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We study the homology and cohomology of the Temperley–Lieb algebra TLn.a/, interpreted as appropriate
Tor and Ext groups. Our main result applies under the common assumption that aD vC v�1 for some
unit v in the ground ring, and states that the homology and cohomology vanish up to and including
degree n� 2. To achieve this we simultaneously prove homological stability and compute the stable
homology. We show that our vanishing range is sharp when n is even.

Our methods are inspired by the tools and techniques of homological stability for families of groups.
We construct and exploit a chain complex of “planar injective words” that is analogous to the complex
of injective words used to prove stability for the symmetric groups. However, in this algebraic setting
we encounter a novel difficulty: TLn.a/ is not flat over TLm.a/ for m < n, so that Shapiro’s lemma is
unavailable. We resolve this difficulty by constructing what we call “inductive resolutions” of the relevant
modules.

Vanishing results for the homology and cohomology of Temperley–Lieb algebras can also be obtained
from the existence of the Jones–Wenzl projector. Our own vanishing results are in general far stronger
than these, but in a restricted case we are able to obtain additional vanishing results via the existence of
the Jones–Wenzl projector.

We believe that these results, together with the second author’s work on Iwahori–Hecke algebras, are the
first time the techniques of homological stability have been applied to algebras that are not group algebras.
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1438 Rachael Boyd and Richard Hepworth

1 Introduction

In this work we study the homology and cohomology of the Temperley–Lieb algebras. In particular,
we simultaneously prove that the algebras satisfy homological stability, and that their stable homology
vanishes.

A sequence of groups and inclusions G0!G1!G2! � � � is said to satisfy homological stability if for
each degree d the induced sequence of homology groups

Hd .G0/!Hd .G1/!Hd .G2/! � � �

eventually consists of isomorphisms. Homological stability can also be formulated for sequences of
spaces. There are many important examples of groups and spaces for which homological stability is
known to hold, such as symmetric groups [Nakaoka 1960], general linear groups [Charney 1980; Maazen
1979; van der Kallen 1980], mapping class groups of surfaces [Harer 1985; Randal-Williams 2016] and
3–manifolds [Hatcher and Wahl 2010], automorphism groups of free groups [Hatcher and Vogtmann
1998; 2004], diffeomorphism groups of high-dimensional manifolds [Galatius and Randal-Williams 2018],
configuration spaces [Church 2012; Randal-Williams 2013], Coxeter groups [Hepworth 2016], Artin
monoids [Boyd 2020], and many more. In almost all cases, homological stability is one of the strongest
things we know about the homology of these families. It is often coupled with computations of the stable
homology limn!1H�.Gn/, which is equal to the homology of the Gn in the stable range of degrees,
ie those degrees for which stability holds.

The homology and cohomology of a group G can be expressed in the language of homological algebra as

H�.G/D TorRG
� .1;1/ and H�.G/D Ext�RG.1;1/;

where R is the coefficient ring for homology and cohomology, RG is the group algebra of G and 1 is its
trivial module. Thus the homology and cohomology of a group depend only on the group algebra RG

and its trivial module 1. It is therefore natural to consider the homology and cohomology of an arbitrary
algebra equipped with a “trivial” module. Moreover, one may ask whether homological stability occurs
in this wider context.

Hepworth [2022] proved homological stability for Iwahori–Hecke algebras of type A. These are deforma-
tions of the group rings of the symmetric groups that are important in representation theory, knot theory
and combinatorics. There is a fairly standard suite of techniques used to prove homological stability,
albeit with immense local variation, and the proof strategy of [Hepworth 2022] followed all the steps
familiar from the setting of groups. As is typical, the hardest step was to prove that the homology of a
certain (chain) complex vanishes in a large range of degrees.

In the present paper we will prove homological stability for the Temperley–Lieb algebras, and we will
prove that the stable homology vanishes. However amongst the familiar steps in our proof lies a novel
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obstacle and — to counter it — a novel construction. At a certain point the usual techniques fail because
Shapiro’s lemma cannot be applied, as we will explain below. This is a new difficulty that never occurs
in the setting of groups, but we are able to resolve it for the algebras at hand, and in fact our solution
facilitates the unusually strong results that we are able to obtain. It is not surprising that the Iwahori–Hecke
case is more straightforward than the Temperley–Lieb case: Iwahori–Hecke algebras are deformations of
group rings, whereas the Temperley–Lieb algebras are significantly different.

To the best of our knowledge, the present paper and [Hepworth 2022] are the first time the techniques of
homological stability have been applied to algebras that are not group algebras, and together they serve
as proof-of-concept for the export of homological stability techniques to the setting of algebras. The
moral of [Hepworth 2022] is that the “usual” techniques of homological stability suffice, so long as the
algebras involved satisfy a certain flatness condition. The moral of the present paper is that failure of the
flatness condition can in some cases be overcome, using new ingredients and techniques, and can even
lead to stronger results than in the flat scenario. Since the completion of this paper, we have extended our
techniques to study the homology of the Brauer algebras in joint work with Patzt [Boyd et al. 2021].

1.1 Temperley–Lieb algebras

Let n > 0, let R be a commutative ring, and let a 2 R. The Temperley–Lieb algebra TLn.a/ is the
R–algebra with basis (by which we will always mean R–module basis) given by the planar diagrams
on n strands, taken up to isotopy, and with multiplication given by pasting diagrams and replacing closed
loops with factors of a. The last sentence was intentionally brief, but we hope that its meaning becomes
clearer with an illustration of two elements x;y 2 TL5.a/

x D and y D

and their product

x �y D D D a �

The Temperley–Lieb algebras [1971] arose in theoretical physics in the 1970s. They were later rediscovered
by Jones [1983] in his work on von Neumann algebras, and used in the first definition of the Jones
polynomial [1985]. Kauffman [1987; 1990] gave the above diagrammatic interpretation of the algebras.

The Temperley–Lieb algebra TLn.a/ is perhaps best studied in the case where aD vC v�1, for v 2R a
unit. In this case, it is a quotient of the Iwahori–Hecke algebra of type An�1 with parameter q D v2 (so it
is closely related to the symmetric group) and it receives a homomorphism from the group algebra of
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1440 Rachael Boyd and Richard Hepworth

the braid group on n strands. It can also be described as the endomorphism algebra of V ˝n
q , where Vq

is a certain 2–dimensional representation of the quantum group Uq.sl2/. We recommend [Ridout and
Saint-Aubin 2014; Kassel and Turaev 2008] for further reading on TLn.a/, and [Westbury 1995; Graham
and Lehrer 1996] for details on their representation theory.

1.2 Homology of Temperley–Lieb algebras

The Temperley–Lieb algebra TLn.a/ has a trivial module 1 consisting of a copy of R on which all
diagrams other than the identity diagram act as multiplication by 0. It therefore has homology and
cohomology groups TorTLn.a/

� .1; 1/ and Ext�TLn.a/
.1; 1/.

Our first result is a vanishing theorem in the case that the parameter a 2R is invertible.

Theorem A Let R be a commutative ring , and a a unit in R. Then TorTLn.a/

d
.1; 1/ and ExtdTLn.a/

.1;1/

both vanish for d > 0.

The next result holds regardless of whether or not a is invertible, and uses the common assumption
that aD vC v�1, with v 2R�. However, we see shortly that this assumption can be removed.

Theorem B Let R be a commutative ring , let v 2R be a unit , let aD vC v�1, and let n > 0. Then

TorTLn.a/

d
.1; 1/D 0 and ExtdTLn.a/

.1; 1/D 0

for 1 6 d 6 n� 2 if n is even , and for 1 6 d 6 n� 1 if n is odd.

Thus the map
TorTLn�1.a/

d
.1; 1/! TorTLn.a/

d
.1;1/

is an isomorphism for d 6 n� 3, so that we have homological stability, and limn!1 TorTLn.a/
� .1;1/D 0

in positive degrees, so the stable homology is trivial. The latter is reminiscent of Quillen’s result [1972]
on the vanishing stable homology of general linear groups of finite fields in defining characteristic, and of
Szymik and Wahl’s result [2019] on the acyclicity of the Thompson groups. Theorems A and B might
lead us to expect that the homology and cohomology of the TLn.a/ are largely trivial, but in fact the
results are as strong as possible, at least for n even:

Theorem C In the setting of Theorem B above , suppose further that n is even and that aD vC v�1 is
not a unit. Then TorTLn.a/

n�1
.1; 1/¤ 0.

Thus Theorem A does not extend to the case of a not invertible, and the stable range in Theorem B is
sharp. In fact we can say more: when n is even, TorTLn.a/

n�1
.1; 1/ Š R=bR, where b is a multiple of a

(unfortunately our methods do not allow us to say anything more concrete about b).
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Remark One can compute TorTLn.a/
1

.1; 1/ directly using the method of [Weibel 1994, Exercise 3.1.3]: it
is R=aR for nD 2, and vanishes otherwise. We also compute the homology and cohomology of TL2.a/

by an explicit resolution: TorTL2.a/
� .1; 1/ is R=aR in odd degrees, and the kernel Ra of r 7! ar in positive

even degrees, so that if a is not invertible then TorTL2.a/
� .1;1/ is nontrivial in infinitely many degrees.

Randal-Williams [2021] showed that in fact you can remove our assumption that a D v C v�1 for a
unit v 2R, by applying Theorem C for an associated ring S . This yields the following strengthening of
Theorem B.

Corollary [Randal-Williams 2021, Theorem B0] Let R be a commutative ring , a be any element in R,
and n > 0. Then

TorTLn.a/

d
.1; 1/D 0 and ExtdTLn.a/

.1; 1/D 0

for 1 6 d 6 n� 2 if n is even , and for 1 6 d 6 n� 1 if n is odd.

Proof The full proof can be found in [Randal-Williams 2021], and uses the base change spectral
sequence [Weibel 1994, Section 5.6]. This is applied to the faithfully flat ring homomorphism R! S

where S DRŒv�=.v2�a �vC1/, which by construction has a unit v and element a such that aD vCv�1.
The results in Theorem B for the ring S can now be transferred to analogous results for the ring R.

1.3 Jones–Wenzl projectors

The Jones–Wenzl projector or Jones–Wenzl idempotent JWn, if it exists, is the element of TLn.a/ uniquely
characterised by the following two properties:

� JWn 2 1C In, and

� JWn � In D 0D In � JWn,

where In is the two-sided ideal in TLn.a/ spanned by all diagrams other than the identity diagram. The
Jones–Wenzl projector was first introduced by Jones [1983], was further studied by Wenzl [1987], and
has since become important in representation theory, knot theory and the study of 3–manifolds.

The Jones–Wenzl projector exists if and only if the trivial module 1 is projective. Moreover, when the
ground ring R is a field, there is a simple and explicit criterion for the existence of JWn, given in terms
of the parameter a. Thus, when this criterion holds, the vanishing of TorTLn.a/

� .1;1/ and Ext�TLn.a/
.1;1/

in positive degrees follows immediately.

Our own Theorems A and B are in general far stronger than the vanishing results obtained from the
existence of JWn, as they do not require R to be a field, and the constraints are weaker. Indeed, in the
case of n even, Theorems A and C are the final word on vanishing, since they imply that the homology
and cohomology of TLn.a/ vanish in all positive degrees if and only if a is invertible. However, in the
case of n odd and R a field, there are some situations where our theorems do not incorporate all vanishing
results given by the existence of JWn. These cases are encapsulated in the following.
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1442 Rachael Boyd and Richard Hepworth

Theorem D Let nD2kC1, and let R be a field whose characteristic does not divide
�
k
t

�
for any 1� t �k.

Let v be a unit in R and assume that aD vC v�1 D 0. Then TorTLn.0/
� .1; 1/ and Ext�TLn.0/

.1;1/ vanish
in positive degrees.

As with Theorem B, the assumption that aD vC v�1 for v a unit can be removed in this result.

Combining Theorem D with Theorem A yields rather comprehensive vanishing results when R is a field
with appropriate characteristic. For example, it now follows that when R is any field, the homology
and cohomology of TL3.vC v

�1/ vanish regardless of the choice of v. Similarly, the homology and
cohomology of TL5.v C v

�1/ will vanish over any field and for any value of v, except possibly in
characteristic 2 when vC v�1 D 0. Since the first appearance of our paper, Sroka [2022] has used related
techniques to show that when n is odd, the Tor groups vanish in all positive degrees, for any choice of R.

The next few sections of this introduction will discuss the proofs of our main results in some detail.

1.4 Planar injective words

Several proofs of homological stability for the symmetric group [Maazen 1979; Kerz 2005; Randal-
Williams 2013] make use of the complex of injective words. This is a highly connected complex with an
action of the symmetric group Sn. Our main tool for proving Theorems B and C is the complex of planar
injective words W .n/, a Temperley–Lieb analogue of the complex of injective words that we introduce
and study here for the first time. It is a chain complex of TLn.a/–modules, and in degree i it is given by
the tensor product module TLn.a/˝TLn�i�1.a/ 1. This is analogous to the complex of injective words,
whose i–simplices form a single Sn–orbit with typical stabiliser Sn�i�1, which is an alternative way of
saying that the i th chain group is isomorphic to RSn˝RSn�i�1

1. We show the following high-acyclicity
result. In order to construct appropriate differentials for W .n/ we exploit a homomorphism from the
group algebra of the braid group on n strands, which is not necessarily apparent from the definition
of TLn.a/. This is where the restriction of a to aD vC v�1 is necessary.

Theorem E Hd .W .n// vanishes in degrees d 6 n� 2.

The complex W .n/ has rich combinatorial properties, analogous to those of the complex of injective words,
that we explore in the companion paper [Boyd and Hepworth 2021]. In particular, Theorem E tells us that
the homology of W .n/ is concentrated in the top degree Hn�1.W .n//, and in [Boyd and Hepworth 2021]
we show that when R is Noetherian the rank of this top homology group is the nth Fine number Fn [Deutsch
and Shapiro 2001], an analogue of the number of derangements on n letters. Furthermore we show
that the differentials of W .n/ encode the Jacobsthal numbers [Sloane 2000]. Finally in the semisimple
case we show that Hn�1.W .n// has descriptions firstly categorifying an alternating sum for the Fine
numbers, and secondly in terms of standard Young tableaux. We call the TLn.a/–module Hn�1.W .n//

the Fineberg module, and we denote it by Fn.a/. We know little about Fn.a/ in general, though in the
cases nD 2; 3; 4 we give examples describing it in terms of the cell modules of TLn.a/.

Geometry & Topology, Volume 28 (2024)



The homology of the Temperley–Lieb algebras 1443

The proof of Theorem E is perhaps the most difficult technical result in this paper. It is obtained by
filtering W .n/ and showing that the filtration quotients are (suspensions of truncations of) copies of
W .n� 1/, and then proceeding by induction.

1.5 Spectral sequences and Shapiro’s lemma

Let us now outline how we use the complex of planar injective words W .n/ to prove Theorems B
and C. Following standard approaches to homological stability for groups, we consider a spectral
sequence obtained from the complex W .n/. The E1–page of our spectral sequence consists of the groups
TorTLn.a/

j .1;TLn.a/˝TLn�i�1.a/ 1/. Furthermore, thanks to Theorem E, the spectral sequence converges
to TorTLn.a/

��nC1
.1;Fn.a//, where Fn.a/ D Hn�1.W .n// is the Fineberg module. Our experience from

homological stability tells us to apply Shapiro’s lemma, or in this context a change-of-rings isomorphism,
to identify

TorTLn.a/
� .1;TLn.a/˝TLn�i�1.a/ 1/ with TorTLn�i�1.a/

� .1; 1/:

This identification applied to the columns of our spectral sequence would allow us to implement an
inductive hypothesis. However, such a change-of-rings isomorphism would only be valid if TLn.a/ were
flat as a TLn�i�1.a/–module, and this is not the case. This failure of Shapiro’s lemma is a potentially
serious obstacle to proceeding further. However, we are able to identify the columns of our spectral
sequence by independent means, as follows:

Theorem F Let R be a commutative ring and let a 2R. Let 0 6 m< n. Then

TorTLn.a/

d
.1;TLn.a/˝TLm.a/ 1/ and ExtdTLn.a/

.TLn.a/˝TLm.a/ 1; 1/

both vanish for d > 0.

In conjunction with a computation of the d D 0 case, this gives us the vanishing results of Theorem B.
Moreover, in the case of n even we are able to analyse the rest of the spectral sequence (there is a
single differential and a single extension problem) in sufficient detail to prove the sharpness result of
Theorem C. This involves a careful study of the Fineberg module Fn.a/. In general, our method identifies
TorTLn.a/
� .1;1/ with TorTLn.a/

��n .1;Fn.a//, except in degrees � D n� 1; n when n is even.

1.6 Inductive resolutions

It remains for us to discuss the proofs of Theorems A and F. These results are proved by a novel method
that exploits the structure of the Temperley–Lieb algebras, and in particular they lie outwith the standard
toolkit of homological stability. Moreover, it is Theorem F which allows us to overcome the failure of
Shapiro’s lemma.

The two theorems are very similar: Theorem A is an instance of the more general statement that
TorTLn.a/
� .1;TLn.a/˝TLm.a/ 1/ vanishes in positive degrees for m 6 n and a invertible, while Theorem F

states that the same groups vanish for m< n and a arbitrary. These are both proved by strong induction
on m. The initial cases mD 0; 1 are immediate because then TLm.a/DR so TLn.a/˝TLm.a/ 1 is free.
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The induction step is proved by constructing and exploiting a resolution of TLn.a/˝TLm.a/1 whose terms
have the form TLn.a/˝TLm�1.a/ 1 and TLn.a/˝TLm�2.a/ 1, and then applying the inductive hypothesis.
We call these resolutions inductive resolutions since they resolve the next module in terms of those already
considered.

Our technique of inductive resolutions is generalised in [Boyd et al. 2021], where we show that the
homology of the Brauer algebras is isomorphic to the homology of the symmetric groups in a stable
range when the parameter ı is not invertible, and in every degree when ı is invertible. This provides
concrete evidence that the new techniques developed in this paper can be adapted to other algebras to
obtain results of similar strength.

1.7 Discussion: homological stability for algebras

As stated earlier, we regard the present paper, together with the results of [Hepworth 2022] on Iwahori–
Hecke algebras, as proof-of-concept for the export of the techniques of homological stability to the setting
of algebras. And, since the first appearance of this paper, these techniques have been extended to the
setting of Brauer algebras in [Boyd et al. 2021]. We hope that the present paper, together with [Hepworth
2022; Boyd et al. 2021], will be a springboard for further research in this direction.

