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We compute the moduli of endomorphisms of the de Rham and crystalline cohomology functors, viewed
as a cohomology theory on smooth schemes over truncated Witt vectors. As applications of our result,
we deduce Drinfeld’s refinement of the classical Deligne–Illusie decomposition result for de Rham
cohomology of varieties in characteristic p > 0 that are liftable to W2, and prove further functorial
improvements.

14F30, 14F40; 14D23

1. Introduction 759

2. Stacky approach to de Rham cohomology 764

3. Endomorphisms of de Rham cohomology, I 776

4. Endomorphisms of de Rham cohomology, II 780

5. Application to the Deligne–Illusie decomposition 792

Appendix A. Topos-theoretic cotangent complex 798

Appendix B. A product formula for .1CW Œp�/� in characteristic p > 0 800

References 801

1 Introduction

Let A be a ring and let X be a smooth A–scheme. The algebraic de Rham cohomology is a cohomology
theory designed by Grothendieck. It is defined functorially by sending X to the hypercohomology of the
de Rham complex ��

X=A
. The de Rham complex ��

X=A
is not just a complex, but also has the structure

of a sheaf of commutative differential graded algebras. One can therefore view the output of de Rham
cohomology as a commutative algebra object in the derived 1–category D.A/, which we denote by
CAlg.D.A//. This way, one obtains a functor dR. � /=A W Algsm

A ! CAlg.D.A//, which sends any smooth
A–algebra R to dRR=A 2 CAlg.D.A//. Our primary goal here is to study endomorphisms of this functor.

Studying properties of the de Rham cohomology theory as a functor is interesting for a number of reasons.
From a technical point of view, in certain situations, showing that the de Rham cohomology functor has
no nontrivial automorphisms has been used as a key tool by Bhatt, Lurie and Mathew [7] and Li and
Liu [21] to prove that certain constructions are functorially isomorphic. Further, in [24] Mondal showed
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760 Shizhang Li and Shubhodip Mondal

that one can reconstruct the theory of crystalline cohomology as the unique deformation of de Rham
cohomology theory viewed as a functor defined on smooth Fp–schemes.

From a different perspective, any property enjoyed by the de Rham cohomology functor will in particular
be enjoyed by de Rham cohomology of every smooth algebraic variety. For example, if the functor
dR. � /=A has many endomorphisms, one potentially obtains many interesting endomorphisms of the
de Rham cohomology of any smooth algebraic variety, which could be useful for making interesting
geometric conclusions. The classical study and usage of the Frobenius operator on de Rham or crystalline
cohomology theory is an instance of such a perspective.

Our main motivating questions, which can be seen as a “moduli” enhancement of the question of
endomorphisms of the de Rham cohomology functor, are the following:

(1) Given a ring A, what is the endomorphism monoid1 of the functor dR that sends any smooth
A–algebra R to dRR=A 2 CAlg.D.A//?

(2) More generally, letting B be an arbitrary A–algebra, what is the endomorphism monoid of the
analogous functor R 7! dRR=A˝AB 2 CAlg.D.B//?

(3) Finally, consider the presheaf2 (of monoids) on .A–Alg/op that sends an A–algebra B to the
endomorphism monoid in previous question. Is it represented by a (monoid) scheme? If so, what
is the representing monoid scheme?

We address the above questions when ADWn.k/ for any perfect ring k, where Wn.k/ denotes the ring
of n–truncated Witt vectors. We expect the methods to be extendable to more general base rings but we
do not pursue that direction further here.

A foretaste of the main theorem

For simplicity, let us focus now on the case where AD Z=pn or Zp and B is an Fp–algebra.

Theorem 1.1 (special case of Theorem 4.24, the main theorem) (1) WhenADFp, the endomorphism
monoid of dR. � /=A˝AB is N.Spec.B//, where N denotes the constant monoid scheme associated
with the natural numbers.

(2) However , when AD Z=pn for n� 2, the endomorphism monoid of dR. � /=A˝AB is a semidirect
product of N.Spec.B// with a group W.B/�ŒF �, the Frobenius kernel of the unit group in W.B/.

Remark 1.2 (1) Roughly speaking, whenADZ=pn for n�2, Theorem 1.1 says that the endomorphism
monoid of dR is very large. More precisely, Theorem 1.1 provides an action of W �ŒF � on the mod p
de Rham cohomology of a variety liftable to W2. Recently, Drinfeld has also observed an action of
W �ŒF � on the mod p de Rham cohomology, using his (and, independently, Bhatt and Lurie’s) theory of
“prismatization”. The main new ingredient of Theorem 1.1 is to go beyond this action and classify all the

1A priori we get a monoid object in spaces rather than an actual monoid. But in the cases of interest to us, this space is discrete;
see Lemmas 3.3 and 4.2.
2Mathew pointed out to us that this presheaf is automatically an fpqc sheaf by flat descent.
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On endomorphisms of the de Rham cohomology functor 761

endomorphisms. Interestingly, our proof of Theorem 1.1 does not make any use of prismatization, and only
uses the stacky approach to de Rham cohomology theory in positive characteristic that already appeared
in work of Drinfeld [13]. However, while the stacky approach (including the theory of prismatization)
helps in constructing the endomorphisms, it does not a priori offer any strategy to prove that they are all
the endomorphisms. To achieve this, we employ some very different additional techniques in the proof
of Theorem 1.1, such as the theory of affine stacks due to Toën [29], a version of the topos-theoretic
cotangent complex (see Appendix A) due to Illusie [17], and some explicit computations when necessary.

(2) The W �ŒF � action resulting from Theorem 1.1 will be utilized to prove a strengthened version of
the Deligne–Illusie decomposition; see Theorem 1.6. See Corollary 1.7 for an application of the full
classification offered by Theorem 1.1.

(3) From the above calculation, one finds that, for ADZ=pn, the association B 7! End.dR. � /=A˝AB/
defines a sheaf of monoids representable by a scheme denoted by End1;n. The representing monoid
scheme depends on AD Z=pn and stabilizes when n� 2.

The stabilization we refer to means the following: Observe that we have a natural commutative diagram

Algsm
Z=pn

dR˝B ''

mod pn�1

// Algsm
Z=pn�1

dR˝Bvv

CAlg.D.B//

which induces a sequence of maps of schemes

End1;1! End1;2! � � � ! End1;n! � � � :

Our theorem says the first map is a closed immersion, and all subsequent maps are isomorphisms.

Remark 1.3 The representing monoid scheme stabilizes as soon as A leaves characteristic p; this
indicates that the functorial Frobenius endomorphism is solely responsible for the rigidity of de Rham
cohomology theory in characteristic p.

Regarding endomorphisms of de Rham cohomology itself, we also get the following:

Theorem 1.4 (special case of Proposition 3.5) When AD Zp, the endomorphism monoid of dR^. � /=A
is N, given by powers of the Frobenius.

Here the dR^ denotes the p–adic derived de Rham cohomology theory; see Bhatt [3]. The fact that there
is no automorphism of p–adic derived de Rham cohomology theory when the base ring is p–complete
and p–torsion-free was observed by Li and Liu [21, Theorem 3.14].

Remark 1.5 In both cases ADFp and Zp above, we only see powers of the Frobenius as endomorphisms
of the (p–adic) de Rham cohomology, but this is for two different reasons: when AD Fp it is due to the
existence of the Frobenius endomorphism on the category of A–algebras, whereas for AD Zp it comes
from the fact that A is p–torsion-free, so a certain huge group scheme has no nontrivial A–valued point.
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762 Shizhang Li and Shubhodip Mondal

In Theorem 4.24 we work in a more general setting. Namely we calculate the moduli of endomorphisms
of crystalline cohomology theory, leading to sheaves Endm;n (see Corollary 4.27 for the precise statement).
The result is similar: the Frobenius endomorphisms that people “knew and loved” correspond to the monoid
underlying the connected components of the whole endomorphism monoid. In fact, there is a distinguished
point in each component which corresponds to a power of the Frobenius endomorphism. Furthermore, the
identity component also stabilizes to a large and mysterious group scheme (see Definition 4.14), which
demands further investigations (see Remark 4.30). One surprising feature is that the above group scheme
is nonflat over the base in the general setting of crystalline cohomology.

Application to the Deligne–Illusie decomposition

As an application of the W �ŒF �–action, Drinfeld observed a refinement of the Deligne–Illusie decomposi-
tion, which was communicated to us by Bhatt (see Bhatt and Lurie [5, Example 4.7.17 and Remark 4.7.18;
6, Remark 5.16]): since �p �W �ŒF �, the mod p de Rham cohomology of varieties liftable to W2 has the
structure of a �p–representation. It is easy to see that the W �ŒF �–action preserves conjugate filtration.
Then one needs to show that the i th graded piece of conjugate filtration is pure of weight i 2 Z=p as a
�p–representation. In [5; 6], this statement is proven by establishing a relation between theW �ŒF �–action
and the “Sen operator” defined in loc. cit. In Theorem 5.4, we use a more direct argument to check that
the weight statement holds for the W �ŒF �–action coming from our Theorem 1.1.

Theorem 1.1, coupled with the calculation of weights from Theorem 5.4 as above, immediately implies
the following improvement of results due to Achinger and Suh [1, Theorem 1.1], which in turn is a
strengthening of Deligne and Illusie’s result [12, corollaire 2.4]. In particular, our approach gives a proof,
different from Bhatt and Lurie’s, of the following result, which does not make any use of prismatization:

Theorem 1.6 (Bhatt and Lurie [6] and Drinfeld; see Corollary 5.6) Let k be a perfect ring of charac-
teristic p > 0, let X be a smooth scheme over W2.k/, and let a � b � aC p � 1. Then the canonical
truncation �Œa;b�.��Xk=k

/ splits. Moreover , the splitting is functorial in the lift X of Xk .

Since our calculation shows the endomorphism monoid of mod p de Rham cohomology stabilizes afterW2,
philosophically it says that further liftability overWn for n> 2 provides no extra knowledge on the mod p
de Rham cohomology.

It is still an open problem whether there exists a smooth variety X (necessarily of dimension dimX > p)
over k which lifts to W2.k/ for which the de Rham complex is not decomposable.3 Using Theorem 1.1,
we obtain a somewhat negative result in this direction: we show that the de Rham complex of smooth
varieties over k liftable toW2.k/ does not completely decompose in a functorial manner as a commutative
algebra object in the derived category.

3A counterexample has recently been constructed by Petrov [27].
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Corollary 1.7 (see Proposition 4.29) There is no functorial splitting

dR.�˝W2.k/k/=k '

M
i2N�0

Grconj
i .dR.�˝W2.k/k/=k/

as a functor from smooth W2.k/–algebras to CAlg.D.k//.

The above statement was also observed by Mathew. His idea for a proof does not use the full calculation
of endomorphism monoids as in Theorem 1.1, whereas for us it is a consequence of that calculation.

Lastly, one may wonder if the Drinfeld splitting agrees with the Deligne–Illusie splitting (which
has an 1–categorical functorial enhancement; see Kubrak and Prikhodko [20, Theorem 1.3.21 and
Proposition 1.3.22]). Both splittings are obtained from the splitting of the first conjugate filtration via an
averaging process; see step (a) in Deligne and Illusie’s proof of [12, théorème 2.1]. To guarantee that the
above two splittings are functorially the same, we show the following uniqueness:

Theorem 1.8 (see Theorem 5.10 for the precise statement) There is a unique functorial splitting (as
Filconj
0 –modules)

Filconj
1 .dR.�˝W2.k/k/=k/D Filconj

0 .dR.�˝W2.k/k/=k/˚Grconj
1 .dR.�˝W2.k/k/=k/:

In particular, the Deligne–Illusie splitting of Kubrak and Prikhodko [20], the Drinfeld splitting of Bhatt
and Lurie [5; 6], and the splitting induced by Theorem 1.1 must all agree.

Outline of the proof of Theorem 1.1

Let us briefly outline the key ingredients in the proof of Theorem 1.1. In doing so, we will also give a
rough outline of the paper. For simplicity, let us fix AD Z=pn, and let B be an Fp–algebra.

(0) Theorem 1.4 is within reach of the quasisyntomic descent techniques introduced by Bhatt, Morrow and
Scholze [9]; see Section 3. We also use quasisyntomic descent techniques to show that the endomorphism
spaces of interest to us are actually discrete (see Lemmas 3.3 and 4.2).

(1) For Theorem 1.1(2), we need to make use of the stacky approach to de Rham or crystalline cohomology
due to Drinfeld [13; 14], which can be seen as a positive-characteristic analogue of Simpson’s de
Rham stack; see Simpson [28]. Here we use a compressed version of the stacky approach: the functor
dR. � /=A˝A B is built as the unwinding (see Section 2.4) of an A–algebra stack over BI this stack is
denoted by A1;dR

B (we often omit B to ease the notation). This unwinding construction is a variant of a
construction used by Mondal [24, Section 3]. Note the amusing switch of roles played by A and B: the
de Rham cohomology theory is a cohomology theory for varieties over A with coefficient ring being B ,
whereas the stack A1;dR

B is an A–algebra object over B .

(2) It turns out that the underlying stack A1;dR is an affine stack, in the sense of Toën [29]. Roughly
speaking, for affine stacks one can pass to the “ring” of derived global sections in a lossless manner.
Using this property, in Proposition 4.4 we show that End.dR. � /=A˝AB/' EndA–Alg–St.A

1;dR
B /. Here the

latter endomorphisms are taken in the category of A–algebra stacks over B .
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764 Shizhang Li and Shubhodip Mondal

(3) Using the description of A1;dR as the quotient stack ŒW=pW �, where W denotes the ring scheme of
p–typical Witt vectors, in Section 4.2 we construct “enough” endomorphisms of dR. � /=A˝AB and show
that the endomorphism monoid is at least as big as Theorem 1.1 claims.

(4) To finish the proof of Theorem 1.1, one needs to show that there are no endomorphisms other than
the ones already constructed. To do so, we interpret an endomorphism of the algebra stack A1;dR as a
deformation of an endomorphism of the sheaf of rings �0.A1;dR/. We know that (see Proposition 4.20)
�0.A

1;dR
B /DGa;B because B is an Fp–algebra. Then we use the formalism of topos-theoretic cotangent

complexes due to Illusie [17] (see Appendix A) to understand this deformation problem. This is carried
out in Theorem 4.24, where we use the cotangent complex and the transitivity triangle to finish calculating
the desired endomorphism monoid.

Remark 1.9 Let A and B be as above. Combining steps (2) and (3), an endomorphism of the functor
End.dR. � /=A˝AB/ is the same datum as a natural endomorphism ofW.S/=Lp, as an animatedA–algebra,
for every (discrete) B–algebra S .
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2 Stacky approach to de Rham cohomology

The goal of this section is to describe the stacky approach to de Rham cohomology theory due to
Drinfeld [13]. Roughly, given a scheme X , Drinfeld constructed a stack XdR such that R�.XdR;O/
recovers the de Rham cohomology R�dR.X/. This should be seen as a positive characteristic variant of
the earlier construction of the de Rham stack due to Simpson [28].

