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Scalar and mean curvature comparison via the Dirac operator
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We use the Dirac operator technique to establish sharp distance estimates for compact spin manifolds
under lower bounds on the scalar curvature in the interior and on the mean curvature of the boundary.
In the situations we consider, we thereby give refined answers to questions on metric inequalities
recently proposed by Gromov. These include optimal estimates for Riemannian bands and for the long
neck problem. In the case of bands over manifolds of nonvanishing yA–genus, we establish a rigidity
result stating that any band attaining the predicted upper bound is isometric to a particular warped
product over some spin manifold admitting a parallel spinor. Furthermore, we establish scalar and mean
curvature extremality results for certain log-concave warped products. The latter includes annuli in all
simply connected space forms. On a technical level, our proofs are based on new spectral estimates for
the Dirac operator augmented by a Lipschitz potential together with local boundary conditions.
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1 Introduction

Manifolds of positive scalar curvature have been a central topic in differential geometry and topology in
recent decades. On complete spin manifolds, a particularly powerful tool in the study of positive scalar
curvature metrics has been the spinor Dirac operator which facilitates a fruitful exchange between geometry
and topology. This technique exploits the tension between, on the one hand, the Schrödinger–Lichnerowicz
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which implies invertibility of the spinor Dirac operator =D when the scalar curvature is uniformly positive
and, on the other hand, index theory in the sense of Atiyah and Singer, which in various situations yields
differential-topological obstructions to invertibility. Until recently, and with the notable exceptions of
sharp Dirac eigenvalue estimates (see Friedrich [15] and Hijazi, Montiel and Roldán [27]), sharp K–area
estimates (see Goette and Semmelmann [16] and Llarull [31]), and approaches to the positive mass
theorem based on an idea of Witten [41], the strongest applications of the Dirac operator technique in
positive scalar curvature geometry have been of a fundamentally qualitative nature. Indeed, there is
a substantial body of celebrated literature addressing existence questions of positive scalar curvature
metrics on a given manifold, or more generally, studying the topology of the space of positive scalar
curvature metrics via the Dirac method; see Botvinnik, Ebert and Randal-Williams [7], Gromov and
Lawson [23; 21], Lichnerowicz [30] and Stolz [39] for a selection. However, Gromov [18; 19] recently
directed the focus towards more quantitative questions and proposed studying the geometry of scalar
curvature via various metric inequalities which have similarities to classical Riemannian comparison
geometry. This resulted in a number of conjectures, a few of which we now recall.

Conjecture 1.1 [19, page 103, long neck problem] Let .M;g/ be a compact connected n–dimensional
Riemannian manifold with boundary whose scalar curvature is bounded below by n.n� 1/. Suppose that
ˆ WM ! Sn is a smooth area-nonincreasing map which is locally constant near the boundary. If

distg.supp.dˆ/; @M /�
�

n
;

then the mapping degree of ˆ is zero.

Conjecture 1.2 [18, 11.12, Conjecture D0] Let X be a closed manifold of dimension n and such that
X n fp0g with p0 2 X does not admit a complete metric of positive scalar curvature. Let M be the
manifold with boundary obtained from X by removing an open ball around p0. Then for any Riemannian
metric of scalar curvature � n.n� 1/ > 0 on M, the width of a geodesic collar neighborhood of @M is
bounded above by �=n.

Conjecture 1.3 [18, 11.12, Conjecture C] Let M be a closed connected manifold of dimension
n�1¤ 4 such that M does not admit a metric of positive scalar curvature. Let g be a Riemannian metric
on V DM � Œ�1; 1� of scalar curvature bounded below by n.n� 1/D scalSn . Then

width.V;g/� 2�

n
;

where width.V;g/ WD distg.@�V; @CV / is the distance between the two boundary components of V with
respect to g.

Note that we have strengthened the bounds in Conjectures 1.1 and 1.2 compared to the original sources.
All these constants are optimal, as we shall discuss below.
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Scalar and mean curvature comparison via the Dirac operator 1169

Gromov’s first definitive result on these questions [18] was a proof of Conjecture 1.3 for the torus and
related manifolds via the geometric measure theory approach to positive scalar curvature going back to
the minimal hypersurface method of Schoen and Yau [38]. In fact, it initially appeared that the Dirac
operator technique was not suitable to such quantitative questions, in particular because they involve
manifolds with boundary. However, in recent articles of the authors [43; 10; 42], we have demonstrated
that the Dirac operator method can in principle be used to approach Conjectures 1.1–1.3. A slightly
different Dirac operator approach based on quantitative K–theory leading to similar (nonsharp) estimates
for bands was subsequently given by Guo, Xie and Yu [24].

In the present article, we advance the spinor Dirac operator method further and put forward a novel point
of view towards Conjectures 1.1–1.3, which brings the mean curvature of the boundary into the focus of
attention. That is, under the assumption that the scalar curvature is bounded below by n.n� 1/ and that
suitable index-theoretic invariants do not vanish, we establish a precise quantitative relationship between
the mean curvature of the boundary and the relevant distance quantity appearing in situations related to
Conjectures 1.1–1.3. More precisely, we show that in each case there exist constants cn.l/ > 0, depending
on a distance parameter l > 0 and the dimension of the manifold, such that if the mean curvature is
bounded below by �cn.l/, then the relevant distance is at most l . The crucial property of these constants
is that cn.l/!1 as l approaches the conjectured distance bound. In other words, as the relevant distance
tends to the threshold, the mean curvature tends to �1 somewhere at the boundary. The geometric
intuition behind this behavior is that the metric must collapse as the critical threshold is approached.
Moreover, our new point of view allows us to establish rigidity results for certain extremal cases of the
predicted quantitative relationship between scalar curvature, mean curvature and distance.

On a technical level, one ingredient is to augment the spinor Dirac operator — similarly to our previous
approaches — by a potential defined in terms of a distance function. This procedure modifies the classical
Schrödinger–Lichnerowicz formula in a way that allows us to relate distance estimates to spectral
properties of the modified operator. However, the crucial new ingredient is that we study a tailor-made
boundary value problem associated to the augmented Dirac operator. This enables us to use spinorial
techniques to not only quantitatively control the scalar curvature using a differential expression of the
potential, but also bring the mean curvature of the boundary into play. The main principle behind our
new approach is that we can compare certain spin manifolds to model spaces which are suitable warped
products, provided that one can produce a nontrivial solution of a boundary value problem associated to
the augmented Dirac operator on the given manifold. Moreover, up to a constant, the potential directly
corresponds to the mean curvature of the cross sections in the model warped product space.

We develop this approach in a general setting that allows us to treat the results related to Conjectures 1.1–1.3
as well as further novel results in an essentially unified way. To this end, we introduce a new abstract
geometric structure which we call a relative Dirac bundle. This is a Dirac bundle S !M in the sense of
Gromov and Lawson [23, Section 1] (see also Lawson and Michelsohn [28]) together with a suitable
bundle involution � 2 C1.M nK;End.S//, which is defined outside a compact subset K �M ı of the
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1170 Simone Cecchini and Rudolf Zeidler

interior of the manifold; see Section 2 for details. The use of this structure is twofold. Firstly, together
with a suitable function  WM !R, it allows us to define the potential term necessary for the precise
quantitative estimates. This leads to the Callias1 operator

B D DC �;

where D is the Dirac operator associated to the Dirac bundle S . Secondly, the involution � can be used to
define natural chiral boundary conditions, which are crucial for the development of a suitable index theory
for relative Dirac bundles (see Section 3) and allow spectral estimates for B (see Section 4) relating
the mean curvature with the value of the function  along the boundary. These boundary conditions are
related to the treatment of the cobordism theorem via a boundary value problem as in [6, Section 21;
4, Section 6.3]. Our chirality also allows for an auxiliary choice of sign for each boundary component,
reminiscent of the boundary conditions considered by Freed [14]. This additional choice will be relevant
in the proofs of our results related to Conjecture 1.3.

A further notable observation is that our construction has a vague formal similarity to �–bubbles or
generalized soap bubbles, which have recently led to substantial advances via the geometric measure
theory approach to scalar curvature; see Gromov [19, Section 5], Chodosh and Li [12], Gromov [20],
Lesourd, Unger and Yau [29] and Zhu [46; 45]. Indeed, the latter can be viewed as an augmentation of
the minimal hypersurface method by suitable potentials.

In Sections 1.1–1.3 of the introduction, we present a simplified overview of our main results. In the main
body of the article, these are derived by working with a suitable relative Dirac bundle and choosing a
potential that is appropriate for the situation at hand.

1.1 Length of the neck

Here we present our main geometric results related to Conjectures 1.1 and 1.2. We improve the upper
bound of �=n to an estimate depending on the mean curvature of the boundary.

In our first result we estimate the length of the neck of a Riemannian manifold with boundary. Recall
that for a smooth map of Riemannian manifolds ˆ WM !N, the area contraction constant at p 2M is
defined to be the norm of the induced map ˆ� W

V2 TpM !
V2 Tf .p/N on 2–vectors. We say the map is

area nonincreasing if the area contraction constant is � 1 at every point. If M is compact and N is closed,
both connected and oriented, where nD dim M D dim N � 2, then a smooth map ˆ WM !N that is
locally constant near the boundary @M has a well-defined mapping degree deg.ˆ/ 2Z.2 Moreover, given
a Riemannian manifold .M;g/, we denote the mean curvature of its boundary @M by Hg (or simply H if
the metric is implicit); see also (2-14) in Section 2 for our sign and normalization conventions.

1We use this terminology because the study of Dirac operators with potential was initiated by Callias [9].
2This can be defined as usual via counting the preimage of a regular value with signs or, in cohomological terms, using the
induced map ZŠ Hn.N IZ/Š Hn.N; ˆ.@M /IZ/ ˆ

�

�! Hn.M; @M IZ/Š Z, where we use that ˆ.@M / is a finite set of points
and n� 2.

Geometry & Topology, Volume 28 (2024)
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Figure 1: The long neck problem.

Theorem 1.4 (see Section 5) Let .M;g/ be a compact connected Riemannian spin manifold with
nonempty boundary, nD dim M � 2 even , and let ˆ WM ! Sn be a smooth area-nonincreasing map.
Assume that scalg � n.n� 1/. Moreover , suppose there exists l 2 .0; �=n/ such that Hg � �tan

�
1
2
nl
�

and distg
�
supp.dˆ/; @M

�
� l ; compare Figure 1. Then deg.ˆ/D 0.

The statement of Theorem 1.4 is sharp; we discuss this in Section 5, Proposition 5.2. In this context,
a subtle point hidden in the statement of the theorem is that we also rule out the equality situation
distg

�
supp.dˆ/; @M

�
D l under these scalar and mean curvature bounds if deg.ˆ/ ¤ 0. This is in

contrast to the situations of the other conjectures, where the equality situations can be realized; compare
Remark 1.13 below. Addressing this detail requires a considerably more precise analysis than in the
earlier approach from [10, Theorem A].

Corollary 1.5 Let .M;g/ be a compact connected Riemannian spin manifold with boundary , let nD

dim M �2 be even , and let ˆ WM!Sn be a smooth area-nonincreasing map. Assume that scalg�n.n�1/.
If distg

�
supp.dˆ/; @M

�
� �=n, then deg.ˆ/D 0.

This corollary is a direct consequence of Theorem 1.4 because tan
�

1
2
nl
�
!1 as l ! �=n. Thus this

refines the original approach to Conjecture 1.1 from [10, Theorem A]. Proposition 5.2 also shows that the
constant �=n is optimal here.

For our second result, we introduce the notion of yA–area, which is a generalization of the notion of
K–area introduced in [17, Section 4]. For a Hermitian bundle E, denote by RE the curvature of the
connection on E.

Definition 1.6 Let .X;g/ be a closed even-dimensional oriented Riemannian manifold. The yA–area
of .X;g/ is the supremum of the numbers kREk�1

1 ; ranging over all Hermitian bundles E with metric
connections such that

R
X
yA.X /^ ch.E/¤ 0, where yA.X / denotes the yA–form of X and ch.E/ denotes

the Chern character form of E.
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The yA–area of .X;g/ depends on the metric g. However, since X is compact, the notion of having
infinite yA–area is independent of g. A closed spin manifold of infinite K–area also has infinite yA–area.
An important class of examples consists of even-dimensional compactly enlargeable manifolds, eg the
2m–dimensional torus T2m. For the notion of enlargeability and more examples, we refer to [22; 23].
More generally, if X has infinite K–area and Y has nonvanishing yA–genus, then X � Y has infinite
yA–area. This includes, for example, the Cartesian product T2m �Y , where Y is the K3–surface.

Now suppose X is a closed n–dimensional enlargeable spin manifold. By [10, Theorem C], X n fp0g

with p0 2 X does not admit a complete metric of positive scalar curvature. Moreover, the double of
M WDX nBn, with Bn an open n–ball embedded in X , is enlargeable as well. Therefore, the next theorem
in particular refines the upper bound of Conjecture 1.2 in the case of even-dimensional enlargeable spin
manifolds, using information from the mean curvature of the boundary.

Theorem 1.7 (see Section 6) Let .M;g/ be a compact connected n–dimensional Riemannian spin
manifold with boundary such that the double of M has infinite yA–area. Suppose that scalg > 0 and that
there exist positive constants � and l , with 0< l < �=.

p
�n/, such that

Hg � �
p
� tan

�
1
2

p
�nl

�
:

Then the boundary @M admits no open geodesic collar neighborhood N �M of width strictly greater
than l such that scalg � �n.n� 1/ on N .

The estimate in this theorem is also optimal; see Remark 1.13 below.

Remark 1.8 Similarly as before, one deduces from this that the case l � �=.n
p
�/ is ruled out indepen-

dently of mean curvature restrictions. This also follows from the techniques in [10, Theorem B], and see
the discussion in [11].

In particular, Theorem 1.7 implies that a manifold with boundary whose double has infinite yA–area cannot
carry any metric of positive scalar curvature and mean convex boundary. This also follows from recent
results of Bär and Hanke [5].

1.2 Estimates of bands

Here we exhibit our main results related to Conjecture 1.3. Similarly as above, we are able to improve the
upper bound of 2�=n to a bound depending on the mean curvature of the boundary. We will formulate our
result for manifolds which are not only cylinders. We say that a band is a compact manifold V together
with a decomposition @V D @�V t @CV , where @˙V are unions of components. This notion goes back
to Gromov [18], where such manifolds are called compact proper bands. A map V ! V 0 is a band map
if it takes @˙V to @˙V 0. The width width.V;g/ of a Riemannian band .V;g/ is the distance between
@�V and @CV with respect to g.