One of the main motivations for studying the homology of groups, is that homology is a useful “mea-
surement” of the group. Put another way, homology is a powerful invariant, where the power comes
from the fact that it is both informative, and (relatively) computable. The Tor and Ext groups of algebras
are likewise strong invariants, and it is our hope that homology and cohomology of algebras can be
utilised as a tool to answer questions in the fields where the algebras arise. For example, modern
representation theory is rich in conjectures, and home to surprising isomorphisms between apparently very
different algebras [Brundan and Kleshchev 2009; Bowman et al. 2023]. Understanding the similarities and
differences between naturally arising algebras is precisely the kind of question that could be investigated
via Tor and Ext groups.

We will now discuss some questions arising from our work. Readers with experience in homological
stability will be able to think of many new questions in this direction, so we will simply list some that are
most prominent in our minds.

The Temperley–Lieb algebra can be regarded as an algebra of one-dimensional cobordisms embedded
in two dimensions, and the Brauer algebra can similarly be viewed as an algebra of one-dimensional
cobordisms embedded in infinite dimensions.

Question Are there analogues of the Temperley–Lieb algebra consisting of d–dimensional cobordisms
embedded in n dimensions? Does homological stability hold for these algebras? And can the stability be
understood in an essentially geometric way?
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And more generally:

Question For which natural families of algebras does homological stability hold?

Candidate algebras, closely related to the existing cases, are: Iwahori–Hecke and Temperley–Lieb
algebras of types B and D; the periodic and dilute Temperley–Lieb algebras; and the blob, partition and
Birman–Murakami–Wenzl algebras. We invite the reader to think of possibilities from further afield.

There have recently been advances in building general frameworks for homological stability proofs.
Randal-Williams and Wahl [2017] introduce a categorical framework that encapsulates, improves and
extends several of the standard techniques used in homological stability proofs for groups. Galatius,
Kupers and Randal-Williams [Galatius et al. 2018] introduce a framework that applies to Ek–algebras
in simplicial modules. It exploits the notion of cellular Ek–algebras, and incorporates methods for
proving higher stability results. This invites us to pose the following questions.

Question Does the general homological stability machinery of Randal-Williams and Wahl [2017]
generalise to an R–linear version, giving a general framework to prove that a family of R–algebras
A0!A1!A2! � � � satisfies homological stability?

In this question, the most interesting issue is what form the resulting complexes will take. One might
expect that for a family of algebras the relevant complexes will be constructed from tensor products, as
with our complex W .n/. However, it may happen, as in this paper, that flatness issues arise, in which
case it seems unlikely that complexes built from the honest tensor products will be sufficient.

Question Can the homological stability machinery of [Galatius et al. 2018] be applied in the setting of
algebras?

It seems extremely likely that homology of Temperley–Lieb algebras will indeed fit into the framework
of [Galatius et al. 2018], by using appropriate simplicial models for the TorTLn.a/

� .1; 1/, or more precisely
for the chain complexes underlying these Tor groups. Again, the difficulty will lie in identifying and
computing the associated splitting complexes, especially when flatness issues arise.

1.8 Outline

In Section 2 we recall the definition of the Temperley–Lieb algebra, the Jones basis, the relationship with
Iwahori–Hecke algebras, and we establish results on the induced modules TLn.a/˝TLm.a/ 1 that will be
important in the rest of the paper. Section 3 establishes our inductive resolutions and proves Theorems A
and F. Section 4 introduces the complex of planar injective words W .n/ and the Fineberg module Fn.a/.
Sections 5 and 6 then use W .n/, in particular its high acyclicity (Theorem E), to prove Theorems B and C.
Section 7 investigates our results in the case of TL2.a/, computing the homology directly and also in
terms of the Fineberg module F2.a/. Section 8 proves Theorem E. Section 9 investigates the vanishing
results given by the Jones–Wenzl projectors and proves Theorem D.
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2 Temperley–Lieb algebras

In this section we will cover the basic facts about the Temperley–Lieb algebra that we will need for the
rest of the paper. There is some overlap between the material recalled here and in [Boyd and Hepworth
2021]. In particular, we cover the definitions by generators and relations and by diagrams; we discuss
the Jones basis for TLn.a/; we look at the induced modules TLn.a/˝TLm.a/ 1 that will be an essential
ingredient in all that follows; and we discuss the homomorphism from the Iwahori–Hecke algebra of
type An�1 into TLn.a/. Historical references on Temperley–Lieb algebras were given in the introduction.
General references for readers new to the TLn.a/ are Section 5.7 of Kassel and Turaev’s book [2008]
on the braid groups, and especially Sections 1 and 2 of Ridout and Saint-Aubin’s survey [2014] on the
representation theory of the TLn.a/.

Definition 2.1 (the Temperley–Lieb algebra TLn.a/) Let R be a commutative ring and let a 2R. Let
n be a nonnegative integer. The Temperley–Lieb algebra TLn.a/ is defined to be the R–algebra with
generators U1; : : : ;Un�1 and the relations

(1) UiUj D Uj Ui for j ¤ i ˙ 1,

(2) UiUj Ui D Ui for j D i ˙ 1, and

(3) U 2
i D aUi for all i .

Thus elements of the Temperley–Lieb algebra are formal sums of monomials in the Ui , with coefficients
in the ground ring R, modulo the relations above. We often write TLn.a/ as TLn. We note here that
TL0 D TL1 DR.

There is an alternative definition of TLn in terms of diagrams. In this description, an element of TLn is
an R–linear combination of planar diagrams (or one-dimensional cobordisms). Each planar diagram
consists of two vertical lines in the plane, decorated with n dots labelled 1; : : : ; n from bottom to top,
together with a collection of n arcs joining the dots in pairs. The arcs must lie between the vertical lines,
they must be disjoint, and the diagrams are taken up to isotopy. For example, here are two planar diagrams
in the case nD 5:

x D

1 1
2 2
3 3
4 4
5 5

y D

1 1

2 2

3 3

4 4

5 5
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:::

:::

:::

:::

:::

:::

1

i
iC1
iC2

n

D

:::

:::

:::

:::

:::

:::

:::

:::

1

i
iC1
iC2

n

D

Figure 1: Diagrammatic relations in TLn: U 2
i D aUi (left) and UiUiC1Ui D Ui (right).

We will often omit the labels on the dots. Multiplication of diagrams is given by placing them side-by-side
and joining the ends. Any closed loops created by this process are then erased and replaced with a factor
of a. For example, the product xy of the elements x and y above is:

D D a �

(We have subscribed to the heresy of [Ridout and Saint-Aubin 2014] by drawing planar diagrams that go
from left to right rather than top to bottom.)

One can pass from the generators-and-relations definition of TLn in Definition 2.1 to the diagrammatic
description of the previous paragraph as follows. For 1 6 i 6 n� 1, to each Ui we associate the planar
diagram shown below:

:::

:::

1

i
iC1

n

We refer to an arc joining adjacent dots as a cup. The relations for the Temperley–Lieb algebras are
satisfied, and two of them are illustrated in Figure 1. The fact that this determines an isomorphism
between the algebra defined by generators and relations, and the one defined by diagrams, is proved in
[Ridout and Saint-Aubin 2014, Theorem 2.4; Kassel and Turaev 2008, Theorem 5.34; Kauffman 2005,
Section 6].

In the rest of the paper we will refer to the diagrammatic point of view on the Temperley–Lieb algebra,
but we will not rely on it for any proofs.

2.1 The Jones basis

From the diagrammatic point of view the Temperley–Lieb algebra TLn has an evident R–basis given by
the (isotopy classes of) planar diagrams. This is called the diagram basis. We now recall the analogue
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of the diagram basis given in terms of the Ui , which is called the Jones basis for TLn, and we prove
some additional facts about it that we will require later. See [Kassel and Turaev 2008, Section 5.7; Ridout
and Saint-Aubin 2014, Section 2; Kauffman 2005, Section 6], but note that conventions vary, and see
Remark 2.5 below in particular.

Definition 2.2 (Jones normal form) The Jones normal form for elements of TLn.a/ is defined as follows.
Let

n> ak > ak�1 > � � �> a1 > 0 and n> bk > bk�1 > � � �> b1 > 0

be integers such that bi > ai for all i . Let aD .ak ; : : : a1/ and b D .bk ; : : : b1/. Then set

xa;b D .Uak
: : :Ubk

/ � .Uak�1
: : :Ubk�1

/ � � � .Ua1
: : :Ub1

/;

where the subscripts of the generators increase in each tuple Uai
: : :Ubi

. A word written in the form xa;b

is said to be written in Jones normal form for TLn.a/.

Example 2.3 In TL5 the words

U1U2U3U4 D .U1U2U3U4/D x.1/;.4/;

U4U3U2U1 D .U4/ � .U3/ � .U2/ � .U1/D x.4;3;2;1/;.4;3;2;1/;

U3U4U1U2 D .U3U4/ � .U1U2/D x.3;1/;.4;2/;

U2U3U1U2 D .U2U3/ � .U1U2/D x.2;1/;.3;2/

are in Jones normal form. The word U2U1U4U2U3 is not, but it can be rewritten using the defining
relations to give

U2U1U4U2U3 D U4U2U1U2U3 D U4U2U3 D .U4/.U2U3/D x.4;2/;.4;3/:

Denote the subset of TLn consisting of all xa;b with aD .a1; : : : ; ak/ and b D .b1; : : : ; bk/ by TLn;k .
Then the set

TLn;0 tTLn;1 t � � � tTLn;n�1

is a basis (recall that by basis we always mean R–module basis) of TLn, called the Jones basis. For a proof
of this fact see [Kassel and Turaev 2008, Corollary 5.32; Ridout and Saint-Aubin 2014, pages 967–969;
Kauffman 2005, Section 6], though we again warn the reader that conventions vary.

There is an algorithm for taking a diagram and writing it as an element of the Jones basis; see [Kauffman
2005, Section 6]. We summarise the algorithm here. Let the i th row of the diagram be the horizontal strip
whose left and right ends lie between the dots i and iC1 on each vertical line. Take a planar diagram,
and ensure that it is drawn in minimal form: all arcs connecting the same side of the diagram to itself
are drawn as semicircles, and all arcs from left to right are drawn without any cups, ie transverse to all
vertical lines, and such that each arc of the diagram intersects each row transversely and at most once.
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Proceed along each row of the diagram, connecting the consecutive arcs encountered with a dotted
horizontal line labelled by the row in question. This is done in an alternating fashion: the first arc
encountered is connected to the second by a dotted line, then the third is connected to the fourth, and
so on. If we start with the elements x and y used earlier in this section, this gives us the following:

x D

4

2
1

y D

4
3

2 2
1

A sequence in such a decorated diagram is taken by travelling right along the dotted arcs and up along
the solid arcs from one dotted arc to the next, starting as far to the left as possible. The above diagrams
each have two sequences, indicated in dashed and dotted lines. The sequences in a diagram are linearly
ordered by scanning from top to bottom and recording a sequence when one of its dotted lines is first
encountered. So in the above diagrams the dashed sequences precede the dotted ones. One now obtains a
Jones normal form for the element by working through the sequences in turn, writing out the labels from
left to right, and then taking the corresponding monomial in the Ui :

x D .U4/.U1U2/D x.4;1/;.4;2/; y D .U2U3U4/.U1U2/D x.2;1/;.4;2/:

We now present a proof that the Jones basis spans, adding slightly more detail than we found in the
references. The extra detail will be used in the next section.

Definition 2.4 Given a word wDUi1
: : :Uin

in the Ui , define the terminus to be the subscript of the final
letter of the word appearing, in, and denote it by t.w/. Set t.1/D1 as a convention. Define the index of
w to be the minimum subscript ij appearing, and denote it by i.w/.

Remark 2.5 The notions of Jones normal form and index in TLn.a/ coincide with those of Kassel and
Turaev [2008], under the bijection which sends the generator ei used in their paper to the generator Un�i

used in this paper for 1 6 i 6 n� 1.

The following two lemmas are an enhancement of [Kassel and Turaev 2008, Lemmas 5.25 and 5.26].

Lemma 2.6 Any word w 2 TLn.a/ is equal in TLn.a/ to a scalar multiple of a word w0 in which

(a) i.w/D i.w0/ and Ui.w/ appears exactly once in w0;

(b) t.w0/D t.w/.

Point (a) occurs as [Kassel and Turaev 2008, Lemma 5.25], and the following is a simple extension of the
proof that appears there. We have opted to give our proof in full because, as well as the minor extension
of the proof, our notation differs from that of [Kassel and Turaev 2008] as in Remark 2.5.

Proof We proceed by reverse induction on the index i.w/ of w, which lies in the range 1 6 i.w/6 n�1.
If i.w/D n�1, then wDU i

n�1
for some i � 1, so wD ai�1Un�1 is a scalar multiple of the word Un�1.

Since the words U i
n�1

and Un�1 have the same index and terminus, the result holds in this case.
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Suppose that the claim holds for all words of index>p and letw be a nonempty word of index p. Suppose
that Up appears in w at least twice. Then we may write w D w1Upw

0Upw2, where i.w0/D ` > p.

If ` > pC 1, then all letters of w0 commute with Up, so that

w D w1Upw
0Upw2 D w1w

0U 2
pw2 D aw1w

0Upw2:

Thus we have reduced the number of occurrences of Up in w while preserving the (nonempty) final
portion Upw2 of the word, so that the terminus remains unchanged.

If `D pC 1, then by the induction hypothesis we may assume that UpC1 appears only once in w0, so
that w0 D w3UpC1w4 where w3; w4 are words of index � pC 2. Therefore w3; w4 commute with Up,
and consequently

w D w1Upw
0Upw2 D w1Upw3UpC1w4Upw2

D w1w3UpUpC1Upw4w2 D w1w3Upw4w2

D w1w3w4Upw2:

So again, we have reduced the number of occurrences of Up in the word while preserving the final
(nonempty) portion Upw2, and in particular preserving the terminus.

Repeating the process of reducing the number of occurrences of Up while preserving the terminus, we
find that w is a scalar multiple of a word w0 of the required form.

Lemma 2.7 Any word w 2 TLn.a/ is equivalent in TLn.a/ to a scalar multiple of a word w0 such that

(a) w0 is written in Jones normal form;

(b) t.w0/6 t.w/;

(c) if t.w0/ < t.w/ then t.w0/6 t.w/� 2.

Proof As in the previous lemma, point (a) occurs as [Kassel and Turaev 2008, Lemma 5.26]. We refer
the reader to that proof, with the following modifications:

� Invoke the bijection of generators of Remark 2.5. This amounts to replacing each occurrence
of ei with Un�i , so for example the subscripts 1 and n� 1 are interchanged, and inequalities are
“reversed”.

� Whenever the inductive hypothesis is used in [Kassel and Turaev 2008, Lemma 5.25], instead use
the statement of the present lemma as a stronger inductive hypothesis.

� At the point where Lemma 5.25 of [Kassel and Turaev 2008] is used in their Lemma 5.26, use
instead Lemma 2.6.

With these modifications in place, one can simply observe how the terminus changes in the proof of [Kassel
and Turaev 2008, Lemma 5.26], to obtain the present strengthening of that result.
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2.2 Induced modules of Temperley–Lieb Algebras

Definition 2.8 (the trivial module 1) The trivial module 1 of the Temperley–Lieb algebra TLn.a/ is
the module consisting of R with the action of TLn.a/ in which all of the generators U1; : : : ;Un�1 act
as 0. We can regard 1 as either a left or right module over TLn.a/, and we will usually do that without
indicating so in the notation.

Definition 2.9 (subalgebra convention) For m 6 n, we will regard TLm.a/ as the subalgebra of TLn.a/

generated by the elements U1; : : : ;Um�1. We will often regard TLn.a/ as a left TLn.a/–module and a
right TLm.a/–module, so that we obtain the left TLn.a/–module TLn.a/˝TLm.a/ 1.

Remark 2.10 Elements of TLn.a/˝TLm.a/ 1 can always be written as elementary tensors of the form
y˝ 1, since in this module x˝ r D rx˝ 1 for all r 2R.

The modules TLn˝TLm
1 are an essential ingredient in the rest of this paper: they will be the building

blocks of all the complexes we construct in order to prove our main results, in particular the complex of
planar injective words W .n/. The rest of this section will study them in some detail, in particular finding
a basis for them analogous to the Jones basis.

Remark 2.11 (TLn.a/˝TLm.a/ 1 via diagrams) The elements of TLn.a/˝TLm.a/ 1 can be regarded as
diagrams, just like the elements of TLn.a/, except that now the first m dots on the right are encapsulated
within a black box, and if any cups can be absorbed into the black box, then the diagram is identified
with 0. For example, some elements of TL4.a/˝TL3.a/ 1 are depicted as follows:

1

2

3

4

The structure of TLn.a/˝TLm.a/ 1 as a left module for TLn.a/ is given by pasting diagrams on the left,
and then simplifying, as in the following example for nD 4 and mD 2:

U1U3 � D D D 0:

Definition 2.12 (the ideal Im) Given 0 6 m 6 n, let Im denote the left ideal of TLn.a/ generated by
the elements U1; : : : ;Um�1.

Lemma 2.13 TLn.a/˝TLm.a/ 1 and TLn.a/=Im are isomorphic as left TLn.a/–modules via the maps

TLn.a/˝TLm.a/ 1! TLn.a/=Im; y˝ r 7! yr C Im;

TLn.a/=Im! TLn.a/˝TLm.a/ 1; yC Im 7! y˝ 1:
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Proof Observe that the generators U1; : : : ;Um�1 of the left ideal Im in TLn are precisely the generators
of the subalgebra TLm of TLn. Thus the map y˝r 7! yrCIm is well defined because if i D 1; : : : ;m�1

then elements of the form yUi˝ r and y˝Uir both map to 0 in TLn=Im. And yC Im 7! y˝ 1 is well
defined because elements of Im are linear combinations of ones of the form x �Ui for i D 1; : : : ;m� 1,
and .x �Ui/˝ 1D x˝ .Ui � 1/D x˝ 0D 0 for i D 1; : : : ;m� 1. One can now check that the two maps
are inverses of one another.

Remark 2.14 Lemma 2.13 justifies the description of TLn.a/˝TLm.a/ 1 in terms of diagrams with
“black boxes” that we gave in Remark 2.11. Indeed, Im is precisely the span of those diagrams which
have a cup on the right between the dots i and i C 1 for some i D 1; : : : ;m� 1. But these are precisely
the diagrams which are made to vanish by having a cup fall into the black box. Thus TLn.a/=Im has
basis given by the remaining diagrams, ie the ones that are not rendered 0 by the black box.

Lemma 2.15 For m 6 n, the ideal Im of TLn.a/ has basis consisting of those elements of TLn.a/

written in Jones normal form xa;b , which have terminus b1 6 m� 1 (and k ¤ 0).

Proof Recall that words of the form xa;b give a basis for TLn. Then by definition any word w 2 Im is
of the form w D xa;bv for v 2 hU1; : : : ;Um�1i and v ¤ e. Then t.w/6 m� 1. Now apply Lemma 2.7
to w to complete the proof.

