒt �/! F

yields the same map as � 2 BŒt; ��=�2 admits divided powers. This shows that the image of R! BŒt�

must be contained in the equalizer of the two maps BŒt��BŒt; ��=�2. The identification of this equalizer
with those polynomials whose derivative is zero follows from the Taylor expansion. Lastly, to get a
contradiction, just observe that, if we let f D tp C p � g, then f 0 ¤ 0 as p … .p2/; however, we had
previously argued that tpCp �g must be in the image.
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Lemma 4.22 Let B be a W.k/–algebra. We have W.B/Œp�'HomW.k/.k;A1;dR/, where the right-hand
side denotes the space of maps as W.k/–algebra stacks over B . Given ˇ 2W.B/Œp�, the corresponding
homomorphism of sheaves is modeled by

W
�p

// W

W.k/
�p
//

�.1Cˇ/

OO

W.k/

OO

Here the constant sheaf of W.k/–algebras given by k is viewed as a W.k/–algebra stack over B .

Proof Since A1;dR is 1–truncated, the right-hand side is classified by Homk.Lk=W.k/; �1.A1;dR/Œ1�/D

W.B/Œp� by Proposition A.6. In this identification we have used Proposition 4.20(2). One checks easily
that the maps we constructed in the last sentence exactly correspond to ˇ under the above identification,
finishing the proof.

Our last preparation is to understand those algebra homomorphisms in Endk.�0.A1;dR// which can be
lifted to a Wn.k/–algebra homomorphism of A1;dR. It turns out that liftability as a Wn.k/–algebra stack
for n > 1 automatically guarantees liftability as a k–algebra stack, as noted below.

Lemma 4.23 Let B be aWm.k/–algebra , and let us consider A1;dR as a k–algebra stack over B . The two
natural maps EndW.k/.A1;dR/! Endk.�0.A1;dR// and Endk.A1;dR/! Endk.�0.A1;dR// have the same
image. In particular , by Proposition 4.10, we know the image is naturally in bijection with the monoid
Frobk.B/.

Proof The image of the first map clearly contains the image of the second. Given f 2 EndW.k/.A1;dR/,
by composing with the natural map � W k!A1;dR we get a natural map f ı � W k!A1;dR of W.k/–algebra
stacks. In Lemma 4.22, we see that f ı � must be classified by some element 1Cˇ 2 1CW.B/Œp�. By
Proposition 4.15, we can find an inverse .1Cˇ/�12 .1CW Œp�/�; note that the composition .1Cˇ/�1ıf ı�
equals �. Here we regard an element in .1CW Œp�/� as a W.k/–algebra automorphism of A1;dR by
Construction 4.16. Since these elements in .1CW Œp�/� always induce the identity on �0, we see that
.1Cˇ/�1 ıf is a k–algebra automorphism lifting to the same ring homomorphism on �0.A1;dR/ as f .

Theorem 4.24 Let ADWn.k/, and suppose that B is a Wm.k/–algebra. Then

End.dRm;n˝Wm.k/B/D

�`
i2Frobk.B/

Frobi if nD 1;`
i2Frobk.B/

.1CW Œp�/�.B/ �Frobi if n� 2:

Here the multiplication law in the second case is given by

.u �Frobi / � .v �Frobj /D u �Frobi .v/ �FrobiCj ;

where u; v 2 .1CW Œp�/�.B/.
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Remark 4.25 These endomorphism spaces are all discrete, by Lemma 3.3. The above theorem states that
the map in Proposition 4.18 is actually an isomorphism. From the above calculation, we also conclude
that the sheaf of endomorphism monoids is representable if and only if the sheaf Frobk is representable.
This happens whenever k is a perfect field, in which case the representing scheme is a combination of the
constant monoid scheme N and the commutative group scheme .1CW Œp�/�, depending on k and n.

Proof When nD 1, this is proved in Proposition 4.10. Below we will assume n� 2.

Recall that in Proposition 4.4 we have shown that the endomorphisms of our de Rham cohomology
functor are the same as the endomorphisms of the Wn.k/–algebra stack A1;dR

B over Spec.B/. Since the
category of Wn.k/–algebra stacks is equivalent to the category of sheaves of Wn.k/–animated algebras
(see Remark 2.14) we will compute the endomorphism of A1;dR

B viewed as a sheaf of Wn.k/–animated
algebras on the fpqc site of Spec.B/.

Composing with the map A1;dR! �0.A1;dR/, we get a natural map

HomWn.k/.A
1;dR;A1;dR/

fn
�! HomWn.k/.A

1;dR; �0.A
1;dR//D Endk.�0.A

1;dR//:

Here and below, Hom refers to homomorphisms of sheaves respecting the designated structure marked by
subscript. By Lemma 4.23, we see that

Im.fn/D Frobk.B/:

We need to understand the fiber of fn. Take an i 2 Frobk.B/; by Proposition A.6, the fiber of fn over
Frobi is a torsor under

HomA1;dR.LA1;dR=Wn.k/
; �1.A

1;dR/Œ1�/:

Here the sheaf of A1;dR–module structure on the sheaf �1.A1;dR/ is via A1;dR!�0.A1;dR/ Frobi

���!�0.A1;dR/.
To understand this group, let us utilize the cofiber sequence of cotangent complexes from Proposition A.3
associated with the diagram Wn.k/! k!A1;dR:

Lk=Wn.k/˝k A1;dR
! LA1;dR=Wn.k/

! LA1;dR=k :

By Proposition 4.10, the map Endk.A1;dR/! Endk.�0.A1;dR// is injective with image Frobk.B/. There-
fore, again by Proposition A.6, HomA1;dR.LA1;dR=k; �1.A

1;dR/Œ1�/D 0, and we get an injection

HomA1;dR.LA1;dR=Wn.k/
; �1.A

1;dR/Œ1�/ ,! HomA1;dR.Lk=Wn.k/˝k A1;dR; �1.A
1;dR/Œ1�/:

The latter is identified with

Homk.Lk=Wn.k/; �1.A
1;dR/Œ1�/D Homk.kŒ1�; �1.A

1;dR/Œ1�/D �1.A
1;dR/.B/DW Œp�.B/:

Here the first identification follows from the fact that ��1Lk=Wn.k/ D kŒ1�, and the last identification is
due to Proposition 4.20(2). Unraveling definitions, for any u 2 .1CW Œp�/�.B/, the element u � Frobi

(see Construction 4.16 and Proposition 4.18) in the fiber of fn is sent to u� 1 2W Œp�.B/. One easily
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sees that the previous sentence in fact gives a bijection. Therefore the fiber of fn over Frobi is exactly
.1CW Œp�/�.B/ �Frobi and finishes the calculation of endomorphism sets.

The multiplication law is checked by chasing through the diagram: on the quasi-ideal model, the
homomorphism u �Frobi sends an element x 2W.B/ to u �Frobi .x/, and one computes

u �Frobi .v �F j .x//D u �Frobi .v/ �FrobiCj .x/:

Remark 4.26 In the above proof, one does not actually need to work with fpqc sheaves, and the same
proof works merely at the level of presheaves. However, if one only wanted to prove Theorem 4.24 in
the case when mD 1, one could work with fpqc sheaves or quasisyntomic sheaves and use the fact that
�0.A1;dR/DGa (from Proposition 4.20) to simplify the proof and avoid invoking Proposition 4.10 and
Lemma 4.23. The case mD 1 is sufficient for our application in Section 5.

Corollary 4.27 Let k be an arbitrary perfect algebra. We consider the functor Endm;n from Section 4.1
for a fixed m � 1. There are natural maps of sheaves Endm;n0 ! Endm;n for n0 � n, which induces an
isomorphism if n � 2. If n0 > n,and n D 1, then all fibers of this natural map are given by the group
scheme .1CW Œp�/�. The sheaf Endm;1 is Frobk .

Proof This follows from combining Proposition 4.10 and Theorem 4.24.

Remark 4.28 (1) The stabilization of Endm;n for n� 2 that we see above suggests that lifting to Wn for
n > 2 gives no extra information on the de Rham cohomology of the special fiber, at least in a functorial
sense. In the next section, we will see that the extra information on liftability to second Witt vectors gives
a strengthening to Deligne and Illusie’s decomposition theorem [12]. Combining these two results, we
are led to believe the following dichotomy of possibilities on a follow-up question [12, remarque 2.6(iii)]:
either liftability over W2 always guarantees that the Hodge–de Rham spectral sequence degenerates, or
there is a counterexample (necessarily of dimension � pC 1) which is liftable all the way over W .

(2) If B has characteristic p, then pD V ıF on W.B/. The defining equation u �pD p of .1CW Œp�/�

becomes V.F.u//DV.1/. Since V is always injective, the group scheme .1CW Œp�/� over a characteristic-
p base becomes G]

m WDW
�ŒF �, namely the Frobenius kernel of the multiplicative group scheme W �.

(3) The above discussion tells us that the functorial automorphism group scheme of the mod p de Rham
cohomology theory on W2.k/–algebras is given by G]

m. Note that there is a natural inclusion �p!G]
m

which induces a product decomposition G]
m D �p �G]

a (see Appendix B). In Theorem 5.4, we will
utilize the automorphisms coming from �p. The remaining G]

a worth of automorphisms are related to
the Sen operator studied in [5].

Our calculation shows that there is no functorial splitting of the whole mod p derived de Rham complex,
as a functor from W2.k/–algebras to CAlg.D.k//, into direct sums of the graded pieces of its conjugate
filtrations.
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Proposition 4.29 There is no functorial splitting

dR.�˝W2.k/k/=k '

M
i2N�0

Grconj
i .dR.�˝W2.k/k/=k/

as a functor from smooth W2.k/–algebras to CAlg.D.k//.

Proof Indeed, if there were such a splitting, we would get an automorphism parametrized by Gm,
with the i th graded piece having pure weight i . From the calculation of the endomorphism monoid in
Theorem 4.24, this would give us an injection Gm ,!G]

m. But the Frobenius on Gm is nonzero, whereas
it is zero on G]

m. Hence we know there is no injective map Gm ,!G]
m over any characteristic-p base,

getting a contradiction.

Remark 4.30 (twisted forms of de Rham cohomology) Theorem 4.24 can be applied to understand a
question considered by Antieau and Moulinos on the possible existence of étale twists of the de Rham
cohomology functor in some cases: letting k be a perfect ring and B be an ordinary Wm.k/–algebra,
does there exist a functor F W ARingsWn.k/

! CAlg.D.B// which is isomorphic to dRm;n˝Wm.k/ B

étale locally on SpecB? We thank Antieau for mentioning this question to us. By Theorem 4.24, such
functors are classified by H1ét.SpecB; .1CW Œp�/�/. When mD 1 and B is perfect, one can show that
H1fpqc.SpecB; .1CW Œp�/�/D 0 by using .1CW Œp�/� 'G]

m ' �p �G]
a over SpecB . So in that case,

there does not even exist a nontrivial fpqc twist. However, the cohomology group can be nonzero for some
choices of B . It would be interesting to study the corresponding twisted forms of de Rham cohomology
which can be seen as new cohomology theories, but that direction is not pursued further in this paper. It
would also be interesting to compute H1ét.SpecB; .1CW Œp�/�/ in general for m> 1.

5 Application to the Deligne–Illusie decomposition

5.1 Drinfeld’s refinement of the Deligne–Illusie decomposition

In this section, we explain how to apply our result from Theorem 4.24 on endomorphisms of the de Rham
cohomology functor to recover a recent result of Drinfeld concerning a classical theorem due to Deligne
and Illusie [12], and Achinger and Suh [1].

Notation 5.1 Fix a perfect ring k as before, and consider the monoid scheme End1;n from Corollary 4.27
over k. Let B be a k–algebra and let � 2End1;n.B/. By definition we get an endomorphism induced by � ,

dRR=Wn.k/˝Wn.k/B
�
�! dRR=Wn.k/˝Wn.k/B;

which is functorial in the Wn.k/–algebra R.

Definition 5.2 For anyWn.k/–algebraR, we define the conjugate filtration Filconj
i on dRR=Wn.k/˝Wn.k/k

to be the left Kan extension of the canonical filtration on polynomial (or smooth) Wn.k/–algebras.
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Lemma 5.3 Assume k! B is flat. Then � preserves Filconj
i ˝k B for all i .

Proof Any morphism must preserve the canonical filtration. If R is a polynomial (or smooth) Wn.k/–
algebra, one easily shows that the canonical filtration on dRR=Wn.k/˝Wn.k/B is just Filconj

i ˝kB .

By Theorem 4.24 and Remark 4.28(4), we have an inclusion of k–schemes .G]
m/ � End1;2. Let

B D �.G]
m;O/. Then the identity map defines an element � 2 G]

m.B/, which can be regarded as the
universal point. By the above discussion, the universal point � gives rise to a comodule structure on
dRR=W2.k/˝W2.k/ k over the Hopf algebra B , functorial in the W2.k/–algebra R, and the conjugate
filtration is an increasing filtration of subcomodules. Alternatively, we may view this as an action of G]

m

on the mod p de Rham cohomology dR�=W2.k/˝W2.k/k. We may ask what the effect of the G]
m–action is

on each graded piece of the conjugate filtration, viewed as a functor from the category of W2.k/–algebras
to the derived1–category of B–comodules. The latter can be defined as the derived1–category of
quasicoherent sheaves on BG]

m.

Recall that the category of �p–representations is semisimple, with simple objects given by Z=p–worth
of powers of the universal character. We follow the convention that the universal character �p ,!Gm

has weight 1. The following result was first observed by Drinfeld via prismatization, and communicated
to us by Bhatt.

Theorem 5.4 The action of G]
m on the i th graded piece of the conjugate filtration factors through the

natural projection G]
m! �p, and the resulting �p–action is of pure weight i 2 Z=p.

This fact also appears in [5, Example 4.7.17], where it is proved using Sen operators. Below we give a
different argument:

Proof The derived Cartier isomorphism [3, Proposition 3.5] reduces the proof to showing the statement for
i D 0 and 1. Since the conjugate filtration is defined via left Kan extension from its values on polynomial
algebras, using the classical Cartier isomorphism and Künneth formula, we need only understand the
behavior of � on the cohomology of

dRW2.k/Œx�=W2.k/˝W2.k/ k ' dRkŒx�=k :

Observe that the whole situation is base changed from k D Fp; we immediately reduce to k D Fp.

According to Construction 2.25, the action of � is defined via the identification

dRZ=p2Œx�=.Z=p2/˝Z=p2 B ' R�.A1;dR
B ;O/

and the homomorphism of the Z=p2–algebra stack over G]
m given by the diagram

WB
�p
//

��

��

WB

id
��

WB
�p
// WB
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Here WB denotes the Witt ring scheme over the base scheme G]
m. The first cohomology of dRFpŒx�=Fp

is
a free rank-1 module over its zeroth cohomology. Therefore all we need to do is

(1) show that the induced map on H0.A1;dR
B ;O/ is trivial,

(2) exhibit a nonzero element v2H1.A1;dR
Fp

;O/which pulls back to a weight-1 element in H1.A1;dR
B ;O/.

To avoid confusion, let us define the ring scheme W WD Spec.FpŒX0; X1; : : :�/ and the quasi-ideal
W WD Spec.FpŒY0; Y1; : : :�/. Here the Xi (and similarly the Yi ) are the Witt coordinates. One easily
checks the effect of id� and .��/� on the elements Xi 7! Xi and Y0 7! t0 � Y0. Here t0 denotes the
element in B corresponding to the natural projection G]

m! �p.

Now (1) is easily verified: H0.A1;dR
B ;O/� BŒX0; X1; : : :�, and hence invariant under the �–action.

As for (2), we claim that 1˝ Y0 2 FpŒXi ; Yj � is a nonzero class in H1.A1;dR
Fp

;O/. Here we are using
the Čech nerve of Spec.FpŒX0; X1; : : :�/! A1;dR

Fp
to calculate the cohomology of A1;dR

Fp
; implicitly we

have used the fact that the Œ1�–term of the Čech nerve is given by Spec.FpŒXi ; Yj �/. Granting this claim,
the action of � sends Y0 to t0 �Y0, and hence the action on the class 1˝Y0 is via the natural projection
G]
m! �p and has weight 1. To prove the claim, we use the maps

W ŒF �DG]
a!W D Spec.FpŒY0; Y1; : : :�/!Ga D Spec.FpŒY0�/;

where the middleW is a copy of quasi-idealW . The above maps induce a sequence of abelian group stacks:

BG]
a!A1;dR

! BGa:

Recall that there is a canonical identification H1.BG;O/ ' Hom.G;Ga/ for affine group schemes
G via faithfully flat descent along � ! BG. The identity map on Ga D Spec.FpŒY0�/ pulls back to
1˝ Y0 2 FpŒXi ; Xj �, which checks that 1˝ Y0 is a cocycle. Furthermore, recall that the induced map
G]
a!Ga realizes the former as the divided power envelope of the origin inside the latter. In particular it

is a nonzero map. From the above identification, this tells us that 1˝Y0 pulls back to a nonzero class in
H1.BG]

a;O/. Therefore the class 1˝Y0 is a nonzero class in H1.A1;dR
Fp

;O/.

Remark 5.5 Let us mention another way to obtain the above result concerning the G]
m–action on

dRkŒx�=k . As explained, the action arises from the action of G]
m on A1;dR in characteristic p. One can

show that the stack underlying A1;dR
Fp

(without the ring stack structure) decomposes as Ga �BG]
a (see

[6, Proposition 5.12]), and the action of G]
m is trivial on Ga and weight 1 on BG]

a. This gives the desired
statement. We thank the referee for pointing this out to us.

Note that the natural projection G]
m! �p admits a splitting: the Teichmüller lift defines a map of group

schemes Gm ,!W �, which induces a map of group schemes �p ,!G]
m.

Let X be a smooth scheme over W2.k/ and consider the de Rham cohomology of its special fiber (relative
to k), which by the above discussion admits a �p–action. Now look at the canonical truncation in a range
of width at most p. The weights that show up in Z=p are pairwise distinct, and hence we get a splitting
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of the induced conjugate filtration. Therefore the above theorem implies the following improvement of a
result due to Achinger and Suh [1, Theorem 1.1], which in turn is a strengthening of Deligne and Illusie’s
result [12, corollaire 2.4].

Corollary 5.6 (Drinfeld) Let k be a perfect ring of characteristic p > 0, let X be a smooth scheme
over W2.k/, and let a � b � aCp� 1. Then the canonical truncation �Œa;b�.��Xk=k

/ splits.

Note that when p > 2, in Achinger and Suh’s statement in loc. cit. they need b < aC p � 1, so their
allowed width needs to be at most p�1. In fact, more generally, we have the following decomposition as
a consequence of the G]

m–action in described in Theorem 5.4.

Corollary 5.7 (Drinfeld; see [1, Remark A.5]) Let X be a smooth scheme over W2.k/ with special
fiber Xk . Then there exists a splitting , functorial in X , in the derived 1–category of Zariski sheaves
on X 0

k
,

FXk=k;�.dRXk=k/'
M
i2Z=p

FXk=k;�.dRweightDi
Xk=k

/:

Moreover Hj .FXk=k;�.dRweightDi
Xk=k

// ¤ 0 implies j � i in Z=p. Here X 0
k

is the Frobenius twist of Xk
and FXk=k is the relative Frobenius. In particular , the conjugate spectral sequence of liftable smooth
varieties can have nonzero differentials only on the .mpC1/st pages , where m 2 Z>0.

Remark 5.8 Drinfeld observed the results in this subsection by using the “stacky approach” to prismatic
crystals (which he calls “prismatization”), which was independently developed by Bhatt and Lurie [5].
Using the prismatization functor, Drinfeld produced an action of �p on the de Rham complex of a smooth
scheme over k that lifts toW2.k/. Our paper partly grew out of an attempt at making sense of and reproving
Drinfeld’s theorem without introducing prismatization and taking a very algebraic/categorical approach
instead. In [5], this action is obtained in a more geometric way by understanding the prismatization of
Spec.W2.k//.

5.2 Uniqueness of functorial splittings

Corollary 5.6 provides a functorial splitting of the .p�1/st conjugate filtration of the mod p derived
de Rham cohomology of any W2.k/–algebra. On the other hand, the classical Deligne–Illusie splitting
also has an1–categorical functorial enhancement [20, Theorem 1.3.21 and Proposition 1.3.22], which,
in spirit, is more related to the work of Fontaine and Messing [16] and Kato [18].

It is a natural question to ask whether these two splittings agree in a functorial way. By the definitions of
these two splittings, we see immediately that they are both compatible with the module structure over the
zeroth conjugate filtration, and induced from the splitting of the first conjugate filtration by an averaging
process; see the step (a) in proof of [12, théorème 2.1].

Below we will prove that there is a unique way to functorially split the first conjugate filtration, and hence
the above two functorial splittings must be the same. To that end, let us fix some notation:
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Notation 5.9 Consider the stable1–category Fun.Algsm
W2.k/

;D.k//, where Algsm
W2.k/

is the category
of smooth W2.k/–algebras and D.k/ is the derived (stable) 1–category of k–vector spaces. Denote
by O the functor that sends any W2.k/–algebra R to the zeroth conjugate filtration of dR.R˝W2.k/k/=k ,
which has the structure of a commutative algebra object in Fun.Algsm

W2.k/
;D.k//. The functor obtained by

considering the first piece of the conjugate filtration will be denoted by M , and viewed as an O–module.
We have a natural map O ! M ; we denote the cofiber by G, which is the first graded piece of the
conjugate filtration, also viewed as an O–module.

Now we have a cofiber sequence of O–modules O!M !G.

Theorem 5.10 In the above notation , there is a unique functorial O–module splitting

M DO˚G

in Fun.Algsm
W2.k/

;D.k//. In particular , the splitting of Filconj
p�1.dR.�˝W2.k/k/=k/ obtained in Corollary 5.6

and [20, Theorem 1.3.21] agree.

Proof The existence part is provided by either Corollary 5.6 or [20, Theorem 1.3.21]. We focus on the
uniqueness part in this proof.

Firstly, we note that it suffices to show the uniqueness of the splitting as a quasisyntomic sheaf on the
quasisyntomic site of W2.k/. This is because they are left Kan extended from the polynomial case,
and polynomial algebras are quasisyntomic. The site qSynW2.k/

admits a basis of large quasisyntomic
W2.k/–algebras, so we may restrict our functors to this subclass of W2.k/–algebras and show uniqueness
of splitting there. All three functors have discrete value on this subclass of W2.k/–algebras, so O is a
sheaf of ordinary k–algebras given by R 7! R=p (up to a Frobenius twist), and M and G are sheaves
of ordinary O–modules. We will show that there exists a unique section to the surjection of sheaves of
O–modules M �G.

Step 1 Consider the algebra RDW2.k/Œx1=p
1

�=.x/. In this case

D WD dR.R˝W2.k/k/=k 'D.x/.kŒx
1=p1 �/

is the divided power envelope of .x/ in kŒx1=p
1

�. This algebra admits a natural grading by the monoid
NŒ1=p�. The values of our sheaves evaluated at R are OD kŒx1=p1 �=.xp/, and M is the degree-Œ0; 2p/
part of D.x/.kŒx1=p

1

�/, whereas G is the degree-Œp; 2p/ part. One checks easily that G is generated by
p.x/ (mod the degree-Œ0; p/ part) as an O–module in this case. We claim that the section necessarily
sends this generator to p.x/ 2M . Say the section sends this generator to some element f .x/ 2M . We
look at the two maps of W2.k/–algebras from R to R˝W2.k/W2.k/Œt

1=p1 � given by xm 7! xm � tm and
xm 7! xm. The associated mod p derived de Rham cohomology is given by D˝k kŒt1=p

1

�. Since the
corresponding maps of values of G are

p.x/ 7! p.tx/D t
pp.x/ and p.x/ 7! p.x/;
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functoriality tells us that tpf .x/D f .tx/ 2D˝k kŒt1=p
1

�. This implies that f .x/ is a homogeneous
degree-p element in M which maps to p.x/ 2G. Therefore it must be p.x/ 2M .

Step 2 Next we consider the algebra RnDW2.k/Œx
1=p1

i I i D 1; : : : ; n�=
�Pn

iD1 xi
�
. In this case, define

Dn WD dR.Rn˝W2.k/k/=k DD.
Pn

iD1 xi /
.kŒx

1=p1

i �/:

Then the value of our sheaves evaluated at Rn is given by O D kŒx
1=p1

i �=
�Pn

iD1 x
p
i

�
, and M D

O �
˚
1; p

�Pn
iD1 xi

�	
whereas G DO � p

�Pn
iD1 xi

�
. In this case, we claim that the section necessarily

sends p
�Pn

iD1 xi
�

to
Pn
iD1 p.xi /. Note that this sum makes sense as an element in Dn, and in fact

is in M . For instance, one may repeatedly use p.xC y/D
Pp
iD0 i .x/ � p�i .y/ to see this. Now to

show the above claim, we first use the same argument as in the previous paragraph to see that the section
of p

�Pn
iD1 xi

�
is necessarily a homogeneous degree-p element f .xi /. Then we use the functoriality

provided by the map Rn! R˝W2.k/n DW2.k/Œx
1=p1

i I i D 1; : : : ; n�=.xi I i D 1; : : : ; n/ to see that the
element g.xi / WD f .xi /�

Pn
iD1 p.xi / is a homogeneous degree-p element in the kernel of the induced

mapDn!D˝kn. The degree-p part of the kernel is the k–span of fxpi g
n
iD1 modulo k �

Pn
iD1 x

p
i . Finally,

using functoriality with respect to switching variables, we see that g.xi / must be a permutation-invariant
element, and hence necessarily 0 unless n D p D 2. Therefore, when n � 3, the associated section is
determined. By functoriality, the section associated with R3 determines the section associated with R2.
This finishes the proof of our claim above.

Step 3 The universal algebra that we need to consider is R0 DW2.k/Œx1=p
1

; y1=p
1

�=.xCpy/. Note
that R0=pDR=p˝k kŒy1=p

1

�, so the values of relevant sheaves are those in Step 1 tensored over k with
kŒy1=p

1

�. The generator p.x/D p.xCpy/ of G under a functorial section goes to p.x/Cg.x; y/,
where g.x; y/ 2 kŒx1=p

1

; y1=p
1

�=.xp/ has degree p by the same argument as in Step 1. We claim that
g.x; y/D yp=.p� 1/Š. To see this, first observe that

x1C x2 D .x
1=p
1 C x

1=p
2 /pCp �F.x1; x2/ in W2.k/Œx

1=p
1 ; x

1=p
2 �;

where we view F.x1; x2/ 2 kŒx
1=p1 ; y1=p

1

� as a degree-1 polynomial. Then we see that there is a
map R0 ! R2 sending x and y to Teichmüller lifts of x1 C x2 and F.x1; x2/. The induced map of
corresponding D’s sends p.x/Cg.x; y/ to p.x1C x2/Cg.x1C x2; F .x1; x2//. On the other hand,
the functoriality forces this element to be sent to p.x1/C p.x2/ by Step 2. Therefore we get a relation

p.x1C x2/Cg.x1C x2; F .x1; x2//D p.x1/C p.x2/:

Let h.x; y/ D g.x; y/� yp=.p� 1/Š 2 kŒx1=p
1

; y1=p
1

�=.xp/, which also has degree p. Combining
relations, h.x1C x2; F .x1; x2// D 0 2 kŒx

1=p1

1 ; x
1=p1

2 �=.x
p
1 C x

p
2 /. Applying the next lemma with

x1C x2 D a and x2 D b, we conclude that h.x; y/ must be 0.

Step 4 Given any large quasisyntomic W2.k/–algebra S , we can find an algebra S 0 of the form
W2.k/ŒX

1=p1

i ; Y
1=p1

j I i 2 I; j 2J �=.YjCfj .Xi /I j 2J / and a surjection S 0�S inducing a surjection
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of their values on all the relevant sheaves; see the proof of [11, Proposition 7.10] or [21, Theorem 3.14]
for details. The value of G in this case is generated, as an O module, by p.Yj C fj .Xi // where j 2 J .
By functoriality, we may reduce to the case where S D W2.k/ŒX1=p

1

; Y 1=p
1

�=.Y C f .X//. In this
case G is generated over O by the element p.Y Cf .X/e/; we want to show the section is forced on
this element. Observe that any element in W2.k/ŒX1=p

1

; Y 1=p
1

� can be written as ŒP1�Cp � ŒP2�, a
Teichmüller lift plus p times another Teichmüller lift. Therefore we can define a map R0! S sending X
to ŒP1� and Y to ŒP2�. Then we see that the section of p.Y Cf .X// must be p.P1/CP

p
2 =.p� 1/Š by

Step 3. This shows the rigidity, as desired.

Lemma 5.11 Suppose that F.a; b/ 2 kŒa1=p
1

; b1=p
1

� is the degree-1 element such that its lift zF to
W2.k/Œa

1=p1 ; b1=p
1

� satisfies

.a� b/pC bp D apCp � zF .ap; bp/ in W2.k/Œa1=p
1

; b1=p
1

�:

Let H.a; b/ 2 kŒa1=p
1

; b1=p
1

� be a degree-p element which does not contain the term ap. Suppose
H.a; F.a; b// 2 kŒa1=p

1

; b1=p
1

� is divisible by ap. Then H.a; b/D 0.

Proof Observe that F.a; b/D
Pp�1
iD1 ci �a

i=pb.p�i/=p with ci ¤ 0 for each i . The a–degree of F.a; b/
is less than 1, therefore the a–degree of H.a; F.a; b// must be smaller than p unless H.a; F.a; b//D 0
(as H.a; b/ does not contain an ap term). The ap divisibility now forces H.a; F.a; b//D 0. Considering
the b–degree of H.a; F.a; b// shows that, in fact, H.a; b/ has to be 0 to begin with.

In Step 3 one can alternatively argue using the map RpC1! R0 sending x1 to x and the rest of the p
variables to y.

Appendix A Topos-theoretic cotangent complex

The theory of cotangent complexes appears in many places in the literature. For example, it has been
discussed in [17] in the context of simplicial ring objects in a 1–topos, and in [22], where an1–categorical
theory has been discussed for animated ring objects in spaces. However, in the proof of Theorem 4.24, we
required a formalism of cotangent complexes in the generality of animated ring objects in an1–topos.
In this appendix, we will sketch a formalism of cotangent complexes in the above generality and its very
basic properties, which is sufficient for the proof of Theorem 4.24. Our exposition basically uses the
techniques from [22] and lifts them to the generality we need.

For simplicity, we will focus on the case necessary for our application, where the1–topos X arises as
sheaves of spaces on some Grothendieck site C, which will be fixed. As in Definition 2.10, one defines the
1–category ARings.X / WDARings.X /Z, which is equivalent to the1–category of sheaves of animated
rings on C. For a fixed animated ring B in X , one can also consider the 1–category of connective
B–modules in X defined as the category of sheaves on C (with values in animated abelian groups) of
B–modules.
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For n�0, an object F 2ARings.X / will be called n–truncated if F.c/ is n–truncated (ie �i .F.c//D0 for
all i > n) for all c 2 C. We let ��nARings.X /!ARings.X / denote the inclusion of the full subcategory
of n–truncated objects in ARings.X /. This admits a left adjoint that sends G to ��nG, which is obtained
by n–truncating G as a presheaf first and then applying sheafification.

Construction A.1 (the cotangent complex) Let A! B be a map in ARings.X /. For any connective
B–module M , one can form the trivial square-zero extension B˚M , which is an object of ARings.X /A.
There is a natural projection map B˚M ! B , which regards B˚M as an object of .ARings.X /A/=B .
One can consider the functor M !Maps.ARings.X /A/=B

.B;B˚M/. By the adjoint functor theorem, this
functor is corepresented by a connective B–module, which we will denote by LB=A.

Remark A.2 Let A ! B be a map in ARings.X /. It follows that LB=A, defined as above, is the
sheafification of the presheaf on C with values in animated abelian groups that sends c to LB.c/=A.c/ for
c 2 C. It naturally inherits the structure of a sheaf of connective B–modules on C.

Proposition A.3 For a sequence of morphisms A! B! C in ARings.X /, we have a cofiber sequence

LB=A˝B C ! LC=A! LC=B

in the1–category of connective C–modules.

Proof This follows from Construction A.1.

Remark A.4 Let C 2 ARings.X /. Let U ! V ! W be a cofiber sequence in the 1–category of
connective C–modules. For any connective C–module M , we obtain a long exact sequence

� � � ! �1 Maps.W;M/! �1 Maps.V;M/! �1 Maps.U;M/! �0 Maps.W;M/

! �0 Maps.V;M/! �0 Maps.U;M/:

Definition A.5 (square-zero extensions) Let A 2 ARings.X / and B 2 ARings.X/A. Let M be a
connective B–module. A square-zero extension of B by M is classified by MapsB.LB=A;M Œ1�/, where
the maps are considered in the1–category of connective B–modules. By Construction A.1, square-zero
extensions can be equivalently classified by Maps.ARings.X /A/=B

.B;B˚MŒ1�/. Given s WB!B˚MŒ1�

which gives a section to the projection, the pullback B 0 WD B˝B˚MŒ1�B recovers the total space of the
square-zero extension, where B maps to B˚MŒ1� via s and the zero section. The fiber of B 0! B can
be identified with M with the natural structure of an A–module.

Proposition A.6 Let C 2ARings.X /A and let B 0!B in ARings.X /A be a square-zero extension of B
by a connective B–module M . There is a natural map MapsARings.X /A.C;B

0/!MapsARings.X /A.C;B/

such that the nonempty fibers are torsors under the group MapsC .LC=A;M/, where the maps are taken in
the category of connective C–modules. The C–module structure on M is obtained via the map C ! B

over which the fiber is being taken.
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Proof Unwrapping the definitions and using the fact that the mapping spaces are1–groupoids, one can
reduce to checking this in the case when B 0 D B ˚M is the trivial square-zero extension. Fix a map
C ! B . We need to show that Maps.ARings.X /A/=B.C;B˚M/ is equivalent to MapsC .LC=A;M/. For
this, we note that pulling back along C ! B gives an equivalence Maps.ARings.X /A/=B.C;B ˚M/ '

Maps.ARings.X /A/=C .C; C ˚M/. By definition, Maps.ARings.X /A/=C .C; C ˚M/ 'MapsC .LC=A;M/,
which gives the conclusion.

Remark A.7 For any object A 2 ARings.X /A, one can use the truncation functors to build a sequence
of square-zero extensions � � � ! ��nC1A! ��nA! ��n�1A! � � � ! ��0A D �0.A/. This can be
seen by first showing a similar statement at the presheaf level and then sheafifying; at the presheaf level,
the statement follows from the analogous statement for animated rings; see [22, Proposition 3.3.6]. In
particular, if A 2 ARings.X /A is 1–truncated, then A is a square-zero extension of �0.A/ by �1.A/Œ1�,
where the latter is viewed as a connective �0.A/–module in X .

Appendix B A product formula for .1CW Œp�/� in characteristic p > 0

The group scheme .1CW Œp�/� was defined in Definition 4.14. Working over a fixed base ring of
characteristic p > 0, this group scheme is isomorphic to W �ŒF �; see Remark 4.28(2). The following
proposition was stated in [14, Lemma 3.3.4] and a more general proposition over Zp has been proven
in [15, Proposition B.5.6] by using the logarithm constructed in loc. cit.; see also [5, Lemma 3.5.18].
Let us give a more direct argument in characteristic p that does not use the logarithm and is closer to
deformation theory in spirit:

Proposition B.1 There exists a natural isomorphism W �ŒF � ' W ŒF � � �p over any base ring of
characteristic p.

Proof Note that given any nonunital ring .I;C; � /, one can define a monoid associated to it, which will
be denoted by I 0. At the level of underlying sets, I

0

WD I , but the composition x � y is defined to be
xCyC x �y. Using the above construction along with the Yoneda lemma produces a functor from the
category of nonunital ring schemes (eg ideals in unital ring schemes) to the category of monoid schemes.
Note that we have a short exact sequence

0!W ŒF �!W ŒF �
f
�! p̨! 0

of group schemes. Moreover, the map f WW ŒF �! p̨ is a map of nonunital ring schemes when W ŒF �
and p̨ ' GaŒF � are both equipped with their natural nonunital ring scheme structures. Applying the
functor we constructed before, we obtain a map f 0 WW �ŒF �! �p. It is clear that f 0 is surjective. The
map f 0 can be identified with projection to zeroth Witt coordinate: given any test algebra S and an
element x 2W ŒF �.S/, f 0 sends 1C x to 1C x0, where x0 is the zeroth Witt coordinate. In particular,
the map �p!W �ŒF � given by the Teichmüller lift is a section to f 0. It remains to identify Kerf 0 with
W ŒF � as a group scheme. This follows from the lemma below.
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Lemma B.2 For the map f WW ŒF �! p̨, the ideal Kerf is a square-zero ideal.

Proof We note that the multiplication in W ŒF � is inherited from the ring scheme W . Let S be a
test algebra of characteristic p and let m; n 2 .Kerf /.S/. Then m D V.m0/ and n D V.n0/ for some
m0; n0 2W.S/. Here V denotes the Verschiebung operator. We have m �nD V.m0/ �nD V.m0 �F.n//D 0,
since F.n/D 0.

The proposition now follows, since we obtain a split exact sequence of group schemes

0!W ŒF �!W �ŒF �
f 0
�! �p! 0:
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We highlight several novel aspects of the moduli space of curves of genus 13, the first genus g where
phenomena related to K3 surfaces no longer govern the birational geometry of Mg . We compute the
class of the nonabelian Brill–Noether divisor on M13 of curves that have a stable rank-two vector bundle
with canonical determinant and many sections. This provides the first example of an effective divisor
on Mg with slope less than 6C 10=g. Earlier work on the slope conjecture suggested that such divisors
may not exist. The main geometric application of our result is a proof that the Prym moduli space R13 is
of general type. Among other things, we also prove the Bertram–Feinberg–Mukai and the strong maximal
rank conjectures on M13.
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1 Introduction

One of the defining achievements of modern moduli theory is the result due to Harris, Mumford and
Eisenbud [27; 16] that Mg is of general type for g�24. An essential step in their proof is the calculation of
the class of the Brill–Noether divisor Md

g;r consisting of those curves X of genus g such that Gr
d
.X/¤∅

in the case �.g; r; d/ WDg�.rC1/.g�dCr/D�1. Recall that the slope of an effective divisorD on Mg

not containing any of the boundary divisors �i in its support is defined as the quantity s.D/ WD a=mini bi ,
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804 Gavril Farkas, David Jensen and Sam Payne

where ŒD� D a�� b0ı0 � � � � � bbg=2cıbg=2c 2 CH 1.Mg/. Eisenbud and Harris [16] showed that the
slope of Md

g;r is a=b0 D 6C 12=.gC 1/. After these seminal results from the 1980s, the fundamental
question arose whether one can construct effective divisors D on Mg of slope s.D/ < 6C 12=.gC 1/
by using conditions defined in terms of higher rank vector bundles on curves.

Each effective divisor D on Mg of slope s.D/ < 6C 12=.gC 1/ must contain the locus Kg �Mg of
curves lying on a K3 surface; see Farkas and Popa [21]. Since curves on K3 surfaces possess stable
rank-two vector bundles with canonical determinant and unexpectedly many sections (see Lazarsfeld [35],
Mukai [38] and Voisin [48]), it is then natural to focus on conditions defined in terms of rank-two vector
bundles with canonical determinant.

For a smooth curve X of genus g, let SUX .2; !/ be the moduli space of semistable rank-two vector
bundlesE onX with detEŠ!X . For k� 0, Bertram and Feinberg [7, Conjecture, page 2] and Mukai [38,
Problem 4.8] conjectured that for a general curve X , the rank-two Brill–Noether locus

SUX .2; !; k/ WD fE 2 SUX .2; !X / W h0.X;E/� kg

has dimension ˇ.2; g; k/ WD 3g� 3�
�
kC1
2

�
. For a general curve X the Mukai–Petri map

(1) �E W Sym2H 0.X;E/!H 0.X;Sym2.E//

is injective for each E 2 SUX .2; !/; see Teixidor i Bigas [45]. As a consequence, SUX .2; !; k/ has the
expected dimension ˇ.2; g; k/, if it is nonempty. There are numerous partial results on the nonemptiness
of SUX .2; !; k/— see for instance Lange, Newstead and Park [34], Teixidor i Bigas [44] and Zhang [49] —
although still no proof in full generality.

Assume now that 3g�3D
�
kC1
2

�
. Then generically, SUX .2; !; k/ consists of finitely many vector bundles,

if it is nonempty. We consider the nonabelian Brill–Noether divisor MPg on Mg consisting of curves
ŒX� for which there exists E 2 SUX .2; !X ; k/ such that the Mukai–Petri map �E is not an isomorphism.
In this paper, we focus on the first genuinely interesting case,1

g D 13 and k D 8:

Our first main result proves this case of the Bertram–Feinberg–Mukai conjecture and computes the class
of the closure of the nonabelian Brill–Noether divisor.

Theorem 1.1 A general curveX of genus 13 carries exactly three stable vector bundlesE 2SUX .2; !; 8/.
The closure in M13 of the nonabelian Brill–Noether divisor on M13

MP13 WD fŒX� 2M13 W there exists an E 2 SUX .2; !; 8/ with �E W Sym2H 0.E/
©
�!H 0.Sym2.E//g

has slope equal to
s.ŒMP13�/D 4109

610
D 6:735 : : : < 6C 10

13
D 6:769 : : : :

1It is left to the reader to show that in the previous cases k D 5; 6, the corresponding divisors MP6 and MP8 are supported on
the loci, in M6 and M8 respectively, of curves failing the Petri theorem.
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The nonabelian Brill–Noether divisor on M13 and the Kodaira dimension of R13 805

To explain the significance of this result, we recall that several infinite series of examples of divisors
on Mg for g � 10 with slope less than 6C 12=.gC 1/ have been constructed in Farkas [17], Farkas and
Popa [21], Farkas, Jensen and Payne [19] and Khosla [32], using syzygies on curves. Quite remarkably,
the slopes s.D/ of all these divisors D on Mg satisfy

6C
10

g
� s.D/ < 6C

12

gC1
:

The slope 6C 12=.gC 1/ appears as both the slope of the Brill–Noether divisors Md
g;r and as the slope

of a Lefschetz pencil of curves of genus g on a K3 surface. Similarly, 6C10=g is the slope of the family
of curves fX 0tgt2P1 in �0 �Mg obtained from a Lefschetz pencil fXtgt2P1 of curves of genus g� 1
on a K3 surface S by identifying two sections corresponding to basepoints of the pencil. The natural
question has been therefore raised in [10, page 2], whether a slight weakening of the Harris–Morrison
slope conjecture [26] remains true and the inequality

(2) s.D/� 6C
10

g

holds for every effective divisor D on Mg . Results from Farkas and Popa [21] and Tan [43] imply that
inequality (2) holds for all g � 12. In particular, the divisor K10 on M10 consisting of curves lying on
K3 surfaces, which was shown in [21] to be the original counterexample to the slope conjecture, satisfies
s.K10/ D 7 D 6C 10=g. On M12, since a general curve of genus 11 lies on a K3 surface, it follows
that the pencils fX 0tgt2P1 cover the boundary divisor �0 �M12, and consequently the inequality (2)
holds. Therefore 13 is the smallest genus where inequality (2) can be tested, and Theorem 1.1 provides a
negative answer to the question posed in Chen, Farkas and Morrison [10].

1.1 The Kodaira dimension of the Prym moduli space R13

One application of Theorem 1.1 concerns the birational geometry of the moduli space Rg of Prym curves
of genus g. The Prym moduli space Rg classifying pairs ŒX; ��, where X is a smooth curve of genus g
and � is a 2–torsion point in Pic0.X/, has been classically used to parametrize moduli of abelian varieties
via the Prym map Rg !Ag�1 [6]. The Deligne–Mumford compactification Rg is uniruled for g � 8
(see Farkas and Verra [23]), and was previously known to be of general type for g � 14 and g ¤ 16 (see
Bruns [9] and Farkas and Ludwig [20]).2

Theorem 1.2 The Prym moduli space R13 is of general type.

In particular, 13 is the smallest genus g for which it is known that Rg is of general type. The proof of
Theorem 1.2 takes full advantage of Theorem 1.1. It also uses the universal theta divisor ‚13, defined as

2The problem of determining the Kodaira dimension of R16 remains open. It was proven in Farkas and Ludwig [20] that the
Prym–Green conjecture on R16 implies that R16 is of general type. However, as shown in Chiodo, Eisenbud, Farkas and
Schreyer [11, Proposition 4.4], there is strong indication that the Prym–Green conjecture fails in genus 16.
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the locus of Prym curves ŒX; �� 2R13 for which there exists a vector bundle E 2 SUX .2; !; 8/ such that
H 0.X;E˝ �/¤ 0. In an indirect way (to be explained later), we calculate the class Œx‚13� of the closure
of ‚13 inside R13 and show that

(3) KR13 2Q>0h�; Œx‚13�; ŒD13W2�; boundary divisorsi;

where D13W2 is the effective divisor on R13 introduced in Farkas and Ludwig [20] consisting of Prym
curves ŒX; �� for which � can be written as the difference of two effective divisors of degree 6 on X .
Since � is big, it follows that KR13 is also big. Theorem 1.2 follows, since the singularities of Rg do not
impose adjunction conditions [20].

1.2 The strong maximal rank conjecture on M13

The proofs of both Theorems 1.1 and 1.2 are indirect and proceed through a study of the failure locus
of the strong maximal rank conjecture (see Aprodu and Farkas [3]) on M13. For a general curve X of
genus 13 the Brill–Noether locus W 5

16.X/ is one-dimensional, and W 6
16.X/D∅. Counting dimensions

shows that the multiplication map

�L W Sym2H 0.X;L/!H 0.X;L˝2/

has at least a one-dimensional kernel, since h0.X;L˝2/D2 deg.L/C1�gD20. The space of pairs ŒX;L�
such that Ker.�L/ is at least two-dimensional therefore has expected codimension 2 in the parameter space
G516 of all such pairs ŒX;L�. Since the fibers of the map � WG516!M13 are in general one-dimensional,
the pushforward of this locus is expected to be a divisor on M13.

Our next result verifies this case of the strong maximal rank conjecture and computes the class of the
closure of the divisorial part of the failure locus. This is essential input for the calculation of the nonabelian
Brill–Noether divisor class in Theorem 1.1 and hence for the proof of Theorem 1.2.

Theorem 1.3 The locus of curves ŒX� 2M13 carrying a line bundle L 2W 5
16.X/ such that the multipli-

cation map �L W Sym2H 0.X;L/!H 0.X;L˝2/ is not surjective is a proper subvariety of M13, having
a divisorial part D13, whose closure in M13 has slope

s.D13/D
5059
749
D 6:754 : : : < 6C 10

13
:

The proof of Theorem 1.3 takes full advantage of the techniques we developed in [19] in the course of
our work on M22 and M23. To that end, we split Theorem 1.3 in two parts.

Recall that a curve is treelike if its dual graph becomes a tree after deleting all loop edges [16, page 364].
We consider a proper moduli stack of generalized limit linear series � W eG516! eM13, where eM13 is a
suitable moduli stack of treelike curves of genus 13 equal to M13[�0[�1 in codimension one; see
Section 2 for a precise definition. We then construct a morphism of vector bundles over eG516 globalizing
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the multiplication maps �L considered before. The degeneracy locus U of this morphism, due to its
determinantal nature, carries a virtual class ŒU�virt of codimension 2 inside eG516. Set

ŒeD13�virt
WD ��.ŒU�

virt/ 2 CH 1. eM13/:

Theorem 1.4 The following relation for the virtual class ŒeD13�virt holds:

ŒeD13�virt
D 3.5059�� 749ı0� 3929ı1/ 2 CH

1. eM13/:

That the degeneracy locus U does not map onto M13 is a particular case of the strong maximal rank
conjecture of [3]. We prove this case, along with a stronger result that guarantees that the virtual class
ŒeD13�virt is effective, using tropical geometry. In particular, we use the method of tropical independence
on chains of loops, as introduced in Jensen and Payne [30; 31]. Our construction of the required tropical
independences is similar to the one used in our proof that M22 and M23 are of general type, with one
important innovation. In [19], we were able to ignore certain loops called lingering loops. Here, this
seems impossible; there are too few nonlingering loops. This difficulty shows up already in the simplest
combinatorial case, which we call the vertex-avoiding case; for a discussion of how we resolve this
difficulty, see Remarks 4.3 and 4.11.

Theorem 1.5 For a general curve ŒX�2M13 the map �L W Sym2H 0.X;L/!H 0.X;L˝2/ is surjective
for all L 2 W 5

16.X/. Furthermore , there is no component of the degeneracy locus U mapping with
positive-dimensional fibers onto a divisor in eM13.

Theorem 1.5 implies that eD13, defined as the divisorial part of �.U/, represents the class ŒeD13�virt.
Together with Theorem 1.4, this completes the proof of Theorem 1.3.

The existence of effective divisors of exceptionally small slope on M13 has direct applications to the
birational geometry of the moduli space M13;n of n–pointed stable curves of genus 13.

Theorem 1.6 The moduli space M13;n is of general type for n� 9.

This improves on Logan’s result [36] that M13;n is of general type for n� 11. It is known that M13;n is
uniruled for n� 4; see Agostini and Barros [1].

1.3 The divisor D13 and rank-two Brill–Noether loci

The link between Theorems 1.1 and 1.3 involves a reinterpretation of the divisor D13 in terms of rank-two
Brill–Noether theory. Let SU13.2; !; 8/ denote the moduli space of pairs ŒX;E�, where ŒX� 2M13 and
E 2 SUX .2; !; 8/. Consider the forgetful map

# W SU13.2; !; 8/!M13; ŒX;E� 7! ŒX�:

Geometry & Topology, Volume 28 (2024)
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We will show that # is a generically finite map of degree 3 (Theorem 6.5) and that SU13.2; !; 8/ is
unirational (Corollary 6.3). The fact that M13 possesses a modular cover # of such small degree is
surprising; we do not know of parallels for other moduli spaces Mg .

We now fix a pair ŒX;E� 2 SU13.2; !; 8/ and consider the determinant map

d W
V2
H 0.X;E/!H 0.X; !X /:

It turns out that for a general ŒX;E� as above, E is globally generated and the map d is surjective. In
particular, P .Ker.d//� P

�V2
H 0.X;E/

�
Š P27 is a 14–dimensional linear space. Since h0.X; !X /D

2h0.X;E/� 3, it follows that the set of pairs ŒX;E� satisfying the condition

(4) P .Ker.d//\G.2;H 0.X;E//¤∅;

the intersection being taken inside P
�V2

H 0.X;E/
�
, is expected to be a divisor on SU13.2; !; 8/, and

its image under projection by the generically finite map # is expected to be also a divisor on M13. We
refer to this locus as the resonance divisor Res13, inspired by the algebraic definition of the resonance
variety; see Aprodu, Farkas, Papadima, Raicu and Weyman [4, Definition 2.4].

Theorem 1.7 The closure of the resonance divisor in M13

Res13 WD fŒX� 2M13 W there exists an E 2 SUX .2; !; 8/ with P .Ker.d//\G.2;H 0.X;E//¤∅g

is an effective divisor in M13. One has the following equality of divisors on M13:

Res13 DD13C 3 �M1
13;7:

Here, we recall that M1
13;7 is the Hurwitz divisor of heptagonal curves on M13 whose class is computed

in Harris and Mumford [27]. The set-theoretic inclusion M1
13;7 �Res13 is relatively straightforward.

The multiplicity 3 with which M1
13;7 appears in Res13 is explained by an excess intersection calculation

carried out in Section 7, and confirms once more that the degree of the map # W SU13.2; !; 8/!M13

is 3.

We conclude this introduction by explaining the connection between the resonance divisor Res13 and
Theorems 1.1 and 1.3. On the one hand, using Farkas and Rimányi [22] the class ŒeRes13� of the closure of
Res13 in eM13 can be computed in terms of the generators of CH 1. eM13/ and a tautological class #�./,
where  is the pushforward of the second Chern class of the (normalized) universal rank-two vector
bundle on the universal curve over a suitable compactification of SU13.2; !; 8/; see Definition 7.3 for
details. On the other hand, Theorem 1.7 yields an explicit description of eRes13. By combining this
description with Theorem 1.3, we obtain a second calculation for the class ŒeRes13�. In this way, we
indirectly determine the tautological class #�./; see Proposition 7.7. Once the class of ŒeRes13� is known,
the calculation of the class of the nonabelian Brill–Noether divisor ŒeMP13� (Theorem 1.1) and that of the
universal Theta divisor Œz‚13� on R13 (Theorems 1.2 and 8.3) follow from Grothendieck–Riemann–Roch
calculations, after checking suitable transversality assumptions.

Geometry & Topology, Volume 28 (2024)



The nonabelian Brill–Noether divisor on M13 and the Kodaira dimension of R13 809

Acknowledgements We had interesting discussions with P Newstead and A Verra related to this circle of
ideas. Farkas was partially supported by the DFG Grant Syzygien und Moduli and by the ERC Advanced
Grant SYZYGY. Jensen was partially supported by NSF grant DMS–2054135. Payne was partially
supported by NSF grants DMS–2001502 and DMS–2053261. This project has received funding from the
European Research Council (ERC) under the European Union Horizon 2020 research and innovation
program, grant agreement 834172.

2 The failure locus of the strong maximal rank conjecture on eM13

We denote by Mg the moduli stack of stable curves of genus g � 2 and by Mg the associated coarse
moduli space. We work throughout over an algebraically closed field K of characteristic 0 and the Chow
groups that we consider are with rational coefficients. Via the isomorphism CH�.Mg/Š CH

�.Mg/,
we routinely identify cycle classes on Mg with their pushforward to Mg . Recall that for g � 3 the group
CH 1.Mg/ is freely generated by the Hodge class � and by the classes of the boundary divisors ıi D Œ�i �
for i D 0; : : : ;

�
1
2
g
˘

.

In this section, we realize the virtual divisor class ŒeD13�virt as the pushforward of the virtual class of a
codimension 2 determinantal locus inside the moduli space eG516 of limit linear series of type g516 over an
open substack eM13 of M13, which agrees with M13[�0[�1 outside a subset of codimension 2. We
will use standard terminology from the theory of limit linear series [15], and begin by recalling a few of
the basics.

Definition 2.1 Let X be a smooth curve of genus g with ` D .L; V / 2 Gr
d
.X/ a linear series. The

ramification sequence of ` at a point q 2X is denoted by

˛`.q/ W ˛`0.q/� � � � � ˛
`
r .q/:

This is obtained from the vanishing sequence a`.q/ W a`0.q/ < � � � < a`r.q/ � d of ` at q, by setting
˛`i .q/ WDa

`
i .q/�i for iD0; : : : ; r . The ramification weight of q with respect to ` is wt`.q/ WD

Pr
iD0 ˛

`
i .q/.

We define �.`; q/ WD �.g; r; d/�wt`.q/.

A generalized limit linear series on a treelike curve X of genus g consists of a collection

`D f.LC ; VC / W C is a component of Xg;

where LC is a rank-one torsion-free sheaf of degree d on C and VC � H 0.C;LC / is an .rC1/–
dimensional space of sections satisfying compatibility conditions on the vanishing sequences at the nodes
of X ; see [16, page 364]. Let Gr

d
.X/ be the variety of generalized limit linear series of type gr

d
on X .

In this section we set

(5) g D 13; r D 5; d D 16:
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Although we are mainly interested in the case gD 13, some of the constructions are set up for an arbitrary
genus g, making it easier to refer to results from [19].

We denote by M5
13;15 the subvariety of M13 parametrizing curves X such that W 5

15.X/ ¤ ∅. As
explained in [19, Section 3], we have codim.M5

13;5;M13/� 2.

Let �ı1 � �1 �Mg be the locus of curves ŒX [y E�, where X is a smooth curve of genus g � 1
and ŒE; y� 2M1;1 is an arbitrary elliptic curve. The point of attachment y 2 X is chosen arbitrarily.
Furthermore, let �ı0 � �0 �Mg be the locus of curves ŒXyq WD X=y � q� 2 �0, where ŒX; q� is a
smooth curve of genus g�1 and y 2X is an arbitrary point, together with their degenerations ŒX[qE1�,
where E1 is a rational nodal curve (that is, E1 is a nodal elliptic curve and j.E1/D1). Points of
this form comprise the intersection �ı0\�

ı
1. We define the following open subset of Mg :

Mıg WDMg [�
ı
0[�

ı
1:

Along the lines of [19, Section 3], we introduce an even smaller open subspace of Mg , over which the
calculation of ŒeD13�virt can be completed. Let T0 ��ı0 be the locus of curves ŒXyq WDX=y � q�, where
either GrC1

d
.X/¤∅ or Gr

d�2
.X/¤∅. Similarly, let T1 ��ı1 be the locus of curves ŒX [y E�, where

X is a smooth curve of genus g� 1 such that GrC1
d

.X/¤∅ or Gr
d�2

.X/¤∅. We set

eMg WDMıg n .M
r
g;d�1[ T0[ T1/:

We define z�0 WD eMg \�0 ��
ı
0 and z�1 WD eMg \�1 ��

ı
1. Note that eMg and Mg [�0[�1 agree

away from a set of codimension two in each. We identify CH 1. eMg/ Š Qh�; ı0; ı1i, where � is the
Hodge class, ı0 WD Œz�0� and ı1 WD Œz�1�.

2.1 Stacks of limit linear series

Let zGr
d

be the stack of pairs ŒX; `�, where ŒX� 2 eMg and ` is a (generalized) limit linear series of type gr
d

on the treelike curve X . We consider the proper projection

� W zGrd !
eMg :

Over a curve ŒX [y E� 2 z�1, we identify ��1.ŒX [y E�/ with the variety of (generalized) limit linear
series `D .`X ; `E / 2 Grd .X [y E/. The fiber ��1.ŒXyq�/ over an irreducible curve ŒXyq� 2 z�0 n z�1
is canonically identified with the variety W r

d
.Xyq/ of rank-one torsion-free sheaves L on Xyq having

degree d.L/D d and h0.Xyq; L/� r C 1.

Let zCg ! eMg be the universal curve, and let p2 W zCg �eMg

zGr
d
! zGr

d
be the projection map. We denote

by Z� zCg �eMg

zGr
d

the codimension-two substack consisting of pairs ŒXyq; L; z�, where ŒXyq� 2�ı0, the
point z is the node of Xyq and L 2W r

d
.Xyq/ nW

r
d
.Xyq/ is a non-locally free torsion-free sheaf. Let

� W yCg WD BlZ.zCg �eMg

zGrd /!
zCg �eMg

zGrd
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be the blowup of this locus, and we denote the induced universal curve by

} WD p2 ı � W yCg ! zG
r
d :

The fiber of } over a point ŒXyq; L� 2 z�0, where L 2 W r
d
.Xyq/ nW

r
d
.Xyq/, is the semistable curve

X [fy;qgR of genus g, where R is a smooth rational curve meeting X transversally at y and q.

2.2 A degeneracy locus inside eG5
16

In order to define the degeneracy locus on zG516 whose pushforward produces ŒeD13�virt, we first choose a
Poincaré line bundle L over the universal curve yCg with the following properties:

(i) If ŒX [y E� 2 z�1 and `D .`X ; `E / 2Grd .X [E/ is a limit linear series, then

LjŒX[yE;`� 2 Picd .X/�Pic0.E/:

(ii) For a point t D ŒXyq; L�, where ŒXyq� 2 z�0 and L 2 W r
d
.Xyq/ nW

r
d
.Xyq/, thus L D ��.A/

for some A 2W r
d�1

.X/, we have LjX Š A and LjR Š OR.1/. Here, }�1.t/D X [R, whereas
� WX !Xyq is the normalization map.

We now introduce two sheaves over zGr
d

,

E WD }�.L/ and F WD }�.L˝2/:

Both E and F are locally free; the proof by local analysis in [19, Proposition 3.6] goes through essentially
without change.

There is a sheaf morphism over eG516 globalizing the multiplication of sections

(6) � W Sym2.E/! F :

We denote by U� zG516 the locus where � is not surjective (equivalently, where �_ is not injective). Due
to its determinantal nature, U carries a virtual class in the expected codimension 2.

Definition 2.2 We define the virtual divisor class ŒeD13�virt WD ��.ŒU�
virt/ as

ŒeD13�virt
WD ��.c2.Sym2.E/_�F_// 2 CH 1.eM13/:

If U has pure codimension 2, then eD13 is a divisor on eM13 and ŒeD13�virtD ŒeD13�. The following corollary
provides a local description of the morphism �.

Corollary 2.3 The morphism � W Sym2.E/! F has the following description on fibers:

(i) For ŒX;L� 2 zGr
d

, with ŒX� 2Mg nMr
g;d�1

smooth , the fibers are

E.X;L/ DH 0.X;L/ and F.X;L/ DH 0.X;L˝2/;

and �.X;L/ W Sym2H 0.X;L/!H 0.X;L˝2/ is the usual multiplication map of global sections.
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(ii) Suppose t D .X [y E; `X ; `E / 2 ��1.z�1/, where X is a curve of genus g � 1, E is an elliptic
curve and `X D jLX j is the X–aspect of the corresponding limit linear series with LX 2W r

d
.X/

such that h0.X;LX .�2y//� r . If LX has no basepoint at y, then

Et DH 0.X;LX /ŠH
0.X;LX .�2y//˚K �u and Ft DH 0.X;L˝2X .�2y//˚K �u2;

where u 2H 0.X;LX / is any section such that ordy.u/D 0.

If LX has a basepoint at y, then

Et DH 0.X;LX /ŠH
0.X;LX .�y//;

and the image of Ft !H 0.X;L˝2X / is the subspace H 0.X;L˝2X .�2y//�H 0.X;L˝2X /.

(iii) Let t D ŒXyq; L� 2 ��1.z�0/ be a point with q; y 2X and let L 2W r
d
.Xyq/ be a locally free sheaf

of rank one , such that h0.X; ��L.�y � q// � r , where � W X ! Xyq is the normalization. Then
the fibers are described as

Et DH 0.X; ��L/ and Ft DH 0.X; ��L˝2.�y � q//˚K �u2;

where u 2H 0.X; ��L/ is any section not vanishing at both points y and q.

(iv) Let t D ŒXyq; ��.A/�, where A2W r
d�1

.X/, and again set X[fy;qgR to be the fiber }�1.t/. Then
Et D H 0.X [R;LX[R/ Š H 0.X;A/ and Ft D H 0.X [R;L˝2X[R/. Furthermore , �.t/ is the
multiplication map on X [R.

Proof The proof is essentially identical to the proof of [19, Corollary 3.8]; we omit the details.

2.3 Test curves in fM13

As in [19], the calculation of ŒeD13�virt is carried out by understanding the restriction of the morphism �

along the pullbacks of the three standard test curves F0, Fell and F1 inside eM13. Let ŒX; q� be a general
pointed curve of genus g� 1 and fix an elliptic curve ŒE; y�. We then define

F0 WD fXyq WDX=y � q W y 2Xg ��
ı
0 �Mıg and F1 WD fX [y E W y 2Xg ��

ı
1 �Mıg :

Furthermore, we define the curve

(7) Fell WD fŒX [q Et � W t 2 P1g ��1 �Mg ;

where fŒEt ; q�gt2P1 denotes a pencil of plane cubics and q is a fixed point of the pencil. We record the
intersection of these test curves with the generators of CH 1.Mg/:

F0 ��D 0; F0 � ı0 D 2� 2g; F0 � ı1 D 1; F0 � ıj D 0 for j D 2; : : : ;
�
1
2
g
˘
;

Fell ��D 1; Fell � ı0 D 12; Fell � ı1 D�1; Fell � ıj D 0 for j D 2; : : : ;
�
1
2
g
˘
:

Note also that F1 ��D 0, F1 � ıi D 4� 2g and F1 � ıj D 0 for j ¤ 1.
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We now describe the pullback ��.F0/� eG516. Having fixed a general pointed curve ŒX; q� 2M12;1, we
introduce the variety

(8) Y WD f.y; L/ 2X �W 5
16.X/ W h

0.X;L.�y � q//� 5g;

together with the projection �1 W Y !X . Arguing in a way similar to [19, Proposition 3.10], we conclude
that Y has pure dimension 2, that is, its actual dimension equals its expected dimension as a degeneracy
locus. We consider two curves inside Y, namely

�1 WD f.y; A.y// W y 2X; A 2W
5
15.X/g and �2 WD f.y; A.q// W y 2X; A 2W

5
15.X/g;

intersecting transversely along finitely many points. We then introduce the variety zY obtained from Y by
identifying for each .y; A/ 2X �W 5

15.X/, the points .y; A.y// 2 �1 and .y; A.q// 2 �2. Let # W Y ! zY
be the projection map.

Proposition 2.4 With notation as above , there is a birational morphism

f W ��.F0/! zY ;

which is an isomorphism outside #.��11 .q//. The restriction of f to f �1
�
#.��11 .q//

�
forgets the aspect

of each limit linear series on the elliptic curveE1. Furthermore , both Ej��.F0/ and Fj��.F0/ are pullbacks
under f of vector bundles on zY .

Proof The proof is identical to that of [19, Proposition 3.11].