For our purposes, we will need to work with a certain compressed version of this construction. Our
goal is to consider a single stack with enough structure encoded, which can naturally “unwind” itself to
construct the stack XdR for every scheme X . To this end, we will begin by discussing quasi-ideals (see
[14, Section 3.1; 24, Section 3.2]) and ring stacks, which formulates exactly the kind of extra structures
on a stack one needs to work with in order to use the unwinding machine. After that, we will discuss the
construction of this unwinding functor, and explain how to build a cohomology theory from a ring stack
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in general. We will then discuss the particular ring stack A1;dR which gives rise to de Rham cohomology
theory via this construction. For later application, the fact that the stack A1;dR is an affine stack in the
sense of [29] will be of particular importance to us. Therefore we will record the relevant definitions in
this section as well.

2.1 Quasi-ideals

Definition 2.1 (quasi-ideals) Let R be a ring and M be an R–module equipped with a map d WM !R

of R–modules which satisfies d.x/ �yD d.y/ �x for any pair x; y 2M . Such a data d WM !R satisfying
the aforementioned condition will be called a quasi-ideal in R, or simply a quasi-ideal.

A morphism of quasi-ideals .d1 WM1!R1/! .d2 WM2!R2/ is defined to be a pair of maps a WM1!M2

and b WR1!R2 such that the following compatibilities hold:

(1) d2aD bd1.

(2) a.r1m1/D b.r1/a.m1/.

(3) b is a ring homomorphism.

(4) a is linear.

In other words, we want a commutative diagram

M1 M2

R1 R2

d1

a

d2

b

such that b is a ring homomorphism and a is an R1–module map M1 ! b�M2. The category of
quasi-ideals will be denoted by QID.

Construction 2.2 (quasi-ideal as a simplicial abelian group) Given a quasi-ideal .d WM ! R/, we
obtain a map t W T WDM �R! R given by .m; r/ 7! r C d.m/. There is another map s WM �R! R

given by .m; r/ 7! r . There is also a degeneracy map e WR!M �R given by r 7! .0; r/. Lastly, there
is a map c W T �R;s;t T ! T given by

.r;m/� .r 0; m0/ 7! .r;mCm0/;

where t .r;m/D s.r 0; m0/ so that .r;m/�.r 0; m0/2T �R;s;t T . Therefore we obtain a groupoid denoted by

M �R!! R:

Note that the morphisms s, t , c and e are morphisms of abelian groups, so one can actually convert the
above data into a 1–truncated simplicial abelian group.

In the construction below, we explain how to attach a 1–truncated simplicial ring or a ring groupoid from
the data of a quasi-ideal.
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766 Shizhang Li and Shubhodip Mondal

Construction 2.3 (quasi-ideal as a simplicial commutative ring) Let d WM !R be a quasi-ideal. We
have already defined a groupoid

M �R!! R;

which can also be thought of as a 1–truncated simplicial abelian group. Next, we give a ring structure on
M �R. We define .m1; r1/ � .m2; r2/ WD .r2m1C r1m2C d.m1/m2; r1r2/. Now, as one easily checks,
the morphisms s, t , c and e in the definition of the groupoid

M �R!! R

are all ring homomorphisms with respect to the ring structure on M �R defined above. The above data
can be converted into a 1–truncated simplicial commutative ring.

Definition 2.4 (quasi-ideals in schemes) Let R be a ring scheme and M be a module scheme over R
equipped with a map d WM !R of R–module schemes. This data will be called a quasi-ideal in R if
d.x/ �y D d.y/ � x for scheme-theoretic points x; y 2M .

A morphism between quasi-ideals in schemes is defined in a way similar to Definition 2.1.

Finally, let us give some examples of quasi-ideals that will be used later on. For more details on these
examples, we refer the reader to [14, Sections 3.2–3.5] or [24, Section 2.2].

Example 2.5 Let G]
a!Ga denote the quasi-ideal obtained by taking the divided power envelope of the

origin inside Ga.

Example 2.6 Let B be any ring on which p is nilpotent. Then the functor S ! S[ WD lim
 ��F

S=p is
representable by the affine ring scheme SpecBŒx1=p

1

�, which will be denoted by Gperf
a .

Example 2.7 Let Gperf;]
a !Gperf

a denote the quasi-ideal obtained by taking the divided power envelope
of the closed subscheme defined by the ideal .p; x/ inside Gperf

a compatibly with the existing divided
powers of p.

Example 2.8 Let W denote the ring scheme of p–typical Witt vectors. By taking the kernel of the
Frobenius F , one obtains a quasi-ideal W ŒF �!Ga, which is isomorphic to G]

a!Ga as a quasi-ideal
in Ga.

Example 2.9 By considering the multiplication by p map on W , one obtains a quasi-ideal W �p
��!W .

2.2 Ring stacks

We begin by collecting some notation. If C and D denote two1–categories which have finite products,
then the category of finite product preserving functors will be given by Fun�.C;D/. Let PolyA denote
the category of finitely generated polynomial algebras over A.

Definition 2.10 (animated ring objects in a category) Let C be an1–category with products. Animated
A–algebra objects in C , denoted by ARings.C /A, is defined to be the category Fun�.Polyop

A ; C /.
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In the case where C is the1–category of spaces, then the above definition with A D Z recovers the
usual category of animated rings.

Remark 2.11 The1–category of animated rings has all small colimits. Given a simplicial commutative
ring, one can take the colimit over the simplex category and obtain an animated ring. In particular, given
a quasi-ideal, one can apply Construction 2.3 and obtain an animated ring.

Definition 2.12 (prestacks) The1–category of prestacks over a fixed (discrete) base ring B , denoted
by PreStB , is defined to be the category of functors Fun.AlgB ;S/, where AlgB is the category of discrete
B–algebras and S is the1–category of spaces.

We note that even though we do not impose any sheafiness conditions, the examples of stacks we consider
will all be (hypercomplete) fpqc sheaves of spaces.

Definition 2.13 (A–algebra prestacks over Spec.B/) The category ofA–algebra prestacks over Spec.B/,
denoted by A–Alg–PreStB , is defined to be the category of animated A–algebra objects in the category
PreStB .

Remark 2.14 Another way to define the category A–Alg–PreStB is as Fun.AlgB ;ARingsA/. However,
this is equivalent to the definition considered above since we have natural equivalence of categories

Fun.AlgB ;ARingsA/' Fun.AlgB ;Fun�.Polyop
A ;S//' Fun�.Polyop

A ;Fun.AlgB ;S//
' Fun�.Polyop

A ;PreStB/:

The middle equivalence uses the fact that product in functor category is calculated termwise; the precise
1–categorical (dual) assertion can be found in [23, Corollary 5.1.2.3].

Construction 2.15 (cone of a quasi-ideal) In view of Remark 2.14 and Construction 2.3, it follows
that, given a quasi-ideal d WM !R in schemes, the quotient prestack ŒR=M� (under the additive action
of M on the ring scheme R by translation via d ) has the structure of a ring prestack. In the context of
this paper, we will consider associated ring stacks of such ring prestacks, obtained by fpqc sheafification.

Example 2.16 We will see later that all the examples of quasi-ideals from Section 2.1 have the same cone.

2.3 Affine stacks

We will also use the notion of affine stacks due to Toën [29]. Here we will recall its definition and basic
properties very briefly, in the language of1–categories. To that end, we start by fixing an ordinary base
ringB . Let coSCRB denote the1–category of cosimplicial rings overB arising from the simplicial model
structure defined in [29, Theorem 2.1.2]; to construct the associated1–category from the simplicial model
category, one looks at the fibrant simplicial category obtained from the subcategory of fibrant–cofibrant
objects inside the given simplicial model category, and applies the simplicial nerve construction, which
produces an1–category by [23, Proposition 1.1.5.10]. It follows from [23, Corollary 4.2.4.8] that the
1–category coSCRB has all small limits and colimits.
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768 Shizhang Li and Shubhodip Mondal

Definition 2.17 (affine stacks) An object Y of PreStB is called an affine stack over B if there is an object
C 2 coSCRB such that Y is the restriction of the functor hC W coSCRB! S corepresented by C along the
inclusion AlgB! coSCRB . The full subcategory of such objects inside PreStB is denoted by AffStacksB .

Remark 2.18 It follows from the definition that the category of affine stacks is stable under small
limits; see [29, Proposition 2.2.7]. Also, by [29, Lemma 1.1.2, Proposition 2.2.2], an affine stack
is a hypercomplete fpqc sheaf of spaces. The key property of affine stacks that will be useful for
us is the fact that taking the derived global section functor induces an equivalence of 1–categories
AffStacksB ' coSCRop

B ; see [29, Corollary 2.2.3].

Remark 2.19 Even though the definition of the subcategory of affine stacks AffStacksB inside PreStB
a priori depends on the category coSCRB , the notion of being an affine stack is intrinsic: being an affine
stack is a property that can be formulated only by using the fpqc topology and the category of ordinary
rings. See [29, Theorem 2.2.9] for a more precise formulation of this statement using Bousfield localization.
A posteriori, the same intrinsic property carries over to the1–category coSCRB , which makes it rather
special compared to certain other related categories, such as the1–category of derived rings or E1–rings.

Example 2.20 An affine scheme is clearly an affine stack. More precisely, the category AffB of affine
schemes over B embeds fully faithfully inside the category AffStacksB of affine stacks over B .

Example 2.21 The stacks K.Ga; m/ for m� 0 are examples of affine stacks [29, Lemma 2.2.5]. On the
other hand, K.Gm; m/ is not an affine stack for any m> 0. By [29, Corollary 2.4.10], for pointed and
connected stacks over a field, being an affine stack is equivalent to the sheaf of all the higher homotopy
groups being representable by unipotent affine group schemes (possibly of infinite type).

Remark 2.22 We denote by St^B the 1–category of hypercomplete fpqc sheaves of spaces (see
[23, Section 6.5] for a discussion of hypercomplete1–topos). Translating the results [29, Lemma 1.1.2,
Proposition 2.2.2, Corollary 2.2.3] into the language of1–categories, we obtain a colimit-preserving
functor St^B ! coSCRop

B . There is also a natural colimit-preserving functor PreStB ! St^B , and the
composite functor denoted by R�. � ;O/ W PreStB ! coSCRop

B gives us the “derived global section
functor”. By construction, R�. � ;O/ W PreStB! coSCRop

B preserves all small colimits. By Definition 2.12
and [23, Lemma 5.1.5.5, Proposition 5.1.5.6], it follows that R�. � ;O/ can be simply described as the
left Kan extension of the functor AffB ! coSCRop

B (along the inclusion of categories AffB ! PreStB )
which sends an affine scheme to its underlying ring of global sections. This checks the compatibility of
two a priori different ways of defining the derived global section functor.

Remark 2.23 Suppose that Y is an affine stack over B which is corepresented by C 2 coSCRB (see
Definition 2.17). As noted in Remark 2.18, Y is a hypercomplete fpqc sheaf of spaces. According
to [29, Corollary 2.2.3] and Remark 2.22, we have a natural isomorphism R�.Y;O/' C in coSCRB .
Unwrapping all the definitions and using the equivalence AffStacksB'coSCRop

B , we obtain the categorical
implication that the identity functor coSCRB! coSCRB is naturally equivalent to the right Kan extension
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of the inclusion AlgB ! coSCRB along itself. Roughly speaking this means that, for any C 2 coSCRB ,
we have a natural isomorphism

C '
�

lim
 ��
C!A

A is discrete

A
�
2 coSCRB :

Remark 2.24 The observation in Remark 2.23 regarding right Kan extension implies that if D is any
1–category and F W coSCRB!D is a functor that is a right adjoint, then F is naturally equivalent to the
right Kan extension of the composite functor AlgB! coSCRB!D along the inclusion AlgB! coSCRB .

2.4 Unwinding ring stacks

In this section, we describe how to unwind4 the data of a ring stack to obtain a cohomology theory. This
construction is an1–categorical enhancement of [24, Example 3.0.1] and we will call this the unwinding
of a given ring stack. The construction only uses basic categorical principles such as Kan extensions, and
the necessary foundations can be found in [23].

Construction 2.25 (unwinding) We will construct a functor

Un W A–Alg–PreStB ! Fun
�
ARingsA;CAlg.D.B//

�
:

Here CAlg.D.B// denotes the commutative algebra objects in the derived1–category D.B/. We think
of the objects in the right-hand side as “algebraic cohomology theories”.

We begin by noting that by definition A–Alg–PreStB ' Fun�.Polyop
A ;PreStB/. By Kan extension, there

is a derived global section functor R� W PreStB ! CAlg.D.B//op. By composition, we get a functor

A–Alg–PreStop
B ! Fun

�
PolyA;CAlg.D.B//

�
:

Now we can perform a left Kan extension along the inclusion PolyA! ARingsA to obtain the desired
unwinding functor

Un W A–Alg–PreStop
B ! Fun

�
ARingsA;CAlg.D.B//

�
:

Example 2.26 When ADB and Y 2 PreStB is taken to be the ring scheme Ga;B , the functor Un.Ga;B/

is simply the forgetful functor ARingsA! CAlg.D.B//.

Below we will study compatibility of the unwinding construction with restriction of scalars. More
precisely, let Y 2A–Alg–PreStB . Let A0!A be a map of discrete rings. Then there is an obvious functor

res W A–Alg–PreStB ! A0–Alg–PreStB :

Let Y 0 WD res.Y/ 2 A0–Alg–PreStB . Applying the unwinding construction, we obtain two functors
Un.Y/ W ARingsA ! CAlg.D.B// and Un.Y 0/ W ARingsA0 ! CAlg.D.B//. Note that we also have a
natural functor (given by the derived tensor product) L WARingsA0!ARingsA. In this setup, we have the
following compatibility:

4A similar construction has been used by Bhatt in [4], under the name transmutation.
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Proposition 2.27 We have Un.Y/ ıL' Un.Y 0/ in Fun
�
ARingsA;CAlg.D.B//

�
.

Proof Since L is obtained by left Kan extension of the composite functor PolyA0
`
�! PolyA! ARingsA,

it would be enough to prove Un.Y/ ı `' Un.Y 0/ in Fun
�
PolyA;CAlg.D.B//

�
. By Construction 2.25,

Y is classified by a functor U W Polyop
A ! PreStB and Y 0 is classified by U 0 W Polyop

A0 ! PreStB ; for our
purpose, it would be enough to prove that U ı `op ' U 0. By Remark 2.14, it would be enough to prove
that the restriction of scalar functor ARingsA! ARingsA0 is induced by `op under the identifications
ARingsA ' Fun�.Polyop

A ;S/ and ARingsA0 ' Fun�.Polyop
A0 ;S/. But that follows from adjunction.

Notation 2.28 If k is a perfect field of characteristic p and Y is a Wn.k/–algebra stack for 1� n�1,
then we will use Y.1/ to denote the Wn.k/–algebra stack obtained by restriction of scalars along the Witt
vector Frobenius Wn.k/!Wn.k/; see Proposition 2.27.

Remark 2.29 Here the Frobenius twist Y.1/ of a stack Y will not play an important role, because we
always work over a perfect field and are interested in the question of endomorphisms of the stacks. Since
it also does not change the underlying stack, for the most part we will ignore this Frobenius twist.

