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Homological mirror symmetry for hypertoric varieties
I: Conic equivariant sheaves

MICHAEL MCBREEN

BEN WEBSTER

We consider homological mirror symmetry in the context of hypertoric varieties, showing that an ap-
propriate category of B–branes (that is, coherent sheaves) on an additive hypertoric variety matches a
category of A–branes on a Dolbeault hypertoric manifold for the same underlying combinatorial data.
For technical reasons, the A–branes we consider are modules over a deformation quantization (that is,
DQ–modules). We consider objects in this category equipped with an analogue of a Hodge structure,
which corresponds to a Gm–action on the dual side of the mirror symmetry.

This result is based on hands-on calculations in both categories. We analyze coherent sheaves by
constructing a tilting generator, using the characteristic p approach of Kaledin; the result is a sum of line
bundles, which can be described using a simple combinatorial rule. The endomorphism algebra H of this
tilting generator has a simple quadratic presentation in the grading induced by Gm–equivariance. In fact,
we can confirm it is Koszul, and compute its Koszul dual H !.

We then show that this same algebra appears as an Ext–algebra of simple A–branes in a Dolbeault
hypertoric manifold. The Gm–equivariant grading on coherent sheaves matches a Hodge grading in this
category.
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1 Introduction

Toric varieties have proven many times in algebraic geometry to be a valuable testing ground. Their
combinatorial flavor and concrete nature has been extremely conducive to calculation. Certainly this is
the case in the domain of homological mirror symmetry; see Abouzaid [1] and Fukaya, Oh, Ohta and
Ono [19; 20].
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1006 Michael McBreen and Ben Webster

Toric varieties have a natural hyperkähler analogue, which we call hypertoric varieties; in some other
places in the literature, they are called “toric hyperkähler varieties”. Just as toric varieties can be written
as Kähler quotients of complex vector spaces, hypertoric varieties are hyperkähler quotients by tori; see
Definition 2.1.

Despite their name, hypertoric varieties are almost never toric. Rather, they are conical symplectic
resolutions: the natural map � WM! Spec H 0.M;OM/ is a proper resolution of singularities, and there
is an action of Gm on M which dilates the algebraic symplectic form and contracts Spec H 0.M;OM/ to
a point o. Among symplectic resolutions, hypertoric varieties are distinguished by the presence of an
effective complex hamiltonian action of a half-dimensional complex torus.

In this paper, we study homological mirror symmetry for hypertoric varieties. This is typically understood
to mean an equivalence between the derived category of coherent sheaves (or B–branes) on an algebraic
variety and the Fukaya category (the A–branes) of a related symplectic manifold. We will instead prove a
different, but closely related, equivalence.

On the B side, we consider the derived category of coherent sheaves on the hypertoric variety M. For
the statement of our equivalence, it is most natural to impose some finiteness conditions. The simplest
version of our equivalence concerns the category Coh.M/o of sheaves set-theoretically supported on the
fiber ��1.o/ over the cone point of Spec H 0.M;OM/.

On the A–side, we take our mirror space to be a Dolbeault hypertoric manifold D, as defined by Hausel and
Proudfoot. This is a multiplicative analogue of M, equipped with a fibration q WD!Cd by Lagrangian
abelian subvarieties degenerating to a union of toric varieties over 0 2 Cd . We prove in the sequel
paper [21], joint with Ben Gammage, that q�1.0/ is the skeleton of a suitable Liouville structure on D.
When we need to distinguish, we will call usual hypertoric varieties additive.

We define a certain category dq of deformation quantization modules on D, quantizing the irreducible
components of q�1.0/�D. Let DQ be the (dg enhanced) derived category of dq. We prove:

Theorem A (Theorem 4.36) There is an equivalence of dg categories Db.Coh.MC/o/! DQ.

The simples of dq may be thought of as certain distinguished objects in the Fukaya category of D. We do
not attempt to make this precise here; the exact relation of DQ to Fuk.D/ is described in [21].

The left-hand category has an important extra structure: the conical Gm action. To understand its mirror,
we consider an abelian category �m consisting of DQ–modules endowed with a “microlocal mixed Hodge
structure”, along with its derived category �M. We have the following graded version of Theorem A:

Theorem B (Corollary 5.10) There is an equivalence of dg categories Db.CohGm
.MQ/o/!�M, such

that tensoring with the weight 1 representation of Gm corresponds to a 1
2

Tate twist.

This equivalence may be thought of as homological mirror symmetry for two subcategories of the A–
and B–branes, both of which are enriched with suitable notions of Gm–equivariance. The reader may
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Homological mirror symmetry for hypertoric varieties, I 1007

compare with Braverman, Maulik and Okounkov [12] and Maulik and Okounkov [28] and their sequels,
where the same Gm–action plays a key role.

In fact, we construct a family of equivalences, which are best understood in terms of special t–structures on
both sides. On the one hand, the Dolbeault space D depends on a choice of parameter � 2 t_RŠH 2.M;R/,
in the complement of a periodic hyperplane arrangement. As � crosses these hyperplanes, components
of the central fiber q�1.0/ may appear or disappear. Thus, different chambers yield different abelian
categories �m, which are nevertheless derived equivalent.

On the other hand, a choice of � in the complement of the arrangement determines a tilting generator
of Db.CohGm

.MQ/o/. This is a vector bundle T� such that Ext.T� ;�/ defines an equivalence of
dg–categories

Db.Coh.M//ŠDb.H �–modop/;

where H � D End.T�/. In particular, the natural t–structure on the right-hand side defines an “exotic”
t–structure on the left-hand side.

Our construction of T� follows a recipe of Kaledin [25]. The algebra H � is thus an analogue in our
context of Bezrukavnikov’s noncommutative Springer resolution [5]. Its significance can be understood
as follows. Both M and H � are naturally defined over Z. Given a field K of characteristic p, let MK

and H
�
K be the corresponding K–forms. Suppose p� 2 H 2.MIZ/, in which case it defines a class

� 2 Pic.MK/. There is an associated Frobenius-constant quantization of the variety MK in the sense of
Bezrukavnikov and Kaledin [6]. We write A�K for the resulting noncommutative algebra, which deforms
H 0.MK;OM/. By Theorem 3.18, there is equivalence of abelian categories between the category of
A�K–modules with special central character, and the category of finite-dimensional representations of H�

K

satisfying a nilpotence condition.

While this construction springs from geometry in characteristic p, and the tilting property is checked using
this approach, the tilting generators we consider are sums of line bundles and have a simple combinatorial
construction, as does the endomorphism ring H � . This endomorphism ring inherits a grading from a Gm–
equivariant structure on T� and is Koszul with respect to it. Thus, the category of Gm–equivariant coherent
sheaves on M is controlled by the derived category of graded H �–modules, or equivalently by graded
modules over .H �/!, its Koszul dual. It is this Koszul dual that has a natural counterpart on the mirror side.

Theorem 5.9 of this paper explains the relevance of these structures to our mirror equivalence. It can be
paraphrased as follows:

Theorem C Under the equivalence of Theorem B, the natural t–structure on deformation quantization
modules on D corresponds to the exotic t–structure on coherent sheaves on M arising from the tilting
bundle T � .

There are many directions one can go from here. For instance, it is natural to expect different t–structures
should fit together into a real variation of stability in the sense of Anno, Bezrukavnikov and Mirković [2],
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1008 Michael McBreen and Ben Webster

in particular, as predicted by [2, Conjecture 1]. In [37], the second author will show this in the more
general context of Coulomb branches.

As a result of our use of DQ–modules as a substitute for the Fukaya category, this paper contains little
about Lagrangian branes, pseudoholomorphic disks and other staples of symplectic geometry. The reader
may wish to compare with the interesting recent preprint by Lau and Zheng [27], which appeared a few
days before this paper and treats the problem of nonequivariant mirror symmetry for hypertoric varieties
from the perspective of SYZ fibrations.

The variety M is the Coulomb branch (in the sense of Braverman, Finkelberg and Nakajima [11]) with
gauge group given by a torus, and that D is expected to be a hyperkähler rotation of the K–theoretic
version of this construction. Thus, it is natural to consider how these constructions can be generalized
to that case. The analogous calculation of a tilting bundle with explicit endomorphism ring can be
generalized in this case, as the second author will show in [36], but it is very difficult to even conjecture
the correct category to consider on the A side.

One key source of interest in hypertoric varieties is that they provide excellent examples of conic
symplectic singularities (see [10; 9]), which can be understood in combinatorial terms. Considerations
in 3-d mirror symmetry [9] and calculations in the representation theory of its quantization led Braden,
Licata, Proudfoot and the second author to suggest that hypertoric varieties should be viewed as coming
in dual pairs, corresponding to Gale dual combinatorial data. In particular, the categories O attached to
these two varieties are Koszul dual [7; 8]. An obvious question in this case is how the categories we have
considered, such as coherent sheaves, can be interpreted in terms of the dual variety (they are certainly
not equivalent or Koszul dual to the coherent sheaves on the dual variety, as some very simple examples
show). Some calculations in quantum field theory suggest that they are the representations of a vertex
algebra constructed by a BRST analogue of the hyperkähler reduction, but this is definitely a topic which
will need to wait for future research.

Detailed outline of the argument

Part 1 Coherent sheaves and characteristic p quantizations of the additive hypertoric variety
Section 2.1 defines the additive hypertoric variety M. In Section 2.2 we fix a field K of characteristic p,
and review the relation between the quantization of MK, called A�K, and coherent sheaves on MK. In
Section 3.1 we introduce a category of modules A�K–modo, along with its graded counterpart A�K–modD

o .
All these objects depend on a quantization parameter �. In Sections 3.3, 3.2 and 3.5 we classify the
projective pro-objects Px of A�K–modD

o , which also yields a classification of simple objects Lx.

Both projectives and simples are indexed by the chambers of a periodic hyperplane arrangement Aper
�

, de-
fined in Definition 3.8. We compute the endomorphism algebra

L
x;y2zƒ

Hom.Px;Py/ in Theorem 3.13.
The latter contains a ring of power series yS as a central subalgebra, and we define a variant zH�

K

(Definition 3.14) in which yS is replaced by the corresponding polynomial ring S . We find that A�K–modD
o

is equivalent to the subcategory of zH�
K–modules on which S acts nilpotently.
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Homological mirror symmetry for hypertoric varieties, I 1009

The algebra zH�
K has a natural lift to Z, written zH�

Z, which we will use to compare with characteristic-zero
objects on the mirror side. Corollary 3.22 shows that zH�

Z is Koszul. We compute the Koszul dual algebra
zH !
�;K D

L
x;y2zƒ

Ext.Lx;Ly/ (Definition 3.23 and Theorem 3.24).

In Section 3.9 we describe the ungraded category A�K–modo in terms of the graded one. Its simples
and projectives are indexed by the toroidal hyperplane arrangement Ator

� obtained as the quotient of
A

per
�

by certain translations. We describe the corresponding algebras H�
K D

L
x;y2ƒ Hom.Px;Py/ and

H !
�;KD

L
x;y2ƒ Ext.Lx;Ly/, where the sums now range over simples (resp. projectives) for A�K–modo.

In Section 3.10 we use the above results to produce a tilting bundle T � on M with endomorphism
ring End.T �/DH�. Passing to characteristic zero, and replacing � by a parameter � 2 t�R, we obtain
equivalences (from Corollary 3.41 and Proposition 3.43, respectively)

(1-1) Db.Coh.MQ//ŠDb.H
�;op
Q –mod/ and H !

�;Q –perfŠDb.Coh.MQ/o/;

where H !
�;Q –perf is the category of perfect dg–modules over this ring.

Remark 1.1 Throughout, we will always endow the bounded derived category Db of an abelian category
with its usual dg–enhancement using injective resolutions; thus if we write Db.a/Š C for an abelian
category a and a dg–category C, we really mean that this dg–enhancement is quasiequivalent to C.

Part 2 Deformation quantization and microlocal mixed Hodge modules on the Dolbeault hypertoric
manifold The second half of our paper begins with a definition of the Dolbeault hypertoric manifold D

(Definition 4.3), depending on a moment map parameter �. The complex manifold D is a complex
integrable system, with a “central fiber” consisting of a collection of complex Lagrangian submanifolds Xx

indexed by the chambers of a toroidal hyperplane arrangement Btor
�

(Definition 4.10 and Proposition 4.11).

The universal cover zD of the Dolbeault space is an infinite-type complex symplectic manifold, whose
geometry is described by a periodic hyperplane arrangement Bper

�
. In turn, zD is an open submanifold of

an infinite-type algebraic symplectic variety zDalg. The latter has a key additional structure: an action of
a torus S Š C� dilating both the complex symplectic form and the base of the integrable system, and
preserving the central fiber.

In Section 4.5, we define a sheaf O„
�

of C..„//–algebras on D quantizing the structure sheaf, and for each
Xx we define a module Lx over O„

�
supported on Xx.

Although S does not preserve zD� zDalg, we can nevertheless make sense of S–equivariant DQ–modules
on zD and D, and we show that Lx has a natural S–equivariant structure.

We define a subcategory dq of S–equivariant O„
�

–modules on D generated by the simple DQ–modules Lx ,
together with the category dg–category DQ of complexes in dq. The S–equivariance yields a category
with C (rather than C..„//) coefficients. We write edq and fDQ for the corresponding categories on zD.

Geometry & Topology, Volume 28 (2024)



1010 Michael McBreen and Ben Webster

When � is the reduction of p�, the arrangements Ator
� and Btor

�
are identified. We hence have a bijection of

chambers, and a corresponding bijection of isomorphism classes of simple objects for the categories dq

and A�K–modo. Moreover, Theorem 4.27 shows that the Ext–algebras of the simples in both categories
share a common integral form: H !

�;C ŠE!
C WD

L
x;y2ƒ Ext.Lx;Lx/.

Unfortunately, some care is needed about concluding that this isomorphism induces an equivalence of
categories DQ!Db.Coh.M//o, since a priori it is not clear that E!

C is formal as a dg–algebra, which
we would need to define a fully faithful functor. We prove this equivalence by constructing projective
objects in dq, and showing that H�;C appears as their automorphism algebra. This shows that we have
the desired derived equivalence (Theorem 4.36).

We can further account for the grading on H�;Q and reduce the structure ring to Q from C by considering
a new graded abelian category �m (Definition 5.8), and a corresponding triangulated category Db.�M/.
Each object of �m is a O„

�
–module, such that for each lagrangian Xx, the restriction to a Weinstein

neighborhood of Xx is equipped with the structure of a mixed Hodge module. These structures are
required to be compatible in a natural sense whenever two components intersect. We define �m as the
category generated by a special collection of such objects.

Each object Lx has a natural lift to �m, and moreover any simple object of �m is isomorphic to such
a lift. This allows us to conclude that the equivalence Db

perf.Coh.MC/o/! DQ can be upgraded to an
equivalence of graded categories Db

perf.CohGm
.MQ/o/!�M in the spirit of equivariant mirror symmetry.

Remark 1.2 In an earlier version of this paper, the proof of the main result depended on the use of this
Hodge structure. In revisions responding to a referee’s comments, we found a proof that avoids the use
of it, so we have moved all discussion of Hodge topics to Section 5, after the proof of Theorem 4.36.
We have left the discussion of Hodge structures in the paper, since we believe it is of some interest in
understanding how C�–actions translate through mirror symmetry.
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2 Hypertoric enveloping algebras

2.1 Additive hypertoric varieties

For a general introduction to hypertoric varieties, see [33].

Consider a split algebraic torus T over Z of dimension k (that is, an algebraic group isomorphic to Gk
m)

and a faithful linear action of T on the affine space An
Z, which we may assume is diagonal in the usual

basis. We let D ŠGn
m be the group of diagonal matrices in this basis, and write G WDD=T .

We have an induced action of T on the cotangent bundle T �An
ZŠA2n

Z . We use zi for the usual coordinates
on An

Z, and wi for the dual coordinates. This action has an algebraic moment map � W T �An
Z! t�Z,

defined by a map of polynomial rings ZŒtZ�! ZŒz1; : : : ; zn;w1; : : : ;wn� sending a cocharacter � to the
sum

Pn
iD1h�i ; �iziwi , where �i is the character on D defined by the action on the i th coordinate line,

and h�;�i is the usual pairing between characters and cocharacters of D.

For us, the main avatar of this action is the (additive) hypertoric variety. This is an algebraic hamiltonian
reduction of T �An

Z by T . It comes in affine and smooth flavors, these being the categorical and GIT
quotients (respectively) of the scheme-theoretic fiber ��1.0/ by the group T . More precisely, fix a
character ˛ W T !Gm whose kernel does not fix a coordinate line.

Definition 2.1 For a commutative ring K, we let

NK WD Spec.KŒz1; : : : ; zn;w1; : : : ;wn�
T =h��.�/ j � 2 tZi/;

MK WD Proj.KŒz1; : : : ; zn;w1; : : : ;wn; t �
T =h��.�/ j � 2 tZi/;

where t is an additional variable of degree 1 with T –weight �˛.

Both varieties carry a residual action of the torus G DD=T , and an additional commuting action of a
rank-one torus S WDGm which scales the coordinates wi linearly while fixing zi .

We say that the sequence T !D!G is unimodular if the image of any tuple of coordinate cocharacters
in dZ WD Lie.D/Z forming a Q–basis of gQ WD Lie.G/Q also forms a Z–basis of gZ.

Let � WMC!NC be the natural map. If we assume unimodularity, then MC is a smooth scheme and
� defines a proper T � S–equivariant resolution of singularities of NC . Together with the algebraic
symplectic form on MC arising from Hamiltonian reduction, this makes MC a symplectic resolution.
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1012 Michael McBreen and Ben Webster

Many elements of this paper make sense in the broader context of symplectic resolutions, although we
will not press this point here. In the nonunimodular case, MC may have orbifold singularities.

In the description given above, NC appears as the Higgs branch of the ND 4 three-dimensional gauge
theory attached to the representation of TC on Cn. However, it is more natural from the perspective of
what is to follow to see NC as the Coulomb branch of the theory attached to the dual action of .D=T /_

on Cn, in the sense of Braverman, Finkelberg and Nakajima [11; 32]. This leads to a different presentation
of the hypertoric enveloping algebra, which will be useful for understanding its representation theory. In
particular, the multiplicative hypertoric varieties we’ll discuss later appear naturally from this perspective
as the Coulomb branches of related 4–dimensional theories.

2.2 Quantizations

The ring of functions on the hypertoric variety NZ has a quantization which we call the hypertoric
enveloping algebra. We construct it by a quantum analogue of the Hamiltonian reduction that defines MZ.
Consider the Weyl algebra Wn generated over Z by the elements z1; : : : ; zn; @1; : : : ; @n modulo the
relations

Œzi ; zj �D 0; Œ@i ; @j �D 0; Œ@i ; zj �D ıij :

It is a quantization of the ring of functions on T �An
Z. The torus D acts on Wn, scaling zi by the

character �i and @i by ��1
i . It thus determines a decomposition into weight spaces

Wn D

M
a2Zn

WnŒa�:

Let
hCi WD zi@i ; h�i WD @izi D hCi C 1; hmid

i WD
1
2
.hCi C h�i /D hCi C

1
2
D h�i �

1
2
:

Each of the tuples hCi , h�i , hmid
i generate the same subalgebra, ie the D–fixed subalgebra ZŒh˙i �DWnŒ0�.