We now focus on a class of bands to which our results apply and which is simple to describe. An
overtorical band [18, Section 2] is a band V together with a smooth band map V ! Tn�1 � Œ�1; 1� of

Geometry & Topology, Volume 28 (2024)



Scalar and mean curvature comparison via the Dirac operator 1173

nonzero mapping degree, where Tn�1 denotes the torus of dimension n� 1. More generally, we can also
consider yA–overtorical bands [42], which are defined similarly but replacing the usual mapping degree by
the yA–degree in the sense of [22, Definition 2.6].

Theorem 1.9 (cf Corollaries 7.7 and 7.8) Let n be odd and .V;g/ be an n–dimensional yA–overtorical
spin band. Suppose that scalg � n.n� 1/. If the mean curvature of the boundary satisfies either

� Hg � �tan
�

1
4
nl
�

for some 0< l < 2�=n, or

� Hgj@�V � 0 and Hgj@CV � �tan
�

1
2
nl
�

for some 0< l < �=n,

then width.V;g/� l .

Again, as the expression �tan
�

1
4
nl
�

tends to �1 as l! 2�=n, we obtain the strict version of the original
estimate desired by Conjecture 1.3. This also follows from [42, Corollary 1.5]. If, in addition, we assume
that one of the boundary components is mean convex, then we can even obtain a strict bound of �=n.

Corollary 1.10 (cf Corollary 7.9) Let n be odd and .V;g/ be an n–dimensional yA–overtorical spin
band. Suppose that scalg � n.n� 1/. Then we always have width.V;g/ < 2�=n. Moreover , if @�V is
mean convex, then width.V;g/ < �=n.

Remark 1.11 The statement of Theorem 1.9 exhibited here in the introduction is a special case of the
more general Theorem 7.6 comparing the mean curvature to arbitrary values of the form �tan

�
1
2
nt˙

�
,

where ��=n< t� < tC < �=n, to get a corresponding width bound tC� t�.

Remark 1.12 Our methods apply to a more general class of bands of infinite vertical yA–area which, in
particular, includes bands diffeomorphic to M � Œ�1; 1� with M being a closed spin manifold of infinite
yA–area in the sense of Definition 1.6. See Section 7 for details.

Remark 1.13 The band estimates given in Theorem 1.9 are sharp. This follows from the warped product
metric '2gTn�1Cdx˝dx on Tn�1� Œ�l; l � for any 0< l <�=n, where gTn�1 is the flat torus metric and
'.t/D cos

�
1
2
nt
�2=n, as indicated by Gromov in [18, page 653]. By rescaling a given arbitrary metric gM

on any manifold M allowed in Conjecture 1.3, the warped product metric '2gM Cdx˝dx in fact shows
optimality of this estimate on any band diffeomorphic to M � Œ�1; 1�. Incidentally, this construction also
shows optimality of the estimate in Theorem 1.7 by forgetting the band structure and simply considering
M D Tn�1 � Œ�l; l � with this warped product metric.

1.3 Extremality and rigidity results

In view of the band width estimates, it is natural to investigate the extremal case. The class of yA–overtorical
bands discussed above includes the special case of yA–bands, that is, bands such that yA.@�V /¤ 0 (and
thus, by bordism invariance also yA.@CV / ¤ 0). In this special case, we prove the following rigidity
theorem stating that the extremal case can only be achieved by the warped product construction discussed
in Remark 1.13 over a Ricci flat manifold.

Geometry & Topology, Volume 28 (2024)



1174 Simone Cecchini and Rudolf Zeidler

Theorem 1.14 (cf Corollary 9.2) Let .V;g/ be an n–dimensional band which is a spin manifold and
satisfies yA.@�V /¤ 0. Suppose that scalg � n.n� 1/. Let 0< d < �=n and assume furthermore that one
of the following conditions holds: either

� width.V;g/� 2d and we have Hgj@V � �tan
�

1
2
nd
�
, or

� width.V;g/� d and we have Hgj@�V � 0 and Hgj@CV � �tan
�

1
2
nd
�
.

Then .V;g/ is isometric to a warped product .M �I; '2gM Cdx˝dx/, where I D Œ�d; d � or I D Œ0; d �,
'.t/D cos .nt=2/2=n and gM is some Riemannian metric on M which carries a nontrivial parallel spinor.
In particular , gM is Ricci-flat.

Again, we also have a more general version of this theorem involving arbitrary mean curvature bounds of
the form �tan

�
1
2
nt˙

�
; see Theorem 9.1.

The study of extremality questions about scalar curvature has a long history initiated by Gromov’s K–area
inequalities [17]. Llarull [31] proved sharp inequalities using the Dirac operator, which imply that the
round metric on the sphere is scalar-curvature extremal, meaning it cannot be enlarged without a decrease
in the scalar curvature at some point. Llarull’s technique and results were subsequently refined and
generalized by Goette and Semmelmann [16] and remain of central importance in contemporary research
on scalar curvature; see for instance [18, Section 10; 19, Section 4; 44]. Lott [32] recently extended the
technique of Llarull and Goette and Semmelmann to even-dimensional manifolds with boundary using
the Dirac operator with (local) boundary conditions. The following results combine the technique of
Goette and Semmelmann with our machinery to obtain a new kind of extremality result for a large class
of warped product manifolds.

Let M be a manifold with boundary @M. We say that a Riemannian metric gM on M is scalar-mean
extremal if every metric g on M which satisfies g� gM , scalg � scalgM

and Hg �HgM
already satisfies

HgM
D Hg and scalgM

D scalg. Moreover, we say that gM is scalar-mean rigid if any such metric must
satisfy g D gM .

Theorem 1.15 (cf Corollary 10.3) Let n be odd and .M;gM / be an .n�1/–dimensional Riemannian
spin manifold of nonvanishing Euler-characteristic whose Riemannian curvature operator is nonnegative.
Let ' W Œt�; tC�! .0;1/ be a smooth strictly logarithmically concave function and consider the warped
product metric gV D '

2gM C dx˝ dx on V WDM � Œt�; tC�. Then any metric g on V which satisfies

(i) g � gV ,

(ii) scalg � scalgV
, and

(iii) Hg � HgV

is itself a warped product g D '2zgM C dx˝ dx for some metric zgM on M such that scalzgM
D scalgM

.
In particular , gV is scalar-mean extremal.

If , in addition , the metric gM satisfies RicgM
> 0, then gV is scalar-mean rigid.
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Note that strictly logarithmically concave means that log.'/00< 0. Geometrically, this means that the mean
curvature of M � fxg in the warped product (with respect to the normal field @x) is strictly increasing.

Remark 1.16 We have a more general version of this theorem involving distance-nonincreasing maps of
nonzero degree to these spaces; see Theorem 10.2.

A particularly interesting special case of manifolds which can be written as such log-concave warped
products are annuli in spaces of constant curvature. Indeed, as a direct consequence of Theorem 1.15, we
obtain the following result.

Corollary 1.17 (cf Corollary 10.5) Let n� 3 be odd and .M� ;g�/ the n–dimensional simply connected
space form of constant sectional curvature � 2R. Let 0< t� < tC < t1, where t1 DC1 if � � 0, and
t1 D �=

p
� if � > 0. Consider the annulus

At�;tC WD fp 2M� j t� � dg� .p;p0/� tCg

around some basepoint p0 2M� . Then the metric g� is scalar-mean rigid on At�;tC .

Similar statements for log-concave warped products (and, in particular, punctured space forms) have been
suggested by Gromov in [19, Section 5.4] based on considerations with �–bubbles. Moreover, different
rigidity statements for hyperbolic space have been studied in the context of the positive mass theorem;
see for instance Andersson and Dahl [1], Chruściel and Herzlich [13], Min-Oo [33] and Sakovich and
Sormani [37].

Remark 1.18 These results also appear quite similar to Lott’s main result in [32] (apart from the fact
that they apply in complementary parities of the dimension). They are, however, of an essentially different
geometric nature. On the one hand, [32] proves area extremality rather than merely (length) extremality
as in our results. Our technique here relies on the existence of a suitable Lipschitz function and does not
appear to be readily applicable to the study of area-nonincreasing maps. On the other hand, we do not
require that the curvature operator of the metric on V itself is nonnegative or that the second fundamental
form of the boundary is nonnegative. Indeed, as the examples of hyperbolic annuli show, our results
include manifolds of negative sectional curvature. Similarly, suitable spherical annuli are examples which
have negative second fundamental form at the boundary. One should note that on a manifold without
boundary, a metric of negative scalar curvature can never be scalar extremal — simply rescaling using a
constant > 1 provides a counterexample. However, in our example of an annulus in hyperbolic space, the
outer boundary component has positive mean curvature, which thwarts such a rescaling argument. This
shows that the presence of the outer boundary component is crucial for our result to hold in the negative
curvature example. More generally, in all the examples covered by Corollary 1.17 it is the case that at
least one quantity is positive among the scalar curvature in the interior and the mean curvatures on the
two boundary components.
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1.4 Higher index theory and future directions

In the present article we are only working with classical Dirac-type operators on finite-dimensional
Hermitian vector bundles rather than using higher index theory, which would involve bundles with
coefficients in infinite-dimensional C�–algebras. This is in contrast to our previous work [43; 10; 42]. The
main rationale behind this change of perspective is that it allows a quicker and more accessible exposition
of the novel geometric arguments we want to exhibit through this article. At the same time, this does not
sacrifice too much of the possible generality of the statements, because many examples which are usually
approached via higher index theory can already be dealt with via more classical notions like enlargeability
or infinite K–area. It does, however, restrict the parity of the dimension in some of the results.

Note that our central structure of a relative Dirac bundle can be straightforwardly generalized to C�–algebra
coefficients. In this way it would be possible to reformulate all arguments from [43; 10; 42] in terms of
this concept. This will be partly explained in [11]. Since this notion is fairly general, we also expect that
it can be applied in many other geometric contexts we have not considered thus far. However, extending
the results from this article to higher index theory requires some new analytic work because the present
state of the art in the literature on boundary value problems for Dirac-type operators, where we mostly
rely on Bär and Ballmann [4; 3], does not cover the case of infinite-dimensional bundles. Since this aspect
is orthogonal to the geometric arguments presented here, we will address it separately in future work.

Acknowledgements We thank Misha Gromov for useful comments on an earlier version of this manu-
script and pointing us to the examples showing optimality of Theorem 1.4. We also would like to thank
Bernd Ammann for a brief helpful correspondence and the referee for valuable suggestions improving the
exposition.
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1442, as well as under Germany’s Excellence Strategy EXC 2044 390685587, Mathematics Münster:
Dynamics–Geometry–Structure, and through the Priority Programme Geometry at infinity (SPP 2026,
ZE 1123/2-2).

2 Relative Dirac bundles

In this section, we set up the differential geometric preliminaries underlying the rest of this article. In
particular, we introduce our new concept of a relative Dirac bundle.

We begin by fixing some notation. Let .M;g/ be a Riemannian manifold and let E!M be a Hermitian
vector bundle. The space of smooth sections will be denoted by C1.M;E/ and the subspace of compactly
supported smooth sections by C1c .M;E/. We denote fiberwise inner products by h�;�i and fiberwise
norms by j�j. Next we recall the notion of a classic Dirac bundle in the sense of Gromov and Lawson.
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Definition 2.1 [23, Section 1], [28] A (Z=2–graded) Dirac bundle over M is a Hermitian vector bundle
S !M with a metric connection r W C1.M;S/! C1.M;T�M ˝S/ (endowed with a parallel and
orthogonal Z=2–grading S D SC˚S�) and a parallel bundle map c W T�M ! End.S/, called Clifford
multiplication, such that c.!/ is antiselfadjoint (and odd), and c.!/2 D�j!j2 for all ! 2 T�M.

For simplicity, we sometimes denote Clifford multiplication by ! � u WD c.!/u. Let the associated
Dirac operator be DD

Pn
iD1 c.ei/rei

W C1.M;S/! C1.M;S/, where e1; : : : ; en is a local frame and
e1; : : : ; en the dual coframe. If we have a Z=2–grading S D SC˚S�, the operator D is odd, that is, it
is of the form

DD
�

0 D�
DC 0

�
;

where D˙ W C1.M;S˙/! C1.M;S�/ are formally adjoint to one another.

We now turn to relative Dirac bundles, an augmentation of a Dirac bundle.

Definition 2.2 Let K �M ı be compact subset in the interior. A relative Dirac bundle with support
K is a Z=2–graded Dirac bundle S !M together with an odd, selfadjoint, parallel bundle involution
� 2 C1.M nK;End.S// satisfying c.!/� D�� c.!/ for every ! 2 T�M jMnK and such that � admits
a smooth extension to a bundle map on an open neighborhood of M nK.

The final technical requirement in particular ensures the existence of a unique continuous extension of �
to the topological boundary of K. We do not consider the further extension to a neighborhood of M nK

part of the data, we just require its existence.

It follows directly from the definition that the Dirac operator anticommutes with the involution � where it
is defined.

One main use of this structure is that it will allow us to associate local boundary conditions to any choice
of a sign for each connected component of @M.

Definition 2.3 (boundary chirality for relative Dirac bundles) For a relative Dirac bundle S !M and
a locally constant function s W @M ! f˙1g, we say that the endomorphism

(2-1) � WD s c.�[/� W S j@M ! S j@M

is the boundary chirality on S associated to the choice of signs s. Here, � 2 C1.@M;TM j@M / is the
inward-pointing unit normal field.

Note that � is a selfadjoint even involution, which anticommutes with c.�[/ but commutes with c.!/ for
all ! 2 T�.@M /. This defines local boundary conditions for sections u 2 C1.M;S/ by requiring that

(2-2) �.uj@M /D uj@M :

In Section 3, we will observe that these boundary conditions are elliptic. The next lemma will be used to
show that they are selfadjoint.
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Lemma 2.4 Let S ! M be a relative Dirac bundle and s W @M ! f˙1g a choice of signs. Then
L.�/ WD fu 2 S j@M j �.u/ D ug is a Lagrangian subbundle of S j@M with respect to the fiberwise
symplectic form .u; v/ 7! hu; c.�[/vi. In other words , c.�[/L.�/DL.�/?.