We now describe the pullback ��.F1/� zG516 and we define the determinantal variety

(9) Z WD f.y; L/ 2X �W 5
16.X/ W h

0.X;L.�2y//� 5g:

Because X is general, arguing precisely as in [19, Proposition 3.10], we find that Z is pure of dimension 2.
Next we observe that in order to estimate the intersection of ŒeD13�virt with the surface ��.F1/, it suffices
to restrict ourselves to Z:

Proposition 2.5 The variety Z is an irreducible component of ��.F1/, and

c2.Sym2.E/_�F_/j��.F1/ D c2.Sym2.E/_�F_/jZ :

Proof Let .`X ; `E / 2 ��1.ŒX [y E�/ be a limit linear series. Observe that �.13; 5; 16/ D 1, which
is greater than or equal to the sum of the adjusted Brill–Noether numbers �.`X ; y/C �.`E ; y/; see
Definition 2.1. Since �.`E ; y/ � 0, it follows that �.`X ; y/ 2 f0; 1g. If �.`E ; y/ D 0, then `E D
10yCjOE .6y/j and the aspect `X 2G516.X/ is a complete linear series with a cusp at the point y 2X .
Therefore .y; `X / 2Z, and in particular Z � f`E g ŠZ is a union of irreducible components of ��.F1/.
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The remaining components of ��.F1/ are indexed by Schubert indices

˛ WD .0� ˛0 � � � � � ˛5 � 11D16� 5/

such that ˛ � .0; 1; 1; 1; 1; 1/ holds lexicographically and ˛0C� � �C˛5 2 f6; 7g when �.`X ; y/��1 for
any point y 2X ; see also [18, Theorem 0.1]. For a Schubert index ˛ satisfying these conditions, we let
˛c WD .11�˛5; : : : ; 11�˛0/ be the complementary Schubert index, and define

Z˛ WD f.y; `X / 2X �G
5
16.X/ W ˛

`X .y/� ˛g and W˛ WD f`E 2G
5
16.E/ W ˛

`E .y/� ˛cg:

Then the following relation holds for certain natural coefficients m˛:

��.F1/DZC
X

˛�.0;1;1;1;1;1/

m˛.Z˛ �W˛/:

We now finish the proof by invoking the pointed Brill–Noether theorem [16, Theorem 1.1], which gives
dim Z˛ D 1C �.12; 5; 16/� .˛0 C � � � C ˛5/ � 1. In the definition of the test curve F1, the point of
attachment y 2E is fixed, therefore the restrictions of both E and F are pulled-back from Z˛ and one
obtains c2.Sym2.E/_�F_/jZ˛�W˛ D 0 for dimension reasons.

2.4 Top Chern numbers on Jacobians

We use various facts about intersection theory on Jacobians, for which we refer to [5, Chapters VII–VIII].
We start with a general curve X of genus g, fix a Poincaré line bundle P on X �Picd .X/ and denote by

�1 WX �Picd .X/!X and �2 WX �Picd .X/! Picd .X/

the two projections. Let �D ��1 .Œx0�/ 2H
2.X �Picd .X/;Z/, where x0 2X is a fixed point. We choose

a symplectic basis ı1; : : : ; ı2g 2H 1.X;Z/ŠH 1.Picd .X/;Z/, and then consider the class

 WD �

gX
˛D1

�
��1 .ı˛/�

�
2 .ıgC˛/��

�
1 .ıgC˛/�

�
2 .ı˛/

�
2H 2.X �Picd .X/;Z/:

One has c1.P/D d ��C , and the relations 3 D 0, �D 0, �2 D 0 and 2 D�2���2 .�/, for which we
refer to [5, page 335]. Assuming W rC1

d
.X/D∅ (which is what happens in the case of g D 12, r D 5

and d D 16 relevant to us), the smooth variety W r
d
.X/ admits a rank-rC1 vector bundle

M WD .�2/�.PjX�W r
d
.X//

with fibers MLŠH
0.X;L/, for L2W r

d
.X/. The Chern numbers of M are computed via the Harris–Tu

formula [28]. We write formally

rX
iD0

ci .M_/D .1C x1/ � � � .1C xrC1/:
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For a class � 2 H�.Picd .X/;Z/, the Chern number cj1.M/ � � � cjs .M/ � � 2 H top.W r
d
.X/;Z/ can be

computed by repeatedly using the following formal identities:3

(10) x
i1
1 � � � x

irC1
rC1 � �

�.g;r;d/�i1�����irC1 D gŠ

Q
j>k.ik � ij C j � k/QrC1

kD1.g� d C 2r C ik � k/Š
:

We now specialize to the case when X is a general curve of genus 12, thus W 5
16.X/ is a smooth 6–fold.

By Grauert’s Theorem, N WD .R1�2/�.PjX�W 5
16.X/

/ is locally free of rank one. Set y1 WD c1.N /. We
now explain how y1 determines the Chern numbers of M.

Proposition 2.6 For a general curve X of genus 12 set ci WD ci .M_/ for i D 1; : : : ; 6, and y1 WD c1.N /.
Then the following relations hold in H�.W 5

16.X/;Z/:

ci D
� i

i Š
�

� i�1

.i � 1/Š
y1 for i D 1; : : : ; 6:

Proof For an effective divisor D of sufficiently large degree on X , there is an exact sequence

0!M! .�2/�.P˝O.��D//! .�2/�.P˝O.��1D/j��1D/!R1�2�.PjX�W 5
16.X/

/! 0:

Recall that N is the vector bundle on the right in the exact sequence above. By [5, Chapter VII], we have
ctot
�
.�2/�.P˝O.��1D//

�
D e�� , and the total Chern class of .�2/�.P˝O.��1D/j��1D/ is trivial. We

therefore, as claimed, obtain the formula

.1Cy1/ � e
��
D 1� c1C c2� � � �C c6:

Using Proposition 2.6, any Chern number on W 5
16.X/ can be expressed in terms of monomials in y1

and � . The following identity on H 12.W 5
16.X/;Z/ follows from (10) using the canonical isomorphism

H 1.X;L/ŠH 0.X; !X ˝L
_/_:

(11) .� i �y6�i1 /W 5
16.X/

D
�12

.12� i/Š
D i Š

�12
i

�
:

With this preparation in place, we now compute the classes of the loci Y and Z.

Proposition 2.7 Let ŒX; q� be a general pointed curve of genus 12, let M denote the tautological rank-six
vector bundle over W 5

16.X/, and set ci D ci .M_/ 2H 2i .W 5
16.X/;Z/ as before. Then:

(i) ŒZ�D ��2 .c5/� 6���
�
2 .c3/C .54�C 2/�

�
2 .c4/ 2H

10.X �W 5
16.X/;Z/.

(ii) ŒY �D ��2 .c5/� 2���
�
2 .c3/C .15�C /�

�
2 .c4/ 2H

10.X �W 5
16.X/;Z/.

Proof The locus Z has been defined by (9) as the degeneracy locus of a vector bundle morphism
over the 7–dimensional smooth variety X � W 5

16.X/ (observe again that W 6
16.X/ D ∅/. For each

.y; L/ 2X �W 5
16.X/, there is a natural map

H 0.X;L˝O2y/_!H 0.X;L/_:

3See [19, Section 4.1] for a detailed discussion of how to read and apply the Harris–Tu formula in this context.
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These maps viewed together induce a morphism � W J1.P/_! ��2 .M/_ of vector bundles. Then Z is the
first degeneracy locus of � and applying the Porteous formula,

ŒZ�D c5.�
�
2 .M/_�J1.P/_/:

The Chern classes of the jet bundle J1.P/ are computed using the standard exact sequence

0! ��1 .!X /˝P! J1.P/! P! 0:

We compute the total Chern class of the formal inverse of the jet bundle as follows:

ctot.J1.P/_/�1 D
�X
j�0

.d.L/�C /j
�
�

�X
j�0

�
.2g.X/� 2C d.L//�C 

�j�
;

D .1C 16�C  C 2C � � � / � .1C 38�C  C 2C � � � /;

D 1C 54�C 2 � 6��:

Multiplying this with the total class of ��2 .M/_, one finds the claimed formula for ŒZ�.

To compute the class of Y defined in (8), we consider the projections

�; � WX �X �Pic16.X/!X �Pic16.X/;

and let � � X � X � Pic16.X/ be the diagonal. Set �q WD fqg � Pic16.X/ and consider the vector
bundle B WD��.��.P/˝O�C��.�q//. There is a morphism � W B_! .�2/

�.M/_ of vector bundles over
X �W 5

16.X/ obtained as the dual of the evaluation map, and the surface Y is realized as its degeneracy
locus. Since we also have that

ctot.B_/�1 D
�
1C .d.L/�C /C .d.L/�C /2C � � �

�
� .1� �/D 1C 15�C  � 2��;

we find the stated expression for ŒY � and finish the proof.

We introduce two further vector bundles which appear in many of our calculations. Their Chern classes
are computed via Grothendieck–Riemann–Roch.

Proposition 2.8 Let ŒX; q� be a general pointed curve of genus 12 and consider the vector bundles A2
and B2 on X �Pic16.X/ having fibers

A2;.y;L/ DH 0.X;L˝2.�2y// and B2;.y;L/ DH 0.X;L˝2.�y � q//;

respectively. One then has the following formulas for their Chern classes:

c1.A2/D�4� � 4 � 86�; c1.B2/D�4� � 2 � 31�;

c2.A2/D 8�2C 320�� C 16�; c2.B2/D 8�2C 116�� C 8�:

Proof We apply Grothendieck–Riemann–Roch to the projection map

� WX �X �Pic16.X/!X �Pic16.X/:
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Via Grauert’s theorem, A2 can be realized as a pushforward under the map �, precisely

A2 D �Š
�
��.P˝2˝OX�X�Pic16.X/.�2�//

�
D ��

�
��.P˝2˝OX�X�Pic16.X/.�2�//

�
:

Applying Grothendieck–Riemann–Roch to �, we find ch2.A2/D 8�� , and ��.c1.P/2/D�2� . One then
obtains c1.A2/D�4��4� .4d.L/C2g.C /�2/�, which yields the formula for c2.A2/. To determine
the Chern classes of B2, we observe c1.B2/D�4� � 2 � .2d � 1/� and ch2.B2/D 4�� .

3 The class of the virtual divisor fD13

In this section we determine the virtual class ŒeD13�virt WD ��
�
c2.Sym2.E//_�F_

�
on eM13. We begin

by recording the following formulas for a vector bundle V of rank r C 1 on a stack X :

c1.Sym2.V//D .r C 2/c1.V/ and c2.Sym2.V//D 1
2
r.r C 3/c21.V/C .r C 3/c2.V/:

We apply these formulas for the first degeneracy locus of �_ W F_! Sym2.E/_. By Definition 2.2, its
class ŒU�virt is given by

(12) c2.Sym2.E/_�F_/D c2.Sym2.E/_/� c1.Sym2.E/_/ � c1.F_/C c21.F
_/� c2.F_/

D 20c21.E/C 8c2.E/� 7c1.E/ � c1.F/C c
2
1.F/� c2.F/:

In what follows we expand the virtual class in CH 1. eM13/ as

(13) ŒeD13�virt
D a�� b0ı0� b1ı1:

We compute the coefficients a; b0 and b1, by intersecting both sides of this expression with the test
curves F0, F1 and Fell. We start with the coefficient b1.

Theorem 3.1 Let X be a general curve of genus 12. The coefficient b1 in (13) is

b1 D
1

2g.X/� 2
��.F1/ � c2.Sym2.E/_�F_/D 11787:

Proof We intersect the degeneracy locus of the map � W Sym2.E/! F with ��.F1/. By Proposition 2.5,
it suffices to estimate the contribution coming from Z. We write

��.F1/ � c2.Sym2.E/_�F_/D c2.Sym2.E/_�F_/jZ :

In Proposition 2.7, we constructed a morphism � W J1.P/_! ��2 .M/_ of vector bundles on Z, whose
fibers are the maps H 0.O2y/_!H 0.X;L/_. The kernel sheaf Ker.�/ is locally free of rank one. If U
is the line bundle on Z with fiber

U.y;L/D
H 0.X;L/

H 0.X;L.�2y//
,!H 0.X;L˝O2y/

over a point .y; L/ 2Z, then over Z one has the exact sequence

0! U ! J1.P/! .Ker.�//_! 0:

Geometry & Topology, Volume 28 (2024)



818 Gavril Farkas, David Jensen and Sam Payne

In particular, by Proposition 2.7, we find that

(14) c1.U /D 2 C 54�C c1.Ker.�//:

The product of the Chern class of Ker.�/ with any class � 2H 2.X�W 5
16.X/;Z/ is given by the Harris–Tu

formula [28]

(15) c1.Ker.�//��jZD�c6.�
�
2 .M/_�J1.P/_/��jZD�

�
��2 .c6/�6���

�
2 .c4/C.54�C2/�

�
2 .c5/

�
��jZ :

Similarly, one has the formula [28] for the self-intersection on the surface Z:

(16) c21.Ker.�//D
�
��2 .c7/� 6���

�
2 .c5/C .54�C 2/�

�
2 .c6/

�
2H 14.X �W 5

16.X/;Z/Š Z:

We also observe that c7 D 0, since the bundle M has rank 6.

Let A3 denote the vector bundle on Z having fibers

A3;.y;L/ DH 0.X;L˝2/

constructed as a pushforward of a line bundle on X �X � Pic16.X/. Then the line bundle U˝2 can be
embedded in A3=A2. We consider the quotient

G WD
A3=A2
U˝2

:

The morphism U˝2 ! A3=A2 vanishes along the locus of pairs .y; L/, where L has a basepoint. It
follows that the sheaf G has torsion along the locus ��Z consisting of pairs .q; A.q//, whereA2W 5

16.X/.
Furthermore, FjZ , as a subsheaf of A3, can be identified with the kernel of the map A3!G. Summarizing,
there is an exact sequence of vector bundles on Z,

(17) 0!A2jZ! FjZ! U˝2! 0:

Over a general point .y; L/ 2Z, this sequence reflects the decomposition

F.y; L/DH 0.X;L˝2.�2y//˚K �u2;

where u 2H 0.X;L/ is a section such that ordy.u/D 1.

Via the exact sequence (17), one computes the Chern classes of FjZ :

c1.FjZ/D c1.A2jZ/C 2c1.U / and c2.FjZ/D c2.A2jZ/C 2c1.A2jZ/c1.U /:

Recalling that EjZ D ��2 .M/jZ and using (12), we find that ��.F1/ � c2..Sym2 E/_�F_/ is equal to

20c21.�
�
2M

_
jZ/C 8c2.�

�
2M

_
jZ/C 7c1.�

�
1M

_
jZ/ � c1.A2jZ/C 4c

2
1.U /

� c2.A2jZ/C 14c1.��2M
_
jZ/ � c1.U /C c

2
1.A2jZ/C 2c

2
1.A2jZ/ � c1.U /:

Here, ci .��2M
_
jZ
/D ��2 .ci / 2H

2i .Z;Z/. The Chern classes of A2jZ were computed in Proposition 2.8.
Formula (14) expresses c1.U / in terms of c1.Ker.�// and the classes � and  . When expanding
��.F1/ � c2.Sym2.E/_ �F_/, one distinguishes between terms that do and those that do not contain
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the first Chern class of Ker.�/. The coefficient of c1.Ker.�//, as well as the contribution coming from
c21.Ker.�// in the expression of ��.F1/ �c2.Sym2.E/_�F_/ is evaluated using the formulas (15) and (16)
respectively. To carry this out, we first consider the part of this product that does not contain c1.Ker.�//,
and we obtain

8��2 .c2/C 20�
�
2 .c

2
1/C c

2
1.A2jZ/C 7�

�
2 .c1/ � c1.A2jZ/� c2.A2jZ/C 4.2 C 54�/

2

C 2.2 C 54�/ � c1.A2jZ/C 14.2 C 54�/ ���2 .c1/

D 20��2 .c
2
1/C 154�

�
2 .c1/ � �� 28�

�
2 .c1/ � � � 96�� C 8�

2
C 8��2 .c2/

in H 4.X � W 5
16.X/;Z/. This polynomial gets multiplied by the class ŒZ�, which is expressed in

Proposition 2.7 as a degree 5 polynomial in � , � and ��2 .ci /. We obtain a homogeneous polynomial of
degree 7 viewed as an element of H 14.X �W 5

16.X/;Z/.

Next we turn our attention to the contribution ��.F1/ � c2.Sym2.E/_�F_/ coming from terms that do
contain c1.Ker.�//. This is given by the formula

4c21.Ker.�/C c1.Ker.�/ �
�
8.2 C 54�/C 2c1.A2jZ/C 14��2 .c1/

�
:

Using (15) and (16), one ends up with the following homogeneous polynomial of degree 7 in �, � and
��2 .ci / for i D 1; : : : ; 6:

84��2 .c1c4/��� 48�
�
2 .c4/�

2�� 756��2 .c1c5/�C 440�
�
2 .c5/��� 44�

�
2 .c6/�:

Adding together the parts that do and those that do not contain c1.Ker.�//, and using the fact that the
only monomials that need to be retained are those containing �, after manipulations carried out using
Maple, one finds

��.F1/ � c2.Sym2.E/_�F_/

D ���2
�
�602c1c5C 432c2c4� 120c

2
1c3� C 168c1c3�

2
� 48c3�

3
C 1080c21c4� 1428c1c4�

� 48c2c3� C 384c4�
2
C 344c5� � 44c6

�
:

We suppress � and the remaining polynomial lives inside H 12.W 5
16.X/;Z/Š Z. Using Proposition 2.6

this expression is equal to

��.F1/ � c2.Sym2.E/_�F_/D 193
45
�6� 1271

30
�5y1C

1607
12
�4y21 � 120�3y

3
1 D 259314;

where for the last step we used the formulas (11). We conclude

b1 D
1
22
��.F1/ � c2.Sym2.E/_�F_/D 11787;

as required.

Theorem 3.2 Let ŒX; q� be a general pointed curve of genus 12 and let F0� z�0� eM13 be the associated
test curve. Then the coefficient of ı0 in the expression (13) of ŒeD13�virt is equal to

b0 D
1
24

�
��.F0/ � c2.Sym2.E/_�F_/C b1/D 2247:

Geometry & Topology, Volume 28 (2024)



820 Gavril Farkas, David Jensen and Sam Payne

Proof Using Proposition 2.4, we observe that

c2.Sym2.E/_�F_/j��.F0/ D c2.Sym2.E/_�F_/jY :

We shall evaluate the Chern classes of FjY via the line bundle V on Y with fiber

V.y;L/D
H 0.X;L/

H 0.X;L.�y � q//
,!H 0.X;L˝OyCq/

over a point .y; L/ 2 Y. We write the exact sequence

0! V ! B! .Ker.�//_! 0

over Y, where the morphism � WB_!��2 .M/_ was defined in the final part of the proof of Proposition 2.7.
In particular, we have

c1.V /D 15�C  C c1.Ker.�//:

The effect of multiplying c1.Ker.�// against a class � 2H 2.X �W 5
16.X/;Z/ is described by applying

once more the Harris–Tu formula [28]:

(18) c1.Ker.�// � �jY D
�
���2 .c6/� 2���

�
2 .c4/C .15�C /�

�
2 .c5/

�
� �jY ;

where we recall that �2 W X �W 5
16.X/! W 5

16.X/ and ci 2 H 2i .W 5
16.X/;Z/. Similarly, for the self-

intersection on Y the following formula holds:

(19) c21.Ker.�//D�2����2 .c5/C .15�C /�
�
2 .c6/ 2H

14.X �W 5
16.X/;Z/:

We have also introduced in Proposition 2.8 the vector bundle B2 on X �Pic16.X/ with fibers B2;.y;L/ D
H 0.X;L˝2.�y � q// over a point .y; L/. A local calculation along the lines of the one in the proof of
Theorem 3.1 shows that one also has an exact sequence on Y, which can then be used to determine the
Chern numbers of FjY :

0! B2jY ! FjY ! V ˝2! 0:

This exact sequence reflects the fact for a general point .y; L/ 2 Y one has a decomposition F.y; L/D
H 0.X;L˝2.�y � q//˚K �u2, where u 2H 0.X;L/ is a section that does not vanish at y and q. We
thus obtain the formulas

c1.FjY /D c1.B2jZ/C 2c1.V / and c2.FjY /D c2.B2jY /C 2c1.B2jY /c1.V /:

To estimate c2.Sym2.E/_�F_/jY we use (12) and write

��.F0/ � c2..Sym2 E/_�F_/

D 20c21.�
�
1M

_
jY /C 8c2.�

�
2M

_
jY /C 7c1.�

�
1M

_
jY / � c1.B2jY /C 4c

2
1.V /� c2.B2jY /

C 14c1.�
�
2M

_
jY / � c1.V /C c

2
1.B2jY /C 2c1.B2jY / � c1.V /:

We expand this expression, collect the terms that do not contain c1.Ker.�//, and obtain

20��2 .c
2
1/� 7��

�
2 .c1/� 28� ��

�
2 .c1/C 4��C 8�

2
C 8��2 .c2/:
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This quadratic polynomial gets multiplied with the class ŒY � computed in Proposition 2.7. Next, we
collect the terms in ��.F0/ � c2.Sym2 E_�F_/ that do contain c1.Ker.�//:

4c21.Ker.�//C c1.Ker.�//
�
8.15�C /C 14��2 .c1/C 2c1.B2jY /

�
:

This part of the contribution is evaluated using formulas (18) and (19).

Putting everything together, we obtain a polynomial in H 14.X �W 5
16.X/;Z/Š Z, as in the proof of

Theorem 3.1:

��.F0/ � c2.Sym2.E/_�F_/

D ���2
�
�40c21c3� C 56c1c3�

2
� 16c3�

3
C 300c21c4� 392c1c4� � 16c2c3� C 104c4�

2
� 217c1c5

C 120c2c4C 124c5� C 2c6
�
:

Applying Proposition 2.6 and then (11), after eliminating � we obtain

��.F0/ � c2.Sym2.E/_�F_/D 161
180
�6� 28

3
�5y1C

755
24
�4y21 � 30�

3y31 D 42141:

We can now complete the calculation of ŒeD13�virt.

Proof of Theorem 1.4 We consider the curve Fell � eMg defined in (7) obtained by attaching at the fixed
point of a general curve X of genus 12 a pencil of plane cubics at one of the basepoints of the pencil.
Then one has the relation

a� 12b0C b1 D Fell � ��c2.Sym2.E/_�F_/D 0:

Using Theorems 3.1 and 3.2, we thus find aD 15177 for the �–coefficient in the expansion (13). This
completes the calculation of the virtual class ŒeD13�virt.

We finally explain how Theorems 1.4 and 1.5 (proved in Section 4) together imply Theorem 1.3.

Proof of Theorem 1.3 We write ŒD13�D a�� b0ı0� � � � � b6ı6, where a, b0 and b1 are determined by
Theorem 1.4. Applying [21, Theorem 1.1], we have the inequalities bi � .6i C 8/b0� .i C 1/a � b0 for
i D 2; : : : ; 6, which shows that s.D13/D a=b0 D 5059

749
.

4 The strong maximal rank conjecture in genus 13

In this section and the next, we prove that eD13 is not all of eM13 and that its codimension-one part
represents the virtual class ŒeD13�virt.

To show that eD13 is not all of eM13, it suffices to prove the existence of one Brill–Noether general smooth
curve X of genus 13 such that, for every L 2W 5

16.X/, the multiplication map

�L W Sym2H 0.X;L/!H 0.X;L˝2/
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is surjective. This is one case of the strong maximal rank conjecture [3]. The locus of such curves is Zariski
open; to prove that it is nonempty over every algebraically closed field of characteristic zero, it suffices to
show this over one such field. Hence, we can and do assume that our ground fieldK is spherically complete
with respect to a surjective valuation � WK�!R, and that K has residue characteristic zero. This allows
us to discuss the nonarchimedean analytifications of curves, the skeletons of those analytifications, and the
tropicalizations of rational functions, viewed as sections of L and L˝2. In this framework, we apply the
method of tropical independence to give a lower bound for the rank of the multiplication map �L for every
L 2W 5

16.X/. The motivation and technical foundations for this approach are detailed in Sections 1.4–1.5,
Sections 2.4–2.5 and Section 6 of [19], to which we refer the reader for details and further references.

After proving this case of the strong maximal rank conjecture, we will furthermore show that no
component of the degeneracy locus U in the parameter space zG516 over eM13 maps with generically
positive-dimensional fibers onto a divisor in eM13. As in [19], this additional step is necessary to show
that the pushforward of the virtual class is effective, and our proof involves analogous arguments on
lower-genus curves for linear series with ramification. In particular, we will consider linear series with
ramification on curves of genus 11 and 12 in Section 5, and so we set up our arguments here to work in
this greater generality.

Let X be a smooth projective curve of genus 11� g � 13 over K whose Berkovich analytification X an

has a skeleton � which is a chain of g loops connected by bridges, as shown. In order to simplify notation
later, the vertices of � are labeled w13�g ; : : : ; w13, and v14�g ; : : : ; v14, as shown in Figure 1.

For 14� g � k � 13 we write k for the loop formed by the two edges of length `k and mk between
vk and wk . Similarly, for 14�g � k � 14 we write ˇk for the bridge between wk�1 and vk which has
length nk . Except where stated otherwise, we assume that these edge lengths satisfy

(20) `kC1�mk� `k� nkC1� nk for all k:

These conditions on the edge lengths are precisely as in [19, Section 7.1]. Any curve X whose analytifi-
cation has such a skeleton is Brill–Noether general [12].

Given a line bundle L on X we choose an identification L D OX .DX / so that any linear series V �
H 0.X;L/ is identified with a finite-dimensional vector space of rational functions V � K.X/. The
tropicalization of any nonzero rational function f on X is a piecewise linear function with integer slopes
on � , and we write tropV for the set of all tropicalizations of nonzero functions in V.

w13�g
v14�g

w14�g

v13
w13

v14

nk

`k

mk

Figure 1: The chain of loops � .
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Any sum of two functions in tropV is the tropicalization of a function in the image of the multiplication
map �V W Sym2 V ! H 0.X;L˝2/. We say that a set of functions f 0; : : : ;  ng on � is tropically
independent if there are real numbers b0; : : : ; bn such that

minf 0C b0; : : : ;  nC bng ¤minf 0C b0; : : : ; 2 j C bj ; : : : ;  nC bng for 0� j � n:

In other words, f 0; : : : ;  ng is tropically independent if there are real numbers b0; : : : ; bn such that
each  j C bj achieves the minimum uniquely in minif i C big at some point v 2 � . The function
� Dminif i C big is then called an independence, since it verifies that f 0; : : : ;  ng is independent.

We recall that tropical independence is a sufficient condition for linear independence; if f0; : : : ; fn are
nonzero rational functions on X such that ftrop.f0/; : : : ; trop.fn/g is tropically independent on � , then
ff0; : : : ; fng is linearly independent in K.X/. Therefore, the relevant case of the strong maximal rank
conjecture, and hence the fact that eD13 is a divisor, follows immediately from the following.

Theorem 4.1 Let X be a curve of genus 13 with skeleton � . Let V be a linear series of degree 16 and
dimension 5 on X , and let † D tropV. Then there is an independence � among 20 pairwise sums of
functions in †.

We will use the following generalization of Theorem 4.1 in our proof that eD13 represents the virtual
class; the generalization involves analogous statements for linear series satisfying certain ramification
conditions in genus 11 and 12. The situation is closely parallel to that in [19, Section 9.4]. Recall that
aV0 .p/ < � � �< a

V
r .p/ denotes the vanishing sequence of a linear series V of rank r at a point p.

Theorem 4.2 Let X be a curve of genus g 2 f11; 12; 13g whose skeleton is � , and let p 2X be a point
specializing to w13�g . Let V be a linear series of degree 16 and dimension 5 on X , and let †D tropV.
Assume that

(i) if g D 12, then aV1 .p/� 2, and

(ii) if g D 11, then either aV1 .p/� 3, or aV0 .p/� 1 and aV2 .p/� 4.

Then there is an independence � among 20 pairwise sums of functions in †.

The remainder of this section is devoted to the proof of Theorem 4.2. Our approach to constructing the
independence is similar to that of [19], with a few important differences that we highlight when they arise.
Throughout, we let DX be a divisor class on X with V �H 0.X;O.DX //. We write D D Trop.DX /,
and we assume that D is a break divisor, meaning that it is the unique effective representative of its
equivalence class with multiplicity degD � g at w0 and precisely one point of multiplicity 1 on each
loop k . (See for instance [2].) Let R.D/ denoted the complete tropical linear series of D, as in [25].
In other words, R.D/D f 2 PL.�/ WDC div. /� 0g. Note, in particular, that Trop.V / is a tropical
submodule of R.D/.
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Remark 4.3 The differences between the constructions of independences here and those in [19] are
subtle but crucial. Even when g D 13, ŒD� is vertex-avoiding, and † is unramified (the cases treated in
Section 4.1), if we apply the algorithm of [19, Section 8.1] naively, we obtain an independence among
only 19 functions in †. To overcome this difficulty, we divide the graph into blocks in such a way that
the lingering loop is the last loop in its block and has exactly two permissible functions. This allows
us to alter the algorithm slightly and assign a function to the lingering loop, raising the total number of
functions in the independence to 20. See Remark 4.11.

4.1 The unramified vertex-avoiding case

We first consider the case where gD 13, D is vertex-avoiding, and †D tropV is unramified. Unramified
means that the ramification weights of tropV at w0 and v14, in the sense of [19, Definition 9.7], are zero.
Vertex-avoiding means that, for 0� i � 5, there is a unique divisorDi �D such thatDi�iw0�.5�i/v14
is effective. A vertex-avoiding divisor is unramified if and only if the support of Di � iw0� .5� i/v14
contains neither w0 nor v14, for all i .

For  2†, we write sk. / and s0
k
. / for the rightward slopes along the incoming and outgoing bridges

of the kth loop k , at vk and wk , respectively. Since dimV D 6, the functions in † have exactly 6 distinct
slopes along each tangent vector in � .

Definition 4.4 Let skŒ0� < � � �< skŒ5� and s0
k
Œ0� < � � �< s0

k
Œ5� denote the 6 distinct rightward slopes that

occur as sk. / and s0
k
. / for  2†.

Since D is vertex-avoiding, there is a function 'i 2† such that

sk.'i /D skŒi � and s0k.'i /D s
0
kŒi � for all k;

and it is unique up to additive constants. Since † is also unramified, there is a unique lingering loop `,
ie a unique loop ` such that s0

`
Œi �D s`Œi � for all i . Moreover, there is no function ' 2† with the property

that s`.'/� s`Œi � and s0
`
.'/� s0

`
Œi C 1�. This last condition means that ` is not a switching loop, in the

sense of [19, Section 9.6].

Our assumption that † is unramified implies that the break divisor D satisfies degw0 D D 3, and the
rightward slopes of the functions  i at w0 are

.s00Œ0�; : : : ; s
0
0Œ5�/D .�2;�1; 0; 1; 2; 3/:

k

vk wk

sk s0
k

Figure 2: The slopes sk and s0
k

.
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Let us consider how the slope vector .s0
k
Œ0�; : : : ; s0

k
Œ5�/ changes as we go from left to right across the

graph. When crossing a loop other than the lingering loop `, one of these slopes increases by 1, and
the other 5 remain the same. So, after the first nonlingering loop, the slopes are .�2;�1; 0; 1; 2; 4/, and
after the second nonlingering loop, the slopes are either .�2;�1; 0; 1; 2; 5/ or .�2;�1; 0; 1; 3; 4/. The
data of these slopes is recorded by a standard Young tableau on a rectangle with 2 rows and 6 columns,
filled with the symbols 1 through 13, excluding `. If the symbol k appears in column i , then it is the
.5�i/th slope that increases on the loop k , ie s0

k
Œ5� i �D skŒ5� i �C 1. Note, in particular, that each

slope increases exactly twice, so s013 D .0; 1; 2; 3; 4; 5/ and no slope is ever greater than 5.

Let 'ij WD'iC'j . To prove Theorem 4.2, we construct an independence � among 20 of the 21 functions in

B D f'ij W 0� i � j � 5g:

In order to describe this construction, we divide the graph into three connected regions consisting of
some number of loops and the bridges between them, which we call blocks. The construction ensures
that, within each block, the slope of � is nearly constant on each bridge, equal to 4 on bridges in the first
block, 3 on bridges in the second block, and 2 on bridges in the third block. The slope decreases by 1
at the midpoint of the bridges between blocks.

The blocks are specified as follows. Recall that ` is the lingering loop. Let

z1 Dminf6; `g and z2 Dmaxf7; `g:

Then z1 and z2 are the last loops of the first and second blocks, respectively. We construct our
independence � to satisfy

(21) sk.�/D

8<:
4 if k � z1,
3 if z1 < k � z2,
2 if z2 < k � 13.

Note that either z1 or z2 is equal to `, so the lingering loop ` is always the last loop in its block.

When we construct � as a tropical linear combination of the functions in B, we keep track of which
functions achieve the minimum on which loops and bridges of � . The specified slopes of � along the
bridges within each block place natural constraints on which functions can achieve the minimum on a
given loop, which we encode in the following definition of permissibility. In the vertex-avoiding case,
we apply this condition only to functions 'ij 2 B. However, we state the definition of permissibility
more generally, for arbitrary functions  in the complete tropical linear series R.D/, for later use in
Sections 4.2–4.3.

Definition 4.5 Let  2R.D/. We say that  is permissible on k if

sk. /� sk.�/ and s0k. /� sk.�/:

We say that  is permissible on a block if it is permissible on some loop in that block.
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To understand this definition, suppose that � has nearly constant slope along the bridges within each block
and on each half of the bridges between blocks, and that it is written as the minimum of finitely many
functions in R.D/, including  . If sk. /� sk.�/C 1, then the value of  at vk exceeds the value of �
at vk by at least the length of the bridge ˇk (or half this length, if ˇk is the bridge between two blocks).
Since this bridge is much longer than the loop k , it follows that  cannot achieve the minimum at any
point of k . A similar argument shows that if s0

k
. /� sk.�/� 1, then  cannot achieve the minimum at

any point of k .

We construct � algorithmically, moving from left to right across the graph. At each step, we keep track of
which functions in B are permissible on the given loop. The set of loops on which a given function  is
permissible are indexed by the integers in an interval [19, page 44], so we pay special attention to the first
and last loops in these intervals.

Suppose k is the first loop on which 'ij 2 B is permissible and it is not the first loop in its block. Then
k is the unique loop on which 'ij is permissible such that the first inequality in Definition 4.5 is strict.
Similarly, suppose k is the last loop on which 'ij is permissible and it is not the last loop in its block.
Then k is the unique loop on which 'ij is permissible such that the second inequality in Definition 4.5
is strict. This motivates the following definition.

Definition 4.6 A permissible function  is new if sk. /� sk.�/�1 and departing if s0
k
. /� sk.�/C1.

Our choice of z1 and z2 determines which loops have new permissible functions in B.

Proposition 4.7 There are no new permissible functions of the form 'ij on k if and only if k D ` or

(i) ` > 6 and k D 6,

(ii) ` > 7 and k D 7,

(iii) ` < 9 and k D 9, or

(iv) `� 7, s07Œ5�D 4 and k D 8.

Proof There is no new permissible function on the lingering loop `. Suppose k ¤ `. Let j be the
unique integer satisfying s0

k
Œj �D skŒj �C1. There is a new permissible function in B on k if and only if

either the function 'jj is both new and departing, or there is an integer i such that s0
k
.'ij /D sk.�/. We

now examine when such an i exists.

The values s0
k
Œi � are six distinct integers between �2 and 5. Let a and b be the two integers in this range

that are not equal to s0
k
Œi � for any i . On the hth nonlingering loop, one has

hD

5X
iD0

.s0kŒi �C 2� i/D 9� .aC b/:

Since s0
k
Œj � D skŒj �C 1, we must have that s0

k
Œj � is equal to either aC 1 or b C 1. Without loss of

generality, assume that it is equal to aC 1. There does not exist i such that s0
k
Œi �C s0

k
Œj �D s0

k
.�/ if and

only if s0
k
.�/� .aC1/ is greater than 5, smaller than �2, or equal to either a or b. If it is equal to a, then
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the function 'jj is both new and departing. Since s0
k
.�/� 4 and aC 1��1, we see that s0

k
.�/� .aC 1/

cannot be greater than 5, and s0
k
.�/� .aC 1/ is smaller than �2 if and only if s0

k
.�/D 2 and aD 4. By

the above calculation, b D s0
k
.�/� .aC 1/ if and only if hD 10� s0

k
.�/.

The 6th nonlingering loop is contained in the first block if and only if ` > 6. The 7th nonlingering loop is
contained in the second block if and only if ` > 7. The 8th nonlingering loop is contained in the third
block if and only if ` < 9. Finally, if aD 4, then k is one of the first 7 nonlingering loops. If k is in the
third block, then since z2 � 7, we have `� 7, and k is the first loop in the third block.

Having determined which loops have new permissible functions in B, we can now strategically choose
the subset B0 � B from which we will construct the independence � , so that the number of permissible
functions in B0 on each block is precisely one more than the number of loops in the block. Note that
jBj D 21, so B0 is chosen by omitting a single function  from B.

Definition 4.8 If `� 7, let  2 B be a function that is permissible on the second block. Otherwise, let
 2 B be a function that is permissible on the third block. Let B0 D B n f g.

Remark 4.9 There may be several functions that are permissible on the specified block; it does not
matter which of these we omit from B0.

Lemma 4.10 On each block , the number of permissible functions in B0 is one more than the number of
loops.

Proof This follows directly from Proposition 4.7. Specifically, since z1 D minf6; `g, there is a new
permissible function in B on each loop of the first block, except for the last one. Since there are precisely
two pairs .i; j / such that s1.'ij /D 4, we see that the number of permissible functions on the first block
is one more than the number of loops. By symmetry, if z2 � 7, then the number of permissible functions
in B on the third block is one more than the number of loops, and if z2 > 7, it is two more. But when
z2 > 7, one of these functions is not in B0.

Finally, we consider the middle block. We count the number of pairs .i; j / such that s0z1.'ij / D 3.
Since 3 is odd, if .i; j / is such a pair, then i ¤ j . It follows that there are 3 such pairs if and only if
s0z1 Œi �C s

0
z1
Œ5� i �D 3 for all i , which implies that there are precisely 6 nonlingering loops in the first

block. It follows that, if ` < 7, then there are precisely two such pairs, and if `� 7, there are three such
pairs. By Proposition 4.7, if ` < 7, there is a new permissible function on every loop of the middle block.
If `D 7, then the middle block contains only one loop, and since this loop is lingering, there are no new
permissible functions on it. In both of these cases, the number of permissible functions in B on the middle
block is therefore two more than the number of loops, but one of these functions is not in B0. If ` > 7,
then there are no new permissible functions on 7 or `, so the number of permissible functions is one
more than the number of loops.
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We now describe the algorithm for constructing our independence

� D min
'ij2B0

f'ij C cij g;

with slopes sk.�/ as specified in (21), when g D 13, D is vertex-avoiding, and † is unramified. The
algorithm is quite similar to that presented in [19, Section 8.1]. We include the details. See Example 4.19
for an illustration of the output in one particular case.

In this algorithm, we move from left to right across each of the three blocks where sk.�/ is constant,
adjusting the coefficients of unassigned permissible functions and assigning one function 'ij 2 B0 to
each loop so that each function achieves the minimum uniquely on some part of the loop to which it is
assigned. At the end of each block, there is one remaining unassigned permissible function that achieves
the minimum uniquely on the bridge immediately after the block, which we assign to that bridge. Since
there are 13 loops and three blocks, this gives us an independent configuration of 16 functions. The
remaining 4 functions, with slopes too high or too low to be permissible on any block, achieve the
minimum uniquely on the bridges to the left of the first loop or to the right of the last loop, respectively.
Example 4.19 illustrates the procedure for one randomly chosen tableau. We now list a few of the key
properties of the algorithm:

(i) Once a function has been assigned to a bridge or loop, it always achieves the minimum uniquely at
some point on that bridge or loop.

(ii) A function never achieves the minimum on any loop to the right of the bridge or loop to which it is
assigned.

(iii) The coefficient of each function is initialized to 1 and then assigned a finite value when the
function is assigned to a bridge or becomes permissible on a loop, whichever comes first.

(iv) After the initial assignment of a finite coefficient, subsequent adjustments to this coefficient are
smaller and smaller perturbations. This is related to the fact that the edges get shorter and shorter
as we move from left to right across the graph.

(v) Only the coefficients of unassigned functions are adjusted, and all adjustments are upward. This
ensures that once a function is assigned and achieves the minimum uniquely on a loop, it always
achieves the minimum uniquely on that loop.

(vi) Exactly one function is assigned to each of the 13 loops, and the remaining seven functions are
assigned to either the leftmost bridge, the rightmost bridge, or one of the three bridges after the
blocks.

The algorithm terminates when we reach the rightmost bridge, at which point each of the 20 functions
f'ij C cij W 'ij 2 B0g achieves the minimum uniquely at some point on the graph.

Remark 4.11 The one crucial difference, in comparison with the construction in [19, Section 8.1], is
that we do not skip the lingering loop `. Instead, since ` is the last loop in its block, there are precisely
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two unassigned permissible functions on `. These two functions do not have identical restrictions to `.
Thus, if we adjust their coefficients upward so that they agree at w`, one of them will obtain the minimum
uniquely at some point of the loop `. We assign this function to ` and adjust its coefficient upward by
an amount small enough so that it still obtains the minimum uniquely at some point of `. The other
achieves the minimum uniquely at w`, and we assign it to the bridge ˇ`C1.

The algorithm depends on the following basic properties of the permissible functions 'ij .

Lemma 4.12 There is at most one departing permissible function 'ij on each loop k . Furthermore , if
k is lingering then there are none.

Proof The proof is identical to [19, Lemma 8.8].

Lemma 4.13 For any loop k , there are at most three nondeparting permissible functions in B on k .

Proof If 'ij is a nondeparting permissible function on k , then skC1.'ij / D sk.�/. For each i , this
equality holds for at most one j , and the lemma follows.

Proposition 4.14 Consider a set of at most three nondeparting permissible functions from B on a loop
k and assume that all of the functions take the same value at wk . Then there is a point of k at which one
of these functions is strictly less than the others.

Proof The proof is identical to [19, Lemma 8.19].

The algorithm is as follows:

� Start at the first bridge Start at ˇ1 and initialize c55 D 0. Initialize c45 so that '45C c45 equals '55
at a point one third of the way from w0 to v1. Initialize c44 and c35 so that '44Cc44 and '35Cc35 agree
with '45C c45 at a point two thirds of the way from w0 to v1. Initialize all other coefficients cij to1.
Note that '55 and '45 achieve the minimum uniquely on the first and second third of ˇ1, respectively.
Assign both of these functions to ˇ1, and proceed to the first loop.

� Loop subroutine Each time we arrive at a loop k , apply the following steps:

� Step 1: reinitialize unassigned coefficients By Lemma 4.15 below, there are at least two
unassigned permissible functions. Find the unassigned permissible function 'ij that maximizes
'ij .wk/C cij . Initialize the coefficients of the new permissible functions (if any) and adjust the
coefficients of the other unassigned permissible functions upward so that they all agree with 'ij
at wk . (The unassigned permissible functions are strictly less than all other functions on k , even
after this upward adjustment; see Lemma 4.16.)

� Step 2: assign departing functions If there is a departing function, assign it to the loop. (There
is at most one, by Lemma 4.12.) Adjust the coefficients of the other permissible functions upward
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so that all of the functions agree at a point on the following bridge a short distance to the right of
wk , but far enough so that the departing function achieves the minimum uniquely on the whole
loop. This is possible because the bridge is much longer than the edges in the loop. Proceed to the
next loop.

� Step 3: otherwise, use Proposition 4.14 By Lemma 4.13, there are at most three nondeparting
functions. By Proposition 4.14, there is one 'ij that achieves the minimum uniquely at some point
of k . We adjust the coefficient of 'ij upward by 1

3
mk . This ensures that it will never achieve

the minimum on any loops to the right, yet still achieves the minimum uniquely on this loop; see
Lemma 4.16, below. Assign 'ij to k , and proceed to the next loop.

� Proceeding to the next loop If the next loop is contained in the same block, then move right to the
next loop and apply the loop subroutine. Otherwise, the current loop is the last loop in its block. In this
case, proceed to the next block.

� Proceeding to the next block After applying the loop subroutine to the last loop in a block, there
is exactly one unassigned permissible function in B0, by Lemma 4.10. The unassigned permissible
function 'ij achieves the minimum uniquely on the beginning of the outgoing bridge, without any further
adjustment of coefficients. Assign 'ij to this bridge.

If we are at the last loop g , then proceed to the last bridge. Otherwise, there are several permissible
functions on the first loop of the next block, as detailed in Lemma 4.13, above. Initialize the coefficient
of each permissible function on the first loop of the next block so that it is equal to � at the midpoint of
the bridge between the blocks, and then apply the loop subroutine.

� The last bridge Initialize the coefficient c01 so that '01C c01 equals � at the midpoint of the last
bridge ˇ14. Initialize c00 so that '00C c00 equals � halfway between the midpoint and the rightmost
endpoint. Note that both of these functions now achieve the minimum uniquely at some point on the
second half of ˇ14. Assign both of these functions to ˇ14, and output � Dminf'ij C cij W 'ij 2 B0g.

To verify that this algorithm produces a tropical independence, we first show that there are at least two
unassigned permissible functions on each loop.

Lemma 4.15 There are at least two unassigned permissible functions on each loop k .

Proof By Lemma 4.10, the number of permissible functions in B0 on the block containing k is one
more than the number of loops. Since there is at most one new function per loop, the number of functions
in B0 that are permissible on some loop between the first loop of the block and k , inclusive, is at least
one more than the number of loops. Finally, note that exactly one function is assigned to each loop,
and moreover, if a function is departing, it is assigned. It follows by induction on k0 that the number of
functions in B0 that are unassigned and permissible on some loop between k0 and k is at least k�k0C2.
Hence, the number of unassigned permissible functions on k is at least two.
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We now verify that this algorithm produces a tropical independence.

Lemma 4.16 Suppose that 'ij is assigned to the loop k or the bridge ˇk . Then 'ij does not achieve the
minimum at any point to the right of vkC1.

Proof If k is a nonlingering loop, then the proof is the same as [19, Section 8.2]. On the other hand, if
k is the lingering loop, then it is the last loop in its block. Since vkC1 is the start of the next block, 'ij
cannot achieve the minimum at any point to the right of vkC1.

This completes the proof of Theorem 4.2 in the vertex-avoiding case.

Remark 4.17 For future reference, we note that the proof of Lemma 4.16 does not depend on the relative
lengths of the bridges. It only uses that the bridges are much longer than the loops. The assumption that
each bridge is much longer than the next is only used later, when there are decreasing bridges, decreasing
loops, or switching loops.

Remark 4.18 If � 0 is the subgraph of � to the right of w1, then � 0 is a chain of 12 loops whose edge
lengths satisfy the required conditions, and if the first loop is nonlingering, then the restriction of † to � 0

satisfies the ramification condition of Theorem 4.2, with equality. Similarly, the subgraph to the right
of w2 is a chain of 11 loops whose edge lengths satisfy the required conditions, and the restriction of
† to this subgraph satisfies the ramification condition of Theorem 4.2, with equality. To produce an
independence in these cases, assign each function in B0 with slope greater than 4 to the first bridge, and
then proceed as above. There are precisely 15�g such functions, and they have distinct slopes along the
first bridge, as in [19, Lemma 10.40]. Because of this, we can choose coefficients so that each one obtains
the minimum uniquely at some point of the first bridge. Thus the unramified vertex-avoiding cases of
Theorem 4.2 for g D 11 and 12 (ie when † is unramified at v14 and there is no extra ramification at
w13�g beyond what is required by the inequalities on vanishing orders in the statement of the theorem)
follow from essentially the same argument as for g D 13. Our choice to index the vertices starting at
w13�g reflects the idea that these linear series with ramification on a chain of g D 11 or 12 loops behave
like linear series on a chain of 13 loops restricted to the subgraph to the right of w13�g .

Example 4.19 We illustrate the construction with an example. Let ŒD� be a vertex-avoiding class of
degree 16 and rank 5 associated to the tableau in Figure 3.

The independence � D minij f'ij C cij g that we construct is depicted schematically in Figure 4. The
graph should be read from left to right and top to bottom, so the first six loops appear in the first row, with

1 3 4 8 9 10

2 5 7 11 12 13

Figure 3: The tableau corresponding to the divisor D.
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55 45

35 25 44

2

34 33 15

24 � � �

� � �

14

05 � � �

� � �

22 13 04 03 12 11

02 01 00

Figure 4: The divisor D0 D 2DC div.�/. The function 'ij achieves the minimum uniquely on
the region labeled ij in � nSupp.D0/.

1 on the left and 6 on the right, and 13 is the last loop in the third row. The rows correspond to the
three blocks. The 31 dots indicate the support of the divisor D0 D 2DC div.�/. Note that deg.D0/D 32;
the point on the bridge ˇ4 appears with multiplicity 2, as marked. Because `D 6, there is a function that
is permissible on the second block in B but not B0. The functions in B that are permissible on the second
block are precisely '05, '14, and '23; we have chosen (arbitrarily) to omit '23 from B0. Each of the 20
functions 'ij in B0 achieves the minimum uniquely on the connected component of the complement of
Supp.D0/ labeled ij .

4.2 No switching loops

Recall that a loop ` is a switching loop for † if there is some ' 2† and some h such that s`.'/� s`Œh�
and s0

`
.'/� s0

`
ŒhC 1�. It is a lingering loop if it is not a switching loop and s`Œi �D s0`Œi � for all i . Recall

also that ` is a decreasing loop if s`Œh� > s0`Œh�. Similarly ˇ` is a decreasing bridge if s0
`�1

Œh� > s`Œh�.

Because we are only considering cases where the adjusted Brill–Noether number is at most one,
by [19, Proposition 9.10], we know that there is at most one lingering loop, one positive ramification
weight, one decreasing loop, one decreasing bridge, or one switching loop, and these possibilities are
mutually exclusive. Moreover, for decreasing loops and bridges, the index h is unique and the decrease in
slope is exactly one. In this subsection, we consider all cases where there is no switching loop. The cases
with a switching loop are discussed in Section 4.3.

Assume † has no switching loops. Then for all i there is a function 'i 2† such that

sk.'i /D skŒi � and s0k.'i /D s
0
kŒi � for all k:

We keep the notation 'ij D 'i C'j and BD f'ij W 0� i � j � 5g. As in the unramified vertex-avoiding
case, we choose a subset B0 � B of 20 functions, and we choose integers z1 and z2 in order to divide the
graph � into three blocks. We make our choices to satisfy the following conditions:

(i) No two functions in B0 that are permissible on k differ by a constant on k .
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(ii) The number of functions in B0 that are permissible on each block is at most one more than the
number of loops in that block.

(iii) No function in B0 is permissible on more than one block,

(iv) if k is a lingering loop, then it is the last loop in its block.

(v) If k is a decreasing loop and j is the unique value such that s0
k
Œj � < skŒj �, then no function of

the form 'ij 2 B0 is permissible on k .

(vi) If ˇk is a decreasing bridge and j is the unique value such that skŒj � < s0k�1Œj �, then either ˇk is
a bridge between blocks, or no function of the form 'ij 2 B0 is permissible on k�1.

Proposition 4.20 If B0 satisfies conditions (i)–(vi), then the functions in B0 are independent.

Proof The algorithm for constructing the tropical independence is identical to the algorithm of Section 4.1,
with the following exceptions. First, as in Remark 4.18, we assign every function with slope greater than
four to the first bridge. Second, the procedure for proceeding to the next block must be altered slightly
when the bridge between the blocks is a decreasing bridge.

When the bridge between the blocks is a decreasing bridge, there is a unique point v on the bridge where
one of the functions 'i is locally nonlinear. We initialize the coefficients of the new permissible functions
on the next block so that they are equal to � at a point to the right of v. If one of the blocks contains zero
loops, we set the coefficient of the unique function with slope equal to that of � so that it is equal to � at
a point to the right of v, and initialize the coefficients of the new permissible functions on the next block
so that they are equal to � at a point to the right of this.

We note that there are at most 3 nondeparting permissible functions in B0 on each loop. This is because a
nondeparting permissible function 'ij on k satisfies skC1.'ij /D sk.�/, and for each i this equality can
hold for at most one j .

To see that this algorithm produces an independence, suppose that 'ij is assigned to the loop k or the
bridge ˇk . We show that 'ij does not achieve the minimum at any point to the right of vkC1. If k and
ˇk both have multiplicity zero, then the argument is the same as in [19, Section 8.2]. On the other hand,
if k has positive multiplicity, then either k is a decreasing loop, or by (iv) it is the last loop in its block.
If k is a decreasing loop, then by (v) there is no function in B0 that is permissible on k and contains the
decreasing function as a summand, so the result holds again as in [19, Section 8.2]. We may therefore
assume that k is the last loop in its block, in which case the argument is identical to the vertex-avoiding
case above.

Similarly, if ˇk has positive multiplicity, then by (vi) there are two possibilities. If 'ij does not contain
the decreasing function as a summand, then there is nothing to show. Otherwise, ˇk is a bridge between
blocks. By (iii) the function 'ij is only permissible on one block. Since vkC1 is the start of the next
block, 'ij cannot achieve the minimum at any point to the right of vkC1.
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For the rest of this section, we explain how to choose z1, z2, and the set B0 in order to satisfy conditions
(i)–(vi). This is done by a careful case analysis, depending on combinatorial properties of the tropical
linear series †.

Case 1: there are no loops or bridges of positive multiplicity This guarantees that either the linear
series is ramified at v14, or has “extra ramification” at w13�g , meaning that g D 13 and the linear series
is ramified at w0, or gD 11 or 12 and the linear series has more ramification than what is imposed by the
inequalities on vanishing numbers in Theorem 4.2s. In these cases, which are mutually exclusive, we
choose z1 and z2 so that z1 is the first loop in the first block with no new function, and z2C1 is the last
loop in the last block with no departing function. These loops exist by a counting argument, but we make
the choice explicit.

If † is ramified at v14, let k be the smallest positive integer such that s0
k
Œ5�D 6, and define

(22) z1 D

�
6 if k � 7,
7 if k � 6,

and z2 Dmaxfk� 1; 7g:

If † has extra ramification at w13�g , let k be the largest positive integer such that skŒ0�D�3, and define

(23) z1 Dminfk; 6g and z2 D

�
6 if k � 8,
7 if k � 7.

Let  2 B be a function that is permissible on the second block, and let B0 D B n f g. (In the case where
z1 D z2, let  2 B be a function with sz1C1. /D 3.)

If there is a loop or bridge of positive multiplicity, then since �D 1, there is only one such loop or bridge,
and it has multiplicity 1.

Case 2: there is a bridge ˇ` of multiplicity 1 If `� 8 and s0
`�1

Œ5�D 6, then define z1 and z2 as in (22).
If `� 7 and s`Œ0�D�3, then define z1 and z2 as in (23). Otherwise, define

z1 Dminf`� 1; 6g and z2 D `� 1:

If ` � 8 and s`�1Œ5� D 6, or ` � 7 and s`Œ0� D �3, then as above, we let  2 B be a function that is
permissible on the second block, and let B0 D B n f g. Otherwise, let h be the unique integer such
that s`Œh� < s0`�1Œh�. If ` ¤ 5; 6, then we will see in Lemma 4.21 that either there is a unique i such
that s0

`�1
Œh�C s0

`�1
Œi � D s`�1.�/, or 2s0

`�1
Œh� D s`�1.�/C 1, but not both. In the first case, we let

B0 D B n f'hig, and in the second case, we let B0 D B n f'hhg. (The function in B nB0 is permissible on
both blocks to either side of the bridge ˇ`.) If `D 5 or 6, then we will see in Lemma 4.21 that there is a
unique i such that s0

`�1
Œh�C s0

`�1
Œi �D s`�1.�/� 1, and we again let B0 D B n f'hig.

It remains to consider the cases where there is a loop of multiplicity one. The case of a switching loop is
left to the next subsection. In the case of a lingering loop, we construct an independence exactly as in
Section 4.1. (See Remark 4.18 for an explanation of how the algorithm for gD 13 is adapted to the cases
where g D 11 or g D 12.) We now discuss the remaining case, where there is a decreasing loop.
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Case 3: there is a decreasing loop ` If `� 8 and s`Œ5�D 6, then define z1 and z2 as in (22). If `� 7
and s0

`
Œ0�D�3, then define z1 and z2 as in (23). Otherwise, define

z1 D

8<:
` if ` < 6,
5 if `D 6,
6 if ` > 6,

and z2 D

8<:
`� 1 if ` > 8,
8 if `D 8,
7 if ` < 8.

If `� 8 and s`Œ5�D 6 or `� 7 and s`Œ0�D�3, then as above, we let  2B be a function that is permissible
on the second block, and let B0 D B n f g. Otherwise, let h be the unique integer such that s0

`
Œh� < s`Œh�.

If ` < 6 or `D 7; 8 then ` is the last loop in its block, and we will see in Lemma 4.21 that either there is
a unique i such that s`Œh�C s`Œi �D s`.�/, or 2s`Œh�D s`.�/C 1, but not both. In the first case, we let
B0 D B n f'hig, and in the second case, we let B0 D B n f'hhg. If ` > 8 or `D 6, then we will see that
either there is a unique i such that s`Œh�C s`Œi �D s`�1.�/, or 2s`Œh�D s`�1.�/C 1. Again, in the first
case, we let B0 D B n f'hig, and in the second case, we let B0 D B n f'hhg.

In the cases above, we asserted several times that certain functions exist with specified slopes. To prove
this, we need to generalize Proposition 4.7. We first define the function

�.k/D

5X
iD0

.s0kŒi �C 2� i/:

Note that, if there is a loop of positive multiplicity and ` is the kth loop of multiplicity zero, then kD �.`/.
The following observation serves as the basis for our counting arguments.

Lemma 4.21 For a fixed k, suppose that �2� s0
k
Œi �� 5 for all i . Let j be an integer such that s0

k
Œj ��1

is not equal to �3 or s0
k
Œi � for any i . For s in the range 2 � s � 5, there does not exist i such that

s0
k
Œi �C s0

k
Œj �D s if and only if one of the following holds:

(i) �.k/D 10� s.

(ii) s D 5, j D 0 and s0
k
Œ0�D�1.

(iii) s D 2, j D 5 and s0
k
Œ5�D 5.

(iv) 2s0
k
Œj �D sC 1.

Proof The argument is identical to that of Proposition 4.7.

There are additional relevant cases, when s0
k
Œ5�D 6 or s0

k
Œ0�D�3.

Lemma 4.22 If s0
k
Œ5�D 6, then there does not exist i such that s0

k
Œi �C 6� 3. Similarly , if skŒ0�D�3,

then there does not exist i such that s0
k
Œi �� 2� 4.

Proof Since � D 1, if s0
k
Œ5�D 6, then s0

k
Œ0� � �2. It follows that s0

k
Œi �C 6 � 4 for all i . Similarly, if

skŒ0�D�3, then s0
k
Œi �� 5 for all i . It follows that s0

k
Œi �� 2� 3 for all i .
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Lemma 4.23 The set B0 satisfies conditions (i)–(vi).

Proof (i) If s0
k
Œi �� skŒi � for all i , then the result is immediate, so we may assume that k is a decreasing

loop. Let h be the unique integer such that s0
k
Œh� D skŒh�C 1, and let h0 be the unique integer such

that s0
k
Œh0�D skŒh

0�� 1. If 'hh0 is not permissible on k , then again there is nothing to show. If 'hh0 is
permissible, then by Lemma 4.21, we must have sk.�/D 10�k. By construction, this occurs if and only
if k D 7, in which case 'hh0 … B0.

(ii) Consider the first block first. There are two functions  2 B with the property that s013�g. /D 4.
The result will therefore hold for the first block if and only if the first block contains a loop with no
new permissible functions. Let k be a loop of multiplicity zero that is contained in the first block.
By Lemmas 4.21 and 4.22, there is no new permissible function on k if and only if �.k/ D 6 or
s0
k
Œ0� D skŒ0�C 1 D �2. Thus, the number of permissible functions in B on the first block is at most

two more than the number of loops in Cases 2 or 3 when `� 6 and s`Œ0�� �2, and one more than the
number of loops in the remaining cases. In Cases 2 and 3 when ` � 6 and s`Œ0� � �2, the function in
B nB0 is permissible on the first block. Since this function is not in B0, the number of functions in B0

that are permissible on the first block is one less than the number in B. The third block follows from a
completely symmetric argument.

For the second block, note that if �.z1/ D 6, then there are 3 functions  2 B with the property that
s0z1. / D 3, and otherwise there are only two such functions. In every case, either �.z1/ < 6 or by
Lemma 4.21, the second block contains a loop with no new permissible functions. Since the function in
B nB0 is permissible on the second block, we see that the number of permissible functions on the second
block is one more than the number of loops. (Note that this holds even in the case where the second block
contains zero loops, in which case there is exactly one permissible function on the second block.)

(iii) Suppose that 'ij 2 B is permissible on more than one block. First, consider the case where ˇ`
is a bridge of multiplicity one, and let h be the unique integer such that s`Œh� D s`�1Œh�� 1. If 'ij is
permissible on more than one block, then j D h and either s0

`�1
Œh�C s0

`�1
Œi �D s`�1.�/, or i D h and

2s0
`�1

Œh�D s`�1.�/C 1. If �2� s`Œh�� 5, then by Lemma 4.21, such an i exists if and only if `¤ 5; 6,
and by construction, we have 'hi … B0. Similarly, if s`Œh�D�3, then by Lemma 4.22, such an i exists
if and only if ` � 8, and if s`Œh�D 5, then such an i exists if and only if ` � 7. In both cases, we have
'hi … B0.

Next, consider the case where ` is a decreasing loop. By construction, ` is either the first or last
loop in its block. Let h be the unique integer such that s0

`
Œh� D s`Œh�� 1. If ` is the last loop in its

block and 'ij is permissible on both the block containing ` and the next block, then j D h and either
s`Œh�C s`Œi � D s`.�/, or i D h and 2s`Œh� D s`.�/C 1. But then 'ij … B0. Similarly, if ` is the first
loop in its block, and 'ij is permissible on both the block containing ` and the preceding block, then
j D h and either s`Œh�C s`Œi �D s`�1.�/, or 2s`Œh�D s`�1.�/C 1. If `¤ 7, then again 'ij … B0. Finally,
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note that if ` is both the first and last loop in its block, then `D 7, and the only functions 'ij that are
permissible on 7 satisfy s0

`
Œi �C s0

`
Œj �D 3. The result follows.

(iv) If ` is a lingering loop, then we follow the construction of the vertex-avoiding case of the previous
subsection, in which ` is the last loop in its block.

(v) Let k be a decreasing loop, let h be the unique integer such that s0
k
Œh�D skŒh�C 1, and let h0 be the

unique integer such that s0
k
Œh0�D skŒh

0�� 1. If 'hh0 is permissible, then 'hh0 … B0, as shown in the proof
of condition (i).

(vi) Let ˇk be a decreasing bridge and let j is the unique value such that skŒj � < s0k�1Œj �. If ˇk is not
a bridge between blocks, then by construction either j D 0, k � 7, and skŒ0� D �3, or j D 5, k � 8,
and skŒ5�D 5. In both cases, by Lemma 4.22, we see that there is no i such that 'ij 2 B0 is permissible
on k�1.

This completes the proof of Theorem 4.2 in all cases where there is no switching loop for †.

4.3 Switching loops

We now consider the case where there is a switching loop ` that switches slope h. This means that
s`Œi �D s

0
`
Œi � for all i , and there exists a function ' 2R.D/ satisfying

s`.'/D s`Œh� and s0`.'/D s
0
`Œh�C 1D s

0
`ŒhC 1�:

In this case, we define z1 and z2 as follows:

z1 D

8<:
` if ` < 6,
5 if `D 6,
6 if ` > 6,

and z2 D

�
7 if ` < 6,
` if `� 6.

As in Section 4.1, we will construct our independence � to satisfy

sk.�/D

8<:
4 if k � z1,
3 if z1 < k � z2,
2 if z2 < k � 13.

In the preceding cases, we identified functions 'i 2† with designated slope sk.'i /D skŒi � along each
bridge ˇk . When there is a switching loop, this is possible for i ¤ h; hC 1, but such a function does not
necessarily exist for i D h; hC 1. Instead, we identify a collection of functions in † with designated
slope along some of the bridges, and with slopes along the remaining bridges in a restricted range.

Proposition 4.24 There is a pencil W � V with 'A, 'B and 'C in trop.W / such that

(i) s0
k
.'A/D s

0
k
Œh� for all k < `,

(ii) sk.'B/D skŒhC 1� for all k > `,

(iii) sk.'C /D skŒhC 1� for all k � `, and s0
k
.'C /D skŒh� for all k � `,

(iv) sk.'�/ 2 fskŒh�; skŒhC 1�g and s0
k
.'�/ 2 fs

0
k
Œh�; s0

k
ŒhC 1�g for all k.
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Proof The proof is essentially the same as that of [19, Proposition 11.18]. We include the details for
completeness. First, there exists 'A 2† such that s013�g.'A/� s

0
13�g Œh� and s14.'A/� s14Œh�. Since `

is the only switching loop, we have s0
k
.'A/� s

0
k
Œh� for k < `, and s0

k
.'A/� s

0
k
Œh� for k � `. In particular,

s0
`
.'A/� s

0
`
Œh�, so s0

`�1
.'A/� s

0
`�1

Œh�, and it follows that s0
`�1

.'A/D s
0
`�1

Œh�. This proves (i), because
there are no switching loops to the left of `. The proof of (ii) is similar.

We now prove (iii). Given 'A and 'B in † satisfying (i) and (ii), choose fA and fB 2 V tropicalizing to
'A and 'B , respectively. Let W be the pencil spanned by fA and fB . Arguments similar to the proof
of (i) above show that sk.trop.W //D .skŒh�; skŒhC 1�/, for all k. Choose a function f 2W such that
'D trop.f / satisfies s`.'/D s`ŒhC1�. Then sk.'/D skŒhC1� for k <`. Similarly, choose '0 2 trop.W /
such that s0

`
.'0/D s0

`
Œh�, which implies that sk.'0/D skŒh� for k > `. Finally, by adding a scalar to '0,

we may assume that ' and '0 agree on the loop `, and set 'C Dminf'; '0g.

