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We give Z–bases for the homology and cohomology of the configuration space of n unit disks in an
infinite strip of width w, first studied by Alpert, Kahle and MacPherson. We also study the way these
spaces evolve both as n increases (using the framework of representation stability) and as w increases
(using the framework of persistent homology). Finally, we include some results about the cup product in
the cohomology and about the configuration space of unordered disks.
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1 Introduction

The configuration space of n labeled unit-diameter disks in an infinite strip of width w is denoted by
config.n; w/; Figure 1 depicts an example configuration. Specifically, parametrizing the configurations in
terms of the centers of the disks, config.n; w/ is the set of points .x1; y1; : : : ; xn; yn/ 2 R2n such that
.xi � xj /

2C .yi � yj /
2 � 1 for all i and j, and such that 1

2
� yi � w �

1
2

for all i . We would like to
describe the topology of config.n; w/.
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Figure 1: The configuration space config.n; w/ is the set of ways to arrange n disjoint labeled
disks of width 1 in R� Œ0; w�.

The topology of the configuration space of n points in the plane has been well understood since the work
of Arnold [1969] and F Cohen [1976]; see [Sinha 2013] for an overview. Recently, there has been interest
in more “physical” models in which the points have thickness and are constrained to lie in a bounded
region, drawing inspiration from both statistical physics (as explained by Diaconis [2009]) and robotics
(as explained by Farber [2008]). In the first, one imagines molecules of a substance as hard balls and
extracts information about states of matter from the way they move past each other. In the latter, one can
imagine a number of robots coordinating their movements so that they can travel to different points in a
constrained region without bumping against each other; this amounts to a motion planning problem in a
disk configuration space.

The topology of disk configuration spaces was first studied mathematically by Baryshnikov, Bubenik
and Kahle [Baryshnikov et al. 2014] and experimentally by Carlsson et al. [2012]. While these papers
represent real progress, trying to fully understand even the connected components of these spaces seems
daunting; see [Kahle 2012]. Further work has taken two approaches to simplifying the question. One is to
replace the disks by polygons, such as squares or hexagons, as in [Alpert 2020; Alpert et al. 2023]. The
topology of the resulting configuration spaces is closely related to that of disk configuration spaces; in
particular, it captures any of their topology that “survives for a long time” as disks grow or shrink. This
observation can be formalized using persistent homology.

While it is simpler in some respects than that of disk configuration spaces, the topology of polygon
configuration spaces still seems very difficult to understand. A more radical simplification, it turns out, is
to remove the side walls of the rectangle, replacing it with the infinite strip, an idea introduced by Alpert,
Kahle and MacPherson [Alpert et al. 2021]. That paper defines the spaces config.n; w/ and computes the
asymptotic growth of the rank of Hj .config.n; w// as n increases, up to a constant factor depending on
j and w. This turns out to be exponential unless the strip is wide compared to j.

In this paper, we present a number of results about the topology of config.n; w/ and related spaces. The
majority of the paper seeks to understand H�.config.n; w/IZ/, and its dependence on n and w, in greater
resolution and from a more algebraic perspective. For fixed n and w, we find a geometrically motivated
basis for this homology. All the classes in this basis can be assembled out of a small number of classes
involving a small number of disks, depending only on w; we make this idea precise using some algebraic
machinery due to Sam and Snowden [2017]. We also track the appearance and disappearance of homology
classes as the width of the strip changes, using the machinery of persistent homology.
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The paper includes several additional results proven using similar methods. We give a basis for the
cohomology of config.n; w/ and make progress in understanding its cup product. We explore the possibility
of FId–module structures on the homology of hard disk configuration spaces and no-.kC1/-equal spaces.
Finally, we discuss the topology of the configuration space of unordered disks in a strip.

1.1 Main results

We now discuss our main results in greater detail, starting with a description of the homology of
config.n; w/ for fixed w and all n.

Theorem A For fixed w, H�.config.�; w/IZ/ forms a finitely generated , noncommutative twisted
algebra whose generators live in H�3w=2�2.config

�
�
3
2
w;w

�
IZ/.

This contrasts with the classical family of configuration spaces of points in the plane, which forms a
commutative but infinitely generated twisted algebra.

Informally, Theorem A means that Hj .config.n; w/IZ/ is spanned by cycles built as follows:

(1) Separate the n disks into groups of at most 3
2
w.

(2) Place the groups in some order along the strip.

(3) Label the disks in some way using the numbers 1 through n.

(4) Let each group do its own thing, without interacting with the others.

The things a group can do — elementary cycles — come in two types: 1 to w disks can form a wheel, and
wC 1 to 3

2
w disks can form a filter. If z1 and z2 are elementary cycles, we refer to the act of placing

them next to each other as the concatenation product, denoted by z1 j z2.

A wheel of k disks has k� 1 circular degrees of freedom generated by the rotation of concentric disks,
making for a cycle represented by a T k�1.

A filter consists of r � 3 wheels with k > w disks total such that each wheel is made of at least k�w
disks; the wheels are ordered. The filter can move as follows. Every wheel can perform its rotations

7
1
11
6
23

1

116 23
7

7

1

11
6

23

Figure 2: Some configurations of a wheel with five disks. The first configuration gives a canonical
(up to switching the first two) ordering of the disks.

Geometry & Topology, Volume 28 (2024)
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3

2
12
21

18
15

Figure 3: The wheels in a filter always cross over and under each other in the same order. This
figure shows a filter with three wheels of size 1 and one wheel of size 3. The resulting cycle is an
S2 �T 2.

independently, for a total of k� r degrees of freedom; each wheel can also move back and forth along
the strip, crossing over each other in order. Any r � 1 wheels can have the same x–coordinate (since they
contain at most w disks total) but all r cannot. This creates an Sr�2 inside the configuration space; thus,
the whole .k�2/–cycle is represented by an Sr�2 �T k�r .

For some purposes, it makes sense to consider filters with r D 2: such a filter consists of two wheels b1
and b2 that don’t commute, and can be written as b2 j b1� b1 j b2.

Our next theorem gives a basis from among the cycles generated in this way.

Theorem B H�.config.n; w/IZ/ is free abelian and has a basis consisting of concatenations of wheels
and filters with r � 2. We say one wheel ranks above another if it has more disks , or has the same number
of disks and its largest disk label is greater. A cycle is in the basis if and only if :

(i) Each wheel is ordered so that the largest label comes first.

(ii) The wheels inside each filter are in ascending order by largest label (regardless of the number of
disks).

(iii) Adjacent wheels not inside a filter are ordered from higher to lower rank.

(iv) Every wheel immediately to the left of a filter ranks above the least wheel in the filter.

This combinatorial structure admits a natural interpretation via homotopical algebra. Notice that
config.n; w/ naturally embeds in config.n; w C 1/, forming a filtration. The union of this filtration
is the classical configuration space config.n/ of n points in the plane, which turns out to be homotopy
equivalent to config.n; n/. The algebraic structure of H�.config.�// was considered by Arnold [1969]
and Cohen [1976], who showed (in our terms) that it is a commutative but infinitely generated twisted
algebra whose generators are wheels of all degrees.

For any two wheels in config.n/, we have a choice of commuting them “over” or “under”. However, if
we order all the wheels (for example, in ascending order by largest label) and make them cross over each
other in order, then they commute in a homotopy coherent way: informally, this means that concatenated
cycles can be permuted in any sequence, or all at the same time, and that all such paths in the space of

Geometry & Topology, Volume 28 (2024)
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Figure 4: A basic 14–cycle in config.24; 5/ represented by an S1 �S0 �S2 �T 12: the three red
boxes are filters giving an S1, an S0 and an S2 respectively, and there are 11 additional circular
degrees of freedom from spinning the wheels (in black). We also remark: (a) If the disks 10 and
3 switched places, this would no longer represent a basic cycle, by property (iv) in Theorem B.

(b) The single disk 10 can move freely past all the disks to its left. So, in a basic cycle, it has to
appear all the way on the right.

cycles in config.n/ are homotopic.1 Just as filters with two wheels are commutators of wheels, other
filters can then be thought of as nontrivial “higher commutators” that obstruct this homotopy coherence.

These higher commutators appear and disappear as we move up the filtration, increasing w, while wheels
of size k are born when wD k and stay forever. This observation can be made precise by considering the
filtration’s persistent homology.

Theorem C The basic cycles listed in Theorem B form a ZŒt �–basis for the module PH�.config.n;�/IZ/.
Every bar born at time w is either infinite or dies by time 2w.

1.2 Proof ideas

We analyze config.n; w/ by relating it to a class of simpler spaces. The no-.wC1/-equal space of n points
in R, which we denote by nowC1.n;R/, is the subspace of Rn in which at most w of the coordinates are
the same. The topology of this space is fairly easy to understand, although it is related to more complicated
questions about hyperplane arrangements; see [Björner and Welker 1995]. The space config.n; w/ projects
onto nowC1.n;R/ by forgetting the y–coordinates of the disks. Conversely, for every ordering on the
numbered disks, there is an injective map from the no-.wC1/-equal space to the configuration space of
the strip in which the disks, when they meet, go around each other “in order” from top to bottom. Each
subspace generated in this way is actually a retract of config.n; w/.

However, in many places, two such injections coincide. For example, if we transpose two neighboring
disks a and b , then the two injections coincide everywhere except for an open neighborhood of the
codimension-1 subspace of the no-.wC1/-equal space where a and b coincide. Abstractly, we can
think of this subspace as a “weighted” no-.wC1/-equal space with n� 1 symbols, of which one has
weight 2. Write nowC1.n� 1;W/ for this space; W represents the set of weights of different points.

1Unfortunately, these choices cannot be made equivariantly with respect to relabeling, which underlies the seemingly unavoidable
nonequivariance of many of our results.

Geometry & Topology, Volume 28 (2024)
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In the example, the subspace has codimension 1, so its neighborhood looks like nowC1.n�1;W/� .0; 1/;
we can decompose the union of the images of the two injections into a copy of nowC1.n� 1;W/� Œ0; 1�

glued onto nowC1.n/. We will see that we can model config.n; w/ by breaking it up into layers that
similarly look like thickened weighted no-.wC1/-equal spaces.

To compute the homology of config.n; w/, we write it as a direct sum of homology groups of weighted
no-.wC1/-equal spaces. We use combinatorics (specifically, discrete Morse theory) to compute the
homology of these spaces.

1.3 Additional results

Besides Theorems A, B and C, the paper includes a number of other results about config.n; w/ and related
spaces.

Counting the basis elements Theorem B gives us a way to compute formulas for the Betti numbers
of config.n; w/. We describe a finite computation for each j and w that gives a formula for the rank of
Hj .config.n; w/IZ/ as a function of n, and we show that this function is a sum of products of polynomial
and exponential functions.

The cohomology of config.n; w/ We can represent cohomology classes in H j .config.n; w/IZ/ via
Poincaré–Lefschetz duality as .2n�j /–dimensional compact submanifolds of the configuration space.
We give a basis for the cohomology, showing that it is a basis by exploiting the pairing with homology.
The main goal of the section is to gain some understanding of the cup product in the cohomology ring,
which is fairly complicated and has many indecomposable elements — in contrast with H�.config.n/IZ/,
which is generated as a ring by one-dimensional classes whose pairing with homology measures the
winding of two points around each other; see [Sinha 2013]. All higher-dimensional classes are linear
combinations of cup products of these.

On the other hand, in config.n; w/, pairing with cup products often cannot distinguish between h j h0

and h0 jh, where h and h0 are homology classes. In such cases, a cohomology class which pairs nontrivially
with the commutator is perforce indecomposable. This observation allows us to prove Theorem 6.4:

Theorem The ring H�.config.n; w/IZ/ has indecomposables

(a) only in degree 1 when w D 2;

(b) in every degree between 1 and
�
1
2
n
˘

and no others when w D 3;

(c) in degree 1 and in every degree between w � 1 and
�
1
2
.nCw � 3/

˘
and no degree greater than

n�dn=.w� 1/e when w � 4.

Other algebraic structures One possible operation which takes j –cycles in config.n; w/ to j –cycles in
config.nC1;w/ is inserting a singleton disk. If this operation were well defined, then config.�; w/ would
be an FI–module, one of the central objects of study in representation stability. However, since some
cycles do not commute with singletons, there may be several nonequivalent ways of inserting a singleton,
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separated by “barriers”. In some cases, if these several ways are in turn well defined, this can be formalized
via an FId–module structure. We show that Hj .nokC1.�;R/IZ/ and Hj .config.�; 2/IZ/ have natural
FId–module structures for appropriate d . On the other hand, for w D 3 we give an example which
suggests that the notion of a “barrier” is not well defined and therefore there is no natural FId–module
structure on Hj .config.�; w/IZ/ for w � 3.

Another strategy to pin down explicitly the algebraic structure of H�.config.�; w/IZ/ is to write down a
presentation for the twisted algebra using generators and relations. Category theory dictates that generators
and relators in this situation are not just elements but Sn–representations for various n. We write down the
generators and relations for H�.config.�; 2/IZ/, but already there is some extra difficulty because of the
failure of Maschke’s theorem integrally. A potential avenue for future research is to write down relations
for H�.config.�; w/IQ/ and explore the implications for the multiplicity of various Sn–representations
in Hj .config.n; w/IQ/.

Unordered disks We also discuss the homology of the configuration space of unordered disks, that
is, the quotient space config.n; w/=Sn. Taking this quotient produces a large amount of torsion in the
homology, so, instead of trying to write down all the torsion, we compute homology with coefficients
in Fp and Q. (In the bulk of the paper, we use coefficients in Z.) The concatenation product can still
be defined in this case and gives H�.config.�; w/=S�/ the structure of a bigraded algebra over the base
field. We compute a basis for the homology and give generators and relations for this algebra.

Structure of the paper

Section 2 contains preliminaries, including descriptions of the cell complexes we study and the algebraic
framework we use in Theorem A. Sections 3 and 4 prove Theorem B, with Theorem A as a consequence;
Section 3 addresses the homology of weighted no-.kC1/-equal spaces, and Section 4 proves its relationship
to homology of configuration spaces of disks in a strip. This is the core technical content of the paper.

The rest of the sections are largely independent of each other and may appeal to different audiences (eg
Section 6 to those interested in motion planning, and Section 8 to experts in representation stability).
Section 5 concerns finding a formula for the Betti numbers, by counting the basis elements from Theorem B.
Section 6 describes aspects of the cup product structure of the cohomology of our configuration spaces.
Section 7 proves Theorem C about how the homology changes with w, the width of the strip. Section 8
concerns additional algebraic properties, in particular the question of whether our homology groups form
FId–modules. Section 9 characterizes the homology with field coefficients in the case of unordered disks.
Finally, Section 10 lists some questions for further study.
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2 Combinatorial and algebraic setup

For the purpose of computation, Alpert et al. [2021] replace the configuration space config.n; w/ by a
homotopy-equivalent cell complex cell.n; w/. We use the same complex; we also use the same method
to find a cell complex P.n;W; k/ that is homotopy equivalent to the weighted no-.kC1/-equal space
nokC1.n;W/. In the case of ordinary, unweighted no-.kC1/-equal spaces this recovers a result of [Björner
2008].

In this section, we define the complexes cell.n; w/ and P.n;W; k/ and describe various algebraic
structures on their cells which induce a similar structure on their homology. In particular, we introduce
twisted algebras and show that, for each w, H�.config.�; w// and H�.nowC1.�;R// are examples. In
the remainder of the paper, unless otherwise specified, homology and cohomology are always computed
with coefficients in Z.

2.1 The complex cell.n/

The cell complex cell.n; w/ is defined as a subcomplex of a cell complex cell.n/ described in [Blagojević
and Ziegler 2014]. The complex cell.n/ is defined in terms of the permutohedron P.n/, which is the
.n�1/–dimensional polytope in Rn equal to the convex hull of the nŠ points with coordinates 1; 2; : : : ; n
in some order. The faces of P.n/ can be labeled by partitions of f1; 2; : : : ; ng, where the sets of the
partition are ordered but the elements of each set are unordered. We refer to each set of the partition as a
block. For instance, each vertex is labeled by a sequence of n singleton blocks, and the top-dimensional
face is labeled by the one block f1; 2; : : : ; ng. Given any permutation � 2 Sn, thought of as an ordering
on f1; 2; : : : ; ng, we can order the elements of each block according to � . Then, to write out the label of
a given face, we can write out the elements of each block in order, with vertical bars between blocks. We
refer to a label of this form as a symbol. For example, the following is a symbol with four blocks that
could come from the ordering 4� 5� 6� 7� 8� 1� 2� 3:

.7 2 j 6 j 4 5 1 j 8 3/:

To define cell.n/, we start with nŠ copies of P.n/, one for each � 2 Sn. For the copy of P.n/ associated
with � , we use � to label each face of that copy of P.n/ by a symbol. Then, whenever faces from multiple
different copies of P.n/ have the same symbol, we identify those faces. For instance, all copies of P.n/
have the same vertices, but each of them has its own distinct top-dimensional face. In this way, cell.n/
has exactly one cell for every possible symbol on f1; 2; : : : ; ng.

