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We prove a rigidity result for group actions on the line whose elements have what we call “hyperbolic-
like” dynamics. Using this, we give a rigidity theorem for R–covered Anosov flows on 3–manifolds,
characterizing orbit equivalent flows in terms of the elements of the fundamental group represented by
periodic orbits. As consequences of this, we give an efficient criterion to determine the isotopy classes of
self-orbit equivalences of R–covered Anosov flows, and prove finiteness of contact Anosov flows on any
given manifold.

In the appendix, with Jonathan Bowden, we prove that orbit equivalences of contact Anosov flows
correspond exactly to isomorphisms of the associated contact structures. This gives a powerful tool to
translate results on Anosov flows to contact geometry and vice versa. We illustrate its use by giving two
new results in contact geometry: the existence of manifolds with arbitrarily many distinct Anosov contact
structures, answering a question of Foulon, Hasselblatt and Vaugon, and a virtual description of the group
of contact transformations of a Anosov contact structure, generalizing a result of Giroux and Massot.

37D20, 57M60

1 Introduction

1.1 Hyperbolic-like actions

A well-known theorem of Hölder states that any group acting freely by homeomorphisms of the line is
abelian and conjugate to a group of translations. This was generalized in unpublished work of Solodov
(see eg [Farb and Franks 2003; Kovačević 1999; Barbot 1995a]) to the statement that a group action on
the line where each nontrivial element has at most one fixed point is either semiconjugate to an action by
affine transformations, or abelian with a global fixed point. Later, the proof of the convergence group
theorem [Gabai 1992; Casson and Jungreis 1994] established that a group action on the circle where each
element has at most two fixed points is, under some additional technical dynamical hypotheses, conjugate
to a subgroup of PSL.2;R/ acting on RP1 by Möbius transformations. This important result was the last
step in the proof of the Seifert fiber space conjecture.
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868 Thomas Barthelmé and Kathryn Mann

While one cannot reasonably expect further generalizations in this vein,1 it is a natural question to
ask what other fixed-point data might determine an action. In this spirit, we show that, under suitable
hypotheses, an action of a group on the line is determined up to conjugacy by the set of elements acting
with fixed points. Like the statement of the convergence group theorem, our hypotheses are motivated by
an application to a classification problem, in our case the classification of R–covered Anosov flows on
3–manifolds. Say that an action on the line is hyperbolic-like if it commutes with integer translation and
each nontrivial element either acts freely or has exactly two fixed points in Œ0; 1/, one attracting and one
repelling. We prove the following rigidity result for such actions:

Theorem 1.1 (rigidity of hyperbolic-like actions) A minimal , hyperbolic-like action of a nonabelian
group G on R is determined up to conjugacy by the set of elements of G that act with fixed points.

Minimal and hyperbolic-like are both properties of the actions of 3–manifold fundamental groups on R

induced by R–covered Anosov flows. This allows us to use Theorem 1.1 to classify such flows up to
orbit equivalence.

1.2 Orbit equivalence of Anosov flows

Recall that two flows on a manifold M are orbit equivalent if there is a homeomorphism f WM !M

taking orbits of one to orbits of the other, and isotopically equivalent if this homeomorphism can be taken
to be isotopic to the identity.

An Anosov flow is called R–covered if the leaf space of its weak-stable foliation is homeomorphic
to R. (In the case of 3–manifolds, it is equivalent that the weak-unstable foliation has leaf space R). On
3–manifolds, there are many constructions of R–covered flows, and examples of manifolds admitting
arbitrarily many inequivalent R–covered flows. Here, we give a characterization of orbit and isotopy
equivalent R–covered flows on 3–manifolds by their free homotopy classes of periodic orbits. For a
flow ' on a manifold M, let P.'/ denote the set of conjugacy classes of elements in �1.M / represented
by the free homotopy classes of periodic orbits of '. We show the following:

Theorem 1.2 (classification of R–covered Anosov flows) Let ' and  be R–covered Anosov flows on
a closed 3 manifold M.

(1) ' and  are isotopically equivalent if and only if P.'/D P. /.

(2) ' and  are orbit equivalent2 if and only if there exists a homeomorphism f WM !M such that
f�.P.'//D P. /. Moreover , the orbit equivalence can be taken to be in the isotopy class of f.

1One reason for this is that the target groups R, AffC.R/ and PSL.2;R/ are essentially the only Lie groups acting transitively
on 1–manifolds, so the only natural candidates for such targets.
2In our definition of orbit equivalence, we do not require the homeomorphism to match oriented orbits to oriented orbits. If one
wants to consider only orbit equivalences that preserve orbit orientation, then the conclusion of Theorem 1.2 will be that, if one
flow is transversally orientable, then the other is also, and the orbit equivalence can be upgraded to an orientation-preserving
orbit equivalence (using [Barbot 1995a, théorème C]). If one (and hence both) of the flows are not transversally orientable, then
' is orbit equivalent to either  or  �1.
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The R–covered Anosov flows on closed 3–manifolds form a rich class of examples, including geodesic
flows on closed surfaces, all contact Anosov flows, and diverse examples on many hyperbolic 3–manifolds
and on manifolds with nontrivial JSJ decomposition (see [Fenley 1994; Foulon and Hasselblatt 2013;
Barthelmé and Fenley 2017; Bonatti and Iakovoglou 2023; Bowden and Mann 2022]). Among other
applications, our main theorem allows us to prove finiteness of contact Anosov flows. We describe and
motivate the main applications now.

1.3 Application 1: classifying self-orbit equivalences

Describing the centralizer of a given diffeomorphism is a classical question in discrete-time dynamical
systems; notably, Smale’s conjecture [1998] is that the centralizer of a generic diffeomorphism should be
trivial. By contrast, diffeomorphisms which embed in a flow have an R–subgroup in their centralizer
given by the flow, so the right analog of Smale’s conjecture in this case is to ask whether the flow agrees
(virtually) with the centralizer of the diffeomorphism. This motivates the general program to classify all
symmetries of a given flow, and, more generally, classify the symmetries of the foliation given by orbits of
a flow, ie classify the self-orbit equivalences. As with Smale’s conjecture, this question is quite sensitive
to regularity — for instance, 3–dimensional Anosov flows often have many self-orbit equivalences, while
the set of those which may be realized by C 1 diffeomorphisms was shown to be virtually trivial by
Barthelmé, Fenley and Potrie [Barthelmé et al. 2023].

Theorem 1.2 gives the following immediate characterization of isotopy classes of self-orbit equivalences:

Corollary 1.3 A map f WM !M is in the isotopy class of a self-orbit equivalence of an R–covered
Anosov flow ' if and only if f� W �1.M /! �1.M / preserves the set of conjugacy classes realized by
periodic orbits of '.

With more work, we improve this to give a criterion to explicitly describe such classes, as follows. The
case of interest here is for skew flows, those which are not orbit equivalent to a suspension of an Anosov
diffeomorphism on the torus, as the orbit equivalences of suspension flows are essentially trivial.

If M is a 3–manifold with a skew Anosov flow ', then M is orientable and irreducible, so admits a
JSJ decomposition along tori into Seifert and atoroidal pieces. By Mostow rigidity and the structure
of mapping class groups of Seifert spaces, the group Dehn.M / of isotopy classes of diffeomorphisms
generated by Dehn twists along embedded tori in M has finite index in MCG.M / [Johannson 1979]. We
give a criterion for when maps generated by certain Dehn twists represent a self-orbit equivalence of a
flow. Given a flow ' and Dehn twist Dˇ , we may define an orbit displacement function, as follows. For
each periodic orbit c in M, we set

d'.c;Dˇ/D

kX
iD1

2�i t'.ˇi/;

where k is the number of transverse intersections of c with T (when T is in quasitransverse position
with respect to the flow, t'.ˇ/ is the translation number of the action of ˇ on ƒs.'/, and �i D ˙1 is
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an orientation term for each intersection. When f is a composition of Dehn twists Dˇi
on disjoint

nonisotopic tori, we define d'.c; f / to be the sum of the displacements d'.c;Dˇi
/. Formal definitions

are given in Section 3.

Theorem 1.4 (criterion for self-orbit equivalence) Let ' be a transversally oriented skew Anosov flow.
A map f which is a composition of Dehn twists on disjoint nonisotopic tori is isotopic to a self-orbit
equivalence of ' if and only if , for all periodic orbits c of ', we have d'.c; f /D 0.

There are many situations in which this criterion is easy to check. As two sample applications, we have
the following results for any transversally oriented skew Anosov flow ':

Corollary 1.5 Let Dper be the subgroup of the mapping class group of M generated by Dehn twists
along curves represented by periodic orbits. Then any isotopy class Œh�2Dper is represented by a self-orbit
equivalence of '.

Corollary 1.6 Let T be an embedded torus and Dˇ a Dehn twist on T with nonzero translation number.
Then Dˇ is isotopic to a self-orbit equivalence of ' if and only if T is separating in M.

In Section 3.2, we discuss a number of other special cases where one may use the topology of M to
reduce Theorem 1.4 to a simpler statement. We also discuss the complementary case to Theorem 1.4 for
maps generated by Dehn twists in tori which cannot be realized disjointly, namely tori inside a single
Seifert piece. See Theorems 3.17 and 3.18.

Remark 1.7 One can easily describe all self-orbit equivalences of a given skew Anosov flow in a
fixed isotopy class. Such a flow comes with the data of a homeomorphism � WM !M realizing the
half-step-up map on the orbit space. See Section 2.1 for details. It follows from [Barthelmé and Gogolev
2019, Theorem 1.1] that any two self-orbit equivalences h1 and h2 in the same isotopy class differ, up to
isotopy along the flow lines, by some power of �.

Theorem 1.4 identifies which elements of a large subgroup of the mapping class group of M are represented
by self-orbit equivalences. However, passing to the full mapping class group requires a different approach.
In particular, we do not know the answer to the following:

Question 1.8 Does there exist an (R–covered or not) Anosov flow on a hyperbolic 3–manifold M such
that the only self-orbit equivalences are isotopic to the identity?

Question 1.9 Does there exist an (R–covered or not) Anosov flow on a hyperbolic 3–manifold M such
that every element of the mapping class group of M is represented by a self-orbit equivalence?

