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We highlight several novel aspects of the moduli space of curves of genus 13, the first genus g where
phenomena related to K3 surfaces no longer govern the birational geometry of Mg . We compute the
class of the nonabelian Brill–Noether divisor on M13 of curves that have a stable rank-two vector bundle
with canonical determinant and many sections. This provides the first example of an effective divisor
on Mg with slope less than 6C 10=g. Earlier work on the slope conjecture suggested that such divisors
may not exist. The main geometric application of our result is a proof that the Prym moduli space R13 is
of general type. Among other things, we also prove the Bertram–Feinberg–Mukai and the strong maximal
rank conjectures on M13.
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1 Introduction

One of the defining achievements of modern moduli theory is the result due to Harris, Mumford and
Eisenbud [27; 16] that Mg is of general type for g�24. An essential step in their proof is the calculation of
the class of the Brill–Noether divisor Md

g;r consisting of those curves X of genus g such that Gr
d
.X/¤∅

in the case �.g; r; d/ WDg�.rC1/.g�dCr/D�1. Recall that the slope of an effective divisorD on Mg

not containing any of the boundary divisors �i in its support is defined as the quantity s.D/ WD a=mini bi ,
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804 Gavril Farkas, David Jensen and Sam Payne

where ŒD� D a�� b0ı0 � � � � � bbg=2cıbg=2c 2 CH 1.Mg/. Eisenbud and Harris [16] showed that the
slope of Md

g;r is a=b0 D 6C 12=.gC 1/. After these seminal results from the 1980s, the fundamental
question arose whether one can construct effective divisors D on Mg of slope s.D/ < 6C 12=.gC 1/
by using conditions defined in terms of higher rank vector bundles on curves.

Each effective divisor D on Mg of slope s.D/ < 6C 12=.gC 1/ must contain the locus Kg �Mg of
curves lying on a K3 surface; see Farkas and Popa [21]. Since curves on K3 surfaces possess stable
rank-two vector bundles with canonical determinant and unexpectedly many sections (see Lazarsfeld [35],
Mukai [38] and Voisin [48]), it is then natural to focus on conditions defined in terms of rank-two vector
bundles with canonical determinant.

For a smooth curve X of genus g, let SUX .2; !/ be the moduli space of semistable rank-two vector
bundlesE onX with detEŠ!X . For k� 0, Bertram and Feinberg [7, Conjecture, page 2] and Mukai [38,
Problem 4.8] conjectured that for a general curve X , the rank-two Brill–Noether locus

SUX .2; !; k/ WD fE 2 SUX .2; !X / W h0.X;E/� kg

has dimension ˇ.2; g; k/ WD 3g� 3�
�
kC1
2

�
. For a general curve X the Mukai–Petri map

(1) �E W Sym2H 0.X;E/!H 0.X;Sym2.E//

is injective for each E 2 SUX .2; !/; see Teixidor i Bigas [45]. As a consequence, SUX .2; !; k/ has the
expected dimension ˇ.2; g; k/, if it is nonempty. There are numerous partial results on the nonemptiness
of SUX .2; !; k/— see for instance Lange, Newstead and Park [34], Teixidor i Bigas [44] and Zhang [49] —
although still no proof in full generality.

Assume now that 3g�3D
�
kC1
2

�
. Then generically, SUX .2; !; k/ consists of finitely many vector bundles,

if it is nonempty. We consider the nonabelian Brill–Noether divisor MPg on Mg consisting of curves
ŒX� for which there exists E 2 SUX .2; !X ; k/ such that the Mukai–Petri map �E is not an isomorphism.
In this paper, we focus on the first genuinely interesting case,1

g D 13 and k D 8:

Our first main result proves this case of the Bertram–Feinberg–Mukai conjecture and computes the class
of the closure of the nonabelian Brill–Noether divisor.

Theorem 1.1 A general curveX of genus 13 carries exactly three stable vector bundlesE 2SUX .2; !; 8/.
The closure in M13 of the nonabelian Brill–Noether divisor on M13

MP13 WD fŒX� 2M13 W there exists an E 2 SUX .2; !; 8/ with �E W Sym2H 0.E/
©
�!H 0.Sym2.E//g

has slope equal to
s.ŒMP13�/D 4109

610
D 6:735 : : : < 6C 10

13
D 6:769 : : : :

1It is left to the reader to show that in the previous cases k D 5; 6, the corresponding divisors MP6 and MP8 are supported on
the loci, in M6 and M8 respectively, of curves failing the Petri theorem.
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The nonabelian Brill–Noether divisor on M13 and the Kodaira dimension of R13 805

To explain the significance of this result, we recall that several infinite series of examples of divisors
on Mg for g � 10 with slope less than 6C 12=.gC 1/ have been constructed in Farkas [17], Farkas and
Popa [21], Farkas, Jensen and Payne [19] and Khosla [32], using syzygies on curves. Quite remarkably,
the slopes s.D/ of all these divisors D on Mg satisfy

6C
10

g
� s.D/ < 6C

12

gC1
:

The slope 6C 12=.gC 1/ appears as both the slope of the Brill–Noether divisors Md
g;r and as the slope

of a Lefschetz pencil of curves of genus g on a K3 surface. Similarly, 6C10=g is the slope of the family
of curves fX 0tgt2P1 in �0 �Mg obtained from a Lefschetz pencil fXtgt2P1 of curves of genus g� 1
on a K3 surface S by identifying two sections corresponding to basepoints of the pencil. The natural
question has been therefore raised in [10, page 2], whether a slight weakening of the Harris–Morrison
slope conjecture [26] remains true and the inequality

(2) s.D/� 6C
10

g

holds for every effective divisor D on Mg . Results from Farkas and Popa [21] and Tan [43] imply that
inequality (2) holds for all g � 12. In particular, the divisor K10 on M10 consisting of curves lying on
K3 surfaces, which was shown in [21] to be the original counterexample to the slope conjecture, satisfies
s.K10/ D 7 D 6C 10=g. On M12, since a general curve of genus 11 lies on a K3 surface, it follows
that the pencils fX 0tgt2P1 cover the boundary divisor �0 �M12, and consequently the inequality (2)
holds. Therefore 13 is the smallest genus where inequality (2) can be tested, and Theorem 1.1 provides a
negative answer to the question posed in Chen, Farkas and Morrison [10].

1.1 The Kodaira dimension of the Prym moduli space R13

One application of Theorem 1.1 concerns the birational geometry of the moduli space Rg of Prym curves
of genus g. The Prym moduli space Rg classifying pairs ŒX; ��, where X is a smooth curve of genus g
and � is a 2–torsion point in Pic0.X/, has been classically used to parametrize moduli of abelian varieties
via the Prym map Rg !Ag�1 [6]. The Deligne–Mumford compactification Rg is uniruled for g � 8
(see Farkas and Verra [23]), and was previously known to be of general type for g � 14 and g ¤ 16 (see
Bruns [9] and Farkas and Ludwig [20]).2

Theorem 1.2 The Prym moduli space R13 is of general type.

In particular, 13 is the smallest genus g for which it is known that Rg is of general type. The proof of
Theorem 1.2 takes full advantage of Theorem 1.1. It also uses the universal theta divisor ‚13, defined as

2The problem of determining the Kodaira dimension of R16 remains open. It was proven in Farkas and Ludwig [20] that the
Prym–Green conjecture on R16 implies that R16 is of general type. However, as shown in Chiodo, Eisenbud, Farkas and
Schreyer [11, Proposition 4.4], there is strong indication that the Prym–Green conjecture fails in genus 16.
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806 Gavril Farkas, David Jensen and Sam Payne

the locus of Prym curves ŒX; �� 2R13 for which there exists a vector bundle E 2 SUX .2; !; 8/ such that
H 0.X;E˝ �/¤ 0. In an indirect way (to be explained later), we calculate the class Œx‚13� of the closure
of ‚13 inside R13 and show that

(3) KR13 2Q>0h�; Œx‚13�; ŒD13W2�; boundary divisorsi;

where D13W2 is the effective divisor on R13 introduced in Farkas and Ludwig [20] consisting of Prym
curves ŒX; �� for which � can be written as the difference of two effective divisors of degree 6 on X .
Since � is big, it follows that KR13 is also big. Theorem 1.2 follows, since the singularities of Rg do not
impose adjunction conditions [20].

1.2 The strong maximal rank conjecture on M13

The proofs of both Theorems 1.1 and 1.2 are indirect and proceed through a study of the failure locus
of the strong maximal rank conjecture (see Aprodu and Farkas [3]) on M13. For a general curve X of
genus 13 the Brill–Noether locus W 5

16.X/ is one-dimensional, and W 6
16.X/D∅. Counting dimensions

shows that the multiplication map

�L W Sym2H 0.X;L/!H 0.X;L˝2/

has at least a one-dimensional kernel, since h0.X;L˝2/D2 deg.L/C1�gD20. The space of pairs ŒX;L�
such that Ker.�L/ is at least two-dimensional therefore has expected codimension 2 in the parameter space
G516 of all such pairs ŒX;L�. Since the fibers of the map � WG516!M13 are in general one-dimensional,
the pushforward of this locus is expected to be a divisor on M13.

Our next result verifies this case of the strong maximal rank conjecture and computes the class of the
closure of the divisorial part of the failure locus. This is essential input for the calculation of the nonabelian
Brill–Noether divisor class in Theorem 1.1 and hence for the proof of Theorem 1.2.

Theorem 1.3 The locus of curves ŒX� 2M13 carrying a line bundle L 2W 5
16.X/ such that the multipli-

cation map �L W Sym2H 0.X;L/!H 0.X;L˝2/ is not surjective is a proper subvariety of M13, having
a divisorial part D13, whose closure in M13 has slope

s.D13/D
5059
749
D 6:754 : : : < 6C 10

13
:

The proof of Theorem 1.3 takes full advantage of the techniques we developed in [19] in the course of
our work on M22 and M23. To that end, we split Theorem 1.3 in two parts.

Recall that a curve is treelike if its dual graph becomes a tree after deleting all loop edges [16, page 364].
We consider a proper moduli stack of generalized limit linear series � W eG516! eM13, where eM13 is a
suitable moduli stack of treelike curves of genus 13 equal to M13[�0[�1 in codimension one; see
Section 2 for a precise definition. We then construct a morphism of vector bundles over eG516 globalizing

Geometry & Topology, Volume 28 (2024)



The nonabelian Brill–Noether divisor on M13 and the Kodaira dimension of R13 807

the multiplication maps �L considered before. The degeneracy locus U of this morphism, due to its
determinantal nature, carries a virtual class ŒU�virt of codimension 2 inside eG516. Set

ŒeD13�virt
WD ��.ŒU�

virt/ 2 CH 1. eM13/:

Theorem 1.4 The following relation for the virtual class ŒeD13�virt holds:

ŒeD13�virt
D 3.5059�� 749ı0� 3929ı1/ 2 CH

1. eM13/:

That the degeneracy locus U does not map onto M13 is a particular case of the strong maximal rank
conjecture of [3]. We prove this case, along with a stronger result that guarantees that the virtual class
ŒeD13�virt is effective, using tropical geometry. In particular, we use the method of tropical independence
on chains of loops, as introduced in Jensen and Payne [30; 31]. Our construction of the required tropical
independences is similar to the one used in our proof that M22 and M23 are of general type, with one
important innovation. In [19], we were able to ignore certain loops called lingering loops. Here, this
seems impossible; there are too few nonlingering loops. This difficulty shows up already in the simplest
combinatorial case, which we call the vertex-avoiding case; for a discussion of how we resolve this
difficulty, see Remarks 4.3 and 4.11.

Theorem 1.5 For a general curve ŒX�2M13 the map �L W Sym2H 0.X;L/!H 0.X;L˝2/ is surjective
for all L 2 W 5

16.X/. Furthermore , there is no component of the degeneracy locus U mapping with
positive-dimensional fibers onto a divisor in eM13.

Theorem 1.5 implies that eD13, defined as the divisorial part of �.U/, represents the class ŒeD13�virt.
Together with Theorem 1.4, this completes the proof of Theorem 1.3.

The existence of effective divisors of exceptionally small slope on M13 has direct applications to the
birational geometry of the moduli space M13;n of n–pointed stable curves of genus 13.

Theorem 1.6 The moduli space M13;n is of general type for n� 9.

This improves on Logan’s result [36] that M13;n is of general type for n� 11. It is known that M13;n is
uniruled for n� 4; see Agostini and Barros [1].

1.3 The divisor D13 and rank-two Brill–Noether loci

The link between Theorems 1.1 and 1.3 involves a reinterpretation of the divisor D13 in terms of rank-two
Brill–Noether theory. Let SU13.2; !; 8/ denote the moduli space of pairs ŒX;E�, where ŒX� 2M13 and
E 2 SUX .2; !; 8/. Consider the forgetful map

# W SU13.2; !; 8/!M13; ŒX;E� 7! ŒX�:

Geometry & Topology, Volume 28 (2024)



808 Gavril Farkas, David Jensen and Sam Payne

We will show that # is a generically finite map of degree 3 (Theorem 6.5) and that SU13.2; !; 8/ is
unirational (Corollary 6.3). The fact that M13 possesses a modular cover # of such small degree is
surprising; we do not know of parallels for other moduli spaces Mg .

We now fix a pair ŒX;E� 2 SU13.2; !; 8/ and consider the determinant map

d W
V2
H 0.X;E/!H 0.X; !X /:

It turns out that for a general ŒX;E� as above, E is globally generated and the map d is surjective. In
particular, P .Ker.d//� P

�V2
H 0.X;E/

�
Š P27 is a 14–dimensional linear space. Since h0.X; !X /D

2h0.X;E/� 3, it follows that the set of pairs ŒX;E� satisfying the condition

(4) P .Ker.d//\G.2;H 0.X;E//¤∅;

the intersection being taken inside P
�V2

H 0.X;E/
�
, is expected to be a divisor on SU13.2; !; 8/, and

its image under projection by the generically finite map # is expected to be also a divisor on M13. We
refer to this locus as the resonance divisor Res13, inspired by the algebraic definition of the resonance
variety; see Aprodu, Farkas, Papadima, Raicu and Weyman [4, Definition 2.4].

Theorem 1.7 The closure of the resonance divisor in M13

Res13 WD fŒX� 2M13 W there exists an E 2 SUX .2; !; 8/ with P .Ker.d//\G.2;H 0.X;E//¤∅g

is an effective divisor in M13. One has the following equality of divisors on M13:

Res13 DD13C 3 �M1
13;7:

Here, we recall that M1
13;7 is the Hurwitz divisor of heptagonal curves on M13 whose class is computed

in Harris and Mumford [27]. The set-theoretic inclusion M1
13;7 �Res13 is relatively straightforward.

The multiplicity 3 with which M1
13;7 appears in Res13 is explained by an excess intersection calculation

carried out in Section 7, and confirms once more that the degree of the map # W SU13.2; !; 8/!M13

is 3.

We conclude this introduction by explaining the connection between the resonance divisor Res13 and
Theorems 1.1 and 1.3. On the one hand, using Farkas and Rimányi [22] the class ŒeRes13� of the closure of
Res13 in eM13 can be computed in terms of the generators of CH 1. eM13/ and a tautological class #�.
/,
where 
 is the pushforward of the second Chern class of the (normalized) universal rank-two vector
bundle on the universal curve over a suitable compactification of SU13.2; !; 8/; see Definition 7.3 for
details. On the other hand, Theorem 1.7 yields an explicit description of eRes13. By combining this
description with Theorem 1.3, we obtain a second calculation for the class ŒeRes13�. In this way, we
indirectly determine the tautological class #�.
/; see Proposition 7.7. Once the class of ŒeRes13� is known,
the calculation of the class of the nonabelian Brill–Noether divisor ŒeMP13� (Theorem 1.1) and that of the
universal Theta divisor Œz‚13� on R13 (Theorems 1.2 and 8.3) follow from Grothendieck–Riemann–Roch
calculations, after checking suitable transversality assumptions.
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2 The failure locus of the strong maximal rank conjecture on eM13

We denote by Mg the moduli stack of stable curves of genus g � 2 and by Mg the associated coarse
moduli space. We work throughout over an algebraically closed field K of characteristic 0 and the Chow
groups that we consider are with rational coefficients. Via the isomorphism CH�.Mg/Š CH

�.Mg/,
we routinely identify cycle classes on Mg with their pushforward to Mg . Recall that for g � 3 the group
CH 1.Mg/ is freely generated by the Hodge class � and by the classes of the boundary divisors ıi D Œ�i �
for i D 0; : : : ;

�
1
2
g
˘

.

In this section, we realize the virtual divisor class ŒeD13�virt as the pushforward of the virtual class of a
codimension 2 determinantal locus inside the moduli space eG516 of limit linear series of type g516 over an
open substack eM13 of M13, which agrees with M13[�0[�1 outside a subset of codimension 2. We
will use standard terminology from the theory of limit linear series [15], and begin by recalling a few of
the basics.

Definition 2.1 Let X be a smooth curve of genus g with ` D .L; V / 2 Gr
d
.X/ a linear series. The

ramification sequence of ` at a point q 2X is denoted by

˛`.q/ W ˛`0.q/� � � � � ˛
`
r .q/:

This is obtained from the vanishing sequence a`.q/ W a`0.q/ < � � � < a`r.q/ � d of ` at q, by setting
˛`i .q/ WDa

`
i .q/�i for iD0; : : : ; r . The ramification weight of q with respect to ` is wt`.q/ WD

Pr
iD0 ˛

`
i .q/.

We define �.`; q/ WD �.g; r; d/�wt`.q/.

A generalized limit linear series on a treelike curve X of genus g consists of a collection

`D f.LC ; VC / W C is a component of Xg;

where LC is a rank-one torsion-free sheaf of degree d on C and VC � H 0.C;LC / is an .rC1/–
dimensional space of sections satisfying compatibility conditions on the vanishing sequences at the nodes
of X ; see [16, page 364]. Let Gr

d
.X/ be the variety of generalized limit linear series of type gr

d
on X .

In this section we set

(5) g D 13; r D 5; d D 16:

Geometry & Topology, Volume 28 (2024)



810 Gavril Farkas, David Jensen and Sam Payne

Although we are mainly interested in the case gD 13, some of the constructions are set up for an arbitrary
genus g, making it easier to refer to results from [19].

We denote by M5
13;15 the subvariety of M13 parametrizing curves X such that W 5

15.X/ ¤ ∅. As
explained in [19, Section 3], we have codim.M5

13;5;M13/� 2.

Let �ı1 � �1 �Mg be the locus of curves ŒX [y E�, where X is a smooth curve of genus g � 1
and ŒE; y� 2M1;1 is an arbitrary elliptic curve. The point of attachment y 2 X is chosen arbitrarily.
Furthermore, let �ı0 � �0 �Mg be the locus of curves ŒXyq WD X=y � q� 2 �0, where ŒX; q� is a
smooth curve of genus g�1 and y 2X is an arbitrary point, together with their degenerations ŒX[qE1�,
where E1 is a rational nodal curve (that is, E1 is a nodal elliptic curve and j.E1/D1). Points of
this form comprise the intersection �ı0\�

ı
1. We define the following open subset of Mg :

Mıg WDMg [�
ı
0[�

ı
1:

Along the lines of [19, Section 3], we introduce an even smaller open subspace of Mg , over which the
calculation of ŒeD13�virt can be completed. Let T0 ��ı0 be the locus of curves ŒXyq WDX=y � q�, where
either GrC1

d
.X/¤∅ or Gr

d�2
.X/¤∅. Similarly, let T1 ��ı1 be the locus of curves ŒX [y E�, where

X is a smooth curve of genus g� 1 such that GrC1
d

.X/¤∅ or Gr
d�2

.X/¤∅. We set

eMg WDMıg n .Mr
g;d�1[ T0[ T1/:

We define z�0 WD eMg \�0 ��
ı
0 and z�1 WD eMg \�1 ��

ı
1. Note that eMg and Mg [�0[�1 agree

away from a set of codimension two in each. We identify CH 1. eMg/ Š Qh�; ı0; ı1i, where � is the
Hodge class, ı0 WD Œz�0� and ı1 WD Œz�1�.

2.1 Stacks of limit linear series

Let zGr
d

be the stack of pairs ŒX; `�, where ŒX� 2 eMg and ` is a (generalized) limit linear series of type gr
d

on the treelike curve X . We consider the proper projection

� W zGrd !
eMg :

Over a curve ŒX [y E� 2 z�1, we identify ��1.ŒX [y E�/ with the variety of (generalized) limit linear
series `D .`X ; `E / 2 Grd .X [y E/. The fiber ��1.ŒXyq�/ over an irreducible curve ŒXyq� 2 z�0 n z�1
is canonically identified with the variety W r

d
.Xyq/ of rank-one torsion-free sheaves L on Xyq having

degree d.L/D d and h0.Xyq; L/� r C 1.