Geometry & Topology, Volume 28 (2024)
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Figure 5: We can imagine each symbol of cell.n; w/ as a configuration in config.n; w/, where the
numbers in each block are the labels in a column of disks. Pictured are configurations representing
the symbol .7 2 j 6 j 4 5 8 1 3/ and its face .7 2 j 6 j 4 5 1 j 8 3/.

The incidence relation on cells of cell.n/ can be deduced from the geometry, or can be described explicitly
on symbols as follows. A cell f in cell.n/ is a face of the boundary of a cell g if g can be obtained
from f by deleting a bar and shuffling the entries of the two neighboring blocks, preserving the ordering
of the entries in each block. For example, one shuffle of 4 6 1 j7 3 2 would be 7 4 6 3 1 2. A d–dimensional
cell consists of n� d blocks.

Informally, we think of the elements of each block of a given symbol as the labels of disks in a vertical
stack in config.n; w/, as in Figure 5. Accordingly, as a way to specify that no more than w disks should
be in each vertical stack, we define cell.n; w/ to be the subcomplex of cell.n/ consisting of all cells for
which every block has at most w elements.

To describe the relationship between cell.n; w/ and config.n; w/, we start by defining config.n; w/ more
precisely as the set of configurations of n ordered open disks of diameter 1=w in the strip R� .0; 1/.
This is a subspace of the set of configurations of n ordered distinct points in R� .0; 1/ such that no more
than w points are on any vertical line, and [Alpert et al. 2021, Theorem 3.3] constructs a deformation
retraction between the two spaces. Thus, we abuse notation and use config.n; w/ to mean configurations
of points with no more than w vertically aligned. We use config.n/ to mean configurations of points
either in R� .0; 1/ or in R2, not distinguishing between these homotopy equivalent spaces.

Theorem 2.1 There is an affine embedding of the barycentric subdivision of cell.n/ into config.n/ such
that , for each w, the restriction to cell.n; w/ maps into config.n; w/ and is a homotopy equivalence.

Proof We use the following description of config.n/ in coordinates:

config.n/D f.x1; : : : ; xn; y1; : : : ; yn/ 2Rn � .0; 1/n j .xi ; yi /¤ .xj ; yj / if i ¤ j g:

To define the map on a point p in cell.n/, we need to specify x–coordinates and y–coordinates, as well
as check the condition .xi ; yi /¤ .xj ; yj /.

Let p be an arbitrary point in cell.n/. It is in at least one of the permutohedra P.n/ that constitute cell.n/,
and P.n/ is embedded in Rn, so in this sense p has coordinates in Rn. We set the x–coordinates of the
image of p to be these coordinates of p in Rn.

Geometry & Topology, Volume 28 (2024)
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For the y–coordinates, we start with the case where p is the barycenter of a cell in cell.n/. To set each yi ,
we find the location of the number i in the symbol of the cell of p. If i appears as the l th element of a
block of size k, we set yi to be .k� l C 1/=.nC 1/. In other words, for each block of size k we set the
y–coordinates of the points in the block, in order, to be k=.nC 1/; .k � 1/=.nC 1/; : : : ; 1=.nC 1/. To
assign y–coordinates when p is not a barycenter, we extend the map so that its restriction to each simplex
of the barycentric subdivision of cell.n/ is affine.

Note that, in any given cell, away from the barycenter, the y–coordinates of the points in each block
remain in order. This is because, in the closure of our cell, blocks may merge but may not separate,
and, when merging, the elements from each smaller block remain in order. This implies that our map is
injective, because different points with the same x–coordinates are distinguished by their y–coordinates,
which in each block appear in the same order as in the corresponding symbol from cell.n/.

To check that the resulting map lands in config.n/, suppose that we have a point p for which xi D xj .
The permutohedron coordinates imply that in the symbol of the cell of p, the numbers i and j are in the
same block, and so the note in the previous paragraph implies that yi ¤ yj . Thus, the image of p is in
config.n/.

To show that the map is a homotopy equivalence, for each symbol ˛ from cell.n/, as in [Alpert et al. 2021]
we define the corresponding open set U˛ � config.n/ to be the set of points .x1; : : : ; xn; y1; : : : ; yn/ in
Rn � .0; 1/n such that:

� Whenever i appears before j in the same block, we have yi > yj .

� Whenever i appears before j in different blocks, we have xi < xj .

� If k and l are in the same block, and k0 and l 0 are in different blocks (with k0 and l 0 not necessarily
distinct from k and l), then we have

jxk � xl j< jxk0 � xl 0 j:

We claim that the union of U˛ where ˛ ranges over the symbols from cell.n; w/ is config.n; w/. If ˛ is
a symbol of cell.n; w/, then U˛ is contained in config.n; w/ because points from different blocks have
different x–coordinates, so no more than w points can be vertically aligned. For the reverse inclusion,
every element of config.n; w/ is in some U˛, because we can construct ˛ by taking the blocks to be
the sets of points with the same y–coordinate, ordering the blocks from left to right, and ordering the
elements of each block from top to bottom.

Each U˛ is an open convex set, and [Alpert et al. 2021, Theorem 3.4] proves that the nerve of this
open cover of config.n; w/ is the barycentric subdivision of cell.n; w/. Thus, because our map sends
the barycenter of each cell ˛ into a point of the corresponding open set U˛, our map is a homotopy
equivalence for each w.
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2.2 Signs of the boundary operator

In order to study the integral cellular chain complex of cell.n; w/, we need to specify orientations on
cells and signs for the boundary operator. To describe these, we first generalize slightly. Observe that the
entries of a symbol don’t have to be the numbers 1 through n, but can be any n–element set. So, for any
finite set A, we have a complex cell.A/. (Similarly, we will sometimes write P.A/ for the permutohedron
whose coordinates are indexed by elements of A.) Moreover, there is a cellular map

jW cell.A/� cell.B/! cell.AtB/

which takes a pair of symbols to the symbol obtained by putting them next to each other with a bar in
between. We call this the concatenation product.

Any cell in cell.n/ is either top-dimensional or a concatenation product. We define the boundary operator
on a top-dimensional cell g by taking the coefficient of a cell f D a j b in @g to be

.�1/length.a/
� sign.permutation g 7! ab/:

On a cell g1 jg2, we define @ via a Leibniz rule:

.2.2/ @.g1 jg2/D @g1 jg2C .�1/
dim.g1/g1 j @g2:

This defines an injective chain complex homomorphism on cellular chains,

jW C�.cell.A//˝C�.cell.B//! C�.cell.AtB//;

using the standard tensor product on chain complexes, where the differential is defined by

@.a˝ b/D @a˝ bC .�1/degaa˝ @b:

Proposition 2.3 (a) The boundary operator defined above satisfies @2 D 0.

(b) The Sn–action on cell.n/ induced by permutations of Œn� preserves orientations of cells.

These two features will allow us to define a twisted algebra structure on H�.cell.�//.

Proof Let g be a cell in cell.n/.

First, suppose that g is top-dimensional, and let e be a codimension-2 face of g. Then e D e1 j e2 j e3,
where e1, e2 and e3 are blocks. There are two intermediate faces between e and g, which we denote by
f D b j e3 and f 0 D e1 j b0. We compare

sign.e in @f / � sign.f in @g/ and sign.e in @f 0/ � sign.f 0 in @g/;

and we show that these two products are opposite signs. This will show that @2g D 0.

If we consider just the contribution from the signs of the permutations, both products give the sign of the
permutation relating e and g, so those contributions are equal. For the contribution from the Leibniz rule,
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only the incidence between e and f 0 involves splitting a block that is not the first, so that incidence has a
sign contribution of

.�1/dim.e1/ D .�1/length.e1/�1

from the Leibniz rule, and all the other incidences have a sign contribution of 1 from the Leibniz rule.
Finally, the contribution from the length of the first block gives

.�1/length.b/Clength.e1/ D .�1/length.e2/

for the path through f and .�1/length.e1/Clength.e2/ for the path through f 0. Taking the product of all of
these, we see that the two paths give opposite signs.

If g is not top-dimensional, then g is a concatenation product g1 jg2, in which case we use a standard
argument. The Leibniz rule gives

@2.g1 jg2/D @
2g1 jg2C Œ.�1/

dim.g1/C .�1/dim.@g1/� � @g1 j @g2Cg1 j @
2g2;

which is zero by induction on the number of blocks of g. This proves (a).

For (b), notice that the definitions of the signs of the boundary operator do not use any particular ordering
on the numbers 1 through n. Therefore, they are invariant with respect to permutations. Since the
Sn–action preserves signs of 0–cells, it preserves signs of all cells.

2.3 Twisted algebra structure

Let FB be the category of finite sets and bijective maps. Then cell.�/ is a functor from FB to the category
of cell complexes and cellwise maps (an FB–complex, for short). (This is just a categorical way of
saying that there is a cellular Sn–action on cell.n/.) In particular, the cellular chains C�.cell.�// form an
FB–chain complex. Moreover, we can define a tensor product (the Day convolution) on FB–objects in a
monoidal category by

.F ˝G/.S/D
M

AtBDS

F.A/˝F.B/:

A unital monoid object with respect to this tensor product is called a twisted algebra (see [Sam and
Snowden 2012] for a detailed discussion of twisted commutative algebras). In plain English, a twisted
algebra is a family of objects An for n D 0; 1; : : : (eg abelian groups) equipped with the following
structure:

� Each An is equipped with an Sn–action.

� For every partition of f1; : : : ; ng into subsets of size i and j, there is a “multiplication”Ai˝Aj!An.
For different partitions, these multiplications commute with the Sn–action on An.

� There is a unit in A0 such that multiplying by it induces the identity map on An.
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The observations about the differential in Section 2.2 show that the concatenation product

jW Ci .cell.A//˝Cj .cell.B//! CiCj .cell.AtB//

makes C�.cell.�// into a (noncommutative) differential graded twisted algebra, or dgta, whose unit is
the unique 0–cell . / in C�.cell.∅//. (By definition, a dgta is simply a twisted algebra in the category
of chain complexes. The fact that the multiplication maps Ai ˝Aj ! An are chain maps forces the
differential to satisfy a Leibniz rule such as (2.2).) The homology of a dgta naturally forms a graded
twisted algebra. The graded twisted algebra H�.cell.�// is well understood since the work of Cohen in
the 1970s and is in fact commutative; see eg [Miller and Wilson 2019, Theorem 3.4].

We are most interested in the subcomplex cell.n; w/ consisting of cells whose blocks each have size at
mostw. Since the concatenation product of two such cells again has the same property, C�.cell.�; w// is a
sub-dgta ofC�.cell.�//. Our goal in this paper is to understand the graded twisted algebraH�.cell.�; w//,
and in particular to show that it is finitely generated.

2.4 The permutohedron and no-.kC1/-equal spaces

The difference between cell.n/ and P.n/ is that in cell.n/ the numbers within a block are ordered and
in P.n/ they are not. This gives a natural projection cell.n/! P.n/ (forget the ordering of entries inside
each block) and, for every global ordering of 1; : : : ; n, an injective map P.n/! cell.n/ (arrange the
entries in each block in the given order).

P.n/ is a polytope, and is in particular contractible. As with cell.n/, we can filter P.n/ by the largest
size of a block, producing a sequence of complexes P.n; k/. These are homotopy equivalent to the
no-.kC1/-equal space of n points in R, as pointed out by Björner [2008, Theorem 2.4]; their homology
was computed first by Björner and Welker [1995]. As with cell.n; w/, C�.P.�; k// naturally has a dgta
structure which induces a graded twisted algebra structure on H�.P.�; k//. From the results of [Björner
and Welker 1995], one sees that this is finitely generated, and in fact just has two generators: one in
degree 0 (a point) and one in degree k� 1 (the boundary of a P.kC 1/). We recover this, together with a
set of relations, in Section 8.

However, we are interested in a somewhat more complicated structure. Let FBW be the category of
weighted finite sets and weight-preserving bijections. That is, every element is associated with a natural
number, which is its weight. Then, given a weighted set .A;W 2NA/, there is a complex P.A;W; k/

which consists of all the cells for which the sum total weight of every block is at most k. The following
generalization of [Björner 2008, Theorem 2.4] follows by the same argument:

Theorem 2.4 The complex P.A;W; k/ is homotopy equivalent to the weighted no-.kC1/-equal space
nokC1.A;W/ of jAj points in R with weights W, that is , the space of configurations of jAj points in R

such that no set of coincident points has total weight greater than k.
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Remark 2.5 The functor C�.P.�; k// is an FBW–chain complex, and in fact an FBW–dga. That is, we
can define a tensor product on FBW–objects in a monoidal category by

.F ˝G/.S;W/D
M

.A;WA/t.B;WB/D.S;W/

F.A;WA/˝F.B;WB/;

and the concatenation product on C�.P.�; k// then makes it into a monoid object. This in turn makes
H�.P.�; k// into a graded FBW–algebra. Once one makes all this precise, Theorem 3.4 can be interpreted
as showing that this algebra is finitely generated for every k, analogously to our results about cell.�; w/.

2.5 Generators and relations for twisted algebras

The above discussion deduces the following facts:

Theorem 2.6 The sequences of graded abelian groups H�.cell.�//, H�.cell.�; w// and H�.P.�; k//
admit the structure of graded twisted algebras.

To demonstrate Theorem A, we will show that wheels and filters form a finite generating set for
H�.cell.�; w//. Later we will also give presentations of H�.cell.�; 2// and H�.P.�; k// by generators
and relations. To make this precise, we define a free twisted algebra functor F� from FB–modules to
twisted algebras as the left adjoint to the forgetful functor U� from twisted algebras to FB–modules;
such a functor always exists for monoids in a reasonable monoidal category [Mac Lane 1998, VII.3,
Theorem 2]. Informally, a basis element for a free twisted algebra on a set fVig of representations of
various Sni

is specified by a list of basis vectors of the various Vi , each labeled by a set of ni labels; one
takes products by concatenating these lists and retaining the labels.

If A is a twisted algebra, we say an FB–submoduleG�A generates A if the induced morphism F�G!A

is surjective; A is finitely generated if it has a finite-dimensional generating module G. A presentation of
a twisted algebra A by generators and relations formally consists of a coequalizer diagram

F�R
r

0
�!
�! F�G! A;

where G and R are FB–modules of generators and relations, respectively, and r W F�R ! F�G is
an FB–module homomorphism [Riehl 2017, Section 5.4]. By the adjunction, it suffices to provide a
homomorphism R! U�F�G, ie to describe the relators of A as linear combinations of words in G.

Informally, to prove finite generation, it’s enough to provide a finite number of elements whose closure
under multiplication and Sn–action is all of A. However, to provide a full description of a presentation,
one must also understand the Sn–action on the generators. To show that A is presented by a generating
set G with relations R, it is enough to show that A is generated by G and that every product of elements
of G can be reduced to a basis element of A via the relators.
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3 Homology of weighted no-.kC1/-equal spaces

In the previous section, we showed that the space nokC1.n;W/ retracts to a subcomplex P.n;W; k/ of
the permutohedron P.n/. To compute the homology of P.n;W; k/, we use a discrete gradient vector
field on P.n/.

3.1 Discrete Morse theory

In any cell complex, the cellular homology comes from a chain complex generated by the cells; very
broadly, discrete Morse theory gives a way to decompose the chain complex as a direct sum of a chain
complex that has no homology (which we discard) and a chain complex generated by a smaller subset of
cells, the critical cells. To compute the homology exactly, we need to

(1) reduce to the smaller chain complex;

(2) show that the differentials in the smaller chain complex are all zero, so that the homology has a
Z–basis in bijection with the set of critical cells.

The basic definitions in discrete Morse theory are as follows. In any polyhedral cell complex, we say
that cell f is a face of cell g if f is in the boundary of g and dimf D dimg� 1, and we say that g is a
coface of f if f is a face of g. A discrete vector field on a polyhedral cell complex is a set V of pairs of
cells Œf; g� such that f is a face of g and each cell can be in at most one pair; an example is shown in
Figure 6. A discrete vector field V is gradient if there are no closed V –walks. A V –walk is a sequence
of pairs Œf1; g1�; : : : ; Œfr ; gr � with Œfi ; gi � 2 V such that each fiC1 is a face of gi other than fi . The
V –walk is closed if fr D f1.

A cell is critical with respect to a discrete gradient vector field V if the cell is not in any pair in V. The
fundamental theorem of discrete Morse theory [Forman 2002] states that there is a cell complex that is a

1 j 2 j 3

2 j 1 j 32 j 3 j 1

3 j 2 j 1

3 j 1 j 2 1 j 3 j 2

21 j 3

2 j 31

32 j 1

3 j 21

31 j 2

1 j 32

' 3 j 2 j 1 1 j 32

Figure 6: A discrete gradient vector field consists of a set of disjoint pairs of cells, each pair
incident and of consecutive dimensions. The complex is homotopy equivalent to one in which the
paired cells are collapsed, and only the critical (unpaired) cells remain.
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strong deformation retraction of the original cell complex in which there is one cell per critical cell of V.
Thus, we can compute the homology groups Hj .P.n;W; k// by defining discrete gradient vector fields
and computing the homology of the collapsed chain complexes generated by the critical cells.