Example 2.30 Proposition 2.27 shows that the Frobenius twisted forgetful functor

R 7!R.1/ WDR˝k;Frob k

from ARingsk ! CAlg.D.k// is the unwinding of G.1/

a;k
. The relative Frobenius R.1/ ! R can be

obtained by unwinding the map of k–algebra stacks Ga;k!G.1/

a;k
induced by the Frobenius.

2.5 De Rham cohomology via unwinding

In this section, we will describe how to use the unwinding construction to recover de Rham or crystalline
cohomology functors. To this end, let n;m � 1 be two arbitrary positive integers and let p be a fixed
prime. Further, we fix a perfect ring k of characteristic p. Let Wr.k/ denote the ring of r–truncated Witt
vectors. Using crystalline cohomology, or more precisely its derived variant (see Definition 2.31 below),
one obtains certain functors denoted by

dRm;n W ARingsWn.k/
! CAlg

�
D.Wm.k//

�
;

which we loosely still call de Rham cohomology functors and specify the n and m. To define them, one
really needs to use a deformation of the de Rham cohomology functor, ie the crystalline cohomology
functors.

The following essentially already appeared in 7, Section 10.2; 9, Section 8.2].

Definition 2.31 Let P be a finitely generated polynomial Wn.k/–algebra. Then define dRm;n.P / WD
R�crys.P0=Wm.k//, where P0 denotes the mod p reduction of P . We denote by dRm;n the left Kan
extension of the above functor from finitely generated polynomials to all animated Wn.k/–algebras which
takes values in CAlg

�
D.Wm.k//

�
.
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We use this notation as we believe the crystalline cohomology is secretly a disguise of derived de Rham
cohomology; see [3, Proposition 3.27; 21, Proposition 2.11] for instances of this perspective. Our goal is
to describe dRm;n as the unwinding of a certain object in Wn.k/–Alg–PreStWm.k/.

Definition 2.32 Let W denote the ring scheme over Spec.Wm.k// underlying the p–typical Witt vectors.
Using the Artin–Hasse homomorphism W.k/!W.W.k//, one can view W as a W.k/–algebra scheme.
Then d WW .1/ �p��!W .1/ defines a quasi-ideal in schemes. By considering its cone, one obtains a k–algebra
stack over Spec.Wm.k//, which can be regarded as a Wn.k/–algebra stack over Spec.Wm.k// via the
natural map Wn.k/ � k. We denote the resulting Wn.k/–algebra stack over Spec.Wm.k// by A1;dR

m;n.
When n is fixed, we will use A1;dR

B to denote the pullback of A1;dR
m;n to SpecB for a Wm.k/–algebra B .

Remark 2.33 The above definition gives a generalization of the definition of A1;dR as an Fp–algebra
stack due to Drinfeld to the more general case of an arbitrary perfect ring k. To do this, one crucially
needs to use the Artin–Hasse natural transformation W. � /!W.W. � //. One can abstractly construct
this natural transformation by realizing the functor W as a right adjoint to the inclusion of the category of
delta rings inside all rings.

Proposition 2.34 The stack underlying A1;dR
m;n is an affine stack.

Proof Indeed, the stack underlying A1;dR
m;n is obtained by taking the cone of d WW �p

��!W , which is the
same as the fiber of the induced map BW !BW . Since affine stacks are closed under limits, it would be
enough to show that BW is an affine stack. This follows from the proof of [26, Proposition 3.2.7]. Let us
give a rough sketch of their argument. Let Wn denote the ring scheme underlying n–truncated p–typical
Witt vectors. Using that certain obstructions vanish, one first argues that BW ' lim

 ��
BWn. Therefore, it

is enough to prove that BWn is an affine stack for all n. To do so, one argues by induction on n. Using
the short exact sequence

0!Ga!WnC1!Wn! 0;

one sees that BWnC1 is classified by a map BWn!K.Ga; 2/. More precisely, we have a fiber sequence

BWnC1 �

BWn K.Ga; 2/

Since the stacks K.Ga; m/ are affine stacks for m� 0, we are done by induction.

Remark 2.35 The above argument can be modified to more generally show that K.W;m/ is an affine
stack for all m� 0. Consequently, one can show that the abelian group stack A1;dRŒm� is also an affine
stack for all m� 0. We have R�dR.K.Ga; m//'R�.A1;dRŒm�;O/ for all m� 0.

Proposition 2.36 [6, Remark 7.9; 25] We have a natural isomorphism Un.A1;dR
m;n/' dRm;n.
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Proof By Proposition 2.27, the proof reduces to nD 1. Further, by [24, Theorem 1.1.1], one can reduce to
mD1. Let us now explain the proof of the natural isomorphism Un.A1;dR

1;1 /'dR1;1. By construction of the
unwinding functor, it would be enough to show that the restricted functors dR1;1 W Polyk! CAlg.D.k//
and Un.A1;dR

1;1 / W Polyk ! CAlg.D.k// are naturally isomorphic. Note that we have a natural functor
coSCRk ! CAlg.D.k// of 1–categories, and by construction Un.A1;dR

1;1 / lifts to give a functor, still
denoted by Un.A1;dR

1;1 / W Polyk! coSCRk . By quasisyntomic descent, dR1;1 also lifts to give a functor,
still denoted by dR1;1 WPolyk! coSCRk . It would be enough to prove that these two functors are naturally
isomorphic.

By considering gr0 of the Hodge filtration on de Rham cohomology and quasisyntomic descent, there is
a natural arrow dR1;1! � in the category Fun.Polyk; coSCRk/, where � W Polyk! coSCRk denotes the
natural inclusion functor.

Note that the derived global sections of A1;dR
1;1 agree with dR1;1.kŒx�/ in coSCRk . For this, one can use

the identification Cone.G]
a ! Ga/ ' Cone.W �p

��! W / and the Čech–Alexander complex. Since, by
Proposition 2.34, A1;dR

1;1 is an affine stack, it follows that the functors Un.A1;dR
1;1 / W Polyk! coSCRk and

dR1;1 W Polyk! coSCRk preserve finite coproducts. In order to check that they are naturally isomorphic,
it is enough to do so for the functors Un.A1;dR

1;1 /
0 W ARingsk! coSCRk and dR01;1 W ARingsk! coSCRk

obtained by left Kan extension along Polyk! ARingsk .

By [23, Proposition 5.5.8.15], the functors Un.A1;dR
1;1 /

0 and dR01;1 both preserve small colimits. Similarly,
by left Kan extension, � WPolyk! coSCRk extends to a colimit-preserving functor �0 WARingsk! coSCRk .
By the adjoint functor theorem, all of these functors have right adjoints. Let Un.A1;dR

1;1 /
0R, dR01;1

R and
�0R denote the right adjoints to Un.A1;dR

1;1 /
0, dR01;1 and �0, respectively. It would be enough to prove that

Un.A1;dR
1;1 /

0R ' dR01;1
R.

Let Un.A1;dR
1;1 /

0R
ı , dR01;1

R
ı and �0Rı denote the restrictions of the functors Un.A1;dR

1;1 /
0R, dR01;1

R and �0R,
respectively, along the inclusion of categories Algk! coSCRk . For our purpose, by considering right Kan
extensions as explained in Remark 2.24, it would be enough to prove that Un.A1;dR

1;1 /
0R
ı ' dR01;1

R
ı . Note

that they are both functors from Algk to ARingsk . Further, for an S 2 Algk , we have �0Rı .S/ D S ,
which identifies with the S–valued points of the ring scheme Ga. Thus we have a natural arrow
�0Rı 'Ga! dR01;1

R
ı in Fun.Algk;ARingsk/, where Ga is viewed as an object of Fun.Algk;ARingsk/

by considering its functor of points. We note the following lemma:

Lemma 2.37 The fiber F of the map Ga! dR01;1
R
ı identifies with the Ga–module scheme G]

a.

Proof To see this, we note that dR01;1
R
ı can be viewed as a ring stack whose underlying stack, by

construction, is the affine stack corresponding to the object dR01;1.kŒx�/ 2 coSCRk . Therefore, the stack
underlying F is given by the affine stack corresponding to the cosimplicial ring obtained by the pushout
k tdR01;1.kŒx�/

kŒx� in coSCRk . Since A1;dR
1;1 is an affine stack and R�.A1;dR

1;1 ;O/' dR01;1.kŒx�/, it follows

that k tdR01;1.kŒx�/
kŒx�'R�.G]

a;O/'Dx.kŒx�/, where Dx.kŒx�/ denotes the divided power envelope
of kŒx� at the ideal .x/. In particular, the pushout is a discrete ring, and the stack underlying F is an
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affine scheme. Let dR.kŒx�/ denote the object of CAlg.D.k// underlying dR01;1.kŒx�/. Then there is a
natural map

k˝dR.kŒx�/ kŒx�! k tdR01;1.kŒx�/
kŒx�

in CAlg.D.k//. We have an isomorphism k˝dR.kŒx�/ kŒx�' dRk=kŒx�, where dRk=kŒx� denotes derived
de Rham cohomology. By [3, Lemma 3.29], it follows that dRk=kŒx�'Dx.kŒx�/ and the natural map above
is an isomorphism. We note that Spec.k˝dR.kŒx�/kŒx�/'Spec.dRk=kŒx�/ also has the structure of a group
scheme, where the multiplication is induced by functoriality of dRk=. � / along the map kŒx�!kŒx�˝kkŒx�

given by x 7!x˝1C1˝x. Moreover, Spec.dRk=kŒx�/ has the structure of a Ga–equivariant group scheme,
where the Ga–action is given by the map kŒx�' dRkŒx�=kŒx�! dRk=kŒx�˝k kŒx�'Dx.kŒx�/˝k kŒx�
which is induced by functoriality of derived de Rham cohomology applied to the diagram

kŒx� kŒx�

kŒx�˝ kŒx� kŒx�

x!x

x!x˝x x!0

x˝1!0;1˝x!x

Using the explicit description of the induced maps, one explicitly verifies that Spec.dRk=kŒx�/ is naturally
isomorphic to G]

a as a Ga–module scheme. Further, by applying functoriality along the diagrams
mentioned earlier, we see that the map of schemes F ! Spec.dRk=kŒx�/ induced by the natural map
k˝dR.kŒx�/ kŒx�! k tdR01;1.kŒx�/

kŒx� above is actually a Ga–equivariant map of group schemes. Since
we have already noted that k˝dR.kŒx�/ kŒx�! ktdR01;1.kŒx�/

kŒx� is an isomorphism, this shows that F is

indeed isomorphic to G]
a as a Ga–module scheme, as desired.

Now we have obtained a natural map A1;dR
1;1 ' Cone.G]

a ! Ga/! dR01;1
R
ı of k–algebra stacks, ie as

objects in the category Fun.Algk;ARingsk/. We have already noted that their underlying stacks are
isomorphic. Thus we obtain an isomorphism A1;dR

1;1 ' dR01;1
R
ı . Since the stack underlying A1;dR

1;1 is an
affine stack, it follows that Un.A1;dR

1;1 /
0R
ı 'A1;dR

1;1 as objects of Fun.Algk;ARingsk/. This constructs the
isomorphism Un.A1;dR

1;1 /
0R
ı ' dR01;1

R
ı , which finishes the proof.

The following fact was used in the above proof, which uses compatibility of two models of the k–algebra
stack A1;dR over Spec.W.k//.

Proposition 2.38 [14, 3.5.1] There is an isomorphism of k–algebra stacks over Spec.W.k//:

Cone.G]
a!Ga/' Cone.W .1/ �p

��!W .1//:

The k–algebra structure on the source comes from the natural maps W.k/!Ga and W.k/ 17!p�V.1/��������!

W ŒF �. To see that the two underlying abelian group stacks are the same, notice that we always have
FV D p on the p–typical Witt ring, and hence we get a factorization

W .1/ �p
//

V $$

W .1/

W
F

;;
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One then applies the octahedral axiom to the above triangle. The fact that it induces an algebra isomorphism
can be seen, using the fact that F is an algebra homomorphism. Said differently, one pulls back the
quasi-ideal W .1/ �p��!W .1/ along W F

�!W .1/ to build the intermediate model relating the above two
models.

Remark 2.39 There is a natural map of k–algebra stacks Ga ! A1;dR whose unwinding provides a
natural transformation dR.S/! S , which corresponds to the natural projection onto the gr0 of the Hodge
filtration on de Rham cohomology. There is also a natural map A1;dR! �0.A1;dR/DG.1/

a of k–algebra
stacks which unwinds to the natural transformation S .1/ ! dR.S/ induced by Fil0 of the conjugate
filtration; see Proposition 4.20.

Now we will see that the quasi-ideal Gperf;]
a ! Gperf

a that appears in [24, Proposition 4.0.11] gives a
third model of the k–algebra stack A1;dR over Spec.W.k//; see also [13]. First, we will make some
preparations. Below we always fix a positive integer m.

Lemma 2.40 On the fpqc site of Z=pm, we have R lim
 ��F

W ' lim
 ��F

W , which is representable by an
affine scheme. Moreover , its functor of points can be described as B 7!W.B[/.

We denote the affine scheme representing lim
 ��F

W by W perf. This scheme can be given an W.k/–algebra
scheme structure when viewed over Spec.Wm.k//.

Proof The first assertion follows from [10, Example 3.1.7 and Proposition 3.1.10] and the fact that F
on W is faithfully flat. The inverse limit of affine schemes is again affine. For the last claim, we consider
the following diagram of fpqc sheaves as a pro-object:

� � � // W3
F
// W2

F
// W1

� � � // W4
F
//

R

OO

W3
F
//

R

OO

W2

R

OO

� � � // W5
F
//

R

OO

W4
F
//

R

OO

W3

R

OO

:::

R

OO

:::

R

OO

:::

R

OO

Taking the limit vertically and then horizontally gives us lim
 ��F

W . Next we take limit horizontally and
then vertically instead. Taking limits horizontally, we obtain the sheaf that sends B to lim

 ��F
Wr.B/, which

is canonically identified with W.B[/ by [8, Lemma 3.2] (with � in loc. cit. being p). The vertical map R
is actually an isomorphism now, also by [8, Lemma 3.2]. This gives lim

 ��F
W.B/'W.B[/, as desired.

Recall that F on W induces a map A1;dR ! Frobk;�A1;dR of k–algebra stacks which we will again
denote by F . We may untwist the Frobenius using the inverse of the Frobenius on k on the source of this
map. Therefore we get a k–algebra structure on the stack lim

 ��F
.A1;dR/.
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Lemma 2.41 We have an isomorphism of k–algebra stacks Gperf
a ' lim

 ��F
.A1;dR/ over Spec.Wm.k//.

Proof By Lemma 2.40, we see that

R lim
 ��
F

.A1;dR/D Cone
�
R lim
 ��
F

W
�p
��!R lim

 ��
F

W
�
D Cone.W perf �p

��!W perf/;

and its functor of points is given by B 7! B[. Hence lim
 ��F

.A1;dR/ is isomorphic to Gperf
a as a k–algebra

stack (and in fact is a scheme).

