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Pseudo-Anosovs are exponentially generic in mapping class groups

INHYEOK CHOI

Given a finite generating set S , let us endow the mapping class group of a closed hyperbolic surface with
the word metric for S . We discuss the following question: does the proportion of non-pseudo-Anosov
mapping classes in the ball of radius R converge to 0 as R tends to infinity? We show that any finite subset
S 0 of the mapping class group is contained in a finite generating set S such that this proportion decays
exponentially. Our strategy applies to weakly hyperbolic groups and does not refer to the automatic
structure of the group.

20F67, 30F60, 57K20, 57M60, 60G50

1 Introduction

Let † be a closed hyperbolic surface. We denote by Mod.†/, T.†/ and C.†/ the mapping class group,
the Teichmüller space and the curve complex of †, respectively. When X is a Gromov hyperbolic space
or T.†/ and g 2 Isom.X/, we denote by �X .g/ the (asymptotic) translation length of g. For a group G
generated by a finite set S , we denote by BS .n/ the ball of radius n with respect to the word metric for S .
We also denote by @BS .n/ the corresponding sphere of radius n. Our main result is as follows.

Theorem A (translation length grows linearly) Let X be either a Gromov hyperbolic space or T.†/.
Let also G be a finitely generated nonelementary subgroup of Isom.X/ and S 0 � G be a finite subset.
Then there exist L;K > 0 and a finite generating set S � S 0 of G such that , for each n,

#fg 2 BS .n/ W �X .g/� Lng
#BS .n/

�Ke�n=K :

Non-pseudo-Anosov mapping classes have translation length zero in C.†/. As a result, we affirmatively
answer the following version of a folklore conjecture, at least for infinitely many generating sets S .

Corollary 1.1 (genericity of pAs; cf [Farb 2006, Conjecture 3.15]) Let G be a finitely generated
nonelementary subgroup of Mod.†/. Then there exists a finite generating set S � G such that the
proportion of non-pseudo-Anosov mapping classes in the ball BS .n/ decays exponentially as n!1.

Note that Mod.†/ can act on both T.†/ and C.†/. Comparing the translation lengths of mapping classes
on these two spaces is an interesting question. Thanks to the linear growth in Theorem A, we can deduce:
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Corollary 1.2 Let G be a finitely generated nonelementary subgroup of Mod.†/ and S 0 �G be a finite
subset. Then there exist L;K > 0 and a finite generating set S � S 0 of G such that for

P WD

�
g 2G W

1

L
�
�T.†/.g/

�C.†/.g/
� L

�
and each n,

#BS .n/\P c

#BS .n/
�Ke�n=K :

1.1 History and related problems

We remark that Theorem A may not be optimal for Gromov hyperbolic spaces. Gekhtman, Taylor and
Tiozzo have proved the genericity of loxodromics in hyperbolic groups acting on separable Gromov
hyperbolic spaces, in terms of the word metric for any finite generating set. This was generalized to
relatively hyperbolic groups, RAAGs and RACGs with particular finite generating sets [Gekhtman et al.
2018; 2020; 2022]. Gekhtman, Taylor and Tiozzo’s example [Gekhtman et al. 2020, Example 1] shows
that the genericity of loxodromics is not achieved for all weakly hyperbolic groups with respect to all
finite generating sets.

For relatively hyperbolic groups (and many more), Yang [2020] also established that loxodromics are
exponentially generic when the action is proper and cocompact. Hence, at least for hyperbolic groups that
admit a proper and cocompact action on Gromov hyperbolic spaces, Theorem A is weaker than previous
results in the sense that the finite generating set cannot be arbitrary. It is however stronger in the sense that

(1) it does not require the action of G to be proper and cocompact,

(2) it deals with exponential genericity with respect to a linearly growing threshold, not a static
threshold.

In fact, combining our strategy with the theory of Gekhtman, Taylor and Tiozzo yields the following.

Proposition 1.3 Let X and G be as in Theorem A and S be a finite generating set of G. Suppose
moreover that G itself is a hyperbolic group. Then there exists � > 0 such that the following hold. Below ,
� denotes the Patterson–Sullivan measure with respect to S .

(1) For any x 2X and �–a.e. � 2 @G, if .gn/n�0 is a geodesic in G converging to �, then

lim
n!1

dX .x; gnx/

n
D �:

(2) For any � > 0, there exists K > 0 such that , for each n,

#fg 2 @BS .n/ W �X .g/ … Œ�� �; �C ��g
#@BS .n/

�Ke�n=K :
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Note that this implies the following. Given a hyperbolic subgroup G of Mod.†/ and any finite generating
set S of G, let �T and �C be the escape rate of G on T.†/ and C.†/, respectively, in terms of the
Patterson–Sullivan measure for S . Then for any � > 0, there exists K such that, for each n,

#
˚
g 2 BS .n/ W �T=�C� � � �T.†/.g/=�C.†/.g/� �T=�CC �

	
#BS .n/

�Ke�n=K :

For the sake of completeness, we sketch the proof of Proposition 1.3 in Appendix B.

Meanwhile, Theorem A is new for the mapping class group Mod.†/. The progress so far was that the
proportion of pseudo-Anosov elements in the word metric ball stays bounded away from zero [Cumplido
and Wiest 2018]. Meanwhile, in the braid group Bn for n� 3, with respect to Garside’s generating set,
Caruso and Wiest [2017] showed that pseudo-Anosov braids are generic in the word metric ball. See
[Calvez and Wiest 2017] for a generalization to spherical Artin–Tits groups. On Mod.†/, Yang [2020]
and Erlandsson et al. [2020] discussed the genericity of pseudo-Anosovs from different viewpoints. We
can further ask:

Question 1.4 Are pseudo-Anosovs exponentially generic with respect to any finite generating set? For
example , are they exponentially generic with respect to Humphries’ generators? If not , are they generic
at least?

Question 1.5 Does Proposition 1.3 hold for G DMod.†/ and at least one S?

Question 1.5 is intimately related to the (geodesic) automaticity of Mod.†/.

Let us finally mention a problem investigated by I Kapovich. Let � be a discrete measure on a group G.
We define the nonbacktracking random walk generated by � as follows. The first alphabet g1 is chosen
from G with the law of �; for each n� 2, gn is chosen from G n fg�1n�1g with the law

P .gn D g/D
1

�.G n fg�1n�1g/
�.g/:

In this setting, Gekhtman, Taylor and Tiozzo proved that P .!n is loxodromic/ tends to 1 as n!1
[Gekhtman et al. 2020, Theorem 2.8]. With an adequate modification, our argument yields the following.

Proposition 1.6 Let X be as in Theorem A, and � be a nonelementary discrete measure � on Isom.X/.
Consider the nonbacktracking random walk ! generated by �. Then there exists L;K > 0 such that , for
each n,

Pf�X .!n/� Lng �Ke
�n=K :

1.2 Strategy for Theorem A

One approach to the counting problem is to utilize (geodesic) automatic structures of the group. Lacking
such structures, we instead consider the random walk ! on G generated by the uniform measure on S .
Then the theories of Gouëzel [2022] and Baik, Choi and Kim [Baik et al. 2023] imply that the unwanted
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probability decays exponentially. There are at least two more theories that provide this exponential decay.
One is Maher’s theory [2012] for random walks with bounded support, which led to Maher and Tiozzo’s
more general theory [2018]. Another one is Boulanger, Mathieu, Sert and Sisto’s theory [Boulanger et al.
2023] of large deviation principles for random walks with finite exponential moment.

Unavoidably, random walks cannot count lattice points in a one-to-one manner. If S is nicely populated
by the self-convolution of a Schottky set S0, however, then we have a one-to-one correspondence between
some portion of lattice points and (nonbacktracking) paths of alphabets in S0. This leads to the estimate
#BS .e; n/� #.paths from the random walk/ � rn with r � 1. We arrive at the desired estimate by forcing
the exponential decay of probability to be much faster than the decay of rn.

Let us bring a toy example to explain how this strategy works. Let S be a finite symmetric generating set
of the free group F2 ' ha; bi of rank 2. Our goal is to compare the growth rate of

A.n/ WD fa1 � � � an W ai 2 Sg;

B.n/ WD fa1 � � � an W ai 2 S; �X .a1 � � � an/D 0g:

Here, S contains elements that cancel out each other. This implies that although A.n/ does grow
exponentially, its growth rate may not equal #S . Moreover, even though any nontrivial word in F2
corresponds to a loxodromic isometry on the Cayley graph, there can be some sequences of n letters from
S whose composition is trivial.

These concerns disappear if S is an alphabet for a free subsemigroup of F2. Letters in S do not cancel
out each other, and we have A.n/� .#S/n and B.n/D 0 for n� 1. The contrast between the two growth
rates persists even when a few letters of S cancel out each other. For example, let us take

S D fa2; ab; ba; a�2; b�1a�1; a�1b�1g:

Clearly a2 and a�2, ab and b�1a�1, and ba and a�1b�1 cancel out each other. Nonetheless, A.n/ still
grows exponentially with the growth rate #S � 1. On the other hand, the growth rate of B.n/ is #S times
the spectral radius of the simple random walk on the homogenous tree of degree 6, which is

p
5
3

. The
situation gets better and better as S becomes larger and larger. For a symmetric free generating set S of a
subgroup G of F2 with rk.G/D d , we have A.n/� .2d �1/n while B.n/� ..2

p
2d � 1=2d/ �2d/n. As

d increases, the growth rate of A.n/ becomes closer to #S while the growth rate of B.n/ stays uniformly
strictly smaller than #S . In summary, although cancellations may disturb the contrast between the two
growth rates, such disturbance can be made negligible by taking an “almost mutually independent” set S .
Such sets are called Schottky sets.

Let us now consider a choice S D S1 [ S0, where S1 is a (symmetric) alphabet for a free semigroup
of F2 and S0 is an additional impurity that makes S a generating set of F2. For simplicity let us assume
the form

S1 D fc1 � � � cM � a
100M

� d1 � � � dM W ci ; di 2 fa; bgg

Geometry & Topology, Volume 28 (2024)
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for M � 10. Since S1 is large enough, we can guarantee the gap between the growth rates of A.n/ and
B.n/ with respect to S1. We now want the stability of this gap with respect to the perturbation S0. To be
explicit, we hope

A.n/& ..1� �/ #S/n; B.n/. .�0 #S/n

for some � proportional to .#S0/=.#S/ and a constant �0 < 1 that works for small enough .#S0/=.#S/.
Note that we do not require any condition on the elements of S0; we only restrict the cardinality of S0.

The stability for A.n/ is straightforward, but the one for B.n/ is considerably harder. In contrast to the
case of simple random walks, we have no information on how individual elements of S0 interact with
the elements of S1. Perhaps a bad element of S0 cancels out a concatenation of 10 letters in S1, or that
of 100 letters. This opens the possibility that the RV d.o; !nC1o/� d.o; !no/ conditioned on !n has
negative expectation for some !n. Hence, we cannot pretend as if we are summing up i.i.d. RVs with
positive expectation at each single step.

Nonetheless, we may focus only on the steps chosen from S1 and try to construct i.i.d. RVs that reflects
the progresses made there. Let us construct a set Pn D fi.1/ < � � �< i.m/g such that

(1) gi.1/; : : : ; gi.m/ are drawn from S1, and

(2) Œo; !no� contains the middle 99% of Œ!i.1/o; !i.1/gi.1/o�; : : : ; Œ!i.m/o; !i.m/gi.m/o�.

