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Shear-shape cocycles for measured laminations
and ergodic theory of the earthquake flow

AARON CALDERON

JAMES FARRE

We extend Mirzakhani’s conjugacy between the earthquake and horocycle flows to a bijection, demonstrat-
ing conjugacies between these flows on all strata and exhibiting an abundance of new ergodic measures
for the earthquake flow. The structure of our map indicates a natural extension of the earthquake flow to
an action of the upper-triangular subgroup P < SL2 R and we classify the ergodic measures for this action
as pullbacks of affine measures on the bundle of quadratic differentials. Our main tool is a generalization
of the shear coordinates of Bonahon and Thurston to arbitrary measured laminations.

30F30, 30F60, 32G15; 37D40

1. Main results 1996

2. About the proof 2001

3. Outline of the paper 2009

4. Crowned hyperbolic surfaces 2012

5. The orthogeodesic foliation 2016

6. Cellulating crowned Teichmüller spaces 2022

7. Transverse and shear-shape cocycles 2030

8. The structure of shear-shape space 2041

9. Train track coordinates for shear-shape space 2047

10. Shear-shape coordinates for transverse foliations 2053

11. Flat deformations in shear-shape coordinates 2064

12. Shear-shape coordinates for hyperbolic metrics 2066

13. Measuring hyperbolic shears and shapes 2068

14. Shape-shifting cocycles 2080

15. Shear-shape coordinates are a homeomorphism 2106

16. Future and ongoing work 2117

Index 2119

References 2120

© 2024 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/gt.2024.28.1995
http://www.ams.org/mathscinet/search/mscdoc.html?code=30F30, 30F60, 32G15, 37D40
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


1996 Aaron Calderon and James Farre

1 Main results

1.1 Conjugating earthquake and horocycle flow

This paper deals with two notions of unipotent flow over the moduli space Mg of Riemann surfaces. The
first is the Teichmüller horocycle flow, defined on the bundle Q1Mg of unit-area quadratic differentials q

by postcomposing the charts of the flat metric jqj by the parabolic transformation
�

1
0

s
1

�
. This flow is

ergodic with respect to a finite measure induced by Lebesgue in local period coordinates [Masur 1982;
Veech 1982] and is a fundamental object of study in Teichmüller dynamics.

The second is the earthquake flow on the bundle P1Mg, whose fiber is the sphere of unit-length measured
geodesic laminations on a hyperbolic surface. The earthquake flow is defined as a generalization of
twisting about simple closed curves, or by postcomposing hyperbolic charts by certain piecewise-isometric
transformations. While this flow is more mysterious, earthquakes are a familiar tool in Teichmüller theory,
playing a central role in Kerckhoff’s proof [1983] of the Nielsen realization conjecture, for example.

These two flows are both assembled from families of Hamiltonian flows (extremal length for horocycle
[Papadopoulos 1986] and hyperbolic length for earthquake [Kerckhoff 1983; Wolpert 1983; Sözen and
Bonahon 2001]) and exhibit similar nondivergence properties [Minsky and Weiss 2002], but the horocycle
flow belongs properly to the flat-geometric viewpoint and the earthquake flow to the hyperbolic one. All
the same, Mirzakhani [2008, Theorem 1.1] established a bridge between the two worlds, demonstrating a
measurable conjugacy between the earthquake and horocycle flows. Consequently, the earthquake flow is
ergodic with respect to the measure class of Lebesgue on P1Mg.

In this article, we deepen this connection between flat and hyperbolic geometry, proving that the corre-
spondence can be further upgraded to yield new results on both the ergodic theory of the earthquake flow
and the structure of Teichmüller space.

Theorem A Mirzakhani’s conjugacy extends to a bijection

O W P1Mg$ Q1Mg

that conjugates earthquake flow to horocycle flow.

The moduli space of quadratic differentials is naturally partitioned into strata Q1Mg.�/, disjoint subsets
parametrizing unit-area differentials with zeros of order � D .�1; : : : ; �n/. Similarly, for any � we may
define the regular locus P1M

reg
g .�/ to be the set of .X; �/ where � cuts X into ideal polygons with

.�1C 2; : : : ; �nC 2/ many sides, each with a cyclic symmetry of that order.

With this notation, Mirzakhani’s conjugacy can more precisely be stated as the existence of a bijection

P1M
reg
g .14g�4/$ Q1Mnsc

g .14g�4/

taking earthquake flow to horocycle flow, where the superscript nsc specifies the (full-measure) sublocus
of the stratum consisting of those differentials with no horizontal saddle connections.

Geometry & Topology, Volume 28 (2024)



Shear-shape cocycles for measured laminations and ergodic theory of the earthquake flow 1997

One of our main applications of Theorem A is to produce an analogue of Mirzakhani’s conjugacy for
components of strata (even those coming from global squares of abelian differentials), confirming a
conjecture of Alex Wright [2022, Remark 5.6] (see also [loc. cit., Problems 12.5 and 12.6]).

Theorem B For every �, the map O restricts to a bijection

P1M
reg
g .�/$ Q1Mnsc

g .�/

that takes earthquake to horocycle flow and (generalized ) stretch rays to Teichmüller geodesics.

While strata of holomorphic quadratic differentials are generally not connected, for g¤ 4 their connected
components are classified by whether or not they consist of squares of abelian differentials and the parity
of the induced spin structure (both of which depend only on the horizontal foliation when there are
no horizontal saddles), as well as hyperellipticity [Kontsevich and Zorich 2003; Lanneau 2008].1 The
bijection O respects both the horizontal direction and the Mod.S/–action, so Theorem B can be refined
to describe the preimages of these components.

As an immediate consequence of Theorem B, the earthquake flow is ergodic with respect to the pushforward
by O�1 of the Masur–Veech measure on any component of any stratum of quadratic differentials.

1.2 Geodesic flows and P–invariant measures

Pulling back the Teichmüller geodesic flow via O allows us to specify a family of “dilation rays” which
serve as a geodesic flow for the earthquake flow’s parabolic action and in many cases project to geodesics
for Thurston’s Lipschitz asymmetric metric. Combining dilation rays and the earthquake flow therefore
gives a action of the upper-triangular subgroup P < SL2 R on P1Mg by “stretchquakes”. See Section 15.3.

Due in part to the failure of O to be continuous, the stretchquake action on P1Mg is not by homeomorphisms
but rather by measurable bijections. More precisely, it preserves the �–algebra obtained by pulling back
the Borel �–algebra of Q1M.S/ along O. In a sequel [Calderon and Farre 2024a], we show that O is
actually a measurable isomorphism with respect to the Borel �–algebra on P1Mg and that the stretchquake
action restricted to each P1M

reg
g .�/ is by homeomorphisms; see also Remark 2.2.

Remark 1.1 In fact, Arana-Herrera and Wright [2024] have shown that there is no continuous map
conjugating the earthquake flow to horocycle flow, at least when P1Mg and Q1Mg are equipped with
their standard topologies.

In their foundational work on SL2 R–invariant ergodic measures on the moduli space of flat surfaces,
Eskin and Mirzakhani [2018, Theorem 1.4] proved that the support of any P–invariant ergodic measure
on Q1Mg is locally an affine manifold cut out by linear equations in period coordinates. Our conjugacy
translates this classification into a classification of ergodic measures for the extension of the earthquake
flow defined above:
1In genus 4, there are certain strata whose components have only been characterized via algebraic geometry [Chen and Möller
2014].

Geometry & Topology, Volume 28 (2024)



1998 Aaron Calderon and James Farre

Theorem C Every stretchquake-invariant ergodic measure is the pullback of an affine measure.

Proof If � is a stretchquake-invariant ergodic measure on P1Mg, then O�� is a P–invariant ergodic
measure on Q1Mg, which is affine by [Eskin and Mirzakhani 2018, Theorem 1.4].

Using this correspondence we obtain a geometric rigidity phenomenon for stretchquake-invariant ergodic
measures on P1Mg; the generic point is made out of a fixed collection of regular ideal polygons.

Corollary 1.2 For any stretchquake-invariant ergodic probability measure � on P1Mg, there is some �
such that �–almost every .X; �/ lies in P1M

reg
g .�/.

This in particular implies that the dynamics of the stretchquake action with respect to any ergodic
probability measure are measurably the same as its restriction to a stratum, on which we can identify
dilation rays as (directed, unit-speed) geodesics for the Lipschitz asymmetric metric on T.S/ (see
Proposition 15.12).

Remark 1.3 General ergodic measures for the stretchquake action can look quite different than the
Lebesgue measure class on P1Mg, even when pushed down to Mg. For example, if � gives full measure to
P1M

reg
g .4g�4/, then a �–generic point is obtained by gluing together a single regular ideal .4g�2/–gon;

in particular, the injectivity radius at the center of the polygon can be arbitrarily large, allowing g!1.
This implies that � gives zero mass to (the restriction of P1Mg to) sufficiently thin parts of the moduli
space, as any .X; �/ where X has a very short pants decomposition has injectivity radius uniformly
bounded above.

Remark 1.4 While an important result of [Eskin and Mirzakhani 2018] is that any P–invariant ergodic
measure on Q1Mg is actually SL2 R–invariant, the circle action on Q1Mg (corresponding to rotating a
quadratic differential) does not have an obvious geometric interpretation on P1Mg. See also [Wright
2020, Problems 12.3 and 12.4].

1.3 Dual foliations from hyperbolic structures

A foundational result of Gardiner and Masur (Theorem 2.1 below) states that quadratic differentials are
parametrized by their real and imaginary parts, or, equivalently, their vertical and horizontal foliations
(or laminations). In particular, the real-analytic submanifold Fuu.�/ of all quadratic differentials with
horizontal lamination � can be identified with the space MF.�/ of foliations that bind together with �.
See Section 2 for a formal definition. As the horocycle flow preserves the horizontal foliation, it induces
a flow on MF.�/.

Mirzakhani’s conjugacy and our extension therefore both follow from the construction of flow-equivariant
maps that assign to a hyperbolic surface X and a measured lamination � a “dual” measured foliation.

Geometry & Topology, Volume 28 (2024)



Shear-shape cocycles for measured laminations and ergodic theory of the earthquake flow 1999

For maximal laminations �, this dual is the horocyclic foliation F�.X / introduced by Thurston [1986],
obtained by foliating the spikes of each triangle of X n� by horocycles and extending across the leaves
of �. The measure of an arc transverse to F�.X / is then the total distance along � between horocycles
meeting the arc at its endpoints. As F�.X / necessarily binds S together with �, this defines a map

F� W T.S/!MF.�/:

We endow MF.�/ with the real-analytic structure coming from its identification with Fuu.�/. The main
engine of Mirzakhani’s conjugacy is the following theorem of [Bonahon 1996; Thurston 1986]; see also
Section 2.1 for a discussion of her interpretation of this result.

Theorem 1.5 (Bonahon and Thurston) For any maximal �, the horocyclic foliation map F� is a real-
analytic homeomorphism which takes the earthquake in � to the horocycle flow restricted to MF.�/Š

Fuu.�/ in a time-preserving way. Moreover , the family fF�g is equivariant with respect to the Mod.S/–
action. That is , Fg�.gX /D gF�.X / for all g 2Mod.S/.

When � is not maximal, the horocyclic foliation is no longer defined. The first thing one might try is to
simply choose a completion of �, but this approach is too naive. Indeed, this would require choosing a
completion of every lamination, which necessarily destroys Mod.S/–equivariance because laminations
(and differentials) can have symmetries.2 Such a map will not descend to moduli space and is therefore
unsuitable for our applications. Besides, for our purposes it is important that the geometry of the
subsurfaces of X n� predict the singularity structure of the corresponding differential.

If one restricts their attention to the case when � is filling and cuts X into regular ideal polygons, then there
is a canonical notion of horocyclic foliation. While this construction is equivalent on the regular locus to
the more general procedure we describe just below, any attempt to prove Theorem B with this restricted
viewpoint would necessarily rely on (Mod.S/–equivariant) descriptions of the loci of surfaces built from
regular polygons, as well as the intersection of Fuu.�/ with strata, results which (to the knowledge of the
authors) were heretofore unknown. Compare Corollary 2.6 and Section 2.2.

We therefore place no restrictions on the topological type or the complementary geometry of �. Following
a suggestion of Yi Huang (communicated to us by Alex Wright), we prove that the correct analogue of
the horocyclic foliation for nonmaximal � is the orthogeodesic foliation O�.X /, whose leaves are the
fibers of the closest-point projection to � and whose measure is given by length of the projection to �. As
in the maximal case, the orthogeodesic foliation binds together with �, inducing a map

O� W T.S/!MF.�/:

See Section 5 for a more detailed discussion of this construction.
2For example, take  to be a simple closed curve; completions of  correspond to triangulations of X n where the boundaries are
shrunk to cusps (up to a choice of spiraling about each side of  ). The space of such triangulations carries a rich Stab. /–action,
and a computation shows that the horocyclic foliations for two completions in the same Stab. / orbit need not be equal.

Geometry & Topology, Volume 28 (2024)



2000 Aaron Calderon and James Farre

Theorem D For any � 2 ML.S/, the orthogeodesic foliation map O� is a homeomorphism which
takes the earthquake in � to the horocycle flow restricted to MF.�/ŠFuu.�/ in a time-preserving way.
Moreover , the family fO�g is equivariant with respect to the Mod.S/–action. That is , Og�.gX /DgO�.X /

for all g 2Mod.S/.

Although MF.�/ does not have an obvious smooth structure, the map O� still exhibits a surprising amount
of regularity; see Theorem E.

The proof of Theorem D requires generalizing Bonahon’s machinery of transverse cocycles to new combi-
natorial objects, called “shear-shape cocycles”, which capture the essential structure of the orthogeodesic
foliation; see Section 2.1. The space of shear-shape cocycles forms a common coordinatization of both
T.S/ and MF.�/ that is compatible with the map O� and reveals an abundance of structure encoded in
the orthogeodesic foliation:

� When � cuts X into regular ideal polygons, the orthogeodesic and horocyclic foliations agree.

� The locus of points of X which are closest to at least two leaves of � forms a piecewise-geodesic
spine for X n � which captures the geometry and topology of the complementary subsurfaces
(see Theorem 6.4). Moreover, this spine is exactly the diagram of horizontal separatrices for the
quadratic differential with horizontal foliation � and vertical foliation O�.X /.

� For every measure � on �, the intersection of � and O�.X / is the hyperbolic length of � on X.

� The pullbacks of Teichmüller geodesics with no horizontal saddle connections are geodesics with
respect to Thurston’s Lipschitz (asymmetric) metric (Proposition 15.12).

The orthogeodesic foliation map can also be thought of as relating the hyperbolic and extremal length
functions `�. � / and Ext�. � / for any fixed �. Indeed, a seminal theorem of [Hubbard and Masur 1979]
states that the natural projection

� W Fuu.�/! T.S/

that records only the complex structure underlying a differential is a homeomorphism. Combining this with
the fact that the extremal length of � on Y is exactly the area of the differential ��1.Y /, we deduce that:

Corollary 1.6 For every � 2 ML.S/, the map � ı O� is a Stab.�/–equivariant self-homeomorphism
of T.S/ that takes the hyperbolic length function `�. � / to the extremal length function Ext�. � /.
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2 About the proof

Given Theorem D, which associates to .X; �/ a dual foliation O�.X / describing the geometry of the
pair, it is not difficult to prove Theorems A and B. First we recall the relationship between differentials,
foliations and laminations in a little more detail.

The space of measured foliations (up to equivalence) on a closed surface S of genus g � 2 is denoted
by MF.S/. There is a canonical identification [Levitt 1983] between MF.S/ and ML.S/, the space
of measured laminations on S ; throughout this paper we will implicitly pass between the two notions
at will, depending on our situation. By QTg and Q1Tg we mean the bundle of holomorphic quadratic
differentials over the Teichmüller space and the locus of unit-area quadratic differentials, respectively.
We similarly let PTg D T.S/�ML.S/ and P1Tg be the locus of pairs .X; �/ where � has unit length
on X.

To every q 2QTg one may associate the real measured foliation jRe.q/j which measures the total variation
of the real part of the holonomy of an arc; the imaginary foliation jIm.q/j is defined similarly. These
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foliations have vertical and horizontal trajectories, respectively, and so we will also refer to them as the
vertical and horizontal foliations (or laminations) of q and write

q D q
�
jRe.q/j; jIm.q/j

�
:

A foundational theorem of Gardiner and Masur implies that the real and imaginary foliations completely
determine q, and that, given any two foliations which “fill up” the surface, one can integrate against their
measures to recover a quadratic differential.

A pair of measured foliations/laminations .�; �/ is said to bind S if, for every  2ML.S/,

i.; �/C i.; �/ > 0;

where i. � ; � / is the geometric intersection pairing. In the literature, such pairs are sometimes called filling,
though we choose to distinguish the topological notion of filling from the measure-theoretic notion of
binding.

Theorem 2.1 [Gardiner and Masur 1991, Thereom 3.1] There is a Mod.S/–equivariant homeo-
morphism

QT.S/ŠMF.S/�MF.S/ n�;

where � is the set of all nonbinding pairs .�; �/. In particular , the set Fuu.�/ of all quadratic differentials
with jIm.q/j D � may be identified with MF.�/, the set of foliations which together bind with �.

Proof of Theorems A and B By definition, there is a Mod.S/–equivariant projection PTg!ML.S/

with fiber T.S/. Theorem 2.1 implies there is a Mod.S/–equivariant projection QTg!ML.S/ whose
fiber over � may be identified with MF.�/. Applying Theorem D on the fibers therefore yields an
equivariant bijection

O W PTg$ QTg

which takes unit-length laminations to unit-area differentials (Corollary 13.14), and quotienting by the
Mod.S/–action proves Theorem A.

Furthermore, we observe that the spine of the orthogeodesic foliation of a regular ideal .kC2/–gon is just
a star with kC 2 edges, which corresponds to the separatrix diagram of a zero of order k when there are
no horizontal saddle connections. Thus O restricts to the promised conjugacy on strata (Theorem B).

Remark 2.2 Mirzakhani’s conjugacy is defined on the Borel subset PT
reg
g .14g�4/ � PTg of full

Lebesgue measure and is moreover Borel measurable on its domain of definition. The latter assertion is a
consequence of a stronger result, namely that PT

reg
g .14g�4/! QTg is continuous (with respect to the

subspace topology on PT
reg
g .14g�4/).

While convergence of measured laminations (in measure) does not typically imply Hausdorff convergence
of the supports, whenever a sequence f�ng of maximal measured laminations converges to a maximal
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measured lamination �, �n is eventually carried (snugly) on a maximal train track also carrying �. From
here, it is not difficult to deduce that �n! � in the Hausdorff topology [Zhu and Bonahon 2004] and
thus the horocyclic foliations F�n

.X / converge to F�.X /. Intuitively, the leaves of �n intersect the leaves
of � with small angle (depending on the specific surface on which they are realized), so the orthogonal
directions become more parallel.

In [Calderon and Farre 2024a], we extend these ideas and prove that O is (everywhere) Borel measurable
with Borel measurable inverse by identifying a countable partition of PTg and QTg into Borel subsets on
which O is homeomorphic. See also Section 16.

In general, the compact edges of the spine of a pair .X; �/ correspond exactly to horizontal saddle
connections in the differential O.X; �/. This observation allows us to prove that the generic point for a
P–invariant ergodic probability measure on P1Mg consists of pairs .X; �/ where � cuts X into a fixed
set of regular ideal polygons.

Proof of Corollary 1.2 Using our conjugacy, the desired statement is equivalent to the fact that any
P–invariant ergodic probability measure on Q1Mg is

(a) supported in a single stratum, and

(b) gives 0 measure to the set of differentials with horizontal saddle connections.

The first statement is implied by ergodicity, while the second follows from the fact that the measure
is actually SL2 R–invariant [Eskin et al. 2015]. Indeed, for any quadratic differential q, the Lebesgue
measure of the set of directions � such that ei�q has a saddle connection is 0, so Fubini’s theorem
implies (b).

Refining the proof by considering connected components of strata, we can also conclude that �–almost
every pair has the same orientability, spin and hyperellipticity properties.

2.1 Shear-shape coordinates

Our strategy to prove Theorem D follows Mirzakhani’s interpretation of Theorem 1.5, in which she clarifies
the relationship between Thurston’s geometric perspective on the horocyclic foliation and Bonahon’s
powerful analytic approach in terms of transverse cocycles. Namely, she shows that the horocyclic
foliation map F� is compatible with shearing coordinates for both hyperbolic structures and measured
foliations. To motivate our construction, we give a brief outline of Mirzakhani’s proof below.

A (real-valued) transverse cocycle for � is a finitely additive signed measure on arcs transverse to � that
is invariant under isotopy transverse to �; observe that transverse measures are themselves transverse
cocycles. These objects equivalently manifest as transverse Hölder distributions, cohomology classes,
or weight systems on snug train tracks [Bonahon 1997a; 1996; 1997b]. The space H.�/ of transverse
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cocycles forms a finite-dimensional vector space which carries a natural homological intersection pairing
which is nondegenerate when � is maximal. The intersection pairing then identifies a “positive locus”
HC.�/�H.�/ cut out by finitely many geometrically meaningful linear inequalities. See also Section 7.1.

Bonahon [1996, Theorem A] proved that, for any maximal geodesic lamination �, there is a real-analytic
homeomorphism �� W T.S/! HC.�/ that takes a hyperbolic metric to its “shearing cocycle”, which
essentially records the signed distance along � between the centers of ideal triangles in the complement
of �. Mirzakhani [2008, Sections 5.2 and 6.2] then constructed a homeomorphism I� (essentially by
a well-chosen system of period coordinates) that coordinatizes MF.�/ by HC.�/ and for which the
following diagram commutes:

(1)

T.S/ MF.�/

HC.�/

F�

�� I�

Since F� D I�1
�
ı �� is a composition of homeomorphisms, it is itself a homeomorphism. As the

construction of the horocyclic foliation requires no choices, the family fF�g is necessarily Mod.S/–
equivariant. Finally, a direct computation shows that �� transports the earthquake in � to translation
in HC.�/ by �, and I� similarly takes horocycle to translation, demonstrating Theorem 1.5.

Shear-shape cocycles When � is not maximal, the space of transverse cocycles is no longer suitable to
coordinatize hyperbolic structures (or transverse foliations). Indeed, in this case the vector space H.�/ has
dimension less than 6g� 6 and its intersection form may be degenerate; this is a consequence of the fact
that the Teichmüller space of S n� now has a rich analytic structure that transverse cocycles cannot see.

In order to imitate (1) and its concomitant arguments for arbitrary � 2ML.S/, we therefore introduce the
notion of shear-shape cocycles on �. Roughly, a shear-shape cocycle consists of finitely additive signed
data on certain arcs transverse to � together with a weighted arc system that cuts S n� into cells; this pair is
also required to satisfy a certain compatibility condition mimicking features of the orthogeodesic foliation
(Definition 7.11). Generalizing results of [Luo 2007, Theorem 1.2 and Corollary 1.4], we show that such
an arc system is equivalent to a hyperbolic structure on S n � (Theorem 6.4), so shear-shape cocycles
may equivalently be thought of as transverse data together with a compatible hyperbolic structure on the
complementary subsurface(s). Like transverse cocycles, shear-shape cocycles also admit realizations as
cohomology classes or weight systems on certain train tracks (Definition 7.5 and Proposition 9.5).

Remark 2.3 Only certain classes of arcs admit consistent weights when measured by a shear-shape
cocycle, whereas transverse cocycles provide a measure to any arc transverse to �. While this sub-
tlety is exactly what allows us to understand how to relate shear-shape cocycles with the geometry of
complementary subsurfaces, it also presents a number of technical challenges throughout the paper.
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Unlike transverse cocycles, the space SH.�/ of shear-shape cocycles is not a vector space, instead forming
a principal H.�/–bundle over a contractible analytic subvariety of T.S n�/ (Theorem 8.1). All the same,
the cohomological realization of shear-shape cocycles equips SH.�/ with an intersection form

!SH W SH.�/�H.�/!R

that identifies a “positive locus” SHC.�/ and equips both SH.�/ and SHC.�/ with piecewise-integral-
linear structures. The positive locus forms an HC.�/–cone bundle over the same subvariety of T.S n�/

(Proposition 8.5) and fits into the familiar-looking commutative diagram

(2)

T.S/ MF.�/

SHC.�/

O�

�� I�

where �� and I� record shearing data along � as well as shape data in the complementary subsurfaces.
These maps can be thought of as a common generalization of Bonahon and Mirzakhani’s shear coordinates
as well as Fenchel–Nielsen and Dehn–Thurston coordinates adapted to a pants decomposition (see
Section 2.2). In the case when � is orientable, the map I� can also be viewed as an extension of Minsky
and Weiss’s description [2014, Theorem 1.2] of the set of abelian differentials with given horizontal
foliation.3

The conjugacy of Theorem D is then a consequence of the following structural theorem, which is an
amalgam of the main technical results of the paper (compare Theorems 10.15, 12.1 and 13.13).

Theorem E For any measured lamination �, diagram (2) commutes and all arrows are Stab.�/–equivariant
homeomorphisms. Moreover:

� �� is (stratified ) real-analytic and transports the earthquake flow to translation by � and the
hyperbolic length of � to !SH. � ; �/.

� The weighted arc system underlying ��.X / records the hyperbolic structure X n � under the
correspondence of Theorem 6.4.

� I� is piecewise-integral-linear and transports horocycle flow to translation by � and intersection
with � to !SH. � ; �/.

� The weighted arc system underlying I�.�/ records the compact horizontal separatrices of q.�; �/.

In the course of our proof, we also describe new “shape-shifting deformations” of hyperbolic surfaces
which generalize Bonahon and Thurston’s cataclysms by shearing along a lamination while also varying
the hyperbolic structures on complementary pieces. See Section 15.1.

3Technically, Minsky and Weiss [2014] investigate the family of abelian differentials with a fixed horizontal foliation and fixed
topological type of horizontal separatrix diagram, whereas our map applies to quadratic differentials (whether or not they are
globally the squares of abelian differentials) and packages together all possible types of separatrix diagrams.
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One particularly interesting family of deformations is obtained by dilation. The space SHC.�/ admits a
natural scaling action by R>0, and, since both earthquake and horocycle flow are carried to translation
in coordinates, this scaling action indicates extensions of each to P–actions. A quick computation
(Lemma 11.1) shows that the pullback of a dilation ray by I� is (a variant of) the Teichmüller geodesic
flow, so the P–action on the flat side is just the standard P–action on QTg.

On the hyperbolic side, these dilation rays define our extension of the earthquake flow, and correspond to
families of hyperbolic metrics on which the length of � is scaled by a uniform factor. They are therefore
natural candidates for (directed, unit-speed) geodesics for the Lipschitz asymmetric metric on T.S/, and
in some cases we can identify them as such (see Propositions 15.12 and 15.18, as well as Remarks 15.19
and 15.14).

Remark 2.4 Over the course of the paper we formalize the notion that shear-shape coordinates for
hyperbolic structures are essentially the “real part” of period coordinates for PTg. Interpreting ��.X /Ci�

as a complex weight system on a train track, Theorem C implies that the support of every stretchquake-
invariant ergodic measure on P1Mg is locally an affine measure in train track charts. See Lemma 10.10.

Coordinatizing horospheres Since the Thurston intersection form !SH captures both the hyperbolic
length of and geometric intersection with �, the coordinate systems of Theorem E also allow us to give
global descriptions of the level sets of these functions. In particular, we can recover Gardiner and Masur’s
description [1991, page 236] of extremal-length horospheres as well as Bonahon’s description of the
hyperbolic-length ones (which is implicit in the structure of shear coordinates for maximal completions).

Corollary 2.5 Suppose that � supports k ergodic transverse measures �1; : : : ; �k . Then , for all
L1; : : : ;Lk 2R>0, the level sets

fX 2 T.S/ j `X .�i/DLi for all ig and f� 2MF.�/ j i.�; �i/DLi for all ig

are both homeomorphic to R6g�6�k .

Analyzing this coordinatization more closely, in fact both level sets can be described as affine bundles of
dimension dimR HC.�/� k over the same subvariety of T.S n�/ as underlies SH.�/.

From this refinement, we are able to describe the intersection of the leaf Fuu.�/ with strata. The
decomposition of period coordinates into real and imaginary parts shows that this intersection (when
not empty) is locally homeomorphic to Rd , where d is the complex dimension of the stratum; our work
shows that these local homeomorphisms patch together to a global one. Compare [Minsky and Weiss
2014, Theorem 1.2].

Corollary 2.6 Suppose that � is a filling measured lamination that cuts a surface into polygons with
�1C2; : : : ; �nC2 many sides , and let "DC1 if � is orientable and �1 otherwise. Let QTg.�I "/ denote
the union of the components of the stratum QTg.�/� QTg that either are ("DC1) or are not ("D�1)
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global squares of abelian differentials. Then

fq 2 QTg.�I "/ W jIm.q/j D �g ŠHC.�/ŠRd ;

where d is the complex dimension of QTg.�I "/.

Proof Theorem E indicates that the metric graph of compact horizontal separatrices of q.�; �/ is
encoded by the weighted arc system underlying I�.�/. These weighted arc systems are organized in
a piecewise-linear subvariety B.S n �/ of a product of weighted filling arc complexes that encode the
combinatorics of how a zero of order �i can split up into lower-order zeros joined by horizontal saddle
connections (see Sections 6, 7.3 and 10.1 and Figure 5). For differentials in the indicated set, there are no
compact horizontal separatrices, and so the underlying arc system is always the empty (filling) arc system
∅ 2B.S n�/. In other words, the image of fq 2 QTg.�I "/ W jIm.q/j D �g in coordinates is just the fiber
over ∅, where Proposition 8.5 identifies SHC.�/ as an HC.�/–bundle over B.S n�/.

The second isomorphism HC.�/ŠRd is just a dimension count (see Lemmas 4.6 and 7.3 in particular).

In general, Fuu.�/\QTg.�I "/ forms a HC.�/–bundle over a union of faces of an arc complex of S n�.
As a consequence, the only obstruction to completeness of any such leaf comes from zeros colliding
along a horizontal saddle connection (see also [Minsky and Weiss 2014, Theorem 11.2]). This global
description of Fuu.�/\QTg.�I "/ also allows the importation of arguments from homogeneous dynamics
to investigate equidistribution in both Q1Mg and P1Mg and their strata; see the discussion in Section 16.

2.2 Generalized Fenchel–Nielsen coordinates

Our shear-shape coordinates for hyperbolic structures can be thought of as interpolating between the
classical Fenchel–Nielsen coordinates adapted to a pants decomposition and Bonahon and Thurston’s
shear coordinates. In both cases, one remembers the shapes of the complementary subsurfaces (pairs of
pants and ideal triangles, respectively) and the space of all hyperbolic structures with given complementary
shape is parametrized by gluing data (twist/shear parameters).

For general �, there is a map
cut� W T.S/! T.S n�/

that remembers the induced hyperbolic structure on each complementary subsurface. Theorem 12.1 then
implies that the image of cut� is a real-analytic subvariety B.S n �/ of T.S n �/ consisting of those
structures satisfying a “metric residue condition” (see Lemma 13.1). In the case where each component
of � is either nonorientable or a simple closed curve, B.S n�/ is just the space of hyperbolic structures
for which the two boundary components of the cut surface corresponding to a simple curve component
of � have equal length. Theorem 12.1 together with the structure of SHC.�/ also allows us to identify
the fiber cut�1

�
.Y / over any Y 2B.S n�/ with the gluing data HC.�/ (though not in a canonical way).4

4See the discussion around (18) in regards to the positivity condition for disconnected �; in essence, HC.�/ is the product
of HC.�i/ for each nonclosed minimal component together with the twisting data around simple closed curves.
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We summarize this discussion in the following triptych:

(3)

Fenchel–Nielsen shear-shape shear

R3g�3 T.S/

R3g�3
>0

HC.�/ T.S/

B.S n�/

HC.�/ T.S/

fptg

� a pants decomposition � arbitrary � maximal

In each coordinate system, T.S/ is the total space of a fiber bundle over a base space of allowable shape
data on the subsurface complementary to �, while the fiber consists of gluing data.

A completely analogous picture also holds for foliations transverse to �, demonstrating I� as a common
generalization of both Dehn–Thurston and Mirzakhani’s shear coordinates.

2.3 Fenchel–Nielsen and Dehn–Thurston via shears and shapes

In order to give the reader a concrete example of shear-shape coordinates, we include here a discussion of
our construction for �D P a pants decomposition. In this case, shear-shape coordinates are just a (mild)
reformulation of the classical Fenchel–Nielsen and Dehn–Thurston ones.

First we consider a hyperbolic structure X. A pair of pants in X nP is typically parametrized by its
boundary lengths .a; b; c/ or, equivalently, by the alternating side lengths of either of the right-angled
hexagons coming from cutting along seams. The orthogeodesic foliation on a pair of pants picks out
either a pair or a triple of seams (those which are realized as leaves of OP .X /), each weighted by the
length of a boundary arc consisting of endpoints of leaves of OP .X / isotopic to the seam. See Figure 1.
In this case, these lengths are just simple (piecewise-)linear combinations of the boundary lengths and the
metric residue condition defining B.S nP / just states that the boundaries that are glued together must
have the same length. See Figure 1.

The space HC.P / reduces to a sum of the twist spaces for each curve of P, and so Proposition 8.5 implies
that SHC.P / is a principal R3g�3–bundle over B.S nP /ŠR3g�3

>0
. The transverse data recorded by this

twist space then describes the signed distance between certain reference points in pairs of right-angled
hexagons in zX that are adjacent to the same curve of zP, which is the same as the twist parameter measured
by the appropriate choice of Fenchel–Nielsen coordinates.5

We can similarly recognize I� W MF.P /! SHC.P / as Dehn–Thurston coordinates. Now, from any
integral point � 2 SHC.P /, we can construct a multicurve ˛ with prescribed intersection and twisting
parameters as follows: the weighted arc system describes how strands of ˛ pass between and meet the

5Fenchel–Nielson coordinates always involve some choice of section of the space of twists over the length parameters, and so
have only the structure of a principal R3g�3–bundle over R3g�3

C
.
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Figure 1: The orthogeodesic foliation on pairs of pants. Note that the weight of each bolded arc
is a linear combination of the boundary lengths, whence the correspondence between shear-shape
and Fenchel–Nielsen/Dehn–Thurston coordinates. If any of the weights is zero, the orthogeodesic
foliation only picks out the two seams with nonzero weights.

components of P, while the transverse data recorded by HC.P /ŠRP describes the extent that strands
of ˛ wrap around components of P. This procedure is clearly reversible and can easily be extended to
transverse foliations using a family of standard train tracks on each pair of pants (see [Penner and Harer
1992, Section 2.6]). As in the hyperbolic case, one can easily pass between these coordinates and the
standard Dehn–Thurston ones just by replacing the count of strands of ˛ going from one boundary to the
other with the total intersection of ˛ with each boundary.

3 Outline of the paper

The rest of this paper is roughly divided into four parts, corresponding to the orthogeodesic foliation,
shear-shape cocycles and shear-shape coordinates for flat and hyperbolic structures, as well as a collection
of further directions for investigation, some of which have been completed while this article was in press
(Section 16). While the constructions of I� and �� both rely on foundational results established in the
first two parts, we have attempted to direct the reader eager to understand our coordinates to the most
important statements of these sections.

We expect that the reader is familiar with many of the standard constructions of Teichmüller theory, as
well as the definitions of both the earthquake and horocycle flows; we recommend [Minsky and Weiss
2002, Section 4] for a particularly lucid overview of the relevant objects. We also refer the reader to
[Casson and Bleiler 1988; Thurston 1979, Section 8] for more on laminations and to [Penner and Harer
1992] for a comprehensive introduction to train tracks.

Sections 4–6: the orthogeodesic foliation Cutting along a lamination results in a (possibly disconnected)
hyperbolic surface † with crown boundary, and in Section 4 we recall some useful information about the
Teichmüller spaces of such surfaces. One particularly important definition is that of the “metric residue”
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of a crown end, which is a generalization of boundary length and plays an important role in cohomological
constraints on the shape data of shear-shape cocycles (Lemma 7.9).

With these preliminaries established, in Section 5 we discuss in more detail the orthogeodesic foliation
and the hyperbolic geometry of X in a neighborhood of �. In this section we also give a geometric
interpretation of the map in Corollary 1.6 that relates hyperbolic and extremal length.

The most important result of this part occupies Section 6, in which we show that the orthogeodesic foliation
restricted to † completely determines its hyperbolic structure. More explicitly, dual to each compact edge
of the spine of O�.X / is a packet of properly isotopic arcs joining nonasymptotic boundary components
of †. By assigning geometric weights to each of these packets, we can therefore combinatorialize the
restriction of O�.X / to † by a weighted filling arc system.

Using a geometric limit argument, in Theorem 6.4 we prove that the map which associates to a hyperbolic
structure on † the associated arc system is a Mod.†/–equivariant stratified real-analytic homeomorphism
between T.†/ and a certain type of arc complex for †, generalizing a theorem of [Luo 2007] for surfaces
with totally geodesic boundary (see also [Mondello 2009b; Do 2008; Ushijima 1999]). Moreover, by
construction, this map records both the combinatorial structure of the spine of O�.X / as well as the metric
residue of the crowns of †.

Theorem 6.4 is used extensively throughout the paper in order to pass between the combinatorial data of
a weighted arc system, the restriction of O�.X / to †, and the corresponding hyperbolic structure on †.
The proof is independent of the main line of argument; as such, the reader is encouraged to understand
the statement, but may wish only to skim the proof.

Sections 7–9: the space of shear-shape cocycles The second part of the paper is devoted to our
construction of shear-shape cocycles for a given � and an analysis of the space SH.�/ of all shear-shape
cocycles. Upon reaching this section, the reader may find it useful to glance ahead to either Section 10 or
Section 13 to instantiate our definitions.

After reviewing structural results on transverse cocycles, in Section 7 we give both cohomological and
axiomatic definitions of shear-shape cocycles (Definitions 7.5 and 7.11, respectively), both predicated on
some underlying weighted arc system on †. In Proposition 7.13 we prove these definitions agree. Using
the cohomological description, we observe a constraint on the weighted arc systems that can underlie a
shear-shape cocycle coming from metric residue conditions (Lemma 7.9); this can also be thought of as a
generalization of the fact that one can only glue together totally geodesic boundary components of the
same length (compare Lemma 13.1).

Letting B.S n �/ denote the subvariety of the filling arc complex of † cut out by the aforementioned
residue conditions, we show in Section 8 that the space SH.�/ of shear-shape cocycles forms a bundle of
transverse cocycles over B.S n �/ with some additional structure (Theorem 8.1) whose total space is
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a cell of dimension 6g� 6 (Corollary 8.2). In this section we also introduce the Thurston intersection
form on SH.�/ (Section 8.2) and prove that the positive locus SHC.�/ it defines is itself a bundle
over B.S n�/ (Proposition 8.5).

Finally, in Section 9 we give train track coordinates for the space of shear-shape cocycles. The train
tracks we use give a preferred decomposition of arcs on S into pieces that are measurable by shear-shape
cocycles and as such give a useful way of specifying shear-shape cocycles by a finite amount of data.
The weight space for a train track is also a natural model in which to consider local deformations of
a shear-shape cocycle, a feature which we exploit in Section 14. In Section 9.3 we discuss how the
piecewise-integral-linear structure induced by train track charts endows SHC.�/ with a well-defined
integer lattice and preferred measure in the class of Lebesgue.

The reader willing to accept the structure theorems can adequately navigate the remaining two parts of
the paper using weight systems on (augmented) train tracks as a local description of the structure of
shear-shape space.

Sections 10 and 11: coordinates for transverse foliations At this point, we have established the
structure necessary to coordinatize foliations transverse to � by shear-shape cocycles.

A measured foliation �2MF.�/ determines a holomorphic quadratic differential qD q.�; �/2Fuu.�/ via
Theorem 2.1, and we begin by specifying an arc system ˛.q/ that records the horizontal separatrices of q.
We then build a train track � carrying � from a triangulation by saddle connections (Construction 10.4);
augmenting � by the arc system ˛.q/ then allows us to realize the periods of the triangulation as a
(cohomological) shear-shape cocycle I�.�/. This identification also gives a useful formula for I�.�/ as a
weight system on the augmented train track � (Lemma 10.10).

We then show that one can rebuild q just from the train track weights defined by I�.�/; a similar (but more
technical) argument then gives that I�.�/ 2 SHC.�/ (Proposition 10.12). This reconstruction technique
together with the structure of shear-shape space therefore allows to deduce that I� is a homeomorphism
onto its image. At the end of this section, we explain how the work done in the fourth and final part of the
paper implies that I� surjects onto SHC.�/ (Theorem 10.15), and why we choose to prove surjectivity
this way. See Remark 10.16 in particular.

Since I� essentially yields period coordinates, it is not surprising that (a variant of) Teichmüller geodesic
flow is given in coordinates by dilation (Lemma 11.1), while the Teichmüller horocycle flow is translation
by � (Lemma 11.2). We also naturally recover the “tremor deformations” introduced in [Chaika et al.
2020] as translation by measures � supported on � that are not necessarily absolutely continuous with
respect to � (Definition 11.3). Figure 17 details a dictionary between the language of [Chaika et al. 2020]
and our own.

Sections 12–15: coordinates for hyperbolic structures In the final part of the paper, we use the
geometry of the orthogeodesic foliation to coordinatize hyperbolic structures via shear-shape cocycles.
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From Theorem 6.4, we know that the combinatorialization of O�.X / on each subsurface S n � by a
weighted arc system completely encodes the geometry of the pieces. Cutting X n � further along the
orthogeodesic realization of each such arc, we obtain a family of (partially ideal) right-angled polygons.
The orthogeodesic foliation equips each polygon with a natural family of basepoints, one on each of its
sides adjacent to �, that vary analytically in T.S n �/. We are thus able to define a “shear” parameter
between (some pairs of) degenerate polygons, and this shear data assembles together with the “shape”
data on each subsurface to give instructions for gluing the polygonal pieces back together to obtain X.

In Section 12 we state the main Theorem 12.1, that the shear-shape coordinate map �� WT.S/!SHC.�/ is
a homeomorphism, supply an outline of its proof, and derive some immediate corollaries. The construction
of �� is given in Section 13, where we formalize the discussion from the previous paragraph. We also
prove that the central diagram (2) commutes (Theorem 13.13), which then implies that �� takes hyperbolic
length to the Thurston intersection form (Corollary 13.14).

Section 14 is the most technical part of the paper. In it, we define the “shape-shifting” cocycles
(Proposition 14.26) along which a hyperbolic structure can be deformed (Theorem 15.1); these de-
formations are generalizations of Thurston’s cataclysms or Bonahon’s shear deformations. Although the
construction of a shape-shifting deformation is rather involved, we attempt to keep the reader informed of
the geometric intuition that guides the construction throughout. Finally, in Section 15 we assemble all of
the necessary ingredients to prove Theorem 12.1. That the earthquake along � is given by translation
by � in SHC.�/ (Corollary 15.2) is an immediate consequence of the construction of shape-shifting
deformations as generalizations of cataclysms. We then discuss how the action of dilation in coordinates
can sometimes be identified with directed geodesics in Thurston’s asymmetric metric (Propositions 15.12
and 15.18).

4 Crowned hyperbolic surfaces

When a hyperbolic surface is cut along a geodesic multicurve, the (completion of the) resulting space is
a compact hyperbolic surface with compact, totally geodesic boundary. When the same surface is cut
along a geodesic lamination, the (completion of the) complementary subsurface can have noncompact
“crowned boundaries”. This section collects results about hyperbolic structures on such “crowned surfaces”
as well as the relationship between properties of the lamination and the topology of its complementary
subsurfaces.

Remark 4.1 Throughout this section and the following, we reserve S to denote a closed surface. If � is
a geodesic lamination, then S n� denotes the metric completion of the complementary subsurfaces to �
(with respect to some auxiliary hyperbolic metric); we will refer to the topological type of a component
of S n� by †. Hyperbolic metrics on S and † will be denoted by X and Y, respectively.

Geometry & Topology, Volume 28 (2024)



Shear-shape cocycles for measured laminations and ergodic theory of the earthquake flow 2013

Hyperbolic crowns While less familiar than surfaces with boundary, crowned hyperbolic surfaces
naturally arise by uniformizing surfaces with boundary and marked points on the boundary. They are also
intricately related to meromorphic differentials on Riemann surfaces with high-order poles (see eg [Gupta
2021]).

A hyperbolic crown with ck spikes is a complete, finite-area hyperbolic surface with geodesic boundary
that is homeomorphic to an annulus with ck points removed from one boundary component. In the
hyperbolic metric, the circular boundary component corresponds to a closed geodesic and each interval
of the other boundary becomes a bi-infinite geodesic running between ideal vertices; compare Figure 2.

In general, a hyperbolic surface with crowned boundary is a complete, finite-area hyperbolic surface with
totally geodesic boundary; the boundary components are either compact or hyperbolic crowns. We record
the topological type of a crowned surface of genus g with b closed boundary components and k crowns
with c1; : : : ; ck many spikes as †fcg

g;b
, where fcg D fc1; : : : ; ckg.

Remark 4.2 Ideal polygons may be considered as crowned surfaces of genus 0 with a single (crowned)
boundary component. All of the results in this section hold for both crowned surfaces with nontrivial
topology as well as for ideal polygons, but their proofs are slightly different. Our citations of [Gupta
2021] are all for the case when † is not an ideal polygon; for the corresponding statements for ideal
polygons, see [Gupta 2021, Section 3.3] or [Han et al. 1995].

Every crowned surface Y with noncyclic (and nontrivial) fundamental group contains a “convex core”
obtained by cutting off its crowns along a geodesic multicurve [Casson and Bleiler 1988, Lemma 4.4].
When Y has type †fcg

g;b
, this core is a subsurface of genus g with bC k closed boundary components.

Since each crown with ci spikes may be decomposed into ci ideal hyperbolic triangles by introducing
leaves wrapping around the totally geodesic boundary component, we have the following expression for
the area:

(4) 1

�
Area.Y /D 4g� 4C 2bC

kX
iD1

.ci C 2/:

Note that one can triangulate an ideal polygon of c sides into c � 2 ideal triangles, and so the above
formula also holds for ideal polygons.

The metric residue While crown ends (and ideal polygons) do not have well-defined boundary lengths,
one can define a natural generalization when there are an even number of spikes. This turns out to be a
fundamental invariant that controls when crowns can be glued together along a lamination (Lemma 13.1).

Let C be a hyperbolic crown or an ideal polygon with c spikes, where c is even. One can then orient C,
that is, pick an orientation of the boundary leaves so that the orientations of asymptotic leaves agree.
Truncating each spike of C along a horocycle based at the tip of the spike yields a surface with a boundary
made up of horocyclic segments h1; : : : ; hc and geodesic segments g1; : : : ;gc . See Figure 2.
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g1

h1

g2

h4

Figure 2: Truncating an (oriented) crown to compute its metric residue.

Definition 4.3 [Gupta 2021, Definition 2.9] Let C be either an oriented hyperbolic crown or an oriented
ideal polygon with an even number of spikes. Then its metric residue res.C/ is

res.C/D
cX

iD1

"i`.gi/;

where "i is positive if the truncated crown lies on the left of gi and negative if it lies on the right.

Since changing the truncation depth of a spike increases the length of two adjacent sides, the metric
residue evidently does not depend on the choice of truncation [Gupta 2021, Lemma 2.10]. Observe also
that flipping the orientation of C flips the sign of its metric residue.

Similarly, define the metric residue of an oriented totally geodesic boundary component ˇ of Y to
be ˙`.ˇ/, where the sign depends on whether Y lies to the left of ˇ (positive) or right (negative).

Deformation spaces of crowned surfaces We now record some useful facts about the Teichmüller
spaces of crowned hyperbolic surfaces.

Given any crowned hyperbolic surface Y, one can obtain a natural compactification yY by adding on an
ideal vertex at the end of each spike of each crown. The corresponding (topological) surface y†fcg

g;b
then

has bC k boundary components with ci marked points on the .bCi/th boundary component. A marking
of a crowned hyperbolic surface Y is a homeomorphism

f W y†
fcg

g;b
! yY

which takes boundary marked points to ideal vertices. We think of the boundary marked points as having
distinct labels, so different identifications of the boundary points of y†fcg

g;b
with the spikes of Y yield

different markings. The Teichmüller space of a crowned hyperbolic surface †fcg
g;b

is then defined to be the

space of all marked hyperbolic metrics on †fcg
g;b

, up to isotopies which fix the totally geodesic boundary
components pointwise and fix each ideal vertex of each crown.
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As noted above, any crowned hyperbolic surface †fcg
g;b

contains an uncrowned subsurface which serves as
its convex core. Therefore, the Teichmüller space of a crowned hyperbolic surface may be parametrized
by the Teichmüller space of its convex core together with parameters describing each crown and how it is
attached. A precise version of this dimension count is recorded below.

Lemma 4.4 [Gupta 2021, Lemma 2.16] Let †D †fcg
g;b

be a crowned hyperbolic surface or an ideal
polygon. Then T.†/ŠRd , where

(5) d D 6g� 6C 3bC

kX
iD1

.ci C 3/:

Fixing the length of any closed boundary component of†fcg
g;b

cuts out a codimension 1 subvariety of T.†/.
Similarly, the subspace of surfaces with fixed metric residues at an even–spiked crown has codimension
one. The following proposition ensures that the intersections of the level sets of length and metric residue
are topologically just cells of the proper dimension:

Proposition 4.5 [Gupta 2021, Corollary 2.17] Let †D†fcg
g;b

be a crowned surface or an ideal polygon.
Let ˇ1; : : : ; ˇb denote the closed boundary components of † and let C1; : : : ;Ce denote the crown ends
which have an even number of spikes. Fix an orientation of each crown end. Then , for any .Li/ 2Rb

>0

and any .Rj / 2Re,

f.Y; f / 2 T.†/ j `.ˇi/DLi and res.Cj /DRj for all i; j g ŠRd�b�e

where d is as in (5).

Topology When a crowned surface † comes from cutting a closed surface S along a geodesic lamina-
tion �, we can relate the topology of � to the topology of †.

Recall that the Euler characteristic of a lamination is defined to be alternating sum of the ranks of its
Čech cohomology groups, viewing � as a subset of S. Below, we compute the Euler characteristic of a
geodesic lamination in terms of the topological type of its complementary subsurfaces.

Lemma 4.6 Let � be a geodesic lamination on S. Then the total number of spikes of S n� equals�2�.�/.

We also record the corresponding formula for later use. Suppose that S n�D†1[ � � � [†m; then

(6) �.�/D�
1

2

mX
jD1

kjX
iD1

c
j
i ;

where fcj
1
; : : : ; c

j

kj
g denotes the crown type of †j .

Proof Fix some train track � which carries � and has the same topological type; in Section 5.2 below,
this is referred to as snug carrying of � on � . Lemma 13 of [Bonahon 1997b] states that, for any such
train track, �.�/D �.�/, and so it suffices to compute the Euler characteristic of � .
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Splitting the switches of � if necessary, we may assume that � is trivalent (observe that this operation
preserves the Euler characteristic). Then each spike of S n� corresponds to a unique switch of � , and
each switch corresponds to three half-edges, so

#spikes.S n�/D #switches.�/D 2
3
� #edges.�/:

Plugging this into the formula �.�/D #switches.�/� #edges.�/ proves the claim.

In general, the relationship between the boundary components of S n� and � can be rather involved. For
example, one can construct a lamination on a closed surface of genus g � 2 consisting of three leaves,
two of which are nonisotopic simple closed curves and one which spirals onto each of the closed leaves.
In this scenario, there is not a precise correspondence between closed leaves of � and totally geodesic
boundary components of its complementary subsurface.

Note So that we do not have to deal with possible spiraling behavior of �, we henceforth restrict our
discussion to those laminations that support a measure.

5 The orthogeodesic foliation

In this section we construct the orthogeodesic foliation O�.X / 2MF.�/ of a hyperbolic surface X with
respect to � and describe some of its basic properties.

5.1 The spine of a hyperbolic surface

We begin by describing the orthogeodesic foliation restricted to subsurfaces Y complementary to �. Let
Y be a finite-area hyperbolic surface with totally geodesic boundary, possibly with crowned boundary.
As we are most interested in those Y coming from cutting a closed surface along a lamination, we also
assume that Y has no annular cusps.

Definition 5.1 The orthogeodesic foliation O@Y .Y / of Y is the (singular, piecewise-geodesic) foliation
of Y whose leaves are fibers of the closest-point projection to @Y.

Near @Y, the leaves of O@Y .Y / are geodesic arcs meeting @Y orthogonally. To understand the global
structure of the foliation, however, we need to determine how the leaves extend into the interior of Y. In
particular, we must understand the locus of points that are closest to multiple points of @Y.

To that end, for any point x 2 Y, define the valence of x to be

val.x/ WD #fy 2 @Y W d.x;y/D d.x; @Y /g:
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Figure 3: The spine of a hyperbolic surface with crowned boundary. Note that the finite core Sp0

(represented in bold) contains a spine for the convex core of the surface.

The (geometric) spine Sp.Y / of Y is the set of points of Y with valence at least 2, and has a natural
partition into subsets Spk.Y /, where x 2 Spk.Y / if it is equidistant from exactly k points in @Y. For the
rest of the section we fix a hyperbolic surface Y and refer to Sp.Y / and Spk.Y / simply as Sp and Spk .

It is not hard to see that Sp is a properly embedded, piecewise-geodesic 1–complex with some nodes of
valence 1 removed (equivalently, a ribbon graph with some half-infinite edges). Indeed, Sp decomposes
into a finite core Sp0 and a finite collection of open geodesic rays; since we assumed Y had no annular
cusps, each ray corresponds with a spike of a crowned boundary component. See [Mondello 2009b,
Section 2] for a discussion of the structure of the spine of a compact hyperbolic surface with geodesic
boundary in which Sp0

D Sp.

We record below a summary of this discussion; see also Figure 3.

Lemma 5.2 The finite core Sp0 is a piecewise–geodesically embedded graph , whose edges correspond
to the components of Sp2 with finite hyperbolic length and vertex set

S
k�3 Spk . Each geodesic ray

of Sp n Sp0 exits a unique spike of Y.

By definition, the orthogeodesic foliation O@Y .Y / has k–pronged singular leaves emanating fromS
k�3 Spk for k � 3. The nonsingular leaves of O@Y .Y / glue along Sp2.Y / (usually at an angle) and can

be smoothed by an arbitrarily small isotopy supported near Sp. As the geometry of Sp interacts nicely
with the leaves of O@Y .Y /, we generally prefer to think about O@Y .Y / as a piecewise-geodesic singular
foliation rather than as a smooth one. When convenient, we will pass freely between the orthogeodesic
foliation and a smoothing.

We observe that there is also an isotopy supported in the ends of the spikes of Y and restricting to the
identity on @Y that maps leaves of the orthogeodesic foliation to horocycles based at the tip of the spike.
This equivalence between the orthogeodesic and horocyclic foliations in spikes is of vital importance in
Sections 13–15 as it allows us to adapt many of Bonahon and Thurston’s arguments to this setting.

Remark 5.3 One can check that, for regular ideal polygons, the isotopy in spikes extends to a global
isotopy between the orthogeodesic foliation and the symmetric partial foliation by horocycles.
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Following the leaves of the orthogeodesic foliation in the direction of Sp defines a deformation retraction
of Y onto Sp; let r W Y ! Sp be the map fully collapsing Y onto Sp. For x and y in the same component
of Sp2, the leaves r�1.x/ and r�1.y/ of O@Y .Y / are properly isotopic. We may therefore associate to
each edge e of Sp2 the (proper) isotopy class of r�1.x/ for x 2 e; we call this the dual arc ˛e to e.

There is a distinguished representative of ˛e that is geodesic and orthogonal to both @Y and e; compare
Figure 7. By abuse of notation, we henceforth identify ˛e with its orthogeodesic representative and define

˛.Y / WD
[

e�Sp0
2

˛e:

Lemma 5.4 The metric completion of the surface with corners Y n˛.Y / is homeomorphic to a union of
closed disks and closed disks with finitely many points on the boundary removed. That is , ˛.Y / fills Y.

Proof Each component of Y n˛.Y / deformation retracts onto a component of the metric completion
of Sp n˛.Y /. By the duality of arcs and edges of Sp0

2, each component of Sp n˛.Y / is contractible.

The orthogeodesic foliation also comes with a natural transverse measure: the measure of an arc k

transverse to (a smoothing of) O@Y .Y / is defined on small enough transverse arcs k first by isotoping
the arc into @Y transversely to O@Y .Y / and then measuring the hyperbolic length there. Locally, the
orthogeodesic foliation admits a reflection about each edge of Sp, so by restricting k to those leaves
of O@Y .Y / that intersect a given edge, we can use this symmetry to see that the measure of k is the
same after a transverse isotopy onto either boundary component of Y. Extending to all transverse arcs by
additivity defines a transverse measure on O@Y .Y /.

To each component e of Sp0
2 we associate the length ce > 0 of either component of r�1.e/\ @Y ; the

transverse measure of e is exactly ce . Anticipating the contents of the next section (see eg Theorem 6.4),
we define the formal sum

(7) A.Y / WD
X

e�Sp0
2

ce˛e:

5.2 The orthogeodesic foliation

Now that we have described the orthogeodesic foliation on each component of S n�, we can glue these
pieces together along the leaves of � to get a foliation of S.

Construction 5.5 Let X 2 T.S/ and � be a geodesic lamination on X. Cutting X open along � taking
the metric completion of each component, we obtain a union of hyperbolic surfaces with totally geodesic
boundary (possibly with crowned boundary). On each such component Y, we construct the orthogeodesic
foliation O@Y .Y / as described in Section 5.1 above.
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A standard fact from hyperbolic geometry [Canary et al. 2006, Lemma 5.2.6] shows that the line field
defined by (a smoothing of) the orthogeodesic foliation forms a Lipschitz line field on X n�. Since � has
measure 0, this line field is integrable near �, so the partial foliation defined on X n� extends across the
leaves of �. This defines a measured foliation O�.X / 2MF.S/, and hence a map O� W T.S/!MF.S/.

Later, we prove in Lemma 5.8 that � and O�.X / bind, allowing us to restrict the codomain of O� to MF.�/.
Ultimately, our goal is to show that O� is a homeomorphism onto MF.�/.

Geometric train tracks We now consider the geometry of O�.X / in a neighborhood of �. The following
is a modification of an important construction of Thurston [1979, Chapter 8.9]:

Construction 5.6 Let � > 0 be small enough that the �–neighborhood N�.�/ is topologically stable. The
orthogeodesic foliation O�.X / restricts to a foliation of N�.�/ without singular points, and collapsing
the leaves yields a quotient map � W N�.�/! � where � can be C 1–embedded in N�.�/ as a train track
carrying � in X. By changing �, we may assume that � is trivalent.6 Then � D �.�;X; �/ is a geometric
train track.

We sometimes refer to N�.�/ as a train track neighborhood of � and the leaves of O�.X /jN�.�/ as ties.
A train track neighborhood coming from Construction 5.6 is a union of bands and annuli foliated by
ties glued together along the ties that collapse to switches of � . We recall that, if � meets every tie of �
and there is no path between spikes of S nN�.�/ that is contained in N�.�/ n�, then � is said to snugly
carry �. Equivalently, � snugly carries � if and only if S n� and S n � have the same topological type.
With this definition, it is clear that the geometric train tracks constructed above always carry � snugly.

Using the geometry of � W N�.�/! � , the branches of � admit a well-defined notion of length. Indeed,
let b � � be a branch, and choose a lift Qb to the universal cover zX. Let `; `0 � z� be leaves of the
elevation z� of � to zX that meet ��1. Qb/� N�.z�/ in segments g and g0. Since O�.X / is equivalent to a
horocyclic foliation in N�.�/, transporting g along the leaves of Oz�.

zX / near Qb onto g0 is isometric, so
`X .g/D `X .g

0/. We may therefore define the length of b (along �) as

`X .b/ WD `X .g/

for any g as above. Similarly, for any branch b � � , the ties of N�.�/ collapsing to b all have the same
integral with respect to �. Define

�.b/ WD �.k/

for any tie k � O�.X /j��1.b/; this is equivalently the weight deposited by � on b in its � train track
coordinates.

Lemma 5.7 For any hyperbolic structure X and any measure �0 on �, we have i.�0;O�.X //D `X .�
0/.

Proof Using Construction 5.6, find a geometric train track � WN�.�/! � snugly carrying � on X. By
definition, the intersection pairing is given by the integral over X of the product measure d�0˝ dO�.X /,

6In the literature, trivalent train tracks are also called “generic”.
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whose support is contained entirely in the train track neighborhood N�.�/. For each branch b � � , the
integral of this measure on ��1.b/ is just �0.b/`X .b/, so

i.�0;O�.X //D

“
X

d�0˝ dO�.X /D

“
N�.�/

d�0˝ dO�.X /

D

X
b��

“
��1.b/

d�0˝ dO�.X /D
X
b��

�0.b/`X .b/:

On the other hand, `X .�0/ is the integral over X of the measure d�0˝ dl�0 , locally the product of the
transverse measure �0 and 1–dimensional Lebesgue measure l�0 on the support of �0. Since �0 is supported
in �, the integral of d�0˝ dl�0 is equal to the integral of d�0˝ dl�, and again the support of the product
measure is contained in N�.�/. On each thickened branch ��1.b/ � N�.�/, the integral of d�0˝ dl�

is �0.b/`X .b/, giving
`X .�

0/D
X
b��

�0.b/`X .b/:

With this computation, we can now show that � and O�.X / together bind S.

Lemma 5.8 For any X 2 T.S/ and � 2ML.S/, we have O�.X / 2MF.�/.

Proof Suppose that � is an measured lamination such that i.�; �/D 0; without loss of generality, we
may assume that � is ergodic. Then one of two things must be true: either � is supported on � or its
support is disjoint from �. In the first case, i.�;O�.X //D `X .�/ > 0 by Lemma 5.7.

If � is disjoint from � then it is contained in a component Y of X n�, and we need only show that
i.�;O�.X // > 0. Scaling the measure of � as necessary, let us assume that `X .�/D `Y .�/D 1. Now we
recall that the set of weighted simple closed curves is dense in the space of measured laminations on Y.
By homogeneity and continuity of the intersection pairing, it therefore suffices to find some uniform
� > 0 such that

i.;O�.X //� �`X . /

for every simple closed curve  � Y. Indeed, once we have demonstrated such a bound we may
approximate � arbitrarily well by weighted curves =`X . / to deduce the desired bound on i.�;O�.X //.

So let Y0 be the convex hull of r�1.Sp0/; Y0 is compact and the inclusion of Y0 into Y is a homotopy
equivalence. Any simple closed geodesic  in Y is contained in Y0, and, since Y deformation retracts
onto the component of Sp contained in Y,  is homotopic to a concatenation of edges in Sp0.

Give Sp0 a metric making its edges e have length ce D i.e;O�.X //; then the inclusion Sp0
! Y0 with

this metric induces an equivariant quasi-isometry on universal covers (this follows because they are both
Gromov hyperbolic and �1.Y / acts cocompactly and properly discontinuous on each). The geodesic
lengths of closed curves in Sp and in Y0 are therefore comparable, so there is some � > 0 such that

i.;O�.X //D `Sp0. /� `X . /�;

demonstrating the desired uniform bound.

Geometry & Topology, Volume 28 (2024)



Shear-shape cocycles for measured laminations and ergodic theory of the earthquake flow 2021

.X; �/ q.O�.X /; �/

Figure 4: Inflating a lamination and deflating its complementary components.

5.3 Deflation

For a given pair .X; �/ 2 T.S/�ML.S/, the pair of laminations O�.X / and � bind by Lemma 5.8. By
Theorem 2.1, there is a unique quadratic differential q D q.O�.X /; �/, holomorphic on some Riemann
surface Z, whose real and imaginary foliations are O�.X / and �, respectively. In this section we define a
deflation map D� WX !Z that allows us to make direct comparisons between the hyperbolic geometry
of X and the singular flat geometry q. This discussion is further expanded on in [Calderon and Farre
2024a, Section 8].

An informal description of D� is that it “deflates” the subsurfaces of X n�, retracting them to Sp along
the leaves of O�.X /, while it “inflates” along the leaves of � according to the transverse measure. The
orthogeodesic foliation in a neighborhood of � assembles into the vertical foliation of the resulting
quadratic differential metric and D� maps Sp�X to the horizontal separatrices; compare Figure 4.

Remark 5.9 This heuristic description of D� can be made precise by grafting X along � (see eg [Dumas
2009]) and then collapsing the hyperbolic pieces along the leaves of O�.X /. In particular, D� is not the
grafting map.

Proposition 5.10 Given a marked hyperbolic structure7 Œf W S ! X � 2 T.S/ and � 2 ML.S/, let
Œg W S !Z� 2T.S/ be the marked complex structure on which q.O�.X /; �/ is holomorphic. There is a
map

D� WX !Z

that is a homotopy equivalence restricting to an isometry between Sp0 with its metric induced by integrating
the edges against O�.X / and the graph of horizontal saddle connections of q.O�.X /; �/ with the induced
path metric. Moreover , D� ıf � g and D��O�.X /D Re.q/ and D���D Im.q/ as measured foliations.

Proof Construction 5.6 supplies us with a geometric train track � W N�.�/ ! � . On the preimage
��1.b/ of each closed branch b of � we integrate the two measures O�.X /jN�.�/ and � giving ��1.b/

the structure of a bifoliated Euclidean rectangle of length `X .b/ and height �.b/ These rectangles glue
along their “short” sides f��1.s/ W s is a switch of �g to give N�.�/ the structure of a bifoliated Euclidean
band complex.

7Throughout the paper we suppress markings in our notation, but reintroduce them here to state the proposition precisely.
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The map � extends to a self–homotopy equivalence of X homotopic to the identity preserving the
orthogeodesic foliation leafwise. This means that the boundary of N�.�/ admits a natural retraction
onto Sp by collapsing the leaves of the orthogeodesic foliation in the complement of N�.�/, and we take
the quotient generated by this equivalence relation to obtain a new surface Y with its complex structure
described below.

On each rectangle ��1.b/, the bifoliated Euclidean structure gives local coordinates to C away from the
singular points of O�.X / locally mapping O�.X / to jdxj and � to jdyj, thought of as measured foliations
on the plane. These coordinate patches glue together along the spine to give local coordinates away from
the points of valence � 3. Moreover, these charts preserve jdxj and jdyj, so the transitions must be of
the form z 7! ˙zC ˛ for some ˛ 2 C. We have therefore built a Riemann surface Z equipped with a
half-translation structure away from the vertices of Sp, which become cone points of cone angle equal
to � � val.v/. Edges of Sp join vertices along horizontal trajectories representing all horizontal saddle
connections on q; their lengths in the singular flat metric are given by the integral over O�.X /. Thus D�
induces an isometry of metric graphs, as claimed.

This explicit description of the quadratic differential associated to the pair .X; �/ by the map O from the
introduction will be useful in order to prove in Theorem 13.13 that (2) commutes.

6 Cellulating crowned Teichmüller spaces

We now define a certain arc complex which combinatorializes the structure the orthogeodesic foliation
on complementary subsurfaces. The main result of this section is Theorem 6.4, which shows that this
arc complex is equivariantly homeomorphic to the Teichmüller space of the complementary surface.
In particular, this shows that the restriction of the orthogeodesic foliation to each component of S n �

completely determines the hyperbolic structure on that piece.

Before stating the theorem, we must first set up our combinatorial analogue for Teichmüller space. This
appears as Definition 6.1 after a series of auxiliary constructions.

Suppose that †D†fcg
g;b

is a finite-area hyperbolic surface with boundary and without annular cusps. A
properly embedded arc I ! † is essential if I cannot be isotoped (through properly embedded arcs)
into @† or into a spike. The arc complex A .†; @†/ of † rel boundary is the (simplicial, flag) complex
whose vertices are isotopy classes of simple essential arcs of †. Vertices span a simplex in A .†; @†/ if
and only if there exists a collection of pairwise disjoint representatives for each isotopy class. The filling
arc complex Afill.†; @†/ is the subset of A .†; @†/ consisting only of those arc systems which cut †
into a union of topological disks.

The geometric realization jA .†; @†/j of A .†; @†/ is obtained by declaring every simplex to be a regular
Euclidean simplex of the proper dimension; note that the topology of jA .†; @†/j obtained from the
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metric structure is in general different from the standard simplicial topology (see eg [Bowditch and Epstein
1988]). The geometric realization jAfill.†; @†/j is then the subspace of filling arc systems equipped with
the subspace topology induced by the metric structure.

Definition 6.1 The weighted filling arc complex jAfill.†; @†/jR of † rel boundary is the set of all
weighted multiarcs of the form

AD
X

ci˛i ;

where ˛ D
S
˛i 2 Afill.†; @†/ and ci > 0 for all i .

Throughout, we will use ˛ to denote a single arc, and ˛ to denote an (unweighted) multiarc. The symbol A

will be reserved to denote a weighted multiarc.

Note If † is an ideal hyperbolic polygon, then the empty arc system fills † and we consider it as an
element of jAfill.†; @†/jR. If † is not a polygon, then the empty arc system never fills.

So long as † is not an ideal polygon, jAfill.†; @†/jR is just jAfill.†; @†/j �R>0. When † is an ideal
polygon, jAfill.†; @†/jR is homeomorphic to the open cone on the filling arc complex�

jAfill.†; @†/j �R�0

�
=
�
jAfill.†; @†/j � f0g

�
:

See Figure 5, left, for an example of jAfill.†; @†/jR in the case when † is an ideal pentagon.

Remark 6.2 The standard duality between arc systems and ribbon graphs (see eg [Mondello 2009a])
assigns to every A 2 jAfill.†; @†/jR a metric ribbon graph spine for † (with some infinitely long edges
if † has crowns). One could of course translate the cell structure of jAfill.†; @†/jR into a cellulation of
an appropriate space of marked metric ribbon graphs.

While the arc complex definition is more practical for our definition of shear-shape cocycles, the dual
ribbon graph picture allows us to immediately understand how to record the geometry of the horizontal
trajectories of a quadratic differential (see Section 10).

Combinatorial geometry Now that we have defined our combinatorial analogue of Teichmüller space,
we can also define combinatorial notions of both length and metric residue.

Suppose that ˇ is a compact boundary component of † and A 2 jAfill.†; @†/jR; then we define the
A–length `A.ˇ/ of ˇ to be the sum of the weights of the arcs of A incident to ˇ (counted with multiplicity,
so that, if both endpoints of ˛ lie on ˇ, then its weight is counted twice).

Similarly, let C be an oriented crowned boundary component with an even number of spikes. Then the
edges of C are partitioned into those that have the surface lying on their left and those which have the
surface on their right; call these edges positively and negatively oriented, respectively. The A–residue
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c1˛1

c2˛2

c3˛3 c4˛4

ˇ

C

`A.ˇ/D c1C 2c2C c3C c4

resA.C/
D c4� c3

Figure 5: Arc complexes and combinatorial geometry. Left: the weighted arc complex of an ideal
pentagon rel its boundary. Right: the combinatorial length and residue associated to a weighted
filling arc system A.

resA.C/ of C is then defined to be the sum of the weights of the arcs incident to each positively oriented
edge of C minus the sum of the weights of the arcs incident to the negatively oriented edges (where both
sums are again taken with multiplicity). See Figure 5, right, for an example calculation.

We have now come to the most important object of this section, and a foundational result of this paper
that allows us to pass between hyperbolic metrics, orthogeodesic foliations and metric graphs embedded
in flat structures.

Construction 6.3 Let Y be a crowned hyperbolic surface. As discussed in Section 5.1, the orthogeodesic
foliation determines a spine for Y together with a dual (filling) arc system ˛.Y /. Weighting each dual arc
by integrating the measure induced by O@Y .Y / over the corresponding edge of Sp (compare (7)) therefore
defines a map

A W T.†/! jAfill.†; @†/jR:

When† has compact boundary, Luo [2007, Theorem 1.2 and Corollary 1.4] states that A. � / is a Mod.†/–
equivariant stratified real-analytic homeomorphism; see also [Mondello 2009b; Do 2008; Ushijima 1999].
Our aim is to generalize Luo’s theorem to surfaces with crowned boundary. While the arguments of [Luo
2007] can probably be adapted to this setting, we prefer to use some elementary hyperbolic geometry

† D†

 

Figure 6: The truncation of a crowned surface † along  and its double D†.
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to realize jAfill.†; @†/jR as a subcomplex sitting “at infinity” of the weighted filling arc complex of a
surface with compact boundary.

Theorem 6.4 Let † be a crowned hyperbolic surface. Then the map

A W T.†/! jAfill.†; @†/jR

is a Mod.†/–equivariant stratified real analytic homeomorphism. Moreover , let ˇ1; : : : ; ˇb denote the
closed boundary components of † and C1; : : : ;Ce the crown ends which have an even number of spikes.
Fix an orientation of each Cj . Then the map above identifies the level sets

f.Y; f / 2 T.†/ j `.ˇi/DLi ; res.Cj /DRj g Š fA 2 jAfill.†; @†/jR W `A.ˇi/DLi ; resA.Cj /DRj g

for any .Li/ 2Rb
>0

and any .Rj / 2Re.

The remainder of this section is devoted to deducing Theorem 6.4 from [Luo 2007, Theorem 1.2 and
Corollary 1.4; Mondello 2009b, Section 2.4]. Our plan is to appeal to the aforementioned references to
prove that, for a given maximal arc system ˛, the map A. � / extends to a real analytic map A˛ WT.†/!R˛

that agrees with A. � / on the locus of hyperbolic surfaces whose spine has dual arc system contained
in ˛ (Lemma 6.9). We show that A. � / is a homeomorphism by building a continuous right inverse
Y W jAfill.†; @†/jR! T.†/; Y .A/ is obtained as a geometric limit metric on a larger compact surface
with boundary as some arcs are pinched to spikes.

Endowing † with an auxiliary hyperbolic metric, we take †ı to be the surface with geodesic and
horocyclic boundary components obtained by truncating the tips of the spikes. Let  be the union of
horocyclic boundary components of †ı and double †ı along  to obtain a (topological) surface D† and
an identification of †ı with a subsurface of D† taking @†ı n  into @D†; see Figure 6.

Let AD
P

ci˛i be a weighted filling arc system on † and let ˇ be the mirror image of ˛ in D†, so that
˛[  [ˇ is a filling arc system on D†. For each t > 0, define

B t D

X
ciˇi C t

X
i C

X
ci˛i 2 jAfill.D†; @D†/jR:

Since D† is compact, we can apply [Luo 2007, Corollary 1.4], which states that there is a unique
hyperbolic structure Xt 2 T.D†/ whose natural weighted arc system coincides with B t .

Remark 6.5 It will be convenient to assume that ˛ is maximal, formally adding arcs of weight 0 to A

(and B t ) as necessary.

Our goal is now to show that .Xt / converges as t !1 to a surface Y 2T.†/ such that A.Y /DA. The
convergence is geometric: we take basepoints xt 2Xt lying outside of the “thin parts” of the subsurface
corresponding to †ı and extract a geometric limit of .Xt ;xt / as t !1. The limit metric Y has spikes
corresponding to  and so defines a point in T.†/. Moreover, Y inherits a filling arc system naturally
identified with ˛, which is necessarily realized orthogeodesically.
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We begin with an estimate on the lengths of orthogeodesic arcs.

Lemma 6.6 If X is a hyperbolic metric on a compact surface with totally geodesic boundary and
A.X /D

P
ci˛i , then

min
�

log 3; 2 tanh�1

�
tanh.log

p
3/

cosh
�

1
2
ci

� ��
� `X .˛i/�

2�

ci
;

for each i .

Proof Any leaf of the orthogeodesic foliation properly homotopic to ˛i has hyperbolic length at
least `X .˛i/. Thus the embedded “collar” about ˛i consisting of all leaves of the orthogeodesic foliation
in the same homotopy class of ˛i has area at least ci`X .˛i/ (see Figure 7). On the other hand, the
Gauss–Bonnet theorem bounds area of the collar above by 2� , so we get the bound

`X .˛i/�
2�

ci
:

Now we would like to find a lower bound for `X .˛i/ in terms of ci ; for notational convenience we fix i

and set ˛ D ˛i and c D ci . Assume that `X .˛/ < log 3. Let H be a component of X n˛ meeting ˛; then
there is a unique point u 2H equidistant from all boundary components of X meeting H. There is also a
universal lower bound to the distance from u to any such boundary component, given by log

p
3, the radius

of the circle inscribed in an ideal triangle. Thus the leaf of O@X .X / through u has length at least log.3/.

Since `X .˛/ < log 3, there is a leaf of the orthogeodesic foliation parallel to ˛ with length log 3. Using a
formula relating the lengths of the sides of a hyperbolic trirectangle [Buser 1992, Theorem 2.3.1], the
distance c0 from ˛ and this leaf is given by

(8) tanh
�

1
2
`X .˛/

�
D

tanh.log
p

3/

cosh .c0/
:

Now this expression is decreasing in c0, and x 7! tanh�1.x/ is increasing. We have that c > 2c0 by
definition (see Figure 7), so the lemma follows.

For any arc i of  , some elementary estimates similar to those given in the proof of Lemma 6.6
(compare (8)) give `t .i/ D O.e�t=2/. If ˛i appears in B t with coefficient ci D 0, then Lemma 6.6
provides a lower bound of log 3 for the length `t .˛i/ of ˛i on Xt . We also have the following upper bound:

Lemma 6.7 If cj D 0 for some j, then , for t large enough ,

log 3� `t . j̨ /� 2
X

ci C 8�
X 1

ci
Cj j log 144:

Proof We remove all arcs of ˛[ [ˇ with positive weight from Xt and let Ht be (the metric completion
of) the right-angled polygon component that contains j̨ . Our strategy is to find a path of controlled
length contained in @Ht joining the endpoints of j̨ .

Notice that @Ht alternates between segments of @Xt and arcs of ˛[  [ˇ with positive weight. From
Lemma 6.6, the total length of segments coming from arcs of ˛[ˇ is at most 8�

P
1=ci , because each
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˛

c

c0
j̨

� log 2

Hu

Figure 7: A foliated collar of width c about an orthogeodesic arc ˛. If the arc is shorter than
log 3, then there are (bold green) leaves of this collar of length equal to log 3. For a very short
arc i , the distance between the longest leaf of its collar and the leaf of length log 3 is at most
log 2. The dashed arc j̨ has weight 0 and corresponds to one of two possible choices of maximal
completion of ˛.

arc of ˛[ˇ can appear at most two times on @Ht . Similarly, from the construction of our coordinate
system, the total length of the segments coming from @Xt that correspond to collars of arcs in ˛[ˇ is at
most 2

P
ci .

Suppose some arc i of  forms a segment of @Ht . The distance between the leaf of the orthogeodesic
foliation parallel to i with length log.3/ and the singular, longest leaf parallel to i has distance uniformly
bounded above by log 2 for large values of t (see Figure 7). Truncate Ht by removing the leaves of the
orthogeodesic foliation parallel to i with length at most log 3 to obtain a new (nonconvex) geodesic
polygon H ıt . An application of the collar lemma [Buser 1992, Theorem 4.1.1] to the double DXt along
its boundary shows that j̨ does not enter the region of Ht that we removed.

Each arc i of  contributed at most 2tCO.e�t=2/ to the length of @Ht . However, after truncating, each
i contributes at most 2.log 2C log 3C log 2/D log 144 to the length of @H ıt . Putting together all of our
estimates completes the proof.

For each ˛i 2 ˛ with positive coefficient ci in B t , the orthogeodesic length `t .˛i/ of ˛i on Xt is bounded
above and below by the positive real numbers independent of t provided by Lemma 6.6. If ci D 0

for some i , then Lemma 6.7 provides bounds on `t .˛i/ independent of t . Therefore, there exists a
subsequence tk tending to infinity such that .`tk

.˛i// converges to a positive number `i for each i , while
`t .i/DO.e�t=2/ for each i 2  .

The metric completion of Xtk
n .˛ [  [ˇ/ is a collection of hyperbolic right-angled hexagons, each

with three nonadjacent sides that correspond to arcs of ˛[  [ˇ. The lengths of these sides determine
uniquely an isometry class of right-angled hexagons, which we have just proved converge to (degenerate)
right-angled hexagons in which the edges corresponding to arcs of  become spikes in the limit. The
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(degenerate) right-angled hexagons glue along ˛ to form a complete hyperbolic surface Y homeomorphic
to † with a maximal filling arc system labeled by ˛ and realized orthogeodesically on Y. That is, we
have constructed a surface Y .A/D Y 2 T.†/.

Lemma 6.8 A.Y .A//DA:

Proof By construction, the length of the projection of every edge of the spine of Xt dual to an arc of ˛
was constant along the sequence .Xtk

/ converging geometrically to Y .A/. The lemma follows.

In order to show that the inverse Y . � / is well defined, we will need the following statement, which refines
the relationship between the coefficients of B t and the lengths of its arcs.

Let ı D ˛[  [ˇ denote the support of B t . According to [Luo 2007, Theorem 1.2], the lengths of the
closest-point projections of the edges of the spine dual to the arcs of ı (ie the coefficients of the weighted
arc system) extend to an analytic local diffeomorphism Bı WT.D†/!Rı whose image is a convex cone
with finitely many sides.8 Now we show that analyticity extends to infinity.

Lemma 6.9 For each maximal filling arc system ˛ defining a cell of full dimension in Afill.†; @†/, there
is an analytic map

A˛ W T.†/!R˛

such that , if the spine of Y 2 T.†/ has dual arc system contained in ˛, then A˛.Y /DA.Y /.

Proof The orthogeodesic length functions associated to our maximal arc system ı D ˛[  [ˇ on D†

form an analytic parametrization of T.D†/, which we denote by `ı W T.D†/ ! R
ı

>0
. We have a

commutative diagram of analytic embeddings

(9)
R
ı

>0
Rı

T.D†/

Bıı`
�1
ı

`ı Bı

An explicit formula for Bı ı `
�1 can be recovered from [Mondello 2009b, Section 2.4], which produces

an analytic mapping G WR
˛[ˇ

>0
!R˛[ˇ that describes how Bı behaves when the arcs corresponding to 

have length close to 0. More precisely, let �˛[ˇ W Rı! R˛[ˇ be the coordinate projection. Then, for
xı D .x˛;x ;xˇ/ 2R

˛[ˇ

>0
�R



�0
, we have

(10) �˛[ˇ ıBı ı `
�1
ı .xı/DG.x˛;xˇ/CE

uniformly on compact subsets of R
˛[ˇ

>0
� R



�0
, where E is a vector whose entries are all of order

O.max2 fx2
 g/.

8The “projection length” associated to each arc of ı (called the “radius coordinate” in [Luo 2007] and the “width” in [Mondello
2009b]) is positive when that arc is dual to an edge of the spine of a surface X 2 T.D†/.
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Restricting to the locus of symmetric surfaces fX 2 T.D†/ W `˛i
.X / D `ˇi

.X / for all ig, the map G

therefore induces an analytic map F WR
˛

>0
!R˛ . Again, we have an analytic parametrization `˛ WT.†/!

R
˛

>0
by length functions and a diagram

(11)
R
˛

>0
R˛

T.†/

F

`˛ Fı`˛

So take A˛ D F ı `˛; it follows from the definitions that, if the dual arc system to the spine of a
surface Y 2 T.†/ is contained in ˛, then A˛.Y /DA.Y /.

A priori, Y .A/ depends on the subsequence Xtk
converging geometrically to Y .A/. However:

Lemma 6.10 The limit Y .A/ does not depend on choice of subsequence Xtk
, ie Xt ! Y. Moreover ,

Y W jAfill.†; @†/jR! T.†/ is continuous.

Proof Throughout this proof, we let � WD�˛[ˇ be the coordinate projection from the proof of Lemma 6.9.

Let s > 0 and Xt;s 2T.D†/ be the surface obtained from Xt by keeping all lengths of arcs of ˛[ˇ fixed
and taking `i

.Xt;s/ WD `i
.XtCs/ for each i 2  . Note that `i

.XtCs/DO.e�.sCt/=2/. By construction
of Xt;s , the lengths of arcs of ˛[ˇ agree with those of Xt , so (10) gives

�.Bı.Xt //��.Bı.Xt;s//DO.e�.sCt//:

Recall that �.B˛.Xt //D �.B t / is constant for all t > 0, so that

�.Bı.XsCt //��.Bı.Xt;s//DO.e�.sCt//

as well. Since Bı is open analytic, and f�.`ı.Xt // W t > 0g �R
˛[ˇ

>0
lies in a compact set (Lemmas 6.6

and 6.7), we can adjust the lengths of arcs ˛i and ˇi of ˛ [ ˇ in Xt;s by O.e�.sCt// to obtain XsCt .
Thus, for any tk !1, the lengths .`tk

.˛[ˇ// form a Cauchy sequence, and hence converge. Thus any
two subsequential geometric limits (with basepoints away from the spikes of the subsurface associated
with †ı) coincide, which proves that Y .A/ is well defined.

To see that Y . � / is continuous, let Ak !A; by passing to a subsequence, we may assume that Ak are in
the closure of the cell associated to a maximal filling arc system ˛. Let Ak and A be the mirror images
(with corresponding weights) of Ak and A in D†, respectively. We build two families of approximating
surfaces Xk ;X

k
k
2 T.D†/ corresponding to the weighted arc systems

AC k
X

i CA and Ak C k
X

i CAk

on D†, respectively. By [Luo 2007, Theorem 1.2] (alternatively the proof of Lemma 6.9), each X k
k

is
close to Xk in T.D†/; hence, X k

k
and Xk have the same geometric limit Y .A/ 2T.†/, which is what

we wanted to show.
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We now have all of the pieces in place to complete the proof of Theorem 6.4.

Proof of Theorem 6.4 By Lemma 6.10, Y . � / is well defined and continuous, and, by Lemma 6.8,
Y . � / is a right inverse to A. � /; in particular, Y . � / is injective. For a given maximal arc system ˛, the
open orthant U˛ DR

˛

>0
�R˛ is identified with the interior of a top-dimensional cell of jAfill.†; @†/jR.

Some of the hyperplanes in @R˛
�0

are identified with the interior of cells associated with nonmaximal
filling arc systems contained in ˛; let U˛ denote the closure of U˛ in jAfill.†; @†/jR.

Then Y . � / defines a continuous bijection U˛! Y .U˛/, and this identification is homeomorphic, because
A˛ supplies an analytic inverse on Y .U˛/, by Lemma 6.9. Since these homeomorphisms glue along the
combinatorics of jAfill.†; @†/jR, the map Y . � / is the desired global homeomorphic inverse to A. � /.

Again by Lemma 6.9, A. � / is analytic restricted to the relative interior of the image under Y . � / of each
cell of jAfill.†; @†/jR, demonstrating the stratified real analytic structure. That level sets of the residue
functions are mapped to one another is an exercise in unpacking the definitions.

7 Transverse and shear-shape cocycles

We now define the main protagonists of this paper, the shear-shape cocycles on a measured lamination.
In Section 7.2, we give a first definition of shear-shape cocycles in terms of the cohomology of an
augmented neighborhood of �, twisted by its local orientation (Definition 7.5). While this definition has
technical merit (and exactly parallels the construction of period coordinates for quadratic differentials, a
fact which we exploit in Section 10), it is impractical to use. We rectify this deficiency in Section 7.3
by giving a second formulation which parallels Bonahon’s axiomatic approach to transverse cocycles
(compare Definitions 7.4 and 7.11). The main result of this section, Proposition 7.13, proves that these
two definitions agree.

The reader may find it helpful to consult Sections 10 or 13 while digesting these definitions so as to have
a concrete model of shear-shape cocycles in mind.

7.1 Transverse cocycles

As shear-shape cocycles generalize Bonahon’s transverse cocycles, we begin by recalling two equivalent
definitions of transverse cocycles for geodesic laminations which we generalize in Sections 7.2 and 7.3.

Remark 7.1 We have chosen to present transverse cocycles in a way that anticipates our construction of
shear-shape cocycles. The reader is advised that our treatment is ahistorical, and in particular omits the
fascinating (and quite subtle) relationship between transverse cocycles and transverse Hölder distributions.
For more on this correspondence, see [Bonahon 1997a; 1997b; 1996].

Geometry & Topology, Volume 28 (2024)



Shear-shape cocycles for measured laminations and ergodic theory of the earthquake flow 2031

The first definition we consider is cohomological. Let � be a measured lamination on S ; then an orientation
of � is a continuous choice of orientation of the leaves of �. If N is any snug neighborhood of �, then one
may take a corresponding (snug) neighborhood yN of the orientation cover y� of �. Let � be the covering
involution of yN !N, and let H 1. yN ; @ yN IR/� denote the �1 eigenspace for the action of ��,

Definition 7.2 With all notation as above, a transverse cocycle for � is an element of H 1. yN ; @ yN IR/�.
We use H.�/ to denote the set of all transverse cocycles for �.

With the definition above it is clear that H.�/ is a vector space, and, if � is a union of sublaminations
�1; : : : ; �L, then the space of transverse cocycles splits as

H.�/D

LM
lD1

H.�l/:

We record the dimension of H.�/ below.

Lemma 7.3 [Bonahon 1997b, Theorem 15] The space of transverse cocycles forms a vector space of
real dimension ��.�/C n0.�/, where n0.�/ is the number of orientable components of �.

When working with individual transverse cocycles, the above definition is rather unwieldy. Instead, it is
often more useful to think of a transverse cocycle as a function on actual arcs instead of on homology
classes.

Definition 7.4 Let � 2ML.S/. A transverse cocycle � for � is a function which assigns to every arc k

transverse to � a real number �.k/ such that:

(H0) Support If k does not intersect �, then �.k/D 0.

(H1) Transverse invariance If k and k 0 are isotopic transverse to �, then �.k/D �.k 0/.

(H2) Finite additivity If k D k1[ k2, where ki have disjoint interiors, then �.k/D �.k1/C �.k2/.

The reader familiar with train tracks will recognize that these rules resemble those governing weight
systems on train tracks; see Section 9 for a continuation of this discussion.

We direct the reader to [Bonahon 1997b] or [Bonahon 1996, Section 3] for a proof of the equivalence
of Definitions 7.2 and 7.4 (our proof of Proposition 7.13, the corresponding statement for shear-shape
cocycles, can also be adapted to prove this equivalence).

7.2 Shear-shape cocycles as cohomology classes

Our first definition of a shear-shape cocycle is as a cohomology class on an appropriate augmented
orientation cover, paralleling Definition 7.2. This viewpoint allows us to deduce global structural results
about spaces of shear-shape cocycles (Lemma 7.8) and also reveals implicit constraints on the structure
of individual shear-shape cocycles (Lemma 7.9).
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Suppose that ˛ is a filling arc system for S n �. For each arc ˛i 2 ˛, choose an arc ti which meets ˛i

exactly once and is disjoint from �[˛nf˛ig. We call such an arc ti a standard transversal to ˛i . Compare
Figure 9. An orientation of �[˛ is a continuous orientation of the leaves of � together with a choice of
orientation on each ti such that ti can be isotoped transverse to ˛i into � so that the orientations agree.
Most pairs �[˛ are not orientable, but each has an orientation double cover y�[ y̨ (the reader should
have in mind the orientation cover of a quadratic differential). We note that if �[˛ is orientable then �
itself must be.

Consider a snug neighborhood N�.�/ of � on some hyperbolic surface X ; since X n � and X nN�.�/

have the same topological type, we can identify the arc system ˛ as an arc system on X nN�.�/. In
particular, taking a small neighborhood N�.˛/ of ˛, there is a correspondence between complementary
components of X n .�[˛/ and X nN�.�[˛/. We will refer to any neighborhood N˛ of �[˛ whose
complementary components have the same topological type as X n .�[˛/ as a snug neighborhood.

Now let N˛ be a snug neighborhood of � [ ˛; then the cover y� [ y̨ ! � [ ˛ extends to a covering
yN˛!N˛ with covering involution �. By definition of the orientation cover, each standard transversal ti

lifts to a pair of distinguished homology classes

t
.1/
i ; t

.2/
i 2H1. yN˛; @ yN˛IR/

such that ��t
.1/
i D�t

.2/
i .

The odd cocycles H 1. yN˛; @ yN˛IR/� for the covering involution �� now provide a local cohomological
model for the space of shear-shape cocycles on �. Observe that, for each i and each � 2H 1. yN˛; @ yN˛IR/�,

�.t
.1/
i /D����.t

.1/
i /D��.��t

.1/
i /D �.t

.2/
i /:

Definition 7.5 Let � 2ML.S/. A shear-shape cocycle for � is a pair .˛; �/ where ˛ D
P
˛i is a filling

arc system on S n� and � 2H 1. yN˛; @ yN˛IR/� is such that the values �.t .j/i / are all positive.9

Let †1[ � � �[†m denote the components of S n�; then we define the weighted arc system underlying � ,

A WD
X

�.t
.j/
i /˛i 2

mY
jD1

jAfill.†j ; @†j /jR:

We denote the set of all shear-shape cocycles for � by SH.�/, the set of all shear-shape cocycles with
underlying arc system ˛ by SHı.�I˛/, and the set of all shear-shape cocycles with underlying weighted
arc system A by SH.�IA/. Often, we will leave the arc system implicit and just say that � is a shear-shape
cocycle for �.

9By Poincaré–Lefschetz duality, we have a linear isomorphism H 1. yN˛ ; @ yN˛ IR/ŠH1. yN˛ IR/ mapping the odd cocycles for ��

to the odd cycles for ��. Compare with [Bonahon and Dreyer 2017, Sections 4.1 and 4.4], where a theory of (appropriately
generalized) transverse (co)cycles are applied to give shear-type coordinates for some higher-rank Teichmüller spaces.
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Remark 7.6 By Theorem 6.4, a filling weighted arc system A is the same data as a marked hyperbolic
structure on each component of S n�. In Sections 12–15, we prove that (so long as � satisfies a positivity
condition) these metrics glue together to give a complete hyperbolic metric on S.

Our definition of shear-shape cocycle a priori depends on the choice of auxiliary neighborhood N˛

of �[˛. However, it is not hard to see that:

Lemma 7.7 The spaces of shear-shape cocycles defined by different snug neighborhoods are linearly
isomorphic. Moreover , any two choices of snug neighborhoods define the same underlying weighted arc
system.

Proof Given two nested, snug neighborhoods N 0˛ �N˛ there is a deformation retraction of N˛ onto N 0˛
(this comes from the assumption of snugness). This induces an isomorphism

(12) H 1. yN˛; @ yN˛IR/ŠH 1. yN 0˛; @
yN 0˛IR/

which also identifies the �1 eigenspaces of the covering involution. Therefore, we may identify the
shear-shape cocycles defined by N˛ with those defined by N 0˛ . To see that the weights on ˛ do not depend
on the choice of N˛, we note that the deformation retraction of N˛ onto N 0˛ takes standard transversals
to standard transversals, and hence the value of the cocycle on the transversals does not change as we
change neighborhoods.

Now, given any two snug neighborhoods N˛ and N 0˛ of �[˛, one may take a common refinement N 00˛
of N˛ and N 0˛ and apply (12) to deduce that the spaces of shear-shape cocycles defined by N˛ and N 0˛
are linearly isomorphic and define the same underlying arc system.

In view of this lemma, throughout the sequel we will change the neighborhood N˛ carrying � at will.

As the orientation cover of � naturally embeds into yN˛, we may identify H.�/ with a subspace of
H 1. yN˛; @ yN˛IR/. Since any element of H.�/ evaluates to 0 on each standard transversal, we can add
and subtract transverse cocycles from shear-shape cocycles without changing the underlying weighted arc
system. We therefore have the following analogue of Lemma 7.3:

Lemma 7.8 Let A be the weighted arc system underlying some shear-shape cocycle. Then SH.�IA/ is
an affine space modeled on the vector space H.�/. In particular , dimR.SH.�IA//D��.�/C n0.�/.

Homological constraints on residues When � is orientable (or, more generally, contains orientable
components), there are homological constraints governing which weighted arc systems may underlie a
shear-shape cocycle. Passing between arc systems and hyperbolic structures on complementary subsurfaces
(via Theorem 6.4), these homological constraints govern when two structures can be glued together along �.
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For example, if � is a simple closed curve then in order to glue a hyperbolic structure on S n� along �,
the lengths of the boundary components must have equal length. Tracing through the combinatorialization
by weighted arc systems, this implies that the A–length of the boundary components must be the same.
The following lemma generalizes this observation to the case when S n� has crowned boundary (compare
Lemma 13.1 for a similar discussion using hyperbolic geometry):

Lemma 7.9 Suppose that � is a shear-shape cocycle for � with underlying weighted arc system A, and
let � be an orientable component of �. Then the sum of the (signed ) residues of the boundary components
incident to � is 0.

Proof For any component � of �, let @.�/ denote the boundary components (either closed or crowned)
resulting from cutting along �. For the purposes of this proof, let ˛.�/ denote the subarc system of ˛
consisting of those arcs with endpoints on �.

Pick an orientation on �; this induces an orientation on each boundary component C 2 @.�/, and hence
gives the metric residue of each such C a definite choice of sign. Since we are eventually going to prove
that the sum of these residues is 0, it does not matter which orientation of � we pick.

As � is orientable, picking an orientation on � is also equivalent to picking one of the lifts O� of � in the
orientation cover y�[ y̨. Let b̨.�/ denote the set of all lifts of arcs of ˛.�/ which meet O�. Then, since
severing b̨.�/ disconnects O� from the rest of y�[ y̨, there is a relationX

y̨i2
b̨.�/

"i Oti D 0 in H1. yN˛; @ yN˛IZ/;

where "i is 1 if y̨i is on the left-hand side of O� and �1 if y̨i is on the right-hand side, and Oti is the (relative
homology class of the) oriented standard transversal corresponding to y̨i . See Figure 8.

Therefore, for any cohomology class � 2H 1. yN˛; @ yN˛IZ/, and in particular any shear-shape cocycle,

(13)
X

y̨i2
b̨.�/

"i�.Oti/D 0:

Now "i is positive when the arc is on the left–hand side of O�, or equivalently (equipping � � S with
the corresponding orientation) when S n� is on the left–hand side of �. Similarly, "i is negative when
the complementary subsurface lies to the right of �. Unraveling the definitions and partitioning the arcs
of ˛.�/ into their incident boundary components, (13) is equivalent to the statement thatX

C2@.�/

resA.C/D
X

˛i2˛.�/

"ici D 0;

which is what we wanted to prove.
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t1

t2

Ot1

Ot2

ŒOt1�� ŒOt2�D 0 in H1

�

O�

Figure 8: Severing ties with one of the lifts O� of an orientable component � of �. This partition
induces a relation in homology, and hence a restriction on shear-shape cocycles. The top surface
contains y� while the bottom contains �; the shaded regions are neighborhoods of these laminations.

7.3 Shear-shape cocycles as functions on arcs

In analogy with Definition 7.4, we can also view shear-shape cocycle as functions on transverse arcs which
satisfy certain properties. While this definition is more involved, it is more convenient for the calculations
of Sections 13–15 and better reflects the process of “measuring” arcs by a shear-shape cocycle.

As indicated by Lemma 7.9, we must first cut out the space of all possible weighted arc systems underlying
a shear-shape cocycle. Denote the complementary subsurfaces of � 2ML.S/ by †1; : : : ; †m, and set

B.S n�/ WD

�
A 2

mY
jD1

jAfill.†j ; @†j /jR

ˇ̌̌ X
C2@.�/

resA.C/D 0 for all orientable components �� �
�
;

where we recall that @.�/ denotes the set of boundary components of S n� resulting from cutting along �.

By Theorem 6.4, we can reinterpret B.S n�/ as the set of all hyperbolic structures on S n� such that the
metric residues of the boundary components resulting from any orientable component � of � sum to zero.
We note that when each component of � is nonorientable, B.S n�/ is just the product of the Teichmüller
spaces of the complementary subsurfaces. When � is a simple closed curve, B.S n�/ consists of those
metrics on S n� where the two boundary components have the same length.

Using this reinterpretation together with Lemma 4.4, B.S n�/ is topologically just a cell:
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Lemma 7.10 Let � 2ML.S/ with S n�D†1[ � � � [†m. Then B.S n�/ŠRd , where

d D�n0.�/C

mX
jD1

dim.T.†j //;

where n0.�/ is the number of orientable components of �.

Proof Let �1; : : : ; �n0.�/ denote the orientable components of � and fix an arbitrary orientation on each.
Then the lemma follows from the observation that B.S n�/ is a fiber bundle over

n0.�/Y
iD1

�
.Ri

k/ 2Rj@.�i /j
ˇ̌̌X

k

Ri
k D 0

�
with fibers equal to �

ŒY; f � 2

mY
jD1

T.†j /
ˇ̌̌

res.Ck/DRi
k for each Ck 2 @.�i/

�
:

By Proposition 4.5, the fibers are each homeomorphic to Rd , where

d D

� mX
jD1

dim.T.†j //

�
�

� n0.�/X
iD1

j@.�i/j

�
:

Totaling the dimensions of base and fiber gives the desired result.

We can now present our second definition of shear-shape cocycles.

Definition 7.11 Let � 2ML.S/. A shear-shape cocycle for � is a pair .�;A/ where A is a weighted
filling arc system

AD

nX
iD1

ci˛i 2B.S n�/

and � is a function which assigns to every arc k transverse to � and disjoint from ˛ WD
S
˛i a real

number �.k/, satisfying the following axioms:

(SH0) Support If k does not intersect �, then �.k/D 0.

(SH1) Transverse invariance If k and k 0 are isotopic through arcs transverse to � and disjoint from ˛,
then �.k/D �.k 0/.

(SH2) Finite additivity If k D k1[ k2, where ki have disjoint interiors, then �.k/D �.k1/C �.k2/.

(SH3) A–compatibility Suppose that k is isotopic rel endpoints and transverse to � to some arc which
may be written as ti [ `, where ti is a standard transversal and ` is disjoint from ˛. Then the loop
k [ ti [ ` encircles a unique point p of �\˛, and

�.k/D �.`/C "ci ;

where " denotes the winding number of k [ ti [ ` about p (where the loop is oriented so that the
edges are traversed k then ti then `). See Figure 9.
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While axiom (SH3) may seem convoluted upon first inspection, its entire effect is to prescribe how the
value �.k/ evolves as an endpoint of k passes through an arc of ˛. The sign change records whether the
map induced by k D ti [ ` from the oriented simplex into S is orientation-preserving or -reversing.

Remark 7.12 In Section 9 (Proposition 9.5 in particular), we show that there exists a choice of “smoothing”
for ˛ which resolves condition (SH3) into an additivity condition. This is equivalent to prescribing that
an arc k may only be dragged over a point of �\˛ in one direction.

The equivalence between Definitions 7.5 and 7.11 is essentially the same as the equivalence of the
cohomological and axiomatic definitions of transverse cocycles [Bonahon 1996, pages 248–249]. However,
the A–compatibility condition (axiom (SH3)) contributes new technical difficulties, and so we have
included a full proof for completeness.

Proposition 7.13 The cohomological and axiomatic definitions of shear-shape cocycles agree.

Proof Suppose first that � is a cohomological shear-shape cocycle, that is, a cohomology class of the
orientation cover yN˛ of N˛ that is anti-invariant under the covering involution and that gives positive
weight to the canonical lifts of the standard transversals of each arc of a filling arc system ˛. We begin by
building from � a function f� ; the basic idea is to restrict an arc to a neighborhood of �, resulting in a
relative homology class, and to set f� to be � evaluated on this class.

Suppose that k is any arc transverse to � and disjoint from ˛. Choose a small neighborhood N˛ of �[˛
so that k meets @N˛ transversely and @k \N˛ D∅; then kjN˛ is a union of arcs with endpoints on @N˛ .

Each arc ki of kjN˛ has two distinguished, oriented lifts k
.1/
i and k

.2/
i to yN˛ that cross y� from right to

left. As in Section 7.2, these distinguished lifts satisfy

(14) ��.Œk
.1/
i �/D�Œk

.2/
i �

in H1. yN˛; @ yN˛IZ/, where � is the covering involution of yN˛!N˛. In particular �.Œk.1/i �/D �.Œk
.2/
i �/

since � is anti-invariant under �. We therefore set

f� .k/ WD �.Œk�/;

where Œk� is the homology class of either lift of kjN˛ to yN˛.

We now prove that f� satisfies the axioms of Definition 7.11:

(SH0) If k does not intersect �, then kjN˛ is empty and Œk�D 0, implying f� .k/D 0.

(SH1) If k and k 0 are isotopic through arcs transverse to � and disjoint from ˛, then kjN˛ and k 0jN˛
are properly isotopic. One can lift this isotopy to the orientation cover to deduce that Œk�D Œk 0� for the
correct choice of lifts, so f� .k/D f� .k 0/.
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˛i

˛i

y�

yN˛

y�

y�

k `

ti

ti

k `

Œk�D Œti �C Œ`� Œk�C Œti �D Œ`�

Figure 9: Possible configurations of the disk y� and the corresponding homological relations.

(SH2) Suppose that kDk1[k2; then, so long as N˛ is small enough, it is clear that kjN˛Dk1jN˛[k2jN˛ .
Therefore, since a lift of kjN˛ consists of the union of lifts of k1jN˛ and k2jN˛ , we see that Œk�D Œk1�CŒk2�,
and hence the corresponding equality of f� values also holds.

(SH3) Finally, suppose that k is isotopic (rel endpoints and transverse to �) to `[ ti . Without loss of
generality, we assume that the restriction of each of k, ` and ti to N is a single properly embedded arc (if
not, simply break the arcs into smaller pieces and apply (SH1) and (SH2) repeatedly). We also assume
the restrictions are all disjoint (even at their endpoints), appealing to (SH1) as necessary.

The isotopy between k and `[ ti induces a map from a disk � to N˛ such that @�� @N˛ [ k [ `[ ti .
Refining N˛, isotoping the arcs, and homotoping the map as necessary, we may assume that � embeds
into N˛, and therefore must occur in one of the configurations shown in Figure 9.

Now choose one of the lifts y�� yN˛ of �; this choice specifies lifts of the arcs k, ` and ti and therefore
(after equipping the lifts with their canonical orientations) relative homology classes Œk�, Œ`� and Œti �. As
these lifts together with @ yN˛ bound the disk y�, we therefore get

Œk�D Œ`�˙ Œti �;

˛iN˛

�

Figure 10: A triangulation of a (snug) neighborhood of �[˛. Axioms (SH0)–(SH3) imply that
�.@�/D 0 for each triangle � in the triangulation, ie � is a cocycle.
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where the sign is determined by the relative configuration of the arcs. Inspection of Figure 9 reveals that
the sign coincides with the winding number of the loop k [ ti [ ` about p.

Now suppose that .�;A/ is an axiomatic shear-shape cocycle in the sense of Definition 7.11. Pick a snug
neighborhood N˛ of �[˛; our task is to show that the function k 7! �.k/ is indeed a cocycle (on the
orientation cover, and is anti-invariant under the covering involution).

We first show that � naturally defines a cochain on yN relative to @ yN˛ which is anti-invariant by ��.
Recall that any arc in the orientation cover comes with a canonical orientation. We may then assign to
any oriented arc Ok properly embedded in yN˛ the value ˙�.k/, where k is the image of Ok under the
covering projection and where the sign is positive if Ok is oriented according to the canonical orientation
and negative otherwise. To the (canonically oriented lifts of the) standard transversals ti we assign the
value ci . Anti-invariance then follows by construction (compare (14)).

To see that this cochain is actually a cocycle, we show that it evaluates to 0 on every boundary. For
the purposes of this argument, it will be convenient to realize H 1. yN˛; @ yN˛IR/ in terms of simplicial
(co)homology. The neighborhood N˛ may be triangulated as depicted in Figure 10 (compare [Sözen and
Bonahon 2001, Figure 1]). In such a triangulation, each point of �\˛ and each switch of N˛ corresponds
to a unique triangle, while the remaining branches each contribute a rectangle which is in turn subdivided
into two triangles. This triangulation clearly lifts to an (�–invariant) triangulation of yN˛.

It therefore suffices to prove that, for each oriented triangle � of yN˛, we have �.@�/D 0. There are
three types of triangles, each of which corresponds to a different axiom of Definition 7.11:

� If � is (the lift of) a triangle coming from a subdivision of a branch, then one if its sides does not
intersect � and is thus assigned the value 0 by (SH0). The other two sides are isotopic rel �, cross
� with different orientations, and are assigned the same value by (SH1). Therefore �.@�/D 0.
Similarly, if � comes from a neighborhood of ˛, then the edges transverse to ˛ are assigned the
arc weight ci (with opposite signs) while the other edge gets zero weight, so �.@�/D 0.

� Now suppose � is (the lift of) a triangle corresponding to a switch of N˛ with @�D k1C k2� k.
Then, since the concatenation of k1 and k2 is isotopic transverse to � to �k, axiom (SH2) implies

�.k1/C �.k2/� �.k/D 0

and again �.@�/D 0.

� Finally, suppose that � is (the lift of) a triangle corresponding to a point of �\˛, so @� is some
signed combination of the (canonically oriented) lifts of arcs k, ` and t , where t is a standard
transversal and k is isotopic rel endpoints and transverse to � to `[ t . Without loss of generality
we assume that � is positively oriented; then, depending on the configuration of k, t and `, we
have either

`� kC t D 0 or `� t � k D 0

(as in Figure 9). In either case, axiom (SH3) implies that �.@�/D 0.
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"DC1

Qk

ˇ1 ˇ2

ˇ3

Q�

Qk

Qk 0

zN˛

Figure 11: Since k makes progress around � in the positive direction, "DC1.

We have therefore shown that �.@�/D 0 for every triangle of a triangulation and hence � is indeed a
1–cocycle on yN˛ rel boundary, finishing the proof of the lemma.

Measuring arcs along curves We will also want to associate a number �.k/ to certain arcs k that have
nonempty intersection with ˛; this quantity should be invariant under suitable isotopy transverse to �
respecting the combinatorics of intersections with ˛.

So suppose �� � is an isolated leaf, ie a simple closed curve. We say that an arc k transverse to �[˛
and contained in an annular neighborhood of � is nonbacktracking if any lift Qk of k to the universal cover
intersects the entire preimage Q� of � exactly once and Qk crosses each lift of an arc of ˛ at most once.

If k is a nonbacktracking arc, then one may orient k and give � the orientation that makes k start to
the right of �. Record the sequence of arcs ˇ1; : : : ; ˇm crossed by k, in order (note that arcs of ˛ may
repeat in this sequence). Then, up to isotopy, we may assume that k is a concatenation of standard
transversals t1; : : : ; tm together with a small segment k0 disjoint from ˛ crossing � from right to left.
Compare Figure 11.

Since k is nonbacktracking, the points ˇ1\�; : : : ; ˇm\� make progress around � in either the positive
direction or the negative direction. Take "DC1 in the former case and "D�1 in the latter, then define

(15) �.k/ WD �.k0/C "

mX
jD1

cj ;

where cj is the weight corresponding to the arc ǰ . Note that the value of " only depends on k and not
on its orientation, as reversing its orientation also reverses the orientation of �.

Lemma 7.14 Suppose that k and k 0 are nonbacktracking arcs transverse to � [ ˛ contained in an
annular neighborhood of a simple closed curve component � of �. If there exist lifts Qk and Qk 0 to zS
whose endpoints lie in the same component of zS n .z�[ z̨/ and k is isotopic to k 0 transverse to �, then
�.k/D �.k 0/.

Proof Fix a snug neighborhood N˛ of � [ ˛; then we need only show that kjN˛ and k 0jN˛ define
homologous cycles in the orientation cover.
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We can find an isotopy Œ0; 1�2! zS between lifts of k and k 0 (transverse to �) that leaves the endpoints in
the same component of zS n zN˛ . Such an isotopy then descends to S under the covering projection. The
intersection of the image of each transverse arc with N˛ defines a cycle in the relative homology group,
and this family of cycles is constant along the isotopy.

Since � is orientable, an annular neighborhood of � lifts homeomorphically to yN˛, as do k and k 0.
Therefore, the isotopy between k and k 0 (and the homology between their restrictions) also lifts to the
orientation cover yN˛ , showing that the (lifts of the) restrictions of k and k 0 are homologous there as well.
Compare Figure 11.

8 The structure of shear-shape space

In this section, we investigate the global structure of the space of shear-shape cocycles. Whereas Bonahon’s
transverse cocycles assemble into a vector space, the space SH.�/ of all shear-shape cocycles is more
complex when � is not maximal, forming an principal H.�/–bundle over B.S n�/ (Theorem 8.1).

After understanding the structure of shear-shape space, we define an intersection form on SH.�/

(Section 8.2) and use it to specify the “positive locus” SHC.�/ (Definition 8.4), which we show in
Sections 10–15 serves as a global parametrization of both MF.�/ and T.S/.

8.1 Bundle structure

Lemma 7.8 of the previous section parametrizes all shear-shape cocycles which are compatible with a
given weighted arc system. In this section, we analyze how these parameter spaces piece together to get a
global description of the space of all shear-shape cocycles for a fixed lamination.

Let G be a topological group. A principal G–bundle is a fiber bundle whose fibers are equipped with a
transitive, continuous G–action with trivial point stabilizers together with a bundle atlas whose transition
functions are continuous maps into G. We remind the reader that a principal G–bundle does not typically
have a natural “zero section”, but, instead, any local section of the bundle defines an identification of the
fibers with G via the G–action. Moreover, any two sections define local trivializations of the bundle that
differ by an element of G in each fiber.

Theorem 8.1 Let � 2ML.S/. The space SH.�/ forms a principal H.�/–bundle over B.S n�/ whose
fiber over A 2B.S n�/ is SH.�IA/.

Proof There is an obvious map from SH.�/ to B.S n�/ given by remembering only the values �.ti/
of transversals to the arcs. For a given choice �0 in the fiber SH.�IA/ over A, Lemma 7.8 identifies
SH.�IA/ with H.�/ via the assignment � 7! � � �0.
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For any filling arc system ˛ of S n�, the space SHı.�I˛/ of shear-shape cocycles with underlying arc
system ˛ is naturally identified with the open orthant

(16) f� 2H 1. yN˛; @ yN˛IR/
�
W �.t

.j/
i / > 0 for all i; j D 1; 2g;

where N˛ is a snug neighborhood of �[˛ on S.

Consider the open cell Bı.˛/�B.S n�/ defined as all those weighted arc systems with support equal to
a maximal arc system ˛. Using cohomological coordinates (16) for SHı.�I˛/, we can find a continuous
section � of SHı.�I˛/!Bı.˛/. Then

�� WB
ı.˛/�H.�/! SHı.�I˛/; .A; �/ 7! �.A/C �;

is a homeomorphism preserving fibers of the natural projections. For another choice of section � 0,

��1
� .�� 0.A; �//D .A; �C �

0.A/� �.A//:

Evidently, the map A 7! � 0.A/� �.A/ 2H.�/ is continuous.

If N 0˛ is another snug neighborhood of �[˛, then N˛ and N 0˛ share a common deformation retract. The
composition of the linear isomorphisms induced on cohomology by inclusion of the deformation retract
preserves the orthants defined as in (16) as well as fibers of projection to B.S n �/. This proves that
the principal H.�/–structure of the bundle lying over Bı.˛/ does not depend on the snug neighborhood
whose cohomology coordinatizes SHı.�I˛/.

To show that the principal H.�/–bundle structures over all cells of B.S n�/ glue together nicely, we find
a continuous section of SH.�/!B.S n �/ near any given weighted arc system A. Indeed, if ˛ � ˇ,
then inclusion N˛ ,!Nˇ of snug neighborhoods defines a map on cohomology. This map restricts to a
linear isomorphism on the kernel of the evaluation map on the transversals to ˇ n˛. Thus, the closure

(17) SH.�Iˇ/D
[
ˇ�˛

˛ fills S n�

SHı.�I˛/

of SHı.�Iˇ/ in SH.�/ may be realized as an orthant in H 1. yNˇ; @ yNˇIR/
� with some open and closed

faces; one of the closed faces corresponds to SHı.�I˛/.10

Since the complex Afill.S n�/ is locally finite, there are only finitely many arcs ˇ1; : : : ; ˇk disjoint from ˛.
Let U �B.S n�/ be a small neighborhood of A and � be a continuous section of SH.�I˛/!Bı.˛/\U.
For each i , after including SHı.�I˛/ as a face of SH.�I˛ [ ˇi/, we may extend � continuously on
U \Bı.˛[ˇi/. Continuing this process, eventually extending � to higher-dimensional cells meeting U,
we end up with a continuous section U ! SH.�/, as claimed. As before, trivializations defined by two
different sections differ by a continuous function U !H.�/; this completes the proof of the theorem.

10When every component of S n� is simply connected, the empty set is a filling arc system. When this is the case, Bı.∅/ is
identified with a point, while SH.�I∅/DH.�/.
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Since every bundle over a contractible base is trivial, this implies that:

Corollary 8.2 Shear-shape space SH.�/ is homeomorphic to R6g�6.

Proof Let †1; : : : ; †m denote the complementary components of �, where †j has genus gj with bj

closed boundary components and kj crowns of types fcj
1
; : : : ; c

j

kj
g. By Lemmas 7.10 and 4.4, B.S n�/

is homeomorphic to a cell of dimension

�n0.�/C

mX
jD1

dim.T.†j //D�n0.�/C

mX
jD1

�
6gj � 6C 3bj C

kjX
iD1

.c
j
i C 3/

�
Lemmas 7.8 and 4.6 together imply that SH.�IA/ is an affine H.�/–space of dimension

n0.�/��.�/D n0.�/C
1

2

mX
jD1

kjX
iD1

c
j
i

Putting these dimension counts together via Theorem 8.1, SH.�/ is homeomorphic to a cell of dimension

mX
jD1

�
6gj � 6C 3bj C

3

2

kjX
iD1

.c
j
i C 2/

�
D

3

2�

mX
jD1

Area.†j /D
3

2�
Area.S/D 6g� 6;

where the first equality follows from (4).

8.2 Intersection forms and positivity

Now that we have a global description of shear-shape space, we restrict our attention to a certain positive
locus SHC.�/ inside SH.�/. The main result of this section is Proposition 8.5, in which we identify
SHC.�/ as an affine cone bundle over B.S n�/.

Positive transverse cocycles We begin by recalling the definition of positivity for transverse cocycles, as
developed in [Bonahon 1996, Section 6]. Fixing some �2ML.S/, we recall that a transverse cocycle for �
may be identified with a relative cohomology class of the orientation cover yN of a snug neighborhood N

of � (Definition 7.2). The intersection pairing of yN therefore induces a antisymmetric bilinear pairing

!H WH.�/�H.�/!R;

called the Thurston intersection/symplectic form. This form is nondegenerate when � is maximal and,
more generally, when � cuts S into polygons each with an odd number of sides [Penner and Harer 1992,
Section 3.2].

Each transverse measure for � is in particular a transverse cocycle. Using the intersection form one can
therefore define a positive cone HC.�/ inside H.�/ with respect to the (nonatomic) measures supported
on �. Write

�D �1[ � � � [�L[ 1[ � � � [ M ;
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where the m are all weighted simple closed curves and the �l are minimal measured sublaminations
whose supports are not simple closed curves. Then set

(18) HC.�/ WD

�
� 2H.�/

ˇ̌̌
!H.�; �/ > 0 for all � 2

L[
lD1

�.�l/

�
;

where �.�l/ denotes the collection of measures supported on �l .

The reason for this involved definition is that the Thurston form is identically 0 exactly when the underlying
lamination is a multicurve. Therefore, if the support of � contains a simple closed curve  , the pairing
of  with every transverse cocycle supported on � is 0.11

On the other hand, so long as � is not a multicurve then the Thurston form is not identically 0. In fact,
the cone HC.�/ splits as a product

HC.�/D

LM
lD1

HC.�l/˚

MM
mD1

H.m/:

As � supports at most 3g� 3 (projective classes of) ergodic measures, each HC.�l/ is a cone with a side
for each (projective class of) ergodic measure supported on �l .

When � is a multicurve, there are no �l ’s and so the condition of (18) is empty. As such, in this case the
space of positive transverse cocycles is the entire twist space:

HC.1[ � � � [ M /DH.1[ � � � [ M /D

MM
mD1

H.m/ŠRM :

Therefore, no matter whether  is a multicurve or not, the space HC.�/ is a convex cone of full dimension
(where we expand our definition of “cone” to include the entire vector space).

Positive shear-shape cocycles We now repeat the above discussion for shear-shape cocycles. By
Definition 7.5, any shear-shape cocycle .�; ˛/ may be identified with a relative cohomology class of the
orientation cover yN˛ of a neighborhood N˛ of �[˛. As above, the intersection pairing of yN then defines
a pairing between any two shear-shape cocycles with underlying arc system contained inside ˛. However,
if the underlying arc systems of �; � 2 SH.�/ are not nested, then there is no obvious way to pair the two
cocycles.

While it does not make sense to pair two arbitrary shear-shape cocycles, we can always pair shear-shape
cocycles with transverse cocycles. Recall from (the discussion before) Lemma 7.8 that H.�/ naturally
embeds as a subspace of the cohomology of the neighborhood yN˛ defining a shear-shape cocycle and

11This is because the components of the orientation cover are all annuli, whose first (co)homologies all have rank 1. For noncurve
laminations, the homology has higher rank and so can support a nonzero intersection form.
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may be identified with the kernel of the evaluation map on transversals to ˛. Therefore, the intersection
pairing on yN˛ gives rise to a function

!SH W SH.�/�H.�/!R;

which we also refer to as the Thurston intersection form. Throughout the paper, we will differentiate
between the different intersection forms by indicating their domains in subscript.

We record some of the relevant properties of !SH below:

Lemma 8.3 The Thurston intersection form !SH is a Mod.S/Œ��–invariant continuous pairing which is
homogeneous in the first factor and linear in the second. Moreover , for any A 2B.S n�/ and � 2H.�/,
the function

!SH. � ; �/ W SH.�IA/!R

is an affine homomorphism inducing !H. � ; �/ on the underlying vector space H.�/.

Proof We begin by showing that the form is actually well defined. Suppose first that ˛ is maximal;
then, since the (homological) intersection form is natural with respect to deformation retracts, and any
two snug neighborhoods of �[˛ share a common deformation retract, the form does not depend on the
choice of neighborhood.

Now suppose that ˇ is a filling arc system that is a subsystem of two different maximal arc systems ˛1

and ˛2. Then one can take a snug neighborhood Nˇ of �[ ˇ which includes into neighborhoods Ni

of �[ ˛i for i D 1; 2. Now, since the (homological) intersection form is also natural with respect to
inclusions, the Thurston form must be as well. Therefore, for any � 2 SH.�Iˇ/ and � 2H.�/ it does not
matter if we compute !SH.�; �/ in Nˇ, N1, or N2.

Now that we have established that !SH is well defined, the other properties follow readily from properties
of the (homological) intersection form. Since the homological intersection pairing is linear in each
coordinate, !SH is in particular linear in the second coordinate. Similarly, for any A 2 B.S n �/ and
any two �1; �2 2 SH.�IA/, we know that �1� �2 is a transverse cocycle, and again by linearity of the
homological intersection form we get that

!SH.�1; �/�!SH.�2; �/D !H.�1� �2; �/

for all � 2H.�/. Thus !SH is affine on each SH.�IA/.

Finally, to see that the map !SH. � ; �/ is continuous for a fixed �, we recall that for any maximal arc
system ˛, the space SHı.�I˛/ of shear-shape cocycles with underlying arc system ˛ may be realized
as an open orthant in cohomological coordinates (16), and this parametrization extends to its closure
SH.�I˛/.
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Since the intersection pairing on cohomology is continuous, for each maximal arc system ˛ the function
!SH. � ; �/ is continuous on SH.�I˛/. But now, since we have checked that the value of !SH. � ; �/ does
not actually depend on the neighborhood, it agrees on the overlaps of closures SH.�I˛/ for maximal ˛.
Therefore, since the cell structure of B.S n �/ is locally finite, we may glue together the functions
!SH. � ; �/ (which are continuous on each SH.�I˛/) to get a globally continuous function on SH.�/.

With this intersection form in hand, we may now define a positive locus with respect to the set of measures
supported on �.

Definition 8.4 The space of positive shear-shape cocycles SHC.�/ is the set

SHC.�/D f� 2 SH.�/ W !SH.�; �/ > 0 for all � 2�.�/g:

Observe the difference between the definition above and the one appearing in (18): any positive shear-
shape cocycle must also pair positively with all simple closed curves m appearing in the support of �. The
essential difference between the two cases is that additional branches of �˛ coming from the underlying
arc system allows a shear-shape cocycle to meet each m without being completely supported on m.
Indeed, one can check that the contribution to the Thurston form coming from the intersection of ˛ with
a simple closed curve component of � is always positive (compare (20)). In particular, the positivity
condition is automatically fulfilled for any measure supported on a curve component of �.

On each cohomological chart (16) or (17) it is clear that SHC.�/ is an open cone cut out by finitely
many linear inequalities (one for each ergodic measure supported on �, plus positivity of arcs weights).
However, this does not yield a global description of SHC.�/. In order to get one, we must show that the
linear subspaces cut out by the positivity conditions intersect the H.�/ fibers transversely.

Proposition 8.5 The space SHC.�/ is an affine cone bundle over B.S n �/ with fibers isomorphic
to HC.�/.

By an affine cone bundle, we mean that there is a (nonunique) section �0 WB.S n�/! SH.�/ such that

SHC.�/\SH.�IA/D �0.A/CHC.�/

for every A 2B.S n�/. Moreover, any two such sections differ by a continuous map B.S n�/!H.�/.

Proof Choose mutually singular ergodic measures �1; : : : ; �N ; 1; : : : ; M on � that span �.�/, where
the supports of the �n are noncurve laminations and the m are all simple closed curves. Pick an arbitrary
� 2 SH.�IA/, and define

C.�/ WD f� 2H.�/ j !H.�; �n/ > �!SH.�; �n/ for all nD 1; : : : ;N g:

By linearity of !H on H.�/, together with the fact that the pairing !H. � ; �n/ is not identically 0 since
the support of �n is not a simple closed curve, this is an intersection of N affine half-spaces which do
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not depend on our choice of ergodic measures �i in their projective classes. Again by linearity, this is
just a translate of HC.�/ and hence is a cone of full dimension.

Now, since !SH. � ; �j / is an affine map on SH.�IA/ for each j,

� CC.�/D f� 2 SH.�IA/ j !SH.�; �n/ > 0 for all nD 1; : : : ;N g D SHC.�/\SH.�IA/

is an affine cone of full dimension (where the last equality holds because the positive discussion is
automatically fulfilled for each m). It is a further consequence of affinity that this identification does not
depend on the choice of � . The bundle structure then follows from continuity of !SH.

9 Train track coordinates for shear-shape space

In this section, we introduced train track charts for shear-shape cocycles. In Section 9.1, we recall
Bonahon’s realization of transverse cocycles to a lamination in the weight space of a train track that
snugly carries it. In Section 9.2, we reinterpret the cohomological coordinate charts (16) for SHı.�I˛/

by “smoothing” �[ ˛ onto a train track �˛ (Construction 9.3) and realizing SHı.�I˛/ as an orthant
in the weight space of �˛ (Proposition 9.5). This construction also has the added benefit of converting
axiom (SH3) of Definition 7.11 into a simpler additivity condition; this is convenient for computations
and provides an explicit formula (20) for the Thurston intersection pairing. We rely on this formula in
Section 10.2 to show that foliations transverse to � define positive shear-shape cocycles (Proposition 10.12).

Later, in Section 9.3, we explain how the PIL structure of SH.�/ is manifest in train track coordinates
and provides a canonical measure in the class of Lebesgue. When � is maximal, this measure is a constant
multiple of the symplectic volume element induced by !H. Finally, in Section 9.4 we consider how train
track charts facilitate an interpretation of SH.�/ as organizing the fragments of the cotangent space
to ML at �.

Remark 9.1 We advise the reader that two different types of train tracks appear below: those which carry
transverse cocycles for � and give coordinates on the fiber SH.�IA/, and those which carry shear-shape
cocycles and give coordinates on the total space SH.�/.

9.1 Train track coordinates for transverse cocycles

We begin by recalling how transverse cocycles can be parametrized by weight systems on (snug) train
tracks. The advantage of these coordinates is that they determine the cocycle with only finitely many
values (a main benefit of the cohomological Definition 7.2), but do so using unoriented arcs on the surface,
not the orientation cover (a main benefit of the axiomatic Definition 7.4).

Let � be a train track snugly carrying a geodesic lamination � and � a transverse cocycle, thought of
as a function on transverse arcs. For each branch b of � , pick a tie tb . Then one can assign to b the
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weight �.tb/; by axiom (H1) this value does not depend on the choice of tie, and by axiom (H2) these
weights necessarily satisfy the switch conditions. Therefore, any transverse cocycle can be represented by
a weight system on � , and in fact this map is an isomorphism.

Proposition 9.2 [Bonahon 1997b, Theorem 11] Let � be a train track snugly carrying a geodesic
lamination �. Then the map � 7! f�.tb/gb2b.�/ is a linear isomorphism between H.�/ and W .�/, the
space of all (real ) weights on � satisfying the switch conditions.

On a given train track snugly carrying �, the Thurston intersection form !H is easily computable in terms
of the weight systems. To wit, if �; � 2H.�/ then their intersection is equal to

(19) !H.�; �/D
1

2

X
s

ˇ̌̌̌
�.rs/ �.`s/

�.rs/ �.`s/

ˇ̌̌̌
;

where the sum is over all switches s of � , and rs and `s are the half-branches which leave s from the
right and the left, respectively. Compare [Penner and Harer 1992, Section 3.2].

9.2 Train track coordinates for shear-shape cocycles

In order to imitate the above construction for shear-shape cocycles, we first must explain how to build a
train track from � and a filling arc system ˛ on its complement.

Suppose that � carries � snugly; then the complementary components of � [˛ correspond to those of
�[˛. A smoothing of � [˛ is a train track �˛ which is obtained by choosing tangential data at each of
the points of � \˛ and isotoping each arc of ˛ to meet � along the prescribed direction. Each component
of S n � inherits an orientation from S, which in turn gives an orientation to the boundary (of the metric
completion) of each subsurface. A smoothing �˛ is standard if for each switch of �˛ with an incoming
half branch corresponding to an arc ˛i 2 ˛, the incoming tangent vector to ˛i is pointing in the positive
direction with respect to the boundary orientation of the component of S n� containing ˛i ; see Figure 12.

Recall (Construction 5.6) that a geometric train track � constructed from a hyperbolic structure X 2T.S/,
� 2 ML.S/, and � > 0 is obtained as the leaf space of the orthogeodesic foliation restricted to an
�–neighborhood of � in X (for small enough values of �).

Construction 9.3 (geometric standard smoothings) Let � 2 ML.S/ and X be a hyperbolic metric
on S. Let ˛ be a filling arc system in S n �, realized orthogeodesically on X. For small enough � > 0,
˛\N�.�/ lies in a finite collection of leaves of O�.X / and so each end of each arc of ˛ defines a point
in the quotient � D N�.�/=�, where � is the equivalence relation induced by collapsing the leaves of
O�.X /jN�.�/.

The geometric standard smoothing �˛ is then obtained by attaching ˛ onto the geometric train track � at
these points and smoothing in the standard way.
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Figure 12: Left: a geometric train track neighborhood of z� together with an arc system z̨. Right:
the (preimage of the) standard smoothing �˛ .

Since ˛ is filling, the components of X n.�[˛/ are topological disks. In a geometric standard smoothing �˛ ,
each complementary disk incident to an arc ˛ of ˛ has at least one spike corresponding to an end of
that ˛. Since no arc of ˛ joins asymptotic geodesics of �, the complementary polygons all have at least
three spikes and so �˛ is indeed a train track.

Remark 9.4 A geometric standard smoothing keeps track of the intersection pattern of � with ˛ on
“either side” of � , and the endpoints of ˛ on a geometric train track �� � X constructed from � by a
parameter � > 0 as in Construction 9.3 are stable as �! 0.

A standard smoothing �˛ is reminiscent of the construction of completing � to a maximal lamination �0 by
“spinning” the arcs of ˛ around the boundary geodesics of complementary subsurfaces to � in the positive
direction to obtain spiraling isolated leaves of �0 in bijection with the arcs of ˛. In Proposition 9.5 below,
we observe that, by smoothing ˛ onto � in a standard way, axiom (SH3) allows us to assign weights to
the branches of �˛ in such a way that the switch conditions are satisfied. Thus, for a shear-shape cocycle
carried by �˛, the weights deposited on the branches ˛ � �˛ encode “shape” data, rather than “shear”
data. As such, we do not think of a standard smoothing as corresponding to the completion of � to a
maximal lamination �0.

Proposition 9.5 Every shear-shape cocycle .�;A/ 2 SH.�/ may be represented by a weight system
w˛.�/ on a standard smoothing �˛ that also carries �. Moreover , the map � 7! w˛.�/ extends to a linear
isomorphism

H 1. yN˛; @ yN˛IR/
�
ŠW .�˛/;

where N˛ is a neighborhood of � [ ˛, yN˛ is its orientation cover and H 1. yN˛; @ yN˛IR/� is the �1

eigenspace for the covering involution ��.

In particular, this isomorphism realizes SH.�I˛/ and SHC.�; ˛/ as convex cones (with some open and
some closed faces) inside W .�˛/.
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k `

ti

Œk�D Œti �C Œ`�

�.k/ �.`/

�.ti/

�.k/D �.ti/C �.`/

Figure 13: A standard smoothing of a geometric train track. The equation in homology encoded
by axiom (SH3) becomes an additivity condition on the train track.

Proof Let �˛ be a standard smoothing of � [˛ and for each branch b of �˛ , let tb denote a tie transverse
to b. Evaluating a shear-shape cocycle � on tb yields an assignment of weights

w˛.�/ W b! �.tb/:

By axiom (SH1) of Definition 7.11, this weight system does not depend on the choice of tie.

To check that w˛.�/ satisfies the switch conditions, we observe that there are two types of switches of �˛:
those that come from switches of � and those that come from smoothings of points of �\˛. Axiom (SH2)
implies that the switch condition holds at each of the former, while axiom (SH3) together with our choice
of smoothing ensures that w˛.�/ satisfies the switch conditions at each of the latter. Compare Figure 13.

We note that this discussion does not rely on the positivity of � on standard transversals, and so can be
repeated to realize an arbitrary element of H 1. yN˛; @ yN˛IR/� as a weight system on �˛.

Let AD
P

ci˛i ; then on any smoothing �˛ the identification of Proposition 9.5 restricts to an isomorphism

SH.�IA/Š fw 2W .�˛/ W w.bi/D cig;

where bi is the branch of �˛ corresponding to ˛i . Indeed, these coordinates together with the parametriza-
tion of transverse cocycles by weight systems on � � �˛ (Proposition 9.2) give another proof that the
difference of any two shear-shape cocycles compatible with a given A 2B.S n�/ is a transverse cocycle
(Lemma 7.8).

Remark 9.6 The metric residue condition (Lemma 7.9) is still visible in train track coordinates, though it
is somewhat obscured. Indeed, suppose that � contains an orientable component carried on a component �
of the geometric train track � ; fix an arbitrary orientation of �.

Take a geometric standard smoothing �˛ of � [ ˛. Reversing the tangential information as necessary,
we can then construct a (nonstandard) smoothing of � [ ˛ so that every arc of ˛ is a small branch
entering � according to the orientation. Moreover, by reversing the sign of the weight on each arc which
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has its smoothing data modified, this nonstandard smoothing still carries shear-shape cocycles as a weight
systems. But then, by conservation of mass, the total sum of the weights on the branches entering �
must be 0. Hence, in this setting, the metric residue condition manifests as a condition embedded in the
recurrence structure of smoothings.

The extended intersection form on SH.�/ also has a nice formula in terms of train tracks. Let � be a
(trivalent) train track snugly carrying � and let �˛ be a standard smoothing of � [˛; then, for � 2 SH.�/

and � 2H.�/,

(20) !SH.�; �/D
1

2

X
s

ˇ̌̌̌
�.rs/ �.`s/

�.rs/ �.`s/

ˇ̌̌̌
;

where the sum is over all switches s of �˛, and rs and `s are the right and left small half-branches,
respectively. The proof of this formula is the same as that of (19) and is therefore omitted; the only thing
to note in this case is that the value does not change if one completes ˛ by adding in arcs of zero weight.

9.3 Piecewise-integral-linear structure

A piecewise-linear manifold is said to be piecewise-integral-linear or PIL with respect to a choice of
charts if the transition functions are invertible piecewise-linear maps with integral coefficients. The track
charts that we have constructed from standard smoothings in this section endow each cell SH.�I˛/ with
a PIL structure which clearly extends over all of SH.�/ (compare [Penner and Harer 1992, Section 3.1]).

The points of the integer lattice in W .�˛/ are invariant under coordinate transformation; thus, the integer
points SHZ.�/� SH.�/ are well defined.

The PIL structure defined by train track charts gives a canonical measure �SH in the class of the .6g�6/–
dimensional Lebesgue measure on SH.�/. Namely, if B � SH.�/ is a Borel set, then

(21) �SH.B/ WD lim
R!1

#R �B \SHZ

R6g�6
:

Since the symplectic intersection form !SH is constant (19) in a train track chart, the volume element
defined by the .3g�3/–fold wedge product ^!SH is a constant multiple of �SH on each chart.

We note that B.S n�/ is cut out of jAfill.S n�/j by linear equations with integer coefficients, as is each cell
of jAfill.S n�/j. Therefore, the integer lattice SHZ.�/ restricts to a integer lattice in the bundle SH.�I˛/

over every cell B.˛/. Thus we obtain a natural volume element on the bundle over the k–skeleton
of B.S n�/ whenever it is not empty.

9.4 Duality in train track coordinates

We now take a moment to discuss shear-shape coordinates from the point of view of train track weight
spaces; this discussion is motivated by that in [Thurston 1986], and is meant to clarify how shear-shape
cocycles fit into the broader theory of train tracks.
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We begin by recalling the analogy between shear coordinates for Teichmüller space and the “horospherical
coordinates” for hyperbolic space. As observed by Thurston [1986, page 42], projecting the Lorentz
model

Hn
D fx2

1 C � � �Cx2
n �x2

nC1 D�1 j xnC1 > 0g

to hx1; : : : ;xni along a family of parallel light rays gives a parametrization for Hn in terms of a half-space.
In these coordinates, horospheres based at the boundary point � 2 @1Hn corresponding to the choice of
light ray are mapped to affine hyperplanes and geodesics from � are mapped to rays from the origin.12

When � is maximal and uniquely ergodic, Bonahon and Thurston’s shear coordinates similarly realize
T.S/ as the space of positive transverse cocycles HC.�/, in which planes parallel to the boundary are
level sets of the hyperbolic length of � and rays through the origin are Thurston geodesics. Equivalently,
if � is a train track carrying �, then shear coordinates identify T.S/ as a half-space inside W .�/.

However, shear coordinates are no longer induced by a global projection. Instead, as noted by Thurston,
they can be thought of as a map that takes a hyperbolic structure X to (the 1–jet of) its length function
with respect to a given lamination. Shear coordinates are then a map not into W .�/ but into its dual
space W .�/� (which can be identified with W .�/ via the nondegenerate Thurston symplectic form). The
image cone is then the positive dual13 of the cone of measures on �.

This formalism then indicates how shear coordinates generalize to maximal but nonuniquely ergodic
laminations. The map is the same, but now the positive dual of �.�/ has angles obtained from the
intersection of hyperplanes, one for each ergodic measure on �. Rays in the cone still correspond to
geodesics, and affine planes parallel to the bounding planes correspond with the level sets of hyperbolic
length of the ergodic measures on �.

Our shear-shape coordinates come into play when � is not maximal. In this case, one can go through the
above steps for each maximal train track � , obtained from a snug train tack carrying � by adding finitely
many branches. Since � is carried on a proper subtrack of � its cone of measures lives in a proper subspace
E �W .�/. Taking the positive dual of �.�/ and applying the isomorphism W .�/ ŠW .�/� induced
by the Thurston form then realizes Teichmüller space as a cone C in W .�/. By definition, C \E is
exactly HC.�/, and one can check this demonstrates C is an affine HC.�/–bundle.

However, the base of this bundle structure is not canonically determined, in part because E <W .�/ is
generally not symplectic. Moreover, the same hyperbolic structure is parametrized by elements in many
different maximal completions, and to achieve Mod.S/–equivariance one needs to understand how to
compare coordinates for different completions. Shear-shape space is designed to solve both of these

12This coordinate system is in some sense dual to the paraboloid model of [Thurston 1997, Problem 2.3.13]. Horospherical
coordinates place an observer looking out from the center of a family of expanding horospheres, whereas the paraboloid model
places an observer at another boundary point looking in.
13That is, those elements of W .�/� which pair positively with every element in �.�/ via the intersection form.
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problems, picking out geometrically meaningful completions and gluing together the corresponding cones
all while preserving the bundle structure.

Indeed, the shear-shape coordinates defined in Section 13 associate to each hyperbolic structure a natural
finite set of completions (corresponding to standard smoothings of snug train tracks plus geometric arc
systems) together with a weight system on each completion. The discussion of this section (Proposition 9.5
especially) then implies that the associated shear-shape cocycle is independent of the choice of completion,
and that the corresponding train track charts glue together according to the combinatorics of B.S n�/. In
this picture, level sets of the hyperbolic length now correspond to bundles over B.S n�/ whose fibers are
affine subspaces parallel to the boundary of HC.�/, while rays in SHC.�/ correspond to scaling both the
coordinate in B.S n�/ as well as the coordinate in HC.�/.

10 Shear-shape coordinates for transverse foliations

We now show how the familiar period coordinates for a stratum of quadratic differentials can be re-
interpreted as shear-shape coordinates. The main construction of this section is that of the map

I� W F
uu.�/! SH.�/

which records the vertical foliation of a quadratic differential and should be thought of as a joint extension
of [Mirzakhani 2008, Theorem 6.3; Minsky and Weiss 2014, Theorem 1.2].

The idea is straightforward: Given some quadratic differential q 2 Fuu.�/, the complement S nZ.q/ of
its zeros deformation retracts onto a neighborhood N˛.q/ of �[˛.q/ for some filling arc system ˛.q/

(whose topological type reflects the geometry of q). We may therefore identify the period coordinates
of q as a relative cohomology class in (the orientation cover of) N˛.q/ with complex coefficients. The
imaginary part of this class corresponds to �, while its real part is the desired shear-shape cocycle I�.q/.