Via the embedding T ! D, Wn carries an action of the torus T . To this action one can associate a
noncommutative moment map, ie a map �q W ZŒtZ�!Wn such that Œ�q.�/;�� coincides with the action
of the Lie algebra tZ. This property uniquely determines �q up to the addition of a character in t�Z. We
make the following choice:

�q.�/ WD

nX
iD1

h�i ; �ih
C
i :

It’s worth nothing that in the formula above, we have broken the symmetry between zi and @i ; it would
arguably be more natural to use hmid

i , but this requires inserting a lot of annoying factors of 1
2

into
formulas, not to mention being a bit confusing in positive characteristic.

Definition 2.2 The hypertoric enveloping algebra AZ is the subring W T
n �Wn invariant under T . We’ll

also consider the central quotients of this algebra associated to a character � 2 t�Z, given by

A�Z WDAZ=h�q.�/��.�/ j � 2 tZi:
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We will often abbreviate “hypertoric enveloping algebra” to HEA.

Let AK WDAZ˝Z K be the base change of this algebra to a commutative ring K. The algebra AC was
studied extensively in [8; 31]. The algebra AK when K has characteristic p was studied in work of
Stadnik [35]. Fix a field K of characteristic p for the rest of the paper.

Unlike Wn itself, or its base change to a characteristic 0 field, the ring Wn˝Z Fp has a “big center” gener-
ated by the elements z

p
i , @p

i . This central subring can be identified with the function ring H 0.X .1/;OX .1//,
where X D T �An

Fp
.

2.3 Coulomb presentation

The algebra AK has a different presentation which is more compatible with the subalgebra KŒh˙i �. The
action of D on AK determines a decomposition into weight subspaces. Since AK DW T

n , its weights lie
in t?Z D g�Z:

AK D
M
a2t?Z

AKŒa�:

For each a 2 t?Z, we let

(2-1) m.a/ WD
Y

ai>0

z
ai

i

Y
ai<0

@
�ai

i :

Up to scalar multiplication, this is the unique element in AKŒa� in of minimal degree.

Each weight space AKŒa� is a module over the D–invariant subalgebra generated by the hCi . Let

Œhi �
.a/
WD

8<:
1 if aD 0;

za
i @

a
i D .h

�
i � 1/.h�i � 2/ � � � .h�i � a/ if a> 0;

@�a
i z�a

i D .h
C
i C 1/.hCi C 2/ � � � .hCi � a/ if a< 0:

Theorem 2.3 [14, (6.21b)] The algebra AK is generated by KŒh˙
1
; : : : ; h˙n � and m.a/ for a2g�Z, subject

to the relations

.h˙i � ai/m.a/Dm.a/h˙i ;(2-2)

m.a/m.b/D
Y

ai bi<0
jai j�jbi j

Œhi �
.ai / �m.aCb/ �

Y
ai bi<0
jai j>jbi j

Œhi �
.�bi /:(2-3)

We call this is the Coulomb presentation, since it matches the presentation of the abelian Coulomb branch
in [11, (4.7)], and shows that the algebra AK can also be realized using this dual approach. As mentioned
in the introduction, the techniques of this paper generalize to Coulomb branches with nonabelian gauge
group as well, whereas it seems very challenging to generalize them to Higgs branches with nonabelian
gauge group (that is, hyperkähler reductions by noncommutative groups).
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1014 Michael McBreen and Ben Webster

2.4 Characteristic p localization

Following [35], in this section we exploit the large center of quantizations in characteristic p so as to
relate modules over A�K with coherent sheaves on M

.1/
K . Roughly speaking, upon restriction to fibers of

� WM
.1/
K !N

.1/
K , the quantization becomes the algebra of endomorphisms of a vector bundle, and thus

Morita-equivalent to the structure sheaf of the fiber.

Theorem 2.4 [35, Theorems 4.3.1 and 4.3.4] For any � 2 t�Fp
, there exists a coherent sheaf A � of

algebras Azumaya over the structure sheaf on M
.1/
K such that �.M.1/

K ;A �/ŠA�K.

This theorem includes the existence of an injection H 0.N
.1/
K ;O

N
.1/

K
/!A�K; this is induced by the map

H 0..T �An
K/
.1/;O.T �An

K/
.1//!Wn˝K sending

zi 7! z
p
i and wi 7! @

p
i :

Consider the moment map � WM.1/
K ! d

.1/
K . Work of Stadnik shows that the Azumaya algebra A � splits

on fibers of this map after field extension. Fix � 2 d.1/K . Possibly after extending K, we can choose � such
that �p�� D � , and define the splitting bundle as the quotient A �=

Pn
iD1 A �.hCi ��i/; this left module

is already supported on the fiber ��1.�/, since

.hCi � �/
p
� .hCi � �/D z

p
i @

p
i � �

p
C � D z

p
i @

p
i � �:

We can thicken this to the formal neighborhood of the fiber ��1.y�/ by taking the inverse limit Q� WD

lim
��!

A �=
Pn

iD1 A �.hCi � �i/
N .

Theorem 2.5 [35, Theorem 4.3.8] The natural map

A �
j
��1.y�/

! EndO
M.1/

.Q� ;Q�/

is an isomorphism.

The sheaf A � is not globally split; it has no global zero-divisor sections. It still has a close relationship
with a tilting vector bundle on M

.1/
K . We’ll fix our attention on the case where � D 0, so �i 2 Fp.

Let TK be an S–equivariant locally free coherent sheaf on M
.1/
K such that TKj��1.y0/

ŠQ� . Such a sheaf
exists by [25, Theorem 1.8(ii)]. As coherent sheaves, we have isomorphisms

A �
K Š Fr� OMK Š TK˝T �K Š End.TK/:

By [35, Corollary 4.4.2], these sheaves have vanishing higher cohomology. Furthermore, combining with
results of Kaledin [25, Theorem 1.4], this shows that:

Proposition 2.6 For p sufficiently large and �i generic , the sheaf TK is a tilting generator on MK and has
a lift TQ which is a tilting generator on MQ; that is , Exti.TQ;TQ/D 0 for i > 0, and Exti.TQ;F /D 0

implies F D 0 for any coherent sheaf on MQ.

We will later calculate the sheaf TK, once we understand A �
K a bit better.
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3 The representation theory of hypertoric enveloping algebras

3.1 Module categories and weight functors

Recall that we have a short exact sequence of tori T ! D ! G. A�K is a quotient of W T
n , and thus

carries a residual action of G, which we will now use to study its modules.

Let o 2N.1/ be the point defined by zi D wi D 0, ie the unique K–valued S–fixed point of N.1/. The
following category will play a central role in this paper.

Definition 3.1 Let A�K–modo be the category of finitely generated A�K–modules that are set-theoretically

supported at o when viewed as modules over H 0.N
.1/
K ;O

N
.1/

K
/.

In fact, we will first study the following closely related category.

Definition 3.2 Let A�K–modD
o be the category of modules in A�K–modo which are additionally endowed

with a compatible D–action such that T acts via the character �, and the action of di 2 dZ satisfies

(3-1) .hCi � di/
N v D 0 for N � 0:

The difference si D hCi �di acts centrally on such a module, since the adjoint action of hCi on A�K agrees
with the action of di . The operator si is thus the nilpotent part of the Jordan decomposition of h˙i . The
operators si define an action of the polynomial ring UK.d/, which factors through UK.g/ since elements
of t act by zero. This extends to an action of the completion of UK.g/, since si acts nilpotently by (3-1).

Definition 3.3 Let S WD UK.g/, and let yS be its completion at zero.

Let g�;�Z � d�Z be the g�Z–coset of characters of D whose restriction to T coincides with �. It indexes the
D–weights which can occur in an object of A�K–modD

o .

We can construct projectives objects in a slight enlargement of A�K–modD
o by working with the exact

functors picking out weight spaces. That is, for each a 2 g�;�Z , we consider the functor which associates
to an object M 2A�K–modD

o the vector space

Wa.M / WD fm 2M jm has D–weight ag:

Note that even though we are working in characteristic p, the D–weights are valued in g�;�Z � Zn. This
functor is exact, and we will show that it is pro-representable.

3.2 Projectives representing the weight functors

To construct the projective object that represents this functor, we consider the filtration of it by

W N
a .M / WD fm 2Wa.M / j .hCi � ai/

N mD 0 for all ig:
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Proposition 3.4 We have a canonical isomorphism

W N
a .M /Š HomA�K–modD

o

�
A�K

. nX
iD1

A�K.h
C
i � ai/

N ;M

�
;

where D acts on A�K=
Pn

iD1 A�K.h
C
i � ai/

N so that the image 1a of 1 has weight a.

Since Wa.M /D lim
��!

W N
a .M /, we have that Wa.M / is represented by the module

(3-2) Qa WD lim
 ��

A�K=A
�
K.h
C
i � ai/

N

with its induced D–action. Note that Qa D �.�
�1.y0/IQa/.

This is endowed with the usual induced topology, and it is a pro-weight module in the sense that its weight
spaces are pro-finite dimensional. This is a projective object in the category 3A�K–modD of complete
topologically finitely generated A�K–modules M with compatible D–action in the sense that

lim
N!1

.hCi � di/
N v D 0:

That is, si acts topologically nilpotently on each D–weight space. This is equivalent to (3-1) if the
topology on M is discrete.

In the arguments below, Hom and End will be interpreted to mean continuous homomorphisms compatible
with D; all objects in A�K–modD

o will be given the discrete topology, so continuity is a trivial condition
for homomorphisms between them.

Lemma 3.5 If b is a character of D=T , then Wa.QaCb/Š yS . Otherwise , this weight space is 0.

Proof For any character b of D which vanishes on T, the b weight space A�KŒb� is a free rank-one
module over S (acting via multiplication by si), generated by m.b/. Thus, the aC b weight space of
A�K=A

�
K.h
C
i � ai/

N is generated by m.b/, subject to the relations

sNi m.b/ � 1a Dm.b/sNi � 1a Dm.b/.hCi � ai/
N
� 1a D 0;

and is thus free over the quotient ring S=
P

S � sNi . Taking the inverse limit, we see that every weight
space of Qa is a free module of rank one over yS .

Corollary 3.6 We have an isomorphism of rings

End.Qa/ŠWa.Qa/Š yS :

Since yS is local , the module Qa is indecomposable (in the category 3A�K–modD).

3.3 Isomorphisms between projectives

In this section, we determine the distinct isomorphism classes of weight functors, ie we determine all
isomorphisms between the pro-projectives Qa. As we will see, there are typically many distinct weights
a 2 g�;�Z that give isomorphic functors.
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By the results of the previous section, the space Wa.QaCb/ D Hom.Qa;QaCb/ is free of rank one
over yS , with generator m.b/. Likewise, Hom.QaCb;Qa/ is generated by m.�b/. Thus in order to verify
whether Qa and QaCb are isomorphic, it is enough to check whether the composition m.�b/m.b/,
viewed as an endomorphism of Qa, is an invertible element of the local ring End.Qa/Š yS .

By (2-3), we have that

m.�b/m.b/D

nY
iD1

Œhi �
.�bi /;

where the right-hand side is a product of factors of the form hCi Ck with k an integer between 1
2

and biC
1
2

.
To check whether hCi C k defines an invertible element of yS , it is enough to compute its action on the
weight space of weight a, on which hi acts by aiCsi . The resulting endomorphism hCi CkD siC.aiCk/

is invertible if and only if kC ai 6� 0 .mod p/.

The number of noninvertible factors (each equal to si/ in Œhi �
.�bi / is therefore the number of integers k

divisible by p lying between ai C
1
2

and ai C bi C
1
2

. We denote it by ıi.a; aCb/.

We can sum up the above computations as follows. Put

q.y; k/D

(
1 if k D 0;
1

yCk
if k ¤ 0;

where y is a formal variable and k 2K. Note that q.si ; ai C j /.hCi C j / acts on a D–weight space of
weight a by 1 if ai C j is not divisible by p, and by si if it is. Let

(3-3) cb
a Dm.b/

nY
iD1

biY
jD1

q.si ; ai C j / 2Wa.QaCb/D Hom.Qa;QaCb/:

It is a generator of the yS–module Wa.QaCb/. Note that this expression breaks the symmetry between
positive and negative; if bi � 0 for all i , then cb

a Dm.b/, since all the products in the definition are over
empty sets.

Lemma 3.7 c�b
aCbcb

a D

nY
iD1

s
ıi .a;aCb/
i :

Proof We have

c�b
aCbcb

a Dm.�b/ �

nY
iD1

�biY
jD1

q.si ; ai C bi C j / �m.b/ �

nY
iD1

biY
jD1

q.si ; ai C j /

Dm.�b/m.b/

nY
iD1

� �biY
jD1

q.si ; ai C bi C j / �

biY
jD1

q.si ; ai C j /

�

D

nY
iD1

Œhi �
.�bi /

�biY
jD1

q.si ; ai C bi C j /

biY
jD1

q.si ; ai C j /:
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Note that for each index i only one of the products is nonunital, depending on the sign, and in either case,
we obtain the product of q.si ; aiCj / ranging over integers lying between aiC

1
2

and aiCbiC
1
2

. As we
noted earlier, Œhi �

.�bi / is the product of hi C j with j ranging over this set. Thus, we obtain the product
over this same set of .hi C j /q.si ; ai C j /, which is precisely s

ıi .a;aCb/
i .

It remains for us to describe which pairs a; a0 satisfy ıi.a; a0/D 0 for all i , and thus index isomorphic
projective modules.

Definition 3.8 Let Aper
�

be the periodic hyperplane arrangement in g�;�Z defined by the hyperplanes
di D kp� 1

2
for k 2 Z and i D 1; : : : ; n.

By definition, ıi.a; a0/ is the minimal number of hyperplanes di D kp� 1
2

crossed when traveling from a

to a0. Given x 2 Zn, let

�x D fa 2 g
�;�
Z j pxi � ai < pxi Cpg and �R

x D fa 2 g
�;�
Z ˝R j pxi � ai < pxi Cpg:

We have shown:

Theorem 3.9 We have an isomorphism Qa ŠQa0 if and only if we have a; a0 2�x for some x.

Let
zƒ.�/D fx 2 Zn

j�x ¤∅g and zƒR.�/D fx 2 Zn
j�R

x ¤∅g:

Thus, zƒ.�/ canonically parametrizes the set of indecomposable projective modules in the pro-completion
of A�K–modD

o . It follows that zƒ.�/ also canonically parametrizes the simple modules in this category.

Let us call the parameter � smooth if there is a neighborhood U of � in R˝ g�;�Z such that for all
�0 2U , we have zƒ.�/D zƒR.�0/. In particular, if � is smooth, then the hyperplanes in Aper

�
must intersect

generically.

3.4 A taxicab metric

We can endow zƒ.�/with a metric given by the taxicab distance jx�y j1D
P

i jxi�yi j for all x;y 2 zƒ.�/.
We can add a graph structure to zƒ.�/ by adding in a pair of edges between any two chambers satisfying
jx�y j1 D 1; generically, this is the same as requiring that �R

x and �R
y are adjacent across a hyperplane.

We say that this adjacency is across i if x and y differ in the i th coordinate. For every x, let ˛.x/ be
the set of neighbors of x in zƒ.�/. Generically, this is the same as the number of facets of �R

x ; we let
˛i.x/� ˛.x/ be those facets adjacent across i . Note that in some degenerate cases, we may have that
x;xC �i ;x� �i 2

zƒ.�/, so the size of ˛i.x/ is typically 0 or 1, but could be 2.

3.5 Weights of simple modules

Definition 3.10 For any x 2 Zn such that �x ¤∅, we let Px WDQb for some b 2�x.
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Lemma 3.11 The module Px has a unique simple quotient Lx, and the Lx for x 2Zn such that�x¤∅
are a complete irredundant list of simple modules in A�K–modD

o .

Furthermore , the a–weight space of Lx is one-dimensional if a 2�x, and 0 otherwise.

Proof We show that Qa has a unique simple quotient by showing that the sum of two proper submodules
is proper; this then shows that there is a unique maximal proper submodule, and Lx is the quotient by it.
A submodule M �Qa is proper if and only if Wa.M /�Wa.Qa/Š yS is a proper submodule; that is, if
it lies in the unique maximal ideal m� yS . This shows that the sum of two proper submodules is proper,
and so Lx is well-defined.

Using the isomorphism Qa ŠQb if a;b 2�x, we can extend this to the observation that a submodule
M � Px is proper if and only if Wa.M /�mWa.Px/ for all a 2�x.

By Lemma 3.7, we can check that there is a unique submodule M in Px such that

Wa.M /D

�
mWa.Px/ if a 2�x;

Wa.Px/ if a 62�x:

By the observation above, this must be the maximal proper submodule, so Lx D Px=M . This shows
that Lx has the claimed dimensions of weight spaces. Furthermore, this shows that we can recover the
set �x for Lx, so we must have Lx ©Ly if x ¤ y .

For any simple L, we must have Wa.L/¤ 0 for some a. This induces a map Px! L where a 2�x.
Since Lx is the unique simple quotient of Px, this shows that Lx Š L. This shows that they give a
complete list and completes the proof.

Example 3.12 An interesting example to keep in mind is the following. Let T be the scalar matrices
acting on A3. In this case, n D 3 and k D 1. The space g�;�Z is an affine space on which d1 and d2

give a set of coordinates, with d3 related by the relation d3 D�d1� d2C� for some � 2 Z. Thus, the
hyperplane arrangement that interests us is given by

d1 D kp� 1
2
; d2 D kp� 1

2
; �d1� d2C�D kp� 1

2
:

In particular, we have that �x ¤∅ if and only if there exist integers a1 and a2 such that

x1p � a1 < x1pCp; x2p � a2 < x2pCp; x3p � �a1� a2C� < x3pCp:

The values of�a1�a2C� for a1; a2 satisfying the first two inequalities range from�.x1Cx2C2/pC2C�

to �.x1Cx2/pC�. Thus, x3 is a possibility if �x1�x2�2Cb.�C3/=pcx3��x1�x2Cb�=pc. Thus,
there are three such x3 if b.�C 3/=pc D b�=pc, that is, if � 6� �1;�2 mod p. If � � �1;�2 mod p,
then there are two, and the parameter � is not smooth.

Of course, the numbers �1 and �2 have another significance in terms of P2: the line bundles O.�1/

and O.�2/ on P2 are the unique ones that have trivial pushforward. This is not coincidence. Let �C be
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the unique integer in the range 0� �C < p congruent to � .mod p/, and �� the unique such integer in
�p � �� < 0. The simples .x1;x2;�x1 � x2Cb�=pc/ and .x1;x2;�x1 � x2 � 2Cb�=pc/ over A�K
can be identified with H 0.P2IO.�C// and H 1.P2IO.��//. If �Š�1;�2 mod p, then the latter group
is trivial, so one of the simple representations is “missing”.

