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Let R> 1 and let B be the Euclidean 4–ball of radius R with a closed subset E removed. Suppose that B

embeds symplectically into the unit cylinder D2 �R2. By Gromov’s nonsqueezing theorem, E must be
nonempty. We prove that the Minkowski dimension of E is at least 2, and we exhibit an explicit example
showing that this result is optimal at least for R�

p
2. In the appendix by Joé Brendel, it is shown that

the lower bound is optimal for R<
p

3. We also discuss the minimum volume of E in the case that the
symplectic embedding extends, with bounded Lipschitz constant, to the entire ball.

53D05, 53D35

1 Introduction

Consider R2n with its standard symplectic structure ! D
P

dxi ^ dyi . A prototypical question in
symplectic geometry is to ask whether one domain of R2n symplectically embeds into another (ie via an
embedding ˆ with ˆ�! D !). At the very least, a symplectic embedding preserves the standard volume
form .1=n!/!n. However, there is more rigidity in symplectic geometry than just volume. We recall the
most famous result certifying this bold claim.

Let B2n.�R2/ � R2n be the open ball of radius R, and let Z2n.�r2/D B2.�r2/�R2n�2 � R2n be
the open cylinder of radius r .

Theorem 1.1 (Gromov’s nonsqueezing theorem [11]) A symplectic embedding of B2n.�R2/ into
Z2n.�r2/ exists if and only if R� r .

Our goal in this paper is to try to quantify the failure of B2n.�R2/ to symplectically embed into Z2n.�r2/,
when R> r , via the following motivating question:

Motivating question How much do we need to remove from B2n.�R2/ so that it embeds symplectically
into Z2n.�r2/?
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Open Access made possible by subscribing institutions via Subscribe to Open.
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1114 Kevin Sackel, Antoine Song, Umut Varolgunes and Jonathan J Zhu

As a first attempt, one may try to use volume to answer this question. Over all possible symplectic
embeddings B2n.�R2/ ,!R2n, what is the minimal possible volume excluded from Z2n.�r2/? This
question has a straightforward answer, as the following result of Katok reveals.

Theorem 1.2 (Katok [16]) Given a compact set X in .R2n; !std/, for every � > 0, there exists a
Hamiltonian diffeomorphism � W .R2n; !std/! .R2n; !std/ such that

Vol.�.X / nZ.�//� �:

We therefore modify our attempt to produce a more meaningful version of our question. We discuss two
specific instances, though we focus predominantly on the first:

(1) What is the smallest Minkowski dimension of a subset E �B2n.�R2/ with the property that there
is a symplectic embedding B2n.�R2/ nE!Z2n.�r2/?

(2) Over all possible symplectic embeddings B2n.�R2/ ,!R2n with Lipschitz constant at most L> 0,
what is the minimal possible volume excluded from Z2n.�r2/?

Here Minkowski dimension stands for the lower Minkowski dimension, which is defined for any subset
of B2n.�R2/. Heuristically, E having Minkowski dimension d 2R means that as �! 0, the volume of
the �–neighborhood of E behaves as c�2n�d , for some constant c > 0.

For each of these two questions, there is some quantity we are trying to minimize: either the Minkowski
dimension of E, or the volume excluded from the cylinder under an L–Lipschitz symplectic embedding.
In either case, there are two key aspects to discuss.

� Constructive We find an explicit symplectic embedding which provides an upper bound on the
quantity that we are trying to minimize.

� Obstructive For a purported symplectic embedding, we find a lower bound on the quantity that
we are trying to minimize.

A full answer to these two questions would require that the obstructive and constructive bounds match.
Although these questions are interesting in general dimensions, in this paper we will restrict our attention
only to the case of dimension 2nD 4, save for a few open questions posed in Section 6. There are also a
plethora of further questions that will be posed in the final section of the paper.

We now discuss our results for each of these two questions.

1.1 The Minkowski dimension problem

Recall that here we are asking for the smallest lower Minkowski dimension of a subset E � B.�R2/

with the property that there is a symplectic embedding B.�R2/ nE!Z.�r2/; assuming R> r . (Here
and henceforth we drop the superscripts from B4. : / and Z4. : / since the dimension is always 4.) By a
scaling argument, it suffices to consider the case r D 1.

Geometry & Topology, Volume 28 (2024)



On certain quantifications of Gromov’s nonsqueezing theorem 1115

Let us start by discussing the constructive side. Observe that if we remove a union of codimension-one
affine hyperplanes along a sufficiently fine grid, we end up with many connected components, each of
which embeds into Z.�/ by translations. Interestingly, at least in a certain range of R, one can do better
and find a two-dimensional submanifold E whose complement embeds into Z.�/.

To explain this result we need to introduce some notation. Let us consider the Lagrangian disk

L WD B.2�/\fy1 D y2 D 0g:

Let us also define E.�; 4�/�R4 to be the open ellipsoid˚
.x1;y1;x2;y2/ j x

2
1 Cy2

1 C
1
4
.x2

2
Cy2

2
/ < 1

	
;

and let
C WD E.�; 4�/\fx2 D y2 D 0g:

Theorem 1.3 B.2�/nL is symplectomorphic to E.�; 4�/nC. Consequently , B.2�/nL symplectically
embeds into Z.�/.

In particular, removing a Lagrangian plane from B.2�/ halves its Gromov capacity. Our proof of
Theorem 1.3 has a great deal in common with Section 3 of Oakley and Usher’s beautiful paper [25], where
the same geometries are used for a different purpose. In fact, we show in Section 4 how the projective
space CP2 is symplectomorphic to the boundary reduction of the unit cotangent bundle D�RP2 by using
the explicit map of [25, Lemma 3.1]. Theorem 1.3 can also be derived from the proof of Biran’s general
decomposition theorem [2, Theorem 1.A; Example 3.1.2], and Opshtein [26, Lemma 3.1]. We use the
latter in our argument as well.

On the obstructive side, we show that removing a two-dimensional subset as in Theorem 1.3 is the best
one can do in general:

Theorem 1.4 Let E be a closed subset of R4 and let R> 1. Suppose that B.�R2/ nE symplectically
embeds into the cylinder Z.�/. Then the lower Minkowski dimension of E is at least 2.

For the proof of Theorem 1.4, we build on Gromov’s original nonsqueezing argument by adding a key new
ingredient: the waist inequality, which was also introduced by Gromov [12]; see also Memarian [23]. Cru-
cially, we require the sharp version due to Akopyan and Karasev [1], as well as the Heintze–Karcher [15]
bound on the volumes of tubes around minimal surfaces, in place of the monotonicity inequality for
minimal surfaces.

Remark 1.5 Let Rsup 2 .1;1� be the supremum of the radii R such that there is a codimension-two
subset of B.�R2/ whose complement can symplectically embed into Z.�/. In the first version of this
article we had conjectured that Rsup should be equal to

p
2. However shortly after its appearance, Joé

Brendel informed us that using a construction inspired by Hacking and Prokhorov [13], he can prove
Rsup �

p
3. As a consequence, we changed our conjecture to a question; see Section 6.3. His construction

appears in the appendix.

Geometry & Topology, Volume 28 (2024)



1116 Kevin Sackel, Antoine Song, Umut Varolgunes and Jonathan J Zhu

We further remark that in Theorem 1.3, we remove a Lagrangian plane. In the construction of Joé Brendel
in the appendix realizing Rsup �

p
3, he removes a union of Lagrangians together with a symplectic

divisor. In higher dimensions (see eg Section 6.1), this distinction could be interesting.

1.2 The Lipschitz problem

Recall that for fixed L> 1, we are asking for the smallest volume of the region

E.ˆ/ WD B.�R2/ nˆ�1.Z.�//Dˆ�1.R4
nZ.�//

over all symplectic embeddings ˆ W B.�R2/ ,!R4 of Lipschitz constant bounded above by L. (We note
that although we use the letter L for both the Lipschitz constant as well as for the Lagrangian disk of
Theorem 1.3, there will be no confusion given the context.)

On the obstructive side, we obtain the following as a corollary of the proof of the obstructive bound for
the Minkowski question (Theorem 1.4):

Theorem 1.6 Let R> 1. Then there exists a constant c D c.R/ > 0 such that for all constants L and all
symplectic embeddings ˆ W B.�R2/ ,!R4 with Lipschitz constant at most L, we have

Vol4.E.ˆ//�
c

L2
:

It is worth noting that one may use the standard nonsqueezing theorem alone to find a weaker quanti-
tative obstructive bound of c=L3 as follows. Suppose we had an L–Lipschitz symplectic embedding
� WB.�R2/ ,!R4 for R> 2. Then by Gromov’s nonsqueezing theorem and the Lipschitz condition, one
can check that there is a ball of radius of order 1=L embedded inside E.�/. Hence,

Vol.E.�//& 1

L4
:

With a little more effort, one may find order L many disjoint such balls inside E.�/, yielding the
obstructive bound c=L3. However, jumping from c=L3 to our obstructive bound of c=L2 appears to
require a new tool, which in our case is Gromov’s waist inequality.

On the constructive side, we adapt Katok’s ideas in [16] to prove the following:

Theorem 1.7 Let R> 1. Then there exists a constant C D C.R/ > 0 such that for all constants L, there
exists a symplectic embedding ˆ W B4.R/ ,!R4 with Lipschitz constant at most L such that

Vol4
�
E.ˆ/

�
�

C

L
:

Remark 1.8 As was pointed out to us by Felix Schlenk, our construction is a simplified version of
multiple symplectic folding; see Schlenk [28, Sections 3 and 4].

One would obviously like to push the obstructive and constructive bounds together.

Geometry & Topology, Volume 28 (2024)



On certain quantifications of Gromov’s nonsqueezing theorem 1117

Organization of the paper We start by recalling some definitions and known theorems in Section 2,
which are then applied in Section 3 to prove an obstructive bound implying Theorem 1.4. In Section 4
we construct the symplectomorphism of Theorem 1.3. The Lipschitz problem, including Theorems 1.6
and 1.7, are discussed in Section 5. We also list several related questions in the final Section 6. In the
appendix, written by Joé Brendel, the construction mentioned in Remark 1.5 appears.
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Schlenk and Joé Brendel for their interest and helpful comments our paper. Sackel thanks Larry Guth
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part by the National Science Foundation under grant DMS-1802984 and the Australian Research Council
under grant FL150100126.

2 Preliminaries

We use the usual asymptotic notation f 2O.g/ to mean jf j � Cg for some constant C , and f 2 o.g/ to
mean that limt!0 f .t/=g.t/D 0. We write f 2‚.g/ if f 2O.g/ and g 2O.f /.

Let S �Rn be any bounded subset. Let Nt .S/ denote the open t–neighborhood of S with respect to the
standard metric. If † is a compact submanifold (possibly with boundary), let Vt .†/ be the exponential
t–tube of †, ie the image by the normal exponential map of the open t–neighborhood of the zero-section
in the normal bundle of † (which is endowed with the natural metric).

We denote by Voln the Euclidean n–volume of a set and set

˛l D
� l=2

�
�

1
2
l C 1

� :
Note that when n is a natural number, ˛n D Voln.Bn/ is precisely the Euclidean volume of the unit
n–dimensional ball Bn �Rn. For s � 0, the s–dimensional lower Minkowski content of S is defined as

Ms.S/ WD lim inf
t!0C

Voln.Nt .S//

˛n�stn�s
:

Note that the normalization is chosen so that if †k �Rn is a closed k–dimensional submanifold, then
Mk.†/D Volk.†/ coincides with the Euclidean k–volume of †.

Geometry & Topology, Volume 28 (2024)



1118 Kevin Sackel, Antoine Song, Umut Varolgunes and Jonathan J Zhu

The lower Minkowski dimension of S is defined as

dimM.S/ WD inf
s>0
fMs.S/D 0g D sup

s�0

fMs.S/ > 0g:

There are similar notions of upper Minkowski dimension and upper Minkowski content, which we will
not need in this paper since a lower bound of the lower Minkowski content implies by definition the same
lower bound for the upper Minkowski content. There are also equivalent definitions using ball packings.
Replacing S by its closure xS does not change the Minkowski upper/lower dimensions.