Proof Note that L.�/ is the image of the orthogonal bundle projection 1
2
.1C�/. Since L.�/? is the image

of the complementary projection 1
2
.1��/ and � anticommutes with c.�[/, we obtain c.�[/L.�/DL.�/?.

In the following, we recall several standard formulas on Dirac bundles for later use.

� Green’s formula [40, Proposition 9.1] For the Dirac operator,

(2-3)
Z

M

hDu; vi volM D
Z

M

hu;Dvi volM C
Z
@M

hu; �[ � vi vol@M ;

and, for the connection,

(2-4)
Z

M

hru; 'i volM D
Z

M

hu;r�'i volM �
Z
@M

hu; '.�/i vol@M ;

where u; v 2 C1c .M;S/, ' 2 C1c .M;T�M ˝ S/ and � 2 C1.@M;TM j@M / is the inward-pointing
normal field.

� Bochner–Lichnerowicz–Weitzenböck formula [23, Proposition 2.5] We have

(2-5) D2
Dr

�
r CR;

where r�r D�
Pn

iD1 r
2
ei ;ei

is the connection laplacian and

RD
X
i<j

c.ei/ c.ej /Rr.ei ; ej /

is a bundle endomorphism linearly depending on the curvature tensor Rr of r.

� Penrose operator and Friedrich inequality [8, Section 5.2] We have that

(2-6) jruj2 D jPuj2C
1

n
jDuj2

for all u 2 C1.M;S/, where P W C1.M;S/! C1.M;T�M ˝S/ is the Penrose operator defined as

P�u WD r�uC
1

n
�[ �Du:

In particular, we have the Friedrich inequality

jruj2 �
1

n
jDuj2;

where equality holds if and only if PuD 0, that is, u satisfies the twistor equation

(2-7) r�uC
1

n
�[ �DuD 0

for all � 2 TM.
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� Boundary Dirac operator [4, Appendix 1], [27, Introduction] Let � be the interior unit normal
field. We turn S@ D S j@M into a Dirac bundle via the Clifford multiplication and connection,

(2-8)
c@.!/D c.!/ c.�[/ for ! 2 T�@M;

r
@
� Dr� C

1
2

c@.r��
[/ for � 2 T@M:

Denote the corresponding Dirac operator by

(2-9) A W C1.@M;S@/! C1.@M;S@/; where AD
n�1X
iD1

c@.ei/r@ei
:

This is the canonical boundary operator associated to the Dirac bundle S!M. Note that A is even with
respect to the grading on S@ restricted from the grading on S . It satisfies

(2-10) A c.�[/D�c.�[/A

and, if S !M is endowed with the structure of a relative Dirac bundle, then

(2-11) A� D �A and �AD�A�;

where � is defined as in (2-1) with respect to any choice of signs. This implies that, if u 2 C1.M;S/

satisfies the boundary condition (2-2), then

(2-12) huj@M ;Auj@M i D 0:

Moreover,

(2-13) AD 1
2
.n� 1/H� c.�[/

n�1X
iD1

c.ei/rei
D

1
2
.n� 1/H� c.�[/D�r� ;

where H is the mean curvature of @M with respect to �. To avoid any confusion about signs and
normalization, let us be explicit about our convention for the mean curvature:

(2-14) HD 1

n�1
tr.�r�/D 1

n�1

n�1X
iD1

hei ;�rei
�i D

1

n�1

n�1X
iD1

II.ei ; ei/:

Here �r� is the shape operator, II denotes the second fundamental form and we use a local orthonormal
frame e1; : : : ; en�1 on @M.

Finally, in the remainder of this section, we discuss two concrete geometric examples of relative Dirac
bundles, which are relevant for our main results.

Example 2.5 Let M be a compact even-dimensional Riemannian spin manifold with boundary and let
=SM D =S

C

M ˚ =S
�

M be the associated Z=2–graded complex spinor bundle endowed with the Levi-Civita
connection. Let E;F !M be a pair of Hermitian bundles equipped with metric connections. Note that
the bundle

S WD =SM y̋ .E˚F op/
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is a Z=2–graded Dirac bundle, where the grading S D SC˚S� is given by

SC WD .=S
C

M ˝E/˚ .=S
�

M ˝F / and S� WD .=S
C

M ˝F /˚ .=S
�

M ˝E/:

In analogy with Gromov and Lawson [23], we make the following assumption:

(2-15) There exists a compact set K �M ı and a parallel unitary bundle isomorphism t WEjMnK !

F jMnK which extends to a smooth bundle map on a neighborhood of M nK.

In this case, we say that .E;F / is a GL pair with support K. Note that condition (2-15) implies that S is
a relative Dirac bundle with involution

� WD id=SM
y̋

�
0 t�

t 0

�
W S jMnK ! S jMnK ;

where y̋ stands for the graded tensor product of operators; compare [26, Appendix A]. This means
�..uC˚u�/˝ .e˚f //D .uC˚�u�/˝ .t

�f ˚ te/ for sections u˙ 2 C1.M; =S
˙

M /, e 2 C1.M;E/

and f 2 C1.M;F /. The Dirac operator on S is described as follows. Let =DE and =DF be the operators
obtained by twisting the complex spin Dirac operator on M respectively with the bundles E and F .
Observe that =DE and =DF are odd operators, that is, they are of the form

=DE D

�
0 =D

�

E

=D
C

E 0

�
and =DF D

�
0 =D

�

F

=D
C

F 0

�
;

where =DCE WC
1
c .M; =S

C
˝E/!C1c .M; =S

�
˝E/ and =D

C

F WC
1.M; =S

C
˝F /!C1.M; =S

�
˝F /, and

=D
�

E and =D
�

F are formally adjoint to =D
C

E and =D
C

F , respectively. The Dirac operator on S is given by

(2-16) DD
�

0 D�
DC 0

�
W C1.M;S/! C1.M;S/;

where D˙ W C1.M;S˙/! C1.M;S�/ are the operators defined as

(2-17) DC WD
�

0 =D
�

F

=D
C

E 0

�
and D� WD

�
0 =D

�

E

=D
C

F 0

�
:

Moreover, the curvature endomorphism R from (2-5) is given by

(2-18) RD 1
4

scalgCRE˚F ;

where
RE˚F

D

X
i<j

c.ei/ c.ej /.id=SM
˝Rr

E˚F

ei ;ej
/

is an even endomorphism of the bundle S which depends linearly on the curvature of the connection on
E˚F ; compare [28, Theorem 8.17].

Example 2.6 Let .V;g/ be an odd-dimensional Riemannian spin band and let =SV !V be the associated
complex spinor bundle, endowed with the connection induced by the Levi-Civita connection. Let E!M
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be a Hermitian bundle equipped with a metric connection. Then S WD .=SV ˝E/˚ .=SV ˝E/ is a
Z=2–graded Dirac bundle with Clifford multiplication

c WD
�

0 c=S ˝idE

c=S ˝idE 0

�
;

where c=S is the Clifford multiplication on =SV . Moreover, S turns into a relative Dirac bundle with
involution

(2-19) � WD

�
0 �i
i 0

�
globally defined on V (that is, the support is empty). The Dirac operator on S is given by

DD
�

0 =DE

=DE 0

�
;

where =DE W C1.V; =SV ˝E/! C1.V; =SV ˝E/ is the spinor Dirac operator on .V;g/ twisted with the
bundle E. As in the previous example, the curvature term from (2-5) is of the form

(2-20) RD 1
4

scalgCRE ;

where
RE
D

X
i<j

c.ei/ c.ej /.id=SV˚=SV
˝Rr

E

ei ;ej
/:

3 Index theory for relative Dirac bundles

In this section, we introduce the Callias operators associated to relative Dirac bundles, and review the
necessary analysis to develop an index theory for them.

We again start by briefly fixing the notation we are going to use. Let E!M be a Hermitian vector
bundle over a smooth manifold M with compact boundary @M. The L2–inner product of two sections
u; v 2 C1c .M;E/ is defined by

.u; v/ WD

Z
M

hu; vi volM :

The corresponding L2–norm will be denoted by kuk WD .u;u/1=2. The space of square-integrable
sections, denoted by L2.M;E/, can be identified with the completion of C1c .M;E/ with respect to this
norm. We denote the space of locally square-integrable sections by L2

loc.M;E/. Similarly, the latter
comes endowed with the family of seminorms k�kK ranging over compact subsets K � M, where
kukK WD

�R
K hu;ui volM

�1=2.

We will also use Sobolev spaces to a limited extent; see for instance [40, Chapter 4] for a detailed
introduction. The Sobolev space H1

loc.M;E/ consists of all sections u 2 L2
loc.M;E/ such that ru,

a priori defined as a distributional section over the interior of M, is also represented by a locally square
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integrable section. The space H1
loc.M;E/ is topologized using the family of seminorms k�kH1

K
defined by

kuk2
H1

K

WDkuk2
K
Ckruk2

K
, where K ranges over all compact subsets of M. Since the boundary is assumed

to be compact, the restriction C1c .M;E/! C1.@M;Ej@M /, u 7! uj@M , extends to a continuous linear
operator � WH1

loc.M;E/!H1=2.@M;Ej@M / by the trace theorem; see eg [40, Chapter 4, Proposition 4.5].
Here H1=2.@M;Ej@M / denotes a fractional Sobolev space for instance in the sense of [40, Chapter 4,
Section 3]. An equivalent (and in our setup more relevant) description in the presence of a suitable Dirac
operator on the boundary is given in [4, Section 4.1].

Next we turn to the main player, the Callias operator associated to a relative Dirac bundle and a suitable
potential function. To this end, fix a complete Riemannian manifold M with compact boundary @M and
S !M a relative Dirac bundle with support K. This means that K �M ı is compact and the involution
� is defined on M nK; see Definition 2.2.

Definition 3.1 A Lipschitz function  WM !R is called an admissible potential if  D 0 on K and there
exists a compact set K�L�M such that  is equal to a nonzero constant on each component of M nL.

Let  be an admissible potential. Then  � extends by zero to a continuous bundle map on all of M. The
Callias operator associated to these data is the differential operator

(3-1) B WD DC �:

Since  is Lipschitz, the commutator ŒD;  � extends to a bounded operator on L2.M;S/; compare
for example [3, Lemma 3.1]. In fact, by Rademacher’s theorem [35], the differential d exists almost
everywhere and is an L1–section of the cotangent bundle. In this view, the commutator is given by the
formula ŒD;  �D c.d / as an element of L1.M;End.S//. Using that the involution � anticommutes
with the Dirac operator, a direct computation then yields

(3-2) B2
 D D2

C c.d /� C 2:

To be very precise, this expression implicitly uses the requirement in Definition 2.2 that � extends to a
smooth section on a neighborhood of M nK. However, as d D 0 on the interior of K, we only need
the values of the continuous extension of � to M nK to specify c.d /� , and this is only relevant if the
topological boundary of K has positive Lebesgue measure.

Observe that the distance function x from any fixed subset of M is 1–Lipschitz, so that jdxj � 1 almost
everywhere. In our applications, we will consider potentials of the form  D Y ıx, where Y is a smooth
function on R and x is a distance function from a geometrically relevant compact region of M.

For a choice of signs s W @M ! f˙1g, we let B ;s denote the operator B on the domain

C1�;s.M;S/ WD fu 2 C1c .M;S/ j �.uj@M /D uj@M g;

where � WD s c.�[/� as in (2-1).
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By definition, S D SC˚S� is Z=2–graded and the differential operator B can be written as

B D
�

0 B�
 

BC
 

0

�
;

where B˙
 

are differential operators C1.M;S˙/! L2.M;S�/. Since � is even with respect to the
grading, B ;s also decomposes similarly into operators

B˙ ;s W fu 2 C1c .M;S˙/ j �.uj@M /D uj@M g ! L2.M;S�/:

Note that — even ignoring regularity —B ;s does not preserve its domain.

In the following, we will discuss the necessary analysis and index theory for these operators. We will
mostly rely on the general framework of elliptic boundary value problems for Dirac-type operators due to
Bär and Ballmann [4; 3]. However, as we will need to allow potentials which are a priori only Lipschitz
for some of our applications, we will take a slight detour and first apply the results of Bär and Ballmann [4]
only to the Dirac operator D and Callias operators B with smooth potentials, before deducing the desired
statements for the general case.

We first observe that the canonical boundary Dirac operator A from (2-9) is an adapted operator for D
in the sense of [4, Section 3.2]. Since � anticommutes with A (see (2-11)), � is a boundary chirality in
the sense of [4, Example 4.20]. Thus B� WD H1=2.@M;S

�

@M
/, where S

�

@M
is the C1–eigenbundle of �,

is an elliptic boundary condition in the sense of Bär and Ballmann [4]. Moreover, it is a consequence
of Lemma 2.4 that the adjoint boundary condition of B� (see [4, Theorem 4.6] and [3, Section 7.2]) is
B� itself (the crucial ingredient here is that � anticommutes with c.�[/). In other words, B� is a selfadjoint
boundary condition, and thus D is essentially selfadjoint on the domain C1�;s.M;S/ by [4, Theorem 4.11].
Moreover, [3, Lemma 7.3] implies that the domain of the closure is given by the Sobolev space

H1
�;s.M;S/ WD fu 2 H1

loc.M;S/\L2.M;S/ j Du 2 L2.M;S/; ��.u/D s�.u/g:

We will endow H1
�;s.M;S/ with the norm defined by

(3-3) kuk2
H1
�;s.M;S/

WD kuk2CkDuk2:

It also follows from ellipticity (also of the boundary condition) that the inclusion H1
�;s.M;S/ ,!

H1
loc.M;S/ is continuous. In particular, the trace operator is continuous on H1

�;s.M;S/. The next
two lemmas allow us to also describe the domain of the closure of B ;s , temporarily denoted by xB ;s ,
and show that compact perturbations of the potential do not alter any relevant properties.

Lemma 3.2 Let  be an admissible potential. Then xB ;s is selfadjoint and dom.xB ;s/D H1
�;s.M;S/.

Moreover , the graph norm induced by xB ;s is equivalent to the norm given by (3-3).

Proof This is a direct consequence of the fact that the difference B �DD  � is in L1.M;End.S//
and (fiberwise) selfadjoint, and thus extends to a selfadjoint bounded operator on L2.M;S/.
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From now on, we will drop the notational distinction between B ;s and its closure xB ;s , and simply view
B ;s as being defined on H1

�;s.M;S/, unless specified otherwise.