Therefore we get a map of k–algebra stacks Gperf
a !A1;dR over Spec.Wm.k//.

Lemma 2.42 The map of (k–algebra) stacks f WGperf
a !A1;dR is faithfully flat.

Proof We look at the diagram of k–algebra stacks

W perf //

##

Gperf
a

{{

A1;dR

and observe that the horizontal and the left arrow are faithfully flat, and hence the right arrow is faithfully
flat as well.

Let K be the quasi-ideal in Gperf
a given by the kernel of f . Then Lemma 2.42 implies that f gives rise to

an isomorphism of k–algebra stacks Cone.K!Gperf
a /'A1;dR. This is what we called the third model

of A1;dR; to complete the description, it remains to understand the quasi-ideal K.

Proposition 2.43 K is isomorphic to Gperf;]
a as a quasi-ideal in Gperf

a . In particular , as k–algebra stacks ,
Cone.Gperf;]

a !Gperf
a /'A1;dR.

Proof This assertion follows from applying the (derived) crystalline cohomology functor R�crys to the
pushout diagram

k kŒx1=p
1

�=x

kŒx� kŒx1=p
1

�

x 7!0

and noting that global sections of Gperf;]
a recover R�crys.kŒx

1=p1 �=x/ and R�crys preserves the pushout
diagram.

Remark 2.44 Using the above methods, let us sketch a quick proof of a result due to Bhatt, Lurie and
Mathew [7, Proposition 10.3.1]; see also [24, Proposition 4.0.7]. Under Proposition 2.36, Example 2.26
and Remark 2.39, the assertion amounts to studying endomorphisms of A1;dR respecting the natural map
Ga!A1;dR. By Proposition 2.38, it is enough to show that the quasi-ideal G]

a!Ga has no nontrivial
endomorphism as a quasi-ideal in Ga. This follows directly from graded Cartier duality [24, Section 2.4].
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Remark 2.45 The definition of A1;dR as a k–algebra stack differs from Cone.W �p
��!W / by a Frobenius

twist. Indeed, the latter unwinds to Hodge–Tate cohomology (or a suitable base change of prismatic
cohomology) [11] which is the Frobenius descent of de Rham cohomology (or crystalline cohomology);
see Proposition 2.27.

3 Endomorphisms of de Rham cohomology, I

The quasisyntomic descent technique introduced in [9] is a powerful tool in calculating endomorphisms
of de Rham cohomology functors in various settings. We will illustrate them in this section.

Let A!B be a map of derived p–complete rings with bounded p1–torsion. In this section, we consider
the functor that, for a derived p–complete A–algebra R, is defined by

.dR y̋AB/.R/ WD dRR=A y̋AB 2 CAlg.D.B//;

where dRR=A denotes the p–adic derived de Rham complex of R relative to A and y̋ denotes the derived
p–completed tensor product. If B D A, we simply denote the functor by dR.

We are interested in the space of endomorphisms of this functor, viewed (by left Kan extension) as an
object in the1–category of functors from the1–category of derived p–complete animated rings to
CAlg.D.B//. Let qSynA denote the small quasisyntomic site of A which consists of algebras that are
quasisyntomic over A and the covers given by quasisyntomic covers; see [9, Section 4.2].

Proposition 3.1 (see [9, Example 5.12]) The functor dR y̋AB , when restricted to qSynA, defines a
quasisyntomic sheaf.

Proof It suffices to check this after going derived modulo p, so we are reduced to checking the following:
given R! S a faithfully flat quasisyntomic map of algebras in qSynA with Čech nerve S�, there is an
isomorphism

dRR=A˝AB=p ' lim.dRS�=A˝AB=p/;

where B=p is the animated ring B ˝Z Fp. By base change of derived de Rham cohomology, this is
equivalent to showing

dR.R˝AB=p/=.B=p/ ' lim.dR.S�˝AB=p/=.B=p//:

See [19, pages 33–35] for a discussion of derived de Rham cohomology of maps of animated rings. To
prove the above isomorphism, we employ the conjugate filtration [19, Construction 2.3.12] (with base
ring Fp). The conjugate filtration is exhaustive and uniformly bounded above by �1, and hence it suffices
to prove that its graded pieces satisfy similar quasisyntomic descent. Using the description of graded
pieces of conjugate filtration, we are finally reduced to showingVi

ALR=A˝A '�.B=p/' lim
�Vi

S� LS�=A˝A '�.B=p/
�
:

Here '�.B=p/ expresses the A–module structure on B=p which is given by A! B ! B=p
'
�! B=p.

Proposition 3.2 finishes the proof.
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Proposition 3.2 (flat descent for “tensored” cotangent complex) Fix a base ringA. For each n�0 and an
object M 2D.A/, the functorR 7!

Vn
R LR=A˝AM is an fpqc sheaf with values in the1–categoryD.A/.

Proof One simply runs through the proof of [9, Theorem 3.1] and sees that it works in this generality.
For convenience of the reader, let us illustrate the proof when n D 1. Let R! S be a faithfully flat
map of A–algebras with Čech nerve S�. Using the transitivity triangle associated to A!R! S� and
applying the exact functor . � /˝AM , we get a cosimplicial exact triangle

LR=A˝R S
�
˝AM ! LS�=A˝AM ! LS�=R˝AM:

We are therefore reduced to showing:

� The map R! S� induces an isomorphism LR=A˝AM ! lim LR=A˝AM ˝R S
�.

� lim LS�=R˝AM D 0.

The first item follows from fpqc descent along R!S by considering LR=A˝AM 2D.R/. The second is
proved via a few reduction steps. By the convergence of the Postnikov filtration, it is enough to show that
lim�i .LS�=R˝AM/'0 inD.R/ for an arbitrary i 2Z, which will be fixed from now. Again, by faithfully
flat descent, it suffices to check that .lim�i .LS�=R˝AM//˝R S ' lim.�i .LS�=R˝AM/˝R S/ '

lim�i .LS�=R˝R S˝AM/' 0. Let S! T � denote the base change of R! S� along R! S . By base
change for cotangent complex, we need to show that lim�i .LT �=S˝AM/' 0. Since S!T � is the Čech
nerve of the map S! S˝RS , which admits a section, it follows that S! T � is a homotopy equivalence
of cosimplicial S–algebras. Now we observe that F WD �i .L. � /=S ˝AM/ is a functor from the category
of S–algebras to the category of abelian groups. Therefore the cosimplicial abelian group F.T �/ is
homotopy equivalent to F.S/. Since F.S/' 0, we obtain lim�i .LT �=S ˝AM/' 0, as desired.

As a consequence, let us record a result that says that the space of endomorphisms is actually discrete, ie
the homotopy groups in degrees above zero are trivial for every choice of basepoints.

Lemma 3.3 The space of endomorphisms End.dR y̋AB/ is discrete.

Proof First observe that dR y̋AB is left Kan extended from its restriction to the category of p–completely
finitely generated polynomial A–algebras. Hence the restricted functor has the same space of endo-
morphisms. Since our functor dR y̋AB is a sheaf on the quasisyntomic site of A and since p–completed
polynomial A–algebras are quasisyntomic over A, restricting our functor to the full subcategory of
A–algebras consisting of algebras that are quasisyntomic over A again computes the same endomorphism
space. Recall that, since the quasisyntomic site of A admits a basis consisting of large quasisyntomic A–
algebras (see [11, Definition 15.1]), we may restrict our (base-changed) de Rham cohomology functor to
this basis and compute the space of endomorphisms there. But now the values of the de Rham cohomology
functor are p–completely flat A–algebras, and hence the base-changed de Rham cohomology functor
has values which are discrete B–algebras [9, Lemma 4.6]. Consequently the space of endomorphisms
is discrete.
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If Spf.A/ has a disconnection, then the space of endomorphisms will be the product of endomorphism
spaces on each subset giving rise to the disconnection. Hence, without loss of generality, let us only treat
those A with connected formal spectrum. The following simple lemma will be used later, so let us record
it here:

Lemma 3.4 Let A0 be an idempotent-free Fp–algebra. Let q be a power of p. If every element a 2 A0
satisfies aq D a, then A0 is a subfield inside Fq .

In the rest of this section we will compute the space of endomorphisms in two cases:

Case I A is the Witt ring of an idempotent-free characteristic-p perfect algebra k and B D A.

Case II A is a perfect Fp–algebra and B is an arbitrary A–algebra.

Building on the method of [7, Sections 10.3 and 10.4], Case I is essentially worked out in the proof of
[21, Theorem 3.14]; let us state a slightly more general result:

Proposition 3.5 Assume that A is p–torsion free , p–adically complete , and Spec.A=p/ is reduced and
connected. Then

End.dR/D
�

FrobN
q if AD Zq WDW.Fq/;

id otherwise:

In [21, Section 2.3], a Frobenius map is constructed on p–adic derived de Rham cohomology when the
base is a p–torsion free ı–ring, and it is semilinear with respect to the Frobenius on the base ı–ring. The
Frobq appearing above is the corresponding power of the Frobenius associated with the base ı–ring Zq;
one checks easily that it is Zq–linear as desired.

Proof Let us use Perf to denote the full subcategory of those A–algebras which are of the form
AhX

1=p1

h
j h 2H i where H is a set. The proof of [21, Theorem 3.14] shows that

� restricting our de Rham cohomology functor to Perf, we get an injection of endomorphism monoids,

� the restricted de Rham cohomology functor has endomorphism monoid given by a submonoid in Z,

� an element n2Z above is characterized by its effect onRDAhX1=p
1

i, which sendsX 7!Xp
n

, and

� the image of the restriction map is contained in N � Z.

Let us assume that q D pn is in the image of the restriction map. Let RD AhX1=p
1

i. Take any a 2 A
and let us contemplate the map R!R=.X�a/. The induced map of de Rham cohomology is the natural
inclusion R D AhX1=p

1

i !D, where D is the algebra obtained by p–completely adjoining divided
powers of X � a to R. Extending the map X 7!Xq from R to D is the same as requiring the image of
X � a to have divided powers. Since in D=p we have Xp D ap, we see that Xq � aD aq � aCp � d
for some d 2D. The condition now becomes that aq � a admits divided powers, as .p/ always admits
divided powers. One can use the natural surjection D!R=.X �a/ to see that an element a0 2A admits
divided powers if and only if its image in D admits divided powers. Therefore the condition becomes
that aq � a 2 A should admit divided powers for all a 2 A. The above implies that in A=p we have
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.xq � x/p D 0 for all x 2 A=p, since A=p is assumed to be reduced. This is equivalent to all of its
elements satisfying xq D x. Now we use Lemma 3.4 to conclude that A=p is actually a subalgebra of Fq ,
and hence A must be the Witt ring of a perfect subfield inside Fq .

Remark 3.6 Our argument excludes the existence of the q–Frobenius if there is an element a 2 A such
that aq � a does not admit divided powers. For instance, if A=p has a transcendental element over Fp,
then there is no functorial endomorphism except for the identity, as claimed in [21, Remark 3.15(3)]. It
remains unclear to us, for instance, if the p–Frobenius can exist when AD ZpŒ

p
p�.

Next we turn to Case II, which concerns the (base-changed) de Rham cohomology theory on algebras
over a perfect ring of characteristic p. Once again the quasisyntomic descent approach helps us prove the
following statement (see Proposition 4.10):

Proposition 3.7 Let us either

(1) assumeA is an Fp–algebra andB is anA–algebra , and consider the cohomology theory dR˝AB; or

(2) assume AD k is a perfect Fp–algebra and B is a Wm.k/–algebra , and consider the cohomology
theory dRm;1˝Wm.k/B .

Then the endomorphism monoid of the cohomology theory is a submonoid of N.Spec.B//, where N

stands for the constant monoid scheme of natural numbers with 1 corresponding to the Frobenius.

Proof We largely follow the strategy from the proof of [21, Theorem 3.14]. Let us temporarily denote
the cohomology theory by F .

Note that in both cases F defines a quasisyntomic sheaf on qSynA. For (1) this is Proposition 3.1,5 and
for (2) this is Proposition 4.1. Therefore we can restrict ourselves to the category of QRSP A–algebras to
compute the endomorphism monoid.

Next we reduce to one particular QRSPA–algebra: RDAŒX1=p
1

�=.X/. To make the reduction, apply the
trick in the proof of [11, Proposition 7.10] or [21, Theorem 3.14] to see that, for any QRSP A–algebra S ,
there exists an explicit QRSP A–algebra S 0 D AŒX1=p

1

i I i 2 I �=.fj I j 2 J /, where fj is an ind-regular
sequence in AŒX1=p

1

i I i 2 I �, together with a surjection R0! R inducing a surjection of their values
of the cohomology theory. Hence, for any functorial endomorphism, its effect on F.S/ is determined
by that on F.S 0/. Finally, for each j 2 J , there exists a map R! S 0 sending X`=p

n

to .f 1=p
n

j /`. The
image of F.R/ under these maps generates F.S 0/, therefore the effect of a functorial endomorphism is
determined by its effect on F.R/.
Lastly we need to understand the effect of a potential functorial endomorphism f on D WD F.R/ D
D.x/.BŒx

1=p1 �/, the divided power envelope of .x/ in BŒx1=p
1

�. From the last four paragraphs of
the proof of [21, Theorem 3.14], we see there is a finite disconnection of Spec.B/ such that on the
j th component f .x`/D x`�p

nj for some natural number nj . Arguing componentwise, we may assume

5Since A is p–torsion we can drop the p–completion of the tensor product.
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without loss of generality that f .x`/D x`�p
N

for some natural number N ; we need to show that this
extends uniquely (assuming functoriality) to the whole of D. The algebra D admits a natural grading;
considering the functoriality given by the map R! R˝A AŒt

1=p1 � sending x` to x`˝ t` shows that
f must multiply the degree by pN . Now we claim that, for every n 2N, the effect of f on the set of
degree < pnC1 parts of D is determined by the effect of f on the set of degree < pn parts of D, which
will finish the proof. To that end, notice that the degree < pnC1 parts are generated by 
pnC1.x/ and
the degree < pn parts. Finally, we look at the map AŒx1=p

1

�=.X/! AŒy1=p
1

; z1=p
1

�=.y; z/ given by
x`=p

i

7! .y1=p
i

C z1=p
i

/`. By comparing the coefficients of 
pnCN .y/ � 
pnCN .p�1/.z/ of the equation
obtained from functoriality, one sees that the effect of f on 
pnC1.x/ is pinned down by its effect on

pn.x/ and 
pn.p�1/.x/.

To illustrate the last sentence of the above proof, let us take nD 0 and see how to pin down the effect of
f on 
p.x/. The functoriality gives us a commutative diagram

D
f

//

x 7!.yCz/
��

D

x 7!.yCz/
��

D˝B D
f˝f

// D˝B D

Tracing through commutativity for the element 
p.x/, we get that, if f .
p.x//D c � 
pNC1.x/ then

c � 
pNC1.y/C
X

1�j�p�1

1

j Š.p� j /Š
yp

N

� zp
N .p�1/

C c � 
pNC1.z/D c �
X

iCjDpNC1


i .y/
j .z/:

Therefore yp
N

� .zp
N .p�1/=.p� 1/Š/D c � 
pN .y/ � 
pN .p�1/.z/ in D˝B D, which clearly pins down

c D
.pN /Š � .pN .p� 1//Š

.p� 1/Š
:

Similar to Proposition 3.5, if we make a reducedness assumption on B=p then we can further decide
which powers of the Frobenius can appear depending on the size of B=p. In Proposition 4.10, using the
stacky approach, we will say precisely which powers of the Frobenius are allowed in terms of the map
k! B[ for Proposition 3.7(2); see Remark 4.8.