In three steps, we now construct a tropical independence among 20 pairwise sums of functions in

S WD f'i W i ¤ h; hC 1g[ f'A; 'B ; 'C g:

4.3.1 Step 1 First, we identify a collection of simpler functions in R.D/ that are not necessarily in †.
Unlike 'A and 'B , these functions are completely explicit; they have fixed slopes at every point of the
graph, rather than slopes in a restricted range. Moreover, these functions generate a tropical submodule
containing 'A, 'B and 'C .

Proposition 4.25 There are functions '0
h

, '0
hC1

and '1
h

in R.D/ such that :

(i) sk.'
0
h
/D skŒh� and s0

k
.'0
h
/D s0

k
Œh� for all k.

(ii) sk.'
0
hC1

/D skŒhC 1� and s0
k
.'0
hC1

/D s0
k
ŒhC 1� for all k.

(iii) sk.'
1
h
/D skŒh� and s0

k�1
.'1
h
/D s0

k�1
Œh� for all k� `, and sk.'1h /D skŒhC1� and s0

k�1
.'1
h
/D

s0
k�1

ŒhC 1� for all k > `.

(iv) The function 'A is a tropical linear combination of the functions '0
h

and '1
h

, where the two
functions simultaneously achieve the minimum at a point to the right of `.

(v) The function 'B is a tropical linear combination of the functions '0
hC1

and '1
h

, where the two
functions simultaneously achieve the minimum at a point to the left of `.

(vi) The function 'C is a tropical linear combination of the functions '0
h

and '0
hC1

, where the two
functions simultaneously achieve the minimum on the loop ` where they agree.

Proof The construction of the functions is essentially the same as in [19, Lemmas 11.7 and 11.19],
but we describe the essential argument here, for the reader’s convenience. To construct '1

h
, consider a

function that agrees with 'A to the left of ` and with 'B to the right. Because the two functions agree
on `, they “glue” together to give a function in R.D/. The construction of the other two functions is
similar. The verification that 'A, 'B and 'C are tropical linear combinations as claimed is the same as in
[19, Lemmas 11.8 and 11.19].
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4.3.2 Step 2 Next, we choose a set B00 of 20 pairwise sums of functions in

A WD f'i W i ¤ h; hC 1g[ f'0h; '
0
hC1; '

1
h g

that satisfies conditions (i)–(vi) of Section 4.2. We will choose this set so that, moreover, the indepen-
dence � produced by the algorithm from Section 4.2 satisfies a technical condition involving the best
approximations of � by certain functions in R.D/ that are not in the set (Lemma 4.30).

Start with the set B of pairwise sums of elements in A n f'1
h
g. Note that jBj D 21. As a first step toward

specifying B00, we choose one function  2 B, of the form 'i C 'j for i; j ¤ h; hC 1, to exclude. If
` � 7 and `¤ 6, let  be such a function that is permissible on the second block. If `D 6, let  2 B
be a function that is permissible on the first block. Otherwise, if ` > 7, let  2 B be a function that is
permissible on the third block. This choice of  guarantees that the number of functions in B0 WD B n f g
that are permissible on each block is one more than the number of loops in that block. In order to ensure
a certain technical condition in the next step (Lemma 4.30), in the cases where there is some j such that
s0
`
ŒhC1�C s0

`
Œj �D s`.�/C1, we adjust B0 by removing one more function and replacing it with '1

h
C'

for some ' 2A.

Suppose there is some ' 2A n f'1
h
g such that s0

`
ŒhC 1�C s0

`
.'/D s`.�/C 1. Then we define

B00 WD B[f'1h C'g n f'
0
hC'g:

Otherwise, if there is no such ', let B00 WD B0.

Lemma 4.26 The set B00 satisfies conditions (i)–(vi) of Section 4.2, and therefore the algorithm in
Section 4.2 produces an independence � among the functions in B00 with slopes s`.�/ as specified above.

Proof We first prove (i). First, note that, for any function ' 2A, the functions 'C'0
h
; 'C'0

hC1
have

identical restrictions to the switching loop `. Because these two functions have different slopes along ˇ`
and ˇ`C1, however, we see that they cannot both be permissible on `. In the case where '1

h
C' 2B00, we

see that the restriction of this function to a loop k with k � ` agrees with that of the function '0
hC1
C'.

We note, however, that since s0
`
ŒhC 1�C s0

`
.'/D s`.�/C 1, the function '0

hC1
C' is not permissible on

the loop k if k � `.

If B00 D B0, then condition (ii) holds by the same argument as Lemma 4.10. Otherwise, note that the
function in B00 n B0 is permissible on the same block as the function in B0 n B00, so condition (ii) still
holds. Condition (iii) holds because the slopes functions in A do not decrease from one bridge to the
next. Conditions (iv)–(vi) hold vacuously. By Proposition 4.20, therefore, there is an independence #
among the functions in B00.

4.3.3 Step 3 Finally, we choose a set T of 20 pairwise sums of functions in S and show that the best
approximation of the � by T , defined as follows, is an independence.
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Definition 4.27 Let T be a finite subset of PL.�/. The best approximation of � 2 PL.�/ by T is

(24) #T WDminf' � c.'; �/ W ' 2 T g;

where c.'; �/Dminf'.v/� �.v/ W v 2 �g.

Note that #T � � , and every function ' 2 T achieves the minimum at some point.

Lemma 4.28 Let � Dmin 2B00f C a g. Suppose ' Dmin 02Cf 0C b 0g, where C � B00. Then the
best approximation of � by ' achieves equality on the entire region where some  0 2 C achieves the
minimum in � .

Proof Let c D min 02Cfb 0 � a 0g. Choose  0 2 C such that c D b 0 � a 0 . Then ' � c � � , with
equality at points where  0 achieves the minimum in � .

We now study the best approximation of � by various pairwise sums of function in S.

Lemma 4.29 Let ' 2Anf'1
h
g. The best approximation of � by 'C C' achieves equality on the region

where either '0
h
C' or '0

hC1
C' achieves the minimum.

Proof If B00 contains both '0
h
C' and '0

hC1
C', then since 'C C' is a tropical linear combination of

these two functions, the result follows from Lemma 4.28. If not, then by construction B00 does not contain
'0
h
C', and s0

`
ŒhC 1�C s0

`
.'/D s`.�/C 1. In this case, 'C C' has slope greater than s`.�/ on ˇ`, so it

must achieve equality to the left of `, where it agrees with '0
hC1
C'.

Lemma 4.30 Let ' 2An f'1
h
g. If '1

h
C' … B00, then the best approximation of � by '1

h
C' achieves

equality on the region where either '0
h
C' or '0

hC1
C' achieves the minimum.

Proof If '0
h
C' is assigned to a loop k with k < `, then since '1

h
� '0

h
with equality to the left of `,

we see that the best approximation of � by '1
h
C' achieves equality on the region where '0

h
C' achieves

the minimum. Similarly, if '0
hC1
C' is assigned to a loop k with k � `, then the best approximation

of � by '1
h
C ' achieves equality on the region where '0

hC1
C ' achieves the minimum. It therefore

suffices to consider the case where '0
h
C' is not assigned to a loop k with k < `, but '0

hC1
C' is. By

Lemma 4.21, on every loop k in the same block as ` with k < `, there is a departing function. It follows
that

s`ŒhC 1�C s`.'/� s`.�/C 1:

Since '0
h
C' is not assigned to a loop k with k < `, we must have equality in the expression above. By

construction, in this case '1
h
C' 2 B00.
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Remark 4.31 It is possible that the best approximation of � by 'C C' achieves equality on both the
region where '0

h
C ' achieves the minimum and the region where '0

hC1
C ' achieves the minimum.

However, the set of independences is open in the set of all tropical linear combinations. In other words, if
the coefficients are varied in a sufficiently small neighborhood, the result is still an independence. One
can therefore choose the independence � to rule out this possibility.

We now describe our choice of the set T . We will define sets Tj and T 0 below, and define

T D f'ij 2 B00 W i; j ¤ h; hC 1g[
� [
j¤h;hC1

Tj
�
[ T 0:

For j ¤ h; hC1, if the best approximation of � by 'C C'j achieves equality where '0
h
C'j achieves the

minimum, let Tj D f'B C'j ; 'C C'j g. Otherwise, if the best approximation of � by 'C C'j achieves
equality where '0

hC1
C'j achieves the minimum, then let Tj D f'AC'j ; 'C C'j g.

Similarly, we define T 0 to be a set of three pairwise sums of elements of f'A; 'B ; 'C g, with our choice
depending on where certain functions achieve equality in the best approximation. In all cases, 'CC'C 2T 0.
The other functions in T 0 are determined by the following rules:

� If the best approximation of � by 'C C 'C achieves equality at a point to the left of `, then
'AC'C 2 T 0. Otherwise, 'B C'C 2 T 0.

� Suppose 'AC'C 2 T 0. If the best approximation of � by 'AC'C achieves equality at a point to
the left of `, then 'AC'A 2 T 0. Otherwise, 'AC'B 2 T 0.

� Suppose 'B C'C 2 T 0. If the best approximation of � by 'B C'C achieves equality at a point to
the left of `, then 'AC'B 2 T 0. Otherwise, 'B C'B 2 T 0.

Theorem 4.32 The best approximation #T is an independence , and #T D � as functions.

Proof We show that there is a bijection F W T ! B00 with the property that each  2 T achieves the
minimum in #T on exactly the same region where F. / achieves the minimum in � . From this it follows
that #T is an independence, and that #T D � .

For i; j ¤ h; hC1, we set F.'ij /D 'ij . Next, consider a value j ¤ h; hC1. We describe the restriction
of F to the subset Tj . The restriction of F to T 0 admits a similar description. By Lemma 4.29, the
best approximation of � by 'C C'j achieves equality on the region where either '0

h
C'j or '0

hC1
C'j

achieves the minimum (but not both, see Remark 4.31). If it achieves equality on the region where '0
h
C'j

achieves the minimum, set F.'C C'j /D '0hC'j . Otherwise, set F.'C C'j /D '0hC1C'j .

Suppose that F.'CC'j /D '0hC1C'j . The case where F.'CC'j /D '0hC'j follows from a similar (in
fact, simpler) argument. Since 'C agrees with '0

hC1
at points on or to the left of `, we have 'AC'j 2 T .

If '1
h
C'j 2 B00, then we set F.'AC'j /D '1h C'j . In this case, we have s0

`
Œh�C s0

`
Œj �D s`.�/. Since
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` is the last loop in its block, we see that the slope of 'AC'j is greater than that of � on the right half
of ˇ`C1. Thus, the best approximation of � by 'AC'j must achieve equality to the left of ˇ`C1, where
'AC'j agrees with '1

h
C'j .

If '1
h
C 'j … B00, then set F.'A C 'j / D '0

h
C 'j , and consider the best approximation � 0 of � by

B00 [ f'1
h
C 'j g. Note that the coefficient of 'AC 'j is the same in the best approximation of � 0 by

'AC'j and the best approximation of � by 'AC'j . By Lemma 4.30, '1
h
C'j achieves equality in � 0

on the region where either '0
h
C'j or '0

hC1
C'j achieves the minimum in � . Then, since 'A is a linear

combination of '0
h

and '1
h

, by Lemma 4.28, it follows that the best approximation of � by 'AC 'j
achieves equality on the region where either '0

h
C'j or '0

hC1
C'j achieves the minimum. But 'A and

'C do not agree at any point to the left of `, so the best approximation of � by 'AC'j must achieve
equality on the region where either '0

h
C'j achieves the minimum.

5 Effectivity of the virtual class

Recall that eM13 is an open substack of the moduli stack of stable curves, and eGr
d

is a stack of gen-
eralized limit linear series of rank r and degree d over eM13. There is a morphism of vector bundles
� W Sym2.E/! F over eGr

d
, whose degeneracy locus is denoted by U.

The case of Theorem 4.2 where g D 13 shows that the pushforward ��ŒU�virt under the proper forgetful
map � W eGr

d
! eMg is a divisor, not just a divisor class. In our proof that ��ŒU�virt is effective, we will

use the additional cases where g D 11 or 12. Theorem 4.2 implies the following result.

Theorem 5.1 Let X be a general curve of genus g 2 f11; 12; 13g, and let p 2X be a general point. Let
V �H 0.X;L/ be a linear series of degree 16 and rank 5. Assume that

(i) if g D 12, then aV1 .p/� 2, and

(ii) if g D 11, then either aV1 .p/� 3, or aV0 .p/C a
V
2 .p/� 5.

Then the multiplication map �V W Sym2 V !H 0.X;L˝2/ is surjective.

We now prove that U is generically finite over each component of ��ŒU�virt, which implies that ��ŒU�virt

is effective. Our argument follows closely that of [19, Section 12]. Indeed, several of the lemmas and
propositions along the way are identical, and we omit those proofs. As in [19, Section 12], we suppose
that Z �M13 is an irreducible divisor and that � jU has positive-dimensional fibers over the generic point
of Z. Let |2 WM2;1!M13 be the map obtained by attaching an arbitrary pointed curve of genus 2 to a
fixed general pointed curve .X; p/ of genus 11. Since g D 13 is odd, by [19, Proposition 2.2], it suffices
to show the following:

(a) Z is the closure of a divisor in M13,

(b) j �2 .Z/D 0, and

(c) Z does not contain any codimension 2 stratum �2;j .
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The only irreducible boundary divisors in eM13 are �ı0 and �ı1. Therefore, item (a), that Z is the closure
of a divisor in M13, is a consequence of the following.

Proposition 5.2 The image of the degeneracy locus U does not contain �ı0 or �ı1.

Proof The proof is identical to [19, Proposition 12.3].

The proofs of (b) and (c) use the following lemma.

Lemma 5.3 If ŒX� 2Z and p 2X , then there is a linear series V 2G516.X/ that is ramified at p such
that �V is not surjective.

Proof The proof is identical to [19, Lemma 12.4].

5.1 Pulling back to M2;1

In order to verify (b), we consider the preimage of Z under the map |2.

Lemma 5.4 The preimage |�12 .Z/ is contained in the Weierstrass divisor W2 in M2;1.

Proof The proof is identical to [19, Lemma 12.5].

To prove that |�2 .Z/D 0, we consider the following construction. Let � be a chain of 13 loops with the
following restrictions on edge lengths:

(i) m2 D `2 (that is, the second loop has torsion index 2),

(ii) n3� n2, and

(iii) `kC1�mk� `k� nkC1� nk for all k ¤ 2.

The last condition says that, subject to the constraints of conditions (i) and (ii), the edge lengths otherwise
satisfy (20). Let X be a smooth curve of genus 13 overK whose skeleton is � . We first note the following.

Lemma 5.5 If ŒX� …Z, then |�2 .Z/D 0.

Proof This proof is identical to the first part of the proof of [19, Proposition 12.6].

Proposition 5.6 We have |�2 .Z/D 0.

Proof By Lemma 5.5, it suffices to show that ŒX� …Z. We divide � into two subgraphs z� 0 and z� , to
the left and right, respectively, of the midpoint of the long bridge ˇ3. Let q 2X be a point specializing
to v14. If ŒX� 2Z, by Lemma 5.3 there is a linear series in the degeneracy locus over X that is ramified
at q. We now show that this impossible.
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Let ` D .L; V / 2 G516.X/ be a linear series ramified at q. We may assume that L D O.DX /, where
D D Trop.DX / is a break divisor, and consider †D trop.V /. We will show that there are 20 tropically
independent pairwise sums of functions in † using a variant of the arguments in Section 4. It follows that
the multiplication map �` is surjective, and hence ŒX� cannot be in Z.

To produce 20 tropically independent pairwise sums of functions in†, following the methods of Section 4,
we first consider the slope sequence along the long bridge ˇ3. First, suppose that either s3Œ4� � 2 or
s3Œ3�C s3Œ5�� 5. In this case, even though the restriction of † to z� is not the tropicalization of a linear
series on a pointed curve of genus 11 with prescribed ramification, it satisfies all of the combinatorial
properties of the tropicalization of such a linear series. The proof of Theorem 4.2 then goes through
verbatim, yielding a tropical linear combination of 20 functions in † such that each function achieves the
minimum uniquely at some point of z� � � .

For the remainder of the proof, we therefore assume that s3Œ4��3 and s3Œ3�Cs3Œ5��6. Since degDjz� 0D5,
we see that s3Œ5�� 5. Moreover, since the divisor Djz� 0 � s3Œ4�w2 has positive rank on z� 0, and no divisor
of degree one on z� 0 has positive rank, s3Œ4� must be exactly 3. Since the canonical class is the only divisor
class of degree two and rank one on z� 0, we see that Djz� 0 �Kz� 0 C 3w2. This yields an upper bound on
each of the slopes s3Œi �, and these bounds determine the slopes for i � 2:

s3Œ5�D 5; s3Œ4�D 3; s3Œ3�D 1; s3Œ2�D 0:

Moreover, we must have s02Œi �D s3Œi � for 2 � i � 5. Since ` is ramified at q, we also have s14Œ5� � 6.
These conditions together imply that the sum of the multiplicities of all loops and bridges on z� is at
most one.

To construct an independence on � , we first construct an independence among 5 functions on z� 0. This is
done exactly as in [19, Figure 39], and we omit the details.

Next, we construct an independence among 15 pairwise sums of functions in † restricted to z� , with the
property that any function  that obtains the minimum on z� satisfies s02. /� 4. Note that each of the
functions  that obtains the minimum on z� 0 satisfies s3. / � 5. Since the bridge ˇ3 is very long, it
follows that no function that obtains the minimum on one of the two subgraphs can obtain the minimum
on the other. Thus, we have constructed a tropical linear combination of 20 pairwise sums of functions
in † in which 5 achieve the minimum uniquely at some point of z� 0 and 15 achieve the minimum uniquely
at some point of z� . In particular, this is an independence, as required.

It remains to construct an independence among 15 pairwise sums of functions in † restricted to z� . To
do this, we run the algorithm from [19], with one change. (Indeed, one could imagine that � is simply
the first 13 loops in a chain of 23 loops; we construct the independence from [19, Section 12.3], and
restrict it to � .) At the start, we skip the step named “start at the first bridge”. Instead, we do not assign
any function  with s3. / � 5, and we start with the loop subroutine applied to 3. Following this
construction, there will only be two blocks, and there will be two functions with slope 2 along the last
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bridge ˇ14. We eliminate one of these functions from B, and assign the other to ˇ14. The rest of the
argument is exactly the same as that of [19].

5.2 Higher-codimension boundary strata

It remains to verify (c), that Z does not contain any of the codimension 2 boundary strata �2;j �M13.

Proposition 5.7 The component Z does not contain any codimension 2 stratum �2;j .

Proof The proof is again a variation on the independence constructions from the proof of Theorem 4.2.
We fix `D 11� j . Let Y1 be a smooth curve of genus 2 over K whose skeleton �1 is a chain of 2 loops
with bridges, and let p 2 Y1 be a point specializing to the right endpoint of �1. Similarly, let Y2 and
Y3 be smooth curves of genus ` and j , respectively, whose skeletons �2 and �3, are chains of ` loops
and j loops with edge lengths satisfying (20). Suppose further that the edges in the final loop of �2 are
much longer than those in the first loop of �3. Let p; q 2 Y2 be points specializing to the left and right
endpoints of �2, respectively, and let q 2 Y3 be a point specializing to the left endpoint of �3. We show
that ŒY 0�D ŒY1[p Y2[q Y3� 2�2;j is not contained in Z.

As in the proof of [19, Proposition 12.6], if ŒY 0� 2 Z, then Z contains points ŒX� corresponding to
smooth curves whose skeletons are arbitrarily close to the skeleton of Y 0 in the natural topology on M trop

13 .
In particular, there is an X 2 Z with skeleton a chain of loops �X whose edge lengths satisfy all the
conditions of (20), except that the bridges ˇ3 and ˇ` are exceedingly long in comparison to the other
edges. Let � be the subgraph of �X to the right of the midpoint of the bridge ˇ3. Note that � is a chain
of 11 loops, labeled 3; : : : ; 13, with bridges labeled ˇ3; : : : ; ˇ14.

By Lemma 5.3, there is a linear series V of degree 16 and rank 5 on X that is ramified at a point x
specializing to the right-hand endpoint v14, and such that �V is not surjective. We will show that this is
not possible, using the tropical independence construction from Section 4. Let †D trop.V /. We have that
either s02Œ4�� 2 or s02Œ3�C s

0
2Œ4�� 5. Also, since V is ramified at x, we have s14Œ5�� 6. These conditions

imply that the multiplicity of every loop and bridge is zero. In particular, for each i there is a function 'i
satisfying

sk.'i /D s
0
k�1.'i /D skŒi �D s

0
k�1Œi � for all k:

These functions have constant slope along bridges, and the slopes sk.'i / are nondecreasing in k. These
properties guarantee that, even though the bridge ˇ` is very long, a function 'ij can only obtain the
minimum on a loop or bridge where it is permissible.

Even though the restriction of † to � is not the tropicalization of a linear series on a curve of genus 11
with prescribed ramification at two specified points specializing to the left and right endpoints of � , it
satisfies all of the combinatorial properties of the tropicalization of such a linear series, and we may apply
the algorithm from Section 4. Because we are in a situation where the relative lengths of the bridges do
not matter (Remark 4.17) the construction yields an independence among 20 pairwise sums of functions
in †, and the proposition follows.
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6 The Bertram–Feinberg–Mukai conjecture in genus 13

The aim of this section is to prove the existence part of the Bertram–Feinberg–Mukai conjecture on M13.
For a smooth curve X of genus g, we denote by SUX .2; !/ the moduli space of S–equivalence classes of
semistable rank-two vector bundles E on X with det.E/Š !X . For an integer k � 0, the Brill–Noether
locus

SUX .2; !; k/ WD fE 2 SUX .2; !/ W h0.X;E/� kg

has the structure of a Lagrangian degeneracy locus and each component of SUX .2; !; k/ has dimension
at least

ˇ.2; g; k/D 3g� 3�
�kC1

2

�
I

see [38]. Furthermore, SUX .2; !; k/ is smooth of dimension ˇ.2; g; k/ at a point ŒE� corresponding to a
stable vector bundle if and only if the Mukai–Petri map (1) is injective. Of particular interest to us is the case

g D 13 and k D 8;

in which case ˇ.2; 13; 8/D 0. First, using linkage methods, we show that a general curve of genus 13
carries a stable vector bundle E 2 SUX .2; !; 8/. Then using a Hecke correspondence, we compute the
fundamental class of SUX .2; !; 8/.

Theorem 6.1 A general curveX of genus 13 caries a stable vector bundleE of rank two with detE Š !X
and h0.X;E/D 8.

As a first step towards proving Theorem 6.1, we determine the extension type of the vector bundles in
question.

Proposition 6.2 For a general curve X of genus 13, every vector bundle E 2 SUX .2; !; 8/ can be
represented as an extension

(25) 0!OX .D/!E! !X .�D/! 0;

where D is an effective divisor of degree 6 on X , such that L WD !X .�D/ 2W 6
18.X/ is very ample and

the map �L W Sym2H 0.X;L/!H 0.X;L˝2/ is not surjective. Conversely , a very ample L 2W 6
18.X/

with �L not surjective induces a stable vector bundle E 2 SUX .2; !; 8/.

Proof Using a result of Segre — see [39] or [33, Proposition 3.1] for modern proofs — every semistable
vector bundle E on X of rank two and canonical determinant carries a line subbundle OX .D/ ,!E with
degD � 1

2
.g� 2/. Therefore, in our case degD � 6.

If h0.X;OX .D// � 2, since h0.X;OX .D//C h0.X; !X .�D// � h0.X;E/ D 8 it follows from the
Brill–Noether theorem and Riemann–Roch that degD D 8, hence !X .�D/ 2W 5

16.X/. It follows that
the extension (25) lies in the kernel of the map

Ext1.!X .�D/;D/!H 0.!X .�D//
_
˝H 1.D/:
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This implies that the multiplication map �!X .�D/ W Sym2H 0.X; !X .�D//! H 0.X; !˝2X .�2D// is
not surjective, which contradicts Theorem 1.5. Therefore h0.X;OX .D//D 1, in which case necessarily
degD D 6 and h0.X;E/ D h0.X;OX .D//C h0.X; !X .�D//. Setting L WD !X .�D/ 2 W 6

18.X/, an
extension E satisfies h0.X;E/D 8 if and only if the extension class of E in Ext1.L;D/ lies in the kernel
of the linear map

Ext1.L;D/!H 0.L/_˝H 1.D/:

Thus, an extension (25) exists if and only if the multiplication map

�L W Sym2H 0.L/!H 0.X;L˝2/Š Ext1.L;D/_

is not surjective. We claim that L is very ample. Otherwise, there exist points x; y 2 X such that
L0 WD L.�x�y/ 2W 5

16.X/. Since X is general, by Theorem 1.5 the multiplication map

�L0 W Sym2H 0.X;L0/!H 0.X; .L0/˝2/

is surjective, implying the inclusion H 0.X; .L0/˝2.xC y// � Im.�L/. We deduce that ŒE� lies in the
kernel of the map

Ext1.L;D/! Ext1.L.�x�y/;D/:

That is, the vector bundle E can also be represented as an extension

0! L.�x�y/!E!OX .DC xCy/! 0;

thus contradicting the semistability of E. We conclude that L has to be very ample.

Conversely, each very ample linear system L 2W 6
18.X/, for which the map �L is not surjective induces

a stable vector bundle E; see also [14, 7.2]. Indeed, let us assume E is not semistable. In view of the
extension (25), a maximally destabilizing line subbundle of E is of the form L.�M/, where M is an
effective divisor on X with degM � 6. Therefore, apart from (25), E can also be realized as an extension

0! L.�M/!E!OX .DCM/! 0:

By applying Riemann–Roch, one can then write

h0.X;L.�M//C h1.X;L.�M//D h0.X;L/C h1.X;L/� 2 dim
H 0.X;L/

H 0.X;L.�M//
C deg.M/:

Since
h0.X;L/C h1.X;L/D h0.X;E/� h0.X;L.�M//C h1.X;L.�M//;

it follows that
degM � 2 dim

H 0.L/

H 0.L.�M//
:

Since L is very ample, we find degM 2 f4; 5; 6g. In each case, the Brill–Noether number of L.�M/ is
negative, contradicting the generality of X . Therefore E is stable.
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Proof of Theorem 6.1 By Proposition 6.2, it suffices to show that for a general curve X of genus 13,
there exists a very ample linear system L 2 W 6

18.X/ such that �L is not surjective. We use a method
inspired by Verra’s proof [47] of the unirationality of M14. To illustrate the idea behind the proof, first
suppose that there exists an embedding 'L WX ,! P6 given by L 2W 6

18.X/, such that the map �L is not
surjective. In particular, X � P6 lies on at least 5D

�
8
2

�
� h0.X;L˝2/� 1 quadrics. We expect the base

locus of this system of quadrics to be a reducible curve (of degree 32), containing X as a component and
accordingly write

X CC D Bs jIX=P6.2/j:

Assuming that X and C intersect transversally, we obtain that X CC is a complete intersection curve
in P6. Therefore C is a curve of degree 14 D 25 � deg.X/ and applying the adjunction formula
2g.X/ � 2g.C / D .10 � 7/.deg.X/ � deg.C // D 12 (see for instance [47, page 1429]), we obtain
g.C /D 7.

We now reverse this procedure and start with a general curve C � P6 of genus 7 embedded by a 7–
dimensional linear system V �H 0.C;LC /, where LC 2 Pic14.C / is a general line bundle, therefore
h0.C;LC /D 8. Consider the multiplication map

�V W Sym2.V /!H 0.C;L˝2C /

and observe that Ker.�V / has dimension at least 6 D dim Sym2.V / � h0.L˝2C /. Choose a general
5–dimensional system of quadrics W 2G

�
5;H 0.P6; IC=P6.2//

�
. We then expect

(26) Bs jW j D C CX � P6

to be a nodal curve, and the curve X linked to C to be a smooth curve of degree 18 and genus 13. Setting
L WDOX .1/ 2W 6

18.X/, by construction L is very ample and the embedded curve X � P6 lies on at least
5 quadrics, therefore �L is not surjective.

To carry this out, one needs to check some transversality statements. Let Pic147 be the universal Picard
variety parametrizing pairs ŒC; LC �, where C is a smooth curve of genus 7 and LC 2 Pic14.C /. As
pointed out in [47, Theorem 1.2], it follows from Mukai’s work [37] that Pic147 is unirational. We
introduce the variety

Y WD fŒC; LC ; V;W � W ŒC; LC � 2 Pic147 ; V 2G.6;H
0.C;LC //; W 2G.5;Ker.�V //g

The forgetful map Y! Pic147 has the structure of an iterated locally trivial projective bundle over Pic147 ,
therefore Y is unirational as well. Moreover,

dimY D dimPic147 C dimG.7; 8/C dimG.5; 6/D 4 � 7� 3C 7C 5D 37:

One has a rational linkage map

� W YÜ SU13.2; !; 8/; ŒC;LC ; V;W � 7! ŒX;L;E�;
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where X is defined by (26), L WDOX .1/ 2W 6
18.X/ and E 2 SUX .2; !; 8/ is the rank-two vector bundle

defined uniquely by the extension 0! !X ˝L
_!E! L! 0.

To show that � is well defined it suffices to produce one example of a point in Y for which all these
assumptions are realized. To that end, we consider 11 general pointsp1; : : : ; p5 and q1; : : : ; q6 respectively
in P2 and the linear system

H � 6h� 2.Ep1 C � � �CEp5/� .Eq1 C � � �CEq6/

on the blowup S D Bl11.P2/ at these points. Here h denotes the pullback of the line class from P2. Via
Macaulay2 one checks that S jH j

,��! P6 is an embedding and the graded Betti diagram of S is

1 � � � �

� 5 � � �

� � 15 16 15

Next we consider a general curve C � S in the linear system

C � 10h� 4.Ep1 CEp2 CEp3 CEp4/� 3Ep5 � 2.Eq1 CEq2/� .Eq3 CEq4 CEq5 CEq6/:

Via Macaulay2, we verify that C is smooth, g.C / D 7 and deg.C / D 14. Furthermore, using that
H 1.P6; IS=P6.2//D 0, we have an exact sequence

0!H 0.P6; IS=P6.2//!H 0.P6; IC=P6.2//!H 0.S;OS .2H �C//! 0:

Since OS .2H�C/DOS .2h�Ep5�Eq3�Eq4�Eq5�Eq6/, clearly h0.S;OS .2H�C//D 1, therefore
h0.P6; IC=P6.2//D 6. That is, C � P6 is a 2–normal curve.

One also verifies with Macaulay2 that C � P6 is scheme-theoretically cut out by quadrics. Using
[47, Proposition 2.2], C lies on a smooth surface Y � P6 which is a complete intersection of four
quadrics containing C . Furthermore, the linear system jOY .2H �C/j is basepoint-free, so a general
element X 2 jOY .2H �C/j is a smooth curve of genus 13 meeting C transversally. Finally, a standard
argument using the exact sequence 0! OY .H �X/! OY .H/! OX .H/! 0 shows that since C
is 2–normal, the residual curve X is 1–normal. That is, h1.X;OX .1//D 1. This implies that the map
� W YÜ SU13.2; !; 8/ is well defined and dominant.

Corollary 6.3 The parameter space SU13.2; !; 8/ is unirational.

Proof This follows from the proof of Theorem 6.1 and from the unirationality of Y .

6.1 The fundamental class of SUX.2 ;!; 8/ for a general curve

It is essential for our calculations to determine the degree of the map

# W SU13.2; !; 8/!M13; #.ŒX;E�/D ŒX�:
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We fix a general curve X of genus g and a point p 2X . Since the moduli space SUX .2; !/ is singular, in
order to determine the fundamental class of the nonabelian Brill–Noether locus SUX .2; !; k/, following
[40; 33; 38] one uses instead the Hecke correspondence relating SUX .2; !/ to the smooth moduli space
SUX .2; !.p// of stable rank-two vector bundles F on X with det.F /Š !X .p/.

Recall that SUX .2; !.p// is a fine moduli space. Hence there is a universal rank-two vector bundle F on
X �SUX .2; !.p// and we consider the Hecke correspondence

P WD P .Fjfpg�SUX .2;!.p///;

endowed with the projection �1 WP! SUX .2; !.p//. The points of P are exact sequences

(27) 0!E! F !K.p/! 0;

where F 2 SUX .2; !.p//, and therefore det.E/Š !X . One has a diagram

P
�1

ww

�

&&

SUX .2; !.p// SUX .2; !/

where � assigns to a sequence (27) the semistable vector bundle E. Set

h WD c1.OP.1//D �
�c1.Lev/;

where Lev is the determinant line bundle on SUX .2; !/, associated to the effective divisor

‚ WD fE 2 SUX .2; !/ WH 0.X;E/¤ 0g:

Set ˛ WD c1.Lodd/ 2H
2
�
SUX .2; !.p//;Z

�
, where Lodd is the ample generator of Pic

�
SUX .2; !.p//

�
.

Note that Pic.P/ is generated by h and by ��1 .˛/.

For each k 2N, the nonabelian Brill–Noether locus

BP.k/ WD fŒ0!E! F !K.p/! 0� 2P W h0.X;E/� kg

has the structure of a Lagrangian degeneracy locus of expected codimension ˇ.2; g; k/C1D3g�2�
�
kC1
2

�
;

see [38, Section 5; 33, Section 2]. As such, its virtual class ŒBP.k/�
virt 2H�.P ;Q/ can be computed in

terms of certain tautological classes, whose definition we recall now.

Following [40], we consider the Künneth decomposition of the Chern classes of F , using that det.F/Š
!X .p/�Lodd, and write

c1.F/D ˛C .2g� 1/' and c2.F/D �C Cg˛˝';

where ' 2 H 2.X;Q/ is the fundamental class of the curve, � 2 H 4
�
SUX .2; !.p//;Q

�
and  is in

H 3
�
SUX .2; !.p//;Q

�
˝H 1.X;Q/. Finally, we define the class

 2H 6
�
SUX .2; !.p//;Q

�
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by the formula  2 D  ˝'. One has the relation

h2 D ˛h� 1
4
.˛2�ˇ/ 2H 4.P ;Q/;

from which we can recursively determine all powers of h. We summarize as follows.

Proposition 6.4 For each n� 2, the following relation holds in H�.P ;Q/:

hn D
h.�2˛C 2h/

p
ˇC˛2� 2˛hCˇp

ˇ.˛2�ˇ/

�
˛C

p
ˇ

2

�n
C
h.2˛� 2h/

p
ˇC˛2� 2˛hCˇp
ˇ.˛2�ˇ/

�
˛�

p
ˇ

2

�n
:

In this formula
p
ˇ is a formal root of the class ˇ. Applying [33, Section 3] or [38], one can endow

BP.k/ with the structure of a Lagrangian degeneracy locus as follows. Let E be the vector bundle on
X �P defined by the exact sequence

0! E! .id��1/�.F/! .p2/�.OP.1//! 0;

where p2 WX �P!P is the projection. Choose an effective divisor D of large degree on X and also
denote by D its pullback under X �P!X . Then .p2/�.E=E.�D// and .p2/�.E.D// are Lagrangian
subbundles of .p2/�.E.D/=E.�D//. For each point t WD Œ0!E! F !K.p/! 0� 2P , one has

.p2/�.E.D//.t/\ .p2/�.E=E.�D//.t/ŠH 0.X;E/:

Assume from now on g D 13 and k D 8, therefore we expect BP.8/ to be one-dimensional. Applying
the formalism for Lagrangian degeneracy loci [38, Proposition 1.11], we find the following determinantal
formula for its virtual fundamental class:

(28) ŒBP.8/�
virt
D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

c8 c9 c10 c11 c12 c13 c14 c15
c6 c7 c8 c9 c10 c11 c12 c13
c4 c5 c6 c7 c8 c9 c10 c11
c2 c3 c4 c5 c6 c7 c8 c9
c0 c1 c2 c3 c4 c5 c6 c7
0 0 c0 c1 c2 c3 c4 c5
0 0 0 0 c0 c1 c2 c3
0 0 0 0 0 0 c0 c1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ
;

where the ci 2H 2i .P ;Q/ are defined recursively by the following formulas, see [33, Corollary 4.2]:

(29) c0 D 2; c1 D h; c2 D
1
2
h2; c3 D

1
3

�
1
2
h3C 1

4
ˇh� 1

2

�
; c4 D

1
4

�
1
6
h4C 1

3
ˇh2� 1

3
2h

�
;

and for each n� 1,

(30) .nC 4/cnC4�
1
2
.nC 2/ˇcnC2C

�
1
4
ˇ
�2
ncn D hcnC3�

�
1
4
ˇhC 1

2

�
cnC1:

In order to evaluate the determinant giving ŒBP.8/�
virt, we shall use Proposition 6.4 coupled with the

formula of Thaddeus [46] determining all top intersection numbers of tautological classes on SUX .2; !.p//.
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Precisely, for mC 2nC 3p D 3g� 3, one has

(31)
Z

SUX .2;!.p//
˛m �ˇn � p D .�1/g�p

gŠmŠ

.g�p/ŠqŠ
22g�2�p.2q � 2/Bq;

where q DmCpC 1�g and Bq denotes the Bernoulli number; those appearing in our calculation are

B2 D
1
6
; B4 D�

1
30
; B6 D

1
42
; B8 D�

1
30
; B10 D

5
66
; B12 D�

691
2730

;

B14 D
7
6
; B16 D�

3617
510

; B18 D
43867
798

; B20 D�
174611
330

; B22 D
854513
138

; B24 D�
236364091
2730

:

Theorem 6.5 For a general curve X of genus 13, the locus SUX .2; !; 8/ consists of three reduced points
corresponding to stable vector bundles.

Proof As explained, the Lagrangian degeneracy locus BP.8/ is expected to be a curve and we write

ŒBP.8/�
virt
D f .˛; ˇ; /C h �u.˛; ˇ; /;

where f .˛; ˇ; / and u.˛; ˇ; / are homogeneous polynomials of degrees 36D 3g� 3 and 35D 3g� 4,
respectively.

Observe that if E 2 SUX .2; !; 8/ then necessarily E is a stable bundle. Otherwise E is strictly semistable,
in which case E D B˚ .!X ˝B_/, where B 2W 3

12.X/, which contradicts the Brill–Noether theorem
on X . Since � is a P1–fibration over the locus of stable vector bundles, it follows that BP.8/ is a
P1–fibration over SUX .2; !; 8/. Furthermore, applying [45], the Mukai–Petri map �E is an isomorphism
for each vector bundle E 2 SUX .2; !; 8/, therefore SUX .2; !; 8/ is a reduced zero-dimensional cycle.
We denote by a its length, thus we can write

(32) ŒBP.8/�D ŒBP.8/�
virt
D a��.ŒE0�/D f .˛; ˇ; /C h �u.˛; ˇ; /;

where ŒE0� 2 SUX .2; !/ is general. Intersecting both sides of (32) with h, we obtain

h �f .˛; ˇ; /D�h �˛u.˛; ˇ; /:

Next observe that ��.ŒE0�/ �˛D 2. Indeed, since � is a P1–fibration over the open locus of stable bundles
and !P D �

�.Lev/˝�
�.�˛/, it follows that

�2D deg.!Pj��.ŒE0�//D !P � �
�.ŒE0�/D�˛ � �

�.ŒE0�/:

Intersecting both sides of (32) with ˛, we find 2aD h �˛u.˛; ˇ; /D�h �f .˛; ˇ; /, so

aD jSUX .2; !; 8/j D
1

2

Z
P

hf .˛; ˇ; /D
1

2

Z
SUX .2;!.p//

f .˛; ˇ; /:

We are left with the task of computing the degree 36 polynomial f .˛; ˇ; /, which is a long but elementary
calculation. We consider the determinant (28) computing the class of BP.8/. First we substitute for each
of the classes c1; : : : ; c15 the expression in terms of ˛, ˇ,  and h given by the recursion (30), starting with
the initial conditions (29). Evaluating this determinant, we obtain a polynomial of degree 36 in the classes
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˛, ˇ,  and h. We recursively express all the powers hn with n � 2 and obtain a formula of the form
ŒBP.8/�D f .˛; ˇ; /Ch �u.˛; ˇ; /. We set hD 0 in this formula and then we evaluate each monomial
of degree 36 in ˛, ˇ and  using Thaddeus’ formulas (31). At the end, we obtain f .˛; ˇ; /D�6, which
completes the proof of Theorem 6.5.4

7 The nonabelian Brill–Noether divisor on M13

In this section we determine the class of the nonabelian Brill–Noether divisor MP13, and prove
Theorem 1.1. The results in this section also lay the groundwork for the proof that R13 is of general type.

7.1 Tautological classes on the universal nonabelian Brill–Noether locus

Definition 7.1 Let M]
13 be the open substack of M13 consisting of

(i) smooth curves X of genus 13 with SUX .2; !; 9/D∅, or

(ii) 1–nodal irreducible curves ŒX=y � q�, where X is a 7–gonal smooth genus 12 curve, y; q 2X , and
the multiplication map �L W Sym2H 0.X;L/!H 0.X;L˝2/ is surjective for each L 2W 5

15.X/.

Let M]
13 be the open subset of M13 coarsely representing M

]
13.

Note that M]
13 and M13 [�0 agree in codimension one, in particular we identify CH 1.M]

13/ with
Qh�; ı0i. We let SU

]
13.2; !; 8/ be the moduli stack of pairs ŒX;E�, where ŒX� 2M]

13 and E is a
semistable rank-two vector bundle on X with det.E/Š !X and h0.X;E/� 8. Let SU]13.2; !; 8/ be the
coarse moduli space of SU

]
13.2; !; 8/. We still denote by # WSU

]
13.2; !; 8/!M

]
13 the forgetful map.

Proposition 7.2 The map # WSU
]
13.2; !; 8/!M

]
13 is proper. Moreover , for each ŒX;E�2SU]13.2; !; 8/

the corresponding vector bundle E is globally generated.

Proof Suppose X!T is a flat family of stable curves of genus 13, whose generic fiberX� is smooth and
the special fiber X0 corresponds to a 1–nodal curve in M]

13. The moduli space SUX�.2; !/ specializes to
a moduli space SUX0.2; !/ that is a closed subvariety of the moduli space UX0.2; 24/ of S–equivalence
classes of torsion-free sheaves of rank-two and degree 24 on X0. The points in SUX0.2; !/ are described
in [42].

We claim that if E 2 SUX0.2; !/ satisfies h0.X0; E/ � 8, then necessarily E is locally free, in which
case

V2
E Š !X0 . Suppose � WX !X0 is the normalization map, let y; q 2X denote the inverse images

of the node p of X0 and assume E is not locally free at p. Denoting by mp �OX0;p the maximal ideal,
either

(i) Ep Šmp˚mp, or

(ii) Ep ŠOX0;p˚mp.

4The Maple file describing all calculations explained here is at https://www.mathematik.hu-berlin.de/farkas/gen13bn.mw.
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In the first case, E D ��.F /, where F is a vector bundle of rank two on X with det.F /Š !X , that is,
SUX .2; !; 8/¤∅. Note that

h0.X; det.F //D 12� 2h0.X; F /� 4;

implying that F has a subpencil A ,! F .5 Then A 2W 1
7 .X/ and L WD !X ˝A_ 2W 5

15.X/ is such that
�L W Sym2H 0.X;L/! H 0.X;L˝2/ is not surjective. This is ruled out by the definition of M]

13. In
case (ii), when Ep ŠOX0;p˚mp, one has an exact sequence

0!E! ��. zF /!K.p/! 0;

where zF D ��.E/=Torsion is a vector bundle on the smooth curve X and satisfies det.F /D !X .y/, or
det.F /Š !X .q/; see also [42, 1.2]. Observe that also in this case F necessarily carries a subpencil, and
we argue as before to rule out this possibility.

We now turn out to the last part of Proposition 7.2. Choose ŒX;E� 2 SU]13.2; !; 8/ and assume for
simplicity X is smooth (the case when X is 1–nodal being similar). Assume E is not globally generated at
a point q 2X . Then there exists a vector bundle F 2SUX .2; !.�q/; 8/, obtained fromE by an elementary
transformation at q. Note that h0.X; detF /� 2h0.X; F /�4, which forces F to have a subpencil A ,!F .
Necessarily, deg.A/D 7. Since h0.F /D h0.A/Ch0.!X ˝A_.�q//, setting L WD !X ˝A_ 2W 6

17.X/,
it follows that the multiplication map

H 0.X;L/˝H 0.X;L.�q//!H 0.X;L˝2.�q//

is not surjective, and in particular the map Sym2H 0.X;L/!H 0.X;L˝2/ is not surjective either. Then
X possesses a stable rank-two vector bundle with canonical determinant and 9D h0.X;A/Ch0.X;L/
sections, which is not the case.

Let us consider the universal genus 13 curve

} W C
]
13!SU

]
13.2; !; 8/;

then let E be the universal rank-two bundle over the stack SU
]
13.2; !; 8/. Note that we can normalize E

in such a way that det.E/Š !} .

Definition 7.3 We define the tautological class  WD }�.c2.E// 2 CH 1.SU
]
13.2; !; 8//.

We aim to determine the pushforward to M]
13 of the class  in terms of � and ı0. To that end, we begin

with the following:

Proposition 7.4 The pushforward }�.E/ is a locally free sheaf of rank 8 and

c1.}�.E//D #
�.�/� 1

2
 2 CH 1.SU

]
13.2; !; 8//:

5Use that for dimension reasons the determinant map d W
V2

H0.X; F /!H0.X; det.F // must necessarily vanish on a pure
element 0¤ s1 ^ s2, with s1; s2 2H0.X; F /. The subpencil in question is then generated by the sections s1 and s2.
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Proof The fact that }�.E/ is locally free follows from [29]. We apply Grothendieck–Riemann–Roch to
the curve } W C]13!SU

]
13.2; !; 8/ and to the vector bundle E to obtain

ch.}Š.E//D}�
��
2Cc1.E/C

1
2
.c21.E/�2c2.E//C� � �

�
�
�
1� 1

2
c1.�

1
}/C

1
12
.c21.�

1
}/Cc2.�

1
}//C� � �

��
:

We consider the degree-one terms in this equality. Using [27, page 49], observe that

c1.�
1
}/D c1.!}/ and }�

�
1
12
.c21.�

1
}/C c2.�

1
}//

�
D #�.�/:

By Serre duality, observe that R1}�.E/Š }�.E/_, therefore one can write

2c1.}�.E//D c1.}�.E//� c1.R
1}�.E//D 2#

�.�/� 1
2
}�.c

2
1.!}//C

1
2
}�.c

2
1.!}//� ;

which leads to the claimed formula.

In view of our future applications to R13, we introduce the rank-six vector bundle

ME WD Kerf}�.}�.E//! Eg:

The fiber ME WDMEŒX;E� over a point ŒX;E� 2 SU]13.2; !; 8/ sits in an exact sequence

(33) 0!ME !H 0.X;E/˝OX
ev
�!E! 0;

where exactness on the right is a consequence of Proposition 7.2.

Proposition 7.5 The following formulas hold :

c1.ME/D }
�
�
#�.�/� 1

2

�
� c1.!}/;

c2.ME/D }
�c2.}�E/� c2.E/� c1.!}/ �}

�
�
#�.�/� 1

2

�
C c21.!}/:

Proof This follows from the splitting principle applied to ME, coupled with Proposition 7.4.

7.2 The resonance divisor in genus 13

A general curveX of genus 13 has 3 stable vector bundlesE 2SUX .2; !; 8/. In this case h0.X; det.E//D
2h0.X;E/� 3, which implies that requiring E to carry a subpencil defines a divisorial condition on
the moduli space SU13.2; !; 8/ and thus on M13. For a vector bundle E 2 SUX .2; !/, we denote its
determinant map by

d W
V2
H 0.X;E/!H 0.X; !X /:

Definition 7.6 The resonance divisor Res
]
13 is the locus of curves ŒX� 2M]

13 for which

G.2;H 0.X;E//\P .Ker.d//¤∅

for some vector bundle E 2 SUX .2; !; 8/. In other words, Res
]
13 is the locus of ŒX� for which there

exists an element 0¤ s1 ^ s2 2
V2
H 0.X;E/ such that d.s1 ^ s2/D 0.
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We set Res13 WD Res
]
13 \M13. Note that Res

]
13 comes with an induced scheme structure under the

proper map # WSU
]
13.2; !; 8/!M

]
13. The points in Res

]
13 correspond to those curves X for which a

vector bundle E 2 SUX .2; !; 8/ carries a subpencil (which is generated by the sections s1; s2 2H 0.X;E/

with d.s1 ^ s2/D 0). The class ŒRes
]
13� can be computed in terms of certain tautological classes over

SU
]
13.2; !; 8/. On the other hand, we have a geometric characterization of points in Res13, and it turns

out that the resonance divisor coincides with D13 away from the heptagonal locus M1
13;7.

Proof of Theorem 1.7 We show that one has the following equality of effective divisors

Res13 DD13C 3 �M1
13;7

on M13. Indeed, let us assume that ŒX� 2Res13 nM1
13;7, and let E 2 SUX .2; !; 8/ be the vector bundle

which can be written as an extension

(34) 0! A!E! !X ˝A
_
! 0;

where h0.X;A/ � 2. Since gon.X/ D 8, and since 8 � h0.X;E/ � h0.X;A/C h0.X; !X ˝A_/, it
follows that A 2W 1

8 .X/ and L WD !X ˝A_ 2W 5
16.X/. If such an extension exists, then the map �L is

not surjective, therefore ŒX� 2D13.

Conversely, if ŒX� 2D13, there is some L 2W 5
16.X/ such that the multiplication map �L is not surjective.

For ŒX� a general point of an irreducible component of D13, we may assume that the multiplication
map �L has corank one, for otherwise 'L WX ,! P5 lies on a .2; 2; 2/ complete intersection in P5, which
is a (possibly degenerate) K3 surface. But the locus of curves ŒX�2M13 lying on a (possibly degenerate)
K3 surface cannot exceed gC 19D 32 < 3g� 4, a contradiction. We let

E 2 P .Ext1.L; !X ˝L_//

be the unique vector bundle with h0.X;E/ D h0.X;L/C h0.X; !X ˝ L
_/ D 8. The argument of

Proposition 6.2 shows thatE is stable, otherwise there would exist an effective divisorM of degree 4 onX
such that L.�M/ 2W 3

12.X/. Since �.13; 3; 12/D�3, the locus of curves ŒX� 2M13 with W 3
12.X/¤∅

has codimension at least three in M13, hence this situation does not occur along a component of D13.
Summarizing, away from the divisor M1

13;7, the divisors Res13 and D13 coincide.

We now show that M1
13;7 appears with multiplicity 3 inside Res13. Let X be a general 7–gonal curve of

genus 13 and let A 2W 1
7 .X/ denote its (unique) degree 7 pencil. Set L WD !X ˝A_ 2W 6

17.X/. Each
vector bundle E 2 SUX .2; !; 8/ that has a subpencil appears as an extension

(35) 0! A!E
j
�! L! 0:

In this case h0.X;E/Dh0.X;A/Ch0.X;L/�1. That is, V WD ImfH 0.E/
j
�!H 0.L/g is 6–dimensional.

Furthermore, the multiplication map

�V W V ˝H
0.X;L/!H 0.X;L˝2/
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is not surjective. Conversely, each 6–dimensional subspace V �H 0.X;L/ such that �V is not surjective
leads to a vector bundle E 2 P .Ext1.L;A// with h0.X;E/D 8. The corresponding bundle E is stable
unless V is of the form H 0.X;L.�p// for a point p 2 X , in which case E can also be realized as an
extension

0! L.�p/!E! A.p/! 0:

To determine the number of such subspaces V � H 0.X;L/, we consider the projective space P6 WD
P .H 0.X;L/_/ and consider the vector bundle A on P6 with fiber

A.V /D
V ˝H 0.X;L/V2

V

over a point ŒV �2P6. There exists a bundle morphism� WA!H 0.X;L˝2/˝OP6 given by multiplication
and the subspaces ŒV � 2 P6 for which �V is not surjective (or, equivalently, �_ is not injective) are
precisely those lying in the degeneracy locus of �, that is, for which rk.�.V // D 21. Applying the
Porteous formula we find

ŒZ21.�/�D c6
�
H 0.X;L˝2/_˝OP6 �A_

�
D c6.�A/:

To compute the Chern classes of A, we recall that via the Euler sequence the rank-six vector bundle
MP6 on P6 with MP6.V /D V �H

0.X;L/ can be identified with �P6.1/. Then A is isomorphic to
MP6 ˝H

0.X;L/=
V2
MP6 . From the exact sequence

0!
V2
MP6 !

V2
H 0.X;L/˝OP7 !MP6.1/! 0;

recalling that ctot.MP6/D 1=.1Ch/, where hD c1.OP6.1//, we find ctot
�V2

MP6
�
D .1C2h/=.1Ch/7,

therefore

ŒZ21.�/�D

�
1

.1C h/7
�
.1C h/7

1C 2h

�
6

D

�
1

1C 2h

�
6

D 26 � h6 D 64:

From this, we subtract the excess contribution corresponding to the locus X jLj
,�! P6, parametrizing

the subspaces V DH 0.X;L.�p// corresponding to unstable bundles. Via the excess Porteous formula
[24, Example 14.4.7], this locus appears in the class ŒZ21.�/� with a contribution of

c1
�
Ker.�_/˝Coker.�_/�NX=P6

�
D�5c1.Ker.�_//C c1.A_jX /� c1.NX=P6/:

The restriction to X � P6 of the kernel bundle of �_ can be identified with L_, whereas c1.A_jX /D
�2c1.MP6jX / D 2 deg.L/. Furthermore c1.NX=P6/ D 7 deg.L/C 2g.X/� 2. All in all, the excess
contribution to ŒZ21.�/� coming from X equals

10 deg.L/C 2 deg.L/� 7 deg.L/� 2g.X/� 2D 5 � 17� 24D 61:

Therefore, for a general curve ŒX� 2M1
13;7, there are 3 D 64� 61 vector bundles E 2 SUX .2; !; 8/

having A as a subpencil, which finishes the proof.
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We are now in a position to explain how Theorems 1.3 and 1.7 provide enough geometric information to
determine the pushforward to M

]
13 of the class  .

Proposition 7.7 One has #�./D 11288
143

�� 1582
143

ı0 2 CH
1.M]

13/.

Proof The divisor Res
]
13 is defined as the pushforward under # WSU

]
13.2; !; 8/!M

]
13 of the locus

where the fibers of the morphism of vector bundles

d W
V2
}�.E/! }�.!}/

contain a rank-two tensor in their kernel. To compute the class of this locus, we use Proposition 7.4 in
combination with [22, Theorem 1.1]:6

ŒRes
]
13�D 132

�
c1.}�.!}//�

13
4
c1.}�.E//

�
D 132

�
�
9
4
#�.�/C 13

8

�
:

Using [27], we write ŒM1
13;7�D 6 � .48��7ı0�� � � / for the class of the heptagonal locus, while the class

ŒeD13� is computed by Theorem 1.4. Since deg.#/D 3, we then find

#�./D
48
13

�
5059
264

�� 749
264
ı0C

9
8
�C 3

132
.48�� 7ı0/

�
D

1128
143

�� 1582
143

ı0:

7.3 The class of the nonabelian Brill–Noether divisor on M13

In the introduction, we defined the nonabelian Brill–Noether divisor MP]13 as the locus of curves
ŒX� 2M]

13 for which there exists E 2 SUX .2; !; 8/ such that the map

�E W Sym2H 0.X;E/!H 0.X;Sym2E/

is not an isomorphism, or equivalently, the scheme SUX .2; !; 8/ is not reduced. We now compute the
class of this divisor.

Proof of Theorem 1.1 The locus MP]13 is the pushforward under the proper map # of the degeneracy
locus of the following map of vector bundles over SU

]
13.2; !; 8/:

Sym2 }�.E/! }�.Sym2 E/:

Using Grothendieck–Riemann–Roch for } W C]13!SU
]
13.2; !; 8/, we compute

c1.p�.Sym2 E//D}�
��
3C3c1.E/C

1
2
.5c21.E/�8c2.E//

�
�
�
1� 1

2
c1.�

1
}/C

1
12
.c21.�

1
}/Cc2.�

1
}//

��
2
:

Using again that 12}�
�
c21.�

1
}/C c2.�

1
}/
�
D #�.�/, we conclude that

c1.}�.Sym2 E//D 3#�.�/C}�.c21.!}//� 4 D #
�.15�� ı0/� 4:

Via Proposition 7.4, we have c1.Sym2 }�.E//D 9c1.}�.E//D 9
�
#�.�/� 1

2

�
, yielding

ŒMP]13�D #�
�
c1.}�.Sym2 E/�Sym2 }�.E//

�
D 3.6�� ı0/C

1
2
#�./:

Substituting via Proposition 7.7, we find ŒMP]13�D
1
143
.8218�� 1220ı0/.

6The result in [22] is stated for a morphism of vector bundles of the form Sym2.E/! F . An immediate inspection of the proof
shows though that the same formula applies also in the setting of a morphism of the form

V2.E/! F .
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8 The Kodaira dimension of R13

We turn our attention to showing that the Prym moduli space R13 is a variety of general type. We begin
by recalling basics on the geometry of the moduli of Prym variety, referring to [20] for details. We denote
by Rg WDMg.BZ2/ the Deligne–Mumford stack of Prym curves of genus g classifying triples ŒY; �; ˇ�,
where Y is a nodal curve of genus g such that each of its rational components meets the rest of the
curve in at least two points, � 2 Pic0.Y / is a line bundle of total degree 0 such that �jR D OR.1/ for
every rational component R � Y with jR\ Y nRj D 2 (such a component is called exceptional), and
ˇ W �˝2!OY is a morphism which is generically nonzero along each nonexceptional component of Y.
Let Rg be the coarse moduli space of Rg . One has a finite cover

� WRg !Mg :

8.1 The boundary divisors of Rg

The geometry of the boundary of Rg is described in [20]; we recall some facts. If ŒXyq D X=y � q�
in �0 �Mg is such that ŒX; y; q� 2Mg�1;2, denoting by � W X ! Xyq the normalization map, there
are three types of Prym curves in the fiber ��1.ŒXyq�/. First, one can choose a nontrivial 2–torsion
point � 2 Pic0.Xyq/. If ��.�/¤OX , this amounts to choosing a 2–torsion point �X 2 Pic0.X/Œ2�nfOXg
together with an identification of the fibers �X .y/ and �X .q/ at the points y and q, respectively. As we
vary ŒX; y; q�, points of this type fill up the boundary divisor �00 in Rg . The Prym curves corresponding
to the situation ��.�/Š OX fill up the boundary divisor �000. Finally, choosing a line bundle �X on X
with �˝2X ŠOX .�y�q/ leads to a Prym curve ŒY WDX[y;qR; �; ˇ�, where R is a smooth rational curve
meeting X at y and q, and � 2 Pic0.Y / is a line bundle such that �jX D �X and �jR DOR.1/. Points of
this type fill up the boundary divisor �ram

0 of Rg , which is the ramification divisor of the morphism � .

Denoting by ı00 WD Œ�
0
0�, ı

00
0 WD Œ�

00
0� and ıram

0 WD Œıram
0 � the corresponding divisor classes, one has the

following relation in CH 1.Rg/Š CH 1.Rg/, see [20]:

��.ı0/D ı
0
0C ı

00
0 C 2ı

ram
0 :

The finite morphism � WRg !Mg being ramified only along the divisor �ram
0 , one has

(36) KRg D 13�� 2.ı
0
0C ı

00
0/� 3ı

ram
0 � 2

bg=2cX
iD1

.ıi C ıg�i C ıi Wg�i /� .ı1C ıg�1C ı1Wg�1/;

where ��.ıi /D ıi C ıg�i C ıi Wg�i ; see [20, Theorem 1.5] for details.

8.2 The universal theta divisor on R13

For a semistable vector bundle E 2 SUX .2; !/ on a smooth curve X of genus g, its Raynaud theta divisor
‚E WD

˚
� 2 Pic0.X/ WH 0.X;E˝ �/¤ 0

	
is a 2�–divisor inside the Jacobian of X ; see [41].
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Definition 8.1 The universal theta divisor ‚13 on R13 is defined as the locus of smooth Prym curves
ŒX; �� 2R13 for which there exists a vector bundle E 2 SUX .2; !; 8/ such that H 0.X;E˝ �/¤ 0.

We first show that, as expected, this definition gives rise to a divisor on R13.

Proposition 8.2 For a general Prym curve ŒX; ��2R13, one hasH 0.X;E˝�/D 0 for all vector bundles
E 2 SUX .2; !; 8/. It follows that ‚13 is an effective divisor on R13.

Proof Consider the subvariety of R13 �M13
SU13.2; !; 8/ given by

Z WD fŒX; �;E� WH 0.X;E˝ �/¤ 0g:

Assume for contradiction that Z surjects onto R13. Then Z is a union of irreducible components
of R13 �M13

SU13.2; !; 8/. In particular, Z surjects onto the irreducible variety SU13.2; !; 8/; see
Corollary 6.3. Therefore, for every pair ŒX;E� 2 SU13.2; !; 8/, there exists a 2–torsion point � on X
with H 0.X;E˝ �/¤ 0.

We now specialize to the case when E is a strictly semistable vector bundle of the type

E D A˝3˚ .!X ˝A
˝.�3//;

where ŒX;A� is a general tetragonal curve of genus 13. Note that h0.X;A˝3/D 4, by [13, Proposition 2.1].
In particular, h0.X;E/ D 8. Using [8] the space R13 �M13

M1
13;4 parametrizing Prym curves over

tetragonal curves of genus 13 is irreducible, therefore H 0.X;A˝3˝ �/¤ 0 for every triple ŒX; �; A� 2
R13 �M13

M1
13;4. We now further specialize the tetragonal curve X to a hyperelliptic curve and

AD A0.xCy/, where A0 2W 1
2 .X/ and x; y 2X are general points, whereas

�DOX .p1Cp2Cp3Cp4� q1� q2� q3� q4/ 2 Pic0.X/Œ2�;

where p1; : : : ; p4; q1; : : : ; q4 are mutually distinct Weierstrass points of X . It immediately follows that
for these choices H 0.X;A˝3˝ �/D 0, which is a contradiction.

We consider the open substack R
]
13 WD �

�1.M
]
13/ of R13 and let R]13 be its associated coarse moduli

space. We identify CH 1.R]13/ with the space Qh�; ı00; ı
00
0 ; ı

ram
0 i. In what follows we extend the structure

on the universal theta divisor ‚13 to R]13 and realize it as the pushforward of the degeneracy locus of a
map of vector bundles of the same rank over the fiber product

RSU]13.2; !; 8/ WDR
]
13 �M

]
13
SU

]
13.2; !; 8/:

We start with a triple ŒX; �;E� 2RSU]13.2; !; 8/. Via Proposition 7.2 the vector bundle E is globally
generated and we let ME WD KerfH 0.X;E/˝OX !Eg. By tensoring with � and taking cohomology
in the exact sequence (33), we observe that H 0.X;E˝ �/¤ 0 if and only if the coboundary map

(37) � WH 1.X;ME ˝ �/!H 0.X;E/˝H 0.X; !X ˝ �/
_
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is not injective. Since clearly H 0.X;ME ˝ �/D 0, it follows that

h1.X;ME ˝ �/D�deg.ME /C 6.g� 1/D 96D 8 � 12D h
0.X;E/ � h0.X; !X ˝ �/:

That is, � is a map between vector space of the same dimension.

By slightly abusing notation, we still denote by

} WRC
]
13!RSU]13.2; !; 8/

the universal curve of genus 13 over RSU]13.2; !; 8/. It comes equipped with a universal rank-two vector
bundle E such that

V2EŠ !} and }�.E/ is locally free of rank 8 (cf Proposition 7.4), as well as with a
universal Prym line bundle L with Lj}�1.ŒX;�;E�/ Š � for any point ŒX; �;E� 2RSU]13.2; !; 8/.

We consider the rank-six vector bundle ME on RC]13 defined by the exact sequence

0!ME! }�.}�E/! E! 0;

then introduce the following sheaves over RSU]13.2; !; 8/:

A WDR1}�.ME˝L/ and B WD }�.E/˝}�.!} ˝L/_:

Using the fact that the map v defined in (37) is a morphism between two vector spaces of the same
dimension for every point ŒX; �;E� 2RSU]13.2; !; 8/, via Grauert’s theorem we conclude that both A
and B are locally free of the same rank 96, and there exists a morphism

(38) � WA! B

whose fiber restrictions are the maps (37). Recall that the forgetful map # WRSU]13.2; !; 8/!R
]
13 is

generically finite of degree 3. We denote by ‚]13 the pushforward to R]13 of the degeneracy locus of the
morphism � given by (38). Observe that ‚]13\M13 D‚13.