Lemma 3.3 Let  1 and  2 be admissible potentials coinciding outside a compact set L. Then B 2
�B 1

defines a compact operator H1
�;s.M;S/! L2.M;S/. In particular , viewed as maps H1

�;s.M;S/!

L2.M;S/, the operator B 1;s is Fredholm if and only if B 2;s is.

Proof Observe that, since  1 and  2 are Lipschitz and coincide in M nL, both � WD  2� 1 and its
differential d� are essentially bounded and supported in the compact set L. Together with the estimate

kD.B 2
�B 1

/uk D kD��uk � k��DukCk c.d�/uk � k�k1kDukCkd�k1kuk;

this implies that B 2
�B 1

D �� defines a bounded operator H1
�;s.M;S/!H1

�;s.M;S/. Moreover, since
� is supported in the compact subset L and using continuity of the inclusion H1

�;s.M;S/ ,! H1
loc.M;S/,

this actually means that B 2
�B 1

is a bounded operator H1
�;s.M;S/! H1.L;S/. Finally, since the

inclusion H1.L;S/ ,! L2.M;S/ is compact by the Rellich lemma, B 2
�B 1

yields a compact operator
H1
�;s.M;S/! L2.M;S/. The second claim follows from classical properties of Fredholm operators.

Theorem 3.4 Let M be a complete Riemannian manifold with compact boundary @M and S !M be a
relative Dirac bundle. Let  WM !R be an admissible potential and s W @M ! f˙1g a choice of signs.
Then the operator B ;s is selfadjoint and Fredholm.

Proof Since for any given admissible potential we can always find a smooth admissible potential which
agrees with the original one outside a compact subset, Lemmas 3.2 and 3.3 imply that we can assume
without loss of generality that  is smooth. As B has the same principal symbol as D, the canonical
boundary Dirac operator A from (2-9) is also an adapted operator for B in the sense of [4, Section 3.2].
Thus the discussion in the paragraphs preceding Lemma 3.2 applies verbatim with B replaced by D.
Furthermore, since

B2
 D D2

C c.d /� C 2

and  2 � jd j is uniformly positive outside a compact subset because  is admissible, the operator
B is coercive at infinity in the sense of [4, Definition 5.1]. Thus B ;s is a Fredholm operator by
[4, Theorem 5.3].

In particular, we obtain an index

ind.B ;s/ WD ind.BC
 ;s
/ WD dim ker.BC

 ;s
/� dim ker.B� ;s/ 2 Z:

As another immediate consequence of Lemma 3.3, we obtain the following statement.

Lemma 3.5 Let M be a complete Riemannian manifold with compact boundary @M and S !M be a
relative Dirac bundle. Let  1;  2 WM !R be two admissible potentials and s W @M ! f˙1g a choice of
signs. Suppose that  1 and  2 agree outside a compact subset of M. Then

ind.B 1;s/D ind.B 2;s/:
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The next theorem provides the main tool for computing ind.B ;s/.

Theorem 3.6 Let M be a complete Riemannian manifold with @M D∅ and S!M be a relative Dirac
bundle of support K �M. Let  WM ! R be an admissible potential. Let N �M nK be a compact
hypersurface with trivial normal bundle. Then we let M 0 be the manifold obtained from cutting M open
along N so that @M 0 DN0 tN1, where N0 and N1 are two disjoint copies of N. Pulling back all data
via the quotient map M 0!M induces a relative Dirac bundle S 0!M 0 and an admissible potential
 0 WM 0!R, respectively. Let s W @M 0!f˙1g be any choice of signs such that sjN0

D sjN1
WN !f˙1g.

Then

(3-4) ind.B0 0;s/D ind.B /;

where B D DC � denotes the Callias operator on M, and B0 0 the corresponding operator on M 0.

Proof Using Lemmas 3.3 and 3.5, it is again enough to prove the claim in the case when  is smooth.
We will prove this case as a consequence of the general splitting theorem due to Bär and Ballmann; see
[4, Theorem 6.5; 3, Theorem 8.17].

First we note that, by the proof of Theorem 3.4 and the remarks preceding it, the boundary condition
BC� � H1=2.@M 0;S 0C/ defined by the chirality �D s c.�[/� restricted to SC is elliptic and its adjoint
is the corresponding boundary condition B�� � H1=2.@M 0;S 0�/. Thus we can also apply the theory of
Bär and Ballmann [4] separately to B˙

 
and B0˙

 0;s
. In this light, the theorem is a direct consequence

of the general splitting theorem; see [4, Theorem 6.5; 3, Theorem 8.17]. To see this, observe that
BC� D BC

0
˚BC

1
with respect to the decomposition H1=2.@M 0;S 0C/D H1=2.N;SC/˚H1=2.N;SC/

coming from @M DN0 tN1, where

BCi D fu 2 H1=2.N;SC/ j s c.�[jNi
/�uD ug for i D 0; 1:

By construction, the interior normal field of @M 0 along N0 is equal to the exterior normal field along N1

and hence �jN0
D��jN1

. Thus .BC
0
/?DBC

1
viewed as an L2–orthogonal complement in H1=2.N;SC/.

Consequently, the hypotheses of [4, Theorem 6.5] are satisfied and we obtain ind.BC
 0;s

/D ind.BC
 
/. This

concludes the proof because, by definition, ind.B0
 0;s

/D ind.B0C
 0;s

/ and ind.B /D ind.BC
 
/.

Lemma 3.7 Let M be a complete Riemannian manifold with compact boundary @M and S !M be a
relative Dirac bundle. Let  WM !R be an admissible potential and s W @M ! f˙1g a choice of signs
such that

(i) there exists C > 0 such that  2� jd j � C on all of M, and

(ii) s � 0 along @M.

Then B ;s is invertible. In particular , ind.B ;s/D 0.
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Proof By Green’s formula, for any u 2 C1�;s.M;S/, we haveZ
M

jB uj2 volM D
Z

M

�
jDuj2Chu; c.d /�uC 2ui

�
volM C

Z
@M

hu;  c.�[/�u„ ƒ‚ …
Dsu

i vol@M

�

Z
M

. 2
� jd j/juj2 volM C

Z
@M

s 

f

�0

juj2 vol@M � C

Z
M

juj2 volM :

By continuity, the final estimate holds for all u 2 H1
�;s.M;S/. Therefore, B ;s is invertible; compare

[4, Corollary 5.9].

Lemma 3.8 Let M be a compact Riemannian manifold with boundary @M and S !M be a relative
Dirac bundle with empty support (that is , the involution � is defined on all of M ). Let s W @M ! f˙1g be
a choice of signs. Then any Lipschitz function  WM !R is an admissible potential and ind.B ;s/ does
not depend on the choice of the potential  . Furthermore , if the sign s 2 f˙1g is constant on all of @M,
then ind.B ;s/D 0 for any potential  .

Proof Since M is compact and � is defined on of all M, the condition of being an admissible potential
is vacuous. Moreover, by Lemma 3.5, any two potentials yield the same index. Finally, if the choice
of signs s is constant, then Lemma 3.7 implies vanishing of the index for the constant potential  D s.
Since the index does not depend on the potential, it must vanish for any choice of potential.

Let us now specialize to the case of Example 2.5. Let M be a compact even-dimensional Riemannian
manifold with boundary. Let S be the Dirac bundle associated to a GL pair .E;F / over M. For an
admissible potential  , consider the Callias operator B . With the choice of sign s D 1, let us consider
the index of B ;1. In order to compute ind.B ;1/, we make use of the following construction. Form
the double dM WDM [@M M� of M, where M� denotes the manifold M with opposite orientation.
Observe that dM is a closed manifold equipped with a spin structure induced by the spin structure
of M. Using condition (2-15), let V .E;F /! dM be a bundle on dM which outside a small collar
neighborhood coincides with E over M and with F over M� defined using the bundle isomorphism
implicit in a GL pair. The relative index of .E;F / is the index of the spin Dirac operator on dM twisted
with the bundle V .E;F /, that is,

indrel.M IE;F / WD ind. =DdM;V .E;F // 2 Z:

The computation of ind.B ;1/ is given by the next proposition.

Corollary 3.9 Consider the setup of Example 2.5. Then for any choice of potential  , we have

ind.B ;1/D indrel.M IE;F /;

where the latter expression is described in the paragraph preceding this corollary.

Proof Let E0 D V .E;F /. Moreover, extend the bundle F to a bundle with metric connection F 0 on
dM such that F 0jM� D F . Consider the Z=2–graded Dirac bundle W 0 WD =SdM y̋ .E

0˚ .F 0/op/ with
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associated Dirac operator D0. Observe that

(3-5) indD0 D indrel.M IE;F /

because the index of the Dirac operator on =SdM ˝F 0 vanishes. Observe also that D0 D BE0;F 0

0
. Cut dM

open along @M as in Theorem 3.6. Pulling back all data, we obtain the operators BE;F
0;1

on M and BF;F
0;1

on M�. By Lemma 3.8, indBF;F
0;1
D 0. By Lemma 3.5, ind.BE;F

 ;1
/D ind.BE;F

0;1
/. Therefore, the thesis

follows using identity (3-5) and Theorem 3.6.

We now deal with Example 2.6 in a similar fashion.

Corollary 3.10 Consider the setup of Example 2.6 and choose the signs so that sj@˙V D˙1. Then for
any choice of potential  , we have

ind.B ;s/D ind. =D@�V;Ej@�V
/D

Z
@�V

yA.@�V /^ ch.E/j@�V ;

where =D@�V;Ej@�V
denotes the corresponding twisted spinor Dirac operator on @�V , yA.@�V / is the

yA–form of @�V and ch.E/ the Chern character form associated to E.

Proof First of all, the index does not depend on  by Lemma 3.8 since V is compact. We can thus
choose a function  suitable for our purposes. Furthermore, let

V1 D V�[@�V V [@CV VC;

where
V� WD @�V � .�1;�1� and VC WD @CV � Œ1;1/;

be the infinite band obtained from attaching infinite cylinders along the boundary parts @˙V . We
extend the Riemannian metric on V to a complete metric on V1. Then the same construction as in
Example 2.6 yields a relative Dirac bundle on V1 extending the data on V . Now choose a smooth function
 1 W V1! Œ�1; 1� such that  1.V˙/D˙1. We will denote  WD 1jV . Applying Theorem 3.6 to the
splitting of V1 along @V D @�V t @CV implies that

ind.BV1; 1/D ind.BV; ;s/C ind.BV�;�1;�1/C ind.BVC;C1;C1/:

However, Lemma 3.7 implies that ind.BV˙;˙1;˙1/ D 0, and so ind.BV1; 1/ D ind.BV; ;s/. Finally,
it follows from [2, Corollary 1.9] that ind.BV1; 1/ D ind. =D@�V;Ej@�V

/; for a more general context
compare also the partitioned manifold index theorem from [43, Appendix A]. The last equality follows
from the Atiyah–Singer index theorem [28, Theorem 13.10].

4 Spectral estimates

Our goal here is to establish spectral estimates for the Callias operator B from equation (3-1) associated
to a relative Dirac bundle S!M and an admissible potential  WM !R. The parts only concerning the
Dirac operator are similar to estimates of imaginary eigenvalues in the context of the “MIT bag boundary
conditions” due to Raulot [36].
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We start with a lemma computing the L2–norm of the Dirac operator applied to a section in terms of the
Bochner–Lichnerowicz–Weitzenböck curvature term and a boundary term. In the following, we make
extensive use of the notation and formulas introduced in Section 2.

Lemma 4.1 Let S!M be a relative Dirac bundle and s W @M !f˙1g a choice of signs. Then for every
u 2 C1c .M;S/, the following identity holds:Z

M

jDuj2 volM D
n

n�1

Z
M

.jPuj2Chu;Rui/ volM C
Z
@M

D
u;
�

n

2
Hg �

n

n�1
A
�
u
E

vol@M :

Proof Using the Green and Weitzenböck formulas, we obtainZ
M

jDuj2 volM D
Z

M

hu;D2ui volM C
Z
@M

hu; �[ �Dui vol@M

D

Z
M

jruj2 volM C
Z

M

hu;Rui volM C
Z
@M

hu; . c.�[/DCr�„ ƒ‚ …
D 1

2
.n�1/Hg�A

/ui vol@M :

The identity now follows from equations (2-13) and (2-6).

We now combine this with another application of Green’s formula to get a corresponding computation for
the Callias operator.

Proposition 4.2 Let S!M be a relative Dirac bundle and  WM !R be an admissible potential. Then
for every u 2 C1c .M;S/, the following identity holds.

(4-1)
Z

M

jB uj2 D
n

n�1

Z
M

.jPuj2Chu;Rui/ volM C
Z

M

hu; . 2
C c.d /�/ui volM

C

Z
@M

D
u;
�

n

2
Hg �

n

n�1
AC c.�[/�

�
u
E

vol@M :

Proof We have
jB uj2 D jDuj2ChDu;  �uiC h �u;DuiC 2

juj2:

Using Green’s formula (2-3) on the second term impliesZ
M

jB uj2 volM D
Z

M

jDuj2 volM C
Z

M

�
hu; .D � C �D/„ ƒ‚ …

Dc.d /�

uiC 2
juj2

�
volM

C

Z
@M

hu; �[ � �ui vol@M :

Combining this with Lemma 4.1 yields the desired identity (4-1).

Finally, this leads to the main result of this section.

Theorem 4.3 Let S !M be a relative Dirac bundle over a compact manifold M, let  WM ! R be
an admissible potential and s W @M ! f˙1g be a choice of signs. Then for every u 2 H1

�;s.M;S/, the
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following estimate holds:

(4-2)
Z

M

jB uj2 volM �
n

n�1

Z
M

hu;Rui volM C
Z

M

hu; . 2
C c.d /�/ui volM

C

Z
@M

�
1
2
n HgC s 

�
j�.u/j2 vol@M

�
n

n�1

Z
M

hu;Rui volM C
Z

M

. 2
� jd j/juj2 volM

C

Z
@M

�
1
2
n HgC s 

�
j�.u/j2 vol@M :

Moreover , equality throughout both estimates in (4-2) holds if and only if

(4-3)
P�uDr�uC

1

n
c.�[/DuD 0 for all � 2 C1.M;TM /;

c.d /�uD�jd ju:

Proof We first assume that u 2 C1�;s.M;S/. Then

c.�[/�uj@M D s�uj@M D suj@M and huj@M ;Auj@M i D 0I

see equations (2-1) and (2-12). Thus (4-1) simplifies to the equality

(4-4)
Z

M

jB uj2 D
n

n�1

Z
M

.jPuj2Chu;Rui/ volM C
Z

M

hu; . 2
C c.d /�/ui volM

C

Z
@M

˝
�.u/;

�
1
2
n HgC s 

�
�.u/

˛
vol@M :

Now we observe that both sides of the identity (4-4) are continuous in u with respect to the topology of
H1
�;s.M;S/. Thus (4-4) still holds for all u 2 H1

�;s.M;S/.

