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We study the infinite generation in the homotopy groups of the group of diffeomorphisms of S1 �D2n�1,
for 2n� 6, in a range of degrees up to n�2. Our analysis relies on understanding the homotopy fibre of a
linearisation map from the plus-construction of the classifying space of a certain space of self-embeddings
of stabilisations of this manifold to a form of Hermitian K–theory of the integral group ring of �1.S

1/.
We also show that these homotopy groups vanish rationally.

55R40, 57S05, 58D10

1. Introduction and statement of results 1629

2. Manifolds and quadratic modules 1633

3. Homotopy automorphisms of Xg 1636

4. The Weiss sequence, disjunction and surgery 1648

5. Self-embeddings of Xg 1653

6. Stably framed self-embeddings of Xg 1661

7. Proofs of the main theorems 1666

Appendix A. Some recollections on metastable homotopy theory 1679

Appendix B. Coinvariant calculations 1683

Appendix C. Relation to classical calculations 1686

References 1689

1 Introduction and statement of results

The mapping class group of a compact smooth manifold M is the group of isotopy classes of diffeomor-
phisms M !M which fix a neighbourhood of the boundary pointwise. For simply connected closed
manifolds of dimension d > 5, Sullivan [55, Theorem 13.3] has shown that these groups are finitely
generated. In contrast, the mapping class group of a nonsimply connected high-dimensional manifold can
fail to be finitely generated, for example the torus M D T n for n� 5; see Hatcher [25, Theorem 4.1]. In
fact, this phenomenon already arises for the solid torus; see Hatcher and Wagoner [26, Corollary 5.5].
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1630 Mauricio Bustamante and Oscar Randal-Williams

A d–dimensional solid torus is a manifold diffeomorphic to the product S1 �Dd�1 of a circle with
a closed .d�1/–disc. The mapping class group �0.Diff@.S1 �Dd�1// of this manifold is infinitely
generated, at least when d � 6. This was known from early works of Hatcher and Wagoner [26], and
Hsiang and Sharpe [32], who used surgery theory, a parametrised form of the s–cobordism theorem,
and calculations of the algebraic K–groups of integral group rings, to prove that �0.Diff@.S1 �Dd�1//

contains a summand isomorphic to a countable infinite sum of Z=2’s. In terms of Waldhausen’s approach
to pseudoisotopy theory [57], one can identify the source of this infinite generation as the homotopy fibre
of the linearisation map

�1A.S1/!�1K.ZŒt; t�1�/

from Waldhausen’s algebraic K–theory of spaces for S1 to the algebraic K–theory of the integral group
ring of �1.S

1/Dhti. Furthermore, this point of view leads to the discovery of infinitely generated torsion
subgroups in the homotopy groups of BDiff@.S1�Dd�1/, the classifying space of the topological group
Diff@.S1 �Dd�1/ of self-diffeomorphisms of S1 �Dd�1 which are the identity near the boundary, in
degrees within the pseudoisotopy stable range (currently known to be �. 2n=3).

In this paper we propose a different method for computing the homotopy groups of BDiff@.S1�D2n�1/,
which does not use the algebraic K–theory of spaces or the stable parametrised h–cobordism theorem
and so is not subject to the dimension constraints imposed by pseudoisotopy theory. Our approach, which
in addition gives a more geometric explanation of this infiniteness, focuses on manifolds of dimension
2n� 6, and is based on a certain “Weiss fibre sequence”

BDiff@.S
1
�D2n�1/! BDiff@.Xg/! BEmbŠ@=2.Xg/;

which lets us interpret the diffeomorphisms of a solid torus as the difference between diffeomorphisms
and self-embeddings (fixing only a portion of the boundary) of the manifold

Xg WD S1
�D2n�1 # .Sn

�Sn/#g:

When g !1 the homotopy type of the plus-construction of BDiff@.Xg/ is understood by work of
Galatius and Randal-Williams [18], and it has finitely generated homotopy groups. Thus any infinite
generation in the homotopy groups of BDiff@.S1�D2n�1/ is due to the space of self-embeddings of Xg,
and even to the homotopy fibre of a linearisation map

hocolim
g!1

BEmbŠ@=2.Xg/
C
!�10 GW.ZŒt; t�1�/

to a form of Grothendieck–Witt theory (alias Hermitian K–theory) of the integral group ring of �1.S
1/.

By analogy with the above one might consider the domain of this map as a form of “Hermitian K–theory
of spaces for S1”, though we do not try to pursue this analogy.

This paper begins the systematic analysis of BDiff@.S1 �D2n�1/ from this point of view. In this first
instance we focus on the infinite-generation phenomenon and restrict to the range of degrees �< n� 2,
in which the embedding spaces Emb@=2.Xg/ may be replaced by their block analogues eEmb@=2.Xg/, by
use of Morlet’s lemma of disjunction, and therefore be analysed by surgery theory.
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On automorphisms of high-dimensional solid tori 1631

Theorem A For n�3, all primes p, and 0<k<min.2p�3; n�2/, the groups �k.BDiff@.S1�D2n�1//

are finitely generated when localised at p.

Furthermore , if 2p� 3< n� 2 then there is a mapM
a>0

Z=pfta
� t�a

g ! �2p�3.BDiff@.S
1
�D2n�1//

which is injective and whose cokernel is finitely generated after localisation at p. When pD 2 the cokernel
is finitely generated even before localisation.

Remark 1.1 The elements in �2p�3.BDiff@.S1�D2n�1// produced by our theorem have the following
geometric interpretation. For X1 ' S1_Sn_Sn let us write �1.X1/D hti and x1;x2 2 �n.X1/ for the
inclusions of the two n–spheres. In the course of our proof, under the stated conditions we will show that
for each a> 0 there is a family

fa W S
2p�3

! Emb@=2.X1/

of self-embeddings of X1 relative to 1
2
@X1DS1�D2n�2

� �@Xg, whose adjoint is in the homotopy class of

S2p�3
� .S1

_Sn
_Sn/! S1

_SnC2p�3
_SnC2p�3 t_.�tax1ı˛/_.t

�ax2ı˛/
���������������! S1

_Sn
_Sn;

for ˛ 2 �nC2p�3.S
n/ Š �s

2p�3
the standard generator of the p–torsion subgroup. The element

.�1/n.ta� t�a/ 2 �2p�3.BDiff@.S1 �D2n�1// in Theorem A then classifies the S1 �D2n�1–bundle
over S2p�3 given by the family of complements of the embeddings fa.

Remark 1.2 In the pseudoisotopy stable range (currently �. 2n=3) the analogue of Theorem A follows
from the calculation of the p–local homotopy groups of the Whitehead spectrum of the circle; see
Grunewald, Klein and Macko [23] and Hesselholt [29]. In Appendix C we explain how our calculation
relates to this one.

Remark 1.3 In the case p D 2, Farrell has given a construction of diffeomorphisms of S1 �D2n�1

which are pseudoisotopic to the identity but not obviously isotopic to the identity. This construction is
described in Hatcher’s survey [25, pages 9–10], where it is claimed that the methods of [26] can be used
to show that they are indeed nontrivial, but that “a simpler proof of this would be quite welcome”. It
would be interesting to compare Farrell’s geometric construction with ours.

Remark 1.4 Our tool for showing that the map in Theorem A is injective, rather than merely having
finitely generated kernel, is the cyclotomic structure on BDiff@.S1 �D2n�1/ corresponding to self-
covering maps of S1 �D2n�1. We will show that the corresponding Frobenius operators fFdgd2N� are
given by

Fd .t
a
� t�a/D

�
ta=d � t�a=d if d divides a;

0 if d does not divide a;

and so are (locally) nilpotent. On the other hand the various finitely generated groups that arise in our
analysis have the property that the operators Fd ˝ZŒd�1� act invertibly.
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1632 Mauricio Bustamante and Oscar Randal-Williams

Although we have chosen to focus on the infinite-generation phenomenon, many of the intermediate
results we obtain in this paper are of a more general nature and also serve as preparation for further study
of BDiff@.S1�D2n�1/. As a first example, we have the following rational calculation in the same range
of degrees.

Theorem B For all n� 3 and 0< k < n� 2, we have

�k.BDiff@.S
1
�D2n�1//˝QD 0:

Remark 1.5 Budney and Gabai [9] and Watanabe [61] have recently shown that the homotopy group
�2n�3.BDiff@.S1 �D2n�1// has infinite rank. In view of Theorem B, it would be interesting to know
the rational homotopy groups of BDiff@.S1 �D2n�1/ in the range of degrees n� 2� k � 2n� 4.

In Section 7.7 we will show that the statements of Theorems A and B continue to hold with diffeomorphisms
replaced by homeomorphisms.

Structure of the paper

In Section 2 we introduce certain quadratic modules associated naturally to the manifolds Xg and
Wg;1 WD D2n # .Sn � Sn/#g. These quadratic modules and their groups of automorphisms are used
in Section 3 to describe the homotopy mapping class group of Xg, and also to compute some higher
homotopy groups of the topological monoid of homotopy automorphisms of Xg. To carry out these
calculations, we use several results in metastable homotopy theory which are collected in Appendix A. In
Section 4 we first describe the “Weiss fibre sequence” mentioned above, and then use surgery theory and
disjunction techniques to replace the space of self-embeddings of Xg (relative to half the boundary) by
the analogous space of “block” self-embeddings. In Section 5 we determine (up to extension) the set of
path-components of these spaces of self-embeddings, using surgery theory and the results of Section 4.
Section 6 concerns the higher homotopy groups of these spaces of self-embeddings, though we simplify
the calculations by instead considering stably framed self-embeddings. We must then revisit the results of
Section 5 and upgrade them to the stably framed setting. Section 7 then contains the proofs of the main
theorems, using the calculations of the previous sections. A further ingredient is the calculation of certain
modules of coinvariants of actions of unitary groups over ZŒt; t�1�, which is done in Appendix B. Finally,
in Appendix C we discuss the relation of this paper with the more classical methods of calculation via
algebraic K–theory.
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1
2
@Wg;1

1
2
@Xg

S1 �D2n�1

Xg

Wg;1

Wg;1

D2n

Figure 1: The manifolds Xg, left, and Wg;1, right, for g D 2. Note that Wg;1 ,!Xg ,!Wg;1.

2 Manifolds and quadratic modules

2.1 Manifolds

There are two families of manifolds we shall consider. The first is given by the manifolds

Wg;1 WDD2n # .Sn
�Sn/#g

obtained by connect sum of the 2n–disc with g copies of Sn�Sn; these have boundary @Wg;1 D S2n�1.
We write 1

2
@Wg;1 DD2n�1

� for the lower hemisphere. There is a homotopy equivalence Wg;1 '
W2g

Sn.

The second family is given by the manifolds

Xg WD .S
1
�D2n�1/ # .Sn

�Sn/#g

obtained by connect sum of the solid torus S1 �D2n�1 with g copies of Sn �Sn. These have boundary
@Xg D S1 � S2n�2, and we write 1

2
@Xg D S1 �D2n�2

� for the circle times the lower hemisphere.
There is a homotopy equivalence Xg ' S1 _

W2g
S2n. We often think of Xg as being obtained from

Wg;1 by trivially attaching a 1–handle along an embedding e W S0 �D2n�1 ,!D2n�2
C � @Wg;1, so that

1
2
@Wg;1 �

1
2
@Xg. If we then attach a cancelling 2–handle, we obtain an embedding Xg ,!Wg;1, such

that Wg;1 ,!Xg ,!Wg;1 is isotopic to the identity. These manifolds are depicted in Figure 1.

We choose a basepoint � 2 1
2
@Wg;1 �

1
2
@Xg, and write � D �1.Xg;�/ Š hti for the infinite cyclic

fundamental group. We take homotopy groups of Wg;1 and Xg to be based at �, and consider those
of Xg as left ZŒ��–modules. As usual, we use the antiinvolution t 7! xt D t�1 of the ring ZŒ�� to convert
between left and right ZŒ��–modules when necessary. As a matter of notation, we write

H WDHn.Wg;1IZ/;

which is also isomorphic to Hn.XgIZ/ via the natural map.
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1634 Mauricio Bustamante and Oscar Randal-Williams

We write ai ; bi 2 �n.Wg;1;�/� �n.Xg;�/ for the homotopy classes of Sn�f�g and f�g�Sn inside the
i th copy of Sn �Sn, which, by the Hurewicz theorem, give Z– or ZŒ��–module bases of �n.Wg;1;�/ or
�n.Xg;�/, respectively. In particular, we have natural identifications

�n.Wg;1;�/ŠH and �n.Xg;�/Š ZŒ��˝H

of left Z– and ZŒ��–modules, respectively. We will write xi W S
n!Wg;1 �Xg for the inclusion of the

i th n–sphere, which we choose by xi D ai and xgCi D bi .

2.2 Quadratic modules

Following Wall [60, Theorem 5.2], Galatius and Randal-Williams [20, Section 3] and, more precisely,
Friedrich [17, Section 4.1] have explained how to naturally associate a quadratic module to an oriented
manifold V of dimension 2n � 6. Let us explain a variant of this, endowing �n.V / with a quadratic
module structure when the tangent bundle of V is oriented and trivial over the n–skeleton. We write
� D �1.V;�/, and denote the identity element in � by e.

Firstly, there is an equivariant intersection form

� W �n.V;�/˝�n.V;�/! ZŒ��; �.x˝y/D
X
g2�

hg �x;yi �g�1;

where we identify �n.V;�/Š�n. zV ;�/, and h�;�i denotes intersection form of the universal cover zV . It
satisfies �.x;y/D .�1/n�.y;x/ and �.a �x; b �y/D a ��.x;y/ � xb for a; b 2ZŒ��, ie is a .�1/n–hermitian
form.

Secondly, to obtain a quadratic refinement, choose a basepoint bV 2 FrC.T V / in the oriented frame
bundle lying over � 2 V . By the assumption that the tangent bundle of V is trivial over the n–skeleton,
there are exact sequences

0! �1.SO.2n//
i
�! �1.FrC.T V /; bV /! �1.V;�/! 0;

�n.SO.2n//
i
�! �n.FrC.T V /; bV /! �n.V;�/! 0:

A choice of framing of Sn�Dn determines a map from the set Immfr
n.V /, of regular homotopy classes of

immersions i W Sn �Dn # V equipped with a path from Di.bSn�Dn/ to the basepoint bV in FrC.T V /,
to the abelian group �n.FrC.T V /; bV /, and this is a bijection by Hirsch–Smale theory. Using the map
Immfr

n.V /Š �n.FrC.T V /; bV /! �n.V;�/ we may consider � as a pairing

�fr
W Immfr

n.V /˝ Immfr
n.V /! ZŒ��;

which is sesquilinear over �1.FrC.T V /; bV /! �1.V;�/D � .

Consider the subgroup of ZŒ��

ƒmin
n WD fa� .�1/nxa j a 2 ZŒ��g:

Geometry & Topology, Volume 28 (2024)
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As in [60, Theorem 5.2] there is a function

qfr
W Immfr

n.V /! ZŒ��=ƒmin
n

given by counting signed self-intersections of the core of a framed immersion, and if a2�1.Fr.T V /; bV /

maps to g 2 � , then it satisfies
qfr.a �x/D g � qfr.x/ � xg;

which is well defined since gƒmin
n xg �ƒ

min
n . Furthermore,

(1) qfr.xCy/� qfr.x/� qfr.y/� �fr.x;y/ modƒmin
n :

We wish to descend qfr to a quadratic form on �n.V;�/. The pairing �fr on Immfr
n.V /Š�n.FrC.T V /; bV /

is defined to factor over �n.V;�/, so the subgroup i.�n.SO.2n/// lies in the radical of �fr, so by (1) the
function qfr ı i is Z–linear.

Lemma 2.1 The image of the homomorphism qfr ı i W �n.SO.2n//! ZŒ��=ƒmin
n is

(i) trivial if n¤ 3; 7,

(ii) generated by e modƒmin
n if n is 3 or 7.

Proof Interpreting �n.SO.2n// as the framed immersions Sn �Dn # D2n � V into a disc near the
basepoint, it follows that this homomorphism has image in the subgroup spanned by e 2 � . We then refer
to [40, Lemma 2.7]: briefly, if nD 3; 7 then the Whitney “figure eight” immersion is sent to e mod ƒmin

n ,
and if n¤ 3; 7 then if there were an immersion sent to e then connect-summing its core with the “figure
eight” and removing double points would give an embedding Sn ,!D2n with nontrivial normal bundle,
which is impossible.

In view of this lemma, letting ƒn D ƒ
min
n for n¤ 3; 7, and ƒn be the subgroup of ZŒ�� generated by

ƒmin
n together with e if nD 3; 7, the function qfr descends to a well-defined function

q W �n.V /! ZŒ��=ƒn;

which is a quadratic refinement of � W �n.V /˝�n.V /! ZŒ�� in the sense that it satisfies

q.g �x/D g � q.x/ � xg and q.xCy/� q.x/� q.y/� �.x;y/ mod ƒn:

Lemma 2.2 As long as n� 3, an element x 2�n.V /may be represented by an embedding Sn�Dn ,!V

if and only if q.x/D 0.

Proof The necessity is clear. For sufficiency, choose a lift x0 2 Immfr
n.V /Š �n.FrC.T V /; bV / of x. It

follows from [60, Theorem 5.2] that the immersion x0 is regularly homotopic to an embedding if and
only if qfr.x0/D 02ZŒ��=ƒmin

n . If n¤ 3; 7 then qfr.x0/D q.x/2ZŒ��=ƒmin
n and we are done. If nD 3; 7

then q.x/D 0 means that qfr.x0/ 2ƒn=ƒ
min
n , so is a multiple of e. But then by Lemma 2.1(ii) we may

rechoose the lift x0 of x by adding on a suitable element of i.�n.SO.2n/// to obtain an x00 for which
qfr.x00/D 0.
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1636 Mauricio Bustamante and Oscar Randal-Williams

Let us now specialise to the manifolds Wg;1 and Xg, which both have trivial tangent bundles, giv-
ing a quadratic module .�n.Wg;1/; �W ; qW / over Z and a quadratic module .�n.Xg/; �X ; qX / over
ZŒ��Š ZŒt˙1�, with form parameters ..�1/n; ƒn/ (though what ƒn denotes in the two cases is different).
In both cases, the hermitian forms �W and �X are nondegenerate, the pairs .ai ; bi/ are orthogonal
hyperbolic pairs with respect to �W or �X , and the quadratic refinements qW and qX vanish on the ai

and the bi . This identifies .�n.Wg;1/; �W ; qW / and .�n.Xg/; �X ; qX / as genus g hyperbolic quadratic
modules over the appropriate rings and with the appropriate form parameters.

We write
Ug.Z; ƒn/ and Ug.ZŒ��; ƒn/

for the associated unitary groups. By construction, any diffeomorphism of Wg;1 or Xg relative to their
boundaries, or more generally any smooth self-embedding of these manifolds relative to “half their
boundaries”, induces a morphism of the associated quadratic module.

Remark 2.3 If n is even then we have 4qX .x/D qX .2x/D qX .xCx/D qX .x/C qX .x/C�X .x;x/

and so 2qX .x/D �X .x;x/. Furthermore ƒnD ht
a� t�a j aD 1; 2; 3; : : :iZ is a direct summand of ZŒ��,

so ZŒ��=ƒn is torsion-free: therefore �X determines qX in this case. If n is odd then qX is not determined
by �X .

3 Homotopy automorphisms of Xg

In this section we will analyse the homotopy groups of the topological monoid hAut@.Xg/ of self-
homotopy equivalences of the manifold Xg which fix the boundary @Xg D S1 �S2n�2 pointwise. For
definitions and basic properties of Whitehead products we follow [67]. We continue using our notation
from the previous section. In particular, the Z– or ZŒ��–module bases of �n.Wg;1;�/ or �n.Xg;�/,
respectively, are given by the elements ai ; bi 2 �n.Wg;1;�/ � �n.Xg;�/ representing the homotopy
classes of Sn � f�g and f�g�Sn inside the i th copy of Sn �Sn.

