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Riemannian manifolds with entire Grauert tube are rationally elliptic

XIAOYANG CHEN

It was conjectured by Bott, Grove and Halperin that a compact simply connected Riemannian manifold M

with nonnegative sectional curvature is rationally elliptic. We confirm this conjecture under the stronger
assumption that M has entire Grauert tube, ie M is a real-analytic Riemannian manifold that has a unique
adapted complex structure defined on the whole tangent bundle TM . Our result also provides a strong
topological obstruction to the existence of an entire Grauert tube.

53C20

1 Introduction

The following conjecture is a central problem in the study of Riemannian manifolds with nonnegative
sectional curvature; see Berger and Bott [2] and Grove and Halperin [7].

Conjecture (Bott–Grove–Halperin) A compact simply connected Riemannian manifold M with non-
negative sectional curvature is rationally elliptic.

Here M is said to be rationally elliptic if and only if it has finite-dimensional rational homotopy groups,
ie all but finitely many homotopy groups of M are finite; otherwise M is said to be rationally hyperbolic.
It is a well-known simple consequence of Sullivan’s minimal model theory [15] that M being rationally
elliptic is equivalent to polynomial growth of the sequence of Betti numbers of its based loop space �M

relative to rational coefficient. If M is rationally elliptic, then there are severe topological restrictions
of M. For example, M has nonnegative Euler characteristic number and dim H�.M;Q/� 2n; see Félix,
Halperin and Thomas [5] and Grove and Halperin [7].

It is known that compact simply connected homogeneous spaces and cohomogeneity one-manifolds are
rationally elliptic; see Grove and Halperin [8]. Grove, Wilking and Yeager [9] confirmed the Bott–Grove–
Halperin conjecture under the additional assumption that M supports an isometric action with principal
orbits of codimension two.

In this paper we confirm the Bott–Grove–Halperin conjecture under the stronger assumption that M has
entire Grauert tube:

Theorem 1.1 Let .M;g/ be an n–dimensional compact simply connected real-analytic Riemannian
manifold that has entire Grauert tube , then M is rationally elliptic.
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Remark 1.2 In fact, our proof shows that M is topologically elliptic, ie the Betti numbers of its loop
space relative to any field of coefficients grow at most polynomially.

Here .M;g/ is said to be real-analytic if M is a real-analytic manifold with a real-analytic Riemannian
metric g. Then there is a unique adapted complex structure defined on T RM Dfv 2 TM j g.v; v/ <R2g

for some R> 0; see Guillemin and Stenzel [10], Lempert and Szőke [12] and Szőke [16]. When RD1,
then M is said to have entire Grauert tube. It was shown in [12] that a Riemannian manifold with entire
Grauert tube has nonnegative sectional curvature. Hence Theorem 1.1 gives a partial answer to the
Bott–Grove–Halperin conjecture. On the other hand, it also provides a strong topological obstruction to
the existence of an entire Grauert tube.

Aguilar [1] showed that the quotient of a Riemannian manifold with entire Grauert tube by a group of
isometries acting freely also has entire Grauert tube. All known manifolds with entire Grauert tube are
obtained by Aguilar’s construction: starting with a compact Lie group with a bi-invariant metric, or the
product of such a group with Euclidean space, one takes the quotient by some group of isometries acting
freely. Such quotient manifolds include almost all closed manifolds which are known to have Riemannian
metrics with nonnegative sectional curvature.

It was conjectured by Hopf that the Euler characteristic number of a compact Riemannian manifold with
nonnegative sectional curvature is nonnegative. The following corollary settles this conjecture under the
stronger assumption that M has entire Grauert tube.

Corollary 1.3 Let M be a compact Riemannian manifold with entire Grauert tube. Then M has
nonnegative Euler characteristic number.

Proof If M has finite fundamental group, then its universal cover zM with the induced Riemannian
metric also has entire Grauert tube. By Theorem 1.1, the Euler characteristic number of zM is nonnegative.
Hence M has nonnegative Euler characteristic number. If M has infinite fundamental group, as M has
nonnegative sectional curvature, then the Euler characteristic number of M is zero; see Cheeger and
Gromoll [4].