Lemma 2.16 For m 6 n, TLn.a/˝TLm.a/1 has basis given by xa;b˝1 such that the terminus b1>m�1.

Proof From Lemma 2.13, TLn˝TLm
1 is isomorphic to TLn=Im. Then elements of the form xa;b give

a basis for TLn and elements of the form xa;b , which have terminus b1 6 m� 1 give a basis for Im by
Lemma 2.15. Therefore a basis for the quotient is given by xa;b such that the terminus b1 >m� 1, and
under the isomorphism in Lemma 2.13 this gives the required basis.

Example 2.17 The Jones basis of TL3.a/ is

1; U2; U1U2; U1; U2U1:

So TL3.a/˝TL2.a/1 has basis consisting of those elements whose terminus is strictly greater than 1, namely

1; U2; U1U2:

(Recall that by convention the terminus of 1 is1.)

Lemma 2.18 For m 6 n, suppose that y 2 TLn.a/ and that y �Um�1 lies in Im�1. Then y �Um�1 lies
in Im�2.

Proof The product y �Um�1 is a linear combination of words ending with Um�1, ie of words w with
t.w/Dm� 1. By Lemma 2.7, this can be rewritten as a linear combination of Jones basis elements xa;b

whose terminus satisfies t.xa;b/Dm� 1 or t.xa;b/6 m� 3. Since y �Um�1 2 Im�1, this means that in
fact no basis elements with terminus m� 1 remain after cancellation, and therefore all remaining words
have terminus m� 3 or less, and so lie in Im�2.
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2.3 Iwahori–Hecke algebras

Definition 2.19 (the Iwahori–Hecke algebra) Let n > 0 and let q 2 R�. The Iwahori–Hecke alge-
bra Hn.q/ of type An�1 is the algebra with generators

T1; : : : ;Tn�1

satisfying the relations

� TiTj D Tj Ti for i ¤ j ˙ 1,

� TiTj Ti D Tj TiTj for i D j ˙ 1,

� T 2
i D .q� 1/Ti C q.

Definition 2.20 (from Iwahori–Hecke to Temperley–Lieb) Now suppose that there is v 2R� such that
q D v2. Then there are two natural homomorphisms

�1; �2 WHn.q/! TLn.vC v
�1/;

defined by �1.Ti/D vUi � 1 and �2.Ti/D v
2� vUi for i D 1; : : : ; n� 1. They induce isomorphisms

x�1 WHn.q/=I1
Š�! TLn.vC v

�1/ and x�2 WHn.q/=I2
Š�! TLn.vC v

�1/;

where I1 is the two-sided ideal generated by elements of the form

TiTj Ti CTiTj CTj Ti CTi CTj C 1

for i D j ˙ 1, and I2 is the two-sided ideal generated by elements of the form

TiTj Ti � qTiTj � qTj Ti C q2Ti C q2Tj � q3

for i D j ˙ 1. See [Fan and Green 1997; Kassel and Turaev 2008, Theorem 5.29; Halverson et al.
2009, Section 2.3], though unfortunately conventions change from author to author. Another standard
convention of setting aD�.vC v�1/ can easily be accounted for by swapping v with �v˙1.

We will take an agnostic approach to the homomorphisms �1 and �2. We will choose one of them and
denote it by simply

� WHn.q/! TLn.vC v
�1/;

and denote by � the constant term in �.Ti/, and by � the coefficient of Ui in �.Ti/, so that

�.Ti/D �C�Ui :

Then � induces an isomorphism

x� WHn.q/=I
Š�! TLn.vC v

�1/;

where I is the two-sided ideal generated by elements of the form

TiTj Ti ��TiTj ��Tj Ti C�
2Ti C�

2Tj ��
3

for i D j ˙ 1. And moreover, the elements �.Ti/ act on the trivial module 1 as multiplication by �.
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:::

:::

:::

:::

:::

:::

1

i
iC1

n

C�D �

si D � C� Ui

Figure 2: Smoothings of si .

Definition 2.21 Let v 2R�. We define s1; : : : ; sn�1 2 TLn.vC v
�1/ by setting

si D �.Ti/D �C�Ui ;

and note that these elements satisfy the following properties:

� s2
i D .v

2� 1/si C v
2 for all i .

� sisj D sj si for i ¤ j ˙ 1.

� sisj si D sj sisj for i D j ˙ 1.

� sisj si ��sisj ��sj si C�
2si C�

2sj ��
3 D 0 for i D j ˙ 1.

� si acts on 1 as multiplication by �.

Remark 2.22 There is a homomorphism from (the group algebra of) the braid group into TLn.vC v
�1/

given on generators by si 7! si . This is the content of the second and third bullet points above, together
with the fact that the si are invertible, which follows from the first bullet point (and the fact that v is
a unit). Diagrammatically, this homomorphism can be viewed as a smoothing expansion from braided
diagrams to planar diagrams: take a braid diagram, and then smooth each crossing in turn in the two
possible ways, using appropriate weightings for each smoothing. For example, we can visualise the image
of si in TLn.vC v

�1/ as the standard braid group generator crossing strand i over strand i C 1. There
are two ways this crossing can be resolved to a planar diagram, and we equate si to the sum of these
two states. They are the identity and Ui , as shown in Figure 2. The coefficient of the identity is � and the
coefficient of Ui is �, simply because we defined si D �C�Ui . Similarly, we consider the image of s�1

i

as strand i crossing under strand iC1, and when this is smoothed the coefficient of the identity is ��1 and
the coefficient of Ui is ��1, precisely because one can verify that s�1

i D �
�1C��1Ui in TLn.vC v

�1/.

In principle we could describe how various Reidemeister moves affect the smoothing expansion, but it
will not be necessary for the rest of the paper. Moreover, we will only encounter positive powers of si .

3 Inductive resolutions

In this section we prove the following two theorems, which we recall from the introduction.
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Theorem A Let R be a commutative ring and let a be a unit in R. Then

TorTLn.a/

d
.1; 1/ and ExtdTLn.a/

.1; 1/

both vanish for d > 0.

Theorem F Let R be a commutative ring and let a 2R. Let 0 6 m< n. Then

TorTLn.a/

d
.1;TLn.a/˝TLm.a/ 1/ and ExtdTLn.a/

.TLn.a/˝TLm.a/ 1; 1/

vanish for d > 0.

In fact for Theorem A we will prove the following stronger claim:

Claim 3.1 Suppose that the parameter a 2R is invertible. Then for any 0 6 m 6 n, the groups

TorTLn.a/

d
.1;TLn.a/˝TLm.a/ 1/ and ExtTLn.a/

d
.TLn.a/˝TLm.a/ 1; 1/

both vanish for d > 0.

The similarity between Theorem F and Claim 3.1 is now clear. Both will be proved by induction on m, the
initial cases mD 0; 1 being immediate because then TLm is the ground ring R so that TLn˝TLm

1Š TLn

is free. In order to produce an inductive proof, we construct resolutions of the modules TLn˝TLm
1

whose terms are not free or projective or injective, but instead whose terms are the modules considered
earlier in the induction, specifically TLn˝TLm�1

1 and TLn˝TLm�2
1. For this reason we refer to these

resolutions as inductive resolutions. This approach is inspired by homological stability arguments, in
which one considers complexes whose building blocks are induced up from the earlier objects in the
sequence. The difference here is that our complexes are actual resolutions — they are acyclic rather than
just acyclic up to a point — and because Shapiro’s lemma is unavailable we do not change the algebra we
are working over, rather we change the algebra from which we are inducing our modules.

3.1 The inductive resolutions

In this subsection we establish the resolutions C.m/ and D.m/ of TLn˝TLm
1 required to prove Claim 3.1

and Theorem F above.

Definition 3.2 (the complex C.m/) Let 2 6 m 6 n and assume that a is invertible. We define a chain
complex of left TLn.a/–modules as in Figure 3, left. The degree is indicated in the right-hand column.
The differentials of C.m/ are all given by extending the algebra over which the tensor product is taken,
by right multiplying in the first factor by the indicated element of TLn.a/, or by a combination of the
two. So, for example, the differential originating in degree 1 sends x ˝ r 2 TLn.a/˝TLm�2.a/ 1 to
.x �a�1Um�1/˝r 2 TLn.a/˝TLm�1.a/1. The complex is periodic of period 2 in degrees 1 and above, so
that all entries are TLn.a/˝TLm�2.a/1 and the boundary maps between them alternate between a�1Um�1

and 1�a�1Um�1. The boundary maps are well defined because Um�1 commutes inside TLn.a/ with all
elements of TLm�2.a/.
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:::

.1�a�1Um�1/

��

TLn˝TLm�2
1

a�1Um�1

��

3

TLn˝TLm�2
1

.1�a�1Um�1/

��

2

TLn˝TLm�2
1

a�1Um�1

��

1

TLn˝TLm�1
1

1

��

0

TLn˝TLm
1 �1

:::

.1�Um�1Um/

��

TLn˝TLm�2
1

Um�1Um

��

3

TLn˝TLm�2
1

.1�Um�1Um/

��

2

TLn˝TLm�2
1

Um�1

��

1

TLn˝TLm�1
1

1

��

0

TLn˝TLm
1 �1

Figure 3: The complexes C.m/ (left) and D.m/ (right).

Definition 3.3 (the complex D.m/) Let 2 6 m< n, and do not assume that a is invertible. We define a
chain complex of left TLn.a/–modules as in Figure 3, right. The degree is indicated in the right-hand
column. The differentials of D.m/ are all given by extending the algebra over which the tensor product
is taken, by right multiplying in the first factor by the indicated element of TLn.a/, or by a combination
of the two. So, for example, the differential originating in degree 1 sends x˝ r 2 TLn.a/˝TLm�2.a/ 1

to x �Um�1˝ r 2 TLn.a/˝TLm�1.a/ 1. The complex is periodic of period 2 in degrees 1 and above,
so that in that range all terms are TLn.a/˝TLm�2.a/ 1 and the boundary maps between them alternate
between Um�1Um and .1�Um�1Um/. The boundary maps are well defined because Um�1 and Um�1Um

commute inside TLn.a/ with all elements of TLm�2.a/. Observe that the condition m< n is necessary
in order to ensure that Um is actually an element of TLn.a/.

Lemma 3.4 (1) Let 2 6 m 6 n and let a be invertible. Then a�1Um�1 2 TLn.a/ is idempotent.

(2) Let 2 6 m< n and let a be arbitrary. Then Um�1Um 2 TLn.a/ is idempotent.

Proof We calculate
.a�1Ui/

2
D a�2U 2

i D a�2aUi D a�1Ui ;

Um�1Um �Um�1Um D Um�1UmUm�1 �Um D Um�1Um:

From now on in this section, we will attempt to talk about C.m/ and D.m/ at the same time. When we
refer to C.m/, the relevant assumptions should be understood, namely that 2 6 m 6 n and that a 2R is
a unit. And when we refer to D.m/, the assumptions that 2 6 m < n but a 2R is arbitrary should be
understood. We trust that this will not be confusing.
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Lemma 3.5 C.m/ and D.m/ are indeed chain complexes.

Proof We give the proof for C.m/. The proof for D.m/ is similar. We must check that consecutive
boundary maps of C.m/ compose to 0. In the case of the composite from degree 1 to �1, the composition
is given by

x˝ r 7! .x � a�1Um�1/˝ r D x˝ .a�1Um�1 � r/D x˝ 0D 0I

this holds because the tensor product is over TLm, which contains a�1Um�1. In the case of the remaining
composites, this follows immediately from

.a�1Um�1/ � .1� a�1Um�1/D 0D .1� a�1Um�1/ � .a
�1Um�1/;

which is a consequence of the fact that a�1Um�1 is idempotent (from Lemma 3.4).

Lemma 3.6 The complexes C.m/ and D.m/ are acyclic.

Proof In degree �1 it is clear that the boundary map is surjective, for both C.m/ and D.m/.

In degree 0, we will give the proof for C.m/, the proof for D.m/ being similar. Suppose that y˝ 1 2

TLn˝TLm�1
1 lies in the kernel of the boundary map, or in other words that y˝12TLn˝TLm

1 vanishes.
This means that y lies in the left ideal generated by the elements U1; : : : ;Um�1. Since all but the last of
these generators lie in TLm�1, and we started with y˝ 1 2 TLn˝TLm�1

1, we may assume without loss
that y D y0 �Um�1 for some y0. But then

y˝ 1D y0 �Um�1˝ 1D ay0 � .a�1Um�1/˝ 1

does indeed lie in the image of the boundary map.

In degree 1, we give the proof for both complexes. First, for C.m/, suppose that y˝ 1 2 TLn˝TLm�2
1

lies in the kernel of the boundary map. It follows that y � .a�1Um�1/˝ 1 vanishes in TLn˝TLm�1
1,

which means that y � .a�1Um�1/ lies in the left ideal Im�1 generated by U1; : : : ;Um�2. It follows
from Lemma 2.18 that y � .a�1Um�1/ lies in the left ideal Im�2 generated by U1; : : : ;Um�3, so that in
TLn˝TLm�2

1 the element y � .a�1Um�1/˝ 1 vanishes. Thus

y˝ 1D y � .1� a�1Um�1/˝ 1

does indeed lie in the image of the boundary map. Second, for D.m/, suppose that y˝12 TLn˝TLm�2
1

lies in the kernel of the boundary map. Then, as for C.m/, y �Um�1 lies in Im�2. So y �Um�1Um also lies
in the left ideal Im�2 since Um commutes with the generators of Im�2. Thus y �Um�1Um˝1 vanishes in
TLn˝TLm�2

1, so that y˝ 1D y � .1�Um�1Um/˝ 1 does indeed lie in the image of the boundary map.

In degrees 2 and higher, acyclicity is an immediate consequence of the fact that a�1Um�1 and Um�1Um

are idempotents, by Lemma 3.4.

Lemma 3.7 The following complexes are acyclic:

1˝TLn.a/ C.m/; 1˝TLn.a/D.m/; HomTLn.a/.C.m/; 1/ and HomTLn.a/.D.m/; 1/:
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:::

��

1
0
��

3

1
1
��

2

1
0
��

1

1
1
��

0

1 �1

Figure 4: The complex 1˝C.m/.

Proof We give the proof for 1˝TLn
C.m/, the proof for the other parts being similar. The terms of C.m/

have the form TLn˝TLm�i
1, where i D 0; 1; 2, depending on the degree. Thus 1˝TLn

C.m/ has terms of
the form 1˝TLn

.TLn˝TLm�i
1/Š 1˝TLm�i

1Š 1. Moreover, by tracing through this isomorphism, one
sees that if a boundary map in C.m/ is labelled by an element x 2 TLn, then the corresponding boundary
map in 1˝TLn

C.m/ is simply the map 1! 1 given by the action of x on 1. Thus 1˝TLn
C.m/ is

nothing other than the complex in Figure 4. (The right-hand column indicates the degree.) This is visibly
acyclic, and this completes the proof.

Remark 3.8 (representation theory and the inductive resolutions) Schur–Weyl duality relates repre-
sentations of TLn with representations of the quantum group Uq.sl2/, and it is possible to use this to
construct our inductive resolutions via the representation theory of Uq.sl2/. We will try to describe this
briefly. We are indebted to a referee for explaining this connection to us.

One instance of Schur–Weyl duality is the following. Let V denote the standard representation of Uq.sl2/.
Then there is an isomorphism TLn Š EndUq.sl2/.V

˝n/, and more generally there are isomorphisms
TL.n;m/ Š HomUq.sl2/.V

˝n;V ˝m/ that assemble into a monoidal functor on the Temperley–Lieb
category TL. (The objects of TL are the nonnegative integers, the morphism space TL.n;m/ is the
R–module spanned by planar diagrams with n marked points on the left and m marked points on the
right, and composition is defined just like multiplication in TLn.) See Webster [2017].

One can write down exact sequences of Uq.sl2/–modules that, after applying Schur–Weyl duality, yield
the inductive resolutions C.m/ and D.m/. We will not detail the construction of these sequences, except
to say that each one relies on the construction of an appropriate splitting of some tensor power of V . The
relevant splittings are constructed in each case as follows:

� In the case where a is invertible, the morphisms

a�1 and
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in TL compose to give the identity morphism in TL.0; 0/. (The two semicircles compose to the circle
morphism from 0 to itself, and by the usual rule for composing diagrams, the circle morphism is a times
the identity.) This then corresponds to a pair of maps R D V ˝0! V ˝2 and V ˝2! V ˝0 D R that
compose to the identity, showing that V ˝2 splits off a copy of R. Note that the map V ˝2! V ˝2 that
projects onto this copy of R is represented by the morphism

a�1

in TL. Compare this with the idempotent a�1Um�1 appearing in C.n/.

� When a is not invertible, we consider the morphisms

and

which compose to give the identity morphism in TL.1; 1/. These diagrams correspond to a pair of maps
V ! V ˝3! V that compose to the identity, showing that V ˝3 splits off a copy of V . Observe that
the map V ˝3! V ˝3 that projects to this copy of V is represented by the morphism

which can be compared to the idempotent Um�1Um appearing in D.n/.

3.2 The spectral sequence of a double complex

Since the spectral sequence of a particular kind of double complex is used several times during this paper,
we introduce and discuss it in this subsection.

We begin with the homological version. Suppose we have a chain complex Q� of left TLn–modules,
such as C.m/ or D.m/, or the complex of planar injective words W .n/ to be introduced later. Then we
choose a projective resolution P of 1 as a right module over TLn, and we consider the double complex
P�˝TLn

Q�. This is a homological double complex in the sense that both differentials reduce the grading.
Associated to this double complex are two spectral sequences, fIEr g and fIIEr g, which both converge to
the homology of the totalisation, H�.Tot.P�˝TLn

Q�// as in [Weibel 1994, Section 5.6]. The first spectral
sequence has E1–term given by IE1

i;j DHj .Pi˝TLn
Q�/ŠPi˝TLn

Hj .Q�/, with d1 W IE1
i;j !

IE1
i�1;j

induced by the differential Pi ! Pi�1. The isomorphism above holds because each Pi is projective and
therefore flat. It follows that the E2–term is

IE2
i;j D TorTLn

i .1;Hj .Q�//:
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The second spectral sequence has E1–term given by IIE1
i;j DHj .P�˝TLn

Qi/, ie

IIE1
i;j D TorTLn

j .1;Qi/;

with d1 W IIE1
i;j !

IIE1
i�1;j

induced by the boundary maps of Q�.

