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Homological mirror symmetry for hypertoric varieties
I: Conic equivariant sheaves

MICHAEL MCBREEN
BEN WEBSTER

We consider homological mirror symmetry in the context of hypertoric varieties, showing that an ap-
propriate category of B—branes (that is, coherent sheaves) on an additive hypertoric variety matches a
category of A-branes on a Dolbeault hypertoric manifold for the same underlying combinatorial data.
For technical reasons, the A-branes we consider are modules over a deformation quantization (that is,
DQ-modules). We consider objects in this category equipped with an analogue of a Hodge structure,
which corresponds to a G,,—action on the dual side of the mirror symmetry.

This result is based on hands-on calculations in both categories. We analyze coherent sheaves by
constructing a tilting generator, using the characteristic p approach of Kaledin; the result is a sum of line
bundles, which can be described using a simple combinatorial rule. The endomorphism algebra H of this
tilting generator has a simple quadratic presentation in the grading induced by G,,—equivariance. In fact,
we can confirm it is Koszul, and compute its Koszul dual H !

We then show that this same algebra appears as an Ext—algebra of simple A-branes in a Dolbeault
hypertoric manifold. The G,,—equivariant grading on coherent sheaves matches a Hodge grading in this
category.

14133, 47A67
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1 Introduction

Toric varieties have proven many times in algebraic geometry to be a valuable testing ground. Their
combinatorial flavor and concrete nature has been extremely conducive to calculation. Certainly this is
the case in the domain of homological mirror symmetry; see Abouzaid [1] and Fukaya, Oh, Ohta and
Ono [19; 20].

© 2024 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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1006 Michael McBreen and Ben Webster

Toric varieties have a natural hyperkéhler analogue, which we call hypertoric varieties; in some other
places in the literature, they are called “toric hyperkéhler varieties”. Just as toric varieties can be written
as Kdhler quotients of complex vector spaces, hypertoric varieties are hyperkédhler quotients by tori; see
Definition 2.1.

Despite their name, hypertoric varieties are almost never toric. Rather, they are conical symplectic
resolutions: the natural map 7 : 9 — Spec H®(N, Gon) is a proper resolution of singularities, and there
is an action of G, on 9t which dilates the algebraic symplectic form and contracts Spec H° (9N, Oyy) to
a point 0. Among symplectic resolutions, hypertoric varieties are distinguished by the presence of an
effective complex hamiltonian action of a half-dimensional complex torus.

In this paper, we study homological mirror symmetry for hypertoric varieties. This is typically understood
to mean an equivalence between the derived category of coherent sheaves (or B—branes) on an algebraic
variety and the Fukaya category (the A-branes) of a related symplectic manifold. We will instead prove a
different, but closely related, equivalence.

On the B side, we consider the derived category of coherent sheaves on the hypertoric variety 91. For
the statement of our equivalence, it is most natural to impose some finiteness conditions. The simplest
version of our equivalence concerns the category Coh(907), of sheaves set-theoretically supported on the
fiber 77! (0) over the cone point of Spec H° (9N, Oyy).

On the A-side, we take our mirror space to be a Dolbeault hypertoric manifold ®, as defined by Hausel and
Proudfoot. This is a multiplicative analogue of 91, equipped with a fibration ¢: © — cH by Lagrangian
abelian subvarieties degenerating to a union of toric varieties over 0 € C¢. We prove in the sequel
paper [21], joint with Ben Gammage, that ¢! (0) is the skeleton of a suitable Liouville structure on D.
When we need to distinguish, we will call usual hypertoric varieties additive.

We define a certain category dq of deformation quantization modules on ©, quantizing the irreducible
components of ¢—1(0) C . Let DQ be the (dg enhanced) derived category of dq. We prove:

Theorem A (Theorem 4.36) There is an equivalence of dg categories D?(Coh(Mc),) — DQ.

The simples of dq may be thought of as certain distinguished objects in the Fukaya category of . We do
not attempt to make this precise here; the exact relation of DQ to Fuk(®) is described in [21].

The left-hand category has an important extra structure: the conical G, action. To understand its mirror,
we consider an abelian category pum consisting of DQ-modules endowed with a “microlocal mixed Hodge
structure”, along with its derived category uM. We have the following graded version of Theorem A:

Theorem B (Corollary 5.10) There is an equivalence of dg categories Db (Cohg,,, (M@g)o) — UM, such
that tensoring with the weight 1 representation of G, corresponds to a % Tate twist.

This equivalence may be thought of as homological mirror symmetry for two subcategories of the A—
and B—branes, both of which are enriched with suitable notions of G,,—equivariance. The reader may

Geometry & Topology, Volume 28 (2024)



Homological mirror symmetry for hypertoric varieties, 1 1007

compare with Braverman, Maulik and Okounkov [12] and Maulik and Okounkov [28] and their sequels,
where the same G,,—action plays a key role.

In fact, we construct a family of equivalences, which are best understood in terms of special t—structures on
both sides. On the one hand, the Dolbeault space © depends on a choice of parameter { € ty = H 2(O1, R),
in the complement of a periodic hyperplane arrangement. As ¢ crosses these hyperplanes, components
of the central fiber ¢~1(0) may appear or disappear. Thus, different chambers yield different abelian
categories um, which are nevertheless derived equivalent.

On the other hand, a choice of { in the complement of the arrangement determines a tilting generator
of Db(Cthm (M@q)o). This is a vector bundle T¢ such that Ext(T¢, —) defines an equivalence of

dg—categori
greategories Db (Coh(M)) = D (HS-mod™),

E3]

where H® = End(T%). In particular, the natural t—structure on the right-hand side defines an “‘exotic
t—structure on the left-hand side.

Our construction of J% follows a recipe of Kaledin [25]. The algebra H ¢ is thus an analogue in our
context of Bezrukavnikov’s noncommutative Springer resolution [5]. Its significance can be understood
as follows. Both 9t and H? are naturally defined over Z. Given a field K of characteristic p, let Mk
and H]f; be the corresponding K—forms. Suppose p¢ € H?(9;Z), in which case it defines a class
A € Pic(Mk). There is an associated Frobenius-constant quantization of the variety 91k in the sense of
Bezrukavnikov and Kaledin [6]. We write A])f& for the resulting noncommutative algebra, which deforms
H°(Mk, Oon). By Theorem 3.18, there is equivalence of abelian categories between the category of
A])I‘g—modules with special central character, and the category of finite-dimensional representations of Hﬁ
satisfying a nilpotence condition.

While this construction springs from geometry in characteristic p, and the tilting property is checked using
this approach, the tilting generators we consider are sums of line bundles and have a simple combinatorial
construction, as does the endomorphism ring ¢ This endomorphism ring inherits a grading from a G,,—
equivariant structure on T and is Koszul with respect to it. Thus, the category of G,,—equivariant coherent
sheaves on 21 is controlled by the derived category of graded H ¢_modules, or equivalently by graded
modules over (H®)', its Koszul dual. It is this Koszul dual that has a natural counterpart on the mirror side.

Theorem 5.9 of this paper explains the relevance of these structures to our mirror equivalence. It can be

paraphrased as follows:

Theorem C Under the equivalence of Theorem B, the natural t—structure on deformation quantization
modules on® corresponds to the exotic t—structure on coherent sheaves on 9 arising from the tilting
bundle 7.

There are many directions one can go from here. For instance, it is natural to expect different —structures
should fit together into a real variation of stability in the sense of Anno, Bezrukavnikov and Mirkovié [2],

Geometry & Topology, Volume 28 (2024)



1008 Michael McBreen and Ben Webster

in particular, as predicted by [2, Conjecture 1]. In [37], the second author will show this in the more
general context of Coulomb branches.

As a result of our use of DQ-modules as a substitute for the Fukaya category, this paper contains little
about Lagrangian branes, pseudoholomorphic disks and other staples of symplectic geometry. The reader
may wish to compare with the interesting recent preprint by Lau and Zheng [27], which appeared a few
days before this paper and treats the problem of nonequivariant mirror symmetry for hypertoric varieties
from the perspective of SYZ fibrations.

The variety 991 is the Coulomb branch (in the sense of Braverman, Finkelberg and Nakajima [11]) with
gauge group given by a torus, and that ® is expected to be a hyperkihler rotation of the K—theoretic
version of this construction. Thus, it is natural to consider how these constructions can be generalized
to that case. The analogous calculation of a tilting bundle with explicit endomorphism ring can be
generalized in this case, as the second author will show in [36], but it is very difficult to even conjecture
the correct category to consider on the A4 side.

One key source of interest in hypertoric varieties is that they provide excellent examples of conic
symplectic singularities (see [10; 9]), which can be understood in combinatorial terms. Considerations
in 3-d mirror symmetry [9] and calculations in the representation theory of its quantization led Braden,
Licata, Proudfoot and the second author to suggest that hypertoric varieties should be viewed as coming
in dual pairs, corresponding to Gale dual combinatorial data. In particular, the categories O attached to
these two varieties are Koszul dual [7; 8]. An obvious question in this case is how the categories we have
considered, such as coherent sheaves, can be interpreted in terms of the dual variety (they are certainly
not equivalent or Koszul dual to the coherent sheaves on the dual variety, as some very simple examples
show). Some calculations in quantum field theory suggest that they are the representations of a vertex
algebra constructed by a BRST analogue of the hyperkihler reduction, but this is definitely a topic which
will need to wait for future research.

Detailed outline of the argument

Part 1 Coherent sheaves and characteristic p quantizations of the additive hypertoric variety
Section 2.1 defines the additive hypertoric variety 9. In Section 2.2 we fix a field K of characteristic p,
and review the relation between the quantization of 2, called Aﬁ‘g, and coherent sheaves on k. In
Section 3.1 we introduce a category of modules A%—modg, along with its graded counterpart A%—modf .
All these objects depend on a quantization parameter A. In Sections 3.3, 3.2 and 3.5 we classify the
projective pro-objects Py of Aﬁfg—modé) , which also yields a classification of simple objects L.

Both projectives and simples are indexed by the chambers of a periodic hyperplane arrangement @', de-
fined in Definition 3.8. We compute the endomorphism algebra EBx’y i Hom(Pyx, Py) in Theorem 3.13.
The latter contains a ring of power series S as a central subalgebra, and we define a variant flﬂé
(Definition 3.14) in which S is replaced by the corresponding polynomial ring .S'. We find that A]}I‘g—modOD

is equivalent to the subcategory of Iflﬁ—modules on which S acts nilpotently.

Geometry & Topology, Volume 28 (2024)



Homological mirror symmetry for hypertoric varieties, 1 1009

The algebra FIH{& has a natural lift to Z, written H2, which we will use to compare with characteristic-zero
objects on the mirror side. Corollary 3.22 shows that ﬁ% is Koszul. We compute the Koszul dual algebra

HA!JK =@, , <z Ext(Lx, Ly) (Definition 3.23 and Theorem 3.24).

In Section 3.9 we describe the ungraded category AH}‘g—modo in terms of the graded one. Its simples
and projectives are indexed by the toroidal hyperplane arrangement Bt’r obtained as the quotient of
g)pfr by certain translations. We describe the corresponding algebras H, A — &b x,yer Hom(Py, Py) and
H)!\,]K = EBx, yeA Ext(Ly, Ly ), where the sums now range over simples (resp. projectives) for A])I‘g—modo.
In Section 3.10 we use the above results to produce a tilting bundle .7 * on 9 with endomorphism
ring End(.7 M = H* Passing to characteristic zero, and replacing A by a parameter ¢ € t, we obtain

equivalences (from Corollary 3.41 and Proposition 3.43, respectively)
(1-1) D?(Coh(MMq)) =~ Db(H(g;"P —mod) and H] o —perf = D?(Coh(Mg),).

where Hg' 0 —perf is the category of perfect dg—modules over this ring.

Remark 1.1 Throughout, we will always endow the bounded derived category D? of an abelian category
with its usual dg—enhancement using injective resolutions; thus if we write Db(a) =~ C for an abelian
category a and a dg—category C, we really mean that this dg—enhancement is quasiequivalent to C.

Part 2 Deformation quantization and microlocal mixed Hodge modules on the Dolbeault hypertoric
manifold The second half of our paper begins with a definition of the Dolbeault hypertoric manifold ©
(Definition 4.3), depending on a moment map parameter {. The complex manifold ® is a complex
integrable system, with a “central fiber” consisting of a collection of complex Lagrangian submanifolds X
indexed by the chambers of a toroidal hyperplane arrangement 352‘“ (Definition 4.10 and Proposition 4.11).

The universal cover © of the Dolbeault space is an infinite-type complex symplectic manifold, whose
geometry is described by a periodic hyperplane arrangement %ger. In turn, D is an open submanifold of
an infinite-type algebraic symplectic variety D42 The latter has a key additional structure: an action of
atorus S = C* dilating both the complex symplectic form and the base of the integrable system, and

preserving the central fiber.

In Section 4.5, we define a sheaf (‘)Z of C((#))—algebras on © quantizing the structure sheaf, and for each
Xx we define a module £ over OZ supported on Xy.

Although S does not preserve D c D2, we can nevertheless make sense of S—equivariant DQ-modules
on D and D, and we show that £ has a natural S—equivariant structure.

We define a subcategory dq of S—equivariant OZ—modules on ® generated by the simple DQ-modules Ly,
together with the category dg—category DQ of complexes in dq. The S—equivariance yields a category
with C (rather than C((%))) coefficients. We write aa and DQ for the corresponding categories on D.

Geometry & Topology, Volume 28 (2024)



1010 Michael McBreen and Ben Webster

When A is the reduction of p¢, the arrangements g;?r and 35%‘“ are identified. We hence have a bijection of

chambers, and a corresponding bijection of isomorphism classes of simple objects for the categories dq
and Aﬁfg—moda. Moreover, Theorem 4.27 shows that the Ext—algebras of the simples in both categories
share a common integral form: H)!L c = E(!C = EBx,yeA Ext(Lx,Lx).

Unfortunately, some care is needed about concluding that this isomorphism induces an equivalence of
categories DQ — D?(Coh(9N)),, since a priori it is not clear that £ <'C is formal as a dg—algebra, which
we would need to define a fully faithful functor. We prove this equivalence by constructing projective
objects in dq, and showing that H) ¢ appears as their automorphism algebra. This shows that we have
the desired derived equivalence (Theorem 4.36).

We can further account for the grading on H) ¢ and reduce the structure ring to Q from C by considering
a new graded abelian category um (Definition 5.8), and a corresponding triangulated category Db (uM).
Each object of um is a OZ—module, such that for each lagrangian Xy, the restriction to a Weinstein
neighborhood of Xy is equipped with the structure of a mixed Hodge module. These structures are
required to be compatible in a natural sense whenever two components intersect. We define um as the
category generated by a special collection of such objects.

Each object £ has a natural lift to um, and moreover any simple object of um is isomorphic to such
a lift. This allows us to conclude that the equivalence Dé’erf(Coh(Sm(c)o) — DQ can be upgraded to an
equivalence of graded categories Dgerf(Cthm ("Mq)o) — 1M in the spirit of equivariant mirror symmetry.

Remark 1.2 In an earlier version of this paper, the proof of the main result depended on the use of this
Hodge structure. In revisions responding to a referee’s comments, we found a proof that avoids the use
of it, so we have moved all discussion of Hodge topics to Section 5, after the proof of Theorem 4.36.
We have left the discussion of Hodge structures in the paper, since we believe it is of some interest in
understanding how C *—actions translate through mirror symmetry.

Acknowledgements We would like to thank Andrei Okounkov for suggesting a multiplicative analogue
of the hypertoric variety as a mirror, Tamas Hausel and Nick Proudfoot for sharing their unpublished results
on multiplicative hypertoric varieties, and Roman Bezrukavnikov, Ben Gammage, Sam Gunningham,
Paul Seidel, Vivek Shende and Michael Thaddeus for helpful conversations. We would also like to thank
the referee for many helpful comments.

McBreen performed part of this work at the Massachusetts Institute of Technology, the Ecole Polytechnique
Fédérale de Lausanne, and during the Junior Trimester on Symplectic geometry and representation theory
at the Hausdorff Research Institute for Mathematics. He gratefully acknowledges the hospitality of all
these institutions. While at the EPFL, he was supported by the Advanced Grant 320593 Arithmetic and
physics of Higgs moduli spaces of the European Research Council. This work was also partly supported
by the Simons Foundation, as part of a Simons Investigator award.

Geometry & Topology, Volume 28 (2024)



Homological mirror symmetry for hypertoric varieties, 1 1011

Webster was supported during the course of this work by the NSF under grant DMS-1151473, the Alfred
Sloan Foundation, by Discovery Grant RGPIN-2018-03974 from the Natural Sciences and Engineering
Research Council of Canada, and by Perimeter Institute for Theoretical Physics. Research at Perimeter
Institute is supported by the Government of Canada through the Department of Innovation, Science
and Economic Development Canada and by the Province of Ontario through the Ministry of Research,
Innovation and Science.

2 Hypertoric enveloping algebras

2.1 Additive hypertoric varieties

For a general introduction to hypertoric varieties, see [33].

Consider a split algebraic torus 7" over Z of dimension k (that is, an algebraic group isomorphic to G,’;)
and a faithful linear action of 7" on the affine space A’,, which we may assume is diagonal in the usual
basis. We let D = G, be the group of diagonal matrices in this basis, and write G := D/ T.

We have an induced action of 7" on the cotangent bundle T*A% ~ A%”. We use z; for the usual coordinates
on A%, and w; for the dual coordinates. This action has an algebraic moment map p: T*A% — t7,
defined by a map of polynomial rings Z[tz] — Z|z1,...,zn, W1, ..., wy] sending a cocharacter x to the
sum Z?:l (€i, x)ziw;, where ¢; is the character on D defined by the action on the i th coordinate line,
and (—, —) is the usual pairing between characters and cocharacters of D.

For us, the main avatar of this action is the (additive) hypertoric variety. This is an algebraic hamiltonian
reduction of 7*A7 by T'. It comes in affine and smooth flavors, these being the categorical and GIT
quotients (respectively) of the scheme-theoretic fiber ;=1 (0) by the group 7. More precisely, fix a
character «: T — G, whose kernel does not fix a coordinate line.

Definition 2.1 For a commutative ring K, we let
Nk = Spec(Kz1.. ... zn. wi.....wal” /{(W*(X) | X € tz)).
M = Proj(K[z1. . ... zn. Wi, . ... w217 /(* () | x € t2)).

where ¢ is an additional variable of degree 1 with T—weight —«.
Both varieties carry a residual action of the torus G = D/ T, and an additional commuting action of a
rank-one torus S := Gy, which scales the coordinates w; linearly while fixing z;.

We say that the sequence 7' — D — G is unimodular if the image of any tuple of coordinate cocharacters
in 0z := Lie(D)z forming a Q-basis of gg := Lie(G)g also forms a Z-basis of gz.

Let : Mc — ¢ be the natural map. If we assume unimodularity, then ¢ is a smooth scheme and
7 defines a proper T' x S—equivariant resolution of singularities of 9ic. Together with the algebraic
symplectic form on ¢ arising from Hamiltonian reduction, this makes ¢ a symplectic resolution.

Geometry & Topology, Volume 28 (2024)



1012 Michael McBreen and Ben Webster

Many elements of this paper make sense in the broader context of symplectic resolutions, although we
will not press this point here. In the nonunimodular case, 91¢c may have orbifold singularities.

In the description given above, ¢ appears as the Higgs branch of the N' = 4 three-dimensional gauge
theory attached to the representation of T¢ on C”. However, it is more natural from the perspective of
what is to follow to see D¢ as the Coulomb branch of the theory attached to the dual action of (D/T)V
on C", in the sense of Braverman, Finkelberg and Nakajima [11; 32]. This leads to a different presentation
of the hypertoric enveloping algebra, which will be useful for understanding its representation theory. In
particular, the multiplicative hypertoric varieties we’ll discuss later appear naturally from this perspective
as the Coulomb branches of related 4—dimensional theories.

2.2 Quantizations

The ring of functions on the hypertoric variety 917 has a quantization which we call the hypertoric
enveloping algebra. We construct it by a quantum analogue of the Hamiltonian reduction that defines 9iz.
Consider the Weyl algebra W, generated over Z by the elements zq,...,z,,d1,...,dy modulo the
relations

[zi.zj] =0, [0:;,0;]=0, [0;,z;]=0ij.

It is a quantization of the ring of functions on 7*A7. The torus D acts on Wy, scaling z; by the
character €; and d; by €, 1Tt thus determines a decomposition into weight spaces

aczn

Let
hii=zi0;, hy =0z =hif +1. KM= 30f +h))=h+1=h7 — 1.

4

Each of the tuples hl.+, hy, h;.nid generate the same subalgebra, ie the D—fixed subalgebra Z[hl.i] = W,[0].

Via the embedding 7" — D, W, carries an action of the torus 7. To this action one can associate a
noncommutative moment map, ie a map (g : Z[tz] — Wy such that [14 (), —] coincides with the action
of the Lie algebra tz. This property uniquely determines 114 up to the addition of a character in t7,. We

make the following choice: "

1g(X) =Y (e x)hi.

i=1
It’s worth nothing that in the formula above, we have broken the symmetry between z; and 9;; it would
arguably be more natural to use h;.nid, but this requires inserting a lot of annoying factors of % into
formulas, not to mention being a bit confusing in positive characteristic.

Definition 2.2 The hypertoric enveloping algebra Az is the subring W,,T C W, invariant under 7. We’ll
also consider the central quotients of this algebra associated to a character A € t7;, given by

Al = Az /(g () =10 | X € tz).
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We will often abbreviate “hypertoric enveloping algebra” to HEA.

Let Ax := Az ®z K be the base change of this algebra to a commutative ring K. The algebra A¢c was
studied extensively in [8; 31]. The algebra Ax when K has characteristic p was studied in work of
Stadnik [35]. Fix a field K of characteristic p for the rest of the paper.

Unlike W;, itself, or its base change to a characteristic O field, the ring W, ® 7z IF, has a “big center” gener-
ated by the elements z, 9. This central subring can be identified with the function ring H*(X V', 0y 1)),

where X = T*A% .
4

2.3 Coulomb presentation

The algebra Ak has a different presentation which is more compatible with the subalgebra K[hli] The
action of D on Ak determines a decomposition into weight subspaces. Since Ag = WnT, its weights lie
in tJZ- =gy:

Ag = @ Ax|a].
acth;
For each a € t%-, we let

2-1) m():= ]z T] o7
a;>0 a; <0

Up to scalar multiplication, this is the unique element in Ak[a] in of minimal degree.

Each weight space Ak[a] is a module over the D—invariant subalgebra generated by the hlf". Let

1 ifa=0,
)@ = {2608 = (h7 — 1)(h; —=2)---(h7 —a)  ifa>0,
079z = (hf + )(hf +2)--- (b —a) ifa<O.

Theorem 2.3 [14, (6.21b)] The algebra Ax is generated by K[hE, .. ., h,j,:] and m(a) for a € g, subject
to the relations

(2-2) (hF —aiym(a) = m(a)hF,
(2-3) m(a)m(b) = 1_[ (119 - m(a + b) - l_[ [h:]C20.
i i

We call this is the Coulomb presentation, since it matches the presentation of the abelian Coulomb branch
in [11, (4.7)], and shows that the algebra Ak can also be realized using this dual approach. As mentioned
in the introduction, the techniques of this paper generalize to Coulomb branches with nonabelian gauge
group as well, whereas it seems very challenging to generalize them to Higgs branches with nonabelian
gauge group (that is, hyperkéhler reductions by noncommutative groups).
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2.4 Characteristic p localization

Following [35], in this section we exploit the large center of quantizations in characteristic p so as to

relate modules over A]I)‘g with coherent sheaves on S)ﬁ]g). Roughly speaking, upon restriction to fibers of

7 Dﬁ]g) — ‘ﬁ](Kl), the quantization becomes the algebra of endomorphisms of a vector bundle, and thus

Morita-equivalent to the structure sheaf of the fiber.