Theorem 8.3 The class of the universal theta divisor ‚]13 on R13 is given by

Œ‚
]
13�D

1
143

�
10430�� 1582.ı00C ı

00
0/�

5899
2
ıram
0

�
2 CH 1.R]13/:

Proof From Proposition 8.2 it follows that � is generically nondegenerate, therefore

Œ‚
]
13�D c1.B�A/:

Computing the class c1.B/ is straightforward. We find that c1.}�.!} ˝L// D #�
�
�� 1

4
ıram
0

�
, using

[20, Proposition 1.7]. Then via Proposition 7.4, we compute

c1.B/D 12c1.}�E/�8c1.}�.!}˝L//D 12
�
#�.�/� 1

2

�
�8
�
#�
�
�� 1

4
ıram
0

��
D #�.4�C2ıram

0 /�6:

To determine c1.A/ we apply Grothendieck–Riemann–Roch to the morphism }:

(39) ch.}Š.ME˝L//D }�
��
6C c1.ME˝L/C 1

2
.c21.ME˝L/� 2c2.ME˝L//C � � �

�
�
�
1� 1

2
c1.�

1
}/C

1
12
.c21.�

1
}/C c2.�

1
}//C � � �

��
:
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Observe by direct calculation that the formulas

c1.ME˝L/D c1.ME/C 6c1.L/ and c2.ME˝L/D c2.ME/C 5c1.ME/ � c1.L/C 15c21.L/

hold, therefore

}�
�
1
2
.c21.ME˝L/� 2c2.ME˝L//

�
D }�

�
1
2
.c21.ME/� 2c2.ME//C c1.ME/ � c1.L/C 3c21.L/

�
D  � 1

2
}�.c

2
1.!}//D  �

1
2
.#�.12�� ı00� ı

00
0 � 2ı

ram
0 //;

where in the last formula we have used Proposition 7.5, Mumford’s formula [27] for the class }�.c21.!}//,
and 2}�.c21.L//D�#

�.ıram
0 /; see [20, Proposition 1.6].

Substituting in the equation (39), coupled with Proposition 7.5 and also using that via the push–pull
formula one has }�

�
}�
�
#�.�/� 1

2

�
� c1.!}/

�
D .g� 1/ �

�
#�.�/� 1

2

�
, we obtain

c1.A/D�7 C#�
�
6�C 3

2
ıram
0

�
:

Putting everything together we find

Œ‚
]
13�D #�c1.B�A/D #�

�
 � 2�C 1

2
ıram
0

�
D 2#�./� 6�C

3
2
ıram
0 :

Finally, Proposition 7.7 gives 143#�./D 11288��1582.ı00Cı
00
0C2ı

ram
0 / and the conclusion follows.

We can now complete the proof that R13 is of general type.

Proof of Theorem 1.2 It is shown in [20, Theorem 6.1] that any g pluricanonical forms defined on Rg
automatically extend to any resolution of singularities, therefore Rg is of general type if and only if the
canonical class KRg is big, that is, it can be expressed as a positive rational combination of an ample and
an effective class on Rg . To that end we shall use, in addition to the closure x‚13 in R13 of the universal
theta divisor ‚13, the divisor D13W2 on R13 consisting of pairs ŒX; �� where the 2–torsion point � lies in
the divisorial difference variety

X6�X6 D fOX .D�E/ WD;E 2X6g � Pic0.X/:

It is shown in [20, Theorem 0.2] that up to a positive rational constant, the closure of D13W2 inside R13
is given by ŒD13W2�D 19�� 3.ı00C ı

00
0/�

13
4
ıram
0 � � � � 2 CH

1.R13/. Observe that by construction, ‚]13
differs from the restriction of x‚13 to M]

13 by a (possibly empty) effective combination of the divisors
�00, �000 and �ram

0 ; hence, using Theorem 8.3 we can write

Œx‚13�D
1
143
.10430�� b00ı

0
0� b

00
0ı
00
0 � b

ram
0 ıram

0 � � � � / 2 CH
1.R13/;

where b00 � 1582, b000 � 1582 and bram
0 �

5899
2

. We consider the effective divisor, on R13,

D WD 65
674
Œx‚13�C

1153
3707

ŒD13W2�D a�� a
0
0ı
0
0� a

00
0ı
00
0 � a

ram
0 ıram

0 �

12X
iD1

aiıi �

6X
iD1

ai;13�iıi W13�i ;

where a D 4362
337

, a00 � 2, a000 � 2 and aram
0 � 3. By an argument using pencils on K3 surfaces, one

can show that each of the coefficients a1; : : : ; a12 or a1;12; : : : ; a6;7 is at least equal to 3. Indeed, each
boundary divisor �i or �i W13�i of R13 is covered by pencils of reducible Prym curves consisting of two
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components, of which one moves in a suitable Lefschetz pencil on a fixed K3 surface. The intersection
numbers of these pencils with the generators of CH 1.Rg/ were computed in [20, Proposition 1.8]. Since
D is the closure in R13 of an effective divisor on R13, the intersection number of each such pencil with D
is nonnegative. For instance, for 1� i � 6 we obtain, in this way, the inequality

a13�i � a
0
0.6i C 18/� a.i C 1/� 2.6i C 18/�

4362
337

.i C 1/� 3:

The inequalities for the remaining coefficients of D can be handled similarly; see also [20, Proposition 1.9].
Since a D 12:943 : : : < 13, comparing the class of D to that of KR13 given in (36), we conclude that
KR13 can be written as a positive combination of ŒD� and a multiple of �, hence it is big.

8.3 The Kodaira dimension of M13;n

We indicate how our results on divisors on M13 can be used to determine the Kodaira dimension of the
moduli space M13;n.

Proof of Theorem 1.6 It suffices to show that M13;9 is of general type to conclude that the same holds for
M13;n when n� 10. We use the divisor D13W24;15 considered by Logan [36] and defined as the S9–orbit
(under the action permuting the marked points) of the locus of pointed curves ŒX; p1; : : : ; p9� 2M13;9

such that
h0.X;OX .2p1C � � �C 2p4Cp5C � � �Cp9//� 2:

Up to a positive constant the class of the closure in M13;9 of D13W24;15 equals

ŒD13W24;15 �D��C
17
9

9X
iD1

 i �
25
6
ı0W2� � � � 2 CH

1.M13;9/:

(See [17] or [36] for the standard notation on the generators of CH 1.Mg;n/.) If � WM13;9!M13 is
the map forgetting the marked points, a routine calculation shows that the canonical class KM13;9

can be
expressed as a positive linear combination of ŒD13W24;15 � and ��.ŒD�/, where D 2 Eff.M13/ if and only
if 2s.D/� 9

17
< 13. Observe that the class of the nonabelian Brill–Noether divisor ŒMP13� verifies this

inequality, and the result follows.
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APPENDIX WRITTEN JOINTLY WITH JONATHAN BOWDEN

We prove a rigidity result for group actions on the line whose elements have what we call “hyperbolic-
like” dynamics. Using this, we give a rigidity theorem for R–covered Anosov flows on 3–manifolds,
characterizing orbit equivalent flows in terms of the elements of the fundamental group represented by
periodic orbits. As consequences of this, we give an efficient criterion to determine the isotopy classes of
self-orbit equivalences of R–covered Anosov flows, and prove finiteness of contact Anosov flows on any
given manifold.

In the appendix, with Jonathan Bowden, we prove that orbit equivalences of contact Anosov flows
correspond exactly to isomorphisms of the associated contact structures. This gives a powerful tool to
translate results on Anosov flows to contact geometry and vice versa. We illustrate its use by giving two
new results in contact geometry: the existence of manifolds with arbitrarily many distinct Anosov contact
structures, answering a question of Foulon, Hasselblatt and Vaugon, and a virtual description of the group
of contact transformations of a Anosov contact structure, generalizing a result of Giroux and Massot.

37D20, 57M60

1 Introduction

1.1 Hyperbolic-like actions

A well-known theorem of Hölder states that any group acting freely by homeomorphisms of the line is
abelian and conjugate to a group of translations. This was generalized in unpublished work of Solodov
(see eg [Farb and Franks 2003; Kovačević 1999; Barbot 1995a]) to the statement that a group action on
the line where each nontrivial element has at most one fixed point is either semiconjugate to an action by
affine transformations, or abelian with a global fixed point. Later, the proof of the convergence group
theorem [Gabai 1992; Casson and Jungreis 1994] established that a group action on the circle where each
element has at most two fixed points is, under some additional technical dynamical hypotheses, conjugate
to a subgroup of PSL.2;R/ acting on RP1 by Möbius transformations. This important result was the last
step in the proof of the Seifert fiber space conjecture.
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While one cannot reasonably expect further generalizations in this vein,1 it is a natural question to
ask what other fixed-point data might determine an action. In this spirit, we show that, under suitable
hypotheses, an action of a group on the line is determined up to conjugacy by the set of elements acting
with fixed points. Like the statement of the convergence group theorem, our hypotheses are motivated by
an application to a classification problem, in our case the classification of R–covered Anosov flows on
3–manifolds. Say that an action on the line is hyperbolic-like if it commutes with integer translation and
each nontrivial element either acts freely or has exactly two fixed points in Œ0; 1/, one attracting and one
repelling. We prove the following rigidity result for such actions:

Theorem 1.1 (rigidity of hyperbolic-like actions) A minimal , hyperbolic-like action of a nonabelian
group G on R is determined up to conjugacy by the set of elements of G that act with fixed points.

Minimal and hyperbolic-like are both properties of the actions of 3–manifold fundamental groups on R

induced by R–covered Anosov flows. This allows us to use Theorem 1.1 to classify such flows up to
orbit equivalence.

1.2 Orbit equivalence of Anosov flows

Recall that two flows on a manifold M are orbit equivalent if there is a homeomorphism f WM !M

taking orbits of one to orbits of the other, and isotopically equivalent if this homeomorphism can be taken
to be isotopic to the identity.

An Anosov flow is called R–covered if the leaf space of its weak-stable foliation is homeomorphic
to R. (In the case of 3–manifolds, it is equivalent that the weak-unstable foliation has leaf space R). On
3–manifolds, there are many constructions of R–covered flows, and examples of manifolds admitting
arbitrarily many inequivalent R–covered flows. Here, we give a characterization of orbit and isotopy
equivalent R–covered flows on 3–manifolds by their free homotopy classes of periodic orbits. For a
flow ' on a manifold M, let P.'/ denote the set of conjugacy classes of elements in �1.M / represented
by the free homotopy classes of periodic orbits of '. We show the following:

Theorem 1.2 (classification of R–covered Anosov flows) Let ' and  be R–covered Anosov flows on
a closed 3 manifold M.

(1) ' and  are isotopically equivalent if and only if P.'/D P. /.

(2) ' and  are orbit equivalent2 if and only if there exists a homeomorphism f WM !M such that
f�.P.'//D P. /. Moreover , the orbit equivalence can be taken to be in the isotopy class of f.

1One reason for this is that the target groups R, AffC.R/ and PSL.2;R/ are essentially the only Lie groups acting transitively
on 1–manifolds, so the only natural candidates for such targets.
2In our definition of orbit equivalence, we do not require the homeomorphism to match oriented orbits to oriented orbits. If one
wants to consider only orbit equivalences that preserve orbit orientation, then the conclusion of Theorem 1.2 will be that, if one
flow is transversally orientable, then the other is also, and the orbit equivalence can be upgraded to an orientation-preserving
orbit equivalence (using [Barbot 1995a, théorème C]). If one (and hence both) of the flows are not transversally orientable, then
' is orbit equivalent to either  or  �1.
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The R–covered Anosov flows on closed 3–manifolds form a rich class of examples, including geodesic
flows on closed surfaces, all contact Anosov flows, and diverse examples on many hyperbolic 3–manifolds
and on manifolds with nontrivial JSJ decomposition (see [Fenley 1994; Foulon and Hasselblatt 2013;
Barthelmé and Fenley 2017; Bonatti and Iakovoglou 2023; Bowden and Mann 2022]). Among other
applications, our main theorem allows us to prove finiteness of contact Anosov flows. We describe and
motivate the main applications now.

1.3 Application 1: classifying self-orbit equivalences

Describing the centralizer of a given diffeomorphism is a classical question in discrete-time dynamical
systems; notably, Smale’s conjecture [1998] is that the centralizer of a generic diffeomorphism should be
trivial. By contrast, diffeomorphisms which embed in a flow have an R–subgroup in their centralizer
given by the flow, so the right analog of Smale’s conjecture in this case is to ask whether the flow agrees
(virtually) with the centralizer of the diffeomorphism. This motivates the general program to classify all
symmetries of a given flow, and, more generally, classify the symmetries of the foliation given by orbits of
a flow, ie classify the self-orbit equivalences. As with Smale’s conjecture, this question is quite sensitive
to regularity — for instance, 3–dimensional Anosov flows often have many self-orbit equivalences, while
the set of those which may be realized by C 1 diffeomorphisms was shown to be virtually trivial by
Barthelmé, Fenley and Potrie [Barthelmé et al. 2023].

Theorem 1.2 gives the following immediate characterization of isotopy classes of self-orbit equivalences:

Corollary 1.3 A map f WM !M is in the isotopy class of a self-orbit equivalence of an R–covered
Anosov flow ' if and only if f� W �1.M /! �1.M / preserves the set of conjugacy classes realized by
periodic orbits of '.

With more work, we improve this to give a criterion to explicitly describe such classes, as follows. The
case of interest here is for skew flows, those which are not orbit equivalent to a suspension of an Anosov
diffeomorphism on the torus, as the orbit equivalences of suspension flows are essentially trivial.

If M is a 3–manifold with a skew Anosov flow ', then M is orientable and irreducible, so admits a
JSJ decomposition along tori into Seifert and atoroidal pieces. By Mostow rigidity and the structure
of mapping class groups of Seifert spaces, the group Dehn.M / of isotopy classes of diffeomorphisms
generated by Dehn twists along embedded tori in M has finite index in MCG.M / [Johannson 1979]. We
give a criterion for when maps generated by certain Dehn twists represent a self-orbit equivalence of a
flow. Given a flow ' and Dehn twist Dˇ , we may define an orbit displacement function, as follows. For
each periodic orbit c in M, we set

d'.c;Dˇ/D

kX
iD1

2�i t'.ˇi/;

where k is the number of transverse intersections of c with T (when T is in quasitransverse position
with respect to the flow, t'.ˇ/ is the translation number of the action of ˇ on ƒs.'/, and �i D ˙1 is
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an orientation term for each intersection. When f is a composition of Dehn twists Dˇi
on disjoint

nonisotopic tori, we define d'.c; f / to be the sum of the displacements d'.c;Dˇi
/. Formal definitions

are given in Section 3.

Theorem 1.4 (criterion for self-orbit equivalence) Let ' be a transversally oriented skew Anosov flow.
A map f which is a composition of Dehn twists on disjoint nonisotopic tori is isotopic to a self-orbit
equivalence of ' if and only if , for all periodic orbits c of ', we have d'.c; f /D 0.

There are many situations in which this criterion is easy to check. As two sample applications, we have
the following results for any transversally oriented skew Anosov flow ':

Corollary 1.5 Let Dper be the subgroup of the mapping class group of M generated by Dehn twists
along curves represented by periodic orbits. Then any isotopy class Œh�2Dper is represented by a self-orbit
equivalence of '.

Corollary 1.6 Let T be an embedded torus and Dˇ a Dehn twist on T with nonzero translation number.
Then Dˇ is isotopic to a self-orbit equivalence of ' if and only if T is separating in M.

In Section 3.2, we discuss a number of other special cases where one may use the topology of M to
reduce Theorem 1.4 to a simpler statement. We also discuss the complementary case to Theorem 1.4 for
maps generated by Dehn twists in tori which cannot be realized disjointly, namely tori inside a single
Seifert piece. See Theorems 3.17 and 3.18.

Remark 1.7 One can easily describe all self-orbit equivalences of a given skew Anosov flow in a
fixed isotopy class. Such a flow comes with the data of a homeomorphism � WM !M realizing the
half-step-up map on the orbit space. See Section 2.1 for details. It follows from [Barthelmé and Gogolev
2019, Theorem 1.1] that any two self-orbit equivalences h1 and h2 in the same isotopy class differ, up to
isotopy along the flow lines, by some power of �.

Theorem 1.4 identifies which elements of a large subgroup of the mapping class group of M are represented
by self-orbit equivalences. However, passing to the full mapping class group requires a different approach.
In particular, we do not know the answer to the following:

Question 1.8 Does there exist an (R–covered or not) Anosov flow on a hyperbolic 3–manifold M such
that the only self-orbit equivalences are isotopic to the identity?

Question 1.9 Does there exist an (R–covered or not) Anosov flow on a hyperbolic 3–manifold M such
that every element of the mapping class group of M is represented by a self-orbit equivalence?

Remark 1.10 The case of most interest for both questions is when the manifold considered has nontrivial
mapping class group. However, there are, as yet, no constructions of Anosov flows on a 3–manifold that
has a trivial mapping class group. So even the trivial case for these questions is not yet known.
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Remark 1.11 Barthelmé et al. [2023] introduced a class of partially hyperbolic diffeomorphisms, called
“collapsed Anosov flows”, which are semiconjugate to self-orbit equivalences of Anosov flows. Hence,
the criterion of Theorem 1.4 (and its applications for certain manifolds, as in Theorems 3.17 and 3.18)
describes the possible isotopy classes of collapsed Anosov flows associated with R–covered Anosov
flows.

1.4 Application 2: contact Anosov flows

An Anosov flow is said to be contact if it is the Reeb flow of a contact 1–form ˛. Notice that, with
this definition, the contact structure � D ker˛ is automatically transversely orientable since it is given
as the kernel of a (globally defined) contact form. The contact Anosov flows are an important and
well-studied class of examples, as they can be thought of as a generalization of the geodesic flow on
manifolds of negative curvature, and many dynamical results on Anosov flows, for instance exponential
decay of correlations [Liverani 2004], are known only for the contact case. In the context of 3–manifolds,
Barbot [2001] proved that contact Anosov flows on 3–manifolds are necessarily R–covered and skew,
while Foulon–Hasselblatt surgery [Foulon et al. 2021] produces many examples. In fact, it is currently
an open question whether every R–covered skew flow is orbit equivalent to a contact flow. As progress
towards a better understanding of these flows, we show that isomorphism of the associated contact
structures is the same as orbit equivalence of flows, giving a powerful tool to use the machinery of flows
to answer questions in contact geometry and vice versa.

Theorem 1.12 Two contact Anosov flows on a 3–manifold are orbit equivalent if and only if their
respective contact structures are contactomorphic. They are isotopically equivalent if and only if the
contact structures are isotopic.

Recall that two contact structures �1 and �2 on a manifold M are contactomorphic if there exists a
diffeomorphism g WM !M such that g��1 D �2, and they are isotopic if g can be taken to be isotopic
to the identity.

We prove the reverse of Theorem 1.12 in Section 4, and the forward direction in Theorem A.2. Using
the coarse classification of tight contact structures of Colin, Giroux and Honda [Colin et al. 2009] and
the result (proved in the appendix) that Anosov contact structures have zero torsion, we also obtain the
following:

Theorem 1.13 (finiteness for contact Anosov flows) On any given 3–manifold M, there are only finitely
many contact Anosov flows on M up to orbit equivalence.

Thanks to Theorem 1.12, one can now fully translate results about contact Anosov flows to results
about Anosov contact structures and vice versa. We illustrate this principle in the appendix with two
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examples: First, we show (Theorem A.7) that there exists hyperbolic 3–manifolds with arbitrarily many
noncontactomorphic Anosov contact structures, answering a question raised in [Foulon et al. 2021].
Second, we give a virtual description of the group of contact transformations of a Anosov contact structure
up to isotopy on some manifolds (Theorem A.8). This generalizes a result by Giroux and Massot [2017].

Outline of the article

Section 2 gives a brief introduction to the structure of R–covered flows on 3–manifolds, followed by the
proof of Theorem 1.2. Section 3 contains the proof of Theorem 1.4, and the applications to contact flows
are given in Section 4 and the appendix.
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2 Proofs of Theorems 1.1 and 1.2

The first statement of Theorem 1.2 is a special case of the second, so we in fact only need to prove that
assertion. Recall this is the statement that two flows ' and  are orbit equivalent if and only if there exists
a homeomorphism f WM !M such that f�.P.'//DP. /, and, if this holds, the orbit equivalence can
be taken to be in the isotopy class of f. The forward direction is immediate; we now set up the proof of
the reverse direction. This will lead us to the statement and proof of Theorem 1.1; we finish the proof of
Theorem 1.2 at the end of this section.

Throughout the work, we assume the reader has basic familiarity with Anosov flows. We recall below the
essential structure theory of R–covered flows on 3–manifolds that is used in the proof. Further background
can be found in [Fisher and Hasselblatt 2019], and results specific to the topological theory of Anosov
flows in dimension 3 can be found in [Barbot 2005].

By work of Fenley [1994] and Barbot [1995a], an R–covered Anosov flow on a closed 3–manifold is
either conjugate to the suspension of an Anosov diffeomorphism of T 2 or is skew, meaning that the orbit
space of the lift of the flow to �M is homeomorphic to the infinite diagonal strip

OD f.x;y/ 2R2
W jx�yj< 1g

via a homeomorphism taking the stable leaves of the flows to the horizontal cross-sections of the strip,
and unstable leaves to the vertical cross-sections.
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ƒu

ƒs
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ou � .o/

Figure 1: The orbit space O.

Theorem 1.2 follows from purely topological considerations in the suspension case, as follows. Suppose
that M is a 3–manifold that fibers as the mapping torus of an Anosov diffeomorphism A on the torus.
By a theorem of Plante [1981], any Anosov flow on M is necessarily of suspension type. Any other
suspension flow comes from a fibering of M as the mapping torus of an Anosov diffeomorphism. It is a
“folklore” result that such a diffeomorphism must be conjugate to either A or A�1 — a detailed proof can
be found in [Funar 2013]. Since our definition of orbit equivalence allows a flow to be conjugate to its
inverse, we conclude that M admits only one Anosov flow up to orbit equivalence.

The case of skew flows is much more interesting. For instance, examples of (closed, hyperbolic) manifolds
that admit arbitrarily many inequivalent skew Anosov flows were constructed in [Bowden and Mann 2022].
As a first step towards the proof of Theorem 1.2 in the skew case, we need to recall some general structure
theory due to Barbot and Fenley that will allow us to essentially reduce the theorem to a statement about
actions of �1.M / on S1.

2.1 Skew Anosov flows

Consider again the infinite diagonal strip model for the orbit space as shown in Figure 1.

In this model, each point o 2 O can be assigned a point ou on the upper boundary of the strip by following
the unstable leaf through o, and a point ol on the lower boundary by following the stable leaf. Taking the
intersection of the stable leaf through ou and unstable through ol defines a continuous, fixed-point-free
map � WO!O, which we call the half-step-up map.3 This map exchanges stable leaves and unstable leaves,
so � D �2 induces a map on the leaf space ƒs of the weak stable foliation. We call � the one-step-up map.

If the weak foliations are transversely orientable, then � commutes with the action of �1.M / on ƒs .
Identifying ƒs ŠR so that � is identified with the translation x 7! xC 1 realizes �1.M / as a subgroup

3This map and its square have both been referred to as the one-step-up map elsewhere in the literature. We choose to call the
square the one-step-up and � the half-step-up.
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of HomeoZ.R/, the group of orientation-preserving homeomorphisms of R commuting with integer
translations. In the nonorientable case, � is twisted �1–equivariant: for any  2 �1.M / that reverses the
orientation of ƒs , we have �.x/D ��1.x/.

Our perspective going forward will be to study the flows through the action of �1.M / on the leaf space.
For simplicity, in Section 2.3 we assume first that the weak foliations are transversely orientable, and then
state the necessary modifications for the nonorientable case. In the orientable case, the dynamics of the
action of �1.M / on ƒs is what Thurston [1997] calls an extended convergence group action. However,
the only dynamical property that we will need is the fact that, in such a group, any orientation-preserving
homeomorphism with fixed points has exactly two fixed points in Œ0; 1/, one attracting and one repelling.
This can be seen directly from the Anosov dynamics of the flow.

Another dynamical property that will be of use comes from [Barbot 1995a, Theorem 2.5], which states
that skew Anosov flows are transitive and the action of the group generated by �1.M / and � on R is
minimal, meaning that all orbits are dense. Since R=� Š S1 and the action of �1.M / descends to this
circle, this latter statement is equivalent to the statement that the action of �1.M / on R=� is minimal.
The reader may find it useful to visualize the action on R by thinking of it on the circle R=� , but for
simplicity we will work in HomeoZ.R/. The next subsection establishes some general results about such
subgroups of HomeoZ.R/, concluding with the proof of Theorem 1.1.

2.2 Hyperbolic-like homeomorphisms: proof of Theorem 1.1

Definition 2.1 We say an element f 2 HomeoZ.R/ is hyperbolic-like if it has exactly two fixed points
in Œ0; 1/, one attracting and one repelling, and a group action � WG! Homeo.R/ is hyperbolic-like if its
image lies in HomeoZ.R/ and every element with fixed points is hyperbolic-like.

In the context of the action of the fundamental group of a 3–manifold with a skew Anosov flow on
the stable leaf space (which is what we have in mind), Thurston [1997] calls hyperbolic-like elements
space-like homeomorphisms. Since this notation is not commonplace, we have chosen the terminology
“hyperbolic-like” since the induced action of such elements on R=Z are topologically conjugate to
hyperbolic Möbius transformations.

If a is a hyperbolic-like element, we will use the notation aC and a� to respectively denote an attracting
and a repelling fixed point for a. For two hyperbolic-like elements a and b, we say the fixed sets of a

and b are linked if each connected component of RX Fix.a/ contains a fixed point for b, or if a and b

have fixed points in common. We say they are unlinked otherwise. By convention, when we speak about
the order of fixed points on R, we use the notation

aC < b� < a� < bC

to mean that there exist four consecutive elements of Fix.a/[Fix.b/, ordered as indicated by the inequality.
In this example, the fixed sets of a and b are linked. Since both a and b commute with integer translation,
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the next element of Fix.a/ [ Fix.b/ to the right of bC is another attracting fixed point for a, equal
to aCC 1.

The next series of lemmas shows that the configuration of fixed points of a pair or triple of elements can
be detected by the set of words in those elements which act with fixed points.

Lemma 2.2 Let a and b be hyperbolic-like elements of HomeoZ.R/. The fixed sets of a and b are
linked if and only if Fix.anbm/¤∅ for all n;m 2 Z.

Proof Suppose first that the fixed sets of a and b are linked, and let n and m be given. Since the
property of having linked fixed sets does not change after passing to inverses, up to replacing a or b with
their inverses we can assume that n;m � 0. Since the fixed sets of a and b are linked, either a and b

have a common fixed point (in which case we are done) or there exists some connected component of
RX .Fix.a/[ Fix.b// bounded on one side by an attracting fixed point for a, and on the other by an
attracting fixed point for b. Let I denote the closure of this component. Then anbm.I/� I, so anbm has
a fixed point in I.

To prove the converse, suppose now that the sets are unlinked. Up to passing to inverses, we may find
consecutive attracting and repelling fixed points for a and b that lie in the order

aC < a� < bC < b�

with no other fixed points between aC and b�. For m large enough, bm.aC/ will lie in the open interval
.a�; bC/. For n large enough, anbm.aC/ will therefore lie in the open interval .b�; aCC 1/. Similarly,
bmanbm.aC/ will lie to the right of aCC 1, as will anbmanbm.aC/. Thus, .anbm/2 translates some
point a distance at least 1. Any such element of HomeoZ.R/ is fixed-point-free; hence, its root anbm is
fixed-point-free as well.

The next lemma says that, if a and b have unlinked fixed sets, then we can detect the cyclic order of
attracting and repelling fixed points by understanding which words in a and b have fixed points.

Lemma 2.3 Suppose a and b have unlinked fixed sets. The word bN aN has a fixed point for every
N > 0 if and only if one may find a set of consecutive fixed points either in the order

aC < a� < b� < bC

or that obtained from the above by replacing a and b simultaneously with their inverses.

Proof If the ordering shown above occurs, then the interval ŒbC; aCC 1� is mapped into itself by bN aN,
so the map has a fixed point. Note that the ordering obtained by replacing a and b with their inverses
can also be obtained simply by reversing the orientation of R and considering a sequence of consecutive
fixed points starting with a�. Since reversing orientation of R obviously does not change the property of
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a map having fixed points, we have already proved one direction of the lemma. For the converse, if the
ordering above does not occur even after passing to inverses, the order is either

aC < a� < bC < b� or a� < aC < b� < bC:

In the first case, for sufficiently large N we have .bN aN /2.bC/ > bCC 1, so the map is fixed-point-free,
and in the second case we have .bN aN /2.bC/ < bC� 1, so the map is again fixed-point-free.

Our next goal is to use this information to reconstruct a minimal action, up to conjugacy, from the data of
the ordering of fixed-point sets. For this we need an elementary lemma:

Lemma 2.4 Suppose G � HomeoZ.R/ is a nonabelian group whose action on R is minimal and
hyperbolic-like. Then , for any point x 2R and any � > 0, there exists a 2 G such that a has two fixed
points in the �–neighborhood of x.

Proof If no nontrivial element of G acted with fixed points, then G would be abelian by Hölder’s
theorem, so by assumption this case does not occur. Thus, there exist hyperbolic-like elements and, by
minimality of the action of G, the set of their attracting fixed points is dense.

Let x and � > 0 be given. Fix any hyperbolic-like element g with an attracting fixed point in the
�
2

–neighborhood of x. Observe that, if f and g are hyperbolic-like and f does not fix a repelling
point g� for g, then all fixed points of the conjugate gNfg�N approach the attracting fixed points of g

as N !1. Thus, it suffices to find a hyperbolic-like f that does not fix g�. By minimality, there exists
h 2G such that h.g�/ lies strictly between g� and gC, where g� < gC are consecutive fixed points. If
h.gC� 1/¤ g�, then hgh�1 is hyperbolic-like and has fixed points distinct from g�, since they are the
images of the fixed points of g under h, and we are done. If instead h.gC � 1/D g�, or equivalently
h.gC/D g�C 1, then we have

g� < h�1.gC/ < gC < g�C 1

and therefore h�1gh has fixed points gC and h�1.gC/¤ g�.

Although not strictly needed in our proof, Lemma 2.4 can be strengthened to the following density for
pairs of fixed points:

Lemma 2.5 Suppose G � HomeoZ.R/ is a nonabelian group whose action on R is minimal and
hyperbolic-like. Given x;y 2 Œ0; 1/, and � > 0, there exists a hyperbolic-like element g 2G with fixed
points satisfying jg��xj< � and jgC�yj< �.

Proof Let x;y 2 Œ0; 1/ and � > 0 be given. Without loss of generality, assume x < y and assume that � is
small enough that the �–neighborhoods of x and y and all of their integer translates are pairwise disjoint.
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By Lemma 2.4, we may find hyperbolic-like elements a and b with fixed points in the �
2

–neighborhoods
of x and y, respectively. Replacing a or b with their inverses if needed, we can assume these fixed points
are ordered

aC < a� < b� < bC:

By Lemma 2.3, this implies that bN aN has a fixed point for every N > 0. Furthermore, if N is sufficiently
large, an attracting fixed point for bN aN will lie within the �

2
–neighborhood of bC, and a repelling

fixed point within the �
2

–neighborhood of a�; this is simply because bN aN takes a complement of the
�
2

–neighborhood of the union of translates of a� to a neighborhood of the attracting fixed points for b.

We can now finish the proof of our first main theorem; first we recall the statement:

Theorem 1.1 (rigidity of hyperbolic-like actions) A minimal , hyperbolic-like action of a nonabelian
group G on R is determined up to conjugacy by the set of elements of G that act with fixed points.

Proof Let G be nonabelian, hyperbolic-like and acting minimally on R, and �.G/ another such faithful
action of G on R, with the same set of hyperbolic-like elements as G. Let g 2 G be a hyperbolic-like
element (recall that such an element exists by Hölder’s theorem since G is nonabelian). Choose coordinates
on R so that the attracting fixed points of g and of �.g/ are precisely the integers. We need to choose an
orientation on the line R on which � acts. To do this, take some f 2 G with an axis unlinked with g.
Such a map f exists by Lemma 2.4. Replacing f with its inverse if needed, we can find such a map for
which consecutive fixed points are ordered

gC < g� < f� < fC:

By Lemma 2.2 and the fact the action of �.G/ has the same elements with fixed points as the original
action of G, we conclude that the fixed sets of �.g/ and �.f / are unlinked. By the same reasoning,
using Lemma 2.3, the map f N gN has a fixed point for all N > 0, so by hypothesis the same is true for
�.f /N �.g/N. Applying the other direction of Lemma 2.3, we can now fix an orientation on R so that
consecutive fixed points of �.f / and �.g/ are ordered

�.g/C < �.g/� < �.f /� < �.f /C:

Our next goal is to show that this determines the ordering of the set of all attracting fixed points of
hyperbolic-like elements of �.G/. We then define a map ‚ on the (dense) subset of R consisting of
attracting fixed points of other elements by sending the unique attracting fixed point of an element h

that lies in Œm;mC 1/ to the unique attracting fixed point of �.h/ in Œm;mC 1/. This order-preserving
property is sufficient to show that our map ‚ is continuous, from which it will easily follow that it can be
extended continuously to a homeomorphism of R that conjugates the action of G and �.G/.

Consider first an element h with fixed set that is unlinked with both f and g. Up to switching h with h�1,
there are three cases to consider.
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Case 1 Suppose first that we have the ordering

gC < g� < f� < h� < hC < fC:

Applying Lemma 2.3, we have that f N hN and gN hN have fixed points for all positive N, and hence so
do �.f /N �.h/N and �.g/N �.h/N. Applying the lemma again implies that one of these three orderings
occur:

�.g/C < �.h/C < �.h/� < �.g/� < �.f /� < �.f /C;(�)

�.h/C < �.g/C < �.g/� < �.h/� < �.f /� < �.f /C;(��)

�.g/C < �.g/� < �.f /� < �.h/� < �.h/C < �.f /C:(���)

We want to show that only case (���) can occur. We will show that (�) does not occur. Eliminating the
possibility of (��) is done by exactly the same argument, switching the roles of g and h; we omit the
details.

Since Fix.aba�1/D a Fix.b/, for any n> 0 we also have

gC < g� < f� < .f
nhf �n/� < .f

nhf �n/C < fC

and so gN .f nhf �n/N has a fixed point for all N > 0, as does its image under �. If ordering (�) were to
occur, then for sufficiently large n we would have

�.g/C < �.g/� < �.f /� < �.f /C < �.f
nhf �n/C < �.f

nhf �n/�;

contradicting Lemma 2.3 applied to �.g/N �.f nhf �n/N. Thus, the ordering of consecutive fixed points
of f, g and h under � agrees with that for the original action.

Case 2 The ordering
gC < h� < hC < g� < f� < fC:

is handled exactly as above, exchanging the roles of f and g.

Case 3 Now suppose instead that the ordering of the fixed points of f, g and h is

gC < g� < hC < h� < f� < fC:

Consider the elements aD gnf n and bD f nhn for some large positive n. As n!1, the attracting fixed
point aC approaches fC, and similarly a� approaches g�, bC approaches hC, and b� approaches f�.
Thus, provided n is chosen large enough, we have

gC < g� < a� < bC < hC < h� < b� < f� < fC < aC:

We can then apply the previous cases to the triples .g; a; h/, .g; a; f /, .g; a; b/ and .g; b; h/ to show the
ordering of their fixed points is preserved by �. We deduce that the ordering of the fixed points of �.f /,
�.g/ and �.h/ matches that of the fixed points of f, g, and h.
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We can now quickly finish the proof of the theorem. Suppose we have some hyperbolic-like a and b with

0� aC < bC < 1:

Rather than consider cases depending on whether a and b are linked or not, we can instead use Lemma 2.4
to choose c and d in G with fixed sets very close to aC and bC such that c and d have fixed sets unlinked
with a and b. Suppose for simplicity that 0< aC (otherwise, simply replace 0 in what follows with some
very small �� and 1 with 1� �, and repeat the proof). By Lemma 2.5, we can choose elements c and d

with fixed points so that we have the ordering

0< c� < cC < aC < d� < dC < bC < 1

and additionally have that a does not have a repelling fixed point between c� and aC, and b does not
have a repelling fixed point between d� and dC. We can also choose such c and d whose fixed sets are
each unlinked with respect to f and to g, so that we may apply the observation above to c and d and
determine the relative order of their fixed-point sets. Any choice of c and d with fixed sets sufficiently
close to aC and bC will have this property. Thus, by our convention on �.g/, we conclude that

�.g/C D 0< �.c/� < �.c/C < �.d/� < �.d/C < 1:

Since c and d had unlinked fixed points with respect to a, b and g, we can apply the observation again
and conclude that the ordering of fixed sets is preserved, namely

�.g/C D 0< �.c/� < �.c/C < �.a/C < �.d/� < �.d/C < �.b/C < 1

and, in particular, �.g/C D 0< �.a/C < �.b/C < 1, as we needed to show.

Thus, we have defined an order-preserving (and hence continuous) injective map between two dense
subsets of R. This extends uniquely to a continuous map R! R with continuous inverse, which we
denote by ‚. It remains to see that ‚ conjugates the actions of G and �.G/. Let g 2G be given. Note
that, if aC is a fixed point of a hyperbolic-like element of a 2G, then g.aC/ is an attracting fixed point
of .gag�1/; thus, ‚.gaC/ is some attracting fixed point of �.gag�1/, ie the image of an attracting
fixed point of �.a/ under �.g/. In other words, ‚.gaC/ D �.g/‚.aC/C n for some n 2 Z. Since ‚
is continuous and fixed points of hyperbolic-like elements are dense in the source and the target, we
conclude that nD 0, so g–equivariance holds on a dense set, and hence everywhere.

Remark 2.6 If G is not assumed to act minimally (but �.G/ is), the same proof strategy can be used to
produce a semiconjugacy between the actions of G and �.G/, defined on the closure of the G–invariant
set consisting of hyperbolic fixed points.

2.3 Conclusion of the proof of Theorem 1.2

Returning to the setup of Theorem 1.2, suppose that ' and  are two skew Anosov flows with f�P.'/D
P. / for some homeomorphism f WM !M. Replacing ' with its conjugate under f, we obtain a
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flow ' satisfying P.'/D P. /. What we need to show is that ' and  are orbit equivalent by some
homeomorphism of M that is isotopic to the identity.

Orientable case Assume first that ƒs.'/ and ƒs. / are both transversely orientable. We then will apply
Theorem 1.1 to the group G WD �1.M /. Recall the action of this group on the leaf space ƒs.'/ŠR is
faithful, minimal and has the property that all elements with fixed points are hyperbolic-like, under the
parametrization of R where �.'/ acts as translation by 1, and the same holds for  .

That P.'/D P. / means precisely that these two representations have the same elements with fixed
points. Thus, Theorem 1.1 implies that these two actions are conjugate. This also gives a conjugacy
between the actions on the unstable leaf spaces ƒu.'/ and ƒu. / via further conjugation by the half-step-
up map �. Considering intersections of stable and unstable leaves, we can promote this to a conjugacy
of the actions of �1.M / on the orbit space O. Following an argument of Ghys using Haefliger’s theory
of classifying spaces of foliations, Barbot [1995a, Theorem 3.4] showed using an averaging trick that
such a conjugacy on the orbit space can always be realized by a homeomorphism of M giving an orbit
equivalence of the flows. In our case, this homeomorphism is easily seen to be isotopic to the identity by
considering the action on �1. This concludes the proof in the transversely orientable case.

General case For the general case, consider again the action of �1.M / on ƒs.'/ŠR and on ƒs. /.
Let G � �1.M / be the normal subgroup generated by all squares of elements. Since each element of G

is a product of squares, its action on ƒs.'/ and ƒs. / is by orientation-preserving homeomorphisms.
The proof of [Barbot 1995a, théorème 2.5] shows directly that the action of G on ƒs.'/ and ƒs. / is
also minimal. Thus, we may apply Theorem 1.1 and conclude that the actions of G on the respective
leaf spaces are conjugate. We wish to show that this conjugacy extends to a conjugacy of the actions
of �1.M /.

Apply a conjugacy so that the actions of G on ƒs.'/ and ƒs. / agree. Now our goal is to show that,
after possibly further conjugating by an integer translation (which commutes with the action of G), the
actions of �1.M / agree. Let �' and � denote the actions on ƒs.'/ and ƒs. /, respectively, assumed
to agree on the restrictions to G.

Note that, if  2 �1.M /, and x 2R is an attracting fixed point of �'.g/ for some element g 2G, then
�'. /.x/ is an attracting fixed point of �'.g�1/, where we have g�1 2 G. The same applies
to � . /. The set of all attracting fixed points for elements of G is dense, and each element with fixed
points has a Z–invariant set of attracting fixed points with exactly one in Œ0; 1/.

First we verify that �'. / preserves orientation if and only if � . / does. Suppose �'. / reverses
orientation. Let g1, g2 and g3 in G be elements with attracting fixed points satisfying

�'.g1/C < �'.g2/C < �'.g3/C < �'.g1/CC 1:

Since �'. / reverses orientation, we have

�'.g1
�1/C > �'.g2

�1/C > �'.g3
�1/C > �'.g1

�1/C� 1
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whereas, if �'. / preserved the orientation, the original order would not be affected by conjugation. Since
g�1 2G, this ordering holds also for the action under � , showing that � . / necessarily reverses
orientation as well. The situation being symmetric, we have proved the claimed “if and only if” statement.

Now consider the subgroup P of elements of �1.M / whose action preserves orientation on ƒs.'/, or, as
we have just shown, equivalently preserves orientation of ƒs. /. Our description above also implies that,
for any  2P, we have �'. /D � . /ıT for some integer translation T . Since orientation-preserving
elements commute with integer translation, the map  2 P 7! T is a group homomorphism. Now, when
 2G, T is the identity; thus, T is the identity for any  2P. So, in particular, the actions of �' and � 
are identical on P.

If instead we consider  an element reversing the orientation on the leaf spaces, then � . / and �'. /
each have a unique fixed point. Their action being determined modulo integer translations means that
there exists an integer translation T 0 such that �'. /D T 0� . /T

0�1
 . Fix some orientation-reversing

element 0. Up to conjugating the action of � by an integer translation, we can assume that T 00
is the

identity, ie that � .0/D �'.0/. Notice that this conjugation does not affect the fact that �' and � are
identical on P, since the action of elements in P commutes with integer translations. We wish to show
now that T 0 D 0 for all  2 �1.M /XP, so the actions agree.

Let  be any orientation-reversing element. Then 0 preserves the orientation so � .0 /D �'.0 /.
As � .0/ D �'.0/, we deduce directly that � . / D �'. /. Hence, we proved that the actions �'
and � are the same, ending the proof of Theorem 1.2.

3 Classifying self-orbit equivalences

This section gives the proof of Theorem 1.4. We start by introducing some additional necessary background
material on the orbit space of the flow.

Returning to the picture from Section 2.1, recall that the orbit space of a skew Anosov flow is homeo-
morphic to a diagonal strip in R2 foliated by ƒs and ƒu in the two coordinate directions. For each orbit
o 2 O, the ideal quadrilateral in O with corners o and �.o/ and sides the stable and unstable (half-)leaves
of o and �.o/ is called a lozenge. The union of lozenges associated with the orbits �n.o/ for n 2 Z is
called a string of lozenges. The reader may consult [Barthelmé and Fenley 2017, Section 2] for more
background about lozenges in general Anosov flows.

Recall [Barbot 1995b] that an (immersed) incompressible torus T is quasitransverse to an Anosov flow '

if it is transverse everywhere except along finitely many periodic orbits of '. Barbot [1995b, théorème C]
(see also [Barbot and Fenley 2013, Theorem 6.10]) showed that any incompressible embedded torus
in M can be isotoped to a quasitransverse torus unless it is the boundary of a tubular neighborhood of an
embedded one-sided Klein bottle. Such embeddings of a Klein bottle do not actually arise if the flow is
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ƒu

ƒs

Figure 2: The orbit space O with (part of) a string of lozenges.

transversally orientable and R–covered. We were not able to locate a proof of this fact in the literature,
so add it as a lemma below. We thank Sergio Fenley for discussing this fact with us.

Lemma 3.1 Let ' be a transversally orientable skew R–covered Anosov flow on M. Then M does not
contain a �1–injective immersion of the Klein bottle.

Proof Suppose there is a subgroup G of �1.M / isomorphic to the fundamental group of the Klein
bottle, ie we have nontrivial elements a; b 2 �1.M / such that aba�1 D b�1 and G D ha; bi. Since '
is transversely orientable, G acts faithfully on ƒs.'/'R by orientation-preserving homeomorphisms
commuting with integer translations. Consider the induced action of G on R=�2. For this induced action,
both a and b have a single attracting and single repelling fixed point. Since aba�1 D b�1, we must
have that a interchanges the attracting and repelling points for b. But this gives a an orbit of period two,
contradicting that it acts with fixed points.

The main result that we need is the following:

Lemma 3.2 [Barbot 1995b] If T is a quasitransverse torus in M for a skew Anosov flow , then each lift
zT of T to the universal cover projects to a unique string of lozenges C in O. That string of lozenges is the
unique string of lozenges left invariant by the Z2–subgroup of �1.M / that fixes zT. The interior of each
lozenge in the string corresponds to a maximal annulus in T transverse to the flow; its corners are the
periodic orbits bounding the annulus.

Conversely , if G is a subgroup of �1.M / isomorphic to Z2, then there exists a unique string of lozenges
in O fixed by G. Moreover that string of lozenge is the projection of an (a priori only immersed ) torus T.

Remark 3.3 We have stated this lemma in the special case of skew Anosov flows. For general Anosov
flows on 3–manifolds, one needs to replace “string of lozenges” by “chain of lozenges” — see [Barthelmé
and Fenley 2017, Section 2] — and some Z2–subgroups may fix two distinct chains of lozenges.
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We also need the following easy proposition, giving another condition for an element  2 �1.M / to be
represented by a periodic orbit of a skew Anosov flow '. Recall that ƒs ŠR denotes the leaf space of
the weak stable foliation of the lifted flow z'. We denote the natural projection by �s W �M !ƒs .

Proposition 3.4 Let ' be a skew Anosov flow on a 3–manifold M. Let  2 �1.M /. The following are
equivalent :

(i) The element  is represented by a periodic orbit of ';

(ii) There exists a –invariant curve c � �M such that �s.c/ is bounded (either above or below) in ƒs;

(iii) For any –invariant curve c � �M, its image �s.c/ is bounded in ƒs .

Proof Item (iii) trivially implies (ii), we will show that (ii) implies (i) and that (i) implies (iii).

(ii)D) (i) Assume that there exists a –invariant curve c � �M such that �s.c/ is bounded above in ƒs ,
and let LC denote its upper bound. (The case where �s.c/ is bounded below is analogous.) If the
action of  reverses the orientation of ƒs , then it fixes a leaf which necessarily contains a periodic orbit
represented by  , and we are done. If  instead preserves the orientation, then the upper bound LC 2ƒs

is a –invariant point since �s.c/ is –invariant, and thus the leaf corresponding to this point contains a
unique –invariant orbit. This shows (i).

(i)D) (iii) Suppose  is represented by a periodic orbit of the flow and c � �M is a –invariant curve.
Supposing first that  preserves orientation on R, the action has an attracting fixed point x 2ƒs . Moreover,
the images of this point under powers of the half-step-up map are alternately attracting and repelling fixed
points of  ; if i is even, then �i.x/ is an attracting fixed point, if i is odd, then �i.x/ is a repelling fixed
point, as described in Section 2.1. In the case where  reverses orientation, the same argument above
applies if we replace  with  2, which preserves orientation.

In either case, since the action of  2 on c is free, we may take a compact fundamental domain I for
the action. The projection �s.I/ is contained in some bounded interval Œ��k.x/; �k.x/�. Therefore,
�s.c/D

S
n2Z 

2n ��s.I/� Œ��k.x/; �k.x/�, so it is bounded, proving (iii).

Combining Theorem 1.2 with Proposition 3.4 gives the following as a direct consequence:

Theorem 3.5 Let ' and  be two skew R–covered Anosov flows on a 3–manifold M. The flows '
and  are isotopically equivalent if and only if , for any periodic orbit ˛ of  (resp. ') with lift z̨ � �M,
the projection �s

1
.z̨/�ƒs.'/ (resp. �s

1
.z̨/�ƒs. /) is bounded.

3.1 Proof of Theorem 1.4

To set up for the proof, we begin by giving precise definitions of translation number with respect to ',
and the displacement of a curve by a Dehn twist.
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Definition 3.6 (translation number) Let ˇ 2 �1.M /, and consider its action on ƒs.'/. Fix x 2ƒs.'/.
For each q 2 Z, there exists a unique pq 2 Z such that �pq .x/� ˇq.x/ < �pqC1.x/. We define

t'.ˇ/ WD lim
q!1

pq

q
:

Since � and ˇ commute, it is a standard exercise to show that this limit exists and is in fact independent
of the choice of x; indeed, t'.ˇ/ is simply the classical translation number for the action of ˇ on ƒs

with respect to any parametrization of ƒs where � acts as translation by 1.

Remark 3.7 We will consider below only the case when ˇ is freely homotopic to a curve in a quasi-
transverse torus T. Thus, ˇ fixes a (unique) string of lozenges in the orbit space. In this case we therefore
have t'.ˇ/Dk 2Z, where k is such that, if x is any of the corner of the string of lozenges, then ˇxD�k.x/.

If a skew Anosov flow ' on M is transversally oriented, we saw (Lemma 3.1) that M cannot admit an
incompressible embedding of the Klein bottle; thus, by [Barbot 1995b, théorème C], any incompressible
embedded torus in M can be put in quasitransverse position with respect to the flow. We further have,
thanks to [Barbot 1995b, théorème E], that any collection of pairwise disjoint, nonisotopic incompress-
ible embedded tori can be simultaneously isotoped to a collection of still disjoint (and obviously still
nonisotopic) quasitransverse tori. It is thus no loss of generality to adopt the following convention for
transversely orientable flows:

Convention For the remainder of this section, we restrict our attention to transversely orientable flows,
and we will always assume that the tori we consider are in quasitransverse position.

Next we will define the “displacement” of an orbit by a Dehn twist. We first recall the definition of Dehn
twists to emphasize that they come with a specification of a transverse orientation on the torus.

Definition 3.8 Let T be an embedded torus, and ˇ 2 �1.T /. A Dehn twist along ˇ is the mapping class
of a map Dˇ defined as follows: Take a small product region T � Œ�1; 1� 2M, and fix a basis f˛; �g
for �1.T / giving an identification of T with S1�S1DR=Z�R=Z, where ˇD ˛p�q for some p and q.
For .x;y; z/2T � Œ�1; 1�, we define Dˇ.x;y; t/D .xCph.t/;yCqh.t/; t/, where h W Œ�1; 1�! Œ0; 1� is
a smooth bump function with h.�1/D 0 and h.1/D 1, and extend Dˇ to be the identity elsewhere on M.

Remark 3.9 Reversing the transverse orientation of T and applying the same construction results in a
map isotopic to the inverse of that defined above. Thus, the notation Dˇ, while standard, is somewhat
misleading because the mapping class does not depend on ˇ alone. There is no intrinsic way to distinguish
Dˇ from D�1

ˇ
. Thus, by convention, we say that a map Dˇ comes with the data of a choice of transverse

orientation. When we speak of a Dehn twist supported on a torus neighborhood T � Œ�1; 1�, we always
assume the orientation is as given by the interval Œ�1; 1�.

It will be convenient for us to choose homeomorphisms representing Dehn twists which are in a particularly
nice form with respect to the flow, as follows:
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Convention 3.10 (good Dehn twist coordinates) Given a quasitransverse torus T, we choose the
coordinates .x;y; z/ 2 T � Œ�1; 1� in the following way: Let ˛1; : : : ; ˛2n be the periodic orbits of ' on T.
Then we assume that the local stable leaves of the orbits ˛i in T�Œ�1; 1� are given by the equation xD i=2n.

With this convention, a Dehn twist D˛ on T, where ˛ 2 �1.T / represents any power of the periodic
orbits, will preserve the local stable leaves of the periodic orbits ˛i . More generally, given any Dehn twist
Dˇ on T, and any segment c.t/ WD .x0;y0; t/ for t 2 Œ�1; 1� through T � Œ�1; 1�, the number of times its
image Dˇ.c.t// intersects the union of stable leaves of the ˛i is the minimal intersection number of ˇ
with ˛i .

Definition 3.11 (sign of an intersection) Given a Dehn twist Dˇ supported on T � Œ�1; 1� as above, and
an orbit 't intersecting T transversely at t D 0, we say this intersection is positive if 't .z/ 2 T � Œ0; 1�

for small positive t , and negative if 't .z/ 2 T � Œ�1; 0� for small positive t .

Before giving the formal definition of the displacement d'.c; f / of a closed orbit c under a product
of Dehn twists f, we motivate this with the following lemma, which describes how a Dehn twist on a
torus T affects a segment of a periodic orbit transverse to T, from the perspective of the leaf space of '.

For the statement, we fix a quasitransverse torus T in M, a point z with orbit 't .z/ transverse to T, and
a small product neighborhood T � Œ�1; 1� so that the orbit 't .z/\T � Œ�1; 1� is, locally near t D 0, a
segment J between some point z� 2 T � f�1g and zC 2 T � f1g. Let Dˇ be a Dehn twist supported
on T � Œ�1; 1�.

Lemma 3.12 Let zT � Œ�1; 1� be a lift of T � Œ�1; 1� to �M, let zJ be the lift of J in zT � Œ�1; 1� with
endpoints Qz� and QzC, and let zDˇ be the lift of Dˇ fixing Qz�. Finally, let fLigi2Z be the string of lozenges
associated with zT.

(1) If zJ projects to a point in the lozenge Li , then zDˇ.QzC/ projects into Lk , where k D i C 2t'.ˇ/ if
the intersection of J and T is positive , and k D i � 2t'.ˇ/ if the intersection is negative.

(2) The stable saturation of zDˇ. zJ / to the orbit space stays inside the stable saturation of the lozenges
between Li and Lk .

Proof Without loss of generality, we assume that zJ projects to a point in L0, and that the sign of the
intersection is positive (the negative case is analogous). Recall that the lozenges Li are the projections of
strips Ai inside zT, bounded by periodic orbits of z'.

By definition of Dˇ , the image zDˇ.QzC/ projects in the orbit space to the lozenge ˇ.L0/. Now, if xi are
the corners of the lozenge Li (enumerated so that xi < xiC1 in ƒs.'/), then �k.x0/D x2k . Thus, by
definition of translation number (and Remark 3.7), ˇ.L0/DL2t'.ˇ/, proving the first part of the lemma.

The second statement follows immediately from Convention 3.10 and the structure of lozenges (Lemma
3.2).
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Figure 3: The configuration on the right is impossible if the shaded lozenge is L0j .

Definition 3.13 (displacement) Let c be a periodic orbit of the skew flow ' and Dˇ a Dehn twist on a
quasitransverse torus T. Let x1; : : : ;xn be the intersection points of c with T, and let �i D f˙1g be the
sign of the intersection at xi . The displacement of c by Dˇ is defined by

d'.c;Dˇ/D

nX
iD1

2�i t'.ˇ/:

If f DDˇ1
ı � � � ıDˇk

is a composition of Dehn twists on pairwise disjoint quasitransverse tori, then we
set

d'.c; f /D

kX
iD1

d'.c;Dˇi
/:

We will need the following observation for the proof of Theorem 1.4:

Observation 3.14 Let zT and zT 0 be two disjoint lifts of (the same or distinct) quasitransverse tori. Let
zJ be a segment of a periodic orbit that first crosses zT and then crosses zT 0. Suppose zT projects to a string
of lozenges fLig, and zT 0 to a string fL0ig. Let i and j be such that zJ is contained in Li \L0j .

Then L0j is contained in the saturation of Li by stable leaves; equivalently, Li is contained in the saturation
of L0j by unstable leaves.

Proof Since the lifts zT and zT 0 are disjoint, observe that either Li �
zFs.L0j / and L0j �

zFu.Li/, or
Li �

zFu.L0j / and L0j �
zFs.Li/. Both configurations are shown in Figure 3.

We will show that the second case cannot occur because orbits converge in the positive direction of
the flow along zJ. Precisely, consider the strong unstable leaf through the starting point Qx of the orbit
segment zJ. Denote this leaf by �uu, and let li � �

uu denote the set of points whose forward orbit intersects
the strip Ai in zT corresponding to Li . Similarly, define l 0j � �

uu to be the set of points whose forward
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orbit intersects the strip A0j in zT 0 corresponding to L0j. Hyperbolicity of the flow means that l 0j � li .
Hence, L0j �

zFs.Li/, and equality happens if and only if L0j DLi , which in turn implies that the orbits
bounding Ai and A0j are the same, which contradicts the assumption that zT and zT 0 are quasitransverse
and disjoint.

We next reduce the proof of Theorem 1.4 to the following proposition:

Proposition 3.15 Suppose f D Dˇ1
ı � � � ıDˇn

is a composition of Dehn twists on pairwise disjoint
quasitransverse tori T1; : : : ;Tn, and let Qc � �M be a lift of a periodic orbit c of '. Then d'.c; f /D 0

if and only if , for some lift (equivalently, for all lifts) Qf of f, the image Qf . Qc/ has bounded projection
to ƒs.'/.

Proof of Theorem 1.4 given Proposition 3.15 Indeed, this is an easy consequence of Proposition 3.4
and Theorem 1.2. Theorem 1.2 states that f is a self-orbit equivalence if and only if P.'/D f�P.'/D

P.f 'f �1/. By Proposition 3.4, P.'/ can be characterized as the set of  2 �1.M / such that every
–invariant curve Qc � �M has bounded projection to ƒs.'/. Thus, f is isotopic to a self-orbit equivalence
if and only if f� preserves this set. Proposition 3.15 characterizes this set in terms of the vanishing
of d'.c; f /.

Proof of Proposition 3.15 Fix f DDˇ1
ı � � � ıDˇk

, where Dˇi
is a Dehn twist on Ti , and let Qf be a lift

of f to �M chosen so that Qf fixes some point Qx on Qc. Recall that we assumed, without loss of generality,
that all the Ti are quasitransverse.

Let  2 �1.M / represent a periodic orbit c of '. As a first trivial case, suppose c has no transverse
intersections with any torus Ti , so it is either contained in a single torus or disjoint from all of them. Let Qc
be a lift of c. Note that c is isotopic to a curve c0 disjoint from the support of f ; lifting this isotopy means
the lift Qc is isotopic to a lift zc0 such that, after applying some deck transformation g of the cover, this is
disjoint from the support of Qf. Thus, Qf .g Qc/ is uniformly bounded distance away from Qf .gzc0/D gzc0,
and this is uniformly bounded distance away from g Qc, showing that g Qc (and hence also Qc) has bounded
projection.

For the case where c intersects some Ti transversely, we may without loss of generality choose the
product neighborhoods of the tori Ti in the definition of Dˇi

small enough that, every time c crosses a
torus Ti , it enters one side Ti � f˙1g and leaves the other, Ti � f�1g. Consider the positive-time ray
r D f't . Qx/ W t � 0g � Qc, where Qx is as before a point fixed by Qf. We will show that the projection of Qf .r/
to ƒs.'/ is bounded. Reversing the argument (using unstable leaves instead of stable) will show that the
projection of Qf . Qc/ to ƒs.'/ is also bounded, so we do only the forward case.

Between Qx and  Qx, the ray r intersects a finite number of lifts of the tori Ti on which the Dehn twists Dˇi

are supported. Let T1; : : : ;Tn denote these lifts, indexed along the path of r so that r first intersects T1
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after Qx. Note that two distinct lifts Ti and Tj may project to the same torus in M ; this will happen
whenever the orbit c crosses the same torus twice. Since the Ti are quasitransverse tori, each Tj projects
to a string of lozenges Cj . Let L

.1/
0

be the lozenge in C1 containing the projection of Qc. The main
technical part of the proof is the following claim:

Claim 3.16 Let r0 denote the segment of r between Qx and  Qx.

(1) The stable leaf of Qf . Qx/ intersects the lozenge �d'.c;f /.L
.1/
0
/.

(2) There exists N > 0, depending only on f, such that the stable leaf saturation of Qf .r0/ intersects
the chain of lozenges C1 only between ��N .L

.1/
0
/ and �N .L

.1/
0
/.

Given this claim, the proof of Proposition 3.15 can be finished quickly, by considering the positive
iterates of r0 under  . Let us assume the claim for the moment and use it to derive the conclusion of
Proposition 3.15.

We use the fact that r D
S1

iD1 
i.r0/. For the first direction, suppose that d'.c; f /D 0. Fix a segment

ri D 
i.r0/. Then �i.ri/D r0, so, by Claim 3.16, the stable leaf of Qf .ri/D f�.

i/ Qf .r0/ intersects the
lozenge f�. i/.L

.1/
0
/, and Qf .ri/ intersects the chain of lozenges C1 only between f�. i/��N .L

.1/
0
/ and

f�.
i/�N .L

.1/
0
/. But Observation 3.14 implies that f�. i/.L

.1/
0
/ is contained in the stable saturation

of L
.1/
0

; thus, Qf .ri/ is contained in the union of the stable saturation of leaves between ��N .L
.1/
0
/ and

�N .L
.1/
0
/ for all i ; hence, r has bounded projection to ƒs.'/. As remarked above, applying the same

argument to unstable leaves and using the negative time ray shows that c has bounded projection.

Conversely, if �D i'.c; f /¤ 0, then the argument above shows that zFs. Qf . n Qx// intersects �n�.L
.1/
1
/;

thus, the projection of Qf .r/ to ƒs.'/ is unbounded.

So, to finish the proof of the proposition, we only need to prove Claim 3.16.

Proof of Claim 3.16 Recall that f has support in disjoint small neighborhoods of the quasitransverse tori
in M which lift to disjoint neighborhoods of Tj in �M, and we use L

.j/

k
to denote the string of lozenges

associated to Tj . Let zNj denote the lifted neighborhood containing Tj . We use these neighborhoods to
split the ray r0 into a union of intervals Ij and Jj , where Jj WD

zNj \ r0, and Ij denotes the connected
component of r0 between zNj�1 and zNj . The interval I0 is the segment of r0 from Qx to zN1.

For each Ti , let ti denote the translation number of the Dehn twist on the corresponding torus. Notice
that, since f is supported on the union of the projection of the neighborhoods zNi to M, it follows that,
for any j, there exists hj 2 �1.M / such that Qf .Ij /D hj .Ij /� hj Qc. Our choice of lift implies that h0 is
the identity.

To demonstrate the first statement of the claim, we will first establish the fact that, if Qf .Ii�1/Dhi�1.Ii�1/

intersects a lozenge hi�1L
.i/

k
, then the stable leaf of Qf .Ii/ intersects the translate of hi�1L

.i/

k
by ��i 2ti .
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T1

T2

h1.T2/

r

Qf .r/

I0

N1

N2

h1.N2/

I1

h1.I1/

I2

Figure 4: The action of the lift of a Dehn twist on a ray, shown in �M on the left and schematically
indicating intersections with lifted neighborhoods of tori on the right.

Here is the proof of the fact: Fix some i . The segment Qf .Ji/ is obtained from hi�1.Ji/ by applying
the (unique) lift of the Dehn twist supported on the projection of Ti that preserves hi�1Ti and fixes
hi�1.Ii�1/. The (projection to the orbit space of the) endpoint shared by Qf .Ii�1/Dhi�1.Ii�1/ and Qf .Ji/

lies in some lozenge L
.i�1/

k
associated to hi�2.Ti�1/. By Observation 3.14, the lozenge hi�1.L

.i/

k0 / for
hi�1.Ti/ that also contains this point is such that hi�1.L

.i/

k0 / is contained in the saturation by stable
leaves of hi�2.L

.i�1/

k
/. Applying Lemma 3.12, we conclude that after applying the lifted Dehn twist

to hi�1.Ji/ (see Figure 4), the image of its other endpoint, which is also an endpoint of Qf .Ii/, lies in
��i 2ti hi�1.L

.i/

k0 /. This is contained in the saturation by stable leaves of ��i 2ti hi�2.L
.i�1/

k
/, which proves

the fact.

To deduce (1) using the fact, we apply it iteratively, observing first that the stable leaf of Qf .I1/ intersects
��12t1.L

.1/
0
/ and some lozenge h1.L

.2/

k
/, and the stable saturation of L

.2/

k
is contained in ��12t1L

.1/
0

. Thus,
Qf .I2/ has stable leaf intersecting ��22t2h1.L

.2/

k
/, and thus ��12t1��22t2.L

.1/
0
/. Continuing iteratively, we

conclude that Qf . Qx/ has stable leaf intersecting the translate of L
.1/
0

by �d'.c;f /.

Now the second part of the claim follows directly from the application of the second part of Lemma 3.12
in the proof above by choosing

N D

kX
iD1

2jti j:

3.2 Application: classification of self-orbit equivalences in special cases

We will now use the criterion given by Theorem 1.4 to describe the isotopy class of self-orbit equivalences
in some special cases, starting with the proof of Corollaries 1.5 and 1.6.

Proof of Corollary 1.5 Suppose that D˛ is a Dehn twist on a torus T in a direction ˛ that is represented
by a periodic orbit of '. Then the translation number of ˛ is zero, and thus, for any periodic orbit c of ',

Geometry & Topology, Volume 28 (2024)



890 Thomas Barthelmé and Kathryn Mann

the displacement of c by D˛ is zero. Therefore, the criterion of Theorem 1.4 implies that any such Dehn
twist is isotopic to a self-orbit equivalence of '.

Proof of Corollary 1.6 Let T be a quasitransverse torus in M and Dˇ a Dehn twist on T with nonzero
translation number. Suppose first that T is separating. Consider a periodic orbit c of '. Then either c

does not intersect T or it intersects T an even number of times with alternating signs. In either case,
d'.c;Dˇ/D 0. Thus, Dˇ is isotopic to a self-orbit equivalence by Theorem 1.4.

Now, if we assume instead that T is nonseparating, we claim that we can find a periodic orbit c of '
such that its intersections with T are always in the same transverse direction, and therefore are assigned
the same sign. To do this, take a closed oriented loop based in T in M intersecting T exactly once,
transversely, at the basepoint (and therefore inducing a transverse orientation of T ). Lift this loop to a
path in �M with endpoints in lifts zT0 and zT1 of T, and iteratively choose successive lifts zTi . Then, for
each i , zTi separates zTi�1 from zTiC1, and no lift of T separates zTi from zTiC1.