The first estimate of (4-2) now follows directly because jPuj2 � 0. The second estimate follows from
c.d /� ��jd j. Moreover, equality in the first estimate is equivalent to

R
M jPuj2D 0 and thus PuD 0.

Equality for the second estimate is equivalent toZ
M

hu; .c.d /� Cjd j/ui volM D 0:

Since the selfadjoint bundle endomorphism c.d /� Cjd j is fiberwise nonnegative, this is equivalent to
.c.d /� Cjd j/uD 0, as claimed.

Remark 4.4 Suppose that u lies in the kernel of B and at the same time satisfies (4-3). Then DuD� �u

and so

(4-5) r�uD
 

n
c.�[/�u for all � 2 TM:

On each point where d ¤ 0, this implies

r�uD
 

n
c.�[/ c

�
d 
jd j

�
u;

and in particular,
rr =jr juD�

 

n
u:
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In the final remark of this section, we prepare another technical observation in the context of the extremality
case of Theorem 4.3, which we will use on multiple occasions. Here we assume that the potential has a
special form relevant for our applications.

Remark 4.5 Suppose that there is a 1–Lipschitz function x WM ! I for some compact interval I �R

and let ' W I ! .0;1/ be a smooth strictly logarithmically concave function such that

 WD f .x/ WD �1
2
n
'0.x/

'.x/

is an admissible potential for the relative Dirac bundle S !M we consider — the geometric meaning of
this relationship will become apparent later; compare Section 8 below. Now suppose that we are in the
same situation as in Remark 4.4, that is, we have an element u 2 ker.B ;s/� H1

�;s.M;S/ that realizes
equality in Theorem 4.3. Then the section w WD '.x/�1=2u still lies in H1

�;s.M;S/ because '.x/�1=2 is
a Lipschitz function. Using the elementary computation

d
�
'.x/�1=2

�
.�/D '.x/�1=2 

n
dx.�/;

we deduce from (4-5) that the (weak) covariant derivative of w satisfies, almost everywhere,

(4-6) r�w D
 

n

�
dx.�/C c.�[/�

�
w

for every smooth vector field � on M. In particular, rw D 0 on K. Moreover, on the set

fc.dx/uD �ug WD fp 2M nK j c.dpx/up D �upg

we deduce that

r�w D
 

n
.dx.�/C c.�[/�/w D  

n
.dx.�/C c.�[/ c.dx//w D

 

n
c.�[ ^ dx/w;

where in the last step we use the Clifford relation c.dx/ c.�[/C c.�[/ c.dx/D�2 dx.�/ and the notation
c.�[ ^ dx/ WD 1

2
.c.�[/ c.dx/� c.dx/ c.�[//.

In summary,

(4-7) r�w D
 

n
c.�[ ^ dx/w almost everywhere on fc.dx/uD �ug:

Finally, since c.�[^dx/ is an antiselfadjoint bundle endomorphism, (4-7) further implies that d.jwj2/.�/D
2hw;r�wi D 0 almost everywhere on fc.dx/uD �ug. Together with (4-6) this implies that

(4-8) djwj2 D 0 almost everywhere on K[fc.dx/uD �ug:

A priori, this only holds in the weak sense, but it still implies that jwj2 is a constant function if M is
connected and we have K[fc.dx/uD �ug DM.

We also note that since d Df 0.x/ dx and f 0.x/> 0, the second part of (4-3) implies that fc.dx/uD�ug

contains the set of points in M nK where jdxj D 1. But this is not a priori satisfied everywhere, just
under the hypotheses of this remark, and so we will verify the condition c.dx/u D �u directly in the
specific applications when needed.
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5 A long neck principle with mean curvature

In this section, we establish our long neck principle for Riemannian spin manifolds with boundary, relating
the length of the neck to the scalar curvature in the interior and the mean curvature of the boundary.
Based on the technical preparations from the previous sections, we now directly enter into the proof of
Theorem 1.4, starting with the following lemma.

Lemma 5.1 Suppose that M is a compact spin manifold with boundary and ˆ WM ! Sn is a smooth
map that is locally constant near @M and of nonzero degree , where n D dim M � 2 is even. Set
l D distg.supp.dˆ/; @M / > 0. Then there exists a GL pair .E;F / in the sense of Example 2.5 such that

(i) RE˚F
p ��a.p/ � 1

4
n.n�1/ at each point p 2M, where a.p/ is the area-contraction constant of ˆ

at p,

(ii) .E;F / has support K WD fp 2M j distg.p; @M /� lg � supp.dˆ/,

(iii) indrel.M IE;F /¤ 0.

Proof We fix a basepoint � 2 Sn. Since ˆ is locally constant on M nK and @M has only finitely many
components, there exist finitely many distinct points q1; : : : ; qk 2 Sn such that ˆ.M nK/D fq1; : : : ; qkg.
Let �i D ˆ

�1.qi/\M nK. Then each �i is an open subset and M nK D
Fk

iD1�i . By continuity,
ˆ.�i/D fqig and hence the closures �i , i D 1; : : : ; k, form a family of pairwise disjoint closed subsets
of M. Thus there exist open neighborhoods Vi ��i that are still pairwise disjoint together with smooth
functions �i WM ! Œ0; 1� such that �i D 1 on �i and �i D 0 on M nVi . Next we choose geodesic curves
i W Œ0; 1�! Sn such that i.0/D � is the basepoint and i.1/D qi . From this we obtain a smooth map
(see Figure 2)

‰ WM ! Sn; ‰.p/D

�
i.�i.p// if p 2 Vi ,
� if p 2M n

Fk
iD1 Vi .

It follows that ‰ D qi Dˆ on each �i and, since ‰ by definition locally factors through smooth curves,
the induced map ‰� W

V2 TM !
V2 TSn vanishes.

Llarull’s argument [31] shows the existence of a Hermitian vector bundle E0!Sn such that for any smooth
map ‚ WX ! Sn with X any spin manifold, we have R‚�E0 � �a‚ �

1
4
n.n� 1/, where a‚ is the area-

contraction function of ‚. Moreover, if X is closed and ‚ has nonzero degree, then ind. =DX ;‚�E0
/¤ 0.

We now define Hermitian bundles E Dˆ�E0 and F D‰�E0 on M. Then F is a flat bundle because ‰
induces the zero map on 2–vectors. Thus Llarull’s estimate for E Dˆ�E0 shows that (i) holds.

To see that (ii) holds, we choose pairwise disjoint open balls U1; : : : ;Uk � Sn such that qi 2 Ui

together with a unitary trivialization t0 W E0jU
Š
�! U � Cr ; where U D

Fk
iD1 Ui . On the open set

N WDˆ�1.U /\‰�1.U /, this induces a unitary bundle isomorphism

t WEjN
ˆ�t0
���!N �Cr .‰�t0/

�1

�����! F jN :
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�2V2�1 V1

M

�

q1

q2

1

2

Sn
‰

Figure 2: Construction of the map ‰.

Note that M nK �ˆ�1.fq1; : : : ; qkg/\‰
�1.fq1; : : : ; qkg/�N by construction and thus N is an open

neighborhood of M nK. The bundle isomorphism is not parallel on all of N , but as ˆD‰ is locally
constant on M nK, it follows that tjMnK is parallel. Thus the condition (2-15) from Example 2.5 is
satisfied, showing that .E;F / is a GL pair with support K.

Finally, let ‚ W dM DM [@M M�! Sn be the smooth map defined by ‚jM Dˆ and ‚jM� D‰. Then
deg.‚/D deg.ˆ/¤ 0 because ‰ has zero degree. By definition, we have ‚�E0 D V .E;F / and thus

indrel.M IE;F /D ind. =DdM;V .E;F //D ind. =DdM;‚�E0
/¤ 0

by Llarull’s argument. This shows that (iii) holds and concludes the proof of the lemma.

Proof of Theorem 1.4 Suppose, by contradiction, that distg.supp.dˆ/; @M /� l and deg.ˆ/¤ 0. We
then pick a GL pair .E;F / satisfying the conditions (i)–(iii) from Lemma 5.1. Moreover, restating the
hypotheses of the theorem, we have the curvature bounds

(iv) scalg � n.n� 1/ on M,

(v) Hg � �tan
�

1
2
nl
�

on @M.

We then consider the relative Dirac bundle S!M constructed out of the GL pair .E;F / as in Example 2.5.
Recall from (2-18) that the relevant curvature term here takes the form

RD 1
4

scalgCRE˚F :

To construct a suitable admissible potential, we first define the 1–Lipschitz function

x WM ! Œ0; l �; x.p/ WDmin.distg.K;p/; l/:

Since distg.K; @M /� l , we have that xj@M D l . Let '; f W Œ0; �=n/!R given by '.t/D cos
�

1
2
nt
�2=n

and f .t/ D �1
2
n'0.t/='.t/ D 1

2
n tan

�
1
2
nt
�
; compare Remark 1.13. Then we set  WD f .x/ WD f ı x.
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Since x is 1–Lipschitz, it follows that

(5-1)  2
� jd j D f .x/2�f 0.x/jdxj � f .x/2�f 0.x/D�1

4
n2

almost everywhere on M. Moreover, by (v),

(5-2)  j@M D
1
2
n tan

�
1
2
nl
�
� �

1
2
n Hg:

Then  is an admissible potential for the relative Dirac bundle S . Corollary 3.9 together with (iii) implies
that the corresponding Callias operator subject to the sign s D 1 satisfies

ind.B ;1/D indrel.M IE;F /¤ 0:

In particular, there exists an element 0¤ u 2 ker.B ;1/. To analyze u further, we let

U WD fp 2M j dpˆ¤ 0g and U 0 WD
˚
p 2 U j a.p/ < 1

2

	
:

Then, by definition, U 0 � U are open subsets in the interior of M and U � K. Since ˆ has nonzero
degree, the set U must be nonempty. Furthermore, as the map ˆ is locally constant near the boundary
and M is connected, the intermediate value theorem implies that U 0 is also nonempty. Then using our
main spectral estimates (4-2) from Theorem 4.3, we obtain

0�
n

n�1

Z
M

1
4

scalg juj2Chu;RE˚F ui volM C
Z

M

hu; . 2
C c.d /�/ui volM

C

Z
@M

�
1
2
n HgC 

�„ ƒ‚ …
� 0 by (5-2)

j�.u/j2 vol@M

and continuing the estimate, using that  D 0 on U and RE˚F D 0 on M nU , leads to

�
n

n�1

Z
U

1
4

scalg juj2Chu;RE˚F ui„ ƒ‚ …
� 0 by (iv) and (i)

volM

C

Z
MnU

n

n�1
�

1
4

scalg juj2C .f 2.x/�f 0.x//juj2„ ƒ‚ …
� 0 by (iv) and (5-1)

Cf 0.x/hu; .1� c.dx/�/ui volM

�
n

n�1

Z
U 0

1
4

scalg juj2Chu;RE˚F ui volM C
Z

MnU

f 0.x/hu; .1� c.dx/�/ui volM

�

Z
U 0

�
1
4
n2
�

1
8
n2
�
juj2 volM C

Z
MnU

f 0.x/hu; .1� c.dx/�/ui volM � 0;

where in the last step we used (iv) and (i) together with the fact that the area-contraction constant
is at most 1

2
on U 0 by definition. We conclude that we are in the equality situation of Theorem 4.3.

Furthermore, since the last two integrands are separately nonnegative, we also deduce uD 0 on U 0 and
f 0.x/hu; .1�c.dx/�/uiD 0 on M nU . Since f 0.x/> 0 and jdxj� 1, the latter implies that c.dx/uD�u

almost everywhere on M nU . Hence it follows from (4-8) in Remark 4.5 above that the modified section
w D '�1=2u has a constant norm. But since u vanishes on the nonempty open subset U 0 and ' > 0, this
implies that u vanishes almost everywhere, a contradiction.
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The precise analysis of the equality situation in the proof above is necessary to rule out the case
distg.dˆ; @M /D l . If we only wanted to establish the nonstrict estimate distg.dˆ; @M /� l for deg.ˆ/¤0,
then this could be proved in a simpler way along the same lines as in [10, Proof of Theorem A] by directly
showing that the operator B ;1 must be invertible if distg.dˆ; @M / > l .

We now show that Theorem 1.4 is in fact sharp. The proof of the following proposition is an almost
verbatim adaption of a construction due to Gromov and Lawson [23, Proposition 6.7]; see also [28,
Chapter IV, Proposition 6.10].

Proposition 5.2 For every n� 2, "> 0 and 0< l <�=n, there exists a compact connected n–dimensional
Riemannian spin manifold .M;g/ and a smooth area-nonincreasing map ˆ WM ! Sn of nonzero degree
such that

(i) scalg D n.n� 1/,

(ii) Hg D�tan
�

1
2
nl
�
,

(iii) distg.supp.dˆ/; @M /� l � ".

In particular , Theorem 1.4 is sharp.

Proof We again work with the example from Remark 1.13; that is, consider V WDTn�1� Œ�l; l � endowed
with the metric gV D '

2gTn�1 C dx˝ dx, where gTn�1 is the flat torus metric and '.t/D cos
�

1
2
nt
�2=n.

Then scalgV
D n.n� 1/ and HgV

D�tan
�

1
2
nl
�
. Let S1 be the circle of radius 1 and � 2 S1 a basepoint.