Theorem 2.4 [35, Theorems 4.3.1 and 4.3.4] For any A € t* , there exists a coherent sheaf </ A of
algebras Azumaya over the structure sheaf on sm ) such that F(Em(l), o )‘) ~ Ak

This theorem includes the existence of an injection H° (‘ﬁ( ), m(”) — AK, this is induced by the map
HO(T*ARD, 6 pnyn)) — Wy ® K sending

zi>z' and w; 07

Consider the moment map j: 932(1) — 0(1) Work of Stadnik shows that the Azumaya algebra ./ A splits
on fibers of this map after field extension. Fix & € D( ) Possibly after extending K, we can choose v such
that v? —v = &, and define the splitting bundle as the quotient .z7* / St o A (hl.Jr —v;); this left module
is already supported on the fiber =1 (£), since

(hf —v)? —(hf —v) =237 —vP 4 v =2F9F —¢.
We can thicken this to the formal neighborhood of the fiber ;! (§) by taking the inverse limit 2,, :=
li_IQW)L/ Z?=1 JZ17)“(}1?_ - Vi)N-
Theorem 2.5 [35, Theorem 4.3.8] The natural map

JZ{)» |u,—1(§) —> Endﬁm(l) (e@v, o@v)

is an isomorphism.

The sheaf & is not globally split; it has no global zero-divisor sections. It still has a close relationship
with a tilting vector bundle on E)ﬁ%). We’ll fix our attention on the case where £ = 0, so v; € IF),.

Let & be an S—equivariant locally free coherent sheaf on Dﬁ( ) such that 9]K|lr 10) = 2,. Such a sheaf
exists by [25, Theorem 1.8(ii)]. As coherent sheaves, we have isomorphisms

A 2 Fry Oyny = T ® T3 = End( ).

By [35, Corollary 4.4.2], these sheaves have vanishing higher cohomology. Furthermore, combining with
results of Kaledin [25, Theorem 1.4], this shows that:

Proposition 2.6 For p sufficiently large and v; generic, the sheaf Jx is a tilting generator on 9k and has
a lift Jg which is a tilting generator on Mg; that is, Ext' (Jg, Jg) = 0 fori > 0, and Ext' (Jg, Z) = 0
implies .# = 0 for any coherent sheaf on 9Mgy.

We will later calculate the sheaf %, once we understand ﬂﬂé a bit better.
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3 The representation theory of hypertoric enveloping algebras

3.1 Module categories and weight functors

Recall that we have a short exact sequence of tori T — D — G. A])fg is a quotient of WnT, and thus
carries a residual action of G, which we will now use to study its modules.

Let 0 € M) be the point defined by z; = w; = 0, ie the unique K—valued S—fixed point of 9. The

following category will play a central role in this paper.

Definition 3.1 Let Aﬁ‘g—modo be the category of finitely generated AH}‘g—modules that are set-theoretically

supported at o0 when viewed as modules over H° (‘ﬁ%), ﬁmm).
K
In fact, we will first study the following closely related category.

Definition 3.2 Let Aﬁ‘g—modf be the category of modules in Aﬁ“g—modo which are additionally endowed
with a compatible D—action such that 7" acts via the character A, and the action of d; € 07 satisfies
(3-1) (h —d)Nv=0 for N > 0.

The difference s; = hl.+ — d; acts centrally on such a module, since the adjoint action of h;r on Aﬁ‘g agrees
with the action of d;. The operator s; is thus the nilpotent part of the Jordan decomposition of hfc. The

operators s; define an action of the polynomial ring Uk (0), which factors through Uk (g) since elements
of t act by zero. This extends to an action of the completion of Uk (g), since s; acts nilpotently by (3-1).

Definition 3.3 Let S := Uk (g), and let S be its completion at zero.
Let g%’)‘ C 07, be the g7,—coset of characters of D whose restriction to 7" coincides with A. It indexes the

D—weights which can occur in an object of Aﬁ‘g—modOD .

We can construct projectives objects in a slight enlargement of Aﬁé—modé) by working with the exact
functors picking out weight spaces. That is, for each a € g%’k, we consider the functor which associates
to an object M € Aﬁ‘g—modé) the vector space

Wa(M) :={m € M | m has D—weight a}.

Note that even though we are working in characteristic p, the D—weights are valued in g%’)“ C Z". This
functor is exact, and we will show that it is pro-representable.

3.2 Projectives representing the weight functors

To construct the projective object that represents this functor, we consider the filtration of it by
WN(M):={me We(M) | (hi —a;)Nm =0 for all i }.
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Proposition 3.4 We have a canonical isomorphism
n
W (M) = Homyz 040 (Aﬁg/ > Ak (it —apV, M),
i=1
where D acts on A%/ > A]I)‘g(hi+ —a;)" so that the image 1, of 1 has weight a.
Since Wg (M) = lim WaN (M), we have that W, (M) is represented by the module
(3-2) Qq = lim Ak / Ak (b} —a)™
with its induced D—action. Note that Qg = I'( ™! (6); D).

This is endowed with the usual induced topology, and it is a pro-weight module in the sense that its weight
spaces are pro-finite dimensional. This is a projective object in the category AH)‘g—modD of complete
topologically finitely generated Aﬁé—modules M with compatible D—action in the sense that

~ - N, _
ngnoo(hi —d;i) v =0.

That is, s; acts topologically nilpotently on each D—weight space. This is equivalent to (3-1) if the

topology on M is discrete.

In the arguments below, Hom and End will be interpreted to mean continuous homomorphisms compatible
with D; all objects in Aﬁ‘g—modf will be given the discrete topology, so continuity is a trivial condition
for homomorphisms between them.

Lemma 3.5 If b is a character of D/ T, then Wy (Qga4p) = S. Otherwise, this weight space is 0.

Proof For any character b of D which vanishes on 7, the b weight space A%[b] is a free rank-one
module over S (acting via multiplication by s;), generated by m(h). Thus, the @ + b weight space of
A])fg/A])fg (hl.+ —a;)N is generated by m(b), subject to the relations

sNm(b) - 1g = m(b)sY - 15 = m(b)(hi —ap)N -1, =0,

and is thus free over the quotient ring S/ ) S 'slN . Taking the inverse limit, we see that every weight
space of Qg is a free module of rank one over S. O

Corollary 3.6 We have an isomorphism of rings

End(Qq) = Wa(Qq) = S.
Since S is local, the module Qg is indecomposable (in the category A/ﬁ‘K’—m\odD ).
3.3 Isomorphisms between projectives

In this section, we determine the distinct isomorphism classes of weight functors, ie we determine all
isomorphisms between the pro-projectives Q4. As we will see, there are typically many distinct weights
ac g%’)‘ that give isomorphic functors.
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By the results of the previous section, the space Wy (Qq4+4p) = Hom(Q4, Qq+p) is free of rank one
over S, with generator m(b). Likewise, Hom(Qy44p, Q4) is generated by m(—b). Thus in order to verify
whether Q, and Q,4p are isomorphic, it is enough to check whether the composition m(—b)m(b),
viewed as an endomorphism of Qg, is an invertible element of the local ring End(Q,) = S.

By (2-3), we have that

n

m(=bym(b) = [ [(h]50.
i=1
where the right-hand side is a product of factors of the form hl.Jr + k with k an integer between % and b; + %
To check whether h;" + k defines an invertible element of S, it is enough to compute its action on the
weight space of weight a, on which /; acts by a; +s;. The resulting endomorphism h;r +k=s;+(aj+k)
is invertible if and only if k£ + a; #£ 0 (mod p).

The number of noninvertible factors (each equal to s;) in [4;]¢%) is therefore the number of integers k
divisible by p lying between a; + % and a; + b; + % We denote it by §;(a,a + b).

We can sum up the above computations as follows. Put

{ 1 ifk=0,
q(y.k) = 1 .
—y+k if k #0,

where y is a formal variable and k € K. Note that ¢(s;, a; + j )(h;F + j) acts on a D—weight space of
weight @ by 1 if a; + j is not divisible by p, and by s; if it is. Let

n b;
(3-3) co=m®) [T[]a6i i+ ) € Wa(Qars) = Hom(Qa, Quys)-

i=1j=1

It is a generator of the S-module Wa(Qa+p)- Note that this expression breaks the symmetry between
positive and negative; if b; < 0 for all i, then c,’,’ = m(b), since all the products in the definition are over
empty sets.

n
Lemma 3.7 Ca_-fbcg — 1_[ Sfi (@.a+b)
i=1
Proof We have
n _bi n bi
ctyct =m(b)-T [T ar.ai+bi+ j)-m@®)- [ [] atsi i+ /)

i=1j=1 i=1j=1

n —b; b;
= m(—Bym() 1‘[( T a6sivai+bi+ ) [ ] atsioas + j))
i=1j=1 j=1
n —b; b;
= [1na = T aGi.ai + bi + ) [] aGivai + /).
i=1 j=1 j=1
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Note that for each index i only one of the products is nonunital, depending on the sign, and in either case,
we obtain the product of ¢(s;, a; + j) ranging over integers lying between a; + % and a; + b; + % As we
noted earlier, [;]¢=?7) is the product of h; 4+ j with j ranging over this set. Thus, we obtain the product

over this same set of (4; + j)q(si,ai + j), which is precisely s?i (@a+b) |

It remains for us to describe which pairs a, a’ satisfy 8;(a,a’) = 0 for all i, and thus index isomorphic
projective modules.

Definition 3.8 Let gier be the periodic hyperplane arrangement in g%’)‘ defined by the hyperplanes
d; =kp—%f0rkeZandi =1,...,n.

By definition, §;(a, a’) is the minimal number of hyperplanes d; = kp — % crossed when traveling from a
to a’. Given x € Z", let
Ax ={a EQE’A | pxi <a; < px;+p} and AR ={a 692’A®R | pxi <a; < px; + p}.

We have shown:
Theorem 3.9 We have an isomorphism Q4 =~ Qg if and only if we have a,a’ € Ay for some x.

Let
AN ={xeZ"|Ay #2}) and AR ={xeZ" | AR £o}.

Thus, T\(X) canonically parametrizes the set of indecomposable projective modules in the pro-completion
of A]I}‘g—modf . It follows that 1~\()\) also canonically parametrizes the simple modules in this category.

Let us call the parameter A smooth if there is a neighborhood U of A in R ® g%’)‘ such that for all
A €U, wehave A(A) = AR(V). In particular, if A is smooth, then the hyperplanes in gier must intersect
generically.

3.4 A taxicab metric

We can endow A (1) with a metric given by the taxicab distance |x —y|; = Y ilxi—yilforallx, y € AQM).
We can add a graph structure to K(A) by adding in a pair of edges between any two chambers satisfying
|x — y|1 = 1; generically, this is the same as requiring that A§ and A]Jl,R are adjacent across a hyperplane.

We say that this adjacency is across i if x and y differ in the i™ coordinate. For every x, let a(x) be
the set of neighbors of x in K(A). Generically, this is the same as the number of facets of A%; we let
a;(x) C a(x) be those facets adjacent across i. Note that in some degenerate cases, we may have that
X, X +€,x—¢€ € X(A), so the size of «;(x) is typically 0 or 1, but could be 2.

3.5 Weights of simple modules

Definition 3.10 For any x € Z" such that Ay # &, we let Py := Qp for some b € Ay.
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Lemma 3.11 The module Py has a unique simple quotient L, and the Ly for x € Z" such that Ay # &
are a complete irredundant list of simple modules in A])I‘g—modoD .

Furthermore, the a—weight space of Ly is one-dimensional if a € Ay, and 0 otherwise.

Proof We show that Q, has a unique simple quotient by showing that the sum of two proper submodules
is proper; this then shows that there is a unique maximal proper submodule, and L, is the quotient by it.
A submodule M C Q, is proper if and only if Wy (M) C Wa(Q4) = Sisa proper submodule; that is, if
it lies in the unique maximal ideal m C S. This shows that the sum of two proper submodules is proper,
and so L is well-defined.

Using the isomorphism Q, = Qp if a, b € Ay, we can extend this to the observation that a submodule
M C Py is proper if and only if Wy (M) C mW,(Py) for alla € Ay.
By Lemma 3.7, we can check that there is a unique submodule M in P, such that

mW,(Py) ifae Ay,
Wa(Py) ifadAy.

By the observation above, this must be the maximal proper submodule, so Ly = Py /M . This shows

Wa(M) = {

that Ly has the claimed dimensions of weight spaces. Furthermore, this shows that we can recover the
set Ay for Ly, so we must have Ly 2 Ly if x # y.

For any simple L, we must have W, (L) # 0 for some a. This induces a map Py — L where a € Ay.
Since Ly is the unique simple quotient of Py, this shows that Ly =~ L. This shows that they give a
complete list and completes the proof. a

Example 3.12 An interesting example to keep in mind is the following. Let T be the scalar matrices
acting on A3. In this case, n = 3 and k = 1. The space gz’}‘ is an affine space on which d; and d;
give a set of coordinates, with d3 related by the relation d3 = —d; — d, + A for some A € Z. Thus, the
hyperplane arrangement that interests us is given by

dy =kp—%, d, =kp—%, —dl—dz—l-)»:kp—%.
In particular, we have that Ay # @ if and only if there exist integers a; and a, such that
X1p=ay <xip+p, Xpp=dy<xap+p, X3p=-—-ar—day+Ai<x3p+p.

The values of —a;—a,+A for ay, a, satisfying the first two inequalities range from —(x1+x,+2) p+24+A
to —(x1 +x2) p+A. Thus, x5 is a possibility if —x; —x, =24+ [(A+3)/plx3 <—x1—x2+ |A/p]. Thus,
there are three such x3 if | (A +3)/p| = |A/p], thatis, if A £ —1,—2 mod p. If A = —1, -2 mod p,
then there are two, and the parameter A is not smooth.

Of course, the numbers —1 and —2 have another significance in terms of P2: the line bundles &(—1)
and ¢(—2) on P? are the unique ones that have trivial pushforward. This is not coincidence. Let A4 be
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the unique integer in the range 0 < A4+ < p congruent to A (mod p), and A_ the unique such integer in
—p < A_ < 0. The simples (x1, x3,—x; —x3 + [A/p]) and (x1, x3,—x; — X3 —2 4 |A/p]) over A])fg
can be identified with H°(P?; ¢(A)) and H!(P?; 6(A_)). If A = —1,—2 mod p, then the latter group
is trivial, so one of the simple representations is “missing”.

The final simple can be identified with the first cohomology of the kernel of the map &(A)®3— (A4 +p)
defined by (zf , zf , zf ) (in characteristic p, this is a map of twisted D—modules); this map is surjective
on sheaves, but injective on sections, with the desired simple module its cokernel.

Let’s assume for simplicity that 0 < A < p — 3. In this case, the “picture” of these representations when

p =>5and A =1 is as follows:
dl =%

o

R
(3-4) \

-
N o

QU
)

|

|
N —

The three chambers shown (read SW to NE) are A(g,0,0)> A(0,0,—1)> A(0,0,—2)-

3.6 The endomorphism algebra of a projective generator

Having developed this structure theory, we can easily give a presentation of our category. For each pair
x,y with Ay # @ and Ay, # @, we can define ¢y, to be ¢ forae Ay and a’ € Ay. For each i, let

ni(x, y,u) = 2(|xi — yil + |yi —uil — |xi — uil).

Theorem 3.13 The algebra P, yek Hom( Py, Py) is generated by the idempotents 1 and the elements
Cx,y over S, modulo the relation
(3-5) Cx,yCyu = l_[ s?"("’y’“)cx,u.

l
Note that this relation is homogeneous if degcyx,, = |x — y|; and degs; = 2.
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Proof The relation holds by an easy extension of Lemma 3.7. To see that these elements and relations are
sufficient, note that in the algebra H with this presentation, the Hom-space 1 H1 y is cyclically generated
over S by ¢x,y. The image of ¢y, under the induced | map Ix H1 y — Hom( Py, Py) generates the target
space over S. Since the target is free of rank 1 as a S-module, the map must be an isomorphism. |

Definition 3.14 Let Sz := Uz(g). Let ﬁ% be the graded algebra over Sz generated by 1 and ¢y y,
with presentation given in Theorem 3.13. Let H = PNI% QK.

This algebra is isomorphic to its opposite via the anti-isomorphism which acts by the identity on Sz
and cx,y +> ¢y x. Since this algebra has a left action on the sum @, Py, it naturally has a right action
on &, Hom(Py, M) for any A%—module, which we will turn into a left module structure using the
anti-automorphism above.

It may concern the reader that Hﬂ)i is not a unital algebra, but it has a structure which can serve as a
replacement. We follow the terminology and notation of [13] in this section. We call a K—algebra 4
locally unital if there are idempotents 1, indexed by some set X such that 4 = @a, pen laAlpg.

Definition 3.15 Given a locally unital algebra 4, let 2(A) be the category where the objects are the
set X, and the morphism spaces are given by Hom(«, ) = 15,41g.

Note that &7 is equivalent to the subcategory of left projective modules with objects A1,.
We call a module M over A locally unital if M = P, 1o M ; this is automatic if K is a field and M

is finite-dimensional over IK. We can think of « — 14 M as a functor 22°°P — K-mod, and conversely,
every locally unital left A—module arises from a unique such functor. In particular, the results of [29],
which are formulated in terms of representations of categories, also apply to locally unital algebras.

The algebra I:'I]fg may not be left or right Noetherian as a ring, since it is not finitely generated as a module

1

over itself. However, it can be locally left Noetherian,” meaning that left submodules of A1, are finitely

generated.
Proposition 3.16 If K is Noetherian, then the algebra ﬁ{é is locally left Noetherian.

Proof Consider a submodule U C FIH{(“ 1. The intersection U N 1,, ITIH’E 1 must be of the form Iycy
for some ideal I, C Sk. Since ¢z yIycy x C Izcz x, we have I, C I if for each i, either x; < y; < z;
or z; < y; < x;. For any subset B of Z>0, there is a finite list of points 6™, .. ., b such that for any
b € B, there is some r such that b; > bl(r ) for all i. This means that for any finitely generated ideal
I C Sk and any subset B C A, the submodule generated by Icy  for y € B is finitely generated, since
it is generated by Icy , for finitely many choices of y. Since K is Noetherian, so is Sk, and thus every
ideal in [ is finitely generated.

IThis is not identical to the notion of “locally Noetherian” found in scheme theory, but is related: the spectrum of a commutative

locally Noetherian ring will be a possibly infinite disjoint union of Noetherian schemes, which is thus locally Noetherian as a
scheme.
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Thus, if U is not finitely generated, then infinitely many different ideals must appear as /. By standard

methods, we can choose an infinite sequence y (1), y (2), ... such that the ideals 7 y() are all different,
(k)

and for each 7, the difference of coordinates y;

respect to k, or negative and weakly decreasing. In either case, we have I,a) C I,

Noetherian, the existence of such a chain of ideals which are all distinct contradicts the ascending chain

— x; are either all positive and weakly increasing with
@ C---. Since Sk is

condition, proving that U is finitely generated. O

If an algebra A is locally left Noetherian, then its category of finitely generated, locally unital modules is
an abelian category A—lu-mod. The objects A1y; form a nearly resolving set of projectives in the sense
of Freyd [18, Section 1], ie every object in this category is a quotient of a finite sum of these projectives.

Lemma 3.17 Assume A is locally Noetherian. If € is an abelian category and o +— Py: & — € is a
fully faithful functor such that the set of projectives { Py }qex is nearly resolving, then the functor
M: € — A-lu-mod, M(M) = @D Hom(Py. M),

aER
is an equivalence.

Proof In the terms of [18], this functor M sends an object in 6 to the corresponding representation
of the category £7°P. By a small modification of [18, Theorem 1.2] (stated above [18, Theorem 1.3],
with the proof left to the reader), this functor is an equivalence to the subcategory of representations
which are the cokernel of a map of the form M(@;zl Pa,-) — M(@j=l P'Bj), that is of the form
Di_; Aly; — @j-, Alg,. Since A is locally Noetherian, the modules of this form are exactly the
finitely generated, locally unital modules. O

Let flﬂé—modg denote the category of finite-dimensional representations of H?%, on which each s; acts
nilpotently. As discussed above, such a module is necessarily locally unital.

Theorem 3.18 The functor

@ Hom( Py, —): Aﬁ‘g—modoD — ITIH{{—mOdo
xeA()
defines an equivalence of categories between Aﬁfg—modoD and the category of finite-dimensional represen-
tations of Hﬁ, on which each s; acts nilpotently.

Proof First, consider the category Aﬁ‘g—modD . Since any module M in this category is topologically
finitely generated over A% . we can assume that the generators are generalized weight vectors for D.
These weight vectors induce a surjection @f-‘zl Qa; — M. This shows that the { Py} are a nearly
resolving set of projectives in this category, anAd we I}fwe an Equlvalence of the category Ag-mod™ to
the category of modules over the completion HH{(‘ ~ H{g ®s S by Lemma 3.17; note that we have used
the anti-automorphism of Hﬂ)g to switch between left and right modules.
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Now, we will show that restricting this functor gives the desired equivalence. A finite-dimensional
representation of H{é on which each s; acts nilpotently can be inflated to a I:I]I)g—module, and thus sent
toa A])I‘g—rnodule by this equivalence. The nilpotent condition and finite dimensionality imply that this
module is a sum of finitely many generalized weight spaces, so it is supported on a finite union of points
in WI(KI ). The functions z; and w; must act nilpotently for weight reasons, so the only point in the support
must be 0. On the other hand, if the corresponding AH)‘g—module is supported on o, then by coherence, it
must be finite-dimensional, and thus give a finite-dimensional flﬂé—module, and s; acts nilpotently on any
finite-dimensional flﬂ{i—module. m|

In fact, we will see that when A is smooth, FIH{& admits a presentation as a quadratic algebra. We begin by
producing some generators.

Lete; =(0,...,0,1,0,...,0) by the i unit vector. Let c;ti = Cx+¢;,x; Note that deg c;ti = 1. These
elements correspond to the adjacencies in the graph structure of K(A). Thus, we have a homomorphism
from the path algebra of K(k) sending each length 0 path to the corresponding 1, and each edge to the
corresponding C;H .

We’ll be interested in the particular cases of (3-5) which relate these length 1 paths. If x,x 4+ ¢; € K(A),

then
R 4o
(3-6a) foi-e,-cxl =silyye and cx’cxfi_ei =silyte-

We can view this as saying that the length 2 paths that cross a hyperplane and return satisfy the same
linear relations as the normal vectors to the corresponding hyperplanes.

Ifx,x+e€,x+¢€,x+¢€ +¢ € K()\), then the corresponding chambers fit together as pictured:

J i

X +€j X +€;

X +€ +e€;

In this situation, we find that either way of going around the codimension 2 subspace gives the same
result, and that more generally any two paths between chambers that never cross the same hyperplane
twice give equal elements of the algebra:

+J A +Jj =Jj =i _ i —=J
(3-6b) CxteCx = Cxte;Cx " CxteCxteite; = CxteCxteite;
—J +i T —i A B |
(3-6¢) cx+e,-+ej cx+ej =Cx °x+ej’ cx+e,~+ej Cxte; = Cx Cxte

If A is a smooth parameter, then as the following theorem shows, these are the only relations needed.

Theorem 3.19 If A is a smooth parameter, then the algebra @x, y Hom( Py, Py) is generated by the
idempotents 1, and the elements c;ti forall x € K()\) over S modulo the relations (3-6a)—(3-6¢).