We now consider the cohomological version. Suppose we have a chain complex Q� of left TLn–modules,
again such as C.m/, D.m/ or W .n/ (the latter to be introduced later). Then we choose an injective
resolution I� of 1 as a left module over TLn, and we consider the double complex HomTLn

.Q�; I
�/. This

is a cohomological double complex in the sense that both differentials increase the grading. Associated to
this double complex are two spectral sequences, fIEr g and fIIEr g, both converging to the cohomology of
the totalisation, H�.Tot.HomTLn

.Q�; I
�/// as in [Weibel 1994, Section 5.6]. The first spectral sequence

has E1–term given by IE
i;j
1
DH j .HomTLn

.Q�; I
i//ŠHomTLn

.Hj .Q�/; I
i/, with d1 W IE1

i;j!
IE1

iC1;j

induced by the differential of I�. The isomorphism above holds because each I i is injective, so that the
functor HomTLn

.�; I i/ is exact. It follows that the E2–term is
IE

i;j
2
D ExtiTLn

.Hj .Q�/; 1/:

The second spectral sequence has E1–term IIE
i;j
1
DH j .HomTLn

.Qi ; I
�//, ie

IIE
i;j
1
D ExtjTLn

.Qi ; 1/;

with differential d1 W IIE
i;j
1
! IIE

iC1;j
1

induced by the differential of Q�.

3.3 Proof of Theorems A and F

We can now prove Claim 3.1 (which implies Theorem A) and Theorem F. The proofs of the two results will
be almost identical except that the former uses the complex C.m/ and the latter uses the complex D.m/.
Moreover, each result has a homological and cohomological part, referring to Tor and Ext, respectively.
In each case the two parts are proved similarly, by using either the homological or cohomological spectral
sequence from Section 3.2. We will therefore only prove the homological part of Claim 3.1, ie we will prove
that TorTLn

� .1;TLn˝TLm
1/ vanishes in positive degrees, leaving the details of the other parts to the reader.

Proof of Claim 3.1, Tor case We prove the claim by fixing n and using strong induction on m in the
range n > m > 0. As noted before, the initial cases mD 0; 1 of the induction are immediate since then
TLm is the ground ring and TLn˝TLn

1Š TLn is free. We therefore fix m in the range 2 6 m 6 n.

We now employ the homological spectral sequences fIEr g and fIIEr g of Section 3.2, in the case QDC.m/.
Then IE2

i;j DTorTLn

i .1;Hj .C.m///D 0 for all i and j , since C.m/ is acyclic by Lemma 3.6. Thus fIEr g

converges to zero, and the same must therefore be true of fIIEr g, since both spectral sequences have the
same target. In the second spectral sequence the E1–page

IIE1
i;j D TorTLn

j .1;C.m/i/

is largely known to us. The bottom j D 0 row of IIE1 is precisely the complex 1˝TLn
C.m/, which is

acyclic by Lemma 3.7. And when i > 0, the term C.m/i is either TLn˝TLm�1
1 or TLn˝TLm�2

1, and our
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j

i�1 0 1 2

0

1

2

3

:::
:::

� � �

� � �

TorTLn

1 .1;C.m/�1/

TorTLn

2
.1;C.m/�1/

TorTLn

3
.1;C.m/�1/

1˝TLnC.m/�1 1˝TLnC.m/0 1˝TLnC.1/1 1˝TLnC.m/2

TorTLn

j .1;C.m/i/D 0

Figure 5: The page IIE1. The only differentials that affect the IIE2–page are shown on the j D 0 row.

inductive hypothesis applies to these (m�1<m and m�2<m) to show that IIE1
i;jDTorTLn

j .1;C.m/i/D0

when j > 0. See Figure 5 for a visualisation of the E1–page. Altogether, this tells us that IIE2
i;j vanishes

except for the groups
IIE2
�1;j D TorTLn

j .1;C.m/�1/D TorTLn

j .1;TLn˝TLm
1/

for j > 0, which are concentrated in a single column and therefore not subject to any further differentials.
Thus IIE2D IIE1. But we know that IIE1 vanishes identically, so that the inductive hypothesis is proved,
and so, therefore, is the proof of the homological part of Claim 3.1.

4 Planar injective words

Throughout this section we will consider the Temperley–Lieb algebra TLn.a/D TLn.vC v
�1/, where

v 2R�. We will make use of the elements s1; : : : ; sn�1 of Definition 2.21.

Definition 4.1 For n > 0 we define a chain complex W .n/� of left TLn.a/–modules as follows. For i in
the range �1 6 i 6 n� 1, the degree-i part of W .n/� is defined by

W .n/i D TLn.a/˝TLn�i�1.a/ 1;

and in all other degrees we set W .n/i D 0. Note that

W .n/�1 D TLn.a/˝TLn.a/ 1D 1:

For i > 0 the boundary map d i WW .n/i!W .n/i�1 is defined to be the alternating sum
Pi

jD0.�1/j d i
j ,

where d i
j WW .n/i!W .n/i�1 is the map

d i
j W TLn.a/˝TLn�i�1.a/ 1! TLn.a/˝TLn�i .a/ 1

defined by
d i

j .x˝ r/D .x � sn�iCj�1 � � � sn�i/˝�
�j r:
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TLn˝TL0
1

dn�1
0
�dn�1

1
C���C.�1/n�1dn�1

n�1
��

n� 1

TLn˝TL1
1

dn�2
0
�dn�2

1
C���C.�1/n�2dn�2

n�2 ��

n� 2

:::

��

TLn˝TLn�3
1

d2
0
�d2

1
Cd2

2
��

2

TLn˝TLn�2
1

d1
0
�d1

1
��

1

TLn˝TLn�1
1

��

0

1 �1

Figure 6: The complex W .n/.

In the expression sn�iCj�1 � � � sn�i , the indices decrease from left to right. Thus, for example, the product
is sn�iC1sn�i when j D 2, it is sn�i when j D 1, and it is trivial (the unit element) when j D 0 (the latter
point can be regarded as a convention if one wishes). Recall that � is indeed invertible since �D�1 or v2,
and v is a unit. For notational purposes we will write W .n/ and only use a subscript when identifying a
particular degree.

Observe that dj is well defined because the elements sn�i ; : : : ; sn�iCj�1 all commute with all generators
of TLn�i�1. We have depicted W .n/ in Figure 6.

Lemma 4.2 The boundary maps of W .n/ satisfy d i�1 ı d i D 0.

Proof We will show that if i > 1 and 0 6 j < k 6 i , then the composite maps

d i�1
j d i

k ; d
i�1
k�1d i

j WW .n/i!W .n/i�2

coincide. (Thus the d i
j satisfy the semisimplicial identities, so W .n/ is a semisimplicial R–module.) The

fact that d ı d vanishes then follows. We have

d i�1
j d i

k.x˝ r/D Œx � .sn�iCk�1 � � � sn�i/ � .sn�iCj � � � sn�iC1/�˝�
�.jCk/r;

d i�1
k�1d i

j .x˝ r/D Œx � .sn�iCj�1 � � � sn�i/ � .sn�iCk�1 � � � sn�iC1/�˝�
�.jCk�1/r:

Now

.sn�iCk�1 � � � sn�i/ � .sn�iCj � � � sn�iC1/D .sn�iCj�1 � � � sn�i/ � .sn�iCk�1 � � � sn�i/

D .sn�iCj�1 � � � sn�i/ � .sn�iCk�1 � � � sn�iC1/ � sn�i :
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Here, the first equality follows by taking the letters of the second parenthesis in turn, and “passing through”
the first parenthesis, using a single braid relation, with the result that the letter’s index is reduced by 1.
Thus,

d i�1
j d i

k.x˝ r/D Œx � .sn�iCk�1 � � � sn�i/ � .sn�iCj � � � sn�iC1/�˝�
�.jCk/r

D Œx � .sn�iCj�1 � � � sn�i/ � .sn�iCk�1 � � � sn�iC1/ � sn�i �˝�
�.jCk/r

D Œx � .sn�iCj�1 � � � sn�i/ � .sn�iCk�1 � � � sn�iC1/�˝ sn�i � .�
�.jCk/r/

D Œx � .sn�iCj�1 � � � sn�i/ � .sn�iCk�1 � � � sn�iC1/�˝�
�.jCk�1/r

D d i�1
k�1d i

j .x˝ r/;

where the third equality holds because this computation takes place in W .n/i�2 D TLn˝TLn�iC1
1 and

sn�i 2 TLn�iC1.

Remark 4.3 Let us explain the motivation for the definition of W .n/. Let Sn denote the symmetric group
on n letters. The complex of injective words is the chain complex C.n/ of Sn–modules, concentrated
in degrees �1 to n� 1, that in degree i is the free R–module with basis given by tuples .x0; : : : ;xi/,
where x0; : : : ;xi 2 f1; : : : ; ng and no letter appears more than once. We allow the empty word ./,
which lies in degree �1. The differential of C.n/ sends a word .x0; : : : ;xi/ to the alternating sumPi

jD0.�1/j .x0; : : : ; bxj ; : : : ;xi/. A theorem of Farmer [1979] shows that the homology of C.n/ vanishes
in degrees i 6 n� 2, and the same result has been proved since then by many authors [Maazen 1979;
Björner and Wachs 1983; Kerz 2005; Randal-Williams 2013]. The complex of injective words has been
used by several authors to prove homological stability for the symmetric groups [Maazen 1979; Kerz
2005; Randal-Williams 2013].

For this paragraph only, let us abuse our established notation and denote by s1; : : : ; sn�1 2 Sn the
elements defined by si D .i iC1/, the transposition of i with iC1. Then these elements satisfy the braid
relations, ie the second and third identities of Definition 2.21. The complex of injective words C.n/

can be rewritten in terms of the group ring RSn and the elements si . Indeed, it is shown in [Hepworth
2022] that C.n/i Š RSn˝RSn�i�1

1, where 1 is the trivial module of RSn�i�1, and that under this
isomorphism the differential d i W C.n/i! C.n/i�1 becomes the map

d i
WRSn˝RSn�i�1

1!RSn˝RSn�i
1

defined by d i.x ˝ 1/ D
Pi

jD0.�1/j x � .sn�iCj�1 � � � sn�i/ ˝ 1. (There are no constants � in this
expression). Comparing this description of C.n/ with our definition of W .n/, we see that our complex of
planar injective words is precisely analogous to the original complex of injective words, after systematically
replacing the group algebras of symmetric groups with the Temperley–Lieb algebras. The lack of constants
in the differential for C.n/ is explained by the fact that the effect of si on 1 is multiplication by � in the
Temperley–Lieb setting, and multiplication by 1 in the symmetric group setting.
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Since we regard the Temperley–Lieb algebra as the planar analogue of the symmetric group, we chose
the name planar injective words for our complex W .n/. This seemed the least discordant way of giving
our complex an appropriate name. See the next remark for a means of picturing the complex.

Remark 4.4 Let us describe a method for visualising W .n/. Recall from the diagrammatic description of
TLn.a/˝TLm.a/1 when m 6 n given in Remark 2.11 that elements of W .n/i can be regarded as diagrams
where the first n� i � 1 dots on the right are encapsulated within a black box, and if any cups can be
absorbed into the black box, then the diagram is identified with 0. The differential d i WW .n/i!W .n/i�1

is then given by pasting special elements onto the right of a diagram, followed by taking their signed and
weighted sum. These special elements each enlarge the black box by an extra strand, and plumb one of
the free strands into the new space in the black box. Here is an example for nD 4 and i D 2:

d2 W 7! ���1 C��2

The resulting diagrams can be simplified using the smoothing rules for diagrams with crossings described
in Remark 2.22. We leave it to the reader to make this description as precise as they wish, and note here
that this is where the notion of braiding, so often seen in homological stability arguments, fits into our
setup.

Remark 4.5 Readers who are familiar with the theory will recognise that W .n/ is the chain complex
associated to an augmented semisimplicial TLn.a/–module.

The main result about the complex of planar injective words is the following, which we recall from the
introduction. It is analogous to the homological vanishing property of the complex of injective words first
proved by Farmer [1979].

Theorem E The homology of W .n/ vanishes in degrees d 6 n� 2.

The proof of Theorem E is the most technical part of this work, and will be given in Section 8.

The complex of injective words on n letters has rich combinatorial features: its Euler characteristic is
the number of derangements of f1; : : : ; ng; when one works over C, its top homology has a description
as a virtual representation that categorifies a well-known alternating sum formula for the number of
derangements; and again when one works over C, its top homology has a compact description in terms
of Young diagrams and counts of standard Young tableaux. In the associated paper [Boyd and Hepworth
2021] we establish analogues of these for the complex of planar injective words. In particular we show
that when the ring R is Noetherian the rank of Hn�1.W .n// is the nth Fine number [Deutsch and Shapiro
2001]. (The rank of the Temperley–Lieb algebra is the nth Catalan number, which is the number of
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Dyck paths of length 2n. The nth Fine number is the number of Dyck paths of length 2n whose first
peak occurs at an even height, and as we explain in [Boyd and Hepworth 2021], it is an analogue of
the number of derangements.) We also discover a new feature of the complex: the differentials have an
alternative expression in terms not of the si but of the Ui . This expression demonstrates a connection
with the Jacobsthal numbers, and we will briefly explain the result for the top differential below. The top
homology of the Tits building is known as the Steinberg module. This inspires the name in the following
definition.

Definition 4.6 We define the nth Fineberg module to be the TLn.a/–module Fn.a/DHn�1.W .n//. We
often suppress the a and simply write Fn.

The Fineberg module is an important ingredient in the full statement of our stability result, Theorem 5.1.
In order to detect the nonzero homology group appearing in Theorem C we need to study it in more detail
using the connection with Jacobsthal numbers from [Boyd and Hepworth 2021].

The nth Jacobsthal number Jn [Sloane 2000] is (among other things) the number of sequences n> a1 >

a2 > � � � > ar > 0 whose initial term has the opposite parity to n. Some examples, when n D 4, are
3, 1, 3 > 2, 3 > 1 and 3 > 2 > 1. (We allow the empty sequence, and say that by convention its initial
term is a1 D 0 and r D 0. Of course this only occurs when n is odd.) Another viewpoint of Jn in terms
of compositions of n is given in [Boyd and Hepworth 2021].

Definition 4.7 Let aD vCv�1, where v 2R� is a unit. We define the Jacobsthal element in TLn.a/ by

Jn D .�1/n�1
X

n>a1>���>ar>0
n�a1 odd

�
�

�

�r

Ua1
: : :Uar

:

Recall that we allow the empty sequence (a1 D 0 and r D 0) when n is odd. This corresponds to a
constant summand 1 in Jn for odd n. Note that the number of irreducible terms in Jn is Jn.

Example 4.8 In the cases nD 1; 2; 3; 4, and choosing � D �1 so that .�; �/D .�1; v/, we have

J1D 1; J2D vU1; J3D v
2U2U1�vU2C1; J4D v

3U3U2U1�v
2U3U2�v

2U3U1CvU3CvU1:

Spencer [2022] has computed the Jacobsthal elements Jn up to nD 9.

Since Fn is the homology of W .n/ in the top degree, it is simply the kernel of the top differential
dn�1 WW .n/n�1!W .n/n�2. There are identifications

W .n/n�1 D TLn.a/˝TL0.a/ 1Š TLn.a/ and W .n/n�2 Š TLn.a/˝TL1.a/ 1Š TLn.a/:

Proposition 4.9 [Boyd and Hepworth 2021, Theorem D] Under the above identifications , the top
differential of W .n/ is right multiplication by Jn. In particular , there is an exact sequence

0! Fn.a/! TLn.a/
� �Jn
���! TLn.a/:
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Remark 4.10 Definition 4.7 gives a different value for the element Jn than the one that appears in [Boyd
and Hepworth 2021, Definition 8.1 and Theorem D]. This is because the proof of [Boyd and Hepworth
2021, Theorem D] contains a sign error: it assumes that si D ���Ui rather than si D �C�Ui as it
should have done. This error is fixed by replacing � with �� in the formula in [Boyd and Hepworth
2021, Definition 8.1]. It is possible to check Example 4.8 by hand to confirm that the signs in the present
formula for Jn are the correct ones.

The Fineberg module Fn appears to be a new and interesting representation, and looks likely to be highly
nontrivial for each choice of n. Let us illustrate this by computing F2, F3 and F4. We will continue with
the choice � D �1 so that .�; �/D .�1; v/.

Our description will be phrased in terms of the cell modules of TLn, which we describe briefly. A
half-diagram (or link state in the language of [Ridout and Saint-Aubin 2014]) consists of a vertical line in
the plane decorated with dots labelled 1; : : : ; n from bottom to top, together with a collection of arcs in
the plane, each of which either connects two dots, or is connected to a dot at one end, in such a way that
each dot lies on precisely one arc. The arcs must lie to the right of the vertical line, they must be disjoint,
and the half-diagrams are taken up to isotopy. Thus the half-diagrams on four dots are as follows:

The cell module S.n;m/ is the TLn–module with R–basis consisting of the half-diagrams on n dots
in which m arcs have free ends. The TLn–module structure on S.n;m/ is obtained by pasting planar
diagrams onto the left of half-diagrams and simplifying the result exactly as with composition in TLn,
with the extra condition that if pasting produces an arc with two free ends, then the resulting diagram is
set to 0. In S.4; 2/, for example, we have

U1 � D a � ; U2 � D ; U3 � D 0:

(The reader is reminded that we label the dots from bottom to top.) Observe that S.n; n/D 1 is the trivial
module for each n, and that S.n;m/ is nonzero only when n�m is even.

Example 4.11 (the Fineberg module F2) The module F2 is the kernel of the map TL2! TL2 given
by x 7! x �J2. Now J2 D vU1 as in Example 4.8, so that F2 is the R–module of rank 1 spanned by the
element a�U1. This is a copy of the trivial module 1D S.2; 2/.

Example 4.12 (the Fineberg module F3) The module F3 is the kernel of the map TL3! TL3 given
by x 7! x �J3, where J3 D v

2U2U1� vU2C 1 as in Example 4.8. Thus F3 is the R–module of rank 2
with basis elements

˛ D U1U2� vU1 and ˇ D U2� vU2U1:
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One can now check that there is an isomorphism of TL3–modules F3 Š S.3; 1/ given by

F3
Š
�! S.3; 1/; ˛ 7! and ˇ 7! :

Example 4.13 (the Fineberg module F4) The module F4 is the kernel of the map TL4! TL4 given
by x 7! x �J4, where J4 D v

3U3U2U1� v
2U3U2� v

2U3U1C vU3C vU1 as in Example 4.8. It is now
possible to check (at length) that F4 is a free R–module of rank 6 with basis

AD U3U1� aU3U1U2;

B D U2U3U1� aU2U3U1U2;

X D U1U2U3�U3U1U2� aU1U2CU1;

Y D U2U3�U2U3U1U2� aU2CU2U1;

Z D U3U2U1�U3U1U2� aU3U2CU3;

P D U3U1U2�U1�U3C a:

If we now define

M0 D span.A;B/; M1 D span.A;B;X;Y;Z/; M2 D span.A;B;X;Y;Z;P /;

so that M0�M1�M2DF4; then one can check directly (by computing the effect of multiplying on the
left by U1;U2;U2) that M0 and M1 are submodules of F4, and, moreover, that we have isomorphisms

M0
Š�! S.4; 0/; A 7! ; B 7! ;

M1=M0
Š�! S.4; 2/; X 7! ; Y 7! ; Z 7! ;

M2=M1
Š�! 1; P 7! 1:

Thus F4 has a filtration in which each of the three cell modules appears as precisely one of the filtration
quotients. We emphasise that this result holds with no further assumptions on the ground ring R or on
the parameter v.