Note that Pn is a subset of
‚D f1� i � n W gi 2 S1g

whose size is sufficiently large if .#S0/=.#S/ is small enough. Fixing the slots ‚ for elements in S1
and all the other choices fgi W i …‚g, we are now asked to control wm D w0s1w1 � � � smwm where wi
are fixed words in F2 and si are independently drawn from S1. Since elements of S1 are deviating
from each other early, Œo; so� and Œo; w�10 o� fellow travel for very few s 2 S1. Similarly, Œo; s�1o� and
Œo; w1o� are deviating early for a large probability. Due to these sorts of reasons, there is a (uniformly)
high chance that the middle 99% of Œwk�1o;wk�1sko� is visible in Œo; wk�1skwko�. Consequently, the
progress made by sk is along Œo; w0s1 � � � skwko�. In such a case, those progresses made by si for i < k
along Œo; w0s1 � � �wk�1o� are still intact in Œo; w0s1 � � � skwko�.

Still, we are worried about the situation that an unfortunate choice of sk makes a progress that is not visible
in Œo; w0 � � � skwko�, or even worse, the previous Schottky progresses along Œo; w0 � � � sk�1wk�1o� are all
lost in Œo; w0 � � � skwko�. Let sj.1/; : : : ; sj.m0/ be the choices from S1 before sk that made progresses along
Œo; w0 � � � sk�1wk�1o�. We observe that there are plenty of other choices for sj.1/; : : : ; sj.m0/ that make
progresses along Œo; w0 � � � sk�1wk�1o�. This modification does not affect the positions j.1/; : : : ; j.m0/,
and we call it pivoting. We now freeze the choicewj.m0/C1sj.m0/C1 � � � skwk and perform the pivoting. The
progress Œo; sj.m0/� made by the .m0/th choice sj.m0/ is aligned along Œo; sj.m0/wj.m0/sj.m0/C1 � � � skwko�
with high chance, and moreover, Œo; sj.m0�1/� is aligned along Œo; sj.m0�1/wj 0.m0�1/ � � �wko� with high
chance regardless of the pivotal choice sj.m0/. Continuing this, we observe that the progress made by
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the .m0� l/th choice sj.m0�l/ — and all progresses before it — is visible in Œo; w0 � � �wko�, outside a set
of probability that decays exponentially in l . Using this, we can bound #Pn from below by the sum of
i.i.d. RVs that heavily favors 1 and has an exponentially decaying tail. In particular,

P
�

#Pn �
n

K

�
�Ke�n=K

for some K > 0. A fuller description can be found in [Gouëzel 2022, Section 2].

We have not discussed the linearly growing threshold of the translation length yet. For example, the word
a�1b�1a3ba2b�2a�2b�1a�3ba has large displacement, 18, but short translation length, 2. If we pivot
the Schottky choices, e.g. modify the first or the second b�1 into b, its translation length will increase
to 16 or 8, respectively. This illustrates that pivoting can secure large translation lengths in probability,
which is the strategy of [Baik et al. 2023].

The above example is an over-simplification of weakly hyperbolic groups and mapping class groups.
Gromov hyperbolic spaces and Teichmüller space are not trees, but we can still copy the above argument
by using the Gromov inequality or the (partial) hyperbolicity in Teichmüller space due to Rafi.

We remark that the notions and statements in Section 2, 3 and 4 are mostly established in [Baik et al.
2023; Choi 2023; Gouëzel 2022]. Nonetheless, to make the exposition self-contained, we present all
details except the proofs of Facts 2.5, 2.6, 2.8, 2.9 and A.1. See [Choi 2023] for their proofs.
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2 Witnessing and Schottky sets

This section is devoted to the facts about Gromov hyperbolic spaces and Teichmüller spaces. All facts in
this section are proved in [Choi 2023].

Given a metric space .X; d/ and a triple x; y; z 2 X , we define the Gromov product of y and z with
respect to x by

.y; z/x D
1
2
Œd.x; y/C d.x; z/� d.y; z/�:

Throughout the article, we will frequently use the following property: for x; y; z 2X and g 2 Isom.X/,

.gy; gz/gx D .y; z/x :

Geometry & Topology, Volume 28 (2024)



Pseudo-Anosovs are exponentially generic in mapping class groups 1929

X is said to be Gromov hyperbolic if there exists a constant ı > 0 such that every quadruple x; y; z; w 2X
satisfies the following inequality, called the Gromov inequality:

(2-1) .x; y/w �minf.x; z/w ; .y; z/wg� ı:

Here, X need not be geodesic nor intrinsic; all arguments regarding Gromov hyperbolic spaces rely solely
on the Gromov inequality.

From now on, we permanently fix ı > 0.

In T.†/, we say that a surface x 2 T.†/ is �–thin if there exists a simple closed curve on x whose
extremal length is less than �; if not, we say that it is �–thick. For x; y 2 T.†/, Œx; y� denotes the
Teichmüller geodesic from x to y; it is said to be �–thick if it is composed of �–thick points.

In ı–hyperbolic spaces, we regard every point as �–thick for any � > 0. Here Œx; y� denotes the pair of
points .x; y/, which is considered �–thick for any � > 0. In either space, Œx; y� are called segments and
their lengths are defined by d.x; y/.

Definition 2.1 (witnessing in ı–hyperbolic spaces) Let x, y, fxigniD1 and fyigniD1 be points in a
ı–hyperbolic space X , and D > 0. We say that Œx; y� is D–witnessed by .Œx1; y1�; : : : ; Œxn; yn�/ if

(1) .xi�1; xiC1/xi <D for i D 1; : : : ; n, where x D x0 and y D xnC1,

(2) .yi�1; yiC1/yi <D for i D 1; : : : ; n, where x D y0 and y D ynC1, and

(3) .yi�1; yi /xi ; .xi ; xiC1/yi <D for i D 1; : : : ; n.

Definition 2.1 seems complicated, but it is a version of Definition 2.2 in the absence of the geodesicity of
the ambient space. Indeed, in a geodesic Gromov hyperbolic space, these two notions of witnessing are
equivalent up to the modification of the parameter D.

Definition 2.2 (witnessing in T.†/) Let x, y, fxigniD1 and fyigniD1 be points in X DT.†/, and D>0.
We say that Œx; y� is D–witnessed by .Œx1; y1�; : : : ; Œxn; yn�/ if the geodesic Œx; y� contains subsegments
Œx0i ; y

0
i � such that

(1) x0iC1 is not closer to x than y0i for i D 1; : : : ; n� 1, and

(2) Œxi ; yi � and Œx0i ; y
0
i � D–fellow travel.

From now on, we permanently fix X , a ı–hyperbolic space or T.†/.

Definition 2.3 Let x, y and fxi ; yi ; zigNiD1 be points in X . We say that Œx; y� is D–marked with
.Œxi ; yi �/

N
iD1, .Œzi ; xi �/NiD1 if

(1) .yi ; zi /xi <D for each i D 1; : : : ; N , and

(2) Œxi�1; xi � is D–witnessed by .Œxi�1; yi�1�; Œzi ; xi �/ for each i D 1; : : : ; N C 1, where we set
x0 D y0 D x and xNC1 D zNC1 D y.

In this case, we also say that Œx1; xn� is fully D–marked with .Œxi ; yi �/N�1iD1 , .Œzi ; xi �/NiD2.
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z1 y1

z2 y2

x1

x2
x

z3 y3

z4 y4
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x4

y

Figure 1: Schematics for Œx; y� being D–marked with .Œxi ; yi �/4iD1, .Œzi ; xi �/4iD1.

The following observation is immediate.

Lemma 2.4 Let fxigNiD0 and fyi�1; zigNiD1 be points inX . Suppose that for each iD1; : : : ; N , Œxi�1; xi �
is fully D–marked with sequences of segments .i;j /

ni�1
jD1 , .�i;j /

ni
jD2, where i;1 D Œxi�1; yi�1� and

�i;ni D Œzi ; xi �. Suppose also that .yi ; zi /xi �D for i D 1; : : : ; N � 1. Then Œx0; xN � is fully D–marked
with

(1;1; : : : ; 1;n1�1; 2;1; : : : ; 2;n2�1; : : : ; N;nN�1/;

(�1;2; : : : ; �1;n1 ; �2;2; : : : ; �2;n2 ; : : : ; �N;nN /:

Our aim is to prove that if Œx; y� is D–marked with sufficiently thick and long segments, then Œx; y�
is witnessed by those segments. In order to prove this, we need the following consequences of Rafi’s
fellow-traveling and thin triangle theorems [2014].

Fact 2.5 [Choi 2023, Lemma 3.9] For each D; � > 0, there exist E;L >D that satisfy the following.
Let x1 be an �–thick point and fxig3iD2 and fyig5iD1 be points in X such that

(1) Œy1; y2�, Œy3; y4� and Œy4; y5� are �–thick and longer than L,

(2) .y3; y5/y4 �D,

(3) Œx1; x2� is D–witnessed by .Œy1; y2�; Œy3; y4�/, and

(4) Œx2; x3� is E–witnessed by Œy4; y5�.

Then Œx1; x3� is E–witnessed by Œy1; y2�.

Fact 2.6 [Choi 2023, Lemma 3.10] For each E, � > 0, there exists F;L>E that satisfies the following.
Let fxig3iD1 and fyig3iD1 be points in X such that

(1) Œy1; y2� and Œy2; y3� are �–thick and longer than L,

(2) .y1; y3/y2 �E,

(3) Œx1; x2� is E–witnessed by Œy1; y2�, and

(4) Œx2; x3� is E–witnessed by Œy2; y3�.

Then Œx1; x3� is F –witnessed by Œy1; y2�, and also by Œy2; y3�. In particular , j.x1; x3/x2�d.x2; y2/j<F .

Combining Facts 2.5 and 2.6 yields the following.
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x1

x2

x3

y1 y2
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x1

x2

x3

y1

y2

y3

Figure 2: Schematics for Facts 2.5 and 2.6.

Corollary 2.7 Let D; � > 0 and

� E DE.�;D/ and L1 D L.�;D/ as in Fact 2.5, and

� F D F.�;E/ and L2 D L.�;E/ as in Fact 2.6.

Suppose that x, y and fxi ; yi ; zigNiD1 are points in X such that

(1) Œx; y� is D–marked with .Œxi ; yi �/NiD1, .Œzi ; xi �/NiD1, and

(2) Œxi ; yi � and Œzi ; xi � are �–thick and longer than max.L1; L2/ for i D 1; : : : ; N .

Then

(1) Œx; y� is F –witnessed by Œxi ; yi � for each i D 1; : : : ; N ,

(2) Œx; y� is F –witnessed by Œzi ; yi � for each i D 1; : : : ; N , and

(3) .x; y/xi , .x; y/yi , .x; y/zi are smaller than F for each i D 1; : : : ; N .

Proof It is assumed that ŒxN ; y� is E–witnessed by ŒxN ; yN �. Moreover, by assumption, Œxk�1; xk� is
D–witnessed by .Œxk�1; yk�1�; Œzk; xk�/ where Œxk�1; yk�1� and Œzk; xk� are �–thick and longer than L1.
Note also that .yk; zk/xk �D. Hence, if Œxk; y� isE–witnessed by Œxk; yk�, then Œxk�1; y� isE–witnessed
by Œxk�1; yk�1� by Fact 2.5. Thus, inductively, we deduce that Œxi ; y� is E–witnessed by Œxi ; yi � for
each i . Similarly, Œx; xi � is E–witnessed by Œzi ; xi �. Now Fact 2.6 asserts that Œx; y� is F –witnessed by
Œxi ; yi � and Œzi ; yi �, which also implies the second item.