Remark 1.10 The case of most interest for both questions is when the manifold considered has nontrivial
mapping class group. However, there are, as yet, no constructions of Anosov flows on a 3–manifold that
has a trivial mapping class group. So even the trivial case for these questions is not yet known.
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Remark 1.11 Barthelmé et al. [2023] introduced a class of partially hyperbolic diffeomorphisms, called
“collapsed Anosov flows”, which are semiconjugate to self-orbit equivalences of Anosov flows. Hence,
the criterion of Theorem 1.4 (and its applications for certain manifolds, as in Theorems 3.17 and 3.18)
describes the possible isotopy classes of collapsed Anosov flows associated with R–covered Anosov
flows.

1.4 Application 2: contact Anosov flows

An Anosov flow is said to be contact if it is the Reeb flow of a contact 1–form ˛. Notice that, with
this definition, the contact structure � D ker˛ is automatically transversely orientable since it is given
as the kernel of a (globally defined) contact form. The contact Anosov flows are an important and
well-studied class of examples, as they can be thought of as a generalization of the geodesic flow on
manifolds of negative curvature, and many dynamical results on Anosov flows, for instance exponential
decay of correlations [Liverani 2004], are known only for the contact case. In the context of 3–manifolds,
Barbot [2001] proved that contact Anosov flows on 3–manifolds are necessarily R–covered and skew,
while Foulon–Hasselblatt surgery [Foulon et al. 2021] produces many examples. In fact, it is currently
an open question whether every R–covered skew flow is orbit equivalent to a contact flow. As progress
towards a better understanding of these flows, we show that isomorphism of the associated contact
structures is the same as orbit equivalence of flows, giving a powerful tool to use the machinery of flows
to answer questions in contact geometry and vice versa.

Theorem 1.12 Two contact Anosov flows on a 3–manifold are orbit equivalent if and only if their
respective contact structures are contactomorphic. They are isotopically equivalent if and only if the
contact structures are isotopic.

Recall that two contact structures �1 and �2 on a manifold M are contactomorphic if there exists a
diffeomorphism g WM !M such that g��1 D �2, and they are isotopic if g can be taken to be isotopic
to the identity.

We prove the reverse of Theorem 1.12 in Section 4, and the forward direction in Theorem A.2. Using
the coarse classification of tight contact structures of Colin, Giroux and Honda [Colin et al. 2009] and
the result (proved in the appendix) that Anosov contact structures have zero torsion, we also obtain the
following:

Theorem 1.13 (finiteness for contact Anosov flows) On any given 3–manifold M, there are only finitely
many contact Anosov flows on M up to orbit equivalence.

Thanks to Theorem 1.12, one can now fully translate results about contact Anosov flows to results
about Anosov contact structures and vice versa. We illustrate this principle in the appendix with two

Geometry & Topology, Volume 28 (2024)



872 Thomas Barthelmé and Kathryn Mann

examples: First, we show (Theorem A.7) that there exists hyperbolic 3–manifolds with arbitrarily many
noncontactomorphic Anosov contact structures, answering a question raised in [Foulon et al. 2021].
Second, we give a virtual description of the group of contact transformations of a Anosov contact structure
up to isotopy on some manifolds (Theorem A.8). This generalizes a result by Giroux and Massot [2017].

Outline of the article

Section 2 gives a brief introduction to the structure of R–covered flows on 3–manifolds, followed by the
proof of Theorem 1.2. Section 3 contains the proof of Theorem 1.4, and the applications to contact flows
are given in Section 4 and the appendix.
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2 Proofs of Theorems 1.1 and 1.2

The first statement of Theorem 1.2 is a special case of the second, so we in fact only need to prove that
assertion. Recall this is the statement that two flows ' and  are orbit equivalent if and only if there exists
a homeomorphism f WM !M such that f�.P.'//DP. /, and, if this holds, the orbit equivalence can
be taken to be in the isotopy class of f. The forward direction is immediate; we now set up the proof of
the reverse direction. This will lead us to the statement and proof of Theorem 1.1; we finish the proof of
Theorem 1.2 at the end of this section.

Throughout the work, we assume the reader has basic familiarity with Anosov flows. We recall below the
essential structure theory of R–covered flows on 3–manifolds that is used in the proof. Further background
can be found in [Fisher and Hasselblatt 2019], and results specific to the topological theory of Anosov
flows in dimension 3 can be found in [Barbot 2005].

By work of Fenley [1994] and Barbot [1995a], an R–covered Anosov flow on a closed 3–manifold is
either conjugate to the suspension of an Anosov diffeomorphism of T 2 or is skew, meaning that the orbit
space of the lift of the flow to �M is homeomorphic to the infinite diagonal strip

OD f.x;y/ 2R2
W jx�yj< 1g

via a homeomorphism taking the stable leaves of the flows to the horizontal cross-sections of the strip,
and unstable leaves to the vertical cross-sections.
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Figure 1: The orbit space O.

Theorem 1.2 follows from purely topological considerations in the suspension case, as follows. Suppose
that M is a 3–manifold that fibers as the mapping torus of an Anosov diffeomorphism A on the torus.
By a theorem of Plante [1981], any Anosov flow on M is necessarily of suspension type. Any other
suspension flow comes from a fibering of M as the mapping torus of an Anosov diffeomorphism. It is a
“folklore” result that such a diffeomorphism must be conjugate to either A or A�1 — a detailed proof can
be found in [Funar 2013]. Since our definition of orbit equivalence allows a flow to be conjugate to its
inverse, we conclude that M admits only one Anosov flow up to orbit equivalence.

The case of skew flows is much more interesting. For instance, examples of (closed, hyperbolic) manifolds
that admit arbitrarily many inequivalent skew Anosov flows were constructed in [Bowden and Mann 2022].
As a first step towards the proof of Theorem 1.2 in the skew case, we need to recall some general structure
theory due to Barbot and Fenley that will allow us to essentially reduce the theorem to a statement about
actions of �1.M / on S1.

2.1 Skew Anosov flows

Consider again the infinite diagonal strip model for the orbit space as shown in Figure 1.

In this model, each point o 2 O can be assigned a point ou on the upper boundary of the strip by following
the unstable leaf through o, and a point ol on the lower boundary by following the stable leaf. Taking the
intersection of the stable leaf through ou and unstable through ol defines a continuous, fixed-point-free
map � WO!O, which we call the half-step-up map.3 This map exchanges stable leaves and unstable leaves,
so � D �2 induces a map on the leaf space ƒs of the weak stable foliation. We call � the one-step-up map.

If the weak foliations are transversely orientable, then � commutes with the action of �1.M / on ƒs .
Identifying ƒs ŠR so that � is identified with the translation x 7! xC 1 realizes �1.M / as a subgroup

3This map and its square have both been referred to as the one-step-up map elsewhere in the literature. We choose to call the
square the one-step-up and � the half-step-up.
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of HomeoZ.R/, the group of orientation-preserving homeomorphisms of R commuting with integer
translations. In the nonorientable case, � is twisted �1–equivariant: for any 
 2 �1.M / that reverses the
orientation of ƒs , we have �.
x/D 
��1.x/.

Our perspective going forward will be to study the flows through the action of �1.M / on the leaf space.
For simplicity, in Section 2.3 we assume first that the weak foliations are transversely orientable, and then
state the necessary modifications for the nonorientable case. In the orientable case, the dynamics of the
action of �1.M / on ƒs is what Thurston [1997] calls an extended convergence group action. However,
the only dynamical property that we will need is the fact that, in such a group, any orientation-preserving
homeomorphism with fixed points has exactly two fixed points in Œ0; 1/, one attracting and one repelling.
This can be seen directly from the Anosov dynamics of the flow.

Another dynamical property that will be of use comes from [Barbot 1995a, Theorem 2.5], which states
that skew Anosov flows are transitive and the action of the group generated by �1.M / and � on R is
minimal, meaning that all orbits are dense. Since R=� Š S1 and the action of �1.M / descends to this
circle, this latter statement is equivalent to the statement that the action of �1.M / on R=� is minimal.
The reader may find it useful to visualize the action on R by thinking of it on the circle R=� , but for
simplicity we will work in HomeoZ.R/. The next subsection establishes some general results about such
subgroups of HomeoZ.R/, concluding with the proof of Theorem 1.1.

2.2 Hyperbolic-like homeomorphisms: proof of Theorem 1.1

Definition 2.1 We say an element f 2 HomeoZ.R/ is hyperbolic-like if it has exactly two fixed points
in Œ0; 1/, one attracting and one repelling, and a group action � WG! Homeo.R/ is hyperbolic-like if its
image lies in HomeoZ.R/ and every element with fixed points is hyperbolic-like.

In the context of the action of the fundamental group of a 3–manifold with a skew Anosov flow on
the stable leaf space (which is what we have in mind), Thurston [1997] calls hyperbolic-like elements
space-like homeomorphisms. Since this notation is not commonplace, we have chosen the terminology
“hyperbolic-like” since the induced action of such elements on R=Z are topologically conjugate to
hyperbolic Möbius transformations.

If a is a hyperbolic-like element, we will use the notation aC and a� to respectively denote an attracting
and a repelling fixed point for a. For two hyperbolic-like elements a and b, we say the fixed sets of a

and b are linked if each connected component of RX Fix.a/ contains a fixed point for b, or if a and b

have fixed points in common. We say they are unlinked otherwise. By convention, when we speak about
the order of fixed points on R, we use the notation

aC < b� < a� < bC

to mean that there exist four consecutive elements of Fix.a/[Fix.b/, ordered as indicated by the inequality.
In this example, the fixed sets of a and b are linked. Since both a and b commute with integer translation,
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the next element of Fix.a/ [ Fix.b/ to the right of bC is another attracting fixed point for a, equal
to aCC 1.

The next series of lemmas shows that the configuration of fixed points of a pair or triple of elements can
be detected by the set of words in those elements which act with fixed points.

Lemma 2.2 Let a and b be hyperbolic-like elements of HomeoZ.R/. The fixed sets of a and b are
linked if and only if Fix.anbm/¤∅ for all n;m 2 Z.

