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We compute the top-weight rational cohomology of Ag for g D 5, 6 and 7, and we give some vanishing
results for the top-weight rational cohomology of A8;A9 and A10. When g D 5 and g D 7, we exhibit
nonzero cohomology groups of Ag in odd degree, thus answering a question highlighted by Grushevsky.
Our methods develop the relationship between the top-weight cohomology of Ag and the homology of
the link of the moduli space of principally polarized tropical abelian varieties of rank g. To compute the
latter we use the Voronoi complexes used by Elbaz-Vincent, Gangl and Soulé. In this way, our results
make a precise connection between the rational cohomology of Sp2g.Z/ and GLg.Z/. Our computations
also give natural candidates for compactly supported cohomology classes of Ag in weight 0 that produce
the stable cohomology classes of the Satake compactification of Ag in weight 0, under the Gysin spectral
sequence for the latter space.

14K10, 14T90; 14F25

1 Introduction

Let Ag be the moduli stack of principally polarized complex abelian varieties of dimension g. It is well
known that Ag is a separated Deligne–Mumford stack, isomorphic to the quotient of the Siegel upper
half-plane Hg under the action of the integral symplectic group Sp2g.Z/. Therefore Ag is smooth of
dimension d D

�
gC1

2

�
, but it is not proper for g > 0. Since Ag is a complex algebraic variety, the rational

cohomology groups of Ag admit a weight filtration in the sense of mixed Hodge theory, with graded
pieces GrW

j H �.AgIQ/ which may appear for j from 0 to 2d . We refer to the piece of weight 2d as the
top-weight rational cohomology of Ag.

The orbifold Euler characteristic and the stable cohomology of Ag are classically understood; see for
instance Borel [6] and Harder [29]. However, the full cohomology ring H �.AgIQ/ is a mystery even for
small g. The cases when g � 2 are classically known, and the case when g D 3 is the work of Hain [27].
The full cohomology ring for g � 4 is already unknown, though when g D 4, much information can be
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498 Madeline Brandt, Juliette Bruce, Melody Chan, Margarida Melo, Gwyneth Moreland and Corey Wolfe

determined from Hulek and Tommasi [31; 32], where the complete Betti tables for both the Voronoi and
the perfect cone compactifications of A4 are computed. In particular, the top-weight cohomology of A4

vanishes; see Remark 6.7.

We compute the top-weight rational cohomology of Ag for 2� g � 7. For gD 3 and 4, our computations
agree with the above-mentioned results of Hain and of Hulek and Tommasi, respectively. Our first main
result is then the following.

Theorem A The top-weight rational cohomology of Ag for g D 5, 6 and 7 is

GrW
30 H k.A5IQ/D

�
Q if k D 15; 20;

0 else ,

GrW
42 H k.A6IQ/D

(
Q if k D 30;

0 else ,

GrW
56 H k.A7IQ/D

�
Q if k D 28; 33; 37; 42;

0 else.

This answers an open question of Grushevsky [24, Open Problem 7], who asked whether Ag ever has
nonzero odd cohomology.

For broader context, recall that from the description of Ag as the quotient ŒHg=Sp2g.Z/�, it is a rational
classifying space for the integral symplectic group Sp2g.Z/. Thus, H�.AgIQ/ŠH�.Sp2g.Z/IQ/. The
situation is analogous to that of the moduli space of curves Mg, which is a rational classifying space for the
mapping class group Modg via its action on Teichmüller space. Moreover, in both cases, we find ourselves
in the advantageous situation that Mg and Ag are smooth and separated Deligne–Mumford stacks with
coarse moduli spaces which are algebraic varieties, permitting Deligne’s mixed Hodge theory to be applied
to study the rational cohomology of these groups. The results of this paper use this algebrogeometric
perspective to find new nonzero classes in a canonical quotient of H�.Sp2g.Z/IQ/: the top-weight
quotient, in the sense of mixed Hodge theory. (Recall that in general, the rational cohomology of a
complex algebraic variety X of dimension d admits a weight filtration with graded pieces GrW

j H k.X IQ/.
GrW

j H k.X IQ/ vanishes whenever j > 2d , so GrW
2d H k.X IQ/ is referred to as the top-weight part

of H k.X IQ/.)

Indeed, in this paper, we develop methods for studying Ag that are analogous to those employed in Chan,
Galatius and Payne [12] for Mg. The moduli spaces Ag admit toroidal compactifications A†

g , which are
proper Deligne–Mumford stacks; see Faltings and Chai [23, Theorem 5.7]. The compactifications A†

g

are associated to admissible decompositions † of �rt
g, the rational closure of the cone of positive definite

quadratic forms in g variables; see Section 2.3. The same data is also used to construct the moduli
space A

trop;†
g of tropical abelian varieties of dimension g in the category of generalized cone complexes;

see Section 2.6.

Geometry & Topology, Volume 28 (2024)



On the top-weight rational cohomology of Ag 499

Then for any admissible decomposition † of �rt
g and for each i � 0, and writing LA

trop;†
g for the link of

the cone point of A
trop;†
g , there is a canonical identification

zHi�1.LA
trop;†
g IQ/Š GrW

2d H 2d�i.AgIQ/:

This statement can be deduced from Odaka and Oshima [40, Corollary 2.9] (see pages 24–25 of op. cit.);
since the language is different, and in order to be self-contained, we give a short proof in Theorem 3.1.
Briefly, there exist admissible decompositions † for which A†

g is a smooth simple normal crossings com-
pactification of Ag whose boundary complex is identified with LA

trop;†
g . However, the homeomorphism

type of LA
trop;†
g is independent of †: see Section 3 or [39, Remark A.14]. The conclusion follows by

applying the generalization to Deligne–Mumford stacks, spelled out in Chan, Galatius and Payne [12], of
Deligne’s comparison theorems in mixed Hodge theory; see Theorem 3.1.

We then compute the topology of A
trop;†
g by considering the perfect or first Voronoi toroidal compactifi-

cation AP
g and its tropical version A

trop;P
g , associated to the perfect cone decomposition (Fact 2.6). This

decomposition is very well studied and enjoys interesting combinatorial properties, which are well suited
for our computations. We identify the homology of the link of A

trop;P
g with the homology of the perfect

chain complex P .g/
�

(Definition 4.1, Proposition 4.4), using the framework of cellular chain complexes of
symmetric CW–complexes due to Allcock, Corey and Payne [3].

To compute the homology of the complex P .g/
�

we use a related complex V .g/
�

, called the Voronoi complex.
This was introduced in Elbaz-Vincent, Gangl and Soulé [22] and Lee and Szczarba [36] to compute the
cohomology of the modular groups GLg.Z/ and SLg.Z/. They use the perfect form cell decomposition
of �rt

g, which is invariant under the action of each of these groups, and then relate the equivariant
homology of �rt

g modulo its boundary with the cohomology of GLg.Z/ and SLg.Z/, respectively. For
this purpose, the homology of V .4/

�
was computed by Lee and Szczarba [36] for SL4.Z/ (and we adapt

this computation to the case of GL4.Z/ in this paper), while for g D 5; 6 and 7 the complex V .g/
�

was
computed in [22] with the help of a computer program using lists of perfect forms for g� 7 by Jaquet [34].
In Theorem 4.13 we show that the complexes P .g/

�
and V .g/

�
sit in an exact sequence

(1) 0! P .g�1/
�

! P .g/
�

�
�! V .g/

�
! 0:

This sequence together with the results in [22] are then crucial to get our main result.

In Section 5 we consider a subcomplex of P .g/
�

called the inflation complex and prove that it is acyclic.
Using this result, we show that GrW

g2Cg
H i.AgIQ/D 0 for i > g2, which recovers the vanishing in top

weight of the rational cohomology of Ag in degree above the virtual cohomological dimension (which
for Ag is equal to g2).

For gD8; 9 and 10, full calculations of the top-weight cohomology of Ag are beyond the scope of our com-
putations. However, our computations for gD 7 together with a vanishing result of Dutour Sikirić, Elbaz-
Vincent, Kupers and Martinet [21] allow us to deduce, in Section 6.5, the vanishing of GrW

.gC1/g H �.AgIQ/

in a range slightly larger than what is implied by virtual cohomological dimension bounds.
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500 Madeline Brandt, Juliette Bruce, Melody Chan, Margarida Melo, Gwyneth Moreland and Corey Wolfe

Theorem B The top-weight rational cohomology of A8, A9 and A10 vanish in the following ranges:

GrW
72 H i.A8IQ/D 0 for i � 60;

GrW
90 H i.A9IQ/D 0 for i � 79;

GrW
110 H i.A10IQ/D 0 for i � 99:

To provide some broader context for our main results on H�.AgIQ/ Š H�.Sp2g.Z/IQ/, we now
highlight two interesting connections: first, to the stable cohomology of Satake compactifications, and
second, to the cohomology of general linear groups GLg.Z/. More details appear in Section 7.

Relationship with the stable cohomology of ASat
g By Poincaré duality, the top-weight cohomology of

Ag studied in this paper admits a perfect pairing with weight 0 compactly supported cohomology of Ag.
These weight 0 classes, in turn, have an interesting, not yet fully understood relationship with the stable
cohomology ring of the Satake compactification ASat

g , whose structure was first understood by Charney
and Lee [14].

Indeed, the stable cohomology ring of ASat
g is freely generated by extensions of the well-known odd

�–classes and by less-understood classes y6; y10; y14; : : : which were proven to be of weight 0 by Chen
and Looijenga in [15]. This predicts the existence of infinitely many top-weight cohomology classes of
Ag as g grows. More precisely, the classes found in the present paper, with Poincaré duality applied,
give natural candidates for the “sources” of the yj in the sense of persisting in a Gysin spectral sequence
relating the compactly supported cohomology groups of the space ASat

g and those of the spaces Ag0 for
g0 � g. See Table 4 at the end of the paper for a summary of everything that is known on the E1 page of
this spectral sequence in weight 0.

This connection was explained to us by O Tommasi and provides significant additional interest in our
main results; we discuss it in detail in Section 7.

Relationship with the cohomology of GLg.Z/ Second, we would like to emphasize the connection
between H�.Sp2g.Z/IQ/ and H�.GLg.Z/I zQ/ provided by our main results, where zQ denotes the
orientation module on the link of the positive definite cone. The possibility of such a connection is
essentially present in [4], but the precise connection employed in this paper, which is a key step in proving
our main Theorems A and B, has been underutilized in the literature.

Indeed, Theorem 4.13 of this paper shows the exactness of the sequence (1) relating the perfect complexes
P .g�1/ and P .g/ on the one hand, and the Voronoi complexes V .g/. Again, these complexes are related
to H�.Sp2g.Z/IQ/ and H�.GLg.Z/IQ/, respectively: precisely, for all k,

H .g
2/�k.GLg.Z/I zQ/ŠHkCg�1.V

.g//

and
Hk�1.P

.g//Š GrW
g2Cg

H g2Cg�k.AgIQ/� H g2Cg�k.AgIQ/:

Geometry & Topology, Volume 28 (2024)
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(See Soulé [43], Elbaz-Vincent, Gangl and Soulé [22, Section 3.4] and Proposition 4.4, respectively). For
example, in view of exactness of (1), it is immediately possible to pass vanishing results on the top-weight
quotient of H�.AgIQ/ and vanishing results on H�.GLg.Z/I zQ/ back and forth. For instance, recall
that Church, Farb and Putman conjectured [16, Conjecture 2] that

H .g
2/�i.SLg.Z/IQ/D 0 for all i < g� 1;

which implies the analogous statement for GLg.Z/ with both Q and zQ coefficients [22, equation (7)].
The conjecture is true for i D 0 by Lee and Szczarba [35], for i D 1 by Church and Putman [17], and for
i D 2 by the recent preprint of Brück, Miller, Patzt, Sroka and Wilson [10], which appeared after the
original version of this paper. As corollaries of these results and the results of this paper, we thus have:

Corollary 1.1 For all g > 0,

GrW
g2Cg

H g2�k.AgIQ/D 0 when k � 2:

This agrees with the gD 9 and gD 10 vanishing results in Theorem B. More generally, the Church–Farb–
Putman conjecture would imply that

GrW
g2Cg

H g2�i.AgIQ/D 0 whenever i < g� 1:

That is, it would imply vanishing of E
p;q
1

in the spectral sequence in Table 4 for all q < p � 1; see
Section 7.

It would be very interesting to find connections to the cohomology of GLg.Z/ that go deeper in the
weight filtration on H�.AgIQ/.

