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and Yang–Mills instanton Floer theory

CHRISTOPHER SCADUTO

Using instanton Floer theory, extending methods due to Frøyshov, we determine the definite lattices
that arise from smooth 4–manifolds bounded by certain homology 3–spheres. For example, we show
that forC1 surgery on the (2,5) torus knot, the only nondiagonal lattices that can occur are E8 and the
indecomposable unimodular definite lattice of rank 12, up to diagonal summands. We require that our
4–manifolds have no 2–torsion in their homology.
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1 Introduction

Let X be a smooth, closed and oriented 4–manifold. The intersection of 2–cycles defines the structure
of a unimodular lattice on the free abelian group H2.X IZ/=Tor. Donaldson’s celebrated Theorem A
of [8] says that if this lattice is definite, then it is equivalent over the integers to a diagonal form h˙1in.
Donaldson’s original proof used instanton gauge theory, and alternative proofs were later given using
Seiberg–Witten and Heegaard Floer theory (see Ozsváth and Szabó [30, Theorem 9.1]), in conjunction
with a lattice-theoretic result due to Elkies [13].
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1588 Christopher Scaduto

For a given integer homology 3–sphere Y , which definite lattices arise as the intersection forms of smooth
4–manifolds with boundary Y ? Donaldson’s theorem may be viewed as the solution to this problem in
the case of the 3–sphere. To date, there is only one result in which the set of definite lattices is determined
and does not consist of only diagonal lattices: under the assumption that the 4–manifolds are simply
connected, Frøyshov showed in his PhD thesis [20] that the only nondiagonalizable definite lattices
bounded by the Poincaré sphere are �E8˚h�1in. The proof uses instanton gauge theory, and no other
proofs are yet available.

In this article we extend and reformulate some of Frøyshov’s methods in [20; 22] to obtain further results
in this direction. The central new application is the following.

Theorem 1.1 Let Y be an integer homology 3–sphere Z=2–homology cobordant toC1 surgery on a knot
with smooth 4–ball genus 2. If a smooth , compact , oriented and definite 4–manifold with no 2–torsion in
its homology has boundary Y , then its intersection form is equivalent to one of

h˙1in; E8˚hC1i
n; �12˚hC1i

n;

where �12 is the unique indecomposable unimodular positive-definite lattice of rank 12.

If a nondiagonal lattice in this list occurs, then h�1in for n> 0 does not: if the former arises from X1

and the latter from X2, both with boundary Y , then the closed 4–manifold X1[X2 has a nondiagonal
form, contradicting Donaldson’s Theorem A. An example realizing all the positive forms on the list is
C1 surgery on the .2; 5/ torus knot, which is the Brieskorn sphere �†.2; 5; 9/.

Corollary 1.2 If a smooth , compact , oriented and definite 4–manifold with no 2–torsion in its homology
has boundary �†.2; 5; 9/, then its intersection form is equivalent to one of

hC1in for some n> 1; E8˚hC1i
n for some n> 0; �12˚hC1i

n for some n> 0;

and all of these possibilities occur.

The realizations of these lattices are straightforward, except perhaps for the case of E8; see eg Golla
and Scaduto [26]. A slightly more general statement of Theorem 1.1 follows from Corollary 4.3 below.
Theorem 1.1 may be viewed as the next installment of the following, which itself is a kind of successor
to Donaldson’s Theorem A cited above.

Theorem 1.3 Let Y be an integer homology 3–sphere Z=2–homology cobordant toC1 surgery on a knot
with smooth 4–ball genus 1. If a smooth , compact , oriented and definite 4–manifold with no 2–torsion in
its homology has boundary Y , then its intersection form is equivalent to one of

h˙1in; E8˚hC1i
n:

A corollary is a slight improvement of Frøyshov’s theorem, obtained by applying the result to C1 surgery
on the .2; 3/ torus knot, the orientation-reversal of the Poincaré sphere †.2; 3; 5/:
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Corollary 1.4 (cf Frøyshov [20]) If a smooth , compact , oriented and definite 4–manifold with no
2–torsion in its homology has boundary �†.2; 3; 5/, then its intersection form is equivalent to one of

hC1in for some n> 1; E8˚hC1i
n for some n> 0;

and all of these possibilities occur.

We give more examples in Section 5. We expect the methods used to provide further applications. A
good candidate to consider next is �†.3; 4; 11/, which is C1 surgery on the .3; 4/ torus knot of genus 3.
In [26] we show that this manifold bounds the unimodular lattices hC1i, E8, �12, E27 and A15, the last
two being the indecomposable positive-definite unimodular lattices of ranks 14 and 15, respectively; we
exhibit some of these in Section 5.

A straightforward Mayer–Vietoris argument shows that the statements of both Theorems 1.1 and 1.3
hold for 3–manifolds that are not integer homology 3–spheres, as long as the lattice is assumed to
be unimodular. In joint work with Marco Golla [26], we provide analogues of the above results for
nonunimodular lattices.

Other than Donaldson’s Theorem A and Frøyshov’s work in instanton Floer theory, restrictions on the
possible definite lattices bounded by a fixed homology 3–sphere have previously been established using
Seiberg–Witten and Heegaard Floer theory. In particular, there is a fundamental inequality for both the
Heegaard Floer d–invariant of Oszváth and Szabó [30, Theorem 1.11] and Frøyshov’s Seiberg–Witten
correction term [23, Theorem 4]. A lattice-theoretic result of Elkies [14] implies that if an integer
homology 3–sphere has either of these invariants the same as that of the Poincaré sphere, then there are
only 14 possible definite lattices that occur, up to diagonal summands; see Table 1. While our proofs of all
results stated above depend only on instanton theory, we will see that for Theorem 1.3 these restrictions
from other theories can replace some, but not all, of the instanton theoretic input of the argument. The
same is true for Theorem 1.1, as discussed at the end of Section 4.

To prove Theorems 1.1 and 1.3, we provide partial analogues of Frøyshov’s instanton inequality from [22]
in which the coefficients used are the integers modulo a power of 2, with an emphasis on the cases of 2
and 4. The inequalities provide new lower bounds for the genus of an embedded surface in a smooth
closed 4–manifold in terms of data from the intersection form. Part of the input for these inequalities are
relations in the instanton Floer cohomology ring of a circle times a surface, taken with the coefficient
rings Z=2k . We only prove the relevant relations for low genus and small k, which is more than what is
needed for our applications.

Apart from the determination of the relations just mentioned, the proofs of the inequalities we use are
straightforward adaptations of the characteristic zero case from [22], as explained in Section 7. We also
digress in Section 7.3 to discuss analogues of Frøyshov’s inequality for odd characteristic coefficients.
However, these other variations do not appear to be useful.

Geometry & Topology, Volume 28 (2024)



1590 Christopher Scaduto

Frøyshov has announced in several public lectures over the years the construction of two homology
cobordism invariants, denoted by q2 and q3, defined using the second and third Stiefel–Whitney classes
of the basepoint fibration in the context of mod two instanton Floer theory, in a fashion similar to his
construction of the h–invariant of [21]. We expect that the inequalities studied here are relevant to
this framework. We rather indirectly touch upon these matters in Section 8, where we replace our first
arguments with some using instanton Floer theory for homology 3–spheres.

Outline In Section 2 we state the inequalities obtained from instanton theory, our main technical tools.
The proofs of these, which are adaptations of Frøyshov’s argument to the settings of Z=2k coefficients,
are presented in Section 7. In Section 3 we prove Theorem 1.3 and Corollary 1.4. In Section 4 we prove
Theorem 1.1 and Corollary 1.2. More examples are presented in Section 5. In Section 6 we prove some
relations in the instanton cohomology of a circle times a surface. An alternative proof of Corollary 1.2,
closer in spirit to Frøyshov’s proof of Corollary 1.4 and emphasizing the role of instanton Floer homology
for homology 3–spheres, is presented in Section 8. Finally, in Section 9, we discuss an example of a
rank 14 definite unimodular lattice E27 which illustrates the necessity of the mod 4 data used in the proof
of Theorem 1.1.

Acknowledgements The author thanks Kim Frøyshov for his encouragement and several informative
discussions. The work here owes a great debt to his foundational work in instanton homology. Thanks to
Motoo Tange for being the first to inform the author that �†.2; 5; 9/ bounds E8. The author also thanks
Marco Golla, Ciprian Manolescu, Matt Stoffregen and Josh Greene for helpful correspondences. The
author was supported by NSF grant DMS-1503100.

2 The inequalities

In this section we state partial analogues of Frøyshov’s instanton inequality from [22] when the coefficients
used are the integers modulo certain powers of 2. Our primary focus will be the case of Z=4; we also
discuss the case of Z=2, which is most relevant to Sections 8 and 9. In addition, we make one use of the
case Z=8. The proofs of the results in this section are presented in Section 7. For context, we also recall
Frøyshov’s inequality of [22]. The reader interested in the applications may wish to skip this section and
refer back when needed.

Let Vg denote the Z=4–graded instanton cohomology of a circle times a surface of genus g equipped
with a U.2/–bundle having odd determinant line bundle. The 4D cobordism defined by a 2D pair-of-pants
cobordism crossed with the surface induces a map Vg ˝Vg ! Vg endowing Vg with the structure of an
associative ring with unit. Muñoz [28] determined a presentation for this ring over Q which is recursive
in the genus, and we will see later that Vg is torsion-free. There are two distinguished elements in Vg ,
denoted by ˛ and ˇ, of degrees 2 and 0 mod 4, respectively. Define

N 2
˛ .g/ WDminfn> 1 W ˛n � 0 2 Vg ˝Z=2g

Geometry & Topology, Volume 28 (2024)
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for g> 1, and N 2
˛ .0/D 0. Here Vg denotes the quotient of Vg by relative Donaldson invariants involving

�–classes of loops; see Sections 6 and 7.2 for more details. The element ˛ .mod 2/ in Vg ˝Z=2 may be
defined using the second Stiefel–Whitney class of the basepoint fibration, while ˇ 2 Vg is defined using
the first Pontryagin class of the basepoint fibration. Let k be a power of 2. DefineN k

ˇ
.0/D 0 and for g> 1,

N k
ˇ .g/ WDminfn> 1 W ˇn � 0 2 Vg ˝Z=kg:

In Section 6 we will see that ˛2�ˇ .mod 8/, and it follows, for example, that 2N 4
ˇ
.g/>N 2

˛ .g/. Further,
ˇ2�64 is nilpotent in Vg , and so N 2

˛ .g/ is finite, as is N k
ˇ
.g/ for k a power of 2 at most 64. Our primary

focus will be on the case k D 4.

Given a definite lattice L we define a nonnegative integer m.L/ as follows. For a subset S � L denote
by Min.S/ the elements which have minimal absolute norm among elements in S . Note that Min.S/ is
of even cardinality when it is not f0g and when S is closed under negation, for in this case multiplication
by �1 acts freely. We call w 2 L extremal if it is of minimal absolute norm in its index-two coset,
ie w 2Min.wC 2L/. If LD 0, set m.L/D 0. Otherwise, define

(1) m.L/ WDmax
˚
jw2j � 1 W w ¤ 0 extremal; 1

2
#Min.wC 2L/� 1 .mod 2/

	
:

It is straightforward to show that m.L/D 0 for a diagonal lattice. In many examples in the sequel we
bound m.L/ from below, and in some cases compute it.

Theorem 2.1 Let X be a smooth , closed , oriented 4–manifold with no 2–torsion in its homology and
bC2 .X/ D 1. Let † � X be a smooth , orientable and connected surface in X of genus g with self-
intersection 1. Let L�H 2.X IZ/=Tor be the unimodular negative-definite lattice of vectors vanishing
on Œ†�. Then

(2) N 4
ˇ .g/> f4.L/;

where f4.L/ is a nonnegative integer invariant of the unimodular lattice L defined below in (7), satisfying
f4.L/>

˙
1
2
m.L/

�
, and which vanishes if and only if L is diagonalizable.

As mentioned in the introduction, the proof is an adaptation of the characteristic-zero case in [22].
Replacing Z=4 with other coefficient rings yields similar results, which we comment on below and at
various points throughout the article. However, Theorem 2.1 is all that is needed to prove Theorem 1.1.

If X is negative definite, the inequality above applies to X # CP2 with the genus-zero exceptional sphere;
in this case, L is the lattice of X . The vanishing of the left side of the inequality forces L to be diagonal,
implying Donaldson’s diagonalization theorem [8] assuming that X has no 2–torsion in its homology. In
fact, the term m.L/, which also vanishes if and only if L is diagonal (see Proposition 2.3), essentially
appears in Fintushel and Stern’s proof [15] of Donaldson’s theorem.

The effectiveness of the inequality in Theorem 2.1 towards our applications comes from the determination
of N 4

ˇ
.g/. In Section 6 we give evidence that the relations ˛g � 0 .mod 2/ and ˇdg=2e� 0 .mod 4/ hold

in Vg for all g. For our applications, we only need verify this for g 6 2. To this end:
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1592 Christopher Scaduto

Proposition 2.2 For g 6 128 we have N 2
˛ .g/D g and N 4

ˇ
.g/D

˙
1
2
g
�

.

We will in fact reduce the verification of this proposition for general g to an elementary arithmetic
problem, which we do not attempt to solve in this article. The threshold g D 128 is insignificant, and is
the extent to which we have verified the formulas with a computer.

A partial analogue of Theorem 2.1 with ˇ replaced by ˛, and with coefficients Z=4 replaced by Z=2,
is obtained as follows. Below we will define a lattice invariant f2.L/ which arises naturally when
counting reducibles mod 2 in instanton moduli spaces cut down by the divisor associated to the second
Stiefel–Whitney class of the basepoint fibration. The invariant f2.L/ satisfies

(3) 2f4.L/> f2.L/>m.L/:

Now assume the hypotheses of Theorem 2.1. Then Theorem 2.1, inequality (3), and Proposition 2.2 imply
the inequality

(4) g > f2.L/

if g is even and at most 128. If g is odd we still have gC1> f2.L/. However, our computations suggest
the possibility that (4) is true for all g. In Section 7 we explain the issue with directly adapting the
argument for Theorem 2.1 to this case.

While the full generality of (4) is left open, we will see that the invariants f2.L/ and m.L/ arise as
sometimes more useful invariants than f4.L/ in the setting of instanton homology with mod 2 coefficients,
as is explored in Sections 8 and 9.

We now define the lattice terms f2.L/ and f4.L/. Let L be a definite unimodular lattice. Given x; y 2L

write x � y 2 Z for their inner product, and x2 for x � x. For w 2 L write Lw � L for the sublattice of
elements x 2 L satisfying w � x � 0 .mod 2/. Given z 2 L, define a linear form Lz W Sym�.L/! Z by
first letting Lz.a1 � � � am/D .z � a1/ � � � .z � am/, where each ai 2 L, and then extending linearly over Z.
Next, define

(5) f2.L/ WDmaxfjw2j �m� 1 W 2�m�� 1 .mod 2/g 2 Z>0;

the maximum taken over triples .w;m; a/wherew2L is nonzero and extremal,m2Z>0, a 2 Symm.Lw/
and, as indicated in (5) above, 2�m�.L; w; a;m/� 1 .mod 2/, where

(6) �.L; w; a;m/ WD
1

2

X
z2Min.wC2L/

.�1/..zCw/=2/
2

Lz.a/:

In (5) we use the convention that max.∅/D 0. The conditions a 2 Symm.Lw/ and w ¤ 0 imply that
�.L; w; a;m/ is an integer divisible by 2m. The signs appearing in � do not actually matter for the
definition of f2.L/, but do matter for the definitions to follow. When mD 0 we interpret Lz.a/D 1;
in this case we simply write �.L; w/. Note that when L is an even lattice the signs appearing in � are
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all positive. We remark that our definition of � is essentially that of [21] and one half of that in [22],
except that in those references, only aD am0 is used. Note that �.L; w/� 1 .mod 2/ is equivalent to the
condition that 1

2
#Min.wC 2L/� 1 .mod 2/, and thus f2.L/>m.L/. We do not have an example for

which f2.L/ > m.L/, but we include f2.L/ in our discussions because whatever we can prove for m.L/
also holds for f2.L/.