Let zCg ! eMg be the universal curve, and let p2 W zCg �eMg

zGr
d
! zGr

d
be the projection map. We denote

by Z� zCg �eMg

zGr
d

the codimension-two substack consisting of pairs ŒXyq; L; z�, where ŒXyq� 2�ı0, the
point z is the node of Xyq and L 2W r

d
.Xyq/ nW

r
d
.Xyq/ is a non-locally free torsion-free sheaf. Let

� W yCg WD BlZ.zCg �eMg

zGrd /!
zCg �eMg

zGrd

Geometry & Topology, Volume 28 (2024)



The nonabelian Brill–Noether divisor on M13 and the Kodaira dimension of R13 811

be the blowup of this locus, and we denote the induced universal curve by

} WD p2 ı � W yCg ! zG
r
d :

The fiber of } over a point ŒXyq; L� 2 z�0, where L 2 W r
d
.Xyq/ nW

r
d
.Xyq/, is the semistable curve

X [fy;qgR of genus g, where R is a smooth rational curve meeting X transversally at y and q.

2.2 A degeneracy locus inside eG5
16

In order to define the degeneracy locus on zG516 whose pushforward produces ŒeD13�virt, we first choose a
Poincaré line bundle L over the universal curve yCg with the following properties:

(i) If ŒX [y E� 2 z�1 and `D .`X ; `E / 2Grd .X [E/ is a limit linear series, then

LjŒX[yE;`� 2 Picd .X/�Pic0.E/:

(ii) For a point t D ŒXyq; L�, where ŒXyq� 2 z�0 and L 2 W r
d
.Xyq/ nW

r
d
.Xyq/, thus L D ��.A/

for some A 2W r
d�1

.X/, we have LjX Š A and LjR Š OR.1/. Here, }�1.t/D X [R, whereas
� WX !Xyq is the normalization map.

We now introduce two sheaves over zGr
d

,

E WD }�.L/ and F WD }�.L˝2/:

Both E and F are locally free; the proof by local analysis in [19, Proposition 3.6] goes through essentially
without change.

There is a sheaf morphism over eG516 globalizing the multiplication of sections

(6) � W Sym2.E/! F :

We denote by U� zG516 the locus where � is not surjective (equivalently, where �_ is not injective). Due
to its determinantal nature, U carries a virtual class in the expected codimension 2.

Definition 2.2 We define the virtual divisor class ŒeD13�virt WD ��.ŒU�
virt/ as

ŒeD13�virt
WD ��.c2.Sym2.E/_�F_// 2 CH 1.eM13/:

If U has pure codimension 2, then eD13 is a divisor on eM13 and ŒeD13�virtD ŒeD13�. The following corollary
provides a local description of the morphism �.

Corollary 2.3 The morphism � W Sym2.E/! F has the following description on fibers:

(i) For ŒX;L� 2 zGr
d

, with ŒX� 2Mg nMr
g;d�1

smooth , the fibers are

E.X;L/ DH 0.X;L/ and F.X;L/ DH 0.X;L˝2/;

and �.X;L/ W Sym2H 0.X;L/!H 0.X;L˝2/ is the usual multiplication map of global sections.
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(ii) Suppose t D .X [y E; `X ; `E / 2 ��1.z�1/, where X is a curve of genus g � 1, E is an elliptic
curve and `X D jLX j is the X–aspect of the corresponding limit linear series with LX 2W r

d
.X/

such that h0.X;LX .�2y//� r . If LX has no basepoint at y, then

Et DH 0.X;LX /ŠH
0.X;LX .�2y//˚K �u and Ft DH 0.X;L˝2X .�2y//˚K �u2;

where u 2H 0.X;LX / is any section such that ordy.u/D 0.

If LX has a basepoint at y, then

Et DH 0.X;LX /ŠH
0.X;LX .�y//;

and the image of Ft !H 0.X;L˝2X / is the subspace H 0.X;L˝2X .�2y//�H 0.X;L˝2X /.

(iii) Let t D ŒXyq; L� 2 ��1.z�0/ be a point with q; y 2X and let L 2W r
d
.Xyq/ be a locally free sheaf

of rank one , such that h0.X; ��L.�y � q// � r , where � W X ! Xyq is the normalization. Then
the fibers are described as

Et DH 0.X; ��L/ and Ft DH 0.X; ��L˝2.�y � q//˚K �u2;

where u 2H 0.X; ��L/ is any section not vanishing at both points y and q.

(iv) Let t D ŒXyq; ��.A/�, where A2W r
d�1

.X/, and again set X[fy;qgR to be the fiber }�1.t/. Then
Et D H 0.X [R;LX[R/ Š H 0.X;A/ and Ft D H 0.X [R;L˝2X[R/. Furthermore , �.t/ is the
multiplication map on X [R.

Proof The proof is essentially identical to the proof of [19, Corollary 3.8]; we omit the details.

2.3 Test curves in fM13

As in [19], the calculation of ŒeD13�virt is carried out by understanding the restriction of the morphism �

along the pullbacks of the three standard test curves F0, Fell and F1 inside eM13. Let ŒX; q� be a general
pointed curve of genus g� 1 and fix an elliptic curve ŒE; y�. We then define

F0 WD fXyq WDX=y � q W y 2Xg ��
ı
0 �Mıg and F1 WD fX [y E W y 2Xg ��

ı
1 �Mıg :

Furthermore, we define the curve

(7) Fell WD fŒX [q Et � W t 2 P1g ��1 �Mg ;

where fŒEt ; q�gt2P1 denotes a pencil of plane cubics and q is a fixed point of the pencil. We record the
intersection of these test curves with the generators of CH 1.Mg/:

F0 ��D 0; F0 � ı0 D 2� 2g; F0 � ı1 D 1; F0 � ıj D 0 for j D 2; : : : ;
�
1
2
g
˘
;

Fell ��D 1; Fell � ı0 D 12; Fell � ı1 D�1; Fell � ıj D 0 for j D 2; : : : ;
�
1
2
g
˘
:

Note also that F1 ��D 0, F1 � ıi D 4� 2g and F1 � ıj D 0 for j ¤ 1.
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We now describe the pullback ��.F0/� eG516. Having fixed a general pointed curve ŒX; q� 2M12;1, we
introduce the variety

(8) Y WD f.y; L/ 2X �W 5
16.X/ W h

0.X;L.�y � q//� 5g;

together with the projection �1 W Y !X . Arguing in a way similar to [19, Proposition 3.10], we conclude
that Y has pure dimension 2, that is, its actual dimension equals its expected dimension as a degeneracy
locus. We consider two curves inside Y, namely

�1 WD f.y; A.y// W y 2X; A 2W
5
15.X/g and �2 WD f.y; A.q// W y 2X; A 2W

5
15.X/g;

intersecting transversely along finitely many points. We then introduce the variety zY obtained from Y by
identifying for each .y; A/ 2X �W 5

15.X/, the points .y; A.y// 2 �1 and .y; A.q// 2 �2. Let # W Y ! zY
be the projection map.

Proposition 2.4 With notation as above , there is a birational morphism

f W ��.F0/! zY ;

which is an isomorphism outside #.��11 .q//. The restriction of f to f �1
�
#.��11 .q//

�
forgets the aspect

of each limit linear series on the elliptic curveE1. Furthermore , both Ej��.F0/ and Fj��.F0/ are pullbacks
under f of vector bundles on zY .

Proof The proof is identical to that of [19, Proposition 3.11].

We now describe the pullback ��.F1/� zG516 and we define the determinantal variety

(9) Z WD f.y; L/ 2X �W 5
16.X/ W h

0.X;L.�2y//� 5g:

Because X is general, arguing precisely as in [19, Proposition 3.10], we find that Z is pure of dimension 2.
Next we observe that in order to estimate the intersection of ŒeD13�virt with the surface ��.F1/, it suffices
to restrict ourselves to Z:

Proposition 2.5 The variety Z is an irreducible component of ��.F1/, and

c2.Sym2.E/_�F_/j��.F1/ D c2.Sym2.E/_�F_/jZ :

Proof Let .`X ; `E / 2 ��1.ŒX [y E�/ be a limit linear series. Observe that �.13; 5; 16/ D 1, which
is greater than or equal to the sum of the adjusted Brill–Noether numbers �.`X ; y/C �.`E ; y/; see
Definition 2.1. Since �.`E ; y/ � 0, it follows that �.`X ; y/ 2 f0; 1g. If �.`E ; y/ D 0, then `E D
10yCjOE .6y/j and the aspect `X 2G516.X/ is a complete linear series with a cusp at the point y 2X .
Therefore .y; `X / 2Z, and in particular Z � f`E g ŠZ is a union of irreducible components of ��.F1/.
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The remaining components of ��.F1/ are indexed by Schubert indices

˛ WD .0� ˛0 � � � � � ˛5 � 11D16� 5/

such that ˛ � .0; 1; 1; 1; 1; 1/ holds lexicographically and ˛0C� � �C˛5 2 f6; 7g when �.`X ; y/��1 for
any point y 2X ; see also [18, Theorem 0.1]. For a Schubert index ˛ satisfying these conditions, we let
˛c WD .11�˛5; : : : ; 11�˛0/ be the complementary Schubert index, and define

Z˛ WD f.y; `X / 2X �G
5
16.X/ W ˛

`X .y/� ˛g and W˛ WD f`E 2G
5
16.E/ W ˛

`E .y/� ˛cg:

Then the following relation holds for certain natural coefficients m˛:

��.F1/DZC
X

˛�.0;1;1;1;1;1/

m˛.Z˛ �W˛/:

We now finish the proof by invoking the pointed Brill–Noether theorem [16, Theorem 1.1], which gives
dim Z˛ D 1C �.12; 5; 16/� .˛0 C � � � C ˛5/ � 1. In the definition of the test curve F1, the point of
attachment y 2E is fixed, therefore the restrictions of both E and F are pulled-back from Z˛ and one
obtains c2.Sym2.E/_�F_/jZ˛�W˛ D 0 for dimension reasons.

2.4 Top Chern numbers on Jacobians

We use various facts about intersection theory on Jacobians, for which we refer to [5, Chapters VII–VIII].
We start with a general curve X of genus g, fix a Poincaré line bundle P on X �Picd .X/ and denote by

�1 WX �Picd .X/!X and �2 WX �Picd .X/! Picd .X/

the two projections. Let �D ��1 .Œx0�/ 2H
2.X �Picd .X/;Z/, where x0 2X is a fixed point. We choose

a symplectic basis ı1; : : : ; ı2g 2H 1.X;Z/ŠH 1.Picd .X/;Z/, and then consider the class


 WD �

gX
˛D1

�
��1 .ı˛/�

�
2 .ıgC˛/��

�
1 .ıgC˛/�

�
2 .ı˛/

�
2H 2.X �Picd .X/;Z/:

One has c1.P/D d ��C
 , and the relations 
3 D 0, 
�D 0, �2 D 0 and 
2 D�2���2 .�/, for which we
refer to [5, page 335]. Assuming W rC1

d
.X/D∅ (which is what happens in the case of g D 12, r D 5

and d D 16 relevant to us), the smooth variety W r
d
.X/ admits a rank-rC1 vector bundle

M WD .�2/�.PjX�W r
d
.X//

with fibers MLŠH
0.X;L/, for L2W r

d
.X/. The Chern numbers of M are computed via the Harris–Tu

formula [28]. We write formally

rX
iD0

ci .M_/D .1C x1/ � � � .1C xrC1/:

Geometry & Topology, Volume 28 (2024)



The nonabelian Brill–Noether divisor on M13 and the Kodaira dimension of R13 815

For a class � 2 H�.Picd .X/;Z/, the Chern number cj1.M/ � � � cjs .M/ � � 2 H top.W r
d
.X/;Z/ can be

computed by repeatedly using the following formal identities:3

(10) x
i1
1 � � � x

irC1
rC1 � �

�.g;r;d/�i1�����irC1 D gŠ

Q
j>k.ik � ij C j � k/QrC1

kD1.g� d C 2r C ik � k/Š
:

We now specialize to the case when X is a general curve of genus 12, thus W 5
16.X/ is a smooth 6–fold.

By Grauert’s Theorem, N WD .R1�2/�.PjX�W 5
16.X/

/ is locally free of rank one. Set y1 WD c1.N /. We
now explain how y1 determines the Chern numbers of M.

Proposition 2.6 For a general curve X of genus 12 set ci WD ci .M_/ for i D 1; : : : ; 6, and y1 WD c1.N /.
Then the following relations hold in H�.W 5

16.X/;Z/:

ci D
� i

i Š
�

� i�1

.i � 1/Š
y1 for i D 1; : : : ; 6:

Proof For an effective divisor D of sufficiently large degree on X , there is an exact sequence

0!M! .�2/�.P˝O.��D//! .�2/�.P˝O.��1D/j��1D/!R1�2�.PjX�W 5
16.X/

/! 0:

Recall that N is the vector bundle on the right in the exact sequence above. By [5, Chapter VII], we have
ctot
�
.�2/�.P˝O.��1D//

�
D e�� , and the total Chern class of .�2/�.P˝O.��1D/j��1D/ is trivial. We

therefore, as claimed, obtain the formula

.1Cy1/ � e
��
D 1� c1C c2� � � �C c6:

Using Proposition 2.6, any Chern number on W 5
16.X/ can be expressed in terms of monomials in y1

and � . The following identity on H 12.W 5
16.X/;Z/ follows from (10) using the canonical isomorphism

H 1.X;L/ŠH 0.X; !X ˝L
_/_:

(11) .� i �y6�i1 /W 5
16.X/

D
�12

.12� i/Š
D i Š

�12
i

�
:

With this preparation in place, we now compute the classes of the loci Y and Z.

Proposition 2.7 Let ŒX; q� be a general pointed curve of genus 12, let M denote the tautological rank-six
vector bundle over W 5

16.X/, and set ci D ci .M_/ 2H 2i .W 5
16.X/;Z/ as before. Then:

(i) ŒZ�D ��2 .c5/� 6���
�
2 .c3/C .54�C 2
/�

�
2 .c4/ 2H

10.X �W 5
16.X/;Z/.

(ii) ŒY �D ��2 .c5/� 2���
�
2 .c3/C .15�C 
/�

�
2 .c4/ 2H

10.X �W 5
16.X/;Z/.

Proof The locus Z has been defined by (9) as the degeneracy locus of a vector bundle morphism
over the 7–dimensional smooth variety X � W 5

16.X/ (observe again that W 6
16.X/ D ∅/. For each

.y; L/ 2X �W 5
16.X/, there is a natural map

H 0.X;L˝O2y/_!H 0.X;L/_:

3See [19, Section 4.1] for a detailed discussion of how to read and apply the Harris–Tu formula in this context.
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These maps viewed together induce a morphism � W J1.P/_! ��2 .M/_ of vector bundles. Then Z is the
first degeneracy locus of � and applying the Porteous formula,

ŒZ�D c5.�
�
2 .M/_�J1.P/_/:

The Chern classes of the jet bundle J1.P/ are computed using the standard exact sequence

0! ��1 .!X /˝P! J1.P/! P! 0:

We compute the total Chern class of the formal inverse of the jet bundle as follows:

ctot.J1.P/_/�1 D
�X
j�0

.d.L/�C 
/j
�
�

�X
j�0

�
.2g.X/� 2C d.L//�C 


�j�
;

D .1C 16�C 
 C 
2C � � � / � .1C 38�C 
 C 
2C � � � /;

D 1C 54�C 2
 � 6��:

Multiplying this with the total class of ��2 .M/_, one finds the claimed formula for ŒZ�.

To compute the class of Y defined in (8), we consider the projections

�; � WX �X �Pic16.X/!X �Pic16.X/;

and let � � X � X � Pic16.X/ be the diagonal. Set �q WD fqg � Pic16.X/ and consider the vector
bundle B WD��.��.P/˝O�C��.�q//. There is a morphism � W B_! .�2/

�.M/_ of vector bundles over
X �W 5

16.X/ obtained as the dual of the evaluation map, and the surface Y is realized as its degeneracy
locus. Since we also have that

ctot.B_/�1 D
�
1C .d.L/�C 
/C .d.L/�C 
/2C � � �

�
� .1� �/D 1C 15�C 
 � 2��;

we find the stated expression for ŒY � and finish the proof.

We introduce two further vector bundles which appear in many of our calculations. Their Chern classes
are computed via Grothendieck–Riemann–Roch.

Proposition 2.8 Let ŒX; q� be a general pointed curve of genus 12 and consider the vector bundles A2
and B2 on X �Pic16.X/ having fibers

A2;.y;L/ DH 0.X;L˝2.�2y// and B2;.y;L/ DH 0.X;L˝2.�y � q//;

respectively. One then has the following formulas for their Chern classes:

c1.A2/D�4� � 4
 � 86�; c1.B2/D�4� � 2
 � 31�;
c2.A2/D 8�2C 320�� C 16
�; c2.B2/D 8�2C 116�� C 8�
:

Proof We apply Grothendieck–Riemann–Roch to the projection map

� WX �X �Pic16.X/!X �Pic16.X/:
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Via Grauert’s theorem, A2 can be realized as a pushforward under the map �, precisely

A2 D �Š
�
��.P˝2˝OX�X�Pic16.X/.�2�//

�
D ��

�
��.P˝2˝OX�X�Pic16.X/.�2�//

�
:

Applying Grothendieck–Riemann–Roch to �, we find ch2.A2/D 8�� , and ��.c1.P/2/D�2� . One then
obtains c1.A2/D�4��4
� .4d.L/C2g.C /�2/�, which yields the formula for c2.A2/. To determine
the Chern classes of B2, we observe c1.B2/D�4� � 2
 � .2d � 1/� and ch2.B2/D 4�� .

3 The class of the virtual divisor fD13

In this section we determine the virtual class ŒeD13�virt WD ��
�
c2.Sym2.E//_�F_

�
on eM13. We begin

by recording the following formulas for a vector bundle V of rank r C 1 on a stack X :

c1.Sym2.V//D .r C 2/c1.V/ and c2.Sym2.V//D 1
2
r.r C 3/c21.V/C .r C 3/c2.V/:

We apply these formulas for the first degeneracy locus of �_ W F_! Sym2.E/_. By Definition 2.2, its
class ŒU�virt is given by

(12) c2.Sym2.E/_�F_/D c2.Sym2.E/_/� c1.Sym2.E/_/ � c1.F_/C c21.F_/� c2.F_/
D 20c21.E/C 8c2.E/� 7c1.E/ � c1.F/C c21.F/� c2.F/:

In what follows we expand the virtual class in CH 1. eM13/ as

(13) ŒeD13�virt
D a�� b0ı0� b1ı1:

We compute the coefficients a; b0 and b1, by intersecting both sides of this expression with the test
curves F0, F1 and Fell. We start with the coefficient b1.

Theorem 3.1 Let X be a general curve of genus 12. The coefficient b1 in (13) is

b1 D
1

2g.X/� 2
��.F1/ � c2.Sym2.E/_�F_/D 11787:

Proof We intersect the degeneracy locus of the map � W Sym2.E/! F with ��.F1/. By Proposition 2.5,
it suffices to estimate the contribution coming from Z. We write

��.F1/ � c2.Sym2.E/_�F_/D c2.Sym2.E/_�F_/jZ :

In Proposition 2.7, we constructed a morphism � W J1.P/_! ��2 .M/_ of vector bundles on Z, whose
fibers are the maps H 0.O2y/_!H 0.X;L/_. The kernel sheaf Ker.�/ is locally free of rank one. If U
is the line bundle on Z with fiber

U.y;L/D
H 0.X;L/

H 0.X;L.�2y//
,!H 0.X;L˝O2y/

over a point .y; L/ 2Z, then over Z one has the exact sequence

0! U ! J1.P/! .Ker.�//_! 0:
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In particular, by Proposition 2.7, we find that

(14) c1.U /D 2
 C 54�C c1.Ker.�//:

The product of the Chern class of Ker.�/ with any class � 2H 2.X�W 5
16.X/;Z/ is given by the Harris–Tu

formula [28]

(15) c1.Ker.�//��jZD�c6.�
�
2 .M/_�J1.P/_/��jZD�

�
��2 .c6/�6���

�
2 .c4/C.54�C2
/�

�
2 .c5/

�
��jZ :

Similarly, one has the formula [28] for the self-intersection on the surface Z:

(16) c21.Ker.�//D
�
��2 .c7/� 6���

�
2 .c5/C .54�C 2
/�

�
2 .c6/

�
2H 14.X �W 5

16.X/;Z/Š Z:

We also observe that c7 D 0, since the bundle M has rank 6.

Let A3 denote the vector bundle on Z having fibers

A3;.y;L/ DH 0.X;L˝2/

constructed as a pushforward of a line bundle on X �X � Pic16.X/. Then the line bundle U˝2 can be
embedded in A3=A2. We consider the quotient

G WD A3=A2
U˝2

:

The morphism U˝2 ! A3=A2 vanishes along the locus of pairs .y; L/, where L has a basepoint. It
follows that the sheaf G has torsion along the locus ��Z consisting of pairs .q; A.q//, whereA2W 5

16.X/.
Furthermore, FjZ , as a subsheaf of A3, can be identified with the kernel of the map A3!G. Summarizing,
there is an exact sequence of vector bundles on Z,

(17) 0!A2jZ! FjZ! U˝2! 0:

Over a general point .y; L/ 2Z, this sequence reflects the decomposition

F.y; L/DH 0.X;L˝2.�2y//˚K �u2;

where u 2H 0.X;L/ is a section such that ordy.u/D 1.