A related conjecture proposed by Totaro [17] predicts that a compact Riemannian manifold M with
nonnegative sectional curvature has a good complexification, ie M is diffeomorphic to a smooth affine
algebraic variety U over the real numbers such that the inclusion U.R/!U.C/ is a homotopy equivalence.
The Euler characteristic number of a compact manifold which has a good complexification is also
nonnegative. Also, a conjecture by Burns [3] predicts that for every compact Riemannian manifold M

with entire Grauert tube, the complex manifold TM is an affine algebraic variety in a natural way. If this
is correct, the complex manifold TM would be a good complexification of M in the above sense. Both
conjectures of Totaro and Burns are still open.
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Riemannian manifolds with entire Grauert tube are rationally elliptic 1101

The proof of Theorem 1.1 is based on the counting function introduced in Berger and Bott [2], Gromov [6]
and Paternain [14]. For x 2M and each T > 0, let

DT WD fv 2 TxM j g.v; v/� T 2
g

be the disk of radius T in TxM. Define the counting function nT .x;y/ by

nT .x;y/ WD ]..expx/
�1.y/\DT /:

In other words, nT .x;y/ counts the number of geodesic arcs joining x to y with length � T . When M

is simply connected, then we have the crucial inequality

(1-1)
k�1X
jD0

dim Hj .�M;F /�
1

Volg.M /

Z
M

nC k.x;y/ dy;

where C is a positive constant independent of k and F is any field of coefficients; see [6; 14].

For any x 2M, Berger and Bott [2] proved that
R

M nT .x;y/ dy can be computed by Jacobi fields on M ;
see also Paternain [14]. Precisely, they showed that

(1-2)
Z

M

nT .x;y/ dy D

Z T

0

d�

Z
S

p
det
�
g.Jj .�/;Jk.�//

�
j ;kD1;2;:::;n�1

d�;

where S is the unit sphere of TxM. Moreover, the Jj for j D 1; 2; : : : ; n� 1 are Jacobi fields along the
unique geodesic  determined by � 2 S (ie  .0/D x;  0.0/D � ) with initial conditions

Jj .0/D 0; J 0j .0/D vj ;

where the vj for j D 1; 2; : : : ; n� 1 form an orthonormal basis of T�S.

If .M;g/ has entire Grauert tube, the right-hand side in (1-2) can be further described by a matrix valued
holomorphic function on the upper half plane. Applying Fatou’s representation theorem to this function,
we will show that

R
M nT .x;y/ dy is a polynomial function of T . When M is simply connected, it

follows that
Pk�1

jD0 dim Hj .�M;F / has polynomial growth for any field of coefficients. Hence M is
topologically elliptic.

We finally mention that based on an iterated use of the Rauch comparison theorem for Jacobi fields,
an estimate for the Betti numbers of �M for manifolds with 0 < ı � sec M � 1 was derived in [2].
Although the estimate is given in terms of the pinching constant ı, its growth rate is exponential.

Acknowledgements The author is partially supported by NSFC 12171364 and 23JC1403600 (project
title On the topology of almost nonnegatively curved manifolds). He would like to thank the referee for
helpful suggestions.
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1102 Xiaoyang Chen

2 Vertical and horizontal subbundles

In this section we recall some basic facts on the geometry of the tangent bundle TM. For more details,
see [14]. Let � W TM !M be the canonical projection, ie if � D .x; v/ 2 TM, then �.�/D x. There
exists a canonical subbundle of T TM, called the vertical subbundle, whose fiber at � is given by the
tangent vectors of curves � W .��; �/! TM of the form: �.t/D .x; vC t!/, where ! 2 TxM. In other
words,

V .�/D ker..��/� /:

Suppose that M is endowed with a Riemannian metric g. We shall define the connection map

K W T TM ! TM

as follows: let � 2 T�TM and z W .��; �/! TM be an adapted curve to � , that is, with initial conditions

z.0/D �; z0.0/D �:

Such a curve gives rise to a curve ˛ W .��; �/!M given by ˛ WD � ı z, and a vector field Z along ˛;
equivalently, z.t/D .˛.t/;Z.t//. Define

K� .�/ WD .r˛Z/.0/D lim
t!0

.Pt /
�1Z.t/�Z.0/

t
;

where Pt W TxM ! T˛.t/M is the linear isomorphism defined by the parallel transport along ˛. The
horizontal subbundle is the subbundle of T TM whose fiber at � is given by