2.1 Waist inequalities

The waist inequality for round spheres proved by Gromov [12] and with more details by Memarian [23]
was extended to the case of maps from Euclidean balls by Akopyan and Karasev [1, Theorem 1]. The
proof of the latter immediately implies the following:

Theorem 2.1 (waist inequality) For any positive integers n and k, there exists a continuous function
hn;k W .0;1/!R such that hn;k 2 o.tk/ and the following holds: for any continuous map f W Bn!Rk,
there exists y 2Rk such that

(2-1) Voln
�
Nt .f

�1.y//\Bn
�
� ˛n�k˛k tk

� hn;k.t/:

It will be useful for our application that the above estimate is uniform in f . This uniform estimate is
indeed implied by the proof of [1, Theorem 1] as they compare the t–neighborhood of a fiber to the
t–neighborhood of an equatorial unit sphere SnC1�k � SnC1 (cf the second-last equation of their proof,
with correct normalization). The latter is independent of f , and by explicit calculation one may verify
that actually hn;k 2O.tkC2/.

We remark that the waist inequality for spheres [12; 23] describes a stronger property than the above
statement, since it gives optimal bounds on all (not just small) neighborhoods of the big fiber.

2.2 Tubes around minimal submanifolds

The Heintze–Karcher inequality [15] estimates the volume of tubes around compact submanifolds. We
need the case of minimal submanifolds in Euclidean space (covered by [15, Theorem 2.3] with ı D 0 and
Remark 2 on page 453 in [15]), which may be stated as follows:

Theorem 2.2 (Heintze–Karcher inequality) For any positive integers n and k, and any smooth compact
k–dimensional minimal submanifold †k �Rn with boundary, for t > 0 we have

(2-2) Voln.Vt .†//� Volk.†/˛n�k tn�k :

Geometry & Topology, Volume 28 (2024)
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Theorem 2.2 is again a uniform estimate on the exponential t–neighborhood; one may compare it to the
statement that the (upper) Minkowski k–content of a closed submanifold †k �Rn is Volk.†/. The point
of Theorem 2.2 is that the constant in this estimate does not depend on the minimal k–submanifold †
or t . The main ingredient for its proof is an estimate for the Jacobian determinant of the normal
exponential, which in Euclidean space is 1 to lowest order. The following term is controlled by the mean
curvature H , which one may expect from the interpretation of mean curvature as the first variation of
(k–)area. Consequently, for a general compact submanifold †, (2-2) will have an error term of order
c.max† jH j/tn�kC1.

2.3 Gromov foliation and maps into the cylinder

For r <R, recall that B.�R2/ and Z.�r2/ denote the open ball and open cylinder of radius R and r ,
respectively, in R4. In this subsection, we give a slight modification of the holomorphic foliation argument
of Gromov [11] in dimension nD 4.

Proposition 2.3 Let R; r > 0. Let E be a compact subset of R4 and let � W B.�R2/ nE ! R4 be a
smooth symplectic embedding into the cylinder Z.�r2/. Let U be the closure of an open neighborhood
of @B.�R2/[E in R4. Then there exists a smooth map f W B.�R2/ nU !R2 such that

� f has no critical points on B.�R2/ nU , and

� for all y 2 R2, if f �1.y/ \ B.�R2/ n U is nonempty, then it is a two-dimensional complex
submanifold of Euclidean area less than �r2.

Proof The following argument is standard in the symplectic community. As mentioned before the
statement of the proposition, the ideas are due to Gromov [11], though more thorough analytic details
may be found elsewhere; see eg [22].

We define A WD �r2 for brevity. Since B.�R2/ nU has compact closure in B.�R2/ nE, the image of
B.�R2/ nU under � lands in B2.�r2

0
/� Œ�K;K�2 for some large constant K and 0< r0 < r (possibly

depending upon U ). Let S2.A/ denote the 2–sphere with standard symplectic form scaled to have total
area A, and let T 2

K
D .R=4KZ/2 be the 2–torus with symplectic form induced by the standard form

on R2. Then we have a symplectic embedding B2.�r2
0
/� Œ�K;K�2�S2.A/�T 2

K
, and upon composing

with �, we arrive at a symplectic embedding, also denoted by � (by abuse of notation),

� W B.�R2/ nU ,! S2.A/�T 2
K :

Let J0 denote the standard complex structure on B.�R2/, and let J1 denote the standard (split) complex
structure on S2.A/ � T 2

K
. We pick a special almost complex structure J� on S2.A/ � T 2

K
which

incorporates � by requiring that it satisfies the following three properties:

� On the image of �, J� D ��.J0/.

� J� D J1 in a neighborhood of f1g�T 2
K

.

� Everywhere, J� is compatible with the symplectic form.

Geometry & Topology, Volume 28 (2024)
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By [22, Proposition 9.4.4], which encompasses standard 4–dimensional techniques, the evaluation map

ev WM0;1.ˇ;J�/! S2.A/�T 2
K

is a diffeomorphism, where M0;1.ˇ;J�/ is the moduli space of J�–holomorphic spheres with one
marked point and in the class ˇ. Meanwhile, the map which forgets the marked point � WM0;1.ˇ;J�/!

M0;0.ˇ;J�/ is a smooth fibration, with fibers diffeomorphic to S2. By positivity of intersections
(see [22, Theorem 2.6.3]), each fiber of � , which is a J�–holomorphic sphere, intersects f1g�T 2

K
once

and transversely, so by the implicit function theorem we have a canonical diffeomorphism g of T 2
K

with
M0;0.ˇ;J�/. We therefore obtain a map h W S2.A/�T 2

K
! T 2

K
by setting h.p/D x when the unique

sphere through p passes through .1;x/. It is clear by construction that the diagram

M0;1.ˇ;J�/ S2.A/�T 2
K

M0;0.ˇ;J�/ T 2
K

for

ev

h

g

commutes. In particular since the forgetful map is a smooth S2 fiber bundle, h is smooth and has no
critical points.

Notice that since the image of B.�R2/ nU under � is contained in a contractible subset of S2.A/�T 2
K

,
we have that the composition hı� WB.�R2/nU ! T 2

K
lifts to a map f WB.�R2/nU !R2. This is the

function f we desired in the statement of the proposition, and we must now check it satisfies both of the
desired properties.

The fact that f �1.y/ is a complex submanifold is simply because it is by definition a subset of a J�–
holomorphic sphere, and J� is chosen to equal ��.J0/ on the image of �. Finally, the area bound comes
from the fact that the area of f �1.y/ is at most the symplectic area of the corresponding sphere (the one
passing through .1; Œy�/), which is just A since symplectic area is purely homological.

3 A quantitative obstruction to partial symplectic embeddings

As usual, for r <R, B.�R2/ and Z.�r2/ refer to the open ball and open cylinder of radius R and r ,
respectively, in R4. The main estimate of this section is the following obstructive bound:

Theorem 3.1 Let E be a compact subset of R4 and suppose that B.�R2/ nE symplectically embeds
into the cylinder Z.�r2/�R4. Then there is a function kR 2 o.t2/ such that for any t > 0,

Vol4.Nt .E//� �
2.R2

� r2/t2
� kR.t/:

Proof Let ˆ W B.�R2/ n E ! Z.�r2/ be the symplectic embedding of the statement. Consider
0< t < 1

2
.R� r/ and take 0< ı < t . Later, we will send ı! 0.

Geometry & Topology, Volume 28 (2024)
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Let Uı be the closure of Nı.@B.�R2/[E/ in R4 and let zfı W B.�R2/ nUı!R2 be the map given by
Proposition 2.3. Note that B.�R2/nUı DB.�.R�ı/2/nNı.E/. We then take fı WB.�.R�ı/2/!R2

to be any continuous extension of zfı . Since fı agrees with zfı on B.�.R� ı/2/ nUı , by the conclusions
of Proposition 2.3 we have for any y 2R2 that

†ı WD f
�1
ı .y/\

�
B.�.R� ı/2/ nUı

�
is a minimal submanifold with area less than A WD �r2.

The main idea of our proof is that the waist inequality guarantees a fiber with large-volume neighborhoods,
but by the area bound (and the structure of tubes) this can only happen if the fiber accumulates near the
exceptional set. Accordingly, a key component is the following covering claim.

Claim 1 Let fı;t be the restriction of fı to the ball B.�.R� 2t/2/. Then

(3-1) Nt .f
�1
ı;t .y//\B.�.R� 2t/2/� Vt .†ı/[NıCt .E/:

Indeed, by definition of †ı and the supposition ı < t we have that

f �1
ı;t .y/ nNı.E/D†ı \B.�.R� 2t/2/�†ı:

Now given any submanifold †, its t–neighborhood Nt .†/ is always contained in the union of the
tube Vt .†/ and the t–neighborhood Nt .@†/ of its boundary. So since @†ı � @Uı, we have that

Nt

�
f �1
ı;t .y/ nNı.E/

�
�Nt .†ı/� Vt .†ı/[Nt .@Uı/:

By the triangle inequality it follows that

(3-2) Nt .f
�1
ı;t .y//� Vt .†ı/[Nt .@Uı/[NıCt .E/:

But by definition of Uı, we have Nt .@Uı/�Nt .@B.�.R� ı/
2//[NıCt .E/, and since ı < t , we note

that Nt .@B.�.R� ı/
2//\B.�.R� 2t/2//D∅. Taking the intersection of (3-2) with B.�.R� 2t/2/

then yields the claim.

Having established the claim, we now estimate the volume of each set in (3-1). First, let h4;2 2 o.t2/ be
as in Theorem 2.1. By rescaling to the ball B.�.R� 2t/2/, the waist inequality Theorem 2.1 applied to
fı;t W B.�.R� 2t/2/!R2 gives that there is some y 2R2 for which

(3-3) Vol4
�
Nt .f

�1
ı;t .y//\B.�.R� 2t/2/

�
� �2t2.R� 2t/2� .R� 2t/4h4;2

�
t

R� 2t

�
:

On the other hand, since †ı is minimal with area at most A, the Heintze–Karcher inequality Theorem 2.2
yields

(3-4) Vol4.Vt .†ı//� Vol2.†ı/� t2
�A� t2:

Geometry & Topology, Volume 28 (2024)
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Combining the covering (3-1) with the estimates (3-3) and (3-4) yields

Vol4.NıCt .E//�
�
�2.R� 2t/2�A�

�
t2
� .R� 2t/4h4;2

�
t

R� 2t

�
:

The volume of Nt .E/ is nondecreasing with respect to t , and is continuous almost everywhere. Therefore,
sending ı! 0 and recalling that AD �r2 in the inequality above, we obtain for any t > 0 that

Vol4.Nt .E//� �
2
�
.R� 2t/2� r2

�
t2
� .R� 2t/4h4;2

�
t

R� 2t

�
:

Thus, taking

kR.t/D 4R�2t3
CR4h4;2

�
t

R� 2t

�
;

for instance, concludes the proof.

An immediate corollary is a lower bound for the lower Minkowski dimension. We will see that this bound
is sharp in the next section, at least for radii R which are not too large.

Corollary 3.2 (Minkowski dimension) Suppose that B.�R2/ n E symplectically embeds into the
cylinder Z.�r2/�R4. Then the two-dimensional lower Minkowski content of E satisfies

M2.E/� �.R
2
� r2/:

In particular , the lower Minkowski dimension dimM.E/ is at least 2.

4 Squeezing the complement of a Lagrangian plane

In this section it will be more convenient to use complex coordinates for the standard symplectic R4.
Therefore we consider C2 with its standard Kähler structure, ie if x and y are the complex coordinates,
then the symplectic form is

i

2
.dx ^ d xxC dy ^ d xy/:

Let us recall the main objects in the statement of Theorem 1.3 in complex notation for convenience. Let
B.2�/�C2 be the open ball of radius

p
2 centered at the origin. Let R2�C2 be the real part and define

L WD B.2�/\R2:

We also define E.�; 4�/�C2 to be the open ellipsoid˚
.x;y/ j jxj2C 1

4
jyj2 < 1

	
;

and let

C WD E.�; 4�/\fy D 0g:

Geometry & Topology, Volume 28 (2024)
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Let us introduce the main actors in the proof. Let CP2.2�/ be the symplectic manifold obtained from
coisotropic reduction of the sphere S5 of radius

p
2 in C3. Denoting the complex coordinates on C3

by z1, z2 and z3, we are using the symplectic structure i
2
.dz1 ^ dxz1C dz2 ^ dxz2C dz3 ^ dxz3/ on C3.