We finally need two facts that guarantee witnessing by a pair of segments.
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x y

z x0

or D)

x y

z x0

Figure 3: Schematics for Facts 2.8 and 2.9.

Fact 2.8 [Choi 2023, Lemma 3.6] For each C; � > 0, there exists D > C such that if x; y; z; x0 2 X
satisfy that

(1) Œx; y� and Œz; x0� are �–thick ,

(2) .x; z/y ; .y; x
0/z < C , and

(3) d.y; z/�maxfd.x; y/; d.z; x0/; 3Dg,

then Œx; x0� is D–witnessed by .Œx; y�; Œz; x0�/.

Fact 2.9 [Choi 2023, Lemma 3.7] For each C; � > 0, there exists D > C such that if x, y, x0, z 2X
satisfy that

(1) Œx; y� and Œx0; z� are �–thick , and

(2) .x; z/y ; .x; x
0/z < C ,

then Œx; x0� is D–witnessed by .Œx; y�; Œz; x0�/.

From now on, we permanently fix a base point o 2 X and a finitely generated subgroup G of Isom.X/
that contains independent loxodromics a and b. For S �G and i 2 Z, we employ the notation S .i/ WD
fsi W s 2 Sg.

Let us introduce the notion of Schottky sets that originated from [Gouëzel 2022].

Definition 2.10 (Schottky set) Let K;K 0; � > 0. A finite set S of isometries of X is said to be
.K;K 0; �/–Schottky if

(1) for all x; y 2X , jfs 2 S W .x; siy/o �K for some i > 0gj � 2,

(2) for all x; y 2X , jfs 2 S W .x; siy/o �K for some i < 0gj � 2,

(3) for all s 2 S and i ¤ 0, 0:9995iK 0 < d.o; sio/� iK 0,

(4) for all s 2 S and i 2 Z, the geodesic Œo; sio� is �–thick,

(5) for all x 2X , jfs 2 S W .x; sio/o �K for some i > 0gj � 1,

(6) for all x 2X , jfs 2 S W .x; sio/o �K for some i < 0gj � 1, and

(7) for all s1; s2 2 S and i; j > 0, .si1o; s
�j
2 o/o <K.
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Remark 2.11 Gouëzel’s original definition [2022] of Schottky set and Choi’s definition [2023] do not
require (5), (6) and (7); however, as remarked there, Schottky sets constructed in [Choi 2023] automatically
satisfy (5), (6) and (7).

We now claim the existence of certain Schottky sets.

Proposition 2.12 (cf [Choi 2023, Proposition 4.2]) There exists � > 0 such that the following holds.
For any n; n0 > 0, there exist K.n/ > 0 and K 0.n; n0/ > n0 such that G has a .K;K 0; �/–Schottky subset
S with cardinality at least n.

Proof The proof of [Choi 2023, Proposition 4.2] implies the following:

Claim 2.13 There exists �; F;N0 > 0 such that , for all N >N0,

(a) for any 0�m� n and �i 2 fa; b; a�1; b�1g such that �i … ��1iC1, Œo; �2N1 � � ��
2N
n o� is �–thick and

.o; �2N1 � � ��
2N
n o/�2N1 ����

2N
m o � F , and

(b) for all n and k, the set

Sn;k;N WD f.�
2N
1 � � ��

2N
n /2k W �i 2 fa; bgg

satisfies properties (1), (2), (4), (5) and (6) of Schottky sets for

K.n;N / WDmaxfd.o; �2N1 � � ��
2N
n o/ W �i 2 fa; bgg:

The proof of this claim is given in Appendix A. Assuming this, we now take large enough N such that
d.o; a2N o/; d.o; b2N o/ > 10000F and fix K.n/ WDK.n;N /. Let S be the collection of concatenations
of n copies of a2N and n copies of b2N . For s 2 S and k, property (a) above implies

0� Œ2nkd.o; a2N o/C 2nkd.o; b2N o/�� d.o; sko/� 8nkF � 1
2500
� 2nkŒd.o; a2N o/; d.o; b2N o/�:

We finally fix k such that K 0.n; n0/ WD 2nkŒd.o; a2N o/C d.o; b2N o/� is larger than n0. Then S.k/ is
.K;K 0; �/–Schottky and has cardinality

�
2n
n

�
� n.

From now on, we permanently fix the choice � > 0 from Proposition 2.12. Now for each C > 0, we fix

� D DD.C; �/ that works in Facts 2.8 and 2.9,

� E DE.D; �/ and L1 D L.D; �/ as in Fact 2.5,

� F D F.E; �/ and L2 D L.D; �/ as in Fact 2.6,

and LDmax.L1; L2/. Note that D, F and L ultimately depend on the values of C and �; we will write
them as D.C; �/, F.C; �/ and L.C; �/.

Lemma 2.14 Let K > 0, K 0 > 2L.K; �/C 5000F.K; �/ and S1 be a .K;K 0; �/–Schottky set. Then S1
and S .�1/1 are disjoint.

Moreover , if a nonempty sequence .si /NiD1 of elements of S1[S
.�1/
1 satisfy si¤ s�1iC1 for iD1; : : : ; N�1,

then s1 � � � sN ¤ id.
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Proof For each s 2 S .˙1/1 , we claim that

fs0 2 S1[S
.�1/
1 W .so; s0o/o >Kg D fsg:

Indeed, .so; so/o D d.o; so/ > K, and properties (5), (6) and (7) of Schottky sets imply

fs0 2 S1[S
.�1/
1 W .so; s0o/o >Kg D fs

0
2 S

.˙1/
1 W .so; s0o/o >Kg D fsg:

In particular, s0 2 S .�1/1 cannot belong to this set; this settles the first claim.

We now let xi D s1 � � � sio for i D 0; : : : ; N . By the above claim, we realize that

.xi ; xiC2/xi D .s
�1
iC1o; siC2o/o <K <D.K; �/

for iD0; : : : ; N�2. Then Fact 2.9 implies that Œxi ; xiC2� isD.K; �/–witnessed by .Œxi ; xiC1�; ŒxiC1; x2�/.
Note that Œxi ;xiC1� is triviallyD.K;�/–witnessed by .Œxi ;xiC1�; ŒxiC1;xiC1�/ and by .Œxi ;xi �; Œxi ;xiC1�/.
Combining these observations, we deduce that Œx0; xN � is D.K; �/–marked with .Œx2i�1; x2i �/

bN=2c
iD1 ,

.Œx2i�2; x2i�1�/
bN=2c
iD1 . Since Œxi ; xiC1� are �–thick and longer than 0:999K 0 > L.K; �/, Corollary 2.7

implies that .x0; xiC1/xi < F.K; �/ for each i and

d.x0; xN /�

NX
iD1

d.xi�1; xi /� 2.N � 1/F.K; �/� .0:999K
0
�F.K; �//N � 0:9K 0N:

Hence, s1 � � � sN ¤ id.

Corollary 2.15 Let S1 be as in Lemma 2.14. Then the correspondence a 7! a2 from S1 [ S
.�1/
1 to

S
.2/
1 [S

.�2/
1 is one-to-one.

Definition 2.16 We say that a finite set S is nicely populated by S0 if S0 � S and #S0 � 0:99 �#SC400.

Lemma 2.17 Given a finite set S 0 � G, there exist a .K;K 0; �/–Schottky subset S1 of G such that
K 0 > 2L.K; �/C 5000F.K; �/, and a finite symmetric generating set S of G such that S 0[feg � S and
S is nicely populated by S .2/1 [S

.�2/
1 .

Proof We first enlarge S 0 into a finite symmetric generating set S 00 containing e. Let nD100 #S 00C40000
and take K DK.n/ > 0 from Proposition 2.12. We then take F DF.K; �/ and LDL.K; �/ as described
before. Using Proposition 2.12, we take K 0 > n0 D 2LC 5000F and a .K;K 0; �/–Schottky subset S1
of G with cardinality at least n. Thanks to Corollary 2.15, we also have #.S .2/1 [S

.�2/
1 /D 2 � #S1 � n.

Hence, the union of S 00, S .2/1 and S .�2/1 satisfies the desired property.

From now on, we fix constants K > 0 and K 0 > 2L.K; �/C 5000F.K; �/, a .K;K 0; �/–Schottky set S1
with K 0 > 2L.K; �/C 5000F.K; �/, and a finite symmetric generating set S 3 e of G that is nicely
populated by S .2/1 [ S

.�2/
1 . For g 2 G and s 2 S1 [ S

.2/
1 , we call Œgo; gso� a Schottky segment. One

should keep in mind that Schottky segments are �–thick and longer than 0:999K 0. Finally, we will denote
S1[S

.�1/
1 by S0.
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3 Pivoting in a random walk

We will make use of the random walk on G generated by the uniform measure �S on S that is constructed
as follows. We consider the step space .GZ; �Z

S /, the product space of G equipped with the product
measure of �S . Each step path .gn/ induces a sample path .!n/ by

!n D

8<:
g1 � � �gn if n > 0;
e if nD 0;
g�10 � � �g

�1
nC1 if n < 0;

which constitutes a random walk with transition probability �S .

Given g D .g1; : : : ; gn/ 2G
n, we define

‚.g/D f#.1/ < � � �< #.N/g WD
˚
1� i � 1

2
n W g2i�1; g2i 2 S

.2/
1 [S

.�2/
1

	
:

In other words, ‚.g/ is the collection of steps that are chosen from S
.2/
1 [S

.�2/
1 . This set can well be

empty, although such a situation happens with small probability. We now pick pivotal times from ‚.g/.

For each 1� i �N , let ai and bi be the elements of S0 D S1[S�11 such that

a2i D g2#.i/�1; b2i D g2#.i/:

Such ai and bi are uniquely determined thanks to Corollary 2.15.

We also define wi WD g2#.i/C1 � � �g2#.iC1/�2 for 1 � i � N � 1, with w0 WD g1 � � �g2#.1/�2 and
wN WD g2#.N/C1 � � �gn. It is clear that

!n D g1g2 � � �gn D w0a
2
1b
2
1w1 � � � a

2
N b

2
NwN :

Remark 3.1 It will be convenient to allow the expression !2#.NC1/�2 and interpret it as !n, even
though #.N C 1/ does not exist (there is no reason to not define #.N C 1/ WD .nC 2/=2 if one hopes).
This way, we can say

!2#.k/�2 WD w0a
2
1b
2
1 � � �wk�1 .k D 1; : : : ; N C 1/;

!2#.k/�1 WD w0a
2
1b
2
1 � � �wk�1a

2
k .k D 1; : : : ; N /;

!2#.k/ WD w0a
2
1b
2
1 � � �wk�1a

2
kb
2
k .k D 1; : : : ; N /:

o

w0

!2#.1/�2o
!2#.1/�2a1o

!2#.1/�1o

!2#.1/o

w1

wN

a1

a1

b21

!noD !2#.NC1/�2o

!2#.2/�2o
!2#.2/�2a2o

!2#.2/�1o

!2#.2/o

a2

a2

b22

Figure 4: Words wj , aj and bj that arise from a trajectory.
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zk�1

!2#.k/�2o
ak

ak

a2
k

!2#.k/�1o

WD

zk

!2#.k/o
b2
k

wk

!2#.kC1/�2o

ai.1/

b2
i.1/

ai.2/
b2
i.2/

ai.3/
b2
i.3/

!2#.i.1//�2o !2#.i.1//o

!2#.i.2//�2o

!2#.i.2//o

!2#.i.3//�2o

!2#.i.3//o

!2#.kC1/�2o

Figure 5: Schematics for criteria (A) and (B) for the construction of Pk . The upper configuration
describes the situation when k is added in Pk . In the lower configuration, fi.1/< i.2/< i.3/g satisfies
items (i) and (ii) of criterion (B). Here, the shaded subsegments of the dashed lines fellow travel 1,
�2, 2 and �3, from left to right, respectively. The newly chosen zk is highlighted by a circle.