Our cell complexes cell.n; w/ are not polyhedral cell complexes because, for instance, there are distinct
cells with the same boundary. However, discrete Morse theory still gives an isomorphism on homology
between the original chain complex and the collapsed chain complex as long as the following property
holds: for each pair Œf; g� of the discrete gradient vector field, the coefficient of f in the boundary of g
is a unit in our coefficient ring, in this case ˙1 because we are using coefficients in Z. In cell.n; w/,
every coefficient in every boundary map is ˙1, so this property holds automatically. Alternatively, the
barycentric subdivision of cell.n; w/ is a polyhedral cell complex, so our arguments could be adapted to
work with the barycentric subdivision instead. Thus, we proceed with the discrete Morse theory as if
cell.n; w/ were a polyhedral cell complex.

One way to define a discrete gradient vector field on a cell complex is by defining a total ordering on all
the cells. Given a total ordering, the resulting vector field contains a pair Œf; g� if and only if both f is
the greatest face of g and g is the least coface of f (and, for nonpolyhedral complexes, we also require
the coefficient of f in the boundary of g to be a unit). One can prove that this vector field is gradient
(see [Bauer 2021, Remark 3.7]).

One advantage of doing the construction in this way is that there is a simple criterion guaranteeing that the
discrete gradient vector field forms a perfect Morse function. The term “perfect Morse function” refers to
the case where, on the collapsed chain complex generated by the critical cells, the differential is zero,
so the critical cells form a basis for the homology of the complex. The following general lemma shows
that it suffices to construct, for each critical cell e, a cycle z.e/ such that e is its maximum cell and has
coefficient equal to a unit in the coefficient ring. It turns out that such cycles automatically represent
linearly independent homology classes. In our main theorems we use the lemma with Z coefficients, and
in Section 9 we use it with field coefficients Q and Fp.

Lemma 3.1 Let X be any finite cell complex with a total ordering on the cells , giving a discrete gradient
vector field. Let R be a ring of coefficients. Suppose there is a collection of cellular cycles with the
following properties:

� The cycles in our collection are in bijection with the critical cells of the discrete gradient vector
field. For each critical cell e, we denote the corresponding cycle by z.e/.

� Under the total ordering , the greatest of all the cells appearing with nonzero coefficient in the
cellular chain z.e/ is the cell e.

� The coefficient of e in the chain z.e/ is a unit in R.

Then the homology classes of the cycles z.e/ form an R–basis for H�.X IR/.
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Proof For any pair Œf; g� in the discrete vector field, we refer to f as a “match-up cell” and refer to g as
a “match-down cell”. We also define z0.f / to be the boundary of g; we know that f is the greatest cell
appearing in z0.f /, and that it has unit coefficient because of how we have defined the discrete vector
field from the ordering.

First, we show that every j–cycle z is an R–linear combination of cycles z.e/ and z0.f /, where e
ranges over the critical j –cells and f ranges over the match-up j –cells. This follows from the following
observation: if a match-down cell g is the greatest cell in a j –chain, then, in the boundary of that chain,
the corresponding match-up cell f appears with nonzero coefficient, because g is the least coface of f,
so no other cell in the chain has f as a face. Thus, for any j–cycle z, the greatest cell of z cannot
be a match-down cell. It is either a critical cell e or a match-up cell f, so we subtract the appropriate
multiple of z.e/ or z0.f / to get a new cycle with lesser maximum. Repeating this process gives us z as a
linear combination of cycles z.e/ and z0.f /, so, because each z0.f / is a boundary, this implies that z is
homologous to a linear combination of the cycles z.e/ only.

To show the uniqueness, we need to show that no nontrivial linear combination of cycles z.e/ is null-
homologous. Because the cycles z.e/ and z0.f / have distinct maxima, they are linearly independent. Thus,
it suffices to show that, if a j –cycle z is a boundary, it is a linear combination of the boundaries z0.f /. To
see this, we look at the set of all .jC1/–chains. The chains z.e/, z0.f / and g (as e ranges over all critical
.jC1/–cells, f ranges over all match-up .jC1/–cells, and g ranges over all match-up .jC1/–cells)
form an R–basis for the set of all .jC1/–chains, because they have distinct maxima equal to the set of
all j–cells. When we apply the boundary map to this basis, the cycles z.e/ and z0.f / map to zero, and
the match-down cells g map to the j –dimensional boundaries z0.f /. Thus, indeed, every j –dimensional
boundary is a linear combination of these boundaries z0.f /.

Thus, every homology class in H�.X/ can be written as an R–linear combination of the homology classes
of the cycles z.e/, and the combination is unique.

3.2 Discrete gradient vector fields on permutohedra

In what follows, we define a total ordering on all of P.n/, the polyhedral complex that contains P.n;W; k/

as a subcomplex. We use the resulting discrete gradient vector fields to compute the homology, by analyzing
the critical cells and constructing cycles dual to each one.

Recall that the cells of P.n/ are in bijection with ordered partitions of Œn� into blocks. We say the weight
of a block is the sum of the weights of its elements. A block is a singleton if it only has one element. We
assign some blocks to leader–follower pairs by walking left to right. A block is a follower if it follows a
singleton (its leader) whose element is smaller than any of the follower’s elements and which is not itself
a follower. Then a total ordering � on cells with symbols f and g is given by looking at the first block at
which they differ. Let’s call the two blocks fi and gi . Then the ordering is given as follows:

(i) If fi is a follower and gi is not, then f � g.
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Figure 7: The 3–cycle in no6.13;W/, with weights indicated by circle size and in parentheses,
corresponding to the critical cell .6 j 8 11 j 9 j 13 j 7 j 5 j 1 j 3 4 12 j 10 j 2/. The red boxes enclose
leader–follower pairs and indicate the boundaries of a P.3/, a P.2/, and a P.4/, respectively;
thus, the cycle as a whole is represented by an S1 �S0 �S2.

(ii) If fi and gi are both followers, then they are ordered by number of elements, and then arbitrarily
(eg in lexicographic order) if they have the same number of elements.

(iii) If fi and gi are not followers, then we order their elements from largest to smallest; they are then
ordered lexicographically, but according to a backwards order on the “alphabet”. That is,

3� 3 2� 3 2 1� 3 1� 2� 2 1� 1:

Lemma 3.2 A cell in P.n;W; k/ is critical if and only if every block is either

(a) a singleton which is not a follower , or

(b) a follower such that its weight and that of its leader add up to at least kC 1.

Proof We claim that the matching of the other cells is as follows. We look at the first block where a
given cell does not match the characterization of critical given above. There are two possibilities:

� The block is a follower and, together with its leader, has total weight at most k. In that case, the
cell matches up to the cell in which the follower and its leader are combined.

� The block is not a follower or a singleton; if preceded by a nonfollower singleton, it has at least
one element smaller than that singleton. Then the cell matches down to the cell where the least
element of the block is split off into its own block which comes before the rest. This is now a
leader–follower pair, and its leader is not also a follower.

If f matches up to g, then g matches down to f, because the new combined block cannot be a follower
(otherwise the leader in f would also be a follower, contradicting the definition of leader). Similarly, if g
matches down to f, then f matches up to g. Thus, the match-up and match-down cells pair to form a
discrete vector field.

It remains to show that this discrete vector field is induced by our ordering. Let f be a match-down cell
and g be the corresponding match-up cell. We need to show f is the greatest face of g and g is the least
coface of f.
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To show that f is the greatest face of g, consider the result of splitting any earlier block of g. Because g
looks like a critical cell at that stage, that block is a follower; after splitting, it is shorter and is still a
follower, so it is smaller by property (ii) of the ordering. In contrast, among ways to split the kth block
another way, or to split a later block, f is the greatest because it is the only one for which the kth block
begins with the least element of the kth block of g (here we apply properties (i) and (iii)).

To show that g is the least coface of f, consider the result of combining any earlier blocks of f. Because
f looks like a critical cell at that stage, the two blocks would be nonfollower singletons in decreasing
order, so the combined block would be larger, not be a follower, and have the same first element as the
first of the two singletons; therefore, the new block is larger by property (iii). In contrast, among ways to
combine later blocks of f, g is the least because it is the only one that increases the first element of the
kth block (again applying property (iii)).

3.3 Basis for homology

We now give a basis for the homology of P.A;W; k/ for an n–element set A, thereby demonstrating that
it is free abelian. By Lemma 3.1, it is sufficient to exhibit a cycle for every critical cell such that the
critical cell is the largest cell in the cycle. The construction implicitly relies on an ordering on A; for it to
work, we must fix an ordering so that WD .w1; : : : ; wn/ satisfies

.3.3/ w1 � w2 � � � � � wn:

Every critical cell e is a concatenation product of nonfollower singletons and leader–follower pairs
.bi jbiC1/. We now build a corresponding cycle z.e/2P.A;W; k/. For a cell consisting of one singleton,
the cycle will simply be the corresponding 0–cell. Now suppose e consists of a single leader–follower
pair .b1 j b2/. Then our cycle z.e/ will be the boundary of the top cell .b1b2/ of P.A/. Since by (3.3)
each element of b2 has greater or equal weight to the singleton b1, every cell in the boundary is a cell of
P.A;W; k/. Moreover, .b1 j b2/ is the highest cell of z.e/ according to our total ordering, since b1 is the
highest-ranked block.

For a general critical cell, we define z by requiring that

z.e/D z.e1 j e2/D z.e1/ j z.e2/

for any splitting e D e1 j e2 which does not split a leader–follower pair. Here z.ei / is defined based on
the ordering on Ai � A inherited from A. To see that e is the highest cell in the resulting cycle, note that
the ordering on cells depends on the first block in which two cells differ. For any two cells in z.e/, this
block will be a leader and the above argument will apply.

It is clear also that all the nonzero coefficients of z.e/ are ˙1. We have now proved:

Theorem 3.4 Suppose that W D .w1; : : : ; wn/ is a nondecreasing sequence of weights. Then the
homology H�.P.n;W; k// is free abelian , with a basis given by the classes of the cycles z.e/, where e
ranges over all cells whose blocks are of the following two types:
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(a) a singleton which is not a follower;

(b) a follower such that its weight and that of its leader add up to at least kC 1.

Translating these cellular cycles into cycles in nokC1.n;W/, we get the following picture:

� Singletons and leader–follower pairs correspond to points and groups of points arranged in order
along the line.

� Every leader–follower pair corresponds to a set of r points moving back and forth of which any
r � 1 can coincide, but all r cannot.

4 Decomposing cell.n; w/ into layers

In this section we will prove Theorems A and B by expressing H�.cell.n; w// in terms of the homology
of weighted no-.wC1/-equal spaces. To this end, we assign an ordering to the top-dimensional cells of
cell.n/. For a lower-dimensional cell, its layer will be indexed by the first top-dimensional cell containing
it; this is when that cell appears in the complex when we think of the complex as glued, in order, out of
its top-dimensional cells. Recall that these top cells are identified with permutations in Sn.

The intersections of layers of cell.n/ with cell.n; w/ form the layers of cell.n; w/. We will show
that H�.cell.n; w// is a direct sum of pieces which appear once each subsequent layer is glued on.
Topologically, the layer associated to a permutation � 2 Sn is a copy of P.n� r;W; w/� Œ0; 1�r , where
r and W depend on � , which is glued on along P.n� r;W; w/� @Œ0; 1�r ; the combinatorial structure
is rather more complicated. It follows (once homological triviality of the gluing is established) that the
added summand of Hj .cell.n; w// is in bijection with elements of Hj�r.P.n� r;W; w//. The main
technical result of this section states:

Theorem 4.1 The homology of cell.n; w/ decomposes as

H�.cell.n; w//D
M
�2Sn

H��#�
�
P.n� #�;W.�/; w/

�
:

We will define #� and W.�/ combinatorially.

From the configuration space point of view, the new cycles in layer � are those basic cycles from
Theorem B that have a particular collection of wheels (irrespective of how those wheels are grouped
into filters). The bijection above is given by replacing wheels of k disks by points of weight k. Thus,
for example, this bijection in an appropriate layer takes the 14–cycle depicted in Figure 4 to the 3–cycle
depicted in Figure 7.

The decomposition depends in a crucial way on the ordering of labels of disks; it is not at all equivariant
with respect to the Sn–action on cell.n; w/. Therefore, the methods of this section will tell us little about
the Sn–module structure on the homology.
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4.1 Combinatorial description of layers

Given a cell in cell.n/ broken up into blocks, we further (deterministically) break up each block into
wheels: each entry of a block is the axle of a wheel if it is the largest entry of the block up to that point,
and the wheel consists of the axle and all the following smaller entries before the next axle.

Proposition 4.2 Given a symbol f, the following represent the same permutation �.f / of Œn�:

(i) The lexicographically least shuffle of f. A shuffle is a permutation in which the order of every
block is preserved.

(ii) The permutation obtained by arranging all the wheels , regardless of block , in ascending order by
axle.

Proof The first number in the lexicographically least shuffle is an axle, because the first element of
every block is an axle. Thus, it must be the least axle. The remaining elements of the wheel of that
axle are less than that axle and thus are also less than all the other axles. Thus, the next numbers in the
lexicographically least shuffle are the remaining elements of the first wheel. Repeating the same argument
for each wheel, we deduce inductively from left to right that the two permutations are identical.

For example, the symbol
f D .7 2 j 6 j 4 5 8 1 3/

has five wheels: 7 2, 6, 4, 5 and 8 1 3; and therefore �.f /D 4 5 6 7 2 8 1 3. We say that f is in the layer
L.�.f // of cell.n/, or of cell.n; w/. By Proposition 4.2, being in a given layer is equivalent to having a
given set of wheels. We also write

#� D n� the number of wheels of �:

Notice that #� is the dimension of the lowest-dimensional cells of L.�/, in which every wheel is its own
block.

Let g be a boundary cell of f. Then one of the following holds:

(1) The splitting of a block to make g respects the wheels of f : each wheel goes completely into one
of the new blocks. Then g 2 L.�.f //.

(2) At least one wheel of f is decomposed into two or more wheels of g. Then �.g/ � �.f /
lexicographically.

Thus, we can build up cell.n/ or cell.n; w/ by gluing each subsequent layer, in lexicographical order,
onto the union of the previous ones. In other words, the layers define a filtration by subcomplexes

L.� �/D
[
���

L.�/:

Now, for each cell of L.�/, we can obtain a cell of P.fwheels of �g/ with the same block structure,
replacing each wheel by a single label.
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Proposition 4.3 The k–cells of the layer L.�/ of cell.n; w/ are in incidence-preserving bijection with
the .k�#�/–cells of the complex P.n� #�;W.�/; w/, where W.�/ consists of the cardinalities of the
wheels of � . In particular , the cells of the layer L.�/ of cell.n/ are in incidence-preserving bijection with
those of P.n� #�/.

Proof All cells of L.�/ have exactly the same wheels, and the elements of each wheel always appear
consecutively. Thus, given a symbol in L.�/, we can view it as a sequence of these wheels, separated
by vertical bars between blocks. The resulting new symbol is a symbol of P.n� #�;W.�/; w/, because
instead of n numbers in each symbol we have n� #� wheels. If the cell of the original symbol has
dimension k, it has n� 1� k bars, so the cell of the new symbol also has n� 1� k bars, and thus has
dimension n� #� � 1� .n� 1� k/D k� #� .

As in option (1) above, cell g in L.�/ is a boundary cell of f in L.�/ if and only if a block in f is
split to form g such that each wheel in the block is assigned entirely to the left or entirely to the right.
Reinterpreting the symbols to be sequences of wheels, this is the same as the criterion for incidence in
P.n� #�;W.�/; w/.

In fact, this bijection is not just combinatorial, but can be understood from several points of view: via
cellular maps, cellular chains or configurations. In the next subsection, we will construct an injective
cellular map

Œ0; 1�#� �P.n� #�;W.�/; w/! cell.n; w/

which matches each product of Œ0; 1�#� with an .k�#�/–cell to a k–cell in L.�/. In particular, the image
of
˚
1
2

	#�
�P.n� #�;W.�/; w/ forms a “core” or “spine” inside the layer, as illustrated in Figure 8. In

.3 j 2 j 1 j 4/

.3 j 1 j 2 j 4/

.4 j 2 j 1 j 3/

.4 j 2 1 j 3/

.4 j 1 j 2 j 3/

.1 j 4 j 2 j 3/
.1 j 2 j 4 j 3/

.4 j 2 j 3 j 1/

.3 j 2 j 4 j 1/
.3 j 4 j 2 j 1/

.1 j 3 j 2 j 4/

.3 4 j 2 1/

.2 1 j 3 4/

Figure 8: The layer of cell.4; 3/ corresponding to the permutation � D 2 1 3 4. Selected cells are
labeled, and the core (a copy of P.3;W.�/; 3/, which is the boundary of a P.3/) is highlighted in
red. The image of spin�;3 is combinatorially the double of the layer along the top and bottom: in
the additional cells, 2 1 is replaced by 1 2.