Geometry & Topology, Volume 28 (2024)



1024 Michael McBreen and Ben Webster

Proof Since these relations are a consequence of Theorem 3.13, it suffices to show that the elements c;bi
generate, and that the relations (3-5) are a consequence of (3-6a)—(3-6¢).

+i
v
On the other hand, if |x — y|; > 1, then there is some x” # x, y such that |x —x'|{ +|x'—y|1 = |x—y|1.

We show that c;ti generate ¢y, by induction on the Lj—norm |[x — y|. If [x —y|; =1, thency,y =¢

Choosing a generic parameter A’ such that KR(A/ ) = K(k), we can consider the line segment joining
generic points in A, and A y, and let x” be any chamber this line segment passes through. The smoothness
hypothesis is needed to conclude that there is such a chamber that lies in 1~\()»). Since cx,y = Cx x'Cx’,y,
this proves generation by induction.

We must now check that the relations (3-5) are satisfied. First, consider the situation where x© = X,...,
x™ = y is a path with [x @ —xE+D|; =1 with x®@ € A(A), and y©@ = x,..., y™ = y is a path
with the same conditions. These two paths differ by a finite number of applications of the relations
(3-6b)—(3-6¢).

It remains to show that if x©@ = x, ... x = y is a path of minimal length between these points with
|x@ —x@+D|, =1, and we have similar paths y©@ =y ... . y® =gandu® =x, ..., uP) = u, then

n
(3—7) Cx(()),x(l) e Cx(m—l)’x(m)cy(()),y(l) N Cy(n—l)’y(n) = Cu(()),u(l) ces cu(lj_l),u(l)) l_[ S:_?,-(x,.v,u).
i=1
We’ll prove this by induction on min(m, n). If m = 0 or n = 0, then this is tautological. Assume m = 1,
and x = y +o0¢; foro € {1,—1}. If o(y; —uj) = 0, then n;(x, y,u) = 0, so this follows from the
statement about minimal length paths. If o (y; —u;) <0, then nj(x, y,u) = 1, and we can assume that
yD =x, ... ™ is a minimal length path from x to u. Thus

Cx,yCy,x " " Cypm—1 pm) = Cx p@ " " Cyn—1) ySj,
as desired. The argument if » = 1 is analogous.

Now consider the general case. Assume for simplicity that n > m. Consider the path xm=1, y(o), ey
y™ = y_ Either this is a minimal path, or by induction, we have that

Cxm=1) yCy p(1) * " Cpn=1) ym) = Coyp1) (@) *** Cop(n=2) 4(1—1)Sj

for a minimal path w(® = x=1 @ @1 = 5 with j being the index that changes from
x™m= Do y.
In the former case, by induction, relation (3-7) for the paths x(©@ = x, ..., x™=1D and xm=D ,©)

y ™ = g holds. This is just a rebracketing of the desired case of (3-7). In the latter, after rebracketing,
we have

(Cx@ x ) =+ Cxm=2) xn=1)(Cxom=1) xm) *** Cpin—1) ym)

n

. , — . . ni(x,y,u)

= (Cx@ )+ Cxm=2)_x m=1)) (€0 1) *** Copn=2) ypn=1))Sj = Cy0) (1) *** Cyy(p—1) y(p) 1_[ s ,
i=1

applying (3-7) to the shorter paths. O
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3.7 Quadratic duality and the Ext-algebra of the sum of all simple modules.

The algebra FI% for smooth parameters has already appeared in the literature in [7]; it is the “A—algebra”
of the hyperplane arrangement defined by d; = pk — % for all k € Z. This is slightly outside the scope of
that paper, since only finite hyperplane arrangements were considered there, but the results of that paper
are easily extended to the locally finite case. In particular, we have that the algebra ﬁ% is quadratic, and
its quadratic dual also has a geometric description, given by the “B—algebra”. We will use this to produce
a description of the Ext—algebra of the sum of all simple representations of ﬁ%

If we fix an integer 7, we may consider the hyperplane arrangement given by d; = pk —% for k € [—m, m].
Let H™ be the A-algebra associated to this arrangement as in [8, Section 8.3] —in that paper, it is
denoted by A(n,—). We leave the dependence on A and the ground ring implicit.

By definition, H [m] is obtained by considering the chambers of the arrangement we have fixed above,
putting a quiver structure on this set by connecting chambers adjacent across a hyperplane, and then
imposing the same local relations (3-6a)—(3-6¢). One result which will be extremely important for us is:

Theorem 3.20 [8, Lemma 8.25] The algebra H™ is finite-dimensional in each graded degree, with
finite global dimension < 2n.

There’s a natural map of H [l o 7, sending the idempotents for chambers to 1, for x; € [-m — 1, m].

Proposition 3.21 Fix x, y and an integer q. For m sufficiently large, the map H"] — H* induces an iso-
morphism (1, H [m]q y)g = (1x H*1 y)q between homogeneous elements of degree g and an isomorphism
Extgym(Ly, Ly) = Ext g, (Lx,Ly).

Proof An element of (1, H [m]q y)q can be written as a sum of length n paths from x to y. Thus, it can
only pass through u if |[x —u| + |u — y| <gq. Thus, if m > ¢ + |x|1 + | 1], then no hyperplane crossed
by this path is excluded in H"]. The map (1, H"™1 y)g = (1x H*1 y)q is clearly surjective in this case,
and injective as well, since any relation used in H is also a relation in H"l,

Thus, if we take a projective resolution of Ly over H" and tensor it with H*, we can choose m
sufficiently large that the result is still exact in degrees below 2g. Since H [m] is Koszul, with global
dimension < 2n, every simple over H! has a linear resolution of length less than < 2. This establishes
that the tensor product complex is a projective resolution for m > 0.

This establishes that we have an isomorphism Extgumi(Lx, Ly) — Extg; (Lx, Ly) for m > 0. a
Corollary 3.22 The algebra H* is Koszul with global dimension < 2n.

Note that in the language of [29, Section 5.4], we should say that the category 3”(1:] )‘) is Koszul. By
[29, Theorem 30], the Koszul dual of H is its quadratic dual. Thus, let us calculate its quadratic dual.
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Continue to assume that K(A) is smooth. If we dualize the short exact sequence

0—>tyg >0z >g7z—0
we obtain a dual sequence

0« ty; <05 < gy < 0.
Let t; be the image in t, of the i™ coordinate weight of t.

Definition 3.23 Let fl)i 7 (resp. fl)'h k) be the dg—algebra generated over Uz (t*) (resp. Uk (t*)) by
elements ey for x € 1~\(k), d;ti forx,x ¢ € K(k) with trivial differential and subject to the following
quadratic relations:

e Write dy 4 1= d;ti where # = x & ¢;. For each x and each i, we have
(3-82) Y dyudux =tiex.
ucw;(x)
Note that this implies that if «; (x) = &, then tjey = 0.
e Ifx,x+¢€,x+¢€,x+€ +¢€ € K(k) then

Hogri— gt gl gl g i g
(3-8b) dx+e dy _dx+e dy dx+e<dx+e,~+e, - dx—i—e, dx+e, +e;°
J +i +i g—J i +Jj +Jj g—i
(3-8¢) dx +ei+e; dx—i—e = —dy dx +e;° dx+e +e€; dx +e =—dy’d, +e;

e If x and u are chambers such that |x —u| = 2 and there is only one length 2 path (x, y, u) in K(k)
from x to u, then

(3'8d) dx’ydy’u :O.

For example, if x gZK butx +€;,x+€j,x+¢€ +e€ € A(L), then dx_-{-ei-i-e]- d;_frej = 0. We suppress the
dependence of H and H' on A and the ground ring, to avoid clutter. The following holds over both K and Z:

Theorem 3.24 The algebras H and H' are quadratically dual, with the pairing H xH 1' given by
(Cgi, d; J) = (Sx,ygi,j(so',a’-
Again, in the notation of [29], we would say that the categories ﬁ(ﬁ ) and gZ(ﬁ " are quadratically dual.

Proof What we must show is that the quadratic relations of Hin H 195, H 1 are the annihilator of the
relations of H' in fl '® I fl ' It is enough to consider ey H 195, H 1€y for any pair of idempotents ey
and ey. This space can only be nonzero if |x y|=2or0. Let us first assume that |x — y| = 2. If there
is one path between x and y in A then ey H 1 Q5 A, H 1€y = ey Hze y and there are no relations. On the

other hand, in H' , by (3-8d) we have that all elements of ey H! 1 ® g  H! 1€y are relations.
0

If there are two paths, through # and #’, then the element cx 5 ® cy, y — Cxu’ @ Cy,y spans the set of
relations. Its annihilator is dy 4 ® du,y + dx 4 ® dy’,), Which spans the relations in H' by (3-8b)—(3-8c¢).
This deals with the case where |x — y| = 2.
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Now, assume that x = y. The space ey H, ® 7, Hiey is spanned by ¢y ycu,x for u € a(x). Thus,
ex H 197, H rex = KO We can map this to 0 by sending the unit vector corresponding to u to s;,
where x = u =+ ¢;. The relations are the preimage of tk.

By standard linear algebra, the annihilator of a preimage is the image of the annihilator under the dual
map. Thus, we must consider the dual map tﬂt Cog — K%™)  and identify its image with the relations
in H'. These are exactly the relations imposed by taking linear combinations of the relations in (3-8a)
such that the right-hand side is 0. a

Corollary 3.25 We have a quasi-isomorphism of dg—algebras

PExt(Ly. Ly) = Hj .
X,y

with individual summands given by Ext(L,, Ly) = ex ﬁ){ey.

Proof Here, we apply Theorem 3.18; this equivalence of abelian categories implies that we can replace
the computation of Ext: (Lx, Ly ) with that of the corresponding one-dimensional simple modules
over H* in the subcategory of modules on which s; acts nilpotently.

If we instead did the same computation in the bounded derived category of all finitely generated modules,
then we would know the result is ey H. }" ey by Koszul duality. The formality of the Ext—algebra follows
from the consistency of Asc—operations with the internal grading, so this is a quasi-isomorphism of
dg—algebras. Thus, we need to know that the inclusion of the category on which s; acts nilpotently induces
a fully faithful functor on derived categories.

For this, it’s enough to show that every pair of objects 4, B has an object C (all in the subcategory) and a
surjective morphism v : C — A such that the induced map Ext" (A4, B) — Ext"(C, B) is trivial for all n.
We can accomplish this with C a sum of quotients of H*1,s by the ideal generated by slN for N > 0;
this is clear for degree reasons if 4 and B are gradable, and since gradable objects dg—generate, this is
enough. O

This gives us a combinatorial realization of the Ext—algebra of the simple modules in this category. We
can restate it in terms of Stanley—Reisner rings as follows.

For every pair x, y, we have a polytope Z§ N Z]E, which has an associated Stanley—Reisner ring
SR(x, y)Kk. The latter is the quotient of K[ty, ..., t,] by the relation that t;, ---t;, = 0 if the intersection
of Z§ N Z]E with the hyperplanes defined by a;; = pn for n € Z is empty. Let SR(x, y)k be its quotient

modulo the system of parameters defined by the image of tHJg.

We can define SR(x, y)z and SR(x, y)z by the same prescription, replacing K by Z everywhere. In
[7, Definition 4.1], the authors define a product on the sum SRz, 2 @x yek SR(x, y)z, which they call
the “B-algebra”. The same definition works over K.
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The result [7, 4.14] shows that this algebra is isomorphic to the “ A—algebra” — that defined by the relations
(3-6a)—(3-6¢) — for a Gale dual hyperplane arrangement. Unfortunately, for a periodic arrangement, the
Gale dual is an arrangement on an infinite-dimensional space, which we will not consider. We can easily
restate this theorem in a way which will generalize for us. Assume that A is a smooth parameter.

Proposition 3.26 [7, Theorem A] The algebra SR is quadratic dual to flﬂ{&. That is, it is isomorphic
to FI)" k- In particular, we have the canonical isomorphisms

Ext(Ly,Ly) = ex ﬁi,Key =~ SR(x, y)k[—|x — y 1]
3.8 Interpretation as the cohomology of a toric variety

For our purposes, the key feature of the quadratic dual of f[% is its topological interpretation, which is
exactly as in [7, Section 4.3]. This interpretation will allow us to match the Ext—algebras which appear
on the mirror side, in the second half of this paper.

Indeed, the periodic hyperplane arrangement gier defines a tiling of gj{g)‘ by the polytopes Z%.

To each such polytope we can associate a G—toric variety Xy ; see [15, Chapter XI]. Each facet of the
polytope defines a toric subvariety of X . In particular, the facet A% N Aﬂs defines a toric subvariety Xy,
of both Xy and X,,.

Furthermore, the Stanley—Reisner ring SR(x, y)k is identified with H7(Xx y;K), and the quotient
SR(x, y)k is identified with H*(Xy,,;K). Composing this identification with Proposition 3.26, we
have an identification

ex H) wey = H* (X y: K)[—|x — y|1].

In this presentation, multiplication in the Ext—algebra is given by a natural convolution on cohomology
groups [7, Section 4.3].

3.9 Degrading

So far, we have only considered Aﬁ‘g—modules which are endowed with a D—action. Now, we use the
results of the preceding sections to describe the category Al)[‘g—modo of modules without this extra structure.

Proposition 3.27 Assume that L is a simple module in the category AH}‘g—mOdo. Then we have an
isomorphism of A])fg—modules L = L for some x.

Proof On the subcategory A]}I‘g—modo, the central element
2207 = hf (hf —1)(hf —=2)--- (B —p+1)

acts nilpotently, so h;r has spectrum in . In L, there thus must exist a simultaneous eigenvector v
for all h;r’s, and a such that h;Lv = a;v. Thus, Wl (L) # 0, which shows that there is a nonzero map
QOq = Py — L,sowemust have L =~ L. O

Geometry & Topology, Volume 28 (2024)



Homological mirror symmetry for hypertoric varieties, 1 1029

This shows that L, gives a complete list of simples. The module Py represents the a generalized
eigenspace of hl.+, and thus still projective. In fact, there are redundancies in this list, but they are easy to
understand.

Definition 3.28 Let A(A) be the quotient of K(k) by the equivalence relation that x ~ y if and only if
x|, = iy Equivalently, x ~ y if y = x + ¥, where y lies in t = 9y

We write X for the image of x in A(A). Recall that g%’k is a torsor for the lattice g7,. The action of the
sublattice p-g7, preserves the periodic arrangement gier. The quotient @Y" = gier / p-g7 is an arrangement
on the quotient g%’)" /p -9y, and A(}) is the set of chambers of g;?r‘

Example 3.29 In the setting of Example 3.12, g;?r has three chambers. A set of representatives is given
by those chambers of the periodic arrangement lying within the pictured square.

Theorem 3.30 As Aﬁ“g—modules, Ly = L, if and only if x ~ y. That is, the simple modules in
A]}I‘g—modo are in bijection with A(}).

Proof If x ~ y,then Py and P, are canonically isomorphic as Aﬁ‘g—modules, since (3-2) is only sensitive
to the coset of @ under the action of p - tJZ-. It follows that Ly = L, as A])I‘g—modules. On the other hand,
if Ly =L, as A%—modules, their weights modulo p must agree. This is only possible if x|, = y|i,. O

When convenient, we will write Ly for the simple attached to X € A(A). We can understand the Ext—
algebra of simples using the degrading functor D: A%—modf — A]I}‘g—modo which forgets the action
of D.

Theorem 3.31 We have a canonical isomorphism of algebras

EXtA%—mOdg(Lx’Ly)g @ EXtA])K—mOdOD(Lu’Ly) =~ @ EXtAH)Lg—mOdOD(Lx’Lu)'

x|£Z=u|tZ y|‘Z=u|"Z

Proof This is immediate from the fact that P, remains projective in AH)‘g—modo, so the degrading of a
projective resolution of L, remains projective. |

One can easily see that this implies that, just like Aﬁ‘g—modOD , the category A]}I‘g—modo has a Koszul graded
lift, since the coincidence of the homological and internal gradings is unchanged.
We can deduce a presentation of
!
H = P EXt0 g, (Lo Ly).
x,yEA(L)

Indeed, we think of H. i g as the path algebra of the quiver A (L) (over the base ring Ug (t*)) satisfying
the relations in Definition 3.23, and then apply the quotient map to A (1), keeping the arrows and relations
in place. This is well-defined since the relations (3-8a)—(3-8c) are unchanged by adding a character of G
to x.
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Likewise, we have the following description of the endomorphism algebra of the projectives. Let H]f% be
the algebra generated by the idempotents 1, and the elements c;ti for all x € A(A) over S modulo the
relations (3-6a)—(3-6¢). Let H% be the natural lift to Z.

Proposition 3.32 Hx= P Hom 4% -mod, (Px Py).
x,yeA(X)

Example 3.33 We continue Example 3.12. The set A(A) has 3 elements corresponding to the chambers A4,
where x1+x,+x3=|A/p], B, where x; +x,4+x3=|A/p]—1, and C, where x1 +x,+x3= |1/ p]—2.
We have adjacencies between A and B across 3 hyperplanes, and between B and C across 3 hyperplanes,

with none between A and C.

Thus, our quiver is
) _— 5 _— c
\/ \/ :

We use x; to the path from A to B across the d; hyperplane, and y; the path from C to B across the
d; hyperplane. Our relations thus become
X]kxl = Xikxz = X;X& J’ikyl = y§yz = y;‘y3,
XIXT + Y1V] = X2X; + )25 = X3X3 + 303,
XPyp==Xivie ¥ixj=-yixi, xixj=-yjy; wheni#j,
YIX1 = YaXy = Y3Ny = X[ y1 =X, V2 = X33 =0,

x'xj =y yj=0 wheni#j.

Note that there are only finitely many elements of A(X). In fact, the number of such elements has an
explicit upper bound. A basis of the inclusion 7" C D is a set of coordinates such that the corresponding
coweights form a basis of 0g/tg. For generic parameters, taking the intersection of the corresponding
coordinate subtori defines a bijection of the bases with the vertices of gﬁt’r.

Lemma 3.34 The number of elements of AR (L) is less than or equal to the number of bases for the
inclusion T C D.

Proof Choose a generic cocharacter £ € t(J@ C Oa. Note that a real number ¢ satisfies the equations
xip <c <x;p+ pif and only if it satisfies x; p —e < ¢ < x; p + p — € for € sufficiently small. Thus, we

will have no fewer nonempty regions if we consider the chambers
E.]YI} = {a egz,k QR | pxi—¢€; <da; < pxj +p—€l~}

for some sufficiently small €; > 0 chosen generically. Note that E;If is open. For any Ellf, there is a
maximal point for this cocharacter, that is, a point @ such that for all b # a € Z%, we have £(b —a) < 0.
By standard convex geometry, this is only possible if there are hyperplanes in our arrangement passing
through a defined by coordinates that are a basis. In fact, by the genericity of the elements €;, we can
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assume that the point a is hit by exactly a basis of hyperplanes. This gives a map from A(A)R to the
set of bases and this map is injective, since all but one of the chambers that contain « in its closure will
contain points higher than a. |

Since the number of elements of AR (L) is lower semicontinuous in A, we see immediately that A is
smooth if the size of A(A) is the number of bases.

3.10 Tilting generators for coherent sheaves

We can also interpret these results in terms of coherent sheaves. In particular, we can consider the coherent
sheaf 2, = lim ,szfﬂé / 42%]1%‘ (hl.Jr —a;)N on the formal completion of the fiber ™! (0). Here, as before, we
assume that a; € IFp, so af’ —a; = 0. On this formal subscheme, this is an equivariant splitting bundle for
the Azumaya algebra mfﬂé by [35, Theorem 4.3.4].

If we think of dﬂé |lr 1) 3 2 left module over itself, it decomposes according the eigenvalues of hiJr
acting on the right. By construction, each generalized eigenspace defines a copy of 2, for some weight a.
If we let g;’}‘ be the set of characters of 0p, which agree with A (mod p) on tg,, then these are precisely

p
the simultaneous eigenvalues of the Euler operators hf that occur. Thus, we have

A ~
A5 = D 2

beg;’;

In particular, given an %Hé‘—module A over the formal neighborhood of ™! (6), we have an isomorphism
of coherent sheaves

(3-9) A= P Hom (2p. M).

bEQE:-’Ij“

The elements of %Hé act on 2, on the left as endomorphisms of the underlying coherent sheaf; in particular,
2, naturally decomposes as the sum of the generalized eigenspaces for the Euler operators hl.+.

In fact, each eigenspace for the action of hl.Jr defines a line bundle, so that the sheaf 2, is the sum of
these line bundles. The next few results will provide a description of these line bundles. We begin with
some preliminaries. Recall that 9l is defined as a free quotient of a D—stable subset of T*Af by T.
Given any character of x € D, the associated bundle construction defines a D-line bundle on 9. If we
forget the D—equivariance, then the underlying line bundle depends only on the image X of x in 27,/ tJZ-.

Definition 3.35 Given x € 07, let £(x) be the associated D—equivariant line bundle line bundle on 9.
We sometimes write £(x) for the underlying nonequivariant line bundle.

Recall that the Weyl algebra Wi defines a coherent sheaf over the spectrum of its center, namely
(r *Aﬁé ))”. As a coherent sheaf, it is simply a direct sum of copies of the structure sheaf. Consider a
monomial m(k, 1) :=T]7_, Bl’."' zl.li, viewed as a section of the structure sheaf. We have the following
description of its D-weight x € 0.
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Write ¢; for the generators of 07, so that x = S Si€i. Let 5i+ be the maximal power of zf dividing
m(l, k), and let §;” be the maximal power of Bf dividing m(l, k). Then §; = 8i+ —d; . In the notation of
Section 3.3, we can write this as x = Z?:l 8: (0,1 — k)e;. We conclude the following.

Lemma 3.36 The monomial m(l, k) descends to a section of the line bundle E(Z;;l 8;(0,1 — k)ei)
on MY
K -

The following proposition holds over the formal neighborhood 7! (6).

Proposition 3.37 We have isomorphisms

(3-10) Hom 3 (2p. 2a) = e(;ai(b,a)e,-),
1=
(3-11) 2.~ P E(Z(Si(b,a)e,-).
beg;;-’;‘ i=1

Note that the image of Y 7_, &; (b, a)e; in 05/ ti depends only on the class of b in 27,/ p -, so that the
sum is well defined. The different isomorphism classes of line bundles that appear are in bijection with
the chambers of A(A), but not canonically so, since we must choose a.

Proof The second isomorphism follows from the first by (3-9). To construct the first isomorphism, we
recall that %ﬂé =~ End(2,) = End(2p). Thus #om 7 (24, 2p) is a line bundle. It has a section given
by the element m(b —a) € Aﬁ‘g. By Lemma 3.36, it is the line bundle defined via the associated bundle
construction by the character (}_;_, 8;(b, a)€;) of T'. The proposition follows. m|

We now pass from characteristic p to characteristic zero. The first step is to replace the parameter A € tI’Ep
by a parameter { € tg.

Definition 3.38 Let gger be the periodic hyperplane arrangement in gi’%’; defined by the hyperplanes

di=kforkeZandi =1,...,n.

This is the arrangement obtained from Definition 3.8 by sending p — oo and rescaling by 1/p. We can
define K(C ). A(§) as before. If the element p¢ lies in t7;, then its image A in tfg-p satisfies K(A) = K(@ )
and A(X) = A({). The parameter ¢ is smooth if and only if A is smooth.

7y = P @.