Proof Suppose first that the fixed sets of a and b are linked, and let n and m be given. Since the
property of having linked fixed sets does not change after passing to inverses, up to replacing a or b with
their inverses we can assume that n;m � 0. Since the fixed sets of a and b are linked, either a and b

have a common fixed point (in which case we are done) or there exists some connected component of
RX .Fix.a/[ Fix.b// bounded on one side by an attracting fixed point for a, and on the other by an
attracting fixed point for b. Let I denote the closure of this component. Then anbm.I/� I, so anbm has
a fixed point in I.

To prove the converse, suppose now that the sets are unlinked. Up to passing to inverses, we may find
consecutive attracting and repelling fixed points for a and b that lie in the order

aC < a� < bC < b�

with no other fixed points between aC and b�. For m large enough, bm.aC/ will lie in the open interval
.a�; bC/. For n large enough, anbm.aC/ will therefore lie in the open interval .b�; aCC 1/. Similarly,
bmanbm.aC/ will lie to the right of aCC 1, as will anbmanbm.aC/. Thus, .anbm/2 translates some
point a distance at least 1. Any such element of HomeoZ.R/ is fixed-point-free; hence, its root anbm is
fixed-point-free as well.

The next lemma says that, if a and b have unlinked fixed sets, then we can detect the cyclic order of
attracting and repelling fixed points by understanding which words in a and b have fixed points.

Lemma 2.3 Suppose a and b have unlinked fixed sets. The word bN aN has a fixed point for every
N > 0 if and only if one may find a set of consecutive fixed points either in the order

aC < a� < b� < bC

or that obtained from the above by replacing a and b simultaneously with their inverses.

Proof If the ordering shown above occurs, then the interval ŒbC; aCC 1� is mapped into itself by bN aN,
so the map has a fixed point. Note that the ordering obtained by replacing a and b with their inverses
can also be obtained simply by reversing the orientation of R and considering a sequence of consecutive
fixed points starting with a�. Since reversing orientation of R obviously does not change the property of
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a map having fixed points, we have already proved one direction of the lemma. For the converse, if the
ordering above does not occur even after passing to inverses, the order is either

aC < a� < bC < b� or a� < aC < b� < bC:

In the first case, for sufficiently large N we have .bN aN /2.bC/ > bCC 1, so the map is fixed-point-free,
and in the second case we have .bN aN /2.bC/ < bC� 1, so the map is again fixed-point-free.

Our next goal is to use this information to reconstruct a minimal action, up to conjugacy, from the data of
the ordering of fixed-point sets. For this we need an elementary lemma:

Lemma 2.4 Suppose G � HomeoZ.R/ is a nonabelian group whose action on R is minimal and
hyperbolic-like. Then , for any point x 2R and any � > 0, there exists a 2 G such that a has two fixed
points in the �–neighborhood of x.

Proof If no nontrivial element of G acted with fixed points, then G would be abelian by Hölder’s
theorem, so by assumption this case does not occur. Thus, there exist hyperbolic-like elements and, by
minimality of the action of G, the set of their attracting fixed points is dense.

Let x and � > 0 be given. Fix any hyperbolic-like element g with an attracting fixed point in the
�
2

–neighborhood of x. Observe that, if f and g are hyperbolic-like and f does not fix a repelling
point g� for g, then all fixed points of the conjugate gNfg�N approach the attracting fixed points of g

as N !1. Thus, it suffices to find a hyperbolic-like f that does not fix g�. By minimality, there exists
h 2G such that h.g�/ lies strictly between g� and gC, where g� < gC are consecutive fixed points. If
h.gC� 1/¤ g�, then hgh�1 is hyperbolic-like and has fixed points distinct from g�, since they are the
images of the fixed points of g under h, and we are done. If instead h.gC � 1/D g�, or equivalently
h.gC/D g�C 1, then we have

g� < h�1.gC/ < gC < g�C 1

and therefore h�1gh has fixed points gC and h�1.gC/¤ g�.

Although not strictly needed in our proof, Lemma 2.4 can be strengthened to the following density for
pairs of fixed points:

Lemma 2.5 Suppose G � HomeoZ.R/ is a nonabelian group whose action on R is minimal and
hyperbolic-like. Given x;y 2 Œ0; 1/, and � > 0, there exists a hyperbolic-like element g 2G with fixed
points satisfying jg��xj< � and jgC�yj< �.

Proof Let x;y 2 Œ0; 1/ and � > 0 be given. Without loss of generality, assume x < y and assume that � is
small enough that the �–neighborhoods of x and y and all of their integer translates are pairwise disjoint.
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By Lemma 2.4, we may find hyperbolic-like elements a and b with fixed points in the �
2

–neighborhoods
of x and y, respectively. Replacing a or b with their inverses if needed, we can assume these fixed points
are ordered

aC < a� < b� < bC:

By Lemma 2.3, this implies that bN aN has a fixed point for every N > 0. Furthermore, if N is sufficiently
large, an attracting fixed point for bN aN will lie within the �

2
–neighborhood of bC, and a repelling

fixed point within the �
2

–neighborhood of a�; this is simply because bN aN takes a complement of the
�
2

–neighborhood of the union of translates of a� to a neighborhood of the attracting fixed points for b.

We can now finish the proof of our first main theorem; first we recall the statement:

Theorem 1.1 (rigidity of hyperbolic-like actions) A minimal , hyperbolic-like action of a nonabelian
group G on R is determined up to conjugacy by the set of elements of G that act with fixed points.

Proof Let G be nonabelian, hyperbolic-like and acting minimally on R, and �.G/ another such faithful
action of G on R, with the same set of hyperbolic-like elements as G. Let g 2 G be a hyperbolic-like
element (recall that such an element exists by Hölder’s theorem since G is nonabelian). Choose coordinates
on R so that the attracting fixed points of g and of �.g/ are precisely the integers. We need to choose an
orientation on the line R on which � acts. To do this, take some f 2 G with an axis unlinked with g.
Such a map f exists by Lemma 2.4. Replacing f with its inverse if needed, we can find such a map for
which consecutive fixed points are ordered

gC < g� < f� < fC:

By Lemma 2.2 and the fact the action of �.G/ has the same elements with fixed points as the original
action of G, we conclude that the fixed sets of �.g/ and �.f / are unlinked. By the same reasoning,
using Lemma 2.3, the map f N gN has a fixed point for all N > 0, so by hypothesis the same is true for
�.f /N �.g/N. Applying the other direction of Lemma 2.3, we can now fix an orientation on R so that
consecutive fixed points of �.f / and �.g/ are ordered

�.g/C < �.g/� < �.f /� < �.f /C:

Our next goal is to show that this determines the ordering of the set of all attracting fixed points of
hyperbolic-like elements of �.G/. We then define a map ‚ on the (dense) subset of R consisting of
attracting fixed points of other elements by sending the unique attracting fixed point of an element h

that lies in Œm;mC 1/ to the unique attracting fixed point of �.h/ in Œm;mC 1/. This order-preserving
property is sufficient to show that our map ‚ is continuous, from which it will easily follow that it can be
extended continuously to a homeomorphism of R that conjugates the action of G and �.G/.

Consider first an element h with fixed set that is unlinked with both f and g. Up to switching h with h�1,
there are three cases to consider.
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Case 1 Suppose first that we have the ordering

gC < g� < f� < h� < hC < fC:

Applying Lemma 2.3, we have that f N hN and gN hN have fixed points for all positive N, and hence so
do �.f /N �.h/N and �.g/N �.h/N. Applying the lemma again implies that one of these three orderings
occur:

�.g/C < �.h/C < �.h/� < �.g/� < �.f /� < �.f /C;(�)

�.h/C < �.g/C < �.g/� < �.h/� < �.f /� < �.f /C;(��)

�.g/C < �.g/� < �.f /� < �.h/� < �.h/C < �.f /C:(���)

We want to show that only case (���) can occur. We will show that (�) does not occur. Eliminating the
possibility of (��) is done by exactly the same argument, switching the roles of g and h; we omit the
details.

Since Fix.aba�1/D a Fix.b/, for any n> 0 we also have

gC < g� < f� < .f
nhf �n/� < .f

nhf �n/C < fC

and so gN .f nhf �n/N has a fixed point for all N > 0, as does its image under �. If ordering (�) were to
occur, then for sufficiently large n we would have

�.g/C < �.g/� < �.f /� < �.f /C < �.f
nhf �n/C < �.f

nhf �n/�;

contradicting Lemma 2.3 applied to �.g/N �.f nhf �n/N. Thus, the ordering of consecutive fixed points
of f, g and h under � agrees with that for the original action.

Case 2 The ordering
gC < h� < hC < g� < f� < fC:

is handled exactly as above, exchanging the roles of f and g.

Case 3 Now suppose instead that the ordering of the fixed points of f, g and h is

gC < g� < hC < h� < f� < fC:

Consider the elements aD gnf n and bD f nhn for some large positive n. As n!1, the attracting fixed
point aC approaches fC, and similarly a� approaches g�, bC approaches hC, and b� approaches f�.
Thus, provided n is chosen large enough, we have

gC < g� < a� < bC < hC < h� < b� < f� < fC < aC:

We can then apply the previous cases to the triples .g; a; h/, .g; a; f /, .g; a; b/ and .g; b; h/ to show the
ordering of their fixed points is preserved by �. We deduce that the ordering of the fixed points of �.f /,
�.g/ and �.h/ matches that of the fixed points of f, g, and h.
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We can now quickly finish the proof of the theorem. Suppose we have some hyperbolic-like a and b with

0� aC < bC < 1:

Rather than consider cases depending on whether a and b are linked or not, we can instead use Lemma 2.4
to choose c and d in G with fixed sets very close to aC and bC such that c and d have fixed sets unlinked
with a and b. Suppose for simplicity that 0< aC (otherwise, simply replace 0 in what follows with some
very small �� and 1 with 1� �, and repeat the proof). By Lemma 2.5, we can choose elements c and d

with fixed points so that we have the ordering

0< c� < cC < aC < d� < dC < bC < 1

and additionally have that a does not have a repelling fixed point between c� and aC, and b does not
have a repelling fixed point between d� and dC. We can also choose such c and d whose fixed sets are
each unlinked with respect to f and to g, so that we may apply the observation above to c and d and
determine the relative order of their fixed-point sets. Any choice of c and d with fixed sets sufficiently
close to aC and bC will have this property. Thus, by our convention on �.g/, we conclude that

�.g/C D 0< �.c/� < �.c/C < �.d/� < �.d/C < 1:

Since c and d had unlinked fixed points with respect to a, b and g, we can apply the observation again
and conclude that the ordering of fixed sets is preserved, namely

�.g/C D 0< �.c/� < �.c/C < �.a/C < �.d/� < �.d/C < �.b/C < 1

and, in particular, �.g/C D 0< �.a/C < �.b/C < 1, as we needed to show.