3.1 A fibration sequence

Our analysis is based on the fibration sequence

(2) Map@.Xg;Xg/!MapS1.Xg;Xg/
�
�!MapS1.S1

�S2n�2;Xg/

given by restricting maps f WXg!Xg (which are the identity on S1 � @Xg D S1 �S2n�1) along the
inclusion � W @Xg ! Xg. We will completely describe the restriction map � at the level of homotopy
groups. To express our answer, note that the homotopy class of the inclusion

S2n�1
D @Wg;1 �Wg;1 �Xg

is the sum of Whitehead brackets ! WD
Pg

iD1
Œai ; bi � 2 �2n�1.Xg/. The coinvariants for the action of �

on �j .Xg/ will be denoted by Œ�j .Xg/�� .
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Theorem 3.1 There are isomorphisms

�k.MapS1.Xg;Xg/; id/Š HomZŒ��.�n.Xg/; �kCn.Xg//;

�k.MapS1.S1
�S2n�2;Xg/; �/Š Œ�2n�1Ck.Xg/�� ;

under which the map �0.�/ is given by

� 7!

gX
iD1

Œ�.ai/; �.bi/�� Œai ; bi �

and , for k > 0, the map �k.�/ is given by

� 7!

gX
iD1

Œ�.ai/; bi �C .�1/nk Œai ; �.bi/�:

Under the identification

�n.Xg/˝ZŒ�� �kCn.Xg/
�
�! HomZŒ��.�n.Xg/; �kCn.Xg//; x˝y 7! �X .�;x/ �y;

where we have used the antiinvolution to consider �n.Xg/ as a right ZŒ��–module , the latter map is
given by

x˝y 7! Œy;x�:

The following construction and lemma will be used in the proof of Theorem 3.1. Let X be a based space,
s W Sn!X be a based map, and m> 0. Then there is a map

Œ�; s� W�m
0 X !�mCn�1

0
X

given by sending g 2�m
0

X to the element Œg; s� 2�mCn�1
0

X given by

g ı pr1[ s ı pr2 W @.I
m
� In/D Im

� @In
[ @Im

� In
!X;

and similarly there is a map Œs;�� W �m
0

X ! �mCn�1
0

X given by sending g 2 �m
0

X to the map
s ı pr1[g ı pr2 W @.I

n � Im/D In � @Im[ @In � Im!X .

Lemma 3.2 The map Œ�; s� W�m
0

X !�mCn�1
0

X induces1

f 7! Œf; s� W �kCm.X /D �k.�
m
0 X /! �k.�

mCn�1
0

X /D �kCnCm�1.X /

on homotopy groups.

Consequently, the map Œs;�� W�m
0

X !�nCm�1
0

X induces f 7! .�1/nk Œs; f � on �k.�/.

Proof Using @.I s � I t /D I s � @I t [ @I s � I t , it follows that on �k the map Œ�; s� is given by sending
f 2 �k.�

m
0

X /Š �kCm.X / to the map @.Ik � Im � In/!X defined by

f ı pr1[ s ı pr2 W .I
k
� Im/� @In

[ @.Ik
� Im/� In

!X;

which is Œf; s� by definition.

1This is not a based map, but the spaces are simple so it nonetheless induces a well-defined map on homotopy groups.
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We deduce the second part from the first, using that the map Œs;�� is homotopic to .�1/nmŒ�; s�, which
by the first part induces the map f 7! .�1/nmŒf; s� on homotopy groups, giving the required

.�1/nm.�1/n.mCk/Œs; f �D .�1/nk Œs; f �:

Proof of Theorem 3.1 Firstly, there is an equivalence MapS1.Xg;Xg/ ' Map�
�W2g

Sn;Xg

�
, and

taking homotopy groups based at the constant map ct therefore gives

�k

�
Map�

�W2g
Sn;Xg

�
; ct
�
Š HomZ.H; �nCk.Xg//:

Using the identification �n.Xg/Š ZŒ��˝H we can write this as HomZŒ��.�n.Xg/; �nCk.Xg//. Now
the co-H–space structure on

W2g
Sn turns Map�

�W2g
Sn;Xg

�
into a group-like H–space, and therefore

all its path components are homotopy equivalent. Hence adding on the inclusion map inc W
W2g

Sn!Xg

gives the required isomorphism

�k

�
Map�

�W2g
Sn;Xg

�
; ct
�
�
�! �k

�
Map�

�W2g
Sn;Xg

�
; inc

�
Š �k.MapS1.Xg;Xg/; id/:

Secondly, expressing S1 �S2n�2 as the pushout of .S1 _S2n�2/
Œi1;i2n�2�
 ������ S2n�2!D2n�1, where

i1 W S
1! S1_S2n�2 and i2n�2 W S

2n�2! S1_S2n�2 are the inclusions, there is a homotopy cartesian
square

MapS1.S1 �S2n�2;Xg/

��

// Map�.D
2n�1;Xg/

��

MapS1.S1 _S2n�2;Xg/
w
// Map�.S

2n�2;Xg/

whose top right-hand corner is contractible. The map w is given by precomposition with the attaching
map Œi1; i2n�2� W S

2n�2! S1 _S2n�2, so under the evident identification MapS1.S1 _S2n�2;Xg/D

Map�.S
2n�2;Xg/ it is given on k th homotopy groups by

Œt;�� W �kC2n�2.Xg/! �kC2n�2.Xg/:

In terms of the ZŒ��–module structure on homotopy groups, this is the map x 7! t �x�x. We claim that
this is injective. As Xg ' S1 _

W2g
Sn, an element in the kernel of this map is represented by a map

x W SkC2n�2! zXg whose (unbased) homotopy class is invariant with respect to the action of � by deck
transformations, but this means that x is null (it is homotopic to maps lying in disjoint finite wedges of
n–spheres; projecting to these finite summands shows it is trivial). The long exact sequence on homotopy
groups therefore gives an isomorphism

Œ�kC2n�1.Xg/��
�
�! �k.MapS1.S1

�S2n�2;Xg/; �/;

as required. By inspecting the vertical homotopy fibres in square above, we see that this isomorphism is
induced by acting on � via the pinch map p W S1 �S2n�2! S1 �S2n�2 _S2n�1. In fact the map from
Map�.S

2n�1;Xg/ to the homotopy fibre (over the inclusion) of the left vertical map, given by sending
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� 2Map�.S
2n�1;Xg/ to the pair consisting of the composite

S1
�S2n�2 p

�! S1
�S2n�2

_S2n�1 �_�
��!Xg

and the constant homotopy of the inclusion S1_S2n�2 ,!S1�S2n�2 �
�!Xg, is a homotopy equivalence.

Thirdly, we determine the map �k.�/. The inclusion � W S1 �S2n�2!Xg has an evident nullhomotopy
on ��S2n�2, giving a factorisation up to homotopy

� W S1
�S2n�2

!
S1 �S2n�2

��S2n�2

�
 � S1

_S2n�1 �
S1_q
���!Xg;

where �S1 is the restriction of the inclusion � to S1 �� � S1 �S2n�1, and q W S2n�1!
W2g

jD1
Sn

j is the
inclusion of the boundary S2n�1!Wg;1, so represents the homotopy class ! D

Pg
iD1

Œai ; bi �. Thus the
restriction map

MapS1.Xg;Xg/
�
�!MapS1.S1

�S2n�2;Xg/

along � is homotopic to the map sending f to

S1
�S2n�2 p

�! S1
�S2n�2

_S2n�1 pr1�! S1
_S2n�1 �

S1_q
���!Xg

f
�!Xg:

Thus there is a factorisation

MapS1.Xg;Xg/'Map�
�W2g

Sn;Xg

� q�
�!Map�.S

2n�1;Xg/

�q
�!Map�.S

2n�1;Xg/!MapS1.S1
�S2n�2;Xg/;

where the first map is precomposition by q, the second map is given by translation by the inverse of q

using the H–space structure on Map�.S
2n�1;Xg/, and the third map is given by acting on � by the pinch

map. Our calculation of the homotopy groups of MapS1.S1 �S2n�2;Xg/ shows that this pinch action
induces an isomorphism on homotopy groups after taking coinvariants for the �–action on the domain.

On �0 we now get the claimed formula: to a � W �n.Xg/! �n.Xg/ representing a map ˛� WXg!Xg,
�0.�/.�/ is given by

S2n�1 r
�! S2n�1

_S2n�1 S2n�1_q
�����! S2n�1

_Xg
�!_˛�
����!Xg;

so is
Pg

iD1
Œ�.ai/; �.bi/�� Œai ; bi � 2 �2n�1.Xg/.

To analyse the effect on higher homotopy groups, we precompose with the equivalence

Map�
�W2g

Sn;Xg

� Cinc
���!Map�

�W2g
Sn;Xg

�
given by translation by inc using the H–space structure on Map�

�W2g
Sn;Xg

�
coming from

W2g
Sn

being a co-H–space, as above. We therefore want to compute the effect on homotopy groups of the
composition

(3) Map�
�W2g

Sn;Xg

� Cinc
���!Map�

�W2g
Sn;Xg

� q�
�!Map�.S

2n�1;Xg/
�q
�!Map�.S

2n�1;Xg/
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based at the constant map. This composition sends a map f W
W2g

Sn!Xg to

S2n�1 r
�! S2n�1

_S2n�1 S2n�1_q
�����! S2n�1

_
�W2g

Sn
�

S2n�1_r
�����! S2n�1

_
�W2g

Sn
�
_
�W2g

Sn
��q_inc_f
�����!Xg:

The first three of these maps represents the homotopy class

i2n�1C

gX
iD1

Œa1
i C a2

i ; b
1
i C b2

i � 2 �2n�1

�
S2n�1

_
�W2g

Sn
�
_
�W2g

Sn
��
;

where ar
i is the map ai considered as a map to the r th wedge summand

W2g
Sn. We can expand this out

as
i2n�1C

gX
iD1

Œa1
i ; b

1
i �C Œa

1
i ; b

2
i �C Œa

2
i ; b

1
i �C Œa

2
i ; b

2
i �:

The composition (3) is therefore homotopic to the map which sends f to

�qC

gX
iD1

Œai ; bi �C Œai ; f ı bi �C Œf ı ai ; bi �C Œf ı ai ; f ı bi �;

where C denotes repeated cleaving maps r. Since �q C
Pg

iD1
Œai ; bi � ' 0, we can remove these

terms. If fs 2�
k Map�

�W2g
Sn;Xg

�
represents an element of �k

�
Map�

�W2g
Sn;Xg

��
, then the map

t 7!
Pg

iD1
Œft ı ai ; ft ı bi � is adjoint to

Sk
^S2n�1 Sk^q

���! Sk
^
�W2g

Sn
� f
�!Xg;

but as suspensions of Whitehead products are trivial, this is nullhomotopic. This leaves

s 7!

gX
iD0

Œai ; fs ı bi �C Œfs ı ai ; bi � W S
k
!Map�.S

2n�1;Xg/:

Lemma 3.2 above shows that this corresponds to
gX

iD0

Œ�.ai/; bi �C .�1/nk Œai ; �.bi/� 2 �kC2n�1.Xg/:

Finally, under the isomorphism �n.Xg/˝ZŒ�� �kCn.Xg/ Š HomZŒ��.�n.Xg/; �kCn.Xg// the class
bj ˝y corresponds to the function �X .�; bj / �y. Thus under �k.�/ this maps to

gX
iD1

Œ�X .ai ; bj / �y; bi �C .�1/nk Œai ; �X .bi ; bj / �y�D Œy; bj �I

similarly, aj ˝y corresponds to �X .�; aj / �y, which maps to
gX

iD1

Œ�X .ai ; aj / �y; bi �C .�1/nk Œai ; �X .bi ; aj / �y�D .�1/nkCnŒaj ;y�D Œy; aj �:

Classes of the form aj˝y and bj˝y generate �n.Xg/˝ZŒ���kCn.Xg/, proving the final statement.
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Similarly, for the manifolds Wg;1 there is a fibration sequence

Map@.Wg;1;Wg;1/!Map�.Wg;1;Wg;1/
�
�!Map�.S

2n�1;Wg;1/;

and an analogous but much simpler argument proves the following.

Theorem 3.3 There are isomorphisms

�k.Map�.Wg;1;Wg;1/; id/Š HomZ.�n.Wg;1/; �kCn.Wg;1//;

�k.Map�.S
2n�1;Wg;1/; �/Š �2n�1Ck.Wg;1/;

under which the map �0.�/ is given by

� 7!

gX
iD1

Œ�.ai/; �.bi/�� Œai ; bi �

and , for k > 0, the map �k.�/ is given by

� 7!

gX
iD1

Œ�.ai/; bi �C .�1/nk Œai ; �.bi/�:

Under the identification

�n.Wg;1/˝Z �kCn.Wg;1/
�
�! HomZ.�n.Wg;1/; �kCn.Wg;1//; x˝y 7! �W .�;x/ �y;

the latter map is given by x˝y 7! Œy;x�.

3.2 The mapping class group

We now restrict our attention to the groups ��.hAut@.Xg// and ��.hAut@.Wg;1// for degrees �< n� 1,
where the homotopy groups showing up in Theorems 3.1 and 3.3 are metastable. We use some tools from
metastable homotopy theory to establish the calculations we will need. For the reader’s convenience, we
collect those tools in Appendix A at the end of the paper.

We begin analysing the mapping class group �0.hAut@.Xg//. Restricting to those path components
hAut@.Xg/�Map@.Xg;Xg/ consisting of homotopy equivalences, we have an exact sequence

� � � ! �0.hAut@.Xg//! GLZŒ��.�n.Xg//
� 7!

P
Œ�.ai /;�.bi /��Œai ;bi �

����������������! Œ�2n�1.Xg/�� ;

showing that the image of �0hAut@.Xg/ in GLZŒ��.�n.Xg//Š GL2g.ZŒ��/ are those automorphisms
� for which

P
Œ�.ai/; �.bi/�D

P
Œai ; bi �. The following lemma spells out what this means in concrete

terms; it uses the notation X | for the hermitian transpose of a matrix over ZŒ��.

Lemma 3.4 Suppose that � 2 GL2g.ZŒ��/ is given in block form by
�

A B
C D

�
with respect to the basis

a1; a2; : : : ; ag, b1; b2; : : : ; bg. Then
P
Œ�.ai/; �.bi/�D

P
Œai ; bi � if and only if

(i) AD|C .�1/nBC | D I ,

(ii) AB|C .�1/n.AB|/| and CD|C .�1/n.CD|/| vanish off the diagonal ,

(iii) the diagonal entries of AB| and CD| lie in ƒn.
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Proof The element
Pg

iD1
Œai ; bi �D

Pg
iD1

Œxi ;xgCi � is supported on the second term of (23) in Section A.1
with k D 0. As Œx; t �y�D t � Œt�1 �x;y�, we have Œx; t �y�� Œt�1 �x;y� in the �–coinvariants, and hence
Œx; a �y�D Œxa �x;y�. NowX

Œ�.ai/; �.bi/�D

gX
iD1

� gX
jD1

Ajiaj CCjibj ;

gX
kD1

Bkiak CDkibk

�
D

X
r;s

X
i

ŒAriar ;Bsias �C ŒAsias;Dribr �C ŒCribr ;Bsias �C ŒCribr ;Dsibs �

D

X
r;s

X
i

ŒAriar ;Bsias �C ŒAsias;Dribr �C .�1/nŒBsias;Cribr �C ŒCribr ;Dsibs �

D

X
r;s

X
i

ŒAriBsiar ; as �C ŒAsiDrias; br �C .�1/nŒBsiC rias; br �C ŒCriDsibr ; bs �

D

X
r;s

Œ.AB|/rsar ; as �C Œ.AD|
C .�1/nBC |/sr as; br �C Œ.CD|/rsbr ; bs �:

The middle terms being
Pg

iD1
Œai ; bi � is equivalent to (i), and the outer terms vanishing for r ¤ s is

equivalent to (ii). For the first terms with r D s, we need

0D Œ.AB|/rr ar ; ar �:

Writing .AB|/rr D
P

a2Z uata 2 ZŒ��, this is

0D

�X
a2Z

uataar ; ar

�
D

X
a<0

uaŒt
aar ; ar �Cu0Œar ; ar �C

X
a>0

uaŒt
aar ; ar �

D

X
a<0

uaŒar ; t
�aar �Cu0Œar ; ar �C

X
a>0

uaŒt
aar ; ar �

D

X
a<0

ua.�1/nŒt�aar ; ar �Cu0Œar ; ar �C
X
a>0

uaŒt
aar ; ar �

D u0Œar ; ar �C
X
a>0

.uaC .�1/nu�a/Œt
aar ; ar �:

Now Œar ; ar � has order 1 if nD 1; 3; 7, order 2 if n is odd otherwise, and infinite order if n is even (this
follows for instance from the metastable EHP sequence as in Section A.3 and the Hopf invariant one
theorem); for a> 0 the element Œtaar ; ar � has infinite order. A direct check then shows that this identity
holds if and only if .AB|/rr D

P
a2Z uata 2ƒn.

The last terms with r D s show .CD|/rr 2ƒn in the same way.

Furthermore we have .AB|C .�1/n.AB|/|/rr D .AB|/rr C .�1/n.AB|/rr and as

ƒn �ƒ
max
n WD fa 2 ZŒ�� j aC .�1/nxaD 0g

it follows from (iii) that the diagonal entries of AB|C .�1/n.AB|/| are also zero; similarly those of
CD|C .�1/n.CD|/|. Thus we may replace (ii) by the condition

(ii0) AB|C .�1/n.AB|/| and CD|C .�1/n.CD|/| vanish.
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We may express the conditions (i) and (ii0) as�
A B

C D

�
�

�
0 I

.�1/nI 0

�
�

�
A B

C D

�|

D

�
0 I

.�1/nI 0

�
;

which is the statement that � preserves the hermitian form �X . Then ��1 is represented by the matrix�
A B

C D

��1

D

�
D| .�1/nB|

.�1/nC | A|

�
;

so using the quadratic property of qX we have

qX .�
�1.ai//D qX

�X
j

Dij aj C .�1/nC ij bj

�
D .�1/n

X
j

Dij Cij D .�1/n.CD|/ii ;

and similarly qX .�
�1.bi// D .�1/n.AB|/ii . As a quadratic refinement is (freely) determined by its

values on a basis, it follows that condition (iii) is equivalent—given (i) and (ii0)—to the condition that
��1 preserves the quadratic refinement qX of �X , which is turn is equivalent to � preserving qX . Thus
this discussion shows that the action on �n.Xg/ gives a surjective homomorphism

�0.hAut@.Xg//! Ug.ZŒ��; ƒn/:

Similarly, any homotopy equivalence of Wg;1 fixing its boundary acts on �n.Wg;1/ŠHn.Wg;1IZ/ with
its .�1/n–symmetric intersection form �W , and also preserves the quadratic form qW (either by a parallel
analysis to the above using Theorem 3.3, or by [7, Section 2.7]). This gives a surjective homomorphism
�0.hAut@.Wg;1//! Ug.Z; ƒn/.

Theorem 3.5 The squares

�0.hAut@.Wg;1//

��

// �0.hAut@.Xg//

��

�0.hAut@.Xg//

��

// �0.hAut@.Wg;1//

��

Ug.Z; ƒn/ // Ug.ZŒ��; ƒn/ Ug.ZŒ��; ƒn/ // Ug.Z; ƒn/

induced by the codimension-zero embeddings Wg;1 �Xg �Wg;1, are cartesian. The vertical maps are
surjective , and their (common) kernels are the finite abelian groups H ˝†�2n.S

n/, where †�2n.S
n/ WD

Im
�
† W �2n.S

n/! �2nC1.S
nC1/

�
.

Proof Consider the analogue of (2) for Wg;1, which is the fibration sequence

Map@.Wg;1;Wg;1/!Map�.Wg;1;Wg;1/!Map�.S
2n�1;Wg;1/:

This has a map to (2), given in the evident way on the first two terms, and on the last given by sending a
map f WS2n�1!Wg;1 to S1�S2n�2!S1�S2n�2_S2n�1 �_f�!Xg. The map of long exact sequences
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has a portion

HomZ.�n.Wg;1/; �nC1.Wg;1// //

��

�2n.Wg;1/

��

// �0.hAut@.Wg;1//

��

// GL2g.Z/

��

HomZŒ��.�n.Xg/; �nC1.Xg//
�1.�/

// Œ�2n.Xg/�� // �0.hAut@.Xg// // GL2g.ZŒ��/;

and we must show that the map between kernels of the two rightmost horizontal maps is an isomorphism;
this is the same as the map between the cokernels of the two leftmost horizontal maps.

The top leftmost map sends a � 2HomZ.�n.Wg;1/; �nC1.Wg;1// to
Pg

iD1
Œai ; �.bi/�C.�1/nk Œ�.ai/; bi �

by Theorem 3.3 and so, from Section A.1, its image is spanned by the Whitehead products Œxi ;xj ı��. For
i ¤ j these generate the second summand in (22), and for j D i we have Œxi ;xi ı�� in the first term. Now
Œ�n; �n ı �� 2 �2n.S

n/ generates the kernel of † W �2n.S
n/! �2nC1.S

nC1/, by [67, Corollary XII.2.6].
Thus the cokernel of the top leftmost map is identified with H ˝†�2n.S

n/. (See [4, Theorem 8.14] for
another derivation of this.)