Moving on to the lattice term in the mod 4 setting, we define

(7) f4.L/ WDmax
˚
1
2
.jw2j �m/ W 2�m0�¥ 0 .mod 4/

	
2 Z>0;

where the maximum is over triples .w;m; a/ where w 2 L is nonzero and extremal, m 2 Z>0 with
w2�m .mod 2/, a2Symm0.Lw/˝Symm1.L/withm0Cm1Dm, and 2�m0�.L; w; a;m/¥0 .mod 4/,
as is indicated in (7). As claimed in (3), we have

f4.L/>
˙
1
2
f2.L/

�
:

This follows directly from the definitions if f2.L/ D jw2j � m � 1 for an extremal vector w with
a 2 Symm.Lw/ and �.L; w; a;m/� 1 .mod 2/ where w2�m is even. If instead w2�m is odd, we use
that �.L; w; va; 1Cm/� �.L; w; a;m/� 1 .mod 2/ for any vector v 2 L with v �w odd.

Proposition 2.3 Each of m.L/, f2.L/ and f4.L/ vanish if and only if L is diagonalizable.

Proof Assume for simplicity that L is positive definite, and write LD hC1in˚L, where L contains
no vectors of square 1. If L is nondiagonalizable, then L ¤ 0. Let w 2 L be of minimal nonzero
norm in L. Suppose v 2 wC 2L and v ¤ ˙w. Without loss of generality suppose v �w > 0. Then
.w�v/2Dw2�2w�vCv26w2Cv2. On the other hand,w�v22L�f0g, and so .w�v/2>4w2 sincew is
minimal inL�f0g. We obtain v2>3w2. We conclude that v…Min.wC2L/ and Min.wC2L/Dfw;�wg,
and thus m.L/ > w2 � 1 > 1, and the same holds for f2.L/ and f4.L/ by (3). The converse may be
proved by direct computation, or we can apply Theorem 2.1 withX DCP2#kCP2 and† the exceptional
sphere in CP2 to obtain that f2.L/D f4.L/Dm.L/D 0 for the diagonal lattice LD hC1ik .

For the proof of Theorem 1.3 we will also make use of one inequality which arises from instanton
constructions in the setting of mod 8 coefficients.

Proposition 2.4 Define f8.L/ by replacing “mod 4” in the definition of f4.L/ with “mod 8”. Assume
the hypotheses of Theorem 2.1, and that g D 1. Then f8.L/ 2 f0; 1g.

The proof is similar to that of Theorem 2.1, with the additional input that N 8
ˇ
.g/D 1.

The lattice terms appearing above should be compared to the analogous term appearing in Frøyshov’s
inequality for the instanton h–invariant, which is defined in the setting of Q coefficients. We now recall
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his result. In fact, we will state a slightly more general result. We define for a definite unimodular lattice L

the quantity

(8) e0.L/ WDmax
˚˙
1
4
.jw2j �m/

�
W �¤ 0

	
2 Z>0;

where the maximum is over triples .w;m; a/ where w 2 L is extremal, m 2 Z>0, w2 � m .mod 2/,
a 2 Symm.L/ and �.L; w; a;m/¤ 0, as is abbreviated in (8). From the definitions we have

e0.L/>
˙
1
2
f4.L/

�
>
˙
1
4
f2.L/

�
:

Denote by h.Y / Frøyshov’s instanton h–invariant defined in [21]. We next define

N 0
ˇ .g/ WDminfn> 1 W .ˇ2� 64/n D 0 2 Vg ˝Qg

for g > 1 and N 0
ˇ
.0/D 0. The computation N 0

ˇ
.g/6

˙
1
2
g
�

due to Muñoz [28, Proposition 20] is used in
Frøyshov’s inequality, and determines the left-hand sum in the following.

Theorem 2.5 (cf [22, Theorem 2]) Let X be a smooth , compact , oriented 4–manifold with homology
3–sphere boundary Y and bC2 .X/D n> 1. For 16 i 6 n, let †i �X be smooth , orientable , connected
surfaces in X of genus gi with †i �†i D 1, which are pairwise disjoint. Denote by L�H 2.X IZ/=Tor
the unimodular lattice of vectors vanishing on the classes Œ†i �. Then

(9) h.Y /C

nX
iD1

˙
1
2
gi
�

> e0.L/:

We have lifted the restriction in [22] that all but one of the surfaces have genus 1. This follows from
a minor technical improvement of the proof, which uses the existence of a perfect Morse function on
the moduli space of projectively flat U.2/ connections on a surface with fixed odd determinant. This is
explained in Section 7.

Each of the lattice terms defined above arises from adapting the proof of Frøyshov’s inequality; each such
adaptation has a choice of coefficient ring, a corresponding relation in the instanton cohomology ring of a
circle times a surface, and a possible assumption on the torsion group T�H 2.X IZ/ of the 4–manifold.
We summarize the expected scheme for some of the cases considered above as follows:

lattice term coefficients relation torsion assumption

e0.L/ Q .ˇ2� 64/dg=2e D 0 none
f2.L/ Z=2 ˛g � 0 .mod 2/ 2−#T

f4.L/ Z=4 ˇdg=2e � 0 .mod 4/ 2−#T˙
1
2
f2.L/

�
Z=4 ˇdg=2e � 0 .mod 4/ 4−#T

The relations are to be understood within Vg , although we expect the mod 2 and mod 4 relations, which as
listed are only verified for g 6 128 in this paper, to hold in Vg . The first row corresponds to Theorem 2.5,
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the second row to inequality (4) (which is established for g even and g 6 128), and the third row to
Theorem 2.1. The fourth row is the result of slightly relaxing the torsion assumption in the proof of
Theorem 2.1. However, we will make no use of it and will not mention it further.

We have only included in our discussion the variations of Frøyshov’s inequality we have found useful for
our applications. However, the proof of Theorem 2.5 is easily adapted to any coefficient ring. We discuss
this to some extent in Section 7.3.

In Section 9 we show that the indecomposable unimodular positive-definite lattice of rank 14 has f4.L/D2,
while e0.L/D 1 and f2.L/D 2. This example shows the necessity of the inequality associated to mod 4
coefficients in proving Theorem 1.1.

3 Genus 1 applications

In this section we prove Theorem 1.3 and Corollary 1.4 assuming the results of Section 2, and using
Heegaard Floer d–invariants. Next section we will show that these results can be proved without Heegaard
Floer theory, using only our instanton obstructions. We begin with a corollary of our inequalities that
follows [22, Corollary 1].

For a knot K in an integer homology 3–sphere Y0, we define g4;2.K/ to be the minimum over all g > 0

such that there exists a Z=2–homology 4–ball W with @W D Y0 and an oriented, genus g surface †
smoothly embedded in W with @†DK. If no such data exists, we set g4;2.K/D1. If K is a knot in
the 3–sphere, note that g4;2.K/6 g4.K/, the latter quantity being the smooth 4–ball genus of K.

Corollary 3.1 Let Y be an integer homology 3–sphere resulting from �1 surgery on a knot K in an
integer homology 3–sphere. Suppose Y bounds a smooth , compact , oriented 4–manifold X with no
2–torsion in its homology and negative-definite intersection form L. If g4;2.K/6 128, then we have the
inequality

f4.L/6
˙
1
2
g4;2.K/

�
:

Furthermore , if g4;2.K/D 1, then f8.L/ 2 f0; 1g.

To obtain the corollary, let Z be the orientation-reversal of the negative-definite surgery cobordism from
Y0 to Y . Then apply Theorem 2.1 to the closed 4–manifold X [Y Z [Y0

W , which has a surface of
self-intersection 1 formed by capping off the component of a surface †�W bounded by K as above
with a disk from the 2–handle of the surgery cobordism Z. Proposition 2.2 determines the left-hand
side of (2) for g 6 128, and the inequality for f4.L/ follows. Apply Proposition 2.4 to obtain the last
statement regarding f8.L/.

We recall some basic notions from the theory of lattices. Let us call a definite lattice reduced if there are
no elements of squared norm ˙1. A root in a reduced definite lattice L is an element with square ˙2.
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A root lattice is a reduced positive-definite lattice generated by its roots. Examples are An, Dn, E6, E7
and E8, each associated to a Dynkin diagram:

� � �An E6

� � �Dn E7

E8

The root lattice is obtained by taking as basis the vertices, each having square 2; if two vertices are joined
by an edge, their inner product is �1, and is otherwise 0. For An we require n> 1, and for Dn, n> 4. In
each case, n is the number of vertices, or the rank of the lattice. It is well known that any positive-definite
root lattice can be written as a direct sum of these given lattices.

To simplify the notation below, we assume henceforth that L is a positive-definite unimodular lattice. Any
such lattice can be written as LD hC1in˚L, where L is reduced and n> 0. We write R�L for the root
lattice generated by the roots of L, and also call R the root lattice of L. In general, L is not determined
by R, but it is common in many cases to notate L by the data R; cf [7, Chapter 16]. For example, we
write A15 for the rank 15 unimodular positive-definite lattice whose root lattice R is isomorphic to A15.
For this reason we have used different fonts for unimodular lattices and root lattices, although E8 D E8.
The presence of an “O” indicates an empty root lattice; for example, the lattice O23, called the shorter
Leech lattice, has no roots.

Lemma 3.2 If f4.L/D 1, then the root lattice R � L is indecomposable.

Proof Write LD hC1in˚L as above, so that R � L. Suppose w 2 R is extremal in R and w2 D 4.
We first claim that Min.w C 2L/ D Min.w C 2R/. Let v 2 Min.w C 2L/ with v … R, and suppose
without loss of generality that w � v > 0. Then .w� v/2 D 4� 2w � vC v2 6 4C v2. On the other hand,
w�v 2 2.L�R/ implies .w�v/2 > 4 �3D 12, since L�R has vectors only of square > 3. We conclude
that v2 > 8, contradicting the assumption that v is extremal. This proves the claim.

Now suppose R is decomposable, ie RDR1˚R2. Then there are u 2R1 and v 2R2 both of square 2.
Set w D uC v 2 R, which has w2 D 4. Then Min.w C 2L/ D f˙u˙ vg contains 4 elements, and
�.L; w/D 2¥ 0 .mod 4/. Thus f4.L/> 1

2
w2 D 2.

The following lemma is not needed for what follows, but serves as a warmup to the computations of the
next section. Furthermore, it will be used in Section 8 to give an alternative proof of Corollary 1.4.

Lemma 3.3 If m.L/D 1 and R � L is indecomposable , then LDE8˚hC1i
n for some n> 0.

Proof We claim the map � W R˝Z=2! L˝Z=2 induced by inclusion is an isomorphism. (This is
essentially the proof of [20, Lemma 4.3].) Suppose it is not. Choose w of minimal norm such that
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n 8 12 14 15 16 17 18 19 20 21 22 23

E8 D12 E27 A15 D2
8 A11E6 D3

6 , A29 A27D5 D5
4 , A45 A73 A221 O23

Table 1: Elkies’ list.

Œw� is not in the image of � . In particular, w is extremal. Now suppose v D wC 2u is extremal with
v �w > 0 and v ¤˙w. If Œu� … im.�/ then 2w2 > w2� 2w � vC v2 D .w� v/2 D 4u2 > 4w2, the last
inequality by minimality of w. This is a contradiction, and so Œu� 2 im.�/. In particular, Œw˙u� … im.�/.
Then .w˙ u/2 > w2 implies 2jw � uj 6 u2. But w2 D v2 D w2C 4w � uC 4u2 implies jw � uj D u2,
whence uD 0. It follows that Min.wC2L/D fw;�wg. Then m.L/>w2�1> 2, since w is not a root,
contradicting our hypothesis on m.L/.

Thus � is an isomorphism. In particular, rank.R/D rank.L/ and det.R/ is odd. If R is indecomposable,
the latter condition implies that R is either zero, E6, E8 or An for n > 2 even. That m.L/ D 1 when
LDRDE8 follows from direct computation, or by applying Corollary 3.1 to C1 surgery on the .2; 3/
torus knot, which bounds E8.

If R is zero, so is L, since the ranks are equal. But then L is diagonal, contradicting m.L/D 1. Next,
suppose RDAn. A standard model of An is the sublattice of ZnC1 spanned by vectors whose coordinates
add up to zero. Suppose n> 3, and let w D .1; 1;�1;�1; 0; : : : ; 0/ 2 An. Then w is extremal in An with
square 4, and Min.wC 2L/DMin.wC 2An/ consists of the 6 vectors obtained from w by permuting
the two signs. Thus 1

2
#Min.wC 2L/D 3, implying m.L/> w2� 1D 3. Finally, the cases E6 and A2

are ruled out by rank.R/D rank.L/; it is well known that there are no unimodular, nondiagonal definite
lattices of rank < 8.

We next recall the fundamental inequality for the Heegaard Floer d–invariant of Oszváth and Szabó [30,
Theorem 1.11]. This states that if Y is an integer homology 3–sphere, and X is a smooth, negative-definite
4–manifold bounded by Y , then for any characteristic vector � 2H 2.X IZ/=Tor, we have

(10) d.Y /> 1
4
.b2.X/� j�

2
j/:

Recall that a characteristic vector � is an element that satisfies � � x � x2 .mod 2/ for every x in the
lattice. It is classically known that the square of any characteristic vector is modulo 8 the rank of the
lattice. Elkies showed in [14] that, up to adding diagonal summands hC1in, there are a finite number
of positive-definite unimodular lattices with no characteristic vectors of squared norm less than n� 8,
where n is the rank of the lattice. There are in fact 14; see Table 1. Thus by (10), if a nondiagonal
definite lattice is bounded by Y with d.Y /D�2, as is the case for the orientation-reversal of the Poincaré
homology 3–sphere, it must be one of these 14 lattices, possibly upon adding hC1in. We remark that
Seiberg–Witten theory can also be used make this reduction, as Frøyshov’s monopole invariant (rescaled)
also satisfies (10); see [23, Theorem 4]. It is known that if Y is C1 surgery on a knot of slice genus 1,
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we have d.Y / 2 f0;�2g; see (25). According to Elkies [13], if d.Y / D 0, the only possible definite
lattices that Y can bound are diagonal.

We obtain the following, which, along with the observation that the statement is Z=2–homology cobordism
invariant (see Section 5), implies Theorem 1.3.

Corollary 3.4 Let Y be an integer homology 3–sphere resulting fromC1 surgery on a knotK in an integer
homology 3–sphere with g4;2.K/ D 1. If X is a smooth , compact , oriented and definite 4–manifold
bounded by Y with nondiagonal lattice L and no 2–torsion in its homology, then LD hC1in˚E8 for
some n> 0.