Fix n large, and let Qd be a segment of an orbit in �M with endpoints in zT0 and zTn. Such an orbit always
exists because the flow is R–covered and skew. If n is chosen large enough, Qd projects down to an orbit
segment in M that will contain points close enough to satisfy the conditions of the Anosov closing
lemma. Hence, we obtain a periodic orbit c such that all its intersections with T have the same transverse
orientation. We conclude that d'.c;Dˇ/ is nonzero, which, by the criterion, implies that Dˇ is not
isotopic to a self-orbit equivalence.

The proof of this corollary gives an example of a general strategy to identify self-orbit equivalences by
understanding the intersection of periodic orbits with quasitransverse tori. One could broaden this to give
a characterization of self-orbit equivalences of a given flow in terms of the configuration of tori in M

(the JSJ graph and geometry of the pieces) and translation numbers of periodic orbits in tori. Working
through the details of this is beyond the scope of this article; instead we illustrate our criterion with some
examples where we can virtually describe the group of self-orbit equivalences in the mapping class group.

For both of the following statements, we assume ' is a transversally orientable skew Anosov flow on M.

Theorem 3.17 Suppose that the JSJ decomposition of M has a single piece which is atoroidal , glued to
itself along n boundary tori T1; : : : ;Tn. Let Dper be the group generated by Dehn twists on the Ti in the
directions of the periodic orbits of '.

Let D be the finite-index subgroup of the mapping class group generated by Dehn twists on tori. Then
Dper is the set of self-orbit equivalences in D.

Theorem 3.18 Suppose that each torus of the JSJ decomposition of M is separating. Let D be the
finite-index subgroup of the mapping class generated by Dehn twists on tori. Then the set of self-orbit
equivalences in D is equal to the group generated by Dehn twists in the directions of periodic orbits inside
Seifert pieces , together with any Dehn twists on the JSJ tori.
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Remark 3.19 Using Handel–Thurston surgery and Foulon–Hasselblatt Dehn surgeries on periodic orbits
of geodesic flows, one can easily construct many examples of skew Anosov flows on manifolds as in the
statements of Theorems 3.17 and 3.18.

The proofs of both statements use the fact that the group generated by Dehn twists on tori has finite index
in the mapping class group of any orientable 3–manifold. (See [Johannson 1979] for an explanation and
history of the proof.)

Proof of Theorem 3.17 By Corollary 1.5, any isotopy class Œf � 2Dper is represented by a self-orbit
equivalence. For the other containment, suppose that f is a self-orbit equivalence contained in D. We
assume for a contradiction that f cannot be written as a product of elements in Dper. Since elements of Dper

are self-orbit equivalences, up to composition with such a map we can assume that f DDˇ1
ı � � � ıDˇk

,
where t'.ˇi/¤ 0 for all i . In fact, we will only use that one of these has nonzero translation number.

We now produce a periodic c such that d.c; f /¤0, leading to a contradiction by Theorem 1.4. Reindexing
if needed, suppose T1 is a torus in the support of f, with associated Dehn twist Dˇ1

. By hypothesis, T1 is
nonseparating in M X .T2 [ � � � [Tn/. By considering lifts of curves as in the proof of Corollary 1.6,
one can find a periodic orbit c of ' that intersects only T1, and each intersection point has the same
orientation. Thus, d.c; f /D d.c;Dˇ1

/D˙t'.ˇ1/¤ 0, contradicting Theorem 1.4.

Proof of Theorem 3.18 Given the assumption, all JSJ tori are separating, so Corollary 1.6 shows that any
product of Dehn twists along them is isotopic to a self-orbit equivalence. This, together with Corollary 1.5,
shows that any element of the group generated by Dehn twists in the direction of periodic orbits together
with Dehn twists on the JSJ tori is isotopic to a self-orbit equivalence.

We are left to show that any element of the finite-index subgroup generated by Dehn twists that is a
self-orbit equivalence is of this form. Let f be a self-orbit equivalence generated by Dehn twists; thus,
f preserves each Seifert piece. Fix a Seifert piece S and let † denote the base orbifold of S, and g the
restriction of f to †.

Up to composing f with some Dehn twists in the direction of periodic orbits on S and Dehn twists on
the boundary of S, we can assume that g projects to the identity in the mapping class group of the base
orbifold † (see [Johannson 1979] or [Bonatti et al. 2020, Section 4.7]). Thus, for any  2 �1.S/ that
is obtained as a lift of an element of �1.†/ that is not homotopic to a boundary component of †, there
exists k 2 Z such that g�. /D  sk , where s is the element of �1.S/ representing a regular fiber of the
Seifert fibration of S.

For any such  , the group H D h; si is a subgroup of �1.M / homeomorphic to Z2, and hence there
exists a (unique) string of lozenges C in O that is preserved by H. The permutation action of H on this
string gives a homomorphism H ! Z; thus, there exists some nontrivial  0 2H whose action on O fixes
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each corner of C; equivalently, the conjugacy class of  0 is represented by the periodic orbits of ' that
project to the corners of C.

Since the weak foliations are transverse to the Seifert fibration, s acts as a translation on the corners of C

(see [Barbot and Fenley 2013]). In particular, if k ¤ 0, then g�.
0/D  0sk does not fix a point of O, and

hence is not represented by a periodic orbit of '. This contradicts the fact that g was the restriction of
a self-orbit equivalence. Thus, k D 0, and, since the choice of  was arbitrary, we conclude that g is
isotopic to the identity.

Applying this argument to the restriction of f to each Seifert piece, we conclude that f is a product of
Dehn twists in the direction of periodic orbits and Dehn twists on the JSJ tori, as claimed.

Remark 3.20 The proof of Theorem 3.18 gives a virtual characterization of the self-orbit equivalences
of a given flow that fix a Seifert piece and are isotopic to identity on its boundary: they are exactly the
isotopy classes of the group generated by Dehn twists in the direction of periodic orbits in the Seifert
piece.

4 Application to contact flows

We will now apply some results of contact geometry to obtain the reverse direction of Theorem 1.12, as
well as its corollaries. Recall that a (coorientable) contact structure � is Anosov if � admits an Anosov
Reeb flow, ie there exists a 1–form ˛ such that � D ker˛ and the Reeb flow of ˛ is Anosov.

We will use as a black box the theory of cylindrical contact homology. Introduced in a more general
context by Eliashberg, Givental and Hofer [Eliashberg et al. 2000], it has been proven to be well defined
for dynamically convex contact structures by Hutchings and Nelson [2016]. This context includes the
case of Anosov contact forms: if the Reeb flow of a contact 1–form ˛ is Anosov, then it is automatically
nondegenerate and, since Anosov flows have no contractible orbits, ˛ is dynamically convex (see also eg
[Macarini and Paternain 2012]). Some of the fundamental results in this theory can be summarized as
follows:

Theorem 4.1 If ˛1 and ˛2 are nondegenerate dynamically convex contact forms on a closed , hypertight ,
contact 3–manifold .M; �/, then C Hƒ

cyl.˛1/Š C Hƒ
cyl.˛2/ for any set ƒ of free homotopy classes in M.

The space C Hƒ
cyl.˛i/ is a Q–vector space , it is the homology of a complex generated by the periodic

orbits of the Reeb flow of ˛i in the free homotopy classes belonging to ƒ.

Having the cylindrical contact homology groups associated to ˛1 and ˛2 being isomorphic is not quite
enough for our purpose: what we will need in order to apply Theorem 1.2 is to obtain that the chain
complexes themselves are equal, when ˛1 and ˛2 are Anosov contact forms. This follows from the fact
that the differential in the chain complex is trivial. That result was proven by Macarini and Paternain
[2012, Theorem 2.1] for any Anosov contact structure (and independently by Vaugon — see [Foulon et al.
2021] — with the additional assumption that the foliations are orientable).
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Proof of Theorem 1.12, reverse implication Let '1 and '2 be two contact Anosov flows with respective
contact forms ˛1 and ˛2 and contact structures �1 D ker˛1 and �2 D ker˛2. Suppose that �1 and �2 are
contactomorphic. Then there exists a diffeomorphism g WM !M such that g��1 D �2.

In our situation, the 1–forms g�˛1 and ˛2 are two contact forms of .M; �2/ with Anosov Reeb flows.
Applying the theorem on cylindrical contact homology above, where ƒ runs over all possible free
homotopy classes in �1.M /, we deduce that each homotopy class represented by a periodic orbit of the
Reeb flow of g�˛1 is also represented by a periodic orbit of the Reeb flow '2.

The Reeb flow of g�˛1 is g�1 ı 't
1
ı g. Thus, by Theorem 1.2, g�1 ı '1 ı g and '2 are isotopically

equivalent. Equivalently, '1 and '2 are orbit equivalent. If additionally g is isotopic to the identity, we
conclude that '1 and '2 are isotopically equivalent.

Using this direction of Theorem 1.12, together with the coarse classification of contact structures in
dimension 3 of Colin–Giroux–Honda, we can quickly deduce Theorem 1.13:

Proof of Theorem 1.13 By [Colin et al. 2009, théorème 6], on any irreducible 3–manifold, there
exist at most finitely many noncontactomorphic contact structures with bounded Giroux torsion. Now
Proposition A.1 shows that the contact structure of any contact Anosov flow has zero Giroux torsion.
Thus, Theorem 1.12 implies the result.4

Appendix Further applications to contact topology
joint with Jonathan Bowden

In this appendix, we show that any Anosov contact structure has zero Giroux torsion, prove the converse
to Theorem 1.12, and then use this to obtain new results about contact structures.

Proposition A.1 Let � be an Anosov contact structure on a 3–manifold M. Then � has zero Giroux
torsion. In fact , a double cover of M will be strongly symplectically fillable.

Proof Let ˛ be a contact 1–form such that ker˛ D � and such that the Reeb flow ' of ˛ is Anosov. Let
X be the Reeb vector field. Consider the 4–manifold M � Œ�1; 1� with symplectic form ! D d.et˛/,
where t is the coordinate on Œ�1; 1�. Then � D ker˛ is a contact structure that we can assume without
loss of generality to be positive and, since !jM�f1g D e1 d˛, the form ! is nonzero on �.

Up to taking a double cover, we can assume that ' is transversally orientable, ie its Anosov splitting is
orientable.

Let X ss and X uu be vector fields in, respectively, the stable and unstable direction of the Anosov
splitting of X, with orientations chosen so that the plane spanned by X ss C X uu and X defines a
(coorientable) contact structure �� with negative orientation (see [Mitsumatsu 1995]). Put this contact
structure on M � f�1g.

4When M is hyperbolic, one does not need Bowden’s result, thanks to [Colin et al. 2009, théorème 2].
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Since the defining property of a contact form is open in the C 1 topology, we can take a C 1–small
approximation z�� of �� such that X is transverse to z��. Then ! is nonzero on z�� (since !jM�f�1g D

e�1 d˛, so its kernel is spanned by X ).

This gives us a weak semifilling of .M �f1g; �/. By [Eliashberg 2004, Corollary 1.4], a weak semifilling
can be capped off to give a weak filling. Since ! is exact, by [Eliashberg 2004, Proposition 4.1] this weak
filling can be modified to give a strong filling (this result was independently obtained by Etnyre [2004]).
Now, Gay [2006, Corollary 3] proved that any contact plane field that is strongly fillable has zero Giroux
torsion. This proves the proposition for possibly a double cover of M.

Now the Giroux torsion of a contact structure cannot decrease under finite covers, since any component
of a finite cover of a Giroux torsion domain is again a Giroux torsion domain. So, in any case, a contact
structure � has zero Giroux torsion if and only if any finite lift of it has zero Giroux torsion. This proves
the proposition for the original �.

Thanks to Giroux’s correspondence [2002] between open books and contact structures, we can prove the
following, giving the second implication needed for the statement of Theorem 1.12:

Theorem A.2 Let '1 and '2 be two contact Anosov flows with respective contact structures �1 and �2.
If '1 and '2 are orbit equivalent (resp. isotopically equivalent) then �1 and �2 are contactomorphic (resp.
isotopic).

To apply Giroux’s result in our proof, we first need to recall a result about Birkhoff sections, starting with
their definition:

Definition A.3 Let ' be a flow on a 3–manifold M. A surface S is called a topological Birkhoff section
of ' if

(i) S is topologically immersed in M, and its interior is topologically embedded;

(ii) the flow ' is topologically transverse to the interior of S ;

(iii) each connected component of the boundary of S consists of a periodic orbit of ';

(iv) every orbit of ' intersects S ; and

(v) the return time of ' to the interior of S is uniformly bounded above and away from zero.

A topological Birkhoff section that is smoothly immersed is called a (smooth) Birkhoff section.

A Birkhoff section S in an orientable manifold is called positive if the orientations of all the boundary
orbits correspond to the orientation induced by the flow on the interior of S.

Fried showed that any transitive Anosov flow has a Birkhoff section, which can in fact be taken to be
embedded on the boundary as well. Moreover, Bonatti and Guelman [2010] show that this section can be
assumed to be tame, meaning that, after an isotopy along flow lines, one can assume that the restriction
of the Birkhoff section to a small tubular neighborhood of any component of its boundary is a smooth
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helicoid. Finally, Marty [2021] showed that any R–covered Anosov flow admits a positive tame Birkhoff
section. Moreover, an adaptation of Marty’s proof can be seen to yield a section that is also embedded on
the boundary (T Marty, personal communication, 2021).5 Thus, one obtains an open book supporting the
contact structure. We recall:

Definition A.4 (open book) Let B �M be an oriented link in a connected oriented manifold. Then an
open book .B; �/with binding B is a fibration with connected oriented (noncompact) fibers � WMXB!S1

such that, in a neighborhood of each binding component, the map is equivalent to the map given by
projecting to the angular polar coordinate on .D2 X f0g/�S1, and the boundary of any fiber agrees with
B as an oriented link.

The fibers of an open book are called pages. Note that the tameness condition in [Bonatti and Guelman
2010] corresponds precisely to a Birkhoff section S inducing an open book with binding the (oriented)
periodic orbits @S.

Definition A.5 (supporting open book) An open book .B; �/ supports a (cooriented) contact structure
.M; �/ if there is a contact form ˛ for � such that:

� The form d˛ is positive on the pages of � , which are oriented to be compatible with the binding.

� The form ˛ is positive on (each component of) B.

The fundamental fact due to Giroux [2002] is that any two contact structures supported by a fixed open
book are isotopic through contact structures supported by the open book. This is essentially due to the
fact that the above condition is convex, although some care is needed near the binding.

In order to apply the above, we will use the following result of [Bonatti and Guelman 2010]:

Lemma A.6 [Bonatti and Guelman 2010, Lemma 4.16] Let S be a topological Birkhoff section of a
flow '; then S can be isotoped along the orbits of ' to a smooth tame Birkhoff section S 0.

Proof of Theorem A.2 Let h be an orbit equivalence between '1 and '2. Up to conjugating '1 by a
diffeomorphism in the isotopy class of h, we can assume that '1 and '2 are isotopically equivalent and h

is isotopic to the identity. Showing that �1 and �2 are isotopic for this new flow will imply that �1 and �2
are contactomorphic for the original one.

Let S be a smooth Birkhoff section for '1. Then h.S/ is a topological Birkhoff section for '2. By the
lemma above, we can isotope h.S/ to a smooth tame Birkhoff section S2 of '2. Thus, the open book
.B2; �2/ induced by S2 supports �2. Now we isotope h to a smooth map g relative to the boundary of the

5One could also run the proof below using rational open books, which correspond to positive Birkhoff sections with immersed
boundaries; see [Baker et al. 2012].
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original Birkhoff section S. Then the open book .B2; �2/ pulls back to an open book .B0; � 0/ with page
S 0 D g�1S2 that supports � 0

1
D g��2. This smoothing can be arranged so that preimages of pages agree

with those of an open book .B; �/ coming from the original Birkhoff section S near the binding. Then
one notes that the open book .B0; � 0/ is isotopic to the original one and we deduce that the corresponding
contact structures are contactomorphic. Since h (and hence g) is isotopic to the identity, they are in fact
isotopic.

A.1 Applications to contact topology

Now we can use Theorem 1.12 to translate to the language of contact topology some known results about
Anosov flows. As a first example, Theorem 1.12 implies that the examples of skew Anosov flows on
hyperbolic 3–manifolds built in [Bowden and Mann 2022] (which are all contact flows when done using
Foulon–Hasselblatt contact surgery) have noncontactomorphic contact structures. Thus, we immediately
obtain:

Theorem A.7 For any N 2N there exists an hyperbolic 3–manifold with at least N noncontactomorphic
Anosov contact structures.

This result answers affirmatively a question raised in [Foulon et al. 2021]; see also [Bowden and Mann
2022, Question 7.4].

We can also translate Theorems 3.17 and 3.18 to a description of contact transformation groups, as follows.
For a 3–manifold M with Anosov contact structure � , we follow [Giroux and Massot 2017] and denote by
D.M; �/ the group of contact transformations of .M; �/. Thus, there is a natural inclusion of �0D.M; �/

in MCG.M /.

Theorem A.8 Let � be a Anosov contact structure on M. Suppose that either

(1) M has a unique JSJ piece which is atoroidal , or

(2) each torus of the JSJ decomposition of the manifold M is separating.

In the first case , let D� denote the subgroup of MCG.M / generated by Dehn twists on the JSJ tori. In
the second case , let D� be the subgroup of MCG.M / generated by all Dehn twists in the directions of
periodic orbits together with any Dehn twists on the JSJ tori.

Then any class Œf � 2D� admits a representative f 2 D.M; �/, and , conversely , there exists n 2N such
that , for any class Œf � 2 �0D.M; �/, we have Œf �n 2D� .

Remark A.9 This result partially extends a theorem of Giroux and Massot [2017], who obtained this for
the case of Seifert fibered manifolds. Note that the result of Giroux and Massot is more precise, as ours
only gives a description of �0D.M; �/ up to finite powers.
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Remark A.10 It is not necessary to know the Anosov Reeb flow in order to detect which Dehn twist
is in a direction of a periodic orbit, by the following observation: Let T be an embedded torus that is
quasitransverse to the Anosov flow '. Up to an arbitrarily small perturbation, one can put T in a convex
position with respect to the contact structure � . Then an element ˛ 2 �1.T / corresponding to a periodic
orbit of the flow ' also corresponds to the free homotopy class of a connected component of the dividing
set of the characteristic foliation of � on T. Therefore, one can use Theorem A.8 (or the translation of
Corollary 1.5, which can be obtained in the same way) directly in contact geometry without having to go
through the Anosov side.

Proof of Theorem A.8 We start by proving the converse implication. Let f 2 D.M; �/ and let ' be the
(Anosov) Reeb flow. Then f �1ı't ıf is a contact Anosov flow with contact structure f�� D � . Thus, by
Theorem 1.12, f �1 ı't ıf and 't are isotopically equivalent. Let h WM !M be an orbit equivalence
isotopic to the identity between f �1 ı't ıf and 't ; then h ıf is a self-orbit equivalence of 't . Hence,
by Theorems 3.17 or 3.18 depending on the case, there exists n such that Œf n�D Œ.h ıf /n� 2D� .

Now, for the second part, let Œf � be a class in D� . Then, by Theorems 3.17 or 3.18,  D f �1 ı' ıf is
isotopically equivalent to '. Moreover, the contact structure of  is f�� , where � is the contact structure
of '. By Theorem 1.12, f�� and � are isotopic, so there exists g in the same isotopy class as f such that
g�� D �. That is, g 2 D.M; �/.
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Microlocal theory of Legendrian links and cluster algebras
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We show the existence of quasicluster A–structures and cluster Poisson structures on moduli stacks
of sheaves with singular support in the alternating strand diagram of grid plabic graphs by studying
the microlocal parallel transport of sheaf quantizations of Lagrangian fillings of Legendrian links. The
construction is in terms of contact and symplectic topology, showing that there exists an initial seed
associated to a canonical relative Lagrangian skeleton. In particular, mutable cluster A–variables are
intrinsically characterized via the symplectic topology of Lagrangian fillings in terms of dually L–
compressible cycles. New ingredients are introduced throughout, including the initial weave associated to
a grid plabic graph, cluster mutation along nonsquare faces of a plabic graph, possibly including lollipops,
the concept of sugar-free hull, and the notion of microlocal merodromy. Finally, we prove the existence
of the cluster DT transformation for shuffle graphs, constructing a contact-geometric realization and an
explicit reddening sequence, and establish cluster duality for the cluster ensembles.
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1 Introduction

The object of this article will be to show the existence of intrinsically symplectic quasicluster K2–structures
and quasicluster Poisson structures on moduli stacks of sheaves with singular support in the alternating
strand diagram of a complete grid plabic graph. The construction of such quasicluster structures is achieved
via contact and symplectic topology, based on the recently developed machinery of Legendrian weaves,
and we show that there exists a canonical initial quasicluster seed associated to a relative Lagrangian
skeleton. This is the first manuscript proving the existence of such cluster structures for these general
moduli stacks, and entirely in symplectic geometric terms, as well as introducing the first symplectic
topological definition of cluster A–variables associated to Lagrangian fillings of Legendrian links. In
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Figure 1: The quasicluster K2–structure we construct for this grid plabic graph is on the coordinate
ring of the moduli of decorated sheaves on R2 with singular support in a max-tb Legendrian
representative of the m.96/ knot.

particular, our constructions admit natural contact and symplectic invariance and functoriality properties,
and the cluster variables can be named and computed after performing Hamiltonian isotopies.

Several new ingredients are introduced for this purpose, among them the initial weave of a grid plabic
graph, cluster mutations along nonsquare faces, possibly with lollipops, the concept of sugar-free hulls, and
the notion of microlocal merodromy. Microlocal merodromies capture microlocal parallel transport along
a relative cycle and they are crucial in defining a set of initial cluster A–variables. From a contact geometry
viewpoint, embedded Lagrangian disks whose boundaries lie on embedded exact Lagrangian fillings have
a central role. This allows for geometric characterizations of mutable and frozen vertices, which arise
from relative homology groups of triples, and naturally explains the appearance of quasicluster structures.

1.1 Scientific context

Cluster algebras, first introduced by S Fomin and A Zelevinsky [2002; 2003; Berenstein et al. 2005] in
the context of Lie theory, are commutative rings endowed with a set of distinguished generators that
have remarkable combinatorial structures. Cluster varieties, a geometric enrichment of cluster algebras
introduced by V Fock and A Goncharov [2006b; 2006a], are affine schemes equipped with an atlas of
torus charts whose transition maps obey certain combinatorial rules. Cluster varieties come in dual pairs
consisting of a cluster K2–variety, also known as a cluster A–variety, and a cluster Poisson variety, also
known as a cluster X–variety. In particular, the coordinate ring of a cluster A–variety coincides with an
upper cluster algebra; see Berenstein, Fomin and Zelevinsky [Berenstein et al. 2005].

Since their introduction, cluster algebras and cluster varieties have appeared in many contexts, such as
Teichmüller theory [Fock and Goncharov 2006b; Fomin et al. 2008; Gekhtman et al. 2005], birational
geometry [Gross et al. 2015; 2018; Hacking and Keel 2018], the Riemann–Hilbert correspondence
[Allegretti 2021; Neitzke 2014; Gaiotto et al. 2010], exact WKB analysis [Iwaki and Nakanishi 2014;
2016], and the study of positroid and Richardson varieties [Galashin and Lam 2023; Serhiyenko et al. 2019].
The first appearance of cluster mutations in symplectic geometry occurred in the study of wall-crossing
formulas, following the work of D Auroux, K Fukaya, M Kontsevich, P Seidel, Y Soibelman and others; see
eg [Auroux 2007; 2009; Pascaleff and Tonkonog 2020]. We also thank Goncharov for pointing out to us his
recent work with Kontsevich [2021] focusing on noncommutative clusters, which also aligns well with the
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developments we present here. The first hint that cluster X–structures might naturally exist in the symplectic
study of Legendrian knots was provided in [Shende et al. 2019], where it was computed how certain
absolute monodromies around a square plabic face change under a square move in a plabic fence. See also
the generalization presented in [Shende et al. 2016]. In conjunction, [Shende et al. 2019; 2016] should
imply the existence of partial X–structures for certain moduli stacks of sheaves singularly supported in the
Legendrian lifts of the alternating strand diagrams of plabic fences. Nevertheless, they do not imply the
existence of the full cluster X–structures, nor the full cluster A–structures and certainly not the fact that the
rings of regular functions are cluster algebras. (See Section 2.8.) These stronger statements are proven here.

There are two obstacles to proving the existence of a cluster A–structure. First, many plabic faces are
typically not square and may contain lollipops; thus, one needs a new construction that both associates a
cluster variable to them and allows for a geometric mutation to be performed. Second, more fundamental,
is the regularity problem: even if all faces are square, the absolute monodromies are not global regular
functions, and it is not possible to deduce the existence of a cluster structure purely from these microlocal
monodromies. These obstacles are unavoidable if one is restricted to either plabic graphs or absolute
cycles, both of which are limiting constraints in that approach.

Our new approach uses Legendrian weaves, which are more versatile than plabic graphs, and actually builds
cluster A–variables from relative cycles, which is stronger than the absolute analogue; see Section 2.8. In
particular, we overcome both obstacles above, resolving the regularity problem, and finally prove the
existence of cluster A–structures and, consequently, cluster X–structures in entirely symplectic topological
terms. Some of our previous work used ideas from the theory of cluster algebras for new applications to
contact and symplectic geometry — see eg [Casals 2022; 2020; 2021; Casals and Zaslow 2022; Gao et al.
2020a] — including the discovery of infinitely many Lagrangian fillings for many Legendrian links [Casals
and Gao 2022]. This article builds in the converse direction, using contact and symplectic topology to
construct (upper) cluster algebras, and symplectic topological results to deduce algebraic properties. In
fact, we also know ADU by [Casals et al. 2022], which builds on the present manuscript.

Note that what can be deduced from [Casals et al. 2020; Casals and Gao 2022; Casals and Zaslow 2022;
Gao et al. 2020a; 2020b] is that certain moduli spaces that appear in contact topology are sometimes
abstractly isomorphic to certain affine varieties, which themselves can independently be endowed1 with
cluster structures, but currently there does not exist any symplectic construction or characterization of
cluster A–variables or general cluster X–variables, nor a symplectic geometric proof of the existence of
cluster structures on these moduli spaces, nor even a geometric understanding of frozen variables. In
particular, none of these previous constructions is known to have any Hamiltonian or Legendrian invariance
properties, which are crucial in contact and symplectic topology. In fact, in all previous constructions
even the initial seeds cannot be named after a Hamiltonian isotopy (eg even after a Reidemeister I or II
move) and no symplectic computation or interpretation of cluster A–variables existed. This work finally

1Explicitly, double Bott–Samelson cells for [Gao et al. 2020a], and positroids for [Casals and Gao 2022; Shende et al. 2019].
These instances are, in any case, particular cases of the moduli stacks that we associate to grid plabic graphs.
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resolves this matter and, as we shall see, interesting symplectic features appear with regards to both
mutable and frozen variables.

1.2 Main results

Let ƒ� .T �1R2; �st/ be a Legendrian link in the ideal contact boundary of the cotangent bundle of the
plane R2, and T �ƒ a set of marked points. The precise details and definitions for these contact-geometric
objects are provided in Section 2. Let L� .T �R2; �st/ be an embedded exact Lagrangian filling of ƒ.
By definition, an embedded closed curve  � L is said to be L–compressible if there exists a properly
embedded Lagrangian 2–disk D � .T �R2 nL/ such that @D\LD  �R4. A collection f1; : : : ; `g
of such curves, with a choice of L–compressing disk for each curve, is said to be an L–compressing
system for L if the curves form a maximal linearly independent subset in H1.L/. In line with this, we
will use Lagrangian disk surgeries, as defined in [Polterovich 1991; Yau 2017].

Consider also the moduli stack M.ƒ; T / of decorated microlocal rank-one constructible sheaves on R2

with singular support contained in ƒ, as defined in Section 2.7.3, following [Kashiwara and Schapira
1990; Guillermou et al. 2012], which is invariant under contact isotopies. Let G � R2 be a complete
grid plabic graph and ƒDƒ.G/� T �1R2 its associated Legendrian link, as defined in Section 2. See
Section 2.3 for the definition of the sugar-free hull Sf of a face f in G and Section 4.8 for completeness.
Note that the concept of sugar-free hulls, and whether a region is sugar-free, only depends on the behavior
at nonconvex corners; see Definition 2.2.

Our main result, stated in Theorem 1.1, is the existence and explicit symplectic construction of a full
quasicluster A–structure on M.ƒ; T /. In particular, the cluster A–variables of the initial seed and all the
once-mutated seeds are obtained by a new microlocal parallel transport along certain relative cycles on
exact Lagrangian fillings of ƒ. This microlocal parallel transport is associated to a sheaf quantization of
each exact Lagrangian filling, following [Guillermou et al. 2012; Casals and Zaslow 2022], and we refer
to it as a microlocal merodromy; see Section 4.

Theorem 1.1 (main result) Let G � R2 be a complete grid plabic graph , ƒD ƒ.G/ � .R3; �st/ its
associated Legendrian link , T �ƒ a set of marked points with at least one marked point per component
of ƒ, and M.ƒ; T / the stack of decorated microlocal rank-one constructible sheaves on R2 with singular
support contained in ƒ.

Then there exists a canonical embedded exact Lagrangian filling L D L.G/ � .R4; !st/ of ƒ and a
canonical L–compressing system S D f1; : : : ; `g for L, indexed by the sugar-free hulls of G, such
that , for any completion of S into a basis B of H1.L; T /, the following hold :

(i) The microlocal merodromies A�i
, defined on .and by using/ the open chart .C�/b1.L;T / �

M.ƒ; T / associated to L, extend to global regular functions

A�i
WM.ƒ; T /!C; ie A�i

2 O.M.ƒ; T //;

where B_ D f�1; : : : ; �sg is the dual basis in H1.L nT;ƒ nT /.
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(ii) The microlocal merodromies fA�1
; : : : ; A�`

g associated to the relative cycles that are dual to
an L–compressible absolute cycle in S are irreducible functions in O.M.ƒ; T //, whereas the
merodromies fA�`C1

; : : : ; A�b1.L;T /
g are nonvanishing functions , ie units in O.M.ƒ; T //.

(iii) Let L0
k
� .R4; !st/ be the Lagrangian filling obtained via Lagrangian disk surgery on L at the

L–compressing disk for k 2S, and �0
k
2H1.L

0
k
nT;ƒ nT / the image of �k under the surgery.

Then the merodromy A�0
k

extends to a global regular function

A�0
k
WM.ƒ; T /!C; ie A�0

k
2 O.M.ƒ; T //;

and satisfies the cluster A–mutation formula

A�0
k
A�k
D

Y
�i!�k

A�i
C

Y
�k!�j

A�j

with respect to the intersection quiver Q.B/ of the basis elements B�H1.L; T /.

Finally, the moduli variety M.ƒ; T / admits a cluster A–structure with quiver Q.B/ in the initial seed
associated to the Lagrangian filling L, where the mutable vertices (dually) correspond to the absolute
cycles in the L–compressing system S for L. Furthermore , different choices of completion of S into a
basis B give rise to quasiequivalent cluster A–structures.

The grid plabic graph G actually provides several natural completions of the L–compressing system S to
a basis B, as explained in Section 3. The canonical exact Lagrangian filling LDL.G/ associated with G

is obtained as the Lagrangian projection of the Legendrian surface whose front is given by the weave
w.G/ associated with G, which is constructed in Section 3. The weave w.G/ is used crucially in the
argument so as to obtain a sheaf quantization of L.G/ and prove items (i)–(iii), as required. In addition
to the existence of the cluster A–structures on M.ƒ; T /, another upshot of Theorem 1.1 is that the initial
and the once-mutated cluster A–variables can be named entirely in terms of symplectic topology, in an
intrinsic and geometric manner. The resulting quasicluster A–structure and these A–variables can be
equally considered and computed after a Hamiltonian isotopy.

In terms of the dichotomy between geometry and algebra, Theorem 1.1 shows that the ring O.M.ƒ; T //

behaves as if it were always possible to perform an arbitrary sequence of Lagrangian disk surgeries
starting at L.G/ with the curve configuration from the L–compressing system S. It is known that
geometric obstructions to further surger the Lagrangian skeleton can arise as one performs a series of
Lagrangian surgeries (geometric mutations), eg through the appearance of immersed curves, or algebraic
intersection numbers differing from geometric ones, and yet the existence of the cluster A–structure built
in Theorem 1.1 shows that it is not possible to detect such obstructions by studying O.M.ƒ; T //. Table 1
schematically relates different ingredients involved in the proof of Theorem 1.1.

There are several items from Theorem 1.1 that can be helpful to unpack. First, by a modification of
the Guillermou–Jin–Treumann map — see [Jin and Treumann 2017] — the Lagrangian filling L yields

Geometry & Topology, Volume 28 (2024)



906 Roger Casals and Daping Weng

grid plabic graph G symplectic topology in T �R2 cluster theory

alternating strand diagram Legendrian link ƒ� T �1R2 D�–stack M.ƒ; T / from
(with marked points T ) (with marked points T ) dg category Shƒ.R2/

Goncharov–Kenyon conjugate weave for Lagrangian filling L open toric chart
surface associated to G (D) sheaf quantization F.L// TL D .C�/b1.L;T / �M.ƒ; T /

L–compressible curve  � L TL–coordinate that extends to a
sugar-free hull of G with dual relative cycle global regular function

Œ�� 2N DH1.L nT;ƒ nT / A� WM.ƒ; T /!C

set S of sugar-free hulls mutable sublattice ZjS j �N mutable variables fA�g in TL

non-sugar-free region of G
immersed curve # � L with dual TL–coordinate extending to

(eg a non-sugar-free face) relative cycle � in N (# represented nonvanishing global regular
by immersed Y–tree in weave) function A� WM.ƒ; T /!C

subset of non-square-free regions sublattice Zb1.L/�jS j �N frozen variables fA�g in TL
chosen via Hasse diagram complement to sublattice ZjS j (quasicluster equivalent)
(different choices allowed) (different complements)

intersection form on absolute H1 intersection form on M DH1.L; T / quiver Q.fA�g; fA�g/ for TL
of conjugate surface (and thus on dual N DM �) (different from naive Q.G/)

“mutation” at sugar-free hull (not Lagrangian surgery L0 D � .L/ and TL0–coordinate extending to
necessarily a square face, result relative cycle �0 D � .�/ in L0; a global regular function
often not a plabic graph but sheaf quantization F.L0/ via A�0 WM.ƒ; T /!C given by
represented by a weave) weave mutation at Y–tree for  cluster A–mutation at �

Table 1: Ingredients in the symplectic construction of upper cluster algebra for O.M.ƒ; T //.

an open toric chart .C�/b1 � M.ƒ; T /, where b1 D rk.H1.L n T;ƒ n T // D rk.H1.L; T //. The
group H 1.LIC�/ D Hom.H1.LIZ/;GL1.C// accounts for the C�–local systems on L.G/, and the
modification accounts for the relative piece given by the marked points T ; see Section 2.7 for details.
By construction, microlocal merodromies are a priori functions on this particular chart .C�/b1 , and
they visibly depend on L. In fact, in many cases they are (restrictions of) rational functions with
nontrivial denominators and do not extend to global regular functions. Nevertheless, Theorem 1.1
shows that, remarkably, there is a particular set of such functions, indexed by a basis completion of
the L–compressing system S, whose elements extend to regular functions from .C�/b1 to the entire
moduli M.ƒ; T /.

Second, the frozen cluster A–variables in Theorem 1.1 have two geometric, markedly distinct, origins:
absolute cycles in H1.L/, and relative cycles with endpoints in T which are themselves not dual to any
absolute cycle. The appearance of the former type of frozen variables, associated to absolute cycles, is an
entirely new phenomenon, starting the study of L–(in)compressible curves in Lagrangian fillings. (For
example, we show that a Chekanov m.52/ already displays such features.) At least to date, all known
instances of frozen variables of geometric origin were related to marked points, in line with the latter
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type of frozens. The existence of a cluster structure on M.ƒ; T / with a particular quiver Q has neat
applications to symplectic geometry, eg studying the possible relative Lagrangian skeleta containing L
for the Weinstein relative pair .C2; ƒ/; see below for more.

Third, item (iii) in Theorem 1.1 geometrically keeps track of certain relative cycles before and after a
Lagrangian surgery: the data being analyzed is the change of a specific local system along that relative
cycle (which itself changes topologically). This local system is obtained by applying the microlocal functor,
with the target being the Kashiwara–Schapira stack �Shƒ, to a sheaf quantization of L. In our proof of
Theorem 1.1, the sheaf quantization is obtained thanks to the construction of the weave w.G/, which
represents a (front of the) Legendrian lift of L. In fact, Section 3 will provide a diagrammatic method
to draw those relative cycles before and after a weave mutation, and Section 4 provides a Lie-theoretic
procedure to compute with such (microlocal) local systems. Note also that the geometric mutations are
associated with sugar-free hulls, which are not necessarily square faces and might include lollipops; the
fact that the calculus of weaves allows for these general mutations is crucial in order to conclude that the
coordinate ring of M.ƒ; T / is an upper cluster algebra.

Finally, the symplectic geometry perspective naturally leads to a quasicluster A–structure, rather than
a cluster A–structure. Indeed, the weave w.G/ canonically gives the L–compressing system S, which
yields a linearly independent subset of H1.LnT;ƒnT /. Nonetheless, there are cases in which this subset
does not span and a choice of basis completion is precisely what introduces the quasicluster ambiguity.
In particular cases, such as G being a plabic fence, the L–compressing system already gives a basis and
hence M.ƒ.G/; T / carries a natural cluster A–structure, but for a generic grid plabic graph G there is
no a priori reason for that to be the case; the natural algebraic structure arising from symplectic geometry
is only unique up to quasicluster equivalence.

Theorem 1.1 also implies a series of new computations and results in 3–dimensional contact topology.
Indeed, in many interesting cases, such as those where the cluster algebra equals the upper cluster algebra
[Muller 2013; 2014; 2022], the existence of a full cluster A–structure on the moduli space2MDM.ƒ; T /,
as proven in Theorem 1.1, leads to:

(1) The computation of its de Rham cohomology ring H�.M;C/, including the refinement of its
mixed Hodge structure. These computations are done in [Lam and Speyer 2022] for the locally
acyclic cases.

(2) The existence of a holomorphic (pre)symplectic structure for the moduli space M. This allows
for many classical techniques, such as quantization, to be applied to the coordinate ring O.M/;
see [Gekhtman et al. 2010]. We emphasize that the cluster A–variables associated to a seed
are exponential Darboux coordinates for the symplectic 2–form. Note also that a holomorphic
symplectic structure on the augmentation variety was recently constructed in [Casals et al. 2020]
by different means (using the Cartan 3–form and Bott–Shulman forms), and see work of P Boalch

2If not made explicitly, the set of marked points T is taken to have one marked point per component of ƒ.

Geometry & Topology, Volume 28 (2024)



908 Roger Casals and Daping Weng

[2014a; 2014b]. Upcoming work with our collaborators will show that these holomorphic symplectic
structures coincide whenever they can be compared.

(3) In the Louise case [Lam and Speyer 2022], it is possible to compute the eigenvalues of the Frobenius
automorphism on `–adic cohomology and perform finite point counts #M.Fq/ over finite fields
Fq for q D pk and p large enough. These ought to be compared with the contact and symplectic
results in [Henry and Rutherford 2015; Ng et al. 2017].

Another byproduct of our result, thinking in terms of cluster ensembles [Fock and Goncharov 2006a], is that
there also exists a (full) cluster X–structure. Let M1.ƒ/ be the undecorated stack associated to M.ƒ; T /

and M1.ƒ; T / its enhancement with framing data at T. Theorem 1.1 implies the following result:

Corollary 1.2 Let G � R2 be a complete grid plabic graph , ƒ D ƒ.G/ � .R3; �st/ its associated
Legendrian link and T �ƒ marked points. Then there exists a quasicluster X–structure on M1.ƒ; T /.

In fact , each completion of the L–compressing system S to a basis B of H1.L; T / gives a cluster
X–structure on M1.ƒ; T /. The initial quiver Q is defined by the intersections in B and the initial cluster
X–variables are microlocal monodromies associated with elements of B. In addition , the mutable cluster
X–variables are those associated with curves in the L–compressing system S and different choices of
completion of S to a basis B give quasiequivalent cluster X–structures on M1.ƒ; T /.

Corollary 1.2 is a new result and establishes the existence of a (full) cluster X–structure. It is crucial to
understand that there is currently no proof of Corollary 1.2 on its own. Namely, we are only able to deduce
the existence of a cluster X–structure once we have proven the existence of a full cluster A–structure in
Theorem 1.1; two mathematical reasons are that the results used from [Berenstein et al. 2005] are only
applicable to cluster A–structures and that the codimension 2 arguments in Section 4 require an explicit
understanding of the A–variables, including their irreducibility; see also Section 2.8.

The two moduli M.ƒ.G/; T / and M1.ƒ.G/; T / in Theorem 1.1 and Corollary 1.2 form a cluster ensemble.
In Section 5, we focus on shuffle grid plabic graphs and prove that these cluster varieties always admit a
Donaldson–Thomas (DT) transformation. See [Kontsevich and Soibelman 2010; Goncharov and Shen
2018] for the necessary preliminaries on DT transformations. In fact, we realize this cluster automorphism
geometrically, as a composition of a Legendrian isotopy of ƒ.G/ and the strict contactomorphism
t W .x; y; z/ 7! .�x; y;�z/ of .R3; kerfdz�y dxg/. In particular, we conclude the following result:

Corollary 1.3 Let G be a shuffle grid plabic graph. Consider the contactomorphism t and the half
Kálmán loop Legendrian isotopy K1=2. Then the composition t ıK1=2 induces the (unique) cluster
Donaldson–Thomas transformation of M1.ƒ.G//.

In particular , the cluster duality conjecture holds for the cluster ensemble
�
M.ƒ.G/; T /;M1.ƒ.G/; T /

�
.

The explicit sequence of mutations realizing the DT transformation is presented in Section 5. We show it
is a reddening sequence. Examples prove that it is not necessarily a maximal green sequence.
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Finally, the contact and symplectic geometric results and techniques we use and develop to prove
Theorem 1.1 are invariant under Hamiltonian isotopies, not necessarily compactly supported. Given that
the cluster coordinates in Theorem 1.1 and Corollary 1.2 are all intrinsically named through symplectic
geometric means; they can be named, and computed, after a compactly supported Hamiltonian isotopy is
applied to L.G/ or a contact isotopy is applied to ƒ.G/. This is a distinctive crucial feature which had
been missing in [Casals et al. 2020; 2021; Casals and Zaslow 2022; Gao et al. 2020a], where even the
initial seed could not typically be defined (nor computed) after a Legendrian isotopy.3

Notation We denote by Œa; b� the discrete interval fk 2N j a � k � bg if a � b with a; b 2N. In this
article, Sn denotes the group of permutations of n elements for n 2N, and si its i th simple transposition
for i 2 Œ1; n� 1�. We abbreviate sŒb;a� WD sbsb�1 : : : saC1sa and s�1

Œb;a�
WD sasaC1 : : : sb�1sb for a < b

with a; b 2N, and sŒb;a� and s�1
Œb;a�

are empty if b <a. Let w0;n 2Sn be the longest word in the symmetric
group Sn; we will sometimes write w0 2 Sn if n is clear by context. The standard word w0;n for w0;n is
defined to be the reduced expression w0;n WD sŒ1;1�sŒ2;1�sŒ3;1� : : : sŒn�1;1�.

Extended version This paper is a condensed account of arXiv 2204.13244, also available on our research
websites, which contains a series of additional examples and figures, as well as more detail in some of
the proofs and motivation and context in parts of the construction. The interested reader might benefit
from the more inviting extended version, as it is more comprehensive and builds the proofs in a more
self-contained manner. That said, we believe experts will also appreciate this streamlined version, where
only the logically necessary steps for our main results are included.
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2 Grid plabic graphs and Legendrian links

In this section we introduce the starting characters in the manuscript. On the combinatorial side, we
introduce the notion of a grid plabic graph G in Section 2.1, and that of sugar-free hulls in Section 2.3.
On the geometric side, we introduce a front for the Legendrian link ƒ.G/ associated to the alternating
strand diagram of a grid plabic graph G in Section 2.4, and set up the necessary moduli spaces from the
microlocal theory of sheaves in Section 2.7. Several explicit examples are provided in Section 2.5.

2.1 Grid plabic graphs

The input object in our results is the following type of graphs:

3The pullback structures from [Shende et al. 2019, Section 3] had the same issue.
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Definition 2.1 An embedded planar bicolored graph G �R2 is said to be a grid plabic graph (or GP
graph for short) if it satisfies the following conditions:

(i) The vertices of G �R2 belong to the standard integral lattice Z2 �R2, and they are colored in
either black or white.

(ii) The edges of G �R2 belong to the standard integral grid .Z�R/[ .R�Z/�R2. Edges that are
contained in Z�R are said to be vertical, and edges that are contained in R�Z are said to be
horizontal.

(iii) A maximal connected union of horizontal edges is called a horizontal line. Each horizontal line
must end at a univalent white vertex on the left and a univalent black vertex on the right. These
univalent vertices are called lollipops.

(iv) Each vertical edge must end at trivalent vertices of opposite colors, and the endpoints of a vertical
edge must be contained in the interior of a horizontal line.

In Definition 2.1, it is fine to allow for bivalent vertices. The Legendrian isotopy type of the zigzag diagram,
as introduced in Section 2.4, does not change when inserting such vertices, nor does the Hamiltonian
isotopy type of the Lagrangian filling associated to the conjugate surface.

2.2 Column types and associated transpositions

The intersection of a GP graph G � R2 with a subset of the form f.x; y/ 2 R2 j l < x < rg � R2 for
some l; r 2R with l < r is said to be a column of G. Any GP graph G is composed by the horizontal
concatenation of three types of nonempty column, called elementary columns. These three types of
elementary column are depicted in Figure 2 and can be described as follows:

� A column is said to be Type 1 if it solely consists of parallel horizontal lines, ie it contains no
vertices.

� A column is said to be Type 2, or a crossing, if it contains exactly two oppositely colored vertices
of G and a (unique) vertical edge between them.

� A column is said to be Type 3, or a lollipop, if it contains exactly one lollipop. Note that the
lollipop can be either white or black.

Type 1 Type 2 (crossings) Type 3 (lollipops)

1

2

3

i

i C 1

n

:::

:::

1

2

3

i

i C 1

n

:::

:::

1

2

3

i

i C 1

n

:::

:::

1

2

3

i

n� 1

n

:::

:::

1

2

3

i

n� 1

n

:::

:::

Figure 2: The three types of elementary column in a GP graph.
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We label the horizontal G–edges in Type 1 and 2 columns by consecutively increasing natural numbers
from bottom to top. The horizontal lines of a Type 3 column are labeled in a similar way, but using the
right side of the column in the case of a white lollipop and using the left side of the column in the case of
a black lollipop. Without loss of generality, we always assume that there is a Type 1 column on each side
of a column of Type 2 or 3.

Let SN be the (infinite) group of permutations on the set N. It is generated by simple transpositions
si D .i; i C 1/ with i 2 N. Within SN , we define SŒa;b� Š Sb�aC1 to be the subgroup consisting of
bijections that map i back to itself for all i … Œa; b�. As we scan from left to right across the elementary
columns of G, we associate a copy of SŒa;b� for some Œa; b� with each column of Type 1 or 2 via these
rules:

� We start with the empty set before the leftmost white lollipop, and we associate SŒ1;1� with the
Type 1 column right after the leftmost white lollipop.

� The symmetric group SŒa;b� does not change as we scan through a Type 1 or 2 column.

� If the symmetric group is SŒa;b� before a Type 3 column with a white lollipop, then the symmetric
group after this Type 3 column is SŒa;bC1�.

� If the symmetric group is SŒa;b� before a Type 3 column with a black lollipop, then the symmetric
group after this Type 3 column is SŒaC1;b�.

In summary, when passing through a white lollipop we move from a copy of Sk to a copy of SkC1 by
adding a simple transposition at the end (with a larger subindex), and when passing through a black
lollipop we move from a copy of SkC1 to a copy of Sk by dropping the first transposition (with smaller
subindex).

2.3 Sugar-free hulls

By definition, a face of a GP graph G is any bounded connected component of R2 nG. A face is said to
contain a lollipop if its closure in R2 contains a univalent vertex of G. A region of a GP graph G is a
union of faces whose closure in R2 is connected; in particular, a face is a region and the union of any
pair of adjacent faces is a region. For instance, the yellow and red areas depicted in Figure 1 are both
faces and the yellow face contains a lollipop; their union is a region (which will be the sugar-free hull of
the yellow face).

The boundary @R of a region R is the topological (PL-smooth) boundary of its closure R � R2. The
boundary @R of a region necessarily consists of straight line segments meeting at corners that have either
90ı or 270ı angles. By definition, a 270ı corner is said to be left-pointing if it is of the form or , and
a 270ı corner is said to be right-pointing if it is of the form or . Equipped with this terminology, we
introduce the following notion:
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sugar-free sugar content

Figure 3: The four corners depicted on the left, in yellow, are allowed in a sugar-free region. The
four corners depicted on the right, in orange, are not allowed in a sugar-free region; they have
sugar content.

Definition 2.2 Given a grid plabic graph G, a region R is said to be sugar-free if all left-pointing 270ı

corners along @R are white and all right-pointing 270ı corners along @R are black. See Figure 3 for a
picture with the allowed (and disallowed) corners. The sugar-free hull S.f / of a face f of a plabic
graph G is defined to be the intersection of all sugar-free regions R containing f. In particular, sugar-free
hulls are sugar-free regions.

The boundary of a sugar-free region has the following characterization, which follows immediately from
the fact that all vertical bars must be of different colors at the two ends:

Lemma 2.3 Let R be a sugar-free region in a GP graph G. Then @R must be decomposed as a
concatenation of staircases of the four types illustrated in Figure 4.

Lemma 2.4 Let G be a GP graph , R � G be a sugar-free region and C a column in G of any type.
Then the intersection R\C has at most one connected component.

Proof By definition, the region R is connected. Thus, in order for the intersection R\C to have more
than one connected component, R needs to make a (horizontal) U-turn at some point and @R must contain
a part that is of the shape “R .” or “/ R”, where the parentheses indicate the U-turn and the letter R
indicates the side of the region. However, such a shape cannot be built using the four types of staircases
in Lemma 2.3 and therefore R\C can have at most one connected component.

. . .
R

:: :

R
. . .
R

:: :
R

Figure 4: Four types of staircase building blocks for the boundary @R of a sugar-free region
R �G. In each instance, the letter R marks the location of the region in the plane. The dashed
lines indicate that @R can continue in either of the two branches

Geometry & Topology, Volume 28 (2024)



Microlocal theory of Legendrian links and cluster algebras 913

Figure 5: The local models for an alternating strand diagram associated to a GP graph G. The
small hairs indicate the coorienting direction, which is needed to specify a Legendrian lift.

Note that if a region R is not simply connected, then there must exist a column C such that R\C has
more than one connected component. Thus, Lemma 2.4 has the following consequence, despite the fact
that there may exist non–simply connected faces in the GP graph:

Corollary 2.5 Sugar-free regions are simply connected.

2.4 Legendrian links

In this subsection we introduce the Legendrian link ƒ.G/� .R3; �st/ associated to a GP graph G �R2

and explain how to algorithmically draw a specific front by scanning G left to right. Let us begin with
the concise definition of ƒ.G/:

Definition 2.6 Let G � R2 be a GP graph. The Legendrian link ƒ.G/ � .R3; �st/ is the Legendrian
lift of the alternating strand diagram of G, understood as a cooriented front in R2, considered inside a
Darboux ball in .T �1R2; �st/.

Alternating strand diagrams were introduced in [Postnikov 2006, Definition 14.1] for a reduced plabic
graph. In general, we associate such diagrams to a GP graph G �R2 according to the two local models
shown in Figure 5, where the hairs indicate the coorientation. The alternating strand diagram near a
lollipop (or a bivalent vertex) is the same as in [Postnikov 2006], and the coorientation in these pieces is
implied by the coorientations above.

By definition, the Legendrian lift of a cooriented immersed curve on the plane R2 is a Legendrian link
inside the ideal contact boundary .T �1R2; �st/. The contact structure is the kernel of the restriction of the
Liouville 1–form on T �R2 to this hypersurface. In general, such Legendrian links cannot be contained
in a Darboux ball, but, for a GP graph G, the Legendrian lift ƒ.G/ is naturally contained in a Darboux
ball, as we now explain. Let us choose Cartesian coordinates .u; v/ 2 R2. Then the contact structure
on T �1R2u;v can be identified as the kernel of the contact 1–form ˛st WD cos � duC sin � dv, where
� 2 Œ0; 2�/ is the angle between a given covector a duC b dv and du, a; b 2R and a2C b2 ¤ 0. Note
that T �1R2 is diffeomorphic to R2�S1 and � 2S1 records that circle coordinate. In fact, we can consider
the 1–jet space .J 1S1; �st/ with its standard contact structure kerfˇstg, ˇst WD dz�y d� , where y 2R is
the coordinate along the cotangent fiber and z 2R the Reeb coordinate, as J 1S1 WD T �S1 �R. Then
there exists a strict contactomorphism ' W .T1R2; ˛st/! .J 1S1; ˇst/ given by

'�.�/D �; '�.y/D�u sin � C v cos �; '�.z/D u cos � C v sin �:
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Figure 6: The rules to construct the front f.G/ from the elementary columns of a GP graph G.
In this case, Type 1 and Type 2 columns are depicted, with the GP graph G on the left and the
front f.G/ on the right. We have colored the top n strands of the front in orange and the bottom n

strands of the front in blue for clarification purposes.

For any open interval I � S1, .J 1I; �st/ is contactomorphic to a standard Darboux ball .R3; �st/. In
consequence, if a cooriented immersed curve f � R2 in R2 has a Gauss map that misses one given
angle �0, the Legendrian lift of f�R2 is contained in .J 1.S1 n �0/; �st/, which is contactomorphic to a
Darboux ball. This happens for the alternating strand diagram of a GP graph G � R2 and thus ƒ.G/
naturally lives inside a Darboux ball.

Let us now construct a particular type of (wave)front for the Legendrian link ƒ.G/, which is useful to
describe our moduli spaces in Lie-theoretic terms. For that, we consider the front f.G/�R2 obtained by
dividing the GP graph G into elementary columns and then use the assignments depicted in Figures 6
and 7. Namely, to an elementary column of Type 1 with n strands, we assign a front consisting of 2n
parallel horizontal strands. For an elementary column of Type 2 with n strands and a vertical bar at the i th

position, we assign a front consisting of 2n parallel horizontal strands with a crossing at the i th position
either at the top n strands or the bottom n strands, depending on whether the vertical bar has a white
vertex at the top or at the bottom. Figure 6 depicts these three cases for Types 1 and 2. The case of an

Figure 7: The rules to construct the front f.G/ from the elementary columns of a GP graph G. In
this case, the two kinds of Type 3 columns are depicted, with the GP graph G on the left and the
front f.G/ on the right. We have colored the top n strands of the front in orange, the bottom n

strands of the front in blue, and the newly inserted strand with a cusp in green, to help visualize
the front.
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elementary column of Type 3 involves inserting a right (resp. left) cusp at the i th position (plus some
additional crossings) if there is a black (resp. white) lollipop inserted at the i th position. Figure 7 depicts
the two possible cases for a Type 3 column.

Note that the 2n strands in the front are labeled in a specific manner in Figures 6 and 7, starting the count
from the outer strand and increasing towards the middle. This choice of labeling is the appropriate one:
in this way, when only left cusps have appeared, which is always the case at the beginning if we read G

left to right, the i th top strand (in orange) and the i th bottom strand (in blue) coincide. Now, the front
f.G/�R2 lifts to a Legendrian link ƒ.f.G//� .R3; �st/. We observe that, in this case, the lift can be
considered directly into R3, as the front is cooriented upwards and there are no vertical tangencies. The
following proposition follows by applying the above contactomorphism ' W .T1R2; ˛st/! .J 1S1; ˇst/:

Proposition 2.7 Let G � R2 be a GP graph. Then the two Legendrian links ƒ.G/ � .R3; �st/ and
ƒ.f.G//� .R3; �st/ are Legendrian isotopic.

2.5 Instances of GP graphs G and their Legendrian links ƒ.G/

In this subsection we discuss a few examples of GP graphs G that lead to particularly interesting and
well-studied Legendrian links.

Plabic fences Consider a GP graph G � R2 whose white lollipops all belong to the line f�1g �R,
and all black lollipops belong to the line f1g �R. Figure 8 depicts instances of such GP graphs. These
GP graphs are called plabic fences in [Fomin et al. 2022, Section 12], following L Rudolph’s fence
terminology. It follows from Proposition 2.7 and the rules from Figures 6 and 7 that the Legendrian link
ƒ.G/ associated to a plabic fence G �R2 is Legendrian isotopic to the (Legendrian lift of the) rainbow
closure of a positive braid. In fact, given such a plabic fence G �R2 with n horizontal lines, consider the
positive braid word ˇ 2 BrCn whose kth crossing is �j if and only if the kth vertical edge with black on
bottom of G (starting from the left) is between the j th and .jC1/st horizontal strands. Similarly, consider
the positive braid word ı whose mth crossing is �n�j if and only if the mth vertical edge with white on

ı

ˇ

Figure 8: A front for the Legendrian link associated to the GP graph on the left is drawn
on the right, where ˇ; ı 2 BrC6 are the positive braid words ˇ D �5�1�3�4�3�

2
5�2�1�4 and

ı D �1�3�4�
2
5�4�1�2�4�1�2�5�4�3�2�3�1.
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m.52/ m.72/

. . .

G

Figure 9: GP graphs whose alternating strand diagrams have the smooth type of (mirrors of)
twist knots. The GP graph on the left (resp. middle) yields a max-tb Legendrian representative of
m.52/ (resp.m.72/). The right illustrates the general case, where a GP graph is built by iteratively
inserting — in a staircase manner — the local piece inside the GP graph in the upper left.

bottom of G is between the j th and .jC1/st horizontal strands. Then Figure 8, right, depicts a front
for the Legendrian link ƒ.G/, which is readily homotopic to the rainbow closure of the positive braid
word ˇıı (or equivalently ııˇ), where ıı denotes the reverse positive braid of ı.

Legendrian twist knots Let us consider the family of GP graphs Gn, indexed by n 2N, that we have
depicted in Figure 9. Each GP graph Gn has two long horizontal bars and it is obtained by inserting a
staircase with n steps between two vertical bars, themselves located at the leftmost and rightmost position.
Figure 9 draws G1 (left) and G2 (middle). By using Figures 6 and 7, fronts for the associated Legendrian
knots ƒ.Gn/ are readily drawn: Figure 10 depicts fronts for ƒ.G1/ and ƒ.G2/. In general, we conclude
that ƒ.Gn/ is a max-tb Legendrian representative of a twist knot, with zero rotation number. Note that
Legendrian twist knots are classified in [Etnyre et al. 2013]. In particular, the Legendrian knot ƒ.G1/

associated to the GP graph depicted in Figure 9, left, is the unique max-tb Legendrian representative of
m.52/ with a binary Maslov index. This is one half of the well-known Chekanov pair.4

m.52/ m.72/

Figure 10: The two Legendrian fronts obtained from the left and middle GP graphs of Figure 9,
according to our recipe translating from GP graphs to Legendrian front diagrams. The corre-
sponding GP graphs are drawn in a small box below each front. The front diagram for the general
case (Figure 9, right) is readily inferred from these two pictures: a knotted spiraling pattern is
iteratively added to the center region of the front.

Shuffle graphs Let us introduce a class of GP graphs which leads to interesting examples.

4The other max-tb representative of m.52/ is not isotopic to ƒ.G/ for any GP plabic graph G.
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Definition 2.8 A GP graph G �R2 with n horizontal lines is said to be a shuffle graph if:

(1) There existM 2N and � 2Sn such that each horizontal line goes from .�M�.i/; i/ to .M�.i/; i/.

(2) Vertical edges are all of the same pattern, ie they either all have a black vertex on top or they all
have a white vertex on top.

The two families above, plabic fences and the GP graphs in Figure 9 for Legendrian twist knots, are
instances of shuffle graphs. Shuffle graphs G�R2 have the property that the Legendrianƒ.G/� .R3; �st/

is Legendrian isotopic to the Legendrian lift of the .�1/–closure of a positive braid of the form ˇ�, where
�2BrCn is the half-twist and ˇ2BrCn has Demazure product Dem.ˇ/Dw0Dw0;n2Sn. (By [Casals et al.
2020; Casals and Ng 2022], the condition Dem.ˇ/D w0 2 Sn is necessary.) For example, it is a simple
exercise to verify that any .�1/–closure of a 3–stranded ˇ�, where ˇ;� 2 BrC3 and Dem.ˇ/Dw0 2 S3,
arises as ƒ.G/ for some shuffle graph G. In view of this and [Casals et al. 2020; 2021; Casals and Ng
2022], we refer to a positive braid ˇ 2 BrCn as �–complete if it is cyclically equivalent to a positive braid
of the form � , where � is the half twist and Dem./D w0;n.

Let us point out two properties of the Legendrian links ƒ.G/ that are useful. First, as we will ex-
plain, the Legendrian links ƒ.G/ always bound an orientable exact embedded Lagrangian filling in the
symplectization of .R3; �st/, and thus in the standard symplectic Darboux 4–ball. In particular, their
Thurston–Bennequin invariant is always maximal and their rotation number vanishes. Second, it follows
from the discussion in Section 2.4, especially Figures 6 and 7, that ƒ.G/ admits a binary Maslov index
and that the smooth type ofƒ.G/ is that of the .�1/–closure of a positive braid. The former is particularly
useful for us, as this implies that complexes of sheaves with singular support inƒ.G/ are quasi-isomorphic
to sheaves (concentrated in degree 0) and it is thus possible to parametrize the moduli of objects of
the appropriate dg category by an affine variety (or algebraic quotient thereof). Section 2.7 sets up the
necessary ingredients on the microlocal theory of sheaves as it relates to these Legendrian links ƒ.G/.

2.6 Lollipop chain reaction

In this subsection we introduce an algorithmic procedure, called a lollipop chain reaction, which aims
to select faces for a sugar-free hull. The lollipop chain reaction initiates at a face f, and produces a
collection of faces that are guaranteed to be inside the sugar-free hull Sf . In many interesting cases of G,
such as shuffle graphs, this procedure yields the entire sugar-free hull Sf . These combinatorial tools are
used in Section 4.7, in the proof of Proposition 4.23. Let us start with the definition of a single lollipop
reaction:

Definition 2.9 Let w be a white lollipop in a GP graph G, and let h1 and h2 be the two adjacent
horizontal G–edges to the immediate left of w (in between which the lollipop appears). A vertical line
segment between h1 and h2 is said to be a wall. By definition, the lollipop reaction initiated from the
lollipop w pushes this wall to the right along G with the following rules: the wall shrinks or expands
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according to the following five pictures and otherwise the wall stays between the same G–edges:

h1

h2

w

wall starts

 

 
wall shrinks

 

wall shrinks
 

wall expands

 

wall expands

A single lollipop reaction initiated from a black lollipop b is defined in a symmetric fashion: start with
a wall going between the two adjacent horizontal lines to the right of b, consider a wall between them
and scan to the left. For a black lollipop, the wall shrinks or expands as it moves left according to the
following five pictures and otherwise stays between the same G–edges:

h1

h2

b

wall starts

 

 
wall shrinks

 

wall shrinks
 

wall expands

 

wall expands

As the wall moves to the right (for a white lollipop) or to the left (for a black lollipop), we select all the
faces that this wall scans through. By definition, a lollipop reaction completes when the length of the wall
becomes zero. The output of a lollipop reaction is the selection of faces of the GP graph which it has
scanned through. If the length of the wall becomes infinite (ie going to the unbounded region), then the
lollipop reaction is said to be incomplete, and it outputs nothing.

In order to be effective, these lollipop reactions in general need to be iterated as follows:

Definition 2.10 Let f �G be a face of a GP graph G. A lollipop chain reaction initiated at f is the
recursive face selection procedure obtained as follows. First, select the face f. Then, for each of the
newly selected faces and each inward-pointing lollipop of this face, run a single lollipop reaction and
select new faces (if any).

Since the number of faces in G is finite, this process terminates either when no new faces are selected,
for which we say that the lollipop chain reaction is complete, or when one of the single chain reactions is
incomplete, for which we say that the whole lollipop chain reaction is incomplete.

Note that a single lollipop reaction selects faces that are minimally needed to avoid sugar-content corners
on the immediate right of a white lollipop or the immediate left of a black lollipop. Therefore, the outcome
of the lollipop chain reaction initiated from a face f must be contained in the sugar-free hull Sf . In other
words, if the lollipop chain reaction initiated from f is incomplete, then Sf does not exist. On the other
hand, when sugar-free hulls Sf exist, lollipop chain reactions do produce sugar-free hulls for a large
family of GP graphs:
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Proposition 2.11 Let G be a shuffle graph and f a face of G for which Sf is nonempty. Then the
lollipop chain reaction initiated from f is complete and Sf coincides with the outcome of this lollipop
chain reaction.