Organization of the paper In Section 2, we give the necessary preliminaries. This includes a discussion
of generalized cone complexes, their links, and their homology. We then discuss admissible decompositions
of the rational closure of the set of positive definite quadratic forms, and focus in particular on the perfect
cone decomposition. We also give a brief introduction to matroids and to perfect cones associated to
matroids. Then, we give some background on the tropical moduli space A

trop;†
g , and on the construction

of toroidal compactifications of Ag out of admissible decompositions.

In Section 3, we prove Theorem 3.1, which relates the top-weight cohomology of Ag to the reduced
rational homology of the link of A

trop;†
g . In Section 4, we show that the perfect chain complex P .g/

�

computes the top-weight cohomology of Ag (Proposition 4.4). We also relate this chain complex to the
Voronoi complex V .g/

�
(Theorem 4.13). In Section 5, we introduce the inflation subcomplex, which we

show is acyclic in Theorem 5.15. We prove an analogous result for the coloop subcomplex C .g/
�

of the
regular matroid complex R.g/

�
, which may be useful for future results.

In Section 6, we put together the results obtained in Section 4 with the computations of Lee and
Szczarba [36] for g D 4 and Elbaz-Vincent, Gangl and Soulé [22] in g D 5; 6 and 7 to describe the
top-weight cohomology of Ag for g D 4; 5; 6 and 7 and to give the above-mentioned bound for the
vanishing of the cohomology of Ag in top weight for g D 8; 9 and 10. This proves Theorems A and B.
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In Section 7, we discuss the relationship with the stable cohomology of the Satake compactification,
including some open questions which are partially addressed by our main results and which deserve
further attention.
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2 Preliminaries

In this section we give preliminaries and introduce notation.

2.1 Cones and generalized cone complexes

A rational polyhedral cone � in Rg (or just a cone, for simplicity) is the nonnegative real span of a finite
set of integer vectors v1; v2; : : : ; vn 2 Zg,

� WDR�0hv1; v2; : : : ; vni WD

� nX
iD1

�ivi W �i 2R�0

�
:
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On the top-weight rational cohomology of Ag 503

We assume all cones � � Rg are strongly convex, meaning � contains no nonzero linear subspaces
of Rg. The dimension of � is the dimension of its linear span. The cone � is said to be smooth if it is
possible to choose the generating vectors v1; : : : ; vn so that they are a subset of a Z–basis of Zg. Note
that some sources refer to what we call smooth cones as basic cones. A d–dimensional cone � is said
to be simplicial if it is generated by d vectors which are linearly independent over R. A face of � is
any nonempty subset of � that minimizes a linear functional on Rg. Faces of � are themselves rational
polyhedral cones. A facet is a face of codimension one.

Given cones � 2 Rg and � 0 2 Rg0, a morphism � ! � 0 is a continuous map from � to � 0 obtained as
the restriction of a linear map Rg!Rg0 sending Zg to Zg0. A face morphism is a morphism of cones
� ! � 0 sending � isomorphically to a face of � 0. Notice that isomorphisms of cones are examples of
face morphisms. Denote by Cones the category of cones with face morphisms.

The one-dimensional faces of � are called the extremal rays of � , and there are only finitely many of
these. Given an extremal ray � of � , the semigroup �\Zg is generated by a unique element u� called the
ray generator of �. An automorphism of a strongly convex cone permutes its finitely many ray generators,
and is uniquely determined by this permutation. So, Aut.�/ is finite.

A generalized cone complex (see [1]) is a topological space with a presentation as a colimit X WD lim
��!i2I �i

of an arbitrary diagram of cones � W I! Cones, in which all morphisms of cones are face morphisms.
A morphism .X D lim

��!i2I �i/! .X 0 D lim
��!i2I �

0
i/ is a continuous map f WX ! X 0 such that for each

cone �i in the presentation of X , there exists a cone � 0j in the presentation of X 0 and a morphism of cones
fi W �i! � 0j such that the following diagram commutes:

�i

��

fi
// � 0j

��

X
f
// X 0

We remark that the category of generalized cone complexes is equivalent to the one of stacky fans as
defined in [13, Definition 2.1.7].

2.2 Links of generalized cone complexes

For any cone � �Rg, define the link of � at the origin to be the topological space L� D .� �f0g/=R>0,
where the action of R>0 is by scalar multiplication. Thus L� is homeomorphic to a closed ball of
dimension dim ��1. A face morphism of cones �! � 0 induces a morphism of links L�!L� 0, making
L a functor from Cones to topological spaces.

Let X D lim
��!i2I �i be a generalized cone complex, where � W I!Cones is a diagram of cones. We define

the link of X as the colimit
LX D lim

��!
.L ı �/:

Geometry & Topology, Volume 28 (2024)
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Thus LX is a topological space, equipped with a colimit presentation as above. In fact, LX is a symmetric
CW–complex, by [3, Example 2.4]. The definition of symmetric CW–complex generalizes the symmetric
�–complexes of [12]. Roughly, a symmetric CW–complex is like a CW–complex, except with closed
n–balls replaced by quotients thereof by finite subgroups of the orthogonal group O.n/.

Let X be a finite generalized cone complex, meaning that the indexing category I is equivalent to one
with a finite number of objects and morphisms. We now write down a chain complex isomorphic to the
cellular chain complex of LX , in the sense of [3, Section 4] and [12, Section 3], whose homology is
identified with the singular homology of LX .

For each p � �1, let Conesp.X / denote the finite groupoid whose objects are all .pC1/–dimensional
faces of �i for all i 2 I, with a morphism � ! � 0 for each isomorphism of cones � W � Š�! � 0 such that
the following diagram commutes:

�
�
//

��

� 0

��

X

Let � be a cone in Conesp.X /. We make use of three compatible notions of orientation found in the
literature:

(i) an orientation of � is an orientation of L� (see [36]),

(ii) an orientation of � is an orientation of the suspension of L� (see [3]), and

(iii) an orientation of � is an orientation of R� , the R–linear span of � ; ie it is a choice of ordered basis
for R� , up to a change of basis with positive determinant (see [22]).

For the first two definitions, it is clear that an orientation on � induces an orientation on the faces of � as
well. For the third definition, given a facet � 0 of � , the induced orientation on � 0 is any one such that the
quantity �.� 0; �/, defined as follows, is 1.

Let B D .v1; : : : ; vn; v/, where B0 D .v1; : : : ; vn/ is an orientation of � 0 and v is a ray generator of a
ray of � not contained in � 0. Set �.� 0; �/ to be the sign of the orientation of B in the oriented vector
space R� . Note that this sign does not depend on the choice of v. These definitions are compatible, in
that a choice of orientation under one definition yields a choice of orientation under the other two, and
under this correspondence a cone morphism � ! � is orientation-preserving under one definition if it is
orientation-preserving under all three. Say that � 2 Conesp.X / is alternating if all automorphisms �! �

in Conesp.X / are orientation-preserving on � .

Choose a set �p of representatives of isomorphism classes of alternating cones in Conesp.X /, and for
each � 2 �p fix an orientation !� of � . If �0 is a facet of � , then !� induces an orientation of �0, which
we denote by !� j�0 . Let Cp.LX / be the Q–vector space with basis �p. We define a differential

@ W Cp.LX /! Cp�1.LX /

Geometry & Topology, Volume 28 (2024)
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by extending linearly on Cp.LX / the following definition: given � 2 �p and � 2 �p�1, set

@.�/� D
X
�0

�.�0; �/;

where �0 ranges over the facets of � that are isomorphic in Conesp�1.X / to �, and where �.�0; �/D˙1

according to whether an isomorphism � W �0! � in Conesp.X / takes the orientation !� j�0 to !� or �!�.
Note that �.�0; �/ is well defined, ie independent of choice of �, precisely because � is alternating.

Let C�.LX / denote the complex

� � �
@
�! Cp.LX /

@
�! Cp�1.LX /

@
�! � � �

@
�! C�1.LX /! 0:

The main proposition in this subsection is the following.

Proposition 2.1 Let X be a finite generalized cone complex. Then C�.LX / is a complex, ie @2 D 0.

(i) If X is connected , we have , for each p � 0,

Hp.C�.LX //Š zHp.LX IQ/:

(ii) More generally, for each p > 0, we have canonical isomorphisms

Hp.C�.LX //ŠHp.LX IQ/;

and for p D 0 we have

H0.C�.LX //Š ker.H0.LX IQ/!Q��1/:

Proposition 2.1 follows from [3, Theorem 4.2], by tracing through their definition of the cellular chain
complex of LX . We give a self-contained proof sketch below.

Proof sketch Write LX .p/ for the p–skeleton of LX , ie the union of the images of L� in X , for �
ranging over cones of dimension at most pC1 in X . By a standard argument analogous to the proof of
[30, Theorem 2.2.27], the complex

(2) � � � !Hp.LX .p/;LX .p�1/
IQ/

ıp
�!Hp�1.LX .p�1/;LX .p�2/

IQ/! � � �

has homology canonically identified with the singular homology of LX . Moreover,

Hp.LX .p/;LX .p�1/
IQ/Š

M
�

Hp

�
.L�/=Aut.�/; .@L�/=Aut.�/IQ

�
;

where � ranges over a set of representatives of isomorphism classes in Conesp.X /. Here Aut.�/ D
IsoConesp.X /.�; �/ is the automorphism group of � in Conesp.X /. Since jAut.�/j is invertible in Q, it
follows that

Hp.LX .p/;LX .p�1/
IQ/Š

M
�

Hp.L�; @L� IQ/Aut.�/;
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and for each � 2 Conesp.X /, we have

Hp.L�; @L� IQ/Aut.�/ Š

�
Q if � is alternating,
0 else,

which identifies Hp.LX .p/;LX .p�1/IQ/ with Cp.LX /.

Remark 2.2 A statement analogous to Proposition 2.1 holds with Q replaced by a commutative ring R,
if the order of Aut.�/ is invertible in R for each � .

Remark 2.3 See also the proofs in [36, Section 3], as well as [22, Section 3.3], which are written in the
special cases of the Voronoi complexes for SLg.Z/ and GLg.Z/, but apply essentially verbatim to prove
Proposition 2.1. The Voronoi complex of GLg.Z/ plays an important role in this paper.

2.3 Admissible decompositions

We now introduce admissible decompositions of the rational closure of the set of positive definite quadratic
forms, which are used in the construction of toroidal compactifications of the moduli space of abelian
varieties, as well as in the construction of the moduli space of tropical abelian varieties.

We denote by R.
gC1

2 / the vector space of quadratic forms in Rg, which we identify with g�g symmetric
matrices with coefficients in R. We denote by �g the cone in R.

gC1
2 / of positive definite quadratic forms.

We define the rational closure of �g to be the set �rt
g of positive semidefinite quadratic forms whose

kernel is defined over Q. The group GLg.Z/ acts on the vector space R.
gC1

2 / of quadratic forms by
h �Q WD hQht , where h 2 GLg.Z/ and ht is its transpose. The cones �g and �rt

g are preserved by this
action of GLg.Z/.

Remark 2.4 A positive semidefinite quadratic form Q in Rg belongs to �rt
g if and only if there exists

h 2 GLg.Z/ such that

hQht
D

�
Q0 0

0 0

�
for some positive definite quadratic form Q0 in Rg0 with 0� g0 � g; see [38, Section 8].

The cones �g and �rt
g are not polyhedral cones. However, one can consider decompositions of these

spaces into rational polyhedral cones, as in the following definition.

Definition 2.5 [38, Lemma 8.3], [23, Chapter IV.2] An admissible decomposition of �rt
g is a collection

†D f��g of rational polyhedral cones of �rt
g such that

(i) if � is a face of �� 2† then � 2†,

(ii) the intersection of two cones �� and �� of † is a face of both cones,

(iii) if �� 2† and h 2 GLg.Z/ then h��ht 2†,
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(iv) the set of GLg.Z/–orbits of cones is finite, and

(v)
S
��2†

�� D�
rt
g.

We say that two cones ��; �� 2† are equivalent if they are in the same GLg.Z/–orbit.

There are three known families of admissible decompositions of�rt
g described for all g: the perfect cone de-

composition, the second Voronoi decomposition, and the central cone decomposition; see [38, Chapter 8].
In this paper, we work with the perfect cone decomposition, which we now describe.

