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Symplectic capacities, unperturbed curves and convex toric domains
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We use explicit pseudoholomorphic curve techniques (without virtual perturbations) to define a sequence
of symplectic capacities analogous to those defined recently by the second author using symplectic field
theory. We then compute these capacities for all four-dimensional convex toric domains. This gives
various new obstructions to stabilized symplectic embedding problems, which are sometimes sharp.
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1 Introduction

1.1 Overview

Symplectic capacities have long played an important role in symplectic geometry, providing a systematic
tool for studying nonsqueezing phenomena. Let us mention here just two prominent sequences of
symplectic capacities: the Ekeland–Hofer capacities [12; 13] and the embedded contact homology (ECH)
capacities of Hutchings [20]. The former are defined in any dimension and they provide obstructions
which can be viewed as refinements of Gromov’s celebrated nonsqueezing theorem [14]. The latter
are defined only in dimension four, but they often give very strong obstructions, eg they give sharp
obstructions for symplectic embeddings between four-dimensional ellipsoids.

Higher-dimensional symplectic embeddings remain rather poorly understood, but there has been con-
siderable recent interest in so-called “stabilized symplectic embedding problems”, in which one studies
symplectic embeddings of the form X �CN s

,! X 0 �CN for four-dimensional Liouville domains X

and X 0, and for N 2 Z�1; see for instance Hind and Kerman [17], Cristofaro-Gardiner and Hind [9],
Cristofaro-Gardiner, Hind and McDuff [10], McDuff [29], Siegel [37; 38] and Irvine [26]. In order to
systematize and generalize these results, the second author introduced in [37] a sequence of symplectic
capacities g1; g2; g3; : : : which are “stable” in the sense that gk.X �CN /D gk.X / for any Liouville
domain X and k;N 2 Z�1. These capacities are defined using symplectic field theory (SFT), more
specifically the (chain level) filtered L1 structure on linearized contact homology, and their definition
also involves curves satisfying local tangency constraints. As a proof of concept, [37] shows that these
capacities perform quite well in toy problems, for instance they recover the sharp obstructions from [29]
and they often outperform the Ekeland–Hofer capacities. In fact, the capacities g1; g2; g3; : : : are a
specialization of a more general family of capacities fgbg which are expected to give sharp obstructions
to the stabilized ellipsoid embedding problem.

However, two broad questions naturally become apparent:

Geometry & Topology, Volume 28 (2024)
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(1) What is the role of symplectic field theory? Namely, it is known that SFT typically requires virtually
perturbing moduli spaces of pseudoholomorphic curves, and yet ultimately all of the data of gk.X /

should be carried by honest pseudoholomorphic curves in yX and R� @X , so does one really need
the full SFT package?1

(2) How does one actually compute g1; g2; g3; : : : for Liouville domains of interest? Note that even
computing gk for a four-dimensional ellipsoid is a nontrivial problem.

Note that these questions are coupled, since a concrete answer to (1) could open up new direct avenues
for computations as in (2).

The primary purpose of this paper is to address both of these questions. In short:

(1) We give an ersatz definition of gk , denoted by zgk , which is simple and explicit and does not require
any virtual perturbations.

(2) We compute (or at least reduce to elementary combinatorics) zgk for all four-dimensional convex
toric domains. This gives a large family of examples, which includes ellipsoids and polydisks as
special cases.

Combining these, one can directly extract many new symplectic embedding obstructions. As an illustration,
the recent work of Cristofaro-Gardiner, Hind and Siegel [11] applies our computations for ellipsoids
and polydisks in order to obstruct various stabilized symplectic embeddings between these. Remarkably,
these obstructions are often sharp, at least when certain aspect ratios are integral; see Example 1.3.3 and
Remark 1.3.5.

1.2 Statement of main results

We now describe our results in more detail. In Section 3, we define the capacity zgk.M / for all symplectic
manifolds M and k 2 Z�1. Roughly, if X is a Liouville domain with nondegenerate contact boundary,
then zgk.X / is the maximum over all suitable almost complex structures J of the minimum energy of any
asymptotically cylindrical rational J–holomorphic curve in yX which satisfies a local tangency constraint
<T.k/p>. The latter means that the curve has contact order k (or equivalently tangency order k � 1)
to a chosen local divisor D defined near a point p 2X. Note that we do not require the curves entering
into the definition of zgk.X / to be regular or even index zero. This definition of zgk.X / is extended to
zgk.M / for M an arbitrary symplectic manifold by taking a supremum over all Liouville domains which
symplectically embed into M.2

1As outlined in [37, Section 1], we also expect an alternative definition of gk using (S1–equivariant) Floer theory instead of
symplectic field theory. Since this involves Hamiltonian perturbations and many associated choices, it is also quite difficult to
compute directly from the definition.
2After a first draft of this paper was completed, the authors learned from G Mikhalkin about independent work defining a similar
capacity directly for all symplectic manifolds using an even broader class of almost complex structures and pseudoholomorphic
curves. It seems likely that these two definitions are equivalent, but they may have slightly different realms of utility.

Geometry & Topology, Volume 28 (2024)



1216 Dusa McDuff and Kyler Siegel

Remark 1.2.1 In the special case of the first capacity zg1, our definition essentially coincides with
Gromov’s original definition [15, Section 4.1] of “symplectic width” via a maxi-min procedure.

The following summarizes some of the key properties of zgk :

Theorem 1.2.2 For each k 2 Z�1, the capacity zgk is independent of the choice of local divisor and is a
symplectomorphism invariant. It satisfies the following properties:

� Scaling It scales like area , ie zgk.M; �!/D �zgk.M; !/ for any symplectic manifold .M; !/ and
� 2R>0.

� Nondecreasing We have zg1.M /� zg2.M /� zg3.M /� � � � for any symplectic manifold M.

� Subadditivity We have zgiCj .M /� zgi.M /Czgj .M / for any i; j 2 Z�1.

� Symplectic embedding monotonicity It is monotone under equidimensional symplectic embed-
dings , ie M

s
,!M 0 implies zgk.M /� zgk.M

0/ for any symplectic manifolds M and M 0.

� Closed curve upper bound If .M; !/ is a closed semipositive symplectic manifold satisfying
NM;A<T.k/p>¤ 0 for some A 2H2.M /, then we have zgk.M /� Œ!� �A.

� Stabilization For any Liouville domain X we have zgk.X �B2.c//D zgk.X / for any c � zgk.X /,
provided that the hypotheses of Proposition 3.7.1 are satisfied. (This holds, for instance, for X any
four-dimensional convex toric domain.)

In the penultimate point, NM;A<T.k/p> denotes the Gromov–Witten type invariant which counts
closed rational pseudoholomorphic curves in M in homology class A satisfying the local tangency
constraint <T.k/p>, as defined in our paper [30]. Also, B2.c/ denotes the closed two-ball of area c

(ie radius
p

c=�), equipped with its standard symplectic form. For more detailed explanations and proofs,
see Sections 2 and 3.

Remark 1.2.3 (stabilization hypotheses) The hypotheses of Proposition 3.7.1 roughly amount to the
assumption that zgk.X / is represented by a moduli space of curves which is sufficiently robust that it cannot
degenerate in generic one-parameter families. When this holds, we can iteratively stabilize to obtain
zgk.X �B2.c/� � � � �B2.c//D zgk.X / for c � zgk.X /, and in particular we have zgk.X �CN /D zgk.X /

for N 2Z�1. Compared with gk , the extra hypotheses in the stabilization property is one place where we
“pay the price” for such a simple definition of zgk , although we do not know whether the extra hypotheses
are truly essential.

Remark 1.2.4 (relationship with gk) As we explain in Section 3.4, we must have zgk.X / D gk.X /

whenever X is a Liouville domain satisfying the hypotheses of Proposition 3.7.1. In particular, this is
the case for all four-dimensional convex toric domains, and we are not aware of any examples with
zgk.X /¤ gk.X /.

Geometry & Topology, Volume 28 (2024)
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Remark 1.2.5 (relationship with Gutt–Hutchings capacities) In Section 3.1, we define (following [37])
a refined family of capacities zg�l

k
for k; l 2 Z�1, using the same prescription as for zgk except that we

now only allow curves having at most l positive ends. Note that the case l D1 recovers zgk D zg
�1

k
.

The capacities fzg�l
k
g satisfy most of the properties in Theorem 1.2.2, except that the closed curve upper

bound no longer holds, and monotonicity for zg�l
k

only holds for generalized Liouville embeddings,
ie smooth embeddings � W .X; �/ ,! .X 0; �0/ of equidimensional Liouville domains such that the closed
1–form .��.�0/��/j@X is exact; cf Gutt and Hutchings [16, Section 1.4]. In Section 5.6 we show that,
at least for four-dimensional convex toric domains, the l D 1 specialization zg�1

k
coincides with the k th

Gutt–Hutchings capacity cGH
k

from [16]. The latter is in turn known to agree with the k th Ekeland–Hofer
capacity cEH

k
in all examples where both are computed, eg ellipsoids and polydisks.

Remark 1.2.6 (nondecreasing property) Curiously, for the analogous SFT capacities the nondecreasing
property g1 � g2 � g3 � � � � is not at all obvious from the definition.

Remark 1.2.7 (generalizations) The approach taken in this paper to define fzgkg naturally generalizes
to define various other families of capacities, eg by replacing the local tangency constraint <T.k/p>

with k generic point constraints, and/or by allowing curves of higher genus. In this spirit, the very recent
preprint of Hutchings [23] adapts our approach to define (without relying on Seiberg–Witten theory) a
sequence of four-dimensional capacities, which agree in many cases with the ECH capacities.

With the capacities zg1; zg2; zg3; : : : at hand, we turn to computations. Given a compact convex domain
��Rn, put X� WD �

�1.�/, where � WCn!Rn
�0

is given by

�.z1; : : : ; zn/D .�jz1j
2; : : : ; �jznj

2/:

Define k�k�
�
WRn!R by kEvk�

�
WDmax Ew2�hEv; Ewi, where h�;�i denotes the standard dot product. Note

that if @� is smooth, then the maximizer Ew lies in @� and is such that the hyperplane through Ew normal
to Ev is tangent to @�. If � contains the origin in its interior, then k�k�

�
is a (nonsymmetric) norm, dual to

the norm having � as its unit ball. Otherwise, k�k�
�

is not generally nondegenerate or even nonnegative,
although it is still convenient to treat it like a norm. Recall that X� is a “convex toric domain” if the
symmetrization of � about the axes is itself convex; see Section 4.1 for more details.

Theorem 1.2.8 Let X� be a four-dimensional convex toric domain. For k 2 Z�1, we have

(1-2-1) zgk.X�/Dmin
qX

sD1

k.is; js/k
�
�;

where the minimization is over all .i1; j1/; : : : ; .iq; jq/ 2 Z2
�0
n f.0; 0/g such that

�
Pq

sD1
.isC js/C q� 1D k, and

� if q � 2, then .i1; : : : ; iq/¤ .0; : : : ; 0/ and .j1; : : : ; jq/¤ .0; : : : ; 0/.
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1218 Dusa McDuff and Kyler Siegel

Using results from Section 4, we have the following appealing reformulation, which we prove at the end
of Section 4.3. If P � R2 is a convex lattice polygon, ie a convex polygon such that each vertex lies
at an integer lattice point, let `�.@P / denote the length of its boundary as measured by k�k�

�
, and let

j@P \Z2j denote the number of lattice points along the boundary. Here we allow the degenerate case
where P is a line segment, in which case by definition @P D P . Note that `�.@P / is unaffected if we
translate � so that it contains the origin in its interior, after which k�k�

�
becomes nondegenerate.

Corollary 1.2.9 For X� a four-dimensional convex toric domain and k 2 Z�1, we have:

(1-2-2) zgk.X�/Dminf`�.@P / j P �R2 is a convex lattice polygon such that j@P \Z2
j D kC 1g:

Remark 1.2.10 (i) The k th ECH capacity cECH
k

.X�/ is given by the exact same formula except that
we replace j@P \Z2j with jP \Z2j, ie the number of lattice points in both the interior and boundary
of P ; see Hutchings [20]. Under the correspondence between lattice polygons and generators, j@P \Z2j

corresponds to the (half) Fredholm index, whereas jP \Z2j corresponds to the (half) ECH index. It is
interesting to ask whether Corollary 1.2.9 holds for more general domains � � R2. One can also ask
about extensions to higher dimensions, with lattice polygons in R2 replaced by lattice paths in Rn.

(ii) Corollary 1.2.9 involves arbitrary lattice points, whereas Theorem 1.2.8 involves only nonnegative
ones. Conceptually this mirrors the fact that X� has the same values for zgk as its associated “free toric
domain” T2 ��, thanks to the “Traynor trick”; see eg Landry, McMillan and Tsukerman [28].

(iii) Closely related formulas appear in the recent work of Chaidez and Wormleighton [5]. In particular,
[5, Corollary 1] computes gk.X�/ under the additional assumption that the lengths of � along the x– and
y–axes agree, which holds for instance if X is the round ball B4.c/ or the cube B2.c/�B2.c/. Whereas
our upper bounds come from curves constructed via the ECH cobordism map and iterated obstruction
bundle gluing (see Section 5), the upper bounds in [5] come from cocharacter curves in (possibly singular)
closed toric surfaces.

(iv) The second author’s work [38] offers another combinatorial computation of gk.X�/ for any four-
dimensional convex toric domain X�, and in fact it also computes the full family of capacities fgb.X�/g.
However, since that framework involves a nontrivial recursive algorithm, it is not clear how to use it to
extract the above formulas.

1.3 Examples and applications

In Section 4.3 we significantly simplify the combinatorial optimization problem involved in Theorem 1.2.8
by showing that there are only a few possibilities for the minimizers. Indeed, Corollary 4.3.9 implies the
following simplification of Theorem 1.2.8:

Corollary 1.3.1 Let X� be a four-dimensional convex toric domain as in Theorem 1.2.8, and assume
that � has sides of length a and b along the x– and y–axes , respectively, with a � b. Then there is a
minimizer .i1; j1/; : : : ; .iq; jq/ taking one of the following forms:

Geometry & Topology, Volume 28 (2024)
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(i) .0; 1/�i � .1; 1/�j for i � 0 and j � 1.

(ii) .0; 1/�i � .1; s/ for i � 0 and s � 2.

(iii) .0; 1/�i � .1; 0/ for i � 1.

(iv) .0; s/ for s � 1.

This formulation is particularly useful for extracting closed-form expressions for zgk in various families of
examples, as in the following results.

Let

E.a1; a2/ WD
n
.z1; z2/ 2C2

ˇ̌ 1

a1
�jz1j

2
C

1

a2
�jz2j

2
� 1

o
denote the ellipsoid with area factors a1; a2. Up to scaling and symplectomorphism, we can assume that
a2 D 1 and a1 � 1.

Theorem 1.3.2 (i) For 1� a� 3
2

, we have

(1-3-1) zgk.E.a; 1//D

8<:
1C ia for k D 1C 3i with i � 0;

aC ia for k D 2C 3i with i � 0;

2C ia for k D 3C 3i with i � 0:

(ii) For a> 3
2

, we have

(1-3-2) zgk.E.a; 1//D

8<:
k for 1� k � bac;

aC i for k D daeC 2i with i � 0;

daeC i for k D daeC 2i C 1 with i � 0:

Example 1.3.3 We illustrate Theorem 1.3.2 with a simple embedding example which is a special case of
[11, Theorem 1.1]. The first few zgk capacities are:

k 1 2 3 4 5 6 7 8 9 10 11 12

zgk.E.1; 7// 1 2 3 4 5 6 7 7 8 8 9 9

zgk.E.1; 2// 1 2 2 3 3 4 4 5 5 6 6 7

This gives a lower bound for stabilized embeddings E.1; 7/�CN s
,! � �E.1; 2/�CN (with N � 1) of

�� 7
4

. By [11, Corollary 3.4] this is optimal, ie there exists a stabilized symplectic embedding realizing
this lower bound. In particular, this outperforms the Gutt–Hutchings (or Ekeland–Hofer) capacities, the
first few of which are:

k 1 2 3 4 5 6 7 8 9 10 11 12

cGH
k
.E.1; 7// 1 2 3 4 5 6 7 7 8 9 10 11

cGH
k
.E.1; 2// 1 2 2 3 4 4 5 6 6 7 8 8

Geometry & Topology, Volume 28 (2024)



1220 Dusa McDuff and Kyler Siegel

In fact the best bound obtained by the full infinite sequence is �� 3
2

. By contrast, the ECH capacities
give a stronger lower bound, which evidently cannot stabilize. Indeed, we have

k 1 2 3 4 5 6 7 8 9 10 11 12

cECH
k

.E.1; 7// 1 2 3 4 5 6 7 7 8 8 9 9

cECH
k

.E.1; 2// 1 2 2 3 3 4 4 4 5 5 5 6

giving the lower bound � � 9
5
> 7

4
for the unstabilized problem E.1; 7/

s
,! � �E.1; 2/. Note that the

volume bound is ��
p

7=2� 1:87> 9
5

, and this is necessarily recovered by the full sequence of ECH
capacities since these are known to give sharp obstructions for four-dimensional ellipsoid embeddings
(and also their asymptotics recover the volume).

Now let P .a1; a2/ WD B2.a1/�B2.a2/ denote the polydisk with area factors a1 and a2. Again, without
loss of generality we can assume a2 D 1 and a1 � 1.

Theorem 1.3.4 For k 2 Z�1 and a� 1 we have

(1-3-3) zgk.P .a; 1//Dmin
�
k; aC

˙
1
2
.k � 1/

��
:

Remark 1.3.5 (sharp obstructions) Example 1.3.3 generalizes as follows. By complementing Theorem
1.3.2 with explicit embedding constructions, [11, Theorem 1.1] shows that the capacities fzgkg are sharp
for embeddings of the form E.a; 1/�CN s

,!� �E.b; 1/�CN with a� bC1� 3 integers of the opposite
parity and �2R>0;N 2Z�1, and such an embedding exists if and only if �� 2a=.aCb�1/. Similarly,
[11, Theorem 1.3] shows that the capacities fzgkg are sharp for embeddings of the form

E.a; 1/�CN s
,! � �P .b; 1/�CN

with b 2R�1 (not necessarily an integer), a� 2b� 1 any odd integer and � 2R>0;N 2 Z�1, and such
an embedding exists if and only if �� 2a=.aC 2b� 1/.

For embeddings of the form E.a; 1/�CN s
,! � �B4.b/�CN with N 2 Z�1, it was observed in [37]

that the capacities fgkg (and hence also fzgkg by the results of this paper) give sharp obstructions when
a 2 3Z�1� 1. On the other hand, for all other a 2R>1 we do not expect optimal obstructions from the
capacities fgkg, but rather from the full family fgbg; see the discussion at the end of [37, Section 6.3]. It is
natural to ask whether a “naive” analogue fzgbg could be defined and computed in the spirit of this paper.

Remark 1.3.6 The formulas (1-3-3) also appeared for gk in [37] in the case of odd k, based on a slightly
different computational framework.

Next, we consider a more complicated family of examples. Given c � 1 and .a; b/ 2 R2
>0

, denote by
Q.a; b; c/�R2

�0
the quadrilateral with vertices .0; 0/; .0; 1/; .c; 0/; .a; b/. We note that XQ.a;b;c/ �C2

is a convex toric domain if and only if we have a� c, b � 1 and aC bc � c. The next result gives the
formula for zgk when max.aC b; c/ � 2. The case max.aC b; c/ > 2 is similar to case (ii) below; see
Remark 6.0.1.
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Theorem 1.3.7 Let X WDXQ.a;b;c/ be a convex toric domain for some c � 1 and .a; b/ 2R2
>0

, and put
M WDmax.aC b; c/.

(i) For M � 3
2

, we have

(1-3-4)

zg1.X /D 1; zg2.X /DM; zg3.X /Dmin.max.2; aC 2b/; 1C c/;

zg4 D 1CM; zg5 D 2M; zg6 D 2CM;

zgkC3.X /D zgk.X /CM for k � 4:

(ii) For 3
2
�M � 2, then zgk.X / is as above for k � 4, and

(1-3-5) zg5.X /Dmin.max.3; 1C aC 2b/; 2M; 2C c/; zgkC2.X /D 1Czgk.X / for k � 4:

For our last family of examples, take p 2 R�1 [ f1g and consider the Lp norm k�kp defined by
k.x;y/kp WD .x

pCyp/1=p. Put

�p WD f.x;y/ 2R2
�0 j k.x;y/kp � 1g:

Note that �1 is the right triangle with vertices .0; 0/, .1; 0/, .0; 1/, and �1 is the square with vertices
.0; 0/, .1; 0/, .0; 1/, .1; 1/, ie the corresponding family of convex toric domains fX�p

g interpolates
between the round ball and the cube. Also, note that for .x;y/ 2R2

�0
, we have

k.x;y/k��p
D k.x;y/kq;

where q 2R�1[f1g is such that 1=pC 1=q D 1.

Theorem 1.3.8 (i) For p � ln.2/=ln
�

4
3

�
we have

(1-3-6) zgk.X�p
/D

8<:
1C i

q
p

2 for k D 1C 3i with i � 0;

(i C 1/
q
p

2 for k D 2C 3i with i � 0;

2C i
q
p

2 for k D 3C 3i with i � 0:

(ii) For p > ln.2/=ln
�

4
3

�
we have

(1-3-7) zgk.X�p
/D

�
1C i for k D 1C 2i with i � 0;
q
p

2C i for k D 2C 2i with i � 0:

Remark 1.3.9 Incidentally, zgk.X�p
/D zgk.E.1;

q
p

2//. Moreover, one can show using Corollary 1.3.1
that the capacities zgk.X�/ of any four-dimensional convex toric domain normalized as in Corollary 1.3.1
are eventually either 2–periodic or 3–periodic in k, depending on which of 3k.0; 1/k�

�
or 2k.1; 1/k�

�
is

smaller. Intuitively, domains which are “rounder” have 3–periodic capacities while domains which are
“skinnier” have 2–periodic ones.
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1222 Dusa McDuff and Kyler Siegel

Example 1.3.10 For concreteness let us flesh out a simple implication of Theorem 1.3.8 for the symplectic
embedding problem E.1; 5/�CN s

,! � �X�2
�CN with N 2 Z�0. Using Theorem 1.6 of Gutt and

Hutchings [16] (see also Kerman and Liang [27]), it is easy to check that we have

cGH
k .X�2

/D

(q
1
2
k2 for k even;q

1
2
.k2C 1/ for k odd;

that is,

k 1 2 3 4 5 6 7 8 9 10 11 12

cGH
k
.E.1; 5// 1 2 3 4 5 5 6 7 8 9 10 10

cGH
k
.X�2

/ 1
p

2
p

5 2
p

2
p

13 3
p

2 5 4
p

2
p

41 5
p

2
p

61 6
p

2

and the capacities fcGH
k
g give the lower bound �� 2=

p
2� 1:414. Meanwhile, we have

k 1 2 3 4 5 6 7 8 9 10 11

zgk.E.1; 5// 1 2 3 4 5 5 6 6 7 7 8

zgk.X�2
/ 1

p
2 2 1C

p
2 2
p

2 2C
p

2 1C2
p

2 3
p

2 2C2
p

2 1C3
p

2 4
p

2

and the fzgkg capacities give the lower bound �� 5=.2
p

2/� 1:768.

We end this introduction with a brief outline of the proof of Theorem 1.2.8, deferring the reader to
the body of the paper for the details. Firstly, as in Siegel [38; 36], we “fully round” our convex toric
domain. This is a small perturbation and so leaves zgk essentially unaffected, while it standardizes the
Reeb dynamics on the boundary. Next, we obtain a lower bound on zgk by mostly action and index
considerations, with the second condition in Theorem 1.2.8 coming from the relative adjunction formula
and writhe bounds. To obtain a corresponding upper bound, we first study the combinatorial optimization
problem in Theorem 1.2.8 more carefully and arrive at the simplifications described in Section 4.3. We
then inductively construct a curve for each minimizer. The base cases are cylinders or pairs of pants which
we produce using the ECH cobordism map, while the inductive step is based on an iterated application of
obstruction bundle gluing based on the work of Hutchings and Taubes.

Acknowledgements Siegel is partially supported by NSF grant DMS-2105578 and a visiting membership
at the Institute for Advanced Study.

2 Preliminaries on pseudoholomorphic curves

The main purpose of this section is to briefly recall some requisite background on pseudoholomorphic
curves and to establish notation, conventions and terminology for the rest of the paper. In Section 2.1 we
discuss moduli spaces of punctured pseudoholomorphic curves in symplectic cobordisms. In Section 2.2
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we recall the notion of local tangency constraints and the equivalence with skinny ellipsoidal constraints
as in [30]. In Section 2.3 we introduce the notion of formal curves, which provides a convenient language
and bookkeeping tool in SFT compactness arguments. Lastly, in Section 2.4 we discuss the extent to which
our moduli spaces persist in one-parameter families, and we introduce the notion of “formal perturbation
invariance”, which will be particularly relevant for us.

2.1 Asymptotically cylindrical curves and their moduli

Our exposition in this subsection will be somewhat brief; we refer the reader to [40; 2] for more details.

2.1.1 Symplectic and contact manifolds Recall that a Liouville cobordism .X; �/ is a compact
manifold-with-boundary X, equipped with a one-form � whose exterior derivative ! WD d� is symplectic,
and whose restriction to @X is a contact form. We have a natural decomposition @X D @CX t @�X,
where �j@CX is a positive contact form and �j@�X is a negative contact form. When no confusion should
arise, we will typically suppress � from the notation and denote such a Liouville cobordism simply by X ;
a similar convention will apply to most other mathematical objects. We view @CX and @�X as strict
(ie equipped with a preferred contact form) contact manifolds.

Quite often we will have @�X D ¿, in which case X is a Liouville domain. We say that a Liouville
domain X has nondegenerate contact boundary if the contact form ˛ WD �j@X has nondegenerate Reeb
orbits. The action of a Reeb orbit 
 in @X is its period, ie the integral A@X .
 / WD

R

 ˛, assuming 
 is

parametrized so that its velocity always agrees with the Reeb vector field R˛ on @X.

More generally, a compact symplectic cobordism is a compact manifold-with-boundary X equipped with
a symplectic form ! and a primitive one-form � defined on Op.@X / whose restriction to @X is a contact
form. As before we have a natural decomposition @X D @CX t@�X. We will refer to the case @�X D¿
as a symplectic filling and the case @CX D ¿ as a symplectic cap. Note that the case with @X D ¿ is
simply a closed symplectic manifold.

Convention If X and X 0 are Liouville domains and � WX s
,!X 0 is a symplectic embedding, we will by

slight abuse of notation write X 0 nX to denote the compact symplectic cobordism X 0 n Int �.X /, after
attaching a small collar Œ0; ı/� @X 0 to X 0 if necessary (ie if �.X /\ @X 0 ¤¿).

2.1.2 Admissible almost complex structures Let Y be a strict contact manifold with contact form ˛.
Recall that the symplectization of Y is the symplectic manifold Rr �Y with symplectic form given by
d.er˛/. We denote by J.Y / the space of admissible almost complex structures on the symplectization
R�Y. That is, JY 2 J.Y / is a compatible almost complex structure on R�Y which is r–translation
invariant, maps @r to the Reeb vector field R˛ , and restricts to a compatible almost complex structure on
each contact hyperplane.