XeA(%)

Let

For another commutative ring R, let .7, Ig be the corresponding bundle on 1 g, the base change to Spec(R).
Every line bundle which appears has a canonical S—equivariant structure (induced from the trivial S—
equivariant structure on O« AL ), and we endow 9Z§ with the induced S—equivariant structure. Note that
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any lift of A(¢) to A(¢) determines a D x S—equivariant structure, although we do not need it here. The
S—weights make End(ﬁz}‘) into a Z>¢ graded algebra. Let x € 07.

mx):=[]z" []w™.

x;>0 x; <0

Consider the monomial

Note the similarity with (2-1), with the key difference that we do not require x € tJZ-. After Hamiltonian
reduction, this defines a section of £(x) with S—weight equal to |x|;. By the same token, it defines an
element of Hom(£(y), £(y’)) whenever y' = y + x.

Proposition 3.39 For all A, we have an isomorphism of graded algebras H% = Endcoh(m)(ﬂz)‘) sending
Cx,y = m(y —x) and s; — z;w;.

Proof We first check that the map is well-defined. The map s; — z;w; is well-defined since the linear
relations satisfied by s; exactly match the relations on z;w; coming from restriction to the zero fiber of the
T—moment map. The map ¢y, — m(y — x) is well-defined if the elements m(y — x) satisfy relations
(3-6a) and (3-6b)—(3-6¢). Relation (3-6a) is satisfied if m(¢;)m(—e€;) = zjw;. This is immediate from the
definition.

The relations (3-6b)—(3-6¢) are clear from the commutativity of multiplication. Thus, we have defined
an algebra map Hé — End(ﬁzt ). This is a map of graded algebras, since both ¢y, and m(y — x) have
degree |y — x|1.

This map is a surjection, since homomorphisms from one line bundle to another are spanned over
Zlz1w1, - .., ZyWy] by m(x). Since Hé is torsion-free over Z, it’s enough to check that it is injective
modulo sufficiently large primes, which follows from Theorems 3.13 and 3.19. a

This allows us to understand more fully the structure of the bundle 92 . Note that the bundle 9Z§ depends
on £, but only through the structure of the set A({).

Proposition 3.40 The bundle ﬁé is a tilting generator on M if and only if { is smooth.

Proof The bundle 9«5 is tilting by Theorem 2.5, so we need only check if it is a generator. In order
to check this over Q, it is enough to check it modulo a large prime p. Fix an affine line Z in gz’g. By
[25, Proposition 4.2], there is an integer N, independent of p, such that the set of A € Zf,, such that ﬁ];‘p

is not a generator has size < N.

If ¢ is smooth, then for all sufficiently large p we can find smooth ¢’ satisfying p¢’ € t7, and such that
A(Z') = A(Q). It follows that moreover ﬂé = 9(5

Since ¢’ is smooth, A" = p{’ is also smooth. The number of A € Z,, such that A(A) = A(L") is asymptotic
to Ap, where A is the volume in ZR 7 of the real points such that A(4/ )R = A(OR. Thus, whenever
p = N/ A, there must be some choice of A such that 96 /P — yé is a tilting generator.
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If ¢ is not smooth, then Hé has fewer simple modules than at a smooth parameter, so ﬂé cannot be a
generator. d

Combining the above results yields the following equivalence of categories. In the following, we view
ﬂé as a coherent sheaf of H(é—modules.

Corollary 3.41 For smooth ¢, the adjoint functors
L
$. nbgybop b
— T~ D (HY " —mod) — D”(Coh(Mg)),
® gz 7: D (HG -mod) — DP(Coh(Mg))

RHom(75.~): D®(Coh(Mq)) — DP(HE -mod),

define equivalences between the derived categories of coherent sheaves over M and finitely generated
right Hé—modules.

The same functors define an equivalence between the derived categories of graded modules and equivariant
sheaves L
¢, nbpybop b
— I5: D7(HY "—gmod) — D”(Cohg,, (Mq)),
X Hé Q ( Q & ) (Cohg,, (Mq))

RHom (73, ): D®(Cohg,, (Mg)) — D (HE ~gmod).

Finally, identical statements hold it we replace H by H, and replace Coh(Mg) by Cohg(Mg), and
Cohg,, (Mg) by Cohg,,xc(Mq).

Since Héj()p is defined as a path algebra modulo relations, its graded simple modules are just the
one-dimensional modules L’ := Hom (P yea@) Ly L x ); we denote the corresponding complexes of
coherent sheaves by
op L ¢
gx = Lx ®H§‘ g .
Q

The induced 7—structure on D? (Cohg,,, (M) is what’s often called an “exotic /—structure”.

We also have a Koszul dual description of coherent sheaves as dg—modules over the quadratic dual Hé o

Since Hé is an infinite-dimensional algebra, we have to be a bit careful about finiteness properties here.
We let Coh(M @), be the category of coherent sheaves set-theoretically supported on the fiber 7! (0), and
Héj()p—modo denote the corresponding category of H&p—modules; one characterization of these modules
is that for some integer N, they are killed by all algebra elements of degree > N.

Lemma 3.42 A complex of coherent sheaves lies in Db (Cohg,,, (Mq)o) if and only if it is in the
triangulated envelope of the complexes % .

Proof The complex M is in the subcategory D? (Cohg,,, (Mq),) if and only if it is sent to a complex of
modules over Hé’()p killed up to homotopy by a sufficiently high power of the two-sided ideal generated
by the elements of positive degree in H°(M, Omyg)- This ideal contains all elements of sufficiently
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large degree (since the quotient by it is finite-dimensional and graded), so each cohomology module of
the image is a finite extension of the graded simples. Thus the complex itself is an iterated extension of
shifts of these modules. m

Let H, é 0 —perf be the category of perfect dg—modules over H, é o As usual, we abuse notation and let

Db (Coh(Mg)) to denote the usual dg—enhancement of this category, and similarly with Db (Cohg,,,(Mq)).
Combining the equivalence of Corollary 3.41 with Koszul duality:

Proposition 3.43 (1) We have an equivalence of dg—categories H é’Q—perf ~ pb (Coh(Mq)o) induced
by Dyen(e) EXU(ZLy, —).
(2) We have an equivalence of dg—categories Dgeﬁ(Hé’Q—gmod) ~ pb (Cohg,,(Mq)o) induced by
D, ence) Ext(Zy, ).

Proof Since elements of D? (Coh(Mq)o) are finite extensions of .Z), for different y, they are sent by
P yeA() Ext(.Z), —) to perfect complexes and vice versa. This proves item (1).

Item (2) is just the graded version of this statement, which corresponds to Corollary 3.41 via the usual
Koszul duality; see [4, Theorem 2.12.1]. O

This shows that smooth parameters also have an interpretation in terms of dﬂé; this is effectively a
restatement of Proposition 3.40, so we will not include a proof.

Proposition 3.44 The functor RT": Db (;z{]é‘—modo) — Db (A])I‘g—modo) is an equivalence of categories
if and only if the parameter A is smooth.

4 Mirror symmetry via microlocal sheaves

In the previous sections, the conical G,,—action on hypertoric varieties played a key role in our study
of coherent sheaves. This is what allowed us to construct a tilting bundle based on a quantization in
characteristic p. This conic action also plays a crucial role in the study of enumerative invariants of these
varieties [12; 28; 30]. The quantum connection and quantum cohomology which appear in those papers
lose almost all of their interesting features if one does not work equivariantly with respect to the conic
action. We are thus interested in a version of mirror symmetry which remembers this conic action.

We expect the relevant A—model category to be a subcategory of a Fukaya category of the Dolbeault
hypertoric manifold ®, built from Lagrangian branes endowed with an extra structure corresponding to
the conical G,,—action on 9. However, rather than working directly with the Fukaya category, we will
replace it below by a category of DQ-modules on ©. The calculations presented there should also be
valid in the Fukaya category. The reader is referred to the sequel [21] to this paper for more discussion of
this point.
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After defining the relevant spaces and categories of DQ-modules, we state our main equivalence in
Theorems 5.9 and 4.36.

There are a few obvious related questions. What corresponds to the category of all (not necessarily
equivariant) coherent sheaves on 9t? What corresponds to the full category of DQ-modules of ©7 We
plan to address these questions in a future publication.

4.1 Dolbeault hypertoric manifolds

In this section, we introduce Dolbeault hypertoric manifolds, whose definition we learned from unpublished
work of Hausel and Proudfoot.

Dolbeault hypertoric manifolds are complex manifolds attached to the data of a toric hyperplane arrange-
ment (ie a collection of codimension-one affine subtori), in much the same way that an additive hypertoric
variety is attached to an affine hyperplane arrangement, and a toric variety is attached to a polytope. They
carry a complex symplectic form, and a proper fibration whose generic fibers are complex lagrangian

abelian varieties.

Our construction of Dolbeault manifolds parallels the construction of toric varieties as Hamiltonian
reductions of powers of a basic building block.

For toric varieties, this building block is C with the usual Hamiltonian action of Uj. Its polytope is a
ray in R. Other toric varieties are constructed by taking the Hamiltonian reduction of C” by a subtorus
of U'. Additive hypertoric varieties are similarly constructed from the basic building block 7*C with its
hyperhamiltonian action of U;. The affine hyperplane arrangement associated to this building block is
a single point in R. For Dolbeault manifolds, our basic building block will be the Tate curve 3 with a
(quasi)-hyperhamiltonian action of Uj. Its toric hyperplane arrangement is a single point in Uy .

We give a construction of 3 suited to our purposes below, culminating in Definition 4.2.

Let C* = Spec C[g,¢~!], and let D* be the punctured disk defined by 0 < g < 1. Let 3* be the family
of elliptic curves over D* defined by (C* x D*)/Z, where 1 € Z acts by multiplication by ¢ x 1.

We will define an extension of 3* to a family 3 over D with central fiber equal to a nodal elliptic curve.

Let 20, := Spec C|[x, y] for n € Z. Consider the birational map f: 20, — 20,41 defined by f*(x) =1/y,
f*(y) = xp?. This defines an automorphism of the subspace 2 \ {xy = 0}, and identifies the y—axis
in 20, with the x—axis in 20, | birationally, so they glue to a P!. If we let ¢ := x, then we can rewrite

1

this automorphism as (x, y) — (¢~ " x, ¢y). Note that this map preserves the product xy and commutes

with the C*-action on 20, defined by 7-x = tx,7-y =t~ y; we let T denote this copy of C*.

Definition 4.1 Let 20 be the quotient of the union | |, .7 20, by the equivalence relations that identify
the points x € 20, and f(x) € W, 4.

The variety 20 is smooth of infinite type, with a map ¢ := xy: 20 — C and an action of C* preserving
the fibers of g. The map 2 \ {xy = 0} — 20\ ¢~ '(0) is easily checked to be an isomorphism.
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2 carries a Z—action defined by sending 20, to 20,4 via the identity map. The action of n € Z is the
unique extension of the automorphism of 2y \ {xy = 0} given by (x, y) — (¢~ "x,¢"y). Thus, n fixes
a point (x, y) if and only if ¢ is an n" root of unity. In particular, the action of Z on

(4-1) 3:=¢"'(D)

is free. Combining this with the paragraph above, we see that ¢~ 1 (D*) = {(x, y) € Wy | xy € D*};
since we can choose x € C* and ¢ € D*, with y = ¢/x uniquely determined, we have an isomorphism
g~ 1(D*) = C* x D*. Transported by this isomorphism, the C*—action we have defined acts by scalar
multiplication on the first factor, and trivially on the second.

Thus, we obtain the following commutative diagram of spaces:
J ~
C*xD* =g !(D*) ——— 3
(4-2) ql J .
D* — D
The fiber 30 :=¢~1(0) is an infinite chain of CIP s with each link connected to the next by a single node.
The action of C* on 30 scales each component, matching the usual action of scalars on CPP!, thought of
as the Riemann sphere. The action of the generator of Z translates the chain by one link.
Definition 4.2 Let 3 := 5 /7.
The manifold 3 will be our basic building block. We now study various group actions and moment maps
for 3, in order to eventually define a symplectic reduction of 3".

The action of C* on 3 descends to an action on 3; note that on any nonzero fiber of the map to D, it factors
through a free action of the quotient group C*/¢%, which is transitive unless ¢ = 0. Thus the generic
fiber of ¢ is an elliptic curve. The fiber 3¢ := ¢~!(0) is a nodal elliptic curve. We write n for the node.

The action of U; C C* on 3 is Hamiltonian with respect to a hyperkihler symplectic form and metric
described in [24, Proposition 3.2], where one also finds a description of the Z—equivariant moment map.
This moment map descends to

w:3—>R/Z =Uj.
Hence p is the quasihamiltonian moment map for the action of U; on 3. We may arrange that
u(n) =1 € Ujy. The nodal fiber 3 is the image of a U;—equivariant immersion ¢: CP! — 3, which is
an embedding except that 0 and oo are both sent to n. We have a commutative diagram

CIP)I —L> 3
(4-3) MCPIJ JM where pepi(2) =

[0,1]] —— R/Z

|z|?

-CP! =0, 1].
Tt 22 [0, 1]
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The action of U; and map p x ¢ form a kind of “multiplicative hyperkéhler hamiltonian action” of Uyj.
In particular, (i x ¢)~'(a, b) is a single U; orbit, which is free unless @ = 1 and b = 0, in which case it
is just the node n. It’s worth comparing this with the hyperkihler moment map on 7*C for the action
of Uj: this is given by the map

T*C >R xC, (z,w)m (z|>—|w|? zw).
The fibers over nonzero elements of R x C are circles, and the fiber over zero is the origin. In a
neighborhood of n, 1 x ¢ is analytically isomorphic to this map.

Without seeking to formalize the notion, we will simply mimic the notion of hyperkéhler reduction in this
setting. Recall that a hypertoric variety 90 is defined using an embedding of tori (C*)K = T'— D = (C*)".
Let Tg and DR be the corresponding compact tori in these groups, and 7VR = tg /t5 the Langlands
dual torus; the usual inner product induces an isomorphism Dr = Dﬂ\é, which we will leave implicit.
Thus, we have an action of 7 on 3" and a Tr—invariant map

(4-4) P: 3" > Ty xt*.
Given ¢ € Ty, let ¢’ = { x 0 € T x t*. For generic ¢ the action of T on ®~1(¢’) is locally free.

For the rest of this paper, we make the additional assumption that the torus embedding 7" — D is
unimodular, meaning that if ey are the coordinate basis of 97, then any collection of e; whose image
spans 0@/ tq also spans 0z /tz. As with toric varieties, this guarantees that for generic { the action of 7’
on ®~1(¢) is actually free. We expect that this assumption can be lifted without significant difficulties,
but it will help alleviate notation in what follows.

The following definition is due to Hausel and Proudfoot.
Definition 4.3 Let © := &~ 1(¢')/ Tk.
Proposition 4.4 D is a 2d = (2n—2k)—dimensional holomorphic symplectic manifold.

We will also need to consider the universal cover 5‘5; this can also be constructed as a reduction. We have
a hyperkihler moment map ®: 3" — ty @ t*. Let {’ be a preimage of ¢’

Definition 4.5 Let ® := & 1(¢')/ Tk.
® carries a natural action of g7, the subgroup of Z" which preserves the level o 1({ ). The quotient by
this map is ®, and the quotient map v: ® — D is a universal cover. Note that D is a (nonmultiplicative)

hyperkihler reduction, and the action of g7, preserves the resulting complex symplectic form. This gives
one way of defining the complex symplectic form on 2.

The T action on 3" and the holomorphic part of the hyperkdhler moment map ®¢ both extend to the
infinite-type algebraic variety 20".
Definition 4.6 Let D¢ be the holomorphic symplectic reduction oy 1(0) // E’T where we take the GIT

quotient by 7" with linearization determined by ¢’. ¢

Geometry & Topology, Volume 28 (2024)



Homological mirror symmetry for hypertoric varieties, 1 1039

As opposed to D, the space Dale ig naturally an infinite-type but finite-dimensional algebraic variety. Its
construction and properties are described in detail in [23]. It contains the complex manifold D as an
(analytic) open subset.

Letgo:®© — tC = g¢ be the map induced by ¢": 3" — C" = d¢.. Its fibers are complex Lagrangians.
The action of C* on 3 defines an action of G = D/ T on D, which preserves the complex symplectic
form and the fibers of the map ¢, and acts transitively on fibers over values (¢1, ..., qn) with g; # 0
for all i. Such fibers are d—dimensional abelian varieties.

Definition 4.7 We define the core of © to be € := q51 (0), and denote by ¢ its preimage in D.

We thus have inclusions & Closed, D P, Dz The lattice g7, acts compatibly on all three spaces, but
the quotient only makes sense for the first two, where it gives the inclusion € — 2.

Whereas ® is merely a complex manifold, we will see that € is naturally an algebraic variety. It is a free
quotient of D, whose components, as we shall see, are smooth complex Lagrangians. We can give an
explicit description of € as follows, in the spirit of the combinatorial description of toric varieties in terms
of their moment polytopes. In our setting, polytopes are replaced by toroidal arrangements.

We have the map Dy — Ty let G]E’c be the preimage of {. It is a torsor over G . The preimage of Gﬁg’;
under the quotient 0 — Dy, is given by g;é’é = E’ + R

Definition 4.8 Let 3ﬁper C gRZ be the periodic hyperplane arrangement defined by the preimage of 332‘“

in ¢ T+ gg- Let AR@ ) be the set of chambers of 35‘; We write AR C gR’g for the (closed) chamber
indexed by x € AR .

As in Section 3.8, let X be the toric variety obtained from the polytope A§ by the Delzant construction.

Proposition 4.9 (1) The irreducible components of ¢ are smooth toric varieties Xy indexed by
x € AR(?).

(2) The intersection Xy N X, is the toric subvariety of either component indexed by A§ N Aﬂﬁ.
(3) The image under the Gg—moment map of X, is precisely the polytope A§.

(4) All components meet with normal crossings.

Proof We begin by noting that ¢ is the image in D of ¢! ¢Hn 3’5 The irreducible components of 5’3
are copies of (CIP!)” indexed by x € Z”". The moment map j": Sg — R”, restricted to the component
((CIP’1 , has image the translation [0, 1]} of the unit cube by x. We write Dy : (CPHYr — ty for the
restriction the 7 moment map. It is given by be the composition of M%Pl :(CPY" — [0, 1] with the
projection p: [0, 1]f C R — tg.

The preimage p~'(¢) C [0, 1]% is a polytope, given by gﬁ%’t N[0, 1]%. It is nonempty precisely when
x € AR (¢), in which case it is the chamber A%.
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The irreducible components of ¢ are thus the quotients EIS;I &)/ T for x € KR@ ). The claims (1), (2)
and (3) now follow from standard toric geometry.

Claim (4) follows from the corresponding property for 3’3 In fact, the singular points of € are analytically
locally a product of m nodes, and a (d —m)—dimensional affine space. O

Definition 4.10 Let 332‘“ C G]E’C be the toric hyperplane arrangement defined by the coordinate subtori
of Dg. Let AR (&) be the set of chambers of 352‘”. Given x € AR(¢), we write A§ - G]E’Z for the

corresponding chamber.

The toric arrangement 352‘“ is simply the quotient of the periodic arrangement iﬁger by the action of the
lattice g7,. The restriction of the quotient map to a fixed chamber Ay C gﬁ%’; is one-to-one on the interior,
but may identify certain smaller strata. Correspondingly, the composition X, — ® — © is in general

only an immersion. The following is easily deduced from Proposition 4.9.

Proposition 4.11 (1) The irreducible components of € are immersed toric varieties Xy indexed by
x € AR(¢). Any Iift of x € AR(¢) to AR(¢) determines a birational map Xy — Xx with finite
fibers.

(2) The intersection X, N iy is the (immersed) toric subvariety of either component indexed by
AR N AR
(3) The image under the Gr—moment map of Xy is precisely the toric chamber A%.

(4) All components meet with normal crossings.

Example 4.12 We continue with Example 3.12. In this case, for generic E’ , we arrive at a picture like in
(3-4). The three chambers shown in total there correspond to the three core components of C: two of
these are isomorphic to CPP2, and one to CP! x CP! blown up at (0, 0) and (co, 00). We join these by
joining the lines at oo in the first CP? to the exceptional locus of the blowup at (0, 0), and its coordinate
lines to the unique lifts of CP! x {oo} and {oo} x CPP! to lines in the blowup (note that in the blowup,
these lines don’t intersect). With the second CP? we do the same gluing with 0 and oo reversed.

Note that in €, the two CP2’s are embedded, but the third component is only immersed: it intersects

itself transversely at each torus fixed point.

4.2 Weinstein neighborhoods and scaling actions

Let x be a chamber of the periodic arrangement %ger, and let X, be a component of the periodic core.

We will construct an open neighborhood 5§clg ~ T*X, of Xy in D2. Its intersection
Dy :=DFEND
is an open neighborhood of Xy in D, which maps by an immersion to an open neighborhood of X in D.

Geometry & Topology, Volume 28 (2024)



Homological mirror symmetry for hypertoric varieties, 1 1041

Consider the union 20y U20; C 20. This is a Zariski open subset of 20 isomorphic to T*CP!. Let 30
be its intersection with 3. This is an open submanifold, isomorphic to a tubular neighborhood of CP! in
its cotangent bundle.

These identifications map the function ¢ to the function induced by the vector field z d/dz for z the usual
coordinate on CPP!. The induced map U — 3 is an immersion.

Applying the action of Z gives neighborhoods 20 of each component of ¢~!(0) C 2J. Repeating the
same construction for the product 20", we obtain for each x € Z" an open neighborhood Wy of (CP! )
in 20", isomorphic to 7*(CP!)”. This neighborhood is preserved by the (complex hamiltonian) action
of Tr. Consider its complex symplectic reduction

D% =W /5 T.

It is an open neighborhood of Xy in Dale, naturally symplectomorphic to 7*Xy. Intersecting with
D c D, we obtain an open neighborhood D of the zero section in T* Xy mapping by a symplectic

immersion
(4-5) lx: 5x -9

to an open subset of © extending the immersion X, — © and a corresponding lift 7y : Dy — D, which
is a symplectomorphism onto an open subset of ®. The set of such lifts is a torsor over ay.

4.3 Scaling actions

The scaling C*—action on 7*Xy extends to an action of C* on D42, which does not preserve D. We
first describe this action in the basic case of 20. Fix p € Z and let S, be the copy of C* which acts
on 20y, giving x degree 1 —k + p and y degree kK — p. One can easily check that this action descends to
an action on 20 and gives the Poisson bracket degree one. On 20, U2, 41 = T*CP!, it acts by the
scaling action on the fibers. Note that S, does not preserve the open subset 3 cw.

The action of S, x T does not commute with the translation action of Z. Instead, the Z—action intertwines
the actions of S, x T for different p. In particular, all such actions are given by precomposing an
isomorphism S, x T — S x T with the action of the latter torus on 20.

We can upgrade all these structures to the general case: for each x, we have a copy Sy of C* which
acts on D2 such that on 55;1;; C T*Xy it matches the scaling action. As before, these actions do not
commute with the g7 —action. Instead, they are intertwined by this action. In particular, all such actions
factor through an isomorphism Sy X G — S x G with the action of the latter torus on D42, We make

the following (purely notational) definition, to emphasize this independence of choices.

Definition 4.13 Let SG := So x G, with its action on D,
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4.4 Other flavors of multiplicative hypertoric manifold

In this paper, starting from the data of an embedding of tori 7" — G}, we have constructed both an additive
hypertoric variety 2t and a Dolbeault hypertoric manifold ©. We view the latter as a multiplicative
analogue of 1. One can attach to the same data another, better known multiplicative analogue 8, which
however plays only a motivational role in this paper. For a definition, see [22]. ‘B is often simply
known as a multiplicative hypertoric variety. For generic parameters, it is a smooth affine variety, of
the same dimension as 991 and ®©. In fact, work of Zsuzsanna Dancso, Vivek Shende and the first
author [16] constructs a smooth open embedding © — B, such that B retracts smoothly onto the image.
The embedding does not, however, respect complex structures; for instance, the complex Lagrangians
considered here map to real submanifolds of the multiplicative hypertoric variety. Instead, B and ® play
roles analogous to the Betti and Dolbeault moduli of a curve.