5 Homological stability and stable homology

The aim of this section is to prove the following result. Theorem B is an immediate consequence, and
Theorem C will be proved in the next section as a corollary of it.
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Theorem 5.1 Let R be a commutative ring , let v 2R be a unit , and let aD vC v�1. Then , for n odd ,

TorTLn.a/
i .1; 1/Š

8<:
R if i D 0;

0 if 1 6 i 6 n� 1;

TorTLn.a/
i�n .1;Fn.a// if i > n;

and , for n even and i ¤ n� 1; n,

TorTLn.a/
i .1; 1/Š

8<:
R if i D 0;

0 if 1 6 i 6 n� 2;

TorTLn.a/
i�n .1;Fn.a// if i > nC 1;

while in degrees n� 1 and n there is an exact sequence

(5-1) 0! TorTLn.a/
n .1;1/! 1˝TLn.a/ Fn.a/

Qn
�! 1! TorTLn.a/

n�1
.1; 1/! 0:

Analogous results hold for the Ext groups. For n odd ,

ExtiTLn.a/
.1;1/Š

8<:
R if i D 0;

0 if 1 6 i 6 n� 1;

Exti�n
TLn.a/

.Fn.a/; 1/ if i > n;

and , for n even and i ¤ n� 1; n,

ExtiTLn.a/
.1;1/Š

8<:
R if i D 0;

0 if 1 6 i 6 n� 2;

Exti�n
TLn.a/

.Fn.a/; 1/ if i > nC 1;

while in degrees n� 1 and n there is an exact sequence

(5-2) 0! Extn�1
TLn.a/

.1;1/! 1 Qn

�! HomTLn.a/.Fn.a/; 1/! ExtnTLn.a/
.1; 1/! 0:

The central maps Qn and Qn of (5-1) and (5-2), respectively , are described as follows. Regard Fn.a/ as a
left submodule of TLn.a/, as in Proposition 4.9. Then the maps are

Qn W 1˝TLn.a/ Fn.a/! 1; x˝f 7! x �f;

Qn
W 1! HomTLn.a/.Fn.a/; 1/; x 7! .f 7! f �x/;

where x �f and f �x denote the action of f 2 Fn.a/� TLn.a/ on the right and left of 1, respectively.

In order to prove this theorem, we will use the complex of planar injective words W .n/ introduced in the
previous section. Recall that the Fineberg module Fn appearing in the statement is the top homology
group Hn�1.W .n//.

Lemma 5.2 The homology groups of both complexes 1˝TLn.a/ W .n/ and HomTLn.a/.W .n/; 1/ are
concentrated in degree n� 1, where in both cases they are given by 1 if n is even and 0 if n is odd.

Proof We have W .n/i D TLn˝TLn�i�1
1, and the boundary map d i WW .n/i !W .n/i�1 is given by

x˝ r 7! x �Di ˝ r , where Di D
Pi

jD0.�1/j sn�iCj�1 � � � sn�i�
�j .
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By regarding 1 as both a left and right TLn–module, we may regard 1˝TLn
W .n/i as a left TLn–module.

With this TLn–module structure, we obtain 1˝TLn
W .n/i D 1˝TLn

.TLn˝TLn�i�1
1/Š 1. Under these

isomorphisms, the boundary map originating in degree i becomes the action on 1 of the element Di .
Similarly, HomTLn

.W .n/i ; 1/ D HomTLn
.TLn˝TLn�i�1

1; 1/ Š 1, and under these isomorphisms the
boundary map originating in degree i � 1 becomes the action of the element Di on 1.

The action of sn�iCj�1 � � � sn�i on 1 is simply multiplication by �j , with one factor of � for each s term
(recall si D �Ui C�). Thus the action of Di on 1 is nothing other than multiplication by

Pi
jD0.�1/j ,

which is 0 for i odd and 1 for i even.

So altogether 1˝TLn
W .n/ and HomTLn

.W .n/;1/ are isomorphic to complexes with a copy of R in
each degree i D�1; : : : ; n� 1, and with boundary maps alternating between the identity map and 0. In
1˝TLn

W .n/ the identity maps originate in even degrees, and in HomTLn
.W .n/;1/ they originate in odd

degrees. The claim now follows.

Proof of Theorem 5.1 We begin with the Tor case.

In degree d D 0 the theorem holds trivially. Recall that P� is a projective resolution of 1 as a right
TLn–module. We use the two homological spectral sequences fIEr g and fIIEr g associated to W .n/ as
described in Section 3.2.

Let us consider fIEr g. We have

IE2
i;j D

�
TorTLn

i .1;Fn/ if j D n� 1;

0 if j ¤ n� 1;

and consequently the spectral sequence converges to TorTLn

��nC1
.1;Fn/ for � D i C j . The same is

therefore true of fIIEr g.

Let us write "n DHn�1.1˝TLn
W .n//, so that, by Lemma 5.2, "n is trivial for n odd and 1 for n even.

Since Fn consists of the cycles in W .n/n�1, the map

1˝TLn
Fn! 1˝TLn

W .n/n�1

again lands in the cycles, giving us a map

1˝TLn
Fn!Hn�1.1˝TLn

W .n//D "n:

When n is even and "n is identified with 1 as in the lemma, then this map simply becomes Qn as described
in the statement of the theorem.

We now know that fIIEr g converges to TorTLn

��nC1
.1;Fn/. Its E1–page IIE1

i;j D TorTLn

j .1;W .n/i/ is
largely known to us. Indeed, when j D 0 the terms are TorTLn

0
.1;W .n/i/D 1˝TLn

W .n/i , with d1–maps
between them induced by the boundary maps of W .n/. In other words, the j D 0 part of IIE1

i;j is
precisely the complex 1˝TLn

W .n/. When 0 6 i 6 n� 1, the term W .n/i D TLn˝TLn�i�1
1 satisfies

0 6 n� i � 1< n, so that, by Theorem F,
IIE1

i;j D TorTLn

j .1;TLn˝TLn�i�1
1/D 0 for j > 0:
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j

i

0

�1 0

1

2

:::
:::

� � �

� � �
n
�

2

n

n
�

1

n�2

n�1

n

TorTLn

1
.1;1/

TorTLn

2 .1;1/

TorTLn

n�2
.1;1/

TorTLn

n�1
.1;1/

TorTLn
n .1;1/

1˝TLnW .n/�1 1˝TLnW .n/0 1˝TLnW .n/n�2 1˝TLnW .n/n�1 0

TorTLn

j .1;TLn˝TLn�i�1
1/D 0

Figure 7: The page IIE1. The only differentials that affect the IIE2–page are shown on the j D 0 row.

When i D�1, we have W .n/�1D1, so that IIE1
�1;j
DTorTLn

j .1;1/ for j > 0. This is depicted in Figure 7.

By the description in the previous paragraph, we can now identify IIE2
�;�. The only possible differentials

are in the j D 0 part, which is 1˝TLn
W .n/, and whose homology is "n concentrated in degree n� 1.

Thus IIE2
�;� is zero except for the groups

IIE2
i;j D

�
TorTLn

j .1; 1/ if i D�1 and j > 0;

"n if i D n� 1 and j D 0;

as depicted in Figure 8.

From the E2–page onwards there is precisely one possible differential, namely dn WEn
n�1;0

!En
�1;n�1

,
which is a map dn W "n! TorTLn

n�1
.1; 1/. It forms part of an exact sequence

0! IIE1n�1;0! "n
dn

�! TorTLn

n�1
.1; 1/! IIE1

�1;n�1! 0:

In IIE1�;�, each total degree has only one nonzero group, except (possibly) for total degree n� 1, where
we have the two groups IIE1

�1;n
and IIE1

n�1;0
. The relationship between the infinity page of a spectral

sequence and the sequence’s target now give us a short exact sequence

0! IIE1
�1;n! TorTLn

0
.1;Fn/!

IIE1n�1;0! 0:

The last two exact sequences combine to give us

0! IIE1
�1;n! TorTLn

0
.1;Fn/! "n! TorTLn

n�1
.1; 1/! IIE1

�1;n�1! 0:

The leftmost term is IIE1
�1;n
D IIE2

�1;n
D TorTLn

n .1;1/. The only group in total degree n�2 is IIE1
�1;n�1

,
so it coincides with TorTLn

.n�2/�nC1
.1;Fn/D TorTLn

�1
.1;Fn/D 0. Also, TorTLn

0
.1;Fn/D 1˝TLn

Fn. The
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j

i

0

�1 0

1

1

2

2

:::
:::

� � �

� � �

n
�

3

n
�

2

n

n
�

1

n�2

n�1

n

iCj D n�2

iCj D n�1

dn

TorTLn

1
.1;1/

TorTLn

2 .1;1/

"n

TorTLn

n�2
.1;1/

TorTLn

n�1
.1;1/

TorTLn
n .1;1/

0 0 0 0 0 0 0

0

Figure 8: The page IIE2. This page stays constant until IIEn where the only possible further
differential lies: this is shown as the dashed arrow. The iCj D n�1 and iCj D n�2 diagonal
lines are drawn alongside.

last exact sequence becomes

0! TorTLn
n .1;1/! 1˝TLn

Fn! "n! TorTLn

n�1
.1; 1/! 0:

When n is even, we claim that the map 1˝TLn
Fn! "n in this sequence is Qn. Let FnŒn� 1� be the

complex consisting of a copy of Fn concentrated in degree n� 1. There is a natural inclusion of chain
complexes FnŒn�1� ,!W .n/, and this leads to a map of double complexes and then of spectral sequences.
The map 1˝TLn

Fn! "n can be identified using this map of spectral sequences.

It follows from the sequence that in the case n odd, when "nD 0, the final term satisfies TorTLn

n�1
.1;1/D 0,

and the first two terms satisfy

TorTLn
n .1; 1/Š 1˝TLn

Fn D TorTLn

0
.1;Fn/;

as required.

The previous discussion determines what happens in total degrees n� 1 and n� 2. In total degrees d

other than n�1 and n�2, and when j > 0, the only term on the E1–page is IIE1
�1;dC1

D TorTLn

dC1
.1; 1/,

which must therefore equal TorTLn

d�nC1
.1;Fn/. Thus TorTLn

d
.1; 1/Š TorTLn

d�n
.1;Fn/ for d ¤ n; n�1. This

completes the proof.

For the Ext case we use the two cohomological spectral sequences associated to W .n/ as in Section 3.2,
and then proceed dually to the above. We leave the details to the reader.
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6 Sharpness

We recall the statement of Theorem C from the introduction.

Theorem C Let n be even and suppose that a is not a unit. Then TorTLn.a/
n�1

.1; 1/ is nonzero.

Let I� TLn denote the left ideal generated by all diagrams which have a cup on the right in positions
other than 1, together with all multiples of a. Thus

ID .TLn � a/C .TLn �U2/C � � �C .TLn �Un�1/:

Lemma 6.1 Let n be even or odd , and let 1 6 p 6 n� 1. Then Up �Jn 2 I.

Proof Recall from Definition 4.7 that the monomials appearing in Jn are those of the form Ui1
: : :Uir

,
where n� 1 > i1 > i2 � � �> ir > 1 and i1 � n� 1 mod 2, and that such a monomial appears in Jn with
coefficient .�1/n�1.�=�/r . We write Jn DKnCLn where Kn is the part of Jn featuring monomials of
the form UiUi�1 : : :U1 for i � n�1 mod 2 in the range 1 6 i 6 n�1, and Ln is the part of Jn featuring
the remaining monomials.

If Ui1
: : :Uir

is a monomial appearing in Ln, then it must either end in Uir
for n� 1 > ir > 1 or end in a

monomial of the form Uij �Uij�1
: : :U1 D .Uij�1

: : :U1/ �Uij for some ij > ij�1C 2 and ij�1 > 1, and
hence must lie in I. Thus Ln 2 I, and to prove the lemma it will be sufficient to show that Up �Kn 2 I.

Now observe that
Kn D .�1/n�1

X
06i6n�1

i�n�1 mod 2

�
�

�

�i

�UiUi�1 : : :U1:

(In the case i D 0 the product Ui : : :U1 is empty and therefore equal to 1. This term only appears in Kn

when n is odd.) Suppose that Ui : : :U1 is a monomial appearing in the above sum. Then

Up � .Ui : : :U1/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

.Up : : :U1/ � .Ui : : :UpC2/ if p 6 i � 2;

Ui�1 � � �U1 if p D i � 1;

Ui � � �U1 � a if p D i;

UiC1 � � �U1 if p D i C 1;

.Ui : : :U1/ �Up if p > i C 2:

Thus Up � .Ui : : :U1/ 2 I except for the cases i D p� 1 and i D pC 1. When p � n� 1 mod 2 these
exceptional cases never occur, since we have assumed i � n� 1 mod 2, and so Up �Kn 2 I, as required.
And when p � n mod 2, we can compute the contribution from the two exceptional cases to find that,
modulo I, Up �Jn is equal to

.�1/n�1
��
�

�p�1
Up � .Up�1 : : :U1/C .�1/n�1

��
�

�pC1
Up � .UpC1 : : :U1/

D .�1/n�1
��
�

�p�1
� .Up : : :U1/C .�1/n�1

��
�

�pC1
� .Up : : :U1/

D .�1/n�1
��
�

�ph��
�

��1
C

��
�

�1i
� .Up : : :U1/ 2 I:
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Now, from Definition 2.20, either .�; �/D .v;�1/ or .�; �/D .�v; v2/. In both cases the square bracket
above evaluates to �a (recall a D v C v�1). Thus Up �Kn is a multiple of a, and therefore in I, as
required.

Lemma 6.2 Let n be even. Let x 2 Fn.a/, so that x �Jn D 0. Then the constant term of x is a multiple
of a.

Proof Let b be the constant term of x, so that x is equal to b plus a linear combination of left multiples
of the elements U1; : : : ;Un�1. Thus x �Jn is equal to b �Jn plus a linear combination of left multiples of
U1 �Jn; : : : ;Un�1 �Jn, all of which lie in I by Lemma 6.1. Thus x �Jn D b �Jn modulo I.

As an R–module, the quotient TLn=I is isomorphic to the direct sum of copies of R=aR, with one
summand for each monomial whose Jones normal form ends with U1. We have that

Jn D .�1/n�1
h��
�

�
U1C

��
�

�3
U3U2U1C � � �

i
in TLn=I;

and it follows that

b �Jn D .�1/n�1
h
b
��
�

�
U1C b

��
�

�3
U3U2U1C � � �

i
in TLn=I;

so b must vanish in R=aR.

Lemma 6.3 Let n be even. Then the image of the map

1˝TLn.a/ Fn.a/! 1; 1˝x 7! 1 �x;

is contained in the ideal generated by a.

Proof Since the elements Up act on 1 as multiplication by 0, the map above simply sends 1˝x to the
constant term of x. But the previous lemma tells us that the constant term of x is a multiple of a.

Proof of Theorem C Let n be even. From Theorem 5.1, we have the (fairly short) exact sequence

0! TorTLn
n .1;1/! 1˝TLn

Fn! 1! TorTLn

n�1
.1; 1/! 0;

and the image of 1˝TLn
Fn ! 1 is contained in the ideal generated by a, and in particular does not

contain the element 1, so that TorTLn

n�1
.1;1/¤ 0.

7 The case of TL2.a/

In this section we briefly consider the case n D 2, and fully compute the Tor and Ext groups. We do
this first by a straightforward computation using an explicit free resolution. Then, in order to illustrate
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the theory developed in the paper, we reprove the same result by explicitly computing the Fineberg
module F2 and applying Theorem 5.1.

Proposition 7.1 The homology and cohomology of TL2.a/ are

TorTL2.a/
i .1; 1/D

8<:
R if i D 0;

R=aR if i > 0; i odd;
Ra if i > 0; i even;

ExtiTL2.a/
.1; 1/D

8<:
R if i D 0;

Ra if i > 0; i odd;
R=aR if i > 0; i even;

where Ra denotes the kernel of the map R
a
�!R. This holds for any choice of ground ring R and any

choice of parameter a 2R.

Proof We define a chain complex of left TL2–modules as follows:

:::

.a�U1/
��

TL2

U1
��

3

TL2

.a�U1/
��

2

TL2

U1
��

1

TL2

��

0

1 �1

The degree is indicated in the right-hand column. The boundary maps are given by right multiplication
by the indicated element of TL2, except for the last, which is the map TL2! 1, x 7! x � 1.

The composite of consecutive boundary maps is 0, due to the computation

U1 � .a�U1/D 0D .a�U1/ �U1;

and the fact that U1 acts by 0 on 1. Moreover, this complex is acyclic, as one sees by considering the bases
1;U1 and 1; .a�U1/ of TL2. Thus the nonnegative part of the complex above, which we denote by P�,
is a free resolution of the left TL2–module 1. Thus TorTL2

� .1; 1/ and Ext�TL2
.1;1/ are the homology of

1˝TL2
P� and the cohomology of HomTL2

.P�; 1/, respectively. Using the isomorphisms 1˝TL2
TL2Š 1

given by a˝x 7! a �x, and HomTL2.TL2;1/Š 1 given by f 7! f .1/ in every degree, and working out
the induced boundary maps, we see that 1˝TL2

P� and HomTL2
.P�;1/ are isomorphic to the complexes
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depicted below:
:::

a
��

:::
OO

a

:::

R

0
��

R
OO

0

3

R

a
��

R
OO

a

2

R

0
��

R
OO

0

1

R R 0

The homology and cohomology of these complexes are easily computed, and give the claim.

Proposition 7.2 When nD 2 the Fineberg module satisfies F2.a/Š 1, and the map

1˝TL2.a/ F2.a/! "2 Š 1

is multiplication by a.

Proof We compute F2 explicitly in Example 4.11: F2 Š ha�U1i Š 1. The map 1˝TL2
F2! "2 Š 1

is the composite map

1˝TL2
F2! 1˝TL2

W .2/1 D 1˝TL2
.TL2˝TL0

1/Š 1:

Under the central equality the basis element a�U1 of F2 �W .2/1 gets mapped to a�U1 D a in the
tensor product. Therefore the composite map is given by multiplication by a, as required.

Corollary 7.3 Suppose that v 2R is a unit and that aD vC v�1. Then the groups TorTL2.a/
i .1;1/ and

ExtTL2.a/
i .1;1/ are as described in Proposition 7.1.