Given a compact symplectic cobordism X with Y ˙ WD@˙X, its symplectic completion yX is given attaching
a positive half-symplectization R�0 �Y C to its positive boundary and a negative half-symplectization
R�0 � Y � to its negative boundary. There is a natural symplectic form on yX which extends that
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of X and looks like the restriction of the symplectic form on a symplectization on the cylindrical ends.
We denote by J.X / the space of admissible almost complex structures on the symplectic completion
of X. That is, JX 2 J.X / is a compatible almost complex structure on yX which is symplectization-
admissible on the cylindrical ends, ie we have JX jR�0�YC D JYC jR�0�YC for some JYC 2 J.Y C/,
and JX jR�0�Y � D JY � jR�0�Y � for some JY � 2 J.Y �/. In particular, JX is translation-invariant on
each cylindrical end. Given fixed JYC 2 J.Y C/ and JY � 2 J.Y �/ as above, we denote by

JJYC

JY�
.X /� J.X /

the subspace consisting of almost complex structures J which satisfy J jR�0�YC D JYC jR�0�YC

and J jR�0�Y � D JY � jR�0�Y � . By slight abuse of notation, for J 2 JJYC

JY�
we also use the notation

J jY˙ WD JY˙ to denote the “restriction” of J to Y ˙.

2.1.3 Moduli spaces of pseudoholomorphic curves Let X be a compact symplectic cobordism, and
consider J 2 J.X /. A J–holomorphic curve C in yX consists of a Riemann surface †, with almost
complex structure j , and a map u W †! yX satisfying du ı j D J ı du. We will often refer to C as
a “pseudoholomorphic curve” (or simply “curve”) if J is implicit or unspecified. Such a curve C is
asymptotically cylindrical if † is a closed Riemann surface minus a finite set of puncture points, such
that u is positively or negatively asymptotic to a Reeb orbit in the ideal boundary at each puncture;
see eg [40, Section 6.4] for a more precise formulation. All pseudoholomorphic curves considered in
this paper will be asymptotically cylindrical in either the symplectic completion of a compact symplectic
cobordisms (closed symplectic manifolds being a special case), or in the symplectization of a contact
manifold. Strictly speaking the latter is a special case of the former, but it is helpful to distinguish between
these two cases since in the latter case we work with almost complex structures having an additional
translation symmetry.

Convention All pseudoholomorphic curves in this paper are asymptotically cylindrical, and for brevity
we often refer to curves in yX as simply “curves in X ”, with the process of symplectically completing
tacitly understood.

Consider tuples of nondegenerate Reeb orbits �C D .
C
1
; : : : ; 
Ca / in @CX and �� D .
�

1
; : : : ; 
�

b
/

in @�X. Given J 2 J.X /, we denote by MJ
X
.�CI��/ the moduli space of asymptotically cylindrical

rational J–holomorphic curves in yX with positive asymptotics �C and negative asymptotics ��, equipped
with the Gromov topology. Here the conformal structure on the domain varies over the moduli space of
genus-zero Riemann surfaces with a (resp. b) ordered positive (resp. negative) punctures. If @�X D¿,
we write MJ

X
.�C/ as a shorthand for MJ

X
.�CI¿/, and similarly in the case @CX D¿ we write MJ

X
.��/

in place of MJ
X
.¿I��/. We will sometimes suppress J from the notation and write simply M.�CI��/

if the almost complex structure is implicit or unspecified.

Convention By default all curves in this paper have genus zero unless otherwise stated.

Similarly, given a strict contact manifold Y, J 2 J.Y /, and Reeb orbits �C D .
C
1
; : : : ; 
Ca / and

�� D .
�
1
; : : : ; 
�

b
/ in Y, we denote by MJ

Y
.�CI��/ the moduli space of asymptotically cylindrical
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curves in R�Y with positive asymptotics �C and negative asymptotics ��. There is a natural R–action
on MJ

Y
.�CI��/ induced by translations in the first factor of R � Y, and this is free away from the

trivial cylinders, ie cylinders of the form R� 
 with 
 a Reeb orbit in Y. We denote the quotient by
MJ

Y
.�CI��/=R.

We will consider moduli spaces associated to one-parameter families of almost complex structures.
For instance, given a one-parameter family fJtgt2Œ0;1� in J.X /, we denote by M

fJt g

X
.�CI��/ the

corresponding parametrized moduli space consisting of pairs .t;C / with t 2 Œ0; 1� and C 2MJt

X
.�CI��/.

We will assume throughout that suitable choices have been made so that every regular moduli space
of curves is oriented. In particular, any curve C which is regular and isolated in MX .�

CI��/ or
MY .�

CI��/=R has an associated sign ".C / 2 f�1; 1g. We briefly recall the procedure for orienting
moduli spaces in Section 5.2.

2.1.4 SFT compactifications The above moduli spaces admit SFT compactifications as in [2], which we
denote by replacing M with M. For example, let X be a compact symplectic cobordism with J˙ 2J.@˙X /

and JX 2 J
JC
J�
.X /. Elements of MJX

X
.�CI��/ are stable pseudoholomorphic buildings in yX , which

consist of

� some number (possibly zero) of JC–holomorphic levels in the symplectization R� @CX ,

� a “main” JX –holomorphic level in yX , and

� some number (possibly zero) of J�–holomorphic levels in the symplectization R� @�X ,

such that for each pair of adjacent levels the positive asymptotic Reeb orbits of the lower level are paired
with the negative asymptotic Reeb orbits of the upper level. The symplectization levels are always defined
modulo target translations. Note that each level consists of one or more connected components, each of
which is a nodal punctured Riemann surface. The stability condition states that each component of the
domain on which the map is constant must have negative Euler characteristic after removing all special
points; also there are no symplectization levels consisting entirely of trivial cylinders. See [2] for details.

We will use the following language in this paper. (Note that the slightly different notion of matched
component employed in [30] serves a similar purpose.)

Definition 2.1.1 We say that a (rational) curve in a given level is connected if its domain is connected
but possibly nodal, smooth if its domain is without nodes, and irreducible if it is both connected and
smooth. By curve component we mean a (rational) curve which is irreducible.

Note that each level of a pseudoholomorphic building can be decomposed into its constituent (irreducible)
components.

We will also frequently make use of neck stretching. If XC and X� are compact symplectic cobordisms
with a common contact boundary @�XC D @CX� D Y, we denote the glued compact symplectic
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cobordism by X�}XC. Given almost complex structures JY 2J.Y /, JXC 2JJY
.XC/, JX� 2JJY .X�/,

we can consider the corresponding neck-stretching family of almost complex structures Jt 2 J.X /,
where t 2 Œ0; 1/. The limit t ! 1 corresponds to the broken cobordism which we denote by X� j} XC.
The compactification M

fJt g

X
.�CI��/ consists of pairs .t;C / for t 2 Œ0; 1/ and C 2MJt

X
.�CI��/, as well

as limiting configurations for t D 1, which are pseudoholomorphic buildings with

� some number (possibly zero) of J@CXC–holomorphic levels in the symplectization R� @CXC,

� a JXC–holomorphic level in yXC,

� some number (possibly zero) of JY –holomorphic levels in the symplectization R�Y,

� a JX�–holomorphic level in yX�, and

� some number (possibly zero) of J@�X�–holomorphic levels in the symplectization R� @�X�,

subject to suitable matching and stability conditions. Here we have put J@CXC WD JXC j@CXC and
J@�X� WD JX� j@�X� .

2.1.5 Homology classes and energy Given a compact symplectic cobordism X and Reeb orbits
�CD .
C

1
; : : : ; 
Ca / in @CX and ��D .
�

1
; : : : ; 
�

b
/ in @�X, we let H2.X; �

C[��/ denote the group
of potential homology classes of curves in MX .�

CI��/. Namely, H2.X; �
C[��/ is the abelian group

freely generated by 2–chains † in X with @†D
Pa

iD1 

C
i �

Pb
jD1 


�
j , modulo boundaries of 3–chains

in X ; see also [40, Section 6.4] for a slightly more homological perspective. Given A2H2.X; �
C[��/,

we denote by MX ;A.�
CI��/�MX .�

CI��/ the subspace of curves lying in homology class A.

Similarly, given a strict contact manifold Y and Reeb orbits �CD .
C
1
; : : : ; 
Ca / and ��D .
�

1
; : : : ; 
�

b
/

in Y, let H2.Y; �
C[��/ denote the homology group of 2–chains† in Y with @†D

Pa
iD1 


C
i �

Pb
jD1 


�
j ,

modulo boundaries of 3–chains in Y. Given A 2 H2.Y; �
C [ ��/, we denote by MY;A.�

CI��/ �

MY .�
CI��/ the subspace of curves in R�Y lying in homology class A.

There are also natural subspaces MX ;A.�
CI��/ �MX .�

CI��/ and MY;A.�
CI��/ �MY .�

CI��/

and so on. These are defined by required the total homology class of a building, which is defined in a
natural way by concatenating the levels, to be A.

If .Y; ˛/ is strict contact manifold, define the energy3 of a curve C 2MY;A.�
CI��/ to be EY .C / WDR

C d˛. By Stokes’ theorem, we have

EY .C /D

aX
iD1

AY .

C
i /�

bX
jD1

AY .

�

j /:

Note that this depends only the homology class A 2 H2.Y; �
C [ ��/, so we can also put EY .C / D

EY .A/ WD
R
A d˛. Similarly, if X is a compact symplectic cobordism with symplectic form ! and

locally defined Liouville one-form �, the energy EX .C / of a curve C 2 MJ
Y;A

.�CI��/ is defined to

3This is called the !–energy in [2], their full energy having this as one of its two summands.
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be the integral over C of the piecewise smooth two-form which agrees with ! on X and with d� on
the cylindrical ends yX nX. If X is further a Liouville cobordism (ie � is globally defined), then Stokes’
theorem gives

EX .C /D

aX
iD1

A@CX .

C
i /�

bX
jD1

A@�X .

�

j /:

This again depends only on A 2H2.X; �
C[��/, and we have EX .C /DEX .A/ WD

R
A !.

2.2 Local tangency and skinny ellipsoidal constraints

Let X be a compact symplectic cobordism. Recall that the local tangency constraint <T.m/p> with
m 2 Z�1 is imposed by choosing a point p 2 Int X and a smooth symplectic divisor D � Op.p/ and con-
sidering curves with an additional marked point required to pass through p with contact order (at least) m

to D; see eg [7; 8; 30]. We will also denote this constraint by <Tm�1p>, with m� 1 representing the
tangency order (in particular <p> corresponds simply to a marked point passing through p).

Let J.X ID/�J.X / denote the space of admissible almost complex structures on yX which are integrable
near p and preserve the germ of D near p. Given tuples of Reeb orbits �C and �� in @CX and @�X

respectively and J 2 J.X ID/, we define the moduli space MJ
X
.�CI��/<T.m/p> as before, but now

the local tangency constraint <T.m/p> is imposed on each curve.

Some care is needed when compactifying MJ
X
.�CI��/<T.m/p>, due to the possibility of a ghost

(ie constant) component inheriting the marked point. Indeed, strictly speaking a constant component
is tangent to D to infinite order, and hence ghost configurations always appear with much higher than
expected dimension. To get around this, first note, as in the proof of [30, Proposition 2.2.2], that there is
a natural inclusion

MJ
X .�

C
I��/<T.m/p>�MJ

X .�
C
I��/<p>;

where the codomain is the usual SFT compactification of MJ
X
.�CI��/<p> by stable pseudoholomorphic

buildings. Let MJ
X
.�CI��/<T .m/p> denote the closure of MJ

X
.�CI��/<T.m/p> in this compact

ambient space. To understand what this amounts to, consider a pseudoholomorphic building C in
MJ

X
.�CI��/<T .m/p> such that the marked point z0 mapping to p lies on a ghost component C0. Let

N1; : : : ;Na denote those nodes connecting a nonconstant component of C to C0, or more generally
connecting a nonconstant component of C to some ghost component which is nodally connected through
ghost components to C0. Let z1; : : : ; za denote the corresponding special points in the domain of C

which are “near z0”, ie participate in the nodes N1; : : : ;Na and lie on nonconstant components of C .
Let C1; : : : ;Ca denote the respective nonconstant components of C on which z1; : : : ; za lie. According
to [7, Lemma 7.2], in this situation the marked points z1; : : : ; za satisfy local tangency constraints
<T.m1/p>; : : : ;<T.ma/p>, respectively, such that we have

m1C � � �Cma �m:

In this way, elements of MJ
X
.�CI��/<T.m/p> “remember” the constraint <T.m/p>.
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z0

z1

z2

z3

ghost
ghost

Figure 1: A configuration which could potentially arise in MJ
X .�

CI��/<T.m/p>. Here the
marked point z0 mapping to p lies on a ghost component, and z1, z2 and z3 are the special
points near z0 lying on nonconstant components. These satisfy respective constraints <T.m1/p>,
<T.m2/p> and <T.m3/p> such that m1Cm2Cm3 �m. Such a configuration is also included
in MJ

X
.�CI��/<T.m/p> even if it does not arise as a limit of curves in MJ

X
.�CI��/<T.m/p>.

We will also need to consider a potentially larger compactification of MJ
X
.�CI��/<T .m/p> which

allows all ghost configurations as described above, even if they do not arise as a limit of smooth curves:

Definition 2.2.1 Let MJ
X
.�CI��/<T.m/p> denote the subset of MJ

X
.�CI��/<p> given by the

union of MJ
X

<T.m/p> with the set of all buildings C such that the marked point z0 mapping to p lies
on a ghost component and the special points z1; : : : ; za near z0 (as above) satisfy respective constraints
<T.m1/p>; : : : ;<T.ma/p> such that m1C � � �Cma �m. See Figure 1.

Remark 2.2.2 It is worth emphasizing that the extra buildings C involving ghost components which
appear in Definition 2.2.1 have virtual codimension at least two (cf the proof of [30, Proposition 2.2.2]),
and hence are not expected to appear whenever sufficient transversality holds. This is essentially why
such configurations do not contribute to the local tangency constraint counts NM;A<T.m/p> defined
in [30] for semipositive closed symplectic manifolds M.

For m 2 Z�1, let <.m/>E denote the skinny ellipsoidal constraint of order m, defined as follows.
Let Esk denote a skinny ellipsoid, ie a symplectic ellipsoid whose first area factor is sufficiently small
compared to the others. After possibly shrinking (ie replacing Esk by �Esk for 0 < � � 1) we can
assume that Esk symplectically embeds into X in an essentially unique way, and we typically denote
this embedding by an inclusion Esk � X. Let �m denote the m–fold cover of the simple Reeb orbit of
least action in @Esk. For curves in X, the constraint <.m/> is imposed by replacing yX with 2X nEsk,
and considering curves with one additional negative puncture which is asymptotic to �m. We define
the moduli space MJ

X
.�CI��/<.m/>E by analogy with MJ

X
.�CI��/<T.m/p>, replacing the local

tangency constraint <T.m/p> with the skinny ellipsoidal constraint <.m/>E . Note that both of these
moduli spaces have the same index, namely

(2-2-1) indD .n� 3/.2� a� b/C 2c�1.A/C

aX
iD1

CZ� .
Ci /�
bX

jD1

CZ� .
�j /� 2n� 2mC 4;

Geometry & Topology, Volume 28 (2024)



Symplectic capacities, unperturbed curves and convex toric domains 1229

where 2n D dimR.X /. Here � is a choice of trivialization (up to homotopy) of the symplectic vector
bundle over each Reeb orbit, c�

1
.A/ is the corresponding relative first Chern class evaluated on A, and

CZ� denotes the Conley–Zehnder index measured with respect to � . Recall that the index does not depend
on the choice of � , even though the individual terms do.

If M is a closed symplectic four-manifold with homology class A2H2.M /, [30, Section 4.1] establishes
an equivalence of signed counts

#MM;A<T.m/p>D #MM;A<.m/>E :

The basic idea is to place the tangency constraint in Esk and stretch the neck along @Esk, and then to argue
that only degenerations of the expected type can arise. Although [30] only proves this in dimension four
in order to invoke an argument which sidesteps any technicalities about gluing curves with tangency
constraints, this is expected to hold for closed manifolds of all dimensions. In the context of a symplectic
cobordism X, it is not quite reasonable to expect in general an equality of signed curve counts

#MJ
X ;A.�

C
I��/<.m/>E D #MJ

X ;A.�
C
I��/<T.m/p>:

Indeed, these counts might not be particularly robust, eg they could depend on J and the embedding
Esk

s
,!X. However, the argument in [30, Theorem 4.1.1] does extend to this setting to prove:

Proposition 2.2.3 If dim X D 4, we have

#MJ
X ;A.�

C
I��/<.m/>E D #MJ

X ;A.�
C
I��/<T.m/p>

provided that the following conditions hold :

(i) The moduli space #MJ
X ;A

.�CI��/<T.m/p> is formally perturbation invariant. (See Section 2.4
below.)

(ii) Each Reeb orbit in �C[�� is nondegenerate and either elliptic or negative hyperbolic.

Indeed, the first condition guarantees that curve counts remain constant over a generic one-parameter
family of almost complex structures (cf Proposition 2.4.2), and the second condition ensures that the
relevant curves count positively (cf Section 5.2 and Remark 5.2.3(ii)).

2.3 Formal curves

In this subsection we introduce the notion of a “formal curve”, which is a convenient device for storing
combinatorial curve data, but without requiring that this data be represented by any actual solution to
the pseudoholomorphic curve equation. We also define “formal buildings”, which are analogous to
pseudoholomorphic buildings but with each pseudoholomorphic curve component replaced by a formal
curve component. This will allow us to discuss “formal perturbation invariance” of moduli spaces in the
next subsection.
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2.3.1 Formal curve components To begin, we define:

Definition 2.3.1 A formal curve component C in a compact symplectic cobordism .X; !/ is a triple
.�C; ��;A/, where

� �C D .
C
1
; : : : ; 
Ca / is a tuple of Reeb orbits in @CX ,

� �� D .
�
1
; : : : ; 
�

b
/ is a tuple of Reeb orbits in @�X ,

� A 2H2.X; �
C[��/ is a homology class, and

� we require the energy EX .C / WDEX .A/D
R
A ! to be nonnegative.

Similarly, a formal curve component C in a strict contact manifold .Y; ˛/ is a triple .�C; ��;A/, where
�C and �� are tuples of Reeb orbits in Y and A 2H2.Y; �

C[��/ is a homology class, and we require
the energy EY .C / WDE.A/D

R
A d˛ to be nonnegative.

We view C as representing a hypothetical genus-zero4 irreducible asymptotically cylindrical curve in yX
or R�Y. Note that a formal curve component also has a well-defined index ind.C /, defined by the same
formula (2-2-1). We will say that a formal curve component in Y is a “trivial cylinder” (or just “trivial”)
if aD b D 1 and �C D �� D .
 / for some Reeb orbit 
 in Y. A formal curve component C is “closed”
if �C D �� D¿, and it is moreover “constant” if EX .C /D 0.

It will also be convenient to speak about formal curve components in X carrying a constraint <T.m/p>

for some m 2 Z�1. Here the constraint <T.m/p> is an extra piece of formal data which has the effect
of decreasing the index by 2n� 4C 2m (here 2nD dimR.X /).

Given a formal curve C D .�C; ��;A/ in X and JX 2 J.X /, we introduce the shorthand notation
MJX

X
.C / WDMJX

X ;A
.�CI��/ for the corresponding space of JX –holomorphic curves representing C . As

before, we will often omit the almost complex structure from the notation. Similarly, if C D .�C; ��;A/

is a formal curve in Y and JY 2 J.Y /, we put MJY

Y
.C / WDMJ

Y;A
.�CI��/. This shorthand also applies

when C carries a local tangency constraint, which is then implicit in, say, the notation MX .C /.

2.3.2 Formal nodal curves and buildings We now extend the above definition in order to model
elements of the SFT compactification. Firstly, a connected formal nodal curve C in X or Y is roughly the
same as a pseudoholomorphic nodal curve, but with each pseudoholomorphic curve component replaced
by a formal curve component. More precisely:

Definition 2.3.2 A connected formal nodal curve C in X (resp. Y ) consists of

� a tree T , and

� for each vertex v of T , a formal curve component Cv in X (resp. Y ).

More generally, we drop the “connected” condition by allowing T to be a forest (ie disjoint union of
trees).

4One could of course extend the definition to allow for higher-genus curves, but we will not need this.
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We view the edges as representing nodes. We say that C is stable if, for each nonconstant component Cv ,
the number of punctures plus the number of edges connected to v is at least three.

Definition 2.3.3 A formal building in X consists of

� formal nodal curves C1; : : : ;Ca in @CX for some a 2 Z�0,

� a formal nodal curve C0 in X , and

� formal nodal curves C�1; : : : ;C�b in @�X for some b 2 Z�0,

such that the tuple of positive Reeb orbits for Ci coincides with the tuple of negative Reeb orbits for
CiC1 for i D�b; : : : ; a� 1. We also assume that the graph given naturally by concatenating the forest of
each level is acyclic.

Similarly, a formal building in Y consists of formal nodal curves C1; : : : ;Ca in Y for some a 2Z�1 such
that the tuple of positive Reeb orbits for Ci coincides with the tuple of negative Reeb orbits for CiC1 for
i D 1; : : : ; a� 1, and such that the underlying graph is acyclic.

We view a formal building as modeling a rational pseudoholomorphic building in X or R�Y, with each
constituent formal nodal curve representing a level. Note that the acyclicity condition ensures total genus
zero and could be relaxed, but for our purposes we will keep it. Such a building has a total homology
class in H2.X I�

C[��/ or H2.Y I�
C[��/, where �C (resp. ��) is the tuple of positive Reeb orbits

of the top (resp. bottom) level. We will say that a formal building is stable if each constituent formal
nodal curve is stable, and no level is a union of trivial cylinders. We denote the set of stable formal
buildings in X whose top (resp. bottom) level has positive (resp. negative) Reeb orbits �C (resp. ��) by
FX ;A.�

CI��/. The set FY;A.�
CI��/ of stable formal buildings in Y is defined similarly.

We denote the formal analogue of MX ;A.�
CI��/<T.m/p> by FX ;A.�

CI��/<T.m/p>. This consists
of two types of stable formal buildings, modeling curves where the marked point z0 mapping to p lies
on a nonconstant component or constant component, respectively. In the first case, we have all stable
formal buildings such that one of the components in X is formally endowed with a constraint <T.m/p>.
In the second case, we have all stable formal buildings such that some constant component C0 in X is
formally endowed with a constraint <p>, and the nearby nonconstant components C1; : : : ;Ca (ie those
nonconstant components which are nodally connected through constant components to C0) are formally
endowed with constraints <T.m1/p>; : : : ;<T.ma/p>, respectively, such that m1 C � � � C ma � m

(cf Section 2.2). Note that the extra constraint <p> is taken into account as a marked point when
formulating stability, whereas the constraints <T.m1/p>; : : : ;<T.ma/p> do not affect stability since
they lie on nonconstant components.

2.3.3 Formal covers Next, we define the formal analogue of multiple covers of pseudoholomorphic
curves. Let X be a symplectic filling, and let � D .
1; : : : ; 
a/ and � D .x
1; : : : ; x
xa/ be tuples of Reeb
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orbits in Y WD @X. Let C D .�;¿;A/ and C D .�;¿;A/ be formal curve components in X satisfying
constraints <T.m/p> and <T. xm/p>, respectively. We say that C is a �–fold formal cover of C if
there exist

� a sphere † with marked points .z0; : : : ; za/,

� a sphere † with marked points .xz0; : : : ;xzxa/, and

� a �–fold branched cover � W†!†

such that

� ��1.fxz1; : : : ;xzxag/D fz1; : : : ; zag,

� �.z0/D xz0,

� for each i D 1; : : : ; a, 
i is the �i–fold cover of x
j , where j is such that �.zi/D xzj and �i is the
ramification order of � at zi , and

� we have � xm�m, where � is the ramification order of � at z0.

A formal curve component is simple if it cannot be written as a nontrivial (ie with � � 2) formal cover of
any other formal curve component.

2.4 Formal perturbation invariance

The following is our main criterion for establishing upper bounds and proving stabilization for the
capacities defined in Section 3.

Definition 2.4.1 Let X be a Liouville domain with nondegenerate contact boundary Y, and let C be an
index zero simple formal curve component in X with positive asymptotics � D .
1; : : : ; 
a/, homology
class A 2H2.X; �/, and carrying a constraint <T.m/p> for some m 2 Z�1. We say that C is formally
perturbation invariant if there exists a generic JY 2 J.Y / such that the following holds. Suppose that
C 0 2 FX ;A.�/<T.m/p> is any stable formal building satisfying:

(A1) Each nonconstant component of C 0 in X is a formal cover of some formal curve component C 0

with ind.C 0/� �1.

(A2) Each nonconstant component of C 0 in Y is a formal cover of some formal curve component C 0

which is either trivial or else satisfies ind.C 0/� 1.

Then either

(B1) C 0 consists of a single component, ie C 0 D C , or else

(B2) C 0 is a two-level building, with bottom level in X consisting of a single component CX which is
simple with index �1, and with top level in Y represented by a union of some trivial cylinders
with a simple index 1 component CY in R�Y ; moreover we require that MJY

Y
.CY / is regular and

satisfies #MJY

Y
.CY /=RD 0.
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More generally, if C is any formal curve component in X, we say that it is formally perturbation invariant
if it is a formal cover of an index zero simple formal curve component C which is formally perturbation
invariant as above.

We will also say that the associated moduli space MX .C / is formally perturbation invariant if the formal
curve component C is. Roughly, this means that for “purely formal reasons” the moduli space MX .C /

cannot degenerate in a generic one-parameter family. More precisely, the condition is “formal in X but
not in Y ”, ie it takes into account pseudoholomorphic curves in R � Y (via the last condition about
MJY

Y
.CY /) but only formal curves in X.5 We will also say that C is “formally perturbation invariant with

respect to JY ” when we wish to emphasize the role of JY in Definition 2.4.1.

The following is a consequence of structure transversality and gluing techniques for simple curves:

Proposition 2.4.2 Let X be a Liouville domain with nondegenerate contact boundary Y, and let C be
a simple index-zero formal curve component X which carries a local tangency constraint <T.m/p>.
Assume that C is formally perturbation invariant with respect to some generic JY 2 J.Y /. Then the
associated moduli space MJX

X
.C / is regular and finite for generic JX 2 JJY .X ID/, and moreover the

signed count #MJX

X
.C / is independent of JX provided that MJX

X
.C / is regular.

Proof If JY 2 J.Y / and JX 2 JJY .X ID/ are generic, it follows by standard transversality techniques
(cf [40, Section 8]) that

� every simple JY –holomorphic curve component in R�Y is either trivial or else has index at least
one, and

� every simple JX –holomorphic curve component in yX has nonnegative index.

In particular, since C is simple, MJX

X
.C / is regular and hence a zero-dimensional smooth oriented

manifold. It also follows by formal perturbation invariance of C and the SFT compactness theorem
(plus the discussion in Section 2.2) that we must have MJX

X
.C /DMJX

X
.C /, whence MJX

X
.C / is finite.

Indeed, any element C 0 of MJX

X
.C / defines a stable formal building in FX ;A.�/<T.m/p> satisfying

(A1) and (A2), and since (B2) is impossible when JX is regular we must have C 0 2MJX

X
.C /.