Proof We observe that, in a shuffle graph there cannot be any black lollipop on the left side of a white
lollipop, nor can there be any white lollipop on the right side of a black lollipop. Therefore, if there is a
white lollipop inside a face f, then the part of the boundary @f straightly left of the white lollipop can
only consists of a single vertical bar. Similarly, if there is a black lollipop inside a face f, then the part of
the boundary @f straightly right of the black lollipop can only consists of a single vertical bar as well.
Now, if the face f does not have any lollipops, then Sf D f, which is also equal to the outcome of the
lollipop chain reaction, as required. It remains to consider faces that do have lollipops inside. Without
loss of generality, let us suppose that only vertical G–edges of the type appear in G and suppose that f
contains a white lollipop. Consider the leftmost white lollipop w of f. Then, at the starting point, the
wall for this lollipop goes between two adjacent horizontal lines h1 and h2, and @f only has a single
vertical bar to the left of this wall. Then the lollipop reaction starts moving the wall to the right, and one
of the following two situations must occur:

� The wall never expands. If this is the case, the wall must be shrinking towards the top as shown below:

w
� � �

:::

The result of the lollipop reaction is sugar-free.

� The wall expands at some point. Note that the wall only expands when it passes through a black
lollipop b. Let g be the face containing b. Then the part of @g straightly right of b only consists of a
single vertical edge e, and hence the rightward scanning must end at e. Note that in this case there can be
a concavity below the selected faces right before the expansion of the wall. So we have

w
� � �

::: e or
w

� � �
:::

e

Now we start scanning leftward from the rightmost black lollipop in the face g. Note that, for a leftward
scanning, the wall should be shrinking towards the bottom. Also, due to the “last in, first out” order on
the horizontal lines, the top vertex of the vertical edge e cannot be below the top horizontal line of the
previous scanning. If the top vertex of e is above the previous horizontal line, then the bottom vertex of e
must be below the previous bottom horizontal line, and the leftward scanning will not stop until it goes
back all the way to the beginning point of the previous scanning. On the other hand, if the top vertex
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of e is on the previous horizontal line, then the bottom vertex of e can be above the previous bottom
horizontal line. But then the horizontal line at the bottom of the vertical edge e must extend to the left
and meets the staircase of the previous rightward scanning, and that is where the leftward scanning stops.
In consequence, the lollipop reaction from the rightmost black lollipop of the face g must fill in the lower
concavity of the previous rightward scanning.

Note that, in the second case above, the leftward scanning can also end in two ways, but we can conclude
by induction that in the end all concavities will be filled and hence the resulting union must be sugar-free,
as required.

There are many nonshuffle GP graphs for which lollipop chain reactions also yield sugar-free hulls, and
thus the hypothesis in Proposition 2.11 is sufficient but not necessary.

2.7 Legendrian invariants from the microlocal theory of sheaves

In this subsection we lay out the necessary ingredients of the microlocal theory of constructible sheaves
that we shall use in our contact-geometric framework. We describe the general setup in Section 2.7.1,
based on [Kashiwara and Schapira 1985; 1990; Guillermou et al. 2012; Guillermou and Schapira 2014;
Shende et al. 2017].5 Section 2.7.2 discusses the specific simplifications that occur for the Legendrian
links ƒ.G/ and Section 2.7.3 introduces the necessary decorated version of the moduli stacks being
discussed. Let k be a commutative coefficient ring, for us either kD Z or kD C. Consider a smooth
manifold M, �M W T �M !M its cotangent bundle and T �1M !M its ideal contact boundary; we will
only need M DR2 and R3.

2.7.1 The general setup The general results on the microlocal theory of constructible sheaves were
pioneered by M Kashiwara and P Schapira [1990] and, more recently, in collaboration with S Guillermou
in [Guillermou et al. 2012]. The first category that we need is defined as follows:

Definition 2.12 The category I.kM / is the full dg subcategory of the dg category of locally bounded
complexes of sheaves of k–modules on M which consist of h–injective complexes of injective sheaves.
The homotopy category of I.kM / is denoted by ŒI.kM /�.

The dg category I.kM / is a strongly pretriangulated dg category and the six-functor formalism lifts
to this dg enhancement I.kM /; see [Schnürer 2018]. The homotopy category ŒI.kM /� is triangulated
equivalent to the locally bounded derived category of sheaves on M, often denoted by Dlb.kM /. For
an object F 2 I.kM /, we denote by �supp.F /� T �M its singular support understood as an object in
ŒI.kM /�'Dlb.kM /. The notion of singular support leads to defining the following dg categories:

5See also Guillermou’s notes for his lecture series at the conference Symplectic topology, sheaves and mirror symmetry at the
IMJ-PRG in Paris (2016) and [Shende et al. 2019].
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Definition 2.13 Let S � T �M be a subset. The category IS .kM / is the subcategory of I.kM / con-
sisting of objects F 2 I.kM / such that �supp.F / � S. The category I.S/.kM / is the subcategory
I.kM / consisting of objects F 2 I.kM / for which there exists an open neighborhood � such that
�supp.F /\�� S.

Let ƒ � T �1M be a Legendrian submanifold. We denote by Iƒ.kM / and I.ƒ/.kM / the categories as
above with the choice of subset S being the Lagrangian cone of ƒ union the zero section M � T �M.

The assignment U 7! I.kU / to each open subset U � M is a stack of dg categories. Similarly, the
prestack I.ƒ/ defined by

I.ƒ/.U / WD I.T �U\ƒ/.kU /; U �M open;

is a stack. This is an advantage of using the injective dg enhancements instead of derived categories. A
central result in symplectic topology [Guillermou et al. 2012] is that the stack I.ƒ/ on M is a Legendrian
isotopy invariant of the Legendrian ƒ� T �1M. There are two constructions associated to the stack I.ƒ/,
as follows:

(i) The microlocal functor mƒ The Kashiwara–Schapira stack�Sh.kƒ/ is the stack onƒ associated
to the prestack

V 7! I.V /.kM IV /; V �ƒ open;

where I.V /.kM IV / is the Drinfeld dg quotient of I.V /.kM / by IT �Mn.V[M/.kM /. See [Kashi-
wara and Schapira 1990; Guillermou et al. 2012]. The quotient functor gives a functor of stacks

mƒ W I.ƒ/! .�M jƒ/�.�Sh.kƒ//:

Our use of this functor is twofold: in the case that ƒ� T �1R2 is a Legendrian link, and in the case
where ƒ� T �1R3 is a Legendrian surface obtained as the lift of an exact Lagrangian filling of a
Legendrian link.

(ii) The moduli stack MI.ƒ/.M/ By [Nadler 2016, Theorem 3.21], the global sections I.ƒ/.M/ is a
dg category equivalent to the category of (pseudo)perfect modules of a finite-type category, namely
of the category of wrapped constructible sheaves Shwƒ.M/ defined in [Nadler 2016, Definition 3.17].
Then the main result of [Toën and Vaquié 2007] implies that there exists a locally geometric D�–
stack MI.ƒ/.M/, locally of finite presentation, which acts as the moduli stack of objects in the dg
category I.ƒ/.M/.

Finally, as explained in [Jin and Treumann 2017, Section 1.7], given an embedded exact Lagrangian
filling L � T �M of a Legendrian submanifold ƒ � T �1M, the microlocal functor mxL applied to the
Legendrian lift xL� J 1.M/ yields an equivalence of categories between (a subcategory of) I.xL/.M/ and
the dg derived category of local systems on L. This induces an open inclusion �L WRLoc.L/!MI.ƒ/.M/,
where RLoc.L/ denotes the derived moduli space of local systems on L.
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2.7.2 The concrete models For a Legendrian link ƒ � T �1R2 with vanishing rotation number, the
category of global sections of the Kashiwara–Schapira stack �Sh.kƒ/ admits a simple object „ by
[Guillermou 2023, Part 10]. In addition, the functor �hom.„; � / is an explicit equivalence between
�Sh.kƒ/ and the (twisted) stack Locƒ of (twisted) local systems on ƒ.6 In consequence, the microlocal
functor mƒ described above yields a functor

mƒ;„ W I.ƒ/.M/! Locƒ.ƒ/;

where we have considered global sections and identified the codomain of mƒ with Locƒ via �hom.„; � /
and a choice of spin structure. In addition, given a Legendrian link ƒ� T �1R2, we only need to consider
the moduli substack M1.ƒ/ of MI.ƒ/.R2/ which is associated to the subcategory of objects in I.ƒ/.R

2/

whose image under mƒ is a local system (on ƒ) of locally free k–modules of rank one supported in
degree zero. In the case that ƒ admits a binary Maslov index, the stack M1.ƒ/ is equal to its truncation
t0.M1.ƒ//, which is an Artin stack.

Now, given an embedded exact Lagrangian filling L � T �M of ƒ, the derived stack LocL of local
systems on L is also equivalent to its truncation and the open inclusion �L described gives an inclusion
�L W Loc1.L/ ! M1.ƒ/ of Artin stacks, where Loc1.L/ are local systems (on L) of locally free k–
modules of rank one supported in degree zero. Since abelian local systems on L can be parametrized
by H 1.L;k�/, the inclusion �L provides a toric chart �L.Loc1.L// in the moduli stack M1.ƒ/. In this
article, we typically consider the ground ring kD C. If we are given a Legendrian link for which the
stabilizers of M1.ƒ/ are trivial and M1.ƒ/ is smooth, then M1.ƒ/ is (represented by) a smooth affine
variety and an embedded exact Lagrangian filling L of ƒ yields a toric chart �L W .C�/2g.L/!M1.ƒ/,
where g.L/ is the topological genus of the surface L.

Finally, both the inclusions �L W Loc1.L/!M1.ƒ/ and the microlocal functors mƒ WM1.ƒ/! Loc1.ƒ/
can be computed explicitly from the front via cones of maps between stalks (of the sheaves parametrized
by M1.ƒ/). Indeed, we shall use the combinatorial model in [Shende et al. 2017, Section 3.3], where
the points of M1.ƒ/ are parametrized by functors from the poset category associated to the stratification
induced by the Legendrian front to the abelian category of k–modules (modulo acyclic complexes). In the
case of Legendrian weaves, this combinatorial model is explained in [Casals and Zaslow 2022, Section 5].

2.7.3 A decorated moduli space Let T D ft1; : : : ; tsg with ti � ƒ for i 2 Œ1; s� be a set of distinct
points in a Legendrian link ƒ � T �1R2. The elements of T will be referred to as marked points. The
moduli stack M1.ƒ/ can be decorated with additional trivializing information once a set of marked points
T has been fixed, as follows:

Definition 2.14 Let ƒ� T �1R2 be a Legendrian link with a fixed choice of Maslov potential and spin
structure. Consider a set of marked points T D ft1; : : : ; tsg and label the components of ƒ nT by ƒi for

6A choice of spin structure on ƒ and corresponding choices of spin structures for the Lagrangian fillings we consider allow a
further identification to actual (untwisted) local systems. We implicitly have these choices in the background and translate them
combinatorially in Section 4, through sign curves, when they are needed to assign signs.
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i 2 �0.ƒ nT /. The moduli stack M.ƒ; T / is

M.ƒ; T / WD f.F I�1; : : : ; �j�0.ƒnT /j/ j F 2M1.ƒ/; �i trivialization of mƒ.F / on ƒig:

Note that an abelian local system can always be trivialized over ƒi if k D C�. For a general ground
ring k, we require that there exist at least one marked point per component of ƒ.

In Definition 2.14, the identification of (global sections of) the codomain of mƒ with the stack of local
systems is fixed by the choice of Maslov potential and spin structure on ƒ. There are at least two
advantages to decorating the moduli stack of sheaves M1.ƒ/ to M.ƒ; T /. First, introducing the data
of the trivializations in M.ƒ; T / often results in a smooth affine variety, even if M1.ƒ/ was singular;
this is similar to the classical setup with character varieties [Fock and Goncharov 2006b]. Second, the
trivializations in M.ƒ; T / can be used to define global regular functions. In fact, we will show that
M.ƒ; T / admits a cluster A–structure, and our construction of the cluster A–variables crucially relies on
the existence of these decorations. Finally, the moduli space M1.ƒ; T / is defined similarly, by considering
sheaves in M1.ƒ/ with the additional data of trivializations of the stalks of the associated microlocal
local systems at each of the marked points in T.

2.8 A clarification on the notion of cluster structures

In the literature, the sentence “a space Y has a cluster structure” has different meanings. We record
here the precise definitions that have been used, implicitly or explicitly, and clarify the type of results
we obtain. Let Q be a quiver, or more generally a skew-symmetrizable matrix. Consider the following
concepts:

� The cluster algebra AQ. This is a commutative algebra and it comes endowed with a (typically
infinite) system of generators Ai 2 AQ, called the cluster variables. The vertices of the quiver
give some of these cluster variables, and the other cluster variables are produced by the process of
mutation. Cluster algebras were first introduced and studied by Fomin and Zelvinsky [1999; 2002;
2003]. The affine scheme associated to AQ is Spec.AQ/.

� The space AQ, called the cluster A–space or cluster K2–space, is a scheme obtained by birationally
gluing certain tori according to Q. The ring of regular functions O.AQ/D �.AQ;OAQ

/ is often
referred to as the upper cluster algebra, due to its connection to [Berenstein et al. 2005]. This
scheme is typically not finitely generated, but it is separated by [Gross et al. 2015, Theorem 3.14].

� The space XQ, called the cluster X–space or cluster Poisson space, is also a scheme obtained by
birationally gluing certain tori according to Q; the gluing maps are different than for AQ above.
The ring of regular functions O.XQ/D�.XQ;OXQ

/ does not have a name. This scheme is typically
not separated; see [Gross et al. 2015, Remark 2.6].

� The subset �A
�1.Q/�AQ consisting of the union of A–tori associated to the initial seed for Q and

its adjacent seeds, ie those obtained by performing one cluster A–mutation. The ring of functions
O.�A
�1.Q// is known as the upper bound.
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� The subset �X
�1.Q/ � XQ consisting of the union of X–tori associated to the initial seed for Q

and its adjacent seeds, ie those obtained by performing one cluster X–mutation.

The A and X–schemes were first introduced and studied by Fock and Goncharov [2006b; 2006a] and
subsequently featured in [Gross et al. 2015; 2018]. There is also the notion of a partial X–structure
(and partial A–structure), as introduced in [Shende et al. 2019, Definition 5.11], where only some tori
in �X

�1.Q/ are considered. After studying the literature and discussing with experts, our conclusion is
that “a space Y has a cluster structure” might mean that Y is equal to either of the (often quite different)
spaces above, or even that it is equal up to codimension 2, ie O.Y / equals any of the (often quite different)
rings of functions above. In certain cases, such as [Goncharov and Kontsevich 2021], it might also mean
having a partial A– or partial X–structure for what the authors referred to as a noncommutative stack.

Remark 2.15 It is crucial to have a rigorous definition of the “space” Y and its “ring of functions” O.Y /

so as to give precise meaning to the notion of admitting a cluster structure. If Y is a scheme, the sheaf of
regular functions is well understood [Hartshorne 1977]. In our case, M.ƒ; T / are always affine schemes
and M1.ƒ/ and M1.ƒ; T / are always algebraic quotients of affine schemes.

Now, the spaces Spec.AQ/, AQ, XQ, �A
�1.Q/ and �X

�1.Q/ are often quite different from each other,
but the following facts hold:

(1) The inclusion AQ � O.AQ/ always holds. This is a nontrivial fact known as the Laurent phenome-
non. In particular, all cluster A–variables Ai 2AQ belong to O.AQ/. In fact, AQ can be defined
to be the subalgebra of O.AQ/ generated by the cluster A–variables. In stark contrast, the cluster
X–variables Xi are almost never elements of O.XQ/.

(2) The inclusion AQ � O.AQ/ of the cluster algebra into its upper cluster algebra may or may not be
an equality. This is referred to as the ADU problem; see eg [Berenstein et al. 2005; Muller 2014].
The inclusion O.AQ/� O.�A

�1.Q// of the upper cluster algebra into its upper bound may or may
not be an equality. It is known to be an equality for the case of full rank. In general, the equality
O.XQ/D O.�X

�1.Q// always holds.

The main spaces Y we study here are the affine schemes M.ƒ; T /. The results we prove imply that
O.M.ƒ; T // equals O.AQ/, where Q is the quiver geometrically defined in Section 3. That is, we
construct an inclusion O.M.ƒ; T //� O.AQ/ and show that it is an equality. We also provide symplectic
geometric meaning to the A–variables in Section 4. In conjunction with [Casals et al. 2022] — which
logically depends on [Shen and Weng 2021] and the present manuscript — we know that O.AQ/DAQ.
Therefore, M.ƒ; T / admits a cluster structure in the strongest possible sense: it is an affine scheme
whose ring of regular functions equals the upper cluster algebra O.AQ/, and also the cluster algebra AQ.

Remark 2.16 Similarly, a consequence of our results is that O.M1.ƒ// equals O.XQ/, which was also
an open question. That is, we show that the inclusion O.M1.ƒ//� O.XQ/ is an equality. The results of
[Shende et al. 2019], when combined with their later work [Shende et al. 2016], would likely imply that
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for ƒ associated to plabic fence (no lollipops) one has the inclusion O.M1.ƒ//� O.XQ/. That said, even
[Shende et al. 2016; 2019] combined do not prove the equality in these cases.

Finally, we emphasize that the geometric description of the cluster A–variables Ai 2AQ and the particular
algebraic geometric description of M.ƒ; T / is what allows for the equalities O.M.ƒ; T //D O.AQ/ to be
proven in Section 4. In particular, the fact that O.M.ƒ; T // is a unique factorization domain (Section 4.2)
and the fact that the (candidate) cluster A–variables are irreducible in O.M.ƒ; T // (Section 4.9) are key
to deduce O.M.ƒ; T //D O.AQ/.

3 Diagrammatic weave calculus and initial cycles

The new machinery from contact topology that allows us to construct cluster structures is the study of
Legendrian weaves, as initiated in [Casals and Zaslow 2022]. We continue to develop techniques for
Legendrian weaves so as to prove Theorem 1.1. These new weave techniques now relate to GP graphs G

and their associated Legendrian linksƒ.G/. Among many central facts, the construction of a weave w.G/
associated to G yields a canonical embedded exact Lagrangian filling for ƒ.G/, a sheaf quantization, and
the flag moduli of the weaves w.G/ shall provide the initial seeds for our cluster structures. In addition,
as explained in Section 4, the weave w.G/ is used also to carry the explicit computations necessary for
the study of cluster A–variables and the proof of Theorem 1.1.

3.1 Preliminaries on weaves

The reader is referred to [Casals and Zaslow 2022] for the details and background on Legendrian weaves,
but we provide here a quick primer on the basics. Let J;K �R2 be two trivalent planar graphs having an
isolated intersection point at a common vertex v 2 J \K. By definition, the intersection v is said to be
hexagonal if the six half-edges in C incident to v interlace, ie alternately belong to J and K. Figure 11,
right, depicts such a hexagonal vertex.

Definition 3.1 Given n2N, anN –weave w�R2 is a set wDfGig1�i�N�1 ofN�1 embedded trivalent
planar graphs Gi �R2, possibly empty or disconnected, such that Gi is allowed to intersect GiC1 only
at hexagonal points for 1� i �N � 2. By definition, a weave w�R2 is an N –weave for some N 2N.

.i�1; i/

.i; iC1/

.i�1; i/

Figure 11: Trivalent vertex (left) and hexagonal point (right).
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We also refer to the image of a weave in the plane as a weave w, as no confusion arises. The edges
of the graphs that constitute a weave w are often referred to as weave lines. We note that two graphs
Gi ; Gj � R2 are allowed to intersect (anywhere) as long as j ¤ i; i ˙ 1, and we always assume that
the intersection is transverse. Through its image, we also think of an N–weave as an immersed graph
in R2 with colored (or labeled) edges, the color i corresponding to the graph Gi for 1 � i � N � 1.
Edges labeled by numbers differing by two or more may pass through one another (hence the immersed
property, which is met generically), but not at a vertex. As a graph in the plane, an N –weave has trivalent,
tetravalent and hexagonal vertices.

Let fsigN�1iD1 be the set of Coxeter generators of the symmetric group SN . Instead of colors, we can equiv-
alently label the edges of an N –weave wD fGig which belong to the graph Gi with the transposition si :
these labeled edges will also be referred to as si–edges, or i–edges. The theory of weaves as developed in
[Casals and Zaslow 2022] is grounded on the theory of Legendrian surfaces in .R5; �st/ and their spatial
wavefronts. In brief, a weave w�R2 gives rise to a spatial Legendrian wavefront †.w/�R3, which
itself lifts to an embedded Legendrian surface ƒ.w/ in .R5; �st/. The main property of the surface ƒ.w/
that we use here is that its image L.w/ WD �.ƒ.w// � .R4; !st/ is an exact Lagrangian surface in the
standard symplectic Darboux ball, where � W .R5; �st/! .R4; !st/ is the projection along the ˛st–Reeb
direction.

Unless it is stated otherwise, all the weaves that we construct are free — see [Casals and Zaslow 2022,
Section 7.1.2] — which translates into the fact that L.w/� .R4; !st/ will always be an embedded exact
Lagrangian surface, and not just immersed. In particular, this implies that L.w/ must have boundary,
which it always will. Moreover, when w is free, the Lagrangian projection map � is a homeomorphism,
and hence H1.L.w//ŠH1.ƒ.w//. The underlying contact geometry dictates that certain weaves ought
to be considered equivalent. This leads to the following:

Definition 3.2 The moves depicted in Figure 12 are referred to as weave equivalences. By definition,
two weaves G;G0 �R2 are said to be equivalent if they differ by a sequence of weave equivalences or
diffeomorphisms of the plane. We interchangeably refer to a weave and its weave equivalence class when
the context permits.

I II III

IV V VI

Figure 12: Six weave equivalences.
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Figure 13: The local models for a Y–tree. The Y–tree is highlighted in light green.

Remark 3.3 As noted in [Casals and Zaslow 2022, Section 4], these moves are not entirely independent,
and Move III can be deduced from Move I and Move II. It is nevertheless useful to underscore Move III
when working with weaves. The results in [Casals and Zaslow 2022], using the underlying contact
geometry, imply that all the constructions that we associate to a weave are invariant under weave
equivalences. (It would to be possible to verify this combinatorially as well; see for instance the
computations in [Casals et al. 2020].)

A first goal is constructing a weave for each GP graph G � R2; it is achieved in Section 3.3 once we
have reviewed the necessary material on Y–cycles and weave mutation.

3.2 Y–cycles and weave mutation

Let w � R2 be a free weave. The homology group H1.L.w// Š H1.ƒ.w// has a central role in our
article, as it is a sublattice of the defining lattice for the initial seed. Casals and Zaslow [2022, Section 2]
devised a method to describe absolute cycles in L.w/ in terms of w � R2. The main concept that is
relevant for our purposes is that of a Y–cycle on a weave w, which is defined as follows:

Definition 3.4 Let w � R2 be a weave. An absolute 1–cycle  � ƒ.w/ is said to be a Y–cycle if its
projection onto R2 consists of weave lines, ie it is contained in w. A Y–cycle is said to be a Y–tree if
its projection image is a tree, considered as a planar embedded graph in R2. A Y–tree is a I–cycle if its
projection onto R2 does not have any trivalent vertices. Finally, an I–cycle is short if it does not pass
through any hexagonal vertex of the weave w. Figure 13 depicts the four possible local models for a
Y–tree near a trivalent, tetravalent, and hexagonal vertex of the weave.

Definition 3.4 allows us to associate a unique absolute cycle on ƒ.w/ (and hence on L.w/) to each Y–tree
in a weave w, as explained in [Casals and Zaslow 2022, Section 2]. (There are two conventions regarding
orientations and choice of sheet at which to lift, but, once these conventions are fixed, the absolute cycle
is defined uniquely.) Note that a Y–cycle can stack multiple copies of the above patterns at the same
vertex; when this happens at a trivalent or hexagonal vertex, the stacking creates self-intersections of the
absolute cycle it represents. The distinction between embedded and immersed representatives of absolute
homology classes is at the core of the distinction between mutable and frozen variables for the cluster
structures we construct. The outstanding role of Y–trees is justified by the following fact:

Geometry & Topology, Volume 28 (2024)



928 Roger Casals and Daping Weng

� �

Figure 14: Local weave equivalences to turn a Y–tree into a short I–cycle. Note that the first row
is just Move II from Figure 12, where we kept track of the Y–tree — highlighted in light green —
before and after the equivalence.

Proposition 3.5 Let w�R2 be a free weave and ı be an absolute 1–cycle representing a homology class
in H1.L.w//ŠH1.ƒ.w// which is obtained from a Y–tree in w. Then there exists a weave equivalence
w � w0 such that the cycle ı � w becomes a short I–cycle in w0. In consequence , any homology class
in H1.L.w// represented by a Y–tree admits an embedded representative  � L.w/ which bounds an
embedded exact Lagrangian disk in R4 nL.w/.

Proof This readily follows from [Casals and Zaslow 2022], by applying the equivalence moves in
Figure 12 and keeping track of the change of a Y–tree under these moves. In fact, it suffices to use of the
two local weave equivalences shown in Figure 14.

By using the two weave equivalences in Figure 14, we can work outside in on the Y–tree ı and replace
each weave line of ı with a double track, and shorten ı to a short I–cycle somewhere along the original
Y–tree. The double tracks that appear in this shortening process are schematically depicted in Figure 15.
The second half of the proposition follows from the description of a short I–cycle in [Casals and Zaslow
2022].

Remark 3.6 Proposition 3.5 implies that any one Y–tree can be turned into a short I–cycle after weave
equivalences. It is not the case that a Y–cycle, which is not necessarily a Y–tree, can always be turned
into a short I–cycle. It is also not the case that Proposition 3.5 works for more than one Y–tree at once,
in the following sense. If two Y–trees Y1; Y2 �w are given in a weave w, then there exists a sequence
of weave equivalences from w to a weave w1 such that Y1 becomes a short I–cycle in w1.There is no
guarantee that Y2 will be a short I–cycle in w1; Y2 will be a short I–cycle in another weave w2 equivalent
to w, a priori different from w1. More generally, there are collections of Y–trees in a weave w such that

�

Figure 15: Left: a Y–tree cycle highlighted in light green. Right: the double tracks that remain on
the (equivalent) weave after the shortening process, where the Y–cycle has now become the short
I–cycle drawn in light green.
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Figure 16: Left: weave mutation along the short I–cycle given by the blue edge. Right: a weave
mutation along a monochromatic Y–tree.

there is no sequence of weave equivalences that would turn at once all those Y–trees in w into short
I–cycles in any one weave w0 equivalent to w.

The existence of the embedded Lagrangian disks from Proposition 3.5, ie L–compressible curves in L.w/,
allows us to perform Lagrangian disk surgeries along Y–trees and produce new exact Lagrangian fillings.
Casals and Zaslow [2022, Section 4.8] proved that it is possible to describe this symplectic geometric
operation via a diagrammatic change in a piece of the weave called “weave mutations”. This leads to the
following definition:

Definition 3.7 Let  �w be the short I–cycle — a monochromatic blue edge — depicted in Figure 16,
left. Then the local move illustrated in Figure 16, left, is said to be a weave mutation at the short I–cycle  .
This is the standard Whitehead move for trivalent graphs, dual to a flip in a triangulation. Note that a
weave mutation replaces the short I–cycle  with a new short I–cycle, which we often denote by  0; we
call  0 the image of  under the weave mutation.

Definition 3.8 For a Y–tree in general, one can apply Proposition 3.5 to turn it into a short I–cycle,
perform a weave mutation, and then apply some other weave equivalences. Thus, a weave mutation at a
Y–tree  in general means a weave mutation at its short I–cycle counterpart conjugated by sequences of
weave equivalences. By following the sequences of weave equivalences, the weave mutation replaces 
by its image, which is a new Y–tree  0.

Definition 3.9 Two weaves w and w0 are said to be (weave) mutation equivalent if they can be connected
by a sequence of moves consisting of weave equivalences and weave mutations.

Finally, we emphasize that weave mutations will allow us to mutate at Y–trees of w.G/ corresponding to
faces and regions of G, even if they might not be square. The resulting weave, typically, will not be of the
form w.G0/ for any GP graph G0, but all the diagrammatic and symplectic geometric results developed in
this article and [Casals and Zaslow 2022] can still be applied.

3.3 Initial weave for a GP graph

In this section we construct the initial weave w.G/ associated to a GP graph G. This is done by
breaking G into elementary columns and assigning a local weave associated to each such column. Recall
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the standard reduced word w0;n D sŒ1;1�sŒ2;1�sŒ3;1� : : : sŒn�1;1� for the longest element w0;n 2 Sn. Let
us define `D `.w0;n/D 1

2
n.n� 1/. The first three local weaves n.w/; c".w/ and c#.w/ are defined as

follows:

Definition 3.10 Let w D si1 : : : si` be a reduced expression for w0;n 2 Sn. By definition, the weave
n.w/ is given by n horizontal parallel weave lines such that the j th strand, counting from the bottom, is
labeled by the transposition sij for j 2 Œ1; `�.

The weave c".w/ is given by the weave n.w/ where a trivalent vertex is added at the top strand — labeled
by si` — such that the third leg of this trivalent vertex is a vertical ray starting at the top strand and
continuing upwards.

Similarly, the weave c#.w/ is given by the weave n.w/ where a trivalent vertex is added at the bottom
strand — labeled by si1 — such that the third leg of this trivalent vertex is a vertical ray starting at the
bottom strand and continuing downwards.

As explained above, the weave w.G/ associated to G is built by horizontally concatenating weaves
local models: each local model is associated to one of the three types of elementary columns. The
corresponding weaves for each of these occurrences are described as follows:

3.3.1 Local weaves for Type 1 columns

Definition 3.11 (weave for Type 1) The weave associated to a Type 1 column of a GP graph G, which
consists of n parallel horizontal lines, is n.w0;n/, where w0;n is the standard reduced expression for the
longest element in a symmetric group Sk .

It is important to note that the transpositions si labeling the strands of n.w0;n/ depend on the simple
transpositions that generate the symmetric group SŒa;b� associated to that specific region (see Section 2.1).
Due to the appearance of lollipops in the GP graph, the different symmetric groups SŒa;b� that we encounter
(as we read the GP graph left to right) have varying discrete intervals Œa; b�.

3.3.2 Local weaves for Type 2 columns It is a well-known property of the symmetric group — see for
instance [Björner and Brenti 2005, Section 3.3] — that any two reduced word expressions for the same
element can be transformed into each other via finite sequences of the following two moves:

� sisj � sj si if ji � j j> 1.

� sisj si � sj sisj if ji � j j D 1.

Now consider the weave n.w0;n/ and the s1–strand labeled by the i th appearance of s1 in the standard
reduced expression w0;n. In order to construct the weave for a Type 2 column, in Definition 3.15 below,
we need the following auxiliary local weaves:
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n"1.w0;3/ n#2.w0;3/

n"2.w0;3/ n#1.w0;3/
n"3.w0;4/ n"2.w0;4/ n"1.w0;4/

n"2.w0;4/
op n"1.w0;4/

op n#2.w0;4/ n#3.w0;4/

Figure 17: Instances of the weaves n"i .w0;n/ and n#i .w0;n/ and their opposites, from Definition
3.12, in some of the cases for nD 3; 4.

Definition 3.12 The weave n
"

i .w0;n/ is the unique horizontal weave that coincides with n.w0;n/ at the
left, contains only tetravalent and hexagonal vertices, and brings the i th s1–strand of w0;n to the top level,
using a minimal number of weave vertices.

Similarly, the weave n
#

i .w0;n/ is the unique weave that coincides with n.w0;n/ at the left, contains only
tetravalent and hexagonal vertices, and brings the i th s1–strand of w0;n to the bottom level, using a minimal
number of weave vertices.

Finally, we denote by n
"

i .w0;n/
op and n

#

i .w0;n/
op the weaves obtained by reflecting n

"

i .w0;n/ and n
#

i .w0;n/
along a (disjoint) vertical axis.

In Definition 3.12, bringing the i th s1–strand of w0;n to the top level means considering a horizontal
weave which starts at n.w0;n/ on the left-hand side and contains a sequence of tetravalent and hexagonal
vertices (no trivalent vertices) such that following the i th s1–strand of w0;n under these vertices (passing
through them straight) ends up at the top strand at the right-hand side. There are many weaves that
verify this property, but, by the Zamolodchikov relation proven in [Casals and Zaslow 2022], they
are all equivalent and we might as well take the one with a minimal number of vertices. Figure 17
illustrates several examples of the weaves n"i .w0;n/ and n

#

i .w0;n/ in Definition 3.12 for nD 3; 4. Note
that n"n�1.w0;n/D n

"

n�1.w0;n/
op D n

#

1.w0;n/D n
#

1.w0;n/
op D n.w0;n/ for any n 2N.

Definition 3.13 The weave c"i .w0;n/ is the weave obtained by horizontally concatenating the three weaves
n
"

i .w0;n/, c
".wi /, and n

"

i .w0;n/
op, left to right, where wi denotes the reduced expression for w0;n found

at the right of the weave n
"

i .w0;n/.

Geometry & Topology, Volume 28 (2024)



932 Roger Casals and Daping Weng

Figure 18: All possible Type 2 columns for n D 3 and their corresponding weaves. In detail,
c"2.w0;3/ (upper left), c"1.w0;3/ (upper right), c#1.w0;3/ (lower left) and c#2.w0;3/ (lower right).

Definition 3.14 Similarly, the weave c
#

i .w0;n/ is the weave obtained by horizontally concatenating the
three weaves n

#

i .w0;n/, c
#.wi / and n

#

i .w0;n/
op, left to right, where wi denotes the reduced expression

for w0;n found at the right of the weave n
#

i .w0;n/.

Figure 18 illustrates examples of the weaves c"i .w0;n/ and c
#

i .w0;n/ in Definitions 3.13 and 3.14 for nD 3.
For the next definition, recall that we always label the horizontal lines, in a Type 1 or Type 2 column of
the GP graph G, with consecutive natural numbers, from bottom to top. For the moment, let us assume
that these labels are in Œ1; n�.

Definition 3.15 (weave for Type 2) For i 2 Œ1; n� 1�, the weave associated to a Type 2 column of a
GP graph G whose vertical edge has a white vertex at the i th horizontal line and a black vertex at the
.iC1/st horizontal line is the weave c

"

i .w0;n/, and the weave associated to a Type 2 column of a GP
graph G whose vertical edge has a black vertex at the i th horizontal line and a white vertex at the .iC1/st

horizontal line is the weave c
#

n�i .w0;n/.

3.3.3 Local weaves for Type 3 columns Let us consider a column of Type 3 with labels 1; 2; : : : ; n for
the horizontal lines on the right (counting from bottom to top) and with a white lollipop attached to the
i th horizontal line with i 2 Œ1; n�. The case of a black lollipop is similar, and discussed later.

By construction, the weaves associated with the two Type 1 columns sandwiching this Type 3 column are
n.w0;n�1/ and n.w0;n/, respectively. Hence, the weave we associate to such a Type 3 column must have
these boundary conditions. Let us start with the following weave:

Definition 3.16 The weave iwi is the unique weave with no weave vertices, satisfying:

(i) At its left, iwi coincides with the horizontal weave n.w0;n�1/, and at its right, iwi coincides with the
horizontal weave n.s�1

Œn�1;i�
w0;n�1sŒn�1;n�iC1�/.
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Figure 19: The weaves iwi (left) and ibi (right) from Definitions 3.16 and 3.18.

(ii) The weave lines in n.s�1
Œn�1;i�

w0;n�1sŒn�1;n�iC1�/ labeled by the transpositions in the reduced
expression sŒn�1;n�iC1� diverge upwards to vertical rays.

(iii) The weave lines in n.s�1
Œn�1;i�

w0;n�1sŒn�1;n�iC1�/ labeled by the transpositions in the reduced
expression s�1

Œn�1;i�
diverge downwards to vertical rays.

See Figure 19, left, for a depiction of iwi , illustrating what is meant by diverging upwards and downwards
to vertical rays.

Note that the word n.s�1
Œn�1;i�

w0;n�1sŒn�1;n�iC1�/ in Definition 3.16 is a reduced expression for the
half-twist w0;n. Now, the weaves iwi in Definition 3.16 cannot quite be the weaves for the Type 3 column
yet because the labeling on the right-hand side is not w0;n, but rather n.s�1

Œn�1;i�
w0;n�1sŒn�1;n�iC1�/. To

fix this, let nwi be any horizontal weave that coincides with n.s�1
Œn�1;i�

w0;n�1sŒn�1;n�iC1�/ on the left,
coincides with n.w0;n/ on the right, and with no trivalent weave vertices in the middle. Any choice
of n.w0;n/ would yield an equivalent weave.

Definition 3.17 (weave for white lollipop) The weave lwi associated to a Type 3 column with a white
lollipop at the i th horizontal line is the horizontal concatenation of iwi and nwi .

Figures 20 and 21 illustrate the weaves lw1 ; l
w
2 ; l

w
3 and lw4 for nD 4, with the coloring convention that s1 is

blue, s2 is red and s3 is green. The pink boxes in the figures contain the iwi pieces, and the yellow boxes
contain the nwi pieces. The figures also draw the corresponding pieces of the fronts f.G/, explaining the
contact-geometric origin of these weaves.

The case of a column of Type 3 with labels 1; 2; : : : ; n for the horizontal lines on the right, and a black
lollipop at the i th horizontal line is similar. The necessary definitions are as follows:

Definition 3.18 The weave ibi is the unique weave with no weave vertices, satisfying:

(i) At its left, ibi coincides with the horizontal weave n.sŒi�1;1�w0;n�1s�1Œn�i;1�/ and, at its right, ibi
coincides with the horizontal weave n.w0;n�1/.
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GP graph G front weave

Figure 20: Weaves lwi associated to a white lollipop with nD 4, as in Definition 3.17. The first
row depicts the case i D 1 and the second row the case i D 2. The weaves nwi are drawn within
the yellow boxes. The weaves iwi , with the incoming weave strands, are depicted within the pink
boxes.

(ii) The weave lines in n.sŒi�1;1�w0;n�1s�1Œn�i;1�/ labeled by the transpositions in the reduced expression
sŒi�1;1� diverge downwards to vertical rays.

(iii) The weave lines in n.sŒi�1;1�w0;n�1s�1Œn�i;1�/ labeled by the transpositions in the reduced expression
s�1
Œn�i;1�

diverge upwards to vertical rays.

GP graph G front weave

Figure 21: Weaves lwi associated to a white lollipop with nD 4. The first row depicts the case
i D 3 and the second row the case i D 4. The weaves nwi are drawn within the yellow boxes, and
the weaves iwi are depicted in the pink boxes.
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GP graph G front weave

Figure 22: The weave lb2 associated to a black lollipop when nD 4, in accordance with Definition
3.19. The weave nb2 is drawn in the yellow box, and ib2 in the pink box. Note that the departing
strands of the weave (in the pink box) are in bijection with the crossings of the front, as indicated.

See Figure 19, right, for a depiction of ibi . Similarly, we denote by nbi any horizontal weave which
coincides with the horizontal weave n.sŒi�1;1�w0;n�1s�1Œn�i;1�/ on the right, coincides with n.w0;n/ on the
left, and with no trivalent weave vertices in the middle.

Definition 3.19 (weave for black lollipop) The weave lbi associated to a Type 3 column with a black
lollipop at the i th horizontal line is the horizontal concatenation of nbi and ibi .

See Figure 22 for an example of lbi in the case i D 2 and nD 4.

3.3.4 The initial weave Let G be a GP graph. Sections 3.3.1, 3.3.2 and 3.3.3 have explained how to
obtain a weave from each of the three types of elementary columns. Note that each of these weaves
coincides with n.w0;k/ and with n.w0;m/ for some k and m at its two ends. For Type 1 and Type 2,
k Dm, and, for Type 3, jk�mj D 1. Note that, if we consider two adjacent elementary columns in G,
the associated weaves will coincide at the common side, and thus can be horizontally concatenated.

Definition 3.20 (initial weave) Let G be a GP graph. The initial weave w.G/ associated to G is the
weave obtained by subdividing G into elementary columns and then concatenating the weaves associated
with each elementary column, in the order dictated by the columns.

3.4 Topology of the initial weave

Let G be a GP graph and w.G/ � R2 its initial weave. In this subsection we show how to obtain a
Legendrian link ƒ.G/� .R3; �st/ and an embedded exact Lagrangian filling L.w/� .R4; �st/ from the
weave wDw.G/.

3.4.1 The braid of an initial weave Suppose w.G/ is an N–weave. Let K � R2 be a compact
subset such that .R2 nK/\w.G/ contains no weave vertices. Note that the number of weave lines in
.R2 nK/\w.G/ and their labeling is independent of any K with this property. The weave lines are
labeled by simple transpositions si 2 SN , which can be lifted to unique positive generators �i in the Artin
braid group BrN .
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Definition 3.21 Let ˇ.G/ be the positive braid word obtained by reading the positive braid generators
associated with the weave lines of .R2 nK/\w.G/ in a counterclockwise manner, starting at the unique
strand the corresponds to the leftmost white lollipop in G.

Part of the usefulness of Definition 3.21 is the following simple lemma:

Lemma 3.22 Let G be a GP graph , w.G/�R2 its initial weave and ˇ.G/ its positive braid word. Then
the .�1/–framed closure of ˇ.w.G// is a front for the Legendrian link ƒ.G/.

Lemma 3.22 can be phrased as follows. Consider the Legendrian link ƒ.ˇ.G//� .R3; �st/ whose front
is the .�1/–framed closure of the braid word ˇ.G/. Then the Legendrian links ƒ.ˇ.G// and ƒ.G/ are
Legendrian isotopic in .R3; �st/.

3.4.2 The surface of the initial weave Let w�R2 be a weave and ƒ.w/� .R5; �st/ the Legendrian
represented by its front. By definition, the Lagrangian L.w/ � .R4; �st/ is the Lagrangian projection
of ƒ.w/. We refer to [Casals and Zaslow 2022, Section 7.1] for details on how weaves yield exact
Lagrangian fillings of Legendrian links in .R3; �st/, and recall that w is said to be free if L.w/� .R4; �st/

is embedded. The following lemma is readily proven:

Lemma 3.23 Let G be a GP graph and suppose its initial weave w D w.G/ is an N–weave. Then
LD L.w/� .R4; �st/ is an embedded exact Lagrangian filling of ƒ.G/ with Euler characteristic

�.L/DN � #.trivalent vertices of w/D #.horizontal lines in G/� #.vertical edges in G/:

The number of boundary components of L.w.G// is readily computed from ˇ.G/: it is given by the
number of cycles in the cycle decomposition of the Coxeter projection of ˇ.G/. Finally, a central feature
of weaves is the following: it is possible to draw many weaves which coincide with w.G/, outside a large
enough compact set K �R2, and which represent embedded exact Lagrangian fillings of ƒ.G/. In fact,
as explained in Section 3.2, there are some local modifications that we can perform to the weave — weave
mutations — such that the smooth embedded class of the associated (Lagrangian) surface in .R4; �st/

remains the same but the Hamiltonian isotopy class typically changes. Square face mutation of a GP
graph G is recovered by weave mutations but, importantly, weave mutations allow for more general
mutations, including mutations at nonsquare faces of G and sugar-free regions. The result of such weave
mutations applied to wDw.G/ is again another weave �.w/; it may no longer be of the form w.G0/

for any GP graph G0, but it is a weave and thus, using the calculus in [Casals and Zaslow 2022], we can
manipulate it efficiently and use it to prove the results here. In this process, we need explicit geometric
cycles representing generators of the absolute homology H1.L.w//. In fact, such geometric cycles lead
to the quiver for the initial seed. Thus, we now gear towards understanding how to construct geometric
representatives of homology classes using weaves.
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3.5 Naive absolute cycles in L.w.G//

In this subsection we explain how to find a set of geometric (absolute) cycles on LD L.w.G// which
generate H1.L/.

Since the genus of an embedded exact Lagrangian filling is determined by the (maximal) Thurston–
Bennequin invariant of its Legendrian boundary, all embedded exact Lagrangian fillings of a given
Legendrian link are topologically equivalent as abstract surfaces, ie they have the same genus. In the
case of a Legendrian link ƒ.G/ associated with a GP graph, it is readily seen that this is the same
abstract topological type as that of the Goncharov–Kenyon conjugate surface S D S.G/ [2013]. Since
the conjugate surface S deformation retracts back to the GP graph G, it follows that the boundaries of
the faces of G form a basis for the absolute homology groups H1.G/ŠH1.S/ŠH1.L/. This basis,
indexed by the faces of G, will be referred to as the naive basis of H1.L/.

Remark 3.24 This set of generating absolute cycles is not good enough in order to construct cluster
structures, nor does its intersection quiver give the correct initial quiver. Thus, these cycles will be referred
to as the set of naive absolute cycles, and we will perform the necessary corrections in Section 3.7.

In order to proceed geometrically, we would like identify the naive basis elements of H1.L/ as lifts of a
specific collection of absolute cycles on the weave front †D†.w.G//, ideally a collection of Y–cycles
on w.G/ (Definition 3.4). Since any GP graph G can be decomposed into elementary columns, we
can try to build these absolute cycles by concatenating appropriate relative cycles associated with each
elementary column.

3.5.1 Local representatives of naive absolute cycles in a Type 1 column In an elementary Type 1
column of G with n horizontal lines, there are n� 1 faces, ie gaps, between these n horizontal lines. For
each of these n�1 gaps, we identify a unique weave line as follows. First, we observe that a cross-section
of the weave front † associated to a Type 1 column is, by construction, the reduced expression w0;n of
w0;n. In this reduced expression, the lowest Coxeter generator (si with the smallest i) appears exactly
n�1 times. Second, there is a geometric bijection between these n�1 faces and the n�1 appearances of
the lowest Coxeter generator in the reduced expression w0;k . Indeed, for a face f at a Type 1 column, the
intersection of @f with a Type 1 column has two connected components, which go along two neighboring
horizontal lines, say the j th and the .jC1/st. Since each horizontal line is the deformation retract of a
sheet in the weave front †, a natural choice of the local weave line representative will be the intersection

1
2
3
4 1

1

2
23
3

4

4

bottom top

Figure 23: Left: an elementary column with four horizontal lines. Right: the corresponding
cross-section for its associated weave surface †.G/.

Geometry & Topology, Volume 28 (2024)



938 Roger Casals and Daping Weng

G w.G/ G w.G/

Figure 24: Associating a (piece of a) cycle in the weave for Type 1 columns. The first row depicts
the two cases for nD 3 strands, and the second and third rows depict the three cases for nD 4,
and an example with a union, in the lower-right corner. In all cases, the face f �G is highlighted
in yellow, and the associated s1–edge in the weave w.G/ is also highlighted in the same color. In
the last case of the union, in the lower right, one of the faces and its cycle are highlighted in green.

of the two corresponding sheets in †, which in turn corresponds to the j th appearance of the lowest
Coxeter generator. Figure 23 illustrates a cross-section of the weave front for nD 4. Figure 24 illustrates
all the possible cases for nD 3; 4.

3.5.2 Local representatives of naive absolute cycles in a Type 2 column Consider a Type 2 column
with n horizontal lines and a single vertical edge between the j th and .jC1/st horizontal lines. First, for
the faces bounded by any other pair of consecutive horizontal lines, say the kth and .kC1/st with k ¤ j,
the associated naive absolute cycle in the weave is the unique long I–cycle connecting the corresponding
weave cycles on the two adjacent Type 1 columns. In other words, one starts at the kth appearance
(counting from below) of the lowest Coxeter generator on the left (see Section 3.5.1) and follows that
weave line straight through any hexagonal vertices. By the construction of the weave w in Section 3.3.2,
this process will go through the weave until it reaches its right-hand side at the kth appearance of the
lowest Coxeter generator. Figure 25 depicts examples of such faces in purple. Note that, as depicted
on the right of the second row in that figure, the I–cycle might go through hexagonal vertices but shall
always have the kth lowest Coxeter generator in w0;n at the two ends.

Second, for the two faces that involve the unique vertical edge, the associated absolute cycle in w is the
unique I–cycle that starts with the j th appearance of the lowest Coxeter generator at its boundary end
(see Section 3.5.1) and has the other end at the unique trivalent vertex of w. Figure 25 depicts examples
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G w.G/ G w.G/

G w.G/

G w.G/

Figure 25: Several examples of faces in Type 2 elementary columns with nD 4 G–strands, and
their associated I–cycle in the weaves w.G/.

of such faces in yellow and green. Observe that, in general, these I–cycles will also go through hexagonal
vertices but always have the j th lowest Coxeter generator at its boundary end.

3.5.3 Local representatives of naive absolute cycles in a Type 3 column In a Type 3 column, the
majority of faces are similar to a face in a Type 1 column. In the weave, their boundaries are represented
by weave lines going across the weave as the unique long I–cycles with the correct boundary conditions.
The only exceptional face in a Type 3 column is the face f which contains a lollipop, which we will
discuss in detail in this subsection.

Let us first consider the case of a white lollipop attaching to the j th horizontal line on the right. For
simplicity let us assume that the horizontal lines on the right are indexed by 1; 2; : : : ; n starting from the
bottom. Following Section 3.5.1, the leftmost and rightmost ends of the cycle f are determined by the
Type 1 rules. Namely, given that the face f restricts to one gap on the left and two gaps on the right,
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Type 3 column

new sheet

cross-section of weave front † weave associated to this column

Figure 26: An elementary Type 3 column with a white lollipop (left) and its associated weave w

(right). Center: a vertical slice of the weave front highlighting the two directions of bifurcation
that come up from the s1–crossing (in blue) at the bottom.

the ends of the cycle f in w must be the unique I–cycle associated to those gaps. Thus, the cycle f
will start at a blue s1–edge of the weave on the left and finish at two blue s1–edges on the right. Now, in
general, there does not exist a I–cycle (nor a Y–cycle) with these boundary conditions in w. This requires
introducing a bident, as follows. Consider the middle slice of w where all the newly emerged weave lines
have become horizontal, ie the right boundary of the weave building block iwj (Definition 3.16). Reading
the weave lines from bottom to top at this slice yields an expression for the half-twist w0;n 2 Sn (note
that it is not w0;n). Let us draw the weave slice as the positive braid s�1

Œn�1;i�
w0;n�1sŒn�1;n�iC1� and mark

the s1–edge in w0;n�1 that corresponds to the gap on the left within which the white lollipop emerges.
Then, starting at this marked s1–edge, we go along the upper-left and upper-right strands until we reach
the highest (and last) possible crossing in each of the strands. These two crossings correspond to two
weave lines on the right boundary of iwj . These two weave lines are said to be obtained from the (left)
s1–edge by a bifurcation.

Definition 3.25 A bident is a PL-embedding of a T –shape domain into the plane containing the weave
such that on the left it coincides with an s1–edge and on the right it coincides with the two crossings
obtained by bifurcation on this s1–edge.

G w.G/

Figure 27: Left: examples of faces in Type 3 elementary columns with nD 3; 4G–strands. Right:
the associated naive cycles, with the bidents, in the corresponding weaves w.G/.
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a Type 3 column G associated weave w.G/

Figure 28: A case for the naive absolute cycle in a Type 3 column with a black lollipop. The face
f 2G and its associated cycle f �R2 are both highlighted in light green.

Finally, the case of an elementary column of Type 3 with a black lollipop is treated in exactly the same
manner as for a white lollipop, with the roles vertically reversed; see Figure 28. For a face f containing
a black lollipop in a Type 3 column, the boundary conditions being I–cycles on the weave and having a
unique bident determine the cycle f �R2 in the same manner as in the white lollipop case, except now
the bident is left-pointing.

Due to the possible existence of bidents, it is hard to tell whether a naive absolute cycle has self-
intersections (and hence it is not an embedded absolute cycle or L–compressible) or not. It is easier if we
can represent the naive absolute cycles as Y–cycles (Definition 3.4). Thus, we prove the following:

Proposition 3.26 Let G �R2 be a GP graph and wDw.G/ its associated weave. Then there exist a
weave w0 and an equivalence w0 �w such that , under the isotopy7 between †.w/ and †.w0/, the image
of each naive absolute cycle on L.w/ is homologous to a Y–cycle on L.w0/.

Proof For Type 1 and Type 2 elementary columns, the associated (pieces of) naive absolute cycles
are already I–cycles, and hence Y–cycles. In particular, for G with no (internal) lollipops, we can take
w0 Dw. It thus suffices to study the case of a Type 3 column, where a bident appears: it suffices to show
that there exists a weave equivalence that allows us to replace a bident by a Y–cycle.

For a Type 3 column with a face f containing a white lollipop, this is done as follows. Consider the two
weave lines to the right of the bident where the cycle f propagates. By construction, these two weave
lines intersect (to the right) at a unique hexagonal weave vertex of w.G/. In addition, the horizontal
weave line entering from the left at this hexagonal vertex connects with an I–cycle to the s1–edge on
the left of the bident where f starts. Therefore, we can consider the Y–cycle zf which starts with this
s1–edge at the left, propagates to the left (as an I–cycle) until the hexagonal vertex, and then contains a
unique Y–vertex at the hexagonal vertex. Figure 29 depicts both cycles f , at the left of the first row,
and zf , at the left of the second row, in the case of the Type 3 elementary column drawn in Figure 27,
upper left. By considering the description of f via vertical slices, it is readily seen that f is homologous
to zf . In consequence, in the case of a white lollipop we can consider the same weave w0 Dw and have
the naive absolute cycle f with a bident be homologous to the Y–cycle zf .

7This isotopy naturally induces a Hamiltonian isotopy between L.w/ and L.w0/.
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Figure 29: Two homologous cycles f and zf depicted on the left. The upper-left cycle f
contains a bident and is not a Y–cycle; the lower-left cycle zf is a Y–cycle. The right-hand side of
each row depicts these cycles in their spatial Legendrian fronts.

For a Type 3 column G with a black lollipop, the situation is similar, with the exception that a hexagonal
vertex might not exist in w.G/ and thus the bident cannot readily be substituted by a Y–cycle. Nevertheless,
we can insert two consecutive hexagonal vertices with a candy twist — Move I in Figure 12 — and then
apply the same argument as above.

3.6 Naive relative cycles in L.w.G//

Let LD L.w.G// be the initial filling of the GP link ƒDƒ.G/. Section 3.5 constructed an explicit set
of generators for a basis of H1.L/ in terms of Y–cycles. In order to construct cluster A–variables, we
also need access to the lattice given by the relative homology group H1.L;ƒ/DH1.L; @L/. Recall that,
by Poincaré duality, there exists a nondegenerate pairing between the absolute homology group H1.L/
and the relative homology group H1.L;ƒ/:

h � ; � iWH1.L/˝H1.L;ƒ/! Z:

Let ff g be the basis of naive absolute cycles constructed in Section 3.5, where the index f runs over all
faces of G. Consider the Poincaré dual basis f�f g on H1.L;ƒ/.8 In order to perform computations in
the moduli stack of sheaves, we also want to describe the relative cycles in f�f g combinatorially in terms
of the weave wDw.G/. This is done according to the following discussion.

In general, given an N–weave w � R2, we can consider an (unoriented) curve � � R2 that ends at
unbounded regions in the complement of w � R2 and intersect weave lines of w transversely and
generically — in particular, away from the weave vertices. There are N natural ways to lift � to the weave
front †.w/, which in turn correspond to N unoriented curves on L. In consequence, any subset of these
N lifts, together with any orientation we choose for each of element of such a subset, defines a relative
homology cycle � 2H1.L;ƒ/. Figure 30, left, depicts two possible oriented lifts of the (dashed) yellow
curve � drawn to its right.

8The dual of an absolute cycle f is constructed from the entire basis of naive absolute cycles, not just f .
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bottom top

1

1

0

Figure 30: Left: in yellow, two lifts of the dashed curve � depicted on the right. Right: a 3–weave
with a labeled dashed curve �; the labels 0; 1; 1 indicate the intersection number with each of the
(pieces of cycles associated to) the weave lines.

Back to the case with wD w.G/, where we have the basis of naive absolute cycles available, we can
compute the intersection numbers between such relative cycles � and the naive absolute cycles. This
leads to a tuple of integers I.�/ WD .h�; f i/faces f . By the nondegeneracy of the Poincaré pairing h � ; � i
and the fact that ff gfaces f is a basis, the tuple of intersection numbers I.�/ uniquely determines the
relative homology class of �. In fact, given that all naive absolute cycles that � intersects nontrivially
must pass through weave lines, in order to describe the relative homology class of � it suffices to draw
the unoriented curve � �R2 and record the collection of the intersection number of its lift � with each of
the weave lines. In order to distinguish such curves from weave lines, we will use dashed lines to depict
such a curve �.

Definition 3.27 A dashed curve � �R2 as above, with the data of intersection numbers for each weave
line it crosses, is called a labeled dashed curve.

Figure 30, right, depicts a labeled dashed curve �. From a diagrammatic perspective, it is desirable to be
manipulate labeled dashed curves in a weave diagram in the same manner that [Casals and Zaslow 2022]
explained how to combinatorially manipulate absolute cycles. For that, we have depicted in Figure 31 the
key moves on labeled dashed curves; these are all equivalences, in that these moves do not change the
relative homology classes that the labeled dashed curves represent.

Finally, we can now diagrammatically describe a collection of labeled dashed curves that is a basis of
the relative homology group H1.†;ƒ/, dual to the naive basis of H1.†/ built in Section 3.5, as follows.
First, for each face f � G, we select a Type 1 elementary column inside of f. Second, consider the

any number

exterior

=

exterior

n

�n

=

0

0

=

0

i
j

k

=

k
j

i

Figure 31: Four equivalence moves for labeled dashed curves.
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f

1
1
1
1

1
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0
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0
0

Figure 32: Left: a face f 2 G chosen at an elementary Type 1 column. Center: a slice of the
weave w.G/ with the rhomboid diamond associated to the s1–crossing, in blue, for the face f 2G.
Right: the labeled dashed curve �f , in yellow, in the weave w.G/, with 1 in the weave lines for
the crossings inside the diamond, and 0 otherwise.

piece of the weave w.G/ associated to this column — weave lines arranged according to w0;n — and draw
a vertical dashed curve �f transverse to this piece of the weave. It now suffices to specify the correct
labels encoding the intersection between the cycle for � and the naive absolute cycle associated to this
face f 2G. For that, consider the braid given by slicing the weave front † along �. Recall that there is
a natural bijection between the appearances of the lowest Coxeter generator si in w0;n and the gaps in
this Type 1 column (see Section 3.5.1). Locate the appearance of si that corresponds to a gap belonging
to f and consider the set of crossings in this braid which are contained within the rhomboid diamond
whose unique lowest vertex is at this appearance of si . Figure 32, center, draws an example of such a
diamond for the face f � G depicted to its left. Then we label the curve �, to a labeled curve �f , by
assigning the intersection number 1 for all the weave lines in w.G/ which are associated to crossings in
the braid inside the diamond, and by assigning the intersection number 0 for all the remaining weave
lines. Figure 32, right, depicts the corresponding curve �f with its intersection labels for the face f �G.

By construction, the intersection pairing between the labeled dashed curve �f and the naive absolute cycles
is given by h�f ; f iD 1 and h�f ; giD 0 for g¤f. Thus, the collection of relative cycles f�f g associated
to these particular labeled dashed curves �f are representatives of a dual naive basis of H1.L;ƒ/. We
call this collection of relative cycles the naive basis of relative cycles of the relative homology group
H1.L;ƒ/.

3.7 Initial absolute cycles and initial relative cycles in L.w.G//

Sections 3.5 and 3.6 explain the construction of the naive basis of absolute cycles and the corresponding
naive basis of relative cycles. The generators of these basis are not geometrically appropriate: despite
being Y–cycles in the weave (or dual to them), they are often represented by immersed cycles and it is a
priori unclear whether it is possible to mutate at them.9 A key idea in this manuscript is the consideration
and study of sugar-free hulls, as introduced in Section 2.3. In this subsection, these two parts, sugar-free
hulls and the study of homology cycles compatible with the weave w.G/, converge: we show that it is

9In any sense of the word mutation: geometrically, through a Lagrangian surgery; diagrammatically, via a weave mutation; or
cluster-theoretically, mutating at the naive vertex representing them in the naive quiver.
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G w.G/ G w.G/

Figure 33: Associating a (piece of a) cycle in the weave for regions on a Type 1 column. The first
row depicts the case where the region is the entire column for nD 3 and 4 strands. The second
row depicts the remaining two cases for nD 4 strands.

possible to associate a Y–tree absolute cycle on w.G/ to every sugar-free hull of G. In consequence,
given that Y–trees are embedded, it will be possible to perform a weave mutation at every sugar-free hull
of G. This leads to the notion of initial basis, which eventually give rise to the initial seeds for our cluster
structures.

In the study of sugar-free hulls, we must consider cycles which are associated to regions of G — namely
the sugar-free hulls — and not just faces f �G. The simplest case is that of a region in an elementary
column of Type 1, which is considered in the following simple lemma, where we use the weave n.w0;n/
introduced in Definition 3.11:

Lemma 3.28 Let G be a GP graph and C �G a Type 1 elementary column. Consider the region R�C
given by the union of k consecutive gaps in C. Then the boundary of @R is homologous to the lift of a
unique weave line on the kth level.

Proof The boundary of a single gap has two connected components, and each of them is a deformation
retract of a sheet of the spatial wavefront †.C/. For a single gap, the two sheets associated with its
boundary intersect at a unique weave line at the bottom level. For a union R of k consecutive gaps, the
two sheets associated with @R intersect at the kth level.

Figure 33 depicts four cases illustrating how to associate a cycle on a weave line for a region on a Type 1
column. The case of arbitrary strands can be readily imagined by examining these few cases.

Proposition 3.26 showed that it is possible, up to possibly performing a weave equivalence, to represent
the naive absolute cycles with Y–cycles. But these are typically immersed: it is not always possible,
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Figure 34: Left: Type 2 column with region R highlighted in light green. Right: the associated
local weave and the Y–tree, in the shape of a tripod.

in general, to find embedded Y–cycles representing these homology classes. Now, the following result,
which we refer to as the Y–representability lemma, shows that it is possible to represent the boundary
cycle @R by a Y–tree if the region R is sugar-free:

Lemma 3.29 (Y–representability lemma) Let G be a GP graph and R �G a sugar-free region. Then
the boundary cycle @R is homologous to a Y–tree on w.G/, up possibly performing a weave equivalence
that adds n"

k
.wn;0/n

"

k
.wn;0/op and n

#

k
.wn;0/n

#

k
.wn;0/op to w.G/.

Proof Let C be an elementary column of G. By Lemma 2.4, the intersection R\C has at most one
connected component. Therefore, if R intersects C nontrivially, R must be a union of consecutive gaps
in the column C. By Lemma 3.28, for a Type 1 or Type 3 elementary column C, we can represent the
boundary @.R \ C/ by a single I–cycle weave line going from left to right; note that the weave line
color may change within a Type 3 column. It thus remains to treat the cases of elementary columns of
Type 2. By Lemma 2.3 applied to a Type 2 column, we conclude that the following four cases — in
correspondence with the four staircase patterns — are to be analyzed:

R R

R R

First, let us consider the staircase pattern which is second from the left. The corresponding local weave
pattern is c"

k
.w0;n/, as introduced in Definition 3.13. In the construction of this weave pattern, we first

bring the kth strand in the bottom level upward, using the weave pattern n
"

k
.w0;n/, subsequently insert a

trivalent weave vertex at the top strand, and then insert the weave pattern n
"

k
.w0;n/op. Figure 34 depicts a

case with four horizontal lines and k D 2. (See also Figures 17 and 18.) Since the kth horizontal line
is the bottom boundary of @R, there must be a unique hexavalent weave vertex in the n

"

k
.w0;n/op that

connects to the weave line corresponding to the union of all gaps in R at the right boundary. Therefore,

Figure 35: Example of the first staircase.
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we can create a Y–tree in this region, with the required boundary conditions, by inserting a tripod leg that
connects to the trivalent weave vertex (at the top) and continues to the left towards whichever weave line
is required by the boundary condition of R. This resulting Y–tree, in the shape of a tripod, then represents
@R locally, as desired. Figure 34, right, depicts this Y–tree, highlighted in light green, for the region R on
the left, also drawn in the same color. This concludes the second case among the four staircase patterns;
the third case, which also contains the region R to the right of the crossing, can be resolved analogously.

Next let us study the leftmost of the four staircase patterns. In this case, the chosen weave pattern c
#

k
.w0;n/,

as assigned in Section 3.3, does not already have a hexavalent weave vertex that meets our need. Nev-
ertheless, we can create it by concatenating the local weave pieces n"

k
.w0;n/ and n

"

k
.w0;n/op on the left

first. Note that this can be achieved by inserting a series of Moves I and V, and thus the equivalence
class of the weave remains the same. Now, inside of the weave piece n

"

k
.w0;n/op, there exists a unique

hexavalent weave vertex that connects to both the weave line representative of @R, to the left, and the
trivalent weave vertex in c

#

k
.w0;n/, to the right. The Y–tree, again in a tripod shape, represents @R locally,

as desired. Figure 35 depicts an example of such a tripod with nD 4 and k D 2. An analogous argument
also resolves the case of the rightmost staircase pattern. Finally, by combining the local pictures for all
three types of column, we conclude that there exists a representative for @R which is a Y–tree.

The Y–representability lemma allows us to introduce the following definition:

Definition 3.30 Let G be a GP graph. The set of initial absolute cycles S.G/ is the set of all Y–trees on
L.w.G// which are associated to the (nonempty) sugar-free hulls in G.

The inclusion relation between sugar-free hulls naturally puts a partial order on the set S.G/: by definition,
@R � @R0 if R � R0 as sugar-free hulls. Also, given a face f � G, we note that a face g 2 Sf in its
sugar-free hall, must satisfy Sg � Sf and hence @Sg � @Sf . Finally, note that multiple faces in G can
share the same sugar-free hull, and there may exist faces with an empty sugar-free hull. Thus, in general,
the number of sugar-free hulls may be smaller than the number of faces in G. Nevertheless, we can prove
that the set of initial absolute cycles S.G/ is always linearly independent.