There is a canonical identification of CP2.2�/ with the complex manifold CP2
WD GrC.1; 3/, whose

homogeneous coordinates we will denote by Œz1 W z2 W z3�. Of course, CP2.2�/ is nothing but CP2

equipped with the Fubini–Study symplectic form scaled so that a complex line (eg fz1 D 0g �CP2) has
area 2� .

Let us also specify some submanifolds of CP2.2�/ using its canonical identification with CP2.

� LRP is the real part

fŒz1 W z2 W z3� j Im.z1/D Im.z2/D Im.z3/D 0g:

� For t D Œt1 W t2 W t3� 2RP WD GrR.1; 3/, we define the complex lines

St WD fŒz1 W z2 W z3� j t1z1C t2z2C t3z3 D 0g:

� FQ is the Fermat quadric

fŒz1 W z2 W z3� j z
2
1 C z2

2 C z2
3 D 0g:

It is well-known that CP2.2�/n .SŒ0W0W1�[LRP / is symplectomorphic to B.2�/nL; see Exercise 9.4.11
in [22].

Consider RP as a smooth manifold in the standard way. Let � be the tautological one-form on T �RP

and V be the Liouville vector field, which is a vertical vector field equal to the Euler vector field in each
fiber (which is defined on any vector space independently of a basis). We have

!.V; � /D �;

where ! D d�. We denote the zero-section submanifold on T �RP by ZRP .

The Riemannian metric on S2 obtained from its embedding as the round sphere of radius 1 in R3 induces
a metric on its quotient by the antipodal map, which is canonically diffeomorphic to RP . We call this the
round metric on RP and denote it by gRP . We have the diffeomorphism g

]
RP W T RP ! T �RP , which

is in particular linear on the fibers. We can transport the function K W T RP ! R, given by lengths of
tangent vectors to

(4-1) K]
W T �RP !R:

On T RP we have the geodesic flow; under the identification by g
]
RP this becomes the Hamiltonian

flow of the function 1
2
.K]/2. The normalized geodesic flow on T RP nRP becomes the Hamiltonian

flow of K]. Let us call these the geodesic flow and normalized geodesic flow on T �RP . Note that the
normalized geodesic flow on T �RP nZRP is a �–periodic action of R.
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Any unparametrized oriented geodesic circle  in RP with its round metric defines a symplectic sub-
manifold C in T �RP with boundary on ZRP by taking points .q;p/ such that q 2  and p D gq.v; � /,
where v is nonnegatively tangent to  . Let us denote by � the geodesic circle with opposite orientation.
Clearly, C and C� intersect along  �ZRP and form a symplectic submanifold of T �RP , which is
diffeomorphic to a cylinder.

Let D�RP � T �RP be the closed unit-disk bundle, which is given by the subset K] � 1. Also let
U �RP D .K]/�1.1/ be the unit-sphere bundle, ie the boundary of D�RP , with its induced contact
structure � WD ���.

The symplectic reduction U �RP =S1 is a two-sphere equipped with a canonical symplectic form. Let us
call this symplectic manifold .Q; !Q/. The points of Q are canonically identified with unparametrized
oriented geodesic circles in round RP .

Let us denote the boundary reduction symplectic manifold of D�RP by D�RP2 (see Definition 3.9
of [30]; also note the interpretation as one half of a symplectic cut [18]).

Note that Q and ZRP sit naturally inside D�RP2. The Poincaré dual of the homology class of Q is 1=�

times the symplectic class. The cylinders .C [C� /\D�RP become symplectic 2–spheres in D�RP2.
They intersect Q positively in two points and ZRP along the circle  . Let us call these spheres S , now
indexed by unoriented unparametrized geodesic circles on RP . Each S has self-intersection number 1.

Let 0 be the oriented unparametrized geodesic on RP which corresponds to the quotient of the horizontal
great circle in S2 �R3 oriented as the boundary of the lower hemisphere. We define S WD S0

.

Proposition 4.1 There is a symplectomorphism D�RP2
!CP2.2�/ with the following properties:

� ZRP is sent to LRP .

� S is sent to SŒ0W0W1�.

� Q is sent to FQ.

The proof of this proposition is postponed to Section 4.1. Let us continue with an immediate corollary.

Corollary 4.2 D�RP2
n .S [ZRP / is symplectomorphic to CP2.2�/ n .SŒ0W0W1�[LRP /, and in turn

to B.2�/ nL.

Note that V �K] DK] on T �RP nZRP , which means that K] is an exponentiated Liouville coordinate
for V on T �RP nZRP . Hence, we obtain a Liouville isomorphism

T �RP nZRP ' .U
�RP �.0;1/r ; d.r�//;
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where K] is matched with the function r . The Hamiltonian vector field Xr gives the r–translation invariant
Reeb vector field (using r D 1) on the contact levels. Finally, observe that C \ .T

�RP nZRP /’s are
obtained as the traces of the Reeb orbits on U �RP under the Liouville flow.

In particular, we have a foliation of D�RP2
n ZRP by open disks which are the reductions of the

C \ .D
�RP nZRP /’s. Let us denote this Q–family of submanifolds by D , where  2Q.

Proposition 4.3 D�RP2
nZRP is symplectomorphic to an area-� standard symplectic disk bundle of

.Q; !Q/ in the sense of Biran [2, Section 2.1] in such a way that D is sent to the fiber over  for every
 2Q.

Remark 4.4 The cohomology class of !Q=� is integral and it admits a unique lift to H2.Q;Z/. What
we mean by an area-� standard symplectic disk bundle of .Q; !Q/ is an area-1 standard symplectic disk
bundle of .Q; !Q=�/ with its symplectic form multiplied by � .

Proof The symplectomorphism D�RP nZRP ' U �RP �.0; 1�r induces a symplectomorphism of the
boundary reductions of both sides. We note that

(4-2) d.r z�/D pr�!Q� d..1� r/z�/

on U �RP �.0; 1/, where we define z� D pr�� for clarity.

Here we use the maps in the following commutative diagram, where Pr and pr are the obvious projections,
and U �RP2

!Q is the symplectic reduction map:

U �RP �Œ0;1/� U �RP �.0; 1/r

U �RP2

Q

Pr

Pr

pr

pr

Notice that the map U �RP !Q has the structure of a principal U.1/DR=Z bundle structure using the
Reeb flow of the contact form �=� , and the associated complex line bundle L is precisely the fiberwise
blow-down of U �RP �Œ0;1/� with respect to its canonical projection Pr to Q. The integral Chern class
of this complex line bundle is !Q=� (using that H�.Q;Z/ has no torsion) and a transgression 1–form is
given by the pull-back of ��=� by Pr. By definition, the open unit disk bundle � < 1 inside L, endowed
with the symplectic form

(4-3) Pr�
�
!Q

�

�
C d

�
�2Pr�

�
�
�

�

��
;

is an area-1 standard symplectic disk bundle of .Q; !Q=�/. Therefore, if we multiply this form by � , we
obtain an area-� standard symplectic disk bundle of .Q; !Q/.
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Now consider the following commutative diagram:

U �RP �Œ0; 1/� U �RP �.0; 1�r

f� < 1g � L U �RP �.0; 1�

rD1��2

F

Here the left map is the restriction of the fiberwise blowdown map and the right map is the boundary
reduction map. The upper map sends .x; �/ 2U �RP �Œ0; 1/� to .x; 1��2/, and it is a homeomorphism
overall as well as a diffeomorphism of the interiors. By construction of symplectic boundary reduction
we deduce that there is a canonical diffeomorphism F making this diagram commutative.

It automatically follows from comparing equations (4-2) and (4-3) that F is a symplectomorphism.
Composing F with the symplectomorphism from the very beginning of this proof yields the desired
symplectomorphism.

Combined with Corollary 4.2, the following finishes the proof of Theorem 1.3.

Proposition 4.5 D�RP2
n .S [ZRP / is symplectomorphic to E.�; 4�/ nC.

Proof We use our Proposition 4.3 and [26, Lemma 2.1] to find an explicit symplectomorphism from the
complement of D0

in D�RP2
nZRP to E.�; 4�/. Here we use a symplectomorphism between Qnf0g

and the two-dimensional open ellipsoid of area 4� which sends �0 to the origin, so that D�0
is sent

to C by this symplectomorphism.

4.1 Proof of Proposition 4.1

We will freely use the canonical identification of CPn.2�/ with .CnC1 n f0g/=C�. Note that the
homogenous coordinates Œz1 W � � � W znC1� denote the class Œz1e1C� � �CznC1enC1�, where ei is the standard
basis of RnC1 and its complexification CnC1. We also realize T �RPn as

f.q;p/ 2 Sn
�RnC1

j hq;pi D 0g=f˙1g;

where Sn � RnC1 is the unit sphere. It is a straightforward computation that the standard symplectic
form on T �RPn descends from the restriction of

PnC1
iD1 dpi ^ dqi on R2nC2 under this identification.

Note also that K].Œq;p�/D jpj away from the zero-section.

In [25, Lemma 3.1], Oakley and Usher considered the map

ˆ WD�RPn
!CPn.2�/

defined by

(4-4) ˆ.Œq;p�/ WD Œ
p
f .jpj/pC

ip
f .jpj/

q�;
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where f .x/D .1�
p

1�x2/=x2 on .0; 1� and f .0/D 1
2

. They proved that ˆjint.D�RPn/ is a symplecto-
morphism onto its image CPn.2�/ nFQn, where

FQn D

n
Œz0 W � � � W zn� 2CPn.2�/

ˇ̌X
z2

k D 0
o

is the Fermat quadric. As before, we will denote by D�RPn the boundary reduction of D�RPn, and by
ZRPn the zero-section. We have the following, which implies Proposition 4.1:

Proposition 4.6 The Oakley–Usher map ˆ WD�RPn
!CPn.2�/ descends to a symplectomorphism

x̂ WD�RPn
!CPn.2�/:

Proof Note that D�RPn is canonically homeomorphic to the quotient D�RPn= �, where x � y if
x;y 2 U �RPn and they are in the same orbit of the geodesic flow. Therefore, it is easy to see from the
computations of Oakley–Usher that ˆ descends to a bijective continuous map x̂ WD�RPn

!CPn.2�/.
We will show that this map is a symplectomorphism.

To do so, it suffices to show that x̂ is smooth. Indeed, if x̂ is smooth, then by continuity it follows
that x̂ preserves the symplectic form. This in particular shows that x̂ is an immersion, and hence a
diffeomorphism that preserves the symplectic forms.

The following point is crucial. The canonical (linear) action of the group GD SO.nC1/ on RnC1 induces
an action on D�RPn (and in turn on D�RPn) and CnC1 (and in turn on CPn.2�/). It is clear from the
definition (4-4) that x̂ is G–equivariant with respect to these actions.

We first prove smoothness in the case nD 1. Equip CP1.2�/ with the induced Riemannian metric (the
so called Fubini–Study metric), which makes it isometric to a round S2. We will use the fact that the
image of a linear Lagrangian subspace in C2 n f0g (with standard Kähler structure) under the canonical
projection to CP1.2�/ is a geodesic circle. We will denote CP1.2�/ by CP1 for brevity.

Note that ZRP1 is sent to the real part LRP1 �CP1 under x̂ . Moreover, D�RP1
n int.D�RP1/ consists

of two points which map to Œ1 W ˙i �. Finally, notice that the images of cotangent fibers (that is, line
segments of constant q) are sent to geodesic segments connecting Œ1 W i � and Œ1 W �i �. It is easy to see that
these geodesics are orthogonal to the geodesic circle LRP1 . Also recall that x̂ is SO.2/–equivariant as
explained above.