We now inductively define sets Pk.g/� f1; : : : ; kg and a moving point zk for k D 0; : : : ; N . First take
P0 WD∅ and z0 WD o. Now given .Pk�1; zk�1/, .Pk; zk/ is determined as follows (see Figure 5):

(A) If ak ¤ b�1k , and

(3-1)
.zk�1; !2#.k/�2a

t
ko/!2#.k/�2o <K for t 2 f1; 2g;

.!2#.k/�1o; !2#.kC1/�2o/!2#.k/o <K

hold, then we set Pk WD Pk�1[fkg and zk WD !2#.k/�1o. Note that (3-1) is equivalent to

(3-2)
.!�12#.k/�2zk�1; a

t
ko/o <K for t 2 f1; 2g;

.b�2k o;wko/o <K:

(B) If not, we seek sequences fi.1/ < � � �< i.M/g � Pk�1 with cardinality M � 2 such that

(i) Œ!2#.i.1//�1o; !2#.i.M//�2ai.M/o� is fully D.K; �/–marked with .j /M�1jD1 , .�j /MjD2, where

1 D Œ!2#.i.1//�1o; !2#.i.1//o�;

j D Œ!2#.i.j //�2ai.j /o; !2#.i.j //�1o� .2� j �M � 1/;

�j D Œ!2#.i.j //�2o; !2#.i.j //�2ai.j /o� .2� j �M/I

(ii) .!2#.i.M//�2ai.M/o; !2#.kC1/�2o/!2#.i.M//�1o <K.

Geometry & Topology, Volume 28 (2024)



Pseudo-Anosovs are exponentially generic in mapping class groups 1937

o !40o

Figure 6: An example of a sample path g with length 40. The vertices represent !io for
i D 0; : : : ; 40; the thick segments represent Schottky progresses. The shaded region highlights
the required witnessing by Schottky segments in criterion (B) for P4.g/.

If such a sequence exists, let fi.1/ < � � �< i.M/g be such a sequence with maximal i.1/; we set
Pk WDPk�1\f1; : : : ; i.1/g and zk WD!2#.i.M//�2ai.M/o. If such a sequence does not exist, then
we set Pk WD∅ and zk WD o.1

Figure 6 illustrates how Pk evolves as k increases. The path g under consideration has

‚.g/D f3; 6; 10; 13; 19g:

Note that

!0oD o; !2#.1/�2oD !4o; !2#.1/�1oD !5o; !2#.1/ D !6o; !2#.2/�2oD !10o

are arranged as required in criterion (A), which impliesP1.g/Df1g. Since!5o, Œ!10o;!11o�, Œ!11o;!12o�
and !18o are arranged as desired, P2.g/D f1; 2g (even though .!11o; !io/!12o is not always small for
all i > 12). By similar reasoning, P3.g/D f1; 2; 3g.

Since !36o is on the left of Œ!25o; !26o�, P4.g/ is not f1; 2; 3; 4g. If !36o were on the right of
Œ!24o; !25o�, then P4.g/ D f1; 2; 3g might have held; but it is not the case. Since !36o is not on
the right of Œ!18o; !19o�, P4.g/ D f1; 2g cannot hold either; we only have P4.g/ D f1g. P5.g/ then
becomes f1; 5g.

Note the following facts:

(1) Pk.g/ is measurable with respect to the choice of gi .

(2) i 2 Pm only if Pi D Pi�1[fig and i survives during stage i C 1; : : : ; m.

(3) If i 2 Pm and i 2 Pn, then f1; : : : ; ig\Pm D f1; : : : ; ig\Pn.

Lemma 3.2 The following holds for any 0� k � n and g 2Gn. Let l < m be consecutive elements in
Pk D Pk.g/, i.e. l; m 2 Pk and l Dmax.Pk \ f1; : : : ; m� 1g/. Let also t 2 f1; 2g. Then there exists a
sequence

fl D i.1/ < � � �< i.M 0/Dmg � Pk

1When there are several sequences that realize maximal i.1/, we choose the maximum in the lexicographic order on the length
of sequences and i.2/; i.3/; : : : .
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with cardinality M 0 � 2 such that Œ!2#.l/�1o; !2#.m/�2atmo� is fully D.K; �/–marked with .j /M
0�1

jD1 ,
.�j /

M 0

jD2, where

(3-3)

1 D Œ!2#.i.1//�1o; !2#.i.1//o�;

j D Œ!2#.i.j //�2ai.j /o; !2#.i.j //�1o� .2� j �M 0� 1/;

�j D Œ!2#.i.j //�2o; !2#.i.j //�2ai.j /o� .2� j �M 0� 1/;

�M 0 D Œ!2#.i.M//�2o; !2#.i.M 0//�2a
t
mo�:

Proof If l; m 2 Pk then l 2 Pl and l; m 2 Pm. In particular, l (resp. m) is newly chosen at stage l
(resp. m) by fulfilling criterion (A). Hence, .!2#.l/�1o; !2#.lC1/�2o/!2#.l/o < K and zl D !2#.l/�1o.
Moreover, Pm D Pm�1[fmg and l DmaxPm�1.

If l Dm� 1, then m is newly chosen at stage mD l C 1. In this case we have

.!2#.l/�1o; !2#.m/�2a
t
mo/!2#.m/�2o D .zl ; !2#.m/�2a

t
mo/!2#.m/�2o <K

from criterion (A) for m. Then Fact 2.9 implies that Œ!2#.l/�1o; !2#.m/�2atmo� is fully D.K; �/–marked
with

Œ!2#.l/�1o; !2#.l/o�; Œ!2#.m/�2o; !2#.m/�2a
t
mo�:

Hence, fl D i.1/ < i.2/Dmg works.

If l < m� 1, then l DmaxPm�1 has survived at stage m� 1 by fulfilling criterion (B). This means that
there exist l D i.1/ < � � �< i.M/ in Pm�2 with M � 2 such that Œ!2#.l/�1o; !2#.i.M//�2ai.M/o� is fully
D.K; �/–marked with .j /M�1jD1 , .�j /MjD2. Here, the j and �j are as in (3-3). Moreover,

(3-4) .!2#.i.M//�2ai.M/o; !2#.m/�2o/!2#.i.M//�1o <K

and zm�1 D !2#.i.M//�2ai.M/o.

We now claim that i.1/ < � � �< i.M/ and i.M C 1/ WDm together serve as the desired sequence (hence
M 0 DM C 1� 3). First, since m is newly chosen based on criterion (A),

(3-5) .!2#.i.M//�2ai.M/o; !2#.m/�2a
t
m/!2#.m/�2o D .zm�1; !2#.m/�2a

t
m/!2#.m/�2o <K:

Now combining inequalities (3-4) and (3-5), Fact 2.9 implies that Œ!2#.i.M//�2ai.M/o; !2#.m/�2a
t
mo� is

D.K; �/–witnessed by

.Œ!2#.i.M//�2ai.M/o; !2#.i.M//�1o�; Œ!2#.m/�2o; !2#.m/�2a
t
mo�/D .M ; �M /:

Finally,

.!2#.i.M//�1o; !2#.i.M//�2o/!2#.i.M//�2ai.M/o D .ai.M/o; a
�1
i.M/o/o <K <D.K; �/

thanks to property (7) of the .K;K 0; �/–Schottky set S1. This implies that Œ!2#.l/�1o; !2#.m/�2atmo� is
fully D.K; �/–marked with .j /MjD1, .�j /MC1jD2 that are as in (3-3).
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Lemma 3.3 The following holds for any n > 0 and g 2Gn. Let

‚.g/D f#.1/ < � � �< #.N/g (N D #‚.g//;

PN .g/D f�.1/ < � � �< �.m/g (mD #PN .g//:

Then there exist M �m, Schottky segments .l/MlD1 and .�l/MlD1, and 1� l.1/ < � � �< l.m/�M such
that

(1) Œo; !no� is D.K; �/–marked with .l/l , .�l/l , and

(2) l.t/ D Œ!2#.�.t//�1o; !2#.�.t//o� and �l.t/ D Œ!2#.�.t//�2o; !2#.�.t//�1o�.

Proof We will apply Lemma 2.4. First recall Lemma 3.2: for each t D 2; : : : ; m,

Œ!2#.�.t�1//�1o; !2#.�.t//�1o�

is fully D.K; �/–marked with some Schottky sequences .lIt /l , .�lIt /l , whose forms are given by (3-3).
Here, note that the length of these sequences need not be 1; this leads to the possibility that l.t/�l.t�1/>1.

Given the above result, it suffices to prove that

(1) Œo; !2#.�.1//�1o� is fully D.K; �/–marked with Œo; o�, Œ!2#.�.1//�2o; !2#.�.1//�1o�,

(2) Œ!2#.�.m//�1o; !no� is fullyD.K; �/–marked with some sequences . 0j /
M 0

jD1, .�0j /
M 0C1
jD2 of Schottky

segments, where  01 D Œ!2#.�.m//�1o; !2#.�.m//o�, and

(3) .!2#.�.t//�2o; !2#.�.t//o/!2#.�.t//�1o <D.K; �/ for each t D 1; : : : ; m.

First, �.1/DminPN implies that P�.1/�1 D∅, z�.1/�1 D o and that �.1/ is newly chosen at stage �.1/.
Hence,

.o; !2#.�.1//�1o/!2#.�.1//�2o D .z�.1/�1; !2#.�.1//�1o/!2#.�.1//�2o <K

and Fact 2.9 implies the first item.

Next, we observe how �.m/ survived in PN . If �.m/ D N , then it was newly chosen at stage N ;
.!2#.�.m//�1o; !no/!2#.�.m//o <K holds and Fact 2.9 implies that Œ!2#.�.m//�1o; !no� is fully D.K; �/–
marked with

Œw2#.�.m//�1o;w2#.�.m//o�; Œ!no; !no�:

If �.m/¤N , then it has survived at stage N by fulfilling criterion (B). Thus, there exist i 2 PN�1 such
that .!2#.i/�2aio; !no/!2#.i/�1o <K and Schottky segments . 0j /

M 0�1
jD1 , .�0j /

M 0

jD2 such that

Œ!2#.�.m//�1o; !2#.i/�2aio�

is fully D.K; �/–marked with . 0j /, .�
0
j /, where

 01 D Œ!2#.�.m//�1o; !2#.�.m//o�; �0M 0 D Œ!2#.i/�2o; !2#.i/�2aio�:

Furthermore, the second item of criterion (B) and Fact 2.9 imply that Œ!2#.i/�2aio; !no� is D.K; �/–
witnessed by

.Œ!2#.i/�2aio; !2#.i/�1o�; Œ!no; !no�/:
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Finally, recall that

.!2#.i/�2o; !2#.i/�1o/!2#.i/�2aio D .a
�1
i o; aio/o <K <D.K; �/

by property (7) of the .K;K 0; �/–Schottky set S1. Combining these, we conclude that Œ!2#.�.m//�1o; !no�
is fully D.K; �/–marked with

. 01; : : : ; 
0
M 0�1; Œ!2#.i/�2aio; !2#.i/�1o�/; .�02; : : : ; �

0
M 0 ; Œ!no; !no�/:

This settles the second item.