Geometry & Topology, Volume 28 (2024)



Configuration spaces of disks in a strip, twisted algebras, persistence, and other stories 663

fact, this will be the restriction of a (likewise injective and cellular) map

spin�;w W T
#�
�P.n� #�;W.�/; w/! L.� �/

to one top cell of the torus. Here T #� is given a product cell structure induced by a cell structure on S1

with two vertices and two edges. In turn, spin�;w is the restriction of a map

spin� W T
#�
�P.n� #�/! cell.n/:

From the point of view of cellular chains, spin�;w induces a chain map

i� W C��#�
�
P.n� #�;W.�/; w/

�
! C�.L.� �//

via

i� .z/D spin�;w.ŒT
#� �� z/:

In the other direction, we get a surjective chain map

p� W C�.L.� �//! C��#�
�
P.n� #�;W.�/; w/

�
in which cells of L.< �/ (defined as L.< �/D

S
��� L.�/) are sent to 0 and cells of L.�/ are sent to

cells of P.n� #�;W.�/; w/, up to sign. From the above discussion, one sees that p� ı i� D id. Together
p� and i� give a splitting

.4.4/ H�.L.� �//ŠH�.L.< �//˚H��#�
�
P.n� #�;W.�/; w/

�
:

This implies Theorem 4.1, once we produce the map spin� .

Finally, from the configuration point of view, the map spin�;w associates a configuration in the weighted
no-.wC1/-equal space to a torus of configurations obtained by replacing points of weight r by wheels of
size r and spinning those wheels. This also describes the action of i� on cycles. For example, when

� D 3 7 5 9 8 10 13 4 15 17 14 18 20 21 12 2 22 16 23 6 11 1 24 19;

i� sends the 3–cycle in Figure 7 to the 14–cycle in Figure 4. For points in the core, the disks in the wheel
are in the “standard” vertically ordered position.

Remark 4.5 Instead of using the splitting, one can prove Theorem 4.1 directly by constructing a discrete
gradient vector field and applying Lemma 3.1. Put a total ordering � on the cells of cell.n; w/ as follows:

(i) If �.g/� �.f /, then g � f.

(ii) If �.g/D �.f /, then use the previously defined ordering on the set of cells of P.n�#�;W.�/; w/.
This ordering is based on an ordering on the wheels of � ; for this we order first by number of
elements, then by axle.
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This induces a discrete gradient vector field on cell.n; w/ which restricts to that on P.n� #�;W.�/; w/

on each layer. The images of the bases for H�
�
P.n� #�;W.�/; w/

�
under i� for all � give us a set of

cycles to which we can apply Lemma 3.1.

For later reference, we describe the set of critical cells of this discrete gradient vector field in a self-
contained way. Order wheels in a layer first according to their number of elements and then according
to their largest element (axle). A block is a unicycle if it consists of a single wheel, that is, if its largest
element comes first. We assign some blocks to leader–follower pairs by walking left to right: a block is a
follower if it follows a unicycle (its leader) which is not itself a follower and whose wheel is smaller than
any of the follower’s wheels. A cell of cell.n; w/ is critical if every block is either

(i) a unicycle which is not a follower, or

(ii) a follower such that it and its leader have at least wC 1 elements in total.

4.2 Maps between permutohedra

To complete the proof of Theorem 4.1, we must still describe the map

spin� W T
#�
�P.n� #�/! cell.n/:

Informally, points in P.n�#�/ encode positions of the wheels of � relative to each other, whereas points
in the torus encode positions of disks inside the wheels, which can vary as in Figure 2. In particular,
the image of spin� will be the union of the 2#� top-dimensional cells obtained from � by “spinning its
wheels”, that is, by applying permutations such as those depicted in Figure 9.

To make this precise, we start with the following lemma:

Lemma 4.6 Let A be a finite set and a, b and c additional symbols not in A. Then there is a map

� W Œ0; 1��P.A[fag/! P.A[fb; cg/

with the following properties:

(i) It is a homeomorphism and a cellular map. That is , it sends every k–face to a disk which is a union
of k–faces.

7
1
11
6
23

1
23
6

11
7

7
6

23
11
1

Figure 9: Some configurations of a wheel with five disks which give different orderings, the first
of which is the “name” of the wheel.
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Figure 10: The permutohedron P.4/ and the homeomorphism � W Œ0; 1� � P.3/! P.4/. The
images of

˚
1
2

	
�P.3/ (red) and f1g �P.3/ (blue) are highlighted.

(ii) It is equivariant with respect to the Z=2Z–actions given by t 7! �t on the domain and b$ c on
the codomain.

(iii) For each cell � of P.A[fag/, �.Œ0; 1���/ is the cell of P.A[fb; cg/ with the same blocks except
that a is replaced in its block by b and c.

(iv) It takes f0g �P.A[ fag/ to the union of those cells in which b and c are contained in separate
blocks with b preceding c. Similarly, it takes f1g�P.A[fag/ to the union of those cells in which
c precedes b.

Before proving the lemma, we use it to construct spin� . First, notice that, for any ordering of A[fb; cg,
the lemma gives us a well-defined map to the corresponding top cell of cell.A[fb; cg/. In particular, if
we are instead given an ordering of A[ fag we have two choices: we can replace a by b c or by c b.
Moreover, these choices coincide on f0; 1g �P.A[fag/. Identifying the two subspaces gives a map

S1 �P.A[fag/! cell.A[fb; cg/:

Since top cells of cell.A[fag/ correspond to orderings of A[fag, this gives us a map

spin W S1 � cell.A[fag/! cell.A[fb; cg/:

The equivariance of � means that spin is well defined.

We build spin� by iterating the map spin. Start by thinking ofP.n�#�/ as a top cell of cell.fwheels of �g/.
At each step, we replace a wheel with k elements by a singleton and a wheel with k�1 elements, applying
spin to this splitting.

From this description, it is evident that

spin�
�
P.n� #�;W.�/; w/

�
D spin� .P.n//\ cell.n; w/:

Proof of Lemma 4.6 In the proof, we will use a slightly different notation than in the statement of the
lemma: we will replace the finite set A by f1; : : : ; n� 2g and the symbols a, b and c by n� 1, n� 1
and n, respectively. This lets us write coordinates in Rn more easily.
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The permutohedron P.n/ is a zonotope, that is, the Minkowski sum of a set of line segments. We refer to
[Ziegler 1995, Section 7.3] for known facts about zonotopes.

The standard permutohedron P.n/ is the zonotope in Rn which is the Minkowski sum of the
�
n
2

�
segments

connecting every pair of standard unit basis vectors. That is,

P.n/D

� X
1�i<j�n

aij ei C .1� aij /ej

ˇ̌̌
0� aij � 1

�
:

Evidently, choosing a different set of n linearly independent vectors in any Euclidean space gives a
linearly equivalent polytope. Less obviously, the combinatorial structure of a zonotope only depends on
the oriented matroid associated to the set of line segments. In particular, changing the lengths of the line
segments without changing their direction does not change the combinatorial structure.

We use this fact to prove the following:

Lemma 4.7 The polytope Z.n/D P.n/\fxn�1 D xng is combinatorially equivalent to P.n� 1/.

Proof We first show that Z.n/ can also be written as

.4.8/

� X
1�i<j�n

aij ei C .1� aij /ej

ˇ̌̌
0� aij � 1; ai.n�1/ D ain; a.n�1/n D

1
2

�
� P.n/:

Indeed, suppose that z 2Z.n/, so that

zD
X

1�i<j�n

bij ei C .1� bij /ej 2 P.n/

and zn�1 D zn. If we switch en�1 and en in this formula, we get z back. We can get an expression as
in (4.8) by averaging these two expressions for z, getting

ai.n�1/ D ain D
1
2
.bi.n�1/C bin/; a.n�1/n D

1
2
:

From (4.8), we see that Z.n/ is the zonotope generated by the segments

ei $ ej for 1� i < j � n� 2 and en�1C en$ 2ei for 1� i � n� 2:

This zonotope is combinatorially equivalent to one in which segments en�1C en$ 2ei are replaced by
1
2
.en�1C en/$ ei . This in turn is linearly equivalent to P.n� 1/.

The lemma gives us an injective map �1=2 W P.n� 1/! P.n/ which is a homeomorphism onto its image;
it remains to extend it to � W Œ0; 1��P.n� 1/! P.n/. We do this by letting

�.t; x/D �1=2.x/CR.x/.2t � 1/.en� en�1/;

where R.x/ is the maximum value for which the image still lies in P.n/. Property (ii) of the lemma
follows immediately from this definition.

To show that � is the desired map, we must show it is a homeomorphism. To prove injectivity, it suffices to
show that R.x/ is always positive. But in fact R.x/� 1

2
, since we can always vary a.n�1/n. Surjectivity
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follows from the fact that P.n/ is convex and symmetric about the hyperplane Z.n/. Finally, � can only
be discontinuous if R ı ��1

1=2
W Z.n/! R is discontinuous, but convexity of P.n/ implies that this is a

convex function, and therefore continuous. Continuity of the inverse likewise follows from the fact that
the reciprocal of this function is continuous.

Next we show that � is cellular. Given a face � of P.n� 1/, we know that �1=2.�/ is a face of Z.n/ cut
out by a half-space of the hyperplane fxn�1 D xng. Extending this half-space orthogonally to Rn, we
obtain the half-space that cuts out the face �.Œ0; 1�� �/ of P.n/. It follows that �.f0g � �/ and �.f1g � �/
are also unions of faces of P.n/ of the appropriate dimension: specifically, each facet of �.Œ0; 1�� �/
which is not the image of Œ0; 1�� � for some facet � of � is contained in one of those two, depending on
whether xn�1� xn is positive or negative for points in that facet.

To show properties (iii) and (iv), we recall the relationship between symbols of cells and the zonotope
structure. Namely, points in a face corresponding to a given symbol are those which can be expressed asX

1�i<j�n

aij ei C .1� aij /ej ;

where aij is 0 if j is in a later block than i and 1 if i is in a later block than j. When i and j are in the
same block, aij can be anything in Œ0; 1�.

From the proof of Lemma 4.7, it follows that �1=2 maps a face with a given symbol into a face with the
same symbol with n added to the same block as n� 1. Since � is cellular, this shows (iii). Property (iv)
then also follows from our argument that � is cellular.

4.3 Proofs of main theorems

Proof of Theorem B Combining the arguments in Section 3 and the proof of Theorem 4.1, we find a
basis forH�.cell.n; w//: for each permutation � 2Sn and each basic cycle z ofHj

�
P.n�#�;W.�/; w/

�
,

it contains the cycle i� .z/. The exact set of cycles we get depends on the correspondence between wheels
of � and elements of Œn� #��; to make this concrete, we order the wheels first by size and then by axle.

Geometrically, the correspondence z 7! i� .z/ matches

� points moving in R to wheels moving in R� Œ0; w�;

� points moving through each other to wheels moving over and above each other, with the wheel
with the smaller axle on top.

We now verify the numbered conditions of Theorem B:

� Condition (i) follows from the way we split � into wheels.

� Condition (ii) follows from the definition of the layer L.�/.

� Conditions (iii) and (iv) follow from Lemma 3.2 and the ordering of the wheels.
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Proof of Theorem A Every basic cycle is a concatenation product of wheels and filters. It is enough to
show that there are finitely many (unlabeled) types of wheels and filters in config.�; w/, and that these
have at most 3

2
w disks and generate cycles of dimension at most 3

2
w� 2.

A wheel consists of at most w disks, and a wheel with k disks generates a .k�1/–cycle. Filters with at
least three wheels have at most 3

2
w disks, and a filter with k disks generates a .k�2/–cycle. Filters with

two wheels b1 and b2 can be written as b2 jb1�b1 jb2, and do not need to be counted separately. Therefore,
H�.config.�; w// is spanned by concatenation products of cycles in H�3=2w�2

�
config

�
�
3
2
w;w

��
.

Every wheel with the same number of disks has the same shape, and there are finitely many shapes of
filters of width w. Therefore, H�.config.�; w// is finitely generated as a twisted algebra.

5 Betti number growth function

Alpert et al. [2021] examine the growth of the dimension of Hj .config.n; w// for fixed j and w and
varying n, and show that it is asymptotically polynomial times exponential. Having computed a basis
for homology, we can now answer the question, is the dimension exactly equal to a polynomial times
an exponential? The answer is that it is a sum of such functions, each with a different base of the
exponential. The polynomials are integer-valued, and the theory of finite difference calculus states that
every integer-valued polynomial in n is an integer linear combination of binomial coefficient functions

�
n
a

�
for various a. Thus, in this section we prove the following theorem:

Theorem 5.1 For fixed j and w, as a function of n the dimension of Hj .config.n; w// is an integer
linear combination of terms of the form

�
n
a

�
bn�a, where a and b are nonnegative integers.

Note that the case b D 0 is permitted, and represents the function that is equal to 1 when nD a, and 0
otherwise.

Our proof counts the critical cells from Remark 4.5, and decomposes them into concatenation products
of factors that are easier to count. To describe how the counts transform under concatenation product,
we introduce the following terminology. A cell family F consists of, for each n, a set Fn of cells from
cell.n/. Its counting function f .n/ is the number of cells in Fn. The concatenation product F jG of cell
families F and G is the cell family consisting of all concatenation products of a cell in F with a cell
in G, taken with all possible disk labelings that preserve the order within each factor.2 The following
lemma shows that, to prove our theorem, it suffices to consider separately the various independent factors
of a concatenation product:

Lemma 5.2 Let F and G be two cell families , such that their counting functions f .n/ and g.n/ are
integer linear combinations of terms of the form

�
n
a

�
bn�a, where a and b are nonnegative integers.

Suppose that , for every element of their concatenation product F jG, there is only one way to write it as

2This is closely related to the Day convolution defined in Section 2.3, except that F and G need not be FB–subsets of the FB–set
of cells of cell.�/, and in our application will not be Sn–equivariant.
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the concatenation of an element of F and an element of G. Then the counting function of F jG is also an
integer linear combination of terms of the form

�
n
a

�
bn�a.

Proof Let f jg denote the counting function of F jG. Then we have

.f jg/.n/D
X

iCjDn

� iCj
i

�
f .i/g.j /;

which we refer to as the labeled convolution of f and g. Exponential generating functions are convenient
for dealing with these labeled convolutions; given the exponential generating functions

P
i f .i/x

i=iŠ for f
and

P
j g.j /x

j =j Š for g, their product gives the exponential generating function
P
n.f j g/.n/x

n=nŠ

for f jg.

We can compute the labeled convolution of two terms
�
n
a1

�
b
n�a1

1 and
�
n
a2

�
b
n�a2

2 by converting them
to exponential generating functions, taking the product, and then converting the product back. The
exponential generating function of

�
n
a

�
bn�a isX

n

�n
a

�
bn�a

xn

nŠ
D

X
n

xa

aŠ

.bx/n�a

.n� a/Š
D
xa

aŠ
ebx;

so the product of exponential generating functions of
�
n
a1

�
b
n�a1

1 and
�
n
a2

�
b
n�a2

2 is

xa1Ca2

a1Ša2Š
e.b1Cb2/x D

�a1Ca2
a1

� xa1Ca2

.a1C a2/Š
e.b1Cb2/x;

and so the labeled convolution of
�
n
a1

�
b
n�a1

1 and
�
n
a2

�
b
n�a2

2 is�a1Ca2
a1

�� n

a1Ca2

�
.b1C b2/

n�.a1Ca2/:

(This identity can also be verified by constructing sets counted by each of the counting functions.)

Using this lemma, we are ready to prove Theorem 5.1.

Proof of Theorem 5.1 Given j and w, the critical cells from Remark 4.5 form a cell family, and we
want to find the counting function of this cell family. To do this, it helps to count the ways to distribute
the singletons separately from counting the ways to arrange the larger wheels. We define a skyline to be a
critical cell for which the only singleton blocks are leaders of a filter. Given any critical cell, we can find
its associated skyline by deleting all the nonleader singletons and then shifting the disk labels down so
they are consecutive. For fixed j and w, there are only finitely many possible skylines among the critical
cells. Thus, it suffices to count the cell family consisting of all critical cells with a given skyline.

For each skyline, its cell family is the concatenation product of other cell families. We define a tadpole to
be a critical cell with exactly one filter, which is at the far right, and we define a tail to be a critical cell
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with no filters. Every critical cell can be written uniquely as a concatenation of some number of tadpoles
and possibly one tail on the right. Thus, it suffices to count the cell family consisting of all tadpoles with
a given skyline, and the cell family consisting of all tails with a given skyline.