Proof In the light of Proposition 7.2, the exact sequence from Theorem 5.1

0! TorTL2

2
.1;1/! 1˝TL2

F2! 1! TorTL2

1
.1;1/! 0

now becomes
0! TorTL2

2
.1; 1/! 1˝TL2

1 a
�! 1! TorTL2

1
.1; 1/! 0;

from which one can compute TorTL2

2
.1;1/ D Ra and TorTL2

1
.1;1/ D R=aR. For i > 3 we have the

recursive formula
TorTL2

i .1; 1/D TorTL2

i�2
.1;F2/Š TorTL2

i�2
.1; 1/;

which completes the proof. The Ext results similarly follow from Theorem 5.1.
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8 High acyclicity

In this final section we prove high connectivity of W .n/, Theorem E.

Theorem E Hd .W .n// vanishes in degrees d 6 n� 2.

8.1 A filtration

In this subsection we introduce a filtration of W .n/. We state a theorem relating the filtration quotients
to W .n� 1/ (the proof of which is the topic of the next three subsections) and therefore, by induction,
prove Theorem E.

Definition 8.1 (the filtration) We define a filtration F of W .n/,

F0
� F1

� � � � � Fn
DW .n/;

as follows:

� F0 is defined to be the span of the elements of two kinds. We call elements of the first kind basic
elements and these are of the form

x˝ 1

in degrees i such that �1 6 i 6 n�2, where x is represented by a monomial in the sj not involving
the letter s1. Elements of the second kind are those of the form

x � .s1 � � � sn�i�1/˝ 1

in degrees i such that 0 6 i 6 n�1, where again x is represented by a monomial not involving the
letter s1.

� Fk for k > 1 is defined to be the span of Fk�1 together with terms of the form

x � .s1 � � � sn�i�1Ck/˝ 1

in degrees i such that k 6 i 6 n� 1, where again x is represented by a monomial not involving s1.

Remark 8.2 In the description of F0, it is possible for the product s1 � � � sn�i�1 to be empty, ie the unit
element, if the final index n� i � 1 is zero (i D n� 1). In contrast, in the description of Fk for k > 1,
the product s1 � � � sn�i�1Ck is never empty. This is one reason why it is important for us to treat F0 quite
separately from the other Fk , as is done in the remainder of this paper.

In Theorem 8.7 we show that each Fk is a subcomplex of W .n/. The fact that Fn DW .n/ will follow
from Lemma 8.25.

Definition 8.3 Recall that the cone on a chain complex X (or, more precisely, the cone on the identity
map of X ) is the chain complex CX defined by .CX /i DXi ˚Xi�1, and with differential defined by

d i
CX .x;y/D .d

i
X .x/Cy;�d i�1

X .y//:
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The suspension of a chain complex X is the complex †X defined by

.†X /i DXi�1

and with the same differential as X . The truncation to degree p of a chain complex X is the chain
complex �pX defined by

.�pX /i D

�
Xi if i 6 p;

0 if i > p;

and with the same differential as X (in the relevant degrees).

Remark 8.4 Our definitions of cone and suspension do not seem to match up very well. However, we
have chosen our conventions in order to make the proof of the next theorem as direct as possible, and we
believe that our choices are the best fit for this purpose.

Definition 8.5 Define the shift map � to be the map

� W TLn�1.a/! TLn.a/

which sends each Ui to UiC1 for 1 6 i 6 n� 2, and hence each si to siC1.

Lemma 8.6 Each Fk consists of TLn�1.a/–submodules of W .n/, where TLn�1.a/ acts via the shift
map � .

Proof Definition 8.1 defines each Fk as the span of certain “base elements” of the form y˝ 1, where
y 2 TLn is represented by a monomial in the sj subject to certain restrictions. Multiplying any such y on
the left by any sj for 1< j 6 n�1 does not affect whether it meets these restrictions. Since sj D �.sj�1/

for 1< j 6 n� 1, this shows that the generators of TLn�1 send the base elements of each Fk to other
base elements of Fk , and therefore Fk itself is stable under the action of TLn�1.

Here is the main result of this section.

Theorem 8.7 Each Fk is a subcomplex of W .n/. We identify

F0
Š C.W .n� 1//:

And for k > 1,
Fk=Fk�1

Š �n�1†
kC1W .n� 1/:

Corollary 8.8 (Theorem E) For each n > 0 the complex W .n/ is .n�2/–acyclic , or in other words , its
homology vanishes up to and including degree n� 2.

Proof We prove this by induction on n > 0. One can verify the claim directly in the case nD 0. Fix
n > 1 and suppose that the theorem has been proved for the previous case. Now W .n/ has the filtration
F0 � F1 � � � � � Fn. We prove below that F0 and all filtration quotients Fk=Fk�1 are .n�2/–acyclic,
and then it follows (for example by using the short exact sequences 0! Fk�1! Fk! Fk=Fk�1! 0,
or by using the spectral sequence of the filtration) that the same holds for W .n/ itself.
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Observe that F0 Š C.W .n � 1//, being isomorphic to a cone, is acyclic. Next, for k > 1 we have
Fk=Fk�1 Š �n�1†

kC1W .n� 1/. The induction hypothesis states that W .n� 1/ is .n�3/–acyclic, so
that †kC1W .n� 1/ is .n�2Ck/–acyclic and in particular .n�2/–acyclic, so that �n�1†

kC1W .n� 1/ is
also .n�2/–acyclic. This completes the proof.

Remark 8.9 (intuitions and motivations) The complex of planar injective words W .n/ is an analogue
of the complex of injective words C.n/, and Theorem E is the analogue for W .n/ of the well-known
vanishing result for the homology of C.n/; see Remark 4.3.

Our starting point in proving Theorem E was Kerz’s proof [2005] of the vanishing theorem for the homology
of C.n/. Kerz identifies within C.n/ a subcomplex F0 that is isomorphic to the cone C.C.n�1//. This is
then extended to a filtration F0 � F1 � � � � � Fn�1 � C.n/ in which each subsequent filtration quotient
Fk=Fk�1 is isomorphic to a direct sum of copies of the suspension †kC1C.n� k � 1/. (In fact Kerz
does not explicitly mention filtrations, but this is one way of framing his proof.) This permits an inductive
proof of high acyclicity as in Corollary 8.8.

Our proof of Theorem E began as an attempt to mimic Kerz’s approach. There is an evident way to
embed W .n� 1/ into W .n/— this is the span of the basic elements of F0 — and this can be extended to
an embedding of the cone C.W .n� 1// into W .n/ by considering the elements of the second kind in F0.
The remainder of our proof is the result of attempting to extend this embedding to a complete filtration
of W .n/. At this stage the parallels with [Kerz 2005] begin to fail, but the Jones normal form gives us an
extra tool. Using this we characterise the basis elements of W .n/ that are not in the image of the cone
C.W .n� 1//, and this characterisation gives a surprising separation into subcomplexes which “look like”
suspended and truncated copies of W .n� 1/— we build our filtration such that these are our filtration
quotients Fk=Fk�1.

The final three subsections prove Theorem 8.7, by first setting up the required chain map for F0, then
for Fk , and then in the final section proving these chain maps are isomorphisms.

8.2 Proofs for F 0

In this subsection we prove F0 is a subcomplex of W .n/. We define a map from the cone C.W .n� 1//

to F0 and prove this is a well-defined chain map.

Lemma 8.10 F0 is a subcomplex of W .n/.

Proof To prove the claim, we must take a generator of F0 in degree i , and show that under the
boundary map d i W W .n/i ! W .n/i�1 this generator is mapped into F0. Since d i is the alternating
sum d i

0
� d i

1
C � � �C .�1/id i

i , it will suffice to fix j in the range 0 6 j 6 i , and show that d i
j sends our

generator into F0. Recall from Definition 4.1 that

d i
j .y˝ r/D y � .sn�iCj�1 � � � sn�i/˝�

�j r:
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Generators of F0 come in two kinds. The first kind are the basic elements x˝1 in degrees �1 6 i 6 n�2,
where x is represented by a monomial not featuring the letter s1. The map d i

j only introduces a letter s1

in the case i D n� 1, which is excluded here, so that d i
j .x˝ 1/ is again a basic element and therefore

also lies in F0.

The second kind of generators of F0 are elements

x � .s1 � � � sn�i�1/˝ 1

in degrees 0 6 i 6 n� 1, where x is represented by a monomial not involving s1. In the case j D 0,

d i
0.x � .s1 � � � sn�i�1/˝ 1/D x � .s1 � � � sn�i�1/˝ 1;

but this lies in W .n/i�1 D TLn˝TLn�i
1, hence is equal to x˝�n�i�1, and since x is represented by a

monomial not involving s1, this does indeed lie in F0. (This argument includes the special case i D n�1,
where the product s1 � � � sn�i�1 is empty, but this clearly creates no issues.) In the case j > 1,

d i
j .x � .s1 � � � sn�i�1/˝ 1/D x � .s1 � � � sn�i�1/ � .sn�iCj�1 � � � sn�i/˝�

�j

D x � .s1 � � � sn�i�1/ � .sn�iCj�1 � � � sn�iC1/ � sn�i ˝�
�j

D x � .sn�iCj�1 � � � sn�iC1/ � .s1 � � � sn�i�1/ � sn�i ˝�
�j

D x � .sn�iCj�1 � � � sn�iC1/ � .s1 � � � sn�i/˝�
�j

D .x � .sn�iCj�1 � � � sn�iC1// � .s1 � � � sn�.i�1/�1/˝�
�j ;

which lies in F0 since x �.sn�iCj�1 � � � sn�iC1/ does not involve the letter s1, so d i
j .x � .s1 � � � sn�i�1/˝ 1/

is a scalar multiple of a generator of F0, and thus in F0, as required.

Definition 8.11 Define a map
ˆ0
W C.W .n� 1//! F0

as follows. Recall that

C.W .n� 1//i DW .n� 1/i ˚W .n� 1/i�1 D .TLn�1.a/˝TLn�i�2.a/ 1/˚ .TLn�1.a/˝TLn�i�1.a/ 1/

and that
F0

i �W .n/i D TLn.a/˝TLn�i�1.a/ 1:

We define ˆ0 in degree i by the rule

ˆ0
i .x˝˛;y˝ˇ/D �i.x˝˛/C �i.y˝ˇ/;

where
�i WW .n� 1/i!W .n/i ; x˝˛ 7! �.x/˝�n�1˛;

�i WW .n� 1/i�1!W .n/i ; y˝ˇ 7! �.y/ � .s1 � � � sn�i�1/˝�
iˇ:

It is simple to check that the image of both maps lies in F0
i .

Lemma 8.12 The maps �i and �i are well defined.
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Proof In the case of �i this is simple to verify, as the map � W TLn�1! TLn is in fact a map of right
modules with respect to the map of algebras � W TLn�i�2! TLn�i�1.

In the case of �i , the definition of �i.y˝ˇ/ as presented depends on y and ˇ themselves, and we must
check that it depends only on y˝ˇ. Thus we must show that

�i.ysj ˝ˇ/D �i.y˝�ˇ/

whenever 1 6 j 6 n� i � 2. And indeed,

�i.ysj ˝ˇ/D �.ysj / � .s1 � � � sn�i�1/˝�
iˇ

D �.y/ � sjC1 � .s1 � � � sn�i�1/˝�
iˇ

D �.y/ � .s1 � � � sn�i�1/ � sj ˝�
iˇ

D �.y/ � .s1 � � � sn�i�1/˝�
iC1ˇ

D �i.y˝�ˇ/;

where the third equality holds since 2 6 j C 1 6 n� i � 1 (a simple way to see this is to draw the si as
braids), and the fourth holds since j 6 n� i � 2 and the tensor product is over TLn�i�1.

Lemma 8.13 The �i and �i interact with the boundary maps of W .n/ in the following way:

(1) d i
j ı �i D �i�1 ı d i

j for i in the range �1 6 i 6 n� 2 and j in the range 0 6 j 6 i .

(2) d i
0
ı �i D �i�1 for i in the range 0 6 i 6 n� 1.

(3) d i
jC1
ı �i D �i�1 ı d i�1

j for i in the range 0 6 i 6 n� 1 and j in the range 0 6 j 6 i � 1.

Proof For the first point,

d i
j .�i.x˝˛//D d i

j .�.x/˝�
n�1˛/D �.x/ � .sn�iCj�1 � � � sn�i/˝�

�j�n�1˛

D �.x � .sn�iCj�2 � � � sn�i�1//˝�
�j�n�1˛

D �i�1.x � .sn�iCj�2 � � � sn�i�1/˝�
�j˛/

D �i�1.x � .s.n�1/�iCj�1 � � � s.n�1/�i/˝�
�j˛/

D �i�1.d
i
j .x˝˛//:

For the second point,
d i

0.�i.y˝ˇ//D d i
0.�.y/ � .s1 � � � sn�i�1/˝�

iˇ/

D �.y/ � .s1 � � � sn�i�1/˝�
iˇ

D �.y/˝�n�i�1�iˇ

D �.y/˝�n�1ˇ

D �i�1.y˝ˇ/;
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where the third equality holds because the terms lie in W .n/i�1 D TLn˝TLn�i
1. For the third point,

d i
jC1�i.y˝ˇ/D d i

jC1.�.y/ � .s1 � � � sn�i�1/˝�
iˇ/

D �.y/ � .s1 � � � sn�i�1/ � .sn�iC.jC1/�1 � � � sn�i/˝�
�j�1�iˇ

D �.y/ � .s1 � � � sn�i�1/ � .sn�iCj � � � sn�iC1/ � sn�i ˝�
i�j�1ˇ

D �.y/ � .sn�iCj � � � sn�iC1/ � .s1 � � � sn�i/˝�
i�j�1ˇ

D �.y � .sn�iCj�1 � � � sn�i// � .s1 � � � sn�.i�1/�1/˝�
i�1��jˇ

D �i�1.y � .sn�iCj�1 � � � sn�i/˝�
�jˇ/

D �i�1.y � .s.n�1/�.i�1/Cj�1 � � � s.n�1/�.i�1//˝�
�jˇ/

D �i�1.d
i�1
j .y˝ˇ//;

where for the final equality we recall that the source of �i�1 is W .n� 1/i�2.

Lemma 8.14 ˆ0 is a chain map.

Proof Referring to the definition of the differential on C.W .n� 1// (Definition 8.3), we see that in
order to check that d i ıˆ0

i Dˆ
0
i�1
ıd i , it is enough to show that d i ı �i.x˝˛/D �i�1.d

i.x˝˛// and
d i ı �i.y˝ˇ/D �i�1.y˝ˇ/� �i�1.d

i�1.y˝ˇ//. Using the previous lemma, for the first we have

d i
ı �i.x˝˛/D

iX
jD0

.�1/j d i
j .�i.x˝˛//

D

iX
jD0

.�1/j�i�1.d
i
j .x˝˛//

D �i�1

� iX
jD0

.�1/j d i
j .x˝˛/

�
D �i�1.d

i.x˝˛//:

And for the second we have

d i
ı �i.y˝ˇ/D

iX
jD0

.�1/j d i
j .�i.y˝ˇ//

D d i
0.�i.y˝ˇ//�

i�1X
jD0

.�1/j d i
jC1�i.y˝ˇ/

D �i�1.y˝ˇ/�

i�1X
jD0

.�1/j�i�1d i�1
j .y˝ˇ/

D �i�1.y˝ˇ/� �i�1

� i�1X
jD0

.�1/j d i�1
j .y˝ˇ/

�
D �i�1.y˝ˇ/� �i�1.d

i�1.y˝ˇ//:
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8.3 Proofs for F k, for k > 1

In this subsection we prove, for k > 1, that Fk is a subcomplex of W .n/. We define a map from
�n�1†

kC1W .n� 1/ to Fk=Fk�1 and prove this is a well-defined chain map. We start off with some
elementary lemmas involving the sj , which we require for later proofs.

Lemma 8.15 Let m > 1 and p 6 m. Then

s1 � � � sm � � � sp D .sm � � � spC1/ � .s1 � � � sm/:

In the case mD p the product sm � � � spC1 is empty and therefore equal to 1.

Lemma 8.16 Let p > 1 and q > r > 1. The product .s1 � � � sp/ � .sq � � � sr / can be described as follows:

(1) When r � 1 6 p 6 q� 1,

.s1 � � � sp/ � .sq � � � sr /D .sq � � � srC1/ � .s1 � � � spC1/:

(2) When p D q, .s1 � � � sp/ � .sq � � � sr / is a linear combination of terms of the form

.st � � � srC1/ � .s1 � � � st / for p > t > r C 1;

as well as s1 � � � sr and s1 � � � sr�1.

(3) When p > qC 1,

.s1 � � � sp/ � .sq � � � sr /D .sqC1 � � � srC1/ � .s1 � � � sp/:

Proof When r � 1 6 p 6 q� 1,

.s1 � � � sp/ � .sq � � � sr /D .s1 � � � sp/ � .sq � � � spC2/ � .spC1 � � � sr /

D .sq � � � spC2/ � .s1 � � � sp/ � .spC1 � � � sr /

D .sq � � � spC2/ � .s1 � � � spC1 � � � sr /

D .sq � � � spC2/ � .spC1 � � � srC1/ � .s1 � � � spC1/

D .sq � � � srC1/ � .s1 � � � spC1/;

where we used Lemma 8.15 to obtain the fourth equality.

When p D q, we claim that

.s1 � � � sp/ � .sq � � � sr /D .s1 � � � sp/ � .sp � � � sr /

is a linear combination of terms of the form .st � � � srC1/ � .s1 � � � st / for p > t > r C1, as well as s1 � � � sr

and s1 � � � sr�1. We will prove this claim by induction on the difference p� r . When p� r D 0,

.s1 � � � sp/ � .sp � � � sr /D s1 � � � sp � sp:
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Now, since s2
p is a linear combination of sp and 1, this is a linear combination of s1 � � � sp D s1 � � � sr and

s1 � � � sp�1 D s1 � � � sr�1, as required. Now let p� r > 1, and assume that the claim holds for all smaller
values. Then

.s1 � � � sp/ � .sp � � � sr /D .s1 � � � sp�1/ � s
2
p � .sp�1 � � � sr /

is a linear combination of

.s1 � � � sp�1/ � sp � .sp�1 � � � sr /D s1 � � � sp � � � sr D .sp � � � srC1/ � .s1 � � � sp/

(where we used Lemma 8.15) and

.s1 � � � sp�1/ � .sp�1 � � � sr /:

The former is .st � � � srC1/ � .s1 � � � st / in the case t D p, while the induction hypothesis tells us that the
latter is a linear combination of .st � � � srC1/ � .s1 � � � st / for p � 1 > t > r C 1, as well as s1 � � � sr and
s1 � � � sr�1. This completes the proof of the claim.