In the sequel [21] to this paper, joint with Ben Gammage, we show that the core € C ® becomes the
Liouville skeleton of ®8, thought of as a Liouville manifold with respect to the affine Liouville structure.
Microlocal sheaves on this skeleton compute the wrapped Fukaya category of ‘B. In the next section,
we will introduce a category of deformation quantization modules on , which roughly corresponds to
microlocal sheaves on B with an extra G, equivariant structure. This helps place our main results in the
usual context of homological mirror symmetry. The relationship between the two papers is explained in
more detail in [21].

4.5 Deformation quantization of ©

In the next few sections, we define a deformation quantization of ® over C (% 1/ 2)), and compare modules
over this quantization with the category A%—modg from the first half of the paper. We’ll also discuss how
the structure of G,,—equivariance of coherent sheaves can be recaptured by considering a category pm of
deformation quantization modules equipped with the additional structure of a “microlocal mixed Hodge
module”.

Consider the sheaf of analytic functions Ogy, on 20,. We’ll endow the sheaf Ogﬂn := Ogy, ((h'/?)) with
the Moyal product multiplication

o0
] at (d"fd'g J"gd'f
Srei=/g +nX_:1 2np! (dx” dyn  dx" dyn )

If f or g is a polynomial this formula only has finitely many terms, but for a more general meromorphic
function, we will have infinitely many. Following the conventions of [10], we let Ogﬂn (0) = Ogy, %72,
which is clearly a subalgebra. We’ll clarify later why we have adjoined a square root of #.

Sending x > 1/y and y > x y? induces an algebra automorphism of this sheaf on the subset 20, \ {xy = 0},

since . "
and xyz*; =xy—3

1 5 h
y*xy —xy—i—2
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This shows that we have an induced star product on the sheaf Oh  and thus on O%. We now use
noncommutative Hamiltonian reduction to define a star product on O%. This depends on a choice of
noncommutative moment map k: t — Og,,. We fix ¢ € 0*. Given (aq,...,a) €0, define

kp(ay, ..., an) = Zaix,'y,- + A (a).

Our quantum moment map is the restriction of k3 to t C 9. Note that this agrees mod % with the pullback
of functions from t* under ®.

Let Cy = Ogn / Ogn -k, () be the quotient of O%, by the left ideal generated by these functions. This

is supported on the subset ®~! (Tg x {0}). We have an endomorphism sheaf €nd(Cy) of this sheaf of
modules over Ogn.

Definition 4.14 Let Oz be the sheaf of algebras on © defined by restricting €nd(Cy) to ®~1(¢’) and
pushing the result forward to .

One can easily check, as in [26], that OZ defines a deformation quantization of ®, that is, this sheaf is
free and complete over C[[#]], we have an isomorphism of algebra sheaves OZ’)(O) /h OZ’)(O) ~ Oy, and
given two meromorphic sections f, g, we have

frg—gx*f=n{f g} (modh).
4.6 G -equivariant modules

By a OZ—module, we will always mean a sheaf M of OZ—modules which admits a good lattice M(0) C M.

By construction, the map k3 : 0 — Ogn descends to a map g — O%  which quantizes the moment map for
the action of G on ®.

Definition 4.15 We call a OZ—module pre-weakly G—equivariant if the action of g via left multiplication
by A7 'k on the sections on any G—invariant open set is locally finite, ie it is spanned by its generalized
weight spaces for this torus.

A pre-weak equivariant structure can be upgraded to a weak equivariant structure as follows: we can
assume that M is indecomposable, so all weights appearing are in a single coset of the character lattice
of G. We can take the semisimple part of the action of each element of g, and globally shift by a character
of the Lie algebra to make all weights appearing integral. The resulting action integrates to a weak
G—equivariant structure (but we do not want to fix a specific one); we call such an action compatible with
the OZ—module structure. Note that pre-weakly G—equivariant modules are a Serre subcategory.

Lemma 4.16 Any pre-weakly G —equivariant module M is supported on g5 L(0).

Proof Given any nonzero X € g, consider the action of 7'k := A~ x5 (X) on M(U) for U a G-
equivariant open subset. By the assumption of local finiteness, for each m € M(U), there is a monic
polynomial p(u) = u + pg_ju®="' 4 --- + po € Clu] such that p(h~'k)m = 0.
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fUunN q51 (0) = @, then k is invertible in OZ (0), and so we have
m=h(=pg1k™" == popa_1h?"' k= m.

Thus, for any choice of good lattice M(0) C M, we have M(0)(U) C AM(0)(U). Nakayama’s lemma
then implies that M(0)(U) = 0, so M(U) = 0. O

Unfortunately, the action of SG on D4 does not preserve . We can nevertheless speak of SG-
equivariance on D and D, as follows.

Let M be a pre-weakly G—equivariant Og—module. Let v*M be the pullback of this module to D. We
write (v*M)¥2 for the pushforward of v*M along the inclusion ® — 2. By Lemma 4.16, v*M is
supported on € C D, and this subset remains closed in D¢, Thus the support is not enlarged.

Fix xg € A.

Definition 4.17 A pre-weakly SG—equivariant structure on a pre-weakly G—equivariant OZ—module M
is an action of the Lie algebra Lie(Sx,) commuting with g which integrates to an equivariant structure
for Sy, on (V*M)?e.

We write OZ—modSG for the category of such modules. Since a homomorphism between pre-weakly
S G—equivariant modules is Lie(Sy,)—equivariant, multiplication by 7 is not a morphism in this category,
so this category is C-linear, not C ((#))—linear.

As with pre-weakly G—equivariant modules, after making some auxiliary choices, we can endow a
pre-weakly SG—equivariant-module with a “compatible” action of the torus SG, which integrates the
semisimple part of (a shift of) the infinitesimal action.

Lemma 4.18 Let M € OZ—modSG. Fix a compatible action of SG. The action of C* on v*M?¢
induced by the composition C* = S, — SG does not depend on the G—equivariant structure, up to
isomorphism.

Proof Again, we can reduce to the case where M is indecomposable. By construction, any two compatible
G—equivariant structures on M differ by tensor product with a character of the group G, so the induced
Sy structures differ by tensor product with a character of S), which we can think of as the integer
weight w. Since % has weight 1 under Sy, multiplication by #" intertwines these two actions, and gives
an isomorphism between the two S, —equivariant structures. O

4.7 The deformation quantization near a component of €

Given ¢ € ta, we can define a fractional line bundle {4 on any quotient by a free T—action. The
component X, was defined by a free Tr—action; by standard toric geometry, it also carries a canonical
presentation as a free 7—quotient. Applying this construction to X thus yields a bundle £4 .. If ¢ € t7,,
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the set of honest characters, then this is an honest line bundle; otherwise, it gives a line bundle over
a gerbe, but we can still define an associated Picard groupoid, and thus a sheaf of twisted differential
operators (TDO) on X, . Let 2 be the canonical line bundle on X, and 2 ,1/ 2 the half-density fractional
line bundle. It is a classical fact that Q = /_g ., Where ¢y is the sum of all T'—characters of C" induced
by the map 7" — D.

We let Dy  denote the TDO associated to the fractional line bundle £4 , ® 2 i/ 2, and let Ry  be its
microlocalization on 7* X . That is, R » is a sheaf in the classical topology on 7* Xy whose sections on
T*U for U C Xy are the Rees algebra for the order filtration on Dy . (U); for an open subset V C T*U
(where we can assume without loss of generality that U is affine), we further invert any element of the
Rees algebra whose image under the map Ry  (U)/hRy  (U) = O7+y(T*U) is invertible on V. The
construction of this algebra is discussed in more detail in [10, Section 4.1]. We’ll be more interested in
its localization:

Definition 4.19 Wep.x i= Ry x[h71/2].

If we equip a module i over the TDO Dy , with a good filtration, which for technical reasons we’ll
index with %Z, its Rees module JL(0) generated by A% M<y, for k € %Z is a coherent module over the
Rees algebra; we can use this as a definition of good filtration. That is, it is a coherent sheaf of Ry ,—
modules, equipped with a C*—equivariant structure for the squared scaling C*—action (or equivalently,
a grading of its sections on T*U). Inverting %, we obtain a Wy ,—module M = M(0)[A~ /2] which is
independent of the choice of good filtration, which is good in the sense of [10, Section 4], that is, it
admits a coherent, C*—equivariant Ry —lattice. By [10, Proposition 4.5], this is an equivalence between
coherent Dy ,—modules and good Wy —modules.

Theorem 4.20 We have an isomorphism of algebra sheaves (§ OZ =Wy x

5, -

Proof First, we check that this holds in the base case, ie when © = 3. It is convenient to check this on
the universal cover 3. By the Z—symmetry of the latter, it is enough to check for a single component
of the core. Hence, consider the copy of CPP! in the union of 25, U 20;. Using superscripts to indicate
which 20, we work on, we have birational coordinates y(o) =1/ xM and x©@ = y(l)(x(l))z. We thus

have an isomorphism of 20y U2, to T*CP! with coordinate z and dual coordinate £ sending

o, 1
z

0)

Wiz yWse xO 22y

We can quantize this to a map from Ogn to Ry by the corresponding formulas

1) W 4 0 2d 0,1
xWVisz, oy |—>hdz, xW s hz I v |—>Z.

This induces an isomorphism of sheaves, which in turn restricts to an isomorphism ¢} (9% — Wy x130-
Under this isomorphism,

_ M, d _h
g=x'"y r—>thZ X
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To proceed to the general case, we consider 3" and its quantized T—moment map k. Fix as above an
open subset of isomorphic to (7*P!)”. Applying the above morphism to the image of k3, we obtain
d h aj d d
kp(ay,...,an) — Zaiz,-d—Zi ) +hp(a) = Z ?(Zid_z,- + d_Z,'Zi) + hp(a).
1

1
The result then follows from the compatibility of twisted microlocal differential operators with sym-
plectic reduction as in [10, Proposition 3.16]. We can identify the twist of a TDO from its period by
[10, Proposition 4.4]. O

Thus, given a ég—module M, we can pull it back to an W |5x —module M|5x on Dy C T*Xy.

If we additionally choose a Sy —equivariant structure which makes Ml@x into a good module, then the
equivalence of [10, Proposition 4.5] will give a corresponding module over the TDO Dy ,, with a choice
of good filtration.

Definition 4.21 Given M € OZ—modSG, let ox (M) € Dy —mod be the module defined as above for
some choice of Sy—equivariant structure.

The resulting D-module does not depend on the choice of compatible SG—equivariant structure, by
Lemma 4.18. It does carry a good filtration which depends on this choice, but only up to a shift on each
indecomposable summand of oy (M).

The modules o (M) for different x are compatible in the following sense. As discussed previously, the
intersection Xy ND}E v is precisely the conormal bundle Ny, y = Ny (%x NXy)to Xy NX, in T*X,,.
Thus the intersection D xgy = ’Dalg N ’Di‘,lg can be identified with 7* (N x,y) or swapping the roles of x, y
with T*(Ny x).

Since the vector bundles N;y (Xx NXy) and N;x (Xx NX}y) are dual, so Fourier transform &,  gives
an equivalence between the categories of pre-weakly G—equivariant D—-modules on these spaces, and
between constructible sheaves with R—coefficients, which are compatible with respect to the solution
functor. By construction, we thus have

(4-6) %y,xax(M)le,y gay(M)lNy,x-
4.8 Preliminaries on the Ext-algebra of the simples

Assume that ¢ is chosen so that £y ® Q172 is an honest line bundle for all x. From now on, we use the
abbreviations Wy := Wy y, Dy := Dy  and £y := {4 , since the dependence on ¢ will not play any
further role in this paper.

Remark 4.22 Recall that 2 )1{/ 2 equals £_g, /2 x Where ¢ is the sum of all T'—characters induced by the
embedding 7' — D. Thus our assumption will be satisfied whenever ¢ (a) € Z + % > aj forall a € tz.
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For example, we can let ¢ be the restriction of the element (% e, %) € 0*. Nothing we do will depend
on this choice; in fact, the categories of Og—modules for ¢ in a fixed coset of t; are all equivalent via
tensor product with quantizations of line bundles on ® (as in [10, Section 5.1]), so our calculations will
be independent of this choice.

In this case, the sheaf Wy naturally acts on £/, :={y ® Q ch/ 2((h)) as a sheaf on X, pushed forward into
D ; under the equivalence of [10, Proposition 4.5] mentioned above, this corresponds to the twisted
D-module ¢y ® Q ch/ 2 of course, this sheaf is equivariant for the action of Sy, and pre-weakly G-

equivariant.

Via the maps
x: Dy =D and T : Dy — 9,

we can define modules over OZ and 62
Definition 4.23 Let £y = 1xL. and £y =T L/,

Using Sy—equivariance, and the pre-weak G—equivariant of this module, we obtain a twisted D—module
0y Ly . Recall that we have a universal cover map v: D — D.

Proposition 4.24 We have isomorphisms vely & Ly and V¥ Ly = D, cql L x+z-

The first category we will consider on the A side of our correspondence is DQ, the dg—subcategory of
OZ—modSG generated by L for all x. As observed before, since weakly G—equivariant modules form a
Serre subcategory, any finite-length object in this category is pre-weakly G—equivariant, and so we can
define the D—modules o, (M) for any module M in this category.

This has a natural z—structure, whose heart is an abelian category dq. We similarly let DQ be the dg—
subcategory generated by Ly, and Ei?] the heart of the natural t—structure. This definition might seem
slightly ad hoc, but we will later see that it is motivated by our notion of microlocal mixed Hodge modules.

Since the Ext sheaf between Ly and £ y is supported on the intersection between Xy and Xy, we have
Extgg(Ly, Lx) = Ethx‘ﬁximodS(tx Ly, L).
In fact, if we replace z y by an injective resolution, we see that this induces a homotopy equivalence

between the corresponding Ext complexes. Since ¥/ is supported on the zero section, Ext to it is
unchanged by passing to an open subset containing this support and

(4-7) Extgg(Ly. Lx) = Extp(e,)(0x Ly, b ® 217,

where the latter Ext is computed in the category of D—modules on the toric variety Xx. In the toric
variety Xy, the preimage of the intersection with the image of X, is a toric subvariety corresponding to

the intersection of the corresponding chambers in %Eer.
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Lemma 4.25 The microlocalization axz y is the line bundle £, ® Q;,/ 2 pulled back to Xy N X, and
pushed forward to X as a Dy —module.

Proof Consider the intersection of X, with 5?}’. This is a closed Sy—invariant Lagrangian closed

subset, so it is the conormal to its intersection with the zero section Xy N X,,. The D-module ox £ has

singular support on this subvariety, and thus must be a local system on Xy N X, which is necessarily
1/2

ly ® Q2 y/ : ]

Since Xx N Xy is a smooth toric subvariety, the sheaf Ext between o z yand £y ® )1{/ 2isC xenx, [—K],

where k is the codimension of Xy N X, in Xx. This shows that we have an isomorphism

(4-8) Ext’DLQ(Zy,Zx) ~ H™*(x, N %,:C).

We are interested in the class d, x in the left-hand space corresponding to the identity in H* (X, NXy; C).
Unfortunately, this is only well-defined up to scalar. We will only need the case where |[x — y|; = 1. In
this case, we can define d,, , (without scalar ambiguity) as follows.

Consider the inclusions X \ (X, NXy) 7, Xx Lx y NXyx and the corresponding sequence of D-modules

(4-9) 0= Ox, = JjxOx\(x,nxx) = JxOx\(x,nxx)/ Ox = 0.
Any identification of the right-hand D-module with /0%, nx, defines a class
dy x € Ext'(0x,.010%,0x,) = Extho(Ly, Lx).

Such an identification is obtained by picking the germ of a function g on Xy in the formal neighborhood
of X, N Xy that vanishes on this divisor with order 1. Given such a function, the map [ — ]7 /g,
where ]7 is an extension of a meromorphic function on X, N Xy to the formal neighborhood, defines an
isomorphism of D-modules iy0x, nx, —> JxOx\(xyNxx)/ O%x-

We can arrange our choice of chart in 3" 5o that Xy N Xy is defined by the vanishing of one of the
coordinate functions; note that in this case, X N Xy is defined inside X, by the vanishing of the
symplectically dual coordinate function (for instance, if the first is defined by the vanishing of x;, then
the latter will be defined by y;). We choose this as the function to define dy ).

Definition 4.26 For any x, y such that |[x —y|; =1,letdy € Ex%é(z v L) be the class defined by
the above prescription.

4.9 Mirror symmetry

We are almost ready to compare the first and second halves of this paper. First, we need to match
the parameters entering into our constructions. Recall that ® depends on a choice of generic stability
parameter ¢ € T, Likewise, the hypertoric enveloping algebra in characteristic p depends on a central
character A € t;p. The algebra H*! which describes the Ext groups of its simple modules (Definition 3.23)
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thereby also depends on A. In order to match ¢ and A, we identify tfgp with t7, / pt7, and thereby embed it
in Ty = tg /t5 via A+ (1/p)A. From now on we suppose that A is smooth, and that ¢ is its image in 75 .

It follows that %ger is the real form of giei and their sets of chambers are naturally in bijection. Since
the chambers of gier index the simples of A])I‘g—modo and the chambers of %ger index the simples of DQ,
we obtain a bijection of simple objects.

We now show that the Ext—algebras of these simples share an integral form.

Theorem 4.27 We have isomorphisms of algebras

ﬁé,(c = @ EXtﬁé(Zx’zy) and Hé,(C = @ EXtDQ(Lx,Ly),
x, €A @) x,yEAQ)
sending dyx y — dx , when y € a;(x).

Proof We need to check that the rule dx y +— dy ) defines a homomorphism, ie that the relations
(3-8a)—(3-8d) hold in EBx,yeT\(;) Extgg(Lx, Ly).

(1) The relation (3-8a) follows from the fact that when |x — y|; = 1, the element dy ydy x is the
class in H? (ﬁ{x ; Q) dual to the divisor Xy N X, while the class t; is defined by the Chern class of the
corresponding line bundle, for which a natural section vanishes with order one on Xy N X, for y € (i)
and nowhere else.

(2) The relations (3-8b) and (3-8c) equate two elements of the one-dimensional space Ext? (Lx,Lw) =
H%(Xx N Xy;C). Thus, we only need check that we have the scalars right, and this can be done after
restricting to any small neighborhood where all the classes under consideration have nonzero image.

Thus ultimately we can reduce to assuming X = C?,and X y and Xy, are the conormals to the coordinate
lines, and X, the cotangent fiber over 0. Let rq, r, be the usual coordinates on C?, and 94, 0, be the
directional derivatives for these coordinates. Thus, we are interested in comparing the Ext?’s given by
the sequences in the first and third row of the diagram below. Both sequences are quotients of the free
Koszul resolution in the second row:

D 11 . Dy, /g1 Dy, /o>t D
D-(ry,r2) " Dy, (r1,r2) " Dy, - (r1,9) " D-(31,0,)

11 [6]ar0: 11/0) =

0

b IH[—(‘)?] . D& D [Z]"’“al+ba2 . D 1> 1 . D
’ ’ " D-(31,9,)

-1 [#]~0/01 1>1/0; =~

D I>1 . Dy, 1/01—1 . Dy, 1/021 . D
D-(ry,r2) " Dy, - (r1.12) " Dy, - (rp.01) " D-(31,0,)
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The opposite signs in the leftmost column confirm that we have d; ydy x = —d; ydy . Hence the
elements dx  satisfy the relations (3-8b)—(3-8c).

(3) The relations (3-8d) follows from the fact that in this case X, N X; = .

Recall that the complex dimension of ey ﬁt' c@y coincides with that of H*(Xyx N Xy ; C), as we discussed
in Section 3.8. Thus the spaces ey Hé’(cey and H*(Xx N X, ;C) are vector spaces of the same rank.
Thus, in order to show that our map is an isomorphism, it is enough to show that it is surjective.

By Kirwan surjectivity, the fundamental class generates H*(Xx N X,; C) as a module over the Chern
classes of line bundles associated to representations of 7. Since the fundamental classes are images of
+dy .y and the Chern classes are images of Cl[ty, ..., t,], we have a surjective map. As noted before,
comparing dimensions shows that it is also injective, which concludes the proof. |

Comparing this result with Proposition 3.43, we see that the categories DQ and D?(Coh(90)) are rather
similar. We would immediately obtain a fully faithful functor DQ — Db (Coh(MM)) if we knew that
P x,yeA) Extoq(Lx, £y) were formal as a dg-algebra, but it is not clear that this is the case.

To show this formality, we need to use a different approach to construct this functor, using projective
objects in the category gc] This approach also naturally leads to a structure on DQ that corresponds to the
Gm—action on 901 discussed earlier: a new structure on DQ-modules, closely related to Saito’s theory of
mixed Hodge modules. This will result in a graded category, which is to D? (Cohg,,, (M) as DQ is to
DP(Coh(9M)).

4.10 Projectives

As described above, we’ll construct projective covers in (’i\c/] As usual, let us first construct these on 3.

Consider A = C[x, y, k] with the usual Moyal star product defined above. There are unique dqg—modules
ﬂ),(kk) and ﬂ)!(k) over C? whose sections are the quotients

HOC%PE) = a/Ax (y«0)™* and HO(C%PE) = 4/4 % (x % p)**.

Identifying A with the Rees algebra of differential operators D, on C[x] (sending y +> % d/0dx), these
modules become the Rees modules of D—modules @ik) and @Jfk) on A! with coordinate x. We can
identify these with the %— and !—pushforwards of the D-module L®*) on C* = Spec(C[x, x~']) defined
by the connection V = d — N/x on the trivial bundle with fiber Ck, where N is the regular nilpotent
matrix — _

010 00
001 00
000---00
N = Do Do
000---01
000 00
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Both @(k) and 9?( ) are projective in the category of D—-modules on A! which are smooth away from the
origin, whose monodromy around the origin has nilpotent part of length < k. The D-module QP( ) is the
projective cover of the D—module of polynomials on A!, and ?P,(k ) is the projective cover of the delta
functions at the origin.

Our presentation of these D—modules induces a good filtration on them; in DQ-module terms, this is an
equivariant structure for the cotangent scaling S which has weight 0 on x and weight 1 on y. In fact,
we will want to use shifts of this filtration, corresponding to hiP(k) and h'/ 2:];(k) note that the latter is
only equivariant under the squared scaling. In D—module terms, this means that we endow 9’( ) with
the good filtration such that the image of C[x] C Dy spans F_; QP(k) and F), @( = Fpi1Dx-F_4 Q’(k),
and 97’( ) with the good filtration such that the image of C[x] C Dy spans F_; /2@( )and F —1 /297’( ) =
FpDy-F_,4 /293( ) These might seem like slightly strange choices: they are deliberately chosen so that
in both cases, the unique simple quotient carries a pure Hodge structure of weight 0.

We will need certain morphisms between these DQ-modules:

(1) The linear map N on Ck induces an endomorphism on £%) and hence of iPik) and T!(k). This is
the same as right multiplication by y x x or x x y, respectively.

(2) We have a c™: inkk) — fP!(k), induced by multiplication on the right by y. Note that this map
becomes an isomorphism if we invert y, and consider these as D—modules on Spec C[y, y~!].