Let .D�RP1/C WD fŒq;p� j p1q2�p2q1 � 0g �D�RP1. Note that K].q;p/D jpj is a smooth function
when restricted to .D�RP1/C. On .D�RP1/C the symplectic form is easily computed to be dK] ^ d� ,
where � W .D�RP1/C!R=�Z is defined by the relation Œq;p�D Œcos.�/; sin.�/;� sin.�/jpj; cos.�/jpj�.

Let D � R2 be the unit disk jxj2C jyj2 � 1 with the symplectic form dx ^ dy. It is well-known that
there is a symplectic embedding D ,!CP1 which sends

� the origin to Œ1 W i �,

� the unit circle to LRP1 ,
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� radial rays to the geodesic segments that connect LRP1 and Œ1 W i �, in a way that preserves angles
at the intersections, and

� finally, the disks centered at the origin to balls around Œ1 W i � (in the Fubini–Study metric).

We now consider the induced continuous map … W .D�RP1/C!D defined by the commutative diagram

.D�RP1/C CP1

D

ˆ

…

Let .�; �/ denote polar coordinates on Dnf0g. We deduce, from our discussion thus far, the following facts:

� There exists a constant c such that …�� D�2� C c.

� There exists a function h W Œ0; 1/! .0; 1� such that

…��D h ıK]:

� � restricts to a symplectomorphism .D�RP1/C nU �RP1
!D n f0g.

These facts imply that h satisfies the differential equation h0.x/h.x/D�1
2

, which, with the initial condition
h.0/D 1, has the unique solution h.x/D

p
1�x.1 We thus observe that the map … W .D�RP1/C!D

is a model for the boundary reduction of .D�RP1/C at U �RP1; see [30, equation (3.1)]. This proves
that the map x̂ is smooth at both points of D�RP1

n int.D�RP1/ as we can repeat the same argument
on the other half of D�RP1.

We now move on to the case n> 1. We start with a preliminary lemma.

Lemma 4.7 Let G be a Lie group acting smoothly on M and N. Suppose that S is a smooth submanifold
of M and that the multiplication map G � S ! M is a surjective submersion. If � W M ! N is a
G–equivariant map and �jS is smooth , then � is also smooth.

Proof We have the following commutative diagram in which each map is known to be smooth except
the bottom map:

G �S G �N

M N

id��

�M �N

�

Since the left map is smooth surjective submersion, it has local smooth sections M � U !G �S . The
commutativity then implies that � is smooth.

1This form of h can also be recovered from the explicit forms of ˆ and the embedding D ,!CP1.
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Note that the orbits of GDSO.nC1/ on D�RPn are the submanifolds of constant jpj. Fix any unoriented
geodesic circle  in RPn with its round metric g. We obtain an embedding of T �RP1 in T �RPn by
taking points .q;p/ such that q 2  and p D gq.v; � /, where v is tangent to  . This restricts to a smooth
embedding of D�RP1 into D�RPn, and of D�RP1 into D�RPn (the last point is particularly clear in
the description of the boundary reductions at hand as in the proof of Proposition 4.3, which we keep in
mind for the next point as well.)

It is easy to see that the multiplication map G �D�RP1
!D�RPn is indeed a surjective submersion

using that G � T �RP1
! T �RPn is one. Applying the lemma with S D D�RP1, smoothness of x̂

follows from the smoothness of the nD 1 case x̂1 WD�RP1
!CP1.

Remark 4.8 In [29, Chapter V], Seade gives a description of CPn as a double mapping cylinder via
the natural SO.nC 1/ action. One may follow this discussion to obtain the corresponding description of
D�RPn, and that the map ˆ factors as the normal exponential map of RPn ,!CPn (with respect to the
Fubini–Study metric) composed with the map D�RPn

!T �RPn
'N RPn induced by jpj 7! 1

2
sin�1

jpj;
note that xf .x/D tan

�
1
2

sin�1 x
�

and that the focal set of RPn is precisely FQn. This yields an alternative
construction of ˆ as well as its extension x̂ .

5 Lipschitz symplectic embeddings of balls

In this section, we aim to prove Theorems 1.6 and 1.7 from the introduction. To begin, we introduce
some slightly more general notation, in which we also vary the radius of the cylinder. Suppose that
ˆ W B.�R2/!R4 is a symplectic embedding with Lipschitz constant L> 0. Then we may set

E.ˆ; r/ WDˆ�1.R4
nZ.�r2//:

Recall now that Theorem 1.6 is the statement that Vol4.E.ˆ; 1//� c=L2 for some constant cD c.R/ > 0.

Proof of Theorem 1.6 Let ı be any number strictly between 0 and R� 1. Observe that by the Lipschitz
bound, we have

Nı=L.E.ˆ; 1C ı//�E.ˆ; 1/:

Applying Theorem 3.1 with
E DE.ˆ; 1C ı/

to the symplectic embedding

ˆjB.�R2/nE.ˆ;1Cı/ W B.�R2/ nE.ˆ; 1C ı/!Z.1C ı/;

we obtain
Vol4.E.ˆ; 1//� �2.R2

� .1C ı/2/
ı2

L2
� o

�
ı2

L2

�
;

which implies the desired bound after fixing some value for ı, for instance ı D 1
2
.R� 1/.
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Remark 5.1 We may more generally ask about the volume of the region E.ˆ; r/ for R> r . By a scaling
argument, we find that

Vol4.E.ˆ; r//�
r4c.R=r/

L2
:

Hence, we lose no information by restricting to the case r D 1.

Remark 5.2 The proof demonstrates that we may take c.R/�R4 as R grows large.

On the other hand, we wish to prove the constructive bound, in which we must find an embedding
ˆ W B4.R/!R4 of Lipschitz constant bounded by L such that

Vol4
�
E.ˆ/

�
�

C

L

for some C D C.R/ > 0. (Recall here that E.ˆ/DE.ˆ; 1/.)

Proof of Theorem 1.7 The fact that Vol4.E.ˆ// can be made arbitrarily small if there is no restriction on
the Lipschitz constant is exemplified by ideas of Katok [16]. Our proof is a quantitative refinement obtained
using constructions which appear in symplectic folding. The basic idea is to break the ball B.�R2/ into
a number of cubes and Hamiltonian isotope each of these cubes into Z.�/, where the cubes are separated
by walls of width 1=L. To begin, we make three simplifications. First, we replace the domain B.�R2/

with the cube K.R/ D Œ�R;R�4, as the volume defect can only increase in size. Second, we replace
K.R/ with the rectangular prism

K0.R/D .Œ0; 4R2�� Œ0; 1�/� .Œ0; 4R2�� Œ0; 1�/;

where the parentheses indicate a symplectic splitting. Explicitly, the factors refer to the coordinates x1, y1,
x2, y2, with symplectic form ! D dx1 ^ dy1C dx2 ^ dy2. Notice that the natural symplectomorphism
between K.R/ and K0.R/ has Lipschitz constant 2R, and in particular, the effect of replacing K.R/

with K0.R/ only affects our proposition by a factor of R which gets absorbed into the constant C . And
finally, we allow the Lipschitz constant to be OR.L/, by which we mean it is bounded by AL, where
A is a constant which again depends upon R; we arrive at the proposition as stated by absorbing this
constant in C .

Consider now each symplectic factor Œ0; 4R2�� Œ0; 1��R2 of K0.R/. For i 2 Z with 0� i � 4R2, let
Xi be the region in this rectangle with

i � x � i C 1�
1

L
:

Our goal is to fit each Xi �Xj � K0.R/ into Z.�/— indeed, the complement of the union of these
regions has volume ‚.R4=L/; the R4 factor gets absorbed by the constant C .

To begin, there is an area-preserving map of the rectangle Œ0; 4R2�� Œ0; 1� into R2 of Lipschitz constant at
most O.L/ which translates Xi in the x–direction by i . That is, X0 stays fixed, X1 gets shifted to the right
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1=L

Xi�1 Xi XiC1

1

Yi�1 Yi YiC1

Figure 1: We stretch the region between Xi and XiC1 in an area-preserving way so that the
images Yi and YiC1 are separated by distance just over 1.

by 1, and the region between them gets stretched like taffy in an area-preserving way to accommodate for
this shift. See Figure 1. Let Yi be the image of Xi under this map. Then Yi and YiC1 are separated by
distance 1C 1=L, with

Yi D

�
2i; 2i C 1�

1

L

�
� Œ0; 1�:

Explicitly, a model for the taffy-stretching map is given as � W Œ0; 1=L�� Œ0; 1�! Œ0; 1C 1=L�� Œ0; 1� of
the form

�.x;y/D

�
f .x/; 1

2
C

y � 1
2

f 0.x/

�
(which is automatically area-preserving; see D� computed below) with f W Œ0; 1=L�! Œ0; 1C1=L� a
family of functions, depending upon L, such that

� f 0.x/D 1 for x in an open neighborhood of the endpoints 0 and 1=L,

� f .0/D 0 and f .1=L/D 1C 1=L,

� 1� f 0.x/ 2O.L/,

� jf 00.x/=.f 0.x//2j 2O.L/.

The first two conditions imply that the constructed stretching map � glues to the rigid translations of
the Xi in a C1 manner. The latter two conditions imply the desired Lipschitz constant bound of O.L/,
since

D� D

0@ f 0.x/ 0

�
�
y � 1

2

� f 00.x/
.f 0.x//2

1

f 0.x/

1A ;
with each entry in this matrix of order O.L/.

An example of such a desired function f may be given in the form2

f .x/D

Z x

0

1

1�Cg.y/
dy;

2There are of course many such choices for function f , and we do not claim to make an optimal choice. In an earlier draft, we
claimed that the Lipschitz constant of the stretching map could be made less than 2L. We only need that the Lipschitz constant is
O.L/ for our purposes, and it is unclear whether 2L can be achieved. We thank the reviewer for pointing out this lack of clarity.
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where C is a constant dependent upon L and g (as we will explain soon), and where g W Œ0; 1=L�! Œ0; 1=4L�

is a smooth function which is C 0–close to the continuous function

g0.x/D

8<:
x if 0� x < 1=4L;

1=4L if 1=4L� x < 3=4L;

1=L�x if 3=4L� x � 1=L:

We may take g so that g.x/ � 0 identically near the endpoints x D 0 and x D 1=L, and such that
jg0.x/j � 1C � for any chosen � > 0. The constant C is chosen so that f .1=L/D 1C 1=L, ie such that

I.C / WD

Z 1=L

0

1

1�Cg.y/
dy D 1C

1

L
:

We claim that such a constant C exists. Notice that the value of the integral I.C /, as a function of C , is
continuous and monotonically nondecreasing on the interval Œ0; 1= supfg.x/g/, with

I.0/D
1

L
< 1C

1

L
<1D lim

C!1=supfg.x/g
I.C /;

where the limit on the right follows because g attains its maximum value on the interior of the interval
Œ0; 1=L�, and because g is smooth, we have g0 D 0 at this maximum value. The existence of C now
follows from the intermediate value theorem, and monotonicity implies uniqueness. We notice that
because supfg.x/g � 1=4L and C < 1= supfg.x/g, we have that C 2O.L/.

With these choices, all of the conditions on f are now met, so long as we take a close enough approxima-
tion g of g0 (where the closeness depends upon L). The first bullet point follows because g.x/� 0 near
the endpoints. The second follows because we chose C accordingly. The fourth is guaranteed since

f 00.x/

.f 0.x//2
D Cg0.x/;

and we have constructed g so that jg0.x/j � 1C � and C 2O.L/.

That leaves the third bullet point, which we now verify. The fact that f 0.x/� 1 is clear, so it suffices to
check f 0.x/ 2O.L/. Solving for C0 using g0, we find

1C
1

L
D

Z 1=L

0

1

1�C0g0.x/
dx >

Z 3=4L

1=4L

1

1�C0=4L
dx D

1

2L
�

1

1�C0=4L
;

so that C0 < 4L.1� 1=.2.LC 1///. Notice that the value of C depends continuously on the function g

(in the C 0–topology), so for any � > 0 there is a choice of approximation g so that

supff 0.x/g D sup
�

1

1�Cg.x/

�
< sup

�
1

1�C0g0.x/

�
C � D

1

1�C0=4L
C � < 2.LC 1/C �:

Hence, f 0.x/ 2O.L/, as required.