Proof From the above remarks regarding d–invariants and Elkies’ result, the reduced part L of L is
among the 14 lattices in Table 1. By Corollary 3.1 we have f4.L/6 1. We may assume f4.L/D 1, for
otherwise L is diagonal. By Lemma 3.2, L must be one of E8, D12 D �12, A15 or O23. We must rule
out the last 3 possibilities.

Suppose LD A15. As in Lemma 3.3, we take w D .1; 1;�1;�1; 0; : : : ; 0/ 2 A15, which is extremal and
has w2 D 4, with �.L; w/D 3¥ 0 .mod 4/. Thus f4.L/> 1

2
w2 D 2, ruling this possibility out.

Suppose L D O23. Minimal vectors in O23 have square 3. Take any w 2 O23 with w2 D 4. Such
vectors exist by inspecting the theta series of O23, given in (7) of [7, page 443]. Then w is extremal and
Min.wC 2L/D fw;�wg, so again we are led to f4.L/> 1

2
w2 D 2, eliminating O23.

Finally, consider the case L D D12. Here f4.L/ D 1 (see Proposition 4.1), and we use instead the
constraint from Corollary 3.1 that f8.L/D 1. To this end we take w D .1; 1; 1; 1; 0; : : : ; 0/ 2 D12 as our
extremal vector. Then Min.wCL/DMin.wCD12/ consists of the vectors .˙1;˙1;˙1;˙1; 0; : : : ; 0/,
where the number of signs is even. Thus �.L; w/ D 1

2
#Min.wCL/ D 1

2
� 8 D 4 ¥ 0 .mod 8/. Thus

f8.L/> 1
2
w2 D 2, which rules out D12 and completes the proof.

Proof of Corollary 1.4 The manifold �†.2; 3; 5/ is C1 surgery on the .2; 3/ torus knot of genus 1. By
Theorem 1.3 it remains to realize the listed lattices. The corresponding surgery cobordism provides the
form hC1i, and �†.2; 3; 5/ bounds a plumbed manifold with lattice E8. After connect summing with
copies of CP2 we obtain from these hC1inC1 and hC1in˚E8 for n> 0. Finally, h�1in cannot occur:
for if it did, gluing the orientation reversed 4–manifold to the E8 plumbing would yield a nondiagonal
definite lattice E8˚hC1in, contradicting Donaldson’s diagonalization theorem.

As mentioned in the introduction, Corollary 1.4 is a slight improvement on the main result of Frøyshov’s
PhD thesis [20]. Although the proof above used some Heegaard Floer theory, we will remove this
dependency in the next section. In Section 8 we provide another proof of Corollary 1.4 which is closer to
Frøyshov’s proof.
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4 Genus 2 applications

In this section we prove Theorem 1.1. We continue our notation of lattices from Section 3. We begin
with a family of examples for later reference. Using notation of [22] set

(11) �4k D
n
.x1; : : : ; x4k/ 2 Z4k [ .vCZ4k/ W

X
xi � 0 .mod 2/

o
;

where v D
�
1
2
; : : : ; 1

2

�
2 R4k . We remark that �4 is diagonalizable, and �8 D E8. The lattice �4k is

even precisely when k is even. We note that �12 is the same as D12 from Table 1, the latter notation
indicating that the root lattice of �12 is D12. The lattice �4k is isomorphic to the intersection form of the
positive-definite plumbing with boundary the orientation-reversed Brieskorn sphere �†.2; 2k�1; 4k�3/:
see Figure 1. Via (11), the node k corresponds to the vector

�
1
2
; : : : ; 1

2

�
, while the other nodes correspond

to .1; 1; 0 : : : ; 0/ and .1;�1; 0; : : : ; 0/; : : : ; .0; : : : ; 1;�1; 0/. Replacing
�
1
2
; : : : ; 1

2

�
by .0; : : : ; 0; 1;�1/

in this collection yields the root lattice D4k � �4k .

Proposition 4.1 We have m.�4gC4/> g and N 4
ˇ
.g/> f4.�4gC4/>

˙
1
2
g
�

.

Proof It is shown in [17, Section 2] that R.k/DCP2 # .4kC 1/CP2 can be decomposed as W [N ,
where W is the negative-definite plumbing of †.2; 2k � 1; 4k � 3/ with intersection form ��4k and
N is obtained from attaching to the 4–ball a 0–framed 2–handle along the .2; 2k� 1/ torus knot and a
.�1/–framed 2–handle along a meridian of the torus knot. Blowing down the meridian 2–handle yields
X.k/ such that R.k/DX.k/ # CP2, with a decomposition W [N 0, where N 0 is obtained by attaching
only a .C1/–framed 2–handle to the torus knot. Since the .2; 2k � 1/ torus knot has genus k � 1, the
2–handle can be capped off to form a surface†.k/�X.k/ of genus k�1. The lattice of vectors vanishing
on Œ†.k/� is isomorphic to ��4k .

The vector w D
�
1
2
; : : : ; 1

2

�
2 L WD �4gC4 is extremal with w2 D gC 1 and Min.wC 2L/D fw;�wg.

Thus m.L/> w2� 1D g. It also follows that f4.L/>
˙
1
2
m.L/

�
>
˙
1
2
g
�

. Now given g we take as our
4–manifold X DX.gC 1/ with genus g surface †D†.gC 1/. Then the left side of (2) is N 4

ˇ
.g/, and

the result follows.

This should be compared to [22, Proposition 1]. There it is shown that e0.�4gC4/ D
˙
1
2
g
�
. Thus the

family of 4–manifolds with surface just given achieve sharpness in Frøyshov’s inequality of Theorem 2.5.
Proposition 2.2 shows that the same family achieves sharpness in the inequality of Theorem 2.1 for low g,
and we expect this to be true for all g. If inequality (4) in the context of mod 2 coefficients were to hold

k 2 2 2

2

2

� � �

2

Figure 1

Geometry & Topology, Volume 28 (2024)



1600 Christopher Scaduto

in general, then this family would achieve sharpness there as well. We remark that the same 4–manifolds
are used by Behrens and Golla [3] in the Heegaard Floer context.

We now move on to the main line of argument for Theorem 1.1. Recall that for the proof of Theorem 1.3,
we used Lemma 3.2, which says f4.L/D 1 implies the root lattice of L is indecomposable. The key
algebraic input towards the proof of Theorem 1.1 is the following upgrade.

Lemma 4.2 If f4.L/D 1, then L is one of E8 or �12.

Proof From Lemma 3.2 we know R is indecomposable, and hence one of An, Dn, E6, E7, E8 or zero.
We will again use that w 2R with w2 D 4 has Min.wC 2L/DMin.wC 2R/, as shown in the proof of
Lemma 3.2. All extremal vectors w chosen below have the property that the elements in Min.wC 2L/

have the same signs in the expression for � when mD 0.

Suppose R D E7. A standard model for E7 is the sublattice of E8 D �8 consisting of vectors whose
coordinates add to zero. Let w D .1; 1;�1;�1; 0; 0; 0; 0/. Then w is extremal in E7 of square 4, and
Min.wC2L/DMin.wC2E7/ consists of the 12 vectors obtained by permuting the signs of w and those
of .0; 0; 0; 0; 1; 1;�1;�1/. Thus �.L; w/D 6¥ 0 .mod 4/, and f4.L/> 1

2
w2 D 2.

Suppose RD E6. A standard model for E6 is the sublattice of E8 D �8 consisting of vectors whose last
three coordinates are equal. Consider w D .1; 1; 1; 1; 0; 0; 0; 0/ 2 E6, extremal and of square 4. Then
Min.wC2L/DMin.wC2E6/ consists of the 8 vectors .˙1;˙1;˙1;˙1; 0; 0; 0; 0/ with an even number
of signs, as well as the 2 vectors ˙.0; 0; 0; 0; 1; 1; 1; 1/. Thus �.L; w/D 1

2
.8C 2/D 5¥ 0 .mod 4/, and

f4.L/> 1
2
w2 D 2.

SupposeRDAn, n>3. As in the proof of Lemma 3.3, takew to be the vector .1; 1;�1;�1; 0; : : : ; 0/2An,
for which wC 2An has 6 extremal vectors. Then �.L; w/D 3¥ 0 .mod 4/, and f4.L/> 1

2
w2 D 2.

Suppose RDA2. Let � WR˝Z=2!L˝Z=2 be the map induced by inclusion. This map cannot be onto,
since any unimodular lattice of rank 2 is diagonal. Choose w 2L of minimal norm such that Œw� … im.�/.
We showed in the proof of Lemma 3.3 that Min.wC 2L/D fw;�wg. Since w …R, w2 > 3. If w2 > 4

then f4.L/ >
�
1
2
w2
˘

> 2. So suppose w2 D 3. Further suppose w ? R. Then wC r is extremal of
square 5 and Min.wC rC2L/D f˙w˙ rg. We compute �.L; wC r; w; 1/D�2w2D�6¥ 0 .mod 4/.
It follows that f4.L/ > 1

2
..wC r/2 � 1/ D 2. Now instead suppose w is not orthogonal to R. From

5˙ 2w � r D .w˙ r/2 > 0 and the assumption that L has no vectors of square 1 we obtain jw � r j6 1 for
each root r . Let r1; r2; r3 be roots satisfying r1C r2C r3 D 0, so that f˙r1;˙r2;˙r3g is the set of all
roots. The condition jw �r j6 1 implies, after possibly relabeling, that w �r1D 0, w �r2D 1 and w �r3D�1.
Then wC r1 is an extremal vector of square 5, Min.wC r1C 2L/D f˙w˙ r1;˙.wC r1C 2r3/g, and
�.L; wC r1; w; 1/D�7¥ 0 .mod 4/, again implying f4.L/> 2.

Suppose RD A1. Again, � is not onto, and its cokernel has rank at least 2, since no unimodular lattice
of rank 6 3 has root lattice A1. Again choose w of minimal norm such that Œw� … im.�/. If w2 > 4,
we are done; so suppose w2 D 3. Let r be the unique root in A1 up to sign. If w � r D 0, then as in the
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case for A2 we can use wC r to conclude f4.L/> 2. So assume w � r ¤ 0. As before, jw � r j6 1, so in
fact jw � r j D 1. Let v be of minimal norm such that Œv� … im.�/C Œw�. Then the same argument as in
the proof of Lemma 3.3 shows Min.vC 2L/D fv;�vg. If v2 > 4, we are done; so suppose v2 D 3. If
v � r D 0, then take vC r as in the case of A2. Suppose instead v � r ¤ 0. As with w, we have jv � r j6 1,
so jv � r j D 1. Since Œv˙w� … im.�/C Œw�, by minimality of v we have .w˙ v/2 > v2, from which it
follows that jw �vj6 1. If w �vD 0, then for some choice of signs, w˙ r˙v has square 4; if w �vD˙1,
then one of v˙w has square 4. In either case we obtain a vector of square 4, and take this as our extremal
vector to obtain f4.L/> 2.

Next, suppose RDDn for some n> 4. Suppose Dn has full rank within L, ie the map � WDn˝R!L˝R

induced by inclusion is an isomorphism. The only full-rank embeddings of Dn into a nondiagonal
unimodular lattice L are those inside �4n with n> 2 (see eg [12, Section 1.4]), and we have computed
f4.�4n/>

�
1
2
n
˘
. If f4.L/D 1 then either nD 2, in which case LDE8, contradicting the assumption

that RD D8, or nD 3, in which case LD �12. Thus we may assume that � is not onto. It follows also
that � is not onto, since nD rank.R/ < rank.L/. We will see that the arguments below generalize those
for the cases of A1 and A2 given above.

We begin as in the case for A2. Let w 2 L be of minimal norm such that Œw� … im.�/. If w2 > 4 we
are done, as argued in the above cases, and so we may assume w2 D 3. We may also assume w … im.�/.
Indeed, consider the map L! .L=Dn/=Tor. The codomain here is a free abelian group of rank equal to
rank.L/�n > 0. The argument in Lemma 3.3 shows that for a given proper subspace S �L˝Z=2, any
w 2 L of minimal norm among vectors such that Œw� … S has Min.wC 2L/D fw;�wg; in Lemma 3.3,
S D im.�/. In particular, we may choose S to be the kernel of p W L˝Z=2! .L=Dn/=Tor˝Z=2. By
construction, w … im.�/.

Choose a root r 2 L such that w � r D 0, following the argument as in the case of A2. Then wC r is
extremal of square 5. Let v 2 Min.wC r C 2L/. Assume v ¤ ˙.wC r/ and v � .wC r/ > 0. Write
v�w� r D 2u where u 2 L. Then 0¤ 4u2 D .v�w� r/2 6 .wC r/2C v2 D 10 implies u is a root.
Recall for any root u that from .w˙u/2 > 0 we have jw �uj6 1, and jr �uj6 1 if u¤˙r . Then

5D v2 D .wC r C 2u/2 D 13C 4.w �uC r �u/

implies either w �uD r �uD�1 or uD�r . Let N be the set of roots u such that w �uD r �uD�1. We
conclude Min.wC r C 2L/D f˙w˙ rg[ f˙.wC r C 2u/ W u 2N g. Let a 2 L. We compute

(12) �.L; wC r; a; 1/D�.2CjN j/w � a� jN jr � a� 2
X
u2N

a �u:

If we set aD w, using w2 D 3, w � r D 0 and the definition of N, from (12) we compute

(13) �.L; wC r; w; 1/D�6� jN j:

If (13) is nonzero modulo 4, then f4.L/> 1
2
..wC r/2� 1/D 2 and we are done. So henceforth assume

jN j � 2 .mod 4/.
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We represent Dn as the sublattice of Zn of vectors whose coordinates sum to zero modulo 2. Henceforth
we identify the vectors in this representation of Dn with those in the root lattice of L. We may suppose
that r D .1; 1; 0; : : : ; 0/D e1C e2, since the automorphism group of Dn acts transitively on roots. Here
we write e1; : : : ; en for the standard basis vectors of Zn. Then the vectors

(14) r˙h;i WD �eh˙ ei ; where h 2 f1; 2g and 36 i 6 n;

make up the set of roots u such that r �uD�1. For a fixed i we have the two relations

r C rC1;i C r
�
2;i D 0;(15)

r C r�1;i C r
C
2;i D 0:(16)

Pairing (15) with w, we see that either w � rC1;i D w � r
�
2;i D 0, or w � rC1;i D �w � r

�
2;i D ˙1. Similarly

for (16). Thus Ni WDN \frC1;i ; r
�
1;i ; r

C
2;i ; r

�
2;ig has 0, 1 or 2 elements. Furthermore, N D

Sn
iD3Ni .

Now let I � f3; : : : ; ng with jI j even. Then there exists a 2 L such that

(17) �.L; wC r; a; 1/� 2
X
i2I

jNi j mod 4:

To see this, let a be the vector corresponding to .a1; : : : ; an/ 2 Dn, which has ai D 1 if i 2 I and ai D 0
otherwise, and then compute (17) using (12). From (17) we may assume that either

(I) jNi j D 1 for all i , or

(II) jNi j 2 f0; 2g for all i .

Indeed, if jNj jD1 and jNkj2 f0; 2g for some j; k, then setting I Dfj; kg in (17) yields �.L; wCr; a; 1/�
2¥ 0 .mod 4/.