(3) In the opposite direction we have a map ¢™: iP!(k) — iPSkk), induced by multiplication on the right

by Xx; this is also induced by the identity on the local system LK), Similarly, this map becomes an

isomorphism if we invert x.

Note that the morphisms ¢~ and ¢ shift the good filtration by % By [3, Theorem 2.12], we can identify
these maps with the logarithm of the monodromy around the origin, the canonical map from nearby to
vanishing cycles and the modified variation map discussed in [3, Section 2.7].

Lemma 4.28 The algebra End(ﬂ’fkk) & iP!(k)) is generated by ¢* subject to the relations
(4-10) ¢cteT=N, ¢ ¢t=N, NfF=o.
Proof By construction, Hom(fP!(k), M) is the kernel of the k™ power of the logarithm of the monodromy

on the stalk of M at a generic point, given by the image of (0,...,0, 1) in this stalk. In particular, for
Hom(iP!(k), fP!(k)), this is C* itself, and the map sending (0, ...,0,1) to (ay,...,ax) is

ag +ag_ N +---+a; N1

Similarly, for Hom(fP!(k), ‘.Pfkk)), this stalk is the same, but now the map sending (0, ...,0,1)to (ay,...,ax)
is (ap +ap_ 1N +---+ a; NNt A symmetric argument holds with * and ! reversed. m]

As noted before, the map 7 induces an isomorphism C2\ {y = 0} = C2\ {x = 0}. We can construct a
DQ-module on 25; U20; 4 glued using 7, and placing ’Pik) or ﬂ’!(k) on each 20;:
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e If the two modules are different, ie Tfkk) on 2J; and fP!(k) on ;1 or vice versa, then we use the
natural isomorphism induced by swapping the roles of x and y.

o If they are the same, ie iPSkk) or iP!(k) on both 25; and 2J;4 1, then we use the isomorphisms of
multiplication by y®! on 20;, or equivalently x*! on Wit

Iterating this process, we can construct a DQ-module on 3 associated to a choice of integer k£ and a

map g: Z — {*,!}, isomorphic to (ch()l.) on 2J;. To endow this DQ-module with a global S—action, we

ph)

will need to shift the natural S—action on the local components o)

by a certain amount, determined as
follows.

We can associate to (Pfkk) a local system on each of the two components of its singular support, {x = 0}
and {y = 0}, both described in terms of the vector space V&) =~ C @ C(1) @ --- @ C(k — 1); here (p)
represents shifting the good filtration/S—action, though when we discuss Hodge modules, we will want to
use it to represent Tate twist by the same amount. At a generic point of {x = 0}, the fiber is v (%)
(so we obtain local systems of weights 0,2, ...,2(k — 1)), and at a generic point of {y = 0}, the fiber
is VO (1); for ‘.P!(k), these swap roles. Thus, in order to have matching S—actions (or equivalently, good
filtrations), we need to choose a function ¢ : Z — %Z with the property that

G(m) if p(m) # p(m + 1),
(4-11) cm+1)=1¢m)—3 if p(m)=p(m+1) = x,

G(m)+ 5 if p(m) =p(m+1) =1,
and place ﬂ’gc()i)(g (i)) on 2U;. The most important modules constructed this way, denoted by fPl(k), are
given by the functions

(4-12) o) = {

U ifm >, Tm—i—1) ifm>i,

* ifm <1,

and i)=
¢a) {%(i—m) if m<i.

Lemma 4.29 The DQ-module ﬂ’lgk) is the projective cover of L; in the subcategory of CE on 3 where

the nilpotent part of the monodromy has length < k.

Proof We can reduce to the case where i = 0 using the Z action. First, we must prove that Ly is
the unique simple quotient of (P,(k). On 20 U Q0; = T*P!, this module is the pushforward ngB(k),
where j: C* < P! is the inclusion of the complement of the north and south poles. This has unique
simple quotient given the intermediate extension of the one-dimensional local system with the standard
connection. This matches the simple £y. Any other simple quotient must be £, with m # 0. If m < 0,

this would induce a map on 20, of fP,(k)

 to the delta function D—module; similarly, if m > 0, it would
induce a map on 2,4+ of fPik) to the function D-module. No such map exists, so indeed L is the

unique quotient.

Now we need to show it is projective. Assume that M is an object in dAE] with nilpotent part of the
monodromy of length < &, and that there is a surjective map M — L. First, we note that we can
restrict M to T*P! and obtain a D—module on P! smooth on C*. Since Ly is the only simple in dq
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supported on P!, the local system we obtain on C* is regular, so it is on the trivial vector bundle with
fiber C¢ with a connection of the form d — N’ /x for N': c?->5C9a nilpotent map, and the map
to L is induced by a map ¢: C? — C whose kernel contains the image of N'. We can lift this up to a
map fPl(k)|T*P1 — M| 7+p1 by defining a map C*¥ — C? by sending (0, ..., 0, 1) to any vector v with
nonzero image under ¢, and then extending by the rule that N”(0,...,0,1) — (N’)"v. By assumption,
(N’)k =0, so this sends the standard basis of C* to the vectors (N') v for r =0, ...,k — 1; there a
unique linear map satisfying this property.

Now, we change focus to 20_1; by the projective property of ZP!(k), induced the map of local systems
on X_; extends to a map of ?;k) lon_, — M]qy_,. Applying the same argument again to 20_, gives a
compatible map Tl(k) law_, = M|ay_,. By induction, we can extend to all 20; with i < 0. A symmetric
argument shows how to extend to i > 1. This establishes the result. O

Lemma 4.30 The stalk of a,v((]?lgk)) at a generic point in P! is V(k)(%(h' —i'l+1)).

Proof By their identification with the *— and !-pushforwards, fPfkk) and ‘P!(k) both have stalk V*) on
A! —{0}. We need to understand how these correspond to the generic fiber on y = 0. This is the same as
the vanishing cycles with respect to x at x = 0.

In the case fPEkk), the canonical map induces an isomorphism of these vanishing cycles to y ) (—%); in the
case ‘P!(k) , the variation map induces an isomorphism of these vanishing cycles to y®© (%) This makes it
clear that on each component, we have shift of the S—structure on V@ and that this shift is %|i —i'l. O

This means that Hom(fPl(k), ?gf‘)) = V(k)(%h' —i’ |). The morphisms ¢* and N induce morphisms of
DQ-modules:

. p(k) (%) —. p(k) (k) (1 +. pk) (k) (1
NP7 —P7(1), P —>TH_1(§), ¢ P; —>2Pl._1(§).
By Lemma 4.28, these morphisms generate the endomorphism algebra ;. jez Hom(fPl(k), T](.k)) subject

to the same relations (4-10). That is:

Lemma 4.31 The endomorphism algebra EB,-, jez Hom(fPl(k), T;k)) is isomorphic to the quotient of the
algebra ﬁ(c attached to the usual action of G,,, on A!, modulo the relations s;k =0 foralli.

Now, we extend this to the general case. Given x, we can define a projective by the exterior tensor product
‘.chkl) X-. X ?S{j}, and consider the action of the torus Tp. We let Q&k) be the unique largest quotient of
this exterior product where the monodromy around 7g—orbits is trivial. Concretely, the exterior tensor
product above carries an action of C[Ny, ..., Ny] = Uc (), which can be interpreted as the logarithms of
monodromy along orbits of the larger torus Dg. The monodromy is trivial along 7'—orbits if this action
factors through the quotient Uc (0) — S. We therefore have

k
0P — PP R...RPO) @y S.

This quotient has a natural strong T—equivariant structure.
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Definition 4.32 Let (chk) be the Hamiltonian reduction of ng) on @; we consider this as a DQ-module.

Lemma 4.33 The object ’P;k) is the projective cover of Ly in the category of DQ—modules with
monodromy around Xy N X,, unipotent of length < k for all y with |x —y|; = 1.

Proof The desired map from ?g‘) — L, is induced by the simple quotient of ?&’? for all i. Thus, we
need to show the projective property, and the fact that there are no other simple quotients, which we
will do by induction on the distance between x and y in the taxicab metric. The restriction of :chk) to
T*Xy is j!i’(k) where $) is the induced D—module on the complement of the intersection with all
other components in Xx. There is only one map to L since $®) s indecomposable and has unique
simple quotient. Since there are no maps of jgi(k) to D—-modules supported on intersections with other
components, we have no maps to £ for |[x — y|; = 1. As in Lemma 4.29, we can extend this argument
to all other y, since the map can’t be nonzero on y if it is zero on all y’ closer to x. This shows that
Ly is the unique simple quotient of inCk) .

Now, let us prove the projective property for ?5!‘). That is, let M be an object in c]a with monodromy
around X, N Xy for all |[x — x’|; = 1 unipotent of length < k, and with a map M — L. We wish to
show that we have an induced map ¢ : ‘chk) — M making the usual diagram commute.

Now, let © <, be the union of the subspaces 7*X,, for |[x — y|; < p. We will show that the map v exists
by constructing it inductively of D <.

On D<o = T*X,, we have an induced map from L®) to the local system given by the restriction of M
to the open orbit in X/ by the universal property of L% and thus an induced map

Vlo—y: 0x (PE) = HL® - 6, (W),

Now, assume that we have defined the map ¥ on © <, and that |y —x|; = p. f U =D, N X}, then by
assumption we have defined a map o, (ngCk)) |lu = oy (M)|y. By construction, o, (inck)) =1ii(oy (iP;k)) lv),
where i : U < X is the inclusion. Thus, we have a unique induced map o, (ngCk)) — 0y (M); applying
this for each y extends this map to D <. This shows that we have the projective property, and we have
already confirmed it is the indecomposable projective cover of L. O

4.11 An equivalence of categories
Let ITIH(gk) be the quotient of FI]% by the two-sided ideal generated by sf.‘ .

Lemma 4.34 The endomorphism ring P, yek Homgq (iPECk), ‘.Pg,k)) is isomorphic to ﬁék).

Proof This map is induced by sending the morphism c;ti to the morphism ¢ in the /™ factor of the
exterior product, and s; to the endomorphism N of this tensor factor.

We check that this is well-defined. The linear relations among the variables s; in S’ correspond to the
triviality of monodromy along 7'—orbits in ’P;k). The relations (3-6a) are a consequence of Lemma 4.28,
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while the relations (3-6b) and (3-6¢) follow from the fact that these are the tensor product of endomorphisms
of two different tensor factors. This shows that we have the desired map.

Now, consider Hom(?&k), in,k)); this is a quotient of CJsq, ... ,sn]/(sf), which is the stalk of |ZL1 iP;’f)
on the component X, x---x X,, . Killing the monodromy on 7" gives us the quotient S/ (s{‘ ). This is

generated by the image of ¢y ), so our homomorphism is surjective, and the fact that H(c is free as an
S—module shows it is also injective. a

Assume that M is a finite-dimensional right Hé—module. Assume k is chosen large enough that slk
kills M for all i. We can thus write M as a quotient of @Zzl lx, Hg) for some x,, and in fact as the

K q
. 77 (k 77 (k
S @1y Y~ P e, A

r=1 p=1

cokernel of a map

induced by elements a,, € 1y, H(gc) 1,, of degree 2(£, —v,). We can also view f as a morphism of

DQ-modules
acf): @ P QB PP
r=1
Let d(M) denote the cokernel of the map d( f). Let Hé’c’p —mod, be the category of finite-dimensional
right modules of H(é on which each s; acts nilpotently.

Proposition 4.35 This defines equivalences of categories

d: Hé’()p—modo —>dq and d: Hé’()p—modo — dq.

Proof ByLemma 3.17, the category of DQ-modules which are quotients of a finite sum of the objects ZPECk)

H(((jk)’op —mod via the functor d. The dimension of a(M ) under this equivalence

is equivalent to the category
is the same as the composition length of M, so M is in d?] if and only if its image is finite-dimensional.
Thus, we have an equlvalence He¢ (k.0 —-mod, — dq between finite- d1mens1ona1 H ®)-0p_modules and
the subcategory dq of dq where all monodromy has unipotent length < k. Since H ?_mod, is the union
of the modules factoring through the quotlents H¢ )P for all k, and similarly dq = Uy dq =k, ; this induces

an equivalence d: H 75:°P P_mod, — dq, as desired.

The proof for d is word-for-word identical to that for d, so we leave the details to the reader. O

Since d is an exact functor, it extends to a (both left and right) derived functor d: Db (H(é’op -mod,) — DQ.
Combining with Corollary 3.41, we see our version of homological mirror symmetry in this context, as
promised in the introduction:

Theorem 4.36 The functor .# +— E(RHom(ﬂé‘, .#)) defines an equivalence of dg—categories
D (Cohg (Mc)o) — DQ.
Similarly, d defines an equivalence D?(Coh(M¢),) — DQ.
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Proof We give the proof for the first equivalence, leaving the second to the reader. We know from
Corollary 3.41 that this reduces to showing the derived functor of disan equivalence of derived categories
Db (I:dlé’op -mod,) — DQ. Proposition 4.35 show that this functor is an equivalence of categories on the
heart of the usual 7—structure. It’s enough to additionally check that for a set of generating objects, such
as the simples Ly, the induced map Extk (Lx,Ly)— Extk (E(L %) E(L y)) is an isomorphism for all k,
x and y; this isomorphism follows for all other objects by a standard long exact sequence argument. Thus,
to complete the proof, it is enough to show that d induces an isomorphism ey, I:I’){’(Cex o~ Extb‘é(z x> L y).

Of course, Theorem 4.27 implies that an isomorphism between the corresponding Ext—algebras exists.
We could carefully confirm that this is (up to sign conventions) the same as that of Theorem 4.27, but
this is not strictly necessary. The equivalence of abelian categories of Proposition 4.35 implies this
functor induces an isomorphism Ext'(Ly, L y) = Ext! (d(Ly),d(L y)) for all x and y. Since H. H

is generated by elements of degree 1, thls implies that the map induced by dis surjective, and thus an
isomorphism since the dimensions of e, H. k c¢x and Extgg (L X y) in each degree are the same. In fact,
since Ext~(£ x> y) is at most one-dimensional, we must recover the isomorphism of Theorem 4.27 up
to rescahng the image of dy, to be a nonzero scalar multiple of dy . |

This also resolves the concern about formality raised below Theorem 4.27: since f]é’()p is Koszul, the
induced dg—algebra structure on the Ext of simples is formal, and this shows that the same holds in c]a

S Hodge structures

5.1 Microlocal mixed Hodge modules

We will need the notion of a unipotent mixed Q-Hodge structure on o, (M); see [34] for a reference.
“Unipotent” simply means that the monodromy on every piece of a stratification on which the D-module
is smooth is unipotent. Mixed Hodge modules are a very deep subject, but one which we can use in a
mostly black-box manner. The important thing for us is that given a holonomic regular D-module M, a
mixed Hodge structure can be encoded as real form and a pair of filtrations, a good filtration (often called
the Hodge filtration) and the weight filtration (by submodules) on L. As discussed previously, we are
allowing good filtrations indexed by %Z.

Note that while most references on mixed Hodge modules only consider untwisted D-modules, since a
Hodge structure is given by local data, the definition extends to twisted D—modules in an obvious way.
We will only be using twists by honest line bundles (as opposed fractional powers), so we have an even
easier definition available to us: a mixed/pure Hodge structure on a module /M over differential operators
twisted by a line bundle L is the same structure on the untwisted D—-module L* ® .. Since we will be
working with fixed twists in what follows, we will conceal this choice and simply speak of mixed Hodge
modules on X, rather than twisted mixed Hodge modules.
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Given an SG—equivariant ég—module Mindg, a 62 (0)-lattice M(0) induces a good filtration on o (M)
for each x.

A Q-form of o, (M) is a perverse sheaf L on Xy with coefficients in Q with a fixed isomorphism
L ®g C = Sol(oxM). We wish to define a Q—form of M analogously, but we need to think carefully
about compatibility between different x.

Definition 5.1 An Q-form for M € OZ—modSG is a perverse sheaf Ly on X, for each x with a
fixed isomorphism Ly ®g C = Sol(ox M) such that the isomorphism (4-6) induces an isomorphism
Fyx(Lx|Ne,) = Lyl|n, ., thatis, it is compatible with the induced conjugation maps on the solution
sheaves Sol(ox M).

A mixed Hodge structure on M consists of a lattice M(0), Q—form Ly for all x and an increasing weight
filtration W, of M by submodules such that the induced good filtration, Q—form and weight filtration
on oy (M) is a unipotent mixed QQ—Hodge structure on this D-module. The real forms are required to be
compatible under the isomorphism (4-6).

Remark 5.2 This definition does not provide any hope of giving a general definition of “mixed Hodge
DQ-modules”. The space D¢ is a union of cotangent bundles of smooth varieties, with the scaling action
on the cotangent bundle of each component extending to a global action on D42, We don’t know of any
similar situation outside the hypertoric case. Generalizing this definition to other cases is, of course, a
quite interesting question, but not one on which we can provide much insight at the moment.

5.2 Hodge structures on projectives

One natural operation on mixed Hodge DQ-modules is that of Tate twist, which shifts the filtrations by
FiM(k) = F; M and W;M(k) = Wi M for k € %Z. Note that defining Tate twists for half-integers
requires using good filtrations which are indexed by k € %Z, this explains our cryptic introduction
of half-integers in earlier sections. We’re only interesting in understanding simple modules up to this
operation. We can easily check that:

Lemma 5.3 If M is supported on the core €, then the D—module o, (M) is smooth along the orbit
stratification of X as a toric variety.

Lemma 5.4 The sheaf £ has a unique mixed Hodge structure whose associated mixed Hodge modules
are pure of weight 0.

Proof The trivial local system on X has the structure of a variation of Hodge structure which is pure of
weight 0. This is unique by [17, Proposition 1.13]. Of course, any mixed Hodge structure of weight 0
on Ly must be induced by this VMHS, which shows uniqueness.
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Thus, we only need to show that the induced lattice £y (0), real form, and (trivial) weight filtration
induce mixed Hodge structures on the microlocalizations oy, (L) for each y. Recall that o), (L) is the
pushforward of the trivial line bundle on Xy N X, so the result follows from the compatibility of mixed
Hodge structure with pushforward. |

Unfortunately, while the Hodge structure on a simple module is unique up to Tate twist, there are “too
many” different Hodge structures on other objects in dq. For example, £, @ L (k) has a nontrivial
moduli of Hodge structures, induced by the same phenomenon on Q & Q(k).

Thus, we need to find a way of avoiding these sort of deformations of Hodge structure. We do this by
constructing a natural Hodge structure on the modules ?&").

Recall that we started the construction of these projectives by considering modules fP,(kk) and fP!(k)

over
A = C[x, y, h] with the usual Moyal star product. We make these into mixed Hodge modules on Al
by endowing @’ik) with the good filtration such that the image of C[x] C Dy spans F_l@ik) and
F p@ik) = Fp11Dx- F_197’S<k), and @fk) with the good filtration such that the image of C[x] C Dy spans
F_I/ZQP!(k) and FPH/ZQP!(k) = Fy Dy - F_l/z@!(k). These might seem like slightly strange choices: they
are deliberately chosen so that in both cases, the unique simple quotient carries a pure Hodge structure of
weight 0.

Now, we consider Hodge structures on these DQ-modules extending the good filtrations defined above
on @ik) and QP!(k). Their real form is the obvious one where x and y are conjugation invariant; this
corresponds to the obvious real form of L&) We define the weight filtration on 9]’,(,!‘) by

0 if p<—2k+1,
W _ Dx(3xx)"P/2/ Dy (3 x)K if 0> p > 2k + 1, with p even,
L Dyx(3xx)~@tD/2/D (3,x)% if 0> p>2k + 1, with p odd,

k) if p>0,

and the weight filtration on QP!(k) analogously, swapping x and y.

Lemma 5.5 These data define mixed Hodge structures on @ik) and 97’!(k) .

Proof First, let’s consider @fkk) . By the definition above, Wp@,(kk) / Wp_l@,(kk) >~ D, /Dxx if p is even
and 0 > p > 2k + 1; this is equipped the good filtration where the image of 9%, for r < s span Fy /5.
On the other hand, the V—filtration of this D—module for the function x has V¢ spanned by y’ for
r > —{. Thus, the vanishing cycles & = ¢(Wp9]‘,(kk) / Wp_l@ik) ) are spanned by the image of 1, ie they
are one-dimensional. Accounting for the shift of good filtration (as in [34, (2.1.7)]) they are equipped

with the good filtration ® ifs>0,

Fotp2(®) = {o if s <0.

This means that Wp@ik) / Wp_l@fkk) is isomorphic to the usual Tate pure Hodge structure of weight p
on Q, pushed forward at the origin x = 0. If p is odd, then we have Wp@’fkk)/ Wp_l@fkk) >~ Dy /Dx0y;
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exactly as above, the generic fiber of this local system has the Tate Hodge structure of weight p — 1, and
so gives a pure Hodge module of weight p.

For Q’Y(k), the calculations are the same, but odd and even cases swap roles. In particular, we see that
half-integral filtrations are needed so that we can endow Q with a Tate Hodge structure of odd weight
(ie a half-integral Tate twist). O

We defined above morphisms N and ¢* between these DQ-modules. These morphisms preserve the
mixed Hodge structure up to Tate twist and become morphisms of mixed Hodge modules
k k — k k k k
NP 0By, ol S p® (1)t p® 01,

This means that they define Tate elements of the endomorphism algebra End(fPik) <) ﬂ’fk)), and since they
generate, they show that the induced Hodge structure on this algebra is of Tate type agreeing with the
grading deg(c*) = 1 and deg(N) = 2.

As noted before, the map 7 induces an isomorphism
C2\{y =0} = C*\{x=0}.
We can construct a DQ-module on 25; U 20; 41 glued using 7, and placing ngk) or ’P!(k) on each 2U;.

¢ If the two modules are different, ie fP,(kk) on 2U; and iP!(k) on ;1 or vice versa, then we use the
natural isomorphism induced by swapping the roles of x and y.
e If they are the same, ie iPSkk) or iP!(k) on both 25; and 27; 4, then we use the isomorphisms of
multiplication by y*! on 20;, or equivalently x*! on 20; ;.
Of course, if we don’t include shifts, this gluing will not respect the Hodge structure, so we need to
glue these DQ-modules with Tate twists in them. The functions we Tate twist by have already been
constructed in (4-11), based on a choice of which version of the module we will take on each component,
expressed by a function g. This makes the modules CPl(k) into mixed Hodge modules.

Remark 5.6 These modules are not projective in the category of mixed Hodge modules (even with
appropriate monodromy restrictions) since they don’t account for non-Tate extensions.

This induces a Hodge structure on the module inck) defined in Definition 4.32, and thus on the endomor-

. . k k
phism ring @x,yef\ Homyq (CPg ), fP(y )).
Lemma 5.7 The Hodge structure on the endomorphism ring P, yek Homy, (ngck), in,k)) is Tate and

matches that constructed from the grading on H(g‘).
5.3 The category of mixed Hodge modules

Now, we wish to establish a graded version of the equivalence of Theorem 4.36. As discussed above,
looking at all mixed Hodge structures on DQ-modules results in “too many” objects; in particular, the
graded lift of a projective object will not be projective in the category of all mixed Hodge structures on
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objects in (Tq, which is not the behavior we expect from adding a grading to a ring. In more categorical
terms, the functor of forgetting Hodge structure is not a “degrading” functor.

Thus, we will consider objects in c?fq with a more restricted set of Hodge structures, only those which arise
as a quotient of the objects ‘.P;k); it’s worth noting that while these objects have a projective property in a\c/]
(subject to a restriction on monodromy), they are not projective amongst mixed Hodge DQ-modules with
this monodromy. The important effect this has is that it forces the local systems on the open part of Xx to
be Tate as mixed Hodge structures; typically, the structures we wish to avoid will not have this property.