2.4 The perfect cone decomposition

Given a positive definite quadratic form Q, consider the set of nonzero integral vectors where Q attains
its minimum,

M.Q/ WD
˚
� 2 Zg

n f0g WQ.�/�Q.�/ for all � 2 Zg
n f0g

	
:

The elements of M.Q/ are called the minimal vectors of Q. Let �ŒQ� denote the rational polyhedral
subcone of �rt

g given by the nonnegative linear span of the rank-one forms � � � t 2�rt
g for elements �

of M.Q/, ie

(3) �ŒQ� WDR�0h� � �
t
i�2M.Q/:

The rank of the cone �ŒQ� is defined to be the maximum rank of an element of �ŒQ�; in fact the rank
of �ŒQ� is exactly the dimension of the span of M.Q/; see Lemma 4.8.

Fact 2.6 [44] The set of cones

†P
g WD f�ŒQ� WQ is a positive definite form on Rg

g

is an admissible decomposition of �rt
g, known as the perfect cone decomposition.

The quadratic forms Q such that �ŒQ� has maximal dimension
�
gC1

2

�
are called perfect, hence the name

of this admissible decomposition.

Example 2.7 Let us compute †P
2
. In this case, there is a unique perfect form up to GL2.Z/–equivalence,

namely
QD

�
1 1

2
1
2

1

�
:

One can compute that M.Q/D f.˙1; 0/; .0;˙1/; .˙1;�1/g. Thus, up to GL2.Z/–equivalence, there is
a unique perfect cone �ŒQ� of maximal dimension 3, with ray generators�

1 0

0 0

�
;

�
0 0

0 1

�
;

�
1 �1

�1 1

�
:

One may check that for i 2 f0; 1; 2g, all i–dimensional faces of �ŒQ� are GL2.Z/–equivalent; hence there
is a unique perfect cone of each dimension, up to the action of GL2.Z/.

Remark 2.8 The cones �ŒQ� 2†P
g need not be simplicial for g � 4; see [38, page 93].
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2.5 Matroidal perfect cones

We now give a brief introduction to matroids and their associated orbits of perfect cones. Further
background on matroids can be found in [41].

Definition 2.9 A matroid M D .E; C/ on a finite set E is a subset C � P.E/ n f∅g, called the set of
circuits of M, satisfying the following axioms:

(C1) No proper subset of a circuit is a circuit.

(C2) If C1;C2 2 C are distinct and c 2 C1\C2, then .C1[C2/�fcg contains a circuit.

A matroid M D .E; C/ is said to be simple if it has no circuits of length 1 or 2. A matroid M D .E; C/ is
called representable over a field F if there is a matrix A over F such that E bijects to the columns of A

with the circuits C of M indexing the minimal linearly dependent sets of columns of A. The matrix A is
known as an F–representation of M. An automorphism of a matroid is a bijection � WE!E such that
for any subset C �E, C is a circuit of M if and only if �.C / is a circuit of M.

Definition 2.10 A matroid is regular if and only if it is representable over every field.

A matroid M being regular is equivalent to M being representable over R by a totally unimodular matrix
(ie a matrix such that every minor is either �1, 0 or 1). The rank of a regular matroid M is the smallest
number r such that M is representable over R by a r � n totally unimodular matrix for some n; see
[41, Lemma 2.2.21, page 85].

Definition 2.11 Let G be a graph. The graphic matroid M.G/ is the matroid with ground set E.G/

whose circuits are subsets of E.G/ forming a simple cycle of G.

Since graphic matroids are regular, they are representable over fields of any characteristic. This can be
seen directly by constructing the following matrix representing M.G/. Fix an orientation of the edges
of G. Let A.G/ be the jV .G/j � jE.G/j matrix with entries

A.G/ij D

8<:
0 if vi 62 ej ;

�1 if vi is the head of ej ;

1 if vi is the tail of ej :

This matrix represents the matroid M.G/ over any field.

Construction 2.12 Given a simple, regular matroid M of rank � g, choose a g� n totally unimodular
matrix A that represents M over R. Denoting the columns of A by v1; v2; : : : ; vn, we let �A.M /��rt

g

be the rational polyhedral cone

�A.M / WDR�0hv1v
t
1; v2v

t
2; : : : ; vnv

t
ni:

By [37, Theorem 4.2.1], the cone �A.M / is a perfect cone in †P
g.
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The cone �A.M / is uniquely determined by M up to the action of GLg.Z/. In particular, if A and A0 are
two different totally unimodular matrices representing M over R then there exists an element h2GLg.Z/

such that h�A.M /ht D �A0.M /; see [37, Lemma 4.0.5(ii]). We therefore denote the GLg.Z/–orbit
of �A.M / by �.M /.

In the case of graphic matroids, Construction 2.12 can be made very explicit. As this is useful in
Section 6, we take the time to explain it here. Fix g > 0. We now construct cones of †P

g from graphs
on gC 1 vertices. The rows of the .gC 1/ � jE.G/j matrix A.G/ as constructed above are linearly
dependent. Let A�.G/ be the matrix obtained from A.G/ by deleting the last row. The matrices
A.G/ and A�.G/ are both representations of M.G/. Let v1; : : : ; vd be the columns of A�.G/. Then
�.M.G// WDR�0hv1v

t
1
; : : : ; vdv

t
d
i 2†P

g is a perfect cone; see [37, Theorem 4.2.1].

Definition 2.13 The principal cone is �prin
g WD �.M.KgC1//, the cone corresponding to the complete

graph KgC1.

When gD 2, this is the cone discussed in Example 2.7. More generally, for arbitrary g the principal cone
can be defined as the cone corresponding to the quadratic form26664

1 1
2
� � �

1
2

1
2

1 � � � 1
2

:::
:::
: : :

:::
1
2

1
2
� � � 1

37775 :
These two definitions agree by [8, Lemma 6.1.3].

The faces of �prin
g may be understood as follows. Since M.KgC1/ is a simple matroid, the principal cone

in †P
g is simplicial by [8, Theorem 4.4.4(iii)]. Therefore, a codimension i face of the principal cone

comes from a graph obtained by deleting i edges from KgC1.

Remark 2.14 Automorphisms of the graph G give automorphisms of the matroid M.G/, but not all
automorphisms of M.G/ arise in this way. However, if G is 3–connected, then Aut.G/D Aut.M.G//

(this is proved by Whitney in [45]; see [28, Lemmas 1 and 2]). The group Aut.M.G// is isomorphic to
the group of permutations of the rays of �.M.G// induced by elements of GLg.Z/ stabilizing �.M.G//

[11, Theorem 5.10].

2.6 The tropical moduli space A
trop
g

We now introduce the moduli space of tropical abelian varieties, which is a generalized cone complex
constructed in [8] and later worked out in [13]. Our aim is to compute the homology of the link of A

trop
g ,

as this is canonically isomorphic to the top-weight rational cohomology of Ag; see Theorem 3.1.
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Definition 2.15 A principally polarized tropical abelian variety (or, for simplicity, just tropical abelian
variety) of dimension g is a pair AD .Rg=Zg;Q/, where Q is a positive semidefinite symmetric bilinear
form on Rg with rational null space. We say that AD .Rg=Zg;Q/ is pure if Q is positive definite.

Two tropical abelian varieties .Rg=Zg;Q/ and .Rg=Zg;Q0/ are isomorphic if there is an h 2 GLg.Z/

such that Q0 D hQht . The set of isomorphism classes of tropical abelian varieties of dimension g is in
bijective correspondence with the orbits in �rt

g=GLg.Z/.

Given an admissible decomposition † of �rt
g, define a generalized cone complex A

trop;†
g by considering

the stratified quotient of �rt
g with respect to †; see [13, Definition 2.2.2]. Precisely, A

trop;†
g is the

generalized cone complex obtained as the colimit

A
trop;†
g WD lim

��!
f�g�2†

with arrows given by inclusion of faces composed with the action of the group GLg.Z/ on �rt
g: given two

cones �i and �j 2† and h2GLg.Z/ with h�ih
t a face of �j , we consider its associated lattice-preserving

linear map Li;j ;g W �i ,! �j in the diagram. The space A
trop;†
g is the moduli space of tropical abelian

varieties of dimension g with respect to †.

2.7 Toroidal compactifications of the moduli space Ag

In this paper, Ag denotes the moduli stack of principally polarized abelian varieties of dimension g. It is
a smooth Deligne–Mumford algebraic stack of dimension d D

�
gC1

2

�
, and the coarse moduli space of

principally polarized abelian varieties, denoted by Ag, is a quasiprojective variety.

The moduli stack Ag is not proper for g > 0, and there are different constructions of compactifications
of Ag. In particular, it is possible to construct normal crossings compactifications of Ag via the theory of
toroidal compactifications. Both the constructions of Ag and of its toroidal compactifications as algebraic
stacks were achieved in [4] over the complex numbers and in [23] over an arbitrary base. Even though we
work over the complex numbers, we often refer to the constructions in [23] as these are more conveniently
stated within the algebraic category and specifically for moduli of abelian varieties (rather than quotients
of bounded symmetric domains as in [4]).

Let† be an admissible decomposition of�rt
g (in the sense of Definition 2.5). Then one may associate to†

a toroidal compactification A†
g of Ag, which is a proper Deligne–Mumford stack, although in general it

is not smooth. The fact that Ag �A†
g is toroidal means that .Ag;A†

g / is étale-locally isomorphic to a
torus inside a toric variety.

By construction, the toroidal compactification A†
g comes with a stratification into locally closed subsets.

These are in order-reversing bijection, with respect to the order relation given by the closure, with the
GLg.Z/–equivalence classes of the relative interiors of the cones in †. For example, the origin of �rt

g,
which is the unique zero-dimensional cone in every admissible decomposition †, corresponds to the open
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substack Ag, which is the unique stratum of A†
g of maximal dimension d . At the other extreme, the

maximal dimensional cones in † correspond to the zero-dimensional strata of A†
g .

We study the perfect toroidal compactification Aperf
g D A†P

g

g of Ag, ie the toroidal compactification
of Ag associated to the perfect cone decomposition †P

g. The geometric significance of the perfect
cone compactification was highlighted in work of Shepherd-Barron [42], who shows that Aperf

g is the
canonical model of Ag for g � 12. For our purposes it is particularly nice because the number of strata
of codimension l in the boundary of Aperf

g nAg is independent of g if l � g; see [26, Proposition 7.1].

3 A comparison theorem for Ag and A
trop
g

Let † be any admissible decomposition of �rt
g. As mentioned above, we can use † to construct

both a toroidal compactification of Ag, and the generalized cone complex A
trop;†
g , the moduli space

of tropical abelian varieties associated to †. In this section, we record the relationship between the
homology of A

trop;†
g with the top-weight cohomology of Ag, as deduced from Deligne’s comparison

theorems and the framework in [12]. This precise relationship was already remarked by Odaka and
Oshima [40, Corollary 2.9], as we explain further in Remark 3.2, but it is useful to have a self-contained
proof, below.

Theorem 3.1 For each i � 0 and admissible decomposition †, we have a canonical isomorphism

zHi�1.LA
trop;†
g IQ/Š GrW

2d H 2d�i.AgIQ/;

where d D
�
gC1

2

�
is the complex dimension of Ag.

Proof First, by replacing † with another admissible decomposition of �rt
g that refines it, we may assume

that every cone of † is smooth and that it enjoys the following additional property: for any h 2 GLg.Z/

and � 2†, we have that h fixes, pointwise, the cone h�ht \ � . Such a refinement is well known to exist
[23, Chapter IV.2, page 98]. For example, one may be obtained by taking the barycentric refinement,
which is simplicial, and then taking an appropriate smooth refinement which can be constructed as in [18,
Theorem 11.1.9]. The homeomorphism type of LA

trop;†
g is unchanged when passing to a refinement.

Then, by [23, Theorem 5.7], it follows that A†
g is a smooth, separated Deligne–Mumford stack which is

a simple normal crossings compactification of Ag and whose boundary complex is LA
trop;†
g . Now the

desired result follows from the following comparison theorem: we have a canonical isomorphism

zHi�1.�.X � X /IQ/Š GrW
2d H 2d�i.X IQ/

for any normal crossings compactification X � X of smooth, separated Deligne–Mumford stacks over C,
where �.X � X / denotes the boundary complex of the pair .X ;X / and d D dimX is the complex
dimension of X . This comparison theorem follows from Deligne’s mixed Hodge theory [19; 20] in the
case of complex varieties; we refer to [12] for the generalization to Deligne–Mumford stacks.
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Remark 3.2 Let us briefly explain how Theorem 3.1 appears in Odaka [39] and Odaka and Oshima [40],
since the language of those papers is somewhat different. Odaka and Oshima study certain “hybrid”
compactifications of arithmetic quotients �nD of Hermitian symmetric domains. The case of Ag is the
case � D Sp.2g;Z/ and D is the “unit disc” of complex symmetric matrices Z with ZtZ < Idg. The
point is that the boundary of these compactifications is homeomorphic to LAtrop;†

g , so the comparison
statement in [40, Corollary 2.9], which relies on [12], combined with [12, Theorem 2.1], reduces to
Theorem 3.1 in this case.