Thus, we have defined an order-preserving (and hence continuous) injective map between two dense
subsets of R. This extends uniquely to a continuous map R! R with continuous inverse, which we
denote by ‚. It remains to see that ‚ conjugates the actions of G and �.G/. Let g 2G be given. Note
that, if aC is a fixed point of a hyperbolic-like element of a 2G, then g.aC/ is an attracting fixed point
of .gag�1/; thus, ‚.gaC/ is some attracting fixed point of �.gag�1/, ie the image of an attracting
fixed point of �.a/ under �.g/. In other words, ‚.gaC/ D �.g/‚.aC/C n for some n 2 Z. Since ‚
is continuous and fixed points of hyperbolic-like elements are dense in the source and the target, we
conclude that nD 0, so g–equivariance holds on a dense set, and hence everywhere.

Remark 2.6 If G is not assumed to act minimally (but �.G/ is), the same proof strategy can be used to
produce a semiconjugacy between the actions of G and �.G/, defined on the closure of the G–invariant
set consisting of hyperbolic fixed points.

2.3 Conclusion of the proof of Theorem 1.2

Returning to the setup of Theorem 1.2, suppose that ' and  are two skew Anosov flows with f�P.'/D
P. / for some homeomorphism f WM !M. Replacing ' with its conjugate under f, we obtain a
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flow ' satisfying P.'/D P. /. What we need to show is that ' and  are orbit equivalent by some
homeomorphism of M that is isotopic to the identity.

Orientable case Assume first that ƒs.'/ and ƒs. / are both transversely orientable. We then will apply
Theorem 1.1 to the group G WD �1.M /. Recall the action of this group on the leaf space ƒs.'/ŠR is
faithful, minimal and has the property that all elements with fixed points are hyperbolic-like, under the
parametrization of R where �.'/ acts as translation by 1, and the same holds for  .

That P.'/D P. / means precisely that these two representations have the same elements with fixed
points. Thus, Theorem 1.1 implies that these two actions are conjugate. This also gives a conjugacy
between the actions on the unstable leaf spaces ƒu.'/ and ƒu. / via further conjugation by the half-step-
up map �. Considering intersections of stable and unstable leaves, we can promote this to a conjugacy
of the actions of �1.M / on the orbit space O. Following an argument of Ghys using Haefliger’s theory
of classifying spaces of foliations, Barbot [1995a, Theorem 3.4] showed using an averaging trick that
such a conjugacy on the orbit space can always be realized by a homeomorphism of M giving an orbit
equivalence of the flows. In our case, this homeomorphism is easily seen to be isotopic to the identity by
considering the action on �1. This concludes the proof in the transversely orientable case.

General case For the general case, consider again the action of �1.M / on ƒs.'/ŠR and on ƒs. /.
Let G � �1.M / be the normal subgroup generated by all squares of elements. Since each element of G

is a product of squares, its action on ƒs.'/ and ƒs. / is by orientation-preserving homeomorphisms.
The proof of [Barbot 1995a, théorème 2.5] shows directly that the action of G on ƒs.'/ and ƒs. / is
also minimal. Thus, we may apply Theorem 1.1 and conclude that the actions of G on the respective
leaf spaces are conjugate. We wish to show that this conjugacy extends to a conjugacy of the actions
of �1.M /.

Apply a conjugacy so that the actions of G on ƒs.'/ and ƒs. / agree. Now our goal is to show that,
after possibly further conjugating by an integer translation (which commutes with the action of G), the
actions of �1.M / agree. Let �' and � denote the actions on ƒs.'/ and ƒs. /, respectively, assumed
to agree on the restrictions to G.

Note that, if 
 2 �1.M /, and x 2R is an attracting fixed point of �'.g/ for some element g 2G, then
�'.
 /.x/ is an attracting fixed point of �'.
g
�1/, where we have 
g
�1 2 G. The same applies
to � .
 /. The set of all attracting fixed points for elements of G is dense, and each element with fixed
points has a Z–invariant set of attracting fixed points with exactly one in Œ0; 1/.

First we verify that �'.
 / preserves orientation if and only if � .
 / does. Suppose �'.
 / reverses
orientation. Let g1, g2 and g3 in G be elements with attracting fixed points satisfying

�'.g1/C < �'.g2/C < �'.g3/C < �'.g1/CC 1:

Since �'.
 / reverses orientation, we have

�'.
g1

�1/C > �'.
g2


�1/C > �'.
g3

�1/C > �'.
g1


�1/C� 1
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whereas, if �'.
 / preserved the orientation, the original order would not be affected by conjugation. Since

g
�1 2G, this ordering holds also for the action under � , showing that � .
 / necessarily reverses
orientation as well. The situation being symmetric, we have proved the claimed “if and only if” statement.

Now consider the subgroup P of elements of �1.M / whose action preserves orientation on ƒs.'/, or, as
we have just shown, equivalently preserves orientation of ƒs. /. Our description above also implies that,
for any 
 2P, we have �'.
 /D � .
 /ıT
 for some integer translation T
 . Since orientation-preserving
elements commute with integer translation, the map 
 2 P 7! T
 is a group homomorphism. Now, when

 2G, T
 is the identity; thus, T
 is the identity for any 
 2P. So, in particular, the actions of �' and � 
are identical on P.

If instead we consider 
 an element reversing the orientation on the leaf spaces, then � .
 / and �'.
 /
each have a unique fixed point. Their action being determined modulo integer translations means that
there exists an integer translation T 0
 such that �'.
 /D T 0
� .
 /T

0�1

 . Fix some orientation-reversing

element 
0. Up to conjugating the action of � by an integer translation, we can assume that T 0
0
is the

identity, ie that � .
0/D �'.
0/. Notice that this conjugation does not affect the fact that �' and � are
identical on P, since the action of elements in P commutes with integer translations. We wish to show
now that T 0
 D 0 for all 
 2 �1.M /XP, so the actions agree.

Let 
 be any orientation-reversing element. Then 
0
 preserves the orientation so � .
0
 /D �'.
0
 /.
As � .
0/ D �'.
0/, we deduce directly that � .
 / D �'.
 /. Hence, we proved that the actions �'
and � are the same, ending the proof of Theorem 1.2.

3 Classifying self-orbit equivalences

This section gives the proof of Theorem 1.4. We start by introducing some additional necessary background
material on the orbit space of the flow.

Returning to the picture from Section 2.1, recall that the orbit space of a skew Anosov flow is homeo-
morphic to a diagonal strip in R2 foliated by ƒs and ƒu in the two coordinate directions. For each orbit
o 2 O, the ideal quadrilateral in O with corners o and �.o/ and sides the stable and unstable (half-)leaves
of o and �.o/ is called a lozenge. The union of lozenges associated with the orbits �n.o/ for n 2 Z is
called a string of lozenges. The reader may consult [Barthelmé and Fenley 2017, Section 2] for more
background about lozenges in general Anosov flows.

Recall [Barbot 1995b] that an (immersed) incompressible torus T is quasitransverse to an Anosov flow '

if it is transverse everywhere except along finitely many periodic orbits of '. Barbot [1995b, théorème C]
(see also [Barbot and Fenley 2013, Theorem 6.10]) showed that any incompressible embedded torus
in M can be isotoped to a quasitransverse torus unless it is the boundary of a tubular neighborhood of an
embedded one-sided Klein bottle. Such embeddings of a Klein bottle do not actually arise if the flow is
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ƒu

ƒs

Figure 2: The orbit space O with (part of) a string of lozenges.

transversally orientable and R–covered. We were not able to locate a proof of this fact in the literature,
so add it as a lemma below. We thank Sergio Fenley for discussing this fact with us.

Lemma 3.1 Let ' be a transversally orientable skew R–covered Anosov flow on M. Then M does not
contain a �1–injective immersion of the Klein bottle.

Proof Suppose there is a subgroup G of �1.M / isomorphic to the fundamental group of the Klein
bottle, ie we have nontrivial elements a; b 2 �1.M / such that aba�1 D b�1 and G D ha; bi. Since '
is transversely orientable, G acts faithfully on ƒs.'/'R by orientation-preserving homeomorphisms
commuting with integer translations. Consider the induced action of G on R=�2. For this induced action,
both a and b have a single attracting and single repelling fixed point. Since aba�1 D b�1, we must
have that a interchanges the attracting and repelling points for b. But this gives a an orbit of period two,
contradicting that it acts with fixed points.

The main result that we need is the following:

Lemma 3.2 [Barbot 1995b] If T is a quasitransverse torus in M for a skew Anosov flow , then each lift
zT of T to the universal cover projects to a unique string of lozenges C in O. That string of lozenges is the
unique string of lozenges left invariant by the Z2–subgroup of �1.M / that fixes zT. The interior of each
lozenge in the string corresponds to a maximal annulus in T transverse to the flow; its corners are the
periodic orbits bounding the annulus.

Conversely , if G is a subgroup of �1.M / isomorphic to Z2, then there exists a unique string of lozenges
in O fixed by G. Moreover that string of lozenge is the projection of an (a priori only immersed ) torus T.

Remark 3.3 We have stated this lemma in the special case of skew Anosov flows. For general Anosov
flows on 3–manifolds, one needs to replace “string of lozenges” by “chain of lozenges” — see [Barthelmé
and Fenley 2017, Section 2] — and some Z2–subgroups may fix two distinct chains of lozenges.
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We also need the following easy proposition, giving another condition for an element 
 2 �1.M / to be
represented by a periodic orbit of a skew Anosov flow '. Recall that ƒs ŠR denotes the leaf space of
the weak stable foliation of the lifted flow z'. We denote the natural projection by �s W �M !ƒs .