Now assume that J0;J1 2 JJY .X ID/ are chosen such that MJi

X
.C / is regular for i D 0; 1, and let

fJtgt2Œ0;1� be a generic one-parameter family in JJY .X ID/ interpolating between them. Standard
transversality techniques imply that M

fJt g

X
.C / is regular and hence a smooth oriented one-dimensional

manifold. By formal perturbation invariance and the SFT compactness theorem, the compactification
M
fJt g

X
.C / (defined similarly to Definition 2.2.1) is a smooth cobordism between MJ0

X
.C / and MJ1

X
.C /, with

possibly some additional boundary configurations as in (B2). Our goal is to prove #MJ0

X
.C /D #MJ1

X
.C /.

Note that this would be immediate if there were none of these additional boundary configurations.

5In our application, CY will occur as a low-energy cylinder between an elliptic orbit ei;j and the corresponding hyperbolic
orbit hi;j in @ zX�; cf Lemma 5.1.3 below.
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Each of these additional boundary configurations occurs at some time tb 2 .0; 1/ and consists of a two-level
building, with

� a top-level JY –holomorphic curve in R � Y having a single nontrivial component CY , which
satisfies ind.CY /D 1 and is such that MJY

Y
.CY / is regular with #MJY

Y
.CY /=RD 0, and

� bottom level having a single component CX , which has index �1 and is simple.

By standard transversality techniques we can assume that CX is regular in the parametrized sense.

We now invoke SFT gluing, using for instance the general formulation given in [32, Theorem 2.54]; see
also [34, Section 2.5.3] for the simpler Morse homology analogue of our setting. For ease of discussion
let us make the following simplifying assumptions:

� All of the additional boundary configurations occur at the same time tb 2 .0; 1/.

� All of these configurations involve the same �1 component CX .

� MJY

Y
.CY /=R consists of just two elements CY;1;CY;2 that have opposite signs.

For i D 1; 2, gluing realizes the configuration .CY;i ;CX / as an end of the moduli space M
fJt g

X
.C /, with

gluing applying for jt � tbj sufficiently small and either t < tb or t > tb (but not both). That is, an end of
the moduli space M

fJt g

X
.C / with ˙.t � tb/ > 0 is compactified by the point .CY;i ;CX / at t D tb , and it

does not extend to ˙.t � tb/ < 0.

We assume orientation choices have been made as in Section 5.2. Together with the canonical ori-
entation on Œ0; 1� this induces an orientation on the one-dimensional manifold M

fJt g

X
.C /, and hence

also its compactification M
fJt g

X
.C /, such that MJ0

X
.C / appears as a negative boundary component (ie

its sign as a boundary point is the opposite of its sign coming from the orientation on MJ0

X
.C /), and

similarly MJ1

X
.C / appears as a positive boundary component. The curves CY;i ;CX also inherit signs

".CY;i/; ".CX / 2 f�1; 1g, and by gluing compatibility the sign of each configuration .CY;i ;CX / as a
boundary point of M

fJt g

X
.C / matches the product sign ".CY;i/".CX /. Concretely, the sign associated with

the boundary orientation of a boundary point on an oriented one-manifold is positive or negative according
to whether the orientation points in the outgoing or incoming direction, respectively. Since CY;1 and
CY;2 have opposite signs, we have also ".CY;1/".CX /¤ ".CY;2/".CX /, and hence as boundary points
the configurations .CY;1;CX / and .CY;2;CX / have opposite orientations. We then have four possibilities:

(i) One gluing applies for t < tb with the corresponding boundary point outgoing, while the other
gluing applies for t > tb with the corresponding boundary point incoming.

(ii) One gluing applies for t < tb with the corresponding boundary point incoming, while the other
gluing applies for t > tb with the corresponding boundary point outgoing.

(iii) Both gluings apply for t < tb , with one corresponding boundary point incoming and the other
outgoing.

(iv) Both gluings apply for t > tb , with one corresponding boundary point incoming and the other
outgoing.
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In case (i), by following the cobordism we get a sign-preserving identification of MJ1

X
.C / with MJ0

X
.C /;

case (ii) is similar. In case (iii), we get a sign-preserving identification of MJ0

X
.C / with MJ1

X
.C /, plus

two extra points of opposite signs; case (iv) is similar. In any case, #MJ0

X
.C /D #MJ1

X
.C /.

Remark 2.4.3 One could imagine defining a weaker condition than Definition 2.4.1, which is neither
formal in X nor in Y. However, this would not suffice for our proof of stabilization (see Section 3.7),
since a priori there could be certain bad degenerations which are ruled out in dimension four for reasons
which do not carry over to higher dimensions.

One could also imagine defining a stronger condition, which is formal in both X and Y. However,
this would be insufficient for our study of convex toric domains, since “low-energy cylinders” joining
an elliptic to a corresponding hyperbolic orbit always occur in the perturbed full rounding R� @ zX�;
cf Lemma 5.1.3.

3 The capacity zgk

In this section we define the main object of study in this paper and establish some of its fundamental
properties, in particular proving Theorem 1.2.2. In Section 3.1 we give the precise definition of zgk and
point out its invariance properties. We then briefly compare zgk with its SFT analogue in Section 3.4.
Sections 3.2 and 3.5 cover the symplectic embedding monotonicity and closed-curve upper bound
properties, while the proof of the stabilization property occupies Sections 3.6 and 3.7.

3.1 Definition and basic properties

Given a Liouville domain .X; �/ and a positive constant c 2R>0, we use the shorthand c �X to denote
the Liouville domain .X; c�/.

Definition 3.1.1 Let X be a Liouville domain with nondegenerate contact boundary, and let D be a
smooth local symplectic divisor passing through p 2 Int X. We put

zgk.X / WD sup
J2J.X ID/

inf
�

A@X .�/;

where the infimum is over all tuples � D .
1; : : : ; 
b/ of Reeb orbits such that

MJ
X .�/<T.k/p>¤¿:

Here we put A@X .�/ WD
Pa

iD1 A@X .
i/, which is equivalently the energy of any curve with positive
ends � . Recall that MJ

X
.�/<T.k/p> and J.X ID/ are defined in Section 2.2. We emphasize that the

moduli spaces MJ
X
.�i/<T.ki /p> are not required to be regular or to have index zero.

Remark 3.1.2 In Definition 3.1.1, we could alternatively put

zgk.X / WD sup
J2J.X ID/

inf
�1;:::;�a

.A@X .�1/C � � �CA@X .�a//;
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where the infimum is over all tuples �1D .

1
1
; : : : ; 
 1

b1
/; : : : ; �aD .


a
1
; : : : ; 
 a

ba
/ of Reeb orbits in @X for

which the moduli spaces MJ
X
.�1/<T.k1/p>; : : : ;MJ

X
.�a/<T.ka/p> are nonempty and k1; : : : ; ka 2

Z�0 satisfy k1 C � � � C ka � k. This definition is equivalent and conceptually (if not notationally)
cleaner. Indeed, consider some C 2MJ

X
.�/<T.k/p>. If the marked point z0 mapping to p lies on a

nonconstant component C0, then we simply note that C0 lies in MJ
X
.� 0/<T.k/p> for some tuple of

Reeb orbits � 0 satisfying A@X .�
0/�A@X .�/. On the other hand, if z0 lies on a ghost component C0,

then as in Definition 2.2.1 we can consider the nearby nonconstant components Ci 2MJ
X
.�i/<T.ki /p>

for i D 1; : : : ; a, and we necessarily have
Pa

iD1 A@X .�i/�A@X .�/ and
Pa

iD1 ki � k.

Conversely, any tuple of curves as above can viewed as an element of the compactified moduli space
considered in Definition 3.1.1.

The quantity zgk.X / is manifestly independent of any choice of almost complex structure, and the scaling
property zgk.X; �!/D �zgk.X; !/ is immediate from the corresponding property for symplectic action.
The nondecreasing property zg1 � zg2 � zg3 � � � � also follows directly, since by definition any curve
satisfying the constraint <T.k/p> for k 2 Z�2 also satisfies the constraint <T.k�1/p>. Note that the
subadditivity property in Theorem 1.2.2 is also immediate from Definition 3.1.1.

A priori zgk does depend on the choice of local divisor D, but we have:

Lemma 3.1.3 Let X be a Liouville domain with nondegenerate contact boundary. Then zgk.X / is
independent of the choice of point p 2 Int X and the local divisor D.

Proof If p and D are fixed, then there is a contractible family of choices for JD . Further, given
two local symplectic divisors D;D0 near p;p0 2 Int X respectively, using Moser’s trick we can find
a symplectomorphism ˆ W X ! X which is the identity near @X and which maps the germ of D

near p to the germ of D0 near p0. This induces a bijection J.X ID/ ��! J.X ID0/ sending J to
ˆ�J WD .dˆ/ ıJ ı .dˆ/�1, and we get a corresponding bijection

MJ
X <T.k/p>.�/ ��!Mˆ�J

X
<T.k/p>.�/

sending C to ˆ ıC .

In the next subsection we prove that zgk.X /� zgk.X
0/ whenever X;X 0 are Liouville domains of the same

dimension with nondegenerate contact boundaries for which there is a symplectic embedding X
s
,!X 0.

Taking this on faith for the moment, we extend the definition of zgk to all symplectic manifolds:

Definition 3.1.4 If M is any symplectic manifold, we put

zgk.M / WD sup
X

zgk.X /;

where the supremum is over all Liouville domains X with nondegenerate contact boundary for which
there exists a symplectic embedding X

s
,!M.
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Evidently the above definition is consistent with Definition 3.1.1 when X is a Liouville domain with
nondegenerate contact boundary (assuming Proposition 3.2.1 below). It is also immediate that zgk.M / is
a symplectomorphism invariant; in particular, in the case of a Liouville domain .X; �/, zgk.X / depends
on the symplectic form d� but not on its primitive �.

Remark 3.1.5 (local tangency versus skinny ellipsoidal constraints) In light of Section 2.2, to first
approximation we can trade (at least in dimension four) the local tangency constraint <T.m/p> in
Definition 3.1.1 with a skinny ellipsoidal constraint <.m/>E . However, the resulting invariant is
not immediately equivalent without additional assumptions, and in fact our proof of monotonicity in
Section 3.2 does not a priori apply to skinny ellipsoidal constraints due to the possibility of extra negative
ends which bound pseudoholomorphic planes in lower levels. Nevertheless, it will be fruitful to utilize
skinny ellipsoidal constraints in Section 5 when computing zgk for convex toric domains, and in that
setting the relevant moduli spaces are sufficiently nice that Proposition 2.2.3 applies.

3.2 Monotonicity under symplectic embeddings

Proposition 3.2.1 Let X and X 0 be Liouville domains of the same dimension with nondegenerate
contact boundaries , and suppose there is a symplectic embedding X

s
,! Int X 0. Then for k 2 Z�1 we

have zgk.X /� zgk.X
0/.

Proof Let � W X s
,! Int X 0 be a symplectic embedding, let D be a local symplectic divisor near p 2

Int X, and put p0 WD �.p/ and D0 WD �.D/. Given J 2 J.X ID/, let J 0 2 J.X 0;D0/ be an admissible
almost complex structure on yX 0 which restricts to ��J on �.X /. Let fJ 0tgt2Œ0;1/ be a family of almost
complex structures in J.X 0ID0/ which realizes neck stretching along @�.X /, with J 0

0
D J 0. By definition

of zgk.X
0/, for each t 2 Œ0; 1/ there is some collection of Reeb orbits � t D .
 t

1
; : : : ; 
 t

k
/ in @X 0 satisfying

A@X 0.�
t /� zgk.X

0/ and M
J 0t
X 0
.� t /<T.k/p0>¤¿. Since @X 0 has nondegenerate Reeb orbits, there are

only finitely many Reeb orbits of action less than any given value, and hence we can find an increasing
sequence t1; t2; t3; : : : 2 Œ0; 1/ with limt!1 ti D 1 such that � ti D � t1 is independent of i . By the SFT
compactness theorem there is some element in the compactified moduli space M

fJ 0t g

X 0
.� t1/<T.k/p0>

corresponding to t D 1. This is a pseudoholomorphic building in the broken cobordism X j} .X 0 nX /,
and in particular by looking at the components mapping to X we get an element in MJ

X
.� t1/<T.k/p>

with energy at most zgk.X
0/. Since J was arbitrary, we then have zgk.X /� zgk.X

0/.

Remark 3.2.2 Fix any J@X 0 2 J.@X 0/, and put

zg
J@X 0

k
.X 0/ WD sup

JX 02JJ@X 0 .X 0/

inf
�

A@X 0.�/;

the infimum taken over all tuples �D .
1; : : : ; 
a/ of Reeb orbits in @X 0 for which M
JX 0

X 0
.�/<T.k/p>¤¿.

In other words, zgJ@X 0

k
.X / is defined just like zgk.X

0/ except that we take the supremum over almost
complex structures having fixed form on the cylindrical end. Then the above proof actually shows that
we have zgk.X /� zg

J@X 0

k
.X 0/.
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As a consequence of the above remark, by considering symplectic embeddings of X into a slight
enlargement of itself we have:

Corollary 3.2.3 For any Liouville domain X with nondegenerate contact boundary and any J@X 2J.@X /,
we have zgJ@X

k
.X /D zgk.X /.

The symplectic embedding monotonicity property of Theorem 1.2.2 is now an immediate consequence of
Proposition 3.2.1 and Definition 3.1.4:

Corollary 3.2.4 If M and M 0 are symplectic manifolds of the same dimension with a symplectic
embedding M

s
,!M 0, then we have zgk.M /� zgk.M

0/ for any k 2 Z�1.

Remark 3.2.5 (i) By a standard observation, it also follows that zgk is continuous with respect to C 0

deformations of X within yX .

(ii) One could also in principle directly extend Definition 3.1.1 to include all (not necessarily ex-
act) symplectic fillings with nondegenerate contact boundary. However, a priori our proof of
Proposition 3.2.1 does not extend, since in principle there could be infinitely many homology
classes with bounded energy.

3.3 Word-length filtration

As in [37], we can also define a refinement zg�l
k

of zgk for any k; l 2Z�1 by restricting the allowed number
of positive ends. This gives a more general framework, which includes, at least for four-dimensional
convex toric domains, both fzgkg and fcGH

k
g as special cases; see Section 5.6 for more details.

Definition 3.3.1 Let X be a Liouville domain with nondegenerate contact boundary, and let D be a
smooth local symplectic divisor passing through p 2 Int X. We put

zg�l
k
.X / WD sup

J2J.X ID/

inf
�

A@X .�/;

the infimum taken over all tuples �D .
1; : : : ; 
a/ of Reeb orbits in @X for which MJ
X
.�/<T.k/p>¤¿,

and such that a� l .

With only minor modifications, our proof of Theorem 1.2.2 also gives the following:

Theorem 3.3.2 For each k; l 2Z�1, zg�l
k

is independent of the choice of local divisor and is a symplecto-
morphism invariant. It satisfies the following properties:

� Scaling It scales like area , ie zg�l
k
.M; �!/D �zg�l

k
.M; !/ for any symplectic manifold .M; !/

and � 2R>0.

� Nondecreasing We have zg�l
1
.M /� zg�l

2
.M /� zg�l

3
.M /� � � � for any symplectic manifold M.
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� Generalized Liouville embedding monotonicity Given a pair of equidimensional Liouville
domains X and X 0, and a generalized Liouville embedding of X into X 0 (see Remark 1.2.5), we
have zg�l

k
.X /� zg�l

k
.X 0/.

� Stabilization For any Liouville domain X we have zgk.X �B2.c//D zgk.X / for any c � zgk.X /,
provided that the hypotheses of Proposition 3.7.1, substituting zgk with zg�l

k
, are satisfied.

Compared with Theorem 1.2.2, for a general symplectic embedding X
s
,! X 0 there may be curves in

X 0 nX having no positive ends, and a curve with l positive ends in X 0 may produce a curve in X with a
greater number of positive ends after neck stretching, since the top of the limiting building might contain
a component with no positive ends. Generalized Liouville embeddings carry an additional an exactness
condition which precisely rules out curves in X 0 nX without positive ends via Stokes’ theorem.

Note that if X 2n�4 is a star-shaped domain then a symplectic embedding X
s
,! X 0 is automatically a

generalized Liouville embedding, but this does not necessarily extend to cases with H 1.@X IR/ nontrivial.
Moreover, if @X has no contractible Reeb orbits then we have zg�1

k
.X /D cGH

k
.X /D1, and hence these

capacities contain no quantitative information; zg�l
k
.X / is more often finite for l sufficiently large.

3.4 Comparison with SFT counterpart

At first glance the definitions of zgk and gk look rather different, despite involving the same types
of curves. Recall that gk.X / is defined in [37] using the L1 algebra structure on the linearized
contact homology chain complex CHlin.X / of a Liouville domain X, along with the induced L1

homomorphism "lin<T.k/p> W CHlin.X /!K defined by counting rational curves with a local tangency
constraint <T.k/p>. In brief, gk.X / is the minimal action of an element of the bar complex BCHlin.X /

which is closed under the bar differential and whose image under the chain map BCHlin.X /!K induced
by "lin<T.k/p> is nonzero. Here BCHlin.X / as a vector space is the (appropriately graded) symmetric
tensor algebra on the vector space CHlin.X / spanned by good Reeb orbits in @X, and the bar differential
is built out of the L1 structure maps `1, `2 and `3 which count pseudoholomorphic buildings in R� @X,
anchored in X, with one negative and several positive ends. In particular, this definition of gk.X / typically
requires virtual perturbations in order to set up the chain complex CHlin.X / along with its L1 structure,
and its basic invariance and structural properties follow naturally from SFT functoriality.

The precise virtual perturbation framework is not important for our present discussion, but we mention
two important axioms:

(a) a structure coefficient can only be nonzero if the corresponding SFT compactified moduli space is
nonempty, and

(b) if the naive pseudoholomorphic curve count for a given structure coefficient is already regular and
there are other representatives in its corresponding SFT compactified moduli space, then this count
remains valid after turning on virtual perturbations.
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It is then easy to deduce that zgk.X /� gk.X / for any Liouville domain X. Indeed, for any J , by (a) and
the definition of gk.X / there must be a pseudoholomorphic building C 2MJ

X
.�/<T.k/p> having total

energy at most gk.X /. Since J is arbitrary, we therefore have zgk.X /� gk.X /.

In principle we could have zgk.X / < gk.X /, if all curves in yX with energy zgk.X / are undetected
by gk.X /. However, this cannot occur if zgk.X / is carried by a suitably nice moduli space, eg as in
Proposition 3.7.1. In particular, it follows from the results of this paper that zgk.X /D gk.X / whenever
X is a four-dimensional convex toric domain; we are not currently aware of any Liouville domain X for
which zgk.X /¤ gk.X /.

3.5 Upper bounds from closed curves

Here we prove the closed curve upper bound part of Theorem 1.2.2. Recall from the introduction that
NM;A<T.k/p>¤ 0 counted the number of curves in class A that are tangent to the local divisor D at p

to order k.

Proposition 3.5.1 If .M; !/ is a closed semipositive symplectic manifold satisfying NM;A<T.k/p>¤0

for some A 2H2.M /, then we have zgk.M /� Œ!� �A.

Proof This is quite similar to the proof of Proposition 3.2.1. It suffices to show that for any Liouville
domain X with nondegenerate contact boundary which admits a symplectic embedding � WX s

,!M, we
have zgk.X /� Œ!� �A. Given J 2 J.X ID/, we extend ��J to a compatible almost complex structure J 0

on M. Let fJtgt2Œ0;1/ be a family of compatible almost complex structures on M realizing neck stretching
along @�.X /, with J0D J 0. Note that MJt

M;A
<T.k/p> is nonempty for all t 2 Œ0; 1/, since otherwise this

moduli space would be empty and in particular regular, contradicting the invariance of NM;A<T.k/p>;
see [30, Section 2.2]. Then, as in the proof of Proposition 3.2.1, the SFT compactness theorem implies
that there must be a limiting building corresponding to t D 1, and in particular in the bottom level we can
find C 2MJ

X
.�/<T.k/p> for some tuple of Reeb orbits satisfying A@X .�/� Œ!� �A.

3.6 Stabilization lower bounds

Proposition 3.6.1 For any Liouville domain X, we have zgk.X �B2.c//� zgk.X / for all k � 1 provided
that c � zgk.X /.

As a preliminary step, the next lemma allows us to identify the Reeb orbits after stabilizing (and suitably
smoothing the corners) with those before stabilizing, plus additional orbits of large action. We denote by
�std D

1
2
.x dy �y dx/ the standard Liouville form on B2.c/. Given a Liouville form �, recall that the

Liouville vector field V� is characterized by d�.V�;�/D �.

Suppose that .Y; ˛/ is a strict contact manifold and Z � Y is a submanifold of codimension 2 such
that ˛jZ is a contact form on Z and the Reeb vector field R˛ is tangent to Z. Let �Y WD ker˛
and �Z WD ker˛jZ denote the contact hyperplane distributions of Y and Z, respectively. Since �Z
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is a subbundle of �Y , we can consider its orthogonal complement �?
Z

with respect to the symplectic
form d˛j�Y

. Let 
 be a nondegenerate Reeb orbit of Y which lies in Z, and let � be a trivialization of the
symplectic vector bundle 
 ��Y which splits as � D �ZC�

?
Z

with respect to the direct-sum decomposition
�Y D �Z ˚�

?
Z

. Since the latter decomposition is also preserved by the linearized Reeb flow of Y along 
 ,
the trivialization �?

Z
in the normal direction identifies the linearized Reeb flow along 
 ��?

Z
with a loop of

2� 2 symplectic matrices which starts at the identity and ends at a matrix without 1 as an eigenvalue.
Such a loop has a well-defined Conley–Zehnder index, called the normal Conley–Zehnder index of 
 ,
denoted by CZ?

�?
Z

.
 /.

In the following we show that Reeb orbits of @X can be viewed as Reeb orbits in a suitable smoothing of
@.X �B2.c//, and we apply the above discussion with Y given by the smoothing of @.X �B2.c// and
Z given by @X. In this situation, there is a canonical trivialization of �?

Z
, coming from its identification

with the normal bundle of Z � Y, which in turn is naturally identified with the restriction to Z of
f0g �TB2.c/� TX �TB2.c/. By default we will always measure normal Conley–Zehnder indices by
working with a split trivialization � D �ZC�

?
Z

of 
 ��Y , where �?
Z

comes from this canonical trivialization
of �?

Z
.

Lemma 3.6.2 Let .X; �/ be a Liouville domain. For any c; � 2R>0, there is a subdomain with smooth
boundary zX �X �B2.c/ such that

� the Liouville vector field V�CV�std is outwardly transverse along @ zX ,

� X � f0g � zX and the Reeb vector field of @ zX is tangent to @X � f0g, and

� any Reeb orbit of the contact form .�C�std/j@ zX with action less than c � � is entirely contained in
@X � f0g and has normal Conley–Zehnder index equal to 1.

Proof For notational convenience put X1 WDX and X2 WDB2.c/. For i D 1; 2 we denote the associated
Liouville forms by �i , the associated contact forms by ˛i WD �i j@Xi

, and the associated Liouville vector
fields by V�i

. Note that every closed Reeb orbit of @X2 has action at least c.

Recall that we can use the Liouville flow to identify a collar neighborhood Ui of @Xi with .��; 0�� @Xi

for some small � > 0, and under this identification we have �i D eri˛i , where ri denotes the coordinate
on the first factor. Given a smooth function Hi W .��; 0�� @Xi ! R of the form H.ri ;yi/D h.eri / for
some hi W .e

��; 1�!R, the Hamiltonian vector field takes the form XHi
D h0i.e

ri /R˛i
, where R˛i

is the
Reeb vector field of ˛i . Note that for such a Hamiltonian we have V�i

.Hi/D �i.XHi
/D eri h0i.e

ri /.

By considering functions which depend only on the Liouville flow coordinate ri near the boundary and
are otherwise sufficiently small, we can find smooth functions Hi WXi! Œ0; 1� for i D 1; 2 such that

(a) @Xi DH�1
i .1/ is a regular level set,

(b) H�1
i .0/D fpig is a nondegenerate minimum, where we assume p2 D 0 2 B2.c/,

(c) on Ui � .��; 0�� @Xi we have Hi.ri ;yi/D hi.e
ri / for some hi W .e

��; 1�! Œ0; 1� with h0i > 0,

Geometry & Topology, Volume 28 (2024)



1242 Dusa McDuff and Kyler Siegel

(d) on Xi nUi we have jV�i
.Hi/j<

1
2
�, and

(e) we have H�1
i .Œı; 1�/� Ui for some small ı > 0, and on H�1

i .Œı; 1�/ we have V�i
.Hi/ > cC �.

We can further arrange that

(f) V�2
.H2/ > 0 on B2.c/ n f0g,

(g) for every T –periodic 
2 orbit of XH2
with T � 1, we have

R

2
�2 > c � 1

2
�, and

(h) using standard symplectic coordinates x;y, on a small neighborhood of 0 2 B2.c/ we have

H2.x;y/D
1
2
�.x2

Cy2/;

with � < � .

Put zX WD f.x1;x2/ 2X1 �X2 jH1.x1/CH2.x2/� 1g. It follows from the above properties that zX has
smooth boundary, and we have

.V�1
CV�2

/.H1CH2/ > 0 along @ zX :

Indeed, consider .x1;x2/2 @ zX . Suppose first that x1 2U1. Then we have .V�1
/x1
.H1/D er1h0

1
.er1/> 0

by (c) and .V�2
/x2
.H2/� 0 by (f). On the other hand, if x1 2X1 nU1, then we must have H1.x1/2 Œ0; ı�

by (e) and j.V�1
/x1
.H1/j<

1
2
� by (d). In this case we have H2.x2/D 1�H1.x1/ 2 Œ1� ı; 1�, whence

.V�2
/x2
.H2/ > cC � and therefore .V�1

/x1
.H1/C .V�2

/x2
.H2/ > 0.

It follows from the above discussion that �C�std is a Liouville form on zX, and in particular it restricts
to a positive contact form on @ zX . Observe that the corresponding Reeb vector field is at each point in
@ zX proportional to the Hamiltonian vector field of H1CH2. In particular, this is tangent to @.X � f0g/,
since along @.X � f0g/ we have XH2

� 0.

We now prove the assertion about actions of Reeb orbits. Suppose that 
 is a T –periodic Reeb orbit of
@ zX for some T 2R>0. Let 
i denote its projection to Xi for i D 1; 2. Note that we have 
i �H�1

i .Ci/

for some Ci 2 Œ0; 1� with C1CC2D 1. If 
2 is constant, then 
 lies in X1�f0g. Otherwise, if C1 2 Œ0; ı�,
then C2 2 Œ1� ı; 1�, and we have

ˇ̌R
�1

1

ˇ̌
< 1

2
T� by (d) and

R
�2

2 >max

�
c� 1

2
�;T .cC �/

�
by (g), and

therefore we have Z



�D

Z

1

�1C

Z

2

�2 >max
�
c � 1

2
�;T .cC �/

�
�

1
2
T� > c � �:

Lastly, if C1 2 Œı; 1� and 
2 is not constant, then if T � 1 we haveZ



��

Z

1

�1 > T .cC �/ > c � �;

whereas if T < 1 then we have Z



��

Z

2

�2 > c � 1
2
� > c � �:
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As for the assertion about normal Conley–Zehnder indices, suppose that 
 is a Reeb orbit in @.X � f0g/
with action T � c. Observe that Reeb vector field on @ zX is given by

1

�1.XH1
/C�2.XH2

/
.XH1

CXH2
/;

and along @.X � f0g/ we have �1.XH1
/ > c C � and �2.XH2

/ D 0. We can therefore identify the
linearized Reeb flow along 
 in the normal direction with the time-T linearized Hamiltonian flow of
.1=�1.XH1

//XH2
at 0. By design, this is rotation by the angle T�=�1.XH1

/. In particular, the Conley–
Zehnder contribution for each factor is 1 provided that we have T�=�1.XH1

/ < � , for which � < �
suffices.