The only obstacle to this plan is in showing that S nZ.q/ can actually be identified with a neighborhood
of �[˛.q/. To overcome this, we recall first in Section 10.1 how to reconstruct the topology of S n� from
the horizontal separatrices of q; this guarantees that all relevant objects have the correct topological types.
We then describe in Section 10.2 how to build from S nZ.q/ a train track �˛ snugly carrying �[˛.q/
(Lemma 10.6); this in particular allows us to identify S nZ.q/ as a neighborhood of �[˛.q/. We may then
define I�.q/ using the strategy outlined above and identify it as a weight system on �˛ (Lemma 10.10).

Section 10.3 contains a discussion of the global properties of the map I�: piecewise-linearity, injectivity,
and its behavior with respect to the intersection pairing. In this section, we also record Theorem 10.15,
which states that I� is a homeomorphism onto SHC.�/. For purposes of convenience, the proof of this
theorem is deduced from our later (logically independent) work on shear-shape coordinates for hyperbolic
structures (Sections 12–15). See Remark 10.16.
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10.1 Separatrices and arc systems

Given a quadratic differential with jIm.q/j D �, our first task towards realizing jRe.q/j as a shear-shape
cocycle is to build a filling arc system ˛.q/ on S n� that encodes the horizontal separatrices of q. We begin
by recalling how to recover the topology of S n� from the realization of � as a measured foliation on q.

Recall that a boundary leaf ` of a component of S n� is a complete geodesic contained in its boundary.
Note that infinite boundary leaves of S n� are in one-to-one correspondence with leaves of � which are
isolated on one side, while finite boundary leaves (ie closed boundary components) are in two-to-one
correspondence with closed leaves of �.14

The corresponding notion for measured foliations is that of singular leaves. Let F be a measured foliation
on S and zF denote its full preimage to zS under the covering projection; then a bi-infinite geodesic path
of horizontal separatrices ` is a singular leaf of zF if, for every saddle connection s of `, the separatrices
adjacent to s leave from the same side of ` (ie always from the left or always from the right); see [Levitt
1983, Figure 2].

There is a fundamental correspondence between boundary leaves of a lamination and singular leaves of a
foliation, which we record below. Heuristically, collapsing the complementary regions of a lamination
yields a foliation; the deflation map of Section 5.3 is a geometric realization of this phenomenon. Again,
compare [Levitt 1983, Figure 2] as well as [Minsky 1992, Lemma 2.1].

Lemma 10.1 Let � be a measured lamination on S and let F be a measure-equivalent measured foliation.
Then there is a one-to-one , �1.S/–equivariant correspondence between the boundary leaves of zS n z�
and singular leaves of zF. Moreover , singular leaves of zF that share a common separatrix correspond to
boundary leaves of the same component of zS n z�.

This lemma in particular allows us to read off the topological type of S n� from the horizontal separatrices
of q. Set „.q/ to be the union of the horizontal separatrices of q, equipped with the path metric. This
1–complex also comes equipped with a ribbon structure (that is, a cyclic ordering of the edges incident to
each vertex) and, by thickening each component of „.q/ according to this ribbon structure, „.q/ can be
regarded as a spine for the components of S n�.

Our construction of ˛.q/ then records the dual arc system to the spine „.q/ of S n�.

Construction 10.2 Let q be a quadratic differential on S with jIm.q/j D �. By the correspondence
of Lemma 10.1, each horizontal separatrix of q corresponds to a pair of boundary leaves of the same
component of S n�. Each infinite separatrix corresponds to a pair of asymptotic boundary leaves, while
nonasymptotic boundary leaves are glued along horizontal saddle connections. Dual to each horizontal
saddle connection of „.q/ is a proper isotopy class of arcs on S n�, and we set ˛.q/ to be the union of
all of these arcs.
14This is true because we have insisted that � support a measure, and so no nonclosed leaf may be isolated from both sides.
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Since „.q/ is a spine for S n� and ˛.q/ consists of arcs dual to its compact edges, we quickly see that:

Lemma 10.3 The arcs of ˛.q/ are disjoint and fill S n�.

Proof Each component of zS n z� has a deformation retract onto the universal cover z„ of a component
of „.q/. In particular, as the interiors of the edges of z„ are disjoint, duality implies that the arcs of z̨.q/
can all be realized disjointly. As this picture is invariant under the covering transformation, this implies
that the arcs are disjoint downstairs in S n�.

Similar considerations also imply that the arc system is filling: let † be a component of S n � with
universal cover z† with spine z„. By construction, the edges of z̨.q/ in z† are dual to the edges of z„.
Since „.q/ is a spine for S n�, any loop in † is homotopic to a union of saddle connections, implying
that any nontrivial loop must pass through an edge of ˛.q/. Hence, ˛.q/ fills S n�.

10.2 Period coordinates as shear-shape cocycles

Now that we understand the relationship between � and the horizontal data of q, it is easy to build objects
T� nH� and T� on q of the same topological type as � and �[ ˛.q/. However, it is not immediate to
actually identify these objects as neighborhoods of � and �[ ˛.q/. Below, we deduce this from the
stronger statement that they admit smoothings onto train tracks snugly carrying � and �[˛.q/; compare
[Mirzakhani 2008, Sections 5.2 and 5.3].

Construction 10.4 (train tracks from triangulations) Let H denote the set of all horizontal saddle
connections on q and let T be a triangulation of q containing H. Let T� be the 1–skeleton of the dual
complex to T and let H� denote the edges of T� dual to H. Note that T� is trivalent by definition.

Let � denote a triangle of T with dual vertex v� in T�. Using the jqj–geometry of � we may assign
tangential data to v� as follows (compare Figures 14 and 15):

� If no edge of � is horizontal, then a unique edge e has largest (magnitude of) imaginary part.
Assign tangential data to v� so that the dual edge to e is a large half-branch.

� Otherwise, some edge of � is horizontal and the other two edges have the same imaginary parts. In
this case, we choose tangential data so that the horizontal edge corresponds to a small half-branch
and leaves the large half-branch from the right, as seen by the large half-branch.

We denote the resulting train track by �˛ . The subgraph T� nH� can also be converted into a train track �
by deleting the branches of �˛ dual to H.

Remark 10.5 The edges of H� correspond to the arcs of ˛.q/ and �˛ is a standard smoothing of �[˛.q/.
Our convention for “standard” ensures that additivity in period coordinates corresponds to additivity in
train track coordinates.
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Figure 14: An example of the train track �˛ around a saddle connection. The thick black lines are
stems of horizontal separatrices of q while the light black lines are nonhorizontal edges of the
triangulation T. The dashed line is a branch of �˛ n � .

By construction, the graph T� (equivalently, the train track �˛) is a deformation retract of S nZ.q/.
Similarly, T�nH� (and � ) are deformation retracts of the complement of the horizontal saddle connections.
Together with our discussion above, this implies that � has the same topological type as � and �˛ has the
same topological type as �[˛.q/.

In order to actually realize these objects as neighborhoods of �, we observe that we can build an explicit
carrying map from (a foliation measure equivalent to) � onto � .

Lemma 10.6 The train track � carries � snugly. The weight system on � that specifies � is exactly the
(magnitude of ) the imaginary parts of the periods of the edges of T.

bs

`s

rs

o

o`

or

bs `s

rs

o`

or o

Figure 15: Local pictures of the different types of switches of �˛ . Here we have illustrated
the images of each triangle under the holonomy map. The orientation of each edge should be
interpreted as indicating the value of Œ � �C, so that the edge vector is exactly the complex weight
assigned to the dual branch of �˛ . The graphical conventions of this figure mirror those of
Figure 14.
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Proof Let all notation be as above and let F denote the (singular) horizontal foliation of q.

One can directly build a homotopy of the nonsingular leaves of F onto � : in a neighborhood of each
edge e of T nH there is a homotopy of the leaves of F onto the branch of � dual to e. Now any leaf of F

which passes through a triangle � of T does so (locally) only twice and must pass through the side of �
with the largest imaginary part, which corresponds to a large half-branch of � . The complement of the
separatrix meeting the vertex of � opposite to the side with largest imaginary part separates the (locally)
nonsingular leaves of F passing through � into two packets that can be homotoped onto � , respecting the
smooth structure at the switch dual to �; compare Figure 15.

Now the horizontal foliation F of q is measure equivalent to �, and so as � carries F it carries � (snugness
follows as � and � have the same topological type). The statement about the weight system follows from
our description of the carrying map.

Now that we have identified � as a snug train track carrying �, we may in turn identify a neighborhood
of �[˛.q/ with (a thickened neighborhood of) �˛. With this correspondence established, we may now
define I�.q/ as the image of the real part of the period coordinates of q under the natural isomorphism on
cohomology.

Construction 10.7 (definition of I�.q/) Let S, �, q, ˛.q/ and �˛ be as above, Set M˛ to be a thickened
neighborhood of �˛ (in the flat metric defined by q) and let N˛ be a snug neighborhood of �[˛.q/ (taken
in some auxiliary hyperbolic metric). Perhaps by shrinking N˛ , we may assume it embeds into M˛ as a
deformation retract (this follows by snugness).

Now �˛ is itself a deformation retract of S nZ.q/, so the inclusion M˛ ,! S nZ.q/ is a homotopy
equivalence; composing inclusions N˛ ,!M˛ ,! S nZ.q/ and lifting to the orientation covers yields
the isomorphism

(22) H 1. yS ;Z.
p

q/IC/
j�
�!H 1. yN˛; @ yN˛IC/;

where the hats denote the corresponding orientation covers. As the composite retraction respects the
covering involution �, this isomorphism also identifies �1 eigenspaces for ��. We therefore define

I�.q/D Re.j � Per.q//;

where Per.q/ are the period coordinates for q, and where the real part is taken relative to the natural
splitting C DR˚ iR.

Remark 10.8 From the above construction, a basis consisting of branches for the weight space of �˛
(equivalently a basis for H1. yN˛; @ yN˛IZ/ of dual arcs) picks out a basis for H1. yS ;Z.

p
q/IZ/. Moreover,

each relative cycle is realized geometrically as a saddle connection (as opposed to concatenations, thereof).
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To see that I�.q/ is indeed a shear-shape cocycle, we need only observe that the values on standard
transversals to ˛.q/ are all positive. This follows essentially by definition of the orientation cover and
construction of ˛.q/. To wit: if ˛ is an arc of ˛.q/ dual to a saddle connection s, and t is a standard
transversal to ˛, then the canonical lifts of t are mapped to those of s under the isomorphism (22). As the
periods of

p
q increase as you move along the (oriented) horizontal foliation of . yS ;

p
q/, this implies

that the value of I�.q/ on either of the lifts of t is exactly the length of the saddle connection s.

Therefore, the weighted arc system underlying I�.q/ is none other than

A.q/ WD
X
˛2˛.q/

c˛˛;

where c˛ is the jqj–length of the horizontal saddle connection dual to the arc ˛.

Remark 10.9 Naturality of all of the isomorphisms involved quickly implies that this construction does
not depend on the choice of initial triangulation T. Indeed, suppose that T1 and T2 are two triangulations
giving rise to train tracks �1 and �2 and hence shear-shape cocycles �1 and �2. Since both �i carry
�[˛.q/ snugly, Lemma 10.6 implies that they have a common refinement � . Lifting the inclusions

N.� [˛.q// ,!N.�i [˛.q// ,! S nZ.q/

to their orientation covers and drawing the appropriate commutative diagram of cohomology groups, the
shear-shape cocycles built from each Ti coincide as weight systems on the common refinement � .

For use in the sequel, we record below the weight systems on �˛ corresponding to � and I�.q/. The proof
follows by combining the constructions above with the discussion in Section 9 and is therefore left to the
scrupulous reader. See also Figure 15.

For a complex number z, define

Œz�C D

�
z if arg.z/ 2 Œ0; �/;
�z if arg.z/ 2 Œ�; 2�/:

Observe that Œz�C D Œ�z�C for all z 2C.

Lemma 10.10 Let all notation be as above and , for each edge e of T, let be denote the branch of �˛
dual to it. Then the assignment

be 7!

�Z
e

p
q

�
C

defines a complex weight system w.q/ on �˛ satisfying the switch conditions. Moreover ,

Im.w.q//D � and Re.w.q//D I�.q/:

10.3 Global properties of the coordinatization

In this section, we show that the map I� defined above gives a global coordinatization of MF.�/ŠFuu.�/.
First, we record certain global properties of this map; as it is defined by reinterpreting period coordinates
as shear-shape cocycles, it preserves many of the structures imposed by period coordinates.
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For example, it follows by construction that I� respects the stratification of each space. That is, if
q 2 QT.k1; : : : ; kn/\Fuu.�/, then the spine dual to ˛.q/ has vertices of valence k1C 2; : : : ; knC 2. In
a similar vein, since both Fuu.�/ and SH.�/ have local cohomological coordinates (which induce PIL
structures) we can deduce the following:

Lemma 10.11 For any � 2ML.S/, the map I� is Mod.S/Œ��–equivariant and PIL.15

Proof Equivariance follows from the naturality of our construction: all combinatorial data (arc systems,
train tracks, etc) can be pulled back to a reference surface equipped with �, so changing the marking by
an element of Mod.S/Œ�� acts by transforming the combinatorial data on the reference surface.

The piecewise-linear structure on Fuu.�/ (respectively SH.�/) is given by period coordinates (respectively
cohomological coordinates in a neighborhood/train track coordinates) and so the map is by construction
piecewise-linear. Integrality comes from the fact that a homotopy equivalence induces an isomorphism
on cohomology with Z–coefficients, and hence takes integral points to integral points.

The Thurston intersection pairing gives us a powerful tool to understand constraints on the image of
I�; in particular, I�.q/ must be a positive shear-shape cocycle. Indeed, the tangential structure of the
train track �˛ at each switch provides us with an identification of each triangle � of T with an oriented
simplex. With respect to this orientation, we can compute the area of � by taking (one half of) the cross
product of two of its sides. Comparing the formula for the cross product with the Thurston intersection
pairing (20) then allows us to see that the intersection of � and I�.q/ is exactly the area of q; compare
[Mirzakhani 2008, Lemma 5.4].

Proposition 10.12 For all � 2MF.�/ and all � 2�.�/,

!SH.I�.�/; �/D i.�; �/:

In particular , I�.MF.�//� SHC.�/.

The proof of this proposition is made technical by the fact that if � and �0 2 �.�/ are ergodic but
not projectively equivalent then they are mutually singular. To deal with this difficulty, we build a
flat structure on the subsurface filled by � by integrating against �C t� and I�.�/ for small t . The
triangulation T then induces a combinatorially equivalent triangulation of this new flat structure by saddle
connections, allowing us to compare the area of this new flat metric (computed via cross products) with
the Thurston form on our original train track �˛ . This inverse construction will also be used in the proof
of Proposition 10.14.

Proof We begin by observing that since � 2 �.�/, there is a union of minimal components of the
horizontal foliation of q.�; �/ that supports �. Call this subfoliation F and let Y denote the subsurface
filled by F on q.�; �/. Note that @Y must be a union of horizontal saddle connections, and hence is
contained in any triangulation T used to define �˛. In particular, TjY is a triangulation of Y.

15We recall that a PL map between PIL manifolds is itself PIL if it sends integral points to integral points.
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Since � and � are realized transversely on q.�; �/ and this specific realization of � is nonatomic (as any
closed leaves of � have become vertical cylinders), we can compute the intersection number between �
and any measure � supported on F as

(23) i.�; �/D

Z
S

���D

Z
Y

���:

We now build a new flat structure on Y whose conical singularities coincide with those of Y ; the salient
feature is that TjY can be straightened out to a triangulation by saddle connections on the new singular
flat structure that reflects the geometry of �C t�. To construct the new singular flat structure, we build
charts from a neighborhood of each triangle �� TjY to C and describe the transitions.

Each triangle � of T is dual to a switch s with an edge that is dual to a large half-branch b incident
to s. Orient �˛ \� so that a train traveling along b toward s is moving in the positive direction. The
other edges r and ` of � are dual to the half-branches of �˛ to the right and left of s, respectively. The
vertices or and o` are adjacent to r and `, respectively, and the vertex o is opposite b; see Figure 15.
On the interior of each triangle �, we orient the leaves of F parallel to b. The leaves of � are given
the orientation such that the ordered basis of tangent vectors to � and � at each point agree with the
underlying orientation of S. With this orientation, the measures � and � induce smooth real 1–forms d�

and d� that look locally like dx and dy, respectively (as opposed to jdxj and jdyj, respectively).

Restricted to the interior of �, the local orientation of the leaves of � also gives the measure � the
structure of a measurable 1–form that we call d�. Spreading out the measure on a closed leaf of � over
the horizontal cylinder of � corresponding to its support as necessary, we get that the map

Ft W�!C; p 7!

Z
p

d�C id.�C t�/;

obtained by integrating along a path p from or to p is isometric along leaves of F and nondecreasing
along leaves of �. We compute

Ft .o/D I�.�/.r/C i.�C t�/.r/ and Ft .o`/D I�.�/.b/C i.�C t�/.b/:

Transverse invariance and additivity of � gives

(24) Ft .o`/�Ft .o/D I�.�/.`/C i.�C t�/.`/:

Since the pair .F0.o/;F0.o`// forms a positively ordered basis for C (or, equivalently, since the triangle�
is positively oriented), the pair .Ft .o/;Ft .o`// is also positively oriented for small enough t . Let �0t be
the convex hull of .Ft .or /;Ft .o/;Ft .o`//.

The area of �0t may now be computed as half the cross product of Ft .o/ and Ft .o`/. Using (24) and
linearity of the cross product,

(25) Area.�0t /D
1

2

ˇ̌̌̌
I�.�/.r/ I�.�/.`/

�C t�.r/ �C t�.`/

ˇ̌̌̌
> 0:

Geometry & Topology, Volume 28 (2024)



Shear-shape cocycles for measured laminations and ergodic theory of the earthquake flow 2061

�

U.�/

o

or

o`

Ft

�0t

Figure 16: Integrating against � and �C t� defines a new flat structure on triangles. These charts
piece together to give a new half-translation structure on the subsurface filled by �.

Now, for each � and any small enough t , the map Ft may be extended to an open set U.�/ in Y nZ.q/

that contains � (minus its vertices) and is such that, for every p 2 U.�/, there is a unique nonsingular
jqj–geodesic segment p joining or to p. We claim that, moreover, we may choose U.�/ so that
�0t � F.U.�//; see Figure 16.

If not, there is some vertex v of TY n� such that Ft .v/ 2�
0
t nFt .�/. Indeed, by construction, U.�/

is a star-shaped neighborhood about the vertex or of �, so there is a saddle connection joining or to v.
This saddle connection passes through or shares a vertex of an edge e of �. Moreover, we may find v
such that the triangle �v formed by e and v is singularity free and contained in U.�/. But now, the
straightening �0v of Ft .�v/ in C lies inside �0t with the wrong orientation since Ft .v/ lies between
Ft .e/ and the corresponding edge of �0t . This is a contradiction to the fact that Ft is nondecreasing
along leaves of �, or, alternatively, to the fact that the straightenings �0t are all positively oriented for
small enough t . So we may assume that �0t � F.U.�//.

If �1 � TY shares an edge with �, then the construction of the map Ft on �1 agrees with Ft on
U.�/\U.�1/ up to multiplication by ˙1 (depending on the configuration of the switches dual to �
and �1) and translation by the period of the arc connecting the basepoints or of each triangle. Thus
these triangles glue up to a half-translation structure on Y nZ equipped with a triangulation by saddle
connections corresponding to TjY .

In our new flat structure on Y, �C t� is measure equivalent to the horizontal foliation and (the restriction
of) � is equivalent to the vertical foliation. Hence, we obtain, for any t small enough, thatZ

Y

�� .�C t�/D
X
�2TjY

Area.�0t /D
X
�2TjY

1

2

ˇ̌̌̌
I�.�/.r/ I�.�/.`/

�C t�.r/ �C t�.`/

ˇ̌̌̌
D !SH.I�.�/; �C t�/;

where the second equality follows from (25) and the third from (20). Combining this with formula (23)
and the linearity of the Thurston intersection form (Lemma 8.3),

i.�; �/D
1

t

�Z
Y

���C t��

Z
Y

���

�
D

1

t

�
!SH.I�.�/; �C t�/�!SH.I�.�/; �/

�
D !SH.I�.�/; �/;

completing the proof of the proposition.
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From the proof of Proposition 10.12, we can also extract the following, which allows us to recon-
struct a (triangulated) quadratic differential from a sufficiently positive shear-shape cocycle, inverting
Construction 10.4.

Lemma 10.13 Let � be a train track snugly carrying � and let �˛ be a standard smoothing of �[ ˛.
Suppose that � 2 SH.�/ is represented by a weight system on �˛ such that , at every switch s of �˛, the
contribution

1

2

ˇ̌̌̌
�.rs/ �.`s/

�.rs/ �.`s/

ˇ̌̌̌
of s to !SH.�; �/ is positive. Then there exists a quadratic differential q 2 Fuu.�/ such that I�.q/D �

and the dual triangulation to �˛ is realized by saddle connections on q.

Proof The assumption that the contribution at each switch is positive implies that the basis .F.o/;F.o`//
is positively oriented at each switch, and so we can build a positively oriented triangle � with the
prescribed periods. These glue together into the desired quadratic differential.

In particular, we can locally invert I� by building a quadratic differential out of triangles whose edges
have specified periods, so I� is injective.

Proposition 10.14 For any � 2ML.S/, the map I� is a homeomorphism onto its image.

Proof To see that I� is injective, we observe that Lemma 10.13 provides a (left) inverse map �� to I�.
Indeed, suppose that � D I�.q/ for some q and pick a triangulation T as in Construction 10.4; let �˛
denote the dual train track. Applying Lemma 10.13 then constructs a quadratic differential q0 on which
each edge of T is realized as a saddle connection. Since q and q0 have the same periods with respect to
the same geometric triangulation, they must be equal.

To prove that I� is continuous, we first observe that I� is by definition continuous on the closure
SH.�I˛.q// of any cell, as it is induced by a continuous mapping on the level of cohomology. In general,
we need only exploit this fact together with a standard reformulation of sequential continuity: a function
f WX ! Y is continuous if and only if every convergent sequence xn! x has a subsequence xnk

such
that f .xnk

/! f .x/.

So let qn ! q 2 Fuu.�/. The polyhedral structure of SH.�/ is locally finite, so, for n large enough,
I�.qn/ is contained in a finite union of cells. After passing to a subsequence qnk

, we may assume that qnk

all share the same underlying (maximal) arc system ˇ completing ˛. In particular, I�.qnk
/2SH.�Iˇ/ for

all k and so I�.qnk
/! I�.q/ follows from continuity on cells. Therefore I� is a continuous injective map

between Euclidean spaces of the same dimension (Proposition 8.5 and Corollary 8.2) and so invariance of
domain guarantees it is a homeomorphism onto its image.
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The image of I� In light of Lemma 10.13, to show that I� surjects onto SHC.�/ it would suffice to
show that every positive shear-shape cocycle can be realized as a weight system on a train track where
every switch contributes positively to the intersection form. However, it is rather complicated to show that
every positive shear-shape cocycle admits such a representation (see the discussion in Remark 10.16).

Instead, we deduce this fact using the commutativity of (2) and the results appearing in Sections 12–15
coordinatizing hyperbolic structures by shear-shape cocycles. We emphasize, however, that Theorem 10.15
is logically independent from the work done in Sections 12–15 that leads to its proof. We include
the statement here (as opposed to after Section 15) to provide some closure to our discussion of the
parametrization of MF.�/ by shear-shape cocycles.

Theorem 10.15 The map I� W F
uu.�/! SHC.�/ is a homeomorphism.

Proof In Section 13, we define the geometric shear-shape cocycle ��.X / 2 SH.�/ associated to a
hyperbolic metric X 2 T.S/ and show (Theorem 13.13) that ��.X /D I�.O�.X //. In Section 15, we
prove Theorem 12.1, which states that the map �� WT.S/! SHC.�/ is a homeomorphism. In particular,
�� is surjective and hence so is I�. Together with Proposition 10.14, this implies the theorem.

Remark 10.16 If � is a maximal lamination, one can deduce surjectivity of I� by appealing to the
theory of “tangential coordinates” for measured foliations transverse to �. In general, given � snugly
carrying �, tangential coordinates can be constructed as a quotient of Rb.�/ by a vector subspace spanned
by vectors that model the change of length of branches of a train track on either side of a switch after a
small “fold” or “unzip”. When � is maximal, there is a linear isomorphism from shear coordinates to
tangential coordinates via the symplectic pairing !H; we refer the interested reader to [Thurston 1986,
Section 9] or [Penner and Harer 1992, Section 3.4] for details.

The transverse weights defined by the measure of � on � together with positive16 tangential data give
� the structure of a bifoliated Euclidean band complex. If the tangential data satisfy a collection of
triangle-type inequalities, this band complex can be “zipped up” to obtain a bifoliated flat surface with
conical singularities. When defined, the linear transformation mapping tangential coordinates to shear
coordinates preserves the intersection number, and hence positivity.

A standard positivity argument (see [Thurston 1979, Proposition 9.7.6] or [Thurston 1986, Theorem 9.3])
shows that any tangential data with positive intersection with � has a positive representative, and hence
defines a foliation transverse to �. In particular, the map from MF.�/ to the space of tangential coordinates
with positive intersection with � is surjective. As the space of tangential coordinates with positive
intersection is isomorphic to HC.�/, this completes the proof of surjectivity in the maximal case.

This being considered, even in the case when � is maximal “it is harder to see the [positivity] inequalities
satisfied by the shear coordinates [than the tangential coordinates]” [Thurston 1986, page 45] and it is not

16Here positive means that there is a representative of the tangential data that is positive on each branch of � .
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clear how to run the “standard positivity argument” without passing through tangential coordinates. We
have therefore chosen to prove Theorem 10.15 in a way that avoids developing a theory of tangential
coordinates dual to shear-shape cocycles. Instead, we take advantage of the relationship between the
Thurston intersection form on SH.�/ and the length of � on a given hyperbolic surface, as exploited in
the proof of Theorem 12.1 (see in particular Claim 15.8).

11 Flat deformations in shear-shape coordinates

The identification of Section 10 between periods of saddle connections and the values of the shear-shape
cocycle I�.q/ immediately allows us to transport certain flows on Fuu.�/ to shear-shape space. Moreover,
Theorem 10.15 affords a new perspective on the “tremor deformations” of [Chaika et al. 2020] (see
Definition 11.3).

The horizontal stretch We begin by observing that the space SHC.�/ carries a natural R>0–action
given by scaling both the underlying arc system A and the values assigned to test arcs (equivalently, the
corresponding cohomology class or the weights on a train track realization). Using our correspondence
between period coordinates and shear-shape cocycles (Lemma 10.10), this dilation expands the real part
of each period, so the corresponding flat deformation is just a horizontal stretch.17

Lemma 11.1 Let q 2 Fuu.�/; then

(26) I�

��
et 0

0 1

�
q

�
D etI�.q/

for all t 2R.

In particular, our coordinatization linearizes the expansion of the strong unstable foliation under the
Teichmüller geodesic flow.

Horocycle flow and tremors We now consider the horocycle flow on Fuu.�/, which is just the restriction
of the standard horocycle flow hs to the strong unstable leaf. An easy computation shows that, for every
saddle connection e of q, one has

(27)
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(here we have invoked the Œ � �C function to avoid fussing over square roots and orientations).

With the help of Lemma 10.10 we may translate this into the language of transverse and shear-shape
cocycles to observe:

Lemma 11.2 The map I� takes horocycle flow to translation by � in a time-preserving way. In symbols ,

I�.hsq/D I�.q/C s�:

17This is just the Teichmüller geodesic flow normalized so that the horizontal foliation remains constant. Applying the standard
geodesic flow takes .I�.q/; �/ to .et=2I�.q/; e

�t=2�/.
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More generally, we can perform a similar deformation for any measure � supported on �, resulting in the
tremor flow along �. First defined by Chaika, Smillie and Weiss in the context of abelian differentials, the
tremor trem�.q/ of a quadratic differential q D q.�; �/ by a measure � 2�.�/ is the unique quadratic
differential specified by shearing � by � and leaving � fixed. Why this makes sense (note that � and �
may not fill S ) and why it can be continued for all time present significant technical challenges in [Chaika
et al. 2020, Sections 4 and 13]. However, when considered in our coordinates (and restricted to a leaf of
the unstable foliation), tremors become quite simple.

For a given lamination �, let j�.�/j˙ denote the vector space of all signed transverse measures on �; this
is naturally a vector subspace of H.�/ of dimension at most 3g� 3 with basis consisting of the length 1
(with respect to some auxiliary hyperbolic metric) ergodic measures on �.

Definition 11.3 Let q 2 Fuu.�/ and let � 2 j�.�/j˙. Then the tremor trem�.q/ of q along � is the
unique quadratic differential specified by

(28) I�.trem�.q//D I�.q/C�:

Note that the fact that I�.q/C� 2 SHC.�/ follows by affinity of the Thurston form (Lemma 8.3).

Remark 11.4 Technically, the deformation considered above is a “nonatomic tremor” in the language
of [Chaika et al. 2020]. One can also consider “atomic tremors”, which transform q by twisting along
certain admissible loops of horizontal saddle connections.

In shear-shape coordinates, these admissible loops correspond to certain simple closed curves in the
complementary subsurfaces. Atomic tremors are then realized by appropriately shearing the underlying
arc system A.q/ along the curves and transporting the transverse cocycle using the affine connection
coming from train track coordinates. Of course, one can also define tremors along more complicated
laminations contained in S n�.

For the convenience of the reader familiar with the terminology of [Chaika et al. 2020], we have included
a dictionary which translates between our notation and theirs (at least when the horizontal lamination is
filling — when it is not, one must replace �.�/ with a subset of the zero set of � and take more care).
See Figure 17.

We can now immediately deduce certain properties of the tremor map from the structure of SHC.�/ and
the intersection pairing. While we will not use these results in the sequel, we have chosen to include them
in order to demonstrate the utility of our new perspective on these deformations. For example, using our
coordinates one can easily deduce that (nonatomic) tremors leave horizontal data invariant and hence can
be continued indefinitely while remaining in the same stratum.

Lemma 11.5 For any q 2Fuu.�/ and �2 j�.�/j˙, the tremor path tremt�.q/ is defined for all time and
is completely contained in SH.�IA.q//. In particular , ftremt�.q/g always remains in the same stratum.
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shear-shape cocycles foliation cocycles

�.�/ CCq
j�.�/j˙ Tq

!SH.�; �/D i.�C; �/� i.��; �/ signed mass Lq.�/

i.�C; �/C i.��; �/ total variation jLjq.�/

Figure 17: Translating between our language of shear-shape cocycles and the “foliation cocycles”
of [Chaika et al. 2020]. Throughout, we assume that qD q.�; �/where � is filling (or, equivalently,
q has no loops of horizontal saddle connections). We have written a signed transverse measure �
as �D �C��� 2 j�.�/j˙, where �˙ 2�.�/.

Remark 11.6 The above lemma is one specific instance of a much more general phenomenon. The
global description of Fuu.�/ afforded by shear-shape coordinates allows one to formulate a general
criterion for extending affine period geodesics, a topic which the authors hope to address in future work.

Using our interpretation of tremors as translation, it is similarly easy to describe how tremors interact
with other flat deformations. Compare with [Chaika et al. 2020, Propositions 6.1 and 6.5]. We leave
proofs to the reader, as they follow immediately from (28) and (26).

Lemma 11.7 Let q 2 Fuu.�/. Then , for any � 2 j�.�/j˙ and for gt D
�

et=2

0
0

e�t=2

�
,

gt trem�.q/D tremet=2�.gt .q//:

Additionally, for any �1; �2 2 j�.�/j˙,

trem�1
.q/ trem�2

.q/D trem�1C�2
.q/D trem�2

.q/ trem�1
.q/:

In particular , tremors commute with the horocycle flow.

12 Shear-shape coordinates for hyperbolic metrics

We now parametrize hyperbolic structures on S by shear-shape cocycles for a measured geodesic
lamination �. With respect to the Lebesgue measure on ML.S/, the generic lamination cuts a hyperbolic
surface into ideal triangles. As all ideal triangles are isometric, Bonahon and Thurston’s shearing
coordinates need only take into account the “shear” between pairs of complementary triangles to describe
a hyperbolic structure. As our objective is to generalize these coordinates to laminations with arbitrary
topology, we must therefore combine the data of the geometry of hyperbolic metrics in complementary
subsurfaces with the shearing data between them. The shear-shape space SH.�/ is well suited to this task.

In Sections 13–15, we explain how to associate a “geometric shear-shape cocycle” to a hyperbolic metric
and prove that the space of positive shear-shape cocycles coordinatizes Teichmüller space:

Theorem 12.1 The map �� W T.S/ ! SHC.�/ that associates to a hyperbolic metric its geometric
shear-shape cocycle is a stratified real-analytic homeomorphism.
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As detailed in the introduction, combining this theorem with Theorems 2.1 and 10.15 implies that the
orthogeodesic foliation map O� is a homeomorphism, and consideration of the earthquake/horocycle
flows in SHC.�/ coordinates then proves the conjugacy on slices (Theorem D).

We remark that the stratified regularity of �� and O� is the best one can expect, since the adjacency
of strata of differentials is not analytic (as there are multiple inequivalent ways to “break up a zero”).
Compare with [Dumas 2015, Theorem D], in which it is shown that, for a fixed Riemann surface Z, the
identification Q.Z/ŠML guaranteed by the Hubbard–Masur theorem [1979] is stratified real-analytic.

Fixed complementary subsurfaces By definition (see Section 13.2), the weighted arc system A.X /

underlying ��.X / exactly identifies the geometry of X n� via Theorem 6.4. Setting

T.S IA/ WD fX 2 T.S/ WA.X /DAg;

Theorem 12.1 therefore implies that T.S IA/ is nonempty if and only if A 2B.S n�/.

Remark 12.2 The authors do not know a proof of this fact that does not factor through Theorem 12.1
except in some special cases (for example, when the complement of � is polygonal, or when � is a union
of simple closed curves).18

In fact, since SHC.�/ is an affine cone bundle over B.S n�/ (Proposition 8.5), we see that:

Corollary 12.3 For each A 2B.S n�/, the set T.S IA/ is a real-analytic submanifold of T.S/ and the
restriction of �� to

T.S IA/! SHC.�IA/ŠHC.�/

is a real-analytic homeomorphism.

In this setting, the correspondence between T.S IA/ and HC.�/ is a natural generalization of shear
coordinates, since the complementary subsurfaces to � are always isometric. In fact, the shape-shifting
deformations built to deform X by some s 2 H.�/ (see the proof sketch of Theorem 12.1 just below)
restrict to cataclysms/shear maps in the sense of [Bonahon 1996, Section 5]. In particular, if s represents
a measure supported on �, then the shape-shifting deformation determined by s is part of an earthquake
in s (Corollary 15.2); if s is a multiple of ��.X /, the shape-shifting transformation can sometimes be
identified with part of a (generalized) stretch ray (Propositions 15.12 and 15.18).

In addition to being nonempty, T.S IA/ is structurally rich; the authors hope to explore this space further
in future work. Of particular interest is the (degenerate) Weil–Petersson pairing on this locus and its
relation with the Thurston symplectic form and Masur–Veech measures.

18One can of course complete � to a maximal lamination and then specify the shear coordinates on each of the added leaves, but
then one must be very careful to ensure that these shears satisfy the relations coming from the metric residue condition. The
argument then requires an involved computation with train tracks carrying the completed lamination.
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A sketch of the proof Since the proof of Theorem 12.1 spans several sections (two of which consist of
involved constructions of the relevant objects), we devote the remainder of this section to a broad-strokes
outline of the arguments involved. Our exposition throughout these sections is mostly self-contained, but
we sometimes refer to [Bonahon 1996] for proofs and to [Thurston 1986] for inspiration.

We begin in Section 13 by defining the map ��. Under the correspondence established in Theorem 6.4,
we associate to X the weighted arc system A.X / recording the hyperbolic structure on X n�. We cut X

along the (ortho)geodesic realization of �[˛ into a union of (degenerate) right-angled polygons, and
measure the shear between certain pairs of polygons. We then argue using train tracks that it suffices
to record the shearing data of ��.X / on short enough arcs k transverse to � and disjoint from ˛.X /.
The value of ��.X / on short k may then be defined by isotoping k to a path connecting vertices of
the spine Sp and built of segments alternating between leaves of � and of O�.X /, then measuring the
total (signed) length along �. These measurements are equivalent to Bonahon and Thurston’s method of
measuring shears (via the horocyclic foliation) when k is short enough, but cannot be globally derived
from theirs due to obstructions coming from complementary subsurfaces.

The proof that �� is a homeomorphism then follows the same general steps as appear in [Bonahon 1996].
After proving that �� is injective and lands inside SHC.�/ (Proposition 13.12 and Corollary 13.14), we
then show that it is open (Theorem 15.1) and proper. Since SHC.�/ is a cell (Proposition 8.5), invariance
of domain then implies that �� must be a homeomorphism.

Our proof of injectivity mirrors that of [Bonahon 1996, Theorem 12] with an additional invocation of
Theorem 6.4. For properness we mostly appeal to [Bonahon 1996, Theorem 20] but need to discuss
complications that arise from the piecewise-linear structure of shear-shape space. Similarly, our broad-
strokes strategy to prove openness parallels that of [Bonahon 1996, Section 5], in that we build a
“shape-shifting cocycle” 's for all small-enough deformations s of ��.X / (see Section 14). Deforming X

by postcomposing its charts to H2 with 's then yields a surface Xs with ��.Xs/D ��.X /C s.

It is in the construction of 's, performed in Section 14, where our discussion truly diverges from [Bonahon
1996; Thurston 1986]. When � is maximal, one can specify 's by shearing X along the leaves of � (ie
performing a cataclysm). Even in the maximal case this procedure is delicate, hinging on the convergence
of infinite products of small Möbius transformations (compare Section 14.2). In the nonmaximal case,
we must also simultaneously account for the changing shapes of complementary subsurfaces (which also
introduces extra complications into the shearing deformations since the shapes of spikes are changing).
See the introduction to Section 14 for a more granular description of the construction of 's.

13 Measuring hyperbolic shears and shapes

In this section, we take our first steps towards proving Theorem 12.1 by describing how to associate to
any hyperbolic surface X a geometric shear-shape cocycle ��.X / in a natural way; this yields the map

�� W T.S/! SH.�/:
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After fixing some notational conventions that we will use throughout the sequel, we define ��.X / by first
specifying its underling arc system A.X / in a variety of equivalent ways. After doing so, we define the
shear between “nearby” hexagons analogously to Bonahon and Thurston; placing all of this data onto a
standard smoothing �˛ of a geometric train track is therefore enough to specify ��.X / (Lemma 13.6).

We then show that the data of shears between any two nearby hexagons can be recovered from the weight
system on �˛, even if those hexagons are not “visible” to �˛ (Lemma 13.9). This in particular implies
that our choice of �˛ does not actually matter, and hence ��.X / is well defined.

We then conclude the section by proving some initial properties of ��. Proposition 13.12 shows that
the map is injective following an argument of Bonahon, while in Theorem 13.13 we show that our map
captures the geometry of the orthogeodesic foliation.

13.1 Preliminaries and notation

In this section, we discuss the geometry of a geodesic lamination on a hyperbolic surface and fix notation
in preparation for our definition of the geometric shear-shape cocycle of a hyperbolic structure.

Throughout, we use the symbol � to refer to both the measured lamination � and its support, realized
geodesically with respect to any number of hyperbolic metrics. We reserve S to denote a topological
surface and † the topological type of a component of S n�, while X and Y will denote their hyperbolic
incarnations. We also adopt the following family of notational conventions: the expression g � � means
that g is a leaf of �, and Y �X n� means that Y is a component of (the metric completion of) X n�, etc.
The notation of [Bonahon 1996] is used as inspiration, since we will make direct appeals to the results
therein. However, our situation requires more care, since we have more objects to keep track of. A key
difference is that we will focus not on the relative shear between complementary subsurfaces of X n�,
but on the relative positioning of pairs of boundary leaves of �, equipped with a natural collection of
basepoints determined by the orthogeodesic foliation.

Hexagons Given X 2 T.S/ and � 2ML.S/, realize � geodesically on X. Construct the orthogeodesic
foliation O�.X / on X with piecewise-geodesic spine Sp and dual arc system ˛ D ˛.X /, realized ortho-
geodesically with respect to X and �. The union �˛ D �[˛ is a geometric object on X that fills; that is,
the metric completion of X n�˛ is a union of geometric pieces that are topological disks, possibly with
some points on the boundary removed corresponding to spikes. We lift the situation to universal covers
z�˛ � zX, where we have also the full preimages �Sp, z�, z̨, etc of various objects.

Let H be the vertex set of �Sp; we will sometimes refer to v 2 H as a hexagon. Indeed, to v there is
associated a component Hv of zX n z�˛ which is generically a degenerate right-angled hexagon, though
Hv may also be a regular ideal or right-angled polygon, for example. We reiterate that, by abuse of
terminology, any complementary component Hv of zX n z�˛ is called a hexagon, no matter its shape.
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If fHv W v 2Hg contains components that are not degenerate right-angled hexagons in the usual sense,
then ˛ corresponds to a simplex of Afill.S n�/ of nonmaximal dimension (or the empty set, if � is filling
and ˛ is empty). One may always include ˛ in a maximal arc system ˇ, which necessarily defines a
simplex of full dimension. The complementary components of zX n z�ˇ are now degenerate right-angled
hexagons in the usual sense, and gluing them in pairs along ˇ n ˛ gives the more general “hexagons”
of zX nz�˛ . We will often tacitly choose and work with a maximal arc system containing the original when
convenient.

Pointed geodesics We now define a natural family of basepoints associated to boundary leaves of z�. For
v 2 H and its associated hexagon Hv, define the �–boundary @�Hv of Hv to be the set of leaves of z�
that meet @Hv.

For v 2 H and g a leaf of @�Hv, define pv to be the orthogonal projection of v to g. Observe that v
and pv lie along the same (singular) leaf of O�.X /. The orientation of S gives Hv an orientation and
hence orients @Hv; this yields an orientation-preserving, isometric identification of .g;pv/ with .R; 0/.
We refer to points on a based geodesic by their signed distance to the basepoint, so that 0 refers to pv

while ˙x refer to the points at signed distance ˙x from pv.

For a pair v¤w2H not in the same component of �Sp, there is a unique geodesic gwv 2@�Hv that separates
v from w. Symmetrically, there is such a pointed geodesic gvw 2 @�Hw separating w from v. Note that
gwv D gvw occurs if and only if this leaf is isolated, and, by the assumption that � is measured, projects to
a simple closed curve component of �. Even in this case, the points pv and pw are in general different.

13.2 The shear-shape cocycle of a hyperbolic structure

Our first task towards defining the geometric shear-shape cocycle ��.X / of a hyperbolic structure X is to
construct a weighted filling arc system A.X / 2B.S n�/ which records the shapes of the complementary
subsurfaces.

With the technology we have developed up to this point, we now have many ways of constructing A.X /,
all of which are easily seen to be equivalent:

� To each ˛ 2 ˛.X /, we associate the weight c˛ WD i.O�.X /; e˛/, where e˛ is the edge of Sp dual
to ˛. Equivalently, c˛ is the length of the projection of e˛ to either of the two leaves of � to which
it is closest. Then set A.X /D

P
c˛˛.

� Each component Y �X n� is naturally endowed with a hyperbolic structure; by Theorem 6.4 this
metric corresponds to a weighted filling arc system in jAfill.Y; @Y /jR, and we let A.X / denote the
union of these arc systems over all components of X n�.

� Let q be the quadratic differential with jRe.q/j D O�.X / and jIm.q/j D �; then set A.X /DA.q/.

The final definition together with the results of Section 10 implies that A.X / 2 B.S n �/ for every
hyperbolic structure X on S. In the interest of providing the reader with geometric intuition for this
condition, we have included an alternative, purely hyperbolic-geometric proof of this fact below.
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Lemma 13.1 With notation as above , A.X / 2B.S n�/.

Proof By Theorem 6.4, it suffices to show that for each minimal, orientable component � of �, the sum
of the metric residues of the crown ends of X n� incident to � is 0. If � is a simple closed curve, then
the metric residue is just equal to the (signed) lengths of the boundary components resulting from cutting
along �, which clearly must match.

So assume that � is not a closed curve and pick an orientation. Construct a geometric train track �
snugly carrying � as in Construction 5.6; then � inherits an orientation from the inclusion of � and so
has well-defined left- and right-hand sides. As in Section 5.2, every branch b of � has a well-defined
length along � which we denote by `� .b/ > 0. At each switch s of � , let hs be the leaf of the horocyclic
foliation of N�.�/ projecting to s. By assumption of snugness, the spikes of S n � correspond with the
spikes of S n�, so the union of the hs truncates each spike of each crown end incident to � by hs .

Each crown incident to � inherits an orientation from the chosen orientation on �, and we now compute
the total metric residue with respect to these orientations and the truncations induced by the hs . Recall that
the metric residue of an oriented crown C is the alternating sum of the lengths of the geodesic boundary
segments running between the truncation horospheres (Definition 4.3). Each such geodesic segment
defines a cooriented trainpath .b1 � � � bn;˙/ in � (ie a trainpath and a distinguished side, left or right,
corresponding to C and �, respectively) which runs along the entirety of a smooth component of the
boundary of X n � . Using this identification, we may compute that the corresponding contribution to the
total metric residue is given by ˙

P
i `� .bi/.

Finally, we observe that every branch of � is a subpath of exactly two smooth boundary edges of X n �

(corresponding to its left and right sides). Therefore, the sum of the metric residues of all of the crown
ends incident to � is the sum of the contributions of the corresponding cooriented trainpaths, which is
necessarily 0 since each branch is counted twice, once with positive and once with negative sign. Thus
A.X / 2B.S n�/.

Shears between nearby hexagons Our second step towards defining ��.X / is to determine how to
record shearing data between two hexagons that lie in different components of zX n z� yet are close
enough together. Except for sign conventions (see Remark 13.3), our discussion is essentially identical to
Bonahon’s definition [1996, Section 2] of shearing between the plaques of a maximal lamination. Our
restriction to pairs of nearby hexagons reflects the fact that if two hexagons are far apart, a path connecting
them may meet a subsurface of zX n z� in a variety of ways.

Given v;w 2H, consider the associated pointed geodesics .gwv ;pv/2 @�Hv closest to Hw and .gvw;pw/2
@�Hw closest to Hv. We say that the geodesic segment kv;w � zX joining pv to pw is a simple piece if
kv;w projects to a simple geodesic segment in X and kv;w bounds a spike in every hexagon that it crosses.
That is, if kv;w crosses Hu for some u 2H, then kv;w \Hu bounds a triangle in Hu, two sides of which
lie on asymptotic leaves gvu and gwu defining a spike of z�. If kv;w is a simple piece, then we say that
.v; w/ is a simple pair.
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pv

v

pw

w

r D���.X /.v; w/

Figure 18: Computing the shears between two nearby hexagons v and w. In this example, r < 0,
so ��.X /.v; w/ > 0.

We observe that, if v;w 2H are close enough together and lie in different components of �Sp, then .v; w/ is
a simple pair. The exact value of “close enough” is unimportant, but we note that it suffices for d.Hu;Hv/

to be smaller than the length of the shortest arc of ˛.X /.

Now, following [Bonahon 1996, Section 2], let ƒv;w be the leaves of z� that separate gwv from gvw,
equipped with the linear order < induced by traversing kv;w from pv to pw. Since .v; w/ is a simple
pair, the subset of those leaves that are also the boundary of a complementary component of zX n z� come
in pairs that are asymptotic in one direction. The partial horocyclic foliations on the wedges bounded
by pairs of asymptotic boundary leaves extend across the leaves of ƒv;w, foliating the region bounded
by gwv and gvw. In particular, the leaf of the horocyclic foliation containing pv meets gvw (and the leaf
containing pw meets gwv ).

Since the orthogeodesic foliation is equivalent to the horocyclic foliation in spikes, for any simple
pair .v; w/, the leaf of Oƒv;w .

zX / containing pv meets gvw (and the leaf containing pw meets gwv ). In
fact, simplicity implies that Oƒv;w .

zX / foliates the “quadrilateral” bounded by gvw , gwv and the two leaves
of Oƒv;w .

zX / containing pv and pw.

Definition 13.2 Suppose that .v; w/ is a simple pair of hexagons. Using the orientation conventions
of Section 13.1, identify the corresponding pointed geodesics .gwv ;pv/ and .gvw;pw/ with .R; 0/. Now
since the hexagons are close enough, the singular leaf of Oƒv;w .

zX / containing pv meets gvw in some
point r 2R, and we set ��.X /.v; w/D�r . See Figure 18.

It is not hard to see that ��.X /.v; w/ remains the same if we flip the roles of v and w. Indeed, following
along the leaves of the orthogeodesic foliation defines an orientation reversing isometry from a subsegment
of gwv to a subsegment of gvw that takes t 7! r�t . In particular, pv maps to a point on gvw that is positioned
r signed units away from pw, and so ��.X /.v; w/D ��.X /.w; v/.
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Remark 13.3 Our choice to set ��.X /.v; w/D�r instead of Cr records “how far along gvw you must
travel from r to get to pw”. Though this convention is the opposite of what appears in [Bonahon 1996],
it allows us to combine the data of ��.X /.v; w/ and A.X / into a system of train track weights on a
standard smoothing (Construction 13.5). Our convention also parallels our choice of Œ � �C function when
measuring periods of a quadratic differential (Lemma 10.10), which makes the relationship between the
hyperbolic geometry of .X; �/ and the flat geometry of q.O�.X /; �/ more transparent.

Below, we give an elementary estimate that will be used in the proof of Proposition 13.12; compare with
[Bonahon 1996, Lemma 8].

Lemma 13.4 Suppose that .v; w/ is a simple pair of hexagons. Let .gwv ;pv/ and .gvw;pw/ be the
associated pointed geodesics. Then the geodesic segment kv;w joining pv to pw satisfies

j��.X /.kv;w/j � `.kv;w/:

Proof As .v; w/ is simple, the partial orthogeodesic foliation Oƒv;w .
zX / foliates the region U bounded by

gvw , gwv and the two leaves of Oƒv;w .
zX / containing pv and pw . This foliation gives rise to a 1–Lipschitz

retraction � from U to gvw defined by following the leaves of the orthogeodesic foliation to gvw. The
image �.kv;w/ is then equal to the segment of gvw joining pw to the point labeled by ��.X /.v; w/, which
has length j��.X /.v; w/j. The lemma follows.

Hyperbolic shearing as train track weights Now that we have explained how to record the shapes
of X n� (Lemma 13.1) and the shears between nearby hexagons (Definition 13.2), we can package this
information together to define the geometric shear-shape cocycle ��.X / of a hyperbolic structure X.

Below, we realize the shape and shear information specified above as a weight system on a standard
smoothing of a geometric train track carrying �; this strategy allows us to specify ��.X / by a finite
collection of information. Once we show that the weights are well defined and satisfy the switch conditions,
we then invoke Proposition 9.5 to interpret this weight system as an (axiomatic) shear-shape cocycle (see
Definition 13.8). This reinterpretation in turn makes it apparent that our initial choice of train track does
not matter.

Using Construction 5.6, choose a geometric train track � �X that carries � snugly and let �˛ be a standard
smoothing of � [˛.X / (see Construction 9.3). Note that the components of zX n Q�˛ are in bijection with
the set of hexagons H, and that the assumption that � carries � snugly ensures that if two hexagons
correspond to adjacent components of zX n Q�˛ then they either share an edge of z̨ or form a simple pair.
We recall that two hexagons form a simple pair if the geodesic connecting their basepoints passes only
through spikes of S n�.

Construction 13.5 Fix �˛ �X as above. We then associate a weight system w.X / 2Rb.�˛/ as follows:

� To each branch corresponding to ˛ 2 ˛, assign the weight c˛ D i.O�.X /; e˛/, where e˛ is the edge
of Sp dual to ˛.

Geometry & Topology, Volume 28 (2024)



2074 Aaron Calderon and James Farre
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˛
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s1 D w.X /.b/

d D w.X /.˛/

s2 D�w.X /.`/

Figure 19: Left: a local picture of � near s. Right: case (3). The switch condition is satisfied
because s1 D d � s2.

� For each branch b � �˛ that dos not correspond to an arc of ˛, choose a lift Qb 2 Q�˛. Let v;w 2
H denote the vertices of �Sp corresponding to the hexagons adjacent to Qb, and set w.X /.b/ D
��.X /.v; w/.

Lemma 13.6 Let X, �, ˛ and �˛ be as above. Then the edge weights w.X / 2 Rb.�˛/ given by
Construction 13.5 satisfy the switch conditions.

Proof Reference to Figure 19 will provide clarity throughout. We note that �˛ is generically trivalent,
but may be 4–valent if there are arcs ˛1; ˛2 2 ˛ whose endpoints on � lie on a common leaf of the
orthogeodesic foliation. We give an argument only for the trivalent switches of �˛, and leave it to the
reader to make the necessary adjustments for 4–valent switches (the statement for 4–valent switches can
also be deduced by continuity).

Let s be a trivalent switch; then standing at s and looking into the spike, there are small half-branches
exiting s on our right and left; call these r and `, respectively. By our convention on standard smoothings,
every half-branch of �˛ corresponding to an arc of ˛ is a right small half-branch.

If no branch of s corresponds to an arc of ˛, then the arguments appearing in [Bonahon 1996, Section 2]
imply that the weights satisfy the switch conditions, because the orthogeodesic foliation is equivalent to
the horocycle foliation in near s. See also [Papadopoulos 1991, Section 6] for a discussion more similar
in spirit to ours.

Otherwise, the right small half-branch r is labeled by some ˛ 2 ˛. Let b be the large half-branch incident
to s. Give names also to the hexagons incident to s and their distinguished points on b or ` by projection;
they are N, SE, and SW 2 H, and pN , pSE and pSW , respectively, where b and ` form part of the
boundary of N, ` and r form part of the boundary of SE, and r and b form part of the boundary of SW.
See Figure 19.

Now take d D d.pSW ;pSE/, which is equal to w.X /.r/D c˛ > 0 by definition. Define also

s1 WD jw.X /.b/j D d� .pSW ;pN / and s2 WD jw.X /.`/j D d� .pN ;pSE/:
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Here d� is understood to mean the distance between leaves of the orthogeodesic foliation near � , measured
along any leaf of � (see Section 5.2 for an explanation of why this value is well defined).

There are three kinds of configurations for the projection points pSW , pN and pSE that determine the
signs of w.X /.b/ and w.X /.`/:

(1) The point pN precedes both pSW and pSE with respect to the orientation of � on induced by HN ,
so that

w.X /.b/D�s1 and w.X /.`/D�s2 with s2 > s1:

In this case, d D s2� s1 and so d � s2 D�s1, which is exactly the switch condition.

(2) Both pSW and pSE precede pN , so that

w.X /.b/D s1 and w.X /.`/D s2 with s1 > s2:

This possibility gives that d D s1� s2 and so d C s2 D s1.

(3) The point pSW precedes pN , which in turn precedes pSE , so that w.X /.b/D s1 and w.X /.`/D
�s2. In this case, d D s1C s2 and so d � s2 D s1, which is again the switch condition.

Therefore, no matter the configuration of points pN , pSW and pSE , the switch conditions are fulfilled at
s, completing the proof of the lemma.

Remark 13.7 Importantly, w.X / is generally not the same as the weight system coming from the shear
coordinates of a completion of � (unless � was maximal to begin with).

Invoking Proposition 9.5 and Lemma 13.1, the weight system w.X / defines a shear-shape cocycle with
underlying arc system A.X /.

Definition 13.8 The geometric shear-shape cocycle .��.X /;A.X // of a hyperbolic metric X is the
unique shear-shape cocycle for � corresponding to the weight system w.X / of Construction 13.5.

The rule that assigns to a hyperbolic structure its geometric shear-shape cocycle therefore defines a map

�� W T.S/! SH.�/; X 7! ��.X /;

which is the subject of the rest of this article.

Train track independence We have employed the language of train tracks for convenience — the ties
of a train track are a useful class of measurable arcs in the sense that they can be made transverse to �
and disjoint from ˛ (or record the weight associated to an arc of ˛). However, Construction 13.5 and
Definition 13.8 a priori depend on the choice of geometric train track �˛ carrying �.

Now that we have identified the weight system w.X / with the shear-shape cocycle ��.X /, however, we
can invoke both the axiomatic and cohomological interpretations (Definitions 7.5 and 7.11) to see that
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the value of ��.X / on any arc k transverse to � but disjoint from ˛ does not depend on the choice of
geometric train track. Indeed, let k be any such arc; then by transverse invariance (axiom (SH1)) we may
replace k with a concatenation of short geodesics, all of which are transverse to � but disjoint from ˛.
By additivity (axiom (SH2)), it therefore suffices to show that the value of ��.X / on any short geodesic
disjoint from ˛ does not depend on the train track.

Lemma 13.9 Let k be a short enough geodesic segment on X that is transverse to �. Lift k to an arc Qk
on zX and let v and w be the hexagons containing the endpoints of Qk; then

��.X /.k/D ��.X /.v; w/;

where on the left ��.X / represents the axiomatic shear-shape cocycle and on the right ��.X / represents
the shear between nearby hexagons (Definition 13.2). In particular , ��.X /.k/ does not depend on the
choice of train track employed in Definition 13.8.

In fact, the conclusion of this lemma holds for all simple pairs.

Proof So long as k is short enough (shorter than all arcs of ˛.X /), .v; w/ is a simple pair. Using
axiom (SH1), we may therefore isotope k through arcs transverse to � but disjoint from ˛ to an arc k 0,
defined to be the concatenation of kv;w, the geodesic connecting the points pv and pw on the boundary
geodesics gwv and gvw, together with segments of the orthogeodesic foliation inside each hexagon Hv

and Hw.

Let � be a geometric train track snugly carrying � defined with parameter �; then the collapse map
� W N�.�/ ! � takes k 0 to a train route on � , and hence on �˛. Orient k 0 (and hence also the train
route �.k 0/) so that it travels from v to w. Let vD u1;u2; : : : ;uN Dw denote the sequence of hexagons
corresponding to regions of zX n Q�˛ bordering this train route, so that the regions corresponding to ui

and uiC1 both meet the same subsegment of �.k 0/. Let pi denote their corresponding projections onto �.
Note that, since �.k 0/ is carried on � � �˛ , no pair of subsequent hexagons ui and uiC1 lies in the same
component of �Sp. This plus the construction of the train track implies that .ui ;uiC1/ is a simple pair,
and we can measure the shear ��.X /.ui ;uiC1/ (up to sign) as the distance along the train track between
�.pi/ and �.piC1/.

Now, given �˛ carrying �, we observe that k 0 also determines a (pair of) relative cycle(s) in the corre-
sponding (orientation cover of the) �–neighborhood of �˛. The value ��.X /.k/ D ��.X /.k 0/ is then
equal to the value of the cohomological shear-shape cocycle evaluated on either of the oriented lifts Ok 0

of k 0 which cross the lift of � with positive local orientation. We may therefore express

Œ Ok 0�D Œt1�� Œt2�C Œt3�� � � �˙ ŒtN�1�;

where ti is a (lift of a) tie corresponding to the branch of the train track connecting the regions corresponding
to ui and uiC1, lifted to the orientation cover to have positive intersection with �. See Figure 20.
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Figure 20: Measuring the shear of a small arc using a geometric train track. By isotoping k to a
proper arc in the geometric train track neighborhood and then expressing its relative homology
class as a sum of the branches, we can compute its shear as the alternating sum of shears between
adjacent hexagons.

But now, by construction, ��.X / evaluated on Œti � is just the shear ��.X /.ui ;uiC1/. In turn, this shear
is equal to the signed distance along the train track between �.pi/ and �.piC1/ (where the sign is
determined by the local orientation of �). Combining this with the expression for Œ Ok 0� above, ��.X /.k/ is
exactly equal to the signed distance along the train track between �.p1/ and �.pN /, which is the shear
��.X /.v; w/.

We note that, in the proof above, the cohomological interpretation of shear-shape cocycles provides a
convenient workaround for the obstacle that the train route with dual transversals t1; : : : ; tN�1 is not
in general isotopic to k through arcs transverse to �. Regardless, the relative homology class defined
by k 0\N�.�/ is homologous to a linear combination of ftig in the orientation cover of N�.�/.

Remark 13.10 The lemma above can also be proved by splitting any two geometric train tracks to a
common subtrack [Penner and Harer 1992, Theorem 2.3.1]. Each splitting sequence can then be realized
in the orthogeodesically foliated neighborhood N�.�/�X by cutting along compact paths in the spine
associated to a spike, as in [Zhu and Bonahon 2004, Section 3]. Splits induce maps on weight spaces,
and so Lemma 13.9 is essentially equivalent to the statement that Construction 13.5 is compatible with
splitting and collapsing. See also [Bonahon 1997b, Lemma 6].

The cocycle as a map on pairs It will be convenient to repackage the data provided by ��.X / in yet
another form, which also explains our choice of notation in Definition 13.2.

If v;w 2 H can be joined by a Lipschitz continuous segment kv;w which is transverse to �, disjoint
from ˛, and meets no leaf of z� twice, then we say that .v; w/ is a transverse pair and that kv;w is a
transversal. If .v; w/ is a transverse pair, we say that r is between v and w if there is a transversal kv;w

that decomposes as a concatenation of transversals kv;w D kv;r � kr;w. Finally, we define

��.X /.v; w/ WD ��.X /.kv;w/
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and declare that ��.X /.v; v/ D 0. Observe that, if .v; w/ is a simple pair, then this agrees with our
definition of the shear between nearby hexagons (Definition 13.2).

Lemma 13.11 The shear-shape cocycle ��.X / defines a map on transverse pairs that satisfies:

(1) �1–invariance For each  2 �1.X /, we have ��.X /. v; w/D ��.X /.v; w/.

(2) Finite additivity If .v; w/ is a transverse pair and r is between v and w, then

��.X /.v; w/D ��.X /.v; r/C ��.X /.r; w/:

(3) Symmetry ��.X /.v; w/D ��.X /.w; v/.

The proof of this lemma is simply a consequence of unpacking the definitions and showing that two
different choices of transversals give the same shear values; the latter statement is just a repeated application
of axiom (SH3).

13.3 Injectivity and positivity

We now record some initial structural properties of the map �� defined above. In particular, we demonstrate
that �� is injective and interacts coherently with the orthogeodesic foliation map O� and the shear-shape
coordinatization I� of transverse foliations.

Observe that injectivity of �� is equivalent to the statement that if two hyperbolic structures have the
same complementary subsurfaces and same gluing data along �, then they must be isometric. As the
horocyclic and orthogeodesic foliations are equivalent in spikes of complementary subsurfaces, the
proofs of [Bonahon 1996, Lemma 11 and Theorem 12] may be invoked mutatis mutandis. We outline
this argument below for the convenience of the reader, and direct them to [Bonahon 1996] for a more
thorough discussion of the estimates involved. We remark that this strategy also appears in the proof of
Proposition 15.12, where we use it to piece together Lipschitz-optimal homeomorphisms along �.

Proposition 13.12 The map �� W T.S/! SH.�/ is injective.

Sketch of proof Fix homeomorphisms . zS ; z�/ with . zXi ; z�/ that lift the markings S !Xi and are such
that each component z†� zS n z� maps homeomorphically to a component zYi �

zXi n
z� for i D 1; 2.

Suppose that ��.X1/D ��.X2/; then in particular A.X1/D A.X2/ and so, by Theorem 6.4, the com-
plementary subsurfaces X1 n� and X2 n� are isometric. Therefore, for a given component †� S n�,
we can find an �1.†/ equivariant isometry '† W zY1!

zY2. Define ' W zX1 n�! zX2 n� to be the union of
these maps on each complementary component; by construction, ' is an isometry.

We need to show that ' extends to a �1.S/–equivariant isometry ' W zX1!
zX2. To prove this, we apply the

arguments of [Bonahon 1996, Lemma 11], which we summarize presently. The first step is to construct
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a locally Lipschitz continuous extension of '; this step employs the length bound of Lemma 13.4 and
some elementary hyperbolic geometry, and the arguments of the first ten paragraphs of [Bonahon 1996,
Lemma 11] may be applied verbatim.

As in Bonahon’s original proof, we now show that ' is actually 1–Lipschitz, given that it is locally
Lipschitz. We first show that ' does not increase the length of leaves of the orthogeodesic foliation.

Given any segment ` of a leaf of the orthogeodesic foliation BO�.X1/, the length of ` restricted to any
hexagon Hu where u 2H is completely determined by the isometry type of Hu and the distance along z�
from pu 2 @�Hu. As ��.X1/ determines the shape of X1 n�, we can recover this information and hence
determine the length of `\Hu just from the data of ��.X1/.

From ��.X2/D��.X1/, we deduce that the length of ` in any hexagon of zX1 is equal to the length of '.`/
in the corresponding hexagon of zX2. Moreover, since ' is locally Lipschitz, the 1–dimensional Lebesgue
measure of '.`/\'.z�/ is at most the 1–dimensional Lebesgue measure of `\z�. By a now-classical fact,
the latter is zero [Birman and Series 1985]; hence, so is the former. Therefore, the length of ` in X1 is
equal to the length of ` in X2.

Now there is a path joining any two points in zX1 built from geodesic segments and segments of leaves of
the orthogeodesic foliation. The argument above shows that ' preserves the lengths of such paths, so ' is
globally 1–Lipschitz. The construction is completely symmetric, so '�1 is 1–Lipschitz as well. Now every
1–Lipschitz homeomorphism between metric spaces with 1–Lipschitz inverse is necessarily an isometry,
and equivariance of ' is immediate from the construction. Therefore X1 and X2 must be isometric.

The diagram commutes We have now developed sufficient technology to prove that the geometric shear-
shape cocycle of a hyperbolic metric is the same as the shear-shape cocycle associated to its orthogeodesic
foliation. In other words, diagram (2) commutes. Compare with [Mirzakhani 2008, Proposition 6.1].

Theorem 13.13 For all � 2ML and all X 2 T.S/, we have ��.X /D I� ıO�.X /.

Proof Fix a standard smoothing �˛ of a geometric train track � for � on X. Our approach is to
compute both ��.X /.b/ and I� ıO�.X /.b/ for each branch b of �˛ . These numbers will coincide, so, by
Proposition 9.5, ��.X /D I� ıO�.X /.

Let TX �X be the piecewise-geodesic triangulation of X whose vertices are the vertices of Sp, so that
there is an edge between v;w 2 Sp if the corresponding regions of X n �˛ share a branch. This recipe
generically yields a triangulation, but may have quadrilaterals in the case that two points of ˛.X /\� lie
on the same leaf of O�.X /\N�.�/. In this case, we may either choose a smaller initial neighborhood to
define our geometric train track so that this does not occur, or these points correspond to arcs that meet
an isolated leaf of � on either side; in the latter case, choose either diagonal that crosses the quadrilateral
to include into TX . Observe that each edge of TX is either transverse to O�.X / or a segment of a leaf (on
the off chance that two adjacent regions have exactly 0 shear between them).
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Let qD q.O�.X /; �/, and recall that Proposition 5.10 provides a homotopy equivalence D� WX ! q in the
correct homotopy class satisfying D��O�.X /D V .q/ and D���DH.q/ both leafwise and measurably.
Furthermore, D� maps TX to a (topological) triangulation of q with vertices at its zeros. It therefore
remains to show that ��.X / evaluated on a branch of �˛ is the same as I�.q/ evaluated on the dual edge
of this triangulation.

Now, by definition, A.X /DA.q/, so consider a branch b of �˛ not corresponding to an arc of the arc
system. Dual to b there is an edge e of the triangulation D�.TX / which is transverse to the orthogeodesic
foliation O�.X / on q (since TX was transverse to O�.X / on X ). Up to sign, the value of I�.q/ on b is the
magnitude of the real part of the period of e, which is just the geometric intersection number i.O�.X /; e/

by transversality.

On the other hand, ��.X /.b/ is equal to the shear between the two hexagons on either side of b. This in
turn is equal to the geometric intersection number i.O�.X /; kv;w/ up to sign, where kv;w is the geodesic
connecting the vertices pv and pw of �\˛.X /. Since D� takes kv;w to an arc transversely isotopic to e,
we have j��.X /.b/j D jI�.q/.b/j.

Finally, to show that the signs are equal, fix matching orientations on kv;w and e. These induce local
orientations on the leaves of � such that the algebraic intersection of � with kv;w, (respectively e) is
positive. In turn, this induces a local orientation on the leaves of O�.X / near kv;w (respectively e)
and our sign conventions are equivalent to stipulating that the sign is positive if kv;w (respectively e)
crosses O�.X / from left to right and negative if it crosses from right to left (compare [Mirzakhani 2008,
Section 5.2]). In particular, the signs agree and so ��.X /.b/D I�.q/.b/ for all branches b, completing
the proof of the theorem.

Corollary 13.14 For all � 2�.�/,

!SH.��.X /; �/D i.O�.X /; �/D `X .�/ > 0:

In particular , ��.T.S//� SHC.�/.

Proof The first equality is a direct consequence of Theorem 13.13 and Proposition 10.12. The second
equality was proved in Lemma 5.7.

14 Shape-shifting cocycles

In the previous section, we explained how to associate to each hyperbolic structure X a shear-shape
cocycle ��.X /. In this one, we explain how to upgrade a small deformation s of the cocycle into a
deformation of the hyperbolic structure; this is eventually used to prove that �� W T.S/! SHC.�/ is
open (Theorem 15.1). The main issue that we need to overcome is that we must simultaneously change
the geometry of the nonrigid components of X n� while shearing these subsurfaces along one another.
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The goal of this section is therefore to build, for every small enough deformation s of ��.X /, a �1.S/–
equivariant shape-shifting cocycle that records how to adjust the relative position of geodesics of �,

's W @�H� @�H! IsomC zX ;

where @�H WD f.hv;pv/� @�Hv W v 2Hg is the set of boundary geodesics of z� equipped with basepoints
obtained from projections of the vertices of �Sp. See Proposition 14.26.

In Section 15.1, we explain how to modify the developing map zX !H2 according to 's, resulting in a
new (equivariant) hyperbolic structure Xs with geometric shear-shape cocycle ��.X /C s (Lemma 15.6).
By fixing a pointed geodesic .hv;pv/ 2 @�H we identify IsomC. zX / with T 1 zX, so that the projection of
f's..hv;pv/; .hw;pw// j .hw;pw/2 @�Hg to zX is then the geodesic realization of z� in the new metric zXs.

When the deformation s preserves A.X /, the cocycle 's corresponds to a cataclysm map: the com-
plementary components of zX n z� are sheared along the leaves of z� and map isometrically into the
deformed surface Xs. When s alters A.X /, we must shear the complementary subsurfaces while also
simultaneously changing their shape, introducing complications not present in Bonahon and Thurston’s
original considerations.

Deforming the cocycle We first make explicit what we mean by a deformation of a shear-shape cocycle;
we quantify what we mean by “small” in Section 14.2.

Observe that, if � and � 0 in SHC.�/ are close, then, by Proposition 8.5, their underlying weighted arc
systems A and A0 are close in B.S n �/. In particular, the corresponding unweighted arc systems ˛
and ˛0 must both live in some common top-dimensional cell of B.S n �/, ie must both be contained
in some common maximal arc system ˇ. Let � be some snug train track for � and let �ˇ be a standard
smoothing of � [ˇ. By Proposition 9.5, we may then identify � and � 0 as weight systems on �ˇ; the
difference � � � 0 2W .�ˇ/ is then a deformation of � .

In general, if .�;A/ 2 SHC.�/ and ˇ is any maximal arc system containing the support of A, then the
deformations we consider in this section are those s 2W .�ˇ/ such that � C s 2W .�ˇ/ corresponds to a
positive shear-shape cocycle. Passing between equivalent definitions of shear-shape cocycles, we may
also think of s as a “shear-shape cocycle with negative arc weights”. The underlying weighted arc system
of any deformation s will be denoted by a; while its coefficients are not necessarily positive, they will
satisfy the zero total residue condition of (13) by construction.

By Theorem 6.4, the arc system ACa gives each component of S n� a new complete hyperbolic metric Y

with (noncompact) totally geodesic boundary. Since the supports of A and ACa are both contained inside
some common maximal ˇ, one may set up a correspondence between the complementary components
of X n�˛ with the components of Y n supp.AC a/ (adding in weight 0 edges as necessary).

A blueprint To help guide the reader through this rather intricate construction, we include here a
top-level overview of the necessary steps, together with an outline of the section. Briefly, our strategy is
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to explicitly define 's on two types of pairs of pointed geodesics: the “simple pairs” between which the
orthogeodesic foliation is comparable to the horocyclic, and the pairs which live in the boundary of a
common subsurface. Piecing together these basic deformations then allows us to define 's on arbitrary
pairs of pointed geodesics.

Our construction of 's for simple pairs parallels Bonahon’s construction [1996, Section 5] of shear maps,
and as such requires a detailed analysis of the geometry of the spikes of zX n z�. We therefore devote
Section 14.1 to recording a number of useful notions and estimates from [Bonahon 1996]. In this section,
we also introduce the “injectivity radius of X along �”, which measures the length of the shortest curve
carried on a maximal snug train track for � and plays a crucial role in our convergence estimates.

After these preliminary considerations, we turn in Section 14.2 to the actual construction of 's on simple
pairs. As in [Bonahon 1996], the map is defined by adjusting the lengths of countably many horocyclic
arcs in an appropriate neighborhood of �, compensating for changing shears between hexagons. Unlike
in [Bonahon 1996], we must also adjust the arcs to account for the changing shapes of each of the spikes
(as we are deforming the complementary subsurfaces). Convergence of the resulting infinite product of
parabolic transformations is delicate; our approach follows [Bonahon 1996, Section 5] with influence
from the more geometric approach of [Thurston 1986]. An accessible treatment of Thurston’s construction
of “cataclysm coordinates” can be found in [Papadopoulos and Théret 2007, Section 3.5].

We then turn in Sections 14.3 and 14.4 to defining 's on pairs of geodesics in the boundary of the same
hexagon or the same complementary subsurface, respectively. It is here that our work significantly differs
from that of Bonahon and Thurston. In these sections we also develop the idea of “sliding” a deformed
complementary subsurface along the original; this viewpoint allows us to easily demonstrate a number of
otherwise nontrivial relations between Möbius transformations (see Propositions 14.18, 14.19 and 14.24).

Finally, in Section 14.5 we build the shape-shifting cocycle 's from these pieces; the cocycle relation
(Proposition 14.26) then follows from the cocycle relations for pieces and the separation properties of z�.

Note Throughout this section and the next, we consider isometries via their action on a pointed geodesic,
and compositions should be read from right to left.

14.1 Geometric control in the spikes

We first record some useful definitions and associated geometric estimates. These estimates play a crucial
role in establishing convergence of the infinite products appearing in Section 14.2. Many of our definitions
follow Bonahon’s, but in order to contend with the fact that the complementary subsurfaces of � are
not always isometric, we must relate certain constants to the geometry of � on X (see Lemma 14.5, in
particular).

Our discussion will take place with certain data fixed. Choose a hyperbolic surface X 2 T.S/ and a
measured lamination � 2 ML.S/. Let � > 0 be small enough that an �–geometric train track � on X
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carries � snugly. The standard smoothing �˛ for the arc system ˛ D ˛.X / provides us with a vector
space W .�˛/ that models SH.�I˛/. With �˛ fixed, we endow the vector space of weights on branches
of �˛ with the sup norm k � k�˛ , and restrict this norm to the weight space W .�˛/.

Let kb be an oriented geodesic transverse to a branch b 2 � that also avoids ˛. Following Bonahon, we
define the divergence radius or depth rb.d/ 2Z>0 of a component d of kb n� to be “how long the leaves
of � incident to d track each other”, as viewed by � .

More precisely, lift everything to the universal cover zX. By convention, set rb.d/D 1 if d contains one
of the endpoints of kb . Otherwise, d is contained in a spike of Hv for some v 2H, ie d connects a pair
of asymptotic geodesics g�

d
and gC

d
. The divergence radius rb.d/ is then the largest integer r � 1 such

that �.gC
d
/ and �.g�

d
/ successively cross the same sequence of branches

b�rC1; b�rC2; : : : ; b0; : : : ; br�2; br�1

of Q� , where b0 is the lift of b meeting Qkb and � WN�.z�/! Q� is the collapse map. By equivariance, rb.d/ is
clearly independent of the choice of lift Qkb of kb .

Remark 14.1 After projecting back down to � � X, either b�rC1 � � � b0 or b0 � � � br�1 defines a train
route d in � that starts at b and terminates by “opening up” into the projection of Hv in X. That is, the
geodesics gC

d
and g�

d
diverge from each other (at scale �) at the terminus of d .

Now there are boundedly many spikes of X n�, and for each r � 1 each spike may contain at most one
component d � kb n� with depth exactly r . This gives us the following bound:

Lemma 14.2 [Bonahon 1996, Lemma 4; Sözen and Bonahon 2001, Lemma 5] For any branch b of �
and any transversal kb , the number of components d of kb n� with rb.d/D r is at most 6j�.S/j.

The train track interpretation of the depth of a segment also allows us to bound the value of a shear-shape
cocycle s in terms of its weights on a snug train track and the depth of its endpoints.

More specifically, for each component d of kb n�, let kd
b

be the subarc of kb joining the initial point of kb

to any point of d . Then, for any combinatorial deformation s and b a branch of �˛, there is an explicit
formula for s.kd

b
/ as a linear function of the weights of s on �˛ with at most rb.d/ terms [Bonahon

1997b, Lemma 6]. Conceptually, this formula arises by splitting �˛ open along the spike s containing d ,
until d is “visible” in some new track � 0˛ carried by �˛ (see also the proof of Lemma 13.9).

The exact expression for s.kd
b
/ will not be important for us; instead, we record the following estimate,

which follows by considering the growth of edge weights upon splitting.

Lemma 14.3 [Bonahon 1996, Lemma 6; Sözen and Bonahon 2001, Lemma 6] Let kb be a transversal
of a branch b. Then

js.kd
b /j � ksk�˛rb.d/

for every s 2 SH.�I˛/ and every component d of kb n�.
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We remark that our definitions of k � k�˛ and rb. � / make the bound given in Lemma 14.3 hold without a
topological multiplicative factor, as in [Bonahon 1996].

Geometric estimates on depth The depth of a component d of kb n� is proportional to the distance
from a lift Qd to the vertex u 2H inside the corresponding spike. The constant of proportionality in turn
depends on how quickly the spike of Hu containing Qd returns to kb on X ; we now identify a quantity
that will allow us to estimate this constant.

Let k be any geodesic arc transverse to � such that each lift Qk to zX bounds a spike in every hexagon that
it crosses; equivalently, the endpoints of Qk lie in a simple pair of hexagons. As in Section 13.2, it suffices
for k to be shorter than the shortest arc of ˛.X /. Now, for each leaf g of z�, there is a bound Rk.g/ > 0

for the distance in g between intersections of g with different lifts Qk1 and Qk2 of k. Indeed, any two lifts
of k meeting g differ by a deck transformation  2 �1.X / determined by a path in X that traces along
the projection of a segment in g and then closes up along k.

We then define the injectivity radius of X along � to be

inj�.X / WD inf
kt�

inf
g�z�

Rk.g/;

where the infimum is taken over all transverse arcs k whose endpoints lie in a simple pair of hexagons.

Equivalently, the injectivity radius of � may also be computed by taking an � such that the geometric
train track �max built from N�.�/ is snug and such that, for all �0 > �, the train track built from N�.�/ is
the same (not just equivalent) to �max, as follows.19

For each branch of �max, choose a tie tb (that is, a leaf of the orthogeodesic (or horocyclic) foliation
restricted to N�.�/ that is transverse to b). The injectivity radius along � is then equal to the infimum
of the recurrence times of � to any tb . Using the “length along a geometric train track” function `�max

defined in Section 5.2, we may therefore write

(29) inj�.X /D inf
��max

`�max. /;

where the infimum is taken over all simple closed curves  carried on the train track �max.

Remark 14.4 The length of the hyperbolic systole of X is clearly a lower bound for inj�.X /, which is
therefore positive. However, inj�.X / can be much larger than the length of the systole.

For example, if � does not fill the surface then there can be a disjoint curve of arbitrarily small length. In
addition, X may have a very short curve  transverse to �, and if � does not twist around  , then inj�.X /
is necessarily very large.

We can now relate the geometry of small arcs to their depth and injectivity radius along �.

19Any � sufficiently close to the supremum of � for which N�.�/ is snug satisfies these conditions.
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Lemma 14.5 [Bonahon 1996, Lemmas 3 and 5; Sözen and Bonahon 2001, Lemma 4] Given a branch b

of a geometric train track � constructed from � on X and a short transversal kb , there exists B > 0 such
that the following holds. For every component d of kb n� with depth rb.d/,

`X .d/� Be�D�.X /rb.d/;

where D�.X /D inj�.X /=9j�.S/j.

Proof The idea is the same as in the references, but our constants are different. Small geodesic arcs
meeting a spike s of a hexagon Hv transversely and far away from the vertex v look like horocycles,
which have length that decays exponentially in distance from v. Therefore, we just need to give a lower
bound for the distance between d and v 2Hv along the spike s in terms of inj�.X / and the topological
complexity of S.

Consider the train path d starting at b that defines rb.d/. By definition, d traverses exactly rb.d/

branches of � (counted with multiplicity). Now d decomposes as a concatenation of maximal sub–train
paths with embedded interiors, each forming a simple loop in � .20

The depth rb.d/ is thus bounded above by the number of consecutive simple loops in d times the size of
the longest simple loop in � . The size of a simple loop in � is in turn bounded above by the number of
branches of � , which is at most 9j�.S/j. Finally, since each simple loop in d is carried on � � �max, it
must have length at least inj�.X / by (29).

Putting the above estimates together, the distance between v and d in Hv is at least

inj�.X / � #fsimple loops in dg �
inj�.X /rb.d/

size of the longest simple loop in �
�

inj�.X /
9j�.S/j

rb.d/;

and the lemma follows.

14.2 Shape-shifting in the spikes

Our discussion now begins to diverge from [Bonahon 1996]. While pairs of asymptotic geodesics are all
isometric, the spikes of X n� come with extra decoration, namely, a choice of horocycle at each cusp
(equivalently, basepoints which lie on a common leaf of the orthogeodesic foliation). In this section,
we explain how to use these decorations to define the shape-shifting cocycle 's on pairs of basepointed
geodesics coming from simple pairs of hexagons.

We remind the reader that X, � and �˛ are fixed so that geometric objects like geodesic segments, hexagons,
arcs of ˛.X /, etc are understood to live in and be realized (ortho)geodesically on X. Throughout this
section we will fix ADA.X / and use it to denote both a weighted arc system and the induced metric
on S n�. Finally, we recall that s is a combinatorial deformation of ��.X / which changes A by a; we will
refer to the deformed hyperbolic structure on S n� by AC a and its hexagonal pieces by Gu for u 2H.

20A simple loop on a train track is a carried curve which traverses each branch at most once.
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q
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fX ;s.Es/

Gu Hu

Figure 21: Superimposing hexagons to measure the difference in the shapes of their spikes.

Shapes of spikes The group PSL2.R/ acts transitively on pairs of asymptotic geodesics but, having
done so, cannot further act on the family of horocycles based at the spike. To measure this failure, we
associate below a geometric parameter which records the placement of basepoints in each spike.

Suppose that u 2H is a hexagon of zX n z�˛ and s is a spike of Hu, that is, a pair of asymptotic geodesics
g and g0. Both g and g0 come with basepoints p and p0 obtained by projecting u to these geodesics. We
then associate to s the number hA.s/ which measures the length of either of the orthogeodesic leaves
connecting u to p or p0:

hA.s/ WD d.p;u/D d.p0;u/:

Our notation reflects the fact that this function clearly depends only on the geometry of X n� and not the
shearing along �. The reader familiar with the literature will observe that this parameter is essentially an
orthogeodesic version of the “sharpness functions” appearing in [Thurston 1986].

In order to measure the difference in sharpness functions between the realizations of s in A and in the
deformed metric AC a, we superimpose the hexagons Hu and Gu and measure the distance between
their boundary basepoints.

More concretely, choose an arbitrary orientation Es of the spike s and fix realizations of both Hu and Gu

inside H2. As PSL2.R/ acts simply transitively on triples in @H2, there is a unique isometry that takes
the realization of s in Gu to its realization in Hu. The vertex u of Sp is realized in both Hu and Gu; let p

and q denote the projections of these points to one of the boundary geodesics g of s. See Figure 21.

Lemma 14.6 With all notation as above , the signed distance from q to p along g is

(30) fX ;s.Es/ WD " log
�

tanh hACa.s/

tanh hA.s/

�
2R;

where "DC1 if Es is oriented towards the shared ideal endpoint , and "D�1 otherwise.

The parameter fX ;s.Es/ plays a crucial role below in our definition of the shape-shifting map on spikes. In
our convergence estimates, we will also need to consider the parameter

(31) kskEs WDmax
s
jfX ;s.Es/j<1;

which quantifies the maximum distance that the deformation s moves a basepoint in a spike.
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Proof We compute in the upper half-plane; up to isometry, we may assume that s is bound by the
imaginary axis V D iR>0 and its translate 2CV ; the spine of the orthogeodesic foliation in this spike is
a subsegment of the vertical line 1CV. With this choice fixed, the projections p and q of u to V may
be identified with iea and ieb for some a and b, respectively. Without loss of generality, we may also
assume that V is oriented upwards (towards1); the opposite choice of orientations simply reverses all
signs at the end of the computation.

Now, for t � 0, the path t 7! tanh t C i sech t is the unit-speed parametrization of the orthogeodesic
emanating from V at i . Observe that the isometry z 7! eaz stabilizes V and takes this segment to an
orthogeodesic segment emanating from iea D p which is distance a from i . Since the orthogeodesic
segment through p meets the spine 1CV after traveling distance hA.s/ (by definition), this implies that

e�a
D tanh hA.s/:

Similarly, e�b D tanh hACa.s/. Together, these imply that

tanh hACa.su/

tanh hA.su/
D ea�b:

Taking logarithms, we see that a� b is the signed distance from q to p along V, as claimed.

Remark 14.7 By Theorem 6.4, the parameter fX ;s.Es/ varies analytically in a (and hence s).

Orientation conventions We now specialize to the case where .v; w/ is a simple pair of hexagons with
associated oriented geodesic kv;w running between pwv on gwv (the projection of v to the boundary leaf
of @�Hv closest to w) and pvw on gvw.

Each leaf g � z� crossed by kv;w inherits an orientation by declaring that turning right onto g while
traveling from v to w along kv;w is the positive direction. We remark that if kv;w crosses a hexagon Hu,
then the induced orientation of gwu , the geodesic in @�Hu closest to w, is the opposite of the orientation
of gwu induced as a part of the boundary of Hu. On the other hand, the two orientations on gvu induced
by kv;w and coming from Hu agree. This is an artifact of our sign convention for measuring shears; see
Remark 13.3.

If g is a complete oriented geodesic in the hyperbolic plane and t 2 R, we let T t
g be the hyperbolic

isometry stabilizing g and acting by oriented translation distance t along g. The opposite orientation of g

will be denoted by Ng, so that T t
Ng D T �t

g .

For an oriented spike Es D .gvu;g
w
u /, its opposite orientation is Es D . Ngwu ; Ng

v
u/. In particular, we note that,

if Es is an oriented spike of Hu crossed by kv;w, then Es is an oriented spike crossed by kw;v D Nkv;w.

Shape-shifting in spikes Suppose .v; w/ is a simple pair and suppose u is between v and w. Let
Es D .gvu;g

w
u / be the spike of u crossed by kv;w with basepoints pv and pw. We define the elementary
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shaping transformation A.Es/ 2 IsomC. zX /D PSL2 R determined by X, s and s to be

(32) A.Es/ WD T
fX;s.Es/

gvu
ıT
�fX;s.Es/

gwu
:

Ultimately, the element A.Es/ will be the value of the shape-shifting cocycle 's on the pair .gvu;g
w
u /; see

just below for an explanation of how we think of A.Es/ as “changing the shape” of s.

Observe that A.Es/ is a parabolic transformation preserving the common ideal endpoint of s. A familiar
computation shows that in the spike determined by gvu and A.Es/gwu , the orthogeodesics emanating from
pv and A.Es/pw meet at a point distance hACa.s/ from each (supposing that the deformation is small
enough).

To the oriented spike Es of u, we also associate the elementary shape-shift

(33) '.Es/ WD T
s.v;u/
gvu

ıA.Es/ ıT
�s.v;u/
gwu

D T
s.v;u/CfX;s.Es/

gvu
ıT
�.s.v;u/CfX;s.Es//

gwu
;

where we recall that the value s.v;u/ is obtained by thinking of s as a function on transverse pairs (à la
Lemma 13.11). Note that '.s/ depends on our reference point v: whereas A.Es/ is eventually identified as
a value of the shape-shifting cocycle 's, the elementary shape-shifts '.Es/ are only building blocks for
values of 's.

For the opposite orientation Es D . Ngwu ; Ng
v
u/, we check

(34) A. Es/D T
fX;s. Es/
Ngwu

T
�fX;s. Es/
Ngvu

D T
fX;s.Es/

gwu
T
�fX;s.Es/

gvu
DA.Es/�1:

Since s.v;u/D s.u; v/, we may similarly observe that '. Es/D '.Es/�1.

Take Hv;w to be the set of hexagons between v and w equipped with the linear order u1 < u2 induced by
the orientation of kv;w . Let H�Hv;w be any finite subset and order its elements HD fu1; : : : ;ung. For
short, we denote hexagons by Hi WDHui

, spikes by si WD Esui
, geodesics by gvi WD gvui

, etc.

To the finite ordered set H we associate the product

(35) 'H WD '.s1/ ı � � � ı'.sn/ ıT
s.v;w/
gvw

2 IsomC. zX /:

The goal of the rest of the section is then to extract a meaningful limit from 'H as H increases to Hv;w.
Ultimately, this limit is how we will define the shape-shifting cocycle 's on the boundary geodesics gwv
and gvw corresponding to the simple pair .v; w/.

Remark 14.8 In the case that � is maximal, each Hi is an ideal triangle and so ADAC aD∅. In this
case, each spike parameter fX ;s.si/ is 0 and we recover the formula from [Bonahon 1996, page 255].

Geometric explanation of (33) Before proving convergence, however, let us explain the intuition behind
the formulas above. In order to interpret A.Es/ and '.Es/ as deformations of the hyperbolic structure X, we
will switch our viewpoint to think of them as values of a deformation cocycle, and so as affecting the
placement of pointed geodesics relative to each other. For brevity, let fX ;s.Es/D t .
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gwu
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v

w

u

T �t
gwu
jQw T t

gvu
jQv

Figure 22: The effect of A.Es/ when considered as a composition of left and right earthquakes.

Let us focus first on the shaping transformation A.Es/. The oriented spike Es in the hexagon Hu is formed
by two pointed geodesics .gvu;p

v
u/ and .gwu ;p

w
u /. Fixing our viewpoint at .gvu;p

v
u/, we may think of

A.Es/ as deforming zX by holding .gvu;p
v
u/ fixed and identifying .gwu ;p

w
u / with A.Es/ � .gvu;p

v
u/. This has

the overall effect of “widening” the spike s so that its sharpness parameter increases from hA to hACa.

If instead we fix our basepoint to be outside of Hu, say at the basepoint pwv on gwv � @�Hv, then this
transformation can viewed as a composition of left and right earthquakes. Let Qw and Qv denote the
half-spaces to the left of the oriented geodesics gwu and gvu, respectively. Note that Qw � Qv. The
deformation A.Es/ may then be thought of as first transforming all geodesics of z� that lie in Qw by T �t

gwu
;

this has the effect of breaking zX open along gwu and sliding Qw to the left by distance t along gwu while
keeping zX nQw fixed. The deformation then further transforms all geodesics in Qv by T t

gvu
; this is

equivalent to the right earthquake with fault locus gvu that slides Qv to the right while keeping zX nQv

fixed. The cumulative effect is then that the spike s has been “pushed” in the direction of Es by distance t .
See Figure 22.

Remark 14.9 We give one final interpretation of A.Es/ as “sliding Gu along Hu” in the proof of
Proposition 14.19 below (see also Figure 26), once we have set up the framework to understand the utility
of this viewpoint.

In particular, note that the shear from Hv to Hu measured from pwv to the image of pvu under this
composition of earthquakes has increased by t D fX ;s.Es/. Therefore, if we let qvu denote the basepoint
on gvu corresponding to the hexagon Gu, then the shear from Hv to Hu measured from pwv to the image
of qvu under the deformation is exactly the original shear ��.X /.v;u/ between v and u.

The elementary shape-shift '.Es/ can be interpreted in much the same way, but now the spike should be
pushed distance fX ;s.Es/Cs.v;u/, so that the resulting shear (measured between pwv and the image of qvu)
is exactly ��.X /.v;u/C s.v;u/.

Finally, the composition (35) can be thought of as a composition of the operations described above (read
from right to left). Therefore, 'H first performs a right earthquake along gwv by s.v; w/, then performs
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an elementary shape-shift to pushing the spike sn by s.v;un/C fX ;s.sn/, then performs a shape-shift
for sn�1, etc. Observe that, if qvi denotes the basepoint in gvi corresponding to Gui

, then, by construction,
the shear between v and each ui measured from pwv to the image of qvi under the composite deformation
is exactly the desired shear ��.X /.v;ui/C s.v;ui/.

Assuming the convergence of 'H to a limit 'v;w (a step performed just below), the placement of
'H.g

v
w;p

v
w/ limits to that of 'v;w.gvw;p

v
w/. This in turn will be the placement of the geodesic .gvw;p

v
w/

relative to .gwv ;p
w
v / straightened in the deformed surface zXs; see Lemma 15.6.

Convergence We now consider the limiting behavior of 'H as H!Hv;w; that a limit exists is almost
exactly the content of [Bonahon 1996, Lemma 14]. We give a proof here for convenience of the reader
and to make sure that we are extracting the correct radius of convergence, ie that the modifications in the
cusps actually do not affect the radius of convergence (even though there are countably many contributions
from changing the shape of each spike).

Recall from Lemma 14.5 that the function D�.X /D inj�.Y /=9j�.S/j gives a bound for the rate of decay
of the length of a piece of a leaf of O�.X / in terms of its divergence radius.

Lemma 14.10 (compare [Bonahon 1996, Lemma 14]) If ksk�˛ < D�.X /, then 'H converges to a
well-defined isometry 'v;w as H tends to Hv;w.

Definition 14.11 The limiting isometry 'v;w is called the shape-shifting map for the simple pair .v; w/.

Remark 14.12 After combining all of our deformations in Section 14.5, the shape-shifting map 'v;w
will be identified as the value of the shape-shifting cocycle 's on the pair .gwv ;g

v
w/. However, due to the

asymmetry of our current definition, it is not clear that '�1
v;w D 'w;v. See Corollary 14.14.

Proof of Lemma 14.10 For brevity, we set D DD�.X / for the remainder of the proof.

Identify zX with H2 and IsomC. zX / with the unit tangent bundle T 1H2 so that the identity I is the vector
over pv 2 zX that is tangent to gwv and pointed in the positive direction with the orientation on gwv induced
by kv;w. Equip T 1H2 with a left-invariant metric d that is right-invariant with respect to the stabilizer
of pv . Finally, for A 2 IsomC. zX /, let kAk WD d.I;A/, so that kABk � kAkCkBk holds by the triangle
inequality.

We first show that 'H stays in a compact set in IsomC. zX /. Using boundedness, we then show that any
sequence H!H is in fact Cauchy with respect to d , and hence converges.

We start by bounding the lengths of segments of the form kv;w \Hu, where u 2 Hv;w. To this end,
construct a geometric train track � from � on X, and assume that the projection of kv;w meets � transversely.
Subdivide kv;w into arcs k1; : : : ; km whose projections meet � once in branches b1; : : : ; bm. For all but
finitely many u 2Hv;w, we have kv;w \Hu � kj n

z� for some j D 1; : : : ;m.

Geometry & Topology, Volume 28 (2024)



Shear-shape cocycles for measured laminations and ergodic theory of the earthquake flow 2091

If d � kj n
z�, we set r.d/ to be the depth rbj .d/ of d with respect to bj , and set r.d/D 1 otherwise. By

Lemma 14.5, there is B > 0 such that for all u 2Hv;w,

`.kv;w \Hu/� Be�Dr.kv;w\Hu/:

With this estimate in mind, our next task is to give a uniform bound on k'H ı T
�s.v;w/
gvw

k for all finite
H � Hv;w. For each i , let i 2 IsomC. zX / be the isometry corresponding to the tangent vector over
kv;w \gvi pointing toward the positive endpoint of gvi . Unpacking definitions, we may therefore write
the shape-shift '.si/ as

'.si/D iT
s.v;ui /CfX;s.si /

gwv
T
�.s.v;ui /CfX;s.si //

hi
�1

i ;

where hi WD 
�1
i gwi .

An explicit computation (in the upper half-plane model, say) shows that

kT
s.v;ui /CfX;s.si /

gwv
T
�.s.v;ui /CfX;s.si //

hi
k � .ejs.v;ui /CfX;s.si /j� 1/`.kv;w \Hi/

� Bejs.v;ui /CfX;s.si /j�Dr.kv;w\Hi /:

By Lemma 14.3 and the triangle inequality,

js.v;ui/CfX ;s.si/j � ksk�˛r.kv;w \Hi/CkskEs

and so we conclude that
k�1

i '.si/ik � B0er.kv;w\Hi /.ksk�˛�D/

for B0 D BekskEs .

Notice now that conjugation by i changes the reference point of our calculation at a distance in the
plane at most `.kv;w/, so the effect of �1

i '.si/i on gvi \ kv;w is a displacement by e`.kv;w/ times the
quantity indicated above. Since this is independent of H,

(36) k'.si/k DO.er.kv;w\Hi /.ksk�˛�D//

for any spike si corresponding to any hexagon u between v and w.

Expanding out 'H in terms of the '.si/ (see (35)),

k'H ıT
�s.v;w/
gvw

k D

 nY
iD1

'.si/

� nX
iD1

k'.si/k DO

� nX
iD1

er.kv;w\Hi /.ksk�˛�D/

�
:

Since there is a uniformly bounded number of gaps with given depth (Lemma 14.2), the last expression is
bounded by the sum of at most 6j�.S/j many geometric series which are convergent so long as ksk�˛ <D.
Therefore, there is a compact set K in IsomC. zX / such that 'H 2K for any finite subset H�Hv;w.

Now that we have shown the family of isometries f'Hg to be uniformly bounded, we can show that any
sequence of refinements is in fact Cauchy. So suppose that Hn increases to Hv;w and jHnj D n. By
construction, we may therefore write

'n D   
0 and 'nC1 D  '.su/ 

0;
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where HnC1 DHn[fug and  ; 0 2K. Writing 'nC1 D   
0'.su/Œ'.su/

�1;  0
�1
�, we have

d.'n; 'nC1/D k'.su/Œ'.su/
�1;  0

�1
�k:

The zeroth-order term in the Taylor expansion near the identity for the function X 7! kŒX;  0
�1
�k is 0,

because ŒI;  0�1
�D I. Since  0�1 stays in a compact set,

kŒ'.su/
�1;  0

�1
�k DO

�
k'.su/k

�
(see [Thurston 1997, Theorem 4.1.6] or [Gelander 2014, Lecture 2, Lemma 2.1]).

Combining this estimate with the triangle inequality and (36),

d.'n; 'nC1/DO
�
k'.su/k

�
DO.er.kv;w\Hu/.ksk�˛�D//:

Now there are at most 6j�.S/j many u 2Hv;w with r.kv;w \Hu/D r (Lemma 14.2), so as n!1 we
must have that r!1, and hence d.'n; 'nC1/! 0. Moreover, since this goes to 0 exponentially quickly,
the sequence is in fact Cauchy.

Shape-shifting as a limit of signed earthquakes Here we give a different description of the shape-
shifting map which forgoes approximations by “pushing spikes” in favor of approximations by left and
right simple earthquakes (compare [Epstein and Marden 2006, Section III]). While this reformulation
is symmetric and geometrically meaningful, it comes at the cost of restricting which approximating
sequences H!H actually yield convergent sequences of deformations 'H. See also the remark at the
top of page 261 in [Bonahon 1996].

Let .v; w/ be a simple pair and fix a geometric train track � snugly carrying �. So long as � is built from
a small enough neighborhood, we may assume that the geodesic kv;w is transverse to the branches of � .
Then, for each integer r � 0, let Hr

v;w denote the set of hexagons such that kv;w\Hu has depth at most r

with respect to the branches of � . Order

Hr
v;w D .u0 D v;u1; : : : ;un;unC1 D w/;

and, for each i D 0; : : : ; n, choose a geodesic hi that separates the interior of Hi from the interior of HiC1.
Orient each hi so that it crosses kv;w from left to right and set

(37) 'r
v;w D T

s.u0;u1/

h0
ıA.s1/ ıT

s.u1;u2/

h1
ıA.s2/ ı � � � ıA.sn/ ıT

s.un;unC1/

hn
:

We now wish to show that 'r
v;w ! 'v;w as r !1. As in the case of 'H! 'v;w, this argument will

parallel that of [Bonahon 1996], with the extra complicating factor of the adjustments A.si/ to the shape
of cusps.

The interpretation of (37) as a deformation cocycle is now similar to that of (35), but is now a combination
of spike-shaping transformations together with simple earthquakes.
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Let us give a description of the action of this deformation on the pointed geodesic .gvw;p
v
w/ in @�Hw

closest to v. Reading the formula from right to left, we can obtain 'r
v;w.g

v
w;p

v
w/ by first breaking zX

along hnD gvw and sliding the closed half-space containing Hw signed distance s.un;unC1/, keeping the
open half-space containing Hv fixed. Applying the spike shaping transformation A.sn/ then preserves
the natural basepoints pvn and pwn but increases the sharpness parameter hA.sn/, making it match that of
the spike in the hexagon Gun

in the deformed metric AC a. We then simply continue moving from w

to v (ie backwards along kv;w), alternating between signed earthquakes in the hi and shaping the next
spike until we reach gwv . Note that, unlike the deformations associated to 'H, each step of the process
requires only local information about the spike si and the shear between ui and uiC1.

Lemma 14.13 [Bonahon 1996, Lemma 16] So long as ksk�˛ <
1
2
D�.X /, we have limr!1 '

r
v;wD'v;w .

Proof Using additivity, s.ui ;uiC1/D s.v;uiC1/� s.v;ui/, we observe that

(38) 'r
v;w D .T

s.v;u1/

h0
A.s1/T

�s.v;u1/

h1
/.T

s.v;u2/

h1
A.s2/T

�s.v;u2/

h2
/ � � � .T

s.v;un/

hn�1
A.sn/T

�s.v;un/

hn
/T

s.v;w/
hn

:

So 'r
v;w is obtained from 'Hr

v;w
by replacing each term of the form

'.si/D T
s.v;ui /

gv
i

A.si/T
�s.v;ui /

gw
i

with
�.si/ WD T

s.v;ui /

hi�1
A.si/T

�s.v;ui /

hi

and T
s.v;w/
gvw

with T
s.v;w/
hn

.

The basic estimate we need is approximately how close '.si/ is to �.si/ in IsomC. zX / as r tends to
infinity. For this we will want to understand how closely hi�1 approximates gvi near its intersection
with kv;w, as well as for gwi and hi .

By construction, hi must be between gwi and gv
iC1

for each i D 1; : : : ; n and h0 is between gwv and gv
1

.
But gwi and gv

iC1
follow the same edge path of length 2r in � � �˛ , for otherwise there would be another

u 2Hr
v;w such that Hu separates Hi from HiC1. Thus hi follows the same edge path and fellow travels

gwi and gv
iC1

for length at least O.2rD�.X //; using negative curvature, hi is O.e�D�.X /r / close to both
gwi and gv

iC1
near kv;w.

From closeness of these geodesics from the previous paragraph (and our estimates for k'.si/k from
Lemma 14.10) it is possible to obtain the basic estimate

k�.si/
�1'.si/k DO

�
exp

�
ksk�˛r.kv;w \Hi/� rD�.X /

��
;

which is small when ksk�˛ <D�.X /. Notice that we have also used the fact that the adjustment parameter
associated to each spike s.si/ is uniformly bounded; that said, even if it grew linearly in r we would
obtain the same estimate (up to a multiplicative factor).

The rest of the argument ensuring that 'r
v;w and 'Hr

v;w
have the same limit as long as ksk�˛ <

1
2
D�.X /

follows [Bonahon 1996, Lemma 16] and is omitted. We remark that the factor of 1
2

appearing at the end
is a relic of the techniques used in [Bonahon 1996, Lemma 16].
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The following simple fact was not apparent from the definition of 'v;w due to its lack of symmetry.
Fortunately, the approximation of 'v;w by 'r

v;w gives us a symmetric description of 'v;w.

Corollary 14.14 If .v; w/ is simple and ksk�˛ <
1
2
D�.X /, then

'w;v D '
�1
v;w:

Proof We observe first that Hr
v;w DHr

w;v, so that each term of 'r
v;w appears in 'r

w;v with the opposite
orientation. Now, by (34), the inverse of the shaping transformation of an oriented spike is equal to the
shaping transformation of the same spike with opposite orientation. Therefore, 'r

v;w D .'
r
w;v/

�1 for all r ,
and the equality holds as we take r !1.

14.3 Shape-shifting in hexagons

In this section, we explain how to define the shape-shifting cocycle 's on pairs of basepointed geodesics
that lie in the boundary of a common hexagon; this will encode the change in hyperbolic structure on X n�.

While in this setting we do not have to worry about delicate convergence results, we must be more diligent
about recording the placement of basepoints on each geodesic of @�Hu. Moreover, the cocycle condition
(Propositions 14.18 and 14.19) only becomes apparent once we reinterpret the shaping deformations
defined below as “sliding the deformed hexagon along the original”.

Throughout this section, we have extended both A and AC a to some common maximal arc system ˛ by
adding in arcs of weight 0 as necessary. We remind the reader that s.˛/ denotes the coefficient of ˛ in a.

Notation and orientations Let Hu �
zX n z�˛ be a nondegenerate right-angled hexagon and enumerate

the �–boundary components of Hu as @�Hu D f.h1;p1/; .h2;p2/; .h3;p3/g, cyclically ordered about u.
Let ˛i 2 z̨ be the orthogeodesic arc opposite to hi , and denote by pij the vertex of Hu meeting both
hi and j̨ . See Figure 23. If Hu is a degenerate hexagon (ie a pentagon with one ideal vertex or a
quadrilateral with two), then we label only those points and geodesics which appear in its boundary.

Each choice of orientation Ę1 of ˛1 induces orientations of h2 and h3 such that ˛1 leaves from the
left-hand side of hj and arrives on the right-hand side of hk for fj ; kg D f2; 3g; an example is pictured
in Figure 23. Observe that the opposite orientation E˛1 induces the opposite orientations on h2 and h3.
Throughout this section, we also adopt similar conventions for each orientation of ˛2 and ˛3.

Recall that (by Theorem 6.4) the deformation s induces a new metric on zX nz� denoted by ACa and which
contains a hexagon Gu corresponding to Hu. The corresponding basepointed �–boundary geodesics and
vertices of Gu will be denoted by .gi ; qi/ and qij , respectively. We adopt similar orientation conventions
as above for the realizations of j̨ in Gu.

Geometry & Topology, Volume 28 (2024)



Shear-shape cocycles for measured laminations and ergodic theory of the earthquake flow 2095

u

p3 p31

Ę1

p21

p2

p23

˛3

p13

p1

p12

˛2

p32

h3

h2
h1

Figure 23: Distinguished points on a hexagon Hu and induced orientations on h2; h3 2 @�Hu.

Shapes of hexagons Paralleling our discussion for spikes, we first need to define geometric parameters
that measure the shape of the hexagon as well as the difference of the placements of the basepoints pi

and qi on the geodesics hi and gi . For concreteness, we only consider ˛1 below; the parameters for ˛2

and ˛3 are defined symmetrically.

We begin by associating to ˛1 the parameter

`s.˛1/ WD `ACa.˛1/� `A.˛1/ 2R;

which measures the difference in the hyperbolic length of ˛1 in the metric determined by AC a versus in
the original metric A induced by X.

Now fix an orientation Ę1 of ˛1; as above, this induces orientations of the geodesics h2, h3, g2 and g3.
Let dA. Ę1;u/ be the signed distance from p2 to p21 on h2;21 the local symmetry of the orthogeodesic
foliation implies that dA. Ę1;u/ can also be computed as the signed distance from p3 to p31 on h3. Define
similarly dACa. Ę1;u/ as the distance from q2 to q21 on g2 (equivalently, the signed distance from q3

to q31 on g3).

To all of this information, we associate the parameter

fX ;s. Ę1;u/ WD dACa. Ę1;u/� dA. Ę1;u/ 2R;

which measures the difference in how far u is from ˛1 in Gu versus in Hu. More precisely, considering
Hu and Gu in the hyperbolic plane, we can use an element of PSL2.R/ to line up .h2;p21/ with .g2; q21/

so that the basepoints and orientations agree. The parameter fX ;s. Ę1;u/ then measures the distance from
q2 to p2 along h2D g2. See Figure 24. Of course, symmetry shows that it is equivalent to align .h3;p31/

with .g3; q31/ and measure the signed distance from q3 to p3 along h3 D g3.

21The parameter dA. Ę1;u/ is called the “t–coordinate” of the arc ˛1 in the hexagon Hu in [Luo 2007]. See also [Mondello
2009b, Proposition 2.10], where a formula is given in terms of the lengths of f˛i W i D 1; 2; 3g.
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Gu

qu
2

Hu

pu
2

fX ;s. Ę1;u/

Ę1
Gv

qv2

Hv

pv
2

�fX ;s. Ę1; v/

h3

g3

h2 D g2

Figure 24: The parameter fX ;s. Ę1;u/ for two adjacent hexagons. We have decorated the base-
points on h2 D g2 with a superscript to emphasize their dependence on the hexagon.

Note that reversing orientations reverses signs, so that dA. Ę1;u/D�dA. E˛1;u/ and hence

fX ;s. Ę1;u/D�fX ;s. E˛1;u/:

The parameters associated to the hexagons which border a given arc are related in the following way:

Lemma 14.15 Let ˛ be any edge of z̨ and let Hu and Hv be its adjoining hexagons. Then

fX ;s. Ę;u/CfX ;s. E˛; v/D s.˛/;

where the orientation Ę is chosen so that u is on its left (equivalently E˛ is oriented so that v is on its left).

Proof The proof is an exercise in unpacking the definitions and being careful with orientations; compare
Figure 24. Let pu

2
and pv

2
denote the projections of u and v to either of geodesics common to @�Hu

and @�Hv, and let qu
2

and qv
2

play similar roles for Gu and Gv.

We can then write

fX ;s. Ę;u/CfX ;s. E˛; v/D fX ;s. Ę;u/�fX ;s. Ę; v/

D dACa. Ę;u/� dA. Ę;u/� dACa. Ę; v/C dA. Ę; v/

D dh.p
u
2 ;p

v
2/� dg.q

u
2 ; q

v
2/D s.˛/;

p3 D q3

Gu

Hu
Ę1

h3

h2

p2

p31 D q31

p21 D q21
p2 D q2

T
fX;s. Ę1;u/

h3
T
`s.˛1/

Ę1
T
�fX;s. Ę1;u/

h2

Figure 25: How the shaping transformation A. Ę1;u/ slides Gu along Hu.
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where we recall that s.˛/ denotes the coefficient of ˛ in a and where dh and dg represent the signed
distance measured along h2 and g2, equipped with the orientation induced by Ę.

Remark 14.16 Using Theorem 6.4 and some hyperbolic trigonometry, one may show that fX ;s. Ę1;u/

depends analytically on both A and a for fixed ˛1 and u.

Shaping hexagons To the hexagon Hu and oriented arc Ę1 in its boundary, we associate the shaping
transformation A. Ę1;u/ given by

(39) A. Ę1;u/ WD T
�fX;s. Ę1;u/

h2
ıT

`s.˛1/

Ę1
ıT

fX;s. Ę1;u/

h3
2 IsomC. zX /;

where T Ę1 denotes translation along the complete oriented geodesic extending Ę1. The shaping trans-
formation is explicitly constructed so that, if Hu and Gu are superimposed with .h2;p2/ D .g2; q2/,
then

A. Ę1;u/.h3;p3/D .g3; q3/:

This claim is not immediately apparent from the expression of (39), but is easy to verify once we reinterpret
A. Ę1;u/ as “sliding Gu along Hu”.

To wit, suppose that we superimpose Hu and Gu so that .h3;p3/D .g3; q3/. Now consider what happens
as we apply A. Ę1;u/ to Gu while holding Hu fixed; the first term T fX;s. Ę1;u/

h3
translates Gu along h3

so that q31 D p31, and the right angle formed by ˛1 and g3 in Gu lines up with the same angle in Hu.
The transformation T

`s.˛1/

Ę1
then slides T

fX;s. Ę1;u/

h3
Gu along ˛1 so that .h2; q21/ D .g2;p21/. Finally,

T
�fX;s. Ę1;u/

h2
slides T `s.˛1/

Ę1
T fX;s. Ę1;u/

h3
Gu along h2 D g2 so that q2 lines up with p2. See Figure 25.

Summarizing, we have shown that A. Ę1;u/ takes a superimposition of Gu on Hu with .h3;p3/D .g3; q3/

to another superimposition with .h2;p2/D .g2; q2/. In particular, this implies that applying A. Ę1;u/

to .h3;p3/ takes it to the position of .g3; q3/ in the latter placement of Gu, which is what we claimed.

Remark 14.17 An elementary hyperbolic geometry argument similar to that in the proof of Lemma 14.6
shows that if ˛1 in X degenerates to an oriented spike Es then the corresponding geometric parameter
fX ;s. Ę1;u/ limits to the parameter fX ;s.Es/. In particular, along this degeneration the corresponding
hexagon-shaping transformation A. Ę1;u/ converges to the spike-shaping transformation A.Es/.

A cocycle condition for hexagons A number of relations hold between the shaping transformations for
different arcs and different orientations; eventually, these relations are what ensure that the deformations
we are currently building package together into an honest cocycle (see Proposition 14.26).

First, we observe that reversing the orientation of ˛1 inverts the shaping transformation:

(40) A. E˛1;u/D T
�fX;s. E˛1;u/

Nh3

ıT
`s.˛1/

E˛1

ıT
fX;s. E˛1;u/

Nh2

D T
�fX;s. Ę1;u/

h3
ıT
�`s.˛1/

Ę1
ıT

fX;s. Ę1;u/

h2
DA. Ę1;u/

�1:
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Now suppose that Hu is on the left and Hv is on the right of the oriented arc Ę1. Combining the relation
of Lemma 14.15 with the definition of the shaping transformation, we obtain

(41) A. Ę1;u/D T
s.˛1/

h2
ıA. Ę1; v/ ıT

�s.˛1/

h3
:

This equation is used frequently in Section 14.4.

Finally, a beautiful and important relationship holds among the three shaping transformations in a single
right-angled hexagon. Our proof utilizes the “sliding” viewpoint explained above; the statement seems
difficult to prove just by writing down a string of Möbius transformations.

Proposition 14.18 Let u 2 H be a nondegenerate right-angled hexagon with boundary arcs Ę1, Ę2
and Ę3, oriented so that Hu lies to the left of each Ęi . Then

A. Ę3;u/ ıA. Ę2;u/ ıA. Ę1;u/D 1:

A similar statement clearly holds for any cyclic permutation of .3; 2; 1/.

Proof In order to prove the lemma, we superimpose Gu on top of Hu so that .g3; q3/ D .h3;p3/.
Holding Hu fixed, the first shaping transformation A. Ę1;u/ slides Gu along h3, then along ˛1, then
along h2 so that .g2; q2/ lines up with .h2;p2/. The second shaping transformation A. Ę2;u/ then acts
on this translated copy of Gu by sliding it along h2, then ˛2, then h1 so that .g1; q1/D .h1;p1/. Finally,
the last term slides A. Ę1;u/A. Ę2;u/Gu along the edges of Hu so that .g3; q3/ returns to .h3;p3/ (with
the same orientation).

Therefore, since A. Ę1;u/ıA. Ę2;u/ıA. Ę3;u/ preserves a unit tangent vector and IsomC. zX / acts simply
transitively on T 1 zX, the composition of the three shaping transformations must be trivial.

A similar result holds for degenerate right-angled hexagons, with the hexagon-shaping transformation
replaced with the corresponding spike-shaping transformation.

Proposition 14.19 Suppose that u 2H is a pentagon with two orthogeodesic arcs ˛1 and ˛2 and one
spike s, labeled so that .˛1; ˛2; s/ runs counterclockwise around u. Orient each j̨ so that Hu is on its
left and orient s so that it is pointing towards the ideal vertex of Hu. Then

A.Es/ ıA. Ę2;u/ ıA. Ę1;u/D 1:

Similarly, if u 2H is a quadrilateral with one orthogeodesic edge ˛ and two spikes s1 and s2 (labeled so
that .˛; s1; s2/ is read counterclockwise), then

A.Es2/ ıA.Es1/ ıA. Ę;u/D 1;

where all orientation conventions are as above.
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p3 D q3

Gu

Hu

h3

h2

p2

h2 D g2

p2 D q2

T
�fX;s.Es/

h3
T
fX;s.Es/

h2

Figure 26: Interpreting the spike-shaping transformation A.Es/ as sliding Gu along Hu. Note that,
in this picture, fX ;s.Es/ < 0.

Proof We only explain how to interpret the spike-shaping transformation A.Es/ in our “sliding” framework;
once we have done so, the rest of the proof is completely analogous to that of Proposition 14.18.

So let Es be a spike of Hu, oriented as described; suppose that its left and right boundary geodesics are h3

and h2. Recall that A.Es/ is constructed so that, if we superimpose Gu and Hu with .g2; q2/D .h2;p2/,
then A.Es/.h3;p3/ D .g3; q3/. This can equivalently be interpreted by superimposing Gu on Hu with
.g3; q3/D .h3;p3/; then applying the shaping transformation to Gu while leaving Hu fixed takes Gu to
another superimposition where .g2; q2/D .h2;p2/. See Figure 26.

14.4 Shape-shifting along the spine

In this section we package together the hexagon-shaping deformations defined in (39) into deformations
of entire complementary subsurfaces of zX n z�. As always, we will exhibit this deformation by explaining
how to adjust the positions of the pointed geodesics in the boundary of each component of zX n z� relative
to one another. This in turn requires some bookkeeping of orientations and a liberal application of the
cocycle relation (Propositions 14.18 and 14.19).

Throughout this section, we fix some component Y of zX nz�. We remind the reader that the deformation s

induces a new hyperbolic structure ACa on Y whose hexagons and basepointed geodesics correspond to
those of Y.

Hexagonal hulls and induced orientations Suppose that v;w 2H are distinct hexagons of Y. Since
the corresponding component of �Sp is a tree it contains a unique oriented nonbacktracking edge path
Œv; w� joining v to w. We then define the hexagonal hull H.v; w/ of .v; w/ to be the union of all of the
hexagons corresponding to the vertices of Œv; w�. Define also the truncated hexagonal hull yH .v; w/ by
truncating each spike of H.v; w/ by the horocycle through the basepoints that are closest to the ideal
vertex. Note that both H.v; w/ and yH .v; w/ come with (�1.Y /–equivariant) collections of basepoints
on their boundaries obtained by projecting each of the vertices of Œv; w� onto the associated boundary
geodesics.
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pv

pw

v
w

ı�

ıC
p2 p3

p4

p5

p6

Figure 27: The truncated hexagonal hull (shaded) of the path Œv; w� and the induced orientations
on the paths ı˙ from pv to pw in its boundary.

Now, for any .hv;pv/ 2 @�Hv and .hw;pw/ 2 @�Hw , we have that @ yH .v; w/n fpv;pwg consists of two
paths ı˙. We orient each of ı˙ so that they both travel from pv to pw. See Figure 27.

With this induced orientation, the path ıC passes through a sequence of basepoints

pv D p1;p2; : : : ;pnC1 D pw:

We then associate a shaping transformation Ai to each subsequent pair of basepoints as follows:

� If pi and piC1 are in different hexagons, then they must lie on the same geodesic hi of @Y
and correspond to two hexagons Hi and HiC1 both adjacent to an arc ˛i . In this case, define
Ai D T

s.˛i /

hi
, where hi is given the orientation induced by ıC and where we recall that s.˛i/ is the

coefficient of ˛i in a.

� If pi and piC1 are in the same hexagon Hui
but do not lie on a common spike, then necessarily

they lie on geodesics connected by some arc ˛i . In this case, define Ai D A. Ęi ;ui/ where the
orientation on ˛i is induced from ıC.

� If pi and piC1 lie on a common spike si , then we define Ai DA.Esi/, where the orientation on si

is such that the horocyclic segment of ıC cutting off si runs from the left of one of the oriented
geodesics to the right of the other.

Finally, we then combine all of this information to define the shape-shifting transformation

(42) A.ıC/ WDA1 ıA2 ı � � � ıAn;

where we recall that we are multiplying from right to left. Define A.ı�/ analogously; the point is, however,
that the choice of ˙ does not matter.

Lemma 14.20 A.ı�/DA.ıC/:

Definition 14.21 We call 'pv;pw WDA.ıC/DA.ı�/ the shape-shifting map for ..hv;pv/; .hw;pw//.
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Proof The proof follows by induction on the length of Œv; w�. If Œv; w� has length 0, ie v D w, then this
statement is exactly the content of the cocycle relation for hexagons (Propositions 14.18 and 14.19).

Now suppose that Œv; w� has length n and let u be the penultimate vertex in Œv; w�. Let ˛ denote the arc
separating u from w, and choose the orientation Ę so that u lies on its left. Up to relabeling, we may
assume that the orientation of ıC agrees with the orientation of @ yH .v; w/. Denote by .h˙u ;p

˙
u / 2 @Y the

last basepoints of Hu visited by ı˙ and let ˙ denote the subpaths of ı˙ from pv to p˙u in the boundary
of the truncated hexagonal hull yH .v;u/. Define A.˙/ analogously to A.ı˙/. Then we may write

A.ıC/A.ı�/
�1
DA.C/T

s.˛/

h
C
u

B1B2T
�s.˛/
h�u

A.�/
�1

D .A.C/A. Ę;u/A.�/
�1/ �A.�/.A. Ę;u/

�1T
s.˛/

h
C
u

B1B2T
�s.˛/
h�u

/A.�/
�1;

where B1 and B2 are the shaping transformations corresponding to arcs and spikes of w that are different
from ˛ (labeled counterclockwise from ˛), oriented either so that w lies on the left of the arc or so that
the spike points into the common ideal endpoint.

Now observe that A.C/A. Ę;u/A.�/
�1 is trivial by the inductive hypothesis, as it corresponds to the

comparison between the two possible definitions of 'pv;p
�
u

. We also note that

A. Ę;u/�1T
s.˛/

h
C
u

B1B2T
�s.˛/
h�u

is conjugate to
T
�s.˛/
h�u

A. Ę;u/�1T
s.˛/

h
C
u

B1B2 DA. E˛;w/B1B2 D 1;

where the first equality follows from (41) (note the reversals in orientations of h˙u ) and the second follows
from the cocycle relation (Propositions 14.18 and 14.19). Therefore, the entire term A.ıC/A.ı�/

�1 is
trivial, which is what we wanted to show.

Remark 14.22 The above statement can also be proven by interpreting A.ı˙/ in terms of sliding. In
particular, let Z denote the �1.Y /–equivariant hyperbolic structure on Y corresponding to the weighted
arc system AC a. Then, superimposing Z on Y so that .gw; qw/ D .hw;pw/, one can consecutively
apply the shaping transformations Ai to Z while keeping Y fixed.

Doing so, An moves Z so that .gn; qn/ D .hn;pn/, then An�1 ıAn moves Z so that .gn�1; qn�1/ D

.hn�1;pn�1/, etc. At the end of this process, we have applied A.ıC/ to Z and by construction, the
pointed geodesic .gv; qv/ matches up with .hv;pv/. Since the final positioning of Z is the same relative
to Y whether we used A.ıC/ or A.ı�/, this allows us to conclude that the two compositions define the
same element.

Remark 14.23 While we used the distinguished boundary paths ı˙ to define the shape-shifting map,
one could in fact use any path from pv to pw in Y [ z̨. In this case, one must take more care to enumerate
basepoints so that pi and piC1 always either lie on the same geodesic or in the same hexagon.
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Observe that reversing the orientation Œv; w�D Œw; v� also reverses the sequence pnC1; : : : ;p1 of basepoints
that the boundary paths xı˙ meet. Since flipping the order of pi and piC1 inverts each of the Ai

transformations defined above, we therefore discover that 'pw;pv D '
�1
pv;pw

.

In a similar vein, it is not hard to see that the shape-shifting maps satisfy a cocycle relation.

Proposition 14.24 For any triple of pointed geodesics .hu;pu/, .hv;pv/ and .hw;pw/ of @Y,

'pu;pv ı'pv;pw ı'pw;pu
D 1:

Proof This follows immediately from the definitions when v lies on either of the paths ı˙ from u to w.

Otherwise, note that the intersection of paths Œu; v�\ Œv; w�\ Œw;u� is a point x 2H. Choosing a basepoint
px 2 @�Hx , compute the shape-shifting transformations using the boundary arcs that pass through x.
Then we may express 'pu;pv D 'pu;px

ı 'px ;pv and, using the observation about inverses above, we
realize that

'pu;pv ı'pv;pw ı'pw;pu
D 'pu;px

ı .'px ;pv ı'pv;px
/ ı .'px ;pw ı'pw;px

/ ı'px ;pu
D 1:

14.5 The shape-shifting cocycle

We now combine the shape-shifting maps for simple pairs (Definition 14.11) with those for complementary
subsurfaces (Definition 14.21) into the promised shape-shifting cocycle (Proposition 14.26), which is well
defined as long as the combinatorial deformation s is small enough. As usual, we construct a geometric
train track � from � on X such that the weight space of �˛ provides a notion of size for s.

Admissible routes For v;w 2H and Y a component of zX n z�, we say that Y is thick with respect to v
and w if either

(1) Y contains v and/or w, or

(2) v and w lie in different components of zX nY and the boundary leaves of Y closest to v and w are
not asymptotic.

Observe that, in the first case, there is either no or one boundary geodesic of Y separating v from w

(depending on whether v and w are both in Y or not), while, in the second, there are exactly two boundary
components of Y separating v from w.

Now let v;w 2H be any pair of distinct hexagons that do not lie in the same component of zX n z� and let
.hv;pv/ and .hw;pw/ be a pointed geodesic in @�Hv and @�Hw . Then there is a unique (possibly empty)
sequence h1; : : : ; hn of boundary geodesics of thick subsurfaces separating pv from pw, ordered by
proximity to v (with h1 closest).22 If one of the hi lies in the boundary of two complementary subsurfaces
(so corresponds to a lift of a curve component of �), then we record it twice, once for each of the adjoining

22This sequence is necessarily finite, as the distance that any geodesic travels in a thick subsurface is bounded below by the
shortest arc of ˛ (compare the discussion of “close enough” pairs of hexagons in Section 13.2).
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pv

p1

p2
p3

p4

p5

p6
p7 pw

Figure 28: Thick subsurfaces between v and w and an admissible route from pv to pw . We have
highlighted a path from pv to pw through the pi ; each subpath from pi to piC1 specifies a factor
in the shape-shifting transformation.

subsurfaces. Additionally, if either hv or hw is a boundary geodesic separating v from w, then we do not
record it as one of the hi . See Figure 28.

We now define an admissible route from pv to pw to be any sequence of basepoints

pv D p0; p1 2 h1; : : : ; pn 2 hn; pnC1 D pw

coming from the projections of the central vertices ui of hexagons Hui
to hi 2 @�Hui

. If any geodesic
hi D hiC1 is repeated, then we require that v and ui lie on one side of hi and that w and uiC1 lie on
the other. Observe that the sequence of pairs .ui ;uiC1/ necessarily alternates between simple pairs/pairs
sharing a boundary geodesic and pairs which lie in the same (thick) subsurface.

Shape-shifting along admissible routes To any admissible route we can then define a shape-shifting
transformation by concatenating the shape-shifting transformations for subsequent pairs:

(43) 'pv;pw WD 'p0;p1
ı � � � ı'pn;pnC1

;

where 'pi ;piC1
is as in Definition 14.11 if .ui ;uiC1/ is simple and as in Definition 14.21 if ui and uiC1

lie in the same subsurface. If hi D hiC1, then we orient hi to the right as seen from ui and set
'pi ;piC1

D T
s.ui ;uiC1/

hi
(recall that we can associate a shear value to the pair .ui ;uiC1/ by (15)).

Lemma 14.25 The shape-shifting map 'pv;pw is independent of the choice of admissible route (as long
as it is defined ).

Proof Since the hi are uniquely determined, it suffices to change one point at a time.

So suppose that pi and p0i are both basepoints on the geodesic hi ; we then demonstrate the equality

'pi�1;pi
ı'pi ;piC1

D 'pi�1;p
0
i
ı'p0

i
;piC1

;

from which the lemma follows. Orient hi so that it runs to the right as seen from v or ui�1.
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Without loss of generality, we may assume that the hexagons ui and uiC1 lie in the same subsurface.
Otherwise, the hexagons ui�1 and ui lie in the same subsurface and so .pi ;piC1/ is either simple or the
points lie on the same isolated leaf. If this happens, we prove that

'piC1;pi
ı'pi ;pi�1

D 'piC1;p
0
i
ı'p0

i
;pi�1

;

which is equivalent to the equation above since each of the shape-shifting factors inverts when one flips
the order of the points.

We first consider the shape-shifting transformations coming from comparing pi or p0i with piC1. By our
reduction above, ui and u0i lie in the same thick subsurface Y. Let ˛1; : : : ; ˛m denote the arcs of z̨ \Y

encountered when traveling from p0i to pi along hi ; then our definition of shape-shifting in subsurfaces
associates the transformation

'p0
i
;pi
D T

"1

Pm
jD1 s. j̨ /

hi
;

where "1 D 1 if hi is oriented from p0i to pi and �1 otherwise. Combining this equation with the
subsurface cocycle relation (Proposition 14.24),

(44) 'p0
i
;piC1

D 'p0
i
;pi
ı'pi ;piC1

D T
"1

Pm
jD1 s. j̨ /

hi
ı'pi ;piC1

:

We now turn our attention to the transformation 'pi�1;p
0
i
. Consider first the case when .pi�1;pi/ is

simple; since pi and p0i both lie on hi , this implies that .pi�1;p
0
i/ is also simple. Moreover, since the

geodesics Hi�1;i that separate pi�1 from pi are the same that separate pi�1 from p0i , we may write

'pi�1;pi
D lim

H!Hv;w
'.s1/ ı � � � ı'.sn/ ıT

s.ui�1;ui /

hi

and similarly for 'pi�1;p
0
i
. In particular, each approximation for 'pi�1;pi

differs from the approximation
for 'pi�1;p

0
i

by translation along hi , and so the same is true in the limit:

(45) 'pi�1;p
0
i
D 'pi�1;pi

ıT
s.ui�1;u

0
i
/�s.ui�1;ui /

hi
:

Applying axiom (SH3) for shear-shape cocycles (Definition 7.11) multiple times, we compute that

(46) s.ui�1;u
0
i/� s.ui�1;ui/D "2

mX
jD1

s. j̨ /;

where "2 DC1 if pi precedes p0i along hi and �1 if p0i precedes pi . Combining (44), (45) and (46),

'pi�1;p
0
i
ı'p0

i
;piC1

D 'pi�1;pi
ıT

"2

Pm
jD1 s. j̨ /

hi
ıT

"1

Pm
jD1 s. j̨ /

hi
ı'pi ;piC1

D 'pi�1;pi
ı'pi ;piC1

since "2 D�"1. This completes the proof of the lemma in the case when .ui�1;ui/ is simple.

Similarly, if pi�1 and pi lie on the same isolated leaf of �, then so must p0i . Unpacking the definitions
shows that (45) holds in this case, and Lemma 7.14 implies that (46) does as well. Therefore, in this case
we also see that the desired equality holds.

Geometry & Topology, Volume 28 (2024)



Shear-shape cocycles for measured laminations and ergodic theory of the earthquake flow 2105

pv D rv

rw pw

ru

pu

'pu;pv

'pv ;pw

'pw ;pu

Figure 29: The cocycle relation for admissible routes.

Finally, now that we have constructed shape-shifting maps for arbitrary pairs of pointed geodesics in @�H,
we can prove that they piece together into an IsomC. zX /–valued cocycle.

Proposition 14.26 The map constructed from X and s,

's W @�H� @�H! IsomC. zX /; ..hv;pv/; .hw;pw// 7! 'pv;pw ;

is a �1.X /–equivariant 1–cocycle as long as ksk�˛ <
1
2
D�.X /.

Proof That ' is �1.X /–equivariant means that 'pv;pw D  ı'pv;pw ı
�1 for  2�1.X /; this follows

directly from the construction.

That ' is a 1–cocycle means it satisfies the familiar cocycle condition on triples, ie

'pu;pv ı'pv;pw D 'pu;pw :

Note that, if pv lies on some admissible route from pu to pw, then this is fulfilled automatically by
unpacking the definitions and invoking Lemma 14.25.

One special case of the cocycle condition is when puDpw; in this case we must show that 'pv;pwD'
�1
pw;pv

.
To demonstrate this, observe that reversing an admissible route from v to w produces an admissible route
from w to v. Moreover, by Corollary 14.14 in the simple case and by definition in the other cases, each
'pi ;piC1

also inverts when we flip i and i C 1, proving that reversing v and w inverts 'pv;pw .

Now suppose that u, v and w are all distinct; then there exists a unique subsurface Y of zX n z� such
that each component of zX nY contains at most one of u, v or w (note that some of u, v and w may be
inside Y ). Choose basepoints ru, rv and rw on the boundary components of Y that are closest to u, v
and w (if any � 2 fu; v; wg is in Y then set r� D p�). See Figure 29.

Choose an admissible route from pu to pv containing ru and rv, and similarly for the other two pairs.
Then, by Lemma 14.25 and the observation that the cocycle condition holds along admissible routes, we
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may write
'pu;pv D 'pu;ru

ı'ru;rv ı'rv;pv

and similarly for the other two pairs. Combining all three equations and applying the cocycle relation
for Y (Proposition 14.24),

'pu;pv ı'pv;pw D 'pu;ru
ı'ru;rv ı'rv;pv ı'pv;rv ı'rv;rw ı'rw;pw D 'pu;ru

ı'ru;rw ı'rw;pw D 'pu;pw ;

finishing the proof. See Figure 29 for a graphical depiction of this argument.

15 Shear-shape coordinates are a homeomorphism

We now finish the proof of Theorem 12.1 by proving that the map �� W T.S/ ! SHC.�/ is open
(Theorem 15.1) and proper and thus, by invariance of domain, a homeomorphism.

In Section 15.1, we use the shape-shifting cocycle 's, built in the previous section, to deform the
representation � W�1.S/!PSL2 R that induces the hyperbolic structure X. The deformed representation �s
is then discrete and faithful (Lemma 15.3) and the quotient surface Xs has the desired shear-shape cocycle
(Lemma 15.6). In particular, this gives us a continuous local inverse to ��, proving openness. These
statements are similar in spirit to those in [Bonahon 1996], but the specifics of our proofs are different. In
particular, instead of adjusting the relative placements of ideal triangles of zX n z�, we adjust the relative
position of pointed geodesics in z�.

We then prove properness of �� in Section 15.2, concluding the proof of Theorem 12.1. Here we return
to Bonahon’s argument [1996, Theorem 20], but applying this strategy in our setting still requires a bit of
extra care due to the polyhedral structure of SHC.�/.

Finally, in Section 15.3, we show that the action of R>0 on SHC.�/ by dilation produces lines in T.S/

that can sometimes be identified with directed Thurston geodesics.

15.1 Deforming by shape-shifting

In this section, we show that any positive shear-shape cocycle close enough to ��.X / is actually the
geometric shear-shape cocycle of a hyperbolic structure. Compare with [Bonahon 1996, Proposition 13].

Theorem 15.1 Let ˇ be a maximal arc system containing ˛.X / and let �ˇ be a standard smoothing.
Then , for any s 2 W .�ˇ/ such that ksk�ˇ <

1
2
D�.X / and such that ��.X /C s represents a positive

shear-shape cocycle , there exists Xs 2 T.S/ close to X with

��.Xs/D ��.X /C s:

In particular , the image of ��.X / is open in SHC.�/.

The proof of this theorem appears at the end of this subsection as the culmination of a series of structural
lemmas. Our strategy is to explicitly define Xs by using the shape-shifting cocycle constructed in
Section 14 to deform the hyperbolic structure on X. Before proceeding we note the following:
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Corollary 15.2 For all t 2R and for all � 2�.�/,

��.Eqt�.X //D ��.X /C t�:

Proof That the earthquake Eqt�.X / is defined for all time is a consequence of countable additivity (equiv-
alently positivity) of �; a complete proof can be found in [Epstein and Marden 2006, Section III]. Viewing
the set of measures supported on � as a subset of H.�/, the formula is immediate from Theorem 15.1
once we note that Eqt�.X /DXt�, which follows from the description of 't� as a limit of simple left (or
right) earthquakes; see (37) and Lemma 14.13.

Fix s as in the statement of the theorem and pick an arbitrary v 2H and .hv;pv/ 2 @�Hv . Identifying zX
isometrically with H2 and .hv;pv/ with a pointed line picks out a representation � W �1.S/! PSL2 R

that induces X. Since ksk�˛ <
1
2
D�.X /, Proposition 14.26 allows us to construct the shape-shifting

cocycle 's.

We may now deform the representation � by 's by defining

�s W �1.S/! PSL2 R;  7! 'pv;pv ı �. /:

The equivariance and cocycle properties of Proposition 14.26 ensure that �s is itself a representation.
Indeed,

�s.12/D 'pv;12pv ı �.12/

D 'pv;1pv ı'1pv;12pv ı �.1/ ı �.2/

D 'pv;1pv ı �.1/ ı'pv;2pv ı �.1/
�1
ı �.1/ ı �.2/

D �s.1/ ı �s.2/

for all 1; 2 2 �1.S/. Our goal in the rest of the section is then to show that �s is discrete and faithful,
and that the quotient surface has the correct geometric shear-shape cocycle.

Adjusting geodesics To show that �s has the desired properties, we use 's to adjust the position of z� in zX.
Ultimately, these adjusted geodesics correspond to the realization of � on the quotient surface zX=im �s.

Let G . zX / be the space of geodesics in zX, and let @z� � G . zX / denote the set of boundary leaves of z�.
Define a map

p̂v W @
z�! G . zX /

as follows: If h is a leaf of @z�, then hD hu for some .hu;pu/ in @�H. The map p̂v then takes .hu;pu/

isometrically to the pointed geodesic 'pv;pu
.hu;pu/� zX. Note that, if huD hw for some other .hw;pw/

in @�H, then
'�1

pv;pu
ı'pv;pw D 'pu;pw

by the cocycle relation (Proposition 14.26) and 'pu;pw is by definition a translation along h. Therefore

p̂vhw D p̂vhu, so p̂v is indeed well defined.
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Using the fact that S is closed, the following lemma follows directly from the fact that �s defines a
representation of �1.S/ in the same component of representations as �. We give a hands-on explanation
that does not use this fact.

Lemma 15.3 The representation �s constructed above is discrete and faithful.

Proof For distinct leaves hu and hw 2 @z�, we claim that p̂v .hu/ is disjoint from p̂v .hw/. Indeed, by
the cocycle relation, the position of p̂v .hw/ relative to p̂v .hu/ is the same as the position of 'pu;pwhw

relative to hu. Every finite approximation of 'pu;pw by compositions of elementary shape-shifting
transformations preserves the property that the image of hw is disjoint from hu, so the same is true in the
limit.

Therefore, as long as �. / does not stabilize hv , p̂v .�. /hv/D �s. /hv is different from p̂v .hv/D hv .
If �. / is a translation along hv, we can find 0 such that �.0

�1
0
/hv 6D hv, and so �s. / does not

stabilize �.0
�1
0
/hv . In either case, this implies that �s. / acts nontrivially on the space of geodesics,

so in particular �s. / 6D 1, ie �s is faithful.

Since �1.S/ is a nonelementary group and �s is faithful, im �s is a nonelementary subgroup of isometries.
So assume towards contradiction that �s is indiscrete. Then im �s must be dense in PSL2 R; see eg
[Sullivan 1985, Proposition, page 246]. In particular, there is an element  2 �1.S/ such that �s. / is
arbitrarily close to a rotation of angle �

2
around pv. Then �s. /hv D p̂v�. /hv meets hv in a point,

which is impossible because p̂v .hv/ is either equal to or disjoint from p̂v .�. /hv/. We conclude that
�s is discrete, completing the proof of the lemma.

By Lemma 15.3, the quotient Xs D
zX=im �s is a hyperbolic surface equipped with a homeomorphism

S ! Xs in the homotopy class determined by �s. As such, �s induces a .�; �s/–equivariant homeo-
morphism @ zX ! @ zX, and hence a continuous, equivariant map on the space of geodesics.

Lemma 15.4 The map p̂v extends continuously to z�, and p̂v .
z�/ descends to the geodesic realization

of � on Xs.

Proof By equivariance, the induced map on geodesics agrees with p̂v on @z�. The leaves of @z� are
dense in z�, so the closure of the image of p̂v is the geodesic realization of z� on zXs, which is invariant
under the action of �s.

Since p̂v .
z�/ is the lift of the realization of � on Xs, we may now leverage our understanding of the

shape-shifting cocycle to show that the complementary subsurfaces of Xs n� have the desired shapes.

Lemma 15.5 A.Xs/DA.X /C a:

Proof Recall that by construction the unweighted arc systems of X n� and Xs n� are both contained in
some joint maximal arc system ˇ, leading to an identification of hexagons of zX n� with those of zX n�s.
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So let ˇ be an arc of ˇ, realized orthogeodesically in Xs. Let ˇ also denote a choice of lift, orthogonal to �s
in zX, and let u and w denote the hexagons adjacent to ˇ. Choose either of the geodesics g of � meeting ˇ
and let qu and qw be the basepoints of u and w on g. Then, by the cocycle relation (Proposition 14.26),

'pv;pw D 'pv;pu
ı'pu;pw

and so, applying equivariance, the placement of qw relative to qu differs from the placement of pw relative
to pu only by 'pu;pw .