Via the exact sequence (17), one computes the Chern classes of FjZ :

c1.FjZ/D c1.A2jZ/C 2c1.U / and c2.FjZ/D c2.A2jZ/C 2c1.A2jZ/c1.U /:

Recalling that EjZ D ��2 .M/jZ and using (12), we find that ��.F1/ � c2..Sym2 E/_�F_/ is equal to

20c21.�
�
2M_jZ/C 8c2.�

�
2M_jZ/C 7c1.�

�
1M_jZ/ � c1.A2jZ/C 4c

2
1.U /

� c2.A2jZ/C 14c1.��2M_jZ/ � c1.U /C c
2
1.A2jZ/C 2c21.A2jZ/ � c1.U /:

Here, ci .��2M_jZ/D �
�
2 .ci / 2H

2i .Z;Z/. The Chern classes of A2jZ were computed in Proposition 2.8.
Formula (14) expresses c1.U / in terms of c1.Ker.�// and the classes � and 
 . When expanding
��.F1/ � c2.Sym2.E/_ �F_/, one distinguishes between terms that do and those that do not contain
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the first Chern class of Ker.�/. The coefficient of c1.Ker.�//, as well as the contribution coming from
c21.Ker.�// in the expression of ��.F1/ �c2.Sym2.E/_�F_/ is evaluated using the formulas (15) and (16)
respectively. To carry this out, we first consider the part of this product that does not contain c1.Ker.�//,
and we obtain

8��2 .c2/C 20�
�
2 .c

2
1/C c

2
1.A2jZ/C 7��2 .c1/ � c1.A2jZ/� c2.A2jZ/C 4.2
 C 54�/2

C 2.2
 C 54�/ � c1.A2jZ/C 14.2
 C 54�/ ���2 .c1/
D 20��2 .c

2
1/C 154�

�
2 .c1/ � �� 28�

�
2 .c1/ � � � 96�� C 8�

2
C 8��2 .c2/

in H 4.X � W 5
16.X/;Z/. This polynomial gets multiplied by the class ŒZ�, which is expressed in

Proposition 2.7 as a degree 5 polynomial in � , � and ��2 .ci /. We obtain a homogeneous polynomial of
degree 7 viewed as an element of H 14.X �W 5

16.X/;Z/.

Next we turn our attention to the contribution ��.F1/ � c2.Sym2.E/_�F_/ coming from terms that do
contain c1.Ker.�//. This is given by the formula

4c21.Ker.�/C c1.Ker.�/ �
�
8.2
 C 54�/C 2c1.A2jZ/C 14��2 .c1/

�
:

Using (15) and (16), one ends up with the following homogeneous polynomial of degree 7 in �, � and
��2 .ci / for i D 1; : : : ; 6:

84��2 .c1c4/��� 48�
�
2 .c4/�

2�� 756��2 .c1c5/�C 440�
�
2 .c5/��� 44�

�
2 .c6/�:

Adding together the parts that do and those that do not contain c1.Ker.�//, and using the fact that the
only monomials that need to be retained are those containing �, after manipulations carried out using
Maple, one finds

��.F1/ � c2.Sym2.E/_�F_/
D ���2

�
�602c1c5C 432c2c4� 120c

2
1c3� C 168c1c3�

2
� 48c3�

3
C 1080c21c4� 1428c1c4�

� 48c2c3� C 384c4�
2
C 344c5� � 44c6

�
:

We suppress � and the remaining polynomial lives inside H 12.W 5
16.X/;Z/Š Z. Using Proposition 2.6

this expression is equal to

��.F1/ � c2.Sym2.E/_�F_/D 193
45
�6� 1271

30
�5y1C

1607
12
�4y21 � 120�3y

3
1 D 259314;

where for the last step we used the formulas (11). We conclude

b1 D
1
22
��.F1/ � c2.Sym2.E/_�F_/D 11787;

as required.

Theorem 3.2 Let ŒX; q� be a general pointed curve of genus 12 and let F0� z�0� eM13 be the associated
test curve. Then the coefficient of ı0 in the expression (13) of ŒeD13�virt is equal to

b0 D
1
24

�
��.F0/ � c2.Sym2.E/_�F_/C b1/D 2247:
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Proof Using Proposition 2.4, we observe that

c2.Sym2.E/_�F_/j��.F0/ D c2.Sym2.E/_�F_/jY :

We shall evaluate the Chern classes of FjY via the line bundle V on Y with fiber

V.y;L/D
H 0.X;L/

H 0.X;L.�y � q//
,!H 0.X;L˝OyCq/

over a point .y; L/ 2 Y. We write the exact sequence

0! V ! B! .Ker.�//_! 0

over Y, where the morphism � WB_!��2 .M/_ was defined in the final part of the proof of Proposition 2.7.
In particular, we have

c1.V /D 15�C 
 C c1.Ker.�//:

The effect of multiplying c1.Ker.�// against a class � 2H 2.X �W 5
16.X/;Z/ is described by applying

once more the Harris–Tu formula [28]:

(18) c1.Ker.�// � �jY D
�
���2 .c6/� 2���

�
2 .c4/C .15�C 
/�

�
2 .c5/

�
� �jY ;

where we recall that �2 W X �W 5
16.X/! W 5

16.X/ and ci 2 H 2i .W 5
16.X/;Z/. Similarly, for the self-

intersection on Y the following formula holds:

(19) c21.Ker.�//D�2����2 .c5/C .15�C 
/�
�
2 .c6/ 2H

14.X �W 5
16.X/;Z/:

We have also introduced in Proposition 2.8 the vector bundle B2 on X �Pic16.X/ with fibers B2;.y;L/ D
H 0.X;L˝2.�y � q// over a point .y; L/. A local calculation along the lines of the one in the proof of
Theorem 3.1 shows that one also has an exact sequence on Y, which can then be used to determine the
Chern numbers of FjY :

0! B2jY ! FjY ! V ˝2! 0:

This exact sequence reflects the fact for a general point .y; L/ 2 Y one has a decomposition F.y; L/D
H 0.X;L˝2.�y � q//˚K �u2, where u 2H 0.X;L/ is a section that does not vanish at y and q. We
thus obtain the formulas

c1.FjY /D c1.B2jZ/C 2c1.V / and c2.FjY /D c2.B2jY /C 2c1.B2jY /c1.V /:

To estimate c2.Sym2.E/_�F_/jY we use (12) and write

��.F0/ � c2..Sym2 E/_�F_/
D 20c21.�

�
1M_jY /C 8c2.�

�
2M_jY /C 7c1.�

�
1M_jY / � c1.B2jY /C 4c

2
1.V /� c2.B2jY /

C 14c1.�
�
2M_jY / � c1.V /C c

2
1.B2jY /C 2c1.B2jY / � c1.V /:

We expand this expression, collect the terms that do not contain c1.Ker.�//, and obtain

20��2 .c
2
1/� 7��

�
2 .c1/� 28� ��

�
2 .c1/C 4��C 8�

2
C 8��2 .c2/:
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This quadratic polynomial gets multiplied with the class ŒY � computed in Proposition 2.7. Next, we
collect the terms in ��.F0/ � c2.Sym2 E_�F_/ that do contain c1.Ker.�//:

4c21.Ker.�//C c1.Ker.�//
�
8.15�C 
/C 14��2 .c1/C 2c1.B2jY /

�
:

This part of the contribution is evaluated using formulas (18) and (19).

Putting everything together, we obtain a polynomial in H 14.X �W 5
16.X/;Z/Š Z, as in the proof of

Theorem 3.1:

��.F0/ � c2.Sym2.E/_�F_/
D ���2

�
�40c21c3� C 56c1c3�

2
� 16c3�

3
C 300c21c4� 392c1c4� � 16c2c3� C 104c4�

2
� 217c1c5

C 120c2c4C 124c5� C 2c6
�
:

Applying Proposition 2.6 and then (11), after eliminating � we obtain

��.F0/ � c2.Sym2.E/_�F_/D 161
180
�6� 28

3
�5y1C

755
24
�4y21 � 30�

3y31 D 42141:

We can now complete the calculation of ŒeD13�virt.

Proof of Theorem 1.4 We consider the curve Fell � eMg defined in (7) obtained by attaching at the fixed
point of a general curve X of genus 12 a pencil of plane cubics at one of the basepoints of the pencil.
Then one has the relation

a� 12b0C b1 D Fell � ��c2.Sym2.E/_�F_/D 0:

Using Theorems 3.1 and 3.2, we thus find aD 15177 for the �–coefficient in the expansion (13). This
completes the calculation of the virtual class ŒeD13�virt.

We finally explain how Theorems 1.4 and 1.5 (proved in Section 4) together imply Theorem 1.3.

Proof of Theorem 1.3 We write ŒD13�D a�� b0ı0� � � � � b6ı6, where a, b0 and b1 are determined by
Theorem 1.4. Applying [21, Theorem 1.1], we have the inequalities bi � .6i C 8/b0� .i C 1/a � b0 for
i D 2; : : : ; 6, which shows that s.D13/D a=b0 D 5059

749
.

4 The strong maximal rank conjecture in genus 13

In this section and the next, we prove that eD13 is not all of eM13 and that its codimension-one part
represents the virtual class ŒeD13�virt.

To show that eD13 is not all of eM13, it suffices to prove the existence of one Brill–Noether general smooth
curve X of genus 13 such that, for every L 2W 5

16.X/, the multiplication map

�L W Sym2H 0.X;L/!H 0.X;L˝2/
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is surjective. This is one case of the strong maximal rank conjecture [3]. The locus of such curves is Zariski
open; to prove that it is nonempty over every algebraically closed field of characteristic zero, it suffices to
show this over one such field. Hence, we can and do assume that our ground fieldK is spherically complete
with respect to a surjective valuation � WK�!R, and that K has residue characteristic zero. This allows
us to discuss the nonarchimedean analytifications of curves, the skeletons of those analytifications, and the
tropicalizations of rational functions, viewed as sections of L and L˝2. In this framework, we apply the
method of tropical independence to give a lower bound for the rank of the multiplication map �L for every
L 2W 5

16.X/. The motivation and technical foundations for this approach are detailed in Sections 1.4–1.5,
Sections 2.4–2.5 and Section 6 of [19], to which we refer the reader for details and further references.

After proving this case of the strong maximal rank conjecture, we will furthermore show that no
component of the degeneracy locus U in the parameter space zG516 over eM13 maps with generically
positive-dimensional fibers onto a divisor in eM13. As in [19], this additional step is necessary to show
that the pushforward of the virtual class is effective, and our proof involves analogous arguments on
lower-genus curves for linear series with ramification. In particular, we will consider linear series with
ramification on curves of genus 11 and 12 in Section 5, and so we set up our arguments here to work in
this greater generality.

Let X be a smooth projective curve of genus 11� g � 13 over K whose Berkovich analytification X an

has a skeleton � which is a chain of g loops connected by bridges, as shown. In order to simplify notation
later, the vertices of � are labeled w13�g ; : : : ; w13, and v14�g ; : : : ; v14, as shown in Figure 1.

For 14� g � k � 13 we write 
k for the loop formed by the two edges of length `k and mk between
vk and wk . Similarly, for 14�g � k � 14 we write ˇk for the bridge between wk�1 and vk which has
length nk . Except where stated otherwise, we assume that these edge lengths satisfy

(20) `kC1�mk� `k� nkC1� nk for all k:

These conditions on the edge lengths are precisely as in [19, Section 7.1]. Any curve X whose analytifi-
cation has such a skeleton is Brill–Noether general [12].

Given a line bundle L on X we choose an identification L D OX .DX / so that any linear series V �
H 0.X;L/ is identified with a finite-dimensional vector space of rational functions V � K.X/. The
tropicalization of any nonzero rational function f on X is a piecewise linear function with integer slopes
on � , and we write tropV for the set of all tropicalizations of nonzero functions in V.

w13�g
v14�g

w14�g

v13
w13

v14

nk

`k

mk

Figure 1: The chain of loops � .
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Any sum of two functions in tropV is the tropicalization of a function in the image of the multiplication
map �V W Sym2 V ! H 0.X;L˝2/. We say that a set of functions f 0; : : : ;  ng on � is tropically
independent if there are real numbers b0; : : : ; bn such that

minf 0C b0; : : : ;  nC bng ¤minf 0C b0; : : : ; 2 j C bj ; : : : ;  nC bng for 0� j � n:

In other words, f 0; : : : ;  ng is tropically independent if there are real numbers b0; : : : ; bn such that
each  j C bj achieves the minimum uniquely in minif i C big at some point v 2 � . The function
� Dminif i C big is then called an independence, since it verifies that f 0; : : : ;  ng is independent.

We recall that tropical independence is a sufficient condition for linear independence; if f0; : : : ; fn are
nonzero rational functions on X such that ftrop.f0/; : : : ; trop.fn/g is tropically independent on � , then
ff0; : : : ; fng is linearly independent in K.X/. Therefore, the relevant case of the strong maximal rank
conjecture, and hence the fact that eD13 is a divisor, follows immediately from the following.

Theorem 4.1 Let X be a curve of genus 13 with skeleton � . Let V be a linear series of degree 16 and
dimension 5 on X , and let † D tropV. Then there is an independence � among 20 pairwise sums of
functions in †.

We will use the following generalization of Theorem 4.1 in our proof that eD13 represents the virtual
class; the generalization involves analogous statements for linear series satisfying certain ramification
conditions in genus 11 and 12. The situation is closely parallel to that in [19, Section 9.4]. Recall that
aV0 .p/ < � � �< a

V
r .p/ denotes the vanishing sequence of a linear series V of rank r at a point p.

Theorem 4.2 Let X be a curve of genus g 2 f11; 12; 13g whose skeleton is � , and let p 2X be a point
specializing to w13�g . Let V be a linear series of degree 16 and dimension 5 on X , and let †D tropV.
Assume that

(i) if g D 12, then aV1 .p/� 2, and

(ii) if g D 11, then either aV1 .p/� 3, or aV0 .p/� 1 and aV2 .p/� 4.

Then there is an independence � among 20 pairwise sums of functions in †.

The remainder of this section is devoted to the proof of Theorem 4.2. Our approach to constructing the
independence is similar to that of [19], with a few important differences that we highlight when they arise.
Throughout, we let DX be a divisor class on X with V �H 0.X;O.DX //. We write D D Trop.DX /,
and we assume that D is a break divisor, meaning that it is the unique effective representative of its
equivalence class with multiplicity degD � g at w0 and precisely one point of multiplicity 1 on each
loop 
k . (See for instance [2].) Let R.D/ denoted the complete tropical linear series of D, as in [25].
In other words, R.D/D f 2 PL.�/ WDC div. /� 0g. Note, in particular, that Trop.V / is a tropical
submodule of R.D/.
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Remark 4.3 The differences between the constructions of independences here and those in [19] are
subtle but crucial. Even when g D 13, ŒD� is vertex-avoiding, and † is unramified (the cases treated in
Section 4.1), if we apply the algorithm of [19, Section 8.1] naively, we obtain an independence among
only 19 functions in †. To overcome this difficulty, we divide the graph into blocks in such a way that
the lingering loop is the last loop in its block and has exactly two permissible functions. This allows
us to alter the algorithm slightly and assign a function to the lingering loop, raising the total number of
functions in the independence to 20. See Remark 4.11.

4.1 The unramified vertex-avoiding case

We first consider the case where gD 13, D is vertex-avoiding, and †D tropV is unramified. Unramified
means that the ramification weights of tropV at w0 and v14, in the sense of [19, Definition 9.7], are zero.
Vertex-avoiding means that, for 0� i � 5, there is a unique divisorDi �D such thatDi�iw0�.5�i/v14
is effective. A vertex-avoiding divisor is unramified if and only if the support of Di � iw0� .5� i/v14
contains neither w0 nor v14, for all i .

For  2†, we write sk. / and s0
k
. / for the rightward slopes along the incoming and outgoing bridges

of the kth loop 
k , at vk and wk , respectively. Since dimV D 6, the functions in † have exactly 6 distinct
slopes along each tangent vector in � .

Definition 4.4 Let skŒ0� < � � �< skŒ5� and s0
k
Œ0� < � � �< s0

k
Œ5� denote the 6 distinct rightward slopes that

occur as sk. / and s0
k
. / for  2†.

Since D is vertex-avoiding, there is a function 'i 2† such that

sk.'i /D skŒi � and s0k.'i /D s
0
kŒi � for all k;

and it is unique up to additive constants. Since † is also unramified, there is a unique lingering loop 
`,
ie a unique loop 
` such that s0

`
Œi �D s`Œi � for all i . Moreover, there is no function ' 2† with the property

that s`.'/� s`Œi � and s0
`
.'/� s0

`
Œi C 1�. This last condition means that 
` is not a switching loop, in the

sense of [19, Section 9.6].

Our assumption that † is unramified implies that the break divisor D satisfies degw0 D D 3, and the
rightward slopes of the functions  i at w0 are

.s00Œ0�; : : : ; s
0
0Œ5�/D .�2;�1; 0; 1; 2; 3/:


k

vk wk

sk s0
k

Figure 2: The slopes sk and s0
k

.
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Let us consider how the slope vector .s0
k
Œ0�; : : : ; s0

k
Œ5�/ changes as we go from left to right across the

graph. When crossing a loop other than the lingering loop 
`, one of these slopes increases by 1, and
the other 5 remain the same. So, after the first nonlingering loop, the slopes are .�2;�1; 0; 1; 2; 4/, and
after the second nonlingering loop, the slopes are either .�2;�1; 0; 1; 2; 5/ or .�2;�1; 0; 1; 3; 4/. The
data of these slopes is recorded by a standard Young tableau on a rectangle with 2 rows and 6 columns,
filled with the symbols 1 through 13, excluding `. If the symbol k appears in column i , then it is the
.5�i/th slope that increases on the loop 
k , ie s0

k
Œ5� i �D skŒ5� i �C 1. Note, in particular, that each

slope increases exactly twice, so s013 D .0; 1; 2; 3; 4; 5/ and no slope is ever greater than 5.

Let 'ij WD'iC'j . To prove Theorem 4.2, we construct an independence � among 20 of the 21 functions in

B D f'ij W 0� i � j � 5g:

In order to describe this construction, we divide the graph into three connected regions consisting of
some number of loops and the bridges between them, which we call blocks. The construction ensures
that, within each block, the slope of � is nearly constant on each bridge, equal to 4 on bridges in the first
block, 3 on bridges in the second block, and 2 on bridges in the third block. The slope decreases by 1
at the midpoint of the bridges between blocks.

The blocks are specified as follows. Recall that 
` is the lingering loop. Let

z1 Dminf6; `g and z2 Dmaxf7; `g:

Then 
z1 and 
z2 are the last loops of the first and second blocks, respectively. We construct our
independence � to satisfy

(21) sk.�/D

8<:
4 if k � z1,
3 if z1 < k � z2,
2 if z2 < k � 13.

Note that either z1 or z2 is equal to `, so the lingering loop 
` is always the last loop in its block.

When we construct � as a tropical linear combination of the functions in B, we keep track of which
functions achieve the minimum on which loops and bridges of � . The specified slopes of � along the
bridges within each block place natural constraints on which functions can achieve the minimum on a
given loop, which we encode in the following definition of permissibility. In the vertex-avoiding case,
we apply this condition only to functions 'ij 2 B. However, we state the definition of permissibility
more generally, for arbitrary functions  in the complete tropical linear series R.D/, for later use in
Sections 4.2–4.3.

Definition 4.5 Let  2R.D/. We say that  is permissible on 
k if

sk. /� sk.�/ and s0k. /� sk.�/:

We say that  is permissible on a block if it is permissible on some loop in that block.
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To understand this definition, suppose that � has nearly constant slope along the bridges within each block
and on each half of the bridges between blocks, and that it is written as the minimum of finitely many
functions in R.D/, including  . If sk. /� sk.�/C 1, then the value of  at vk exceeds the value of �
at vk by at least the length of the bridge ˇk (or half this length, if ˇk is the bridge between two blocks).
Since this bridge is much longer than the loop 
k , it follows that  cannot achieve the minimum at any
point of 
k . A similar argument shows that if s0

k
. /� sk.�/� 1, then  cannot achieve the minimum at

any point of 
k .

We construct � algorithmically, moving from left to right across the graph. At each step, we keep track of
which functions in B are permissible on the given loop. The set of loops on which a given function  is
permissible are indexed by the integers in an interval [19, page 44], so we pay special attention to the first
and last loops in these intervals.

Suppose 
k is the first loop on which 'ij 2 B is permissible and it is not the first loop in its block. Then

k is the unique loop on which 'ij is permissible such that the first inequality in Definition 4.5 is strict.
Similarly, suppose 
k is the last loop on which 'ij is permissible and it is not the last loop in its block.
Then 
k is the unique loop on which 'ij is permissible such that the second inequality in Definition 4.5
is strict. This motivates the following definition.