For the third item let t 2 f1; : : : ; mg. Since �.t/ 2PN .g/, �.t/ was newly chosen at stage �.t/ by fulfilling
criterion (A); hence, a�1

�.t/
¤ b�.t/ and we deduce that

.!2#.�.t//�2o; !2#.�.t//o/!2#.�.t//�1o D .a
�2
�.t/o; b

2
�.t/o/o <K

from properties (5), (6), (7) of Schottky sets.

The same proof also yields the following lemma:

Lemma 3.4 Let k < k0 be elements of PN .g/ and t 2 f1; 2g. Then there exist some sequences .l/M�1lD1
,

.�l/
M
lD2

of Schottky segments such that

(1) Œ!2#.k/�1o; !2#.k0/�2a
t
k0
o� is fully D.K; �/–marked with .l/, .�l/, and

(2) 1 D Œ!2#.k/�1o; !2#.k/o� and �M D Œ!2#.k0/�2o; !2#.k0/�2atk0o�.

Having established the properties of PN .g/, our next goal is to estimate the size of PN .g/. We first
fix N , ‚D f#.1/ < � � �<#.N/g and the choices .g2j�1; g2j / … .S

.2/
1 [S

.�2/
1 /2 for j …‚. Conditioned

on these choices, we draw .g2#.1/�1; g2#.1/; : : : ; g2#.N/�1; g2#.N// from .S
.2/
1 [S

.�2/
1 /2N with the

product measure of the uniform measure on S1[S�11 . In particular, we regard g, the !j and Pk as RVs
of s D .a1; b1; : : : ; aN ; bN /; here, ai and bi are independently drawn from S0 with the uniform measure.

We will often modify the given choice s; the modified choices will be denoted by Qs D . Qa1; : : : ; QbN / or
Ns D . Na1; : : : ; NbN /. We will then denote by Q!j or N!j the sample path arising from the modified choices,
respectively.

Lemma 3.5 For 0 < k �N and partial choices s 2 S2.k�1/0 ,

P
�
#Pk.s; ak; bk/D #Pk�1.s/C 1

�
�

9
10
:

Proof Recall criterion (A) for #Pk D #Pk�1C 1. Note that the condition

(3-6) .!2#.k/�1o; !2#.kC1/�2o/!2#.k/o D .b
�2
k o;wko/o <K

depends only on bk and not on other ai ’s or bi ’s. This holds for at least .#S1� 1/ choices of bk in S1
and .#S1� 1/ choices in S .�1/1 .
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Let us now fix a choice bk 2 S
.˙/
1 satisfying condition (3-6) and a1; b1; : : : ; ak�1; bk�1 that determine

!2#.k/�2 and zk�1. Then the remaining conditions

(3-7)

.zk�1; !2#.k/�2ako/!2#.k/�2o D .!
�1
2#.k/�2zk�1; ako/o <K;

.zk�1; !2#.k/�2a
2
ko/!2#.k/�2o D .!

�1
2#.k/�2zk�1; a

2
ko/o <K;

ak ¤ b
�1
k

hold for at least .#S1� 1/ choices of ak in S .˙1/1 and .#S1� 2/ choices in S .�1/1 , due to properties (5),
(6) and (7) of Schottky sets. Since conditions (3-6) and (3-7) together constitute criterion (A), we obtain

P .#Pk D #Pk�1C 1/�
2 #S1� 2
2 #S1

�
2 #S1� 3
2 #S1

� 0:9:

Given a1; b1; : : : ; ak�1; bk�1 and bk , we define the set zS 0
k

of elements ak in S0 that satisfy condition (3-7).
In the proof above, we have observed that #ŒS0 n zS 0k�� 3.

Lemma 3.6 Let i 2 Pk.s/ for a choice s D .a1; b1; : : : ; aN ; bN /, and Ns be obtained from s by replacing
ai with Nai 2 zS 0i .a1; b1; : : : ; ai�1; bi�1; bi /. Then Pl.s/D Pl.Ns/ and zS 0

l
.s/D zS 0

l
.Ns/ for any 1� l � k.

Proof Since a1; b1; : : : ; ai�1; bi�1 are intact, Pl.s/DPl.Ns/ and zS 0
l
.s/D zS 0

l
.Ns/ hold for l D 0; : : : ; i�1.

At stage i , bi satisfies condition (3-6) (since i 2 Pk.s/) and Nai satisfies condition (3-7); hence, i 2 Pk.Ns/
and Pi .s/D Pi .Ns/. We also have zS 0i .s/D zS

0
i .Ns/. At this stage, however,

Nzi D N!2#.i/�1oD g!2#.i/�1oD gzi ;

where
g WD !2#.i/�1 Na

2
i .!2#.i/�1a

2
i /
�1:

More generally,

(3-8) N!j D g!j .j � 2#.i/� 1/;

or in other words,

(3-9)
N!2#.j /�1 D g!2#.j /�1 .j � i/;

N!2#.j /�2 D g!2#.j /�2 .j > i/:

Recall again that the intermediate words wj in between Schottky steps are unchanged.

We now claim the following for i < l � k:

(1) If s fulfills criterion (A) at stage l , then so does Ns.

(2) If not and fi.1/ < � � �< i.M/g � Pl�1.s/ is the maximal sequence for s in criterion (B) at stage l ,
then it is also the maximal one for Ns at stage l .

(3) In both cases, we have Pl.s/D Pl.Ns/ and Nzl D gzl .
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Assuming the third item for l �1: Pl�1.s/DPl�1.Ns/ and Nzl�1D gzl�1 let us test inequality (3-2) for N!
in criterion (A). If s fulfills criterion (A) at stage l , then

. N!�12#.l/�2 Nzl�1; a
t
lo/o D .!

�1
2#.l/�2g

�1
�gzl�1; a

t
lo/o <K

for t D 1; 2 and .b�2
l
o;wlo/o <K. Hence we obtain the first item. In this case we also deduce that

Pl.s/D Pl�1.s/[flg D Pl�1.Ns/[flg D Pl.Ns/; Nzl D N!2#.l/�1oD g!2#.l/�1oD gzl ;

which constitute the third item for l .

Let us now check the second item. Due to equality (3-9), a sequence fi.1/ < � � �< i.M/g in

Pl�1.s/\fi; : : : ; l � 1g D Pl�1.Ns/\fi; : : : ; l � 1g

works for s in criterion (B) if and only if it works for Ns. Furthermore, i belongs to Pl.s/ since i 2 Pk.s/
and i < l � k; hence, such sequences exist and the maximal sequence is chosen among them. Therefore,
the maximal sequence fi.1/ < � � �< i.M/g (with cardinality M � 2) for s is also maximal for Ns. We then
deduce that

Pl.s/D Pl�1.s/\f1; : : : ; i.1/g D Pl�1.Ns/\f1; : : : ; i.1/g D Pl.Ns/;

Nzl D N!2#.i.M//�2ai.M/oD g!2#.i.M//�2ai.M/oD gzl ;

which constitute the third item for l . Here we used the condition M � 2 and i.M/ > i ; beware that
N!2#.i/�2 Naio and g!2#.i/�2aio may differ.

Since we have the base case Nzi Dgzi , an induction shows that Pl.s/DPl.Ns/ for each i < l �k. Moreover,
equality (3-9) and Nzl�1 D gzl�1 imply that zS 0

l
.s/D zS 0

l
.Ns/.

Given 1 � k � N and a partial choice s D .a1; b1; : : : ; ak; bk/, we say that Ns D . Na1; Nb1; : : : ; Nak; Nbk/ is
pivoted from s if

(1) bj D Nbj for all 1� j � k,

(2) Nai 2 zS 0i .s/ for i 2 Pk.s/, and

(3) aj D Naj for all other j … Pk.s/.

Lemma 3.6 then asserts that being pivoted from each other is an equivalence relation. For each s 2 S2k0 ,
let Ek.s/ be the equivalence class of s.

Lemma 3.7 For 0� k < N , j � 0 and s 2 S2k0 ,

P
�
#PkC1.Qs; akC1; bkC1/ < #Pk.s/� j j Qs 2 Ek.s/; .akC1; bkC1/ 2 S

2
0

�
� 1=10jC1:

Proof Let us fix s D .a1; b1; : : : ; ak; bk/ 2 S2k0 and

A WD
˚
.akC1; bkC1/ 2 S

2
0 W #PkC1.s; akC1; bkC1/D #Pk.s/C 1

	
:
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Then Lemma 3.5 implies that P .A j S20 / � 0:9. Moreover, for .akC1; bkC1/ 2 A and Qs 2 Ek.s/,
.Qs; akC1; bkC1/ is pivoted from .s; akC1; bkC1/ since .Qs; akC1; bkC1/ and .s; akC1; bkC1/ differ at slots
in Pk.s/� PkC1.s; akC1; bkC1/. Lemma 3.6 then implies that

PkC1.Qs/D PkC1.s/D Pk.s/[fkC 1g D Pk.Qs/[fkC 1g:

In other words,

P
�
#PkC1.Qs; akC1; bkC1/ < #Pk.Qs/ j .akC1; bkC1/ 2 S

2
0

�
� 1�P .A/� 1

10

for each Qs 2 Ek.s/. Gathering all the cases, we deduce that

P
�
#PkC1.Qs; akC1; bkC1/ < #Pk.Qs/ j Qs 2 Ek.s/; .akC1; bkC1/ 2 S

2
0

�
�

1
10
:

This settles the case j D 0.

Now let j D 1. The event under discussion becomes void when #Pk.s/� 2. Excluding such cases, let
l < m be the last 2 elements of Pk.s/. For each choice Qs in Ek.s/ and each subset A of zS 0m.s/, we define

E.Qs; A/ WD
˚
Ns D . Nai ; Nbi /

k
iD1 W

Nbi D Qbi for all i; Nai D Qai for i ¤m; Nam 2 A
	
:

In plain words, E.Qs; A/ is a set of choices that are pivoted from Qs only at stage m, such that the pivotal
choice belongs to A. Then fE.Qs; zS 0m.s// W Qs 2 Ek.s/g partitions Ek.s/ by Lemma 3.6.

We now fix .akC1; bkC1/ 2 S20 and Qs D . Qa1; : : : ; Qbk/ 2 Ek.s/. Let A0 � zS 0m.s/ be the collection of
elements Nam that satisfies

(3-10)
�
Na�1m o; . Q!2#.m/�1/

�1
Q!2#.k/�2a

2
kC1b

2
kC1wkC1o

�
o

D
�
Na�1m o; Qb2mwm � � � Qa

2
k
Qb2kwka

2
kC1b

2
kC1wkC1o

�
o
<K:

Note that A0 depends on Qs, akC1 and bkC1. By properties (5) and (6) of Schottky sets, #Œ zS 0m.s/ nA
0�� 2.