The final simple can be identified with the first cohomology of the kernel of the map O.�C/
˚3!O.�CCp/

defined by .zp
1
; z

p
2
; z

p
3
/ (in characteristic p, this is a map of twisted D–modules); this map is surjective

on sheaves, but injective on sections, with the desired simple module its cokernel.

Let’s assume for simplicity that 0� �� p� 3. In this case, the “picture” of these representations when
p D 5 and �D 1 is as follows:

(3-4)

d1 D�
1
2

d1 D
9
2

d2 D�
1
2

d2 D
9
2

d3 D�
1
2

d3 D�
11
2

The three chambers shown (read SW to NE) are �.0;0;0/, �.0;0;�1/, �.0;0;�2/.

3.6 The endomorphism algebra of a projective generator

Having developed this structure theory, we can easily give a presentation of our category. For each pair
x;y with �x ¤∅ and �y ¤∅, we can define cx;y to be ca0�a

a for a 2�y and a0 2�x . For each i , let
�i.x;y ;u/D

1
2
.jxi �yi jC jyi �ui j � jxi �ui j/.

Theorem 3.13 The algebra
L

x;y2zƒ
Hom.Px;Py/ is generated by the idempotents 1x and the elements

cx;y over yS , modulo the relation

(3-5) cx;ycy;u D

Y
i

s
�i .x;y;u/
i cx;u:

Note that this relation is homogeneous if deg cx;y D jx�y j1 and deg si D 2.
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Proof The relation holds by an easy extension of Lemma 3.7. To see that these elements and relations are
sufficient, note that in the algebra yH with this presentation, the Hom-space 1x

yH1y is cyclically generated
over yS by cx;y . The image of cx;y under the induced map 1x

yH1y!Hom.Py ;Px/ generates the target
space over yS . Since the target is free of rank 1 as a yS–module, the map must be an isomorphism.

Definition 3.14 Let SZ WD UZ.g/. Let zH�
Z be the graded algebra over SZ generated by 1x and cx;y ,

with presentation given in Theorem 3.13. Let zH�
K WD

zH�
Z˝K.

This algebra is isomorphic to its opposite via the anti-isomorphism which acts by the identity on SZ

and cx;y 7! cy;x. Since this algebra has a left action on the sum
L

x Px, it naturally has a right action
on
L

x Hom.Px;M / for any A�K–module, which we will turn into a left module structure using the
anti-automorphism above.

It may concern the reader that zH�
K is not a unital algebra, but it has a structure which can serve as a

replacement. We follow the terminology and notation of [13] in this section. We call a K–algebra A

locally unital if there are idempotents 1˛ indexed by some set @ such that AD
L
˛;ˇ2@ 1˛A1ˇ.

Definition 3.15 Given a locally unital algebra A, let P.A/ be the category where the objects are the
set @, and the morphism spaces are given by Hom.˛; ˇ/D 1˛A1ˇ.

Note that P is equivalent to the subcategory of left projective modules with objects A1˛.

We call a module M over A locally unital if M D
L
˛2@ 1˛M ; this is automatic if K is a field and M

is finite-dimensional over K. We can think of ˛ 7! 1˛M as a functor Pop!K–mod, and conversely,
every locally unital left A–module arises from a unique such functor. In particular, the results of [29],
which are formulated in terms of representations of categories, also apply to locally unital algebras.

The algebra zH�
K may not be left or right Noetherian as a ring, since it is not finitely generated as a module

over itself. However, it can be locally left Noetherian,1 meaning that left submodules of A1x are finitely
generated.

Proposition 3.16 If K is Noetherian , then the algebra zH�
K is locally left Noetherian.

Proof Consider a submodule U � zH�
K1x. The intersection U \ 1y

zH�
K1x must be of the form Iycy;x

for some ideal Iy � SK. Since cz;yIycy;x � Izcz;x , we have Iy � Iz if for each i , either xi � yi � zi

or zi � yi � xi . For any subset B of Zn
�0

, there is a finite list of points b.1/; : : : ; b.r/ such that for any
b 2 B, there is some r such that bi � b.r/i for all i . This means that for any finitely generated ideal
I � SK and any subset B � zƒ, the submodule generated by Icy;x for y 2 B is finitely generated, since
it is generated by Icy;x for finitely many choices of y . Since K is Noetherian, so is SK, and thus every
ideal in I is finitely generated.

1This is not identical to the notion of “locally Noetherian” found in scheme theory, but is related: the spectrum of a commutative
locally Noetherian ring will be a possibly infinite disjoint union of Noetherian schemes, which is thus locally Noetherian as a
scheme.
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Thus, if U is not finitely generated, then infinitely many different ideals must appear as Iy . By standard
methods, we can choose an infinite sequence y .1/;y .2/; : : : such that the ideals Iy.i/ are all different,
and for each i , the difference of coordinates y

.k/
i �xi are either all positive and weakly increasing with

respect to k, or negative and weakly decreasing. In either case, we have Iy.1/ � Iy.2/ � � � � . Since SK is
Noetherian, the existence of such a chain of ideals which are all distinct contradicts the ascending chain
condition, proving that U is finitely generated.

If an algebra A is locally left Noetherian, then its category of finitely generated, locally unital modules is
an abelian category A–lu-mod. The objects A1˛i

form a nearly resolving set of projectives in the sense
of Freyd [18, Section 1], ie every object in this category is a quotient of a finite sum of these projectives.

Lemma 3.17 Assume A is locally Noetherian. If C is an abelian category and ˛ 7! P˛ WP ! C is a
fully faithful functor such that the set of projectives fP˛g˛2@ is nearly resolving , then the functor

M W C!A–lu-mod; M.M /D
M
˛2@

Hom.P˛;M /;

is an equivalence.

Proof In the terms of [18], this functor M sends an object in C to the corresponding representation
of the category Pop. By a small modification of [18, Theorem 1.2] (stated above [18, Theorem 1.3],
with the proof left to the reader), this functor is an equivalence to the subcategory of representations
which are the cokernel of a map of the form M

�Lr
iD1 P˛i

�
! M

�Ls
jD1 P

ǰ

�
, that is of the formLr

iD1 A1˛i
!
Ls

jD1 A1
ǰ
. Since A is locally Noetherian, the modules of this form are exactly the

finitely generated, locally unital modules.

Let zH�
K–modo denote the category of finite-dimensional representations of zH�

K, on which each si acts
nilpotently. As discussed above, such a module is necessarily locally unital.

Theorem 3.18 The functor M
x2zƒ.�/

Hom.Px;�/ WA
�
K–modD

o !
zH�

K–modo

defines an equivalence of categories between A�K–modD
o and the category of finite-dimensional represen-

tations of zH�
K, on which each si acts nilpotently.

Proof First, consider the category 3A�K–modD. Since any module M in this category is topologically
finitely generated over A�K, we can assume that the generators are generalized weight vectors for D.
These weight vectors induce a surjection

Lk
iD1 Qai

! M . This shows that the fPxg are a nearly
resolving set of projectives in this category, and we have an equivalence of the category 3A�K–modD to
the category of modules over the completion yH�

K Š
zH�

K˝S
yS by Lemma 3.17; note that we have used

the anti-automorphism of zH�
K to switch between left and right modules.

Geometry & Topology, Volume 28 (2024)



Homological mirror symmetry for hypertoric varieties, I 1023

Now, we will show that restricting this functor gives the desired equivalence. A finite-dimensional
representation of zH�

K on which each si acts nilpotently can be inflated to a yH�
K–module, and thus sent

to a A�K–module by this equivalence. The nilpotent condition and finite dimensionality imply that this
module is a sum of finitely many generalized weight spaces, so it is supported on a finite union of points
in N

.1/
K . The functions zi and wi must act nilpotently for weight reasons, so the only point in the support

must be o. On the other hand, if the corresponding A�K–module is supported on o, then by coherence, it
must be finite-dimensional, and thus give a finite-dimensional yH�

K–module, and si acts nilpotently on any
finite-dimensional yH�

K–module.

In fact, we will see that when � is smooth, zH�
K admits a presentation as a quadratic algebra. We begin by

producing some generators.

Let �i D .0; : : : ; 0; 1; 0; : : : ; 0/ by the i th unit vector. Let c˙i
x D cx˙�i ;x; note that deg c˙i

x D 1. These
elements correspond to the adjacencies in the graph structure of zƒ.�/. Thus, we have a homomorphism
from the path algebra of zƒ.�/ sending each length 0 path to the corresponding 1x and each edge to the
corresponding c˙i

x .

We’ll be interested in the particular cases of (3-5) which relate these length 1 paths. If x;xC �i 2
zƒ.�/,

then

(3-6a) c�i
xC�i

cCi
x D si1xC�i

and cCi
x c�i

xC�i
D si1xC�i

:

We can view this as saying that the length 2 paths that cross a hyperplane and return satisfy the same
linear relations as the normal vectors to the corresponding hyperplanes.

If x;xC �i ;xC �j ;xC �i C �j 2 zƒ.�/, then the corresponding chambers fit together as pictured:

ij
x

xC �i C �j

xC �ixC �j

In this situation, we find that either way of going around the codimension 2 subspace gives the same
result, and that more generally any two paths between chambers that never cross the same hyperplane
twice give equal elements of the algebra:

c
Cj
xC�i

cCi
x D cCi

xC�j
c
Cj
x ; c

�j
xC�j

c�i
xC�iC�j

D c�i
xC�i

c
�j
xC�iC�j

;(3-6b)

c
�j
xC�iC�j

cCi
xC�j

D cCi
x c
�j
xC�j

; c�i
xC�iC�j

c
Cj
xC�i

D c
Cj
x c�i

xC�i
:(3-6c)

If � is a smooth parameter, then as the following theorem shows, these are the only relations needed.

Theorem 3.19 If � is a smooth parameter , then the algebra
L

x;y Hom.Px;Py/ is generated by the
idempotents 1x and the elements c˙i

x for all x 2 zƒ.�/ over yS modulo the relations (3-6a)–(3-6c).

Geometry & Topology, Volume 28 (2024)



1024 Michael McBreen and Ben Webster

Proof Since these relations are a consequence of Theorem 3.13, it suffices to show that the elements c˙i
x

generate, and that the relations (3-5) are a consequence of (3-6a)–(3-6c).

We show that c˙i
x generate cx;y by induction on the L1–norm jx�y j. If jx�y j1 D 1, then cx;y D c˙i

y .
On the other hand, if jx�y j1> 1, then there is some x0¤x;y such that jx�x0j1Cjx

0�y j1D jx�y j1.
Choosing a generic parameter �0 such that zƒR.�0/D zƒ.�/, we can consider the line segment joining
generic points in x�x and x�y , and let x0 be any chamber this line segment passes through. The smoothness
hypothesis is needed to conclude that there is such a chamber that lies in zƒ.�/. Since cx;y D cx;x0cx0;y ,
this proves generation by induction.

We must now check that the relations (3-5) are satisfied. First, consider the situation where x.0/ D x; : : : ,
x.m/ D y is a path with jx.i/ �x.iC1/j1 D 1 with x.i/ 2 zƒ.�/, and y .0/ D x; : : : ;y .m/ D y is a path
with the same conditions. These two paths differ by a finite number of applications of the relations
(3-6b)–(3-6c).

It remains to show that if x.0/ D x; : : : ;x.m/ D y is a path of minimal length between these points with
jx.i/�x.iC1/j1D 1, and we have similar paths y .0/Dy ; : : : ;y .n/Du and u.0/Dx; : : : ;u.p/Du, then

(3-7) cx.0/;x.1/ � � � cx.m�1/;x.m/cy.0/;y.1/ � � � cy.n�1/;y.n/ D cu.0/;u.1/ � � � cu.p�1/;u.p/

nY
iD1

s
�i .x;y;u/
i :

We’ll prove this by induction on min.m; n/. If mD 0 or nD 0, then this is tautological. Assume mD 1,
and x D y C ��j for � 2 f1;�1g. If �.yj � uj / � 0, then �j .x;y ;u/ D 0, so this follows from the
statement about minimal length paths. If �.yj �uj / < 0, then �j .x;y ;u/D 1, and we can assume that
y .1/ D x; : : : ;y .n/ is a minimal length path from x to u. Thus

cx;ycy;x � � � cy.n�1/;y.n/ D cx;y.2/ � � � cy.n�1/;y.n/sj ;

as desired. The argument if nD 1 is analogous.

Now consider the general case. Assume for simplicity that n�m. Consider the path x.m�1/;y .0/; : : : ,
y .n/ D u. Either this is a minimal path, or by induction, we have that

cx.m�1/;ycy;y.1/ � � � cy.n�1/;y.n/ D cw.1/;w.2/ � � � cw.n�2/;w.n�1/sj

for a minimal path w.0/ D x.m�1/;w.2/; : : : ;w.n�1/ D y .n/ with j being the index that changes from
x.m�1/ to y .

In the former case, by induction, relation (3-7) for the paths x.0/ D x; : : : ;x.m�1/ and x.m�1/;y .0/; : : : ,
y .n/ D u holds. This is just a rebracketing of the desired case of (3-7). In the latter, after rebracketing,
we have

.cx.0/;x.1/ � � � cx.m�2/;x.m�1//.cx.m�1/;x.m/ � � � cy.n�1/;y.n//

D .cx.0/;x.1/ � � � cx.m�2/;x.m�1//.cw.0/;w.1/ � � � cw.n�2/;w.n�1//sj D cu.0/;u.1/ � � � cu.p�1/;u.p/

nY
iD1

s
�i .x;y;u/
i ;

applying (3-7) to the shorter paths.
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3.7 Quadratic duality and the Ext–algebra of the sum of all simple modules.

The algebra zH�
Z for smooth parameters has already appeared in the literature in [7]; it is the “A–algebra”

of the hyperplane arrangement defined by di D pk� 1
2

for all k 2Z. This is slightly outside the scope of
that paper, since only finite hyperplane arrangements were considered there, but the results of that paper
are easily extended to the locally finite case. In particular, we have that the algebra zH�

Z is quadratic, and
its quadratic dual also has a geometric description, given by the “B–algebra”. We will use this to produce
a description of the Ext–algebra of the sum of all simple representations of zH�

Z.

If we fix an integer m, we may consider the hyperplane arrangement given by diDpk� 1
2

for k 2 Œ�m;m�.
Let H Œm� be the A–algebra associated to this arrangement as in [8, Section 8.3] — in that paper, it is
denoted by A.�;�/. We leave the dependence on � and the ground ring implicit.

By definition, H Œm� is obtained by considering the chambers of the arrangement we have fixed above,
putting a quiver structure on this set by connecting chambers adjacent across a hyperplane, and then
imposing the same local relations (3-6a)–(3-6c). One result which will be extremely important for us is:

Theorem 3.20 [8, Lemma 8.25] The algebra H Œm� is finite-dimensional in each graded degree , with
finite global dimension � 2n.

There’s a natural map of H Œm� to zH�, sending the idempotents for chambers to 1x for xi 2 Œ�m� 1;m�.

Proposition 3.21 Fix x;y and an integer q. For m sufficiently large , the map H Œm�! zH� induces an iso-
morphism .1xH Œm�1y/q Š .1x

zH�1y/q between homogeneous elements of degree q and an isomorphism
ExtH Œm�.Lx;Ly/Š Ext zH �.Lx;Ly/.

Proof An element of .1xH Œm�1y/q can be written as a sum of length n paths from x to y. Thus, it can
only pass through u if jx�ujC ju�y j � q. Thus, if m> qCjxj1Cjy1j, then no hyperplane crossed
by this path is excluded in H Œm�. The map .1xH Œm�1y/q! .1x

zH�1y/q is clearly surjective in this case,
and injective as well, since any relation used in H is also a relation in H Œm�.

Thus, if we take a projective resolution of Lx over H Œm� and tensor it with zH�, we can choose m

sufficiently large that the result is still exact in degrees below 2q. Since H Œm� is Koszul, with global
dimension � 2n, every simple over H Œm� has a linear resolution of length less than � 2n. This establishes
that the tensor product complex is a projective resolution for m� 0.

This establishes that we have an isomorphism ExtH Œm�.Lx;Ly/! Ext zH �.Lx;Ly/ for m� 0.

Corollary 3.22 The algebra zH� is Koszul with global dimension � 2n.

Note that in the language of [29, Section 5.4], we should say that the category P. zH�/ is Koszul. By
[29, Theorem 30], the Koszul dual of zH� is its quadratic dual. Thus, let us calculate its quadratic dual.
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Continue to assume that zƒ.�/ is smooth. If we dualize the short exact sequence

0! tZ! dZ! gZ! 0

we obtain a dual sequence
0 t�Z d�Z g�Z 0:

Let ti be the image in t�Z of the i th coordinate weight of t�Z.

Definition 3.23 Let zH !
�;Z (resp. zH !

�;K) be the dg–algebra generated over UZ.t
�/ (resp. UK.t

�/) by

elements ex for x 2 zƒ.�/, d˙i
x for x;x˙ �i 2

zƒ.�/ with trivial differential and subject to the following
quadratic relations:

� Write dx;u WD d˙i
x where uD x˙ �i . For each x and each i , we have

(3-8a)
X

u2˛i .x/

dx;udu;x D tiex:

Note that this implies that if ˛i.x/D∅, then tiex D 0.

� If x;xC �i ;xC �j ;xC �i C �j 2 zƒ.�/, then

d
Cj
xC�i

dCi
x D�dCi

xC�j
d
Cj
x ; d

�j
xC�j

d�i
xC�iC�j

D�d�i
xC�i

d
�j
xC�iC�j

;(3-8b)

d
�j
xC�iC�j

dCi
xC�j

D�dCi
x d

�j
xC�j

; d�i
xC�iC�j

d
Cj
xC�i

D�d
Cj
x d�i

xC�i
:(3-8c)

� If x and u are chambers such that jx�uj D 2 and there is only one length 2 path .x;y ;u/ in zƒ.�/
from x to u, then

dx;ydy;u D 0:(3-8d)

For example, if x 62 zƒ but xC�i ;xC�j ;xC�iC�j 2 zƒ.�/, then d
�j
xC�iC�j

dCi
xC�j

D 0. We suppress the

dependence of zH and zH ! on � and the ground ring, to avoid clutter. The following holds over both K and Z:

Theorem 3.24 The algebras zH and zH ! are quadratically dual , with the pairing zH1 �
zH !

1
given by

hc� i
x ; d

� 0j
y i D ıx;yıi;jı�;� 0 :

Again, in the notation of [29], we would say that the categories P. zH / and P. zH !/ are quadratically dual.

Proof What we must show is that the quadratic relations of zH in zH1˝ zH0

zH1 are the annihilator of the

relations of zH ! in zH !
1
˝ zH0

zH !
1
. It is enough to consider ex

zH1˝ zH0

zH1ey for any pair of idempotents ex

and ey . This space can only be nonzero if jx�y j D 2 or 0. Let us first assume that jx�y j D 2. If there
is one path between x and y in zƒ, then ex

zH1˝ zH0

zH1ey Š ex
zH2ey and there are no relations. On the

other hand, in zH !, by (3-8d) we have that all elements of ex
zH !