Definition 4.6 A permissible function  is new if sk. /� sk.�/�1 and departing if s0
k
. /� sk.�/C1.

Our choice of z1 and z2 determines which loops have new permissible functions in B.

Proposition 4.7 There are no new permissible functions of the form 'ij on 
k if and only if k D ` or

(i) ` > 6 and k D 6,

(ii) ` > 7 and k D 7,

(iii) ` < 9 and k D 9, or

(iv) `� 7, s07Œ5�D 4 and k D 8.

Proof There is no new permissible function on the lingering loop 
`. Suppose k ¤ `. Let j be the
unique integer satisfying s0

k
Œj �D skŒj �C1. There is a new permissible function in B on 
k if and only if

either the function 'jj is both new and departing, or there is an integer i such that s0
k
.'ij /D sk.�/. We

now examine when such an i exists.

The values s0
k
Œi � are six distinct integers between �2 and 5. Let a and b be the two integers in this range

that are not equal to s0
k
Œi � for any i . On the hth nonlingering loop, one has

hD

5X
iD0

.s0kŒi �C 2� i/D 9� .aC b/:

Since s0
k
Œj � D skŒj �C 1, we must have that s0

k
Œj � is equal to either aC 1 or b C 1. Without loss of

generality, assume that it is equal to aC 1. There does not exist i such that s0
k
Œi �C s0

k
Œj �D s0

k
.�/ if and

only if s0
k
.�/� .aC1/ is greater than 5, smaller than �2, or equal to either a or b. If it is equal to a, then
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the function 'jj is both new and departing. Since s0
k
.�/� 4 and aC 1��1, we see that s0

k
.�/� .aC 1/

cannot be greater than 5, and s0
k
.�/� .aC 1/ is smaller than �2 if and only if s0

k
.�/D 2 and aD 4. By

the above calculation, b D s0
k
.�/� .aC 1/ if and only if hD 10� s0

k
.�/.

The 6th nonlingering loop is contained in the first block if and only if ` > 6. The 7th nonlingering loop is
contained in the second block if and only if ` > 7. The 8th nonlingering loop is contained in the third
block if and only if ` < 9. Finally, if aD 4, then 
k is one of the first 7 nonlingering loops. If 
k is in the
third block, then since z2 � 7, we have `� 7, and 
k is the first loop in the third block.

Having determined which loops have new permissible functions in B, we can now strategically choose
the subset B0 � B from which we will construct the independence � , so that the number of permissible
functions in B0 on each block is precisely one more than the number of loops in the block. Note that
jBj D 21, so B0 is chosen by omitting a single function  from B.

Definition 4.8 If `� 7, let  2 B be a function that is permissible on the second block. Otherwise, let
 2 B be a function that is permissible on the third block. Let B0 D B n f g.

Remark 4.9 There may be several functions that are permissible on the specified block; it does not
matter which of these we omit from B0.

Lemma 4.10 On each block , the number of permissible functions in B0 is one more than the number of
loops.

Proof This follows directly from Proposition 4.7. Specifically, since z1 D minf6; `g, there is a new
permissible function in B on each loop of the first block, except for the last one. Since there are precisely
two pairs .i; j / such that s1.'ij /D 4, we see that the number of permissible functions on the first block
is one more than the number of loops. By symmetry, if z2 � 7, then the number of permissible functions
in B on the third block is one more than the number of loops, and if z2 > 7, it is two more. But when
z2 > 7, one of these functions is not in B0.

Finally, we consider the middle block. We count the number of pairs .i; j / such that s0z1.'ij / D 3.
Since 3 is odd, if .i; j / is such a pair, then i ¤ j . It follows that there are 3 such pairs if and only if
s0z1 Œi �C s

0
z1
Œ5� i �D 3 for all i , which implies that there are precisely 6 nonlingering loops in the first

block. It follows that, if ` < 7, then there are precisely two such pairs, and if `� 7, there are three such
pairs. By Proposition 4.7, if ` < 7, there is a new permissible function on every loop of the middle block.
If `D 7, then the middle block contains only one loop, and since this loop is lingering, there are no new
permissible functions on it. In both of these cases, the number of permissible functions in B on the middle
block is therefore two more than the number of loops, but one of these functions is not in B0. If ` > 7,
then there are no new permissible functions on 
7 or 
`, so the number of permissible functions is one
more than the number of loops.
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We now describe the algorithm for constructing our independence

� D min
'ij2B0

f'ij C cij g;

with slopes sk.�/ as specified in (21), when g D 13, D is vertex-avoiding, and † is unramified. The
algorithm is quite similar to that presented in [19, Section 8.1]. We include the details. See Example 4.19
for an illustration of the output in one particular case.

In this algorithm, we move from left to right across each of the three blocks where sk.�/ is constant,
adjusting the coefficients of unassigned permissible functions and assigning one function 'ij 2 B0 to
each loop so that each function achieves the minimum uniquely on some part of the loop to which it is
assigned. At the end of each block, there is one remaining unassigned permissible function that achieves
the minimum uniquely on the bridge immediately after the block, which we assign to that bridge. Since
there are 13 loops and three blocks, this gives us an independent configuration of 16 functions. The
remaining 4 functions, with slopes too high or too low to be permissible on any block, achieve the
minimum uniquely on the bridges to the left of the first loop or to the right of the last loop, respectively.
Example 4.19 illustrates the procedure for one randomly chosen tableau. We now list a few of the key
properties of the algorithm:

(i) Once a function has been assigned to a bridge or loop, it always achieves the minimum uniquely at
some point on that bridge or loop.

(ii) A function never achieves the minimum on any loop to the right of the bridge or loop to which it is
assigned.

(iii) The coefficient of each function is initialized to 1 and then assigned a finite value when the
function is assigned to a bridge or becomes permissible on a loop, whichever comes first.

(iv) After the initial assignment of a finite coefficient, subsequent adjustments to this coefficient are
smaller and smaller perturbations. This is related to the fact that the edges get shorter and shorter
as we move from left to right across the graph.

(v) Only the coefficients of unassigned functions are adjusted, and all adjustments are upward. This
ensures that once a function is assigned and achieves the minimum uniquely on a loop, it always
achieves the minimum uniquely on that loop.

(vi) Exactly one function is assigned to each of the 13 loops, and the remaining seven functions are
assigned to either the leftmost bridge, the rightmost bridge, or one of the three bridges after the
blocks.

The algorithm terminates when we reach the rightmost bridge, at which point each of the 20 functions
f'ij C cij W 'ij 2 B0g achieves the minimum uniquely at some point on the graph.

Remark 4.11 The one crucial difference, in comparison with the construction in [19, Section 8.1], is
that we do not skip the lingering loop 
`. Instead, since 
` is the last loop in its block, there are precisely
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two unassigned permissible functions on 
`. These two functions do not have identical restrictions to 
`.
Thus, if we adjust their coefficients upward so that they agree at w`, one of them will obtain the minimum
uniquely at some point of the loop 
`. We assign this function to 
` and adjust its coefficient upward by
an amount small enough so that it still obtains the minimum uniquely at some point of 
`. The other
achieves the minimum uniquely at w`, and we assign it to the bridge ˇ`C1.

The algorithm depends on the following basic properties of the permissible functions 'ij .

Lemma 4.12 There is at most one departing permissible function 'ij on each loop 
k . Furthermore , if

k is lingering then there are none.

Proof The proof is identical to [19, Lemma 8.8].

Lemma 4.13 For any loop 
k , there are at most three nondeparting permissible functions in B on 
k .

Proof If 'ij is a nondeparting permissible function on 
k , then skC1.'ij / D sk.�/. For each i , this
equality holds for at most one j , and the lemma follows.

Proposition 4.14 Consider a set of at most three nondeparting permissible functions from B on a loop

k and assume that all of the functions take the same value at wk . Then there is a point of 
k at which one
of these functions is strictly less than the others.

Proof The proof is identical to [19, Lemma 8.19].

The algorithm is as follows:

� Start at the first bridge Start at ˇ1 and initialize c55 D 0. Initialize c45 so that '45C c45 equals '55
at a point one third of the way from w0 to v1. Initialize c44 and c35 so that '44Cc44 and '35Cc35 agree
with '45C c45 at a point two thirds of the way from w0 to v1. Initialize all other coefficients cij to1.
Note that '55 and '45 achieve the minimum uniquely on the first and second third of ˇ1, respectively.
Assign both of these functions to ˇ1, and proceed to the first loop.

� Loop subroutine Each time we arrive at a loop 
k , apply the following steps:

� Step 1: reinitialize unassigned coefficients By Lemma 4.15 below, there are at least two
unassigned permissible functions. Find the unassigned permissible function 'ij that maximizes
'ij .wk/C cij . Initialize the coefficients of the new permissible functions (if any) and adjust the
coefficients of the other unassigned permissible functions upward so that they all agree with 'ij
at wk . (The unassigned permissible functions are strictly less than all other functions on 
k , even
after this upward adjustment; see Lemma 4.16.)

� Step 2: assign departing functions If there is a departing function, assign it to the loop. (There
is at most one, by Lemma 4.12.) Adjust the coefficients of the other permissible functions upward
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so that all of the functions agree at a point on the following bridge a short distance to the right of
wk , but far enough so that the departing function achieves the minimum uniquely on the whole
loop. This is possible because the bridge is much longer than the edges in the loop. Proceed to the
next loop.

� Step 3: otherwise, use Proposition 4.14 By Lemma 4.13, there are at most three nondeparting
functions. By Proposition 4.14, there is one 'ij that achieves the minimum uniquely at some point
of 
k . We adjust the coefficient of 'ij upward by 1

3
mk . This ensures that it will never achieve

the minimum on any loops to the right, yet still achieves the minimum uniquely on this loop; see
Lemma 4.16, below. Assign 'ij to 
k , and proceed to the next loop.

� Proceeding to the next loop If the next loop is contained in the same block, then move right to the
next loop and apply the loop subroutine. Otherwise, the current loop is the last loop in its block. In this
case, proceed to the next block.

� Proceeding to the next block After applying the loop subroutine to the last loop in a block, there
is exactly one unassigned permissible function in B0, by Lemma 4.10. The unassigned permissible
function 'ij achieves the minimum uniquely on the beginning of the outgoing bridge, without any further
adjustment of coefficients. Assign 'ij to this bridge.

If we are at the last loop 
g , then proceed to the last bridge. Otherwise, there are several permissible
functions on the first loop of the next block, as detailed in Lemma 4.13, above. Initialize the coefficient
of each permissible function on the first loop of the next block so that it is equal to � at the midpoint of
the bridge between the blocks, and then apply the loop subroutine.

� The last bridge Initialize the coefficient c01 so that '01C c01 equals � at the midpoint of the last
bridge ˇ14. Initialize c00 so that '00C c00 equals � halfway between the midpoint and the rightmost
endpoint. Note that both of these functions now achieve the minimum uniquely at some point on the
second half of ˇ14. Assign both of these functions to ˇ14, and output � Dminf'ij C cij W 'ij 2 B0g.

To verify that this algorithm produces a tropical independence, we first show that there are at least two
unassigned permissible functions on each loop.

Lemma 4.15 There are at least two unassigned permissible functions on each loop 
k .

Proof By Lemma 4.10, the number of permissible functions in B0 on the block containing 
k is one
more than the number of loops. Since there is at most one new function per loop, the number of functions
in B0 that are permissible on some loop between the first loop of the block and 
k , inclusive, is at least
one more than the number of loops. Finally, note that exactly one function is assigned to each loop,
and moreover, if a function is departing, it is assigned. It follows by induction on k0 that the number of
functions in B0 that are unassigned and permissible on some loop between 
k0 and 
k is at least k�k0C2.
Hence, the number of unassigned permissible functions on 
k is at least two.
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We now verify that this algorithm produces a tropical independence.

Lemma 4.16 Suppose that 'ij is assigned to the loop 
k or the bridge ˇk . Then 'ij does not achieve the
minimum at any point to the right of vkC1.

Proof If 
k is a nonlingering loop, then the proof is the same as [19, Section 8.2]. On the other hand, if

k is the lingering loop, then it is the last loop in its block. Since vkC1 is the start of the next block, 'ij
cannot achieve the minimum at any point to the right of vkC1.

This completes the proof of Theorem 4.2 in the vertex-avoiding case.

Remark 4.17 For future reference, we note that the proof of Lemma 4.16 does not depend on the relative
lengths of the bridges. It only uses that the bridges are much longer than the loops. The assumption that
each bridge is much longer than the next is only used later, when there are decreasing bridges, decreasing
loops, or switching loops.

Remark 4.18 If � 0 is the subgraph of � to the right of w1, then � 0 is a chain of 12 loops whose edge
lengths satisfy the required conditions, and if the first loop is nonlingering, then the restriction of † to � 0

satisfies the ramification condition of Theorem 4.2, with equality. Similarly, the subgraph to the right
of w2 is a chain of 11 loops whose edge lengths satisfy the required conditions, and the restriction of
† to this subgraph satisfies the ramification condition of Theorem 4.2, with equality. To produce an
independence in these cases, assign each function in B0 with slope greater than 4 to the first bridge, and
then proceed as above. There are precisely 15�g such functions, and they have distinct slopes along the
first bridge, as in [19, Lemma 10.40]. Because of this, we can choose coefficients so that each one obtains
the minimum uniquely at some point of the first bridge. Thus the unramified vertex-avoiding cases of
Theorem 4.2 for g D 11 and 12 (ie when † is unramified at v14 and there is no extra ramification at
w13�g beyond what is required by the inequalities on vanishing orders in the statement of the theorem)
follow from essentially the same argument as for g D 13. Our choice to index the vertices starting at
w13�g reflects the idea that these linear series with ramification on a chain of g D 11 or 12 loops behave
like linear series on a chain of 13 loops restricted to the subgraph to the right of w13�g .

Example 4.19 We illustrate the construction with an example. Let ŒD� be a vertex-avoiding class of
degree 16 and rank 5 associated to the tableau in Figure 3.

The independence � D minij f'ij C cij g that we construct is depicted schematically in Figure 4. The
graph should be read from left to right and top to bottom, so the first six loops appear in the first row, with

1 3 4 8 9 10

2 5 7 11 12 13

Figure 3: The tableau corresponding to the divisor D.
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55 45

35 25 44

2

34 33 15

24 � � �

� � �

14

05 � � �

� � �

22 13 04 03 12 11

02 01 00

Figure 4: The divisor D0 D 2DC div.�/. The function 'ij achieves the minimum uniquely on
the region labeled ij in � nSupp.D0/.


1 on the left and 
6 on the right, and 
13 is the last loop in the third row. The rows correspond to the
three blocks. The 31 dots indicate the support of the divisor D0 D 2DC div.�/. Note that deg.D0/D 32;
the point on the bridge ˇ4 appears with multiplicity 2, as marked. Because `D 6, there is a function that
is permissible on the second block in B but not B0. The functions in B that are permissible on the second
block are precisely '05, '14, and '23; we have chosen (arbitrarily) to omit '23 from B0. Each of the 20
functions 'ij in B0 achieves the minimum uniquely on the connected component of the complement of
Supp.D0/ labeled ij .

4.2 No switching loops

Recall that a loop 
` is a switching loop for † if there is some ' 2† and some h such that s`.'/� s`Œh�
and s0

`
.'/� s0

`
ŒhC 1�. It is a lingering loop if it is not a switching loop and s`Œi �D s0`Œi � for all i . Recall

also that 
` is a decreasing loop if s`Œh� > s0`Œh�. Similarly ˇ` is a decreasing bridge if s0
`�1

Œh� > s`Œh�.

Because we are only considering cases where the adjusted Brill–Noether number is at most one,
by [19, Proposition 9.10], we know that there is at most one lingering loop, one positive ramification
weight, one decreasing loop, one decreasing bridge, or one switching loop, and these possibilities are
mutually exclusive. Moreover, for decreasing loops and bridges, the index h is unique and the decrease in
slope is exactly one. In this subsection, we consider all cases where there is no switching loop. The cases
with a switching loop are discussed in Section 4.3.

Assume † has no switching loops. Then for all i there is a function 'i 2† such that

sk.'i /D skŒi � and s0k.'i /D s
0
kŒi � for all k:

We keep the notation 'ij D 'i C'j and BD f'ij W 0� i � j � 5g. As in the unramified vertex-avoiding
case, we choose a subset B0 � B of 20 functions, and we choose integers z1 and z2 in order to divide the
graph � into three blocks. We make our choices to satisfy the following conditions:

(i) No two functions in B0 that are permissible on 
k differ by a constant on 
k .

Geometry & Topology, Volume 28 (2024)



The nonabelian Brill–Noether divisor on M13 and the Kodaira dimension of R13 833

(ii) The number of functions in B0 that are permissible on each block is at most one more than the
number of loops in that block.

(iii) No function in B0 is permissible on more than one block,

(iv) if 
k is a lingering loop, then it is the last loop in its block.

(v) If 
k is a decreasing loop and j is the unique value such that s0
k
Œj � < skŒj �, then no function of

the form 'ij 2 B0 is permissible on 
k .

(vi) If ˇk is a decreasing bridge and j is the unique value such that skŒj � < s0k�1Œj �, then either ˇk is
a bridge between blocks, or no function of the form 'ij 2 B0 is permissible on 
k�1.

Proposition 4.20 If B0 satisfies conditions (i)–(vi), then the functions in B0 are independent.

Proof The algorithm for constructing the tropical independence is identical to the algorithm of Section 4.1,
with the following exceptions. First, as in Remark 4.18, we assign every function with slope greater than
four to the first bridge. Second, the procedure for proceeding to the next block must be altered slightly
when the bridge between the blocks is a decreasing bridge.

When the bridge between the blocks is a decreasing bridge, there is a unique point v on the bridge where
one of the functions 'i is locally nonlinear. We initialize the coefficients of the new permissible functions
on the next block so that they are equal to � at a point to the right of v. If one of the blocks contains zero
loops, we set the coefficient of the unique function with slope equal to that of � so that it is equal to � at
a point to the right of v, and initialize the coefficients of the new permissible functions on the next block
so that they are equal to � at a point to the right of this.

We note that there are at most 3 nondeparting permissible functions in B0 on each loop. This is because a
nondeparting permissible function 'ij on 
k satisfies skC1.'ij /D sk.�/, and for each i this equality can
hold for at most one j .

To see that this algorithm produces an independence, suppose that 'ij is assigned to the loop 
k or the
bridge ˇk . We show that 'ij does not achieve the minimum at any point to the right of vkC1. If 
k and
ˇk both have multiplicity zero, then the argument is the same as in [19, Section 8.2]. On the other hand,
if 
k has positive multiplicity, then either 
k is a decreasing loop, or by (iv) it is the last loop in its block.
If 
k is a decreasing loop, then by (v) there is no function in B0 that is permissible on 
k and contains the
decreasing function as a summand, so the result holds again as in [19, Section 8.2]. We may therefore
assume that 
k is the last loop in its block, in which case the argument is identical to the vertex-avoiding
case above.

Similarly, if ˇk has positive multiplicity, then by (vi) there are two possibilities. If 'ij does not contain
the decreasing function as a summand, then there is nothing to show. Otherwise, ˇk is a bridge between
blocks. By (iii) the function 'ij is only permissible on one block. Since vkC1 is the start of the next
block, 'ij cannot achieve the minimum at any point to the right of vkC1.
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For the rest of this section, we explain how to choose z1, z2, and the set B0 in order to satisfy conditions
(i)–(vi). This is done by a careful case analysis, depending on combinatorial properties of the tropical
linear series †.

Case 1: there are no loops or bridges of positive multiplicity This guarantees that either the linear
series is ramified at v14, or has “extra ramification” at w13�g , meaning that g D 13 and the linear series
is ramified at w0, or gD 11 or 12 and the linear series has more ramification than what is imposed by the
inequalities on vanishing numbers in Theorem 4.2s. In these cases, which are mutually exclusive, we
choose z1 and z2 so that 
z1 is the first loop in the first block with no new function, and 
z2C1 is the last
loop in the last block with no departing function. These loops exist by a counting argument, but we make
the choice explicit.

If † is ramified at v14, let k be the smallest positive integer such that s0
k
Œ5�D 6, and define

(22) z1 D

�
6 if k � 7,
7 if k � 6,

and z2 Dmaxfk� 1; 7g:

If † has extra ramification at w13�g , let k be the largest positive integer such that skŒ0�D�3, and define

(23) z1 Dminfk; 6g and z2 D

�
6 if k � 8,
7 if k � 7.

Let  2 B be a function that is permissible on the second block, and let B0 D B n f g. (In the case where
z1 D z2, let  2 B be a function with sz1C1. /D 3.)

If there is a loop or bridge of positive multiplicity, then since �D 1, there is only one such loop or bridge,
and it has multiplicity 1.