Similarly, taking �–coinvariants in equation (23) gives

Œ�2n.Xg/�� Š
M

1�i�2g

�2n.S
n/fxig˚

M
1�i;j�2g

a2Z
.a;i/<.0;j/

�2n.S
2n�1/ftaxi ˝xj g:

The description of �1.�/ in Theorem 3.1 shows that the image of �1.�/ is spanned by the (equivalence
classes of the) Whitehead products Œtaxi ; t

bxj ı ��. Using (24) from Section A.2 and the fact that
� W S2n ! S2n�1 is an n–fold suspension, we can write these as Œtaxi ; t

bxj � ı �. As above for j ¤ i

these span the second summand, and for i D j they give Œ�; � ı ��˝xi , so the cokernel of �1.�/ is again
H ˝†�2n.S

n/. Under these identifications the map between these cokernels can then be seen to be the
identity map. Finally, †�2n.S

n/ is a finite group, by a theorem of Serre.

Remark 3.6 In particular, the extension

0!H ˝†�2n.S
n/! �0.hAut@.Xg//! Ug.ZŒ��; ƒn/! 0

is pulled back from the analogous extension for �0.hAut@.Wg;1//. For n either odd or 2 or 6, the latter
extension has been shown to be split by Baues [4, Theorem 8.14] (see also [34, Corollary F]), observing
that �0.hAut@.Wg;1//! �0.hAutC.Wg// is an isomorphism.

3.3 Higher homotopy groups

We also wish to compute �k�1.hAut@.Xg/; id/ in degrees k � n�1, where the homotopy theory involved
is metastable. In order to express the answer as a representation of �0.hAut@.Xg//, we define

SC
X
WD hx˝x j x 2 �n.Xg/iZ � �n.Xg/

˝ZŒ��2;

S�X WD hx˝y �y˝x j x;y 2 �n.Xg/iZ � �n.Xg/
˝ZŒ��2:
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These are subrepresentations as they are the invariants of the involutions x˝y 7!y˝x and x˝y 7!�y˝x,
respectively, which are morphisms of representations.2

Proposition 3.7 For all 2� k < n� 1, there are extensions of �0.hAut@.Xg//–modules

0!
�2n�1Ck.S

n/

Œ�n; �nCk.S
n/�
˝H ! �k�1.hAut@.Xg/; id/!QX ! 0;

0!K˝SC
X
!QX !

�nCk�1.S
n/

K
˝S�X ! 0;

where K WD Ker.Œ�n;�� W �nCk�1.S
n/! �2n�1Ck�1.S

n//.

Proof By the description of �m.�/ in Theorem 3.1, we need to understand the kernel and cokernel of
the map

�m.�/ W �n.Xg/˝ZŒ�� �nCm.Xg/! Œ�2nCm�1.Xg/�� ; x˝y 7! Œy;x�;

for mD k � 1 and mD k, respectively. The homotopy groups of Xg may be described by the Hilton–
Milnor theorem, and in the metastable range they are given by (23) in Section A.1. Thus we can write the
domain as

(4)
M

1�i�2g

�n.S
n/fxig˝�nCm.S

n/fxig˚

M
1�i;j�2g

a2Z
.a;i/¤.0;j/

�n.S
n/ftaxig˝�nCm.S

n/fxj g:

On the other hand, taking �–coinvariants in (23) gives

(5) Œ�2nCm�1.Xg/�� Š
M

1�i�2g

�2nCm�1.S
n/fxig˚

M
1�i;j�2g

a2Z
.a;i/<.0;j/

�2nCm�1.S
2n�1/ftaxi ˝xj g:

We will use the following notational convention to refer to elements of these groups: we denote the
element Œf � 2 �l.S

n/ considered as the summand �l.S
n/ftaxig by Œtaxi ıf �, because the composition

S l f
�! Sn taxi

��!Xg indeed represents the corresponding element of �l.Xg/.

The map �m.�/ sends the terms of (4) to the corresponding terms of (5). On the first terms of (4) it sends
xi ˝xi ıf , for f 2 �2nCm�1.S

n/, to

Œxi ıf;xi �D .�1/n.nCm/Œxi ;xi ıf �D .�1/n.nCm/.Œxi ;xi � ı†
n�1f /;

lying in the first terms of (5). On the second terms of (4), it sends taxi˝xjıg, for g2�2nCm�1.S
2n�1/, to

Œxj ıg; taxi �D .�1/n.nCm/Œtaxi ;xj ıg�D

�
.�1/n.nCm/.Œtaxi ;xj � ı†

n�1g/ if .a; i/ < .0; j /,
.�1/nm.Œt�axj ;xi � ı†

n�1g/ if .a; i/ > .0; j /;

lying in the second terms of (5), where in the second case we have used Œtaxi ;xj � D taŒxi ; t
�axj � D

.�1/ntaŒt�axj ;xi �. Here we have applied (24) from Appendix A, using that g2�nCm.S
n/ is a suspension

as m� k < n� 1.
2But are not ZŒ��–linear: SC

X
and S�

X
are not ZŒ��–modules.
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The cokernel of �k.�/ is thereforeM
1�i�2g

�2n�1Ck.S
n/

Œ�n; �nCk.S
n/�
fxig˚

M
1�i;j�2g

a2Z
.a;i/<.0;j/

�2nCk�1.S
2n�1/

†n�1�nCk.S
n/
ftaxi ˝xj g;

and the second term vanishes as †n�1 W �nCk.S
n/ ! �2nCk�1.S

2n�1/ is an epimorphism by our
assumption that k < n� 1. One easily verifies that as a representation of �0.hAut@.Xg// this is

�2n�1Ck.S
n/

Œ�n; �nCk.S
n/�
˝H:

To understand the kernel of �k�1.�/, first observe the kernel on the first terms isM
1�i�2g

Kfxi ˝xig;

for K WD Ker.Œ�n;�� W �nCk�1.S
n/! �2n�1Ck�1.S

n//. For the second terms, observe that for each
triple .i; j ; a/, the map

�n.S
n/ftaxig˝�nCk�1.S

n/fxj g ! �2n�1Ck�1.S
2n�1/ftaxi ˝xj g;

taxi ˝xj ıg 7!

�
.�1/n.nCk�1/.Œtaxi ;xj � ı†

n�1g/ if .a; i/ < .0; j /,
.�1/n.k�1/.Œt�axj ;xi � ı†

n�1g/ if .a; i/ > .0; j /,

is an isomorphism, by our assumption that k < n� 1. Thus on the second terms the kernel is the span
of the elements

taxi ˝xj ıg� .�1/nt�axj ˝xi ıg 2
M

1�i<j�2g
a2Z

�n.S
n/ftaxig˝�nCk�1.S

n/fxj g:

Now if n is even then K consists of elements of order 2 by Lemma A.1 so, whatever the parity of n, for
g 2K we have

taxi ˝xj ıg� .�1/nt�axj ˝xi ıg D taxi ˝xj ıgC t�axj ˝xi ıg:

Thus the terms M
1�i�2g

Kfxi ˝xig˚

M
1�i;j�2g

a2Z
.a;i/<.0;j/

Kftaxi ˝xj C t�axj ˝xig

form a subrepresentation of the kernel, which is isomorphic to K ˝ SC
X

. Quotienting out by this
subrepresentation leaves the termsM

1�i<j�2g
a2Z

�nCk�1.S
n/

K
ftaxi ˝xj � .�1/nt�axj ˝xig:
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If n is odd then �nCk�1.S
n/=K consists of elements of order 2 by Lemma A.1 so, whatever the parity

of n, for g 2 �nCk�1.S
n/=K we have

taxi ˝xj ıg� .�1/nt�axj ˝xi ıg D taxi ˝xj ıg� t�axj ˝xi ıg:

Thus we identify this representation as

�nCk�1.S
n/

K
˝S�X :

An analogous but much simpler argument using Theorem 3.3 establishes the corresponding result for the
homotopy groups of hAut.Wg;1/. Define

SC
W
WD hx˝x j x 2 �n.Wg;1/iZ � �n.Wg;1/

˝2;

S�W WD hx˝y �y˝x j x;y 2 �n.Wg;1/iZ � �n.Wg;1/
˝2:

Proposition 3.8 For all 2� k < n� 1, there are extensions of �0.hAut@.Wg;1//–modules

0!
�2n�1Ck.S

n/

Œ�n; �nCk.S
n/�
˝H ! �k�1.hAut@.Wg;1/; id/!QW ! 0;

0!K˝SC
W
!QW !

�nCk�1.S
n/

K
˝S�W ! 0;

where K D Ker.Œ�n;�� W �nCk�1.S
n/! �2n�1Ck�1.S

n//.

Example 3.9 Work p–locally at an odd prime p. By the discussion in Section A.4 there is a short exact
sequence

0!

�
0 if n is odd
�s

k
if n is even

! �2nCk�1.S
n/! �s

nCk�1! 0;

where the right-hand map is stabilisation, and the left-hand map is �s
k
Š �kCn.S

n/
Œ�n;��
���! �2nCk�1.S

n/.
Thus for n both odd or even we have

�2n�1Ck.S
n/

Œ�n; �nCk.S
n/�
Š �s

nCk�1

and we see, in agreement with Lemma A.1, that localised at an odd prime,

K D Ker.Œ�n;�� W �nCk�1.S
n/! �2n�1Ck�1.S

n//D

�
�s

k�1
if n is odd

0 if n is even:

Therefore localised at an odd prime we have short exact sequences

0! �s
nCk�1˝H ! �k�1.hAut@.Xg/; id/!

�
�s

k�1
˝SC

X
if n is odd

�s
k�1
˝S�

X
if n is even

! 0:
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Example 3.10 To calculate �1.hAut@.Xg/; id/, we need K D Ker.Œ�n;�� W �nC1.S
n/! �2n.S

n// and
Coker.Œ�n;�� W �nC2.S

n/! �2nC1.S
n//. The second part of Lemma A.2 identifies this cokernel with

†�2nC1.S
n/, and the first part of that lemma shows that K is Z=2 if n� 3 mod 4 or nD 6, and is zero

otherwise. In the first case we have QX ŠZ=2˝SC
X

, and in the second we have QX ŠZ=2˝S�
X

. Thus
there is an extension

0!†�2nC1.S
n/˝H ! �1.hAut@.Xg/; id/!

�
Z=2˝SC

X
if n is 6 or is 3 mod 4

Z=2˝S�
X

otherwise
! 0:

4 The Weiss sequence, disjunction and surgery

The following space of embeddings is central to our arguments.

Definition 4.1 Let EmbŠ@=2.Xg/ be the topological monoid of embeddings Xg ! Xg (with the C1–
topology), which fix a neighbourhood of S1�D2n�2

� D
1
2
@Xg � @Xg pointwise, and are isotopic (through

embeddings with the same boundary condition) to a diffeomorphism of Xg which restricts to the identity
on a neighbourhood of @Xg.

From now on, we will freely use the notions of “block” embeddings and automorphisms as defined in [12].

Definition 4.2 Let eEmb@=2.Xg/ be the semisimplicial monoid of block self-embeddings of Xg fixing a
neighbourhood of 1

2
@Xg, and eEmbŠ

@=2
.Xg/ be the maximal sub-semisimplicial monoid containing the

0–simplices which belong to EmbŠ@=2.Xg/.

In this section we will relate the homotopy groups of BEmbŠ@=2.Xg/ to those of BhAutŠ@ .Xg/. Our
strategy will be based on the map of fibration sequences

(6)

BDiff@.S1 �D2n�1/ //

��

BDiff@.Xg/ //

��

BEmbŠ@=2.Xg/

��

BeDiff@.S1 �D2n�1/ // BeDiff@.Xg/ // B eEmbŠ
@=2
.Xg/

which we now explain.

4.1 The Weiss fibre sequence

A fibration sequence analogous to the top row of (6), but with leftmost term BDiff@.Dd / instead, appears
first in work of Weiss [62, Remark 2.1.3], and has been developed in detail by Kupers [38, Section 4], who
showed that this sequence may be delooped. Their arguments may be straightforwardly generalised to the
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following situation: M is a compact d–manifold with boundary, and N � @M is a codimension-zero
submanifold, then the delooped fibration sequence takes the form

BDiff@.M /! BEmbŠ@Mnint.N /.M /! B2Diff@.N � I/;

where the subscript @M n int.N / in the middle term refers to those self-embeddings which fix a neigh-
bourhood of @M n int.N / pointwise. There is an analogous fibration sequence for block diffeomorphisms
and block embeddings, or for (block) homeomorphisms and topological (block) embeddings. We will
be interested in the case when M DXg and N D S1 �D2n�2

C � @Xg, which gives the map of fibration
sequences displayed in (6).

It will be convenient for calculations to work not just with diffeomorphisms and embeddings but with
those preserving a stable framing. Recall that a tangential structure is a fibration � W B! BO.2n/, and
a �–structure on a 2n–manifold M is a fibrewise linear isomorphism ` W TM ! �� , where  is the
canonical 2n–plane bundle over BO.2n/. We define a tangential structure sfr2n as the pullback

(7)

B //

sfr2n

��

EO

��

BO.2n/ // BO

so that B ' SO=SO.2n/. Choose a boundary condition `@Xg
W TXgj@Xg

! sfr�2n , and its restriction
`1=2@Xg

W TXgj1=2@Xg
! sfr�2n . Observe that Diff@.Xg/ and EmbŠ@=2.Xg/ act, via the derivative, on

the spaces Bun@.TXg; sfr�2n I `@Xg
/ and Bun@=2.TXg; sfr�2n I `1=2@Xg

/ of bundle maps extending the
appropriate boundary condition. We define

BDiffsfr
@ .XgI `@Xg

/ WD Bun@.TXg; sfr�2n I `@Xg
/ ==Diff@.Xg/;

BEmbŠ;sfr
@=2

.XgI `@=2Xg
/ WD Bun@=2.TXg; sfr�2n I `1=2@Xg

/ ==EmbŠ@=2.Xg/:

For a stable framing ` of Xg we write BDiffsfr
@
.XgI `@Xg

/` and BEmbŠ;sfr
@=2

.XgI `@=2/` for the path-
components of `.

As in [39, Proposition 8.8], there is a delooped stably framed Weiss fibre sequence

BDiffsfr
@ .XgI `@Xg

/`! BEmbŠ;sfr
@=2

.XgI `@=2/`! B
�
BDiffsfr

@ .S
1
�D2n�1

I `@/L
�
;

where `@ WT .S1�D2n�1/j@.S1�D2n�1/! sfr�2n  is given by the restriction of the standard stable framing
of R2n to @.S1 �D2n�1/,

BDiffsfr
@ .S

1
�D2n�1

I `@/ WD Bun@.T .S
1
�D2n�1/; sfr�2n I `@/ ==Diff@.S

1
�D2n�1/;

and L� �0.BDiffsfr
@
.S1 �D2n�1I `@// is the “inertia” subgroup: those stably framed manifolds .S1 �

D2n�1; `0/ which when glued to .Xg; `/ give a stably framed manifold equivalent to .Xg; `/, up to
diffeomorphism and homotopy of stable framings.
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As the tangential structure sfr2n is defined using the stable tangent bundle, it also makes sense for block
diffeomorphisms and block embeddings, giving analogous spaces

BeDiff sfr
@ .XgI `@Xg

/ and B eEmbsfr;Š
@=2 .XgI `@=2Xg

/:

See for example Sections 1.7–1.9 of [35] for a detailed discussion of how this may be implemented.

4.2 Disjunction and surgery

The main simplification we make in this paper is to replace the study of BEmbŠ@=2.Xg/ by its block
analogue B eEmbŠ

@=2
.Xg/, which is valid in a range of degrees by the following.

Proposition 4.3 Let n� 3. Then the map BEmbŠ@=2.Xg/! B eEmbŠ
@=2
.Xg/ is .n�1/–connected.

Proof By taking vertical homotopy fibres in (6) the homotopy fibre F of this map fits into a fibration
sequence

eDiff@.S1 �D2n�1/

Diff@.S1 �D2n�1/
!

eDiff@.Xg/

Diff@.Xg/
! F:

By Morlet’s lemma of disjunction [12, Theorem 3.1], the space F is .n�2/–connected, so the map in
question is .n�1/–connected.

Remark 4.4 By mapping the Weiss fibre sequence

BDiff@.D
2n/! BDiff@.Wg;1/! BEmbŠ@=2.Wg;1/

to its block version, the same argument shows that the map BEmbŠ@=2.Wg;1/ ! B eEmbŠ
@=2
.Wg;1/ is

.2n�3/–connected.

We now define maps

(8) B eEmbŠ@=2.Xg/! BhAutŠ@ .Xg/ and B eEmbŠ@=2.Wg;1/! BhAutŠ@ .Wg;1/

as follows: forgetting the smoothness gives a map between Weiss’ fibre sequences

BeDiff@.S1 �D2n�1/

��

// BeDiff@.Xg/ //

��

B eEmbŠ
@=2
.Xg/

��

BeTop@.S1 �D2n�1/ // BeTop@.Xg/ // B eEmbŠ;TOP
@=2

.Xg/

where the decoration TOP on the right-hand term of the lower fibration sequence refers to locally flat
topological embeddings. By [10, Corollary 2.3] there is a decomposition

eTop@.S
1
�D2n�1/'eTop@.D

2n�1/��eTop@.D
2n�1/;
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which is therefore contractible by the Alexander trick. Thus the map BeTop@.Xg/! B eEmbŠ;TOP
@=2

.Xg/ is
an equivalence and so we have a canonical (up to homotopy) lift B eEmbŠ

@=2
.Xg/! BeTop@.Xg/ which

we compose with BeTop@.Xg/! BhAut@.Xg/. The resulting map has image in BhAutŠ@ .Xg/, giving
the first map in (8). The second map in (8) is obtained similarly, using that eTop@.D2n/ is contractible.

Proposition 4.5 For all n� 3, the squares

B eEmbŠ
@=2
.Wg;1/ //

��

B eEmbŠ
@=2
.Xg/

��

B eEmbŠ
@=2
.Xg/ //

��

B eEmbŠ
@=2
.Wg;1/

��

BhAutŠ@ .Wg;1/ // BhAutŠ@ .Xg/ BhAutŠ@ .Xg/ // BhAutŠ@ .Wg;1/

given by the codimension-zero embeddings Wg;1 �Xg �Wg;1 are homotopy cartesian.

Proof It suffices to consider the first square, as the square obtained by gluing them is certainly homotopy
cartesian (and all the spaces are connected).

Consider the diagrams

BeDiff@.D2n/ //

��

BeDiff@.Wg;1/ //

��

B eEmbŠ
@=2
.Wg;1/

��

BhAutŠ@ .D
2n/ // BhAutŠ@ .Wg;1/ // BhAutŠ@ .Wg;1/

BeDiff@.S1 �D2n�1/ //

��

BeDiff@.Xg/ //

��

B eEmbŠ
@=2
.Xg/

��

BhAutŠ@ .S
1 �D2n�1/ // BhAutŠ@ .Xg/ // BhAutŠ@ .Xg/

given by maps of homotopy fibre sequences, where the first diagram maps to the second. We wish to show
that the square given by the right-hand vertical maps is homotopy cartesian: as the homotopy fibres of
these maps are connected by definition, as we only take those components of hAut@.Xg/ or hAut@.Wg;1/

represented by diffeomorphisms, it is equivalent to show that the cube

BeDiff@.D2n/ //

��

**

BeDiff@.Wg;1/

��

))

BeDiff@.S1 �D2n�1/ //

��

BeDiff@.Xg/

��

BhAutŠ@ .D
2n/ //

**

BhAutŠ@ .Wg;1/

))

BhAutŠ@ .S
1 �D2n�1/ // BhAutŠ@ .Xg/

is homotopy cartesian.
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The s–cobordism theorem identifies hAutŠ@ .Xg/=eDiff@.Xg/ with the component of the identity map in
the block simple structure space zSs.Xg/, and Quinn’s geometric formulation of surgery theory [48; 46]
places this space into a homotopy fibre sequence

zSs.Xg/
�
�!Map@.Xg;G=O/

�
�!�1C2nLs.ZŒ��/:

Similarly, hAutŠ@ .S
1�D2n�1/=eDiff@.S1 �D2n�1/ is the identity component of zSs.S1�D2n�1/, fitting

in a homotopy fibre sequence

zSs.S1
�D2n�1/

�
�!Map@.S

1
�D2n�1;G=O/

�
�!�1C2nLs.ZŒ��/;

which maps to the sequence above by naturality. The map on L–theory terms is an equivalence, giving a
homotopy cartesian square

hAutŠ@ .S
1 �D2n�1/

eDiff@.S1 �D2n�1/

//

��

hAutŠ@ .Xg/

eDiff@.Xg/

��

Map@.S
1 �D2n�1;G=O/0 // Map@.Xg;G=O/0

Similarly, there is a homotopy cartesian square

hAutŠ@ .D
2n/

eDiff@.D2n/

//

��

hAutŠ@ .Wg;1/

eDiff@.Wg;1/

��

Map@.D
2n;G=O/0 // Map@.Wg;1;G=O/0

The argument is completed by observing that

Map@.D
2n;G=O/0 //

��

Map@.Wg;1;G=O/0

��

Map@.S
1 �D2n�1;G=O/0 // Map@.Xg;G=O/0

is homotopy cartesian, as both rows extend to fibre sequence by taking the natural map (to the right) to
the component of the constant map in the space Map@=2.Wg;1;G=O/ of mappings Wg;1!G=O which
are constant on 1

2
@Wg;1.