Applying the stretching map to each symplectic factor, each region Xi �Xj is sent to Yi �Yj . It suffices
now to find a symplectomorphism of R4 of Lipschitz constant OR.1/ so that each Yi �Yj has image in
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the cylinder Z.�/, since in such a case, we compose with our stretching map, and each Xi �Xj under
this composition lands in Z.�/, where the composition map has total Lipschitz constant OR.L/. We
construct this by sliding each Yi � Yj in two steps. We begin by separating the y2–coordinates of the
various blocks based on their x1–coordinates. That is, we translate Yi�Yj in the y2–direction by 2i units,
in other words so that it gets translated to�

2i; 2i C 1�
1

L

�
� Œ0; 1��

�
2j ; 2j C 1�

1

L

�
� Œ2i; 2i C 1�:

Explicitly, we use a Hamiltonian of the form H D��.x1/x2, where � is a step function with the properties

� �.x1/D 2i when 2i � x1 � 2i C 1 and 0� i � 4R2,

� k�0k1 2O.1/,

� k�00k1 2O.1/.

The corresponding Hamiltonian vector field XH is of the form 2i@y2
when 2i � x1 � 2i C 1, and hence

translates Yi �Yj as desired. Explicitly, the time-1 Hamiltonian flow is

�1
H .x1;y1Ix2;y2/D .x1;y1C �

0.x1/x2Ix2;y2C �.x1//;

with derivative

D�1
H D

0BB@
1 0 0 0

�00.x1/x2 1 �0.x1/ 0

0 0 1 0

�0.x1/ 0 0 1

1CCA :
All terms are O.1/ except for �00.x1/x2, because x2 can grow large. But on the image of our cube after
the taffy-stretching step, x2 is at most 4R2, and so the relevant Lipschitz constant of this sliding step is
O.R2/.

A similar construction, using a Hamiltonian of the form ��.y2/y1 for the same function �, allows us to
then take each of these new blocks and translate them in the x1–direction. After we complete both of
these steps, the image of Yi �Yj is�

0; 1�
1

L

�
� Œ0; 1��

�
2j ; 2j C 1�

1

L

�
� Œ2i; 2i C 1�:

A final translation simultaneously in the x1 and y1 coordinates by �1
2

lands each of these blocks in the
cylinder Z.�/, concluding the proof.

Remark 5.3 As in Remark 5.1, we may also vary the radius of the cylinder r , but where the new constant
is r4C.R=r/.

Remark 5.4 The construction as presented has C.R/ � R9. Indeed, our volume defect came with a
factor of R4, but the Lipschitz constant has an extra factor of R5. The first factor of R appearing in the
Lipschitz constant came from replacing K.R/ with K0.R/. An extra two factors of R2 came from our
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slide moves. One can optimize a little by performing a single diagonal slide move instead of two separate
orthogonal slide moves. Hence, in the end, we may take C.R/�R7. We suspect this is far from optimal,
though decreasing the exponent appears to require a new idea.

6 Further questions

6.1 Minkowski dimension problem in higher dimensions

In this section we pose the simplest Minkowski dimension question that one could ask in dimensions
higher than four, and make a couple of remarks about it. Let us assume n> 2 throughout this section.

Question 1 What is the smallest d 2R such that for some A>� , there exists a closed subset E�B2n.A/

of Minkowski dimension d such that B2n.A/ nE symplectically embeds into Z2n.�/?

Assume that for some A> � and a closed subset E � B2n.A/ of Minkowski dimension d , B2n.A/ nE

symplectically embeds into Z2n.�/. We find it plausible that a version of our obstructive argument would
still give d � 2, even though we do not have a proof of this.

The argument in Proposition 2.3 suggests that the problem is related to the question of how the 2–width
of a round ball changes after the removal of a closed subset. One can explicitly see that for E being
the intersection of B2n.A/ with a linear Lagrangian subspace L of R2n, an n–dimensional submanifold,
there is a (holomorphic!) sweepout of B2n.A/ nE with width 1

2
A. Namely, we take the foliation by

half-disks that are the connected components of the intersections with B2n.A/ nE of affine complex
planes that intersect L nontransversely.

6.2 Capacity after removing a linear plane

Throughout this section let B WDB4.2�/�C2, where C2 is equipped with its standard Kähler structure.
Let us denote the complex coordinates by x and y.

Let us denote by cGr the Gromov width, which is a capacity defined on any symplectic manifold Y 2n as
the supremum of �r2, where B2n.�r2/ symplectically embeds into Y .

Definition 6.1 Let V � C2 be a real subspace of dimension 2. We define the symplecticity of V as
j!st.e1; e2/j, where e1; e2 is any orthonormal basis of T0V .

Notice that V is a Lagrangian plane if and only if its symplecticity is 0. On the other extreme, V is a
complex plane if and only if its symplecticity is 1.

The symplecticity defines a surjective continuous function

GrR.2; 4/! Œ0; 1�:

Lemma 6.2 Two elements of GrR.2; 4/ have the same symplecticity if and only if there is an element of
U.2/ sending one to the other.
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We can therefore define the function (symplecticity to capacity)

stc W Œ0; 1�! .0;1/

by s 7! cGr.B nVs/, where Vs 2 GrR.2; 4/ with symplecticity s.

The following remarkable statement is due to Traynor.

Proposition 6.3 (Traynor [31, Proposition 5.2]) B is symplectomorphic to

B n
�
fxy D 0g[ f.eitx;y/[ .x; eity/ j Im.x/D Im.y/D 0; Re.x/� 0; Re.y/� 0; t 2 Œ0; 2��g

�
:

Hence, we have that stc.1/D 2� . On the other hand, it follows immediately from our Theorem 1.3 that
stc.0/D � . We finish with the obvious question.

Question 2 What is the function stc? Is it continuous?

6.3 Minkowski dimension problem for large R

Let Rsup 2 .1;1� be the supremum of the radii R such that there is a closed subset E of Minkowski
dimension 2 inside B.�R2/ whose complement symplectically embeds into Z.�/. In Section 4, we
showed that Rsup �

p
2. This inequality will be improved by Joé Brendel to Rsup �

p
3 using a different

construction; see Remark 1.5. An intriguing aspect of both of the squeezing constructions is that they fail
for large radii R. This motivates the following:

Question 3 Is Rsup a finite number?

6.4 Minkowski dimension problem for extendable embeddings

Here is a variant of our Minkowski dimension question, which is also more directly related to the Lipschitz
number question. Assume R> r . What is the smallest Minkowski dimension of a subset E � B4.�R2/

with the property that for any neighborhood U of E, there is a symplectic embedding B4.�R2/!C2

such that B4.�R2/ nU maps inside Z4.�r2/?

Our obstructive Theorem 1.4 still gives a bound, but our construction in Section 4 does not apply. Recall
B WD B4.2�/.

Proposition 6.4 Consider the embedding B nL ,!Z.�/ that we constructed in Theorem 1.3. There
exists an embedded circle � in iL\B that is disjoint from L, and which maps into fx1 D y1 D 0g.

Proof Recall that our symplectomorphism first sends B nL to CP2.2�/ n .LRP [ SŒ0W0W1�/ via the
restriction of a symplectomorphism b W B ! CP2.2�/ n SŒ0W0W1�. The image of L \ B under b is
LRP nSŒ0W0W1�, whereas the image of iL\B is iLRP nSŒ0W0W1�, where we define

iLRP WD fŒz1 W z2 W z3� j Re.z1/D Re.z2/D Im.z3/D 0g:
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FQ and iLRP intersect along the circle

yC D fŒi cos � W i sin � W 1� j � 2 Œ0; 2��g:

Note that yC is disjoint from LRP [SŒ0W0W1�.

Now recall that to complete our symplectomorphism from B nL to E.�; 4�/ nC we use the Oakley–
Usher symplectomorphism between CP2.2�/ n .LRP [SŒ0W0W1�/ and D�RP2

n .ZRP [S/, and then
the Opshtein symplectomorphism.

From Opshtein’s formula we see that all the points on Qn.ZRP[S/ and therefore on FQn.LRP[SŒ0W0W1�/

are sent to points in fx1 D y1 D 0g in E.�; 4�/. This means that b�1. yC / satisfies the condition in the
statement.

Corollary 6.5 Let U be a neighborhood of L that is disjoint from �. Then , we cannot extend the
restriction to B nU of our symplectic embedding B nL into Z.�/ to a symplectic embedding B!C2.

Proof If there were such an embedding, the action of the image of � would have to be simultaneously
zero and nonzero, which is absurd.

6.5 Bounds on Minkowski content of the defect region

We have shown in Corollary 3.2 that the lower Minkowski dimension bound dimM.E/� 2 is optimal in
the range R 2 .1;

p
2�. Is the estimate on the 2–content M2.E/ � �.R

2� 1/ also sharp? That is, does
there exist R 2 .1;

p
2� and E with M2.E/D �.R

2� 1/ such that B.�R2/ nE symplectically embeds
into Z.�/?

6.6 Speculations on the Lipschitz question

Consider the volume loss function

VL.L;R/ WD inf fVol.E.ˆ//g ;

where the infimum is taken over all symplectic embeddings ˆ W B4.�R2/!R4 with Lipschitz constant
at most L, and

E.ˆ/Dˆ�1.R4
nZ4.�//:

In Section 5, we proved Theorems 1.6 and 1.7, which may be summarized by the statement that

c.R/

L2
� VL.L;R/�

C.R/

L
;

where we tacitly assume R> 1. Even more, we noted in Remarks 5.2 and 5.4 that our methods show that
we may take c.R/�R4 and C.R/�R7.
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One natural question is whether we can bring the two bounds closer together. In terms of factors of R,
we suspect that the asymptotics should indeed be ‚.R4/, ie growing like the total volume, though we
could not find constructions which remain under this upper bound for large L. As for the factors of L,
the jury is very much out. We nonetheless formulate a precise conjecture.

Conjecture 1 For any `; r > 0, the limit

lim
R!1

lim
L!1

VL.`L; rR/
VL.L;R/

exists and is positive.

The second question is to what extent our methods work in higher dimensions. On the constructive side, we
may simply take our constructed symplectic embedding in 4 dimensions and extend it to 2n dimensions by
acting by the identity on the symplectically complementary 2n�4 dimensions. This yields a constructive
bound of ‚.R2nC3=L/. As for the obstructive bound, a modification of the techniques presented in
this paper, in which we obtain a sweepout instead of a foliation if we follow Gromov’s nonsqueezing
argument, should probably yield a bound of O.R2n=L2n�2/.

Finally, we describe a quantity which we believe could be interesting. Although we are working with
balls B4.�R2/, we could in principle replace these with other subdomains in R4. To be precise, suppose
we fix X �R4 a bounded domain. Consider the generalized volume loss function

VLX .L;R/ WD inffVol4.E.ˆ//g;

where the infimum is taken over all symplectic embeddings ˆ WRX ! R4 of Lipschitz embedding at
most L, and we take

E.ˆ/ WDˆ�1.R4
nZ4.�//:

In the case X D B4.�/, we recover the usual volume loss function above.

We offer the following reasonable-looking conjecture.

Conjecture 2 For all bounded domains X , the limit

sX WD lim
R!1

lim
L!1

VLX .L;R/

VL.L;R/
exists and is strictly positive.

Notice that if there exists a symplectic embedding rX ,! Y of Lipschitz constant `, then

VLX .`L; rR/� VLY .L;R/:

Should Conjecture 2 hold, one might hope to use this inequality to compare the values of sX and sY for
bounded domains X and Y.
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Appendix Squeezing and degenerations of the complex projective plane
by Joé Brendel

A.1 Introduction and main theorem

Our goal is to show the following.

Theorem A.1 For every ˛ < 3, there is a set †�B4.˛/ of Minkowski dimension 2 such that B4.˛/n†

symplectically embeds into Z4.1/DR2 �D2.1/�R4.