Proposition 3.4 Let ' be a skew Anosov flow on a 3–manifold M. Let 
 2 �1.M /. The following are
equivalent :

(i) The element 
 is represented by a periodic orbit of ';

(ii) There exists a 
–invariant curve c � �M such that �s.c/ is bounded (either above or below) in ƒs;

(iii) For any 
–invariant curve c � �M, its image �s.c/ is bounded in ƒs .

Proof Item (iii) trivially implies (ii), we will show that (ii) implies (i) and that (i) implies (iii).

(ii)D) (i) Assume that there exists a 
–invariant curve c � �M such that �s.c/ is bounded above in ƒs ,
and let LC denote its upper bound. (The case where �s.c/ is bounded below is analogous.) If the
action of 
 reverses the orientation of ƒs , then it fixes a leaf which necessarily contains a periodic orbit
represented by 
 , and we are done. If 
 instead preserves the orientation, then the upper bound LC 2ƒs

is a 
–invariant point since �s.c/ is 
–invariant, and thus the leaf corresponding to this point contains a
unique 
–invariant orbit. This shows (i).

(i)D) (iii) Suppose 
 is represented by a periodic orbit of the flow and c � �M is a 
–invariant curve.
Supposing first that 
 preserves orientation on R, the action has an attracting fixed point x 2ƒs . Moreover,
the images of this point under powers of the half-step-up map are alternately attracting and repelling fixed
points of 
 ; if i is even, then �i.x/ is an attracting fixed point, if i is odd, then �i.x/ is a repelling fixed
point, as described in Section 2.1. In the case where 
 reverses orientation, the same argument above
applies if we replace 
 with 
 2, which preserves orientation.

In either case, since the action of 
 2 on c is free, we may take a compact fundamental domain I for
the action. The projection �s.I/ is contained in some bounded interval Œ��k.x/; �k.x/�. Therefore,
�s.c/D

S
n2Z 


2n ��s.I/� Œ��k.x/; �k.x/�, so it is bounded, proving (iii).

Combining Theorem 1.2 with Proposition 3.4 gives the following as a direct consequence:

Theorem 3.5 Let ' and  be two skew R–covered Anosov flows on a 3–manifold M. The flows '
and  are isotopically equivalent if and only if , for any periodic orbit ˛ of  (resp. ') with lift z̨ � �M,
the projection �s

1
.z̨/�ƒs.'/ (resp. �s

1
.z̨/�ƒs. /) is bounded.

3.1 Proof of Theorem 1.4

To set up for the proof, we begin by giving precise definitions of translation number with respect to ',
and the displacement of a curve by a Dehn twist.
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Definition 3.6 (translation number) Let ˇ 2 �1.M /, and consider its action on ƒs.'/. Fix x 2ƒs.'/.
For each q 2 Z, there exists a unique pq 2 Z such that �pq .x/� ˇq.x/ < �pqC1.x/. We define

t'.ˇ/ WD lim
q!1

pq

q
:

Since � and ˇ commute, it is a standard exercise to show that this limit exists and is in fact independent
of the choice of x; indeed, t'.ˇ/ is simply the classical translation number for the action of ˇ on ƒs

with respect to any parametrization of ƒs where � acts as translation by 1.

Remark 3.7 We will consider below only the case when ˇ is freely homotopic to a curve in a quasi-
transverse torus T. Thus, ˇ fixes a (unique) string of lozenges in the orbit space. In this case we therefore
have t'.ˇ/Dk 2Z, where k is such that, if x is any of the corner of the string of lozenges, then ˇxD�k.x/.

If a skew Anosov flow ' on M is transversally oriented, we saw (Lemma 3.1) that M cannot admit an
incompressible embedding of the Klein bottle; thus, by [Barbot 1995b, théorème C], any incompressible
embedded torus in M can be put in quasitransverse position with respect to the flow. We further have,
thanks to [Barbot 1995b, théorème E], that any collection of pairwise disjoint, nonisotopic incompress-
ible embedded tori can be simultaneously isotoped to a collection of still disjoint (and obviously still
nonisotopic) quasitransverse tori. It is thus no loss of generality to adopt the following convention for
transversely orientable flows:

Convention For the remainder of this section, we restrict our attention to transversely orientable flows,
and we will always assume that the tori we consider are in quasitransverse position.

Next we will define the “displacement” of an orbit by a Dehn twist. We first recall the definition of Dehn
twists to emphasize that they come with a specification of a transverse orientation on the torus.

Definition 3.8 Let T be an embedded torus, and ˇ 2 �1.T /. A Dehn twist along ˇ is the mapping class
of a map Dˇ defined as follows: Take a small product region T � Œ�1; 1� 2M, and fix a basis f˛; �g
for �1.T / giving an identification of T with S1�S1DR=Z�R=Z, where ˇD ˛p�q for some p and q.
For .x;y; z/2T � Œ�1; 1�, we define Dˇ.x;y; t/D .xCph.t/;yCqh.t/; t/, where h W Œ�1; 1�! Œ0; 1� is
a smooth bump function with h.�1/D 0 and h.1/D 1, and extend Dˇ to be the identity elsewhere on M.

Remark 3.9 Reversing the transverse orientation of T and applying the same construction results in a
map isotopic to the inverse of that defined above. Thus, the notation Dˇ, while standard, is somewhat
misleading because the mapping class does not depend on ˇ alone. There is no intrinsic way to distinguish
Dˇ from D�1

ˇ
. Thus, by convention, we say that a map Dˇ comes with the data of a choice of transverse

orientation. When we speak of a Dehn twist supported on a torus neighborhood T � Œ�1; 1�, we always
assume the orientation is as given by the interval Œ�1; 1�.

It will be convenient for us to choose homeomorphisms representing Dehn twists which are in a particularly
nice form with respect to the flow, as follows:
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Convention 3.10 (good Dehn twist coordinates) Given a quasitransverse torus T, we choose the
coordinates .x;y; z/ 2 T � Œ�1; 1� in the following way: Let ˛1; : : : ; ˛2n be the periodic orbits of ' on T.
Then we assume that the local stable leaves of the orbits ˛i in T�Œ�1; 1� are given by the equation xD i=2n.

With this convention, a Dehn twist D˛ on T, where ˛ 2 �1.T / represents any power of the periodic
orbits, will preserve the local stable leaves of the periodic orbits ˛i . More generally, given any Dehn twist
Dˇ on T, and any segment c.t/ WD .x0;y0; t/ for t 2 Œ�1; 1� through T � Œ�1; 1�, the number of times its
image Dˇ.c.t// intersects the union of stable leaves of the ˛i is the minimal intersection number of ˇ
with ˛i .

Definition 3.11 (sign of an intersection) Given a Dehn twist Dˇ supported on T � Œ�1; 1� as above, and
an orbit 't intersecting T transversely at t D 0, we say this intersection is positive if 't .z/ 2 T � Œ0; 1�

for small positive t , and negative if 't .z/ 2 T � Œ�1; 0� for small positive t .

Before giving the formal definition of the displacement d'.c; f / of a closed orbit c under a product
of Dehn twists f, we motivate this with the following lemma, which describes how a Dehn twist on a
torus T affects a segment of a periodic orbit transverse to T, from the perspective of the leaf space of '.

For the statement, we fix a quasitransverse torus T in M, a point z with orbit 't .z/ transverse to T, and
a small product neighborhood T � Œ�1; 1� so that the orbit 't .z/\T � Œ�1; 1� is, locally near t D 0, a
segment J between some point z� 2 T � f�1g and zC 2 T � f1g. Let Dˇ be a Dehn twist supported
on T � Œ�1; 1�.

Lemma 3.12 Let zT � Œ�1; 1� be a lift of T � Œ�1; 1� to �M, let zJ be the lift of J in zT � Œ�1; 1� with
endpoints Qz� and QzC, and let zDˇ be the lift of Dˇ fixing Qz�. Finally, let fLigi2Z be the string of lozenges
associated with zT.

(1) If zJ projects to a point in the lozenge Li , then zDˇ.QzC/ projects into Lk , where k D i C 2t'.ˇ/ if
the intersection of J and T is positive , and k D i � 2t'.ˇ/ if the intersection is negative.

(2) The stable saturation of zDˇ. zJ / to the orbit space stays inside the stable saturation of the lozenges
between Li and Lk .

Proof Without loss of generality, we assume that zJ projects to a point in L0, and that the sign of the
intersection is positive (the negative case is analogous). Recall that the lozenges Li are the projections of
strips Ai inside zT, bounded by periodic orbits of z'.

By definition of Dˇ , the image zDˇ.QzC/ projects in the orbit space to the lozenge ˇ.L0/. Now, if xi are
the corners of the lozenge Li (enumerated so that xi < xiC1 in ƒs.'/), then �k.x0/D x2k . Thus, by
definition of translation number (and Remark 3.7), ˇ.L0/DL2t'.ˇ/, proving the first part of the lemma.

The second statement follows immediately from Convention 3.10 and the structure of lozenges (Lemma
3.2).
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Figure 3: The configuration on the right is impossible if the shaded lozenge is L0j .

Definition 3.13 (displacement) Let c be a periodic orbit of the skew flow ' and Dˇ a Dehn twist on a
quasitransverse torus T. Let x1; : : : ;xn be the intersection points of c with T, and let �i D f˙1g be the
sign of the intersection at xi . The displacement of c by Dˇ is defined by

d'.c;Dˇ/D

nX
iD1

2�i t'.ˇ/:

If f DDˇ1
ı � � � ıDˇk

is a composition of Dehn twists on pairwise disjoint quasitransverse tori, then we
set

d'.c; f /D

kX
iD1

d'.c;Dˇi
/:

We will need the following observation for the proof of Theorem 1.4:

Observation 3.14 Let zT and zT 0 be two disjoint lifts of (the same or distinct) quasitransverse tori. Let
zJ be a segment of a periodic orbit that first crosses zT and then crosses zT 0. Suppose zT projects to a string
of lozenges fLig, and zT 0 to a string fL0ig. Let i and j be such that zJ is contained in Li \L0j .

Then L0j is contained in the saturation of Li by stable leaves; equivalently, Li is contained in the saturation
of L0j by unstable leaves.