Case (I) Suppose jNi j D 1 for all 3 6 i 6 n. Then jN j D
P
jNi j D n� 2. Having assumed jN j �

2 .mod 4/, we conclude n � 0 .mod 4/. Set r1 WD e1 � e2 2 Dn. Since r1C rC1;i D r
C
2;i , and jNi j D 1

implies one of rC1;i or rC2;i is orthogonal to w and the other has inner product ˙1 with w, we obtain
jw � r1j D 1. In a similar fashion, for each 3 6 i 6 n let si ; ti 2 frC1;i ; r

�
1;ig be such that jw � si j D 1 and

w � ti D 0. For 26 i 6 1
2
n set ri WD s2i�1� t2i . This is a vector in Dn whose .2i � 1/th and 2i th entries

are ˙1, with all other coordinates zero. Then r1; : : : ; rn=2 are orthogonal roots all satisfying jw � ri j D 1.
Since w … im.�/, its length is strictly greater than that of its projection onto the span of the subspace in
Dn˝R generated by the ri :

(18) 3D w2 >

n=2X
iD1

jw � ri j
2

r2i
D

1
4
n:

Recalling n> 4 and n� 0 .mod 4/, we must have n 2 f4; 8g, ie R 2 fD4;D8g. Before considering these
two cases separately, we determine one more constraint. Suppose Nj D frC1;j g and Nk D fr

C

2;k
g for some

j ¤ k; the superscripts here are not important. Then uD rC1;j � r
�
1;k

is a root for which u �w D �2,
a contradiction. Thus Ni D fr

�i

h;i
g for each i , for some uniform h 2 f1; 2g, and each �i 2 f˙g. We
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Roots.D4/=˙ (i) (ii) (iii) (iv)

. 1; 1; 0; 0/ 0 0 0 0

. 1;�1; 0; 0/ 1 �1 1 �1

.�1; 0; 1; 0/ �1 1 0 0

.�1; 0;�1; 0/ 0 0 �1 1

.�1; 0; 0; 1/ �1 1 0 0

.�1; 0; 0;�1/ 0 0 �1 1

. 0;�1;�1; 0/ 1 �1 0 0

. 0;�1; 1; 0/ 0 0 1 �1

. 0;�1; 0;�1/ 1 �1 0 0

. 0;�1; 0; 1/ 0 0 1 �1

. 0; 0; 1; 1/ �1 1 1 �1

. 0; 0; 1;�1/ 0 0 0 0

Table 2

conclude that after perhaps reflecting some coordinates in the range 36 i 6 n and permuting the first two
coordinates in our representation of Dn we have N D frC1;3; : : : ; r

C
1;ng.

Now suppose R D D4. Setting w1 D w, we choose w2; : : : ; wk of minimal norm such that Œwi � …
ker.p/C

P
j<i Œwj �. We may suppose each w2i D 3, or else we are done. Our previous arguments show

jwi �wj j 6 1 for i ¤ j and jwi � uj 6 1 for all roots u. We only need to do this for k D 3, which is
possible because there are no definite unimodular lattices of rank < 4C 3 with root lattice D4; the first
nondiagonal definite unimodular lattice, by rank, is E8. By our assumption from the previous paragraph,
N D frC1;3; r

C
1;4g. Define the dual lattice D�n D fx 2 Dn˝R W x �y 2 Z for all y 2 Dng, and let

L! D�n; w 7! xw;

denote projection. The values w � u for all roots u 2 D4 are determined and given by column (i)
in Table 2, which lists one root for each pair fu;�ug 2 Roots.D4/=˙. In particular, we see that
xw D

�
1
2
;�1

2
;�1

2
;�1

2

�
2 D�4 . Note w is orthogonal to exactly half the roots in D4. We may also assume

case (I) for w2 and w3, each with respect to some orthogonal root. (If either is case (II), move to case (II).)
Then, just as was established for w, each of w2; w3 is orthogonal to half the roots of D4. Thus two of
w1; w2; w3 are orthogonal to a common root. Without loss of generality, suppose these two vectors are
w D w1 and v 2 fw2; w3g, and that the orthogonal root is r . Recalling jN j � 2 .mod 4/, formula (12)
yields

(19) �.L; wC r; v; 1/� 2.rC1;3C r
C
1;4/ � v mod 4:

Thus we may assume that v is either orthogonal to N or pairs nontrivially to ˙1 with both of its vectors.
Combining this with the constraints for v previously determined for w, the pairings of v with the roots
of D4 must be given by one of columns (i)–(iv) in Table 2. In particular, xvD˙xw or xvD˙

�
1
2
;�1

2
; 1
2
; 1
2

�
.
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The case of D4 will now be completed by constructing an extremal vector x of square 4 such that
�.L; x/¥ 0 .mod 4/, following the cases of A1 and A2 above. There are two cases to consider: w �vD 0
and w � v D˙1.

First, suppose w �vD 0. Upon possibly replacing v with �v, the pairings of v with D4 are given by either
(i) or (iii) in Table 2. Then x D wC vC s is of square 4, where s D�r1 D e2� e1. As usual, if xC 2u
is extremal, then u is a root, and the condition .xC 2u/2 D 4 implies u � x D�2, and thus

(20) Min.xC 2L/D f˙xg[ f˙.xC 2u/ W u � .wC vC s/D�2; u2 D 2; u 2 Lg:

Now each of y 2 fw; v; sg has jy �uj6 1 for any root u¤˙r1, and so u in (20) must be orthogonal to
one of the three, and have pairing �1 with the other two. If v has pairings given by (i) in Table 2, then
the set of such u is given by fe3C e4g. Thus Min.xC 2L/=˙ has 2 elements, implying f4.L/> 2. If
instead v corresponds to column (iii) in Table 2, then there are no solutions to u � .wC vC s/D�2, and
Min.xC 2L/=˙ has 1 element, again implying f4.L/> 2.

Next, suppose jw � vj D 1. Upon possibly replacing v with �v we may suppose w � v D �1. Then
x D wC v is extremal of square 4. Further, if wC vC 2u is extremal, then .wC vC 2u/2 D 4 implies
u � .wC v/D�2. Since for y 2 fw; vg and any root u we have jy �uj6 1, it follows that

(21) Min.xC 2L/D f˙xg[ f˙.xC 2u/ W u �w D u � v D�1; u2 D 2; u 2 Lg:

If v has pairings with D4 the same as that of w, in (i) of Table 2, then there are 6 such roots u; for (ii)
there are zero; and for (iii) and (iv) there is 1. Thus Min.xC 2L/=˙ has either 7, 1 or 2 elements, all
nonzero modulo 4. Thus f4.L/> 2. This completes the case of D4 within case (I).

Now suppose RD D8. In this case we have assumed N D frC1;3; r
C
1;4; r

C
1;5; r

C
1;6; r

C
1;7; r

C
1;8g. This implies

in particular that xw D
�
1
2
;�1

2
;�1

2
;�1

2
;�1

2
;�1

2
;�1

2
;�1

2

�
2 D�8 . As in the case of D4 we can find v 2 L

of minimal squared norm, which we may assume is 3, such that Œv� … ker.p/C Œw� and v � r D 0. Indeed,
to adapt the above argument, where v 2 fw2; w3g, we only need to note that there are no unimodular
definite lattices of rank < 8C 3 with root system D8; this is well known, and is verified, for example, by
[7, Table 16.7]. The analogue of (19) here is

(22) �.L; wC r; v; 1/� 2

8X
iD3

rC1;i � v mod 4:

The constraint that (22) is zero modulo 4, along with the constraints previously determined for w, imply,
after possibly an automorphism of our representation of D8 permuting and reflecting coordinates, that
xw D v1 and xv 2 f˙v1;˙v2;˙v3;˙v4g, where

v1 D
�
C
1
2
;�1

2
;�1

2
;�1

2
;�1

2
;�1

2
;�1

2
;�1

2

�
;

v2 D
�
C
1
2
;�1

2
;�1

2
;�1

2
;�1

2
;�1

2
;C1

2
;C1

2

�
;

v3 D
�
C
1
2
;�1

2
;�1

2
;�1

2
;C1

2
;C1

2
;C1

2
;C1

2

�
;

v4 D
�
C
1
2
;�1

2
;C1

2
;C1

2
;C1

2
;C1

2
;C1

2
;C1

2

�
:
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Observe that w� xw 2 L˝R has square 1, and is orthogonal to im.�/. Projecting v onto the subspace
spanned by im.�/ and w� xw we obtain

(23) 3D v2 > .v � .w� xw//2Cxv2 D .v �w� xv � xw/2C 2:

First suppose w �v D 0. Then (23) implies xw � xv D 0. We must have xv D˙v3. Upon possibly replacing v
by �v we may assume xv D v3. Then x D wC vC s with s D �r1 is extremal of square 4. The only
root u 2 D8 satisfying u � .wC vC s/D�2 is e3C e4, and by (20) we have that Min.xC 2L/=˙ is of
cardinality 2, implying �.L; x/� 2¥ 0 .mod 4/ and f4.L/> 2.

Now suppose jw � vj D 1. Upon possibly replacing v with �v we may assume w � v D �1. Then (23)
implies xvD�v2 or xvD v4. When xwD v1 and xvD�v2 the only root u2D8 satisfying u �wD u �vD�1
is e7 C e8. When xw D v1 and xv D v4, the only such root is �e1 C e2. In either case, (21) implies
that Min.wC vC 2L/=˙ has 2 elements, and thus �.L; wC v/� 2¥ 0 .mod 4/ and f4.L/> 2. This
completes the case of D8 within case (I), and of case (I) entirely.

Case (II) Suppose jNi j 2 f0; 2g for 3 6 i 6 n. Let Iw � f3; : : : ; ng be the set of i such that jNi j D 2.
Since jN j D 2jIw j � 2 .mod 4/, Iw is nonempty. Recall r1D e1�e2. Let i 2 Iw . As w pairs nontrivially
with all of rC1;i ; r

�
1;i ; r

C
2;i ; r

�
2;i , and r1C rC1;i D r

C
2;i , we have w � r1 D 0. Then w � r D w � r1 D 0 implies

w � e1 D w � e2 D 0, the latter computation holding in L˝R. As ei D e1C rC1;i , we have jw � ei j D 1 for
i 2 Iw within L˝R. Because w … im.�/ we have the strict inequality

(24) 3D w2 > xw2 D
X
i2Iw

jw � ei j
2
D jIw j:

With the constraint that jIw j is odd, this implies jIw j D 1. Without loss of generality we may assume
N D N3. After an automorphism of our representation of Dn we may assume N D frC1;3; r

C
2;3g. In

particular, xw D�e3 D .0; 0;�1; 0; : : : ; 0/ 2 D�n.

Next, we claim L˝Z=2¤ im.�/C Œw�. Suppose to the contrary equality holds here. Then, since by
assumption rank.L/ > n, as follows from � having kernel, we must have rank.L/D nC 1, and that � is
injective. Note, however, that Œ2e1� ¤ 0 2 Dn ˝ Z=2 and �.Œ2e1�/ pairs trivially with im.�/C Œw�,
contradicting the nondegeneracy of the pairing on L ˝ Z=2, the latter of which follows from the
unimodularity of L. This verifies the claim. Thus we may choose a vector v of minimal norm such that
Œv� … im.�/C Œw�, which, as usual, we may suppose has v2 D 3. We assume v has the type of case (II)
as well; otherwise move to the paragraph following case (II).

Now v satisfies (24) with the provision that strict inequality may not hold, and with jIvj on the right
side defined using some root orthogonal to v in place of r . The inequality is not necessarily strict
because we have not claimed v … im.�/. We conclude jIvj 2 f1; 3g. If jIvj D 3, then v D xv. Furthermore,
after an automorphism of Dn, we may suppose xv D ei � ej � ek for some distinct i; j; k, similar to the
determination xw D �e3 above. But then v C ej C ek D xv C ej C ek is a vector of square 1 in L, a
contradiction. Thus we may assume jIvj D 1.
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Let Rw be the number of roots orthogonal to w. Then xwD�e3 implies Rw D 2.n�1/.n�2/. Similarly,
since jIvj D 1, we have Rv D Rw . If n > 5, then Rw CRv D 4.n� 1/.n� 2/ > 2n.n� 1/, the total
number of roots in Dn, so that w and v must share a common orthogonal root. If nD 4 we may argue
as in case (I), using that there are no unimodular lattices with root lattice Dn of rank less than 3C 4, to
sequentially choose w2; w3 and then choose v 2 fw2; w3g. Thus without loss of generality, v and w are
both orthogonal to a common root, which we may suppose is r .

It follows then that xv D˙ei for some 36 i 6 n. First suppose i ¤ 3. Without loss of generality we may
assume xv D�e4. Our minimality assumption on v implies jw � vj6 1. Suppose w � v D 0. Consider the
extremal vector x D wC vC s of squared norm 4, where s D e3C e4. There are no roots u satisfying
u � .wC vC s/D�2, and so (20) implies Min.xC 2L/=˙ has 1 element, whence f4.L/> 1

2
x2 D 2. If

instead jw �vj D 1, then consider xDw˙v, with the sign chosen so that x is extremal of square 4. There
is only one root u such that u �w D u � v D �1, and so (21) implies Min.xC 2L/=˙ has 2 elements,
whence f4.L/> 2.

Now suppose xv D˙e3. Consider the case w � v D 0. Upon perhaps replacing v by �v we may assume
xv D �e3. Then x D wC vC s, with s as before, is an extremal vector of square 4. The only root u
satisfying u � .wC vC s/ D �2 is e3 � e4, so (20) implies Min.x C 2L/=˙ has 2 elements, whence
f4.L/ > 1

2
x2 D 2. Now consider xv D ˙e3 and jw � vj D 1. Upon perhaps replacing v with �v we

may suppose w � v D �1. Then x D wC v is an extremal vector of square 4. The roots u satisfying
u � v D u �w D �1 are (i) none, if xv D Ce3, or (ii) e3˙ ei for i ¤ 3, if xv D �e3, of which there are
2.n� 1/ many. Then (21) implies Min.xC 2L/=˙ has either (i) 1 element or (ii) 1C 2.n� 1/ elements,
both of which are odd numbers, and hence imply f4.L/> 2. This completes case (II).

In the above treatment we assumed the vectors of square 3 used were all in either case (I) or case (II).
Suppose we encounter at least one of each type. Then by the argument in case (I), n 2 f4; 8g. As there
are no unimodular definite lattices with root lattice D4 or D8 of rank < 16 other than E8 and �12, we can
sequentially choose square 3 extremal vectors so that we have 3 such vectors in either case (I) or case
(II), which is enough to make either of the above arguments go through. This completes the case Dn for
n> 4 entirely.

Finally, suppose L has no roots. Let w 2 L be of minimal nonzero norm. Then w2 > 3 and by the usual
argument Min.wC2L/Dfw;�wg. Ifw2>4 then f4.L/>

˙
1
2
f2.L/

�
>2. So supposew2D3. Let v2L

be of minimal norm such that Œv� … f0; Œw�g �L˝Z=2. Then v is extremal and Min.vC 2L/D fv;�vg
as in the proof of Lemma 3.3. If v2 > 4 we are again done. So suppose v2 D 3.