H.�/D ker K� :

Another equivalent way of constructing the horizontal subbundle is by means of the horizontal lift

L� W TxM ! T�TM;

which is defined as follows. Let � D .x; v/. Given ! 2 TxM and ˛ W .��; �/!M an adapted curve
of !, ie ˛.0/D x, ˛0.0/D !, let Z.t/ be the parallel transport of v along ˛ and � W .��; �/! TM be
the curve �.t/D .˛.t/;Z.t//. Then

L� .w/D �
0.0/ 2 T�TM:

Proposition 2.1 K� and L� have the following properties:

.��/� ıL� D Id and K� ı i� D Id;

where i W TxM ! TM is the inclusion map. Moreover ,

T�TM DH.�/˚V .�/

and the map j� W T�TM ! TxM �TxM given by

j� .�/D ..��/� .�/;K� .�//

is a linear isomorphism.

Geometry & Topology, Volume 28 (2024)



Riemannian manifolds with entire Grauert tube are rationally elliptic 1103

For each � 2 TM, there is a unique geodesic � in M with initial condition � . Let � 2 T�TM and
z W .��; �/! TM be an adapted curve to � , that is, with initial conditions

z.0/D �; z0.0/D �:

Then the map .s; t/ 7! � ı�t .z.s// gives rise to a variation of � . Here � W TM !M is the projection
map and �t is the geodesic flow of TM. The curves t 7! � ı �t .z.s// are geodesics and therefore
the corresponding variational vector fields J� WD .@=@s/jsD0 � ı �t .z.s// is a Jacobi field with initial
conditions

J�.0/D .��/� .�/; J 0�.0/DK� .�/:

3 Adapted complex structure on the tangent bundle

In this section we describe the adapted complex structure on the tangent bundle. Let .M;g/ be a compact
smooth Riemannian manifold. Then TM nM carries a natural foliation by Riemannian surfaces defined
as follows. For � 2R denote by N� W TM ! TM the smooth mapping defined by multiplication by � in
the fibers. If  WR!M is a geodesic, define an immersion � WC! TM by

� .� C i�/DN�
0.�/:

If for two geodesics  and ı, it holds that � .C nR/ and �ı.C nR/ intersect each other, then  and ı are
the same geodesic traversed with different velocities, hence � .C/D �ı.C/. Therefore the images of
C nR under the mapping � defines a smooth foliation of TM nM by surfaces. Moreover, each leaf has
complex structure that it inherits from C via � . The leaves along with their complex structure extend
across M, but of course, on M the foliation F becomes singular.

Given R> 0, put
T RM D fv 2 TM j g.v; v/ <R2

g:

A smooth complex structure on T RM will be called adapted if the leaves of the foliation F with the
complex structure inherited from C are complex submanifolds of T RM.

Theorem 3.1 [10; 12; 16] Let M be a compact real-analytic manifold equipped with a real-analytic
metric g. Then there exists some R> 0 such that T RM carries a unique adapted complex structure.

When the adapted complex structure is defined on the whole tangent bundle, ie R D 1, then M

is said to have entire Grauert tube. It was shown in [12] that a Riemannian manifold with entire
Grauert tube has nonnegative sectional curvature. The adapted complex structure on T RM can be
described as follows. For this purpose let � 2 T RM nM and x D �.�/, where � W TM !M is the
projection map. Let  be a geodesic determined by � . Choose tangent vectors v1; v2; : : : ; vn�1 such that
v1; v2; : : : ; vn�1; vn WD 

0.0/=j 0.0/j form an orthonormal basis of TxM.

Geometry & Topology, Volume 28 (2024)



1104 Xiaoyang Chen

Denote by L� the leaf of the foliation F passing through � . A vector x� 2 T�TM determines a vector
field � (we call it the parallel vector field) along L� by defining it to be invariant under two semigroup
actions. Namely, � is invariant under N� and the geodesic flow. For this parallel field � , we get that �jR
is a Jacobi field along  .