Proof Since the lifts zT and zT 0 are disjoint, observe that either Li �
zFs.L0j / and L0j �

zFu.Li/, or
Li �

zFu.L0j / and L0j �
zFs.Li/. Both configurations are shown in Figure 3.

We will show that the second case cannot occur because orbits converge in the positive direction of
the flow along zJ. Precisely, consider the strong unstable leaf through the starting point Qx of the orbit
segment zJ. Denote this leaf by �uu, and let li � �

uu denote the set of points whose forward orbit intersects
the strip Ai in zT corresponding to Li . Similarly, define l 0j � �

uu to be the set of points whose forward
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orbit intersects the strip A0j in zT 0 corresponding to L0j. Hyperbolicity of the flow means that l 0j � li .
Hence, L0j �

zFs.Li/, and equality happens if and only if L0j DLi , which in turn implies that the orbits
bounding Ai and A0j are the same, which contradicts the assumption that zT and zT 0 are quasitransverse
and disjoint.

We next reduce the proof of Theorem 1.4 to the following proposition:

Proposition 3.15 Suppose f D Dˇ1
ı � � � ıDˇn

is a composition of Dehn twists on pairwise disjoint
quasitransverse tori T1; : : : ;Tn, and let Qc � �M be a lift of a periodic orbit c of '. Then d'.c; f /D 0

if and only if , for some lift (equivalently, for all lifts) Qf of f, the image Qf . Qc/ has bounded projection
to ƒs.'/.

Proof of Theorem 1.4 given Proposition 3.15 Indeed, this is an easy consequence of Proposition 3.4
and Theorem 1.2. Theorem 1.2 states that f is a self-orbit equivalence if and only if P.'/D f�P.'/D

P.f 'f �1/. By Proposition 3.4, P.'/ can be characterized as the set of 
 2 �1.M / such that every

–invariant curve Qc � �M has bounded projection to ƒs.'/. Thus, f is isotopic to a self-orbit equivalence
if and only if f� preserves this set. Proposition 3.15 characterizes this set in terms of the vanishing
of d'.c; f /.

Proof of Proposition 3.15 Fix f DDˇ1
ı � � � ıDˇk

, where Dˇi
is a Dehn twist on Ti , and let Qf be a lift

of f to �M chosen so that Qf fixes some point Qx on Qc. Recall that we assumed, without loss of generality,
that all the Ti are quasitransverse.

Let 
 2 �1.M / represent a periodic orbit c of '. As a first trivial case, suppose c has no transverse
intersections with any torus Ti , so it is either contained in a single torus or disjoint from all of them. Let Qc
be a lift of c. Note that c is isotopic to a curve c0 disjoint from the support of f ; lifting this isotopy means
the lift Qc is isotopic to a lift zc0 such that, after applying some deck transformation g of the cover, this is
disjoint from the support of Qf. Thus, Qf .g Qc/ is uniformly bounded distance away from Qf .gzc0/D gzc0,
and this is uniformly bounded distance away from g Qc, showing that g Qc (and hence also Qc) has bounded
projection.

For the case where c intersects some Ti transversely, we may without loss of generality choose the
product neighborhoods of the tori Ti in the definition of Dˇi

small enough that, every time c crosses a
torus Ti , it enters one side Ti � f˙1g and leaves the other, Ti � f�1g. Consider the positive-time ray
r D f't . Qx/ W t � 0g � Qc, where Qx is as before a point fixed by Qf. We will show that the projection of Qf .r/
to ƒs.'/ is bounded. Reversing the argument (using unstable leaves instead of stable) will show that the
projection of Qf . Qc/ to ƒs.'/ is also bounded, so we do only the forward case.

Between Qx and 
 Qx, the ray r intersects a finite number of lifts of the tori Ti on which the Dehn twists Dˇi

are supported. Let T1; : : : ;Tn denote these lifts, indexed along the path of r so that r first intersects T1
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after Qx. Note that two distinct lifts Ti and Tj may project to the same torus in M ; this will happen
whenever the orbit c crosses the same torus twice. Since the Ti are quasitransverse tori, each Tj projects
to a string of lozenges Cj . Let L

.1/
0

be the lozenge in C1 containing the projection of Qc. The main
technical part of the proof is the following claim:

Claim 3.16 Let r0 denote the segment of r between Qx and 
 Qx.

(1) The stable leaf of Qf .
 Qx/ intersects the lozenge �d'.c;f /.L
.1/
0
/.

(2) There exists N > 0, depending only on f, such that the stable leaf saturation of Qf .r0/ intersects
the chain of lozenges C1 only between ��N .L

.1/
0
/ and �N .L

.1/
0
/.

Given this claim, the proof of Proposition 3.15 can be finished quickly, by considering the positive
iterates of r0 under 
 . Let us assume the claim for the moment and use it to derive the conclusion of
Proposition 3.15.

We use the fact that r D
S1

iD1 

i.r0/. For the first direction, suppose that d'.c; f /D 0. Fix a segment

ri D 

i.r0/. Then 
�i.ri/D r0, so, by Claim 3.16, the stable leaf of Qf .ri/D f�.


i/ Qf .r0/ intersects the
lozenge f�.
 i/.L

.1/
0
/, and Qf .ri/ intersects the chain of lozenges C1 only between f�.
 i/��N .L

.1/
0
/ and

f�.

i/�N .L

.1/
0
/. But Observation 3.14 implies that f�.
 i/.L

.1/
0
/ is contained in the stable saturation

of L
.1/
0

; thus, Qf .ri/ is contained in the union of the stable saturation of leaves between ��N .L
.1/
0
/ and

�N .L
.1/
0
/ for all i ; hence, r has bounded projection to ƒs.'/. As remarked above, applying the same

argument to unstable leaves and using the negative time ray shows that c has bounded projection.

Conversely, if �D i'.c; f /¤ 0, then the argument above shows that zFs. Qf .
 n Qx// intersects �n�.L
.1/
1
/;

thus, the projection of Qf .r/ to ƒs.'/ is unbounded.

So, to finish the proof of the proposition, we only need to prove Claim 3.16.

Proof of Claim 3.16 Recall that f has support in disjoint small neighborhoods of the quasitransverse tori
in M which lift to disjoint neighborhoods of Tj in �M, and we use L

.j/

k
to denote the string of lozenges

associated to Tj . Let zNj denote the lifted neighborhood containing Tj . We use these neighborhoods to
split the ray r0 into a union of intervals Ij and Jj , where Jj WD

zNj \ r0, and Ij denotes the connected
component of r0 between zNj�1 and zNj . The interval I0 is the segment of r0 from Qx to zN1.

For each Ti , let ti denote the translation number of the Dehn twist on the corresponding torus. Notice
that, since f is supported on the union of the projection of the neighborhoods zNi to M, it follows that,
for any j, there exists hj 2 �1.M / such that Qf .Ij /D hj .Ij /� hj Qc. Our choice of lift implies that h0 is
the identity.

To demonstrate the first statement of the claim, we will first establish the fact that, if Qf .Ii�1/Dhi�1.Ii�1/

intersects a lozenge hi�1L
.i/

k
, then the stable leaf of Qf .Ii/ intersects the translate of hi�1L

.i/

k
by ��i 2ti .
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T1

T2

h1.T2/

r

Qf .r/

I0

N1

N2

h1.N2/

I1

h1.I1/

I2

Figure 4: The action of the lift of a Dehn twist on a ray, shown in �M on the left and schematically
indicating intersections with lifted neighborhoods of tori on the right.

Here is the proof of the fact: Fix some i . The segment Qf .Ji/ is obtained from hi�1.Ji/ by applying
the (unique) lift of the Dehn twist supported on the projection of Ti that preserves hi�1Ti and fixes
hi�1.Ii�1/. The (projection to the orbit space of the) endpoint shared by Qf .Ii�1/Dhi�1.Ii�1/ and Qf .Ji/

lies in some lozenge L
.i�1/

k
associated to hi�2.Ti�1/. By Observation 3.14, the lozenge hi�1.L

.i/

k0 / for
hi�1.Ti/ that also contains this point is such that hi�1.L

.i/

k0 / is contained in the saturation by stable
leaves of hi�2.L

.i�1/

k
/. Applying Lemma 3.12, we conclude that after applying the lifted Dehn twist

to hi�1.Ji/ (see Figure 4), the image of its other endpoint, which is also an endpoint of Qf .Ii/, lies in
��i 2ti hi�1.L

.i/

k0 /. This is contained in the saturation by stable leaves of ��i 2ti hi�2.L
.i�1/

k
/, which proves

the fact.

To deduce (1) using the fact, we apply it iteratively, observing first that the stable leaf of Qf .I1/ intersects
��12t1.L

.1/
0
/ and some lozenge h1.L

.2/

k
/, and the stable saturation of L

.2/

k
is contained in ��12t1L

.1/
0

. Thus,
Qf .I2/ has stable leaf intersecting ��22t2h1.L

.2/

k
/, and thus ��12t1��22t2.L

.1/
0
/. Continuing iteratively, we

conclude that Qf .
 Qx/ has stable leaf intersecting the translate of L
.1/
0

by �d'.c;f /.

Now the second part of the claim follows directly from the application of the second part of Lemma 3.12
in the proof above by choosing

N D

kX
iD1

2jti j:

3.2 Application: classification of self-orbit equivalences in special cases

We will now use the criterion given by Theorem 1.4 to describe the isotopy class of self-orbit equivalences
in some special cases, starting with the proof of Corollaries 1.5 and 1.6.

Proof of Corollary 1.5 Suppose that D˛ is a Dehn twist on a torus T in a direction ˛ that is represented
by a periodic orbit of '. Then the translation number of ˛ is zero, and thus, for any periodic orbit c of ',
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the displacement of c by D˛ is zero. Therefore, the criterion of Theorem 1.4 implies that any such Dehn
twist is isotopic to a self-orbit equivalence of '.

Proof of Corollary 1.6 Let T be a quasitransverse torus in M and Dˇ a Dehn twist on T with nonzero
translation number. Suppose first that T is separating. Consider a periodic orbit c of '. Then either c

does not intersect T or it intersects T an even number of times with alternating signs. In either case,
d'.c;Dˇ/D 0. Thus, Dˇ is isotopic to a self-orbit equivalence by Theorem 1.4.