Case 2: there is a bridge ˇ` of multiplicity 1 If `� 8 and s0
`�1

Œ5�D 6, then define z1 and z2 as in (22).
If `� 7 and s`Œ0�D�3, then define z1 and z2 as in (23). Otherwise, define

z1 Dminf`� 1; 6g and z2 D `� 1:

If ` � 8 and s`�1Œ5� D 6, or ` � 7 and s`Œ0� D �3, then as above, we let  2 B be a function that is
permissible on the second block, and let B0 D B n f g. Otherwise, let h be the unique integer such
that s`Œh� < s0`�1Œh�. If ` ¤ 5; 6, then we will see in Lemma 4.21 that either there is a unique i such
that s0

`�1
Œh�C s0

`�1
Œi � D s`�1.�/, or 2s0

`�1
Œh� D s`�1.�/C 1, but not both. In the first case, we let

B0 D B n f'hig, and in the second case, we let B0 D B n f'hhg. (The function in B nB0 is permissible on
both blocks to either side of the bridge ˇ`.) If `D 5 or 6, then we will see in Lemma 4.21 that there is a
unique i such that s0

`�1
Œh�C s0

`�1
Œi �D s`�1.�/� 1, and we again let B0 D B n f'hig.

It remains to consider the cases where there is a loop of multiplicity one. The case of a switching loop is
left to the next subsection. In the case of a lingering loop, we construct an independence exactly as in
Section 4.1. (See Remark 4.18 for an explanation of how the algorithm for gD 13 is adapted to the cases
where g D 11 or g D 12.) We now discuss the remaining case, where there is a decreasing loop.
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Case 3: there is a decreasing loop 
` If `� 8 and s`Œ5�D 6, then define z1 and z2 as in (22). If `� 7
and s0

`
Œ0�D�3, then define z1 and z2 as in (23). Otherwise, define

z1 D

8<:
` if ` < 6,
5 if `D 6,
6 if ` > 6,

and z2 D

8<:
`� 1 if ` > 8,
8 if `D 8,
7 if ` < 8.

If `� 8 and s`Œ5�D 6 or `� 7 and s`Œ0�D�3, then as above, we let  2B be a function that is permissible
on the second block, and let B0 D B n f g. Otherwise, let h be the unique integer such that s0

`
Œh� < s`Œh�.

If ` < 6 or `D 7; 8 then 
` is the last loop in its block, and we will see in Lemma 4.21 that either there is
a unique i such that s`Œh�C s`Œi �D s`.�/, or 2s`Œh�D s`.�/C 1, but not both. In the first case, we let
B0 D B n f'hig, and in the second case, we let B0 D B n f'hhg. If ` > 8 or `D 6, then we will see that
either there is a unique i such that s`Œh�C s`Œi �D s`�1.�/, or 2s`Œh�D s`�1.�/C 1. Again, in the first
case, we let B0 D B n f'hig, and in the second case, we let B0 D B n f'hhg.

In the cases above, we asserted several times that certain functions exist with specified slopes. To prove
this, we need to generalize Proposition 4.7. We first define the function

�.k/D

5X
iD0

.s0kŒi �C 2� i/:

Note that, if there is a loop of positive multiplicity and 
` is the kth loop of multiplicity zero, then kD �.`/.
The following observation serves as the basis for our counting arguments.

Lemma 4.21 For a fixed k, suppose that �2� s0
k
Œi �� 5 for all i . Let j be an integer such that s0

k
Œj ��1

is not equal to �3 or s0
k
Œi � for any i . For s in the range 2 � s � 5, there does not exist i such that

s0
k
Œi �C s0

k
Œj �D s if and only if one of the following holds:

(i) �.k/D 10� s.

(ii) s D 5, j D 0 and s0
k
Œ0�D�1.

(iii) s D 2, j D 5 and s0
k
Œ5�D 5.

(iv) 2s0
k
Œj �D sC 1.

Proof The argument is identical to that of Proposition 4.7.

There are additional relevant cases, when s0
k
Œ5�D 6 or s0

k
Œ0�D�3.

Lemma 4.22 If s0
k
Œ5�D 6, then there does not exist i such that s0

k
Œi �C 6� 3. Similarly , if skŒ0�D�3,

then there does not exist i such that s0
k
Œi �� 2� 4.

Proof Since � D 1, if s0
k
Œ5�D 6, then s0

k
Œ0� � �2. It follows that s0

k
Œi �C 6 � 4 for all i . Similarly, if

skŒ0�D�3, then s0
k
Œi �� 5 for all i . It follows that s0

k
Œi �� 2� 3 for all i .
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Lemma 4.23 The set B0 satisfies conditions (i)–(vi).

Proof (i) If s0
k
Œi �� skŒi � for all i , then the result is immediate, so we may assume that 
k is a decreasing

loop. Let h be the unique integer such that s0
k
Œh� D skŒh�C 1, and let h0 be the unique integer such

that s0
k
Œh0�D skŒh

0�� 1. If 'hh0 is not permissible on 
k , then again there is nothing to show. If 'hh0 is
permissible, then by Lemma 4.21, we must have sk.�/D 10�k. By construction, this occurs if and only
if k D 7, in which case 'hh0 … B0.

(ii) Consider the first block first. There are two functions  2 B with the property that s013�g. /D 4.
The result will therefore hold for the first block if and only if the first block contains a loop with no
new permissible functions. Let 
k be a loop of multiplicity zero that is contained in the first block.
By Lemmas 4.21 and 4.22, there is no new permissible function on 
k if and only if �.k/ D 6 or
s0
k
Œ0� D skŒ0�C 1 D �2. Thus, the number of permissible functions in B on the first block is at most

two more than the number of loops in Cases 2 or 3 when `� 6 and s`Œ0�� �2, and one more than the
number of loops in the remaining cases. In Cases 2 and 3 when ` � 6 and s`Œ0� � �2, the function in
B nB0 is permissible on the first block. Since this function is not in B0, the number of functions in B0
that are permissible on the first block is one less than the number in B. The third block follows from a
completely symmetric argument.

For the second block, note that if �.z1/ D 6, then there are 3 functions  2 B with the property that
s0z1. / D 3, and otherwise there are only two such functions. In every case, either �.z1/ < 6 or by
Lemma 4.21, the second block contains a loop with no new permissible functions. Since the function in
B nB0 is permissible on the second block, we see that the number of permissible functions on the second
block is one more than the number of loops. (Note that this holds even in the case where the second block
contains zero loops, in which case there is exactly one permissible function on the second block.)

(iii) Suppose that 'ij 2 B is permissible on more than one block. First, consider the case where ˇ`
is a bridge of multiplicity one, and let h be the unique integer such that s`Œh� D s`�1Œh�� 1. If 'ij is
permissible on more than one block, then j D h and either s0

`�1
Œh�C s0

`�1
Œi �D s`�1.�/, or i D h and

2s0
`�1

Œh�D s`�1.�/C 1. If �2� s`Œh�� 5, then by Lemma 4.21, such an i exists if and only if `¤ 5; 6,
and by construction, we have 'hi … B0. Similarly, if s`Œh�D�3, then by Lemma 4.22, such an i exists
if and only if ` � 8, and if s`Œh�D 5, then such an i exists if and only if ` � 7. In both cases, we have
'hi … B0.

Next, consider the case where 
` is a decreasing loop. By construction, 
` is either the first or last
loop in its block. Let h be the unique integer such that s0

`
Œh� D s`Œh�� 1. If 
` is the last loop in its

block and 'ij is permissible on both the block containing 
` and the next block, then j D h and either
s`Œh�C s`Œi � D s`.�/, or i D h and 2s`Œh� D s`.�/C 1. But then 'ij … B0. Similarly, if 
` is the first
loop in its block, and 'ij is permissible on both the block containing 
` and the preceding block, then
j D h and either s`Œh�C s`Œi �D s`�1.�/, or 2s`Œh�D s`�1.�/C 1. If `¤ 7, then again 'ij … B0. Finally,
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note that if 
` is both the first and last loop in its block, then `D 7, and the only functions 'ij that are
permissible on 
7 satisfy s0

`
Œi �C s0

`
Œj �D 3. The result follows.

(iv) If 
` is a lingering loop, then we follow the construction of the vertex-avoiding case of the previous
subsection, in which 
` is the last loop in its block.

(v) Let 
k be a decreasing loop, let h be the unique integer such that s0
k
Œh�D skŒh�C 1, and let h0 be the

unique integer such that s0
k
Œh0�D skŒh

0�� 1. If 'hh0 is permissible, then 'hh0 … B0, as shown in the proof
of condition (i).

(vi) Let ˇk be a decreasing bridge and let j is the unique value such that skŒj � < s0k�1Œj �. If ˇk is not
a bridge between blocks, then by construction either j D 0, k � 7, and skŒ0� D �3, or j D 5, k � 8,
and skŒ5�D 5. In both cases, by Lemma 4.22, we see that there is no i such that 'ij 2 B0 is permissible
on 
k�1.

This completes the proof of Theorem 4.2 in all cases where there is no switching loop for †.

4.3 Switching loops

We now consider the case where there is a switching loop 
` that switches slope h. This means that
s`Œi �D s

0
`
Œi � for all i , and there exists a function ' 2R.D/ satisfying

s`.'/D s`Œh� and s0`.'/D s
0
`Œh�C 1D s

0
`ŒhC 1�:

In this case, we define z1 and z2 as follows:

z1 D

8<:
` if ` < 6,
5 if `D 6,
6 if ` > 6,

and z2 D

�
7 if ` < 6,
` if `� 6.

As in Section 4.1, we will construct our independence � to satisfy

sk.�/D

8<:
4 if k � z1,
3 if z1 < k � z2,
2 if z2 < k � 13.

In the preceding cases, we identified functions 'i 2† with designated slope sk.'i /D skŒi � along each
bridge ˇk . When there is a switching loop, this is possible for i ¤ h; hC 1, but such a function does not
necessarily exist for i D h; hC 1. Instead, we identify a collection of functions in † with designated
slope along some of the bridges, and with slopes along the remaining bridges in a restricted range.

Proposition 4.24 There is a pencil W � V with 'A, 'B and 'C in trop.W / such that

(i) s0
k
.'A/D s

0
k
Œh� for all k < `,

(ii) sk.'B/D skŒhC 1� for all k > `,

(iii) sk.'C /D skŒhC 1� for all k � `, and s0
k
.'C /D skŒh� for all k � `,

(iv) sk.'�/ 2 fskŒh�; skŒhC 1�g and s0
k
.'�/ 2 fs

0
k
Œh�; s0

k
ŒhC 1�g for all k.
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Proof The proof is essentially the same as that of [19, Proposition 11.18]. We include the details for
completeness. First, there exists 'A 2† such that s013�g.'A/� s

0
13�g Œh� and s14.'A/� s14Œh�. Since 
`

is the only switching loop, we have s0
k
.'A/� s

0
k
Œh� for k < `, and s0

k
.'A/� s

0
k
Œh� for k � `. In particular,

s0
`
.'A/� s

0
`
Œh�, so s0

`�1
.'A/� s

0
`�1

Œh�, and it follows that s0
`�1

.'A/D s
0
`�1

Œh�. This proves (i), because
there are no switching loops to the left of 
`. The proof of (ii) is similar.

We now prove (iii). Given 'A and 'B in † satisfying (i) and (ii), choose fA and fB 2 V tropicalizing to
'A and 'B , respectively. Let W be the pencil spanned by fA and fB . Arguments similar to the proof
of (i) above show that sk.trop.W //D .skŒh�; skŒhC 1�/, for all k. Choose a function f 2W such that
'D trop.f / satisfies s`.'/D s`ŒhC1�. Then sk.'/D skŒhC1� for k <`. Similarly, choose '0 2 trop.W /
such that s0

`
.'0/D s0

`
Œh�, which implies that sk.'0/D skŒh� for k > `. Finally, by adding a scalar to '0,

we may assume that ' and '0 agree on the loop 
`, and set 'C Dminf'; '0g.

In three steps, we now construct a tropical independence among 20 pairwise sums of functions in

S WD f'i W i ¤ h; hC 1g[ f'A; 'B ; 'C g:

4.3.1 Step 1 First, we identify a collection of simpler functions in R.D/ that are not necessarily in †.
Unlike 'A and 'B , these functions are completely explicit; they have fixed slopes at every point of the
graph, rather than slopes in a restricted range. Moreover, these functions generate a tropical submodule
containing 'A, 'B and 'C .

Proposition 4.25 There are functions '0
h

, '0
hC1

and '1
h

in R.D/ such that :

(i) sk.'
0
h
/D skŒh� and s0

k
.'0
h
/D s0

k
Œh� for all k.

(ii) sk.'
0
hC1

/D skŒhC 1� and s0
k
.'0
hC1

/D s0
k
ŒhC 1� for all k.

(iii) sk.'
1
h
/D skŒh� and s0

k�1
.'1
h
/D s0

k�1
Œh� for all k� `, and sk.'1h /D skŒhC1� and s0

k�1
.'1
h
/D

s0
k�1

ŒhC 1� for all k > `.

(iv) The function 'A is a tropical linear combination of the functions '0
h

and '1
h

, where the two
functions simultaneously achieve the minimum at a point to the right of 
`.

(v) The function 'B is a tropical linear combination of the functions '0
hC1

and '1
h

, where the two
functions simultaneously achieve the minimum at a point to the left of 
`.

(vi) The function 'C is a tropical linear combination of the functions '0
h

and '0
hC1

, where the two
functions simultaneously achieve the minimum on the loop 
` where they agree.

Proof The construction of the functions is essentially the same as in [19, Lemmas 11.7 and 11.19],
but we describe the essential argument here, for the reader’s convenience. To construct '1

h
, consider a

function that agrees with 'A to the left of 
` and with 'B to the right. Because the two functions agree
on 
`, they “glue” together to give a function in R.D/. The construction of the other two functions is
similar. The verification that 'A, 'B and 'C are tropical linear combinations as claimed is the same as in
[19, Lemmas 11.8 and 11.19].
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4.3.2 Step 2 Next, we choose a set B00 of 20 pairwise sums of functions in

A WD f'i W i ¤ h; hC 1g[ f'0h; '
0
hC1; '

1
h g

that satisfies conditions (i)–(vi) of Section 4.2. We will choose this set so that, moreover, the indepen-
dence � produced by the algorithm from Section 4.2 satisfies a technical condition involving the best
approximations of � by certain functions in R.D/ that are not in the set (Lemma 4.30).

Start with the set B of pairwise sums of elements in A n f'1
h
g. Note that jBj D 21. As a first step toward

specifying B00, we choose one function  2 B, of the form 'i C 'j for i; j ¤ h; hC 1, to exclude. If
` � 7 and `¤ 6, let  be such a function that is permissible on the second block. If `D 6, let  2 B
be a function that is permissible on the first block. Otherwise, if ` > 7, let  2 B be a function that is
permissible on the third block. This choice of  guarantees that the number of functions in B0 WD B n f g
that are permissible on each block is one more than the number of loops in that block. In order to ensure
a certain technical condition in the next step (Lemma 4.30), in the cases where there is some j such that
s0
`
ŒhC1�C s0

`
Œj �D s`.�/C1, we adjust B0 by removing one more function and replacing it with '1

h
C'

for some ' 2A.

Suppose there is some ' 2A n f'1
h
g such that s0

`
ŒhC 1�C s0

`
.'/D s`.�/C 1. Then we define

B00 WD B[f'1h C'g n f'
0
hC'g:

Otherwise, if there is no such ', let B00 WD B0.

Lemma 4.26 The set B00 satisfies conditions (i)–(vi) of Section 4.2, and therefore the algorithm in
Section 4.2 produces an independence � among the functions in B00 with slopes s`.�/ as specified above.

Proof We first prove (i). First, note that, for any function ' 2A, the functions 'C'0
h
; 'C'0

hC1
have

identical restrictions to the switching loop 
`. Because these two functions have different slopes along ˇ`
and ˇ`C1, however, we see that they cannot both be permissible on 
`. In the case where '1

h
C' 2B00, we

see that the restriction of this function to a loop 
k with k � ` agrees with that of the function '0
hC1
C'.

We note, however, that since s0
`
ŒhC 1�C s0

`
.'/D s`.�/C 1, the function '0

hC1
C' is not permissible on

the loop 
k if k � `.

If B00 D B0, then condition (ii) holds by the same argument as Lemma 4.10. Otherwise, note that the
function in B00 n B0 is permissible on the same block as the function in B0 n B00, so condition (ii) still
holds. Condition (iii) holds because the slopes functions in A do not decrease from one bridge to the
next. Conditions (iv)–(vi) hold vacuously. By Proposition 4.20, therefore, there is an independence #
among the functions in B00.

4.3.3 Step 3 Finally, we choose a set T of 20 pairwise sums of functions in S and show that the best
approximation of the � by T , defined as follows, is an independence.
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Definition 4.27 Let T be a finite subset of PL.�/. The best approximation of � 2 PL.�/ by T is

(24) #T WDminf' � c.'; �/ W ' 2 T g;

where c.'; �/Dminf'.v/� �.v/ W v 2 �g.

Note that #T � � , and every function ' 2 T achieves the minimum at some point.

Lemma 4.28 Let � Dmin 2B00f C a g. Suppose ' Dmin 02Cf 0C b 0g, where C � B00. Then the
best approximation of � by ' achieves equality on the entire region where some  0 2 C achieves the
minimum in � .

Proof Let c D min 02Cfb 0 � a 0g. Choose  0 2 C such that c D b 0 � a 0 . Then ' � c � � , with
equality at points where  0 achieves the minimum in � .

We now study the best approximation of � by various pairwise sums of function in S.

Lemma 4.29 Let ' 2Anf'1
h
g. The best approximation of � by 'C C' achieves equality on the region

where either '0
h
C' or '0

hC1
C' achieves the minimum.

Proof If B00 contains both '0
h
C' and '0

hC1
C', then since 'C C' is a tropical linear combination of

these two functions, the result follows from Lemma 4.28. If not, then by construction B00 does not contain
'0
h
C', and s0

`
ŒhC 1�C s0

`
.'/D s`.�/C 1. In this case, 'C C' has slope greater than s`.�/ on ˇ`, so it

must achieve equality to the left of 
`, where it agrees with '0
hC1
C'.

Lemma 4.30 Let ' 2An f'1
h
g. If '1

h
C' … B00, then the best approximation of � by '1

h
C' achieves

equality on the region where either '0
h
C' or '0

hC1
C' achieves the minimum.

Proof If '0
h
C' is assigned to a loop 
k with k < `, then since '1

h
� '0

h
with equality to the left of 
`,

we see that the best approximation of � by '1
h
C' achieves equality on the region where '0

h
C' achieves

the minimum. Similarly, if '0
hC1
C' is assigned to a loop 
k with k � `, then the best approximation

of � by '1
h
C ' achieves equality on the region where '0

hC1
C ' achieves the minimum. It therefore

suffices to consider the case where '0
h
C' is not assigned to a loop 
k with k < `, but '0

hC1
C' is. By

Lemma 4.21, on every loop 
k in the same block as 
` with k < `, there is a departing function. It follows
that

s`ŒhC 1�C s`.'/� s`.�/C 1:

Since '0
h
C' is not assigned to a loop 
k with k < `, we must have equality in the expression above. By

construction, in this case '1
h
C' 2 B00.
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Remark 4.31 It is possible that the best approximation of � by 'C C' achieves equality on both the
region where '0

h
C ' achieves the minimum and the region where '0

hC1
C ' achieves the minimum.

However, the set of independences is open in the set of all tropical linear combinations. In other words, if
the coefficients are varied in a sufficiently small neighborhood, the result is still an independence. One
can therefore choose the independence � to rule out this possibility.

We now describe our choice of the set T . We will define sets Tj and T 0 below, and define

T D f'ij 2 B00 W i; j ¤ h; hC 1g[
� [
j¤h;hC1

Tj
�
[ T 0:

For j ¤ h; hC1, if the best approximation of � by 'C C'j achieves equality where '0
h
C'j achieves the

minimum, let Tj D f'B C'j ; 'C C'j g. Otherwise, if the best approximation of � by 'C C'j achieves
equality where '0

hC1
C'j achieves the minimum, then let Tj D f'AC'j ; 'C C'j g.

Similarly, we define T 0 to be a set of three pairwise sums of elements of f'A; 'B ; 'C g, with our choice
depending on where certain functions achieve equality in the best approximation. In all cases, 'CC'C 2T 0.
The other functions in T 0 are determined by the following rules:

� If the best approximation of � by 'C C 'C achieves equality at a point to the left of 
`, then
'AC'C 2 T 0. Otherwise, 'B C'C 2 T 0.

� Suppose 'AC'C 2 T 0. If the best approximation of � by 'AC'C achieves equality at a point to
the left of 
`, then 'AC'A 2 T 0. Otherwise, 'AC'B 2 T 0.

� Suppose 'B C'C 2 T 0. If the best approximation of � by 'B C'C achieves equality at a point to
the left of 
`, then 'AC'B 2 T 0. Otherwise, 'B C'B 2 T 0.

Theorem 4.32 The best approximation #T is an independence , and #T D � as functions.