Now choose a set of vectors x�1; x�2; : : : ; x�n; x�1; x�2; : : : ; x�n 2 T�TM satisfying

.��/� .x�j /D vj ; K� .x�j /D 0;

.��/� .x�j /D 0; K� .x�j /D vj :

Here K WT TM!TM is the connection map described in Section 2. Extend x�j and x�j to get parallel vector
fields �1; �2; : : : ; �n; �1; �2; : : : ; �n along L� . Then the Jacobi fields �1jR; �2jR; : : : ; �njR are linearly
independent except on a discrete subset S1 of R. Hence there are smooth real-valued functions �jk

defined on R nS1 such that

�k jR D

nX
jD1

�jk�j jR:

From the presence of the adapted complex structure it follows that the functions �jk have meromorphic
extension fjk over the domain

D D

�
� C i� 2C

ˇ̌̌
j� j<

Rp
g.�; �/

�
such that for each pair j ; k, the poles of fjk lie on R and the matrix Im.fjk/jDnR is invertible. Let
.ejk/D .Imfjk.i//

�1. Then the complex structure J satisfies

J x�h D

nX
kD1

ekh �

�
x�k �

nX
jD1

Refjk.i/ x�j

�
:

Remark 1 Because �1jR; �2jR; : : : ; �n�1jR; �1jR; �2jR; : : : ; �n�1jR are normal Jacobi fields, while �njR
and �njR are tangential Jacobi fields, for 1� j ; k � n� 1 we have

�nk D �jn � 0; fnk D fjn � 0; enk D ejn � 0:

Consider the n–tuples

„D .�1; �2; : : : ; �n/ and H D .�1; �2; : : : ; �n/;

and holomorphic n–tuples

„1;0
D .�

1;0
1
; �

1;0
2
; : : : ; �1;0

n / and H 1;0
D .�

1;0
1
; �

1;0
2
; : : : ; �1;0

n /;

where �1;0
j D

1
2
.�j � iJ �j / and J is the adapted complex structure. Then we have

H.�/D„.�/f .�/ and H 1;0.� C i�/D„1;0.� C i�/f .� C i�/

where
f .� C i�/D .fjk.� C i�// for � 2R nS1 and j� j<

Rp
g.�; �/

:

Geometry & Topology, Volume 28 (2024)



Riemannian manifolds with entire Grauert tube are rationally elliptic 1105

The following facts are proved in [12; 16].

Proposition 3.2 (1) The vectors �1;0
1
; �

1;0
2
; : : : �

1;0
n are linearly independent over C on D nR. The

same is true for the vectors �1;0
1
; �

1;0
2
; : : : ; �

1;0
n .

(2) The 2n vectors �j , �k are linearly independent at points � C i� 2D nR.

Theorem 3.3 The matrix-valued meromorphic function f .�Ci�/ is symmetric (as a matrix) and satisfies

f .0/D 0; f 0.0/D Id:

Moreover , if � C i� 2D with � > 0, then Imf .� C i�/ is a symmetric , positive definite matrix.

4 Growth rate of counting functions

In this section we prove Theorem 1.1.

Let M be an n–dimensional compact manifold endowed with a Riemannian metric g. For x 2M and
each T > 0, let

DT WD fv 2 TxM j g.v; v/� T 2
g

be the disk of radius T in TxM. Define the counting function nT .x;y/ by

nT .x;y/ WD ]
�
.expx/

�1.y/\DT

�
:

In other words, nT .x;y/ counts the number of geodesic arcs joining x to y with length � T .

The following theorems proved in [2; 6; 14] will be crucial for us.

Theorem 4.1 We have

(4-1)
Z

M

nT .x;y/ dy D

Z T

0

d�

Z
S

p
det
�
g.Jj .�/;Jk.�//

�
j ;kD1;2;:::;n�1

d�;

where S is the unit sphere of TxM. Moreover , Jj for j D 1; 2; : : : ; n� 1 are Jacobi fields along the
unique geodesic  determined by � 2 S (ie  .0/D x and  0.0/D � ) with initial conditions

Jj .0/D 0; J 0j .0/D vj ;

where the vj with j D 1; 2; : : : ; n� 1 form an orthonormal basis of T�S.

Theorem 4.2 Suppose that M is an n–dimensional compact simply connected manifold endowed with a
Riemannian metric g. Then

(4-2)
k�1X
jD0

dim Hj .�M;F /�
1

Volg.M /

Z
M

nC k.x;y/ dy;

where C is a positive constant independent of k and F is any field of coefficients.