In the sequel, we will denote any Liouville domain zX satisfying the properties of Lemma 3.6.2 for some
� > 0 sufficiently small by X �_B2.c/.

Lemma 3.6.3 Let X be a Liouville domain , and let X �_ B2.c/ be a smoothing of X �B2.c/ as in
Lemma 3.6.2.

(i) Let J 2 J.X �_B2.c// be an admissible almost complex structure on the symplectic completion
of X �_B2.c/ for which yX � f0g is J–holomorphic. Let C be an asymptotically cylindrical J–
holomorphic curve in yX , all of whose asymptotic Reeb orbits are nondegenerate and lie in @X �f0g
with normal Conley–Zehnder index 1. Then C is either disjoint from the slice yX � f0g or entirely
contained in it.

(ii) Let J 2 J.@.X �_B2.c/// be an admissible almost complex structure on the symplectization of
@.X �_B2.c// for which R� @X � f0g is J–holomorphic. Let C be an asymptotically cylindrical
J–holomorphic curve in R�@.X �_B2.c//, all of whose asymptotic Reeb orbits are nondegenerate
and lie in @X � f0g with normal Conley–Zehnder index 1. Then C is either disjoint from the slice
R� @X � f0g or entirely contained in it. Moreover , only the latter is possible of C has at least one
negative puncture.

To prove Lemma 3.6.3, we invoke the higher-dimensional extension of [35]; compare with the exposition
in [31, Section 2]. Namely, let C be an asymptotically cylindrical curve in the symplectic completion of
X �_B2.c/ or the symplectization of @.X �_B2.c//, and let Q denote the divisor yX �f0g or R�@.X �f0g/,
respectively. Assume that each puncture of C is asymptotic to a nondegenerate Reeb orbit in @X � f0g,
and that C is not entirely contained in Q. For each puncture z of C , we can consider the corresponding
asymptotic winding number windz around Q as we approach the puncture, as measured by the canonical
trivialization discussed in the leadup to Lemma 3.6.2.

We will need the following facts:

(a) The curve C intersects Q in only finitely many points, each of which has a positive local intersection
number.
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(b) If z is a positive puncture and 
z is the corresponding asymptotic Reeb orbit, then we have
windz �

�
1
2

CZ?.
z/
˘

.

(c) If z is a negative puncture and 
z is the corresponding asymptotic Reeb orbit, then we have
windz �

˙
1
2

CZ?.
z/
�

.

(d) We have

(3-6-1) push.C / �QD C �Q�
X

z positive
puncture

windzC

X
z negative
puncture

windz;

where push.C / is a pushoff of C whose direction near each puncture is a nonzero constant with
respect to the canonical trivialization of the normal bundle.

Here C �Q and push.C / �Q denote homological intersection numbers, ie the sum of local homological
intersection numbers over all (necessarily finitely many) intersection points. In particular, we have
push.C / �QD 0 since there is an obvious displacement of C from Q which takes the specified form near
each of the punctures.

The last fact (d) is elementary topology. The proof of (a) follows from an asymptotic description of C in
the normal direction near each puncture, which is written in terms of an eigenfunction of the corresponding
normal asymptotic operator. Properties (b) and (c) follow from a characterization of normal Conley–
Zehnder indices in terms of the corresponding normal asymptotic operators, together with bounds on the
winding numbers of their eigenfunctions.

Proof of Lemma 3.6.3 To prove (i), suppose that C is not contained in Q WD yX � f0g. Since each
puncture of C is positively asymptotic to a Reeb orbit in @X � f0g with normal Conley–Zehnder index 1,
using (3-6-1) and (b) we have

0D push.C / �QD C �Q�
X

z positive
puncture

windz � C �Q�
X

z positive
puncture

�
1
2

˘
D C �Q;

and hence C �Q � 0. Since each local intersection between C and Q counts positively, this is only
possible if C is disjoint from Q.

The proof of (ii) is similar. Assume that C is not contained in Q WDR�@X �f0g. Using (3-6-1) we have

0� C �Q�
X

z positive
puncture

�
1
2

˘
C

X
z negative
puncture

˙
1
2

�
D C �QC

X
z negative
puncture

1:

This is only possible if C has no negative punctures and C is disjoint from Q.

Proof of Proposition 3.6.1 We can assume c > zgk.X / and that @X is nondegenerate, since then the
result follows by continuity; cf Remark 3.2.5(i). Let X �_ B2.c/ be a smoothing of X �B2.c/ as in
Lemma 3.6.2, with � > 0 chosen sufficiently small so that c � � > zgk.X /. Let D be a local divisor
near p 2 Int X, and let us take the local divisor zD in X �_ B2.c/ near zp WD .p; 0/ to be of the form
D �B2.ı/�X �_B2.c/ for some small ı > 0.
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Let JX 2J.X ID/ be such that for every tuple of Reeb orbits � satisfying MJX

X
.�/<T.k/p>¤¿, we have

A@X .�/� zgk.X /. Pick zJ 2 J.X �_B2.c/I zD/ such that yX � f0g is zJ–holomorphic with zJ j yX�f0g D JX.

It suffices to show that for any tuple of Reeb orbits � 0 for which M
zJ

X�
_

B2.c/
.� 0/<T.k/p>¤¿, we have

A@.X�
_

B2.c//.�
0/� zgk.X /, since then we have

zgk.X �B2.c//� zgk.X �
_B2.c//� zgk.X /:

Consider C 2 M
zJ

X�
_

B2.c/
.� 0/<T.k/p>. For some a 2 Z�1, let Ci 2 M

zJ
X�
_

B2.c/
.�i/<T.ki /p> for

i D 1; : : : ; a be nonconstant components of C with
Pa

iD1 ki � k and
Pa

iD1 E.Ci/ � E.C / as in
Remark 3.1.2. We need to establish the bound

Pa
iD1 E.Ci/� zgk.X /. If any positive end of some Ci is

not asymptotic to the slice yX � f0g, then the corresponding Reeb orbit must have action at least c � �,
and hence E.Ci/� c � � > zgk.X /. Otherwise, by Lemma 3.6.3, each Ci must be entirely contained in
yX �f0g— note that it cannot be disjoint from the slice due to the local tangency constraint at p 2 yX �f0g.

By our choice of zD, each Ci then corresponds to a JX –holomorphic curve in yX satisfying the constraint
<T.ki /p> with local divisor D, from which the desired bound readily follows.

3.7 Stabilization upper bounds

In order to prove the stabilization property in Theorem 1.2.2, we need to complement Proposition 3.6.1
by proving an upper bound. Our proof will require some additional assumptions, which amount to saying
that the capacity zgk.X / is represented by elements in a well-behaved moduli space of curves. Indeed,
without such an assumption, after stabilizing and perturbing the almost complex structure it is conceivable
that all curves with energy equal to zgk.X / disappear, resulting in zgk.X �B2.c// > zgk.X /.

Proposition 3.7.1 Let X be a Liouville domain , put Y WD @X, and let C be a simple index-zero formal
curve component in X with constraint <T.k/p> for some k 2Z�1, such that EX .C /Dzgk.X /. Assume
further that the following conditions hold :

(a) C is formally perturbation invariant with respect to some generic JY 2 J.Y / (cf Section 2.4).

(b) The moduli space MJX

X
.C / is regular and finite with nonzero signed count #MJX

X
.C / for some

JX 2 JJY .X ID/.

Then we have zgk.X �B2.c//� zgk.X / for any c 2R>0. The same conclusion also holds if we instead
assume that the hypotheses hold with k replaced by some divisor l of k such that zgk.X /D .k= l/zgl.X /.

The last part of Proposition 3.7.1 follows easily from the existence of multiple covers, or as a special case
of subadditivity.

Proof By monotonicity of zgk under symplectic embeddings, it suffices to prove establish zgk. zX /�zgk.X /

for zX WDX �_B2.c/ with c arbitrarily large. In particular, we can assume that any Reeb orbit in zY WD @ zX
which is not contained in Y � f0g has action greater than zgk.X /.

Let J zY 2 J. zY / be an almost complex structure which agrees with JY on R�Y �f0g. By Corollary 3.2.3
we have zgk. zX /D zg

JzY
k
. zX /, so it suffices to prove zgJzY

k
. zX /� zgk.X /.
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Let J zX 2 JJzY . zX I zD/ be an admissible almost complex structure which agrees with JX on yX �f0g. Here
we put zD WDD �B2.ı/, with ı > 0 small as in the proof of Proposition 3.6.1. Since Reeb orbits of Y

can also be viewed as Reeb orbits of zY, C naturally corresponds to a formal curve component zC in zX .
Note that zC is again simple and has index zero, the latter being a consequence of the index formula and
the fact that the Reeb orbits of C have normal Conley–Zehnder index 1 by Lemma 3.6.2.

Moreover, we claim that zC is formally perturbation invariant with respect to J zY . Indeed, let � (resp. z�)
denote the positive asymptotic orbits of C (resp. zC ), let A (resp. zA) denote its homology class, and let
zC 0 2 F zX ; zA.z�/<T.k/p> be a hypothetical stable formal building satisfying conditions (A1) and (A2) of
Definition 2.4.1. By action considerations we can assume that each asymptotic Reeb orbit involved in zC 0

lies in Y � f0g, and hence zC 0 naturally corresponds to a stable formal building C 0 2 FX ;A.�/<T.k/p>.
In particular, by formal perturbation invariance of C , we have either C 0 D C (whence zC 0 D zC ) or else
C 0 is a two-level building as in Definition 2.4.1(B2), with top level consisting of a union of a simple
index-one component CY and possibly some trivial cylinders, and moreover MJY

Y
.CY / is regular and

satisfies #MJY

Y
.CY /=RD 0. Let zCY denote the analogue of CY in zY . By Lemma 3.6.3(ii), every curve

in MJzY
zY
. zCY / must be contained in the slice R�Y � f0g because it has a negative end. In particular, we

have a natural identification
MJzY
zY
. zCY /�MJY

Y
.CY /;

and since each curve in MJzY
zY
. zCY / is also regular by Proposition A.4 we have #MJzY

zY
. zCY /=RD 0. This

establishes the above claim that zC is formally perturbation invariant with respect to J zY .

Invoking now Lemma 3.6.3(i), we have a natural identification

MJ zX
zX
. zC /�MJX

X
.C /;

and the former is also regular by Proposition A.1. In particular, we have #MJ zX
zX
. zC /¤ 0, so we conclude

by Proposition 2.4.2 that M
zJ
zX
. zC /¤¿ for all zJ 2 JJzY . zX I zD/. In particular, it follows that we have

zg
JzY
k
. zX /�E zX .

zC /DEX .C /D zgk.X /;

as needed.

4 Fully rounding, permissibility and minimality

In this section we develop our main tools for getting lower bounds on the capacities of convex toric
domains. In Section 4.1 we explain the fully rounding procedure, which standardizes the Reeb dynamics.
In Section 4.2 we discuss the extent to which curves are obstructed by the relative adjunction formula and
writhe bounds. Lastly, in Section 4.3 we analyze those words of Reeb orbits having minimal action for a
given index. The proof that these minimal action words can all be represented by curves is deferred to
Section 5.
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4.1 The fully rounding procedure

We consider a four-dimensional6 convex toric domain, ie a subdomain of C2 of the form X� WD �
�1.�/,

where

� � WC2!R2
�0

is the standard moment map defined by �.z1; z2/D .�jz1j
2; �jz2j

2/, and

� ��R2
�0

is a subdomain such that

y� WD f.x1;x2/ 2R2
j .jx1j; jx2j/ 2�g �R2

is compact and convex.

We equip X� with the restriction of the standard Liouville form �std D
1
2
.x dy � y dx/ on C2. For

example, if � � R2 is a rational triangle with vertices .0; 0/; .a; 0/; .0; b/, then X� is the ellipsoid
E.a; b/�C2.

The “fully rounding procedure” replaces X� with a C 0–small perturbation whose Reeb orbits are indexed
in a straightforward way which is essentially insensitive to the shape of �. We proceed in two steps:

(1) Replace X� with another convex toric domain X FR
�
WD X�FR , where �FR �R2

�0
is a C 0–small

perturbation of � with smooth boundary as in [38, Figure 5.1]; see also [16, Section 2.2].

(2) Let zX� denote the result after a further C 0–small smooth perturbation of X FR
�

which replaces each
Morse–Bott circle of Reeb orbits of action less than some large constant K with two nondegenerate
Reeb orbits, one elliptic and one positive hyperbolic; see also [1] or [22, Section 5.3].

In more detail, we assume �FR is bounded by the axes and a smooth function h W Œ0; a�! Œ0; b� for some
a; b 2R>0 such that

� h is strictly decreasing and strictly concave down,

� h.0/D b and h.a/D 0, and

� �� < h0.0/ < 0 and h0.a/ < �1=� for some � > 0 sufficiently small, and h0.0/; h0.a/ 2R nQ.

The Reeb orbits after fully rounding are as follows. For each .i; j / 2 Z2
�1

with � < j= i < 1=�, there is
an S1–family of Reeb orbits lying in the two-torus ��1.pi;j /� @X

FR
�

, where pi;j 2 @�
FR is such that

the outward normal to @�FR at pi;j is parallel to .i; j /. The Reeb orbits in this family are gcd.i; j /–fold
covers of their underlying simple orbits. In @ zX�, these S1–families having action less than K get
replaced by a corresponding pair of nondegenerate elliptic and hyperbolic orbits, which we denote by ei;j

and hi;j , respectively. There are also nondegenerate elliptic Reeb orbits of @X FR
�

which lie in ��1.a; 0/

and ��1.0; b/. We denote these by ei;0 and e0;j , respectively, for j 2Z�1, and we use the same notation
for their natural analogues in @ zX�. We refer to the Reeb orbits of @ zX� of the form ei;j or hi;j as above
as acceptable. Note that each acceptable orbit has action less than K.

6We note that the discussion in this subsection generalizes very naturally to higher dimensions, but for concreteness we restrict
our exposition to dimension four.
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For the acceptable Reeb orbits in zX� described above, we have

(4-1-1) CZ.ei;j /D 2i C 2j C 1 and CZ.hi;j /D 2i C 2j ;

where over each Reeb orbit 
 we use by default the trivialization of the contact distribution that extends
over a disc in @X with boundary 
 .7 There are also three slightly different associated action filtrations.
We denote by k�k�

�
the dual of the norm on R2 whose unit ball is �. Viewing ei;j and hi;j as formal

symbols, we put:

� A�.ei;j /DA�.hi;j /D k.i; j /k
�
�
DmaxEv2�hEv; .i; j /i, the idealized action.

� AFR
�
.ei;j /DAFR

�
.hi;j /D k.i; j /k

�
�FR DmaxEv2�FRhEv; .i; j /i, the fully rounded action.

� zA�.ei;j / and zA�.hi;j / denote the actions of the corresponding Reeb orbits in the domain zX�, the
perturbed action.

We will sometimes refer to any of these as simply “the action” if which one we are referring to is clear
from the context or irrelevant, and we will often omit � from the notation if it is implicit. Note that
zA� is a small perturbation of AFR

�
, although its precise values are sensitive to the choices involved in

constructing zX�.

Let w D 
1 � � � � � 
k be an (unordered) tuple of acceptable Reeb orbits in @ zX�. We will refer to such a
w as a word, and we often view it as simply a collection of formal symbols of the form ei;j or hi;j . As a
convenient shorthand we define the index of w to be the sum

(4-1-2) ind.w/ WD
kX

iD1

CZ.
i/C k � 2:

More generally, for any trivialization � , the Fredholm index of a curve C with top ends on the orbits

1; : : : ; 
k and negative ends on 
 0

1
; : : : ; 
 0

k0
is given by

(4-1-3) ind.u/D��.C /C 2c� .C /C

kX
iD1

CZ� .
i/�

k0X
jD1

CZ� .
 0j /:

Note that the relative first Chern class term in (4-1-3) vanishes if we use the trivialization �ex, so the
formula in (4-1-2) is the contribution of the top end of a curve to its Fredholm index. In particular,
ind.
1�� � ��
k/D 2m is an even integer, a (rational) curve in zX� with top ends 
1; : : : ; 
k and satisfying
the constraint <T.m/p> has Fredholm index zero. As we will see in Section 5, the strong permissibility
condition introduced below ensures that every connected curve with strongly permissible top end is
somewhere injective.

We note also that if w is “elliptic”, meaning that all of the constituent Reeb orbits are elliptic, then its
half-index is given by

1
2

ind.ei1;j1
� � � � � eik ;jk

/D

qX
sD1

.isC js/C k � 1:

7This is the trivialization called �ex in [30, Section 3.2].
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We extend the definition of idealized action to words by putting

A.
1; : : : ; 
k/ WD

kX
iD1

A.
i/;

and similarly for the fully rounded action AFR and perturbed action zA. We will say that a word w is
acceptable if each of its constituent orbits is.

Lemma 4.1.1 We can arrange the fully rounding procedure such that the following further conditions are
satisfied :

(a) For each pair of acceptable orbits ei;j and hi;j , we have

0< zA.ei;j /� zA.hi;j / <
1
2
j zA.ei0;j 0/� zA.ei00;j 00/j

for any pair of acceptable orbits ei0;j 0 and ei00;j 00 with .i 0; j 0/¤ .i 00; j 00/.

(b) Given any two acceptable words w;w0 such that A.w/ <A.w0/, we have also AFR.w/ <AFR.w0/.

(c) Given any two acceptable words such that AFR.w/ <AFR.w0/, we have also zA.w/ < zA.w0/.

(d) For any two distinct acceptable orbits 
 and 
 0, we have zA.
 /¤ zA.
 0/, and moreover the set of
zA values of acceptable orbits which are simple (ie have gcd.i; j / D 1) is linearly independent

over Q.

In the sequel, we will take K > 0 (the upper bound of the energy of acceptable orbits) sufficiently large
and � > 0 (which measures the size of the perturbation) sufficiently small that for action reasons the
unacceptable Reeb orbits play essentially no role; thus without much harm we can pretend that the Reeb
orbits of @ zX� are precisely ei;j for any .i; j /2Z2

�0
with i; j not both zero, and hi;j for any .i; j /2Z2

�1
.

4.2 Strong and weak permissibility

In this subsection we prove Lemma 4.2.2, which states that the positive orbits of a somewhere injective
curve in a fully rounded convex toric domain must be strongly permissible in the sense of the following
definition:

Definition 4.2.1 Consider a word wD 
1�� � ��
q , where for each sD 1; : : : ; q we have that 
i D eis ;js

or 
i D his ;js
for some is; js . We say that w is strongly permissible if one of the following holds:

� w D e1;0 or w D e0;1, or else

� i1; : : : ; iq are not all zero, and similarly j1; : : : ; jq are not all zero.

We say w is weakly permissible if it is either strongly permissible or it is of the form ek;0 or e0;k for
some k 2 Z�2.

Lemma 4.2.2 Let C be an asymptotically cylindrical J–holomorphic rational curve in zX�, where zX� is
a fully rounded four-dimensional convex toric domain and J 2 J. zX�/. If C is somewhere injective , then
its word of positive orbits is strongly permissible.
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Before proving the lemma, we recall how to compute the terms in the relative adjunction formula in the
case of a four-dimensional fully rounded convex toric domain. Following [21, Section 3.3], the relative
adjunction formula for a somewhere injective curve asymptotically cylindrical curve in a four-dimensional
symplectic cobordism reads

c� .C /D �.C /CQ� .C /Cw� .C /� 2ı.C /:

Here � denotes a choice of trivialization over each Reeb orbit, �.C / is the Euler characteristic of
the curve C , and ı.C / is a count of singularities which is necessarily nonnegative. The computation
of the remaining terms for zX� with respect to a certain choice8 of trivialization �Hut, is described in
[22, Section 5.3], which we briefly summarize as follows. Let C be a curve in zX�, and let�D .
1; : : : ; 
k/

denote its positive asymptotic Reeb orbits.

� Relative self-intersection We have Q�Hut.C /DQ�Hut.�/D 2 Area.R/, where:

– For each constituent orbit (including repeats) of � of the form ei;j or hi;j , we consider the
corresponding “edge vector” .j ;�i/.

– We reorder the collection of edge vectors and place them end-to-end so that they form a concave
down path ƒ�R2

�0
from .0;y.ƒ// to .x.ƒ/; 0/ for some x.ƒ/;y.ƒ/ 2 Z�0.

– R is the lattice polygon bounded by ƒ and the axes.

For example, we have Q�Hut.hi;j /DQ�Hut.ei;j /D ij .

� Relative first Chern class We have c�Hut.C /D c�Hut.�/D
Pk

iD1 c�Hut.
i/, where

c�Hut.hi;j /D c�Hut.ei;j /D i C j:

� Asymptotic writhe The term w�Hut.C / measures the total asymptotic writhe of C around its
asymptotic Reeb orbits. Although this is difficult to compute directly, we have the writhe bound
(3.2.9) in [30, Section 3.2]; see [22, Section 5.1] for more details. This is formulated in terms of
the monodromy angle � of each simple Reeb orbit. In particular, since we can take this to be 0 for
the hyperbolic orbits hi;j and positive but very small for the elliptic orbits ei;j , the writhe bound
implies that the top writhe of any curve with positive ends on a word in ei;j ; hi;j is always � 0.

Proof of Lemma 4.2.2 Without loss of generality, consider a somewhere injective curve in zX� with
positive ends .
1; : : : ; 
k/, and suppose that for each s D 1; : : : ; k we have 
s D eis ;0 for some is 2Z�1.
The writhe bound gives w�Hut.C /� 0. Meanwhile, we have c�Hut.C /D

Pk
sD1 is and Q�Hut.C /D 0, and

hence

w�Hut.C /D c�Hut.C /��.C /�Q�Hut.C /C 2ı.C /D

kX
sD1

is � .2� k/C 2ı � 0;

and consequently
Pk

sD1.is C 1/ � 2, which forces k D i1 D 1. A similar calculation rules out the
possibility that is D 0 for all s.

8This is different from the trivialization used before, in which c� .ei;j /D c� .hi;j /D 0.
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Using Lemma 4.2.2, we prove the following lower bound on zgk. zX�/, which will be further refined in the
next subsection.

Lemma 4.2.3 For any four-dimensional convex toric domain X� we have

zgk.X�/�min
w

A.w/;

where we minimize over all weakly permissible words w satisfying ind.w/� 2k.

Proof By C 0–continuity it suffices to prove the analogous lower bound after fully rounding, namely
zgk. zX�/�minw zA.w/, still minimizing over all weakly permissible wordsw satisfying ind.w/�2k. Pick
a generic J 2 J. zX�ID/. By definition of zgk. zX�/, we can find a curve C in zX� satisfying the constraint
<T.k/p> with E.C / � zgk. zX�/ (a priori we should also consider the case a � 2 as in Remark 3.1.2,
but it is easy to check that these do not affect the infimum). Let w denote the word of positive orbits
corresponding to C . Note that the underlying simple curve C is somewhere injective and has nonnegative
index by genericity of J, and therefore its word xw of positive orbits is strongly permissible by Lemma 4.2.2.
Then the word w is also strongly permissible unless we have xw D e1;0 or xw D e0;1. Moreover, we
have ind.C / � � ind.C / � 0 by Lemma 5.1.2 below, where � is the covering index of C over C , and
hence we have ind.w/� 2k. If w is strongly permissible then it is also weakly permissible and we have
zgk. zX�/� zA.w/�minw zA.w/, with the minimum taken over all weakly permissible words w satisfying
ind.w/� 2k.

We can therefore assume xw D e1;0 or xw D e0;1, since otherwise the proof is already complete. Observe
that since C satisfies the constraint <T.k/p>, we must have k � �. Then zA.w/D � zA.e1;0/� zA.ek;0/

or zA.w/D � zA.e0;1/� zA.e0;k/, respectively. Since ek;0 and e0;k are weakly permissible with index 2k,
this again implies the desired result.

Definition 4.2.4 We will denote by wmin the weakly permissible word with minimal zA� value subject
to ind.wmin/D 2k.

Since distinct words have different actions by condition (d) in Lemma 4.1.1, wmin is unique for each k.

4.3 Minimal words

As before, let X� be a four-dimensional convex toric domain with full rounding zX�. In light of
Lemma 4.2.3, we seek to understand which weakly permissible words have minimal zA� value. We begin
with some preliminary lemmas. In the following, put

a WDmaxfx j .x; 0/ 2�FR
g and b WDmaxfy j .0;y/ 2�FR

g

as in Section 4.1.
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Lemma 4.3.1 For any .i; j / 2 Z2
�1

, we have max.ia; jb/ < k.i; j /k�
�FR < ai C jb.

Proof Let EvD .v1; v2/2 @�
FR\R2

>0
be such that k.i; j /k�

�FR DhEv; .i; j /i. Then the line in R2 passing
through Ev and orthogonal to .i; j / is tangent to @�FR, and is given by

f.x;y/ 2R2
j h.x;y/; .i; j /i D hEv; .i; j /i D iv1C j v2 < ai C bj g:

This gives the upper bound. To derive the lower bound, notice that the y intercept is given by .iv1Cj v2/=j ,
and this is strictly greater than b since h W Œ0; a� ! Œ0; b� is strictly concave down. That is, we have
k.i; j /k�

�FR D iv1 C j v2 > jb. Similarly, the x intercept is given by .iv1 C j v2/= i , and by strict
convexity this is strictly greater than a, ie we have k.i; j /k�

�FR D iv1C j v2 > ia.

Lemma 4.3.2 Given distinct pairs .i; j /; .i 0; j 0/ 2 Z2
�0

with i 0 � i and j 0 � j , we have

k.i 0; j 0/k��FR < k.i; j /k
�
�FR :

Proof Without loss of generality we can assume .i 0; j 0/D .i � 1; j /, since the case .i 0; j 0/D .i; j � 1/

is completely analogous and then the general case follows by induction. Let EvD .v1; v2/ 2 @�
FR be such

that k.i � 1; j /k�
�FR D hEv; .i � 1; j /i. Then we have

k.i � 1; j /k��FR D .i � 1/v1C j v2 � iv1C j v2 � k.i; j /k
�
�FR ;

and the inequality is strict unless v1 D 0, which is only possible if .i � 1; j / lies on the y–axis, ie i D 1.
In this case, by Lemma 4.3.1 we have

k.i; j /k��FR D k.1; j /k
�
�FR >max.a; jb/� jb D k.0; j /k��FR D k.i � 1; j /k��FR ;

as desired.

We next show that we can effectively ignore the hyperbolic orbits. Recall that a word w D 
1 � � � � � 
k

is called “elliptic” if each constituent orbit 
i is elliptic.

Lemma 4.3.3 Given any word w which is not elliptic , we can find an elliptic word w0 with

ind.w0/� ind.w/� 1 and zA.w0/ < zA.w/:

Moreover , if w is strongly (resp. weakly) permissible , then we can arrange that the same is true for w0.