Proof We show that there is a bijection F W T ! B00 with the property that each  2 T achieves the
minimum in #T on exactly the same region where F. / achieves the minimum in � . From this it follows
that #T is an independence, and that #T D � .

For i; j ¤ h; hC1, we set F.'ij /D 'ij . Next, consider a value j ¤ h; hC1. We describe the restriction
of F to the subset Tj . The restriction of F to T 0 admits a similar description. By Lemma 4.29, the
best approximation of � by 'C C'j achieves equality on the region where either '0

h
C'j or '0

hC1
C'j

achieves the minimum (but not both, see Remark 4.31). If it achieves equality on the region where '0
h
C'j

achieves the minimum, set F.'C C'j /D '0hC'j . Otherwise, set F.'C C'j /D '0hC1C'j .

Suppose that F.'CC'j /D '0hC1C'j . The case where F.'CC'j /D '0hC'j follows from a similar (in
fact, simpler) argument. Since 'C agrees with '0

hC1
at points on or to the left of 
`, we have 'AC'j 2 T .

If '1
h
C'j 2 B00, then we set F.'AC'j /D '1h C'j . In this case, we have s0

`
Œh�C s0

`
Œj �D s`.�/. Since
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` is the last loop in its block, we see that the slope of 'AC'j is greater than that of � on the right half
of ˇ`C1. Thus, the best approximation of � by 'AC'j must achieve equality to the left of ˇ`C1, where
'AC'j agrees with '1

h
C'j .

If '1
h
C 'j … B00, then set F.'A C 'j / D '0

h
C 'j , and consider the best approximation � 0 of � by

B00 [ f'1
h
C 'j g. Note that the coefficient of 'AC 'j is the same in the best approximation of � 0 by

'AC'j and the best approximation of � by 'AC'j . By Lemma 4.30, '1
h
C'j achieves equality in � 0

on the region where either '0
h
C'j or '0

hC1
C'j achieves the minimum in � . Then, since 'A is a linear

combination of '0
h

and '1
h

, by Lemma 4.28, it follows that the best approximation of � by 'AC 'j
achieves equality on the region where either '0

h
C'j or '0

hC1
C'j achieves the minimum. But 'A and

'C do not agree at any point to the left of 
`, so the best approximation of � by 'AC'j must achieve
equality on the region where either '0

h
C'j achieves the minimum.

5 Effectivity of the virtual class

Recall that eM13 is an open substack of the moduli stack of stable curves, and eGr
d

is a stack of gen-
eralized limit linear series of rank r and degree d over eM13. There is a morphism of vector bundles
� W Sym2.E/! F over eGr

d
, whose degeneracy locus is denoted by U.

The case of Theorem 4.2 where g D 13 shows that the pushforward ��ŒU�virt under the proper forgetful
map � W eGr

d
! eMg is a divisor, not just a divisor class. In our proof that ��ŒU�virt is effective, we will

use the additional cases where g D 11 or 12. Theorem 4.2 implies the following result.

Theorem 5.1 Let X be a general curve of genus g 2 f11; 12; 13g, and let p 2X be a general point. Let
V �H 0.X;L/ be a linear series of degree 16 and rank 5. Assume that

(i) if g D 12, then aV1 .p/� 2, and

(ii) if g D 11, then either aV1 .p/� 3, or aV0 .p/C a
V
2 .p/� 5.

Then the multiplication map �V W Sym2 V !H 0.X;L˝2/ is surjective.

We now prove that U is generically finite over each component of ��ŒU�virt, which implies that ��ŒU�virt

is effective. Our argument follows closely that of [19, Section 12]. Indeed, several of the lemmas and
propositions along the way are identical, and we omit those proofs. As in [19, Section 12], we suppose
that Z �M13 is an irreducible divisor and that � jU has positive-dimensional fibers over the generic point
of Z. Let |2 WM2;1!M13 be the map obtained by attaching an arbitrary pointed curve of genus 2 to a
fixed general pointed curve .X; p/ of genus 11. Since g D 13 is odd, by [19, Proposition 2.2], it suffices
to show the following:

(a) Z is the closure of a divisor in M13,

(b) j �2 .Z/D 0, and

(c) Z does not contain any codimension 2 stratum �2;j .
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The only irreducible boundary divisors in eM13 are �ı0 and �ı1. Therefore, item (a), that Z is the closure
of a divisor in M13, is a consequence of the following.

Proposition 5.2 The image of the degeneracy locus U does not contain �ı0 or �ı1.

Proof The proof is identical to [19, Proposition 12.3].

The proofs of (b) and (c) use the following lemma.

Lemma 5.3 If ŒX� 2Z and p 2X , then there is a linear series V 2G516.X/ that is ramified at p such
that �V is not surjective.

Proof The proof is identical to [19, Lemma 12.4].

5.1 Pulling back to M2;1

In order to verify (b), we consider the preimage of Z under the map |2.

Lemma 5.4 The preimage |�12 .Z/ is contained in the Weierstrass divisor W2 in M2;1.

Proof The proof is identical to [19, Lemma 12.5].

To prove that |�2 .Z/D 0, we consider the following construction. Let � be a chain of 13 loops with the
following restrictions on edge lengths:

(i) m2 D `2 (that is, the second loop has torsion index 2),

(ii) n3� n2, and

(iii) `kC1�mk� `k� nkC1� nk for all k ¤ 2.

The last condition says that, subject to the constraints of conditions (i) and (ii), the edge lengths otherwise
satisfy (20). Let X be a smooth curve of genus 13 overK whose skeleton is � . We first note the following.

Lemma 5.5 If ŒX� …Z, then |�2 .Z/D 0.

Proof This proof is identical to the first part of the proof of [19, Proposition 12.6].

Proposition 5.6 We have |�2 .Z/D 0.

Proof By Lemma 5.5, it suffices to show that ŒX� …Z. We divide � into two subgraphs z� 0 and z� , to
the left and right, respectively, of the midpoint of the long bridge ˇ3. Let q 2X be a point specializing
to v14. If ŒX� 2Z, by Lemma 5.3 there is a linear series in the degeneracy locus over X that is ramified
at q. We now show that this impossible.
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Let ` D .L; V / 2 G516.X/ be a linear series ramified at q. We may assume that L D O.DX /, where
D D Trop.DX / is a break divisor, and consider †D trop.V /. We will show that there are 20 tropically
independent pairwise sums of functions in † using a variant of the arguments in Section 4. It follows that
the multiplication map �` is surjective, and hence ŒX� cannot be in Z.

To produce 20 tropically independent pairwise sums of functions in†, following the methods of Section 4,
we first consider the slope sequence along the long bridge ˇ3. First, suppose that either s3Œ4� � 2 or
s3Œ3�C s3Œ5�� 5. In this case, even though the restriction of † to z� is not the tropicalization of a linear
series on a pointed curve of genus 11 with prescribed ramification, it satisfies all of the combinatorial
properties of the tropicalization of such a linear series. The proof of Theorem 4.2 then goes through
verbatim, yielding a tropical linear combination of 20 functions in † such that each function achieves the
minimum uniquely at some point of z� � � .

For the remainder of the proof, we therefore assume that s3Œ4��3 and s3Œ3�Cs3Œ5��6. Since degDjz� 0D5,
we see that s3Œ5�� 5. Moreover, since the divisor Djz� 0 � s3Œ4�w2 has positive rank on z� 0, and no divisor
of degree one on z� 0 has positive rank, s3Œ4� must be exactly 3. Since the canonical class is the only divisor
class of degree two and rank one on z� 0, we see that Djz� 0 �Kz� 0 C 3w2. This yields an upper bound on
each of the slopes s3Œi �, and these bounds determine the slopes for i � 2:

s3Œ5�D 5; s3Œ4�D 3; s3Œ3�D 1; s3Œ2�D 0:

Moreover, we must have s02Œi �D s3Œi � for 2 � i � 5. Since ` is ramified at q, we also have s14Œ5� � 6.
These conditions together imply that the sum of the multiplicities of all loops and bridges on z� is at
most one.

To construct an independence on � , we first construct an independence among 5 functions on z� 0. This is
done exactly as in [19, Figure 39], and we omit the details.

Next, we construct an independence among 15 pairwise sums of functions in † restricted to z� , with the
property that any function  that obtains the minimum on z� satisfies s02. /� 4. Note that each of the
functions  that obtains the minimum on z� 0 satisfies s3. / � 5. Since the bridge ˇ3 is very long, it
follows that no function that obtains the minimum on one of the two subgraphs can obtain the minimum
on the other. Thus, we have constructed a tropical linear combination of 20 pairwise sums of functions
in † in which 5 achieve the minimum uniquely at some point of z� 0 and 15 achieve the minimum uniquely
at some point of z� . In particular, this is an independence, as required.

It remains to construct an independence among 15 pairwise sums of functions in † restricted to z� . To
do this, we run the algorithm from [19], with one change. (Indeed, one could imagine that � is simply
the first 13 loops in a chain of 23 loops; we construct the independence from [19, Section 12.3], and
restrict it to � .) At the start, we skip the step named “start at the first bridge”. Instead, we do not assign
any function  with s3. / � 5, and we start with the loop subroutine applied to 
3. Following this
construction, there will only be two blocks, and there will be two functions with slope 2 along the last
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bridge ˇ14. We eliminate one of these functions from B, and assign the other to ˇ14. The rest of the
argument is exactly the same as that of [19].

5.2 Higher-codimension boundary strata

It remains to verify (c), that Z does not contain any of the codimension 2 boundary strata �2;j �M13.

Proposition 5.7 The component Z does not contain any codimension 2 stratum �2;j .

Proof The proof is again a variation on the independence constructions from the proof of Theorem 4.2.
We fix `D 11� j . Let Y1 be a smooth curve of genus 2 over K whose skeleton �1 is a chain of 2 loops
with bridges, and let p 2 Y1 be a point specializing to the right endpoint of �1. Similarly, let Y2 and
Y3 be smooth curves of genus ` and j , respectively, whose skeletons �2 and �3, are chains of ` loops
and j loops with edge lengths satisfying (20). Suppose further that the edges in the final loop of �2 are
much longer than those in the first loop of �3. Let p; q 2 Y2 be points specializing to the left and right
endpoints of �2, respectively, and let q 2 Y3 be a point specializing to the left endpoint of �3. We show
that ŒY 0�D ŒY1[p Y2[q Y3� 2�2;j is not contained in Z.

As in the proof of [19, Proposition 12.6], if ŒY 0� 2 Z, then Z contains points ŒX� corresponding to
smooth curves whose skeletons are arbitrarily close to the skeleton of Y 0 in the natural topology on M trop

13 .
In particular, there is an X 2 Z with skeleton a chain of loops �X whose edge lengths satisfy all the
conditions of (20), except that the bridges ˇ3 and ˇ` are exceedingly long in comparison to the other
edges. Let � be the subgraph of �X to the right of the midpoint of the bridge ˇ3. Note that � is a chain
of 11 loops, labeled 
3; : : : ; 
13, with bridges labeled ˇ3; : : : ; ˇ14.

By Lemma 5.3, there is a linear series V of degree 16 and rank 5 on X that is ramified at a point x
specializing to the right-hand endpoint v14, and such that �V is not surjective. We will show that this is
not possible, using the tropical independence construction from Section 4. Let †D trop.V /. We have that
either s02Œ4�� 2 or s02Œ3�C s

0
2Œ4�� 5. Also, since V is ramified at x, we have s14Œ5�� 6. These conditions

imply that the multiplicity of every loop and bridge is zero. In particular, for each i there is a function 'i
satisfying

sk.'i /D s
0
k�1.'i /D skŒi �D s

0
k�1Œi � for all k:

These functions have constant slope along bridges, and the slopes sk.'i / are nondecreasing in k. These
properties guarantee that, even though the bridge ˇ` is very long, a function 'ij can only obtain the
minimum on a loop or bridge where it is permissible.

Even though the restriction of † to � is not the tropicalization of a linear series on a curve of genus 11
with prescribed ramification at two specified points specializing to the left and right endpoints of � , it
satisfies all of the combinatorial properties of the tropicalization of such a linear series, and we may apply
the algorithm from Section 4. Because we are in a situation where the relative lengths of the bridges do
not matter (Remark 4.17) the construction yields an independence among 20 pairwise sums of functions
in †, and the proposition follows.
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6 The Bertram–Feinberg–Mukai conjecture in genus 13

The aim of this section is to prove the existence part of the Bertram–Feinberg–Mukai conjecture on M13.
For a smooth curve X of genus g, we denote by SUX .2; !/ the moduli space of S–equivalence classes of
semistable rank-two vector bundles E on X with det.E/Š !X . For an integer k � 0, the Brill–Noether
locus

SUX .2; !; k/ WD fE 2 SUX .2; !/ W h0.X;E/� kg

has the structure of a Lagrangian degeneracy locus and each component of SUX .2; !; k/ has dimension
at least

ˇ.2; g; k/D 3g� 3�
�kC1

2

�
I

see [38]. Furthermore, SUX .2; !; k/ is smooth of dimension ˇ.2; g; k/ at a point ŒE� corresponding to a
stable vector bundle if and only if the Mukai–Petri map (1) is injective. Of particular interest to us is the case

g D 13 and k D 8;

in which case ˇ.2; 13; 8/D 0. First, using linkage methods, we show that a general curve of genus 13
carries a stable vector bundle E 2 SUX .2; !; 8/. Then using a Hecke correspondence, we compute the
fundamental class of SUX .2; !; 8/.

Theorem 6.1 A general curveX of genus 13 caries a stable vector bundleE of rank two with detE Š !X
and h0.X;E/D 8.

As a first step towards proving Theorem 6.1, we determine the extension type of the vector bundles in
question.

Proposition 6.2 For a general curve X of genus 13, every vector bundle E 2 SUX .2; !; 8/ can be
represented as an extension

(25) 0!OX .D/!E! !X .�D/! 0;

where D is an effective divisor of degree 6 on X , such that L WD !X .�D/ 2W 6
18.X/ is very ample and

the map �L W Sym2H 0.X;L/!H 0.X;L˝2/ is not surjective. Conversely , a very ample L 2W 6
18.X/

with �L not surjective induces a stable vector bundle E 2 SUX .2; !; 8/.

Proof Using a result of Segre — see [39] or [33, Proposition 3.1] for modern proofs — every semistable
vector bundle E on X of rank two and canonical determinant carries a line subbundle OX .D/ ,!E with
degD � 1

2
.g� 2/. Therefore, in our case degD � 6.

If h0.X;OX .D// � 2, since h0.X;OX .D//C h0.X; !X .�D// � h0.X;E/ D 8 it follows from the
Brill–Noether theorem and Riemann–Roch that degD D 8, hence !X .�D/ 2W 5

16.X/. It follows that
the extension (25) lies in the kernel of the map

Ext1.!X .�D/;D/!H 0.!X .�D//
_
˝H 1.D/:
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This implies that the multiplication map �!X .�D/ W Sym2H 0.X; !X .�D//! H 0.X; !˝2X .�2D// is
not surjective, which contradicts Theorem 1.5. Therefore h0.X;OX .D//D 1, in which case necessarily
degD D 6 and h0.X;E/ D h0.X;OX .D//C h0.X; !X .�D//. Setting L WD !X .�D/ 2 W 6

18.X/, an
extension E satisfies h0.X;E/D 8 if and only if the extension class of E in Ext1.L;D/ lies in the kernel
of the linear map

Ext1.L;D/!H 0.L/_˝H 1.D/:

Thus, an extension (25) exists if and only if the multiplication map

�L W Sym2H 0.L/!H 0.X;L˝2/Š Ext1.L;D/_

is not surjective. We claim that L is very ample. Otherwise, there exist points x; y 2 X such that
L0 WD L.�x�y/ 2W 5

16.X/. Since X is general, by Theorem 1.5 the multiplication map

�L0 W Sym2H 0.X;L0/!H 0.X; .L0/˝2/

is surjective, implying the inclusion H 0.X; .L0/˝2.xC y// � Im.�L/. We deduce that ŒE� lies in the
kernel of the map

Ext1.L;D/! Ext1.L.�x�y/;D/:

That is, the vector bundle E can also be represented as an extension

0! L.�x�y/!E!OX .DC xCy/! 0;

thus contradicting the semistability of E. We conclude that L has to be very ample.

Conversely, each very ample linear system L 2W 6
18.X/, for which the map �L is not surjective induces

a stable vector bundle E; see also [14, 7.2]. Indeed, let us assume E is not semistable. In view of the
extension (25), a maximally destabilizing line subbundle of E is of the form L.�M/, where M is an
effective divisor on X with degM � 6. Therefore, apart from (25), E can also be realized as an extension

0! L.�M/!E!OX .DCM/! 0:

By applying Riemann–Roch, one can then write

h0.X;L.�M//C h1.X;L.�M//D h0.X;L/C h1.X;L/� 2 dim
H 0.X;L/

H 0.X;L.�M//
C deg.M/:

Since
h0.X;L/C h1.X;L/D h0.X;E/� h0.X;L.�M//C h1.X;L.�M//;

it follows that
degM � 2 dim

H 0.L/

H 0.L.�M//
:

Since L is very ample, we find degM 2 f4; 5; 6g. In each case, the Brill–Noether number of L.�M/ is
negative, contradicting the generality of X . Therefore E is stable.
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Proof of Theorem 6.1 By Proposition 6.2, it suffices to show that for a general curve X of genus 13,
there exists a very ample linear system L 2 W 6

18.X/ such that �L is not surjective. We use a method
inspired by Verra’s proof [47] of the unirationality of M14. To illustrate the idea behind the proof, first
suppose that there exists an embedding 'L WX ,! P6 given by L 2W 6

18.X/, such that the map �L is not
surjective. In particular, X � P6 lies on at least 5D

�
8
2

�
� h0.X;L˝2/� 1 quadrics. We expect the base

locus of this system of quadrics to be a reducible curve (of degree 32), containing X as a component and
accordingly write

X CC D Bs jIX=P6.2/j:

Assuming that X and C intersect transversally, we obtain that X CC is a complete intersection curve
in P6. Therefore C is a curve of degree 14 D 25 � deg.X/ and applying the adjunction formula
2g.X/ � 2g.C / D .10 � 7/.deg.X/ � deg.C // D 12 (see for instance [47, page 1429]), we obtain
g.C /D 7.

We now reverse this procedure and start with a general curve C � P6 of genus 7 embedded by a 7–
dimensional linear system V �H 0.C;LC /, where LC 2 Pic14.C / is a general line bundle, therefore
h0.C;LC /D 8. Consider the multiplication map

�V W Sym2.V /!H 0.C;L˝2C /

and observe that Ker.�V / has dimension at least 6 D dim Sym2.V / � h0.L˝2C /. Choose a general
5–dimensional system of quadrics W 2G

�
5;H 0.P6; IC=P6.2//

�
. We then expect

(26) Bs jW j D C CX � P6

to be a nodal curve, and the curve X linked to C to be a smooth curve of degree 18 and genus 13. Setting
L WDOX .1/ 2W 6

18.X/, by construction L is very ample and the embedded curve X � P6 lies on at least
5 quadrics, therefore �L is not surjective.

To carry this out, one needs to check some transversality statements. Let Pic147 be the universal Picard
variety parametrizing pairs ŒC; LC �, where C is a smooth curve of genus 7 and LC 2 Pic14.C /. As
pointed out in [47, Theorem 1.2], it follows from Mukai’s work [37] that Pic147 is unirational. We
introduce the variety

Y WD fŒC; LC ; V;W � W ŒC; LC � 2 Pic147 ; V 2G.6;H
0.C;LC //; W 2G.5;Ker.�V //g

The forgetful map Y! Pic147 has the structure of an iterated locally trivial projective bundle over Pic147 ,
therefore Y is unirational as well. Moreover,

dimY D dimPic147 C dimG.7; 8/C dimG.5; 6/D 4 � 7� 3C 7C 5D 37:

One has a rational linkage map

� W YÜ SU13.2; !; 8/; ŒC;LC ; V;W � 7! ŒX;L;E�;
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where X is defined by (26), L WDOX .1/ 2W 6
18.X/ and E 2 SUX .2; !; 8/ is the rank-two vector bundle

defined uniquely by the extension 0! !X ˝L
_!E! L! 0.

To show that � is well defined it suffices to produce one example of a point in Y for which all these
assumptions are realized. To that end, we consider 11 general pointsp1; : : : ; p5 and q1; : : : ; q6 respectively
in P2 and the linear system

H � 6h� 2.Ep1 C � � �CEp5/� .Eq1 C � � �CEq6/

on the blowup S D Bl11.P2/ at these points. Here h denotes the pullback of the line class from P2. Via
Macaulay2 one checks that S jH j

,��! P6 is an embedding and the graded Betti diagram of S is

1 � � � �

� 5 � � �

� � 15 16 15

Next we consider a general curve C � S in the linear system

C � 10h� 4.Ep1 CEp2 CEp3 CEp4/� 3Ep5 � 2.Eq1 CEq2/� .Eq3 CEq4 CEq5 CEq6/:

Via Macaulay2, we verify that C is smooth, g.C / D 7 and deg.C / D 14. Furthermore, using that
H 1.P6; IS=P6.2//D 0, we have an exact sequence

0!H 0.P6; IS=P6.2//!H 0.P6; IC=P6.2//!H 0.S;OS .2H �C//! 0:

Since OS .2H�C/DOS .2h�Ep5�Eq3�Eq4�Eq5�Eq6/, clearly h0.S;OS .2H�C//D 1, therefore
h0.P6; IC=P6.2//D 6. That is, C � P6 is a 2–normal curve.