Remark 4.6 This argument also identifies the vertical homotopy fibres in the square of Proposition 4.3
to be Map@=2.Wg;1;G=O/0, so that there is a fibration sequence

Map@=2.Wg;1;G=O/0! B eEmbŠ@=2.Xg/! BhAutŠ@ .Xg/:
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5 Self-embeddings of Xg

Recall from Section 2 that Ug.Z; ƒn/ and Ug.ZŒ��; ƒn/ are the unitary groups associated to the genus g

hyperbolic quadratic modules .�n.Wg;1/; �W ; qW / and .�n.Xg/; �X ; qX / over Z and ZŒ��, respectively,
with the appropriate form parameters.

In this section we study the map

�0.EmbŠ@=2.Xg//! Ug.ZŒ��; ƒn/

which takes an isotopy class of embeddings to the induced automorphism on �n.Xg/. We will show
that for large enough g the image of this map is a certain subgroup �g of index jbP2nj, the order of
the (finite) group of homotopy .2n�1/–spheres which bound a parallelisable manifold. Using this we
determine the group �0.EmbŠ@=2.Xg// up to an extension.

Throughout we use the conventions of Section 2.

5.1 Realising automorphisms of a quadratic module by self-embeddings

We denote by Emb@=2.Xg/ the space of all embeddings Xg!Xg whose restriction to 1
2
@Xg is the identity.

Recall that EmbŠ@=2.Xg/� Emb@=2.Xg/ denotes the union of the path components of Emb@=2.Xg/ in the
image of the map �0.Diff@.Xg//! �0.Emb@=2.Xg//.

We will often implicitly use that � D Z has trivial Whitehead group [30, Theorem 15], to avoid any
discussion of ordinary versus simple homotopy equivalences.

Lemma 5.1 Every embedding e 2 Emb@=2.Xg/ is a (simple) homotopy equivalence.

Proof We use the following general fact: if f WA! B is an isometry of quadratic left R–modules for
some ring R, and A is nonsingular, then f is a split monomorphism. This is because the isomorphism
A!A_ induced by the form on A factors as

A
f
�! B! B_

f _
�!A_:

In our situation, the embedding e induces an isometry on �n.Xg/D �n.Xg;�/, ie it preserves the bilinear
form �X . Hence, by the general fact, e induces a split injection on �n, and so a splitting provides a
surjective endomorphism of the finitely generated ZŒ��–module �n.Xg/. Because ZŒ�� is a commutative
ring, this endomorphism is an isomorphism by Nakayama’s lemma. Thus by the Hurewicz and Whitehead
theorems, the lift ze W zXg!

zXg of e to the universal cover is a homotopy equivalence. The result follows
by noticing that e also induces an isomorphism on �1, and applying Whitehead’s theorem once more.

A consequence of the previous lemma is that every self-embedding of Xg which is the identity on 1
2
@Xg

induces an automorphism of �n.Xg/ which preserves the quadratic module structure. In other words we
have a homomorphism of monoids

�0.Emb@=2.Xg//! Ug.ZŒ��; ƒn/:
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In the rest of this section we will show that this map is surjective, and characterise the subgroup
�0.EmbŠ@=2.Xg//� �0.Emb@=2.Xg// of embeddings isotopic to diffeomorphisms in terms of this map.

Proposition 5.2 The map �0.Emb@=2.Xg//! Ug.ZŒ��; ƒn/ is surjective , provided n� 3.

Proof As in Section 2, we write ai and bi for the homotopy classes of Sn�f�g and f�g�Sn inside the
i th copy of Sn �Sn �Wg;1 �Xg, so that the pairs .ai ; bi/ are orthogonal with respect to �W and �X ,
and hence form a Z–basis for �n.Wg;1/ and a ZŒ��–basis for �n.Xg/. Let �2Ug.ZŒ��; ƒn/. The images
�.ai/; �.bi/ 2 �n.Xg/ may be represented by embeddings Sn �Dn ,!Xg (together with a framed path
to the basepoint � 2 @Xg) by Lemma 2.2, as n� 3 and qX .�.ai//D qX .ai/D 0D qX .bi/D qX .�.bi//.
Furthermore, since the pairs .ai ; bi/ are orthogonal, we can use the Whitney trick to isotope the embeddings
�.ai/ and �.bi/ so that so that their cores intersect transversely in exactly one point, and are disjoint from
the other embeddings. Plumbing them together gives an embedding e WWg;1!Xg, which maps 1

2
@Wg;1

into 1
2
@Xg. To extend this embedding to an embedding Xg!Xg with the required boundary condition,

it suffices to add a collar of 1
2
@Xg to e.Wg;1/.

5.2 Realising automorphisms of a quadratic module by diffeomorphisms

We now investigate the subgroup of Ug.ZŒ��; ƒn/ of those automorphisms realised by elements of
EmbŠ@=2.Xg/. We will do this using tools from surgery theory which we recall briefly. We remind the
reader that we use the fact that the Whitehead group of � ŠZ is trivial to neglect any discussion of bases
or simple maps.

5.2.1 The structure set The (smooth) structure set S@.S
1�D2n�1/ has elements equivalence classes of

pairs ŒN; f �, where N is a compact smooth 2n–manifold, and f W .N; @N /! .S1�D2n�1;S1�S2n�2/

is a homotopy equivalence whose restriction to the boundary is a diffeomorphism. Two such pairs
ŒN0; f0� and ŒN1; f1� are equivalent if there exists an h–cobordism W between N0 and N1 such that
@W DN0 [V [N1 for some smooth n–manifold V such that @V D @N0 t @N1, together with a map
F W W ! S1 �D2n�1 � Œ0; 1� such that F jNj D fj for j D 0; 1, and F jV maps V diffeomorphically
onto S1 �S2n�2 � I .

5.2.2 L–groups The even-dimensional L–groups L2n.ZŒ��/ are defined as the quotient of the monoid
of equivalence classes of finitely generated free .�1/n–quadratic modules over ZŒ�� by the submonoid of
hyperbolic forms. The monoid operation is orthogonal sum, and this quotient is in fact a group.

The odd-dimensional L–groups L2nC1.ZŒ��/ are given by the quotient

U.ZŒ��/=RU.ZŒ��/;

where U.ZŒ��/D lim
��!

Ug.ZŒ��; ƒmin
n / is the stabilisation of the unitary groups described in Section 2.2

with — crucially — form parameter ƒmin
n . Here RU.ZŒ��/ denotes the subgroup of U.ZŒ��/ generated

by the commutator subgroup ŒU.ZŒ��/;U.ZŒ��/� and the element � represented by the matrix
�

0 1
.�1/n 0

�
in U1.ZŒ��; ƒn/.
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By Wall’s realisation theorem [60, Theorem 6.5], to each x 2L2nC1.ZŒ��/ there is associated a manifold
triad .W; @�W; @CW / with a degree 1 normal map ˆx to

.S1
�D2n�1

� I;S1
�D2n�1

� f0g [ @.S1
�D2n�1/� I;S1

�D2n�1
� f1g/

such that ˆx is the identity on @�W and restricts to a homotopy equivalence on @CW . This gives a map

@ WL2nC1.ZŒ��/! S@.S
1
�D2n�1/; @.x/ WD Œ@CW; ˆxj@WC �:

5.2.3 The complement of a self-embedding We define a map

(9) � W �0.Emb@=2.Xg//! S@.S
1
�D2n�1/

as follows. Let e W Xg ! Xg be an embedding which fixes S1 �D2n�2
C � @Xg, and let C denote the

closure of the complement of e.Xg/. The boundary @C has a decomposition

@C D S1
�D2n�2

� [ e.S1
�D2n�2

� /;

which, after smoothing corners, is diffeomorphic to S1 � S2n�2. Thus we have an identification
e.Xg/[e.S1�D2n�2

� / C DXg. By the Seifert–van Kampen theorem the natural map

�1.e.Xg//��1.e.S1�D2n�2
� // �1.C /! �1.Xg/

is an isomorphism; as �1.e.S
1 �D2n�2

� //! �1.e.Xg// is an isomorphism, we deduce that the map
�1.C /!�1.Xg/ is an isomorphism as well, and so �1.C /Š� too. In particular, there is a map C !S1

extending the projection map @C D S1 �S2n�2! S1, giving a map of pairs

�e W .C; @C /! .S1
�D2n�1;S1

�S2n�2/

extending the identification on the boundaries, well defined up to homotopy. We claim that �e is a
homotopy equivalence of pairs: as it is a homeomorphism on the boundary, it suffices to show that
C ! S1 is an equivalence, or equivalently that the universal cover zC is contractible. But we have

e. zXg/[R�D2n�2
�

zC ' zXg

and e WXg!Xg is an equivalence, so zC is indeed contractible. The map � sends the isotopy class of the
embedding e to the structure ŒC; �e � 2 S@.S

1 �D2n�1/.

Proposition 5.3 The map (9) is a monoid homomorphism with kernel �0.EmbŠ@=2.Xg//.

Proof If �.e/D ŒS1 �D2n�1; id�, then, by the s–cobordism theorem and the fact that the Whitehead
group of � is trivial, �e is homotopic (relative to the boundary) to a diffeomorphism

' W C ! S1
�D2n�1

Š S1
�D2n�2

� Œ�1; 0�

which maps S1 �D2n�2
� � @C identically onto S1 �D2n�2 � f0g, and

e.S1
�D2n�2

� /D .S1
�D2n�2

� f�1g/[ @.S1
�D2n�2/� Œ�1; 0�:
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With this we define a one-parameter family of submanifolds of Xg,

e.Xg/[e.S1�D2n�2
� / '

�1
�
@.S1

�D2n�2
� /� Œ�1; 0�[S1

�D2n�2
� � Œ�1; t �

�
�Xg;

which gives an isotopy from e to a diffeomorphism that is the identity on the boundary of Xg. This isotopy
is through embeddings that are the identity on S1 �D2n�2

C � @Xg. Thus the kernel of � is contained in
�0.EmbŠ@=2.Xg//.

For the other inclusion, if e is a diffeomorphism that restricts to the identity on @Xg, we can push
S1 �D2n�1

� slightly to the interior of Xg to get an isotopy to an embedding whose complement is
diffeomorphic to S1 �D2n�1.

5.2.4 The map � and L–theory We shall now identify the image of the map �. Our analysis will be
based on the following proposition.

Proposition 5.4 If n� 3 but n¤ 3; 7, then the diagram

(10)

�0.Emb@=2.Xg//
�
//

�n

��

S@.S
1 �D2n�1/

Ug.ZŒ��; ƒmin
n /

s
// L2nC1.ZŒ��/

@

OO

commutes , where the map s is stabilisation and projection.

We emphasise that here the unitary group is defined with form parameterƒmin
n , as required in the definition

of L–theory, so if n D 3; 7 then the left-hand vertical map would not exist in any natural way, as the
quadratic modules constructed in Section 2.2 have a slightly larger form parameter in these cases.

Proof of Proposition 5.4 Let e W Xg! Xg be an embedding which fixes half the boundary, C be the
closure of its complement and �e W .C; @C /! .S1�D2n�1;S1�S2n�2/ be the structure map constructed
above. We will show how to construct a manifold triad .W; @�W; @CW /, a degree-one map ‰ from this
triad to �

S1
�D2n�1

� I;S1
�D2n�1

� f0g [ @.S1
�D2n�1/� I;S1

�D2n�1
� f1g

�
;

and a trivialisation F of ‰�.��I/˚T W , where � is the stable normal bundle of S1�D2n�1, such that

(i) ‰ is the identity on @�W and F is the standard trivialisation here,

(ii) ‰ is a homotopy equivalence on @CW ,

(iii) ‰ is n–connected,

(iv) Œ@CW; ‰j@CW �D ŒC; �e � 2 S@.S
1 �D2n�1/, and

(v) its surgery obstruction is s.�n.e// 2L2nC1.ZŒt; t
�1�/.

By the description of Wall realisation, such a manifold triad shows that the square commutes when
evaluated on the embedding e, as required.
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The manifold W will be obtained as a composition of cobordisms Wi . As � is trivial, F is the same as a
stable framing of the tangent bundle of W : this will be obtained by inductively extending stable framings
over each Wi . Firstly we trivially attach 2g–handles to the interior of S1 �D2n�1 so that the resulting
manifold is Xg. The trace of these surgeries is the cobordism W1, with

@�W1 D .S
1
�D2n�1

� f0g/[ .@.S1
�D2n�1/� Œ0; 1�/; @CW1 DXg � f1g;

and the standard stable framing of S1 � D2n�1 extends over this cobordism, as the handles were
attached trivially. Secondly, there is a diffeomorphism e.Xg/[e.S1�D2n�1

� / C !Xg by definition of the
complement C ; let W2 be the cobordism given by the trace of the inverse of this diffeomorphism, with

@�W2 D .Xg � f1g/[ .@.S
1
�D2n�1/� Œ1; 2�/; @CW2 D .e.Xg/[e.S1�D2n�1

� / C /� f2g:

As this is the trace of a diffeomorphism, the stable framing on @CW1 extends over it. This induces a
stable framing F 0 on Wg;1 Š e.Wg;1/� e.Xg/� @CW2.

This stable framing induces (after destabilising) a trivialisation of the normal bundles of each of the cores
Sn�f�g and f�g�Sn �Wg;1DD2n # .Sn�Sn/#g, but these trivialisations need not be the same as the
standard trivialisations. However, we claim that there is a diffeomorphism ' WWg;1!Wg;1, which is the
identity on the boundary and acts as the identity on �n.Wg;1/, such that the stable framing '�F 0 induces
the standard trivialisation of the normal bundles of each of the cores. This follows from Kreck’s description
of the mapping class group �0.Diff@.Wg;1//, which in particular shows that for any homomorphism
 W �n.Wg;1/ ! �n.SO.n// there is a diffeomorphism of Wg;1 (trivial on the boundary and acting
trivially on �n.Wg;1/) which retrivialises the normal bundle of each embedded n–sphere a with trivial
normal bundle by  .Œa�/. We extend this diffeomorphism from Wg;1 Š e.Wg;1/ to e.Xg/ and hence to
@CW2 D e.Xg/[e.S1�D2n�1

� / C , and its trace gives a cobordism W3 with

@�W3D .e.Xg/[e.S1�D2n�1
� /C /[.@.S

1
�D2n�1/�Œ2; 3�/; @CW3D .e.Xg/[e.S1�D2n�1

� /C /�f3g;

and the stable framing on @CW2 extends over it. By construction, the induced stable framing on
Wg;1 Š e.Wg;1/ � e.Xg/ � @CW3 induces the standard normal framing of the cores, so we may do
surgery along each of the Sn � f�g to obtain a stably framed cobordism from Wg;1 to D2n. Extending
this trivially, we obtain a cobordism W4 with

@�W4 D .e.Xg/[e.S1�D2n�1
� / C /[ .@.S1

�D2n�1/� Œ3; 4�/; @CW4 D C � f4g;

and equipped with a stable framing extending that on @CW3. We then take

W DW1[W2[W3[W4

with the combined stable framing. This cobordism has

@�W D .S1
�D2n�1

� f0g/[ .@.S1
�D2n�1/� Œ0; 4�/; @CW D C � f4g:
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By construction W has a degree 1 n–connected map

‰ W .W; @�W; @CW /!
�
S1
�D2n�1

�Œ0; 4�;S1
�D2n�1

�f0g[@.S1
�D2n�1/�Œ0; 4�;S1

�D2n�1
�f4g

�
;

and the discussion of stable framings shows how it is covered by a trivialisation F of ‰�.� � I/˚T W

extending the standard trivialisation on @�W . Also Œ@CW; ‰j@CW �D ŒC; �e �. Thus ‰ satisfies (i)–(iv).

It remains to determine the surgery obstruction of ‰. By definition, the stably framed cobordism
W2[W3[W4 is obtained as the trace of the surgery on the normal map Xg �f1g ! S1 �D2n�1 �f1g

given by the lagrangian L WD Ker.�n.Xg/! �n.W2[W3[W4// in the surgery kernel

�nC1.S
1
�D2n�1

� f1g;Xg � f1g/Š �n.Xg/:

As W4 is the trace of the surgery along the standard lagrangian L0 in

�n.Xg/Š �n.e.Xg//Š �n.e.Xg/[e.S1�D2n�1
� / C /;

the diffeomorphism ' used to build W3 acts trivially on �n.Wg;1/, and the diffeomorphism used to build
W2 acts as e�1

� on �n.Xg/, it follows that L is the image of L0 under e� W �n.Xg/! �n.Xg/. By the
description [60, Theorem 6.5] of Wall realisation, it follows that ‰ has surgery obstruction s.�n.e//,
proving (v).

5.2.5 The image of the map �

Proposition 5.5 If nD 3; 7, the map

� W �0.Emb@=2.Xg//! S@.S
1
�D2n�1/

is trivial.

Proof Calculating with the surgery exact sequence, one finds that there is a bijection

‚2n�1 �‚2n! S@.S
1
�D2n�1/; .†A; †B/ 7! .S1

� .D2n�1 #†A// #†B:

Suppose that �.e/D .†A; †B/ under this bijection.

By closing the manifold Xg off by gluing in S1 �D2n�1, we find that there is a diffeomorphism

.S1
�†A/ #†B # .Sn

�Sn/#g
Š .S1

�S2n�1/ # .Sn
�Sn/#g:

Take universal covers, and consider disjoint lifts of f�g�†A from the left-hand side and f�g�S2n�1 from
the right-hand side. As this manifold is stably parallelisable, the compact region bounded by these gives
a stably parallelisable cobordism from †A to S2n�1, which therefore shows that †A 2 bP2n �‚2n�1.
Now bP6 D bP14 D 0, so under the given assumptions †A Š S2n�1.

On the other hand, by closing the manifold Xg off by gluing in D2 � S2n�1 we find that there is a
diffeomorphism †B # .Sn �Sn/#g Š .Sn �Sn/#g. The manifold .Sn �Sn/#g has trivial inertia group,
by [33, Theorem 3.1], [59], so †B Š S2n.
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Corollary 5.6 For n� 3, there is a monoid homomorphism

x� W �0.Emb@=2.Xg//! bP2n;

whose kernel is the group �0.EmbŠ@=2.Xg//.

If n is even then x� is surjective as long as g � 8; if n is odd then it is surjective as long as g � 2.

Proof If n D 3; 7 then bP2n D 0 so we take x� D 0, and the statement follows from Propositions 5.3
and 5.5.

If n ¤ 3; 7 then we consider Propositions 5.3 and 5.4 instead, which show that it is enough to show
that the image of @ W L2nC1.ZŒt; t

�1�/! S@.S
1 �D2n�1/ is isomorphic to bP2n. Using the fact that

L2nC1.Z/D 0 (and that the Whitehead group of � vanishes), work of Shaneson [54, Theorem 5.1] gives
an isomorphism

L2n.Z/
�
�!L2nC1.ZŒ��/:

In terms of normal cobordisms Shaneson shows that this is given by taking products with the circle, so it
interacts with Wall realisation to give a commutative square

L2n.Z/
@

//

Š

��

S@.D
2n�1/

S1�
��

L2nC1.ZŒ��/
@
// S@.S

1 �D2n�1/

Now S@.D
2n�1/ D ‚2n�1, the top map is a surjection onto bP2n � ‚2n�1, and it follows from the

h–cobordism theorem that the right-hand map is injective. Proposition 5.4 therefore gives a map

x� W �0.Emb@=2.Xg//! bP2n;

whose kernel is the same as that of �, which is �0.EmbŠ@=2.Xg// by Proposition 5.3.