When p > qC 1,

.s1 � � � sp/ � .sq � � � sr /D .s1 � � � sqC1/ � .sqC2 � � � sp/ � .sq � � � sr /

D .s1 � � � sqC1/ � .sq � � � sr / � .sqC2 � � � sp/

D .s1 � � � sqC1 � � � sr / � .sqC2 � � � sp/

D .sqC1 � � � srC1/ � .s1 � � � sqC1/ � .sqC2 � � � sp/D .sqC1 � � � srC1/ � .s1 � � � sp/

(where we again used Lemma 8.15 to obtain the fourth equality), as required.

Lemma 8.17 For k > 1, Fk is a subcomplex of W .n/.

Proof We fix k > 1 and take a generator of Fk=Fk�1 in degree i , where k 6 i 6 n� 1, and show that
the boundary map d i WW .n/i !W .n/i�1 sends our generator into Fk . Since d is the alternating sum
d i

0
�d i

1
C� � �C.�1/id i

i , it will suffice to fix j in the range 0 6 j 6 i , and show that d i
j sends our generator

into Fk . Recall from Definition 8.1 that our generator of Fk=Fk�1 in degree i is x �.s1 � � � sn�i�1Ck/˝1,
where x does not involve the letter s1. Note that

n� i � 1C k D .n� 1/� i C k > .n� 1/� .n� 1/C 1D 1;

so that the product .s1 � � � sn�i�1Ck/ is not empty. We have

d i
j .x � .s1 � � � sn�i�1Ck/˝ 1/D x � .s1 � � � sn�i�1Ck/ � .sn�i�1Cj � � � sn�i/˝�

�j ;

where the factor .sn�i�1Cj � � � sn�i/ can be empty, in the case j D 0.

� First we consider the case j D 0. We find that

d i
0.x � .s1 � � � sn�i�1Ck/˝ 1/D x � .s1 � � � sn�i�1Ck/˝ 1D x � .s1 � � � sn�.i�1/�1C.k�1//˝ 1

lies in Fk�1, and therefore in Fk , as required.
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� Now we consider the case 1 6 j 6 k � 1. Then n� i � 1C k > .n� i � 1C j /C 1, so that the third
item of Lemma 8.16 applies, and shows that

d i
j .x � .s1 � � � sn�i�1Ck/˝ 1/D x � .s1 � � � sn�i�1Ck/ � .sn�i�1Cj � � � sn�i/˝�

�j

D x � .sn�iCj � � � sn�iC1/ � .s1 � � � sn�i�1Ck/˝�
�j

D x � .sn�iCj � � � sn�iC1/ � .s1 � � � sn�.i�1/�1C.k�1//˝�
�j :

Since n� iC1 > n� .n�1/C1D 2, the word .sn�iCj � � � sn�iC1/ does not involve s1, and consequently
the element above lies in Fk�1, and therefore in Fk .

� Now we consider the case j D k. Then n� i � 1C k D n� i � 1C j and so the second item of
Lemma 8.16 applies and shows that

d i
k.x � .s1 � � � sn�i�1Ck/˝ 1/D x � .s1 � � � sn�i�1Ck/ � .sn�i�1Ck � � � sn�i/˝�

�k

is a linear combination of terms

x � .st � � � sn�iC1/ � .s1 � � � st /˝�
�k

for t in the range
n� i C 1 6 t 6 n� i � 1C k D n� .i � 1/� 1C .k � 1/;

together with

x � .s1 � � � sn�.i�1/�1/˝�
�k and x � .s1 � � � sn�.i�1/�2/˝�

�k
D x˝��k :

Now .st � � � sn�iC1/ does not involve s1, so the first of these terms lies in Fk�1, while the second and
third lie in F0. So altogether we have the required result.

� Now we consider the case kC 1 6 j . Here

n� i � 1 6 .n� i � 1C k/C 1 6 n� i � 1C j ;

so that the first item of Lemma 8.16 applies and shows that

d i
j .x � .s1 � � � sn�i�1Ck/˝ 1/D x � .s1 � � � sn�i�1Ck/ � .sn�i�1Cj � � � sn�i/˝�

�j

D x � .sn�i�1Cj � � � sn�iC1/ � .s1 � � � sn�i�1CkC1/˝�
�j

D x � .sn�i�1Cj � � � sn�iC1/ � .s1 � � � sn�.i�1/�1Ck/˝�
�j :

Since .sn�i�1Cj � � � sn�iC1/ does not involve s1, the element above lies in Fk , as required.

Definition 8.18 Define a map

‰k
W �n�1†

kC1W .n� 1/! Fk=Fk�1

as follows. Note that for i in the range k 6 i 6 n� 1,

Œ�n�1†
kC1W .n�1/�iDW .n�1/i�k�1DTLn�1.a/˝TL.n�1/�.i�k�1/�1.a/1DTLn�1.a/˝TLn�i�1Ck.a/1;
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while .Fk=Fk�1/i is a quotient of TLn.a/˝TLn�i�1.a/ 1. Define the degree i part of ‰ to be the map

‰k
i WTLn�1.a/˝TLn�i�1Ck.a/1! .Fk=Fk�1/i ; x˝˛ 7! .�1/�i.kC1/�.x/ �.s1 � � � sn�i�1Ck/˝�

i˛:

For later convenience, we will denote by  k
i the map

 k
i W x˝˛ 7! �.x/ � .s1 � � � sn�i�1Ck/˝�

i˛;

so that ‰k
i D .�1/�i.kC1/ k

i .

Lemma 8.19 The map  k
i is well defined (and the same therefore holds for ‰k

i ).

Proof As presented above, the value of  k
i .x˝˛/ depends on the choices of x and ˛, rather than on

x˝˛. So to check that  k
i is well defined, we must check that  k

i .xsp˝˛/D  
k
i .x˝�˛/ whenever

p 6 .n� i �1Ck/�1. Let us write q D n� i �1Ck, so that p 6 q�1. (In particular we are assuming
that q > 2.) Now

 k
i .xsp˝˛/D �.xsp/ � .s1 � � � sq/˝�

i˛ D �.x/ � spC1 � .s1 � � � sq/˝�
i˛

D �.x/ � spC1 � .s1 � � � sp�1/ � .spspC1/ � .spC2 � � � sq/˝�
i˛

D �.x/ � .s1 � � � sp�1/ � .spC1spspC1/ � .spC2 � � � sq/˝�
i˛:

Recall from Definition 2.21 that

spC1spspC1 D �spspC1C�spC1sp ��
2sp ��

2spC1C�
3:

Now
.s1 � � � sp�1/ � .spspC1/ � .spC2 � � � sq/D .s1 � � � sq/;

.s1 � � � sp�1/ � .spC1sp/ � .spC2 � � � sq/D .spC1 � � � sq/ � .s1 � � � sp/;

.s1 � � � sp�1/ � sp � .spC2 � � � sq/D .spC2 � � � sq/ � .s1 � � � sp/;

.s1 � � � sp�1/ � spC1 � .spC2 � � � sq/;D .spC1 � � � sq/ � .s1 � � � sp�1/;

.s1 � � � sp�1/ � 1 � .spC2 � � � sq/D .spC2 � � � sq/ � .s1 � � � sp�1/;

so it follows that

 k
i .xsp˝˛/

D �.x/ � .s1 � � � sq/˝�
iC1˛C �.x/ � .spC1 � � � sq/ � .s1 � � � sp/ � ˝�

iC1˛

� �.x/ � .spC2 � � � sq/ � .s1 � � � sp/˝�
iC2˛� �.x/ � .spC1 � � � sq/ � .s1 � � � sp�1/˝�

iC2˛

C �.x/ � .spC2 � � � sq/ � .s1 � � � sp�1/˝�
iC3˛:

Now p < n� i �1Ck, which means that the final four terms above all lie in Fk�1, so that in Fk=Fk�1

we have, as required,

 k
i .xsp˝˛/D �.x/ � .s1 � � � sq/˝�

iC1˛ D �.x/ � .s1 � � � sn�i�1Ck/˝�
iC1˛ D  k

i .x˝�˛/:
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Lemma 8.20 Let k > 1 and let k 6 i 6 n� 1. Then , for j in the range j > kC 1,

 k
i�1 ı d i�k�1

j�k�1 D d i
j ı 

k
i :

Proof Let x˝˛ 2W .n� 1/i�k�1 D TLn�1˝TLn�i�1Ck
1. Then

d i
j . 

k
i .x˝˛//D d i

j .�.x/ � .s1 � � � sn�i�1Ck/˝�
i˛/

D �.x/ � .s1 � � � sn�i�1Ck/ � .sn�iCj�1 � � � sn�i/˝�
i�j˛:

Since n� i �1 6 .n� i �1Ck/C1 6 n� iCj �1, we may apply the first part of Lemma 8.16 to obtain

d i
j . 

k
i .x˝˛//D �.x/ � .s1 � � � sn�i�1Ck/ � .sn�iCj�1 � � � sn�i/˝�

i�j˛

D �.x/ � .sn�iCj�1 � � � sn�iC1/ � .s1 � � � sn�iCk/˝�
i�j˛

D �.x/ � .sn�iCj�1 � � � sn�iC1/ � .s1 � � � sn�.i�1/�1Ck/˝�
.i�1/�1�j˛

D �.x � .sn�iCj�2 � � � sn�i// � .s1 � � � sn�.i�1/�1Ck/˝�
.i�1/�1�j˛

D  k
i�1.x � .sn�iCj�2 � � � sn�i/˝�

1�j˛/:

In the last line of the above computation, x � .sn�iCj�2 � � � sn�i/˝�
1�j˛ is an element of

W .n� 1/.i�1/�k�1 D TLn�1˝TLn�iCk
1;

so
x � .sn�iCj�2 � � � sn�i/˝�

1�j˛ D x � .sn�iCj�2 � � � sn�iCk/ � .sn�iCk�1 � � � sn�i/˝�
1�j˛

D x � .sn�iCj�2 � � � sn�iCk/˝�
k�1�j˛

D x � .sn�iCj�2 � � � sn�iCk/˝�
�.j�k�1/˛:

Thus,

d i
j . 

k
i .x˝˛//D  

k
i�1.x � .sn�iCj�2 � � � sn�i/˝�

1�j˛/

D  k
i�1.x � .sn�iCj�2 � � � sn�iCk/˝�

�.j�k�1/˛:/

D  k
i�1.x � .s.n�1/�.i�k�1/C.j�k�1/�1 � � � s.n�1/�.i�k�1//˝�

�.j�k�1/˛/

D  k
i�1.d

i�k�1
j�k�1.x˝˛//;

as required.

Corollary 8.21 ‰k is a chain map.

Proof The boundary map of �n�1†
kC1W .n� 1/ is given in degree i by the boundary map

d i�k�1
WW .n� 1/i�k�1!W .n� 1/i�k�2;

which is itself given by the formula
Pi�k�1

jD0 .�1/j d i�k�1
j .

The boundary map of Fk=Fk�1 is given in degree i by the boundary map of W .n/ in degree i , which
is the alternating sum

Pi
jD0.�1/j d i

j . However, the proof of Lemma 8.17 shows that d i
0
; : : : ; d i

k
all
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send Fk into Fk�1, and hence that they vanish in the quotient Fk=Fk�1. Thus the boundary map of
Fk=Fk�1 is

Pi
jDkC1.�1/j d i

j . It follows that

d i
ı‰k

i D

iX
jDkC1

.�1/j d i
j ı Œ.�1/�i.kC1/ k

i �D

iX
jDkC1

.�1/j�i.kC1/ k
i�1 ı d i�k�1

j�k�1

D

i�k�1X
jD0

.�1/jC.kC1/�i.kC1/ k
i�1 ı d i�k�1

j

D Œ.�1/�.i�1/.kC1/ k
i�1� ı

i�k�1X
jD0

.�1/j k
i�1 ı d i�k�1

j D‰k
i�1 ı d i�k�1:

8.4 Proof of Theorem 8.7

In this subsection we prove Theorem 8.7, which in turn completes the proof of Theorem E.

We begin by finding a basis for each part of the filtration in terms of the Jones normal form. This is done
in Lemma 8.25 below, after some preliminary work.

Lemma 8.22 Any word in the si not containing s1 is a linear combination of words in the Ui , none of
which involve U1. Conversely , any word in the Ui not containing U1 is a linear combination of words in
the si not containing s1.

Proof Recall from Definition 2.21 that si D �C�Ui , where � and � are both units in the ground ring,
so that Ui D��

�1�C��1si . The claim follows immediately.

Lemma 8.23 For 1 6 p 6 n� 1, the word s1 : : : sp written in terms of the Ui generators is equal to
�pU1 : : :Up, plus a linear combination of scalar multiples (by units) of words w in the Ui with the
properties

� i.w/> 2 and t.w/6 p, or

� i.w/D 1 and t.w/ < p.

In particular , only the summand w D �pU1 : : :Up satisfies i.w/D 1 and t.w/D p.

Proof Using si D �C�Ui and multiplying out brackets gives

s1 : : : sp D

pX
rD0

X
.16i16���6ir 6p/

�p�r�r Ui1
Ui2

: : :Uir

D �pU1 : : :UpC

p�1X
rD0

X
.16i16���6ir 6p/

�p�r�r Ui1
Ui2

: : :Uir
:

If r D 0 the term is a scalar, which has index1 by convention (thus the first point is satisfied). Suppose
0< r < p. Then if i1 > 1 it follows that i.Ui1

: : :Uip /> 2. Otherwise i1 D 1 and, since r < p, there is
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some j > 2 such that ij > ij�1C 2, so that Ui1
: : :Uir

can be written as a word with terminus ij�1, and
then the claim follows. Coefficients are given by powers of � and �, and products of these. The terms �
and � are defined via the homomorphisms in Definition 2.20 and lie in the set f�1;˙v; v2g. Since v is a
unit, it follows that all coefficients are units.

Lemma 8.24 Let k > 0 and �1 6 i 6 n� 1, and consider elements xa;b ˝ 1, where xa;b is in Jones
normal form and satisfies either

� i.xa;b/> 2 and t.xa;b/> n� i � 1, or

� i.xa;b/D 1 and n� i � 1 6 t.xa;b/6 n� i � 1C k.

Then these elements all lie in Fk
i .

Proof The first type of element lies in F0, since in this case xa;b is a word in the various Ui not
containing U1, and by Lemma 8.22, this is a linear combination of words in the si not containing s1 (a
basic element). For the second type of element, from the definition of Jones normal form, xa;b must end
in a string U1 : : :Un�i�1Cj for 0� j � k. We proceed by induction on k.

Base case We start with the base case kD0, so the only option is that j D0, ie xa;bDya;bU1 : : :Un�i�1

for some ya;b in Jones normal form with i.ya;b/� 2. We aim to show that in this case xa;b lies in F0
i .

Compare xa;b to ya;bs1 � � � sn�i�1, which does lie in F0
i by Definition 8.1. From Lemma 8.23, multiplying

out the string s1 � � � sn�i�1 will result in ya;bs1 � � � sn�i�1 being written as a linear combination (up to
scalar multiplication by units) of three types of elements, and we consider their image in TLn˝TLn�i�1

1:

(1) ya;bU1 : : :Un�i�1. This is equal to xa;b and appears as a single summand of ya;bs1 : : : sn�i�1.

(2) ya;bw, where i.w/> 2 and t.w/6 n� i � 1. These are all basic elements since i.ya;b/� 2, and
thus lie in F0.

(3) ya;bw, where i.w/D 1 and t.w/ < n� i � 1. These are all zero in TLn˝TLn�i�1
1, due to the

terminus.

So it follows that in TLn ˝TLn�i�1
1, up to scalar multiplication by units xa;b is equal to a linear

combination of ya;bs1 � � � sn�i�1 and basic elements. Since this is a linear combination of elements in F0
i ,

it follows that xa;b lies in F0
i , as required.

Inductive step Assume the lemma is true for k � 1 and prove for k. Let xa;b D ya;bU1 : : :Un�i�1Cj

for some ya;b in Jones normal form with

i.ya;b/� 2 and t.ya;b/ > n� i � 1C j for 0� j � k:

When 0� j < k, by the inductive hypothesis this element lies in Fk�1
i � Fk

i , and so we can restrict to
the case where j D k, ie xa;b D ya;bU1 : : :Un�i�1Ck . We aim to show that, in this case, xa;b lies in Fk

i .
As in the base case, we compare xa;b with ya;bs1 � � � sn�i�1Ck , which lies in Fk

i by Definition 8.1. From
Lemma 8.23, ya;bs1 � � � sn�i�1Ck is a linear combination (up to scalar multiplication by a unit) of three
types of elements, which we evaluate in TLn˝TLn�i�1

1:
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(1) ya;bU1 : : :Un�i�1Ck . This is equal to xa;b and appears as a single summand of ya;bs1 � � � sn�i�1Ck .

(2) ya;bw, where i.w/ > 2 and t.w/ 6 n� i � 1C k. Since i.ya;b/ � 2 they are all basic elements,
and thus lie in F0 � Fk .

(3) ya;bw, where i.w/ D 1 and t.w/ < n� i � 1C k. Rewriting these in Jones normal form gives
elements ya;bw D za;b such that i.za;b/D 1 and t.za;b/� t.w/ < n� i � 1C k (by Lemmas 2.6
and 2.7). These are then Jones normal form elements ending in U1 : : :Un�i�1Cj for 0� j � k�1

so by the inductive hypothesis these lie in Fk�1
i � Fk

i .

Again it follows that in TLn˝TLn�i�1
1, the element xa;b is, up to scalar multiplication by units, equal to a

linear combination of ya;bs1 � � � sn�i�k , elements in Fk
i (by the inductive hypothesis), and basic elements.

Since this is a linear combination of elements in Fk
i , it follows that xa;b lies in Fk

i , as required.

Lemma 8.25 Let k > 0 and �1 6 i 6 n� 1. Then Fk
i has basis consisting of elements xa;b˝ 1, where

xa;b is in Jones normal form and satisfies either

� i.xa;b/> 2 and t.xa;b/> n� i � 1, or

� i.xa;b/D 1 and n� i � 1 6 t.xa;b/6 n� i � 1C k.