But now, since u and w are in the same subsurface, we see by definition that 'pu;pw is translation along g

by exactly s.ˇ/. Therefore, the distance along 'pu;pwg between qu and qw is exactly the distance along g

between pu and pw plus s.ˇ/. Translated into arc weights,

��.Xs/.ˇ/D ��.X /.ˇ/C s.ˇ/;

completing the proof of the lemma.

Now that we know that the “shape” part of the data of ��.Xs/ is what it is supposed to be, we need only
check that the “shearing” data is as specified. Compare [Bonahon 1996, Lemma 19].

Lemma 15.6 The surface Xs has geometric shear-shape cocycle ��.Xs/D ��.X /C s.

Proof Observe that, by the cocycle relation (Proposition 14.26) and the discussion in Section 13.2, it
suffices to compute the change in shearing data between simple pairs.

So suppose that .v; w/ is simple. For each integer r , recall that Hr
v;w D .ui/

n
iD1

denotes the set of
hexagons such that the intersection of the geodesic from pv to pw with ui has depth at most r with
respect to a fixed geometric train track. Set vD u0 and wD unC1, and let hi D gvui

, the pointed boundary
geodesic of ui closest to v. Then, by Lemma 14.13,

'r
pv;pw

D T
s.u0;u1/

h0
ıA.s1/ ıT

s.u1;u2/

h1
ıA.s2/ ı � � � ıA.sn/ ıT

s.un;unC1/

hn

is a good approximation of 'pv;pw for large enough r .

Now, for each r , we can deform the hyperbolic structure on zX by 'r
pv;pw

(sacrificing equivariance) and
measure the shear �r .v; w/ between v and w in that deformed structure. More precisely, we recall that, if
h0i denotes the other geodesic in ui that separates v from w, the spike-shaping transformation is equal
to a translation along h0i then along hi . We may then deform zX by replacing each translation in the
factorization of 'r

pv;pw
with a (right) earthquake along the same geodesic; compare with our “geometric

explanation” of spike-shaping in Section 14.2.

Since each translation T
s.ui ;uiC1/

hi
appearing in 'r

pv;pw
shears zX along a leaf of �, it preserves the

orthogeodesic foliation in complementary components. Therefore, each such term in the deformation
thus changes the shear between v and w by exactly s.ui ;uiC1/.
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On the other hand, each spike-shaping transformation A.si/ is a parabolic transformation fixing the vertex
of the spike and thus preserves horocycles based at that point. In particular, the distinguished basepoints
of each hi and h0i remain on the same horocycle and hence deforming by A.si/ does not affect �r .v; w/.

In summary, deforming zX by the approximation 'r
pv;pw

changes the shear between v and w by

�r .v; w/� �.v; w/D

nX
iD0

s.ui ;uiC1/D s.v; w/;

where the last equality follows from finite additivity (axiom (SH2)).

Since this equality holds in each approximation and 'r
pv;pw

! 'pv;pw as r!1, the equality holds in the
limit as well. Therefore, deforming zX by 'pv;pw changes the shear between v and w by exactly s.v; w/,
which is what we needed to show.

Proof of Theorem 15.1 As ksk�˛ <
1
2
D�.X /, Lemmas 14.10 and 14.13 ensure that the limits in

the definition of 'pv;pw make sense for all simple pairs .v; w/. Proposition 14.26 then allows us to
construct 's. By Lemma 15.3, the deformed representation �s D 's � � is discrete and faithful, and, by
Lemma 15.6, the quotient surface has the correct geometric shear-shape cocycle.

Finally, we observe that the values of shape-shifting cocycle 's all converge to the identity as ksk�˛ ! 0,
and consequently Xs!X.

15.2 The global structure of the shear-shape map

We have already proven in Corollary 13.14 that the image of �� lies in SHC.�/. We now show that this
containment is in fact an equality, completing the proof of Theorem 12.1.

We proceed in two steps; the first is to show that:

Proposition 15.7 The shear-shape map �� is a homeomorphism onto its image.

Proof Proposition 13.12 (injectivity of ��) allows us to invert �� on its image and, for each X 2T.S/,
Theorem 15.1 provides us with an open neighborhood of ��.X / 2 SHC.�/ on which ��1

�
is defined

and continuous. By Proposition 8.5, SHC.�/� SH.�/ is an open cell of dimension 6g� 6. Invoking
invariance of domain, ��1

�
and hence �� are local homeomorphisms. An additional application of

Proposition 13.12 implies that �� is globally injective, so �� is a homeomorphism onto its image, as
claimed.

The second step is to prove that �� W T.S/! SHC.�/ is a proper map. That is, we must show that,
when Xk escapes to infinity in T.S/, the corresponding shear-shape cocycles ��.Xk/ must diverge
in SHC.�/. Since proper local homeomorphisms are coverings and SHC.�/ is a cell, the map �� must
be a homeomorphism.

Geometry & Topology, Volume 28 (2024)



Shear-shape cocycles for measured laminations and ergodic theory of the earthquake flow 2111

The proof we present below is essentially just that of [Bonahon 1996, Theorem 20], but we have to
address the additional complications introduced by the PL structure of SHC.�/; this manifests itself in
the stratified real-analytic structure of the map.23

Proof of Theorem 12.1 We begin by recording an estimate for the geometry of surfaces near the
boundary of the image of �� (where “near” is measured in a train track chart).

So suppose that X 2T.S/, set ˛D˛.X /, and build a standard smoothing �˛ carrying � geometrically on X.
Fix � > 0 and suppose that there exists some s 2W .�˛/ with ksk�˛ < � such that ��.X /C s 2 SHC.�/

is not in the image of ��; then Theorem 15.1 implies that

1
2
D�.X /� ksk�˛ < �:

The following claim can be extracted from the proof of [Bonahon 1996, Theorem 20]; we outline a proof
for the convenience of the reader.

Claim 15.8 There is a transverse measure � 2�.�/ with 1=9�.S/� k�k�˛ � 1 and

`X .�/D !SH.��.X /; �/ < �:

Proof If there is a simple closed curve component of �with length at most �, then we are done. Otherwise,
even though AC a defines a hyperbolic structure on each piece of S n�, the overall shear-shape cocycle
��.X /Cs does not define a hyperbolic structure on S because the proof of Lemma 14.10 or Lemma 14.13
fails. Therefore, there is a simple pair .v; w/ for which the finite products 'H (or 'r

v;w) fail to converge
as H tends to Hv;w (or r !1).

We claim that there exists u between v and w and a spike s D .g; h/ of Hu such that the following holds:
for any geodesic transversal k � X to � meeting the spike s, the countably many points of Qk \ g � g

(labeled by r 2 N) exiting one end of g escape at a rate strictly slower than �.r � 1/. In other words,
there are segments dr � g such that `X .dr /� �.r � 1/ and dr meets k exactly r times.

If this were not the case, then, as in the proof of Lemma 14.5, the “gaps” cr � kv;w n � have length
`X .cr /DO.e��r /, where cr \g is labeled by r 2N. This estimate on the decay of gaps implies that 'H

converges as H!Hv;w and that 'r
v;w! 'v;w as r !1 (see the proof of Lemma 14.10), contradicting

our assumption.

Now consider the weight system wr on �˛ (not satisfying the switch conditions) defined by counting
the number of times dr travels along each branch of �˛, and dividing by the total number of branches
nr that dr traverses, with multiplicity. Observe that nr � r by definition. Then kwrk�˛ � 1 in the
vector space Rb.�˛/ and wr takes value zero on branches corresponding to arcs of ˛. Moreover, wr is

23Recall that HC.�/ is an open cone with finitely many faces in a vector space, while SHC.�/ is an affine cone bundle over a
piecewise-linear space with no obvious way of extending the smooth structure over faces of B.S n�/.
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nonnegative on each branch and approaches the weight space W .�/ � Rb.�/ as r !1. Since wr are
built from leaves of �, any limit point � defines a transverse measure supported on � (compare also
[Penner and Harer 1992, Proposition 3.3.2]).

There are at most 9�.S/ branches of �˛ , so by the pigeonhole principal there is a branch such that each
wr has mass at least 1=9�.S/, and therefore so must �. But now, by construction,

`X .�/D lim
r!1

`X .dr /

nr
<
.r � 1/�

nr
< �;

providing the desired measure.

Now suppose towards contradiction that ˛ is maximal and ��.Xk/ 2 SHC.�I˛/ is a sequence ap-
proaching some � 2 SHC.�I˛/ that is not in the image of ��. We may then apply the above construc-
tion to � � ��.Xk/ to extract a family of measures �k on � satisfying 1=9�.S/ � k�kk�˛ � 1 and
!SH.��.X /; �k/! 0. By compactness of the set measures on � with norm bounded away from zero and
infinity, there is some nonzero accumulation point � of �k . Continuity of !SH (Lemma 8.3) then gives

!SH.��.Xk/; �k/! !SH.�; �/D 0;

and so � 62 SHC.�I˛/, a contradiction. Hence, im.��/\SHC.�I˛/ is relatively closed. On the other
hand, �� is a local homeomorphism by Proposition 15.7, and hence im.��/\SHC.�I˛/ is relatively
open.

If we knew that the projection of im.��/ surjected onto B.S n�/ (or at least met each top-dimensional
face), we would be done. Since we do not a priori have this information, we instead work our way out
in B.S n�/ cell by cell.

To wit, we may invoke Theorem 15.1 once more to deduce that im.��/\SHC.�I˛0/ is relatively open
for every filling arc system ˛0 that shares a common filling arc subsystem with ˛ (hence, SHC.�I˛/

and SHC.�I˛0/ intersect). Repeating the argument above for these cells, im.��/� SHC.�I˛0/ as well.
Since B.S n�/ is connected, iterating this procedure allows us to deduce that im.��/� SHC.�/. The
reverse inclusion follows from Corollary 13.14, so �� is a homeomorphism onto SHC.�/.

To address the regularity of ��, we note that while T.S/ has a natural R–analytic structure, SH.�/ does
not. However, for each arc system ˛, filling or not, the open cell Bı.˛/ has a well-defined analytic
structure compatible with that of the analytic submanifold of T.S n �/ that it parametrizes. The total
space of the bundle SHı.�I˛/!Bı.˛/ also carries an analytic structure, invariant under train track
coordinate–transformations (Proposition 8.5); thus SH.�/ has a stratified R–analytic structure.

The shape-shifting cocycle 's, and hence the surface Xs, then depends real-analytically on s 2W .�˛/

(where ˛ here is equal to the support of A.X /, not a maximal completion). The reason for this is
clear: all elementary shape-shifting transformations are products of small parabolic transformations (see
[Thurston 1986, Section 9] or [Bonahon 1996, Theorem A]) or translations with translation distance that
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are (restrictions of) real-analytic functions on (an analytic submanifold of) T.S n �/. These products
converge absolutely to the shape-shifting cocycle, and hence uniformly on compact sets to an analytic
deformation.

15.3 Dilation rays and Thurston geodesics

Using our coordinatization, we can define an extension of the earthquake flow to an action by the
upper-triangular subgroup.

Definition 15.9 Given a measured geodesic lamination �, a hyperbolic surface X 2 T.S/, and t 2R,
define an analytic path of surfaces fX t

�
gt2R by

X t
� WD �

�1
� .et��.X //;

called the dilation ray24 based at X directed by �.

As the earthquake flow acts by translation in coordinates (Corollary 15.2), dilation and earthquake
along � (together with scaling the measure on �) fit together into an action by the upper-triangular
subgroup B < GLC

2
R on PTg. More explicitly, we can specify an action of B on T.S/�R>0� (by

homeomorphisms) by setting

(47)
�

a b

0 c

�
� .X; �/ WD

�
��1
� .a��.X /C b�/; c�

�
:

These B–actions assemble into a Mod.S/–equivariant B–action on PTg (observe that �� depends only
on the support of � and not the actual measure). Quotienting by the mapping class group and restricting to
the unit-length locus then gives a P–action on P1Mg, and since dilation preserves the property of being
regular, a P–action on each stratum P1M

reg
g .�/. We call any such action an action by stretchquakes.

Using the commutativity of (2) (Theorem 13.13), we can compare (47) with the computations performed
in Lemmas 11.1 and 11.2 to see that:

Proposition 15.10 The map O takes the P–action of (47) on P1Mg to the standard P–action on Q1Mg.

While we have defined them via coordinates, it is not hard to see that dilation rays are geometrically
meaningful families of surfaces. Generally, we obtain paths of surfaces along which the length of � scales
nicely, and we can identify some dilation rays as directed lines in Thurston’s asymmetric metric on T.S/.

Mirzakhani [2008, Remark, page 33] observed that, for a maximal lamination �, the dilation ray t 7!X t
�

corresponds to the stretch path directed by � defined by Thurston [1986, Section 4]. Very roughly, stretch
paths are obtained by gluing together certain expanding self-homeomorphisms of the ideal triangles that
form X n� along the leaves of �.

24We are abusing terminology here by declaring that the image of R under an analytic mapping is a ray. Our aim is to emphasize
that the dilation ray should be thought of as directed toward the future, even though it can be defined for all time.
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Lemma 15.11 [Thurston 1986, Proposition 2.2] Let Pn be a regular ideal hyperbolic n–gon. For any
K � 1, there is a K–Lipschitz self-homeomorphism Pn! Pn that maps each side to itself and expands
arclength along the boundary by a constant factor of K.

Proof The orthogeodesic foliation O.Pn/ is measure equivalent to a partial foliation by horocycles
centered at the spikes of Pn. The desired K–Lipschitz homeomorphism Pn!Pn is constructed by fixing
the central horocyclic n–gon and mapping each horocyclic arc at distance s from the central region to the
horocyclic arc at distance Ks in the same spike.

Any partition � D .�1; : : : ; �n/ of 4g� 4 determines a regular locus PT
reg
g .�/ of pairs .X; �/, where the

complement of � in X is a union of regular ideal .�iC2/–gons. Then P1M
reg
g .�/ is the moduli space of

pairs where `X .�/D 1.

Gluing together the expanding maps of regular polygons provides an explicit model of dilation rays
in P1Mg.�/ and identifies them with geodesics for the Thurston metric. A survey of some basic properties
of Thurston’s metric as well as similarities and differences between directed stretch rays and Teichmüller
geodesics can be found in [Papadopoulos and Théret 2007]. The following proposition was inspired in
part by recent work of Horbez and Tao [� 2024], in which they investigate the minimally displaced sets
in the Thurston’s metric using a similar construction.

Proposition 15.12 For any .X; �/ 2 PT
reg
g .�/, the dilation ray fX t

�
W t 2 Rg � PT

reg
g .�/ is a directed

unit-speed geodesic in Thurston’s asymmetric Lipschitz metric.

Proof Since � is regular on X, ��.X / 2 SHC.�/ lies in the fiber over the empty arc system. Scaling
��.X / preserves this arc system, so X t

�
is regular for all t . It suffices to prove that the optimal Lipschitz

constant for a map X !X t
�

in the homotopy class determined by markings is et for all t � 0.

Let H�.X / denote the (partial) foliation of X by horocyclic arcs that is measure equivalent to O�.X /.
The maps of Lemma 15.11 assemble to an et –Lipschitz homeomorphism X n �! X �

t n � such that
H�.X / maps to H�.X

t
�
/D etH�.X / on each component (as measured foliations). Now, using the fact

that ��.X t
�
/ D et��.X /, we can adapt the argument of [Bonahon 1996, Lemma 11] (as sketched in

Proposition 13.12) to show that this map is locally Lipschitz and hence extends across � to an et –Lipschitz
homeomorphism X !X t

�
.

Thus et provides an upper bound for the optimal Lipschitz constant in the homotopy class determined by
markings. On the other hand,

`X t
�
.�/D !SH.��.X

t
�/; �/D !SH.e

t��.X /; �/D et`X .�/;

so et is also a lower bound for the optimal Lipschitz constant.

Remark 15.13 As in the last line of the proof of Proposition 15.12 we always have `X t
�
.�/D et`X .�/

for arbitrary � 2ML.S/. Thus the distance from X to X t
�

in Thurston’s metric is at least t . However, we

Geometry & Topology, Volume 28 (2024)



Shear-shape cocycles for measured laminations and ergodic theory of the earthquake flow 2115

do not always know how to build et –Lipschitz proper homotopy equivalences X n�! X t
�
n� (in the

correct homotopy class) that expand arclength along @X n� by a constant factor of et .

Remark 15.14 (added in proof) In recent work, Pan and Wolf [2022] build new families of geodesics for
the Lipschitz metric using harmonic maps. Their work also uses our coordinates to show that certain “Hopf
differential disks” in Tg converge to “stretch–earthquake disks”. It would be interesting to know if their
new geodesics coincide with the dilation rays defined here, and, by extension, if their stretch–earthquake
disks are the same as the orbits of the stretchquake action defined here.

Remark 15.15 Our dilation rays are different from Thurston’s stretch rays defined with respect to one
of the finitely many maximal completions of � when � is not maximal. This follows from the fact that
O�.X / 6D O�0.X /, where �0 is a maximal completion of �.

The map PT
reg
g .�/�R!PT

reg
g .�/ defined by the rule .X; �; t/ 7! .X t

�
; e�t�/ is called the stretch flow.

The stretch flow is Mod.S/–equivariant and

`X t
�
.e�t�/D `X .�/;

and hence descends to P1M
reg
g .�/.

Corollary 15.16 Let � be a P–invariant ergodic probability measure on P1Mg.

� For �–almost every .X; �/, the dilation ray t 7!X t
�

is a unit-speed geodesic in Thurston’s asymmetric
metric.

� On a set of full �–measure , the action of the diagonal subgroup of P is identified with the stretch
flow and O conjugates stretch flow to Teichmüller geodesic flow.

In particular , the stretch flow is ergodic with respect to �.

Proof By Corollary 1.2, �–almost every point is regular (with respect to the same topological type of
lamination), so the first statement of the theorem is immediate from Proposition 15.12.

The second statement is essentially a restatement of Theorem B combined with the previous statement.
Alternatively, in the Gardiner–Masur parametrization of QTg (Theorem 2.1), the Teichmüller geodesic
flow at time t is given by .�; �/ 7! .et�; e�t�/, so unraveling the definitions and using commutativity
of (2) (Theorem 13.13) gives the result.

For ergodicity, we apply Theorem C which asserts, in particular, that O�� is an ergodic SL2 R–invariant
probability measure on Q1Mg.�/. The Howe–Moore Theorem implies that any noncompact, closed
subgroup of SL2 R inherits ergodicity (see eg [Feres and Katok 2002, Theorem 3.3.1]); in particular, the
Teichmüller geodesic flow is ergodic with respect to O��. So O maps any stretch flow–invariant set B of
positive �–measure to an O�� Teichmüller geodesic flow–invariant set of positive measure, which must
have full measure by ergodicity. Thus �.B/D 1, demonstrating ergodicity of the stretch flow.
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Recently, Allessandrini and Disarlo [2022] constructed Lipschitz maps between some pairs of degenerate
right-angled hexagons that stretch alternating boundary geodesics by a constant factor. Recall from
Section 6 that the Teichmüller space of an ideal quadrilateral is 1–dimensional and can be described as
the cone over a pair of points corresponding to the two arcs ˛ and ˇ that join opposite sides of Q.

Lemma 15.17 Let Q be an ideal quadrilateral with weighted filling arc system sı, where ı 2 f˛; ˇg. Let
Qt be the quadrilateral with arc system etsı. There is an et –Lipschitz surjection Q!Qt that multiplies
arclength along the boundary of Q by a factor of et . Moreover , the projection of the compact edge of the
spine of Q is mapped to the projection of the compact edge of the spine of Qt .

Proof Every ideal quadrilateral has an orientation-preserving isometric involution swapping opposite
sides. Thus the orthogeodesic representative of ı cuts Q into two isometric pieces, each of which is a
right-angled hexagon with two degenerate sides. On each piece, we can apply [Alessandrini and Disarlo
2022, Lemma 6.9] to obtain maps which glue together along ı to give a map with the desired properties.

We immediately obtain some new geodesics for Thurston’s metric.

Proposition 15.18 If S n� consists of ideal triangles and quadrilaterals , then , for any X 2T.S/, t 7!X t
�

is a directed , unit-speed geodesic for Thurston’s asymmetric metric.

Proof The proof is nearly identical to the proof of Proposition 15.12, so we only provide a brief outline.
Construct an et –Lipschitz surjective map X n�!X �

t n� from the units of Lemmas 15.11 and 15.17.
For the same reason as before, this map extends continuously across the leaves of � and provides an
et –Lipschitz homotopy equivalence X !X t

�
in the homotopy class determined by markings. Thus et

is an upper bound for the Lipschitz constant among homotopy equivalences X ! X t
�

in the correct
homotopy class. This is clearly an upper bound for the ratio

max
�2ML.S/

`�.X
t
�
/

`�.X /
:

But et is also a lower bound for this ratio, because the length of � is scaled by a factor of et .

By [Thurston 1986, Theorem 8.5], there is an et –Lipschitz homeomorphism X !X t
�

homotopic to the
map constructed above.

Remark 15.19 The proof of Proposition 15.18 clearly supplies a more general statement: if � is filling
and cuts X 2 T.S/ into a regular polygons and quadrilaterals of any shape, then t 7!X t

�
is a geodesic

for Thurston’s metric.

There are other cases in which we can glue Lipschitz maps between degenerate right-angled hexagons
that can be found in the literature (eg [Alessandrini and Disarlo 2022; Papadopoulos and Yamada 2017]).
However, these other cases require additional symmetry that is not always present in our setting. We
suspect that there is a different approach that would prove that dilation rays can always be identified with
Thurston geodesics, so that O conjugates a kind of Thurston geodesic flow to Teichmüller geodesic flow.
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16 Future and ongoing work

There is much more to understand about the correspondence between hyperbolic and flat geometry
described in this paper. In addition to using the orthogeodesic foliation to import tools from Teichmüller
dynamics into the world of hyperbolic geometry (and vice versa), the authors expect this link to provide
retroactive explanations for analogous phenomena in the two settings.

We describe a number of future directions and potential applications of the correspondence below, some
of which will be addressed in forthcoming sequels.

Continuity and equidistribution Theorem D states that, for a fixed lamination O� WT.S/!MF.�/ is
a homeomorphism, but, as Mirzakhani [2008, page 33] already observed, O cannot be continuous on PTg.
Moreover, Arana-Herrera and Wright [2024] have proven that the earthquake and horocycle flow are not
topologically conjugate by any map. At fault is the basic fact that the support of a measured lamination
does not vary continuously in the relevant topology.

In [Calderon and Farre 2024a], we investigate the continuity properties of O restricted to specific families
of .X; �/ with constrained geometry and topology. On these families, the support of � is forced to vary
continuously in the Hausdorff topology as the pair varies (in the usual topology on PTg). For example,
each of the regular loci has this property. With this extra geometric control in hand, we prove that O

restricts to a homeomorphism PT
reg
g .�/$ QTnsc

g .�/ on each regular locus.

By imposing a stronger (yet still geometrically meaningful) topology on ML.S/, we ensure the continuity
of O varying over all pairs: let ML.S/ denote the set of measured laminations with the “Hausdorff C
measure” topology, so that measured laminations are close in ML.S/ if they are close both in measure
and their supports are Hausdorff close. We prove a general phenomenon that O WT.S/�ML.S/!QT.S/

is locally Hölder continuous with respect to a nice family of locally defined metrics in geometric train
track coordinates [Calderon and Farre 2024a, Theorem 12.7].

Our continuity arguments depend on a detailed analysis of the geometric structure of small foliated
train track neighborhoods of a lamination on a hyperbolic surface. This analysis is sufficiently robust to
produce “enough continuity” to deduce that O is a Borel-measurable isomorphism, a fact which is pivotal
for applications. The results of Section 1.2 then live in a more natural setting, as well.

Combined with this work, the conjugacy of Theorems A and B allows us to import techniques of flat
geometry to the hyperbolic setting. In particular, while O is not continuous, its discontinuity is controlled
enough that we can translate between equidistribution in P1Tg and equidistribution in Q1Tg [Calderon
and Farre 2024b].

Symplectic structure For a maximal lamination �, Sözen and Bonahon [2001] identified the Goldman
symplectic form on the Teichmüller component of Hom.�1S;PSL2 R/=PSL2 R (also the Weil–Petersson
symplectic form) as ��

�
!H in shear coordinates. For arbitrary �2ML.S/ and X 2T.S/, the shape-shifting
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cocycles built in Section 14 provide an open set of deformations of the hyperbolization Œ� W�1S!PSL2 R�

of X (Theorem 15.1). Taking derivatives (as in [Sözen and Bonahon 2001]) identifies the tangent space
to Œ�� with the vector space of Ad�–invariant Lie algebra valued 1–cocycles, yielding a reasonably explicit
formula for a vector in the tangent space at Œ��. Using this formula, it is then possible to compute
an expression for the Goldman symplectic form in shear-shape coordinates. It remains to understand
precisely how O interacts with the various natural symplectic forms on PMg and QMg and the (degenerate)
symplectic forms on strata, a question that is made technical by the lack of regularity of O.

Measures To each PSL2 R–invariant ergodic probability measure on Q1Mg, pushforward along O�1

produces a P–invariant ergodic probability measure on P1Mg (and vice versa). An important class of
such measures on the singular flat side is furnished by the Masur–Veech measure �� on a component of
a stratum Q1Mg.�/. In [Calderon and Farre 2024a], we give a geometric description of �� WD O�1

� .��/

on the corresponding “stratum” P1M
reg
g .�/, which parallels [Mirzakhani 2008, Theorem 1.4] that on the

principal stratum, �� disintegrates into the Weil–Petersson measure on hyperbolic surfaces and Thurston
measure on laminations (up to a normalization factor). We give an outline of the various ingredients
required to make the analogous statement for �� with � arbitrary.

As discussed in Section 9.3, the piecewise-integral-linear (PIL) structure on SH.�/ endows it with an
integer lattice and distinguished measure in the class of Lebesgue. Indeed, for each filling �, the integer
lattice in SHC.�/ restricts to an integer lattice on the fiber HC.�/ over the empty arc system due to
integrality of the equations defining the piecewise-linear structure of B.S n�/. The empty arc system
corresponds to the set of X on which � is regular, and so the PIL structure induces a measure (in the
class of Lebesgue) on this regular locus.

We identify the kernel of the Goldman symplectic form restricted to regular loci as tangent to certain
“hyperbolic Schiffer deformations” associated to each even-gon in the complement of �. These directions
admit explicit descriptions as weight systems on a snug train track for � [Bonahon and Wong 2017,
Appendix] which can be reinterpreted as 1–forms on regular loci obtained as the differentials of coordinate
functions. Using our formula for the Goldman symplectic form restricted to regular loci, we identify
the pullback of the Lebesgue measure on the fiber H.�/ over the empty arc system with an analytic
volume form obtained as a wedge power of the restricted symplectic form then wedged together with the
distinguished 1–forms associated to the kernel.

Using snug train tracks, one can define a �–Thurston measure on the space ML.�/ of polygonal measured
laminations of a given topological type. While this is essentially Lebesgue measure in train track
coordinates for the “measureCHausdorff” topology, it is not locally finite in the usual topology on ML.S/.
One can construct natural train track coordinate charts that give local measurable trivializations of
P1Mg.�/ and exhibit �� as the product of �–Thurston measure and the Weil–Petersson-type volume form.

Expanding horospheres Counting problems for square-tiled surfaces/curves on hyperbolic surfaces
are intricately related to the equidistribution of L–level sets for the intersection number with/hyperbolic
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length of laminations as one takes L ! 1. When � is a multicurve, the equidistribution of such
“expanding horospheres” to the Masur–Veech measure on the principal stratum of Q1Mg/ the pullback
by O of this measure on P1Mg (sometimes called Mirzakhani measure) was established in [Mirzakhani
2007; Arana-Herrera 2021; Liu 2022] using the geometry of the (symmetrized) Lipschitz metric, the
nondivergence of the earthquake flow, and a no-escape-of-mass argument. On the other end of the
spectrum, the equidistribution of expanding horospheres for maximal � to Q1Mg can be proven using
a standard “thickening plus mixing” argument from homogeneous dynamics; in the flat setting this is
implicit in the work of Lindenstrauss and Mirzakhani [2008], and was recently generalized in [Forni
2021, Theorem 1.6] using different methods. Equidistribution in the hyperbolic setting then follows from
the continuity results described above.

Using our extension of Mirzakhani’s conjugacy (and the continuity results described above), the same
“thickening plus mixing” technique can be used to prove that expanding horospheres based at any � equidis-
tribute to the Mirzakhani measure on P1Mg. Moreover, an analogous result holds for strata: intersections
of expanding horospheres based at � and the regular locus should equidistribute to the pullback to P1Mg

of the Masur–Veech measure for a component of Q1Mg.�/ [Calderon and Farre 2024b, Theorem 1.4].
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ties 2019
transverse cocycles 2031
transverse pairs 2078
tremors, trem�.q/ 2065
valence, val.x/ 2016
!H 2043
!SH 2045
w˛.�/ 2049
„.q/ 2054
�.�/ 2015
Xs 2108
Œz�C 2058
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The asymmetry of Thurston’s earthquake flow

FRANCISCO ARANA-HERRERA

ALEX WRIGHT

We show that Thurston’s earthquake flow is strongly asymmetric in the sense that its normalizer is
as small as possible inside the group of orbifold automorphisms of the bundle of measured geodesic
laminations over moduli space. (At the level of Teichmüller space, such automorphisms correspond to
homeomorphisms that are equivariant with respect to an automorphism of the mapping class group.)
It follows that the earthquake flow does not extend to an SL.2;R/–action of orbifold automorphisms
and does not admit continuous renormalization self-symmetries. In particular, it is not conjugate to
the Teichmüller horocycle flow via an orbifold map. This contrasts with a number of previous results,
most notably Mirzakhani’s theorem that the earthquake and Teichmüller horocycle flows are measurably
conjugate.

30F60; 32G15

1 Introduction

Context The bundle P1Mg of unit-length measured geodesic laminations over the moduli space Mg

of hyperbolic or Riemann surfaces of genus g is most naturally seen as a construction of hyperbolic
geometry, whereas the bundle Q1Mg of unit-area quadratic differentials over Mg is most naturally seen
from the perspective of either complex analysis or flat geometry. The bundle P1Mg supports Thurston’s
rather mysterious earthquake flow, which is most concisely defined as a Hamiltonian flow using the
Weil–Petersson symplectic form, whereas the bundle Q1Mg supports the Teichmüller horocycle flow,
easily defined as part of the much-studied SL.2;R/–action. Mirzakhani showed that, despite their different
origins, these flows are measurably isomorphic.

Theorem 1.1 [Mirzakhani 2008] There is a measurable conjugacy P1Mg ! Q1Mg between the
earthquake flow and the Teichmüller horocycle flow.

In addition to being of fundamental interest as a bridge between different perspectives on the geometry of
surfaces and their moduli spaces, this theorem has powered many applications concerning equidistribution,
counting and the study of random surfaces [Mirzakhani 2007a; 2016; Arana-Herrera 2021; 2022; Liu
2022; Lu and Su 2022].

Mirzakhani’s conjugacy is only defined on a full-measure subset of P1Mg, and, as remarked by Mirzakhani
herself [2008, Section 6], this conjugacy cannot be extended to a continuous map on all of P1Mg. Despite
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this, Calderon and Farre [2024] extended Mirzakhani’s conjugacy to a bijection which, although not
continuous, is geometrically natural and has exciting new applications.

One reason Theorem 1.1 is plausible is that there are many conceptual similarities between the earthquake
flow and the Teichmüller horocycle flow, such as the following:

(1) Both arise from some notion of shearing.

(2) Both have been understood by analogy to unipotent flows on homogeneous spaces.

(3) Both are Hamiltonian with respect to related symplectic structures [Masur 1995; Sözen and Bonahon
2001].

(4) Both are associated to natural complex disks in Teichmüller space, namely Teichmüller discs for the
Teichmüller horocycle flow and complex earthquake discs for the earthquake flow [McMullen 1998].

(5) Both have quantitative nondivergence properties [Minsky and Weiss 2002].

No continuous conjugacy In light of all these similarities and the work of Mirzakhani, Calderon
and Farre, one might wonder if a result stronger than Theorem 1.1 holds: perhaps the earthquake and
Teichmüller horocycle flows are isomorphic from the point of view of continuous dynamics, ie perhaps
there is a different conjugacy between these flows that is also a homeomorphism. This question was
advertised by Wright [2020, Problem 12.3; 2022, Remark 5.6]. Our main result on asymmetry, which we
will state shortly as Theorem 1.4, implies a negative solution to this problem.

Theorem 1.2 There does not exist an orbifold conjugacy P1Mg! Q1Mg between the earthquake flow
and the Teichmüller horocycle flow.

The technical restriction in Theorem 1.2 that the conjugacy respects the orbifold structure of these spaces
is natural since both spaces have the same orbifold structure [Hubbard and Masur 1979].

The existence of an orbifold conjugacy P1Mg!Q1Mg as in Theorem 1.2 is equivalent to the existence of
a topological conjugacy P1Tg!Q1Tg of the lifts to Teichmüller space of the earthquake and Teichmüller
horocycle flows that intertwines an automorphism � WModg!Modg of the mapping class group. For
detailed discussions on the theory of orbifolds, see [Thurston 1979, Chapter 13; Erlandsson and Souto
2022, Section 2]. In particular, the following corollary holds:

Corollary 1.3 There does not exist a mapping class group equivariant topological conjugacy P1Tg!

Q1Tg between the earthquake flow and the Teichmüller horocycle flow.

Strong asymmetry A flow E D fEt W X! Xgt2R on a space X can be interpreted as a group homo-
morphism E W R! Aut.X/ mapping t 2 R to Et 2 Aut.X/, where the automorphism group Aut.X/ is
defined in whatever category (smooth, continuous, measurable, etc) is under consideration.

The centralizer of the flow E is defined as

C.E/D fF 2 Aut.X/ W .8t 2R/ Et ıF D F ıEtg:
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The centralizer corresponds to the most narrow concept of the set of symmetries of a flow one can consider,
consisting only of the automorphisms that commute with it. A slightly broader notion is the extended
centralizer of a flow, defined here as

C˙.E/D fF 2 Aut.X/ W .9" 2 f1;�1g/.8t 2R/ Et ıF D F ıE"tg:

The extended centralizer includes time-reversing symmetries of a flow.

Even more broadly, one can consider the normalizer of a flow, defined as

N.E/D fF 2 Aut.X/ W .9" 2 f1;�1g; s 2R/.8t 2R/ Et ıF D F ıE"e2stg:

The normalizer includes symmetries that scale time, ie which conjugate the flow to a constant-speed
reparametrization of itself. If F 2N.E/ is as above, we call F a normalizer of the flow, or an s–normalizer
if we wish to specify the time dilation factor e2s .

The smallest N.E/ can be is the flow itself, namely N.E/D fEtgt2R. When this is the case, we say
that the flow E is strongly asymmetric. Our main result establishes this strong asymmetry property for
the earthquake flow.

Theorem 1.4 The normalizer of the earthquake flow inside the group of orbifold automorphisms of P1Mg

is the flow itself.

Theorem 1.2 follows immediately from Theorem 1.4, since the Teichmüller horocycle flow is normalized
by the Teichmüller geodesic flow.

A few remarks Before discussing the proof of Theorem 1.4, let us make a couple of remarks.

Remark 1.5 In testing the plausibility of Theorem 1.4, it is natural to consider both Thurston’s stretch
map flow, defined in [Thurston 1998], and grafting, so we discuss both in turn.

The stretch map flow already makes a natural appearance in any discussion regarding Mirzakhani’s
conjugacy. Indeed, Mirzakhani’s conjugacy shows that the earthquake flow is part of a measurable
SL.2;R/–action in which the diagonal subgroup acts via the stretch map flow. The stretch map flow does
normalize the earthquake flow, but, since it is only defined on a full-measure subset of P1Mg, this does
not contradict Theorem 1.4.

Grafting plays a central role in the definition of complex earthquake discs. If one compares Teichmüller
discs to complex earthquake discs, the Teichmüller geodesic flow corresponds to grafting. Grafting is
continuous, but, since it does not normalize the earthquake flow, this does not contradict Theorem 1.4.

In the next two remarks, it is implicit that we are working in the category of topological orbifolds (so in
particular all conjugacies are continuous).

Remark 1.6 Theorem 1.4 implies that the earthquake flow is not conjugate to its own inverse. (The
inverse of a flow t 7!Et is the flow t 7!E�t .)
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Remark 1.7 Theorem 1.4 implies that the earthquake flow is not the restriction of any SL.2;R/–action
to any one-parameter subgroup. (One way to see this is to note that every noncompact one-parameter
subgroup of SL.2;R/ has nontrivial normalizer, since the horocycle flow is normalized by the geodesic
flow and the geodesic flow is normalized by an involution.)

Outline of the proof Every normalizer can and should be considered as a conjugacy between the
earthquake flow and a (possibly trivial) linear time change of itself. Given an s–normalizer F WP1Mg!

P1Mg, we constrain its behavior until we are eventually able to show it is an element of the flow. This
involves four main steps, each occupying a different section of this paper. Throughout we assume
.X; �/ 2 P1Mg and F.X; �/D .Y; �/.

(1) By studying minimal sets, we show in Proposition 2.1 that � is a multicurve if and only if � is,
and, moreover, that the number of components of � is equal to the number of components of �.
This is strongly related to [Minsky and Weiss 2002; Smillie and Weiss 2004].

(2) Leveraging the rigidity of the curve complex, we show in Proposition 3.1 that � is a multiple of �.
This relies on [Ivanov 1997] and applies to all .X; �/ 2 P1Mg.

(3) By carefully analyzing the periods of specific closed orbits, we determine in Lemma 4.2 what the
multiple is, showing �D es ��. We moreover show in Lemma 4.3 that, often, many curves shrink
by at least a factor of e�s in the passage of X to Y. This gives a contradiction unless sD 0, showing
that the normalizer is equal to the extended centralizer, a conclusion we record as Proposition 4.1.

(4) In Proposition 5.1, we show that the extended centralizer of the earthquake flow is trivial, by
showing that many and hence all orbits are preserved, and using ergodicity. We use the generalized
McShane identity of [Mirzakhani 2007b] as a technical tool.

Open problems Many interesting questions related to Mirzakhani’s conjugacy remain open. We highlight
a few of them here.

To our knowledge, the only previously established dynamical difference between the earthquake and
Teichmüller horocycle flows concerns cusp excursions in the specific case of once-punctured tori [Fu
2019]. Previous to this, it was known that certain orbits of the two flows do not stay finite distance apart
in one-dimensional Teichmüller spaces [Minsky and Weiss 2002, Proposition 8.1].

Theorem 1.4 is a dynamical difference, since it relates to renormalization, but it would be illuminating to
find less subtle differences.

Problem 1.8 Find a dynamical, non-group-theoretic property that is invariant under topological conjuga-
cies and which holds for exactly one of the earthquake flow and the Teichmüller horocycle flow.

It is easy to construct topological joinings between the earthquake flow and the Teichmüller horocycle
flow. For example, consider the set of pairs

..X; �/; q/ 2 P1Mg �Q1Mg
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such that the horizontal foliation of q is equal to �. This construction of a topological joining admits
many different variations.

Problem 1.9 Classify all the topological joinings between the earthquake flow and the Teichmüller
horocycle flow.

More generally, our dynamical understanding of the earthquake flow remains incomplete, leaving questions
such as the following open.

Question 1.10 Is the earthquake flow polynomially mixing?

In comparison, it is known that the Teichmüller horocycle flow is polynomially mixing [Avila et al. 2006;
Avila and Resende 2012; Avila and Gouëzel 2013; Ratner 1987].

There are also interesting open questions related to strong asymmetry, including the following deliberately
vague question:

Question 1.11 How common is strong asymmetry in smooth dynamics?

The most interesting setting for this question may be flows that share some properties with the earthquake
flow, such as volume-preserving flows with zero entropy and having closed orbits of all periods.

Centralizers of flows (and diffeomorphisms) have been studied, for example, in [Obata 2021; Bakker
and Fisher 2014; Bonomo and Varandas 2019]. Actions of Baumslag–Solitar groups and other discrete
solvable groups have been studied, for example, in [Bonatti et al. 2017; Guelman and Liousse 2011;
2013; Wilkinson and Xue 2020; Burslem and Wilkinson 2004; McCarthy 2010]. Actions of solvable
Lie groups have been studied, for example, in [Ghys 1985; Ghys and Verjovsky 1994]. See [Wilkinson
2010; Navas 2018] for some open questions and additional context. See [Navas 2011] for more on the
one-dimensional case.

In [Frączek et al. 2014], a continuous flow on the torus is constructed that (in particular) has a measurable
s–normalizer for every s 2 R but has no continuous s–normalizers for s ¤ 0. In light of Theorem 1.4
and the work of Mirzakhani, this is analogous to the situation for the earthquake flow. In [Frączek and
Lemańczyk 2009], the symmetries of certain flows are studies in the measurable category. In [Berk et al.
2020], time-reversing translation flows are studied.

Acknowledgements Arana-Herrera is very grateful to Steve Kerckhoff for his invaluable advice, patience
and encouragement. The authors are grateful to Giovanni Forni, Krzysztof Frączek, Corinna Ulcigrai
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2 A dimension argument using minimal sets

In this section we analyze minimal sets to obtain the following:

Proposition 2.1 Let F W P1Mg! P1Mg be a normalizer of the earthquake flow , and suppose .X; �/ 2
P1Mg and F.X; �/D .Y; �/. Then , for any k 2N, � is a simple closed multicurve with k components
if and only if � is a simple closed multicurve with k components.

We begin by showing that every normalizer must preserve the locus of points .X; �/ 2P1Mg with � a
simple closed multicurve. We do this using the minimal sets of the earthquake flow.

A minimal set of the earthquake flow is a closed, earthquake flow–invariant subset of P1Mg that does not
contain any proper, nonempty, closed, earthquake flow–invariant subsets.

We will be interested in compact minimal sets. Minsky and Weiss [2002] showed that all minimal sets for
the earthquake flow are compact, but we will not require such a strong statement. The result we will need
is the following:

Theorem 2.2 A point .X; �/ 2 P1Mg is contained in a compact minimal set if and only if � is a simple
closed multicurve.

Smillie and Weiss [2004] prove the analogous statement for the Teichmüller horocycle flow and state that
it should be possible to similarly obtain a result for the earthquake flow. However, as far as we know,
even the statement of Theorem 2.2 has not previously appeared in the literature. For the convenience of
the reader we sketch a proof in the appendix.

Since normalizers preserve minimal sets, we deduce the following corollary:

Corollary 2.3 Let F W P1Mg ! P1Mg be a normalizer of the earthquake flow , and suppose .X; �/ 2
P1Mg and F.X; �/D .Y; �/. Then � is a simple closed multicurve if and only if � is a simple closed
multicurve.

To get a grasp on the number of components of a simple closed multicurve, we study the local topology
of the lift to P1Tg of the union of the compact minimal sets of the earthquake flow on P1Mg. The
following result is crucial to our approach:

Lemma 2.4 Let  2PMLg be the projective class of a simple closed multicurve with k 2N components ,
U � PMLg be a small open neighborhood of  in PMLg, and W be the path-connected component
containing  of the intersection of U with the subset of PMLg of projective classes of simple closed
multicurves. Then , if U is sufficiently small , U \W is locally homeomorphic to R6g�7�k .
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Proof Denote  WD
Pk

iD1 aii 2 PMLg. Then, if U is sufficiently small, W consists of projective
classes of simple closed multicurves of the form

 0 WD

kX
iD1

.ai C �i/i C

k0X
jD1

ıj
0

j ;

where � WD .�i/
k
iD1
2 Rk is a small vector, k 0 � 0 is a nonnegative integer, . 0j /

k0

jD1
are pairwise

nonhomotopic and nonintersecting simple closed curves that are not homotopic and do not intersect any
of the components of  , and ı WD .ıj /k

0

jD1
2Rk0

C is a small vector with positive entries. This fact can be
readily verified using Dehn–Thurston coordinates [Penner and Harer 1992, Section 1.2]. Indeed, if U

is sufficiently small, projective classes in W correspond to simple closed multicurves whose geometric
intersection number with any of the components of  is zero.

Furthermore, the closure of W in U is given by the connected component containing  of the intersection
of U with the projectivization of

Zg. / WD f� 2MLg W i.; �/D 0g:

Notice that Zg. / is homeomorphic to Rk �R6g�6�2k , where the first term of this product corresponds
to changing the weights of the components of  and the second term corresponds to choosing a measured
geodesic lamination on Sg supported away from  . In particular, U \W is locally homeomorphic
to R6g�7�k .

Suppose .X;  / 2 P1Tg, where  is a simple closed multicurve with k 2 N components. Consider a
small open neighborhood U �P1Tg of .X;  /. Denote by W the path-connected component containing
.X;  / of the intersection of U with the subset of points of P1Tg where the lamination is a simple
closed multicurve. Directly from Lemma 2.4, we see that, if U is sufficiently small, U \W is locally
homeomorphic to R12g�13�k ; the 6g� 6 increase in dimension with respect to Lemma 2.4 comes from
the dimension of Teichmüller space. In particular, we can recover the number of components of  from
the dimension of this intersection.

As the number of components of  can be recovered from information depending exclusively on the
minimal sets of P1Mg, this quantity is preserved by any earthquake flow normalizer. This concludes the
proof of Proposition 2.1.

3 An automorphism of the curve complex

In this section we use the rigidity of the curve complex to obtain the following:

Proposition 3.1 Every normalizer F WP1Mg!P1Mg of the earthquake flow admits a Modg–equivariant
lift yF W P1Tg! P1Tg such that , for every .X; �/ 2 P1Tg, if yF .X; �/D .Y; �/, then � belongs to the
projective class of � 2MLg.

Geometry & Topology, Volume 28 (2024)



2132 Francisco Arana-Herrera and Alex Wright

Because we assume F is an orbifold map, there exists a lift yF W P1Tg! P1Tg that is equivariant with
respect to some automorphism of Modg. We start with this lift and show how to modify it to get the
desired lift yF.

Denote by Sg the discrete set of free homotopy classes of unoriented simple closed curves on the marking
surface Sg. By Proposition 2.1, every X 2Tg induces a map ‰X W Sg! Sg in the following way: given
 2 Sg, let ‰X . / 2 Sg be the free homotopy class of the simple closed curves  0 given by

.Y;  0=` 0.Y // WD yF .X; =` .X //:

As Tg is connected and as Sg is discrete, the map ‰X W Sg! Sg is independent of X 2 Tg. From now
on we denote this map simply by ‰ W Sg! Sg.

We claim that ‰ induces an automorphism of the curve complex of Sg, meaning that it is bijective and
that any pair of simple closed curves can be realized disjointly if and only if their images under ‰ can be
realized disjointly.

Lemma 3.2 The map ‰ W Sg! Sg defined above induces an automorphism of the curve complex of Sg.

Proof An inverse of ‰ WSg!Sg can be constructed using the inverse of yF. It follows that ‰ is bijective.

Notice that a pair ˛; ˇ 2 Sg of simple closed curves can be realized disjointly if and only if there exists a
path

Œ0; 1�! P1Tg; t 7! .Xt ; t /;

such that t is a simple closed multicurve on Sg for every t 2 Œ0; 1�, 0 D ˛=`X0
.˛/, 1 D ˇ=`X1

.ˇ/ and
t has exactly two components for every t 2 .0; 1/. It follows from Proposition 2.1 that yF preserves
these types of paths. In particular, for every pair of simple closed curves ˛; ˇ 2 Sg, their images
‰.˛/;‰.ˇ/ 2 Sg are nonintersecting if and only if ˛ and ˇ are nonintersecting.

A well-known result of Ivanov [1997] shows that every automorphism of the curve complex of a closed,
connected, oriented surface Sg of genus g � 2 is induced by the isotopy class of a diffeomorphism of Sg.
Thus there exists a diffeomorphism  W Sg! Sg such that the map ‰ W Sg! Sg defined above is given
by ‰. / D  . / for every  2 Sg. The diffeomorphism  acts on P1Tg by changing the markings
even if it does not preserve the orientation of Sg. It also acts naturally on the mapping class group Modg

by conjugation.

Since yF W P1Tg! P1Tg is the lift of an orbifold map, there exists an automorphism � WModg!Modg

such that
yF .�:.X; �//D �.�/: yF .X; �/

for every � 2Modg and every .X; �/ 2 P1Tg. Consider the lift yF 0 W P1Tg! P1Tg of F defined by

yF 0.X; �/ WD  �1: yF .X; �/:
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This lift intertwines the automorphism �0 WModg!Modg given by

�0.�/ WD  �1
ı �.�/ ı 

for every � 2Mod. Thus, by replacing yF with yF 0, we can assume without loss of generality that the map
‰ W Sg! Sg defined above is the identity.

As yF intertwines the automorphism � WModg!Modg, the map ‰ W Sg! Sg defined above, which we
are assuming is the identity, also intertwines this automorphism. It follows that �.�/: D �: for every
� 2Modg and every  2 Sg. As the kernels of the Modg–actions on Sg and Tg are equal, �.�/:X DX

for every � 2Modg and every X 2Tg. It follows that, without loss of generality, we can assume that the
automorphism � WModg!Modg is the identity.

The discussion above shows that the lift yF satisfies the following property: for every X 2 Tg and every
simple closed curve  2 Sg, if .Y; �/ WD yF .X; =` .X // 2 P1Tg, then � belongs to the projective
class of  2MLg. As simple closed curves are dense in PMLg, the same property holds for arbitrary
measured geodesic laminations. This concludes the proof of Proposition 3.1.

4 Inspecting the periods of closed orbits

In this section we show that the normalizer of the earthquake flow is equal to its extended centralizer.

Proposition 4.1 N.E/D C˙.E/:

In other words, given an s–normalizer F as above, we show that s D 0. We begin by strengthening
Proposition 3.1 to control the scaling between � and �.

Lemma 4.2 Let yF be the lift produced by Proposition 3.1 of an s–normalizer F. Then , for every
.X; �/ 2 P1Tg, if .Y; �/ WD yF .X; �/, then �D es ��.

Proof Since for every .X; �/ 2 P1Tg the measured geodesic lamination � WD �.X; �/ given by
.Y; �/ WD yF .X; �/ belongs to the projective class of � 2MLg, we can consider the continuous function
c W P1Tg!RC which to every .X; �/ 2 P1Tg assigns the unique scaling factor c.X; �/ > 0 such that

(4-1) �.X; �/D c.X; �/ ��:

Our goal is to show that c W P1Tg!RC is identically equal to es .

Denote by T 2Modg the Dehn twist of Sg along a simple closed curve  . One can check that, for every
.X; a �  / 2P1Tg with a> 0 and  a simple closed curve on Sg, the period of the earthquake flow orbit
of

.X; a �  / 2 P1Tg=hT i

is exactly ` .X /=a.
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Now consider �D =` .X / with  a simple closed curve on Sg. Note that .X; �/ has period ` .X /2 in
P1Tg=hT i and yF .X; �/D .Y; c.X; �/�/ has period

` .Y /` .X /

c.X; �/
D
` .X /

2

c.X; �/2
;

where the last equality uses the fact that c.X; �/� must have length 1 on Y. As yF is Modg–equivariant
and as s–normalizers multiply periods by e�2s , it follows that

` .X /
2

c.X; �/2
D e�2s` .X /

2:

Hence, c.X; =` .X //D es . As c WP1Tg!RC is continuous and as points of the form .X; =` .X //2

P1Tg with  a simple closed curve on Sg are dense in P1Tg, this finishes the proof.

We now prove a loop-shrinking property for lifts yF of s–normalizers of the earthquake flow. This property
will play a crucial role in the proof of Theorem 1.4.

Lemma 4.3 Let yF be the lift produced by Proposition 3.1 of an s–normalizer F of the earthquake flow.
Then , for every X 2 Tg and every simple closed curve ˛ 2 Sg, if .Y; �/ WD yF .X; ˛=`˛.X //, then

`ˇ.Y /� e�s`ˇ.X /

for every simple closed curve ˇ 2 Sg that can be realized disjointly from ˛, with equality if ˇ D ˛.

Proof By Lemma 4.2, �D es �˛=`˛.X /. It follows that

1D `�.Y /D es
� `˛.X /

�1
� `˛.Y /:

Reorganizing the terms in this equality, we deduce

`˛.Y /D e�s
� `˛.X /:

Let ˇ2Sg be a simple closed curve that can be realized disjointly from ˛ and is not equal to ˛. We average
˛ and ˇ with appropriate weights to obtain simple closed multicurves on Sg converging to ˛=`˛.X /,
with unit length with respect to X, and whose corresponding earthquake flow orbits are periodic with
explicit periods. Indeed, for every k 2N, consider the positive weights

ak D ak.X; ˛; ˇ/ WD .`˛.X /C k�1
� `˛.X /

�1
� `ˇ.X /

2/�1;

bk D bk.X; ˛; ˇ/ WD .`ˇ.X /C k � `˛.X /
2
� `ˇ.X /

�1/�1:

These choices guarantee that, for every k 2N,

(4-2) `ˇ.X /=bk D k � `˛.X /=ak :

For every k 2N, consider the simple closed multicurve on Sg given by

k D k.X; ˛; ˇ/ WD ak.X; ˛; ˇ/ �˛C bk.X; ˛; ˇ/ �ˇ:
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Direct computations show that `k
.X /D 1 for every k 2N. Directly from the definitions, one can also

check that
lim

k!1
k D ˛=`˛.X /:

For every k 2N, consider .Yk ; �k/ WD yF .X; k/. By Lemma 4.2, �k D es �k for every k 2N. As yF is
continuous,

(4-3) Y D lim
k!1

Yk :

Fix k 2 N. Denote by T˛;Tˇ 2 Modg the Dehn twists of Sg along ˛ and ˇ. A direct computation
using (4-2) shows that the earthquake flow orbit of the image of .X; k/ in P1Tg=hT˛;Tˇi is periodic
with period given by the least common multiple

(4-4) lcm.`˛.X /=ak ; `ˇ.X /=bk/D `ˇ.X /=bk :

Analogously, the earthquake flow orbit of the image of .Yk ; �k/ in P1Tg=hT˛;Tˇi is periodic if and
only if the following least common multiple is finite, in which case it is exactly the period of the orbit:

(4-5) lcm.`˛.Yk/=.e
s
� ak/; `ˇ.Yk/=.e

s
� bk//:

Since s–normalizers multiply periods by e�2s , for the periods in (4-4) and (4-5) to agree, it is necessary
that

`ˇ.Yk/� e�s
� `ˇ.X /:

Taking limits as k!1 and using (4-3), we conclude

`ˇ.Y /� e�s
� `ˇ.X /:

We can now conclude the proof of Proposition 4.1 as follows:

Proof of Proposition 4.1 Suppose by contradiction that s¤ 0. By working with the inverse of F if s< 0,
we can assume without loss of generality that s > 0. Denote by yF the Modg–equivariant lift provided by
Proposition 3.1. Let ˛; ˇ;  2 Sg be simple closed curves such that ˛ can be realized disjointly from ˇ

and  , and such that ˇ and  have positive geometric intersection number. Fix X 2 Tg and let

.Xn; �n/ WD yF
n.X; ˛=`˛.X //

for every n 2N. By Lemma 4.3, there exists N 2N such that `ˇ.XN / and ` .XN / are arbitrarily small,
contradicting the collar lemma for hyperbolic surfaces.

5 The centralizer of the earthquake flow

In this section we show that the extended centralizer of the earthquake flow is trivial.

Proposition 5.1 C˙.E/DE:

We proceed in several steps, starting with the following geometric result:

Geometry & Topology, Volume 28 (2024)



2136 Francisco Arana-Herrera and Alex Wright

Lemma 5.2 Let X and Y be a pair of compact , connected and orientable diffeomorphic hyperbolic
surfaces with at least one totally geodesic boundary component. Suppose that , for some pair of markings
on X and Y, the lengths of the boundary components of X agree with those of Y, and , for every
simple closed curve , the length of its geodesic representative on Y is at most the length of its geodesic
representative on X. Then X and Y are isometric.

An analogous statement for closed surfaces is well known [Thurston 1998, Theorem 3.1]. We do not
know if the exact statement of Lemma 5.2 has appeared before in the literature, but, in any case, a short
proof is possible from known results.

Proof The monotonicity of the summands in Mirzakhani’s generalized McShane’s identity [2007b,
Theorem 1.3] guarantees that, if X and Y satisfy the assumptions, then, for every simple closed curve,
the lengths of its geodesic representatives on X and Y are equal. As the isometry class of a marked
hyperbolic structure with totally geodesic boundary components on a compact, connected, orientable
surface is determined by its marked length spectrum,1 we conclude that X and Y are isometric.

The following result shows that centralizers of the earthquake flow map points of the form .X; ˛=`˛.X //2

P1Mg into their own earthquake flow orbit.

Lemma 5.3 Suppose F 2 C˙.E/ and let yF be the lift provided by Proposition 3.1. Then , for every
X 2 Tg and every simple closed curve ˛ 2 Sg, there exists a unique t 2R satisfying

yF .X; ˛=`˛.X //DEt .X; ˛=`˛.X //:

For the proof, it is helpful to recall that an element of the extended centralizer is nothing other than an
s–normalizer with s D 0.

Proof Let .Y; �/ WD yF .X; ˛=`˛.X // 2 P1Tg. Lemmas 4.2 and 4.3 ensure that �D ˛=`˛.X / 2MLg,
`˛.Y /D `˛.X /, and `ˇ.Y /� `ˇ.X / for every simple closed curve ˇ 2Sg that can be realized disjointly
from ˛.

Cutting X and Y along the corresponding geodesic representatives of ˛ on each surface yields a pair
of (possibly disconnected) hyperbolic surfaces with totally geodesic boundary components of matching
lengths. Lemma 5.2 guarantees these surfaces are isometric. As X and Y can be recovered from isometric
pieces by gluing along the boundary components corresponding to ˛, we deduce that X and Y only differ
by a Fenchel–Nielsen twist along ˛. In other words,

yF .X; ˛=`˛.X //D .Y; �/DEt .X; ˛=`˛.X //:

The following result extends the conclusion of Lemma 5.3 to arbitrary points .X; �/ 2 P1Tg:

1A proof can be obtained by adapting the arguments in [Farb and Margalit 2012, Proof of Theorem 10.7].
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Lemma 5.4 Suppose F 2 C˙.E/ and let yF be the lift provided by Proposition 3.1. Then there exists
a continuous , Modg–invariant function t W P1Tg!R such that , for every .X; �/ 2 P1Tg, t D t.X; �/

satisfies
yF .X; �/DEt .X; �/

and is the unique real number satisfying this equation.

Furthermore , if F 2 C.E/, then t is earthquake flow–invariant , and , if F 2 C˙.E/ nC.E/, then T is
“twisted-equivariant” , in the sense that

t.Es.X; �//D t.X; �/� 2s:

Proof Fix .X; �/2P1Tg. As weighted simple closed curves are dense in MLg, one can find a sequence
.�n/n2N of length 1 weighted simple closed curves such that �n! � in MLg as n!1. By Lemma 5.3,
for every n 2N, there exists tn 2R such that

(5-1) yF .X; �n/DEtn
.X; �n/:

Claim 5.5 The sequence .tn/n2N is bounded.

Proof Suppose by contradiction this was not the case. Assume tn diverges to C1 along a subsequence;
the case when tn diverges to �1 along a subsequence can be treated in an analogous way. Rename
this subsequence as .tn/n2N and assume without loss of generality that all of its terms are positive. Let
� 2MLg be a measured geodesic lamination such that

(5-2)
“

X

cos � d� d� > 0;

where � is the angle measured counterclockwise from � to � at each intersection between � and �.
The existence of such a measured geodesic lamination � 2 MLg can be argued as follows. By the
infinitesimal version of Thurston’s earthquake theorem (see for instance [Kerckhoff 1983, Appendix,
Theorem 2]), every tangent vector at X 2Tg can be realized by an infinitesimal earthquake. In particular,
by Kerckhoff’s derivative formula [loc. cit., Corollary 3.4], the only way � could not exist is if the
function Y 7! `�.Y / > 0 for Y 2 Tg had a critical point, and, by convexity of length functions [loc. cit.,
Section 3, Theorem 1], a minimum at X. This is not possible, as can be seen, for instance, using shear
coordinates and reverse stretch lines.

By [loc. cit., Corollary 3.4], the integral in (5-2) is equal to the derivative at t D 0 of the convex function
t 7! `�.Et .X; �//. By continuity, there exists c > 0 and N 2N such that, for every n�N,“

X

cos � d�n d� > c:

Kerckhoff’s work guarantees that, for every n�N,

(5-3) `�.Etn
.X; �n//� `�.X /C tn � c:
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Denote by � W P1Tg! Tg the natural projection defined by �.X; �/DX. By definition,

Etn
.X; �n/D yF .X; �n/ 2 yF .�

�1.X //:

As yF is continuous, the set yF .��1.X //� P1Tg is compact. Thus, the sequence
�
`�.Etn

.X; �n//
�
n2N

must be bounded. Taking limits as n!1 in (5-3) yields a contradiction, concluding the proof of the
claim.

As .tn/n2N is bounded, it admits a subsequence converging to some t 2R. Taking limits in (5-1) along
this subsequence, we deduce

(5-4) yF .X; �/DEt .X; �/:

The uniqueness of t 2 R satisfying this condition follows directly from the fact that earthquake flow
orbits in P1Tg are embedded. The continuity of the corresponding function t W P1Tg ! R follows
from (5-4) and uniqueness. The Modg–invariance of t can be verified using (5-4) and the fact that yF is
Modg–equivariant. The earthquake flow–invariance or twisted-equivariance of t can be verified directly
from (5-4) and the fact that yF is in the extended centralizer of the earthquake flow.

We are now ready to conclude.

Proof of Proposition 5.1 Consider the function t W P1Tg!R above. Since it is Modg–equivariant, it
induces a function t W P1Mg!R.

If F 2 C.E/, the function t is earthquake flow–invariant. As the earthquake flow on P1Mg is ergodic
with respect to a measure of full support, t is equal to a constant t0 2R on a dense set of P1Mg. Applying
continuity and density, we conclude F DEt0

, as desired.

Suppose F 2 C˙.E/ n C.E/. There exists c such that the set t�1..c; c C 2// has positive measure.
The twisted-equivariance gives that, for all k, Ek maps t�1..c; cC 2// into t�1..c � 2k; cC 2� 2k//.
For different k integral, the sets t�1..c � 2k; c C 2� 2k// are disjoint, and, since earthquake flow is
measure-preserving, they all have the same measure. So considering all k integral contradicts the fact
that the space has finite measure, showing that such an F cannot exist.

We are now ready to prove that the earthquake flow is strongly asymmetric.

Proof of Theorem 1.4 Proposition 4.1 shows that N.E/ D C˙.E/ and Proposition 5.1 shows that
C˙.E/DE.

Appendix Minimal sets

In this appendix we sketch, for the convenience of the reader, a proof of Theorem 2.2. The corresponding
result in the case of the Teichmüller horocycle flow is discussed in detail by Smillie and Weiss [2004],
who remark there that “an analogous result for the earthquake flow may be proved by a similar argument”.
Our starting point is the following observation, the details of whose proof are left to the reader:
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Lemma A.1 If K � P1Mg is a minimal set for the earthquake flow, and .X; �/ and .X 0; �0/ are in K,
then X �� is isometric to X 0��0.

Sketch of proof For any fixed .X; �/ 2K, consider the set K0 �K of all .X 0; �0/ 2K for which there
exists an isometric embedding

X �� ,!X 0��0

of complementary regions. Since the complementary regions are not changed by the earthquake flow, K0 is
invariant. A limit argument shows that K0 is closed, so the definition of minimality guarantees K0 DK.

Thus, for every .X; �/; .X 0; �0/ 2 K, each complementary region embeds isometrically into the other.
Hence X ��DX 0��0.

We also need the following nontrivial result:

Proposition A.2 If � is not a multicurve and the orbit of .X; �/ is bounded in P1Mg, then the orbit
accumulates on some .X 0; �0/ with X ��¤X 0��0.

In fact, experts believe the following stronger statement is true (and accessible):

Problem A.3 Prove that, if � is not a multicurve, then the earthquake flow orbit of .X; �/ is not bounded.

We will not consider this problem here since it is certainly harder than what we require. The analogous
problem for the Teichmüller horocycle flow is item (IV) in the list of problems at the end of [Smillie and
Weiss 2004] and has been considered in unpublished work of those authors.

Before addressing Proposition A.2, we note it implies Theorem 2.2.

Proof of Theorem 2.2 assuming Proposition A.2 If K is a compact minimal set and .X; �/ 2 K,
then Lemma A.1 implies that any .X 0; �0/ in the orbit closure of .X; �/ has X � � D X 0 � �0, and so
Proposition A.2 implies � is a multicurve.

The converse implication — that if � is a multicurve then the orbit closure of .X; �/ is a minimal set — is
well known. Indeed, if T �P1Mg is the subset obtained by starting at .X; �/ and independently twisting
at each component of �, then T is an invariant torus and the earthquake flow is continuously conjugate to
a straight-line flow on T. The converse implication follows from the fact that, for straight-line flows on
tori, every orbit closure is a minimal set.

We conclude by briefly sketching how the ideas of Smillie and Weiss apply to Proposition A.2. Most of
the work is divided into two lemmas.

Lemma A.4 Suppose � is a measured geodesic lamination on X that is not a multicurve. Then there
exists some ı > 0 such that , for all � > 0, we can find segments 1 and 2 of leaves of � that stay within
distance 1 of each other and are such that all leaves of � that come within ı of the starting point p1 of 1

do so on the side of 1 containing 2, and all leaves that come within ı of the endpoint p2 of 2 do so
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2

1

p2

p1

Figure 1: The i . The shaded half balls of radius ı do not intersect �.

on the side of 2 containing 1, and such that the transverse measure of a segment from 1 to 2 is less
than �. Moreover , 1 and 2 can be taken to lie on nonisolated leaves of �.

In particular, it follows that both i are segments of leaves of � adjacent to regions of X ��. See Figure 1.

The proof will use the concept of the thick part of a surface with boundary, which can be defined by
embedding the surface in its double and taking the thick part there; see for example [Lipnowski and
Wright 2024, Section 2.1] for details.

Sketch of proof Without loss of generality assume  has no closed leaves. Start with p1 on the boundary
of the thick part of X ��, on a leaf ˛ of �. Pick a point q that is very close to p1 and on a leaf ˇ of �.
Follow both leaves ˛ and ˇ in the same direction until they are distance 1

10
apart. The region R between

these segments of ˛ and ˇ, illustrated in Figure 2, has definite area.

The area of the thin part of X �� is small, so the thick part must intersect R. (Here the thick part should
be defined appropriately using ı, and ı should be taken small enough.)

We then pick p2 to be on the boundary of the thick part of X �� intersected with R. (One should pick p2

so that the thick part and ˛ are on different sides of the leaf through p2.) We define 1 to be the segment
of ˛ from p1 to the projection of p2 onto ˛, and similarly define 2 using the leaf through p2.

Lemma A.5 There exists a universal constant C > 0 such that the following holds. Consider any
measured geodesic lamination on H, any segments 1 and 2 of nonatomic leaves of � that stay within
distance 1 of each other , and any p1 2 1 and p2 2 2. Assume there are leaves of � that go between p1

and p2. Let �max be a maximal geodesic lamination containing �. Assume the pi lie on the boundary
of H��max. Then there is a unique t 2R such that the image of p1 and p2 under the time t earthquake

q
ˇ

R

p1 ˛

Figure 2: The region R.
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of � can be joined by a segment s of a leaf of the horocyclic foliation of �max and this segment has length
at most C.

In applications, often � is already maximal, so �max D �. The main conclusion here is that p1 and p2

become bounded distance from each other; the use of the horocyclic foliation (and �max) is merely a
convenient technical tool to obtain this.

One should of course think of H as the universal cover of a closed surface X ; we use the universal cover
only so that we do not have to specify a homotopy class for the arc s.

Sketch of proof The first claim is related to the fact that shears change linearly under earthquakes; see
for example the survey [Wright 2022, Section 4].

If one considers a rectangle R bounded by 1 and 2, then � divides this rectangle up into countably
many small rectangles bounded by leaves of �. The preimage of s on .X; �/ consists of one horocyclic
arc in each small rectangle; compare to a Cantor staircase.

For each small rectangle, one can define its maximum height to be the maximum length of a horocyclic
arc crossing that rectangle. A standard estimate shows that the sum of the maximum heights is at most
some constant C ; see [Thurston 1998, page 16]. This uses the fact that the i remain within distance 1 of
each other.

The length of s is the sum of the lengths of the horocyclic arcs of E�t .s/, which is at most C. This gives
the result.

Sketch of proof of Proposition A.2 Consider a sequence �n! 0 and, for each n 2 N, let 1;n, 2;n,
p1;n and p2;n be as provided by Lemma A.4 with � D �n.

The output of Lemma A.5 is a sequence of points .Xn; �n/2P1Mg on the earthquake flow orbit of .X; �/
such that two points on the boundary of the thick part of Xn��n DX �� are joined by a path on Xn

of hyperbolic length at most C and transverse measure going to 0 as n!1. By extending these paths
into the thick part and taking geodesic representatives, we obtain geodesic paths �n on Xn, of lengths
bounded above and below, which are uniformly transverse to �n and which have the same transverse
measure as the original paths of length at most C.

Passing to a subsequence if necessary, we can assume .Xn; �n/ converges to some .X1; �1/ 2 P1Mg.
For convenience, we can also assume that the supports of the �n converge to a geodesic lamination y�1
which contains the support of �1.

Since the complementary regions Xn � �n are constant, it follows that X � � D X1 � y�1. Thus, to
show that X ��¤X1��1, it suffices to show that some leaves of the geodesic lamination y�1 are not
contained in the support of �1.

This is verified by considering a limit � of the geodesic segments �n; the limit � has length bounded
above and below, is transverse to y�1, and has 0 transverse measure with respect to �1.
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The persistence of a relative Rabinowitz–Floer complex

GEORGIOS DIMITROGLOU RIZELL

MICHAEL G SULLIVAN

We give a quantitative refinement of the invariance of the Legendrian contact homology algebra in general
contact manifolds. We show that in this general case, the Lagrangian cobordism trace of a Legendrian
isotopy defines a DGA stable tame isomorphism, which is similar to a bifurcation invariance proof for a
contactization contact manifold. We use this result to construct a relative version of the Rabinowitz–Floer
complex defined for Legendrians that also satisfies a quantitative invariance, and study its persistent
homology barcodes. We apply these barcodes to prove several results, including: displacement energy
bounds for Legendrian submanifolds in terms of the oscillatory norms of the contact Hamiltonians; a
proof of Rosen and Zhang’s nondegeneracy conjecture for the Shelukhin–Chekanov–Hofer metric on
Legendrian submanifolds; and the nondisplaceability of the standard Legendrian real-projective space
inside the contact real-projective space.

53D10, 53D42

1 Introduction

Let .Y 2nC1; �/ be a .2nC1/–dimensional contact manifold with contact form ˛, and ƒ� Y be a (closed)
n–dimensional Legendrian submanifold. Specific assumptions we make for ƒ and .Y; �/ vary based on
our result. This list is summarized in Remark 1.3. A Reeb chord (or ˛–Reeb chord) of ƒ is a nontrivial
flow starting and ending on ƒ, of the Reeb vector field R˛ 2 �.T Y /, which is defined by ˛.R˛/D 1 and
d˛.R˛; � /D0. We are interested in estimating the number of Reeb chords from a given Legendrian (closed
submanifold)ƒ to its image under a contact isotopy with compact support. If there are no such Reeb chords,
we say that the contact isotopy displaces ƒ for that given ˛. This is the contact analogue of a Hamiltonian
isotopy displacing a Lagrangian submanifold; see Chekanov [7]. Our Main Theorem, Theorem 1.4, has
more information about Reeb chords than the known analogous results for Lagrangian intersection points,
because we not only give a single lower bound on how long some fixed number of chords persist, but
rather, a sequence of lower bounds depending on the number of chords required to persist.

Our main tool is a filtered Legendrian contact homology differential graded algebra (also called the
Chekanov–Eliashberg DGA). Let A.ƒ/ be the free noncommutative unital algebra over the field (or ring) k
freely generated by ˛–Reeb chords of ƒ. If the moduli spaces of these disks can be oriented in a coherent
way, for example by the choice of a spin structure on the Legendrian as in Ekholm, Etnyre and Sullivan [24]
and Karlsson [29], then k is Z or Zp. Otherwise kD Z2.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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2146 Georgios Dimitroglou Rizell and Michael G Sullivan

The grading is induced by the Conley–Zehnder index of Reeb chords; see Section A.2.

The differential @ has degree �1 and counts J –holomorphic disks in the symplectization .R� �Y; d.e�˛//
with Lagrangian boundary condition R� �ƒ.

Each Reeb chord c has a length (or action) `.c/ WD
R
c ˛ > 0. For 0 < l �1, let Al.ƒ/ be the unital

subalgebra generated by those generators c length bounded from above by
R
c ˛ < l . The action-decreasing

property of the differential, which is a direct consequence of the positivity of d˛–area and Stokes’ theorem,
implies that Al.ƒ/�A.ƒ/ is a unital sub-DGA.

An augmentation for the DGA Al is a (graded) DGA–morphism " W .Al ; @/! .k; @k WD 0/ to the ground
field. Because `.1/D 0, for any Chekanov–Eliashberg DGA A, there exists l > 0 such that Al has an
augmentation.

The oscillation of a contact (˛–)Hamiltonian Ht W Y �R� !R is

kHtkosc WD

Z 1

0

�
max
y2Y

Ht �min
y2Y

Ht
�
dt:

This oscillation defines the Hofer norm of the corresponding contact Hamiltonian isotopy �t˛;Ht .

In order to circumvent the analytical difficulties of establishing invariance of the Legendrian contact
homology algebra for general contact forms, we will make certain technical assumptions on the contractible
periodic Reeb orbits of .Y; ˛/, at least below some fixed length. To this purpose, we introduce the following
definition.

Definition 1.1 Consider a contractible and nondegenerate periodic Reeb orbit  of .Y; ˛/. We let
j j 2Z[f�1g denote the minimum of the expected dimensions of the moduli spaces of unparametrized
pseudoholomorphic planes inside the symplectization R�Y that are asymptotic to the Reeb orbit  at
the convex end, where the symplectization has been equipped with a cylindrical almost complex structure.
In the case when the first Chern class vanishes, this expected dimension does not depend on the chosen
plane, and j j 2 Z.

Note that, in the aforementioned moduli space, we do not identify planes that differ by a translation of
the symplectization coordinate. See Section A.1 for more details.

Example 1.2 The expected dimension j j of a contractible Reeb orbit is at least two for suitable
nondegenerate perturbations of the round contact sphere�

S2nC1; ˛st D
1

2

X
i

.xi dyi �yi dxi /

�
for n� 1;

as well as for the high-dimensional “lens spaces” given as the quotients S2nC1=Zk for a subgroup
Zk � S

1. We will here consider the case RP 2nC1 D S2nC1=Z2; see Proposition 6.4 for the relevant
index computation in the case of RP 2nC1. The computations for the sphere and lens spaces are analogous.

Geometry & Topology, Volume 28 (2024)
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The assumption j j>1 for all contractible Reeb orbits allows us to define the Legendrian contact homology
algebra without involving the contact homology algebra for the periodic Reeb orbits; see Dimitroglou
Rizell [13, Section 3.3.3]. (Note that the contact homology algebra of periodic Reeb orbits has a canonical
augmentation in this case.) The assumption j j > 1 also eliminates the need for considerations of the
periodic Reeb orbits in the proof of the invariance result from Ekholm [19] for the Legendrian contact
homology algebra under a Legendrian isotopy (while fixing the ambient contact form).

Remark 1.3 Before we state our results in detail, we give a quick summary, noting how general the
setup is in light of the above technical discussion on the Legendrian contact homology algebra.

� Theorem 1.4 proves lower bounds for the number of Reeb chords between a Legendrian and
its image under a contact Hamiltonian in terms of the oscillation norm. This is for an arbitrary
Legendrian in an arbitrary contact manifold, but the bounds incorporate the technical condition on
j j mentioned above.

� Theorem 1.6 proves that the Shelukhin–Chekanov–Hofer metric of a Legendrian orbit space is
nondegenerate. This is for an arbitrary Legendrian in an arbitrary contact manifold.

� Corollary 1.8 proves that the C 0–limit of a sequence of Legendrians is again Legendrian. Here we
assume the contact manifold is geometrically bounded and there exists some lower bound on the
length of Reeb chords in the sequence. But there is no assumption on the closed Reeb orbits.

� Theorem 1.9 generalizes the “interlinkedness” of an ordered pair of Legendrians; see Entov and
Polterovich [26, Theorem 1.5]. We make several assumptions here: the two Legendrians are
individually augmentable; j j> 1 holds for all closed Reeb orbits; and the resulting well-defined
Rabinowitz–Floer complex is not acyclic.

� Theorem 1.10 proves the nondisplaceability of the Legendrian equator in standard contact RP 2nC1

equipped with a small perturbation of the standard round S1–invariant contact form. We will show
that the j j> 1 assumption is satisfied because the perturbation is small.

� Proposition 1.11 proves roughly that the Legendrian contact homology algebra, below any fixed
action level, of an arbitrary Legendrian undergoing a small generic isotopy in an arbitrary contact
manifold is invariant under stable-tame isomorphism. Here we assume j j > 1 holds for those
closed orbits below this action level bound.

� Usually we assume the contact manifold is closed. However, Theorems 1.4, 1.6 and 1.9 automat-
ically carry over also to open contact manifolds, given that they arise as open subsets of closed
contact manifolds, and that the contact form on the open contact manifold is taken to be the
restriction of a contact form on the ambient closed manifold. In addition, Proposition 1.11 requires
us to be in a setting where the DGA can be defined: aside from closed contact manifolds, cases
that can be treated are contactizations and prequantizations of symplectic manifolds with a convex
boundary or noncompact end.

Geometry & Topology, Volume 28 (2024)



2148 Georgios Dimitroglou Rizell and Michael G Sullivan

Theorem 1.4 (Main Theorem) Fix a generic closed Legendrian ƒ� .Y; ˛/ of a contact manifold with
a fixed contact form. Generically, we can order the Reeb chords by action

0 < `.c1/ < `.c2/ < � � � :

Also , write „2 .0;C1� for the minimal length of a contractible periodic Reeb orbit  that satisfies j j � 1.
Suppose that Al.ƒ/ with 0 < l � 1 admits an augmentation to the field k, where l � „. Fix k and
consider any compactly supported contact Hamiltonian Ht W Y !R such that kHtkosc <minfl; `.ck/g.
Then there exist at least

nX
iD0

dim.Hi .ƒIk//� 2.k� 1/

many Reeb chords with one endpoint on ƒ and the other endpoint on �1˛;Ht .ƒ/.

Remark 1.5 The assumption on the expected dimension of the pseudoholomorphic planes inside the
symplectization should not be strictly necessary, but possible to replace by a condition on the existence
of an augmentation of the contact homology algebra of periodic Reeb orbits below the action level
l > 0. However, the setup and analysis become significantly simplified under our stronger assumption.
More precisely, without these assumptions, one would have to define the Chekanov–Eliashberg algebra
with coefficients in the periodic orbit contact homology algebra in order to define the differential; or, in
the case when .Y; ˛/ admits an exact symplectic filling, use anchored disks as in Ekholm [21]. More
importantly, our additional hypothesis allows us to avoid the technical gluing and transversality results for
pseudoholomorphic planes asymptotic to periodic orbits that require the use of virtual perturbations as
done by Pardon [36], Bao and Honda [1], and the polyfold theory of Hofer, Wysocki and Zehnder applied
in the SFT setting by Fish and Hofer [27]. With the additional hypothesis l � „, we only need SFT
compactness for closed Reeb orbits (see Bourgeois, Eliashberg, Hofer, Wysocki and Zehnder [3]), and the
gluing/transversality results for pseudoholomorphic discs with a single positive Reeb chord asymptotic.

Finally note that, even when replacing the assumption on the expected dimension of the pseudoholomorphic
half-planes by the existence of an augmentation, the contact form remains fixed throughout our Legendrian
isotopies. Hence, the difficult analytical issues that arise when proving the invariance under deformations
of the contact form would not be present even in the more general case.

In [17], we studied this problem when Y DP �Rz and ˛D dz�� , where .P; d�/ is an exact symplectic
manifold with a certain bounded geometry at infinity. In both cases we used a persistence homology
theory (via barcodes) defined by Reeb chords. The main difference between our setup in that article and
the typical setup, is that we considered complexes with a finite action filtration.

The new aspects of this article are: we translate known Floer-continuation results to new (but needed) Floer-
bifurcations results; we prove an invariance for a newly defined limited-action-window Rabinowitz–Floer
homology theory, which allows for chords of zero length to appear.

We now describe several new applications of the Main Theorem, Theorem 1.4.

Geometry & Topology, Volume 28 (2024)
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Fix a subsetN �Y and let L.N / be its orbit space under the identity component of the contactomorphism
group, C0.Y; �/. Given a contact isotopy �t and contact form ˛, let H˛;�

t be the contact Hamiltonian
for �t . Following Rosen and Zhang’s [39, Definition 1.7], define on L.N / the pseudometric

ı˛.N;N
0/D inf

�Z 1

0

max jHt j dt
ˇ̌̌
�1˛;Ht .N /DN

0

�
:

Shelukhin [41] shows that this defines a right-invariant nondegenerate norm on C0.Y; �/. If N is
n–dimensional and somewhere not Legendrian (or more generally, if N is not contact coisotropic) then
this pseudometric identically vanishes; see [39, Proposition 7.4]. We answer [39, Conjecture 1.10].

Theorem 1.6 The Shelukhin–Chekanov–Hofer distance ı˛ on a contact manifold that is assumed to be
either closed , or which admits a codimension-zero contact embedding into a closed contact manifold ,
and where ˛ moreover is the restriction of a contact form on the closed manifold , is nondegenerate when
restricted to closed Legendrian submanifolds.

Remark 1.7 (1) The condition on admitting an embedding into a closed contact manifold holds, for
example, for contactizations and prequantizations of Liouville domains.

(2) The nondegeneracy should hold for more general open contact manifolds which are of bounded
geometry. For the proof, the following features are crucial: the constant „ � 0 must be strictly
positive for some contact form, and we must be in a setting in which the SFT compactness theorem
for pseudoholomorphic curves is satisfied (we need, for example, convexity assumptions at infinity).

(3) We are grateful to Nakamura, who pointed out that it is most likely the case that the nondegeneracy
vs degeneracy of the distance depends on the particular choice of contact form in the case when
the contact manifold is open.

Two special cases of this were already proved: when the Legendrian is hypertight (no contractible Reeb
orbits or chords), by Usher [43], and when the Legendrian is orderable (no positive loops of Legendrians),
by Hedicke [28].

Consider a sequence of closed Legendrians ƒi which C 0–converges to a smooth (not necessarily Legen-
drian) embedding ƒ1. Assume that there exists a ı such that each ƒi has no Reeb chord  of ˛–length
`./ < ı. Nakamura [33, Theorem 3.4] proves that ƒ1 is again Legendrian assuming two conditions:

(1) The Reeb vector field R˛ is nowhere tangent to ƒ1, and certain geometric boundedness conditions
hold for M .

(2) .Y; ˛/D .P �Rz; dz� �/.

The only need for the second hypothesis in Nakamura’s proof is to use [17] to show the Reeb chords persist
under a contact isotopy of small oscillatory norm. Since our Theorem 1.4 generalizes the persistence of
Reeb chords proven in [17] to more general contact manifolds, we get an easy corollary.

Geometry & Topology, Volume 28 (2024)



2150 Georgios Dimitroglou Rizell and Michael G Sullivan

Corollary 1.8 Nakamura’s convergence result holds only assuming the initial hypotheses: the Reeb
chord lengths cannot approach zero , ƒi is closed , and the ambient contact manifold .M; ˛/ is either
closed , or admits a codimension-zero contact embedding into a closed contact manifold.

Entov and Polterovich define an ordered pair of Legendrians .ƒ0; ƒ1/ in .Y; ˛/ to be interlinked if for
some �; c > 0 and every contact Hamiltonian H satisfying H � c, there is a Hamiltonian orbit  from ƒ0

to ƒ1 such that `./� �=c. Using a persistence homology theory for Reeb chords, they proved if ƒ0 is
the 0–section in .Y D J 1Q;˛ D dz�p dq/, ƒ1 � J 1Q has an augmentation, and there exists a unique
nondegenerate Reeb chord from ƒ0 to ƒ1, then .ƒ0; ƒ1/ are interlinked; see Entov and Polterovich
[26, Theorem 1.5]. We can generalize this.

Theorem 1.9 Suppose ƒ0; ƒ1 � .Y; ˛/ are a generic pair of Legendrians with generic contact form ˛

for which j j � 2 is satisfied for all contractible periodic Reeb orbits  (cf Remark 1.5). Assume that ƒ0
and ƒ1 have augmentations.

Assume that the Rabinowitz–Floer complex RFCŒ0;C1/.ƒ0; ƒ1/D LCH.ƒ0; ƒ1/, which is well defined
(see Section 4.2), is not acyclic. (This is automatically the case for instance when the chords of positive
action cannot be partitioned into pairs .c; d/ with a.d/ > a.c/ and index difference jd j � jcj D 1.) Then
.ƒ0; ƒ1/ are interlinked.

Some hypothesis on the mixed chords is needed. Suppose ƒ0; ƒ1 are both in two Darboux charts in
.J 1Q;dz � p dq/, separated by a large z–distance. Isotope ƒ0 in the .p; q/ direction such that the
T �Q–projections of ƒ0 and ƒ1 no longer intersect. During the isotopy we see (for example, via the
T �Q– or J 0.Y /–projection) the mixed chords canceling in pairs with strips connecting them of expected
dimension 1. In this case neither .ƒ0; ƒ1/ nor .ƒ1; ƒ0/ are interlinked.

The standard Legendrian .nC1/–sphere inside the standard contact sphere is given by

ƒ0 WD S
2nC1

\ReCnC1;

ie the intersection of the conical Lagrangian in CnC1 which is given by the real-part and the unit sphere.
Quotienting by the Z2–antipodal map z 7! �z 2CnC1, ƒ0=Z2 is the standard Legendrian embedding of
RP n into the standard contact RP 2nC1 D S2nC1=Z2. It is easy to show that ƒ0 can be displaced from
itself in S2nC1. By computing a Rabinowitz–Floer theory (Definition 4.6), we prove this is not true for
this real projective plane.

Theorem 1.10 Consider the standard contact RP 2nC1 equipped with a small nondegenerate perturbation
of the standard round S1–invariant contact form as described in Proposition 6.12. The standard Legendrian
RP n Dƒ0=Z2 has a Chekanov–Eliashberg algebra that admits an augmentation , and a well-defined and
invariant Rabinowitz–Floer homology that is equal to

RFH.RP n;RP n/D
M
i2Z

Z2Œi �:

In particular , the standard Legendrian RP n cannot be displaced from itself for these contact forms.

Geometry & Topology, Volume 28 (2024)
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There are two standard methods to prove the invariance of holomorphic-curve-based theories, such as the
one underlying Theorem 1.4.

Given a generic Legendrian isotopy fƒtgt2Œ�;C� between two generic Legendrian submanifolds ƒ�
and ƒC, there is a filtered unital DGA–morphism

ˆ WA.ƒC/!A.ƒ�/

given by counting certain holomorphic disks in the symplectization R�Y with boundary lying on an exact
Lagrangian constructed from the trace of the isotopy withƒC (resp.ƒ�) at the positive (resp. negative) end.
See Chantraine [4], Chantraine, Colin and Dimitroglou Rizell [5] and Ekholm, Honda and Kálmán [25]
for details on these Lagrangian trace constructions. The filtration is defined by the length. The map ˆ
has a DGA–homotopy inverse, and so induces an isomorphism on homology; see Ekholm [19]. This
invariance approach is known as the continuation method.

The bifurcation method studies how the DGA A.ƒt / varies with t 2 Œ�;C�. Generically, there are
two events that occur at isolated t : a pair of Reeb chords can appear or disappear (birth/deaths); an
isolated holomorphic curve can appear (handleslide disk), and via one-parameter Gromov compactness,
can change the moduli spaces which define the differential. Each birth/death induces on the DGA a
stabilization/destabilization combined with possible filtered tame automorphisms, while each handleslide
disk induces a filtered tame automorphism; see Ekholm, Etnyre and Sullivan [23] and Chekanov [8]. So
the isotopy overall induces a sequence of (filtered) stable-tame isomorphisms.

A stable-tame isomorphism is conjecturally stronger than a homotopically invertible DGA–morphism. For
example, when making the analogous comparison for Morse chain complex invariance, the bifurcation
method preserves the stable–Morse number and certain torsion-based invariances (see Damian [12] and
Sullivan [42]), which the continuation method, a priori, does not. However, due to sensitive gluing
analysis, for studying Chekanov–Eliashberg invariance the bifurcation method has only been proved
if .Y; ˛/ D .P � Rz; dz � �/; see again [23; 8]. This (and the proof of Theorem 1.4) motivates
Proposition 1.11. The statement is somewhat unwieldy because a general contact manifold may have
infinite Reeb chords with actions arbitrarily close, while we can only analyze events involving finite
numbers of birth/deaths and handleslides. However, it can be roughly formulated in the following
(imprecise) way: the Chekanov–Eliashberg algebra in a general contact manifold is invariant under
stable-tame isomorphism below any fixed action level.

Proposition 1.11 (bifurcation analysis for concordance maps) Let fƒtgt2Œ�;C� be a generic Legendrian
isotopy between two generic Legendrian submanifolds ƒ� and ƒC. Denote by ˆŒa;b� the unital DGA–
morphism induced by the Lagrangian trace of the isotopy fƒtgt2Œa;b� with Œa; b� � Œ�;C�. Recall that
this is an exact Lagrangian cobordism diffeomorphic to a cylinder; see eg Appendix B for its construction.

Fix some number l > 0 and assume that all birth/deaths in the Legendrian isotopy ƒt are generic , so that
none occur precisely at action l , while there are finitely many that occur at action strictly less than l at
distinct times.
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For any sufficiently fine generic subdivision

�D t1 < t2 < � � �< tN DC

for which each .ti ; tiC1/ contains at most one birth/death below action l , the following holds. The
restricted DGA–morphism ˆŒti ;tiC1�jAl .ƒtiC1 /

can be conjugated to the algebra map that is defined by
mapping to zero any generator involved in a death moment and canonically identifying all remaining Reeb
chord generators , where the conjugation is by filtered tame automorphisms of the domain and target. This
means , in particular , that ˆŒti ;tiC1�jAl .ƒtiC1 / is a stable-tame isomorphism of DGAs.

Remark 1.12 Of course the sub-DGA Al is itself not invariant; the restriction ˆŒti ;tiC1�jAl .ƒtiC1 / is,
for example, not necessarily contained inside Al.ƒti /.

Remark 1.13 Since we do not discuss the virtual perturbation schemes for defining the contact homology
algebra for periodic Reeb orbits, we again need to assume that j j � 2 holds for any contractible Reeb
orbit of length at most l in the above proposition; cf Remark 1.5.

In [17], we exploited the bifurcation-type invariance in Ekholm, Etnyre and Sullivan [23; 24] to show
that the barcode from persistent homology induced by the action filtration is continuous with respect to
the oscillatory norm in the case of contactizations. The invariance by DG–homotopies from [19] that
holds in a general contact manifold also satisfies filtration-preserving properties, but these are a priori
not continuously depending on the oscillation alone; see the notion of length introduced in Sabloff and
Traynor [40]. Proposition 1.11 allows us to reprove the results from [17] in the general setting.

In Section 2 we review some algebra and combinatorics of DGAs, mapping cones and barcodes. In
Section 3, we prove Proposition 1.11. In Section 4, we introduce a Rabinowitz–Floer complex generated
by Reeb chords between two Legendrians, and study how a certain mapping cone of this complex changes
when one of the Legendrians isotopes (possibly through the other one). This version of the complex
was previously defined by Legout [31] in the case of a contactization, and is also related to the Floer
homology for Lagrangian cobordisms defined in [6]. In Section 5, we use the changing barcodes of these
mapping cone complexes to prove Theorems 1.4, 1.6 and 1.9. In Section 6, we compute the example of
Theorem 1.10; see Proposition 6.12.

Remark 1.14 We learned that Oh [34] has posted before us, by a couple of weeks, a related result: if
the Hamiltonian oscillation is less than the length of the shortest Reeb chord between, then the number
of Reeb chords is bounded below by the sum of the Betti numbers. This improves one of our earlier
results [16], in which we require the upper bound on the oscillation to be less than the length of the
shortest Reeb chord, multiplied by the conformal factor of the contact form. Whereas our prior results
[16; 17] and this paper use versions of Floer theory which have already been established by others, Oh’s
approach is different in that he establishes the analytical framework for a new theory called Hamiltonian
perturbed contact-instantons. With this new theory established, his result follows from Chekanov’s
original argument for Lagrangians [7].
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2 Algebraic preliminaries

This section is purely algebraic, with no mention of the geometric applications.

2.1 Filtered DGAs, augmentations and stable tame isomorphisms

Let .A; @/ be either a noncommutative or a graded-commutative semifree unital DGA over the ground
field k. Assume .A; @/ has an action filtration ` WA! f�1g[R, where `.@.x// < `.x/; we say that @
is (strictly) filtration-decreasing, or action-decreasing. See [17] for more details. Suppose A admits a
Z2–graded augmentation " WA!k. There is an induced filtration-preserving unital algebra-automorphism
‰" WA!A defined by

‰".a/D a� ".a/

on the generators, whose inverse is defined by

‰�1" .a/D aC ".a/:

In particular, the inverse is also filtration-preserving, and these automorphisms conjugate the differential to

@" WD‰" ı @ ı‰
�1
" ;

which preserves both word-length and action. In particular, if we write @".a/D
P
iD0.@

".a//i as a sum
of monomials, then .@"/1 defines a strictly filtration-decreasing differential on the graded vector space
generated by the DGA generators, which is of degree-.�1/.

A filtered tame automorphism ˆ W .A; @/! .A; @0/ of a semifree DGA A with preferred basis is defined
on the generators by

ˆ.x/D kxC ıyxw;

where k 2 k is a unit, ıyx is the Kronecker-delta, and w 2A is a word such that `.w/ < `.y/.

A canonical identification between semifree filtered DGAs with preferred bases is a DGA isomorphism
induced by an identification of the generators which preserves the grading and differential, but not
necessarily the filtration.

The stabilization .B; @B/ of .A; @A/ is constructed by adding to A two generators x; y such that @B.y/Dx

and @BjA D @A. Note that there is a canonical DGA inclusion A!B and DGA quotient B!A.

A (filtered) stable-tame isomorphism (STI) ˆ W .A; @A/! .B; @B/ is a finite composition of (filtered) tame
automorphisms, (possibly nonfiltered) canonical identifications, stabilizations, and inverse stabilizations.
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Let ˆ W .A; @A/ ! .B; @B/ be a DGA–morphism. For any augmentation " of B we can define the
conjugation

ˆ" WD‰" ıˆ ı‰
�1
"ıˆ W .A; @

"ıˆ
A /! .B; @"B/;

which satisfies
.ˆ"/1.@

"ıˆ
A /1 D .@

"
B/1.ˆ

"/1:

If ˆ is a (filtered) STI, then .ˆ"/1 is a finite composition of (filtered) handleslides, and birth/deaths at the
chain level; see Section 2.4.

2.2 Mapping cones with filtrations and invariance

Let .C01; d01/ and .C10; d10/ be filtered graded complexes with action filtrations ` WC !R[f�1g, and
strictly filtration-decreasing differentials. (The grading subscript is suppressed while the “01” and “10”
subscripts will be justified in Section 4.) Moreover, assume that the generators of C01 all have actions
above some fixed  2R while the generators of C10 all have actions below  . We write

C<a WD `�1.�1; a/� C

for the subcomplex consisting of chains of action less than a 2 R, and denote the quotient complex
consisting of chains in the action window Œa; b/ by C Œa;b/ WD C<b=C<a.

Let B W C01! C10 be a chain map, which automatically is strictly filtration-decreasing by the above
assumptions. For this reason, we get an induced action filtration on the chain complex given by the
mapping cone .Cone.B/; dB/, which we represent by�

C10˚C01; @Cone D

�
�@10 B

0 @01

��
;

ie @Cone is again strictly filtration-decreasing.

Suppose B 0 W C 001! C 010 is another chain map between filtered complexes. Again we assume that all
generators of the domain have action greater than the action of the generators in the target, which means
that B 0 is automatically strictly filtration-decreasing. A map f WC !C 0 between filtered chain complexes
with filtrations `; `0 is said to have degree � 2 R if `0.f .x// � `.x/C � for all x 2 C . Assume the
following:

(A1) There exist chain maps �01 W C01! C 001 and  10 W C 010! C10 with homotopy inverses  01 and
�10, with chain homotopies hij W ij ı�ij � idCij and kij W �ij ı ij � idC 0

ij
, where all maps above

are of degree �.

(A2) The map B is chain homotopic to  10B 0�01 via a chain homotopy H W B �  10B 0�01. Note that
this homotopy automatically has negative degree, ie it is strictly filtration-decreasing.

(Note in (A1) that the homotopies have degree � instead of 2� as is common in Hamiltonian Floer theory
literature, for example [44, Definition 8.1].)
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Then we have a homotopy commutative square

C01
B
//

�01
�� h !!

C10

�10
��

C 001 B 0
// C 010

where hD �10H C k10B 0�01 is the induced chain homotopy between �10B and B 0�01, which thus is a
map of degree �. Similarly, there is a chain homotopy h0 WB 01� 10B 0 given by h0DH 01C 01B 0k01,
which makes the square in the diagram

C 001
B 0
//

 01
�� h0 !!

C 010

 10
��

C01
B
// C10

commute up to homotopy. Both h and h0 are maps of degree �.

It follows that there are induced chain maps of the cones

C10 //

��

Cone.B/

f

��

// C01

��

C 010
//

��

Cone.B 0/

g

��

// C 001

��

C10 // Cone.B/ // C01

given by

f D

�
�10 h

0 �01

�
and g D

�
 10 h0

0  01

�
of degree �. By the five lemma, the induced homology maps are isomorphisms.

Lemma 2.1 The maps f ı g and g ı f are each chain homotopic to automorphisms of filtered chain
complexes (ie degree-zero chain maps with degree-zero inverses), via chain homotopies that are of
degree �.

Proof We show the statement for g ıf ; the argument for f ıg is completely analogous.

There is a chain homotopy �
h10 0

0 h01

�
of degree � from f ıg to a chain automorphism of the form�

idC10 K

0 idC01

�
:
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Since the entry K W C01! C10 is of nonpositive degree, the matrix is of degree zero. The matrix is a
chain map since it is chain homotopic to f ıg. This chain map property translates to the fact that K is a
chain map (that performs a grading shift by C1). Note that the inverse map is�

idC10 �K
0 idC01

�
;

which hence is also of degree zero.

2.3 Simple equivalences from small degree homotopy equivalences

Next we relate the homotopy equivalences of small degree as above with the invariance of bifurcation-type
that our previous work [17] was based on.

Recall that a basis feig of the filtered complex C is compatible with the filtration if there is an action
function `.ei / 2R defined on the basis so that c 2 C<a if and only if c can be written as a sum of basis
elements of action less than a; see [17, Section 2.1]. We say that a complex is ı–gapped if two different
basis elements in a compatible basis have action values that either coincide, or differ by at least ı > 0.

Lemma 2.2 Consider two filtered complexes C and C 0, where C is ı–gapped and satisfies the property
that each action level has at most finitely many generators , and for which

(1) C and C 0 admit bases compatible with the filtration whose elements are in a bijection x 7! x0,
under which the action satisfies `.x/� `0.x0/� �; and

(2) there are chain maps � W C ! C 0 and  W C 0! C , which both are of degree � > 0, where  � and
� are homotopic to automorphisms of filtered chain complexes via chain homotopies of degree �.

If ı > 4� > 0, then � is a isomorphism with inverse  .

If we endow the complexes with bases that are compatible with the filtrations , ordered in decreasing
action , with the additional assumption that two different elements have distinct action values , then � is
upper triangular with units on the diagonal.

Proof By the assumptions, we can write

 � DˆC @KCK@;

where ˆ is an automorphism of filtered chain complexes. By the assumption that C is ı–gapped, and
since K is of degree � < 1

4
ı, we conclude that K is in fact filtration preserving. Hence @KCK@ is strictly

filtration-decreasing. It follows by a standard fact that  � itself is an automorphism of filtered chain
complexes.

The map � is injective by the above. It thus suffices to show that � is surjective since, in that case,
 D ��1.
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Note that, for any basis element x 2 C in a basis compatible with the filtration, the map induced by
quotient and restriction

� W C Œ`.x/�3�;`.x/C3�/! C 0Œ`.x/�3�;`.x/C3�/

is a map between equidimensional vector spaces by the assumption on the action spectrum of the involved
complexes. Since  � is an automorphism of filtered complexes, together with the assumption that C
is ı–gapped, we deduce that the above map on the quotient is injective as well, and thus surjective.
Consequently the map � itself is surjective, as sought.

Lemma 2.3 (characterization of a birth/death) Consider two filtered complexes C and C 0, and assume
that C ŒaCı;aC3ı/ D C Œa;aC4ı/ are both two-dimensional , while C 0Œa;aC4ı/ D 0. Assume that there exist
chain maps � WC !C 0 and  WC 0!C which both are of degree � > 0, where  � and � are homotopic
to automorphisms of filtered chains complexes via chain homotopies of degree �. If ı > � > 0, then
C ŒaCı;aC3ı/ is a complex generated by x and y, with @x D ky for some unit k.

Proof Since the map � W C Œa;aC4ı/! C 0Œa;aC4ı/ D 0 induced by quotient and surjection is a homotopy
equivalence, C Œa;aC4ı/ is acyclic. The only two-dimensional acyclic complexes are the ones described
above.

2.4 Barcodes

We sketch without details the modified barcode theory done in [17, Section 2].

For t 2R, let C.t/btat be a filtered complex with filtration action ` taking values in Œat ; bt /�R and �1.
A piecewise continuous (PWC) family of such filtered complexes, parametrized by t , is characterized by
the following properties:

� The endpoints of the action window Œat ; bt / vary continuously with t .

� There exists a discrete set of t1< � � �<tN such that during any component I �Rnft1; : : : ; tN g, there
are canonically identified (for different t 2 I ) generators of the complexes which are compatible
with the action.

� The action of each such generator is continuous and almost everywhere differentiable with respect
to t 2 I .

� For each t 2 I , the differential strictly decreases the action.

� For each t 2 ft1; : : : ; tN g, the chain complex undergoes at most one of the following possible
“simple bifurcations”:

– The algebraic equivalent of a Morse handleslide.

– The algebraic equivalent of a Morse birth/death.

– An entrance (resp. exit) of one generator into (resp. from) either the top or bottom of the action
window.
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We continue to use [17, Section 2] in defining barcodes, but for the equivalent definition based on normal
forms, see [37, Section 2.1] and [44, Definition 6.2]. A barcode is a finite collection of “bars” Œs; e/,
where the endpoint e might be C1. Let �c0;c1 WH.C.t/

c0
at /!H.C.t/

c1
at / be induced from the inclusion

C.t/
c0
at ,! C�.t/

c1
at , where at � c0 � c1 � bt . The barcode of the complex .C.t/btat ; @t / is the barcode

uniquely characterized by the following properties:

� The number of bars with starting point s is equal to the dimension of the quotient

coker.�s;sC�/DH.C.t/sC�at
; @t /=im�s;sC�;

where � > 0 is any sufficiently small number.

� The number of bars with starting point s that persist at action level l � s is equal to the dimension
of the subspace

Œ�sC�;lC��.coker.�s;sC�//�H.C.t/lC�at
; @t /=im�s;lC�;

where � > 0 is any sufficiently small number and where the map

Œ�sC�;lC�� W coker.�s;sC�/!H.C.t/lC�at
; @t /=im�s;lC�

is induced by descending �sC�;lC� to the quotients.

Proposition 2.4 [17, Proposition 2.7] Consider a PWC family C.t/btat of filtered complexes with action
window. When the complex undergoes no such bifurcation , the barcode undergoes a continuous change
of action levels for its starting and endpoints. At the bifurcations the barcode undergoes the following
corresponding changes:

� Handle-slide The barcode is unaffected.

� Birth/death When two generators x; y undergo a birth/death , then a bar connecting `.x/ to `.y/
is added to/removed from the barcode. (The bar is not present at the exact time of the birth/death ,
but immediately after/before it is visible and of arbitrarily short length.)

� Exit below A generator slides below the action level at at time t . If the uniquely determined bar
which starts at the action level of that generator is of finite length , then that bar gets replaced with a
bar of infinite length whose starting point is located at the same action level as the endpoint of the
original bar. If the bar has infinite length , then it simply disappears from the barcode.

� Entry below This is the same as an exit below, but in backwards time.

� Exit above A generator slides beyond the action level bt at time t . There is a uniquely determined
bar which either ends or starts at the action level of that generator. In the first case , the bar gets
replaced with one that has the same starting point but which is of infinite length. In the second case ,
when the bar necessarily is infinite , then that bar simply disappears from the barcode.

� Entry above This is the same as an exit above , but in backwards time.
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2.5 A piecewise continuous family of complexes from small-degree homotopy equivalences

In order to investigate the continuous dependence of the barcodes in relation to the invariance properties
established in Section 2.2, we need to relate invariance under small-degree homotopy equivalence as in
Lemma 2.1 to the bifurcation-type invariance that Proposition 2.4 above is based upon.

Let C.t/, t 2 Œ0; 1�, be a family of finite-dimensional filtered complexes with choices of compatible basis
elements. We assume that all basis elements vary smoothly with t except that there are finitely many
times t1 < � � �< tN at which there is a unique birth/death moment. Roughly speaking, at these moments
precisely two basis elements of the same action either appear or disappear. The next paragraph gives the
precise characterization of a birth/death.

Since we require the differential to be strictly filtration-decreasing, the two basis elements that undergo
a birth/death at ti are necessarily missing from the complex C.ti /. However, in the case of a birth
(resp. death) two generators for t > ti (resp. t < ti ) are assumed to have actions that extend continuously
to t D ti , such that the extensions moreover attain the same action value at t D ti . (Note that, in particular,
the action of any basis element is bounded in the family, and there is a global bound on the dimension
of the complexes C.t/ in the family.) For simplicity we make the additional assumptions that, at each
birth/death moment t D ti , all elements in the compatible basis have distinct action values and, moreover,
their action values differ from the action of the (continuous extension of the) birth/death pair. In addition,
we assume that there is a finite set of times when the action values of a compatible basis are not distinct.

In order to simplify the notation, we will now assume that the finitely many times when the action
spectrum is not injective, as well as the birth/death moments, all occur at rational times t 2Q\ Œ0; 1�.

It is worth stressing that, at this moment, we have not yet made any assumptions on how the differential
of the complexes C.t/ varies; we are simply prescribing how their compatible bases depend on t . Under
the further assumptions of the next result, Proposition 2.5, we establish an invariance result for this family
of complexes; this is in fact one of the main goals of this section.

Proposition 2.5 Let C.t/ be a family of complexes as above that satisfies the following additional
requirement. For all � > 0, all sufficiently large N � 0 and all i 2 f0; : : : ; N � 1g, there are chain maps

�i W C.i=N /! C..i C 1/=N / and  i W C..i C 1/=N /! C.i=N /

of degree � > 0, where  i�i and �i i are homotopic to automorphisms of filtered chain complexes via
chain homotopies of degree �. Then , for N � 0 is sufficiently large , there exists a piecewise continuous
family of complexes D.t/ that admit isomorphisms C.t/ŠD.t/ of filtered vector spaces , that moreover
are chain maps for all t D i=N , where i D 0; 1 : : : ; N .

Proof We start by prescribing
D.i=N / WD C.i=N /

for all i D 0; 1 : : : ; N .
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First we consider the special case when C.t/ has no birth/deaths, and the action values of the basis
elements are all distinct for all times. We then construct the PWC family as follows. The complexes
D.t/ for t 2 Œi=N; .iC1/=N / are constructed by setting D.t/ WDD.i=N / as a complex, and then simply
letting the action values of a compatible basis vary accordingly with t 2 Œi=N; .i C 1/=N /. (In particular,
the differential remains unchanged.) It is immediate that D.t/Š C.t/ holds on the level of filtered vector
spaces.

The family of complexes D.t/ for t 2 Œi=N; .i C 1/=N / extends by continuity to also t D .i C 1/=N ;
denote the limit filtered complex by zD..i C 1/=N /. What remains is to construct an isomorphism of
filtered complexes zD..i C 1/=N /ŠD..i C 1/=N /.

The assumptions of Lemma 2.2 are satisfied for all maps �i and  i whenever N � 0. In particular,
all complexes D.i=N / can be assumed to be ı–gapped for some fixed ı > 0. Hence �i W D.i=N /!
D..i C 1/=N / is a chain isomorphism of degree �. Since zD..i C 1/=N / is canonically identified with
D.i=N / (only the action values of the compatible basis have changed slightly), it follows that the induced
chain isomorphism �i W zD..i C 1/=N /!D..i C 1/=N / is of degree zero. This implies that we have a
PWC family, as sought.

In the case when the family C.t/ has birth/deaths or compatible basis elements of the same action value,
then we need to take care at those moments separately. This we do in the subsequent paragraph. After
having constructed the PWC family in a small neighborhood of these points in time, the family for the
remaining times can be constructed as above.

In the case when two action values for a compatible basis coincide at some t D i=N , then we can again
use Lemma 2.2 as above to construct the family D.t/ for t 2 Œi=N; .i C 1/=N � and Œ.i � 1/=N; i=N �. In
the case when there is a birth/death at t D i=N , the same can be done by alluding to Lemma 2.3. Once we
have taken care of the construction of D.t/ for these times, we simply invoke the construction in the first
simple case, ie the case when action values are distinct, and when there are no birth/death moments.

3 Proof of Proposition 1.11

Consider, in the symplectization .R� � Y; d.e�˛//, the Lagrangian trace of a Legendrian isotopy ƒt
with t ranging from � to C. This (exact embedded) Lagrangian concordance coincides with the cylinder
R�ƒ˙ for ˙� � k for some k� 0, and after reparametrizing the Legendrian isotopy, the �–level set
of the trace is close to f�g �ƒ� For example, see [4, Theorem 1.2], the proof of [19, Lemma A.1], the
proof of [25, Lemma 6.1], or [35, Definition 2.10] on constructing this trace. We recall the version of the
construction from Chantraine [4, Theorem 1.2] in Appendix B.

The length ı 2R�0 of the cobordism, as defined by Sabloff and Traynor in [40], is the shortest ı such
that f� 2 Œ�0; �0C ı�g �R�Y contains the noncylindrical portions of the cobordism and almost complex
structure. Proposition B.1 shows how the length of the trace cobordism constructed by [4] depends on
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the conformal factor of the contact isotopy; we also consider the length of the “inverse cobordism”. The
length is crucial for analyzing the filtered invariance result, since the chain maps produced by the trace
cobordism have filtration properties that depend on this.

We denote by xt a continuous family of chords of ƒt . Recall that the family of Legendrians is assumed
to be generic, which means that a chord x˙ of ƒ˙ that does not undergo a death-type bifurcation in the
family corresponds to a unique chord x� of ƒ�.

The Lagrangian together with an appropriately compatible almost complex structure J induce a DGA–
morphism

ˆ W .AC; @C/! .A�; @�/

between the DGAs .A˙; @˙/ of ƒ˙; see [19]. More precisely, we require as in [19] that the almost
complex structure is adjusted, which means that it is compatible with the symplectic form and cylindrical
outside of a compact subset; the latter means that the almost complex structure preserves the contact
planes lifted to R� �Y , is invariant under the R�–translation, and sends @� to the lifted Reeb flow.

Suppose the Lagrangian trace of an isotopy ƒt induces the map ˆ and the inverse trace induces the
map ‰. Construct a generic 1–family of Lagrangians connecting the trivial cobordism ƒC �R, with
induced DGA map id W .AC; @C/! .AC; @C/, to the trace concatenated with its inverse. Let G count
index �1 punctured pseudoholomorphic curves that occur at isolated moments in this family of cobordism,
as defined in [19]. Then

(3-1) idD‰ˆ� .@CG �G@C/:

The result below follows from the filtration-preserving properties of the DGA–morphisms and chain
homotopy involved.

Lemma 3.1 (1) Consider the Legendrian isotopy ƒt generated by a time-dependent contact Hamil-
tonian Ht . For any ı > 0 the Legendrian isotopies

fƒtgt2Œi=N;.iC1/=N� and fƒ�tgt2Œ�.iC1/=N;�i=N �

may all be assumed to have a trace cobordism of length less than ı whenever N � 0. In addition ,
both concatenations of these two trace cobordisms may be assumed to be compactly supported
Hamiltonian isotopic to the trivial cylinder through cobordisms of length at most 2ı.

(2) Let ˆ and ‰ above be induced by Lagrangian cobordisms of length ı > 0, where the concatenation
of the cobordisms are Hamiltonian isotopic to trivial cobordism through cobordisms of length at
most 2ı. (For instance the trace cobordisms from part (1).) Then

`.F.xC// < `.xC/e2ı

holds for F 2 f‰;ˆg, while any word xC that consists of letters that satisfy `.xC/ � a has the
property that G.xC/ consists of words of letters that all satisfy `.x�/ � e2ıa. (Notation as in
equation (3-1).)
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Proof (1) We start by fixing a global contact isotopy that generates the Legendrian isotopy ƒt .
For N � 0, we may assume by continuity that the restriction of the contact isotopy that generates
fƒtgt2Œi=N;.iC1/=N� has a conformal factor that is bounded by ı > 0. The construction of the trace
cobordisms with the sought properties can now be deduced from Proposition B.1.

(2) The statement is clear for any map F that is defined by a count of finite-energy pseudoholomorphic
disks in R� � Y with boundary on a Lagrangian cobordism of length at most 2ı and a single positive
puncture, when the almost complex structure is adjusted and, moreover, cylindrical where the cobordism
is cylindrical (eg outside of Œ�ı; ı��Y ). Namely, [6, Lemma 3.4 and Proposition 3.5(9)] explicitly bound
the Hofer energy of such curves used to define F.xC/ from below by 0 and from above by the quantity
`.xC/eı � `.F.xC//e�ı . To match with their convention, we ignore their distinction of pure and mixed
chords, and we center the concordance around �0 D 0 (from our definition of length above).

Since the chain maps F Dˆ;‰ are defined by pseudoholomorphic disks of the type mentioned above,
the statement now directly follows in these cases.

The chain homotopy G has a more complicated construction, which was carried out in [19, Appendix B].
Each term in G.xC1 � � � x

C

k
/ corresponds to a count of disconnected pseudoholomorphic buildings [3],

where each component of the building has the topological type of a broken disk with a single positive
puncture at xCi for i D 1; : : : ; k. In addition, each component satisfies the following:

� There is a single level consisting of a number of pseudoholomorphic disks of index �1 and 0 inside
R�Y , each with boundary on one of the Lagrangian cobordisms in the family that interpolates
between the concatenation and the trivial cylinder (these are all of length at most 2ı), and which all
have a single positive puncture. As in the first case, we can again assume that the almost complex
structure is cylindrical in the subset where the family of cobordisms are cylindrical (eg outside of
Œ�ı; ı��Y ).

� All other levels consist of punctured disks of index 1 and trivial strips of index 0 inside R� Y ,
with boundary on either R�ƒi=N or R�ƒ.iC1/=N and a single positive puncture, which are
pseudoholomorphic for a cylindrical almost complex structure.

If one considers these terms as a composition of operations, the fact that the disks of index 1 in the second
bullet point define the differential (which is strictly filtration-decreasing), the statement finally follows by
an energy estimate similarly to the first case.

The remainder of the proof of Proposition 1.11 is similar to the proof of Proposition 2.5; roughly, we
decompose the isotopy into small steps that then are shown to induce homotopy equivalences of small
degree. Lemma 3.1(1) implies that, for a sufficiently fine decomposition of Œ�;C�, each map ˆŒ�i ;Ci �
has an arbitrarily small cobordism length. To prove Proposition 1.11, we thus restrict to a single interval
of a sufficiently fine generic decomposition (this single small interval we continue to label Œ�;C�) and
show that it is a finite composition of (de)stabilizations and tame automorphisms.
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Note that the Reeb chord lengths vary continuously with the parameter t . For a very fine decomposition
we may thus assume that these lengths are almost constant in the interval Œ�;C�. Together with the
proposition’s hypothesis of genericity, and since ı > 0 can be assumed to be arbitrarily small, we get
three cases listed below. For all cases, we assume that no chord has action less than e2ı . Recall that we
only consider the Chekanov–Eliashberg algebra Al generated by chords with actions less than l . Below
we thus disregard all chords of action greater than l 0 for some suitable action level l 0� l . Moreover,
after further shrinking ı > 0, we can assume that no Reeb chords on the family ƒt of Legendrians has
length contained in the interval Œe�ı l 0; eı l 0�.

Case 1 There are no births/deaths in Œ�;C�. Further, any xC satisfies

`.x�/ 2 Œe�ı`.x˙/; eı`.x˙/�;

while any yC different from xC satisfies

Œe�ı`.y�/; eı`.y�/�\ Œe�ı`.xC/; eı`.xC/�D∅:

(In particular, any two Reeb chords have distinct lengths.)

Case 2 The chords whose lengths are contained in Œe�2ı`0; e2ı`0� are precisely two, and undergo a
birth/death at 0 2 Œ�;C�; ie there are precisely two chords xC; yC of lengths

`.xt /; `.yt / 2 Œe�ı`0; e
ı`0�

for t > 0 (resp. t < 0), while there are no such chords for t < 0 (resp. t > 0). Furthermore, `.xC/ > `.yC/
(resp. `.x�/ > `.y�/). The chords zt of length

`.zt / … Œe�2ı`0; e
2ı`0�

satisfy the assumptions of Case 1.

Case 3 There are no births/deaths in Œ�;C�. There are precisely two chords whose lengths are contained
in Œe�2ı`0; e2ı`0�, which moreover have lengths contained inside Œe�ı`0; eı`0�, and satisfy ˙`.x˙/ >
˙`.y˙/ while `.x0/D `.y0/. The chords zt of length

`.zt / … Œe�2ı`0; e
2ı`0�

satisfy the assumptions of Case 1.

In the case when there are no births/deaths, the invariance under DG–homotopy together with Lemma 3.1(2)
now implies that

(3-2) xC D .‰ˆ� .@CG �G@C//x
C
D k‰kˆx

C
C

X
j

vCj � .@CG �G@C/x
C

D k‰kˆx
C
C

X
j

vCj C
X
k

uC
k

is satisfied, where kˆ 2 k (resp. k‰ 2 k) are the coefficients hˆ.xC/; x�i and h‰.x�/; xCi, and vCj ; u
C

k

are monomials of chords of ƒC that satisfy

e2ı`.xC/� `.vCj /; `.u
C

k
/:
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Case 1 Looking at the last two terms in equation (3-2), Lemma 3.1(2) implies two things. First, if
vCj 2 .k n f0g/x

C, then vCj is in the image of ‰ of an element of action at most eı`.xC/, which by
definition is not contained in kx�. Second, if uC

k
2 .k n f0g/xC, then either xC appears as a term in

the differential of a word G.xC/ all of whose letters are of action at most e2ı`.xC/, or as a term in
G.wC/ for a word wC of action `.wC/ < `.xC/. Moreover, in the latter case, all letters in G.wC/, and
thus in particular xC itself, have action bounded by e2ı`.wC/. The hypotheses in Case 1 imply that
`.vCj /; `.u

C

k
/ < `.xC/. Thus kˆ D k�1‰ in (3-2) is a unit.

Cases 2 and 3 Case 1 handles all chords without other chords of approximately the same action. So we
have reduced to studying the maps at x and y which have approximately the same action. Consider the
2� 2 matrix

ŒF � WD

�
Fxx Fxy
Fyx Fyy

�
in the x; y basis, for the map F 2 fˆ;‰;G; @C; idg. The bound from below of `.z/ implies there is no
additional (nonlinear) term involving x or y in either F.x/ or F.y/. Since `.xC/ > `.yC/,

Œ@C�D

�
0 0

.@C/yx 0

�
for some .@C/yx 2 k. We also consider the corresponding 2� 2 matrix version of (3-2).

Case 2 Since .x�; y�/ do not exist,

Œ‰�D

�
0 0

0 0

�
D Œˆ�:

So (3-2) implies 1 D idxx D Gxy.@C/yx . In particular, after the tame automorphism of scaling y by
..@C/yx/

�1 D Gxy 2 k, we get @C.xC/D yCC
P
i wi with `.wi / < `.yC/. The result now follows

from Chekanov’s algebraic treatment of birth/deaths [8, Sections 8.4–8.5].

Case 3 Assume at t D 0 that J is generic so that the DGA differential @0 is well defined. Let
ˆ0 W .A; @C/! .A; @0/ and ‰0 W .A; @0/! .A; @C/ be the DGA morphisms induced by the trace and its
inverse over the subinterval Œ0;C�� Œ�;C�. Let G0 be the homotopy relating ‰0ˆ0 and id0. As above,
define the 2� 2 matrix �

Fxx Fxy
Fyx Fyy

�
in the x0; y0 basis for the map F 2 fˆ0; ‰0; G0; @0; id0g. Stokes’ theorem implies that Œ@0� D 0 as a
2� 2 matrix. From the 2� 2 matrix equations

Œid0�D ŒG0@0�C Œ@0G0�C Œ‰0ˆ0�D Œ‰0ˆ0�; Œ@Cˆ
0�D Œˆ0@0�D 0; Œ‰0@C�D Œ@0‰

0�D 0;

we get
1D .id0/xx D‰0xxˆ

0
xxC‰

0
xyˆ

0
yx; .@C/yxˆ

0
xx D 0; ‰0xy.@C/yx D 0;

which imply .@C/yx D 0.
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Since Œ@C�D0 as a 2�2matrix, equation (3-2) implies that Œ‰�; Œˆ�2GL.2;Z/: [11, Corollary 2.6 ] proves
that SL.2;Z/; which is an index 2 subgroup of GL.2;Z/; is generated by the two tame automorphisms�

1 1

0 1

�
and

�
1 0

1 1

�
:

But we also allow the map �
�1 0

0 1

�
2 GL.2;Z/ nSL.2;Z/:

Thus ‰ and ˆ are compositions of our allowable tame automorphisms.

4 A Rabinowitz–Floer theory for Legendrians

Rabinowitz–Floer homology in the case of a contact type hypersurface was originally defined by Cieliebak,
Frauenfelder and Oancea [9]. We present a version of the theory in the relative case, RFH, which previously
has been considered in the Hamiltonian setting by Merry [32] and Cieliebak and Oancea [10], and in
the SFT setting by Legout [31]. Our construction of the complex is the direct generalization of the
construction from [31] to the case of an arbitrary contact manifold, while allowing augmentations that are
only defined under some action level.

In Section 4.1, we compactify the moduli spaces used in Sections 4.2 and 4.3. In Section 4.2, we introduce
a Rabinowitz–Floer complex (RFC) as a mapping cone complex generated by Reeb chords. In Section 4.3,
we prove the invariance of this mapping cone complex. Compared to the invariance result from [31], we
here need to take extra care to control the filtration-preserving properties, in order to establish invariance
by a PWC family of complexes.

4.1 Compactification of certain moduli spaces

Let ƒC0 ; ƒ
C
1 � Y be two Legendrians isotopic to ƒ�0 ; ƒ

�
1 . Assume xƒ˙ WDƒ˙0 [ƒ

˙
1 is embedded. Let

� � t �C parametrize this isotopy. (We use ˙ instead ˙1 to avoid notational overuse of the symbol 1.)
Further, let L0; L1 � .R� �Y; d.e�˛// be the exact Lagrangian concordance arising from the trace of
the isotopy, with Li \f�g�Y Dƒ˙i for ˙�� 1. Assume that L WDL0[L1 has at most one transverse
double point q.

There exist primitives of e�˛jTLi by exactness. Since this primitive is necessarily locally constant
wherever Li is cylindrical, we can fix a unique primitive that vanishes on the negative ends of Li . After a
small perturbation of Li , we may assume that there is a nonzero difference of primitives at the unique
intersection point fqg D L0\L1.

We consider several types of asymptotic behaviors for our holomorphic disks.

� Mixed ˛˙–chords Such a chord starts on ƒ˙0 (resp. ƒ˙1 ) and ends on ƒ˙1 (resp. ƒ˙0 ).

� Pure ˛˙–chords Such a chord both starts and ends on ƒ˙0 (resp. ƒ˙1 ).

� Lagrangian intersection point q
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Let � be a nonempty cyclically ordered set of the above, each endowed with a sign. Repetition is allowed.
Let Bd 2 fL; xƒ˙g. Let Md .�IBd/ denote the moduli space of J –holomorphic disks u W D! R� Y ,
with boundary marked points, satisfying the following conditions:

� The boundary of the disk maps to L if BdD L and to R� xƒ˙ if BdD xƒ˙.

� The (formal) dimension of the component is d .

� Each marked point maps to an element of � . The cyclic ordering of marked points induced by the
boundary orientation matches the cyclic ordering of the chords/double points in � .

� If a marked point maps to the double point (ie when Bd D L), then the puncture is positive
(resp. negative) if the primitive of e�˛jL evaluated along the boundary of the disk makes a jump to
a lower (resp. higher) value at the puncture, while traversing the boundary in the positive direction.
If a marked point maps to a chord, the endowed sign ˙ indicates that it is an asymptotic limit at
the ˙1 end of the symplectization boundary.

Remark 4.1 Consider the Legendrian lift of L0[L1 to the contactization .R� �Y �RZ ; dZC e�˛/

that is uniquely determined by the requirement that its Z–coordinate vanishes at � D �1. The sign
of the puncture at a double point has the following direct reformulation in terms of the Reeb chord
on this Legendrian. A disk has a positive (resp. negative) puncture at q if and only if the value of the
Z–coordinate along the boundary of the disk, as specified by the Legendrian lift, jumps to a higher
(resp. lower) value at the puncture when traversing the boundary according to the orientation. This will
be important later, when we describe the cobordism by the front projection of its Legendrian lift.

Note that Md .�I xƒ˙/ has an R–translation in the range. We denote the quotient of this translation by
yMd�1.�I xƒ˙/ D Md .�I xƒ˙/=R. We next list different types of boundary conditions for the moduli

spaces. In all cases below, � may have some additional negative pure chords.

(1˙) BdD xƒ˙; � contains two positive mixed chords.

(2˙) BdD xƒ˙; � contains one positive and one negative mixed chord.

(3˙) BdD xƒ˙; � contains one positive pure chord and no mixed chords.

(4) BdD L; � contains two mixed chords (both positive).

(5) BdD L; � contains two mixed chords (one positive, one negative).

(6) BdD L; � contains one mixed chord (positive) and q (positive or negative).

(7) BdD L; � contains one mixed chord (negative) and q (positive or negative).

Note that the sign of the puncture at q in cases (6) and (7) can be recovered by the following data: the
component of the starting point (or endpoint) of the mixed Reeb chord asymptotic of the disk, together
with the two action values of the potentials at q for each of the two sheets of L.
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ƒ˙1

ƒ˙1

ƒ

ƒ

ƒ˙1 ƒ

ƒ˙1 ƒ ƒ˙1 ƒ ƒ˙1

ƒ˙1 ƒƒ˙1

ƒ˙1 ƒ

ƒƒ˙1

ƒƒ˙1 ƒ˙1 ƒ

Figure 1: Top: Boundary points of the compactification of the moduli space .1˙/ of punctured
disks with boundary on the cylinders overƒ[ƒ˙1 with two positive mixed Reeb chord asymptotics.
Note that we have omitted any trivial strip inside the symplectization level from the figure. The
broken configurations on the left and right belong to .2˙ � 1˙/, while the middle configuration
belongs to .1˙� 3˙/. Bottom: Boundary points of the compactification of the moduli space .2˙/
of punctured disks with boundary on the cylinders over ƒ[ƒ˙1 . Note that we have omitted any
trivial strip inside the symplectization level from the figure. The broken configuration on the left
belongs to .2˙�2˙/ while the one on the right belongs to .2˙�3˙/. There are similar breakings
for the disks whose mixed Reeb chords start on ƒ˙1 and end on ƒ.

We now describe the boundary @ in the sense of the SFT compactification [3], also called Gromov–Hofer
compactification, of certain one-dimensional moduli spaces, modding out by the R–translation when
one can. We illustrate the notation with some examples. The broken curve .2C � 1C/ has boundaries in
two copies of .R�Y;R�ƒC/. In the lower copy there is a curve of index 1 (rigid after R–translation)
of type (1C). In the upper copy there is one curve of index 1 (rigid after R–translation) of type (2C) and
one “trivial strip” of index 0, which is a curve of the form .R� chord/. (We omit listing the trivial strips.)
The broken curve (6� 6) has two index 0 curves of type (6) in the same copy of .R�Y;L/, one with a
positive puncture at q and the other with a negative puncture at q.

Figures 1 through 3 depict the broken configurations corresponding to the boundary strata of the moduli
spaces of the corresponding type. Note that, in these figures, any trivial strip inside a cylindrical level has
been omitted. For every broken configuration in which there is a nonempty level with boundary on xƒC,
as well as a middle level with boundary on L, there might be noncylindrical components in the middle
level with only pure punctures. Such components are not exhibited in the aforementioned figures; see
Figure 6 for an example where levels of this type arise in the boundary of the moduli space of type (5).
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ƒ ƒ

ƒ

L1 R�ƒ

L1

ƒC1 ƒC1 ƒƒ ƒ

R�ƒ R�ƒ L1

ƒ�1 ƒ

L1L1 R�ƒ R�ƒ R�ƒL1

ƒ�1

˙ �

Figure 2: Top: Boundary points of the compactification of the moduli space .3˙/ of punctured
disks with all boundary components on either the cylinder over ƒ, ƒ�1 , or ƒC1 . In other words,
these are the curves that are used in the definition of the Chekanov–Eliashberg algebra of either
Legendrian. All broken curves belong to .3˙ � 3˙/. Note that we have omitted any trivial strip
inside the symplectization level from the figure. Bottom: Boundary points of the compactification
of the moduli space .4/ of punctured disks with boundary on L D L0 [L1 with two positive
mixed Reeb chords. Note that we have omitted any trivial strip inside the symplectization level
from the figure. The broken configurations shown are as follows: The top row the left and middle
configurations are in .2C � 4/, while the one on the right is in .1C/. On the bottom row from left
to right, the configurations shown are in .6� 6/, .5� 5� 1�/, and .4� 3�/.

The figures depict the most general case that we will need, ie the special case when L0 D R�ƒ is a
trivial cylinder, which in particular means that ƒ˙0 D ƒ, while L1 is a Lagrangian cylinder from ƒ�1
to ƒC1 .
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L1 L1 L1R�ƒ L1

R�ƒ

ƒC1 ƒ

R�ƒ

ƒƒ�1

R�ƒ

R�ƒL1

ƒ�1

˙

�

L1

ƒC1

R�ƒ R�ƒ

ƒ

L1

ƒ�1

L1 R�ƒ

L1 L1R�ƒ

ƒ�1 ƒ

˙ ˙ ˙
˙

Figure 3: Top: Boundary points of the compactification of the moduli space .5/ of punctured
disks with boundary on L with one positive and one negative mixed Reeb chord puncture. Note
that we have omitted any trivial strip inside the symplectization level from the figure. The broken
configurations shown are in .5� 2�/, .5� 2C/, .6� 7/, and .5� 3�/, going from left to right.
There are analogous configurations when the mixed Reeb chords start on L1 and end on L0.
Bottom: Boundary points of the compactification of the moduli space .6/ of pseudoholomorphic
curves with one puncture asymptotic to a positive mixed Reeb chord from R �ƒ to L1, and
one positive puncture at the unique intersection point. The broken configurations shown are in
.2C � 6/, .6� 3�/, and .2� 7� 1�/, going from left to right. There are analogous configurations
in the case when the positive mixed Reeb chord starts on L1 and ends on R�ƒ.

Proposition 4.2 For a generic almost complex structure , the boundary of a one-dimensional moduli
space is made of the following configurations of rigid moduli spaces:

(1˙) .1˙ � 3˙/; .2˙ � 1˙/,

(2˙) .2˙ � 2˙/; .2˙ � 3˙/,

(3˙) .3˙ � 3˙/,

(4) .2C � 4/; .5� 5� 1�/; .1C/; .6� 6/; .4� 3�/,
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(5) .2C � 5/; .5� 2�/; .6� 7/; .5� 3�/,

(6) .2C � 6/; .5� 7� 1�/; .6� 3�/.

The Lagrangian cobordisms we study in Section 4 will not have any one-dimensional moduli space of
type (7).

Proof The mixed chords (or double points) each appears exactly once in the word of chords defining a
given moduli space. If a disk has only pure chords, then Stokes’ theorem implies it has a unique positive
pure chord. Therefore, transversality for these spaces can be achieved by either perturbing J near this
distinguished positive chord as in [13, Proposition 3.13], or by perturbing the Lagrangian boundary
condition near p as in [23].

These configurations are the only ones that can appear because

(a) a dimension argument implies exactly one (nontrivial) moduli space in a symplectization;

(b) each moduli space has at least one positive puncture.

4.2 The Rabinowitz complex as a mapping cone

In the following we assume that ƒ0 Dƒ is fixed, and that ƒt1 D �
t
˛;Ht

.ƒ1/ is a Legendrian isotopy of
ƒ�1 Dƒ1 for � � t �C. We write xƒt WDƒ0[ƒt1, while xƒDƒ0[ƒ1 as before.

Fix t 2 Œ�;C� as in Section 4.1. Choose a cylindrical almost complex structure that is regular for the
moduli spaces involved (ie that consist of disks for which there is a distinguished asymptotic that only
appears once, and where the moduli space is of expected dimension at most two before taking the quotient
by the action of translation). Recall that this is possible by [13, Proposition 3.13]. Assume there exist
augmentations "i defined for Al.ƒi /, i D 0; 1, which can be identified with an augmentation "0 of the
DGA Al

pure.
xƒ0/ that is generated by the pure chords. In [17, Lemma 3.4], we describe how to define an

augmentation "t for A
l�l.t/
pure .xƒt /, where

l.t/D

Z t

0

�
max
y2Y

H� .y/�min
y2Y

H� .y/
�
d�:

The setting for [17] was limited to .Y; ˛/D .P �Rz; dz� �/. However, [17, Lemma 3.4] used only that
the DGA underwent a stable-tame isomorphism. Thus, Proposition 1.11 implies that [17, Lemma 3.4]
applies to our more current general setting.

Since the stable tame isomorphism given by Proposition 1.11 are the DGA–quasi-isomorphism induced
by the Lagrangian trace cobordisms, we get

Lemma 4.3 For a sufficiently fine subdivision t1 < � � � < tN , the augmentation "ti can , moreover , be
assumed to coincide with the pullback of the augmentation "ti�1 under the DGA–morphism induced by
the exact Lagrangian trace of the isotopy ƒt1 for t 2 Œti�1; ti �.
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In the following, let x01 (resp. x10) indicate a mixed chord starting on ƒ (resp. ƒt1) and ending on ƒt1
(resp. ƒ). All other chords zi below are pure. We define the actions of x01 and of x10 to be, respectively,

a.x01/ WD C

Z
x01

˛ > 0 and a.x10/ WD �

Z
x10

˛ < 0:

Fix at ; bt 2R such that

(4-1) 0 < bt � at < l � l.t/:

Denote by

C�.Œat ; bt //D C�.R�0\ Œat ; bt // and C �.Œat ; bt //D C
�.R�0\ Œat ; bt //

the “linearized Legendrian contact homology complex” and the “dual cocomplex”, respectively, where the
former is generated by the mixed chords x01 while the latter is generated by the mixed Reeb chords x10.
In both cases we assume that the action a of the generators is contained inside the interval Œat ; bt /.

As prescribed below, the differential restricted to C�.Œat ; bt // (resp. C �.Œat ; bt //) is the usual differential
of the Legendrian contact homology (co)complex linearized by the augmentation "t that counts trips with
one positive (resp. negative) mixed input Reeb chord and one negative (resp. positive) mixed output Reeb
chord; see below for the precise formula.

Remark 4.4 For the cocomplex, the differential increases the Reeb chord length `, hence decreases
the above action a. This is why when taking the quotient complex, we consider C �.Œat ; bt // and not
C �..at ; bt �/.

Recall that the linearized Legendrian contact (co)homology complex of a pair of Legendrians can be
endowed with a grading that depends on additional choices of the two Legendrians involved; see [6] as
well as Section A.3. For simplicity we restrict ourselves to the case when the first Chern class of .Y; ˛/
vanishes, which means that we can choose a symplectic trivialization of the (square of the) determinant
C–line bundle det � ! Y . Given the choice of a homotopy class of such a symplectic trivialization,
together with choices of Maslov potentials ofƒi as described in Section A.3, we get a canonically induced
Z–grading for which the linearized differential (resp. codifferential) is of degree �1 (resp. 1). In addition,
the choice of a Maslov potential can be naturally extended over a Legendrian isotopy. Note that a loop
of Legendrians can induce a nontrivial action on its set of Maslov potentials; see Lemma 6.11 for an
example.

For a pair of mixed chords x; y in either complex, and ordered (possibly empty) sets of pure chords z
and z0, define

mxƒt .x
C; y˙/D

X
z;z0

] yM0.xCz�y˙z0�I xƒt /"t .zz
0/:
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Note that the action of the individual pure chord z in z or z0 is less than bt � at , and so "t .z/ is defined.
We suppress the subscript notation when we define the maps

d01 WC�.Œat ; bt //!C�.Œat ; bt //; d10 WC
�.Œat ; bt //!C �.Œat ; bt //; B WC�.Œat ; bt //!C �.Œat ; bt �/;

where
d01.x01/D

X
fy01ja.y01/2Œat ;bt /\R>0g

mxƒt .x
C
01; y

�
01/y01;

d10.x10/D
X

fy10ja.y10/2Œat ;bt /\R<0g

mxƒt .y
C
10; x

�
10/y10;

B.x01/D
X

fy10ja.y10/2Œat ;bt /\R<0g

mxƒt .x
C
01; y

C
10/y10:

Note that d01 and d10 are the linearized Legendrian contact homology differential and codifferential,
respectively.

Proposition 4.5 The matrix
dB WD

�
d01 0

B d10

�
is a filtered mapping cone differential for the filtered chain map B .

Proof By Proposition 4.2(1˙) and 4.2(2˙), the matrix squares to zero. Consider x01 2 C�.Œat ; bt // and
z10 2 C

�.Œat ; bt //, for example. Then

hd2Bx01; z10i D
X
y01

mxƒt .x
C
01; y

�
01/mxƒt .y

C
01; z

C
10/C

X
y10

mxƒt .x
C
01; y

C
10/mxƒt .y

�
10; z

C
10/;

which vanishes by Proposition 4.2(1˙).

Definition 4.6 Let .at ; bt ; "t ; l � l.t/; xƒt / denote the auxiliary information used to define this cone
complex. We denote this mapping cone complex as

RFCŒat ;bt /� .ƒ0; ƒ
t
1I "t /D

�
C�.t/Œat ; bt /˚C

n���2.t/Œat ; bt /; dB
�
;

which naturally is a filtered chain complex with action window Œat ; bt / and filtration induced by a.

Remark 4.7 (1) The sign change and shift of grading of the second summand is needed in order for the
summand B of the differential dB to be of degree �1. The relevant index for the disks with two positive
punctures whose count defines B was computed in [22, Lemma 2.5].

Further, with this convention, the degree of a generator is continuous under deformations through transverse
chords, even when the length of the chord at some point becomes zero, so that the component of the
starting and end points become interchanged; this readily follows from the definition of the grading in
Section A.3.

The mapping cone complex also can be defined without a grading. While the grading is necessary (and
warranted) to prove Theorem 1.10, the other results in Section 1 need only the ungraded complex.
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(2) We suppress the upper bound notation l � l.t/ in an attempt to reduce the overbearing set of
decorations. To be consistent with similar concepts in other literature, we sometimes call the mapping
cone complex the Rabinowitz–Floer complex, and when the Legendrian is augmentable (so that we can
choose bt D l D�at D1) we denote it by RFC�.ƒ;ƒt /.

(3) The Legendrian contact cohomology complex C �..�1; a�/ is the degree-wise dual of a possibly
infinite dimensional complex. In such a case the chords x10 do not form a basis of RFC�.ƒ;ƒt /, since
one must also allow formal infinite sums of such chords. In other words, in each fixed degree i 2 Z, the
filtered vector space RFC.�1;C1/i .ƒ;ƒt / is the inverse limit of the directed system

RFCŒ0;C1/i  RFCŒ�1;C1/i  RFCŒ�2;C1/i  � � �

of filtered vector spaces and canonical quotient maps induced by the filtration.

Theorem 4.8 Assume that the following conditions are satisfied :

� l � l.�/ > 0 is smaller than the length of any contractible periodic Reeb orbit  of degree j j � 1;

� "� is an augmentation of the sub-DGA A
l�l.�/
pure .ƒ0[ƒ1/ generated by pure Reeb chords; and

� ƒt1 is generated by a Legendrian isotopy of oscillation

l.t/D

Z t

�

�
max
y2Y

H� .y/�min
y2Y

H� .y/
�
d�:

Then , as long as l � l.t/ > bt � at > 0 and Œat ; bt / is a finite interval , there exists a sequence of
augmentations "t of the DGAs A

l�l.t/
pure .ƒ0[ƒ

t
1/ that makes RFCŒat ;bt /� .ƒ0; ƒ

t
1I "t / into a well-defined

PWC family of complexes with action-window Œat ; bt /. In particular , the complexes undergo the
deformations specified by the barcode proposition (Proposition 2.4) as t varies.

In the case when l D C1, at D �1 and bt D C1 holds for all t , then the homology of the entire
complex is invariant under Legendrian isotopy. In addition , in any smooth family of finite action windows ,
we may assume that we have a PWC family of complexes.

The analogous invariance also holds when the first Legendrian is deformed by a Legendrian isotopy, while
the second copy is being fixed. The proof is completely analogous and left to the reader.