4 Endomorphisms of de Rham cohomology, II

In this section, we use a stacky approach to calculate endomorphisms of de Rham and crystalline
cohomology functors in situations where it seems difficult to use only quasisyntomic descent methods.

4.1 Unwinding equivalence

We fix two integers n;m � 1 and a perfect algebra k as before. The goal of this section is to study
endomorphisms of the functor

dRm;n W ARingsWn.k/
! CAlg

�
D.Wm.k//

�
:
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First, we will formulate this as a moduli problem. Let S be a discrete test Wm.k/–algebra. We can define
a functor Endm;n by

Endm;n.S/ WD End.dRm;n˝Wm.k/ S/:

This defines a functor Endm;n from Wm.k/–algebras to spaces, which a priori is a prestack. Let us study
the base-changed crystalline cohomology theory; similar to Proposition 3.1 we have the following:

Proposition 4.1 The functor dRm;n˝Wm.k/ S , when restricted to qSynWn.k/
, defines a quasisyntomic

sheaf.

Proof Denote the derived crystalline cohomology functor relative to W by dR1;n. Then we have
dRm;n ˝Wm.k/ S ' dR1;n ˝W.k/ S . Using the previous description and the fact that W.k/ is p–
torsion free, to check the quasisyntomic sheaf property it suffices to work derived modulo p. Since
.dR1;n˝W.k/ S/=Lp ' dR1;n˝k .S=Lp/, we may reduce to the case where m D n D 1 and S is a
1–truncated animated k–algebra. The proof of Proposition 3.1 works verbatim in this setting as well.

Lemma 4.2 The space of endomorphisms End.dRm;n˝Wm.k/ S/ is discrete.

Proof Similar to the proof of Lemma 3.3, since dRm;n ˝Wm.k/ S defines a quasisyntomic sheaf by
Proposition 4.1, the claim follows from the fact that, for a large quasisyntomic Wn.k/–algebra R, the
value .dRm;n˝Wm.k/ S/.R/D dRm;n.R/˝Wm.k/ S is a discrete algebra.

On the other hand, let us consider the stack A1;dR, which will always be viewed as a Wn.k/–algebra stack
over Wm.k/ in this section. We define the following prestack, capturing the endomorphisms of this stack
along with the extra algebra structure:

Notation 4.3 For a test Wm.k/–algebra S , let us use Sm;n.S/ to denote the space (groupoid) of
endomorphisms of the stack A1;dR

.S;n/
WDA1;dR

m;n �SpecWm.k/ SpecS as a Wn.k/–algebra stack over SpecS .

Proposition 4.4 (unwinding equivalence) The unwinding functor induces an isomorphism of prestacks

Un WSm;n ' Endm;n:

Proof Unwinding provides a map from the left-hand side to the right-hand side. To show that it is
an isomorphism, let us fix a test Wm.k/–algebra S . The Wn.k/–algebra stack A1;dR

S by definition is an
object of Fun�.Polyop

Wn.k/
;StacksS /. Since A1;dR

S is an affine stack (Proposition 2.34) and the category
AffStacksS is a full subcategory of StacksS , which is closed under small limits, we note that A1;dR

S

is classified by an object of the full subcategory Fun�.Polyop
Wn.k/

;AffStacksS /. By Remark 2.18, the
global section functor induces an equivalence of1–categories AffStacksS ' coSCRop

S , where the latter
denotes the 1–category of cosimplicial S–algebras. Therefore A1;dR

S can be equivalently viewed as
an object of Fun.PolyWn.k/

; coSCRS /. Hence endomorphisms of A1;dR
S as a Wn.k/–algebra stack can

be computed as endomorphisms of the classifying object, which we may call G, inside the category
Fun.PolyWn.k/

; coSCRS /.
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Now we look at the S–valued points of Endm;n. By properties of left Kan extensions, this is given by
endomorphisms of dRm;n˝Wm.k/ S as a functor from PolyWn.k/

to CAlg.D.S//. We can also left Kan
extend along the inclusion PolyWn.k/

! qSynWn.k/
and equivalently consider endomorphisms of the

functor H W qSynWn.k/
! CAlg.D.S//. By Proposition 4.1, we see that H is a quasisyntomic sheaf.

A basis for the quasisyntomic topology on qSynWn.k/
is given by flat algebras overWn.k/whose reduction

modulo p is a QRSP algebra over k. The category of such algebras will be denoted by QRSPWn.k/.
On such algebras, the functor H takes values in discrete rings. By properties of right Kan extension,
we obtain that the functor H has a canonical enrichment as a functor H W qSynWn.k/

! coSCRS and
endomorphisms can also be calculated in the category Fun.qSynWn.k/

; coSCRS /. By Proposition 2.36,
we see that restricting along PolyWn.k/

! qSynWn.k/
now realizes G as the canonical enrichment of

dRm;n˝Wm.k/ S . By properties of left Kan extension, the endomorphisms of H can also be computed as
endomorphisms of G in the category Fun.PolyWn.k/

; coSCRS /, which finishes the proof.

Proposition 4.5 The functor Sm;n W AlgWm.k/
! S is an fpqc sheaf. In fact , it is a sheaf of sets.

Proof This follows from Lemma 4.2 and the fact that A1;dR is an fpqc stack.

Before we proceed further, let us make the following definition. Let m� 1 be an arbitrary integer fixed
as before. Then Gperf

a represents an fpqc sheaf of rings on the category of Wm.k/–algebras.

Definition 4.6 We define a sheaf Frobk WAlgWm.k/
! Sets to be the subsheaf of Homk–Alg.G

perf
a ;Gperf

a /

such that, if B is a Wm.k/–algebra, then Frobk.B/ is the set of k–algebra scheme maps Gperf
a;B !Gperf

a;B

which is induced by an algebra map BŒx1=p
1

�! BŒx1=p
1

� that sends x to
P
i bix

pi

, where the sum
ranges over a finite subset in Z�0. The sheaf Frobk naturally has the structure of a commutative monoid.

Notation 4.7 For a Wm.k/–algebra B , we write the symbol Frobi to mean an element of i 2 Frobk.B/.
We also write FrobiCj to denote the composition of Frobi and Frobj .

Remark 4.8 We note that Frobk is a subsheaf of the sheafification of the constant monoid N. In fact, they
are equal when k D Fp , but this is not always the case. One can compute that, given a Wm.k/–algebra B ,
we have

Frobk.B/D Homk.Ga;B[ ;Ga;B[/:

In very concrete terms, the right-hand side above is the set of pairs .P; i/, where P is a partition
B D

Q
j2J Bj and i D .ij / is a function on Spec.B/, which is constant on each Spec.Bj / taking values

in N, satisfying the condition that the map Wm.k/[ D k! B[j factors through a subfield of the finite
field F

p
ij .

Consequently, one finds that when k is a perfect field, the sheaf Frobk is representable by either the
constant monoid scheme N or the singleton f0g, depending on whether k is finite or not.
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Proposition 4.9 There is an isomorphism of sheaf of monoids over k

S1;1 ' Frobk :

Proof Let k be a perfect ring. Let B be an arbitrary k–algebra. By Remark 4.8, our goal is to show
that End.dR˝L

k
B/ is just given by Homk.Ga;B ;Ga;B/, where Ga;B is regarded as a k–algebra scheme

over B . For the proof, we will use another k–algebra, which we denote by Gperf
a;B . More explicitly, Gperf

a is
represented by the affine scheme SpecBŒx1=p

1

�; see Example 2.6. Note that we have a natural injection
of sets i W Homk.Ga;B ;Ga;B/! Homk.G

perf
a;B ;G

perf
a;B/.

Let us first construct a map ' W End.dR˝L
k
B/ ! Homk.G

perf
a;B ;G

perf
a;B/. We note that dR restricts to

a functor on the full subcategory of k–algebras, which we denote by Polyperf=k , which consists of
perfections of finite-type polynomial algebras over k. If R 2 Polyperf=k; then dRR=k˝k B ' R˝k B ,
which defines a functor from Polyperf=k to Alg =B sending R to R˝k B . This basically classifies perfect
k–algebra ring schemes over SpecB , and any endomorphism of dR˝L

k
B induces an endomorphism

of this perfect k–algebra ring scheme over SpecB , which is just given by Gperf
a;B . This constructs the

required map '.

We know that any element in End.dR˝L
k
B/ is uniquely determined by a map f of A1;dR as a k–algebra

stack over SpecB . We also note that there is a natural map Gperf
a ! A1;dR of k–algebra stacks over

SpecB (from now on we will omit the B from the subscript to ease our notation). By functoriality of
S 7! Sperf and the fact that this perfection construction commutes with colimits, it follows that the map f
lifts to give a map as below:

Gperf
a Gperf

a

A1;dR A1;dR

Of

f

Let u WGperf
a !Ga denote the natural map of k–algebra schemes. Then the fiber of the map Gperf

a !A1;dR

identifies with u�W ŒF �; see [24, Proposition 2.2.6]. Therefore, f is given by a map of the quasi-ideal in
Gperf
a given by u�W ŒF �!Gperf

a , which is of the form of a commutative diagram

u�W ŒF � Gperf
a

u�W ŒF � Gperf
a

t '.f /

In the above, t is required to be a Gperf
a –module map once the target is given the appropriate Gperf

a –
module structure via restricting scalars along '.f /. Now inspecting the above diagram at the level of
global sections yields that the map ' must factor through i , ie '.f / must be induced by an element of
s 2 Homk.Ga;Ga/. From this, it follows that the previous commutative diagram is uniquely determined
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by a commutative diagram
W ŒF � Ga

W ŒF � Ga

t 0 s

In the above, t is required to be a Ga–module map once the target is given the appropriate Ga–module
structure via restricting scalars along '. In order to understand the map t 0, we can therefore apply graded
Cartier duality [24, Section 2.4]. We note that W ŒF �� D Ga, and thus we get a map of graded group
schemes t 0� W Ga ! Ga, where the source group scheme Ga receives its grading via the Ga–module
structure induced by restriction of scalars along s. By easy degree considerations, it follows that there
exists a unique Ga–module map t 0 which fits into the above commutative diagram. Therefore, we obtain
the natural bijection End.dR˝L

k
B/' Homk.Ga;B ;Ga;B/, as desired.

Proposition 4.10 For any m� 1, there is a natural isomorphism of sheaf of monoids over Wm.k/

Sm;1 ' Frobk :

Proof Let B be a Wm.k/–algebra. There is a k–algebra scheme over B , which we denote by Gperf
a;B ,

whose underlying affine scheme is SpecBŒx1=p
1

�. As in the proof of Proposition 4.9, one also obtains
a map ' W End.dR˝Wm.k/ B/! Homk.G

perf
a;B ;G

perf
a;B/. It follows from going modulo p and applying

Proposition 4.9 that ' actually factors to give a map, again denoted by ' WEnd.dR˝Wm.k/B/!Frobk.B/.
We will argue that this map is a bijection.

By using the stack A1;dR and the natural map Gperf
a !A1;dR in a way similar to the proof of Proposition 4.9,

this amounts to the more concrete assertion that there is a unique map t of quasi-ideals in Gperf
a as in

Gperf;]
a Gperf

a

Gperf;]
a Gperf

a

t �.x/

Here x 2 Frobk.B/ and � W Frobk.B/! Homk.G
perf
a;B ;G

perf
a;B/ denotes the natural inclusion. Let us write

U for the coordinate ring of Gperf;]
a . Then U is an NŒ1=p�–graded Hopf algebra over B . It is also a free

algebra over B , where all the homogeneous components are free of rank 1 over B . As a graded B–algebra,
U is generated by the basis elements in degree pi for i 2 Z. It is enough to check that, for a fixed
x 2 Frobk.B/, there exists a unique map t which gives a map of quasi-ideals as above. The existence is
clear from definition of Gperf;]

a (Example 2.7) by applying the divided power envelope construction. For the
uniqueness, we note that once x is fixed, the above diagram forces the homogeneous elements of degree pi

for i � 0 to be mapped uniquely. The rest follows from inspecting the comultiplication of U and induction
on i (see last paragraph of the proof of Proposition 3.7, as well as the discussion after that proof).
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Remark 4.11 It is possible to prove Proposition 4.10 by using the methods from [24, Section 3.4],
which would essentially amount to proving a similar statement about the quasi-ideal Gperf;]

a !Gperf
a . It is

also possible to reduce to the same statement about quasi-ideals directly from Lemma 2.41 by using the
compatibility of the map induced on the animated ring W.S/=Lp via the Frobenius on W.S/ with the
natural Frobenius operator on any animated k–algebra. This implies that any endomorphism of A1;dR, as
a k–algebra stack, lifts along the map Gperf

a !A1;dR obtained by taking perfection. This lifting property
fails for endomorphisms of A1;dR as a W2.k/–algebra stack, leading to extra endomorphisms, as will be
constructed in Section 4.2.

4.2 Construction of endomorphisms

This subsection describes the construction of “enough” endomorphisms of de Rham cohomology. Our
strategy is to crucially exploit the unwinding equivalence proven in Proposition 4.4 to pass to the world of
ring stacks and do a small explicit construction there. We will begin by fixing notation and making some
definitions. Since we are interested in endomorphisms, we will ignore the Frobenius twist introduced in
Notation 2.28.

Notation 4.12 In this section, we work with a perfect ring k of characteristic p > 0. We fix two
integers n;m� 1. We will use W to denote the Witt ring scheme over the fixed base Wm.k/. Since m
and n are fixed, we will denote A1;dR

.m;n/
simply by A1;dR when no confusion is likely to occur.

Definition 4.13 We will let W Œp� denote the group scheme underlying the kernel of the multiplication
by p map on W .

Definition 4.14 We will let .1CW Œp�/� denote the monoid scheme underlying x 2W satisfying pxDp.
The multiplication on this monoid scheme is given by simply using the multiplication underlying the ring
scheme structure on W .

Proposition 4.15 Let B be a p–nilpotent ring. Then the monoid scheme .1CW Œp�/� over Spec.B/ is a
group scheme.