Proof This is a subset of the known basis for TLn˝TLn�i�1
1 � Fk

i , and by the previous lemma we
know these elements lie in Fk

i , so it is enough to show that Fk
i is spanned by these elements. First

of all, note that since Fk
i � TLn˝TLn�i�1

1, any word in Fk
i written in Jones normal form will vanish

if t.xa;b/6 n� i � 2, therefore we will always have t.xa;b/> n� i � 1. By definition Fk
i is spanned by

elements of the form

� x˝ 1, and

� x � .s1 � � � sn�i�1Ck0/˝ 1,

where x is a word in the various Ui with i.x/> 2 (ie containing no U1) and 0 6 k 0 6 k (note that in the
case i D n�1 and k 0D 0 the two kinds coincide). The first kind is spanned by xa;b such that i.xa;b/> 2,
as described in the first bullet point in the statement of the lemma. From Lemma 8.23, expanding the
product .s1 � � � sn�i�1Ck0/ in the second kind gives a linear combination of words x �w˝ 1 such that
t.w/ 6 n� i � 1C k 0. Either i.w/ will be > 2 or i.w/D 1. In the first case, since i.x/ > 2 it follows
that i.x �w/> 2 and so when written in Jones normal form this will remain the case, giving an element
of the first type described in the lemma. In the second case, when i.w/D 1, since i.x/> 2 then either
i.x �w/ > 2 and as in the previous sentence we are done, or i.x �w/ D 1 and, by Lemma 2.7, when
written in Jones normal form the terminus t.x �w/D t.w/6 n� i � 1C k 0 6 n� i � 1C k will either
remain the same or reduce. This puts us in the setting of the second bullet point in the statement of the
lemma, and thus we have shown that the two types of elements span Fk

i .

Proposition 8.26 The map ˆ0 W C.W .n� 1//! F0 from Definition 8.11 is an isomorphism.
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Proof Recall that for �1 6 i 6 n� 1,

ˆ0
i W .TLn�1˝TLn�i�2

1/˚ .TLn�1˝TLn�i�1
1/! F0

i

is given by
ˆ0

i .x˝˛;y˝ˇ/D �i.x˝˛/C �i.y˝ˇ/;

where
�i.x˝˛/D �.x/˝�

n�1˛ and �i.y˝ˇ/D �.y/ � .s1 � � � sn�i�1/˝�
iˇ:

By Lemma 2.16, a basis for the left-hand side is given by elements of either the form .xa;b˝ 1; 0/ such
that t.xa;b/ > n� i � 3 or the form .0;xa0;b0 ˝ 1/ such that t.xa0;b0/ > n� i � 2. Under the map ˆ0

i ,
the element .xa;b ˝ 1; 0/ is taken to a scalar multiple (by a unit) of �.xa;b/˝ 1, where �.xa;b/ is a
Jones basis element with i.�.xa;b// > 2 and t.�.xa;b// > n � i � 2. By Lemma 8.23, the element
.0;xa0;b0 ˝ 1/ is taken to a linear combination of scalar multiples (by units) of terms �.xa0;b0/ �w˝ 1

such that t.w/6 n� i � 1. Since F0
i � TLn˝TLn�i�1

1 the only nonzero terms in the image will occur
when t.w/ D n � i � 1. We consider two cases: i.w/ > 2 or i.w/ D 1. By Lemma 2.7, converting
to Jones normal form in the first case gives an element with index i.�.xa0;b0/ �w/ > 2 and terminus
t.�.xa0;b0/ �w/ D n � i � 1, or zero, since the terminus will either remain the same or reduce when
converting. When i.w/D 1 and t.w/D n� i �1, by Lemma 8.23 it follows that wDU1 : : :Un�i�1 and
therefore the terms will be of the form �.xa0;b0/ �U1 : : :Un�i�1. These elements are already in Jones
normal form, with index 1 and terminus n� i � 1. Furthermore, all Jones basis elements with this index
and terminus arise in this way. By Lemma 8.25 a basis for F0

i is given by elements ya;b˝ 1, where ya;b

is in Jones normal form and satisfies

� i.ya;b/> 2 and t.ya;b/> n� i � 1, or

� i.ya;b/D 1 and t.ya;b/D n� i � 1.

By our analysis, all of these elements lie in the image of ˆ0
i , up to scalar multiplication by units; hence,

ˆ0 is a bijection on bases and therefore an isomorphism.

Lemma 8.27 A basis for .Fk=Fk�1/i is given by words xa;b in Jones normal form such that i.xa;b/D 1

and t.xa;b/D n� i � 1C k.

Proof This is a direct consequence of taking the quotient of the bases for Fk and Fk�1 given in
Lemma 8.25.

Proposition 8.28 The map ‰k W �n�1†
kC1W .n � 1/ ! Fk=Fk�1 defined in Definition 8.18 is an

isomorphism.

Proof For i in the range k 6 i 6 n� 1, recall the map

‰k
i W TLn�1˝TLn�i�1Ck

1! .Fk=Fk�1/i ; x˝˛ 7! .�1/�i.kC1/�.x/ � .s1 � � � sn�i�1Ck/˝�
i˛:

Geometry & Topology, Volume 28 (2024)



The homology of the Temperley–Lieb algebras 1491

By Lemma 2.16, a basis for the domain is given by xa;b such that t.xa;b/ > .n� i �1Ck/�1. Note also
that xa;b does not contain the letter Un�1. By Lemma 8.23, the image ‰k

i .xa;b/ is a linear combination
of scalar multiples (by units) of terms �.xa;b/ �w such that t.w/6 n� i � 1C k. These terms are zero
in .Fk=Fk�1/i � TLn ˝TLn�i�1

1 only when w cannot be written as a word with t.w/ < n� i � 1.
Rewriting these elements in Jones normal form will maintain or decrease the terminus, and i.�.xa;b//> 2,
so i.�.xa;b/ �w/D 1 only when i.w/D 1. Therefore by Lemma 8.25, quotienting out by Fk�1 leaves
only the term for which i.w/D 1 and t.w/D n� i � 1C k. In particular, by Lemma 8.23 this term is a
scalar multiple (by a unit) of �.xa;b/ �U1 : : :Un�i�1Ck .

Since �.xa;b/ has index > 2 and terminus > n� i � 1C k, it follows that �.xa;b/ �U1 : : :Un�i�1Ck

is in Jones normal form. From Lemma 8.27 this is a Jones basis element for Fk=Fk�1 and all basis
elements arise in this way. Therefore up to unit scalars, the map ‰k is a bijection on bases, and hence an
isomorphism.

9 Jones–Wenzl projectors and vanishing

This section relates our results with the existence of the Jones–Wenzl projectors, to strengthen our
vanishing results when R is a field. This section is written such that the reader can read the introduction,
the background on Temperley–Lieb algebras, and continue straight to this section. For the time being we
make the substitutions a$ ı and v$ q, as is common in the recent literature concerning Jones–Wenzl
projectors.

Throughout this section, we will consider a commutative ring R, a unit q 2R, the parameter ıD qCq�1,
and we will work in TLn.ı/. Recall that we show in Theorem A that, when ı is invertible, TorTLn.ı/

� .1;1/

and Ext�TLn.ı/
.1; 1/ vanish in every nonzero degree. In this section we investigate the case where ı D 0

and R is a field using established results on Jones–Wenzl projectors. We prove the following theorem:

Theorem D Let nD2kC1, and let R be a field whose characteristic does not divide
�
k
t

�
for any 0� t �k.

Let q be a unit in R and assume that ı D qC q�1 D 0. Then TorTLn.0/
� .1;1/ and Ext�TLn.0/

.1;1/ vanish
in positive degrees.

For example, when n D 3, R is a field and ı D q C q�1 for q 2 R�, then combining this theorem
with Theorem A demonstrates that TorTL3.ı/

� .1; 1/ and Ext�TL3.ı/
.1; 1/ vanish in positive degrees with no

further condition on ı. If one wishes to show that TorTL5.ı/
� .1;1/ and Ext�TL5.ı/

.1; 1/ can be nonzero in
positive degrees, then the only chance of this happening is in characteristic 2.

The theorem is in strict contrast to the n even case, where we show in Theorem A that for a general
ring R and ı not invertible, TorTLn.ı/

n�1
.1; 1/ D R=bR is nonzero for b some multiple of ı. Therefore,

in the particular case where n is even, R is a field and ı D 0, there can be no vanishing in all positive
degrees.
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9.1 Jones–Wenzl projectors

In this subsection we introduce the Jones–Wenzl projector and relate its existence to the projectivity of
the trivial module 1. The original references are [Jones 1983; Wenzl 1987]; see also [Kauffman and Lins
1994; Lickorish 1992, Section 4].

Definition 9.1 Recall that In � TLn is the two-sided ideal generated by the Ui for i D 1; : : : ; n� 1.
Then, if it exists, the nth Jones–Wenzl projector JWn is the element of TLn characterised by the properties

(i) JWn 2 1C In, and

(ii) In � JWn D 0D JWn � In.

Lemma 9.2 If JWn exists , it is unique.

Proof Suppose a second element JW0n in TLn satisfies (i) and (ii) of Definition 9.1. Write JWn D 1C i

and JW0n D 1C i 0 for i; i 0 2 In. Then JWn � i
0 D 0D i � JW0n by (ii). It follows that

JW0n D JW0nC i � JW0n D .1C i/ � JW0n D JWn � JW0n;

and similarly that JWn D JWn � JW0n.

The Jones–Wenzl projector was first introduced by Jones [1983], was further studied by Wenzl [1987],
and has since become important in representation theory, knot theory and the study of 3–manifolds. It is
a key ingredient in the definition of the coloured Jones polynomial and SU.2/ quantum invariants more
generally, and is important in the study of tilting modules of (quantum) sl2.

9.2 JWn and projectivity of 1

We will now show that the Jones–Wenzl projector exists if and only if the trivial module 1 is projective.
Thus, existence of JWn implies the vanishing of TorTLn.ı/

� .1;1/ and Ext�TLn.ı/
.1; 1/ in positive degrees.

Our own Theorem A implies that vanishing for ı invertible, while Theorem C proves nonvanishing
for n even and ı not invertible. It turns out that there is a rich interplay between these two sources of
(non)vanishing results.

Proposition 9.3 JWn exists if and only if 1 is a projective left TLn.ı/–module , which is if and only if
1 is a projective right TLn.ı/–module.

Before proving the proposition we need the following.

Lemma 9.4 In Definition 9.1, it is sufficient to replace (ii) with either

(ii)0 In � JWn D 0, or

(ii)00 JWn � In D 0.
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Proof Suppose JW 2 TLn satisfies (i) and (ii)0. We have suggestively named this element, and will
show it is in fact JWn, by showing that JW also satisfies (ii)00 and hence (ii). Let TLn! TLn, d 7! xd ,
be the antiautomorphism which reverses the order of letters in a monomial, ie Ui1

: : :Uin
D Uin

: : :Ui1
.

In diagrammatic terms, this map flips the diagram corresponding to the monomial in the left-to-right
direction. Since JW satisfies (ii)0, it follows that JW satisfies (ii)00. Then the argument of Lemma 9.2
can be repeated to show that JW D JW, so that JW satisfies (ii)0 and (ii)00, hence it satisfies (ii) and
JWD JWn.

Proof of Proposition 9.3 We prove the equivalence for left-modules.

If JWn exists, then the maps 1! TLn, 1 7! JWn, and TLn! 1, d 7! d �1, are maps of left TLn–modules
composing to the identity. It follows that 1 is a direct summand of TLn, and thus is projective.

Conversely, if 1 is a projective left TLn–module, then the surjection TLn! TLn=In D 1, regarded as a
map of left TLn–modules, has a splitting s W 1! TLn, again a map of left TLn–modules. By construction
the element s.1/ then satisfies condition (i) of 9.1 and condition (ii)0 of 9.4, so that JWn D s.1/ exists, as
required.

9.3 Jones–Wenzl projectors and quantum binomial coefficients

Here we work in the Laurent polynomial ring ZŒq; q�1�, and we set ı D qC q�1. For this section, let n

and r be integers such that n > r > 0.

Definition 9.5 The quantum integer Œn�q is defined to be

Œn�q D
qn� q�n

q� q�1
D qn�1

C qn�3
C � � �C q�.n�3/

C q�.n�1/;

the quantum factorial Œn�q! is defined by

Œn�q!D Œn�q Œn� 1�q � � � Œ1�q;

and the quantum binomial coefficient
�
n
r

�
q

is then given by computing the normal binomial coefficient but
replacing integers with quantum integers,hn

r

i
q
D

Œn�q!

Œr �q! Œn� r �q!
:

The quantum binomial coefficients satisfy the recursion relationshn

r

i
q
D qn�r

hn�1

r�1

i
q
C q�r

hn�1

r

i
q

and
hn

r

i
q
D q�.n�r/

hn�1

r�1

i
q
C qr

hn�1

r

i
q
:

Either one of these relations gives an inductive proof that
�
n
r

�
q

lies in ZŒq; q�1�.

Taken together, these relations give an inductive proof that
�
n
r

�
q

is invariant under inverting q, and
consequently that it lies in ZŒı�. (Recall that ı D qC q�1.)

This means that we may evaluate
�
n
r

�
q

in any ring containing an element named ı, to obtain an element
of that ring, which we continue to denote by

�
n
r

�
q
.
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The following result is proved by Webster [2017] using Schur–Weyl duality. For a purely diagrammatic
approach see recent work of Spencer [2023].

Theorem 9.6 [Webster 2017, Theorem A.2; Spencer 2023, Section 10.3] Let R D k be a field , let
q 2 k be nonzero , and set ıD qCq�1. The nth Jones–Wenzl projector JWn 2 TLn.ı/ exists if and only if
the quantum binomial coefficients

�
n
r

�
q

are nonzero in k for all 0� r � n.

Remark 9.7 Suppose that RD k is a field. Whenever k, q and n satisfy the conditions of Theorem 9.6,
we obtain the vanishing of TorTLn.ı/

� .1; 1/ and Ext�TLn.ı/
.1;1/ in positive degrees. (We will refer to this

as simply “vanishing” for the present remark.)

� In the case of n even, Theorems A and C show that vanishing holds if and only if ı¤ 0, and this is
in fact stronger than the result obtained from Theorem 9.6. For example, if we take nD 4 then
the

�
n
k

�
q

take values 1, ı.ı2� 2/ and .ı2� 1/.ı2� 2/, so that Theorem 9.6 requires ı to avoid the
values 0;˙1;˙

p
2. For n even, ı is always a factor of

�
n
1

�
q
, so that Theorem A will always apply

more generally than Theorem 9.6 in this case.

� In the case of n odd, the situation is more interesting. Theorem A demonstrates vanishing when
ı¤ 0. But if we take nD 3, for example, then the

�
n
k

�
q

take values 1 and ı2�1, so that Theorem 9.6
demonstrates vanishing so long as ı¤˙1. Neither of these vanishing results implies the other, but
taken together they demonstrate vanishing for all values of ı.

9.4 Identifying the quantum binomial coefficients

In this section, we identify the quantum binomial coefficients upon specialising ı D qC q�1 D 0. The
results are assembled in the following proposition.

Proposition 9.8 When ı D qC q�1 D 0, the quantum binomial coefficients have the following form:

� When n is even and r is odd , hn

r

i
q
D 0:

� When n and r are both even , let nD 2a and r D 2t . Thenhn

r

i
q
D

�a

t

�
:

� When n is odd and r is even , let nD 2aC 1 and r D 2t . Thenhn

r

i
q
D .�1/t

�a

t

�
:

� When n and r are both odd , let nD 2aC 1 and r D 2t C 1. Thenhn

r

i
q
D .�1/a�t

�a

t

�
:

Remark 9.9 Proposition 9.8 shows that the “quantum Pascal’s triangle” with ı D 0 looks like a Pascal’s
triangle in the even rows, with every coefficient separated by a zero, and a “doubled” Pascal’s triangle
with signs on the odd rows. This is shown in Figure 9.
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1

1

1

1

1

1
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1

1

1

1

1

1

1
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1

1

1

0

0

0

0

0

0

0

0 00

0 33

33�3 �3

4 4

�4 �4�4 �4

�1 �1

�1 �1

�2 �2

1 1

1 1

66

6

2

nD 0

nD 1

nD 2

nD 3

nD 4

nD 5

nD 6

nD 7

nD 8

nD 9

Figure 9: The quantum binomial coefficients with ı D qC q�1 D 0.

The proof of the four points in this proposition are given by applying a result of Désarménien [1983],
which we recall below. This result is given not in terms of quantum binomials, but in terms of Gaussian
binomials, so we recall these first.

Let p be an indeterminate. The Gaussian binomial coefficients are the quantitieshn

r

iG

p
D

Œn�Gp !

Œr �Gp ! Œn� r �Gp !

defined in terms of the Gaussian integers

Œn�Gp D 1CpC � � �Cpn�1

and Gaussian factorials
Œn�Gp !D Œn�Gp Œn� 1�Gp � � � Œ1�

G
p :

The relation between the Gaussian and quantum binomial coefficients ishn

r

i
q
D qr2�nr

hn

r

iG

q2
:

Proposition 9.10 [Désarménien 1983, proposition 2.2] Fix a k�02N and let ˆk be the k th cyclotomic
polynomial. Let nD kaCb and r D ktCs with 0� b; s � k�1. Then the Gaussian binomial coefficient
satisfies the congruence hn

r

iG

p
�

�a

t

�hb

s

iG

p
mod ˆk :

Proof of Proposition 9.8 Note that when ıD qCq�1D 0, rearranging this equation gives that q˙2D�1.
Recall that the parameter p in the Gaussian binomial coefficient is q2, and so p2 D q4 D 1. We invoke
Proposition 9.10 with k D 2. Then the cyclotomic polynomial ˆ2.p/ D 1C p D 1C q2 D 0. Let
nD 2aC b and r D 2t C s with 0� b; s � 1. Then the quantum binomial coefficient satisfieshn

r

i
q
D qr2�nr

hn

r

iG

q2
D qr2�nr

�a

t

�hb

s

iG

q2
:
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When n is even and r is odd, hb

s

iG

q2
D

h0

1

iG

q2
D 0;

which gives the first case of the proposition. For all other cases,
�
b
s

�G
q2 D 1 and sohn

r

i
q
D qr2�nr

�a

t

�
:

Computing the coefficient qr2�nr , using q˙2 D�1, yields the result for the remaining three cases.

9.5 Proof of Theorem D

Proof This proof puts together three previous results. By Proposition 9.3 we know that if JWn exists
then 1 is projective and it follows that TorTL.0/

i .1;1/ and Ext�TLn.0/
.1; 1/ vanish for all i > 0. So it is

enough to show that JWn exists under the hypotheses of the theorem. Theorem 9.6 tells us that JWn

exists precisely when the quantum binomial coefficients
�
n
r

�
q

are nonzero for all 1 � r � n. Finally,
Proposition 9.8 explicitly describes these coefficients when ı D 0. We see that for n even, there is always
a quantum binomial coefficient

�
n
r

�
q
D 0 and so we learn nothing new. However when nD 2kC 1 is odd,

the quantum binomial coefficients take values in the setn
˙

�k

t

� ˇ̌
0� t � k

o
and, up to sign, all values in this set are realised as some

�
n
r

�
q
. The hypotheses of the theorem precisely

say that these numbers are nonzero in R and so the result follows.
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