Proposition 3.31 Let G be a GP graph and let S.G/ be its set of initial absolute cycles. Then S.G/ is
a linearly independent subset of H1.L.w.G///. In addition , it is possible to add naive absolute cycles
to S.G/ to complete S.G/ into a basis of H1.L.w.G///.

Proof Let LD L.w.G// be the initial filling. Consider the naive basis ff gfaces f of H1.L/. It suffices
to show that we can replace jS.G/j many naive basis elements with elements in S.G/ while maintaining
the spanning property of the set. This is can be done by using the partial order on S.G/ as follows.

Let us start with the minimal elements in S.G/ and work our way up, replacing the appropriate naive
basis elements in ff g with elements in S.G/. At each turn, we select a face f �G whose sugar-free
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hull Sf defines a Y–tree @Sf 2S.G/ and then replace the naive absolute cycle f with the Y–tree @Sf .
Note that it is always possible to find such a face f �G in this process: if no such face f were available,
any faces within the sugar-free hull would not have this particular sugar-free region as their sugar-free
hull, which is tautologically absurd.

In the process of implementing each of these replacements, we must argue that the resulting set still spans
the homology group H1.L/. For that we observe that, if a replacement of g by @Sg is done before the
replacement of f by Sf , the sugar-free hull Sg must not contain the face f inside. This follows from
the fact that f 2 Sg implies Sf � Sg . Therefore, we can use the set f@Sg j g 2 Sf g, which is already in
the basis set due to the partial order, and @Sf to recover f D @f. This shows that the resulting set after
the replacement of f by @Sf as above is still a basis for H1.L/.

The choice of completion of S.G/ to a basis inH1.L.w.G/// is a neat instance of the natural appearance
of quasicluster structures in (symplectic) geometry. There is no particular canonical manner by which we
can typically choose a basis for this complement, but, as we shall explain, the different choices all lead
to the same cluster structure up to monomials in the frozen variables, ie a quasicluster structure. The
dualization process, via the Poincaré pairing, requires a choice of basis. Therefore, there is no canonical
choice of initial relative cycles associated to the set S.G/ unless the latter spans H1.L.w.G///. In a
general situation, we can at least consider the following concept:

Definition 3.32 Let G be a GP graph, LD L.w.G//, ƒDƒ.G/ and S.G/ its set of initial absolute
cycles on L. Let B be a basis ofH1.L/ which is obtained by adding naive absolute cycles to the set S.G/.
Then the initial relative cycles associated to B is the collection B_ of linear combinations of naive
relative cycles whose relative homology classes form a basis of H1.L;ƒ/ dual to the basis B of H1.L/.

We emphasize that the basis B_ depends not only on S.G/, but also on the chosen basis completion B.
Note that a few simple choices of B are available as a result of the replacement construction in the proof
of Proposition 3.31. Namely, we start with the naive absolute basis ff g, and then swap some of the basis
elements f with their corresponding initial absolute cycles @Sf . In the case that there are multiple faces
sharing the same sugar-free hull, only one of the naive absolute cycles gets replaced, and the rest remain
in the basis, which will become frozen basis elements.

Furthermore, if the basis B is chosen via such a basis replacement process, then the corresponding dual
relative cycle basis B_ can be described with respect to the partial order on sugar-free hulls as well.
Indeed, suppose that we have an equality Sf D Sg D � � � of sugar-free hulls for some faces f; g � G,
among others, and f was chosen to be replaced by @Sf in the replacement process. Then the naive
relative cycle �g needs to be replaced by �g � �f for each g with Sg D Sf . Similarly, �f would need to
be replaced by �f CN, where the N summand is a linear combination of the naive relative cycles �h
associated to the chosen faces h with Sf ¨ Sh, so that the pairing of �f CN with @Sh vanishes for all
such h.
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3.8 The naive quiver of a GP graph

Let us start by emphasizing that the quiver of the initial seed for the cluster structure we construct is not
always the dual quiver of the GP graph G. Nevertheless, that dual quiver is useful in order to construct
the actual quiver of the initial seed because it can be used to compute the intersection form on the initial
filling, which is needed to define the initial quiver. Let us provide the details.

Following [Gross et al. 2018], in order to define a cluster structure, we first fix an integer lattice with a
skew-symmetric form on it. In the context of a GP graph G, the integer lattice is H1.L.w.G///, and
a natural skew-symmetric form on it is given by the intersection pairing between absolute homology
classes. By using the naive basis ff g of naive absolute cycles and the GP graph G, we can describe the
intersection pairing form f � ; � g combinatorially using a quiver.

Definition 3.33 Let G �R2 be a GP graph. The naive quiver Q0.G/, or dual quiver, associated to G is
the quiver constructed as follows:

(1) A quiver vertex is associated to each face f �G.

(2) For every bipartite edge in G, we draw an arrow according to .

(3) For each pair of quiver vertices, sum up the arrows between them.

Note that in step (3) there might be cancellations.

Lemma 3.34 [Goncharov and Kenyon 2013, Definition 8.2 and Proposition 8.3] Let �fg be the exchange
matrix of the quiver Q0.G/. Then the intersection pairing between f and g is given by ff ; gg D �fg .

Since ff gfaces f is a basis of H1.L.w.G///, Lemma 3.34 uniquely determines the intersection skew-
symmetric form. This intersection form, ie the quiver Q0.G/, is then used to compute the correct
quiver Q.G/ for the initial seed. The unfrozen vertices of the correct initial quiver Q.G/ will be indexed
by S.G/, the set of initial absolute cycles, and the remaining frozen vertices are determined by the
choice of completion of S.G/ to a basis of H1.L/. Since we will elaborate more on this in Section 4,
we conclude this discussion for now and revisit Q.G/ then.

Remark 3.35 In the case of a plabic fence G, all naive absolute cycles are I–cycles and thus they also
are initial absolute cycles. Thus, for a plabic fence, Q.G/ coincides with Q0.G/.

3.9 Bases and homology lattices in the presence of marked points

The construction of the cluster structures in Theorem 1.1, and the definition of the moduli space M.ƒ; T /,
in general require an additional piece of data: a set T of marked points on ƒ.G/.
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Definition 3.36 Let G be a GP graph and let ƒDƒ.G/ be its GP link. A set of marked points T �ƒ
is a subset of distinct points in ƒ, where we require that there is at least one marked point on each link
component of ƒ and, without loss of generality, the set T is disjoint from all crossings and all cusps in
the front f.G/ of ƒ.

All prior statements in Section 3 remain unchanged by the addition of marked points, as they do not
affect the associated weaves or the Hamiltonian isotopy class of exact Lagrangian fillings. Therefore,
we can still consider the initial embedded exact filling L D L.w.G// of the GP link ƒ. As before,
we select the collection of initial absolute cycles S.G/ associated with sugar-free hulls, and they
form a linearly independent subset of H1.L/. The addition of marked points affects only the cluster-
theoretic constructions: we need to replace the lattice of absolute homology H1.L/ by the lattice of
relative homology H1.L; T /. The natural inclusion H1.L/ � H1.L; T /, induced by the inclusions
T �ƒD @L� L, allows us to include the initial absolute cycles S.G/ as a linearly independent subset
of H1.L; T /. The only difference is that, in order to fix a cluster structure, we must expand S.G/ further
to a basis B of H1.L; T /. This expansion can be done in two steps: we first expand S.G/ to a basis
of H1.L/, as done via the replacement process in Section 3.7, and then expand this basis of H1.L/ to a
basis of H1.L; T /.

As was the case for H1.L/ and its dual H1.L;ƒ/, we shall need a dual space of H1.L; T / together with
a basis dual to a chosen basis B of H1.L; T /. In fact, there is a natural intersection pairing

h � ; � iWH1.L; T /˝H1.L nT;ƒ nT /! Z

obtained by algebraically counting geometric intersections of relative cycles in generic position. In the
same manner that Poincaré duality was used in Section 3.7, a duality also exists in the setting with marked
points. We record the precise statement in the following:

Proposition 3.37 Let L be a connected smooth surface with boundary ƒ D @L, and i W T ! ƒ an
inclusion of a set of marked points with �0.i/ surjective. Then

rk.H1.L; T //D rk.H1.L nT;ƒ nT //;

and the intersection pairing h � ; � i is nondegenerate.

It is possible to consider intermediate latticesM andN in between the lattices discussed above. Namely, we
can consider sublatticesN ofH1.L; T /which includeH1.L/, and dually quotientsM ofH1.LnT;ƒnT /,
as in the following diagram, where all horizontal arrows are dual lattices:

H1.L; T / H1.L nT;ƒ nT /

N M

H1.L/ H1.L;ƒ/
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4 Construction of quasicluster structures on sheaf moduli

In this section we develop the necessary results to study the geometry of the moduli stack M.ƒ; T /

associated to ƒDƒ.G/ and prove Theorem 1.1. In particular, we introduce microlocal merodromies
in Section 4.6 which, as we will prove, become the cluster A–variables. The construction of the cluster
structures is obtained purely by symplectic geometric means, using the results for Legendrian weaves
from Section 3 above and [Casals and Zaslow 2022] and the microlocal theory of sheaves [Guillermou
et al. 2012; Kashiwara and Schapira 1990; Shende et al. 2017]. Let us review what we have developed in
Sections 2 and 3 thus far. Given a GP graph G, we constructed the following list of objects:

(i) A Legendrian link ƒDƒ.G/, which is a .�1/–closure of a positive braid ˇ.G/.

(ii) An exact Lagrangian filling LD L.w/ of ƒ, called the initial filling. This exact Lagrangian filling
L is obtained as the Lagrangian projection of the Legendrian lift associated with the spatial front
defined by the initial weave wDw.G/.

(iii) A collection of initial absolute cycles S.G/, which form an L–compressing system for L and can
be described by Y–trees on w.

(iv) A skew-symmetric intersection pairing on the lattice H1.L/. This intersection pairing can be
computed directly from the GP graph G.

By specifying an additional generic set of marked points T � ƒ with at least one marked point per
component, we also obtain the latticeH1.L; T /, which containsH1.L/ and hence the linearly independent
subset S.G/. The skew-symmetric pairing on H1.L/ extends naturally to a skew-symmetric pairing on
H1.L; T /. By Poincaré duality, we can identify the dual lattice of H1.L; T / with the relative homology
H1.LnT;ƒnT /. Any completion of S.G/ to a basis B ofH1.L; T / gives rise to a unique dual basis B_

of H1.L nT;ƒ nT /.

The outline for this section is as follows. First, we give working definitions of the moduli space M.ƒ; T /,
which allows us to draw connections to Lie-theoretical moduli spaces and also deduce the factoriality
of its ring of regular functions O.M.ƒ; T //. Next, on the moduli space M.ƒ; T /, we construct a new
family of rational functions called microlocal merodromies, which are associated with relative cycles in
H1.L nT;ƒ nT /. Although the definition of microlocal merodromies depends on the initial filling L,
we show that, for elements in the dual basis B_, their microlocal merodromies actually extend to C–
valued regular functions on the entire moduli space M.ƒ; T /. Moreover, we prove that, within these
special microlocal merodromies, those dual to S.G/ can be mutated according to the cluster A–mutation
formula as the initial weave w undergoes weave mutation, corresponding to a Lagrangian disk surgery
on L.w/. Then we show that the codimension 2 argument in cluster varieties can be applied by studying
immersed Lagrangian fillings represented by nonfree weaves. These results together with [Berenstein
et al. 2005] allow us to conclude the existence of a cluster A–structure on M.ƒ; T /, where the initial
and adjacent seeds are constructed via the Lagrangian filling L.G/, its Lagrangian surgeries and the
associated microlocal merodromies.
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4.1 Descriptions of sheaves with singular support on the Legendrian ƒ.G/

Let ƒ� .R3�st/ be a Legendrian link and T �ƒ a set of marked points, and consider the moduli stacks
M1.ƒ/ and M.ƒ; T / discussed in Section 2.7. These stacks classify (complexes of) constructible sheaves
on R2 with a singular support condition. In this subsection, we provide Lie-theoretical descriptions for
M1.ƒ/ and M.ƒ; T / which are suited for our computations, using [Kashiwara and Schapira 1990] and
closely following [Shende et al. 2017, Sections 3.3 and 5].10 These are more combinatorial presentations
of these stacks, as the constructible and microlocal aspects of the original definition are translated into
explicit quiver representations satisfying certain conditions.

Given a cooriented front projection �F .ƒ/, consider the following quiver QF .ƒ/:

� A vertex of QF .ƒ/ is placed at each connected component of R2 n�F .ƒ/,

� For each (1–dimensional) connected component of �F .ƒ/ n S0, where S0 denotes the set of
crossings and cusps in �F .ƒ/, draw an arrow connecting the two vertices associated to the two
adjacent 2–dimensional cells (that contain that stratum in their closure). The direction of the arrow
is opposite to the coorientation of the front �F .ƒ/.

The following is then proven in [Shende et al. 2017, Section 3]:

Proposition 4.1 Let ƒ � .R3; �/ be a Legendrian and �F .ƒ/ � R2 a front , with a binary Maslov
potential , such that .R2; �F .ƒ// is a regular stratification. Consider the stack M.QF .ƒ// classifying
linear representations of the quiver QF .ƒ/ that satisfy the following conditions:

(1) The vector space associated with the unbounded region in R2 is 0.

(2) Any two vector spaces associated with neighboring vertices differ in dimension by 1.

(3) At each cusp , the composition depicted in Figure 36, left , is the identity map.

(4) At each crossing , the four linear maps involved form a commuting square which is exact , as precised
in Figure 36, right.

Then the stack M1.ƒ/ is isomorphic to M.QF .ƒ//.

Proposition 4.1 describes M1.ƒ/. Now we gear towards the decorated moduli M.ƒ; T /. First, we need
a description of microlocal monodromy in terms of these quiver representations, which is provided in
[Shende et al. 2017, Section 5], and we briefly summarize as follows. Let S be the set of singular points
(crossings and cusps) in �F .ƒ/ and note that each connected components of �F .ƒ/ nS is associated
with a 1–dimensional kernel or a 1–dimensional cokernel. These kernels and cokernels can be glued
together along strands of ƒ using the identity condition at cusps and the exactness condition at crossings,
as follows:
10An expert in the results of [Kashiwara and Schapira 1990; Shende et al. 2017] might be able to quickly move forward to
Section 4.2.
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������! Vn! 0

Figure 36: Identity condition at cusps and exactness condition at crossings.

� At a cusp, as in Figure 36, left, the condition g ıf D idV forces the composition kerg ,!W �
cokerf to be an isomorphism. By definition, we glue kerg and cokerf using this isomorphism.

� At a crossing, as in Figure 36, right, there are three cases, depending on the injectivity or surjectivity
of the four maps: the four maps can be all injective, all surjective, or two injective with two surjective.
In each of the three cases, we have the following isomorphisms from the exactness condition:

Ve

Vs

Vw

Vn

fsefsw

fenfwn cokerfsw ,!
Vn

Vs
� cokerfen;

cokerfwn�
Vn

Vs
 - cokerfse;

(4-1)

Ve

Vs

Vw

Vn

fsefsw

fenfwn kerfsw ,! ker.fwn ıfsw/D ker.fen ıfse/� kerfen;

kerfwn� ker.fwn ıfsw/D ker.fen ıfse/ - kerfse;
(4-2)

Ve

Vs

Vw

Vn

fsefsw

fenfwn cokerfsw
fwn
���! cokerfen;

kerfwn
fsw
 �� kerfse:

(4-3)

The result of gluing these 1–dimensional vector spaces is a rank-1 local system ˆ on ƒ. In fact, it
coincides with the microlocal monodromy functor; see [Shende et al. 2017, Section 5.1] for more details.
Given the set T of marked points on ƒ, with at least one marked point per link component, ƒ nT is a
collection of open intervals. Thus, along each such open interval I, we can trivialize the rank-1 local
system ˆ by specifying an isomorphism �I W I �C Š�!ˆjI . By definition, a collection of such maps f�I g
are said to be a framing for the local system ˆ.

In conclusion, a point in the decorated moduli space M.ƒ; T /, as defined in Section 2.7.3, is a point
in M1.ƒ/, which is combinatorialized via Proposition 4.1, together with a framing for the local system ˆ,
ie a trivialization of the (trivial) local system ˆjƒnT . Here two framings are considered equivalent if they
differ by a global scaling C� factor, and thus dimM.ƒ; T /D dim M1.ƒ/CjT j � 1.

4.1.1 Description for a GP graph G In the case thatƒDƒ.G/ comes from a GP graph G, Section 2.4
provides a specific front f.G/�R2. For this front, the description from Proposition 4.1 can be translated
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C2

C2

C

C

Cn

:::

:::

0

0

f1

f2

fn

gn

g2

g1

F0 D

�
0� img.f2 ı � � � ıfn/� img.f3 ı � � � ıfn/
� � � � � imgfn �Cn

�

F0 D

�
0� kergn � ker.gn�1 ıgn/�
� � � � ker.g2 ı � � � ıgn/�Cn

�

Figure 37: The pair of flags associated to a Type 1 column.

in terms of configurations of flags, as follows. The front projection �F .ƒ/D f.G/ can be sliced into the
three types of elementary columns.

For a Type 1 column, there are n strands in the bottom region, with Maslov potential 0, and n strands in
the top region, with Maslov potential 1. By Proposition 4.1, the vector space associated with the central
region must be Cn. From the quiver representation data, we can construct the following pair of flags in Cn.
Since all of the linear maps in the bottom region are injective, their images in the middle Cn naturally
form a first flag. Similarly, since all of the linear maps in the top region are surjective, their kernels in
the middle vector space Cn form a second flag. See Figure 37 for a depiction of the front in Type 1 and
its associated pair of flags. We adopt the convention of indexing flags from the bottom region with a
subscript, and indexing flags from the top region with a superscript, so as to distinguish between them.

Before discussing Type 2 and 3 columns, we recall that the relative positions relations between two flags
in Cn are classified by elements of the symmetric group Sn, which is a Coxeter group with Coxeter
generators fsign�1iD1 . For two flags F D .0�F1 � � � � �Cn/ and F 0 D .0�F 01 � � � � �Cn/, we write

� F
si
�F 0 if Fi ¤ F 0i but Fj D F 0j for all j ¤ i ;

� F
w
�F 0 if there exists a sequence of flags G0;G1; : : : ;Gl such that

F D G0
si1
� G1

si2
� G2

si3
� � � �

sil
� Gl DF 0

and si1si2 : : : sil is a reduced word of w.

This classification can be identified with the Tits distance obtained from a Bruhat decomposition of GLn.
In particular, being in w relative position does not depend on the choice of reduced word of w. If F

w
�F 0,

then, for each choice of reduced word .i1; : : : ; il/ for w, there exists a unique sequence of flags .Gk/lkD0
that relate the two flags F and F 0.
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We can now translate the local quiver representation data associated with a Type 2 column into relative
position relations between flags. Suppose the pair of flags to the left of a Type 2 column is .L0;L 0/, and
the pair of flags to the right of a Type 2 column is .R0;R0/. If there is a crossing in the bottom region
at the i th gap, counting from the bottom in both the front and the GP graph, then, from the exactness
condition at the crossing, we obtain the constraints

(4-4) L0
si
�R0 and L 0

DR0:

Similarly, if there is a crossing in the top region at the i th gap, counting from the top in the front projection
or counting from the bottom in the GP graph, then the exactness condition at the crossing yields

(4-5) L0 DR0 and L 0 sn�i
� R0:

Since crossings in Type 2 columns correspond to vertical edges in the GP graph, we can infer the relative
position relation between pairs of flags from the GP graph as well.

For a Type 3 column, the pairs of flags on the (Type 1 column on the) left and on the (Type 1 column on
the) right are not in the same ambient vector space, as the dimensions of the two vector spaces differ by
one. Instead, there is a linear map from the ambient vector space for the pair of flags on the left to the
ambient vector space for the pair of flags on the right. This linear map is injective if the lollipop is white
and it is surjective if the lollipop is black. Let us investigate how the two pairs of flags are related.

Suppose first that the lollipop is white, so that the linear map h WCn�1!Cn between the two (middle)
adjacent ambient vector spaces is injective. Given any flag F D .0�F1� � � � �Fn�1DCn�1/ in Cn�1,
we can use h to naturally extend it to a flag h.F / in Cn by defining

h.F / WD .0� h.F1/� h.F2/� � � � � h.Fn�1/�Cn/:

This extension from .L0;L
0/ to .h.L0/; h.L 0// can be achieved geometrically by a sequence of RII

moves that pulls the left cusp upward in the front projection. Indeed, consider the local example in
Figure 38.

The green maps in the bottom region define the extension h.L0/. By the exactness of the quadrilaterals in
the top region, the red maps define the extension h.L 0/. In particular, the extensions h.L0/ and h.L 0/

are completely determined by the original data of the quiver representations.

Now, with these extensions defined, it follows that, if there is a white lollipop emerging in the i th gap
with 0 � i � n� 1, counting from below in the GP graph,11 then the corresponding relative position
conditions are

(4-6) h.L0/
sn�1:::siC1
� R0 and h.L 0/

sn�1:::sn�i
� R0:

11The case i D 0 is a lollipop at the bottom, and i D n� 1 is a lollipop at the top.

Geometry & Topology, Volume 28 (2024)



956 Roger Casals and Daping Weng

0

C

C2

C3

C2

C

0

0

C

C2

C3

C4

C3

C2

C

0

h

L0

L 0

R0

R0

0

C

C2

C3

C2

C

0

0

C

C2

C3

C4

C3

C2

C

0

C3

C2

C 0

h

L0

L 0

R0

R0

Figure 38: Pulling up a left cusp.

Suppose that there is a black lollipop, and thus the linear map between the two ambient vector spaces
h W Cn! Cn�1 is surjective. Then, given any flag F D .0�F1 � � � � �Fn�1 D Cn�1/ in Cn�1, we
consider h�1.Fi / and insert ker.h/ in front of it so as to form a flag in Cn:

h�1.F / WD .0� ker.h/� h�1.F1/� � � � � h
�1.Fn�1/DCn/:

Similar to the white lollipop case, the extension of .R0;R0/ to .h�1.R0/; h�1.R0// can be achieved
geometrically by a sequence of RII moves that pulls the right cusp downward in the front projection, as
depicted in Figure 39. Note that the green maps in bottom region define the extension h�1.R0/, whereas
the red maps in the top region define the extension h�1.R0/.
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Figure 39: Pulling down a right cusp.
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It follows that, if there is a black lollipop occurring in the i th gap with 0� i � n, counting from below in
the GP graph, then the corresponding relative position conditions are

(4-7) L0
si�1:::s1
� h�1.R0/ and L 0 sn�iC1:::s1

� h�1.R0/:

In summary, given a GP graph G, we can divide G into columns of three types such that every consecutive
pair of non-Type 1 columns is separated by a Type 1 column and every consecutive pair of Type 1 columns
is separated by a non-Type 1 column. In between Type 3 columns there is a unique ambient vector space
Vi DCn for some n, and they are linked by linear maps hi W Vi�1! Vi that are either injective with a
1–dimensional cokernel or surjective with a 1–dimensional kernel. The above discussion proves:

Lemma 4.2 For a GP graph G with a decomposition into columns as above , the moduli space M1.ƒ/

can be described by the following data:

(1) a pair of flags in Vi for each Type 1 column contained in the Vi part of G;

(2) for each Type 2 column , the neighboring flags satisfy the relative position condition according to
(4-4) and (4-5);

(3) for each Type 3 column , the neighboring flags satisfy the relative position condition according to
(4-6) and (4-7);

where we quotient this data by the equivalence relation .F ; h/ � .F 0; h0/ for a collection of elements
gi 2 GL.Vi / such that hi ıgi�1 D gi ı h0i .

In the flag description of Lemma 4.2, the rank-1 local system ˆ on ƒ can be constructed by taking
quotients of consecutive vector subspaces in each flag and then gluing them along strands ofƒ at crossings
and cusps in the same manner as before. Note that, in this context, only (4-1) is used when gluing these
rank-1 local systems at crossings because all linear maps near a crossing are now inclusions of vector
subspaces. In particular, the surjective maps in the top region of the front projection are now turned into
inclusions of kernels.

4.1.2 Description for .�1/–closures Finally, there is another description of M1.ƒ/ and M.ƒ;T/ as
moduli space of configurations of flags, which aligns better when comparing with the flag moduli of
the weaves w.G/. In that latter case, there will be only one ambient vector space. The description in
Lemma 4.2, which is associated to the specific front f.G/, after using RII and RIII moves, can be shown
to be equivalent to a description with a unique ambient (top-dimensional) vector space. Indeed, rather
than using flags from different ambient spaces with varying dimensions, we can perform additional RII
and RIII moves to push strands like the blue one in Figure 38 all the way to the left and push strands like
the blue one in Figure 39 all the way to the right (see also Lemma 3.22). This will extend all flags from
all Type 1 columns to flags in Ch, where h is the total number of horizontal lines in the GP graph G.
Moreover, these flags will satisfy the relative position conditions imposed by the external weave lines of
the initial weave wDw.G/ or, equivalently, the cyclic positive braid word ˇ D ˇ.G/ for which ƒ is its
.�1/–closure. In this context, [Shende et al. 2017, Proposition 1.5], or Proposition 4.1, reads:
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Lemma 4.3 Let ˇD .i1; i2; : : : ; il/2BrC
h

be a positive braid word on h strands andƒ be the Legendrian
link associated to the front given by the .�1/–closure of ˇ. Then

M1.ƒ/Š

�
.F0;F1;F2; : : : ;Fl/

ˇ̌̌ Fi is a flag in Ch for all i ;

F0

si1
� F1

si2
� � � �

sil
� Fl DF0

�.
PGLh :

4.2 Factoriality property

In the upcoming construction of a cluster A–structure for the moduli space M.ƒ; T /, we shall need that
the coordinate ring O.M.ƒ; T // is a unique factorization domain (aka. factorial). This can be a subtle
condition to verify and thus we provide in this section an argument that the condition of �–completeness
of the braid ˇ.G/, as introduced in Section 2.5, is sufficient for factoriality. Note that all shuffle graphs
have ˇ.G/ be a �–complete braid, and thus the rings O

�
M.ƒ.G/; T /

�
are factorial if G is shuffle.

Proposition 4.4 Let G be a GP graph with ˇ.G/ a �–complete braid. Then the moduli space
M.ƒ.G/; T / is an affine variety whose coordinate ring is factorial.

Proof Since the moduli space M.ƒ; T / is a Legendrian invariant, without loss of generality we can
turn ƒ into the .�1/–closure of an n–stranded positive braid ˇ.G/D� and use the description from
Section 4.1.2. Let us first consider the case where the set T of marked points can be arranged into a
configuration with one marked point per level along a vertical line between � and  . (It follows that
jT j D n.) This case is depicted as follows:

� 

�

�

�
:::

:::
:::

Let BC and B� be the Borel subgroups of PGLn of upper-triangular and lower-triangular matrices,
respectively. We can exhaust the PGLn–action on flag configurations by fixing the two flags at the two
ends of � to be the two unique flags stabilized by BC and B�, respectively, while requiring that the
decoration on the flag Fl at the dashed line (after  on the right or before � on the left) be the standard
one, ie mapping Nei to 1 for each consecutive quotient Spanfe1; : : : ; eig=Spanfe1; : : : ; ei�1g Š Span. Nei /.

Let .i1; : : : ; il/ be a positive word for the positive braid  such that ˇ.G/D� . Let us record a flag as a
matrix with row vectors such that the span of the last k row vectors give the k–dimensional subspace in
the flag. Then Fl can be recorded by the permutation matrix w0. Starting from the flag Fl , the flags
Fl�1;Fl�2; : : : to the left of Fl can then be given by

Fk D BikC1
.zkC1/BikC2

.zkC2/ � � �Bil .zl/w0:

In the end, we need F0 to be the standard flag

0� Spanfeng � Spanfen�1; eng � � � � � Spanfe2; : : : ; eng �Cn;
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which is equivalent to requiring that Bi1.z1/Bi2.z2/ � � �Bik .zl/w0 be upper-triangular. This shows that
M.ƒ.G/; T / is isomorphic to the braid variety X.ˇ.G/; w0/ from [Casals et al. 2020], which has a
factorial coordinate ring.12

Now let us consider the case of an arbitrary number of marked points. Let us start with the set T having
one marked point per level, as in the case above. Suppose m of the marked points share the same link
component; then we can move these marked points along that link component until they get inside an
horizontal interval with no crossings or cusps. Then these marked points are just changing decorations on
the same underlying 1–dimensional quotient of consecutive vector spaces of the same flag. Thus, we can
extract a .C�/m�1–torus factor and replace these marked points with one marked point. By doing this
for each link component, we can reduce T to a set T 0 with one marked point per link component, and
conclude that

M.ƒ; T /ŠM.ƒ; T 0/� .C�/n�N

as affine varieties, where N is the number of link components in ƒDƒ.G/. This implies that

O.M.ƒ; T //Š O.M.ƒ; T 0//˝CŒt˙1i �n�NiD1 :

If there is an element in O.M.ƒ; T 0// admitting two nonequivalent factorizations, then these two fac-
torizations are still valid and nonequivalent in O.M.ƒ; T //, contradicting the fact that O.M.ƒ; T // is
factorial. Thus, we can conclude that O.M.ƒ; T 0// is factorial when T 0 consists of one marked point per
link component. In general, for any set T 00 with at least one marked point per link component, we can
implement the same argument above and write

M.ƒ; T 00/ŠM.ƒ; T 0/� .C�/jT
00j�N :

Algebraically, this implies that

O.M.ƒ; T 00//Š O.M.ƒ; T 0//˝CŒt˙1i �
jT 00j�N
iD1 :

Again, since O.M.ƒ; T 0// is factorial, so is the tensor product O.M.ƒ; T 0//˝CŒti �
jT 00j�N
iD1 . Given that

O.M.ƒ; T 0//˝CŒt˙1i �
jT 00j�N
iD1 is a localization of this factorial tensor product, it is factorial as well.

4.3 Moduli spaces for the Lagrangian L.w.G//

The moduli spaces M1.ƒ/ and M.ƒ; T / depend only on the Legendrian isotopy type ofƒ. In particular, if
ƒDƒ.G/ is a GP link, then these moduli spaces are invariant under square moves and other combinatorial
equivalences of the GP graph G which preserve the Legendrian isotopy class of ƒ. The GP graph also
provides the information of an embedded exact Lagrangian filling for ƒ.G/, namely the exact Lagrangian
filling LD L.G/ described by the initial weave wDw.G/. The Guillermou–Jin–Treumann map of [Jin
and Treumann 2017], or [Ekholm et al. 2016; Casals and Ng 2022], imply that there are open embeddings

H 1.LIC�/!M1.ƒ/; H 1.L; T IC�/!M.ƒ; T /;

12We thank Eugene Gorsky for an explanation of why this is the case. See also upcoming work of the first author with Gorsky
and coauthors, where this is written in detail.
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whose domains parametrize (decorated) C–local systems on L (with decoration T ), and the map is
essentially the microlocalization functor. These open torus charts .C�/b1.L/ and .C�/b1.L;T / can be
described in terms of flags if the Lagrangian filling L is obtained from a weave, as explained in [Casals
and Zaslow 2022]; we shall use it in the proof of Theorem 1.1. The definition of M1.w/ from [Casals
and Zaslow 2022] is as follows:

Definition 4.5 Let w � R2 be a weave. By definition, the total flag moduli space zM1.w/ associated
to w comprises tuples of flags, as follows:

(i) There is a flag F �.F / assigned to each face F of the weave w, ie to each connected component
of R2 nw.

(ii) For each pair of adjacent faces F1; F2 � R2 nw, sharing an si–edge, their two associated flags
F �.F1/ and F �.F2/ are in relative position si 2 Sn, ie they must satisfy

Fj .F1/DFj .F2/ for 0� j �N with j ¤ i and Fi .F1/¤Fi .F2/:

The group PGLn acts on the space zM1.w/ simultaneously. By definition, the flag moduli space of the
weave w is the quotient stack M1.w/ WD zM.w/=PGLn.

By Section 4.1.1, M1.w/ is an open subspace of M1.ƒ/ via restriction to the boundary. Indeed, since
the weaves w are free weaves [Casals and Zaslow 2022, Section 7.1.2], the data of flags at the boundary
of the initial weave uniquely determines the flags at each face of w. (This fact can also be verified
combinatorially.) It follows from [Casals and Zaslow 2022] that M1.w/ are complex tori M1.w/ Š

.C�/dim M1.ƒ/, and thus these moduli spaces of flags associated to the initial weave w are natural
candidates for an initial cluster chart in the moduli space M1.ƒ/ for a GP link ƒ. (These complex
tori are indeed the images of the Guillermou–Jin–Treumann maps.) The definition of candidate cluster
X–variables will be the subject of the next subsection.

The decorated version of the flag moduli M1.w/, which we denote by M.w; T /, is naturally defined by
adding a framing away from T along the boundary @L.w/Dƒ. It also follows that M.w; T / is naturally
an open torus chart in M.ƒ; T /. The corresponding definition of the candidate cluster A–variables is
undertaken in Section 4.6.

4.4 Microlocal monodromies: unsigned candidate X–variables

Let us consider the open toric chart M1.w/�M1.ƒ/ from Section 4.3. We now build a function

X WM1.w/!C

associated to each Y–cycle  , generalizing [Casals and Zaslow 2022, Section 7] — see also [Shende et al.
2017, Section 5.1] — to our context. First we observe that the data of M1.w/ associates a flag F in
each connected component of the complement of w in R2. We associate the 1–dimensional vector space
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Figure 40: A weave for the unique filling of the max tb unknot and microlocal parallel transports
from its sheaf quantization.

Fi=Fi�1 to the i th sheet in the lift of each connected component. Then, across the lifts of each weave
line, we define two linear isomorphisms

(4-8)

Li=Li�1

RiC1=RiLiC1=Li

Ri=Ri�1

Li Ri

Li�1 DRi�1

LiC1 DRiC1 C W
Li

Li�1
,!

LiC1

Li�1
D

RiC1

Ri�1
�

RiC1

Ri
;

 � W
Ri

Ri�1
,!

RiC1

Ri�1
D

LiC1

Li�1
�

LiC1

Li
.

Note that  ˙ are isomorphisms because L and R are in si–transverse position, as they are separated by a
weave line labeled with si . Now, given a loop  on L, we may perturb it so that it intersects with any lifts
of weave lines transversely. Then, by composing several of the isomorphisms  ˙ above and their inverses,
we obtain a linear automorphism for each generic fiber along  . Since each generic fiber is a 1–dimensional
vector space, we can represent this linear automorphism by a nonzero scalar   . This nonzero scalar
  is also known as the microlocal monodromy of the sheaf moduli space M1.w/ along  . However, the
microlocal monodromies   do not naturally give rise to a local system onL,13 as the following illustrates:

Example 4.6 Consider the weave with a unique trivalent vertex, which depicts a Lagrangian 2–disk
filling, as drawn in blue in Figure 40, left. According to the definition of M1.w/, there is a flag li �C2

in each of the three sectors, and they are pairwise transverse. Let  be a curve on L.w/Šƒ.w/ which,
under the front projection, goes from the lower sheet to the upper sheet and then back to the lower
sheet; see again Figure 40, left. By definition, the microlocal parallel transport   should be the map in
Figure 40, center, which is the linear map that projects parallel to the line l2. Consider the lift � of a loop
that goes around a trivalent weave vertex in R2, which is a double cover for the projection onto the weave
plane. Without loss of generality, let us suppose � starts at the lower sheet in the sector containing l1. The
parallel transport along � is then the composition of the three linear projections, as in Figure 40, right,
which is equal to the linear map v 7! �v on l1. In other words,  � D�1. However, � is a contractible
cycle on L.w/ and thus the microlocal monodromy assignment � 7! � cannot be a local system on L.w/.

Let us now specialize to our situation, with G a GP graph and wDw.G/ its initial weave. By Section 3,
there is a distinguished linearly independent subset S.G/�H1.L.w.G/// of L–compressible cycles

13They give a twisted local system as in [Guillermou 2023, Part 13], or a twisted flat connection as in [Gaiotto et al. 2013,
Part 10].
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parametrized by the sugar-free hulls in the GP graph. For each element in S.G/, we choose a Y–tree
representative  , which exists by Lemma 3.29, and define

X WD �  :

These functions shall become our cluster X–variables, once signs are fixed and Theorem 1.1 is proven.
Note that, since we can isotope the Y–tree  to a short I–cycle, ie an equivalent monochromatic edge, we
may use it to compute X explicitly, as follows. In a neighborhood of a short I–cycle, labeled with the
permutation si , a point in the flag moduli M1.w/ is specified by the data of a quadruple of flags. Each of
these flags has the same subspaces F j in each region for j ¤ i , and for j D i we additionally require
the data in each region of a line l in the 2–dimensional space V WDF iC1=F i�1. This is the data of four
lines a; b; c; d � V. The function X is then equal to the cross-ratio

X D ha; b; c; d i D �
a^b

b^c
�
c^d

d^a
: a

b
c

d

The definition of X , following [Fock and Goncharov 2006b; Shende et al. 2019; Casals and Zaslow
2022], is not particularly new. It is also possible to define X directly and combinatorially from the
Y–trees, in line with [Casals and Zaslow 2022, Section 7]. The fact that these functions fXg transform
according to an X–mutation formula under a square-face mutation is due to [Shende et al. 2019], and
under the more general weave mutation due to [Casals and Zaslow 2022]. Indeed, let � D fig be a
maximal collection of Y–trees in w.G/ which are linearly independent in H1.L.w.G///, Q.�/ be their
(algebraic) intersection quiver, and X� D fXi

g be a labeling of each vertex of the quiver. Then it is
shown in [Casals and Zaslow 2022, Section 7.2.2] that weave mutation at one such Y–tree  2 � induces
a quiver mutation of Q.�/ at the vertex associated to  , and the set of variables X� changes according to
a cluster X–mutation.

Defining these candidate cluster X–variables is relatively useless for the purpose of proving existence of
cluster structures: the variables X do not extend to global in M1.ƒ/ in general and we cannot deduce
the existence of a cluster X–structure merely from constructing this initial seed .Q.�/;X�/. Moreover,
in general there could be many choices of � for a fixed general weave w, and it is not known whether
different choices yield equivalent, or even quasiequivalent, cluster seeds. It thus becomes crucial to
construct cluster A–variables for M.ƒ; T /, ideally in a symplectic invariant manner, as we will do in
a moment. By [Berenstein et al. 2005], a cluster A–structure can be shown to exist once the necessary
properties of the candidate A–variables are proven. As a byproduct, Corollary 1.2 then deduces the
existence of the cluster X–structure on M1.ƒ/ where the variables are microlocal monodromies.

4.5 Collections of sign curves: fixing signs

Let G be a GP graph, wDw.G/ its initial weave and L WDL.w/ its initial filling, and T a set of marked
points in ƒ.G/ D @L. Let us denote the set of lifts of trivalent weave vertices on L by P � L. It
follows from Sections 4.3 and 4.4 that each point of the flag moduli M1.w/ defines a rank 1 local system
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on L nP with �1 monodromy around each point in P. In this subsection, we describe a way to add
signs to monodromies to obtain a (noncanonical) isomorphism between M1.w/ and Loc1.L/. This is a
combinatorial expression of the fact that, in our case, global sections of the Kashiwara–Schapira stack are
(canonically) isomorphic to the category of twisted local systems and (noncanonically) also isomorphic
to the category of local systems. In terms of weave combinatorics, we proceed as follows:

Definition 4.7 A sign curve is an unoriented curve on the weave surface L that intersects the lifts of
weave lines transversely and whose endpoints lie in the set P tT. By definition, a collection C of sign
curves on L is coherent if each point in P is incident to one and only one sign curve in C, and all curves
in C intersect transversely.

We record sign curves on L by drawing dotted curves on R2 in juxtaposition with the weave w and
labeling the indices of the sheets they are on.

Fix a coherent set C of sign curves on L. For any path  on L, we may perturb  so that it intersects
elements of C transversely. Then we redefine the parallel transport along  to be the microlocal parallel
transport   multiplied by a factor of �1 whenever the curve  passes through a sign curve in C. Since
each branch point of L is incident to one and only one sign curve, this new parallel transport corrects the
monodromy around each point in P to be 1, defining an isomorphism

ˆC WM1.w/! Loc1.L/ŠH 1.LIC�/Š .C�/b1.L/:

In fact, we can do better than an arbitrary isomorphism M1.w/
Š�! Loc1.L/. From Section 4.4, our

candidates for cluster X–variables are of the form �  for initial absolute cycles  2S.G/, and we can
in fact incorporate this extra sign in front of   into the set of coherent sign curves.

Definition 4.8 A coherent set C of sign curves on L is said to be compatible if, for all initial absolute
cycles  2S.G/,

ˆC .p/./DX .p/ WD �  .p/ for all p 2M1.w/:

For the initial free weave wDw.G/ constructed from a GP graph G, we can find a compatible set of
sign curves as follows. First, we observe that all trivalent weave vertices of w occur near the boundary of
the weave. Thus, at each trivalent weave vertex, two of the three adjacent sectors are facing away from
the weave: we will draw our sign curves inside these two sectors. Next, we break the weave w down into
weave columns, and, by Section 3, trivalent weave vertices only occur inside Type 2 columns.

Let us further classify Type 2 columns into two types: a Type 2 column is said to be critical if it is
the rightmost Type 2 column that contains part of an initial cycle  2S.G/; it is said to be noncritical
otherwise. By construction, each critical Type 2 column has a unique initial cycle  that ends there.

If a Type 2 column is noncritical, we draw a sign curve in either sector on either sheet, and then lead it
towards the boundary of L; once it gets within a collar neighborhood of the boundary @LDƒ, the sign
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curve will follow along ƒ until it reaches a marked point. (Such a marked point exists because we have
at least one marked point per link component.)

If a Type 2 column is critical, we consider the unique initial cycle  that ends at this Type 2 column.
We compute the product of all the signs  has picked up along all the previous trivalent weave vertices.
If the product is 1, we add a sign curve c on the appropriate sheet of either of the two sectors so that
 intersects with c nontrivially. If the product is �1, we add a sign curve c on the appropriate sheet of
either of the two sectors so that  intersects with c trivially. By doing so, we guarantee that ˆC maps 
to X D�  , as desired.

Thus, a compatible set C of sign curves exists in our setting, and we can explicitly identify M1.w/ with
the moduli space Loc1.L/ of rank 1 local systems on L. This identification allows us to interpret the
cluster X–variables X as actual monodromies of local systems along the initial cycles  , and also fixing
the necessary signs for the upcoming constructions.

Proposition 4.9 If w admits a compatible set of sign curves and w0 is mutation equivalent to w, then w0

also admits a (noncanonical ) compatible set of sign curves.

Proof Both weave equivalences and weave mutations are local operations on the weave. Therefore, it
suffices to verify that compatible sets of sign curves can be constructed locally, before and after such
local operations. That is, locally in a neighborhood where the weave equivalence or mutation is going
to be performed, we want to argue that any given compatible set of sign curves on that piece of the
initial weave — before an equivalence or mutation — we can construct a compatible set of sign curves
afterwards, locally on that piece of the weave after the operation.

For weave equivalences, Moves I, IV and V in Definition 3.2 do not involve any trivalent weave vertices.
Thus, sign curves that pass through any of these local pictures can be carried through these equivalences
using planar homotopies. In contrast, Move II (the push-through move), III and VI do involve trivalent
weave vertices. In the case of Move VI, the weave lines lift to sheets that are not adjacent to each other;
therefore, the weave line with no trivalent vertex (yellow in Figure 12) can be ignored when studying the
set of compatible sign curves, reducing to the constant case of a trivalent vertex. By Remark 3.3, Move III
is a concatenation of Moves I and II. Thus, the only weave equivalence move that remains to be studied is
Move II, which will be discussed in a moment. For weave mutations, it suffices to check mutations along
short I–cycles, since any Y–tree is weave equivalent to a short I–cycle by Proposition 3.5. In conclusion,
we need to study compatible sets of sign curves locally near a push-through and a weave mutation.

A priori, we must study sign curves that arrive at the trivalent vertices from different faces of the weave;
a face being any connected component of the complement of the weave lines. That said, if a sign curve is
incident to a trivalent weave vertex, we can apply a planar homotopy to the sign curve so that it arrives at
the trivalent vertex from any of the another faces near the trivalent vertex. This is depicted in Figure 41.
Therefore, it suffices to study the case that a sign curve arrives at a trivalent only from one of the three
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i

�

i

Figure 41: Applying a planar homotopy to a sign curve so that it arrives at the trivalent vertex
from a different face. (The index i can be either 1 or 2.)

faces near the trivalent vertex. (If the curve arrived from another face, we could homotope the curve and,
locally in a small neighborhood around the vertex, have it arrive from another face.)

With this reduction, it suffices to study compatible sets of sign curves locally near a push-through and
a weave mutation which arrive from one face (of our choice) at each trivalent vertex. Up to symmetry,
there are only three cases to check, shown in Figure 42. The figure illustrates how to resolve the problem
at hand: for each set of compatible sign curves before the equivalence or mutation (on the left of each
diagram), we can construct a set of compatible sign curves afterwards (on the right of each diagram).

4.6 Microlocal merodromies: candidate cluster A–variables

This subsection addresses the construction of what shall become the cluster A–variables on the moduli
space M.ƒ; T / for a GP linkƒDƒ.G/. In the previous subsection, we explained that cluster X–variables
were indexed by certain absolute cycles  2H1.L/ in the Lagrangian filling LD L.w.G// and X was
a natural rational function with a symplectic origin: the microlocal monodromy along  of the sheaf
associated with the weave wDw.G/.

Now, the new idea is that cluster A–variables fA�g will be indexed by certain relative cycles � 2
H1.L nT;ƒ nT / and the functions A� WM.ƒ; T /!C will be defined by what we call the microlocal
merodromy along �. Intuitively, this merodromy along � is constructed as a microlocal parallel transport
along �. Here are the details.

4.6.1 Microlocal merodromy Let G be an GP graph, ƒDƒ.G/ be its GP link, and T be a collection
of marked points on ƒ with at least one marked point per link component. Fix a compatible set C of
sign curves and let wDw.G/ be the initial weave. The flag moduli M.w; T / is an open subset of the
moduli space M.ƒ; T /, and every point in this open subset defines a local system, via the identification
ˆC W M1.w/

Š�! Loc1.L/ in Section 4.5, together with a framing (trivialization) of the rank-1 local
system ˆ on the connected components of ƒ nT D .@L/ nT.

i � i i

i

$ i

i

i
$ i

Figure 42: Existence of compatible sets of sign curves before and after weave equivalences (left)
and weave mutations (center and right). (The index i can be either 1 or 2.)
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� �
�

Figure 43: A marked point t 2 T, with decorations � and � to the left and right, and the boundary
of a half-disk neighborhood Ut .

The framing data defines a special vector �x 2ˆx at any point x 2ƒnT. Given an oriented curve ��L
with both the source point s D @�� and the target point t D @C� contained inside ƒ nT, we can parallel
transport �s from the source s to the target t along �, obtaining a nonzero vector in �.�s/ 2 ˆt . The
ratio �.�s/=�t is a nonzero number A�, which defines a C�–valued function on M.w; T /. This can be
naturally generalized to relative 1–cycles � 2H1.L nT;ƒ nT /.

Definition 4.10 The function A� WM.w; T /! C� is said to be the microlocal merodromy along the
oriented curve �.

Since M.w; T / is an open subset of M.ƒ; T /, A� can also be viewed as a rational function on M.ƒ; T /.
Note that, a priori, A� might not extend to a regular function on M.ƒ; T /. We emphasize that the
decorations in M.ƒ; T / are needed in order to define A�, and thus microlocal merodromies cannot be
defined in M1.ƒ/.

The microlocal merodromies associated to relative cycles coming from marked points are nonvanishing.
Indeed, for each marked point t 2 T, we pick a small half-disk neighborhood Ut of t , as in Figure 43, and
define �t WD @Ut . By definition,

At WD A�t
D
�t .�/

�
¤ 0:

In particular, by using the ratio �t .�/=�, we can extend At to a global invertible function on the entire
moduli space M.ƒ; T /. (This property does not in general hold for A� if � is an arbitrary relative cycle
in H1.L nT;ƒ nT /.) Now consider the exact sequence of lattices

0! Z i
�!

M
t2T

Z�t !H1.L nT;ƒ nT /
�
�!H1.L;ƒ/! 0;

where i.1/ WD
P
t2T �t . This exact sequence implies the following two corollaries:

Corollary 4.11
Q
t2T At D 1 and hence At is a unit in O.M.ƒ; T // for every t 2 T.

Proof This follows from the fact that
P
t2T �t D 0 in H1.L nT;ƒ nT /.

Corollary 4.12 If �1; �2 2H1.† n T;ƒ n T / satisfy �.�1/D �.�2/, then A�1
and A�2

are related to
each other by a Laurent monomial in the variables At for t 2 T.

Proof This follows from the fact that ker� D Spanf�t j t 2 T g.

The latter corollary starts to hint at the quasicluster equivalence that appears if different basis completions
in H1.† nT;ƒ nT / are chosen, as the former corollary indeed hints at the fact that At for t 2 T are a
type of frozen variables.
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4.6.2 Crossing values The next aim is to compute A� for curves whose support is transverse to a
weave w. Consider the commutative diagram of vector space inclusions

Vs

Vw Ve

Vn

and assume that 0!Vs!Vw˚Ve!Vn! 0 is exact. Let ˛s , ˛w , ˛e and ˛n be nonzero top-dimensional
(volume) forms in Vs , Vw , Ve and Vn, respectively. Then we write ˛w D ˇw ^˛s and ˛e D ˇe ^˛s for
some forms ˇw and ˇe.

Definition 4.13 In the context of a diagram as above, we define

˛w
˛s

^ ˛e WD ˇw ^ˇe ^˛s:

The top form ˛w
˛s

^ ˛e is nonzero on Vn and does not depend on the choice of ˇw or ˇe. By definition,
the ratio .˛w

˛s

^ ˛e/=˛n is said to be the crossing value of the quadruple of top forms ˛s; ˛w ; ˛e; ˛n.

Let us describe how to use crossing values to compute merodromies along planar relative cycles. Consider
a flag F D .0�F1 �F2 � � � � �Fn DCn/ with a choice of �i ¤ 0 2Fi=Fi�1 for all i 2 Œ1; n�. The
choice of such �D .�i / for i 2 Œ1; n� is said to be a framing for the flag F. Given such framed flag .F ; �/,
we can construct top forms ˛i 2

Vi Fi for i 2 Œ1; n�, by first lifting each �j to a vector in z�j 2Fj for
j 2 Œ1; n�, and then taking ordered wedges, leading to the forms

(4-9) ˛i WD z�i ^ z�i�1 ^ � � � ^ z�1 for i 2 Œ1; n�:

Note that each form ˛i is independent of the choice of lifts.

Definition 4.14 Given a flag F, a collection ˛D .˛1; ˛2; : : : ; ˛n/ of nonvanishing forms ˛i 2
Vi Fi for

i 2 Œ1; n� is said to be a decoration on the flag F. A flag with a decoration is referred to as a decorated
flag.

Note that we can reverse the construction above and recover a framing from a decoration. Thus, framings
.�1; : : : ; �n/ and decorations .˛1; ˛2; : : : ; ˛n/ of a flag F are equivalent pieces of data. By definition,
two decorated (or framed) flags .L ; ˛/ and .R; ˇ/ are in si–transverse position if the underlying flags
L

si
�R are in si–transverse position, ie si–transversality does not see decorations (or framings).

Suppose .L ; �/ and .R; �/ are two framed flags such that L
si
� R. Let ˛ and ˇ be the decorations

constructed from � and �, respectively. Consider the parallel transport maps  ˙ defined in (4-8). The
images  C.�i / and  �.�i / are readily computed in terms of decorations as follows:

Lemma 4.15 We have

 C.�i /D
˛i
˛i�1

^ ˇi

ˇiC1
�iC1 and  �.�i /D

ˇi
ˇi�1

^ ˛i

˛iC1
�iC1:

Geometry & Topology, Volume 28 (2024)



968 Roger Casals and Daping Weng

Proof Let z�i and z�iC1 be lifts of �i and �iC1. By construction, the framing  C.�i / can obtained as
follows. First, lift �i 2Li=Li�1 to a vector z�i 2Li and consider this vector as z�i 2LiC1 via the inclusion
Li �LiC1. Then, using LiC1DRiC1, we can view z�i 2RiC1 and thus finally  C.�i /D�.z�i /, where
� WRiC1!RiC1=Ri is the quotient map. Each of  C.�i / and �iC1 is a (volume) 1–form on RiC1=Ri ,
and can be pulled back via � to 1–forms in RiC1. By wedging these forms with (any) top form in Ri ,
such as ˇi , we obtain the top forms z�i ^ˇi and z�iC1^ˇi . Since we wedged both  C.�i / and �iC1 with
the same form ˇi , their ratios are equal:

 C.�i /

�iC1
D

z�i ^ˇi

z�iC1 ^ˇi
:

By (4-9), we also have ˛i D z�i ^˛i�1 and ˇiC1 D z�iC1 ^ˇi . Therefore,

 C.�i /

�iC1
D

z�i ^ˇi

z�iC1 ^ˇi
D
˛i
˛i�1

^ ˇi

ˇiC1
:

The equality for  � is obtained similarly.

Remark 4.16 By Lemma 4.15, the inverses of  ˙ are computed analogously. Namely,

 �1C .�iC1/D
ˇiC1

˛i
˛i�1

^ ˇi

�i and  �1� .�iC1/D
˛iC1

ˇi
ˇi�1

^ ˛i

�i :

Now suppose � � †.w/ is a lift of a planar curve in R2 to the weave front. Then it defines a
partial cross-section of the weave surface, where � passes through a collection of (framed) flags
L D F0;F1;F2; : : : ;Fl D R. For each flag Fi for 0 < i < l we choose a sequence of top forms

j̨ D .˛i;j /. Since the parallel transport along � consists of compositions of linear isomorphisms like the
maps  ˙ in Lemma 4.15, or their inverses, Lemma 4.15 allows us to compute A�.

Example 4.17 Consider the cross-section of a weave surface depicted in Figure 44, and let � be the
blue relative cycle. The sequences of top forms ˛ and ı are determined by the decorations � and �,
respectively. The tuples of top forms ˇ and  are chosen arbitrarily. Note that ˛0, ˇ0, 0 and ı0 are
trivial. Let us denote the  ˙ maps associated to each of the three crossings by i ˙, where i 2 Œ1; 3�,
i D 1 being associated to the leftmost crossing, i D 2 to the center crossing and i D 3 to the rightmost
crossing.

By definition, the microlocal merodromy along � is

A� D
 �.�2/

�3
D
.3 C ı 2 C ı 1 

�1
� /.�2/

�3
:

By Lemma 4.15, each of the microlocal merodromies i ˙ and their inverses are computed as

A� D
 �.�2/

�3
D
2
1

^ ı2

ı3
�
ˇ1 ^ 1

2
�

˛2

ˇ1 ^˛1
D
ˇ1 ^ ı2

ı3
�

˛2

ˇ1 ^˛1
:
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�1 �1

�2

�3�3

�2
˛1 ˇ1 1 ı1

˛ ı

˛2 ˇ2 2 ı2
˛ ı

˛3 ˇ3 3 ı3

˛ ı

Figure 44: Computation of a merodromy.

Two observations based on this computation: First, the right-hand side of this expression shows that
A� depends on the underlying undecorated flag associated with the ˇ, but it is invariant under any
nonzero rescaling of the decoration ˇ. This is a general fact. Namely, the function A� does depend on
the intermediate flags between the two flags at the endpoints; nevertheless, it does not depend on the
decorations of these intermediate flags.

Second, a reason for the decoration  not appearing in the computation of A� above is that the flag
associated to  is uniquely determined by the flags associated to ˇ and ı. Observe that in the case that
the slice along � yields a reduced braid word, the intermediate flags are uniquely determined by the flags
at the endpoints and thus the microlocal merodromy only depends on the decorated flags at the endpoints.
For more general computations, the study of microlocal merodromies involves understanding properties,
such as regularity, of products of crossing values and inverses thereof.

In general, a microlocal merodromy A� will be expressed in terms of ratios of crossing values, and is only
a rational function. Nevertheless, certain choices of � within the initial weave wDw.G/ yield regular
functions. Indeed, let us consider the following special family of merodromies. By Section 3.6, each face
f of G has an associated naive relative cycle �f in H1.L nT;ƒ nT /. Let Af WD A�f

be the microlocal
merodromy of this naive relative cycle. Since f@f g is a basis of H1.L/, it follows from Poincaré duality
that f�.�f /g is a basis of H1.L;ƒ/, where � WH1.L nT;ƒ nT /!H1.L;ƒ/ is the natural projection
map. By Corollary 4.12, we conclude that different choices of �f only change Af by a multiple of units.

Proposition 4.18 Let f be a face in a GP graph G. Then the microlocal merodromy

Af WM.ƒ.G/; T /!C

is a regular function.

Proof Suppose that the face f 2G corresponds to the kth gap in G, counting from the bottom. Then
the associated relative cycle �f can be written as

�f D

kX
iD1

�i ;

where the relative cycles �i are described as follows. Consider the braid word w0;n; then �i is the relative
cycle given by the i th strand in w0;n, counting from the bottom on the left, when considered as a slice of
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the weave w.G/ along �f . The following figure depicts such �i for nD 4:

�1

�2

�3

�4

Now, the microlocal parallel transport along �i , from the i th strand on the left to the .n�iC1/st strand
on the right, can be computed via Lemma 4.15. In particular, each microlocal merodromy A�i

has
contributions from i � 1 crossings because w0;n is a half-twist, and thus it is obtained after composing
i � 1 instances of  �1

˙
. In such a slice spelling w0;n, let .L ; ˛/ be the decorated flag at the left endpoints

and .R; ˇ/ the decorated flag at the left endpoints. In line with Example 4.17, we obtain

A�i
D
 ^ˇn�i

ˇn�iC1
�

˛i

 ^˛i�1
for i 2 Œ1; k�;

where  is a nonzero vector in the line Li \Rn�iC1. Note that the formula for A�i
does not actually

depend on  . In fact, since w0;n is a reduced word, we have ˛i�1 ^ˇn�iC1 ¤ 0. Thus, after wedging
both  ^ˇn�i and ˇn�iC1 with ˛i�1, the expression for A�i

above reads

A�i
D
˛i�1 ^  ^ˇn�i

˛i�1 ^ˇn�iC1
�

˛i

 ^˛i�1
D .�1/i�1

˛i�1 ^  ^ˇn�i

˛i�1 ^ˇn�iC1
�

˛i

˛i�1 ^ 

D .�1/i�1
˛i�1 ^  ^ˇn�i

˛i�1 ^ˇn�iC1
�# D .�1/i�1

# � .˛i�1 ^ /^ˇn�i

˛i�1 ^ˇn�iC1

D .�1/i�1
˛i ^ˇn�i

˛i�1 ^ˇn�iC1
for i 2 Œ1; k�;

where we have denoted by # 2C� the unique nonzero scalar such that ˛i D # � .˛i�1^/. In conclusion,
we obtain

Af D

kY
iD1

A�i
D .�1/k.k�1/=2 �

˛k ^ˇn�k

ˇn
:

By definition, ˇn ¤ 0 is nonzero and therefore Af is a regular function for each face f.

Remark 4.19 Microlocal merodromies can also be used to define the frozen cluster X–variables associated
to the relative cycles in H1.L; T / that are not in the image of H1.L/. In the moduli space M1.ƒ; T /,
the microlocal merodromy allows one to compare framings at the endpoints of the relative cycles, which
are marked points T where the (stalk of the microlocal) local system has been trivialized.

4.7 Vanishing of microlocal merodromies and flag relative positions

In this subsection we study the vanishing loci of the microlocal merodromies Af WM.ƒ.G/; T /! C

associated to faces f � G of a GP graph G. The key technical result, Proposition 4.23, relates the
vanishing loci of microlocal merodromies associated to different faces of the graph G. This result is
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crucial to deduce the necessary properties of these candidate cluster A–variables, such as regularity, and
conclude Theorem 1.1.

Thus far, we have parametrized the relative position of a pair of flags in Cn by the symmetric group Sn.
This relative position is invariant under the diagonal GLn action, and hence is also in bijection with
GLn–orbits in B.n/�B.n/. The inclusion relation on closures of these orbits defines a partial order,
called the Bruhat order, on Sn, ie u� v if Ou � Ov . Combinatorially, the Bruhat order can be computed
through set comparison.

Definition 4.20 For two equal-sized subsets I D fi1 < i2 < � � �< img and J D fj1 < j2 < � � �< jmg of
f1; : : : ; ng, we define I � J if ik � jk for all 1 � k �m. By definition, for two permutations u and v
of Sn, u� v in the Bruhat order if and only if fu.1/; : : : ; u.m/g � fv.1/; : : : ; v.m/g for all 1�m< n.

By Section 4.1, the moduli M.ƒ.G/; T / can be understood in terms of tuples of flags, with maps between
them and incidence constraints. The flags can be read directly from the front G. In particular, for a Type 1
column of G, there exists a unique pair of (decorated) flags F0 and F0; see Figure 37. In the points of
the open torus chart M.w; T /�M.ƒ.G/; T /, these two flags F0 and F0 are in w0–relative position,
but in general the relative position between F0 and F0 at another point of M.ƒ.G/; T / might vary. The
dependence of F0 and F0 on the point p 2M.ƒ.G/; T / will be denoted by F0.p/ and F0.p/.

By Proposition 4.18, the microlocal merodromy Ai associated to the i th gap of a Type 1 column,
counting from below in the GP graph, is a regular function on M.ƒ; T /. Moreover, it can be expressed
as .˛i ^ ˇn�i /=ˇn, up to a multiple of units, where ˛ and ˇ are decorations on the pair of flags
F0 and F0 placed at the bottom and the top of that Type 1 column, respectively. In particular, the
restriction of Ai jM.w;T / to the open torus chart M.w; T / �M.ƒ.G/; T / is a nonvanishing function.
The following lemma shows that we can describe the vanishing locus of this microlocal merodromy
Ai WM.ƒ.G/; T /!C in terms of the relative position between the two flags F0 and F0:

Lemma 4.21 Let G be a GP graph , .F0; ˛/; .F
0; ˇ/ the pair of decorated flags associated with a

Type 1 column C and Ai the i th microlocal merodromy associated to C for i 2 Œ1; n�. Consider a point
p 2M.ƒ.G/; T / and the permutation w 2 Sn such that F0.p/

w
�F0.p/. Then Ai .p/D 0 if and only if

w � siw0 in the Bruhat order.

Proof Without loss of generality, we may assume that the decorations ˛ and ˇ are proportional to

.ew.1/; ew.1/ ^ ew.2/; : : : ; ew.1/ ^ ew.2/ ^ � � � ^ ew.n// and .e1; e1 ^ e2; : : : ; e1 ^ e2 ^ � � � ^ en/;

respectively. From this we know that Ai D 0 if and only if

ew.1/ ^ ew.2/ ^ � � � ^ ew.i/ ^ e1 ^ e2 ^ � � � ^ en�i D 0;

which is equivalent to saying that

fw.1/; w.2/; : : : ; w.i/g\ f1; 2; : : : ; n� ig ¤∅:
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Now note that, for the permutation v D siw0, all fv.1/; : : : ; v.m/g are maximal sets with respect to the
linear order on f1; : : : ; ng except when mD i , where

fv.1/; : : : ; v.i/g D fn; n� 1; : : : ; n� i C 2; n� ig:

If w � v, then fw.1/; w.2/; : : : ; w.i/g � fn; n � 1; : : : ; n � i C 2; n � ig. This implies that, among
w.1/; w.2/; : : : ; w.i/, some index no greater than n � i must have appeared. Therefore, we have
fw.1/; w.2/; : : : ; w.i/g\ f1; 2; : : : ; n� ig ¤∅ and hence Ai D 0.

Conversely, if w 6� v, then we must have

fw.1/; w.2/; : : : ; w.i/g D fn; n� 1; : : : ; n� i C 1g;

which implies that fw.1/; w.2/; : : : ; w.i/g\ f1; 2; : : : ; n� ig D∅ and hence Ai ¤ 0.

Lemma 4.21 shows that, in order to study whether the microlocal merodromies Af vanish or not, it
suffices to consider the relative position between the pair of flags in a Type 1 column that contains part of
the face f. We use the following simple lemma in the proof of Proposition 4.23, through Lemma 4.24:

Lemma 4.22 Let u; v 2 Sn and consider three flags F , F 0 and F 00 such that F
u
� F 0

v
� F 00. Let l

denote the length function on Sn and , for any w 2 Sn, we denote by w the positive braid represented by a
(equivalently any) reduced word of w. Then the following holds:

(1) If l.uv/D l.u/C l.v/, then F
uv
� F 00.

(2) In general , if F
w
�F 0, then w � Dem.uv/ in the Bruhat order.14

Proof (1) follows from the standard fact that, for Bruhat cells, if l.uv/D l.u/Cl.v/ then .BuB/.BvB/D
BuvB. For (2), at the level of Bruhat cells we know that .BsiB/.BsiB/D BsiB tB; this is equivalent
to saying that, if F

si
�F 0

si
�F 00, then there are two possible relative position relations between F and F 00:

either F
si
�F 00 or F DF 00. For both cases, the relative position is at most Dem.sisi /D si . The general

statement follows from the well-definedness of the Demazure product.