Remark 4.9 � Theorem 4.8 holds if we replace l.t/ with the oscillation underlying the Shelukhin–
Chekanov–Hofer norm or the Usher norm

l1.t/D

Z t

�

max
y2Y

H� .y/ d� or l2.t/D l.t/Cmax
y2Y
jg.y/j:

Here g.y/ is the conformal factor for the time-t contactomorphism defined byH ; see [39, Definition 10.1].
This follows because l.t/� l1.t/; l2.t/.
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� If H defines a contact-form-preserving contactomorphism, ie if the conformal factor is 0, then the
length of the pure chords are preserved. It then follows from Proposition 1.11 that the stable-tame
isomorphism class of the Chekanov–Eliashberg algebra Al does not depend on t . In particular, Al has an
augmentation for all t , and we can improve Theorem 4.8 by dropping the condition l � l.t/ > 0.

To prove Theorem 4.8, we write the isotopy as a concatenation of short isotopies. Below any action level
upper bound, we can assume there is at most one of the following singular moments: a mixed chord
that enters or leaves the action window Œat ; bt /; the birth/death of a pair of chords occurs; the actions of
exactly two mixed chords coincide; the action of a pure chord equals l � l.t/; and the action of a mixed
chord vanishes. All of these moments, except the last one, are considered in [17, Proposition 3.5], which
is the equivalent of Theorem 4.8 in the special case .Y; ˛/D .P �Rz; dz� �/. The case when the action
of a mixed chord vanishes corresponds to when the Legendrians ƒ0 and ƒt1 intersect. By genericity we
can always assume that there are only finitely many such moments in the family. The invariance at these
moments is taken care of in Section 4.3.1 below.

To recycle the reasoning of [17, Proposition 3.5], we will apply the algebraic machinery from Section 2,
in particular Propositions 2.4 and 2.5, to our current geometric setup. (In particular, the algebraic
interpretation of bifurcation analysis done in [17] is replaced by Proposition 1.11.) And to apply the
Section 2 results, we need to establish the hypotheses (A1) and (A2) for Lemma 2.1.

Finally, in the case when l D C1, at D �1 and bt D C1, the proof of the invariance of the
complex is simpler, since we do not need to care about whether the maps consist of standard bifurcations,
ie handleslides or birth/deaths. (In other words, we do not need Lemma 4.13.) Instead, the weaker
property of quasi-isomorphism follows by standard invariance properties of the linearized Legendrian
contact homology as in [20], combined with the treatment of the double point and hypothesis (A2) in
Section 4.3.1 below.

4.3 Mapping cone complex invariance during a short Legendrian isotopy

We now consider a varying t 2 Œ�;C�. Assume that the interval Œ�;C� is small. As in Section 4.1,
L denotes the Lagrangian isotopy-trace concordance of xƒt . Since the oscillatory norm � D l.C/� l.�/

isotopy from xƒ� to xƒC is arbitrarily small, we assume that there are no pure chords whose lengths are in
the interval .l � l.C/; l � l.�//. Thus we can use the same action window Œa�; b�/D ŒaC; bC/D Œa; b/

for both complexes. Moreover, we assume that no mixed chords enter or leave this action window, and
that there are no birth/death pairs of chords when t 2 Œ�;C�.

4.3.1 One double point Suppose ƒ\ƒt1 D ∅ when t 2 Œ�;C� n f0g and that there exists a unique
intersection point ƒ\ƒ01 D fqg that is transverse in a one-parameter family. In particular, the double
point arises as a transverse family of mixed Reeb chords ct , whose action a.ct / changes sign at t D 0.
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Remark 4.10 For the remainder of this discussion, we assume that c� runs from ƒ�1 to ƒ, and hence
a.c�/ < 0 < a.cC/. The case when c� runs from ƒ to ƒ�1 follows from this case by considering the
reverse-time isotopy.

For some sufficiently small interval Œ�;C�, after a possible C 0–small perturbation, we can choose a
contact-form-preserving Darboux neighborhood U � Y of q such that the following hold:

� There is a contact-form-preserving identification

U Š .B1/x � .B1/y � Œ��; ��z � .B1/x �Rny �Rz D .J
1.B1/; �.dz�px dx//

for some � > 0 that we can make arbitrarily small, and where Br �Rn is the disk centered at 0 of
radius r .

� ƒ\U is the 0–section j 10.

� ƒt1\J
1.B1/D j

1.ft / for some ft W B1!R that smoothly varies with t .

� For all x 2 B1 nB2=3, ft .x/ is independent of t .

� For all x 2 B1=3, ft .x/D kxk2C t .

� For all x 2 B1, .dft /�1.0/D 0.

� The chord ct � 0� 0�Rz is the unique mixed chord of ƒ and ƒt1 in U .

In order to describe the trace cobordism it is useful to utilize the exact symplectomorphism�
R� �Rnx�Rny�Rz; d.e

� .dz�y dx//
� Š
�! .R>0/q�Rnx�Rnpx �Rpq ; .�; x; y; z/ 7! .e� ; x; e�y; z/;

where the target is equipped with the symplectic form d.q dpq � px dx/. For the choice of primitive
d.�pq dq�px dx/, one can describe exact Lagrangians via their front projection to the contactization�

..R>0/q �Rnx �Rnpx �Rpq /�RZ ; dZ �pq dq�px dx
�
:

The noncylindrical part of the immersed Lagrangian trace cobordism inside R�U is constructed in these
coordinates via the front projection shown in Figures 4 and 5. We can assume that:

� The Lagrangian trace is cylindrical away from the intersection point, ie

L\ .R� � .Y nU//DR� � ..ƒ
C
1 [ƒ/ nU/DR� � ..ƒ

�
1 [ƒ/ nU/

holds for some small neighborhood U of q.

� There exists A < 0 < B so that L\fA� � � Bg contains the unique intersection point q in the
level f� D 0g.

� In the above identification of R�U with a subset of R� J 1B1, the noncylindrical part of L is
identified with the exact Lagrangian immersion whose front is as shown in Figures 4 and 5. (The
figures depictL in the coordinates .qD e� ; x; p; px; Z/ on the contactization of the symplectization
R�U described above.)
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Z

e�

L0 DR� �ƒ0

x

�
1
3

1
3

c�

cC

q

L1

Figure 4: The front projection of the Legendrian lift of the exact Lagrangian immersion L D
L0 [L1 inside R� �U to the contactization .R� �U/�RZ of the symplectization. The Reeb
chord q on the Legendrian lift corresponds to the unique double point fqg D L0 \ L1. The
cobordism is cylindrical with a vanishing primitive of e�˛ outside of a compact subset if all sheets
of the front are of the form e�f .x/ outside of a compact subset. In order for (4-2) to hold inside
the subset

˚
kxk � 1

3

	
, it suffices to consider a front which is the graph of a function of the form

e� . zf .x/Cg.e� // above Bn
1=3
:

� The pullback of the Liouville form e�˛ to L has a primitive that vanishes outside of a compact
subset; this is equivalent to the front projection in Figure 4 to consist of sheets that are of the form
e�f .x/ outside of a compact subset.

� In the subset of R � U ,! R � J 1B1 that lives inside R � J 1B1=3, the immersed trace L is,
moreover, of the form

(4-2) R�ƒ[f.�; �.�/R .x//I x 2ƒ�1 g

for some smooth .�/� 0 (but not monotonously increasing) function that vanishes when � � A,
and which is constant when � � B . Recall that �tR is the Reeb flow of ˛.

Remark 4.11 Equality (4-2) holds because ƒt1 is assumed to induced by the Reeb flow inside the
neighborhood J 1B1=3 of the double point.There is one subtle point here: the function .�/ must be
carefully chosen in order for e�˛ to admit a compactly supported primitive when pulled back to L, as
postulated by the fourth bullet point above. This condition on the primitive is easier to describe in the
coordinates of the front projection: the front should be the graph of a suitable function of the form
e� . zf .x/Cg.e� // above B1=3, where g.e� / is constant for all ˙� � 0 sufficiently large.
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Z

q cC

e�
c�

eB

L1

eA

z

q

cC

�
c� B

uC

u�

AR� �ƒ0

L1

Figure 5: Left: the front projection the Legendrian lift of the exact immersed Lagrangian cobor-
dism LD L1[ .R�ƒ0/ to the contactization .R� �B1=3/�RZ of the symplectization. Right:
the image of small disks u˙ with one puncture at the Reeb chord c˙ and a positivepuncture at the
double point q which is contained inside a slice consisting of the image of the line R� �f0g under
the Reeb flow.

Lemma 4.12 For Œ�;C� sufficiently small , the following holds. For a suitable compatible almost
complex structure on R � Y which is cylindrical outside of a compact subset , there exists a unique
pseudoholomorphic disk uC (resp. u�) with positive (resp. negative) asymptotic puncture at cC (resp. c�),
a positive puncture at q, and no other punctures. There exists a neighborhood of adjusted almost
complex structures (see Section 3) in which a generic choice J makes u˙ rigid and transversely cut out.
Furthermore , there are no disks with a negative puncture at q and with all other punctures negative Reeb
chord asymptotics , of which precisely one is mixed (and thus necessarily going from ƒ to ƒ�1 ).

Proof From the above assumptions (including formula (4-2)), there exists a local projection

� WR�U �R�J 1.B1/! T �.B1/

such that

�.L1\ .R�U//\T
�B1=3 D f.x; 2x/g\T

�B1=3 and �.R� .ƒ\B1=3//D f.x; 0/g:

Let JT �.B1/ be any almost complex structure compatible with the standard symplectic structure !0
on T �.B1/. This lifts to a unique cylindrical almost complex structure JU on R�U for which � is
.JU ; JT �.B1//–holomorphic.

If JT �.B1/ is integrable in a neighborhood of the double point 0 2 T �.B1/, then [14, Lemma 8.3(1)]
proves the transversality result for the strip u˙ � ��1.0/ whose image is the trace of the isotopy of the
Reeb chord ct between q and c˙. This strip is depicted in Figure 5.

Extend JU to an adjusted almost complex structure J for R�Y . Since transversality is an open condition,
we can perturb J generically to assume all rigid holomorphic disks are transversely cut out.

We will show uniqueness of uD uC first using a monotonicity result [13, Lemma 5.1] for Lagrangian
surgery cobordisms (the current setup is similar), then using a monotonicity result [30, Proposition 4.7.2]
for compact Lagrangians. The u� case is similar.
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Using the notation of [13], let �DA andCDB so that L is cylindrical outside of fA� � �Bg�R� �Y .
In [13, Section 3.3.1] the total energy is defined by

EŒA;B�.u/D e
�A

Z
u

d.e'.�/˛/C sup
�.�/

Z
u

�.�/ d� ^˛:

This total energy is the sum of the d.e'.�/˛/–energy of u, where

'.�/D

8<:
A if � � A;
� if � 2 ŒA; B�;
B if � � B;

and the .d� ^˛/–energy of u\f� … ŒA; B�g, and where the �.�/ are nonnegative bump functions that
have compact support contained in precisely one of the subsets

� .�1; A�, in which case
R

R �.�/ dt D 1, or in

� ŒB;C1/, in which case
R

R �.�/ dt D e
B�A.

Let h.qC/ > h.q�/D 0 be the primitives of e�˛jTL at the two sheets of the double point of L, whose
size is controlled by the size of `.c˙/; see the difference of Z–coordinates in Figure 4. Applying
[13, Proposition 3.11(2) and (3)] to the first and second term of the total energy, we get

e�A
Z
u

d.e'.�/˛/� eB�A`.cC/C e
�A.h.qC/� h.q�//; sup

�.�/

Z
u

�.�/d� ^˛ � eB�A`.cC/;

and thus
EŒA;B�.u

0/� eB�A`.cC/C e
�A.h.qC/� h.q�//C e

B�A`.cC/;

for any J –holomorphic strip u0 with its unique positive Reeb chord puncture at cC, one positive puncture
at q, and possibly additional negative Reeb chord punctures. For the computation of the above bound on
the energy, we have used that the primitive of e�˛ pulled back to L can be taken to have compact support.

In view of the above energy bound, and dependence of .h.qC/�h.q�// on `.c˙/, we get the following
crucial property: total energy of u0 can be assumed to be arbitrarily small, after shrinking the interval of
the isotopy used in the construction of the cobordism (in order for `.c˙/ to become arbitrarily small).

Following the proof of [13, Lemma 5.1] based upon the standard monotonicity property for pseudoholo-
morphic curves in symplectic manifolds (see [30, Proposition 4.3.1]), there is a constant E0 such that if
u0 intersects the subset fz D˙1g � J 1B1 (which is disjoint from L), then

EŒA;B�.u
0/�E0:

Under the assumption that the cobordism has been constructed so that `.c˙/ > 0 is sufficiently small
(while keeping the above coordinates, almost complex structure, and projection of L to T �B1=3 fixed),
we can hence conclude that u0 is disjoint from some fixed neighborhood of fjzj D 1g. Since

@U D fjzj D 1g[ @.B1 �B1/� .�1; 1/;

the projected curve v D � ıu0ju0�1.U / has boundary vju0�1.@U / contained in @.B1 �B1/� T �B1.
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In view of the above bound on the jzj–coordinate of u0, we conclude the following. If v intersects the
boundary @.B1=3�B1/, then its symplectic area can be bounded from below by Sikorav’s original mono-
tonicity result [30, Proposition 4.7.2]. More precisely, we apply this monotonicity to JT �B1–holomorphic
curves inside in .B1=3 �B1; !0/ with boundary on the transversally intersecting Lagrangian planes

�.L\ .B1=3 �B1 � Œ�1; 1�//� B1=3 �B1:

(The Lagrangian planar property of the projection of L is a consequence of formula (4-2).) We conclude
that any such v has !0–area bounded from below by some constant C > 0.

The holomorphicity of the projection � , together with the fact that the two-forms d.e'.�/˛/ and �.�/ d�^˛
pull back to nonnegative two-forms on any pseudoholomorphic curve for a cylindrical almost complex
structure (recall that '0.�/; �.�/� 0), implies the inequalities

0�

Z
v

eA d˛ �EŒA;B�.u/:

In particular, we conclude that EŒA;B�.u/ has a lower bound in terms of the symplectic area of v which,
in turn, is bounded from below by C > 0 in view of the aforementioned monotonicity argument. For
`.c˙/ > 0 sufficiently small, the upper bound on the left-hand side implies that the image of u must be
contained entirely inside B1=3 �B1 � Œ�1; 1�.

Since the projected boundary condition �.L \ .B1=3 � B1 � Œ�1; 1�// consists of two transversely
intersecting Lagrangian planes, Stokes’ theorem can be applied to show that v must have vanishing
!0–area. Hence the projection v is constantly equal to 0 2 B1=3 �B1. This means that u0 is contained
inside the Reeb orbit that projects to the origin in the above coordinates. The sought claim concerning
the uniqueness of u˙ follows from this.

The claim about the nonexistence of discs with only negative asymptotics is a consequence of Stokes’
theorem.

For a pair of mixed chords x; y and ordered (possibly empty) sets of pure chords z; z0 define

mL.x
C; y˙/D

X
z;z0

]M0.xCzy˙z0IL/"�.zz
0/:

Lemma 4.12 implies (up to a q 7! ˙q basis change)

(4-3) mL..cC/
C; qC/D 1DmL.q

C; .c�/
�/:

Since a positive (resp. negative) puncture at q means that the boundary of the disk makes a jump from
(resp. to) the component R�ƒ at the puncture, we immediately get the vanishing result

mL.q
�; .c�/

�/D 0DmL..cC/
C; q�/:

Choose ı such that
max
x10¤c�

`.x10/ < ı < `.c�/ < 0 <min
x01

`.x01/:
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Let RFCŒı;b/� .˙/ and RFCŒa;ı/� .˙/ be the Rabinowitz–Floer complexes for xƒ˙ with maps d˙01; d
˙
10; B

˙

from Definition 4.6.

Define the linear maps

�01 W RFCŒı;b/� .C/! RFCŒı;b/� .�/ and �10 W RFCŒa;ı/� .�/! RFCŒa;ı/� .C/

via the generators, as follows:

(4-4) �01.x01/D
X
y01

mL.x
C
01; y

�
01/y01CmL.x

C
01; q

C/c�; �10.x10/D
X
y10

mL.x
�
10; y

C
10/y10:

Note that �10.c�/D c�, and c� is not in the domain of either map.

Fix a small � > 0. By Lemma 3.1, we can assume that the time interval of the isotopy, Œ�;C�, is
small enough that the following holds. For any pair of distinct chords fx; yg ¤ fc�; cCg and any chord
z … fc�; cCg,

j`.x�/� `.yC/j> e��; j`.z�/� `.zC/j< e���; j`.c�/� `.cC/j< e
���:

Lemma 4.13 For � sufficiently small and for all x01; x10 … fc�; cCg,

h�01x01; x01i D k01 and h�10x10; x10i D k10

are units.

Proof The exact Lagrangian concordance L1 shown in Figure 4 has an inverse cobordism L2 constructed
in the same manner, so that the concatenation L2ˇL1 is (compactly supported) Hamiltonian isotopic
to R�ƒC. (One can either construct it by the front projection, or use the fact that the noncylindrical
component of L1 can be realized as a Lagrangian trace cobordism as constructed by Proposition B.1.)
Let L0 DR� xƒC and let L1 D L2ˇL1, such that L1\fj� j> �0g agrees with L0.

For 0� s � 1, let Ls be a smooth family of exact Lagrangian concordances with only double points of
arbitrarily small action, such that Ls\fj� j> �0g agrees with L0. As in the last statement of Lemma 4.12
(proven by an application of Stokes’ theorem and the positivity of the total energy) we conclude that
Md .�;Ls/ D ∅ whenever � has a double point of Ls (thus, of very small action), no positive Reeb
chords, and no negative Reeb at cC.

Md .�;Ls/D∅ implies that if we ignore disks with punctures at double points of the concordance, the
trace concordance and inverse-trace concordance induce mapsˆ;‰ which satisfy (3-2). In particular, if we
set x D x01 (resp. x10) then we get that kˆ is a unit, arguing as in Case 1 in the proof of Proposition 1.11
in Section 3. But kˆ is also a count of the disks contributing to h�01x01; x01i (resp. h�10x10; x10i).

Proposition 4.14 The maps �01 and �10 satisfy axiom (A1) with degree �.

Proof We first verify that �01dC01 D d
�
01�01:
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L1 L1 L1

R�ƒC1

R�ƒR�ƒ

R�ƒ�1 R�ƒ

Figure 6: Further examples of boundary points of type .5 � 2˙/ for the compactification of
the one-dimensional moduli space of pseudoholomorphic disks with precisely one positive and
precisely one negative mixed Reeb chord asymptotic, and boundary onL1[.R�ƒ/. See Figure 3.
The components in the middle level that have only pure Reeb chord asymptotics are responsible
for pulling back the augmentations under the DGA–morphism induced by the concordance.

h.�01d
C
01� d

�
01�01/x01; c�i

D

X
y01

hdC01x01; y01ih�01y01; c�i � h�01x01; y01ihd
�
01y01; c�i

D

X
y01

mxƒC.x
C
01; y

�
01/mL.y

C
01; q

C/�mL.x
C
01; y

�
01/mL.q

C; .c�/
�/mxƒ�.y

C
01; c

C
� /:

The term mL.q
C; .c�/

�/D 1 is added to illustrate how the first and second sums are of type .2C � 6/
and .2� 7� 1�/, respectively.

The breaking of curves that involve only pure chords can be disregarded when the strips are counted
with augmentations; see the analysis of the so-called “ı–breakings” in [6]. This is due to two different
mechanisms. First, a broken configuration such as .5� 3�/ shown in Figure 3, ie with a disk with only
pure punctures in the bottom level (these discs define the differential of the Chekanov–Eliashberg algebra
of xƒ�/, are canceled algebraically when the count is weighted by the value of the augmentation. (Recall
that augmentations vanish on boundaries of the Chekanov–Eliashberg differential by definition.) Second,
a disk with only pure punctures in the middle level, shown for instance in Figure 6, plays the role of
pulling back the augmentation "� under the DGA–morphism induced by the concordance L. In view of
Lemma 4.3, this pullback is equal to "C, as sought. For more details, see [6, page 416, I and II].

Since .6� 3�/ corresponds to such an augmentation-related breaking, Proposition 4.2(6) then implies the
right-hand side is 0. The relevant boundary of the moduli space is shown in Figure 3.
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For z01 ¤ c�,

h.�01d
C
01� d

�
01�01/x01; z01i D

X
y01

mxƒC.x
C
01; y

�
01/mL.y

C
01; z

�
01/�mL.x

C
01; y

�
01/mxƒ�.y

C
01; z

�
01/;

which are the .2C � 5/ and .5� 2�/ terms in Proposition 4.2(5). See Figures 3 and 6 for illustrations.
There is no .6� 7/ term since the component with a negative mixed Reeb chord asymptotic to z�01 must
have a negative puncture at q, while mL.q�; z�01/D 0 holds by Lemma 4.12. The .5� 3�/ terms are the
augmented terms. Finally,

.�01d
C
01� d

�
01�01/cC D �01.0/� d

�
01c� D 0� 0:

Verifying �10d�10 D d
C
10�10 has only one computation,

h.�10d
�
10� d

C
10�10/x10; z10i D

X
y10

mL.y
C
10; x

�
10/mxƒ�.z

C
10; y

�
10/�mxƒC.y

C
10; x

�
10/mL.z

C
10; y

�
10/;

which are all the terms in Proposition 4.2(5). Again the boundary is depicted in Figure 3, and we use
Lemma 4.12 to conclude that mL.qC; x�10/D 0 since x�10 ¤ c� holds by assumption.

For x01 ¤ cC, Lemma 4.13 implies h�01x01; x01i D k01 and h�10x10; x10i D k10 are units. So to
construct (strict, not just homotopy) inverses  01;  10 for �01; �10, it suffices to set

 01.x01/D k
�1
01 x01�

X
y01¤x01

h�01.x01/; y01iy01� h�01.x01/; c�icC;

 01.c�/D cC;

 10.x10/D k
�1
10 x10�

X
y10¤x10

h�10.x10/; y10iy10:

It is easy to check that these are chain maps.

Stokes’ theorem finally bounds all the maps’ degrees by � > 0.

Proposition 4.15 The maps B� and BC are chain maps which satisfy axiom (A2). That is , �10BC�01
is homotopic to B�, where B˙ are of degree �.

Proof To prove axiom (A2), define (on generators, then extend linearly) the map

H W RFCŒı;b/� .C/! RFCŒa;ı/
�C1 .C/; defined by H WDH˛CHˇ ;

where

(4-5) hH˛w01; v10i WDmL.w
C
01; v

C
10/ and hHˇw01; v10i WDmL.v

C
10; .c�/

�/h�01w01; c�i:

The degree of H is tautologically bounded from above by 0. It suffices to show that

(4-6) h.�01B
��01�B

C/x01; y10i D h.d
C
10H CHd

C
01/x01; y10i:
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Apply Proposition 4.2(4) to analyze @M1.xC01zy
C
10z
0IL/ for possibly empty words of pure cords z; z0. The

broken configurations that constitutes this boundary are shown in Figure 2. If the count these boundary
strata weighted by augmentations, then the strata of type .4 � 3�/ all cancel; for this reason, these
configurations can be ignored.

The right-hand side of (4-6) corresponds to the boundary strata of the following types:

(2C � 4) These boundary points correspond to all terms in dC10 ıH˛ �H˛ ı d
C
01.

.5� 5� 1�/ With the additional requirement that the component in .1�/ has one positive mixed Reeb
chord asymptotic to c�, these boundary points correspond to the terms in Hˇ ıd

C
01. (Here

we have used the chain map property of �01 established in Proposition 4.14 together with
equation (4-5).)

However, we also have:

(�) The broken configurations that correspond to dC10 ıHˇ , which are of type (2C � 5) (which, thus,
are not boundary points of (4)).

We continue by analyzing the left-hand side of equation (4-6):

(1C) These components equal the hBCx01; y10i term on the left-hand side.

By unraveling the definitions, the remaining term on the left-hand side is computed to be

�10B
��01.x01/D �10B

�

�
mL.x

C
01; q

C/c�C
X
y01

mL.x
C
01; y

�
01/y01

�
D �01

�X
z10

�
mxƒ�.z

C
10; .c�/

�/mL.x
C
01; q

C/C
X
y01

mxƒ�.y
C
01; z

C
10/mL.x

C
01; y

�
01/

�
z10

�
D

X
z10;w10

�
mL.w

C
10; z

�
10/mxƒ�.z

C
10; .c�/

�/mL.x
C
01; q

C/

C

X
y01

mL.w
C
10; z

�
10/mxƒ�.y

C
01; z

C
10/mL.x

C
01; y

�
01/

�
w10:

Here we find the remaining types of broken configurations that arise in the boundary @M1.xC01zy
C
10z
0IL/:

(5� 5� 1�) With the additional constraint that no Reeb chord asymptotic of the component 1� is
asymptotic to c�, these types correspond to the second term on the right-hand side.

What remains is the term (6� 6). For this we need to analyze the term

mL.w
C
10; z

�
10/mxƒ�.z

C
10; .c�/

�/mL.x
C
01; q

C/

in the expression �10B��01.x01/ further. We start by using Proposition 4.2(5) to rewrite this as

.mxƒC.w
C
10; z

�
10/mL.z

C
10; .c�/

�/CmL.w
C
10; q

�/mL.q
C; .c�/

�/mL.x
C
01; q

C/:
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These broken strata are shown in Figure 3. Since mL.qC; .c�/�/D 1 holds by Lemma 4.12, the previous
expression can be simplified even further. We have thus found:

(6� 6) This corresponds to the second term in the latter expression, ie the termmL.wC10; q
�/mL.x

C
01; q

C/.

The first term mxƒC.w
C
10; z

�
10/mL.z

C
10; .c�/

�/mL.x
C
01; q

C/ of the latter expression remains to be taken
care of, since it is not inside boundary @M1.xC01zy

C
10z
0IL/. However, these terms cancel with the

remaining contribution on the right-hand side of equation (4-6), since:

(�) The first term
mxƒC.w

C
10; z

�
10/mL.z

C
10; .c�/

�/mL.x
C
01; q

C/

is equal to dC10 ıHˇ by formula (4-5) (it is not a part of the boundary of the moduli space (4)).

We have thus established equation (4-6), as sought.

4.3.2 No double points Consider the summands C�.˙/D RFCŒ0;b/� .˙/ and C �.˙/D RFC.a;0�� .˙/.
We define �01 and �10 as in equation (4-4), noting that mL.xC01; q

�/D 0 since there is no double point q.
The rest of the arguments are essentially simplifications of the ones above, since curves of type (6) and (7)
do not exist. Note that bifurcations can occur that were not considered in Section 4.3.1. Notably, a pair of
mixed chords may be born or die, making one of the above pair of RFC–complexes nonisomorphic. But
even in the event of a birth (death is a reverse-time birth), the statement and proof of Lemma 4.13 still
apply. To recap our argument: since there are no double points, we can apply Proposition 1.11 to replace
the DGA–morphism induced by the Lagrangian concordance with a stable-tame isomorphism (STI) of
DGAs. Lemma 4.3 equates how the pullback of the augmentation induced by the concordance is the
same as the change in augmentation induced by the STI in [17, Lemma 3.4]. Thus, as outlined shortly
after stating Theorem 4.8, we can apply the techniques of [17, Section 3], to both complexes C�.˙/
and C �.˙/, to prove Theorem 4.8.

5 Proofs of Theorems 1.4, 1.6 and 1.9

We need the following variation of [17, Lemma 3.1], which allows us to estimate the oscillation of a
contact Hamiltonian based on the change of lengths of a pair of Reeb chords.

Lemma 5.1 Consider a smooth one-parameter family c.t/� .Y; ˛/ of Reeb chords with boundary on
a.t/2ƒ0; b.t/2ƒ1.t/, whereƒ0� Y is a fixed Legendrian submanifold andƒ1.t/� Y is a Legendrian
isotopy. (Here a is either the endpoint or the starting point , and c.t/ is allowed to be of zero length , ie a
double point ƒ0\ƒ1.t/.) Then

(5-1) d

dt
`.c.t//D ˛.Xb.t/.t//DHt .b.t//;
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where Xb.t/ 2 T Y is the contact vector field that generates ƒ1.t/. In particular , if c.t/ and d.t/ are two
Reeb chords as above , thenˇ̌�

`.c.0//� `.d.0//
�
�
�
`.c.1//� `.d.1//

�ˇ̌
� kHtkosc

is satisfied.

Consider a smooth one-parameter family c1.t/ of pure Reeb chords with initial and terminal endpoints at
a1.t/; b1.t/ 2ƒ1.t/. Then

d

dt
`.c1.t//D ˛

�
Xt .b1.t//

�
�˛

�
Xt .a1.t//

�
DHt .b1.t//�Ht .a1.t//:

Hence , the inequality j`.c1.1//� `.c1.0//j � kHtkosc holds.

Proof The calculation for the pure chords c1 was proven in [17, Lemma 3.1] for general contact
manifolds, so we only need to verify the computation for c.

When c.t/ has positive length, we may perform the computation for a contact vector field X that can
be taken to vanish along all of ƒ0 after cutting off the contact Hamiltonian in some neighborhood. The
computation of d

dt
`.c.t// is then a direct application of [17, Lemma 3.1].

In the case when c.t/ is of length zero, we replace ƒ0 by its image ��R˛ .ƒ0/ under the time-� Reeb
flow, and instead compute d

dt
`.zc.t// for the induced chord between ��R˛ .ƒ0/ and ƒ1.t/. Here zc.t/

corresponds to c.t/ under the natural bijective correspondence of Reeb chords between, on one hand, ƒ0
and ƒ1.t/ and, on the other hand, ��R˛ .ƒ0/ and ƒ1.t/. Under this bijection, gotten by “removing” the
first time-� portion, the chord lengths differ by the constant �.

The inequality involving the difference of lengths and oscillation of the contact Hamiltonian is finally
proven by the following computation:ˇ̌�

`.c.0//� `.d.0//
�
�
�
`.c.1//� `.d.1//

�ˇ̌
�

Z 1

0

ˇ̌̌
d

dt
`.c.t//�

d

dt
`.d.t//

ˇ̌̌
dt

D

Z 1

0

jHt .c
C.t//�Ht .d

C.t//j dt

�

Z �
max
y2Y

Ht �min
y2Y

Ht
�
dt D kHtkosc;

where cC.t/ and dC.t/ are the endpoints of the corresponding chords that lie on the component ƒ1.t/.

5.1 Proof of the Main Theorem

Recall the notation from Theorem 1.4. A Legendrian ƒ � .Y; ˛/ is moved by a contact isotopy �t˛;H ,
with 0 � t � 1. The Hamiltonian Ht W Y ! R satisfies kHtkosc < min fl; `.ck/g. Here 0 < l � 1 is
chosen such that there exists an augmentation " W Al.ƒ/! k, and ck is the Reeb chord with the kth

shortest length.
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Let 1� � > 0 be a constant to be determined. Let ƒ0 Dƒt0 Dƒ and ƒt1 D �
t
˛;H .ƒ

0
0/, where ƒ00 is a

perturbation of a push-off (of flow � in the positive Reeb direction) of ƒ0. Then let xƒt Dƒt0[ƒ
t
1.

First set �a0 D 2� D b0 and l.t/ D
R t
0 maxH� �minH� d� . We claim that RFCŒat ;bt /� .ƒ0; ƒ

0
1I "0/

(notation as in Definition 4.6) is quasi-isomorphic to the Morse complex of ƒ0. This can be seen since
C �.a0; 0� D 0 and d001 counts only holomorphic strips which approximate the gradient flows of the
function which represents ƒ01 graphically in a small J 1ƒ00 neighborhood of ƒ00 for a suitable cylindrical
almost complex structure; see eg [14].

We wish to adapt our situation in order to replicate [17, Section 3.4] as much as possible, which proves
the special case of Main Theorem, Theorem 1.4, when .Y DP �Rz; ˛D dz��/. In that case, due to the
global @z Reeb flow, we could choose a large N � 1 push-off instead of a small �� 1 one. The complex
considered in the previous setup is somewhat simpler since there never are any x10 chords throughout the
isotopy (or chords of zero length). The chords at t D 0 in the action window ŒN � 2�;N C 2�� form a
subcomplex which is quasi-isomorphic to the Morse complex of ƒ0.

The action of chords (� N versus � 0) which generate a Morse complex, and the generators of the
complex (type x01 versus type x01; x10) are the only distinctions between the existing argument for the
Main Theorem, Theorem 1.4, when .Y D P �Rz; ˛ D dz� �/ presented in [17, Section 3.4], and the
needed argument for the Main Theorem when .Y; ˛/ is arbitrary.

We briefly sketch this argument, deferring full details to [17, Section 3.4]. Label the Morse generators
x1; : : : ; xm. For each family xi .t/, consider families of two barcodes which are approximately based
on action windows Œ`.xi .t//� .l � l.t//C �; `.xi .t//C �� and Œ`.xi .t//� �; `.xi .t//C .l � l.t//� �� as
specified in [17, equations (3.6) and (3.7)]. Then [17, Lemma 3.7] implies that in each action window we
see an infinite bar that starts at `.xi .t//. Theorem 4.8 implies that we can use the barcode proposition
(Proposition 2.4) for this isotopy. By looking at both action windows simultaneously during this isotopy,
we verify that the bar can only disappear in the amount of time it takes `.xi .t// to coincide with one
of the values of some other mixed chord that was not part of the original Morse complex. The rate
of change of the difference of these action values is controlled by d

dt
l.t/ as calculated in Lemma 5.1,

which brings in the kHtkosc term as stated in the Main Theorem (Theorem 1.4). This sketch glosses over
the difference between the endpoints of the bars in a barcode, and their representations as Reeb chords.
However, this important distinction has been addressed in case (ii) in [17, Section 3.4], and the argument
there is independent of the contact manifold and form.

5.2 Proof of Theorem 1.6

Rosen and Zhang prove that, for any submanifold N � Y of dim.N / D n, the distance ı˛ is either
nondegenerate or ı˛ � 0; see [39, Theorem 1.9]. So it suffices to find ƒ1 and ƒ2 which are the images
of contact isotopies of ƒ, and for which ı˛.ƒ1; ƒ2/ > 0.
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Consider any closed Legendrianƒ and fix a contact form ˛ on Y . Letƒi , iD1; 2, be given by j 1.�2 �i �f /
in a standard contact-form-preserving jet-neighborhood of the form

D�rT
�ƒ� Œ�5�; 5��z � .J

1ƒ; dz�p dq/

inside Y which identifies ƒ with j 10, where f Wƒ! Œ0; 1� is a Morse function, and 0 < �� 1. Let

0 <min.f /Dm1 < � � �<mk Dmax.f /

be an enumeration of the critical values of f that we, moreover, assume correspond to distinct critical
points. After postcomposing the Morse function with a suitable change of coordinates, we may assume

(5-2) 2min.f / >max.f / > 0:

Using the notation of Definition 4.6 for the Rabinowitz–Floer complex with action window

RFCŒat ;bt /� .ƒ;ƒt I "t /

we choose the following: the action window is constantly equal to Œat ; bt / D Œ�2�;C2�/; the initial
action threshold, l D 6�, is sufficiently smaller than the length of any contractible periodic Reeb orbit 
of degree j j � 1; by the existence of the above standard neighborhood, all Reeb chords of ƒ and ƒi that
start and end on the same component have length at least 7�, so "0 is necessarily trivial; and ƒt is an
isotopy from ƒ1 to ƒ2 with oscillation l.1/� �.

If we had studied a Legendrian isotopy from ƒ1 to ƒ2 generated by a Hamiltonian Ht such that l.1/ no
longer satisfies l � l.1/ > b1� a1 (so that our technology breaks down), we automatically get a desired
lower bound Z 1

0

max jHt j dt � 1
2
kHtkosc >

1
2
l.1/� 1

2
.l � .b1� a1//D

1
2
.6�� 4�/D �:

Assume we can apply Theorem 4.8; thus the isotopy deforms the barcode of RFCŒ�2�;C2�/� .ƒ;ƒ1I "1/ to
that of RFCŒ�2�;C2�/� .ƒ;ƒ2I "2/ via the bifurcations specified by the barcode proposition, Proposition 2.4.

During this isotopy, one of the following scenarios occur:

Case 1 Some starting/end point of a bar in the barcode of RFCŒ�2�;C2�/� .ƒ;ƒ1I "1/ survives, and by
inequality (5-2), moves at least a distance �2.2min.f /�max.f // > 0.

Case 2 Some bar in the barcode dies or escapes the action window. Note that the concerned bars all
are of length at least minf�2.m2�m1/; : : : ; �2.mk �mk�1/g by the assumption made on distinct critical
values. (In fact, RFCŒ�2�;C2�/� .ƒ;ƒi I "i / for i D 1; 2 are the Morse complexes that compute the singular
homology H�.ƒIZ2/. So even more can be said about the barcode, but we do not use this.) Theorem 4.8
together with the barcode proposition, Proposition 2.4, then implies thatZ 1

0

max jHt j � C
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holds for this Hamiltonian that generates a Legendrian isotopy from ƒ1 to ƒ2, where

C WDminf�2.2min.f /�max.f //; �2.m2�m1/; : : : ; �2.mk �mk�1/g> 0

is a constant that only depends on the contact form ˛ and the Legendrians ƒ;ƒ1; ƒ2. Here we use
Lemma 5.1 to relate change in Reeb chord length and the value of the contact Hamiltonian Ht at the
endpoint of the Reeb chord of ƒt that corresponds to the moving bar.

We conclude that ı˛.ƒ1; ƒ2/ > C holds, as sought.

5.3 Proof of Theorem 1.9

Letƒt0D�
t
˛;Ht

.ƒ0/, withHt � c > 0, ƒt1Dƒ1 and xƒt Dƒt0[ƒ
t
1. Recall the assumptions thatƒ0; ƒ1

are augmented and that no pseudoholomorphic plane appears in the SFT–compactifications from [3]; see
Remarks 1.5 and 1.12. Thus we can set l DC1 and consider the sequence of complexes RFC�.ƒt0; ƒ1/,
whose barcode in any finite action window is well defined for all t � 0 and varies continuously as in
Theorem 4.8. Since each finite bar is a pairing of two mixed chords of relative grading 1, the hypothesis
implies the barcode at t D 0 either has an infinite bar with a starting point of positive action, or a finite
bar with starting point of negative action, and endpoint of positive action. The interlinkedness property
then follows by the continuity of the barcode, together with Lemma 5.1. Namely, according to the latter,
all endpoints of bars moves in the direction of decreasing action, with a speed bounded from below by
c > 0. (Here we use a large enough action window for the given Hamiltonian.)

6 Computations for the standard Legendrian RPn (proof of Theorem 1.10)

This section concerns computations of the Rabinowitz–Floer complex for the standard Legendrian
RP n �RP 2nC1, with the goal of proving Theorem 1.10.

Recall the definition
ƒ0 WD S

2nC1
\ReCnC1

� .S2nC1; �st/

of the standard Legendrian sphere inside the standard contact sphere, as defined in Section 1. By taking
the quotient under the antipodal map we obtain the standard Legendrian embedding

zƒ0 WDƒ0=Z2 � S
2nC1=Z2 DRP 2nC1

of RP n into the standard contact projective space.

Remark 6.1 It is possible to also pass to further quotients S2nC1=Zk with k � 2 in order to obtain
Legendrian embeddings in the standard contact (higher-dimensional analogues of) “Lens spaces”. Most
of the analysis carried out in this section should be possible to apply with only minor modifications in
order to derive similar results also for general even-dimensional lens spaces, ie k D 2m� 2. However,
we do not pursue this direction further.
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Similarly, any linear Lagrangian subspace V nC1 �CnC1 gives rise to a Legendrian embedding

ƒV WD S
2nC1

\V � .S2nC1; �st/

of Sn, and hence a corresponding Legendrian embedding

zƒV WDƒV =Z2 � .RP
2nC1; �st/

of RP n. (Note that zƒ0D zƒReCnC1 .) All of these different Legendrian embeddings are clearly Legendrian
isotopic via an ambient contact isotopy that preserves the round contact form. In particular, we obtain a
C1–small Legendrian push-off of zƒ0 by considering zƒV for a Lagrangian plane V �CnC1 which is
sufficiently close to ReCnC1.

Recall that the round contact S2nC1 is equipped with the contact form ˛st D
1
2

P
i .xi dyi �yi dxi /, and

a time-t Reeb flow given by complex scalar multiplication by ei2t . Hence S2nC1 is foliated by simple
closed Reeb orbits, all of whose periods are equal to � . It follows that the round RP 2nC1 is foliated
by simple closed Reeb orbits of period 1

2
k� for each k D 1; 2; 3; : : : . The orbits of period 1

2
k� form

a manifold �k ŠCP n of Reeb chords which are nondegenerate in the Bott sense; see the work [2] by
Bourgeois. Note that these Reeb orbits are contractible if and only if k D 2m.

The Reeb chords on zƒV all come in connected families Q.zƒV /
Bott
k
ŠRP n labeled by the Reeb chord

lengths 1
2
k� , k D 1; 2; 3; : : : . These families are also smooth manifolds which are nondegenerate in the

Bott sense.

In Sections 6.1 and 6.2 below we will compute the Conley–Zehnder indices of these orbits and chords. In
addition, we compute the Conley–Zehnder indices of the chords and orbits after a generic perturbation by
a Morse function on the Bott manifolds as described in [2], which makes the contact form nondegenerate.
The conclusion of Proposition 6.4 in Section 6.1 is that the Chekanov–Eliashberg DGAs of the standard
Legendrian RP n �RP 2nC1 is well defined for the aforementioned nondegenerate perturbations of the
round contact form. In Proposition 6.8 from Section 6.2 the degree of the Reeb chords on RP n are
computed. This is useful for showing that RP n admits augmentations, which of course is crucial for
defining the Rabinowitz–Floer complex in Proposition 6.12.

6.1 Conley–Zehnder index of a periodic Reeb orbit

Here we perform Conley–Zehnder index computations for the periodic Reeb orbits on the round RP 2nC1,
as well as its nondegenerate perturbations. See Section A.1 for the definition of the Conley–Zehnder
index.

Recall that precisely the even covers of the simple orbits are contractible. In addition, since the universal
cover of RP 2nC1 is S2nC1, it follows that �2.RP 2nC1/ D 0, and any two planes with the same
asymptotic Reeb orbit are homotopic through planes of the same kind. Denote by � WRP 2nC1!CP n

the prequantum bundle projection, for which D�j� is injective. For any contractible Reeb orbit  2 �2m,
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take the trivialization of � along the Reeb orbit  that is induced by pulling back a symplectic frame at
the point �./ 2CP n under the bundle projection � .

We will apply the index formula (A-1) to prove the following.

Lemma 6.2 Consider a plane u WC!R�RP 2nC1 which is asymptotic to  2 �2m. The relative first
Chern class with respect to the above choice of trivialization satisfies

c
�
1;relŒu�D c

CPn
1 Œ� ıu�Dm.nC 1/ for m� 1;

where cCPn
1 is the usual first Chern class and the detailed definition of c�1;rel is in Section A.1.

Here we identify � ı u with a sphere that is homologous to m �L, where L 2 H2.CP n/ denotes the
homology class of a line.

Proof By Stokes’ theorem the symplectic area of the chain � ıu in CP n is equal to the length of the
periodic Reeb orbit. Here we have endowed CP n D RP 2nC1=S1 with the symplectic form induced
by the curvature d˛ of the prequantization form ˛ on RP 2nC1 via symplectic reduction. (With these
conventions, the area of a line in CP n is equal to � .) Since CP n is monotone, ie the area and index are
proportional, the second equality follows. The first equality then follows since

D�j� W �! TCP n

is a symplectic bundle morphism which is an isomorphism on the fibers.

Lemma 6.3 The Conley–Zehnder index of  2 �2m with respect to the above choice of trivialization is
equal to

(6-1) �CZ.A � ı � id/D n;

independently of the multiplicity 2m.

After a perturbation by a Morse function on the Bott manifold as in [2], the nondegenerate orbit that
corresponds to a critical point has Conley–Zehnder index

�CZ.A � ı � id/C i � 2nD i �n;

where i 2 f0; 1; : : : ; dim�2m D 2ng is the Morse index of the critical point.

Proof The computation in the Bott setting was performed in [45, (3.10)]. Alternatively, one can argue as
follows. The linearized Reeb flow in this trivialization is constantly equal to the identity map. Hence,
the aforementioned perturbation of the Reeb flow by a small positive rotation s 7! eiıs id in the contact
planes perturbs the nondegenerate return map to a nondegenerate one. We then compute the classical
Conley–Zehnder index of this path, as defined in [38], which gives 1

2
.2n/D n, as sought.

The Conley–Zehnder index after the perturbation by a Morse function on the Bott manifold follows from
formula (A-2). Recall that dim�2m D 2n is independent of m.
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In conclusion, we have shown the following.

Proposition 6.4 For a plane u WC!R�RP 2nC1 which is asymptotic to a Reeb orbit in the family �2m
for some m� 1, for the round contact form we have the identity

index.u/D ..nC 1/� 3/CnC 2m.nC 1/D .2mC 2/.nC 1/� 4

for the expected dimension of the moduli space of unparametrized pseudoholomorphic planes of the same
type (with asymptotics that are free to vary in the Bott family �2m).

Moreover , after a small perturbation of the contact form by a Morse function defined on the Bott manifolds ,
as constructed in [2], all periodic Reeb orbits may be assumed to be nondegenerate , and to satisfy the
bound

j j � 4.nC 1/� 4� 2nD 2n

on their degrees.

Proof The result follows from a direct application of the index formula (A-1) combined with the above
computations of the relative first Chern class and Conley–Zehnder indices.

6.2 Conley–Zehnder index of a pure Reeb chord

The next step is to compute the Conley–Zehnder indices for the pure Reeb chords Q.zƒV /k on ƒV , both
for the round contact form and after a nondegenerate perturbation. The definition of the Conley–Zehnder
index for Reeb chords will be recalled in Section A.2.

First, note that the Reeb chords on RP n �RP 2nC1 are all null-homotopic when considered as elements
in �1.RP 2nC1;RP n/ when n � 1. This follows since any Reeb chord lifts to a Reeb chord on the
standard Legendrian sphere under the universal cover

.S2nC1; S2nC1\ReCnC1/! .RP 2nC1;RP n/;

where both the map and the restriction S2nC1\ReCnC1 Š Sn!RP n are universal covers. Moreover,
any element in �2.RP 2nC1;RP n/ lifts to an element in �2.S2nC1; Sn/ under this map, where the latter
group vanishes whenever n > 1. Hence the Maslov class automatically vanishes on �2.RP 2nC1;RP n/
when n� 2. This is also the case for nD 1, by a standard calculation.

Contractibility of a Reeb chord is equivalent to the existence of a continuous half-plane

u W .H ; @H /! .R�RP 2nC1;R�RP n/

with boundary condition on the cylinder over the Legendrian RP n and puncture asymptotic to the Reeb
chord. It follows similarly to the case of planes discussed above that two half-planes that share the same
asymptotics are homotopic through half-planes of the same type when n� 2; indeed, �2.S2nC1; Sn/Š
�1.S

n/ D 0 whenever n � 2. In the case n D 1, �2.S3; S1/ Š �1.S1/ D Z and there are infinitely
many homotopy classes of planes asymptotic to any given family of Reeb orbits. The implication is the
following.
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Lemma 6.5 Any Reeb chord c is the asymptotic of a half-plane , and for any two pseudoholomorphic
half-planes u1 and u2 asymptotic to c, we have index.u1/ D index.u2/. Here , index.u/ denotes the
Fredholm index of a linearization of the x@J at u, viewed as an element of a standard Banach space of
maps.

The Reeb chords on the Legendrians zƒV for the round contact form come in Bott families Q.zƒV /
Bott
k
Š

RP n, where the images of these chords coincide with k–fold multiples of the simply covered periodic Reeb
orbits for kD 1; 2; 3; : : : . The index formula for a pseudoholomorphic half-plane inside R�RP 2nC1 with
boundary on zƒV and asymptotics to the chord c 2 Q.zƒV /

Bott
k

(without a constraint at a fixed asymptotic
orbit) is given by formula (A-3) in Section A.2. Namely,

index.u/D .CZ.c/� 1/C�R�RPn Œu�;

where CZ.c/ is the Conley–Zehnder index of the path of Legendrian planes along c; see Section 6.2.

In order to compute the Conley–Zehnder index and the relative Maslov class, we need to make the choice
of a capping path (up to homotopy) as described in Section A.2. Since the Reeb flow is totally periodic,
we will simply choose the constant capping path.

Lemma 6.6 For the constant capping path , we have the identity

�R�RPn Œu�D �RPn.� ıu/D k.nC 1/ for some k � 1;

where �RPn is the classical Maslov index for a disc with boundary on the Lagrangian RP n �CP n.

Here we identify � ıu with a disk in .CP n;RP n/ that is homologous to kD, whereD 2H2.CP n;RP n/
is the homology class represented by either of the two hemispheres in a complex line CP 1 ,!CP n that
intersects RP n in an equator.

Proof The claim about the homology class of � ıu follows an area consideration similar to the proof of
Lemma 6.2.

The first equality is immediate from the choice of capping path, together with the fact that D�j� W �!
TCPN is a bundle morphism that is a symplectic isomorphism on the fibers.

The Maslov index computation
�RPn.� ıu/D k.nC 1/

is well known. (Note that the symplectic area of the projected disc in .CP n;RP n/ is equal to 1
2
k� ,

where � is the symplectic area of a line.)

Lemma 6.7 With the above choice of constant capping paths , the Conley–Zehnder index satisfies

(6-2) CZ.c/D n

for any c 2 Q.zƒV /
Bott
k

, independently of k D 1; 2; 3; : : : .
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After a perturbation by a Morse function on the Bott manifold as in [2], the nondegenerate Reeb chord
that corresponds to a critical point has Conley–Zehnder index

CZ.c/C i �nD i;

where i 2 f0; 1; : : : ; dim Q.zƒV /
Bott
k
D ng is the Morse index of the critical point.

Proof This is similar to the computation of equation (6-1) in the periodic case. More precisely, the Reeb
flow on RP 2nC1 is totally periodic, and the starting point and end point of all Reeb chords on RP n

coincide. The return map of the Reeb flow is the identity, and we make it nondegenerate by performing a
small positive rotation s 7! eiıs id in the contact planes. Finally, the result is obtained by computing the
standard Conley–Zehnder index of this nondegenerate path.

Proposition 6.8 For a half-plane u as above with boundary on R�zƒV , and boundary puncture asymptotic
to a Reeb orbit in the family Q.zƒV /

Bott
k

for some k � 1, for the round contact form we have the identity

index.u/D .n� 1/C k.nC 1/D .1C k/.nC 1/� 2

for the expected dimension of the moduli space of unparametrized pseudoholomorphic half-planes of the
same type (with asymptotics that are free to vary in the Bott family Q.zƒV /Bott

k
).

Moreover , after a small perturbation of the contact form by a Morse function defined on the Bott manifolds
as in [2], all Reeb chords with boundary on zƒV may be assumed to be nondegenerate , and to satisfy the
bound

jcj � 2.nC 1/� 2�nD n

on their degrees.

Proof It suffices to use the index formula (A-3) with the computations from the above lemmas.

6.3 Computing the DGA and the Rabinowitz complex

First we show that the Chekanov–Eliashberg algebra of RP n � RP 2nC1 has a (canonically defined)
augmentation. Of course, here it is important that the Chekanov–Eliashberg algebra is well defined in
the first place, ie there is no Gromov-bubbling which is not captured in the algebra. This nonbubbling
follows from Proposition 6.4 above, which bounds the degree of a contractible periodic Reeb orbits from
below by 2n.

Proposition 6.9 Consider a small Morse perturbation of the round contact form to a nondegenerate one
as described above. The DGA of zƒV has an augmentation in Z2 that sends all Reeb chord generators to 0.

Proof In the case n > 1 this follows directly from the degree computation in Proposition 6.8; since all
chords have degree strictly greater than one, the differential of the DGA has no constant terms.
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In the case nD1we cannot argue merely by considerations of the degree. In this case there is a single Reeb
chord c in degree jcj D 1, while all other chords have degree at least 2. There are thus two possibilities
when coefficients in Z2 are used: either @c D 1, and there are no augmentations, or @c D 0, and there is a
unique “trivial” augmentation that sends all chords to zero. We will see that the latter case holds.

Since RP 3 D UT �S2 D f.q; p/ 2 T �S2 j kpk D 1g and zƒV is Legendrian isotopic to the conormal lift
f.q0; p/ j kpk D 1g of a point q0 2 S2, the Legendrian zƒV admits an exact Lagrangian filling isotopic to
f.q0; p/g � T

�S2 inside the exact symplectic filling T �S2 of the contact manifold UT �S2 DRP 2nC1

when n D 1. Hence, in this case, the Chekanov–Eliashberg algebra admits augmentations that are
geometrically induced by the fillings by the functorial properties of SFT proven in [19]. (Recall that
by functoriality, a Lagrangian filling induces a DGA–morphism from the Chekanov–Eliashberg algebra
of the Legendrian at the positive end to the empty-set Legendrian, whose DGA is the ground ring with
trivial differential. Such a morphism is by definition an augmentation.) In view of the above degree
consideration, the existence of the augmentation implies that @ has no constant terms. Hence, there is a
(trivial) augmentation.

The mixed Reeb chords that start on zƒ0 and end on zƒV and which are of length t � 0 can be parametrized
by their starting points

.ƒ0\ e
�i2t
�V /=Z2 � zƒ0:

The mixed chords from zƒ0 to zƒV are nondegenerate if and only if all Kähler angles between the two
subspaces are pairwise distinct. In any case, as for the pure chords, any mixed chord  can be concatenated
by any closed Reeb orbit of period 1

2
k� , in order to form a new mixed Reeb chord of length `./C 1

2
k� .

We continue to direct our attention to the following particular family of Lagrangian subspaces

Vs WD he
is�=.nC1/�s�

� @x1 ; e
is2�=.nC1/�s�

� @x2 ; : : : ; e
is.nC1/�=.nC1/�s�

� @xnC1iR �CnC1

for � > 0 sufficiently small, and the induced one-parameter family zƒs WD zƒVs �RP 2nC1 of Legendrians.

Lemma 6.10 For a suitable choice of Maslov potentials , the complex RFC�.zƒ0; zƒ1/ is generated by the
mixed chords ckj with k 2Z and j 2 f1; 2; : : : ; n; nC1g that all are nondegenerate and whose gradings are
given by jckj j D j C k.nC 1/� 1. In addition:

� The chords ckj with k D 0; 1; 2; : : : start on zƒ0, end on zƒ1, and are of the form

ckj .t/ WD e
i2t
� @xj

for t 2
�
0; 1
2

�
�.j=.nC 1/C k/� �

��
, j D 1; : : : ; nC 1 and k D 0; 1; 2; 3; : : : .

� The chords ckj with k D�1;�2;�3; : : : start on zƒ1, end on zƒ0, and are of the form

ckj .t/ WD e
i2t
� ei.j�=.nC1/��/@xj

for t 2
�
0; 1
2

�
�.�j=.nC 1/� k/C �

��
, j D 1; : : : ; nC 1 and k D�1;�2;�3; : : : .
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� Their actions satisfy
a.ck1j1 / < a.ck2j2 /

if and only if .k1; j1/ < .k2; j2/ with respect to the lexicographic order.

Proof Consider the family zƒs of Legendrian push-offs. It can be seen that for ı > 0 sufficiently small,
zƒı is obtained by the perturbation of the image of zƒ0 under a small positive Reeb flow by a perfect
Morse function RP n!R. Recall that such a Morse function has precisely nC 1 nondegenerate critical
points, one in each degree 0; 1; 2; : : : ; n.

We proceed to perform the computation of the grading of the mixed chords, as defined in Section A.3.
First, note that the chords ckj correspond to the critical point of the above Morse function with Morse
index j �1. For a suitable choice of Maslov potentials, a standard computation thus gives us jc0j j D j �1;
see eg [15, Lemma 2.9(2)].

The chords ckj with k > 0 have the same start and endpoints as c0j . By Section A.3 the difference in
Maslov potential can be computed by the relative Chern number c�1;relŒu� of a plane u WC!R�RP 2nC1

whose asymptotic is the k–fold cover of the simple periodic Reeb orbit that contains c0j , relative the
trivialization that is constant under the periodic Reeb flow. We compute this index to be

c
�
1;relŒu�D c

CPn
1 Œ� ıu�D k.nC 1/;

where the right-hand side is the first Chern class in CP n of the k–fold multiple of the generator of
H1.CP n/. The computation of jckj j for all k � 0 follows from this.

We leave the computation of the degree of the chords ckj with k < 0 to the reader, since it follows by
analogous computations (although the order of the Legendrians have been switched).

To deduce the statement for zƒ1 from the statement for zƒı , it suffices to use the continuity of the degrees
of the chords. This, in turn, holds since all chords remain transverse as the parameter s 2 Œı; 1� varies.

Lemma 6.11 There is a contact-form-preserving isotopy �t of the round projective space .RP 2nC1; ˛st/

such that

� �t acts on zƒ0 by the Reeb flow and a reparametrization , more precisely , �t .zƒ0/D et�=.nC1/ zƒ0
for all t 2 Œ0; 1�;

� in addition , �1 fixes zƒ1 setwise , ie �1.zƒ1/D zƒ1;

� the mixed Reeb chords with one endpoint on zƒ0 and one endpoint on �t .zƒ1/ remain nondegenerate
for all t 2 Œ0; 1�, in particular there are no birth/deaths of Reeb chords during this isotopy (note that
mixed chords can shrink to a zero-length chord and change direction in the path , which corresponds
to the moments when zƒ0\ zƒ1 ¤∅); and

� the path of nondegenerate mixed Reeb chords parametrized by t 2 Œ0; 1� that is induced by the
above isotopy connects the chord ckj (at t D 0) with the chord ckjC1 if j < nC 1, and with ckC11 if
j D nC 1 (at t D 1).
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Proof It suffices to consider the action on Cn of a path of real matrices in SO.nC 1/� SU.nC 1/�
GL.nC 1;C/ that starts with the identity matrix, and ends at a matrix in SO.nC 1/ that represents a
linear map of the form

@xj 7! ˙@xjC1 for j D 1; 2; : : : ; nC 1;

on the standard basis of CnC1 (here we write @xnC2 D @x1). In other words, the latter matrix performs as
a permutation of the real coordinate lines. The new Legendrian now corresponds to the subspace

CnC1
� V 0 WD h˙ei.nC1/�=.nC1/�s� � @x1 ;˙e

i�=.nC1/�s�
� @x2 ; : : : ;˙e

in�=.nC1/�s�
� @xnC1iR:

Note that this contact isotopy fixes zƒ0 set-wise for all t 2 Œ0; 1�, but that the time-1 map does not fix zƒ1.
It is finally a simple matter to apply the time-�=.2.nC 1// Reeb flow in order for the image of zƒ1 to
become fixed set-wise under the time-1 map.

This proves the first two bullet points, while the third and fourth follow from the first two.

Proposition 6.12 There exist arbitrarily small perturbations of the round contact form on RP 2nC1,
n � 1, to a nondegenerate contact form , for which the minimal degree of a contractible Reeb orbit is
j j � 2n. Moreover ,

(1) the Chekanov–Eliashberg algebra the standard Legendrian RP n, which is well defined and invariant
under Legendrian isotopy by the above , admits an augmentation; and

(2) the Rabinowitz–Floer complex RFC�.zƒ0; zƒ1/ for the above pair of standard RP n’s , which thus
also is well defined and invariant under Legendrian isotopy , can be assumed to have underlying
graded vector space of the form

RFC�.zƒ0; zƒ1/D
M
i2Z

Z2 � ci D
M
i2Z

Z2Œi �;

where jci j D i 2 Z and a.ci / < a.ciC1/, and with a differential that vanishes.

Proof We perturb the contact form by a Morse function defined on the Bott manifold of Reeb orbits
as in [2]. Proposition 6.4 implies the sought bound on the degree of the periodic Reeb orbits. The
well-definedness claimed in part (1) is a consequence of this bound. The augmentation of the Chekanov–
Eliashberg algebra then follows from Proposition 6.9.

For part (2), the form of the graded vector space that underlies the complex can be seen by considering
Lemma 6.10. Recall that the mixed chords described in that lemma already are transversely cut out,
and may be assumed to be unaffected by the small perturbation of the round contact form by the Morse
functions. The same is also true for the path of mixed Reeb chords in the isotopy produced by Lemma 6.11.

Consider the barcode of the filtered complex

RFC�.zƒ0; zƒ1/

with coefficients in Z2. The claim that the differential vanishes is equivalent to the claim that there are no
finite bars in this barcode for any finite action window.
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We argue by contradiction and assume that there exists a finite bar. By degree considerations, this finite
bar must start at some Reeb chord ci end at ciC1 for some i 2 Z.

Consider the family of barcodes that corresponds to the family of filtered complexes

RFC�.zƒ0; �t .zƒ1//; with t 2 Œ0; 1�;

obtained from the isotopy produced by Lemma 6.11. Here we can impose a finite action window that
includes `.ci / and `.ciC1/, and is much larger than the oscillation of the Hamiltonian which generates �t .
This enables us to apply Theorem 4.8 to get a PWC. For this family of pairs of Legendrians, no births/deaths
of mixed Reeb occur; the Reeb chords remain transverse, even if their lengths can shrink to zero and
change direction. Since the barcode varies continuously, we deduce that no bar can (dis)appear during the
deformation.

Lemma 6.11 moreover implies that the generators of RFC�.zƒ0; �t .zƒ1// vary continuously for t 2 Œ0; 1�,
and connect ci to ciC1. In particular, since ci is the start of a finite bar, we conclude that there must be a
finite bar in the barcode of

RFC�.zƒ0; �1.zƒ1//D RFC�.zƒ0; zƒ1/

that starts at ciC1 as well. It is however impossible for a single chord to correspond to both an endpoint
and a starting point of a bar, which is the sought contradiction.

Appendix A Gradings and indices for Reeb chords and orbits

Here we recall some generalities about index formulas of pseudoholomorphic curves and Conley–Zehnder
indices for a .2nC1/–dimensional contact manifold .Y; ˛/ with a choice of contact form which is
nondegenerate in the Bott sense. We consider both cases of periodic Reeb orbits and Reeb chords on
Legendrians. We also consider Maslov potentials for pairs of Legendrians and induced gradings of mixed
Reeb chords. None of these results are new, but since they can be difficult to extract from the literature,
we give a brief but systematic treatment of relevant definitions and basic results.

For simplicity we assume that the first Chern class of the contact distribution �! Y vanishes. The Reeb
chords and orbits of ˛ are assumed to be nondegenerate in the Bott sense; see [2]. (In particular, this also
includes the case when the Reeb chords and orbits are nondegenerate in the usual sense.)

A.1 Grading and Conley–Zehnder index for periodic Reeb orbits

The grading j j of a contractible period Reeb orbit  2 C1.S1; Y / that lives in a Bott manifold � is
defined as the expected dimension

j j D vdim M.�/

of the moduli space that consists of unparametrized finite-energy pseudoholomorphic planes

u WC!R� �Y
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that are

� asymptotic to some Reeb orbit in the (possibly zero-dimensional) Bott family � 3  (which is free
to vary); and

� pseudoholomorphic for an almost complex structure J that is compatible with d.e�˛/ and cylin-
drical outside of a compact subset.

Here we do not identify two solutions that differ by a translation of the symplectization coordinate � 2R.

Remark A.1 Both the contractibility of  and the vanishing of the first Chern class on spherical classes
are crucial for the well-definedness of the grading.

One can compute the expected dimension from topological data of the map u. Namely,

j j WD index.u/:

This Fredholm index index.u/ has been computed; see [2], [45, Proposition 3.7] or [18]. Here we use the
formulation from [45, Proposition 3.7] applied to the special case of a pseudoholomorphic plane.

(A-1) index.u/D ..nC 1/� 3/C�CZ.A � ı � id/C 2c
�
1;relŒu�;

where ı > 0 is a sufficiently small number. Strictly speaking, we will not define the individual terms in
the expression A � ı � id, although see Remark A.3.

Remark A.2 The quantity nC 1 in our formula corresponds to n in [45]. In addition, unlike the
formulation from [45, Proposition 3.7], we consider the moduli space of unparametrized planes; one thus
has to add dimR Aut.C/D 4 to (A-1) in order to get the cited formula.

What remains is now to explain the quantities in the formula. First we need to choose a symplectic
trivialization of the contact planes � along  (up to homotopy).

� The relative first Chern class c�1;relŒu� is the algebraic number of zeros of a section of the determinant
line u� det � line that is constant in the trivialization of � det �! S1 chosen along the Reeb orbit.

� The Conley–Zehnder index �CZ.A�ı � id/ in the nondegenerate case can be computed as a Maslov
index of a suitable (nonclosed) path of Lagrangians, as shown in [38, Remark 5.4]. The path of
Lagrangians is obtained by taking the graphs of the symplectic path induced by the linearized Reeb
flow (in the chosen trivialization of ��! S1); this is a path of symplectic matrices that start with
the identity matrix and ends with a symplectic matrix whose eigenvalues are all different from one
(by the nondegeneracy assumption).

� The Conley–Zehnder index �CZ.A �ı � id/ in the degenerate case, ie when the linearized time-one
map of the Reeb flow along  has an eigenvalue equal to one, is computed as follows. Deform the
path of symplectic matrices induced by the linearized Reeb flow by adding a small positive rotation
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s 7! eiıs id, for some ı > 0, in the contact plane. Then compute the above Conley–Zehnder index
for this deformed path.

Remark A.3 The notation �CZ.A � ı � id/ is motivated by the nondegenerate case (second bullet
point above), where the Conley–Zehnder index also can be computed by first perturbing the asymptotic
operator A for the linearized x@J –equation by adding a small negative multiple of the identity, and
then computing the corresponding classical Conley–Zehnder index. We refer to [45, Section 3.2] for a
description of the asymptotic operator A , which has a discrete spectrum, and which is injective if and
only if the periodic Reeb orbit  is nondegenerate.

As described in [2], for a contact manifold .Y; ˛/ with a Reeb flow that is nondegenerate in the Bott sense,
one can use a small Morse function f W � ! R defined on the Bott manifolds in order to perturb the
contact form to one whose Reeb flow is nondegenerate, while still keeping control of the periodic orbits.
More precisely, the Reeb orbits obtained by such a perturbation coincides with the critical points of the
Morse function f , where the Reeb orbit corresponding to the critical point p has Conley–Zehnder index

(A-2) �CZ.A � ı � id/C index.p/� dim�;

where index.p/ denotes the Morse index of the critical point p of f .

Remark A.4 In particular, the Conley–Zehnder in the degenerate case coincides with the Conley–
Zehnder index of the nondegenerate orbit at the maximum of the Morse function that arises from the
aforementioned perturbation.

A.2 Grading and Conley–Zehnder index for pure Reeb chords which bound planes

In addition to the vanishing of the first Chern class of �!Y , we now also assume the Maslov class of R�ƒ

vanishes. In this case, the grading jcj of a contractible pure Reeb chord c 2 C1
�
.Œ0; `�; f0; `g/; .Y;ƒ/

�
that lives in a Bott manifold Q can be defined as the expected dimension

jcj D vdim M.c/:

Here M.c/ denotes the moduli space that consists of unparametrized finite-energy pseudoholomorphic
half-planes

u W .C\fy � 0g; fy D 0g/! .R� �Y;R�ƒ/

that are

� asymptotic to some Reeb chord in the (possibly zero-dimensional) Bott family Q 3 c (which is free
to vary); and

� pseudoholomorphic for an almost complex structure J that is compatible with d.e�˛/ and cylin-
drical outside of a compact subset.

Here we do not identify two solutions that differ by a translation of the symplectization coordinate � 2R.
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Remark A.5 Again, for the well-definedness of the above grading, both the contractibility of  as well
as the vanishing of the Maslov class for disks are crucial properties.

As before we can compute the expected dimension from topological data of the map u by

jcj WD index.u/;

where the Fredholm index can be expressed as

(A-3) index.u/D .CZ.c/� 1/C�R�ƒŒu�:

We proceed to describe the quantities in the above formula. First we need to choose a continuous capping
path of Lagrangian tangent planes along c.t/ that connects Tc.0/ƒ � �c.0/ to Tc.`/ƒ � �c.`/ (up to
homotopy).

� The relative Maslov class �R�ƒŒu� of the half-plane u which is defined by concatenating the path
of Lagrangian tangent planes along ujfyD0g with the capping path at the puncture to obtain a closed
path of Lagrangian tangent planes, and then computing the usual Maslov index for this loop of
Lagrangian tangent planes in the trivialization induced by u.

� The Conley–Zehnder index CZ.c/ in the nondegenerate case is defined as follows. First, we use
the Reeb flow to identify the contact planes along the Reeb chord. Construct a closed loop of
Lagrangian tangent planes by rotating Tc.0/ƒ to Tc.1/ƒ in the contact plane by using the minimal
positive Kähler angles (these are nonzero by the nondegeneracy assumption). Then concatenate
this path with the capping path to obtain a loop of Lagrangian tangent planes. The Maslov index of
this loop is the Conley–Zehnder index.

� The Conley–Zehnder index CZ.c/ in the degenerate case is computed as above, but where we first
perturb the Lagrangian tangent plane Tc.0/ƒ at the starting point by a small positive rotation eiı id
in the contact plane.

Similarly to the perturbation of Bott manifolds of periodic Reeb orbits by Morse functions as constructed
in [2], one can also perform a perturbation of the Bott manifolds of Reeb chords. We again obtain an
analogous formula

(A-4) CZ.c/C index.p/� dim Q

for the Conley–Zehnder index of the nondegenerate Reeb orbit that corresponds to the critical point p of
the Morse function f W Q!R. Here index.p/ denotes the Morse index of the critical point p of f .

Remark A.6 As in the periodic orbit case, the Conley–Zehnder in the degenerate case coincides with
the Conley–Zehnder index of the nondegenerate orbit at the maximum after such a perturbation.

A.3 Grading and Conley–Zehnder index for mixed Reeb chords

In this subsection we assume that the mixed Reeb chords are all nondegenerate in the strong sense.

Geometry & Topology, Volume 28 (2024)



The persistence of a relative Rabinowitz–Floer complex 2201

The grading of a mixed Reeb chord with endpoints on two different Legendrians ƒ0 and ƒ1 depends
on several additional choices. First, we need to choose a symplectic trivialization of the square of the
determinant C–line bundle .detC �/˝C2! Y (up to homotopy). This is possible since the first Chern
class vanishes (in fact one only needs it to be two-torsion). Note that, since Tƒi � � is Lagrangian, its
image ŒTc.0/ƒi �� .detC �c.0//˝C2 ŠC inside the determinant line is a one-dimensional real subspace.
Second, we need to make continuous choices of lifts to R of the angular phase in R=�Z, ie the argument,
of the images

ŒTƒi � WD .detRƒi /˝R2 � .detC �/˝C2! Y

of these real subspaces in the latter C–line bundle. (Passing to the square means that this operation is well
defined on unoriented Legendrian tangent spaces.) The choice of such a lift is called a Maslov potential,
and it exists if and only if the Maslov classes of ƒi vanish. See [15, Section 2.5] or [6] for more details
about Maslov potentials in the Legendrian setting.

We can define the grading of a mixed Reeb chord c W Œ0; `�! Y from ƒi to ƒj as follows. Let x�i 2R

be the lifts of phases of ŒTƒi � � .detC �/˝C2 at the endpoints of the Reeb chord c as defined by the
choice of Maslov potential. Use the Reeb flow �tR W .Y; ˛/! .Y; ˛/ to identify Tc.0/ƒi with a Lagrangian
tangent plane �`R.Tc.0/ƒi /� �c.`/. By continuity (of course using the triviality of .detC �c.1//˝C2! Y )
we obtain a lift x�00 of the phase of Œ�`R.Tc.0/ƒi /� � .detC �c.`//˝C2. Perform the smallest positive
rotation ei�0 , for some �0 2 .0; �/, that makes the real line

Œ�`R.Tc.0/ƒi /�� .detC �c.`//
˝C2 ŠC

coincide with Œ�`R.Tc.`/ƒi /�. (The nondegeneracy implies that this angle is nonzero.) The Conley–Zehnder
index is then the difference

CZ.c/D 1

�
.x�00C �0�

x�1/ 2 Z

of lifts of phases, and we define the grading via

jcj WD CZ.c/� 1 2 Z:

This grading depends on the chosen symplectic trivialization of the C–line bundle .detC �/˝C2! Y as
well as the choice of Maslov potentials of the Legendrians involved.

A feature of this grading is that an unparametrized pseudoholomorphic strip in R� �Y that has a positive
asymptotic to the mixed Reeb chord cC, and a negative Reeb chord asymptotic to the mixed Reeb
chord c�, lives in a moduli space of expected dimension

vdim M.cC; c�/D jcCj � jc�j:

Note that, for this dimension, we again do not identify solutions that differ by a translation of the
�–coordinate.

We end by noting that Legendrian isotopies naturally induce continuous extension of the Maslov potential.
In the case of a loop ƒt of Legendrians, the effect on the Maslov potential at a point p 2 ƒ0 D ƒ1
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can be seen to be as follows. Take a smooth path .t/ 2ƒt so that .0/D p D .1/, and consider the
trivialization of �.detC �/˝C2 induced by the real lines ŒT.t/ƒt �. The action on this isotopy of the
Maslov potential at p can then be seen to be equal to

c
�
1;relŒu� 2 Z:

Here the relative first Chern class computes the algebraic number of zeros of a smooth extension of
the section of u�.detC �/˝C2 along a smooth orientable compact surface u W † ! Y whose bound-
ary parametrizes .t/, where we require the section to be nonzero and constant with respect to the
aforementioned trivialization along the boundary .t/.

Appendix B Length of trace cobordisms and conformal factors

It is well known that the trace of a Legendrian isotopy can be deformed to an exact Lagrangian concordance
in the symplectization; see [4; 5; 25] for different versions of this construction. Here we revisit the version
from [4, Theorem 1.2] and show that it fits our purposes as far as control on the length is concerned. The
length of a Lagrangian cobordism was defined in [40] by Sabloff and Traynor; see Section 3.

Let ƒ� .Y; ˛/ be a Legendrian submanifold of a contact manifold with a choice of contact form ˛. Let
�t˛;H W .Y; ker˛/! .Y; ker˛/ be a contact isotopy with �0˛;H D id, which thus is generated by a contact
Hamiltonian Ht W Y !R defined by Ht ı�t˛;H D ˛. P�

t
˛;H /. Furthermore, let ft W Y !R be the smooth

function for which .�t /�˛;H˛ D e
ft˛. The function eft is called the conformal factor of the contact

isotopy and was introduced in Section 1. In particular, .�; y/ 7! .� �ft .y/; �
t
˛;H .y// is a Hamiltonian

isotopy of the symplectization that is generated by the t–dependent Hamiltonian e�Ht W R� � Y ! R.
Note that this symplectic isotopy preserves the primitive e�˛ of the symplectic form.

Proposition B.1 For a contact isotopy as above , the following holds for any arbitrary choice of � > 0:

(1) There exists a Lagrangian trace cobordism L01 � .R� � Y; e�˛/ from ƒ to �1˛;H .ƒ/ of length
equal to �e1C� minx2Y;t2Œ0;1� ft .x/� 0.

(2) There exists a Lagrangian trace cobordism L10 � .R� � Y; e�˛/ from �1˛;H .ƒ/ to ƒ of length
equal to e1C� maxx2Y;t2Œ0;1� ft .x/� 0.

(3) One can assume that the two concatenations L01ˇL10 and L10ˇL01 of traces , which are thus
Lagrangian cobordisms from ƒ to itself and �1˛;H .ƒ/ to itself , respectively, are of length

c0 WD e
1C�

�
max

x2Y;t2Œ0;1�
ft .x/� min

x2Y;t2Œ0;1�
ft .x/

�
:

Moreover , these concatenations are Hamiltonian isotopic to the trivial Lagrangian cylinders R�ƒ

and R��1˛;H .ƒ/, respectively, by isotopies supported in a subset of the form Œ0; c0��Y (after a
suitable translation of the �–coordinate).

(4) All Lagrangian cobordisms constructed above have primitives of the pullback of e�˛ that can be
taken to be globally constant on each cylindrical end ˙� � 0.
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Proof (1) It suffices to consider the image of the trivial Lagrangian cylinder R�ƒ under the time-one
map of the Hamiltonian isotopy defined by a Hamiltonian of the form �.�/e�Ht . Recall that � is the
symplectization coordinate here, while t is the time-coordinate. We take �.�/ WR� ! 0 to be a smooth
function that vanishes on the subset .�1; 0� and is equal to one on the subset Œı;C1/ for some ı > 0.

So far we have merely repeated the argument from the proof of [4, Theorem 1.2]. To achieve the bound
on the length, it suffices to choose ı > 0 sufficiently small, so that the inequality

e1C�
�
� min
x2Y;t2Œ0;1�

ft .x/
�
� ı� min

x2Y;t2Œ0;1�
ft .x/

is satisfied. To show the result follows from this inequality, we use the fact that e�Ht generates a Hamil-
tonian isotopy .�; y/ 7! .� �ft .y/; �

t
˛;H .y// of the symplectization, which means that maxy2Y ft .y/ is

the maximal translation in the negative symplectization direction at time t .

(2) This is similar to (1), using the fact that .�t˛;H /
�1 again is a contact isotopy (thus it is generated by a

contact Hamiltonian) whose conformal factor is equal to �ft . We then apply the construction from (1) to
the cylinder R��1˛;H .ƒ/ instead of R�ƒ, while using the contact isotopy .�t˛;H /

�1 instead of �t˛;H .

(3) The constructions in (1) and (2) can be taken to depend smoothly on the family of contact isotopies
t 7! .�t˛;H /r WD �

rt
˛;H for t 2 Œ0; 1�, where the family is parametrized by r 2 Œ0; 1�. Writing efr;t for the

conformal factor of .�t˛;H /r we immediately note that

max
x2Y;t2Œ0;1�

ft .x/� max
x2Y;t2Œ0;1�

fr;t .x/ and min
x2Y;t2Œ0;1�

fr;t .x/� min
x2Y;t2Œ0;1�

ft .x/

holds for any r 2 Œ0; 1�, from which the sought length properties follow.

We thus produce families of Lagrangian cobordisms whose concatenations Lr01ˇL
r
10 (resp. Lr10ˇL

r
01)

interpolate between R�ƒ (resp. R� �1˛;H .ƒ/) at r D 0 and L01ˇL10 (resp. L10ˇL01) at r D 1.
The corresponding isotopy may be assumed to be supported inside Œ0; c0��Y . Since this is an isotopy
through exact Lagrangians, a standard fact implies that it is generated by a global Hamiltonian isotopy.

(4) As follows by Cartan’s formula, a Hamiltonian isotopy �t
�.�/e�Ht

WR�Y !R�Y , with �0.�/ being
of compact support, pulls back the primitive of the symplectic form e�˛ to a one form e�˛C dG. Since
�t
�.�/e�Ht

preserves the primitive e�˛ outside of a compact subset, we conclude that G W Y !R is locally
constant outside of a compact subset or, equivalently, dG is compactly supported. The sought statement
follows from this.
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Packing Lagrangian tori

RICHARD HIND

ELY KERMAN

We consider the problem of packing a symplectic manifold with integral Lagrangian tori, that is,
Lagrangian tori whose area homomorphisms take only integer values. We prove that the Clifford torus
in S2 �S2 is a maximal integral packing, in the sense that any other integral Lagrangian torus must
intersect it. In the other direction, we show that in any symplectic polydisk P .a; b/ with a; b > 2, there
is at least one integral Lagrangian torus in the complement of the collection of standard product integral
Lagrangian tori.

53D12, 53D35

1 Introduction

In this paper we consider packings of symplectic manifolds by Lagrangian tori. Since every symplectic
manifold contains infinitely many disjoint Lagrangian tori, we must set a scale in order to pose meaningful
questions. We therefore restrict our attention to Lagrangian tori whose area homomorphism takes only
integer values. These will be referred to as integral Lagrangian tori.1 The fundamental packing question,
in this setting, is the following:

What is the maximum number of disjoint integral Lagrangian tori contained in a given
(pre)compact symplectic manifold?

A more approachable version of this question is to consider a specific collection of disjoint integral
Lagrangian tori in a symplectic manifold .M; !/, and to ask if it is a maximal integral packing in the
sense that any other integral Lagrangian torus in M must intersect at least one torus in the collection. In
this paper, we study this question in the simplest nontrivial setting.

1.1 Results

Equip the sphere S2 with its standard symplectic form ! scaled so that
R

S2 ! D 2. Let L1;1 be the
monotone Clifford torus (product of equators) in .S2�S2; ��

1
!C��

2
!/. Our first result is the following.

Theorem 1.1 The Clifford torus L1;1 is a maximal integral packing of .S2 �S2; ��
1
!C��

2
!/.

1These are also sometimes called Bohr–Sommerfeld Lagrangians.
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Consider R4 equipped with its standard symplectic structure !4. For real numbers a; b > 0, consider the
symplectic polydisk

P .a; b/D f.z1; z2/ 2C2
j �jz1j

2 < a; �jz2j
2 < bg �R4:

Identifying L1;1 with the standard Clifford torus in R4, Theorem 1.1 implies that L1;1 is a maximal
integral packing of each P .a; b/ with 1< a; b < 2.

If a and b are both greater then 2, then a natural candidate for a maximal integral packing of P .a; b/ is
the collection of integral Lagrangian tori

fLk;l j k; l 2N; k � bac; l � bbcg;

where Lk;l is the product of the circle about the origin bounding area k in the z1–plane with the circle
about the origin bounding area l in the z2–plane. The analogous packing in dimension two is always
maximal. Our second result shows that, in dimension four, this candidate always fails.

Theorem 1.2 If min.a; b/ > 2, then fLk;l j k; l 2N; k �bac; l �bbcg is not a maximal integral packing
of P .a; b/. For every � > 0, there is an integral Lagrangian torus LC in

P .2C �; 2C �/ n fLk;l j k; l 2 f1; 2gg:

1.2 Overview

The first step in our proof of Theorem 1.1 is to show that any integral Lagrangian torus contained in
.S2 �S2; ��

1
!C��

2
!/ is actually monotone. This follows from the work of Hind and Opshtein [9], and is

proved in Proposition 3.2 below. Arguing by contradiction, we then assume there is a monotone Lagrangian
torus L in .S2�S2; ��

1
!C��

2
!/ that is disjoint from the Clifford torus L1;1. The work of Ivrii [11] and

Dimitroglou-Rizell, Goodman and Ivrii [5] implies that there is a finite-energy holomorphic foliation F of
S2 �S2 n .L[L1;1/ which has a normal form near L and L1;1; see Section 3.5. We use F to establish
the existence of two symplectic spheres, F and G, in .S2 �S2; ��

1
!C��

2
!/. These are obtained from

the compactifications of the pseudoholomorphic buildings obtained in Section 3.7; see Propositions 3.20
and 3.22. Both F and G represent a homology class of the form .1; d/ 2 H2.S

2 � S2IZ/ D Z2 for
some large d . They also have special intersection properties with the leaves of F and with each other;
see Proposition 3.24. Using the spheres F and G, together with the operations of blow-up, inflation and
blow-down, we then alter the ambient symplectic manifold away from L[L1;1 to obtain a new monotone
symplectic manifold, .X; �/. This new manifold is symplectomorphic to .S2�S2; .dC1/.��

1
!C��

2
!//,

and L and L1;1 remain disjoint and monotone therein. However, the images (transforms) of the spheres
F and G in .X; �/ are now in the class .1; 0/ and their existence implies, by the work of Cieliebak and
Schwingenheuer in [4], that L and L1;1 must both be Hamiltonian isotopic to the Clifford torus in .X; �/.
It then follows from standard monotone Lagrangian Floer theory (as in Oh [17]) that it is not possible for
L and L1;1 to be disjoint. This contradiction completes the proof of Theorem 1.1.
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To prove Theorem 1.2 we construct, for every � > 0, an explicit embedding of the closure of P .1; 1/

into P .2C �; 2C �/ n fLk;l j k; l 2 f1; 2gg, using a time-dependent Hamiltonian flow. The desired
Lagrangian, LC, is the one on the boundary of the image.

1.3 Commentary and further questions

Given that Theorem 1.1 is reduced to the problem of detecting intersection points of two monotone
Lagrangian tori, using Hind and Opshtein [9], it is natural to ask whether Lagrangian Floer theory (rigid
holomorphic curves) can also be used to prove Theorem 1.1 directly. To the knowledge of the authors
this is not yet possible. The following result seems to be as close to a proof of Theorem 1.1 as one can
currently get using Lagrangian Floer theory.

Theorem 1.3 Suppose that L is a monotone Lagrangian torus in .S2 � S2; ��
1
! C ��

2
!/. If the

Lagrangian Floer homology of L, with respect to some C�–local system , is nontrivial , then L must
intersect L1;1.

This follows from the work of Ritter and Smith in [19].2 In particular, Corollary 1.5 of [19] implies that
the Clifford torus L1;1 split-generates the monotone Fukaya category of .S2�S2; ��

1
!C��

2
!/. It is not

known whether there exist monotone Lagrangian tori in .S2�S2; ��
1
!C��

2
!/ whose Lagrangian Floer

homology is trivial for every choice of C�–local system. In [20], Vianna constructs a countably infinite
collection of monotone Lagrangian tori in .S2 �S2; ��

1
!C ��

2
!/, no two of which are Hamiltonian

isotopic. Each of the tori in Vianna’s collection satisfies the hypothesis of Theorem 1.3.

The following question, in the spirit of Theorem 1.1, remains unresolved.

Question 1.4 Does every pair of monotone Lagrangian tori in .S2 �S2; ��
1
!C��

2
!/ intersect?

Progress on other aspects of the study of disjoint Lagrangian tori has also recently been made in two
related works by Mak and Smith [13], and by Polterovich and Shelukhin [18]. Let fig be a collection
of disjoint circles bounding disks of the same area, and let E be the equator in the sphere S2. In [13]
and [18] it is shown that, with respect to certain nonmonotone symplectic forms on S2 �S2, packings
of the form LD

F
i �E are maximal in the sense that any Lagrangian torus Hamiltonian isotopic to

1 �E must intersect L. In comparison, the maximal packing given by Theorem 1.1 only includes a
single torus, L1;1, but we do not assume any other tori are Hamiltonian isotopic to it. Theorem 1.2 shows
that analogous packings of the form

F
i � j are no longer maximal.

Below are a few of the questions suggested by Theorem 1.2, which also remain unresolved.

Question 1.5 Is every integral Lagrangian torus in P .2C �; 2C �/ n fLk;l j k; l 2 f1; 2gg Hamiltonian
isotopic to L1;1?

2We are grateful to the referee for pointing out this reference.
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2210 Richard Hind and Ely Kerman

Question 1.6 Suppose 2< a; b < 3. Are there six disjoint integral Lagrangian tori in P .a; b/?

Question 1.7 Suppose 2< b < 3. Are there three disjoint integral Lagrangian tori in P .2; b/?

Question 1.5 has recently been answered negatively, and Questions 1.6 and 1.7 positively, by Hicks and
Mak in the preprint [7]. The question of whether these domains might actually contain infinitely many
disjoint integral Lagrangians remains completely open.

Acknowledgements The authors would like to thank the referee of this paper for their careful analysis
and many valuable comments. We also thank Karim Boustany for helpful comments and for pointing out
a few mistakes.

The authors are supported by Simons Foundation grants 633715 (Hind) and 429872 (Kerman).

2 Conventions, labels and notation

Every copy of the two-dimensional sphere S2 will implicitly be identified with the unit sphere in R3

and we will label the north and south poles by1 and 0, respectively. In .S2�S2; ��
1
!C��

2
!/, we use

these points to define the four symplectic spheres S0 D S2 � f0g, S1 D S2 � f1g, T0 D f0g �S2 and
T1 D f1g�S2. The ordered basis fŒS0�; ŒT0�g of H2.S

2 �S2IZ/ is used to identify it with Z2.

Let L� .M; �/ be a Lagrangian torus in a four-dimensional symplectic manifold. A diffeomorphism  

from T2 D S1 �S1 to L will be referred to as a parametrization of L. It specifies a basis of H1.LIZ/

and thus an isomorphism from H1.LIZ/ to Z2. We will denote this copy of Z2 by H
 
1
.LIZ/. The

parametrization  can also be extended to a symplectomorphism ‰ from a neighborhood of the zero
section in T �T2 to a Weinstein neighborhood U.L/ of L in M . We will denote the corresponding
coordinates in the neighborhood U.L/ of L by .p1;p2; q1; q2/ and, for simplicity, we will assume that

U.L/D fjp1j< �; jp2j< �g for some � > 0:

3 Proof of Theorem 1.1

Arguing by contradiction, we begin with the following.

Assumption 1 There is an integral Lagrangian torus L in .S2�S2; ��
1
!C��

2
!/ which is disjoint from

the Clifford torus L1;1.

We will show that Assumption 1 can be refined in three ways.

3.1 Refinement 1: we may assume that L is monotone

A symplectic manifold .M; �/ is monotone if the Chern and area homomorphisms,

c1 W �2.M /�H2.M;Z/! Z and � W �2.M /!R;
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are positively proportional. Recall that a Lagrangian submanifold L� .M; �/ is monotone if its Maslov
and area homomorphisms,

� W �2.M;L/! Z and � W �2.M;L/!R;

are positively proportional. We will denote the constant of proportionality of L by �.

If L is a Lagrangian torus, one can verify monotonicity by checking it for a collection of disks whose
boundaries generate H1.LIZ/.

Lemma 3.1 Suppose that .M; �/ is a symplectic 4–manifold which is monotone with constant 1
2
�. A La-

grangian torus L in .M; �/ is monotone with constant � if there are two smooth maps v1; v2 W .D
2;S1/!

.M;L/ such that the boundary maps v1jS1 and v2jS1 determine an integral basis of H1.LIZ/ and
�.Œvi �/D ��.Œvi �/ for i D 1; 2.

Refinement 1 is validated by the following result.

Proposition 3.2 Every integral Lagrangian torus L in .S2 �S2; ��
1
!C��

2
!/ is monotone.

Proof By Theorem C of [5] there is a Hamiltonian diffeomorphism which displaces L from the pair of
spheres S1[T1. Hence, L can be identified with an integral Lagrangian torus L inside the polydisk
P .2� �; 2� �/ � .R4; !4/ for some sufficiently small � > 0. By Lemma 3.1, it suffices to find two
smooth maps v1; v2 W .D

2;S1/! .R4;L/ such that the boundary maps v1jS1 and v2jS1 determine an
integral basis of H1.LIZ/ and �.Œvi �/D 2!4.Œvi �/ for i D 1; 2. Simplifying further, we note that, for
R4, the maps � and !4 can be recast as homomorphisms

� WH1.LIZ/! Z and !4 WH1.LIZ/!R

and it suffices to find an integral basis fe1; e2g of H1.LIZ/ such that �.ei/D 2!4.ei/ for i D 1; 2.

Since L is contained in P .2��; 2��/, it follows from [3] that there is a smooth map f W .D;S1/! .R4;L/

of Maslov index 2 whose symplectic area is 1. To see this we include the polydisk P .2� �; 2� �/ into
B4.4� 2�/, the ball of capacity 4� 2�, and then compactify this ball to CP2 equipped with the Fubini–
Study form rescaled by .4� 2�/=� . In this setting, the proofs of Theorems 1.1 and 1.2 of [3] imply that
there are three discs mapping to CP2, with boundary on L, that each have Maslov index equal to 2 and
positive symplectic areas whose sum is at most .4� 2�/. These discs are holomorphic away from L and
are obtained from a limit of spheres in the class ŒCP1�. Hence, by positivity of intersection, exactly one
of the three discs intersects the line at infinity, and the other two discs, f and g, can be viewed as maps to
B4.4�2�/�R4. Since L is integral, the total symplectic area of f and g is either 2 or 3. In either case,
one of them, say f , has symplectic area equal to 1. If e1 is the element of H1.LIZ/ represented by f jS1 ,
we then have �.e1/D 2 and !4.e1/D 1.
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Let c be a class in H1.LIZ/ such that fe1; cg is an integral basis. Since �.c/ is even, by adding integer
multiples of e1 to c, if necessary, we may assume that �.c/D 2. It remains to show that !4.c/D 1.

Arguing by contradiction, assume that !4.c/¤ 1. Set

yc D

�
c if !4.c/ > 1;

cC 2.e1� c/ if !4.c/ < 1:

Then fe1; ycg is an integer basis of H1.LIZ/ that satisfies

!4.e1/D 1; !4.yc/� 2 and �.e1/D �.yc/D 2:

In [9], Hind and Opshtein prove that if a Lagrangian torus in P .a; b/ admits such a basis, then either
a> 2 or b > 2. This contradicts the assumption that L lies in P .2� �; 2� �/ and we are done.

3.2 Refinement 2: we may assume that L lies in the complement of S0[S1[T0[T1

To verify this, we utilize the relative finite-energy foliations from [5], which we now recall.

3.2.1 Foliations of .S 2 � S 2/ n L In [6], Gromov proves that if J is a smooth almost complex
structure J on S2 �S2 that is tamed by the symplectic form ��

1
!C��

2
!, then there is a foliation of

S2 �S2 by J–holomorphic spheres in the class .0; 1/, and another with fibers in the class .1; 0/. For
any monotone Lagrangian torus L � .S2 � S2; ��

1
! C ��

2
!/, there is an analogous relative foliation

theory, developed first by Ivrii [11] and then completed by Dimitroglou-Rizell, Goodman and Ivrii [5],
with input from Wendl [21] and Hind and Lisi [8]. By stretching certain Gromov foliations along L and
smoothing the compactifications of the limiting buildings with more than one level, they obtain symplectic
S2–foliations of S2 �S2 that are compatible with L. A version of this is described below. As in [8], we
focus on the curves which, after stretching, map to S2 �S2 nL.

Input Let L be a monotone Lagrangian torus in .S2 �S2; ��
1
!C��

2
!/. Fix a parametrization  of L

and the corresponding Weinstein neighborhood

U.L/D fjp1j< �; jp2j< �g:

Definition 3.3 A tame almost complex structure J on (S2 �S2 nL; ��
1
!C��

2
!/ is said to be adapted

to the parametrization  if, in U.L/, we have

J
@

@qi
D�

p
p2

1 Cp2
2
@

@pi
:

For such a J , each negative end of a finite-energy J–holomorphic curve u mapping to S2 �S2 nL is
asymptotic to a closed Reeb orbit on a copy of the flat unit cotangent bundle S�

L
T2 of T2, corresponding

to L. This Reeb orbit covers a closed geodesic  of the flat metric on T2. In this case, we simply say
that the end of u is asymptotic to L along  .
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Output As described in Section 2.5 of [5], each J adapted to the parametrization  of L is part of the
limit, as � !1, of a standard family almost complex structures J��0 on S2 �S2 that are tame with
respect to ��

1
!C��

2
!. Taking the limit of the Gromov foliations for the J� as � !1, it follows from

Theorem D and Propositions 5.3 and 5.16 of [5], and the fact that L is monotone, that one obtains a
foliation FD F.L;  ;J / of S2 �S2 nL with the following properties.

� The foliation F has two kind of leaves: unbroken ones consisting of a single closed J–holomorphic
sphere in S2 � S2 n L of class .0; 1/, and broken leaves consisting of a pair of finite-energy
J–holomorphic planes in S2 �S2 nL.

� Each leaf of F intersects S1 in exactly one point. For a broken leaf this means that exactly one of
its planes intersects S1.

� The ends of two planes of a broken leaf are asymptotic to the same geodesic, but with opposite
orientations. This geodesic is embedded. We denote its homology class, equipped with the
orientation determined by the plane which intersects S1, by ˇ 2H1.LIZ/. This class is the same
for all broken leaves of F and is referred to as the foliation class of F.

� Limits of the Gromov spheres in the completion of a neighborhood of L, which is a copy of T �T2,
are cylinders asymptotic to geodesics in the classes ˙ˇ.

� Each point z 2S2�S2 nL lies in a unique leaf of F, and each point of L lies on a unique geodesic
in the foliation class ˇ that corresponds to a unique plane of a broken leaf of F that intersects S1.

� If L is disjoint from a configuration of symplectic spheres, then we may assume these spheres are
complex with respect to all J� . In particular, if L has been displaced from S0[S1[T0[T1,
then we may assume this configuration of symplectic spheres is J–complex.

� Suppose L is disjoint from S1 and we therefore take S1 to be complex. Then, by positivity of
intersection, there is a well-defined map p W S2 �S2! S1 which takes z 2 S2 �S2 nL to the
unique intersection of its leaf with S1, and takes z 2L to the intersection with S1 of the broken
leaf asymptotic to the unique geodesic through z representing the foliation class. The image p.L/

is an embedded closed curve in S1. Moreover, if L is homotopic to L1;1 in the complement
of T0[T1, then p.T0/ and p.T1/— which are points, since T0 and T1 are complex — lie on
opposite sides of the closed curve p.L/.

Lemma 3.4 (straightening) For all sufficiently small � > 0 we may assume , by perturbing J outside
of U.L/, that the unbroken leaves of F that intersect U.L/ do so along the annuli

fp1 D ı; q1 D �;�� < p2 < �g

for some � 2 S1 and nonzero ı 2 .��; �/.

Proof The statement for broken leaves was established in Proposition 5.16 of [5]; see the first bullet point
of the proof. This means the parts of the broken leaves lying outside of U.L/ form two S1–families of
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holomorphic disks, with boundaries fp1D0; q1D�;p2D˙�g. We may smoothly identify a neighborhood
of such an S1–family of holomorphic disks in the complement of U.L/ with .��0; �0/�S1�D2, where
the disks correspond to subsets f0g � f�g �D2, and the circles fp1 D ı; q1 D �;p2 D ˙�g in @U.L/

match with the circles fıg � f�g � @D2. Hence our S1–families of holomorphic disks can be extended to
smooth families of disjoint smoothly embedded disks Dı;� D fıg � f�g �D2 with jıj< �0 and � 2 S1.
We may assume these disks extend smoothly into U.L/ along the surfaces fp1D ı; q1D �;�� <p2 < �g.
For a sufficiently small �0 > 0, we may also assume that the disks Dı;� are symplectic, since they are
C1–close to the holomorphic disks corresponding to ı D 0. Hence, we may choose a tame almost
complex structure, J0, which agrees with J inside U.L/ but is chosen outside of U.L/ so that the
disks Dı;� are J0–holomorphic. With this, we replace the foliation FD F.L;  ;J / with the foliation
F0 D F.L;  ;J0/ and the neighborhood U.L/ with

U0.L/D fjp1j< �0; jp2j< �g:

By construction, for each annulus fp1 D ı; q1 D �;�� < p2 < �g with jıj < �0, there is a pair of
J0–holomorphic disks which join smoothly with the boundary components to form J0–holomorphic
spheres in the class .0; 1/. These are unbroken leaves of F0 for ı ¤ 0, and broken leaves for ı D 0.
Moreover, by positivity of intersection, these are the only leaves of F0 intersecting U0.L/.

Example 3.5 (solid tori bounded by L1;1) For the Clifford torus L1;1 � S2 �S2 and a J adapted to
the standard parametrization  1;1 of L1;1, we get a foliation F1;1 of S2 �S2 nL1;1 with leaves in the
class .0; 1/. As L1;1 is disjoint from S0 [S1 [T0 [T1 we may assume that these four spheres are
J–complex. The broken leaves of F1;1 comprise two families of J–holomorphic planes with boundary
on L1;1, which can be labeled as follows: s0, which consists of the planes intersecting S0, and s1, which
consists of the planes intersecting S1. The families of holomorphic planes s0 and s1 can be seen directly
for a model almost complex structure, but in fact exist for all J adapted to a parametrization of L1;1. We
will write s0.J / and s1.J / when we want to highlight the dependence of these families on J . Modulo
reparametrization, s0 and s1 form compact moduli spaces, as they represent classes of minimal positive
area in H2.S

2 �S2;L1;1/. These moduli spaces are automatically regular by [21, Theorem 1].

For each J as above, there is an analogous foliation of S2�S2 nL1;1 with leaves in the class .1; 0/. The
broken leaves in this case yield two families of J–holomorphic planes, t0 and t1, which consist of the
planes intersecting T0 and T1, respectively.

The following result establishes Refinement 2. The proof is based on that of Corollary E in [5].

Proposition 3.6 Suppose that L is a monotone Lagrangian torus in .S2 � S2; ��
1
! C ��

2
!/ that is

disjoint from L1;1. Then there is a Hamiltonian diffeomorphism � of S2 �S2 which displaces L from
S0 [ S1 [ T0 [ T1 and is supported away from L1;1. Moreover , �.L/ is homotopic to L1;1 in the
complement of T0[T1 and also in the complement of S0[S1.
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Proof We first displace L from S1 in the complement of L1;1, or equivalently S1 from L. Let J0 be an
almost complex structure on S2 �S2 nL1;1 that is adapted to the standard parametrization  1;1 of L1;1

and such that S1 is J0–complex. We deform J0 through almost complex structures J� to an almost
complex structure J1 which is also adapted to a parametrization of L. For each � we have a finite-energy
J�–holomorphic foliation in the class .1; 0/ including the broken leaves t0 and t1 as in Example 3.5. We
can find a smooth family of holomorphic spheres H� in the class .1; 0/, that is, unbroken leaves of the
corresponding foliations, with H0 D S1.

In the limit �!1, the moduli spaces of J�–holomorphic disks t0.J� / and t1.J� / both converge. Indeed,
their limits t0.J1/ and t1.J1/ still represent classes of minimal positive area in H2.S

2�S2;L1;1[L/,
where all classes still have integral area; see also Lemma 3.23 for this. Moreover, as the union of broken
spheres with respect to J1 still has codimension 1, we may assume the H� converge to an unbroken
sphere, H1. As the H� are all disjoint from L1;1 and H1 is disjoint from L, we can find a Hamiltonian
isotopy supported away from L1;1 displacing S1 from L, as required.

The remainder of the argument follows similar lines. We may assume that each of the spheres S0, S1,
T0 and T1 are J0–complex. Let F0 be the corresponding J0–holomorphic foliation of S2 �S2 nL1;1

in the class .0; 1/. Let p0 W S
2 � S2! S1 be the projection map from the (sixth bullet point of the)

description of F above. We may assume that the points p0.T0/ and p0.T1/ lie in different components
of S1 np0.L1;1/.

Fix a parametrization of L and let .P1;P2;Q1;Q2/ be the corresponding local coordinates on the
Weinstein neighborhood U.L/ of L. We may also assume that U.L/ is disjoint from the Weinstein
neighborhood U.L1;1/ corresponding to  1;1. Consider a smooth family Jt2Œ0;1� of almost complex
structures on S2 �S2 nL1;1 such that each Jt is equal to J0 in U.L1;1/, and in U.L/ we have

J1
@

@Qi
D�

@

@Pi
:

We can then smoothly extend the family Jt to t > 1 to stretch (to length t) along a small sphere bundle
in U.L/, as in [1]. This yields a family of foliations Ft of S2�S2 nL1;1. Since the planes of the broken
leaves of F0 have minimal area they persist under the deformation to yield the planes of the broken leaves
of Ft . This yields a family of maps pt W S

2 �S2! S1.

Lemma 3.7 The sets pt .L/ in S1 converge in the Hausdorff topology to a subset of a circle C1 2 S1

as t !1.

Proof Let J1 be the limiting almost complex structure on S2 �S2 n .L[L1;1/. The circle C1 is the
intersection with S1 of the broken leaves of the J1 foliation which are asymptotic to L. Now, pt .L/

consists of the intersection with S1 of Jt –holomorphic spheres which intersect L. Hence a sequence
of points zt 2 pt .L/ corresponds to a sequence of Jt –holomorphic curves in the class .0; 1/ which all
intersect L. Up to taking a subsequence, this sequence of curves converges to a broken curve asymptotic
to L and hence the zt converge to a point in C1.
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Lemma 3.8 If we denote the projection with respect to the fully stretched almost complex structure
by p1, then C1 D p1.L/ is disjoint from p1.L1;1/.

Proof This follows from the fact that the original planes of the broken leaves have area 1 and so cannot
degenerate further. Indeed, since L is monotone, any holomorphic curve asymptotic to L must have
integral area, and in particular curves in the class .0; 1/ cannot converge to buildings with more than two
top level curves.

The results above imply that there is an N > 0 such that pt .L1;1/ is disjoint from C1 for all t � N .
With this we can choose two continuous curves 0; 1 W Œ0;1/! S1 with the following properties:

� 0.0/D p0.T0/ and 1.0/D p0.T1/,

� 0.t/ and 1.t/ are disjoint from pt .L1;1/ for all t 2 Œ0;1/,

� for some N > 0, both 0.t/ and 1.t/ are disjoint from C1, and C1 is disjoint from pt .L1;1/

for all t �N ,

� C1 separates 0.N / and 1.N / in S1.

For each t 2 Œ0;1/, both p�1
t .0.t// and p�1

t .1.t// are Jt –holomorphic spheres in the class .0; 1/
disjoint from L1;1. The family of spheres

fp�1
t .0.t//gt2Œ0;N �

forms a symplectic isotopy, which displaces T0 from L in the complement of L1;1. Similarly, the family
of spheres

fp�1
t .1.t//gt2Œ0;N �

forms a symplectic isotopy which displaces T1 from L in the complement of L1;1. Moreover, these
isotopies can be generated by a single Hamiltonian flow on S2 �S2 that fixes L1;1. The inverse flow
displaces L from T0[T1. The final separation condition is enough to guarantee the homotopy condition
in the theorem.

By considering also the Jt –holomorphic foliation in the class .1; 0/ (see Example 3.5), we can displace L

from S0[S1 too. After adjusting the isotopy of S0[S1, we may assume that it fixes T0[T1; see
Corollary 3.7 of [5]. Hence the inverse flow will not reintroduce intersections with T0 or T1.

3.3 Refinement 3: we may assume that L is homologically trivial in
.S 2 �S 2/ n .S0[S1[T0[T1/

To see this, note that .S2 �S2/ n .S0[S1[T0[T1/ can be identified with a subset of the cotangent
bundle of T2 in which L1;1 is identified with the zero section. In this setting we can invoke the following.
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Theorem 3.9 [5, Theorem 7.1] A homologically nontrivial Lagrangian torus L in .T �T2; d�/ is
Hamiltonian isotopic to a constant section. In particular , if L is exact then it is Hamiltonian isotopic to
the zero section.

If our monotone Lagrangian L was homologically nontrivial in .S2�S2/n.S0[S1[T0[T1/ it would
then follow from Theorem 3.9 and Section 2.3.B00

4
of [6] that L\L1;1 ¤∅, which would contradict our

original assumption.

3.4 A path to the proof of Theorem 1.1

By the three refinements established above, it suffices to show that the following assumption is false.

Assumption 2 There is a monotone Lagrangian torus L in the set

Y D .S2
�S2/ n .S0[S1[T0[T1/

which is disjoint from the Clifford torus L1;1 and is homologically trivial in Y .

A path to a contradiction To obtain a contradiction to Assumption 2, we will show, using a sequence of
blow-ups, inflations and blow-downs, that it implies the existence of two disjoint monotone Lagrangian
tori in a new (monotone) copy of S2 �S2, which are both Hamiltonian isotopic to the Clifford torus
therein, and hence cannot be disjoint.

To perform the necessary sequence of blow-ups, inflations and blow-downs, we must first establish the
existence of a special collection of symplectic spheres and disks in our current model; see Proposition 3.24.
These spheres and discs must be well placed with respect to a holomorphic foliation of S2�S2n.L[L1;1/

which we introduce below in Section 3.5. They are obtained from special holomorphic buildings, whose
existence we establish in Section 3.7. These existence results rely on the analysis of a general stretching
scenario that is contained in Section 3.6.

Remark 3.10 To falsify Assumption 2, we must use it to build and analyze a complicated set of secondary
objects in order to derive a contradiction. The reader is asked to bear in mind that many of the results
established in the remainder of this section hold in a setting which will later be shown to be impossible.

3.5 Straightened holomorphic foliations of S 2 �S 2 n .L[L1;1/, under Assumption 2

Let L be a Lagrangian torus as in Assumption 2. Here we describe the holomorphic foliations of
S2 �S2 n .L[L1;1/ that are implied by the existence of L.

Let  be a parametrization of L and  1;1 be the standard parametrization of L1;1. Consider a tame
almost complex structure J on .S2�S2 n .L[L1;1/; �

�
1
!C��

2
!/ which is adapted to both  and  1;1.

We will always make the following assumption.

(A1) J is equal to the standard product complex structure near S0, S1, T0 and T1. In particular,
T0 and T1 are unbroken leaves of the foliation.
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Let J� be the family of almost complex structures on S2�S2 that are determined by J as in [5, Section 2.5].
Taking the limit of the Gromov foliations in the class .0; 1/ with respect to the J� as �!1, and arguing
as in [5], we get a J–holomorphic foliation

FD F.L;L1;1;  ;  1;1;J /

of S2�S2 n .L[L1;1/. The features of this foliation are described below and are illustrated in Figure 1.

Each leaf of F still intersects S1 in exactly one point, but there are now three types of leaves. The first
are unbroken leaves consisting of a single closed J–holomorphic sphere in S2 � S2 n .L[L1;1/ of
class .0; 1/. The second type of leaves are broken and consist of a pair of finite-energy J–holomorphic
planes in S2 � S2 n .L[L1;1/ that are asymptotic to L1;1 along the same embedded geodesic with
opposite orientations. As in Example 3.5, the collection of planes like this which intersect S1 comprise a
one-dimensional family, s1, and their companion planes comprise a family s0. The third class of leaves
are also broken, but consist of pairs of finite-energy J–holomorphic planes in S2 � S2 n .L[L1;1/

that are asymptotic to L. These pairs also have matching ends. We denote by r1 the set of all the
J–holomorphic planes of broken leaves that are asymptotic to L and intersect S1. The collection of
their companion planes will be denoted by r0. As established below in Lemma 3.11, the planes of r1
intersect both S1 and S0 while the planes of r0 intersect neither of these spheres. Since curves in the
class .0; 1/ have area 2, and by monotonicity planes asymptotic to our Lagrangians have integral area, no
more complicated degenerations are possible.

Note that there are now two foliation classes, ˇL and ˇL1;1
, determined by each of the two classes of

broken leaves.

The foliation F also defines a projection map

p W S2
�S2

! S1:

In this setting, the images p.L1;1/ and p.L/ are disjoint embedded circles in S1 which, by Proposition 3.6,
are disjoint from T0[T1 and are homotopic in the complement. Therefore, without loss of generality,
there are disjoint closed disks A0�S1 with boundary p.L/ and A1�S1 with boundary p.L1;1/, such
that p.T0/2A0 and p.T1/2A1. Denote the closed annulus defined by the closure of S1 n.A0[A1/

by B. These features of F are all represented in Figure 1.

Lemma 3.11 The planes in r1 intersect both S0 and S1. Equivalently, the planes in r0 are disjoint
from S0[S1.

Proof We define a relative homology class † 2H2.S
2 �S2; .S0[S1[T0[T1/ by first choosing

an embedded path  W Œ0; 1� ! S1 with  .0/ D T0 \ S1 and  .1/ D T1 \ S1. Then choose a
family of embedded paths �t in each p�1. .t// going from S1 to S0. The union of the �t define †.
By Proposition 3.6 we may assume that  intersects p.L/ in a single point  .t0/. The intersection
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T0

plane in r1 plane in s1 S1

L
L1;1

T1

plane in r0 plane in s0 p�1.w/ S0

p

A0
S1

B A1 w

p.L/ p.L1;1/

Figure 1: The foliation F of S2 �S2 n .L[L1;1/.

L\p�1. .t0// is an embedded circle, bounding disks from r0 and r1. The disks in r1 intersect S1

by definition, so arguing by contradiction, if r0 happens to intersect S0 then our circle L\p�1. .t0//

separates S0 and S1, and thus must intersect the path �t0
. This is the only intersection between † and L,

and so we would conclude that † �L is nontrivial, contradicting Refinement 3.

Straightening Let .P1;P2;Q1;Q2/ be coordinates in the neighborhood U.L/ of L determined by  ,
and let .p1;p2; q1; q2/ be coordinates in the neighborhood U.L1;1/ of L1;1 determined by  1;1. As
in Lemma 3.4, where we had only one Lagrangian torus, we may assume that the leaves of F are
straight in both U.L/ and U.L1;1/. In particular, we may assume that the unbroken leaves of F that
intersect U.L/ do so along the annuli fP1 D ı ¤ 0;Q1 D �; jP2j< �g, the planes of r1 intersect U.L/

along the annuli fP1 D 0;Q1 D �; 0 < P2 < �g, and the planes of r0 intersect U.L/ along the annuli
fP1 D 0;Q1 D �;�� < P2 < 0g. Similarly, we may assume that the unbroken leaves of F that intersect
U.L1;1/ do so along the annuli fp1 D ı ¤ 0; q1 D �; jp2j < �g, the planes of s1 intersect U.L1;1/

along the annuli fp1 D 0; q1 D �; 0< p2 < �g, and the planes of s0 intersect U.L1;1/ along the annuli
fp1 D 0; q1 D �;�� < p2 < 0g.
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The map p can also be described simply in these Weinstein neighborhoods. In U.L/, we may assume
that the region fP1 < 0g �U.L/ is mapped by p into the interior of A0, and fP1 > 0g �U.L/ is mapped
by p into the interior of B. Similarly, we may assume that in U.L1;1/ the region fp1 > 0g �U.L1;1/ is
mapped by p into the interior of A1 and fp1 < 0g �U.L1;1/ is mapped by p into the interior of B.

Using some of the freedoms available in the choice of  and  1;1, we can add the following additional
assumption:

(A2) The foliation class ˇL is equal to .0;�1/ 2 H
 
1
.LIZ/, and the foliation class ˇL1;1

is equal to

.0;�1/ 2H
 1;1

1
.L1;1IZ/.

3.6 Stretching scenario for class .1; d/, under Assumption 2

Recall that for each nonnegative integer d and a generic tame almost complex structure J on S2 �S2

there exists a smooth J–holomorphic sphere u W S2! S2 �S2 representing the class .1; d/. Moreover,
this curve is unique, up to reparametrization, if we impose 2d C 1 constraint points. To see this, note
that for the integrable product complex structure such a curve can be written explicitly as the graph of a
degree d rational map, and this implies that the Gromov–Witten invariant associated to the homology class
and point constraints is 1. Hence, nodal curves will exist for all tame almost complex structures and away
from a codimension 2 subset of almost complex structures we will have smooth curves. The uniqueness
in the assertion above follows because spheres in the class .1; d/ have self-intersection number 2d , so
distinct spheres cannot satisfy the same 2d C 1 point constraints.

Let J� , for � � 0, be the family of almost complex structures on S2 �S2 used in Section 3.5 to obtain
the foliation F. For a sequence �k !1, let uk;d W S

2! S2 �S2 be a sequence of J�k
–holomorphic

curves in the class .1; d/ that converges to a holomorphic building Fd as in [1]. The limit Fd consists of
genus zero holomorphic curves in three levels. The top level curves map to S2�S2 n .L[L1;1/ and are
J–holomorphic. The middle level curves map to one of two copies of R�S�T2, the symplectization of
the unit cotangent bundle of the flat torus. These copies correspond to L and L1;1 and the identifications
are defined by the parametrizations  and  1;1. It follows from the definition of the family J� that these
middle level curves are all Jcyl–holomorphic where Jcyl is a fixed cylindrical almost complex structure.
Similarly, the bottom level curves of the limiting building map to one of two copies of T �T2 and are
Jstd–holomorphic, where Jstd is a standard complex structure.

Each top level curve of Fd can be compactified to yield a map from a surface of genus zero with boundary
to .S2 �S2;L[L1;1/. The components of the boundary correspond to the negative punctures of the
curve. They are mapped to the closed geodesics on L or L1;1 underlying the Reeb orbits to which the
corresponding puncture is asymptotic. The middle and bottom level curves can be compactified to yield
maps to either L or L1;1 with the same type of boundary conditions. These compactified maps can all be
glued together to form a map xFd W S

2! S2 �S2 in the class .1; d/.
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Definition 3.12 A J–holomorphic curve u in S2 �S2 n .L[L1;1/ is said to be essential (with respect
to the foliation F) if the map p ıu is injective.

Definition 3.13 Let u be a J–holomorphic curve in S2�S2 n .L[L1;1/. A puncture of u is said to be
of foliation type with respect to L .L1;1/ if it is asymptotic to a closed Reeb orbit which lies on the copy
of S�T2 that corresponds to L (L1;1) and covers a closed geodesic in an integer multiple of the foliation
class ˇL (ˇL1;1

). The puncture is of positive (negative) foliation type if this integer is positive (negative).

Lemma 3.14 Let u be a J–holomorphic curve in S2 �S2 n .L[L1;1/ with a puncture. Let fclg be a
sequence of circles in the domain of u which lie in a standard neighborhood of the puncture , wind once
around it , and converge to it in the Hausdorff topology. If the puncture is of foliation type with respect
to L .L1;1/, then the sets p.u.cl// converge to a point on p.L/ .p.L1;1//. Moreover each p.u.cl//

either maps into the point (in which case u covers a plane in a broken leaf ) or it winds nontrivially around
the point. If the puncture is not of foliation type then the sets p.u.cl// converge to p.L/ .p.L1;1//.

Proof This follows from the exponential convergence theorem from [10].

Corollary 3.15 If u is an essential J–holomorphic curve in S2 �S2 n .L[L1;1/, then its punctures
on L are either all of foliation type or none of them are , and similarly for the punctures on L1;1. If u has
no punctures of foliation type , then it is either a J–holomorphic plane or cylinder.

Assume u has no punctures of foliation type. If u is a plane , then the closure of the image of p ı u is
A0 or A1 or the closure of their complements in S1. If u is a cylinder , then the closure of the image
of p ıu is B.

Proof Lemma 3.14 implies that if u has punctures of both foliation type and not of foliation type on L

or L1;1, then p ı u will not be injective. Indeed, the projection of a small circle around a puncture
of foliation type on L (resp. L1;1) will intersect any circle sufficiently close to p.L/ (resp. P .L1;1/),
including the projections of small circles around punctures not of foliation type.

Essential curves with all punctures not of foliation type project onto connected subsets of S1 with
boundary components equal to L or L1;1. Checking possibilities, the second half of the statement
follows.

The following result can be proved in the same way as Lemma 6.2 in [8].

Lemma 3.16 Let u be an essential curve whose punctures on L are all of foliation type. Then these
punctures are either all positive or all negative (see Definition 3.13).

Similarly, let v be an essential curve whose punctures on L1;1 are all of foliation type. Then the punctures
on L1;1 are either all positive or all negative.
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image.u/\U

L

planes in r0 or r1

p

S1

p.L/ p.image.u/\U /

Figure 2: Images of curves of a limit Fd of Type 2b in a neighborhood U of p�1.p.L//. If one
replaces u with ud , then this picture also works for limits Fd of Type 1.

Let uk;d be a sequence converging to Fd as in the stretching scenario for class .1; d/. Positivity of
intersection implies that the curves uk;d must intersect each leaf of F exactly once. This fact imposes
several important restrictions on Fd in relation to the foliation F, allowing us to identify a handful of
possible limit types.

Proposition 3.17 Let Fd be a limit as in the stretching scenario for class .1; d/. Then the building Fd

is of one of the following types.

� Type 0 Fd is a (possibly nodal ) J–holomorphic sphere in S2�S2n.L[L1;1/ in the class .1; d/,
where one (essential ) sphere lies in the class .1; j / for some 1 � j � d , and any remaining top
level curves are either spheres covering unbroken leaves of the foliation , or pairs of planes covering
broken leaves of the foliation. Any middle and bottom level curves are cylinders asymptotic to
Reeb orbits in multiples of the foliation class.

� Type 1 Fd has a unique essential curve ud . The punctures of ud are all of foliation type , and
along L, and also L1;1, are either all positive or all negative. The image of p ı ud is S1 minus
finitely many points on p.L/[p.L1;1/. The other top level curves of Fd either cover unbroken
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plane in r1

L

image.uL/\U image.u/\U

plane in r0

p

S1

p.image.uL/\U /

p.image.u/\U /

Figure 3: Images of curves of a limit Fd of Type 2a or 3 in a neighborhood U of p�1.p.L//.

leaves of the foliation , or they are J–holomorphic planes covering one of the planes of a broken
leaf of the foliation. Any middle and bottom level curves cover cylinders asymptotic to Reeb orbits
in multiples of the foliation class.

� Type 2a Fd has exactly two essential curves , uL and u. The closures of the images of the maps
p ıuL and p ıu are A0 and B [A1, respectively. Any punctures of u on L1;1 are all of foliation
type and are either all positive or all negative. The other top level curves of Fd cover (broken or
unbroken) leaves of F. Any middle and bottom level curves in the copy of T �T2 corresponding
to L1;1 cover cylinders asymptotic to Reeb orbits in multiples of the foliation class.

� Type 2b Fd has exactly two essential curves , u and uL1;1
. The closures of the images of the maps

p ıu and p ıuL1;1
are A0[B and A1, respectively. Any punctures of u on L are all of foliation

type and are either all positive or all negative. The other top level curves of Fd cover (broken or
unbroken) leaves of F. Any middle and bottom level curves in the copy of T �T2 corresponding
to L cover cylinders asymptotic to Reeb orbits in multiples of the foliation class.

� Type 3 Fd has exactly three essential curves , uL, u and uL1;1
. The closures of the images of the

maps uL, u and uL1;1
are A0, B and A1, respectively. The other top level curves of Fd again

cover (broken or unbroken) leaves of F.

Limits of Type 2b and Type 3 are partially illustrated in Figures 2 and 3, respectively.
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Proof of Proposition 3.17 We begin with the following result, which allows us to use essential curves to
sort the limit structures.

Lemma 3.18 Let Fd be a limit as in the stretching scenario for class .1; d/. If u is a top level curve
of Fd , then it is either essential or else the image of p ıu is a point. The essential curves have disjoint
images under p, which are open sets , and these images include the complement of p.L/[p.L1;1/.

Proof The curves of Fd can be compactified and glued together to form a map xFd W S
2! S2 �S2 in

the class .1; d/. Let T be an unbroken leaf of the foliation. Since .1; d/ �T D .1; d/ � .0; 1/D 1, we see
that T can only intersect one top level curve with p ıu nonconstant. If u is a top level curve such that
the map p ıu is constant, then u covers part of a (possibly broken) leaf of our foliation and contributes
intersection number 0 with all unbroken leaves.

Assume then that u is a top level curve such that pıu is nonconstant. By the discussion above, u intersects
any unbroken leaf T either once or not at all, and therefore if p ıu has any double points they must lie in
p.L/[p.L1;1/. But positivity of intersection again implies that the nonconstant map p ıu is an open
mapping and this implies that the double points of p ıu form an open set. We conclude that there are no
double points and u is essential. To see that the essential curves have disjoint images under p we can
apply the same argument to a union u[ v. The intersection number also implies that all unbroken fibers
intersect at least one essential curve.

Lemma 3.18 implies that there is an essential curve u of Fd that intersects T0. The closure of the image
of p ıu must contain A0. By Corollary 3.15 the following cases are exhaustive.

Case 1 (u has no punctures) In this case, p ı u must be a bijection onto S1. Hence, u is a J–
holomorphic sphere in a class of the form .1; j / for j in Œ0; d �. By Lemma 3.18 all the other top level
curves of Fd must cover leaves of the foliation. This also implies that middle and lower level curves
cover cylinders asymptotic to multiples of the foliation class.

The top level curves of Fd which cover fibers fit together to form a possibly disconnected curve in the
class .0; d � j /. If j D d then Fd consists only of the curve u. Either way, the building is of Type 0.

Case 2 (u has punctures and they are all of foliation type) In this case we claim that Fd is of Type 1.
By Lemma 3.14, the image of the map p ıu includes points in each component of the complement of
p.L/[p.L1;1/, and so by Lemma 3.18 we have that p ıu is a bijection onto S1 minus a finite set of
points on p.L/[p.L1;1/. The other top level curves of Fd must either cover unbroken leaves of F or
they are J–holomorphic planes covering one of the planes of a broken leaf of F. The statement about
positivity or negativity of punctures is Lemma 3.16.

Case 3 (u has at least one puncture not of foliation type) Since u intersects the leaf T0, the closure of
the image of p ıu is either A0 or A0[B. In either case, u has exactly one puncture not of foliation type
and does not intersect T1.
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Suppose that the closure of the image of p ıu is A0. By Lemma 3.18, there is an essential curve v of Fd

that intersects T1, and the images of p ıu and p ı v cannot intersect. Hence the closure of the image of
p ı v is either A1 or B [A1. In the first case, Fd is of Type 3 with uL D u and uL1;1

D v, where the
third curve, u, exists by Lemma 3.18. In the second case, Fd is of Type 2a with uL D u and uD v.

If, instead, the closure of the image of p ıu is A0[B, a similar argument implies that Fd is of Type 2b.

This completes the proof of Proposition 3.17.

3.7 The existence of special buildings, under Assumption 2

In this section we will establish the existence of two special limits of the stretching scenario for class
.1; d/ when d is sufficiently large. The following result will be used to exploit the large d limit.

Lemma 3.19 There exists an � > 0 such that

area.u/� �u � .S0[S1/

for all J–holomorphic curves u in S2 �S2 n .L[L1;1/.

Proof Fix an open neighborhood of S1 of the form N� D S1 �D2.�/, where D2.�/ is the open disc
of area �. We may assume that the closure of N� is disjoint from L[L1;1 and, by (A1), we may assume
that J restricts to N� as the standard split complex structure. Let �2 W S1�D2.�/!D2.�/ be projection
and set

u�;1 D uju�1.N�/:

By perturbing � if needed we may assume that u�1.N�/ is a smooth manifold. We have

degree.�2 ıu�;d /D u �S1:

This implies

area.u�;1/�
Z

u�1.N�/
u��;1.!˚!/�

Z
.�2ıu�;1/�1.D2.�//

.�2ıu�;1/
�!D

�Z
D2.�/

!

�
u�S1D�u�S1:

A similar calculation for S0 gives the result.

Proposition 3.20 For all sufficiently large d , there exists a limiting building F as in the stretching
scenario for class .1; d/ such that F is of Type 3. The building consists of its three essential top level
curves , uL, u and uL1;1

, together with d � 1 planes in r0[ r1 and d planes in s0[ s1.

Proof Fix d C 1 points on L1;1 and d points on L. For � � 0, let J� be the family of almost complex
structures on S2�S2 from Section 3.5. It follows from the discussion in Section 3.6 and the compactness
result from [1] that for a sequence �k !1 there is a sequence uk W S

2! S2 �S2 of J�k
–holomorphic

curves in the class .1; d/ that pass through the 2d C 1 constraint points and converge in the sense of [1].
Their limit, F , is the desired building.
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To see this we first note that the point constraints already preclude the possibility that F is of Type 0.
Indeed, top level essential curves are disjoint from the point constraints, so these must be satisfied by
curves of F inside copies of T �T2 (corresponding to neighborhoods of L or L1;1). In the Type 0 case,
the nonessential curves fit together to form a union of spheres in the class .0; d � j / for some 0� j � d .
These intersect L[L1;1 in a finite set of geodesics, and any middle or lower level curves in our T �T2

cover cylinders asymptotic to these geodesics. As there are at most d such cylinders they cannot satisfy
the 2dC1 point constraints. (The holomorphic cylinders in T �T2 are described explicitly by Lemma 4.2
in [5].)

If F was of Type 1, then punctures of its essential curve on L1;1 would all be of the foliation type.
The remaining top level curves of F asymptotic to L1;1 would cover broken planes, and all the curves
of F mapping to the copy of T �T2 corresponding to L1;1 would cover cylinders over geodesics in the
foliation class ˇ1;1. To satisfy the d C 1 point constraints on L1;1 the essential curve of F must have at
least d C 1 punctures on L1;1, matching with at least d C 1 cylinders in the copy of T �T2. But then F

would have d C 1 curves covering planes in s0 [ s1. By Lemma 3.16, the punctures of the essential
curve on L1;1 are either all positive or all negative. Hence these d C 1 curves either all lie in s0 or all lie
in s1. This contradicts the fact that (the compactification of) F has intersection number d with both S0

and S1. The same argument precludes the possibility that F has Type 2a.

It remains to show that F does not have Type 2b. Assuming that F has Type 2b, we will show that it
must include a collection of curves of total area equal to two, that intersect S0 [S1 d times. If d is
sufficiently large, this contradicts Lemma 3.19 above.

Claim 1 If F has Type 2b , then it includes at least d planes in s0[ s1.

To see this, consider the subbuilding F1;1 of F consisting of its middle and bottom level curves mapping
to the copies of R�S�T2 and T �T2 that correspond to L1;1. Since it is connected and has genus zero,
it follows from Proposition 3.3 of [8] that

index.F1;1/D 2.s� 1/;

where s is the number of positive ends of F1;1. Since F1;1 passes through the d C 1 generic point
constraints on L1;1, and the Fredholm index in these manifolds is nondecreasing under multiple covers,
we must also have

index.F1;1/� 2.d C 1/:

Hence, F1;1 has at least d C 2 positive ends. Under the assumption that F has Type 2b, two of these
positive ends match with the two essential top level curves of F . This leaves at least d positive ends
of F1;1 that match with top level curves of F that cover planes in s0[ s1.

Remark 3.21 The same argument implies that if F has Type 3, then again it must include at least
d planes in s0[ s1.
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Claim 2 If F has Type 2b , then it includes d planes in r0 and none in r1.

The d constraint points on L imply that, if F is of Type 2b, it must contain d planes covering broken
planes asymptotic to L. These planes match, via cylinders in T �T2, with asymptotic ends of an essential
curve, and by Lemma 3.16 these ends are either all positive or all negative. Hence we have d planes
either all in r0 or all in r1. To show that these planes cannot be in r1, we consider intersections with
S0[S1. Overall, the top level curves of F must intersect S0[S1 exactly 2d times. The planes of F

asymptotic to L1;1 from Claim 1 account for at least d of these intersections.

Since L is homologically trivial in Y , by Lemma 3.11 each plane of r1 must intersect both S0 and S1,
while the planes in r0 intersect neither of these spheres. If the d planes of F asymptotic to L were in r1

then they would contribute another 2d intersections with S0 [S1. By positivity of intersection, this
cannot happen, so these planes must belong to r0 as claimed.

To complete the argument, we now balance areas. The total area of all the curves in F is 2.d C 1/.
If F has Type 2b, then the planes from Claim 1 and Claim 2 have total area at least 2d . Its essential
curves must then have total area equal to 2. Also, they must contribute the remaining d intersections
with S0[S1. It follows from Lemma 3.19, that this is impossible for all d sufficiently large. Hence F

cannot be of Type 2b, and must instead be of Type 3. Arguing as above, it follows that in addition to its
three essential top level curves, F must then have d planes in s0[ s1 and d � 1 planes in r0[ r1.

Proposition 3.22 For all sufficiently large d , there exists a limiting building G as in the stretching
scenario for class .1; d/ such that G is of Type 3. In addition to its three essential curves it consists of
d planes in r0[ r1 and d � 1 planes in s0[ s1.

Proof Here we fix d points on L1;1 and d C 1 points on L, and for J� as in Proposition 3.20 consider
the limit, G , of a convergent sequence of J�k

–holomorphic spheres, for �k !1, that represent the class
.1; d/ and pass through the 2d C 1 constraint points. The point constraints imply that G is not of Type 0.

If G was of Type 1, the point constraints would imply that G includes at least d planes, which by
Lemma 3.16 either all lie in s0 or all lie in s1, and at least d C 1 planes either all in r0 or all in r1.
From this it follows that the essential curve of G would have area 1. Recalling Lemma 3.11, since L is
homologically trivial, the planes of r1 each intersect S0[S1 twice. Arguing as in Claim 2 from the
proof of Proposition 3.20, if the planes asymptotic to L lie in r1 then the broken planes will contribute a
total of d C 2.d C 1/ intersections with S0[S1, a contradiction as there are only 2d such intersections.
On the other hand, if these planes all lie in r0 then the essential curve must contribute d intersections
with S0 [S1. As this essential curve has area 1, this contradicts Lemma 3.19 when d is sufficiently
large. Hence, G is not of Type 1.

Next we show that G cannot be of Type 2b. Assume that it is. Then G includes dC1 planes either all in
r0 or all in r1. Counting intersections as above, G must have d C 1 planes in r0.
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Arguing as in Claim 1 above, we consider the subbuilding G1;1 of G consisting of its middle and bottom
level curves that map to the copies of R � S�T2 and T �T2 that correspond to L1;1. Since G1;1 is
connected and has genus zero, we have

index.G1;1/D 2.s� 1/;

where s is the number of positive ends of G1;1. Since G1;1 passes through the d generic point constraints
on L, we also have

index.G1;1/� 2d:

Hence, G1;1 has at least d C 1 positive ends. Two of these positive ends match with negative ends of the
two essential curves of G1;1. It follows that G must have at least d �1 planes in s0[s1. This means the
planes covering broken leaves then have area at least 2d . As the limiting building has total area 2d C 2

and also includes two essential curves, we see that the essential curves each have area 1 and there are
exactly d �1 planes in s0[ s1. As the planes in r0 are disjoint from S0[S1, the essential curves of G

must have d C 1 intersections with S0[S1. Lemma 3.19 again implies that this is impossible for all
sufficiently large d .

Finally we show that G cannot be of Type 2a. In this case G includes d planes in r0[ r1 and d planes
all in either s0 or all in s1. The planes asymptotic to L1;1 thus account for all intersections with either
S0 or S1 and so the planes asymptotic to L therefore all lie in r0. The essential curves have total area 2

and must together account for all intersections with either S0 or S1. This contradicts Lemma 3.19 as
before.

Lemma 3.23 All curves in the limiting buildings F and G that map to S2�S2 n .L[L1;1/ have area 1,
and in particular are simply covered.

Proof To see this, first observe that classes in H2.S
2 �S2;L[L1;1/ all have integral area. Indeed,

adding classes which lie only in H2.S
2 � S2;L/ or H2.S

2 � S2;L1;1/, which have integral area by
monotonicity, any relative class can be completed to an integral area absolute homology class.

Note that since F is of Type 3, it has its three essential curves together with 2d �1 other top level curves
that cover leaves of the foliation. Since F has total area 2d C 2 and all curves have integral area, the
result for F follows.

The same argument applies to G .

3.8 A collection of symplectic spheres and disks, under Assumption 2

Let J be a tame almost complex structure on S2�S2 n .L[L1;1/ that is adapted to parametrizations  
and  1;1 of L and L1;1, respectively. Recall that for the projection p W S2 �S2! S1, defined by the
foliation F corresponding to J , the images p.L/ and p.L1;1/ are disjoint circles. There are also disjoint
disks A0 � S1 with boundary p.L/ and A1 � S1 with boundary p.L1;1/ such that p.T0/ 2A0 and
p.T1/ 2A1; see Figure 1. In this section we will prove the following result.

Geometry & Topology, Volume 28 (2024)



Packing Lagrangian tori 2229

Proposition 3.24 For sufficiently large d there exist embedded symplectic spheres

F;G W S2
! S2

�S2
n .L[L1;1/

in the class .1; d/, and embedded symplectic disks

E W .D2;S1/! .S2
�S2;L/ and E1;1 W .D

2;S1/! .S2
�S2;L1;1/

of Maslov index 2, such that :

(1) F , G, E and E1;1 are all J–holomorphic away from arbitrarily small neighborhoods of a collection
of Lagrangian tori whose elements are near to , and Lagrangian isotopic to , either L or L1;1.

(2) The class of EjS1 and the foliation class ˇL form an integral basis of H1.L W Z/.

(3) The class of E1;1jS1 and the foliation class ˇL1;1
form an integral basis of H1.L1;1 W Z/.

(4) Exactly one of F and G intersects the planes of r0 and the other intersects the planes of r1.

(5) Exactly one of F and G intersects the planes of s0 and the other intersects the planes of s1.

(6) F �ECG �ED d .

(7) F �E1;1CG �E1;1 D d .

(8) F �G D 2d .

(9) The set p.F \G/ consists of d points in A0 and d points in A1.

Remark 3.25 This proposition is the key to our result. Following Theorem 1.1, the spheres F and G will
eventually be transformed to form axes of a new copy of S2 �S2 in which L and L1;1 must intersect. A
natural approach to finding spheres in the complement of the Lagrangians may have been to fix constraint
points in the complement of L[L1;1 and then take a limit of holomorphic spheres through these points
as we stretch along L[L1;1. Indeed, generically this does give holomorphic spheres in the complement,
but it seems difficult to obtain in this way a pair of spheres where one intersects the family r0 and the
other the family r1.

Our alternative approach is to start with the Type 3 curves given by Propositions 3.20 and 3.22, and this is
why we need to assume d is large. The Type 3 buildings intersect our Lagrangians in such a way that they
can be deformed, by a diffeomorphism supported near the Lagrangians, into cycles which are disjoint
from L and L1;1 and have the required intersections. The process is illustrated in Figure 4. In the figure,
the blue curves correspond to curves in the building F and the black curves correspond to the deformed
cycle contained in the complement of L. The curves running vertically correspond to broken leaves of
the foliation, and those running horizontally to essential curves.

More precisely, we will deform the building F constructed in Proposition 3.20 to a building F .fv1;w1g/

containing curves asymptotic to Lagrangians L.v1/ and L1;1.w1/. In local coordinates L.v1/ will
be a translation of L and L1;1.w1/ a translation of L1;1. Similarly, the building G constructed in
Proposition 3.22 is deformed to a building G .fv2;w2g/ containing curves asymptotic to Lagrangians L.v2/
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and L1;1.w2/, where again, in local coordinates, L.v2/ will be a translation of L and L1;1.w2/ a
translation of L1;1.

Our proof proceeds by describing these deformations carefully and then remarking that the images of the
buildings can be smoothed to form our symplectic spheres. This smoothing occurs only near L.v1/ and
L1;1.w1/ for F .fv1;w1g/, and only near L.v2/ and L1;1.w2/ for G .fv2;w2g/. As the six Lagrangian
tori L, L.v1/, L.v2/, L1;1, L1;1.w1/ and L1;1.w2/ are disjoint, and in fact disjoint from any intersections
between different buildings, this smoothing does not affect our intersection pattern calculation.

Proof of Proposition 3.24 In what follows, F and G will be limiting J–holomorphic buildings of
Type 3 as established in Proposition 3.20 and Proposition 3.22, respectively. We assume that they are in
the same class .1; d/ for some large d .

The top level curves of F are

fuL;u;uL1;1
;u1; : : : ;ud�1; u1; : : : ; udg:

Here, uL, u and uL1;1
are the essential curves of F . For some nonnegative integer ˛0 � d �1, the curves

u1; : : : ;u˛0
belong to r0 and the curves u˛0C1; : : : ;ud�1 belong to r1. For some nonnegative integer

ˇ0 � d , the curves u1; : : : ; uˇ0
belong to s0 and the curves uˇ0C1; : : : ; ud belong to s1.

Similarly, the top level curves of G are

fvL; v; vL1;1
; v1; : : : ; vd ; v1; : : : ; vd�1g;

where for some nonnegative integer 0 � d the curves v1; : : : ; v0
belong to r0 and v0C1; : : : ; vd belong

to r1, and for some nonnegative integer ı0 � d � 1, the curves v1; : : : ; vı0
belong to s0 and the curves

vı0C1; : : : ; vd�1 belong to s1.

3.8.1 Deformations near L Consider the coordinates .P1;Q1;P2;Q2/ in the Weinstein neighborhood
of L,

U.L/D fjP1j< �; jP2j< �g:

For each translation vector v D .a; b/ 2 .��; �/� .��; �/, there is a corresponding nearby Lagrangian
torus

L.v/D L.a; b/D fP1 D a; P2 D bg �U.L/:

Note that the parametrization  of L determines an obvious parametrization,  .v/D  .a; b/ of L.a; b/,
and a canonical isomorphism from H

 
1
.LIZ/ to H

 .a;b/
1

.L.a; b/IZ/.

Given a finite, nonempty collection of translation vectors,

V D fv1; : : : ; vkg D f.a1; b1/; : : : ; .ak ; bk/g;

let JV be an almost complex structure on the complement of the collection of Lagrangians

L.V /D
k[

iD1

L.vi/;
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which coincides with J outside U.L/ and inside has the form

(3-1) JV
@

@Qi
D��V

@

@Pi
;

where �V is a positive function away from L.V / and in a neighborhood of each L.vi/ has the form

�V D

p
.P1� ai/

2
C .P2� bi/

2:

In this case, we say that JV is adapted to L.V / with respect to  . The set of all such almost complex
structures adapted to some nontrivial collection L.V /�U.L/ will be denoted by JU.L/.

Following Section 2.5 of [5], for each JV in JU.L/ one can construct, for � � 0, a standard family of
almost complex structures JV ;� on S2�S2 that are tame with respect to ��

1
!C��

2
!, such that the limit

� !1 corresponds to the process of stretching the neck along small sphere bundles surrounding each of
the components of L.V /; see [1]. The structure JV is the part of the limit of the JV ;� corresponding to
S2�S2n.L.V /[L1;1/. The limit of the Gromov foliations for the JV ;� , in class .0; 1/, yields a foliation
F.V / of S2 �S2 n .L.V /[L1;1/. For example, for V D f.0; 0/g we have JV D J and F.V /D F.

Lemma 3.26 Leaves of the foliation F.V / intersect U.L/ along the annuli fP1 D ı;Q1 D �; jP2j< �g.
A leaf of F.V / that intersects U.L/ along the annulus fP1 D ı;Q1 D �; jP2j< �g is broken if and only
if the collection V contains an element of the form .ı; bi/.

Proof It follows from equation (3-1) that these annuli are JV –holomorphic. By assuming J satisfies the
conclusions of Lemma 3.4, they also extend to JV –holomorphic spheres in the class .0; 1/. By positivity
of intersection, these spheres, and indeed any holomorphic sphere in the class .0; 1/, are leaves of the
foliation F.V /.

First deformation process Our first deformation process allows us to deform a regular J–holomorphic
curve so that its ends on L become ends on a nearby Lagrangian L.v/.

Lemma 3.27 (Fukaya’s trick) Let u be a regular J–holomorphic curve with k � 0 ends on L and l � 0

ends on L1;1. For all vD .a; b/with kvk2Da2Cb2 sufficiently small , there is a regular Jv–holomorphic
curve u.v/ with k ends on L.v/ and l ends on L1;1. Moreover , the ends of u.v/ on L.v/ represent the
identical classes in H

 .v/
1

.L;R/, as do those of u in H
 
1
.L;R/. The classes corresponding to the ends

of u.v/ on L1;1 are also identical to those of u.