For the surjectivity statement, recall that L2n.Z/ is isomorphic

� to Z (generated by the .C1/–quadratic form E8 of rank 8) if n is even, and

� to Z=2 (generated by the .�1/–quadratic form K D .Zfe; f g; �.e; f /D 1; q.e/D q.f /D 1/ of
rank 2) if n is odd.

Shaneson’s isomorphism L2n.Z/
�
�! L2nC1.ZŒ��/ sends a .�1/n–quadratic form M over Z to the

automorphism Id˚ t of the .�1/n–quadratic form

M ˝ZŒt˙1�˚�M ˝ZŒt˙1�Š .M ˚�M /˝ZŒt˙1� over ZŒt˙1�;

which is a hyperbolic form. When M is E8 this quadratic form is isomorphic to .�n.X8/; �X ; qX /; when
M is K it is isomorphic to .�n.X2/; �X ; qX /. Thus for g in the indicated range the map Ug.ZŒ��; ƒmin

n /!

L2nC1.�/ is surjective. This, together with Proposition 5.2, and the square (10) give the surjectivity of
the map x� W �0.Emb@=2.Xg//! bP2n.

Remark 5.7 As a submonoid of a finite group is a group, Corollary 5.6 implies that the monoid
�0.Emb@.Xg//, under composition of self-embeddings, is in fact a group.
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5.2.6 Realising automorphisms by diffeomorphisms From diagram (10) for n ¤ 3; 7 we have a
map Ug.ZŒ��; ƒn/! S@.S

1 �D2n�1/ whose image, by Corollary 5.6, is isomorphic to bP2n for large
enough g. By Proposition 5.5 we also have such a map for nD 3; 7, trivially. Let �g denote the kernel
of this map, giving for large enough g an exact sequence

(11) 0!�g! Ug.ZŒ��; ƒn/! bP2n! 0:

Combining Proposition 5.2, Corollary 5.6 and the sequence (11), we obtain the following.

Corollary 5.8 Let g � 8 if n is even , and g � 2 if n is odd. There is a map of short exact sequences

0 // �0.EmbŠ@=2.Xg// //

����

�0.Emb@=2.Xg// //

����

bP2n
// 0

0 // �g
// Ug.ZŒ��; ƒn/ // bP2n

// 0

whose vertical maps are surjections.

5.3 Isotopy classes of embeddings

With the results of the last section we may determine the group �0.EmbŠ@=2.Xg// up to an extension, and
it is surprisingly simple. Write S�nSO.n/ WD im.S W �nSO.n/! �nSO.nC 1//.

Corollary 5.9 For n� 3, and g � 8 if n is even , or g � 2 if n is odd , there is an extension

1! HomZ.H;S�nSO.n//! �0.EmbŠ@=2.Xg//!�g! 1:

Proof Consider the commutative diagram

�0.eEmbŠ
@=2
.Xg// //

��

�0.eEmbŠ
@=2
.Wg;1//

��

�0.hAutŠ@ .Xg// //

��

�0.hAutŠ@ .Wg;1//

��

�g
// Ug.Z; ƒn/

By Proposition 4.5 the top square is cartesian, and its vertical maps are surjective (by definition of the
decoration Š). By Theorem 3.5 and the results of the last section the bottom square is cartesian and the
vertical maps are surjective.3 Thus the outer square is cartesian with surjective vertical maps. Furthermore,
by Proposition 4.3 and Remark 4.4 it remains so when the spaces of block embedding are replaced with
spaces of embeddings.

In [39, equation (5)], using the work of Kreck [36] the kernel of the right-hand vertical map is identified
with HomZ.H;S�nSO.n//. This gives the claimed extension.

3The surjectivity of the right vertical maps is a consequence of [36, Theorem 2].
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Remark 5.10 It follows from [34, Theorem A] that this extension is split for n odd when n¤ 3; 7, and
is not split when nD 3; 7 unless g � 1.

6 Stably framed self-embeddings of Xg

As we have described in Section 4.1, given a boundary condition `@Xg
W TXgj@Xg

! sfr�2n  there is a
space B eEmbsfr;Š

@=2
.XgI `@=2Xg

/ fitting into a fibration sequence

Bun@=2.TXg; sfr�2n I `1=2@Xg
/! B eEmbsfr;Š

@=2
.XgI `1=2@Xg

/! B eEmbŠ@=2.Xg/:

Let Map@=2.Xg;SO/ denote the space of mappings Xg! SO which are constant on 1
2
@Xg. Choosing a

stable framing ` which extends `@Xg
gives an identification

Bun@=2.TXg; sfr�2n I `1=2@Xg
/'Map@=2.Xg;SO/:

There is an analogous fibration sequence, and identification, for Wg;1.

Proposition 6.1 The square

B eEmbsfr;Š
@=2

.XgI `1=2@Xg
/ //

��

B eEmbsfr;Š
@=2

.Wg;1I `1=2@Wg;1
/

��

B eEmbŠ
@=2
.Xg/ // B eEmbŠ

@=2
.Wg;1/

is homotopy cartesian.

Proof The map on vertical homotopy fibres is Map@=2.Xg;SO/ ! Map@=2.Wg;1;SO/ which is an
equivalence.

6.1 Higher homotopy groups

Combining Proposition 6.1 with Proposition 4.5 gives the following relation between spaces of stably
framed embeddings and of homotopy automorphisms.

Corollary 6.2 For all n� 3, the square

(12)

B eEmbsfr;Š
@=2

.XgI `1=2@Xg
/ //

��

B eEmbsfr;Š
@=2

.Wg;1I `1=2@Wg;1
/

��

BhAutŠ@ .Xg/ // BhAutŠ@ .Wg;1/

is homotopy cartesian , and has vertical homotopy fibres identified with

Map@=2.Xg;G/J
�
�!Map@=2.Wg;1;G/J ;

where the subscript J denotes those path components of maps which factor up to homotopy through
J WO!G (or , equivalently, which are null when composed with G!G=O).
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In Propositions 3.7 and 3.8 we have calculated �k.BhAutŠ@ .Xg// and �k.BhAutŠ@ .Wg;1// for the range
2� k < n� 1, and we also have

�k�1.Map@=2.Xg;G/J /Š �
s
nCk�1˝H:

The following lemma relates these calculations.

Lemma 6.3 For 2� k < n� 1 the composition

�2n�1Ck.S
n/

Œ�n; �nCk.S
n/�
˝H ! �k.BhAutŠ@ .Wg;1//

@
�! �k�1.Map@=2.Wg;1;G/J /Š �

s
nCk�1˝H

is induced by the stabilisation map on the first factor. Similarly with Wg;1 replaced by Xg.

Proof By naturality using (12), the case of Xg follows from that of Wg;1.

Theorem 3.1 and Proposition 3.7 show that the first map is induced by the pinch action

�2n�1Ck.Wg;1/! �k�1.hAutŠ@ .Wg;1/; id/:

Inspecting the proofs of Propositions 4.5 and 6.1, we see that the connecting homomorphism

@ W �k�1.hAutŠ@ .Wg;1/; id/! �k�1.Map@=2.Wg;1;G/J /

of the long exact sequence for the leftmost fibre sequence in (12) is given by the composite

�k�1.hAutŠ@ .Wg;1/; id/
�t

�! �k�1.Map@.Wg;1;G/J /! �k�1.Map@=2.Wg;1;G/J /;

where the map �t is given by assigning to a self-homotopy equivalence Wg;1!Wg;1 its tangential normal
invariant, and the second by relaxing the boundary condition. By [42, Theorem 4.7 and Lemma 4.8] the
composition

�2n�1Ck.Wg;1/! �k�1.hAutŠ@ .Wg;1/; id/! �k�1.Map@=2.Wg;1;G/J /Š �
s
2nCk�1.Wg;1/;

where the isomorphism is by Atiyah duality, agrees with the stabilisation map. The result follows from
the commutativity of the square

�2n�1Ck.Wg;1/ //

��

�s
2n�1Ck

.Wg;1/

Š

���2n�1Ck.S
n/

Œ�n; �nCk.Sn/�
˝H // �s

nCk�1
˝H

where the lower horizontal map is the stabilisation on the first factor, and the leftmost vertical map is

�2n�1Ck.Wg;1/! Coker.�k.�//Š
�2n�1Ck.S

n/

Œ�n; �nCk.Sn/�
˝H;

where the last isomorphism arises from a proof of Proposition 3.8 analogous to that of Proposition 3.7.
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Example 6.4 Working p–locally at an odd prime, combining this with Example 3.9 we have, for
2� k < n� 1,

�k.B eEmbsfr;Š
@=2

.XgI `1=2@Xg
//Š.p/

�
�s

k�1
˝SC

X
if n is odd

�s
k�1
˝S�

X
if n is even.

In particular, the lowest nontrivial p–local homotopy group is

�2p�2

�
B eEmbsfr;Š

@=2
.XgI `1=2@Xg

/
�
.p/
Š Z=p˝S

.�1/nC1

X
:

Example 6.5 Combining this with Example 3.10 we have extensions

0! Coker
�
†�2nC2.S

n/! �s
nC2

�
˝H ! �2

�
B eEmbsfr;Š

@=2
.XgI `1=2@Xg

/; `
�
! Y ! 0;

0! Ker.†�2nC1.S
n/! �s

nC1/˝H ! Y !

�
Z=2˝SC

X
if n is 6 or is 3 mod 4

Z=2˝S�
X

otherwise
! 0:

6.2 Isotopy classes of stably framed embeddings

We wish to describe the group

{„sfr;`
g WD �1.B eEmb

sfr;Š
1=2@.XgI `1=2@Xg

/; `/

up to extensions. To express the result, note that a stable framing ` can be uniquely destabilised, relative
to 1

2
@Xg, to a framing, and hence following the discussion in Section 2.2 it gives a map

`� W �n.Xg/! �n.FrC.TXg//Š Immfr
n.Xg/:

We let q`
X

be the restriction of qfr along this map: then .�n.Xg/; �X ; q
`
X
/ is a quadratic module over ZŒ��

with form parameterƒmin
n . Base changing along ZŒ��!Z gives a quadratic module .�n.Wg;1/; �W ; q

`
W
/

over Z.

Lemma 6.6 The boundary condition `1=2@Xg
and stable framing ` may be chosen so that q`

X
.ai/ D

q`
X
.bi/D 0.

Proof As Xg is the boundary connect-sum of S1 �D2n�1 and g copies of W1;1, it suffices to give a
framing on W1;1 Š .S

n �Dn
�/[ .D

n
� �Sn/ for which the associated quadratic form vanishes on the

cores Sn � f0g and f0g �Sn. Recall from Section 2.2 that the identification �n.FrC.T�//Š Immfr
n.�/

via Hirsch–Smale theory depends on a choice of framing of Sn �Dn: if we take this framing on each of
Sn �Dn

� and Dn
� �Sn Š Sn �Dn

�— perhaps combined with a reflection in Dn
� on the latter so that the

framings agree up to homotopy on Dn
� �Dn

�— then tautologically the associated quadratic form indeed
vanishes on the cores.

From now on we make this choice, so that .�n.Xg/; �X ; q
`
X
/ and .�n.Wg;1/; �W ; q

`
W
/ are hyperbolic

quadratic modules.

If n ¤ 3; 7 then ƒmin
n D ƒn and so q`

X
D qX (and q`

W
D qW ), but if n D 3; 7 then ƒmin

n is properly
contained in ƒn and so q`

X
is a slight refinement of qX . In either case we have

Aut.�n.Xg/; �X ; q
`
X /D Ug.ZŒ��; ƒ

min
n /� Aut.�n.Xg/; �X ; qX /D Ug.ZŒ��; ƒn/;
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and the composition with Ug.ZŒ��; ƒn/! bP2n is surjective (because if n¤ 3; 7 then this inclusion is
an equality, and if nD 3; 7 then bP2n D 0). Define the group �min

g to be the kernel of this map, so there
is an extension

(13) 0!�min
g ! Ug.ZŒ��; ƒ

min
n /! bP2n! 0:

Proposition 6.7 Let g � 8 if n is even and g � 2 if n is odd. For the choice of stable framing ` from
Lemma 6.6 there are extensions

1!Lsfr;`
g ! {„sfr;`

g !�min
g ! 1;

0!

�
Hom.H;Z=4/ if nD 6,
0 if n¤ 6,

!Lsfr;`
g !

�
0 if n is odd,
Hom.H;Z=2/ if n is even,

! 0:

Remark 6.8 It would be interesting to resolve the extension describing L
sfr;`
g in the case nD 6, though

it is not necessary for our argument.

Proof Using the square (12) and the fact that its horizontal maps are (compatibly) split surjections up to
homotopy, we obtain a pullback of groups

�1.B eEmbsfr;Š
@=2

.XgI `1=2@Xg
/; `/ //

��

�1.B eEmbsfr;Š
@=2

.Wg;1I `1=2@Wg;1
/; `Wg;1

/

��

�0.hAutŠ@ .Xg// // �0.hAutŠ@ .Wg;1//

which we may combine with that of Theorem 3.5 to obtain a pullback of groups

�1.B eEmbsfr;Š
@=2

.XgI `1=2@Xg
/; `/ //

��

�1.B eEmbsfr;Š
@=2

.Wg;1I `1=2@Wg;1
/; `Wg;1

/

��

�g
// Ug.Z; ƒn/

The square
Ug.ZŒ��; ƒmin

n / //
� _

��

Ug.Z; ƒmin
n /
� _

��

Ug.ZŒ��; ƒn/ // Ug.Z; ƒn/

is also a pullback of groups, by direct inspection (as ƒn=ƒ
min
n is the same for Z and ZŒ��).

Therefore the claims in the proposition are equivalent to claims purely about the manifolds Wg;1, namely
that the map �1.B eEmbsfr;Š

@=2
.Wg;1I `1=2@Wg;1

/; `Wg;1
/! Ug.Z; ƒn/

(i) has image the subgroup Aut.�n.Wg;1/;�W ;q
`
W
/DUg.Z;ƒmin

n / determined by the stable framing `,

(ii) has kernel L
sfr;`
g fitting in to the claimed extension.

Consider the tangential structure fr WEO.2n/! BO.2n/. The maps

BEmbfr;Š
@=2

.Wg;1I `1=2@Wg;1
/! BEmbsfr;Š

@=2
.Wg;1I `1=2@Wg;1

/! B eEmbsfr;Š
@=2

.Wg;1I `1=2@Wg;1
/
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are, respectively, .n�1/–connected (as Map@=2.Wg;1; �SO=SO.2n// is .n�2/–connected), and .2n�4/–
connected (by Morlet’s lemma of disjunction). We will exploit the corresponding map of fibration
sequences

(14)

Map@=2.Wg;1;SO.2n// //

��

Map@=2.Wg;1;G/J

��

BEmbfr;Š
@=2

.Wg;1I `1=2@Wg;1
/ //

��

B eEmbsfr;Š
@=2

.Wg;1I `1=2@Wg;1
/

��

BEmbŠ@=2.Wg;1/ // BhAutŠ@ .Wg;1/

and the analysis of framings of Wg;1 given in [40] and [41, Section 3.2].

In the notation of those papers, we have

{ƒfr;`
g D �1.BEmbfr;Š

@=2
.Wg;1I `1=2@Wg;1

/; `/ and ƒfr;ŒŒ`��
g D Im

�
{ƒfr;`

g ! �1.BEmbŠ@=2.Wg;1//
�
;

and the image of these groups in Ug.Z; ƒn/ is denoted by G
fr;ŒŒ`��
g . These groups are identified with

Ug.Z; ƒmin
n / in [40, Proposition 3.5], which proves (i).

For (ii) we revisit the proof of [41, Lemma 3.10]. The long exact sequence for the left-hand column of
(14) gives an exact sequence

�1.EmbŠ@=2.Wg;1//
˛
�! Hom

�
H; �nC1.SO.2n//

� ˇ
�! {ƒfr;`

g !ƒfr;ŒŒ`��
g ! 1:

Combining Remark 2.4 and Section 3.4 of [40] gives an extension

0!

�
0 if n is odd
Hom.H;Z=2/ if n is even

!ƒfr;ŒŒ`��
g !Gfr;ŒŒ`��

g ! 0:

Thus to prove (ii) it remains to show that the map ˛ is surjective for n¤ 6, and has cokernel Hom.H;Z=4/
for n D 6. For this we consider the portion of the map of long exact sequences given by the map of
fibrations (14), which has the form

�1.EmbŠ@=2.Wg;1//
˛
//

��

Hom
�
H; �nC1.SO.2n//

� ˇ
//

J

��

{ƒ
fr;`
g

�1.hAutŠ@ .Wg;1//

// Hom.H; �nC1.G//

ı
// �1.B eEmbsfr;Š

@=2
.Wg;1I `1=2@Wg;1

/; `Wg;1
/

By Lemma 6.3 the composition

†�2nC1.S
n/˝H Š

�2nC1.S
n/

Œ�n; �nC2.Sn/�
˝H ! �1.hAutŠ@ .Wg;1//


�! Hom.H; �nC1.G//

is, after identifying Hom.H; �nC1.G//Š�
s
nC1
˝H using the duality on H , given by the stabilisation map

†�2nC1.S
n/!�s

nC1
tensored with H . By Lemma A.3 this stabilisation map is surjective for n¤ 6, and

Geometry & Topology, Volume 28 (2024)



1666 Mauricio Bustamante and Oscar Randal-Williams

has cokernel Z=4 for nD6. Thus ˇD0 for n¤6, and for nD6 we use that J W�7.SO.12//Š�7.SO/!�s
7

is onto to deduce that the image of ˇ is Hom.H;Z=4/.

7 Proofs of the main theorems

7.1 Strategy

Let ` be the stable framing from Lemma 6.6, so that .�n.Xg/; �X ; q
`
X
/ is a hyperbolic quadratic module.

The stably framed Weiss sequence from Section 4.1 is a fibration sequence

BDiffsfr
@ .XgI `@Xg

/`! BEmbŠ;sfr
@=2

.XgI `1=2@Xg
/`! B.BDiffsfr

@ .S
1
�D2n�1

I `@/L/

for some L��0.BDiffsfr
@
.S1�D2n�1I `@//— the argument will not require anything about the structure

of this group L. The base of this fibration has abelian fundamental group, so the fibration is plus-
constructible by [8, Theorem 1.1(a)]. After plus-constructing it (always with respect to the maximal
perfect subgroups) we may loop the fibration back up to give

(15) BDiffsfr
@ .S

1
�D2n�1

I `@/L! BDiffsfr
@ .XgI `@Xg

/C
`
! BEmbŠ;sfr

@=2
.XgI `1=2@Xg

/C
`
:

Our strategy will be to analyse the homotopy groups of the middle and rightmost spaces in degrees
< n� 1. The leftmost space differs only slightly from the space BDiff@.S1 �D2n�1/ we wish to study,
via the homotopy fibre sequence

(16) Map@.S
1
�D2n�1;SO/! BDiffsfr

@ .S
1
�D2n�1

I `@/! BDiff@.S
1
�D2n�1/:

In Section 7.2 we will use the work of Galatius and the second author [18] to identify the middle space of
(15) in the limit as g!1 as the infinite loop spaces associated to certain Thom spectrum.

For the rightmost space of (15) we proceed as follows. It follows from Proposition 4.3 that the map

BEmbsfr;Š
@=2

.XgI `1=2@Xg
/! B eEmbsfr;Š

@=2
.XgI `1=2@Xg

/

is .n�1/–connected, so it remains so after taking the path-component of ` and plus-constructing. In
Section 6.2 we have described the fundamental group {„sfr;`

g of the space B eEmbŠ;sfr
@=2

.XgI `1=2@Xg
/`, and

in Section 6.1 we have described the higher homotopy groups in degrees < n� 1. Define the space � by
the fibration

(17) �! hocolim
g!1

B eEmbsfr;Š
@=2

.XgI `1=2@Xg
/C
`
! hocolim

g!1
.B {„sfr;`

g /C:

Let us write
{„sfr;`
1 WD colim

g!1
{„sfr;`

g and �min
1 WD colim

g!1
�min

g :

We will study the homotopy groups of .B {„sfr;`
1 /C using Proposition 6.7, which gives a surjection (for

g large enough) {„sfr;`
g !�min

g . By (13) the space .B�min
1 /C is closely related to the Hermitian K–theory

of ZŒ��, and in Section 7.3 below we will explain how to access its homotopy groups.
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For those of � we will use the following general lemma of Hurewicz flavour.