We now claim that #PkC1.Ns; akC1; bkC1/�#Pk.s/�1 for Ns 2E.Qs; A0/. First, since l <m are consecutive
elements in Pk.Ns/, Lemma 3.2 gives a sequence fl D i.1/ < � � � < i.M/Dmg � Pk with M � 2 such
that Œ N!2#.l/�1o; N!2#.m/�2 Namo� is fully D.K; �/–marked with .j /M�1jD1 , .�j /MjD2, where

1 D Œ N!2#.i.1//�1o; N!2#.i.1//o�;

j D Œ N!2#.i.j //�2ai.j /o; N!2#.i.j //�1o� .2� j �M � 1/;

�j D Œ N!2#.i.j //�2o; N!2#.i.j //�2ai.j /o� .2� j �M/:

Moreover, condition (3-10) implies that

. N!2#.i.M//�2ai.M/o; N!2#.kC1/�2o/ N!2#.i.M//�1o <K:

In summary, fl D i.1/ < � � �< i.M/g � Pk.Ns/ works for Ns in criterion (B) at stage kC 1, which implies
PkC1.Ns/� Pk.Ns/\f1; : : : ; lg, hence the claim.
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As a result, we deduce that

P
�
#PkC1.Ns; akC1; bkC1/ < #Pk.s/� 1 j Ns 2E.Qs; zS

0
m/
�
�

#Œ zS 0m.s/ nA
0�

# zS 0m.s/
�

2

#S0� 3
� 0:1

for any Qs 2 Ek.s/ and .akC1; bkC1/ 2 S20 . Since E.Qs; zS 0m/’s for Qs 2 Ek.s/ partition Ek.s/, we deduce
that

P
�
#PkC1.Qs; akC1; bkC1/ < #Pk.s/� 1 j Qs 2 Ek.s/

�
� 0:1

for any .akC1; bkC1/ 2 S20 . Moreover, the above probability vanishes when .akC1; bkC1/ 2 A. Since
P .A j S20 /� 0:9, we deduce that

(3-11) P
�
#PkC1.Qs; akC1; bkC1/ < #Pk.s/� 1 j Qs 2 Ek.s/; .akC1; bkC1/ 2 S

2
0

�
� 0:01:

This settles the case j D 1.

For j D 2, we similarly assume #Pk.s/� 3 and let l 0 < l < m be the last 3 elements. We define the set
A1 of . Nam; akC1; bkC1/ in zS 0m.s/�S

2
0 such that

#PkC1.a1; b1; : : : ; Nam; bm; : : : ; ak; bk„ ƒ‚ …
obtained from s by replacing am with Nam

; akC1; bkC1/� #Pk.s/� 1;

or, equivalently,

Pk.s/\f1; : : : ; lg � PkC1.a1; b1; : : : ; Nam; bm; : : : ; ak; bk; akC1; bkC1/:

Now, if Qs D . Qa1; Qb1; : : : ; Qak; Qbk/ 2 Ek.s/ is such that . Qam; akC1; bkC1/ 2 A1, then .Qs; akC1; bkC1/ is
pivoted from .a1; b1; : : : ; Qam; bm; : : : ; akC1; bkC1/ since they only differ at the ai for i in

Pk.s/\f1; : : : ; lg � PkC1.a1; b1; : : : ; Qam; bm; : : : ; akC1; bkC1/:

Lemma 3.6 then implies that PkC1.Qs; akC1; bkC1/ also contains Pk.s/ \ f1; : : : ; lg. This fact and
inequality (3-11) implies that

P .A1 j zS
0
m.s/�S

2
0 /D P

�
. Qam; akC1; bkC1/ 2A1 j Qs 2 Ek.s/; .akC1; bkC1/ 2 S

2
0

�
� P

�
#PkC1.Qs; akC1; bkC1/� #Pk.s/� 1 j Qs 2 Ek.s/; .akC1; bkC1/ 2 S

2
0

�
� 0:99:

We now define for Qs 2 Ek.s/ and each A� zS 0
l
.s/,

E1.Qs; A/ WD
˚
Ns D . Nai ; Nbi /

k
iD1 W

Nbi D Qbi for all i; Nai D Qai for i ¤ l; al 2 A
	
:

Then fE.Qs; zS 0
l
.s// W Qs 2 Ek.s/g partitions Ek.s/ by Lemma 3.6.

Now fixing .akC1; bkC1/ 2 S20 and Qs 2 Ek.s/, let A01 � zS
0
l
.s/ be the collection of elements Nal 2 zS 0l.s/

that satisfies

(3-12)
�
Na�1l o; . Q!2#.l/�1/

�1
Q!2#.k/�2a

2
kC1b

2
kC1wkC1o

�
o

D
�
Na�1l o; Qb2l wl � � � Qa

2
k
Qb2kwka

2
kC1b

2
kC1wkC1o

�
o
<K:

By properties (5) and (6) of Schottky sets, #Œ zS 0m.s/ nA
0
1�� 2.
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We now claim that #PkC1.Ns; akC1; bkC1/ � #Pk.s/ � 2 for Ns 2 E1.Qs; A01/. First, since l 0 < l are
consecutive elements in Pk.Ns/, Lemma 3.2 gives a sequence fl 0 D i.1/ < � � � < i.M/D lg � Pk such
that Œ N!2#.l 0/�1o; N!2#.l/�2 Nalo� is fully D.K; �/–marked with .j /M�1jD1 , .�j /MjD2, where

1 D Œ N!2#.i.1//�1o; N!2#.i.1//o�;

j D Œ N!2#.i.j //�2ai.j /o; N!2#.i.j //�1o� .j D 2; : : : ;M � 1/;

�j D Œ N!2#.i.j //�2o; N!2#.i.j //�2ai.j /o� .j D 2; : : : ;M/:

Moreover, condition (3-10) implies that

. N!2#.i.M//�2ai.M/o; N!2#.kC1/�2o/ N!2#.i.M//�1o <K:

In summary, fl 0 D i.1/ < � � �< i.M/g � Pk.Ns/ works for Ns in criterion (B) at stage kC 1, which implies
that PkC1.Ns/� Pk.Ns; akC1; bkC1/\f1; : : : ; l 0g, hence the claim.

As a result, we deduce that

P
�
#PkC1.Ns; akC1; bkC1/ < #Pk.s/� 2 j Ns 2E1.Qs; zS

0
l/
�
� 0:1

for each Qs2Ek.s/ and .akC1; bkC1/2S20 . Here, for Qs and .akC1; bkC1/ such that . Qam; akC1; bkC1/2A1,
the above probability vanishes. Since

P
h[
fE1.Qs; zS

0
l/� .akC1; bkC1/ W . Qam; akC1; bkC1/ …A1g

ˇ̌
Ek.s/�S

2
0

i
D P

�
. Qam; akC1; bkC1/ …A1 j zS

0
m.s/�S

2
0

�
� 0:01;

we sum up the conditional probabilities to obtain

(3-13) P
�
#PkC1.Qs; akC1; bkC1/ < #Pk.s/� 2 j Qs 2 Ek.s/

�
� 0:001:

We repeat this procedure to cover all j < #Pk.s/. The case j � #Pk.s/ is void.

Corollary 3.8 Conditioned on paths g 2Gn such that #‚.g/DN , #PN .g/ is greater in distribution
than the sum of N i.i.d. Xi , whose distribution is given by

(3-14) P .Xi D j /D

8<:
9
10

if j D 1;
9=10�jC1 if j < 0;
0 otherwise:

The RV Xi in the above corollary satisfies

EŒXi �D
9
10
�

9
10

�
1
10
C

2
102
C � � �

�
D

9
10
�
1
9
D

71
90
;

EŒ1:4�Xi �D 5
7
�
9
10
C

1X
jD1

9
10
�
�
7
50

�j
D

9
14
C

9
10
�
7
50
C

1

1� 7
50

D
1188
1505

:
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Proof Lemmas 3.5 and 3.7 imply that for 0� k < N and any i ,

(3-15) P
�
#PkC1.g/� i C j j #Pk.g/D i

�
�

8<:
1� 1

10
if j D 1;

1� 1=10�jC1 if j < 0;
0 otherwise:

Hence, there exists a nonnegative RV Uk such that #PnC1�Uk and #PkCX 0 have the same distribution,
where X 0 is an i.i.d. copy of XkC1 that is independent from #Pk .

For each 1� k �N , we claim that P .#Pk.g/� i/� P .X1C � � �CXk � i/ for each i . For k D 1, we
have #Pk�1.g/D 0 always and the claim follows from inequality (3-15). Given the claim for k,

P .#PkC1 � i/� P .#PkCX
0
� i/

D

X
j

P .#Pk � j /P .X
0
D i � j /

�

X
j

P .X1C � � �CXk � j /P .XkC1 D i � j /

D P .X1C � � �CXkCXkC1 � i/:

Given g 2Gn with

‚.g/D f#.1/ < � � �< #.N/g; PN .g/D f�.1/ < � � �< �.m/g � f1; : : : ; N g;

we finally define the l th pivotal time of g by 2#.�.l//� 1 and the set of pivotal times P �n .g/ by

P �n .g/ WD f2#.i/� 1 W i 2 PN .g/g:

We also define zS2#.�.l//�1.g/ WD zS 0�.l/.s/ for l D 1; : : : ; m; Ng 2Gn is said to be pivoted from g if gj D Ngj
unless j 2 P �n .g/, in which case we require Ngj 2 zSj .g/.

Lemma 3.3 and Corollary 2.7 imply that

(3-16) .!io; !k/!j o < F.K; �/ <
1

4000
K 0

for i; j; k 2 P �n .g/ [ f0; ng such that i � j � k. Moreover, for any i; j; k 2 P �n .g/ [ f0g such that
i < j � k,

(3-17) 1:999K 0 � d.!k�1o; !ko/� 2K
0; .!io; !ko/!i�1o < F.K; �/ <

1
4000

K 0:

The first inequality is due to the fact that gk 2S
.2/
1 [S

.�2/
1 ; the second inequality follows from Lemma 3.2

and Corollary 2.7.

4 Pivoting and translation lengths

We will now define another equivalence relation on paths with sufficiently many pivots. Let us fix g 2Gn

with P �n .g/ D fi.1/ < � � � < i.m/g, where m WD #P �n .g/ satisfies 1
5
n � m � 1

2
n. For convenience, let
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also i.0/D 0. We now define quantities

Df .g/D

bn=12cX
lD1

Œd.!i.l�1/o; !i.l/�1o/C 2K
0�;

Db.g/D

mX
lDm�bn=12cC1

Œd.!i.l�1/o; !i.l/�1o/C 2K
0�C d.!i.m/o; !no/;

Dt .g/D

mX
lD1

Œd.!i.l�1/o; !i.l/�1o/C 2K
0�C d.!i.m/o; !no/:

Note the inequality

(4-1) Df .g/�

bn=12cX
lD1

Œd.!i.l�1/o; !i.l/�1o/C d.!i.l/�1o; !i.l/o/�� d.o; !i.k/�1/; d.o; !i.k//

for k D 1; : : : ;
�
1
12
n
˘
. Similarly, Dt dominates d.o; !no/. Moreover, due to inequalities (3-16) and

(3-17), we have jd.o; !no/�Dt j< 2F.K; �/n� 1
1000

K 0n. We also observe that at least one of Df and
Db is smaller than 1

2
Dt �

1
20
K 0n; indeed, Dt �Df �Db is the sum of at least 1

20
n terms of the form

d.!i.l�1/o; !i.l/�1o/C 2K
0 � 2K 0.