For s; t 2 L of square 3 and s � t 6 0 we have .sC t /2 D 6C 2s � t 6 6. Because L has no vectors of
square 2, the vector s C t has square 4 or 6. In the former case, Min.s C t C 2L/ D f˙.s C t /g and
f4.L/> 2. So we may assume .sC t /2 D 6, or equivalently s � t D 0. In particular, we may assume that
any two vectors s; t 2 L of square 3 with s ¤˙t are orthogonal.
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Definite lattices and Yang–Mills Floer theory 1607

Figure 2: The (2,3) torus knot, depicted on the left, is transformed into the (2,5) torus knot, on
the right, by changing the encircled negative crossing to a positive one.

Now consider x D wC v. This is extremal of square 6. If z D xC 2u 2 Min.xC 2L/ and z ¤ ˙x,
z � x > 0, then 0¤ 4u2 D .x� z/2 6 12 implies u2 D 3, and 6D .xC 2u/2 implies u �wCu � v D�3.
By the assumption made at the end of the previous paragraph, we must have uD�w or uD�v. Thus
Min.xC 2L/D f˙w˙ vg. We then compute

�.L; x; wv; 2/D .�1/..xCwCv/=2/
2

.w�.wCv//.v�.wCv//C.�1/..xCw�v/=2/
2

.w�.w�v//.v�.w�v//

D 9C9D 18¥ 0 mod 4:

Thus f4.L/> 1
2
.x2� 2/D 2. This completes the case of L having no roots, and, having completed all

cases, concludes the proof of the lemma.

We obtain the following, which implies Theorem 1.1.

Corollary 4.3 Suppose Y is an integer homology 3–sphere which isC1 surgery on a knotK in an integer
homology 3–sphere with g4;2.K/ D 2. If X is a smooth , compact , oriented and definite 4–manifold
bounded by Y with nondiagonal lattice L and no 2–torsion , then the reduced part of L is either E8 or �12.

Proof Corollary 3.1 implies f4.L/6 1. Since L is not diagonal, f4.L/D 1. By Lemma 4.2, the reduced
part of L must be one of E8 or �12.

Proof of Corollary 1.2 The manifold �†.2; 5; 9/ is C1 surgery on the .2; 5/ torus knot of genus 2. The
corresponding surgery cobordism provides the form hC1i. As we saw at the start of this section, the
canonical positive-definite plumbing bounded by �†.2; 5; 9/ is isomorphic to �12. Next, we observe
from Figure 2 that the .2; 5/ torus knot is obtained from the .2; 3/ torus knot by a positive crossing
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change. This induces a cobordism from C1 surgery on the latter to that of the former with intersection
form hC1i. (This is a technique used extensively in [5].) Attaching to this cobordism the E8 plumbing
bounded by �†.2; 3; 5/ yields E8˚hC1i. Finally, connect summing these three examples with copies
of CP2 yields all lattices listed in Theorem 1.1, except for E8.

The author is aware of two constructions realizing E8. The first has been communicated to the author by
Motoo Tange and uses Kirby calculus. The second appears in the author’s work with Golla [26], and uses
the topology of rational cuspidal curves.

The proof of Theorem 1.1 only uses input from instanton theory and some algebra. It is now clear that
Heegaard Floer d–invariants were not necessary to prove Theorem 1.3: starting from Theorem 1.1, the
extra input is our computation f8.�12/> 2 from the previous section, and the constraint for f8.L/ given
in Corollary 3.1.

On the other hand, some of the work in proving Theorem 1.1 may be supplemented by the d–invariant,
as done in the previous section for Theorem 1.3. Combining work of Ni and Wu [29, Proposition 1.6]
and Rasmussen [31, Theorem 2.3] gives the inequalities

(25) 06 �1
2
d.Y /6

˙
1
2
g4.K/

�
;

where Y is C1 surgery on the knot K. If g4.K/D 2, then as in the case g4.K/D 1, the only possible
nondiagonal definite lattices that can occur, up to diagonal summands, are the 14 listed in Table 1. Using
Corollary 3.1 and Lemma 3.2, of those 14 only E8, D12 D �12, A15 and O23 can possibly occur. As
already listed in the proof of Theorem 1.3 of the previous section, we have f4.A15/; f4.O23/> 2, both
of which are special cases of the computations in the proof of Lemma 4.2.

5 More examples

The question of which unimodular definite lattices arise from smooth 4–manifolds with no 2–torsion in
their homology bounded by a fixed homology 3–sphere Y only depends on the Z=2–homology cobordism
class of Y . It is natural to wonder whether we can find linearly independent elements in the Z=2–homology
cobordism group ‚3Z=2 all of which bound the same set of definite unimodular lattices. If one restricts to
homology cobordism classes that only bound diagonal lattices, one needs only examine the infinitely
generated kernels of the invariants d and h, for example.

We may then consider classes that bound the same lattices as the Poincaré sphere. For this, recall that
Furuta [25] and Fintushel and Stern [16] used instantons to show that the family Œ†.2; 3; 6k � 1/� for
k > 1 is an infinite linearly independent set in ‚3Z=2. The manifold �†.2; 3; 6k � 1/ is C1 surgery
on a genus 1 twist knot with 2k � 1 half twists. However, not all of these classes can bound the same
lattices as Œ†.2; 3; 5/�. Indeed, the Rochlin invariant of �†.2; 3; 6k� 1/ is congruent to k .mod 2/, so
the lattice E8 cannot occur when k is even. In fact, here is an example where the list of lattices is the
same as that of the Poincaré sphere except for E8:
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Corollary 5.1 If a smooth , compact , oriented and definite 4–manifold with no 2–torsion in its homology
has boundary �†.2; 3; 11/, then its intersection form is equivalent to one of

hC1in for some n> 1; E8˚hC1i
n for some n> 1;

and all of these possibilities occur.

There are two ways to see that �†.2; 3; 11/ bounds the lattice E8 ˚ hC1i. For one, its canonical
positive-definite plumbing graph is given as follows:

3

The unmarked nodes represent vectors of square 2, and together form a sublattice isomorphic to E8; thus
the lattice must be isomorphic to E8˚hC1i. Alternatively, we note that the twist knot with 3 half twists
is obtained from the .2; 3/ torus knot by a changing a positive crossing to a negative crossing, and argue
as in the proof of Corollary 4.3. We note that both arguments generalize to show that �†.2; 3; 6k � 1/
bounds E8˚hC1ik�1.

One might hope for examples of �†.2; 3; 6k � 1/ bounding E8 when k is odd other than k D 1. The
determination of all such k seems to be an open problem, but has been studied by Tange, who shows in
[33, Theorem 1.7] that this is the case for k D 3; 5; : : : ; 23; 25 and k D 29.

Corollary 5.2 The linearly independent elements Œ†.2; 3; 12nC 5/� 2 ‚3Z=2 for 0 6 n 6 12, n D 14
bound the same definite unimodular lattices arising from smooth 4–manifolds with no 2–torsion.

Tange has informed the author that this list may be enlarged to include nD 13; 15. Yet another example
that bounds the same set of lattices as the Poincaré sphere �†.2; 3; 5/ is the Brieskorn sphere �†.3; 4; 7/,
whose positive-definite plumbing graph has associated lattice isomorphic to E8, and which is C1 surgery
on the knot 10132 of smooth 4–ball genus 1.

In the introduction it was mentioned that �†.3; 4; 11/, obtained from C1 surgery on the .3; 4/ torus knot
of genus 3, is a natural candidate to consider beyond Theorem 1.1. Here the Heegaard Floer d–invariant
is �2, so the only possible nondiagonal reduced definite lattices that can occur are those in Table 1. We
expect most of these lattices are ruled out by our obstructions. We show in [26] that the lattices hC1i,
E8, �12, E27 and A15 occur. As the proofs there use the topology of rational cuspidal curves, here we
only explain how to realize hC1i, E8˚hC1i, �12˚hC1i and A15.

First, hC1i is realized by the surgery cobordism as in all previous examples. Next, the rank 15 lattice
A15 arises as the lattice of the positive-definite plumbing bounded by �†.3; 4; 11/, given by

3
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Figure 3: The (3,4) torus knot, also known as 819 in Rolfsen notation, is transformed into the
(2,5) torus knot by changing the encircled positive crossing to a negative crossing.

The unmarked nodes have weight 2. Indeed, viewing A15 as the subset of Z16 consisting of vectors
whose coordinates sum to zero, the lattice A15 may be defined as

A15 D A15[ .gCA15/[ .2gCA15/[ .3gCA15/;

where g D 1
4
.�112; 34/ 2 A�15 and superscripts denote repeated entries. Then the top weight 3 node in

the plumbing graph represents g, and the other nodes are the 14 roots of A15 of the form

.0; : : : ; 0; 1;�1; 0; : : : ; 0/

with the far left entry equal to zero. Finally, the lattices E8˚hC1i and �12˚hC1i occur because there
is a 2–handle cobordism from �†.2; 5; 9/ to �†.3; 4; 11/ with intersection form hC1i. Indeed, the (3,4)
torus knot is transformed into the .2; 5/ torus knot by changing a positive crossing as in Figure 3, as
similarly done in the proof of Corollary 1.4.

Finally, consider again the family �†.2; 2k � 1; 4k � 3/, obtained from C1 surgery on the family of
.2; k/ torus knots. The initial cases k D 2 and k D 3 provided our main examples for Theorems 1.1
and 1.3. The methods in this article alone seem unable to treat the general case. However, we know that
the definite lattices

(26) hC1i and �4.k�i/˚hC1i
i for 06 i 6 k

and their sums with hC1in are bounded by �†.2; 2k � 1; 4k � 3/; the first is the surgery cobordism,
and the rest follow from the fact that the .2; k� i/ torus knot is obtained from the .2; k/ torus knot by
changing i positive crossings. These are certainly not all the possible lattices: because �†.2; 5; 9/ bounds
�8 DE8, for k > 3 the 3–manifold �†.2; 2k� 1; 4k� 3/ bounds �8˚hC1ik�3. Even if we ignore the
issue of diagonal summands, the list is not complete. For example, it is shown in [26, Proposition 4.14]
that �†.2; 7; 13/ bounds the lattice A15.
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6 Relations for a circle times a surface

In this section we discuss the relations that appear in the table of Section 2 and in the proof of Theorem 2.1.
In particular, we prove Proposition 2.2, and reduce the verification of the general relations ˛g � 0 .mod 2/
and ˇdg=2e � 0 .mod 4/ to a concrete arithmetic problem.

We define Vg to be the instanton homology, with integer coefficients, of a circle times a surface † of
genus g with a U.2/–bundle that has second Stiefel–Whitney class Poincaré dual to the circle factor. More
precisely, Vg is the Z=4–graded group of Muñoz, which is the quotient of the Z=8–graded group V 0g by
an involution � ; see the discussion in [22, Section 10]. Each of these is endowed with a ring structure
using the maps induced by pairs of pants cobordisms times †. There is a map

(27) ‰ W Sym�.H0.†IZ/˚H2.†IZ//˝ƒ�.H1.†IZ//! Vg ;

which defines relative Donaldson invariants for the 4–manifold †�D2 with suitable bundle data. Let
x 2H0.†IZ/ be the point class and fig

2g
iD1 be a symplectic basis of H1.†IZ/ such that i � iCg D 1.

The mapping class group of † acts on Vg , and the three elements

(28) ˛ D 2‰.Œ†�/; ˇ D�4‰.x/ and  D�

gX
iD1

‰.iiCg/

generate the invariant part over the rationals; Muñoz [28, Section 4] gives a presentation which is recursive
in the genus. Our definition of  is one half of that from loc. cit.; see Section 7.2 for this justification.
The ring V 0g has similarly defined elements, which we denote by ˛0; ˇ0;  0, of Z=8–gradings 2, 4, 6,
respectively. The involution � acting on V 0g is a module homomorphism and shifts gradings by 4 .mod 8/;
the equivalence classes of ˛0; ˇ0;  0 in Vg are of course ˛; ˇ;  .

Lemma 6.1 Suppose a polynomial r.˛; ˇ; / is a relation in Vg . If the corresponding polynomial
r.˛0; ˇ0;  0/ in V 0g is of homogeneous Z=8–grading , then it is a relation in V 0g .

Proof If the quotient polynomial r.˛; ˇ; / is a relation, r.˛0; ˇ0;  0/D .1� �/� for some � within V 0g .
Since � is of degree 4, and r.˛0; ˇ0;  0/ has homogeneous Z=8–grading, � D 0 2 V 0g .

When proving our inequalities, we will need to use relations in V 0g . Lemma 6.1 says that so long as they
are homogeneously Z=8–graded in V 0g it suffices to show the corresponding relations in Vg . This is the
case for the relations we consider, and henceforth we restrict our attention to Vg .

Let Ng be the moduli space of projectively flat connections on a U.2/–bundle with fixed odd determinant
over a surface of genus g. Muñoz’s work shows that Vg ˝C is isomorphic to H�.Ng IC/, and in fact
the ring structure of the former is a deformation of the latter. More precisely, the product in Vg is equal
to the cup product in H�.Ng IC/ up to lower-order terms of equal mod 4 gradings. Furthermore, the
isomorphism is well defined over the rationals, so we may replace C by Q. There is also a Morse–Bott
spectral sequence, due to Fukaya [24], starting at H�.Ng IZ/ and converging to Vg . Since H�.Ng IZ/ is
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torsion-free, as proven by Atiyah and Bott [2, Theorem 9.10], and the spectral sequence collapses over Q,
it must collapse for all coefficient fields. Thus we obtain:

Proposition 6.2 Vg is torsion-free.

However, the ring structure of Vg is substantially more complicated than that of Vg˝Q, since ˛; ˇ;  do
no generate the invariant part of Vg . This is already true for H�.Ng IZ/, which requires more generators
than does H�.Ng IQ/; see [2, Section 9]. Nonetheless, the relations we are interested in can be extracted
from Muñoz’s presentation, which we now recall: set �0 D 1, and recursively define

�rC1 D ˛�r C r
2.ˇC .�1/r8/�r�1C 4r.r � 1/�r�2:

Each �r D �r.˛; ˇ; / is a polynomial with integer coefficients in ˛; ˇ;  . Then the ideal .�g ; �gC1; �gC2/
is a complete set of relations for the invariant part of Vg ˝Q; see [28, Theorem 16, Proposition 20].

Lemma 6.3 ˇ � ˛2 .mod 8/.

Proof The corresponding relation holds in H 4.Ng IZ/. Indeed, the degree 4 element�g�1
2

�
˛2C .2g� 1/ � 1

8
.˛2�ˇ/

is integral, see [32, Equation (7), Proposition 2.4]; it is the second Chern class of the pushforward of a
universal bundle. Multiplying both sides by 8, and a mod 8 inverse for .2g� 1/, yields ˇ � ˛2 .mod 8/
in the ring H 4.Ng IZ/. Since the product in Vg is a deformation of the product in H�.Ng IZ/ respecting
mod 4 gradings, within Vg we have ˛2�ˇC c � 0 .mod 8/, where c is some constant. There is a map
rk W Vg ! Vg�k induced by a cobordism which contracts k handles; cf [28, Lemma 9]. For g > 1, we
have 0� rg�1.˛2�ˇCc/� c .mod 8/ since in V1 the relations ˛D 0 and ˇD 8 follow from �1 and �2.
Thus c � 0 .mod 8/ and the relation follows.

This lemma allows us to write ˇ D ˛2 C 8" for some element " 2 Vg . Define the double factorial
nŠŠD n.n� 2/.n� 4/ � � � 1 for n > 0 odd. We propose the following.