Lemma 7.1 Let X be a path-connected space with fundamental group � , S�Z be a multiplicative subset ,
and suppose that �i.X /˝ZŒS�1�D 0 for 2 � i < d . Let P.�/ denote the maximal perfect subgroup
of � . Then the homotopy fibre F of XC!B�C is simply connected , satisfies �i.F /˝ZŒS�1�D 0 for
2� i < d , and there is a map

H0.P.�/I�d .X //! �d .F /;

which becomes an isomorphism on applying �˝ZŒS�1�.

Proof Consider the fibration X!B� , with fibre the universal cover zX . By performing fibrewise ZŒS�1�–
localisation [44] of X over B� we may suppose without loss of generality that zX is .d�1/–connected
and that �d . zX /Š �d .X / is a ZŒS�1�–module.

Form the pullback X 0! BP.�/ of this fibration to the maximal perfect subgroup of � , whose fibre is
still zX . The plus-construction of this fibration is the universal cover of XC!B�C, so consider the map
of fibrations

zX //

��

X 0 //

��

BP.�/

��

F // zXC // fB�C
where the two rightmost vertical maps are plus-constructions with respect to the full fundamental group.
A comparison of ZŒS�1�–homology Serre spectral sequences, using that fB�C is simply connected, then
gives the result.

7.2 The diffeomorphism group of Xg

In Section 4.1 we defined the tangential structure sfr2n W B! BSO.2n/ as the pullback in the square (7),
so B ' SO=SO.2n/ which is a .2n�1/–connected space. The manifold Xg is parallelisable, thus it
admits a sfr2n–structure ` W TXg ! sfr�2n 2n, where 2n ! BSO.2n/ denotes the universal oriented
2n–plane bundle. This sfr2n–structure induces a map ` WXg!B whose Moore–Postnikov decomposition
has nth stage

Xg
`0
�! S1

�B
u
�! B;

where the first map is given by the generator of H 1.XgIZ/Š Z and `, and the second map is projection
to B. Writing � WD sfr2n ıu W S

1 �B! BSO.2n/, there is a forgetful map

BDiff�@.XgI `
0
@/`0 ! BDiffsfr

@ .XgI `@/`;

which is an equivalence as the pair .Xg; @Xg/ is .n�1/–connected and the map u W S1 � B ! B is
1–coconnected; cf [19, Lemma 9.2] or [21, Lemma 4.15]. The Pontrjagin–Thom construction gives rise
to a map

(18) BDiff�@.XgI `
0
@/`0 !�10 MT�;
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which by [18, Theorem 1.8] becomes a homology equivalence after passing to the homotopy colimit
as g!1. Here MT� denotes the Madsen–Tillmann spectrum associated to the tangential structure � ,
ie the Thom spectrum of ���2n. Thus after plus constructing there is a weak homotopy equivalence

(19)
�
hocolim

g!1
BDiffsfr

@ .XgI `@/`
�C
!�10 MT�:

From this we extract the following consequences.

Lemma 7.2 (i) For all k, the groups �k

�
.hocolimg!1BDiffsfr

@
.XgI `@/`/

C
�

are finitely generated.

(ii) In degrees k < 4nC 3, the groups �k

�
.hocolimg!1BDiffsfr

@
.XgI `@/`/

C
�
˝Q are isomorphic

to Q for k D 1; 2nC 3; 2nC 4; 2nC 7; 2nC 8; : : : and are trivial otherwise.

Proof We use the equivalence (19). By definition the bundle ��2n is stably trivial, so the Madsen–
Tillmann spectrum is a suspension spectrum

MT� '†1�2n.S1
�SO=SO.2n//C

and so �1
0

MT� '�2n
0

Q
�
.S1 �SO=SO.2n//C

�
. Therefore

�k.�
1
0 MT�/Š �s

kC2n

�
.S1
�SO=SO.2n//C

�
:

These groups are finitely generated for all k because the homology groups of S1 � SO=SO.2n/ are; this
shows part (i).

For part (ii) we observe that

�s
�

�
.S1
�SO=SO.2n//C

�
˝QŠH�.S

1
�SO=SO.2n/IQ/ŠH�.S

1
IQ/˝H�.SO=SO.2n/IQ/:

Now the rational homology of the space SO=SO.2n/ can be obtained (by the universal coefficient theorem)
from its cohomology, which is given by

H�.SO=SO.2n/IQ/ŠƒŒx4nC3;x4nC7;:::�˝QŒe�=.e2/;

where the xi have degree i , and e has degree 2n. This can be seen using the Eilenberg–Moore spectral
sequence

E
�;�
2
D Tor�;�

H �.BSOIQ/

�
Q;H�.BSO.2n/IQ/

�
)H�.SO=SO.2n/IQ/

of the fibration SO=SO.2n/ ! BSO.2n/
�
�! BSO where H�.BSOIQ/ Š QŒp1;p2; : : :� acts on

H�.BSO.2n/IQ/ŠQŒe;p1;p2; : : : ;pn�1� through ��, and on Q through the augmentation.

7.3 Hermitian K–theory

We shall need to know something about the homology of the groups Ug.ZŒ��; ƒmin
n / in the limit as

g!1. Using that finitely generated projective ZŒt; t�1�–modules are stably free (eg by the Bass–Heller–
Swan theorem), recent work of Hebestreit and Steimle [28, Theorem A] identifies the plus-construction
BU1.ZŒ��; ƒmin

n /C with the basepoint component �1
0

GW.ZŒ��; Ϙ.�1/ngq/ of the infinite loop space of
the Grothendieck–Witt spectrum of ZŒ�� with respect to a certain quadratic functor Ϙ.�1/ngq , the “(skew)
genuine quadratic” functor. On the other hand, recent work of Calmès, Dotto, Harpaz, Hebestreit, Land,
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Moi, Nardin, Nikolaus and Steimle [13] describes this Grothendieck–Witt spectrum in terms of a fibration
sequence

(20) K.ZŒ��/hC2
! GW.ZŒ��; Ϙ˙gq/! L.ZŒ��; ϙ˙gq/

where the left-hand term denotes the C2–homotopy orbits for a certain involution on the K–theory
spectrum K.ZŒ��/, and the right-hand term denotes an appropriate form of L–theory.

Lemma 7.3 (i) The fibration (20) admits a splitting after inverting 2.

(ii) The groups �d .K.ZŒ��/hC2
/˝Q are Q for d D 0; 1, and zero otherwise.

(iii) The map
QD �1.K.ZŒ��/hC2

/˝Q! �1.GW.ZŒ��; Ϙ.�1/ngq//˝Q

may be split by the map which to a class represented by A 2 Ug.ZŒ��; ƒmin
n / assigns half the

exponent of t in det.A/ 2 ZŒ��� Š f˙t i j i 2 Zg.

(iv) The groups �d .GW.ZŒ��; Ϙ.�1/ngq// are finitely generated.

(v) The groups �d .L.ZŒ��; Ϙ.�1/ngq//˝Q are Q if d C 2n� 0; 1 mod 4, and zero otherwise.

Proof Item (i) is part of the Main Theorem of [13]: briefly, the forgetful map from Grothendieck–Witt
theory to K–theory factors through K.ZŒ��/hC2 , and the composition

K.ZŒ��/hC2
! GW.ZŒ��; Ϙ˙gq/! K.ZŒ��/hC2

is the norm map, which is split after inverting 2 by the composite

K.ZŒ��/hC2
forget
���! K.ZŒ��/! K.ZŒ��/hC2

:

For (ii), it follows from the Bass–Heller–Swan theorem [3] that the algebraic K–theory assembly map
B�C^K.Z/!K.ZŒ��/ is an equivalence, and this map is also equivariant with respect to the involution
which acts by the identity on B� and is the usual involution on K.Z/. By work of Borel we have

Kd .Z/˝QŠ

�
Q if d D 0 and d D 5; 9; 13; : : : ;

0 otherwise:
The involution on these groups is known from Farrell and Hsiang [16, Lemma 2.4]: it is trivial on
K0.Z/˝Q, and it acts by �1 on the higher rational K–groups. Thus we have

�d .K.ZŒ��/hC2
/˝QŠ

�
Q if d D 0; 1;

0 otherwise:

For (iii), the determinant map det W Ug.ZŒ��; ƒmin
n /! ZŒ��� is a homomorphism and commutes with

stabilisation, so gives a map

det W �1.GW.ZŒ��; Ϙ.�1/ngq//! ZŒ��� Š f˙t i
j i 2 Zg Š Z� �Z:

The class in �1.K.ZŒ��// represented by .t/ 2 GL1.ZŒ��/ has image in �1.GW.ZŒ��; Ϙ.�1/ngq// repre-
sented by the unitary matrix .t/˚ .t�1/|, whose determinant is t2. This shows that the claimed map
provides a rational splitting.
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For (iv), we first observe that the homotopy groups of K.Z/ are finitely generated by a theorem of
Quillen [47], and hence those of K.Z/hC2

are too: thus it suffices to show that those of L.ZŒ��; Ϙ˙gq/

are. We will do so by first expressing these homotopy groups in terms of those of L.ZŒ��; Ϙgs/. We
apply Corollary R.10 of [14] twice to identify L.ZŒ��; Ϙgq/ ' S4 ^ L.ZŒ��; Ϙgs/. For the skew case,
we first apply the same result once to identify L.ZŒ��; Ϙ�gq/' S2 ^L.ZŒ��; Ϙge/. Then, we observe
that the group-ring involution on ZŒ��Š ZŒt; t�1� satisfies yH�1.C2IZŒ��/D 0 and so by Remark R.4
of [14] we have Ϙge D Ϙgq , whence a further application of Corollary R.10 gives L.ZŒ��; Ϙ�gq/ '

S6 ^L.ZŒ��; Ϙgs/. Thus it is enough to show that the groups �d .L.ZŒ��; Ϙgs// are finitely generated for
all d 2Z. By Theorem 1.2.18 of [14] these are the classical (nonperiodic) symmetric L–groups Ld .ZŒ��/

of Ranicki [50]. As finitely generated projective ZŒt; t�1�–modules are stably free, and the Whitehead
group of � Š hti vanishes too, there is no difference between based, free, and projective L–theory. In
particular Proposition 19.2 (ii) of [52] (see also Theorem 4.1 of [45]) gives a Shaneson splitting

�d .L.ZŒ��; Ϙ
gs//ŠLd .ZŒ��/ŠLd .Z/˚Ld�1.Z/:

Now we have (see [51, Proposition 4.3.1] and [27, page 21])

�d .L.Z; Ϙ
gs//ŠLd .Z/Š

8̂̂̂<̂
ˆ̂:

Z if d � 0 mod 4;

Z=2 if d � 1 mod 4 and d > 0;

Z=2 if d � 2 mod 4 and d < �4;

0 otherwise:

With the splitting above this shows the groups �d .L.ZŒ��; Ϙgs// are finitely generated, proving (iv); it
also gives the calculation in (v) upon inverting 2.

7.4 Cyclotomic structure

The group O.2/ acts smoothly on S1 and hence on S1 �D2n�1, and therefore it acts by conjugation on
Diff@.S1 �D2n�1/ and hence on BDiff@.S1 �D2n�1/. For each cyclic group Cd � SO.2/� O.2/ we
have an identification of the Cd –fixed points

BDiff@.S
1
�D2n�1/Cd ' BDiff@.S

1=Cd �D2n�1/

which in turn may be identified with BDiff@.S1 �D2n�1/ via Œz� 7! zd W S1=Cd
�
�! S1. This endows

BDiff@.S1 �D2n�1/ with the structure of a cyclotomic space in the sense of [53, Definition 4.3]. In
particular there are commuting endomorphisms

Fd W BDiff@.S
1
�D2n�1/! BDiff@.S

1
�D2n�1/

corresponding under this identification to the inclusion of the Cd –fixed points. In terms of diffeomorphisms
Fd is given by associating to a diffeomorphism ' of S1 �D2n�1 the induced diffeomorphism of the
d–fold cyclic cover fd �D2n�1 W S1 �D2n�1! S1 �D2n�1. These maps endow the homotopy (or
homology) groups of BDiff@.S1 �D2n�1/ with the structure of a ZŒN��–module.
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Definition 7.4 Say that a ZŒN��–module M is tame if the operation Fd acts invertibly on M ˝ZŒd�1�

for all d 2N.

Lemma 7.5 (i) Let A be a finitely generated abelian group and F WA!A be an endomorphism. If
F ˝ZŒd�1� is an epimorphism or a split monomorphism , then it is an isomorphism.

(ii) Let 0!A! B! C ! 0 be a short exact sequence of ZŒN��–modules.

(a) If A and C are tame then so is B.

(b) If B is tame and C is a finitely generated abelian group , then A and C are tame.

Proof For (i), we may as well consider the more general situation of a finitely generated ZŒd�1�–
module A0 and a ZŒd�1�–module endomorphism F 0 W A0 ! A0. If F 0 is an epimorphism, then by
Nakayama’s lemma it is an isomorphism. If F 0 is a split monomorphism then we choose a splitting
for it, which is an epimorphism, and apply the previous case: then use that a one-sided inverse to an
isomorphism is an isomorphism.

For (ii), part (a) follows from the five lemma. For part (b) observe that as B is tame the map Fd ˝

ZŒd�1� W C ˝ZŒd�1�! C ˝ZŒd�1� is an epimorphism and so, by Nakayama’s lemma, an isomorphism
and so C is tame. It then follows from the induced maps of short exact sequences that

Fd ˝ZŒd�1� WA˝ZŒd�1�!A˝ZŒd�1�

is also an isomorphism so A is tame.

We will now explain how analogous ZŒN��–module structures may be defined on the spaces in (15)
and (17). The d–fold cyclic cover of Xg may be identified with Xdg, so lifting homotopy equivalences,
or diffeomorphisms, or embeddings, along this cover gives maps

Fd W BhAut@.Xg/! BhAut@.Xdg/;

Fd W BDiff@.Xg/! BDiff@.Xdg/;

Fd W BEmb@=2.Xg/! BEmb@=2.Xdg/;

fitting together to give a map of Weiss fibre sequences. Similarly with block embeddings and when
equipped with stable framings.

Lemma 7.6 The following diagram commutes up to homotopy:

BDiffsfr
@
.XgI `@Xg

/`

Fd

��

BDiff�@.XgI `
0
@Xg

/`0
�

oo //

Fd

��

�1
0

MT�

��

BDiffsfr
@
.XdgI `@Xdg

/` BDiff�@.XdgI `
0
@Xdg

/`0
�
oo // �1

0
MT�

where , under the identification MT� '†1S1
C ^†

1�2nSO=SO.2n/C, the right vertical map is given
by trffd

^†1�2nSO=SO.2n/C, whose first factor is the Becker–Gottlieb transfer for the cyclic d–fold
covering fd W S

1! S1.
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Proof We use the description of BDiffsfr
@
.XgI `@Xg

/`'BDiff�@.XgI `
0
@Xg

/`0 as a space of fatly embedded

�–submanifolds [18, Remark 1.10]. Let .W � .�1; 0��Rq�1; `0/ be a fatly embedded �–submanifold.
Let fd WS

1!S1 be the cyclic d–fold covering, and .fd ; h/ WS
1!S1�R2 an embedding representing it.

The �–structure `0 D .c; `/ WW ! S1 �B includes the data of a classifying map c WW ! S1 for the
universal cover of W . Define yW to be the pullback

yW
p
//

yc
��

W

c

��

S1 fd
// S1

The map Fd takes W to the fatly embedded �–submanifold given by the image of

yW
p�yc
��!W �S1 inc�h

���! .�1; 0��Rq�1
�R2

equipped with the �–structure `0 ıDp W T yW ! T W ! ��2n. As both the map (18) and the Becker–
Gottlieb transfer are defined by means of the Pontrjagin–Thom construction, the commutativity of the
diagram is then straightforward.

Consider then the maps

BDiffsfr
@
.XgI `@Xg

/C
`

//

Fd

��

B eEmbŠ;sfr
@=2

.XgI `1=2@Xg
/C
`

Fd

��

// .B {„
sfr;`
g /C //

Fd

��

.B�min
g /C

Fd

��

BDiffsfr
@
.XdgI `

0
@Xdg

/C
`0

// B eEmbŠ;sfr
@=2

.XdgI `
0
1=2@Xdg

/C
`0

// .B {„
sfr;`
dg

/C // .B�min
dg
/C

In the limit as g!1 the leftmost and two rightmost vertical maps give endomorphisms

Fd W�
1
0 MT� !�10 MT�; Fd W .B {„

sfr;`
1 /C! .B {„sfr;`

1 /C; Fd W .B�
min
1 /C! .B�min

1 /C:

Lemma 7.7 These maps make the homotopy groups of �1
0

MT� , .B {„sfr;`
1 /C and .B�min

1 /C into tame
ZŒN��–modules.

Proof Recall that MT� ' †1S1
C ^†

1�2nSO=SO.2n/C. By Lemma 7.6 the first of these maps is
homotopic to trffd

^†�2nSO=SO.2n/C, whose first factor is the Becker–Gottlieb transfer for the cyclic
d–fold covering fd W S

1 ! S1. Functoriality of the transfer then shows that the homotopy groups
of �1

0
MT� are ZŒN��–modules. Furthermore, it follows from [5, Theorem 5.5] that fd ı trffd

is an
equivalence after inverting d , and fd is too, so Fd induces a split monomorphism on homotopy groups
after inverting d , and as the homotopy groups of MT� are finitely generated, Lemma 7.5(i) finishes the
argument.

The classifying spaces of the groups {„sfr;`
g and �min

g both assemble into E1–algebrasa
g�0

B {„sfr;`
g and

a
g�0

B�min
g ;
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so that .B {„sfr;`
1 /C and .B�min

1 /C are (the basepoint components of) their group-completions. In both
cases the maps Fd are defined before group-completion, and are given by multiplication by d using
the E1–structure. Thus after group-completion these maps are given by multiplication by d using
the loop-space structure, so induce multiplication by d on homotopy groups. Thus these homotopy
groups are ZŒN��–modules, which are tame simply because multiplication by d is an isomorphism after
inverting d .

7.5 p–local homology: Theorem A

In this section we will prove Theorem A, formulated again below as Theorem 7.8. For a prime number p,
let Cp denote the Serre class of abelian groups A such that A˝Z.p/ is finitely generated as a Z.p/–module.

Theorem 7.8 For n� 3, all primes p, and k <min.2p� 3; n� 2/, we have

�k.BDiff@.S
1
�D2n�1// 2 Cp;

and if 2p� 3< n� 2, then there is an injective mapM
a>0

Z=pfta
� t�a

g ! �2p�3.BDiff@.S
1
�D2n�1//;

whose cokernel is in Cp. If p D 2, then the cokernel is a finitely generated abelian group.

The following lemma refers to the space � defined in (17).

Lemma 7.9 We have �i.�/.p/D 0 for i <min.2p�2; n�1/, and if 2p�2< n�1 there is an injective
map M

a>0

Z=pfta
� t�a

g ! �2p�2.�/;

whose cokernel is p–locally trivial if p is odd , and is Z=2 if p D 2. The ZŒN��–module structure on the
left-hand term is given by the rule

(21) Fd .t
a
� t�a/ WD

�
ta=d � t�a=d if d divides a,
0 otherwise ,

and linearity.

Proof We apply Lemma 7.1 to the unstable analogue

�g! B eEmbsfr;Š
@=2

.XgI `1=2@Xg
/C
`
! .B {„sfr;`

g /C

of the fibration sequence (17).