Proof This amounts to saying that, for any ring S with pm D 0 in S for some m, if x 2W.S/ satisfies
px D p then x must be a unit in the ring W.S/. Recall that we have a short exact sequence

0!W.p �S/!W.S/!W.S=p/! 0;

where W.p �S/ denotes the Witt ring associated with the ideal (viewed as a nonunital ring) p �S . Since
pm D 0 in S , the ideal W.p �S/ is nilpotent. Therefore it suffices to show the image of x in W.S=p/
is a unit, and hence we have reduced to the case where S is of characteristic p. Since p D V.1/ in this
case, the condition on x reads V.F.x//D x �V.1/D V.1/. Injectivity of V shows that F.x/D 1, which
implies that x is a unit.
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Construction 4.16 Now we will begin our construction of endomorphisms of A1;dR as a Wn.k/–algebra
stack (over the base Wm.k/, which is fixed for this section) when n� 2. Since Definition 2.32 constructs
the above stack as the cone of the quasi-ideal d W W �p

��! W , we will explicitly construct maps at the
quasi-ideal level, which can be done purely 1–categorically. We note that there is a natural structure map
.W.k/

�p
��! W.k//! .W

�p
��! W / of quasi-ideals, which describes the structure of .W �p

��! W / as a
quasi-ideal over k. In the language of quasi-ideals, the natural map Wn.k/! k can be written as a map
.W.k/

�pn

���!W.k//! .W.k/
�p
��!W.k//, as described below:

W W

W.k/ W.k/

W.k/ W.k/

�p

�p

�pn

�pn�1

We will construct maps of the quasi-ideal d W W �p
��! W over the quasi-ideal W.k/ �p

n

���! W.k/, as
described above. Let F be a homomorphism of the W.k/–algebra scheme W . A quasi-ideal map from
d WW

�p
��!W to itself can be defined by giving a W –linear map u WW ! F�W which makes the diagram

below commutative:
W W

W W

u

�p

F

�p

However, we need to make sure that such a map respects the additional structure of being a map of
quasi-ideals over W.k/ �p

n

���!W.k/, ie the following diagram needs to commute:

W W

W W

W.k/ W.k/

u

�p

F

�p
�pn�1

�pn

�pn�1

As one checks, for any n � 2, the only condition this imposes is that pu.1/ D p. This provides the
following map, which we wanted to construct:

.1CW Œp�/� �F !Sm;n:

Further, for any n � 2, the above map is clearly an injection by construction. We point out that it is
possible to do such a construction for every W.k/–algebra map F of the ring scheme W . Let S be a
Wm.k/–algebra. Then the element of Sm;n.B/ constructed above will be denoted by u � F , where u
is understood to be an element u.1/ 2 .1CW Œp�/�.B/. By construction, we see that the composition
.u; F 0/ ı .v; F / is equal to .uF 0.v/; F 0F /.
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Remark 4.17 In the above picture, if we let nD 1 then u.1/ is forced by the diagram to be equal to 1,
and one does not get the extra endomorphisms that were constructed above for n� 2.

Proposition 4.18 Let .1CW Œp�/� denote the group scheme as above. There is an injection of (sheaves)`
i2Frobk

.1CW Œp�/� �Frobi ! Endm;n when n� 2.

Proof This follows from Proposition 4.4 and Construction 4.16.

Remark 4.19 Letting B be a Wm.k/–algebra, we construct two natural maps

Frobk.B/! EndW.k/.W
.1/
B /! Frobk.B/:

The first arrow follows from the explicit description given in Remark 4.8, and we simply send powers
of the Frobenius to powers of the Frobenius on the Witt ring scheme. To exhibit the second arrow, note
that any element in EndW.k/.W

.1/
B / induces an element in Endk.ŒW

.1/
B =p�/ ' Endk.A

1;dR
B /, which is

equivalent to Frobk.B/ by Proposition 4.10. One easily checks that the composition of the two maps
gives the identity on Frobk.B/.

4.3 Calculation of the endomorphism monoid

Throughout this subsection, we will fix k to be a perfect algebra as before. Let ADWn.k/, and let B be
a k–algebra. In this subsection, we will show that we have found all the endomorphisms of dRm;n; more
precisely, the injection in Proposition 4.18 is an isomorphism.

We need some preparations, starting with understanding the homotopy sheaves associated with A1;dR.
Since A1;dR is a 1–stack, we only need to understand �0 and �1. Once again, we remind the readers that,
since we are interested in endomorphisms, we will ignore the Frobenius twist introduced in Notation 2.28.

Proposition 4.20 For a test algebra S :

(1) A1;dR.S/DW.S/=Lp, where W.S/=Lp denotes the animated ring obtained by quotienting W.S/
by p. We note that the object in the category of animated modules underlying W.S/=Lp can be
simply described as Cofib.W.S/ �p��!W.S//.

(2) The sheaf �1.A1;dR/ is representable byW Œp�, the ideal scheme of p–torsion in the ring schemeW .

(3) Over a characteristic-p base , the sheaf �0.A1;dR/ is representable by Ga, where the induced map
W !Ga is given by the natural projection to the zeroth Witt coordinate.

Proof (1) By definition, we need to prove that the presheaf P.S/ WDW.S/=Lp is already an fpqc sheaf
of animated rings. It is enough to show that P.S/ WD Cofib.W.S/ �p��! W.S// is a sheaf of animated
modules. By noting that Cofib.W.S/ �p��!W.S//D fib.W.S/Œ1� �p��!W.S/Œ1�/, we see that it is enough
to prove that the functor Q.S/ WDW.S/Œ1� is a sheaf of connective animated modules. For this, we only
need to show that H 1

fpqc.SpecS;W /D 0.
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To this end, note that W D lim
 ��n

Wn. By [10, Example 3.1.7 and Proposition 3.1.10] and the fact that F
on W is faithfully flat, W D R lim

 ��n
Wn. Thus R�fpqc.SpecS;W /D R lim

 ��n
R�fpqc.SpecS;Wn/. Now

one notes that Wn has a finite filtration with the graded pieces being equal to Ga. Thus

R�fpqc.SpecS;W /DR lim
 ��
n

R�fpqc.SpecS;Wn/DR lim
 ��
n

�.SpecS;Wn/DR lim
 ��
n

Wn.S/

D lim
 ��
n

Wn.S/DW.S/:

In particular, H 1
fpqc.SpecS;W /D 0, as desired.

(2) This follows from (1).

(3) In the Witt ring of a characteristic-p ring, p D VF . The conclusion follows, since F WW !W is an
fpqc surjection.

In general, �0.A1;dR/ is given by the sheaf of discrete k–algebras W=p. However, if the base is not of
characteristic p, this sheaf stops being representable, as noted below. Nevertheless, Lemma 4.23 will
help us extract the necessary information from �0.A1;dR/.

Proposition 4.21 Let B be a ring such that p … .p2/ and let S D Spec.B/. The sheaf

F WD �0.Cone.G]
a;S !Ga;S //' �0.A

1;dR/

is not representable by an algebraic space over S .

Proof The isomorphism follows from Proposition 2.38. Since both Ga and G]
a are affine schemes, the

hypothetical representing algebraic space would be quasicompact and quasiseparated. Below we show
there cannot be such a qcqs algebraic space.

It suffices to prove the statement for B=p2. Hence we may assume p2 D 0 in B . Since the restriction of
our sheaf to B=p–algebras is represented by the affine scheme Ga;B=p , using [2, Tag 07V6] we see that
the sheaf would in fact be represented by an affine scheme over S . Let us denote its ring of functions
by R. The natural map Ga;S! Spec.R/ induces a map R!BŒt�. Reducing the ring map modulo p, we
see that the image is B=pŒtp�. This implies that an element of the form tpCp �g must be in the image.
On the other hand, we claim that the image of the ring map itself is contained in ff 2 BŒt� j f 0.t/D 0g.
Indeed, the two compositions

Spec.BŒt; ��=�2/ t 7!t�����!
t 7!tC�
�����! Spec.BŒt �/! F

yields the same map as � 2 BŒt; ��=�2 admits divided powers. This shows that the image of R! BŒt�

must be contained in the equalizer of the two maps BŒt��BŒt; ��=�2. The identification of this equalizer
with those polynomials whose derivative is zero follows from the Taylor expansion. Lastly, to get a
contradiction, just observe that, if we let f D tp C p � g, then f 0 ¤ 0 as p … .p2/; however, we had
previously argued that tpCp �g must be in the image.
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Lemma 4.22 Let B be a W.k/–algebra. We have W.B/Œp�'HomW.k/.k;A1;dR/, where the right-hand
side denotes the space of maps as W.k/–algebra stacks over B . Given ˇ 2W.B/Œp�, the corresponding
homomorphism of sheaves is modeled by

W
�p

// W

W.k/
�p
//

�.1Cˇ/

OO

W.k/

OO

Here the constant sheaf of W.k/–algebras given by k is viewed as a W.k/–algebra stack over B .

Proof Since A1;dR is 1–truncated, the right-hand side is classified by Homk.Lk=W.k/; �1.A1;dR/Œ1�/D

W.B/Œp� by Proposition A.6. In this identification we have used Proposition 4.20(2). One checks easily
that the maps we constructed in the last sentence exactly correspond to ˇ under the above identification,
finishing the proof.

Our last preparation is to understand those algebra homomorphisms in Endk.�0.A1;dR// which can be
lifted to a Wn.k/–algebra homomorphism of A1;dR. It turns out that liftability as a Wn.k/–algebra stack
for n > 1 automatically guarantees liftability as a k–algebra stack, as noted below.

Lemma 4.23 Let B be aWm.k/–algebra , and let us consider A1;dR as a k–algebra stack over B . The two
natural maps EndW.k/.A1;dR/! Endk.�0.A1;dR// and Endk.A1;dR/! Endk.�0.A1;dR// have the same
image. In particular , by Proposition 4.10, we know the image is naturally in bijection with the monoid
Frobk.B/.

Proof The image of the first map clearly contains the image of the second. Given f 2 EndW.k/.A1;dR/,
by composing with the natural map � W k!A1;dR we get a natural map f ı � W k!A1;dR of W.k/–algebra
stacks. In Lemma 4.22, we see that f ı � must be classified by some element 1Cˇ 2 1CW.B/Œp�. By
Proposition 4.15, we can find an inverse .1Cˇ/�12 .1CW Œp�/�; note that the composition .1Cˇ/�1ıf ı�
equals �. Here we regard an element in .1CW Œp�/� as a W.k/–algebra automorphism of A1;dR by
Construction 4.16. Since these elements in .1CW Œp�/� always induce the identity on �0, we see that
.1Cˇ/�1 ıf is a k–algebra automorphism lifting to the same ring homomorphism on �0.A1;dR/ as f .

Theorem 4.24 Let ADWn.k/, and suppose that B is a Wm.k/–algebra. Then

End.dRm;n˝Wm.k/B/D

�`
i2Frobk.B/

Frobi if nD 1;`
i2Frobk.B/

.1CW Œp�/�.B/ �Frobi if n� 2:

Here the multiplication law in the second case is given by

.u �Frobi / � .v �Frobj /D u �Frobi .v/ �FrobiCj ;

where u; v 2 .1CW Œp�/�.B/.
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Remark 4.25 These endomorphism spaces are all discrete, by Lemma 3.3. The above theorem states that
the map in Proposition 4.18 is actually an isomorphism. From the above calculation, we also conclude
that the sheaf of endomorphism monoids is representable if and only if the sheaf Frobk is representable.
This happens whenever k is a perfect field, in which case the representing scheme is a combination of the
constant monoid scheme N and the commutative group scheme .1CW Œp�/�, depending on k and n.

Proof When nD 1, this is proved in Proposition 4.10. Below we will assume n� 2.

Recall that in Proposition 4.4 we have shown that the endomorphisms of our de Rham cohomology
functor are the same as the endomorphisms of the Wn.k/–algebra stack A1;dR

B over Spec.B/. Since the
category of Wn.k/–algebra stacks is equivalent to the category of sheaves of Wn.k/–animated algebras
(see Remark 2.14) we will compute the endomorphism of A1;dR

B viewed as a sheaf of Wn.k/–animated
algebras on the fpqc site of Spec.B/.

Composing with the map A1;dR! �0.A1;dR/, we get a natural map

HomWn.k/.A
1;dR;A1;dR/

fn
�! HomWn.k/.A

1;dR; �0.A
1;dR//D Endk.�0.A

1;dR//:

Here and below, Hom refers to homomorphisms of sheaves respecting the designated structure marked by
subscript. By Lemma 4.23, we see that

Im.fn/D Frobk.B/:

We need to understand the fiber of fn. Take an i 2 Frobk.B/; by Proposition A.6, the fiber of fn over
Frobi is a torsor under

HomA1;dR.LA1;dR=Wn.k/
; �1.A

1;dR/Œ1�/:

Here the sheaf of A1;dR–module structure on the sheaf �1.A1;dR/ is via A1;dR!�0.A1;dR/ Frobi

���!�0.A1;dR/.
To understand this group, let us utilize the cofiber sequence of cotangent complexes from Proposition A.3
associated with the diagram Wn.k/! k!A1;dR:

Lk=Wn.k/˝k A1;dR
! LA1;dR=Wn.k/

! LA1;dR=k :

By Proposition 4.10, the map Endk.A1;dR/! Endk.�0.A1;dR// is injective with image Frobk.B/. There-
fore, again by Proposition A.6, HomA1;dR.LA1;dR=k; �1.A

1;dR/Œ1�/D 0, and we get an injection

HomA1;dR.LA1;dR=Wn.k/
; �1.A

1;dR/Œ1�/ ,! HomA1;dR.Lk=Wn.k/˝k A1;dR; �1.A
1;dR/Œ1�/:

The latter is identified with

Homk.Lk=Wn.k/; �1.A
1;dR/Œ1�/D Homk.kŒ1�; �1.A

1;dR/Œ1�/D �1.A
1;dR/.B/DW Œp�.B/:

Here the first identification follows from the fact that ��1Lk=Wn.k/ D kŒ1�, and the last identification is
due to Proposition 4.20(2). Unraveling definitions, for any u 2 .1CW Œp�/�.B/, the element u � Frobi

(see Construction 4.16 and Proposition 4.18) in the fiber of fn is sent to u� 1 2W Œp�.B/. One easily
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sees that the previous sentence in fact gives a bijection. Therefore the fiber of fn over Frobi is exactly
.1CW Œp�/�.B/ �Frobi and finishes the calculation of endomorphism sets.

The multiplication law is checked by chasing through the diagram: on the quasi-ideal model, the
homomorphism u �Frobi sends an element x 2W.B/ to u �Frobi .x/, and one computes

u �Frobi .v �F j .x//D u �Frobi .v/ �FrobiCj .x/:

Remark 4.26 In the above proof, one does not actually need to work with fpqc sheaves, and the same
proof works merely at the level of presheaves. However, if one only wanted to prove Theorem 4.24 in
the case when mD 1, one could work with fpqc sheaves or quasisyntomic sheaves and use the fact that
�0.A1;dR/DGa (from Proposition 4.20) to simplify the proof and avoid invoking Proposition 4.10 and
Lemma 4.23. The case mD 1 is sufficient for our application in Section 5.

Corollary 4.27 Let k be an arbitrary perfect algebra. We consider the functor Endm;n from Section 4.1
for a fixed m � 1. There are natural maps of sheaves Endm;n0 ! Endm;n for n0 � n, which induces an
isomorphism if n � 2. If n0 > n,and n D 1, then all fibers of this natural map are given by the group
scheme .1CW Œp�/�. The sheaf Endm;1 is Frobk .

Proof This follows from combining Proposition 4.10 and Theorem 4.24.