Conjecture 6.4 The expression .2g�3/ŠŠ�g.˛; ˛2C8"; /=gŠ is a polynomial in ˛, " and  with integer
coefficients. Furthermore , the reduction of this polynomial mod 4 is congruent to˙˛g .

The verification of this conjecture implies the relations ˛g�0 .mod 2/ and ˇdg=2e�0 .mod 4/within Vg .
Indeed, the polynomial in the conjecture is a relation in Vg , since according to Muñoz it is a relation in
Vg ˝Q, and Vg is torsion-free. Its reduction modulo 4 implies the relation ˛g � 0 .mod 4/, which by
Lemma 6.3 implies the two desired relations.

In fact, for some of our applications in mind, less is required. For example, we consider what is required
to prove the conjectural inequality obtained from Theorem 2.1 by replacing the left-hand side with

˙
1
2
g
�

.
Define N 4

ˇ
.g/0 to be the nilpotency degree of ˇ in the ring .Vg=Tor/˝ Z=4. The argument given

for Theorem 2.1 in the next section is easily seen to work for N 4
ˇ
.g/0 in place of N 4

ˇ
.g/. Of course
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g .2g�3/ŠŠ�g.˛; ˛
2C8"; /=gŠ

1 ˛

2 ˛2C4"�4

3 3˛3C20˛"C12˛C4

4 15˛4C160˛2"�120˛2C20˛C360"2�720"C360

5 105˛5C1456˛3"C840˛3C224˛2C4984˛"2C6160˛"C1232"C3192˛C560

6 945˛6C16884˛4"�11340˛4C2016˛3C93576˛2"2�146160˛2"C14448˛"C151200"3

C74088˛2�5040˛C8402�453600"2C453600"�151200

7 10395˛7C221364˛5"C124740˛5C28116˛4C1558392˛3"2C1851696˛3"C342672˛2"

C3621024˛"3C957528˛3C144144˛2C9240˛2C6852384˛"2C978912"2

C7061472˛"C931392"C1929312˛C522720

8 135135˛8C3418272˛6"�2162160˛6C365508˛5C31141968˛4"2�43531488˛4"C5319600˛3"

C118472640˛2"3C22177584˛4�1873872˛3C264264˛22�285597312˛2"2C19260384˛"2

C151351200"4C288699840˛2"�14030016˛"C16336322"�605404800"3�89945856˛2

C7948512˛�4804802C908107200"2�605404800"C151351200

Table 3

N 4
ˇ
.g/06N 4

ˇ
.g/, although they are likely equal. The point of using this alternative definition is as follows.

We may set  D 0 in the recursive equation to define �0rC1D �
0
rCr

2.ˇC .�1/r8/�0r�1 with �00D 1. Then
�r D �

0
r.˛; ˛

2C 8"/ is a polynomial only in ˛ and ". As we only are concerned with relations mod 4,
to prove that N 4

ˇ
.g/0 D

˙
1
2
g
�

it suffices to show that the rational coefficients of �r=rŠ all have reduced
fraction forms with odd denominators, and have numerators divisible by 4, except for the coefficient in
front of ˛g , which should be odd.

Proof of Proposition 2.2 The first few instances of Conjecture 6.4 are verified by hand, and we verify
the rest of the cases g 6 128 by computer. The first 8 polynomials defined in Conjecture 6.4 are given in
Table 3 for illustration.

Finally, we remark that ˛g � 0 .mod 2/ is a relation in the ring H�.Ng IZ=2/ by work of the author with
M Stoffregen [32]. The above scheme suggests an alternative route to proving this relation. Indeed, the
ring H�.Ng IQ/ has its own recursive presentation, which inspired the work of Muñoz; in the recursive
definition of �r above, simply remove the term .�1/r8. Then Conjecture 6.4 may be formulated with
these modified polynomials. In particular, we suspect that the relation ˛g � 0 .mod 4/ also holds in
H�.Ng IZ=4/.

In [32] it is also proven that ˛g�1 ¥ 0 .mod 2/ within H�.Ng IZ=2/. This implies N 2
˛ .g/> g, which

aligns with the first part of Proposition 4.1 and inequality (4). Indeed, since Vg ˝Z=2 is a deformation
of the ring H�.Ng IZ=2/, the deformations being of lower degree but homogeneous mod 4, then because
˛g�1 is nonzero in the latter, it must also be so in the former.
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7 Adapting Frøyshov’s argument

We now proceed to the proofs of Theorem 2.1 and Proposition 2.4. These are adaptations of Frøyshov’s
argument as given in [22], which we closely follow and modify accordingly to our choices of coefficient
rings. For most of the technical details we refer to loc. cit. In the final subsection we discuss some other
adaptations.

7.1 Proofs of Theorem 2.1 and Proposition 2.4

Let X be a smooth, closed, oriented 4–manifold. For now we also assume b1.X/ D 0. Suppose
bC2 .X/D n> 1 and let †1; : : : ; †n be pairwise disjoint connected and oriented embedded surfaces with
†i of genus gi such that †i �†i D 1. We will eventually specialize to the case n D 1. Let W be the
result of replacing a tubular neighborhood Ui of †i �X with Ui # CP2 for each i . Upon orienting the
exceptional sphere Si in the corresponding copy of CP2, we form two internal connected sums †˙i
between †i and Si , one preserving the orientation of Si , the other reversing it. Now define a smooth
n–dimensional family of metrics g.t/, where t D .t1; : : : ; tn/ 2Rn on the closed 4–manifold W , which
as ti !˙1 stretches along a link of †˙i . Since †˙i �†

˙
i D 0, each such link may be identified with

S1 �†˙i .

Let si D PDŒSi �, and let Ek ! W be the U.2/–bundle with c1.Ek/ D w C
P
si and c2.Ek/ D k.

Write L�H 2.X IZ/=Tor for the lattice of vectors vanishing on the Œ†i �. We choose w so that modulo
torsion it is an element in L which is extremal. Denote by Mk;t the moduli space of projectively
g.t/–antiselfdual connections on Ek , and let Mk denote the disjoint union of Mk;t over t 2Rn. After
perturbing, the irreducible stratum M�

k
�Mk is a smooth and possibly noncompact manifold of dimension

8c2� 2c
2
1 � 3.1� b1C b

C
2 /Cn. Thus,

(29) dim M�k D 8kC 2jw
2
j � 3:

If k < 0, then Mk has no reducibles, while M0 contains a finite number. Denote by M0
k

the result of
removing small neighborhoods of each reducible; in particular, M0

k
DMk if k < 0. The assumption that

w is extremal rules out bubbling off of reducible solutions in these moduli spaces.

Recall from [11, Section 5.1.2] that the �–map is given by

(30) � WHi .W IQ/!H 4�i .B�E IQ/; �.a/D�1
4
p1.E/=a:

HereE is a U.2/–bundle over a 4–manifoldW , and E is the universal adjoint SO.3/–bundle over B�E�W ,
where B�E is the configuration space of connections on E. The basepoint fibration associated to x 2W
is the restriction of E to a slice B�E � fxg. For later use, we also introduce notation for the second
Stiefel–Whitney class:

(31) �.x/D w2.E/=1 2H
2.B�E IZ=2/:
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When defining (relative) Donaldson invariants on 4–manifolds, one cuts down moduli spaces inside B�E
using geometrically constructed divisors representing �–classes. Henceforth we write x 2H0.W IZ/ for
the point class.

Returning to our setup above, to any a1; : : : ; ak 2 fxg[H2.W IZ/ which descend to L�, subset S �M0
k

,
and nonnegative integers ji > 0 for i D 1; : : : ; k, we use the shorthand �.a1/j1 � � ��.ak/

jkS for the
intersection of S with ji generic geometric representatives for �.ai / D �p1.E/=4ai supported away
from where g.t/ varies, as i runs over 1; : : : ; k. Also, let �.x/ji S denote the intersection of S with a
geometric representative depending on t for �p1.E/=4pt, where the basepoint is in the location of the
stretched link of †˙i as ti !˙1. For the constructions see [22, Section 7], where �.x/i is called xi .
The following lemma is for a general 4–manifold W with U.2/–bundle E.

Lemma 7.1 For a 2 H2.W IZ/, 2�.a/ defines a class in H 2.B�E IZ/. If , further , hw2.E/; ai �
0 .mod 2/, then �.a/ defines a class in H 2.B�E IZ/.

Proof This follows from [1, Lemma 3]. The proof is short so we include it. If hw2.E/; ai � 0, we can
lift E!B�E �W to a U.2/–bundle F such that hc1.F/; ai D 0. Now use �p1.E/D 4c2.F/�c21.F/ and
the decomposition c1.F/D c1.F jB�/� 1C 1� c1.E/ to compute �p1.E/=a D 4c2.F/=a. In general,
2�.a/ is integral, as �p1.E/=aD 4c2.F/=a� 2c1.F jB�/� c1.E/=a is even.

This lemma reduces to Corollary 5.2.7 of [11] when w2.E/� 0 .mod 2/. When cutting down moduli
spaces by �.a/, for a as in the lemma, the geometric representatives we have in mind are those constructed
as in loc. cit. using line bundles of coupled twisted Dirac operators over the surface.

Proof of Theorem 2.1 Assume the setup above. Let a1; : : : ; am0
; a01; : : : ; a

0
m1
2H2.W IZ/ be such that

each class descends to L�, and hw; ai i � 0 .mod 2/ for each ai . Further, setting mDm0Cm1, assume
w2 �m .mod 2/. Lemma 7.1 says each �.ai / and 2�.a0i / are integral. Suppose as in the definition of
f4.L/ that 2�m0�.L; w; a;m/¥ 0 .mod 4/, where aD a1 � � � am0

a01 � � � a
0
m1

. Suppose for contradiction
that

(32)
nX
iD1

N 4
ˇ .gi / <

1
2
.jw2j �m/:

Set ni D N 4
ˇ
.gi /. We define the following smooth, orientable 1–manifold with boundary and a finite

number of noncompact ends:

(33) yM WD .4�.x//.jw
2j�m/=2�1�

P
ni

m0Y
kD1

�.ak/

m1Y
jD1

2�.a0j /

nY
iD1

.4�.x/i /
ni M00:

Here it is important that we cut down by divisors associated to integral cohomology classes. The boundary
points of yM arise from the deleted neighborhoods of reducibles in M0. Denote by T the torsion subgroup
of H 2.X IZ/. Then each pair fz;�zg �Min.wC2L/ corresponds to 2n �#T many reducibles. Indeed, as
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shown in [22, Lemma 1], the family of metrics may be chosen such that the reducibles in M0 correspond
to splittings E0 D L1˚L2 into line bundles such that

(34) c1.L1˝L
�1
2 /D xz�

nX
iD1

�isi ;

where each �i D˙1 and the projection of xz to H 2.W IZ/=T is some z 2Min.wC 2L/. The symmetry
of swapping L1, L2 in (34) leads to the consideration of the pair fz;�zg, and for each such pair the
freedom of torsion multiplies the number of reducibles by #T, while the possibilities for the signs �i
multiply the number by 2n.

The neighborhood of each reducible in M0 is a cone on a complex projective space of dimension
d D 2jw2j � 4. To a reducible associated to a class r as in (34), let h be the degree-two generator of the
projective space CPd which is the link of this cone. Then by [11, Proposition 5.1.21] we have

(35) �.x/jCPd D˙
1
4
h2 and �.ai /jCPd D˙

1
2
hr; ai ih;

where the second relation of course also holds for a0i . Frøyshov shows that the moduli space can be
oriented such that each of the 2n � #T reducibles in (34) associated to fz;�zg �Min.wC 2L/ have the
same orientations for their cones. We compute

(36) #@ yMD 2n�m0 � #T � �.L; w; a;m/;

which is a rescaling of [22, Proposition 5].

Now we discuss the ends of the moduli space (33). These arise as the metric family parameters ti go off
to ˙1. Transversality ensures that at most one such parameter can stay unbounded for a given sequence
of instantons in yM. The part of yM with fixed ˙ti D � � 0 is a finite number of points, which by gluing
theory is a product of instantons over R2 �†˙i and over W n†˙i . We may write

(37) # yM˙tiD� D �
˙
i � 

˙
i ;

where �˙i 2V 0gi
counts instantons over R2�†˙i , and  ˙i 2 .V

0
gi
/� over W n†˙i in the family of metrics

with ˙ti D � fixed. Here V 0g is the Z=8–graded instanton cohomology of a circle times a surface as
discussed in Section 6.

A priori, the elements �˙i and  ˙i only define cochains in their Floer cochain complexes. The unperturbed
Chern–Simons functional for the restricted bundle over S1�†˙i is Morse–Bott along its critical set, which
is two copies of Ng , where g D gi . According to Thaddeus [34], the manifold Ng has a perfect Morse
function. We perturb the Chern–Simons functional so that its critical set consists of two copies of the critical
points of such a function. (See for example [4, Proposition 6] and the surrounding discussion for this sort of
perturbation.) The rank of the instanton Floer cochain complex coincides with that of Vg , and so has zero
differential. Thus �˙i and  ˙i may also be viewed as Floer cohomology classes, as claimed in the previous
paragraph. In this way we remove the restriction in [22] that all but one of the surfaces have genus 1.
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Now we make a further simplification, which effectively removes a factor of 2 appearing in (36).
Fix 1 6 i 6 n. Let �i be a diffeomorphism of W which is reflection in the exceptional class in
CP2 nB4 � Ui # CP2 and is the identity elsewhere. We arrange that �i interchanges †Ci and †�i , and
fixes all other †˙j . We may choose the family of metrics such that for jti j> � , the map �i interchanges
the metrics g.t1; : : : ; ti ; : : : ; tn/ and g.t1; : : : ;�ti ; : : : ; tn/. Consequently, �i interchanges MCti >� and
M�ti >� in an orientation-preserving fashion. To see this last point, we note that ��i preserves the orientation
of HC.W IR/, reverses the orientation of the metric family, and reverses the orientation rule for the
moduli space with a fixed metric constructed in [9]:

.�1/..�
�
i
.c1.E0//�c1.E0//=2/

2

D .�1/s
2
i D�1:

We may arrange that cutting down the moduli space by the divisors is also compatible with �i , so that �i also
interchanges �Ci � 

C
i and ��i � 

�
i in a sign-preserving way. The number of ends of yM is then counted to be

(38)
nX
iD1

��i � 
�
i C�

C
i � 

C
i D 2

nX
iD1

�Ci � 
C
i :

The number of boundary points and the number of ends of the 1–manifold yM counted with signs must
be zero, and so from (36) and (38) we obtain the relation

2n�m0 � #T � �.L; w; a;m/C 2

nX
iD1

�Ci � 
C
i D 0:

Now take nD 1 and divide this relation by 2. Then we have

(39) 2�m0 � #T � �.L; w; a;m/C�C1 � 
C
1 D 0:

The class �C1 comes from 4�.x/
n1

1 in the expression (33), and so �C1 D .ˇ
0/n1 , in the notation of Section 6.

By the definition of n1 DN 4
ˇ
.g1/ and Lemma 6.1, the element �C1 is in the ideal of V 0g ˝Z=4 generated

by �–classes of loops. Here gD g1. Similarly to the argument of [22, Section 10], we conclude �C1 � 
C
1

vanishes mod 4, essentially because (relative) Donaldson invariants involving �–classes of loops vanish for
4–manifolds with b1 D 0; see Section 7.2 for this justification. But the left term in (39) is by assumption
nonzero mod 4, a contradiction.