For notational convenience, for 1� i � j < n, let us define the permutation

wŒi;j � WD

sn�1
sn�2 sn�2
:::

: : :
s2 s2 s2 � � � s2

s1 s1 s1 „ ƒ‚ …
delete all s1’s from the i th to j th copy

s1

and xw WD w0w
�1w0:

14Dem denotes the Demazure product on positive braids.
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In this notation, siw0 D wŒi;i� D xwŒi;i�. In terms of set comparison, u� wŒi;j � in the Bruhat order if and
only if, for all n� j � l � n� i ,

(4-10) fu.1/; u.2/; : : : ; u.l/g � fi � � � � g;

where fi � � � � g means the set of the appropriate size (say of size k) consisting of the greatest k � 1
elements in f1; : : : ; ng together with the element i .

Finally, the core of this subsection is the following result, which states that we can use lollipop reactions
(Definition 2.9) to keep track of the relative position conditions on flags and, in turn, understand vanishing
conditions for microlocal merodromies associated to faces:

Proposition 4.23 Let G be a GP graph and f; g �G two faces. Suppose that g is selected in a lollipop
reaction initiated from a lollipop in f. Then Af D 0 implies Ag D 0.

As discussed in Section 2.6, the scanning wall in a lollipop reaction moves to the right if the lollipop
is white and to the left if the lollipop is black. By Lemma 4.21, at the starting point, Af D 0 implies
that the flags at the two ends of the wall are at most wŒi;i� D xwŒi;i� apart, where i is the index of the gap
between the two adjacent horizontal lines, counting from below in the GP graph. This is schematically
illustrated as

� wŒi;i� � xwŒi;i�

The heart of the argument is proving that, in the case of a white (resp. black) lollipop reaction, as the wall
scans to the right (resp. left), the flags at the two ends of the wall will be at most wŒi;j � (resp. xwŒi;j �) apart,
where Œi; j � is the interval containing the indices of the gaps that the wall crosses (counting from below
in the GP graph). Due to symmetry, we will only prove Proposition 4.23 for white lollipop reactions; the
proof for the case of black lollipop reactions is completely symmetric. Let us start with the following
lemma:

Lemma 4.24 Let G be a GP graph and consider a Type 3 column with a black lollipop (we shift the
indices on the right to match the Coxeter generators), as follows:

:::

:::

1

k� 1
k

n� 1

2

k

n� 1

Let .L0;L 0/ be the pair of flags to the left and .R0;R0/ be the pair of flags to the right. Suppose that
L0

u
�L 0 and R0

v
�R0. (Hence , h�1.R0/

v
� h�1.R0/.) Then , in the Bruhat order ,

u� sk�1sk�2 : : : s1vs1s2 : : : sn�k :
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Proof By construction, h�1.R0/ and h�1.R0/ share the same 1–dimensional subspace. Therefore,
v.1/D 1, which implies that vs1s2 : : : sn�k is reduced. Lemma 4.22(1) implies that

L0
sk�1:::s1
� h�1.R0/

vs1:::sn�k
� L 0;

where the first relative position is given by the Type 3 column requirement.

Let us record a permutation w 2 Sn as an n–tuple .w.1/; w.2/; : : : ; w.n//. Since v.1/ D 1, we may
assume that v D .1; v.2/; v.3/; : : : ; v.n//. Then

vs1s2 : : : sn�k D .v.2/; v.3/; : : : ; v.n� kC 1/; 1; v.n� kC 2/; : : : ; v.n//:

Note that left multiplication by si interchanges the entries i and iC1. From (the proof of) Lemma 4.22(2),
we know that, when multiplying si on the left of a permutation w, there is only one possible relative
position siw if i is on the left of i C 1, and there can be two possible relative positions w and siw if i is
on the right of iC1, in which case siw <w. Thus, performing all the left multiplications s1; : : : ; sk�1 in
turn on vs1 : : : sn�k yields the smallest relative position relation, and hence u� sk�1 : : : s1vs1 : : : sn�k ,
as claimed.

Proof of Proposition 4.23 It suffices to argue in the case of a white lollipop reaction, by symmetry. We
inductively verify the claim that, as the wall scans from left to right, the relative position between the pair
of flags remains at most wŒi;j �.

Suppose that the wall scanning is passing through a column of Type 2 or 3. Let .L0;L 0/ be the pair of
flags on the left of this column and .R0;R0/ be the pair of flags on the right of this column. Suppose
that the wall on the left goes across the interval Œi; j �. Then, by assumption, L0

u
�L 0 for u�wŒi;j �. Let

v be the permutation such that R0
v
�R0.

Let us start with the hardest case, namely a Type 3 column with a black lollipop at the kth gap with
i < k � j, as depicted in Figure 45, left. By a shift of indices, we can view v as an element in SŒ2;n�, the
permutation group that acts on the set Œ2; n�D f2; 3; : : : ; ng. We want to prove that v �wŒi;j�1� 2 SŒ2;n�.
By shifting the indices of the Coxeter generators in (4-10), v � wŒi;j�1� 2 SŒ2;n� if and only if, for all
n� j � l � n� i � 1,

fv.2/; v.3/; : : : ; v.l C 1/g � fi C 1� � � � g:

Let us proceed by contradiction: Suppose v 6� wŒi;j�1� 2 SŒ2;n�; then there must exist some l with
n� j � l � n� i � 1 such that

fv.2/; v.3/; : : : ; v.l C 1/g D fa; aC � � � ; : : : g;

where a > i C 1 is the smallest element in the set on the right. To deduce a contradiction, it suffices to
prove that Qv WD sk�1 : : : s1vs1 : : : sn�k 6� wŒi;j � 2 SŒ1;n�, since Lemma 4.24 states that Qv is the smallest
possible relative position between L0 and L 0. Direct computation yields that

Qv D .v.2/0; v.3/0; : : : ; v.n� kC 1/0; k; v.n� kC 2/0; : : : ; v.n/0/;
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:::

:::

1

k� 1
k

n� 1

2

k

n� 1

:::

:::

1

k� 1
k

n� 1

2

k

n� 1

:::

:::

1

k� 1
k

n� 1

2

k

n� 1

Figure 45: Three of the cases in the proof of Proposition 4.23.

where
m0 WD

�
m� 1 if m� k;
m if m> k:

If l � n� k, then

f Qv.1/; Qv.2/; : : : ; Qv.l/g D fv.2/0; v.3/0; : : : ; v.l C 1/0g D fa0; a0C � � � ; : : : g 6� fi � � � � g;

where the last 6� relation is because a0 � a� 1 > i . This shows that Qv 6� wŒi;j �.

Otherwise, if l > n� k, then

f Qv.1/; Qv.2/; : : : ; Qv.l C 1/g D fv.2/0; v.3/0; : : : ; v.n� kC 1/0; k; v.n� kC 2/0; v.l C 1/0g

D fk; a0; a0C � � � ; : : : g 6� fi � � � � g;

where the last 6� relation is because both a0 and k are greater than i .

There are three more special cases to consider for Type 3 columns with black lollipops, two of them
depicted in Figure 45, center and right, as well as the case where neither k�1 nor k is contained in Œi; j �.

For the case of Figure 45, center, we want to prove that, if u � wŒi;k�1� 2 SŒ1;n�, then v � wŒi;k�1� 2
SŒ2;n�. We proceed by contradiction again. Suppose v 6� wŒi;k�1�; then there must exist some l with
n� k � l � n� i � 1 such that

fv.2/; v.3/; : : : ; v.l C 1/g D fa; aC � � � ; : : : g;

where a > i C 1 is the smallest element on the right. By the same argument, we see that

f Qv.1/; Qv.2/; : : : ; Qv.l C 1/g D fv.2/0; v.3/0; : : : ; v.n� kC 1/0; k; v.n� kC 2/0; v.l C 1/0g

D fk; a0; a0C � � � ; : : : g 6� fi � � � � g:

This shows that Qv 6� wŒi;k�1� 2 SŒ1;n�.

For the case of Figure 45, right, we want to prove that, if u�wŒk;j � 2SŒ1;n�, then v�wŒk�1;j�1� 2SŒ2;n�;
a proof by contradiction works again, as follows. Suppose v 6� wŒk�1;j�1�; then there must exist some l
with n� j � l � n� k such that

fv.2/; v.3/; : : : ; v.l C 1/g D fa; aC � � � ; : : : g;
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where a > k is the smallest element on the right. Since a > k, we know that a0 D a, and hence

f Qv.1/; Qv.2/; : : : ; Qv.l/g D fa0; a0C � � � ; : : : g D fa; aC � � � ; : : : g 6� fk � � � � g:

This shows that Qv 6� wŒk;j �.

The remaining case, where neither k� 1 nor k is contained in Œi; j �, can be proved similarly, and it is left
as an exercise. This covers all the cases with a Type 3 column with a black lollipop.

Next we consider the case of a Type 3 column with a white lollipop in the kth gap, counting from below
in the GP graph, as depicted below:

:::

:::
k� 1

1

n� 2

1

k� 1
k

n� 1

By the Type 3 column requirement, we know that

R0
skskC1:::sn
� h.L0/

u
� h.L 0/

snsn�1:::sn�k
� R0;

where, by assumption, u�wŒi;j �. By Lemma 4.22(2) and a direct computation, we conclude that R0
v
�R0

for

v � Dem.sk : : : snusn : : : sn�k/� Dem.sk : : : snwŒi;j �sn : : : sn�k/D

8<:
wŒi;j � if j < k� 1;
wŒi;jC1� if i � k� 1� j ;
wŒiC1;jC1� if i � k:

Lastly, we consider Type 2 columns. By using Lemma 4.22, we compute that, unless we are in one of the
two wall shrinking situations

j

 i

 

u � wŒi;j � implies v � wŒi;j �. For the leftmost of the two cases depicted above, we directly have that
u�wŒi;j � implies v�wŒi;j�1�, and, for the rightmost one, u�wŒi;j � implies v�wŒiC1;j �, as required.

4.8 Completeness of GP graphs

This brief subsection discusses the concept of complete GP graphs, for which the argument we present
gives a complete proof of Theorem 1.1. As prefaced in Section 4.2, the factoriality of the coordinate
ring O

�
M.ƒ.G/; T /

�
is a requirement. Following the results from Section 4.7, we add an additional

hypothesis, as follows:

Definition 4.25 A grid plabic graph G is said to be complete if the moduli stack MDM.ƒ.G/; T /

satisfies the following properties:
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� The coordinate ring O.M/ is a unique factorization domain (UFD).

� For any face f �G with a sugar-free hull Sf , the vanishing locus of the microlocal merodromy Af
is contained in the vanishing loci of Ag for all faces g 2 Sf .

These two conditions are technical, and are only trying to capture the most general type of GP graph G

for which the argument works. In practice, if a reasonable example of a G is given, it is possible to verify
the second condition by direct computation (eg using Gröbner bases), whereas the factoriality condition is,
to our knowledge, more subtle. That said, as explained in Section 4.2, we have developed combinatorial
criteria to ensure the first condition, eg �–completeness of ˇ.G/ or, even more combinatorially, G being
a shuffle graph. In fact, shuffle graphs G also satisfy the second condition, as can be seen by examining
the following combinatorial property:

Definition 4.26 A GP graph G is said to be S–complete if every sugar-free hull of G can be obtained
via some lollipop chain reaction.

By Propositions 4.4 and 4.23, S–complete GP graphs satisfy the second condition in Definition 4.26. By
Proposition 2.11, shuffle graphs are S–complete, and therefore complete. The schematic of implications
is: shuffle graphs G D) .ˇ.G/ �–complete/C .S–complete G/D) complete G.

In summary, though Theorem 1.1 is proven for complete grid plabic graphs, there are large classes of
G–graphs that can be proven combinatorially to be complete, either because they are shuffle or because
S–completeness and �–completeness are directly verified. Note that shuffle graphs include all plabic
fences, so all open Bott–Samelson varieties at the level of M.ƒ; T /, several families of interesting links
(such as the twist knots), many braid varieties (eg all 3–stranded ones), and more.

4.9 Proof of the main theorem

In this subsection, we conclude the proof Theorem 1.1. At this stage, we can consider the initial open
torus chart in M.ƒ; T / given by M.w.G/; T /, as built in Sections 3 and 4.3, with the candidate cluster A–
variables being the microlocal merodromies (constructed in Section 4.6) along a set of initial relative cycles
(built in Section 3). Namely, given a GP graph G and an initial set of relative cycles f�1; : : : ; �sg for the pair
.L.G/; T / associated to wDw.G/, we have an isomorphism CŒA˙1�1

; : : : ; A˙1�s
�ŠO.M.w; T //, and thus

fA�1
; : : : ; A�s

g and their inverses naturally coordinatize the open torus chart M.w.G/; T /�M.ƒ; T /.
This defines an initial open toric chart U0, candidate for an initial cluster A–chart, with the quiverQ.G; �/
being the intersection quiver associated to the (duals of the) relative cycles f�1; : : : ; �sg.

We shall now show that the algebra O.M.ƒ; T // coincides with an upper cluster algebra, along with the
remaining items of Theorem 1.1. In geometric terms, the key ingredient for the former claim will be to
prove that the initial cluster chart U0 �M.ƒ; T / together with all the once-mutated charts cover the
moduli space M.ƒ; T / up to codimension 2, ie

U0[
[

� mutable

��.U0/
up to codim. 2
D M.ƒ; T /:
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Figure 46: The local models for erasing Y–trees.

By Hartogs’s extension theorem, any two normal varieties that differ at most in codimension 2 have the
same algebra of regular functions. It thus follows from this codimension 2 isomorphism that O.M.ƒ; T //

is equal to the coordinate ring of the union of the initial chart U0 and all the once-mutated charts. Then
[Berenstein et al. 2005, Corollary 1.9] is used to conclude that the coordinate ring of such a union is an
upper cluster algebra.

4.9.1 Erasing Y–trees on weaves and vanishing loci of face merodromies In order to establish the
above covering of M.ƒ; T /, up to codimension 2, by U0 and the once-mutated charts ��.U0/, we need
to gain understanding of the codimension 1 strata in M.ƒ; T / that appear as vanishing loci of certain
microlocal merodromies. These loci can be explicitly described via nonfree weaves that are obtained by
erasing Y–cycles in wDw.G/.

First, we begin with the diagrammatic process on the weave that erases Y–trees. Let w be a free weave
with Y–tree  �w. By definition, the weave wy is the weave obtained by erasing  �w from w according
to the following local models:

� If  ends at a trivalent vertex, then we simply erase the weave line contained in  together with the
trivalent vertex, turning the local picture into a single weave line. This is depicted in Figure 46, left.

� If  goes straight through a hexavalent vertex, then we erase the two weave lines contained in 
and pull the remaining weave lines apart according to their colors, turning the local picture into
two weave lines. We draw this in Figure 46, center.

� If  branches off at a hexavalent vertex, erase the three weave lines contained in  , turning the
local picture into a trivalent weave vertex picture. See Figure 46, left.

Alternatively, it is possible to first shorten the Y–tree to a short I–cycle, and erase the I–cycle, which
only requires applying Figure 46, left, twice. The following lemma verifies that this resulting weave is
equivalent to the weave obtained by erasing the Y–tree directly:

Lemma 4.27 (Y–tree erasing) Let w be a free weave and  � w a Y–tree. Let w0 � w be a weave
obtained from w by the double track trick that shortens  into a short I–cycle (see Proposition 3.5), which
we still denote by  �w0. Then there exists a weave equivalence w0

y
�wy . In particular , since w0

y
is not

free , neither is wy .

Proof Let us start with the short I–cycle  in w0. Erasing  in w0 leaves two weave lines with a Reeb
chord in the middle; see Figure 47, left. Follow the rest of the double tracks and contract these two weave
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Figure 47: Three types of removals of (pieces of) Y–tree cycles.

lines inductively. At the part where the double track goes straight though, the contracting weave line
can be pulled through this part by undoing a candy twist, as depicted in Figure 47, center. At the part
where the double tracks branch off, the contracting weave line can be pulled through it by using weave
equivalences, thus becoming two contracting weave lines, as illustrated Figure 47, right. In the end, we
recover the weave wy , as required.

Let us now study the vanishing loci of microlocal merodromies Af associated to faces f �G by using
Lemma 4.27. For that, fix a compatible set C of sign curves on the initial weave w D w.G/ so that
the chart M1.w/ can be identified with Loc1.L/. For each relative 1–cycle � 2 H1.L n T;ƒ n T /, its
microlocal merodromy A� (Definition 4.10) is well defined and, in particular, we can associate a naive
microlocal merodromy Af with each face f of G. By Corollary 4.12 and Proposition 4.18, these Af ’s
are regular functions on M.ƒ; T / and they are unique up to multiples of units.

Proposition 4.28 Let G be a complete GP graph and f � G a face. Suppose that the lollipop chain
reaction initiated from f is complete. Then , for any microlocal merodromy Af associated with f, the
vanishing locus fAf D 0g �M.ƒ.G/; T / is nonempty.

Proof By assumption, f admits a sugar-free hull Sf , which, by Lemma 3.29, gives rise to a Y–tree
 �w in the initial weave wDw.G/. Apply Proposition 3.5 to  , making it a short I–cycle, and place
this short I–cycle near the end of the original Y–tree, so that it lies inside some Type 1 weave column. If
we delete this short I–cycle, we obtain a weave w0 Dwy whose associated weave surface is immersed,
with a single interior Reeb chord at the midpoint of the short I–cycle. We claim that its associated stratum
M1.w

0/ in M.ƒ.G/; T / is nonempty.

To prove this claim, cut the weave w0 open vertically across the column into two weaves w1 and w2,
so that both w1 and w2 are free weaves again. By [Jin and Treumann 2017], or [Ekholm et al. 2016;
Ng et al. 2020], the two strata M1.w1/ and M1.w2/ are nonempty. Now, since this column used to be a
Type 1 column, the vertical slice along the cut is a reduced word of w D siw0 for some i . Given that any
two pairs of flags of relative position w are related to each other by a (nonunique) general linear group
element, we use this action to line up the two pairs of flags of relative position w and glue any point
in M1.w1/ with any point in M1.w2/ and get a point in M1.w

0/. This shows that M1.w
0/ is nonempty.

Since M.w0; T / fibers over M1.w
0/, it follows that M.w0; T / is nonempty as well. Let p be a point

in M.w0; T /. By Lemma 4.27, the weave w0 is equivalent to the weave wy . Let �f be a relative 1–chain
associated with f and, without loss of generality, we may assume that �f is contained in some Type 1
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column. By construction, the cross-section of the initial weave w at a Type 1 column is always the
positive (half-twist) braid �, the positive lift of w0. The erasing of the Y–tree  turns the cross-sectional
positive braid into a positive braid ˇ whose Demazure product satisfies D.ˇ/� siw0 for all i such that
the i th gap, counting from below in the GP graph G, is contained in the face f. Moreover, the two flags
at the two ends of �f are of relative position w �D.ˇ/. Thus, we conclude that w � siw0 and hence
Af .p/D 0 by Lemma 4.21.

We also establish the converse of Proposition 4.28, ie if the lollipop chain reaction initiated from f is
incomplete, then the microlocal merodromy Af must be a unit in O.M.ƒ; T //.

Proposition 4.29 Let G be a GP graph and f �G a face. Then the microlocal merodromy Af is a unit
if and only if the lollipop chain reaction initiated at f is incomplete.

Proof Indeed, if the lollipop chain reaction initiated from f is complete, then Proposition 4.28 implies
that fAf D 0g is nonempty and hence Af cannot be a unit. For the converse implication, note that
the lollipop chain reaction initiated from f being incomplete implies that, during a certain lollipop
reaction in the chain, the selection process runs out of faces to select. This is equivalent to saying
that the selection process selects an unbounded face g of the GP graph. Now, if there exists a point
p 2M.ƒ; T / with Af .p/ D 0, then, by Proposition 4.23, Ag.p/ D 0 as well. But this is impossible
because any relative 1–chain �g associated with g must map to the identity under the projection map
H1.LnT;ƒnT /!H1.L;ƒ/, and hence Ag is a unit by Corollary 4.12. Therefore, fAf D 0g is empty
and Af is a unit.

Finally, let us discuss the ratios of microlocal merodromies that appear when two faces share a sugar-free
hull . Recall that the dual basis B_ of H1.L;ƒ/ is constructed by starting with the set S.G/ of initial
absolute cycles, which is a linearly independent subset of H1.L/ and is in bijection with the sugar-free
hulls of the GP graph G. Each element of S.G/ is a linear combination of the naive absolute cycles f ,
which are in bijection with the faces of G. Then we complete S.G/ to a basis B of H1.L/ via a
replacement process from bottom to top along the Hasse diagram H of the sugar-free hulls with respect
to inclusion. On the dual side, this replacement process is performed from the top down along the Hasse
diagram H, replacing the naive relative cycles �f one by one and thus obtaining a basis B_ of H1.L;ƒ/
dual to B. By choosing a representative Af for each naive relative cycle �f , we construct a microlocal
merodromy function Ai for each i 2B_.

As there can be multiple faces sharing the same sugar-free hull, some faces (naive absolute cycles) are set
aside during the replacement process. Suppose Sf D Sg for two different faces f; g �G and suppose
that we set aside f , while selecting g . Then, on the dual side, the set-aside naive absolute cycle f
will correspond to the relative cycle �f � �g , which in turn gives rise to the microlocal merodromy
function Af =Ag .
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Proposition 4.30 Let G be a GP graph and f; g �G two faces with equal sugar-free hulls. Then the
microlocal merodromy Af =Ag corresponding to a set-aside naive absolute cycle f is a unit.

Proof Since the faces f and g have the same sugar-free hull, the lollipop chain reaction initiated from
one of them must contain the other. Therefore, by Proposition 4.23, Af .p/D 0 if and only if Ag.p/D 0
for any p 2M.ƒ; T /. Since O.M.ƒ; T // is a UFD, this implies that Af and Ag are associates of each
other, and thus Af =Ag is a unit.

4.9.2 Rank of exchange matrix and mutation formulae for Lagrangian surgeries Recall the notation
U0 DM.w; T /�M.ƒ; T / for the open toric chart associated to the (Lagrangian filling for the) weave
wDw.G/. Let us denote the naive microlocal monodromies by fAf g, where f runs through the faces
of G, and the microlocal monodromies associated with marked points by fAtgt2T . The microlocal
merodromies associated with the dual basis B_ will be denoted by fAig, where i 2 Œ1; b1.L/�. By
construction,

O.U0/DCŒA˙1f1
; : : : ; A˙1fb1.L/

A˙1t �DCŒA˙11 ; : : : ; A˙1b1.L/
; A˙1t �;

where the variable t runs through the set of marked points T. Let us also fix zB to be a completion of
the basis B�H1.L/ to a basis of H1.L; T /. Then, by possibly adding relative 1–chains f�tgt2T , we
can modify elements of B_ so that B_ t f�tgt2T becomes a dual basis of zB. In this modification, each
microlocal merodromy Ai is multiplied by some Laurent monomial in the At ’s. To ease notation, we
rename the microlocal merodromies Ai to include these Laurent monomials as well. Since zB and zB_

are dual bases, there is a natural bijection between them, and we will use them interchangeably as index
sets for microlocal monodromies and microlocal merodromies.

Now, the intersection form f � ; � g on H1.L/ can be extended to a skew-symmetric form on H1.L; T / by
imposing a half-integer value for intersections at T:

�
D
1

2
�

With respect to the basis zB, the intersection form onH1.L; T / is then encoded by a zB� zB skew-symmetric
matrix �, where

�ij D fi ; j g

for any pair i ; j 2 zB. For any absolute 1–cycle  in H1.L/, Section 4.4 constructs the microlocal
monodromy function   on M1.w/. After the correction by sign curves, we have Xi WD  i

, and the
collection fXigi2B are our candidates for the initial cluster X–variables.

Let p WM.ƒ; T /!M1.ƒ/ be the forgetful map. Then, by restricting to the respective tori supported on
the initial weave w, we also obtain p WM.w; T /!M1.w/.

Proposition 4.31 Consider the forgetful map p W M.w; T / ! M1.w/. For an initial absolute cycle
i 2S.G/,

p�.Xi /D
Y
j2zB

A
�ij

j :
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1
k

�k

1

 0
k

�1

�1

�0

Figure 48: Mutation of initial relative cycles.

Proof Let us denote the relative 1–chain dual to i 2 zB by �i . It suffices to prove that

i D
X
j

�ij�j

under the inclusion map H1.L/ŠH1.LnT / ,!H1.LnT;ƒnT /. Note that, since we have at least one
marked point per link component in ƒ, we can lift elements from H1.L;ƒ/ to H1.L; T /. Now, for any
element � D

P
k2zB ckk 2H1.L; T / that is a lift of a relative 1–cycle in H1.L;ƒ/,�X

j

�ij�j ; �

�
D

�X
j

�ij�j ;
X
k

ckk

�
D

X
j

�ikck D h; �i:

Since the intersection form is nondegenerate on the tensor product H1.L/˝H1.L;ƒ/, it indeed follows
that  D

P
j �ij�j .

Corollary 4.32 The rectangular exchange matrix �jS.G/�zB is full-ranked.

Proof Since �jS.G/�zB is a submatrix of �jB�zB, it suffices to prove that �jB�zB is full-ranked. The latter
follows from the surjectivity of the map p WM.w; T /!M1.w/.

Let us now focus on the effect that a Lagrangian surgery, in the form of weave mutation, has on microlocal
merodromies. For that we need to understand how relative cycles change under such an operation, as
follows. Let k be an initial absolute cycle which, by Lemma 3.29, we represent as a Y–tree on the
initial weave wDw.G/. By Proposition 3.5, there exists a weave equivalence that isotopes k to a short
I–cycle. In this weave equivalence, the dual basis element �k of k must also be isotoped to a curve that
cuts through this short I–cycle in the middle. Thus, near the short I–cycle k , the local model is the one
depicted in Figure 48, left. Note that each of the four weave lines extending out of this local picture may
be part of multiple initial absolute cycles. However, we may assume without loss of generality that all
other initial relative cycles are outside this local picture.

By performing a weave mutation at k , we obtain a new weave wk , which is mostly identical to w except
the local picture is replaced by Figure 48. Note that the initial absolute cycle k in w is replaced by the
new absolute cycle  0

k
in wk .

In the local model in Figure 48, we have also drawn a relative 1–chain �0, which connects to the rest
of ��k outside of the local picture. But this relative 1–chain �0 is not the correct replacement for �k after
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the surgery, because, in addition to having intersection 1 with  0
k

, the new relative cycle �0
k

also needs to
have trivial intersection with all other absolute cycles in B. At this stage, �0 could possibly have nontrivial
intersections with absolute cycles that come into the local picture from the northeast and the southeast.
Thus, the correct replacement for the relative cycle �k after the weave mutation is the linear combination

(4-11) �0k D �
0
C

X
j2zB

Œ��kj �C�j :

This explains how to keep track of relative cycles after a weave mutation, and thus a Lagrangian surgery in
our context. Note that the moduli space M.wk; T / also defines an open toric chart M.wk; T /�M.ƒ; T /,
as wk defines an embedded exact Lagrangian filling as well. Let us denote this chart, where we have
performed a Lagrangian surgery at the kth disk of the L–compressing system, by Uk �M.ƒ; T /, and
denote the microlocal merodromy associated with the relative cycle �0

k
by A0

k
. In order to understand the

change of the microlocal merodromies under surgery, we have the following result:

Proposition 4.33 At any point u 2 U0\Uk ,

A0k D A
�1
k .1Cp�.Xk//

Y
j2zB

A
Œ��kj �C
j ;

where p W U0!M1.w/ is the forgetful map restricted to U0\Uk .

Proof It suffices to prove that A�0 DA�1k .1Cp�.Xk//. Since k is a short I–cycle, we can assume that
the four neighboring flags are four lines le , ls , lw and ln in C2. Let vi be a nonzero vector in each line li
and let det denote the dual of the nonzero 2–form associated with C2. Following the crossing-value
formula, we obtain

Ak D det.vs ^ vn/; A�0 D
det.ve ^ vw/

det.vn ^ ve/ det.vs ^ vw/
:

Therefore, the product can be computed as

AkA�0 D
det.vs ^ vn/ det.ve ^ vw/
det.vn ^ ve/ det.vs ^ vw/

D
det.vn ^ ve/ det.vs ^ vw/C det.vn ^ vw/ det.ve ^ vs/

det.vn ^ ve/ det.vs ^ vw/

D 1Cp�.Xk/:

Remark 4.34 Instead of the relative 1–chain �0 depicted in Figure 48, right, we could have chosen �0 to
have support the other zigzag with appropriate intersection numbers. In this other choice, equation (4-11)
would need to be modified to �0

k
D �0C

P
j2zBŒ�kj �C�j and the equation in Proposition 4.33 would be

modified to A0
k
D A�1

k
.1Cp�.X�1

k
//
Q
j2zBA

Œ�kj �C
j . These compatible changes of signs �kj !��kj

define the chiral dual cluster structure on the same variety, which is the cluster structure defined by the
opposite quiver. This chiral dual is discussed in [Fock and Goncharov 2009, Section 1.2]. Since the
quiver is given by the intersection pairing between absolute cycles, the choice in Figure 48 is, in a sense,
naturally dictated by the chosen orientation on the filling L.w/.
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Propositions 4.33 and 4.31 yield the desired cluster A–mutation formula for the microlocal merodromies
under Lagrangian surgeries on the set of initial L–compressing disks:

Corollary 4.35 Let G be a GP graph , f�1; : : : ; �sg the set of naive relative cycles and fAig the associated
set of naive microlocal merodromies. Consider the microlocal merodromyA0

k
along the relative 1–chain �0

k

obtained from �k by weave mutation at the dual 1–cycle k . Then

A0k D

Q
j2zBA

Œ�kj �C
j C

Q
j2zBA

Œ��kj �C
j

Ak
:

4.9.3 Regularity of initial microlocal merodromies By Proposition 4.18, the naive microlocal mero-
dromies Af are regular functions on the moduli space M.ƒ; T /. However, since the adjusted microlocal
merodromies fAigi2zB corresponding to the initial basis are ratios of the naive microlocal merodromies,
the initial merodromies fAig are only rational functions a priori. Our next goal is to prove that, for all
i 2B, the Ai are actually global regular functions, and that they are either irreducible if i 2S.G/, or
units otherwise. Let us start with the following lemma:

Lemma 4.36 Let U0 �M.ƒ; T / be the initial open toric chart and f a unit in O.U0/ (resp. O.Uk/).
Suppose that f D gh in O.M.ƒ; T // for some g; h 2 O.M.ƒ; T //. Then g and h are also units in O.U0/

(resp. O.Uk/).

Proof Indeed, if f Dgh in O.M.ƒ; T //, then f Dgh in O.U0/ as well, and, if f is a Laurent monomial
in O.U0/, then each of g and h must be a Laurent monomial, too. The proof for the case where f is a
unit in O.Uk/ is analogous.

We first show that the initial merodromies are irreducible assuming they are regular functions:

Lemma 4.37 Let G be a GP graph , k 2S.G/ an initial absolute cycle and considerAk WM.ƒ; T /ÜC

an associated microlocal merodromy. Suppose that Ak is a regular function , ie an element of O.M.ƒ; T //.
Then Ak is irreducible.

Proof Suppose Ak D gh in O.M.ƒ; T // with neither g nor h being a unit. Then Lemma 4.36 implies
that g and h must be Laurent monomials , and hence can be expressed as

Q
i2zBA

mi

i and
Q
i2zBA

ni

i ,
respectively, up to a multiple of units in O.M.ƒ; T //. Since Ak D

Q
j A

miCni

i , then at least one of mk
and nk must be positive. Without loss of generality, let us assume that mk > 0. Then, since h is not
a unit, there must be some j ¤ k such that Aj is not a unit and nj > 0. If Aj is not a unit, then, by
Proposition 4.29, j must correspond to an initial absolute cycle j . By mutating along the initial absolute
cycle j , we obtain a new weave wj . By Lemma 4.36, h is also a Laurent monomial in the new chart
O.Uj / associated to wj and hence we can write g and h as

g D A
0pj

j

Y
i¤j

A
pi

i and hD A
0qj

j

Y
i¤j

A
qi

i :
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Note that, since Ak D gh, we must have pj C qj D 0. If pj D qj D 0, then we have a contradiction
because

Q
i¤j A

qi

i D hD
Q
i A

ni

i with nj >0. That said, if pj and qj are nonzero, then one of them must
be positive; suppose pj > 0. By Corollary 4.35, A0j DM1CM2, where M1 and M2 are two algebraically
independent Laurent monomials in fAigi2zB, up to units. It then follows that

g D .M1CM2/
pj

Y
i¤j

A
pi

i ;

which shows that g is not a Laurent monomial in fAigi2zB. This is again a contradiction, and therefore
Ak must be an irreducible element in O.M.ƒ; T //.

We are ready to conclude regularity, and thus irreducibility, of initial merodromies:

Proposition 4.38 Let G be a GP graph , k 2 S.G/ an initial absolute cycle and Ak an associated
microlocal merodromy. Then Ak is a regular function and an irreducible element in O.M.ƒ; T //.

Proof By Lemma 4.37, it suffices to prove that Ak is a regular function. We proceed by induction from
top down along the Hasse diagram H; recall that vertices of H are sugar-free hulls and hence they are
naturally indexed by the set of initial absolute cycles S.G/. For the base case, suppose k is a maximal
vertex in the Hasse diagram. Then Ak D Af for some naive relative cycle �f . Then Proposition 4.18
implies that Ak D Af is a regular function, as required. Inductively, suppose, for all i > k in the Hasse
diagram H, Ai is a regular function on M.ƒ; T /. By Lemma 4.37, Ai are irreducible elements in
O.M.ƒ; T // as well. Let fi be the face selected for each vertex i of H. Then, for each vertex i of H,

Afi
D

Y
j�i

Aj :

In particular, if i > k, then the above is the unique factorization of the naive microlocal merodromies Afi

in O.M.ƒ; T //, up to multiple of units. This also implies that the irreducible elements fAigi>k are not
associates of each other because Afi

are not units by Corollary 4.12.

In addition to the above, if i > k, then fi is contained in the sugar-free hull Sfi
D Si . Proposition 4.23

implies fAfi
D 0g � fAfk

D 0g, but we obtain the inclusion fAi D 0g � fAfi
D 0g as well because Ai is

an irreducible factor of Afi
. Therefore, fAi D 0g � fAfk

D 0g, which is equivalent to Afk
being divisible

by Ai for all i > k. Since Ai are distinct irreducible elements of O.M.ƒ; T //, it follows that the quotient

Ak D Afk

Y
i>k

A�1i

is also a regular function on M.ƒ; T / as well. The induction is now complete.

4.9.4 Conclusion of the argument We finalize the proof of the covering of O.M.ƒ; T // by the initial
and adjacent charts, up to codimension 2. For each initial absolute cycle k 2 S.G/, we denote the
vanishing locus of the associated microlocal merodromy by Dk WD fAk D 0g �M.ƒ; T /. Since Ak is
an irreducible element of O.M.ƒ; T //, Dk is irreducible as a codimension 1 subvariety in M.ƒ; T /.
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Proposition 4.39 Let G be a GP graph , k 2S.G/ the initial absolute cycles , Uk �M.ƒ; T / the open
torus chart associated to the Lagrangian surgery of L.w.G// at k , and Dk �M.ƒ; T / the vanishing
locus of its associated microlocal merodromy. Then the intersection Uk \Dk �M.ƒ; T / is a nonempty
open subset of the vanishing locus Dk .

Proof It suffices to prove that Uk \Dk is nonempty. Similar to the proof of Proposition 4.28, we apply
Proposition 3.5 to move k to a short I–cycle near the end of the original Y–tree, so that it lies inside
some Type 1 weave column. By deleting this short I–cycle, we obtain a weave w0 whose moduli space
M.w0; T / is a subset of Dk . It suffices to show that M.w0; T /\Uk ¤∅, but this clear: For instance, in
the case where the weave looks like the one on the left in

w1 w2

L0

L1

L2

L3

R0

R1

R2

R3

L0

L1

L2

L3

R0

R1

R2

R3

wv

L2

we first fix a point in M1.w1/ and then, based on the flags L0, L1, L2 and L3, we choose a point
in M1.w2/ with flags R0 D L0, R1 D L1 and R2 D L2, but R3 ¤ L3, and then glue them together.
This gives a point in M1.w

0/ which is also in M1.wk/, where wk is the mutated weave, which is also
shown on the right above.

At this stage, the covering property, up to codimension 2, readily follows:

Proposition 4.40 Let G be a GP graph , k 2S.G/ the initial absolute cycles , and Uk �M.ƒ; T / the
open torus charts associated to the Lagrangian surgery of L.w.G// at each k , where U0 is the initial
chart associated to L.w.G//. Then

codim
�
U0[

[
k2S.G/

Uk

�
� 2;

ie the union of U0 and all the adjacent charts Uk covers M.ƒ; T / up to codimension 2.

Proof By Proposition 4.39, the intersection Uj\Dj is open inDj for all j, and thus codim.Dj\U cj /�2
for each j. Thus, codim

�
U0[

S
k Uk

�
� 2 by the inclusions�

U0[
[
k

Uk

�c
D U c0 \

\
k

U ck D

�[
j

Dj

�
\

\
k

U ck D
[
j

�
Dj \

\
k

U ck

�
�

[
j

.Dj \U
c
j /:

Theorem 1.1 and Corollary 1.2 are now concluded as follows:
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Theorem 4.41 Let G be a complete GP graph. The coordinate ring of regular functions O
�
M.ƒ.G/; T /

�
has the structure of an upper cluster algebra.

Proof Consider the open subset U0[
S
k2S.G/ Uk �M.ƒ; T /. Proposition 4.40 shows the equality of

coordinate rings O.M.ƒ; T //D O.U0[
S
k2S.G/ Uk/. Corollary 4.35 implies that O.U0[

S
k2S.G/ Uk/

is an upper bound of a cluster algebra. In addition, since T has at least one marked point per link
component, Corollary 4.32 shows that the rectangular exchange matrix �jS.G/�zB is full-ranked. Then
[Berenstein et al. 2005, Corollary 1.9] implies that this upper bound coincides with its upper cluster
algebra and therefore we conclude that O.M.ƒ; T // is an upper cluster algebra.

Corollary 4.42 Let G be a complete GP graph. Then O.M1.ƒ.G/// has the structure of a cluster Poisson
algebra.

Proof Let us temporarily denote the cluster A–variety defined by the zB� zB exchange matrix � by A

and denote the cluster X–variety associated with the submatrix �jB�B by X. Since �j
B� zB

is full-ranked,
which follows from the surjectivity of p WM.ƒ; T /!M1.ƒ/, the cluster-theoretical map p WA! X is
also surjective. Both O.A/ and O.X/ are intersections of Laurent polynomial rings, and thus a rational
function f on X is regular if and only if p�.f / is regular on A; see [Shen and Weng 2020, Lemma A.1].
That said, given that p WM.ƒ; T /!M1.ƒ/ is surjective, a rational function on M1.ƒ/ is regular if and
only if p�.g/ is regular on M.ƒ; T /. Now consider the commutative diagram

M.ƒ; T /
Š

˛
//

p

��

A

p

��

M1.ƒ/ �
// X

Both horizontal maps are birational because M.ƒ; T / (resp. M1.ƒ/) and A (resp. X) share an open torus
chart M.w; T / (resp. M1.w/). In addition, Theorem 4.41 implies that the top map induces an isomorphism
between O.M.ƒ; T // and O.A/. Now, given a regular function f 2O.X/, the pullback ��.f / is a rational
function on M1.ƒ/ by birationality; but, since p�ı��.f /D˛�ıp�.f / is regular on M.ƒ; T /, it follows
that ��.f / is regular on M1.ƒ/. Conversely, if we are given a regular function f 2 O.M1.ƒ//, we know
that .��1/�.f / is a rational function on X by birationality; but, since p� ı .��1/�.f /D .˛�1/� ıp�.f /
is regular on A, it follows that .��1/�.f / is regular on X as well. Therefore, we conclude that � induces
an algebra isomorphism between �� W O.X/ ! O.M1.ƒ//, and hence O.M1.ƒ// is a cluster Poisson
algebra.

5 Cluster DT transformations for shuffle graphs

The cluster Donaldson–Thomas (DT) transformation is a cluster variety automorphism that manifests the
Donaldson–Thomas invariants of a 3D Calabi–Yau category associated with the cluster ensemble [Kontse-
vich and Soibelman 2010; Keller 2017; Goncharov and Shen 2018]. In this section we prove Corollary 1.3,
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ie we focus on the cluster varieties M1.ƒ/ associated with shuffle graphs and in particular show that
their cluster DT transformation is the composition of a Legendrian isotopy and a contactomorphism
of .R3; �st/.

5.1 Initial quivers of shuffle graphs

Let us first prove features of the initial quivers associated with shuffle graphs. From now onward, we
assume without loss of generality that shuffle graphs have all vertical edges with a black vertex on top.

Proposition 5.1 Let G be a shuffle graph and f � G a face. Then the sugar-free hull Sf can have a
staircase pattern on at most one of its sides.

Proof If a sugar-free hull has staircase patterns on more than one of its sides, then somewhere in this
sugar-free hull we must have two opposing staircases that look like

or :

In either case, the horizontal lines containing the horizontal edges above violate Definition 2.8.

Corollary 5.2 Let G be a shuffle graph. Then all its sugar-free hulls must be one of the three shapes

: : :
: : :

Proposition 5.3 Let G be a shuffle graph. If Sf and Sg are two sugar-free hulls and Sf � Sg , then
there is no arrow between their corresponding quiver vertices Q.G/, ie h@Sf ; @Sgi D 0.

Proof If Sf and Sg do not share boundaries, then h@Sf ; @SgiD 0. If .@Sf /\.@Sg/¤∅, then, based on
their possible shapes listed in Corollary 5.2, we see that .@Sf /\.@Sg/ must be the union of a consecutive
sequence of edges. By going over all possibilities of having opposite colors at the two endpoints, we
deduce that each possibility will always cut Sg into smaller sugar-free regions, making Sg no longer a
sugar-free hull. Thus, the two endpoints of this union must be of the same color. Note that the pairing
h@Sf ; @Sgi can be computed by summing over contributions from the bipartite edges in .@Sf / n .@Sg/:
since the two endpoints of .@Sf / n .@Sg/ are the same as the two endpoints of .@Sf /\ .@Sg/, we can
conclude that the contributions from the bipartite edges must cancel each other out, leaving h@Sf ; @SgiD0
as a result.

By Definition 2.8, a shuffle graph G with n horizontal lines is equipped with a permutation � 2 Sn. Based
on the permutation � , we decompose the vertex set of the initial quiver Q.G/ as follows:
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1

4
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2

1
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4

1

3
4

1

4

Figure 49: Left: the relative lengths of horizontal lines in a shuffle graph G associated with � .
Right: the branching of the quiver Q.G/; the collection of numbers on each branching records
the horizontal lines that define the levels for quiver vertices on that branch.

Definition 5.4 For each integer m with 1 � m < n, we define ��1Œm; n� to be the preimage of the
.n�mC1/–element set Œm; n�. We order elements in ��1Œm; n� according to the ordinary linear order
on natural numbers. We say that .i; j / form a level if i < j in ��1Œm; n� for some m and there is no
k 2 ��1.m; n/ such that i < k < j. We say a quiver vertex is on level .i; j / if its corresponding sugar-free
hull is sandwiched between the i th and the j th horizontal lines.

If ��1.m/D k and there exists i < j in ��1ŒmC 1; n� such that i < k < j, then there can be sugar-free
hulls on level .i; j / containing sugar-free hulls on levels .i; k/ and .k; j /. It is possible to visualize this
phenomenon as a branching on the quiver Q.G/: the main branch contains sugar-free hulls on levels
.i; k/ and .k; j / and the side branch contains sugar-free hulls on level .i; j /. See Figures 49, right, and 50.
Note that such a branching may happen multiple times, with the side branch of the former branching
becoming the main branch of the next. Figure 50 illustrates this for a shuffle graph associated with the
permutation � D Œ4 1 2 3�, with two branchings on each side.

5.2 Reflection moves

In order to geometrically construct the DT transformations for general shuffle graphs, we now generalize
the left and right reflection moves introduced in [Shen and Weng 2021].

Consider a Type 2 weave column with an outgoing weave line si on one side (top or bottom). By using
weave equivalences, we can extend this outgoing weave line inward, penetrating through the weave
column and forming a trivalent weave vertex on the other side with color sn�i . If, in addition, either of

1

2

3 4

5 6
2

3

5

4

1C
2

4C
6

Figure 50: Example of the branching phenomenon of the quiver of a shuffle graph. The blue
arrows lie on the main branch (the plabic fence part). The red arrows go between the side branches
and the main branch.
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Š

0BBB@Š Š

1CCCA
Figure 51: The first two pictures are an example of the local penetration move. If there is an
additional weave equivalence that turns the 2nd picture into the 3rd one with an outgoing weave
line on the top, then we can use it to turn the 3rd one back to a Type 2 weave column again.

the two horizontal weave lines incident to the new trivalent weave vertex happens to be outgoing as well,
then we can homotope the weave locally so that the local picture becomes a Type 2 weave column with
an outgoing weave line sn�i on the other side.

These weave equivalences are more general than reflection moves for rainbow closures in [loc. cit.].
In our upcoming construction of cluster DT transformations, we will apply this weave equivalence to
lollipops. For example, suppose b is a black lollipop on the i th horizontal line in a grid plabic graph G.
Take the first vertical edge e0 with a black vertex on the i th horizontal line as we search from right to
left starting from b. Suppose the other vertex of e0 lies on the j th horizontal line whose right endpoint
lies to the right of b, and suppose there are no more vertical edges (of either pattern) between the i th and
j th horizontal lines to the right of e0. Then the reflection move can be used to turn e0 into its opposite
pattern; a side-effect is that this move would also switch the portions of the i th and j th horizontal lines
on the right side of e0, resulting in a possibly nonplanar bicolor graph. Figure 52 gives an example of
such a move done on a plabic graph with three horizontal lines. A similar move can be applied to a white
lollipop w, and the vertical edge is found by scanning rightward from w.

Since such a move can potentially destroy planarity to the right of edge e0, sugar-free hulls no longer
make sense there. However, if the part of the quiver corresponding to the region on the right of edge e0

does not get involved in the current iterative step, then this does not affect the construction of the cluster
DT transformations. Moreover, the reflection move can enable us to pass a vertical edge through an

e
e0

b

e

e0
b

e0
b

e

Š Š Š

Figure 52: Example of a reflection move near a black lollipop.
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obstructing lollipop. In Figure 52, the lollipop b is preventing the vertical edge e from moving to the
left in the left picture; after the reflection move, we can now move e through the lollipop b; even better,
the edge e is now contained within a subgraph that is a plabic fence, for which we know a recursive
procedure to construct the cluster DT transformation [Shen and Weng 2021].

In the front projection, the reflection move is a Legendrian RII move that pulls out a cusp, which is a
Legendrian isotopy. Since the reflection move is a weave equivalence, the quiver does not change under
such a move. Note that, if e0 is the only the vertical edge present in each of the bicolor graphs in Figure 52,
then this reflection move recovers the right reflection move in [Shen and Weng 2021]. (A similar picture
can be drawn for left reflection moves.)

By realizing the reflection moves as Legendrian RII moves on the front projection, we can define a
Legendrian isotopy on Legendrian links associated with shuffle graphs. By construction, between the top
region and the bottom region of the initial weave associated with a shuffle graph, the outgoing weave
lines inside one of them is always just a half twist. In the front projection, this region can be untangled
into a collection of parallel horizontal lines. Thus, we can clockwise rotate every crossing in the other
region one by one to this region using just reflection moves (and homotopy) on the front projection.
We call this Legendrian isotopy the half Kálmán loop K1=2. It is not a Legendrian loop and K1=2

does not automatically give rise to an automorphism on M1.ƒ/: it only gives rise to an isomorphism
K1=2 WM1.ƒ/!M1.ƒ

0/, where ƒ0 is the image of ƒ under the Legendrian isotopy K1=2. In order to
make this into an automorphism, we need the involution t induced from the strict contactomorphism
t W .x; y; z/ 7! .�x; y;�z/ on R3. By Proposition 4.1, we see that this strict contactomorphism reverses
all maps in the quiver representation, which implies that we need to dualize all vector spaces and take
transpositions of all the maps. Note that this coincides with the definition of the transposition map
t W M1.ƒ

0/! M1.ƒ/ in [Shen and Weng 2021]. All parallel transportation maps are now dualized as
well, but the microlocal monodromies and microlocal merodromies remain unchanged and therefore t
preserves the cluster structure and is a cluster isomorphism. We define DT WD t ıK1=2 DK1=2 ı t as our
candidate for the cluster Donaldson–Thomas transformation for shuffle graphs.

5.3 Edge migration in a plabic fence

Besides the reflection moves, we also need to move vertical edges through regions that locally look like
plabic fences, and cluster mutations are needed for this process. In this subsection, we will discuss these
moves and prove some basic results about the color change of quiver vertices (green vs red). We begin
with a quick review of the meaning of vertex colors, green and red, in a quiver. Fix an initial quiver Q
with no frozen vertices. We construct a framed quiver zQ from Q by adding a frozen vertex i 0 for every
vertex i of Q, together with a single arrow pointing from i to i 0. Note that, by construction, the exchange
matrix of zQ is

z� D

�
� id
�id 0

�
;

where � is the exchange matrix of Q.
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$ $ $

Figure 53: Left: the square move in a plabic fence. Center and right: sliding vertical edges of
opposite patterns on different levels through each other.

For any mutation sequence �i on the quiver Q, we can apply the same mutation sequence �i to zQ
and get a new quiver zQ0 WD �i .Q/. Note that the unfrozen part of zQ0 is identical to Q0 WD �i .Q/. A
remarkable property of zQ0 is that, for any unfrozen vertex i , z�0ij 0 is either nonnegative or nonpositive for
all framing frozen vertices j 0; this is known as the sign coherence phenomenon of c–vectors in cluster
theory [Derksen et al. 2010; Gross et al. 2018]. We say a vertex i in Q0 is green if z�0ij 0 is nonnegative
for all framing frozen vertices j 0 and a vertex i in Q0 is red if z�0ij 0 is nonpositive for all framing frozen
vertices j 0. For a given initial quiver Q (all of whose vertices are green), if a mutation sequence �i turns
every quiver vertex red, then we say �i is a reddening sequence. If additionally a reddening sequence �i

only mutates at green vertices, then we say that �i is a maximal green sequence. For any fixed initial
seed, the cluster Donaldson–Thomas transformation can be captured combinatorially by a reddening
sequence [Keller 2017; Goncharov and Shen 2018]. Thus, it is important to keep track of color change of
quiver vertices as we perform cluster mutations.

Let us now consider a plabic fence G. By construction, the initial quiver QDQ.G/ is a planar quiver
with one unfrozen vertex for each face in G, and the arrows in Q are drawn in a way such that they
form a clockwise cycle around a neighboring group of white vertices and form a counterclockwise cycle
around a neighboring group of black vertices. If we have two adjacent vertical edges of opposite patterns
on the same level, we can exchange them by doing a mutation at the quiver vertex corresponding to the
face they bound: this is just the square move. If we have two adjacent vertical edges of opposite patterns
not on the same level, then we can slide them through each other without doing any mutation on the
quiver. See Figure 53.

On a Legendrian weave, the sliding of edges corresponds to a weave equivalence, whereas the square
move can be described by a weave mutation along a long I–cycle, which can be locally described by the
movie in Figure 54.

A maximal green sequence on Q.G/ can be constructed recursively as follows:

� Take the rightmost vertical edge e of the pattern and change it to the opposite pattern.

� Move this newly changed vertical edge e to the left, passing all remaining edges.

$ $ $

Figure 54: Square move in terms of Legendrian weaves: the first and last moves are weave
equivalences; the middle move is a weave mutation.
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This iterative process terminates when we run out of vertical edges with a black vertex on top. Note
that all mutations in this maximal green sequence come from square moves; this will not be the case for
general shuffle graphs. Lastly, here is a result that we will need in the next subsection:

Lemma 5.5 [Shen and Weng 2021, Proposition 4.6] Each square move turns the mutating vertex from
green to red and turns the vertex directly to the right of the mutating vertex (if such a vertex exists) from
red back to green. As a result , at the end of each iteration of moving a vertical edge e to the left , the
leftmost quiver vertex on the level of e turns red , while the color of every other vertex remain the same.

5.4 DT transformations for shuffle graphs

Let us construct the cluster DT transformations for shuffle graphs. By Condition (1) of Definition 2.8, if
a vertical edge can be placed between the i th and j th horizontal lines with ji � j j> 1, then there must be
disjoint two continuous regions we can place vertical edges between them, with one on the left and the
other one on the right. Let us call them the left region and the right region, respectively. If ji � j j D 1,
then there is only one continuous region where we can place vertical edges between the two horizontal
lines. The main strategy is to go through all vertical edges of G one by one from right to left. For each
vertical edge e we do one of the following, depending on its location in G:

(I) If e lies on level .i; i C 1/:

(I.1) Apply a reflection move to change the pattern of e to .

(I.2) Move e to the left through all edges incident to the i th or .iC1/st horizontal lines. Note that a
cluster mutation occurs whenever we exchange e and a edge at the same horizontal level.

(II) If e lies in the right region of level .i; j / with j � i > 1:

(II.1) Apply a reflection move to change the pattern of e to .

(II.2) Move e all the way into the left region between the i th and the j th horizontal lines, and through
all edges incident to the i th or j th horizontal lines.

Remark 5.6 There is the following subtlety in step (II.2): Since j � i > 1, when moving e to the left,
we will encounter j � i �1 black lollipops. Each time we encounter a black lollipop, we will try to apply
a move similar to Figure 52. If such a move can be applied, then we will get another vertical edge of
the same pattern as e, and we need to move this newly changed edge along with e as a group to the left.
Moreover, this newly changed edge itself may encounter a black lollipop, too, and consequently introduce
another vertical edge into the moving group. This moving group eventually will reach the other side, and
we need a way to recover e back as a vertical edge on level .i; j /. This can be done by a move mirror to
that of Figure 52; see Figure 55.

Note that all moves in Figure 55 correspond to weave equivalences and hence no cluster mutations occur.
After the vertical edge e is recovered, we can send the auxiliary vertical edge e0 back to where it was
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e

e0
 

e

e0
 

e

e0
 e

e0

Figure 55: Two reflection moves to cover the vertical edge e.

before, and then do another reflection move to restore the pattern of e0. Note that, upon restoring the
location and the pattern of e0, the nonplanarity caused by the earlier reflection move (Figure 52, right)
will be canceled, and we return to a grid plabic graph after the iteration.

Remark 5.7 There is also a possibility that, although there is a black lollipop b in the way, no vertical
edge e0 is found and hence it is not possible to perform the move in Figure 52. We claim that in this case
we can directly move e through the obstructing horizontal line directly without the need of any weave
(cluster) mutations. This follows from the fact that if no vertical edge e0 is present, then the incoming
weave line corresponding to the gap where e0 should have been does not need to be tangled in the weave,
and hence we can perform a weave equivalence to move the vertical edge e through. See Figure 56.

(III) If e lies in the left region between the i th and the j th horizontal lines with ji � j j> 1:

(III.1) Move e all the way to the right region between the i th and the j th horizontal lines so that it
becomes the rightmost vertical edge in the plabic graph.

(III.2) Apply a reflection move to change the pattern of e to .

Note that, in this case, we need to move the vertical edge e to the right before changing its pattern. But,
since we are going through vertical edges in G one by one from right to left, by the time we get to e,
all vertical edges to its right must be of the pattern already. Thus, moving e, which is of the pattern,
to the right through edges, is completely mirror to step (II.1) before. Figure 57 depicts the reflection
moves we need to perform during this process.

We can now conclude the following result:

Theorem 5.8 Let G be a shuffle graph. Then DT D t ı K1=2 is the cluster Donaldson–Thomas
transformation on M1.ƒ/.

Proof Since t is a cluster isomorphism, it suffices to prove that K1=2 gives rise to a reddening sequence.
The vertices of the quiver Q.G/ are grouped into regions (Figures 50 and 49); we claim that, after each
iterative step (I) and step (II) of moving an edge e on level .i; j /, the leftmost green vertex of level .i; j /

Š Š

Figure 56: Example of a special case where the edge e0 is absent.
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Figure 57: Reflection moves in the (III.1) step: the top row is an example of how to shrink e to a
shorter vertical edge, and the bottom row is an example of how to recover e after moving through
a horizontal line.

turns red, and after each iterative step (III) of moving an edge e on level .i; j /, the rightmost green vertex
of level .i; j / turns red. Indeed, the case (I) follows from Lemma 5.5 directly; so it remains to consider
(II) and (III).

Let us consider (II) first. In the process of moving a edge e on level .i; j / to the left, before we encounter
any lollipop, the quiver vertices would change according to Lemma 5.5, turning from green to red when a
square move occurs and then turning back to green in the next square move. Let us now consider what
happens when we encounter a black lollipop at the kth horizontal line (with i < k < j ). If we are in the
situation of Remark 5.7, then we can directly jump through the whole kth horizontal line without any
cluster mutations, and Lemma 5.5 will continue to take care of the rest. It thus remains to consider what
happens when we need to do moves according to Remark 5.6. Note that, since the moves in Figure 52 do
not induce any cluster mutations, there is no change to the quiver itself. However, the way we branch
the quiver is different: the sugar-free hull to the left of edge e was nonrectangular before the moves in
Figure 52 but it becomes rectangular after the moves; thus, the corresponding quiver vertex was on the
side branch before the moves and relocates itself to the main branch after the moves.

After this quiver vertex is relocated to the main branch (which is a quiver of a plabic fence), we can make
use of Lemma 5.5 again. Note that we need to move e as well as the auxiliary edge e0 together to the left
as a group, and, in that process, there is still a possibility of introducing more edges to that left-moving
group. Nevertheless, by induction it is enough to consider what happens when the two-member group e0

and e reaches the left white lollipop of the kth horizontal line. By Lemma 5.5, we know that both the
quiver vertex v to the right of e and the quiver vertex v0 to the right of e0 have turned red. Next, under the
moves in Figure 55, we restore e to a vertical edge on level .i; j / without any cluster mutations. Finally,
we need to send e0 back to where it was before, and this process reverses the mutations we did on the level
of e0: the quiver vertices on that level will turn from green to red and then back to green again one by
one;15 in the end, all quiver vertices on the same level as e0 are restored back to green. The iterative step
can now continue further to the left on level .i; j /, and the color change will again follow Lemma 5.5.

15Note that we are mutating at red quiver vertices in this process; thus, we are not claiming that the whole mutation sequence
is maximal green. On the other hand, such moves are not needed in the case of plabic fences, which is why we can obtain a
maximal green sequence.
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The case (III) is essentially (II) in reverse. Suppose we are moving a edge e on level .i; j /, and suppose
the first white lollipop it encounters is on the kth horizontal line. Let v be the quiver vertex to the right
of e, which is the rightmost green on level .i; j / at the beginning of the iterative step. Under the moves in
the top row of Figure 57, we move v into level .k; j /, and obtain another vertical edge e0 of the pattern.
Note that the vertex v0 to the right of e0 is red at this moment. Now we need to move the vertical edges e
and e0 to the right: first e0, then e. For each square move on level .i; k/ (the level of e0), the mutating
quiver vertex changes from red to green16 and stays green afterward. On the other hand, for each square
move on level .k; j / (the level of e), the mutating quiver vertex turns from green to red and the one in
the next mutation (if it exists) turns from red to green. As a result, when e and e0 get to the right end of
the kth horizontal line, all quiver vertices on the level of e are red and all quiver vertices on the level of e0

are green. After the second row of moves in Figure 57 (which do not involve mutations), we need to
send e0 back to where it was, and that will make the quiver vertices on the level of e0 undergo the reverse
sequence of color changes again, restoring all of them back to red. Of course, if there are move vertices
further to the right of e, we need to continue moving e rightward, which will make the remaining quiver
vertices to the right on level .i; j / turn from red to green and then back to red again one by one. In the
end, we see that precisely the quiver vertex v turns red after this iterative step.

In conclusion, since all quiver vertices in Q.G/ are either inside the middle region, to the left of a vertical
edge in the right region, or to the right of a vertical edge in the left region, we see that, after all vertical
edges in G change from to , all quiver vertices would turn red. Therefore, K1=2 is indeed a reddening
sequence.

The statement in Corollary 1.3 about the cluster duality conjecture now follows from [Gross et al. 2018], as
our quivers are full-ranked and a DT transformation exists. Finally, we remark that the same argument used
in [Gao et al. 2020b] to distinguish infinitely many Lagrangian fillings also works for any shuffle graph
whose quiver is mutation equivalent to an acyclic quiver of infinite type. Indeed, the DT transformation
will be of infinite order, as will be its square, the Legendrian Kálmán loop.

Example 5.9 Consider the following shuffle graph G, with its quiver depicted and ƒ.G/ at its right:

1

2

3 4

5 6

1C 2

2

3 4

5

4C 6

This is mutation equivalent to an acyclic quiver of infinite type, eg consider the mutation sequence
�5 ı�4C6 ı�2 ı�4 ı�3 ı�4C6. Thus, ƒ.G/, which is a max-tb representative in the smooth knot
type 10161, admits infinitely many non-Hamiltonian isotopic embedded exact fillings. Note that the

16These mutations are also not green.
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smooth knot type 10161 is not a rainbow closure of a positive braid. The reddening sequence realizing
DT is

.�2 ı�5 ı�4 ı�3 ı�5 ı�2/ ı ./ ı ./ ı .�4/ ı .�5/ ı .�2 ı�5/ ı .�4C6 ı�4/

ı .�5 ı�2 ı�1C2 ı�3 ı�4C6 ı�2 ı�5/;

where we have grouped the mutations of each iterative step inside a pair of parentheses, and empty
parentheses mean no mutations at that step. The first mutation is �5, then �2, then �4C6, and so on until
the last three mutations are �4, �5 and lastly �2.
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Correction to the article
Bimodules in bordered Heegaard Floer homology

ROBERT LIPSHITZ

PETER OZSVÁTH

DYLAN P THURSTON

We correct some errors in our earlier paper (Geom. Topol. 19 (2015) 525–724).

57K18, 57R58; 53D40

Grading refinement data In the first sentence of the proof of [2, Proposition 3.7] (this is Proposition 3.10
in the arXiv version), the definition of the .G.Z/;G.Z//–set T is wrong and, in particular, the elements
 .s/ � 0.s/�1 do not lie in T.

To correct this, for each i D 0; : : : ; 2k, fix an idempotent si � Œ2k� with jsi j D i and let Ti be the orbit of
 .si/ � 

0.si/
�1 2G0.Z/ under the left action of G.Z/, ie

Ti DG.Z/ � . .si/ 
0.si/

�1/:

We claim that Ti is closed under the right action of G.Z/ and that the elements  .s/ �  0.s/�1 (for
s � Œ2k� with jsj D i ) all lie in Ti .

For the first claim, given g 2G we have

M�
�
. .s/ 0.s/�1/g. .s/ 0.s/�1/�1

�
D 0;

so
�
. .s/ 0.s/�1/g. .s/ 0.s/�1/�1

�
2G.Z/ and hence . .s/ 0.s/�1/g 2G.Z/ � . .s/ 0.s/�1/.

The second claim follows from the fact that

M�
�
 .s/ 0.s/. .si/ 

0.si//
�1
�
D 0;

so  .s/ 0.s/. .si/ 
0.si//

�1 2G.

These claims imply that grading a generator I.s/ 2 AŒI�A by  .s/ � 0.s/�1 defines a grading on the
summand of AŒI�A with strands grading i by Ti . The rest of the proof of the proposition then goes through
unchanged, except working one strands grading i at a time and using Ti in place of T .

The mapping class group action on the category of graded modules Theorem 15 asserts that the
bimodules 1CFDA.�/ induce an action of the mapping class group on H�.ModA.Z//, which is true, and
that this action preserves the subcategories H.CModA.Z//, which is false. There are two problems with the

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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second statement:

(1) The grading sets for the bimodules 1CFDA.�/ associated to mapping classes are graded by G.Z/–
sets S� , so that S� is isomorphic to G.Z/ as a left G.Z/–set and as a right G.Z/–set, but not as a
set with an action of G.Z/�G.Z/op. This point is studied further in our later paper [1, Section 5].
Probably this issue could be handled by restricting to the Torelli subgroup, or perhaps a further
subgroup.

(2) Even when S� is isomorphic to G.Z/ as a G.Z/�G.Z/op–set, the isomorphism is not canonical.
So, if M is a module graded by G.Z/, then M �A.Z/ 1CFDA.�/ does not have a canonical grading
by G.Z/, but rather by a G.Z/–set isomorphic to G.Z/. This is equivalent to a relative grading
by G.Z/, not an absolute grading by G.Z/.

Perhaps it is possible to define canonical absolute gradings on the modules 1CFDA.�/ by G.Z/ for � in
the Torelli group or, perhaps, a nontrivial subgroup of it. Alternatively, one could look for an action of a
central extension of the Torelli group. Investigating this would be an interesting future project.

To summarize, the correct statement is the following:

Theorem 150 The bimodules 1CFDA.�/ induce a weak action of the genus-k mapping class groupoid
MCG0.k/ on fH�.ModA.Z// j genus.F.Z//D kg.

The proof of Theorem 150 is identical to the proof of Theorem 15, except that the last paragraph (which
was incorrect) is no longer needed.

We thank Andy Manion and Raphael Rouquier for pointing out these mistakes. We also thank the referee
for further comments.

Other corrections In the first paragraph of [2, Section 10.1], the notation for the algebras is confused.
The algebras A and B are, respectively,

AD

 
�0 �1

�1

�3

�2

!.�
�3�2;

�2�1

�
; B D

 
j0 j1

�1

�3

�2

!.�
�3�2;

�2�1

�
with our usual convention that �1�2 is read left to right, ie this means the arrow �1 followed by the
arrow �2. The element �12 is shorthand for �1�2 and so on.

We thank Jesse Cohen for pointing out this mistake.
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