Proof Firstly, if 1
2

ind.w/ is not an integer, then we replace some hyperbolic orbit hi;j by ei0;j 0 with
.i 0; j 0/D .i�1; j / or .i 0; j 0/D .i; j �1/. Note that this replacement decreases the index by 1. Moreover,
we have k.i 0; j 0/k�

�FR < k.i; j /k
�
�FR by Lemma 4.3.2, and hence zA.ei0;j 0/ < zA.ei;j / by Lemma 4.1.1(c).

Then by Lemma 4.1.1(a) we also have

zA.ei;j /� zA.hi;j / < zA.ei;j /� zA.ei0;j 0/;

and hence zA.ei0;j 0/ < zA.hi;j /, so this shows that the above replacement strictly decreases zA.

Now suppose there are 2l hyperbolic orbits inw for some l 2Z�0. For l of these replace hi;j with ei;j , and
for the other l replace hi;j with ei�1;j or ei;j�1. Each pair of such replacements strictly deceases zA by the
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same lemma, and the total index is unchanged. For example, we have zA.hi;j �hi0;j 0/ > zA.ei;j �ei0�1;j 0/

using

zA.ei0;j 0/� zA.hi0;j 0/ <
1
2
. zA.ei0;j 0/� zA.ei0�1;j 0// and zA.ei;j /� zA.hi;j / <

1
2
. zA.ei0;j 0/� zA.ei0�1;j 0//:

Lastly, it is straightforward to check that each of these replacements can be done so as to preserve strong
or weak permissibility.

Remark 4.3.4 For future reference, note that in Lemma 4.3.3 if ind.w/D 2k for some k 2 Z�1 then
we must also have ind.w0/D 2k since the index of any elliptic word is even. If particular, if ind.w/� 2k

for some Z�1, then we have ind.w0/� 2k as well.

The following lemma will be our most useful tool for iteratively reducing the action of a word:

Lemma 4.3.5 Assume a> b. Then we have zA.e0;1�ei;j /< zA.eiC1;jC1/ for any .i; j /2Z2
�0
nf.0; 0/g.

Proof Let Ev D .v1; v2/ 2 @�
FR be such that k.i; j /k�

�FR D hEv; .i; j /i. Suppose first that we have
v1; v2� 1. Note that .v1; v2/ lies above or on the line joining .a; 0/ and .0; b/, ie we have av2Cbv1� ab.
Since a> b, we have v1C v2 � b, with equality only if v1 D 0. We then have

AFR.e0;1 � ei;j /D k.0; 1/k
�
�FR Ck.i; j /k

�
�FR D bC iv1C j v2

� v1C v2C iv1C j v2 D hEv; .i C 1; j C 1/i

� k.i C 1; j C 1/k��FR DAFR.eiC1;jC1/;

where the first inequality is strict unless v lies on the y–axis, in which case we must have i D 0. If i D 0,
by Lemma 4.3.1 we have

AFR.e1;jC1/ >max.a; .j C 1/b/� .j C 1/b DAFR.e0;1 � e0;j /:

Thus in any case we have AFR.e0;1 � ei;j / < AFR.eiC1;jC1/, and by Lemma 4.1.1(c) we also have
zA.e0;1 � ei;j / < zA.eiC1;jC1/.

Remark 4.3.6 The assumption a> b is not very restrictive, since if a< b we can simply replace �FR

by its reflection about the diagonal.

Using the above tools, we first consider ways to reduce action without any regard to permissibility:

Lemma 4.3.7 Assume a > b. Given any elliptic word w, there is another elliptic word w0 with
ind.w0/D ind.w/ and zA.w0/� zA.w/, where w takes one of the following forms:

(a) e�i
0;1

for i � 1.

(b) e�i
0;1
� e
�j
1;1

for i � 0 and j � 1.

(c) e�i
0;1
� e0;2 for i � 0.

Moreover , we have zA.w0/ < zA.w/ unless w and w0 differ by a reordering.
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Proof We first iteratively apply Lemma 4.3.5 as many times as possible, replacing eiC1;jC1 with
e0;1 � ei;j if .i; j / 2 Z2

�0
n f.0; 0g. Note that the resulting word contains only orbits of the forms

e1;1; ek;0; e0;k for k � 1, and each replacement strictly decreases zA.

Next, we replace each ek;0 for k � 1 with e0;k . Similarly, we replace each e0;2k�1 such that 2k � 1� 3

with e�k
0;1

, and we replace each e0;2k such that 2k � 4 with e
�.k�1/
0;1

�e0;2. We also replace each e0;2�e0;2

with e0;1 � e0;1 � e0;1. Each of these replacements strictly decreases zA.

The resulting word is of the form e�i
0;1
�e
�j
1;1
�e�k

0;2
for some i; j 2Z�0 and k 2 f0; 1g. By Lemma 4.1.1(d)

we have either zA.e1;1/ < zA.e0;2/ or else zA.e1;1/ > zA.e0;2/. In the former case, we also replace any
remaining e0;2 with e1;1. In the latter case, we replace each e1;1 with e0;2, and then further replace each
e0;2 � e0;2 with e0;1 � e0;1 � e0;1 as above.

The resulting word w0 satisfies ind.w0/D ind.w/ and zA.w0/� zA.w/ and takes one of the forms (a)–(c).
Moreover, up to reordering these are the only cases when none of the above reductions are applicable,
and otherwise we have zA.w0/ < zA.w/.

Next, we investigate reductions in actions which preserve the strong permissibility condition. Perhaps
surprisingly, there are only a few possibilities for minimal words, regardless of �:

Proposition 4.3.8 Assume a > b. Given any strongly permissible elliptic word w with 1
2

ind.w/ > 1,
there is another strongly permissible elliptic wordw0 with ind.w0/D ind.w/ and zA.w0/� zA.w/, wherew0

takes one of the following forms:

(1) e�i
0;1
� e
�j
1;1

for i � 0 and j � 1.

(2) e�i
0;1
� e1;s for i � 0 and s � 2.

(3) e�i
0;1
� e1;0 for i � 1.

Moreover , we have zA.w0/ < zA.w/ unless w and w0 differ by a reordering.

Proof To start, we iteratively apply Lemma 4.3.5 as many times as possibly without spoiling strong
permissibility, and let w D ei1;j1

� � � � � eiq ;jq
denote the resulting word. Note that we must have is � 1

or js � 1 for each s D 1; : : : ; q, since otherwise a further application of Lemma 4.3.5 would be possible.
Furthermore, we can assume without loss of generality that we have i1 ¤ 0 (note that e0;1 is ruled out
using 1

2
ind.w/ > 1).

Next, by applying Lemma 4.3.7 to the subword ei2;j2
�� � ��eiq ;jq

, we obtain a word of the form ei1;j1
�w00,

where w00 is a word having one of the forms (a)–(c). This replacement leaves the index unchanged and
strictly decreases zA (unless it is vacuous). Moreover, by our assumption i1 ¤ 0 and inspection of the
forms (a)–(c), the word ei1;j1

�w00 is strongly permissible. We also have .i1; j1/ 62 Z�2 �Z�2, and
hence .i1; j1/ must be one of the following:

(4-3-1) .1; 0/; .1; 1/; .1; s/; .s; 0/; .s; 1/; where s � 2:
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Our goal is to apply further reductions to ei1;j1
�w00 which decrease zA and leave the index unchanged,

in order to arrive at one of the forms (1)–(3). Observe that for s � 2 we have

k.s� 1; 1/k��FR � k.s� 1; 0/k��FR Ck.0; 1/k
�
�FR D .s� 1/aC b < saD k.s; 0/k��FR ;

so zA.es�1;1/ < zA.es;0/ by Lemma 4.1.1(c). Also, by Lemma 4.3.5 we have zA.e0;1 � es�1;0/ < zA.es;1/

for s � 2. This shows that we can ignore the last two items in (4-3-1).

We now consider each of the remaining possibilities for ei1;j1
�w00 and explain the necessary reductions:

� .i1; j1/D .1; 0/:

(a) e1;0 � e�i
0;1

for i � 1: already of form (3).

(b) e1;0 � e�i
0;1
� e
�j
1;1

for i � 0 and j � 1: replace e1;0 with e0;1, becomes of form (1).

(c) e1;0�e�i
0;1
�e0;2 for i � 0: replace e1;0�e0;2 with e0;1�e1;1 by (i) below, becomes of form (1).

� .i1; j1/D .1; 1/:

(a) e1;1 � e�i
0;1

for i � 1: already of form (1).

(b) e1;1 � e�i
0;1
� e
�j
1;1

for i � 0 and j � 1: already of form (1).

(c) e1;1 � e�i
0;1
� e0;2 for i � 0: replace e1;1 � e0;2 with e1;0 � e0;1 � e0;1 by (ii) below, becomes

of form (3).

� .i1; j1/D .1; s/ for s � 2:

(a) e1;s � e�i
0;1

for i � 1: already of form (2).

(b) e1;s � e�i
0;1
� e
�j
1;1

for i � 0 and j � 1: replace e1;s with e
�.kC1/
0;1

if s D 2k is even, or with
e1;1 � e�k

0;1
if s D 2kC 1 is odd by (iii), becomes of form (1).

(c) e1;s � e�i
0;1
� e0;2 for i � 0: replace e0;2� e1;s with e0;1� e1;sC1 by (iv), becomes of form (2).

We justify the above replacements by applying Lemma 4.3.1 as follows:

(i) We have zA.e1;1 � e0;1/ < zA.e1;0 � e0;2/ since

k.1; 1/k��FR Ck.0; 1/k
�
�FR < k.1; 0/k

�
�FR C 2k.0; 1/k��FR D aC 2b D k.1; 0/k��FR Ck.0; 2/k

�
�FR :

(ii) We have zA.e1;0 � e0;1 � e0;1/ < zA.e1;1 � e0;2/ since

k.1; 0/k��FR C 2k.0; 1/k��FR D aC 2b < k.1; 1/k��FR C 2b D k.1; 1/k��FR Ck.0; 2/k
�
�FR :

(iii) We have zA.e�.kC1/
0;1

/ < zA.e1;2k/ since

.kC 1/k.0; 1/k��FR D .kC 1/b � 2kb < k.1; 2k/k��FR ;

and zA.e1;1 � e�k
0;1
/ < zA.e1;2kC1/ since

k.1; 1/k��FR C kk.0; 1/k��FR � .kC 2/b � .2kC 1/b < k.1; 2kC 1/k��FR :
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(iv) We have zA.e0;1 � e1;sC1/ < zA.e0;2 � e1;s/ since

(4-3-2) k.0; 1/k��FR Ck.1; sC 1/k��FR < 2bCk.1; s/k��FR D k.0; 2/k
�
�FR Ck.1; s/k

�
�FR :

This completes the proof.

Corollary 4.3.9 Given any weakly permissible elliptic word w, there is another weakly permissible
elliptic word w0 with ind.w0/D ind.w/ and zA.w0/� zA.w/, where w0 takes one of the following forms:

(1) e�i
0;1
� e
�j
1;1

for i � 0 and j � 1.

(2) e�i
0;1
� e1;s for i � 0 and s � 2.

(3) e�i
0;1
� e1;0 for i � 1.

(4) e0;s for s � 1.

Moreover , we have zA.w0/ < zA.w/ unless w and w0 differ by a reordering.

We next refine Lemma 4.2.3 so that the minimization involves only words which are elliptic and satisfy
ind.w/D 2k (rather than ind.w/� 2k). This completes the proof of half of Theorem 1.2.8.

Corollary 4.3.10 For any four-dimensional convex toric domain X� we have

zgk.X�/�min
w

A.w/;

where we minimize over all weakly permissible elliptic words w satisfying ind.w/D 2k.

Proof The restriction to elliptic words follows from Remark 4.3.4. Now it suffices to show that given any
weakly permissible elliptic wordw with 1

2
ind.w/>1, there is another weakly permissible elliptic wordw0

with 1
2

ind.w0/D 1
2

ind.w/� 1 and zA.w0/ < zA.w/. After applying Corollary 4.3.9, we can assume that
w has one of the forms (1)–(4), and we then make the following respective replacements:

(1) e�i
0;1
� e
�.j�1/
1;1

� e1;0.

(2) e�i
0;1
� e1;s�1.

(3) e
�.i�1/
0;1

� e1;1.

(4) e0;s�1.

We end this section by proving Corollary 1.2.9, which claims that (in dimension four) zgk.X�/ is the
minimal length `�.@P / of the boundary @P of a convex lattice polygon P such that @P contains exactly
k C 1 lattice points. For the moment we assume Theorem 1.2.8, the proof of which is completed in
Section 5 below.

Proof of Corollary 1.2.9 We first prove that the right-hand side of (1-2-2) is less than or equal to the
right-hand side of (1-2-1); in other words, for each minimal word w there is a lattice polygon P with
`�.@P / less than or equal to A.w/. To this end, let .i1; j1/; : : : ; .iq; jq/ 2Z2

�0
n f.0; 0/g be a minimizer,
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which we can assume takes one of the forms (1)–(4) given in Corollary 4.3.9. Then we have
qX

sD1

.isC js/C q� 1D k and zgk.X�/D

qX
sD1

k.is; js/k
�
�;

and we seek a convex lattice polygon P with `�.@P /�
Pq

sD1
k.is; js/k

�
�

such that j@P \Z2j D kC 1.
In case (4), we take P to be the degenerate polygon given by the convex hull of .0; 0/; .0; k/, which
contains kC1 lattice points and satisfies `�.@P /D k.0; k/k��. In cases (1)–(3), let p1; : : : ;pqC1 2Z2

�0

be the unique ordered list of lattice points such that

(1) the displacement vectors p2�p1; : : : ;pqC1�pq equal .i1; j1/; : : : ; .iq; jq/ up to order,

(2) p1 D .0;�ˇ/ and pqC1 D .˛; 0/ for ˛ D
Pq

sD1
is and ˇ D

Pq
sD1

js , and

(3) the lower boundary G of the convex hull of p1; : : : ;pqC1 is the graph of a convex piecewise linear
function Œ0; ˛�! Œ0;�ˇ�.

Let P �R2
�0

be the convex lattice polygon given by the convex hull of .0; 0/;p1; : : : ;pqC1, ie P is the
union of G with the line segments joining .˛; 0/ to .0; 0/ and .0; 0/ to .0;�ˇ/. Using the definition of
k�k�

�
and the fact that X� is a convex toric domain, observe that for any .vx; vy/ 2R2 we have

(4-3-3) k.vx; vy/k
�
� D k.max.vx; 0/;max.vy ; 0/k

�
�:

In particular, we have k.vx; vy/k
�
�
D 0 if .vx; vy/ 2R2

�0
, and hence

`�.@P /D `�.G/D

qX
sD1

k.is; js/k
�
�:

Moreover, since gcd.is; js/D 1 for sD 1; : : : ; q, the number of lattice points along G is qC1, and hence

j@P \Z2
j D qC 1C˛Cˇ� 1D qC

qX
sD1

.isC js/D kC 1:

Now we prove that the reverse inequality. Let P be a convex lattice polygon which is a minimizer for the
right-hand side of (1-2-2), that is, it minimizes `�.@P /. We will assume that P is nondegenerate, the
degenerate case being a straightforward extension. Let A (resp. B) denote the minimal (resp. maximal)
x coordinate of any point in P , and similarly let C (resp. D) denote the minimal (resp. maximal)
y coordinate of any point in P . Let P 0 denote the convex lattice polygon given by the convex hull
of P with the additional points .A;D/; .B;D/; .A;C /. Note that we have P � P 0, and moreover
jP \Z2j � jP 0\Z2j. Let p1; : : : ;pqC1 2Z2 denote the lattice points encountered as we traverse @P 0 in
the counterclockwise direction from .A;C / to .B;D/. For s D 1; : : : ; q, let .is; js/ WD psC1�ps denote
the corresponding displacement vectors. Then we have

kC 1D j@P \Z2
j � j@P 0\Z2

j D

qX
sD1

.isC js/C q:

Moreover, using (4-3-3) we have `�.@P / D `�.@P 0/. Therefore the right-hand side of (1-2-1) is less
than or equal to

Pq
sD1
k.is; js/k

�
�
D `�.@P

0/D `�.@P /.

Geometry & Topology, Volume 28 (2024)



1258 Dusa McDuff and Kyler Siegel

5 Constructing curves in four-dimensional convex toric domains

In this section we complement Corollary 4.3.10 by proving a corresponding upper bound for zgk.X�/,
thereby completing the proof of Theorem 1.2.8. In Section 5.1 we prove that the formal curve com-
ponent C in zX� with local tangency constraint <T.k/p> and positive asymptotics the minimal word
wmin of index 2k is formally perturbation invariant with respect to some generic J@ zX�

2 J.@ zX�/. After
establishing this, we then show that the moduli space M

J
zX�
.wmin/<T.k/p> is in fact nonempty for some

(and hence any) J 2 JJ@ zX� . zX�/, thereby achieving our desired upper bound.

More precisely, we show in Proposition 5.4.5 that (except for the case wmin D e0;k with k � 2) there
is J 2 JJ@ zX� . zX�/ such that M

J
zX�
.wmin/ is regular with nonzero signed count. By Proposition 2.4.2,

this implies that M
J
zX�
.wmin/ ¤ ¿ for any J 2 JJ@ zX� . zX�/— recall that the empty moduli space is

automatically regular. Since we will then have verified all the hypotheses of Proposition 3.7.1, this also
proves the stabilization property for four-dimensional convex toric domains.

To prove that suitable curves exist we argue as follows. By Proposition 2.2.3 we have

#M zX�
.wmin/<T.k/p>D #M zX�

.wmin/<.k/>E ;

ie we can swap the local tangency constraint with a skinny ellipsoidal constraint. In Section 5.2, we show
that every curve in the latter moduli space counts positively, so it suffices to show that it is nonempty.
In Section 5.3 we give a biased summary of Hutchings–Taubes’ obstruction bundle gluing, adapted to
the case of cobordisms, and in Section 5.4 we explain how to apply obstruction bundle gluing in order
to piece together the curves we need inductively from certain basic curves with very simple top ends.
Finally, in Section 5.5 we use the cobordism map in ECH to establish the base cases for our induction.

5.1 Invariance of minimal word counts

Our main goal in this subsection is to prove Proposition 5.1.4, which establishes formal perturbation
invariance for those moduli spaces corresponding to weakly permissible words wmin of minimal action;
see Definition 4.2.4. At first glance it seems plausible that we can rule out degenerations using minimality,
but some care is needed due to the possibility of multiply covered curves of negative index. Recall that
we are considering degenerations that might occur for a generic path Jt , with 0� t � 1, in JJ@ zX� . zX�/.
Thus the (fixed) almost complex structure J@ zX�

on the symplectization levels can be assumed to be
generic. If a curve with top wmin does degenerate, the resulting building has a main component C0 in zX�
that satisfies the tangency constraint, as well as some other components that may be assembled into
representatives of a union of connected formal buildings each of which has one negative end that attaches
to C0.

We first consider the properties of such a formal building. For definitions of the language used here, see
Definitions 2.1.1, 2.3.2 and 2.3.3.
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Lemma 5.1.1 Let C be a connected formal building with main level in zX� and some number of
symplectization levels in R� @ zX�, except that exactly one negative end of some curve component is not
paired with any positive end of a curve component in a lower level. Assume that each component of C in
a symplectization level is a (possibly trivial ) formal cover of some formal curve component C which is
either trivial or else satisfies ind.C / � 1. Then we have ind.C / � 0, with equality if and only if every
component of C is trivial.

Note that Lemma 5.1.1 does not involve any local tangency constraints.

Proof Let C1; : : : ;Cq denote the components of C which have at least one negative end, and let
b1; : : : ; bq denote the corresponding numbers of negative ends. Observe that since C has genus zero,
there must have at least

Pq
iD1

.bi � 1/ components without any negative ends, and by (4-1-1) and (4-1-3)
each of these has index at least 3. Therefore we have

ind.C /�
qX

iD1

.ind.Ci/C 3.bi � 1//:

We will show that for i D 1; : : : ; q we have ind.Ci/C 3.bi � 1/� 0, with equality if and only if Ci is a
trivial cylinder, from which the result immediately follows.

Let D denote one of the components9 C1; : : : ;Cq . Let a and b denote the respective numbers of positive
and negative ends D, and let eC � a and e� � b denote the numbers of positive and negative ends which
are elliptic. We assume that D is a �–fold cover of D for some � 2 Z�1, where by assumption D is
either trivial or satisfies ind.D/� 1. We denote by xa; xb; xeC; xe� the analogues of the above for D.

For each puncture or point in the domain of D, let us define its excess branching to be one less than its
ramification order as a cover of D.10 Let E˙ be the total excess branching at all positive (resp. negative)
elliptic ends of D, and similarly let H˙ be the total excess branching at all positive (resp. negative)
hyperbolic ends of D. By elementary Riemann–Hurwitz considerations we have the following:

� aD �xa�EC�HC and b D �xb�E��H�.

� eC D �xeC�EC and e� D �xe��E�.

� 0�EC;E�;HC;H� � � � 1.

� ECCE�CHCCH� D 2.� � 1/.

By (4-1-3) we then have

ind.D/�� ind.D/D .aCb�2/��.xaCxb�2/C.eC�e�/��.xeC�xe�/D 2��2�2EC�HC�H�:

9In this paper each component lies in a single level; it is not a “matched component” in the sense of [30].
10That is, if u is locally given by z 7! zk , then the point in the domain corresponding to the origin has excess branching k � 1.
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Consider first the case that D is trivial. Then we have ind.D/D 0 and xaD xb D 1. If the ends of D are
elliptic, then we have HC DH� D 0, and hence

ind.D/D 2� � 2� 2EC � 0:

Similarly, if the ends of D are hyperbolic, then we have EC DE� D 0, and hence

ind.D/D 2� � 2�HC�H� � 0:

In either case we have ind.D/C 3.b � 1/ D 0 if and only if a D b D 1, in which case D is a trivial
cylinder.

Now consider the case that D is nontrivial, and hence ind.D/� 1. We have

ind.D/C 3.b� 1/� 3� � 2� 2EC�HC�H�C 3.b� 1/

D 3� � 2�EC� .EC�HC�H�/C 3.b� 1/

� 3� � 2� .� � 1/� 2.� � 1/C 3.b� 1/

D 1C 3.b� 1/� 1:

Lemma 5.1.2 Let C be curve in zX� satisfying a constraint <T.m/p> for some m 2 Z�1, and assume
that C is a �–fold cover of its underlying simple curve C for some � 2 Z�1. Let

� e (resp. xe) denote the number of elliptic positive ends of C (resp. C ),

� h (resp. xh) denote the number of hyperbolic positive ends of C (resp. C ),

� q D eC h (resp. xq D xeC xh) denote the total number of positive ends of C (resp. C ).

Then we have
ind.C /� � ind.C /�max.q� 2� �xqC 2�C e� �xe; �xh� h/:

Note that in particular we have h� �xh and hence ind.C /� � ind.C /.

Proof Let E (resp. H ) denote the sum of the excess branching at all elliptic (resp. hyperbolic) punctures
of C , and let B denote the excess branching of the point in the domain of C which satisfies the constraint
<T.m/p>. The curve C satisfies a constraint <T. xm/p> for some xm 2 Z�1. With the help of the
Riemann–Hurwitz formula we have

B � � � 1; e D �xe�E hD �xh�H; BCECH � 2� � 2; m� .BC 1/ xm:

For s D 1; : : : ; q, let 
s be the sth positive end of C , which we take to be either eis ;js
or his ;js

. Similarly,
for s D 1; : : : ; xq, let x
 be the sth positive end of C , which we take to be either exis ;xjs

or hxis ;xjs
.

By (4-1-3), we have

ind.C /D q� 2C 2

qX
sD1

.isC js/C e� 2m and ind.C /D xq� 2C 2

xqX
sD1

.xisC xjs/Cxe� 2 xm;
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and therefore
ind.C /� � ind.C /D .q� 2/� �.xq� 2/C e� �xe� 2mC 2 xm�

� q� 2� �xqC 2�C e� �xe� 2.BC 1/ xmC 2 xm�

D q� 2� �xqC 2�C e� �xeC 2 xm.� �B � 1/

� q� 2� �xqC 2�C e� �xeC 2� � 2B � 2

� q� 2� �xqC 2�C e� �xe:

Note that we have q� �xq D�E �H � B � 2�C 2, so we also have

ind.C /� � ind.C /� B � 2�C 2� 2C 2�C e� �xeC 2� � 2B � 2

D�BC e� �xeC 2� � 2D�B �EC 2� � 2

�H D �xh� h:

Recall that, for .i; j / 2 Z2
�0
n f.0; 0/g, the pair of acceptable Reeb orbits ei;j ; hi;j come from perturbing

an S1–family of Reeb orbits in ��1.pi;j /� @X
FR
�

. The precise perturbation is controlled by a choice
of Morse function f W S1!R, which we can assume is perfect. We take zX� to be an arbitrarily small
perturbation of X FR

�
and, fixing JMB 2 J.X FR

�
/, we can correspondingly consider J 2 J. zX�/ which is

a small perturbation of JMB. Then by the standard correspondence between Morse gradient flowlines
and Morse–Bott cascades, one expects J–pseudoholomorphic cylinders with positive asymptotic ei;j

and negative asymptotic hi;j to correspond to gradient flow lines for f , of which there are precisely two,
and they have canceling signs. Indeed, by the Morse–Bott techniques developed in [1; 4] — see also
[40, Section 10.3] for a detailed discussion and also an alternative perspective — we have the following
standard result:

Lemma 5.1.3 There exists generic J@ zX�
2 J.@ zX�/ such that for each acceptable pair ei;j and hi;j ,

there are precisely two J–holomorphic cylinders in R� @ zX� with positive asymptotic ei;j and negative
asymptotic hi;j . Moreover , these are regular and count with opposite signs.

The cylinders in Lemma 5.1.3 have energy zA.ei;j /� zA.hi;j /, which by Lemma 4.1.1(a) is very small;
we will refer to them as low-energy cylinders.

Proposition 5.1.4 Assume a > b. For k 2 Z�1, let wmin be the weakly permissible word of index 2k

with minimal zA� value. Then the formal curve component in zX� having positive asymptotics wmin is
formally perturbation invariant with respect to any generic J

@ zX�
2 J.@ zX�/ as in Lemma 5.1.3.

Proof By Lemma 4.3.3,wmin must be elliptic, and must take one of the forms (1)–(4) from Corollary 4.3.9.
Let C denote the formal curve component in zX� having positive asymptotics wmin. After possibly
replacing C with another formal curve component which it formally covers, we can assume that C

is simple, ie we can ignore the case wmin D e0;k with k � 2. Now consider a stable formal building
C 0 2 FX ;A.�/<T.k/p> satisfying conditions (A1) and (A2) from Definition 2.4.1. We seek to show
that C 0 satisfies either (B1) or (B2) with respect to J

@ zX�
.
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Let C0 denote the main component of C 0, ie the one in zX� which carries the local tangency constraint.
We can assume that C 0 involves at least one symplectization level, since otherwise we must have C 0DC0,
whence (B1) holds. Let q 2 Z�1 denote the number of positive ends of C0. Excluding C0, we can view
C 0 as some number q of connected buildings with one unpaired negative end, precisely as in Lemma 5.1.1.
Denote these by C1; : : : ;Cq . We have ind.Cs/ � 0, with equality if and only if Cs consists entirely of
trivial cylinders. In particular, if the unpaired negative end of Cs is hyperbolic, the fact that its top is elliptic
implies that ind.Cs/� 1. Thus if Cs has a hyperbolic end, we have ind.Cs/� 1 so that

Pq
sD1

ind.Cs/� h,
where h denotes the number of hyperbolic ends of C0.