We make two final remarks. First, we have worked with a homogeneous element aD a1 � � � am0
a01 � � � a

0
m1

such that hai ; wi� 0 .mod 2/ but the argument easily extends to any linear combination of such elements.
This allows the argument to go through for all the data included in the definition of f4.L/. Second, the
general case reduces to that of b1.X/D 0 by surgering loops as in [22, Proposition 2].

Proof of Proposition 2.4 The proof is almost the same, except that every instance of mod 4 coefficients
is replaced with mod 8 coefficients. We are led to the inequality N 8

ˇ
.g/> f8.L/, and N 8

ˇ
.1/D 1 because

ˇ is multiplication by 8 on V1.

As the proof of Theorem 2.1 is not particular to Z=4, we may also apply it to the case of Z=2 coefficients.
However, our computations suggest thatN 4

ˇ
.g/DN 2

ˇ
.g/, in which case the resulting inequality is implied

by Theorem 2.1.
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On the other hand, in the setting of mod 2 coefficients, we may replace the role of ˇ with ˛, which is
implemented by replacing every instance of the class 4�.x/ with �.x/, including the metric-dependent
divisors. However, in this case, the cut down moduli space is not a priori naturally oriented, and the
division by 2 in obtaining (39) is problematic. Perhaps further insights or other methods can overcome
this obstacle. Nonetheless, in Section 8 we will exhibit instances where cutting down by the second
Stiefel–Whitney class gives rise to useful inequalities in the setting of mod 2 instanton homology for
homology 3–spheres.

7.2 �–classes of loops

We now take a moment to make more precise which geometric representatives for �–classes of loops are
to be used in the above constructions. We refer to the simplified situation described in [22, Section 11].
There, a Riemannian 4–manifold X with tubular end Œ0;1/�Y is considered, equipped with a U.2/–
bundle that restricts to some oriented surface nontrivially within the tubular end. Fix a loop � W S1!X .
Following constructions from [27], Frøyshov then associates to � three classes ˆ;‰C; ‰� 2 I�.P IZ/
in the instanton Floer cohomology of P ! Y , the restriction of the bundle over X to Y . Roughly,
ˆ cuts down moduli by the locus of connection classes with holonomy 1 2 SO.3/, and ‰˙ cuts down by
holonomy˙12 SU.2/. These classes satisfy the relationˆD‰CC‰�. It is observed in [22, Section 11]
that ‰C D‰� and ˆD 2‰˙ modulo 2–torsion. However, in our constructions above, I�.P IZ/ arises
as V 0g , which is torsion-free. Thus ˆ=2D‰˙ is an unambiguously defined class over the integers, and is
the one which we have in mind when cutting down by �–classes of loops over arbitrary coefficient rings.

According to [27, Section 2(ii)], with rational coefficients ˆ is equal to what is usually denoted by 2�.�/.
Thus ‰˙ is an integral class that agrees with �.�/, the latter, in general, a priori only defined over the
rationals. The map ‰ of (27) on a 1–dimensional homology class Œ�� is now more precisely defined
using ‰˙ D ‰˙.�/, from the 4–manifold D2 �† with appropriate bundle. The independence of the
chosen representative � for the class follows from [22, Proposition 7]. We have now justified our claim,
in Section 6, that the class  , as we have normalized it, is integral.

We can now also be more precise about the definition of the ring Vg from Sections 2 and 6: it is the
quotient of Vg by the ideal generated by elements ‰˙.�/D‰.�/, defined using the 4–manifold D2�†
with appropriate bundle, and allowing � to range over a symplectic basis of loops fig for the surface †.
In particular, this ideal contains  .

Finally, we note that with these conventions the proof that �˙i vanishes mod 4 in the proof of Theorem 2.1
now adapts from the argument in [22]: by definition of N 4

˛ .g/, we have �Ci �
P
‰˙.�i /�i .mod 4/

for some loops �i in the 4–manifold at hand, and from [22, Proposition 7] the latter quantity vanishes.
Indeed, in our proof it is assumed that b1.X/D 0 and thus �i torsion; then ‰˙.�i / is torsion in Vg , so
must be zero.
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7.3 Other adaptations

Let us first compare the above arguments to that of Theorem 2.5. We return to the setup in the proof of
Theorem 2.1, before specializing to nD 1. Set ni DN 0

ˇ
.gi /. We then consider the 1–dimensional part of

the Q–linear combination of oriented manifolds

(40) �.x/.jw
2j�m/=2�1�2

P
ni

mY
jD1

�.aj /

nY
iD1

.�.x/2i � 64/
ni

X
k60

M0k :

The number of boundary points, which only appear within M00, is equal to a power of two times
#T � �.L; w; a;m/, while the number of ends is zero. Here a D a1 � � � am, where each aj mod torsion
is in L�. With these modifications, the argument is much the same as before. This handles the case of
Theorem 2.5 for a closed 4–manifold. The more general case follows from this with minor modifications
as in [22]. Note that we have slightly improved Frøyshov’s Theorem 2 from [22] by removing the
restriction that all but one of the surfaces has genus 1.

The above argument is also easily adapted to the case in which Q is replaced by Z=p for p an odd integer.
To begin, we define

N
p

ˇ
.g/ WDminfn> 1 W .ˇ2� 64/n � 0 2 Vg ˝Z=pg

for g > 1 and Np

ˇ
.0/D 0. Upon setting ni DN

p

ˇ
.gi /, we may consider the 1–dimensional part of (40) a

formal Z=p–linear combination of 1–manifolds; the powers of two in the definitions of the �–classes are
invertible modulo p. The number of boundary points is again #T ��.L; w; a;m/ up to a power of two, and
the number of ends is zero mod p. Define ep.L/ by modifying the condition in the definition of e0.L/
that �¤ 0 to �¥ 0 .mod p/. Then under the hypotheses of Theorem 2.5, if #T is relatively prime to the
odd integer p, we obtain

nX
iD1

N
p

ˇ
.gi /> ep.L/:

Furthermore, if p is prime, and the 4–manifold has instead a homology 3–sphere boundary Y , then
the same inequality holds upon adding to the left side hp.Y /, Frøyshov’s instanton invariant defined
over Z=p. The modifications needed to deduce the case with a homology 3–sphere boundary from the
closed 4–manifold case are completely analogous to those in [22]. However, e0.L/ > ep.L/, and the
following shows that we do not improve upon what is already known from Theorem 2.5.

Proposition 7.2 Let p be an odd integer. Then Np

ˇ
.g/>

˙
1
2
g
�

. Equality holds if p is prime and p > g.

Proof The proof of the first statement is similar to that of Proposition 4.1. It suffices to show that
ep.L/ >

˙
1
2
g
�
, where L D �4gC4. We follow [22, Proposition 1]. Consider the extremal vector

w D .1; : : : ; 1; 0; : : : ; 0/ 2 L having 4
˙
1
2
g
�

entries equal to 1. If g is odd then Min.wC 2L/ consists
of .˙1; : : : ;˙1; 0; : : : ; 0/ and .0; : : : ; 0;˙1; : : : ;˙1/, where the number of signs is even; if g is even
it consists of .˙1; : : : ;˙1; 0; : : : ; 0/, where again the number of signs is even. In either case, the signs
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in �.L; w/ are all equal, and �.L; w/D˙1
2

#Min.wC 2L/ is a power of 2, and in particular nonzero
mod p. Since w2 D 4

˙
1
2
g
�

, we conclude that ep.L/>
˙
1
4
w2
�
D
˙
1
2
g
�

.

For the second statement, we follow [28, Proposition 20], and use our notation from Section 6. The
recursive equation defining �gC1 yields g2.ˇ C .�1/g/�g�1 � �gC1 � ˛�g .mod /. Thus we have
g2.ˇC.�1/g8/Jg�1�JgC./, where Jg D .�g ; �gC1; �gC2/. Inductively, in Vg we obtain the relation

gY
rD1

r2.ˇC .�1/r8/D �

for some � 2 Vg . Now since p is prime and p > g, the factor 1222 � � �g2 has an inverse mod p. After
multiplying both sides by this inverse, and, if g is odd, multiplying by .ˇC 8/, we obtain the relation
.ˇ2� 64/dg=2e � 0 .mod / within Vg ˝Z=p, implying Np

ˇ
.g/6

˙
1
2
g
�

.

8 Alternative proofs

The only instanton Floer theory used in the above proofs of Theorems 1.1 and 1.3 is the input from
certain relations in the instanton Floer cohomology of a circle times a surface via Theorem 2.1 and
Proposition 2.4; the instanton homology of homology 3–spheres is not required at all. In this section we
deduce Corollaries 1.2 and 1.4 with this latter framework at heart, with some help from Floer’s exact
triangle. While the two approaches complement one another, they also perhaps belong together in a more
natural framework as suggested by Frøyshov’s inequality in characteristic zero, Theorem 2.5; we merely
scratch the surface here for Z=2 and Z=4 coefficients.

For an integer homology 3–sphere Y , denote by I�.Y IF2/ Floer’s instanton (co)homology from [18],
defined with F2 D Z=2 coefficients, and using the conventions of [21]. This is a Z=8–graded vector
space over F2. There are elements ı2 2 I 4.Y IF2/� and ı02 2 I

1.Y IF2/ defined using moduli spaces
of instantons with a trivial flat limit at either end of Y �R. There is also a degree 2 endomorphism on
I�.Y IF2/, denoted by v2, and defined using the second Stiefel–Whitney class of the SO.3/ basepoint
fibration, analogous to how the degree 4 endomorphism u is defined in [21] on I�.Y IZ/ for certain
gradings using the first Pontryagin class.

The elements ı2 2 I 4.Y IF2/� and ı02 2 I
1.Y IF2/ are induced by (co)chains ı 2 CI 4.Y IF2/� and

ı0 2 CI 1.Y IF2/ defined just as in [21, Section 2.1], but with F2 coefficients, which we now review.
Recall that the cochain complexCI�.Y IF2/ is generated by (perturbed) flat irreducible SU.2/ connections
mod gauge. We will follow the notation of [21] and write M.˛; ˇ/ for the moduli space of finite-energy
instantons on R�Y with flat limit ˛ at C1 and ˇ at �1, and with expected dimension lying in Œ0; 7�.
Write {M.˛; ˇ/DM.˛; ˇ/=R. The cochain ı0 is then defined to be

P
# {M.ˇ; �/ˇ, where ˇ runs through

the generators of CI 1.Y IF2/, and � is the trivial connection. Similarly, ı˛ D # {M.�; ˛/ for a generator
˛ 2 CI 4.Y IF2/.
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The map v2 is induced by a degree 2 cochain map v on CI�.Y IF2/, defined as follows. Let ˛ and ˇ
be generators such that M.˛; ˇ/ is 2–dimensional. Let E0!M.˛; ˇ/ be the natural euclidean 3–plane
bundle associated to a basepoint .0; y0/. Choose sections �1 and �2 of this bundle which are pulled back
from the basepoint fibration over the configuration space of connections on .�1; 1/�Y . We arrange that
�1 and �2 are linearly dependent at finitely many points, and transversely. Set

(41) hv.ˇ/; ˛i D #fŒA� 2M.˛; ˇ/ W �1.ŒA�/ 2R � �2.ŒA�/g:

That v is a chain map, and is independent of any choices made, follows the proof of [21, Theorem 4],
except there are no trajectories that break at the reducible. Indeed, since dimM.˛; ˇ/D 2, the relation
dvC vd D 0 comes from counting the ends of a 3–dimensional moduli space, cut down by two sections
as above; such a moduli space has ends approaching trajectories broken at a trivial connection if its
dimension is > 5 (see [10, Section 5.1]). The construction of v2 and its interactions with the analogous
map for the third Stiefel–Whitney class of E0 was sketched by Frøyshov in a 2016 lecture at the University
of Regensburg.

Proposition 8.1 Let X be a smooth , compact , oriented 4–manifold with negative-definite lattice
LDH 2.X IZ/=Tor and boundary an integer homology 3–sphere Y. If H�.X IZ/ has no 2–torsion ,

minfj > 0 W ı2v
j
2 D 0g> f2.L/:

The proof is an adaptation of Proposition 1 in [21], which uses the additional assumption b1.X/D 0.
Fix w 2H 2.X IZ/ descending to an extremal vector of the same name in L, and a 2 SymmH2.X IZ/
descending to an element of the same name in Symm.Lw/ for some m > 0. For simplicity assume
aD a1 � � � am, where ai 2H2.X IZ/. Form XC by attaching a cylindrical end Œ0;1/�Y to the boundary
of X , and fix a metric g on XCwhich is a product along the end. Consider the moduli space M0 of
suitably perturbed instantons on .XC; g/ on a U.2/–bundle, with c1 D w and relative second Chern
number k D 0, which are asymptotic to the trivial connection. Removing neighborhoods of reducibles
we have a smooth moduli space M00 of dimension 2jw2j � 3. Cut this down as follows, to obtain an
unoriented 1–manifold:

�.x/jw
2j�m�2

mY
kD1

�.ak/M
0
0:

Similar to [21], counting the boundary points yields 2�m�.L; w; a;m/ .mod 2/. The ends contribute
the term ı2v

j
2 �D

w
X .a/, where DwX .a/ is a relative Donaldson invariant DwX .a/ 2 I

4�4n.Y IF2/, where
nD jw2j �m� 2. We obtain the second equality in

(42) ı2v
j
2 �D

w
X .a/D

�
0 for 06 j < n;

2�m�.L; w; a;m/ .mod 2/ for j D n:

The first equality follows from the same argument but with k < 0, where there are no reducibles (and in
some cases is true for degree reasons). The statement of Proposition 8.1 follows for b1.X/D 0 from this
formula and the definition of f2.L/; the condition that b1.X/D 0 is then handled by surgering loops;
cf [22, Proposition 2].
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We have a similar inequality for Z=4 coefficients. Here we let u denote the degree 4 map defined on
CI�.Y IZ/ as in [21], which in general is not a chain map, but satisfies du� ud C 2ı˝ ı0 D 0. The
map ıun W CI 4�4n.Y IZ/! Z is a chain map, and we denote by ı4un4 the map I 4�4n.Y IZ=4/! Z=4

obtained after tensoring with Z=4 and taking homology. This may depend on auxiliary choices, such as
perturbation and metric; in the following we assume such choices are fixed.

Proposition 8.2 Let X be a smooth , compact , oriented 4–manifold with negative-definite lattice
LDH 2.X IZ/=Tor and boundary an integer homology 3–sphere Y . If H�.X IZ/ has no 2–torsion ,

minfj > 0 W ı4u
j
4 D 0g> f4.L/:

The proof is similar to that of Proposition 8.1, but more directly uses the formula of [21, Proposition 1], the
statement of which is the following, assuming b1.X/D 0; the proposition uses its mod 4 reduction. For
w 2 H 2.X IZ/ descending to an extremal vector of the same name in L, and a 2 SymmH2.X IZ/
descending to an element of the same name in Symm.L/ for m > 0, there is a relative invariant
DwX .a/ 2 I

4�4n.Y IZŒ1=2m�/, where nD 1
2
.jw2j �m/� 1, and

(43) ıuj �DwX .a/D

�
0 for 06 j < n;

2�m#T � �.L; w; a;m/ for j D n:
For both Propositions 8.1 and 8.2 we use the knowledge from Section 7.1 of what kinds of classes a can cut
down moduli spaces when working over the appropriate coefficient ring. For example, if a 2 Symm.Lw/
then DwX .a/ is an element in I 4�4n.Y IZ/, and the factor 1=2m is unnecessary in the coefficient ring.