Proof For kvk sufficiently small, the Lagrangian isotopy t 7! L.tv/ for 0� t � 1 is contained in U.L/.
Let ft;v be a family of diffeomorphisms of S2 �S2 such that

� f0;v is the identity map,

� ft;v.L/D L.tv/ for all t 2 Œ0; 1�,

� each ft;v is equal to the identity map outside of U.L/, and

� kft;vkC 1 is of order 1 in kvk.
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Let Jtv be a family of tame almost complex structures in JU.L/ such that each Jtv is adapted to L.tv/

with respect to  . Set
zJtv D .f

�1
t;v /�Jtv :

For kvk sufficiently small, zJtv is a tame almost complex structure on S2�S2n.L[L1;1/ for all t 2 Œ0; 1�.
Since u is regular, for sufficiently small kvk the curve u persists to yield a regular zJv–holomorphic
curve zu.v/ with the same asymptotic behavior as u. By our choice of zJtv , the curve

u.v/D f1;v ı zu.v/

is then regular, Jv–holomorphic and has k ends on L.v/ instead of L.

Applying Lemma 3.27 to F and G To apply Lemma 3.27 to the top level curves of F and G we need
these curves to be regular. Lemma 3.23 implies that the top level curves of the buildings F and G are
somewhere injective. Since they are the limits of embedded curves, they are actually embedded and hence
regular for generic choice of J . The work of Wendl in [21] implies that they are regular for all J .

Lemma 3.28 For any tame almost complex structure J on

.S2
�S2

n .L[L1;1/; �
�
1!C�

�
2!/

that is adapted to both  and  1;1, the top level curves of the buildings F and G are all regular.

Proof By [21, Theorem 1], any embedded J–holomorphic curve u mapping to S2 �S2 n .L[L1;1/ is
regular if its Fredholm index is greater than or equal to the number of its asymptotic ends. In our setting,
we have

index.u/D s� 2C 2c1.u
�T .S2

�S2/;u�TL/;

where s is the number of ends and c1 is the relative first Chern class. It suffices to show that for each top
level curve u of the buildings F and G , we have c1.u

�T .S2 �S2/;u�TL/� 1.

Since F and G both have Type 3, it follows from Lemma 3.23 that each top level curve u is either a
J–holomorphic plane or cylinder. If u is a plane, then 2c1.u

�T .S2 �S2/;u�TL/ is just the Maslov
class. By monotonicity, this is equal to 2 since, by Lemma 3.23, our top level curves all have area 1.

If u is a J–holomorphic cylinder, we can then produce a disk v from it by compactifying the ends of u

and smoothly gluing a disk w to one of them. If the disk w has area A then, by monotonicity, it has
Maslov index 2A. By additivity of the area and the Chern class, v has area AC 1 and Maslov index
2c1.u

�T .S2 �S2/;u�TL/C 2A. Since the area is AC 1, by monotonicity v must have Maslov index
2.AC 1/. This implies that 2c1.u

�T .S2 �S2/;u�TL/D 2, as required.

For v D .a; b/ with kvk sufficiently small we now define the deformed building F .v/ as follows. The
top level curves of F .v/ are obtained by applying Lemma 3.27 to those top level curves of F with ends
on L, and leaving the others unchanged. That is, the top level curves of F .v/ are

fuL.v/;u.v/;uL1;1
;u1.v/; : : : ;ud�1.v/; u1; : : : ; udg:
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The middle and bottom level curves of F .v/ are the same as those of F except they are now considered
to map to copies of R�S�T2 and T �T2 that correspond to L.v/ rather than L.

Note that F .v/ still has a continuous compactification xF .v/ W S2! S2 �S2, which can be deformed
arbitrarily close to L.v/ to obtain a smooth sphere F D F.v/ W S2! S2 �S2 which is Jv–holomorphic
away from a small neighborhood of L.v/.

Lemma 3.29 Set v D .a; b/ and V D f.0; 0/; vg and suppose that kvk is small enough for F .v/ to exist.
If a and b are both nonzero and jaj is sufficiently small with respect to jbj, then each top level curve of
F .v/ is JV –holomorphic for some JV in JU.L/.

Proof By Lemma 3.26, for any adapted almost complex structure, the leaves of the corresponding
foliation intersect U.L/ in the annuli fP1 D ı;Q1 D �; jP2j < �g. Hence if b ¤ 0 and a D 0, the
preimages of the regions A0 and B for L.v/ intersect U.L/ in the subsets fP1 < 0g and fP1 > 0g,
respectively (since they consist of the leaves which are not broken along L.v/). It follows that the closures
of the essential curves of F .v/ are disjoint from L: the curves themselves are disjoint since they project
to the regions A0, B or A1, and they are compactified by circles in L.0; b/ or L1;1.

By continuity, these essential curves remain disjoint from L also for sufficiently small a when we
deform using Lemma 3.27. Therefore, for all jaj sufficiently small, the essential curves of F .v/ are JV –
holomorphic for any JV which only differs from Jv in a small enough neighborhood of L. Meanwhile,
any top level curves of F .v/ that cover broken leaves intersect U.L/ in annuli lying in fP1 D ag, and
these annuli are holomorphic for any adapted almost complex structure.

Arguing in a similar fashion we can assert that the top level curves of F .v/ are JV –holomorphic for
more general collections V . For example, we have the following statement.

Lemma 3.30 Set v1 D .a1; b1/, v2 D .a2; b2/ and V D f.0; 0/; v1; v2g, and suppose that kv1k is small
enough for F .v1/ to exist. If a1 and b1 are both nonzero , ja1j is sufficiently small with respect to jb1j,
and kv2k is sufficiently small with respect to ja1j, then each top level curve of F .v1/ is JV –holomorphic
for some JV in JU.L/.

The deformed building G .v/ is defined analogously, and satisfies the analogues of Lemmas 3.29 and 3.30.

Second deformation process Consider V D f.0; 0/; .a1; b1/; .a2; b2/g with b1 and b2 nonzero. For
suitable choices of ai and bi , our second deformation process deforms the essential J–holomorphic
curve uL of F into a curve, uV

L , which has the same asymptotics as uL but is JV –holomorphic for some
JV that is adapted to L.V / with respect to  .

The primary deformation result is as follows.
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Lemma 3.31 Set v D .0; b/, V D f.0; 0/; vg and suppose that 0 < jbj < �. For s 2 Œ0; 1�, let Js be a
smooth family of almost complex structures in JU.L/ such that

� J0 D J ,

� Js is adapted to L, with respect to  , for all s 2 Œ0; 1/, and

� J1 is adapted to L.V / with respect to  .

Then the essential curve uL of F belongs to a smooth family of Js–holomorphic planes uL.s/ for
s 2 Œ0; 1�. Moreover , the JV –holomorphic plane

uL.1/ WC! S2
�S2

n .L.V /[L1;1/

is disjoint from the region fP1 > 0g and is essential with respect to F, and the closure of the image of
p ıuL.1/ is A0.

Proof By Lemma 3.23, the initial curve uL has area equal to 1. Since L is monotone, no degenerations
are possible until s D 1. In other words, the family of deformed curves uL.s/ exists for all s 2 Œ0; 1/

and it suffices to show that it extends to s D 1. To prove the first assertion of Lemma 3.31 we argue
by contradiction, and assume that there is a sequence sj ! 1 such that the curves uL.sj / converge to a
nontrivial JV –holomorphic building H which includes curves with punctures asymptotic to L.v/. We
will show that this implies that, unlike uL, none of the curves of H intersect T0, a contradiction.

Claim 1 Let v be a JV –holomorphic curve of H . Any puncture of v asymptotic to L.v/ must cover a
closed geodesic in a class .k; l/ 2H1.L.v/IZ/ with k � 0.

Since the closure of p ıuL is A0, by our choice of coordinates in Section 3.5, uL is disjoint from the
leaves of F which intersect U.L/ in the region fP1 > 0g. The same is true of the curves uL.s/ for all
s < 1. Hence, v must also be disjoint from these leaves. The curve v can be extended smoothly to
the oriented blow-up of the relevant puncture, such that the resulting map Nv acts on the corresponding
boundary circle as

� 7! .0; b;Q1C k�;Q2C l�/

for some Q1;Q2 2 S1. The tangent space to the image of Nv at a boundary point on the circle is spanned
by fk @=@Q1C l @=@Q2; k @=@P1C l @=@P2g. If k were positive, this would contradict the fact that v is
disjoint from the leaves through fP1 > 0g since v D .0; b/. This proves Claim 1.

Claim 2 Let v be a JV –holomorphic curve with a puncture that is asymptotic to L.v/ along a geodesic
in a class which is a multiple of the foliation class , ie of the form .0; l/ 2H

 .v/
1

.L.v/IZ/. Then v must
cover a plane or cylinder of a twice broken leaf of the foliation F.V /.

Geometry & Topology, Volume 28 (2024)



Packing Lagrangian tori 2235

This follows, as in [8, Lemma 6.2], from the asymptotic properties of holomorphic curves and the fact that
v lies in fP1 � 0g. Let w be a broken plane asymptotic (modulo taking to covers) to the same Reeb orbit
as an end of v. Then if v does not cover w it must intersect all nearby leaves of the foliation, including
those which lie in the region fP1 > 0g. This gives a contradiction as in Claim 1, proving Claim 2.

We can now complete the proof of the first assertion of Lemma 3.31. Let Htop denote the collection
of top level curves of H , let HL be the subbuilding consisting of the middle and bottom level curves
of H that map to the copies of R�S�T2 and T �T2 corresponding to L, and let Hv be the subbuilding
consisting of the middle and bottom level curves of H that map to the copies of R�S�T2 and T �T2

corresponding to L.v/.

Consider the classes .k1; l1/; : : : ; .km; lm/ 2 H1.L.v/IZ/ of the geodesics determined by all of the
punctures of top level curves of H that are asymptotic to L.v/. These constitute the boundary of the
cycle in L.v/ that is obtained by gluing together the compactifications of the curves of Hv . Hence, the
sum of the classes .k1; l1/; : : : ; .km; lm/ must be .0; 0/ and, by Claim 1, each ki must be zero. It then
follows from Claim 2 that any curve of H with an end on L.v/ must cover a plane or cylinder of a broken
leaf of F.v/.

Partition the curves of Htop [Hv D H nHL into connected components based on the matching of
their ends in the copies of R�S�T2 and T �T2 corresponding to L.v/. Denote these components by
H1; : : : ;Hk . The compactification of each Hj is a cycle representing a class in �2.S

2 � S2;L/. By
monotonicity, the symplectic area of this cycle is a positive integer. Since the area of uL is one, we must
have k D 1 and the area of the cycle determined by H1 must be one. Assuming the limit is a building
including curves asymptotic to L.v/, by definition all curves of H1 have ends on L.v/. By the discussion
above, this implies that all the curves of H1 must cover a plane or cylinder of a broken leaf of F.V /

through L.v/. None of these leaves intersect T0, and neither do the curves of HL. Hence, no curve of
H DH1[HL intersects T0, which is the desired contradiction.

The remaining assertions of Lemma 3.31 follow easily from positivity of intersection. To see that uL.1/ is
disjoint from the region fP1 > 0g note that the initial curve uL is disjoint from the leaves of the foliation
that intersect this region since its image under p is A0 and our choice of coordinates has fP1 > 0g

projecting to B. Positivity of intersection implies that no new intersections of the uL.s/ with these fibers
can appear during the deformation.

Finally, since uL.1/ does not cover a leaf of the foliation, it also follows from positivity of intersection
that uL.1/ is disjoint from the hypersurface fP1 D 0g. In particular, any intersection with leaves in
fP1 D 0g would imply intersections with the region fP1 > 0g. Hence the closure of p ıuL.1/ is equal
to A0.

Translating the Lagrangian tori of Lemma 3.31 slightly in the P1–direction, we get the following
generalization.
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Corollary 3.32 Let uL be the essential curve of F which is mapped by p onto A0. Choose nonzero
constants b1 and b2 in .��; �/. If ı > 0 is sufficiently small , then for any a1 and a2 in .�ı; ı/ and

V D f.0; 0/; .a1; b1/; .a2; b2/g;

there is a JV –holomorphic curve

uV
L WC! S2

�S2
n .L.V /[L1;1/

in the class of uL such that uV
L is disjoint from the region fP1 > 0g and is essential with respect to F,

and the closure of the image of p ıuV
L is A0.

Proof This has been established in the case when a1 D a2 D 0. But then if the ai are sufficiently small
we can appeal to Lemma 3.27 to see that still there are no degenerations.

Intersections near L Consider translation data

V D f0; v1; v2g D f.0; 0/; .a1; b1/; .a2; b2/g:

In what follows we will always assume that v1 and v2 are distinct and the ai and bi are as small as
necessary but not zero. If kv1k is sufficiently small then, as described in Lemma 3.30, the deformed
building F .v1/ is well defined and its top level curves

fuL.v1/;u.v1/;uL1;1
;u1.v1/; : : : ;ud�1.v1/; u1; : : : ; udg

are all JV –holomorphic for some JV in JU.L/.

We also assume that Corollary 3.32 holds for V . This yields a JV –holomorphic curve uV
L which

is disjoint from the region fP1 > 0g and intersects the leaves of F.V / that pass through the planes
fP1 D c < 0; Q1 D �g exactly once.

The intersection number between each top level curve of F .v1/ and the curve uV
L is well defined since

the curves of F .v1/ are disjoint from L, as established in Lemma 3.30; see Figure 4. We denote the total
of these intersection numbers by F .v1/ �uV

L .

Similarly, the intersection number of each top level curve of F .v1/ with any of the planes in either r0

or r1 is well defined and all such intersections are positive. Since this number is the same for any plane
in the family, we denote these numbers by F .v1/ � r0 and F .v1/ � r1, respectively.

Let xF .v1/ W S
2 ! S2 � S2 be the compactification of F .v1/, let E W .D2;S1/ ! .S2 � S2;L/ be

the compactification of the curve uV
L , and let Nr0 and Nr1 be the solid tori obtained by compactifying

the planes of r0 and r1. Deforming xF .v1/ in a neighborhood of L.v1/, we obtain a smooth map
F D F.v1/ W S

2! S2 �S2 such that

F �ED xF .v1/ �ED F .v1/ �uV
L ;(3-2)

F � Nr� D xF .v1/ � Nr� D F .v1/ � r� for � D 0;1;(3-3)

Geometry & Topology, Volume 28 (2024)



Packing Lagrangian tori 2237

u˛0C1.v1/u˛0C2.v1/ud�1.v1/ u˛0C1 u˛0C2 ud�1

L.v1/
uL.v1/ u.v1/

uV
L

L

u1.v1/ u2.v1/ u˛0
.v1/

Figure 4: The intersection pattern of Lemma 3.33 for the case b1 > 0. The large dots in the figure
represent the isolated intersections points, in U.L/, of the relevant pairs of curves.

where xF .v1/ � Nr� denotes the intersection number with any disk in the family. Moreover, the intersection
points that determine the equal intersection numbers in (3-2) and (3-3) are identical.

Recall that ˛0 is the number of top level curves of F lying in r0. Hence, by Proposition 3.20, there are
d � 1�˛0 top level curves lying in r1.

Lemma 3.33 Consider V D f0; v1; v2g D f.0; 0/; .a1; b1/; .a2; b2/g such that v1 and v2 are distinct ,
a1 is negative , and b1 and b2 are nonzero. Suppose that ja1j is sufficiently small with respect to jb1j.

If b1 > 0, then F � Nr0 D 0, F � Nr1 D 1 and F �ED ˛0.

If b1 < 0, then F � Nr0 D 1, F � Nr1 D 0 and F �ED d � 1�˛0.

Proof Here we give the proof of the case when b1 is positive. The proof for b1 < 0 is identical and is
left to the reader.
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The situation for b1 > 0 is illustrated in Figure 4, where the black curves can be deformed near L.v1/

to form our sphere F . As the figure suggests, the contribution to F � Nr0 from intersections in U.L/ is
zero, the contribution to F � Nr1 from intersections in U.L/ is one, and the contribution to F �E from
intersections in U.L/ is ˛0. These assertions are proven below along with the fact that there are no other
contributions to these numbers.

The map F represents the class .1; d/. For each disk in Nr0 there is a companion disc in Nr1 such that the
pair can be glued together, along L, to form a sphere in the class .0; 1/. Hence,

F � Nr0CF � Nr1 D 1:

Since all intersections are positive, in order to prove that F �Nr0D 0; and F �Nr1D 1, it suffices to prove that
F � Nr1 � 1. In particular, it suffices to show that for the curve u.v1/ of F .v1/, we have u.v1/ � r1 � 1.

The curve u.v1/ is essential and projects under p to the region in S1 bounded by p.L.v1// and p.L1;1/.
Thus it intersects U.L/ in the region fP1 > a1g and intersects all leaves of the foliation which meet
U.L/ in this set. Also, if U.L/ is sufficiently small, it intersects U.L/ inside fP2 > 0g. This is true when
a1 D 0 because b1 > 0, and remains true for small a1 by continuity. As r1 intersects U.L/ in the region
fP1 D 0; P2 > 0g and r0 in the region fP1 D 0; P2 < 0g, we see that u.v1/ intersects the planes in r1

rather than those in r0, as required.

It remains to prove that F �ED ˛0 when ja1j is sufficiently small with respect to jb1j. By (3-2), and the
fact that the top level curves of F .v1/ are

fuL.v1/;u.v1/;uL1;1
;u1.v1/; : : : ;ud�1.v1/; u1; : : : ; udg;

it suffices to prove that for ja1j sufficiently small with respect to jb1j, we have

(3-4) ui.v1/ �uV
L D 1 for 1� i � ˛0;

and uV
L is disjoint from all the other top level curves of F .v1/.

By Corollary 3.32, the curve uV
L is essential for F, and the closure of the image of p ıuV

L is A0. So if w
is another curve in S2 �S2 and p ıw is disjoint from A0, then uV

L is disjoint from w. This observation
implies that uV

L is disjoint from uL1;1
and the uj for j D 1; : : : ; d , since these curves all project into A1.

Another consequence of uV
L being essential with respect to F is that it intersects any fiber of F either

once or not at all. The curve uV
L intersects U.L/ in the region fP1 < 0g and has an end asymptotic to a

circle in LD fP1 D P2 D 0g. Since b1 > 0, this implies that for all a1 < 0 such that ja1j is sufficiently
small with respect to b1, uV

L must intersect the annuli of the form fP1 D a1;Q1 D �;P2 < b1g exactly
once. Now the planes ui.v1/ all belong to broken fibers of F that intersect U.L/. For 1 � i � ˛0, the
curves ui.v1/ intersect U.L/ in annuli of the form fP1 D a1;Q1 D �;P2 < b1g. For i > ˛0, the ui.v1/

intersect U.L/ in annuli of the form fP1 D a1;Q1 D �;P2 > b1g. Hence, for 1� i � ˛0, uV
L intersects

the fiber of F containing ui.v1/ at a point on ui.v1/. This yields equation (3-4). On the other hand,
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for i > ˛0, uV
L intersects the fiber of F containing ui.v1/ at a point in the complement of ui.v1/. Hence,

uV
L is disjoint from these curves.

Next we show that, when ja1j is sufficiently small with respect to jb1j, uV
L is disjoint from u.v1/.

Considering projections, it is clear that the part of u.v1/ in the complement of U.L/ is disjoint from uV
L

since its projection is contained in the interior of B [A1.

Suppose that a1 D 0. Then u..0; b1//\U.L/ is contained in fP1 > 0g and is asymptotic to L.0; b1/.
This is disjoint from uV

L \U.L/, which is contained in fP1 < 0g and is asymptotic to L. By continuity,
u..a1; b1//\U.L/ is then disjoint from uV

L \U.L/ for all a1< 0 with ja1j sufficiently small with respect
to jb1j.

Lastly, we must prove that
uL.v1/ �uV

L D 0

when ja1j is sufficiently small with respect to jb1j. Following Lemma 3.31 the compactifications of uV
L

and uL are homotopic in the space of smooth maps .D2;S1/! .p�1.A0/;L/, so for a1 sufficiently
small it suffices to show that

uL.v1/ �uL D 0:

Let NuL.v1/ and NuL be compactifications of uL.v1/ and uL. We claim that uL.v1/ �uL D 0 is equivalent
to the fact that the Maslov index of NuL is equal to 2. To see this we recall that

(3-5) �. NuL/D 2c1. NuL/;

where c1. NuL/ is the relative Chern number of NuL, which is equal to the number of zeros of a generic
section � of Nu�L.ƒ

2.T .S2 �S2/// such that �jS1 is nonvanishing and is tangent to ƒ2.T L/.

Let �. NuL/ be the normal bundle to the embedding NuL and fix an identification of Nu�L.T .S
2 �S2// with

the Whitney sum �. NuL/˚ T .D2/. For polar coordinates .r; �/ on D2 consider the section r @=@� of
Nu�L.T .S

2 �S2//. The restriction r @=@� jS1 is nonvanishing and tangent to T L.

Replacing v1 by tv1 for some small t > 0, if necessary, we may assume that NuL.v1/ is close enough NuL,
in the C 1–topology, to be identified with a section, �L.v1/, of �. NuL/� Nu

�
L.T .S

2�S2//. The restriction
�L.v1/jS1 is roughly parallel to the vector field @=@P2. By rotating in the normal bundle this section is
homotopic through nonvanishing sections of the normal bundle to a section of T L along @D2 which is
orthogonal to @=@� .

Set � D r @=@� ^�L.v1/. It follows from the discussion above that �jS1 is nonvanishing and is tangent to
ƒ2.T L/. Moreover, the zeroes of � correspond to the union of the zeros of r @=@� and �L.v1/. Since NuL

is embedded, the zeros of �L.v1/ exactly correspond to the intersections uL.v1/ �uL. By (3-5), we have

�. NuL/D 2.1CuL.v1/ �uL/:

As �. NuL/D 2 (as it has area 1 by Lemma 3.23, and L is monotone) we have uL.v1/ �uL D 0.
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Assuming that v2 D .a2; b2/ is sufficiently small, we can deform the building G to obtain a new building
G .v2/ with top level curves

fvL.v2/; v.v2/;uL1;1
; v1.v2/; : : : ; vd .v2/; v1; : : : ; vd�1g:

Let xG .v2/ W S
2! S2 �S2 be the compactification of G .v2/. Again we can deform xG .v2/, arbitrarily

close to L.v2/, to get a smooth map G DG.v2/ W S
2! S2 �S2 such that

G �ED xG .v2/ �E DG .v2/ �uV
L ;

G � Nr� D xG .v2/ � Nr� DG .v2/ � r� for � D 0;1:

Arguing as in the proof of Lemma 3.33 we get the following.

Lemma 3.34 Consider V D f0; v1; v2g D f.0; 0/; .a1; b1/; .a2; b2/g such that a2 is negative , and b1

and b2 are nonzero. Suppose that ja2j is sufficiently small with respect to jb2j.

If b2 > 0, then
G �ED 0C vL.v2/ �uV

L ; G � Nr0 D 0 and G � Nr1 D 1:

If b2 < 0, then

G �ED d � 0C vL.v2/ �uV
L ; G � Nr0 D 1 and G � Nr1 D 0:

The term vL.v2/ �uV
L is not necessarily equal to zero. Instead we have the following identity.

Lemma 3.35 For V D f0; v1; v2g D f.0; 0/; .a1; b1/; .a2; b2/g, where b1 and b2 have opposite signs ,
and a1 and a2 are sufficiently small relative to b1 and b2, we have

vL.v2/ �uV
L D vL.v2/ �uL.v1/:

Proof First we consider the case when a1 D a2 D 0. The image of the map vL.v2/ projects to A0

and its boundary lies in L.v2/. Hence, using our assumption on sign, the family of Lagrangians L.tv1/

for 0 � t � 1 are disjoint from the compactification of vL.v2/. It then follows from the proof of
Lemma 3.27 that the compactification of uL is connected to that of uL.v1/ by a path of smooth maps
ut W .D

2;S1/! .S2 �S2;L.tv1//. Therefore we have, as required,

vL.v2/ �uL D vL.v2/ �uL.v1/:

For the general case we use the fact that the maps vary continuously with the parameters and so the
intersection numbers remain unchanged for a1 and a2 sufficiently small.

When v1 and v2 are distinct, with b1 ¤ b2 and a1 ¤ a2 sufficiently small, the intersection numbers of
the top level curves of F .v1/ and G .v2/ are also well defined. The following results concerning these
intersections will be useful.

Geometry & Topology, Volume 28 (2024)



Packing Lagrangian tori 2241

Lemma 3.36 For v1D .a1; b1/ and v2D .a2; b2/, suppose that a1< a2< 0, with a1 and a2 sufficiently
small.

If b1 > b2, then
ui.v1/ � vL.v2/D 1 for i D 1; : : : ; ˛0;

vi.v2/ �u.v1/D 1 for i D 0C 1; : : : ; d:

If b1 < b2, then
ui.v1/ � vL.v2/D 1 for i D ˛0C 1; : : : ; d � 1;

vi.v2/ �u.v1/D 1 for i D 1; : : : ; 0:

Moreover , all the intersection points here project to A0.

Proof Since the curves u.v1/ and vL.v2/ are essential with respect to F, they intersect a leaf of the
foliation either once or not at all. Hence it suffices to detect a single intersection of the relevant pairs
of curves listed. We detect an intersection for the first type of pair above and leave the other cases to
the reader. For 1 � i � ˛0 the planes ui.v1/ intersect U.L/ in annuli fP1 D a1;Q1 D �;P2 < b1g.
As vL..0; b2// is asymptotic to L..0; b2// D fP1 D 0;P2 D b2g it intersects ui.v1/ provided a1 is
sufficiently small (since the boundary of vL..0; b2// intersects all annuli fP1D 0;Q1D �;P2< b1g). For
a2 sufficiently small, the plane vL.v2/ is a deformation of vL..0; b2// and so the intersection persists. As
vL.v2/ intersects fibers at most once, the intersection number is equal to 1. Since a1 < 0, the intersection
point projects to A0.

Corollary 3.37 For v1 D .a1; b1/ and v2 D .a2; b2/, suppose that a1 < a2 < 0, with a1 and a2

sufficiently small.

If b1 > b2, then F \G contains at least ˛0C d � 0 points in U.L/ that project to A0.

If b1 < b2, then F \G contains at least d � 1�˛0C 0 points in U.L/ that project to A0.

Remark 3.38 It follows from Lemma 3.35 that any excess intersection points between F and G in
p�1.A0/, that is, more than described by Corollary 3.37, correspond to intersection points between G

and E, at least if the bi have opposite sign and the ai are sufficiently small.

Adding deformations near L1;1 To completely resolve the intersections of F and G we must also
apply deformations in the Weinstein neighborhood

U.L1;1/D fjp1j< �; jp2j< �g:

Here we consider nearby Lagrangian tori of the form

L1;1.w/ WD fp1 D c;p2 D dg for wD .c; d/ 2 .��; �/� .��; �/:

The space of almost complex structures that are adapted to collections of these translated Lagrangian tori
near L1;1, with respect to  1;1, is defined analogously to JU.L/ and is denoted by JU.L1;1/.
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Given nontrivial collections

V D fv1; : : : ; vkg D f.a1; b1/; : : : ; .ak ; bk/g and W D fw1; : : : ;wlg D f.c1; d1/; : : : ; .cl ; dl/g;

set X D fV ;W g. Let JX denote the corresponding (doubly) adapted almost complex structures in
JU.L/\JU.L1;1/.

Lemma 3.27 generalizes to this setting as follows.

Lemma 3.39 Let u be a regular J–holomorphic curve with k � 0 ends on L and l � 0 ends on L1;1.
For all x D fv;wg D f.a; b/; .c; d/g with kxk sufficiently small , there is a Jx–holomorphic curve u.x/

that represents the class in �2.S
2 � S2;L.v/ [ L1;1.w// and which corresponds to the class Œu� in

�2.S
2 �S2;L[L1;1/ under the obvious identification. The curve u.x/ has k ends on L.v/ and these

represent the identical classes in H
 .v/
1

.LIZ/ as do those of u in H
 
1
.LIZ/. The curve also has l ends on

L1;1.w/ which represent the identical classes in H
 1;1.w/

1
.L1;1IZ/ as do those of u in H

 1;1

1
.L1;1IZ/.

Corollary 3.32 generalizes as follows.

Lemma 3.40 Let uL and uL1;1
be the essential curves of a building F as in Proposition 3.20. Let

X D fV ;W g, where

V D f.0; 0/; .a1; b1/; .a2; b2/g and W D f.0; 0/; .c1; d1/; .c2; d2/g:

If b1, b2, d1 and d2 are in .��; �/ and a1, a2, c1 and c2 are in .�ı; ı/, then for all sufficiently small ı
there is a JX –holomorphic curve

uX
L WC! S2

�S2
n .L.V /[L1;1.W //

in the class of uL such that uX
L is disjoint from the region fP1 > 0g, the closure of the image of

p ı uX
L is A0, and uX

L intersects , exactly once , the leaves of F.X/ that pass through the planes
fP1 D c < 0; Q1 D �g.

There is also a JX –holomorphic curve

uX
L1;1
WC! S2

�S2
n .L.V /[L1;1.W //

in the class of uL1;1
such that uX

L1;1
is disjoint from the region fp1 < 0g, the closure of the image of

p ı uX
L1;1

is A1, and uX
L1;1

intersects , exactly once , the leaves of F.X/ that pass through the planes
fp1 D c > 0; q1 D �g.

Completion of the proof of Proposition 3.24 Let F be a building as in Proposition 3.20 and let G be a
building as in Proposition 3.22. Set

x1 D fv1;w1g D f.a1; b1/; .c1; d1/g; x2 D fv2;w2g D f.a2; b2/; .c2; d2/g;

V D f0; v1; v2g D f.0; 0/; .a1; b1/; .a2; b2/g; W D f0;w1;w2g D f.0; 0/; .c1; d1/; .c2; d2/g;

and set
X D fV ;W g:
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We assume that kx1k and kx2k are small enough for Lemma 3.39 to yield the deformed buildings
F .x1/ and G .x2/. We also assume that ja1j

2C ja2j
2C jc1j

2C jc2j
2 is small enough with respect to

jb1j
2Cjb2j

2Cjd1j
2Cjd2j

2 for Lemma 3.40 to yield the deformations uX
L and uX

L1;1
.

Let E W .D2;S1/! .S2�S2;L/ be the compactification of uX
L , and E1;1 W .D

2;S1/! .S2�S2;L1;1/

be the compactification of uX
L1;1

. Since the homology classes represented by the ends of uX
L and uX

L1;1

are identical to those of the essential curves uL and uL1;1
, the maps E and E1;1 satisfy conditions (2)

and (3) of Proposition 3.24.

Consider compactifications xF .x1/ W S
2 ! S2 � S2 of F .x1/, and xG .x2/ W S

2 ! S2 � S2 of G .x2/.
Arguing as before, we can perturb these maps, arbitrarily close to the Lagrangians L.v1/, L1;1.w1/,
L.v2/ and L1;1.w2/, to obtain smooth spheres F and G such that condition (1) of Proposition 3.24 holds.

It remains to verify the conditions (4) through (9) of Proposition 3.24, which involve intersections.

In the current setting, Lemma 3.33 holds as stated and the proof is unchanged.

Lemma 3.41 Suppose a1 is negative , and b1 and b2 are nonzero. Suppose that ja1j is sufficiently small
with respect to jb1j.

If b1 > 0, then F � Nr0 D 0, F � Nr1 D 1 and F �ED ˛0.

If b1 < 0, then F � Nr0 D 1, F � Nr1 D 0 and F �ED d � 1�˛0:

Lemmas 3.34 and 3.35 and Corollary 3.37 change only in notation, and yield the following.

Lemma 3.42 Suppose that a2 is negative , b1 and b2 are nonzero , and ja2j is sufficiently small with
respect to jb2j.

If b2 > 0, then G � Nr0 D 0, G � Nr1 D 1 and

G �ED 0C vL.x2/ �uX
L :

If b2 < 0, then G � Nr0 D 1, G � Nr1 D 0 and

G �ED d � 0C vL.x2/ �uX
L :

Lemma 3.43 If b1 and b2 have opposite sign , and a1 and a2 are sufficiently small , then

vL.x2/ �uX
L D vL.x2/ �uL.x1/:

Lemma 3.44 Suppose that a1 < a2 < 0, and a1 and a2 are sufficiently small.

If b1 > b2, then F \G contains at least ˛0C d � 0 points in U.L/ that project to A0.

If b1 < b2, then F \G \U.L/ contains at least d � 1�˛0C 0 points in U.L/ that project to A0.

The following analogous results follow from similar arguments.
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Lemma 3.45 Suppose c1 is positive , d1 and d2 are nonzero , and jc1j is sufficiently small with respect
to jd1j.

If d1 > 0, then F � Ns0 D 0, F � Ns1 D 1 and F �E1;1 D ˇ0.

If d1 < 0, then F � Ns0 D 1, F � Ns1 D 0 and F �E1;1 D d �ˇ0.

Lemma 3.46 Suppose c2 is positive , d1 and d2 are nonzero , and jc2j is sufficiently small with respect
to jd2j.

If d2 > 0, then G � Ns0 D 0, G � Ns1 D 1 and

G �E1;1 D ı0C vL1;1
.x2/ �uX

L1;1
:

If d2 < 0, then G � Ns0 D 1, G � Ns1 D 0 and

G �E1;1 D d � 1� ı0C vL1;1
.x2/ �uX

L1;1
:

Lemma 3.47 If d1 and d2 have opposite sign , and c1 and c2 are sufficiently small , then

vL1;1
.x2/ �uX

L1;1
D vL1;1

.x2/ �uL1;1
.x1/:

Lemma 3.48 Suppose that c1 > c2 > 0, and c1 and c2 are sufficiently small.

If d1 > d2, then F \G contains at least ˇ0C d � 1� ı0 points in U.L1;1/ that project to A1.

If d1 < d2, then F \G contains at least d �ˇ0C ı0 points in U.L1;1/ that project to A1.

With F and G fixed as above, the remaining analysis can be organized using the following two alternatives:

� Alternative 1 Either ˛0 � 0 or 0 � ˛0C 1.

� Alternative 2 Either ˇ0 � ı0C 1 or ı0 � ˇ0.

Case 1 (˛0 � 0 and ˇ0 � ı0C 1) In this case, we choose our translations so that

a1 < a2 < 0; b2 < 0< b1; 0< c2 < c1; d2 < 0< d1:

For these conditions on b1 and b2, Lemmas 3.41 and 3.42 yield F � r0 D 0, F � r1 D 1, G � r0 D 1 and
G � r1 D 0. This implies condition (4) of Proposition 3.24.

Similarly, for these conditions on d1 and d2, Lemmas 3.45 and 3.46 imply that F � s0 D 0, F � s1 D 1,
G � s0 D 1 and G � s1 D 0. This gives condition (5) of Proposition 3.24.

The maps F and G both represent the class .1; d/ in H2.S
2 �S2IZ/, so F �G D .1; d/ � .1; d/D 2d .

On the other hand, for the choices above, Lemmas 3.44 and 3.48 imply that

F �G � .˛0C d � 0/C .ˇ0C d � 1� ı0/:
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In the current case, with ˛0 � 0 and ˇ0 � ı0C 1, these two summands are each at least d , and so we
must have

˛0 D 0;(3-6)

ˇ0 D 1C ı0:(3-7)

It follows that F \G consists of exactly 2d points, d of which are contained in U.L/ and project to A0,
and d of which are contained in U.L1;1/ and project to A1. This yields conditions (8) and (9) of
Proposition 3.24.

Since F �G D F .x1/ �G .x2/, it follows from the equalities above that there can be no intersections
between the essential curves of F .x1/ and those of G .x2/. In particular, we must have

vL.x2/ �uL.x1/D 0;(3-8)

vL1;1
.x2/ �uL1;1

.x1/D 0:(3-9)

Equation (3-8) and Lemma 3.43 imply that

vL.x2/ �uX
L D 0:

By Lemmas 3.41 and 3.42 and equation (3-6), we then have

F �ECG �ED ˛0C d � 0 D d;

which yields condition (6) of Proposition 3.24.

Similarly, Lemmas 3.45, 3.46 and 3.47, together with equations (3-7) and (3-9), imply that

F �E1;1CG �E1;1 D d

and hence condition (7) of Proposition 3.24. This completes the proof of Proposition 3.24 in the present
case.

Other cases The proofs in the other cases follow along identical lines. For the sake of completeness we
list the inequalities for the components of the translations that lead to the desired intersection patterns of
Proposition 3.24, in the remaining scenarios. For the case ˛0 � 0 and ı0 � ˇ0, we choose

a1 < a2 < 0; b2 < 0< b1; 0< c2 < c1; d1 < 0< d2:

For 0 � ˛0C 1 and ˇ0 � ı0C 1, we choose

a1 < a2 < 0; b1 < 0< b2; 0< c2 < c1; d2 < 0< d1:

Finally, for the case 0 � ˛0C 1 and ı0 � ˇ0, we choose

a1 < a2 < 0; b1 < 0< b2; 0< c2 < c1; d1 < 0< d2:

To complete the proof of Proposition 3.24, we remark that the smoothings F and G can be replaced by
smooth symplectic spheres without changing the various intersection numbers. To do this, it is enough
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to replace F and G by symplectic spheres which coincide with F and G away from neighborhoods of
L.v1/ and L1;1.w1/, respectively L.v2/ and L1;1.w2/; that is, the new spheres differ only away from
all intersection points.

Now, we know that the asymptotic ends of the top level curves of F .x1/ and G .x2/ are simply covered,
either because the curves are essential, or for covers of leaves by applying Lemma 3.23. Generically the
asymptotic limits are distinct. Then, for small perturbations, we may assume that the top level curves
restricted to a neighborhood of the Lagrangians are symplectically isotopic to the corresponding top level
curves of our original buildings F and G . (In the case of F .x1/ the isotopy maps L.v1/ and L1;1.w1/

to L and L1;1, respectively.) Finally, recall that the buildings F and G are limits of sequences of smooth
embedded holomorphic spheres as our almost complex structures are stretched along the Lagrangians.
Therefore, after a small perturbation, we may assume the top level curves of these buildings restricted
to a compact subset of the complement of L[L1;1 extend to smooth symplectic spheres in S2 �S2.
Combining the isotopies and these extensions gives our symplectic spheres as required.

3.9 Scene change

Consider .S2�S2; ��
1
!C��

2
!/ with our disjoint Lagrangian tori L and L1;1 and the various symplectic

spheres and disks constructed in Proposition 3.24: F , G, E and E1;1.

To prepare for the proof of our main theorem, we specify our choice of almost complex structure. Near
their various intersection points, the listed spheres and disks are already complex for a suitable almost
complex structure. We can correct this almost complex structure, without perturbing F or G, to an
almost complex structure J which is compatible with our symplectic form at the intersection points (not
just tame) and extends to make our symplectic spheres and planes (the interiors of the disks) complex.
Also we may assume J remains adapted to the parametrizations  and  1;1 of L and L1;1, respectively.
As the spheres and planes from Proposition 3.24 were already holomorphic near the axes T0, T1, S0

and S1, and also near the broken planes in r0, r1, s0 and s1, we may assume that these curves all
remain complex. In other words the only correction from the J used in Proposition 3.24 occurs near the
intersection points to ensure compatibility, and near the regions where the F and G are symplectic but
not complex.

Given this choice of J we have an associated foliation F and projection p W S2 � S2 ! S1. As the
broken curves are the same as in Proposition 3.24, the subsets A0, B and A1 of S1 are the same as in
the proposition, and in particular property (9) continues to hold.

Let H be a sphere of F which is disjoint from F \G, and Hi for 1� i � 2d the spheres of F intersecting
the 2d points fp1; : : : ;p2dg of F \G. We note that these Hi are distinct since F and G both represent
a homology class .1; d/ and so intersect fibers of F each in a single point.

One other small perturbation is required. We may choose Darboux charts about each pi mapping an open
set Bi to the round open ball about the 0 of capacity � in R4 D C2, such that J is pushed forward to
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F G E E1;1 H

F 2d

G 2d 2d

E k d � k �

E1;1 l d � l 0 �

H 1 1 � � 0

��1!C�
�
2
!–area

F 2C 2d

G 2C 2d

E 1
E1;1 1
H 2

Table 1: Initial intersection numbers, left, and initial symplectic areas, right.

the standard complex structure at 0 (this requires compatibility of J ). We may assume these charts are
disjoint from H . In these charts, F , G and Hi intersect the origin and are tangent to distinct complex
planes. Making � smaller if necessary, we are able to perturb our symplectic spheres so that they actually
coincide with their tangent plane in the open chart. Finally we adjust J so that it is pushed forward to the
standard structure on the whole ball, while F , G and Hi remain complex.

Given this, we proceed with the main proof. We start with the intersection pattern and area profile in
Table 1.

For pairs of distinct curves the intersection numbers here just denote a signed count of intersection points
with multiplicity. The self intersection number of closed spheres are defined as usual. The asterisks
denote undefined quantities. The numbers come from the fact that F and G represent the class .1; d/, and
from the properties listed in Proposition 3.24. The integers 0� k � d and 0� l � d are undetermined.

We now alter .S2 � S2; ��
1
! C ��

2
!/, away from L and L1;1, to obtain a new ambient symplectic

manifold in which the disjointness of these Lagrangians is a contradiction.

Step 1 Blow up the balls Bi of capacity � around each of the 2d points pi in F \G.

Denote the new manifold by .W; �1/. It follows from the analysis of the blow-up procedure from [15],
see also Proposition 9.3.3 of [16], that .W; �1/ contains 2d exceptional divisors Ei each of area �. Since
the Hi intersect the balls Bi in J–holomorphic planes, .W; �1/ also contains the proper transforms of
the Hi . These are denoted here by yHi and are symplectic spheres of area 2� �. By property (9) of
Proposition 3.24, d of the yHi intersect E once, and the other d of the yHi intersect E1;1 once.

Again, since they intersect the Bi in planes, the proper transforms of F and G, denoted by yF and yG, are
also well defined. These are spheres of area 2d C 2� 2d� which are now disjoint. The sphere H of F is
disjoint from the balls, but we denote its image in the blow up by yH , which remains of area 2. After this,
the relevant intersection numbers and areas are as in Table 2.

Step 2 Inflate both yF and yG by adding a tubular neighborhood of capacity d .

Here we recall that since yF and yG are symplectic spheres of self intersection 0 they have tubular
neighborhoods which can be identified symplectically with S2 �D2.ı/, where S2 is a sphere of area
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yF yG E E1;1
yH Ei

yHi

yF 0

yG 0 0

E k d � k �

E1;1 l d � l 0 �

yH 1 1 � � 0

fEig 2d 2d 0 0 0 �1

f yHig 0 0 d d 0 1 �1

�1–area

yF 2C 2d � 2d�

yG 2C 2d � 2d�

E 1

E1;1 1

yH 2

Ei �

yHi 2� �

Table 2: Intersection numbers after Step 1, left, and areas after Step 1, right.

2C 2d � 2d� and D2.ı/ a disk of area ı. In this case inflation means replacing the symplectic form �1

on this neighborhood by another one, �2, such that �2��1 is a compactly supported area form of total
area d on the disk factor, D2.ı/.

Applying the inflation result from [12], we may assume, by Lemma 3.1 in [14], that J is also tame with
respect to �2. This means that all of our J–holomorphic curves which intersect yF and yG, namely E,
E1;1, yH and Ei , remain J–holomorphic and, in particular, symplectic.

The inflation procedure does not change the intersection pattern, and the �2–area of curves increases,
from the previous step, by d times the sum of the intersection numbers with yF and yG leaving us with the
area profile in Table 3, left.

Step 3 Apply the negative inflation procedure from [2], of size �, to each Ei .

This negative inflation procedure yields a new symplectic form, �3, such that the �3–area of each Ei

is less than its �2–area by �. That is, the �3–area of each Ei is 2d . One way to visualize this is to
blow-down the Ei giving balls of capacity �C 2d and then blow-up slightly smaller balls of capacity 2d .

Negative inflation by � also increases the area of homology classes by � times the sum of the intersection
numbers with the Ei . The �3 area profile is given in Table 3, right.

�2–area

yF 2C 2d � 2d�

yG 2C 2d � 2d�

E 1C d2

E1;1 1C d2

yH 2C 2d

Ei �C 2d

yHi 2� �

�3–area

yF 2C 2d

yG 2C 2d

E 1C d2

E1;1 1C d2

yH 2C 2d

Ei 2d

yHi 2

Table 3
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yF yG EX EX
1;1

yH Hi

yF 0

yG 0 0

EX k d � k �

EX
1;1 l d � l 0 �

yH 1 1 � � 0

fHig 2d 2d d d 0 0

�–area

yF 2C 2d

yG 2C 2d

EX 1C d2C 2d

EX
1;1

1C d2C 2d

yH 2C 2d

Hi 2C 2d

Table 4: Intersection numbers after Step 4, left, and areas after Step 4, right.

Step 4 Blow down each yHi .

We denote the symplectic manifold resulting from this final step by .X; �/. Each of the exceptional
divisors Ei in .W; �3/ is transformed, by Step 4, into a sphere Hi in X which has �–area equal to
2d C 2 and now lies in the same class as yH . The disks E and E1;1 each intersect d of the yHi and so are
transformed by Step 4 into disks EX and EX

1;1
, whose symplectic areas have each been increased by 2d .

See Table 4.

Lemma 3.49 .X; �/ is symplectomorphic to

.S2
�S2; .d C 1/!˚ .d C 1/!/:

Proof The presence of the embedded symplectic spheres yF and yH , with the same �–area and satisfying

yF � yF D yH � yH D 0 and yF � yH D 1;

implies that either .X; !/ is symplectomorphic to

.S2
�S2; .d C 1/!˚ .d C 1/!/;

or there are finitely many symplectically embedded spheres with self-intersection number �1 in the
complement of yF and yH in X , and X can be blown down to a copy of S2 �S2. This follows from the
proof of Theorem 9.4.7 of [16]. As a consequence, if H2.X IZ/ has rank 2 then X is symplectomorphic
to S2 �S2.

A simple analysis of the construction of .X; �/ from .S2 �S2; ��
1
!C��

2
!/ allows us to compute this

rank. The 2d blow ups in Step 1 imply that the rank of H2.W IZ/ is 2C 2d . The subsequent 2d blow
down operations in Step 4 imply that the rank of H2.X IZ/ is 2, as required.

Henceforth, we may identify .X; �/ with .S2 �S2; .d C 1/!˚ .d C 1/!/. The Lagrangian tori L and
L1;1 are untouched, as submanifolds, by the four steps above. They remain Lagrangian and disjoint in
.X; �/. Note that L1;1 is not equal to the Clifford torus in .X; �/ with respect to the identification above.
In what follows we denote the Clifford torus in .X; �/ by LX .
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The manifold .X; �/ also inherits an almost complex structure, denoted here by yJ , which equals J

away from the collection f yHig. In particular, yJ is adapted to the original parametrizations  and  1;1

of L and L1;1. As in Section 3.5, yJ determines a straightened foliation yFD F.L;L1;1;  ;  1;1; yJ / of
X n .L[L1;1/. The original collections of planes s0, s1, r0 and r1 still comprise the broken leaves
of this new foliation. The symplectic spheres yF and yG now represent the class .1; 0/ 2 H2.X IZ/ D

H2.S
2 �S2IZ/. As in Proposition 3.24, it is still true that exactly one of yF and yG intersects the planes

of s0 and the other intersects the planes of s1, and exactly one of yF and yG intersects the planes of r0

and the other intersects the planes of r1.

Lemma 3.50 The Lagrangian tori L and L1;1 are both monotone in .X; �/.

Proof Let D1 W .D
2;S1/! .S2�S2;L/ be a compactification of one of the planes of r1. The disk D1

has Maslov index equal to 2 and symplectic area equal to 1 with respect to ��
1
!C��

2
!. The map D1jS1

represents the foliation class ˇL. The image of the map D1 is unaffected by the four steps defining the
passage from .S2 �S2; ��

1
!C��

2
!/ to .X; �/. Viewed as a map from .D2;S1/ to .X;L/, D1 still

has Maslov index 2, and D1jS1 still represents ˇL. The �–area of D1, as a map into .X; �/, is d C 1.
This follows from the fact that exactly one of F and G intersect D1 and so the inflations in Step 2
increase the symplectic area by d .

By assertion (4) of Proposition 3.24, the boundary EjS1 represents a class which, together with ˇL, forms
an integral basis of H1.LIZ/. The same holds for EX jS1 . To prove that L is a monotone Lagrangian
torus in .X; �/ it then suffices, by Lemma 3.1, to prove that the Maslov index of EX W .D2;S1/! .X;L/

is equal to
2

dC1
.1C d2

C 2d/D 2d C 2;

where 1Cd2C2d is the area of EX . This follows from the fact that, in .W; �3/, E has Maslov index 2,
intersects exactly d of the yHi , and each of the corresponding intersection numbers is 1. In blowing down
the yHi , and passing from E to EX , each of these intersection points yields an increase of 2 in the Maslov
index.

The proof that L1;1 is monotone in .X; �/ is identical.

Lemma 3.51 The Lagrangians L and L1;1 are both Hamiltonian isotopic to the Clifford torus LX in
.X; �/.

Proof This follows from the main result of Cieliebak and Schwingenheuer in [4]. In the language of that
paper, the compactification of the straightened foliation yFDF.L;L1;1;  ;  1;1; yJ / yields a fibering of L

and a fibering of L1;1. For the fibering of L, the spheres yF and yG are disjoint sections in the class .1; 0/
and exactly one of them intersects the (compactification of the ) planes of r0 and the other intersects
the those of r1. The main theorem of [4] then implies that L is Hamiltonian isotopic to the Clifford
torus LX in .X; �/. An identical argument holds for L1;1.
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With this, the contradiction to Assumption 2 becomes apparent. Since the Lagrangian Floer homology
of LX is nontrivial by [17], any Lagrangian tori Hamiltonian isotopic to LX must intersect nontrivially.
Hence, L and L1;1 cannot be disjoint in .X; �/.

Remark 3.52 The assumption that L and L1;1 are disjoint is used twice in the proof of Theorem 1.1: at
the very end, and in the proof of Refinement 3 in Section 3.3.

Remark 3.53 The fact that L1;1 is the Clifford torus (and not just another monotone Lagrangian torus)
is crucial (only) in the proof of the existence results in Propositions 3.20 and 3.22.

Remark 3.54 There is an alternative to the argument used at the end of the proof of Theorem 1.1 that
avoids appealing to Lagrangian Floer homology. Instead, one can use the fact that the symplectomorphism
in Lemma 3.49 can be chosen to map yF , yG and the transforms yT0 and yT1 to the axes S2�f0g, S2�f1g,
f0g �S2 and f1g�S2, respectively. The complement of these axes in S2 �S2 can be identified with
a domain in T �T 2 in which the Clifford torus is identified with the zero section. We can check that L

and L1;1 are homologically nontrivial in this copy of T �T 2 and so, by Theorem 3.9, are Hamiltonian
isotopic to constant sections. The monotonicity condition then implies the constant section must be the
zero section. Finally Gromov’s intersection theorem for exact Lagrangians in cotangent bundles, from
Section 2:3:B00

4
of [6], implies that they must intersect.

4 Proof of Theorem 1.2

It suffices to prove the following.

Theorem 4.1 For any � > 0, there is a ı > 0 and a symplectic embedding of the polydisk P .1Cı; 1Cı/

into P .2C �; 2C �/ whose image is disjoint from the product Lagrangians Lk;l for k; l 2 f1; 2g.

The desired additional integral Lagrangian torus LC is the one on (the image of) the boundary of
P .1; 1/� P .1C ı; 1C ı/.

4.1 Proof of Theorem 4.1

We will use rescaled polar coordinates �i ;Ri on R4 DC2, where Ri D �jzi j
2 and �i 2R=Z. In these

coordinates the standard symplectic form is

! D

2X
iD1

dRi ^ d�i ;

and Lk;l D f.�1; k; �2; l/g.

4.1.1 A polydisk For � > 0 fixed, choose positive numbers `, w such that

2< ` < 2C �; w < 2;
1

`
C

1

w
< 1:
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Then choose positive constants � and ı such that

`C � < 2C �; wC � < 2;
1Cı

`
C

1Cı

w
< 1:

Set

S D f� <R1 < `C �; � <R2 <wC �g and T D
n
0< �1 <

1Cı

`
; 0< �2 <

1Cı

w

o
:

Note that S �T is a subset of P .2C �; 2C �/ and is symplectomorphic to P .1C ı; 1C ı/. Both L1;1

and L2;1 intersect S �T , while L1;2 and L2;2 do not.

4.1.2 The plan To prove Theorem 4.1 it suffices to find a Hamiltonian diffeomorphism of P .2C�; 2C�/

that displaces S � T from the Lk;l . Equivalently, we construct a Hamiltonian diffeomorphism ‰ of
P .2C �; 2C �/ such that each of the images ‰.Lk;l/ is disjoint from S �T .

To construct ‰ we use Hamiltonian functions which are of the form F.�1; �2/. The Hamiltonian flow �t
F

of such a function preserves �1 and �2 and generates a Hamiltonian vector field parallel to the R1R2–plane.
In particular, the only points of �t

F
.Lk;l/ which could possibly intersect S �T are those whose .�1; �2/

coordinates lie in T .

Since we only need to control the images of the Lk;l , we can cut off autonomous functions like F

in (moving) neighborhoods of �t
F
.Lk;l/ for specific values of k and l . After this cutting off, the new

Hamiltonian will depend on all variables and be time dependent. In general, for a closed subset V , we
denote the function obtained by cutting of F along �t

F
.V / by FŒV �. Note that

�t
FŒV �

.v/D �t
F .v/ for all v 2 V and t 2 Œ0; 1�:

Also, each map �t
FŒV �

is equal to the identity away from an arbitrarily small neighborhood of[
t2Œ0;1�

�t
F .V /:

4.1.3 A diagonal move Let g WR=Z!R be a smooth function such that for some positive real number
c.g/ > 0 we have

g0.s/D c.g/ for s 2
h
0;

1Cı

`
C

1Cı

w

i
;

max.g0/D c.g/, and min.g0/ is less than and arbitrarily close to

�c.g/

0B@ 1Cı

`
C

1Cı

w

1�
1Cı

`
�

1Cı

w

1CA :
Letting G.�1; �2/D g.�1C �2/, we have

(4-1) �t
G.�1;R1; �2;R2/D .�1;R1C tg0.�1C �2/; �2;R2C tg0.�1C �2//:
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The image �1
G
.L1;2/ is well defined as long as

(4-2) c.g/ <
1�

1Cı

`
�

1Cı

w
1Cı

`
C

1Cı

w

;

and is contained in P .2C �; 2C �/ as long as c.g/ < �. Henceforth, we will assume that `, w and ı have
been chosen such that the first constraint on c.g/ implies the second.

It follows from (4-1) and (4-2) that �t
G
.L1;2/ is contained in

fR1 � 1C c.g/g\ fR2 > 1g

for all t 2 Œ0; 1�. Hence, each image �t
G
.L1;2/ is disjoint from the other Lk;l . Since g0 D c.g/ > 0 on T ,

each �t
G
.L1;2/ is also disjoint from S �T .

4.1.4 A vertical move Let h WR=Z!R be a smooth function such that for some positive real number
0< c.h/ < � we have

h0.s/D�.1� c.h// for s 2
h
0;

1Cı

w

i
;

min.h0/D�.1� c.h// and max.h0/ is greater than and arbitrarily close to

.1� c.h//
1Cı

w

1�
1Cı

w

D
1� c.h/
w

1Cı
� 1

;

which is greater than one since wC � < 2 and c.h/ < � .

Letting H.�1; �2/D h.�2/, we have

(4-3) �t
H .�1;R1; �2;R2/D .�1;R1; �2;R2C th0.�2//:

Clearly, L2;1 and L2;2 are disjoint from �t
H
.L1;1/ for all t 2 Œ0; 1�. Moreover, for �2 in Œ0; .1C ı/=w�

we have
�1

H .�1; 1; �2; 1/D .�1; 1; �2; c.h//:

So �1
H
.L1;1/ is disjoint from T �S by our choice of c.h/.

Some points of L1;1, with values of �2 in ..1C ı/=w; 1/, are mapped by �1
H

to points having R2

coordinate greater than and arbitrarily close to

1C
1� c.h/
w

1Cı
� 1

> 2:

Choosing w sufficiently close to 2 and ı sufficiently small ensures that �1
H
.L1;1/ lies in P .2C �; 2C �/.

4.1.5 A time delay The Hamiltonian diffeomorphism �1
HŒL1;1�

cannot be used to move L1;1 off of

S � T while leaving L1;2 undisturbed. For, as described in the discussion above, �1
HŒL1;1�

.L1;2/ will
intersect S �T .
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The Hamiltonian diffeomorphism
�1

HŒL1;1�
ı�1

GŒL1;2�

has the same problem. By (4-1) and (4-3), the image of .�1; 1; �2; 1/ 2 L1;1 under �t
H

belongs to
�1

G
.L1;2/ if and only if g0.�1C �2/D 0 and th0.�2/D 1. Since max.h0/ > 1, these intersections occur

and so the map above will again push L1;2 into S �T .

We can fix this by adding a time delay. The first intersection between �t
H
.L1;1/ and �1

G
.L1;2/ occurs at

t D .max.h0//�1. Let � be less than and arbitrarily close to .max.h0//�1. Hence, � is also less than and
arbitrarily close to

w

1Cı
� 1

1� c.h/
:

Consider the Hamiltonian diffeomorphism

z‰ D �1��
H
Œ��

H
.L1;1/[�

1
G
.L1;2/�

ı��HŒL1;1�
ı�1

GŒL1;2�
:

It follows from the analysis above that the map z‰ is compactly supported in P .2C �; 2C �/. In fact, it is
supported in an arbitrarily small neighborhood of the subset fR1 � 1C c.g/g. Hence, z‰.L2;1/DL2;1

and z‰.L2;2/DL2;2. By the definitions of � and the cut-off operation, we have z‰.L1;1/D �
1
H
.L1;1/

and thus z‰.L1;1/ is disjoint from S �T . In addition, we now have the following.

Lemma 4.2 The image z‰.L1;2/ is disjoint from S �T when c.h/ is sufficiently close to � and ı is
sufficiently small.

Proof By construction, for .�1; �2/ 2 T we have

z‰.�1; 1; �2; 2/D .�1; 1Cg0.�1C �2/; �2; 2Cg0.�1C �2/C .1� �/h
0.�2//

D
�
�1; 1C c.g/; �2; 2C c.g/� .1� �/.1� c.h//

�
:

It suffices to show that we can choose c.g/ and c.h/ so that

(4-4) 2C c.g/� .1� �/.1� c.h// > wC �:

Since � is less than and arbitrarily close to
w

1Cı
� 1

1� c.h/
;

is also suffices to show that we can choose c.g/ and c.h/ so that

c.g/ > w
�
1�

1

1Cı

�
C .� � c.h//:

The right-hand side can be made arbitrarily small by taking c.h/ to be close to � and ı to be small. Since
the choice of c.g/ is independent of the choice of c.h/ and the constraint (4-2) on c.g/ relaxes as ı goes
to zero, we are done.

Henceforth, we will assume that the conditions of Lemma 4.2 hold.
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4.1.6 A final (horizontal) adjustment The images z‰.L1;1/, z‰.L1;2/ and z‰.L2;2/ are disjoint from
S �T but z‰ still fixes L1;2, which intersects S �T . Since L1;2 is close to the boundary of S �T , we
can make a simple adjustment to obtain the desired map, ‰, which moves L1;2 off of S �T as well.

Let f WR=Z!R be a smooth function such that for some positive real number c.f / greater than and
arbitrarily close to `C � � 2 we have

f 0.s/D c.f / for s 2
h
0;

1Cı

`

i
;

max.f 0/D c.f / and min.f 0/ is less than and arbitrarily close to

�
c.f /

`

1Cı
� 1

:

Setting F.�1; �2/D f .�1/, we have

�t
F .�1;R1; �2;R2/D .�1;R1C tf 0.�1/; �2;R2/:

Our lower bound for c.f / implies that �1
F
.L2;1/ is disjoint from S �T . Looking at the R2–component,

it is clear that �1
F
.L2;1/ is disjoint from L2;2 D

z‰.L2;2/. To prove that �1
F
.L2;1/ is also disjoint from

z‰.L1;1/ and z‰.L1;2/, it suffices to prove the following.

Lemma 4.3 The sets fR1 � 1C c.g/g and �1
F
.L2;1/ are disjoint.

Proof It suffices to prove that
2�

c.f /

`

1Cı
� 1

> 1C c.g/

or, even more, that

1> c.g/C
`C � � 2

`

1Cı
� 1

:

The latter inequality clearly holds for all sufficiently small values of c.g/ and `C � � 2.

The Hamiltonian diffeomorphism

‰ D �1
FŒL2;1�

ı�1��
H
Œ��

H
.L1;1/[�

1
G
.L1;2/�

ı��HŒL1;1�
ı�1

GŒL1;2�

now has all the desired properties. With its construction, the proof of Theorem 4.1 is complete.

Question 4.4 Can ‰, or any other Hamiltonian diffeomorphism which displaces the Lk;l from S �T,
be generated by an autonomous Hamiltonian?
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The parabolic Verlinde formula: iterated residues and wall-crossings

ANDRÁS SZENES

OLGA TRAPEZNIKOVA

We give a new proof for the parabolic Verlinde formula in all ranks based on a comparison of wall-
crossings in geometric invariant theory and certain iterated residue functionals. On the way, we develop a
tautological variant of Hecke correspondences, calculate the Hilbert polynomials of the moduli spaces,
and present a new, transparent, local approach to the �–shift problem of the theory.
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1 Introduction

1.1 The Verlinde formula

The Verlinde formula [31] is a strikingly beautiful statement in enumerative geometry motivated by
quantum physics. Our focus in this paper will be the more difficult, parabolic variant, which we briefly
describe below.

Let C be a smooth, complex projective curve of genus g � 1, and fix an auxiliary point p 2 C . We will
call a vector c D .c1 > c2 > � � �> cr/ 2Rr satisfying

P
ci D 0 and c1� cr < 1 regular if no nontrivial

subset of its coordinates sums to an integer. For such a c 2Rr , there exists a smooth projective moduli
space P0.c/ (see Seshadri [21], Mehta and Seshadri [15] and Bhosle [4]), whose points are in one-to-one
correspondence with the equivalence classes of pairs .W; F�/, where W ! C is a vector bundle of
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Open Access made possible by subscribing institutions via Subscribe to Open.
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rank r on C with trivial determinant, F� is a full flag of the fiber Wp, and the pair satisfies a certain
parabolic stability condition depending on c; see Section 2.1. This condition roughly states that for
a proper subbundle W 0 � W , the degree deg.W 0/ is strictly smaller than the sum of a subset of the
coordinates of c depending on the position of W 0p with respect to F�.

There is a natural way to associate to a positive integer k and an integer vector � 2 Zr satisfying
�1C � � �C�r D 0 a line bundle L.kI�/ on P0.c/, in such a way that if c D �=k, then L.kI�/ is ample.
The parabolic Verlinde formula is the following expression for the Euler characteristic of the ample line
bundle L.kI�/: assume c D �=k is regular; then

(1) �.P0.c/;L.kI�//DNr;k �
X .�i/.

r
2/ exp.2�iy� � x/Q

i<j .2 sin�.xi � xj //2g�1
;

where Nr;k D r.r.kC r/r�1/g�1, y�D �C 1
2
.r �1; r �3; : : : ; 1� r/, and the sum is taken over the finite

set of those points in the interior of the parallelopiped

fx D .x1; x2; : : : ; xr D 0/ j 0 < xi � xiC1 < 1 for i D 1; : : : ; r � 1g;

which satisfy the conditions

� .kC r/x 2 Zr , and

� xi � xj … Z for 1� i < j < r .

Remark 1.1 This finite set is a set of lattice points in the interior of .r � 1/Š identical simplices. (These
are the orange-colored points in the rhombus on Figure 1.) By symmetrizing with respect to the group of
permutations of the r coordinates, one obtains the same function on each of these simplices. Using the
Weyl character formula, this allows one to rewrite (1) in a more familiar form as

�.P0.c/;L.kI�//D .r.kC r/
r�1/g�1 �

X ��.x/Q
i<j .2 sin�.xi � xj //2g�2

;

where �� is the character of the irreducible SU.r/–representation of highest weight �, and the sum
is now taken over the lattice points of the form .k C r/x 2 Zr in the interior of a single simplex
fx D .1 > x1 > x2 > � � �> xr�1 > xr D 0/g.

Remark 1.2 Equality (1) remains valid in greater generality, for certain cases when �=k is nonregular.
This slightly more technical statement will be given in Theorems 4.7 and 4.8.

Notation We denote the discrete sum in (1) depending on k; �; r and g by Ver.k; �/. In what follows,
the shift 1

2
.r � 1; r � 3; : : : ; 1� r/ will be denoted by �, and thus we have y�D �C �.

Equality (1), the parabolic Verlinde formula, has attracted a lot of attention over the years, and there are a
number of different proofs. There is a generalization of this formula associated to a simply connected
compact Lie group, and the form presented here corresponds to the case of the group SU.r/.

Geometry & Topology, Volume 28 (2024)
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.0; 1;�1/.1;�1; 0/

.0; 0; 0/

.2; 2;�4/.4;�2;�2/

.0; 0; 0/

.1; 0; 0/ .1; 1; 0/

.2; 1; 0/

Figure 1: The set of � vectors, left, and the finite set from (1), right, for k D 6, r D 3.

In this article, we give a novel proof of this result, which stands out with its technical simplicity. We
believe the methods and ideas described in the paper will have other applications in geometric invariant
theory and the study of moduli spaces.

Below, we give a quick sketch of the strategy of the proof, treating the example of the case of rank 3 in
Sections 1.2–1.4. Next, in Section 1.5, we give a short guide to the contents of the paper.

Our work has a close relationship with several earlier approaches, and we describe these links in Section 1.6

Acknowledgements The authors gratefully acknowledge the help and insights of Michael Thaddeus
at several stages of this work, as well as the advice and encouragement of Tamás Hausel and Michèle
Vergne. We had useful discussions with Frances Kirwan, Eckhard Meinrenken, Gábor Tardos and Chris
Woodward. This research was supported by SNF grant 175799, and the NCCR SwissMAP.

1.2 The residue formula

The proof is based on 3 ideas. We will follow the arguments below for the case r D 3. We thus fix an
integer k > 1 and an integer vector �D .�1 > �2 > �3/ such that �1C�2C�3 D 0 and �1��r < k.

We start with the study of the right-hand side of (1), which, for r D 3, may be written in the somewhat
simplified form

Ver.k; �/DN3;k
X

0<n2<n1<kC3

�2 sin 2�
.�1C 1/n1C�2n2

kC 3�
8 sin�

n1�n2

kC 3
sin�

n2

kC 3
sin�

n1

kC 3

�2g�1 ;
where n1 and n2 are integers.

Remark 1.3 This is essentially the form of the formula given in Remark 1.1. Since we are considering
representations with trivial central character, in this case, �� is 3 identical sine terms, and this factor of 3
is hidden in N3;k .

Geometry & Topology, Volume 28 (2024)
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Using Theorem 4.7 and Remark 4.6 one can show that

Ver.k; �/D
�
pC.kI�/ if �2 > 0;
p�.kI�/ if �2 < 0;

where pC and p� are two polynomials, given by the right-hand sides of the expressions of Example 4.11
on page 2278. We note two properties of p˙.k; �/:

(A) The wall-crossing difference p��pC has a relatively simple form (cf Example 4.15 with �1C�3
replaced by ��2):

p�.kI�/�pC.kI�/D Res
yD0

Res
xD0

.�3.kC 3/2/g � e.�1C1/x��2y

.1� ex.kC3//wˆ.x; y/2g�1
dx dy;

where wˆ.x; y/D 2 sinh
�
1
2
x
�
� 2 sinh

�
1
2
y
�
� 2 sinh

�
1
2
.xCy/

�
.

(B) An easy calculation via substitution shows that for any permutation on three elements � 2†3, our
polynomials have the symmetries

pC.kI � ��C �1Œk�/D .�1/
�pC.kI�C �1Œk�/;(2)

p�.kI � ��C ��1Œk�/D .�1/
�p�.kI�C ��1Œk�/;(3)

where

�1Œk�D
1
3
k.1; 1;�2/C .0; 1;�1/ and ��1Œk�D

1
3
k.2;�1;�1/C .1;�1; 0/:

1.3 Wall-crossings in moduli spaces

Now consider the left-hand side of (1). It is easy to check that the set of isomorphism classes of parabolic
bundles in P0.c/ remains unchanged as long as c2 does not change sign. Hence, effectively, we have two
moduli spaces P0.>/ and P0.</, corresponding to the two chambers separated by the red (c2 D 0) line
in Figure 1. Introduce the notation

qC.kI�/D �.P0.>/;L.kI�// and q�.kI�/D �.P0.</;L.kI�//

for the generalized Hilbert polynomials of these two spaces.

In Section 5, we derive a simple formula (31) for the wall-crossing difference in geometric invariant theory.
The formula has the form of a residue of an equivariant integral, taken with respect to the equivariant
parameter. In our case, the space on which we integrate is the space of rank-3 parabolic bundles which
split into a direct sum of a rank-2 and a rank-1 bundle. This equivariant integral may be evaluated using
induction on the rank (cf the detailed calculation in Example 6.15 on page 2295), and the result is

(4) q�.kI�/� qC.kI�/D Res
uD0

Res
zD0

.�3.kC 3/2/g � e�1zC�2uCz

�wˆ.z;�u/2g�1.1� e.kC3/z/
dz du;

where u plays the role of the equivariant parameter, the generator of H�C�.pt/. This iterated residue
coincides with the expression above after changing .z; u/ to .x;�y/, and thus we have

(5) pC�p� D qC� q�:

Geometry & Topology, Volume 28 (2024)
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1.4 Hecke correspondences, Serre duality and the symmetry argument

Hecke correspondences between moduli spaces of bundles of different degrees were introduced by
Narasimhan and Ramanan in [19]. In Section 7 of our paper, we describe a “tautological” variant of
this construction, which identifies the same space with several moduli spaces of parabolic bundles with
different degrees and weights. Using this construction we can fiber our two moduli spaces, P0.>/ and
P0.</ over the moduli spaces of stable bundles (without parabolic structure) of degrees 1 and �1:

Flag3! P0.</!N�1 and N1 P0.>/ Flag3;

where the fibers are full flags of 3–dimensional vector spaces. Serre duality applied to a Flag3–bundle
implies a †3–antisymmetry of the Euler characteristics of line bundles on this space, and after careful
identification of these bundles, we derive the same symmetry properties for the functions q˙ as we did
for the polynomials p˙: qC.kI�/ satisfies (2), while q�.kI�/ satisfies (3).

The final argument is elegant: we can rearrange equation (5) describing the equality of wall-crossings as

pC� qC D p�� q�;

and we introduce the notation ‚.kI�/ for this polynomial. Then ‚ satisfies both (2) and (3), and thus it
is anti-invariant with respect to an affine Weyl group action in the plane for each fixed k. This implies
that ‚.kI�/ vanishes and this completes the proof.

1.5 Contents of the paper

There are a number of complications which arise when r > 3. We will highlight these in this section, and
also give a brief guide to the contents of the paper.

We start with a quick introduction into the theory of parabolic bundles in Section 2. Here we describe the
line bundles we are considering, as well as the chamber structure of the space of parabolic weights induced
by the stability condition. The combinatorics of the iterated residue formulas mentioned in Section 1.2
above is considerably more complicated in the higher rank case, and is best treated using the notion of
diagonal bases of hyperplane arrangements introduced in Szenes [23]; we review this construction in the
special case of the Ar root arrangement in Section 3.

Using this notion, in Section 4, we present a residue formula for the Verlinde sums on the right-hand side
of (1) obtained in Szenes [24] (Theorems 4.4 and 4.7). It turns out that because of a standard �–shift type
effect in the theory, this residue formula does not have a manifestly polynomial form on our chambers,
and thus, we formulate our main result, Theorem 4.8 in two parts: in part (I) we state the equality of the
Euler characteristics of line bundles with a modified residue formula, which is manifestly polynomial
on our chambers, and in part (II) we state the equality of the modified formula with the original residue
formula from [24]. Part (II) is proved in Section 10, while the proof of part (I) takes up the rest of the
paper.
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At the end of Section 4, we present our wall-crossing formula for Verlinde sums in Proposition 4.18,
which uses in an essential manner the yoga of diagonal bases; cf property (A) above for the case of r D 3.

The geometric part of our work starts in Section 5, where we derive a simple general result, formula (31),
for wall-crossings in GIT. We apply this result to parabolic moduli spaces in Section 6 and, using induction
on the rank, obtain Theorem 6.13, the higher-rank version of formula (4) above.

It is downhill from here: in Section 7 we describe the tautological Hecke correspondences we need in
several places in the paper, and in Section 8 we derive the Weyl-symmetries of the polynomials q˙, and
finish the proof along the lines sketched above.

We are essentially done, but we hit a snag when checking the beginning of our induction on the rank: our
argument does not work for r D 2. Roughly, the reason for this is that we need our simplex of parabolic
weights to have at least two regular vertices, and for r D 2, we have only one. The way out is to consider
the moduli space with two punctures and then all the pieces fall in place. This argument is carried out in
Section 9.

1.6 Historical remarks

There is a long list of proofs of the Verlinde formula, and we cannot do justice to all the approaches in
this short introduction. We will thus focus on the historical lineage of our paper, and the works that are
closest in spirit to what we do; see Sorger [22] for a more comprehensive overview.

The proofs of the Verlinde formula fall in two categories: proofs of the fusion rules and proofs that find
some interpretation of the “Fourier-transformed” discrete sum on the right-hand side of (1); our work
belongs to this second group. Another line of division concerns the model which one uses for the moduli
spaces: via the Narasimhan–Seshadri correspondence, the moduli spaces of vector bundles may equally
be presented as symplectic manifolds of certain types of flat connections on punctured Riemann surfaces,
and this opens the way of using the methods of symplectic geometry. While these symplectic approaches
lead to results equivalent to the ones coming out of the algebrogeometric setup, the fields of applications
of the two approaches seem to be very different.

The idea of proving the Verlinde formula via wall-crossings appeared in the seminal paper of Michael
Thaddeus [27]. He used a geometric approach and managed to prove the Verlinde formula in rank 2 by
crossing walls in the moduli of stable pairs. The master space construction, which plays a central role in
our paper, also first appeared in his work [28]. In a sense, our paper may be thought of as the completion
of his program.

A paper closely related to our work is that of Jeffrey and Kirwan [13], which approaches the problem
from a symplectic/cohomological point of view (see also Jeffrey and Kirwan [12]), and has a somewhat
different angle form ours. This paper also uses the residue calculus introduced in [23; 24], but not quite as
consistently as our work, and the parabolic case was not resolved from this point of view; see Jeffrey [11].
The geometric model used in [13] to represent the moduli spaces as quotients is rather complicated.
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In a comprehensive paper covering the case of all compact groups, Bismut and Labourie [5] used a
differential-geometric approach to find the generating function for the parabolic Verlinde formula. This
work was the motivation for the residue formula in [24], which is also used in the present paper.

In a remarkable series of papers Alekseev, Meinrenken and Woodward [1], again approaching the subject
from the symplectic point of view, gave a direct proof of (1), using reduction in infinite dimensions. A
general approach related to twisted K-theory was introduced by Meinrenken in [16]. We should also
mention recent work by Loizides and Meinrenken in [14], which employs the residue techniques of [24].

Finally, we drew motivation from the paper of Teleman and Woodward [26], where the Verlinde formula
is put in the framework of localization in K-theory of stacks. This very impressive work is probably
accessible to a small number of experts only. In the present article we demonstrate, in particular, that the
sophisticated tools employed in [26], at least in this instance, may be replaced by a simple combinatorial
device.

In summary, the virtues of this article are:

� A proof of the parabolic Verlinde formula which needs as background only the basics of GIT.

� The discrete sum, and the generating function giving the coefficients of the Hilbert polynomial are
treated at the same time, and the �–shift is dealt with explicitly.

� A few technical innovations, such as an efficient wall-crossing formula in GIT (Theorem 5.7) and the
tautological Hecke correspondences, keep the arguments simple, and the technical difficulties related
to infinite-dimensional quotients or singularities, in our approach, are absorbed by a combinatorial
device: the theory of iterated residues.

2 Parabolic bundles

2.1 Definitions

Let C be a smooth complex projective curve of genus g � 2, and fix a point p 2 C .

� A parabolic bundle on C is a vector bundle W of rank r with a full flag F� in the fiber over p,

Wp D Fr © � � �© F1 © F0 D 0;

and parabolic weights c D .c1; : : : ; cr/ assigned to Fr ; Fr�1; : : : ; F1, satisfying the conditions

c1 > c2 > � � �> cr and c1� cr < 1:

� The parabolic degree1 and the parabolic slope of W are defined as

par degW D degW �
rX
iD1

ci and par slopeW D
par degW

rankW
:

1For technical reasons, we have chosen a sign convention opposite to that in the majority of treatments in the literature.
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� A morphism f WW !W 0 of parabolic bundles is a morphism of vector bundles satisfying fp.Fi /�
F 0j�1 if cr�iC1 < c0r�jC1. In particular, an endomorphism of a parabolic bundle W is a vector
bundle endomorphism preserving the flag F�.

� Denote by ParHom.W;W 0/ the sheaf of parabolic morphisms from W to W 0. Then there is a short
exact sequence of sheaves

(6) 0! ParHom.W;W 0/! Hom.W;W 0/! Tp! 0;

where Tp is a torsion sheaf supported at p. The rank of Tp is the number of pairs .i; j /, such that
ci < c

0
j ; cf Boden and Hu [6].

If W 0 � W is a subbundle of W , then both W 0 and the quotient W=W 0 inherit a parabolic structure
from W in a natural way; cf Mehta and Seshadri [15, Definition 1.7].

� A parabolic bundleW is stable of weight c if any proper subbundleW 0�W satisfies par slope.W 0/<
par slope.W /; and W is semistable of weight c, if the inequality is not strict.

Remark 2.1 The parabolic stability condition depends on the parabolic weights only up to adding the
same constant to all weights ci .

2.2 Construction of the moduli spaces

We start with a quick review of the construction of Mehta and Seshadri [15] of the moduli space of stable
parabolic bundles. It follows from Remark 2.1 that, without loss of generality, we can assume that the
parabolic weights of a rank-r degree-d bundle belong to the simplex

�d D

�
.c1; c2; : : : ; cr/

ˇ̌̌
c1 > c2 > � � �> cr ; c1� cr < 1;

X
i

ci D d

�
:

Definition 2.2 We will call a vector c D .c1; : : : ; cr/ 2 Rr such that
P
i ci 2 Z regular if for any

nontrivial subset ‰ � f1; 2; : : : ; rg, we have
P
i2‰ ci … Z.

Now choose an integer d � 0 such that H 1.W / D 0 and W is generated by global sections for any
rank-r degree-d semistable parabolic bundle W of parabolic degree 0. Put N D r.1�g/C d .

� Consider the Grothendieck quot scheme Quot.N; r/ [9] parametrizing quotients ON�W , where
W is a coherent sheaf of degree d and rank r .

� This space is endowed with a universal bundle UQ, and a generically free action of the group
G D PSL.N / which does not, however, lift to UQ.

� Let LFQuot� Quot.N; r/ be the open subscheme consisting of locally free quotients W such that
the induced map H 0.ON /!H 0.W / is an isomorphism.
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� Denote by XQ the total space of the flag bundle Flag.UQp/ on LFQuot�p. This space is endowed
with the flag of vector bundles Fl1 � � � � � Flr�1 � Flr D UQp.

� Let k 2 Z and .�1; : : : ; �r/ 2 Zr be such that
Pr
iD1 �i D kd , and consider the line bundle

L.kI�/D det.UQp/
k.1�g/

˝ det.��UQ/�k˝ .Flr=Flr�1/�1 ˝ � � �˝ .Fl1/�r

on XQ, which does carry a G–linearization (lift of the G–action from XQ).

� Finally, assume c 2�d is regular (cf Definition 2.2 above) and define zPd .c/, the moduli space of
stable parabolic weight-c vector bundles on C , as the GIT quotient XQ==cG of XQ with respect
to any linearization L.kI�/ such that �=k D c.

Theorem 2.3 [21] Assume that c 2�d is a regular weight vector. Then the moduli space zPd .c/ is a
smooth projective variety of dimension r2.g�1/C

�
r
2

�
C1, whose points are in one-to-one correspondence

with the set of isomorphism classes of stable parabolic bundles of weight c (cf Section 2.1).

Remark 2.4 Via the determinant map, the moduli space zPd .c/ fibers over the Jacobian of degree-d line
bundles with isomorphic fibers, and in this paper, we will focus on the moduli space

Pd .c/D fW 2 zPd .c/ j detW ' O.dp/g;

which is smooth, projective and has dimension .r2� 1/.g� 1/C
�
r
2

�
.

Remark 2.5 Tensoring with the line bundle O.mp/ induces an isomorphism

˝O.mp/ W Pd .c/! PdCrm.c/;

so the moduli spaces Pd .c/, essentially, depend only on d modulo r .

2.3 The Picard group of Pd.c/

For a regular c 2�d , there exist universal bundles U over Pd .c/�C endowed with a flag F1 � � � � �

Fr�1�Fr DUp , and satisfying the obvious tautological properties. In general, such universal bundles U ,
and hence the flag line bundles FiC1=Fi , are unique only up to tensoring by the pullback of a line bundle
from Pd .c/. Nevertheless, we have the following statement.

Lemma 2.6 For k 2 Z and �D .�1; : : : ; �r/ 2 Zr such that
Pr
iD1 �i D kd , the line bundle

(7) Ld .kI�/D det.Up/k.1�g/˝ det.��U/�k˝ .Fr=Fr�1/
�1 ˝ � � �˝ .F1/

�r

on Pd .c/ is independent of the choice of the universal bundle U .

Proof Note that tensoring U with a pullback ��L of a line bundle L on P0.c/ changes det.Up/ by Lr

and det.��U/ by Ld�r.g�1/.

Remark 2.7 The line bundle L.kI�/ defined in Section 2.2 descends to the line bundle Ld .kI�/ on the
GIT quotient Pd .c/.
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Notation We will say that U is normalized if the line subbundle F1 � Up is trivial. The parameter k is
often called the level.

Let ! 2H 2.C / be the fundamental class of our curve C , and e1; : : : ; e2g a basis of H 1.C / such that
eieiCg D ! for 1� i � g, and all other intersection numbers eiej equal 0. For a class ı 2H�.P �C/
of a product, we introduce notation for its Künneth components (cf [32]):

(8) ı D ı.0/˝ 1C
X
i

ı.ei /˝ ei C ı.2/˝! 2

2M
iD0

H��i .P /˝H i .C /:

We will need the following formula.

Lemma 2.8 The equality 2 c1.Ld .r I d; : : : ; d // D c2.End0.Ud //.2/ holds , where End0 stands for
traceless endomorphisms.

Proof Taking the first Chern class on both sides of (7), we obtain

c1.Ld .r I d; : : : ; d //D r.1�g/c1.Ud /.0/� rc1.��.Ud //C dc1.Ud /.0/;

where we evaluate the middle term using the Grothendieck–Riemann–Roch theorem, and c1.Ud /.2/ D d :

c1.��.Ud //D ch1.�Š.Ud //D �� ch2.Ud /� .g� 1/c1.Ud /.0/

D c1.Ud /.0/d � c2.Ud /.2/� .g� 1/c1.Ud /.0/:

This leads to the formula

c1.Ld .r I d; : : : ; d //D�d.r � 1/c1.Ud /.0/C rc2.Ud /.2/;

which is easily seen to equal 1
2
c2.End0.U0//.2/.

2.4 Walls and chambers

The central question we address in this paper is how the moduli space of stable parabolic bundles depends
on the choice of parabolic weights. Let W be a vector bundle of degree d with a fixed full flag F� of the
fiber Wp , and let us try to determine the structure of the set of parabolic weights c 2�d for which W is
stable. Clearly, for this we need to study the set of parabolic weights c D .c1; c2; : : : cr/ for which one
can find a proper subbundle W 0 �W such that

(9) par slope.W 0/D par slope.W /D 0:

A subbundle W 0 �W determines a short exact sequence of parabolic bundles

0!W 0!W !W 00! 0;

and the position of W 0p with respect to F� gives rise to a nontrivial partition of the set f1; 2; : : : ; rg into
two sets, …0 and …00, cf [15, Definition 1.7]; the parabolic weights of W 0 and W 00 are then c0 D .ci /i2…0
and c00D .ci /i2…00 , correspondingly. The slope condition (9) translates into a pair of equivalent equalities

(10) d 0 D
X
i2…00

ci and d 00 D
X
i2…00

ci ;
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.0; 0; 0/

�
2
3
;�1

3
;�1

3

� �
1
3
; 1
3
;�2

3

�
P0.>/P0.</

Figure 2: The space of admissible parabolic weights for rank r D 3.

where d 0 and d 00 D d � d 0 are the degrees of W 0 and W 00, respectively. This means that the critical
values of c 2�d for which (9) is possible lie on the union of affine hyperplanes (or walls) defined by the
equations X

i2…0

ci D l; where l 2 Z, and …0 � f1; 2; : : : ; rg is nontrivial.

As only finitely many of these walls intersect the simplex �d , their complement is a finite union of open
polyhedral chambers. It is easy to verify that as we vary c inside one of these chambers, the stability
condition, and thus the moduli space Pd .c/, does not change.

Example 2.9 Consider the case of rank-3 degree-0 stable parabolic bundles with parabolic weights
c D .c1; c2; c3/ 2�0. The set �0 is an open triangle with vertices .0; 0; 0/;

�
2
3
;�1

3
;�1

3

�
and

�
1
3
; 1
3
;�2

3

�
(see Figure 2), and there exist only two essentially different stability conditions. The wall separating the
two regimes is given by the condition c2 D 0. We write P0.>/ for the moduli space P0.c1; c2; c3/ with
c2 > 0, and P0.</ for P0.c1; c2; c3/ with c2 < 0.

3 Wall-crossing in the Verlinde formula

A key component of our approach is the notion of diagonal basis and the associated generalized Bernoulli
polynomials introduced for general hyperplane arrangements in [23]. Using this formalism, we will be
able to formulate our main result, Theorem 4.8.

3.1 Notation

We begin by setting up some extra notation for the space of parabolic weights introduced in Section 2.1.

� Let V DRr=R.1; 1; : : : ; 1/ be the .r�1/–dimensional vector space, obtained as the quotient of Rr .
The dual space V � is then naturally represented as

V � D faD .a1; : : : ; ar/ 2Rr j a1C � � �C ar D 0g:

Let x1; x2; : : : ; xr be the coordinates on Rr ; given a 2 V �, we will write ha; xi for the linear
function

P
i aixi on V . We will sometimes identify this linear function with the vector a itself.
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� The vector space V � is endowed with a lattice ƒ of full rank:

ƒD f�D .�1; : : : ; �r/ 2 Zr j �1C � � �C�r D 0g:

In particular, for 1� i ¤ j � r , we can define the element ˛ij D xi � xj in ƒ.

� Our arrangement is the set of hyperplanes fxi D xj g � V , with 1� i < j � r . It will be convenient
for us to think about this set as the set of roots of the Ar�1 root system with the opposite roots
identified:

ˆD f ˙˛ij j 1� i < j � rg:

Note that V � carries a natural action of the permutation group †r , permuting the coordinates xj
for j D 1; : : : ; r , and this action restricts to an action on ˆ as well.

� The basic object of the theory is an ordered linear basis B of V � consisting of the elements of ˆ.
Let us denote the set of these objects by B:

BD fB D .ˇŒ1�; : : : ; ˇŒr�1�/ 2ˆr�1 jB a basis of V �g:

� For B 2B, we will write Fl.B/ for the full flag

ŒV � D hˇŒ1�; ˇŒ2�; : : : ; ˇŒr�1�ilin; : : : ; hˇ
Œr�1�; ˇŒr�2�ilin; hˇ

Œr�1�
ilin�;

where h � ilin stands for linear span.

3.2 Diagonal bases

Definition 3.1 � For � 2†r�1 and B 2B, we will write B 	 � for the permuted sequence

.ˇŒ�.1/�; ˇŒ�.2/�; : : : ; ˇŒ�.r�1/�/:

� For two elements B;C 2B we will write B aC if for any � 2†r�1, we have Fl.B	 �/¤ Fl.C /.

� A subset D�B of .r � 1/Š elements is called a diagonal basis if for any two different elements
B;C 2 D, we have B a C .

Remark 3.2 This definition is motivated by a construction in [23], which associates to each diagonal
basis D a pair of dual bases of the middle homology and the cohomology of the complexified hyperplane
arrangement on V ˝R C defined by ˆ. The dimension of these (co)homology spaces is .r � 1/Š.

3.3 Combinatorial interpretation

This notion has the following purely combinatorial form.

� We can think of ˆ as the edges of the complete graph on r vertices.

� Then the set B may be thought of as the set of spanning trees of this graph with edges enumerated
from 1 to r � 1. We will introduce the notation

B 7! Tree.B/
for this ordered tree.
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1

2

3

1 2

4 3

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Figure 3: B D .˛1;3; ˛1;2; ˛3;4/.

� In this language, the flag Fl.B/ corresponds to a sequence of r nested partitions of the vertices
(starting with the total partition into one-element sets and ending with the trivial partition) associated
to Tree.B/, the j th partition being the one induced by the first j � 1 edges. For example, the
ordered tree Œ.2; 4/.1; 3/; .1; 2/� induces the same sequence of partitions as Œ.1; 4/; .2; 3/; .1; 2/�;
see Figure 3.

� A diagonal basis D is then a set of .r � 1/Š ordered trees such that the .r � 1/Š partition sequences
obtained by reordering the edges of any one of the ordered trees are different from .r � 1/Š� 1

sequences of partitions obtained from the remaining elements of D.

3.4 Examples

There are essentially two known constructions of diagonal bases [23].

I. The Hamiltonian basis For each permutation � 2†r , we can define

(11) �.B/D .˛�.r�1/;�.r/; ˛�.r�2/;�.r�1/; : : : ; ˛�.1/;�.2// 2B:

The set Hm D f�.B/ j � 2†r ; �.1/Dmg is then a diagonal basis. In the combinatorial description, this
diagonal basis corresponds to the set of Hamiltonian paths starting at vertex m, and endowed with the
reversed natural ordering of edges.

Example 3.3 Here are some examples of Hamiltonian bases:

� For r D 3: H1 D f.˛
2;3; ˛1;2/; .˛3;2; ˛1;3/g.

� For r D 4: H1 D
˚
.˛3;4; ˛2;3; ˛1;2/; .˛2;4; ˛3;2; ˛1;3/; .˛4;3; ˛2;4; ˛1;2/; .˛3;2; ˛4;3; ˛1;4/,

.˛4;2; ˛3;4; ˛1;3/; .˛2;3; ˛4;2; ˛1;4/
	
.

II. The no-broken-circuit (nbc) bases Let � W
˚
1; : : : ; 1

2
r.r�1/

	
!ˆ be a total ordering, which we will

represent as an order relation
�
< on ˆ. To this ordering, one can associate the so-called noncommutative

no-broken-circuit diagonal basis [23]

DŒ��D
˚
.ˇŒ1�; : : : ; ˇŒr�1�/ 2B j ˇŒ1�

�
< � � �

�
<ˇŒr�1�; and

˛ij
�
<ˇŒm� D) .˛ij ; ˇŒm�; : : : ; ˇŒr�1�/ linearly independent

	
:
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Example 3.4 Let ˛1;3
�
<˛1;4

�
<˛2;3

�
<˛2;4

�
<˛1;2

�
<˛3;4 be the ordering of the positive roots for rank

r D 4. Then

DŒ��D
˚
.˛1;3; ˛1;2; ˛3;4/; .˛1;3; ˛1;4; ˛2;3/; .˛1;3; ˛1;4; ˛2;4/; .˛1;3; ˛1;4; ˛1;2/;

.˛1;3; ˛2;3; ˛3;4/; .˛1;3; ˛2;3; ˛2;4/
	

is the corresponding no-broken-circuit diagonal basis.

Remark 3.5 The hyperplane arrangement induced by ˆ is invariant under the natural action of †r on
the vector space V . It follows easily from the definition that if D is a diagonal basis and � 2 †r is a
permutation, then �.D/ is also a diagonal basis.

4 The residue formula and the main result

In this section, we recall the residue formula from [23] for Ver.k; �/, the discrete Verlinde sum on the
right-hand side of (1). The key feature of this formula is that it exposes the piecewise polynomial nature
of Ver.k; �/, which is key for our wall-crossing analysis. While the objects are relatively simple, the
formalism is heavy with notation, so we begin by describing the one-dimensional case.

4.1 The residue formula in dimension 1

The story begins with the Fourier series

(12)
1

.2�i/m

X
n2Zn0

exp.2�ian/
nm

for m� 2, which is a periodic, piecewise polynomial function given by the formula

Res
xD0

exp.fagx/
1� exp.x/

dx

xm
;

where fag is the fractional part of the real number a. The polynomial functions thus obtained on the
interval Œ0; 1� are called Bernoulli polynomials. The polynomial on the interval containing the real number
c 2R nZ is given by

Res
xD0

exp..a� Œc�/x/
1� exp.x/

dx

xm
;

where Œc� is the integer part of c.

Now we pass to a trigonometric version of this formula, calculating finite sums of values of rational
trigonometric functions over rational points with denominators equal to an integer k.

We thus replace the rational function x�m by the (hyperbolic) trigonometric function

f .x/D
�
2 sinh

�
1
2
x
���2m

;
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and introduce an integer parameter � related to a via ka D �. We consider the sum of values of the
function f over a finite set of rational points in analogy with (12),

k�1X
nD1

exp.2�i�n=k/
.2 sin.�n=k//2m

;

where �; k 2 Z. This sum is again periodic in � mod k, and for m� 2 we can evaluate it via the residue
theorem as

.�1/m Res
zD1

zkf�=kg

.z1=2� z�1=2/2m
�

k dz

z.1� zk/

zDexp.x=k/
D .�1/m Res

xD0

exp.f�=kg � x/
1� exp.x/

�f
�
x

k

�
dx:

Again, this is a piecewise polynomial function in the pair .k; �/, which is polynomial in the cones bounded
by the lines �D qk for q 2 Z.

Note that in these calculations, a key role is played by the Bernoulli operator

(13) f 7! BerŒf �.a/D
f .x/ exp.ax/ dx
1� exp.x/

;

which transforms meromorphic functions in the variable x into polynomials in a, and plays the role of a
generalized Fourier operator.

4.2 The multidimensional case

We return to the setup of Section 3 with the vector space V endowed with the hyperplane arrangement ˆ.
We introduce the notation Fˆ for the space of meromorphic functions defined in a neighborhood of 0 in
V ˝R C with poles on the union of hyperplanes[

1�i<j�r

fx j h˛ij ; xi D 0g:

In particular, the function
wˆ D

Y
i<j

�
2 sinh.�.xi � xj //

�
is an element of Fˆ.

To write down our residue formula, we need a multidimensional generalization of the notions of integer
and fractional parts. Given a basis B D .ˇŒ1�; : : : ; ˇŒr�1�/ 2B of V �, and an element a 2 V �, we define
Œa�B and fagB to be the unique elements of V � satisfying

Œa�B D a�fagB 2ƒ and fagB 2

r�1X
jD1

Œ0; 1/ˇŒj �:

This notion naturally induces a chamber structure on V �: we will call a 2 V � regular if a is a point of
continuity for the functions a 7! Œa�B ; fagB for all B 2B, ie when fagB 2

Pr�1
jD1.0; 1/ˇ

Œj �. Now, for
regular a and b we define the equivalence relation

(14) a � b when Œa�B D Œb�B for all B 2B:

The equivalence classes for this relation form a ƒ–periodic system of chambers in V �.
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.f1;2g;f3g/;1S .f1
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2;3
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.0; 0; 0/
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Figure 4: Chambers for rank r D 3.

Convention We will think of a partition… of f1; 2; : : : ; rg into two nonempty sets as an ordered partition
…D .…0;…00/ such that r 2…00, and we will call these objects nontrivial partitions for short.

The following statement is straightforward.

Lemma 4.1 The equivalence classes of the relation � are precisely the chambers in V � created by the
walls parametrized by a nontrivial partition …D .…0;…00/ of the first r positive integers , and an integer l :

(15) S…;l D

�
c 2 V �

ˇ̌̌ X
j2…0

cj D l

�
:

Remark 4.2 The walls given in (10) are precisely the same as the ones given in (10) for the case
d D 0, where they play the role of walls separating the chambers of parabolic weights c in which the
parabolic moduli spaces P0.c/ are naturally the same. This “coincidence” is precisely what we need for
our comparative wall-crossing strategy. There is a small terminological issue here: the “chambers” in
Section 2.4 are the intersections of the equivalence classes of � defined above with the open simplex
�0

def
D �, where the parabolic weights live; see Figures 2 and 4. We will use the term “chamber” in both

cases if this causes no confusion.

Each element B D .ˇŒ1�; : : : ; ˇŒr�1�/ 2B defines an iterated version of the Bernoulli operator (13) on
the space of functions Fˆ: interpreting the elements a; ˇŒj � 2 V � as linear functions on V , we define

(16) iBer
B
Œf .x/�.a/D

1

.2�i/r�1

Z
Z.B/

f .x/ expha; xi d hˇŒ1�; xi ^ � � � ^ d hˇŒr�1�; xi
.1� exp.hˇŒ1�; xi// � � � .1� exp.hˇŒr�1�; xi//

;

where the naturally oriented cycle ZB is defined by

ZB D fv 2 V ˝R C j jhˇŒj �; xij D "j for j D 1; : : : ; r � 1g � V ˝R C n fwˆ.x/D 0g;

with real constants "j satisfying 0 � "r�1 � � � � � "1. Thus again, iBerB is a linear operator which
associates to a function in Fˆ a polynomial on V �.
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Remark 4.3 Let us make a small remark about the computational aspects of the operator iBerB. Denoting
the coordinate hˇŒj �; xi by yj for j D1; : : : ; r�1, and writing f and a in these coordinates: f .x/D yf .y/,
ha; xi D hya; yi, we can rewrite (16) as

iBer
B
Œf .x/�.a/D Res

y1D0
� � � Res
yr�1D0

yf .y/ exphya; yi dy1 ^ � � � ^ dyr�1
.1� exp.y1// � � � .1� exp.yr�1//

;

where iterating the residues here means that we keep the variables with lower indices as unknown
constants, and then use geometric series expansions of the type

1

1� exp.y1�y2/
D

y1�y2

1� exp.y1�y2/
�

1

y1�y2
D

y1�y2

1� exp.y1�y2/
�

1X
nD0

yn2

ynC11

:

4.3 Invariance of diagonal bases and the main results

Diagonal bases have the following key invariance property.

Theorem 4.4 [23] Let f 2 Fˆ, and c 2 V � be regular; let D be a diagonal basis of ˆ. Then the
functional

f 7!
X
B2D

iBer
B
Œf .x/�.a� Œc�B/

(see (16) above) transforming a meromorphic function f 2Fˆ into a polynomial in the variable a 2 V �

is independent of the choice of the diagonal basis D. In particular , for regular a 2 V �, the functional

(17) f 7!
X
B2D

iBer
B
Œf .x/�.fagB/

transforms f into a well-defined piecewise polynomial function on V �, which is polynomial in each
chamber.

As this functional is invariantly defined, it is not surprising that it is equivariant with respect to the
symmetries of our hyperplane arrangement. For � 2†r , we define, as usual

(18) � �f .x/D f .��1x/:

This convention is consistent with (11).

Lemma 4.5 Let f 2 Fˆ and � 2†r , and pick any diagonal basis D. ThenX
B2D

iBer
B
Œf .x/�.� � a� Œ� � c�B/D

X
B2D

iBer
B
Œ��1 �f .x/�.a� Œc�B/:

Proof Indeed, recall that � 2† takes a diagonal basis to another diagonal basis (see Remark 3.5), soX
B2D

iBer
B
Œf .x/�.� � a� Œ� � c�B/D

X
B2D

iBer
�B

Œf .x/�.� � a� Œ� � c��B/:
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Now we perform the linear substitution x D �.y/, and obtainX
B2D

iBer
�B

Œf .x/�.� � a� Œ� � c��B/D
X
B2D

iBer
B
Œ��1 �f .y/�.a� Œc�B/:

Remark 4.6 By picking the Hamiltonian diagonal basis H1 D f� �B0 j � 2 Stab.1;†r/g, we can turn
the argument in the proof above around, and obtain the formulaX
B2H1

iBer
B
Œf .x/�.a�Œc�B/D

X
�2Stab.1;†r /

iBer
B0
Œ� �f .x/�.� �a�Œ� �c�B/

D Res
y1D0

� � � Res
yr�1D0

X
�2Stab.1;†r /

� �f .y/ exph� �a�Œ� �c�B ; yi dy1^� � �^dyr�1
.1�exp.y1// � � � .1�exp.yr�1//

;

where
B0 D .y1 D xr�1� xr ; : : : ; yr�2 D x2� x3; yr�1 D x1� x2/ 2B:

Now we are ready to write down the residue formula for the Verlinde sums proved in [24, Theorem 4.2].
Recall that we denoted by Ver.k; �/ the finite sum on the right-hand side of (1).

Theorem 4.7 Let g � 1, k 2Z>0, � 2ƒ, and let D be any diagonal basis of ˆ. Introducing the notation
yk D kC r and y�D �C �, we have

(19) Ver.k; �/D zNr;k
X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�.y�=yk� Œyc̨�B/;

where zNr;k D .�1/.
r
2/.g�1/Nr;k (see (1)) and yc̨ 2 V � is a regular point in a chamber that contains y�=yk in

its closure.

Now, if we look at our main goal (1): proving the equality

(20) Ver.k; �/D �.P0.�=k/;L0.kI�//;

we discover a rather embarrassing mismatch. Both sides are piecewise polynomial functions; however,

� according to the HRR theorem, �.P.�=k/;L0.kI�// is polynomial on the cones over the equiva-
lence classes (see (14)) of �=k, while

� according to (19), Ver.k; �/ is polynomial on the cones over the equivalence classes of y�=yk,

and these conic partitions of f.k; �/ j �=k 2�g could clearly be different; see Figure 5 for a sketch of
this problem.

Thus for (1) to be true, some miracle needs to occur, and these miracles are well-known in the area of
“quantization commutes with reduction” [17; 29; 30; 25]. We will return to this problem in Section 10,
but for now, we will be satisfied to use (19) to write down a (conjectural for the moment) formula for
�.P0.�=k/;L0.kI�//, which is manifestly polynomial on the cones where �=k is in a fixed equivalence
class.
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�

k

1

�r

�r C 1

.0; 0/

� y�

�

k

y�

yk

Figure 5: The vector �=k is in the orange chamber, while y�=yk is in the green chamber.

Let us fix a regular c 2 � marking a particular chamber in �. The two cones f.kI�/ j �=k � cg and
f.kI�/ j y�=yk � cg intersect along an open cone (this cone is shaded in orange in Figure 5), and on this
intersection, the expression

(21)
X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�.y�=yk� Œ�=k�B/

coincides with the right-hand side of (19). As (21) is manifestly polynomial on each cone where �=k is
in a particular chamber in �, this expression will be then our main candidate for �.P0.�=k/;L0.kI�//.

Our plan is thus to split the proof of (20) into three parts: the first is equality (19), and the other two are
given in our main theorem below. We formulated all our statements in a manner that allows us to treat the
cases when �=k or y�=yk are on a boundary separating two of our chambers in �.

Theorem 4.8 Let � 2 ƒ and k 2 Z>0 be such that �=k 2 �. Let c̨ and yc̨ 2 � be regular elements ,
specifying two chambers in �, which contain �=k and y�=yk in their closures , correspondingly. Then for
any diagonal basis D, the following two equalities hold :

�.P0.c̨/;L.kI�//D zNr;k
X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�.y�=yk� Œc̨�B/;(I)

X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�4y�=yk� Œc̨�B/D

X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�.y�=yk� Œyc̨�B/:(II)

Remark 4.9 Part (I) of the theorem implies that if �=k 2� is not regular, then

�.P0.c
C/;L.kI�//D �.P0.c

�/;L.kI�//

for regular c˙ 2� in two neighboring chambers that contain �=k in their closure; see Proposition 10.1
and Remark 10.4.
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Before we proceed, we formulate a mild generalization of part (I) of our theorem. As observed above, if
we fix a generic c 2�, and vary .�; k/ in such a way that �=k � c, then both sides of the equality (I) are
manifestly polynomial, and thus we can extend the validity of this equality as follows.

Corollary 4.10 Let c 2� be a regular element , which thus specifies a chamber in � and a parabolic
moduli space P0.c/ as well. Then for a diagonal basis D, an arbitrary weight � 2 ƒ, and a positive
integer k, we have

(22) �.P0.c/;L.kI�//D zNr;k
X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�.y�=yk� Œc�B/:

Example 4.11 Let us write down these formulas in case of r D 3 explicitly. Let D be the diagonal basis
from Example 3.3; then using Remark 4.6, we obtain

�.P0.</;L.kI�//D .�1/
g�1.3.kC 3/2/g Res

yD0
Res
xD0

e�1xC.�1C�2/yCxCy � e�1xC.�1C�3/yCx

.1� ex.kC3//.1� ey.kC3//wˆ.x; y/2g�1
dx dy;

�.P0.>/;L.kI�//D

.�1/g�1.3.kC 3/2/g Res
yD0

Res
xD0

e�1xC.�1C�2/yCxCy � e�1xC.�1C�3/yCxCy.kC3/

.1� ex.kC3//.1� ey.kC3//wˆ.x; y/2g�1
dx dy;

where wˆ.x; y/D 2 sinh
�
1
2
x
�
2 sinh

�
1
2
y
�
2 sinh

�
1
2
.xCy/

�
.

4.4 The walls

Our first step is to identify the wall-crossing terms of the residue formula (22), which originate in the dis-
continuities of the function c 7! fcgB . These discontinuities occur on “walls”: the affine hyperplanes (15).
The following is straightforward:

Lemma 4.12 Let S…;l be the wall defined by (15), and B D .ˇŒ1�; : : : ; ˇŒr�1�/ 2 B an ordered basis
of V �. Then , as a function of c, the fractional part function fcgB has a discontinuity at a generic point
of the wall S…;l exactly when Tree.B/ (see page 2270) is a union of a tree on …0, a tree on …00 (the
enumeration of the edges is irrelevant here) and a single edge (which we will call the link ) connecting …0

and …00.

Notation We will denote the element of B corresponding to this edge by ˇlink; this vector thus depends
on B and the partition ….

Proof We fix B, and note that for our purposes, c 2 S…;l will be considered generic if it belongs to only
this one wall in �; this is equivalent to the condition that the only nontrivial subsets of coordinates of c
which sum up to an integer are …0 and …00.

Note that an element

c D

r�1X
jD1

bjˇ
Œj �
2�

is a point of discontinuity of the fractional part function f � gB if and only if bj 2Z for some 1� j � r�1.
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Next, we express the coefficient bj via the coordinates of c: we show that for all 1� j � r � 1 we have

(23) bj D
X
i2‰j

ci for some subset ‰j � f1; : : : ; rg:

Now we orient the edges of Tree.B/ in such way that they are all directed “away” from the root vertex r ,
and, without loss of generality (recall that

P
ci D 0), we can assume that this orientation agrees with the

signs of the elements ˇŒj � 2B. It is easy to verify then that the subset

‰j D
˚
k 2 f1; : : : ; rg j the unique directed path in Tree.B/ from r to k contains the edge

corresponding to ˇŒj �
	

satisfies (23).

Hence we can conclude that if c 2 S…;l is generic and the coefficient bj is an integer, then necessarily
‰j D …

0, and thus …00 D f1; : : : ; rg n‰j , and cutting the edge corresponding to ˇŒj � from Tree.B/
results in two disjoint trees, on …0 and on …00, respectively.

Now choose two regular elements cC; c� 2 V � in two neighboring chambers separated by the wall S…;l ,
in such a way that

(24) ŒcC…0 �D l and Œc�…0 �D l � 1;

where
c…0

def
D

X
i2…0

ci ;

and, as usual, Œq� stands for the integer part of the real number q. Now introduce the notation

p˙.kI�/D zNr;k
X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�.y�=yk� Œc˙�B/

for the two polynomial functions in .k; �/ corresponding to cC and c�, respectively. We define the
wall-crossing term in our residue formula (22) as the difference between these two polynomials:

pC.kI�/�p�.kI�/:

Using Lemma 4.1 and (24), we obtain the following simple residue formula for this difference.

Lemma 4.13 Let .…; l/, cC and c� be as above , and let us fix a diagonal basis D�B. Denote by Dj…

the subset of those elements of D, which satisfy the condition described in Lemma 4.12. Then

(25) pC.k; �/�p�.k; �/D zNr;k
X

B2Dj…

iBer
B

��
1� exp.ˇlink.x//

�
w
1�2g
ˆ .x=yk/

�
.�=yk� ŒcC�B/;

where ˇlink is the “link” element of B (depending on … and B) defined after Lemma 4.12.

Remark 4.14 The multiplication by 1� exp.ˇlink.x// in (25) has the effect of canceling one of the
factors in the denominator in the definition (16) of the operation iBer.
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Example 4.15 Calculating the difference of two polynomials from Example 4.11, we obtain the wall-
crossing term for the rank-3 case:

p�.kI�/�pC.kI�/D .�3.kC 3/
2/g Res

yD0
Res
xD0

e�1xC.�1C�3/yCx

.1� ex.kC3//wˆ.x; y/2g�1
dx dy:

4.5 Wall-crossing and diagonal bases

Now we pass to the study of the combinatorial object Dj… defined in Lemma 4.13. One thing we will
discover is that even though each diagonal basis consists of .r � 1/Š elements and the right-hand side
of (25) does not depend on the choice of D, the number of elements in Dj… might vary with D.

First we look at the case of the Hamiltonian basis H1. Form now on, we will use the notation j…0j D r 0

and j…00j D r 00 for a nontrivial partition …D .…0;…00/— recall the convention r 2…00. The following
statement is easy to verify.

Lemma 4.16 Let …D .…0;…00/ be a nontrivial partition such that 1 2…0 (the other case is analogous).
Then

H1j…D f�.B/ j �.1/D 1 and �.…0/ 2…0g:

In particular ,
ˇ̌
H1j…

ˇ̌
D .r 0� 1/Š � r 00Š.

It turns out that for our geometric applications, instead of H1, we will need to choose a particular nbc basis,
where the ordering is chosen to be consistent with ….

To simplify our terminology, we will use the language of graphs and edges introduced in Section 3.3,
and we will think of ˛ij 2ˆ as an edge in the complete graph on r vertices. To define the ordering � ,
we need to choose an edge between …0;…00; the choice is immaterial, but for simplicity we settle for
m

def
D maxfi 2…0g and r 2…00, and set ˇlink D ˛

m;r to be the smallest element according to � .

The �–ordered list of edges thus starts with ˇlink, and then continues with the remaining r 0 � r 00� 1 edges
connecting …0 and …00. Next we list the 1

2
r 0.r 0� 1/ edges connecting vertices in …0 in any order, and

finally, we list the remaining edges, those connecting vertices in …00.

Notation We introduce the natural notation ˆ0 and ˆ00 for the Ar 0 and Ar 00 root systems corresponding
to …0 and …00, and we denote by DŒ��, D0Œ�� and D00Œ�� the diagonal nbc bases induced by the ordering �
on ˆ, ˆ0 and ˆ00, respectively.

The following is easy to verify.

Lemma 4.17 Given elements B 0 2 D0Œ�� and B 00 2 D00Œ��, we can define an element of DŒ�� as follows:
we start with ˇlink, then append B 0, and then continue with B 00. This construction creates a one-to-one
correspondence

(26) D0Œ���D00Œ��! DŒ��j…:

In particular ,
ˇ̌
DŒ��j…

ˇ̌
D .r 0� 1/Š � .r 00� 1/Š.
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Finally, putting Lemmas 4.13 and 4.17 together, we arrive at the following elegant statement.

Proposition 4.18 Let .…; l/, cC and c� be as in Lemma 4.13, and let D0 and D00 be diagonal bases of
ˆ0 and ˆ00, correspondingly. Then

(27) pC.kI�/�p�.kI�/D.kCr/ zNr;k
X

B02D0

X
B002D00

Res
ˇlinkD0

iBer
B0

iBer
B00

Œw
1�2g
ˆ .x=yk/�.y�=yk�ŒcC�B/ dˇlink;

where ResˇlinkD0 iBerB0 iBerB00 dˇlink is simply iBerB (see (16)) with B obtained by appending B 0, and
then B 00 to ˇlink, and with the factor .1� exphˇlink; xi/ removed from the denominator.

Remark 4.19 The expression

Res
ˇlinkD0

iBer
B0

iBer
B00

Œw
1�2g
ˆ .x=yk/�.y�=yk� ŒcC�B/ dˇlink

may equally be interpreted as follows. We write

ƒ 3 y�=yk� ŒcC�B DmlinkˇlinkCn
0
Cn00

according to the splitting of B, think of w.x=yk/ as a function in Fˆ00 with some fixed values of the
parameters from B 0 and ˇlink, and then calculate

iBer
B00

Œw
1�2g
ˆ .x=yk/�.n00/:

The result will be a rational function Q in the variables from B 0 and ˇlink, and we proceed to calculate
iBerB0 ŒQ�.n

0/ to obtain a function F in the variable ˇlink, and finally the answer is

Res
ˇlinkD0

exp.ˇlink/F.ˇlink/ dˇlink:

We observe that since the trees Tree.B 0/ and Tree.B 00/ are disjoint, the order of the application of the
operations iBerB0 and iBerB00 is immaterial.

5 Wall-crossing in master space

Master spaces were introduced by Thaddeus in [28] in order to understand the dependence of GIT
quotients on their linearizations. Following his footsteps, in this section we describe a simple but very
effective method to control the changes in the Euler characteristics of line bundles when crossing a wall
in the space of linearizations. (Similar results appeared in [8].)

5.1 Wall-crossing and holomorphic Euler characteristics

We begin by recalling the basic notions of geometric invariant theory.

Let X be a smooth projective variety over C, and G a reductive group acting on X . A linearization
of this action is a line bundle L on X with a lifting of the G–action to a linear action on L. An ample
linearization is G–effective if Ln has a nonzero G–invariant section for some n > 0; the space of such
linearizations ConeG.X/ is called the G–effective ample cone.

Geometry & Topology, Volume 28 (2024)



2282 András Szenes and Olga Trapeznikova

For L 2 ConeG.X/, we define the invariant-theoretic quotient ML DX==
LG as the Proj of the graded

ring of invariant sections of the powers of L:

ML D Proj
M
n

H 0.X;Ln/G :

According to Mumford’s geometric invariant theory [18], there is a partition of X (depending on L)

(28) X DX sŒL�[X sssŒL�[XusŒL�

into the set of stable, strictly semistable, and unstable points such that there is a surjective map

.X sŒL�[X sssŒL�/=G!ML:

When X sssŒL� is empty, this map is a bijection, and the quotient ML DX
sŒL�=G is a smooth orbifold.

In [7], Dolgachev and Hu studied the dependence of the GIT quotient ML DX==
LG on L. They showed

that ConeG.X/ is divided by hyperplanes, called walls, into finitely many convex chambers such that
when L varies within a chamber, the partition (28) and thus the GIT quotient ML remains unchanged.
Moreover, an ample effective linearization lies on a wall precisely when it possesses a strictly semistable
point.

Now let us consider two neighboring chambers, with smooth GIT quotients MC and M�. We pick an
arbitrary linearization L of the G–action on X , which descends to MC and M�. This last condition
means that if S �G is the stabilizer of a generic point in X , then S acts trivially on the fibers of L. We
will call such linearizations descending.

Thus, given such a descending linearization L of the G–action on X , we obtain two line bundles: one
onMC and one onM�, which, by abuse of notation, we will denote by the same letter L. Via taking Chern
classes, this construction creates a correspondence between classes in H 2.MC;Z/ and H 2.M�;Z/,
which we will assume to be an isomorphism of free Z–modules. We will thus identify these lattices, and
introduce the notation � for them:

� DH 2.MC;Z/'H
2.M�;Z/:

The walls mentioned above can be thought of as hyperplanes in �R D �˝Z R.

Our goal in this section is to compare the holomorphic Euler characteristics �.MC;L/ and �.M�;L/,
which are given by the Hirzebruch–Riemann–Roch theorem:

�.M˙;L/D

Z
M˙

exp.c1.L//Todd.M˙/:

As this expression is manifestly polynomial in c1.L/, we obtain thus two polynomials on � , and our goal
is to calculate their difference, the wall-crossing term

(29) �.MC;L/��.M�;L/:
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5.2 The master space construction

To simplify our setup, we will make some additional assumptions.

Assumptions 5.1 (a) The generic stabilizer of X is trivial.

(b) Let LC and L� be two ample linearizations of the G–action on X from the adjacent chambers
corresponding to the quotients MC and M�. Without loss of generality, we can assume that the
linearization L0 D LC˝L� lies on the single wall separating the two chambers, and that the
interval connecting c1.LC/ and c1.L�/ in �R D �˝Z R does not intersect any other walls.

(c) Let X0 be the set of those semistable points x 2X ssŒL0� which are not stable for L˙:

X0 WDX ssŒL0� n .X
sŒLC�[X

sŒL��/

We assume that X0 is smooth, and that for x 2X0 the stabilizer subgroup Gx �G is isomorphic
to C�.

(d) Assume that there is a linearization EL of the G–action on X such that LC D L�˝ ELn for some
positive integer n, and such that for each x 2X0, the stabilizer subgroup Gx acts freely on ELx n 0.

Now we introduce the master space construction of Thaddeus [28]. Consider the variety Y D P .O˚ EL/,
which is a P1–bundle over X endowed with the additional C�–action .1; t�1/. As Y is a projectivization
of a vector bundle on X , it comes equipped with O.1/, which is the standard G �C�–equivariant line
bundle. To simplify our notation, we will denote the same way the linearizations of the G–action on X
and their pullbacks (with tautological G–action) to Y .

The master space Z then is the GIT quotient of Y with respect to the linearization L�.n/D L�˝O.n/:

Z D Y ==L�.n/G;

which inherits a C�–action from Y . Some additional notation:

� We denote this copy of C� by T .

� We denote the projection Y !X by � , and the quotient map Y s!Z by  .

� Introduce the notation Y.0 W � / and Y. � W 0/ for the two copies of X in Y , corresponding to the two
poles of the projective line; then Y is partitioned into three sets

Y D Y.0 W � /tY. � W 0/t ELı;

where ELı is the line bundle EL with the zero-section removed. We will write �ı for the restriction
of � to ELı. We collect our maps in the following diagram:

(30)
ELı Y D P .O˚ EL/� Y s Z

X

�ı
�
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Proposition 5.2 (i) There are embeddings

�� WM�!Z and �C WMC!Z

obtained as the quotients Y s\Y. � W 0/=G and Y s\Y.0 W � /=G, correspondingly.

(ii) The strictly semistable locus of Y with respect to the linearization L�.n/ is empty, and the GIT
quotient Z D Y s=G is smooth.

(iii) There is an embedding �0 W X0=G! Z, obtained via  .�ı�1.X0//. We denote the image of �0
by Z0.

(iv) The fixed point locus ZT is the disjoint union of �C.MC/, ��.M�/ and Z0.

Proof Statements (i)–(iii) follow from [28, 4.2, 4.3]. To prove (iv), first note that Y. � W 0/ and Y.0 W � /
are fixed by T , so we immediately obtain that M˙ �Z are fixed components. Also the G–action on Y
commutes with the T –action, so a point  .y/ 2  .��1ı .X// is fixed by T if and only if the T –orbit
T �y � ��1ı .X/ is contained in the G–orbit G �y � ��1ı .X/. Since T �y � ��1ı .x/ for some x 2X , we
need y 2 ��1ı .X0/. Moreover, for any y 2 ��1ı .x/ � ��1ı .X0/, T � y D ��1ı .x/ D Gx � y, so a point
 .y/ 2  .��1ı .X// is fixed by T if and only if  .y/ 2  .��1ı .X0//DZ0.

Construction Given a G–equivariant vector bundle E on X , we can construct a T –equivariant vector
bundle �.E/!Z on Z by first pulling E back from X to Y , and endowing the resulting bundle ��E
with the trivial action of T , and the action of G pulled back from X . We then obtain �.E/! Z by
descending ��E to Z.

Before we formulate our wall-crossing formula, we need one more ingredient: the identification of the
normal bundles of the fixed-point components of Z.

Lemma 5.3 (i) The normal bundle on the component MC of ZT is �. EL�1/jMC , and the normal
bundle of M� is �. EL/jM� .

(ii) Let x 2 X0, denote by Gx the stabilizer of x in the group G, and consider the point �0.x/ 2 Z0

(see Proposition 5.2(iii)). Then the normal vector space of Z0 �Z at the point �0.x/ is canonically
T –equivariantly isomorphic to the T –vector space ELıx�GxNxX

0, where NxX0 is the vector space
normal to X0 �X at x, and the T 'C�–action is induced by left multiplication by t�1 on ELx .

Proof Part (i) immediately follows from the formula for the tangent space of the projective line:
TP .V /'Hom.S;Q/, where S! V !Q is the tautological sequence on P .V /, the projectivization of
the vector space V .

For part (ii), consider diagram (30); our goal is to identify the descent to Z0 of the normal bundle N��1ı X0

to ��1ı X0 in ELı. We only need to observe that this bundle may be identified with the pullback ��ıNX
0

of the normal bundle to X0 in X , endowed with the natural G–action and a T –action, which is trivial on
the fibers.
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Remark 5.4 Restricting the operator � to X0, we can construct a T –equivariant vector bundle on Z0

from a G–equivariant vector bundle on X0. Then the normal bundle NZ0 of Z0 � Z may be also
described as �j

X0
.NX0/. The T –weights of the action may be computed by fixing x 2X0, identifying

the stabilizer subgroup Gx � G with T via its action on the fiber ELx , and then considering the action
of Gx on NxX0.

Lemma 5.5 The restriction of the line bundle �. EL/ to Z0 is trivial with T –weight 1.

Proof Note that ��ı EL admits a G–equivariant tautological nonvanishing section. For calculating the
weight, we observe that while T acts on ELx with weight �1, the T –weight of ELıx �Gx EL is C1.

Definition 5.6 Given a T –vector bundle V on a manifold on which T acts trivially, the T –equivariant
K-theoretical Euler class of V �, which we denote by Et .V /, may be described as follows: let x1; : : : ; xn
be the Chern roots of V , and l1; : : : ln 2 Z be the corresponding T –weights. Then

Et .V /D

nY
jD1

.1� t�lj exp.�xj //:

Now we are ready to write down our wall-crossing formula for (29). A key role will be played by the
following notion: given a rational differential one-form on the Riemann sphere, let us denote taking the
sum of residues at 0 and at infinity by � 7! RestD0;1 �:

Res
tD0;1

def
D Res

tD0
C Res
tD1

:

Theorem 5.7 Let L be a linearization of the G–action on X and denote by �.L/, as above , the T –
equivariant line bundle on Z obtained by pullback to Y and descent to Z. If Assumptions 5.1 hold , then

(31) �.MC;L/��.M�;L/D Res
tD0;1

Z
Z0

cht .�.L/jZ0/

Et .NZ0/
Todd.Z0/dt

t
;

where NZ0 is the T –equivariant bundle on Z0 described in Lemma 5.3, cht is the T –equivariant Chern
character , and Et .NZ0/ is the K-theoretical Euler class of N �

Z0
.

Proof The Atiyah–Bott fixed-point formula [2] applied to the line bundle L on our master space Z
yields

(32) �t .Z;L/D
X
F�ZT

Z
F

cht .�.L/jF /
Et .NF /

Todd.F /;

where the sum is taken over the connected components of the fixed-point locus ZT .
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In Proposition 5.2, we identified these components as MC;M� and Z0. Lemma 5.3 identifies the
equivariant normal bundles of MC and M�, and thus the corresponding contributions areZ

MC

ch.L/Todd.MC/

1� t�1 exp.c1. EL//
and

Z
M�

ch.L/Todd.M�/

1� t exp.�c1. EL//
:

We observe that �t .Z;L/ is a Laurent polynomial in t since it is the alternating sum of T –characters of
finite-dimensional vector spaces. Thus, as a function of t , �t .Z;L/ has poles only at t D 0;1, and by
the residue theorem, we have

Res
tD0;1

�t .Z;L/
dt

t
D 0:

On the other hand, since

Res
tD0;1

A

1� t�1B

dt

t
D�A and Res

tD0;1

A

1� tB

dt

t
D A;

we have
Res
tD0;1

Z
MC

ch.L/Todd.MC/

1� t�1 exp.c1. EL//
dt

t
D��.MC; L/;

Res
tD0;1

Z
M�

ch.L/Todd.M�/

1� t exp.�c1. EL//
dt

t
D �.M�; L/:

Now, applying the functional RestD0;1 to the two sides of (32) multiplied by dt=t , we obtain the desired
result (31).

6 Wall-crossings in parabolic moduli spaces

In this section, we apply Theorem 5.7 to wall-crossings in the moduli space of parabolic bundles.

From now on, we assume that d D 0, and we write � for the corresponding set of admissible parabolic
weights �0. Recall from Section 2.2 that for regular c 2 �, the moduli space of stable parabolic
bundles P0.c/ is the GIT quotient XQ==cPSL.�/, where XQ is a subspace of the total space of a flag
bundle over the Quot scheme. Let us fix a partition …D .…0;…00/ and an integer l , and introduce the
notation �0

l
and �00

�l
for the simplices of parabolic weights of …0 and …00. Let � 2 †r be the unique

permutation which sends f1; : : : ; r 0g to …0 preserving the order of the first r 0 and the last r 00 elements.
We choose c0 D .c01 ; : : : ; c

0
r / 2 S�;l and two regular elements cC; c� 2� in two neighboring chambers

separated by the wall S…;l , such that

c˙ D c0˙ �.: : : ; 0; 1; 0; : : : ; 0;�1/

for some positive � 2Q, where 1 and �1 are on the �.r 0/th and r th places, respectively. Let

c0 D
X
i2…0

c0i xi 2�
0
l and c00 D

X
i2…00

c0i xi 2�
00
�l :

For .k; �/ 2 Z�ƒ, consider the polynomials

q˙.k; �/D �.P0.c
˙/;L0.kI�//:

Geometry & Topology, Volume 28 (2024)



The parabolic Verlinde formula: iterated residues and wall-crossings 2287

Our goal is to calculate the difference of these two polynomials.

Notation To simplify our notation, from now on, we omit the index t from the symbols for equivariant
characteristic classes.

6.1 The master space construction

We construct the master space Z from Section 5.2 using the following data:

� A smooth variety X DXQ; see Section 2.2.

� Linearizations L˙ D L.kI�˙/ of the G–action on X (see Section 2.2) such that �˙=k D c˙.

� The linearization ELD L.0I x�.r 0/� xr/ of the G–action on X .

The following statement is easy to verify.

Lemma 6.1 [6, Section 3.2] The subset X0 � X is the set of points representing vector bundles W
on C such that W splits as a direct sum W 0˚W 00, where W 0 and W 00 are , respectively , c0– and c00–stable
parabolic bundles. Therefore , we have the following description of the locus Z0:

Z0 D fW DW 0˚W 00 jW 0 2 zPl.c
0/; W 00 2 zP�l.c

00/; det.W /' Og:

Remark 6.2 The locus Z0 is fibered over Jacl with fiber Pl.c0/� P�l.c00/ by the determinant map
zPl.c
0/! Jacl , and

(33) H�.Z0;Q/'H�.Pl.c
0/�P�l.c

00/;Q/˝H�.Jacl ;Q/:

Remark 6.3 If the rank of the vector bundle W 2 zPl.c/ is 1, then c D l and zPl.l/ is isomorphic to Jacl ,
while Pl.l/ is a point.

Now we need to verify the hypotheses of Theorem 5.7. Note that in our present construction X is not
projective; however, it contains all semisimple points of the flag bundle over the open subscheme of
the Quot scheme parametrizing locally free quotients (see Section 2.2) for all possible polarizations,
and hence the missing points of the Quot scheme have no effect on any of our constructions (a similar
argument appeared in [28]).

Assumptions 5.1(a)–(b) are trivially satisfied, so we study the action of the stabilizer Gx � PSL.N / of
point x 2X on the fiber ELx n 0.

� For a general point x 2X the stabilizer of x is the center ZN � SL.N /, which acts trivially on the
fiber ELx n 0.
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� For x 2 X0, any element of the stabilizer of x induces an automorphism of the corresponding
vector bundle W DW 0˚W 00, so the stabilizer of x in GL.N / is isomorphic to C��C��GL.N /.
An element .t1; t2/ 2 C� �C� is in SL.N / if and only if tN

0

1 tN
00

2 D 1, where N 0 D �.W 0/ and
N 00 D �.W 00/. Note that .t1; t2/ acts on ELx as t1t�12 , and we need t1 D t2 (hence tN1 D 1) for this
action to be trivial, so the stabilizer of any point in ELx n 0 is the center ZN � SL.N /.

Then the action of G D PSL.N / is free on Y n .Y.0 W � /[Y. � W 0//, and the action of Gx � PSL.N / on
ELx n 0 induces an isomorphism Gx 'C� ' T .

Now by Theorem 5.7, the wall-crossing polynomial q�.kI�/� qC.kI�/ is equal to

Res
tD0;1

Z
Z0

ch.L0.kI�/jZ0/

E.NZ0/
Todd.Z0/ dt

t
:(34)

Note that in our case, the T –action on Z is free outside the fixed locus ZT , so as a function in t 2 T , the
integral in (34) may have poles only at t D 0; 1;1. Then, using the residue theorem and substituting
t D eu, we conclude that (34) equals

(35) �Res
uD0

Z
Z0

ch.L0.kI�/jZ0/

E.NZ0/
Todd.Z0/ du;

and thus our goal is to calculate this integral.

Our first step is to identify the characteristic classes under the integral sign; see Proposition 6.11 for the
result.

We start with the study of the restriction of the line bundle L0.kI�/ to the fixed locus Z0 �Z. First, we
describe a parametrization of the factor H�.Jacl ;Q/ in (33). Let J be the Poincaré bundle over Jac�C
such that c1.J/.0/ D 0; define � 2H 2.Jac/ by .

P
i c1.J/.ei /˝ ei /

2 D�2�˝! (see Section 2.3), then
(see [33]) for any m 2 Z,

(36)
Z

Jac
e�m Dmg :

As Z0 is a connected component of the fixed locus of the T –action on Z, its equivariant cohomology
factors: H�T .Z

0/'H�.Z0/˝CŒu�. In particular, there are canonical embeddings H�.Z0/ ,!H�T .Z
0/

and CŒu� ,!H�T .Z
0/.

Remark 6.4 It follows from Lemma 5.5 that c1.�. EL/jZ0/D u.

Recall that for a parabolic weight c D .c1; : : : ; cr/ 2�, we have set c…0 D
P
i2…0 ci .

Lemma 6.5 Let �D .�1; : : : ; �r/ 2 ƒ, k 2 Z>0 and let …D .…0;…00/ be a nontrivial partition with
r 2…00. Let

�0 D
X
i2…0

�ixi and �00 D
X
i2…00

�ixi ;
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and define ı by .�=k/…0 D l C ı. Then

ch.L0.kI�/jZ0/D e
kıu exp

�
�k

r 0
C
�k

r 00

�
ch.Ll.kI�

0
1; : : : ; �

0
r 0 � kı/�L�l.kI�

00
1; : : : ; �

00
r 00 C kı//;

where � denotes the external tensor product of line bundles on Pl.c0/�P�l.c00/.

Proof First, note that

ch.L0.0I�/jZ0/D e
k.lCı/u ch.Ll.0I�

0
1; : : : ; �

0
r 0 � kl � kı/�L�l.0I�

00
1; : : : ; �

00
r 00 C kl C kı//;

and thus it will be sufficient to identify the restriction of L.kI 0/. It follows from Lemma 2.8 that

c1.L0.kI 0//D
k

2r
c2.End0.U //.2/:

Note that
c2.End0.U //.2/ D�k ch2.U /.2/C c

2
1.U /.2/ D�k ch2.U /.2/;

and thus
c1.L0.kI 0//D�k ch2.U /.2/:

Denote by zU 0 and zU 00 the normalized (see Section 2.3) universal bundles over zPl.c0/�C and zP�l.c00/�C ,
respectively. Since

ch2.U jZ0/.2/ D ch2. zU 0˝ �. EL/jZ0/.2/C ch2. zU 00jZ0/.2/;

we have (see Remark 6.4)

(37) c1.L0.kI 0/jZ0/D�k ch2. zU 0/.2/� k u c1. zU
0/.2/� k ch2. zU 00/.2/

D
k

2r 0
c2. zU

0/.2/�
k

2r 0
c21.
zU 0/.2/C

k

2r 00
c2. zU

00/.2/�
k

2r 00
c21.
zU 00/.2/� klu:

Now, since
c21.
zU 0/.2/ D 2l c1.U

0/� 2� and c21.
zU 00/.2/ D�2l c1.U

00/� 2�;

by Lemma 2.8 we have

c1.L0.kI 0/jZ0/D
k

r 0
c1.Ll.r

0
I l; : : : ; l//�

kl

r 0
c1.U

0/C �
k

r 0
C
k

r 00
c1.L�l.r

0
I �l; : : : ;�l//

C
kl

r 00
c1.U

00/C �
k

r 00
� klu

D c1
�
Ll.kI .0; : : : ; 0; kl//

�
C c1

�
L�l.kI .0; : : : ; 0;�kl//

�
C �

�
k

r 0
C
k

r 00

�
� klu;

and this completes the proof.

Lemma 6.6 Denote by zU 0 and zU 00 the normalized (see Section 2.3) universal bundles over zPl.c0/�C
and zP�l.c00/�C , and denote by � the projections along C . Then the T –equivariant normal bundle to the
fixed locus Z0 �Z is

(38) NZ0 DR
1
T��.ParHom. zU 0; zU 00//˚R1T��.ParHom. zU 00; zU 0//;

where the T 'C�–action has weights �1 and C1 on the two summands , respectively.
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Remark 6.7 As we are working with fixed determinant moduli spaces, the pushforwards in (38) are to be
taken along the curve C in the part of zPl.c0/� zP�l.c00/�C , where det.W 0/ det.W 00/'O; see Lemma 6.1.

Proof According to Lemma 5.3, for any point x 2X0, the normal bundle NZ0 at the point �0.x/ 2Z0

may be identified with the T –vector space ELıx �Gx NxX
0, where NxX0 is the normal bundle to X0 �X

at x, with the T –action induced by left multiplication by t�1 on ELx .

Denote by UQ the universal bundle over X , which descends to the normalized universal bundles on
P0.c

˙/. Recall that any point x 2 X0 represents a vector bundle which splits as a direct sum of two
subbundles, hence we have UQx D UCx ˚U

�
x , and

NxX
0
DH 1.C;ParHom.UCx ; U

�
x //˚H

1.C;ParHom.U�x ; U
C
x //:

(See [20, Proposition 1.13] for the description of the deformation space of parabolic bundles.) A simple
calculation (see Remark 5.4 and Lemma 5.5) shows we have a T –module isomorphism

ELıx �Gx H
1.C;ParHom.UCx ; U

�
x //'

ELx˝H
1.C;ParHom.UCx ; U

�
x //

with T –weight �1 induced by multiplication on ELx and trivial action on UCx and U�x ; applying the
projection formula we obtain that

ELx˝H
1.C;ParHom.UCx ; U

�
x //'H

1
T .C;ParHom.UCx ˝ EL

�1
x ; U�x //:

Similarly, we have

ELıx �Gx H
1.C;ParHom.U�x ; U

C
x //'

EL�1x ˝H
1.C;ParHom.U�x ; U

C
x //

'H 1
T .C;ParHom.U�x ; U

C
x ˝

EL�1x //

with T –action of weight 1.

Finally, we observe that according to our normalizations, the bundles UC˝ EL�1 and U� descend to
the normalized universal bundles zU 0 and zU 00 over zPl.c0/�C and zP�l.c00/�C , respectively, and this
completes the proof.

6.2 Calculation of the characteristic classes of NZ0

Before we calculate the equivariant K-theoretical Euler class of the conormal bundle N �
Z0

, we need to
introduce some notation. Recall that for 1� i; j � r , the differences xi � xj 2 V � are linear functions
on V , and the function xi � xj corresponds to the linearization L0.0I xi � xj / on X , which descends to
the line bundle L0.0I xi � xj / on the moduli space P0.c/; see Section 2.2. As in Section 5.2, we denote
by �.L0.0I xi �xj // the line bundle on Z obtained by the pullback and then descent. This way, we obtain
a correspondence between the linear functions xi � xj and the T –equivariant line bundles on Z.
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Recall the definition of the permutation � 2†r given at the beginning of this chapter: � takes the first r 0

numbers to …0, preserving the order of the first r 0 and the last r 00 elements. We introduce the symbols

(39)

z0i � z
0
j D c1

�
�.L0.0I x�.i/� x�.j ///jZ0

�
for 1� i; j � r 0;

z00i � z
00
j D c1

�
�.L0.0I x�.r 0Ci/� x�.r 0Cj ///jZ0

�
for 1� i; j � r 00;

uD .z0r 0 � z
00
r /D c1

�
�.L0.0I x�.r 0/� xr//jZ0

�
for the equivariant cohomology classes in H 2

T .Z
0/. The last equalities are consistent with Lemma 5.5.

Remark 6.8 Letting F0i and F00i denote the flag bundles (see Section 2.3) on P0.c0/ and P0.c00/, corre-
spondingly, we have (see Remark 6.2)

z0i � z
0
j D c1.F

0
r�iC1=F0r�i ˝ .F

0
r�jC1=F0r�j /

�/ 2H 2.Pl.c
0//;

z00i � z
00
j D c1.F

00
r�iC1=F00r�i ˝ .F

00
r�jC1=F00r�j /

�/ 2H 2.P�l.c
00//:

Taking into account these identifications, functions on V give rise to equivariant cohomology classes
on Z0. To make the splitting H�T .Z

0/'H�.Z0/˝CŒu�, explicit, however, we will write these classes
in the form fu.z

0; z00/, thinking of them as functions of the differences of the z0i s and the differences of
the z00i , depending on the parameter u. With this convention, we introduce the notation

w�u .z
0; z00/D

Y
i;j

�.i/<�.r 0Cj /

2 sinh.z0i � z
00
j /

Y
i;j

�.r 0Cj /<�.i/

2 sinh.z00j � z
0
i /;

��u .z
0; z00/D

1

2

X
i;j

�.i/<�.r 0Cj /

.z0i � z
00
j /C

1

2

X
i;j

�.r 0Cj /<�.i/

.z00j � z
0
i /;

where, according to (39),

z0i � z
00
j D .z

0
i � z

0
r 0/Cu� .z

00
j � z

00
r /D c1

�
�.L0.0I x�.i/� x�.r 0Cj ///jZ0

�
2H 2

T .Z
0/:

Proposition 6.9 The K-theoretical Euler class E.NZ0/ (see Definition 5.6 with t D eu) is given by the
formula

E.NZ0/
�1
D .�1/lrCr

0r 00.g�1/e�rlu exp
�
�r

r 0
C
�r

r 00

�
w�u .z

0; z00/1�2g exp.��u .z
0; z00//

� ch.Ll.r
00
I �l; : : : ;�l;�l C rl/�L�l.r

0
I l; : : : ; l; l � rl//:

Proof It follows from the short exact sequence (6) for parabolic morphisms that

ch
�
��Š.ParHom. zU 00; zU 0//

�
D�ch

�
�Š.Hom. zU 00; zU 0//

�
C

X
i;j

�.i/<�.r 0Cj /

ez
0
i
�z00
j ;

ch
�
��Š.ParHom. zU 0; zU 00//

�
D�ch

�
�Š.Hom. zU 0; zU 00//

�
C

X
i;j

�.r 0Cj /<�.i/

ez
00
j
�z0
i ;
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so by Lemma 6.6,

(40) ch.NZ0/D

ch
�
��Š.Hom. zU 00; zU 0//˚��Š.Hom. zU 00; zU 0/�/

�
C

X
i;j

�.i/<�.r 0Cj /

ez
0
i
�z00
j C

X
i;j

�.r 0Cj /<�.i/

ez
00
j
�z0
i :

Let f .x/ be a power series in one variable, and W a vector bundle of rank r with (equivariant) Chern
roots y1; : : : ; yr . Then we denote by Œf .x/�W the multiplicative (equivariant) characteristic class of W
given by the function f .x/ in Chern roots of W :

Œf .x/�W D

rY
jD1

f .yj /:

Lemma 6.10 Let P be a smooth variety , and let S be a T –vector bundle on P �C with T –weight 1;
pick a point p 2 C and denote by � W P �C ! P the projection along the curve. Then

E.��ŠS ˚��ŠS
�/�1 D .�1/rk.��ŠS/

exp.�ch2.S/.2//��
2 sinh

�
1
2
x
��2g�2�Sp :

Proof Note that

E.��ŠS/
�1
D

�
1

1� t�1e�x

���ŠS
D

�
�tex

1� tex

���ŠS
;

E.��ŠS
�/�1 D

�
1

1� te�x

���ŠS�
D

�
1

1� tex

�.��ŠS�/�
:

Applying Serre duality and the Grothendieck–Riemann–Roch theorem we obtain

ch.��ŠS/Cch..��ŠS�/�/D ch.��ŠS/Cch.�Š.S˝KC //D ch.��ŠS/C��.ch.S˝KC /Todd.C //

D ch.��ŠS/Cch.�ŠS/C.2g�2/ ch.Sp/D .2g�2/ ch.Sp/;

where KC is the canonical sheaf on the curve C , hence�
1

1� tex

���ŠS˚.��ŠS�/�
D

�
1

.1� tex/2g�2

�Sp
D

exp.�c1.Sp/.g� 1//��
2 sinh

�
1
2
x
��2g�2�Sp :

Since
Œ�tex���ŠS D .�1/rk.��ŠS/ exp.c1.��ŠS//;

and, by the Grothendieck–Riemann–Roch theorem,

ch1.��ŠS/D ch1.Sp/.g� 1/� ch2.S/.2/;

we conclude that

Œ�tex���ŠS D .�1/rk.��ŠS/ exp.c1.Sp/.g� 1// exp.� ch2.S/.2//;

which finishes the proof of Lemma 6.10.
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Note that the last two terms in (40) are the sums of Chern characters of line bundles, so they contribute
the multiplicative factor

exp.��u .z
0; z00//

w�u .z
0; z00/

to the equivariant class E.NZ0/
�1; and using Lemma 6.10 with S D Hom. zU 00; zU 0/, we obtain that the

inverse of the K-theoretical Euler class of the first term in (40) is

.�1/lrCr
0r 00.g�1/w�u .z

0; z00/2�2g exp
�
�ch2.Hom. zU 00; zU 0//.2/

�
:

Note that

�ch2.Hom. zU 00; zU 0//.2/ D 1
2
c2.End0. zU 0˚ zU 00//.2/� 1

2
c2.End0. zU 0//.2/� 1

2
c2.End0. zU 00//.2/

D c1.L.r I 0/jZ0 ˝Ll.�r
0
I �l; : : : ;�l/�L�l.�r

00
I l; : : : ; l//:

The latter equality follows from Lemma 2.8. Finally, using Lemma 6.5 to calculate the Chern character
of L.r I 0/j

Z0
, we obtain the formula for the class E.NZ0/

�1, and the proof of the lemma is complete.