1
˝ zH !

0

zH !
1
ey are relations.

If there are two paths, through u and u0, then the element cx;u ˝ cu;y � cx;u0 ˝ cu0;y spans the set of
relations. Its annihilator is dx;u˝du;yCdx;u0˝du0;y , which spans the relations in zH ! by (3-8b)–(3-8c).
This deals with the case where jx�y j D 2.
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Now, assume that x D y . The space ex
zH1 ˝ zH0

zH1ex is spanned by cx;ucu;x for u 2 ˛.x/. Thus,

ex
zH1˝ zH0

zH1ex ŠK˛.x/. We can map this to dK by sending the unit vector corresponding to u to si ,
where x D u˙ �i . The relations are the preimage of tK.

By standard linear algebra, the annihilator of a preimage is the image of the annihilator under the dual
map. Thus, we must consider the dual map t?K � d�K!K˛.x/, and identify its image with the relations
in zH !. These are exactly the relations imposed by taking linear combinations of the relations in (3-8a)
such that the right-hand side is 0.

Corollary 3.25 We have a quasi-isomorphism of dg–algebrasM
x;y

Ext.Lx;Ly/Š zH
!
�;K;

with individual summands given by Ext.Ly ;Lx/Š ex
zH !
�
ey .

Proof Here, we apply Theorem 3.18; this equivalence of abelian categories implies that we can replace
the computation of ExtA�.Lx;Ly/ with that of the corresponding one-dimensional simple modules
over zH� in the subcategory of modules on which si acts nilpotently.

If we instead did the same computation in the bounded derived category of all finitely generated modules,
then we would know the result is ex

zH !
�
ey by Koszul duality. The formality of the Ext–algebra follows

from the consistency of A1–operations with the internal grading, so this is a quasi-isomorphism of
dg–algebras. Thus, we need to know that the inclusion of the category on which si acts nilpotently induces
a fully faithful functor on derived categories.

For this, it’s enough to show that every pair of objects A;B has an object C (all in the subcategory) and a
surjective morphism  W C !A such that the induced map Extn.A;B/! Extn.C;B/ is trivial for all n.
We can accomplish this with C a sum of quotients of zH�1z’s by the ideal generated by sNi for N � 0;
this is clear for degree reasons if A and B are gradable, and since gradable objects dg–generate, this is
enough.

This gives us a combinatorial realization of the Ext–algebra of the simple modules in this category. We
can restate it in terms of Stanley–Reisner rings as follows.

For every pair x;y , we have a polytope x�R
x \
x�R

y , which has an associated Stanley–Reisner ring
SR.x;y/K. The latter is the quotient of KŒt1; : : : ; tn� by the relation that ti1

� � � tik
D 0 if the intersection

of x�R
x \
x�R

y with the hyperplanes defined by aij D pn for n 2Z is empty. Let SR.x;y/K be its quotient
modulo the system of parameters defined by the image of t?K.

We can define SR.x;y/Z and SR.x;y/Z by the same prescription, replacing K by Z everywhere. In
[7, Definition 4.1], the authors define a product on the sum SRZ Š

L
x;y2zƒ

SR.x;y/Z, which they call
the “B–algebra”. The same definition works over K.
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The result [7, 4.14] shows that this algebra is isomorphic to the “A–algebra” — that defined by the relations
(3-6a)–(3-6c) — for a Gale dual hyperplane arrangement. Unfortunately, for a periodic arrangement, the
Gale dual is an arrangement on an infinite-dimensional space, which we will not consider. We can easily
restate this theorem in a way which will generalize for us. Assume that � is a smooth parameter.

Proposition 3.26 [7, Theorem A] The algebra SRK is quadratic dual to zH�
K. That is , it is isomorphic

to zH !
�;K. In particular , we have the canonical isomorphisms

Ext.Lx;Ly/Š ex
zH !
�;Key Š SR.x;y/KŒ�jx�y j1�:

3.8 Interpretation as the cohomology of a toric variety

For our purposes, the key feature of the quadratic dual of zH�
Z is its topological interpretation, which is

exactly as in [7, Section 4.3]. This interpretation will allow us to match the Ext–algebras which appear
on the mirror side, in the second half of this paper.

Indeed, the periodic hyperplane arrangement Aper
�

defines a tiling of g�;�R by the polytopes x�R
x .

To each such polytope we can associate a G–toric variety Xx; see [15, Chapter XI]. Each facet of the
polytope defines a toric subvariety of Xx . In particular, the facet�R

x \�
R
y defines a toric subvariety Xx;y

of both Xx and Xy .

Furthermore, the Stanley–Reisner ring SR.x;y/K is identified with H�
G
.Xx;y IK/, and the quotient

SR.x;y/K is identified with H�.Xx;y IK/. Composing this identification with Proposition 3.26, we
have an identification

ex
zH !
�;Key ŠH�.Xx;y IK/Œ�jx�y j1�:

In this presentation, multiplication in the Ext–algebra is given by a natural convolution on cohomology
groups [7, Section 4.3].

3.9 Degrading

So far, we have only considered A�K–modules which are endowed with a D–action. Now, we use the
results of the preceding sections to describe the category A�K–modo of modules without this extra structure.

Proposition 3.27 Assume that L is a simple module in the category A�K–modo. Then we have an
isomorphism of A�K–modules LŠLx for some x.

Proof On the subcategory A�K–modo, the central element

z
p
i @

p
i D hCi .h

C
i � 1/.hCi � 2/ � � � .hCi �pC 1/

acts nilpotently, so hCi has spectrum in Fp. In L, there thus must exist a simultaneous eigenvector v
for all hCi ’s, and a such that hCi v D aiv. Thus, W 1

a .L/¤ 0, which shows that there is a nonzero map
Qa Š Px!L, so we must have LŠLx.
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This shows that Lx gives a complete list of simples. The module Px represents the a generalized
eigenspace of hCi , and thus still projective. In fact, there are redundancies in this list, but they are easy to
understand.

Definition 3.28 Let ƒ.�/ be the quotient of zƒ.�/ by the equivalence relation that x � y if and only if
xjtZ D y jtZ . Equivalently, x � y if y D xC  , where  lies in t?Z D g�Z.

We write xx for the image of x in ƒ.�/. Recall that g�;�Z is a torsor for the lattice g�Z. The action of the
sublattice p �g�Z preserves the periodic arrangement Aper

�
. The quotient Ator

� DA
per
�
=p �g�Z is an arrangement

on the quotient g�;�Z =p � g�Z, and ƒ.�/ is the set of chambers of Ator
� .

Example 3.29 In the setting of Example 3.12, Ator
� has three chambers. A set of representatives is given

by those chambers of the periodic arrangement lying within the pictured square.

Theorem 3.30 As A�K–modules , Lx Š Ly if and only if x � y . That is , the simple modules in
A�K–modo are in bijection with ƒ.�/.

Proof If x�y , then Px and Py are canonically isomorphic as A�K–modules, since (3-2) is only sensitive
to the coset of a under the action of p � t?Z. It follows that Lx ŠLy as A�K–modules. On the other hand,
if Lx ŠLy as A�K–modules, their weights modulo p must agree. This is only possible if xjtZ D y jtZ .

When convenient, we will write Lxx for the simple attached to xx 2ƒ.�/. We can understand the Ext–
algebra of simples using the degrading functor D W A�K–modD

o ! A�K–modo which forgets the action
of D.

Theorem 3.31 We have a canonical isomorphism of algebras

ExtA�K–modo
.Lx;Ly/Š

M
xjtZDujtZ

ExtA�K–modD
o
.Lu;Ly/Š

M
yjtZDujtZ

ExtA�K–modD
o
.Lx;Lu/:

Proof This is immediate from the fact that Px remains projective in A�K–modo, so the degrading of a
projective resolution of Lx remains projective.

One can easily see that this implies that, just like A�K–modD
o , the category A�K–modo has a Koszul graded

lift, since the coincidence of the homological and internal gradings is unchanged.

We can deduce a presentation of

H !
�;K D

M
x;y2ƒ.�/

ExtA�K–modo
.Lx;Ly/:

Indeed, we think of zH !
�;K as the path algebra of the quiver zƒ.�/ (over the base ring UK.t

�/) satisfying
the relations in Definition 3.23, and then apply the quotient map to ƒ.�/, keeping the arrows and relations
in place. This is well-defined since the relations (3-8a)–(3-8c) are unchanged by adding a character of G

to x.
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Likewise, we have the following description of the endomorphism algebra of the projectives. Let H�
K be

the algebra generated by the idempotents 1x and the elements c˙i
x for all x 2ƒ.�/ over S modulo the

relations (3-6a)–(3-6c). Let H�
Z be the natural lift to Z.

Proposition 3.32 H�;K D
M

x;y2ƒ.�/

HomA�K–modo
.Px;Py/.

Example 3.33 We continue Example 3.12. The setƒ.�/ has 3 elements corresponding to the chambers A,
where x1Cx2Cx3Db�=pc, B, where x1Cx2Cx3Db�=pc�1, and C , where x1Cx2Cx3Db�=pc�2.
We have adjacencies between A and B across 3 hyperplanes, and between B and C across 3 hyperplanes,
with none between A and C .

Thus, our quiver is
A B C .

We use xi to the path from A to B across the di hyperplane, and yi the path from C to B across the
di hyperplane. Our relations thus become

x�1 x1 D x�2 x2 D x�3 x3; y�1 y1 D y�2 y2 D y�3 y3;

x1x�1 Cy1y�1 D x2x�2 Cy2y�2 D x3x�3 Cy3y�3 ;

x�i yj D�x�j yi ; y�i xj D�y�j xi ; xix
�
j D�yj y�i when i ¤ j ;

y�1 x1 D y�2 x2 D y�3 x3 D x�1 y1 D x�2 y2 D x�3 y3 D 0;

x�i xj D y�i yj D 0 when i ¤ j:

Note that there are only finitely many elements of ƒ.�/. In fact, the number of such elements has an
explicit upper bound. A basis of the inclusion T �D is a set of coordinates such that the corresponding
coweights form a basis of dQ=tQ. For generic parameters, taking the intersection of the corresponding
coordinate subtori defines a bijection of the bases with the vertices of Ator

� .

Lemma 3.34 The number of elements of ƒR.�/ is less than or equal to the number of bases for the
inclusion T �D.

Proof Choose a generic cocharacter � 2 t?Q � d�Q. Note that a real number c satisfies the equations
xip � c < xipCp if and only if it satisfies xip� � < c < xipCp� � for � sufficiently small. Thus, we
will have no fewer nonempty regions if we consider the chambers

ER
x D fa 2 g

�;�
Z ˝R j pxi � �i < ai < pxi Cp� �ig

for some sufficiently small �i > 0 chosen generically. Note that ER
x is open. For any xER

x , there is a
maximal point for this cocharacter, that is, a point a such that for all b¤ a 2 x�R

x , we have �.b� a/ < 0.
By standard convex geometry, this is only possible if there are hyperplanes in our arrangement passing
through a defined by coordinates that are a basis. In fact, by the genericity of the elements �i , we can
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assume that the point a is hit by exactly a basis of hyperplanes. This gives a map from ƒ.�/R to the
set of bases and this map is injective, since all but one of the chambers that contain a in its closure will
contain points higher than a.

Since the number of elements of ƒR.�/ is lower semicontinuous in �, we see immediately that � is
smooth if the size of ƒ.�/ is the number of bases.

3.10 Tilting generators for coherent sheaves

We can also interpret these results in terms of coherent sheaves. In particular, we can consider the coherent
sheaf Qa D lim

 ��
A �

K=A
�

K.h
C
i � ai/

N on the formal completion of the fiber ��1.0/. Here, as before, we
assume that ai 2 Fp , so a

p
i �ai D 0. On this formal subscheme, this is an equivariant splitting bundle for

the Azumaya algebra A �
K by [35, Theorem 4.3.4].

If we think of A �
Kj��1.y0/

as a left module over itself, it decomposes according the eigenvalues of hCi
acting on the right. By construction, each generalized eigenspace defines a copy of Qa for some weight a.
If we let g�;�Fp

be the set of characters of dFp
which agree with � .mod p/ on tFp

, then these are precisely
the simultaneous eigenvalues of the Euler operators hCi that occur. Thus, we have

A �
Kj��1.y0/

Š

M
b2g
�;�

Fp

Qb:

In particular, given an A �
K–module M over the formal neighborhood of ��1.y0/, we have an isomorphism

of coherent sheaves

(3-9) M Š
M

b2g
�;�

Fp

H omA �K
.Qb;M /:

The elements of A �
K act on Qa on the left as endomorphisms of the underlying coherent sheaf; in particular,

Qa naturally decomposes as the sum of the generalized eigenspaces for the Euler operators hCi .

In fact, each eigenspace for the action of hCi defines a line bundle, so that the sheaf Qa is the sum of
these line bundles. The next few results will provide a description of these line bundles. We begin with
some preliminaries. Recall that MK is defined as a free quotient of a D–stable subset of T �An

K by T.
Given any character of x 2D, the associated bundle construction defines a D–line bundle on MK. If we
forget the D–equivariance, then the underlying line bundle depends only on the image xx of x in d�Z=t

?
Z.

Definition 3.35 Given x 2 d�Z, let `.x/ be the associated D–equivariant line bundle line bundle on MK.
We sometimes write `.xx/ for the underlying nonequivariant line bundle.

Recall that the Weyl algebra WK defines a coherent sheaf over the spectrum of its center, namely
.T �A.1/K /n. As a coherent sheaf, it is simply a direct sum of copies of the structure sheaf. Consider a
monomial m.k; l/ WD

Qn
iD1 @

ki

i z
li

i , viewed as a section of the structure sheaf. We have the following
description of its D–weight x 2 d�Z.
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Write �i for the generators of d�Z, so that x D
Pn

iD1 ıi�i . Let ıCi be the maximal power of z
p
i dividing

m.l ;k/, and let ı�i be the maximal power of @p
i dividing m.l ;k/. Then ıi D ıCi � ı

�
i . In the notation of

Section 3.3, we can write this as x D
Pn

iD1 ıi.0; l �k/�i . We conclude the following.

Lemma 3.36 The monomial m.l ;k/ descends to a section of the line bundle `
�Pn

iD1 ıi.0; l �k/�i

�
on M

.1/
K .

The following proposition holds over the formal neighborhood ��1.y0/.

Proposition 3.37 We have isomorphisms

H omA �K
.Qb;Qa/Š `

� nX
iD1

ıi.b; a/�i

�
;(3-10)

Qa Š

M
b2g
�;�

Fp

`

� nX
iD1

ıi.b; a/�i

�
:(3-11)

Note that the image of
Pn

iD1 ıi.b; a/�i in d�Z=t
?
Z depends only on the class of b in d�Z=p � t

?
Z, so that the

sum is well defined. The different isomorphism classes of line bundles that appear are in bijection with
the chambers of ƒ.�/, but not canonically so, since we must choose a.

Proof The second isomorphism follows from the first by (3-9). To construct the first isomorphism, we
recall that A �

K Š End.Qa/Š End.Qb/. Thus H omA �K
.Qa;Qb/ is a line bundle. It has a section given

by the element m.b� a/ 2A�K. By Lemma 3.36, it is the line bundle defined via the associated bundle
construction by the character

�Pn
iD1 ıi.b; a/�i

�
of T . The proposition follows.

We now pass from characteristic p to characteristic zero. The first step is to replace the parameter � 2 t�Fp

by a parameter � 2 t�R.

Definition 3.38 Let Aper
�

be the periodic hyperplane arrangement in g
�;�
R defined by the hyperplanes

di D k for k 2 Z and i D 1; : : : ; n.

This is the arrangement obtained from Definition 3.8 by sending p!1 and rescaling by 1=p. We can
define zƒ.�/;ƒ.�/ as before. If the element p� lies in t�Z, then its image � in t�Fp

satisfies zƒ.�/D zƒ.�/
and ƒ.�/Dƒ.�/. The parameter � is smooth if and only if � is smooth.

Let
T
�

Z Š
M
xx2ƒ.�/

`.xx/:

For another commutative ring R, let T
�

R
be the corresponding bundle on MR , the base change to Spec.R/.

Every line bundle which appears has a canonical S–equivariant structure (induced from the trivial S–
equivariant structure on OT �An

Z
), and we endow T

�
Z with the induced S–equivariant structure. Note that
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any lift of ƒ.�/ to zƒ.�/ determines a D �S–equivariant structure, although we do not need it here. The
S–weights make End.T �

Z / into a Z�0 graded algebra. Let x 2 d�Z.

Consider the monomial
m.x/ WD

Y
xi>0

z
xi

i

Y
xi<0

w
�xi

i :

Note the similarity with (2-1), with the key difference that we do not require x 2 t?Z. After Hamiltonian
reduction, this defines a section of `.x/ with S–weight equal to jxj1. By the same token, it defines an
element of Hom.`.y/; `.y 0// whenever y 0 D y Cx.

Proposition 3.39 For all �, we have an isomorphism of graded algebras H�
Z Š EndCoh.M/.T

�
Z / sending

cx;y 7!m.y �x/ and si 7! ziwi .

Proof We first check that the map is well-defined. The map si 7! ziwi is well-defined since the linear
relations satisfied by si exactly match the relations on ziwi coming from restriction to the zero fiber of the
T –moment map. The map cx;y 7!m.y �x/ is well-defined if the elements m.y �x/ satisfy relations
(3-6a) and (3-6b)–(3-6c). Relation (3-6a) is satisfied if m.�i/m.��i/D ziwi . This is immediate from the
definition.

The relations (3-6b)–(3-6c) are clear from the commutativity of multiplication. Thus, we have defined
an algebra map H

�
Z! End.T �

Z/. This is a map of graded algebras, since both cx;y and m.y �x/ have
degree jy �xj1.

This map is a surjection, since homomorphisms from one line bundle to another are spanned over
ZŒz1w1; : : : ; znwn� by m.x/. Since H

�
Z is torsion-free over Z, it’s enough to check that it is injective

modulo sufficiently large primes, which follows from Theorems 3.13 and 3.19.

This allows us to understand more fully the structure of the bundle T
�

Z . Note that the bundle T
�

Z depends
on �, but only through the structure of the set ƒ.�/.

Proposition 3.40 The bundle T
�

Q is a tilting generator on MQ if and only if � is smooth.

Proof The bundle T
�

Q is tilting by Theorem 2.5, so we need only check if it is a generator. In order
to check this over Q, it is enough to check it modulo a large prime p. Fix an affine line Z in g

�;�
Z . By

[25, Proposition 4.2], there is an integer N , independent of p, such that the set of � 2ZFp
such that T �

Fp

is not a generator has size �N .

If � is smooth, then for all sufficiently large p we can find smooth �0 satisfying p�0 2 t�Z and such that
ƒ.�0/Dƒ.�/. It follows that moreover T

�0

Q D T
�

Q.