We expect that the left-hand sides of the inequalities of Propositions 8.1 and 8.2 can be replaced by
more natural quantities. For example, the first of these should be a weaker form of a general inequality
involving Frøyshov’s homology cobordism invariant q2 mentioned in the introduction. Similarly, the
second is related to Frøyshov’s framework as developed in [21], but with Z=4 coefficients. We are now
in a position to give an alternative proof of Corollary 1.4.

Another proof of Corollary 1.4 Let Y D†.2; 3; 5/. It is well known that CI�.Y IZ/ is generated by
two flat SU.2/ connections in degrees 0 and 4. The differential on CI�.Y IZ/ is zero, and hence u is a
chain map, and induces a map on I�.Y IZ/ which we also call u. By [21, Proposition 2], ıu is divisible
by 8, and in particular ı4u4 � ıu .mod 4/ vanishes. The degree-two map v2 on I�.Y IZ=2/ is zero for
grading reasons. Thus the left-hand sides of the inequalities in Propositions 8.1 and 8.2 are equal to 1,
and the result follows from Lemmas 3.2 and 3.3.

Alternatively, we can also formulate the mod 8 analogue of Proposition 8.2 together with the computation
f8.�12/D 2, and use this with Proposition 8.2 and Lemma 4.2. However, the above proof illustrates that
constraints from inequalities arising from the mod 2 and mod 4 coefficient cases are sufficient. Further,
the use of only Lemmas 3.2 and 3.3 shows that there is a minimal amount of algebra needed.

The computation ıu � 0 .mod 8/ in the proof of Corollary 1.4 is computed in [21] via basic gluing
formulas for relative Donaldson invariants, using an embedding of the negative-definite E8 plumbing into
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a K3 surface. The same procedure may be attempted for †.2; 5; 9/, the boundary of a negative-definite
plumbing with intersection form ��12 which itself embeds in the elliptic surface E.3/, as follows from
[17, Section 2], and builds on the construction explained at the beginning of Section 4. However, we
can obtain the congruence ıu� 0 .mod 8/ for the Poincaré sphere by another method, which will also
lead to another proof of Corollary 1.2 for †.2; 5; 9/, without reverting to gluing formulas for Donaldson
invariants. We proceed to explain this.

As in the above proof, let Y D†.2; 3; 5/, and denote by P the nontrivial SO.3/–bundle over 0 surgery
on the .2; 3/ torus knot. Then for any coefficient ring we have the long exact sequence

(44) � � � ! I�.S3/! I�.Y /
W�
�! I�.P /! I�.S3/! � � � :

This is Floer’s exact triangle [19; 4]. The mapW� is induced by a surgery 2–handle cobordismW WY !Y0.
Because the instanton cohomology of the 3–sphere vanishes, W� is an isomorphism. For the nontrivial
bundle P , the map u is also defined on instanton cohomology. The map W� does not commute with u; in
fact W�u� uW� D 2ı˝ ı0W , where ı0W counts isolated instantons on W with trivial limit at Y . (This
follows from a version of [21, Theorem 6].) From this it follows, however, that W�uD uW� on I 0.Y IZ/.
Thus to show that ıu� 0 .mod 8/ on I 0.Y IZ/ it suffices to show that u� 0 .mod 8/ on I�.P IZ/.

The (2,3) torus knot has genus 1. Consequently, there is a genus 1 surface embedded in the 0 surgery
over which the bundle P restricts nontrivially; this is formed by capping off a Seifert surface in the
complement of the surgery neighborhood with a disk glued in from 0 surgery. Following [21, Section 6]
we stretch along a link of this surface in R cross the 0 surgery diffeomorphic to a 3–torus T 3 to conclude
that u factors through the corresponding map on V 01. However, on this latter group, uD ˇ0 � 0 .mod 8/,
establishing the claim. We note that essentially the same argument shows that ıu� 0 .mod 8/ for the
family of Brieskorn spheres †.2; 3; 6k˙ 1/, and so we obtain alternative proofs for Corollaries 5.1 and
5.2 as well.

Another proof of Corollary 1.2 Let Y D†.2; 5; 9/. The exact sequence (44) now applies to surgery
on the (2,5) torus knot. As for †.2; 3; 5/, the Floer complex for Y has zero differential and u is a chain
map. Again, although u and W� do not commute in general, they do on I 0.Y IZ/. Furthermore, v2
and the mod 2 reduction of W� commute. Next, the .2; 5/ torus knot is of genus 2, and I�.P IZ/ has
u � 0 .mod 4/ and v22 � 0 .mod 2/ since ˇ0 � 0 .mod 4/ and .˛0/2 � 0 .mod 2/ within V 02. Now the
left-hand sides of the inequalities in Propositions 8.1 and 8.2 are 2 and 1, respectively, and with Lemma 4.2
the result follows.

9 The lattice E 2
7

The root lattice E7 may be described as the subset of 1
2
Z8 consisting of vectors x D .x1; : : : ; x8/ withP

xi D 0 and all xi in one of Z8 or 1
2
CZ8. The positive-definite unimodular lattice E27 is defined by

E27 D E7˚E7[ .gCE7˚E7/; g D
��
3
4

2
;�1

4

6�
;
�
3
4

2
;�1

4

6��
2 E�7 :
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We note that E�7=E7 is cyclic of order 2 generated by Œg�. In this section we show:

Proposition 9.1 We compute e0.E72 /D 1, f2.E72 /D 2 and f4.E72 /D 2.

These computations show that even if the mod 2 inequality (4) were true in general, it would not be
sufficient to prove Theorem 1.1. In the course of the proof to follow we leave some of the computations
to the reader.

Proof We need to understand the index-two cosets of L and their extremal vectors. We divide the cosets
into two types: those in the image of the inclusion-induced map

� W
E7˚E7

2.E7˚E7/
!

L

2L

and those that are not. To better understand the former case, we list the index-two cosets of E7. These are
easily found by hand, and are also listed in [7, page 169]. First define

x D .1;�1; 06/; y D .12;�12; 04/; z D
�
3
2

2
;�1

2

6�
:

Note that x2 D 2, y2 D 4 and z2 D 6. Consider the cosets wC 2E7 for w 2 f0; x; y; zg. After applying
automorphisms of E7 to these we obtain all cosets in E7=2E7. There are 63 cosets in the orbit of xC2E7,
each represented by a vector of square 2, unique up to sign, and there are similarly 63 cosets in the
orbit of yC 2E7, each having 12 square 4 vectors. There are only two other cosets, represented by 0
and z, which are fixed under the action of the automorphism group. Thus the total number of cosets is
1C 63C 63C 1D 27, as expected.

The cosets in L that lie in the image of � are therefore represented by .u; v/ for u; v 2 f0; x; y; zg
and some cosets obtained from these by applying automorphisms. The case .z; z/ can be ignored;
indeed, .z; z/ D 2g, so this vector represents the zero coset. Next we note .y; z/� 2g D .t; 0/ where
t D .�1=24; 1=24/ has square 2, and .y; y/� 2gD .t; t/, a vector of square 4. Similarly, .x; z/ is mod 2
equivalent to a vector of square 4 supported in E7˚ 0. Thus by symmetry, when maximizing over the
data defining e0.L/, f2.L/ and f4.L/ which has w extremal and wC 2L contained in the image of � ,
we may restrict our attention to w being among .x; 0/, .y; 0/, .z; 0/, .x; x/ and .x; y/.

Now we consider cosets not contained in the image of � . We claim that upon defining

aD
�
3
4

2
;�1

4

6�
; b D

�
3
4

3
;�5

4
;�1

4

4�
; c D

�
7
4

1
;�1

4

7�
;

all elements in L=2L� im.�/ are obtained from the cosets represented by .a; a/, .a; b/, .a; c/, .b; b/,
.b; c/ and .c; c/ after perhaps applying an automorphism of L. The claim is verified by counting. First
note that � has 1–dimensional kernel. Indeed, a basis for E27 is given by the rows of the following matrix:
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1
4

1
4

1
4

1
4

1
4

1
4
�
3
4
�
3
4

1
4

1
4

1
4

1
4

1
4

1
4
�
3
4
�
3
4

1
2

1
2

1
2

1
2
�
1
2
�
1
2
�
1
2
�
1
2

0 0 0 0 0 0 0 0

1 �1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 �1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 �1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 �1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 �1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 �1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 �1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 �1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 �1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 �1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 �1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 �1

37777777777777777777777775

:

Every row in the matrix except for the first lies in E7˚E7, and the first row is equivalent modulo 2L to
the vector g 2L. Thus every coset not in the image of � is of the form Œg�C Œw� where Œw� 2 im.�/, and
there are 213 D 8192 such cosets.

We consider orbits of the automorphism group acting on Œw�D wC 2L as w varies through the above
representatives. Let G be the subgroup of Aut.L/ generated by automorphisms that permute the first 8 or
last 8 coordinates, the automorphism that swaps the first and last 8 coordinates, and the automorphism �

that negates the first 8 coordinates. First consider

w D .a; a/D
��
3
4
; 3
4
;�1

4
;�1

4
;�1

4
;�1

4
;�1

4
;�1

4

�
;
�
3
4
; 3
4
;�1

4
;�1

4
;�1

4
;�1

4
;�1

4
;�1

4

��
:

Then G �w consists of vectors obtained from w by permuting the placement of the 3
4

terms within each
E7–factor and changing signs on each E7–factor. Thus #G �w D 4 �

�
8
2

�
�
�
8
2

�
D 3136. The only mod 2

congruences among v 2G �w are v ��v, and so #G � Œw�D 1
2

#G �w D 1568. Next, consider

w D .a; b/D
��
3
4
; 3
4
;�1

4
;�1

4
;�1

4
;�1

4
;�1

4
;�1

4

�
;
�
3
4
; 3
4
; 3
4
;�5

4
;�1

4
;�1

4
;�1

4
;�1

4

��
:

We compute #G �w D 4 � 2 �
�
8
2

�
� 4
�
8
4

�
. However, the stabilizer for G acting on Œw� consists of � , the

automorphism swapping the first and last 4 coordinates of the second E7–factor, and any permutation
preserving the first 12 coordinates. Taking this into account, we compute #G � Œw�D 2 �

�
8
2

�
�
�
8
4

�
D 3920.

We proceed in this manner to find that #G � Œw� for w among .a; a/, .a; b/, .a; c/, .b; b/, .b; c/ and .c; c/
is equal to 1568, 3920, 112, 2450, 140 and 2, respectively. These add up to 8192, and this verifies the
claim stated in the previous paragraph.

In summary, when maximizing over the data defining e0.L/, f2.L/ and f4.L/ we may restrict our
attention to computing �.L; w; a;m/ for which w is in the following table:

w .x; 0/ .a; a/ .x; x/ .y; 0/ .a; b/ .a; c/ .x; y/ .z; 0/ .b; b/ .b; c/ .c; c/

w2 2 3 4 4 5 5 6 6 7 7 7
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In each case w is extremal. We next claim the following, where in each case w runs over the vectors in
the table:

(i) �.L; w/D 0 for w 2 f.x; y/; .z; 0/g and �.L; w; e; 1/D 0 for w 2 f.b; b/; .b; c/; .c; c/g as e runs
over a basis for L; and

(ii) 2�m�.L; w; e1 � � � em; m/ � 0 .mod 2/ for each m > 0 with w2 �m > 4, where e1; : : : ; em are
arbitrary elements of a basis for Lw .

It is straightforward to verify these claims by computer once one knows Min.wC 2L/ for each w above.
For example, if w D .c; c/, this set consists of the 64 vectors obtained by permuting the placement of the
7
4

terms within each E7–summand. Claim (i) implies e0.L/D 1 and f4.L/D 2. More precisely, for the
latter, it establishes that f4.L/6 2, and Lemma 3.2 implies equality. Claim (ii) implies f2.L/D 2.

The following result collects the lattices that occur in Elkies’ list, Table 1, under the constraint f2.L/6 2.
In terms of our topological tools, it combines the restrictions of having d–invariant 2 and the inequality
of Proposition 8.1 having left-hand side equal to 2. We do not know if the lattice E27 ever occurs under
the hypotheses given.

Proposition 9.2 Suppose that Y is an integer homology 3–sphere with d.Y / D 2 and ı2v2 D 0. If a
smooth , compact , oriented 4–manifold with no 2–torsion in its homology has boundary Y and reduced
negative-definite nondiagonal intersection form L, then �L is one of E8, �12 or E27 .

Proof By Proposition 8.1, it suffices to show that m.L/ > 3 for the lattices in Table 1 other than
the three given. As in the proof of Lemma 3.3, if the root lattice R � L contains An for n > 3, then
w D .1; 1;�1;�1; 0; : : : ; 0/ 2 An shows that m.L/> 3. This leaves D28 , D36 , D54 , A221 , O23 in Table 1.
The following descriptions of the first three of these lattices are from [6].

Suppose L D D28 . This lattice is generated by D8 ˚ D8 along with g1 D ..1=28/; .�11; 07// and
g2D ..�1

1; 07/; .1=28//. As before, superscripts denote repeated entries. Then wD g1Cg2 is extremal
of square 4, and Min.wC 2L/D fw;�wg, implying m.L/> w2� 1D 3.

Next suppose LDD36 . Then L is generated by the root lattice D6˚D6˚D6 and

g1D .0; .1=2
6/; .1=25;�1=21//; g2D ..1=2

5;�1=21/;0; .1=26//; g3D ..1=2
6/; .1=25;�1=21/;0/:

Then w D g1�g2 is extremal of square 4 and as before m.L/> 3.

Next, suppose LDD54 . Then L is generated by D4˚D4˚D4˚D4˚D4 along with gD ..1=24/5/ and
g1 D .0; .0

3; 11/; .1=23;�1=21/; .1=23;�1=21/; .03; 11//, and cyclic permutations g2; g3; g4; g5 of g1.
Then w D g is extremal of square 5 with Min.wC 2L/D fw;�wg, implying m.L/> 4.

Now suppose LDA221 . We sketch the construction of this lattice following [7, Construction A, Chapter 7]
using the shortened Golay code C22. Let S be the subspace of the Golay code C24 consisting of vectors
with first two coordinates 00 or 11, where C24 � F242 is spanned by the rows of Figure 3.4 in [7, page 84].
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Then C22 is the subspace of F222 obtained by projecting S onto the last 22 coordinates, and A221 is the
subset of R22 consisting of vectors Ex=

p
2 such that Ex .mod 2/ lies in C22. Let Ev 2 f0; 1g22 descend to

the code word Ev .mod 2/ in C22 with 10 entries equal to 1, obtained by summing the first 11 rows of
Figure 3.4 in [7, page 84], ignoring the first two coordinates. Then w D Ev=

p
2 2 A221 is extremal of

square 5. It is straightforward to verify that any extremal vector equivalent to w is of the form wC 2r

for a root r . The roots are the elements with one nonzero entry equal to ˙2=
p
2. From this we obtain

Min.wC 2L/D fw;�wg, implying m.L/> 4.

Finally, suppose L D O23, the shorter Leech lattice. Let w be any vector of square 5; such a vector
exists by inspecting the theta-series of O23, see (7) in [7, page 443]. Using that O23 has no roots,
Min.wC 2L/D fw;�wg and m.L/> 4.
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