If p is odd, then the groups �k.B eEmbsfr;Š
@=2

.XgI `1=2@Xg
//.p/ vanish for 2� k <min.2p� 2; n� 1/ by

Example 6.4, and if 2p� 2< n� 1 we have

�2p�2.B eEmbsfr;Š
@=2

.XgI `1=2@Xg
//.p/ Š Z=p˝S

.�1/nC1

X
:
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Thus by Lemma 7.1 we have �k.�g/.p/ D 0 for 1� k <min.2p� 2; n� 1/, and if 2p� 2< n� 1 then
the map

H0. {„
sfr;`
g IZ=p˝S

.�1/nC1

X
/! �2p�2.�g/.p/

is an isomorphism. The action of {„sfr;`
g on Z=p˝S

.�1/nC1

X
is via the surjection {„sfr;`

g !�min
g , so the

coinvariants are the same as those for the latter group, which we compute in Lemma B.2 of Appendix B.
Taking colimits as g!1 shows �k.�/.p/D 0 for 1� k <min.2p�2; n�1/, and if 2p�2< n�1 thenM

a>0

Z=pfta
� t�a

g
�
�! �2p�2.�/.p/:

If p D 2 then we instead use the two extensions described in Example 6.5, using again that {„sfr;`
g acts on

these groups via the surjection {„sfr;`
g !�min

g , so that we may compute coinvariants for the latter group.
The terms

Coker.†�2nC2.S
n/! �s

nC2/˝H and Ker.†�2nC1.S
n/! �s

nC1/˝H

have trivial �min
g –coinvariants by Lemma B.1, so by Lemma B.2 there is an isomorphism

H0

�
�min

g I�2.B eEmbsfr;Š
@=2

.XgI `1=2@Xg
/; `/

�
Š Z=2˝

�L
a>0 ZftaC .�1/nt�agL
a>0 Zfta� .�1/nt�ag

˚Z=2

with the same two cases as in Example 6.5. In either case we can write the first term as
L

a>0 Z=2fta�t�ag,
because it is tensored with Z=2. As above, taking colimits as g!1 we find an isomorphism�M

a>0

Z=2fta
� t�a

g

�
˚Z=2 ��! �2.�/.2/:

We determine the ZŒN��–module structure as follows. It is induced by the map on coinvariants of S˙
X

. The
map of S˙

X
’s induced by the cyclic cover Xdg!Xg comes from the map on homotopy automorphisms,

and in terms of our description of the homotopy groups of hAut@.Xg/ in Section 3.3 it is induced by the
isomorphism

�d W �n.Xg/! �n.Xdg/;

inverse to that given by viewing Xdg as a covering space of Xg. Identifying �1.Xdg/ as the subgroup of
�1.Xg/Dhti generated by td , �d is the map of ZŒ.td /˙�–modules given in terms of the hyperbolic bases by

�d .t
eai/D aiCeg and �d .t

ebi/D biCeg for 0� e < d:

The coinvariant ta� t�a 2 ZŒ�� of S
.�1/nC1

X
may be represented by � WD taa1˝ b1� .�1/nt�ab1˝ a1

in S
.�1/nC1

X
. If d does not divide a, so aD kd C r with 0 < r < d , then by the formula for �d above

the first term of � is sent to .td /ka1Crg˝ b1, which vanishes under the equivariant intersection form,
as 1C rg ¤ 1. The second term vanishes for a similar reason, so Fd .t

a� t�a/D 0. On the other hand
if aD kd then � is sent to

.td /ka1˝ b1� .�1/n.td /�kb1˝ a1;
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which under the equivariant intersection form goes to .td /k � .td /�k . Bearing in mind that the generator
of the fundamental group of Xdg is td for the purposes of this calculation, identifying it with t , this
element corresponds to tk � t�k . Thus the map is indeed given by the formula (21).

Lemma 7.10 (i) The map �i..B {„
sfr;`
1 /C/˝ Z

�
1
2

�
! �i..B�

min
1 /C/˝ Z

�
1
2

�
is an isomorphism

for all i .

(ii) For i � 2, the groups �i..B {„
sfr;`
1 /C/ are finitely generated abelian groups.

Proof For (i), the description of {„sfr;`
g in Proposition 6.7 shows that the kernel of its map to �min

g is
a finite group of order a power of 2. Thus the map .B {„sfr;`

1 /C ! .B�min
1 /C is an isomorphism on

H�
�
�IZ

�
1
2

��
, and as these spaces are loop-spaces it is then also an isomorphism on ��.�/˝Z

�
1
2

�
.

For (ii), it is enough to show that the groups colimg!1Hi. {„
sfr;`
g IZ/ are finitely generated for i � 2.

We first claim that these groups have homological stability. By the description of {„sfr;`
g in Proposition 6.7,

and using Shapiro’s lemma, there is a natural spectral sequence

E2
p;q DHp.Ug.ZŒ��; ƒ

min
n /IHi.L

sfr;`
g IZ/˝ZŒbP2n�/)HpCq. {„

sfr;`
g IZ/:

The Hi.L
sfr;`
g IZ/ are polynomial coefficient systems, and ZŒbP2n� is an abelian coefficient system, so

in total this is the kind of coefficient system to which the second part of Theorem 4.20 of [49] applies.
As described in Section 5.4 of [49], that theorem applies in this case as long as the ring ZŒ�� has finite
“unitary stable rank”, which it does by [15, Theorem 7.3].

It therefore suffices to show that the groups Hi. {„
sfr;`
g IZ/ are finitely generated for i � 2 and all large

enough g. The Serre spectral sequence for the extension in Proposition 6.7 shows that H1. {„
sfr;`
g IZ/ is

assembled out of subquotients of

H0.�
min
g IH1.L

sfr;`
g IZ// and H1.�

min
g IZ/;

and that H2. {„
sfr;`
g IZ/ is assembled out of subquotients of

H0.�
min
g IH2.L

sfr;`
g IZ//; H1.�

min
g IH1.L

sfr;`
g IZ// and H2.�

min
g IZ/:

Of these, the first terms are finitely generated as L
sfr;`
g is. Since �min

g is a finite-index subgroup of
Ug.ZŒ��; ƒmin

n /, the last terms are finitely generated by Lemma 7.3(iv) (and homological stability for the
groups �min

g , parallel to the above). The remaining term H1.�
min
g IH1.L

sfr;`
g IZ// is finitely generated

because in addition the group �min
g is finitely generated for large enough g. This may be seen by

combining the following facts:

(i) The subgroup EUg.ZŒ��; ƒmin
n / of elementary unitary matrices (cf [24, Section 5.3A]) is finitely

generated by [24, Theorem 9.2.9].
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(ii) We have Ug.ZŒ��; ƒmin
n /=EUg.ZŒ��; ƒmin

n / Š H1.Ug.ZŒ��; ƒmin
n /IZ/ for g � 3 by [24, Propo-

sitions 5.4.2 and 5.4.3], which in turn agrees with �1.GW .ZŒ��; Ϙgq
˙
// for large enough g by

homological stability, and this is finitely generated by Lemma 7.3(iv).

(iii) �min
g � Ug.ZŒ��; ƒmin

n / has finite index.

Proof of Theorem 7.8 We will use (15), (16) and (17). We suppose that 2p � 2 < n� 1, leaving the
reader to keep track of the inequalities necessary for the general argument.

Suppose first that p is odd. From Lemma 7.9 we have that �i.�/.p/ D 0 for i < 2p� 2, and that there is
an isomorphism M

a>0

Z=pfta
� t�a

g
�
�! �2p�2.�/.p/:

Furthermore, the cyclotomic structure on this group is given by (21). This has no tame submodules, and the
homotopy groups of hocolimg!1.B {„

sfr;`
g /C are finitely generated after p–localisation (by Lemma 7.10(i)

and Lemma 7.3(iv)) and tame (by Lemma 7.7), so it follows from (17) that the induced mapM
a>0

Z=pfta
� t�a

g ! �2p�2

�
hocolim

g!1
B eEmbsfr;Š

@=2
.XgI `1=2@Xg

/C
`

�
.p/

is injective and has finitely generated and tame cokernel, and that the lower homotopy groups of the target
are finitely generated and tame. Using Proposition 4.3 the same conclusion holds with block-embeddings
replaced by embeddings, again using 2p� 2< n� 1.

The same argument using the stabilisation of the fibration sequence (15) and the fact that the homotopy
groups of hocolimg!1BDiffsfr

@
.XgI `@Xg

/C
`
'�1

0
MT� are finitely generated (by Lemma 7.2(i)) and

tame (by Lemma 7.7) shows that the composition of the map above with the connecting homomorphism

@ W �2p�2

�
hocolim

g!1
BEmbsfr;Š

@=2
.XgI `1=2@Xg

/C
`

�
.p/
! �2p�3.BDiffsfr

@ .S
1
�D2n�1

I `@0
/L/.p/

is still injective, and has cokernel and all lower homotopy groups finitely generated and tame. Finally,
the same argument with (16) using that the homotopy groups of Map@.S

1 �D2n�1;O/ are also finitely
generated and tame (with respect to the evident cyclotomic structure given by taking cyclic covers) gives
the claimed result.

If p D 2 then we modify this argument slightly as follows. We have an exact sequence

�3..B {„
sfr;`
1 /C/! �2.�/! �2

�
hocolim

g!1
BEmbsfr;Š

@=2
.XgI `1=2@Xg

/C
`

�
! �2..B {„

sfr;`
1 /C/;

whose leftmost term is tame by Lemma 7.7. By Lemma 7.9 we have a map
L

a>0 Z=2fta�t�ag!�2.�/,
which is injective with finitely generated and tame cokernel (in fact the cokernel is Z=2). The group
�2..B {„

sfr;`
1 /C/ is tame (by Lemma 7.7) and finitely generated (by Lemma 7.10(ii)). It then follows that

the induced map M
a>0

Z=2fta
� t�a

g ! �2

�
hocolim

g!1
B eEmbsfr;Š

@=2
.XgI `1=2@Xg

/C
`

�
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is injective and has finitely generated and tame cokernel. From here we proceed identically to the case
of p odd.

7.6 Rational homology: Theorem B

In this section we prove Theorem B, namely that the rational homotopy groups of BDiff@.S1 �D2n�1/

vanish in degrees �< n� 2. The strategy will be to show that the other two spaces in the homotopy fibre
sequence (16) have the same rational homotopy groups in this range: we start by calculating those of
BDiffsfr

@
.S1 �D2n�1I `@/.

Lemma 7.11 For n� 3 and 0< k < n� 2 we have

�k.BDiffsfr
@ .S

1
�D2n�1

I `@//˝QŠ

�
Q if 2nC k � 0; 3 mod 4;

0 else:

Proof We follow the strategy outlined in Section 7.1, using the plus-constructed fibration (15) stabilised
in the limit g!1.

By Example 6.4, in degrees 2� k < n� 1 we have �k

�
B eEmbsfr;Š

@=2
.XgI `1=2@Xg

/; `
�
˝QD 0, and by an

application of Lemma 7.1 we have �i.�/˝QD 0 for i < n� 1. Combined with Proposition 4.3 and
Lemma 7.10(i) it follows that the map

BEmbsfr;Š
@=2

.XgI `1=2@Xg
/C
`
! .B�min

g /C

is an isomorphism on rationalised homotopy groups in degrees < n� 1.

By definition of �min
g , after stabilising and plus-constructing there is a fibration sequence of infinite loop

spaces
.B�min

1 /C! BU1.ZŒ��; ƒ
min
n /C! BbP2n;

so as bP2n is finite the left-hand map induces an isomorphism on rationalised homotopy groups. Thus by
Lemma 7.3 we have the calculation

�k

�
.B�min

1 /C
�
˝QŠ

�
Q if k D 1

0 else
˚

�
Q if 2nC k � 0; 1 mod 4

0 else;

where the first summand is given, as described in Lemma 7.3(iii), by the determinant.

On the other hand, by Lemma 7.2(ii) we have

�k

�
hocolim

g!1
BDiffsfr

@ .XgI `@Xg
/C
`

�
˝QŠ

�
Q if k D 1;

0 else,

in degrees 0< �< 2nC 3.

To complete the argument we claim that the map

�1.BDiffsfr
@ .XgI `@Xg

/C
`
/! �1..B�

min
g /C/
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is stably and rationally injective, whence the long exact sequence on rational homotopy groups for the
fibration (15) gives the claim in the statement of this lemma. To show this it is enough to exhibit a stably
framed diffeomorphism whose induced map on �n.Xg/ has determinant of infinite order in ZŒ���. Such
a diffeomorphism is obtained by “dragging a W1;1 around a loop in Xg”. More precisely, restrict the
stable framing ` to Xg�1 �Xg and let Y denote the homotopy fibre of the map

BDiffsfr
@ .Xg�1 n int.D2n/I `@Xg

/`! BDiffsfr
@ .Xg�1I `@Xg

/`:

By comparing stably framed diffeomorphisms with diffeomorphisms, we see that Y is equivalent to
Embsfr.D2n;Xg�1/ so there is a fibration �.SO=SO.2n//! Y !Xg�1. In particular,

�1.Y /Š �1.Xg�1/D hti:

Form the composition

Y ! BDiffsfr
@ .Xg�1 n int.D2n/I `@Xg

/`! BDiffsfr
@ .XgI `@Xg

/`;

where the last map is extension by the identity on W1;1, giving on fundamental groups

hti Š �1.Y /! �1.BDiffsfr
@ .XgI `@Xg

/`/:

Under this map, the generator t is sent to a stably framed diffeomorphism which induces the automorphism
of �n.Xg/ represented by the matrix id2g�2˚.t/˚ .t/, whose determinant is t2 2 ZŒ���.

Proof of Theorem B We consider the homotopy fibre sequence (16). As the infinite orthogonal group SO
is an infinite loop space, we easily calculate �k.Map@.S

1�D2n�1;SO//Š�2nCk.SO/˚�2n�1Ck.SO/
and hence see that when rationalised, these groups are 1–dimensional if 2nC k � 0; 3 mod 4, and zero
otherwise, ie

�k.Map@.S
1
�D2n�1;SO//˝QŠ

�
Q if 2nC k � 0; 3 mod 4;

0 else:

This agrees with the calculation in Lemma 7.11, so we will be finished if we show that for n � 3 and
k � 0 the connecting map

�k.Diff@.S
1
�D2n�1//˝Q! �k.Map@.S

1
�D2n�1;SO//˝Q

is zero.

This map is induced by the action of Diff@.S1 � D2n�1/ on Bun.T .S1 � D2n�1/; sfr� 2nI `@/ by
precomposition with the derivative of a diffeomorphism. Thus we have a commutative diagram

Diff@.S1 �D2n�1/ //

��

Map@.S
1 �D2n�1;SO/

'

��

eDiff@.S1 �D2n�1/ //

��

eMap@.S
1 �D2n�1;SO/

��

eTop@.S1 �D2n�1/ // eMap@.S
1 �D2n�1;STop/

Geometry & Topology, Volume 28 (2024)



On automorphisms of high-dimensional solid tori 1679

where the horizontal arrows are induced by the action through the derivative map. The bottom left corner
is contractible by [10, Corollary 2.3] and the second right-hand vertical map is a rational equivalence as
STop=SO is rationally contractible.

7.7 Homeomorphism groups

For 2n� 6, smoothing theory provides a fibration

Map@

�
S1
�D2n�1;

Top.2n/

O.2n/

�
! BDiff@.S

1
�D2n�1/! BTop@.S

1
�D2n�1/:

Kupers [38] has shown that the homotopy groups of Top.2n/=O.2n/ are finitely generated for 2n� 6, so
the homotopy groups of Map@.S

1�D2n�1;Top.2n/=O.2n// are finitely generated and tame with respect
to the cyclotomic structure given by taking cyclic covers. Thus Theorem A holds with diffeomorphisms
replaced by homeomorphisms.

On the other hand, the rational homotopy groups of Top.2n/=O.2n/ vanish in degrees � � 4n� 2 by
[41, Theorem A], so those of Map@.S

1 �D2n�1;Top.2n/=O.2n// vanish in degrees � � 2n� 2. Thus
the statement of Theorem B also holds with diffeomorphisms replaced by homeomorphisms.

Appendix A Some recollections on metastable homotopy theory

We collect some tools from metastable homotopy theory, which were used in Sections 3.2 and 3.3. For
definitions and properties of Whitehead products we follow [67].

A.1 The Hilton–Milnor theorem

As Wg;1 '
W2g

Sn and Xg ' S1 _
W2g

Sn, the Hilton–Milnor theorem ([67, Section XI.6]) provides,
for all 0� k < n� 1, an identification

(22) �2nCk�1.Wg;1/Š
M

1�i�2g

�2nCk�1.S
n/fxig˚

M
1�i;j�2g

i<j

�2nCk�1.S
2n�1/fxi ˝xj g:

The first term is given by xi ıf for f 2�2nCk�1.S
n/, and the second is given by the Whitehead products

Œxi ;xj � ıg for i < j , and g 2 �2nCk�1.S
2n�1/.

Similarly,

(23) �2nCk�1.Xg/Š
M

1�i�2g
a2Z

�2nCk�1.S
n/ftaxig˚

M
1�i;j�2g

a;b2Z
.a;i/<.b;j/

�2nCk�1.S
2n�1/ftaxi ˝ tbxj g;

where the first term is given by taxi ıf for f 2�2nCk�1.S
n/, and the second is given by Œtaxi ; t

bxj �ıg

for .a; i/ < .b; j / and g 2 �2nCk�1.S
2n�1/.
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A.2 The composition formula for Whitehead products

We often use the following special case of the composition formula for Whitehead products: if ˛ 2�p.X /,
ˇ 2 �q.X /, and  2†�r�1.S

q�1/� �r .S
q/, then

(24) Œ˛; ˇ ı  �D Œ˛; ˇ� ı†p�1 2 �pCr�1.X /:

This may be found as [67, Theorem X.8.18].

A.3 The metastable EHP sequence

The stabilisation map E W Sn ! �SnC1 has a homotopy fibre F , and considering the Serre spectral
sequence for this fibration one sees that there is a .3n�2/–connected map S2n�1!F . One then considers
the resulting maps

S2n�1 P
�! Sn E

�!�SnC1

as providing a homotopy fibre sequence in degrees < 3n� 2, giving an exact sequence

�i.S
2n�1/

P�
�! �i.S

n/
E�
�! �iC1.S

nC1/
H�
�! �i�1.S

2n�1/
P�
�! �i�1.S

n/! � � �

for i � 3n� 2. The map P represents the Whitehead square Œ�n; �n�, so the induced map on homotopy
groups is f 7! Œ�n; �n� ı f W �i.S

2n�1/! �i.S
n/. As above, if i < 3n� 2 then using that �i.S

2n�1/

consists of n–fold suspensions the identity (24) means that this may be written as P�.†
ng/D Œ�n; †g�

(cf [67, Corollary XII.2.5]). The connecting map H� W �iC1.S
nC1/! �i�1.S

2n�1/ is the Hopf invariant.

Lemma A.1 Suppose i < 2n� 1. If n is even then the group

Ker.Œ�n;�� W �i.S
n/! �nCi�1.S

n//

consists of elements of order 2, and if n is odd it contains all elements of �i.S
n/ divisible by 2.

Proof If i < 2n� 1 then every element f 2 �i.S
n/ is a suspension, so we have Œ�n; f �D P�.†

n�1f /.
Furthermore, under this condition En�1

� W �i.S
n/! �iCn�1.S

2n�1/ is an isomorphism, so the map in
question is identified with P�.�/D Œ�n; �n� ı�W �iCn�1.S

2n�1/! �iCn�1.S
n/.

If n is odd then Œ�n; �n� has order 2, so all elements divisible by 2 lie in the kernel of Œ�n; �n� ı�. If n is
even then we consider the composition

�iCn�1.S
2n�1/

P�
�! �iCn�1.S

n/
H�
�! �iCn�3.S

2n�3/:

When i D n the composition is the Hopf invariant of Œ�n; �n�, which is 2, and as the outer groups are in the
stable range this map is identified with multiplication by 2 on �s

i�n. Thus an element in the kernel of P�

must have order 2.

Lemma A.2 We have

Ker.Œ�n;�� W �nC1.S
n/! �2n.S

n//Š

�
Z=2f�g if n� 3 mod 4 or nD 2; 6;

0 otherwise,

Coker.Œ�n;�� W �nC2.S
n/! �2nC1.S

n//Š†�2nC1.S
n/:
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Proof Under the suspension isomorphisms En�1 W �nCi.S
n/! �2n�1Ci.S

2n�1/ these are the maps
�2n.P / and �2nC1.P / in the metastable EHP sequence.

The first map has domain Z=2f�ng, so the question is whether Œ�n; �n� vanishes. Hilton [31, page 232]
has shown that Œ�n; �n�D 0 for nD 2; 6 or for n� 3 mod 4, and that Œ�n; �n�¤ 0 for n� 0; 1 mod 4. The
remaining case n� 2 mod 4, as well as many of the others, is covered by work of Mahowald [43] which
shows that in this case Œ�n; �n�¤ 0.

For the second map the portion

�nC2.S
n/

P�
�! �2nC1.S

n/
E�
�! �2nC2.S

nC1/

of the metastable EHP sequence shows that the cokernel of P� is identified with the image†�2nC1.S
n/�

�2nC2.S
nC1/ of the suspension map.