It is worth emphasizing the independence of choice of the admissible decomposition of †, as remarked
in [39, A.14], that was implicit in the discussion above. More precisely, for any two admissible decompo-
sitions †1 and †2 of �rt

g, we have a homeomorphism of links

LA
trop;†1
g ŠLA

trop;†2
g :

Indeed, it is well known that any two admissible decompositions†1 and†2 admit a common refinement z†
which is an admissible decomposition [23, Chapter IV.2, page 97], and by the construction of Section 2.2,
we have canonical homeomorphisms

LA
trop;†1
g ŠLA

trop;z†
g ŠLA

trop;†2
g :

4 The perfect and Voronoi chain complexes

In computing the top-weight cohomology of Ag there are two chain complexes that play central roles:
the perfect chain complex P .g/

�
and the Voronoi chain complex V .g/

�
. In this section we define both of

these complexes, and show that the homology of the perfect chain complex P .g/
�

computes the top-weight
cohomology of Ag. Further, we show that the perfect and Voronoi complexes are related via a short exact
sequence of chain complexes, which is useful as the Voronoi complex has seen more extensive study;
see [22; 21]. We make use of this short exact sequence to prove our main results in Section 6.

4.1 The perfect chain complex

We first fix some notation, most of which we adapt from Section 2.2. For n 2 Z, let †P
gŒn� be the set

of perfect cones in †P
g of dimension nC 1, and denote the finite set of GLg.Z/–orbits of such cones

by †P
gŒn�=GLg.Z/. We write � � � 0 if and only if � and � 0 lie in the same GLg.Z/–orbit. Recall

that a cone � 2 †P
g is alternating if and only if every element of GLg.Z/ stabilizing � induces an

orientation-preserving cone morphism of � . If � is an alternating cone then every cone in the same
GLg.Z/–orbit as � is alternating. We call such GLg.Z/–orbits alternating. Let �.g/n D �n be a set of
representatives for the alternating elements of †P

gŒn�=GLg.Z/.

For each n and each � 2 �n, choose an orientation !� on � ; the GLg.Z/–action extends this choice to a
choice of orientation on every alternating cone in †P

g. If � � � is an alternating facet of � , denote the
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orientation induced on � by !� j�. Now let �.�; �/ be 1 if the orientation on � agrees with the orientation
induced by � (ie !� D !� j�) and �1 otherwise. Finally, given � 2 �n and � 0 2 �n�1 define

(4) ı.� 0; �/ WD
X

���; ��� 0

�.�; �/;

where the sum is over all facets � of � in the same GLg.Z/–orbit as � 0. With this notation in hand we
can now define the perfect chain complex.

Definition 4.1 The perfect chain complex (P .g/
�
; @�/ is the rational complex defined as follows. For

each n, P
.g/
n is the Q–vector space with basis indexed by �n. The differential @n WP

.g/
n !P

.g/
n�1

is given by

@.e� / WD
X

� 02�n�1

ı.� 0; �/e� 0 :

Notice that P
.g/
n is only possibly nonzero in the range �1� n�

�
gC1

2

�
�1, but even within this range P

.g/
n

may be zero, since alternating perfect cones do not necessarily exist in every dimension; see Example 4.2.
While in many cases ı.� 0; �/ is equal to �1; 0 or 1, this need not always be the case since a cone may
have two or more facets that are GLg.Z/–equivalent.

Example 4.2 When g D 2, recall from Example 2.7 that up to the action of GL2.Z/ there is precisely
one cone of maximal dimension,

�3 WDR�0

��
1 0

0 0

�
;

�
0 0

0 1

�
;

�
1 �1

�1 1

��
:

Since �3 is simplicial, its faces correspond to all subsets of the above ray generators. One can show that
up to the action of GL2.Z/ there is at most one cone in each dimension:

�2 WDR�0

��
1 0

0 0

�
;

�
0 0

0 1

��
; �1 WDR�0

��
1 0

0 0

��
; �0 WDR�0

��
0 0

0 0

��
:

Thus, to determine ��1, �0, �1 and �2, it is enough to see which of �0, �1, �2 and �3 are alternating.
Consider the matrix

AD

�
0 1

1 0

�
:

One can show that A stabilizes both �2 and �3 and that the induced cone morphism is orientation-reversing.
Thus, �1 and �2 are empty. On the other hand, since the action of GL2.Z/ fixes the cone point �0, both
�0 and �1 are alternating. So, ��1 D f�0g and �0 D f�1g. From this we see that the complex P .2/

�
is

P
.2/
2

P
.2/
1

P
.2/
0

P
.2/
�1

P
.2/
�2

0 0 Qhe�1
i Qhe�0

i 0
@0

where @0 sends e�1
to either e�0

or �e�0
depending on the chosen orientations.

Geometry & Topology, Volume 28 (2024)



514 Madeline Brandt, Juliette Bruce, Melody Chan, Margarida Melo, Gwyneth Moreland and Corey Wolfe

0 0

0 1
R

 R

R

1−1

10

00
R

σ
prin

−1 1

1 1
1 1

0

R
�

1
�1
�1

1

�

R
�

1
0

0
0

�

R
�

1
1

1
1

�

R
�

0
0

0
1

��0
prin

Figure 1: A section of �rt
2 and its perfect cone decomposition.

Remark 4.3 To be precise, the perfect complex P .g/
�

as constructed in Definition 4.1 is only unique up
to isomorphism. In particular, the choice of representatives for �n or reference orientations may result
in different but isomorphic chain complexes. For instance, in Example 4.2, the differential @0 is only
determined up to sign.

The next proposition shows that the perfect complex P .g/
�

is isomorphic to the cellular chain complex
associated to the symmetric CW complex LA

trop;P
g . Thus, by Theorem 3.1, the homology of P .g/

�

computes the top-weight rational cohomology of Ag.

Proposition 4.4 For each i � 0, there exist canonical isomorphisms

Hi�1.P
.g/
�
/Š zHi�1.LA

trop;P
g IQ/Š GrW

2d H 2d�i.AgIQ/;

where A
trop;P
g DA

trop;†P
g

g is the tropical moduli space constructed in Section 2.6.

Proof By construction, P .g/
�

is naturally isomorphic to the cellular chain complex of LA
trop;P
g as defined

in Section 2.2. Observe that the space A
trop;P
g is connected since it deformation retracts to the cone point.

Thus, the first isomorphism then follows from part (i) of Proposition 2.1 and the second isomorphism
follows from Theorem 3.1.

Example 4.5 By Example 4.2, we see that P .2/
�

has trivial homology in all degrees. Thus, Proposition 4.4
recovers the fact that A2 has trivial top-weight cohomology [33].

4.2 The Voronoi complex

Now we introduce a closely related complex, called the Voronoi complex V .g/
�

, as considered in [22; 21].1

We shall soon see that V .g/
�

is a quotient of P .g/
�

, obtained by setting to zero the generators corresponding
to cones contained in the boundary of �rt

g.

1In [22; 21] the Voronoi complex is defined as a complex of free Z–modules, while our definition of Voronoi complex is as a
complex of Q–vector spaces.

Geometry & Topology, Volume 28 (2024)



On the top-weight rational cohomology of Ag 515

For each n 2Z, let �.g/n D �n be the subset of �n consisting of those cones � such that � \�g ¤∅. For
each � 2 �n, let !� be an orientation of � , and for each � 2 �n�1 define ı.� 0; �/ as before in (4). With
this notation, we can now define the Voronoi complex.

Definition 4.6 The Voronoi chain complex (V .g/
�
; d�/ is the complex where V

.g/
n is the Q–vector space

with basis indexed by �n and the differential dn W V
.g/

n ! V
.g/

n�1
is given by

d.e� / WD
X

� 02�n�1

ı.� 0; �/e� 0 :

Example 4.7 The GL2.Z/–orbits of alternating cones in †P
2

are all contained in �rt
2
n�2. Hence the

Voronoi complex V .2/
�

is zero in all degrees.

There is a natural surjection of chain complexes P .g/
�

�V .g/
�

given by quotienting P
.g/
n by the subcomplex

spanned by those cones contained in �rt
g n�g. Our next goal, achieved in Theorem 4.13, is to show that

the kernel of the map above can naturally be identified with P .g�1/
�

. We begin by noting the following
two lemmas studying those cones lying in �rt

g n�g.

Lemma 4.8 Let � DR�0hv1v
t
1
; : : : ; vnv

t
ni with v1; : : : ; vn 2Zg be a perfect cone. Then � is contained

in �rt
g n�g if and only if dim spanRhv1; v2; : : : ; vni< g.

Lemma 4.9 If � 2†P
g is a perfect cone and � ��rt

g n�g then there is a matrix A 2GLg.Z/ and a cone
� 0 2†P

g0 , where g0 < g and � 0\�g0 ¤∅, with

(5) A�At
D

��
Q0 0

0 0

� ˇ̌̌̌
Q0 2 � 0

�
:

In this situation , say � 0 is a reduction of � .

We now show that, in a sense that we shall make precise, the action of GLg.Z/ on � does not depend on
the ambient matrix size g. For example, given a cone � 2†P

g and a reduction � 0 2†P
g0 of � , we will see

that � is alternating if and only if � 0 is alternating. We begin with the following definition.

Definition 4.10 Given perfect cones �1; �2 2 †
P
g, let Hom�rt

g
.�1; �2/ denote the set of morphisms

� W �1! �2 which are restrictions from the action of GLg.Z/ on �rt
g:

�rt
g �rt

g

�1 �2

X 7!AXAt

�
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The following two results concerning homomorphisms of cones contained in the boundary of �rt
g are

standard and possibly well known to experts. We include proofs here, however, as we are unaware of
suitable references.

Proposition 4.11 If �1; �2 2†
P
g are perfect cones contained in �rt

g n�g and � 0
1
; � 0

2
2†P

g0 are reductions
of �1 and �2 respectively, then there exists a bijection

Hom�rt
g
.�1; �2/

�
 ! Hom�rt

g0
.� 01; �

0
2/:

Proof By Lemma 4.9, we may assume �i are in the form of (5). Then if �0 2Hom�rt
g0
.� 0

1
; � 0

2
/ arises from

the action of a matrix A0 2GLg0.Z/ on �rt
g0 , then extending it by a .g�g0/� .g�g0/ identity matrix gives

a matrix A 2 GLg.Z/ that induces a cone morphism � W �1! �2.

In the other direction, suppose that � 2 Hom�rt
g
.�1; �2/ comes from the action of a matrix A 2 GLg.Z/

on�rt
g. Write Rg0 for the coordinate subspace of Rg of vectors in which the last g�g0 coordinates are zero.

Let �1 DR�0hv1v
t
1
; : : : ; vnv

t
ni. By Lemma 4.8, the vectors v1; : : : ; vn span Rg0 . Since A�1At D �2, it

follows again from Lemma 4.8 that Av1; : : : ;Avn also span Rg0 ; thus A restricts to a map A0 WRg0!Rg0 ,
with A.Zg0/� Zg0 . Similarly, A�1 restricts to .A0/�1 WRg0 !Rg0 , and .A0/�1.Zg0/� Zg0 . Therefore
A0 2 GLg0.Z/ is an invertible integer matrix, with A0� 0

1
.A0/t D � 0

2
.

Finally, a direct computation shows that these constructions are mutual inverses.

As a corollary of Proposition 4.11, the properties of being in the same GLg.Z/–orbit and being alternating
do not depend on g — that is, they are preserved by taking reductions.

Corollary 4.12 Two perfect cones �1; �2 � �
rt
g n�g are in the same GLg.Z/–orbit if and only if

there exists a g0 < g and reductions � 0
1
; � 0

2
2 †P

g0 that are in the same GLg0.Z/–orbit. A perfect cone
� ��rt

g n�g is alternating if and only if there exists a reduction � 0 2†P
g0 which is alternating.

Proof Two perfect cones �1 and �2 are in the same orbit if and only if Hom�rt
g
.�1; �2/ is nonempty. Then

the claim follows from Proposition 4.11, since Hom�rt
g
.�1; �2/ is nonempty if and only if Hom�rt

g0
.� 0

1
; � 0

2
/

is nonempty. Similarly, the proof of Proposition 4.11, applied to � D �1 D �2, shows that � has an
orientation-reversing automorphism if and only if its reduction � 0 does.