A tadpole with a singleton as the leader of its filter may have other singletons to the left, but a tadpole
with a larger wheel as the leader of its filter may not have any singletons. Thus, given a tadpole skyline,
if the leader of its filter is not a singleton, the counting function of its cell family returns 1 when the input
is the number of disks in the skyline, and 0 otherwise. If the leader of its filter is a singleton, then, for any
tadpole with that skyline, the leader of the filter must be disk 1. If k is the total number of disks in the
skyline, then the counting function of the tadpole skyline family is

�
n�1
k�1

�
, representing the number of

ways to choose which disk labels appear in the skyline. Given a tail skyline, if k is the total number of
disks in the skyline (possibly 0), the counting function of its cell family is

�
n
k

�
.

Thus, for each skyline with a given j and w, we can compute the counting function of its cell family by
taking the labeled convolution of the counting functions of its tadpole skyline and tail skyline factors.
Because each factor has the desired form, so does the labeled convolution, by Lemma 5.2. The counting
function of the family of all critical cells is the sum of the counting functions of all the skylines, and so it
also has the desired form.

6 Cohomology ring

We now give a basis for H j .config.n; w// and describe the cup product structure in terms of that basis.
We use a similar strategy to that used in [Alpert et al. 2021] to find a lower bound for the dimensions
of homology groups. The main tool is Poincaré–Lefschetz duality: for a compact 2n–manifold with
boundary .M; @M/,

H j .M/ŠH2n�j .M; @M/:

Moreover, when homology classes are realized by submanifolds (as they will be in our case), then:

(i) The pairing between classes in H j .M/ and Hj .M/ is given by the transverse signed intersection
number between classes in H2n�j .M; @M/ and Hj .M/.

(ii) The cup product between classes in H i .M/ and H j .M/ is given by the transverse intersection
map

t WH2n�i .M; @M/˝H2n�j .M; @M/!H2n�i�j .M; @M/:

While config.n; w/ as previously described is not a compact 2n–manifold with boundary, we can define
a homotopy equivalent compact manifold with boundary:

Definition Let M.n;w/ � R2n be the configuration space of open disks of radius 1 in a strip of any
finite length N > n and width wC " for any 0 < " < 1.
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The boundary consists of those configurations in which a disk touches either another disk or the boundary
of the strip. It has corners, but every point of the boundary has a neighborhood homeomorphic to a
half-space. (Without the addition of ", a boundary configuration with w vertically aligned disks would
not have a neighborhood homeomorphic to a half-space.)

Alternatively, in an open manifold without boundary (such as the space of configurations of n points
in R� .0; 1/ of which no more than w are vertically aligned, as used in Theorem 2.1), Poincaré duality
gives an isomorphismH j .M/ŠHBM

2n�j .M/. HereHBM
� indicates Borel–Moore homology, the homology

of the complex of locally finite chains; this is isomorphic to the homology of a compactification relative
to the added points.

6.1 Basis for cohomology

We will describe a basis for H2n�j .M.n;w/; @M.n;w// by associating basis elements to critical j –cells
of cell.n; w/, as described in Remark 4.5. Given a critical cell with symbol f, we define the submanifold
V.f /�M.n;w/ as the set of configurations such that:

(i) The disks in each block of � are lined up vertically in order.

(ii) If a block b1 comes before b2 in f, they have at least wC 1 elements combined, and one of them
is a follower, then the column of disks labeled by elements of b1 is to the left of that labeled by
elements of b2.

To see that this is a submanifold, and that moreover @V.f /D V.f /\@M.n;w/, notice that two columns
of disks which have at least wC 1 elements combined cannot move past each other while still satisfying
condition (i).

To show that this is a basis, we describe the intersection pairing between these submanifolds and our
generators of Hj .config.n; w//.

Lemma 6.1 Let f and g be symbols of critical cells of cell.n; w/. Write Z.g/ for the basic cycle
corresponding to g. Then:

(a) V.g/ tZ.g/D˙1.

(b) If V.g/ tZ.f /¤ 0, then g � f according to the ordering in Remark 4.5.

From the lemma, we see that, under the ordering of the critical cells by �, the intersection pairing is
described by a triangular matrix. Therefore, the V.g/ form a basis for H2n�j .M.n;w/; @M.n;w//.

Proof We use the embedding of Theorem 2.1 to associate V.g/ to a cellular j –cocycle �.g/ in cell.n; w/.
The value of �.g/ on a j –cell is given by the signed intersection number of the embedded cell with V.g/.

Suppose that a symbol h is in the support of �.g/. By comparing condition (i) of the definition of V.g/
to the construction of the embedding in Theorem 2.1, we see that f must have the same set of blocks
as g, although possibly in a different order; in particular, h and g are in the same layer. Moreover, the
barycenter of h is the unique point of intersection. Condition (ii) restricts the possible orderings.
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Now suppose that h¤ g. We look at the first block, say hi and gi , where they differ. This means that hi is
a block which occurs later in gi , say gj . The structure of critical cells gives us the following possibilities:

� The block gi is a follower in g, and gj is not. Since gi is a follower, it and gi�1 have at least
wC 1 elements in total. On the other hand, condition (ii) implies that gi and gj have at most
w elements in total, so gi�1 has more elements than gj . Since gj is not a follower, it must be a
unicycle. Then gi�1 � gj D hi in the ordering on wheels, implying that hi is not a follower in h.
Therefore, g � h.

� There are no followers between gi and gj , inclusive. Then gj and gi are both unicycles and gj �gi
in the ordering on wheels. Therefore, hi is not a follower and hi � gi . Because the ordering on
cells uses the reverse ordering on wheels, g � h.

� There is at least one follower between gi and gj , and it is not gi . But gj can’t be a follower,
because if it were, V.g/ could not contain configurations with gj to the left of its leader. Then gj
and the first follower after gi appear in opposite orders in g and h, so gj must have fewer elements
than the first leader after gi . Since gj is not a follower, it is a unicycle, and the ordering implies
that it must also have fewer elements than gi . Thus, hi � gi , and therefore g � h.

In other words, we always have that g � h. On the other hand, we know that, if a cell h is in the support
of Z.f /, then h� f. Therefore, g � f. This proves (b).

From this we also know that g is the unique cell which is in the support of both �.g/ and Z.g/. Since
the coefficient in both cases is ˙1, this proves (a).

6.2 Cup product structure

The cup product structure of H�.config.n; w// is complicated, with many indecomposables as well as
many nontrivial products. We start with some simple observations. First, the cohomology algebra of
H�.config.n// is well understood: it is generated by one-dimensional classes. A good description is
given in [Sinha 2013]. Secondly, the pullback of H�.config.n// to H�.config.n; w// along the inclusion
map is a subalgebra and contains all classes of degree less than w � 1. That means that all classes in
Hw�1.config.n; w// which are not pullbacks fromHw�1.config.n// are indecomposable. These include
the basis elements corresponding to critical cells which have one leader–follower pair with wC 1 total
elements and in which all other blocks are singletons.

In higher degrees, the story is more complicated. Recall that our basic cocycles are carved out using three
kinds of relations: coincidence between the x–coordinates of two disks, vertical ordering of elements
within a block, and horizontal ordering between blocks. When we take a cup product, the coincidences
from both factors accumulate; see Table 1 for some examples. Likewise, when two blocks are ordered in
a product, the ordering must be “inherited” from one of the factors. If many pairs of blocks are ordered,
this may force the cohomology class to be indecomposable.
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�.2 1 j 6 j 5 j 4 j 3/[ �.3 2 j 6 j 5 j 4 j 1/D �.3 2 1 j 6 j 5 j 4/

�.3 2 j 6 j 5 j 4 j 1/[ �.3 1 j 6 j 5 j 4 j 2/D �.3 2 1 j 6 j 5 j 4/C �.3 1 2 j 6 j 5 j 4/

�.3 2 1 j 6 j 5 j 4/[ �.5 4 j 6 j 3 j 2 j 1/D �.3 2 1 j 5 4 j 6/

�.5 4 j 6 2 3 j 1/[ �.4 1 j 6 j 5 j 3 j 2/D �.5 4 1 j 6 2 3/:

Table 1: Some examples of nontrivial cup products in config.6; 4/. These are easy to deduce
using intersections of dual cycles.

The last example in Table 1 illustrates an important class of decomposable cohomology classes: those
associated to critical cells consisting of only two blocks, where the total number of elements is at least
w C 2. In other words, a filter with more than w C 1 elements always pairs with a decomposable
cohomology class.

We also describe an important set of cases in which cup products are zero.

Proposition 6.2 If there is a pair of labels i and j which are contained in the same block in both f
and g, then V.f / t V.g/D∅.

Proof If the two labels are in opposite orders in the two blocks, then the intersection of the two cycles
is empty. If they are in the same order, then the intersection may be nonempty, but we can move it off
itself by moving every point of V.f / slightly in the xi–direction (say, move the point p by a distance of
"d.p; @M.n;w// for some " > 0 small enough). After this operation, V.f /\V.g/ lies in the boundary
of M.n;w/.

In all other cases, we can compute cup products by looking at the intersections of the associated
submanifolds.

Proposition 6.3 If no two blocks in f and g have two labels in common , then V.f / and V.g/ intersect
transversely.

Proof Locally, V.f / and V.g/ are linear subspaces of config.n/, cut out by the linear equations
constraining the x–coordinates in each block to coincide. Thus, the dimension of V.f / is n (for
the y–coordinates) plus the number of blocks in f (for the x–coordinates), and similarly for V.g/.
In the intersection, we imagine starting with the constraints for V.f / and including the constraints
for V.g/ one block at a time. Each block of size k in g merges k different blocks in f into one, so
the net change in the number of blocks is 1 � k. In total, the number of blocks in V.f / \ V.g/ is
#blocks.f /C#blocks.g/�n, so the local codimension of V.f /\V.g/ is 2n�#blocks.f /�#blocks.g/,
which equals codimV.f /C codimV.g/.

Finally, we show that there are many indecomposable elements in H�.config.n; w//, but that they do not
occur in the very highest degrees.
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Theorem 6.4 The ring H�.config.n; w// has indecomposables

(a) only in degree 1 when w D 2;

(b) in every degree between 1 and
�
1
2
n
˘

and no others when w D 3;

(c) in degree 1 and in every degree between w � 1 and
�
1
2
.nCw � 3/

˘
and no degree greater than

n�dn=.w� 1/e when w � 4.

When w � 4, indecomposables also seem to occur in most degrees below n�dn=.w� 1/e, but perhaps
not all.

Proof We first show that every class of degree greater than n�dn=.w�1/e is decomposable. The proof
does not depend on w. Every cell with fewer than dn=.w� 1/e blocks has a block with w elements, and
therefore V.f /�M.n;w/ satisfies an equation of the form xi1 D � � � D xiw . Therefore, it is enough to
show:

Lemma 6.5 Suppose that V � M.n;w/ is a connected compact submanifold of dimension at most
2n�w, satisfying @V � @M.n;w/, which is cut out by relations of the form xi D xj , yi <yj and xi <xj .
Suppose furthermore that V satisfies xi1 D � � � D xiw for some set of indices i1; : : : ; iw . Then V is the
transverse intersection of two proper compact submanifolds satisfying @V � @M.n;w/.

Proof Define W1 to be the connected component of fxi1 D � � � D xiwg which contains V ; this exists
since V is connected. The defining relations of W1 are:

� xik D xil for each k ¤ l .

� yik < yil or yik > yil for each k ¤ l .

� xj < xik or xj > xik whenever j ¤ ik for any k.

Let W2 be the submanifold cut out by all defining relations of V which involve pairs of points constrained
to be to the same side of xi1 ; : : : ; xiw . Then V DW1 \W2, since every necessary relation defining V
is a defining relation of either W1 or W2. Moreover, by counting the number of defining equalities, we
immediately see that the intersection is transverse.

Applying this to each connected component of V.f /, we get a decomposition of the corresponding
cohomology class as a sum of cup products.

We now build indecomposable cocycles when w � 4; the proof for wD 3 will be similar, but not identical.
We will show that basic cocycles corresponding to critical cells of certain shapes are indecomposable.
Specifically, we consider a critical cell f which starts with some number r of blocks with two elements,
followed by one block (a follower) with w� 1 elements, and where the remaining blocks are singletons.
The degree of such an f is r Cw� 2, and r can be any number between 1 and 1

2
.n�wC 1/, giving us

all degrees between w� 1 and
�
1
2
.nCw� 3/

˘
. It is clear that there are critical cells of any such shape;

in particular, we select f to be the cell with all entries in order from greatest to least.
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We will show that the corresponding cohomology class �.f / is indecomposable by induction on r . We
will do this by constructing a cycle with which �.f / pairs nontrivially, but any decomposable class pairs
trivially.

To construct this cycle, first let R be the set of blocks of f which are left of the follower. For any
subset S �R, there is a critical cell fS in which the blocks in S are moved to the right of the follower,
and otherwise the ordering on blocks is the same. Let ZS be the concatenation product of the toroidal
cycles obtained by interpreting each block as a wheel and spinning it. This cycle is represented by a
map gS W T rCw�2! config.n; w/. The ZS represent linearly independent homology classes, since they
generate a 2r–dimensional subspace of HrCw�2.config.n; w//: for every S �R, the basic cycle Z.fS /
is a linear combination of them, given by ZS itself if S D R, or otherwise the difference between ZS
and ZS 0 , where S 0 is the union of S with the greatest block not in S. We will show that, for every
decomposable class �,

.6.6/
X
S�R

.�1/jS jh�;ZS i D 0:

In particular, � cannot pair nontrivially with exactly one of the cycles ZS . On the other hand, �.f / pairs
nontrivially with ZS if and only if S D∅.

It is enough to show this equation holds for every pairwise cup product, �D ˛[ˇ. We study the pullbacks
of such a pairwise cup product along each gS . Suppose that ˛ is of degree p, and write

T rCw�2 D
Y

i2RtR0

S1i ;

where R0 is the set of degrees of freedom of the .w�1/–element wheel. To understand g�S˛, it is enough
to understand how it pairs with T P D

Q
i2P S

1
i for each p–element set P �RtR0. Then

.6.7/ h�;ZS i D
X

PtQDRtR0

hg�S˛; ŒT
P �i � hg�Sˇ; ŒT

Q�i:

We now show that these decompositions are not independent for different S.

Lemma 6.8 If P \R0 ¤R0, then hg�S˛; ŒT
P �i is the same for every S.

Proof It suffices to show that the pushforward cycles .gS /�ŒT P � are homologous regardless of S. In fact,
the corresponding maps T P ! config.n; w/ are homotopic. We can compress the allowed movements of
the .w�1/–element wheel into a subset of the strip of width w � 2, letting wheels of width 2 pass by.
Clearly, wheels of width 2 can also pass by each other since we are assuming w � 4. Using this set of
motions, we can construct a homotopy between any two such maps.

Lemma 6.9 If P \R0 DR0, then hg�S˛; ŒT
P �i D hg�S 0˛; ŒT

P �i whenever .S 4S 0/\P D∅ (where4
indicates symmetric difference).
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Proof Again, it suffices to show that .gS /�ŒT P � and .gS 0/�ŒT P � are homologous, and again the
corresponding maps T P ! config.n; w/ are homotopic. We can build the homotopy by moving the
individual disks of blocks not in P around the .w�1/–element set.

Together, the lemmas imply that, for any pair of nonempty complementary sets P;Q � R tR0, the
quantity

hg�S˛; ŒT
P �i � hg�Sˇ; ŒT

Q�i

is independent of whether i 2 S for at least one i 2R. In particular,X
S�R

.�1/jS jhg�S˛; ŒT
P �i � hg�Sˇ; ŒT

Q�i D 0:

From here we get (6.6) by summing over all pairs P and Q and using (6.7).

Finally, we deal with the case w D 3. In this case, we consider critical cells composed of r two-element
blocks (with the bigger element first) followed by n� 2r singletons for some 1� r �

�
1
2
n
˘

. Such a cell
is critical if and only if the singletons are in reverse order. In particular, every permutation � of the set of
two-element blocks gives a critical cell f� . For each � 2 Sr , let Z� be an r–cycle, represented by a map
g� W T

r ! config.n; w/, obtained by arranging the blocks in the order dictated by � and spinning each
of them. These cycles are linearly independent in homology since the basic cycles Z.f� / are all linear
combinations of them.

We now define a function � W Sr ! Z. Consider the expression Œ � � � ŒŒ1; 2�; 3�; � � � r�. If � cannot be
obtained from this by commuting some of the brackets (equivalently, by spinning the wheel 1 2 � � � r , as in
Figure 9), then �.�/D 0. If it can, then �.�/D .�1/c , where c is the number of commutations required.
We will show that, for every decomposable class �,

.6.10/
X
�2Sr

�.�/h�;Z� i D 0:

In particular, � cannot pair nontrivially with exactly one of theZ� , and therefore there is an indecomposable
class of degree r .