Next suppose D is one of C1; : : : ;Cq with ind.D/D 1. Then we claim that D is a low-energy cylinder
(that is, a cylinder connecting some ei;j and hi;j ), possibly along with extra trivial cylinders in other levels.
Indeed, for parity reasons the unpaired negative end must be hyperbolic, say hi;j for some .i; j / 2 Z2

�1
.

Let w0min denote the word obtained from wmin by replacing the set of the positive ends of D by ei;j . Then
w0min is strongly permissible and satisfies ind.w0min/D ind.wmin/ and zA.w0min/�

zA.wmin/, with equality
only if wmin D ei;j . Then by minimality of wmin we must have wmin D ei;j , and the claim follows by
energy considerations.

Assume now that C0 is a �–fold cover of a simple formal curve component C 0 for some � 2 Z�1. By
assumption we have ind.C 0/ � �1. Let e denote the number of elliptic ends of C0 and define xq; xe; xh
analogously for C 0. Suppose first that we have xhD 0 and hence hD 0. In this case, C 0 has only elliptic
ends and hence its index must be even, so we have a fortiori ind.C 0/� 0. Applying Lemma 5.1.2 yields

0D ind.C0/C

qX
sD1

ind.Cs/� � ind.C 0/C �xh� hC

qX
sD1

ind.Cs/�

qX
sD1

ind.Cs/:

This is only possible if Cs consists entirely of trivial cylinders for s D 1; : : : ; q, but this contradicts the
stability of C 0.

Now suppose that xh� 1, and moreover that the covering C0!C 0 is not ramified at any positive punctures.
In this case we have q D �xq, e D �xe, and hD �xh, and hence

ind.C0/� � ind.C 0/� q� 2� �xqC 2�C e� �xe D�2C 2�:

We then have

0D ind.C0/C

qX
sD1

ind.Cs/� � ind.C 0/� 2C 2�C h� � � 2C �xh� 2� � 2:

This is only possible if � D 1, and hence ind.C0/D�1. Then we have ind.Cs/� 1 for sD 1; : : : ; q, with
equality for at most one s. By the above discussion and stability considerations, we conclude that C 0 is a
breaking of the form (B2).

Finally, suppose that xh�1 and also one of the positive punctures of C0 is ramified. Then the corresponding
component Cs cannot be a low-energy cylinder, and so as explained above, it must then satisfy ind.Cs/� 2.
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Thus we have
Pq

sD1
ind.Cs/� hC 1, and hence

(5-1-1) 0D ind.C /C
qX

sD1

ind.Cs/� ��C �xh� hC

qX
sD1

ind.Cs/� �.xh� 1/C 1� 1;

which is impossible.

5.2 Automatic transversality and positive signs

Our main goal in this subsection is to prove Proposition 5.2.2, which roughly states that rigid curves
in dimension four count with positive sign as long as none of the punctures are asymptotic to positive
hyperbolic Reeb orbits (such as hi;j ). This will later allow us conclude that certain moduli spaces have
nonzero signed counts simply by showing that they are nonempty. The content of this subsection is likely
well-known to experts, but we include a precise statement and proof for the sake of completeness.

To begin, let us recall a version of the automatic transversality criterion from [39]. A pseudoholomorphic
curve satisfying this criterion is regular even without any genericity assumption on the almost complex
structure. It is natural to state the results in this subsection in arbitrary genus.

Theorem 5.2.1 Let X be a four-dimensional compact symplectic cobordism , take J 2 J.X /, and let C

be a nonconstant asymptotically cylindrical J–holomorphic curve component of genus g.C / in yX such
that all of the asymptotic Reeb orbits are nondegenerate. Let hC.C / denote the number of punctures
(positive or negative) which are asymptotic to positive hyperbolic Reeb orbits , and let Z.C / be the count
(with multiplicities) of zeros of the derivative of a map representing C . If

2g.C /� 2C hC.C /C 2Z.C / < ind.C /;
then C is regular.

We point out that the quantity Z.C / is always nonnegative, and is zero if and only if C is immersed.

As above let X be a four-dimensional compact symplectic cobordism with @˙X nondegenerate. Let us pick
coherent orientations for all moduli spaces of immersed asymptotically cylindrical pseudoholomorphic
curves in X following the framework of [25, Section 9] — this is quite to similar to the approach of [3],
see also [40, Section 11]. This involves the following main ingredients. An orientation triple is a triple
.†;E; fSkg/, where

� † is a Riemann surface with positive and negative cylindrical ends;

� E is a Hermitian complex line bundle over †, trivialized over each end;

� at the k th end we have a smooth family of symmetric 2� 2 matrices, Sk 2 C1.S1;Endsym
R .R2//,

such that the asymptotic operator

A W C1.S1;C/! C1.S1;C/; �.t/ 7! �J0@t�.t/�Sk.t/�.t/;

is nondegenerate, ie does not have 0 as an eigenvalue.

Here J0 denotes the matrix
�

0
1
�1

0

�
.
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For each orientation triple .†;E; fSkg/, we denote by D.†;E; fSkg/ the space of differential operators
D W C1.E/! C1.T 0;1†˝E/ which look locally like a zeroth order perturbation of the Cauchy–
Riemann operator x@ on E for some choice of conformal structure on †, and where on the k th end in
cylindrical coordinates D has the form

 .s; t/ 7! .x@CMk.s; t// .s; t/ dxz; with lim
jsj!1

Mk.s; t/D Sk.t/:

Each D 2 D.†;E; fSkg/ extends to an operator W 1;2.E/! L2.T 0;1†˝E/, and this is Fredholm
since the corresponding asymptotic operators are nondegenerate. Moreover, the space of such operators is
an affine space and thus contractible, and hence the set of orientations of the determinant lines of any two
elements of D.†;E; fSkg/ are naturally identified. We denote the set of these two possible orientations
by O.†;E; fSkg/.

Now, to orient moduli spaces of curves we choose preferred orientations in O.†;E; fSkg/ ranging over
all possible orientation triples .†;E; fSkg/, subject to axioms (OR1), (OR2), (OR3) and (OR4). These
axioms roughly correspond to compatibility under gluing and disjoint unions and agreement with the
natural complex orientation whenever D happens to be complex-linear. Henceforth we will implicitly
assume that a choice of coherent orientations has been made. Given such a choice, any moduli space
of regular, immersed, asymptotically cylindrical curves in X naturally inherits an orientation. Indeed,
for a curve C in such a moduli space we have an associated orientation triple .†;E; fSkg/, where †
is the domain of the curve, E D NC its normal bundle, and fSkg is given by the induced asymptotic
operators at each puncture; see eg [40, Section 3]. Then the associated deformation operator DC lies in
D.†;E; fSkg/, and by regularity its determinant line is its kernel, which is also the tangent space to the
corresponding moduli space.

In the special case of Fredholm index zero, surjectivity of DC means that we have an identification
det.DC /DR, and the associated sign ".C / 2 f1;�1g is determined by whether our chosen orientation
of det.DC / agrees or disagrees with the canonical orientation of R.

Proposition 5.2.2 Suppose that C is an immersed , somewhere injective , asymptotically cylindrical
J–holomorphic rational curve in a four-dimensional symplectic cobordism X. Assume that we have
ind.C / D 0, and all of the asymptotic Reeb orbits of C are nondegenerate and are either elliptic or
negative hyperbolic. Then we have ".C /D 1.

Proof Since C is immersed, it has a well-defined normal bundle NC ! C and associated deformation
operator DC , which we can view as a Fredholm operator W 1;2.NC /!L2.T 0;1†˝E/ (here † denotes
the domain of C ). According to [40, Theorem 3.53], any two nondegenerate asymptotic operators with
the same Conley–Zehnder index are homotopic through nondegenerate asymptotic operators. In particular,
if 
 is an elliptic or negative hyperbolic Reeb orbit, we can deform its asymptotic operator A
 through
nondegenerate asymptotic operators to be of the form given in [40, Example 3.60], ie AD�J0@t � �

for some � 2 R n 2�Z. Note that in this case the associated symplectic parallel transport rotates the
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contact planes along 
 by total angle � in the chosen trivialization. It follows that we can deform DC

through Fredholm operators, after which the asymptotic operator at each end is complex-linear. The
resulting Cauchy–Riemann type operator might not be complex-linear, but we can further deform it to its
complex-linear part. We can take this latter deformation to be along an affine line and hence asymptotically
constant on each end, meaning that it is a deformation through Fredholm operators. Combining these two
deformations, the corresponding Z=2 spectral flow gives the sign ".C /.

At the same time, by automatic transversality, the Fredholm operators in this deformation are isomor-
phisms throughout, and hence the spectral flow is trivial. Indeed, this follows by invoking the criterion
2g.†/� 2C hC.C / < ind.C /, after noting that Theorem 5.2.1 holds also on the level of operators in
D.†;E; fSkg/. Finally, observe that we have endowed the determinant line of the complex linear operator
at the end of the deformation with its canonical complex orientation, which is necessarily positive.

Remark 5.2.3 (i) The above discussion has a natural analogue in a symplectization R�Y, in which
we consider the signed count of index-one curves modulo target translations. Note that positivity does
not hold for the low-energy cylinders in R� @ zX� that connect ei;j to hi;j , and indeed in that case the
negative end is positive hyperbolic.

(ii) In Proposition 2.2.3 we assert that each curve in the moduli space #MJ
X ;A

.�CI��/<T.m/p> also
counts positively when the orbits in �C and �� are elliptic or negative hyperbolic. To prove this, one
must check that the tangency constraint is always compatible with the orientation. This is proved in
[30, Lemma 2.3.5].

5.3 Obstruction bundle gluing

In this subsection we briefly review the Hutchings–Taubes theory [24; 25] of obstruction bundle gluing,
after making the minor adaptations necessary to glue curves in cobordisms rather than symplectizations.
As noted also in [29], since the gluing is essentially local to the neck region, which is the same in both
cases, the underlying analysis of [24; 25] still applies in the cobordism setting.

Let XC and X� be four-dimensional compact symplectic cobordisms with common strict contact boundary
Y WD @�XC D @CX�. We will assume that all Reeb orbits of Y under discussion are nondegenerate. By
concatenating, we can form the compact symplectic cobordism X WDXC}X�. Fix a generic admissible
almost complex structure JY 2 J.Y /, and let J˙ be generic admissible almost complex structures on
yX˙ which restrict to JY on the corresponding ends, ie we have JC 2 JJY

.XC/ and J� 2 JJY .X�/.
Let ˛C, ˇC, ˇ� and ˛� be tuples of Reeb orbits in @CXC, Y , Y and @�X�, respectively.

Definition 5.3.1 (cf [24, Definition 1.9]) A gluing pair is a pair .uC;u�/ consisting of immersed
pseudoholomorphic curves uC 2MJC

XC
.˛CIˇC/ and u� 2MJ�

X�
.ˇ�I˛�/ such that:

(a) ind.uC/D ind.u�/D 0.
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(b) uC and u� are simple.11

(c) For each simple Reeb orbit 
 in Y, the total covering multiplicity of Reeb orbits covering 
 in the
list ˇC is the same as the total for ˇ�.

(d) Each component of uC has exactly one negative end, and each component of u� has exactly one
positive end.

Here we consider a possibly disconnected curve to be simple if and only if each component is simple and
no two components have the same image.

Remark 5.3.2 Condition (d) is a somewhat artificial simplifying assumption, which is used to ensure
that we do not encounter higher-genus curves after gluing rational curves. Alternatively, the following
discussion holds equally well if we drop this condition and simply allow u˙ and also the gluing result to
have higher genus.

JC and J� can also be concatenated to give J 2 J.X / satisfying J jX˙ D J˙jX˙ . For each R> 0, let

XR WDXC} .Œ�R;R��Y /} X�

denote the compact symplectic cobordism given by inserting a finite piece of the symplectization of Y in
between XC and X�. Let also JR 2 J.XR/ denote the concatenated almost complex structure which
satisfies JRjX˙ D J˙jX˙ and JRjŒ�R;R��Y D JY jŒ�R;R��Y . Note that the family fJRgR2Œ0;1/ realizes
neck-stretching along Y, with the limit R!1 corresponding to .JC;J�/–holomorphic buildings in the
broken cobordism XC j} X�. We denote the corresponding parametrized moduli space by M

fJRg

X
.˛CI˛�/

and its SFT compactification by M
fJRg

X
.˛CI˛�/.

Given a gluing pair .uC;u�/, Hutchings and Taubes glue together uC and u� after possibly inserting a
union u0 of index-zero branched covers of trivial cylinders in an intermediate symplectization level R�Y.
This is more complicated than the typical gluing encountered in SFT, where the intermediate level u0

would be barred from participating in the gluing since it is irregular. Indeed, note that u0 lives in a moduli
space MJY

Y
.ˇCIˇ�/ of branched covers which has dimension 2b, where b corresponds to the number of

interior branch points. The main computation of [24] determines the signed number #G.uC;u�/ of ends
of M

fJRg

X
.˛CI˛�/ which arise by gluing .uC;u�/ in this way.

Analogously to [25, Section 5], one can perform pregluing to produce an approximately JR–holomorphic
curve in yXR which interpolates via cutoff functions between uC on yXC, u0 on R�Y, and u� on the yX�.
The index of the normal deformation operator of u0 is �2b and the kernel can be shown to be trivial, so the
cokernels as u0 varies form a well-defined rank 2b real vector bundle over (a large compact subspace of)
MJY

Y
.ˇCIˇ�/, called the “obstruction bundle”. From the gluing analysis we get a section s such that

the gluing successfully goes through for u0 2MJY

Y
.ˇCIˇ�/ precisely if s.u0/D 0. The computation of

#G.u�;uC/ therefore amounts to counting zeros of s.

11In the symplectization setting, Hutchings and Taubes also allow some components of uC and u� to be trivial cylinders, subject
to a certain combinatorial condition.
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More precisely, the number #G.u�;uC/ is defined in several steps as follows. For each R � 0, fix a
metric on yXR which is a product metric on the cylindrical ends .�1; 0�� @�X and Œ0;1/� @CX and
on the neck region Œ�R;R�� Y. We assume this metric does not depend on R except for the varying
length of the neck.

Definition 5.3.3 (cf [24, Definition 1.10]) For ı >0, let Cı.uC;u�/ denote the union over R2 .1=ı;1/

of the set of surfaces in yXR which are immersed apart from finitely many points and can be decomposed
as C�[C0[CC, where:

� There is a section  C of the normal bundle of uC restricted to�h
�

1

ı
; 0
i
�Y

�
[XC[ .Œ0;1/� @CXC/

such that k Ck< ı and CC is the exponential map image of  C after identifying Œ�1=ı; 0��Y

with ŒR� 1=ı;R��Y .

� There is a section  � of the normal bundle of u� restricted to

..�1; 0�� @�X�/[XC[
�h

0;
1

ı

i
�Y

�
such that k �k< ı and CC is the exponential map image of  � after identifying Œ0; 1=ı��Y with
Œ�R;�RC 1=ı��Y .

� C0 lies in the ı–tubular neighborhood of Œ�R;R� � .ˇC [ ˇ�/ � ŒR;R� � Y, and we have
@C0 D @C� [ @CC, with the positive boundary of C0 coinciding with the negative boundary of
CC and the negative boundary of C0 coinciding with the positive boundary of C�.

Definition 5.3.4 Let Gı.uC;u�/ denote the set of index-zero curves in M
fJRg

X
.˛CI˛�/\Cı.uC;u�/.

By the following lemma, Gı.uC;u�/ represents curves in M
fJRg

X
.˛CI˛�/which are “ı–close” to breaking

into an SFT building corresponding to the gluing pair .uC;u�/:

Lemma 5.3.5 (cf [24, Lemma 1.11]) Given a gluing pair .uC;u�/, there exists ı0 > 0 such that for
any ı 2 .0; ı0/ and any sequence of curves u1;u2;u3; : : : 2 Gı.uC;u�/, there is a subsequence which
converges in the SFT sense to either a curve in M

JR1

XR1
.˛CI˛�/ for some R1 2 Œ0;1/, or else to an

SFT building with top level uC in yXC, bottom level u� in yX�, and some number (possibly zero) of
intermediate symplectization levels in R�Y each consisting entirely of unions of index-zero branched
covers of trivial cylinders.

Finally, we define the count of ends #G.uC;u�/:

Definition 5.3.6 For a gluing pair .uC;u�/ and ı0 as above, choose 0< ı0 < ı < ı0 and an open subset
U � Gı.uC;u�/ containing Gı0.uC;u�/ such that U has finitely many boundary points. We then define
#G.u�;uC/ to be minus the signed count of boundary points of U .

By Lemma 5.3.5, the count #G.uC;u�/ is independent of the choice of ı0, ı and U .
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The analogue of the main result of Hutchings and Taubes is as follows:

Theorem 5.3.7 (cf [24, Theorem 1.13]) If JC 2 J.XC/ and J� 2 J.X�/ are generic and .uC;u�/
is a gluing pair , then we have

#G.uC;u�/D ".uC/".u�/
Y



c
 .uC;u�/;

where the product is over all simple Reeb orbits whose covers appear in ˇC and ˇ�, and c
 .uC;u�/

depends only on 
 , the multiplicities of the negative ends of uC at covers of 
 , and the multiplicities of
the positive ends of u� at covers of 
 .

For simplicity, let us now assume that the orbits in ˇC and ˇ� are all covers of the same simple
Reeb orbit 
 which is elliptic. Denote the corresponding partitions by .a1; : : : ; ak/ and .b1; : : : ; bl/,
where

Pk
iD1 ai D

Pl
jD1 bj . Following [24, Section 1], there is a purely combinatorial algorithm

for computing c
 .uC;u�/ in terms of the monodromy angle � of 
 and the partitions .a1; : : : ; ak/

and .b1; : : : ; bl/, but it is rather elaborate to state. For our purposes, it is enough to observe that, by
[24, Remark 1.21], c
 .u�;uC/ is a positive integer provided that there is a branched cover u0 of the
trivial cylinder R� 
 �R�Y which is connected with genus zero and index zero (this is the analogue
of �� D 1 in [24]). Namely, this criterion holds exactly if

(5-3-1) kC l � 2C

kX
iD1

CZ� .
 ai /�

lX
jD1

CZ.
 bj /D 0:

Here � is any choice of trivialization along 
 , and the left-hand side of (5-3-1) is simply the index of u0,
noting that the first Chern class term vanishes since we are using the same trivialization along 
 at the
positive and negative ends. Explicitly, if � denotes the monodromy angle of 
 with respect to � , then we
have CZ� .
m/D bm�cC dm�e, and hence (5-3-1) is equivalent to

(5-3-2) l � 1C

kX
iD1

daj�e�

lX
jD1

dbj�e D 0:

Note that the left-hand side of (5-3-2) is indeed independent of the choice of trivialization, since � modulo
the integers is independent of � and by assumption we have

Pk
iD1 ai D

Pl
jD1 bj .

We summarize the above discussion as follows:

Theorem 5.3.8 Suppose that X˙ are four-dimensional compact symplectic cobordisms with common
nondegenerate strict contact boundary Y WD @�XC D @CX�. Let JY 2 J.Y /, JC 2 JJY

.XC/ and
J� 2 JJY .X�/ be generic admissible almost complex structures. For R � 0, let JR 2 J.XR/ be the
concatenated almost complex structure on the symplectic completion of XR WDXC}.Œ�R;R��Y /}X�

which satisfies JRjX˙ D J˙jX˙ and JRjŒ�R;R��Y D JY jŒ�R;R��Y . Let u˙ be simple immersed J˙–
holomorphic curves in yX˙ such that each component of uC has exactly one negative end and each
component of u� has exactly one positive end. Assume that the negative ends of uC are .
 a1 ; : : : ; 
 ak /
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and the positive ends of u� are .
 b1 ; : : : ; 
 bl /, where 
 is a simple elliptic Reeb orbit in Y. Assume
further that we have

Pk
iD1 ai D

Pl
jD1 bj and (5-3-1) holds. Then for any R sufficiently large there is a

simple immersed regular JR–holomorphic curve u in yXR with positive asymptotics agreeing with those
of uC, and negative asymptotics agreeing with those of u�.

Remark 5.3.9 If X is a compact symplectic cobordism and C is an asymptotically cylindrical J–
holomorphic curve in X which is simple and has index zero, then C is automatically immersed provided
that J 2 J.X / is generic; cf [25, Theorem 4.1].

5.4 Curves with many positive ends via induction

We now seek to apply Theorem 5.3.8 in order to produce genus-zero pseudoholomorphic curves in X nEsk

with one negative end, building on the main construction of [29].

Recall that Esk denotes the ellipsoid E.�; �s/ with s > 1 sufficiently large and � > 0 sufficiently small,
and by slight abuse we also use the same notation to denote its image under any symplectic embedding
� WEsk

s
,!X. Here the role of � is just to ensure the existence of a symplectic embedding of E.�; �s/ into X,

while s is the “skinniness” factor. More precisely, in the following context of curves in X nE.�; �s/ with
one negative end asymptotic to �k (the k–fold cover of the short simple Reeb orbit in @E.�; �s/), we will
say that E.�; �s/ is k–skinny (or simply skinny) if s > k. In this case we have CZ�ex.�i/D 2i C 1 for
i D 1; : : : ; k, and hence, at least for the purposes of index computations, we can treat s as being arbitrarily
large. On the other hand, note that for k < s < kC1, E.�; �s/ is k–skinny but not .kC1/–skinny, a fact
which we will exploit in the proof of Lemma 5.4.2 given below.

Before proving the aforementioned lemma, we must deal with the following point. We showed in
[30, Proposition 3.1.5] that if X is closed then the number of index-zero curves with fixed top end and
a single negative end on Esk is independent of the choice of �, � and s. However, in our situation with
@X ¤ ∅ we must be a little careful since in general — for example, if C is not formally perturbation
invariant as in Proposition 3.7.1 — there may not be a well-defined count of curves of the given type.
Therefore, our arguments only establish that there is a generic J on X nEsk for which certain curves
exist.

Lemma 5.4.1 Let X be a four-dimensional Liouville domain with nondegenerate contact boundary, and
suppose that for some generic J 2 J.X nEsk/, there is a simple immersed index-zero J–holomorphic
curve C in X n Esk with negative end asymptotic to �k . Then , given any s > k, we may take
Esk D �.E.�; �s// for some � > 0 and some � WE.�; �s/ s

,!X.

Proof Let E0 D �0 �E.1; s/, where �0 > 0 is so small that we can identify E0 with a subset of Esk. Let
JX nE0 2 J.X nE0/ be a generic admissible almost complex structure satisfying JX nE0 jX nE D J , and
put JEnE0 WD JX nE0 jEnE0 2 J.E nE0/. By, for instance, [18, Theorem 2], there is a regular JEsknE0–
holomorphic cylinder Z in Esk nE0 with positive end on �1 and negative end on �0

1
, and its k–fold cover

is regular. We can glue (in the ordinary SFT sense) C to Z along cylindrical ends to produce a simple
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J 0
X nE0

–holomorphic curve C 0 in X nE0. Here J 0
X nE0

2 J.X nE0/ corresponds to the concatenation
of JEsknE0 and JX nEsk after inserting a sufficiently long neck region in between and reidentifying the
resulting compact symplectic cobordism with X nE0. Note that we can assume without loss of generality
that J 0 is generic, since the curve C 0 will persist under small perturbations of J 0.

Lemma 5.4.2 Let X be a four-dimensional Liouville domain with nondegenerate contact boundary, let
J 2 J.X nEsk/ be generic , and let C1 and C2 be simple immersed index-zero J–holomorphic curves
in X nEsk that have distinct images. For i D 1; 2, assume that Ci has positive ends �i and a single
negative end �ki

. Then there exists a generic J 0 2 J.X nEsk/ with J 0j@X D J j@X 2 J.@X /, and a simple
immersed index-zero J 0–holomorphic curve C in X nEsk which has positive ends �1[�2 and a single
negative end �k1Ck2C1.

Proof By Lemma 5.4.1, we may suppose that C1 and C2 lie in X nE0 where E0 D �.E.�; �s// for
s D k1C k2� 1C ı0, where 0< ı0 < 1.

Next put E00 WD �00 �E.1; k1Ck2C1C ı00/ for �00; ı00 > 0 sufficiently small, and choose �00 and �00 so that
we have E00 �E0. Let JX nE00 2 J.X nE00/ be a generic admissible almost complex structure satisfying
JX nE00 jX nE0 D J 0

X nE0
, and put JE0nE00 WD JX nE00 jE0nE00 2 J.E0 nE00/. Again by [18, Theorem 2] there

is a (necessarily simple) JE0nE00–holomorphic cylinder Z in E0nE00 with positive end �k1Ck2
in @E0 and

negative end �k1Ck2C1 in @E00. The bottom ellipsoid E00 is skinny, since k1Ck2C1Cı00 > k1Ck2C1.
However, the top ellipsoid is not, since s < k1C k2. In fact, if we choose the split trivialization �sp of
the contact distribution on @E.1;x/ as in [30, Section 3.2], then the monodromy angle of the short orbit
is 1=x, which implies that the cylinder Z has Fredholm index

2

�
k1C k2C

�
k1C k2

x

��
� 2.k1C k2C 1/D 0:

We now apply Theorem 5.3.8 with uC WD C 0
1
[C 0

2
in X nE0 and u� WDZ in E0 nE00, in other words we

glue in the neck R� @E0. Note that (5-3-2) holds since in @E0 D @.� �E.1; s0//, the monodromy angle
is 1=s0, where ki < s0 < k1C k2, so that�

k1

s

�
C

�
k2

s

�
D 2D

�
k1C k2

s

�
:

Therefore, there is a curve C as stated.

Lemma 5.4.2 suggests a natural inductive strategy for constructing curves. Fix a generic J
@ zX�
2 J.@ zX�/

as in Lemma 5.1.3. As before, wmin denotes the weakly permissible word with zA� minimal subject to
ind.wmin/D 2k. We prove the following lemmas in the next subsection.

Lemma 5.4.3 Let J 2 J
J

@ zX� . zX� nEsk/ be generic. Consider an elliptic orbit ei;j in @ zX� such that
either i D 1 or j D 1 (or both ). Then there is a J–holomorphic cylinder in zX� nEsk which is positively
asymptotic to ei;j and negatively asymptotic to �iCj .
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Lemma 5.4.4 Let J 2 JJ@ zX� . zX� nEsk/ be generic. There is a J–holomorphic pair of pants in zX�
which is positively asymptotic to e1;1 � e1;1 and negatively asymptotic to �5.

Proposition 5.4.5 Fix k 2Z�1, and assume thatwmin¤ e0;k if k � 2. Then there exists J 2J
J

@ zX� . zX�/

for which the moduli space M
J
zX�
.wmin/<T.m/p> is regular with nonzero signed count.

Proof Let C be the formal curve in zX� with positive ends wmin and constraint <T.k/p>. Recall that
by Proposition 5.1.4, C is formally perturbation invariant with respect to J@ zX�

. We explained in the
introduction to this section that curves in this moduli space are robust and always count positively. Hence
at this point it suffices to find a J–holomorphic curve in zX� nEsk with positive asymptotics wmin and
negative asymptotic �k for some J 2 JJ@ zX� . zX�/.