If Df �Db , then we allow pivoting at the first
�
1
12
n
˘

pivotal times. Otherwise, we allow pivoting at the
last

�
1
12
n
˘

pivotal times. Since Df , Db , Dt and the set of pivotal times are invariant under pivoting, this
rule partitions

˚
g 2Gn W #P �n .g/�

1
5
n
	

into equivalence classes F.g/.

We are now ready to prove the core lemma for Theorem A.

Lemma 4.1 Let n > 25 and suppose that g 2Gn satisfies

#P �n .g/�
1
5
n; Df .g/�Db.g/:

Let also 1� k < k0 �
�
1
12
n
˘

and Qgi.l/ 2 zSi.l/.g/ for l D 1; : : : ; k� 1; k0C 1; : : : ;
�
1
12
n
˘

.

Then there existA� zSi.k/.g/ andA0� zSi.k0/.g/, each of cardinality at most 2, such that for any Ng 2F.g/

such that Ngi.l/ D Qgl for l D 1; : : : ; k � 1; k0 C 1; : : : ;
�
1
12
n
˘

and Ngi.k/ … A.2/, Ngi.k0/ … A0.2/, we have
�. N!n/�

1
12
K 0n.

Proof By the assumption Ng 2 F.g/, Ng can differ only at step i.1/; : : : ; i
��

1
12
n
˘�

. Hence, for Ng 2 F.g/

such that Ngi.l/ D Qgi.l/ for l D 1; : : : ; k� 1; k0C 1; : : : ;
�
1
12
n
˘

, the isometry

v WD . N!i.k0//
�1
N!n N!i.k/�1 D Ngi.k0/C1 � � � Ngn � Ng1 � � � Ngi.k/�1

is uniform. We define

A WD fg 2 zSk.g/ W .v
�1o; g2o/o �Kg; A0 WD fg 2 zSk0.g/ W .g

�1o; vo/o �Kg:

Since zSk.g/� S0 D S1[S
.�1/
1 , properties (5) and (6) of Schottky sets imply that #A� 2. Similarly we

have #A0 � 2.

Geometry & Topology, Volume 28 (2024)



1948 Inhyeok Choi

Let us now fix h 2 zSk.g/ nA and h0 2 zSk0.g/ nA0, and consider Ng 2 F.g/ such that Ng�.l/ D Qgl for
l D 1; : : : ; k� 1; k0C 1; : : : ;

�
1
12
n
˘

and Ng�.k/ D h2, Ng�.k0/ D h02.

Since i.k/; i.k0/ 2 P �n .g/D P
�
n . Ng/ and h02 D Ngi.k0/, Lemma 3.4 gives Schottky segments .l/M�1lD1

and
.�l/

M
lD2

such that Œ N!i.k/o; N!i.k0/�1h0o� is fully D.K; �/–marked with .l/, .�l/, where

1 D Œ N!i.k/o; N!i.k/C1o�; �M D Œ N!i.k0/�1o; N!i.k0/�1h
0o�:

Next, inequality (4-1) implies that

d.o; vo/� d.o; N!no/� d.o; N!i.k0/o/� d.o; N!i.k/�1o/

�
�
Dt �

1
1000

K 0n
�
� 2Df �

1
12
K 0n� 2K 0C 3D.K; �/:

Since we also have .h0�1o; vo/o � K and .o; vh2o/vo � K, Fact 2.8 implies that Œh0�1o; vh2o� is
D.K; �/–witnessed by .Œh0�1o; o�; Œvo; vh2o�/. By applying isometry N!i�1n N!i.k0/, we deduce that

Œ N!i�1n N!i.k0/�1h
0o; N!in N!i.k/o�

is D.K; �/–witnessed by Schottky segments

Œ N!i�1n N!i.k0/�1h
0o; N!i�1n N!i.k0/o�; Œ N!in N!i.k/�1o; N!

i
n N!i.k/o�:

We now claim that Œ N!i.k/o; N!in N!i.k/o� is fully D.K; �/–witnessed by�
1; : : : ; M�1; Œ N!i.k0/�1h

0o; N!i.k0/o�; N!n1; : : : ; N!nM�1; Œ N!n N!i.k0/�1h
0o; N!n N!i.k0/o�; : : :

�
;�

�2; : : : ; �M ; Œ N!n N!i.k/�1o; N!n N!i.k/o�; N!n�2; : : : ; N!n�M ; Œ N!
2
n N!i.k/�1o; N!

2
n N!i.k/o�; : : :

�
:

This claim will follow from Lemma 2.4 once we check

. N!i.k0/�1o; N!i.k0/o/ N!i.k0/�1h0o D .h
0�1o; h0o/o <D.K; �/;

. N!i.k/�1o; N!i.k/C1o/ N!i.k/o D .h
�2o; gi.k/C1o/o <D.K; �/:

The first item follows from property (7) of Schottky sets, and the second item follows from h 2 zSk.g/;
hence the claim. In particular, Corollary 2.7 implies . N!i.k/o; N!in N!i.k/o/ N!i�1n N!i.k/o

< F.K; �/ for each
i � 1 and

1

i
d. N!i.k/o; N!

i
n N!i.k/o/� d. N!i.k/o; N!n N!i.k/o/�F.K; �/

� Œd.o; !no/� d.o; N!i.k/o/� d. N!no; N!n N!i.k/o/��
1

1000
K 0n

�Dt � 2Df �
1
500
K 0n� 1

12
K 0n:

By sending i !1, we deduce that �. N!n/� 1
12
K 0n.

5 Proof of Theorem A

Proof of Theorem A Let S 0 �G be the given finite set. By using Lemma 2.17, we take a .K;K 0; �/–
Schottky subset S1 of G such that K 0 > 2L.K; �/C 5000F.K; �/ and a finite symmetric generating set
S � S 0 such that e 2 S and S is nicely populated by S .2/1 [S

.�2/
1 .
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As before, we consider the random walk on G generated by the uniform measure �S on S . We first claim

P
�
#P �n �

1
5
n
�
�
1
3
n � 0:9nC 0:9886n:

for large n. The first term of the right-hand side is for the event of trajectories g with #‚.g/� 1
3
n, whose

probability is at most

bn=3cX
iD0

�
bn=2c

i

�
� 0:99i � 0:01bn=2c�i �

bn=3cX
iD0

�
bn=2c

bn=3c

�
� 0:99bn=3c � 0:01n=6�1 � 1

3
n � 0:9n:

Here the final inequality is deduced from the fact that�3.mC1/
2.mC1/

�
� 0:01mC1 D

�3m
2m

�
�
.3mC 3/.3mC 2/.3mC 1/

.mC 1/.2mC 1/.2mC 2/
� 0:01mC1 �

�3m
2m

�
� 0:01m � 0:07

for sufficiently large m, and that 0:071=6 < 0:9.

The second term is an estimation for the sum of m i.i.d. RVs Xi of the distribution in (3-14). Recall that
Xi is an RV with exponential tail and EŒXi �D

71
90

. Hence for � < 71
90

, the theory of large deviation says
that P

�Pm
iD1Xi < �m

�
� e��.�/m for some �.�/ > 0. The easiest way to show this (for suitable �) is

to take an intermediate base � < �0 < EŒXi � and apply Markov’s inequality to the RV �
P
i Xi

0 . Indeed,
Markov’s inequality tells us that

P

� mX
iD1

Xi <
1
5
n

�
� 1:4�n=5 � E

�
1:4�

Pm
iD1Xi

�
D

mY
iD1

EŒ1:4�Xi �D
�
1188
1505

�m
and the desired estimate follows for m� 1

3
n.

We now consider an equivalence class F.g/ of g 2 Gn such that #Pn.g/ � 1
5
n and Df .g/ �Db.g/.

For hi 2 zSi .g/ and k D 1; : : : ;
�
1
24
n
˘

, Lemma 4.1 gives the sets

Ak.g; fhl ; hbn=12c�lg
k�1
lD1 /�

zSi.k/.g/; A0k.g; fhl ; hbn=12c�lg
k�1
lD1 /�

zSi.bn=12c�k/.g/;

with cardinality at most 2, such that Ng 2 F.g/ satisfies �. N!n/ < 1
12
K 0n only if

Ng�.k/ 2 Ak.g; f Ngi.l/; Ngi.bn=12c�l/g
k�1
lD1 / or Ngi.bn=12c�k/ 2 A

0
k.g; f Ngi.l/; Ngu.bn=12c�l/g

k�1
lD1 /

for each k D 1; : : : ;
�
1
24
n
˘

. This implies that

P
�
�. N!n/�

1
12
K 0n j Ng 2 F.g/

�
�

bn=24cY
kD1

.# zSi.k//.# zSi.bn=12c�k//� .# zSi.k/� 2/.# zSi.bn=12c�k/� 2/

.# zSi.k//.# zSi.bn=20c�k//

�

bn=24cY
kD1

�
2

# zSi.k/
C

2

# zSi.bn=12c�k/

�

�

bn=24cY
kD1

�
2

0:99 #S
C

2

0:99 #S

�
D .0:2475 #S/�bn=24c:
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A similar argument leads to the same conclusion for any F.g/ with Df .g/ > Db.g/. Since these F.g/

partition
˚
#Pn � 1

5
n
	
, we conclude that the number of n–step trajectories ! such that �.!n/� 1

12
K 0n is

bounded by
.#S/n � Œ0:91nC 0:9886nC .0:2475 #S/�n=24�� 0:999n � .0:99 #S/n

for sufficiently large n. Since any mapping class in BS .n/ is obtained from an n–step trajectory, we
conclude that the number of mapping classes in BS .n/ with translation length less than 1

12
K 0n is bounded

by 0:999n � .0:99 #S/n.

Meanwhile, the set
SSchottky D f.a1; : : : ; an/ W ai 2 S1[S

�1
1 ; ai ¤ a

�1
iC1g

is composed of at least .#S0�1/n� .0:99 #S/n sequences. We claim that if .a1; : : : ; an/ and .b1; : : : ; bn/
are distinct sequences in SSchottky, then a21 � � � a

2
n and b21 � � � b

2
2 are distinct elements in BS .n/. Indeed, the

sequence
.a�1n ; a�1n ; : : : ; a�11 ; a�11 ; b1; b1; : : : ; bn; bn/

will not completely cancel out and their product will not become an identity by Lemma 2.14. Hence, we
have at least .0:99 #S/n distinct elements in BS .n/. We thus finally have, for large n,

#
˚
g 2 BS .n/ W �X .g/�

1
12
K 0n

	
#BS .n/

� 0:999n:

Appendix A The proof of Claim 2.13

In this section, we prove Claim 2.13 in the proof of Proposition 2.12. We first recall the following lemma:

Fact A.1 [Choi 2023, Lemma 3.12] For each F; � > 0, there existsH;L>F that satisfies the following.
If x; y; z; p1; p2 2X satisfy that

(1) Œp1; p2� is �–thick and longer than L,

(2) Œx; y� is F –witnessed by Œp1; p2�, and

(3) .x; z/y � d.p1; y/�F ,

then Œz; y� is H–witnessed by Œp1; p2�.