Our notation corresponds to that of the main body of the text by setting ˛ D �R2. The idea of the proof
is to view B4.˛/ as CP2.˛/ nCP1 and to use almost toric fibrations of CP2. As observed in [32], for
every Markov triple .a; b; c/, there is a triangle �a;b;c.˛/�R2 and an almost toric fibration on CP2.˛/

with a base diagram whose underlying polytope is �a;b;c.˛/. Now note that the toric moment map
image of Z4.1/ is the half-strip S D R>0 � Œ0; 1/. We shall show that if the triangle �a;b;c.˛/ fits
into S (after applying an integral affine transformation), then there is a symplectic embedding of CP2.˛/

into Z4.1/ at the cost of removing a certain subset †0 from CP2.˛/. The point here is that one can get
a good understanding of the subset one needs to remove. Indeed, we show that †0 is a union of three
Lagrangian pinwheels (defined as in [7]) and a symplectic torus. In particular, this set has Minkowski
dimension 2. A combinatorial argument shows that for every ˛ < 3, there is a Markov triple .a; b; c/ and
an inclusion �a;b;c.˛/� S; see Lemma A.5.

Remark A.2 As was pointed out to us by Leonid Polterovich, our results can be combined with Gromov’s
nonsqueezing to show that any symplectic ball B4.1C"/�CP2.˛/ intersects the set†0�CP2 discussed
above. See Corollary A.9 for more details.

Remark A.3 The same strategy may work to produce symplectic embeddings

D2.˛/�D2.˛/ n† ,!Z4.1/

of the polydisk of capacity ˛ < 2 minus a union of some two-dimensional manifolds into the cylinder.
Indeed, one can view the polydisk as the affine part of S2 �S2 and use almost toric fibrations of the
latter space to carry out the same argument.

The relationship between Markov triples and the complex and symplectic geometry of CP2 has generated
a lot of interest in recent years. It first appeared in the work of Galkin and Usnich [8], who conjectured
that for every Markov triple there is an exotic Lagrangian torus in CP2. This conjecture was proved
and generalized by Vianna [32; 33] by the use of almost toric fibrations; see also Symington [30].
On the algebrogeometric side, Hacking and Prokhorov [13] showed that a complex surface X with
quotient singularities admits a Q–Gorenstein smoothing to CP2 if and only if X is a weighted projective
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space CP .a2; b2; c2/ and .a; b; c/ forms a Markov triple. In [7], Evans and Smith studied embeddings
of Lagrangian pinwheels into CP2. This is directly related to [13], since Lagrangian pinwheels appear
naturally as vanishing cycles of the smoothings of CP .a2; b2; c2/ to CP2. See also the recent work
by Casals and Vianna [5] and the forthcoming paper joint with Mikhalkin and Schlenk [4] for other
applications of almost toric fibrations to symplectic embedding problems.

Acknowledgements We heartily thank Jonny Evans, Grisha Mikhalkin, Leonid Polterovich, Kevin
Sackel and Umut Varolgunes for valuable discussions and careful comments on a previous draft. We are
grateful to the attentive referee for pointing out a gap in the proof. We thank Felix Schlenk for constant
encouragement and generous help.

A.2 Some geometry of Markov triangles

Let us recall some facts about Markov numbers and their associated triangles.

Definition A.4 A triple of natural numbers a; b; c 2N>0 is called a Markov triple if it solves the Markov
equation

(A-1) a2
C b2

C c2
D 3abc:

If .a; b; c/ is a Markov triple, then so is .a; b; 3ab� c/. Starting from the solution .1; 1; 1/, we obtain the
so-called Markov tree by mutations .a; b; c/! .a; b; 3ab� c/. The first few Markov triples are

(A-2) .1; 1; 1/; .1; 1; 2/; .1; 2; 5/; .1; 5; 13/; .2; 5; 29/; .1; 13; 34/; : : : :

Given ˛>0, let CP2 be equipped with the Fubini–Study symplectic form! normalized so that
R

CP1 !D˛.
For every Markov triple .a; b; c/, there is an almost toric fibration of CP2 with almost toric base
diagram a rational triangle �a;b;c.˛/�R2, which we call the Markov triangle associated to the Markov
triple .a; b; c/. The first Markov triangle is the (honest) toric moment map image of CP2 in our
normalization,

(A-3) �1;1;1.˛/D f.x;y/ 2R2
>0 j xCy 6 ˛g:

In fact, we will slightly abuse notation and at times think of �a;b;c.˛/ as a triangle in R2 and at other
times as the equivalence class of triangles R2 under the group of toric symmetries given by integral
affine transformations, ie elements in Aff.2IZ/DR2 Ì GL.2IZ/. For every mutation of Markov triples
.a; b; c/! .a; b; 3ab� c/, there is a corresponding mutation of triangles �a;b;c.˛/!�a;b;3ab�c.˛/,
defined by cutting the triangle in two halves and applying a shear map to one of the halves and gluing it
back to the other half. This is called a branch move and we refer to Symington [30, Sections 5.3 and 6]
and Vianna [32, Section 2] for details. For a concrete description of the triangles �a;b;c.˛/, see (A-23)
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and the surrounding discussion. The area of the Markov triangles is well-defined, since it is invariant
under Aff.2IZ/. Furthermore, the area is invariant under the mutation of triangles, and hence we obtain

(A-4) area.�a;b;c.˛//D area.�1;1;1.˛//D
1
2
˛2:

Recall that we are interested in embedding Markov triangles into the half-strip SDR>0 � Œ0; 1/. This
means that, given ˛ > 0, we look for a Markov triple .a; b; c/ such that �a;b;c.˛/� S up to applying an
element in Aff.2IZ/. We will prove the following.

Lemma A.5 For every 0 < ˛ < 3, there is a Markov triple .a; b; c/ such that the Markov triangle
�a;b;c.˛/�R2 is in SDR>0 � Œ0; 1/ up to applying an element in Aff.2IZ/. This result is sharp in the
sense that for ˛ > 3, there is no such Markov triple.

Let us introduce some definitions from integral affine geometry. A vector v 2 Z2 is called primitive
if ˇv 62 Z2 for all 0 < ˇ < 1. Note that to every vector w 2R2 with rational slope, we can associate a
unique primitive vector v such that w D v for  > 0. We call  the affine length of w and denote it
by `aff.w/. Let l �R2 be a rational affine line (or line segment) with primitive directional vector v 2 Z2

and p 2 R2 be a point. Then the affine distance is defined as daff.p; l/ D jdet.v;u/j, where u is any
vector such that pCu 2 l . This does not depend on any of the choices we have made and these quantities
are Aff.2IZ/–invariant. See McDuff [21] for more details.

For a given rational (not necessarily Markov) triangle �, we denote by E1;E2;E3 its edges and
by v1; v2; v3 its vertices such that vi lies opposite to the edge Ei . We call `aff.E1/C `aff.E2/C `aff.E3/

the affine perimeter of �. Note that the affine perimeter of a Markov triangle �a;b;c.˛/ is equal to 3˛.
We have the following formula for the area of �,

(A-5) area.�/D 1
2
`aff.Ei/ daff.vi ;Ei/:

This follows from the definition of affine distance and affine length.

Proof of Lemma A.5 For the first part of the proof we only need one branch of the Markov tree,
namely the one where the maximal entry grows the fastest. More precisely, let �n be the Markov triangle
associated to the triple .mnC2;mnC1;mn/, where mk is recursively defined as

(A-6) m0 Dm1 Dm2 D 1; mkC2 D 3mkC1mk �mk�1:

The first few terms of this sequence are given by fmkgk2N D f1; 1; 1; 2; 5; 29; 433; : : : g. We clearly have
mk !1. Recall from [32] that the affine side lengths of a Markov triangle �a;b;c.˛/ are given by
�a2; �b2; �c2 for a proportionality constant � > 0. Since the affine perimeter of the Markov triangle
is 3˛, we obtain �.a2C b2C c2/D 3˛. Together with the Markov equation (A-1) this yields that the
longest edge En in �n.˛/ has affine length

(A-7) `aff.En/D
˛mnC2

mnC1mn

(A-6)
D ˛

�
3�

mn�1

mnC1mn

�
:
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Since the second summand goes to 0 for large n, we obtain `aff.En/! 3˛. Let vn be the vertex opposite
to En. By (A-4) and the area formula (A-5) we obtain

(A-8) `aff.En/ daff.vn;En/D ˛
2:

This implies that daff.vn;En/!
1
3
˛. Now note that we can assume, up to Aff.2IZ/, that the maximal

edge En lies in R>0�f0g and that�n.˛/ lies in the upper half-plane. Then the (Euclidean) height of�n.˛/

is equal to daff.vn;En/. This implies that for all ˛ < 3, we have �n.˛/� S for large enough n 2N.

Now let ˛ > 3 and suppose that there is a Markov triangle �a;b;c.˛/ � S. Let E be the longest edge
of �a;b;c.˛/ and v the opposite vertex. We first prove that E is parallel to e1 D .1; 0/. Indeed, suppose it
is not. Then we can write ED `aff.E/v for a primitive vector vD .v1; v2/2Z2 with v2 > 1. But since the
affine perimeter of �a;b;c.˛/ is 3˛ and E is the longest edge, we obtain `aff.E/> ˛ and thus �a;b;c.˛/

is not contained in S. Now if E is parallel to e1, then the (Euclidean) height of �a;b;c.˛/ is daff.v;E/.
The affine perimeter 3˛ is strictly larger than `aff.E/ from which we deduce daff.v;E/ >

1
3
˛ > 1 by the

area formula (A-5).

A.3 Proof of the main theorem

Definition A.6 Let p be a positive integer. The topological space obtained from the unit disk D by
quotienting out the action of the group of the pth roots of unity on @D is called a p–pinwheel.

For example, the 2–pinwheel is RP2. The image of @D in the quotient is called the core circle. For all
p> 2 the p–pinwheels are not smooth at points of the core circle. A Lagrangian pinwheel in a symplectic
manifold M is a Lagrangian embedding of a p–pinwheel into M ; see [7, Definition 2.3] for the meaning
of embedding in this context. As it turns out, for every Lagrangian p–pinwheel, there is an additional
extrinsic parameter q 2 f1; : : : ;p� 1g measuring the twisting of the pinwheel around its core circle. We
call such an object .p; q/–pinwheel and denote it by Lp;q when this causes no confusion. For us, the
following result is key.

Proposition A.7 Let .a; b; c/ be a Markov triple and let sa; sb; sc 2 CP .a2; b2; c2/ be the orbifold
singular points of the corresponding weighted projective space. Then there is a surjective map

z� WCP2
!CP .a2; b2; c2/

and there are (mutually disjoint) Lagrangian pinwheels La;qa
;Lb;qb

;Lc;qc
�CP2 with

(A-9) z�.La;qa
/D sa; z�.Lb;qb

/D sb; z�.Lc;qc
/D sc

such that z� restricts to a symplectomorphism

(A-10) � WCP2
n.La;qa

tLb;qb
tLc;qc

/!CP .a2; b2; c2/ n fsa; sb; scg:

Furthermore , the preimage of the set D�CP .a2; b2; c2/— see (A-11) — consists of the union of three
Lagrangian pinwheels and a symplectic two-torus intersecting the pinwheels in their respective core circles.
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Remark A.8 For the construction of this symplectomorphism, it seems plausible that one can use the
existence of a Q–Gorenstein smoothing of CP .a2; b2; c2/ to CP2 with vanishing locus consisting of
a union of three pinwheels. Such smoothings were constructed in [13], by showing that there are no
obstructions to piecing together local smoothings of the cyclic quotient singularities holomorphically. Our
proof follows the same strategy in the symplectic set-up; see also [7, Examples 2.5–2.6] for a discussion
of this, and [17, Section 3; 6, Section 1] for the local smoothings.

We now turn to the proof of Theorem A.1 using Proposition A.7, the proof of which we postpone
to Section A.4.