Corollary 4.12 allows us to naturally identify the set of GLg.Z/–orbits of alternating perfect cones in
�rt

g n�g with the set of GLg�1.Z/–orbits of alternating perfect cones in �rt
g�1

. Thus, we have the
following theorem.

Theorem 4.13 We have a short exact sequence of chain complexes

0! P .g�1/
�

! P .g/
�

�
�! V .g/

�
! 0:

Proof By construction, the kernel of � W P .g/
n ! V

.g/
n is generated by those basis vectors e� where

� 2 �
.g/
n n�

.g/
n . (Recall that �.g/n denotes a set of representatives of alternating GLg.Z/–orbits of cones
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in †P
g , and �.g/n denotes the subset of those that meet �g.) By Corollary 4.12, such cones are in bijection

with elements of �.g�1/
n . The differentials on P .g/

�
and P .g�1/

�
are defined in the same fashion, so the

result follows.

Theorem 4.13 reflects the stratification of LA
trop
g by the spaces L�g0=GLg0.Z/ for g0 D 1; : : : ;g, which

are rational classifying spaces for GLg0.Z/; this is the underlying geometric reason that it is possible to
relate the cohomology of Ag to that of GLg0.Z/, as we do here. This possible relationship was suggested
in the more general setting of arithmetic quotients of Hermitian symmetric domains in [40, Section 2.4].

5 The inflation complex and the coloop complex

In this section, we define a subcomplex of P .g/
�

, called the inflation complex I .g/
�

. We shall show in
Theorem 5.15 that I .g/

�
is acyclic. This acyclicity result implies a vanishing result for Hk.P

.g/
�
/ in low

degrees, obtained in Corollary 5.16, and it is invoked in the computations in the next section for gD 6 and
g D 7. In Section 5.2, we define an analogous subcomplex, the coloop complex, of the regular matroid
complex, and prove an analogous acyclicity result. The acyclicity of the coloop complex will not be used
in this paper, but should likely be useful for future study of the regular matroid complex.

5.1 The inflation complex

Definition 5.1 (i) Let S � Zg be a finite set. Say v 2 S is a Zg–coloop of S if v is part of a
Z–basis v;w2; : : : ; wg for Zg such that any w 2 S n fvg is in the Z–linear span of w2; : : : ; wg.
Equivalently, v is a Zg–coloop if, up to the action of GLg.Z/, we may write v D .0; : : : ; 0; 1/ and
w D .�; : : : ;�; 0/ for all w 2 S n fvg.

(ii) Now let � D �ŒQ� be a perfect cone in †P
g. Recall that the set M.Q/ of minimal vectors has the

property that v 2M.Q/ if and only if �v 2M.Q/; let M 0.Q/D fv1; : : : ; vng be a choice of one
of fv;�vg for each v 2M.Q/. So

� DR�0hv1v
t
1; : : : ; vnv

t
ni:

We say v 2M 0.Q/ is a coloop of � if v is a Zg–coloop in M 0.Q/.

Remark 5.2 The definition of a Zg–coloop is inspired by the notion of a coloop of a matroid (ie an
element not belonging to any circuit). Indeed, if S � Zg is any finite set and v 2 S , then v being a
Zg–coloop of S implies that v is a coloop of S , considered as vectors in Rg. The converse does not hold:
for example, let .v1; v2/D ..0; 1/; .3; 2//. Then v1 and v2 are coloops of the matroid M.v1; v2/ over R,
but neither is a Z2–coloop.

On the other hand, we prove in Lemma 5.22 that if M is a regular matroid, then M has a coloop if and
only if a totally unimodular matrix A representing M has column vectors with a Zg–coloop, if and only
if �.M / has a coloop in the sense of Definition 5.1(ii).
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Example 5.3 Consider the quadratic form defined by the positive definite matrix

QD

0@2 1
2

1
1
2

1 1
2

1 1
2

1

1A :
The minimum of Q on Z3�f0g is 1 and

M.Q/D f.0;˙1; 0/; .0; 0;˙1/;˙.1; 0;�1/;˙.0; 1;�1/g �R3:

The corresponding perfect cone �ŒQ� has a coloop, in particular, letting

AD

0@ 0 �1 0

0 �1 1

�1 0 1

1A
we see that

A

0@2 1
2

1
1
2

1 1
2

1 1
2

1

1AAt
D

0@1 1
2

0
1
2

1 0

0 0 1

1A
and so M.AQAt / is f.˙1; 0; 0/; .0;˙1; 0/, ˙.1; 1; 0/; .0; 0;˙1/g.

The cone �ŒQ� can also be realized as the matroidal cone �ŒM.G/� where G is the following graph:

The coloop corresponds to the bridge edge of G.

Lemma 5.4 Let S D fv1; : : : ; vng � Zg and suppose that v1 ¤ v2 are both Zg–coloops for S . Then
there is a Z–basis v1; v2; w3; : : : ; wg for Zg such that

v3; : : : ; vn 2 Zhw3; : : : ; wgi:

Proof By restricting to Rhv1; : : : ; vni, we may assume that Rhv1; : : : ; vni DRg. Now the fact that both
v1 and v2, being coloops, are in every basis for Rg chosen from fv1; : : : ; vng, implies that v3; : : : ; vn span
a .g�2/–dimensional subspace V of Rg. Let w3; : : : ; wg be a Z–basis for V \Zg. We need only verify
that v1; v2; w3; : : : ; wg form a Z–basis for Zg. Let x 2 Zg. Since v1; v2; w3; : : : ; wg form a Q–basis,
we have

x D a1v1C a2v2C a3w3C � � �C agwg for some ai 2Q;

and it suffices to show that ai 2 Z for all i D 1; 2; 3; : : : ;g. First, we show a1 2 Z. Since v1 is a Zg–
coloop, after a change of Z–basis, we may assume that v1 D .0; : : : ; 0; 1/ and that v2; : : : ; vn have last
coordinate zero. Since w3; : : : ; wg 2 spanRhv3; : : : ; vni, each wi also has last coordinate zero. Therefore
a1 2Z. By a similar argument, a2 2Z. Then a3w3C� � �Cagwg 2 V \Zg for ai 2Q. But w3; : : : ; wg

is a Z–basis for V \Zg. Therefore it must be that a3; : : : ; ag 2 Z, as desired.
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Corollary 5.5 Let S � Zg�1 be a finite set , and identify Zg�1 with its image in Zg under w 7! .w; 0/.
Then v is a coloop of S if and only if v is a coloop of S [fegg � Zg.

Proof The forward direction is direct from the definitions. For the backward direction, suppose v is a
coloop of S [fegg. Then both v and eg are coloops, so by Lemma 5.4, up to the action of GLg.Z/, we
may assume that v D eg�1 and w D .�; : : : ;�; 0; 0/ for all w 2 S n fvg. Therefore v was a coloop of
S � Zg�1.

Corollary 5.6 A cone with two or more coloops is not alternating. That is , if � D �ŒQ�, where
v ¤ v0 2M 0.Q/ are two distinct coloops , then � is not alternating.

Proof The cone � has an orientation-reversing automorphism induced by an element of GLg.Z/ swapping
the two coloops.

We now describe two operations on cones, inflation and deflation, which add or remove coloops, respec-
tively. Inflation is described in [22, Section 6.1], and can be performed for any cone, but we shall consider
it for the cones in the set †P

g;ncoŒn� defined below.

Recall that †P
gŒn� denotes the set of .nC1/–dimensional perfect cones, and †P

gŒn�=GLg.Z/ denotes the
collection of GLg.Z/–orbits of .nC1/–dimensional perfect cones.

Definition 5.7 We define two subsets of †P
gŒn� as follows:

†P
g;ncoŒn� WD f� 2†

P
gŒn� W rank.�/� g� 1 and � has no coloopg;

†P
g;coŒn� WD f� 2†

P
gŒn� W � has exactly one coloopg:

We then define †P
g;ncoŒn�=GLg.Z/ and †P

g;coŒn�=GLg.Z/ to be the collection of GLg.Z/–orbits of the
respective sets.

We now define inflation and deflation as operations on †P
g;ncoŒn�=GLg.Z/ and †P

g;coŒn�=GLg.Z/, and we
show these operations are well defined in Lemma 5.12.

Definition 5.8 Inflation is the map

ifl W†P
g;ncoŒn�=GLg.Z/!†P

g;coŒnC 1�=GLg.Z/

defined as follows. Given an element of †P
g;ncoŒn�=GLg.Z/, choose a representative

� DR�0hw1w
t
1; : : : ; wkw

t
ki

so that the gth entry of each wi is zero; see Lemma 4.9. Let

z� DR�0hw1w
t
1; : : : ; wkw

t
k ; eget

gi:

Then set ifl.Œ� �/D Œz��.
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Remark 5.9 We check that inflation is well defined in Lemma 5.12. However, we pause to point out
that z� is indeed a perfect cone, as noted in [22, Section 6.1]: if Q 2�g�1 is a positive definite quadratic
form such that �ŒQ�DR�0h zw1 zw

t
1
; : : : ; zwk zw

t
k
i, where zwi denotes the truncation of wi by the last entry,

then the inflation of � is the cone associated to the quadratic form

zQD

�
Q 0

0 m.Q/

�
;

where m.Q/ is the minimum value of Q on Zg�1 n f0g. Moreover, z� has exactly one coloop by
Corollary 5.5 and the fact that � had no coloops.

Example 5.10 Continuing Example 5.3, we see that if Q0 is the positive definite quadratic form

Q0 D

0@1 1
2

1
2

1
2

1 1
2

1
2

1
2

2

1A ;
then M.Q0/ D f˙.1; 0; 0/;˙.0; 1; 0/;˙.1;�1; 0/g. Thus, the cone �ŒQ� is the inflation of �ŒQ0�. We
may describe the cone �ŒQ0� as

�ŒQ0�D

��
Q00 0

0 0

� ˇ̌̌
Q00 2 �

��
1 1

2
1
2

1

���
;

from which we see that �ŒQ0� does not meet �3, but its inflation �ŒQ� does. In general, the inflation of a
perfect cone corresponding to a quadratic form of rank r will itself be a perfect cone corresponding to a
quadratic form of rank r C 1.

Definition 5.11 We define the deflation operation as a map

dfl W†P
g;coŒnC 1�=GLg.Z/!†P

g;ncoŒn�=GLg.Z/

given as follows. Given an element of †P
g;coŒnC 1�=GLg.Z/, pick a GLg.Z/–representative

z� DR�0hw1w
t
1; : : : ; wkw

t
k ; eget

gi;

where each wi is zero in the last coordinate. Let � DR�0hw1w
t
1
; : : : ; wkw

t
k
i. It is routine to check that

� really is a perfect cone, and moreover, it has no coloops by Corollary 5.5. Then we set dfl.Œz��/D Œ� �.
We now show that inflation and deflation are well defined.

Lemma 5.12 For each n 2N, inflation is a well-defined operation on †P
g;ncoŒn�=GLg.Z/, and deflation

is a well-defined operation on †P
g;coŒnC 1�=GLg.Z/. Furthermore , these operations are inverses of each

other.

Proof We start with inflation. Given Œ� � 2 †P
g;ncoŒn�=GLg.Z/, let �1 D R�0hv1v

t
1
; : : : ; vkv

t
k
i and

�2 D R�0hw1w
t
1
; : : : ; wkw

t
k
i be two GLg.Z/–representatives of Œ� � such that the gth entry of each
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of the vi ; wj is zero. By Proposition 4.11, there exist reductions � 0
1

of �1 and � 0
2

of �2 as well as an
A 2 GLg�1.Z/ sending � 0

1
to � 0

2
in �rt

g�1
. Then

A0 D

�
A 0

0 1

�
yields an equivalence between the two inflations.

Now let Œ� � 2†P
g;coŒnC 1�=GLg.Z/. Let

�1 DR�0hv1v
t
1; : : : ; vkv

t
k ; eget

gi; �2 DR�0hw1w
t
1; : : : ; wkw

t
k ; eget

gi

be two GLg.Z/ representatives of Œ� � such that the vi ; wj have gth coordinate zero. Then by the proof of
Proposition 4.11, there exists an A 2 GLg.Z/ such that

Avi D˙wi for i D 1; : : : ; k;

Aeg D˙eg;

possibly after reordering the vi . Indeed, A must take the coloop˙eg to˙eg. Then A gives an equivalence
between the deflations R�0hv1v

t
1
; : : : ; vkv

t
k
i �R�0hw1w

t
1
; : : : ; wkw

t
k
i.