Since �0 is smooth, �0Dp�0 is also smooth. The number of �2ZFp
such thatƒ.�/Dƒ.�0/ is asymptotic

to Ap, where A is the volume in ZR=Z of the real points such that ƒ.�=p/R Dƒ.�/R. Thus, whenever
p �N=A, there must be some choice of � such that T

�=p
Q D T

�
Q is a tilting generator.
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If � is not smooth, then H
�
Q has fewer simple modules than at a smooth parameter, so T

�
Q cannot be a

generator.

Combining the above results yields the following equivalence of categories. In the following, we view
T
�

Q as a coherent sheaf of H
�
Q–modules.

Corollary 3.41 For smooth �, the adjoint functors

�
L
˝

H
�

Q
T
�

Q WD
b.H

�;op
Q –mod/!Db.Coh.MQ//;

RHom.T �
Q;�/ W Db.Coh.MQ// !Db.H

�;op
Q –mod/;

define equivalences between the derived categories of coherent sheaves over MQ and finitely generated
right H

�
Q–modules.

The same functors define an equivalence between the derived categories of graded modules and equivariant
sheaves

�
L
˝

H
�

Q
T
�

Q W Db.H
�;op
Q –gmod/ !Db.CohGm

.MQ//;

RHom.T �
Q;�/ WD

b.CohGm
.MQ//!Db.H

�;op
Q –gmod/:

Finally, identical statements hold if we replace H by zH , and replace Coh.MQ/ by CohG.MQ/, and
CohGm

.MQ/ by CohGm�G.MQ/.

Since H
�;op
Q is defined as a path algebra modulo relations, its graded simple modules are just the

one-dimensional modules L
op
x WD Hom

�L
y2ƒ.�/Ly ;Lx

�
; we denote the corresponding complexes of

coherent sheaves by
Lx WDL

op
x

L
˝

H
�

Q
T
�

Q:

The induced t–structure on Db.CohGm
.M// is what’s often called an “exotic t–structure”.

We also have a Koszul dual description of coherent sheaves as dg–modules over the quadratic dual H !
�;Q.

Since H
�
Q is an infinite-dimensional algebra, we have to be a bit careful about finiteness properties here.

We let Coh.MQ/o be the category of coherent sheaves set-theoretically supported on the fiber ��1.o/, and
H
�;op
Q –modo denote the corresponding category of H

op
Q –modules; one characterization of these modules

is that for some integer N , they are killed by all algebra elements of degree >N .

Lemma 3.42 A complex of coherent sheaves lies in Db.CohGm
.MQ/o/ if and only if it is in the

triangulated envelope of the complexes Lx.

Proof The complex M is in the subcategory Db.CohGm
.MQ/o/ if and only if it is sent to a complex of

modules over H
�;op
Q killed up to homotopy by a sufficiently high power of the two-sided ideal generated

by the elements of positive degree in H 0.MQ;OMQ/. This ideal contains all elements of sufficiently
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large degree (since the quotient by it is finite-dimensional and graded), so each cohomology module of
the image is a finite extension of the graded simples. Thus the complex itself is an iterated extension of
shifts of these modules.

Let H !
�;Q –perf be the category of perfect dg–modules over H !

�;Q. As usual, we abuse notation and let

Db.Coh.MQ// to denote the usual dg–enhancement of this category, and similarly with Db.CohGm
.MQ//.

Combining the equivalence of Corollary 3.41 with Koszul duality:

Proposition 3.43 (1) We have an equivalence of dg–categories H !
�;Q–perfŠDb.Coh.MQ/o/ induced

by
L

y2ƒ.�/ Ext.Ly ;�/.

(2) We have an equivalence of dg–categories Db
perf.H

!
�;Q–gmod/ Š Db.CohGm

.MQ/o/ induced byL
y2ƒ.�/ Ext.Ly ;�/.

Proof Since elements of Db.Coh.MQ/o/ are finite extensions of Ly for different y , they are sent byL
y2ƒ.�/ Ext.Ly ;�/ to perfect complexes and vice versa. This proves item (1).

Item (2) is just the graded version of this statement, which corresponds to Corollary 3.41 via the usual
Koszul duality; see [4, Theorem 2.12.1].

This shows that smooth parameters also have an interpretation in terms of A �
K; this is effectively a

restatement of Proposition 3.40, so we will not include a proof.

Proposition 3.44 The functor R� WDb.A �
K–mod0/ 7!Db.A�K–mod0/ is an equivalence of categories

if and only if the parameter � is smooth.

4 Mirror symmetry via microlocal sheaves

In the previous sections, the conical Gm–action on hypertoric varieties played a key role in our study
of coherent sheaves. This is what allowed us to construct a tilting bundle based on a quantization in
characteristic p. This conic action also plays a crucial role in the study of enumerative invariants of these
varieties [12; 28; 30]. The quantum connection and quantum cohomology which appear in those papers
lose almost all of their interesting features if one does not work equivariantly with respect to the conic
action. We are thus interested in a version of mirror symmetry which remembers this conic action.

We expect the relevant A–model category to be a subcategory of a Fukaya category of the Dolbeault
hypertoric manifold D, built from Lagrangian branes endowed with an extra structure corresponding to
the conical Gm–action on M. However, rather than working directly with the Fukaya category, we will
replace it below by a category of DQ–modules on D. The calculations presented there should also be
valid in the Fukaya category. The reader is referred to the sequel [21] to this paper for more discussion of
this point.
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After defining the relevant spaces and categories of DQ–modules, we state our main equivalence in
Theorems 5.9 and 4.36.

There are a few obvious related questions. What corresponds to the category of all (not necessarily
equivariant) coherent sheaves on M? What corresponds to the full category of DQ–modules of D? We
plan to address these questions in a future publication.

4.1 Dolbeault hypertoric manifolds

In this section, we introduce Dolbeault hypertoric manifolds, whose definition we learned from unpublished
work of Hausel and Proudfoot.

Dolbeault hypertoric manifolds are complex manifolds attached to the data of a toric hyperplane arrange-
ment (ie a collection of codimension-one affine subtori), in much the same way that an additive hypertoric
variety is attached to an affine hyperplane arrangement, and a toric variety is attached to a polytope. They
carry a complex symplectic form, and a proper fibration whose generic fibers are complex lagrangian
abelian varieties.

Our construction of Dolbeault manifolds parallels the construction of toric varieties as Hamiltonian
reductions of powers of a basic building block.

For toric varieties, this building block is C with the usual Hamiltonian action of U1. Its polytope is a
ray in R. Other toric varieties are constructed by taking the Hamiltonian reduction of Cn by a subtorus
of Un

1
. Additive hypertoric varieties are similarly constructed from the basic building block T �C with its

hyperhamiltonian action of U1. The affine hyperplane arrangement associated to this building block is
a single point in R. For Dolbeault manifolds, our basic building block will be the Tate curve Z with a
(quasi)-hyperhamiltonian action of U1. Its toric hyperplane arrangement is a single point in U1.

We give a construction of Z suited to our purposes below, culminating in Definition 4.2.

Let C� D Spec CŒq; q�1�, and let D� be the punctured disk defined by 0< q < 1. Let Z� be the family
of elliptic curves over D� defined by .C� �D�/=Z, where 1 2 Z acts by multiplication by q � 1.

We will define an extension of Z� to a family Z over D with central fiber equal to a nodal elliptic curve.

Let Wn WDSpec CŒx;y� for n2Z. Consider the birational map f WWn!WnC1 defined by f �.x/D 1=y,
f �.y/D xy2. This defines an automorphism of the subspace W0 n fxy D 0g, and identifies the y–axis
in Wn with the x–axis in WnC1 birationally, so they glue to a P1. If we let q WD xy, then we can rewrite
this automorphism as .x;y/ 7! .q�1x; qy/. Note that this map preserves the product xy and commutes
with the C�–action on Wn defined by � �x D �x; � �y D ��1y; we let T denote this copy of C�.

Definition 4.1 Let W be the quotient of the union
F

n2Z Wn by the equivalence relations that identify
the points x 2Wn and f .x/ 2WnC1.

The variety W is smooth of infinite type, with a map q WD xy WW!C and an action of C� preserving
the fibers of q. The map W0 n fxy D 0g !W n q�1.0/ is easily checked to be an isomorphism.
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W carries a Z–action defined by sending Wn to WnC1 via the identity map. The action of n 2 Z is the
unique extension of the automorphism of W0 n fxy D 0g given by .x;y/ 7! .q�nx; qny/. Thus, n fixes
a point .x;y/ if and only if q is an nth root of unity. In particular, the action of Z on

(4-1) zZ WD q�1.D/

is free. Combining this with the paragraph above, we see that q�1.D�/ D f.x;y/ 2W0 j xy 2 D�g;
since we can choose x 2C� and q 2D�, with y D q=x uniquely determined, we have an isomorphism
q�1.D�/ŠC� �D�. Transported by this isomorphism, the C�–action we have defined acts by scalar
multiplication on the first factor, and trivially on the second.

Thus, we obtain the following commutative diagram of spaces:

(4-2)

C� �D� Š q�1.D�/ zZ

D� D

j

q q

The fiber zZ0 WD q�1.0/ is an infinite chain of CP1’s with each link connected to the next by a single node.

The action of C� on zZ0 scales each component, matching the usual action of scalars on CP1, thought of
as the Riemann sphere. The action of the generator of Z translates the chain by one link.

Definition 4.2 Let Z WD zZ=Z.

The manifold Z will be our basic building block. We now study various group actions and moment maps
for Z, in order to eventually define a symplectic reduction of Zn.

The action of C� on zZ descends to an action on Z; note that on any nonzero fiber of the map to D, it factors
through a free action of the quotient group C�=qZ, which is transitive unless q D 0. Thus the generic
fiber of q is an elliptic curve. The fiber Z0 WD q�1.0/ is a nodal elliptic curve. We write n for the node.

The action of U1 �C� on zZ is Hamiltonian with respect to a hyperkähler symplectic form and metric
described in [24, Proposition 3.2], where one also finds a description of the Z–equivariant moment map.
This moment map descends to

� W Z!R=ZDU1:

Hence � is the quasihamiltonian moment map for the action of U1 on Z. We may arrange that
�.n/D 1 2U1. The nodal fiber Z0 is the image of a U1–equivariant immersion � WCP1

! Z, which is
an embedding except that 0 and1 are both sent to n. We have a commutative diagram

(4-3)

CP1 Z

Œ0; 1� R=Z

�

�
CP1 � where �CP1.z/D

jzj2

1Cjzj2
WCP1

! Œ0; 1�:
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The action of U1 and map �� q form a kind of “multiplicative hyperkähler hamiltonian action” of U1.
In particular, .�� q/�1.a; b/ is a single U1 orbit, which is free unless aD 1 and b D 0, in which case it
is just the node n. It’s worth comparing this with the hyperkähler moment map on T �C for the action
of U1: this is given by the map

T �C!R�C; .z; w/ 7! .jzj2� jwj2; zw/:

The fibers over nonzero elements of R � C are circles, and the fiber over zero is the origin. In a
neighborhood of n, �� q is analytically isomorphic to this map.

Without seeking to formalize the notion, we will simply mimic the notion of hyperkähler reduction in this
setting. Recall that a hypertoric variety M is defined using an embedding of tori .C�/kDT !DD .C�/n.
Let TR and DR be the corresponding compact tori in these groups, and T _RŠ t�R=t

�
Z the Langlands

dual torus; the usual inner product induces an isomorphism DR Š D_R, which we will leave implicit.
Thus, we have an action of TR on Zn and a TR–invariant map

(4-4) ˆ W Zn
! T _R � t

�:

Given � 2 T _R , let �0 D � � 0 2 T _R � t
�. For generic � the action of TR on ˆ�1.�0/ is locally free.

For the rest of this paper, we make the additional assumption that the torus embedding T ! D is
unimodular, meaning that if ek are the coordinate basis of dZ, then any collection of ek whose image
spans dQ=tQ also spans dZ=tZ. As with toric varieties, this guarantees that for generic � the action of T

on ˆ�1.�0/ is actually free. We expect that this assumption can be lifted without significant difficulties,
but it will help alleviate notation in what follows.

The following definition is due to Hausel and Proudfoot.

Definition 4.3 Let D WDˆ�1.�0/=TR.

Proposition 4.4 D is a 2d D .2n�2k/–dimensional holomorphic symplectic manifold.

We will also need to consider the universal cover zD; this can also be constructed as a reduction. We have
a hyperkähler moment map ẑ W zZn! t�R˚ t�. Let z�0 be a preimage of �0.

Definition 4.5 Let zD WD ẑ�1.z�0/=TR.

zD carries a natural action of g�Z, the subgroup of Zn which preserves the level ẑ�1.z�0/. The quotient by
this map is D, and the quotient map � W zD!D is a universal cover. Note that zD is a (nonmultiplicative)
hyperkähler reduction, and the action of g�Z preserves the resulting complex symplectic form. This gives
one way of defining the complex symplectic form on D.

The T action on zZn and the holomorphic part of the hyperkähler moment map ẑC both extend to the
infinite-type algebraic variety Wn.

Definition 4.6 Let zDalg be the holomorphic symplectic reduction ẑ�1
C .0/==z�0T , where we take the GIT

quotient by T with linearization determined by z�0.
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As opposed to zD, the space zDalg is naturally an infinite-type but finite-dimensional algebraic variety. Its
construction and properties are described in detail in [23]. It contains the complex manifold zD as an
(analytic) open subset.

Let qD WD! t?C Š g�C be the map induced by qn W Zn!Cn Š d�C . Its fibers are complex Lagrangians.
The action of C� on Z defines an action of G DD=T on D, which preserves the complex symplectic
form and the fibers of the map qD, and acts transitively on fibers over values .q1; : : : ; qn/ with qi ¤ 0

for all i . Such fibers are d–dimensional abelian varieties.

Definition 4.7 We define the core of D to be C WD q�1
D .0/, and denote by zC its preimage in zD.

We thus have inclusions zC
closed
���! zD

open
��! zDalg. The lattice g�Z acts compatibly on all three spaces, but

the quotient only makes sense for the first two, where it gives the inclusion C!D.

Whereas D is merely a complex manifold, we will see that C is naturally an algebraic variety. It is a free
quotient of zD, whose components, as we shall see, are smooth complex Lagrangians. We can give an
explicit description of C as follows, in the spirit of the combinatorial description of toric varieties in terms
of their moment polytopes. In our setting, polytopes are replaced by toroidal arrangements.

We have the map D�R! T �R; let G
�;�
R be the preimage of �. It is a torsor over G�R. The preimage of G

�;�
R

under the quotient d�R!D�R is given by g
�;�
R WD z�0C g�R.

Definition 4.8 Let Bper
�
� g
�;�
R be the periodic hyperplane arrangement defined by the preimage of Btor

�

in z�0C g�R. Let zƒR.�/ be the set of chambers of Bper
�

. We write �R
x � g

�;�
R for the (closed) chamber

indexed by x 2 zƒR.�/.

As in Section 3.8, let Xx be the toric variety obtained from the polytope �R
x by the Delzant construction.

Proposition 4.9 (1) The irreducible components of zC are smooth toric varieties Xx indexed by
x 2 zƒR.�/.

(2) The intersection Xx \Xy is the toric subvariety of either component indexed by �R
x \�

R
y .

(3) The image under the GR–moment map of Xx is precisely the polytope �R
x .

(4) All components meet with normal crossings.

Proof We begin by noting that zC is the image in zD of ˆ�1.�0/\ zZn
0
. The irreducible components of zZn

0

are copies of .CP1/n indexed by x 2 Zn. The moment map �n W zZn
0
!Rn, restricted to the component

.CP1/nx, has image the translation Œ0; 1�nx of the unit cube by x. We write ẑx W .CP1/n! t_R for the
restriction the TR moment map. It is given by be the composition of �n

CP1 W .CP1/n! Œ0; 1�nx with the
projection p W Œ0; 1�nx � d�R! t_R.

The preimage p�1.�/ � Œ0; 1�nx is a polytope, given by g
�;�
R \ Œ0; 1�

n
x. It is nonempty precisely when

x 2 zƒR.�/, in which case it is the chamber �R
x .

Geometry & Topology, Volume 28 (2024)



1040 Michael McBreen and Ben Webster

The irreducible components of zC are thus the quotients ẑ�1
x .�/=TR for x 2 zƒR.�/. The claims (1), (2)

and (3) now follow from standard toric geometry.

Claim (4) follows from the corresponding property for zZn
0
. In fact, the singular points of C are analytically

locally a product of m nodes, and a .d�m/–dimensional affine space.

Definition 4.10 Let Btor
�
�G

�;�
R be the toric hyperplane arrangement defined by the coordinate subtori

of D�R. Let ƒR.�/ be the set of chambers of Btor
�

. Given x 2 ƒR.�/, we write �R
x � G

�;�
R for the

corresponding chamber.

The toric arrangement Btor
�

is simply the quotient of the periodic arrangement Bper
�

by the action of the
lattice g�Z. The restriction of the quotient map to a fixed chamber �x � g

�;�
R is one-to-one on the interior,

but may identify certain smaller strata. Correspondingly, the composition Xx!
zD!D is in general

only an immersion. The following is easily deduced from Proposition 4.9.

Proposition 4.11 (1) The irreducible components of C are immersed toric varieties xXx indexed by
x 2 ƒR.�/. Any lift of x 2 ƒR.�/ to zƒR.�/ determines a birational map Xx !

xXx with finite
fibers.

(2) The intersection xXx \
xXy is the (immersed ) toric subvariety of either component indexed by

�R
x \�

R
y .

(3) The image under the GR–moment map of xXx is precisely the toric chamber �R
x .

(4) All components meet with normal crossings.

Example 4.12 We continue with Example 3.12. In this case, for generic z�0, we arrive at a picture like in
(3-4). The three chambers shown in total there correspond to the three core components of C : two of
these are isomorphic to CP2, and one to CP1

�CP1 blown up at .0; 0/ and .1;1/. We join these by
joining the lines at1 in the first CP2 to the exceptional locus of the blowup at .0; 0/, and its coordinate
lines to the unique lifts of CP1

� f1g and f1g�CP1 to lines in the blowup (note that in the blowup,
these lines don’t intersect). With the second CP2 we do the same gluing with 0 and1 reversed.

Note that in C, the two CP2’s are embedded, but the third component is only immersed: it intersects
itself transversely at each torus fixed point.

4.2 Weinstein neighborhoods and scaling actions

Let x be a chamber of the periodic arrangement Bper
�

, and let Xx be a component of the periodic core.
We will construct an open neighborhood zDalg

x Š T �Xx of Xx in zDalg. Its intersection

zDx WD
zD

alg
x \

zD

is an open neighborhood of Xx in zD, which maps by an immersion to an open neighborhood of xXx in D.
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Consider the union W0[W1 �W. This is a Zariski open subset of W isomorphic to T �CP1. Let zZ0

be its intersection with zZ. This is an open submanifold, isomorphic to a tubular neighborhood of CP1 in
its cotangent bundle.

These identifications map the function q to the function induced by the vector field z d=dz for z the usual
coordinate on CP1. The induced map zU ! Z is an immersion.