We proceed to construct the desired curve, whose positive asymptotics wmin take one of the forms (1)–(3)
in Proposition 4.3.8 or possibly e0;1, by iteratively applying Lemma 5.4.2. Firstly, observe that by
Lemma 5.4.3, we can construct any cylinder whose positive asymptotic is one of the Reeb orbits e0;1,
e1;1, e1;s , e1;0 appearing in Proposition 4.3.8. Similarly, by Lemma 5.4.4 we can construct a pair of pants
with positive asymptotics e1;1 � e1;1. We now iteratively construct curves with two or more positive
ends by applying Lemma 5.4.2, with C1 a previously constructed curve in zX� nEsk and C2 a cylinder in
zX� nEsk guaranteed by Lemma 5.4.3. Here we need C1 and C2 to have distinct images, and since neither

is a multiple cover this is automatic as long as C1 is not a cylinder with the same positive asymptotic
Reeb orbit as C2. In particular, the curve we seek with positive asymptotics wmin is readily constructed
by this iterative construction.

5.5 Existence of cylinders and pairs of pants

It remains to prove Lemmas 5.4.3 and 5.4.4. For this, we will use various results from the ECH literature,
roughly as follows. Firstly, we use the computation of the ECH of zX� from [22; 6], together with the
holomorphic curve axiom for the ECH cobordism map, to establish the existence of a broken current in
zX� nEsk whose positive ends represent the same orbit set as our desired curve. We then argue that this

broken pseudoholomorphic current must in fact be a genuine somewhere injective curve C of Fredholm
index zero, but possibly of higher genus, whose ends satisfy the ECH partition conditions. Using this,
we conclude that in specified situations C must have one negative end, the maximal possible number of
positive ends, and genus zero.

Here are the details. Recall that an orbit set is a finite set of simple Reeb orbits, along with a choice
of positive integer multiplicity for each. In the following we will view a word of Reeb orbits as an
orbit set by remembering only the total multiplicity of each underlying simple orbit and forgetting the
corresponding partition into iterates. This association from words to orbit sets is evidently not one-to-one,
for instance the words �3, �2 � �1 and �1 � �1 � �1 of Reeb orbits in @Esk all define the same orbit set.

Similarly, a pseudoholomorphic current is a finite set of simple pseudoholomorphic curves (each modulo
biholomorphic reparametrizations as usual), along with a choice of positive integer multiplicity for each.
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We refer the reader to, say, [21, Section 3.4] for the definition of the ECH index I.C /. Since the
first and second cohomology groups of zX� and Esk vanish, their ECH chain complexes (over Z=2

for simplicity) have natural Z–gradings, denoted again by I , such that I.C / D I.˛/� I.ˇ/ if C is a
holomorphic current which is positively asymptotic to the orbit set ˛ and negatively asymptotic to the
orbit set ˇ. Also, the compact symplectic cobordism zX� nEsk induces a grading-preserving cobordism
map from the ECH of @ zX� to that of @Esk. If w is an elliptic word,12 it is shown in [22, Lemma 5.4]
that I.w/D 2.L.R/� 1/� h.R/, where

� R denotes the lattice polygon in R2
�0

defined in Section 4.2, and

� L.R/ denotes the number of integer lattice points in the interior and boundary of R.

Lemma 5.5.1 Let w be a word of elliptic Reeb orbits in @ zX�, each of which is simple , and let J in
JJ@ zX� . zX� nEsk/ be generic. Then there is a curve C in zX� nEsk, possibly of higher genus , with
ind.C /D I.C /D 0 and with positive asymptotics w and negative asymptote �m with m WD 1

2
I.w/.

Proof By [22, Proposition A.4] (which assumes [22, Conjecture A.3], proved in [6]), the word w, when
viewed as a generator of the ECH chain complex, represents a nontrivial homology class in the ECH
of @ zX�. Let ˇ denote its image in the ECH of @Esk under the ECH cobordism mapˆ induced by zX�nEsk,
and note that ˇ is necessarily nontrivial since ˆ is an isomorphism. Recall (see [21, Section 3.7]) that the
ECH chain complex of an irrational four-dimensional ellipsoid has trivial differential, and the orbit set
with k th largest action has I D 2k. Then ˇ is uniquely represented by the orbit set of �m with m WD I.w/.

Recall that the ECH cobordism map is defined via the isomorphism with Seiberg–Witten Floer homology,
yet it is known to satisfy a “holomorphic curve axiom”, which states that a coefficient can only be nonzero
if it is represented by an ECH index-zero broken pseudoholomorphic current, ie the analogue of a stable
pseudoholomorphic building but with each level a pseudoholomorphic current. As a result, we obtain a
broken pseudoholomorphic current in zX� nEsk with positive orbit set w and negative orbit set �m. By
[21, Proposition 3.7], each symplectization level has nonnegative ECH index, with ECH index zero if
and only if it is a union of trivial cylinders with multiplicities. By Lemma 5.5.2 below, the main level
in zX� nEsk also has nonnegative ECH index. Using the SFT compactness stability condition (recall
Section 2.1.4) and the fact that the total ECH index is zero, we conclude that there is only a single level D,
which is a current .D; �/ in zX� nEsk, where D is simple and � 2Z�1 represents its multiplicity, and we
have I.D/D 0. By Lemma 5.5.2 again, we also have I.D/D 0.

By [19, Theorem 4.15], we must have ind.D/D 0, and D satisfies the positive and negative partition
conditions. Since the monodromy angle is positive and very small for each acceptable elliptic orbit, the
positive partition conditions stipulate that each positive asymptotic orbit of D is simple, ie the positive
ends are “as spread out as possible”. Meanwhile, the negative partition condition implies that D has a
single negative end. Finally, the desired curve C is given by taking a �–fold cover of C which is fully
ramified at the negative end and unramified at the each of the positive ends.

12There is a more general formula computing I for ECH generators involving hyperbolic orbits, but we will not need this.
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Lemma 5.5.2 If C D .C ; �/ is a J–holomorphic current in zX� nEsk with J 2 J. zX� nEsk/ generic ,
we have I.C /� 0, with equality only if I.C /D 0.

Proof As in the proof of [22, Theorem 1.19], we can assume that the cobordism zX� nEsk is “L–tame”
with L sufficiently large, whence the result follows immediately by [22, Proposition 4.6].

Proof of Lemma 5.4.3 By Lemma 5.5.1, there is a J–holomorphic curve C in zX� nEsk, possibly
of higher genus, with ind.C / D 0, with positive asymptotics ei;j and negative asymptotics �m for
m WD 1

2
I.ei;j /. As explained above, we have I.ei;j /D 2.L.R/� 1/, where R is the lattice triangle with

vertices .0; 0/, .0; i/, .j ; 0/, and L.R/ denotes the number of integer lattice points in the interior or
boundary of R. By our assumption that i D 1 or j D 1, we have L.R/D iCj C1 and hence mD iCj .
It now follows immediately using the index formula (4-1-3) and ind.C /D 0 that C has genus zero.

Proof of Lemma 5.4.4 This is similar to the above proof. In this case Lemma 5.5.1 produces a J–
holomorphic curve C in zX�nEsk with ind.C /D 0 and with positive ends e1;1�e1;1 and negative end �m

for m WD 1
2
I.e1;1 � e1;1/D 5. The condition ind.C /D 0 then forces the genus to be zero.

Remark 5.5.3 For ei;j with i; j � 2, or e�k
1;1

with k � 3, the curve C coming from Lemma 5.5.1 will
typically be forced to have higher genus.

5.6 Comparison with Gutt–Hutchings capacities

The following result likely holds in any dimension; for concreteness we give the proof in dimension four.

Proposition 5.6.1 For X� any four-dimensional convex toric domain , we have

(5-6-1) zg�1
k
.X�/D cGH

k .X�/D min
(i;j/2Z2

�0

iCjDk

k.i; j /k��:

Proof The second equality is [16, Theorem 1.6]. In order to compute zg�1
k
.X�/, we can replace X�

with its full rounding zX� as in Section 4.1. As shorthand put X WD X� and zX WD zX�. Fix a generic
almost complex structure J@ zX 2 J.@ zX / as in Lemma 5.1.3, and a generic extension J zX 2 JJ@ zX . zX ID/.

To prove that zg�1
k
.X / � cGH

k
.X�/, observe that by definition we can find a J zX –holomorphic plane C

in zX satisfying the local tangency constraint <T.k/p> and having E.C /� zg�1
k
. zX /. Let 
 denote the

asymptotic Reeb orbit of C , which we can take to be ei;j or hi;j for some i; j . If C is simple then by
genericity it must be regular and hence satisfy ind.C /� 0, and inspection of the index formula shows
that this is also true if C is a multiple cover. In particular, we must have iC j � k, from which it follows
that A.
 /D k.i; j /k�

�
is greater than or equal to the right-hand side of (5-6-1). Since E.C /D zA.
 / is

arbitrarily close to A.
 /, this gives the desired lower bound.
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To establish the upper bound for zg�1
k
.X /, let .i; j / be a minimizer for the right-hand side of (5-6-1). We

can assume that there are no common divisors of i , j , k, and we will then show that zg�1
k
.X /� k.i; j /k�

�
.

Indeed, if there is a greatest common divisor q � 2 of i , j , k, then after putting i 0 WD i=q, j 0 WD j=q and
k 0 WD k=q, it will follow that we have zg�1

k0
.X /� k.i 0; j 0/k�

�
, whence we have

zg�1
k
.X /� qzg�1

k0
.X /� qk.i 0; j 0/k�� D k.i; j /k

�
�:

Now let C be the (necessarily simple by the above) formal plane in zX with positive end ei;j and carrying
the constraint <T.k/p>. By an argument paralleling the proof of Proposition 5.1.4, we find that C

is formally perturbation invariant with respect to J@ zX . In particular, C cannot be represented by any
nontrivial stable J zX –holomorphic building. We claim that the signed count #MJ zX

zX
.C / is nonzero, from

which it follows that we have

zg�1
k
. zX /�E.C /D zA.ei;j /� k.i; j /k

�
�:

To justify the claim, note that we can use Proposition 2.2.3 to trade the local tangency constraint <T.k/p>

for a skinny ellipsoidal constraint <.k/>E . Namely, letting Esk D E.�; �x/ � zX denote an ellipsoid
with x > k and � > 0 sufficiently small, it suffices to show that the moduli space of pseudoholomorphic
cylinders in zX nEsk with positive end ei;j and negative end �k has nonzero signed count. By slight abuse
of notation we will denote the corresponding formal cylinder again by C . Recall that by Proposition 5.2.2
it suffices to show that this moduli space is nonempty. For this we invoke linearized contact homology
as in [32], similar to the proof of [18, Theorem 2]. Indeed, observe that ei;j is necessarily a cycle with
respect to the linearized contact homology differential thanks to Lemma 5.1.3 and the fact that any orbit
hi0;j 0 with .i 0; j 0/ ¤ .i; j / necessarily has greater action by Lemma 4.1.1. Since the cobordism map
on linearized contact homology induced by zX nEsk is an isomorphism, it follows that there is a stable
pseudoholomorphic cylindrical building representing C , and by formal perturbation invariance this must
be an honest pseudoholomorphic cylinder in zX nEsk.

Remark 5.6.2 As mentioned earlier, there is a natural higher-dimensional analogue of the fully rounding
procedure, but for concreteness we have kept our discussion in Section 4.1 to dimension four and hence
restrict Proposition 5.6.1 to dimension four. In order to extend the above argument to higher dimensions,
one first ought to show that the higher-dimensional the analogue of C is formally perturbation invariant.
Since the results in [32] hold in arbitrary dimension, one can then still invoke the cobordism map on
linearized contact homology in higher dimensions in order to produce cylindrical buildings.

We also refer the reader to [33, Theorem 7.6.4] for the analogous statement g�1
k
.X /D cGH

k
.X / for any

Liouville domain X satisfying �.X /D 2c1.TX /D 0.

Remark 5.6.3 We expect that the methods in this paper could be extended to compute zg�l
k
.X�/ for

all k; l 2 Z�1, and it is an interesting question whether the entire family fzg�l
k
g sometimes give stronger

embedding obstructions than the sequence zg1; zg2; zg3; : : : alone. A natural guess is that Theorem 1.2.8
generalizes to a formula for zg�l

k
.X�/ by requiring q � l in the minimization.
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6 Ellipsoids, polydisks, and more

In this section we apply our formalism to several examples, proving the remaining three theorems from
the introduction. In each case, using Theorem 1.2.8 and the specific form of k�k�

�
, it reduces to a purely

combinatorial optimization problem. The latter is tractable thanks to Corollary 1.3.1, which implies that
we can look for a minimizer taking one of the following forms:

(1) .0; 1/�i � .1; 1/�j for i � 0, j � 1.

(2) .0; 1/�i � .1; s/ for i � 0 and s � 2.

(3) .0; 1/�i � .1; 0/ for i � 1.

(4) .0; s/ for s � 1.

Proof of Theorem 1.3.2 We consider E.a; 1/, and by continuity we can assume a> 1 is irrational. Let
� be the triangle with vertices .0; 0/; .a; 0/; .0; 1/. Observe that for Ev D .vx; vy/ 2R2

�0
we have

kEvk�� D max
Ew2�
hEv; Ewi Dmax.vxa; vy/:

We can ignore case (3), since we have

k.1; 2/k�� Dmax.a; 2/ < 1C aD k.0; 1/k��Ck.1; 0/k
�
�;

and hence .0; 1/�i � .1; 0/ with i � 1 cannot be a minimizer.

Suppose first that a> 3
2

. Then we have

k.1; 2/k��Ck.0; 1/k
�
� Dmax.a; 2/C 1< 2aD 2k.1; 1/k��;

and hence .0; 1/�i � .1; 1/�j with i � 0, j � 1 can only be a minimizer if j D 1. If s > aC 1, then

k.0; 1/k��Ck.1; s� 2/k�� D 1Cmax.a; s� 2/ <max.a; s/ < k.1; s/k��;

and therefore .0; 1/�i�.1; s/ with i � 0, s� 2 can only be a minimizer if s� aC1. Similarly, if s< a�1

then we have

k.0; sC 1/k�� D sC 1<max.a; s/D k.1; s/k��;

k.1; sC 2/k�� Dmax.a; sC 2/ < 1Cmax.a; s/D k.0; 1/k��Ck.1; s/k
�
�;

and therefore .0; 1/�i � .1; s/ with i � 0, s � 1 can only be a minimizer if s � a� 1.

Since a is irrational, we have Œa� 1; aC 1�\ZD fbac; bacC 1g. Therefore, there must be a minimizer
taking one of the forms

� .0; 1/�i � .1; bac/ for i � 0,

� .0; 1/�i � .1; bacC 1/ for i � 0,

� .0; s/ for s � 1,

from which (1-3-2) readily follows.
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Now suppose that we have a< 3
2

. For s � 3 we have

k.1; 1/k��Ck.0; s� 2/k�� D aC s� 2< s D k.1; s/k��;

and hence .0; 1/�i � .1; s/ with i � 0, s � 3 cannot be a minimizer. We have also

2k.1; 1/k�� D 2a< 3D 3k.0; 1/k��;

and hence .0; 1/�i � .1; 1/�j for i � 0, j � 1 can only be a minimizer if i 2 f0; 1; 2g.

Therefore, there must be a minimizer taking one of the following forms:

� .0; 1/�i � .1; 1/�j for i 2 f0; 1; 2g and j � 1.

� .0; 1/�i � .1; 2/ for i � 0.

� .0; s/ for s � 1.

Since 2k.0; 1/k�
�
D 2D k.1; 2/k�

�
, we can effectively ignore the second bullet by artificially allowing

j D 0 in the first bullet. For s � 2 we have

k.1; s� 1/k�� Dmax.a; s� 1/ < s D k.0; s/k��;

and hence .0; s/ can only be minimal if sD 1, so we can also effectively ignore the third bullet. Therefore
we have

zgk.E.a; 1//D ik.0; 1/k��C j k.1; 1/k�� D i C ja

for i 2 f0; 1; 2g and j � 0 satisfying 2i C 3j � 1D k. Note that i and j are uniquely determined via
i ��k � 1 (mod 3) and j D 1

3
.j C 1� 2i/, and (1-3-1) follows.

Proof of Theorem 1.3.4 This is similar to the previous proof. We consider P .a; 1/ with a> 1 irrational,
and we take � to be the rectangle with vertices .0; 0/; .a; 0/; .0; 1/; .a; 1/. For Ev D .vx; vx/ 2 R2

�0
we

then have
kEvk�� D hEv; .a; 1/i D avxC vy :

For s � 2 we have

k.1; 0/k��Ck.0; s� 1/k�� D aC s� 1< aC s D k.1; s/k��;

and hence case (2) in Corollary 1.3.1 cannot occur as a minimizer. For i � 0, j � 1 we have

2k.0; 1/k��Ck.1; 0/k
�
� D 2C a< 2C 2aD 2k.1; 1/k��;

so case (1) can only occur if j D 1. Therefore, there must be a minimizer from the list

� .0; 1/�i � .1; 1/ for i � 0,

� .0; 1/�i � .1; 0/ for i � 1,

� .0; s/ for s � 1,

from which (1-3-3) follows.
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Proof of Theorem 1.3.7 The polygon � WDQ.a; b; c/ � R2
�0

has vertices .0; 0/; .c; 0/; .a; b/; .0; 1/.
For Ev D .vx; vy/ 2R2

�0
, we have

kEvk�� D max
Ew2�
hEv; Ewi Dmax.cvx; avxC bvy ; vy/:

Recall that by assumption we have c � 1, a� c, b � 1, aC bc � c, and M WDmax.aC b; c/� 2.

For j � 1, we have
k.1; j /k�� Dmax.c; aC jb; j /;

and, in particular,
k.1; 1/k�� Dmax.c; aC b; 1/Dmax.c; aC b/DM:

By the above, we have

zg2.X /Dmin.k.1; 1/k��; k.0; 2/k
�
�/Dmin.M; 2/DM:

Next, because c < 2, we have

k.0; 3/k�� > 3> k.1; 0/k��Ck.0; 1/k
�
� D 1C c;

so that
zg3.X /Dmin

�
k.1; 2/k��; k.1; 0/k

�
�Ck.0; 1/k

�
�

�
Dmin.max.2; aC 2b; c/; 1C c/

Dmin.max.2; aC 2b/; 1C c/:

Note that zg3.X /D 2 if aC 2b < 2 and otherwise Dmin.aC 2b; 1C c/ < 3. In particular, if aC 2b > 2

the minimum could be represented by either orbit set.

We next claim that
k.1; j /k�� > k.0; 1/k

�
�Ck.1; j � 2/k�� for j � 3:

If b > 1
2

, we must check that

max.j ; aC jb/ > 1Cmax.j � 2; aC .j � 2/b/Dmax.j � 1; aC jb� 2bC 1/;

which holds because 2b > 1. If b < 1
2

and j � 3 then aC jb < 2C 1
2
.j � 1/� j for j � 3, so that

k.1; j /k�� D j > k.1; j � 2/k��Ck.0; 1/k
�
� for j � 3:

Thus in all cases, .1; j / with j � 3 does not occur in a minimal orbit set. Further .0; k/ with k � 2 is
never minimal since it can be replaced by .1; 1/[ .0; 1/�k=2 for even k or .1; 0/[ .0; 1/�.k�1/=2 for
odd k.

Therefore, taking into account the discussion of zg3, we find that minimizers must take one of the forms

� .0; 1/�i � .1; 1/�j , where j D 0 only if i D 1;

� .0; 1/�i � .1; 2/ or .0; 1/�i � .1; 0/ (but not both).

In particular,
zg4.X /D k.0; 1/k

�
�Ck.1; 1/k

�
� D 1CM < 3;

zg6.X /D k.0; 1/
�2
k
�
�Ck.1; 1/k

�
� D 2CM < 4:
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On the other hand, zg5.X / might be represented by .0; 1/� .1; 2/; .0; 1/�2 � .1; 0/ or .1; 1/� .1; 1/ and
so is given by

zg5.X /Dmin.max.3; 1C aC 2b; c/; 2C c; 2M /:

If M < 3
2

, then because the first two terms above are � 3, we find that zg5.X / D 2M. However, if
3
2
<M < 2 then any of these three terms might be minimal.

For k > 6 it is again useful to consider the cases M < 3
2

and M > 3
2

separately. In the former case, it
is more efficient to increase the index by adding copies of .1; 1/ so that minimal orbit sets always have
i � 2. In particular, orbit sets of the form .0; 1/�i � .1; 2/ or .0; 1/�i � .1; 0/ are not minimal when i > 2,
and so can only affect the capacities zgk for k � 7. Moreover when M < 3

2
,

k.0; 1/�2
� .1; 2/k�� D 2Cmax.2; aC 2b; c/ > 4> 1C 2M D k.0; 1/� .1; 1/�2

k
�
�:

Therefore the capacities for k � 6 are given by the orbit sets

.0; 1/�2
� .1; 1/�j ; .0; 1/� .1; 1/�jC1; .1; 1/�jC2; where j � 1; M < 3

2
:

The claims in (i) follow readily.

If M > 3
2

, minimal orbit sets always have j �2 since it is more efficient to use .0; 1/�3�.1; 1/�j�2 instead
of .1; 1/�j . Which of .0; 1/�i�.1; 2/ or .0; 1/�i�.1; 0/ is more efficient is determined by the value of zg3,
while the value of zg5 determines whether it is in fact best to use .1; 1/�2 when representing elements of
odd index � 5. Thus the odd capacities for k � 5 are determined by zg5, while the even capacities are
more straightforward since they are always calculated by orbit sets of the form .0; 1/�i � .1; 1/. This
proves (ii).

Remark 6.0.1 When 2 � n < c < nC 1 one can check that zgk D k for k � n, represented by the
orbit e0;k . In this case, the zgk again limit on a period two cycle. However, the precise values in this cycle
depend on b. To see this, note for example that if nD 2l is even, then

zgkC1 Dmin
i�l

A.ei
0;1[ e1;2.l�i//Dmin

i�l

�
i Cmax.2.l � i/; aC 2.l � i/b; c/

�
;

and which orbit set gives the minimax depends on whether b > 1
2

or b < 1
2

. For example, if we
assume that a < c are both very close to n then the minimax is determined by the minimum value of
iCaC 2.l � i/b D aC 2lbC i.1� 2b/. Thus if b < 1

2
one should take i D l , while if b < 1

2
one should

take i D 0.

Proof of Theorem 1.3.8 For � WD�p , recall that we have A�.ei;j /D k.i; j /k
�
�p
D k.i; j /kq . We can

ignore case (4) in Corollary 4.3.9 for s � 2, since for s D 2 we have

k.1; 1/kq D 21=q
� 2D k.0; 2/kq

and for s � 3 we have

k.1; 0/kqCk.0; s� 2/kq D s� 1� s D k.0; s/kq:
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Similarly, we can ignore case (2), since we have

k.1; 0/kqCk.0; s� 1/kq D s < k.1; s/kq:

Noting that k.0; 1/kq D k.1; 0/kq , we can also effectively ignore case (3) by relaxing the condition j � 1

in case (1). In other words, we have that zgk.X�p
/ is the minimal quantity of the form

ik.0; 1/kqC j k.1; 1/kq D i C j 21=q;

subject to 2i C 3j � 1D k for i; j 2 Z�0.

We have 2k.1; 1/kq � 3k.0; 1/kq if and only if 21=q �
3
2

, ie if and only if q � ln.2/=ln
�

3
2

�
, or equivalently

p � ln.2/=ln
�

4
3

�
. In this case we can assume i 2 f0; 1; 2g, and the value of i is then determined by looking

at the equation 2i C 3j � 1D k modulo 3, from which (1-3-6) immediately follows. Similarly, in the
case p > ln.2/=ln

�
4
3

�
we can assume j 2 f0; 1g, and the value of j is then determined by looking at the

equation 2i C 3j � 1D k modulo 2, which immediately gives (1-3-7).

Appendix Regularity after stabilization

In this appendix we give a self-contained proof that regularity persists after dimensional stabilization. We
also refer the reader to [33, Section 7.4] for a related approach.

Let X be a Liouville domain, and let W WD X �_B2.c/ be a smoothing of X �B2.c/ for some c > 0,
as in Lemma 3.6.2. Let D be a local symplectic divisor in X near a point p 2X, and let zD DD�B2.�/

for � > 0 small be a corresponding local symplectic divisor in W near zp WD .p;p0/ for p0 WD 0 2B2.c/.
Let J be an admissible almost complex structure on yX which is integrable near p and preserves D, and
let zJ be an admissible almost complex structure on yW which is integrable near zp, preserves zD, and
restricts to J along zX � f0g � zX (so that, in particular, yX � f0g is zJ–holomorphic).

Our main goal is to prove:

Proposition A.1 Let u be an asymptotically cylindrical J–holomorphic punctured sphere in yX satisfying
the constraint <T

.m/
D

p> for some m 2 Z�1, and such that each asymptotic Reeb orbit is nondegenerate
with normal Conley–Zehnder index one. Assume that u is regular and has index zero (taking into account
the constraint <T

.m/
D

p>). Let zu denote the curve in yW given by the composition of u with the inclusion
yX � yW . Then zu is also regular (taking into account the constraint <T

.m/

zD
p>).

Note that in formulating the index and regularity of u and zu we are as usual also allowing for arbitrary
variations of the conformal structure of the domain. Recall that the normal Conley–Zehnder index is
defined for a Reeb orbit in @X by taking into account the Reeb flow in the direction normal to yX � f0g
in yW, and we are implicitly using trivializations coming from the natural trivialization of the normal
bundle of yX � yW as in Section 3.6.

Let † D S2 n fz1; : : : ; zlg denote the domain of u, where z1; : : : ; zl are the punctures, and let z0 2 †

denote the marked point which realizes the local tangency constraint.
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Regularity of u is equivalent to surjectivity of the linearized Cauchy–Riemann operator

Dx@J .u; j / W TuB˚Tj T! E.u;j/;

where:

� TuBDW
k;p;ı

<T
.m/
D

p>
.u�T yX /˚V.

� Wk;p;ı.u�T yX / denotes the Banach space of sections � of u�T yX of weighted Sobolev class Wk;p;ı

(cf [40, Section 7.2]), where we assume k �m and .k �m/p > 2 (so that � is C m), and

W
k;p;ı

<T
.m/
D

p>
.u�T yX /�Wk;p;ı.u�T yX /

denotes the subspace consisting of sections whose m–jet at z0 lies in D as in [7, Section 6]. (In particular,
W

k;p;ı
<p>.u

�T yX / is the subspace such that � vanishes at z0.)

� V �W
k;p
loc .u

�T yX / is a 2l–dimensional subspace as in [39, Section 3.1], consisting of smooth sections
which are supported near the punctures and asymptotic to constant (in suitable trivializations) linear
combinations of vector fields tangent to the trivial cylinders over the asymptotic Reeb orbits of u —
this is needed to address the possibility of rotating and translating the asymptotic ends of u, as these
deformations do not exponentially decay along the cylindrical ends.

� T � J.†/ is a Teichmüller slice through j as in [39, Section 3.1], which is in particular a smooth
manifold containing j and having (in the stable case) dimension 2.lC 1/� 6. By Tj T� �.EndC.T†//

we denote its tangent space at j .