Remark 4.3 The assumption that M is simply connected in Theorem 4.2 is essential.
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When M has entire Grauert tube, we will see that the right-hand side in Theorem 4.1 can be further
described by a matrix-valued holomorphic function on the upper half-plane. Applying Fatou’s representa-
tion theorem to this function, we will derive that

R
M nT .x;y/ dy has polynomial growth and hence M is

topologically elliptic.

Now we give the details of the proof. Let S be the unit sphere of TxM and  the unique geodesic
determined by � 2 S, ie  .0/ D x,  0.0/ D � . Let v1; v2; : : : ; vn WD  0.0/ be an orthonormal basis
of TxM.

As in Section 3, choose a set of vectors x�1; x�2; : : : ; x�n; x�1; x�2; : : : ; x�n 2 T�TM satisfying

��.x�j /D vj ; Kx�j D 0;

��.x�j /D 0; Kx�j D vj :

Here K W T TM ! TM is the connection map described in Section 2. Extend x�j and x�j to get parallel
vector fields �1; �2; : : : ; �n; �1; �2; : : : ; �n. Then Jj WD �j jR for j D 1; 2; : : : ; n� 1 are normal Jacobi
fields along  with initial conditions

Jj .0/D 0; J 0j .0/D vj :

Moreover, �1jR; �2jR; : : : ; �njR are linearly independent except on a discrete subset S1 of R. Hence there
are smooth real-valued functions �jk defined on R nS1 such that

�k jR D

nX
jD1

�jk�j jR:

As M has entire Grauert tube, it follows that the functions �jk have a meromorphic extension fjk over the
whole complex plane such that for each pair j ; k, the poles of fjk lie on R and the matrix Im.fjk/jCnR

is invertible.

Consider the n–tuples

„D .�1; �2; : : : ; �n/ and H D .�1; �2; : : : ; �n/;

and holomorphic n–tuples

„1;0
D .�

1;0
1
; �

1;0
2
; : : : ; �1;0

n / and H 1;0
D .�

1;0
1
; �

1;0
2
; : : : ; �1;0

n /;

where �1;0
j D

1
2
.�j � iJ �j / and J is the adapted complex structure.

Then we have

H.�/D„.�/f .�/ and H 1;0.� C i�/D„1;0.� C i�/f .� C i�/;

where
f .� C i�/D .fjk.� C i�// for � 2R nS1:

Lemma 4.4 If � C i� 2C nR, then Imf �1.� C i�/ is invertible.

Geometry & Topology, Volume 28 (2024)



Riemannian manifolds with entire Grauert tube are rationally elliptic 1107

Proof The proof is almost identical to the proof of Proposition 6.8 in [12]. Suppose there is a nonzero
column vector vD .vj / 2Rn such that Imf �1.�C i�/vD 0; � ¤ 0, ie ! D .!k/D f

�1.�C i�/v 2Rn.
By Proposition 3.2, f �1 exists on C nR. Then we have

„1;0
DH 1;0f �1

at the point � C i� . HenceX
�

1;0
j vj D„

1;0v DH 1;0f �1v DH 1;0! D
X

�
1;0
k
!k :

Taking real parts, we get X
�jvj D

X
�k!k ;

in contradiction with Proposition 3.2.

Lemma 4.5 G.�/ WD �f �1.�/ is a matrix-valued meromorphic function on C whose pole lies in a
discrete subset of R and Im G.�/ is positive definite for � D � C i� 2 CC, where CC is the upper
half-plane.

Proof Since H 1;0 and„1;0 are invertible on C except on a discrete subset, combined with H 1;0D„1;0f

we get that G.�/ is a matrix-valued meromorphic function on C whose pole lies in a discrete subset of R.
By Theorem 3.3, we have

f .0/D 0; f 0.0/D Id:

Then for small positive � , we get

Im G.i�/D Im.�f �1.i�//D Im.�.f .0/C i�f 0.0/CO.�2//�1/

D Im.�i� IdCO.�2//�1
D Im

�
i

�
.IdCO.�//�1

�
:

Hence Im G.i�/ is positive definite for small positive � . As Im G.�/ is nondegenerate on CC by
Lemma 4.4, Im G.�/ is positive definite for � D � C i� 2CC.