Applying the action of Z gives neighborhoods Wk of each component of q�1.0/�W. Repeating the
same construction for the product Wn, we obtain for each x 2Zn an open neighborhood zWx of .CP1/nx
in Wn, isomorphic to T �.CP1/n. This neighborhood is preserved by the (complex hamiltonian) action
of TR. Consider its complex symplectic reduction

zD
alg
x WDWx==z�0T:

It is an open neighborhood of Xx in zDalg, naturally symplectomorphic to T �Xx. Intersecting with
zD� zDalg, we obtain an open neighborhood zDx of the zero section in T �Xx mapping by a symplectic
immersion

(4-5) �x W zDx!D

to an open subset of D extending the immersion Xx!D and a corresponding lift z�x W zDx!
zD, which

is a symplectomorphism onto an open subset of zD. The set of such lifts is a torsor over g�Z.

4.3 Scaling actions

The scaling C�–action on T �Xx extends to an action of C� on zDalg, which does not preserve zD. We
first describe this action in the basic case of W. Fix p 2 Z and let Sp be the copy of C� which acts
on Wk giving x degree 1� kCp and y degree k �p. One can easily check that this action descends to
an action on W and gives the Poisson bracket degree one. On Wp [WpC1 Š T �CP1, it acts by the
scaling action on the fibers. Note that Sp does not preserve the open subset zZ�W.

The action of Sp�T does not commute with the translation action of Z. Instead, the Z–action intertwines
the actions of Sp � T for different p. In particular, all such actions are given by precomposing an
isomorphism Sp �T ! S0 �T with the action of the latter torus on W.

We can upgrade all these structures to the general case: for each x, we have a copy Sx of C� which
acts on zDalg such that on zDalg

x � T �Xx it matches the scaling action. As before, these actions do not
commute with the g�Z–action. Instead, they are intertwined by this action. In particular, all such actions
factor through an isomorphism Sx �G! S0 �G with the action of the latter torus on zDalg. We make
the following (purely notational) definition, to emphasize this independence of choices.

Definition 4.13 Let SG WD S0 �G, with its action on zDalg.
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4.4 Other flavors of multiplicative hypertoric manifold

In this paper, starting from the data of an embedding of tori T !Gn
m, we have constructed both an additive

hypertoric variety M and a Dolbeault hypertoric manifold D. We view the latter as a multiplicative
analogue of M. One can attach to the same data another, better known multiplicative analogue B, which
however plays only a motivational role in this paper. For a definition, see [22]. B is often simply
known as a multiplicative hypertoric variety. For generic parameters, it is a smooth affine variety, of
the same dimension as M and D. In fact, work of Zsuzsanna Dancso, Vivek Shende and the first
author [16] constructs a smooth open embedding D!B, such that B retracts smoothly onto the image.
The embedding does not, however, respect complex structures; for instance, the complex Lagrangians
considered here map to real submanifolds of the multiplicative hypertoric variety. Instead, B and D play
roles analogous to the Betti and Dolbeault moduli of a curve.

In the sequel [21] to this paper, joint with Ben Gammage, we show that the core C �D becomes the
Liouville skeleton of B, thought of as a Liouville manifold with respect to the affine Liouville structure.
Microlocal sheaves on this skeleton compute the wrapped Fukaya category of B. In the next section,
we will introduce a category of deformation quantization modules on D, which roughly corresponds to
microlocal sheaves on B with an extra Gm equivariant structure. This helps place our main results in the
usual context of homological mirror symmetry. The relationship between the two papers is explained in
more detail in [21].

4.5 Deformation quantization of D

In the next few sections, we define a deformation quantization of D over C..„1=2//, and compare modules
over this quantization with the category A�K–modo from the first half of the paper. We’ll also discuss how
the structure of Gm–equivariance of coherent sheaves can be recaptured by considering a category �m of
deformation quantization modules equipped with the additional structure of a “microlocal mixed Hodge
module”.

Consider the sheaf of analytic functions OWn
on Wn. We’ll endow the sheaf O„Wn

WD OWn
..„1=2// with

the Moyal product multiplication

f ?g WD fgC

1X
nD1

„n

2nn!

�
@nf

dxn

@ng

dyn
�
@ng

dxn

@nf

dyn

�
:

If f or g is a polynomial this formula only has finitely many terms, but for a more general meromorphic
function, we will have infinitely many. Following the conventions of [10], we let O„Wn

.0/D OWn
ŒŒ„1=2��,

which is clearly a subalgebra. We’ll clarify later why we have adjoined a square root of „.

Sending x 7!1=y and y 7!xy2 induces an algebra automorphism of this sheaf on the subset WnnfxyD0g,
since

1

y
?xy2

D xyC
„

2
and xy2 ?

1

y
D xy �

„

2
:
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This shows that we have an induced star product on the sheaf O„W, and thus on O„Z. We now use
noncommutative Hamiltonian reduction to define a star product on O„D. This depends on a choice of
noncommutative moment map �„ W t! O„Zn . We fix � 2 d�. Given .a1; : : : ; an/ 2 d, define

�„.a1; : : : ; an/ WD
X

aixiyi C„�.a/:

Our quantum moment map is the restriction of �„ to t� d. Note that this agrees mod „ with the pullback
of functions from t� under ˆ.

Let C� D O„Zn=O
„
Zn � �„.t/ be the quotient of O„Zn by the left ideal generated by these functions. This

is supported on the subset ˆ�1.T _R � f0g/. We have an endomorphism sheaf End.C�/ of this sheaf of
modules over O„Zn .

Definition 4.14 Let O„
�

be the sheaf of algebras on D defined by restricting End.C�/ to ˆ�1.�0/ and
pushing the result forward to D.

One can easily check, as in [26], that O„
�

defines a deformation quantization of D, that is, this sheaf is

free and complete over CŒŒ„��, we have an isomorphism of algebra sheaves O„
�
.0/=„O„

�
.0/Š OD, and

given two meromorphic sections f;g, we have

f ?g�g ?f � „ff;gg .mod „/:

4.6 G -equivariant modules

By a O„
�

–module, we will always mean a sheaf M of O„
�

–modules which admits a good lattice M.0/�M.

By construction, the map �„ W d! O„Zn descends to a map g! O„
�

, which quantizes the moment map for
the action of G on D.

Definition 4.15 We call a O„
�

–module pre-weakly G–equivariant if the action of g via left multiplication
by „�1�„ on the sections on any G–invariant open set is locally finite, ie it is spanned by its generalized
weight spaces for this torus.

A pre-weak equivariant structure can be upgraded to a weak equivariant structure as follows: we can
assume that M is indecomposable, so all weights appearing are in a single coset of the character lattice
of G. We can take the semisimple part of the action of each element of g, and globally shift by a character
of the Lie algebra to make all weights appearing integral. The resulting action integrates to a weak
G–equivariant structure (but we do not want to fix a specific one); we call such an action compatible with
the O„

�
–module structure. Note that pre-weakly G–equivariant modules are a Serre subcategory.

Lemma 4.16 Any pre-weakly G–equivariant module M is supported on q�1
D .0/.

Proof Given any nonzero X 2 g, consider the action of „�1k WD „�1�„.X / on M.U / for U a G–
equivariant open subset. By the assumption of local finiteness, for each m 2M.U /, there is a monic
polynomial p.u/D ud Cpd�1ud�1C � � �Cp0 2CŒu� such that p.„�1k/mD 0.
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If U \ q�1
D .0/D∅, then k is invertible in O„

�
.0/, and so we have

mD „.�pd�1k�1
� � � � �p0pd�1„

d�1k�d /m:

Thus, for any choice of good lattice M.0/�M, we have M.0/.U /� „M.0/.U /. Nakayama’s lemma
then implies that M.0/.U /D 0, so M.U /D 0.

Unfortunately, the action of SG on zDalg does not preserve zD. We can nevertheless speak of SG–
equivariance on zD and D, as follows.

Let M be a pre-weakly G–equivariant O„
�

–module. Let ��M be the pullback of this module to zD. We
write .��M/alg for the pushforward of ��M along the inclusion zD! zDalg. By Lemma 4.16, ��M is
supported on zC� zD, and this subset remains closed in zDalg. Thus the support is not enlarged.

Fix x0 2
zƒ.

Definition 4.17 A pre-weakly SG–equivariant structure on a pre-weakly G–equivariant O„
�

–module M

is an action of the Lie algebra Lie.Sx0
/ commuting with g which integrates to an equivariant structure

for Sx0
on .��M/alg.

We write O„
�

–modSG for the category of such modules. Since a homomorphism between pre-weakly
SG–equivariant modules is Lie.Sx0

/–equivariant, multiplication by „ is not a morphism in this category,
so this category is C–linear, not C..„//–linear.

As with pre-weakly G–equivariant modules, after making some auxiliary choices, we can endow a
pre-weakly SG–equivariant-module with a “compatible” action of the torus SG, which integrates the
semisimple part of (a shift of) the infinitesimal action.

Lemma 4.18 Let M 2 O„
�

–modSG . Fix a compatible action of SG. The action of C� on ��Malg

induced by the composition C� Š Sy ! SG does not depend on the G–equivariant structure , up to
isomorphism.

Proof Again, we can reduce to the case where M is indecomposable. By construction, any two compatible
G–equivariant structures on M differ by tensor product with a character of the group G, so the induced
Sy structures differ by tensor product with a character of Sy , which we can think of as the integer
weight w. Since „ has weight 1 under Sy , multiplication by „w intertwines these two actions, and gives
an isomorphism between the two Sy–equivariant structures.

4.7 The deformation quantization near a component of C

Given � 2 t�Q, we can define a fractional line bundle `� on any quotient by a free T –action. The
component Xx was defined by a free TR–action; by standard toric geometry, it also carries a canonical
presentation as a free T –quotient. Applying this construction to Xx thus yields a bundle `�;x . If � 2 t�Z,
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the set of honest characters, then this is an honest line bundle; otherwise, it gives a line bundle over
a gerbe, but we can still define an associated Picard groupoid, and thus a sheaf of twisted differential
operators (TDO) on Xx . Let �x be the canonical line bundle on Xx , and �1=2

x the half-density fractional
line bundle. It is a classical fact that �x D l��0;x , where �0 is the sum of all T –characters of Cn induced
by the map T !D.

We let D�;x denote the TDO associated to the fractional line bundle `�;x˝�
1=2
x , and let R�;x be its

microlocalization on T �Xx . That is, R�;x is a sheaf in the classical topology on T �Xx whose sections on
T �U for U �Xx are the Rees algebra for the order filtration on D�;x.U /; for an open subset V � T �U

(where we can assume without loss of generality that U is affine), we further invert any element of the
Rees algebra whose image under the map R�;x.U /=„R�;x.U /Š OT �U .T

�U / is invertible on V. The
construction of this algebra is discussed in more detail in [10, Section 4.1]. We’ll be more interested in
its localization:

Definition 4.19 W�;x WD R�;x Œ„
�1=2�.

If we equip a module M over the TDO D�;x with a good filtration, which for technical reasons we’ll
index with 1

2
Z, its Rees module M.0/ generated by „�kM�k for k 2 1

2
Z is a coherent module over the

Rees algebra; we can use this as a definition of good filtration. That is, it is a coherent sheaf of R�;x–
modules, equipped with a C�–equivariant structure for the squared scaling C�–action (or equivalently,
a grading of its sections on T �U ). Inverting „, we obtain a W�;x–module MDM.0/Œ„�1=2� which is
independent of the choice of good filtration, which is good in the sense of [10, Section 4], that is, it
admits a coherent, C�–equivariant R�;x–lattice. By [10, Proposition 4.5], this is an equivalence between
coherent D�;x–modules and good W�;x–modules.

Theorem 4.20 We have an isomorphism of algebra sheaves ��xO
„
�
ŠW�;xjzDx

.

Proof First, we check that this holds in the base case, ie when DD Z. It is convenient to check this on
the universal cover zZ. By the Z–symmetry of the latter, it is enough to check for a single component
of the core. Hence, consider the copy of CP1 in the union of W0[W1. Using superscripts to indicate
which W� we work on, we have birational coordinates y.0/ D 1=x.1/ and x.0/ D y.1/.x.1//2. We thus
have an isomorphism of W0[W1 to T �CP1 with coordinate z and dual coordinate � sending

x.1/ 7! z; y.1/ 7! �; x.0/ 7! z2�; y.0/ 7!
1

z
:

We can quantize this to a map from O„W to R� by the corresponding formulas

x.1/ 7! z; y.1/ 7! „
d

dz
; x.0/ 7! „z2 d

dz
; y.0/ 7!

1

z
:

This induces an isomorphism of sheaves, which in turn restricts to an isomorphism ��xO
„
Z!W�;xjZ0

.
Under this isomorphism,

q D x.1/y.1/ 7! „z
d

dz
�
„

2
:
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To proceed to the general case, we consider zZn and its quantized T –moment map �„. Fix as above an
open subset of isomorphic to .T �P1/n. Applying the above morphism to the image of �„, we obtain

�„.a1; : : : ; an/ 7!
X

i

aizi
d

dzi
�
„

2
C„�.a/D

X
i

ai

2

�
zi

d

dzi
C

d

dzi
zi

�
C„�.a/:

The result then follows from the compatibility of twisted microlocal differential operators with sym-
plectic reduction as in [10, Proposition 3.16]. We can identify the twist of a TDO from its period by
[10, Proposition 4.4].

Thus, given a zO„
�

–module M, we can pull it back to an W�;xjzDx
–module MjzDx

on zDx � T �Xx.

If we additionally choose a Sx–equivariant structure which makes MjzDx
into a good module, then the

equivalence of [10, Proposition 4.5] will give a corresponding module over the TDO D�;x , with a choice
of good filtration.

Definition 4.21 Given M 2 O„
�

–modSG, let �x.M/ 2 D�;x–mod be the module defined as above for
some choice of Sx–equivariant structure.

The resulting D–module does not depend on the choice of compatible SG–equivariant structure, by
Lemma 4.18. It does carry a good filtration which depends on this choice, but only up to a shift on each
indecomposable summand of �x.M/.

The modules �x.M/ for different x are compatible in the following sense. As discussed previously, the
intersection Xx \

zD
alg
y is precisely the conormal bundle Nx;y DN �Xy

.Xx \Xy/ to Xx \Xy in T �Xy .
Thus the intersection zDalg

x;y D
zD

alg
x \

zD
alg
y can be identified with T �.Nx;y/ or swapping the roles of x;y

with T �.Ny;x/.

Since the vector bundles N �Xy
.Xx \Xy/ and N �Xx

.Xx \Xy/ are dual, so Fourier transform Fy;x gives
an equivalence between the categories of pre-weakly G–equivariant D–modules on these spaces, and
between constructible sheaves with R–coefficients, which are compatible with respect to the solution
functor. By construction, we thus have

(4-6) Fy;x�x.M/jNx;y
Š �y.M/jNy;x

:

4.8 Preliminaries on the Ext–algebra of the simples

Assume that � is chosen so that `� ˝�1=2 is an honest line bundle for all x. From now on, we use the
abbreviations Wx WDW�;x, Dx WDD�;x and `x WD `�;x, since the dependence on � will not play any
further role in this paper.

Remark 4.22 Recall that �1=2
x equals `��0=2;x where �0 is the sum of all T –characters induced by the

embedding T !D. Thus our assumption will be satisfied whenever �.a/ 2 ZC 1
2

P
ai for all a 2 tZ.
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For example, we can let � be the restriction of the element
�

1
2
; : : : ; 1

2

�
2 d�. Nothing we do will depend

on this choice; in fact, the categories of O„
�

–modules for � in a fixed coset of t�Z are all equivalent via
tensor product with quantizations of line bundles on D (as in [10, Section 5.1]), so our calculations will
be independent of this choice.

In this case, the sheaf Wx naturally acts on L0x WD `x˝�
1=2
x ..„// as a sheaf on Xx pushed forward into

zDx; under the equivalence of [10, Proposition 4.5] mentioned above, this corresponds to the twisted
D–module `x ˝�

1=2
x . Of course, this sheaf is equivariant for the action of Sx, and pre-weakly G–

equivariant.

Via the maps
�x W zDx!D and z�x W zDx!

zD;

we can define modules over O„
�

and zO„
�

:

Definition 4.23 Let Lx D ��L
0
x and zLx Dz��L

0
x.

Using Sx–equivariance, and the pre-weak G–equivariant of this module, we obtain a twisted D–module
�y
zLx. Recall that we have a universal cover map � W zD!D.

Proposition 4.24 We have isomorphisms ��zLx Š Lx and ��Lx Š
L

z2g�Z
zLxCz.

The first category we will consider on the A side of our correspondence is DQ, the dg–subcategory of
O„
�

–modSG generated by Lx for all x. As observed before, since weakly G–equivariant modules form a
Serre subcategory, any finite-length object in this category is pre-weakly G–equivariant, and so we can
define the D–modules �y.M/ for any module M in this category.

This has a natural t–structure, whose heart is an abelian category dq. We similarly let fDQ be the dg–
subcategory generated by zLx, and edq the heart of the natural t–structure. This definition might seem
slightly ad hoc, but we will later see that it is motivated by our notion of microlocal mixed Hodge modules.

Since the Ext sheaf between zLx and zLy is supported on the intersection between Xx and Xy , we have

ExtfDQ.
zLy ; zLx/Š ExtWx jzDx

–modS. z�x
�zLy ;L

0
x/:

In fact, if we replace zLy by an injective resolution, we see that this induces a homotopy equivalence
between the corresponding Ext complexes. Since L0x is supported on the zero section, Ext to it is
unchanged by passing to an open subset containing this support and

(4-7) ExtfDQ.
zLy ; zLx/Š ExtD.Xx/.�x

zLy ; `x˝�
1=2
x /;

where the latter Ext is computed in the category of D–modules on the toric variety Xx. In the toric
variety Xx , the preimage of the intersection with the image of Xy is a toric subvariety corresponding to
the intersection of the corresponding chambers in Bper

�
.
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Lemma 4.25 The microlocalization �x
zLy is the line bundle `y ˝�

1=2
y pulled back to Xx \Xy and

pushed forward to Xx as a Dx–module.

Proof Consider the intersection of Xy with zDalg
x . This is a closed Sx–invariant Lagrangian closed

subset, so it is the conormal to its intersection with the zero section Xx \Xy . The D–module �x
zLy has

singular support on this subvariety, and thus must be a local system on Xx \Xy , which is necessarily
`y ˝�

1=2
y .

Since Xx\Xy is a smooth toric subvariety, the sheaf Ext between �x
zLy and `x˝�

1=2
x is CXx\Xy Œ�k�,

where k is the codimension of Xx \Xy in Xx. This shows that we have an isomorphism

(4-8) ExtmfDQ
.zLy ; zLx/ŠH m�k.Xy \XxIC/:

We are interested in the class dy;x in the left-hand space corresponding to the identity in H�.Xy\XxIC/.
Unfortunately, this is only well-defined up to scalar. We will only need the case where jx�y j1 D 1. In
this case, we can define dy;x (without scalar ambiguity) as follows.