We now have that inflation and deflation are well defined, and it is clear from the definitions that these
two operations are inverses.

Lemma 5.13 Let � DR�0hv1v
t
1
; : : : ; vkv

t
k
i be a perfect cone in †P

g of rank < g with no coloop. Then
Œ� � is alternating if and only if ifl.Œ� �/ is alternating.

Proof We may assume that v1; : : : ; vn have last coordinate 0, so that, letting

z� DR�0hv1v
t
1; : : : ; vkv

t
k ; eget

gi;

we have ifl.�/D z� . We claim there is a natural bijection

(6) Aut.�/ ! Aut.z�/;

where Aut.�/ D Hom�rt
g
.�; �/ (see Definition 4.10) and similarly for Aut.z�/. Moreover, we claim

that (6) takes orientation-preserving/reversing automorphisms of � to orientation-preserving/reversing
automorphisms of z� , respectively.

Given � 2 Aut.�/ arising from a matrix A 2 GLg�1.Z/, the matrix

zAD

�
A 0

0 1

�
yields an automorphism z� of z� . The linear span of z� is the sum of the linear span of � and that of eget

g.
Moreover, z� fixes the ray eget

g of z� and acts on the linear span of � according to A; in particular, z� is
orientation-preserving if and only if � was.
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Next, suppose zA 2 GLg.Z/ induces z� 2 Aut.z�/. Recall that eg is the only coloop of z� , by Corollary 5.5.
Therefore Aeg D˙eg, and hence A induces an automorphism of � . Finally, it is routine to check that
the maps constructed between Aut.�/ and Aut.z�/ are two-sided inverses.

Definition 5.14 Let I .g/
�

be the subcomplex of P .g/
�

which is generated in degree n by cones � 2 �n of
rank � g� 1 and cones of rank g with a coloop.

Theorem 5.15 The chain complex I .g/
�

is acyclic.

Proof By Lemmas 5.12 and 5.13 there is a matching of cones generating I .g/
�

, given by

� !

�
ifl.�/ if � has no coloop;
dfl.�/ if � has a coloop:

Here, we have abused notation slightly, since ifl is an operation on orbits rather than orbit representatives.
Thus, when we write ifl.�/D � 0 for � 2 �n, we mean that � 0 is the unique orbit representative in �nC1

such that ifl.Œ� �/D Œ� 0�. Similarly for deflation.

Now let � be a generator in I .g/
�

of maximal degree; then � must have a coloop v. We claim that
� 0 D dfl.�/ is not a facet of any other generator � ¤ � of I .g/

�
. Indeed, suppose that

� DR�0hv1v
t
1; : : : ; vkv

t
ki

is a generator of I .g/
�

containing � 0 as a facet. If � had a coloop, say vn, then since � 0 has no coloop,
� 0 must not contain the ray vnv

t
n. But

R�0hv1v
t
1; : : : ; vk�1v

t
k�1i

is already a facet of � , so it must be � 0 D dfl.�/D dfl.�/, implying � D � . So � has no coloop. But then
ifl.�/ is a generator of I .g/

�
and it would have higher rank than � .

Thus, the complex I .g/
�

0
spanned by all cones except � and dfl.�/ is a subcomplex. Then we have a short

exact sequence
0! I .g/

�

0
! I .g/

�
! I .g/

�
=I .g/
�

0
! 0;

where I .g/
�
=I .g/
�

0
is isomorphic to 0! � ! dfl.œ/! 0. Hence I .g/

�

0
! I .g/

�
is a quasi-isomorphism.

Repeating this, we deduce inductively that I is quasi-isomorphic to 0.

As a corollary of Theorem 5.15, we are able to prove the following vanishing result for the cohomology
of P .g/

�
in low degrees.

Corollary 5.16 If k � g� 2, then Hk.P
.g/
�
/D 0.

Proof Since the inflation complex I .g/
�

is acyclic by Theorem 5.15, it is enough to show that I
.g/

k
DP

.g/

k

for all k � g� 2. For this, we simply need the well-known fact that the rank of a perfect cone is at most
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its dimension. Indeed, let � D R�0hv1v
t
1
; v2v

t
2
; : : : ; vnv

t
ni 2 †

P
g be an alternating cone of dimension

kC 1. If Q 2 � then
QD �1vi1

vt
i1
C�2vi2

vt
i2
C � � �C�kC1vikC1

vt
ikC1

for some fi1; : : : ; ikC1g � f1; : : : ; ng and some �i 2R�0. In particular, since vjvt
j is a rank-one quadratic

form, this implies that the rank of Q is at most kC1. Thus, if kC1� g�1, then rank.�/ < g, implying
that the orbit of � represents an element of I

.g/

k
.

Remark 5.17 The inflation operation is, of course, a special case of taking the block sum of two perfect
cones. In this way one obtains a product map on chain complexes P .g1/ ˝ P .g2/ ! P .g1Cg2/, and
a corresponding product on homology. This is reminiscent of the result of [25] describing the stable
cohomology of the matroidal partial compactifications Amatr

g via 1–sums of irreducible regular matroids.
Perhaps if one had nonvanishing statements for the latter product, then the cohomology classes detected
in this paper could be used to construct infinite families of top-weight classes in Ag.

Remark 5.18 The proof of Corollary 5.16 shows that any cone of dimension less than or equal to g� 1

does not intersect �g. This implies that Hk.V
.g/
�
/D 0 for all k � g� 2.

Remark 5.19 The virtual cohomological dimension of Ag is

vcd.Ag/D vcd.Sp.2g;Z//D g2

by [7]; see [15]. In particular,

GrW
g2Cg

H i.AgIQ/D 0 for all i > g2;

which is equivalent, setting i D 2 dim.Ag/� j � 1D g2Cg� j � 1, to

Hj .P
.g//D 0 for all j < g� 1:

Corollary 5.16 thus reproves, in a completely different way, the vanishing in top weight of rational
cohomology of Ag in degree above the virtual cohomological dimension.

5.2 The regular matroid complex and inflation

In this section, we introduce two combinatorially defined subcomplexes R.g/
�

and C .g/
�

of P .g/
�

, coming
from regular matroids and regular matroids with coloops, respectively. These are not used further in
this paper. Nevertheless, the matroidal cones in †P

g have geometric significance: Alexeev and Brunyate,
in proving the existence of a compactified Torelli map Mg ! A perf

g , conjectured an open locus on
which A perf

g and AVor
g are isomorphic and on which the two Torelli maps Mg!A perf

g and Mg!AVor
g

agree [2]. The fourth author and Viviani [37] verified their conjecture, showing that the matroidal partial
compactification Amatr

g , whose strata correspond to cones arising from regular matroids, is the largest such
open subset. For possible future use in studying R.g/, we establish in this section that the complex C .g/

�
,

which is a matroid analogue of I .g/
�

, is acyclic.
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Given a cone � 2†P
gŒn�, we say that � is a matroidal cone if and only if there exists a simple, regular

matroid M of rank at most g such that Œ� �D �.M /, where �.M / is as described in Construction 2.12.
Matroidal cones are simplicial. Since the faces of a matroidal cone are themselves matroidal cones, the set
of representatives of alternating cones arising from simple, regular matroids forms a subcomplex of P .g/.

Definition 5.20 The regular matroid complex R.g/
�

is the subcomplex of P .g/
�

generated in degree n by
cones � 2 �n such that � is a matroidal cone.

Remark 5.21 When g D 2 and g D 3, the complexes R.g/
�

and P .g/
�

are in fact equal. It would be
interesting to understand in general how much larger P .g/

�
is compared to R.g/

�
.

Recall that an element e of a matroid M is a coloop if it does not belong to any of the circuits of M ;
equivalently, e is a coloop if it belongs to every base of M. When M is a regular matroid, this is
equivalent to the existence of a totally unimodular matrix AD Œv1; v2; : : : ; vn� representing M such that
vi D .�;�; : : : ;�; 0/ for i D 1; 2; : : : ; n�1 and eD vnD .0; 0; : : : ; 0; 1/. It is worth establishing that the
notions of a matroid coloop and a Zg–coloop agree for matroidal cones, as we show in the next lemma.

Lemma 5.22 Let M be a simple , regular matroid of rank � g. The cone �.M / has a Zg–coloop if and
only if the matroid M has a coloop.

Proof Suppose that �.M / has a Zg–coloop. By definition, there exists a quadratic form Q 2�g such
that Œ�.Q/�D �.M / and M 0.Q/D fv1; v2; : : : ; vng where vi D .�;�; : : : ;�; 0/ for i D 1; : : : ; n�1 and
vn D .0; 0; : : : ; 0; 1/. Then by the construction of �.M /, the matrix A D Œv1; v2; : : : ; vn� is a totally
unimodular matrix representing M over R. Therefore vn is a coloop of the matroid M.

For the other direction, suppose that the regular matroid M on the ground set f1; : : : ; ng is represented by
a full-rank totally unimodular g0 � n matrix AD Œv1; v2; : : : ; vn� for some g0 � g, and that n is a coloop
of M. Then n is in every base of M, so vn is in every full-rank g0 �g0 submatrix of A. Reorder so that
the rightmost g0 �g0 submatrix is full rank; call it B. Then B 2 GLg0.Z/ by total unimodularity of A.
Consider the matrix B�1A, which still represents M. The rightmost g0 �g0 submatrix of B�1A is the
identity. Moreover, each of the first n�g0 columns is of the form .�; : : : ;�; 0/, for otherwise it could
replace the last column in the rightmost square submatrix to form a full-rank square matrix, contradicting
that n was a coloop. This shows that vn is a Zg0–coloop of v1; : : : ; vn 2Zg0 , and after padding by zeroes,
vn is a Zg–coloop of the of v1; : : : ; vn.

Definition 5.23 The coloop complex C .g/
�

is the subcomplex of P .g/
�

generated in degree n by cones
� 2 �n such that � is a matroidal cone and either

(i) the rank of � is < g, or

(ii) the rank of � is equal to g and � has one coloop.
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By Lemma 5.22, the generators for C .g/
�

are the generators of R.g/
�

that are also generators of I .g/
�

; in
summary, we have inclusions of complexes

C .g/
�

R.g/
�

I .g/
�

P .g/
�

Similar to the inflation complex, the coloop complex is acyclic.

Theorem 5.24 The chain complex C .g/
�

is acyclic.

We omit the details of the proof of Theorem 5.24. It is closely analogous to the proof of Theorem 5.15,
the key step being the following lemma.

Lemma 5.25 There is a bijection of sets between�
alternating, regular matroids
of rank < g with 0 coloops

�
�
 !

�
alternating, regular matroids
of rank � g with 1 coloop

�
:

6 Computations on the cohomology of Ag

In this section, we compute the top-weight cohomology of Ag for 3� g � 7, proving Theorem A. When
g D 3, 4 and 5, we do this by studying the cones of †P

g arising from matroids, from which we explicitly
compute the chain complex P .g/

�
. We handle the cases when g D 6 and g D 7 by utilizing the long exact

sequence in homology arising from Theorem 4.13, as well as the fact that the inflation subcomplex I .g/
�

is acyclic; see Theorem 5.15. Additionally, we prove a vanishing result for the top-weight cohomology
of Ag for g D 8, 9 and 10 in Theorem 6.16.

6.1 The complex P
.3/
�

For g D 3, the fact that every perfect cone is matroidal allows us to compute the complex P .3/
�

directly.
Using this description of P .3/

�
, we then compute the top-weight cohomology of A3.

Proposition 6.1 The chain complex P .3/
�

is

P
.3/
5

P
.3/
4

P
.3/
3

P
.3/
2

P
.3/
1

P
.3/
0

P
.3/
�1

0 Q 0 0 0 0 Q Q 0:
�

Proof The only top-dimensional perfect cone of †P
3
=GL3.Z/ is the principal cone �prin

3
coming from the

complete graph K4; see [44, page 151]. The principal cone �prin
3

is alternating because the automorphisms
of K4 are all alternating permutations of its edges, and every automorphism of �prin

3
arises from Aut.K4/

by Remark 2.14. Thus, we have P
.3/
5
ŠQ.
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Figure 2: Top: graphs obtained by deleting the indicated number of edges from K4, giving iso-
morphism classes of graphic matroids. Bottom: an automorphism of M ŒK4nfe6g� interchanging
e4 and e5.