One also verifies with Macaulay2 that C � P6 is scheme-theoretically cut out by quadrics. Using
[47, Proposition 2.2], C lies on a smooth surface Y � P6 which is a complete intersection of four
quadrics containing C . Furthermore, the linear system jOY .2H �C/j is basepoint-free, so a general
element X 2 jOY .2H �C/j is a smooth curve of genus 13 meeting C transversally. Finally, a standard
argument using the exact sequence 0! OY .H �X/! OY .H/! OX .H/! 0 shows that since C
is 2–normal, the residual curve X is 1–normal. That is, h1.X;OX .1//D 1. This implies that the map
� W YÜ SU13.2; !; 8/ is well defined and dominant.

Corollary 6.3 The parameter space SU13.2; !; 8/ is unirational.

Proof This follows from the proof of Theorem 6.1 and from the unirationality of Y .

6.1 The fundamental class of SUX.2 ;!; 8/ for a general curve

It is essential for our calculations to determine the degree of the map

# W SU13.2; !; 8/!M13; #.ŒX;E�/D ŒX�:
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We fix a general curve X of genus g and a point p 2X . Since the moduli space SUX .2; !/ is singular, in
order to determine the fundamental class of the nonabelian Brill–Noether locus SUX .2; !; k/, following
[40; 33; 38] one uses instead the Hecke correspondence relating SUX .2; !/ to the smooth moduli space
SUX .2; !.p// of stable rank-two vector bundles F on X with det.F /Š !X .p/.

Recall that SUX .2; !.p// is a fine moduli space. Hence there is a universal rank-two vector bundle F on
X �SUX .2; !.p// and we consider the Hecke correspondence

P WD P .Fjfpg�SUX .2;!.p///;

endowed with the projection �1 WP! SUX .2; !.p//. The points of P are exact sequences

(27) 0!E! F !K.p/! 0;

where F 2 SUX .2; !.p//, and therefore det.E/Š !X . One has a diagram

P
�1

ww

�

&&

SUX .2; !.p// SUX .2; !/

where � assigns to a sequence (27) the semistable vector bundle E. Set

h WD c1.OP.1//D �
�c1.Lev/;

where Lev is the determinant line bundle on SUX .2; !/, associated to the effective divisor

‚ WD fE 2 SUX .2; !/ WH 0.X;E/¤ 0g:

Set ˛ WD c1.Lodd/ 2H
2
�
SUX .2; !.p//;Z

�
, where Lodd is the ample generator of Pic

�
SUX .2; !.p//

�
.

Note that Pic.P/ is generated by h and by ��1 .˛/.

For each k 2N, the nonabelian Brill–Noether locus

BP.k/ WD fŒ0!E! F !K.p/! 0� 2P W h0.X;E/� kg

has the structure of a Lagrangian degeneracy locus of expected codimension ˇ.2; g; k/C1D3g�2�
�
kC1
2

�
;

see [38, Section 5; 33, Section 2]. As such, its virtual class ŒBP.k/�
virt 2H�.P ;Q/ can be computed in

terms of certain tautological classes, whose definition we recall now.

Following [40], we consider the Künneth decomposition of the Chern classes of F , using that det.F/Š
!X .p/�Lodd, and write

c1.F/D ˛C .2g� 1/' and c2.F/D �C Cg˛˝';

where ' 2 H 2.X;Q/ is the fundamental class of the curve, � 2 H 4
�
SUX .2; !.p//;Q

�
and  is in

H 3
�
SUX .2; !.p//;Q

�
˝H 1.X;Q/. Finally, we define the class


 2H 6
�
SUX .2; !.p//;Q

�
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by the formula  2 D 
 ˝'. One has the relation

h2 D ˛h� 1
4
.˛2�ˇ/ 2H 4.P ;Q/;

from which we can recursively determine all powers of h. We summarize as follows.

Proposition 6.4 For each n� 2, the following relation holds in H�.P ;Q/:

hn D
h.�2˛C 2h/

p
ˇC˛2� 2˛hCˇp

ˇ.˛2�ˇ/

�
˛C

p
ˇ

2

�n
C
h.2˛� 2h/

p
ˇC˛2� 2˛hCˇp
ˇ.˛2�ˇ/

�
˛�

p
ˇ

2

�n
:

In this formula
p
ˇ is a formal root of the class ˇ. Applying [33, Section 3] or [38], one can endow

BP.k/ with the structure of a Lagrangian degeneracy locus as follows. Let E be the vector bundle on
X �P defined by the exact sequence

0! E! .id��1/�.F/! .p2/�.OP.1//! 0;

where p2 WX �P!P is the projection. Choose an effective divisor D of large degree on X and also
denote by D its pullback under X �P!X . Then .p2/�.E=E.�D// and .p2/�.E.D// are Lagrangian
subbundles of .p2/�.E.D/=E.�D//. For each point t WD Œ0!E! F !K.p/! 0� 2P , one has

.p2/�.E.D//.t/\ .p2/�.E=E.�D//.t/ŠH 0.X;E/:

Assume from now on g D 13 and k D 8, therefore we expect BP.8/ to be one-dimensional. Applying
the formalism for Lagrangian degeneracy loci [38, Proposition 1.11], we find the following determinantal
formula for its virtual fundamental class:

(28) ŒBP.8/�
virt
D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

c8 c9 c10 c11 c12 c13 c14 c15
c6 c7 c8 c9 c10 c11 c12 c13
c4 c5 c6 c7 c8 c9 c10 c11
c2 c3 c4 c5 c6 c7 c8 c9
c0 c1 c2 c3 c4 c5 c6 c7
0 0 c0 c1 c2 c3 c4 c5
0 0 0 0 c0 c1 c2 c3
0 0 0 0 0 0 c0 c1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ
;

where the ci 2H 2i .P ;Q/ are defined recursively by the following formulas, see [33, Corollary 4.2]:

(29) c0 D 2; c1 D h; c2 D
1
2
h2; c3 D

1
3

�
1
2
h3C 1

4
ˇh� 1

2


�
; c4 D

1
4

�
1
6
h4C 1

3
ˇh2� 1

3
2
h

�
;

and for each n� 1,

(30) .nC 4/cnC4�
1
2
.nC 2/ˇcnC2C

�
1
4
ˇ
�2
ncn D hcnC3�

�
1
4
ˇhC 1

2


�
cnC1:

In order to evaluate the determinant giving ŒBP.8/�
virt, we shall use Proposition 6.4 coupled with the

formula of Thaddeus [46] determining all top intersection numbers of tautological classes on SUX .2; !.p//.
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Precisely, for mC 2nC 3p D 3g� 3, one has

(31)
Z

SUX .2;!.p//
˛m �ˇn � 
p D .�1/g�p

gŠmŠ

.g�p/ŠqŠ
22g�2�p.2q � 2/Bq;

where q DmCpC 1�g and Bq denotes the Bernoulli number; those appearing in our calculation are

B2 D
1
6
; B4 D�

1
30
; B6 D

1
42
; B8 D�

1
30
; B10 D

5
66
; B12 D�

691
2730

;

B14 D
7
6
; B16 D�

3617
510

; B18 D
43867
798

; B20 D�
174611
330

; B22 D
854513
138

; B24 D�
236364091
2730

:

Theorem 6.5 For a general curve X of genus 13, the locus SUX .2; !; 8/ consists of three reduced points
corresponding to stable vector bundles.

Proof As explained, the Lagrangian degeneracy locus BP.8/ is expected to be a curve and we write

ŒBP.8/�
virt
D f .˛; ˇ; 
/C h �u.˛; ˇ; 
/;

where f .˛; ˇ; 
/ and u.˛; ˇ; 
/ are homogeneous polynomials of degrees 36D 3g� 3 and 35D 3g� 4,
respectively.

Observe that if E 2 SUX .2; !; 8/ then necessarily E is a stable bundle. Otherwise E is strictly semistable,
in which case E D B˚ .!X ˝B_/, where B 2W 3

12.X/, which contradicts the Brill–Noether theorem
on X . Since � is a P1–fibration over the locus of stable vector bundles, it follows that BP.8/ is a
P1–fibration over SUX .2; !; 8/. Furthermore, applying [45], the Mukai–Petri map �E is an isomorphism
for each vector bundle E 2 SUX .2; !; 8/, therefore SUX .2; !; 8/ is a reduced zero-dimensional cycle.
We denote by a its length, thus we can write

(32) ŒBP.8/�D ŒBP.8/�
virt
D a��.ŒE0�/D f .˛; ˇ; 
/C h �u.˛; ˇ; 
/;

where ŒE0� 2 SUX .2; !/ is general. Intersecting both sides of (32) with h, we obtain

h �f .˛; ˇ; 
/D�h �˛u.˛; ˇ; 
/:

Next observe that ��.ŒE0�/ �˛D 2. Indeed, since � is a P1–fibration over the open locus of stable bundles
and !P D �

�.Lev/˝�
�.�˛/, it follows that

�2D deg.!Pj��.ŒE0�//D !P � �
�.ŒE0�/D�˛ � �

�.ŒE0�/:

Intersecting both sides of (32) with ˛, we find 2aD h �˛u.˛; ˇ; 
/D�h �f .˛; ˇ; 
/, so

aD jSUX .2; !; 8/j D
1

2

Z
P

hf .˛; ˇ; 
/D
1

2

Z
SUX .2;!.p//

f .˛; ˇ; 
/:

We are left with the task of computing the degree 36 polynomial f .˛; ˇ; 
/, which is a long but elementary
calculation. We consider the determinant (28) computing the class of BP.8/. First we substitute for each
of the classes c1; : : : ; c15 the expression in terms of ˛, ˇ, 
 and h given by the recursion (30), starting with
the initial conditions (29). Evaluating this determinant, we obtain a polynomial of degree 36 in the classes
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˛, ˇ, 
 and h. We recursively express all the powers hn with n � 2 and obtain a formula of the form
ŒBP.8/�D f .˛; ˇ; 
/Ch �u.˛; ˇ; 
/. We set hD 0 in this formula and then we evaluate each monomial
of degree 36 in ˛, ˇ and 
 using Thaddeus’ formulas (31). At the end, we obtain f .˛; ˇ; 
/D�6, which
completes the proof of Theorem 6.5.4

7 The nonabelian Brill–Noether divisor on M13

In this section we determine the class of the nonabelian Brill–Noether divisor MP13, and prove
Theorem 1.1. The results in this section also lay the groundwork for the proof that R13 is of general type.

7.1 Tautological classes on the universal nonabelian Brill–Noether locus

Definition 7.1 Let M]
13 be the open substack of M13 consisting of

(i) smooth curves X of genus 13 with SUX .2; !; 9/D∅, or

(ii) 1–nodal irreducible curves ŒX=y � q�, where X is a 7–gonal smooth genus 12 curve, y; q 2X , and
the multiplication map �L W Sym2H 0.X;L/!H 0.X;L˝2/ is surjective for each L 2W 5

15.X/.

Let M]
13 be the open subset of M13 coarsely representing M

]
13.

Note that M]
13 and M13 [�0 agree in codimension one, in particular we identify CH 1.M]

13/ with
Qh�; ı0i. We let SU

]
13.2; !; 8/ be the moduli stack of pairs ŒX;E�, where ŒX� 2M]

13 and E is a
semistable rank-two vector bundle on X with det.E/Š !X and h0.X;E/� 8. Let SU]13.2; !; 8/ be the
coarse moduli space of SU

]
13.2; !; 8/. We still denote by # WSU

]
13.2; !; 8/!M

]
13 the forgetful map.

Proposition 7.2 The map # WSU
]
13.2; !; 8/!M

]
13 is proper. Moreover , for each ŒX;E�2SU]13.2; !; 8/

the corresponding vector bundle E is globally generated.

Proof Suppose X!T is a flat family of stable curves of genus 13, whose generic fiberX� is smooth and
the special fiber X0 corresponds to a 1–nodal curve in M]

13. The moduli space SUX�.2; !/ specializes to
a moduli space SUX0.2; !/ that is a closed subvariety of the moduli space UX0.2; 24/ of S–equivalence
classes of torsion-free sheaves of rank-two and degree 24 on X0. The points in SUX0.2; !/ are described
in [42].

We claim that if E 2 SUX0.2; !/ satisfies h0.X0; E/ � 8, then necessarily E is locally free, in which
case

V2
E Š !X0 . Suppose � WX !X0 is the normalization map, let y; q 2X denote the inverse images

of the node p of X0 and assume E is not locally free at p. Denoting by mp �OX0;p the maximal ideal,
either

(i) Ep Šmp˚mp, or

(ii) Ep ŠOX0;p˚mp.

4The Maple file describing all calculations explained here is at https://www.mathematik.hu-berlin.de/farkas/gen13bn.mw.
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In the first case, E D ��.F /, where F is a vector bundle of rank two on X with det.F /Š !X , that is,
SUX .2; !; 8/¤∅. Note that

h0.X; det.F //D 12� 2h0.X; F /� 4;

implying that F has a subpencil A ,! F .5 Then A 2W 1
7 .X/ and L WD !X ˝A_ 2W 5

15.X/ is such that
�L W Sym2H 0.X;L/! H 0.X;L˝2/ is not surjective. This is ruled out by the definition of M]

13. In
case (ii), when Ep ŠOX0;p˚mp, one has an exact sequence

0!E! ��. zF /!K.p/! 0;

where zF D ��.E/=Torsion is a vector bundle on the smooth curve X and satisfies det.F /D !X .y/, or
det.F /Š !X .q/; see also [42, 1.2]. Observe that also in this case F necessarily carries a subpencil, and
we argue as before to rule out this possibility.

We now turn out to the last part of Proposition 7.2. Choose ŒX;E� 2 SU]13.2; !; 8/ and assume for
simplicity X is smooth (the case when X is 1–nodal being similar). Assume E is not globally generated at
a point q 2X . Then there exists a vector bundle F 2SUX .2; !.�q/; 8/, obtained fromE by an elementary
transformation at q. Note that h0.X; detF /� 2h0.X; F /�4, which forces F to have a subpencil A ,!F .
Necessarily, deg.A/D 7. Since h0.F /D h0.A/Ch0.!X ˝A_.�q//, setting L WD !X ˝A_ 2W 6

17.X/,
it follows that the multiplication map

H 0.X;L/˝H 0.X;L.�q//!H 0.X;L˝2.�q//

is not surjective, and in particular the map Sym2H 0.X;L/!H 0.X;L˝2/ is not surjective either. Then
X possesses a stable rank-two vector bundle with canonical determinant and 9D h0.X;A/Ch0.X;L/
sections, which is not the case.

Let us consider the universal genus 13 curve

} W C
]
13!SU

]
13.2; !; 8/;

then let E be the universal rank-two bundle over the stack SU
]
13.2; !; 8/. Note that we can normalize E

in such a way that det.E/Š !} .

Definition 7.3 We define the tautological class 
 WD }�.c2.E// 2 CH 1.SU
]
13.2; !; 8//.

We aim to determine the pushforward to M]
13 of the class 
 in terms of � and ı0. To that end, we begin

with the following:

Proposition 7.4 The pushforward }�.E/ is a locally free sheaf of rank 8 and

c1.}�.E//D #
�.�/� 1

2

 2 CH 1.SU

]
13.2; !; 8//:

5Use that for dimension reasons the determinant map d W
V2

H0.X; F /!H0.X; det.F // must necessarily vanish on a pure
element 0¤ s1 ^ s2, with s1; s2 2H0.X; F /. The subpencil in question is then generated by the sections s1 and s2.

Geometry & Topology, Volume 28 (2024)



The nonabelian Brill–Noether divisor on M13 and the Kodaira dimension of R13 855

Proof The fact that }�.E/ is locally free follows from [29]. We apply Grothendieck–Riemann–Roch to
the curve } W C]13!SU

]
13.2; !; 8/ and to the vector bundle E to obtain

ch.}Š.E//D}�
��
2Cc1.E/C

1
2
.c21.E/�2c2.E//C� � �

�
�
�
1� 1

2
c1.�

1
}/C

1
12
.c21.�

1
}/Cc2.�

1
}//C� � �

��
:

We consider the degree-one terms in this equality. Using [27, page 49], observe that

c1.�
1
}/D c1.!}/ and }�

�
1
12
.c21.�

1
}/C c2.�

1
}//

�
D #�.�/:

By Serre duality, observe that R1}�.E/Š }�.E/_, therefore one can write

2c1.}�.E//D c1.}�.E//� c1.R
1}�.E//D 2#

�.�/� 1
2
}�.c

2
1.!}//C

1
2
}�.c

2
1.!}//� 
;

which leads to the claimed formula.

In view of our future applications to R13, we introduce the rank-six vector bundle

ME WD Kerf}�.}�.E//! Eg:

The fiber ME WDMEŒX;E� over a point ŒX;E� 2 SU]13.2; !; 8/ sits in an exact sequence

(33) 0!ME !H 0.X;E/˝OX ev
�!E! 0;

where exactness on the right is a consequence of Proposition 7.2.

Proposition 7.5 The following formulas hold :

c1.ME/D }
�
�
#�.�/� 1

2


�
� c1.!}/;

c2.ME/D }
�c2.}�E/� c2.E/� c1.!}/ �}

�
�
#�.�/� 1

2


�
C c21.!}/:

Proof This follows from the splitting principle applied to ME, coupled with Proposition 7.4.

7.2 The resonance divisor in genus 13

A general curveX of genus 13 has 3 stable vector bundlesE 2SUX .2; !; 8/. In this case h0.X; det.E//D
2h0.X;E/� 3, which implies that requiring E to carry a subpencil defines a divisorial condition on
the moduli space SU13.2; !; 8/ and thus on M13. For a vector bundle E 2 SUX .2; !/, we denote its
determinant map by

d W
V2
H 0.X;E/!H 0.X; !X /:

Definition 7.6 The resonance divisor Res
]
13 is the locus of curves ŒX� 2M]

13 for which

G.2;H 0.X;E//\P .Ker.d//¤∅

for some vector bundle E 2 SUX .2; !; 8/. In other words, Res
]
13 is the locus of ŒX� for which there

exists an element 0¤ s1 ^ s2 2
V2
H 0.X;E/ such that d.s1 ^ s2/D 0.
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We set Res13 WD Res
]
13 \M13. Note that Res

]
13 comes with an induced scheme structure under the

proper map # WSU
]
13.2; !; 8/!M

]
13. The points in Res

]
13 correspond to those curves X for which a

vector bundle E 2 SUX .2; !; 8/ carries a subpencil (which is generated by the sections s1; s2 2H 0.X;E/

with d.s1 ^ s2/D 0). The class ŒRes
]
13� can be computed in terms of certain tautological classes over

SU
]
13.2; !; 8/. On the other hand, we have a geometric characterization of points in Res13, and it turns

out that the resonance divisor coincides with D13 away from the heptagonal locus M1
13;7.

Proof of Theorem 1.7 We show that one has the following equality of effective divisors

Res13 DD13C 3 �M1
13;7

on M13. Indeed, let us assume that ŒX� 2Res13 nM1
13;7, and let E 2 SUX .2; !; 8/ be the vector bundle

which can be written as an extension

(34) 0! A!E! !X ˝A
_
! 0;

where h0.X;A/ � 2. Since gon.X/ D 8, and since 8 � h0.X;E/ � h0.X;A/C h0.X; !X ˝A_/, it
follows that A 2W 1

8 .X/ and L WD !X ˝A_ 2W 5
16.X/. If such an extension exists, then the map �L is

not surjective, therefore ŒX� 2D13.

Conversely, if ŒX� 2D13, there is some L 2W 5
16.X/ such that the multiplication map �L is not surjective.

For ŒX� a general point of an irreducible component of D13, we may assume that the multiplication
map �L has corank one, for otherwise 'L WX ,! P5 lies on a .2; 2; 2/ complete intersection in P5, which
is a (possibly degenerate) K3 surface. But the locus of curves ŒX�2M13 lying on a (possibly degenerate)
K3 surface cannot exceed gC 19D 32 < 3g� 4, a contradiction. We let

E 2 P .Ext1.L; !X ˝L_//

be the unique vector bundle with h0.X;E/ D h0.X;L/C h0.X; !X ˝ L
_/ D 8. The argument of

Proposition 6.2 shows thatE is stable, otherwise there would exist an effective divisorM of degree 4 onX
such that L.�M/ 2W 3

12.X/. Since �.13; 3; 12/D�3, the locus of curves ŒX� 2M13 with W 3
12.X/¤∅

has codimension at least three in M13, hence this situation does not occur along a component of D13.
Summarizing, away from the divisor M1

13;7, the divisors Res13 and D13 coincide.