Consider the inclusions Xxn.Xy\Xx/
j
,!Xx

i
 -Xy\Xx and the corresponding sequence of D–modules

(4-9) 0! OXx ! j�OXxn.Xy\Xx/! j�OXxn.Xy\Xx/=OXx ! 0:

Any identification of the right-hand D–module with i!OXy\Xx defines a class

dy;x 2 Ext1.OXx ; i!OXy\Xx /D Ext1fDQ
.zLy ; zLx/:

Such an identification is obtained by picking the germ of a function g on Xx in the formal neighborhood
of Xy \ Xx that vanishes on this divisor with order 1. Given such a function, the map f 7! zf =g,
where zf is an extension of a meromorphic function on Xy \Xx to the formal neighborhood, defines an
isomorphism of D–modules i!OXy\Xx ! j�OXxn.Xy\Xx/=OXx .

We can arrange our choice of chart in zZn so that Xy \Xx is defined by the vanishing of one of the
coordinate functions; note that in this case, Xy \ Xx is defined inside Xy by the vanishing of the
symplectically dual coordinate function (for instance, if the first is defined by the vanishing of xi , then
the latter will be defined by yi). We choose this as the function to define dx;y .

Definition 4.26 For any x;y such that jx�y j1 D 1, let dy;x 2 Ext1fDQ
.zLy ; zLx/ be the class defined by

the above prescription.

4.9 Mirror symmetry

We are almost ready to compare the first and second halves of this paper. First, we need to match
the parameters entering into our constructions. Recall that D depends on a choice of generic stability
parameter � 2 T �R, Likewise, the hypertoric enveloping algebra in characteristic p depends on a central
character �2 t�Fp

. The algebra zH�;! which describes the Ext groups of its simple modules (Definition 3.23)
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thereby also depends on �. In order to match � and �, we identify t�Fp
with t�Z=pt

�
Z and thereby embed it

in T �R D t�R=t
�
Z via � 7! .1=p/�. From now on we suppose that � is smooth, and that � is its image in T �R.

It follows that Bper
�

is the real form of Aper
�

, and their sets of chambers are naturally in bijection. Since
the chambers of Aper

�
index the simples of A�K–modo and the chambers of Bper

�
index the simples of DQ,

we obtain a bijection of simple objects.

We now show that the Ext–algebras of these simples share an integral form.

Theorem 4.27 We have isomorphisms of algebras

zH !
�;C Š

M
x;y2zƒ.�/

ExtfDQ.
zLx; zLy/ and H !

�;C Š
M

x;y2ƒ.�/

ExtDQ.Lx;Ly/;

sending dx;y 7! dx;y when y 2 ˛i.x/.

Proof We need to check that the rule dx;y 7! dx;y defines a homomorphism, ie that the relations
(3-8a)–(3-8d) hold in

L
x;y2zƒ.�/

ExtfDQ.
zLx; zLy/.

(1) The relation (3-8a) follows from the fact that when jx � y j1 D 1, the element dx;ydy;x is the
class in H 2

�
XxIQ

�
dual to the divisor Xx \Xy , while the class ti is defined by the Chern class of the

corresponding line bundle, for which a natural section vanishes with order one on Xx \Xy for y 2 ˛.i/

and nowhere else.

(2) The relations (3-8b) and (3-8c) equate two elements of the one-dimensional space Ext2.Lx;Lw/Š

H 0.Xx \XwIC/. Thus, we only need check that we have the scalars right, and this can be done after
restricting to any small neighborhood where all the classes under consideration have nonzero image.

Thus ultimately we can reduce to assuming XxDC2, and Xy and Xw are the conormals to the coordinate
lines, and Xz the cotangent fiber over 0. Let r1; r2 be the usual coordinates on C2, and @1; @2 be the
directional derivatives for these coordinates. Thus, we are interested in comparing the Ext2’s given by
the sequences in the first and third row of the diagram below. Both sequences are quotients of the free
Koszul resolution in the second row:

D

D � .r1; r2/

D@2

D@2
� .r1; r2/

D@1

D@1
� .r1; @2/

D

D � .@1; @2/

D D˚D D
D

D � .@1; @2/

D

D � .r1; r2/

D@1

D@1
� .r1; r2/

D@2

D@2
� .r2; @1/

D

D � .@1; @2/

17!1 1=@2 7!1 1=@1 7!1

17!
�
@2

�@1

� �
a
b

�
7!a@1Cb@2 1 7!1

17!1 1=@1 7!1 1=@2 7!1

17!1

17!�1

�
a
b

�
7!a=@2

�
a
b

�
7!b=@1

17!1=@1

17!1=@2

Š

Š
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The opposite signs in the leftmost column confirm that we have dz;wdw;x D �dz;ydy;x. Hence the
elements dx;y satisfy the relations (3-8b)–(3-8c).

(3) The relations (3-8d) follows from the fact that in this case Xx \Xz D∅.

Recall that the complex dimension of ex
zH !
�;Cey coincides with that of H�.Xx\Xy IC/, as we discussed

in Section 3.8. Thus the spaces ex
zH !
�;Cey and H�.Xx \Xy IC/ are vector spaces of the same rank.

Thus, in order to show that our map is an isomorphism, it is enough to show that it is surjective.

By Kirwan surjectivity, the fundamental class generates H�.Xx \Xy IC/ as a module over the Chern
classes of line bundles associated to representations of T . Since the fundamental classes are images of
˙dx;y and the Chern classes are images of CŒt1; : : : ; tn�, we have a surjective map. As noted before,
comparing dimensions shows that it is also injective, which concludes the proof.

Comparing this result with Proposition 3.43, we see that the categories DQ and Db.Coh.M// are rather
similar. We would immediately obtain a fully faithful functor DQ! Db.Coh.M// if we knew thatL

x;y2ƒ.�/ ExtDQ.Lx;Ly/ were formal as a dg–algebra, but it is not clear that this is the case.

To show this formality, we need to use a different approach to construct this functor, using projective
objects in the category edq. This approach also naturally leads to a structure on DQ that corresponds to the
Gm–action on M discussed earlier: a new structure on DQ–modules, closely related to Saito’s theory of
mixed Hodge modules. This will result in a graded category, which is to Db.CohGm

.M// as DQ is to
Db.Coh.M//.

4.10 Projectives

As described above, we’ll construct projective covers in edq. As usual, let us first construct these on zZ.

Consider ADCŒx;y; „� with the usual Moyal star product defined above. There are unique dq–modules
P
.k/
� and P

.k/
!

over C2 whose sections are the quotients

H 0.C2
IP
.k/
� /DA=A? .y ?x/?k and H 0.C2

IP
.k/
!
/DA=A? .x ?y/?k :

Identifying A with the Rees algebra of differential operators Dx on CŒx� (sending y 7! „ @=@x), these
modules become the Rees modules of D–modules P

.k/
� and P

.k/
!

on A1 with coordinate x. We can
identify these with the �– and !–pushforwards of the D–module L.k/ on C� D Spec.CŒx;x�1�/ defined
by the connection r D d �N=x on the trivial bundle with fiber Ck , where N is the regular nilpotent
matrix

N D

266666664

0 1 0 � � � 0 0

0 0 1 � � � 0 0

0 0 0 � � � 0 0
:::
:::
:::
: : :

:::
:::

0 0 0 � � � 0 1

0 0 0 � � � 0 0

377777775
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Both P
.k/
� and P

.k/
!

are projective in the category of D–modules on A1 which are smooth away from the
origin, whose monodromy around the origin has nilpotent part of length � k. The D–module P

.k/
!

is the
projective cover of the D–module of polynomials on A1, and P

.k/
� is the projective cover of the delta

functions at the origin.

Our presentation of these D–modules induces a good filtration on them; in DQ–module terms, this is an
equivariant structure for the cotangent scaling S which has weight 0 on x and weight 1 on y. In fact,
we will want to use shifts of this filtration, corresponding to „P.k/� and „1=2P

.k/
!

— note that the latter is
only equivariant under the squared scaling. In D–module terms, this means that we endow P

.k/
� with

the good filtration such that the image of CŒx��Dx spans F�1P
.k/
� and FpP

.k/
� D FpC1Dx �F�1P

.k/
� ,

and P
.k/
!

with the good filtration such that the image of CŒx��Dx spans F�1=2P
.k/
!

and Fp�1=2P
.k/
!
D

FpDx �F�1=2P
.k/
!

. These might seem like slightly strange choices: they are deliberately chosen so that
in both cases, the unique simple quotient carries a pure Hodge structure of weight 0.

We will need certain morphisms between these DQ–modules:

(1) The linear map N on Ck induces an endomorphism on L.k/ and hence of P.k/� and P
.k/
!

. This is
the same as right multiplication by y ?x or x ?y, respectively.

(2) We have a c� W P
.k/
� ! P

.k/
!

, induced by multiplication on the right by y. Note that this map
becomes an isomorphism if we invert y, and consider these as D–modules on Spec CŒy;y�1�.

(3) In the opposite direction we have a map cC W P
.k/
!
! P

.k/
� , induced by multiplication on the right

by x; this is also induced by the identity on the local system L.k/. Similarly, this map becomes an
isomorphism if we invert x.

Note that the morphisms c� and cC shift the good filtration by 1
2

. By [3, Theorem 2.12], we can identify
these maps with the logarithm of the monodromy around the origin, the canonical map from nearby to
vanishing cycles and the modified variation map discussed in [3, Section 2.7].

Lemma 4.28 The algebra End.P.k/� ˚P
.k/
!
/ is generated by c˙ subject to the relations

(4-10) cCc� DN; c�cC DN; N k
D 0:

Proof By construction, Hom.P.k/
!
;M/ is the kernel of the k th power of the logarithm of the monodromy

on the stalk of M at a generic point, given by the image of .0; : : : ; 0; 1/ in this stalk. In particular, for
Hom.P.k/

!
;P
.k/
!
/, this is Ck itself, and the map sending .0; : : : ; 0; 1/ to .a1; : : : ; ak/ is

ak C ak�1N C � � �C a1N k�1:

Similarly, for Hom.P.k/
!
;P
.k/
� /, this stalk is the same, but now the map sending .0; : : : ; 0; 1/ to .a1; : : : ; ak/

is .ak C ak�1N C � � �C a1N k�1/cC. A symmetric argument holds with � and ! reversed.

As noted before, the map � induces an isomorphism C2 n fy D 0g ŠC2 n fx D 0g. We can construct a
DQ–module on Wi [WiC1 glued using � , and placing P

.k/
� or P.k/

!
on each Wi :
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� If the two modules are different, ie P
.k/
� on Wi and P

.k/
!

on WiC1 or vice versa, then we use the
natural isomorphism induced by swapping the roles of x and y.

� If they are the same, ie P
.k/
� or P.k/

!
on both Wi and WiC1, then we use the isomorphisms of

multiplication by y˙1 on Wi , or equivalently x˙1 on WiC1.

Iterating this process, we can construct a DQ–module on zZ associated to a choice of integer k and a
map } W Z! f�; !g, isomorphic to P

.k/

}.i/
on Wi . To endow this DQ–module with a global S–action, we

will need to shift the natural S–action on the local components P.k/
}.i/

by a certain amount, determined as
follows.

We can associate to P
.k/
� a local system on each of the two components of its singular support, fx D 0g

and fy D 0g, both described in terms of the vector space V .k/ ŠC˚C.1/˚ � � �˚C.k � 1/; here .p/
represents shifting the good filtration/S–action, though when we discuss Hodge modules, we will want to
use it to represent Tate twist by the same amount. At a generic point of fx D 0g, the fiber is V .k/

�
1
2

�
(so we obtain local systems of weights 0; 2; : : : ; 2.k � 1/), and at a generic point of fy D 0g, the fiber
is V .k/.1/; for P.k/

!
, these swap roles. Thus, in order to have matching S–actions (or equivalently, good

filtrations), we need to choose a function & W Z! 1
2
Z with the property that

(4-11) &.mC 1/D

8<:
&.m/ if }.m/¤ }.mC 1/;

&.m/� 1
2

if }.m/D }.mC 1/D �;

&.m/C 1
2

if }.m/D }.mC 1/D !;

and place P
.k/

}.i/
.&.i// on Wi . The most important modules constructed this way, denoted by P

.k/
i , are

given by the functions

(4-12) }.i/D

�
! if m> i;

� if m� i;
and �.i/D

�1
2
.m� i � 1/ if m> i;

1
2
.i �m/ if m� i:

Lemma 4.29 The DQ–module P
.k/
i is the projective cover of Li in the subcategory of edq on zZ where

the nilpotent part of the monodromy has length � k.

Proof We can reduce to the case where i D 0 using the Z action. First, we must prove that L0 is
the unique simple quotient of P.k/i . On W0 [W1 Š T �P1, this module is the pushforward j!L

.k/,
where j W C� ,! P1 is the inclusion of the complement of the north and south poles. This has unique
simple quotient given the intermediate extension of the one-dimensional local system with the standard
connection. This matches the simple L0. Any other simple quotient must be Lm with m¤ 0. If m< 0,
this would induce a map on Wm of P.k/

!
to the delta function D–module; similarly, if m> 0, it would

induce a map on WmC1 of P.k/� to the function D–module. No such map exists, so indeed L0 is the
unique quotient.

Now we need to show it is projective. Assume that M is an object in edq with nilpotent part of the
monodromy of length � k, and that there is a surjective map M! L0. First, we note that we can
restrict M to T �P1 and obtain a D–module on P1 smooth on C�. Since L0 is the only simple in edq
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supported on P1, the local system we obtain on C� is regular, so it is on the trivial vector bundle with
fiber Cd with a connection of the form d �N 0=x for N 0 W Cd ! Cd a nilpotent map, and the map
to L0 is induced by a map � WCd !C whose kernel contains the image of N 0. We can lift this up to a
map P

.k/
i jT �P1 !MjT �P1 by defining a map Ck !Cd by sending .0; : : : ; 0; 1/ to any vector v with

nonzero image under �, and then extending by the rule that N r .0; : : : ; 0; 1/ 7! .N 0/rv. By assumption,
.N 0/k D 0, so this sends the standard basis of Ck to the vectors .N 0/rv for r D 0; : : : ; k � 1; there a
unique linear map satisfying this property.

Now, we change focus to W�1; by the projective property of P.k/
!

, induced the map of local systems
on X�1 extends to a map of P.k/i jW�1

!MjW�1
. Applying the same argument again to W�2 gives a

compatible map P
.k/
i jW�2

!MjW�2
. By induction, we can extend to all Wi with i < 0. A symmetric

argument shows how to extend to i > 1. This establishes the result.

Lemma 4.30 The stalk of �i0.P
.k/
i / at a generic point in P1 is V .k/

�
1
2
.ji � i 0jC 1/

�
.

Proof By their identification with the �– and !–pushforwards, P.k/� and P
.k/
!

both have stalk V .k/ on
A1�f0g. We need to understand how these correspond to the generic fiber on y D 0. This is the same as
the vanishing cycles with respect to x at x D 0.

In the case P.k/� , the canonical map induces an isomorphism of these vanishing cycles to V .k/
�
�

1
2

�
; in the

case P
.k/
!

, the variation map induces an isomorphism of these vanishing cycles to V .k/
�

1
2

�
. This makes it

clear that on each component, we have shift of the S–structure on V .k/, and that this shift is 1
2
ji � i 0j.

This means that Hom.P.k/i ;P
.k/
i0 /D V .k/

�
1
2
ji � i 0j

�
. The morphisms c˙ and N induce morphisms of

DQ–modules:

N W P
.k/
i ! P

.k/
i .1/; c� W P

.k/
i ! P

.k/
iC1

�
1
2

�
; cC W P

.k/
i ! P

.k/
i�1

�
1
2

�
:

By Lemma 4.28, these morphisms generate the endomorphism algebra
L

i;j2Z Hom.P.k/i ;P
.k/
j / subject

to the same relations (4-10). That is:

Lemma 4.31 The endomorphism algebra
L

i;j2Z Hom.P.k/i ;P
.k/
j / is isomorphic to the quotient of the

algebra zHC attached to the usual action of Gm on A1, modulo the relations sik D 0 for all i .

Now, we extend this to the general case. Given x, we can define a projective by the exterior tensor product
P
.k/
x1

� � � ��P
.k/
xn

, and consider the action of the torus TQ. We let Q.k/x be the unique largest quotient of
this exterior product where the monodromy around TQ–orbits is trivial. Concretely, the exterior tensor
product above carries an action of CŒN1; : : : ;Nn�DUC.d/, which can be interpreted as the logarithms of
monodromy along orbits of the larger torus DQ. The monodromy is trivial along T –orbits if this action
factors through the quotient UC.d/! S . We therefore have

Q
.k/
x D .P

.k/
x1

� � � ��P.k/xn
/˝UC.d/ S:

This quotient has a natural strong T –equivariant structure.
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Definition 4.32 Let P.k/x be the Hamiltonian reduction of Q.k/x on zY; we consider this as a DQ–module.

Lemma 4.33 The object P.k/x is the projective cover of Lx in the category of DQ–modules with
monodromy around Xx \Xy unipotent of length � k for all y with jx�y j1 D 1.

Proof The desired map from P
.k/
x ! Lx is induced by the simple quotient of P.k/xi

for all i . Thus, we
need to show the projective property, and the fact that there are no other simple quotients, which we
will do by induction on the distance between x and y in the taxicab metric. The restriction of P.k/x to
T �Xx is j!L

.k/ where L.k/ is the induced D–module on the complement of the intersection with all
other components in Xx. There is only one map to Lx since L.k/ is indecomposable and has unique
simple quotient. Since there are no maps of j!L

.k/ to D–modules supported on intersections with other
components, we have no maps to Ly for jx�y j1 D 1. As in Lemma 4.29, we can extend this argument
to all other y , since the map can’t be nonzero on y if it is zero on all y 0 closer to x. This shows that
Lx is the unique simple quotient of P.k/x .

Now, let us prove the projective property for P.k/x . That is, let M be an object in edq with monodromy
around Xx \Xx0 for all jx�x0j1 D 1 unipotent of length � k, and with a map M! Lx. We wish to
show that we have an induced map  W P.k/x !M making the usual diagram commute.

Now, let D�p be the union of the subspaces T �Xy for jx�y j1 � p. We will show that the map  exists
by constructing it inductively of D�p.

On D�0 Š T �Xx , we have an induced map from L.k/ to the local system given by the restriction of M
to the open orbit in Xx0 by the universal property of L.k/, and thus an induced map

 jD�0
W �x.P

.k/
x /Š j!L

.k/
! �x.M/:

Now, assume that we have defined the map  on D<p , and that jy�xj1Dp. If U DD<p\Xy , then by
assumption we have defined a map �y.P

.k/
x /jU!�y.M/jU . By construction, �y.P

.k/
x /D i!.�y.P

.k/
x /jU /,

where i W U ,! Xy is the inclusion. Thus, we have a unique induced map �y.P
.k/
x /! �y.M/; applying

this for each y extends this map to D�p. This shows that we have the projective property, and we have
already confirmed it is the indecomposable projective cover of Lx.

4.11 An equivalence of categories

Let zH .k/
K be the quotient of zH�

K by the two-sided ideal generated by ski .

Lemma 4.34 The endomorphism ring
L

x;y2zƒ
Homdq.P

.k/
x ;P

.k/
y / is isomorphic to zH .k/

C .