Remark 4.28 (1) The stabilization of Endm;n for n� 2 that we see above suggests that lifting to Wn for
n > 2 gives no extra information on the de Rham cohomology of the special fiber, at least in a functorial
sense. In the next section, we will see that the extra information on liftability to second Witt vectors gives
a strengthening to Deligne and Illusie’s decomposition theorem [12]. Combining these two results, we
are led to believe the following dichotomy of possibilities on a follow-up question [12, remarque 2.6(iii)]:
either liftability over W2 always guarantees that the Hodge–de Rham spectral sequence degenerates, or
there is a counterexample (necessarily of dimension � pC 1) which is liftable all the way over W .

(2) If B has characteristic p, then pD V ıF on W.B/. The defining equation u �pD p of .1CW Œp�/�

becomes V.F.u//DV.1/. Since V is always injective, the group scheme .1CW Œp�/� over a characteristic-
p base becomes G]

m WDW
�ŒF �, namely the Frobenius kernel of the multiplicative group scheme W �.

(3) The above discussion tells us that the functorial automorphism group scheme of the mod p de Rham
cohomology theory on W2.k/–algebras is given by G]

m. Note that there is a natural inclusion �p!G]
m

which induces a product decomposition G]
m D �p �G]

a (see Appendix B). In Theorem 5.4, we will
utilize the automorphisms coming from �p. The remaining G]

a worth of automorphisms are related to
the Sen operator studied in [5].

Our calculation shows that there is no functorial splitting of the whole mod p derived de Rham complex,
as a functor from W2.k/–algebras to CAlg.D.k//, into direct sums of the graded pieces of its conjugate
filtrations.
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Proposition 4.29 There is no functorial splitting

dR.�˝W2.k/k/=k '

M
i2N�0

Grconj
i .dR.�˝W2.k/k/=k/

as a functor from smooth W2.k/–algebras to CAlg.D.k//.

Proof Indeed, if there were such a splitting, we would get an automorphism parametrized by Gm,
with the i th graded piece having pure weight i . From the calculation of the endomorphism monoid in
Theorem 4.24, this would give us an injection Gm ,!G]

m. But the Frobenius on Gm is nonzero, whereas
it is zero on G]

m. Hence we know there is no injective map Gm ,!G]
m over any characteristic-p base,

getting a contradiction.

Remark 4.30 (twisted forms of de Rham cohomology) Theorem 4.24 can be applied to understand a
question considered by Antieau and Moulinos on the possible existence of étale twists of the de Rham
cohomology functor in some cases: letting k be a perfect ring and B be an ordinary Wm.k/–algebra,
does there exist a functor F W ARingsWn.k/

! CAlg.D.B// which is isomorphic to dRm;n˝Wm.k/ B

étale locally on SpecB? We thank Antieau for mentioning this question to us. By Theorem 4.24, such
functors are classified by H1ét.SpecB; .1CW Œp�/�/. When mD 1 and B is perfect, one can show that
H1fpqc.SpecB; .1CW Œp�/�/D 0 by using .1CW Œp�/� 'G]

m ' �p �G]
a over SpecB . So in that case,

there does not even exist a nontrivial fpqc twist. However, the cohomology group can be nonzero for some
choices of B . It would be interesting to study the corresponding twisted forms of de Rham cohomology
which can be seen as new cohomology theories, but that direction is not pursued further in this paper. It
would also be interesting to compute H1ét.SpecB; .1CW Œp�/�/ in general for m> 1.

5 Application to the Deligne–Illusie decomposition

5.1 Drinfeld’s refinement of the Deligne–Illusie decomposition

In this section, we explain how to apply our result from Theorem 4.24 on endomorphisms of the de Rham
cohomology functor to recover a recent result of Drinfeld concerning a classical theorem due to Deligne
and Illusie [12], and Achinger and Suh [1].

Notation 5.1 Fix a perfect ring k as before, and consider the monoid scheme End1;n from Corollary 4.27
over k. Let B be a k–algebra and let � 2End1;n.B/. By definition we get an endomorphism induced by � ,

dRR=Wn.k/˝Wn.k/B
�
�! dRR=Wn.k/˝Wn.k/B;

which is functorial in the Wn.k/–algebra R.

Definition 5.2 For anyWn.k/–algebraR, we define the conjugate filtration Filconj
i on dRR=Wn.k/˝Wn.k/k

to be the left Kan extension of the canonical filtration on polynomial (or smooth) Wn.k/–algebras.
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Lemma 5.3 Assume k! B is flat. Then � preserves Filconj
i ˝k B for all i .

Proof Any morphism must preserve the canonical filtration. If R is a polynomial (or smooth) Wn.k/–
algebra, one easily shows that the canonical filtration on dRR=Wn.k/˝Wn.k/B is just Filconj

i ˝kB .

By Theorem 4.24 and Remark 4.28(4), we have an inclusion of k–schemes .G]
m/ � End1;2. Let

B D �.G]
m;O/. Then the identity map defines an element � 2 G]

m.B/, which can be regarded as the
universal point. By the above discussion, the universal point � gives rise to a comodule structure on
dRR=W2.k/˝W2.k/ k over the Hopf algebra B , functorial in the W2.k/–algebra R, and the conjugate
filtration is an increasing filtration of subcomodules. Alternatively, we may view this as an action of G]

m

on the mod p de Rham cohomology dR�=W2.k/˝W2.k/k. We may ask what the effect of the G]
m–action is

on each graded piece of the conjugate filtration, viewed as a functor from the category of W2.k/–algebras
to the derived1–category of B–comodules. The latter can be defined as the derived1–category of
quasicoherent sheaves on BG]

m.

Recall that the category of �p–representations is semisimple, with simple objects given by Z=p–worth
of powers of the universal character. We follow the convention that the universal character �p ,!Gm

has weight 1. The following result was first observed by Drinfeld via prismatization, and communicated
to us by Bhatt.

Theorem 5.4 The action of G]
m on the i th graded piece of the conjugate filtration factors through the

natural projection G]
m! �p, and the resulting �p–action is of pure weight i 2 Z=p.

This fact also appears in [5, Example 4.7.17], where it is proved using Sen operators. Below we give a
different argument:

Proof The derived Cartier isomorphism [3, Proposition 3.5] reduces the proof to showing the statement for
i D 0 and 1. Since the conjugate filtration is defined via left Kan extension from its values on polynomial
algebras, using the classical Cartier isomorphism and Künneth formula, we need only understand the
behavior of � on the cohomology of

dRW2.k/Œx�=W2.k/˝W2.k/ k ' dRkŒx�=k :

Observe that the whole situation is base changed from k D Fp; we immediately reduce to k D Fp.

According to Construction 2.25, the action of � is defined via the identification

dRZ=p2Œx�=.Z=p2/˝Z=p2 B ' R�.A1;dR
B ;O/

and the homomorphism of the Z=p2–algebra stack over G]
m given by the diagram

WB
�p
//

��

��

WB

id
��

WB
�p
// WB
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Here WB denotes the Witt ring scheme over the base scheme G]
m. The first cohomology of dRFpŒx�=Fp

is
a free rank-1 module over its zeroth cohomology. Therefore all we need to do is

(1) show that the induced map on H0.A1;dR
B ;O/ is trivial,

(2) exhibit a nonzero element v2H1.A1;dR
Fp

;O/which pulls back to a weight-1 element in H1.A1;dR
B ;O/.

To avoid confusion, let us define the ring scheme W WD Spec.FpŒX0; X1; : : :�/ and the quasi-ideal
W WD Spec.FpŒY0; Y1; : : :�/. Here the Xi (and similarly the Yi ) are the Witt coordinates. One easily
checks the effect of id� and .��/� on the elements Xi 7! Xi and Y0 7! t0 � Y0. Here t0 denotes the
element in B corresponding to the natural projection G]

m! �p.

Now (1) is easily verified: H0.A1;dR
B ;O/� BŒX0; X1; : : :�, and hence invariant under the �–action.

As for (2), we claim that 1˝ Y0 2 FpŒXi ; Yj � is a nonzero class in H1.A1;dR
Fp

;O/. Here we are using
the Čech nerve of Spec.FpŒX0; X1; : : :�/! A1;dR

Fp
to calculate the cohomology of A1;dR

Fp
; implicitly we

have used the fact that the Œ1�–term of the Čech nerve is given by Spec.FpŒXi ; Yj �/. Granting this claim,
the action of � sends Y0 to t0 �Y0, and hence the action on the class 1˝Y0 is via the natural projection
G]
m! �p and has weight 1. To prove the claim, we use the maps

W ŒF �DG]
a!W D Spec.FpŒY0; Y1; : : :�/!Ga D Spec.FpŒY0�/;

where the middleW is a copy of quasi-idealW . The above maps induce a sequence of abelian group stacks:

BG]
a!A1;dR

! BGa:

Recall that there is a canonical identification H1.BG;O/ ' Hom.G;Ga/ for affine group schemes
G via faithfully flat descent along � ! BG. The identity map on Ga D Spec.FpŒY0�/ pulls back to
1˝ Y0 2 FpŒXi ; Xj �, which checks that 1˝ Y0 is a cocycle. Furthermore, recall that the induced map
G]
a!Ga realizes the former as the divided power envelope of the origin inside the latter. In particular it

is a nonzero map. From the above identification, this tells us that 1˝Y0 pulls back to a nonzero class in
H1.BG]

a;O/. Therefore the class 1˝Y0 is a nonzero class in H1.A1;dR
Fp

;O/.

Remark 5.5 Let us mention another way to obtain the above result concerning the G]
m–action on

dRkŒx�=k . As explained, the action arises from the action of G]
m on A1;dR in characteristic p. One can

show that the stack underlying A1;dR
Fp

(without the ring stack structure) decomposes as Ga �BG]
a (see

[6, Proposition 5.12]), and the action of G]
m is trivial on Ga and weight 1 on BG]

a. This gives the desired
statement. We thank the referee for pointing this out to us.

Note that the natural projection G]
m! �p admits a splitting: the Teichmüller lift defines a map of group

schemes Gm ,!W �, which induces a map of group schemes �p ,!G]
m.

Let X be a smooth scheme over W2.k/ and consider the de Rham cohomology of its special fiber (relative
to k), which by the above discussion admits a �p–action. Now look at the canonical truncation in a range
of width at most p. The weights that show up in Z=p are pairwise distinct, and hence we get a splitting

Geometry & Topology, Volume 28 (2024)



On endomorphisms of the de Rham cohomology functor 795

of the induced conjugate filtration. Therefore the above theorem implies the following improvement of a
result due to Achinger and Suh [1, Theorem 1.1], which in turn is a strengthening of Deligne and Illusie’s
result [12, corollaire 2.4].

Corollary 5.6 (Drinfeld) Let k be a perfect ring of characteristic p > 0, let X be a smooth scheme
over W2.k/, and let a � b � aCp� 1. Then the canonical truncation �Œa;b�.��Xk=k

/ splits.

Note that when p > 2, in Achinger and Suh’s statement in loc. cit. they need b < aC p � 1, so their
allowed width needs to be at most p�1. In fact, more generally, we have the following decomposition as
a consequence of the G]

m–action in described in Theorem 5.4.

Corollary 5.7 (Drinfeld; see [1, Remark A.5]) Let X be a smooth scheme over W2.k/ with special
fiber Xk . Then there exists a splitting , functorial in X , in the derived 1–category of Zariski sheaves
on X 0

k
,

FXk=k;�.dRXk=k/'
M
i2Z=p

FXk=k;�.dRweightDi
Xk=k

/:

Moreover Hj .FXk=k;�.dRweightDi
Xk=k

// ¤ 0 implies j � i in Z=p. Here X 0
k

is the Frobenius twist of Xk
and FXk=k is the relative Frobenius. In particular , the conjugate spectral sequence of liftable smooth
varieties can have nonzero differentials only on the .mpC1/st pages , where m 2 Z>0.

Remark 5.8 Drinfeld observed the results in this subsection by using the “stacky approach” to prismatic
crystals (which he calls “prismatization”), which was independently developed by Bhatt and Lurie [5].
Using the prismatization functor, Drinfeld produced an action of �p on the de Rham complex of a smooth
scheme over k that lifts toW2.k/. Our paper partly grew out of an attempt at making sense of and reproving
Drinfeld’s theorem without introducing prismatization and taking a very algebraic/categorical approach
instead. In [5], this action is obtained in a more geometric way by understanding the prismatization of
Spec.W2.k//.

5.2 Uniqueness of functorial splittings

Corollary 5.6 provides a functorial splitting of the .p�1/st conjugate filtration of the mod p derived
de Rham cohomology of any W2.k/–algebra. On the other hand, the classical Deligne–Illusie splitting
also has an1–categorical functorial enhancement [20, Theorem 1.3.21 and Proposition 1.3.22], which,
in spirit, is more related to the work of Fontaine and Messing [16] and Kato [18].

It is a natural question to ask whether these two splittings agree in a functorial way. By the definitions of
these two splittings, we see immediately that they are both compatible with the module structure over the
zeroth conjugate filtration, and induced from the splitting of the first conjugate filtration by an averaging
process; see the step (a) in proof of [12, théorème 2.1].

Below we will prove that there is a unique way to functorially split the first conjugate filtration, and hence
the above two functorial splittings must be the same. To that end, let us fix some notation:
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Notation 5.9 Consider the stable1–category Fun.Algsm
W2.k/

;D.k//, where Algsm
W2.k/

is the category
of smooth W2.k/–algebras and D.k/ is the derived (stable) 1–category of k–vector spaces. Denote
by O the functor that sends any W2.k/–algebra R to the zeroth conjugate filtration of dR.R˝W2.k/k/=k ,
which has the structure of a commutative algebra object in Fun.Algsm

W2.k/
;D.k//. The functor obtained by

considering the first piece of the conjugate filtration will be denoted by M , and viewed as an O–module.
We have a natural map O ! M ; we denote the cofiber by G, which is the first graded piece of the
conjugate filtration, also viewed as an O–module.

Now we have a cofiber sequence of O–modules O!M !G.

Theorem 5.10 In the above notation , there is a unique functorial O–module splitting

M DO˚G

in Fun.Algsm
W2.k/

;D.k//. In particular , the splitting of Filconj
p�1.dR.�˝W2.k/k/=k/ obtained in Corollary 5.6

and [20, Theorem 1.3.21] agree.

Proof The existence part is provided by either Corollary 5.6 or [20, Theorem 1.3.21]. We focus on the
uniqueness part in this proof.

Firstly, we note that it suffices to show the uniqueness of the splitting as a quasisyntomic sheaf on the
quasisyntomic site of W2.k/. This is because they are left Kan extended from the polynomial case,
and polynomial algebras are quasisyntomic. The site qSynW2.k/

admits a basis of large quasisyntomic
W2.k/–algebras, so we may restrict our functors to this subclass of W2.k/–algebras and show uniqueness
of splitting there. All three functors have discrete value on this subclass of W2.k/–algebras, so O is a
sheaf of ordinary k–algebras given by R 7! R=p (up to a Frobenius twist), and M and G are sheaves
of ordinary O–modules. We will show that there exists a unique section to the surjection of sheaves of
O–modules M �G.