Recall that we have fixed o 2 X and independent loxodromics a; b 2 G. By [Choi 2023, Lemmas 4.3
and 4.4], there exists �0; C0 > 0 such that

(1) Œo; aio� and Œo; bio� are �0–thick for all i 2 Z, and

(2) .�io;  j o/o < C0 for all i; j > 0 and �; 2 fa; b; a�1; b�1g such that � ¤  .

We then define

� D0 DD.C D C0; �0/ as in Fact 2.9;

� E0 DE.D DD0; �0/ and L0 D L.D DD0; �0/ as in Fact 2.5;
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� F0 D F.E DE0; �0/ and L1 D L.E DE0; �0/ as in Fact 2.6;

� H0 DH.F D F0; �0/ and L2 D L.F D F0; �0/ as in Fact A.1;

� H1 DH.F DH0; �0/ L3 D L.F DH0; �0/ as in Fact A.1;

� F1 D 2F0CH1C ıC 1;

� F2 D F.E DH0; �0/ and L4 D L.E DH0; �0/ as in Fact 2.6;

� L5 Dmax.L0; L1; L2; L3; L4; 2F0CF1C 2F2/.

There exists N0 such that d.o; �N o/ > L5 for all � 2 fa; b; a�1; b�1g and N >N0. Let us fix N >N0.
We now consider a sequence f�ig in fa; b; a�1; b�1g such that �i ¤ ��1iC1. Then we observe that

(1) .��Ni o; �NiC1/o < C0 by the assumption �i ¤ ��1iC1;

(2) Œo; �Ni �
N
iC1o� is D0–witnessed by Œo; �Ni o� and Œ�N o; �N�NiC1o� by Fact 2.9;

(3) Œo; �Ni o� are �–thick and longer than L5.

Then as in Corollary 2.7, Facts 2.5 and 2.6 imply that Œo; �2N1 � � ��
2N
n o� is F0–witnessed by �0–thick

segments
Œo; �N1 o�; Œ�

N
1 o; �

N
1 �

N
2 o�; : : : ; Œ�

N
1 � � ��

N
n�1o; �

N
1 � � ��

N
n o�:

Consequently, Œo; �N1 � � ��
N
n o� is �–thick for � D �0e�8F0 . It is also clear that

.o; �N1 � � ��
N
n o/�N1 ����

N
m o

< F0 .0�m� n/

and

(A-1) d.o; �N1 � � ��
N
n o/� d.o; �

N
1 � � ��

N
n�1o/CL1� 2F0 � d.o; �

N
1 � � ��

N
n�1o/CF1:

We now define
Sn;N WD fg1; : : : ; g2ng D f�

2N
1 � � ��

2N
n W �i 2 fa; bgg;

V .g˙i / WD fx 2X W .x; g
˙2
i o/o � d.o; g

˙1
i o/�F1g;

V 0.g˙i / WD fx 2X W .x; g
˙2
i o/o � d.o; g

˙1
i o/g:

Our first claim is that V.gC1 /; : : : ; V .g
C
2n/; V .g

�
1 /; : : : ; V .g

�
2n/ are all disjoint. To show this, let .�i /niD1

and . i /niD1 be distinct sequences in fa; bgn[fa�1; b�1gn, andˆD�2N1 � � ��
2N
n and‰D 2N1 � � � 2Nn .

Let t Dminf1� i � 10 W �i ¤  ig and w D �2N1 � � ��
2N
t�1. Now suppose that a point x 2X belongs to

both V.ˆ/ and V.‰/. First, x 2 V.ˆ/ implies

.x;ˆ2o/o � d.o;ˆo/�F1 � d.o; �
2N
1 � � ��

2N
t�1�

N
t o/D d.o;w�

N
t o/

by inequality (A-1). Since Œo; ˆ2o� is F0–witnessed by Œwo;w�Nt o�, Fact A.1 asserts that Œo; x� is H0–
witnessed by Œwo;w�Nt o�. By a similar reason, .x;‰2o/o � d.o;w Nt o/ and Œo; x� is H0–witnessed by
Œwo;w Nt o�. Since .�to;  to/o <C0 <H0, Fact 2.6 implies that Œx; x� is F2–witnessed by Œwo;w to�,
whose length is at least L5 > 2F2; such an x does not exist.
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The next claim is that if x … V.g�i /, then g2i x 2 V
0.gi /. Indeed, we know that .o; g2i o/gio � F0 �

1
2
F1

and

.g2i x; g
2
i o/o D .x; o/g�2

i
o D d.o; g

�2
i o/� .x; g�2i o/o � d.o; g

2
i o/� d.o; gio/CF1 � d.o; gio/:

Since V 0.gi / � V.gi / and V.gi /\ V.g�i / D ∅, we can iterate this to deduce that g2ki x 2 V
0.gi / for

k > 0. Similarly, if x … V.gi /, then g�2ki x 2 V 0.g�i / for k > 0.

Now let x; y 2 X . Since fV.gCi /; V .g
�
i /g are disjoint, y 2 V.g�i / for at most one gi 2 Sn;N and

x 2 V.gCj / for at most one gj 2 Sn;N . Suppose sD �2N1 � � ��
2N
n 2 Sn;N is neither of them, and let k > 0.

We then have
.x; s2o/o < d.o; so/�F1; .s2ky; s2o/o � d.o; so/:

Since Œo; s2o� is F0–witnessed by Œs��Nn o; so�, Fact A.1 implies that Œo; s2ky� is H0–witnessed by
Œs��Nn o; so�. Now if we suppose that .x; s2ky/o > d.o; so/, then Œo; x� is also H1–witnessed by
Œs��Nn o; so�, again by Fact A.1. Meanwhile, if X is a ı–hyperbolic space, we deduce that

.x; s2o/o �minf.x; so/o; .so; s2o/og� ı D d.o; so/�maxf.x; o/so; .s2o; o/sog� ı

� d.o; so/� .H1CF0C ı/� d.o; so/�F1:

Alternatively, if X D T.†/, then we deduce that

.x; s2o/o � d.o; so/� d.so; Œo; x�/� d.so; Œo; s
2o�/� d.o; so/� .H1CF0/� d.o; so/�F1:

In either case we obtain a contradiction. Hence, .x; s2ky/o � d.o; so/.

Similarly, if s¤ gi such that y 2 V.gCi / and s¤ gj such that x 2 V.g�j /, then .x; s�2ky/o � d.o; s�1o/
for all k > 0. Finally, note that y D o cannot belong to any of V.g˙j / since d.o; g˙1j o/� L5 > F1 for
any gj 2 Sn;N . This settles the desired claim.

Appendix B Sketch of the proof of Proposition 1.3

We borrow the definitions and notations in [Gekhtman et al. 2018].

In [Gekhtman et al. 2018], the authors consider the automatic structure of G, a directed graph � that
records exactly one geodesic between e and g for each g 2G. Hence, the vertex set of its universal cover
z� and G are in one-to-one correspondence. Let LG be the set of vertices with large growth. For g 2G
and 0 < � < 1, we denote by Og� the element along the path from e to g at distance �n from e. Then for
any 0 < � < 1, the ratio

(B-1)
#fg 2 @BS .n/ W Og� … LN g

#@BS .n/

decays exponentially; see [Gekhtman et al. 2018, Proposition 2.5].

Geometry & Topology, Volume 28 (2024)



Pseudo-Anosovs are exponentially generic in mapping class groups 1953

The authors then construct a Markov chain on � whose n–step distribution is denoted by Pn. There exists
c > 1 such that for any A� z� , the proportion of A\LG in @BS .n/ is at least .1=c/Pn.A/ and at most
cPn.A/.

We now denote by R the set of recurrent vertices. For v 2 R, the loop semigroup �v associated
to v is nonelementary, i.e. there exist independent loxodromics av; bv 2 �v [Gekhtman et al. 2018,
Corollary 6.11]. Let us now condition on the paths growing from v. Let n.k; v; !/ be the kth return time
to v and Tv D Evn.1; v; !/. Then for each � > 0,

(B-2) Pv

�ˇ̌̌̌
n.k; v; !/

k
�Tv

ˇ̌̌̌
> �

�
is exponentially decaying as k !1; see [Gekhtman et al. 2018, Lemma 6.13]. For each n, we also
define the last return time Qn.!/Dmax.fn.k; v; !/ W k 2Ng\ f1; : : : ; ng/ to v. Then for each � > 0,

(B-3) Pnv

�
n� Qn.!/

n
> �

�
decays exponentially.

We now strengthen [Gekhtman et al. 2018, Theorem 6.14]. For each � > 0,

(B-4) Pv

�ˇ̌̌̌
d.!n.k;v/o; o/

k
� lv

ˇ̌̌̌
> �

�
decays exponentially as k!1, since �v actually has finite exponential moment. The proof for deviations
from above can be found in [Boulanger et al. 2023]. For deviations from below, [Boulanger et al. 2023]
and [Gouëzel 2022] deal with the case that X is Gromov hyperbolic. When X is the Teichmüller space,
one can use Choi’s modification of Gouëzel’s construction in [Choi 2023]. Now together with the control
on quantities (B-2) and (B-3), we obtain that for any � > 0,

(B-5) Pnv

�ˇ̌̌̌
d.!no; o/

n
�
lv

Tv

ˇ̌̌̌
> �

�
decays exponentially. Now the proof of [Gekhtman et al. 2018, Theorem 6.14] shows that lv=Tv is
uniform for all v 2R, which we denote by �. Since the arrival time at R (beginning at e) also has finite
exponential moment, we conclude that

(B-6) Pne

�ˇ̌̌̌
d.!no; o/

n
��

ˇ̌̌̌
> �

�
decays exponentially. By combining this with the decay of (B-1), we deduce that

#fg 2 @BS .n/ W jd.o; go/=n��j> �g
#@BS .n/

decays exponentially; cf [Gekhtman et al. 2018, Theorem 7.3].

We now need to discuss translation lengths instead of displacements. For each recurrent component C
of � , we pick v D vC 2 C and take a Schottky set as a subset of fw D g1 � � �gn W gi D av or bvg. We
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now consider the loop random walk generated by �v; recall the decomposition of the random walk into
usual steps and “Schottky steps” for the pivot construction in [Choi 2023; Gouëzel 2022].

Until step 1
4
Tvn in the loop random walk, we have Kn slots for Schottky steps for some K > 0 outside

an event of exponentially decaying probability. Moreover, 1
4
Tvn steps in the loop random walk occur

before step 1
2
n in the Markov process based at vC , outside an event of exponentially decaying probability

(quantity (B-2)). Finally, the Markov process beginning from e arrives at fvC W C is recurrentg within
step 1

2
n outside an event of exponentially decaying probability.

In summary, giving up an event of exponentially decaying probability, a random path in the Markov
process has at least Kn slots for Schottky loops based at some vC . By pivoting the choice of Schottky
loops at these slots, we can guarantee at least K 0n eventual pivots until step n for some K 0 > 0, outside
an event of exponentially decaying probability.

Given these results, it now suffices to focus on the elements g such that

(1) Lg1�� 2 LG and d.o; Lg1��o/� .1� 2�/�n,

(2) d.o; Lg�o/� 2��n, and

(3) the subpath Œe; Lg�� possesses at least K 0�n pivots for Œe; g�.

We then consider the equivalence class by pivoting at the first K 0�n pivots. By early pivoting, one can
show that only few elements inside the equivalence class satisfy �X .g/ � .1� 4� �MK 0/n, for some
suitable M > 0. By modulating � and K 0, we establish the desired result.
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