6.3 The wall-crossing formula

Putting Lemma 6.5 and Proposition 6.9 together, we obtain the following.

Proposition 6.11 The wall-crossing term (35) is equal to

K Res
uD0

e.kı�rl/u
Z
Pl .c0/�P�l .c00/

�
.w�u .z

0; z00//1�2g exp.��u .z
0; z00//

� ch
�
Ll.kC r

00
I�01� l; : : : ; �

0
r 0�1� l; �

0
r 0 � l � kıC rl/

�L�l.kC r
0
I�001C l; : : : ; �

00
r 00�1C l; �

00
r 00 C l C kı� rl/

�
Todd.Pl.c

0/�P�l.c
00//

�
du;

where ı is a parameter depending on � and the wall S…;l (see Lemma 6.5) and K is the constant

.�1/lrCr
0r 00.g�1/ .r.kC r//

g

.r 0r 00/g
:

Now all that is left to do is to perform the integral, using an induction on the rank based on Corollary 4.10.
We will begin with the case lD0, as it is simpler. For lD0, the integral from Proposition 6.11 has the form

(41)
Z
P0.c0/�P0.c00/

�
w�u .z

0;z00/1�2ge�
�
u .z
0;z00/Todd.P0.c0//Todd.P0.c00//

� ch.L0.kC r 00I�01; : : : ;�
0
r 0�1;�

0
r 0 � kı/�L0.kC r

0
I�001; : : : ;�

00
r 00�1;�

00
r 00 C kı//

�
:

The inductive hypothesis (22) may be cast in the form

(42)
Z
P0.c/

ch.L0.kI�//Todd.P0.c//D zNr;k
X
B2D

iBer
B
Œexph�; x=yki �wˆ.x=yk/1�2g �.�=yk� Œc�B/:
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Now let us fix k, and allow � to vary. We can extend this equality by linearity to arbitrary linear
combinations of Chern characters of line bundles of the formX

i

ch.L0.kI�i //D ch.L0.kI 0// �
X
i

ch.L0.0I�i //:

Since any polynomial on V up to a fixed degree may be represented as a linear combination of exponential
functions of the form exph�; x=yki, formula (42) may be generalized in the following way.

Lemma 6.12 Let G.x/ be a formal power series on V , and denote by G.z/ the characteristic class in
H�.P0.c// obtained by the identification of functions on V and cohomology classes of P0.c/, described
before the equation (39). Then we have

(43)
Z
P0.c/

ch.L0.kI 0//G.z/Todd.P0.c//D zNr;k
X
B2D

iBer
B
ŒG.x=yk/ �w

1�2g
ˆ .x=yk/�.�=yk� Œc�B/:

Finally, let D0 and D00 be Hamiltonian bases (see Section 4.5). Since

wˆ0.x=yk/wˆ00.x=yk/w
�
u .x=

yk/D wˆ.x=yk/ and �0.x=yk/�00.x=yk/��u .x=
yk/D �.x=yk/;

where wˆ0 ; wˆ00 and �0; �00 are naturally defined for the root systems ˆ0 and ˆ00 (see Section 4.5), the
integral (41) is equal to

zNr 0;kCr 00 zNr 00;kCr 0

�

X
B02D0

X
B002D00

iBer
B0

iBer
B00

Œwˆ.x=yk/
1�2ge�.x=

yk/�

� ..�01; : : : ; �
0
r 0�1; �

0
r 0 � kı/=

yk� Œc0�B0 C .�
00
1; : : : ; �

00
r 00�1; �

00
r 00 C kı/=

yk� Œc00�B00/:

Identifying u (see (39)) with the “link” element of the diagonal basis DD .˛�.r
0/;r D0D00/ (see Section 4.5),

and moving the factor ekıu from Proposition 6.11 inside the argument of iBer, we obtain the proof of the
following theorem for l D 0.

Theorem 6.13 Let c˙ 2� be in the neighboring chambers; then the wall-crossing term

�.P0.c
C/;L0.kI�//��.P0.c

�/;L0.kI�//

is equal to

.kC r/ zNr;k
X

B02D0

X
B002D00

Res
˛�.r

0/;rD0
iBer
B0

iBer
B00

Œwˆ.x=yk/
1�2g �.y�=yk� ŒcC�B/ d˛

�.r 0/;r ;

where D0 and D00 are the diagonal bases of ˆ0 and ˆ00 (see Section 4.5) correspondingly.

Remark 6.14 This wall-crossing term coincides with the one from Proposition 4.18.
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Example 6.15 It follows from Example 2.9 that in case of rank 3, the permutation � 2†3 sends .1; 2; 3/
to .1; 3; 2/. Then uD c1.F01˝F001

�
/ and let z D z001 � z

00
2 D c1.F

00
2=F001˝F001

�
/. Then the inverse of the

K-theoretical Euler class of the conormal bundle is (see Proposition 6.9)

ch.L/e9�=2ez=2
�
2 sinh

�
1
2
u
�
2 sinh

�
1
2
.z�u/

��1�2g
;

where LDL0.2I 0; 0/ is a line bundle on the moduli space P0 of rank-2 degree-0 stable parabolic bundles.
The Chern character of the restriction of the line bundle L0.kI�1; �2; �3/ to † is

e3k�=2 ch.Lk0/e
�1zC�2u:

Hence the wall-crossing term

�.P0.</;L0.k; �//��.P0.>/;L0.k; �//

is equal to

�
�
3
2
.kC 3/

�g Res
uD0

e�2u�
2 sinh

�
1
2
u
��2g�1 � Z

P0

ch
�
L0
�
kC 1I�1C

1
2
;��1�

1
2

���
2 sinh

�
1
2
.z�u/

��2g�1 Todd.P0/ du:

The integral is the Euler characteristics of a line bundle on a moduli space of degree-0 rank-2 stable
parabolic bundles, so we can calculate it using the induction by rank. It is equal to

.�1/g�1.2.kC 3//g Res
zD0

e.�1C1/z�
2 sinh

�
1
2
.z�u/

�
2 sinh

�
1
2
z
��2g�1

.1� e.kC3/z/
dz;

so the wall-crossing term is

.�3.kC 3/2/g Res
uD0

Res
zD0

e�1zC�2uCz

zw�.z; u/2g�1.1� e.kC3/z/
dz du;

where zw�.z; u/D 2 sinh
�
1
2
.z�u/

�
2 sinh

�
1
2
u
�
2 sinh

�
1
2
z
�
. Note that this is exactly the same polynomial

as in Example 4.15, after changing .z; u/ to .x;�y/.

7 Tautological Hecke correspondences

If l ¤ 0, then we need one more step in our proof, which uses the Hecke correspondence to calculate the
wall-crossing term (35).

7.1 The Hecke correspondence

Given a rank-r degree-d vector bundle W with a full flag 0¨ F1 ¨ � � �¨ Fr DWp at p, one can obtain
a rank-r degree-.d�1/ vector bundle W 0 with a full flag 0¨G1 ¨ � � �¨Gr DW 0p using the tautological
Hecke correspondence construction as follows.
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The evaluation map W !Wp induces the short exact sequence of the associated sheaves of sections

(44) 0!W0
z̨
�!W!Wp=Fr�1! 0

on curve C . Since W0 is a kernel of z̨, it is a locally free sheaf, thus gives a rank-r vector bundle W 0

over C with det.W 0/' det.W /˝ O.�p/. The image of the associated morphism of vector bundles ˛
at the point p is Fr�1 � Wp, so p̨ W W

0
p ! Wp has a one-dimensional kernel G1 � W 0p. Moreover,

compositions of p̨ with the quotient morphisms Fr�1!Fr�1=Fi induce a full flag of the corresponding
kernels G1 ¨ � � �¨Gr�1 ¨Gr DW 0p in W 0p.

Denote this operator between the sets of isomorphism classes of degree-d and d � 1 vector bundles with
a flag at p by

H W .W; F�/ 7! .W 0; G�/:

Similarly, for any m � 0, one can define the operator Hm between the sets of isomorphism classes of
degree-d and d �m vector bundles with a flag at the point p by iterating the above construction m times.
Clearly, these maps are independent of the parabolic weights.

Proposition 7.1 Let c 2 � be a regular (see page 2266) point. Then the operator H induces an
isomorphism between the moduli spaces Pd .c1; : : : ; cr/ and Pd�1.c2; : : : ; cr ; c1� 1/.

Proof First, we need to show that if W 2 Pd .c1; : : : ; cr/ is a parabolic stable bundle with parabolic
weights .c1; : : : ; cr/, then W 0, its image under the Hecke operator H, is parabolic stable with respect to
parabolic weights .c2; : : : ; cr ; c1�1/. For this, consider the subbundle V 0 �W 0 and let ˛.V 0/D V �W
(see (44)) be its image. Since W is parabolic stable,

par slope.V / < par slope.W /D par slope.W 0/:

We need to prove that par slope.V 0/ < par slope.W 0/. There are two possible cases:

� If ˛ maps V 0 to V isomorphically, then deg.V 0/D deg.V / and Vp � Fr�1, hence par slope.V 0/D
par slope.V / < par slope.W 0/.

� Otherwise, deg.V 0/D deg.V /�1, and Vp is not contained in Fr�1, so one of the parabolic weights
of V 0 is c1� 1. Then, as in the previous case, par slope.V 0/D par slope.V /, and the result follows.

To show that the map H is an isomorphism, note that Hr maps

(45) Pd .c1; c2; : : : ; cr/! Pd�r.c1� 1; c2� 1; ; : : : ; cr � 1/:

It is easy to check that given W and iterating the associated morphism of locally free sheaves of sections (44)
r times, we obtain a subsheaf W0 �W of sections of W which vanishes at the point p. So the map (45)
is just tensoring by O.�p/, and hence it is an isomorphism.
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Now we can define an operator Hm for any m 2 Z, taking the inverse map if necessary. We will need the
following statement, which follows from Proposition 7.1 and the construction of Hm.

Corollary 7.2 Let m � 0. Then under the isomorphism Hm the line bundle Ld .kI�1; : : : ; �r/ corre-
sponds to the line bundle Ld�m.kI�r�mC1; : : : ; �r ; �1� k; : : : ; �r�m� k/.

7.2 The effect of the Hecke correspondence on the integral

Recall that our goal is to calculate the wall-crossing term from Proposition 6.11. For simplicity, we
assume that l is positive (the other case is analogous). We apply the Hecke operators Hl and H�l to the
moduli spaces Pl.c0/ and P�l.c00/ to obtain

P 00 D P0.c
0
lC1; : : : ; c

0
r 0 ; c
0
1� 1; : : : ; c

0
l � 1/' Pl.c

0/;

P 000 D P0.c
00
r 00�lC1C 1; : : : ; c

00
r 00 C 1; c

00
1 ; : : : ; c

00
r 00�l/' P�l.c

00/:

Recall (see page 2270) that there is a natural action of the group †r on V �, and hence (see page 2291)
on H 2.Pl.c

0/�P�l.c
00//. Let � 0 2†r 0 and � 00 2†r 00 be the cyclic permutations defined by

� 0 � .c01� 1; : : : ; c
0
l � 1; c

0
lC1; : : : ; c

0
r 0/D .c

0
lC1; : : : ; c

0
r 0 ; c
0
1� 1; : : : ; c

0
l � 1/;

� 00 � .c001 ; : : : ; c
00
r 00�l ; c

00
r 00�lC1C 1; : : : ; c

00
r C 1/D .c

00
r 00�lC1C 1; : : : ; c

00
r 00 C 1; c

00
1 ; : : : ; c

00
r 00�l/:

Now set � D .� 0; � 00/ 2†r 0 �†r 00 �†r . Note that

� 0 �.�lCr 0; : : : ;�lCr 0;�l; : : : ;�l/D � 0 ��0��0 and � 00 �.l; : : : ; l; l�r 00; : : : ; l�r 00/D � 00 ��00��00;

so applying the Hecke operator Hl �H�l to the wall-crossing term from Proposition 6.11 and using
Corollary 7.2, we obtain that the wall-crossing term (35) is equal to

(46) K Res
uD0

e.kı�rl/u
Z
P 00�P

00
0

�
� �w�u .z

0;z00/1�2ge� ��
�
u .z
0;z00/

�ch
�
L0.kCr

00
I� 0�.�01�

yk; : : : ;�0l�
yk;�0lC1; : : : ;�

0
r 0�1;�

0
r 0�kıCrl//

�
�ch
�
L0.kCr

0
I� 00�.�001; : : : ;�

00
r 0�l ;�

00
r 00�lC1C

yk; : : : ;�00r 00C
ykCkı�rl//

�
e�
00��00.z0;z00/��00.z0;z00/e�

0��0.z0;z00/��0.z0;z00/Todd.P 00/Todd.P 000 /
�
du:

As in Section 6.3, according to Lemma 6.12, we can calculate this integral using the induction on rank. Let
D0 and D00 be two Hamiltonian diagonal bases. Then � 0.D0/ and � 00.D00/ are also Hamiltonian diagonal
bases (see Remark 3.5) and the integral in (46) is equal to

(47) .�1/lr zNr 0;kCr 00 zNr 00;kCr 0X
B02� 0.D0/

B002� 00.D00/

iBer
B0

iBer
B00

Œ� �w�u .x=
yk/1�2g.wˆ0.x=yk/wˆ00.x=yk//

1�2ge� ��.x=
yk/��

� 0 � .�01�
yk; : : : ; �0l �

yk; �0lC1; : : : ; �
0
r 0�1; �

0
r 0 � kıC rl/=

yk

� Œ� 0 � .c01� 1; : : : ; c
0
l � 1; c

0
lC1; : : : ; c

0
r 0/�B0

C � 00 � .�001; : : : ; �
00
r 0�l ; �

00
r 00�lC1C

yk; : : : ; �00r 00�1C
yk; �00r 00 C

ykC kı� rl/=yk

� Œ� 00 � .c001 ; : : : ; c
00
r 0�l ; c

00
r 00�lC1C 1; : : : ; c

00
r 00 C 1/�B00

�
:
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To arrive at Theorem 6.13, we need to make additional transformations of formula (47): first, we shift �0

and �00, and then we apply Lemma 4.5 to eliminate the cyclic permutation � .

Note that given an ordered basis B 2B and an element v 2 V � such that fvgB D 0, for any weight � 2ƒ
and positive integer k we have

(48) .�C ykv/=yk� ŒcC v�B D �=yk� Œc�B :

In particular, to perform the shift of �0 in (47), we use the following equality for any B 0 2 D0:

(49) .�01�
yk; : : : ; �0l �

yk; �0lC1; : : : ; �
0
r 0�1; �

0
r 0 � kıC rl/=

yk

� Œ.c01; : : : ; c
0
r 0�1; c

0
r 0 � l/� .1; : : : ; 1; 0; : : : 0;�l/�B0

D .�01; : : : ; �
0
r 0�1; �

0
r 0 � kıC rl � l

yk/=yk� Œ.c01; : : : ; c
0
r 0�1; c

0
r 0 � l/�B0 ;

which clearly remains true after changing D0 to � 0.D0/ and applying � 0 to both sides of the equation.
Similarly, shifting the last terms of (47) by � 00.0; : : : ; 0;�1; � � � � 1;�1C l/, we can rewrite (47) as

(50) .�1/lr zNr 0;kCr 00 zNr 00;kCr 0X
B02� 0.D0/

B002� 00.D00/

iBer
B0

iBer
B00

Œ� �w�u .x=
yk/1�2g.wˆ0.x=yk/wˆ00.x=yk//

1�2ge� ��.x=
yk/�

�
�
� 0 � .�01; : : : ; �

0
r 0�1; �

0
r 0 � kıC rl � l

yk/=yk� Œ� 0 � .c01; : : : ; c
0
r 0�1; c

0
r 0 � l/�B0

C � 00 � .�001; : : : ; �
00
r 00�1; �

00
r 00 C kı� rl C l

yk/=yk� Œ� 00 � .c001 ; : : : ; c
00
r 00�1; c

00
r 00 C l/�B00

�
:

Finally, identifying u (see (39)) with the “link” element of the diagonal basis

�.D/D .˛��.r
0/;�.r/� 0.D0/� 00.D00//

(see Section 4.5) and

� moving the factor e.kı�rl/u from (46) inside the argument of iBerB , where

B D .˛��.r
0/;�.r/B 0B 00/;

� applying (48) with B D .˛��.r
0/;�.r/B 0B 00/ and v D l˛��.r

0/;�.r/,

� applying Lemma 4.5, and

� using the fact that

��1 � .wˆ0.x=yk/wˆ00.x=yk//D .�1/
lrwˆ0.x=yk/wˆ00.x=yk/;

we obtain the formula of Theorem 6.13 for arbitrary l 2 Z.

8 Affine Weyl symmetry and the proof of Theorem 4.8(I)

In this section, we prove certain symmetry properties of our Hilbert polynomials on the left-hand side of
equation (1), and we finish the proof of Theorem 4.8(I). We start with the basic instance of symmetry of
Hilbert polynomials: relative Serre duality.
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8.1 Serre duality

Proposition 8.1 Let E!X be a rank-2 vector bundle over a smooth variety X , let � W Y D P .E/!X

be its projectivization and !X=Y the relative cotangent line bundle. Then

�.Y; ��L˝!mX=Y /D��.Y; �
�L˝!�mC1

X=Y
/

for any line bundle L 2 Pic.X/.

Proof By Serre duality for families of curves [10, Chapter III, Sections 7–8], for any integer n,

(51) �.Y; ��L˝O.n//D��.Y; ��.L˝ .^2E/nC1/˝O.�n� 2//:

Denote by �X=Y the sheaf of relative differentials on Y ; the short exact sequence

0!�X=Y ˝OX ! ��E.�1/! OX ! 0

implies that

!X=Y D^
2.��E.�1//D ��.^2E/˝O.�2/:

Then the statement follows from (51) by substituting nD�2m.

Now we can generalize this statement to the case of flag bundles.

Proposition 8.2 Let � W Y D Flag.E/!X be a rank-r flag bundle over X . Let L be a line bundle on X ,
and F1, F2=F1; : : : ;Fr=Fr�1 the standard flag line bundles on Y . For k 2Z and �D .�1; : : : ; �r/2ƒ,
write

L.kI�/D .��L/k˝ .Fr=Fr�1/
�1 ˝ .Fr�1=Fr�2/

�2 ˝ � � �˝F�r1 :

Consider the polynomial

q.kI�1; �2; : : : ; �r/D �.Y;L.kI�1; �2; : : : ; �r//

in .k; �/ 2 Z�ƒ, and extend this definition to R� V �. Then q.kI�� �/ is anti-invariant under the
permutations of �1; �2; : : : ; �r .

Proof For 1� k < r , let Flagyk.E/!X be the flag bundle over X obtained from Y by forgetting the
k–dimensional subspace. Then Y ' P .FkC1=Fk�1/! Flagyk.E/ is a P1–bundle over Flagyk.E/, and
thus applying Proposition 8.1 we obtain

�.Y;L.kI�1; : : : ; �r�k; �r�kC1; : : : ; �r//D��.Y;L.kI�1; : : : ; �r�kC1� 1; �r�kC 1; : : : ; �r//;

and the result follows.
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8.2 The Weyl antisymmetry of the functions q1 and q�1

Armed with this statement, we are ready to take on the symmetries of the Hilbert polynomial of our
parabolic moduli spaces. We note that the two sets �˙1 of weights for degree-˙1 stable parabolic
bundles are simplices with one of their vertices at .1=r; : : : ; 1=r/ and .�1=r; : : : ;�1=r/, correspondingly;
see Section 2.2.

Denote by N˙1 the moduli spaces of rank-r degree-˙1 stable vector bundles and by UN any universal
bundle over N˙1 �C ; see eg [3].

Lemma 8.3 Let c D .c1; : : : ; cr/ be a parabolic weight from the chamber in �1, which has as one of
its vertices the (regular) point .1=r; : : : ; 1=r/. Then the moduli space P1.c/ of rank-r degree-1 stable
parabolic bundles is isomorphic to the flag bundle Flag.UNp/ over N1. An analogous statement holds in
the case of degree �1 and the point .�1=r; : : : ;�1=r/ 2��1.

Proof A simple calculation shows that a point .c1; : : : ; cr/ 2 �1 such that all ci > 0 lies inside the
chamber in �1 with the vertex .1=r; : : : ; 1=r/. Hence it is enough to prove the first statement for the
moduli space P1.c1; : : : ; cr/ with positive parabolic weights.

Moreover, it is sufficient to show that if .W; F�/ is a parabolic stable vector bundle which represents
a point in P1.c1; : : : ; cr/, then W is stable as an ordinary bundle. Assume that W admits a proper
subbundle W 0 with slope.W 0/� slope.W /D 1=r , then deg.W 0/� 1. Since all parabolic weights of W
are positive, this implies that par slope.W 0/ > 0D par slope.W /, and therefore W is parabolic unstable.
The proof for degree-(�1) bundles is analogous.

Denote the moduli spaces described above by P1.>/ and P�1.</, correspondingly, and their images
under the Hecke isomorphisms H and H�1 by P0.>/ and P0.</.

The following statement is straightforward; see Lemma 2.8.

Lemma 8.4 The line bundles L1.r I 1; : : : ; 1/ and L�1.r I �1; : : : ;�1/ on P1.>/ and P�1.</ defined
in Lemma 2.6 may be obtained as pullbacks of the ample generators of the Picard groups Pic.N˙1/.

Example 8.5 In the case of rank-3 parabolic bundles the moduli spaceP1.c1; c2; c3/with 2c3>c1Cc2�1
is a flag bundle over N1 and it is isomorphic to the moduli space P0.>/ from Example 2.9, while the
moduli space P�1.c1; c2; c3/ with 2c1 < c2 C c3 C 1 is a flag bundle over N�1 and it is isomorphic
to P0.</.

Now we establish the Weyl antisymmetry of the polynomials

q�1.kI�1; : : : ; �r/D �.P0.</;L0.kI�1; : : : ; �r//;

q1.kI�1; : : : ; �r/D �.P0.>/;L0.kI�1; : : : ; �r//;

Geometry & Topology, Volume 28 (2024)



The parabolic Verlinde formula: iterated residues and wall-crossings 2301

defined on R�ƒ, as in Proposition 8.2. Let � 2†r be the cyclic permutation such that � � .c1; : : : ; cr/D
.c2; : : : ; cr ; c1/, and consider two points in V �:

�1Œk�D
kCr

r
� .1; 1; : : : ; 1/� .kC r/xr � �D � �

�
k

r
� k;

k

r
; : : : ;

k

r

�
� � � .�/

D

�
k

r
�
1
2
.r � 1/C 1;

k

r
�
1
2
.r � 1/C 2; : : : ;

k

r
�
1
2
.r � 1/C r � 1;�kC

k

r
�
1
2
.r � 1/

�
;

��1Œk�D�
kCr

r
� .1; 1; : : : ; 1/C .kC r/x1� �D �

�1
�

�
�
k

r
; : : : ;�

k

r
;�
k

r
C k

�
� ��1 � .�/

D

�
k�

k

r
C
1
2
.r � 1/;�

k

r
�
1
2
.r � 1/;�

k

r
�
1
2
.r � 1/C 1; : : : ;�

k

r
�
1
2
.r � 1/C r � 2

�
:

Proposition 8.6 The polynomials q1.kI�C �1Œk�/ and q�1.kI�C ��1Œk�/ are anti-invariant under the
action of the Weyl group by permutations of �1; : : : ; �r .

Proof Recall that the moduli space P0.>/ is isomorphic to the flag bundle P1.>/ over N1 under the
Hecke isomorphism H�1. Then using Corollary 7.2, Proposition 8.2 and Lemma 8.4, for any permutation
� 2†r we obtain

q1.kI � ��C �1Œk�/
def
D �

�
P0.>/;L0.kI � ��C �1Œk�/

�
D �

�
P1.>/;L1

�
kI ��1 � � ��C

�
k

r
; : : : ;

k

r

�
� �

��
D .�1/��

�
P1.>/;L1

�
kI ��1 ��C

�
k

r
; : : : ;

k

r

�
� �

��
D .�1/��

�
P0.>/;L0.kI�C �1Œk�/

�
def
D .�1/�q1.kI�C �1Œk�/;

where the second and fourth equalities hold by Corollary 7.2, and the third equality follows from
Proposition 8.2 and Lemma 8.4. The proof for q�1 is similar.

The two group actions in Proposition 8.6 may be combined in the following manner. For k � 0, we define
an action of the affine Weyl group †Ìƒ on ƒ�Z, which acts trivially on the second factor, the level,
and the action at level k is given by setting

�:�D � � .�C �/� � and :�D �C .kC r/ for � 2†;  2ƒ:

We denote the resulting group of affine-linear transformations of V � by z†Œk�, and note that the action is
defined in such a way that

(52) �:�C �D � � .�C �/ and .:�C �/=yk D  C .�C �/=yk:

It is easy to verify that the stabilizer subgroup

†Cr
def
D Stab.�1Œk�; z†Œk�/� z†Œk�
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is generated by the transpositions si;iC1 for 1� i � r � 2, and the reflection ˛r�1;r ı sr�1;r ; similarly,

†�r
def
D Stab.��1Œk�; z†Œk�/� z†Œk�

is generated by si;iC1 for 2� i � r � 1, and the reflection ˛1;2 ı s1;2.

Then Proposition 8.6 maybe recast in the following form: the polynomial q1.kI�/ is anti-invariant with
respect to the copy †Cr of the symmetric group †r , while q�1.kI�/ is anti-invariant with respect to the
copy †�r of the symmetric group †r .

The following statement is straightforward:

Lemma 8.7 Both subgroups †˙r are isomorphic to †r , and for r > 2, the two subgroups generate the
affine Weyl group z†Œk�.

8.3 The Weyl antisymmetry of the polynomials p1 and p�1

Following (22), we define the two polynomials

p˙1.kI�/D
X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�.y�=yk� Œ�˙1�B/;

where
�1 D

1

r
� .1; 1; : : : ; 1/� xr and ��1 D�

1

r
� .1; 1; : : : ; 1/C x1:

Proposition 8.8 The polynomial p1.kI�/ is anti-invariant with respect to †Cr , and p�1.kI�/ is anti-
invariant with respect to †�r .

Proof The points �˙1Œk� are the fixed points of the actions of†˙, and clearly limk!1 �˙1Œk�=kD �˙1.
This means that we can fix a small open ball D � V � centered at �1 such that

(53) �=k 2D D) .�:�C �/=yk � �1 for all � 2†C:

Then for �=k 2D we have

p1.kI�/D
X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�.fy�=ykgB/:

Now let us consider a generator of †C of the type � D si;iC1 for some 1 � i � r � 2. Using (52) and
Lemma 4.5, and the fact that � �wˆ D�wˆ, we obtain

p1.kI �:�/D
X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�.� �fy�=ykgB/D

X
B2D

iBer
B
Œ.�w�/

1�2g.x=yk/�.fy�=ykgB/D�p1.kI�/:

The case of the last generator ˛r�1;r ı sr�1;r is similar, but after the substitution we need to use the
equality f˛r�1;r Cy�=ykgB D fy�=ykgB to obtain p1.kI yk˛r�1;r C sr�1;r :�/D�p1.kI�/.
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8.4 Proof of Theorem 4.8(I)

Recall that in Lemma 4.1 we introduced a chamber structure on �� V � created by the walls S…;l , where
…D .…0;…00/ is a nontrivial partition, and l 2 Z. Before we proceed, we introduce some extra notation.
Denote by

{�D f.kI a/ j a=k 2�g �R>0 �V �

the cone over �� V �, and let

{�reg
D f.kI a/ j a=k 2� is regularg � {�

be the set of its regular points. Denote by {S…;l � {� the cone over the wall S…;l � �; then {�reg is
the complement of the union of walls {S…;l in {�. Finally, denote by {�reg

ƒ the intersection of the lattice
Z>0 �ƒ with {�reg.

By substituting c̨D �=k, we can consider the left-hand side and the right-hand side of formula (I) of
Theorem 4.8 as functions in .k; �/ 2 {�reg

ƒ . We denote by q.kI�/ and p.kI�/ the left-hand side and the
right-hand side, correspondingly.

We showed that q.kI�/ and p.kI�/ are polynomials on the cone over each chamber in�; see Theorem 4.4,
Section 2.4. We proved that the wall-crossing terms — ie the differences between polynomials on
neighboring chambers — for q.kI�/ (see Theorem 6.13) and for p.kI�/ (see Proposition 4.18) coincide,
hence there exists a polynomial ‚.kI�/ on Z>0 �ƒ such that the restriction of ‚.kI�/ to {�reg

ƒ is equal
to the difference p.kI�/� q.kI�/.

Now for r > 2, we can conclude that

‚.kI�/D p1.kI�/� q1.kI�/D p�1.kI�/� q�1.kI�/;

where p˙1.kI�/ and q˙1.kI�/ are the restrictions of p.kI�/ and q.kI�/ to two specific chambers
defined in Sections 8.3 and 8.2. Then, according to Propositions 8.6 and 8.8, the polynomial ‚.kI�/ is
anti-invariant with respect to the action of the subgroups †˙r , and hence by Lemma 8.7, it is anti-invariant
under the action of the entire affine Weyl group z†Œk�. It is easy to see that any such polynomial function
has to vanish, and thus p.kI�/D q.kI�/, and this completes the proof of part (I) of Theorem 4.8 for the
case when �=k 2� is regular.

As in Corollary 4.10, we can extend p.kI�/ from the interior of each chamber to its boundary by
polynomiality. Clearly, to prove part (I) of Theorem 4.8 for the cases when �=k is not regular, it is
sufficient to show that these extensions from the chambers containing �=k in their closure give the same
value on .kI�/. It follows from Remark 10.4 that this is the case, and this completes the proof of part (I)
of Theorem 4.8; see Remark 4.9.
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9 Rank 2, two points

Unfortunately, the argument above does not work for r D 2 because in this case, �1Œk� D ��1Œk�, the
groups †�r and †Cr coincide, and thus they do not generate the entire affine Weyl group. The way out is
to pass to the 2–punctured case.

9.1 Wall-crossing

We will thus fix two points p; s 2 C , and study the moduli space of rank-2, stable parabolic bundles W
with fixed determinant isomorphic to O.pd/, with parabolic structure given by a line F1 � Wp with
weight .c;�c/, and a line G1 �Ws with weight .a;�a/.

Now we need to repeat the analysis of our work so far in this somewhat simpler case; some details will
thus be omitted.

Set d D 0; then the space of admissible weights (see Figure 6) is a square

�D f.c; a/ j 1 > 2c > 0; 1 > 2a > 0g;

which has two adjacent chambers defined by the conditions

c > a and c < a:

Denote the corresponding moduli spaces by P0.c > a/ and P0.c < a/. Again, we have universal bundles
over P0.c > a/�C and P0.c < a/�C , which we will denote by the same symbol U ; this bundle is
endowed with two flags, F1 � F2 D Up and G1 � G2 D Us . For �; � 2 Z, we introduce the line bundle

L.kI�;�/D det.Up/k.1�g/˝ det.��.U //�k˝ .F2=F1/
�
˝ .F1/

��
˝ .G2=G1/

�
˝ .G1/

��:

We repeat the construction of the master space from Section 5.2, choosing a point .c0; c0/ on the wall
and two points

.c; a/˙ D .c0; c0/˙ �.1; 0/ 2�; where � 2Q>0;

from the adjacent chambers. We can identify the fixed-point set Z0 as follows.

P0.c < a/

P0.c > a/

.0; 0/
�
1
2
; 0
�

�
0; 1
2

� �
1
2
; 1
2

�

Figure 6: The space of admissible weights in the case of rank r D 2, two points.
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Lemma 9.1 The locus Z0 defined in Proposition 5.2 is

Z0 ' Jac0 ' fV D L˚L�1 j Lp D F1; L�1s DG1g:

As in Section 6.1, denote by J the universal bundle over Jac0 �C normalized in such a way that
c1.J/.0/ D 0; see (8). Define

� 2H 2.Jac/ by
�X

i

c1.J/.ei /˝ ei

�2
D�2�˝!:

We have then
R

Jac e
�m Dmg for m 2 Z.

Let � W Jac0 �C ! Jac0 be the projection and NZ0 the equivariant normal bundle to Z0 in Z. Then, as
in Lemma 6.6, Proposition 6.9 and Lemma 6.5, we obtain the identifications

� NZ0 DR
1
T��.ParHom.J;J�1//˚R1T��.ParHom.J�1;J//, where T 'C�–action has weights

.�1; 1/,

� E.NZ0/
�1 D .�1/g

�
2 sinh

�
1
2
u
���2g exp.4�/,

� chT .L.kI�;�/jZ0/D exp.2k�/ exp.u.���//.

Now we define the polynomials

h>.kI�;�/
def
D �.P0.c > a/;L.kI�;�// and h<.kI�;�/

def
D �.P0.c < a/;L.kI�;�//:

Applying Theorem 5.7, we obtain the following expression for their difference.

Lemma 9.2 The wall-crossing term equals

h>.kI�;�/� h<.kI�;�/D .�1/g.2kC 4/g Res
uD0

exp.u.���//�
2 sinh

�
1
2
u
��2g du:

9.2 Symmetry

Denote by P�1.c > a/ the image of the moduli space P0.c > a/ under the Hecke isomorphism H

(see Section 7) at the point p, and by P�1.c < a/ the image of the moduli space P0.c < a/ under the
Hecke isomorphism H at the point s.

We have the following analogue of Lemma 8.3.

Lemma 9.3 Denote by N�1 the moduli space of rank-2 degree-(�1) stable bundles on C , and by UN
any universal bundle over N�1 �C . Then the moduli spaces P�1.c > a/ and P�1.c < a/ are isomorphic
to the bundle P .UNp/�P .UNs/ over N�1.

Denote by TŒp� and TŒs� the vertical tangent lines of P .UNp/ and P .UNs/, respectively, and by L�1

the pullback of the ample generator of the Picard group of N�1 to P .UNp/�P .UNs/; see Lemma 8.4.
Then a simple calculation shows the following.
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P0.c < a/

P0.c > a/

.0; 0/ .2; 0/

.0; 2/ .2; 2/

�2Œ4�

�1Œ4�

Figure 7: The space of admissible weights in the case of k D 4, r D 2, two points.

Lemma 9.4 Under the Hecke isomorphism H at p, the line bundle L.2kI�;�/ on P0.c >a/ corresponds
to the line bundle Lk

�1˝TŒp���Ck˝TŒs�� on P�1.c > a/.

Under the Hecke isomorphism H at the point s, L.2kI�;�/ on P0.c < a/ corresponds to the line bundle
Lk
�1˝TŒp��˝TŒs���Ck on P�1.c < a/.

As in Section 8.2, applying Serre duality for families of curves (see Proposition 8.2) to the line bundles
on the two P1 �P1 bundles over N�1, we obtain that the polynomials h>.kI�;�/ and h<.kI�;�/ are
anti-invariant under the action of the Weyl group †2�†2 with the center at �1Œk�D

�
1
2
.kC 1/;�1

2

�
and

�2Œk� D
�
�
1
2
; 1
2
.kC 1/

�
, correspondingly; see Figure 7. In other words, we obtain the following four

identities.

Lemma 9.5 h>.kI�;�/D�h>.kI�;��� 1/D�h>.kI ��C kC 1; �/;

h<.kI�;�/D�h<.kI ��� 1; �/ D�h<.kI�;��C kC 1/:

Now define the polynomials

zh>.kI�;�/D .�1/
g�1.2kC 4/g Res

uD0

exp.u.�C�C 1//� exp.u.���//�
2 sinh

�
1
2
u
��2g

.1� eu.kC2//
du;

zh<.kI�;�/D .�1/
g�1.2kC 4/g Res

uD0

exp.u.�C�C 1//� exp.u.���C kC 2//�
2 sinh

�
1
2
u
��2g

.1� eu.kC2//
du;

and from here we can follow the logic of the proof of part (I) of Theorem 4.8.

Proposition 9.6 The polynomials introduced above , in fact , coincide:

h>.kI�;�/D zh>.kI�;�/ and h<.kI�;�/D zh<.kI�;�/:

Proof It is a simple exercise to show that zh>.kI�;�/ and zh<.kI�;�/ satisfy the identities appearing in
Lemmas 9.2 and 9.5, and hence the polynomial

‚.kI�;�/D h>.kI�;�/� zh>.kI�;�/D h<.kI�;�/� zh<.kI�;�/
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satisfies all four †2–symmetries listed in Lemma 9.5. These groups together generate a double action of
the affine Weyl group z† in � and � separately, and this implies the vanishing of ‚.

As P0.c >a/ is a P1–bundle over the moduli space of rank-2 degree-0 stable parabolic bundles P0.c;�c/,
substituting �D 0 in zh>, we obtain the Verlinde formula for rank 2.

Corollary 9.7 �.P0.c;�c/;L0.kI�//D .�1/
g�1.2kC4/g ResuD0

exp
�
u
�
�C1

2

���
2 sinh

�
1
2
u
��2g�1

.1�eu.kC2//
du:

10 The combinatorics of the ŒQ; R� D 0

In this section, we give a proof of the second part of Theorem 4.8. Let �=k 2�, and fix a regular element
c̨ 2� in a chamber containing �=k in its closure, and another regular element yc̨ 2� containing y�=yk in
its closure. Our goal is to prove the equality pc̨.kI�/D pyc̨.kI�/, where we define

(54) pc.kI�/D zNr;k
X
B2D

iBer
B
Œw
1�2g
ˆ .x=yk/�.y�=yk� Œc�B/

for a regular c 2� and diagonal basis D. This is a subtle statement, which is a combinatorial-geometric
projection of the idea of quantization commutes with reduction (or ŒQ;R�D 0 for short; see [17; 25]).

If �=k � y�=yk, ie when �=k and y�=yk are regular elements in the same chamber in �, then pc̨.kI�/D

pyc̨.kI�/ is a tautology. We assume thus that this is not the case, and denote by S.k; �/ the set of walls
separating c̨ and yc̨, or containing either �=k or y�=yk or both. Equivalently, the wall S…;l belongs to
S.k; �/ if

.�=k/…0 � l � .y�=yk/…0 or .�=k/…0 � l � .y�=yk/…0 ;

where c…0 D
P
i2…0 ci for an element c D .c1; : : : ; cr/ 2 V �. Clearly, there is a path in � connecting c̨

and yc̨, which intersects only walls from S.k; �/ in a generic points. Then to prove the equality pc̨.kI�/D

pyc̨.kI�/, it is enough to show the following, at first sight somewhat surprising, fact.

Proposition 10.1 Assume g � 1, �=k 2 �, S…;l 2 S.k; �/ and let c˙ 2 � be two points in two
neighboring chambers separated by the wall S…;l . Then

(55) pcC.kI�/D pc�.kI�/:

Proof The difference of the two sides of (55) is expressed as a residue in (34). The integral in (34)
is a rational expression in the variable t , and our plan is to show by degree count in t and t�1 that its
residues at zero and at1 vanish. We define the degree of the quotient of two polynomials RD P=Q of
the variable t as degt .R/D degt .P /� degt .Q/, and we set degt�1.R/D degt .R.t

�1//. Then, clearly,

degt .R/ < 0 D) Res
tD1

R
dt

t
D 0 and degt�1.R/ < 0 D) Res

tD0
R
dt

t
D 0:
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A convenient expression for (34) will be (46), where we change variables via t D eu. In what follows, we
will always tacitly assume this substitution, and we will write, for example, degt˙1.1=.e

u� e�u//D�1.
We thus obtain a formula of the form RestD0;1 f .t/ dt=t , and to show that this is zero, it is sufficient to
show that degt .f / < 0 and degt�1.f / < 0.

Now we observe that the variable u occurs only in the first line of (46), and thus, calculating the degrees
in t and t�1 separately, we obtain the formula

(56) degt˙1.f /D˙.kı� rl/C .1� 2g/ degt˙1.� �w
�
u /C degt˙1.exp.� � ��u //:

Recall that here, ı represents the distance of �=k from the wall S…;l , while w�u and ��u , represent the
parts of the Weyl denominator and the �–shift corresponding to roots connecting …0 and …00, respectively.

We begin the study of this expression with some simple remarks. We recall that the permutation �
preserves the partition …D .…0;…00/, and thus we have

degt˙1.� �w
�
u /D degt˙1.w

�
u /D

1
2
r 0r 00:

Using, in addition, that ��u is linear in u, we obtain

degt .exp.� � ��u //D�degt�1.exp.� � ��u //D degt .exp.��u //:

Combining these equalities, and assuming g � 1, we arrive at the following conclusion.

Lemma 10.2 The inequality

(57) j.kı� rl/C degt .exp.��u //j<
1
2
r 0r 00

implies the vanishing of the wall-crossing term: equality (55).

Before we proceed, we introduce some notation. Denote by

Inv.…/D f.i; j / j…0 3 i > j 2…00g

the set of “inverted” pairs of elements of the partition …. The number of these pairs jInv.…/j coincides
with the standard notion of length of the shuffle permutation � 2†r introduced in Section 6.

Each pair .i; j / which is not inverted contributes C1
2
u to ��u , while each inverted pair contributes �1

2
u,

and thus we have

(58) degt .exp.��u //D
1
2
r 0r 00� jInv.…/j:

Also, recall the notation c…0 D
P
i2…0 ci for an element c D .c1; : : : ; cr/ 2 V �; in particular, we have

.�=k/…0 D l C ı and
�…0 D

X
i2…0

1
2
.r C 1/� i:

The following is a simple exercise, whose proof will be omitted:

(59) degt .exp.��u //D �…0 :
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Now we come to a key point of our argument.

Lemma 10.3 If the intersection of the wall S…;l with � is nonempty, then

(60) �
1
2
r 0r 00 < lr � �…0 <

1
2
r 0r 00:

Proof Pick a point c D .c1; : : : ; cr/ in the intersection S…;l \�, and recall that for any 1� i < j � r ,
we have 0 < ci � cj < 1, and X

i2…0

ci D�
X
i2…00

ci D l:

Then
�jInv.…/j<

X
.i;j /2Inv.…/

.ci � cj /�
X
i2…0

X
j2…00

.ci � cj /;

and, similarly, X
i2…0

X
j2…00

.ci � cj / < r
0r 00� jInv.…/j:

Now, since X
i2…0

X
j2…00

.ci � cj /D r
00
X
i2…0

ci � r
0
X
j2…00

cj D lr;

we can conclude
�jInv.…/j< lr < r 0r 00� jInv.…/j:

In view of (58) and (59), these inequalities are equivalent to (60), and this completes the proof.

Now we are ready to prove (55). The condition S…;l 2 S.k; �/, ie that S…;l separates �=k and y�=yk or
contains �=k or y�=yk, may occur in two ways.

� .�=k/…0 � l � .y�=yk/…0 , which is equivalent to the two inequalities ı � 0 and lkC lr � �…0C�…0 .
After canceling lk and reordering the terms, we can rewrite these as

(61) 0� kı� lr C �…0 � �…0 � lr:

Using Lemma 10.3 then we can conclude that

0� kı� lr C �…0 > �
1
2
r 0r 00;

which, in view of the equality (59), implies the necessary estimate (57).

� The second case is similar: .�=k/…0 � l � .y�=yk/…0 is equivalent to ı� 0 and lkC lr � �…0C�…0 .
This leads to

(62) 0� kı� lr C �…0 � �…0 � lr;

which, in turn, implies
0� kı� lr C �…0 <

1
2
r 0r 00;

and hence (57).
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This completes the proof of Proposition 10.1: indeed, a simple calculation shows that if �=k 2� then
y�=yk 2�; so the conditions of Lemma 10.3 hold. We have just shown that this implies (57), and according
to Lemma 10.2, we can conclude the vanishing of the wall-crossing term (55).

Remark 10.4 If �=k 2 � is nonregular, then it belongs to some wall from the set S.k; �/. Hence
Proposition 10.1 implies that the right-hand side of formula (I) of Theorem 4.8 is a well-defined function
on the cone over �:

f.k; �/ 2 Z>0 �ƒ j �=k 2�g:
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The signature and cusp geometry of hyperbolic knots
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We introduce a new real-valued invariant, called the natural slope of a hyperbolic knot in the 3–sphere,
which is defined in terms of its cusp geometry. We show that twice the knot signature and the natural
slope differ by at most a constant times the hyperbolic volume divided by the cube of the injectivity
radius. This inequality was discovered using machine learning to detect relationships between various
knot invariants. It has applications to Dehn surgery and to 4–ball genus. We also show a refined version
of the inequality, where the upper bound is a linear function of the volume, and the slope is corrected by
terms corresponding to short geodesics that link the knot an odd number of times.

57K10, 57K31, 57K32, 68T07

1 Introduction

In low-dimensional topology, there are two very different types of invariant: those derived from hyperbolic
structures on 3–manifolds, and those with connections to 4–dimensional manifolds. Of the latter type, one
of the most fundamental invariants is the signature of a knot. Our main goal in this paper is to establish
a new and unexpected connection between these two fields. We will show that the cusp geometry of a
hyperbolic knot in the 3–sphere encodes information about the signature of the knot.

One of the most important geometric features of a hyperbolic knot K is its maximal cusp. The boundary
of this cusp is a Euclidean torus that forms the boundary of a regular neighbourhood of K. This torus is
isometric to C=ƒ for a lattice ƒ in C. The meridian and longitude of the knot give generators � and �
for ƒ. The parallelogram in C spanned by 0, �, � and �C� forms a fundamental domain for the action
of ƒ on C. We introduce a new geometric quantity, called the natural slope, that measures how far this
parallelogram is from being right-angled. It can be defined by the formula

slope.K/D Re
�
�

�

�
:

Alternatively, natural slope can be defined as follows. Pick a geodesic on the torus C=ƒ that represents a
meridian. Choose any point on such a geodesic and send off a geodesic orthogonally from this point. It
runs along the knot and eventually it comes back to the initial meridian; see Figure 1. In doing so, it has
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�?

�

Figure 1: A geodesic running in the direction �? that is perpendicular to the meridian �. By
the time it returns to the meridian, it has travelled one longitude minus some multiple s of the
meridian. This real number s is the natural slope of K.

gone along a longitude minus some number s of meridians. This number s is not necessarily an integer
because the geodesic may return to a different point along the meridian from where it started. This real
number s is the natural slope of K.

Quantities with a resemblance to the natural slope have been defined by [Benard et al. 2021; Degtyarev
et al. 2022]. However, these other quantities do not seem to be directly related to natural slope, and none
of these previous articles seems to provide a connection between hyperbolic geometry and signature.

Experimentally, starting from the plot in Figure 2, we have observed that the natural slope of K is very
highly correlated with 2�.K/, where �.K/ is the signature. See Figure 3 for plots of signature versus
slope for knots up to 16 crossings in the Regina census [Burton et al. 1999–2021] and for random knots
generated by SnapPy [Culler et al. 2021] having 10–80 crossings in their SnapPy-simplified forms. Our
goal in this paper is to prove that such a surprising connection holds and to explore its consequences. Our
first main result, which we prove in Section 4, establishes that slope.K/ is approximately equal to 2�.K/,
but with an additive error that can be bounded by geometric quantities.

Theorem 1.1 There exists a constant c1 such that , for any hyperbolic knot K,

j2�.K/� slope.K/j � c1 vol.K/ inj.K/�3:
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Figure 2: A plot of signature versus the real part of the meridional translation, Re.�/, coloured
by longitudinal translation, for a dataset of knots randomly generated by SnapPy.
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Figure 3: A plot of signature versus slope for knots up to 16 crossings in the Regina census
(left) and for a dataset of knots randomly generated by SnapPy having 10–80 crossings in their
SnapPy-simplified form (right).

Here vol.K/ is the hyperbolic volume of the complement of K. Also, inj.K/ is the injectivity radius
of S3 nK, which we define to be

inj.K/D inffinjx.S
3
nK/ W x 2 .S3

nK/ nN g;

where N is a maximal cusp and injx.S
3 nK/ denotes the injectivity radius of a point x in S3 nK. Note

that, although inj.K/�3 appears in the inequality in Theorem 1.1, in practice inj.K/ tends not to be
particularly small. (See Figure 12, for example.) Experimental evidence, which we provide in Section 7,
suggests that c1 should be quite small: perhaps c1 D 0:3 suffices. This is based on the largest value 0:234

of j2�.K/� slope.K/j inj.K/3=vol.K/ that we managed to obtain by studying a class of knots that are
closures of certain braids.

One might wonder whether there is a constant c2 such that

j2�.K/� slope.K/j � c2 vol.K/

for every hyperbolic knot K. However, we show in Corollary 5.1 that there cannot exist such a constant.
We achieve this by exhibiting a sequence of examples that are obtained by twisting three strands of a
hyperbolic knot. Nevertheless, we can estimate �.K/ in terms of geometric quantities, with an error that
is at most a linear function of vol.K/. The main term in this estimate is 1

2
slope.K/, but there are also

correction terms that are defined using the complex length of short geodesics. From the complex lengths,
the following parameters are computed:

Definition 1.2 Let  be a geodesic in a hyperbolic 3–manifold with complex length cl. /. Here cl. / is
chosen so that Im.cl. // 2 .��; ��. The twisting parameter tw. /D .twp. /; twq. // is the pair .p; q/
of coprime integers satisfying the following:

Geometry & Topology, Volume 28 (2024)
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Figure 4: The stevedore knot 61 (left), which is a slice knot, and its cusp torus (right), as provided
by SnapPy [Culler et al. 2021]. The longitude is 3:9279 and the meridian is 0:7237C1:0160i . Its
natural slope is 1:8267 and its signature is 0.

(1) p is even and q is odd and nonnegative.

(2) Subject to this condition, the quantity jcl. /pC 2� iqj is minimised.

(3) If there are several values of .p; q/ for which this quantity is minimised, then choose the pair that
is minimal with respect to lexicographical ordering.

Consider a hyperbolic knot K in S3. For any " 2RC less than the Margulis constant "3, let OddGeo
�

1
2
"
�

denote the set of geodesics with length less than 1
2
" and having odd linking number with K. For p; q 2ZC,

the signature correction term �.p; q/ is given by Definition 4.2 and satisfies

�.p; q/D��.T .p; q//� 1
2
pq;

where T .p; q/ is the .p; q/–torus knot. Then we have the following refinement of Theorem 1.1, which
we prove in Section 6, that does not depend on the injectivity radius:

Theorem 1.3 Let "3 be the Margulis constant and let " 2 .0; "3/. Then there is a constant c4 (depending
on ") such that , for any hyperbolic knot K, the quantities �.K/ and

1
2

slope.K/�
X

2OddGeo."=2/

�.twp. /; twq. //

differ by at most c4 vol.K/.

Figures 4 and 5 illustrate the relationship between signature and slope in Theorem 1.1 for the knots 61

and 12a52, respectively.

Theorem 1.1 has applications in low-dimensional topology. On the one hand, the signature of K controls
the cusp shape, which in turn has consequences for the possible exceptional surgeries on K. On the other
hand, the cusp shape controls the signature, which has consequence for the 4–ball genus of K. We now
provide these applications.

Geometry & Topology, Volume 28 (2024)
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Figure 5: The knot 12a52 (left) and its cusp torus (right). The longitude is 27:7228 and the
meridian is �1:2838C 0:5145i . Its natural slope is �18:6064 and its signature is �8. Note how
far the parallelogram is from being right-angled; this is the defining feature of having very positive
or very negative slope.

1.1 An application to Dehn surgery

Cusp geometry is well known to control the exceptional surgeries on a knot K. Recall that a slope s

on @N.K/ is said to be exceptional if the manifold K.s/ obtained by Dehn filling along s does not admit
a hyperbolic structure.

The length of a slope s D q=p 2 Q, denoted by `.s/, is defined to be the length of any geodesic
representative of s D p�C q� in the boundary of the maximal cusp. A theorem of Agol [2000] and
Lackenby [2000] states that, if `.s/ > 6, then s is not exceptional.

We relate slope length to natural slope, using the following simple geometric lemma, which we will prove
in Section 2:

Lemma 1.4 If K is a hyperbolic knot , then the length of the slope q=p satisfies

`
�

q

p

�
� jp slope.K/C qj:

Hence , if q=p is exceptional , then

q

p
2

h
�slope.K/� 6

p
;�slope.K/C 6

p

i
:

Given that slope.K/ and 2�.K/ are highly correlated, one would expect that any exceptional slope q=p

should lie within a short interval around �2�.K/. It is also known that jpj � 8, by a theorem of Lackenby
and Meyerhoff [2013]. Hence, we obtain a bounded set of slopes that contains all the exceptional ones,
and that is defined in terms of the signature.

An interesting case is the .�2; 3; 7/–pretzel knot 12n242. This has signature �8 and slope approximately
�18:215. It has seven exceptional slopes: 16, 17, 18, 37

2
, 19 and 20. Observe that these slopes are

Geometry & Topology, Volume 28 (2024)
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concentrated in a short interval Œ16; 20� that contains both �slope.K/ and �2�.K/. This close correlation
between the exceptional slopes and �2�.K/ seems to be a phenomenon that had not previously been
observed. Specifically, we have the following consequence of our main theorem:

Corollary 1.5 If K is a hyperbolic knot and q=p is a slope satisfyingˇ̌̌
q

p
C 2�.K/

ˇ̌̌
>

6

jpj
C c1 vol.K/ inj.K/�3 or jpj> 8;

then the manifold K.q=p/ obtained by q=p Dehn surgery along K is hyperbolic.

Theorem 1.3 gives a similar bound on slopes resulting in hyperbolic surgeries that does not involve inj.K/.

1.2 An application to 4–ball genus

One of the most important 4–dimensional quantities associated to a knot K is its 4–ball genus g4.K/.
This is defined to be the minimal possible genus of a smoothly embedded compact orientable surface in
the 4–ball B4 with boundary K. One can also define the topological 4–ball genus g

top
4
.K/ by considering

locally flat topologically embedded compact orientable surfaces with boundary K. The inequality
g4.K/� g

top
4
.K/ is immediate.

The following result provides a lower bound on g
top
4
.K/ in terms of purely hyperbolic data. This follows

immediately from our main theorem together with the well-known inequality g
top
4
.K/� 1

2
j�.K/j.

Corollary 1.6 The topological 4–ball genus g
top
4
.K/ of a hyperbolic knot K satisfies

g
top
4
.K/� 1

4
jslope.K/j � 1

4
c1 vol.K/ inj.K/�3:

This corollary seems to be the first time that information about the 4–ball genus has been obtained in
terms of hyperbolic geometry. Again, Theorem 1.3 gives a similar lower bound on g

top
4
.K/ that does not

involve inj.K/.

1.3 Spanning surfaces

Theorem 1.1 is proved using a new construction of spanning surfaces with a specified slope. It is of
independent interest.

Theorem 1.7 There is a constant c3 such that every hyperbolic knot K in S3 has an unoriented spanning
surface F satisfying

j�.F /j � c3 vol.K/ inj.K/�3:

Moreover , the boundary slope of this surface is n=1, where n is an even integer that is closest to slope.K/.

We prove this in Section 3. The crosscap number of a knot K is the minimum of b1.F / for F an
unoriented spanning surface of K. When K is hyperbolic, the above theorem gives an upper bound on a
version of the crosscap number where @F has slope n=1.
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Theorem 1.1 is proved by combining this result with a theorem of Gordon and Litherland [1978],
which asserts that one can compute the signature of a knot K using any spanning surface F for K; see
Theorem 4.1.

Note that slope also gives a lower bound on the Seifert genus:

1

4�
jslope.K/jC 1

2
� g.K/I

see Proposition 2.5.

1.4 Highly twisted knots

In Section 5, we show the following result for highly twisted knots:

Theorem 1.8 Let K be a knot in the 3–sphere and let C1; : : : ;Cn be a collection of disjoint simple
closed curves in the complement of K that bound disjoint discs. Suppose that S3 n .K[C1[ � � �[Cn/ is
hyperbolic. Let K.q1; : : : ; qn/ be the knot obtained from K by adding qi full twists to the strings going
through Ci for each i 2 f1; : : : ; ng. Let `i be the linking number between Ci and K, when they are both
given some orientation. Suppose that `1; : : : ; `m are even and `mC1; : : : ; `n are odd. Then there is a
constant k, depending on K and C1; : : : ;Cn, such that , provided each jqi j is sufficiently large ,ˇ̌̌̌
slope.K.q1; : : : ; qn//C

nX
iD1

`2
i qi

ˇ̌̌̌
� k;

ˇ̌̌̌
�.K.q1; : : : ; qn//C

�
1

2

mX
iD1

`2
i qiC

1

2

nX
iDmC1

.`2
i �1/qi

�ˇ̌̌̌
� k:

The slight difference between the behaviour of �.K.q1; : : : ; qn// and that of 1
2

slope.K.q1; : : : ; qn// as
the qi tend to infinity enables us to construct families of knots that show the injectivity radius cannot be
dropped from Theorem 1.1.

1.5 Methodology

One of the novel aspects of this work was the use of machine learning. We embarked with the aim of
discovering new relationships between various 3–dimensional invariants. By using machine learning, we
observed an unexpected nonlinear relationship between �.K/ and Re.�/, the real part of the meridional
translation �. This led us to define the natural slope, which we observed to have a strong linear correlation
with �.K/. Theorems 1.1 and 1.3 are the results of our attempts to prove this correlation.

2 Hyperbolic knots and natural slope

A knot K is hyperbolic if its complement S3 nK admits a complete finite-volume hyperbolic metric.
By the Mostow rigidity theorem [1968], the hyperbolic structure is unique up to isometry; hence, every
geometric invariant of the hyperbolic structure on S3 nK is a topological invariant of the knot. For
example, the volume vol.K/ WD vol.S3 nK/ and the injectivity radius inj.K/ defined in the introduction
are such invariants.
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For a pair of coprime integers .p; q/, the torus knot T .p; q/ is one that can be drawn on the surface of
the standard torus in the 3–sphere and winds p times in the longitude direction and q times along the
meridian. Given a knot K in S3 and a knot K0 in the solid torus S1�D2, one can form the satellite of K

with pattern K0 by mapping the solid torus in a neighbourhood of K, and considering the image of K0. By
the work of Thurston [Morgan 1984], a knot is hyperbolic if and only if it is not a torus knot or a satellite
knot. In particular, every hyperbolic knot is prime, ie not the connected sum of two nontrivial knots. In
other words, one can build all knots from hyperbolic knots and torus knots using satellite operations.

Definition 2.1 For any hyperbolic knot K, the end of S3 nK has a neighbourhood called a cusp. The
boundary @N of a maximal cusp neighbourhood N �S3nK is a Euclidean torus. Identify @N with C=ƒ,
where C is the complex plane and ƒ is a lattice in C. We arrange this identification so that the longitude
lifts to a straight line in C starting at 0 and ending at some � 2 R>0. This is the knot’s longitudinal
translation. Given this normalisation, the meridian lifts to a straight line starting at 0 and ending at some
complex number � with Im.�/ > 0. This is the meridional translation of K.

We remark that the real part of meridional translation Re.�/ in the KnotInfo data set [Livingston and
Moore 2021] for knots with at most 12 crossings is listed without signs. However, SnapPy [Culler et al.
2021] does compute the sign for hyperbolic knots.

Note that j�j � 6, where j�j denotes the length of the meridian. Indeed, by work of Agol [2000] and
Lackenby [2000], Dehn filling along a slope longer than 6 gives a hyperbolic 3–manifold, while Dehn
filling along the meridian is S3, which is not hyperbolic. Furthermore, any curve on the cusp torus @N
has length at least 1. In particular, j�j � 1.

If S is an essential surface with connected boundary in a hyperbolic 3–manifold, then `.@S/��2��.S/;
see Cooper and Lackenby [1998, Theorem 5.1] or Hass, Rubinstein and Wang [Hass et al. 1999, (6)]. If
S is a Seifert surface for a knot K, then �.S/D 1� 2g.S/. Hence, if K is hyperbolic, then

.2.2/ j�j � 4�g.K/� 2�;

where g.K/ is the Seifert genus of K.

For the maximal cusp neighbourhood N, we have

vol.@N /D 2 vol.N /� 2 vol.K/;

and vol.@N /�j�jj�j. On the other hand, by a result of Lackenby and Purcell [2016], there is a constant C

such that, for K alternating,
C vol.K/� vol.@N /:

Based on experimental data, one might ask if this also holds for random knots.

Definition 2.3 The natural slope slope.K/ of a hyperbolic knot K is defined as follows. Let �? be a
unit vector at the origin of C orthogonal to �. Then some multiple of �? is equal to �� s� for some
s 2R. Then slope.K/ WD s.
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�
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�?

�� s�

�

multiply by 1=�
0 1

�=�

Re.�=�/

Figure 6: The calculation of natural slope.

Lemma 2.4 slope.K/D Re
�
�

�

�
D
�Re.�/
j�j2

.

Proof Figure 6 shows a lift of the cusp torus to the complex plane C. The point � � s� is shown
(which is a multiple of �?/. If we apply the transformation to C that is multiplication by 1=�, then �?

becomes purely imaginary. So �=�� s is purely imaginary. Hence, s D Re.�=�/. This is also equal to
�Re.�/=j�j2.

We are now ready to prove Lemma 1.4 from the introduction:

Proof of Lemma 1.4 We have `.q=p/D jp�C q�j. Since � 2R,

`
�

q

p

�2
D p2�2

C 2pq�Re.�/C q2
j�j2:

On the other hand, by Lemma 2.4, we have slope.K/D �Re.�/=j�j2. Hence,

jp slope.K/C qj2 D p2�2 Re.�/2

j�j4
C 2pq�

Re.�/
j�j2

C q2
� `

�
q

p

�2

since j�j � 1.

Slope gives a lower bound on the Seifert genus:

Proposition 2.5 If K is a hyperbolic knot in S3, then

1

4�
jslope.K/jC 1

2
� g.K/:

Proof By (2.2), we have j�j � 4�g.K/� 2� . Furthermore, j�j � 1. Together with Lemma 2.4, we
obtain that

jslope.K/j D j�j
jRe.�/j
j�j2

�
j�j

j�j
� 4�g.K/� 2�;

and the result follows.
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3 Proof of Theorem 1.7

The key to proving Theorem 1.7 is the construction of a nice triangulation of a hyperbolic knot complement:

Proposition 3.1 There is a constant c1 such that , for every hyperbolic knot K in S3 with embedded cusp
neighbourhood N, there is a triangulation T of M WD S3 n .K[ int.N // with the following properties:

(1) The number t of tetrahedra of T is at most c1 vol.K/ inj.K/�3.

(2) If n is a closest even integer to slope.K/, then � WD �� n� (see Definition 2.3) is a normal curve
in @M that intersects each edge at most once.

Proof We remark that the validity of the conclusion in the proposition does not depend on the choice
of embedded cusp neighbourhood N. We will pick N as follows. Let Nmax be the maximal cusp
neighbourhood. Retract this to form the embedded cusp neighbourhood N, so each point of @N has
distance 0:5 from @Nmax. Note that the Euclidean metric on @N is obtained from that of @Nmax by scaling
by the factor e�0:5 D 1=

p
e.

Let " WD 1
2

inj.K/. We use a variation of Jørgensen’s and Thurston’s method [Thurston 1979, Section 5.11]
to build the triangulation T. (See also [Breslin 2009; Kobayashi and Rieck 2011].)

We pick a maximal collection of points in @M that are all at least 1
8
" from each other. We will extend

this to a collection of points P in M without adding any new points in @M. Our aim is to ensure that
the Voronoi diagram for P in M restricts to the Voronoi diagram for P \ @M in @M, where the latter
is given its Euclidean metric. Recall that the Voronoi diagram [1908a; 1908b] corresponding to P is a
cell structure of M where the interior of every 3–cell consists of the set of points in M that are closer
to a specific point of P than any other point of P. Similarly, the Voronoi diagram for P \ @M is a cell
structure of M where the interior of every 2–cell consists of the set of points in @M that are closer (in
the Euclidean metric) to a specific point of P \ @M than any other point of P \ @M.

The Voronoi diagram for M can be constructed as follows. The universal cover H3! S3 nK restricts to
the universal cover �M!M. This set �M is obtained from H3 by removing the interior of the inverse image
of N. We may arrange that one component of this inverse image is a horoball N1D f.x;y; z/ W z � kg in
the upper half-space model for H3 for some k > 0. Let zP denote the inverse image of P in �M. Each cell
of the Voronoi diagram for M is the image of a cell for the Voronoi diagram for zP in �M. Each 2–cell
that does not lie in @ �M is equidistant from two points of zP . Hence, it is totally geodesic. Our aim is
to ensure that each such 2–cell that intersects the horosphere @N1 is equidistant between two points
of zP \ @N1. This will imply that the 2–cell intersects @N1 in a Euclidean geodesic arc. The union of
these arcs forms the 1–skeleton of the Voronoi diagram for zP \ @N1 in @N1. Thus, we can deduce that
the Voronoi diagram for P in M restricts to the Voronoi diagram for P \ @M in @M.

We now describe how the set P is chosen. We have already picked a maximal collection of points in @M
that are all at least 1

8
" from each other. This set will be P \ @M. We then add points to this set that lie in
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the interior of M, but subject to the condition that each of these points in the interior of M has distance at
least 1

4
" from the other points in the set. We stop when it is no longer possible to add any further points

with this property. Let P be the resulting set of points.

By our choice of P, each point in @M has distance less than 1
8
" from some point of P \ @M. It also has

distance at least 1
8
" from each point of P \ int.M /. Thus, for each point of @M, each of its closest points

in P also lies in @M.

Now consider a 2–cell of the Voronoi diagram for �M that intersects @N1 but does not lie in @N1. This
is equidistant between two points p1 and p2 of zP. The intersection between this 2–cell and @N1 is an
arc. Let x be any point in the interior of this arc. Then x is equidistant between p1 and p2, and these are
the closest two points of zP to x. As argued above, any point of zP that is closest to x must lie in @ �M. We
will show that, in fact, p1 and p2 lie in @N1. Suppose not. Then one of these points lies in @ �M n @N1.
The shortest arc from x to @ �M n @N1 must run through the inverse image of @Nmax. One component of
this inverse image is a horosphere about the point at infinity, with distance 0:5 from @N1. Hence, the
length of this arc is at least 0:5. On the other hand, each point in @ �M has distance less than 1

8
" from

some point of P \ @ �M. We will show below that 1
8
" < 0:12< 0:5, and hence this is a contradiction.

Thus, we have indeed guaranteed that the restriction to @M of the Voronoi diagram for P in M is the
Voronoi diagram for P \ @M in @M, as claimed. We now subdivide each 2–cell of the Voronoi diagram
for M into triangles without introducing any new vertices, and subdivide each 3–cell into tetrahedra by
coning off from the point of P lying in it, obtaining the triangulation T of M. Since the restriction of the
Voronoi diagram to @M agrees with that arising from its Euclidean metric, this implies that each triangle
of T in @M is straight.

Since the open balls of radius 1
16
" about the points of P are pairwise disjoint,

jP j vol
�
B
�

1
16
"
��
� vol.S3

nK/;

where B
�

1
16
"
�

is a ball in H3 of radius 1
16
".

We claim that the number tp of tetrahedra of T incident to a point p 2P is at most a universal constant k.
Indeed, when p lies in the interior of M, tp is exactly the number of triangles in the boundary 2–sphere S

of the 3–cell of the Voronoi diagram containing p. When p lies in the boundary of M, tp is the number
of triangles in this sphere that are not incident to p. When a vertex of one of these triangles lies in the
interior of M, it is equidistant from at least four points of P, one of which is p. When a vertex of the
triangles lies on the boundary of M, it is equidistant from at least three points of P, one of which is p. So
a vertex in S is specified by choosing two or three other points of P, each of which is at most 1

2
" from p.

The ball B
�
p; 1

2
"
�

is embedded in S3 nK, since 1
2
"D 1

4
inj.K/, and hence lifts to a ball B in H3. The

balls of radius 1
16
" about the inverse image of P in B are disjoint, and lie within B

�
9

16
"
�
. So the number
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v2

�

b

v1 �

�

h

v3

v4

Figure 7: A fundamental domain D in @Nmax with sides � and �.

of points of P at most 1
2
" from p is bounded above by

k0 WD

�
vol
�
B
�

9
16
"
��

vol
�
B
�

1
16
"
���:

It follows that tp � k WD
�
k0

3

�
. Then the total number of tetrahedra

t � kjP j �
k vol.K/

vol
�
B
�

1
16
"
�� � c1 vol.K/ inj.K/�3

for a universal constant c1.

We may pick the Euclidean geodesic representative for the slope � so that it misses the vertices of T.
Hence, � is a normal curve, because it is a Euclidean geodesic and each triangle of T in @M is straight.
We now show � does not intersect any triangle in @M more than once. Let D be a fundamental domain
in @Nmax with sides � and �. (See Figure 7.) We will show that the perpendicular distance h between the
sides of D that are parallel to � is at least 0.55. Hence, the perpendicular distance between sides of the
corresponding fundamental domain in @N1 is at least 0:55=

p
e > 0:33. On the other hand, we will show

that the length of each edge of T in @M is at most 0:23. This will imply that, in the triangulation of @M,
no triangle can run in D between these opposite sides, and hence that T satisfies property (2). This will
complete the proof.

According to a theorem of Cao and Meyerhoff [2001], the area A of the boundary of the maximal cusp is
at least 3:35. Let � be the angle of two of the four corners of D satisfying 0 < � � 1

2
� . Say that this

angle is at the vertex v1 of D, and label the remaining vertices v2, v3 and v4 so that the line joining v1

to v2 has slope �.

Let b be the perpendicular projection of v4 onto the line joining v1 and v2. We claim that b lies between
v1 and v2, or possibly equals one of these vertices. Place v1 at the origin in the complex plane. Then
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v2 D ˙� and v4 D �� n�. Now, by the definition of s D slope.K/, the perpendicular projection of
�� s� onto the line through v1 and v2 is v1. Hence, the perpendicular projection b of �� n� onto this
line has distance jn� sjj�j from v1. But n is a closest even integer to s, and so jn� sj � 1. Therefore,
b lies between v1 and v2, or is equal to one of these points, as claimed.

Hence,

tan � �
A

j�j2

and so

sec2 � D 1C tan2 � �
A2Cj�j4

j�j4
:

Therefore,

sin2 � D 1� cos2 � � 1�
j�j4

A2Cj�j4
D

A2

A2Cj�j4
:

So the distance h satisfies
hD j�j sin � �

j�jAp
A2Cj�j4

:

The square of the reciprocal of this expression is

A2Cj�j4

j�j2A2
D

1

j�j2
C
j�j2

A2
:

It is easy to check that this is a convex function of j�j and hence its maximal value over the interval
1 � j�j � 6 occurs when j�j D 1 or 6. It also is maximised by taking A as small as possible; in other
words, AD 3:35. We deduce that h is at least

6 � 3:35p
3:352C 362

� 0:55:

Hence, the perpendicular distance between sides of the corresponding fundamental domain in @N1 is at
least 0:55=

p
e > 0:33.

We now compare this to the maximal length of an edge of T in @M. Each triangle of T in @M lies within
a disc centred at a point of P \ @M with radius at most 1

8
". Hence, each triangle has side length at most

1
4
" D 1

8
inj.K/. Now the length L of the shortest slope s on @Nmax is at most j�j � 6. This gives an

upper bound on inj.K/, as follows. By applying an isometry to hyperbolic space, we may arrange that a
component of the inverse image of Nmax in upper half-space is f.x;y; z/ W z � 1g. We may also arrange
that a covering transformation corresponding to s is .x;y; z/ 7! .xCL;y; z/. It therefore sends .0; 0; 1/
to .L; 0; 1/. The hyperbolic distance between these points is at most

2 ln
�

1
2
.6C
p

40/
�
� 3:64:

Hence, inj.K/ is at most 1:82 and 1
4
" is at most 0:23.
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Proof of Theorem 1.7 Let the triangulation T and the curve � be as in Propositions 3.1. Since �D��n�

for n even, Œ��D Œ�� 2H1.@M IZ2/, so � bounds an unoriented surface S in M. If we make S transverse
to the 1–skeleton of T, it defines a simplicial 1–cocycle c 2C 1.M IZ2/ via c.e/D jS\ej mod 2 for each
edge e of T. If we connect the midpoints of the edges e of T such that c.e/D 1, we obtain a surface F

that intersects each tetrahedron T of the triangulation T in at most one triangle or square. In particular,
F is a normal surface. Furthermore, @F D � as � is a normal curve that intersects each triangle in @M at
most once. Discard any closed components of F.

Let t be the number of tetrahedra of T. Furthermore, write v, e and f for the number of vertices, edges
and faces of F, respectively. By the above, f � t . Then �.F /D v� eC f and, since F is not a disk,
j�.F /j D e�f � v. Since every face of F is a triangle or a quadrilateral,

e � 1
2
.4f C e@/� t Cf C 1

2
e@;

where e@ is the number of edges of F in @M. As v � e@, we obtain that

j�.F /j � t � c1 vol.K/ inj.K/�3;

where the second inequality is property (1) of T in Proposition 3.1.

4 The knot signature

Another fundamental knot invariant is the signature �.K/. Given a Seifert surface S for K, ie a compact,
oriented and connected surface with boundary K, one can define the Seifert form

QS WH1.S/�H1.S/! Z

as follows: Given a, b 2H1.S/, we write bC for the positive push-off of b into S3 nS. Then QS .a; b/D

lk.a; bC/. If V is a matrix of QS , then �.K/ is the signature of V CV T. The signature is a 4–dimensional
invariant, in the sense that it gives a lower bound on the topological 4–ball genus g

top
4
.K/, which is the

minimal genus of a compact, oriented, locally flat, connected surface bounded by K in the 4–ball B4.

One can also compute the signature of a knot from unoriented surfaces using the work of Gordon and
Litherland [1978]. Let F be an unoriented surface bounding a knot K in S3. Let fb1; : : : ; bng be a
basis of H1.F /, and let b0i be the double push-off of bi into S3 nF. Then the Goeritz matrix GF is an
n�n symmetric matrix with .i; j /th entry lk.bi ; b

0
j / for i , j 2 f1; : : : ; ng. Furthermore, the normal Euler

number e.F / of F is defined to be �lk.K;K0/, where K0 is the framing of K given by F. Gordon and
Litherland proved the following:

Theorem 4.1 Let F be an unoriented surface bounding the knot K in S3. Then

�.K/D �.GF /C
1
2
e.F /;

where �.GF / is the signature of the Goeritz matrix.
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We are now ready to show how Theorem 1.1 follows from Theorem 1.7.

Proof of Theorem 1.1 Let F be the surface provided by Theorem 1.7, with boundary slope � D ��n�,
where n is a closest even integer to slope.K/. Let GF be the Goeritz matrix of F. Since

j�.F /j � c1 vol.K/ inj.K/�3;

we deduce that
b1.F /� c1 vol.K/ inj.K/�3

C 1;

and so j�.GF /j � c1 vol.K/ inj.K/�3C 1. Therefore,

j2�.K/� slope.K/j � j2�.K/� njC 1D j2�.K/C lk.K; �/jC 1D j2�.GF /jC 1

� 2c1 vol.K/ inj.K/�3
C 3� c2 vol.K/ inj.K/�3

for the absolute constant
c2 WD 2c1C

3 � 1:823

2:0298
< 2c1C 8:92:

Indeed, for any hyperbolic knot K, we have inj.K/� 1:82, as shown in the proof of Proposition 3.1, and
vol.K/ > 2:0298, with the figure eight knot having the smallest volume, by [Cao and Meyerhoff 2001].

In the following definition, we introduce the signature correction �.p; q/ for integers p and q, which is
related to the signature of the .p; q/–torus knot. The correction terms in Theorem 1.3 are defined in terms
of �.p; q/.

Definition 4.2 For any pair of positive integers .p; q/, we define the signature correction �.p; q/
recursively as follows:

(1) If p > 2q and q is odd, then �.p; q/D �.p� 2q; q/� 1.

(2) If p > 2q and q is even, then �.p; q/D �.p� 2q; q/.

(3) If p D 2q, then �.p; q/D�1.

(4) If q � p < 2q and q is odd, then �.p; q/D��.q; 2q�p/� 1.

(5) If q � p < 2q and q is even, then �.p; q/D��.q; 2q�p/� 2.

(6) If p < q, then �.p; q/D �.q;p/.

We extend � to nonzero integers p and q by defining �.�p; q/D �.p;�q/D��.p; q/. When one of p

or q is zero, �.p; q/D 0.

It is reasonably clear that this gives a well-defined value of �.p; q/. This is because it defines �.p; q/
uniquely when pD q, and, when p¤ q, it defines �.p; q/ in terms of some �.p0; q0/ where either q0 < q,
or q0 D q and p0 < p. However, the rationale for the definition comes from the following fact, due to
Gordon, Litherland and Murasugi [Gordon et al. 1981]:
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Theorem 4.3 The signature of the .p; q/–torus link T .p; q/ satisfies

�.T .p; q//D�1
2
pq� �.p; q/:

The signature correction �.p; q/ arises naturally as the signature of the Goeritz form of a surface bounding
the .p; q/–torus knot, as follows:

Lemma 4.4 Let V be the standard solid torus in S3, and let T .p; q/ be the curve on @V that is the
.p; q/–torus knot , where p is even and q is odd. Thus , p is the winding number of T .p; q/ in V. Then
there is a compact unoriented surface F in V with boundary T .p; q/, and �.GF / D ��.p; q/ for any
such F.

Proof Since p is even, T .p; q/ is trivial in H1.V IZ2/. It therefore bounds an unoriented surface F

in V. Applying Gordon and Litherland’s signature formula (Theorem 4.1) to F, we deduce that

�.T .p; q//D �.GF /C
1
2
e.F /:

The push-off K0 of @F into F has linking number pq with @F. To see this, observe that K0 is homologous
in V to p times a core curve  0 of V. Similarly, @F is homologous in the solid torus cl.S3 n V / to q

times its core curve  , which is a meridian of  0. Thus,

lk.@F;K0/D pq lk.;  0/D pqI

hence, e.F /D�pq. So
�.GF /D �.T .p; q//C

1
2
pq D��.p; q/;

where the final equality is Theorem 4.3.

Lemma 4.5 Let A be a nonsingular square matrix with real entries. Let AC be a nonsingular matrix
obtained from A by adding a final row and final column. Then �.AC/ is either �.A/� 1 or �.A/C 1.

Proof Let �1 � � � � � �n be the eigenvalues of A, and let �C
1
� � � � � �C

nC1
be the eigenvalues of AC.

Cauchy’s interlacing theorem states that

�C
1
� �1 � �

C

2
� � � � � �n � �

C

nC1
:

Hence, the number of negative eigenvalues of AC is at least the number of negative eigenvalues of A and,
similarly, the number of positive eigenvalues of AC is at least the number of positive eigenvalues of A.

Lemma 4.6 Let V be a solid torus embedded in S3. Pick a slope � on @V that has winding number 1

in V. Let K be the knot on @V that has slope p�Cq�, where � is the meridian of V, and where p is even
and q is odd. Then K bounds a compact unoriented surface F in V with the property that the Goeritz
form GF satisfies j�.GF /C �.p; q/j � 2.

Proof Because p is even, K bounds a compact surface F in V. We may pick a basis e1; : : : ; en for
H1.F / so that e1; : : : ; en�1 have zero winding number around V. Let V 0 be an embedding of V in S3

such that K is sent to T .p; q/. Let F 0 be the image of F.
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We claim that the Goeritz forms GF and GF 0 agree on the first n� 1 rows and columns. To prove this,
we view V 0 as the regular neighbourhood of a standard unknot embedded in the horizontal plane. Then,
up to isotopy, V can be obtained from V 0 by applying Reidemeister moves and crossing changes to
this unknot. None of these moves affects the first n� 1 rows and columns of the Goeritz form, for the
following reason. Any given entry of the Goeritz form is lk.bi ; b

0
j / for a suitable curve bi in the surface

and b0j the double push-off of another curve in the surface. When the entry of the Goeritz form lies in the
first n� 1 rows and columns, these curves bi and b0j have zero winding number around the solid torus.
Hence, geometrically, bi winds an equal number of times around the solid torus in opposite directions,
as does b0j . So, when we perform a Reidemeister move or a crossing change to the solid torus and we
compare the resulting projections of bi [ b0j to the horizontal plane, the sum of the signs of the crossings
between bi and b0j remains unchanged. This sum is 2 lk.bi ; b

0
j /. This proves the claim.

Hence, by Lemma 4.5, we have j�.GF /� �.GF 0/j � 2. But �.GF 0/D��.p; q/ by Lemma 4.4.

5 Highly twisted knots

The following is Theorem 1.8 from the introduction:

Theorem 1.8 Let K be a knot in the 3–sphere and let C1; : : : ;Cn be a collection of disjoint simple
closed curves in the complement of K that bound disjoint discs. Suppose that S3 n .K[C1[ � � �[Cn/ is
hyperbolic. Let K.q1; : : : ; qn/ be the knot obtained from K by adding qi full twists to the strings going
through Ci for each i 2 f1; : : : ; ng. Let `i be the linking number between Ci and K, when they are both
given some orientation. Suppose that `1; : : : ; `m are even and `mC1; : : : ; `n are odd. Then there is a
constant k, depending on K and C1; : : : ;Cn, such that , provided each jqi j is sufficiently large ,ˇ̌̌̌
slope.K.q1; : : : ; qn//C

nX
iD1

`2
i qi

ˇ̌̌̌
� k;

ˇ̌̌̌
�.K.q1; : : : ; qn//C

�
1

2

mX
iD1

`2
i qiC

1

2

nX
iDmC1

.`2
i �1/qi

�ˇ̌̌̌
� k:

One can use this to show that the factor inj.K/�3 cannot simply be dropped from Theorem 1.1 (see
Conjecture 7.4 for what we expect for random knots):

Corollary 5.1 There does not exist a constant c2 such that

j2�.K/� slope.K/j � c2 vol.K/

for every hyperbolic knot K.

Proof Pick nD 1 and `1 D 3. Then slope.K.q1//��9q1, whereas 2�.K.q1//��8q1. On the other
hand, vol.K.q1// is bounded.
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Proof of Theorem 1.8 The knot K.q1; : : : ; qn/ is obtained by performing �1=qi surgery on Ci for each
i 2 f1; : : : ; ng. Let L denote the link K[C1[� � �[Cn. By Thurston’s hyperbolic Dehn surgery theorem,
as all the jqi j tend to infinity, the hyperbolic structures on S3 nK.q1; : : : ; qn/ tend in the geometric
topology to the hyperbolic structure on S3 nL. In fact, more is true. Fix a horoball neighbourhood N of
the cusps of S3 nL that is small enough that the cusp torus T surrounding K lies in the complement
of N. Then, if all the jqi j are sufficiently large, the inclusion .S3 nL/ nN ! S3 nK.q1; : : : ; qm/ is a
bi-Lipschitz homeomorphism onto its image, with bi-Lipschitz constants that tend to 1 as all the jqi j tend
to infinity. (See [Benedetti and Petronio 1992], for instance.)

Let �.K/ be the longitude and �.K/ the meridian of K. These form a basis of the lattice ƒ.K/, where
the cusp torus of K in S3 nL is C=ƒ.K/. Let  be the image of �.K/ and � the image of �.K/ on
the cusp torus C=ƒ.K.q1; : : : ; qn// of K.q1; : : : ; qn/. The curves  and � form a basis of the lattice
ƒ.K.q1; : : : ; qn//. So we may assume that  and � are approximately constant complex numbers when
the jqi j are large. However, we have not normalised the lattice so that  is real. We know that there is
some N 2RC such that

N�? D  � s0�

for some s0 2 R. Here N, �?,  , s0 and � all depend on q1; : : : ; qn. But N and s0 tend to fixed real
numbers as the jqi j go to infinity.

The key observation is that  is not necessarily the longitude � for K.q1; : : : ; qn/. In fact, the linking
number between  and K.q1; : : : ; qn/ is

P
i `

2
i qi ; see Figure 8. For suppose that the disc bounded by Ci

+

+

+
+

+

+ +

+++

-

-

-

-

-

-
-

-

Figure 8: Each full twist about Ci changes the linking number between  and K.q1; : : : ; qn/ by `2
i .
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intersects K in p� points of negative sign and pC points of positive sign. So `i D pC�p�. Then, when
we perform a full twist about Ci , we introduce 2.pCCp�/

2 new crossings between  and K.q1; : : : ; qn/.
Of these, 2.p2

CCp2
�/ have positive sign and 4pCp� have negative sign. So the linking number between

 and K.q1; : : : ; qn/ changes by

p2
CCp2

�� 2pCp� D `
2
i :

It follows that

 D �C

� nX
iD1

`2
i qi

�
�;

and hence

N�? D ��

�
s0�

nX
iD1

`iq
2
i

�
�:

We conclude that slope.K.q1; : : : ; qn//D s0�
Pn

iD1 `iq
2
i . On the other hand, there is a constant k such

that js0j � k if jq1j; : : : ; jqnj are sufficiently large, which implies the first inequality of the theorem.

Recall that `mC1; : : : ; `n are odd. Suppose that qmC1; : : : ; qr are even and that qrC1; : : : ; qn are odd.
Let �mC1; : : : ; �r be meridians for CmC1; : : : ;Cr , respectively. Let F be a spanning surface for

K[�mC1[ � � � [�r [CrC1[ � � � [Cn:

Since this link has even linking number with each component of C1 [ � � � [ Cr , we may choose this
spanning surface to be disjoint from these components. We can view this surface as properly embedded in
the exterior of K[C1[� � �[Cn. It is disjoint from @N.C1/[� � �[@N.Cm/. We have F \@N.Ci/D�i

for i 2 fmC 1; : : : ; rg. For i 2 fr C 1; : : : ; ng, the curve F \ @N.Ci/ has slope equal to a longitude plus
an odd number of meridians. By choosing the surface appropriately, we can ensure that this odd number
is 1.

Now perform surgery along C1; : : : ;Cn. The surface becomes a surface in the exterior of the new link.
On @N.Ci/ for i 2 fmC1; : : : ; rg, it now has slope equal to a meridian plus qi longitudes. On @N.Ci/ for
i 2 fr C 1; : : : ; ng, it is a meridian plus qi C 1 longitudes. Since we are assuming that jqi j is sufficiently
large, we can suppose that qi ¤ 0;�1 and hence that this slope is not meridional. Within each solid torus
N.CmC1/; : : : ;N.Cn/, we can now insert a surface, as shown in Figure 9. Let F 0 denote the resulting
spanning surface of K.q1; : : : ; qn/.

Also shown in Figure 9 is a collection of generators for H1.F
0 \N.Ci// for i � mC 1. Note that

H1.F
0\N.Ci// for i �mC1 form direct summands of H1.F

0/. So we can extend this set of generators
to a basis of H1.F

0/, by adding further elements of H1.F /. The associated Goeritz form GF is diagonal
when restricted to the rows and columns corresponding to H1.F

0\N.C1[ � � � [Cn//. Each Ci gives
rise to 1

2
jqi j diagonal entries when mC1� i � r and 1

2
jqiC1j entries when rC1� i � n. These entries

are C1 when qi is positive and �1 when qi is negative. Hence, the signature of this matrix differs from
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Figure 9: The part of the spanning surface in N.Ci/ for i �mC 1. Here qi D 5 or 6.Pn
iDmC1

1
2
qi by at most 1

2
.n� r/. So, applying Lemma 4.5,ˇ̌̌̌

�.GF 0/�

nX
iDmC1

1
2
qi

ˇ̌̌̌
is bounded.

Theorem 4.1, due to Gordon and Litherland, states that

�.K.q1; : : : ; qn//D �.GF 0/C 1
2
e.F 0/:

Here
e.F 0/D�lk.K.q1; : : : ; qn/; @F

0/D�lk.K; @F 0/�
nX

iD1

`2
i qi :

The second inequality of the theorem follows immediately.

6 Proof of Theorem 1.3

In this section, we prove Theorem 1.3 from the introduction:

Theorem 1.3 Let "3 be the Margulis constant and let " 2 .0; "3/. Then there is a constant c4 (depending
on ") such that , for any hyperbolic knot K, the quantities �.K/ and

1
2

slope.K/�
X

2OddGeo."=2/

�.twp. /; twq. //

differ by at most c4 vol.K/.

Geometry & Topology, Volume 28 (2024)



The signature and cusp geometry of hyperbolic knots 2333

Note that, if we set "D 1
2
"3, then c4 becomes a universal constant. However, given the present uncertainty

about the precise value of "3, we do not specify " definitively.

Definition 6.1 Let  be an embedded closed geodesic in the hyperbolic 3–manifold M, and let N. / be a
regular neighbourhood of  consisting of points at most a certain distance r from  . Let z be a component
of the inverse image of  in H3, which we can take to be f.0; 0; z/ W z > 0g in the upper half-space model.
Let N.z / be the component of the inverse image of N. / containing z . We let � be the slope on @N. /
that has winding number one around N. / and that lifts to a path in N.z / starting on the half-plane
f.x;y; z/ W y D 0; x � 0g and with interior that is disjoint from the half-plane f.x;y; z/ W y D 0; x � 0g.
In the event that this path ends precisely on the half-plane f.x;y; z/ W y D 0; x � 0g, � is chosen so that it
avoids f.x;y; z/ W y � 0; x D 0g. Then � is called the canonical longitude of  . Note that it does not
necessarily have zero linking number with  .

There is the following alternative interpretation of the canonical longitude in terms of the complex length
of  . We give T D @N. / its inherited Riemannian metric. This is homogeneous, since any two points
of T differ by an isometry of T. The metric on T therefore has constant curvature, which must be zero by
the Gauss–Bonnet theorem. It is therefore Euclidean. We can represent it as the quotient of the Euclidean
plane E2 by a lattice L. Each slope on T corresponds to a lattice point. We can assume that the lattice
point corresponding to the meridian is a purely imaginary number �. As the circumference of a radius r

circle in the hyperbolic plane is 2� sinh.r/, we have

�D 2� sinh.r/i;

where r is the radius of the tube around  . Let � be a geodesic in T that is perpendicular to a meridian
and that starts and ends on the meridian (but not necessarily at the same point). Then

`.�/D cosh.r/Re.cl. //;

where cl. / is the complex length of the geodesic  and Re.cl. // D `. /; see [Futer et al. 2019,
equation (2.2)]. Then the canonical longitude of T is

�D cosh.r/Re.cl. //C sinh.r/ Im.cl. //i:

The significance of the twisting parameter arises from the following lemma:

Lemma 6.2 Let M be a hyperbolic 3–manifold and "2 .0; "3/. Let  be a geodesic in M with `. /< 1
2
".

Let T be the toral boundary component of M.0;3"=4� that encloses  , let �� T be a meridian of  , and
let � be the canonical longitude. If .p; q/D .twp. /; twq. //, then

`.p�C q�/� c5 Area.T /

for some constant c5 depending only on ".

Geometry & Topology, Volume 28 (2024)



2334 Alex Davies, András Juhász, Marc Lackenby and Nenad Tomašev

Proof By the Margulis lemma, the component V of M.0;3"=4� containing T is a solid torus, with 
as a core curve. We claim that the tube radius r of V satisfies r > 1

8
". Indeed, note that  has length

`. / < 1
2
", whereas, at each point y 2 T, the open ball B

�
y; 3

8
"
�

is embedded. If r < 3
8
" and x 2 

satisfies d.x;y/D r , then B
�
x; 3

8
"� r

�
� B

�
y; 3

8
"
�

is an embedded ball about x. So

3
8
"� r < 1

2
`. / < 1

4
";

and hence r > 1
8
", as claimed.

Suppose that 0 is a shortest geodesic on T, and let L WD `.0/. We claim that

L 2 Œk0; k
0
0�

for constants k0, k 0
0
2RC depending only on ". Since T � @M.0;3"=4�, every point p 2 T has two lifts

to H3 that are exactly 3
4
" apart, and no two lifts of p are less than 3

4
" apart. The meridian of T has length

`.�/D 2� sinh.r/ > 2� sinh
�

1
8
"
�
:

If s is a slope different from the meridian, then Œs�DmŒ � 2 �1.M / for m¤ 0. As Œ � has infinite order
in �1.M /, the lift Qs of s to H3 satisfies Qs.0/¤ Qs.1/. Then

`.s/� dH3.Qs.0/; Qs.1//� 3
4
";

so we can set k0 WDmin
�

3
4
"; 2� sinh

�
1
8
"
��

.

We now give an upper bound on L. Let s be a slope on T whose lift Qs to H3 satisfies dH3.Qs.0/; Qs.1//D 3
4
".

This is again possible since T � @M.0;3"=4�. If r � 2", then L� j�j � 2� sinh.2"/. Now suppose that
r > 2". Let N. / � V be a regular neighbourhood of  of radius r � ". Let ž be a geodesic in H3

connecting Qs.0/ and Qs.1/, and let ˇ be its projection to M. Then ˇ is a geodesic homotopic to s of
length 3

4
", which hence lies in V nN. /. The nearest point projection ' W V nN. / ! T satisfies

`.'.ˇ//� l0`.ˇ/D l0
�

3
4
"
�

for a constant l0 depending only on ". Hence,

L� k 00 WDmax
�
2� sinh.2"/; 3

4
l0"
�
;

as claimed.

A consequence of L� k0 is that Area.T /� a0 for a constant a0 depending only on ". Indeed, a disc D

of radius 1
2
L on T about an arbitrary point of T is embedded, so

Area.T /� Area.D/D
�

1
2
L
�2
� �

�
1
2
k0

�2
� DW a0:

We claim the length of the shortest curve in any nontrivial class in H1.T IZ2/ is at most k1 Area.T / for a
constant k1 depending on ". Indeed, let ?

0
W I ! T be a geodesic arc starting and ending on the shortest

geodesic 0 and orthogonal to it. Then `.?
0
/ D Area.T /=L. The points ?

0
.0/ and ?

0
.1/ divide 0

into two arcs, one of which has length at most 1
2
L. Let 1 be a geodesic representative of the closed

curve that runs along ?
0

and then along the shorter of the two arcs in 0. We obtain that

`.1/�
1
2
LC

Area.T /
L

:
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The curves 0 and 1 give a basis for H1.T IZ2/. Hence, the shortest representative of every nontrivial
class in H1.T IZ2/ is at most LC

�
1
2
LCArea.T /=L

�
. As L 2 Œk0; k

0
0
� and Area.T /� a0, we have

LC
�

1
2
LC

Area.T /
L

�
� k1 Area.T /

for k1 WD
3
2
k 0

0
=a0C 1=k0. Indeed,

3
2
L� 3

2
k 00 D

�
k1�

1

k0

�
a0 �

�
k1�

1

L

�
Area.T /:

So there is some slope .a; b/ on T with a even and b odd such that

`.a�C b�/� k1 Area.T /

for some constant k1 depending on ".

Let T 0 be the torus obtained from T by scaling by tanh.r/ in the � direction. As r > 1
8
", we have

tanh.r/ 2
�
tanh

�
1
8
"
�
; 1
�
. Since tanh.r/ < 1, the shortest slope .p; q/ on T 0 with p even and q odd has

length at most k1 Area.T /. The lattice that specifies T 0 is generated by

�0 WD tanh.r/ cosh.r/Re.cl. //C sinh.r/ Im.cl. //i D sinh.r/ cl. /

and �D 2� sinh.r/i . So
`.p�0C q�/D jcl. /pC 2� iqjjsinh.r/j:

Hence, by Definition 1.2, the slope p�0C q� on T 0 is the shortest among slopes for which p is even and
q is odd. Therefore, its length on T 0 is at most k1 Area.T /. So

`.p�C q�/�
k1

tanh.r/
Area.T / <

k1

tanh
�

1
8
"
� Area.T /:

So we can set c5 WD k1=tanh
�

1
8
"
�
, which concludes the proof of the lemma.

Proof of Theorem 1.3 We claim that we can build a triangulation T of MŒ3"=4;1/ with the following
properties:

(1) The number of tetrahedra of T is at most c vol.K/, where c depends on ".

(2) If n is a closest even integer to slope.K/, then some Euclidean geodesic with slope �� n� on
@N.K/ is a normal curve in @MŒ3"=4;1/ that intersects each edge of T at most once.

(3) On the component T of @MŒ3"=4;1/ corresponding to @N.K/, the edges of T are Euclidean
geodesics with length at most 1

15
".

We follow the construction in the proof of Proposition 3.1, but with different constants. We pick a maximal
collection of points in @MŒ3"=4;1/ that are at least 1

30
" apart. We then add points to this collection in the

interior of MŒ3"=4;1/ that have distance at least 1
15
" from each other and from the earlier points. We stop

when it is not possible to add any further points, and denote the resulting collection by P. We then form
the associated Voronoi diagram, subdivide the 2–cells of this cell structure into triangles without adding
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any new vertices, and then triangulate each 3–cell by coning from the relevant point of P. Let T be the
resulting triangulation of MŒ3"=4;1/.

Exactly the same argument as in the proof of Proposition 3.1 gives that the number of tetrahedra of T

is at most c vol.K/, where c depends on ". The length of each edge in @MŒ3"=4;1/ is now at most 1
15
",

because we took points that were at least 1
30
" apart, rather than at least 1

8
" apart. Thus, all that needs to

be proved are that the edges of T in T are Euclidean geodesics and that there is a Euclidean geodesic
with slope �� n� on @N.K/ which is a normal curve in @MŒ3"=4;1/ that intersects each edge of T at
most once.

We start by showing that the edges of T in T are Euclidean geodesics. Following the proof of
Proposition 3.1, we need to show that, for each point x on T, its closest points in P all lie in T

and have distance at most 1
30
" from x. We also need to show that the shortest geodesic joining x to any

of these points remains within the cusp. The first of these statements holds by our choice of P.

Note that T lies within M.0;"�. By definition of the Margulis constant, M.0;"� consists of a cusp and
some regular neighbourhoods of geodesics with length at most ". The Euclidean metrics on T and the
cusp component of @M.0;"� differ by a Euclidean scale factor of 4

3
, and hence are hyperbolic distance

ln
�

4
3

�
> 0:287 from each other. On the other hand, the 3–dimensional Margulis constant satisfies

"3 < 0:775. (See the discussion in [Futer et al. 2022, Section 1.1].) Hence, 1
30
" < ln

�
4
3

�
. We deduce that,

for each point x in T, any shortest geodesic to a closest point in P must lie in the cusp. This implies that
the restriction to T of the Voronoi diagram for P in M is equal to the Voronoi diagram for P \T in T

with its Euclidean metric. In particular, the edges of T in T are Euclidean geodesics, as claimed in (3).

Let Nmax be a maximal cusp neighbourhood around K. Then Nmax contains T. This torus T is a scaled
copy of @Nmax. It is scaled so that, for each point on T, two lifts of this point in H3 are exactly 3

4
" apart

and no two lifts of this point are any closer than this. Say that d is the hyperbolic distance between T

and @Nmax. Then the scale factor taking @Nmax to T is e�d . Now the meridian slope on @Nmax has length
at most 6. Hence, the meridian slope on T has length at most 6e�d . So any point on T has two lifts
to H3 that are less than 6e�d apart, and therefore 3

4
"� 6e�d . As in the proof of Proposition 3.1, let h be

the length in @Nmax of a Euclidean geodesic that starts and ends on a geodesic with slope ��n� and that
is orthogonal to this geodesic. It was shown there that h� 0:55. Hence, the length of the corresponding
geodesic on T is at least 0:55e�d �

0:55
6

�
3
4
"
�
. On the other hand, the length of each edge of T on T is

at most 1
15
", and 1

15
" < 0:55

6

�
3
4
"
�
. Hence, each such edge can intersect any geodesic with slope ��n� at

most once. This establishes the claimed properties of T.

Let T1; : : : ;Tm be the components of @MŒ3"=4;1/, where Ti encircles a geodesic i 2 OddGeo
�

1
2
"
�
. Let

tw.i/D p�i C q�i , where �i is the canonical longitude on Ti and �i is the meridian, and let Ci be a
curve on Ti with this slope. Then

`.Ci/� c5 Area.Ti/
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by Lemma 6.2. Let

C WD

m[
iD1

Ci :

Realise each Ci as a Euclidean geodesic in Ti missing the vertices of Ti , and hence as a normal curve
in Ti . Since `.Ci/ � c5 Area.Ti/ and by property (3) of the triangulation T, the normal representative
of Ci intersects each edge of T at most c0

5
Area.Ti/ times for a constant c0

5
depending only on ".

We claim that there is a connected normal curve C 0i in Ti for i 2 f1; : : : ;mg with the following properties:

(1) C 0i and Ci are equal in H1.Ti IZ2/.

(2) C 0i intersects each edge of T at most once.

This is constructed as follows. For each edge of T that intersects Ci an odd number of times, replace
this intersection by a single point of intersection. These will be the points of intersection between C 0i
and the 1–skeleton of T. Since jCi \ @t j is even for each triangle t of T, we have jC 0i \ @t j 2 f0; 2g. If
jC 0i \ @t j D 2, join the two points of C 0i \ @t by a normal arc of C 0i . The result is a collection of simple
closed curves in Ti that are mod 2 homologous to Ci . If any of these curves are inessential in Ti , remove
them. The resulting curves are essential in Ti . Since they are nontrivial in mod 2 homology, they consist
of an odd number of parallel copies of a curve. If this odd number is greater than one, remove all but one
of these curves. The result is C 0i , and we write

C 0 WD

m[
iD1

C 0i :

Let C 00 be the union of C 0 and a normal curve CK of slope .1;�n/ on @N.K/, where n is a closest even
integer to slope.K/. We claim that C 00 bounds an unoriented surface in MŒ3"=4;1/. As n is even, there is
a compact surface properly embedded in the exterior of K with boundary slope .1;�n/. It intersects each
geodesic with length at most 1

2
" in a collection of meridians. For a geodesic with odd linking number

with K, the number of these meridians is odd. For the others, it is even. As C 0i is homologous to the
meridian of Ti over Z2, we may modify the surface so that its boundary is precisely C 00. This proves the
claim.

As C 00 intersects each edge of T at most once, we can find a surface F 00 in MŒ"=2;1/ that it bounds such
that

��.F 00/� c6 vol.K/

for some constant c6, just like in the proof of Theorem 1.7. Now Ci and C 0i are equal in H1.Ti IZ2/.
Hence, we may insert a compact connected surface Fi into a regular neighbourhood N.Ti/ of Ti with
@Fi D Ci [C 0i . Since Ci and C 0i intersect each edge of T at most c0

5
Area.Ti/ times, this surface may be

chosen so that
��.Fi/� c005 Area.Ti/
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for a constant c00
5

depending only on ". Hence, the surface

F WD F 00[

m[
iD1

Fi �MŒ3"=4;1/

satisfies @F D CK [C, and

.6.3/ ��.F /� c6 vol.K/C
mX

iD1

c005 Area.Ti/� c7 vol.K/

for a constant c7 that depends only on ". Here the last inequality follows from the observation that
Area.Ti/� c8 vol.N.Ti// for some constant c8, where

N.Ti/ WD
˚
x 2 Vi W d.x;Ti/�

1
2
ri

	
;

and Vi is the solid toral component of M.0;3"=4� of tube radius ri that encloses the geodesic i 2

OddGeo
�

1
2
"
�
.

In each Vi , we construct the surface provided by Lemma 4.6 with boundary Ci D C \ Vi . We attach
these surfaces to F to form a surface FC. We now specify a basis for H1.FC/. We start by picking a
basis for H1.V1\FC/. We arrange that all but one of these basis elements have zero winding number
around V1. We then continue to V2, and so on. We then extend this to a basis for H1.FC/ by adding
some oriented curves in F. We order this basis as follows into nC 1 blocks. In the first block, we place
all the basis elements of H1.V1\FC/ that have zero winding number around V1. In the second block,
we do the same for V2, and so on. In the final block, we place all the remaining basis elements. We saw
in the proof of Lemma 6.2 that there is a constant a0 depending only on " such that Area.Ti/� a0. AsPm

iD1 Area.Ti/� c8 vol.K/, we haveˇ̌
OddGeo

�
1
2
"
�ˇ̌
�

c8 vol.K/
a0

:

This, together with (6.3), implies that the number of elements in this final block is bounded above by a
linear function of vol.K/.

Let G be the submatrix of the Goeritz form GFC
consisting of the first n blocks. By Lemma 4.5,

�.G/ and �.GF / differ by at most the number of elements in the final block. Note that G is block
diagonal. For the block corresponding to Vi , the signature differs from �.GFC\Vi

/ by at most one by
Lemma 4.5. On the other hand,

j�.GFC\Vi
/C �.twp.i/; twq.i//j � 2

by Lemma 4.6. Hence,ˇ̌̌̌
�.GFC

/C
X

2OddGeo."=2/

�.twp.i/; twq.i//

ˇ̌̌̌
� c9 vol.K/

for some constant c9. By Gordon and Litherland’s theorem (Theorem 4.1),

�.K/D �.GFC
/C 1

2
e.FC/D �.GFC

/C 1
2
n:

The result follows as n is a closest even integer to slope.K/.
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7 Experimental data and some conjectures about random knots

We set out to find links between hyperbolic and 4–dimensional knot invariants. Initial scatter plots
compared some 4–dimensional invariants (the signature and Heegaard Floer invariants � , � and "), the
crossing number, and several hyperbolic invariants (volume, meridional and longitudinal translations, and
the Chern–Simons invariant). As � is strongly correlated to � , � and ", we decided to only focus on � ,
which is more classical and easier to compute.

The strongest and most surprising correlation was between the signature and the real part of the meridional
translation; see Figure 2. There were some more predictable relationships among the hyperbolic invariants.

Figure 10 shows the distribution of

c1.K/ WD
j2�.K/� slope.K/j inj.K/3

vol.K/
;

which indicates that the constant c1 appearing in Theorem 1.1 is typically quite small. The largest value
of this quantity we managed to obtain is less than 0:234, and we conjecture it is always at most 0.3. The
left of Figure 11 shows the maximum and the right the mean of c1.K/ by crossing number for the Regina
census of knots of at most 16 crossings. See Figure 12 for a scatter plot of injectivity radius versus volume
for random hyperbolic knots of 10–80 crossings. This suggests that the injectivity radius is typically not
too small as the volume increases.

We will say that a property P holds asymptotically almost surely, or a.a.s. in short, if the probability that
P holds for knots of n crossings tends to 1 as n!1.

It is known that there is a constant A such that vol.K/�Ac.K/, where c.K/ is the crossing number of K.
From scatter plots, one might conjecture that there is a constant a such that ac.K/� vol.K/ a.a.s. Such
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0
0:00 0:02 0:04 0:06 0:08 0:10 0:12 0:14

Figure 10: The distribution of c1.K/ WD j2�.K/� slope.K/j inj.K/3=vol.K/ for knots up to 16
crossings in the Regina census.
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Figure 11: The maximum (left) and the mean (right) of c1.K/ as functions of the crossing number
for knots up to 16 crossings in the Regina census.

an inequality cannot hold for all hyperbolic knots K. For example, consider twist knots. More generally,
the highly twisted knots considered in Section 5 have bounded volume but unbounded crossing number.

We now consider the behaviour of the signature �.K/ for random knots K. By Theorem 4.1, �.K/ can be
computed from the black surface of a checkerboard colouring of a diagram of K. Hence, it is the signature
of a c.K/� c.K/ matrix. If the signs of the eigenvalues of this matrix were independently distributed,
then the expected value of j�.K/j would be C

p
c.K/ for some constant C. From computational evidence,

it appears the constant is about 2. Based on this heuristic, we introduce the following definition:

Definition 7.1 The normalised signature of a hyperbolic knot K is

y�.K/ WD
�.K/p
vol.K/

:

in
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Figure 12: A scatter plot of injectivity radius versus volume for random knots of 10–80 crossings.

Geometry & Topology, Volume 28 (2024)



The signature and cusp geometry of hyperbolic knots 2341

We use the volume instead of the crossing number as it is easier to compute using SnapPy and is more
regular.

Based on Figure 2, we initially conjectured that, for any hyperbolic knot K in S3 with jy�.K/j> 1, the
signature �.K/ and Re.�.K// have the same sign. However, this turns out not to be true.

Corollary 7.2 There exists a hyperbolic knot K with jy�.K/j> 1, but with �.K/ and Re.�.K// having
opposite signs.

Proof We start with a hyperbolic link K[C1[C2 in S3, where C1 and C2 bound disjoint embedded
discs, and where `1 D lk.K;C1/D 2 and `2 D lk.K;C2/D 3. We then build the highly twisted knots
K.q1; q2/ as in Theorem 1.8. Set q1 D 17q and q2 D�8q, where q is a large positive integer. Then

slope.K.q1; q2//��4 � 17qC 9 � 8q D 4q; whereas �.K.q1; q2//��2 � 17qC 4 � 8q D�2q:

Hence, for q sufficiently large, �.K.q1; q2// and slope.K.q1; q2// have opposite signs, and hence
�.K.q1; q2// and Re

�
�.K.q1; q2//

�
also have opposite signs by Lemma 2.4. Note that y�.K.q1; q2// > 1

if q is sufficiently large, because j�.K.q1; q2//j tends to infinity whereas vol.K.q1; q2// is bounded.

However, we do conjecture the following:

Conjecture 7.3 If K is a hyperbolic knot in S3 with jy�.K/j > 1, then �.K/ and Re.�.K// have the
same sign asymptotically almost surely.

We also state the following conjecture, which proposes a more precise relationship between slope and
signature:

Conjecture 7.4 There are constants b and c such that , for any hyperbolic knot K in S3, we have

.7.5/ j2�.K/� slope.K/j � b
p

vol.K/C c

asymptotically almost surely.

By Corollary 5.1, this does not hold for all knots either. In fact, there are families of hyperbolic knots for
which j2�.K/� slope.K/j is not bounded by a linear function of the volume.

The proof of Theorem 1.1 provides some heuristic for Conjecture 7.4. Indeed, if we assume that the
signs of the eigenvalues of the Goeritz matrix GF are independent, then the signature on average is of
order

p
c.K/. This justifies the factor

p
vol.K/ in the upper bound.

If b< 2 (and the data supports this; see Figure 13), then Conjecture 7.4 implies Conjecture 7.3 for knots K

with sufficiently large volume a.a.s. This is because (7.5) is equivalent to the inequalityˇ̌̌̌
2y�.K/�

slope.K/p
vol.K/

ˇ̌̌̌
� bC

cp
vol.K/

:

If b < 2, then bC c=
p

vol.K/ < 2 for all knots with sufficiently large volume. So, if jy�.K/j > 1, then
y�.K/ and slope.K/ have the same sign.
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Figure 13: The distribution of the normalised residual .2�.K/� slope.K//=
p

vol.K/ for knots
up to 16 crossings in the Regina census.
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Rigidity and geometricity for surface group actions on the circle

KATHRYN MANN

MAXIME WOLFF

We prove that (topologically) rigid actions of surface groups on the circle by homeomorphisms are
necessarily geometric, namely, they are semiconjugate to an embedding as a cocompact lattice in a Lie
group acting transitively on S1. This gives the converse to a theorem of the first author; thus characterizing
geometric actions as the unique isolated points in the “character space” of surface group actions on S1.

20H10, 37E10, 37E45, 57S25, 58D29

1 Introduction

Classification results in dynamical systems are often motivated by the study of special examples. Having
found a system with interesting (eg stable) behavior, one seeks first to understand its properties and
related examples, and then to address the broader problem of classifying all systems with such properties.
As a prime example, Anosov observed that hyperbolic linear automorphisms of tori exhibit stability
under perturbation, leading to the abstract definition of Anosov diffeomorphisms. Smale [32] observed
that hyperbolic affine automorphisms of infra-nil manifolds give additional such examples; that this is
an exhaustive list of all Anosov diffeomorphisms of closed manifolds up to topological conjugacy is a
longstanding open conjecture.

The present work addresses the classification problem for globally rigid actions of surface groups on the
circle; equivalently, for rigid, flat topological circle bundles over surfaces. Here, local rigidity, at least in the
C 1 setting, already follows from the work of Anosov. A much stronger, global, C 0 rigidity phenomenon
was discovered by Matsumoto [28], who proved that all representations �1†g ! HomeoC.S1/ of equal,
extremal Euler class are semiconjugate, in the sense of semiconjugacy for circle actions defined by
Ghys [12]. These globally rigid examples are all geometric in the sense that they arise from embedding
�1†g as a cocompact lattice in a Lie subgroup of HomeoC.S1/. Matsumoto’s result was extended by
the first author [23], who showed that, in fact all geometric actions of surface groups have this same
global rigidity: they are characterized, up to semiconjugacy, by a finite list of rotation numbers which are
constant in a neighborhood of each geometric representation. As a consequence, they descend to isolated
points in the quotient of the representation space by semiconjugacy. This strong property is the definition
of rigidity we will use throughout this article; see Section 1.2 for further discussion.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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Here we solve the associated classification problem, giving a complete characterization of rigid actions of
surface groups on the circle.

Theorem 1.1 Let†g be a surface of genus g>2. Then every rigid representation �1†g to HomeoC.S1/
is geometric: up to semiconjugacy it is obtained by embedding �1†g as a lattice in a transitive Lie group
in HomeoC.S1/.

The geometric representations referenced in the theorem are easily classified; the Lie groups in question
are simply the finite cyclic extensions of PSL2.R/.

The arc of our proof resembles in spirit the convergence group theorem of Tukia [35], Gabai [10] and
Casson and Jungries [7]. Both in our case and theirs, one starts with purely dynamical information (in
the convergence group case, information on the dynamics of sequences of elements; in ours merely
the assumption of rigidity) and from that reconstructs the geometric–topological data of a subgroup of
PSL2.R/ or one of its covers. The key in our case is to show that, under an arbitrary rigid action, elements
of �1†g which can be represented by nonseparating simple closed curves have the same dynamics as
the geometric examples. From there, we again use rigidity to “reconstruct” the topology of the surface,
recovering the intersection pattern of these curves on †g .

We note also that, while the statement of Theorem 1.1 resembles Sullivan’s “structural stability implies
hyperbolicity” for Kleinian groups [33], our methods and conclusion are quite different: for Sullivan,
structural stability is a local and C 1 condition, and the groups in consideration are convex-cocompact,
acting on their limit set satisfying a hyperbolicity or local hyperbolicity condition.

1.1 Motivation

Our motivation comes from the highly influential work of Milnor, Wood and Goldman. Milnor’s
contribution to the Milnor–Wood inequality is the statement that a principal PSL2.R/ bundle over a
surface admits a flat connection if and only if the Euler number of the bundle is bounded in absolute
value by the Euler characteristic of the surface. Following this, the natural next question is to what
extent the Euler number distinguishes flat bundles. This was answered by Goldman [15], who showed
that it is a complete invariant of flat PSL2.R/ bundles up to deformation: the connected components of
Hom.�1†g ;PSL2.R// are classified by the Euler numbers of the associated bundles.

Here we are interested in these same basic questions in the topological rather than the linear category.
Wood [36] showed that Milnor’s bound holds in the topological setting as well, demonstrating that
topological S1 bundles over †g which admit a flat connection (or in this case a foliation transverse to the
fibers) are precisely those whose Euler numbers are bounded by ˙.2g� 2/. However, work of the first
author [23] showed that Goldman’s theorem is no longer true in this setting: there are many connected
components of Hom.�1†g ;HomeoC.S1// consisting of bundles with the same Euler number.

Geometry & Topology, Volume 28 (2024)
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In fact, the topology of the space of flat circle bundles, which can be thought of either as the representation
space Hom.�1†g ;HomeoC.S1// or the associated character space described below, remains very
mysterious. For instance, it is an open question whether either space has finitely many or infinitely many
connected components. Theorem 1.1 gives the first step towards a global picture, giving a complete
classification of the isolated points of the character space, and our hope is that the tools we develop should
be useful towards the broader program.

1.2 Character spaces and rigidity

As in Goldman’s work, the appropriate framing for our work is the study of character spaces. Typically
these are defined algebraically, but they generalize naturally to the broad context of groups acting on
manifolds.

Let � be any discrete group and let G be a topological group such that G �Homeo.X/ for some space X .
The representation space Hom.�;G/, equipped with the compact-open topology, parametrizes actions
of � on X with image in G. Typically, G is used to specify the regularity of the action — for instance,
taking GDDiff.X/ parametrizes smooth actions, while if G is a Lie group acting transitively on M these
are geometric actions in the sense of Ehresmann. Since conjugate actions are dynamically equivalent, the
appropriate moduli space of actions is the quotient Hom.�;G/=G under the natural conjugation action
of G. However, this quotient space is typically non-Hausdorff and so in practice difficult to study.

When G is a Lie group and Hom.�;G/ is an affine variety, algebraic geometers solve this problem by
considering the quotient Hom.�;G/ ==G from geometric invariant theory. In the special case where G
is a semisimple complex reductive Lie group, this GIT quotient is simply the quotient of Hom.�;G/
by the equivalence relation �1 � �2 whenever the closures of their conjugacy classes intersect (see
Luna [21; 22]); in particular, this relation makes the quotient space Hausdorff. In the well-studied case of
G D SL.n;C/, the GIT quotient agrees with the space of characters of G–representations, motivating
the following terminology.

Definition 1.2 For any discrete group � and topological group G, the character space X.�;G/ is the
largest Hausdorff quotient1 of Hom.�;G/=G. Two representations are weakly conjugate if they define
the same point in X.�;G/.

Loosely speaking, a representation � W �!G is rigid if all deformations of �.�/ in G are trivial. This
notion can be made precise in the setting of character spaces as follows.

Definition 1.3 A representation � 2 Hom.�;G/ is rigid if the image of � is an isolated point in the
character space X.�;G/.

1Recall that the largest Hausdorff quotientXH of a topological spaceX is a space with the universal property that any continuous
map f WX! Y from X to a Hausdorff topological space factors canonically through the projection X!XH . One construction
of XH is as the quotient of X by the intersection of all equivalence relations � such that X=� is Hausdorff.
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This is a strong condition on �, and less strict forms of rigidity will also be useful. In particular, we say
that � is path-rigid if the path component of � in Hom.�;G/ is contained in a single weak-conjugacy
class.

The case of interest in this article is when G D HomeoC.S1/, the group of orientation-preserving
homeomorphisms of the circle, and � D �g D �1.†g/ is the fundamental group of an orientable surface
of genus g � 2. As we explain in Section 2.3, in this setting the character space X.�;G/ agrees with
the space of semiconjugacy classes of actions in the sense of Ghys [12]. In this and related work,
semiconjugacy is used to refer to an equivalence relation for group actions on the circle. However,
semiconjugacy has a precise and different meaning in topological dynamics. For this reason, we will use
the term “weak conjugacy” when referring to the character spaceX.�;G/, even though this terminology is
not yet well established in the literature, and use the term semiconjugacy only when referencing classical
results following [12].

1.3 Geometric representations

It is our philosophy that dynamical rigidity often comes from some underlying geometric or algebraic
structure. This motivates the following definition.

Definition 1.4 (Mann [24]) Suppose that M is a manifold, and � a countable group. A representation
� W �!Homeo.M/ is called geometric if it is weakly conjugate to a faithful representation with image a
cocompact2 lattice in a transitive, connected Lie group G � Homeo.M/.

Indeed, the first known example of a rigid action of a surface group on the circle was a geometric one,
due to Matsumoto [28]. Matsumoto’s result is that the set of representations with maximal Euler number
(equal to 2g� 2 by Milnor–Wood) in X.�g ; G/ consists of a single point — all are weakly conjugate to
discrete, faithful representations into PSL2.R/ � HomeoC.S1/. As the Euler number is a continuous
function on Hom.�g ; G/, this implies that representations of maximal Euler number are rigid. The same
holds for representations with Euler number �2gC 2.

While Matsumoto’s proof uses maximality of the Euler number in an essential way — a theme that has
been taken up in the study of “maximal representations” of surface groups in higher Teichmüller theory,
see eg Burger, Iozzi and Wienhard [5] — the idea hints at a separate underlying phenomenon for rigidity,
namely geometricity.

As hinted above, geometric representations of surface groups in HomeoC.S1/ (up to weak conjugacy) all
are either discrete, faithful representations into PSL2.R/, or obtained by lifting such a representation to a
finite cyclic extension of PSL2.R/ (see [24]) and the main result of [23] is their rigidity.

2Our choice to require that � be cocompact here is motivated by the definition of model geometries in the sense of Thurston, where
one is interested in compact quotients. It also simplifies the statement of rigidity theorems in low dimensions: noncocompact
lattices in PSL2.R/ and PSL2.C/ are not rigid, even in the space of representations into PSL2.R/ or PSL2.C/.
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Theorem 1.5 (Mann [23]) In the space Hom.�g ;HomeoC.S1//, all geometric representations are rigid.

Though actually stated there in a slightly weaker form, the proof is carried out on the level of semiconjugacy
(or weak-conjugacy, we show in Section 2 these notions coincide) invariants of representations, so actually
shows that geometric representations are isolated points in X.�g ;HomeoC.S1//.

1.4 Strategy of proof and outline of the article

The entirety of this work is devoted to the proof of Theorem 1.1, ie the converse of Theorem 1.5. Our
main technical result is the following statement, which gives a stronger result for representations of
nonzero Euler class.

Theorem 1.6 Let � W �g ! HomeoC.S1/ be a path-rigid representation. If � is not geometric , then its
Euler class is zero , and there exists a one-holed , genus g� 1 subsurface †0 �†g such that �j�1†0 has a
finite orbit.

The surface group representations with Euler class zero are precisely those which can be lifted to actions
on the line. It is not entirely surprising that our theorem identifies these as a special case, as more
complicated dynamical phenomena sometimes occur for such representations. Notably, Ghys [11] shows
that an action of a surface group on S1 by real analytic diffeomorphisms admits a minimal exceptional
set only if it has Euler class zero. However, the condition of having a large subsurface with a finite orbit
makes it very likely that such a representation could be deformed along a path; giving strong evidence for
the fact that all path-rigid representations should in fact be geometric.

The main ingredient in the proof of Theorem 1.6 is the effect of bending deformations on the periodic
sets of simple closed curves. Bending deformations are classical in (higher) Teichmüller theory (see
Section 2.2.2 for a reminder); and we extend their study to representations to HomeoC.S1/. While the
proof of Theorem 1.6 is quite long, a much simpler argument can be carried out under the additional
significant assumption that the relative Euler number on some genus 1 subsurface is equal to 1 (this is the
case in particular for representations of Euler class � g). This much weaker proof is presented in our
expository article [25]; the reader may find it helpful to take that work as a starting point or a companion.

We now outline the major steps.

Step 1 (local-to-global) Our proof starts by making a strong additional technical hypothesis on represen-
tations that forces them to look “locally” (ie on the level of some pairs of elements) like representations into
PSLk2.R/. Specifically, we say that the action of two elements a; b 2 �g representing standard generators
of a one-holed torus subsurface of †g satisfies Sk.a; b/ if �.a/ and �.b/ are separately conjugate to
hyperbolic elements of PSLk2.R/, and their periodic points alternate around the circle. We show the
following.
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Theorem 1.7 Let � W �g ! HomeoC.S1/ be a path-rigid , minimal representation , and suppose fur-
thermore that there exists k � 1 such that Sk.a; b/ holds for all standard generators of one-holed torus
subsurfaces. Then � is geometric.

The proof of Theorem 1.7 uses bending deformations of � to move the periodic points of generators of
�1†g ; provided � is path-rigid, we are able to conclude the periodic points of many simple closed curves
are in the same cyclic order as if � were geometric. In the toy version we presented in [25] — whose
additional hypothesis guarantees that k D 1— this same process was sufficient to demonstrate that � has
maximal Euler number, hence is geometric. Here in the general case, we need to use a more sophisticated
tool, and invoke Matsumoto’s theory of basic partitions; see Section 3.4.

Step 2 (good and bad tori) We next make extensive use of bending deformations to prove the following
result on periodic sets and rotation numbers.

Proposition 1.8 If a representation �g !G is path-rigid , then all nonseparating simple closed curves
have rational rotation number.

Theorem 1.9 Suppose � is path-rigid and minimal. Then , for all standard generators a; b of one-holed
subsurfaces , we have the implication

Per.�.a//\Per.�.b//D∅ D) Sk.a; b/ for some k:

The upshot of these results is that, if a path-rigid and minimal representation fails to be geometric, then
many curves are forced to have common periodic points. Common periodic points hint at the existence of a
finite orbit for �, so we next look for a finite orbit in order to derive a contradiction (indeed, representations
with a finite orbit are easily seen to be non-path-rigid). This idea proves difficult to implement, so we
search first for curves with rotation number zero, as the dynamics of these are easier to control. This
search can be performed separately in every one-holed torus in the surface, where the action of the
mapping class group is simple to work with. Accordingly, a one-holed torus in †g is called a good torus
if it contains a nonseparating simple loop with rotation number zero; otherwise we say it is a bad torus.
A one-holed torus is called very good if its fundamental group has a finite orbit in S1. We prove:

Proposition 1.10 Let � be path-rigid. Suppose that †g contains a bad torus †0. Then its complement
†g n†

0 contains only very good tori.

Proposition 1.11 Let � be path-rigid , and nongeometric. Then there cannot exist two disjoint good tori
that are not very good.

Theorem 1.12 Let � be a path-rigid representation. Let †g 0;1 be a subsurface in which all tori are very
good. Then �1†g 0;1 has a finite orbit.
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These three last statements show that if � is a path-rigid and nongeometric representation, then it has a
subsurface of genus g� 1 with a finite orbit; the statement about the Euler class in Theorem 1.6 then
follows easily.

Conclusion Provided g � 3, Theorem 1.12 implies that if � is path-rigid and nongeometric, then there
exist curves a; b, generating a torus subsurface of †g , such that �.a/ and �.b/ have a common fixed point.
It then follows from a recent theorem of Alonso, Brum and Rivas [1] that � cannot be rigid. However,
path-rigidity and the genus g D 2 case do not follow, so we prove an independent, elementary lemma on
rigid representations that shows all torus subsurfaces have only finitely many finite orbits. This applies to
all genera, and allows us conclude the proof of Theorem 1.1.

Roadmap The article is organized as follows. Section 2 introduces tools and frameworks that will be
frequently used in the proof. We review background and prove new results on complexes of based curves;
then prove a series of results on the movement of periodic sets under specific bending deformations; and
finally discuss character spaces, semiconjugacy, and the Euler class. In Section 3 we prove Theorem 1.7.
In Section 4 we prove Proposition 1.8 and Theorem 1.9. The proof of Theorem 1.6 is then completed in
Section 5. Finally, in Section 6 we complete the proof of Theorem 1.1 and state some open questions and
directions for further work.
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2 Preliminaries

2.1 Based curves on surfaces

This subsection should seem familiar to low-dimensional topologists, except that we will give much
more attention to based curves than is usually present in the literature. As in the introduction, we use the
notation �g D �1†g . While this notation omits mention of a basepoint, all elements of �g are always
assumed based. This is crucial — for example, we recall (as a warning) that the set of elements represented
by based simple closed loops, in �g , is not closed under conjugation. We now set some conventions.

Since we are interested in actions of �g by homeomorphisms on the circle, we will write words in �g
(ie products of loops by concatenation) from right to left, in the same order as composition of homeomor-
phisms. We also fix the commutator notation to be Œa; b� WD b�1a�1ba.
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2;b

2�
T .a1; b1/

Figure 1: Standard generators on the genus g surface (g D 4).

The based curves .a1; b1; : : : ; ag ; bg/, depicted in Figure 1, are called a standard system of loops, and
give the following standard presentation of �g :

�g D ha1; b1; : : : ; ag ; bg j Œag ; bg � � � � Œa1; b1�D 1i:

We will make extensive use of systems of curves that look like those in Figure 2. Accordingly, we will
say that a tuple .1; : : : ; k/ of elements of �g is an oriented, directed k–chain if these elements of �g
can be realized by differentiable based loops, Œ0; 1�!†g , that do not intersect outside the basepoint, and
with cyclic order . 01.0/; 

0
2.0/;�

0
1.1/; 

0
3.0/;�

0
2.1/; 

0
4.0/; : : : ;�

0
k
.1//. In other words, an oriented,

directed k–chain is a k–tuple of loops arising from an orientation-preserving embedding of the graph
of Figure 2 (note that we do not require this embedding to be �1–injective). If we do not insist that the
embedding be orientation-preserving, we call it a directed k–chain, and, similarly, .1; : : : ; k/ is simply
a k–chain if there exist signs �1; : : : ; �k such that .�1

1 ; : : : ; 
�k

k
/ is a directed k–chain. Also, we will say

that a (oriented and/or directed) k–chain is completable if it sits in the middle of a (orientable and/or
directed) .kC2/–chain.

1

2 3

4

5

Figure 2: A directed chain of length 5.
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For example, .a�11 b1a1; a1; b
�1
1 / is a noncompletable 3–chain in †g , and the collection

.a1; ı1; a2; ı2; : : : ; ıg�1; ag ; b
�1
g /

(as well as its subchains), where we have set ıi D a�1iC1biC1aiC1b
�1
i , forms a directed chain. Also, the

family .a�11 b1a1; a1; ı1; a2; b
�1
2 / forms a (noncompletable) 5–chain that will be handy in Section 5.3.

If two simple closed loops a; b 2 �g do not intersect outside of the basepoint, we will write i.a; b/D 1 if
.a; b/ is an oriented, directed 2–chain, and we will write i.a; b/D�1 if i.b; a/D 1. Otherwise we will
write i.a; b/D 0; if a and b are nonseparating, to say i.a; b/D 0 is equivalent to the existence of a curve
c such that .a; c; b/ is a 3–chain. Though reminiscent of the algebraic intersection number, i.a; b/ is an
ad hoc definition, as we do not define i.a; b/ for most pairs .a; b/ of elements of �g .

Finally, if two curves a; b 2 �g satisfy i.a; b/D˙1, we will denote by T .a; b/ the genus 1 subsurface
of †g defined by a and b; Figure 1 illustrates T .a1; b1/. While T .a; b/ is only defined up to based
homotopy, it still makes sense to say, for example, that a curve  is disjoint from T .a; b/, if i.a; /,
i.b; /, i.Œa; b�; / are all defined and equal to 0.

We conclude this paragraph with some considerations on complexes of pairs of based curves.

Lemma 2.1 Let G0 denote the graph whose vertices are the pairs .a; b/ 2 �2g with i.a; b/D˙1, with
an edge between two pairs .a; b/ and .b; c/ whenever .a; b; c/ is a 3–chain. Then G0 is connected.

The main results of this article do not depend on this lemma, as we will simply need to work on a
connected component of this graph; our proof in the companion article [25] follows this strategy. However,
the lemma is quite elementary, so here we take the honest approach of giving the proof and using the
whole connected graph instead of making reference to a connected component.

The proof of Lemma 2.1 is divided into two main observations. It essentially copies the proof of
Proposition 6.7 of [26], but corrects a minor mistake there, where the complex of based curves should
have been used instead of the standard curve complex.

Observation 2.2 Let G1 be the graph whose vertices are the elements of �g represented by simple ,
nonseparating curves , and with edges between a and b if and only if i.a; b/D˙1. Then G1 is connected.

Proof Let G2 be the graph with the same vertices, but with edge between a and b whenever i.a; b/ is
well defined. Let G3 be the graph with vertex set consisting of the elements of �g represented by simple
curves (possibly separating), with an edge between a and b whenever i.a; b/ is well defined.

By drilling a puncture in †g at the basepoint, G3 can be identified with the arc graph of the surface †g;1,
which is well known to be connected; see eg [17]. Given a path in G3 between two vertices of G2, every
time a separating curve appears we may either delete it or replace it by a nonseparating curve, producing a
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new path in G2. Thus, G2 is connected. Finally, we prove that any path in G2 can be promoted to a path
in G1. Let a1� a2 be an edge of G2 which is not in G1, ie we have i.a1; a2/D 0. Then a neighborhood
of the curves a1 and a2 in †g is a pair of pants P , with three boundary components, freely homotopic to
a1, a2 and a1a˙12 . If †, †0 and †00 are, respectively, the connected components of †g nP separated
from P by a1, a2 and a1a˙12 , then we cannot have †0 ¤†00, for otherwise a1 or a2 would be separating.
Hence, there exists a curve b such that a1� b� a2 is a path in G1.

Observation 2.3 Let a, b and a0 be such that i.a; b/D˙1 and i.a0; b/D˙1. Then .a; b/ and .a0; b/
lie in the same connected component of the graph G0 from Lemma 2.1.

Proof Let� denote the equivalence relation on vertices ofG0 of being in the same connected component.
Let a; b; a0 be as in the statement of the observation, and let N be the (geometric) minimum number
of disjoint intersections, besides the basepoint, between the based curves a and a0. We will proceed
by induction on N , starting with the base case N D 0. In this case i.a; a0/ 2 f0;˙1g. If i.a; a0/ D 0,
then .a; b; a0/ is a 3–chain and .a; b/ � .b; a0/. If i.a; a0/ D ˙1, then for some � 2 f�1; 1g, we have
i.b�a; a0/D 0 (this is seen by looking at a neighborhood of the basepoint), hence .b�a; b; a0/ is a 3–chain
and .b�a; b/ � .b; a0/. Now .b�a; b/ � .a; b/, because there exists a curve c such that .b�a; b; c/ and
.a; b; c/ are both 3–chains. This proves the base case.

Now, suppose N � 1. Orient the curves a and a0 so that their tangent vectors at t D 0 are on the same
side of b at the basepoint. Let .x1; : : : ; xN / be the intersection points of a and a0, as ordered along the
path a. Let a00 be the path obtained from following a0 until we hit xN (actually, any of the xi would do),
and then following the end of the path a. Then we have i.a; b/D˙1, i.a0; b/D˙1, i.a00; b/D˙1 and
the intersections of a and a0 with a00 outside the basepoint are strictly less than N ; this concludes our
induction.

Proof of Lemma 2.1 Let .a; b/ and .c; d/ be such that i.a; b/ D ˙1 and i.c; d/ D ˙1. There
exists a path between b and c in G1, which can be extended to a path 1 � 2 � � � � � n in G1 with
.a; b; c; d/D .1; 2; n�1; n/. By Observation 2.3, for all j 2 f1; : : : ; n� 2g, .j ; jC1/ is connected
to .jC1; jC2/ in G0, hence .a; b/ is connected to .c; d/.

Finally, we will also use the following easy variation of Lemma 2.1.

Lemma 2.4 Let G denote graph whose vertices are the pairs .a; b/2�2g with i.a; b/D˙1, with an edge
between two pairs .a; b/ and .b; c/ whenever .a; b; c/ is a completable 3–chain. Then G is connected.

Proof First, observe that whenever T .a; b/ and T .c; d/ are disjoint, .a; b/ and .c; d/ are in the same
connected component of G. Now, observe that if .a; b; c/ is a directed 3–chain, then it is completable
if and only if ca is nonseparating. (The reader may find it helpful to draw a picture.) It follows that, if
.a; b; c/ is a noncompletable 3–chain in †g , then there exists a pair .d; e/ such that a; b; c do not enter
T .d; e/. Hence, .a; b/ and .b; c/ are connected to .d; e/ in G, and it follows that G is connected.
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2.2 Actions on the circle

2.2.1 Basic dynamics of circle homeomorphisms We quickly review some definitions for the purpose
of setting notation. For more detailed background on this material, the reader may consult [12; 24; 13; 31]
for example.

We denote by HomeoZ.R/ the group of homeomorphisms of R commuting with translation by 1; we
have a natural central extension

Z! HomeoZ.R/! HomeoC.S1/:

The translation number (or rotation number) of an element f 2 HomeoZ.R/ is defined as

frot.f / WD lim
n!1

f n.0/

n
2R;

and the Poincaré rotation number of an element f 2HomeoC.S1/ is defined as rot.f / WDfrot. zf / mod Z,
where zf is any lift of f .

We assume the reader is familiar with these invariants, and with their essential properties. Those that we
will use most frequently are that rot and frot are homomorphisms when restricted to abelian (eg cyclic)
subgroups, that rot.f / D p=q 2 Q mod Z in reduced form if and only if f has a periodic orbit of
period q, and that frot, and hence rot, are invariant under semiconjugacy. (The definition of semiconjugacy
is recalled in Section 2.3, where we will be using it.)

We denote by Per.f /D fx 2 S1 j f n.x/D x for some n 2 Z�f0gg the set of periodic points of f . If
nD 1, we also denote this by Fix.f /. For zf 2 HomeoZ.R/, we use Per. zf / to denote the set of all lifts
of points of Per.f / to R.

For f 2 HomeoC.S1/ with Per.f / ¤ ∅, let q.f / denote the smallest positive integer such that
Fix.f q.f //¤∅, and let p.f / be the least nonnegative integer such that f has rotation number equal to
p.f /=q.f / mod Z.

Define an attracting periodic point for f to be a point x 2 Per.f / with a neighborhood I of x such that
f nq.f /.I /! x as n!1. A repelling periodic point of f is defined as an attracting periodic point
of f �1. The sets of attracting and repelling periodic points will be denoted by PerC.f / and Per�.f /,
respectively.

2.2.2 One-parameter families and bending deformations Let  2�g be a based, simple loop. Cutting
†g along  decomposes �g into an amalgamated product �g D A�hiB , or an HNN-extension A�hi,
depending on whether  is separating.

In both cases, if � W �g ! HomeoC.S1/ is a representation and if .t /t2R is a continuous family of
homeomorphisms commuting with �./, we may define a deformation of �, as follows. If  is separating
and �g D A �hi B , we define �t to agree with � on A, while setting �t .ı/D t�.ı/�1t for all ı 2 B .
If  is nonseparating, we may write a1D  and complete it into a standard generating system .a1; : : : ; bg/,
and set �t to agree with � on all the generators except b1, and put �t .b1/D t�.b1/.
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In both cases, we call this deformation a bending along  . These types of deformations were used by
Thurston in order to parametrize quasi-Fuchsian representations of surface groups (he actually used more
general bendings, as here we bend only along one simple curve). At the level of the representations,
this is made explicit for example in [18], and this is the source of our inspiration. Some of our results
involving bendings, especially in Section 4, can also be compared to the classical Baumslag’s lemma
[3, Proposition 1] and its usage in [4] or [20].

Most of the time (but not all) we will use these bendings with a one-parameter group t , ie a morphism
R! HomeoC.S1/, t 7! t , as provided by Lemma 2.7 below. In the special case when �./ D 1,
then the deformation defined above, at t D 1, is the precomposition of � with ��, where � is the Dehn
twist along  . However, for a Dehn twist to make sense as an automorphism of � (not up to inner
automorphisms), we will use the following convention.

Convention 2.5 Suppose we are given a directed k–chain .1; : : : ; k/, and wish to write a Dehn twist
along the loop i . Then we will always do so by pushing i outside the basepoint in such a way that it
intersects only i�1 and iC1 (if these curves exist) in a neighborhood of the chain. Accordingly, if �
is a given representation and  ti is a one-parameter family commuting with �.i /, then the deformation
leaves j unchanged for jj � i j � 2 and j D i , and changes �.i�1/ into �ti �.i�1/ and �.iC1/ into
�.iC1/

t
i .

Not all elements of HomeoC.S1/ embed in a one-parameter subgroup. In fact, if rot.f / is irrational,
then f embeds in such a subgroup if and only if the action of f is minimal, in which case f is conjugate
to a minimal rotation. However, elements with rational rotation number do have large centralizers, giving
us some flexibility in the use of bending deformations. We formalize this in the next lemma. Here, and
later on, it will be convenient to fix a section of HomeoC.S1/ in HomeoZ.R/.

Notation 2.6 For f 2HomeoC.S1/, let yf 2HomeoZ.R/ be the (unique) lift of f with frot. yf / 2 Œ0; 1/;
we will call it the canonical lift of f . Later, we will also need to refer to the lift of f with translation
number in .�1; 0�, this we denote by {f . Note that yf �1 D zf �1.

Lemma 2.7 (positive one-parameter families) Let f 2 HomeoC.S1/ have rational rotation number ,
and suppose Per.f /¤ S1. Then there exists a one-parameter group .ft /t2R, which commutes with f ,
such that for all t ¤ 0, Fix.ft /D @Per.f /, and for all t > 0 and x 2R n @Per. zf /, we have yft .x/ > x.

Here and in what follows, @X denotes the frontier of a subset X of R or S1.

Proof The set S1 n @Per.f / consists of a union of open intervals permuted by f . Choose a single
representative interval I˛ from each orbit. Note that f q.f /.I˛/ D I˛ for any such interval, and the
restriction of f q.f / to S1nPer.f / is either fixed-point free or the identity. Thus, we may identify each I˛
with R such that f q.f /, in coordinates, is x 7! xCC for some C 2 f�1; 0; 1g. Define st on I˛ to be
x 7! xC t . Since these I˛ are in different orbits of the action of f on S1, we may extend st equivariantly
to a one-parameter family of homeomorphisms of S1.
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In all the rest of this text, if f 2 HomeoC.S1/, any family ft as in Lemma 2.7 will be called a positive
one-parameter family commuting with f , or simply a positive one-parameter family if f is understood.

2.2.3 Periodic sets under deformations We now make some observations on how periodic sets change
under bending deformations using positive one-parameter families. The main application of these comes
in Section 5.2, but they will also make a few earlier appearances.

Let f and g 2 HomeoC.S1/ have rational rotation numbers. It follows immediately from the definition
of canonical lift that

x 2 Per. yf / () yf q.f /.x/D xCp.f /:

Let ft be a positive one-parameter family commuting with f . Let gt WD ft ıg, and let zgt D yft ı yg. Note
that zgt D ygt , provided the rotation number of gt is constant as t varies.