It is enough to show the equation for every pairwise cup product, � D ˛[ˇ. Write T r D
Qr
iD1 S

1
i ; for

every P � f1; : : : ; rg, write T P D
Q
i2P S

1
i . Then

.6.11/ h�;Z� i D
X

PtQDf1;:::;rg

hg��˛; ŒT
P �i � hg��ˇ; ŒT

Q�i:

Once again, these decompositions are not independent for different � :

Lemma 6.12 Whenever � and � impose the same ordering on elements of P,

hg��˛; ŒT
P �i D hg�� ˛; ŒT

P �i:
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Proof To show that .g� /�ŒT P � is homologous to .g� /�ŒT P �, we construct a homotopy between the
corresponding maps T P ! config.n; w/. This involves moving around the individual disks of the blocks
not in P to make sure they are in the right order.

The lemma implies that, for any pair of nonempty complementary sets P;Q � f1; : : : ; rg,

hg��˛; ŒT
P �i � hg��ˇ; ŒT

Q�i D hg�� ˛; ŒT
P �i � hg�� ˇ; ŒT

Q�i

if � and � differ by commuting one of the brackets of Œ � � � ŒŒ1; 2�; 3�; � � � r�, specifically the innermost
bracket in which the right side is in Q if 1 2 P, or vice versa. In particular,X

�2Sr

�.�/hg��˛; ŒT
P �i � hg��ˇ; ŒT

Q�i D 0:

From here we get (6.10) by summing over all pairs P and Q and using (6.11).

7 Persistent homology

The majority of this paper has investigated the properties of config.n; w/ as we increase n and keep w
fixed. But we can also look at what happens when w grows. Since config.n; w/ naturally injects into
config.n; wC 1/, forming a filtration, the right framework for understanding this is persistent homology,
which considers homology for all w at once, together with the maps induced by the inclusions. We give a
short introduction to the machinery; for more details, see [Edelsbrunner and Harer 2008; Zomorodian
and Carlsson 2005].

Specifically, we can regard
L
w H�.config.n; w// as a ZŒt �–module in which multiplication by t

corresponds to applying the maps H�.config.n; w// ! H�.config.n; w C 1// induced by the inclu-
sions config.n; w/ ,! config.n; wC 1/. We denote this ZŒt �–module by PH�.config.n;�//. Similarly,L
w H

�.config.n; w// is a ZŒt �–module in which multiplication by t corresponds to applying the pullback
mapsH�.config.n; w//!H�.config.n; w�1//, and we denote this ZŒt �–module by PH�.config.n;�//.

A cyclic summand of PH�.config.n;�// or PH�.config.n;�// is generated by a single element that is
nonzero for some interval of values of w. It is standard to refer to a cyclic summand as a bar, and to
the endpoints of the corresponding interval as the values w of its birth and death. A decomposition of
PH�.config.n;�// or PH�.config.n;�// into cyclic summands means selecting Z–bases for the various
values of w in a way that agrees with the maps between the values of w.

The fundamental theorem for modules over a PID guarantees that a persistence module with coefficients
in a field will always decompose into cyclic summands. No such guarantee exists for integral persistence
modules: for example, one could have a single class born at one time and later become divisible by 2,
yielding a module isomorphic to the ideal .2; t/� ZŒt �.

Theorems 7.1 and 7.4, which we state and prove below, together prove Theorem C.
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Theorem 7.1 The homology basis elements described in Theorem B induce a decomposition of
PH�.config.n;�// as the direct sum of cyclic ZŒt �–modules. The cohomology basis elements from
Section 6.1 give a decomposition of PH�.config.n;�// as the direct sum of cyclic ZŒt �–modules.

To prove the theorem, it suffices to show that, when a given basis element stops being in the basis, it also
becomes zero in homology or cohomology. To verify this for homology, we show the corresponding
statement for weighted no-.wC1/-equal spaces.

Theorem 7.2 For the weighted no-.wC1/-equal spaces , the homology basis elements from Theorem B
give a ZŒt �–basis for PH�.no�.n;W//.

Proof Recall that a basic cycle consists of a product of single vertices corresponding to singletons and
boundaries of permutohedral cells corresponding to leader–follower pairs.

The key fact is that, as we increase w, a particular cell stays critical as long as, for every leader–follower
pair, the weights add up to at least wC 1. But, once they add up to only w for some leader–follower
pair, that means that the corresponding permutohedron boundary is filled in, and so the cycle becomes a
boundary. Therefore, every cell of P.n/ which is critical in P.n;W; w/ for some w corresponds to a
direct summand of the persistence module.

Proof of Theorem 7.1 Theorem 7.1 follows easily from Theorem 7.2. This is because the splitting

H�.cell.n; w//D
M
�2Sn

H��#�
�
P.n� #�;W.�/; w/

�
of Theorem 4.1 is natural with respect to increasing w (even on the chain level, as one readily sees).
Therefore,

PH�.cell.n;�//D
M
�2Sn

PH��#�
�
P.n� #�;W.�/;�/

�
:

In particular, an element leaves the basis exactly when one of its filters has the wheel sizes adding up
to at most w, and the correspondence with the no-.wC1/-equal homology proves that the element is
null-homologous in this case.

For cohomology, the restriction map H�.config.n; w//!H�.config.n; w�1// corresponds to intersect-
ing each basis element V.g/ of H2n��.M.n;w/; @M.n;w// with the smaller space M.n;w� 1/. When
w gets too small for V.g/ to be in the basis, it is because some block of g has more than w elements; thus,
the intersection of V.g/ with this M.n;w/ is empty, and the restricted cohomology class is zero. Thus, it
is also true for cohomology that, when a given element stops being in the basis, it becomes zero.

Remark 7.3 We can also explore how the persistence module structure on homology and cohomology
interacts with other structures we have discussed:
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(1) Cohomological persistence does not play nicely with the cup product structure: frequently a class
is born indecomposable at time w and becomes decomposable at time w� 1. For example, in the
notation of the previous section, we have the relation

�.5 4 j 6 2 3 j 1/[ �.4 1 j 6 j 5 j 3 j 2/D �.5 4 1 j 6 2 3/

in config.6; 3/ and config.6; 4/, but �.5 4 1 j 6 2 3/ is indecomposable in config.6; 5/.

(2) The concatenation product is perfectly well defined on persistence modules. So we can think of
PH�.config.�;�// as a graded twisted algebra in ZŒt �–modules! The ZŒt �–module structure of
this algebra is relatively easy to understand, as we have seen above, but it does not interact in a
nice way with the symmetric group action. Moreover, unlike the algebras H�.config.�; w// for
fixed w, it is not finitely generated as an algebra. For these reasons, we do not study this structure
further.

7.1 Asymptotics of the persistence module

A main goal of [Alpert et al. 2021] was to understand the growth of Betti numbers of config.n; w/ as n
increases. Now that we have described the persistence module of config.n;�/, we can refine this: as the
number of disks increases, we keep track of the number of bars of different lengths. It turns out that the
number of short bars grows faster and eventually dominates the number of longer bars. We make this
precise in the following theorem:

Theorem 7.4 Each ZŒt �–basis element of PH�.config.n;�// born at w D w0 either persists for all
w > w0 or dies by w D 2w0. For each j and w0, either the maps

Hj .config.n; w0//!Hj .config.n; w//

are isomorphisms for all w > w0 and all n, or the fraction of basis elements of Hj .config.n; w0// that
persist to Hj .config.n; w0C 1// approaches 0 as n approaches1.

We note that, because each homology basis element is matched to a cohomology basis element in the same
degree with the same birth and death, the theorem for homology immediately implies a corresponding
statement for cohomology, which we do not include here.

For the second statement of Theorem 7.4, it helps to have an asymptotic estimate of the dimension of
Hj .config.n; w// as n approaches1. Examining the basis for homology and estimating the number of
elements recovers the following theorem:

Theorem 7.5 [Alpert et al. 2021] If w � 2 and 0� j � w� 2, then the inclusion of config.n; w/ into
the configuration space of points in the plane induces an isomorphism on Hj . If w � 2 and j � w� 1,
then there are positive constants c1 and c2, depending on w and j, such that the following is true. Write
j D q.w� 1/C r with q � 1 and 0� r < w� 1. Then

c1 �n
qwC2r.qC 1/n � dimHj .config.n; w//� c2 �nqwC2r.qC 1/n:
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Proof of Theorem 7.4 The basis elements that persist indefinitely are those with no filters. Each filter
can be written as a leader–follower pair, and any leader–follower pair that appears at time w0 has total
weight at most 2w0, because the leader block has at most the weight of the follower block. Thus, it only
remains a filter until at most w D 2w0. This proves the first statement of the theorem.

For the second statement, by Theorem 7.5 it suffices to show that, for j � w� 1, the number of basis
elements of Hj .config.n; w// that persist to Hj .config.n; wC 1// grows polynomially in n. We observe
that, if a filter for w contains any wheel of size 1, then its total size is wC 1, so it does not remain a
filter for wC 1. Thus, in any basis element of Hj .config.n; w// that persists, every filter must contain
only wheels of size at least 2. One rule for being a basis element is “Every wheel immediately to the
left of a filter is greater than the least wheel in the filter”, so this then implies that, in any basis element
of Hj .config.n; w// that persists, all of the wheels of size 1 appear to the right of all other wheels and
filters.

To estimate the number of such basis elements, we simply count the cell symbols that end with (at
least) n� 2j singleton blocks in descending order. There are

�
n
2j

�
� .2j /Š � 22j�1 such symbols, and that

function grows polynomially in n. Because the total number of basis elements of Hj .config.n; w// grows
exponentially in n, asymptotically almost all of the basis elements do not persist to wC 1.

8 Relations in the twisted algebra and FId–modules

The twisted algebra structure of H�.cell.�; w// is unusual because many pairs of elements do not
commute. In particular, there are some elements that do not commute with the 0–cycles coming from
a single disk; we think of these as barriers that prevent singleton disks from passing back and forth.
This noncommuting with singleton 0–cycles is the main reason for Theorem 7.5: a given homology
element in degree j can be written as the concatenation product of up to bj=.w� 1/c barriers, giving up
to 1Cbj=.w� 1/c nonequivalent ways to insert a new disk as a singleton.

One algebraic object that exhibits this kind of exponential growth is an FId–module. The best example
for understanding the idea of an FId–module is the j th homology of the configuration space of n disks
on the disjoint union of d planes. Each additional disk can be added to any of the d planes. Sam and
Snowden [2017] define FId–modules for the first time. Ramos [2017] shows that finitely generated
FId–modules satisfy a notion of generalized representation stability, and [2019] that the homology groups
of a certain kind of graph configuration space are finitely generated FId–modules.

We show in this section that the homology of unweighted no-.wC1/-equal spaces and of config.n; 2/ are
both FId–modules. On the other hand, we give an example to show that the homology of config.n; w/
for w > 2 is probably not well described via FId–modules, since there seems to be no consistent way of
decomposing homology classes as products of barriers.

Formally, the category FId has one object Œn�D f1; : : : ; ng for each natural number n. The morphisms
are pairs .'; c/, where ' is an injection, say from Œn� to Œm�, and c is a d–coloring on the complement of
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Figure 11: To compose two morphisms in FId , we have .'0; c0/ ı .'; c/ D .'0 ı '; c00/, where
c00.i/ is equal to c0.i/ if i is not in the image of '0 (for instance, i D 3 has color 1 in the example
shown) and is equal to c.'0�1.i// if i is in the image of '0 (for instance, i D 2 has color 2 in the
composition because c.1/D 2 and '0.1/D 2).

the image of '; that is, c is a map from Œm�n'.Œn�/ to a set of size d , which in this paper we choose to be
f0; 1; : : : ; d � 1g. The morphisms compose as illustrated in Figure 11: for each element colored by the
first morphism, in the composition, the image of that element under the second morphism is the one that
gets that color. (In the picture, the color of a given element is shown in a diamond just above the element.)
More formally, if .'; c/ W Œn1�! Œn2� and .'0; c0/ W Œn2�! Œn3� are two morphisms, then we have

.'0; c0/ ı .'; c/D .'0 ı'; c00/;

where c00.i/ is equal to c0.i/ if i … '0.Œn2�/, and is equal to c.'0�1.i// if i 2 '0.Œn2�/.

An FId–module M over a commutative ring k is defined to be a functor from FId to k–modules; that is,
we have a k–module Mn for each n, and for each .'; c/ W Œn�! Œm� we have a corresponding k–module
map .'; c/� WMn!Mm. Here we use k DZ. An FId–module is finitely generated if there exists a finite
set of elements x1; : : : ; xr 2

F1
nD1Mn such that the only FId–submodule of M containing x1; : : : ; xr is

M itself. Figure 12 sketches the FIjC1–module structure for Hj .config.n; 2//; the colors of the disks,
shown in the picture as the numbers in the diamonds, indicate where to insert the disks between barriers.

1 2 3 4 5

1 2 3 4 5 6 7 8

1 0 1

6 5 2

3

1 7 8

4

3 2

1

5

4

Figure 12: When applying this FI3–morphism to a class in H2.config.5; 2//, we insert the disks
with color k labels immediately after the kth circling pair.
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8.1 No-.wC1/-equal spaces

Theorem 8.1 The graded twisted algebra H�.nowC1.�// has a presentation with two generators and
two relations. The generators are the representations spanned by a singleton 0–cycle and the .w�1/–cycle
@.1 2 � � �wC 1/; these are trivial representations of S1 and SwC1, respectively. The relations are that two
singletons commute and , for each .wC2/–block , taking the signed sum of the boundaries of those facets
that have a .wC1/–block in them gives zero.

Proof The fact that our proposed generators do generate comes automatically from the description of
the basis. To show that the relations are true, we know that @2 D 0, in particular when applied to a
.wC2/–block, so the signed sum of the boundaries of all facets of the .wC2/–block gives zero. The
facets that have no .wC1/–block in them are cells in P.n;w/, so their boundaries are null-homologous;
thus, the sum of the boundaries of the remaining facets gives zero in homology.

To show that the specified relations are sufficient, we take every product of generators that is not in
the basis and use the specified relations to write it in terms of the basis. First we may assume that
consecutive singletons are always in descending order, using the relation that commutes singletons. Then,
if a generator is not in the basis, some boundary of a .wC1/–block must be immediately preceded by
a singleton that is less than every element of the .wC1/–block. If we combine those elements to form
a .wC2/–block, this substring of our generator is the boundary of one facet of the .wC2/–block, and
the boundaries of all the other facets are in the basis. Thus, applying the relation replaces a nonbasis
substring of our generator by a sum of basis substrings. Applying the relations repeatedly from left to
right rewrites our original nonbasis generator in terms of the basis.

Theorem 8.2 For each j a multiple of w � 1, the homology groups Hj .nowC1.�// form a finitely
generated FId–module for d D 1C j=.w� 1/.

Proof The FId–module structure is as follows. Suppose we have an FId–morphism from Œm� to Œn� with
n � m. For any element of Hj .nowC1.m//, we write it in terms of the generators from Theorem 8.1.
We apply the relabeling injection and, for each additional number with color i 2 f0; 1; : : : ; j=.w� 1/g,
we insert an element of that color into each summand between the i th and the .iC1/st factors of the
generator that look like the boundary of a .wC1/–block (rather than a singleton). The result is an element
of Hj .nowC1.n//.

To show that this map on homology is well defined, we need to show that, if we write an element of
Hj .nowC1.m// in terms of the generators in two different ways, the resulting elements of Hj .nowC1.n//
are the same. To see this, suppose that we apply a relation to an original generator. The same relation can
just as easily be applied after the relabeling and insertion, just by moving the new singletons past old
singletons so that they are out of the way. Thus, applying the relation does not change which homology
class we get.
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The fact that the maps respect composition of FId–morphisms is automatic once we use the fact that
consecutive singletons commute. Thus, we have an FId–module. It is finitely generated by the basis of
Hj
�
nowC1.j.wC 1//

�
.

A proof along similar lines shows that the homology of weighted no-.wC1/-equal spaces can be written
as a direct sum, with each summand equal to the span of the generators with a particular number of filters.
This allows us to insert weight-1 points between the filters in a well-defined way. However, the result is
not formally an FId–module (or a direct sum of them) in a reasonable way, because relabeling cannot
permute points of different weights without leaving the no-.wC1/-equal space. Because the statement of
the theorem would be cumbersome, we do not include the details.

8.2 Disks in a strip of width w D 2

Essentially the same proofs as for the no-.wC1/-equal spaces give generators and relations for the
configuration spaces for w D 2, which then give its homology an FId–module structure.

Theorem 8.3 The graded twisted algebra H�.config.�; 2// has a presentation with three generators and
three relations. The generators are:

(1) H0.config.1; 2//Š Z, ie a singleton 0–cycle on which S1 acts trivially.

(2) H1.config.2; 2//Š Z, ie a 2–wheel on which S2 acts trivially. Write this as w.1; 2/D 2 1C 1 2.