A.4 The quadratic approximation

Goodwillie’s calculus of homotopy functors applied to the identity functor from pointed spaces to pointed
spaces has second stage P2.X /. The space P2.X / may be described as the homotopy fibre of the stable
Hopf–James map

j2.X / WQ.X /!Q.D2.X //;

where D2.X /D .X ^X /hS2
.4 As the k th derivative of the identity functor is a wedge of .1�k/–spheres

[22, Section 8], for X D Sn the map Sn! P2.S
n/ is .3n�2/–connected.

If p is an odd prime number, then working p–locally we have

D2.S
n/D .Sn

^Sn/hS2
'.p/

�
� if n is odd,
S2n if n is even:

In particular, if n is odd then the map j2.S
n/ is zero on p–local homotopy. If n is even, the commutative

diagram

Q.Sn�1/

Š

��

j2.S
n�1/

// Q.D2.S
n�1//

��

�Q.†Sn�1/
�j2.†Sn�1/

// �Q.D2.†Sn�1//

from [37, Theorem 1.2(1)] and the fact that Q.D2.S
n�1// '.p/ � shows that j2.S

n/ is also zero on
p–local homotopy. Thus, p–locally for i < 3n� 2, there are short exact sequences

(25) 0!

�
0 if n is odd
�s

iC1�2n
if n is even

! �i.S
n/! �s

i�n! 0:

The right-hand map is stabilisation, and the left-hand map is

�s
iC1�2n

�
 � �i.S

2n�1/
Œ�n;�n�ı�
�����! �i.S

n/:

4This seems to be folklore; it is mentioned in [1; 22]. It appears stated as a theorem with a hint for its proof in [6, Theorem 4.2.1].
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For i < 3n� 2, every element of �i.S
2n�1/ is an n–fold suspension by Freudenthal’s theorem, so the

identity (24) shows that this agrees with

�s
iC1�2n

�
 � �iC1�n.S

n/
Œ�n;��
���! �i.S

n/:

A.5 Destabilisation

The following can be extracted from the literature (cf [42, Lemma 5.3(i)], who attribute it to [56]), but for
the reader’s convenience we include a proof using the quadratic approximation.

Lemma A.3 The stabilisation map �2nC1.S
n/! �s

nC1
is surjective for n � 3 with n¤ 6. For nD 6

it has cokernel Z=4.

Proof Let RP1n denote the stunted real projective space RP1=RPn�1. Using

.Sn
^Sn/hS2

' Sn
^RP1n ;

the quadratic approximation gives a diagram
�s

nC1
.Sn/

��

�2nC1.S
n/ //

E
��

�s
nC1

// �s
nC1

.RP1n /

��

@
// �2n.S

n/

E
��

�2nC2.S
nC1/ // �s

nC1
// �s

nC1
.RP1nC1/

// �2nC1.S
nC1/

with rows and column exact. Showing that the stabilisation map �2nC1.S
n/! �s

nC1
is surjective is

equivalent to showing that the map @ W �s
nC1

.RP1n /! �2n.S
n/ is injective, which is what we shall do.

The map
�s

nC1.RP1nC1/Š

�
Z if nC 1 is even
Z=2 if nC 1 is odd

! �2nC1.S
nC1/

sends a generator to the Whitehead square, so is injective unless nC 1D 3 or 7.

The composition Z=2Š �s
nC1

.Sn/! �s
nC1

.RP1n /
@
�! �2n.S

n/ sends a generator to Œ�n; �n�, which we
have seen in the proof of Lemma A.2 is nonzero unless nD 2; 6 or n� 3 mod 4. Thus for n � 3 with
n¤ 6 and n 6� 3 mod 4, the map @ W �s

nC1
.RP1n /! �2n.S

n/ is injective, as required.

If n� 3 mod 4, then we will show that Z=2Š �s
nC1

.Sn/! �s
nC1

.RP1n / is zero, so that @ is injective,
as required. In the module over the Steenrod algebra H�.RP1n IF2/, considered as the span of the xi

with i � n inside H�.RP1IF2/D F2Œx�, we have

Sq2.xn/D
�n

2

�
xnC2;

which is nontrivial if n� 3 mod 4. This detects the fact that in this case the .nC2/–cell is attached along
� times the n–cell, so �s

nC1
.Sn/! �nC1.RP1n / is zero, as claimed.

Geometry & Topology, Volume 28 (2024)



On automorphisms of high-dimensional solid tori 1683

For nD 6 the corresponding map is Z=60Š �13.S
6/! �s

7
Š Z=240 so is not onto: it is injective, with

cokernel Z=4.

Appendix B Coinvariant calculations

Let us write EUg.ZŒ��; ƒmin
n /� Ug.ZŒ��; ƒmin

n / for the subgroup generated by the elementary unitary
matrices, following [24, Section 5.3A]. Unwrapping their definitions it is generated by the elements which
in terms of the bases .a1; a2; : : : ; ag; b1; b2; : : : ; bg/ are given by, writing � D .�1/n, the matrices2664

1 0 0 0

0 1 0 0

0 r 1 0

��xr 0 0 1

3775 ;
2664

1 0 0 r

0 1 ��xr 0

0 0 1 0

0 0 0 1

3775 ;
2664

1 r 0 0

0 1 0 0

0 0 1 0

0 0 �xr 1

3775 ;
2664

1 0 0 0

r 1 0 0

0 0 1 �xr

0 0 0 1

3775 ; �
1 l

0 1

�
;

�
1 0

l 1

�

for r 2 ZŒ�� and l 2ƒmin
n , their stabilisations, and their conjugates obtained by permuting the ai and the

bi simultaneously. It will also be useful to have available the matrix2664
0 0 0 �1

0 0 � 0

0 �� 0 0

1 0 0 0

3775D
2664

1 0 0 �1

0 1 � 0

0 0 1 0

0 0 0 1

3775 �
2664

1 0 0 0

0 1 0 0

0 �� 1 0

1 0 0 1

3775 �
2664

1 0 0 �1

0 1 � 0

0 0 1 0

0 0 0 1

3775 :
By [24, Proposition 5.3.8] the groups EUg.ZŒ��; ƒmin

n / are perfect as long as g � 3, so are contained
in the kernel of any homomorphism from Ug.ZŒ��; ƒmin

n / to an abelian group: in particular, they are
contained in �min

g .

Lemma B.1 For g � 2 we have

H0.EUg.ZŒ��; ƒ
min
n /IH /D 0:

Proof Using the third matrix with r D 1, we see that in the coinvariants a2 � a1C a2, and so a1 D 0;
similarly it gives b1 � b1 � b2, so b2 D 0. By permuting we see that all ai and bi are zero in the
coinvariants.

Recall from Propositions 3.7 and 3.8 that we defined

SC
X
WD hx˝x j x 2 �n.Xg/iZ � �n.Xg/

˝ZŒ��2;

S�X WD hx˝y �y˝x j x;y 2 �n.Xg/iZ � �n.Xg/
˝ZŒ��2;

SC
W
WD hx˝x j x 2 �n.Wg;1/iZ � �n.Wg;1/

˝2;

S�W WD hx˝y �y˝x j x;y 2 �n.Wg;1/iZ � �n.Wg;1/
˝2;

and there is a natural map S˙
X
! S˙

W
which is a split epimorphism and which is equivariant for

Ug.ZŒ��; ƒmin
n /!Ug.Z; ƒmin

n /. Here S˙
W

is the set of elements of �n.Wg;1/
˝2 ˙–invariant under swap-

ping the factors, ie the kernel of 1�T W�n.Wg;1/
˝2!�n.Wg;1/

˝2, so writing M WD �n.Wg;1/˝Z Z=2
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there is an exact sequence

HomZ=2.M
˝2;Z=2/

1�T
��! HomZ=2.M

˝2;Z=2/! HomZ=2.S
˙
W ˝Z=2;Z=2/! 0:

Following [2, Lemma 13.5], HomZ.S
˙
W
;Z=2/Š HomZ=2.S

˙
W
˝Z=2;Z=2/ is in bijection with the set

Q˙.M / of ˙–quadratic forms on M D �n.Wg;1/˝Z=2. Whatever the parity of n, the hyperbolic
quadratic form reduced modulo 2 determines an element of Q˙.M /, which is by definition invariant for
Ug.Z; ƒmin

n /, so gives an Ug.ZŒ��; ƒmin
n /–invariant map

�˙ W S˙X ! S˙W ! Z=2:

Unwrapping the proof of [2, Lemma 13.5], this is given by any sesquilinear form f WM ˝M ! Z=2

such that �.x;y/D f .x;y/C f .y;x/ and q.x/D f .x;x/. For example we can take f to be given by
f .ai ; bj /D ıij and zero on all other pairs of basis elements.

Lemma B.2 The Ug.ZŒ��; ƒmin
n /–invariant map S˙

X
� �n.Xg/

˝ZŒ��2 �X
�! ZŒ��, as well as �˙ in the

case of S˙
X

for˙D .�1/nC1, induces for g � 3 an isomorphism

H0.EUg.ZŒ��; ƒ
min
n /IS˙X /Š

M
a>0

Zfta
˙ .�1/nt�a

g˚

�
Z=2 if˙D .�1/nC1,
Zf2t0g if˙D .�1/n:

Proof Let us write x � y to mean that x and y become equal after taking coinvariants. As a Z–module,
SC

X
is freely generated by

ai ˝ ai ; .tf C t�f /ai ˝ ai ; bi ˝ bi ; .tf C t�f /bi ˝ bi ; texi ˝xj C t�exj ˝xi ;

with i < j , f 2N>0 and e 2 Z.

(iC) Using the fourth matrix with r D 1 on the first and third hyperbolic pairs, we have

tea1˝ b2C t�eb2˝ a1 � te.a1C a3/˝ b2C t�eb2˝ .a1C a3/;

and so tea3˝ b2C t�eb2˝a3 � 0. By permuting we find that teai˝ bj C t�ebj ˝ai � 0 for all i ¤ j .

(iiC) Using the first matrix with r D .�1/nC1 we have

.tf C t�f /a1˝ a1 � .t
f
C t�f /.a1C b2/˝ .a1C b2/

and so .tf C t�f /.a1˝ b2C b2˝ a1/C .t
f C t�f /b2˝ b2 � 0. Combining with the above we have

.tf C t�f /b2˝ b2 � 0. The analogous argument shows .tf C t�f /a1˝ a1 � 0, and by permuting we
get the same for all other indices.

The analogous argument applied to a1˝ a1 shows that b1˝ b1 � 0, and so on.

(iiiC) Using the fourth matrix with r D te we have that a1˝ a1 is equivalent to

.a1C tea2/˝ .a1C tea2/D a1˝ a1C tea2˝ a1C t�ea1˝ a2C a2˝ a2;

so with (iiC) it follows that tea2˝ a1C t�ea1˝ a2 � 0. We similarly get teb2˝ b1C t�eb1˝ b2 � 0,
and by permuting get the same for all other indices.
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(ivC) The remaining basis elements are teai ˝ bi C t�ebi ˝ ai . Applying the seventh matrix to
tea1˝ b1C t�eb1˝ a1 gives .�1/n.teb2˝ a2C t�ea2˝ b2/, so permuting indices shows that

teai ˝ bi C t�ebi ˝ ai � .�1/n.t�eai ˝ bi C tebi ˝ ai/:

This lets us rewrite any tea1˝ b1C t�eb1˝ a1 to have e � 0, and also shows that

.1� .�1/n/.a1˝ b1C b1˝ a1/� 0:

Unwrapping the definition above shows that

�C.a1˝ b1C b1˝ a1/¤ 0 2 Z=2;

so when n is odd the element a1˝ b1C b1˝ a1 has order precisely 2 in the coinvariants. The elements
teai ˝ bi C t�ebi ˝ ai with e � 0 (with e > 0 if n is odd) are sent by �X to the linearly independent
elements teC .�1/nt�e 2 ZŒ��, which finishes the argument for SC

X
.

As a Z–module, S�
X

is freely generated by

.tf � t�f /ai ˝ ai ; .tf � t�f /bi ˝ bi ; texi ˝xj � t�exj ˝xi ;

with i ¤ j , f 2N>0 and e 2 Z.

(i�) Just as in (iC), we find that teai ˝ bj � t�ebj ˝ ai � 0 for all i ¤ j .

(ii�) Just as in (iiC), we find that .tf � t�f /ai ˝ ai � 0 and .tf � t�f /bi ˝ bi � 0.

(iii�) Just as in (iiiC), we find that teai ˝ aj � t�eaj ˝ ai � 0 and tebi ˝ bj � t�ebj ˝ bi � 0 for all
i ¤ j .

(iv�) The remaining basis elements are teai˝ bi � t�ebi˝ai . As in (ivC), applying the seventh matrix
to tea1˝ b1� t�eb1˝ a1 gives �.�1/n.t�ea2˝ b2� teb2˝ a2/, so permuting indices shows that

tea1˝ b1� t�eb1˝ a1 ��.�1/n.t�ea1˝ b1� teb1˝ a1/:

This lets us rewrite any teai ˝ bi � t�ebi ˝ ai to have e � 0, and shows that

.1C .�1/n/.a1˝ b1� b1˝ a1/� 0:

It follows from

��.a1˝ b1� b1˝ a1/¤ 0 2 Z=2

that when n is even the element a1˝b1�b1˝a1 has order precisely 2 in the coinvariants. The elements
teai ˝ bi � t�ebi ˝ ai with e � 0 (with e > 0 if n is even) are sent by �X to the linearly independent
elements te � .�1/nt�e 2 ZŒ��, which finishes the argument for S�

X
.
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Appendix C Relation to classical calculations

We wish to explain how our calculation relates to the classical approach via surgery theory, pseudoisotopy
theory and the algebraic K–theory of spaces, per the programme of Weiss and Williams [63; 64; 66; 65].
As full details for that programme are not yet available, and this comparison is not our main goal, the
following should be considered as provisional. It also assumes the reader is familiar with those papers:
we take [65] as our main reference. We also suppose for simplicity that p is odd: then one can probably
replace the work of Weiss and Williams with that of Burghelea and Lashof [11].

The homotopy classes produced by Theorem A have the following description. Using Example 6.4 and
Proposition 4.3 we may form the composition

Z=p˝S
.�1/nC1

X
�2p�3.EmbŠ@=2.Xg//.p/

Š

��

@
// �2p�3.BDiff@.S1�D2n�1//.p/

�2p�3.eEmbsfr;Š
@=2

.XgI `1=2@Xg
//.p/

forget
// �2p�3.eEmbŠ

@=2
.Xg//.p/

and our argument shows that this factors over the {„sfr;`
g –coinvariants of Z=p ˝ S

.�1/nC1

X
, giving an

injection; it remains injective when mapped further to BTop@.S
1 �D2n�1/. We wish to explain how

this is related to the calculation of ��.BTop@.S
1 �D2n�1//.p/ via pseudoisotopy theory.

The Weiss fibre sequences for homeomorphisms and block homeomorphisms give the diagram

Top@.S
1 �D2n�1/ //

��

Top@.Xg/ //

��

EmbTOP;Š
@=2

.Xg/

��

// BTop@.S
1 �D2n�1/

� 'eTop@.S1 �D2n�1/ //

��

eTop@.Xg/
'
//

��

eEmbTOP;Š
@=2

.Xg/

��eTop@.S1 �D2n�1/

Top@.S1 �D2n�1/
//

'

��

eTop@.Xg/

Top@.Xg/
// F

BTop@.S
1 �D2n�1/

where rows and columns form homotopy fibre sequences. The analogue of the proof of Proposition 4.3
for homeomorphisms shows that F is .n�2/–connected. Therefore in this range of degrees the diagram
identifies the map

@ W ��.EmbTOP;Š
@=2

.Xg//! ��.BTop@.S
1
�D2n�1//

with the composition

��
�
EmbTOP;Š

@=2
.Xg/

�
! ��

�eEmbTOP;Š
@=2

.Xg/
�
Š
 � ��.eTop@.Xg//! ��

�eTop@.Xg/

Top@.Xg/

�
:
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The theory of Weiss–Williams provides a map

eTop@.S1 �D2n�1/

Top@.S1 �D2n�1/
!�1.Hs.S1

�D2n�1/hC2
/

and similarly for eTop@.Xg/=Top@.Xg/. Here Hs.M / denotes the (simple) stable topological h–cobordism
spectrum of M : the parametrised stable h–cobordism theorem [58] identifies it with (the connective
cover of) †�1WhTOP.M /, the desuspension of the topological Whitehead spectrum of M ; Hs.M / is
equipped with a certain involution, and .�/hC2

denotes the homotopy orbit spectrum with respect to this
involution. The main theorem concerning these maps is that they are equivalences in the pseudoisotopy
stable range, but we shall not use this: the existence of these maps suffices.

It follows from [65, Section 1.5] that there is a map w making the square

eTop@.Xg/ //

��

eTop@.Xg/

Top@.Xg/
// �1.Hs.Xg/hC2

/

transfer

��

hAut@.Xg/ // hAut.Xg/
w

// �1Hs.Xg/

commute up to homotopy. The map w factors through a map wA W hAut.Xg/!�1†�1A.Xg/, which
one should think of as the crossed homomorphism (up to homotopy) corresponding to the splitting of the
fibration sequence

A.Xg/!A�.E/! BhAut.Xg/

given by the family A–theory characteristic � W BhAut.Xg/ ! A�.E/ associated to the universal
Xg–fibration Xg!E

�
�! BhAut.Xg/ (we have written A.�/ WD�1A.�/).

Consider instead the universal .Xg; @Xg/–fibration p W .E; @E/ ! BhAut@.Xg/. As the inclusion
BhAut@.Xg/�S1 �S2n�2 D @E!E is n–connected, there is a fibrewise map

� WE! BhAut@.Xg/�S1;

and hence a map A.�/ WAp.E/!BhAut@.Xg/�A.S1/ over BhAut@.Xg/. This identifies the composi-
tion

hAut@.Xg/! hAut.Xg/
w
�!�1Hs.Xg/!�1Hs.S1/

as the map obtained by looping the map BhAut@.Xg/!BhAutS1.Xg/
�
�!A.S1/ given by considering

BhAut@.Xg/�S1
� f�g � @E!E

�
�! BhAut@.Xg/�S1

as a family of retractive spaces over S1.
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We may form the following commutative diagram:

Z=p˝S
.�1/nC1

X

Ug.ZŒ��;ƒmin
n /–coinvariants

//
L

a>0 Z=pfta� t�ag

��

�2p�3.eEmbsfr;Š
@=2

.XgI `1=2@Xg
//.p/

forget
//

forget

%%

�2p�3.eEmbTOP;Š
@=2

.Xg//.p/

�2p�3.eTop@.Xg//.p/

Š

OO

��

// �2p�3

�eTop@.Xg/

Top@.Xg/

�
.p/

��

�2p�3.hAut@.Xg//.p/
w�

//

��

�2p�3.Hs.Xg//.p/

'

��

�2p�3.hAutS1.Xg//.p/
��

// �2p�3.Hs.S1//.p/

It follows from our results that the diagonal map and lower left-hand maps are injective on Ug.ZŒ��; ƒmin
n /–

coinvariants. The Ug.ZŒ��; ƒmin
n /–action on �2p�3.hAutS1.Xg//.p/ extends to a GL2g.ZŒ��/–action,

and using our description

�2p�3.hAutS1.Xg//.p/ Š HomZŒ��.�n.Xg/; �n.Xg//˝Z=p

we see that these GL2g.ZŒ��/–coinvariants are Z=pŒt; t�1�, and that the induced map on coinvariants is
given by the inclusion M

a>0

Z=pfta
� t�a

g � Z=pŒt; t�1�:

Using Waldhausen’s description �1
0

A.S1/' hocolimn;g!1BhAutS1

�
S1 _

W
2gSn

�C and Freuden-
thal’s stability range, it follows using Lemma 7.1 that the induced map

Z=pŒt; t�1�ŠH0

�
GL2g.ZŒ��/I�2p�3.hAutS1.Xg//.p/

�
! �2p�3.†

�1A.S1//.p/

is an isomorphism, and by consideration of cyclotomic structures that the induced map

Z=pŒt; t�1�ŠH0

�
GL2g.ZŒ��/I�2p�3.hAutS1.Xg//.p/

�
! �2p�3.Hs.S1//.p/

is injective with finitely generated cokernel. It follows that the composition along the rightmost column
in the diagram above is injective with finitely generated cokernel. This explains the sense in which the
infinitely many copies of Z=p given by Theorem A is the same as that coming from pseudoisotopy
theory and the algebraic K–theory of spaces (cf [23]), though our result holds beyond the range in which
pseudoisotopy theory is known to apply.
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