We now show that M1
13;7 appears with multiplicity 3 inside Res13. Let X be a general 7–gonal curve of

genus 13 and let A 2W 1
7 .X/ denote its (unique) degree 7 pencil. Set L WD !X ˝A_ 2W 6

17.X/. Each
vector bundle E 2 SUX .2; !; 8/ that has a subpencil appears as an extension

(35) 0! A!E
j
�! L! 0:

In this case h0.X;E/Dh0.X;A/Ch0.X;L/�1. That is, V WD ImfH 0.E/
j
�!H 0.L/g is 6–dimensional.

Furthermore, the multiplication map

�V W V ˝H
0.X;L/!H 0.X;L˝2/
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is not surjective. Conversely, each 6–dimensional subspace V �H 0.X;L/ such that �V is not surjective
leads to a vector bundle E 2 P .Ext1.L;A// with h0.X;E/D 8. The corresponding bundle E is stable
unless V is of the form H 0.X;L.�p// for a point p 2 X , in which case E can also be realized as an
extension

0! L.�p/!E! A.p/! 0:

To determine the number of such subspaces V � H 0.X;L/, we consider the projective space P6 WD
P .H 0.X;L/_/ and consider the vector bundle A on P6 with fiber

A.V /D V ˝H 0.X;L/V2
V

over a point ŒV �2P6. There exists a bundle morphism� WA!H 0.X;L˝2/˝OP6 given by multiplication
and the subspaces ŒV � 2 P6 for which �V is not surjective (or, equivalently, �_ is not injective) are
precisely those lying in the degeneracy locus of �, that is, for which rk.�.V // D 21. Applying the
Porteous formula we find

ŒZ21.�/�D c6
�
H 0.X;L˝2/_˝OP6 �A_

�
D c6.�A/:

To compute the Chern classes of A, we recall that via the Euler sequence the rank-six vector bundle
MP6 on P6 with MP6.V /D V �H

0.X;L/ can be identified with �P6.1/. Then A is isomorphic to
MP6 ˝H

0.X;L/=
V2
MP6 . From the exact sequence

0!
V2
MP6 !

V2
H 0.X;L/˝OP7 !MP6.1/! 0;

recalling that ctot.MP6/D 1=.1Ch/, where hD c1.OP6.1//, we find ctot
�V2

MP6
�
D .1C2h/=.1Ch/7,

therefore

ŒZ21.�/�D

�
1

.1C h/7
�
.1C h/7

1C 2h

�
6

D

�
1

1C 2h

�
6

D 26 � h6 D 64:

From this, we subtract the excess contribution corresponding to the locus X jLj
,�! P6, parametrizing

the subspaces V DH 0.X;L.�p// corresponding to unstable bundles. Via the excess Porteous formula
[24, Example 14.4.7], this locus appears in the class ŒZ21.�/� with a contribution of

c1
�
Ker.�_/˝Coker.�_/�NX=P6

�
D�5c1.Ker.�_//C c1.A_jX /� c1.NX=P6/:

The restriction to X � P6 of the kernel bundle of �_ can be identified with L_, whereas c1.A_jX /D
�2c1.MP6jX / D 2 deg.L/. Furthermore c1.NX=P6/ D 7 deg.L/C 2g.X/� 2. All in all, the excess
contribution to ŒZ21.�/� coming from X equals

10 deg.L/C 2 deg.L/� 7 deg.L/� 2g.X/� 2D 5 � 17� 24D 61:

Therefore, for a general curve ŒX� 2M1
13;7, there are 3 D 64� 61 vector bundles E 2 SUX .2; !; 8/

having A as a subpencil, which finishes the proof.
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We are now in a position to explain how Theorems 1.3 and 1.7 provide enough geometric information to
determine the pushforward to M

]
13 of the class 
 .

Proposition 7.7 One has #�.
/D 11288
143

�� 1582
143

ı0 2 CH
1.M]

13/.

Proof The divisor Res
]
13 is defined as the pushforward under # WSU

]
13.2; !; 8/!M

]
13 of the locus

where the fibers of the morphism of vector bundles

d W
V2
}�.E/! }�.!}/

contain a rank-two tensor in their kernel. To compute the class of this locus, we use Proposition 7.4 in
combination with [22, Theorem 1.1]:6

ŒRes
]
13�D 132

�
c1.}�.!}//�

13
4
c1.}�.E//

�
D 132

�
�
9
4
#�.�/C 13

8


�
:

Using [27], we write ŒM1
13;7�D 6 � .48��7ı0�� � � / for the class of the heptagonal locus, while the class

ŒeD13� is computed by Theorem 1.4. Since deg.#/D 3, we then find

#�.
/D
48
13

�
5059
264

�� 749
264
ı0C

9
8
�C 3

132
.48�� 7ı0/

�
D

1128
143

�� 1582
143

ı0:

7.3 The class of the nonabelian Brill–Noether divisor on M13

In the introduction, we defined the nonabelian Brill–Noether divisor MP]13 as the locus of curves
ŒX� 2M]

13 for which there exists E 2 SUX .2; !; 8/ such that the map

�E W Sym2H 0.X;E/!H 0.X;Sym2E/

is not an isomorphism, or equivalently, the scheme SUX .2; !; 8/ is not reduced. We now compute the
class of this divisor.

Proof of Theorem 1.1 The locus MP]13 is the pushforward under the proper map # of the degeneracy
locus of the following map of vector bundles over SU

]
13.2; !; 8/:

Sym2 }�.E/! }�.Sym2 E/:

Using Grothendieck–Riemann–Roch for } W C]13!SU
]
13.2; !; 8/, we compute

c1.p�.Sym2 E//D}�
��
3C3c1.E/C

1
2
.5c21.E/�8c2.E//

�
�
�
1� 1

2
c1.�

1
}/C

1
12
.c21.�

1
}/Cc2.�

1
}//

��
2
:

Using again that 12}�
�
c21.�

1
}/C c2.�

1
}/
�
D #�.�/, we conclude that

c1.}�.Sym2 E//D 3#�.�/C}�.c21.!}//� 4
 D #
�.15�� ı0/� 4
:

Via Proposition 7.4, we have c1.Sym2 }�.E//D 9c1.}�.E//D 9
�
#�.�/� 1

2


�
, yielding

ŒMP]13�D #�
�
c1.}�.Sym2 E/�Sym2 }�.E//

�
D 3.6�� ı0/C

1
2
#�.
/:

Substituting via Proposition 7.7, we find ŒMP]13�D 1
143
.8218�� 1220ı0/.

6The result in [22] is stated for a morphism of vector bundles of the form Sym2.E/! F . An immediate inspection of the proof
shows though that the same formula applies also in the setting of a morphism of the form

V2.E/! F .
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8 The Kodaira dimension of R13

We turn our attention to showing that the Prym moduli space R13 is a variety of general type. We begin
by recalling basics on the geometry of the moduli of Prym variety, referring to [20] for details. We denote
by Rg WDMg.BZ2/ the Deligne–Mumford stack of Prym curves of genus g classifying triples ŒY; �; ˇ�,
where Y is a nodal curve of genus g such that each of its rational components meets the rest of the
curve in at least two points, � 2 Pic0.Y / is a line bundle of total degree 0 such that �jR D OR.1/ for
every rational component R � Y with jR\ Y nRj D 2 (such a component is called exceptional), and
ˇ W �˝2!OY is a morphism which is generically nonzero along each nonexceptional component of Y.
Let Rg be the coarse moduli space of Rg . One has a finite cover

� WRg !Mg :

8.1 The boundary divisors of Rg

The geometry of the boundary of Rg is described in [20]; we recall some facts. If ŒXyq D X=y � q�
in �0 �Mg is such that ŒX; y; q� 2Mg�1;2, denoting by � W X ! Xyq the normalization map, there
are three types of Prym curves in the fiber ��1.ŒXyq�/. First, one can choose a nontrivial 2–torsion
point � 2 Pic0.Xyq/. If ��.�/¤OX , this amounts to choosing a 2–torsion point �X 2 Pic0.X/Œ2�nfOXg
together with an identification of the fibers �X .y/ and �X .q/ at the points y and q, respectively. As we
vary ŒX; y; q�, points of this type fill up the boundary divisor �00 in Rg . The Prym curves corresponding
to the situation ��.�/Š OX fill up the boundary divisor �000. Finally, choosing a line bundle �X on X
with �˝2X ŠOX .�y�q/ leads to a Prym curve ŒY WDX[y;qR; �; ˇ�, where R is a smooth rational curve
meeting X at y and q, and � 2 Pic0.Y / is a line bundle such that �jX D �X and �jR DOR.1/. Points of
this type fill up the boundary divisor �ram

0 of Rg , which is the ramification divisor of the morphism � .

Denoting by ı00 WD Œ�
0
0�, ı

00
0 WD Œ�

00
0� and ıram

0 WD Œıram
0 � the corresponding divisor classes, one has the

following relation in CH 1.Rg/Š CH 1.Rg/, see [20]:

��.ı0/D ı
0
0C ı

00
0 C 2ı

ram
0 :

The finite morphism � WRg !Mg being ramified only along the divisor �ram
0 , one has

(36) KRg D 13�� 2.ı
0
0C ı

00
0/� 3ı

ram
0 � 2

bg=2cX
iD1

.ıi C ıg�i C ıi Wg�i /� .ı1C ıg�1C ı1Wg�1/;

where ��.ıi /D ıi C ıg�i C ıi Wg�i ; see [20, Theorem 1.5] for details.

8.2 The universal theta divisor on R13

For a semistable vector bundle E 2 SUX .2; !/ on a smooth curve X of genus g, its Raynaud theta divisor
‚E WD

˚
� 2 Pic0.X/ WH 0.X;E˝ �/¤ 0

	
is a 2�–divisor inside the Jacobian of X ; see [41].
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Definition 8.1 The universal theta divisor ‚13 on R13 is defined as the locus of smooth Prym curves
ŒX; �� 2R13 for which there exists a vector bundle E 2 SUX .2; !; 8/ such that H 0.X;E˝ �/¤ 0.

We first show that, as expected, this definition gives rise to a divisor on R13.

Proposition 8.2 For a general Prym curve ŒX; ��2R13, one hasH 0.X;E˝�/D 0 for all vector bundles
E 2 SUX .2; !; 8/. It follows that ‚13 is an effective divisor on R13.

Proof Consider the subvariety of R13 �M13
SU13.2; !; 8/ given by

Z WD fŒX; �;E� WH 0.X;E˝ �/¤ 0g:

Assume for contradiction that Z surjects onto R13. Then Z is a union of irreducible components
of R13 �M13

SU13.2; !; 8/. In particular, Z surjects onto the irreducible variety SU13.2; !; 8/; see
Corollary 6.3. Therefore, for every pair ŒX;E� 2 SU13.2; !; 8/, there exists a 2–torsion point � on X
with H 0.X;E˝ �/¤ 0.

We now specialize to the case when E is a strictly semistable vector bundle of the type

E D A˝3˚ .!X ˝A
˝.�3//;

where ŒX;A� is a general tetragonal curve of genus 13. Note that h0.X;A˝3/D 4, by [13, Proposition 2.1].
In particular, h0.X;E/ D 8. Using [8] the space R13 �M13

M1
13;4 parametrizing Prym curves over

tetragonal curves of genus 13 is irreducible, therefore H 0.X;A˝3˝ �/¤ 0 for every triple ŒX; �; A� 2
R13 �M13

M1
13;4. We now further specialize the tetragonal curve X to a hyperelliptic curve and

AD A0.xCy/, where A0 2W 1
2 .X/ and x; y 2X are general points, whereas

�DOX .p1Cp2Cp3Cp4� q1� q2� q3� q4/ 2 Pic0.X/Œ2�;

where p1; : : : ; p4; q1; : : : ; q4 are mutually distinct Weierstrass points of X . It immediately follows that
for these choices H 0.X;A˝3˝ �/D 0, which is a contradiction.

We consider the open substack R
]
13 WD �

�1.M
]
13/ of R13 and let R]13 be its associated coarse moduli

space. We identify CH 1.R]13/ with the space Qh�; ı00; ı
00
0 ; ı

ram
0 i. In what follows we extend the structure

on the universal theta divisor ‚13 to R]13 and realize it as the pushforward of the degeneracy locus of a
map of vector bundles of the same rank over the fiber product

RSU]13.2; !; 8/ WDR
]
13 �M

]
13
SU

]
13.2; !; 8/:

We start with a triple ŒX; �;E� 2RSU]13.2; !; 8/. Via Proposition 7.2 the vector bundle E is globally
generated and we let ME WD KerfH 0.X;E/˝OX !Eg. By tensoring with � and taking cohomology
in the exact sequence (33), we observe that H 0.X;E˝ �/¤ 0 if and only if the coboundary map

(37) � WH 1.X;ME ˝ �/!H 0.X;E/˝H 0.X; !X ˝ �/
_
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is not injective. Since clearly H 0.X;ME ˝ �/D 0, it follows that

h1.X;ME ˝ �/D�deg.ME /C 6.g� 1/D 96D 8 � 12D h
0.X;E/ � h0.X; !X ˝ �/:

That is, � is a map between vector space of the same dimension.

By slightly abusing notation, we still denote by

} WRC
]
13!RSU]13.2; !; 8/

the universal curve of genus 13 over RSU]13.2; !; 8/. It comes equipped with a universal rank-two vector
bundle E such that

V2EŠ !} and }�.E/ is locally free of rank 8 (cf Proposition 7.4), as well as with a
universal Prym line bundle L with Lj}�1.ŒX;�;E�/ Š � for any point ŒX; �;E� 2RSU]13.2; !; 8/.

We consider the rank-six vector bundle ME on RC]13 defined by the exact sequence

0!ME! }�.}�E/! E! 0;

then introduce the following sheaves over RSU]13.2; !; 8/:

A WDR1}�.ME˝L/ and B WD }�.E/˝}�.!} ˝L/_:

Using the fact that the map v defined in (37) is a morphism between two vector spaces of the same
dimension for every point ŒX; �;E� 2RSU]13.2; !; 8/, via Grauert’s theorem we conclude that both A
and B are locally free of the same rank 96, and there exists a morphism

(38) � WA! B

whose fiber restrictions are the maps (37). Recall that the forgetful map # WRSU]13.2; !; 8/!R
]
13 is

generically finite of degree 3. We denote by ‚]13 the pushforward to R]13 of the degeneracy locus of the
morphism � given by (38). Observe that ‚]13\M13 D‚13.

Theorem 8.3 The class of the universal theta divisor ‚]13 on R13 is given by

Œ‚
]
13�D

1
143

�
10430�� 1582.ı00C ı

00
0/�

5899
2
ıram
0

�
2 CH 1.R]13/:

Proof From Proposition 8.2 it follows that � is generically nondegenerate, therefore

Œ‚
]
13�D c1.B�A/:

Computing the class c1.B/ is straightforward. We find that c1.}�.!} ˝L// D #�
�
�� 1

4
ıram
0

�
, using

[20, Proposition 1.7]. Then via Proposition 7.4, we compute

c1.B/D 12c1.}�E/�8c1.}�.!}˝L//D 12
�
#�.�/� 1

2


�
�8
�
#�
�
�� 1

4
ıram
0

��
D #�.4�C2ıram

0 /�6
:

To determine c1.A/ we apply Grothendieck–Riemann–Roch to the morphism }:

(39) ch.}Š.ME˝L//D }�
��
6C c1.ME˝L/C 1

2
.c21.ME˝L/� 2c2.ME˝L//C � � �

�
�
�
1� 1

2
c1.�

1
}/C

1
12
.c21.�

1
}/C c2.�

1
}//C � � �

��
:
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Observe by direct calculation that the formulas

c1.ME˝L/D c1.ME/C 6c1.L/ and c2.ME˝L/D c2.ME/C 5c1.ME/ � c1.L/C 15c21.L/

hold, therefore

}�
�
1
2
.c21.ME˝L/� 2c2.ME˝L//

�
D }�

�
1
2
.c21.ME/� 2c2.ME//C c1.ME/ � c1.L/C 3c21.L/

�
D 
 � 1

2
}�.c

2
1.!}//D 
 �

1
2
.#�.12�� ı00� ı

00
0 � 2ı

ram
0 //;

where in the last formula we have used Proposition 7.5, Mumford’s formula [27] for the class }�.c21.!}//,
and 2}�.c21.L//D�#�.ıram

0 /; see [20, Proposition 1.6].

Substituting in the equation (39), coupled with Proposition 7.5 and also using that via the push–pull
formula one has }�

�
}�
�
#�.�/� 1

2


�
� c1.!}/

�
D .g� 1/ �

�
#�.�/� 1

2


�
, we obtain

c1.A/D�7
 C#�
�
6�C 3

2
ıram
0

�
:

Putting everything together we find

Œ‚
]
13�D #�c1.B�A/D #�

�

 � 2�C 1

2
ıram
0

�
D 2#�.
/� 6�C

3
2
ıram
0 :

Finally, Proposition 7.7 gives 143#�.
/D 11288��1582.ı00Cı
00
0C2ı

ram
0 / and the conclusion follows.

We can now complete the proof that R13 is of general type.

Proof of Theorem 1.2 It is shown in [20, Theorem 6.1] that any g pluricanonical forms defined on Rg
automatically extend to any resolution of singularities, therefore Rg is of general type if and only if the
canonical class KRg is big, that is, it can be expressed as a positive rational combination of an ample and
an effective class on Rg . To that end we shall use, in addition to the closure x‚13 in R13 of the universal
theta divisor ‚13, the divisor D13W2 on R13 consisting of pairs ŒX; �� where the 2–torsion point � lies in
the divisorial difference variety

X6�X6 D fOX .D�E/ WD;E 2X6g � Pic0.X/:

It is shown in [20, Theorem 0.2] that up to a positive rational constant, the closure of D13W2 inside R13
is given by ŒD13W2�D 19�� 3.ı00C ı

00
0/�

13
4
ıram
0 � � � � 2 CH

1.R13/. Observe that by construction, ‚]13
differs from the restriction of x‚13 to M]

13 by a (possibly empty) effective combination of the divisors
�00, �000 and �ram

0 ; hence, using Theorem 8.3 we can write

Œx‚13�D
1
143
.10430�� b00ı

0
0� b

00
0ı
00
0 � b

ram
0 ıram

0 � � � � / 2 CH
1.R13/;

where b00 � 1582, b000 � 1582 and bram
0 �

5899
2

. We consider the effective divisor, on R13,

D WD 65
674
Œx‚13�C

1153
3707

ŒD13W2�D a�� a
0
0ı
0
0� a

00
0ı
00
0 � a

ram
0 ıram

0 �

12X
iD1

aiıi �

6X
iD1

ai;13�iıi W13�i ;

where a D 4362
337

, a00 � 2, a000 � 2 and aram
0 � 3. By an argument using pencils on K3 surfaces, one

can show that each of the coefficients a1; : : : ; a12 or a1;12; : : : ; a6;7 is at least equal to 3. Indeed, each
boundary divisor �i or �i W13�i of R13 is covered by pencils of reducible Prym curves consisting of two
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components, of which one moves in a suitable Lefschetz pencil on a fixed K3 surface. The intersection
numbers of these pencils with the generators of CH 1.Rg/ were computed in [20, Proposition 1.8]. Since
D is the closure in R13 of an effective divisor on R13, the intersection number of each such pencil with D
is nonnegative. For instance, for 1� i � 6 we obtain, in this way, the inequality

a13�i � a
0
0.6i C 18/� a.i C 1/� 2.6i C 18/�

4362
337

.i C 1/� 3:

The inequalities for the remaining coefficients of D can be handled similarly; see also [20, Proposition 1.9].
Since a D 12:943 : : : < 13, comparing the class of D to that of KR13 given in (36), we conclude that
KR13 can be written as a positive combination of ŒD� and a multiple of �, hence it is big.

8.3 The Kodaira dimension of M13;n

We indicate how our results on divisors on M13 can be used to determine the Kodaira dimension of the
moduli space M13;n.

Proof of Theorem 1.6 It suffices to show that M13;9 is of general type to conclude that the same holds for
M13;n when n� 10. We use the divisor D13W24;15 considered by Logan [36] and defined as the S9–orbit
(under the action permuting the marked points) of the locus of pointed curves ŒX; p1; : : : ; p9� 2M13;9

such that
h0.X;OX .2p1C � � �C 2p4Cp5C � � �Cp9//� 2:

Up to a positive constant the class of the closure in M13;9 of D13W24;15 equals

ŒD13W24;15 �D��C 17
9

9X
iD1

 i �
25
6
ı0W2� � � � 2 CH

1.M13;9/:

(See [17] or [36] for the standard notation on the generators of CH 1.Mg;n/.) If � WM13;9!M13 is
the map forgetting the marked points, a routine calculation shows that the canonical class KM13;9

can be
expressed as a positive linear combination of ŒD13W24;15 � and ��.ŒD�/, where D 2 Eff.M13/ if and only
if 2s.D/� 9

17
< 13. Observe that the class of the nonabelian Brill–Noether divisor ŒMP13� verifies this

inequality, and the result follows.
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