We choose a smooth map  W Œ�l; l �! S1 of degree one such that  takes Œ�l; l �n .�"; "/ to the basepoint
� 2 S1. For any ı > 0 we can find a finite covering zTn�1 ! Tn�1 together with a ı–Lipschitz map
h W zTn�1! Sn�1 of nonzero degree. Then we set M WD zTn�1 � Œ�l; l � endowed with the lifted metric
g WD'2gzTn�1Cdx˝dx. This still satisfies scalgDn.n�1/ and HgD�tan

�
1
2
nl
�
. Let‚ WSn�1�S1!Sn

be a smooth map of degree 1 which factors through the smash product Sn�1 ^ S1. If ı is sufficiently
small, then it follows that the composition

ˆ WM D zTn�1
� Œ�l; l �

h�
��! Sn�1

�S1 ‚
�! Sn

is .ı �C /–area-contracting for some constant C > 0 which only depends on " and the Lipschitz constants
of  and ‚; this can be seen using [23, Proposition 6.3]. By having chosen ı sufficiently small, we can
thus arrange that f is area-nonincreasing. Moreover, it follows that deg.ˆ/D deg.h/¤ 0. Finally, the
support of dˆ is contained in zTn�1 � Œ�"; "� by construction; hence distg.supp.dˆ/; @M / � l � ", as
claimed.

Note that unlike the extremal examples for the band and collar width estimates discussed in Remark 1.13,
the bounds from Theorem 1.4 are only approximately realized. Indeed, it is not possible to do better
because — unlike in our other results — Theorem 1.4 actually rules out the equality situation.
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6 Relative K– and yA–area

In this section, we aim to prove Theorem 1.7 from the introduction. We begin with a version of K–area
for manifolds with boundary. The classical case has been introduced by Gromov in [17, Section 4]. A
slightly less general variant of the following was recently studied by Bär and Hanke [5].

Definition 6.1 Let .M;g/ be a compact orientable Riemannian manifold with boundary. An admissible
pair of bundles over M is a pair of Hermitian bundles E;F !M endowed with metric connections
such that there exists a unitary parallel bundle isomorphism Ej@M

Š
�! F j@M along @M. We say that an

admissible pair .E;F / has a nontrivial Chern number, if there exists a polynomial p.c0; c1; : : : / in the
Chern forms such that

(6-1)
Z

M

p.c0.E/; c1.E/; : : : /�p.c0.F /; c1.F /; : : : /¤ 0:

The relative K–area of .M; @M / is the supremum of the numbers

kRE˚F
k
�1
1 ;

where .E;F / ranges over all admissible pairs of bundles which have a nontrivial Chern number.

Remark 6.2 Since the bundles with all structures are isomorphic along the boundary, the Chern–Weil
forms associated to E and F agree if pulled back to the boundary, and so (6-1) is a well-defined
cohomological expression.

Remark 6.3 As in the classical case, the property of having infinite relative K–area does not depend on
the Riemannian metric.

We now relate the notion of infinite relative K–area for a manifold with boundary M with the notion
of infinite K–area for its double dM. For a pair of Hermitian bundles E, F !M which are suitably
identified in a neighborhood of @M, as in Section 3 we denote by V .E;F / the Hermitian bundle on dM

obtained by gluing E and F over a neighborhood of @M.

Proposition 6.4 Let M be a compact manifold with boundary. The following conditions are equivalent :

(a) The double dM has infinite K–area in the classical sense.

(b) .M; @M / has infinite relative K–area.

Proof We fix a smooth Riemannian metric on dM and endow M with the restricted metric for the
purposes of this argument. Then the statement would become immediate, if — in the definition of K–area —
we only considered bundles which restricted to a fixed tubular neighborhood @M � Œ�1; 1�Š U � dM

are of product structure, that is, they are of the form pr�
1

E@ for some bundle E@! @M together with
the pullback connection. Indeed, a bundle E ! dM of this form is just a pair of two bundles on M

which are identified and of product structure on the corresponding collar neighborhood U \M of @M.
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Conversely, suppose E;F !M have product structure and are identified on the collar neighborhood
U \M. Then the Chern numbers of V .E;F / agree with the corresponding relative Chern numbers (6-1).

The general case can be reduced to this observation by using a smooth map  W dM !M such that  is
smoothly homotopic to the identity map on dM through maps which are the identity on @M and preserve
each half of dM, and such that  jU agrees with the projection onto @M. In fact,  can be constructed on a
slightly larger tubular neighborhood by manipulating the radial coordinate and setting it to be the identity
on the rest of dM. Then, for any bundle E! dM, the pullback  �E is of the special form described in
the previous paragraph. Since  is homotopic to the identity,  �E and E have the same Chern numbers
(and the same applies to the relative Chern number (6-1) when passing from a pair of bundles .E;F / to
. j�

M
E;  j�

M
F /). Moreover,  is a smooth map on a compact manifold, it admits some fixed Lipschitz

constant L> 0, and hence passing from E to  �E only changes the norm of the curvature by at most a
factor of L2. Hence, for the purposes of detecting infinite K–area, it makes no difference to restrict to the
class of (pairs of) bundles described in the previous paragraph, and the proposition follows.

The notion of K–area is quite appealing because it is a purely bundle-theoretic property of the manifold
and does not rely on spin structures or index theory. However, to apply it to positive scalar curvature
geometry via spin geometry, the nonvanishing property (6-1) has to be translated (by potentially changing
the bundle) into a property which can be used in the Atiyah–Singer index theorem for the Dirac operator.
This is possible by the classical algebraic argument using Adams operations given in

�
17, Section 53

8

�
;

see also Bär and Hanke [5, Lemma 7] for a situation closer to the present context. In the following, we
introduce an explicit notion to capture the resulting property.

Definition 6.5 Let .M;g/ be a compact Riemannian manifold with boundary. The relative yA–area of
.M; @M / is the supremum of the numbers

kRE˚F
k
�1
1 ;

where .E;F / ranges over all admissible pairs of bundles such that

(6-2)
Z

M

yA.M /^ ch.E/�
Z

M

yA.M /^ ch.F /¤ 0:

Here yA.M / denotes the yA–form of M and ch denotes the Chern character form.

Remark 6.6 The notion of yA–area for closed manifolds was discussed in Definition 1.6. An analogous
argument as in Proposition 6.4 shows that .M; @M / has infinite relative yA–area if and only if the double
dM has infinite yA–area.

In the next proposition, we clarify the relationship between the notions of infinite relative K–area and
infinite relative yA–area.

Proposition 6.7 Let M be a manifold with boundary of infinite relative K–area and N a closed manifold
such that yA.N / ¤ 0. Then M �N has infinite relative yA–area. In particular , infinite relative K–area
implies infinite relative yA–area.
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Proof Let " > 0. We start with an admissible pair of bundles .E;F / on M such that kRE˚Fk1 < "

and such that (6-1) is satisfied. Arguing as in the proof of Proposition 6.4, we may assume without loss of
generality that on a collar neighborhood U of the boundary the bundles E;F are of product structure and
that there exists a parallel unitary bundle isomorphism ˆ WEjU ! F jU . Consider the bundle V .E;F /

on dM. It follows that Z
dM

p.c0.V .E;F //; c1.V .E;F //; : : : /¤ 0:

Now using the fact that yA.dM /D 0 (as the double is nullbordant), the argument given in
�
17, Section 53

8

�
shows that (after altering the initial choice of ", passing to a bundle associated to V .E;F /, and restricting
the new bundle on dM to obtain a new pair of bundles on M ), we can achieve thatZ

dM

yA.dM /^ ch.V .E;F //¤ 0:

But this just means that (6-2) is satisfied for .E;F / on M and already shows that M has infinite yA–area.
Finally, pulling back the bundles from M to M �N via the projection prM WM �N !M yields the
desired result for M �N becauseZ

dM�N

yA.dM�N /^ch.V .pr�M E; pr�M F //D

Z
dM�N

pr�dM
yA.dM /^pr�N yA.N /^pr�dM ch.V .E;F //

D

�Z
dM

yA.dM /^ch.V .E;F //
�
�yA.N /¤ 0:

We can also relate this property to enlargeability. For an n–dimensional Riemannian manifold N with
boundary, we say that .N; @N / is compactly area-enlargeable if for any "> 0, there exists a finite covering
xN !N and an "–area-contracting map xM ! Sn of nonzero degree which is locally constant outside a

compact subset of the interior.

Proposition 6.8 If N is an even-dimensional compact manifold with .N; @N / compactly area-enlargeable
and there exists a smooth map ˆ W .M; @M /! .N; @N / of nonzero yA–degree , then .M; @M / has infinite
relative yA–area.

Proof By passing to doubles and Proposition 6.4 and Remark 6.6, it suffices to consider the case that
M and N are closed manifolds. Since N is compactly area-enlargeable, for any " > 0, there exists a
Hermitian bundle E0!N such that kRE0k1 < "=L

2, where L is a Lipschitz constant for ˆ, and such
that ch.E0/ as a cohomology class is concentrated and nontrivial in the degrees 0 and dim N ; see for
instance [25, page 313]. Let E Dˆ�E0 and F to be the trivial bundle of the same rank. Then it follows
that kRE˚Fk1 < " andZ

M

yA.M /^ .ch.E/� ch.F //D yA–deg.ˆ/
Z

N

ch.E0/¤ 0:

In the following lemma, we spell out a technical consequence of infinite yA–area that will be used in our
applications.
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Lemma 6.9 Let .M;g/ be an even-dimensional compact spin manifold of infinite relative yA–area and
U Š @M � .�1; 0��M be an open collar neighborhood. Then for any sufficiently small "1; "2 > 0, there
exists a pair of Hermitian vector bundles .E;F / on M such that :

(i) There exists a parallel unitary bundle isomorphism t WEjU"1
! F jU"1

, where U"1
corresponds to

@M � .�1C "1; 0� in the tubular neighborhood.

(ii) kRE˚Fk1 < "2.

(iii) ind.B ;1/ ¤ 0, where B ;1 is the operator considered in Corollary 3.9 associated to the relative
Dirac bundle constructed from .E;F / as in Example 2.5.

Proof Let .E;F / be an admissible pair of bundles given by infinite yA–area satisfying (6-2) and (ii).
Again arguing as in the proof of Proposition 6.4, we may assume that E and F are of product structure
on the collar neighborhood and that also (i) is satisfied. We again consider the bundle V .E;F / on dM.
Using Corollary 3.9 and the Atiyah–Singer index theorem, we deduce

ind.B ;1/D indrel.M IE;F /D ind. =DdM;V .E;F //D

Z
dM

yA.dM /^ ch.V .E;F //¤ 0;

where the final nonvanishing statement is due to (6-2). Thus (iii) is also satisfied, completing the proof.

After all these technical preparations, we are now ready to give a proof of Theorem 1.7 from the
introduction.

Proof of Theorem 1.7 For all sufficiently small d > 0, denote by Nd the open geodesic collar neighbor-
hood of @M of width d . Suppose, by contradiction, that Nl 0 exists for some l < l 0 < �=.

p
�n/ such that

scalg � �n.n� 1/ in Nl 0 . Fix ƒ 2 .l; l 0/. Then Kƒ WDM nNƒ is a compact manifold with boundary
such that scalg � �n.n� 1/ in M nKƒ. For r 2 .0;

p
�n=2/, consider the function Yr .t/D r tan.r t/,

with t varying in Œ0; �=.
p
�n//. Observe that Yr .0/D 0 and

1
4
�n2
CY 2

r � jY
0
r j D

1
4
�n2
� r2 > 0:

By choosing r close enough to
p
�n=2, we can also ensure that

(6-3) Yr .ƒ/ >
1
2

p
�n tan

�
1
2

p
�nl

�
:

Let �0 WD infp2Kƒ scalg.p/ > 0. By Lemma 6.9, Corollary 3.9 and Example 2.5, there exists a GL pair
.E;F / and associated relative Dirac bundle S !M such that

(i) .E;F / and thus S have support Kƒ,

(ii) 4kRE˚Fk1 < �0,

(iii) n

n�1
kRE˚F

k1 <
1
4
�n2
� r2,

(iv) ind.B ;1/D indrel.M IE;F /¤ 0 for any admissible potential  .
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We now use the function Yr to construct an admissible potential. Let x WM ! Œ0; ƒ� be the distance
function from Kƒ. Consider the Lipschitz function  WD Yr ı x (which is actually smooth in the
complement of @Kƒ). Then  jKƒ D 0 and  j@M D Yr .ƒ/. By (i) and (6-3),  is an admissible potential
satisfying

(6-4)  j@M > 1
2

p
�n tan

�
1
2

p
�nl

�
:

Let B ;1 be the associated Callias operator subject to the boundary condition coming from the sign s D 1

and u 2 dom.B ;1/D H1
�;1
.M;S/. From (6-4), we deduceZ

@M

�
1
2
n HgC s 

�
juj2 vol@M � 0:

Therefore, the estimates (4-2) in Theorem 4.3 implyZ
M

jB uj2 volM �
Z

M

‚ ;njuj
2 volM ;

where ‚ ;n is the L1–function defined by

‚ ;n WD
n

n�1

�
1
4

scalg � jRE˚F
j

�
C 2

� jd j:

By (ii) and since  is constant on Kƒ, in the interior Kı
ƒ

we have

‚ ;n D
n

n�1

�
1
4

scalg � jRE˚F
j
�
�

n

n�1

�
1
4
�0�kRE˚F

k1

�
> 0:

By (iii), scalg � �n.n� 1/ on Nl 0 and since x is 1–Lipschitz, in M nKı
ƒ

we have

‚ ;n �
1
4
�n2
C 2

� jd j � n

n�1
kRE˚F

k1 �
1
4
�n2
� r2
�

n

n�1
kRE˚F

k1 > 0:

Therefore, there exists a constant c > 0 such that kB uk � ckuk for all u 2 H1
�;1
.M;S/. It follows that

ind.B ;1/D 0, contradicting (iv).

7 Estimates of bands

In this section, we prove our statements related to Conjecture 1.3, that is, estimates of Riemannian
bands under lower bounds on scalar and mean curvature. We start with reviewing Gromov’s notion of a
Riemannian band [18] and other relevant concepts to formulate our results more conveniently.

Definition 7.1 (i) A band is a compact manifold V together with a decomposition @V D @�V t@CV ,
where @˙V are unions of components.

(ii) A map ˆ W V ! V 0 between bands is called a band map if ˆ.@˙V /� @˙V 0.

(iii) The width width.V;g/ of a Riemannian band .V;g/ is the distance between @�V to @CV with
respect to g.