Proof of Theorem A.1 Step 1 Let ˛ < 3 and choose ˛0 so that ˛ <˛0< 3. Pick a Markov triple .a; b; c/
and an associated Markov triangle �a;b;c D�a;b;c.˛

0/ which lies in SDR>0� Œ0; 1/. This is possible by
Lemma A.5. Note that �a;b;c is the image of the toric orbifold moment map � WCP .a2; b2; c2/!�a;b;c ,
provided we normalize the orbifold symplectic form appropriately. See the discussion surrounding (A-26)
for details on the toric structure on weighted projective space. Let

(A-11) DD ��1.@�a;b;c/�CP .a2; b2; c2/

be the preimage of the boundary. The set D is a union of complex suborbifolds

CP .a2; b2/[CP .b2; c2/[CP .a2; c2/

such that each of these suborbifolds projects to one edge of the triangle �a;b;c . The complement of D

admits a symplectic embedding

(A-12)  WCP .a2; b2; c2/ nD ,!Z4.1/:

Indeed, this follows from the inclusion int.�a;b;c/� int.S/ and the fact that inclusions of toric moment
map images which respect the boundary stratifications yield (equivariant) symplectic embeddings; see for
example [30].

Step 2 By Proposition A.7, there is a symplectomorphism � from the complement of Lagrangian pin-
wheels La;qa

, Lb;qb
, Lc;qc

to the complement of the orbifold points of CP .a2; b2; c2/. By restricting �,
we obtain the symplectomorphism

(A-13) �0 WCP2
n†0!CP .a2; b2; c2/ nD:

Again by Proposition A.7, the set †0 consists of the union of three pinwheels and a symplectic two-torus.

Step 3 The standard embedding B4.˛/ � CP2.˛0/ together with �0 and  yields an embedding
B4.˛/ n† ,! Z4.1/. Here † denotes † D †0 \B4.˛/. The set † has Minkowski dimension two.
Indeed, the embedding B4.˛/�CP2.˛0/ is bilipschitz (its image being contained in a closed ball) and
volume-preserving and the set †0 consists of the union of three pinwheels and a symplectic two-torus.
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As was pointed out to us by Leonid Polterovich, one can combine Theorem A.1 with Gromov’s non-
squeezing theorem to get certain rigidity results, reminiscent of [2, Theorem 1.B].

Corollary A.9 Let †0 �CP2.˛/ be one of the above sets such that CP2.˛/ n†0 embeds into Z4.1/

for some 1< ˛ < 3. Then every symplectic ball B4.1C "/�CP2 for " > 0 intersects †0.

Proof Assume B4.1C "/ � CP2.˛/ does not intersect †0. The embedding CP2.˛/ n†0 ,! Z4.1/

yields a symplectic embedding B4.1C "/ ,!Z4.1/, contradicting nonsqueezing.

Note that for a fixed 1< ˛ < 3 we get infinitely many sets †0 �CP2 to which Corollary A.9 applies and
all of these consist of a union of a symplectic torus and Lagrangian pinwheels.

A.4 Proof of Proposition A.7

Following the exposition in [7, Example 2.5] we consider smoothings of certain orbifold quotients of C2.
This yields the local version from Lemma A.10 of the symplectomorphism in Proposition A.7.

Let a and q be coprime integers with 1 6 q < a and take the quotient of C2 by the action of .a2/th roots
of unity

(A-14) �:.z1; z2/D .�z1; �
aq�1z2/; where �a2

D 1:

We denote this quotient by C2=�a;q . It can be embedded as fw1w2 D w
a
3
g into the quotient C3=Za by

the action

(A-15) �:.w1; w2; w3/D .�w1; �
�1w2; �

qw3/; �a
D 1:

The smoothing is given by

(A-16) XD fw1w2 D w
a
3 C tg �C3=Za �Ct ;

which we view as a degeneration by projecting to the t–component, � W X!Ct . We denote the fibers by
Xt D�

�1.t/. The smooth fiber X1 is a rational homology ball and the vanishing cycle of the degeneration
is a Lagrangian pinwheel La;q . This follows from the description of X as Za–quotient of an Aa�1–Milnor
fiber. Let s 2 X0 be the unique isolated singularity of X0, and Xreg D X n fsg its complement. The
restriction of the standard symplectic form !0 on C4 DC3 �Ct yields a symplectic manifold .Xreg; �/.
Note that the smooth loci of the fibers Xt¤0 and X0 n fsg are symplectic submanifolds. Let us now
construct a symplectomorphism

(A-17)  WX1 nLa;q!X0 n fsg DC2=�a;q n f0g:

For this, we take the connection on Xreg defined as the symplectic complement to the vertical distribution,

(A-18) �x D .ker.��/x/� D fv 2 TxXreg
j�.v;w/D 0 for all w 2 Tx�

�1.�.x//g:
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This connection is symplectic in the sense that its parallel transport maps are symplectomorphisms
whenever they are defined. In particular, we get a symplectomorphism between any two regular fibers
Xt1

and Xt2
by picking a curve in C� with endpoints t1 and t2. Since we are interested in the singular

fiber for the construction of (A-17), take the curve  .r/ D 1� r 2 C. For every r < 1, this yields a
symplectomorphism  r WX1!X1�r . As it turns out, setting  .x/D limr!1  

r .x/ for x 2X1 yields a
well-defined surjective map z WX1!X0 with vanishing cycle a Lagrangian pinwheel, La;q D

z �1.s/,
and which restricts to the desired symplectomorphism (A-17). For the fact that z is well-defined, see
the unpublished notes by Evans [6, Lemma 1.2]. We refer to [17, Section 3.1] for more details on the
specific degeneration we consider above and to [6, Lemma 1.20] for the fact that the vanishing cycle is a
Lagrangian pinwheel.

Lemma A.10 (Evans [6]) Let C2=�a;q be the quotient by the action (A-14) and Sa;q its smoothing as
above. Then there is a surjective map z a W Sa;q!C2=�a;q with z a.La;q/D f0g and which restricts to a
symplectomorphism

(A-19)  a W Sa;q nLa;q! .C2=�a;q/ n f0g:

Furthermore , the preimage of the set Da;qa
D fz1z2 D 0g=�a;q under z a is the union of La;q and a

symplectic cylinder intersecting La;q in its core circle.

Proof As explained above, the main statement of the lemma follows from [6]. We only need to
identify the preimage of Da;qa

D fz1z2 D 0g=�a;q , which can be done by keeping track of the parallel
transport in the explicit model (A-16). Under the identification of C2=�a;q with X0 (which we will
tacitly use throughout), the set fz1z2 D 0g=�a;q corresponds to fw3 D 0g=Za\X0. We claim that the
set

S
t .fw3 D 0g=Za\Xt /� X is invariant under the symplectic parallel transport induced by (A-18).

This proves that z �1
a .fw3 D 0g=Za \X0/ D .fw3 D 0g=Za \X1/[La;q . Indeed, the preimage of

0 2 C2=�a;q is La;q and on the complement of La;q , the map z a is a diffeomorphism. To see that
fw3 D 0g=Za \X1 is a symplectic cylinder intersecting La;q in its core circle, one can consider the
singular fibration structure of the map Xs!C given by .w1; w2; w3/ 7! w

p
3

; see [6, Section 1.2.3] for
more details. Thus it remains to show the invariance of

S
t .fw3 D 0g=Za\Xt /.

Let x 2 fw3 D 0g=Za \Xt , meaning that x is a Za–class of a point .x1;x2; 0/ 2 C3 with x1x2 D t .
This gives a natural inclusion T.x;t/XD TxXt ˚TtC �C3˚C. Since �D !C3 ˚!C , the horizontal
lift by the symplectic connection (A-18) of a vector v 2 TtC D C is given by uC v 2 �.x;t/, where
u 2 .TxXt /

!C3 . Note that the subspace fu1 D u2 D 0g � TxC3 DC3 is contained in TxXt and hence
its symplectic complement fu3 D 0g �C3 contains the symplectic complement .TxXt /

!C3 . Since u is
contained in .TxXt /

!C3 , this proves that u is tangent to the subset fw3 D 0g and hence this subset is
preserved under parallel transport.

We turn to the proof of Proposition A.7. The main idea is to use the fact that �a;b;c.˛/ is both the
almost toric base polytope of CP2.˛/ and the toric base of CP .a2; b2; c2/ with a suitably normalized
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symplectic form. This shows that there is a symplectomorphism which intertwines the (almost) toric
structures on the preimages of a complement of neighborhoods of the vertices. For example, one can
choose W ��a;b;c as in Figure 2. We use Lemma A.10 to extend this symplectomorphism.

Let us make a few preparations. In particular, we discuss how to use the quotient C2=�a;q as a local
toric model for CP .a2; b2; c2/. This is the orbifold version of the toric ball embedding into CP2 one
obtains by the inclusion of the simplex with one edge removed into the standard simplex �1;1;1. The
toric structure on C2=�a;q is induced by the standard toric structure .z1; z2/ 7! .�jz1j

2; �jz2j
2/ on C2.

Indeed, note that the �a;q–action is obtained by restricting the standard T 2D .R=Z/2–action to a discrete
subgroup Za2 . This implies that we obtain an induced action by T 2=�a;q on C2=�a;q . This action is
Hamiltonian and its moment map image, under a suitable identification T 2 Š T 2=�a;q , is given by

(A-20) †a;q D fx1w1Cx2w2 jx1;x2 > 0g; where w1 D

�
1

0

�
and w2 D

�
aq� 1

a2

�
:

See for example [7, Remark 2.7] or [30, Section 9]. Note that a ball B4.d/Df�.jz1j
2Cjz2j

2/< dg�C2

quotients to an orbifold ball B4.d/=�a;q �C2=�a;q , which is fibered by the induced toric structure on the
quotient. Furthermore, the boundary sphere S3.d/�C2 quotients to a lens space†a;q.d/DS3.d/=�a;q

of type .aq�1; a2/ equipped with its canonical contact structure and which fibers over a segment in †a;q .
We will use this fact in the proof of Proposition A.7.

Let us now show that, for a suitable choice of q, the toric system C2=�a;q ! †a;q can be used as a
local model around one of the orbifold points of the toric system on CP .a2; b2; c2/. In order to get
a concrete description of this toric system on the weighted projective space, recall that the symplectic
orbifold CP .a2; b2; c2/ can be defined as a symplectic quotient of C3,

(A-21) CP .a2; b2; c2/DH�1.a2b2c2/=S1; where H D a2
jz1j

2
C b2
jz2j

2
C c2
jz3j

2:

This description (A-21) has the advantage that it is naturally equipped with a Hamiltonian T 2–action
inherited from the standard T 3–action on C3. This induced action is toric and its moment map image is
given by the intersection of the plane defined by H and the positive orthant,

(A-22) z�a;b;c D fa
2y1C b2y2C c2y3 D a2b2c2

g\R3
>0:

Note that this is a polytope in R3 and not R2. We get a Markov triangle �a;b;c.abc/ � R2 as in
Section A.2 by setting

(A-23) �a;b;c.abc/Dˆ�1.z�a;b;c/

for ˆ an integral affine embedding (see Definition A.11) containing z�a;b;c in its image. Recall that
this produces the same triangles (up to integral affine equivalence) as those obtained from almost toric
fibrations of CP2 as discussed in Section A.2; see [32, Section 2]. Hence it makes sense to denote them
by �a;b;c.abc/. The normalization ˛ D abc of the triangle comes from the choice of level at which we
have reduced in (A-21).
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Definition A.11 An affine map ˆ WR2!R3 given by x 7!AxC b for A 2 Z3�2 and b 2R3 is called
an integral affine embedding if it is injective and if A.Z2/DA.R2/\Z3.

By the definition of integral affine embedding, the definition (A-23) makes sense and the polytope it
defines is independent of the choice of ˆ up to applying an integral affine transformation. We now
show that there is a natural number q and an integral affine embedding ˆa;q such that the triangle
ˆ�1

a;q.
z�a;b;c/�R2 is obtained by intersecting †a;q with a half-plane. Indeed, set

(A-24) ˆa;q WR
2
!R3;

�
x1

x2

�
7!

0B@�b2 1C
b

a
.bq� 3c/

a2 1� aq

0 1

1CA�x1

x2

�
C

0@b2c2

0

0

1A ;
where q satisfies bq D 3c mod a; see also [7, Example 2.6]. The map ˆa;q has image

fa2y1C b2y2C c2y3 D a2b2c2
g

and it is an integral affine embedding, as can be checked by a computation. Furthermore ˆ maps 0 to the
vertex .b2c2; 0; 0/ (corresponding to a2) of z�a;b;c , and v1 and v2 to the outgoing edges at .b2c2; 0; 0/.
This means that there is an integral vector .�1; �2/ defining a half-plane K D f�1x1C �2x2 6 kg such
that

(A-25) ˆ�1
a;q.
z�a;b;c/DK\†a;q:

From this we deduce the desired toric model. Let zEa�
z�a;b;c be the edge opposite the vertex .b2c2; 0; 0/.