� The space

E.u;j/ DW
k�1;p;ı

<T
.m�1/
D

p>
.HomC.T†;u

�T yW //

consists of bundle homomorphisms from T† to u�T yW over † which are .j ;J /–antilinear and whose
.m�1/–jet at z0 lies in D.

Moreover, after choosing any symmetric connection r on T yX , for � 2 TuB and y 2 Tj T, the linearized
Cauchy–Riemann operator Dx@J .u; j / takes the explicit form

Dx@J .u; j /.�;y/DDu�CGuy;

where

� Du W TuB! E.u;j/ is given by

Du� Dr�CJ ı .r�/ ı j Cr�J ı du ı j ;

� Gu W Tj T! E.u;j/ is given by

Guy D J ı du ıy:
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Similarly, regularity of zu is equivalent to surjectivity of the operator

Dx@J .zu; j / W Tzu zB˚Tj T! E.zu;j/;

where

� Tzu zBDW
k;p;ı

<T
.m/

zD
zp>
.zu�T yW /˚V ,

� E.zu;j/ DW
k�1;p;ı

<T
.m�1/

zD
p>
.HomC.T†; zu

�T yW //,

and for � 2 Tzu zB and y 2 Tj T we have

Dx@J .zu; j /.�;y/DDzu�CGzuy;

where

� Dzu W Tzu zB! E.zu;j/ is given by

Dzu� D zr�C zJ ı .zr�/ ı j C zr� zJ ı d zu ı j ;

� Gzu W Tj T! E.zu;j/ is given by
Gzuy D zJ ı d zu ıy;

where zr is any symmetric connection on T yW .

Note that the embedding W ,!X �B2.c/ naturally extends to a diffeomorphism yW Š yX �1B2.c/, and
we get a corresponding splitting of the tangent bundle of yW :

T yW Š T ver yW ˚T hor yW :

Under the identification T ver yW j yX�f0g � T yX , this induces natural splittings

Tzu zB˚Tj TŠ .W
k;p;ı

<T
.m/
D

p>
.u�T yX /˚V ˚Tj T/„ ƒ‚ …

A1

˚ .W
k;p;ı
<p0>.zu

�T hor yW //„ ƒ‚ …
A2

;

E.zu;j/ Š
�
W

k�1;p;ı

<T
.m�1/
D

p>
.HomC.T†;u

�T yX //
�

„ ƒ‚ …
B1

˚
�
Wk�1;p;ı.HomC.T†; zu

�T hor yW //
�„ ƒ‚ …

B2

:

From now on, we assume that the connection zr preserves this splitting and restricts to r under the
identification T yX . The above splitting induces a block matrix decomposition

(A-0-1) Dx@J .zu; j /D

�
M1;1 DDx@J .u; j / M1;2

M2;1 M2;2

�
:

Lemma A.2 We have M2;1 D 0.

Proof We need to show that the image of Dx@J .zu; j /jA1
lies in B1. Note that for y 2 Tj T we have

(A-0-2) zJ ı d zu ıy 2 �.HomC.T†; zu
�T yX //;

Geometry & Topology, Volume 28 (2024)
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since zJ preserves T ver yW j yX , and hence Gzuy 2 B1. It therefore suffices to show that for any �ver in
�.zu�T ver yW /, the image Dzu�

ver lands in �.HomC.T†; zu
�T ver yW //. For v 2 �.T†/, we have

.Dzu�
ver/.v/D zrv�

ver
C zJ zrjv�

ver
C .zr�ver zJ /.q/

for q WD .d zu/.j v/ 2 �.u�T yX /. Since zr and zJ respect the splitting T yW j yX D T ver yW j yX ˚T hor yW j yX ,
we have

zrv�
ver
C zJ zrjv�

ver
2 �.zu�T ver yW /:

Therefore it remains to show that .zr�ver zJ /.q/ 2 �.zu�T ver yW /. For this, it suffices to establish

.zra
zJ /.b/ 2 �.T ver yW j yX / for any a; b 2 �.T ver yW j yX /:

Recall that the term zra
zJ 2 End.T yW j yX / corresponds to applying the connection induced by zr— which

we again denote by zr— on the endomorphism bundle, and by its definition we have

.zra
zJ /.b/D zra. zJb/� zJ .zrab/:

Similar to above, it is immediate that these last two terms lie in �.T ver yW j yX /.

Lemma A.3 The operator M2;2 is surjective.

Proof If we ignore the constraint <p0>, the corresponding (R–linear) Cauchy–Riemann type operator

Wk;p;ı.zu�T hor yW /!Wk�1;p;ı.HomC.T†; zu
�T hor yW //

is Fredholm, and by a version of Riemann–Roch with its index is easily computed to be 2; see for instance
[39, Section 2.1]. It follows that M2;2 is also Fredholm, with index 0, and hence to prove its surjectivity
it suffices to establish ker M2;2 D f0g. Suppose by contradiction that � is a nonzero element in ker M2;2.
By elliptic regularity we can assume that � is smooth, and its count Z.�/ of zeros is nonnegative (this
follows by the similarity principle [40, Theorem 2.32]), and in fact strictly positive since � necessarily
vanishes at the marked point z0. On the other hand, in the notation of [39, Section 2.1], each puncture zi

of zu has normal Conley–Zehnder index 1 and hence extremal winding number ˛�.Azi
/D 0, and therefore

using [39, Equation 2.7] we have

1�Z.�/CZ1.�/D c1.zu
�T hor yW /C

lX
iD1

˛�.Azi
/D 0;

a contradiction.

Proof of Proposition A.1 This follows immediately from the decomposition (A-0-1) and Lemmas A.2
and A.3.

Now suppose that J is an admissible almost complex structure on the symplectization of @X, and let
zJ be an admissible almost complex structure on the symplectization of @W which restricts to J on
R� .@X � f0g/. An argument nearly identical to the above proves:

Geometry & Topology, Volume 28 (2024)
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Proposition A.4 Let u be an asymptotically cylindrical J–holomorphic punctured sphere in R� @X

such that each asymptotic Reeb orbit is nondegenerate with normal Conley–Zehnder index one. Assume
that u is regular and has index zero. Let zu denote the curve given by the composition of u with the
inclusion R� @X �R� @W . Then zu is also regular.

References
[1] F Bourgeois, A Morse–Bott approach to contact homology, from “Symplectic and contact topology:

interactions and perspectives” (Y Eliashberg, B Khesin, F Lalonde, editors), Fields Inst. Commun. 35, Amer.
Math. Soc., Providence, RI (2003) 55–77 MR Zbl

[2] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field
theory, Geom. Topol. 7 (2003) 799–888 MR Zbl

[3] F Bourgeois, K Mohnke, Coherent orientations in symplectic field theory, Math. Z. 248 (2004) 123–146
MR Zbl

[4] F Bourgeois, A Oancea, Symplectic homology, autonomous Hamiltonians, and Morse–Bott moduli spaces,
Duke Math. J. 146 (2009) 71–174 MR Zbl

[5] J Chaidez, B Wormleighton, Lattice formulas for rational SFT capacities, preprint (2021) arXiv
2106.07920

[6] K Choi, Combinatorial embedded contact homology for toric contact manifolds, preprint (2016) arXiv
1608.07988

[7] K Cieliebak, K Mohnke, Symplectic hypersurfaces and transversality in Gromov–Witten theory, J. Sym-
plectic Geom. 5 (2007) 281–356 MR Zbl

[8] K Cieliebak, K Mohnke, Punctured holomorphic curves and Lagrangian embeddings, Invent. Math. 212
(2018) 213–295 MR Zbl

[9] D Cristofaro-Gardiner, R Hind, Symplectic embeddings of products, Comment. Math. Helv. 93 (2018)
1–32 MR Zbl

[10] D Cristofaro-Gardiner, R Hind, D McDuff, The ghost stairs stabilize to sharp symplectic embedding
obstructions, J. Topol. 11 (2018) 309–378 MR Zbl

[11] D Cristofaro-Gardiner, R Hind, K Siegel, Higher symplectic capacities and the stabilized embedding
problem for integral elllipsoids [sic], J. Fixed Point Theory Appl. 24 (2022) art. id. 49 MR Zbl

[12] I Ekeland, H Hofer, Symplectic topology and Hamiltonian dynamics, Math. Z. 200 (1989) 355–378 MR
Zbl

[13] I Ekeland, H Hofer, Symplectic topology and Hamiltonian dynamics, II, Math. Z. 203 (1990) 553–567
MR Zbl

[14] M Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307–347 MR
Zbl

[15] M Gromov, Soft and hard symplectic geometry, from “Proceedings of the International Congress of
Mathematicians, I” (A M Gleason, editor), Amer. Math. Soc., Providence, RI (1987) 81–98 MR Zbl

[16] J Gutt, M Hutchings, Symplectic capacities from positive S1–equivariant symplectic homology, Algebr.
Geom. Topol. 18 (2018) 3537–3600 MR Zbl

Geometry & Topology, Volume 28 (2024)

http://dx.doi.org/10.1090/fic/035/03
http://msp.org/idx/mr/1969267
http://msp.org/idx/zbl/1046.57017
http://dx.doi.org/10.2140/gt.2003.7.799
http://dx.doi.org/10.2140/gt.2003.7.799
http://msp.org/idx/mr/2026549
http://msp.org/idx/zbl/1131.53312
http://dx.doi.org/10.1007/s00209-004-0656-x
http://msp.org/idx/mr/2092725
http://msp.org/idx/zbl/1060.53080
http://dx.doi.org/10.1215/00127094-2008-062
http://msp.org/idx/mr/2475400
http://msp.org/idx/zbl/1158.53067
http://msp.org/idx/arx/2106.07920
http://msp.org/idx/arx/2106.07920
http://msp.org/idx/arx/1608.07988
http://msp.org/idx/arx/1608.07988
http://dx.doi.org/10.4310/JSG.2007.v5.n3.a2
http://msp.org/idx/mr/2399678
http://msp.org/idx/zbl/1149.53052
http://dx.doi.org/10.1007/s00222-017-0767-8
http://msp.org/idx/mr/3773793
http://msp.org/idx/zbl/1396.53105
http://dx.doi.org/10.4171/CMH/427
http://msp.org/idx/mr/3777123
http://msp.org/idx/zbl/1398.53083
http://dx.doi.org/10.1112/topo.12055
http://dx.doi.org/10.1112/topo.12055
http://msp.org/idx/mr/3789827
http://msp.org/idx/zbl/1394.53080
http://dx.doi.org/10.1007/s11784-022-00942-z
http://dx.doi.org/10.1007/s11784-022-00942-z
http://msp.org/idx/mr/4439980
http://msp.org/idx/zbl/1503.53142
http://dx.doi.org/10.1007/BF01215653
http://msp.org/idx/mr/978597
http://msp.org/idx/zbl/0641.53035
http://dx.doi.org/10.1007/BF02570756
http://msp.org/idx/mr/1044064
http://msp.org/idx/zbl/0729.53039
http://dx.doi.org/10.1007/BF01388806
http://msp.org/idx/mr/809718
http://msp.org/idx/zbl/0592.53025
https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM1986.1/ICM1986.1.ocr.pdf
http://msp.org/idx/mr/934217
http://msp.org/idx/zbl/0664.53016
http://dx.doi.org/10.2140/agt.2018.18.3537
http://msp.org/idx/mr/3868228
http://msp.org/idx/zbl/1411.53062


1284 Dusa McDuff and Kyler Siegel

[17] R Hind, E Kerman, New obstructions to symplectic embeddings, Invent. Math. 196 (2014) 383–452 MR
Zbl

[18] R K Hind, E Kerman, J–holomorphic cylinders between ellipsoids in dimension four, J. Symplectic Geom.
18 (2020) 1221–1245 MR Zbl

[19] M Hutchings, The embedded contact homology index revisited, from “New perspectives and challenges in
symplectic field theory” (M Abreu, F Lalonde, L Polterovich, editors), CRM Proc. Lecture Notes 49, Amer.
Math. Soc., Providence, RI (2009) 263–297 MR Zbl

[20] M Hutchings, Quantitative embedded contact homology, J. Differential Geom. 88 (2011) 231–266 MR
Zbl

[21] M Hutchings, Lecture notes on embedded contact homology, from “Contact and symplectic topology” (F
Bourgeois, V Colin, A Stipsicz, editors), Bolyai Soc. Math. Stud. 26, Bolyai Math. Soc., Budapest (2014)
389–484 MR Zbl

[22] M Hutchings, Beyond ECH capacities, Geom. Topol. 20 (2016) 1085–1126 MR Zbl

[23] M Hutchings, An elementary alternative to ECH capacities, Proc. Natl. Acad. Sci. USA 119 (2022)
art. id. e2203090119

[24] M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders, I, J.
Symplectic Geom. 5 (2007) 43–137 MR Zbl

[25] M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders, II, J.
Symplectic Geom. 7 (2009) 29–133 MR Zbl

[26] D Irvine, The stabilized symplectic embedding problem for polydiscs, preprint (2019) arXiv 1907.13159

[27] E Kerman, Y Liang, On symplectic capacities and their blind spots, J. Topol. Anal. (online publication
June 2023)

[28] M Landry, M McMillan, E Tsukerman, On symplectic capacities of toric domains, Involve 8 (2015)
665–676 MR Zbl

[29] D McDuff, A remark on the stabilized symplectic embedding problem for ellipsoids, Eur. J. Math. 4 (2018)
356–371 MR Zbl

[30] D McDuff, K Siegel, Counting curves with local tangency constraints, J. Topol. 14 (2021) 1176–1242 MR
Zbl

[31] A Moreno, R Siefring, Holomorphic curves in the presence of holomorphic hypersurface foliations, preprint
(2019) arXiv 1902.02700

[32] J Pardon, Contact homology and virtual fundamental cycles, J. Amer. Math. Soc. 32 (2019) 825–919 MR
Zbl

[33] M B Pereira, Equivariant symplectic homology, linearized contact homology and the Lagrangian capacity,
PhD thesis, Universität Augsburg (2022) arXiv 2205.13381

[34] M Schwarz, Morse homology, Progr. Math. 111, Birkhäuser, Basel (1993) MR Zbl

[35] R Siefring, Intersection theory of punctured pseudoholomorphic curves, Geom. Topol. 15 (2011) 2351–2457
MR Zbl

[36] K Siegel, Computing higher symplectic capacities, II, in preparation

[37] K Siegel, Higher symplectic capacities, preprint (2019) arXiv 1902.01490

Geometry & Topology, Volume 28 (2024)

http://dx.doi.org/10.1007/s00222-013-0471-2
http://msp.org/idx/mr/3193752
http://msp.org/idx/zbl/1296.53160
http://dx.doi.org/10.4310/JSG.2020.v18.n5.a2
http://msp.org/idx/mr/4174300
http://msp.org/idx/zbl/1458.53088
http://dx.doi.org/10.1090/crmp/049/10
http://msp.org/idx/mr/2555941
http://msp.org/idx/zbl/1207.57045
http://projecteuclid.org/euclid.jdg/1320067647
http://msp.org/idx/mr/2838266
http://msp.org/idx/zbl/1238.53061
http://dx.doi.org/10.1007/978-3-319-02036-5_9
http://msp.org/idx/mr/3220947
http://msp.org/idx/zbl/1432.53126
http://dx.doi.org/10.2140/gt.2016.20.1085
http://msp.org/idx/mr/3493100
http://msp.org/idx/zbl/1338.53119
http://dx.doi.org/10.1073/pnas.2203090119
http://dx.doi.org/10.4310/JSG.2007.v5.n1.a5
http://msp.org/idx/mr/2371184
http://msp.org/idx/zbl/1157.53047
http://dx.doi.org/10.4310/JSG.2009.v7.n1.a2
http://msp.org/idx/mr/2491716
http://msp.org/idx/zbl/1193.53183
http://msp.org/idx/arx/1907.13159
http://dx.doi.org/10.1142/S1793525323500127
http://dx.doi.org/10.2140/involve.2015.8.665
http://msp.org/idx/mr/3366017
http://msp.org/idx/zbl/1322.53081
http://dx.doi.org/10.1007/s40879-017-0184-y
http://msp.org/idx/mr/3782228
http://msp.org/idx/zbl/1393.53080
http://dx.doi.org/10.1112/topo.12204
http://msp.org/idx/mr/4332489
http://msp.org/idx/zbl/07738192
http://msp.org/idx/arx/1902.02700
http://dx.doi.org/10.1090/jams/924
http://msp.org/idx/mr/3981989
http://msp.org/idx/zbl/1422.53071
http://msp.org/idx/arx/2205.13381
http://dx.doi.org/10.1007/978-3-0348-8577-5
http://msp.org/idx/mr/1239174
http://msp.org/idx/zbl/0806.57020
http://dx.doi.org/10.2140/gt.2011.15.2351
http://msp.org/idx/mr/2862160
http://msp.org/idx/zbl/1246.32028
http://msp.org/idx/arx/1902.01490


Symplectic capacities, unperturbed curves and convex toric domains 1285

[38] K Siegel, Computing higher symplectic capacities, I, Int. Math. Res. Not. 2022 (2022) 12402–12461 MR
Zbl

[39] C Wendl, Automatic transversality and orbifolds of punctured holomorphic curves in dimension four,
Comment. Math. Helv. 85 (2010) 347–407 MR Zbl

[40] C Wendl, Lectures on symplectic field theory, lecture notes (2020) Available at https://tinyurl.com/
SFTnotes

Mathematics Department, Columbia University
New York, NY, United States

Department of Mathematics, University of Southern California
Los Angeles, CA, United States

dusa@math.columbia.edu, kyler.siegel@usc.edu

Proposed: Leonid Polterovich Received: 31 October 2021
Seconded: Paul Seidel, David Fisher Revised: 17 July 2022

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1093/imrn/rnaa334
http://msp.org/idx/mr/4466005
http://msp.org/idx/zbl/07573380
http://dx.doi.org/10.4171/CMH/199
http://msp.org/idx/mr/2595183
http://msp.org/idx/zbl/1207.32021
https://tinyurl.com/SFTnotes
https://tinyurl.com/SFTnotes
mailto:dusa@math.columbia.edu
mailto:kyler.siegel@usc.edu
http://msp.org
http://msp.org


GEOMETRY & TOPOLOGY
msp.org/gt

MANAGING EDITOR

András I Stipsicz Alfréd Rényi Institute of Mathematics
stipsicz@renyi.hu

BOARD OF EDITORS

Mohammed Abouzaid Stanford University
abouzaid@stanford.edu

Dan Abramovich Brown University
dan_abramovich@brown.edu

Ian Agol University of California, Berkeley
ianagol@math.berkeley.edu

Arend Bayer University of Edinburgh
arend.bayer@ed.ac.uk

Mark Behrens University of Notre Dame
mbehren1@nd.edu

Mladen Bestvina University of Utah
bestvina@math.utah.edu

Martin R Bridson University of Oxford
bridson@maths.ox.ac.uk

Jim Bryan University of British Columbia
jbryan@math.ubc.ca

Dmitri Burago Pennsylvania State University
burago@math.psu.edu

Tobias H Colding Massachusetts Institute of Technology
colding@math.mit.edu

Simon Donaldson Imperial College, London
s.donaldson@ic.ac.uk

Yasha Eliashberg Stanford University
eliash-gt@math.stanford.edu

Benson Farb University of Chicago
farb@math.uchicago.edu

David M Fisher Rice University
davidfisher@rice.edu

Mike Freedman Microsoft Research
michaelf@microsoft.com

David Gabai Princeton University
gabai@princeton.edu

Stavros Garoufalidis Southern U. of Sci. and Tech., China
stavros@mpim-bonn.mpg.de

Cameron Gordon University of Texas
gordon@math.utexas.edu

Jesper Grodal University of Copenhagen
jg@math.ku.dk

Misha Gromov IHÉS and NYU, Courant Institute
gromov@ihes.fr

Mark Gross University of Cambridge
mgross@dpmms.cam.ac.uk

Rob Kirby University of California, Berkeley
kirby@math.berkeley.edu

Bruce Kleiner NYU, Courant Institute
bkleiner@cims.nyu.edu

Sándor Kovács University of Washington
skovacs@uw.edu

Urs Lang ETH Zürich
urs.lang@math.ethz.ch

Marc Levine Universität Duisburg-Essen
marc.levine@uni-due.de

Ciprian Manolescu University of California, Los Angeles
cm@math.ucla.edu

Haynes Miller Massachusetts Institute of Technology
hrm@math.mit.edu

Tomasz Mrowka Massachusetts Institute of Technology
mrowka@math.mit.edu

Aaron Naber Northwestern University
anaber@math.northwestern.edu

Peter Ozsváth Princeton University
petero@math.princeton.edu

Leonid Polterovich Tel Aviv University
polterov@post.tau.ac.il

Colin Rourke University of Warwick
gt@maths.warwick.ac.uk

Roman Sauer Karlsruhe Institute of Technology
roman.sauer@kit.edu

Stefan Schwede Universität Bonn
schwede@math.uni-bonn.de

Natasa Sesum Rutgers University
natasas@math.rutgers.edu

Gang Tian Massachusetts Institute of Technology
tian@math.mit.edu

Ulrike Tillmann Oxford University
tillmann@maths.ox.ac.uk

Nathalie Wahl University of Copenhagen
wahl@math.ku.dk

Anna Wienhard Universität Heidelberg
wienhard@mathi.uni-heidelberg.de

See inside back cover or msp.org/gt for submission instructions.

The subscription price for 2024 is US $805/year for the electronic version, and $1135/year (C$70, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Geometry & Topology is indexed
by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Geometry & Topology (ISSN 1465-3060 printed, 1364-0380 electronic) is published 9 times per year and continuously online, by Mathematical
Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840. Periodical
rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical Sciences
Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

GT peer review and production are managed by EditFLOW® from MSP.
PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2024 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/gt
mailto:stipsicz@renyi.hu
mailto:abouzaid@stanford.edu
mailto:dan_abramovich@brown.edu
mailto:ianagol@math.berkeley.edu
mailto:arend.bayer@ed.ac.uk
mailto:mbehren1@nd.edu
mailto:bestvina@math.utah.edu
mailto:bridson@maths.ox.ac.uk
mailto:jbryan@math.ubc.ca
mailto:burago@math.psu.edu
mailto:colding@math.mit.edu
mailto:s.donaldson@ic.ac.uk
mailto:eliash-gt@math.stanford.edu
mailto:farb@math.uchicago.edu
mailto:davidfisher@rice.edu
mailto:michaelf@microsoft.com
mailto:gabai@princeton.edu
mailto:stavros@mpim-bonn.mpg.de
mailto:gordon@math.utexas.edu
mailto:jg@math.ku.dk
mailto:gromov@ihes.fr
mailto:mgross@dpmms.cam.ac.uk
mailto:kirby@math.berkeley.edu
mailto:bkleiner@cims.nyu.edu
mailto:skovacs@uw.edu
mailto:urs.lang@math.ethz.ch
mailto:marc.levine@uni-due.de
mailto:cm@math.ucla.edu
mailto:hrm@math.mit.edu
mailto:mrowka@math.mit.edu
mailto:anaber@math.northwestern.edu
mailto:petero@math.princeton.edu
mailto:polterov@post.tau.ac.il
mailto:gt@maths.warwick.ac.uk
mailto:roman.sauer@kit.edu
mailto:schwede@math.uni-bonn.de
mailto:natasas@math.rutgers.edu
mailto:tian@math.mit.edu
mailto:tillmann@maths.ox.ac.uk
mailto:wahl@math.ku.dk
mailto:wienhard@mathi.uni-heidelberg.de
http://dx.doi.org/10.2140/gt
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
http://msp.org/
https://msp.org/


GEOMETRY & TOPOLOGY
Volume 28 Issue 3 (pages 1005–1499) 2024

1005Homological mirror symmetry for hypertoric varieties, I: Conic equivariant sheaves

MICHAEL MCBREEN and BEN WEBSTER

1065Moduli spaces of Ricci positive metrics in dimension five

MCFEELY JACKSON GOODMAN

1099Riemannian manifolds with entire Grauert tube are rationally elliptic

XIAOYANG CHEN

1113On certain quantifications of Gromov’s nonsqueezing theorem

KEVIN SACKEL, ANTOINE SONG, UMUT VAROLGUNES and JONATHAN J ZHU

1153Zariski dense surface groups in SL.2k C 1; Z/

D DARREN LONG and MORWEN B THISTLETHWAITE

1167Scalar and mean curvature comparison via the Dirac operator

SIMONE CECCHINI and RUDOLF ZEIDLER

1213Symplectic capacities, unperturbed curves and convex toric domains

DUSA MCDUFF and KYLER SIEGEL

1287Quadric bundles and hyperbolic equivalence

ALEXANDER KUZNETSOV

1341Categorical wall-crossing formula for Donaldson–Thomas theory on the resolved
conifold

YUKINOBU TODA

1409Nonnegative Ricci curvature, metric cones and virtual abelianness

JIAYIN PAN

1437The homology of the Temperley–Lieb algebras

RACHAEL BOYD and RICHARD HEPWORTH

G
E

O
M

E
T

R
Y

&
T

O
P

O
L

O
G

Y
2024

Vol.28,
Issue

3
(pages

1005–1499)

http://dx.doi.org/10.2140/gt.2024.28.1005
http://dx.doi.org/10.2140/gt.2024.28.1065
http://dx.doi.org/10.2140/gt.2024.28.1099
http://dx.doi.org/10.2140/gt.2024.28.1113
http://dx.doi.org/10.2140/gt.2024.28.1153
http://dx.doi.org/10.2140/gt.2024.28.1167
http://dx.doi.org/10.2140/gt.2024.28.1213
http://dx.doi.org/10.2140/gt.2024.28.1287
http://dx.doi.org/10.2140/gt.2024.28.1341
http://dx.doi.org/10.2140/gt.2024.28.1341
http://dx.doi.org/10.2140/gt.2024.28.1409
http://dx.doi.org/10.2140/gt.2024.28.1437

	1. Introduction
	1.1. Overview
	1.2. Statement of main results
	1.3. Examples and applications

	2. Preliminaries on pseudoholomorphic curves
	2.1. Asymptotically cylindrical curves and their moduli
	2.1.1. Symplectic and contact manifolds
	2.1.2. Admissible almost complex structures
	2.1.3. Moduli spaces of pseudoholomorphic curves
	2.1.4. SFT compactifications
	2.1.5. Homology classes and energy

	2.2. Local tangency and skinny ellipsoidal constraints
	2.3. Formal curves
	2.3.1. Formal curve components
	2.3.2. Formal nodal curves and buildings
	2.3.3. Formal covers

	2.4. Formal perturbation invariance

	3. The capacity k
	3.1. Definition and basic properties
	3.2. Monotonicity under symplectic embeddings
	3.3. Word-length filtration
	3.4. Comparison with SFT counterpart
	3.5. Upper bounds from closed curves
	3.6. Stabilization lower bounds
	3.7. Stabilization upper bounds

	4. Fully rounding, permissibility and minimality
	4.1. The fully rounding procedure
	4.2. Strong and weak permissibility
	4.3. Minimal words

	5. Constructing curves in four-dimensional convex toric domains
	5.1. Invariance of minimal word counts
	5.2. Automatic transversality and positive signs
	5.3. Obstruction bundle gluing
	5.4. Curves with many positive ends via induction
	5.5. Existence of cylinders and pairs of pants
	5.6. Comparison with Gutt–Hutchings capacities

	6. Ellipsoids, polydisks, and more
	Appendix. Regularity after stabilization
	References
	
	