Now, if we assume instead that T is nonseparating, we claim that we can find a periodic orbit c of '
such that its intersections with T are always in the same transverse direction, and therefore are assigned
the same sign. To do this, take a closed oriented loop based in T in M intersecting T exactly once,
transversely, at the basepoint (and therefore inducing a transverse orientation of T ). Lift this loop to a
path in �M with endpoints in lifts zT0 and zT1 of T, and iteratively choose successive lifts zTi . Then, for
each i , zTi separates zTi�1 from zTiC1, and no lift of T separates zTi from zTiC1.

Fix n large, and let Qd be a segment of an orbit in �M with endpoints in zT0 and zTn. Such an orbit always
exists because the flow is R–covered and skew. If n is chosen large enough, Qd projects down to an orbit
segment in M that will contain points close enough to satisfy the conditions of the Anosov closing
lemma. Hence, we obtain a periodic orbit c such that all its intersections with T have the same transverse
orientation. We conclude that d'.c;Dˇ/ is nonzero, which, by the criterion, implies that Dˇ is not
isotopic to a self-orbit equivalence.

The proof of this corollary gives an example of a general strategy to identify self-orbit equivalences by
understanding the intersection of periodic orbits with quasitransverse tori. One could broaden this to give
a characterization of self-orbit equivalences of a given flow in terms of the configuration of tori in M

(the JSJ graph and geometry of the pieces) and translation numbers of periodic orbits in tori. Working
through the details of this is beyond the scope of this article; instead we illustrate our criterion with some
examples where we can virtually describe the group of self-orbit equivalences in the mapping class group.

For both of the following statements, we assume ' is a transversally orientable skew Anosov flow on M.

Theorem 3.17 Suppose that the JSJ decomposition of M has a single piece which is atoroidal , glued to
itself along n boundary tori T1; : : : ;Tn. Let Dper be the group generated by Dehn twists on the Ti in the
directions of the periodic orbits of '.

Let D be the finite-index subgroup of the mapping class group generated by Dehn twists on tori. Then
Dper is the set of self-orbit equivalences in D.

Theorem 3.18 Suppose that each torus of the JSJ decomposition of M is separating. Let D be the
finite-index subgroup of the mapping class generated by Dehn twists on tori. Then the set of self-orbit
equivalences in D is equal to the group generated by Dehn twists in the directions of periodic orbits inside
Seifert pieces , together with any Dehn twists on the JSJ tori.
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Remark 3.19 Using Handel–Thurston surgery and Foulon–Hasselblatt Dehn surgeries on periodic orbits
of geodesic flows, one can easily construct many examples of skew Anosov flows on manifolds as in the
statements of Theorems 3.17 and 3.18.

The proofs of both statements use the fact that the group generated by Dehn twists on tori has finite index
in the mapping class group of any orientable 3–manifold. (See [Johannson 1979] for an explanation and
history of the proof.)

Proof of Theorem 3.17 By Corollary 1.5, any isotopy class Œf � 2Dper is represented by a self-orbit
equivalence. For the other containment, suppose that f is a self-orbit equivalence contained in D. We
assume for a contradiction that f cannot be written as a product of elements in Dper. Since elements of Dper

are self-orbit equivalences, up to composition with such a map we can assume that f DDˇ1
ı � � � ıDˇk

,
where t'.ˇi/¤ 0 for all i . In fact, we will only use that one of these has nonzero translation number.

We now produce a periodic c such that d.c; f /¤0, leading to a contradiction by Theorem 1.4. Reindexing
if needed, suppose T1 is a torus in the support of f, with associated Dehn twist Dˇ1

. By hypothesis, T1 is
nonseparating in M X .T2 [ � � � [Tn/. By considering lifts of curves as in the proof of Corollary 1.6,
one can find a periodic orbit c of ' that intersects only T1, and each intersection point has the same
orientation. Thus, d.c; f /D d.c;Dˇ1

/D˙t'.ˇ1/¤ 0, contradicting Theorem 1.4.

Proof of Theorem 3.18 Given the assumption, all JSJ tori are separating, so Corollary 1.6 shows that any
product of Dehn twists along them is isotopic to a self-orbit equivalence. This, together with Corollary 1.5,
shows that any element of the group generated by Dehn twists in the direction of periodic orbits together
with Dehn twists on the JSJ tori is isotopic to a self-orbit equivalence.

We are left to show that any element of the finite-index subgroup generated by Dehn twists that is a
self-orbit equivalence is of this form. Let f be a self-orbit equivalence generated by Dehn twists; thus,
f preserves each Seifert piece. Fix a Seifert piece S and let † denote the base orbifold of S, and g the
restriction of f to †.

Up to composing f with some Dehn twists in the direction of periodic orbits on S and Dehn twists on
the boundary of S, we can assume that g projects to the identity in the mapping class group of the base
orbifold † (see [Johannson 1979] or [Bonatti et al. 2020, Section 4.7]). Thus, for any 
 2 �1.S/ that
is obtained as a lift of an element of �1.†/ that is not homotopic to a boundary component of †, there
exists k 2 Z such that g�.
 /D 
 sk , where s is the element of �1.S/ representing a regular fiber of the
Seifert fibration of S.

For any such 
 , the group H D h
; si is a subgroup of �1.M / homeomorphic to Z2, and hence there
exists a (unique) string of lozenges C in O that is preserved by H. The permutation action of H on this
string gives a homomorphism H ! Z; thus, there exists some nontrivial 
 0 2H whose action on O fixes
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each corner of C; equivalently, the conjugacy class of 
 0 is represented by the periodic orbits of ' that
project to the corners of C.

Since the weak foliations are transverse to the Seifert fibration, s acts as a translation on the corners of C

(see [Barbot and Fenley 2013]). In particular, if k ¤ 0, then g�.

0/D 
 0sk does not fix a point of O, and

hence is not represented by a periodic orbit of '. This contradicts the fact that g was the restriction of
a self-orbit equivalence. Thus, k D 0, and, since the choice of 
 was arbitrary, we conclude that g is
isotopic to the identity.

Applying this argument to the restriction of f to each Seifert piece, we conclude that f is a product of
Dehn twists in the direction of periodic orbits and Dehn twists on the JSJ tori, as claimed.

Remark 3.20 The proof of Theorem 3.18 gives a virtual characterization of the self-orbit equivalences
of a given flow that fix a Seifert piece and are isotopic to identity on its boundary: they are exactly the
isotopy classes of the group generated by Dehn twists in the direction of periodic orbits in the Seifert
piece.

4 Application to contact flows

We will now apply some results of contact geometry to obtain the reverse direction of Theorem 1.12, as
well as its corollaries. Recall that a (coorientable) contact structure � is Anosov if � admits an Anosov
Reeb flow, ie there exists a 1–form ˛ such that � D ker˛ and the Reeb flow of ˛ is Anosov.

We will use as a black box the theory of cylindrical contact homology. Introduced in a more general
context by Eliashberg, Givental and Hofer [Eliashberg et al. 2000], it has been proven to be well defined
for dynamically convex contact structures by Hutchings and Nelson [2016]. This context includes the
case of Anosov contact forms: if the Reeb flow of a contact 1–form ˛ is Anosov, then it is automatically
nondegenerate and, since Anosov flows have no contractible orbits, ˛ is dynamically convex (see also eg
[Macarini and Paternain 2012]). Some of the fundamental results in this theory can be summarized as
follows:

Theorem 4.1 If ˛1 and ˛2 are nondegenerate dynamically convex contact forms on a closed , hypertight ,
contact 3–manifold .M; �/, then C Hƒ

cyl.˛1/Š C Hƒ
cyl.˛2/ for any set ƒ of free homotopy classes in M.

The space C Hƒ
cyl.˛i/ is a Q–vector space , it is the homology of a complex generated by the periodic

orbits of the Reeb flow of ˛i in the free homotopy classes belonging to ƒ.

Having the cylindrical contact homology groups associated to ˛1 and ˛2 being isomorphic is not quite
enough for our purpose: what we will need in order to apply Theorem 1.2 is to obtain that the chain
complexes themselves are equal, when ˛1 and ˛2 are Anosov contact forms. This follows from the fact
that the differential in the chain complex is trivial. That result was proven by Macarini and Paternain
[2012, Theorem 2.1] for any Anosov contact structure (and independently by Vaugon — see [Foulon et al.
2021] — with the additional assumption that the foliations are orientable).
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Proof of Theorem 1.12, reverse implication Let '1 and '2 be two contact Anosov flows with respective
contact forms ˛1 and ˛2 and contact structures �1 D ker˛1 and �2 D ker˛2. Suppose that �1 and �2 are
contactomorphic. Then there exists a diffeomorphism g WM !M such that g��1 D �2.

In our situation, the 1–forms g�˛1 and ˛2 are two contact forms of .M; �2/ with Anosov Reeb flows.
Applying the theorem on cylindrical contact homology above, where ƒ runs over all possible free
homotopy classes in �1.M /, we deduce that each homotopy class represented by a periodic orbit of the
Reeb flow of g�˛1 is also represented by a periodic orbit of the Reeb flow '2.

The Reeb flow of g�˛1 is g�1 ı 't
1
ı g. Thus, by Theorem 1.2, g�1 ı '1 ı g and '2 are isotopically

equivalent. Equivalently, '1 and '2 are orbit equivalent. If additionally g is isotopic to the identity, we
conclude that '1 and '2 are isotopically equivalent.

Using this direction of Theorem 1.12, together with the coarse classification of contact structures in
dimension 3 of Colin–Giroux–Honda, we can quickly deduce Theorem 1.13:

Proof of Theorem 1.13 By [Colin et al. 2009, théorème 6], on any irreducible 3–manifold, there
exist at most finitely many noncontactomorphic contact structures with bounded Giroux torsion. Now
Proposition A.1 shows that the contact structure of any contact Anosov flow has zero Giroux torsion.
Thus, Theorem 1.12 implies the result.4

Appendix Further applications to contact topology
joint with Jonathan Bowden

In this appendix, we show that any Anosov contact structure has zero Giroux torsion, prove the converse
to Theorem 1.12, and then use this to obtain new results about contact structures.