(3) The two-dimensional representation of S3 spanned by the cycles

z.1; 2; 3/D
2

31 and z.1; 3; 2/D
2

31

in H1.config.3; 2//, where transpositions in S3 act by switching the two basis vectors. This
representation is irreducible over Z, but over Q it splits into the direct sum of a trivial representation
and a sign representation.

The relations are:

(1) The singletons commute: a j b D b j a.

(2) The relation induced by boundaries of 4–cells in cell.4/.

(3) The relation , in H1.cell.3; 2//,

z.1; 2; 3/Cz.1; 3; 2/D 1 jw.2; 3/Cw.2; 3/ j1C2 jw.3; 1/Cw.3; 1/ j2C3 jw.1; 2/Cw.1; 2/ j3:

Rationally, one can use the sign representation in H1.config.3; 2// as a generator, removing the need for
the third relation.

Proof We first establish a basis for H�.config.n; 2// consisting of concatenation products of (1), (2)
and (3). We use the same critical cells as in Remark 4.5, but interpret them differently: leader–follower
pairs of the form a jb c where a<b < c become z.a; b; c/ factors, while the rest of the blocks individually
yield singletons and 2–wheels.
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To show that the generators and relations are valid, it suffices to show:

(i) Any concatenation product of generators can be written as a sum of basis elements by rewriting
via the relations.

(ii) Every element of the basis from Theorem B can be written as a sum of concatenation products of
the new generators.

Together, the two steps imply that the new basis spans H�.config.n; w//; since it has the same cardinality
as the old basis, this shows that it is indeed a basis. The first step then implies that the provided relations
are sufficient.

To see (ii), we note that

.8.4/ @.a b c/C z.a; b; c/D w.b; c/ j aC b jw.c; a/Cw.a; b/ j c:

In this fashion we obtain filters of singletons. We already know that every filter of a singleton and a
2–wheel is given by an expression of the form

a jw.b; c/�w.b; c/ j a:

Every element of the old basis is a concatenation product of these two types of cycles as well as singletons
and 2–wheels.

To see (i), note first that, in the description of the basis, the 2–wheels separate the strip into intervals that
do not interact with each other or with the 2–wheels; that is, the requirements for being a basis element
are the same as the requirements for each of these intervals individually to give a basis element. Then, to
rewrite a product of generators in terms of basis elements, we only need to rewrite products of singletons
and 3–disk generators.

Relation (3) allows us to eliminate 3–disk generators that are in the “wrong” order. Equation (8.4) lets us
turn relation (2) into a way to eliminate subwords of the form a j z.b; c; d/ where a < b < c < d . Thus,
we can rewrite every product of singletons and 3–disk generators in normal form using the same method
as in Theorem 8.1.

Theorem 8.5 For each j, the homology groups Hj .config.�; 2// form a finitely generated FIjC1–
module.

Proof Every generator of Hj .config.n; 2// has exactly j factors of types (2) and (3). We define the
FIjC1–module structure as follows: to insert a new disk of color i 2 f0; 1; : : : ; j g into a generating cycle,
we insert it as a singleton 0–cycle between the i th and .iC1/st factors of type (2) or (3) of the generator.

As in Theorem 8.2, the relations can be applied either before or after the insertion, so the FIjC1–module
structure is well defined. The basis of Hj .config.3j; 1// gives a finite generating set for the FIjC1–
module.
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8.3 Disks in a strip of width w > 2

We say that an element of H�.config.n; w// is a barrier if the two ways to concatenate it with a 1–disk
0–cycle represent different homology classes. The wheels of size w are barriers, as are any filters that
contain a wheel of size 1. Because the homology H�.config.n; w// is generated by concatenations of
wheels and filters, we can count the number of barriers in each generator.

The following proposition implies that counting barriers is not well defined on arbitrary homology classes
in H�.config.n; w//. As mentioned above, this suggests that the structure of H�.config.n; w// is not
well described by FId–modules.

Proposition 8.6 There is a nontrivial element of H4.config.8; 3// that is simultaneously a sum of
nonbarrier generators , a sum of one-barrier generators , and a sum of two-barrier generators.

As a warm-up before proving the proposition, we consider the case of nD 4, w D 3 and � D 2 1 4 3.
Then P.n� #�;W.�/; w/ is a no-.wC1/-equal space with two points of weight 2, which we denote by
Œ2 1� and Œ4 3�. Then, because i� is a chain map, we have

i�
�
@.Œ2 1�Œ4 3�/

�
D @

�
i� .Œ2 1�Œ4 3�/

�
:

The left-hand side is the sum (with some signs) of the two ways to concatenate the wheels 2 1 and 4 3,
whereas the right-hand side is the sum (with some signs) of the four cycles @.2 1 4 3/, @.2 1 3 4/, @.1 2 4 3/,
and @.1 2 3 4/, each of which can be thought of as an image under the S4–relabeling of @.1 2 3 4/, which,
for width w D 3, is a filter with four wheels each containing one disk, and is a barrier.

Proof of Proposition 8.6 Let � D 2 1 4 3 6 5 8 7. Then P.n� #�;W.�/; w/ is a no-.wC1/-equal space
with four points of weight 2, which we denote by Œ2 1�, Œ4 3�, Œ6 5� and Œ8 7�. We can apply any element
� 2 S4 to any chain in C�

�
P.n� #�;W.�/; w/

�
by permuting these four labels of points.

To construct our cycle, we take

z D
X
�2S4

sign.�/ � i�
�
�.Œ2 1� j Œ4 3� j Œ6 5� j Œ8 7�/

�
:

That is, we take the signed sum of all of the ways to concatenate the four wheels 2 1, 4 3, 6 5 and 8 7.
Each of these summands is already a basis element, although they differ as to which pairs are considered
filters of two wheels. Thus, their sum is nonzero in homology, and none of these wheels is a barrier, so it
is a sum of nonbarrier generators.

To write our element z as a sum of one-barrier cycles, we pair up all elements � in S4 that differ by
swapping the middle two wheels. One such pair gives

i�
�
Œ2 1� j @.Œ4 3�Œ6 5�/ j Œ8 7�

�
;

Geometry & Topology, Volume 28 (2024)



686 Hannah Alpert and Fedor Manin

which concatenates the wheels 2 1 (on the left) and 8 7 (on the right) to the cycle

i�
�
@.Œ4 3�Œ6 5�/

�
D @

�
i� .Œ4 3�Œ6 5�/

�
;

which is a sum (with some signs) of relabelings of the barrier filter @.3 4 5 6/. In this way we can write
our element z as a sum of generators, each one a concatenation of a 2–wheel, a barrier filter, and another
2–wheel.

To write our element z as a sum of two-barrier cycles, we group the elements � in S4 into quadruples:
permutations get grouped together if they differ by swapping the first two and/or the last two wheels. One
such quadruple gives

i�
�
@.Œ2 1�Œ4 3�/ j @.Œ6 5�Œ8 7�/

�
D˙@

�
i� .Œ2 1�Œ4 3�/

�
j @
�
i� .Œ6 5�Œ8 7�/

�
;

which, similar to the computation above, is a sum of generators, each one a concatenation of two barrier
filters.

9 Configuration spaces of unordered disks

The configuration space of n unordered disks of diameter 1 in a strip of width w is the quotient of
config.n; w/ by the action of Sn that permutes the disk labels, and it is homotopy equivalent to the
quotient of cell.n; w/ by the action of Sn. Because the action is cellular and free, this quotient is a cell
complex, which we call ucell.n; w/. In this section, we compute the homology of ucell.n; w/ (and thus
of the configuration space of unordered disks in a strip) with field coefficients, using the discrete Morse
theory methods from Section 3. In the version of discrete Morse theory that applies here, we do not need
to assume that the coefficients of the boundary map are ˙1, as is true for polyhedral cell complexes, but
only that these coefficients are units. We use field coefficients throughout this section, so all nonzero
coefficients are automatically units.

The concatenation product

Hj .ucell.n; w//˝Hj 0.ucell.n0; w//!HjCj 0.ucell.nCn0; w//

is well defined since there is no need to choose labels for the disks. Therefore, for any ring R,
H�.ucell.�; w/IR/ forms a noncommutative bigraded R–algebra.

The cells of ucell.n; w/ are labeled by symbols as in cell.n; w/, but the numbers in the symbols become
indistinguishable; the only remaining information is the sizes of blocks, which we also refer to as weights.
We notate them all by ı, and use exponents to denote the weights of the blocks. For instance, in cell.3/
we have

@.1 2 3/D�1 j 2 3C 2 j 1 3� 3 j 1 2C 2 3 j 1� 1 3 j 2C 1 2 j 3;

and the corresponding relation in ucell.3/ is

@.ı3/D�ı j ııCı j ıı� ı j ııCıı j ı� ıı j ıCıı j ı D �ı j ııCıı j ı:
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The following lemma describes all the coefficients of these boundary maps:

Lemma 9.1 In ucell.n/, the coefficient of the face ık j ın�k in the boundary of the cell ın can be
described as follows:

� If k and n� k are both odd , the coefficient is 0.

� If nD 2n0 is even and k D 2k0 is even , the coefficient is
�
n0

k0

�
.

� If nD 2n0C 1 is odd and k D 2k0 is even , the coefficient is
�
n0

k0

�
.

� If nD 2n0C 1 is odd and k D 2k0C 1 is odd , the coefficient is �
�
n0

k0

�
.

Proof Consider the cell 1 2 � � �n in cell.n/. In its boundary, there are
�
n
k

�
cells that project to ık j ın�k

in ucell.n/, and our task is to add up all of their signs. The sign of each such face is .�1/k times the sign
of the corresponding permutation.

We pair up the numbers 1 and 2, 3 and 4, and so on, pairing up n�1 and n if n is even, or leaving only n
unpaired if n is odd. We can match and cancel faces of 1 2 � � �n with opposite signs in the following way.
Given a face, if 1 and 2 are in different blocks, then swapping them gives another face with opposite sign.
Similarly, if 1 and 2 are in the same block, but 3 and 4 are in different blocks, then swapping 3 and 4
gives another face with opposite sign. In this way, for each face for which a pair of numbers is split up,
we match and cancel it with another such face by finding the first pair of numbers that is split up, and
swapping those numbers.

The remaining faces have 1 and 2 in the same block, 3 and 4 in the same block, and so on, and each one
corresponds to an even permutation, so the total sign is .�1/k . If k and n�k are both odd, then there are
no such faces. If k D 2k0 is even and there are n0 pairs, then the faces all have positive sign, and there are�
n0

k0

�
of them. And, if k D 2k0C 1 is odd and there are n0 pairs, then the faces all have negative sign, and

there are
�
n0

k0

�
of them.

9.1 Discrete Morse theory on ucell.n; w/ with Q coefficients

When ordering the cells to produce a discrete gradient vector field, part of the ordering will be chosen
later to be lexicographical. Thus, we need to compute the lexicographically least way to split each block.

Lemma 9.2 The lexicographically least face of the cell ın in ucell.n/ with nonzero coefficient is given
as follows. If n is odd , the least face is ı1 j ın�1. If n is even and greater than 2, the least face is ı2 j ın�2.
In the case nD 2, the cell ı2 is a cycle.

Proof If n is odd, then the coefficient of the face ı1 j ın�1 is �
�
.n�1/=2

0

�
D�1. If n> 2 is even, then the

coefficient of the face ı1jın�1 is zero, but the coefficient of the face ı2jın�2 is
�
.n�2/=2

1

�
D
1
2
.n�2/¤0.

Definition Two consecutive blocks in a symbol in ucell.n; w/ form a leader–follower pair in character-
istic 0 if they have the form ı1 j ı2k

0

or ı2 j ı2k
0

for some k0.
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Theorem 9.3 There is a discrete gradient vector field on ucell.n; w/ such that the critical cells are in
bijection with a basis for H�.ucell.n; w/IQ/. The critical cells are described as follows:

� For w D 2, every cell.

� For w D 3, the concatenation of zero or more blocks ı2, followed by zero or more singletons ı1.

� For w > 2 even , the concatenation of zero or more copies of ı2 j ıw or strings ending in ı1 j ıw ,
followed by the concatenation of zero or more singletons ı1. For each string ending in ı1 j ıw , it
consists of an optional ı2, followed by zero or more singletons ı1, followed by the pair ı1 j ıw .

� For w > 3 odd , the concatenation of zero or more pairs ı2 j ıw�1, followed by an optional ı2,
followed by zero or more singletons ı1.

Proof The proof is similar to the proof of Theorem 3.4, which finds a basis for homology of weighted
no-.wC1/-equal spaces. Informally, we construct a discrete vector field that pairs cells as follows: given
a symbol, we read it from left to right, and find the first place where either there is a block of weight
greater than 2, in which case we match down by breaking it into a leader–follower pair; or there is a
leader–follower pair of total weight at most w, in which case we match up by merging it into one block.

The cells that remain unpaired are those for which every leader–follower pair has total weight greater
than w and all other blocks are either ı1 or ı2. We observe that, if w is even, the only possibilities for
leader–follower pairs in critical cells are ı1 j ıw and ı2 j ıw , because the total weight must exceed w
while the weight of the follower block must be even and at most w. For the same reason, if w is odd,
the only possible leader–follower pair in a critical cell is ı2 j ıw�1. We also observe that there are no
instances of either ı1 j ı2 for w � 3, or ı2 j ı2 for w � 4, because these would be leader–follower pairs.
Combining these observations, we deduce that the critical cells must have the form given in the theorem
statement.

More formally, to check that this discrete vector field is gradient, we exhibit an ordering that produces it.
We order the cells of ucell.n; w/ as follows: if f and g are two cells, we find the first block where they
differ, and order according to this first differing block in f and g:

� a follower block is less than a nonfollower;

� two follower blocks are ordered in increasing order of weight; and

� two nonfollower blocks are ordered in decreasing order of weight.

Then we pair up two cells f and g, with f a face of g, if f is the greatest face of g and g is the least
coface of f. One can check that this pairing agrees with the pairing described informally above, and thus
that the critical cells match the desired description.

To check that the resulting critical cells correspond to a basis, by Lemma 3.1 it suffices to find a cycle z.e/
for each critical cell e such that e is the greatest cell in z.e/. Because we are using coefficients in Q, we
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do not have to worry about whether the coefficient is a unit, as long as it is nonzero. To construct z.e/, we
take the concatenation product of the following cycles: for each block that is not in a leader–follower pair,
it is already a cycle, and, for each leader–follower pair, as our cycle we take the boundary of the block
resulting from merging the pair. Note that every cell of this boundary that has a nonzero coefficient has
block weight at most w, because the original leader–follower pair is one of the two faces with the most
unbalanced block weights in this boundary. Because our leader–follower pair is the lexicographically
least face of the merged block, and our ordering is the reverse of lexicographical for nonfollowers, we see
that e is the greatest cell in z.e/. This implies that the cells z.e/ form a basis for H�.ucell.n; w/IQ/.

Corollary 9.4 The homology H�.ucell.�; w/IQ/ forms a bigraded algebra over Q under concatenation
product. It has the following generators:

(1) the singleton block ı1;

(2) the block ı2;

(3) for w > 3, the cycle @.ıwC1/; and

(4) for w > 2 even , the cycle @.ıwC2/.

It has the following relations:

(1) the singleton block ı1 commutes with ı2 for all w � 3;

(2) the singleton block ı1 commutes with @.ıwC1/ for all odd w > 3; and

(3) the symbol ı2 j ı2 is null-homologous for all w � 4.

Proof The description of the basis shows that the specified generators do generate.

Relation (1) is true because the boundary of the cell ı3 is �ı1 j ı2Cı2 j ı1. Relation (2) comes from the
relation @2.ıwC2/D 0 on ucell.n/; when w is odd, expanding @.ıwC2/ gives �ı1 j ıwC1CıwC1 j ı1

plus a sum of cells in ucell.n; w/, so applying @ again gives our desired homology relation. Relation (3)
is true because ı2 j ı2 is the only face of ı4 with nonzero coefficient.

The relations are enough to transform an arbitrary product of generators into one of our basis cycles.

Corollary 9.5 For fixed j and w, the Betti numbers ǰ .ucell.n; w/IQ/ as a function of n grow with an
upper bound of O.nq/, where q D bj=.w� 1/c. If w is odd , the Betti numbers either are 0 for all n or
are 1 for all sufficiently large n. If w is even , the Betti numbers either are 0 for all n or grow as ‚.nq/,
and the latter case holds for all j � .w� 1/.w� 3/.

Proof Deleting nonleader singleton blocks ı1 from a critical cell gives a critical cell with smaller n, and,
for each j and w, there are finitely many ways to form one of these “skyline” critical cells that have no
nonleader singletons. For each skyline critical cell, the only places to insert singletons are at the end (that
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is, on the right side) and immediately before the leader–follower pair ı1 j ıw , which exists only if w is
even. Thus, if w is odd, then, for all sufficiently large n, the Betti number ǰ .ucell.n; w/IQ/ is constant,
equal to the number of skyline critical cells for j and w, which is 1 if j is congruent to 0 or 1 mod w�1,
and 0 otherwise.