(iv) A width function for a Riemannian band .V;g/ is a 1–Lipschitz function x W V ! Œt�; tC� for some
real numbers t� < tC such that @˙V � x�1.t˙/.
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In other words, a width function is a band map V ! Œt�; tC� which is 1–Lipschitz. A width function
x W V ! Œt�; tC� always satisfies tC� t� � width.V;g/. We also have the following converse:

Lemma 7.2 Let .V;g/ be a band. Then there exists a width function x W V ! Œt�; tC� which is smooth
near the boundary of V and is such that tC� t� D width.V;g/. Moreover , for every t� < tC satisfying
tC� t� < width.V;g/, there exists a smooth width function x W V ! Œt�; tC�.

Proof Let w D width.V;g/. Then we obtain the desired Lipschitz width function by setting

x W V ! Œ0; w�; x.p/ WD

8<:
d.p; @�V / if d.p; @�V /� 1

2
w;

w� d.p; @CV / if d.p; @CV /� 1
2
w;

1
2
w otherwise.

Note that this x is already smooth in a neighborhood of @V . Moreover, if tC� t� <w, we can find " > 0

such that .1C "/�1w D tC� t�. We can then approximate x by a smooth function zx W V ! Œ0; w� which
agrees with x near @V and is .1C "/–Lipschitz. Then .1C "/�1zx W V ! Œ0; tC� t�� is a smooth width
function. Translating to the interval Œt�; tC� yields the desired result.

The following notion is an adaption of the ideas from Section 6 to the situation of bands.

Definition 7.3 A band V is said to have infinite vertical yA–area if for every "> 0, there exists a Hermitian
vector bundle E! V such that kREk1 < " and such that we have

(7-1)
Z
@�V

yA.@�V /^ ch.Ej@�V /¤ 0:

Example 7.4 A simple example of an infinite vertical yA–area is an yA–band; that is, a band such that
yA.@�V /¤ 0. Another is a band of the form V DM � Œ�1; 1�, where M has infinite yA–area.

Example 7.5 If N is a closed manifold that is compactly area-enlargeable and there exists a band map
V ! N � Œ0; 1� of nonzero yA–degree, then V has infinite vertical yA–area; compare Proposition 6.8.
In particular, this includes the classes of overtorical bands introduced by Gromov in [18], and the
generalization of yA–overtorical bands studied in [42].

Theorem 7.6 Let .V;g/ be a spin band of infinite vertical yA–area. Suppose that scalg � n.n�1/ and let
��=n< t� < tC < �=n such that the mean curvature of @V satisfies

(7-2) Hgj@˙V ��tan
�

1
2
nt˙

�
:

Then width.V;g/� tC� t�.

Proof Assume by contradiction that width.V;g/> tC�t�. Let t0 WD
1
2
.tCCt�/ be the midpoint between

t� and tC. Then we can find d >0 such that width.V;g/>2d > tC�t� and��=n< t0�d < t0Cd <�=n.
Lemma 7.2 implies that there exists a smooth width function x W V ! Œ�d; d �.
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Now for 0< �� 1, we set

f� W Œ�d; d �!R; f�.s/D
1
2
�n tan

�
1
2
n.t0C�s/

�
:

We now fix a �0 < 1 such that

(7-3) �
1
2
n tan

�
1
2
nt˙

�
��f�0

.˙d/:

This is possible because the tangent function is increasing and t0�d < t�< tC< t0Cd by our choice of d .
We now choose a Hermitian bundle E! V satisfying (7-1) and such that the corresponding Weitzenböck
curvature endomorphism satisfies RE � �ı for some ı < 1

4
n2.1� �2

0
/. Now we consider the Callias

operator B ;s associated to the relative Dirac bundle from Example 2.6 (using the twisting bundle E)
and with potential  WD f�0

ıx and subject to the boundary conditions coming from the choice of signs
s.@˙V /D˙1. Now (7-1) and Corollary 3.10 imply that ind.B ;s/¤ 0. On the other hand, we have

 2
� jd j D f�0

.x/2�f 0�0
.x/jdxj � f�0

.x/2�f 0�0
.x/D��2

0 �
1
4
n2:

Thus (4-2) together with scalg � n.n� 1/ implies that each u in the domain of B ;s satisfiesZ
V

jB ;suj2 volV �
�

1
4
n2.1��2

0/� ı
� Z

V

juj2 volM C
Z
@�V

�
1
2
n Hg �f�0

.�d/
�
juj2 vol@�V

C

Z
@�V

�
1
2
n HgCf�0

.d/
�
juj2 vol@CV :

Since the terms 1
2
n Hgj@˙V ˙ f�0

.˙d/ at the boundary are nonnegative by (7-2) and (7-3), this implies
that Z

V

jB ;suj2 volV � C

Z
V

juj2 volV ;

where C D 1
4
n2.1��2

0
/� ı > 0 by the choice of ı > 0. This shows that the operator B ;s is invertible, a

contradiction to ind.B ;s/¤ 0.

Corollary 7.7 Let .V;g/ be a spin band of infinite vertical yA–area. Suppose that scalg � n.n� 1/ and
that the mean curvature of @V satisfies

Hg � �tan
�

1
4
nl
�

for some 0< l <
2�

n
:

Then width.V;g/� l .

Proof This is a consequence of Theorem 7.6 by setting t˙ WD ˙
1
2
l .

Corollary 7.8 Let .V;g/ be a spin band of infinite vertical yA–area. Suppose that scalg � n.n� 1/ and
that the mean curvature of @V satisfies

Hgj@�V � 0 and Hgj@CV � �tan
�

1
2
nl
�

for some 0< l <
�

n
:

Then width.V;g/� l .

Proof This is also a consequence of Theorem 7.6 by setting t� WD 0 and tC WD l .
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Corollary 7.9 Let .V;g/ be a spin band of infinite vertical yA–area. Suppose that scalg � n.n� 1/. Then
we always have width.V;g/ < 2�=n. Moreover , if @�V is mean-convex, then width.V;g/ < �=n.

Proof The first statement follows from Corollary 7.7 and the second is a consequence of Corollary 7.8,
in both cases because �tan.#/!�1 as #% �

2
, but infp2@V Hg > �1 by compactness.

8 The general warped product rigidity theorem

In this section, we establish a general rigidity theorem which allows us to compare metrics on bands with
certain warped products.

Setup 8.1 We consider the following setup. Let n2N, let I �R be an interval, V a band, and x W V ! I

a continuous function. Furthermore, let ' W I ! .0;1/ and �; � W V !R be smooth functions. We define
the auxiliary functions h; f W I !R by

h.t/ WD
'0.t/

'.t/
and f .t/ WD �1

2
nh.t/;

and suppose that the following two conditions are satisfied:

� The function ' is strictly logarithmically concave, that is, h0.t/ < 0 for all t 2 I .

� For all p 2 V , the following inequality holds:

(8-1) 1
4
n2�.p/C

n�.p/

n� 1
Cf .x.p//2�f 0.x.p//� 0:

Remark 8.2 The geometric motivation for (8-1) is the following. Suppose that we have a warped product
metric g D '2gM C dx˝ dx on an n–dimensional band of the form V DM � Œt�; tC�. Then, if we
choose � WV !R and � WV !R such that n.n�1/�D scalg and ��D 1

4
scal'2gM

D .1=.4'2// scalgM
,

we precisely obtain the relation

1
4
n2�.y; t/C

n�.y; t/

n� 1
Cf .t/2�f 0.t/D 0 for all .y; t/ 2M � Œt�; tC�;

where f is defined as in Setup 8.1 above. In this sense, (8-1) abstractly models the scalar curvature
equation for warped products.

Theorem 8.3 Let .V;g/ be an n–dimensional Riemannian spin band and E! V be a Hermitian vector
bundle endowed with a metric connection. We suppose that we have chosen smooth functions x W V ! I ,
'; h; f W I ! R and �; � W V ! R satisfying Setup 8.1. Furthermore , we assume that the following
conditions hold :

(i) scalg � n.n� 1/� and RE � �.

(ii) x W V ! Œt�; tC� is a width function for some t�; tC 2 I .

(iii) Hgj@˙V �˙h.t˙/, where Hg denotes the mean curvature of @V .
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(iv) ker.B ;s/ ¤ 0, where B ;s is the Callias operator associated to the relative Dirac bundle from
Example 2.6 with potential  WD f ı x and subject to the boundary conditions coming from the
choice of signs s.@˙V /D˙1.

Then scalg D n.n� 1/�, and .V;g/ is isometric to the warped product

.M � Œt�; tC�; '
2gM C dx˝ dx/;

where M D x�1.t0/ for an arbitrary fixed t0 2 Œt�; tC� and gM WD '.t0/
�2gjM on M. Furthermore , for

any u 2 ker.B ;s/ and t 2 Œt�; tC�, the restriction ujM�ftg is parallel with respect to the connection

zr� WD r� C
1
2

c.r�dx/ c.dx/; with � 2 T.M � ftg/:

The proof of this theorem is based on the following lemma, where we include the slightly more general
situation of x being a not necessarily smooth Lipschitz function. This will be of importance later for the
rigidity of bands.

Lemma 8.4 Let .V;g/ be an n–dimensional Riemannian spin band and let E!V be a Hermitian vector
bundle endowed with a metric connection. Let x W V ! I be a 1–Lipschitz function , and '; h; f W I !R

and �; � WV !R be smooth functions satisfying Setup 8.1. Suppose furthermore that the conditions (i)–(iv)
from the statement of Theorem 8.3 are satisfied. Then , for any u 2 ker.B ;s/, the section w WD '.x/�1=2u

lies in H1
�;s.V;S/ and satisfies almost everywhere

c.dx/w D �w;(8-2)

r�w D
f .x/

n
c.�[ ^ dx/w(8-3)

for every vector field � on V , where c.�[ ^ dx/D 1
2
.c.�[/ c.dx/� c.dx/ c.�[//. In particular , jwj2 is a

constant function and thus juj2 is a constant multiple of the function '.x/. Moreover , jdxj D 1 almost
everywhere and scalg D n.n� 1/�.

Proof We first observe that jdxj � 1 almost everywhere because x is 1–Lipschitz. Let u 2 ker.B ;s/.
By (iv), we can assume that u¤ 0. Then, using (4-2) from Theorem 4.3, we obtain

(8-4) 0D

Z
V

jB uj2 volV

�
n

4.n� 1/

Z
V

.scalg � n.n� 1/�/juj2 volV C
n

n�1

Z
V

.hu;REui � �juj2/ volV

C

Z
V

�
1
4
n2�C

n�

n�1
Cf .x/2�f 0.x/

�
juj2 volV C

Z
V

f 0.x/hu; .1C c.dx/�/ui volV

C

Z
@�V

�
1
2
n Hg �f .t�/

�
juj2 vol@�V C

Z
@CV

�
1
2
n HgCf .tC/

�
juj2 vol@CV :

Note that in the latter six integrals each integrand is nonnegative — in the first two cases due to (i), in
the third this follows from (8-1), in the fourth from jdxj � 1, and for the two boundary integrals this is
a consequence of item (iii). Thus all integrands appearing in (8-4) vanish (almost everywhere) and we
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are in the equality situation of Theorem 4.3. Since f 0 > 0 and 1C c.dx/� � 0 almost everywhere, we
furthermore deduce from vanishing of the fourth integrand that c.dx/�uD�u almost everywhere and thus

(8-5) c.dx/uD �u:

This already proves (8-2) for w WD '.x/�1=2u. The identity (8-3) and the fact that juj2D c' for cD jwj2

constant is now a consequence of Remark 4.5 because (8-5) holds almost everywhere. Moreover, since
juj2 D c' > 0, vanishing of the first integrand in (8-4) implies that scalg D n.n� 1/�. It also follows
from (8-2) that jdxj2jwj2 D j c.dx/wj2 D j�wj2 D jwj2, and thus jdxj D 1 almost everywhere.

Proof of Theorem 8.3 We will refer to Lemma 8.4 and its proof in the following argument. First of all,
we obtain that jdxj D 1. Since x is assumed to be smooth, this already implies that V is diffeomorphic to
M � Œt�; tC� with g corresponding to gxCdx˝dx for some family of Riemannian metrics .gx/x2Œt�;tC�

on M. To prove the theorem, it remains to compute the Hessian of x. To this end, we let 0¤u2 ker.B ;� /
and let w WD '.x/�1=2u as in Lemma 8.4. Since  D f .x/ is smooth, boundary elliptic regularity (see
for example [4, Theorem 4.4]) implies that u and thus w are smooth sections. Using equations (8-2) and
(8-3) and the fact that � is parallel, we compute for any smooth vector field � on V ,

c.r�dx/wDr�.c.dx/w/„ ƒ‚ …
D�r�w

� c.dx/r�w D
(8-3)

f .x/

n
� c.�[ ^ dx/w�

f .x/

n
c.dx/ c.�[ ^ dx/w

D
f .x/

n
.c.�[ ^ dx/�wC c.�[ ^ dx/ c.dx/w/

D
2f .x/

n
c.�[ ^ dx/ c.dx/w

D �
2f .x/

n
c.�[� dx.�/ dx/wDh.x/ c.�[� dx.�/ dx/w:

Since w vanishes nowhere, this implies r�dx D h.x/.�[� dx.�/dx/ for each vector field �. Hence the
Hessian of x is given by

(8-6) r
2x D h.x/.g� dx˝ dx/:

Using standard formulas for Riemannian distance functions (in the sense of [34, Section 3.2.2]), the
identity (8-6) implies for the Lie derivative of gx that

L@x
gx D 2h.x/gxI

see for instance [34, Proposition 3.2.11(1)]. Let zgx D '.x/
2gM , where gM WD '.t0/

�2gjM . Then zgx

satisfies the same differential equation because

L@x
zgx D 2'0.x/'.x/gM D 2

'0.x/

'.x/
zgx D 2h.x/zgx :

Since zgt0
D gt0

D gM this implies that gx D zgx D '.x/
2gM , as desired.
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To see the final statement, observe that by Remark 4.4 we have

r�uD
f .x/

n
c.�[/�uD

f .x/

n
c.�[/ c.dx/u:

Since r�dx D h.x/� D �.2=n/f .x/� for any vertical tangent vector �, this implies that ujM�ftg is
parallel with respect to zr.

9 Rigidity of bands

In this section, we use the general results from the previous section to deduce a rigidity result for yA–bands
subject to scalar and mean curvature bounds.

Theorem 9.1 Let .V;g/ be an n–dimensional band which is a spin manifold and satisfies yA.@�V /¤ 0.
Suppose furthermore that there exist ��=n< t� < tC < �=n such that

(i) scalg � n.n� 1/,

(ii) width.V;g/� tC� t�,

(iii) Hgj@˙V ��tan
�

1
2
nt˙

�
, where Hg denotes the mean curvature of @V .