Let f1 D .fjk/ with j ; k D 1; 2; : : : ; n� 1. Then we have:

Lemma 4.6 There exists a discrete subset S2 �R such that for � 2R nS2, we have

(4-3) det.g.Jj .�/;Jk.�//j ;kD1;2;:::;n�1 D
1

det..�f �1
1
/0.�//

;

where Jj for j D 1; 2; : : : ; n are normal Jacobi fields along  with initial conditions

Jj .0/D 0; J 0j .0/D vj ;

and v1; v2; : : : ; vn WD 
0.0/ is an orthonormal basis of TxM.
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Proof We can view „.�/ and H.�/ as linear mappings Rn! T.�/M , given by

.!j /D ! 7!„.�/! D

nX
jD1

!j�j .�/

and similarly for H.�/. Denote by „�.�/ and H�.�/ the adjoints of „.�/ and H.�/, respectively
(adjoint defined using the Euclidean scalar product on Rn and the Riemannian metric on T.�/M ).
Let fej g be the standard orthonormal basis of Rn. Then we have

g.Jj .�/;Jk.�//D g.H.�/ej ;H.�/ek/D hH
�.�/H.�/ej ; eki:

By the proof of Proposition 6.11 in [12], we get

„�.�/„.�/f 0.�/D Id for � 2 .0; c/

for some small positive constant c. On the other hand, we have

„.�/ej D �j .�/ and „�.�/„.�/ej D g.�j .�/; �k.�//ek :

Hence „�.�/„.�/ is real-analytic over R and so it has a holomorphic extension to a small open set in C

containing R. As M has entire Grauert tube, it follows that f .�/ has a meromorphic extension over the
whole complex plane such that its poles lie on a discrete subset S1 �R. Then we have

„�.�/„.�/f 0.�/D Id for � 2R nS1:

On the other hand, f �1.�/ exists on � 2RnS 0
1

for some discrete subset S 0
1
. Moreover, f .�/ is symmetric,

by Proposition 6.11 in [12] and analytic continuation. Let S2 D S1[S 0
1
. For � 2R nS2, we have

H�.�/H.�/D .„.�/f .�//�„.�/f .�/D f .�/„�.�/„.�/f .�/

D f .�/.f 0.�//�1f .�/D ..�f �1/0.�//�1:

Since fjn D fnk D 0 for j ; k D 1; 2; : : : ; n� 1, we see that

det.g.Jj .�/;Jk.�//j ;kD1;2;:::;n�1 D
1

det..�f �1
1
/0.�//

for � 2R nS2:

The following version of Fatou’s representation theorem will be crucial for us.

Proposition 4.7 Suppose that F is an n� n matrix-valued holomorphic function on the upper half-plane
CC D f� 2C j Im � > 0g[ .R nP /, where P is a discrete subset of R consisting of poles of F . Suppose
that for every � 2CC, Im F.�/ is a symmetric , positive definite matrix, whereas for � 2RnP , Im F.�/D0.
Then there is an n� n symmetric matrix �D .�jk/ whose entries are real-valued , signed Borel measures
on R such that :

(1ı) �jk does not have mass on any interval which does not contain a pole of F .

(2ı)
Z C1
�1

jd�jk.t/j

1C t2
<1.

Geometry & Topology, Volume 28 (2024)



Riemannian manifolds with entire Grauert tube are rationally elliptic 1109

(3ı) � is positive semidefinite in the sense that for any .!j / 2 Rn, the measure
P
!j!k�jk is non-

negative.

(4ı) For � 2CC,
F 0.�/DAC

1

�

Z C1
�1

d�.t/

.� � t/2
;

where A is a symmetric , positive semidefinite constant matrix. In fact , we have

AD lim
�!C1

Im F.i�/

�
;

and d�.�/ is the weak limit of Im F.� C i�/ as � ! 0C.

Proof See [11] and Proposition 7.4 in [12]. The only difference is that we require F has a holomorphic
extension to R nP , hence we get that �jk does not have mass on any interval which does not contain a
pole of F .