If w is even, for each j we claim that either there is a skyline with bj=.w� 1/c instances of ı1 j ıw , or
there is no skyline at all. We write j as q.w� 1/C r , with 0� r � w� 2. To construct the critical cell,
if r � q, we concatenate r instances of ı2 j ı1 j ıw and then q� r instances of ı1 j ıw . If r D qC 1, we
concatenate q instances of ı2 j ı1 j ıw , followed by one instance of ı2. If r > qC 1, there is no way to
build a critical cell of dimension j, because all blocks that contribute to the dimension are either ıw ,
contributing w� 1, or ı2, contributing 1, and there can be at most qC 1 instances of ı2.

Given a skyline critical cell with n0 disks and k instances of ı1 j ıw , the number of critical cells with
n disks arising from this skyline is

�
n�n0Ck

k

�
, corresponding to the number of ways to arrange n� n0

additional singletons and k dividers. This is a polynomial in n of degree k. If w is even, for each j either
there is no skyline, or there is a skyline with q D bj=.w� 1/c instances of ı1 j ıw , which is the largest
possible k. Thus, the Betti numbers grow like either 0 or ‚.nq/.

In the case where w is even and j � .w� 1/.w� 3/, the quotient q is at least w� 3 and the remainder r
is at most w� 2, so the case r > qC 1 is impossible, and the Betti numbers grow like ‚.nq/.

9.2 Discrete Morse theory on ucell.n; w/ with Fp coefficients

Using coefficients mod p, our strategy for computing the homology is the same as with Q coefficients, but
the answer becomes more complicated because we need to account for divisibility of binomial coefficients.

Lemma 9.6 For any prime p, the lexicographically least face of the cell ın in ucell.n/ with coefficient
not divisible by p is given as follows. If n is odd , the least face is ı1 j ın�1. If n is even , then we write n
as 2pk � a, where a is not divisible by p, and the least face is ı2p

k

j ı2p
k.a�1/.

Proof If n is odd, then the coefficient of the face ı1 j ın�1 is �
�
.n�1/=2

0

�
D�1, which is a unit in any Fp .

If nD 2pk �a is even, then the faces of ın have coefficients
�pka
k0

�
for various k0. These are the coefficients

of .xC y/p
ka � .xp

k

C yp
k

/a mod p, using the Frobenius homomorphism. These coefficients are 0
unless pk divides k0, and the coefficient

�pka

pk

�
is congruent mod p to

�
a
1

�
D a, which is a unit in Fp.

Definition Two consecutive blocks in a symbol in ucell.n; w/ form a leader–follower pair in character-
istic p if they have the form ı1 j ı2k

0

for some k0, or the form ı2p
k

j ı2p
k.a�1/ for some k � 0 and a not

divisible by p. We assign the pairs disjointly from left to right, so that, once a block is a follower in a
pair with the previous block, it cannot also be a leader in a pair with the next block.
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Theorem 9.7 For each prime p, there is a discrete gradient vector field on ucell.n; w/with Fp coefficients
such that the critical cells are in bijection with a basis for H�.ucell.n; w/IFp/. The critical cells are those
with the properties that every leader–follower pair has total weight greater than w, and every block that is
not a follower is either ı1 or has the form ı2p

k

for some k � 0. These properties imply that consecutive
blocks that are not followers appear in decreasing order of weight , weakly decreasing if pD 2 and strictly
decreasing if p ¤ 2, except for singleton blocks ı1 which may occur consecutively for any p.

Proof The proof is exactly analogous to that of Theorem 9.3, which addresses the case of Q coefficients.
As in that proof, our discrete vector field is informally described by reading each symbol from left to
right, breaking down any block of weight other than 1 or 2pk into a leader–follower pair, and combining
any leader–follower pair of total weight at most w.

We can describe the resulting critical cells more concretely as follows. To find all possibilities for
leader–follower pairs in critical cells, for each k � 0 such that 2pk �w, we find the least multiple of 2pk

greater than w. If this multiple is not divisible by 2pkC1, it has the form 2pka for a not divisible by p,
and the leader–follower pair ı2p

k

j ı2p
k.a�1/ may appear in a critical cell. We know that 2pk.a� 1/

is at most w, otherwise it would contradict the selection of 2pka as the least multiple of 2pk greater
than w. If the least multiple of 2pk greater than w is divisible by 2pkC1, there is no leader–follower pair
beginning with 2pk that may appear in a critical cell. In addition, if w is even, the leader–follower pair
ı1 j ıw may appear in a critical cell.

For each critical cell, we can imagine dividing the symbol into strings, where the followers are the dividers.
Each string consists of blocks ı1 and/or ı2p

k

for various k � 0, with constraints on the multiplicities
and order because they may not form leader–follower pairs. The pair of blocks ı2p

k

j ı2p
k

forms a
leader–follower pair if p ¤ 2, so it may not appear in one of these strings; if p D 2, it does not form a
leader–follower pair, so it may appear. The pairs ı1 j ı2p

k

for k � 0 and ı2p
k

j ı2p
l

for k < l do form
leader–follower pairs regardless of p, so they may not appear in one of these strings. Thus, if p D 2,
each string is an arbitrary sequence of blocks ı1 and ı2p

k

, any number of each, in weakly decreasing
order. If p ¤ 2, each string is an arbitrary sequence of any number of blocks ı1 and at most one of each
block ı2p

k

, in decreasing order. Note that, given a leader–follower pair, in the string preceding it, the
blocks cannot have smaller weight than the leader, because of the condition that the entire string including
the leader should be in decreasing order.

To complete the proof formally, we use the same ordering on cells of ucell.n; w/ as in the proof of
Theorem 9.3, except with the characteristic p definition of leader–follower pairs. The resulting discrete
gradient vector field agrees with the informal description above. We define cycles z.e/ as in the proof
of Theorem 9.3: for each leader–follower pair, we take the boundary of the block in ucell.n/ resulting
from merging the pair, while each block not in a leader–follower pair is already a cycle, and we take
the concatenation product of all these cycles to get z.e/. Applying Lemma 3.1, we conclude that the
cells z.e/ form a basis for H�.ucell.n; w/IFp/.
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Corollary 9.8 For each prime p, the homology H�.ucell.�; w/IFp/ forms a bigraded algebra over Fp
under concatenation product. It has the following generators:

(1) the singleton block ı1;

(2) the block ı2p
k

for each k � 0 with 2pk � w;

(3) if w is even but not equal to 2pk for any k � 0, the cycle @.ıwC1/; and

(4) the cycle @.ın
0

/, where n0 is the least multiple of 2pk greater than w, for each k � 0 such that
2pk � 1

2
w; in this case , we let k.n0/ denote the power of p in the prime factorization of n0.

It has the following relations:

(1) the singleton block ı1 commutes with ı2p
k

whenever 1C 2pk � w;

(2) the singleton block ı1 commutes with @.ın
0

/ whenever 1Cn0� 2pk.n
0/ � w;

(3) if p ¤ 2, then ı2p
k

j ı2p
k

is null-homologous whenever 4pk � w;

(4) we have ı2p
l

j ı2p
k

D�.ı2p
k

j ı2p
l

/ whenever 2pl C 2pk � w and k ¤ l ; and

(5) the block ı2p
l

commutes with @.ın
0

/ whenever 2pl Cn0� 2pk.n
0/ � w.

Proof The description of the basis shows that the specified generators do generate.

Relation (1) is true because the boundary of the cell ı1C2p
k

mod p is �ı1 j ı2p
k

C ı2p
k

j ı1. All
other faces have coefficients of 0, because

�pk

k0

�
� 0 mod p unless k0 is 0 or pk . Relation (2) comes

from the relation @2.ı1Cn
0

/D 0 on ucell.n/; expanding @.ı1Cn
0

/ gives �ı1 j ın
0

Cın
0

j ı1 plus a sum
of cells in ucell.n; w/, so applying @ again gives our desired homology relation. Relation (3) is true
because ı2p

k

j ı2p
k

is the only face of ı4p
k

with nonzero coefficient mod p when p ¤ 2. (If p D 2,
then ı4p

k

is a cycle.) To see that relation (4) is true, if l < k, the faces of ı2p
lC2pk

have coefficients�pl .1Cpk�l /

plk0

�
�
�1Cpk�l

k0

�
for various k0. The coefficients for k0D 1 and k0D pk�l are both 1 mod p and

are the coefficients of ı2p
l

jı2p
k

and ı2p
k

jı2p
l

. The other coefficients are all 0 mod p, because Pascal’s
triangle identity gives

�1Cpk�l

k0

�
D
�pk�l

k0�1

�
C
�pk�l

k0

�
, which is 0 mod p unless k0 is 0, 1, pk�l �1 or pk�l .

Relation (5) comes from the relation @2.ı2p
lCn0/D 0; using similar reasoning to relation (4), we find

that the only faces of @.ı2p
lCn0/ with nonzero coefficient have the form ık

0

j ı2p
lCn0�k0 , where k0 is

congruent to either 0 or 2pl mod 2pk . Thus, @.ı2p
lCn0/ is ı2p

l

j ın
0

Cın
0

j ı2p
l

plus a sum of cells in
ucell.n; w/, and then we may apply @ again, keeping in mind that the sign convention for the Leibniz
rule gives a negative sign to the term ı2p

l

j @.ın
0

/.

The relations are enough to transform an arbitrary product of generators so that consecutive nonfollower
blocks are in decreasing order, strictly decreasing if p ¤ 2. The resulting cycle is in our basis.

Corollary 9.9 For fixed j, w and prime p, the Betti numbers ǰ .ucell.n; w/IFp/ as a function of n
grow with an upper bound of O.nq/, where q D bj=.w � 1/c. If w is odd , the Betti numbers become
eventually constant in n; if w is even and j � .w� 1/.w� 3/, the Betti numbers grow as ‚.nq/.
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Proof As in Corollary 9.5, we can delete nonleader singleton blocks ı1 from each critical cell to form
one of finitely many “skylines”. To recover all critical cells with a given skyline, we insert singletons ı1

either on the far right, or immediately preceding a leader–follower pair ı1 j ıw , which can only exist if w
is even. In this case, the maximum possible number of such pairs is q D bj=.w� 1/c, so, summing over
all skylines, we find that the total Betti number is eventually equal to the number of skylines if w is odd,
and is bounded above by O.nq/ if w is even.

In the case where j � .w�1/.w�3/, we can construct a skyline critical cell with q instances of ı1 jıw in
exactly the same way as in Corollary 9.5. The existence of such a skyline implies that ǰ .ucell.n; w/IFp/
grows with a lower bound of �.nq/, matching the upper bound.

10 Open questions and further directions

(1) One generalization of the disks in a strip configuration spaces is the following. Let E ! B be
a locally trivial bundle, and consider the configuration space of n distinct points in E such that each
fiber of the bundle may contain at most w of them. What do our methods say about the homology
of this configuration space? We predict that, if some neighborhoods in B are one-dimensional, then
the homology exhibits the same noncommutativity as that of disks in a strip, but that, if B is every-
where at least two-dimensional, then the homology of the configuration space is a finitely generated
FI–module.

(2) The representation stability properties of the configuration space of n points on a given manifold
come in some sense from the special case where the manifold is Euclidean space; the special case can
be considered a local model. In particular, when the manifold has an end, the homology of the manifold
configuration space, considered for all n at once, is a module over the twisted commutative algebra given
by the homology of the Euclidean configuration space. The algebra acts by inserting cycles near infinity
in the end of the manifold. Does our disks-in-a-strip configuration space act as a local model for other
configuration spaces, for which the homology exhibits similar finite generation properties due to its being
a module? For instance, what can we say about the homology of the configuration space of disks in the
product of an interval with a noncompact 1–complex, such as the union of three rays with a common
starting point?

(3) Our proof that H�.config.n; w// is finitely generated as a twisted noncommutative algebra relies
on fully computing H�.config.n; w// and exhibiting the generators. Is there a more abstract algebraic
framework that would prove finite generation without computing the homology?

(4) Having described H�.config.n; w//, but not at all equivariantly, we can ask about its Sn–action
by permuting the disk labels. In its decomposition into irreducible representations of Sn, how do the
multiplicities grow in n? For finitely generated twisted noncommutative algebras in general, by what
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patterns can the multiplicities grow? In particular, can one use presentations by generators and relations
as in Section 8 to recover this information?

Appendix Computer calculations for small n

In [Alpert et al. 2021], the Betti numbers of config.n; w/ were computed for n� 8 using off-the-shelf
software for computing persistent homology. This involved running the software on the complex cell.8/,
which has over 5 million cells. In general, cell.n/ has 2n�1nŠ cells.

We wrote a Python script that harnesses Theorems B and C to compute the persistence diagram of
H�.cell.n;�//. Although the runtime still grows as nŠ, this is faster than the above method by an
exponential factor; for n D 12, the script ran on a laptop in less than 90 minutes. Figures 13, 14, 15
and 16 show a graphical representation of the resulting persistence diagram. We would like to thank
Matthew Kahle for making the first version of this series of figures.

0 1 2 3 4 5 6 7 8 9 10 11 12 1

� 479001599
� 1

PH0

� 114621
� 66

PH1

� 45412532
� 1485
� 1485
� 560779
� 440

PH2

� 862284291
� 142065
� 13860
� 9638904
� 15840
� 15840
� 2476046
� 2970

PH3

0 1 2 3 4 5 6 7 8 9 10 11 12 1

Figure 13: The persistent homology for the configuration space of 12 disks of unit diameter in
a strip of width w. The thickness of a bar in the barcode is proportional to the logarithm of the
multiplicity, and the exact multiplicity is in the rightmost column.
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0 1 2 3 4 5 6 7 8 9 10 11 12 1

� 1696133670
� 21992355
� 51975
� 299874146
� 498960
� 36960
� 203280
� 32689536
� 97020
� 83160
� 9654226
� 19008

PH4

� 372989925
� 56469105
� 62370
� 1102128291
� 8854560
� 554400
� 1108800
� 171699220
� 2234925
� 332640
� 956340
� 93580608
� 565488
� 399168
� 32678834
� 110880

PH5

� 7474005
� 10395
� 1528982070
� 54802440
� 7638400
� 2571800
� 1051597536
� 18426870
� 3326400
� 623700
� 5197500
� 341009900
� 8759520
� 1330560
� 3326400
� 218407992
� 2893275
� 1663200
� 93586558
� 570240

PH6

0 1 2 3 4 5 6 7 8 9 10 11 12 1

Figure 14: The persistent homology for the configuration space of 12 disks of unit diameter in
a strip of width w. The thickness of a bar in the barcode is proportional to the logarithm of the
multiplicity, and the exact multiplicity is in the rightmost column.
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0 1 2 3 4 5 6 7 8 9 10 11 12 1

� 186832800
� 95356800
� 17371200
� 2032800
� 1073067996
� 101211495
� 14968800
� 3742200
� 12370050
� 565141500
� 43659000
� 7983360
� 3991680
� 13970880
� 500107300
� 26756730
� 4928000
� 9424800
� 390893448
� 11579040
� 5702400
� 218405507
� 2494800

PH7

� 5667200
� 246400
� 159667200
� 65835000
� 61871040
� 6860700
� 10187100
� 763088964
� 67858560
� 19958400
� 11975040
� 4790016
� 26078976
� 442480500
� 67626405
� 14784000
� 9979200
� 24948000
� 470726300
� 53519400
� 14731200
� 19958400
� 479001732
� 34656930
� 14968800
� 390894173
� 8870400

PH8

0 1 2 3 4 5 6 7 8 9 10 11 12 1

Figure 15: The persistent homology for the configuration space of 12 disks of unit diameter in
a strip of width w. The thickness of a bar in the barcode is proportional to the logarithm of the
multiplicity, and the exact multiplicity is in the rightmost column.
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0 1 2 3 4 5 6 7 8 9 10 11 12 1

� 6237000
� 1247400
� 43110144
� 15966720
� 7983360
� 4790016
� 12773376
� 121118976
� 31392900
� 15030400
� 9979200
� 15966720
� 30381120
� 154719180
� 46316160
� 14731200
� 17107200
� 28512000
� 201857920
� 53426835
� 30270240
� 27442800
� 302786748
� 69325080
� 26611200
� 479001601
� 23950080

PH9

� 6652800
� 6652800
� 13685760
� 13685760
� 16216200
� 14968800
� 30405760
� 17740800
� 69337521
� 23950080
� 302786759
� 43545600

PH10

� 39916800PH11

0 1 2 3 4 5 6 7 8 9 10 11 12 1

Figure 16: The persistent homology for the configuration space of 12 disks of unit diameter in
a strip of width w. The thickness of a bar in the barcode is proportional to the logarithm of the
multiplicity, and the exact multiplicity is in the rightmost column.
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