For all .x; t1; : : : ; tq.g// 2 S1 �Rq.g/, we set

�f;g.x; t1; : : : ; tq.g//D zgtq.g/
ı � � � ı zgt1.zx/� zx�p.g/;

ıf;g.x; t/D�f;g.x; t; : : : ; t /D .zgt /
q.g/.zx/� zx�p.g/:

This does not depend on the lift zx 2R of x, but does depend on the choice of the one-parameter family ft
(so we are somewhat abusing notation). Further, we set

P.f; g/D fx 2 S1 j ıf;g.x; t/D 0 for all t 2Rg;

N.f; g/D fx 2 S1 j ıf;g.x; t/¤ 0 for all t 2Rg;

U.f; g/D fx 2 S1 j there exists a unique t 2R such that ıf;g.x; t/D 0g:

Unlike ıf;g , these sets do not depend on the choice of the positive one-parameter family (provided that it
is chosen as in Lemma 2.7).

Assuming rot.gt / is constant, then P.f; g/ D
T
t2R Per.gt / is the set of persistent periodic points;

N.f; g/ is the set of points that are never periodic for any gt , and U.f; g/ is the set of points that lie in
Per.gt / for a unique time t .

Let Tf;g W U.f; g/! R be the map that assigns to each x 2 U.f; g/ the unique time t 2 R for which
ıf;g.x; t/D 0.

Lemma 2.8 Suppose gt has constant rotation number. Then we have the following properties.

(1) The set P.f; g/ is closed ; moreover ,

P.f; g/D Per.g/\
q.g/�1\
kD0

gk.@Per.f //I

in particular , if rot.f /D 0 then every element of P.f; g/ has a finite orbit under the group hf; gi.

(2) The sets P.f; g/, N.f; g/ and U.f; g/ partition the circle.
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(3) The set U.f; g/ is open , and the map Tf;g W U.f; g/!R is continuous.

(4) For any ">0, there exists t0 such that Per.ft ıg/ lies in the "–neighborhood of P.f; g/[@N.f; g/
for all t > t0.

Proof By construction, the map�f;g.x; � / is (separately, in each variable tj ) constant if zgtj�1
ı� � �ızgt1.zx/

is in @Per.f /, and is strictly increasing otherwise. Monotonicity implies that the subsets �f;g.x;Rq.g//
and ıf;g.x;R/ of R coincide. The affirmations .1/ and .2/ are easy consequences of these observations.
Let us prove .3/. Let x0 2U.f; g/, and write t0D T .x0/, so ı.x0; t0/D 0. Fix " > 0. Since x0 2U.f; g/,
we have ı.x0; t0C "/ > 0, and ı.x0; t0� "/ < 0. Since the maps x 7! ı.x; t0C "/ and x 7! ı.x; t0� "/

are continuous, there exists � > 0 such that for all x 2 .x0 � �; x0C �/, we have ı.x; t0C "/ > 0 and
ı.x; t0 � "/ < 0. Thus, for each x 2 .x0 � �; x0C �/, the map t 7! ı.x; t/ takes positive and negative
values, hence has a (unique) zero in the interval .t0�"; t0C"/. In other words, .x0��; x0C�/�U.f; g/,
and for all x 2 .x0� �; x0C �/, we have jT .x/�T .x0/j< ".

For statement (4), fix " > 0. Let I1; : : : ; In denote the (finitely many) connected components of U.f; g/
of length > ". Let K �U.f; g/ be the set of points of U.f; g/ that are at distance at least " from P [@N .
Then, K �

S
i Ii , and it follows that K is compact. Since T is continuous, its restriction to K takes

values in some segment Œ�t0; t0�, this gives the t0 from the statement.

The next proposition describes the topology of the sets P.f; g/, N.f; g/ and U.f; g/ in more detail.

Proposition 2.9 Suppose gt has constant rotation number. Then all accumulation points of @N.f; g/ lie
in P.f; g/.

The bulk of the proof of this is accomplished by the following lemma.

Lemma 2.10 Let x0 2 S1 n Per.g/, and suppose there exists uk 2 U.f; g/ converging to x0 from the
right. Then there exists " > 0 such that .x0; x0C "/� U.f; g/.

Of course the symmetric statement, with sequences converging to x0 from the left, holds as well, with a
symmetric proof.

Proof Let x0 … Per.g/, so we have d WD d.x0; gq.g/.x0// > 0, and suppose some sequence uk 2U.f; g/
converges to x0 from the right. First, we claim that there exists some j 2 f1; : : : ; q.g/g such that gj .x0/
is not accumulated on the right by points of @Per.f /.

To prove the claim, suppose for contradiction that for all j 2 f1; : : : ; q.g/g, gj .x0/ is accumulated
on the right by @Per.f /. Choose zq.g/ 2 @Per.f /\

�
gq.g/.x0/; g

q.g/.x0/C
1
2
d
�

and, inductively for
j D q.g/�1; q.g/�2; : : : ; 1, define zj 2 @Per.f /\ .gj .x0/; g�1.zjC1// for j 2 f1; : : : ; q.g/�1g, and
set ı D g�1.z1/� x0. Then, for all t > 0, we have .ftg/j .x0; x0C ı/� .gj .x0/; zj /, hence

.ftg/
q.g/.x0; x0C ı/�

�
gq.g/.x0/; g

q.g/.x0/C
1
2
d
�
:
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Now let k � 0 be such that uk 2 .x0; x0C ı/. Choose y1 2 .g.x0/; g.uk//\ @Per.f / and, inductively
for j � 2, choose yj 2 .gj .x0/; g.yj�1//\ @Per.f /. Then we have .ftg/q.g/.uk/ 2 .yq.g/; zq.g// for
all t 2 R, hence .ftg/q.g/.uk/ 2

�
gq.g/.x0/; g

q.g/.x0/C
1
2
d
�
; this contradicts that uk 2 U.f; g/, and

proves the claim.

Let j be the minimum element of f1; : : : ; q.g/g such that gj .x0/ is not accumulated on the right by
points of @Per.f / (ie satisfying the claim above), and let y be such that .gj .x0/; y�� S1 n @Per.f /. Let
k be large enough that g ı .ft ı g/j�1.uk/ 2 .gj .x0/; y� holds for all t 2 R. (Such k exists using the
argument above, since gi .x0/ is accumulated on the right by @Per.f / for all i < j .) Let z 2 .x0; uk/.
We will now show that z 2 U.f; g/.

Since ft acts transitively on .gj .x0/; y�, for T sufficiently large we have

fT ıg ı .fT ıg/
j�1.z/ > g ı .fT ıg/

j�1.uk/:

If T > T .uk/, this guarantees that ıf;g.z; T / > 0. Similarly, if T 0 is small enough, we will have
fT 0 ıg ı .fT 0 ıg/

j�1.z/ < g ı .fT ıg/
j�1.uk0/ for any given uk0 2 .x0; z/, and choosing T 0 < T.u0

k
/

ensures that ıf;g.z; T 0/ < 0. This shows that z 2 U.f; g/, as desired.

Proof of Proposition 2.9 Let x0 be an accumulation point of @N.f; g/. If x0 … Per.g/, then by
Lemma 2.10, on any side of x0 containing a sequence of points in @N.f; g/, there is a neighborhood
of x0 containing no points of U.f; g/. Since P.f; g/;N.f; g/ and U.f; g/ partition S1, it follows that
there is also a sequence of points in P.f; g/ approaching x0 from this side. Since P.f; g/ is closed,
x0 2 P.f; g/� Per.g/, a contradiction.

It follows that x0 2 Per.g/. If also x0 … P.f; g/, then x0 2 U.f; g/ since x0 is a periodic point for
f0 ıg D g. But U.f; g/ is open, a contradiction.

All the discussion above describes the variation of Per.g/ upon deforming g by composition with ft on
the left. However, one may equally well replace g by gft and define sets P , N and U with the same
properties — indeed, replacing g by gft is equivalent to replacing g�1 by f�tg�1. There is no reason
to privilege left-side deformations in the definition of bending, and we will occasionally make use of
deformations on the right.

2.3 The character space for HomeoC.S1/

Following [12], for a group � , two homomorphisms �1 and �2 2 Hom.�;HomeoZ.R// are said to be
semiconjugate3 if there exists a monotone (possibly noncontinuous or noninjective) map h W R! R

such that h.xC 1/D h.x/C 1 for all x 2R, and h ı �1./D �2./ ı h for all  2 � . Similarly, �1 and

3Note that this definition is not the usual notion of semiconjugacy from topological dynamical systems (eg as in [19]), which is
not a symmetric relation.
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�2 2Hom.�;HomeoC.S1// are semiconjugate if there is such a map h WR!R such that for all  , there
are lifts A�1./ and A�2./ 2 HomeoZ.R/ which are semiconjugate by this map h. Ghys [12] proved that,
under this definition, semiconjugacy is an equivalence relation. Note that this is particular to actions
on S1 and does not agree with the usual definition of semiconjugacy from topological dynamics.

In [6, Section 1], Calegari and Walker describe an analogy between rotation numbers of elements of
HomeoC.S1/ and characters of linear representations. Much as characters capture the dynamics of a
linear representation; rotation numbers capture representations up to semiconjugacy:

Theorem 2.11 (Ghys [12], Matsumoto [27]) Let � be any group , and let S be a generating set for� .
For f; g 2HomeoC.S1/, define �.f; g/ WDfrot. zf zg/�frot. zf /�frot.zg/ for any lifts zf and zg 2HomeoZ.R/.
With this notation , two representations �1 and �2 in Hom.�;HomeoC.S1// are semiconjugate if and
only if the following two conditions hold :

(i) rot.�1.s//D rot.�2.s// for each s 2 S .

(ii) �.�1.a/; �1.b//D �.�2.a/; �2.b// for all a and b in � .

We observe here that one can recover Calegari and Walker’s analogy from our more general definition of
character spaces for arbitrary groups. For a topological group G, recall that X.�;G/ denotes the largest
Hausdorff quotient of Hom.�;G/=G. Let G ==G denote the space X.Z; G/; then there is, for each  2 �
a natural, continuous map X.�;G/! G ==G, which sends the class of a representation � to the class
of �./. For example, when G D SL.2;C/, these are precisely the trace functions. The next proposition
says that when G D HomeoC.S1/, these are the rotation numbers, and the space X.�;G/ is, as a set,
exactly the set of semiconjugacy classes of representations.

Proposition 2.12 Let � be a group. Representations �1; �2 2 Hom.�;HomeoC.S1// are semiconjugate
if and only if they are equivalent in X.�;HomeoC.S1//.

Following this analogy, the “character variety” for HomeoC.S1/ not only comes with its “ring of functions”
(the rotation number functions), but with an underlying topological space as well. This gives the most
natural setting to speak of rigidity, or to study the global topology of the space of representations.

We defer the proof of Proposition 2.12 in order to make some preliminary observations. The first is
the important remark that Proposition 2.12 has no analog in HomeoC.R/— a group may have many
dynamically distinct actions on the line, but the character space is a single point:

Proposition 2.13 For any discrete group � , the space X.�;HomeoC.R// consists of a single point.

Proof Let � 2 Hom.�;HomeoC.R//. Let S be a finite, symmetric subset of � . Given " > 0, we will
conjugate � so that j�.s/.x/� xj < " holds for all s 2 S and x 2 R, hence show that conjugates of �
approach the trivial representation in the compact-open topology.
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As a first case, assume also that the subgroup generated by S has no global fixed points in R. Then
define h.0/ D 0, and iteratively, for n 2 Z define h

�
1
2
n"
�
D maxs2S s

�
h
�
1
2
.n � 1/"

��
if n > 0, and

h
�
1
2
n"
�
Dmins2S s

�
h
�
1
2
.nC1/"

��
if n < 0. Extend h over the interior of each interval

�
1
2
n"; 1

2
.nC1/"

�
as an affine map. Since S has no global fixed point, this map h is surjective, hence it is an orientation-
preserving homeomorphism. Furthermore, we have hsh�1

�
1
2
n"
�
2
�
1
2
.n� 1/"; 1

2
.nC 1/"

�
for all s 2 S .

Thus, jhsh�1.x/� xj< " holds for all x 2R.

If instead the subgroup generated by S does have a global fixed point, we may define h to be the identity
on the set F of global fixed points, and define it as above on each connected component of R nF .

Recall that the action of any group on S1 is either minimal, or has a finite orbit, or has a closed, invariant
set (called the exceptional minimal set) homeomorphic to a Cantor set, on which the restriction of the
action is minimal. The following is an easy consequence of the definition of semiconjugacy, which we
will use in the proof of Proposition 2.12.

Observation 2.14 Every action �1 with an exceptional minimal set is semiconjugate to a minimal
action �2, by a continuous map h satisfying hı�1./D �2./ıh. Furthermore , if �2 is minimal , and �1
arbitrary, then any h satisfying this equation is necessarily continuous. In particular , a semiconjugacy h
between two minimal actions is invertible , and hence a conjugacy.

Proof of Proposition 2.12 For one direction, it suffices to prove that the quotient of the space
Hom.�;HomeoC.S1// by semiconjugacy is Hausdorff. This follows from Theorem 2.11, since the
maps rot and � in the theorem are continuous, well defined on semiconjugacy classes, take values in the
(Hausdorff) spaces S1 and R, and distinguish semiconjugacy classes.

For the converse, if � has a finite orbit, then we can employ a similar strategy to the proof of Proposition 2.13
to conjugate it arbitrarily close to an action on the circle by rigid rotations. Hence, there is a unique
element of the character space corresponding to the semiconjugacy class of �.

Now suppose instead that � has an exceptional minimal set. By Observation 2.14 there is a minimal
action �0 and continuous map h such that each  2 � has lifts satisfying

A�0./ ı hD h ı e�./
as in the definition of semiconjugacy. Let S be a finite subset of � , and fix " > 0. Let ı 2 .0; "/ be small
enough that for all s 2 S and all x; y 2 S1, jx�yj< ı implies j�0.s/.x/� �0.s/.y/j< ".

Since h is continuous and commutes with x 7! x C 1, we can approximate it by a homeomorphism
h0 2HomeoZ.R/ at C 0 distance at most ı from h. Let s 2 S and x 2R, and take the lifts e�0.s/ and e�.s/
as above. Then we have

je�0.s/.x/� e�0.s/ ı .h ı h0�1/.x/j< " and jh ıe�.s/ ı h0�1.x/� h0 ıe�.s/ ı h0�1.x/j< ";
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hence the definition of semiconjugacy and the triangle inequality gives

je�0.s/.x/� h0 ıe�.s/ ı h0�1.x/j< 2":
This proves that every representation without finite orbit is weakly conjugate to the minimal representation
in its semiconjugacy class.

We conclude this section with two observations and a short lemma that will be useful later on. The
observations are simple consequences of Observation 2.14.

Observation 2.15 Let �2 2 Hom.�;HomeoC.S1// be minimal , and let �1 be any action which is
semiconjugate to �2 (as in Observation 2.14). Then for any  2 � , we have Per.�2.//D hPer.�1.//,
and hence jPer.�2.//j � jPer.�1.//j.

Observation 2.16 Suppose that � is minimal and path-rigid , and let a and b satisfy i.a; b/D�1 and
rot.�.b// 2Q. Since �.bq.b// lies in a one-parameter family , there is a bending deformation replacing
�.a/ with �.bNq.b/a/ for any N 2 Z, which is realized by precomposition with a Dehn twist (see
Section 2.2.2). Thus the new representation has the same image as �; in particular it is minimal , hence
conjugate to �.

Lemma 2.17 Let f; g 2 HomeoC.S1/ be two homeomorphisms with rational rotation number. The
property that f and g share a periodic point depends only on the semiconjugacy class of hf; gi.

Proof For f1; : : : ; fn2HomeoC.S1/, let �.f1; : : : ; fn/Dfrot. zfnı� � �ı zf1/�
P
ifrot. zfi /, which obviously

does not depend on the choices of lifts. Note that

�.f1; : : : ; fn/D �.f1; fn ı � � � ıf2/�

n�1X
jD2

�.fj ; fn ı � � � ıfjC1/;

so this function can be recovered from the two-variable � of Theorem 2.11.

To prove the lemma, we prove the stronger statement that f and g sharing a periodic point is equivalent
to the following assertion:

For any `� 1 and any integers n1; m1; : : : ; n`; m`, we have

�.f n1q.f /; gm1q.g/; : : : ; f n`q.f /; gm`q.g//D 0:

Applying Theorem 2.11 gives the desired conclusion.

The assertion is clearly true if f and g share a periodic point. To prove the converse, suppose that
Per.f /\Per.g/D∅, so S1 n .Per.f /[Per.g// is a union of intervals. As Per.f / and Per.g/ are closed,
disjoint sets, only finitely many of these complementary intervals have one boundary point in each of
Per.f / and Per.g/. Those bounded on the right by a point of Per.f / and at their left by a point of
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Per.g/ alternate with the others (with the roles of right and left reversed), in particular there are an even
number of such complementary intervals. Let I1; : : : ; I2` denote these intervals, in their cyclic order
on the circle, and let Ij D .xj ; yj /. Up to shifting the indices cyclically, we have xi ; yiC1 2 Per.g/ and
xiC1; yi 2 Per.f / for all i even.

Choose a point x in I1. Since the interval .x1; y2/ contains only points of Per.g/, there exists n1 such
that f n1q.f /.x/ 2 I2. Similarly, there exists a power n2 of gq.g/ which maps f n1q.f /.x/ into I3, and
so on for ni , with i > 2. The last operation can be done so that the image of x, under a suitable word
gn`q.g/f n`q.f / � � �gn2q.g/f n1q.f /, lies to the right of x in I1. Then, choosing the canonical lifts of
f niq.f / and gmiq.g/, we observe that �.f n1q.f /; gm1q.g/; : : : ; f n`q.f /; gm`q.g//� 1.

Remark 2.18 In the case Per.f /\Per.g/D∅, the integer ` in the proof above also only depends on � ;
in fact, it is the minimal integer such that there exist mi ; ni 2 Z with

�.f n1q.f /; gm1q.g/; : : : ; f n`q.f /; gm`q.g//� 1:

2.4 The Euler class

Recall that the (integer) Euler class for circle bundles is a generator e (well defined up to sign) of
H 2.HomeoC.S1/IZ/ Š Z; and the Euler number of a representation � W �g ! HomeoC.S1/ is the
integer h��.e/; Œ�g �i, where Œ�g � denotes the fundamental class, ie a generator of H2.�g ;Z/. Under the
correspondence between second cohomology and central extensions, e is represented by the extension
Z! HomeoZ.R/! HomeoC.S1/ described in Section 2.2.1 and hence can be seen as the obstruction
to lifting a representation to HomeoZ.R/.

Although this definition only makes sense for fundamental groups of closed surfaces — a surface with
boundary has free fundamental group, and H2.FnIZ/D 0— there is a relative Euler number for surfaces
with boundary, which is additive when such subsurfaces are glued together. This can be made precise in
the language of bounded cohomology as explained in [5, Section 4.3]. (Compare also Goldman [14] and
Matsumoto [28].) Following [5], we make the following definition.

Definition 2.19 (Euler number for pants) Let P � †g be a subsurface homeomorphic to a pair of
pants; equip it with three based curves a, b and c as in Figure 3. (If P does not contain the basepoint,
choose a path in †g from the basepoint to a chosen point in P , and use it to define the curves a, b and c.)
Let � W �1†g ! HomeoC.S1/, and let e�.a/, e�.b/ be any lifts of �.a/ and �.b/ to HomeoZ.R/, and let
e�.c/D �e�.b/e�.a/��1. Then the contribution of P to the Euler number of � is

euP .�/ WDfrot.e�.a//Cfrot.e�.b//Cfrot.e�.c//:

If the surface†g is cut into pairs of pants, the Euler class of � is the sum of the contributions of these pants.
See [5, Section 4.3] for a detailed discussion, and [25] for a short exposition and proof that this does not
depend on the decomposition. Definition 2.19 extends naturally to one-holed tori: if T D T .a; b/�†g
is a one-holed torus, cutting T along a simple closed curve (say, freely homotopic to a or b) yields the

Geometry & Topology, Volume 28 (2024)



2364 Kathryn Mann and Maxime Wolff

� a

c

b

cba D 1

Figure 3: A pair of pants with standard generators of its fundamental group.

formula euT .�/ Dfrot.e�.b/�1e�.a/�1e�.b/e�.a//, which, in turn, gives Milnor’s classical formula [30],
eu.�/D

Qg
iD1Œ

A�.ai /;A�.bi /�, where .a1; : : : ; bg/ is a standard system of curves, and where the lifts are
taken arbitrarily.

3 A first statement

This section proves the main theorem under a strong additional hypothesis. We will show that if � is
path-rigid and if for every a; b 2�g with i.a; b/D˙1, �.a/ and �.b/ resemble, dynamically, a geometric
representation, then � is in fact geometric. In other words, the local condition that � “looks geometric” on
pairs a; b with i.a; b/D˙1 implies global geometricity. To formalize this, we introduce some definitions.

Definition 3.1 Say that an element f 2 PSLk2.R/ is hyperbolic if its projection to PSL2.R/ is hyperbolic.
Equivalently, all its periodic points are hyperbolic in the sense of classical smooth dynamics.

Definition 3.2 Let a; b2�g and � W�g!HomeoC.S1/. Denote by Sk.a; b/ (the notation � is suppressed)
the property that

(i) i.a; b/D˙1 and �.a/ and �.b/ are each separately conjugate to a hyperbolic element of PSLk2.R/,
and

(ii) their periodic points alternate around the circle, meaning that each pair of points of Per.a/ are
separated by Per.b/, and vice versa.

If all pairs a; b with i.a; b/D˙1 have Sk.a; b/, then we say that � has property Sk .

With this notation we can state the main result of this section.

Theorem 3.3 Let � be a path-rigid , minimal representation , and suppose � satisfies Sk for some k.
Then � is geometric.
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Before embarking on the proof, we discuss some other variations on hyperbolicity to be used later in the
section.

Let f 2HomeoC.S1/. We say that an open interval I � S1 is attracting for f if f .I /� I . We say that
I is repelling for f if it is attracting for f �1. Matsumoto [28] calls homeomorphisms that do not admit
attracting intervals tame. In line with his terminology, we call those homeomorphisms which do savage.
More specifically, we have:

Definition 3.4 A homeomorphism f 2 HomeoC.S1/ is n–savage if there exist 2n open intervals with
pairwise disjoint closures, indexed in cyclic order by I�1 ; I

C
1 ; : : : ; I

�
n ; I

C
n such that

f

�
S1
/� n[

jD1

I�j

��
D

n[
jD1

ICj :

In this sense, savage means 1–savage.

The next observation is an immediate consequence of the definition; we leave the proof to the reader.

Observation 3.5 If f is n–savage , then f k is also n–savage for any k 2 Z n f0g. Furthermore ,
rot.f n/D 0 and f has at least one periodic point in each interval ICj and I�j .

As a concrete example, note that if f is conjugate to a hyperbolic element in PSLk2.R/, then f is n–savage
for n� k.

The intervals ICj and I�j in the definition of savage are by no way unique, but it will be convenient to
use the notation IC.f / WD

Sn
jD1 I

C
j and I�.f / WD

Sn
jD1 I

�
j , even if these sets depend on choices. We

also set I.f / WD IC.f /[ I�.f /.

Definition 3.6 Two n–savage homeomorphisms f; g 2 HomeoC.S1/ are in n–Schottky position if their
respective attracting and repelling intervals I˙j can be chosen so that I.f / and I.g/ have disjoint closures.

Note that, if f and g are n–Schottky, then f �1 and g are n–Schottky as well. Note also that the condition
Sk.a; b/ is not equivalent to k–Schottky, although Sk.a; b/ does imply that aN and bN are k–Schottky
for sufficiently large N. We will prove however that hypothesis Sk on a path-rigid representation � implies
that a and b are indeed k–Schottky whenever i.a; b/D˙1.

3.1 Outline of proof of Theorem 3.3

We start in Section 3.2 with a series of lemmas that use rigidity and property Sk to show the cyclic order
of periodic points of various nonseparating curves agrees with that of a geometric representation, and that
certain pairs of curves are k–Schottky. Following this, we show in Section 3.3 that the Euler number of a
path-rigid, minimal, Sk representation agrees with a geometric one, ie is equal to ˙.2g� 2/=k. From
there, we need to improve this essentially combinatorial result to the fact that the representation is actually
geometric. Our main tool is existing work of Matsumoto on basic partitions.
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We are now ready to embark on the proof. Throughout, we make the following assumption.

Assumption 3.7 For the rest of this section, � denotes a path-rigid minimal representation of �g that
satisfies Sk . To simplify notation, we often omit �, identifying a 2 �g with �.a/ 2 HomeoC.S1/. Thus,
we will speak of Per.a/, denote an attracting point of �.a/ by aC, etc.

3.2 Order of periodic points

Property Sk makes it much easier to understand periodic points under deformations. We start with several
lemmas to this effect.

Lemma 3.8 Let i.a; b/ D 1, let F � S1 be a countable set , and let bt be a positive one-parameter
family commuting with b D �.b/. Then for some t 2R, we have Per.bt�.a//\F D∅.

Proof We use the notation from Section 2.2.3. Path-rigidity of � implies that rot.bta/ is constant, and
Property Sk and Lemma 2.8 implies that P.b; a/D∅, so we need only worry about points in U DU.b; a/.
Thus, provided t … Tb;a.F /, we have Per.bta/\F D∅.

Lemma 3.9 (disjoint curves have disjoint Per) Let .a; b; c/ be a completable directed 3–chain. Then
Per.a/\Per.c/D∅. In fact , Per.c/\ bn.Per.a//D∅ for all n 2 Z.

Proof Fix n 2N. Complete .a; b; c/ to a directed 4–chain .a; b; c; d/, and apply a bending deformation
replacing c with dtc (leaving the action of a and b unchanged, hence bn Per.a/ unchanged), for a positive
family dt . By Lemma 3.8, there is some t such that Per.dtc/\ bn Per.a/ D ∅. Now the conclusion
follows from path-rigidity of �, together with Lemma 2.17.

Note that, if i.a; b/D˙1, then for any n2Z we also have i.bna; b/D˙1, hence Sk.bna; b/ holds. The
next lemma describes the position of the periodic points of Sk.bna; b/ for large n. This is particularly
useful since there exist bending deformations replacing the pair a; b with bna; b provided that q.b/
divides n; see Observation 2.16.

Lemma 3.10 (movement of Per by bending) Suppose i.a; b/D˙1. Then as N !C1, the points
of PerC.bNa/ approach PerC.b/, and Per�.bNa/ approaches a�1 Per�.b/; similarly, as N ! �1,
PerC.bNa/ approaches Per�b and Per�.bNa/ approaches a�1 PerC.b/.

Proof When a�1 Per.b/\Per.b/D∅, the conclusion of the lemma is an easy exercise. We claim that
path-rigidity of � implies this extra provision. To see this, suppose for example that i.a; b/D 1, and let
.c; a; b/ be a completable directed 3–chain. By Lemma 3.9, Per.c/\Per.b/D∅. Thus, we can make a
positive bending deformation replacing a with act , until .act /�1 Per.b/\Per.b/D∅.

Notation 3.11 Let f and g be homeomorphisms of S1. When talking about cyclic order of periodic
points, we use the notation ..f C; gC; g�; f �//k to mean that, in cyclic order, there is one attracting
point for f , followed by an attracting point for g, followed by a repelling point for g, followed by an
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attracting point for f , with this pattern repeating k times. The notation f ˙ means any point from Per.f /.
We also use other obvious variations, such as ..f ˙; g�; f ˙; gC//k , and extend this naturally to periodic
points of three or more homeomorphisms.

When such a cyclic order is given, we call an interval I � S1 of type .f C; g�/ if it is bounded on the
left (proceeding anticlockwise, using the natural orientation of S1) by a point of PerC.f / and on the
right by a point of Per�.g/, and if it does not contain a proper subinterval with this property. We also use
other obvious variations.

Lemma 3.12 (periodic points of 3–chains) Let .a; b; c/ be a completable directed 3–chain. Then , up
to reversing the orientation of the circle , the periodic points of a, b and c come in the cyclic order

..a�; b�; aC; c˙; bC; c˙//k :

Proof Up to reversing orientation of S1, we may suppose that the cyclic order of points in Per.a/[Per.b/
is ..a�; b�; aC; bC//k . Choose two consecutive points of Per.b/ (in cyclic order), and denote these by
b� and bC. Let aC be the point of Per.a/ between b� and bC, and let c˙ be the periodic point of c in
this interval (there is exactly one by hypothesis Sk). The points of Per.a/ in the interval .b�; bC/ are in
cyclic order .b�; aC; bq.b/.aC/; bC/.

By Lemma 3.9, c˙ cannot be equal to aC or bq.b/.aC/. Suppose for contradiction that c˙ lies in the
interval .b�; aC/, or in the interval .bq.b/.aC/; bC/. Then the closed segment ŒaC; bq.b/.aC/� does
not contain any periodic point of c. Let .ct /t2R be a positive one-parameter family commuting with c,
and use this to perform a bending along c as in Section 2.2.3. Using the notation from this section, we
have ıc;b.aC; 0/ > 0, but for t sufficiently negative, we have �c;b.aC; 0; : : : ; 0; t/ < 0. Thus, for some
t0 < 0, we have ıc;b.aC; t0/D 0, ie aC 2 Per.ct0b/\ Per.a/. This, together with Lemma 2.17 and the
path-rigidity of �, yields a contradiction.

The same argument applies to an interval of the form .bC; b�/, where bC and b� denote two other
consecutive points of Per.b/. In that case, the argument shows that the (unique) periodic point of c in this
interval lies between points of the form bq.b/.a�/ and a�, proving the lemma.

In particular, for all pairs a; c 2 �g such that there exists a completable 3–chain .a; b; c/, Lemma 3.12
provides information about the periodic sets of a and c.

Corollary 3.13 Let a and c be two nonseparating curves with i.a; c/D 0, and suppose c is not conjugate
to a or a�1. Then their periodic points are in cyclic order ..a˙; a˙; c˙; c˙//k .

Proposition 3.14 Since c is not conjugate to a˙1, we may find b such that .a; b; c/ is a completable
directed 3–chain. Then , up to reversing the orientation of the circle , the periodic points of a, b and c and
the b–preimages of Per.c/ are in cyclic order

..a�; b�1.c˙/; b�; b�1.c˙/; aC; c˙; bC; c˙//k :
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Proof of Proposition 3.14 Apply a bending deformation of � replacing b with cNq.c/b, and leaving
the action of c and a unchanged. By Lemma 3.10, for N sufficiently large, Per�.cNq.c/b/ approaches
b�1 Per�.c/, and Per�.c�Nq.c/b/ approaches b�1 PerC.c/. Since � is path-rigid, the cyclic order of
periodic points is invariant under these deformations, hence the points b�1.c˙/ all must lie in intervals
of type .a�; aC/.

Now up to replacing c with c�1 (its orientation is unimportant in this proof) we may assume that the
order of periodic points given by Lemma 3.12 is ..a�; b�; aC; cC; bC; c�//k . Then b�1 Per�.c/ lies in
the intervals of type .bC; b�/, as b preserves these intervals. Thus, points of b�1 Per�.c/ are between
consecutive points of Per�.a/ and Per�.b/. Similarly, the points b�1.cC/ are between consecutive points
of the form b� and aC.

The following variation is proved using the same style of argument.

Lemma 3.15 Let a; b; c 2 �g be three nonseparating curves such that i.a; b/ D �1 and c is disjoint
from T .a; b/. Up to reversing the orientation of S1, we may suppose that the periodic points of a and b
are in the order ..a�; bC; aC; b�//k . Then the periodic points of c all lie in intervals of type .b�; a�/.

Note that the order in which we prefer to take the periodic points of a and b is different here than in the
two preceding statements, because here i.a; b/D�1.

Proof Similar to the proof of Proposition 3.14, we perform bending deformations. Since � is path-rigid,
the cyclic order of periodic points does not change after the bending deformation replacing b with aNq.a/b
(leaving a and c unchanged). The effect of these deformations is to push PerC.b/ as close as we want
to either PerC.a/ or Per�1.a/. Applying Lemma 3.10 as in the proof of Proposition 3.14 shows that
periodic points of c cannot be in the intervals of type .a�; bC/ or .bC; aC/; as the argument is entirely
analogous, we omit the details. The same argument again using the deformation replacing a by bNq.b/a
shows that the periodic points of c cannot be in the intervals of type .aC; b�/, either.

Proposition 3.16 Let a and c be two nonseparating curves with i.a; c/ D 0, and suppose c is not
conjugate to a or a�1. Then �.a/ and �.c/ are in k–Schottky position.

Proof Up to changing the orientation of c, we may choose nonseparating curves b and d such that
.a; b; c; d/ is the beginning of a standard basis of �1†g .

Using a deformation as in Lemma 3.9, path-rigidity of � implies that the points of Per�.d/, c�1 PerC.d/,
Per�.b/ and a�1 PerC.b/ are all distinct. Fix small disjoint neighborhoods UC of Per�.d/, U� of
c�1 PerC.d/, and also V C of Per�.b/, and V � of a�1 PerC.b/.

By Lemma 3.10, d�nq.d/c.S1 nU�/� UC and b�nq.b/a.S1 nV �/� V C if n is large enough, so we
may find 2k disjoint attracting and repelling intervals for d�nq.d/c and b�nq.b/a as in the definition of
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k–Schottky. Now there exists a bending deformation that replaces c with d�nq.d/c and a with b�nq.b/a,
and it follows from Observation 2.16 that this deformation is conjugate to the original action. Thus,
a and c are k–Schottky.

Proposition 3.17 Let a and c be two nonseparating curves with i.a; c/D˙1. Then �.a/ and �.c/ are in
k–Schottky position.

Proof Choose b and d so that .b; a; c; d/ is a 4–chain. Now follow the proof above.

From Proposition 3.16 we deduce an enhanced version of Lemma 3.12.

Proposition 3.18 Let .a; b; c/ be a completable directed 3–chain. Then , up to reversing the orientation
of the circle , the periodic points of a, b and c are in cyclic order ..a�; b�; aC; c�; bC; cC//k .

Proof By Lemma 3.15, we need only discard the possibility that the order is ..a�; b�; aC; cC; bC; c�//k .
Suppose for contradiction that this order does hold. By Proposition 3.16, we know that a and c each
have 2k intervals as in Definition 3.4, with pairwise disjoint closures. As jPer.a/j D jPer.c/j D 2k, each
of these intervals contains exactly one periodic point, so their cyclic order is specified by the order of
periodic points given above.

Note that ca is nonseparating, as the 3–chain .a; b; c/ is completable. Also, �.ca/ is k–savage, and we
may take I�.ca/� I�.a/ and IC.ca/� IC.c/. With the same argument as above, �.ca/ has exactly
one repelling periodic point in each interval of I�.ca/, and one attracting periodic point in each interval
of IC.ca/.

If Per.b/ is disjoint from I�.a/[IC.c/, then this is enough to imply that the periodic points of ca and b
alternate, contradicting Lemma 3.12, since i.ca; b/D 0. Thus, it only remains to prove that Per.b/ can
be made disjoint from I�.a/[ IC.c/ to finish the proof. This can be done in the same manner as that of
Proposition 3.16. First, complete .a; b; c/ into a directed 5–chain .˛; a; b; c; /. Then, consider a bending
deformation of �, where b is unchanged but the action of a is replaced by that of a˛Nq.˛/ and the action
of c by Nq./c for N large. By Observation 2.16 this new action is conjugate to �. Now, provided N is
large enough, we can choose our Schottky intervals to be as narrow as we want, around the points ˛�,
a.˛C/, C and c�1.�/ which, using Lemma 3.9, are disjoint from Per.b/.

3.3 Euler number

As a consequence of the work in the previous section, we show that the Euler number of � agrees with a
geometric representation.

Theorem 3.19 Let � be path-rigid , minimal and satisfy Sk . Then jeu.�/j D .2g� 2/=k.

In fact, we will show the following stronger statement, which implies Theorem 3.19 by additivity of the
Euler number on subsurfaces.
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Theorem 3.20 Up to changing the orientation of the circle , for every pair-of-pants subsurface P �†g ,
the relative Euler class of � on P is �1=k.

Definition 3.21 Let i.a; b/D 1. We say that the ordered pair .a; b/ is of type C if the periodic points
of a and b are in the cyclic order ..a�; b�; aC; bC//k . Otherwise, we say that .a; b/ is of type �.

As a consequence of Proposition 3.18, for every oriented, completable directed 3–chain .a; b; c/, the
pairs .a; b/ and .b; c/ have the same type. Thus, Lemma 2.4 implies that all one-holed tori have the same
type. Thus, up to conjugating � by an orientation-reversing homeomorphism, we may suppose the type is
always C.

Proof of Theorem 3.20 We begin by proving the claim for a pair of pants P such that at least two
boundary components of P are nonseparating. Denote by a�1, c�1 and ac the three boundary components
of P , with the convention of Figure 3, and suppose that a and c are nonseparating. With these choices
of orientations, the Euler number of � on P will be equal to frot.yayc/�frot.ya/�frot.yc/, and there exists
a curve b such that .a; b; c/ is an oriented, completable, directed 3–chain — the end of the proof of
Observation 2.2 justifies the existence of such a curve b.

Since .a; b/ is of type C, it follows from Proposition 3.18 that the periodic points of a and c are in
cyclic order ..a�; aC; c�; cC//k ; and by Proposition 3.16, they are in k–Schottky position, with Schottky
intervals I˙j .a/ and I˙j .c/. Lift these to intervals zI˙j .a/ and zI˙j .c/ � R, indexed by integers, and in
order

: : : zI�j .a/;
zICj .a/;

zI�j .c/;
zICj .c/;

zI�jC1.a/; : : :

such that the projection to S1 is given by taking indices mod k. It follows easily from the definition of
Savage (see also Observation 3.5) that ya. zICj .a//� zI

C

jC`
.a/ for some ` (which depends on a) and in this

case `=k Dfrot.ya/. An analogous statement holds also for c; let m=k denote its translation number.

Since a and c are in k–Schottky position, their product ac is k–savage, and we can take I�.ac/D I�.c/
and IC.ac/ � IC.a/. Note that each of the k intervals of IC.ac/ is contained in a different interval
of IC.a/. We now track images of intervals to compare translation numbers. Set the indexing of the
intervals zI˙.ac/ so that zIC1 .a/D zI

C
1 .ac/. This lies between zIC0 .c/ and zI�1 .c/, so we have

c. zIC1 .ac//�
zICm .c/;

and similarly, since zICm .c/ lies between zICm .a/ and zI�mC1.a/, we have

ac. zIC1 .ac//� a.
zICm .c//�

zIC
mC`

.a/D zIC
mC`

.ac/:

Thus, k �frot.yayc/DmC`�1D k �frot.ya/Ck �frot.yc/�1 and hence k.frot.yayc/�frot.ya/�frot.yc//D�1, as
desired.

This implies Theorem 3.19, as we can cut the surface †g into pairs of pants whose boundary components
are all nonseparating.

Geometry & Topology, Volume 28 (2024)



Rigidity and geometricity for surface group actions on the circle 2371

Now, if P is a pair of pants with possibly more than one separating boundary component, then †g nP
admits a pants decomposition whose pants all have at most one separating boundary component. The fact
that the contribution of P to the Euler class of � is �1=k is then a consequence of Theorem 3.19 and the
additivity of the Euler class.

3.4 Basic partitions and combinations

Fix disjoint, nonseparating curves C1; : : : ; C3g�3 so that †g n
�S

i Ci
�

is a disjoint union of pairs of
pants P1; : : : ; P2g�2. For concreteness, the reader may use the decomposition suggested in Figure 4.

We briefly part from the convention for the presentation of �1†g that was given in Section 2.1, and
instead present �1†g as the fundamental group of a graph of groups. Choose basepoints xi 2 Pi and
yj 2 Cj , identifying x1 with the basepoint of �1†g . Also, choose paths in Pi from xi to each basepoint
of each boundary component of Pi . This collects all the basepoints of the pants and curves as the vertices
of a graph G embedded in †g ; fix an orientation for each of its edges, and a spanning tree T �G. This
data gives a graph of groups: the vertex (resp. edge) groups are the fundamental groups of the based
pairs of pants (resp. curves), and for each edge Cj , the chosen paths define monomorphisms �j and  j
from �1Cj ' Z to the fundamental groups of the two adjacent (initial and final endpoints of the edge,
respectively) pairs of pants. The Seifert–Van Kampen theorem then identifies �1†g with the fundamental
group of this graph of groups; this is the group generated by the union of the �1Pi , as well as one extra
generator ej for each edge that is not in T , subject to the relations that for each edge Cj (in T or not),
and each  2 �1Cj , we have �j ./D e�1j  j ./ej (taking ej D 1 for the edges in T ).

�

�

�
�

�
�

� �

�

�

�

�

�
�

�

P1

P2

P3

P4

P5

P6

c1 c2

c3

c4

e1

e2

e3

e4

T

Figure 4: A decomposition of �1†4 into a graph of groups.
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Our representation � gives rise to a representation of each �1.Pi /, by using the spanning tree T to identify
based curves in Pi with based curves in †g . Similarly, each additional edge generator ej can be identified
with a closed, based loop in †g , hence to an element �.ej /.

We now define a geometric representation that will be our candidate for a representation semiconjugate
to �. As a consequence of Theorem 3.20, .2g� 2/=k is an integer, hence a Fuchsian representation of
Euler class 2g� 2 can be lifted to PSLk2.R/. The choice of such a lift amounts to the choice of rotation
numbers (in .1=k/Z mod Z) for the elements of a homology basis of �1†g . Let c1; : : : ; cg ; e1; : : : ; eg
be the homology basis depicted in Figure 4, with cj a generator of �1.Cj /. Thus, as just observed, there
exists a geometric representation �0 with the same Euler class as �, and with rot.�0.// D rot.�.//
for each  in fc1; : : : ; cg ; e1; : : : ; egg. This also holds for each  2 fcgC1; : : : ; c3g�3g. Indeed, the
contribution of the Euler class of � and �0 on each pairs of pants are equal, and they are sums of rotation
numbers, so we can propagate these equalities to the whole family of cutting curves.

To show � and �0 are semiconjugate, thereby concluding the proof, we use (an adaptation of) Matsumoto’s
theory of basic partitions and combinations.

Definition 3.22 (Matsumoto [29]) Let � be a group generated by a finite symmetric set S , and let
� W �!HomeoC.S1/. A basic partition (BP) for �.�/ is a collection P of disjoint closed intervals of S1

such that

(i) for each I 2 P , there is a unique sI 2 S such that �.sI /.I / is a union of mDm.I/ elements of P
and m� 1 complementary intervals to P ,

(ii) for any s ¤ sI in S , the image �.s/.I / is a proper subset of an element of P , and

(iii) for any complementary interval J to P and s 2 S , either �.s/.I / is contained in the interior of P ,
or is a complementary interval to P .

Following the last condition, we may put the complementary intervals to P into a directed graph, with an
edge from J1 to J2 if there is a generator sending J1 to J2. A basic partition is called pure if this graph
consists of disjoint nontrivial cycles.

Applying this to our context, for each pair of pants Pi , choose two “preferred” boundary components as
generators for �1Pi (identified with a subgroup of �g via T ). Let a�1i and c�1i denote these elements,
and consider their images under �. The proof of Theorem 3.20 shows that the periodic points of ai , ci ,
ciai and aici are in the cyclic order

..a�i ; a
C
i ; .aici /

C; .aici /
�; c�i ; c

C
i ; .ciai /

C; .ciai /
�//k

and that the 4k intervals of types .aCi ; .aici /
C/, ..aici /�; c�i /, .c

C
i ; .ciai /

C/ and ..ciai /�; a�i / form a
pure basic partition for the action of �1Pi on the circle with respect to the symmetric generating set
.ai ; ci ; a

�1
i ; c�1i /. This conclusion rested only upon rigidity and the hypothesis Sk , and the combinatorics

of the BP (the images of intervals and complementary intervals following conditions (i)–(iii) of the
definition) depends only on the rotation numbers of the generators. Thus, �0 admits a basic partition with
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the same combinatorics as �, ie there exists a cyclic-order-preserving map sending the basic partition
of one to the other, which intertwines the two actions. In this case, [29, Theorem 4.7] states that the
restrictions of � and �0 to �1Pi are semiconjugate.

It remains to improve this to a global semiconjugacy between � and �0. With the notation above, in a pair
of pants Pi , let Ja (resp. Jc , resp. Jac) denote the union of all intervals of type .a�; aC/ (resp. .c�; cC/,
resp. ..ac/C; .ac/�/. These are called the entries of the basic partition described above; their stabilizers
in �1Pi are the cyclic groups generated by a, c and ac, respectively.

Now consider an edge ej of G (in T or not). It serves to conjugate one generator of �1Pi for some
i , a�1, c�1 or ac, into the inverse of the corresponding generator of this boundary component on the
adjacent pair of pants. It follows that if, say, ai and ai 0 are the generators of �1Pi and �1Pi 0 on each side
of an edge ej , then the sets Jai

and �.ej /.Jai0
/ form a partition of S1, up to the finitely many periodic

points of ai . In this situation, Matsumoto says that the two entrances Jai
and Jai0

are combinable. More
generally, given a graph of groups decomposition of a group � as ours, and pure basic partitions for each
vertex group that have combinable entrances for every edge, Matsumoto says the collection of all basic
partitions for the vertex groups form a basic configuration for the action �.�/ on the circle. (Matsumoto
works with trees of groups; but this definition generalizes immediately to the graph setting.)

As we already argued for the �1Pi , the equalities between rotation numbers of � and �0 on the curves Ci
and on the edge elements ej imply that they admit basic configurations with the same combinatorics; in
other words there exists a cyclic-order-preserving bijection which maps the basic partitions of � to those
of �0, intertwining the actions.

Matsumoto’s main result [29, Theorem 6.7] is that a cyclic-order-preserving bijection between basic
configurations can be promoted to a semiconjugacy between � and �0. We comment briefly on the proof.
To produce a semiconjugacy, it suffices to show that some orbit of � and some orbit of �0 are in the
same cyclic order. Matsumoto’s proof strategy begins by showing this property holds for elements of
vertex groups (ie of some �1Pi ) — this is the content of [29, Theorem 4.7] cited above. He then proceeds
with elements of the form iej i 0 (where i 2 Pi and i 0 2 Pi 0 belong to adjacent pairs of pants), then
of the form i3ej2

i2ej1
i1 , and so on, inductively. While his proof is not carried out in the language

of Bass–Serre theory, and the context is specialized to a tree of groups decompositions of �1†g , the
arguments adapt without modification.

4 Periodic considerations

The content of this section is the proof of the following two statements.

Proposition 4.1 If a representation �g !G is path-rigid , then all nonseparating simple closed curves
have rational rotation number.
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Theorem 4.2 Suppose � is path-rigid and minimal. Then , for all a; b with i.a; b/D˙1, we have the
implication

Per.a/\Per.b/D∅ D) Sk.a; b/ for some k:

Proof of Proposition 4.1 Suppose for contradiction that there exists a nonseparating simple curve a
with �.a/ …Q. After semiconjugacy, we may assume that � is minimal. If �.a/ is conjugate into SO.2/,
then it lies in a one-parameter subgroup at of rotations, and for any b with i.a; b/ D 1, the bending
deformation at�.b/ has nonconstant rotation number, contradicting rigidity. Thus, �.a/ has an invariant
minimal Cantor set, which we denote by K. We next show that K is �.b/–invariant, for any curve b
with i.a; b/D 1. This suffices to prove the proposition since �g is generated by fag[ fb j i.a; b/D 1g,
whence K is �.�g/–invariant, contradicting minimality of �.

To show invariance, suppose for contradiction that �.b/.K/ š K; the case where �.b�1/.K/ š K
is analogous. Let K 0 � K be the set of two-sided accumulation points of K. Since K 0 D K, there
exists x 2K 0 such that �.b/.x/ …K. Let I be the connected component of S1 nK containing �.b/.x/.
Minimality of the action of �.a/ on K implies there exists N 2 Z such that �.a/N .I /� �.b/�1.I /, and
in particular rot.�.aN b//D 0. We work now with the pair .a; aN b/ with intersection number ˙1. Let
ˇt be a positive one-parameter family commuting with �.aN b/. Since �.aN b/ does not preserve K, we
can find a connected component J of S1 n Fix.�.aN b// such that J \K 0 ¤ ∅, and then find M 2 Z

such that �.a/M .J /\J ¤∅.

Let zx 2R be a lift of a point in �.a/M .J /\J . Adapting the notation from Section 2.2.3, set

�.zx; t1; : : : ; tM /D
^

ˇtM
^

�.a/ ı � � � ı
^

ˇt1
^

�.a/.zx/� zx� k;

where k is chosen so that
^

�.a/M . zJ /\ . zJ Ck/¤∅ for any lift of J , and we set ı.zx; t/D�.zx; t; : : : ; t /.
Up to reversing orientation, we can suppose that ı.zx; 0/>0. Since zJ contains both zx and

^

�.a/M .zx/, there
exists t < 0 such that �.zx; 0; : : : ; 0; t/ < 0, hence ı.zx; t/ < 0. Thus, there exists t0 such that ı.zx; t0/D 0,
hence rot.�t0.a//D k=M 2Q, contradicting rigidity.

4.1 Proof of Theorem 4.2

For this subsection, we assume � is path-rigid, i.a; b/ D ˙1, and Per.a/\ Per.b/ D ∅. Recall from
Proposition 4.1 that Per.a/ and Per.b/ are nonempty. We will first establish some properties that do not
use minimality, so are robust under deformations of �. We add the hypothesis that � is minimal only at
the end of the proof.

Borrowing notation from the previous section, say that a connected component of S1 n .Per.a/[ Per.b//
is of type .x; y/ if it is bounded to the left by a point of Per.x/ and to the right by a point of Per.y/, for
x; y 2 fa; bg.

Definition 4.3 Let Xa denote the set of connected components of S1 n Per.a/ that contain points of
Per.b/. We say an element I of Xa is positive if aq.a/ is increasing on the interval I , and negative
otherwise.
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The set Xb and its positive and negative elements are defined by reversing the roles of a and b above.
Since each .a; b/ interval in S1 n .Per.a/\ Per.b// is followed by a collection — perhaps empty — of
.b; b/ intervals, and then a .b; a/ interval, and Per.a/ and Per.b/ are disjoint closed sets, there exists
an integer m D m.�/ � 1 such that S1 contains exactly m intervals of type .a; b/ and m intervals of
type .b; a/, alternating around the circle, and thus jXaj D jXbj D m.�/. By Remark 2.18, m depends
only on the semiconjugacy class of �.

Lemma 4.4 The set Xa is �.a/–invariant , and the subset of positive (resp. negative) intervals in Xa is
also �.a/–invariant.

Proof Let I 2 Xa be a positive interval; we show that its image under a is another positive interval
in Xa. The negative case is analogous. Since a.I / is an interval between two consecutive points of Per.a/
on which aq.a/ is increasing, we need only show that a.I /\Per.b/¤∅.

Suppose for contradiction that a.I / \ Per.b/ D ∅. Then a.I / � J for some J 2 Xb . Let bt be a
positive one-parameter family commuting with b, let x 2 I \Per.b/, and take lifts zx 2 zI of x and I to R.
Positivity implies ıb;a.x; 0/ > 0. If t < 0 is negative enough that bt .a.I //\ a.I /D ∅, then we have
^

bt .ya.zx// < ya. zI /; it follows that ıb;a.x; t/ < 0. Therefore, there exists t0 2R such that ıb;a.x; t0/D 0,
ie x 2 Per.bt0a/\Per.b/. This contradicts path-rigidity via Lemma 2.17.

Obviously, reversing the roles of a and b above shows the positive and negative intervals of Xb are
b–invariant. The next lemma shows Xa and Xb are invariant under particular bending deformations.

Lemma 4.5 Let bt be a positive one-parameter family commuting with b. For t 2R, let Xb.t/ denote
the set of connected components I of S1 nPer.b/ such that I \Per.bta/¤∅. Then Xb.t/DXb.0/ for
all t .

Proof LetXb.t/ be as in the statement of the lemma and letXa.t/ denote the set of connected components
of S1 n Per.bta/ containing points of Per.b/. By our discussion above, path-rigidity of � implies that
the cardinality of Xb.t/ is constant. Let Ka D f.x; t/ 2 S1 �R j x 2 Per.bta/g, and Kb D Per.b/�R.
These are closed, disjoint sets, and their intersections with each horizontal slice S1 � ftg are the periodic
sets of bta and b, respectively.

For each connected component I � S1 nPer.b/, we set

TI D ft 2R j I 2Xb.t/g D ft 2R j I \Per.bta/¤∅g:

Note that TI is the projection of Ka \ .I �R/ onto the R–factor, so in particular is closed. We claim
TI is also open. To see this, let t0 2 TI , and let I2; : : : ; Im be the other components of S1 n Per.b/
such that t0 2 TIj . If d > 0 is the distance (for the product metric) between the disjoint compact sets
.S1� Œt0�1; t0C1�/\Ka and .S1� Œt0�1; t0C1�/\Kb , let ImC1; : : : ; IN be the remaining connected
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components of S1 n Per.b/ of length � d . Any component J of shorter length tautologically satisfies
TJ \Œt0�1; t0C1�D∅. Since the sets TIj are closed, there exists ">0 such that .t0�"; t0C"/\TIj D∅
for all j �mC1, hence .t0�"; t0C"/� TI , for otherwise jXb.t/j would fail to be constant. This proves
that TI is open, hence equal to ∅ or R, and the intervals in Xb.t/ do not depend on t .

The next two lemmas establish some properties of a and b which are, in particular, held by pairs of
homeomorphisms semiconjugate to hyperbolic elements of PSLk2.R/ satisfying Sk.a; b/. Of course, both
lemmas also hold with the roles of a and b exchanged.

Lemma 4.6 Any two consecutive intervals of Xa have opposite sign. In particular , m.�/D 2k for some
k � 1.

Proof Let bt be a positive one-parameter family commuting with �.b/. Suppose for contradiction that
Xa has two successive positive intervals I1 and I2 (the negative case is analogous). Let I 2Xb be the
interval such that I1\I ¤∅ and I2\I ¤∅. Take x 2 I1 nI such that aq.a/.x/ 2 I . For t large enough,
we have aq.a/btaq.a/.x/ 2 I2 nI . Since bt has positive dynamics, it follows that .btaq.a//2 moves every
point of I to the right; thus, �b;a.y; 0; : : : ; 0; t/ > 0 for all y 2 I , and Per.bta/\ I D ∅ for t large
enough. But this contradicts Lemma 4.5.

Lemma 4.7 Let I 2Xb have left endpoint in a positive interval of Xa. Then a.I /� J for some J 2Xb .
If , instead , I 2Xb has left endpoint in a negative interval of Xa, then a�1.I /� J for some J 2Xb .

Note that Lemma 4.6 implies that, in both cases, J is a positive interval of Xb if and only if I is.

Proof Let x1; x2; : : : ; x6 be points in cyclic order such that .x1; x3/ and .x4; x6/ are consecutive (positive
and negative, respectively) intervals in Xa, and I D .x2; x5/2Xb . Let yi D a.xi / for i D 1; 3; 4; 6. Then
.y1; y3/ and .y4; y6/ are in Xa, and both intersect some interval of Xb , say .y2; y5/. The statement of
the lemma is that a.x5/� y5 and a.x2/� y2.

Similar to the proof of Lemma 4.4, we assume the contrary and find a deformation with a common
periodic point for a and b. Suppose a.x5/ > y5 (the proof of the other inequality is symmetric), and
choose a positive one-parameter family bt commuting with b. Since a�1.y5/ 2 .x2; x5/, there is t 2R

with bta�1.y5/ 2 .x1; x3/. As .y1; y3/ is aq.a/–invariant, it follows that a�q.a/C1bta�1.y5/ < y5,
ie �b;a.y5; 0; : : : ; 0; t; 0/ > 0. On the other hand, as .y4; y6/ is a negative interval of Xa, we have
ıb;a.y5; 0/ < 0. Thus, there exists t0 2R, such that y5 2 Per.bt0a/. Since y5 2 Per.b/, this contradicts
path-rigidity by Lemma 2.17. The statement concerning �.a/�1 is symmetric, and proved in the same
manner.

Now we state a lemma of purely technical nature, that will allow us to compress the periodic sets in each
interval of Xa or of Xb to singletons. In the statement and proof, we let �t WR!R denote the translation
x 7! xC t .
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Lemma 4.8 Let n� 1, and for all i D 1; : : : ; n, let fi be an increasing homeomorphism from R to some
interval .ai ; bi /�R. Assume that ai > �1 for at least one i , and that bj <C1 for at least one j . For
all t 2R, we set Ft D �t ıfn ı � � � ı �t ıf1. Then there exists a subset N �R of finite Lebesgue measure
and consisting of a countable union of segments , such that for all t … N , the map Ft admits a unique
fixed point in R.

The statement of this lemma came from our attempt to better understand the argument in the first four
lines of [9, page 644]. In particular, the case nD 1 gives an alternative end to the proof of [9, Lemma 2.7].
We defer the proof of Lemma 4.8 to the next paragraph, and use it now to finish the proof of Theorem 4.2.

Proof of Theorem 4.2 Assume now that � is minimal. Let bt be a positive one-parameter family
commuting with b. We will first find t such that bta has exactly 2k periodic points; the conclusion will
then follow easily.

Let XCa denote the set of positive intervals of Xa. As observed in Lemma 4.4, �.a/ induces a permutation
ofXCa ; which has, say, ` orbits, all of cardinality nD k=`. Fix an interval I0 2Xb whose left endpoint lies
in an element of XCa . Successive applications of Lemma 4.7, for j D 1; 2; : : : n�1, gives �.a/j .I0/� Ij
for some Ij 2 Xb . Also, �.a/n.I0/ � I0 because �.a/n fixes XCa . Note that there exists some j such
that �.a/.Ij�1/� Ij is a strict inclusion at the left endpoint (and similarly, another for the right endpoint)
as otherwise some endpoint of I0 would lie in Per.a/\Per.b/.

For each j , let �j W Ij ! R be a homeomorphism such that �j ı bt ı ��1j D �t , and for j 2 f1; : : : ; ng
set fj D �jC1 ı a ı��1j , using cyclic notation for the last index. Then Lemma 4.8 applies, giving a set
NI0
�R of finite Lebesgue measure, such that for all t …NI0

, .bta/n D ��11 ıFt ı�1 has a unique fixed
point in I0.

We repeat this procedure for each element I of Xb , using a�1, instead of a for the intervals of Xb whose
left endpoint lies in an element of X�a . The resulting, finitely many, sets NI , each of finite Lebesgue
measure, cannot cover R, hence there exists t 2R such that each element of Xb intersects Per.bta/ as a
singleton. By Lemma 4.5, Per.bta/�Xb , hence bta has exactly 2k periodic points. As bta is obtained
by a bending deformation that does not change the dynamics of a, by Lemma 4.6 these 2k periodic points
have alternating attracting and repelling dynamics. One may now repeat the same procedure reversing
the roles of a and b, to obtain a further deformation where b has exactly 2k periodic points, alternately
attracting and repelling. Minimality of � and Observation 2.15 implies the original action of �.a/ and
�.b/ also had this dynamics.

Proof of Lemma 4.8 We suggest the reader take nD 1 at first reading, as the argument is less technical
in that case. We will show that there exists a countable union of segments, NC �RC, of finite Lebesgue
measure, such that Ft has a unique fixed point for all t 2RC nNC. The case for t < 0 is symmetric and
left to the reader.
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Let j be an index such that bj <C1. Let At D �t ıfj ı � � � ı�t ıf1, and let Bt D �t ıfn ı � � � ı�t ıfjC1.
For fixed t , both maps At and Bt are homeomorphisms to their images so Ft D Bt ıAt has a unique
fixed point x if and only if At ıBt has a unique fixed point (namely, Bt .x/). In other words, we may
suppose without loss of generality that j D n.

Let G.t; x/D Ft .x/� t . Then G is strictly increasing in x, and increasing (strictly, if n� 2) in t . The
monotonicity of G, and the assumptions sup.aj / > �1 and bn <C1, imply that the range of the map
G WR�0 �R!R is a bounded interval, say .a0; b0/, where b0 D bn.

If x � b0, the map t 7! Ft .x/ is a homeomorphism between R�0 and ŒF0.x/;C1/, and

F0.x/DG.0; x/ < b0:

Hence, there is a unique t D T .x/ such that Ft .x/D x. This defines a function T W Œb0;C1/! .0;C1/.

Sublemma 4.9 The map T satisfies the following inequalities:

(T1) For every x 2 Œb0;C1/, we have a0 < x�T .x/ < b0.

(T2) For all x1; x2 2 Œb0;C1/ such that x1 < x2, we have

f1.x1/�f1.x2/ < T .x2/�T .x1/ < x2� x1:

In particular, T is continuous, at bounded distance from the identity, and its rate of increase is bounded
above by 1.

The proof of Sublemma 4.9 is a straightforward consequence of the definition of T , the defining identity
FT.x/.x/D x, and monotonicity of G. We leave it as an exercise, noting for (T2) that the first inequality
is trivially satisfied if T .x2/� T .x1/, and the second if T .x2/� T .x1/.

For the next step, define a map H WR�b0
! ŒT .b0/;C1/ by

H.x/D supfT .x0/ j x0 � xg:

The reader may verify that H is continuous, surjective, and for all A � T .b0/, the set H�1.A/ is a
segment of the form Œa; b� (possibly aD b), with T .a/D T .b/D A.

Now let W D fw 2 ŒT .b0/;C1/ jH�1.w/ is not a singletong, and for all w 2W denote H�1.w/ by
Œaw ; bw �. Since these segments are disjoint and of positive length, W is countable. By definition of H ,
we have Fw.aw/ D aw , ie G.w; aw/C w D aw ; and the same holds for bw in place of aw . Thus,
the segment ŒG.w; aw/; G.w; bw/� has the same length bw � aw . The reader may now easily deduce
from monotonicity of G that these segments are disjoint; as they are contained in Œa0; b0�, this impliesP
w2W bw � aw � b0� a0.

Finally, for all w 2W, define Nw WD Œw� .bw � aw/; w�, and define

NC D Œ0; b0� a0�[
[
w2W

Nw :
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This may not be a disjoint union, but the remarks above imply this countable union of segments has finite
Lebesgue measure. Hence, the proof of Lemma 4.8 amounts to the following sublemma.

Sublemma 4.10 For all t 2R�0 nNC, the map Ft has a unique fixed point.

Proof Let t > b0 � a0 be such that Ft has at least two distinct fixed points, say x1; x2 with x1 < x2.
By definition, these satisfy G.t; xi /C t D xi . Since G.t; x/ > a0 for all x, and t > b0� a0, this implies
x1; x22 Œb0;C1/. By definition of T , we have T .x1/DT .x2/D t . Let x0Dminfx�x2 jT .x/DH.x2/g.
Then x0 <x2. Indeed, if H.x2/D t then x0 � x1, and if H.x2/ > t then the maximum H.x2/ is reached
at some point to the left of x2. Thus, x0 D aw for some w 2W, and we also have bw � x2.

We claim now that t 2Nw . Since x2�bw , by definition ofH we havewDH.bw/� tDT .x2/. Applying
inequality (T2) to x2 and bw now gives w� t � bw �x2, so w� t � bw �aw , hence t �w� .bw �aw/.
Thus we indeed have t 2Nw .

This concludes the proof of Lemma 4.8.

5 Proof of Theorem 1.6

In this section we finish the proof of the main result for path-rigid representations, showing that a path-rigid
representation � of �g is either geometric, or has Euler class zero and a genus g� 1 subsurface whose
fundamental group has finite orbit under �. (We believe the latter case cannot actually occur.) As in
Section 3, we will frequently drop the notation � when the context is clear, using a to denote �.a/.

Recall from the introduction that, if � is a given representation and T �†g is a one-holed torus, we say
that T is a good torus if it contains a nonseparating simple closed curve a with rot.a/D 0, and that T is
bad otherwise. We say T is very good if �1.T / has a finite orbit in S1.

Note that very good implies good: if T .a; b/ is very good, then rot W �1.T /!R=Z is a homomorphism
onto a finite subgroup, so if 0¤ jrot.a/j � jrot.b/j < 1, one may find n such that jrot.anb/j < jrot.a/j.
Iterating this process produces a simple closed curve with rotation number zero.

Assumption 5.1 For the remainder of this section, we assume � W �g ! HomeoC.S1/ is path-rigid.

5.1 Bad tori

This subsection contains the proof of Proposition 1.10: under Assumption 5.1 we show that if†g contains
a bad torus T , then †g nT contains only very good tori.

Definition 5.2 Let f; g 2 HomeoZ.R/. We say that g dominates f , and write f < g, if f .x/ < g.x/
for all x 2R.
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Note that < is a left- and right-invariant partial order on HomeoZ.R/, and satisfies the following obvious
properties:

(1) For all f; g 2 HomeoZ.R/, f > g () f �1 < g�1.

(2) For all f 2 HomeoC.S1/, yf > Id () rot.f /¤ 0.

(3) For all f; g 2 HomeoZ.R/,

f < g D) frot.f /�frot.g/ and .f < g or g < f / () frot.f �1g/¤ 0:

Property (2) uses the notation yf from Notation 2.6, which is also adopted throughout this section. The
following easy observation will be handy; it follows directly from property (3) above.

Observation 5.3 Let f; g 2 HomeoZ.R/. Suppose that frot.f / <frot.g/ and also that frot.g�1f /¤ 0.
Then f < g.

Building on this observation, we have the following.

Lemma 5.4 Let .a; b/ be standard generators of a bad torus T . Then there exist integers m and n,
unique and well defined modulo q.a/, with .n �m/p.a/ D 1 mod q.a/, and such that for all j not
divisible by q.a/, we have

^

anb <
^

aj , andzaj < zamb. Moreover , if p.a/D 1, then we have
^

anb2 < ya, or
Qan�1b�2 < ya, or both.

Assumption 5.1 is used in the proof only to guarantee that all nonseparating simple closed curves have
rational rotation number (Proposition 4.1).

Proof Let F be a finite orbit of a. If there exists some point x 2 F \ b�1.F /, then there exists
N � 0 such that �.a/N�.b/.x/ D x, thus rot.aN b/ D 0, contradicting the fact that T was bad. Thus,
F \ b�1.F /D∅.

Now we claim that F and b�1.F / alternate. Suppose for contradiction that some connected component
I D .x1; x2/ of S1 nF contains at least two points of b�1.F /. Let y1 2 b�1.F / be the leftmost point of
b�1.F / in I , and y2 be the second leftmost such point. Then there exists N > 0 such that aN b.y1/D x1.
It follows that aN b.y2/ D x2 and .aN b/�1.I / D .y1; y2/ � I , so rot.aN b/ D 0, giving the desired
contradiction.

Now that we know these sets alternate, choose x2b�1.F /, and let y`; yr 2F be the left and right endpoints
of the component of S1nF containing x. Then there exists a unique pair .n;m/2 f0; : : : ; q.a/�1g2 such
that anb.x/D yr and amb.x/D y`. In particular, .n�m/p.a/D 1 mod q.a/. These m; n are obviously
the only candidates, modulo q.a/, for the dominations

^

anb <
^

aj and zamb > za�j , for an integer j such
that aj .y`/D yr . (This shows m and n do not depend on F .) We claim that this pair .n;m/ satisfies the
statement of the lemma.

To see this, lift F to zF �R and let x1<x2< � � �<xq.a/ be consecutive points of zF . Then
^

anb.xi /�xiC1

for all i , hence frot.
^

anbq.a//� 1 and frot.
^

anb/� 1=q.a/. Also, for any integer j not divisible by q.a/ we

Geometry & Topology, Volume 28 (2024)



Rigidity and geometricity for surface group actions on the circle 2381

havefrot.
^

anb/�frot.
^

aj /. Since T is bad,frot.
^

aj�1
^

anb/¤0, so we must have
^

anb<
^

aj by Observation 5.3.
An essentially identical argument shows that zamb >zaj .

It remains only to prove the statement regarding the case p.a/ D 1, where n� 1 D m mod q.a/. We
know that ya >

^

anb and ya >
^

b�1a1�n D Qan�1b�1, and this immediately implies ya D
^

anb �
^

b�1a1�n.
As .a; anb/ and hence .b�1a1�n; anb/ are also standard generating sets of �1.T /, we must either have
^

b�1a1�n >
^

anb, or
^

b�1a1�n <
^

anb, otherwise the nonseparating simple closed curve an�1banb would
have rotation number zero. The statement follows.

As a consequence, we have the following.

Proposition 5.5 Let .a; b/ be a standard generating set for a bad torus. Let .ak; bk/k�0 be the sequence
of standard generating sets , defined inductively as follows.

� Define .a0; b0/D .a; b/.

� If k is even , let akC1 D ak and bkC1 D a
n.k/

k
bk , where 0� n.k/� q.ak/� 1 is the integer given

by Lemma 5.4 applied to the generators .ak; bk/.

� If k is odd , let bkC1D bk and akC1D b
n.k/

k
ak , where 0�n.k/� q.ak/�1 is obtained , similarly,

by inputting .bk; ak/ into Lemma 5.4.

Then for all k � 0 even , we have
^

akC1 >
^

bkC1, and for k � 0 odd , we have
^

akC1 <
^

bkC1.

Moreover , for all k�0, we have
^

ak>
^

akC2
2, and
^

bk>
^

bkC2
2. In particular , both sequences .rot.ak//k�0

and .rot.bk//k�0 converge to zero.

Note that the sequence .ak; bk/ is built so that both rot.ak/ and rot.bk/ converge to zero from above.
This choice is arbitrary.

Proof The first consideration follows immediately from the first statement of Lemma 5.4. Let us prove
the second. Let k � 0 be even. If p.ak/ � 2, let n D n.k/ � 0 be such that np.ak/ D 1 mod q.ak/.
Then rot.an

k
/ D 1=q.ak/, and

^

an
k
p.ak/ D
^

ak . By a direct application of Lemma 5.4 we conclude that
^

bkC1 <
^

an
k

, hence
^

bkC1
p.ak/ <
^

ak , and^akC22 <
^

ak .

Otherwise, p.ak/D 1, and again we take n.k/ as in Lemma 5.4. If
^

an.k/
k

bk
2 <
^

ak , then we may conclude
as above. Otherwise,
^

b�1
k
a1�n
k

2 <
^

ak , ie
^

b�1
kC1

akC1
2 <
^

ak . Thus, either n.kC 1/ is equal to �1 modulo
q.bkC1/, or not; in which case we have

frot
�^
b
n.kC1/

kC1
akC1

�
<frot

�^
b�1kC1akC1

�
;

and then
^

b
n.kC1/

kC1
akC1 <
^

b�1
kC1

akC1. In either case we conclude that^akC22 <
^

ak .

The argument is symmetric for k odd, and for bk instead of ak . In particular,^akC22 <
^

ak implies that
0 <frot.^akC2/ < 1

2
frot.^ak/, hence the sequences .frot.^ak// and .frot.

^

bk// converge to zero from above.
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Let T D T .a; b/ be a bad torus, and let .ak; bk/ be the sequence furnished by Proposition 5.5. Let x 2 S1,
and let zx 2 R be a lift of x. Then, by Proposition 5.5, the sequence .^ak.zx//k is decreasing, bounded
below by zx, hence it converges to some real number that we denote by zxC jT .x/. Note that jT .x/ does
not depend on the choice of the lift of x. We define

AT WD fx 2 S
1
j jT .x/D 0g:

The reader should interpret this as the set of points that are moved arbitrarily small distances by elements
of fakg. Although the notation .a; b/ is suppressed, AT as defined is dependent on the generating set
we started with. (But see Step 1 of the proof of Proposition 5.7 below.) As usual, we let zAT denote
the preimage of AT in R. The following proposition may be viewed as an algorithmic proof (as it runs
essentially on the Euclidean algorithm as introduced in Proposition 5.5) of Hölder’s classical result that
any group acting freely on the circle is abelian.

Proposition 5.6 (properties of AT ) (1) AT is a nonempty , proper subset of S1, with no isolated
points , hence is infinite.

(2) For every x 2 S1, we have minf zAT \ Œzx;1/g D zxC jT .x/. In particular , xC jT .x/ 2 AT for
all x.

(3) The commutator Œa; b� fixes AT pointwise.

Proof Let x 2R. For all k � 0 we have^ak.x/ > xCjT .x/, from which follows^ak2.x/ > xCjT .x/C
jT .xCjT .x//. But^ak�2.x/ >

^

ak
2.x/, and, by definition,^ak�2.x/ converges to xCjT .x/. This proves

that xC jT .x/ 2AT and thus AT is nonempty. Further, if the open interval .x; xC jT .x// contained
a point y 2 zAT , then for large k we would have x C jT .x/ >

^

ak.y/ > y > x, contradicting that ak
preserves orientation. This proves property (2).

To prove property (3), let x 2 zAT and observe, as above, that the sequence^ak4.x/ also converges to x.
Fix " > 0, and let k be even, and large enough that x1 D x, x2 D

^

ak.x/, x3 D
^

ak
2.x/ and x4 D

^

ak
3.x/

all lie in the interval Œx; x C "�. By Lemma 5.4, akC1 D ak and
^

bkC1 is dominated by^akC1. Thus,
^

bkC1.x3/ 2 .x3; x4/, and
^

bkC1
�1.x2; x3/ � .x1; x3/. It follows that ŒakC1; bkC1� D Œa; b� maps the

point x2 into the interval .x1; x3/, hence, for all " > 0, Œa; b� maps a point of Œx; xC "� in Œx; xC "�,
whence Œa; b�.x/D x.

It remains to prove that AT ¤ S
1, and AT has no isolated point. If AT D S

1, then Œa; b�D id and the
restriction of � to ha; bi would have abelian image; this contradicts the fact that T is bad. Finally if x
were an isolated point of AT , we could take x0 2 S1 such that Œx0; x/\AT D ∅. Let x1 be the next
point of AT to the right of x. Then x0C jT .x0/D x, so for all k � 0, we have^ak.x0/ > x. But then x1
is the next point of AT to the right of^ak.x0/, so^ak2.x0/ > x1 holds, and hence, also,^ak�2.x0/ > x1.
As this is true for all k, it contradicts the fact that^ak�2.x0/ converges to x as k!1.

Using jT , we now prove the following major step towards Proposition 1.10.
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Proposition 5.7 There cannot exist two disjoint bad tori in †g .

Proof By contradiction, let T D T .a; b/ and T 0 D T .a0; b0/ be two disjoint bad tori. Up to re-indexing
and reversing some of these curves, we may suppose that .a; b; a0; b0/ is the beginning of a standard basis
of �1†g .

Step 1 We have jT D jT 0 .

We proceed by contradiction. Suppose for some x0 2 S1 we have jT .x0/ ¤ jT 0.x0/; without loss of
generality assume jT .x0/ < jT 0.x0/. Let .ak; bk/k�0 and .a0

k
; b0
k
/k�0 be the sequences of generators of

T and T 0 furnished by Proposition 5.5. For k large enough, we have^ak.x0/ < x0CjT 0.x0/. Let m be as
in Lemma 5.4 applied to .ak; bk/, and put ˛ D ak , and ˇ D am

k
bk . Then .˛; ˇ/ is a standard generating

set for T , and ^˛ >
^

ˇ�1. Since rot.b0
`
/! 0, for ` � 0 large enough we have frot.

^

b0
`
/ <frot.
^

ˇ�1/. But
^

b0
`
.x0/ > x0C jT 0.x0/ (indeed,

^

b0
`

dominates
^

a0
`C1

, by construction of the sequences in Proposition 5.5);
hence^ak does not dominate

^

b0
`
. We now prove a sublemma to derive a contradiction; this will conclude

the proof of Step 1.

Sublemma 5.8 Let T .a; b/ be a bad torus , and let b0 be a nonseparating simple curve outside T .a; b/
such that b0�1a and bb0 are simple. Suppose that ya >

^

b�1 and frot.
^

b�1/ >frot.
^

b0/. Then ya dominates
^

b0.

Proof Suppose that ya does not dominate
^

b0. Then
^

b�1 does not dominate
^

b0 either. Observation 5.3
then asserts that rot.b0�1a/D rot.bb0/D 0. Now i.b0�1a; bb0/D˙1, and b0�1a lies in a one-parameter
family, so, as in Observation 2.16, there is a path-deformation of � replacing the action of bb0 with
b0�1a � bb0. Hence,

rot.bb0/D 0D rot.b0�1a � bb0/D rot.ab/:

This contradicts that T .a; b/ is bad.

Step 2 We can deform the representation so that jT ¤ jT 0 .

As shown in the proof of Proposition 5.6, Œa; b�¤ id, but AT � Fix.Œa; b�/. Let x 2 S1 nFix.Œa; b�/, so
then jT .x/ > 0. Let y D xC jT .x/, let I be the connected component of S1 n Fix.Œa; b�/ containing x,
and let ct be a one-parameter family of homeomorphisms commuting with Œa; b�, and with support equal
to I .

Then the distance between ct .x/ and ct .y/ varies, in a nonconstant way, with t : it goes to zero as t!1
if y 2 I , and simply changes if y … I . Now, consider a bending deformation of � defined by �t ./D �./
for all curves outside T , and �t ./ D ct�./c�t for  2 ha; bi. This deformation changes the value
of jT .x/, without changing the value of jT 0.x/. In particular, after this path-deformation, Step 1 no
longer holds! This gives a contradiction.

Supposing again that T .a; b/ is a bad torus, it remains to show that any torus in †g nT .a; b/ is not only
good, but very good. The next lemma will allow us to easily achieve this goal.
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Lemma 5.9 Let T D T .a; b/ be a bad torus , and let  be a nonseparating simple closed curve outside
of T , with rot./D 0. Then AT � Fix./.

Proof Let .ak; bk/k�0 be the sequence given by Proposition 5.5, and orient  so that �1ak is also a
(nonseparating) simple curve. Fix k � 0, and let ˛ D ak and ˇ D am

k
bk , as in Lemma 5.4. Then, by

Sublemma 5.8, we have^ak > y . This holds for all k � 0; hence, for all x 2R, we have y.x/� xCjT .x/.
In particular, if x 2 zAT , we have y.x/� x.

For the reverse inequality, first note the conditions {a < zb�1 and frot.zb�1/ <frot.{/ imply the domination
{a < { (this is exactly the statement of Sublemma 5.8 after reversing the orientation of R), and { D y since
rot./D 0. Let x 2 zAT , and fix " > 0. For k large enough, the sequence .ak; bk/ from Proposition 5.5
satisfies^ak.x/<xC". Let .a0; b0/D .ak; bk/ for such a large k, and define b00D b0 and a00D .b0/ma0 and
then ˛ D a00 and ˇ D .a00/nb00, where m, and then n, are given by Lemma 5.4 with these two successive
pairs. Then, we have frot.{̨/ <frot.ž�1/ <frot.{/, hence, {̨ < { , ie

^

˛�1 dominates y�1. It follows that
x � y.xC "/. This shows {.x/� x, as desired.

End of the proof of Proposition 1.10 Suppose that T D T .a; b/ is a bad torus, and let T 0 be a torus
disjoint from T . By Sublemma 5.8, T 0 is good and we may take T 0 D T .a0; b0/, where rot.a0/D 0. Then
we have Fix.a0/ � AT by Lemma 5.9. This is also true after replacing a0 with a deformation b0ta

0, so
Per.b0/ � AT , or equivalently, Fix..b0/q.b

0// � AT . Since this is also true after replacing b0 with any
deformation a0tb

0, we conclude AT � P.a
0; b0/. By Lemma 2.8(1), this means that ha0; b0i has a finite

orbit in S1.

5.2 Good tori

In this section, we prove Proposition 1.11: if � is path-rigid and nongeometric, then there cannot exist
two disjoint good tori which are both not very good. In the course of the proof, we will develop some
tools that will be used again in Section 6 for the proof of Theorem 1.1.

To motivate the first step, observe that if � has two disjoint good tori T .a; b/ and T .d; e/ with rot.a/D
rot.e/D 0, and if neither of these tori are very good, then P.a; b/D P.e; d/D∅. We can also find c so
that .a; b; c; d; e/ is a 5–chain. This is the set-up of the next proposition.

Proposition 5.10 Let � be path-rigid minimal and let .a; b; c; d; e/ be a 5–chain. Suppose that both
P.a; b/ and P.e; d/ are empty. Then we have Sk.b; c/ for some k � 1.

Proof After changing orientations of these curves, we may suppose that .a; b; c; d; e/ is a directed
5–chain. By Theorem 4.2, it suffices to show that Per.b/\Per.c/D∅. Since P.a; b/D∅, Proposition 2.9
says that @N.a; b/ is finite. Choose a positive one-parameter family .et /t2R, commuting with �.e/. Since
P.e; d/ D ∅, we have Per.etd/ � U.e; d/ for all t , so the sets Per.etd/, for varying t , are pairwise
disjoint and we can choose t0 so that Per.et0d/\ @N.a; b/D∅. Abusing notation, we now replace d
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with et0d (we will not further use e). With this change in notation, we now have @N.a; b/\P.d; c/D∅.
The remaining step will be a useful tool later in Section 6, so we split it off to a separate statement
(Lemma 5.11), proved below.

Lemma 5.11 Let � be path-rigid , and let .a; b; c; d/ be a 4–chain. Suppose that P.a; b/ D ∅ and
@N.a; b/\P.d; c/D∅. Then Per.b/\Per.c/D∅.

Proof Orient the curves so that .a; b�1; c; d/ is a directed 4–chain. Let at and dt be positive one-
parameter families commuting with a and d , respectively. By Lemma 2.17, it suffices to find t and s
such that Per.atb/\Per.dsc/D∅.

Let F0 D @N.a; b/\ @N.d; c/. Since P.a; b/D∅, Proposition 2.9 says @N.a; b/ is finite. Hence, F0 is
finite. Let F1 D @N.a; b/ nF0 and F2 D .P.d; c/[ @N.d; c// nF0. By construction, the Fi are disjoint
closed sets; let " > 0 be smaller than the minimum distance between any two of them. Fix t large, so
that (by Lemma 2.8), Per.atb/ is contained in the "–neighborhood of F0[F1, hence disjoint from F2.
Since F0 � N.a; b/, it is also disjoint from Per.atb/, ie Per.atb/\ .F0 [F2/D ∅. Now let � > 0 be
smaller than the distance between F0[F2 and Per.atb/. By Lemma 2.8 again, for s large enough, the set
Per.dsc/ is in the �–neighborhood of F0[F2. Hence, Per.atb/ and Per.dsc/ are disjoint, as desired.

Our next goal is to propagate Sk. � ; � / to other curves. For this, we define two stronger properties.

Definition 5.12 (strengthenings of Sk) Say that two curves a and b satisfy SC
k
.a; b/ if they satisfy

Sk.a; b/ and if additionally a.Per.b//\ Per.b/D∅. Say that a and b satisfy SCC
k

.a; b/ if they satisfy
both SC

k
.a; b/ and SC

k
.b; a/.

Property SC
k
. � ; � / allows one to move families of periodic points continuously by twist deformations, as

described in the following lemma.

Lemma 5.13 Let a and b be any curves with i.a; b/D�1 satisfying SC
k
.a; b/. There exists a continuous

family at commuting with a such that Per.atb/ \ Per.asb/ D ∅ for all s ¤ t , and jPer.atb/j D 2k
for all t .

Since property Sk.a; b/ immediately implies that Per.b/� U.a; b/, the nontrivial part of this lemma is
controlling the cardinality of Per.atb/. This requires a special construction of one-parameter family at ,
which is, for once, not a one-parameter group.

Proof With Lemma 4.7, the assumption a Per.b/\Per.b/D∅ completely prescribes the cyclic order on
the set

S
n a

n.Per.b//; it follows that we may choose a neighborhood V of Per.b/, consisting of 2k open
intervals, such that an.V /\ am.V / D ∅ for all n;m 2 Z. We now construct a continuous family of
homeomorphisms at commuting with a, supported on

S
n2Z a

nV .
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Choose one point in each of the periodic orbits of b; let x1; x2; : : : ; xm denote these points. Parametrize S1

so that, for each xi , b agrees with a rigid rotation by p.b/=q.b/ on a small neighborhood of bk.xi /
for k D 0; 1; : : : ; q.b/ � 2 and so that b maps a neighborhood of bq.b/�1.xi / to a neighborhood of
xi D b

q.b/.xi / by the map x 7! 2x or x 7! 1
2
x, in coordinates, depending on whether the orbit of xi is

repelling or attracting.

Let Vi;k denote the connected component of V containing bk.xi /. Define at to be the identity on Vi;k for
k D 0; 1; : : : ; q.b/� 2 and all i . On Vi;q.b/�1, using the local coordinates in which b is linear, define at
to agree in a neighborhood of 0 with the translation x 7! xC t , and extend at equivariantly (with respect
to a) over S1. This all can be done continuously in t . After shrinking the Vi;k if needed, by construction,
each .atb/q.b/ has a unique fixed point in each Vi;k , and these vary continuously. Additionally, for t
sufficiently small, no new fixed points will be introduced; this proves the lemma.

The next lemma and proposition allow one to propagate SCC
k

along chains.

Lemma 5.14 Let .a; b; c/ be a completable 3–chain. Then SC
k
.a; b/ implies Sk.b; c/.

Proposition 5.15 Let .a; b; c/ be a completable 3–chain. Suppose that SCC
k

.a; b/ holds. Then
SCC
k

.b; c/ holds as well.

To prove these two statements, we will need a quick sublemma.

Sublemma 5.16 (Per has empty interior) Let a and b be any curves with i.a; b/D˙1, and let bt be a
positive one-parameter family commuting with b. Then , for all but countably many t , the set Per.bta/
has empty interior.

Proof Let X D S1 nP.b; a/. Then for t ¤ s, we have Per.bta/\Per.bsa/\X D∅. In particular, the
set T Dft W Per.bta/\X contains a nonempty open setg is countable. Also if U � Per.bta/ is nonempty
and open, then U \X D U nP.b; a/ is nonempty and open since P.b; a/ is closed with empty interior,
hence t 2 T . It follows that for all t … T , Per.bta/ has empty interior.

Proof of Lemma 5.14 Complete .a; b; c/ to a 4–chain .a; b; c; d/, and let .dt /t2R be a positive one-
parameter family commuting with d . By Sublemma 5.16, Per.dt0c/ has empty interior for some t0 2R.
Now, by Lemma 5.13, there exists a continuous family .as/s2R, an interval I � R and 2k maps,
�j W I ! S1, each a homeomorphism to its image, such that for all s 2 I , the 2k periodic points of
Per.asb/ are precisely �1.s/; : : : ; �2k.s/. The set

T
��1j .Per.dt0c// then has empty interior in I , hence

there exists s0 2 I such that Per.as0b/\ Per.dt0c/D∅, and Per.b/\ Per.c/D∅ by Lemma 2.17. We
conclude by using Theorem 4.2.

Proof of Proposition 5.15 Complete the 3–chain into a 5–chain, .e; a; b; c; d/, and apply Lemma 5.14
to the 3–chains .a; b; c/ and .e; a; b/ to conclude Sk.b; c/ and Sk.a; e/. By Lemma 3.8, we may then
use a bending deformation of a along e to move the periodic set of a disjoint from any finite set,

Geometry & Topology, Volume 28 (2024)



Rigidity and geometricity for surface group actions on the circle 2387

so in particular Per.a/\ Per.c/ D ∅. Let at be a positive one-parameter family, commuting with a.
Then Per.a/\ Per.c/ D ∅, and a�t Per.c/ moves continuously in t , so there exists some t such that
b Per.c/\a�t Per.c/D∅. Thus, atb Per.c/\Per.c/D∅; hence, by Lemma 2.17, b Per.c/\Per.c/D∅.
Thus, we conclude that SC

k
.b; c/ holds. By Lemma 5.14, this implies that Sk.c; d/ holds as well. In

particular, Per.d/ is finite. We can now apply Lemma 3.8 and use a bending deformation so that
Per.atb/\Per.d/D∅, which implies that Per.b/\Per.d/D∅, and repeat the argument above (with d
and c playing the roles of a and b) to conclude SC

k
.c; b/ holds as well.

Proposition 5.15, Theorem 3.3, and the connectedness of the graph in Lemma 2.4 immediately gives:

Corollary 5.17 Let � be a path-rigid , minimal representation , and suppose there exists .a; b/ such that
SCC
k

.a; b/ holds. Then � is geometric.

This consequence is strong enough to imply the main result of the companion article [25]. We explain
this now, as it will be used again in Section 6.

Corollary 5.18 Let � be a path-rigid , minimal representation , and suppose that there is some torus
T .a; b/ such that the relative Euler number of T .a; b/ is ˙1. Then � is semiconjugate to a Fuchsian
representation.

Proof Since T .a; b/ has Euler number 1, it follows from [29] that the restriction of � to ha; bi is
semiconjugate to a geometric representation in PSL2.R/. (This is not difficult: thatfrot.Œ

^

�.a/;
^

�.b/�/D˙1

easily implies that �.a/ and �.b/ are 1–Schottky, hence are semiconjugate to a geometric representation
in PSL2.R/. See the beginning of [29, Section 3].) In particular, property SCC1 .a; b/ holds, and
Corollary 5.17 implies that � is geometric.

Given Corollary 5.17, the main goal of this section reduces to the following.

Proposition 5.19 Let .a; b; c; d; e/ be a 5–chain , and suppose that P.a; b/D P.e; d/D ∅. Then we
have SCC

k
.b; c/.

Proof Suppose P.a; b/ D P.e; d/ D ∅. By Proposition 5.10, we have Sk.b; c/ and Sk.c; d/ for
some k � 1. Since P.e; d/ D ∅ and Per.b/ is finite, we have a bending deformation etd such that
Per.b/\Per.etd/D∅; hence Per.b/\Per.d/D∅. Hence, Per.b/\dtc Per.b/D∅ for some t , so we
have Per.b/\c Per.b/D∅, ie SC

k
.c; b/ holds. By Lemma 5.14, this gives Sk.a; b/. In particular, Per.a/

is finite, and so there exists a bending deformation replacing c with dtc such that Per.a/\Per.dtc/D∅,
and hence Per.a/\Per.c/D∅. Repeating the argument above, we conclude SC

k
.b; c/ holds.

The main result of this section is now a quick corollary. We restate it here for convenience and to
summarize our work.
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Corollary 5.20 Let � be a path-rigid , minimal representation. Suppose � admits two disjoint good tori
that are not very good. Then � is geometric.

Proof Let T .a; b/ and T .d; e/ be two disjoint good tori. Since they are good, we may suppose
rot.a/D rot.e/D 0. Since they are not very good, we have P.a; b/D∅ and P.e; d/D∅. We may find
a curve c such that .a; b; c; d; e/ is a 5–chain, and then Proposition 5.19 and Corollary 5.17 imply that �
is geometric.

5.3 Finite orbits

The goal of this section is the proof of the following proposition.

Proposition 5.21 Let � W �g ! HomeoC.S1/ be a path-rigid representation , and let †D†g�1;1 be a
subsurface containing only very good tori. Then �j�1† has a finite orbit.

If T .a; b/ is very good, then a and b act with a finite orbit, so rot.ab/ D rot.a/C rot.b/. Thus, in a
subsurface where all tori are very good, rotation number is additive on any pair of curves with intersection
number ˙1. This motivates the following proposition, which gives our first step.

Proposition 5.22 Let † be a one-holed surface of genus � 2. Suppose that �1† acts on the circle in
such a way that all nonseparating simple curves have rational rotation number , and that for all 1, 2 with
i.1; 2/D˙1, we have rot.12/D rot.1/C rot.2/.

Then , there exist two curves 1, 2 with i.1; 2/D˙1 and rot.1/D rot.2/D 0.

Proof Let .a1; : : : ; bg/ be a standard generating set of �1†, and consider the noncompletable directed
5–chain .1; 2; 3; 4; 5/D .a�11 b1a1; a1; ı1; a2; b

�1
2 /, with the notation of Section 2.1.

Let ri D rot.i / and let �i denote the map on rotation numbers induced by the Dehn twist along i .
Then �i .r1; r2; r3; r4; r5/D .r 01; : : : ; r

0
5/, where r 0i�1 D ri�1� ri and r 0iC1 D riC1C ri , and r 0j D rj . As

Dehn twists preserve chains, the proof of the proposition is reduced to showing that the operations �i
can be iterated to transform any vector in .Q=Z/5 to a vector of the form .0; 0; r3; r4; r5/. This is a
straightforward exercise (and should be familiar to anyone familiar with the symplectic group Sp.2g;Z/);
we leave the details to the reader.

Proposition 5.22 is useful because it is much easier to control the dynamics of two curves if their rotation
numbers are zero, as in the next proposition.

Proposition 5.23 Suppose rot.a/D rot.b/D 0. Then for every "> 0, there exists a one-parameter family
.at /t2R commuting with a, an interval J �R, and a finite collection of homeomorphisms �i W J ! S1

with disjoint images , such that for all t 2 J,

Fix.atb/\
�
S1 nV".P.a; b//

�
D f�1.t/; : : : ; �n.t/g:
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In other words, for all t 2 J , the fixed points of atb at distance � " to P.a; b/ are finite in number and
move continuously in t . Compare with Lemma 5.13. Note that we do not require at to be a positive
family.

Proof Fix a positive one-parameter family ˛t commuting with a. We will modify ˛t to obtain the
desired family at .

When rot.a/D rot.b/D 0, we have P.a; b/D Fix.b/\ @Fix.a/, and the set U.a; b/ has a very simple
description: x 2 U.a; b/ if and only if x and b.x/ are in the same connected component of S1 n @Fix.a/.
Thus, U.a; b/D

S
I .I \ b

�1.I //, where I ranges over the connected components of S1 n @Fix.a/. As
each connected component I is a–invariant, we may define at separately on each connected component,
affecting only Fix.atb/\ I .

For every connected component I of S1 n @Fix.a/, let U.I / denote I \ b�1.I /. By definition, each
endpoint of U.I / lies in @N.a; b/[P.a; b/. Thus, by Proposition 2.9, all but finitely many intervals U.I /
lie in V".P.a; b//. On all the corresponding connected components I of S1 n @Fix.a/ we set at D ˛t .

Now we treat the remaining (finitely many) intervals I of S1 n Fix.a/ such that U.I / is nonempty,
considering the configuration of I and b�1.I /. As a first case, suppose that I and b�1.I / share an endpoint,
ie a point in P.a; b/. If this is the right endpoint, define at D ˛t on I . If the left endpoint is shared, take
instead at D ˛�t . If I D b.I /, either choice will work. In each case, for all s sufficiently large, we have

(5-1) Fix.asb/\ I � V".P.a; b//:

As a second case, suppose b shifts I . If the shift is to the right, ie I D .x1; x3/ and b.I /D .x2; x4/ with
x1; x2; x3; x4 in cyclic order, define at D ˛t on I , and if the shift is to the left, set at D ˛�t . In either
case, for all s sufficiently large, we have

(5-2) Fix.asb/\ I D∅:

We are left with the case where either b. NI /� I or NI � b.I /. Suppose the first holds, as the second can be
dealt with by a symmetric argument. Note that (using ˛t and b) we are in the case nD 1 of Lemma 4.8
of the preceding section. Thus, there exists s 2R such that ˛sb has a unique fixed point in I . Moreover,
b. NI /� I implies that this unique fixed point is an attracting point, ie we may take local coordinates so
that the map ˛sb agrees with x 7! 1

2
x at the origin. After reparametrization of ˛t on I , we may assume

that this time s is sufficiently large to satisfy (5-1) and (5-2) above. Working in coordinates, let .�ı; ı/
be a neighborhood of 0 contained in a fundamental domain for a. Let �t be a smooth family of bump
functions supported on .�ı; ı/ and agreeing with x 7! xC t on an even smaller (fixed) neighborhood
of 0, for all t < ı0 < ı. Extend �t a–equivariantly to a homeomorphism of I . Now define at on I to
agree with ˛t for t < s, to agree with �t�s˛s for s � t � sC ı0, and arbitrarily (for example, constant
in t ) for t � sC ı0. Varying t in J WD .s; sC ı0/, the homeomorphism atb has a unique fixed point in I
that moves continuously with t , as desired. Of course, we can choose parametrizations of at on each
of these (finitely many) intervals so that J does not depend on I . This proves the lemma.
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Using this tool, we can propagate finite orbits over chains.

Proposition 5.24 Let a; 1; 2; 3; : : : k be a chain. Suppose that Per.a/ has empty interior , rot.i /D 0
for all i , the subgroup ha; 1i has a finite orbit and hi ; iC1i has a global fixed point. Then ha; i ; : : : ; ki
has a finite orbit.

Proof Inductively, suppose the statement holds for chains of length k and take a chain of length
kC 1 of the form a; 1; : : : ; k . By inductive hypothesis the group generated by the first k elements
ha; 1; : : : ; k�1i has a finite orbit, ie there is a periodic orbit of a contained in

Tk�1
iD1 Fix.i /.

Since Per.a/ has empty interior, for any n2N, we can use Proposition 5.23 to produce a homeomorphism
c.n/ lying in a one-parameter family commuting with k such that

Fix.c.n/k�1/\Per.a/� V1=n.P.k�1; k//:

Indeed, with the notation of that proposition, there exists t 2 J such that �j .t/ … Per.a/ for all j , becauseT
j �
�1
j .Per.a// has empty interior in J . Do this for each n 2 N; we do not require that the c.n/ all

belong to a common one-parameter family, all that is important is that they are each obtainable by a
bending deformation, hence give a semiconjugate representation.

The result is a sequence of bending deformations c.n/k�1 of k�1 such that

Fix.c.n/k�1/\Per.a/� V1=n.Fix.k�1/\Fix.k//:

Since ha; 1; : : : ; k�1i has a finite orbit, and this property is stable under semiconjugacy, it follows that,
for every n,

Tk�2
iD1 Fix.i /\Fix.c.n/k�1/ contains a full orbit of a. For each n, choose one such full

orbit, and denote it by On. After passing to a subsequence, the sets On converge pointwise to a finite
subset of

Tk�2
iD1 Fix.i /\ Per.a/ that is invariant under a (as these are both closed conditions) so the

limit is a full orbit. Moreover, this orbit is contained in every open neighborhood of Fix.k�1/\Fix.k/,
so also lies in Fix.k�1/\Fix.k/. This gives a periodic orbit of a in

Tk
iD1 Fix.i /, as desired.

We now prove the main result advertised at the beginning of this section.

Proof of Proposition 5.21 Let †g�1;1 be a surface with one boundary component, in which all tori
are very good. Recall that our goal is to show that � has a finite orbit. Since all tori are very good,
we may use Proposition 5.22 to find a standard system of generators a1; b1; : : : ; ag�1; bg�1 where
rot.ai / D rot.bi / D 0 for all i D 2; 3; : : : ; g � 1. Since T .a1; b1/ is good, we may also assume that
rot.b1/D 0.

Let ıi Da�1iC1biC1aiC1b
�1
i as in Section 2.1, so that .a1; ı1; a2; ı2; : : : ; ıg�2; ag�1; bg�1/ forms a chain.

For each i , we can use Sublemma 5.16 in order to assume without loss of generality that Per.ıi / has
empty interior, and then apply Proposition 5.24 to the chain .ıi ; ai ; bi /. It follows that hıi ; bi i has a finite
orbit, hence

rot.ıi /C rot.bi /D rot.a�1iC1biC1aiC1/D rot.biC1/:

Thus, rot.ıi /D 0 for all i .
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Sublemma 5.16 implies that, after a deformation, we may assume that Per.a1/ has empty interior. We can
apply Proposition 5.24 to the chain .a1; ı1; a2; ı2; : : : ıg�2; ag�1; bg�1/ to conclude that the subgroup
generated by these elements has a finite orbit. As this subgroup is equal to �1.†g�1;1/, this proves the
proposition.

5.4 Proof of Theorem 1.6

Theorem 1.6 is now a quick consequence of Proposition 5.21 and Corollary 5.18.

Proof of Theorem 1.6 Let � W �1.†g/! HomeoC.S1/ be a path-rigid representation, and suppose that
� is not geometric. If † contains a bad torus T , then by Proposition 1.11, † n T contains only very
good tori. If † contains no bad torus, but some torus T 0 that is not very good, then Proposition 1.11
implies that † nT 0 contains only very good tori. In either case, there is a genus g� 1 subsurface †g�1;1
containing only very good tori, hence by Proposition 5.21 the restriction of � to †g�1;1 has a finite orbit.
In particular, the boundary curve of this subsurface has zero rotation number, and the restriction of � to
this subsurface has relative Euler number zero.

It follows that the Euler number of the remaining (not very good) torus is either 0 or˙1. By Corollary 5.18,
if it is ˙1, then � is geometric. Thus, the remaining torus has Euler number 0, and by additivity the Euler
number of � is zero.

The proof of Proposition 5.21 also shows the following, which will be useful to us in the next section of
this work.

Corollary 5.25 Suppose � is a path-rigid representation such that † has only very good tori. Then � has
a finite orbit.

Proof To show this, one simply runs the proof of Proposition 5.21 for a genus g surface (rather than
a genus g � 1 surface with boundary), finding a standard system of generators a1; b1; : : : ; ag ; bg and
ignoring the extra relation. The remainder of the proof applies verbatim, with g replacing g� 1.

6 Proof of Theorem 1.1 and last comments

6.1 Proof of Theorem 1.1

Here is where we use the stronger hypothesis of rigidity. Our proof relies on the following observation,
inspired by work in the recent article [1].

Lemma 6.1 Let � be a rigid , minimal representation. Let T D T .a; b/ be a very good torus. Then only
finitely many points of S1 have a finite orbit under ha; bi. In particular , if rot.a/D 0, then P.a; b/ is a
finite set.

This lemma is the only place where we use rigidity instead of path-rigidity.
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Proof Let F.a; b/ denote the set of points whose orbit under ha; bi is finite. To simplify the exposition
of the proof, fix a metric on S1 so that a and b act on F.a; b/ by rigid rotations. Given any " > 0,
let J1; J2; : : : denote the (finitely many) connected components of S1 nF.a; b/ consisting of intervals
of length greater than "— by our choice of metric, this is a ha; bi–invariant set. If F.a; b/ is finite,
and " small enough, then

S
i
NJi D S

1. Otherwise (even in the case where
S
i
NJi D∅), we may divide

S1n
S
i
NJi into finitely many disjoint open intervals I1; I2; : : : each of length at most " and with endpoints

in F.a; b/, such that these intervals are permuted by ha; bi, and such that S1 D
�S

i
NJi
�
[
�S

i
NIi
�
.

Since T is very good, we can suppose without loss of generality that rot.a/D 0. We claim that there exist
a0; b0 2HomeoC.S1/, agreeing with a and b on S1 n

S
i Ii , such that Œa0; b0�D Œa; b� holds globally, and

such that Per.b0/\
S
Ii D∅.

Let c D Œa; b�. As
S
i Ii is a; b–invariant, constructing a0 and b0 amounts to solving the equation

b0cD a0�1ba0 on
S
i Ji . That this can be solved is shown in [9, Lemma 2.7]; as their notation and context

is slightly different, we explain the strategy. Take coordinates identifying each Ji with R. If b0 is defined
on some Ji (with image in Jj ) to increase sufficiently quickly (as a homomorphism R!R), then b0c
will also be strictly increasing, hence conjugate to b0. One then defines a0 to be this conjugacy.

Let �0 be the representation obtained from � by replacing .a; b/ by .a0; b0/. As " > 0 is arbitrary, this �0

can be taken arbitrarily close to � in Hom.�g ;HomeoC.S1//. Rigidity implies that, for small enough ",
�0 is semiconjugate to �. Minimality implies that there is a continuous semiconjugacy h W S1! S1 such
that h ı �0 D � ı h. Let

F 0 WD fx 2 S1 j x has finite orbit under h�0.a/; �0.b/ig:

By construction of �0, this set is finite. However, h.F 0/D F.a; b/. It follows that F.a; b/ was finite as
well.

To apply this to the proof of Theorem 1.1, let � be a rigid, minimal representation, and assume for
contradiction that � is nongeometric. If � has a bad torus T , then by Theorem 1.6 any torus T .a; b/
disjoint from T is very good. In particular, we can take such a torus where rot.a/D 0. Lemma 5.9 implies
then that AT � Fix.a/. Since the same holds after replacing a with a deformation bta, we conclude
that AT � P.a; b/. However, Proposition 5.6 states that AT is infinite, contradicting Lemma 6.1. We
conclude that � has no bad tori.

In order to derive a contradiction, we will show that all good tori are actually very good. We pursue this
with an argument in the spirit of Proposition 5.10.

Lemma 6.2 Suppose P.a; b/D∅. Then @N.a; b/� @Per.a/[ b�1.@Per.a//.

Proof Assume P.a; b/D∅ and let x 2 @N.a; b/. Since P.a; b/D∅, the set N.a; b/ is closed, hence
x 2N.a; b/\U.a; b/.
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Suppose that x … .@Per.a/[ b�1.@Per.a//. Then there exists two intervals I; J , neighborhoods of x,
with I � S1 n @Per.a/ and J � S1 n b�1.@Per.a//. As x 2 U.a; b/, there exists u 2 U.a; b/\ I \ J .
Let at be a positive one-parameter family commuting with a. Since b.J / contains b.x/ and b.u/ and
b.J /\ @Per.a/D ∅, there exists t0 2 R such that at0b.x/D b.u/. Similarly, there exists t1 2 R such
that at1.u/ D x. Thus, �a;b.x; t1C T .u/; T .u/; : : : ; T .u/; T .u/C t0/ D 0, and it now follows easily
that x 2 U.a; b/. This proves the lemma.

Lemma 6.3 Suppose rot.a/ D 0 and that ha; bi has no finite orbit. Choose a positive one-parameter
group bt that commutes with b. Then for all x 2 S1, there exist at most two values of t such that
x 2 @N.bta; b/.

Proof Since ha; bi has no finite orbit, P.a; b/ D ∅ and hence P.bta; b/ D ∅ for all t . Let x 2 S1;
we will apply Lemma 6.2 to the pairs .bta; b/. If x 2 Per.b/, then x … N.bta; b/, and in particular
x … @N.bta; b/ for all t 2R. Thus, suppose x … Per.b/.

By Lemma 6.2, if x 2 @N.bta; b/, then x 2 @Per.bta/ [ b�1.@Per.bta//. Note that x cannot be in
P.b; a/, as x … Per.b/. Hence, if there exists some t 2R such that x 2 Per.bta/, then x 2 U.b; a/, and
this t is unique. Similarly, if there exists some t 2R such that b.x/ 2 Per.bta/, then b.x/ 2 U.b; a/, and
this t is unique. This concludes the proof.

Using these tools, we will now show that � (always assumed rigid and minimal) satisfies hypothesis Sk .

Lemma 6.4 Let .a; b; c; d/ be a 4–chain , and suppose rot.a/D rot.d/D 0 holds. Suppose that T .a; b/
is good but not very good. Then we have Sk.b; c/.

Proof If T .d; c/ is good but not very good, then P.d; c/ is empty. Otherwise, it is very good and so by
Lemma 6.1, the set P.d; c/ is finite. In either case, using Lemma 6.3, we can first deform a to some bta,
so that @N.a; b/ does not intersect P.d; c/. Then by Lemma 5.11, we have Per.b/\Per.c/D∅, and so
Theorem 4.2 says that Sk.b; c/ holds.

Lemma 6.5 Let .a; b; c; d/ be a 4–chain , and suppose Sk.a; b/ and rot.d/ D 0 hold. Then we have
Sk.b; c/.

Proof Similarly to the previous lemma, in this case we may again use Lemma 6.1 to conclude that the
set P.d; c/ is finite. By Lemma 3.8 in the torus T .a; b/, the set Per.b/ is disjoint from P.d; c/.

Hence, Per.b/ � U.d; c/ [ N.d; c/, and Per.b/ is finite. Thus, for all but finitely many t , we have
Per.b/\Per.dtc/D∅. Hence Per.b/\Per.c/D∅ by Lemma 2.17.

Now we can complete the proof of the theorem.
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Proof of Theorem 1.1 Let � be a rigid, minimal representation. As remarked above, � has no bad torus.
If all tori are very good, then by Corollary 5.25, we know that � admits a finite orbit, a contradiction.

Thus, � admits a good torus, T .a; b/, which is not very good. We may suppose rot.a/D 0. As all tori are
good, we may choose a curve d outside T .a; b/ with rot.d/D 0, and we may form a 4–chain .a; b; c; d/.
By Lemma 6.4, we have Sk.b; c/ for some k.

Now rename .b; c/ into .a; b/, and forget about the other curves, remembering only that we have two
curves a; b with Sk.a; b/. Since all tori are good, we may choose a curve d outside T .a; b/ such that
rot.d/D 0, and such that there exists a standard generating system beginning with .a; b; d; /. Define
uD a�1b�1a and vD a�1. Then .u; a; b; v/, .d; u; a; b/ and .a; b; v; d/ are 4–chains; we encourage
the reader to refer to Figure 1 and draw these curves u and v for him/herself. Apply Lemma 6.5 to the
4–chain .a; b; v; d/. This proves that Sk.b; v/ holds. The same lemma applied to the 4–chain .d; u; a; b/
implies Sk.u; a/. Hence, the 4–chain .u; a; b; v/ satisfies Sk.u; a/, Sk.a; b/ and Sk.b; v/. We can
deform a along u, thanks to Lemma 3.8, in such a way that Per.a/\Per.v/D∅, hence we have SC

k
.b; a/,

and we can deform b along v, in such a way that Per.b/\Per.u/D∅, hence we have SC
k
.a; b/. Finally,

this proves SCC
k

.a; b/, and thus � is geometric by Corollary 5.17.

6.2 Comments and further questions

We conclude this paper by discussing some natural questions and directions for further work.

6.2.1 Path-rigidity Given Theorem 1.6, we expect that path-rigidity should suffice to imply that a
representation is geometric. The most obvious route to this result would be through an improvement of
Lemma 6.1, as it is the only place where we use the stronger hypothesis of rigidity.

Question 6.6 Does Lemma 6.1 hold when “rigid” is replaced by “path-rigid”?

This question also arises naturally out of the work of Alonso, Brum and Rivas in [1]. Their main result is
the following.

Theorem 6.7 (Alonso–Brum–Rivas) Let � be in Hom.�g ;HomeoC.S1// or Hom.�g ;HomeoC.R//.
In any neighborhood U of �, there exists a representation �0 without global fixed points.

Since it is unknown whether these representation spaces are locally connected, their result does not imply
that there is a path-deformation of � without global fixed points. Thus, the obvious problem arising out
of their work is to upgrade this result to path-deformations. A first step in this direction would be to
attempt to reprove [1, Lemma 3.9, 3.10]. These lemmas show that, in any neighborhood of �, there exists
a representation �0 whose fixed points are isolated and either attracting or repelling points. Can �0 be
attained by deforming along a path? If so, can this be generalized to finite orbits, rather than fixed points,
for actions on S1?
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6.2.2 The commutator equation More general than Question 6.6 above, the following basic problem
appears to be essential in understanding the topology of Hom.�g ;HomeoC.S1//.

Probem 6.8 For fixed h 2 HomeoC.S1/, describe the topology of the set

�h WD ff; g 2 HomeoC.S1/�HomeoC.S1/ j Œf; g�D hg:

As it stands, remarkably little is known about this space. If rot.h/ 2Q n f0g, then it is known that �h is
not connected; however, we do not know the number of connected components, nor do we know in any
circumstances whether �h is locally connected or not.

Probem 6.8 is strongly related to the following major problem.

Probem 6.9 Classify the connected components of X.�g ;HomeoC.S1//.

As was mentioned in the introduction, it is still unknown whether X.�g ;HomeoC.S1// (or equivalently,
Hom.�g ;HomeoC.S1//) has finitely many or infinitely many connected components. The relationship
with Probem 6.8 comes through the analogy with Goldman’s work on Hom.�g ;PSL2.R//. Indeed,
Goldman’s classification of connected components of Hom.�g ;PSL2.R// given in [15] is built upon a
complete understanding of the space �h\.PSL2.R/�PSL2.R//. This is of course a much easier problem,
as PSL2.R/ is a finite-dimensional Lie group, and the commutator map is smooth. The result of the first
author in [23] — that Euler number does not classify connected components of Hom.�g ;HomeoC.S1//,
unlike the PSL2.R/ case — may also serve as warning that the topology of �h should be more complicated
than its intersection with PSL2.R/�PSL2.R/.

Throughout this paper, we navigated within �h by making bending deformations. This raises a few
obvious questions, such as the following.

Question 6.10 Let h 2 HomeoC.S1/, and let .f; g/ and .f 0; g0/ be in the same path-component of �h.
Identifying f; g with the image of generators of a one-holed torus , is there a path from .f; g/ to .f 0; g0/
consisting of a sequence of bending deformations? More generally, given � and �0 in the same path-
component of Hom.�g ;HomeoC.S1//, is there a path from � to �0 using bending deformations in simple
closed curves on †g?

This question is reminiscent of Thurston’s earthquake theorem [34] for Teichmüller space. It also calls to
mind work of Goldman and Xia [16], who use the analogous (positive) result for bending deformations in
connected components of classical character varieties in order to studying the action of the mapping class
group on these varieties. As well as justifying our use of bending deformations alone, a positive answer to
Question 6.10 would give another analogy between classical character varieties and �.�g ;HomeoC.S1//.

6.2.3 Bad tori In Section 5, we used a long series of lemmas to prove that a path-rigid representation
cannot contain two disjoint bad tori. However, we do not know any example of a path-rigid representation
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with even a single bad torus. Besides being an interesting question in itself, the question of existence of
bad tori could provide a means of showing path-rigid representations are geometric: if one showed that
path-rigid representations of �g have no bad tori, an enhanced version of Lemma 5.11 would complete
the proof.

However, we were somewhat surprised to be unable to tackle the following even more basic question.

Question 6.11 Let T .a; b/ be a one-holed torus. Does there exist a representation

� W �1.T /! HomeoC.S1/

such that the rotation number of every nonseparating simple closed curve is rational , but nonzero?

This is obviously related to understanding mapping class group actions on character varieties, as we are
asking for a nonseparating simple closed curve.

By contrast, relaxing the condition that curves be simple gives a problem already solved by a classical
result of Antonov. See [31, Exercise 2.3.24] for an outline of the proof. An equivalent statement can be
found in [8, Proposition 5.2].

Theorem 6.12 (Antonov [2]) Let � W ha; bi ! HomeoC.S1/ be a minimal action. Either � has abelian
image and is conjugate to an action by rotations , or — up to taking a quotient of S1 by a finite-order
rotation commuting with �— the probability that the rotation number of the image of a random word of
length N in fa; b; a�1; b�1g (with respect to some nondegenerate distribution on the set) is zero tends
to 1 as N tends to1.

In the case where � commutes with a finite order rotation, say of order n, but does not have image
conjugate into SO.2/, the rotation numbers of random words equidistribute in f0; 1=n; : : : ; .n� 1/=ng.
Thus, for any such action, almost all words have rational rotation number.

6.2.4 Local versus global rigidity Thus far, we have discussed rigidity and path-rigidity of representa-
tions; rigidity being the natural notion to study from our interest in character spaces, and path-deformations
being easier to work with in practice. However, from a dynamical perspective, it is also interesting to
study local rigidity or stability of actions.

Definition 6.13 ([24, Definition 3.1]; see also [1]) A representation � is locally rigid if it has a neighbor-
hood in the representation space Hom.�g ;HomeoC.S1// containing only representations semiconjugate
to �.

In many circumstances, this condition is much easier to satisfy than rigidity or path-rigidity. For example,
a savage element g 2 HomeoC.S1/ (as in Definition 3.4 above), thought of as a representation of Z, is
easily seen to be locally rigid, but it is semiconjugate to the identity. We do not know if this phenomenon
generalizes to representations of �g .
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Question 6.14 Is there a representation � 2 Hom.�g ;HomeoC.S1// that is locally rigid , but not rigid?

Again, a natural first step to this question could be to study the local topology of the sets �h defined above.
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We prove a surface embedding theorem for 4–manifolds with good fundamental group in the presence
of dual spheres, with no restriction on the normal bundles. The new obstruction is a Kervaire–Milnor
invariant for surfaces and we give a combinatorial formula for its computation. For this we introduce the
notion of band characteristic surfaces.
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1 Introduction

We study whether a given map of a surface to a topological 4–manifold is homotopic to an embedding.
Here and throughout the article, embeddings and immersions in the topological category are by definition
locally flat, meaning they are locally modelled on linear inclusions R2 ,!R4 or R2

C ,!R4.

Even for maps of 2–spheres, this question has only been completely addressed in a handful of simple
manifolds, such as S4, CP2 [Tristram 1969, page 264] and S2�S2 [Tristram 1969, Theorem 4.5; Kervaire
and Milnor 1961, Corollary 1; [Freedman 1982, Corollary 1.1]]. Lee and Wilczyński [1990; 1997] and
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Hambleton and Kreck [1993] described the minimal genus of an embedded surface in a fixed homology
class, in any given simply connected, closed 4–manifold, assuming that the fundamental group of the
complement is abelian. This was recently extended by [Feller et al. 2021] to knot traces. In the relative
setting even the simplest case is open: which knots in S3 bound a (locally flat) embedded disc in D4?

The main available tool for proving positive results is Freedman’s embedding theorem (Theorem 4.3),
which shows that maps of discs and spheres to a 4–manifold with good fundamental group, with vanishing
intersection and self-intersection numbers, and with framed algebraically dual spheres, are regularly
homotopic to embeddings [Freedman 1982; Freedman and Quinn 1990, Corollary 5.1B]; see also [Powell
et al. 2020; Behrens et al. 2021]. Surgery and the s–cobordism theorem for topological 4–manifolds with
good fundamental group are consequences of this theorem [Quinn 1982; Freedman and Quinn 1990]. Our
aim, realised in Theorems 1.2 and 1.6 below, is to extend Freedman’s theorem to all compact surfaces with
algebraically dual spheres, in any connected 4–manifold with good fundamental group. In Section 1.4,
we explain how to apply this to the question from the opening paragraph of whether a given homotopy
class contains an embedding. In Section 1.5, we give some applications to knot theory. In particular, we
show that every knot bounds an embedded surface of genus one in M n VD4 for every simply connected
closed 4–manifold M not homeomorphic to S4. Recall that, for M D S4, this does not hold because the
slice genera of knots can be arbitrary large.

Throughout the paper, we will work in the following setting unless otherwise specified.

Convention 1.1 We assume that M is a connected, topological 4–manifold and that † is a nonempty
compact surface with connected components f†ig

m
iD1

. The notation F D ffig
m
iD1
W .†; @†/# .M; @M /

represents a generic immersion (Definition 2.3) with components fi W .†i ; @†i/# .M; @M /.

By assumption, the map F restricts to an embedding on @† and F�1.@M /D @†, where @† and @M
are permitted to be empty. There is no requirement for † or M to be orientable, and M could be
noncompact. Weakening the hypotheses of Freedman’s theorem to allow for the algebraically dual
spheres to be unframed introduces an additional obstruction, the Kervaire–Milnor invariant km.F / 2Z=2

(Definition 1.4), which vanishes in the presence of framed algebraically dual spheres.

Theorem 1.2 (Surface embedding theorem) Let FDffig
m
iD1
W .†; @†/# .M; @M / be as in Convention

1.1. Suppose that �1.M / is good and that F has algebraically dual spheres G D fŒgi �g
m
iD1
� �2.M /.

Then the following statements are equivalent :

(i) The intersection numbers �.fi ; fj / for all i < j, the self-intersection numbers �.fi/ for all i , and
the Kervaire–Milnor invariant km.F / 2 Z=2 all vanish.

(ii) There is an embedding FDf Nfig
m
iD1
W .†; @†/ ,! .M; @M /, regularly homotopic to F relative to @†,

with geometrically dual spheres G D f Ngi W S
2#M gm

iD1
such that Œ Ngi �D Œgi � 2 �2.M / for all i .

Equivariant intersection and self-intersection numbers of immersed discs and spheres have a long history
(see eg [Wall 1970]). In the theorem above, we consider generalised versions for arbitrary compact surfaces,

Geometry & Topology, Volume 28 (2024)
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lying in quotients of the group ring ZŒ�1.M /�, which we denote by �fi ;fj
3 �.fi ; fj / for the intersection

numbers and �fi
3 �.fi/ for the self-intersection numbers. We describe these quotients in detail in

Sections 2.2 and 2.3. As in the simply connected case, these invariants require based maps (Definition 2.11)
but their vanishing as in Theorem 1.2(i) does not depend on the choice of basing. Vanishing of all the
�.fi ; fj / for i < j and all the �.fi/ is equivalent to the vanishing of the self-intersection number �.F /,
which is defined as follows.

Definition 1.3 Let F Dffig
m
iD1
W .†; @†/# .M; @M / be as in Convention 1.1. Assume in addition that

M and † are based and that F is a based map. The self-intersection number of this possibly disconnected
immersed surface is given by counting all double points of F, as follows:

�.F / WD
X
i<j

�.fi ; fj /C
X

i

�.fi/ 2
M
i<j

�fi ;fj
˚

M
i

�fi
:

The self-intersection number �.F / is a regular homotopy invariant that vanishes if and only if there is
a collection of Whitney discs that pair all double points of F (Corollary 2.30), just like for connected
surfaces. The Whitney discs may be chosen to form a convenient collection, meaning that all Whitney
discs have disjointly embedded boundaries, are framed and have interiors transverse to F (Definition 2.31).

Definition 1.4 Let F W .†; @†/# .M; @M / be as in Convention 1.1. By definition, km.F / 2 Z=2

vanishes if and only if, after finitely many finger moves taking F to some F 0, there is a convenient
collection of Whitney discs pairing all the double points of F 0 and whose interiors are disjoint from F 0.

We think of �.F / as the primary embedding obstruction, and km.F / as the secondary embedding
obstruction. Note that km.F /D 0 implies �.F /D 0 but km.F / is always defined even if �.F /¤ 0. In
Section 1.1, we will give a combinatorial description of km.F / in the case that �.F /D 0.

The Kervaire–Milnor invariant is named in homage to [Kervaire and Milnor 1961], in which the authors
defined an embedding obstruction and used it to give the first proof that the Whitney trick fails in
dimension 4. Section 3 gives details on the connection of our Kervaire–Milnor invariant to the original
obstruction and other secondary embedding obstructions in the literature.

A group is said to be good if it satisfies the �1–null disc property [Freedman and Teichner 1995] (see also
[Kim et al. 2021]); we shall not repeat the definition. In practice, it suffices to know that virtually solvable
groups and groups of subexponential growth are good, and that the class of good groups is closed under
taking subgroups, quotients, extensions and colimits [Freedman and Teichner 1995; Krushkal and Quinn
2000].

If† is a union of discs or spheres, Theorem 1.2 follows from [Freedman and Quinn 1990, Theorem 10.5(1)].
The latter theorem contained an error found by Stong [1994] (see Theorem 5.7), but this is not relevant to
Theorem 1.2 because of the way we defined the Kervaire–Milnor invariant. It is, however, very relevant
to how to compute the Kervaire–Milnor invariant, and Stong’s correction will be one of the ingredients in
our results (see Section 1.1).

Geometry & Topology, Volume 28 (2024)
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For an arbitrary †, one could try to prove Theorem 1.2 by using general position to embed the 0–
and 1–handles of † (relative to @†) and removing a small open neighbourhood thereof from M. This
gives a new connected 4–manifold M0 with the same fundamental group as M, and only the 2–handles
fhi W .D

2;S1/# .M0; @M0/g, one for each component †i of †, remain to be embedded. One then
hopes to apply [Freedman and Quinn 1990, Theorem 10.5(1)] (ie Theorem 1.2 for † a union of discs) to
these maps of 2–handles to produce the desired embedded surface. The original algebraically dual spheres
fgig for the ffig perform the same role for the fhig in M0. The intersection and self-intersection numbers
� and � remain unchanged; hence, they also vanish for fhig. However, the Kervaire–Milnor invariant
may behave differently. That is, it may become nonzero for the embedding problem for the discs fhig,
whereas it was trivial for the original F. We show that this phenomenon can occur in Example 9.3. This
difference stems from the fact that, in applying [Freedman and Quinn 1990, Theorem 10.5(1)], we fix
an embedding of the 1–skeleton of † and try to extend it across the 2–handles. As usual in obstruction
theory, it might be advantageous to go back and change the solution of the problem on the 1–skeleton.

1.1 Computing the Kervaire–Milnor invariant

The strength of Theorem 1.2 versus the above strategy using [Freedman and Quinn 1990, Theorem 10.5(1)]
lies in our computation of the Kervaire–Milnor invariant for arbitrary compact surfaces. In the case of
discs and spheres, Stong showed that the Kervaire–Milnor invariant vanishes in more situations than
claimed by Freedman and Quinn, due to the ambiguity arising from sheet choices when pairing up
double points by Whitney discs, when the associated fundamental group element has order two. As
we recall in Theorem 5.7, Stong [1994] introduced the notion of an r–characteristic surface, short for
RP2–characteristic surface (Definition 5.5), to give a criterion, in terms of copies of RP2 immersed in
the ambient manifold M, to decide whether the sheet changing move is viable. Combined with the work
of Freedman and Quinn, this enabled the computation of the Kervaire–Milnor invariant, and therefore
answered the embedding problem for every finite union of discs or spheres with algebraically dual spheres,
in an ambient 4–manifold with good fundamental group (see Remark 5.8 for more details).

In order to compute the Kervaire–Milnor invariant km.F / for general surfaces, we extend the no-
tion of r–characteristic surfaces to a notion of b–characteristic surfaces, short for band characteristic
(Definition 5.17), defined using bands (annuli and Möbius bands) immersed in M. The next theorem is a
generalisation of Stong’s computation of km.F / to arbitrary compact surfaces.

Definition 1.5 Let F D ffig
m
iD1
W .†; @†/# .M; @M / be as in Convention 1.1 with �.F /D 0. Choose

a convenient collection WD fWlg of Whitney discs that pair all double points of F and define

t.F;W/ WD
X
l;i

jInt Wl t fi j mod 2:

In other words, t.F;W/ is the mod 2 count of transverse intersections between F and the interiors of the
Whitney discs in W.

Geometry & Topology, Volume 28 (2024)
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We will often apply this definition to the restriction F of F D ff1; : : : ; fmg to the subsurface † �†,
which includes a component†i of† precisely if its image does not admit a framed immersion gi WS

2#M

with �.fj ;gi/D ıij for all j D 1; : : : ;m (Definition 5.1). The main result of the article is as follows.

Theorem 1.6 Let F W .†; @†/# .M; @M / be as in Convention 1.1. Suppose that �.F /D 0 and that F

has algebraically dual spheres. If F is not b–characteristic then km.F /D 0. If F is b–characteristic ,
then the secondary embedding obstruction satisfies

km.F /D t.F ;W / 2 Z=2

for every convenient collection of Whitney discs W pairing all the double points of F .

The main novelty in this theorem lies in finding the right condition on F that makes the combinatorial
formula t.F ;W / independent of the choice of Whitney discs, namely that F is b–characteristic. Note
that, if �1.M / is good, then, for km.F /D 0 in the previous theorem, Theorem 1.2 gives an embedding
regularly homotopic to F. In practice, it can often be easy to determine if a given surface is b–characteristic,
as demonstrated by the following corollaries, derived in Section 9 as consequences of the more general
Proposition 9.1.

Corollary 1.7 If M is a simply connected 4–manifold and † is a connected , oriented surface with
positive genus , then any generic immersion F W .†; @†/# .M; @M / with vanishing self-intersection
number is not b–characteristic. Thus , if F has an algebraically dual sphere , then km.F /D 0, and , since
�1.M / is good , the map F is regularly homotopic , relative to @†, to an embedding.

This corollary in particular implies that, for every simply connected 4–manifold M with boundary
a disjoint union of homology spheres, every primitive class in H2.M IZ/ can be represented by an
embedded torus. This recovers [Lee and Wilczyński 1997, Theorem 1.1] in the case of divisibility d D 1.
We also have the following extension to the case of arbitrary 4–manifolds.

Corollary 1.8 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F /D 0 and † connected.
If F 0 is obtained from F by an ambient connected sum with an embedding S1�S1 ,! S4, then F 0 is not
b–characteristic. Thus , if F has an algebraically dual sphere , then km.F 0/D 0, and if �1.M / is good ,
then F 0 is regularly homotopic , relative to @†, to an embedding.

See Corollaries 1.13 and 1.14 for the nonorientable analogues of these two results. In particular, the latter
concerns the case where we replace the embedded torus in Corollary 1.8 by an embedded RP2.

1.2 Band characteristic maps

We briefly explain how the notion of a map being b–characteristic arises in the context of embedding
general surfaces. Given F W†#M as in Convention 1.1, assume that its double points are paired by a
convenient collection of Whitney discs W. Then the interiors of the discs in W could be tubed into spheres

Geometry & Topology, Volume 28 (2024)
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F F 0

F F 0

B WB

Figure 1: Two portions of the immersion F and part of a band B are shown on the left. A finger
move produces F 0 with two new double points, paired by WB .

in M, potentially changing the count t from Theorem 1.6. The condition that F is s–characteristic, short
for spherically characteristic (Definition 5.2), precisely ensures that the count is preserved under this
move.

Similarly, consider a band, ie an annulus or Möbius band, immersed in M with boundary lying on F.†/

minus the double points, as in Figure 1. Then, as shown in the figure, we may perform a finger move
on F along a fibre of the band, creating F 0 with two new intersections, paired by a new Whitney disc WB

arising from the band B (see Figure 1). We call this move the band fibre finger move and give further
details in Construction 7.2. Adding WB to W might in principle change the count t , but the requirement
that F is b–characteristic ensures it does not. In the case that † has only simply connected components,
the boundary of the band is null-homotopic in †, and therefore the band can be closed off by discs to
produce either a sphere (from an annulus) or an RP2 (from a Möbius band). Thus in this case it suffices
to consider r–characteristic maps.

However, for general † there may exist a band in M with a boundary curve that is nontrivial in �1.†/.
This necessitates the new notion of b–characteristic maps, which by definition requires that a function
‚ W B.F /! Z=2 vanishes (Definitions 5.12 and 5.14), where B.F / consists of the homology classes
in H2.M; †IZ=2/ that can be represented by certain immersed bands in M with boundary on †
(Definition 5.9). These additional conditions on the bands have to do with the first Stiefel–Whitney classes
of M and †; when both are oriented, B.F / consists precisely of the classes in H2.M; †IZ=2/ that are
represented by maps of annuli and Möbius bands. Roughly speaking, the vanishing of ‚ means that
every band with boundary on † intersects † evenly many times in its interior. Intersections among the
boundary components of the bands and a relative Euler number also play a role; see Sections 5 and 3.7
for details. If ‚ � 0, then, for every band B, adding WB does not change the t–count, and in fact t

is well defined if and only if F is b–characteristic (Lemma 7.3). See Example 9.3 for a map which is
r–characteristic but not b–characteristic.

The first step for deciding whether F is b–characteristic is to determine the subset B.F /. In general this
could be difficult, but in practice it is often soluble. If this can be done, then, as shown in Figure 2, by
computing �†j@B.F / and ‚ WB.F /! Z=2, we can decide whether F is b–characteristic. Both of these
are functions on a finite group, so in principle these computations are manageable.
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a generic immersion
F W † # M

(Convention 1.1)

�.F /D 0?

�†j@B.F / ¤ 0?
(Definition 5.9, Lemma 5.11)

‚ WB.F /! Z=2 nontrivial?
(Definitions 5.12 and 5.14, Lemma 5.16)

F is b–characteristic
(Definition 5.17)

t.F ;W /D 0 2 Z=2?
(Definition 1.5)

no conclusion
F regularly

homotopic, rel @†,
to an embedding

F not regularly
homotopic, rel @†,
to an embedding

km.F /D 1

(Definition 1.4)

km.F /D 0

(Definition 1.4)
algebraically dual spheres?

(Definition 4.1)

F not b–characteristic
(Definition 5.17)

�1.M / good?

Yes

No

No Yes

No

Yes

No

Theorem 1.9

Yes

Yes

Theorem 1.6

No

Yes
Theorem 1.2

No

Figure 2: A flowchart deciding whether a generic immersion F is regularly homotopic, relative
to the boundary, to an embedding.

1.3 An embedding obstruction without dual spheres

Irrespective of whether F has algebraically dual spheres, we obtain a secondary embedding obstruction
in the b–characteristic case.

Geometry & Topology, Volume 28 (2024)



2406 Daniel Kasprowski, Mark Powell, Arunima Ray and Peter Teichner

Theorem 1.9 Let F W .†; @†/# .M; @M / be as in Convention 1.1 with �.F / D 0. Let W be a
convenient collection of Whitney discs for the double points of F. Then F is b–characteristic if and only
if , for every F 0 regularly homotopic to F and convenient collection W0 for the double points of F 0, we
have t.F;W/D t.F 0;W0/.

For b–characteristic F, we denote the resulting regular homotopy invariant by t.F / 2 Z=2. Then , if
km.F /D 0 — for instance , if F is an embedding — then t.F /D 0.

Note that, in particular, if F is b–characteristic and a map H is regularly homotopic to F, then H is
b–characteristic (Lemma 5.19). If F is not b–characteristic, it is still possible that some restriction F 0

of F to a union of connected components †0 � † is b–characteristic. Then we obtain an obstruction
to embedding F 0, and as a consequence to embedding F. A frequent example of this phenomenon is
F 0 D F from Theorem 1.6. Note that, by Lemma 5.3, if F is b–characteristic then F D F .

As part of our analysis of the obstruction t , in Section 9 we shall prove the following additivity properties.

Proposition 1.10 Let M1 and M2 be oriented 4–manifolds. Let F1 W .†1; @†1/# .M1; @M1/ and
F2 W .†2; @†2/# .M2; @M2/ be generic immersions of connected , compact , oriented surfaces , each
with vanishing self-intersection number. If Fi is b–characteristic for each i , then both the disjoint union

F1 tF2 W†1 t†2#M1 # M2

and any interior connected sum
F1 # F2 W†1 #†2#M1 # M2

are b–characteristic , and satisfy

t.F1 tF2/D t.F1 # F2/D t.F1/C t.F2/:

Theorem 1.9 and Proposition 1.10 imply the following corollary.

Corollary 1.11 For any g, there exists a smooth , closed 4–manifold Mg, a closed , connected , oriented
surface †g of genus g, and a smooth , b–characteristic , generic immersion F W†g#Mg with t.F /¤ 0,
and therefore km.F /¤ 0.

By contrast, we show in Example 9.5 that every map of a closed surface to S1 � S3 is homotopic to
an embedding. One could ask whether there exists a 4–manifold M and immersions †g #M with
nontrivial Kervaire–Milnor invariant, for every g. However, as a partial negative answer we will show
in Proposition 9.7 that a b–characteristic generic immersion F W†#M from a closed surface † to a
compact 4–manifold M with abelian fundamental group with n generators must satisfy �.†/� �2n.

1.4 Homotopy versus regular homotopy

Theorems 1.2, 1.9 and 1.6 together give a framework for deciding whether or not an immersed surface is
regularly homotopic to an embedding, as illustrated by the flowchart in Figure 2. However, in the first
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sentence of the article, we began by considering whether a given continuous map is homotopic to an
embedding. We explain now how to extend the framework of Figure 2 to decide this, for maps of surfaces
that admit algebraically dual spheres.

For a map f from a connected surface to a 4–manifold, we will show in Theorem 2.32 that there are
either infinitely many or precisely two regular homotopy classes in the homotopy class of f, according to
whether f �.w1.M // is trivial or nontrivial, respectively. Our strategy is to make a judicious choice of
regular homotopy class to which we apply our previous theory.

Begin with a continuous map F W†!M that restricts to an embedding on @† and satisfies F�1.@M /D@†,
where† and M are as in Convention 1.1. Denote the components of F by fi W .†i ; @†i/! .M; @M /, and
suppose that F has algebraically dual spheres. Note that homotopies preserve the intersection numbers
�.fi ; fj /, but might not preserve the self-intersection number �.fi/, since adding a local cusp in fi

changes �.fi/1, the coefficient of 1 2 �1.M /, by ˙1. Depending on the behaviour of the orientation
characters of M and †, the coefficient �.fi/1 lies in either Z or Z=2, and is preserved under regular
homotopy (see Lemma 2.24 and Proposition 2.25).

Now, in order to decide whether F is homotopic to an embedding, we will either find a generic immersion
in the homotopy class of F which is regularly homotopic to an embedding, or show that this is impossible.
First, by performing a homotopy we may assume without loss of generality that F is a generic immersion
such that �.fi/1D 0 for every component fi of F. If �.F /¤ 0, then F is not homotopic to an embedding.
On the other hand, if �.F /D 0, we have the two following cases. Below, .fi/� is the map induced on
fundamental groups by fi using some choice of path connecting fi.†i/ to the basepoint of M.

Case 1 w1.†/jker.fi /� is trivial for every fi 2 F .

By Theorem 2.32, the regular homotopy class of F is uniquely determined by the condition that
�.fi/1D 0 for each i with fi 2F . Run the analysis in Figure 2 on F to determine whether it is regularly
homotopic to an embedding. Note that the outcome of this analysis only depends on the regular homotopy
class of F , rather than all of F. In particular, if �1.M / is good, then F is homotopic to an embedding if
and only if F is regularly homotopic to an embedding.

Case 2 There exists fi 2 F with w1.†/jker.fi /� nontrivial.

In this case we use the following theorem, which we prove in Section 6.

Theorem 1.12 Let F D ffig
m
iD1
W .†; @†/ # .M; @M / be as in Convention 1.1 with �.F / D 0.

Suppose that there is at least one fi 2 F with w1.†/jker.fi /� nontrivial. Then there exists a generic
immersion F 0 homotopic to F with �.F 0/D 0, and a convenient collection of Whitney discs W0 such
that t..F 0/ ; .W0/ /D 0. Thus , if F 0 has algebraically dual spheres , then km.F 0/D 0, and if moreover
�1.M / is good , then F 0 is regularly homotopic , relative to @†, to an embedding.
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Using this theorem, we can immediately conclude that our F as in Case 2 is homotopic to an embedding,
as long as �1.M / is good. Notably, it is not relevant in this case whether F is b–characteristic. This
completes the analysis of whether a given continuous map of a surface into a 4–manifold is homotopic to
an embedding.

We now sketch the proof of Theorem 1.12. By the vanishing of �.F /, there is a convenient collection
of Whitney discs W for F and therefore for F . When t.F ;W / D 0, the proof is completed by
setting F 0 D F. When t.F ;W /D 1, we use Construction 6.1 to find another generic immersion F 0

homotopic to F. Briefly, Construction 6.1 involves creating four new double points in the component fi

with nontrivial w1.†/jker.fi /� using local cusps, and then cancelling them using a suitable choice of
Whitney arcs and discs. For further details on the proof, see Section 6.

Theorem 1.12 also has the following immediate corollaries. These are the nonorientable analogues of
Corollaries 1.7 and 1.8. They provide homotopies to embeddings rather than regular homotopies, and
again it is not relevant whether F is b–characteristic.

Corollary 1.13 If M is a simply connected 4–manifold and † is a connected , nonorientable surface ,
then a generic immersion F W .†; @†/# .M; @M / with vanishing self-intersection number and an
algebraically dual sphere is homotopic , relative to @†, to an embedding.

Corollary 1.14 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with † connected and �1.M /

good. Suppose that F has vanishing self-intersection number and an algebraically dual sphere. If F 0 is
obtained from F by an ambient connected sum with any embedding RP2 ,! S4, then F 0 is homotopic ,
relative to @†, to an embedding.

As in our analysis for the embedding problem up to regular homotopy, our techniques are primarily
applicable in the presence of algebraically dual spheres and good fundamental group of the ambient space.
It is however sometimes possible to conclude that a map without algebraically dual spheres is homotopic
to an embedding. For example, we show in Example 9.5 that every map of a closed surface to S1�S3 is
homotopic to an embedding.

1.5 Applications to knot theory

Theorem 1.2 can be applied to the problem of finding embedded surfaces in general 4–manifolds bounded
by knots in their boundary. Given a closed 4–manifold M, let M ı denote the punctured manifold M n VD4.
The M –genus of a knot K � S3 D @M ı, denoted by gM .K/, is the minimal genus of an embedded
orientable surface bounding K in M ı. If M is smooth, we also consider the smooth M –genus, denoted
by gDiff

M
.K/, the minimal genus of a smoothly embedded orientable surface with boundary K. The

quantities gS4 and gDiff
S4 coincide with the topological and smooth slice genus of knots in D4, respectively.

Note that gM .K/D gM .K/, so (2) and (3) below imply the corresponding results for CP2 and �CP2,
respectively.
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Corollary 1.15 For every knot K � S3,

(1) gM .K/ D 0 for every simply connected 4–manifold M not homeomorphic to one of S4, CP2

or �CP2;

(2) gCP2.K/� 1 and gCP2

�
#3

T .2; 3/
�
D 1; and

(3) g
�CP2.K/� 1 and g

�CP2

�
#2

T .2; 3/
�
D 1.

See Section 9 for the proof. The smooth CP2–genus has been studied by [Yasuhara 1991; 1992; Aït Nouh
2009; Pichelmeyer 2020; Marengon et al. 2024], and differs dramatically from the topological result in
Corollary 1.15(2); in particular, it can be arbitrarily high [Marengon et al. 2024].

Corollary 1.15(1) is straightforward to prove if M topologically splits as a connected sum with S2 �S2

or S2 z�S2, because gS2�S2.K/D gS2z�S2.K/D 0 for all K by the Norman trick [1969, Corollary 3,
Remark]. For the K3 surface, this implies that gK3.K/D 0 for all knots K. On the other hand, it is an
open question whether there exists a K with gDiff

K3
.K/¤ 0 [Manolescu et al. 2024, Question 6.1].

Given a knot K � S3 and an integer n 2 Z, we build the n–trace Xn.K/ by attaching a 2–handle
D4 along K with framing n. The minimal genus of an embedded surface representing a generator of
H2.Xn.K/IZ/ is called the n–shake genus of K, denoted by gsh

n .K/. Similarly, the smooth n–shake
genus of K is denoted by g

sh;Diff
n .K/. We recover the following result of [Feller et al. 2021].

Corollary 1.16 [Feller et al. 2021, Proposition 8.7] For any knot K � S3, gsh
˙1
.K/D Arf.K/ 2 f0; 1g.

By contrast, the smooth ˙1–shake genus of a knot can be arbitrarily high. For example, for q � 5 we
have that g

sh;Diff
˙1

.T .2; q//� 1
2
.qC1/, by the slice-Bennequin inequality [Lisca and Matić 1998; Cochran

and Ray 2016, Corollary 5.2].