Definition 5.8 We let ;um and ftm be the categories of mixed Hodge DQ-modules in dq and c]a which

are quotients of a sum of the form @Zzl ng;) (£p) for some k >0, £, € %Z and {xy,..., x4} C A.

We let uM and ;TM be the standard dg—enhancements of the derived categories D (um) and D? (rem)
(the quotient of the dg—category of all complexes modulo that of acyclic complexes).

Now, assume that M is a finite-dimensional graded right ﬁé—module. Recall that M (£) denotes M with
the grading shifted down by £. Assume & is chosen large enough that s lk kills M for all i. We can thus

pH((Dk) (2¢p) with x,, and £, as above, and in fact as the cokernel of a

write M as a quotient of 69;1;:1 ly

map s ) q .

I @1y, HY @vr) — @ 1, H 20p)
r=1 p=1

induced by elements a,p € 1y, Hék) 1,, of degree 2({;, — v,). We can also view 4 as a morphism of
Hodge DQ-modules s q
~ k k
7(/): PP ) — P PE ).
r=1 p=1
Let m(M) denote the cokernel of the map m( f'). Let ﬁé’(’p—gmodo be the category of finite-dimensional
graded right modules of ﬁé

Theorem 5.9 This defines equivalences of categories
m: fl(g()p—gmodo —um and m: Hé’Op—gmodo — um,
sending grading shift () to the Tate twist (1¢).
Proof If /: M — M’ is a homogeneous map of modules, the construction of m( /) by presenting M

and M' as cokernels proceeds exactly as in the proof of Proposition 4.35, as does the proof that this
functor is fully faithful.

The only point where we need a bit more care is in the proof of essential surjectivity. By definition, any
module M in um is a quotient of m(Pg) for some Py. Thus, we need to show that the kernel X is also
an object in um. The object X has a largest semisimple quotient, ie its cosocle. This is a finite sum of
objects of the form £, (v,). This shows that X is generated by the images of maps (of DQ-modules,
ignoring Hodge structure) from T(ykr) forr =1,...,s. Note that Hom(va(vkr), XK) carries a mixed Hodge
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structure which is a subobject of Hom(ng,kr), m(Py)); the former has Tate type since the latter does as
well. Thus, there is a module M; such that

N
7(P1) = @ Hom(P{, %) @q Pj
r=1
as mixed Hodge DQ-modules; of course, the image of the induced map m(P;) — m(Py) is exactly X,
and so M = m(M) where M is the cokernel of the map Py — Py. This completes the proof that m is an
equivalence. The second equivalence is proven the same way. |

Analogous to the proof of Theorem 4.36, we have the following:

Corollary 5.10 There are equivalences of categories
D?(Cohg,,x¢(Mg)o) = uM and DP(Cohg,, (Mg)s) — UM

sending grading shift (£) to the Tate twist (%6)

We conclude with a few questions raised by this result. Under our equivalence, the G,,—action on ¢
corresponds to the weight grading on wM. This action, which dilates the symplectic form, is key to
the enumerative geometry of hypertoric varieties. Indeed, the symplectic structure on ¢ implies that
the nonequivariant quantum connection of ¢ is essentially trivial. Its G,,—equivariant version, on the
other hand, is the hypergeometric system studied in [30]. The same is true for more general symplectic
resolutions: for instance, the G,,—equivariant quantum connection of the Springer resolution is the
decidedly nontrivial affine KZ connection [12]. Our result thus suggests that the mirror description of
these connections can be approached via microlocal Hodge structures.

We also note that whereas the left-hand side of both of our equivalences is a geometrically defined
category, the right-hand sides are defined by picking certain generators inside the ambient category of
deformation-quantization modules. This is in contrast to the equivalence proven in the sequel to this
paper [21], which equates coherent sheaves on Mic with the wrapped Fukaya category of its mirror. A
more direct geometric definition of ©M and its grading, in particular, would be of great interest.
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Moduli spaces of Ricci positive metrics in dimension five

MCFEELY JACKSON GOODMAN

We use the 7 invariants of spin® Dirac operators to distinguish connected components of moduli spaces
of Riemannian metrics with positive Ricci curvature. We then find infinitely many nondiffeomorphic
five-dimensional manifolds for which these moduli spaces each have infinitely many components. The
manifolds are total spaces of principal S bundles over #2C P2 #? CP2 and the metrics are lifted from
Ricci positive metrics on the bases. Along the way we classify 5—-manifolds with fundamental group Z,
admitting free S! actions with simply connected quotients.

53C20, 53C27, 58D19, 58D27, 58J28; 19K56

Many closed manifolds are known to admit Riemannian metrics of positive Ricci curvature — for example,
all compact, simply connected homogeneous spaces, biquotients, and cohomogeneity-one manifolds;
see Berestovskil [5], Grove and Ziller [23], Schwachhéfer and Tuschmann [35]. Systematic methods
for constructing such metrics on certain connected sums and bundles have been explored in Corro and
Galaz-Garcia [11], Gilkey, Park and Tuschmann [20], Nash [33], Searle and Wilhelm [36], Sha and
Yang [37] and Wraith [44].

Once we know that a manifold admits positive Ricci curvature we ask how many such metrics it admits.
The space of geometrically distinct metrics of positive Ricci curvature on a manifold M is the moduli
space Mgic>0(M) = Rgic=0(M ) /Diff(M), where Rgic=o(M) is the set of positive Ricci curvature
metrics on M and Diff(M) is the diffeomorphism group, acting by pullbacks. The number of path
components of Mg;.~¢ serves as a coarse measure of distinct positive Ricci curvature metrics on M.

We identify an infinite family of 5—manifolds M with 71 (M) = Z, such that DMg;.~o(M) has infinitely
many path components.

Theorem A Let B* =#*CP2*#° CP2 witha+b > 2, andlet S' — M3 — B* be a principal bundle with
first Chern class 2d, where d € H*(B*,7Z) is primitive and w,(TB*) = d mod 2. Then Mgjc=o(M )
has infinitely many path components.

Here w; is the second Stiefel-Whitney class, and a primitive class is one that is not a positive integer
multiple of any other. We will see that for each 4-manifold B there are 2, 3 or 4 diffeomorphism types
of such total spaces M, depending on the value of |@ — b| mod 4, each of which admits infinitely many
inequivalent free S! actions with quotient B. The only other five-dimensional manifolds for which
Mgic=0 is known to have infinitely many components are the four homotopy real projective spaces

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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recently described by Dessai and Gonzélez-Alvaro [14] and five quotients of S2 x S recently described
by Wermelinger [42].

The conditions on the first Chern class in Theorem A are equivalent to the statement that 77 (M) = Z,,
M 3 is nonspin, and the universal cover of M is spin. M > can be constructed by taking five-dimensional
homotopy real projective spaces, removing tubular neighborhoods of generators of the fundamental group,
and gluing along the boundaries of the tubular neighborhoods. By the classification of Smale [39] and
Barden [4], the universal cover M ° is diffeomorphic to #21t2=183 x §2. But we do not know an explicit
description of the deck group action by Z, on M3,

Our second theorem identifies conditions under which A/ 3 admits one, and infinitely many, free S! actions.
As an application, we will show that the manifolds in Theorem A admit infinitely many free S' actions.
We construct the metrics used in Theorem A by lifting metrics from the quotients of M3 by those actions.
Here b, (M) is the second Betti number of M.

Theorem B Let M3 be a 5-manifold with w; = Z,. Then M admits a free S' action with a simply
connected quotient if and only if M is orientable, Hy(M, Z) is torsion-free and 71(M) acts trivially
on 5 (M). Furthermore, if by(M) = 0, then M is diffeomorphic to RP>. If bo(M) > 0 and M admits
a free S! action with simply connected quotient B*, then M admits infinitely many inequivalent free
S actions with quotients diffeomorphic to B*.

Note that here B* can be any simply connected 4-manifold, and need not be one of the manifolds of
Theorem A. Theorem 1.11 provides greater detail about the correspondence between a S—manifold M > and
the set Q(M) of possible quotients B* = M3 /S!. Given M3 satisfying the hypotheses of Theorem B,
we give conditions on the cohomology ring of a 4-manifold B* which are necessary and sufficient for B
to be in Q(M). In particular, any smooth manifold homeomorphic to a manifold in Q(M) is in Q(M).
In Corollary 1.12 we see that for any such M, Q(M) contains either #S2 x S2 or #2CP2 #> CP2 for
some a, b, ¢ € Z. Those manifolds admit metrics with positive Ricci curvature, which can be lifted to M.
Thus we have:

Corollary Let M be a 5—manifold with w1 (M) = Z, admitting a free S action with a simply connected
quotient. Then M admits a metric with positive Ricci curvature.

Furthermore, it follows from Theorem 1.11 that given a simply connected 4—manifold B*, the set of
diffeomorphism types of total spaces M > with 77 (M) = Z, of S bundles over B* depends only on
the cohomology ring of B*. In particular, Theorem A would describe the same set of 5—-manifolds if we
replaced #4C P? #° CP2 with one of the manifolds homeomorphic to it.

We first review previous work with methods and results relevant to Theorem A. In [30] Kreck and Stolz
invented a moduli space invariant s(M, g) € Q for a metric g of positive scalar curvature on a closed spin
manifold M. The metric is based on the 7 spectral invariant of the Dirac operator defined in Atiyah, Patodi
and Singer [1]. If s(M, g1) # s(M, g,) then g1 and g, represent elements in different path components
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of M.a>0. Kreck and Stolz use the invariant to prove that for M 4k+3 with a unique spin structure and
vanishing rational Pontryagin classes 9 .q>0(M ) is either empty or has infinitely many components.

Since a path of Riemannian metrics which maintains positive Ricci curvature maintains positive scalar
curvature as well, the s invariant can detect connected components of 91g;.~¢. Kreck and Stolz calculated
s for the Einstein metrics on S! bundles N k7 ; over CP! x CP? described by Wang and Ziller [41]. Kreck
and Stolz showed, using the diffeomorphism classification in [28], that when k is even and ged(k, /) =1,
Ny s diffeomorphic to infinitely many manifolds in the same family. As the s invariant takes infinitely
many values on those metrics, the authors concluded that 9g;c>o(Nk ;) has infinitely many components.
Similar results have since been proved for S ! bundles over CP! x CP?" with n > 1; see Dessai, Klaus
and Tuschmann [15].

Wraith showed that for a homotopy sphere gkl bounding a parallelizable manifold, 9g;.~o(0) has
infinitely many components. The procedure known as plumbing with disc bundles over spheres produces
infinitely many parallelizable manifolds with boundaries diffeomorphic to o. Wraith [43] constructed
metrics of positive Ricci curvature on each boundary, and calculated the s invariant of each metric in [45].

Dessai [13] and the author [21] used the s invariant to find several infinite families of seven-dimensional
sphere bundles M 7 such that Mgic>o(M ) and Me.>0(M ) have infinitely many path components. Grove
and Ziller [22; 24] constructed metrics of nonnegative sectional curvature on the manifolds in those
families, and the diffeomorphism classifications in Crowley and Escher [12] and Escher and Ziller [18]
show that each manifold is diffeomorphic to infinitely many other members of the family.

More recently, Dessai and Gonzalez-Alvaro [14] showed that if M3 is one of the four closed manifolds
homotopy equivalent to RP> then Mec>0(M ) and Mgic>o(M ) have infinitely many path components.
Loépez de Medrano [32] showed that each such M > admits infinitely many descriptions as a quotient of a
Brieskorn variety, and Grove and Ziller [23] showed the each quotient admits a metric of nonnegative
sectional curvature. Dessai and Gonzalez-Alvaro calculated the relative 7 invariant for those metrics to
distinguish the path components. Wermelinger [42] extended their method to prove the same conclusion
for five Z, quotients of S2 x §3.

We now outline the proof of Theorem A. We use Theorem B to show that each manifold M ° in Theorem A
admits infinitely many inequivalent free S! actions with quotient B* = #4CP2 #° CP2. We modify
a result of Perelman [34] to show that B admits a metric of positive Ricci curvature. That metric can
be lifted to a metric of positive Ricci curvature on M by Gilkey, Park and Tuschmann [20]. The lifted
metrics depend on the S action, and we get infinitely many distinct metrics on M.

We show that in dimensions 4k + 1, the n invariant of a certain spin® Dirac operator constructed for a
positive Ricci curvature metric g depends only on the connected component of the class of g in Mgic>o.
To complete the proof we calculate n for each metric on M and show that it obtains infinitely many
values. This is the most intricate part of our proof.
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The standard method for calculating the 7 invariant of a spin Dirac operator on a manifold M with positive
scalar curvature is to extend the metric over a manifold W with dW = M so that the extension has
positive scalar curvature as well. When M is not spin but spin®, both the metric and a unitary connection
on the complex line bundle associated to the spin® structure must be extended. The desired condition
then involves the curvatures of both metric and connection. In their work, Dessai and Gonzalez-Alvaro
passed to the universal cover to find a suitable W over which the connection could be extended to a flat
connection. They use equivariant 7 invariants on the cover to compute the 7 invariant on the quotient.

In this paper we work directly on M and use a manifold with boundary W over which the connection
cannot be extended to a flat connection, but the curvature of the extension can be explicitly controlled. To
be specific, we extend the metric and connection on M to a metric 4 and connection V on the disc bundle
W = M x g1 D? associated to the S' bundle. We then use the Atiyah—Patodi-Singer index theorem [1]
to obtain a formula for 1 in terms of the index of the spin® Dirac operator on W and topological data
on W. The index will vanish as long as

scal(h) > 2|Fv|h,

where FV is the curvature form of the connection V. We accomplish the extension for a general class
of S!—invariant metrics of positive scalar curvature. This is more general than we need but may be of
independent interest. In fact we construct 4 and V such that

scal(h) > €| FV |,

where £ is a positive integer such that the first Chern class of the S'! bundle is £ times the canonical class
of a spin® structure on the quotient.

Sha and Yang [38] constructed metrics of positive Ricci curvature on the 4—manifolds #-bCppb §2x 52
with @ > b. Those manifolds are diffeomorphic to #2C P2 #? C_IW, so a manifold M satisfying the
hypotheses of Theorem A also admits a free S! action with quotient #-bCP2#b §2 x S2. One can lift
the Sha—Yang metric to M, and there is no reason to expect that the resulting metric lies in the same
component as the metric lifted from #4C P2 #> CP2 in the proof of Theorem A. We will see, however,
that the computation of the 7 invariant involves only the cohomology ring of the quotient, and we cannot
distinguish any new components in this way.

In [37] Sha and Yang also found metrics of positive Ricci curvature on #°52 % S2. One might expect
our methods to yield a similar result in this case. The 5—manifolds, however, would be spin, and the
n invariant of the spin Dirac operator in dimension 4k + 1 vanishes, even when twisted with certain
complex line bundles; see Botvinnik and Gilkey [7].

We now discuss Theorem B. In [26], Hambleton and Su find a complete diffeomorphism classification of
S5—manifolds M with 1 (M) = Z, when M is orientable, H,(M, Z) is torsion-free, and 71 (M) acts
trivially on w5 (M). They apply the classification to investigate the diffeomorphism type of the total
space of an S! bundle over a simply connected 4—manifold. When the total space is nonspin but has a
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spin universal cover, as is the case in Theorem A, they can only restrict the diffeomorphism type to two
possibilities. Furthermore, an error is present in that calculation, which we correct in Lemma 1.7.

To prove Theorem B, we use the data of a principal S! bundle, namely the base and the first Chern class,
to compute the diffeomorphism invariants used by Hambleton and Su for the total space. One, the second
Betti number, is calculated easily. When the total space is nonspin but has a spin universal cover, we show
how the other invariant can be computed by applying a map from Qipinc — QE“‘JF to the base. While a
two-fold ambiguity remains in determining which diffeomorphism type corresponds to a specific first
Chern class, we are nonetheless able to determine which pairs of invariants are achieved, and achieved
infinitely many times, by bundles over a given 4-manifold.

The paper is organized as follows. In Section 1 we examine S! actions on 5S-manifolds with 71 = Z, and
prove Theorem B. In Section 2 we discuss the 1 invariant of a spin® Dirac operator and show that it can
be used to detect connected components of the moduli space in the context of Theorem A. In Section 3
we compute 7 in the case of certain (4n2+1)—manifolds admitting free S! actions and prove Theorem A.
In Section 4 we construct the metrics and connections used in the computations of Section 3.

Acknowledgements I would like to acknowledge my PhD advisor Wolfgang Ziller for all his help, as
well as Anand Dessai, David Gonzalez-Alvaro, Fernando Galaz-Garcia and Diego Corro for helpful
discussions. I am further grateful to Yang Su for pointing out how to work around an error in [26] and
for other useful insights. This research was partially supported by National Science Foundation grant
DMS-2001985.

1 S'! actions on 5—manifolds with 7, = Z,

Our methods for constructing metrics with positive Ricci curvature and for calculating 1 use the structure
of a principal S! bundle. In this section we prove Theorem 1.11, which classifies 5—manifolds with
71 = Z, admitting one, or infinitely many, free S! actions with simply connected quotients. Theorem 1.11
also identifies those quotients. In particular, we prove Theorem B and show that a manifold A/ satisfying
the hypotheses of Theorem A admits infinitely many inequivalent S! actions with the same quotient. Our
proof relies on a diffeomorphism classification of 5S—manifolds with fundamental group Z, carried out by
Hambleton and Su [26].

Given a manifold M with 7y (M) = Z,, a characteristic submanifold P C M is defined as follows. For
N sufficiently large let /: M — RPN be a classifying map of the universal covering M — M. We can
choose f to be transverse to RPNV ™!, and hence P = f~! (RPN 1) is a smooth manifold. One checks
that any two manifolds defined in this way are cobordant.

Alternatively, assume that P C M is a submanifold such that the inverse image P C M under the universal
covering splits M into two components M 1 and Mz. Furthermore 9 1= 8]\22 — P and the covering
transformation acting on M switches M; and M. One can then construct a map f: M — RPY such
that P = f~1(RPN~1). For details see [19; 32].
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The key invariant of the classification in [26] is the class of P in an appropriate cobordism group. The
appropriate structure on P depends on the second Stiefel-Whitney classes w, of M and M . Hambleton
and Su use the following labels for a manifold M with 7;(M) = Z, and universal cover M:

o Typel w,o(TM)#0.
o Typell wy(TM)=0.
e TypeIll w,(TM)+#0and wy(TM)=0.

A characteristic submanifold P of a Type III manifold admits a pin™ structure, and all such P are pin™
cobordant. Here Pin® (1) is the extension of O(n) by Z, such that a preimage of a reflection squares to
+1 and Qﬁi“i is the cobordism group of n—manifolds with pinjE structures. For details, see [26] and [19].

We review the construction of a pin™ structure on P as we will use it later. Let = M x 7, R be the
unique nontrivial real line bundle over M. Recall that M=M 1Up M 2, and the covering transformation
exchanges the components. Thus the normal bundle N P of P is trivial and the covering transformation
reverses the orientation of the fibers. The normal bundle N P of P satisfies
NP=NP/Zy=Pxz,R = pulp.

Since M is orientable,

wi(NP) =wi(TP) = w;(det(TP)),
so NP == det(TP). Thus

(1.1) (TM @& 2u)|p=TP®3NP =TP & 3det(TP).

Using [19, Lemma 9; 26, Lemma 2.3], one checks that w, (T M @2u) = 0. We can apply [27, Lemma 1.7]
to see that a spin structure on TP @ 3 det(7'P) induces a pin™ structure on TP. A similar argument on a
cobordism shows that any two characteristic submanifolds are pin™ cobordant.

Let b, (M) denote the second Betti number of a manifold M. The main theorem for Type III manifolds

is [26, Theorem 3.1]:

Theorem 1.2 [26] Let My and M, be Type III 5—manifolds such that 7w (M;) = Z, acts trivially on

1wy (M;) and Hy(M;, Z) is torsion-free fori = 1, 2. Then M, is diffeomorphic to M, if and only if
by(My) = by(My) and [P]=%[P,]¢€ QTHJF,

where P; is a characteristic submanifold of M;.

We will take the data of a principal S! bundle, namely the base and the first Chern class, and identify

the diffeomorphism type of the total space. In particular, we will identify when the total space satisfies

the hypotheses of Theorem 1.2, and then compute b, and [ P]. That computation combined with the

classification of Type I and II total spaces in [26, Theorems 6.5 and 6.8] finishes the proof of Theorem 1.11,
which in turn implies Theorem B.

A straightforward computation using the long exact homotopy and Gysin sequences proves the following;
see for instance [26, Proposition 6.1].
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Lemma 1.3 Let B" be a simply connected manifold and let M"*! — B" be a nontrivial principal
S bundle with first Chern class kd, where d is a primitive element of H*>(B,7) and k # 0 is an
integer. Then M is orientable, Hy(M, 7Z) is torsion-free and bo(M) = by(B) — 1. The fundamental
group (M) == 7 is generated by any S fiber and acts trivially on 7w (M ). The universal cover of M
is the total space of an S bundle over B with first Chern class d. If k =2, M is Type III if and only if
and w,(TB) = d mod 2.

The condition w,(7'B) = d mod 2 implies the existence of a spin® structure on B. We call d the canonical
class of that spin® structure. On a simply connected manifold a spin® structure is uniquely determined
by its canonical class. Thus in the Type III case, given a simply connected spin® 4-manifold B* with
primitive canonical class d, we want to know the diffeomorphism type of the total space M > of the
S! bundle over B* with first Chern class 2d. Since b,(M ) is determined by Lemma 1.3, it remains to
find the pin* cobordism class of a characteristic submanifold P* C M?. In fact, the spin® structure on
B* will naturally induce a pin™ structure on P*.

To see this let p: M — B be the bundle map and let A — B be a complex line bundle with first Chern
class d; then p*d is the unique nontrivial torsion element of H*(M,Z). Let ;© — M be the unique
nontrivial real line bundle over M. As in the proof that a characteristic submanifold of M will admit a
pin™ structure — see [19, Lemma 9; 26, Lemma 2.3] — w, (1 ® i) = w; ()% # 0. So p & p with its
natural orientation is a nontrivial complex line bundle. Since p ® p is trivial, ¢{ (u @ ) is torsion, and
we conclude that p*A = u & .

The S action on M splits TM into a horizontal bundle isomorphic to p*7'B and a vertical bundle,
trivialized by an action field, which we call T'S'. The spin® structure on B is equivalent to a spin structure
on 7B @ A. That spin structure induces a spin structure on

(1.4) p*(TBOMN DTS =2TMedpudun
and in turn a pin™ structure on P C M using (1.1). Denote by B(B.d) € QE“‘JF the cobordism class

of P with this pin™ structure. We synthesize the construction with the results of Lemma 1.3 as follows:

Lemma 1.5 Let B* be a simply connected 4—manifold and let M > be the total space of a principal
S! bundle over B with first Chern class 2d € H?*(B,Z) where d is a primitive element such that
wy(TB) = d mod 2. Then M satisfies the conditions of Theorem 1.2 with by(M) = b,(B) — 1 and
[P]=B(B.d).

In the next lemma, we will see that 8 is a spin® cobordism invariant whenever it is defined.

Lemma 1.6 Let By and B, be spin® manifolds with primitive canonical classes dy and d,, respectively.
Then:

(@) B(B1 U By, dy +dy) = B(By,d1) + B(Ba, da).
(b) If By is spin® cobordant to B, then B(B1,d) = B(B3,d>).
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Proof Part (a) follows immediately since the total space of the relevant bundle and the characteristic
submanifold of that total space will be disjoint unions.