Then .V;g/ is isometric to a warped product .M � Œt�; tC�; '2gMCdx˝dx/, where '.t/D cos
�

1
2
nt
�2=n

and gM is some Riemannian metric on M which carries a nontrivial parallel spinor. In particular , gM is
Ricci-flat.

Proof We first prepare a particular case of Setup 8.1 we wish to apply. To this end, let

' W
�
�
�

n
;
�

n

�
! .0;1/; '.t/ WD cos

�
1
2
nt
�2=n

:

Then
h.t/ WD

'0.t/

'.t/
D�tan

�
1
2
nt
�
; h0.t/D�1

2
n

1

cos
�

1
2
nt
�2 < 0;

and

(9-1) 1
4
n2
Cf .t/2�f 0.t/D 0;

where f D�1
2
nh. Thus (8-1) is satisfied with � � 1 and � � 0 and we are in Setup 8.1. Next we use

Lemma 7.2 to choose a width function x W V ! Œt�; tC� which is smooth near the boundary of V . We let
 D f ıx and form the Callias-type operator B D DC � .

We choose signs s W @M ! f˙1g as in Corollary 3.10. Then, since yA.@�V / ¤ 0, we deduce from
Corollary 3.10 that ind.B ;s/¤ 0. In particular, ker.B ;s/¤ 0.

At this point, if x was smooth everywhere, the result would follow readily from Theorem 8.3 because
(iii) says that Hgj@˙V � ˙h.t˙/. However, since we do not know this a priori, we need to supply an
argument ensuring that x is indeed smooth everywhere. To this end, we fix 0¤ u 2 ker.B ;s/ and apply
Lemma 8.4. From equations (3-2), (8-2) and (9-1), we thus deduce

0D B2
 uD D2uCf 0.x/ c.dx/�uCf .x/2uD D2u�f 0.x/uCf .x/2uD D2u� 1

4
n2u:
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Then interior elliptic regularity for the operator D2�
1
4
n2 implies that u is smooth in the interior of V .

Since, by Lemma 8.4, u is nowhere vanishing and we have the equality c.dx/uD �u, this implies that
the covector field dx must also be smooth in the interior of V . Since we already know that x is smooth
near the boundary, this just means that the function x is smooth everywhere and so we can indeed apply
Theorem 8.3.

We conclude that .V;g/ is isometric to a warped product .M � Œt�; tC�; '2gM C dx˝ dx/ and scalg �
n.n� 1/. Moreover, the final statement of Theorem 8.3 implies that any 0¤ u 2 ker.B ;s/ restricts to a
nowhere-vanishing parallel spinor on each fiber; compare (2-8). It is a well-known fact that the existence
of a parallel spinor forces the Ricci curvature to vanish; see for instance [8, Corollary 2.8].

Corollary 9.2 Let .V;g/ be an n–dimensional band which is a spin manifold and satisfies yA.@�V /¤ 0.
Suppose that scalg � n.n � 1/. Let 0 < d < �=n and assume furthermore that one of the following
conditions holds: either

� width.V;g/� 2d and we have Hgj@V� �tan
�

1
2
nd
�
, or

� width.V;g/� d and we have Hgj@�V� 0 and Hgj@CV� �tan
�

1
2
nd
�
.

Then .V;g/ is isometric to a warped product .M � I; '2gM C dx˝ dx/, where either I D Œ�d; d � or
I D Œ0; d �, and we have '.t/D cos

�
1
2
nt
�2=n, while gM is some Riemannian metric on M which carries

a nontrivial parallel spinor. In particular , gM is Ricci-flat.

Proof This follows immediately from Theorem 9.1 by setting t˙ D˙d in the first case, and t� D 0 and
tC D d in the second.

10 Scalar-mean extremality and rigidity of warped products

In this section, we prove our general extremality and rigidity results for logarithmically concave warped
products.

As a preparation for the proof of the main theorem, we discuss a particularly relevant example of a
twisting bundle E ! V to be used in Theorem 8.3, namely the fiberwise spinor bundle on a warped
product.

Remark 10.1 (twisting with the fiberwise spinor bundle) Consider a warped product band

.V WDM � Œt�; tC�;g WD '
2gM C dx˝ dx/;

and let =S ! V be the spinor bundle with respect to the metric g. Then we let E0 WD =S be the same
bundle endowed with the same bundle metric but with the “fiberwise spinor connection”

r
E0

X
WD r

=S
X
C

1
2

c.rX dx/ c.dx/ for X 2 TV:
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With this connection, each restriction E0jM�ftg is precisely the spinor bundle of M � ftg (if n is odd) or
two copies of it (if n is even); compare also (2-8). Moreover, a direct calculation using the warped product
structure shows that the curvature tensor of rE0 satisfies RE0

@x ;X
D 0 for any tangent vector X 2 TV . In

other words, the connection rE0 is chosen in such a way that only the vertical directions contribute to
its curvature. Consequently, if we form the twisted spinor bundle =S ˝E0, the corresponding curvature
endomorphism from the Bochner–Lichnerowicz–Weitzenböck formula (see equations (2-5) and (2-20))
satisfies

RE0 jM�ftgD

n�1X
i;jD1

c.ei/ c.ej /˝Rr
E0

ei ;ej
D

n�1X
i;jD1

c.ei/ c.dx/ c.ej / c.dx/˝Rr
E0

ei ;ej
DRE0jM�ftg ;

where e1; : : : ; en�1 is a local orthonormal frame of TM and RE0jM�ftg denotes the Weitzenböck curvature
endomorphism on the fiber M � ftg of the twisting bundle E0jM�ftg (or two copies thereof). Finally,
since the metric on M � ftg is simply the constant multiple '.t/2gM of the metric gM , we can identify
each restriction E0jM�ftg with the spinor bundle on M (or two copies of it) and with respect to this
identification, we obtain

(10-1) RE0 jM�ftg D '.t/
�2RM;E0 ;

where RM;E0 denotes the curvature endomorphism on .M;gM / associated to using the spinor bundle
on M itself as a twisting bundle (or two copies of each).

We now state and prove the main result of this section.

Theorem 10.2 Let n be odd and let .N;gN / be an .n�1/–dimensional Riemannian spin manifold of
nonvanishing Euler-characteristic whose Riemannian curvature operator is nonnegative. Moreover , let
' W Œt�; tC�! .0;1/ be a strictly logarithmically concave function and consider the warped product metric
g0D '

2gN Cdy˝dy on V0 WDN � Œt�; tC�. Let .V;g/ be an n–dimensional Riemannian spin band and
ˆ W .V;g/! .V0;g0/ a smooth band map such that

(i) ˆ is 1–Lipschitz and of nonzero degree ,

(ii) scalg � scalg0
ıˆ,

(iii) Hgj@˙V� Hg0
j@˙V0

D˙h.t˙/, where hD '0='.

Then scalg D scalg0
ıˆ, and .V;g/ is isometric to a warped product

.M � Œt�; tC�; '
2gM C dx˝ dx/;

where x D y ıˆ, M D x�1.t0/ for any t0 2 Œt�; tC�, and gM WD '.t0/
�2gjM on M. Moreover , we have

scalgM
D scalgN

ıˆjM in this case.

If , furthermore , the metric on N satisfies RicgN
> 0, then ˆ is an isometry under the above hypotheses.
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Proof The main idea of the proof is to apply the argument of Goette and Semmelmann [16] fiberwise in
combination with Theorem 8.3. Since ˆ is a 1–Lipschitz band map, the function xD y ıˆ W V ! Œt�; tC�

is a width function. We need to verify that we are in an instance of Setup 8.1. To this end, we set

(10-2) � WD
scalg0

ıˆ

n.n� 1/
and � WD �

scalgN
ı prN ıˆ

4'.x/2
;

where prN W V0!N is the projection onto the first factor. It is now a consequence of the discussion in
Remark 8.2 that

(10-3) 1
4
n2�C

n�

n�1
Cf .x/2�f 0.x/D 0;

where f WD �1
2
nh. In particular, this choice of functions satisfies Setup 8.1.

Now we consider the fiberwise spinor bundle E0!V0 constructed as in Remark 10.1 and let E WDˆ�E0

be the pullback bundle on V . Now the main estimate of Goette and Semmelmann [16, Section 1.1]
together with the description of the Weitzenböck curvature endomorphism of E0 from (10-1) shows that
we precisely have the estimate

RE
� �:

For each t 2 Œt�; tC�, the twisted Dirac operator =DN�ftg;E0jN�ftg
is the Euler characteristic operator of N

and thus has nontrivial index because n� 1 is even. Since the degree of ˆ is nonzero, it follows that
the index of =D@�V;Ej@�V

is also nonzero. Hence, Corollary 3.10 shows that the Callias operator B ;s
considered in Theorem 8.3 has nontrivial index and hence nontrivial kernel. Thus Theorem 8.3 applies
and we obtain scalg D �n.n� 1/ and .V;g/ is isometric to a warped product

.M � Œt�; tC�; '
2gM C dx˝ dx/;

where M D x�1.t0/ for some arbitrary but fixed t0 2 Œt�; tC� and some Riemannian metric gM on M.
Using the warped product structure, we obtain

�n.n� 1/D scalg D
scalgM

'.x/2
� 2.n� 1/h0.x/� n.n� 1/h.x/2:

Together with (10-3), this completely determines the scalar curvature of gM , and we obtain scalgM
D

scalgN
ıˆjM . This proves the first part of the theorem.

To prove the second part, we first observe that due to x D y ıˆ, under the isometry V ŠM � Œt�; tC�,
the map ˆ is of the form .p;x/ 7! .ˆx.p/;x/, where ˆt WD ˆjM�ftg W M ! N . Since kTˆk � 1

and Tˆ.0; @x/ D .@ˆx=@x; @x/, it follows that @ˆx=@x D 0; that is, ˆt D ˆt0
for all t . Moreover,

ˆt0
WM !N is 1–Lipschitz with respect to the metric '.t0/2gM and '.t0/2gN . Thus the same holds

with respect to the metrics gM and gN . If we assume that RicgN
> 0, then the rigidity argument of Goette

and Semmelmann [16, Section 1.2] (and note that our ˆt0
is length-nonincreasing), implies that ˆt0

is
an isometry. Together with the warped product structure, all of this implies that ˆ itself is an isometry.
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Restricting to the special case whereˆ is the identify map immediately yields the following corollary. The
notions of scalar-mean extremality and scalar-mean rigidity are defined in the introduction in Section 1.3.

Corollary 10.3 Let n be odd and .M;gM / be an .n�1/–dimensional Riemannian spin manifold of
nonvanishing Euler characteristic , whose Riemannian curvature operator is nonnegative. Let ' W Œt�; tC�!
.0;1/ be a smooth strictly logarithmically concave function and consider the warped product metric
gV D '

2gM C dx˝ dx on V WDM � Œt�; tC�. Then any metric g on V which satisfies

(i) g � gV ,

(ii) scalg � scalgV
,

(iii) Hg � HgV

is itself a warped product gD'2zgMCdx˝dx for some metric zgM on M which satisfies scalzgM
D scalgM

.
In particular , gV is scalar-mean extremal.

If , in addition , the metric gM satisfies RicgM
> 0, then gV is scalar-mean rigid.

In particular, the main theorem and corollary of this section are fully applicable to strictly log-concave
warped products over even-dimensional spheres. This corresponds to a fiberwise application of Llarull’s
result [31]. In the following, we single out one important special class of examples, namely annuli in
simply connected space forms.

Indeed, let � 2R be fixed and .M� ;g�/ be the n–dimensional simply connected space form of constant
sectional curvature �. To apply the theorem, we recall the description of .M� ;g�/ as a warped product
over the sphere. Choose a basepoint p0 2M� . Let sn� be the unique solution to the initial value problem
'00 C �' D 0 with '.0/ D 0 and '0.0/ D 1. Similarly, cs� denotes the unique solution to the same
differential equation but with initial values '.0/D 1 and '0.0/D 0. If � > 0, we let p1 2M� be the point
opposite to p0 and set M 0

� WDM� nfp0;p1g. If � � 0, we let M 0
� DM� nfp0g. On M 0

� Š Sn�1�.0; t1/

the metric g� appears as the warped product

g� D sn2
� gSn�1 C dx˝ dx;

where t1 is chosen so that I WD .0; t1/ is a maximal interval on which sn� remains positive. This means
t1 D C1 for � � 0 and t1 D �=

p
� for � > 0. Moreover, log.sn�/00 D �1=sn2

� < 0; that is, sn� is
strictly logarithmically concave. This means that Theorem 10.2 is applicable to the metric g� . Given
0< t� < tC < t1, we consider the annulus

At�;tC WD fp 2M� j t� � dg� .p;p0/� tCg �M� :

We will view At�;tC as a band with @˙At�;tC D St˙ WD fp 2M� j dg� .p;p0/ D t˙g. Furthermore,
we set ct� D cs�=sn� . Then the mean curvature of @˙At�;tC is equal to ˙ct�.t˙/. We thus deduce the
following consequences of Theorem 10.2.
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1210 Simone Cecchini and Rudolf Zeidler

Corollary 10.4 Let n� 3 be odd and .M� ;g�/ be the n–dimensional simply connected space form of
constant sectional curvature � 2R. Let 0< t� < tC < t1 and consider an annulus At�;tC as above. Let
.V;g/ be an n–dimensional spin band and let ˆ W V ! At�;tC be a smooth band map such that

(i) ˆ is 1–Lipschitz and of nonzero degree ,

(ii) scalg � scalg� D �n.n� 1/,

(iii) Hgj@˙V� Hg� j@˙At�;tC
D˙ct�.t˙/.

Then ˆ is an isometry.

Corollary 10.5 Let n � 3 be odd and .M� ;g�/ the n–dimensional simply connected space form of
constant sectional curvature � 2R. Let 0< t� < tC < t1 and consider the annulus

At�;tC WD fp 2M� j t� � dg� .p;p0/� tCg

around some basepoint p0 2M� . Then any Riemannian metric g on At�;tC which satisfies

(i) g � g� ,

(ii) scalg � scalg� D �n.n� 1/, and

(iii) HgjSt
˙
� Hg� jSt

˙
D˙ct�.t˙/

is equal to g� . That is , g� is scalar-mean rigid on At�;tC .
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