Now we are going to finish the proof of Theorem 1.1. Applying Proposition 4.7 to the matrix-valued
holomorphic function .�f �1

1
/ on the upper half-plane, we get

(4-4) .�f �1
1 /0.�/DAC

1

�

Z C1
�1

d�.t/

.� � t/2
for � 2CC;

where A D .ajk/ is a symmetric, positive semidefinite constant matrix and � is an n � n positive
semidefinite symmetric matrix whose entries are real-valued, signed Borel measures on R. By analytic
continuation, equation (4-4) also holds on R except a discrete subset. Moreover, � does not have mass
on any interval which does not contain a pole of �f �1

1
. This yields that

.�f �1
1 /0.�/DAC

1

�

X
j

�.tj /

.� � tj /2
for � 2R n ft1; t2; : : : g;

where ft1; t2; : : : g are poles of �f �1
1

. As f .0/D 0, we see that 0 is pole of �f �1
1

.

Lemma 4.8 �.0/D � Id.

Proof By Proposition 4.7, we get

�.0/D lim
ı!0C

�.�ı; ı/D lim
ı!0C

lim
�!0C

Z ı

�ı

Im.�f �1
1 .� C i�// d�

D lim
ı!0C

lim
�!0C

Z ı

�ı

Im
�
�
�
fjk.0/Cf

0
jk.0/.� C i�/CO.� C i�/2

��1

1�j ;k�n�1

�
d�

D lim
ı!0C

lim
�!0C

Z ı

�ı

Im
�
�
�
.� C i�/ IdCO.� C i�/2

��1�
d�

D lim
ı!0C

lim
�!0C

Z ı

�ı

Im
�
�

1

�Ci�
.IdCO.� C i�//�1

�
d�

D lim
ı!0C

lim
�!0C

Z ı

�ı

Im
�
�

1

�Ci�
IdCO.1/

�
d� D lim

ı!0C
lim
�!0C

Z ı

�ı

�

�2C�2
d� IdD � Id:
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Given Lemma 4.8, then we have
.�f �1

1 /0.�/D
1

�2
IdCB;

where
B DAC

1

�

X
tj¤0

�.tj /

.� � tj /2

is positive semidefinite.

Lemma 4.9 Let A1 and A2 be two k � k Hermitian positive semidefinite complex matrix, then

det.A1CA2/� det A1C det A2:

Proof It follows from the Minkowski determinant theorem [13, page 115] that�
det.A1CA2/

�1=k
� .det A1/

1=k
C .det A2/

1=k :

By Theorem 3.3, we get that f .� C i�/ is a symmetric matrix, so is �f �1
1
.� C i�/. By Proposition 4.7,

we see that A and �.tj / are real-valued symmetric positive semidefinite matrix. By Lemma 4.9, we get

1

det
�
.�f �1

1
/0.�/

� � �2n�2:

By Theorem 4.1 and Lemma 4.6, we seeZ
M

nT .x;y/ dy � p.T /;

where p.T / is a polynomial of degree at most n. By Theorem 4.2,
Pk�1

jD0 dim Hj .�M;F / has polynomial
growth for any field of coefficients. It follows that M is topologically elliptic.

To illustrate the idea of the above proof, we give two examples here. Let M be an n–dimensional compact
manifold of constant sectional curvature c. From the proof of Theorem 2.5 in [16], we have

f1.� C i�/D

�
.� C i�/ Id if c D 0;

.tg.� C i�// Id if c D 1:

Case 1 When c D 0, then �f �1
1
.� C i�/D .�1=.� C i�// Id. Hence

.�f �1
1 /0.�/D

1

�2
Id:

Let F.� C i�/ WD �f �1
1
.� C i�/. In this case, the matrix A and measure � in Proposition 4.7 can be

computed by
AD lim

�!C1

Im F.i�/

�
D 0;

�.0/D lim
ı!0C

�.�ı; ı/D lim
ı!0C

lim
�!0C

Z ı

�ı

Im F.� C i�/ d� D � Id:

Then
R

M nT .x;y/ dy has polynomial growth of degree n.
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Case 2 When c D 1, then �f �1
1
.� C i�/D .�cot.� C i�// Id. Hence

.�f �1
1 /0.�/D

1

sin2.�/
Id:

Let F.� C i�/ WD �f �1
1
.� C i�/. In this case, the matrix A and measure � in Proposition 4.7 can be

computed by
AD lim

�!C1

Im F.i�/

�
D 0;

�.j�/� �.0/D lim
ı!0C

�.�ı; ı/D lim
ı!0C

lim
�!0C

Z ı

�ı

Im F.� C i�/ d� D � Id for j 2 Z:

Then
R

M nT .x;y/ dy has linear growth.
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