Step 1 Consider the algebra RDW2.k/Œx1=p
1

�=.x/. In this case

D WD dR.R˝W2.k/k/=k 'D.x/.kŒx
1=p1 �/

is the divided power envelope of .x/ in kŒx1=p
1

�. This algebra admits a natural grading by the monoid
NŒ1=p�. The values of our sheaves evaluated at R are OD kŒx1=p1 �=.xp/, and M is the degree-Œ0; 2p/
part of D.x/.kŒx1=p

1

�/, whereas G is the degree-Œp; 2p/ part. One checks easily that G is generated by

p.x/ (mod the degree-Œ0; p/ part) as an O–module in this case. We claim that the section necessarily
sends this generator to 
p.x/ 2M . Say the section sends this generator to some element f .x/ 2M . We
look at the two maps of W2.k/–algebras from R to R˝W2.k/W2.k/Œt

1=p1 � given by xm 7! xm � tm and
xm 7! xm. The associated mod p derived de Rham cohomology is given by D˝k kŒt1=p

1

�. Since the
corresponding maps of values of G are


p.x/ 7! 
p.tx/D t
p
p.x/ and 
p.x/ 7! 
p.x/;
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functoriality tells us that tpf .x/D f .tx/ 2D˝k kŒt1=p
1

�. This implies that f .x/ is a homogeneous
degree-p element in M which maps to 
p.x/ 2G. Therefore it must be 
p.x/ 2M .

Step 2 Next we consider the algebra RnDW2.k/Œx
1=p1

i I i D 1; : : : ; n�=
�Pn

iD1 xi
�
. In this case, define

Dn WD dR.Rn˝W2.k/k/=k DD.
Pn

iD1 xi /
.kŒx

1=p1

i �/:

Then the value of our sheaves evaluated at Rn is given by O D kŒx
1=p1

i �=
�Pn

iD1 x
p
i

�
, and M D

O �
˚
1; 
p

�Pn
iD1 xi

�	
whereas G DO � 
p

�Pn
iD1 xi

�
. In this case, we claim that the section necessarily

sends 
p
�Pn

iD1 xi
�

to
Pn
iD1 
p.xi /. Note that this sum makes sense as an element in Dn, and in fact

is in M . For instance, one may repeatedly use 
p.xC y/D
Pp
iD0 
i .x/ � 
p�i .y/ to see this. Now to

show the above claim, we first use the same argument as in the previous paragraph to see that the section
of 
p

�Pn
iD1 xi

�
is necessarily a homogeneous degree-p element f .xi /. Then we use the functoriality

provided by the map Rn! R˝W2.k/n DW2.k/Œx
1=p1

i I i D 1; : : : ; n�=.xi I i D 1; : : : ; n/ to see that the
element g.xi / WD f .xi /�

Pn
iD1 
p.xi / is a homogeneous degree-p element in the kernel of the induced

mapDn!D˝kn. The degree-p part of the kernel is the k–span of fxpi g
n
iD1 modulo k �

Pn
iD1 x

p
i . Finally,

using functoriality with respect to switching variables, we see that g.xi / must be a permutation-invariant
element, and hence necessarily 0 unless n D p D 2. Therefore, when n � 3, the associated section is
determined. By functoriality, the section associated with R3 determines the section associated with R2.
This finishes the proof of our claim above.

Step 3 The universal algebra that we need to consider is R0 DW2.k/Œx1=p
1

; y1=p
1

�=.xCpy/. Note
that R0=pDR=p˝k kŒy1=p

1

�, so the values of relevant sheaves are those in Step 1 tensored over k with
kŒy1=p

1

�. The generator 
p.x/D 
p.xCpy/ of G under a functorial section goes to 
p.x/Cg.x; y/,
where g.x; y/ 2 kŒx1=p

1

; y1=p
1

�=.xp/ has degree p by the same argument as in Step 1. We claim that
g.x; y/D yp=.p� 1/Š. To see this, first observe that

x1C x2 D .x
1=p
1 C x

1=p
2 /pCp �F.x1; x2/ in W2.k/Œx

1=p
1 ; x

1=p
2 �;

where we view F.x1; x2/ 2 kŒx
1=p1 ; y1=p

1

� as a degree-1 polynomial. Then we see that there is a
map R0 ! R2 sending x and y to Teichmüller lifts of x1 C x2 and F.x1; x2/. The induced map of
corresponding D’s sends 
p.x/Cg.x; y/ to 
p.x1C x2/Cg.x1C x2; F .x1; x2//. On the other hand,
the functoriality forces this element to be sent to 
p.x1/C 
p.x2/ by Step 2. Therefore we get a relation


p.x1C x2/Cg.x1C x2; F .x1; x2//D 
p.x1/C 
p.x2/:

Let h.x; y/ D g.x; y/� yp=.p� 1/Š 2 kŒx1=p
1

; y1=p
1

�=.xp/, which also has degree p. Combining
relations, h.x1C x2; F .x1; x2// D 0 2 kŒx

1=p1

1 ; x
1=p1

2 �=.x
p
1 C x

p
2 /. Applying the next lemma with

x1C x2 D a and x2 D b, we conclude that h.x; y/ must be 0.

Step 4 Given any large quasisyntomic W2.k/–algebra S , we can find an algebra S 0 of the form
W2.k/ŒX

1=p1

i ; Y
1=p1

j I i 2 I; j 2J �=.YjCfj .Xi /I j 2J / and a surjection S 0�S inducing a surjection
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of their values on all the relevant sheaves; see the proof of [11, Proposition 7.10] or [21, Theorem 3.14]
for details. The value of G in this case is generated, as an O module, by 
p.Yj C fj .Xi // where j 2 J .
By functoriality, we may reduce to the case where S D W2.k/ŒX1=p

1

; Y 1=p
1

�=.Y C f .X//. In this
case G is generated over O by the element 
p.Y Cf .X/e/; we want to show the section is forced on
this element. Observe that any element in W2.k/ŒX1=p

1

; Y 1=p
1

� can be written as ŒP1�Cp � ŒP2�, a
Teichmüller lift plus p times another Teichmüller lift. Therefore we can define a map R0! S sending X
to ŒP1� and Y to ŒP2�. Then we see that the section of 
p.Y Cf .X// must be 
p.P1/CP

p
2 =.p� 1/Š by

Step 3. This shows the rigidity, as desired.

Lemma 5.11 Suppose that F.a; b/ 2 kŒa1=p
1

; b1=p
1

� is the degree-1 element such that its lift zF to
W2.k/Œa

1=p1 ; b1=p
1

� satisfies

.a� b/pC bp D apCp � zF .ap; bp/ in W2.k/Œa1=p
1

; b1=p
1

�:

Let H.a; b/ 2 kŒa1=p
1

; b1=p
1

� be a degree-p element which does not contain the term ap. Suppose
H.a; F.a; b// 2 kŒa1=p

1

; b1=p
1

� is divisible by ap. Then H.a; b/D 0.

Proof Observe that F.a; b/D
Pp�1
iD1 ci �a

i=pb.p�i/=p with ci ¤ 0 for each i . The a–degree of F.a; b/
is less than 1, therefore the a–degree of H.a; F.a; b// must be smaller than p unless H.a; F.a; b//D 0
(as H.a; b/ does not contain an ap term). The ap divisibility now forces H.a; F.a; b//D 0. Considering
the b–degree of H.a; F.a; b// shows that, in fact, H.a; b/ has to be 0 to begin with.

In Step 3 one can alternatively argue using the map RpC1! R0 sending x1 to x and the rest of the p
variables to y.

Appendix A Topos-theoretic cotangent complex

The theory of cotangent complexes appears in many places in the literature. For example, it has been
discussed in [17] in the context of simplicial ring objects in a 1–topos, and in [22], where an1–categorical
theory has been discussed for animated ring objects in spaces. However, in the proof of Theorem 4.24, we
required a formalism of cotangent complexes in the generality of animated ring objects in an1–topos.
In this appendix, we will sketch a formalism of cotangent complexes in the above generality and its very
basic properties, which is sufficient for the proof of Theorem 4.24. Our exposition basically uses the
techniques from [22] and lifts them to the generality we need.

For simplicity, we will focus on the case necessary for our application, where the1–topos X arises as
sheaves of spaces on some Grothendieck site C, which will be fixed. As in Definition 2.10, one defines the
1–category ARings.X / WDARings.X /Z, which is equivalent to the1–category of sheaves of animated
rings on C. For a fixed animated ring B in X , one can also consider the 1–category of connective
B–modules in X defined as the category of sheaves on C (with values in animated abelian groups) of
B–modules.
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For n�0, an object F 2ARings.X / will be called n–truncated if F.c/ is n–truncated (ie �i .F.c//D0 for
all i > n) for all c 2 C. We let ��nARings.X /!ARings.X / denote the inclusion of the full subcategory
of n–truncated objects in ARings.X /. This admits a left adjoint that sends G to ��nG, which is obtained
by n–truncating G as a presheaf first and then applying sheafification.

Construction A.1 (the cotangent complex) Let A! B be a map in ARings.X /. For any connective
B–module M , one can form the trivial square-zero extension B˚M , which is an object of ARings.X /A.
There is a natural projection map B˚M ! B , which regards B˚M as an object of .ARings.X /A/=B .
One can consider the functor M !Maps.ARings.X /A/=B

.B;B˚M/. By the adjoint functor theorem, this
functor is corepresented by a connective B–module, which we will denote by LB=A.

Remark A.2 Let A ! B be a map in ARings.X /. It follows that LB=A, defined as above, is the
sheafification of the presheaf on C with values in animated abelian groups that sends c to LB.c/=A.c/ for
c 2 C. It naturally inherits the structure of a sheaf of connective B–modules on C.

Proposition A.3 For a sequence of morphisms A! B! C in ARings.X /, we have a cofiber sequence

LB=A˝B C ! LC=A! LC=B

in the1–category of connective C–modules.

Proof This follows from Construction A.1.

Remark A.4 Let C 2 ARings.X /. Let U ! V ! W be a cofiber sequence in the 1–category of
connective C–modules. For any connective C–module M , we obtain a long exact sequence

� � � ! �1 Maps.W;M/! �1 Maps.V;M/! �1 Maps.U;M/! �0 Maps.W;M/

! �0 Maps.V;M/! �0 Maps.U;M/:

Definition A.5 (square-zero extensions) Let A 2 ARings.X / and B 2 ARings.X/A. Let M be a
connective B–module. A square-zero extension of B by M is classified by MapsB.LB=A;M Œ1�/, where
the maps are considered in the1–category of connective B–modules. By Construction A.1, square-zero
extensions can be equivalently classified by Maps.ARings.X /A/=B

.B;B˚MŒ1�/. Given s WB!B˚MŒ1�

which gives a section to the projection, the pullback B 0 WD B˝B˚MŒ1�B recovers the total space of the
square-zero extension, where B maps to B˚MŒ1� via s and the zero section. The fiber of B 0! B can
be identified with M with the natural structure of an A–module.

Proposition A.6 Let C 2ARings.X /A and let B 0!B in ARings.X /A be a square-zero extension of B
by a connective B–module M . There is a natural map MapsARings.X /A.C;B

0/!MapsARings.X /A.C;B/

such that the nonempty fibers are torsors under the group MapsC .LC=A;M/, where the maps are taken in
the category of connective C–modules. The C–module structure on M is obtained via the map C ! B

over which the fiber is being taken.
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Proof Unwrapping the definitions and using the fact that the mapping spaces are1–groupoids, one can
reduce to checking this in the case when B 0 D B ˚M is the trivial square-zero extension. Fix a map
C ! B . We need to show that Maps.ARings.X /A/=B.C;B˚M/ is equivalent to MapsC .LC=A;M/. For
this, we note that pulling back along C ! B gives an equivalence Maps.ARings.X /A/=B.C;B ˚M/ '

Maps.ARings.X /A/=C .C; C ˚M/. By definition, Maps.ARings.X /A/=C .C; C ˚M/ 'MapsC .LC=A;M/,
which gives the conclusion.

Remark A.7 For any object A 2 ARings.X /A, one can use the truncation functors to build a sequence
of square-zero extensions � � � ! ��nC1A! ��nA! ��n�1A! � � � ! ��0A D �0.A/. This can be
seen by first showing a similar statement at the presheaf level and then sheafifying; at the presheaf level,
the statement follows from the analogous statement for animated rings; see [22, Proposition 3.3.6]. In
particular, if A 2 ARings.X /A is 1–truncated, then A is a square-zero extension of �0.A/ by �1.A/Œ1�,
where the latter is viewed as a connective �0.A/–module in X .

Appendix B A product formula for .1CW Œp�/� in characteristic p > 0

The group scheme .1CW Œp�/� was defined in Definition 4.14. Working over a fixed base ring of
characteristic p > 0, this group scheme is isomorphic to W �ŒF �; see Remark 4.28(2). The following
proposition was stated in [14, Lemma 3.3.4] and a more general proposition over Zp has been proven
in [15, Proposition B.5.6] by using the logarithm constructed in loc. cit.; see also [5, Lemma 3.5.18].
Let us give a more direct argument in characteristic p that does not use the logarithm and is closer to
deformation theory in spirit:

Proposition B.1 There exists a natural isomorphism W �ŒF � ' W ŒF � � �p over any base ring of
characteristic p.

Proof Note that given any nonunital ring .I;C; � /, one can define a monoid associated to it, which will
be denoted by I 0. At the level of underlying sets, I

0

WD I , but the composition x � y is defined to be
xCyC x �y. Using the above construction along with the Yoneda lemma produces a functor from the
category of nonunital ring schemes (eg ideals in unital ring schemes) to the category of monoid schemes.
Note that we have a short exact sequence

0!W ŒF �!W ŒF �
f
�! p̨! 0

of group schemes. Moreover, the map f WW ŒF �! p̨ is a map of nonunital ring schemes when W ŒF �
and p̨ ' GaŒF � are both equipped with their natural nonunital ring scheme structures. Applying the
functor we constructed before, we obtain a map f 0 WW �ŒF �! �p. It is clear that f 0 is surjective. The
map f 0 can be identified with projection to zeroth Witt coordinate: given any test algebra S and an
element x 2W ŒF �.S/, f 0 sends 1C x to 1C x0, where x0 is the zeroth Witt coordinate. In particular,
the map �p!W �ŒF � given by the Teichmüller lift is a section to f 0. It remains to identify Kerf 0 with
W ŒF � as a group scheme. This follows from the lemma below.
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Lemma B.2 For the map f WW ŒF �! p̨, the ideal Kerf is a square-zero ideal.

Proof We note that the multiplication in W ŒF � is inherited from the ring scheme W . Let S be a
test algebra of characteristic p and let m; n 2 .Kerf /.S/. Then m D V.m0/ and n D V.n0/ for some
m0; n0 2W.S/. Here V denotes the Verschiebung operator. We have m �nD V.m0/ �nD V.m0 �F.n//D 0,
since F.n/D 0.

The proposition now follows, since we obtain a split exact sequence of group schemes

0!W ŒF �!W �ŒF �
f 0
�! �p! 0:
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