Proposition A.1 Let � be an Anosov contact structure on a 3–manifold M. Then � has zero Giroux
torsion. In fact , a double cover of M will be strongly symplectically fillable.

Proof Let ˛ be a contact 1–form such that ker˛ D � and such that the Reeb flow ' of ˛ is Anosov. Let
X be the Reeb vector field. Consider the 4–manifold M � Œ�1; 1� with symplectic form ! D d.et˛/,
where t is the coordinate on Œ�1; 1�. Then � D ker˛ is a contact structure that we can assume without
loss of generality to be positive and, since !jM�f1g D e1 d˛, the form ! is nonzero on �.

Up to taking a double cover, we can assume that ' is transversally orientable, ie its Anosov splitting is
orientable.

Let X ss and X uu be vector fields in, respectively, the stable and unstable direction of the Anosov
splitting of X, with orientations chosen so that the plane spanned by X ss C X uu and X defines a
(coorientable) contact structure �� with negative orientation (see [Mitsumatsu 1995]). Put this contact
structure on M � f�1g.

4When M is hyperbolic, one does not need Bowden’s result, thanks to [Colin et al. 2009, théorème 2].
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Since the defining property of a contact form is open in the C 1 topology, we can take a C 1–small
approximation z�� of �� such that X is transverse to z��. Then ! is nonzero on z�� (since !jM�f�1g D

e�1 d˛, so its kernel is spanned by X ).

This gives us a weak semifilling of .M �f1g; �/. By [Eliashberg 2004, Corollary 1.4], a weak semifilling
can be capped off to give a weak filling. Since ! is exact, by [Eliashberg 2004, Proposition 4.1] this weak
filling can be modified to give a strong filling (this result was independently obtained by Etnyre [2004]).
Now, Gay [2006, Corollary 3] proved that any contact plane field that is strongly fillable has zero Giroux
torsion. This proves the proposition for possibly a double cover of M.

Now the Giroux torsion of a contact structure cannot decrease under finite covers, since any component
of a finite cover of a Giroux torsion domain is again a Giroux torsion domain. So, in any case, a contact
structure � has zero Giroux torsion if and only if any finite lift of it has zero Giroux torsion. This proves
the proposition for the original � .

Thanks to Giroux’s correspondence [2002] between open books and contact structures, we can prove the
following, giving the second implication needed for the statement of Theorem 1.12:

Theorem A.2 Let '1 and '2 be two contact Anosov flows with respective contact structures �1 and �2.
If '1 and '2 are orbit equivalent (resp. isotopically equivalent) then �1 and �2 are contactomorphic (resp.
isotopic).

To apply Giroux’s result in our proof, we first need to recall a result about Birkhoff sections, starting with
their definition:

Definition A.3 Let ' be a flow on a 3–manifold M. A surface S is called a topological Birkhoff section
of ' if

(i) S is topologically immersed in M, and its interior is topologically embedded;

(ii) the flow ' is topologically transverse to the interior of S ;

(iii) each connected component of the boundary of S consists of a periodic orbit of ';

(iv) every orbit of ' intersects S ; and

(v) the return time of ' to the interior of S is uniformly bounded above and away from zero.

A topological Birkhoff section that is smoothly immersed is called a (smooth) Birkhoff section.

A Birkhoff section S in an orientable manifold is called positive if the orientations of all the boundary
orbits correspond to the orientation induced by the flow on the interior of S.

Fried showed that any transitive Anosov flow has a Birkhoff section, which can in fact be taken to be
embedded on the boundary as well. Moreover, Bonatti and Guelman [2010] show that this section can be
assumed to be tame, meaning that, after an isotopy along flow lines, one can assume that the restriction
of the Birkhoff section to a small tubular neighborhood of any component of its boundary is a smooth
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helicoid. Finally, Marty [2021] showed that any R–covered Anosov flow admits a positive tame Birkhoff
section. Moreover, an adaptation of Marty’s proof can be seen to yield a section that is also embedded on
the boundary (T Marty, personal communication, 2021).5 Thus, one obtains an open book supporting the
contact structure. We recall:

Definition A.4 (open book) Let B �M be an oriented link in a connected oriented manifold. Then an
open book .B; �/with binding B is a fibration with connected oriented (noncompact) fibers � WMXB!S1

such that, in a neighborhood of each binding component, the map is equivalent to the map given by
projecting to the angular polar coordinate on .D2 X f0g/�S1, and the boundary of any fiber agrees with
B as an oriented link.

The fibers of an open book are called pages. Note that the tameness condition in [Bonatti and Guelman
2010] corresponds precisely to a Birkhoff section S inducing an open book with binding the (oriented)
periodic orbits @S.

Definition A.5 (supporting open book) An open book .B; �/ supports a (cooriented) contact structure
.M; �/ if there is a contact form ˛ for � such that:

� The form d˛ is positive on the pages of � , which are oriented to be compatible with the binding.

� The form ˛ is positive on (each component of) B.

The fundamental fact due to Giroux [2002] is that any two contact structures supported by a fixed open
book are isotopic through contact structures supported by the open book. This is essentially due to the
fact that the above condition is convex, although some care is needed near the binding.

In order to apply the above, we will use the following result of [Bonatti and Guelman 2010]:

Lemma A.6 [Bonatti and Guelman 2010, Lemma 4.16] Let S be a topological Birkhoff section of a
flow '; then S can be isotoped along the orbits of ' to a smooth tame Birkhoff section S 0.

Proof of Theorem A.2 Let h be an orbit equivalence between '1 and '2. Up to conjugating '1 by a
diffeomorphism in the isotopy class of h, we can assume that '1 and '2 are isotopically equivalent and h

is isotopic to the identity. Showing that �1 and �2 are isotopic for this new flow will imply that �1 and �2
are contactomorphic for the original one.

Let S be a smooth Birkhoff section for '1. Then h.S/ is a topological Birkhoff section for '2. By the
lemma above, we can isotope h.S/ to a smooth tame Birkhoff section S2 of '2. Thus, the open book
.B2; �2/ induced by S2 supports �2. Now we isotope h to a smooth map g relative to the boundary of the

5One could also run the proof below using rational open books, which correspond to positive Birkhoff sections with immersed
boundaries; see [Baker et al. 2012].
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original Birkhoff section S. Then the open book .B2; �2/ pulls back to an open book .B0; � 0/ with page
S 0 D g�1S2 that supports � 0

1
D g��2. This smoothing can be arranged so that preimages of pages agree

with those of an open book .B; �/ coming from the original Birkhoff section S near the binding. Then
one notes that the open book .B0; � 0/ is isotopic to the original one and we deduce that the corresponding
contact structures are contactomorphic. Since h (and hence g) is isotopic to the identity, they are in fact
isotopic.

A.1 Applications to contact topology

Now we can use Theorem 1.12 to translate to the language of contact topology some known results about
Anosov flows. As a first example, Theorem 1.12 implies that the examples of skew Anosov flows on
hyperbolic 3–manifolds built in [Bowden and Mann 2022] (which are all contact flows when done using
Foulon–Hasselblatt contact surgery) have noncontactomorphic contact structures. Thus, we immediately
obtain:

Theorem A.7 For any N 2N there exists an hyperbolic 3–manifold with at least N noncontactomorphic
Anosov contact structures.

This result answers affirmatively a question raised in [Foulon et al. 2021]; see also [Bowden and Mann
2022, Question 7.4].

We can also translate Theorems 3.17 and 3.18 to a description of contact transformation groups, as follows.
For a 3–manifold M with Anosov contact structure � , we follow [Giroux and Massot 2017] and denote by
D.M; �/ the group of contact transformations of .M; �/. Thus, there is a natural inclusion of �0D.M; �/

in MCG.M /.

Theorem A.8 Let � be a Anosov contact structure on M. Suppose that either

(1) M has a unique JSJ piece which is atoroidal , or

(2) each torus of the JSJ decomposition of the manifold M is separating.

In the first case , let D� denote the subgroup of MCG.M / generated by Dehn twists on the JSJ tori. In
the second case , let D� be the subgroup of MCG.M / generated by all Dehn twists in the directions of
periodic orbits together with any Dehn twists on the JSJ tori.

Then any class Œf � 2D� admits a representative f 2 D.M; �/, and , conversely , there exists n 2N such
that , for any class Œf � 2 �0D.M; �/, we have Œf �n 2D� .

Remark A.9 This result partially extends a theorem of Giroux and Massot [2017], who obtained this for
the case of Seifert fibered manifolds. Note that the result of Giroux and Massot is more precise, as ours
only gives a description of �0D.M; �/ up to finite powers.
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Remark A.10 It is not necessary to know the Anosov Reeb flow in order to detect which Dehn twist
is in a direction of a periodic orbit, by the following observation: Let T be an embedded torus that is
quasitransverse to the Anosov flow '. Up to an arbitrarily small perturbation, one can put T in a convex
position with respect to the contact structure � . Then an element ˛ 2 �1.T / corresponding to a periodic
orbit of the flow ' also corresponds to the free homotopy class of a connected component of the dividing
set of the characteristic foliation of � on T. Therefore, one can use Theorem A.8 (or the translation of
Corollary 1.5, which can be obtained in the same way) directly in contact geometry without having to go
through the Anosov side.

Proof of Theorem A.8 We start by proving the converse implication. Let f 2 D.M; �/ and let ' be the
(Anosov) Reeb flow. Then f �1ı't ıf is a contact Anosov flow with contact structure f�� D � . Thus, by
Theorem 1.12, f �1 ı't ıf and 't are isotopically equivalent. Let h WM !M be an orbit equivalence
isotopic to the identity between f �1 ı't ıf and 't ; then h ıf is a self-orbit equivalence of 't . Hence,
by Theorems 3.17 or 3.18 depending on the case, there exists n such that Œf n�D Œ.h ıf /n� 2D� .

Now, for the second part, let Œf � be a class in D� . Then, by Theorems 3.17 or 3.18,  D f �1 ı' ıf is
isotopically equivalent to '. Moreover, the contact structure of  is f�� , where � is the contact structure
of '. By Theorem 1.12, f�� and � are isotopic, so there exists g in the same isotopy class as f such that
g�� D �. That is, g 2 D.M; �/.
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