To prove part (b), let W be a simply connected spin® cobordism between By and B, with canonical
class d. Then d|p, = d; for eachi = 1,2, and d must be a primitive class. Let 7: N — B be the
principal S! bundle over W with first Chern class 2d. By Lemma 1.3, 7;(N) = Z,. We have that
ON = 7~ (By) U n~1(B,) and M; = n~'(B;) — B; is the principal S! bundle with first Chern
class 2d;.

Let f: N — RPY be a classifying map for the universal cover of N which is transverse to RPV~1. By
Lemma 1.3, 7r; (N) is generated by any S orbit, so 71 (M;) — 7;(N) is an isomorphism, and S lm; is
a classifying map for the universal cover of M;. Thus P; = f~'(RPN~') N M; is a characteristic
submanifold of M; and f~'(RPN~!) is a cobordism between P; and P,. The argument before
Lemma 1.5 proves that the spin® structure on W induces a pint structure on f~!(RPV~1). That
pin™ structure restricts to the pin™ structures induced on P; by the spin® structures on B;. To see this
one must simply note that the nontrivial real line bundle over N restricts to the nontrivial real line bundle
over M;. We conclude that

B(B1.dy) =[P1]=[P2] = (B2, d>). O

We now see that B defines a map between the spin® and pin* cobordism groups. The four-dimensional
iC

spin® cobordism group Qip " is isomorphic to Z2. The isomorphism takes a spin® manifold B with

canonical class d to the characteristic numbers

(d*,[B]) and §((d* [B])—sign B).

Here sign(B) is the signature, and the second integer is the index of the spin® Dirac operator, which we
denote by ind(B, d). See [3; 40] for details. To construct generators of Qipinc let x € H*(CP?,Z) be
the generator which is the first Chern class of the Hopf bundle. Give X = CP? the spin® structure with
canonical class x and ¥ = CP2#CP2#CP? the spin® structure with canonical class dy = (3x, x,x) €
H*(Y,Z) =~ @3 H?*(CP?,Z). Then [X],[Y] € Qipinc represent (1, 0) and (9, 1) under the isomorphism
with Z?2 and form a minimal generating set of Qﬁpinc. Since X and Y have primitive canonical classes,
and their inverses in the cobordism group are given by reversing orientation, we conclude that every
class in Qipinc can be represented by a simply connected manifold B with primitive canonical class d.
Lemma 1.6 implies that by mapping the cobordism class of such a pair to (B, d) we can define a

: . Spin® Pint
homomorphism 8: Q" — Q" .

Using the isomorphism QE“‘JF =~ 76 generated by a pinT structure on RP* we prove the following:
Lemma 1.7 We have that

B(B.d) = (d?,[B]) + 4€ind(B, d) mod 16
for an unknown sign e = £1.
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This lemma corrects a mistake in the statement of [26, Theorem 6.7]. Our argument uses ideas from the
proof in [26] as well as corrections suggested to the author by Yang Su.

Proof We will see that B(X,x) = 1 and B(Y,dy) = 5 or 13. The lemma then follows since S is a

. Spin®
homomorphism and €2 4pm ~ 72,

The principal S! bundle RP> — CP? which is a Z, quotient of the Hopf bundle has first Chern class 2x.
Since RP* is a characteristic submanifold of RP?, it follows that

B(X.x)=[RP*=1eQfn"

The second calculation is more involved. We use the notation [zg, z;, z»] € CP? and [z, 21, 22]+ € RP?
for the respective images of the point (2o, z1,23) € S° C C3. Let p: M — Y be the principal S' bundle
with first Chern class 2dy € H?(Y,Z) as defined above. By Lemma 1.3, the double cover M of M is
the total space of a principal S! bundle p: M — Y with first Chern class dy.letg:Y — CP%?bea
classifying map for 5 which is transverse to CP! C CP? and has a regular value [1,0,0] € CP!. Then
g*x = dy and the pullback of 7: RP> — CP? by f has first Chern class 2dy. There is a map of
principal S! bundles f: M — RP> covering g, that is, an S! equivariant map making the following

diagram commute:

MLHR{PS

b
y —£ cp?

Since the fundamental groups of M and RP? are generated by S orbits (see Lemma 1.3), the homo-

morphism fix: (M) — 71 (RP?) is an isomorphism and £ is a classifying map for the double cover

M — M . Thus if we show that f is transverse to RP* C RP3, we can conclude that P = f~1(RP*) is
a characteristic submanifold of M. Then given the correct pin™ structure on P, B(Y,dy) =[P] € QﬁinJr.

To see that f is transverse to RP* = {[z¢, z;, 7]+ € RP> | r € R} note that at points in 7~ (CP2\CP!),
RP# is transverse to the S'! orbits, which are contained in the image of the equivariant map f. At points

in 771 (CP1), we associate the horizontal space of the S action with 7CP2. By assumption on g, f is
transverse to TCP!, and TCP! c TRP*.

For later, we also note that f is transverse to RP? = {[z,7,0] € RP’ | r ¢ R} since TCP! c TRP?
except at [1, 0, 0], which is a regular value of f by assumption on g.

There is a short exact sequence
(1.8) 0—>Z, — Q" &, Q™ _,

where ¢ is given by taking the cobordism class of a submanifold dual to wf; see [26, page 172] and
[27, page 217] for details. Thus ng_ is isomorphic to Zg with generator [RP2]. We now compute
¢ ([P]) = 5, which restricts the possible values of B(Y,dy) = 5 or 13, as desired.
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We need to find a submanifold of P dual to wf(TP). Denote by NRP# the normal bundle of RP*
in RP3 and by NP the normal bundle of P in M. Then f*NRP* = NP. Since RP> and M are

orientable,
w(TP) =w(NP) = f*wi (NRP*) = f*w,(TRP*).

Since wi(TRP*)? is dual to RP? C RP*, as long as the mod 2 degree of f: f~!(RP?) — RP?is 1,
it follows that f~!(RP?) is dual to w; (T P)?. For convenience let ¥ = f~!(RP?). Since [1,0,0] is a
regular point of g, [1, 0, 0]+ is a regular point of f, and the degree of f is the same as the degree of f|x.
The degree of f is the same as the degree of g. The degree of g is given by

(g*x2,Y) = (dy.[Y]) = 9.
Thus the mod 2 degree of f|x is 1 and ¢([P]) =[Z] € Ql;inj

Let U be a tubular neighborhood of the S! orbit of [1, 0, 0]+ and V = RP2\U. Since [1, 0, 0] is a regular
value of g we can choose U to be made up of regular values of f. Then f|s-1(y) is a covering map.
Since f maps S fibers to S! fibers, fi: 7 (f~1(U)) — 71 (U) is surjective and the covering is trivial.
Thus f~!(U) is the disjoint union of deg( /) =9 copies of U and f~'(U NRP?) is 9 copies of U NRP2.
The S orbit of [1, 0, 0]+ is a nontrivial loop in RP2, and U N RP? is a tubular neighborhood of that
loop, diffeomorphic to RP?\ D? (the Mobius band). The local inverses to f| £-1() are equivariant
embeddings of the oriented tubular neighborhood U and are all isotopic. It follows that the 9 embedding
of RP?\ D? making up /~'(U NRP?) are all isotopic. Thus the process by which 7'M induces a pin™
structure on P, which in turn induces a pin~ structure on %, will induce the same pin™ structure on each
of the 9 copies of RP2\ D?.

Since 7(RP?) = CP! and 7w (U)NCP! is diffeomorphic to a disc D? around [1, 0, 0] made up of regular
values of g, g~ (m(U)NCP') is 9 copies of D? and (V) = CP'\ D?. 1|y p> is injective away from the
orbit of [1,0, 0]+, and thus is injective on V. It follows that p maps 1 (V) injectively onto g~! (7 (V)).
Thus f~1(V) is diffeomorphic to g~ ! (CP?) with 9 discs removed while f~!(U NRP?) is 9 copies of
RP?\ D?. In other words,

(1.9) Y >~ g H(CPY)#RP*#-.-#RP?,

and the nine summands of RP? all have the same pin~ structure. Qgi“_ is generated by [RP?], and so it
remains to compute the value of [g~! (CP1)].

Let x = g7 (CP?). We will use a general method to define a pin™ structure called r, on x and compute
[x] € Qginf with this structure. We will then show that ry is the correct pin~ structure to use, that is, ry is
compatible under (1.9) with the pin~ structure used to identify [X] with ¢ ([ P]), which we will call r.

Consider a simply connected spin® 4-manifold B with canonical class d and v the complex line bundle
with ¢;(v) = d. Let N C B be a smooth submanifold dual to d. Then v|p is isomorphic to the normal
bundle of N. The spin structure on B is equivalent to a spin structure, called s, on 7B @ v. Restricted
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to NV, this is a spin structure on TN @ 2v. The transition functions for 2v admit a canonical lift from
SO(4) to Spin(4); simply multiply two copies of any lift for the transition functions of v, and the sign
ambiguities cancel. Note that the identity lifts to the identity in this way. Using this lift, s induces a spin
structure sy on N.

The spin cobordism class of N depends only on the spin® cobordism class of B. To see this, note that
the dual to the canonical class of a spin® cobordism will be a spin cobordism between the two relevant
submanifolds. Thus we have a homomorphism

v QP Lo~ 7,
defined by ¥ ([B]) = [N]. Indeed, there is a long exact sequence

- Q" 5 %P L 9" BU() - Q" =0

as in [26, page 154; 25, page 654]. We see that ¥ is surjective by noting that i is the composition of
Qipm — Qgpm (BU(1)) with the surjective map Qgpm (BU(1)) —» Qgpm, which ignores the map to BU(1).

Recall that X, Y generate Qipinc. The canonical class of X is dual to CP! ¢ C P2, which is nullcobordant,
so ¥ ([X]) = 0. Since  is surjective, ¥ ([Y]) generates Qgp " Since CP! contains a regular value of g,
the degree of g|, equals the degree of g and x is dual to g*x = dy. Giving y the spin structure s, used
to define v, we have ¥ ([Y]) = [x] # 0.

Spin(n) embeds naturally into both Pin* (n), so a spin structure induces a natural pin~ structure. Kirby
and Taylor show that in dimension 2, the corresponding map

Spin Pin~ ~_
92 = Zz — QZ = Zg

is injective; see [27, Proposition 3.8]. Let r, be the Pin™ structure on x induced by s,. Using that
structure, we have [x] =4 € ng_. Once we confirm that ry is the correct structure, we conclude with
(1.9) that ¢ ([ P]) = 5, completing the proof of Lemma 1.7.

Let r be the pin~ structure on X used to define ¢ ([ P]). Recall that p is a diffeomorphism between the
open set O = f~1(V) C ¥ and p(0), which is x with 9 discs removed. It remains only to check that
r=p*ryon O.

We first recall the definition of . Let u be the nontrivial real line bundle over M and let E =TM & 2pu.
Let A be the complex line bundle over ¥ with ¢;(A) = dy and let s be spin structure on 7Y @ A used in
the definition of y. With the isomorphism (1.4), s induces a spin structure on E called sg. Then (1.1)
shows

E|p=TP ®3det(TP)

and we induce a pin™ structure on 7P using a canonical lift of the transition functions of 3 det(7 P)
from O(3) to Pin™(3). In turn,
TP|ls =TE®2det(TY),
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and using a canonical lift of the transition functions of 2 det(7 ) from O(2) to Pin™*(2) we induce the
pin~ structure » on X. Note that the normal bundle of ¥ in P is orientable and thus

wi(det(T' X)) = wy (det(TP)|x).
In this way we can combine the two steps and see that s g induces » on 7' X using the isomorphism
(1.10) Elx =TEX®5det(TY)

and a canonical lift of the transition functions of 5det(7'X) from O(5) to Pin™(5). The details of the
canonical lifts involved can be found in [27, Lemma 1.7]; the salient fact is that each lifts the identity to
the identity.

Next, we note that det(7'X) and p*A are trivial over O. The former follows because O is an open set
in 3, but is orientable since it is diffeomorphic to an open set in x. As for the latter, we have seen that
P*A =2u, n|p = det(TP), and det(TP)|x = det(T'X). Since p is a diffeomorphism on O and p*A is
trivial, A is trivial on p(O).

Let #;; be transition functions with values in SO(2) for T'x. As we saw in the definition of v, for points in x,
TY @A=TyP2A.

Thus on p(O) the transition functions for A can be chosen to be the identity and the transition functions
for (TY @ \)|y can be chosen to be 7;j. The spin structure s gives a lift of 7;; to 7;; in Spin(2). Since the
canonical lift of the transition functions for 2 will also be the identity, 7; j is also the lift given by s, and ry.

Furthermore, using (1.4), ;; o p are transition functions for £ on O. By definition, sg gives the lift
1 j o p. Using (1.10), #;j o p are transition functions for both E|p and T'X, compatible by picking trivial
transition functions for 5 det(7"X). The canonical lift of the transition functions for 5 det(7" ¥) will also
be trivial, and the lift given by r will simply be the inclusion of 7;j o p into Pin™(2). Thus r = p*ry on O.
This completes the proof of Lemma 1.7. |

We can now prove Theorem B. In fact, we prove the following more detailed theorem, which includes
the statement of Theorem B. Here we use the notation of Hambleton and Su, where #¢1 is gluing along
the boundary of a tubular neighborhood of a generator of ;. The X(q) for ¢ = 1,3, 5,7 are the four
closed manifolds homotopy equivalent to RP>, with X(1) = RP?, and the X(gq) for¢g = 0,2,4,6,8
are constructed from pairs of homotopy RP>’s using the operation #g1. The labeling is such that a
characteristic submanifold P C X(g) has class ¢ € QT“JF /£ ={0,...,8}. See the discussion before
[26, Theorem 3.7] for details.

Theorem 1.11 Let M be a 5—-manifold with w1 = Z,. Let P C M be a characteristic submanifold.

(1) M admits a free S! action with a simply connected quotient if and only if M is orientable,
H,(M,7Z) is torsion-free, and 1 (M) acts trivially on 7, (M). Furthermore if by (M) = 0 then
M is diffeomorphic to RP?>.
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M3 O(M ?) = simply connected 4-manifolds B* such that:
Type II Bisspinand by(B) =by(M)+ 1.
Type 111 B is nonspin, by(B) = by(M) + 1 and sign(B) = £[P] mod 4.
Typeland M ¢ S B is nonspin and by = by (M) + 1.
X(q) #g1 (CP?x S1) withg = 0,4 | B is nonspin, b, = 3 and |sign B| = 1.
X(q) #g1 (S? xRP?) withq = 0,4 | B is nonspin, b, = 4 and |sign B| < 4.

Table 1

(2) Suppose M? satisfies the conditions in (1). Let Q(M) be the set of quotients of M by free
S actions. Table 1 gives necessary and sufficient conditions for a 4—manifold to be in Q(M).
S is a set of four exceptional 5—manifolds of Type I described in the final two rows. If b,(M') > 0
then for each B € Q(M), M admits infinitely many inequivalent S' actions with quotients
diffeomorphic to B.

Thus given M > satisfying the hypotheses of (1) and matching the description of one of the rows in the
left column, a 4-manifold B* is diffeomorphic to a quotient of M3 by a free S' action if and only if it
satisfies the conditions given in the corresponding row of the right column.

Proof We prove (2) first. Let M be an orientable 5—manifold with 1 (M) = Z, acting trivially on
7w2(M), H,(M,Z) torsion-free, and b,(M) > 0 unless M = RP?. Let P C M be a characteristic
submanifold.

If M — B is a principal S! bundle, the long exact homotopy sequence implies that 771 (M) — 71 (B) is
surjective. If 771 (B) = Z,, then the Gysin sequence implies that H3(B) — H3 (M) is injective. Since M,
and thus B, is orientable, H3(B) = Z, and H,(M ) would not be torsion-free. Thus any quotient of M
by a free S action is simply connected.

M is Type II First, suppose M — B is a principal S! bundle. By Lemma 1.3, b5(B) = by (M) + 1
and by [26, Proposition 6.1], B is spin.

Conversely, let B be a simply connected spin 4—manifold with b, (B) = b,(M) + 1. It follows from
[26, Proposition 6.1] that all of the total spaces of principal S! bundle over B with 7, = Z, are Type II
and have second Betti number b, (B) — 1. By [26, Theorem 3.1] all such total spaces are diffeomorphic
to M. If by(M) > 1 there are infinitely many primitive elements of H2(B,Z) = Z02(M)+1 and thus
infinitely many nonisomorphic such bundles.

M is Type III Suppose M — B is a principal S! bundle. By Lemma 1.3, b;(B) = by(M) + 1
and the first Chern class of the bundle is 2d, where d is a primitive element of H?(B, Z) such that
w, (T B) =d mod 2. It follows that B is nonspin, and by [31, Corollary I1.2.12] the intersection form of B
is odd. By the classification of integral forms and Donaldson’s theorem [16, page 5 and Theorem 1.3.1],
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the intersection form of B is diagonal, and so H*(B,Z) = H*(#*CP2#> CP2, 7,) for some integers a
and b. Then using [31, Corollary 11.2.12] again we see that

w2 (B) = (1,1,...,1) € H*(B,Zy) = Z%T°.

Thus d = (dy,....dyp) € H*(B,7) = 7%b where each d; is an odd integer. This completes the
proof of one direction of (2) since

b
[P]=B(B.d) = (d*.[B]) = Zdz Z djzzsignB mod 4.
i=1 j=a+1

Conversely, Let B be a nonspin simply connected 4—manifold with b, (B) = by (M) + 1. Assume further
that sign(B) = [P] € Z4/+. Again, H*(B,Z) = H*(#CP2#> CP2,7), where b,(B) = a + b and
sign(B) = a—b. Choose ¢ € {0, 1, 2, 3} such that £[P] =a — b + 4¢ mod 16. If b,(M) > 0, choose k
such that
(4+2€)k(k +1) =4c mod 16,

where € = %1 is the sign from Lemma 1.7. If b, (M) = 0 then choose k = 0. Set

dy =(1+2k,1,...,1) € H*(B,Z) = 7°%?,
Then d is primitive and as above, we see that w,(7TB) = d mod 2. Using Lemma 1.7 we have

B(B,dy) =sign B+ (44 2¢)k(k + 1) = £[P] mod 16.

Hence, by Lemma 1.5 and Theorem 1.2, M is diffeomorphic to the total space of an S! bundle over B
with first Chern class 2d. In the case where b, (M) > 1, there are infinitely many choices of k yielding
distinct classes d, and M is diffeomorphic to infinitely many total spaces of nonisomorphic S! bundles
over B.

M is Type I Suppose M — B is a principal S! bundle. By Lemma 1.3, b;(B) = b1 (M) + 1 and by
[26, Proposition 6.1] B is nonspin and the first Chern class of the bundle is 2d, where d is a primitive
element of H?(B,Z) such that w,(TB) # d mod 2.

If M = X(q)#¢1 (CP? x S') with ¢ = 0,4, then by(B) = 3 and by [26, Theorem 6.8] (d?,[B]) =
+q mod 8. If sign(B) = %3, then up to orientation as above H*(B,Z) = H*(#*CP?,7Z) and w,(TB) =
(1,1, 1). Thus

d =(dy,dy,d3) € H*(B,Z) =~ Z°,

and some d; must be even. Since d is primitive, some d; must be odd. One easily checks that under these
conditions, (d?,[B]) # 0,4 mod 8. So sign(B) =

If M = X(q)#g1(S?xRP3) with ¢ =0, 4, then b,(B) =4 and (d?,[B]) = £4¢ mod 8. If sign(B) = %4,
then up to orientation by the argument in the Type III case, H*(B,Z) = H*(#*CP?,Z) and

d=(dy,dy,ds,ds) € H(B,Z) = 73
with at least one d; even and at least one d; odd. Again (d?,[B]) # 0,4 mod 8, so |sign(B)| < 4.
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Conversely, Let B be a simply connected nonspin 4-manifold satisfying the conditions given by the table
for Q(M). Then H*(B,Z)=H* (#”(CPz#b(C_PZ, Z) for some integers a, b such thata+b =b(M)+1.
Let (¢, s) € ZgD7Z, represent the cobordism class of P C M in the pin¢ cobordism group SZT“C =7.g®7Ly;
see [26, page 154]. By [26, Theorem 3.6], ¢ + 5 = by(M) + 1 mod 2.

If ¢ = 0, 4 then [26, Theorem 3.7] implies that a + b > 3, so we can assume that up to orientation a > 2
and using Table 1 either a + b > 5 or |sign(B)| < b,(B), which implies b > 0. Define the following
elements d, € H2(B,Z) =~ Z° & Z" for each k € Z:

o _{(1+8k,0,...,0,1) ith>0,
T=5 = 248k 1,1,1,1,0,....0) ifb=0,
e ={(2+8k,1,0,...,0,1) ifh>0,
T=% T\ (1 4+8k1,1,1,0,...,0)  ifh=0.

If ¢ = 2, [26, Theorem 3.7] implies that @ + b > 3 and we can assume a > 2 and define
g=2: dr=(148k,1,0,...,0).

If ¢ is odd, by [26, Theorem 3.7] a + b > 2, and we can assume a > 1. Define
g=1: dy=(01+8k4,0,...,0),
g=3: dry=(1+8k2,0,...,0).

In each case dy is primitive, w, (T B) # dy mod 2, and ¢ = :i:(d]f, [B]) mod 8. By [26, Theorem 6.8]
the S'! bundle over B with first Chern class 2dj is diffeomorphic to M. Again, infinitely many k yield
distinct classes dj, and thus nonisomorphic bundles.

To prove (1), first assume M is a S—manifold with 77 (M) = Z, admitting a free S! action with simply
connected quotient B. By Lemma 1.3, M is orientable, 71 (M) acts trivially on 7, (M) and Hy(M, Z)
is torsion-free. If by(M) = 0, then b,(B) = 1 and up to orientation H*(B,Z) = H*(CP?,Z) and
w, (T B) is nonzero. There are only two primitive classes +d € H?(B, Z) = 7, each restricting to w, (B)
mod 2. Thus B is of Type IIl and B([B, d]) = £1. By Theorem 1.2, M is diffeomorphic to RP>.

To prove the converse, suppose M is an orientable S—manifold with 7y (M) = Z, acting trivially on
72(M) and H,(M,7Z) torsion-free. Let P C M be a characteristic submanifold. Since RP> admits a
free S! action induced by the Hopf action we assume b, (M) > 0. We must show the set Q(M ) described
in Table 1 is nonempty.

If M is Type 11, by [26, Theorem 3.6] by(M) is odd. Then B = #02(M)+1/292 5 §2 ¢ O(M). If M
is Type I then B = #02(M)CP2#CP2 € Q(M). If M is Type I1I, let 0 < ¢ < 16 be an integer such that
[P] = ¢ mod 16. By [26, Theorem 3.6] we see that ¢ = b5(M ) + 1 mod 2. Choose / such that

0<c—4l <4.
Then
a=3by(M)+1+c—4l) and b=1(by(M)+1—c+4l)
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are nonnegative integers. Let B = #2C P2 #? CP2. Then by(B) =by(M)+1 and sign(B) =[Pl € Z4/ .
So B € Q(M). O

We note that the final paragraph of the proof above in fact shows the following, which we will make use
of later.

Corollary 1.12 Let M be a S—manifold with 7 = 7, admitting a free S action with a simply
connected quotient. Then M admits a free S! action with quotient diffeomorphic to either #°S? x S? or
#CP2#0 CP2 forsomea,b,c € 7.

Combining Theorem 1.11 with [26, Theorem 3.7], we can characterize the manifolds satisfying Theorem A.

Corollary 1.13 Let M? be a 5—manifold. The following are equivalent:

(1) M3 is Type III and admits a free S' action with a simply connecte