The automorphisms on the codimension i faces of �prin
3

arise from matroids of graphs obtained from K4

by deleting i edges; see Figure 2, top. For i D 1; : : : ; 4, each of the matroids associated to graphs with
i edges removed from K4 has an automorphism given by an odd permutation of the edges; see Figure 2,
bottom, for an example. So we have P

.3/
j D 0 for 1� j � 4. The single ray and vertex of †P

3
=GL3.Z/

are alternating, so P
.3/
j ŠQ for j D 0 and j D�1.

Theorem 6.2 The top-weight cohomology of A3 is

GrW
12 H i.A3IQ/D

�
Q if i D 6;

0 else.

Proof The top-weight cohomology of A3 is the homology of P .3/
�

by Theorem 3.1.

Remark 6.3 Theorem 6.2 agrees with the work of Hain [27], who computes the full cohomology ring
of A3. Hain deduces in particular H 6.A3IQ/DE where E is a mixed Hodge structure that is an extension
0!Q.�3/!E!Q.�6/! 0, where Q.n/ denotes the Tate Hodge structure of dimension one and
weight �2n.

Example 6.4 While we do not need it here, we note that using the fact that all of the perfect cones in †P
3

arise from graphic matroids, one can check that the inflation complex I .3/
�

is

I
.3/
5

I
.3/
4

I
.3/
3

I
.3/
2

I
.3/
1

I
.3/
0

I
.3/
�1

0 0 0 0 0 0 Q Q 0:
�

6.2 The complex P
.4/
�

In this section, we explicitly compute the complex P .4/
�

by using the matroidal description of the principal
cone given in Section 2.5 together with the description of a similar complex for SLg.Z/–alternating cones
described in [36]. We then use P .4/

�
to compute the top-weight cohomology of A4.
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i Ci SL4.Z/–alternating cones of dim iC1 GL4.Z/–alternating?

4 Q �. / no

5 Q �. / no

6 Q �. / yes

8 Q �. / no

9 Q2 �
prin
4

, �.D4/ no

Table 1: SL4.Z/–alternating cones of †P
4
=SL4.Z/.

Proposition 6.5 The chain complex P .4/
�

is

P
.4/
9

P
.4/
8

P
.4/
7

P
.4/
6

P
.4/
5

P
.4/
4

P
.4/
3

P
.4/
2

P
.4/
1

P
.4/
0

P
.4/
�1

0 0 0 Q Q 0 0 0 0 Q Q 0
� �

Proof By Theorem 4.13, we have, in any degree `, that dim P
.4/

`
D dim P

.3/

`
C dim V

.4/

`
. We have

already computed P .3/
�

, so we now compute V .4/
�

. In [36], the authors compute a complex C� which is
generated in degree i by the .iC1/–dimensional SL4.Z/–alternating perfect cones meeting �g up to
SL4.Z/–equivalence. Their results [36, Proposition 3.1] are summarized in the first three columns of
Table 1. The cone �.D4/ is the cone corresponding to the quadratic form

D4 D

26664
1 0 1

2
1
2

0 1 1
2

1
2

1
2

1
2

1 1
2

1
2

1
2

1
2

1

37775 :
For i 62 f4; 5; 6; 8; 9g, they show that Ci D 0.

We now compute the Voronoi complex V .4/
�

. As far as we know, this computation—for GL4.Z/,
as opposed to SL4.Z/—constitutes a small gap in the literature, which we fill here. To obtain the
complex V .4/

�
, we must pass from SL4.Z/ to GL4.Z/. In doing so, two things may happen. First, two

SL4.Z/–inequivalent cones may be GL4.Z/–equivalent. This does not occur by the corollary following
[36, Lemma 4.4]: the GL4.Z/–orbits of cones in †P

4
are equal to the SL4.Z/–orbits. Second, a cone

which is SL4.Z/–alternating may no longer be GL4.Z/–alternating. We now check whether this occurs
for the cones in Table 1.

In degree 9, neither cone is alternating since transposition matrices stabilize these cones but reverse
orientation, as is observed in [36, page 107]. In degrees 4, 5, and 8 the graphic matroids giving rise to
each of the cones in Table 1 have an automorphism coming from an odd permutation of the ground set
elements, so these cones are not alternating. Therefore V

.4/
9
D V

.4/
8
D V

.4/
5
D V

.4/
4
D 0. In degree 6,

the cone �. / is alternating because any automorphism of M. DK4[feg/ fixes e and �.K4/ is
alternating, so V

.4/
6
DQ.
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We now explain the nonzero morphisms. Since V .4/
�

is 0 in degree less than 2, the map P
.4/
0
! P

.4/
�1

is
an isomorphism. We now compute the map P

.4/
6
! P

.4/
5

. We have that P
.4/
6

is generated by one cone
�. DK4[feg/. Its faces are the cones obtained from K4[feg by deleting one edge. Only deleting
the edge e yields a graph which gives an alternating perfect cone, and this cone generates P

.4/
5

. So, this
map is an isomorphism.

Theorem 6.6 The top-weight cohomology GrW
20 H i.A4IQ/ of A4 is 0 for all i .

Proof The top-weight cohomology of A4 is given by the homology of the chain complex P .4/
�

by
Theorem 3.1. This chain complex has no homology.

In fact, our explicit description of P .4/
�

shows that P .4/
�
D I .4/

�
, since every nonzero generator is either of

rank < 4 or has a coloop. The acyclicity of P .4/ is then consistent with Theorem 5.15.

Remark 6.7 Theorem 6.6 can be deduced from the results in [31]. In particular, the weight 0 compactly
supported cohomology of A4 is encoded in the last two columns of [31, Table 1], which describes the first
page of a spectral sequence converging to the cohomology of the second Voronoi compactification AVor

4

of A4. Here, these two columns contain the compactly supported cohomology of two strata of AVor
4

whose union is exactly A4: the fifth column corresponds to the Torelli locus, while the sixth column
corresponds to its complement in A4. By Poincaré duality (10), as described in Section 7, if A4 had
top-weight cohomology it would also have compactly supported cohomology in weight 0. However, even
though there are some undetermined entries in the sixth column of the aforementioned table, a close look
at the table shows that the weight 0 part must vanish. Indeed, there are no weight 0 classes in the table
northwest of the undetermined entries, so any weight 0 classes in the sixth column would persist in the
E1 page of the spectral sequence and yield weight 0 classes of AVor

4
. But this is impossible as AVor

4
is a

smooth compactification of A4.

6.3 The complex P
.5/
�

By using the short exact sequence given in Theorem 4.13, we now compute the complex P .5/
�

. From this
we compute the top-weight cohomology of A5.

Proposition 6.8 The chain complex P .5/
�

is

P
.5/
14

P
.5/
13

P
.5/
12

P
.5/
11

P
.5/
10

P
.5/
9

P
.5/
8

P
.5/
7

0 Q3 Q2 0 Q Q6 Q7 Q 0
@14 @11 @10 @9

P
.5/
6

P
.5/
5

P
.5/
4

P
.5/
3

P
.5/
2

P
.5/
1

P
.5/
0

P
.5/
�1

Q Q 0 0 0 0 Q Q 0:
� �
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Proof By Theorem 4.13, we have in any degree ` that dim P
.5/

`
D dim P

.4/

`
Cdim V

.5/

`
. We have already

computed P .4/
�

, so we now study V .5/
�

, which was computed in [22]. Recall from Section 4.1 that �n

denotes the set of representatives of alternating perfect cones of dimension nC 1. In [22, Table 1], the
cardinality of �n, is given by

n 4 5 6 7 8 9 10 11 12 13 14

j�nj 0 0 0 0 1 7 6 1 0 2 3

In [22, Section 6.2], there is an explicit description of the differential maps.

Since V .5/
�

is supported in degrees > 7, while P .4/
�

is supported in degrees < 7, the differential maps
P
.5/
j ! P

.5/
j�1

for j < 7 are inherited from P .4/
�

, and likewise the differential maps P
.5/
j ! P

.5/
j�1

for
j > 7 are inherited from V .5/

�
.

Theorem 6.9 The top-weight cohomology of A5 is

GrW
30 H i.A5IQ/D

�
Q if i D 15 or 20;

0 else.

Proof By Proposition 6.8 and [22, Theorem 4.3] we have that H9.P
.5/
�
/ D Q and H14.P

.5/
�
/ D Q.

Then by Theorem 3.1, we obtain the desired result.

Remark 6.10 Grushevsky asks if Ag ever has nonzero odd cohomology [24, Open Problem 7].
Theorem 6.9 confirms that A5 does in degree 15. Furthermore, we will see in Theorem 6.12 that
Grushevsky’s question is also answered affirmatively for A7, where

dim GrW
56 H 33.A7IQ/D dim GrW

56 H 37.A7IQ/D 1:

6.4 The top-weight cohomology of A6 and A7

Elbaz-Vincent, Gangl and Soulé in [22, Theorem 4.3]2 computed the homology of the Voronoi com-
plex V .g/

�
for g D 5, 6 and 7. Combining this, together with Proposition 6.8, we are able to compute the

top-weight cohomology of A6 and A7.

Theorem 6.11 The top-weight cohomology of A6 is

GrW
42 H i.A6IQ/D

�
Q if i D 30;

0 else.

Proof By Proposition 4.4, we need to show that H11.P
.6/
�
/ŠQ and Hi.P

.6/
�
/D 0 for i ¤ 11. Consider

the long exact sequence in homology arising from the short exact sequence of chain complexes given in

2Elbaz-Vincent, Gangl and Soulé define the Voronoi complex as a complex of free Z–modules, and in [22, Theorem 4.3] they
compute the integral homology of this complex. Our definition of the Voronoi complex V

.g/
� is a complex of Q–vector spaces,

but this causes no problems as we are only interested in the rational homology of V
.g/
� .
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i Hi.P
.5/
� / Hi.P

.6/
� / Hi.V

.6/
� /

� 16 0 0 0
15 0 0 Q
14 Q 0 0
13 0 0 0
12 0 0 0
11 0 Q Q
10 0 0 Q

9 Q 0 0
� 8 0 0 0

Table 2: The long exact sequence in homology for g D 6.

Theorem 4.13. Combining this with the computation of the homology of V .6/
�

[22, Theorem 4.3] and the
homology of P .5/

�
given in Proposition 6.8, our computation of Hk.P

.6/
�
/ reduces to the four cases in

Table 2.

� Case 1 .i � 8; i D 12; 13; i � 16/ For these values of i , both Hi.P
.5/
�
/ and Hi.V

.6/
�
/ are equal to

zero, so Hi.P
.6/
�
/D 0.

� Case 2 .i D 14; 15/ The long exact sequence in homology gives the exact sequence

0!H15.P
.6/
�
/!Q

ı6
15
��!Q!H14.P

.6/
�
/! 0:

Exactness implies that the connecting homomorphism ı6
15

is either an isomorphism or the zero map. By [22,
Theorem 6.1] we know that inflating the cones in V .5/

�
gives an isomorphism of chain complexes V .6/

�
Š

V .5/
�
Œ1�˚F� for some complex F�. Combining this with [22, Theorem 4.3] shows the nontrivial homology

class in H15.V
.6/
�
/ is the inflation of a nontrivial homology class in H14.V

.5/
�
/. By Proposition 6.8, the

nontrivial homology class in H14.P
.5/
�
/ is the nontrivial homology class in H14.V

.5/
�
/, so H15.V

.6/
�
/

is generated by the inflation of the nontrivial class H14.P
.5/
�
/. By the proof of the acyclicity of the

inflation complex I .g/
�

(Theorem 5.15), this implies the connecting map ı6
15

is an isomorphism. The exact
sequence above then implies that Hk.P

.6/
�
/D 0 for both k D 14 and k D 15.

� Case 3 .i D 11/ H11.P
.5/
�
/ and H10.P

.5/
�
/ vanish, so the long exact sequence in homology gives

0!H11.P
.6/
�
/!Q! 0:

This exactness implies that H11.P
.6/
�
/ is isomorphic to Q.

� Case 4 .i D 9; 10/ By considering the long exact sequence in homology in the range i D 10 to i D 9

we have the exact sequence

0!H10.P
.6/
�
/!Q

ı6
10
��!Q!H9.P

.6/
�
/! 0:

An analysis similar to that in Case 2 shows that connecting map ı6
11

is an isomorphism, implying by
exactness that Hi.P

.6/
�
/D 0 for both i D 9 and i D 10.
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i Hi.P
.6/
� / Hi.P

.7/
� / Hi.V

.7/
� /

� 28 0 0 0
27 0 Q Q
26 0 0 0
25 0 0 0
24 0 0 0
23 0 0 0
22 0 Q Q
21 0 0 0
20 0 0 0
19 0 0 0
18 0 Q Q
17 0 0 0
16 0 0 0
15 0 0 0
14 0 0 0
13 0 Q Q
12 0 0 Q
11 Q 0 0
10 0 0 0

9 0 0 0
� 8 0 0 0

Table 3: The long exact sequence in homology for g D 7.