Proposition A.12 The subset in CP .a2; b2; c2/ fibering over z�a;b;c n
zEa is fibered (orbifold ) symplec-

tomorphic to the subset in C2=�a;q fibering over Int K\†a;q .

Proof We have shown above that z�a;b;c n
zEa and Int K \†a;q are integral affine equivalent. This

implies the claim by the classification of compact toric orbifolds by their moment map images; see [19].
Compactness is not a problem here, since we can compactify the subset fibering over K \ †a;q by
performing a symplectic cut at f�1x1C �2x2 D kg.

Let us now fix a moment map

(A-26) � WCP .a2; b2; c2/!�a;b;c D�a;b;c.abc/�R2

by composing the moment map CP .a2; b2; c2/! z�a;b;c with the inverse of a suitable integral affine
embedding as described above. Until the end of the proof of Proposition A.7, we simplify notation by
writing �a;b;c D�a;b;c.abc/.
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vb

va

vc

`a

`b

`c

W

Vb

Va

Vc

W

Figure 2: The triangle�a;b;c as union W [Va[Vb[Vc , on the left as the toric moment polytope
of CP .a2; b2; c2/ and on the right as almost toric base diagram of CP 2. In both cases the fibration
is toric over W and lens spaces fiber over the segments `a; `b; `c .

Proof of Proposition A.7 The main part of the proof will be concerned with proving the existence of
the symplectomorphism (A-10) and for readability, we postpone the proof of the existence of the global
map z� and the computation of z��1.D/ to Step 5.

Step 1 We start by setting up some notation on the side of the weighted projective space. The orbifold
points sa; sb; sc 2CP .a2; b2; c2/ are mapped to the vertices va; vb; vc 2�a;b;c under the moment map
� WCP .a2; b2; c2/ 7!�a;b;c . Let us first focus on the orbifold point sa. Denote the edge opposite to va

by Ea. By Proposition A.12, there is an orbifold symplectomorphism

(A-27) �a W �
�1.�a;b;c nEa/! ��1

C2=�a;q
.Int K\†a;q/;

which intertwines the toric structures. Now let B4.d/=�a;q � C2=�a;q be a closed orbifold ball for
B4.d/Df�.jz1j

2Cjz2j
2/6 dg and d > 0. Its boundary S3.d/=�a;q �C2=�a;q is a lens space equipped

with the standard contact structure. Note that both the orbifold ball and its boundary are fibered by the
moment map �C2=�a;q

. Since �a intertwines the toric structures, the image sets

(A-28) Borb
a D �

�1
a .B4.d/=�a;q/ and †a D �

�1
a .S3.d/=�a;q/

are fibered by �. Then the image of the pair .Ba; †a/ under � is a pair .Va; `a/ consisting of a segment
contained in a triangle around the vertex va. Note also that the lens space †a is naturally equipped with
its standard contact structure. We do the same procedure around the remaining vertices vb and vc , and
denote the corresponding sets by Borb

b
;Borb

c ; †b; †c � CP .a2; b2; c2/ and by Vb;Vc ; `b; `c � �a;b;c .
We choose the sizes so that Borb

a , Borb
b

and Borb
c are mutually disjoint. Furthermore, we choose a set

W ��a;b;c such that �a;b;c DW [Va[Vb [Vc and such that the overlap W \Vj is a strip around j̀

for all j 2 fa; b; cg. Again, see Figure 2.

Step 2 Now consider the almost toric fibration of CP2 associated to the triangle �a;b;c . In the
conventions of [30; 32] the triangle �a;b;c is decorated with three dashed line segments of prescribed
slope between the vertices and the nodal points. The latter are usually marked by a cross. There is a
map � W CP2

! �a;b;c which is a standard toric fibration away from the dashed lines, but which is
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only continuous on the preimages of the dashed lines (which encode monodromy of the integral affine
structure). By applying nodal slides if necessary, we may assume that the dashed lines lie outside of the
subset W ��a;b;c . Since the projection � is standard toric away from the dashed lines, this implies that
there is a symplectomorphism

(A-29) �0 WCP2
� ��1.W /! ��1.W /�CP .a2; b2; c2/;

which intertwines � and �. Define the preimages

(A-30) B0a D �
�1.Va/ and †0a D �

�1.`a/:

By [30, Section 9], the set B0a is a closed rational homology ball and†0a is a lens space of type .aq�1; a2/

equipped with its standard contact structure. In fact, �0 maps the copy†0a of the lens space to the copy†a.
However, contrary to Borb

a , the rational homology ball B0a is smooth. The same discussion holds for b

and c.

Step 3 The key part of the proof is finding extensions

(A-31) �j W B
0
j nLj ;qj

! Borb
j n fsj g

of the map �0j†0
j
, where Lj ;qj

are Lagrangian pinwheels for j 2 fa; b; cg. For this we use Lemma A.10.
Again, restricting our attention to a, let  a be the symplectomorphism from Lemma A.10. Note that we
have already established the correspondence between Borb

a and C2=�a;q by �a and that this correspondence
is compatible with the toric picture. We now establish a correspondence between the rational homology
sphere B0a and the space Sa;q coming from the smoothing in Lemma A.10. Define yet another copy †00a of
the lens space by setting †00aD 

�1
a .�a.†a;q//. This lens space is also equipped with the standard contact

structure and it bounds a rational homology ball B00a by [7, Example 2.5]. We now have two pairs .B0a; †
0
a/

and .B00a ; †
00
a/ consisting of a rational homology ball bounded by a lens space carrying its standard contact

structure. By [9, Proposition A.2], which relies on [20], this implies that .B0a; †
0
a/ and .B00a ; †

00
a/ are

equivalent up to symplectic deformation. Let �a W .B
0
a; †

0
a/ ! .B00a ; †

00
a/ be the diffeomorphism we

obtain from this. Note that we cannot directly use the symplectic deformation to conclude, since the
symplectomorphism obtained from a Moser-type argument may not restrict to the desired map on the
boundary. More precisely, we obtain a diagram of diffeomorphisms of lens spaces

(A-32)

B0a �†
0
a †a � Borb

a

B00a �†
00
a S3.d/=�a;q � B4.d/=�a;q

�0j†0a

�aj†0a
�aj†a

 aj†00a

and this diagram does not commute. We may, however, correct the diffeomorphism �a so that (A-32)
commutes. Recall that †a;q is a lens space of type .aq�1; a2/. Since .aq�1/2¤˙1 mod a2, it follows
from [3, Théorème 3(a)] that the space of diffeomorphisms of †00a has two components, namely the one
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of the identity and the one of the involution � induced by the involution .z1; z2/ 7! .xz1;xz2/ of S3. The
diffeomorphism � extends to a diffeomorphism z� of B00p;q . Up to postcomposing �a with z� , we may thus
assume that . �1

a �a�0�
�1
a /j†00a is isotopic to the identity by an isotopy 't . Using this isotopy, we can

correct the diffeomorphism �a such that the diagram (A-32) commutes. Indeed, the set ��1.Va\W / is
a collar neighborhood †0a � Œ0; 2/ and thus we can use the collar coordinate together with the isotopy 't

to define a corrected diffeomorphism z�a, which coincides with the original diffeomorphism �a on
��1.Va nW / and with . �1

a �a�0/j†0a on †0a. Recall that two collar neighborhoods which agree on the
boundary coincide up to applying a smooth isotopy; see Munkres [24, Lemma 6.1]. This means that, after
applying an isotopy in .B00a ; †

00
a/, we can assume that the corrected version of �a and  �1

a �a�0 agree on
a smaller collar †a � Œ0; 1/. Denoting the diffeomorphism we obtain in this way by z�a, this allows us to
define a diffeomorphism

(A-33) �a D �
�1
a ı a ı z�ajB0anLa;qa

W B0a nLa;qa
! Borb

a n fsag;

which extends �0 in the sense that it agrees with �0 on a collar of †0a. Since  a is defined outside of a
Lagrangian pinwheel La;qa

� B00a , the diffeomorphism �a is defined outside of a pinwheel (which we
again denote by La;qa

) in B0a. We repeat this procedure for b and c to obtain diffeomorphisms �b and �c .

Step 4 By construction, the diffeomorphisms �a, �b and �c extend the initial symplectomorphism
�0j��1.W n.Va[Vb[Vc//

and hence we obtain a diffeomorphism

(A-34) y� WCP2
n.La;qa

tLb;qb
tLc;qc

/!CP .a2; b2; c2/ n fsa; sb; scg:

We now turn to the symplectic forms. On CP2, we define a symplectic form y! which turns y� into a
symplectomorphism as follows. On ��1.W n .Va[Vb [Vc// we define y! to be the usual Fubini–Study
form !. On Vj we define y! as the pullback form z��j !B00

j
, where z�j is the corrected diffeomorphism

constructed at the end of Step 3. This yields a well-defined symplectic form which turns y� into a sym-
plectomorphism. Indeed, this follows from the fact that the maps �0,  j and �j are symplectomorphisms
and �j is defined as their composition (A-33). This also implies that the symplectic form y! has the same
total volume as the Fubini–Study form. By the Gromov–Taubes theorem [22, Remark 9.4.3(ii)], the
form z! is symplectomorphic to the Fubini–Study form and hence postcomposing y� from (A-34) with
this symplectomorphism yields the desired symplectomorphism (A-10).

Step 5 The definition of the global map z� W CP2
! CP .a2; b2; c2/ is obtained by replacing �a

from (A-33) by z�a D �
�1
a ı

z a ı z�a and carrying out the rest of the construction as above. The map z a

is given by Lemma A.10. Let us now identify z��1.D/, where DD ��1.@�a;b;c/. Let zW �W be the
subset of W where z� coincides with �0. Since �0 intertwines the toric structures on ��1.W /�CP2

and ��1.W /�CP .a2; b2; c2/, the set z��1.D/\��1. zW / fibers over the three pieces of the boundary
given by zW \ @�a;b;c and hence consists of three disjoint symplectic cylinders.

We use Lemma A.10 to prove that the missing pieces z��1.D/\B0j for j 2 fa; b; cg are also given by
symplectic cylinders and that the union of the six cylinders is given by a torus. We again discuss the case
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of j D a since the other two are completely analogous. Recall that �a WB
orb
a !B4.d/=�a;q is compatible

with the toric structure and thus �a.D\Borb
a /D Da;qa

\ �a.B
orb
a /, where Da;qa

D fz1z2 D 0g=�a;qa
as

in Lemma A.10. Indeed, this follows from the fact that Da;qa
fibers over the boundary of the moment

map image †a;qa
. By Lemma A.10, we deduce that z��1

a .z��1
a .�a.D\Borb

a /// is given by the union of
a pinwheel with a piece of a cylinder. Furthermore, recall that near the lens spaces at the respective
boundaries, the map z��1

a
z a�a coincides with �0. This implies that the cylinder contained in B0a has two

boundary components at @B0aD†
0
a, which are smoothly identified in a collar neighborhood with boundary

components of the set z��1.D/\��1. zW / discussed in the previous paragraph. This proves the claim.

Remark A.13 We suspect that there are shorter and more natural proofs of Proposition A.7. In particular,
one should be able to avoid Gromov–Taubes. One possibility we have hinted at above is working
with a global degeneration and trying to analyze its vanishing cycle. This would completely avoid the
use almost toric fibrations. Another possibility, in the spirit of [27; 14], is to equip the explicit local
degeneration from [17] with a family of integrable systems avoiding the pinwheel and extending the given
toric structure on the boundary. The symplectomorphism from Proposition A.7 then follows from the
usual toric arguments and it is automatically equivariant. Although this construction is elementary, it is
somewhat outside the scope of this appendix and we hope to carry out the details elsewhere. This is also
reminiscent of [10, Section 7], and it is plausible one can apply results from this paper to prove the same
result.
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