Proof This map is induced by sending the morphism c˙i
x to the morphism c˙ in the i th factor of the

exterior product, and si to the endomorphism N of this tensor factor.

We check that this is well-defined. The linear relations among the variables si in S correspond to the
triviality of monodromy along T –orbits in P

.k/
x . The relations (3-6a) are a consequence of Lemma 4.28,
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while the relations (3-6b) and (3-6c) follow from the fact that these are the tensor product of endomorphisms
of two different tensor factors. This shows that we have the desired map.

Now, consider Hom.P.k/x ;P
.k/
y /; this is a quotient of CŒs1; : : : ; sn�=.s

k
i /, which is the stalk of �n

iD1P
.k/
yi

on the component Xy1
� � � � �Xyn

. Killing the monodromy on T gives us the quotient S=.sk
i /. This is

generated by the image of cx;y , so our homomorphism is surjective, and the fact that zHC is free as an
S–module shows it is also injective.

Assume that M is a finite-dimensional right zH�
C–module. Assume k is chosen large enough that sk

i

kills M for all i . We can thus write M as a quotient of
Lq

pD1
1xp
zH
.k/
Q for some xp, and in fact as the

cokernel of a map
f W

sM
rD1

1yr
zH
.k/
C !

qM
pD1

1xp
zH
.k/
C

induced by elements arp 2 1xp
zH
.k/
Q 1yr

of degree 2. p̀ � �r /. We can also view f as a morphism of
DQ–modules

zd.f / W

sM
rD1

P
.k/
yr
!

qM
pD1

P
.k/
xp
:

Let zd.M / denote the cokernel of the map zd.f /. Let zH�;op
C –modo be the category of finite-dimensional

right modules of zH�
C on which each si acts nilpotently.

Proposition 4.35 This defines equivalences of categories

zd W zH
�;op
C –modo! edq and d WH

�;op
C –modo! dq:

Proof By Lemma 3.17, the category of DQ–modules which are quotients of a finite sum of the objects P.k/x

is equivalent to the category H
.k/;op
C –mod via the functor zd. The dimension of zd.M / under this equivalence

is the same as the composition length of M , so M is in edq if and only if its image is finite-dimensional.
Thus, we have an equivalence H

.k/;op
C –modo! edq�k between finite-dimensional H

.k/;op
C –modules and

the subcategory edq� of edq where all monodromy has unipotent length�k. Since zH�;op
C –modo is the union

of the modules factoring through the quotients H
.k/;op
C for all k, and similarly edqD[k

edq�k ; this induces
an equivalence zd W zH �;op

C –modo! edq, as desired.

The proof for d is word-for-word identical to that for zd, so we leave the details to the reader.

Since zd is an exact functor, it extends to a (both left and right) derived functor zd WDb. zH
�;op
C –modo/! fDQ.

Combining with Corollary 3.41, we see our version of homological mirror symmetry in this context, as
promised in the introduction:

Theorem 4.36 The functor M 7! zd.RHom.T �
C ;M // defines an equivalence of dg–categories

Db.CohG.MC/o/! fDQ:
Similarly, d defines an equivalence Db.Coh.MC/o/! DQ.
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Proof We give the proof for the first equivalence, leaving the second to the reader. We know from
Corollary 3.41 that this reduces to showing the derived functor of zd is an equivalence of derived categories
Db. zH

�;op
C –modo/! fDQ. Proposition 4.35 show that this functor is an equivalence of categories on the

heart of the usual t–structure. It’s enough to additionally check that for a set of generating objects, such
as the simples Lx , the induced map Extk.Lx;Ly/! Extk.zd.Lx/; zd.Ly// is an isomorphism for all k,
x and y ; this isomorphism follows for all other objects by a standard long exact sequence argument. Thus,
to complete the proof, it is enough to show that zd induces an isomorphism ey

zH !
�;Cex Š ExtfDQ.

zLx; zLy/.

Of course, Theorem 4.27 implies that an isomorphism between the corresponding Ext–algebras exists.
We could carefully confirm that this is (up to sign conventions) the same as that of Theorem 4.27, but
this is not strictly necessary. The equivalence of abelian categories of Proposition 4.35 implies this
functor induces an isomorphism Ext1.Lx;Ly/! Ext1.zd.Lx/; zd.Ly// for all x and y . Since zH !

�;C

is generated by elements of degree 1, this implies that the map induced by zd is surjective, and thus an
isomorphism since the dimensions of ey

zH !
�;Cex and ExtfDQ.

zLx; zLy/ in each degree are the same. In fact,
since Ext1fDQ

.zLx; zLy/ is at most one-dimensional, we must recover the isomorphism of Theorem 4.27 up
to rescaling the image of dx;y to be a nonzero scalar multiple of dx;y .

This also resolves the concern about formality raised below Theorem 4.27: since zH�;op
C is Koszul, the

induced dg–algebra structure on the Ext of simples is formal, and this shows that the same holds in edq.

5 Hodge structures

5.1 Microlocal mixed Hodge modules

We will need the notion of a unipotent mixed Q–Hodge structure on �x.M/; see [34] for a reference.
“Unipotent” simply means that the monodromy on every piece of a stratification on which the D–module
is smooth is unipotent. Mixed Hodge modules are a very deep subject, but one which we can use in a
mostly black-box manner. The important thing for us is that given a holonomic regular D–module M, a
mixed Hodge structure can be encoded as real form and a pair of filtrations, a good filtration (often called
the Hodge filtration) and the weight filtration (by submodules) on M. As discussed previously, we are
allowing good filtrations indexed by 1

2
Z.

Note that while most references on mixed Hodge modules only consider untwisted D–modules, since a
Hodge structure is given by local data, the definition extends to twisted D–modules in an obvious way.
We will only be using twists by honest line bundles (as opposed fractional powers), so we have an even
easier definition available to us: a mixed/pure Hodge structure on a module M over differential operators
twisted by a line bundle L is the same structure on the untwisted D–module L�˝M. Since we will be
working with fixed twists in what follows, we will conceal this choice and simply speak of mixed Hodge
modules on Xx rather than twisted mixed Hodge modules.
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Given an SG–equivariant zO„
�

–module M in dq, a zO„
�
.0/–lattice M.0/ induces a good filtration on �x.M/

for each x.

A Q–form of �x.M/ is a perverse sheaf L on Xx with coefficients in Q with a fixed isomorphism
L˝Q C Š Sol.�xM/. We wish to define a Q–form of M analogously, but we need to think carefully
about compatibility between different x.

Definition 5.1 An Q–form for M 2 O„
�

–modSG is a perverse sheaf Lx on Xx for each x with a
fixed isomorphism Lx ˝Q C Š Sol.�xM/ such that the isomorphism (4-6) induces an isomorphism
Fy;x.LxjNx;y

/ŠLy jNy;x
, that is, it is compatible with the induced conjugation maps on the solution

sheaves Sol.�xM/.

A mixed Hodge structure on M consists of a lattice M.0/, Q–form Lx for all x and an increasing weight
filtration W� of M by submodules such that the induced good filtration, Q–form and weight filtration
on �x.M/ is a unipotent mixed Q–Hodge structure on this D–module. The real forms are required to be
compatible under the isomorphism (4-6).

Remark 5.2 This definition does not provide any hope of giving a general definition of “mixed Hodge
DQ–modules”. The space zDalg is a union of cotangent bundles of smooth varieties, with the scaling action
on the cotangent bundle of each component extending to a global action on zDalg. We don’t know of any
similar situation outside the hypertoric case. Generalizing this definition to other cases is, of course, a
quite interesting question, but not one on which we can provide much insight at the moment.

5.2 Hodge structures on projectives

One natural operation on mixed Hodge DQ–modules is that of Tate twist, which shifts the filtrations by
FiM.k/DFiCkM and WiM.k/DWiC2kM for k 2 1

2
Z. Note that defining Tate twists for half-integers

requires using good filtrations which are indexed by k 2 1
2
Z, this explains our cryptic introduction

of half-integers in earlier sections. We’re only interesting in understanding simple modules up to this
operation. We can easily check that:

Lemma 5.3 If M is supported on the core C, then the D–module �x.M/ is smooth along the orbit
stratification of Xx as a toric variety.

Lemma 5.4 The sheaf Lx has a unique mixed Hodge structure whose associated mixed Hodge modules
are pure of weight 0.

Proof The trivial local system on Xx has the structure of a variation of Hodge structure which is pure of
weight 0. This is unique by [17, Proposition 1.13]. Of course, any mixed Hodge structure of weight 0

on Lx must be induced by this VMHS, which shows uniqueness.
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Thus, we only need to show that the induced lattice Lx.0/, real form, and (trivial) weight filtration
induce mixed Hodge structures on the microlocalizations �y.Lx/ for each y . Recall that �y.Lx/ is the
pushforward of the trivial line bundle on Xx \Xy , so the result follows from the compatibility of mixed
Hodge structure with pushforward.

Unfortunately, while the Hodge structure on a simple module is unique up to Tate twist, there are “too
many” different Hodge structures on other objects in dq. For example, Lx ˚Lx.k/ has a nontrivial
moduli of Hodge structures, induced by the same phenomenon on Q˚Q.k/.

Thus, we need to find a way of avoiding these sort of deformations of Hodge structure. We do this by
constructing a natural Hodge structure on the modules P.k/x .

Recall that we started the construction of these projectives by considering modules P.k/� and P
.k/
!

over
A D CŒx;y; „� with the usual Moyal star product. We make these into mixed Hodge modules on A1

by endowing P
.k/
� with the good filtration such that the image of CŒx� � Dx spans F�1P

.k/
� and

FpP
.k/
� D FpC1Dx �F�1P

.k/
� , and P

.k/
!

with the good filtration such that the image of CŒx��Dx spans
F�1=2P

.k/
!

and FpC1=2P
.k/
!
D FpDx �F�1=2P

.k/
!

. These might seem like slightly strange choices: they
are deliberately chosen so that in both cases, the unique simple quotient carries a pure Hodge structure of
weight 0.

Now, we consider Hodge structures on these DQ–modules extending the good filtrations defined above
on P

.k/
� and P

.k/
!

. Their real form is the obvious one where x and y are conjugation invariant; this
corresponds to the obvious real form of L.k/. We define the weight filtration on P

.k/
� by

WpP
.k/
� D

8̂̂̂<̂
ˆ̂:

0 if p < �2kC 1;

Dx.@xx/�p=2=Dx.@xx/k if 0> p � 2kC 1; with p even,
Dxx.@xx/�.pC1/=2=Dx.@xx/k if 0> p � 2kC 1; with p odd;
P
.k/
� if p > 0;

and the weight filtration on P
.k/
!

analogously, swapping x and y.

Lemma 5.5 These data define mixed Hodge structures on P
.k/
� and P

.k/
!

.

Proof First, let’s consider P
.k/
� . By the definition above, WpP

.k/
� =Wp�1P

.k/
� ŠDx=Dxx if p is even

and 0� p � 2kC 1; this is equipped the good filtration where the image of @r
x for r < s span FsCp=2.

On the other hand, the V –filtration of this D–module for the function x has V ` spanned by yr for
r � �`. Thus, the vanishing cycles ˆD �.WpP

.k/
� =Wp�1P

.k/
� / are spanned by the image of 1, ie they

are one-dimensional. Accounting for the shift of good filtration (as in [34, (2.1.7)]) they are equipped
with the good filtration

FsCp=2.ˆ/D

�
ˆ if s � 0;

0 if s < 0:

This means that WpP
.k/
� =Wp�1P

.k/
� is isomorphic to the usual Tate pure Hodge structure of weight p

on Q, pushed forward at the origin x D 0. If p is odd, then we have WpP
.k/
� =Wp�1P

.k/
� ŠDx=Dx@x;
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exactly as above, the generic fiber of this local system has the Tate Hodge structure of weight p� 1, and
so gives a pure Hodge module of weight p.

For P
.k/
!

, the calculations are the same, but odd and even cases swap roles. In particular, we see that
half-integral filtrations are needed so that we can endow Q with a Tate Hodge structure of odd weight
(ie a half-integral Tate twist).

We defined above morphisms N and c˙ between these DQ–modules. These morphisms preserve the
mixed Hodge structure up to Tate twist and become morphisms of mixed Hodge modules

N W P
.k/
� ! P

.k/
� .1/; c� W P

.k/
� ! P

.k/
!

�
1
2

�
; cC W P

.k/
!
! P

.k/
�

�
1
2

�
:

This means that they define Tate elements of the endomorphism algebra End.P.k/� ˚P
.k/
!
/, and since they

generate, they show that the induced Hodge structure on this algebra is of Tate type agreeing with the
grading deg.c˙/D 1 and deg.N /D 2.

As noted before, the map � induces an isomorphism

C2
n fy D 0g Š C2

n fx D 0g:

We can construct a DQ–module on Wi [WiC1 glued using � , and placing P
.k/
� or P.k/

!
on each Wi .

� If the two modules are different, ie P
.k/
� on Wi and P

.k/
!

on WiC1 or vice versa, then we use the
natural isomorphism induced by swapping the roles of x and y.

� If they are the same, ie P
.k/
� or P.k/

!
on both Wi and WiC1, then we use the isomorphisms of

multiplication by y˙1 on Wi , or equivalently x˙1 on WiC1.

Of course, if we don’t include shifts, this gluing will not respect the Hodge structure, so we need to
glue these DQ–modules with Tate twists in them. The functions we Tate twist by have already been
constructed in (4-11), based on a choice of which version of the module we will take on each component,
expressed by a function }. This makes the modules P.k/i into mixed Hodge modules.

Remark 5.6 These modules are not projective in the category of mixed Hodge modules (even with
appropriate monodromy restrictions) since they don’t account for non-Tate extensions.

This induces a Hodge structure on the module P
.k/
x defined in Definition 4.32, and thus on the endomor-

phism ring
L

x;y2zƒ
Homdq.P

.k/
x ;P

.k/
y /.

Lemma 5.7 The Hodge structure on the endomorphism ring
L

x;y2zƒ
Homdq.P

.k/
x ;P

.k/
y / is Tate and

matches that constructed from the grading on H
.k/
Q .

5.3 The category of mixed Hodge modules

Now, we wish to establish a graded version of the equivalence of Theorem 4.36. As discussed above,
looking at all mixed Hodge structures on DQ–modules results in “too many” objects; in particular, the
graded lift of a projective object will not be projective in the category of all mixed Hodge structures on
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objects in edq, which is not the behavior we expect from adding a grading to a ring. In more categorical
terms, the functor of forgetting Hodge structure is not a “degrading” functor.

Thus, we will consider objects in edq with a more restricted set of Hodge structures, only those which arise
as a quotient of the objects P.k/x ; it’s worth noting that while these objects have a projective property in edq
(subject to a restriction on monodromy), they are not projective amongst mixed Hodge DQ–modules with
this monodromy. The important effect this has is that it forces the local systems on the open part of Xx to
be Tate as mixed Hodge structures; typically, the structures we wish to avoid will not have this property.

Definition 5.8 We let �m and e�m be the categories of mixed Hodge DQ–modules in dq and edq which
are quotients of a sum of the form

Lq
pD1

P
.k/
xp
. p̀/ for some k � 0, p̀ 2

1
2
Z and fx1; : : : ;xqg �

zƒ.

We let �M and e�M be the standard dg–enhancements of the derived categories Db.�m/ and Db.e�m/
(the quotient of the dg–category of all complexes modulo that of acyclic complexes).

Now, assume that M is a finite-dimensional graded right zH �
Q–module. Recall that M.`/ denotes M with

the grading shifted down by `. Assume k is chosen large enough that sk
i kills M for all i . We can thus

write M as a quotient of
Lq

pD1
1xp

H
.k/
Q .2 p̀/ with xp and p̀ as above, and in fact as the cokernel of a

map
f W

sM
rD1

1yr
H
.k/
Q .2�r /!

qM
pD1

1xp
H
.k/
Q .2 p̀/

induced by elements arp 2 1xp
H
.k/
Q 1yr

of degree 2. p̀ � �r /. We can also view A as a morphism of
Hodge DQ–modules

zm.f / W

sM
rD1

P
.k/
yr
.�r /!

qM
pD1

P
.k/
xp
. p̀/:

Let zm.M / denote the cokernel of the map zm.f /. Let zH �;op
Q –gmodo be the category of finite-dimensional

graded right modules of zH �
Q.

Theorem 5.9 This defines equivalences of categories

zm W zH
�;op
Q –gmodo!e�m and m WH

�;op
Q –gmodo! �m;

sending grading shift .`/ to the Tate twist
�

1
2
`
�
.

Proof If f WM !M 0 is a homogeneous map of modules, the construction of zm.f / by presenting M

and M 0 as cokernels proceeds exactly as in the proof of Proposition 4.35, as does the proof that this
functor is fully faithful.

The only point where we need a bit more care is in the proof of essential surjectivity. By definition, any
module M in e�m is a quotient of zm.P0/ for some P0. Thus, we need to show that the kernel K is also
an object in e�m. The object K has a largest semisimple quotient, ie its cosocle. This is a finite sum of
objects of the form Lyr

.�r /. This shows that K is generated by the images of maps (of DQ–modules,
ignoring Hodge structure) from P

.k/
yr

for r D 1; : : : ; s. Note that Hom.P.k/yr
;K/ carries a mixed Hodge
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structure which is a subobject of Hom.P.k/yr
; zm.P0//; the former has Tate type since the latter does as

well. Thus, there is a module M1 such that

zm.P1/D

sM
rD1

Hom.P.k/yr
;K/˝Q P

.k/
yr

as mixed Hodge DQ–modules; of course, the image of the induced map zm.P1/! zm.P0/ is exactly K,
and so MD zm.M / where M is the cokernel of the map P1! P0. This completes the proof that zm is an
equivalence. The second equivalence is proven the same way.

Analogous to the proof of Theorem 4.36, we have the following:

Corollary 5.10 There are equivalences of categories

Db.CohGm�G.MQ/o/!e�M and Db.CohGm
.MQ/o/! �M

sending grading shift .`/ to the Tate twist
�

1
2
`
�
.

We conclude with a few questions raised by this result. Under our equivalence, the Gm–action on MC

corresponds to the weight grading on �M. This action, which dilates the symplectic form, is key to
the enumerative geometry of hypertoric varieties. Indeed, the symplectic structure on MC implies that
the nonequivariant quantum connection of MC is essentially trivial. Its Gm–equivariant version, on the
other hand, is the hypergeometric system studied in [30]. The same is true for more general symplectic
resolutions: for instance, the Gm–equivariant quantum connection of the Springer resolution is the
decidedly nontrivial affine KZ connection [12]. Our result thus suggests that the mirror description of
these connections can be approached via microlocal Hodge structures.

We also note that whereas the left-hand side of both of our equivalences is a geometrically defined
category, the right-hand sides are defined by picking certain generators inside the ambient category of
deformation-quantization modules. This is in contrast to the equivalence proven in the sequel to this
paper [21], which equates coherent sheaves on MC with the wrapped Fukaya category of its mirror. A
more direct geometric definition of �M and its grading, in particular, would be of great interest.
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