We now compute the top-weight rational cohomology of A7.

Theorem 6.12 The top-weight cohomology of A7 is

GrW
56 H i.A7IQ/D

�
Q if i D 28; 33; 37; 42;

0 else.

Proof We compute the homology of P .7/
�

in a similar fashion to the proof of Theorem 6.11, by considering
the long exact sequence in homology arising from the short exact sequence of chain complexes given
in Theorem 4.13. Table 3 records the homology of P .6/

�
and V .7/

�
, which are given in Table 2 and

[22, Theorem 4.3], respectively.

Both Case 1 .i ¤ 11; 12; 13; 18; 22; 27/ and Case 2 .i D 13; 18; 22; 27/ follow from the exactness of the
long exact sequence on homology in a manner analogous to Cases 1 and 3 in the proof of Theorem 6.11.

For Case 3 .i D 11; 12/, the long exact sequence in homology gives the exact sequence

0!H12.P
.7/
�
/!Q

ı7
12
��!Q!H11.P

.7/
�
/! 0:

Now ı7
12

is either an isomorphism or it is the zero map. As discussed in [22, Section 6.3], the nontrivial
homology class in H12.V

.7/
�
/ is the inflation of a nontrivial homology class in H11.V

.6/
�
/. However, since
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by the proof of Theorem 6.11, the nontrivial homology class in H11.P
.6/
�
/ is the nontrivial homology

class in H11.V
.6/
�
/, this implies that H12.V

.7/
�
/ is generated by the inflation of the nontrivial class

H11.P
.6/
�
/. By the proof of the acyclicity of the inflation complex I .g/ (Theorem 6.11), this implies the

connecting map ı7
12

is an isomorphism. The exact sequence above then implies Hk.P
.7/
�
/D 0 for i D 11

and i D 12.

Theorem A now follows directly from Theorems 6.6, 6.9, 6.11 and 6.12. As a corollary of this we are
able to deduce the top-weight Euler characteristic of Ag for 2� g � 7.

Corollary 6.13 The top-weight Euler characteristic of Ag for 2� g � 7 is

�top.Ag/D

�
1 if g D 3; 6

0 if g D 2; 4; 5; 7:

Remark 6.14 One can also deduce the top-weight Euler characteristic of Ag for 5� g � 7 directly from
the numbers listed in [22, Figures 1 and 2]. It would be interesting to know whether a closed formula for
the top-weight Euler characteristic of Ag exists in general.

Remark 6.15 We have established

(7) GrW
.gC1/g H g.g�1/.AgIQ/¤ 0

for gD 3; 5; 6 and 7 (gD 3 also follows from [27]). We ask whether (7) holds for all g � 5. Equivalently,
the question is whether H2g�1.P

.g// ¤ 0 for all g � 5. The connection to the stable cohomology of
the Satake compactification, as summarized in Table 4, gives evidence for this question, as explained in
Section 7; see Question 7.1. We also note the possible relationship with the main theorems of [12] on the
rational cohomology of Mg, which use the fact that H2g�1.G

.g//¤ 0 for gD 3 and g � 5; see [9], [46]
and [12, Theorem 2.7]. We leave this interesting investigation as an open question.

6.5 Results for g � 8

While full calculations for the top-weight cohomology of Ag in the range g � 8 are beyond the scope of
current computations, we can nevertheless use our previous computation of the top-weight cohomology
of A7 together with a vanishing result of [21] to show that the top-weight cohomology of A8;A9 and A10

vanishes in a certain range slightly larger than what is given by the virtual cohomological dimension.

Theorem 6.16 The top-weight rational cohomology of A8, A9 and A10 vanishes in the ranges

(8)

GrW
72 H i.A8IQ/D 0 for i � 60;

GrW
90 H i.A9IQ/D 0 for i � 79;

GrW
110 H i.A10IQ/D 0 for i � 99:
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Proof By Theorem 4.5 of [21] for g D 8; 9 and 10 the homology Hi.V
.g/
�
/D 0 for i � 11, and further,

H12.V
.8/
�
/D 0. Considering the long exact sequence in homology

� � � !HiC1.V
.g/
�
/
ı
�!Hi.P

.g�1/
�

/!Hi.P
.g/
�
/!Hi.V

.g/
�
/! � � �

coming from the short exact sequence of chain complexes given in Theorem 4.13, we see that this
vanishing implies that

Hi.P
.7/
�
/ŠHi.P

.8/
�
/ŠHi.P

.9/
�
/ŠHi.P

.10/
�

/ for i � 10

and H11.P
.7/
�
/ŠH11.P

.8/
�
/. By our computation of the homology of P .7/

�
in the proof of Theorem 6.12

we know that Hi.P
.7/
�
/D 0 for all i � 12, implying that for gD 8; 9 and 10, the homology Hi.P

.g/
�
/D 0

for i � 10, and further, H11.P
.8/
�
/D 0. The result now follows from Proposition 4.4.

Remark 6.17 These vanishing bounds for g D 8; 9; 10 are slightly larger than the bounds provided by
Corollary 5.16, equivalently, the fact that vcdAg D g2 (see Remark 5.19), which imply that

GrW
72 H i.A8IQ/D 0 for i � 65,

GrW
90 H i.A9IQ/D 0 for i � 82,

GrW
110 H i.A10IQ/D 0 for i � 101:

The result for g D 10, however, is subsumed by the more general fact that the top-weight cohomology
of Ag vanishes in degrees 0 and 1 below the vcd, as we shall note in Section 7 below.

7 Relationship with the stable cohomology of ASat
g

Our results on the existence of certain top-weight cohomology classes of Ag can be related to results
of Chen and Looijenga [15] and Charney and Lee [14] which predict that, as g grows, there should be
infinitely many of these classes. This connection was brought to our attention by O Tommasi, and we
thank her for explaining her ideas to us in detail.

Recall that Ag admits a compactification ASat
g , called the Satake or Baily–Borel compactification, first

constructed as a projective variety by Baily and Borel in [5]. This compactification can be seen as a
minimal compactification in the sense that it admits a morphism from all toroidal compactifications of Ag.
The reader interested in learning more about the vast literature on Ag and its compactifications can look at
the very nice surveys [24; 32]. There are natural maps ASat

g !ASat
gC1

, and the groups H k.ASat
g IQ/ stabilize

for k < g; see [14]. Moreover, as Charney and Lee prove, the stable cohomology ring H �.ASat
1 IQ/ of

the Satake compactifications is freely generated by the classes �i for i odd, and the classes y4jC2 for
j D 1; 2; 3; : : : , where y4jC2 is in degree 4j C 2. Here, the �–classes extend the i th Chern class of the
Hodge bundle on Ag; in particular they are algebraic, and hence never have weight 0. But the classes
yj have weight 0, as proven recently by Chen and Looijenga [15]. This result is very important in the
discussion that follows.
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Recall also that ASat
g admits a stratification by locally closed substacks

ASat
g DAg tAg�1 t � � � tA0:

Thus the spectral sequence on compactly supported cohomology associated to this stratification is

(9) E
p;q
1
DH pCq

c .ApIQ/)H pCq.ASat
g IQ/;

where pD 0; : : : ;g. This spectral sequence may be interpreted in the category of mixed Hodge structures.
Passing to the weight 0 subspace, we see that the existence of the products of the yj classes in the stable
cohomology ring of the Satake compactification implies the existence of infinitely many cohomology
classes in GrW

0 H
j
c .AgIQ/ for all g, and hence by the perfect pairing

(10) GrW
0 H j

c .AgIQ/�GrW
.gC1/g H .gC1/g�j .AgIQ/!Q

provided by Poincaré duality, infinitely many classes GrW
.gC1/g H�.AgIQ/ in top weight.

With Poincaré duality applied, all of the known results on the top-weight cohomology of Ag, including
our Theorems 6.9, 6.11 and 6.12, can thus be summarized in Table 4, which shows the weight 0 part of
the E1 page of the spectral sequence (9).

Implicit in Table 4 is the fact that all terms below the p–axis are zero. This follows from the fact that
vcd.Ag/D vcd.Sp.2g;Z//D g2, or, just as well, from the fact that vcd.GLg.Z//D

�
g
2

�
; see [7]. In fact,

the vanishing below the p–axis as well as in the rows q D 0, 1 and 2, apart from .p; q/D .0; 0/, can be
deduced from the fact that the cohomology of GLg.Z/ with coefficients in zQ vanishes in degrees 0, 1

and 2 below the vcd. Indeed, we have, for all k,

H .g
2/�k.GLg.Z/I zQ/ŠHk.GLg.Z/ISt˝Q/ŠHkCg�1.V

.g//;

where St denotes the Steinberg module [43]; these are all zero when g > 1 for k D 0 (see [35]), k D 1

(see [17]), and kD2 (see [10]). Then Theorem 4.13 implies that also HkCg�1.P
.g//D0 for kD0; 1 and 2

so also GrW
g2Cg

H g2�k.AgIQ/D .GrW
0 H

gCk
c .AgIQ//_ D 0 for g > 0 and k � 2 by Proposition 4.4.

As explained to us by Tommasi, the classes in Theorems 6.9, 6.11 and 6.12, as well as the already-known
class in GrW

12 H 6.A3IQ/ from [27] give natural candidates for classes in GrW
0 H

pCq
c .ApIQ/ that produce

the classes y4jC2 in the spectral sequence (9), in the sense that they persist in the E1 page in the Gysin
spectral sequence for g sufficiently large. Indeed, looking at the p D q diagonal on the E1 page of the
spectral sequence in Table 4, we are led to ask:

Question 7.1 (i) Is GrW
0 H

2g
c .AgIQ/¤ 0 for g D 3 and all g � 5?

(ii) Do these cohomology classes produce the stable cohomology classes in GrW
0 H �.ASat

1 IQ/?

(iii) Is GrW
0 H k

c .AgIQ/D 0 for k < 2g?

As discussed in the introduction, an affirmative answer to the third question in the range k < 2g�1 would
be implied by [16, Conjecture 2]. Our Theorems 6.2, 6.9, 6.11 and 6.12 verify the first and third questions
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21 0 0 0 0 0 0 0 Q

20 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 Q

15 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 Q

11 0 0 0 0 0 0 0 0
10 0 0 0 0 0 Q 0 0
9 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 Q

6 0 0 0 0 0 0 Q 0
5 0 0 0 0 0 Q 0 0
4 0 0 0 0 0 0 0 0 0
3 0 0 0 Q 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 � � �

0 Q 0 0 0 0 0 0 0 0 0 0 � � �

0 1 2 3 4 5 6 7 8 9 10 � � �

Table 4: The page E
p;q
1 D GrW

0 H
pCq
c .ApIQ/) GrW

0 H pCq.ASat
g IQ/ of the Gysin spectral

sequence, for g sufficiently large. The blank entries for p � 8 are currently unknown.

for g � 7. They also verify the second question for g D 3 and for g D 5. Indeed, GrW
0 H 6

c .A3IQ/ and
GrW

0 H 10
c .A5IQ/ are the only nonzero terms in the antidiagonals pCqD 6 and pCqD 10, respectively;

so they produce the classes y6 2 GrW
0 H 6.ASat

1 IQ/ and y10 2 GrW
0 H 10.ASat

1 IQ/, respectively. It is
natural to guess that the other terms in Table 4 similarly produce products of the yj : for example, that
GrW

0 H 12
c .A6IQ/ produces y2

6
, and that GrW

0 H 14
c .A7IQ/ produces y14, and so on.

Finally, Tommasi also remarks that the odd-degree classes in weight 0 compactly supported cohomology
of Ag detected so far, namely

GrW
0 H 15

c .A5IQ/; GrW
0 H 19

c .A7IQ/ and GrW
0 H 23

c .A7IQ/;

must of course be killed by a differential on some page of the spectral sequence, since ASat
g has no

weight 0 stable cohomology in odd degrees. This implies the existence of some even-degree classes in
GrW

0 H �c .AgIQ/ which kill the odd-degree classes and which are not related by this spectral sequence to
the products of the yj . It would be very interesting to explicitly identify such classes.
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