Outline of the paper

In Section 2, we describe the primary embedding obstructions arising from the theory of equivariant
intersection numbers for surfaces in 4–manifolds. In Section 3, we define the Kervaire–Milnor invariant
carefully. We prove Theorem 1.2 in Section 4. In Section 5, we explain our combinatorial method for
computing the Kervaire–Milnor invariant, and define b–characteristic surfaces, postponing almost all
proofs to Section 7. In Section 6, we give the proof of Theorem 1.12. In Section 8, we prove Theorems
1.6 and 1.9. Finally, in Section 9, we prove Corollaries 1.7, 1.8, 1.11, 1.15 and 1.16 and Proposition 1.10,
and we give further applications and examples.
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2 Generic immersions and intersection numbers

In Section 2.1, we carefully define and study generic immersions of surfaces in 4–manifolds in the
topological category. We show they admit well-behaved normal bundles, and introduce generic homotopies
and ambient isotopies between them.

In Sections 2.2 and 2.3, we study equivariant intersection and self-intersection numbers of generically
immersed surfaces. In the case of immersions of spheres and discs, these have a long history, in particular
in surgery theory (see eg [Wall 1970]). For the first time in the literature, as far as we are aware, we give
a careful account of intersection and self-intersection numbers in full generality for compact surfaces
and for any possible combination of orientation characters. The specific groups in which these numbers
live depend on the input surfaces, and it is somewhat subtle to describe them. A preliminary version
for orientable surfaces was considered in eg [Cochran et al. 2003, Section 7], and the self-intersection
number for annuli was considered in [Schneiderman 2003].

In Section 2.4, we discuss Whitney discs, which arise if the intersection and self-intersection numbers
vanish. We define the important notion of a convenient collection of Whitney discs. In Section 2.5,
Theorem 2.32 explains the difference between homotopy and regular homotopy of generic immersions of
surfaces, in terms of the Euler number of the normal bundle or the self-intersection number.

2.1 Topological generic immersions

We start with the definition of an immersion of manifolds in the topological setting. For m � 0, let
Rm
C WD f.x1; : : : ;xm/ 2Rm j x1 � 0g. For k � n, we consider the standard inclusions

� WRk
D Rk

� f0g ,! Rk
�Rn�k

DRn;

�C WR
k
C DRk

C � f0g ,! Rk
�Rn�k

DRn;

�CC WR
k
C DRk

C � f0g ,!Rk
C �Rn�k

DRn
C:

Definition 2.1 A continuous map F W†k !M n between topological manifolds of dimensions k � n is
an immersion if locally it is a flat embedding, that is, if, for each point p 2†, there is a chart ' around p

and a chart ‰ around F.p/ fitting into one of the commutative diagrams

(2-1)

Rk �
//

'

��

Rn

‰
��

†
F
// M

Rk
C

�C
//

'

��

Rn

‰

��

†
F
// M

Rk
C

�CC
//

'

��

Rn
C

‰

��

†
F
// M
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The first diagram is for p 2 Int† and F.p/ 2 Int M, the second diagram is for p 2 @† and F.p/ 2 Int M,
and the third is for p 2 @† and F.p/ 2 @M. In particular, F is required to map interior points of † to
interior points of M.

Some authors prefer to call this notion a locally flat immersion.

Definition 2.2 A (linear) normal bundle for an immersion F W †k !M n is an .n�k/–dimensional
real vector bundle � W �F !†, together with an immersion zF W �F !M that restricts to F on the zero
section s0, ie zF ı s0 D F, and such that each point p 2† has a neighbourhood U such that zF j��1.U / is
an embedding.

We now restrict to the relevant dimensions for this paper, k D 2 and nD 4, and take M to be a connected
topological 4–manifold as in Convention 1.1. The singular set of an immersion F W†!M is the set

S.F / WD fm 2M W jF�1.m/j � 2g:

Recall that a continuous map is said to be proper if the inverse image of every compact set in the codomain
is compact.

Definition 2.3 Let † be a surface, possibly noncompact. A continuous, proper map F W†!M is said
to be a (topological) generic immersion, denoted by F W†#M, if it is an immersion and the singular set
is a closed, discrete subset of M consisting only of transverse double points, each of whose preimages
lies in the interior of †. In particular, whenever m 2 S.F /, there are exactly two points p1;p2 2† with
F.pi/Dm, and there are disjoint charts 'i around pi for i D 1; 2, where '1 is as in the leftmost diagram
of (2-1) and '2 is the same, with respect to the same chart ‰ around m, but with � replaced by

�0 WR2
D f0g �R2 ,!R2

�R2
DR4:

Theorem 2.4 A generic immersion F W †# M, for possibly noncompact †, has a normal bundle
as in Definition 2.2 with the additional property that zF is an embedding outside a neighbourhood of
F�1.S.F //, and near the double points zF plumbs two coordinate regions ��1.'i.R2//Š 'i.R2/�R2

for i D 1; 2 together , ie zF ı .'1.x/;y/D zF ı .'2.y/;x/.

Proof Let @1† � @† denote the union of the components of @† mapped to @M. Then, since F j@1†

is an embedding of a 1–manifold in a 3–manifold, it has a normal bundle. We extend this to a collar
neighbourhood of F.@1†/ contained in a collar neighbourhood of @M. To do this, first note that, since
@M is closed in M, S.F / is closed and contained in Int.M /, and manifolds are normal, it follows that
there is an open neighbourhood of @M disjoint from S.F /. Then argue as in Connelly’s proof [1971]
that boundaries of manifolds have collars, to obtain a homeomorphism of pairs

G W .M;F.†// Š�!
�
M [ .@M � Œ0; 1�/;F.†/[ .F.@1†/� Œ0; 1�/

�
:

The normal bundle over the boundary extends to a collar in the codomain; hence, its pullback extends to
a collar in the domain.
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Next, let @2†� @† denote the union of the components of @† mapped to Int M . We see that F.@2†/

has a normal bundle by [Freedman and Quinn 1990, Theorem 9.3], as a submanifold of M. Let zF be the
embedding of the total space, as in Definition 2.2. By using the inward-pointing normal for @2† in †, we
obtain an orthogonal decomposition of each fibre as �@2†,!†˚V, where V is a 2–dimensional subspace.
Then translates of V in the direction of the inward-pointing normal give rise to a normal bundle on the
intersection of a collar of @2† with the image of the normal bundle of @2† under zF.

Now we want to extend the normal bundle that we have just constructed on a neighbourhood of @† to the
rest of †. First we will produce a normal bundle in a neighbourhood of both preimages of each double
point, and then finally we will extend the normal bundle to the rest of the interior of †.

Let m 2 S.F / be a double point of F, so that there exist p1;p2 2 † with F.pi/Dm for i D 1; 2. By
the definition of a generic immersion, there is a chart ‰ for M at m, and charts 'i around pi , such that
F ı'1.x/D‰.x; 0/ and F ı'2.y/D‰.0;y/. We assume that F.†/\‰.R4/DF.'1.R

2//[F.'2.R
2//,

and moreover that the images of the charts for different elements of S.F / do not overlap one another, and
also are disjoint from the images of the normal bundles already constructed close to @†. Then we take a
trivial R2–bundle over each 'i.R2/, and we define the map zF on '1.R

2/�R2 and '2.R
2/�R2 by setting

zF .'1.x/;y/D‰.x;y/ and zF .'2.x/;y/D‰.y;x/. Then zF ı .'2.y/;x/D‰.x;y/D zF ı .'1.x/;y/,
as needed.

Let U m
1

and U m
2

be open neighbourhoods in † of p1 and p2, contained within the images of '1 and '2

above, respectively. Define†0 WD†n
S

m2S.F /.U
m
1
[U m

2
/. Then the restriction of F gives an embedding

of †0 in M. We already have a normal bundle defined on a neighbourhood of @†0. Apply [Freedman and
Quinn 1990, Theorem 9.3A] to extend the given normal bundle on U m

1
[U m

2
and @† to all of †0 and

therefore we have a normal bundle on all of †.

Remark 2.5 Freedman and Quinn [1990, Theorem 9.3] produce an extendable normal bundle for every
submanifold of a 4–manifold. The extendibility condition is technical with an important consequence:
extendable normal bundles are unique up to isotopy. One can always find an extendable normal bundle
embedded in the total space of any given normal bundle.

The proof of Theorem 2.4 also applies in the more general setting where @2† is not embedded in M, but
F j@2† factors as a composition of generic immersions @2†# S#M for some surface S. We will use
this case in the definition of b–characteristic maps in Section 5, so we introduce nomenclature.

Definition 2.6 Let g W S#M be a generic immersion of a surface in a 4–manifold M. Let .B;Z/ be a
pair consisting of a surface B and a collection Z � @B of connected components of its boundary. A map
H W B!M is called a generic immersion of pairs if H.Z/� g.S/ and

(i) H jBnZ is a generic immersion that is transverse to g and has image disjoint from H.Z/;

(ii) H.B/ is disjoint from the double points of g, which implies there is a unique map h WZ! S with
g ı hDH jZ ;
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(iii) the map h is a generic immersion; and

(iv) there is a collar N of Z in B with H.N nZ/�M ng.S/.

We denote such maps by H W .B;Z/# .M;S/, and sometimes identify h with H jZ .

Corollary 2.7 Let g W S # M be a generic immersion of a surface in a 4–manifold M and let
H W .B;Z/# .M;S/ be a generic immersion of pairs. Then H admits a normal bundle , ie a normal
bundle for B in M such that the restriction to Z contains a normal bundle for Z in S.

Proof Note that Z has a normal bundle in S, and then the sum of this with the normal bundle of S in M

guaranteed by Theorem 2.4 gives rise to a normal bundle for Z in M. The rest of the proof proceeds as
before.

Observe that smooth generic immersions are topological immersions. Next we show that when both
notions make sense they coincide, which justifies the terminology.

Theorem 2.8 Consider a smooth compact surface † and a .topological/ generic immersion F W†#M.
If M is noncompact then let M 0 WD M, and if M is compact then choose p 2 M n F.†/ and set
M 0 WDM n fpg. Then F is a smooth generic immersion in some smooth structure on M 0.

We know that M 0 has a smooth structure by [Freedman and Quinn 1990, Theorem 8.2; Quinn 1982,
Corollary 2.2.3].

Proof Fix a smooth structure on @M such that the generic immersion F restricted to those connected
components of @† that map to @M is a smooth embedding. To find such a smooth structure, first use the
standard smooth structure on the normal bundle of F j@†, and then extend this to a smooth structure on
all of @M. Since any two smooth structures on a 3–manifold are isotopic, this could also be arranged by
an isotopy of @†, but our aim is to use the given map without isotoping it.

By Theorem 2.4, there is a normal bundle .�F ; zF / for F. Let D.�F /!† be the (closed) disc bundle.
This yields a regular neighbourhood N.F / WD zF .D.�F // of F.†/, a codimension zero submanifold
of M 0. The regular neighbourhood N.F / can be identified with a smooth manifold obtained from D.�F /

after the requisite plumbing operations and smoothing corners. Use such an identification to fix a smooth
structure on N.F /�M. With respect to this smooth structure, the map †!N.F / is a smooth generic
immersion.

Now, the boundary of N.F / inherits a smooth structure. The complement of Int N.F /[ .N.F /\ @M 0/

in M 0 is a connected, noncompact 4–manifold with a prescribed smooth structure on its boundary. Then
the interior has a compatible smooth structure by [Freedman and Quinn 1990, Theorem 8.2; Quinn 1982,
Corollary 2.2.3], giving rise to a smooth structure on all of M 0. Since the smooth structure on N.F / is
unaltered, F become a smooth generic immersion, as desired.
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Recall that an isotopy of homeomorphisms of a manifold M is a map H WM � Œ0; 1�!M such that the
track M � Œ0; 1�!M � Œ0; 1� given by .m; t/ 7! .H.m; t/; t/ is a homeomorphism.

Definition 2.9 An ambient isotopy between generic immersions F;G W†#M consists of two isotopies
H† W†� Œ0; 1�!† and HM WM � Œ0; 1�!M such that

(1) H†.�; 0/ and HM .�; 0/ are both the identity; and

(2) G.x/DHM

�
F.H†.x; 1//; 1

�
for all x 2†.

This is motivated by the smooth result which states that two generic immersions are ambiently isotopic
(in the sense of Definition 2.9 but with homeomorphism replaced by diffeomorphism in the definition of
an isotopy) if and only if they are connected by a path in the space of generic immersions [Golubitsky and
Guillemin 1973, Chapter III, Theorem 3.11]. Note that for embeddings one does not need the isotopy H†.

Mirroring the smooth notion, a generic homotopy between generically immersed surfaces in a 4–manifold
is by definition a sequence of ambient isotopies, finger moves, Whitney moves and cusp homotopies.
The moves in question are defined in local coordinates exactly as in the smooth setting. A regular
homotopy between generically immersed surfaces in a 4–manifold is by definition a sequence of ambient
isotopies, finger moves and Whitney moves. The following proposition explains that maps of surfaces in
a 4–manifold can be assumed to be generic immersions, and homotopies between generic immersions
may be assumed to be generic as well.

Proposition 2.10 [Powell et al. 2020, Proposition 3.1] Let † be a compact surface and let M be a
topological 4–manifold.

(1) Every map .†; @†/! .M; @M / is homotopic (relative to the embedded boundary) to a generic
immersion.

(2) Every homotopy .†; @†/� Œ0; 1�! .M; @M / that restricts to a generic immersion on †�f0; 1g is
homotopic (relative to the boundary) to a generic homotopy.

Briefly, the proposition is proven as follows. Homotope the maps away from a point of M using cellular
approximation, remove that point, choose a smooth structure on the complement of the point, and then
apply the smooth theory of generic immersions, combining [Hirsch 1976, Theorems 2.2.6 and 2.2.12]
with [Golubitsky and Guillemin 1973, Chapter III, Corollary 3.3].

2.2 Intersection numbers

We define intersection numbers between compact, connected surfaces in 4–manifolds. In order to
accommodate the fundamental group in equivariant intersection numbers, we need to use basings.
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Definition 2.11 We call a manifold X based if it is equipped with basepoints pi 2Xi for each connected
component Xi �X, together with a local orientation at each pi . A generic immersion F WX !Y between
based manifolds with Y connected is said to be based if it is equipped with whiskers, ie paths in Y from
the basepoint of Y to F.pi/ for each basepoint pi of X.

For the remainder of this section, let M be a connected, based 4–manifold and let † and †0 be based,
compact, connected surfaces, unless specified otherwise.

Let f W †!M and g W †0!M be based maps that are transverse, ie around each intersection point
f .s/D g.s0/ with s 2† and s0 2†0, there are coordinates that make f and g (in a neighbourhood of s

in † and a neighbourhood of s0 in †0) resemble the standard inclusions R2 � f0g and f0g �R2 into R4,
respectively, as in (2-1). We assume that these intersections are the only singularities between f and g

and that f .@†/ and g.@†0/ are disjoint.

Let vf and vg be whiskers for f and g. The intersection number �.f;g/ is the sum of signed fundamental
group elements

�.f;g/ WD
X

p2ftg

".p/ � �.p/

as follows. A priori this is the formal sum of a list of elements of the set f˙1g��1.M /. It will ultimately
give rise to an element of a quotient of ZŒ�1.M /�, given in Definition 2.12, after we factor out the effect
of finger and Whitney moves and the effect of the choice of the paths p

f
and p

g in the first bullet point
below.

Fix p 2 f t g. Next we define ".p/ 2 f˙1g and �.p/ 2 �1.M /. We use � to denote concatenation of
paths.

� Let p

f
be a path in † from the basepoint to f �1.p/ and let p

g be a path in †0 from the basepoint
to g�1.p/.

� The sign ".p/2 f˙1g is determined as follows. Transport the local orientation of† at the basepoint
to f �1.p/ along p

f
, and the local orientation of †0 at the basepoint to g�1.p/ along p

g . This
induces a local orientation at p, by ordering f before g. Another local orientation is obtained
by transporting the local orientation at the basepoint of M to p along the concatenated path
vg � .g ı

p
g /. We define ".p/DC1 when the two local orientations match at p, and �1 otherwise.

� The element �.p/ 2 �1.M / is by definition the concatenation vf � .f ı 
p

f
/� .g ı 

p
g /
�1 � v�1

g .

For a generic immersion f W †#M, we define �.f; f / WD �.f; f C/, where f C is a push-off of f
along a section of its normal bundle transverse to the zero section. If the embedding f j@† is equipped
with a specified framing for its normal bundle, then f C is defined to be a push-off of f along a section
restricting to the first vector of that framing on @†.
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If ft is a homotopy of f that is transverse to g for all t then �.ft ;g/ is independent of t as a set of
signed fundamental group elements, assuming the above choices of p

ft
are made carefully. However, if

ft describes a finger move of f into g, there is a single time t0 at which ft0
and g are not transverse,

because there is a tangency. After the tangency, two new intersection points p and q arise. These have
the same group element �.p/D �.q/ and opposite signs ".p/D�".q/, with appropriate choices of p

ft

and  q

ft
. Similarly, a Whitney move reduces the intersections between f and g by such a pair. To get a

regular homotopy invariant notion, it is thus important to specify the home of �.f;g/ carefully.

For † and †0 simply connected, the sum �.f;g/ is usually considered as an element of ZŒ�1.M /� and is
independent of the choice of fp

f
gp and fp

g gp . In the abelian group ZŒ�1.M /� the relations �aCaD 0

for each a 2 �1.M / are built in, and if one identifies the sign ".p/ with the inverse in this abelian group
then finger moves and Whitney moves do not change �.f;g/ as an element in the group ring.

For nonsimply connected† and†0, the homotopy class of p

f
and p

g may be changed by wrapping around
nontrivial elements in �1.†/ or �1.†

0/. This wrapping may also change the induced local orientations
at the intersection points of f and g. We describe this in more detail next. Let wM W �1.M /! f˙1g,
w† W �1.†/! f˙1g and w†

0

W �1.†
0/! f˙1g denote the orientation characters.

Definition 2.12 Let �f;g be the abelian group generated by the elements of �1.M / and with relators

(2-2)  �w†.˛/w†
0

.ˇ/wM .g�.ˇ// �f�.˛/�  �g�.ˇ/;

for all ˛2�1.†/; ˇ2�1.†
0/;  2�1.M /. Here f�.˛/ WDvf �.f ı˛/�v�1

f
and g�.ˇ/ WDvg�.gıˇ/�v

�1
g

are elements of �1.M /.

For transverse f W†!M and g W†0!M, the intersection number �.f;g/ 2 �f;g is well defined. The
relations precisely account for wrapping around elements of �1.†/ or �1.†

0/ as described above. We
will show in Proposition 2.18 that this target also makes �.f;g/ a homotopy invariant.

Remark 2.13 In the case that M, † and †0 are all oriented,

�f;g Š ZŒf�.�1.†//n�1.M /=g�.�1.†
0//�;

the free abelian group generated by the double coset quotient of �1.M / by left and right multiplication
by the images of loops in † and †0, respectively.

In general, due to the signs introduced by the orientation characters, there may be torsion in �f;g. For
example, consider f W RP2#M with f�.RP1/D 1, without any assumption on M. Then, for every
g W†0!M, the group

�f;g Š .Z=2/Œ�1.M /=g�.�1.†
0//�

is 2–torsion, due to the relations  D wRP2

.RP1/ � f�.RP1/ �  D � for every  2 �1.M /, arising
from setting ˛ WDRP1 and ˇ WD 1 in (2-2).
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To understand �f;g better, we introduce some notation. Write ˙�1.M / WD f˙1g ��1.M /. There is a
natural inclusion ˙�1.M /! ZŒ�1.M /� given by .˙1;  / 7! ˙ . Write Œa� 2 �f;g for the equivalence
class of a2ZŒ�1.M /�, and let� denote the equivalence relation on˙�1.M / induced by the composition
˙�1.M / ,! ZŒ�1.M /�� �f;g, ie for a; b 2 ˙�1.M /, a � b if and only if the images of a and b

in �f;g coincide. The following lemma is immediate from the definitions.

Lemma 2.14 Let 1; 2 2 �1.M /. One of the relations Œ1� D ˙Œ2� 2 �f;g holds if and only if 1

and 2 represent the same element in the double coset f�.�1.†//n�1.M /=g�.�1.†
0//.

Let pm W ˙�1.M /=�� f��1.†/n�1.M /=g��1.†
0/ be the map sending˙ to the class of  . We write

j j WD pm. /. Here one should think that pm stands for dividing out “plus–minus”. Note that pm has
fibres of order 1 or 2 and we can decompose the double coset as a disjoint union B1 tB2 according to
this distinction, where pm gives a bijection pm�1.B1/$ B1 while pm�1.B2/! B2 is two-to-one.

Remark 2.15 We give examples in the cases from Remark 2.13. In the case that M, † and †0 are
all oriented, B1 D ∅ and B2 D f�.�1.†//n�1.M /=g�.�1.†

0//. If we have f W RP2 # M with
f�.RP1/D 1, and g W†0!M is arbitrary, then B1 D �1.M /=g�.�1.†

0// and B2 D∅.

Choose a section s of pm. For each s.b/2 pm�1.B2/, we denote the other element of pm�1.b/ by �s.b/.
Their images in �f;g are indeed inverse to one another, which motivates the notation.

Lemma 2.16 Fix a section s for pm as above. The abelian group �f;g is a direct sum �f;g D FA˚V of
a free abelian group FA on the set s.B2/ �˙�1.M /=� � �f;g and a Z=2–vector space V with basis
s.B1/D pm�1.B1/�˙�1.M /=�.

Reading off the coefficients in this decomposition gives homomorphisms cs.b/ W �f;g!Z for each b 2B2,
and cb W �f;g! Z=2 for each b 2 B1, yielding a decomposition of �f;g as a direct sum of copies of Z

and Z=2.

In particular, the homomorphisms cs.b/ and cb determine the isomorphisms displayed in Remark 2.13.

Proof Starting with the free abelian group with basis �1.M /, a relator in (2-2) does one of the following
three things:

(1) It identifies two distinct basis elements 1 and 2 if and only if 2 D f�.˛/� 1 �g�.ˇ/ 2 �1.M /

and w†.˛/w†
0

.ˇ/wM .g�.ˇ//D 1 for some ˛ 2 �1.†/ and ˇ 2 �1.†
0/.

(2) It identifies a basis element 1 with the inverse �2 of another basis element 2¤ 1 if and only if
2D f�.˛/�1�g�.ˇ/ and w†.˛/w†

0

.ˇ/wM .g�.ˇ//D�1 for some ˛ 2�1.†/ and ˇ 2�1.†
0/.

(3) It identifies a basis element  with its inverse � if and only if

 D f�.˛/�  �g�.ˇ/ and w†.˛/w†
0

.ˇ/wM .g�.ˇ//D�1

for some ˛ 2 �1.†/ and ˇ 2 �1.†
0/.
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The first two types of relators reduce the basis to the double coset

f��1.†/n�1.M /=g��1.†
0/:

The third type adds the relations 2Œ �D 0 to the fundamental group elements  in question, which then
generate V, because these are exactly the  such that �Œ �D Œ �, ie where #pm�1.j j/D 1. Those 
where #pm�1.j j/D 2 remain of infinite order and generate FA. Note that the second type of relator
forces us to choose the section s in order to write down a consistent basis for FA.

The subgroup V and its basis clearly do not depend on our choice of section, but the basis of FA depends
on this choice. If we change the section s at a point b 2B2 to s0 so that s0.b/D�s.b/, the associated basis
element changes to its inverse. It follows that the subgroup FA of �f;g does not depend on the choice of s.
It also follows that the coefficient maps cs.b/ only depend on s up to sign and satisfy c�s.b/ D�cs.b/.

For a given a 2 ˙�1.M /=�, we can choose a section s as above with s.pm.a// WD a and hence
we get a coefficient map ca that is independent of the other values of s. For example, we can take
a WD Œ � 2 ˙�1.M /=� with  2 �1.M / to get c .

Definition 2.17 For  2�1.M /, write �.f;g/ WDc .�.f;g//. This quantity lies in Z (respectively Z=2)
when j j lies in B2 (respectively B1), or equivalently when Œ � has infinite order (respectively order 2)
in �f;g. The values do not depend on the choice of s and satisfy c1

D�c2
whenever Œ1�D�Œ2�.

The following can be proven using Proposition 2.10 (see eg [Freedman and Quinn 1990, Section 1.7;
Powell and Ray 2021b] for the case of discs and spheres).

Proposition 2.18 Let f W †!M and g W †0!M be based maps that are transverse to one another.
The intersection number �.f;g/ is preserved by homotopies that are ambient isotopies near @†t @†0.

Remark 2.19 The geometric definition of � given above has a well-known algebraic version in the
case that f and g correspond to classes in H2.M; @M IZŒ�1.M /�/. This extends to the case of positive
genus, as we now sketch. We restrict ourselves to the case that M, † and †0 are closed and oriented for
convenience.

Choose a basepoint in the universal cover of M, lifting the basepoint of M. The maps f and g lift
uniquely (with respect to this choice of basepoint) to covers �M and �M 0, corresponding to the subgroups
f�.�1.†// and g�.�1.†

0//, respectively. These lifts represent classes

Œf � 2H2. �M IZ/ŠH2

�
M IZŒ�1.M /=f��1.†/�

�
and

Œg� 2H2. �M 0
IZ/ŠH2

�
M IZŒ�1.M /=g��1.†

0/�
�
:

Then we have

PD�1.Œf �/ ^ PD�1.Œg�/ 2H 4
�
M IZŒ�1.M /=f��1.†/�˝Z ZŒ�1.M /=g��1.†

0/�
�
:
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By Poincaré duality, this yields an element in

H0

�
M IZŒ�1.M /=f��1.†/�˝Z ZŒ�1.M /=g��1.†

0/�
�
;

which is isomorphic as an abelian group to

ZŒf��1.†/n�1.M /�˝ZŒ�1.M /�ZŒ�1.M /=g��1.†
0/�:

Here ZŒf�.�1.†//n�1.M /� denotes ZŒ�1.M /=f��1.†/� considered as a right ZŒ�1.M /�–module.

Finally, we have the isomorphism

ZŒf��1.†/n�1.M /�˝ZŒ�1.M /�ZŒ�1.M /=g��1.†
0/�! ZŒf��1.†/n�1.M /=g��1.†

0/�;

Œa�˝ Œb� 7! Œab� for a; b 2 �1.M /:

We shall not prove that this formulation agrees with the geometric definition.

2.3 Self-intersection numbers

Next we turn to the self-intersection number for a based generic immersion f W†#M of a connected
surface †, with whisker vf . The definition of �, given below, is similar to that of � in the previous
subsection, except that there is no longer a clear choice of which sheet to consider first at a given double
point. Consequently, the values of � lie in a further quotient of the group �f;f from Definition 2.12.

We write f t f �M for the set of double points of f. We record the self-intersections of f by the sum
of signed group elements

�.f / WD
X

p2ftf

".p/ � �.p/

as follows:

� For p D f .x1/D f .x2/ for x1 ¤ x2 2†, let p
1

and p
2

be paths in † from the basepoint to x1

and x2, respectively.

� The sign ".p/ 2 f˙1g is defined as follows. Transport the local orientation of † at the basepoint
to x1 along p

1
, and along p

2
to x2. This induces a local orientation at p. Another local orientation

is obtained by transporting the local orientation at the basepoint of M to p along the concatenated
path vf � .f ı 

p
2
/. We define ".p/ D 1 when the two local orientations match at p, and �1

otherwise.

� The element �.p/ 2 �1.M / is given by the concatenation vf � .f ı 
p
1
/� .f ı 

p
2
/�1 � v�1

f
.

There is a similar discussion about homotopy invariance of �.f / as for �.f;g/ earlier: homotopies ft

that are generic immersions for all t preserve the formal sum of signed elements but finger moves and
Whitney moves (of f with itself) create pairs ��.p/C �.p/, so it is convenient to use abelian groups.
This takes care of regular homotopies of f but there is an additional subtlety for cusp homotopies ft ,
where there is exactly one time t0 for which ft0

is not an immersion. These issues will be discussed
carefully below.
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For simply connected †, the self-intersection invariant �.f / is well defined in the quotient (as an abelian
group) of ZŒ�1.M /� obtained by introducing the relators

 �wM . / � �1

for all  2 �1.M /. For general †, the quantity �.f / is well defined in the abelian group

(2-3) �f WD �f;f =h �w
M . / � �1

i;

ie in this quotient of �f;f from Definition 2.12. Here, as above, wM W �1.M /! f˙1g is the orientation
character.

We now change our notation slightly from the discussion of �.f;g/ in order to work in this further
quotient. Let � denote the equivalence relation on ˙�1.M / induced by the composition

˙�1.M / ,! ZŒ�1.M /�� �f

sending a 7! Œa� and let j�1.M /j be the quotient of˙�1.M / obtained by identifying 1 and 2 whenever
Œ1�D˙Œ2� 2 �f . Then we obtain the following analogues of Lemmas 2.14 and 2.16.

Lemma 2.20 Let 1; 2 2 �1.M /. One of the relations Œ1� D ˙Œ2� holds if and only if 1 and 2

represent the same element in the quotient of the double coset by inversion. In other words , the identity
map induces a bijection

j�1.M /j $ .f��1.†/n�1.M /=f��1.†//=�;

where� is the equivalence relation identifying  and �1 for all  2 �1.M /.

We write j j WD pm. / for the quotient map pm W ˙�1.M /=�� j�1.M /j. Again, pm has fibres of
order 1 or 2 and we decompose j�1.M /j as a disjoint union B1tB2 according to this distinction as before.
Choose a section s W j�1.M /j ! ˙�1.M /=� of pm. As before, for b 2 B2 we denote the elements of
the fibre by pm�1.b/D fs.b/;�s.b/g.

Lemma 2.21 The abelian group �f is a direct sum �f D FA˚V of a free abelian group FA on the set
s.B2/�˙�1.M /=�� �f and a Z=2–vector space V with basis s.B1/D pm�1.B1/�˙�1.M /=�.

Reading off the coefficients in this decomposition gives homomorphisms cs.b/ W �f ! Z for b 2 B2, and
cb W �f ! Z=2 for b 2 B1, leading to a decomposition of �f as a direct sum of copies of Z and Z=2.

Proof The proof is analogous to that of Lemma 2.16.

Remark 2.22 If M and † are oriented, then

�f Š ZŒf��1.†/n�1.M /=f��1.†/�=h � 
�1
i D ZŒ.f��1.†/n�1.M /=f��1.†//=��

is free abelian. In this case, B1 D ∅ and B2 D j�1.M /j D .f��1.†/n�1.M /=f��1.†//=� by
Lemma 2.20.
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Consider instead f WRP2#M with f�.RP1/D 1, without any assumption on M. Then

�f Š .Z=2/Œ�1.M /�=h �wM . / � �1
i D .Z=2/Œ�1.M /=��:

As in Remark 2.13, this is 2–torsion due to the relations  D wRP2

.RP1/ � f�.RP1/�  D� . In this
case, B1 D j�1.M /j D �1.M /=� and B2 D∅.

As before, the subgroups FA and V of �f do not depend on the choice of s; only the basis of FA does.
As a consequence, the coefficient maps cs.b/ only depend on s up to sign and satisfy c�s.b/ D �cs.b/.
Given a 2˙�1.M /=�, we may again take s.pm.a// WD a to get ca and, in particular, c for  2 �1.M /

independent of the choice of s at other points. This gives the following definition.

Definition 2.23 For  2�1.M /, we write�.f / WD c .�.f //. This quantity lies in Z (respectively Z=2)
when j j lies in B2 (respectively B1), or equivalently when Œ � has infinite order (respectively order 2)
in �f . The values do not depend on the choice of s and satisfy c1

D�c2
whenever Œ1�D�Œ2�.

We focus on �.f /1, which plays an important role in the distinction between the homotopy class and
regular homotopy class of f, as we will discuss in the next subsection. In the usual case, where † is
simply connected, �.f /1 2 Z. However, in general, �.f /1 may lie in either Z or Z=2. The following
lemma gives the precise conditions determining the home of �.f /1.

Lemma 2.24 Let f W †#M be a based , generic immersion , with whisker v. Recall that the map
f� W �1.†/! �1.M / is given by ˛ 7! v � .f ı˛/� v�1.

If w† is trivial on ker.f�/ and wM is trivial on Im.f�/, then Œ1�2�f has infinite order and thus�.f /12Z.
Otherwise , Œ1� has order 2 and �.f /1 2 Z=2.

Proof By definition, for 1 2 �1.M /, we know that Œ1� 2 �f;f has order 2 precisely if

(i) there exists ˛; ˇ 2�1.†/ such that f�.˛/�f�.ˇ/Df�.˛�ˇ/D 1 and w†.˛/w†.ˇ/wM .f�.ˇ//D

w†.˛ �ˇ/wM .f�.ˇ//D�1, or

(ii) there exists ı � 1 where ı has order two in �1.M / and wM .ı/D�1.

Suppose that w† is trivial on ker.f�/ and wM is trivial on Im.f�/. Then the first case (i) cannot happen
since, if f�.˛ �ˇ/D 1, then ˛ �ˇ 2 ker.f�/ so w†.˛ �ˇ/wM .f�.ˇ//D 1 � 1D 1. Similarly, (ii) cannot
happen: suppose ı has order two in �1.M / and ı�1. Then, by definition, ıDf�.˛/�1�f�.ˇ/Df�.˛�ˇ/
in �1.M /, for some ˛; ˇ 2 �1.M /. In particular, ı 2 Im.f�/, and so again wM .ı/D 1 by hypothesis,
contradicting (ii). Therefore, Œ1� has infinite order, as claimed.

Now suppose there is some ˛ 2 �1.†/ with wM .f�.˛//D�1. Then we have f�.˛�1/� 1�f�.˛/D 1

and w†.˛�1/w†.˛/wM .f�.˛//D�1, so Œ1���Œ1� and Œ1� has order two.

Finally, suppose that there is some ˛ 2 ker.f�/ with w†.˛/D�1. Then we have f�.˛/� 1�f�.1†/D 1

and w†.˛/w†.1†/wM .f�.1†//D�1, where 1† denotes the trivial element in �1.†/. Then, again, we
have Œ1���Œ1� and Œ1� has order two.
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As with Proposition 2.18, the proof of the following proposition is virtually identical to the case of discs
and spheres using Proposition 2.10 (see eg [Powell and Ray 2021b]), and we leave it for the interested
reader.

Proposition 2.25 Let f W†#M be a based generic immersion. The self-intersection number �.f / is
preserved under regular homotopies that are ambient isotopies near @†.

In this and the previous subsection, we have considered intersection and self-intersection numbers of
connected surfaces. By combining these invariants, we can define the conglomerate notion of self-
intersection number for disconnected surfaces F D ffig

m
iD1
W†!M, as considered in Definition 1.3:

�.F / WD
X
i<j

�.fi ; fj /C
X

i

�.fi/ 2
M
i<j

�fi ;fj
˚

M
i

�fi
:

Propositions 2.18 and 2.25 imply that �.F / is preserved under regular homotopies of F that are ambient
isotopies near @†.

2.4 Whitney discs

A Whitney move cancels a pair of double points of a generic immersion F W†#M as in Convention 1.1,
provided all the assumptions on the guiding Whitney disc are satisfied. In our setting, where † and M

need be neither simply connected nor orientable, this requires some care. We start with the notion of arcs A

and A0 pairing double points p and q, and the corresponding notion of .p; q;A;A0/ having opposite sign.

Definition 2.26 Let f W †!M and g W †0!M be based maps that either intersect transversely, or
f D g and f is a generic immersion. We say that two points p; q 2 f t g �M are paired by arcs if we
equip them with the extra data of an arc A W Œ0; 1�!† from f �1.p/ to f �1.q/ and an arc A0 in †0 from
g�1.q/ to g�1.p/. In the case that f D g, we require that each point in f �1.p/ and in f �1.q/ is the
endpoint of precisely one of the arcs A and A0, ie A and A0 lie in distinct sheets at both p and q.

With the extra data of the arcs A and A0, we can make sense of whether two intersection points that are
paired by arcs have opposite sign.

Definition 2.27 Let f W †!M and g W †0!M be based maps that either intersect transversely, or
f D g and f is a generic immersion. Two intersection points p; q 2 f t g �M paired by arcs A in †
and A0 in †0 have opposite sign if the following holds. Fix local orientations of † at f �1.p/ and of †0

at g�1.p/. This choice induces a local orientation of M at p. Transport the local orientation of † from
f �1.p/ to f �1.q/ along A, and the local orientation of †0 from g�1.p/ to g�1.q/ along A0. This gives
a local orientation of M at the point q. Compare this with the local orientation on M at q induced by
transporting the local orientation from p to q along the arc f ıA. If these orientations disagree, then the
points p and q are said to have opposite sign (with respect to A and A0), and otherwise they are said to
have the same sign. The dependence on the choice of arcs A and A0 is sometimes neglected.
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Note that double points having the same sign could be “paired” by an embedded disc, but this does not
mean that a Whitney move using this disc is possible, because the required section of the normal bundle of
the disc is not available; in this case, any rank one subbundle of the normal bundle of the disc, restricted
to the boundary, that is tangent to one sheet of † and normal to the other sheet turns out to be a Möbius
bundle. So one does not study such discs and assumes that a Whitney disc always pairs two double points
of opposite sign.

In the setting of based transverse maps f ¤ g, with † and †0 connected, recall from Section 2.2 that
�.f;g/ is a sum of terms ".p/ � �.p/, one for each double point p 2 f t g, with �.p/ 2 �1.M /

and ".p/ 2 f˙1g. This sum is well defined in the abelian group �f;g and each signed group element
a 2 ˙�1.M / represents a unique element Œa� 2 �f;g. The same proof as in the case of simply connected
surfaces [Powell and Ray 2021b, Proposition 11.10] yields the following result.

Lemma 2.28 Let † and †0 be compact connected surfaces and let f W †!M and g W †0!M be
based maps with transverse double points p; q 2 f t g �M. Then Œ".p/ � �.p/C ".q/ � �.q/�D 0 2 �f;g

if and only if p and q can be paired by arcs A�† and A0 �†0 such that

(i) the closed loop f ıA[p;q g ıA0 is null-homotopic in M, and

(ii) the points p and q have opposite sign with respect to the arcs A and A0.

If (i) and (ii) are satisfied for p and q, we say that W WD2!M is a (map of a) Whitney disc pairing p

and q if its boundary is the closed loop in (i), the union of its two Whitney arcs f ıA and g ıA0. We
leave it to the reader to formulate the analogous notion for a pair of transverse self-intersection points of
f W†!M. This gives rise to the following corollary to Lemma 2.28.

Corollary 2.29 Let † and †0 be compact connected surfaces and let f W†!M and g W†0!M be
transverse based maps. Then �.f;g/D 0 if and only if all intersection points between f and g can be
paired by maps of Whitney discs.

Moreover , a based generic immersion f W†#M satisfies �.f /D 0 if and only if all self-intersection
points of f can be paired by maps of Whitney discs.

Note that, by the geometric Casson lemma (Lemma 4.2), the vanishing of �.f;g/ is equivalent to the
existence of a regular homotopy of f and g that makes their images disjoint, at the cost of introducing
self-intersections in f and g. There is no analogue of this argument if �.f /D 0 by the failure of the
Whitney trick in dimension 4, as for example exhibited by the secondary embedding obstruction km.f /
(see Section 3).

By the geometric characterisation in Corollary 2.29, it is meaningful to refer to f and g having trivial
intersection number, and to f having trivial self-intersection number, without using a basing.
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The analogue of the characterisation in the second part of Corollary 2.29 holds for generic immersions
F D ffig

m
iD1
W†#M from Convention 1.1, ie for compact but possibly disconnected domains, if we

use Definition 1.3 from the introduction for the self-intersection number �.F /.

Corollary 2.30 Let F W .†; @†/# .M; @M / be as in Convention 1.1. Then �.F /D 0 if and only if the
double points of F can be paired by maps of Whitney discs.

Proof This is a direct consequence of Propositions 2.18 and 2.25 and Corollary 2.29 because every double
point of F is either a self-intersection point of a component fi or an intersection point between distinct
components fi and fj (where we can assume that i < j ). Note that both cases represent self-intersection
points of F.

Collections of Whitney discs as above may be assumed to be convenient in the following sense (see eg
[Freedman and Quinn 1990, Section 1.4; Powell and Ray 2021b]).

Definition 2.31 Let F W .†; @†/# .M; @M / be as in Convention 1.1. A convenient collection of
Whitney discs for F is a collection of framed, generically immersed Whitney discs pairing all the double
points of F, with interiors transverse to F and with disjointly embedded boundaries. A collection of arcs
in F.†/ is called a collection of Whitney arcs if the union of the arcs is the boundary of a convenient
collection of Whitney discs.

By pushing double points of a convenient collection across the boundaries of Whitney discs [Powell
and Ray 2021b, Figure 11.4], we may further assume that all Whitney discs are pairwise disjoint and
embedded. However, the (resulting and preexisting) intersections between the original surface F and the
Whitney discs can in general not be removed, as detected by the secondary invariant km.F /.

2.5 Homotopy versus regular homotopy of generic immersions

Let f W†#M be a generic immersion. Local orientations of M and † determine a local orientation
of �f. Hence, given a framing of f j@†, one can define a relative Euler class of the normal bundle �f
in H 2.†; @†IZw1.�f //. If f �.w1.M // D w1.�f /C w1.T†/ D 0 then the local orientation of †
determines a Poincaré duality isomorphism from this twisted cohomology group to Z, and we denote the
resulting integer by e.�f /. Note that e.�f / does not depend on the local orientation of † but only on the
local orientation of M. If f �.w1.M //¤ 0 then there is still a mod 2 normal Euler number, which we
also denote by e.�f / 2 Z=2.

A useful interpretation of e.�f / is as follows. A vector in R2 together with the framing of f j@† determines
a nonvanishing section of �f on f .@†/. Extend this to a section of �f over all of f .†/, transverse
to the zero section. Then e.�f / counts, with sign, the number of zeros of the section, in Z or Z=2 as
appropriate.
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Next we give an extension of [Powell et al. 2020, Theorem 1.2] from the simply connected to the general
setting, restricting ourselves to the case of connected † for convenience. We note that [Powell et al. 2020,
Theorem 1.2] was based on [Freedman and Quinn 1990, Lemma 1.2 and Proposition 1.6], but that the
latter proposition was not proven in [Freedman and Quinn 1990].

By the following theorem, in some cases, for example when M is orientable, e.�f / 2 Z is an additional
invariant of regular homotopy classes of immersions. It changes by ˙2 during a cusp homotopy (see eg
[Conant et al. 2012b, Figure 19]) and hence there can be infinitely many regular homotopy classes of
immersions, all of which are homotopic as continuous maps.

In Theorem 2.32, in the case that † has nontrivial boundary, we fix a framing on the embedding f j@†, in
order to define the relative Euler number e.� Qf / for Qf any generic immersion homotopic to f.

Theorem 2.32 Let † be a compact , connected surface and let M be a 4–manifold. Then the inclusion
of the subspace of generic immersions Imm.†;M / in the space of all continuous maps induces a map

Imm.†;M /

fregular homotopyg
i
�! Œ†;M �@;

where Œ†;M �@ denotes the set of homotopy classes of continuous maps that restrict on @† to embeddings
disjoint from the image of the interior of †.

(1) i is surjective.

(2) The fibres of i are related by cusp homotopies. More precisely, suppose that f and g are homotopic
generic immersions. Then we can add cusps to f and g, to obtain f 0 and g0, respectively, such
that f 0 and g0 are regularly homotopic.

(3) For every f 2 Œ†;M �@, there is a bijection

i�1.f /Š

8<:
2Z if f �.w1.M //D 0 and w2.� Qf /D 0;

2ZC 1 if f �.w1.M //D 0 and w2.� Qf /D 1;

Z=2 otherwise ,

where � Qf is a normal bundle for Qf, a generic immersion in i�1.f /. When f �.w1.M //D 0, the
bijection is given by

Qf 7! e.� Qf /:

Otherwise , the bijection is given by

Qf 7! �. Qf /1 2 Z=2:

(4) If f �.w1.M // D 0 and w1.†/jker.f�/ D 0 for Qf a generic immersion in i�1.f /, the quantities
�. Qf /1 and e.� Qf / are related by the formula

�. Qf ; Qf /1 D 2�. Qf /1C e.� Qf / 2 Z

and so �. Qf /1 2 Z also detects the regular homotopy class of Qf 2 i�1.f /.
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While we prefer the upcoming direct argument analysing singularities, Theorem 2.32 could in principle
also be proven via Smale–Hirsch immersion theory, which has a version in the topological category. The
main novelty of the theorem is that we give precise conditions in terms of the Stiefel–Whitney classes to
control how large the fibres of i are, and which invariants detect them.

Proof By Proposition 2.10(1), the map is surjective. That is, every homotopy class contains a generic
immersion. This proves (1).

For (2), note that, if f and g are homotopic generic immersions, then, by Proposition 2.10(2), there exists
a generic homotopy H between them, which by definition is a sequence of ambient isotopies, finger moves,
Whitney moves and cusp homotopies. We can modify H so that there are real numbers t1 < t2 2 Œ0; 1�

such that the singularities of H in Œ0; t1� only consist of cusp homotopies that create double points, the
singularities in Œt1; t2� only consist of finger moves and Whitney moves, and those in Œt2; 1� only consist of
cusp homotopies that remove double points. The statement then follows by taking f 0 WDHt1

and g0 WDHt2
.

To achieve this modification, note that we can bring all the creating cusp singularities forward, so that they
occur earlier, and we can delay all the removing cusps. To arrange for a creating cusp to be rearranged
earlier than a finger or Whitney move, choose an arc in the image of H starting from Ht .†/ for some
t 2 .0; t1/, and ending at the cusp, which intersects each level in a point and is disjoint from all Whitney
arcs and double points. The homotopy can then be altered in a neighbourhood of this arc so that the cusp
singularity occurs at time t . Delaying a removing cusp is the same procedure but with the direction of
time reversed. This completes the proof of (2).

The proof of (3) splits naturally into two cases.

Case 1 f �.w1.M //D 0.

As noted in Section 2, the sign of an intersection point is not always well defined. Nevertheless, in
the case that f �.w1.M // D 0, the sign of a cusp homotopy is well defined. The key point is that a
cusp not only specifies a double point p but also an arc between the preimages of p. In the case that
f �.w1.M // D 0, using this path, the sign of the double point p is well defined, independent of the
choice of path transporting the local orientation at the basepoint to the double point. Thus in this setting
we define the sign of a cusp to be the sign of the double point it creates or removes. We will use the
terminology of creating cusps for cusps that create a double point and removing cusps for those that
remove a double point.

Since f �.w1.M //D 0, e.� Qf / is defined in Z for any generic immersion Qf homotopic to f. Recall that
w2.� Qf /� e.� Qf / mod 2. Since regularly homotopic generic immersions have equal Euler numbers, the
map in the theorem statement is well defined on equivalence classes in the domain of i . Note that a cusp
homotopy changes e.� Qf / by 2 or �2, depending on the sign of the cusp and whether it is a creating or a
removing cusp. So every element of 2Z or 2ZC 1, depending on w2.� Qf /, can be realised as the Euler
number of a generic immersion in i�1.f /.
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(a) (b)

(c)

Figure 3: A schematic picture showing how a removing cusp singularity and creating cusp
singularity with the same sign can be cancelled. In each of (a), (b) and (c), a homotopy is traced
out in the direction of t . At every time t , except the times of the cusp singularities, we depict an
arc of a generic immersion homotopic to f. (a) Two cusp singularities are shown: a removing
cusp occurring first, followed by a creating cusp of the same sign. (b) Modify the homotopy,
delaying the removing cusp until it coincides with the creating cusp. This involves choosing an
arc in † joining the two cusp points. (c) A further local modification removes the two cusps.

To complete the proof when f �.w1.M //D 0, it remains to show injectivity. We will show that, given a
generic homotopy between generic immersions with equal Euler numbers, we can modify the homotopy
to cancel cusps, until we are left with a regular homotopy.

First note that, when we have a removing cusp, and later in the homotopy we have a creating cusp with
the same sign, we can cancel these two cusps along a level-preserving path in the homotopy, as indicated
in Figure 3.

However, this is not sufficient. We also have to show that we can also cancel cusps given

(i) two creating cusps of opposite sign, or two removing cusps of opposite sign; or

(ii) a creating cusp paired with a later removing cusp, both of the same sign.

Suppose that we have a generic homotopy H between generic immersions with equal Euler numbers
consisting of two creating cusp homotopies of opposite sign, as in (i). Create a self-homotopy H0 of the
starting immersion, ie the immersion at tD0, consisting of a trivial finger move together with two removing
cusps for the double points created by the finger move, as shown in Figure 4. Then concatenate H0 with
the original homotopy H. The new homotopy can be modified as in Figure 3 to cancel the removing
cusps in H0 and the creating cusps in H, leaving only the finger move behind. An analogous argument
shows how to cancel two removing cusps of opposite sign, this time concatenating at the end of H.

Similarly, for the situation in (ii), suppose that we have a generic homotopy H between generic immersions
with equal Euler numbers consisting of a creating cusp and a later removing cusp of the same sign. Again
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t

Figure 4: A schematic picture showing a self-homotopy consisting of a trivial self-finger move
followed by two removing cusps. The homotopy is traced out in the direction of t . At every
time t , except at the times of the cusp and finger move singularities, we depict an arc of a generic
immersion homotopic to f. In red we show the arc of self-intersections of f ; note that it starts at
one cusp singularity and ends at the other.

we construct the self-homotopy H0 and concatenate with H. In the result, we use the procedure from
Figure 3 to cancel the creating cusp in H with one of the removing cusps in H0. This entire operation has
so far replaced a cusp with a cusp of opposite sign and direction. As before we can repeat the operation at
the end of the homotopy to replace the removing cusp with a creating one, also with the opposite sign. Thus
when we have a creating cusp with a later removing cusp of the same sign, we can replace both by cusps of
opposite sign and direction. Since now the removing cusp happens before the creating cusp, the two can be
cancelled and we are done with case (ii). This completes the proof of (3) in the case that f �.w1.M //D 0.

Case 2 f �.w1.M //¤ 0.

Note that a cusp homotopy changes �. Qf /1 2 Z=2 by one. So both values of Z=2 can be realised within
the homotopy class. To show injectivity in this case, we have to show that we can cancel cusps in a
homotopy in arbitrary pairs. First use the trading argument above to get all the removing cusps before the
creating cusps in the homotopy. Then, for any pair of cusps, one removing and one creating, choose some
level-preserving path in the homotopy between the first and the second cusp, and restrict to a small disc
containing the path. If they have the same sign with respect to this disc, cancel the two cusps as before.

If they have opposite signs, change the choice of the arc to arrange that the union of the new arc and
the old arc maps nontrivially under w1.M /. Such an arc exists since f �.w1.M // is nontrivial and † is
connected. With this new choice, the signs of the cusps in the disc become the same and we can again
cancel the cusps. This completes the proof of both halves of (3).

Finally, for (4), note that, if f �.w1.M // D 0 and w1.†/jker.f�/ D 0, then, by Lemma 2.24, �. Qf /1 is
well defined in Z. By the discussion above the statement of the theorem, e.� Qf / is also well defined in Z.
In this case, the formula

�. Qf ; Qf /1 D 2�. Qf /1C e.� Qf / 2 Z

holds by the proof of the corresponding fact for discs and spheres (see eg [Powell and Ray 2021b,
Proposition 11.8]). Any cusp homotopy leaves �. Qf ; Qf /1 unchanged, while it changes �. Qf /1 by ˙1. By
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the formula, it changes e.� Qf / by �2. Thus, if Qf and Qf 0 are generic immersions homotopic to f, then
e.� Qf /D e.� Qf 0/ if and only if �. Qf /1 D �. Qf 0/1. Hence, (4) follows from (3).

3 Secondary embedding obstructions

The Whitney trick implies that every map F W Sn!M 2n is homotopic to an embedding whenever M is
a simply connected 2n–dimensional manifold and n > 2. In order to prove the failure of the Whitney
trick in dimension 4, Kervaire and Milnor [1961] devised an obstruction that gave counterexamples to the
above statement for nD 2. They showed that the homotopy class of 3 �CP1 is not represented by an
embedded sphere in CP2. In a smooth, oriented, closed 4–manifold M, consider the formula

(3-1) �.c/ WD 1
8
.c � c � �.M // mod 2;

where the Z=2–reduction of c 2H2.M IZ/ is Poincaré dual to w2.M / and �.M / is the signature of the
intersection form .x;y/ 7! x �y on H2.M IZ/. In this setting, if c is represented by an embedded sphere,
then �.c/ D 0. Recall that, for a unimodular form ` and a characteristic element c, ie one satisfying
`.c;x/� `.x;x/ mod 2, the difference `.c; c/� �.`/ is always divisible by 8. The condition on c being
dual to w2.M / is stronger than being characteristic for the intersection form since the mod 2 intersection
condition holds for all x 2H2.M IZ=2/, not just for integral homology classes. For example, if M is
the Enriques surface (double covered by the K3 surface), then �.0/¤ 0, so 0 cannot be dual to w2.M /,
even though the intersection form on H2.M IZ/ is even.

For the proof that � is an embedding obstruction, Kervaire and Milnor added 1� ŒF � � ŒF � copies of
.CP2;CP1/ to a proposed characteristic pair .M;F W S2 ,!M /, with F assumed to be an embedding,
to obtain an embedded sphere with self-intersection number 1. Then they blow down that characteristic
sphere to arrive at a spin manifold M 0 with �.M 0/ D �.M /C .1� ŒF � � ŒF �/� 1 D �.M /� ŒF � � ŒF �.
Rokhlin’s theorem [1952] — that the signature of a smooth, closed, spin 4–manifold is divisible by 16 —
is equivalent to the original condition �.ŒF �/D 0 in M.

The Kervaire–Milnor result also has consequences for spin manifolds, where it says that any (characteristic)
homology class c D 2b that is represented by an embedded sphere must satisfy b � b � 0 mod 4. For
example, 2� 2 �2.S

2 �S2/ is not represented by an embedding for � the diagonal 2–sphere.

For about a decade, it remained an open problem to find a combinatorial formula for �.c/ in terms of
geometric representatives for c.

3.1 Combinatorial formulas: Rokhlin’s Arf invariant

Rokhlin [1972] picked an embedded representative F W† ,!M for c 2H2.M IZ/ as above and assumed
that H1.M IZ=2/ vanishes. Any simple closed curve r in (the image of) F then bounds a compact
surface R in M. The reader should think of R as an “unoriented cap” and check that it has a relative Euler
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number, just like a Whitney disc or an ordinary cap. Rokhlin then asserted that setting qF .r/ WD jInt RtF j

for R with vanishing relative Euler number defines a quadratic enhancement

qF WH1.†IZ=2/! Z=2

that refines the mod 2 intersection form on †. Independence from the choice of R follows from F being
dual tow2.M /, in this setting using intersections of F with all classes of the form ŒR[R0�2H2.M IZ=2/.
Rokhlin stated that the Arf invariant Arf.qF / is equal to �.c/ D �.ŒF �/. A nice consequence of this
equality is that Arf.qF /D �.c/ vanishes whenever c can be represented by an embedded sphere, because
qF is then defined on the zero vector space.

3.2 Combinatorial formulas: Freedman and Kirby’s characteristic bordism

Using the same definitions, Freedman and Kirby [1978] proved Rokhlin’s claims from above, on their
way to a geometric proof of Rokhlin’s original theorem. They worked with an arbitrary smooth, closed,
oriented 4–manifold M, but before computing qF they performed surgery on circles in M to arrange
that H1.M IZ=2/D 0; alternatively, they could have made M simply connected and used discs for R,
ie ordinary caps. They showed that Arf.qF / is invariant under “characteristic bordism”, implying
independence from the choice of surgeries, as well as establishing the equality Arf.qF / D �.ŒF �/ by
checking it on the generators of �char

4
. A different proof of Arf.qF /D �.ŒF �/ was given in [Matsumoto

1986].

On a historical note, Freedman and Kirby wrote that they learnt these results from Casson and that
they only heard of Rokhlin’s results after finishing their paper. The Rokhlin method was extended to
nonorientable characteristic surfaces in closed 4–manifolds in [Guillou and Marin 1980; Kirby and Taylor
2001].

3.3 Combinatorial formulas: Matsumoto’s t–invariant

Matsumoto [1978], in the same proceedings as [Freedman and Kirby 1978], started with a spherical class
c 2 �2.M / and represented it by a generic immersion F W S2#M with 2g algebraically cancelling
double points. He assumed that H1.M IZ/ D 0, using this condition to find “Whitney surfaces”, ie
oriented surfaces R1; : : : ;Rg bounded by pairs of Whitney arcs in F. Again there is a relative Euler
number and we may assume that every Ri has vanishing relative Euler number. Matsumoto proved that,
if ŒF � 2H2.M IZ/ is characteristic, then

(3-2) Arf.qF /D

gX
iD1

jInt Ri t F j DW t.F / 2 Z=2

by adding g tubes based at pairs of double points of F to turn it into an embedding of a surface † of
genus g, where qF is the quadratic enhancement defined above. The new surface has pairs of framed
caps .Di ;Ri/, where Di is a meridional disc of the i th tube and hence has one interior intersection with
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F, so qF .@Di/D 1. Since the boundaries of these caps form a hyperbolic basis of H1.†IZ=2/, the result
follows from the usual formula

Arf.qF /D

gX
iD1

qF .@Di/ � qF .@Ri/D

gX
iD1

qF .@Ri/D

gX
iD1

jInt Ri t F j:

3.4 Summary of the secondary embedding obstructions from the 1970s

Given ŒF � 2 �2.M / such that its Hurewicz image in H2.M IZ=2/ is Poincaré dual to w2.M /, the above
results show that

�.ŒF �/D Arf.qF /D t.F / 2 Z=2

is an obstruction to representing ŒF � by an embedding F W S2 ,!M. Note that � only depends on the
homology class h.ŒF �/ 2H2.M IZ/ by definition, whereas that is not clear for the other two invariants.

An attractive aspect of Matsumoto’s t.F / is that it can be computed combinatorially from a generic
immersion F W S2#M. One argues directly that t.F / is an obstruction to representing ŒF � 2 �2.M / by
an embedded sphere and independence of the choice of Ri comes from ŒF � being characteristic.

Matsumoto’s formula was extended in a number of ways. For example, in recent work of Kasprowski, Land,
Powell and Teichner [Kasprowski et al. 2017; 2021b; 2020] on the stable diffeomorphism classification
of spin 4–manifolds, a version of Matsumoto’s t–invariant was used to compute the relevant Arf invariant.
We describe further extensions presently.

It follows from topological transversality [Freedman and Quinn 1990, Section 9.5] that, in a smooth,
closed, oriented 4–manifold M, the quantity �.c/ is also an obstruction to representing an element c as
before by a topological — ie locally flat — embedding F W S2 ,!M. If M is not smooth, one adds the
Kirby–Siebenmann invariant and then the formula

�TOP.c/ WD �.c/C ks.M /

defines such an obstruction; see [Conant et al. 2012a, Introduction] for details. For example, it follows that
the generator of �2.�CP2/ is not represented by an embedding. Historically speaking, these applications
were not known at the time of publication of [Rokhlin 1972; Freedman and Kirby 1978; Matsumoto 1978].

In the following, we will return to considering topological manifolds and obstructions to topological
embeddings.

3.5 Secondary obstructions to embedding genus zero surfaces with dual spheres

If † is a union of discs or spheres and F W .†; @†/# .M; @M / has algebraically dual spheres, then
Freedman and Quinn [1990, Definition 10.8A] gave a version of Matsumoto’s t–invariant, calling it the
Kervaire–Milnor invariant. Rather than restricting H1.M IZ/ as in the discussions above, they assumed
that �.F / D 0, ie that all double points of F can be paired by Whitney discs. They used the same
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formula as in (3-2), but counted intersections with F , restricting to the Whitney discs in a convenient
collection W that pair double points of F . They claimed that this mod 2 count, t.F ;W / from
Definition 1.5, is a secondary obstruction to representing F by an embedding. However, this is only true
if F is r–characteristic (Definition 5.5), as Stong’s correction [1994] showed. Stong noticed that the
choice of sheets for double points whose group elements have order 2 is related to immersed RP2s in M.
If F is dual to w2.M / then F is also r–characteristic, but not vice versa, so this obstruction is more
generally defined than �.ŒF �/.

The embedding theorem for unions of discs and spheres [Freedman and Quinn 1990, Theorem 10.5], as
corrected by Stong, says, in our notation, that, for good fundamental group �1.M /, such an F is homotopic
to a topological embedding if and only if there exists a convenient collection of Whitney discs W for the
double points of F such that t.F ;W /D 0. We give more details about the Freedman–Quinn–Stong
embedding result in Section 5.

3.6 Secondary obstructions to embedding unions of spheres

Matsumoto’s invariant t.F / from (3-2) was extended to a secondary embedding obstruction in [Schneider-
man and Teichner 2001] for F Dffig

m
iD1

, not assuming dual spheres, where each fi WS
2#M is a generic

immersion and assuming �.F /D 0 and that M is oriented. By counting interior intersections of F with a
convenient collection W of Whitney discs pairing the double points of F, and remembering group elements,
signs and components of F, the authors defined an intersection count �.F;W/ 2 T.�1.M /;m/. Here
T.�1.M /;m/ is the abelian group given by the direct sum of mC

�
m
2

�
C
�
m
3

�
copies of ZŒ�1.M /��1.M /�.

To obtain a secondary embedding obstruction, Schneiderman and Teichner [2001, Section 8] gave a list of
relations such that the subgroup R.M;F /� T.�1.M /;m/ generated by these relations has the property
that

�.f1; : : : ; fm/D �.F / WD Œ�.F;W/� 2 T.�1.M /;m/=R.M;F /

does not depend on the choice of convenient collection W. In our current language, the main result of
that paper is that �.F /D 0 if and only if km.F /D 0 as in Definition 1.4. In the absence of dual spheres,
�.F /D 0 does not imply that F is homotopic to an embedding. For example, there are obstructions from
higher-order Whitney towers.

If F is r–characteristic then the augmentation map E W T.�1.M /;m/ ! Z=2, summing all possible
coefficients, takes R.M;F / to zero and �.F / to Matsumoto’s t.f1 # � � � # fm/, for an arbitrary choice
of interior connected sum of the ffig

m
iD1

. Moreover, if F has algebraic dual spheres then E induces
an isomorphism of T.�1.M /;m/=R.M;F / with either Z=2 or 0, depending on whether F is r–
characteristic or not. This gives the relationship to Section 3.5.

3.7 Secondary embedding obstructions for arbitrary compact surfaces

It is likely possible to extend the invariant � from Section 3.6 to arbitrary immersed compact surfaces,
not just spheres. However, determining the analogue of R.M;F / would be a formidable task. In this
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paper we take the first step, namely by defining the right notion of b–characteristic surfaces for which
Matsumoto’s invariant extends from spheres to a secondary embedding obstruction for arbitrary compact
surfaces. We also generalise the work of Freedman, Quinn and Stong to all compact surfaces in the
presence of algebraically dual spheres.

Recall from Definition 1.4 that, for F W .†; @†/# .M; @M / as in Convention 1.1, by definition the
Kervaire–Milnor invariant km.F / 2 Z=2 vanishes if and only if, after finitely many finger moves on
the interior of F, taking F to some F 0, there is a convenient collection of Whitney discs, with interiors
disjoint from F 0, pairing all the double points of F 0.

The finger moves in this definition are relevant because finger moves can add relations to the fundamental
group �1.M XF /, making it easier to find (Whitney) discs in the complement of F.

We could have allowed arbitrary regular homotopies, from F to F 0, in the definition of km. However, this
is not needed, as the following result shows. Note that a nonregular homotopy can change km.F /; see
Corollary 6.3.

Proposition 3.1 Let † and M be as in Convention 1.1. If F1;F2 W †#M are regularly homotopic
generic immersions , then km.F1/D km.F2/ 2 Z=2.

Proof To show that km.F1/ D km.F2/, by symmetry it suffices to show that km.F1/ D 0 implies
km.F2/D 0. Suppose that km.F1/D 0, and let F 0

1
be obtained from F1 by finger moves such that the

intersections of F 0
1

can be paired up by Whitney discs fWig as in Definition 1.4. Since F 0
1

and F2 are
regularly homotopic, there is a generic immersion F3 such that F3 can be obtained from both F 0

1
and F2

by finger moves and ambient isotopies. Since F3 is obtained from F 0
1

by finger moves and ambient
isotopies and the finger moves can be assumed to be disjoint from fWig, all the double points of F3 can
also be paired up by Whitney discs with interiors disjoint from F3, as in Definition 1.4. Since F3 is
obtained from F2 by finger moves, by taking F 0

2
WD F3 it follows that km.F2/D 0.

Definition 1.4 is optimised for the proof of Theorem 1.2, as we will see shortly, but is difficult to use in
practice. In particular, while one may fortuitously detect specific finger moves and Whitney discs to show
km.F /D 0, without a combinatorial description it appears, for a given F, to be hard to prove that the
required finger moves from F to some F 0, together with Whitney discs for F 0, do not exist. We provide
precisely such a combinatorial reformulation in Theorem 1.9, generalising Matsumoto’s invariant to our
formula for t.F / for b–characteristic F. In the proof of Theorem 1.6 we will show that in the presence of
dual spheres this agrees with Definition 1.4.

4 The proof of the surface embedding theorem

The surface embedding theorem (Theorem 1.2) can be deduced using the proof of [Freedman and
Quinn 1990, Theorem 10.5(1)], combined with an observation in [Powell et al. 2020, Theorem A and
Lemma 6.5] for the condition on the homotopy class of G, using our definition of the Kervaire–Milnor
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invariant (Definition 1.4). Since the surface embedding theorem does not follow directly from the
statement of [Freedman and Quinn 1990, Theorem 10.5(1)], as previously discussed, and also since the
latter requires a correction by Stong [1994], it can be hard for the uninitiated to piece together a correct
proof. Therefore we provide one in this section.

Further, the statement of [Freedman and Quinn 1990, Theorem 10.5(1)] is itself quite complicated, and
our version, focussed on the surface embedding problem, may be useful for those looking to apply the
technology of Freedman–Quinn without delving into the details.

4.1 Ingredients

The statement of the surface embedding theorem uses the notions of algebraically and geometrically dual
spheres. We recall the definitions.

Definition 4.1 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with components ffig
m
iD1

.

(1) A collection G D fgi W S
2#M gm

iD1
of generic immersions is said to be algebraically dual to F

if F tG is a generic immersion and �.fi ;gj /D Œıij � 2 �fi ;gj
for all i and j for some choice of

basings for F and G.

(2) A collection G D f Ngi W S
2#M gm

iD1
of generic immersions is geometrically dual to F if F tG

is a generic immersion and the geometric count of intersections satisfies jfi t Ngj j D ıij for all i

and j.

We will need the following lemma, the idea behind which is due to Casson [1986]; see also [Freedman
1982, Section 3]. The formulation we give here is from [Powell et al. 2020, Lemma 5.1].

Lemma 4.2 (Geometric Casson lemma) Let F and G be transversely intersecting generic immersions
of compact surfaces in a connected 4–manifold M. Assume that the intersection points fp; qg � F tG

are paired by a Whitney disc W. Then there is a regular homotopy from F [G to F [G such that
F tGD .F tG/nfp; qg. That is , the two paired intersections have been removed. The regular homotopy
may create many new self-intersections of F and G; however , these are algebraically cancelling.

The proof of the surface embedding theorem also relies on Freedman’s disc embedding theorem, whose
statement we recall.

Theorem 4.3 (Disc embedding theorem [Freedman 1982; Freedman and Quinn 1990; Powell et al. 2020];
see also [Behrens et al. 2021]) Let M be a connected topological 4–manifold with good fundamental
group , and let

F D ffig
m
iD1 W .D

2
t � � � tD2;S1

t � � � tS1/# .M; @M /

be a generic immersion of finitely many discs. Assume that F has framed algebraically dual spheres
G D fŒgi �g

m
iD1
� �2.M / such that �.gi ;gj /D 0D �.gi/ for all i ¤ j. Then there is a flat embedding
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F D f Nfig
m
iD1
W
�F

D2;
F

S1
�
,! .M; @M /, which is equipped with geometrically dual spheres G D

f Ngig
m
iD1

, such that F and F have the same framed boundary and Œ Ngi �D Œgi � 2 �2.M / for all i .

We will also freely use standard constructions such as symmetric contraction, boundary twisting and
interior twisting (ie adding local cusps). See [Freedman and Quinn 1990, Chapters 1–2; Powell and Ray
2021a] for further details.

4.2 Proof of the surface embedding theorem

We recall the statement for the convenience of the reader.

Theorem 1.2 (Surface embedding theorem) Let FDffig
m
iD1
W .†; @†/# .M; @M / be as in Convention

1.1. Suppose that �1.M / is good and that F has algebraically dual spheres G D fŒgi �g
m
iD1
� �2.M /.

Then the following statements are equivalent :

(i) The self-intersection number �.F / and the Kervaire–Milnor invariant km.F / 2 Z=2 vanish.

(ii) There is an embedding FDf Nfig
m
iD1
W .†; @†/ ,! .M; @M /, regularly homotopic to F relative to @†,

with geometrically dual spheres G D f Ngi W S
2#M gm

iD1
such that Œ Ngi �D Œgi � 2 �2.M / for all i .

Proof The direction (ii)D) (i) follows from the fact that the intersection and self-intersection numbers,
as well as the Kervaire–Milnor invariant, are invariant under regular homotopy (relative to the boundary)
by Propositions 2.18, 2.25 and 3.1, respectively.

The proof of the direction (i)D) (ii) reduces to the disc embedding theorem (Theorem 4.3) as follows.
The argument is similar to the proof of [Freedman and Quinn 1990, Corollary 5.1B] (see also the proof
of [Powell et al. 2020, Theorem 8.1]).

Apply the geometric Casson lemma (Lemma 4.2) to upgrade GDfgig from algebraically to geometrically
dual spheres G0 D fg0ig, changing F to F 0 by a regular homotopy in the process. The intersection and
self-intersection numbers, and the Kervaire–Milnor invariant, vanish for F. So they also vanish for F 0,
since all three quantities are preserved under regular homotopy relative to the boundary by Propositions
2.18, 2.25 and 3.1.

Then, by the definition of the Kervaire–Milnor invariant (Definition 1.4), after further finger moves
changing F 0 to some F 00, we can find a convenient collection of Whitney discs WD fWlg for F 00 whose
interiors are disjoint from F 00. Moreover, F 00 and G0 are still geometrically dual, since the finger moves
may be assumed to miss G0.

We shall apply the disc embedding theorem (Theorem 4.3) to the collection of generically immersed
discs W in the 4–manifold M n �F 00, so we verify that the hypotheses are satisfied. The Whitney
discs W have framed algebraically dual spheres as follows. The Clifford tori at the double points of F 00

are geometrically dual to W. Symmetrically contract half of these tori, one per Whitney disc, using
meridional discs for F 00 tubed into the geometrically dual spheres G0 D fg0ig. The resulting spheres
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are only algebraically dual to W since the components of W and G0 may intersect arbitrarily; however,
they have vanishing intersection and self-intersection numbers since they were produced by symmetric
contraction. They are also framed, as we argue briefly now. If a sphere gi in G0 is not framed, then the
symmetric contraction uses incorrectly framed caps. However, in the symmetric contraction process, each
cap is used twice, with opposite orientations, and so any framing discrepancies cancel out. Since F 00 has
geometrically dual spheres, �1.M n �F

00/Š �1.M / and is thus good. This verifies the hypotheses of the
disc embedding theorem (Theorem 4.3) for W, as desired.

Apply the disc embedding theorem to the Whitney discs W in M n �F 00 to obtain disjointly embedded,
flat, framed Whitney discs fWlg for the double points of F 00, with interiors still disjoint from F 00, along
with a collection of geometrically dual spheres for the fWlg in M n �F 00.

Tube any intersections of G0 with fWlg into the geometrically dual spheres for fWlg, giving a new
collection of spheres G D f Ngig disjoint from fWlg. Now we have that the interiors of fWlg lie in the
complement of F 00[G, and moreover F 00 and G are geometrically dual. Perform Whitney moves on F 00

along fWlg to arrive at an embedding F, as claimed. By construction, F and G are geometrically dual.
That Œ Ngi �D Œgi � 2 �2.M / for each i follows from [Powell et al. 2020, Lemma 6.5].

4.3 The �1–negligible surface embedding theorem

Recall that a map F WX!Y is called �1–negligible if the inclusion Y nF.X /�Y induces an isomorphism
on �1 for all basepoints. Here is a reformulation of the surface embedding theorem.

Corollary 4.4 (The �1–negligible surface embedding theorem) Let F W .†; @†/ # .M; @M / be
as in Convention 1.1. Suppose that F is �1–negligible and that �1.M / is good. Then �.F / and
the Kervaire–Milnor invariant of F both vanish if and only if there exists a �1–negligible embedding
F W .†; @†/ ,! .M; @M / regularly homotopic to F, relative to the boundary.

This corollary follows from the surface embedding theorem and the fact that a generic immersion F W†#
M is �1–negligible if and only if F admits geometrically dual spheres, which can be seen as follows. For
the forward direction, the meridional circles are null-homotopic in M, so by �1–negligibility they are null-
homotopic in M nF.†/. The union of null-homotopies with meridional discs gives geometrically dual
spheres. For the reverse direction, first note that, by general position, the homomorphism �1.M nF.†//!

�1.M / is surjective. The kernel is normally generated by a collection consisting of one meridional
circle for each connected component of †. Since geometrically dual spheres provide null-homotopies for
these meridians, the assertion follows. By the geometric Casson lemma (Lemma 4.2), the map F in the
statement of the surface embedding theorem (Theorem 1.2) is regularly homotopic to a �1–negligible
map, due to the existence of the algebraically dual spheres G. Indeed, this is the first step of the proof
of the surface embedding theorem. Note that Theorem 1.2 also controls the homotopy class of the dual
spheres, and so is slightly stronger than Corollary 4.4.
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5 Band characteristic maps and the combinatorial formula

In this section we define b–characteristic surfaces (Definition 5.17) and motivate the combinatorial formula
for the Kervaire–Milnor invariant (Definition 1.5). We postpone many of the proofs to Section 7. We hope
this will help the reader to assimilate the overall structure more easily. We work towards the definition
of b–characteristic surfaces by first defining the related notions of s–characteristic and r–characteristic
surfaces, mirroring the historical development. These latter definitions are simpler to state and serve to
motivate the more complicated definition of b–characteristic surfaces.

A sphere g W S2#M in a topological 4–manifold M is said to be twisted if the Euler number of the
normal bundle is odd. We say g is framed if the normal bundle is trivial. To coincide with the usual
meaning of framed, one can also implicitly choose a trivialisation, although we will not make use of
such a choice. Observe that, if the normal bundle of g has even Euler number, then it is homotopic to a
generically immersed sphere with trivial normal bundle, via adding local cusps.

Definition 5.1 Let F Dff1; : : : ; fmgW .†; @†/# .M; @M / be as in Convention 1.1. We define† �†
so that, for i 2 f1; : : : ;mg, the component †i �† if and only if there is no framed immersed sphere gi

with �.fj ;gi/D ıij for all j D 1; : : : ;m. Then we use

F D ffi W†i !M g

to denote the restriction of F to † . Note that, if an fi does not admit an algebraically dual sphere at all,
then it belongs to F .

Recall that x2H2.M; @M IZ=2/ is said to be characteristic if x�aDa�a2Z=2 for every a2H2.M IZ=2/,
where ��� denotes the intersection pairing H2.M IZ=2/�H2.M; @M IZ=2/!Z=2. The next definition
gives a weaker notion.

Definition 5.2 Let F W .†; @†/# .M; @M / be as in Convention 1.1. The map F is called spherically
characteristic (or s–characteristic for short) if F � aD a � a 2 Z=2 for all a 2 �2.M /, considered as an
element of H2.M IZ=2/.

We will show in Lemma 5.18 that b–characteristic maps are s–characteristic.

Lemma 5.3 Let F W .†; @†/# .M; @M / be as in Convention 1.1.

(i) If F is s–characteristic , then F D F .

(ii) If F has algebraically dual spheres , then F is s–characteristic or empty.

Proof To prove (i), suppose F is not equal to F ; then there exists a component †i of † with a framed
dual sphere gi , ie with �.fj ;gi/D ıij for all j ¤ i . This leads to the contradiction

1D fi �gi D fi �gi C

X
j¤i

fj �gi D F �gi D gi �gi D 0 2 Z=2;

where the second-to-last equality follows from F being s–characteristic.
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To prove (ii), suppose that F has algebraically dual spheres. Note that the dual spheres for F � F are
necessarily twisted. Assume that F neither s–characteristic nor empty. Then there exists a2�2.M / such
that F �a¤ a �a 2Z=2. By tubing into a dual sphere to a component of F if necessary, we can assume
that a is untwisted, ie a �a is zero and that F �aD 1. Choose some component fj of F such that at fj

is nonempty. Except for one of the intersections between fj and a, tube all the intersections of a and F

into the corresponding dual spheres to F . Call the resulting sphere a0j . Since F � aD 1, we tubed into
an even number of dual spheres, so a0j �a

0
j D a �aD 0 2Z=2. Via adding local cusps, we may assume that

a0j is framed. We also have that �.fi ; a
0
j /D ıij for all i and j. This contradicts the definition of F .

Recall that a convenient collection of Whitney discs W for the intersections within F consists of framed,
generically immersed Whitney discs with interiors transverse to F, and with disjointly embedded bound-
aries. Recall the invariant t from Definition 1.5 appearing in Theorem 1.6, where t.F;W/ is the mod 2

count of transverse intersections between F and the interiors of the Whitney discs in W.

If F is not s–characteristic, then we can change t.F;W/ as follows. Given a 2 �2.M / with F � a odd
but a � a even, one can tube a framed Whitney disc W for F into a framed representative Qa W S2#M,
keeping the new Whitney disc framed but adding an odd number of interior intersections with F. If F � a

is even and a � a is odd, one can tube W into a representative Qa and also add an odd number of boundary
twists to keep the new Whitney disc framed but again adding an odd number of interior intersections
with F. Using Lemma 5.3, this is one reason for the appearance of F in the following statements.

The following lemma is also used in the proof of Theorem 1.6, and shows that the vanishing of t for a
given collection of Whitney discs implies the vanishing of km.

Lemma 5.4 Let F W .†; @†/# .M; @M / be as in Convention 1.1. Suppose that F admits algebraically
dual spheres , and that all double points of F are paired by a convenient collection W of Whitney discs.
Let W �W denote the subcollection of Whitney discs for the intersections within F , where F is as in
Definition 5.1. If t.F ;W /D 0, then km.F /D 0.

We wish to find practically verifiable conditions on F that guarantee that t.F ;W / is independent of the
collection of Whitney discs W . More precisely, the value of t.F ;W / should be independent of the
pairing of double points, the Whitney arcs joining the paired double points (which includes the choice of
sheets at each double point), and finally the Whitney discs. In the case that each †i is simply connected,
t.F ;W / agrees with [Freedman and Quinn 1990, Definition 10.8A]. However, Freedman and Quinn
claim in their Lemma 10.8B that, for simply connected †, the quantity t.F ;W / only depends on F ,
and not on the Whitney discs, as long as F is s–characteristic. This is not true in general, as pointed out
and corrected by Stong [1994]. Further, again with �1.†i/D 1 for all i , Stong established that the value
of t does not depend on the choice of W using the notion of r–characteristic discs and spheres. Here is
our generalisation of his notion.
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Definition 5.5 Let † and M be as in Convention 1.1. A map F W .†; @†/! .M; @M / is called RP2–
characteristic (or simply r–characteristic) if F �RDR �R2Z=2 for every map R WRP2

!M satisfying
R�w1.M /D 0.

Remark 5.6 A map c WRP2
!S2 of odd degree (eg a collapse map) composed with elements of �2.M /

can be used to show that r–characteristic maps are s–characteristic. Indeed, given F and a 2 �2.M /, we
obtain a ı c WRP2

!M, and we have 0D F � .a ı c/C .a ı c/ � .a ı c/D F � aC a � a 2 Z=2, where the
second equality uses that c has odd degree.

Stong’s key observation [1994] was that, in some instances involving elements of order two in �1.M /, one
can change the choice of sheets at two double points of F , and hence the Whitney arcs and corresponding
Whitney disc, with a resulting change in the value of t.F ;W / by one. The restriction to r–characteristic
maps removes this source of indeterminacy. To summarise, Stong showed the following theorem.

Theorem 5.7 [Stong 1994] Let F W .†; @†/# .M; @M / be as in Convention 1.1, with † a union
of discs or spheres. Suppose �.F / D 0 and that F admits algebraically dual spheres. If F is not
r–characteristic , then km.F /D 0, and if F is r–characteristic , then km.F /D t.F ;W / for any choice
of Whitney discs W for the intersections within F .

Remark 5.8 Combining Theorems 2.32 and 5.7 with Theorem 1.2 gives the complete answer to the
embedding problem for spheres and discs with algebraically dual spheres for good fundamental groups,
due to Freedman, Quinn and Stong. Theorem 2.32 allows one to fix the regular homotopy class of
generic immersions within the homotopy class to be that with �.�/1 D 0, Theorem 5.7 computes the
Kervaire–Milnor invariant, and then one applies Theorem 1.2 to conclude whether or not there is a regular
homotopy to an embedding.

Our contribution in the present paper extends this solution to the case that the components of † are not
all simply connected. In this case there is a further source of indeterminacy coming from the choice of
Whitney arcs on †. For this reason we need a stronger restriction on F .

Definition 5.9 A band refers to either of the two D1–bundles over S1, ie a band is either an annulus or
a Möbius band. Let F W .†; @†/# .M; @M / be as in Convention 1.1. Let MF be the mapping cylinder
of F. Write B.F / � H2.M; †IZ=2/ WD H2.MF ; †IZ=2/ for the subset of elements of the relative
homology group that can be represented by a square

@B †

B M

h

� F

g

where B is a band and � W @B ,! B is the inclusion such that

(5-1) hw1.M /;g.C /iC hw1.†/; h.@B/i D 0 2 Z=2;

where C is the core curve of B.

Geometry & Topology, Volume 28 (2024)



2440 Daniel Kasprowski, Mark Powell, Arunima Ray and Peter Teichner

F.†/

C

B

F.†/

Figure 5: An annular band B (blue) is shown with boundary on F (black). One of the boundary
components of B is nonorientable on F and one is orientable, so hw1.†/; h.@B/i D 1. Therefore,
in order for this to be an element of B.F /, we must have hw1.M /;g.C /i D 1, where M is the
ambient 4–manifold and C is the core curve of the annulus, shown in blue.

See Figure 5 for an example of a band. Note that every element of B.F / can be represented by a
generic immersion of pairs .B; @B/# .M; †/ (Definition 2.6). Writing H2.M; †IZ=2/ in place of
H2.MF ; †IZ=2/ is a slight but standard abuse of notation. The pair .g; h/ induces a relative homology
class since the map

gt .h� IdŒ0;1�/ W B t .@B � Œ0; 1�/!M t .†� Œ0; 1�/

descends to a map M� ! MF . The mapping cylinder M� is homeomorphic to B, and so we obtain a
map .B; @B/! .MF ; †/. The image of the relative fundamental class ŒB; @B� in H2.MF ; †IZ=2/ is
an element of B.F /. From now on, since MF 'M, to simplify the notation we will not mention the
mapping cylinder and refer to B.F /�H2.M; †IZ=2/.

F.†/

S B

(a) (b)

Figure 6: (a) An immersed surface S (blue) in the ambient manifold M, and the image (black)
of a generic immersion F W .†; @†/# .M; @M /. (b) A thin tube is added, with one boundary
component on † and one on S. The surface B (blue) is obtained by cutting out a disc on S and
gluing in the tube. Note that, compared to S, the surface B has a new boundary component lying
on †.
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We will see in Lemma 7.7 that, given a generic immersion F W .†; @†/# .M; @M / as in Convention 1.1,
every element of H2.M; †IZ=2/ can be represented by an immersion of some compact surface S into M,
with interior transverse to F, and with boundary generically immersed in F.†/ away from the double
points. The subset B.F / consists of those homology classes for which S can be chosen to be a band
satisfying condition (5-1).

We use the notation
@ WH2.M; †IZ=2/!H1.†IZ=2/

for the connecting homomorphism from the long exact sequence of the pair. A class represented by a
compact surface S is mapped to its boundary @S under the map @. Then @B.F /�H1.†IZ=2/ consists
of (the homology classes of) those closed 1–manifolds immersed in † whose images under F bound
bands in M satisfying (5-1).

Construction 5.10 Given a generic immersion F W .†; @†/# .M; @M / as in Convention 1.1, suppose
we have a generically immersed surface S in M with boundary on †, ie admitting maps satisfying

@S †

S M

h

� F

g

where possibly @S is empty. Then the tubing procedure shown in Figure 6 can be used to create a band ,
as follows. If S is a disc , the procedure gives an annulus B with boundary lying on †. This annulus
satisfies (5-1), and therefore lies in B.F /, if and only if hw1.†/; h.@S/i D 0 2 Z=2, since the core of B

is null-homotopic in M and the newly created boundary component of B is null-homotopic in †.

In the case that S is a sphere , we can perform the tubing procedure of Figure 6 to S twice. In this case ,
both boundary components of the annulus created are null-homotopic on †, so we always produce an
element of B.F /.

Finally, if S is an RP2, the tubing procedure creates a Möbius band with boundary on †, which lies
in B.F / if and only if hw1.M /;g.RP1/i D 0 2 Z=2, where RP1

�RP2.

When defining b–characteristic surfaces, we will restrict to the case that the Z=2–valued intersection
form �† is trivial on @B.F /. We can restrict in this way because of the following lemma.

Lemma 5.11 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F /D 0. If the Z=2–valued
intersection form �† on H1.†IZ=2/ is nontrivial on @B.F /, then we can change F by a regular homotopy
to F 0 such that there are convenient collections of Whitney discs W and W0 for the double points of F

and F 0, respectively, such that t.F;W/¤ t.F 0;W0/.

Moreover , if F has dual spheres and the Z=2–valued intersection form �† on H1.† IZ=2/ is nontrivial
on @B.F / then km.F /D 0.
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In the case that �†j@B.F / is trivial, we define an invariant ‚ on the set B.F /. We will need the following
notions:

(1) For Z a closed 1–manifold generically immersed in †, the self-intersection number �†.Z/ 2Z=2

of Z counts the number of double points, which we assume without loss of generality to be disjoint
from the double points of F. As usual, this is not invariant under homotopies of Z in †, only under
regular homotopies.

(2) Let S be a compact surface, with a generic immersion of pairs .S; @S/# .M; †/. Suppose that
w1.†/ is trivial on each component of @S, eg if † is orientable. Then the normal bundle of @S
in † is trivial and we can pick a nowhere-vanishing section (if S is closed, this is an empty choice).
Extend this section to the normal bundle of S in M (such a normal bundle exists by Corollary 2.7)
such that the extension is transverse to the zero section. Then we define the Euler number e.S/

to be the number of zeros of this section modulo 2. Observe that this is analogous to how one
measures the twisting of a Whitney disc with respect to the Whitney framing. For S a closed
surface, this coincides with the usual definition of the Euler number.

Here is the definition of ‚.S/ in the case that w1.†/ is trivial on every component of @S.

Definition 5.12 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F / D 0. Let A be a
choice of Whitney arcs pairing the double points of F. Let S be a compact surface in M with a generic
immersion of pairs .S; @S/# .M; †/ such that @S is transverse to A and w1.†/ is trivial on every
component of @S. Define

(5-2) ‚A.S/ WD �†.@S/Cj@S tAjC jInt S t F jC e.S/ mod 2:

For closed S we have ‚A.S/� jInt S t F jC e.S/ mod 2, and thus ‚A.S/ vanishes for all closed S if
and only if F is characteristic in the traditional sense. In the proof of Theorem 1.6, we will only use the
definition of ‚A for bands. But the case of general surfaces will be useful for our proof that, in the cases
relevant to us, ‚A does not depend on the choice of A (see Lemma 5.16 below).

Remark 5.13 Definition 5.12 suffices in the case of orientable †. The reader only interested in this case
may safely skip ahead to Lemma 5.16.

If a component of @S is orientation-reversing in †, then its normal bundle in † is nontrivial and hence
we may not use it to choose a nowhere-vanishing section of the normal bundle of S on its boundary
as before to define the Euler number. However, bands with such boundaries may exist in the ambient
4–manifold and must be considered. When w1.†/ is nontrivial on precisely one component of @S, eg
when @S is connected, we know �†.@S; @S/D 1. Then, by Lemma 5.11, if a band with such boundary
exists, then km.F /D 0, and there is no need to define ‚. In particular, note that this means that we need
not consider the case of a Möbius band whose boundary consists of a curve on which w1.†/ is nontrivial.
There is one final case of relevant bands left to consider, which we do next.
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Figure 7: (a) A band B (blue) is shown for F (black). Both boundary components of B are
nonorientable on †. A vertical arc D is shown in orange. (b) By cutting along the arc D we
obtain a disc yB. We show how to choose a nowhere-vanishing section of the normal bundle of @ yB
in M. (c) Adding a tube to F guided by D splits the band into a disc �, and changes † to a
surface †0. We show how to choose a section of the normal bundle of @� in F 0.

Definition 5.14 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F /D 0. Let A be a choice
of Whitney arcs pairing the double points of F. Let B be an annulus with a generic immersion of pairs
.B; @B/# .M; †/, such that @B transverse to A and w1.†/ is nontrivial on both components of @B. Pick
an embedded arc D in B connecting the two boundary components, disjoint from the self-intersections
of B and the intersections of B with F. Let yB be the result of cutting B open along D. There is a
canonical quotient map  W yB! B.

Let �M
B

denote the normal bundle of B in M. Pick a nowhere-vanishing section of  ��M
B

on @ yB as
follows. On each part of @ yB that maps to @B, use the normal bundle of @B in F to define the section
locally. For this we require that, on @D, the two vectors for the two components agree up to multiplication
by ˙1. On the part of @ yB that maps to D, pick a section so that, on every pair of points that map to the
same point in D, the vectors agree up to multiplication by ˙1. See Figure 7(b). We define

(5-3) ‚A.B;D/ WD �†.@B/Cj@B tAjC jInt B t F jC e. yB/ mod 2:

Remark 5.15 An alternative definition of ‚A.B;D/ would use the arc D to add a tube to F.†/ in
such a way that the tube intersects the band B in two parallel copies of D. More precisely, we perform
an ambient surgery on F.†/. This requires choosing a 2–dimensional subbundle of the normal bundle
of D in M — the tube itself consists of the circle bundle for this subbundle, considered within a tubular
neighbourhood of D. We build the required subbundle by first choosing a section lying in the normal
bundle of D in B, denoted by �B

D
. The second section can be chosen freely. Let F 0 denote the immersion

constructed by the tubing procedure. Observe that the domain of F 0, denoted by †0, is obtained from the
abstract surface † by adding a 1–handle. Depending on the choice of the second section above, this may
be an orientation-reversing or orientation-preserving 1–handle, but this will not matter for us.
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Adding the tube changes the band B to a disc �, by removing a thin strip neighbourhood of D. The
disc � has boundary lying on †0. Observe that @� is orientation-preserving on †0, since it is the result
of banding together two orientation-reversing curves. Since no new intersection points were added, the
collection A is a collection of Whitney arcs for the intersection points of F 0. As a result, we may define

‚A.B;D/ WD‚A.�/;

where the latter is computed as in Definition 5.12. In order to see that this agrees with Definition 5.14,
we need only check that the definition of the Euler number terms agree, assuming we choose the tube to
be thin enough to miss any double points. For this compare Figure 7(b)–(c) to see that the sections at
the boundary in both cases are the same and hence also the Euler numbers coincide. When comparing
the pictures, the choice of the second section of the 2–dimensional subbundle which determines the tube
corresponds to the choice of the section of  ��M

B
on the part of @ yB that maps to D.

Note that we did not prove that e. yB/ is independent of the choice of D. This will follow from the
upcoming proof of Lemma 5.16(ii) below, which states that ‚A.B;D/ depends only on the homology
class of B. The following lemma, whose proof is again deferred to Section 7, shows that ‚ is well
defined in all required cases. As a reminder, the case of orientable † does not require the notion of
‚A.B;D/ from Definition 5.14, so parts (ii) and (iii) of the following lemma may be skipped by anyone
only interested in that case.

Lemma 5.16 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F /D 0. Let A be a choice
of Whitney arcs pairing the double points of F.

(i) Let S be a compact surface with a generic immersion of pairs .S; @S/# .M; †/ such that @S is
transverse to A and w1.†/ is trivial on every component of @S. Then ‚A.S/ 2 Z=2 depends only
on the homology class of S in H2.M; †IZ=2/.

(ii) Let B be an annulus with a generic immersion of pairs .B; @B/# .M; †/ such that @B is transverse
to A and w1.†/ is nontrivial on both components of @B. Pick an embedded arc D in B connecting
the components of @B and disjoint from all double points. Then ‚A.B;D/ 2 Z=2 depends only
on the homology class of B in H2.M; †IZ=2/. In particular , ‚A.B;D/ does not depend on D, so
we write ‚A.B/.

(iii) Let S be a surface as in (i) and let B be an annulus as in (ii) such that ŒS �D ŒB� 2H2.M; †IZ=2/.
Then ‚A.S/D‚A.B/ 2 Z=2.

(iv) If �†j@B.F / D 0, the restriction of ‚A to B.F / is independent of the choice of A, giving a
well-defined map ‚ WB.F /! Z=2.

Finally, we are ready to define the required generalisation of r–characteristic maps, called b–characteristic
maps.
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Definition 5.17 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F / D 0. We say F is
band characteristic (or b–characteristic for short) if �†j@B.F / D 0 and ‚ WB.F /! Z=2 is trivial.

Lemma 5.18 Every b–characteristic map is r–characteristic. Moreover , the two notions agree for unions
of discs or spheres.

Proof Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F /D 0. Let R WRP2
!M be a

generic immersion which is transverse to F and such that R�w1.M /D 0. We apply Construction 5.10.
In other words, take a small disc on F.†/ away from R t F, and tube into the image of R. This creates
a Möbius band B with boundary on †. Here @B is homotopically trivial in †, so hw1.†/; @Bi D 0. The
core C of B corresponds to RP1 within the original immersed RP2. Therefore, since R�w1.M /D 0, we
have that hw1.M /;C i D 0. So B 2B.F /. Note that ‚ WB.F /!Z=2 is well defined by Lemma 5.16(iv)
since F is b–characteristic. Further, ‚.B/ D ‚.R/ D F �RCR �R 2 Z=2 by Lemma 5.16(i) since
ŒB�D ŒR� 2H2.M; †IZ=2/. But this vanishes since F is b–characteristic. Hence, F is r–characteristic.

For the second sentence, suppose that † is a union of discs or spheres and is r–characteristic. Let
B 2 B.F / be a band. Since † is simply connected, the boundary of B is null-homotopic in F.†/.
Therefore, B can be closed up using a codimension zero submanifold of † to either a sphere or an
RP2 immersed in M. The resulting closed surface R again satisfies ‚.B/D F �RCR �R 2 Z=2 by
Lemma 5.16(i). Here �†j@B.F / D 0 since † is simply connected and so ‚ WB.F /! Z=2 is again well
defined by Lemma 5.16(iv). Once again, since null-homotopic circles on†must be orientation-preserving,
hw1.†/; @Bi D 0 and so (5-1) implies that R�w1.M / D 0. So ‚.B/ D 0 since F is r–characteristic.
Thus, F is b–characteristic. It follows that the notions of b–characteristic and r–characteristic coincide,
as claimed.

Recall that, if F is b–characteristic, then Theorem 1.6 states that km.F /D t.F ;W /, so we have a
combinatorial description of km.F /. Moreover, since ‚ only depends on the homology class of a band in
H2.M; †IZ=2/, we can in principle determine whether or not F is b–characteristic by computing ‚ on
finitely many homology classes. Having said that, as mentioned in the introduction, in practice deciding
precisely which homology classes can be represented by maps of bands may be tricky.

Lemma 5.19 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F /D 0. If G is regularly
homotopic to F and F is b–characteristic , then G is b–characteristic.

Proof By definition, a regular homotopy can be decomposed into a sequence of ambient isotopies, finger
moves and Whitney moves. None of these affect which classes of H1.†IZ=2/ bound a band. In particular,
�†j@B.F /D �†j@B.G/. Assume that G is not b–characteristic. Then either �†j@B.G/ is nontrivial or there
is a band in B.G/ on which ‚ is nonvanishing. In the former case, �†j@B.F / D �†j@B.G/ implies that F

is not b–characteristic.
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For the latter case, let B in B.G/ be such that ‚.B/D 1. It suffices to show that such a band still exists
after an ambient isotopy, a finger move or a Whitney move. This is obvious for ambient isotopy. Recall
that ‚ only depends on the homology class of the band by Lemma 5.16. Hence, we can assume that the
boundary of B is away from the singularity of the finger move. Then we can still consider the band B as
a band for the surface after the finger move and ‚ is unchanged. The argument in the case of a Whitney
move is similar. We first let B undergo a homotopy to arrange that it is disjoint from the boundary of the
Whitney disc W along which the Whitney move is performed. Then we can again consider the same
band B for the new surface. The Whitney move leaves all terms in the definition of ‚ except jInt B t F j

unchanged. Since the Whitney move uses two copies of the Whitney disc, the change in jInt B t F j is
twice jInt B tW j. As ‚ takes values in Z=2, ‚.B/ is unchanged, as claimed. Thus, we have a band B

in B.F / with ‚.B/D 1, and so again F is not b–characteristic. We have shown the contrapositive of the
desired statement.

Remark 5.20 As a counterpoint to Lemma 5.19, there exist maps that are homotopic to each other
but where one is b–characteristic and the other is not. For example, let † be the Klein bottle. Then
an embedding f W † ,! R4 must have normal Euler number e.�f / 2 f�4; 0; 4g by [Massey 1969]. It
can be verified, as we do presently, that the embeddings with e.�f /D 0 are precisely those which are
b–characteristic. Hence, the b–characteristic notion is not invariant under homotopy.

To see that f is b characteristic if and only if e.�f /D 0, think of †ŠRP2 # RP2, with a corresponding
isomorphism H1.†IZ=2/ Š Z=2˚Z=2. There is a standard embedding of RP2 in R4 with normal
Euler number ˙2, and there are essentially three ways to take connected sums of these embeddings,
realising the three options e.�f / 2 f�4; 0; 4g. With e.�f / fixed, these embeddings are unique up to
regular homotopy by Theorem 2.32.

We explicitly construct the standard embeddings, as follows. Take two disjoint, unlinked, unknotted
Möbius bands M1 and M2 in R3, with an "i 2 f˙1g signed half-twist for i D 1; 2. Take the boundary
connected sum M1 \M2 ambiently to obtain a punctured Klein bottle in R3 with boundary an unknot.
Cap this unknot off with a standard slice disc in R4

�0
to obtain a standard embedding f with normal Euler

number�2."1C"2/. We do not justify the sign, which depends on conventions that are not important for us.

By Lemma 5.19, it suffices to check whether the three standard embeddings above are b–characteristic,
which we do next. First one computes that �†j@B.f / D 0 in all three cases, as follows. We have

B.f /�H2.R
4; †IZ=2/ Š�!

@
H1.†IZ=2/Š Z=2˚Z=2:

By (5-1), in order to have B 2 B.f /, we need hw1.†/; h.@B/i D 0. Hence, @B 2 H1.†IZ=2/ Š

Z=2˚Z=2 is either .0; 0/ or .1; 1/. To see that .x;x/ for x 2 f0; 1g can be realised as the boundary of
a band, pick a simple closed curve Z on † representing the homology class .x;x/ and a generically
immersed disc D bounded by Z in R4. Then add a tube from D to † to turn D into an annulus B, using
Construction 5.10 (see Figure 6). Thus, @B.f /D f.0; 0/; .1; 1/g, on which �† vanishes.
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Hence, whether or not the given standard embedding of † is b–characteristic is decided by ‚.B/, where
B is a band with boundary .1; 1/ 2H1.†IZ=2/. For the standard embeddings constructed above, such a
band can be constructed explicitly, as follows. Take the core curves of M1 and M2, and connect sum
them inside M1 \M2. This gives an unknot representing .1; 1/, which bounds a standard slice disc D

in R4
�0

. Construction 5.10 converts D to a band B.

Since ‚ only depends on the class of a band in H2.M; †IZ=2/, we can use the band B from the previous
paragraph. We shall compute that ‚.B/ D 0 for this band if and only if e.�f / D 0, that is, if the
embedding of † arises from the connected sum of the standard embeddings of RP2 with opposite normal
Euler numbers. The curve @B is orientation-preserving on †, so we use (5-2) to compute ‚.B/. Most of
the terms in this definition are trivial in this case, since we are working with an embedding of † and @B
is itself embedded. Also D has interior disjoint from the image of f, and therefore so does B. Only the
relative Euler number term remains, which can be computed from the twists in M1 and M2. It follows
that ‚.B/� 1

2
."1C "2/ 2 Z=2, which vanishes if and only if "1 D�"2, which in turn holds if and only

if e.�f /D 0.

6 Homotopy versus regular homotopy

In this short section, we describe Construction 6.1 and apply it to prove Theorem 1.12, which we used in
Section 1.4 to compare homotopy and regular homotopy of maps. Note that the results in this section
require that the surface † from Convention 1.1 is nonorientable.

If we are interested in finding an embedding in a given homotopy class, rather than a regular homotopy
class, we may use the construction below to replace a given map by a homotopic map for which the
invariant t is trivial. In particular, the construction is applicable in the cases from Theorem 2.32 in which
there are infinitely many regular homotopy classes with �.�/1 D 0 in a given homotopy class.

Construction 6.1 Let F D ffig
m
iD1
W .†; @†/# .M; @M / be as in Convention 1.1, with �.F /D 0. Let

W denote a convenient collection of Whitney discs for the double points of F. Suppose that there exists fi

with w1.†/jker.fi /� nontrivial.

Let N �†i be a Möbius band with fi jN �1–trivial. In a small disc in N introduce four double points
with the same sign by cusp homotopies and call the resulting immersion f 0i . Let F 0 denote the map given
by ffj gj¤i [ ff

0
i g. Then there is a convenient collection of Whitney discs W0 for all the double points

of F 0 such that
t.F 0;W0/� t.F;W/C 1 mod 2:

While we have created four double points with the same sign, we will use in the proof that the Möbius
band is nonorientable to change the sign of two of the double points, in order to then be able to find new
Whitney discs.
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Proof We will pair up the two new pairs of double points with new Whitney discs. Pick any pair of
the four new double points and pair them by arcs in the small disc, as in Definition 2.26, such that the
resulting circle is null-homotopic in M. For one of the arcs perform a connected sum in the interior with
the core ˛ of N. With this new pair of arcs, the double points have opposite sign, and by our choice of N

the resulting Whitney circle bounds a Whitney disc W1 in M with embedded boundary. By boundary
twisting, arrange that W1 is framed, and, by pushing off, ensure there is no intersection between the
boundary of W1 and the boundaries of the components of W. For this we push the boundary arc of W1

over the end of the boundary arc for the Whitney disc in W. This way t.F;W/ remains unchanged. Do
the same for the remaining two new double points in f 0i , namely pair them by a Whitney disc W2, which
by definition is a parallel copy of W1.

Since �N .˛; ˛/D1, the boundaries of W1 and W2 intersect an odd number of times. To turn W[fW1;W2g

into a convenient collection of Whitney discs we have to remove any intersections between their boundaries.
For such an intersection, push the Whitney arc of W1 over the end of the Whitney arc of W2. This will
in turn change the number of intersections between the interior of W1 and f 0i by one mod 2; that is,
jInt W1 t F j � jInt W2 t F jC 1 mod 2. Let W0 be the resulting collection of Whitney discs. We have

t.F 0;W0/� t.F;W/CjInt W1 t F jC jInt W2 t F j � t.F;W/C 1 mod 2:

With the above construction in hand, we can now prove Theorem 1.12 from the introduction.

Theorem 1.12 Let F D ffig
m
iD1
W .†; @†/ # .M; @M / be as in Convention 1.1 with �.F / D 0.

Suppose that there is at least one fi 2 F with w1.†/jker.fi /� nontrivial. Then there exists a generic
immersion F 0 homotopic to F with �.F 0/D 0, and a convenient collection of Whitney discs W0 such
that t..F 0/ ; .W0/ /D 0. Thus , if F 0 has algebraically dual spheres , then km.F 0/D 0, and if moreover
�1.M / is good , then F 0 is regularly homotopic , relative to @†, to an embedding.

Proof By the vanishing of the intersection and self-intersection numbers, there is a convenient collection
of Whitney discs W for F and therefore for F . If t.F ;W / D 0, set F 0 D F. If t.F ;W / D 1,
use Construction 6.1 to find a generic immersion F 0 homotopic to F, with t..F 0/ ; .W 0/ /D 0. If F 0

has algebraically dual spheres, then km.F 0/D 0 by Theorem 1.6 since either F 0 is not b–characteristic
or km.F 0/D t..F 0/ ; .W 0/ /D 0. If in addition �1.M / is good, apply Theorem 1.2 to see that F 0 is
regularly homotopic, relative to @†, to an embedding.

We end this section by giving another pair of applications of Construction 6.1.

Proposition 6.2 Let f W .†; @†/# .M; @M / be a generic immersion as in Convention 1.1. Assume that
† is connected , �.f /D 0 and w1.†/jkerf� is nontrivial while f �.w1.M // is trivial. If f 0 is a generic
immersion homotopic to f, both f and f 0 are b–characteristic , and e.�f /� e.�f 0/D˙8, then

t.f 0/� t.f /C 1 mod 2:
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Proof Since f �.w1.M // is trivial, regular homotopy classes of generic immersions homotopic to f are
detected by the Euler number of the normal bundle by Theorem 2.32. Further, since e.�f /�e.�f 0/D˙8,
we may add four cusps (of the same sign) to f to obtain a map f 00 which is regularly homotopic to f 0.

The map f is b–characteristic by assumption, while the map f 00 is b–characteristic since f 0 is, by
Lemma 5.19. By Lemma 2.24, �.f /1 2 Z=2, so, by construction, �.f /D �.f 00/D �.f 0/D 0. So the
quantities t.f / and t.f 00/ are defined and, further, t.f 00/D t.f 0/. Apply Construction 6.1 to see that
t.f 00/� t.f /C 1 mod 2.

Applying Proposition 6.2 to immersions of RP2 into R4, we obtain the following corollary, obstructing
generic immersions of RP2 in R4 with e.f / ¤ ˙2 mod 16 from being regularly homotopic to an
embedding and thus partially recovering the result, due to Massey [1969], that every embedding of RP2

in R4 must have Euler number ˙2. Massey stated the result for smooth embeddings, since he used the
G–signature theorem. But the G–signature theorem was later extended to the topological category by
[Wall 1970, Chapter 14B], so Massey’s result also holds for locally flat embeddings of RP2 in R4.

Corollary 6.3 Let f WRP2#R4 be a generic immersion with �.f /D 0. Then t.f /D 0 if and only if
e.�f /D˙2 mod 16.

Proof Recall that there exist embeddings g˙ WRP2 ,!R4 with Euler number ˙2. First we prove that
e.�f /� 2 mod 4. By Lemma 2.24, we know that �.f /1 2 Z=2. Then �.gC/D 0, and so �.gC/1 D 0.
Since f is homotopic to gC and �.f /D 0, it follows from Theorem 2.32 that e.�f /� e.�gC/� 2 mod 4.
(The same argument would have applied with g�.)

Note that any generic immersion of RP2 into R4, and in particular the map f, is b–characteristic since
H2.R

4;RP2
IZ=2/Š Z=2 and the nontrivial element does not satisfy condition (5-1) in Definition 5.9.

We have t.g˙/D 0 since t vanishes for embeddings. Since e.�f /� 2 mod 4, it differs from one of ˙2

by a multiple of 8. Let k 2 Z be such that e.�f /D˙2C 8k D e.�g˙/C 8k. By Proposition 6.2,

t.f /� t.g˙/C k � k mod 2:

Thus, t.f /D 0 if and only if k is even, which is the case precisely when e.�f / differs from e.�g˙/D˙2

by a multiple of 16.

7 Proofs of statements from Section 5

In this section, we provide the proofs we skipped in Section 5. The following transfer move will be useful
for arranging that algebraically cancelling intersection points occur on the same Whitney disc.

Construction 7.1 (Transfer move) Let † and M be as in Convention 1.1 and let H W .†; @†/ !

.M; @M / be a generic immersion , with components fhi W†i!M g. Assume the double points within H

are paired by a convenient collection W of Whitney discs.

Geometry & Topology, Volume 28 (2024)



2450 Daniel Kasprowski, Mark Powell, Arunima Ray and Peter Teichner

Let W1 and W2 be components of W with Int W1 t H ¤ ∅ ¤ Int W2 t H. We can perform three
finger moves on H, so that the resulting generic immersion H 0 has six new double points , paired
by three framed , embedded Whitney discs fV;U1;U2g, each of which has two intersections with H 0,
such that the boundaries of fV;U1;U2g are mutually disjoint and embedded. Moreover , the collection
W0 WDW[fV;U1;U2g is a convenient collection of Whitney discs for H 0 and we have

jInt W1 tH 0j D jInt W1 tH j � 1 and jInt W2 tH 0j D jInt W2 tH j � 1:

Proof Suppose that W1 pairs intersections of ha and hb while W2 pairs intersections of hc and hd ,
where repetition within a, b, c and d is allowed. Perform a finger move between ha and hc , creating two
new double points paired by a corresponding framed, embedded Whitney disc V. Note that the interior
of V is disjoint from the image of H. The operation depicted in Figure 8 gives a further regular homotopy,
involving a finger move pushing he through ha, and a finger move pushing hf through hc . We call the
outcome of all three finger moves H 0. The procedure creates six new intersections within H 0 compared
with H. The four intersections created by the he – ha and hf – hc finger moves are paired by Whitney
discs U1 and U2. A preliminary version of these are shown in Figure 8(ii); the final versions are those
arising after the boundary push-off operations indicated by the bottom panel. Overall, the move transfers
an intersection of H with W1, as well as an intersection of H with W2, on to V, so that jInt V tH 0j D 2.
By construction, each Ui intersects H 0 twice.

Now we prove Lemma 5.4, whose statement we recall.

Lemma 5.4 Let F W .†; @†/# .M; @M / be as in Convention 1.1. Suppose that F admits algebraically
dual spheres , and that all double points of F are paired by a convenient collection W of Whitney discs.
Let W �W denote the subcollection of Whitney discs for the intersections within F , where F is as in
Definition 5.1. If t.F ;W /D 0, then km.F /D 0.

Proof By applying the geometric Casson lemma (Lemma 4.2) and Propositions 2.18, 2.25 and 3.1, we
may arrange by a regular homotopy that F and G become geometrically dual. By definition,

(7-1) t.F ;W /D
X
l;i

jInt Wl t fi j D 0 2 Z=2:

We modify the collection of Whitney discs, as follows, so that each has an even number of intersections
with F . Since the count in (7-1) is zero, the number of Whitney discs with odd intersection with F is
even, so we may pair them up (arbitrarily). For each such pair, apply Construction 7.1. This changes F

by finger moves to some F 0, whose double points are paired by a convenient collection of Whitney discs
W0 WD fW 0

l
g such that each element of W0 has an even number of intersections with .F 0/ . Note that the

new Whitney discs created by the application of Construction 7.1 have been added to the collection.

For each intersection of some W 0
l

with .F 0/ , tube W 0
l

into the corresponding geometrically dual sphere.
Note that each sphere being tubed into is necessarily twisted, but since we tube an even number of times,
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(i)

ha

he

W1

hb

hc

W2

hf

hd

(ii)

ha

he

W1

hb hc

V

hc

W2

hf

hd

U1 U2

ha

he

V

(iii)

ha

he

W1

hb hc

V

hc

W2

hf

hd ha

hehf

V

Figure 8: The transfer move. (i) Whitney discs W1 and W2 pairing intersections between ha

and hb , and between hc and hd , respectively. (ii) A finger move between ha and hc creates
a new pair of intersections, paired by a Whitney disc V, shown on both panels. Depicted in
the left panel, an intersection between W1 and he is pushed down into ha and then one of the
resulting intersection points is pushed across to V. In the right panel, we see this new intersection
between V and he . Further, an intersection between W2 and hf is pushed down to hc and one
of the resulting intersection points is pushed over to V. These last three moves form a regular
homotopy of H, with result H 0. Each Wi has one fewer intersection with H 0 than with H, at the
expense of creating two new intersections within H 0, paired by Whitney discs U1 and U2, both
shaded grey. Additionally, V has two intersections with H 0. The result of a boundary push-off
operation making the Whitney arcs for the Ui (purple) disjoint from the Whitney arcs for Wi

and V is shown in (iii). This operation creates two intersections of each Ui with H 0.

the total change in the framing of W 0
l

is even. Do this for each element of W0. The resulting family of
Whitney discs may still intersect F 0, but not .F 0/ . For each such intersection with F 0, again tube into the
appropriate geometrically dual sphere. Now the spheres are not twisted, so the framing of the Whitney
discs changes by an even number. Arrange for all the Whitney discs to be framed by adding local cusps in
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the interior. We may do this because the framing coefficient of each of the Whitney discs is even. We have
now produced the desired convenient collection of Whitney discs for the intersections within F 0, whose
interiors lie in the complement of F 0. This shows that km.F 0/D 0, and therefore km.F /D 0, as desired.

Before giving the proof of Lemma 5.11, we explain the key new construction in this paper, which we
already mentioned in Section 1.2. Briefly, given a band B with boundary lying on an immersed surface, a
finger move along a fibre of the band produces two new double points paired by a Whitney disc arising
from B.

Construction 7.2 (Band fibre finger move) Let F W .†; @†/# .M; @M / be as in Convention 1.1.
Suppose that �.F /D 0 and that the self-intersections of F are paired by a convenient collection WDfWlg

of Whitney discs with boundary arcs A.

Consider B 2B.F / as a D1–bundle. Then we can do a finger move along a fibre of B, with endpoints
missing A, as depicted in Figure 1. We call this fibre the finger arc , and denote it by D. We assume that
D misses all double points of B and all intersections between Int B and F.

A finger move depends on a choice of 2–dimensional subbundle of the normal bundle to the finger arc
(the proof of Lemma 7.3 will give further details). We use a subbundle that lies in the tangent bundle TF

at one end of the arc , contains �B
D

along D, and intersects TF in the line bundle �B
D

at the other end of the
arc. Here �B

D
is the normal bundle of D in B.

Call the immersion resulting for the above finger move F 0. We will check in the next paragraph that the
remainder of B, ie the complement in B of a tubular neighbourhood of D, gives a Whitney disc for the
new pair of double points. Make the boundary embedded and disjoint from A, by boundary push-off
operations , and then boundary twist if necessary, to obtain a framed Whitney disc WB for the new double
points. Then W0 WDW[fWBg is a convenient collection of Whitney discs pairing the double points of F 0.
Note that both F 0 and WB depend on the choice of finger arc D and the 2–dimensional subbundle of its
normal bundle mentioned above.

Now , as promised , we check that WB is a Whitney disc. The finger move creates a trivial Whitney disc
and we refer to the corresponding Whitney arcs as the trivial arcs. The double points are also paired by the
arcs A1;A2 � @B, where A1[A2 D @WB . The existence of the disc WB implies that the group elements
of the double points agree with respect to the arcs A1 and A2. It remains only to see that the double points
have opposite signs with respect to the arcs A1 and A2 (see Definition 2.27). The case that both M and
† are orientable is straightforward. The general case follows from the w1 condition in the definition of a
band , (5-1), as we now check.

First we consider the case that B is an annulus. Let @1B and @2B denote the two components of @B. Then
A1 and A2 differ from the trivial arcs joining the new double points by @1B and @2B, respectively. By
Definition 2.27, the double points have opposite sign precisely when hw1.†/; @BiC hw1.M /; @1Bi D 0,
which matches (5-1) since @1B is homotopic in M to the core of B.
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Now suppose that B is a Möbius band. Then the union of A1 and A2 and the trivial pair of arcs is the
circle @B �†. Moreover , the union of the image of A1 and either one of the trivial arcs forms a circle
in M homotopic to the core C of B. As before , the double points have opposite sign precisely when
hw1.†/; @BiC hw1.M /;C i D 0, which again matches (5-1).

The following lemma explains how Construction 7.2 changes the value of t . In the proof we will also
carefully explain how to make suitable choices of 2–dimensional subbundles, as required for the finger
move in Construction 7.2.

Lemma 7.3 Let F W .†; @†/# .M; @M / be as in Convention 1.1.

(i) Suppose that F 0 and W0 are obtained from F and W by a single application of Construction 7.2
with respect to a band B 2B.F /, where w1.†/ restricted to every component of @B is trivial. Let
A denote the Whitney arcs corresponding to W. Then

t.F 0;W0/D t.F;W/C‚A.B/ 2 Z=2:

(ii) Suppose that F 0 and W0 are obtained from F and W by a single application of Construction 7.2
with respect to a band B 2B.F / and an arc D � B, where B is an annulus with w1.†/ nontrivial
on both boundary components and D � B connects the two boundary components. Let A denote
the Whitney arcs corresponding to W. Then

t.F 0;W0/D t.F;W/C‚A.B;D/ 2 Z=2:

For the proof it will be advantageous to refrain from applying boundary twists and removing intersections
involving @WB , and to instead use the following alternative definition of t.F;W/, using a slightly
weaker restriction on collections of Whitney discs, as in [Stong 1994]; see [Freedman and Quinn 1990,
Section 10.8A].

Definition 7.4 Let F W .†; @†/# .M; @M / be as in Convention 1.1. A weak collection of Whitney discs
for F is a collection W of Whitney discs pairing all the double points of F, with generically immersed
interiors transverse to F, and with Whitney arcs whose interiors are generically immersed in F.†/ minus
the double points of F.

In particular, compared to the definition of a convenient collection of Whitney discs (Definition 2.31),
we allow the boundaries of Whitney discs to be generically immersed on † and to intersect one another
transversely. We also allow the Whitney discs to be twisted, ie for the framing of the normal bundle
restricted to the boundary to disagree with the Whitney framing. Each of the discs in a weak collection of
Whitney discs admits a normal bundle. The proof is the same as for a generic immersion of pairs, but
with a preliminary step that one has to first fix the normal bundle in neighbourhoods of the two double
points being paired.

Geometry & Topology, Volume 28 (2024)



2454 Daniel Kasprowski, Mark Powell, Arunima Ray and Peter Teichner

Definition 7.5 Given a weak collection of Whitney discs W WD fWlg for the double points of a generic
immersion F as in Convention 1.1, fix an ordering on the indexing set for W and define

talt.F;W/ WD
X

l

�
�†.@Wl/C

X
k>l

j@Wl t @Wk jC

X
i

jInt Wl t fi jC e.Wl/

�
2 Z=2;

where e.Wl/ is the relative Euler number of the normal bundle with respect to the Whitney framing
on @Wl .

Note that, if W is a convenient collection of Whitney discs for F, then talt.F;W/ D t.F;W/ (see
Definition 1.5). In particular, since a convenient collection of Whitney discs comprises framed Whitney
discs and has embedded and disjoint Whitney arcs, a majority of terms in the definition of talt vanish. The
following lemma shows that talt can be used as a proxy for t in general.

Lemma 7.6 Given a weak collection of Whitney discs W WD fWlg
n
lD1

for the double points of a generic
immersion F as in Convention 1.1, there exists a convenient collection of Whitney discs W0 such that
t.F;W0/D talt.F;W/.

Proof For each Whitney disc Wl with e.Wl/¤ 0, add boundary twists to obtain Wl with e.Wl/D 0.
Each boundary twist changes the Euler number by ˙1 and introduces an intersection of the Whitney disc
with F. We have X

i

jInt Wl t fi j �

X
i

jInt Wl t fi jC e.Wl/ mod 2;

and also �†.@Wl/D �†.@Wl/ and j@Wl t @Wk j D j@Wl t @Wk j for each k ¤ l .

Next we will remove intersections between Whitney arcs as well as self-intersections of Whitney arcs,
at the expense of adding intersections between F and the Whitney discs. We will use the procedure
described in [Powell and Ray 2021a, Section 15.2.3]. For an intersection between @Wl and @Wk , where
possibly k D l , the procedure pushes the intersection off one of the endpoints of one of the Whitney arcs
of @Wl , ie a double point of F, moving a neighbourhood of @Wk and creating an intersection between Wk

and F. This new intersection point is created in a small neighbourhood of the double point of F chosen
for the pushing-off procedure. If several Whitney arcs intersect the given Whitney arc of @Wl , push off in
order of proximity to the endpoint. This avoids extraneous intersections between Whitney arcs being
created. Perform this pushing-off procedure on both arcs of @Wl . For each of the two arcs in @Wl , push
towards one of the two double points of F paired by Wl ; choose these double points so that we use one
double point for each arc. This ensures that the new intersections between Whitney discs and F arise in
disjoint neighbourhoods in the ambient manifold.

Apply the move described in the previous paragraph to the Whitney arcs of fWlg in order, beginning
with l D n. In other words, in the i th step, we push off the intersections of @Wk with @Wn�iC1 for
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k � n� i C 1. After the nth step, we produce a convenient collection W0 WD fW 0
l
g, where each W 0

l
is the

result of applying the above procedure to Wl . This yields, for each l ,X
i

jInt W 0l t fi j �

X
i

jInt Wl t fi jC�†.@Wl/C
X
k>l

j@Wl t @Wk j mod 2

�

X
i

jInt Wl t fi jC e.Wl/C�†.@Wl/C
X
k>l

j@Wl t @Wk j mod 2:

In the above expression, the term
P

k>l j@Wl t @Wk j arises since the arcs in @Wl are moved, to create a
new intersection point of Wl with F, precisely once for each intersection of @Wl with

S
k>l @Wk .

Sum over l to obtain that t.F;W0/D talt.F;W/ 2 Z=2, as claimed.

Proof of Lemma 7.3 By Lemma 7.6, it will suffice to show that, in case (i),

talt.F
0;W0/D talt.F;W/C‚A.B/ 2 Z=2;

and, in case (ii),
talt.F

0;W0/D talt.F;W/C‚A.B;D/ 2 Z=2:

The proof splits into three cases.

Case 1 The band B is an annulus as in (i).

Recall that
‚A.B/ WD �†.@B/Cj@B tAjC jInt B t F jC e.B/ mod 2:

By the construction of F 0 and W0, we have

talt.F
0;W0/� t.F;W/C�†.@WB/Cj@WB tAjC jInt WB t F jC e.WB/ mod 2:

Every self-intersection of @B and each intersection @B tA will contribute one intersection of @WB and
between @WB and A, respectively, while each intersection Int B t F will contribute one intersection
between Int WB and F. Thus it remains to show that the framing e.B/ appearing in the definition of‚A.B/

agrees with the framing e.WB/. For this it will be helpful to pick the finger arc and the 2–dimensional
subbundle for its normal bundle needed for the finger move more carefully, which we do next.

Let @iB denote the connected components of @B � †. Consider the following decomposition of the
tangent bundle of M restricted to @iB:

(7-2) TM j@i B Š T .@iB/˚ �
†
@i B˚ �

B
@i B˚ .�

M
† j@i B \ �

M
B j@i B/:

As shown in Figure 9, choose a section s of the normal bundle of B that is nonvanishing on the finger
arc. In both boundary components @iB, we assume that this section lies in �†

@i B
. Now rotate the section

near the top boundary component, as shown in Figure 9, middle, to obtain a section s0, so that on the top
component s0 lies in .�M

†
j@i B \ �

M
B
j@i B/. For the finger move, by definition, we use the 2–dimensional

subbundle of �M
D

determined by s0 and T .@iB/, as shown in Figure 9, right.
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F

B

F

WB

Figure 9: Left: we see a model annulus B (blue) connecting two sheets of F (black), and a finger
arc D D fptg �D1 � S1 �D1 Š B (orange). We also see the surface framing on @B and the
section s along the finger arc of the normal bundle of B in M. Recall the section is defined over
all of B, but we only show it on a subset. Middle: in the top half of B, we rotate the section so
that it lies in .�M

†
j@i B\�

M
B
j@i B/, ie in the time direction, on the top boundary component (dotted

green). The modified section is called s0. Right: after performing the finger move, s0 gives the
Whitney framing for the new Whitney disc WB .

Now consider the Whitney disc WB obtained from B after performing the finger move along D using
the above 2–dimensional subbundle of its normal bundle. By definition, e.WB/ equals the number of
zeros of s0jWB

, since on the boundary Whitney arcs it is normal to one sheet and tangent to the other.
On the other hand, the number of zeros of s0jWB

equals the number of zeros of s, since s0 was obtained
from s by a rotation, and neither section vanishes near the finger arc. Finally, by definition, e.B/ counts
the zeros of s. Therefore we see that e.B/D e.WB/.

Case 2 The band B is an annulus such that w1.†/ restricted to both components of @B is nontrivial, as
in (ii).

Assume that a finger arc D has been chosen. To define‚A.B;D/, we pick a section s as in Definition 5.14
on yB, which is by definition the result of cutting B open along D. Recall that

‚A.B;D/ WD �†.@B/Cj@B tAjC jInt B t F jC e. yB/ mod 2:

As in Case 1, we need only check that the term e. yB/ in ‚A.B;D/ agrees with the term e.WB/ in talt.
Again as in Case 1, we rotate the section near the top boundary component to obtain a section s0, so that
on the top component s0 lies in .�M

†
j@i B \ �

M
B
j@i B/. For the finger move, we use the 2–dimensional

subbundle determined by s0 and T .@iB/. Note that, just like s, the section s0 is not defined on all of B,
but only on yB; see Figure 10. Nevertheless, on points that map to the same point in D, the section s0

agrees up to a sign and thus still determines a 1–dimensional subbundle. The section s0 restricts to a
section of the normal bundle of the Whitney disc WB obtained from B. As in Case 1, the quantities e.B/

and e.WB/ coincide.

Case 3 The band B is a Möbius band with w1.†/ restricted to @B trivial, as in (i).
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F 0

F 0

WB

F

F

yB

Figure 10: Left: the section s0 on D (orange), and on a parallel copy of D; see Figure 7(b). Close
to the top boundary the section extends into the time direction (teal and dotted green). Right: the
section s0 on the boundary of the new Whitney disc WB .

As in Case 1, we only need to show that the term e.B/ in ‚A.B/ agrees with the term e.WB/ in
talt. Let D denote a properly embedded arc on B along which we wish to perform the finger move.
Identify B with the quotient of the square S WD Œ�1; 1�� Œ�1; 1� as usual, ie .�1;x/ � .1;�x/ for all
x 2 Œ�1; 1�, with D corresponding to the arc f�1g � Œ�1; 1�� f1g � Œ�1; 1� (see Figure 11). Pull back
the normal bundle �M

B
of B in M to S via the quotient map � W S ! B and then pick a trivialisation

��.�M
B
/ Š S �R2 so that, on the horizontal boundary H WD Œ�1; 1� � f�1; 1g, we have that ���†

@B

coincides with H �R� f0g � S �R�R.

Then we pick a section s of �M
B

such that sj@B lies in �†
@B

. Note that sj@B is nowhere-vanishing but the
section s might have zeros. Without loss of generality we assume that any zeros of s do not lie in the
strip .Œ�1;�1C "�[ Œ1� "; 1�/� Œ�1; 1� for some " 2

�
0; 1

4

�
.

Next we modify the section s. Choose a “necklace” region, ie a subsquare N with two opposite edges
coinciding with Œ�1;�1C"��f1g and Œ1�"; 1��f1g, and otherwise lying in the interior of S WD Œ�1; 1�2.

(a) (b) (c)

D DN

S�

SC

Figure 11: (a) The necklace region N � S is shown in grey. The dotted black lines indicate the
boundary of the region where the finger move occurs. The solid black lines indicate where the
band is attached to the surface F. The arc D is shown in orange. (b) The section s is shown in
blue. (c) The section s0 is indicated. Note that on S�, the sections s and s0 agree. On SC, the
section s0 (green) is obtained by rotating s by 90 degrees. In the necklace region, the section
rotates continuously (teal), interpolating between the values on SC and S�. Note that the section
on the arc D has not changed, but it has been modified on part of the dotted lines.

Geometry & Topology, Volume 28 (2024)



2458 Daniel Kasprowski, Mark Powell, Arunima Ray and Peter Teichner

We consider the pullback of s to S, where we have a trivialisation. Modify this pullback so that it remains
unchanged in the lower component S� of S nN and is rotated by 90 degrees on the upper component SC.
On the region N, the section rotates continuously, interpolating between the values on SC and S�. Push
this forward to get a modified section s0 on B. Since the modification is produced by a continuous rotation,
the number of zeros of this modification agrees with the number of zeros of the original s.

Recall that we wish to perform a finger move guided by the arc D D f�1g � Œ�1; 1�. Without loss of
generality, we assume that the “width” of the finger move is 2". More precisely, to perform a finger
move we need a 2–dimensional subbundle of �M

D
. We require that this contains �B

D
to ensure that the

finger move cuts B open into a Whitney disc, as desired. Fix an identification of the total space of the
normal bundle �M

D
with D�R3. We choose an embedding � W �M

D
,!M restricting to the inclusion of D

on D � f0g, with the following properties:

(i) We assume the first R1 factor of D�R3 corresponds to �B
D

and that � identifies D�f˙1g�f0g�f0g

with the arcs f�1C "; 1� "g � Œ�1; 1�. This is what was meant by the width of the finger move.

(ii) We also require that � identifies D�ftg�f1g�f0g with s0
�
�.D�ftg�f0g�f0g/

�
for t � 0, and with

s0
�
�.D � ftg � f0g � f0g/

�
rotated by 90 degrees for t � �1. (Here we also implicitly identify �M

B

with its image in M.)

Now do the finger move using D�S1�f0g according to this parametrisation, where S1 is the unit circle
in the R2 factor, along with a finger tip. The choices above imply that s0j@WB

is a Whitney framing, where
WB denotes the new Whitney disc created according to Construction 7.2. Specifically, let F 0 denote the
result of the finger move. By our choice of the 2–dimensional subbundle for the finger move above, the
section s0 is normal to F 0 along half of @WB , and tangent along the other half; see Figure 12.

As previously mentioned, we need to check that the relative Euler number e.B/ in ‚A.B/ agrees with
the twisting number e.WB/ in talt. The relative Euler number e.B/ is given by the number of zeros of
the section s on the interior of B. As mentioned before, this coincides with the number of zeros of the
section s0. Since s0j@WB

is a Whitney framing, this further coincides with the twisting number e.WB/, as
desired, since we assumed there are no zeros of s within the strip .Œ�1;�1C "�[ Œ1� "; 1�/� Œ�1; 1��B

used for the finger move.

Next we prove Lemma 5.11. Here is the statement for the convenience of the reader.

Lemma 5.11 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F /D 0. If the Z=2–valued
intersection form �† on H1.†IZ=2/ is nontrivial on @B.F /, then we can change F by a regular homotopy
to F 0 such that there are convenient collections of Whitney discs W and W0 for the double points of F

and F 0, respectively, such that t.F;W/¤ t.F 0;W0/.

Moreover , if F has dual spheres and the Z=2–valued intersection form �† on H1.† IZ=2/ is nontrivial
on @B.F /, then km.F /D 0.
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(a) (b)

(c) (d)

D S�

F

F 0

SC

NB

Figure 12: (a) The surface F is shown in black, and the Möbius band B in blue. Note this picture
is entirely in R3. The necklace region N is in grey, and splits B into two components SC and S�.
The finger arc D is in orange, and the width of the finger move is shown with dotted lines. (b)
We show the section s in blue. Note that, while there is a rotation along D, there are no zeros
of s in the strip between the dotted lines. (c) The modified section s0. Note the section coincides
with s on S� and has been rotated (green) on SC. (d) The section s0 on the Whitney disc WB

formed after the band fibre finger move. By the construction of the 2–dimensional subbundle of
the normal bundle of D used to guide the finger move, the section s0 is tangent to F 0 along the
right edge of the finger (corresponding to the right dotted line in (c), where the finger contains
part of a Whitney arc of WB), and s0 is normal to F 0 along the left edge of the finger.

Proof We first prove the statement (without using dual spheres) about t.F;W/ depending on the choice
of W under our assumption. By hypothesis, F is a generic immersion whose double points can be paired
by a convenient collection WD fWlg of Whitney discs (Corollary 2.30). By hypothesis, �† is nontrivial
on @B.F /, meaning that there are bands B1 and B2 with boundary on F.†/ minus double points such
that �†.@B1; @B2/ ¤ 0 2 Z=2. Here it is possible that B2 is a parallel push-off of B1. Using Bi and
Construction 7.2, perform a finger move and obtain a new framed Whitney disc, calling the resulting
convenient collection of Whitney discs Wi , for i D 1; 2, and the resulting map Fi

If t.Fi ;Wi/¤ t.F;W/ for some i D 1; 2, we can set F 0 D Fi and W0 DWi . Otherwise, use Lemma 7.3
twice, for B1 and B2 simultaneously, and let W0 denote the resulting convenient collection of Whitney
discs for the resulting map F 0. Then the change in t.F;W/ is as before, except that there is an additional
contribution from the odd number of intersections between the boundary arcs for the new Whitney discs
coming from B1 and B2. Specifically, removing these by pushing one Whitney arc off the end of the
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other (as part of Construction 7.2) introduces an odd number of intersections between the Whitney discs
and F. Therefore, t.F 0;W0/¤ t.F;W/, as needed.

For the second statement, apply the above argument to the subcollection W of W pairing the intersections
within F . It follows that we may find W such that t.F ;W /D 0, possibly after a regular homotopy
of F . Then km.F /D 0 follows from Lemma 5.4.

For the proof of Lemma 5.16, we will need the following Lemmas 7.7, 7.8, 7.9 and 7.10.

Lemma 7.7 Let F W .†; @†/# .M; @M / be as in Convention 1.1. Every element of H2.M; †IZ=2/

can be represented by an immersion of some compact surface into M, with interior transverse to F, and
with boundary generically immersed in F.†/ away from the double points.

Proof Let Nk.M; †/ denote the k–dimensional unoriented bordism group over .M; †/, and let Nk

denote the k–dimensional unoriented bordism group over a point. Using topological transversality, it
suffices to show that every element of H2.M; †IZ=2/ can be represented by a map .S; @S/! .M; †/ for
some surface S. To show this, it suffices to see that the edge homomorphism N2.M; †/!H2.M; †IZ=2/

from the Atiyah–Hirzebruch spectral sequence is onto.

Recall that the N0 is isomorphic to Z=2 while the N1 vanishes. It follows that, in the Atiyah–Hirzebruch
spectral sequence with E2–term Hp.M; †INq/ and converging to NpCq.M; †/, there is no nontrivial
differential going out of H2.M; †IN0/ Š H2.M; †IZ=2/; such a differential would have codomain
H0.M; †IN1/D 0. Thus the edge homomorphism N2.M; †/!H2.M; †IZ=2/ is onto, as desired.

Lemma 7.8 Let F W .†; @†/# .M; @M / be as in Convention 1.1. Suppose that �.F / D 0 and let
A be a choice of Whitney arcs pairing the double points of F. Then the function ‚A is quadratic with
respect to the Z=2–valued intersection form �†. That is , let S and S 0 be compact surfaces , with generic
immersions of pairs .S; @S/# .M; †/ and .S 0; @S 0/# .M; †/ such that @S and @S 0 intersect A and
each other transversely, and are such that w1.†/ is trivial on every component of @S and @S 0. Then we
have

‚A.S [S 0/D‚A.S/C‚A.S
0/C�†.@S; @S

0/:

Proof The term e.S/ in Definition 5.12 is defined componentwise and the terms j@S tAj and jInt S tF j

are linear in @S and S, respectively. Hence, the only term that is not linear in S is �F .@S/. This term is
also quadratic in the sense that

�†.@S [ @S
0/D �†.@S/C�†.@S

0/C�†.@S; @S
0/;

which proves the lemma.

Lemma 7.9 Let F W .†; @†/# .M; @M / be as in Convention 1.1. Suppose that �.F / D 0 and let
A be a choice of Whitney arcs pairing the double points of F. Let S be a compact surface with a
generic immersion of pairs .S; @S/# .M; †/ such that @S is transverse to A and w1.†/ is trivial
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@S @S @D

@S 0

Figure 13: Adding a disc D to S to remove a self-intersection of @S. Left: the neighbourhood of
a self-intersection of @S before adding the disc D. The section S is shown along @S. Middle:
the boundary of the disc D. The section D is shown along @D. Right: after the modification; see
Figure 14.

on every component of @S. Then there is another such surface S 0 with a generic immersion of pairs
.S 0; @S 0/# .M; †/ with @S 0 transverse to A such that

(1) ŒS �D ŒS 0� 2H2.M; †IZ=2/;

(2) ‚A.S/D‚A.S
0/; and

(3) @S 0 is embedded in †.

Proof To start, pick a section S of the normal bundle �M
S

which on @S is nowhere-vanishing and lies
in �F

@S
as in the definition of ‚A.S/.

The idea of the proof is to remove all intersections of @S by locally adding a twisted disc D as indicated
in Figure 13. More precisely, we add these discs D such that the interiors are disjoint from the interior
of F and the boundary is disjoint from A. Then pick a section D of �M

D
such that, along the aligned

(ie parallel) parts of the boundaries, D and S are opposite. Glue D to S along the aligned parts of
the boundaries and push this part of the boundary off F as indicated in Figure 14. Each of these local
twisted discs has mod 2 Euler number 1, as can be seen from the nontrivial linking in Figure 15. Thus
the resulting surface S 0 has embedded boundary and the mod 2 Euler number of S 0 differs from that
of S by the number of intersections of @S modulo two, ie �†.@S/. Since we have changed neither the

F F F

S D S 0

Figure 14: Glue D to S along the aligned parts of the boundaries and push this part of the
boundary off F.
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F

Figure 15: A twisted band with Euler numberC1 in a movie description. Bottom: an immersed
figure-eight curve (blue) is shown lying on the immersed surface F.†/ (black) away from the
double points. A framing on the normal bundle on the boundary of the band is shown in light
blue. Moving upward/forward in time, we see a simple closed curve shrinking to a point. The
push-off corresponding to the framing induced by † is shown in light blue. For the twisted band
with Euler number �1, we use the other resolution.

number of intersections of the interior with F nor the number of intersections of the boundary with A,
we have ‚A.S/D‚A.S

0/ 2Z=2. As the local discs are trivial in H2.M; †IZ=2/, we furthermore have
ŒS �D ŒS 0� 2H2.M; †IZ=2/, as needed.

Lemma 7.10 Let F W .†; @†/# .M; @M / be as in Convention 1.1. Let Z be a disjoint union of
embedded circles in †. Let † jZ denote † cut along Z, ie the completion of † nZ to a compact
manifold with boundary. Let F D f†ig be the connected components of † j Z and suppose that
ŒZ� D 0 2 H1.†IZ=2/. Then we can pick a subset F0 � F such that each component of Z appears
exactly once as a connected component of the boundary of precisely one †i 2 F0.

Proof Without loss of generality, assume that† is connected. Considering the entire collection FDf†ig,
every component of Z would appear as the boundary of precisely two of the †i , since otherwise Z

would be nontrivial in H1.†IZ=2/. To see this, note that Z can contain homologically essential curves
in H1.†IZ=2/ provided they cancel. However, none of these can be orientation-reversing curves, since
Z is embedded.

The idea of the proof is to take “half” of the components of F. Let x 2† jZ be an arbitrary basepoint
away from Z. For each †i , define p.†i/ 2 Z=2 as follows. Pick a point y 2 Int†i and a path w in †
from x to y which is transverse to Z. Define p.†i/ as the mod 2 intersection number of w and Z.

We show that p.†i/ is independent of the choices of w and y. If w0 is another path from x to y, then the
concatenation w�1 �w0 is a loop in † and we have

j.w�1
�w0/ tZj D �†.Œw

�1
�w0�; ŒZ�/D �†.Œw

�1
�w0�; 0/D 0:

So p.†i/ does not depend on the choice of w. Also, since each †i is connected, p.†i/ does not depend
on y. To see this, let y0 2 Int†i and choose a path z from y to y0 that lies in Int†i . Let w0 be a path
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from x to y0 which is further transverse to Z. Then

jw tZj D j.w � z/ tZj D jw0 tZj:

The first equation uses that z � †i and the second uses independence of the choice of w. Hence,
p.†i/ 2 Z=2 is well defined, as desired.

Now let F0 consist of all the components †i for which p.†i/D 0. This subset is the one we seek, since,
for a fixed component Zj of Z, the two components of F containing a cut-open copy of Zj have different
values of p.

We are now ready for the proof of Lemma 5.16.

Lemma 5.16 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F /D 0. Let A be a choice
of Whitney arcs pairing the double points of F.

(i) Let S be a compact surface with a generic immersion of pairs .S; @S/# .M; †/ such that @S is
transverse to A and w1.†/ is trivial on every component of @S. Then ‚A.S/ 2 Z=2 depends only
on the homology class of S in H2.M; †IZ=2/.

(ii) Let B be an annulus with a generic immersion of pairs .B; @B/# .M; †/ such that @B is transverse
to A and w1.†/ is nontrivial on both components of @B. Pick an embedded arc D in B connecting
the components of @B and disjoint from all double points. Then ‚A.B;D/ 2 Z=2 depends only
on the homology class of B in H2.M; †IZ=2/. In particular , ‚A.B;D/ does not depend on D, so
we write ‚A.B/.

(iii) Let S be a surface as in (i) and let B be an annulus as in (ii) such that ŒS �D ŒB� 2H2.M; †IZ=2/.
Then ‚A.S/D‚A.B/ 2 Z=2.

(iv) If �†j@B.F / D 0, the restriction of ‚A to B.F / is independent of the choice of A, giving a
well-defined map ‚ WB.F /! Z=2.

Proof To prove (i), assume that S and S 0 are immersed compact surfaces, with w1.†/ trivial on each of
the connected components of the boundaries, representing the same element in H2.M; †IZ=2/. Modulo
isotopy we can assume that S and S 0 intersect transversely in their interiors in M, and their boundaries
intersect transversely on F. In particular, their boundaries @S and @S 0 intersect in an even number of
points. Hence, ‚A.S [S 0/D‚A.S/C‚A.S

0/ by Lemma 7.8. Thus it suffices to show that ‚A.S/D 0

for a compact surface S such that 0D ŒS � 2H2.M; †IZ=2/ and w1.†/ is trivial on @S. In particular,
we know by Lemma 7.7 that every element of H2.M; †IZ=2/— in particular the trivial class — can be
represented by an immersed surface S.

By Lemma 7.9, we can assume that @S is embedded. As 0D ŒS � 2H2.M; †IZ=2/, we also have that
0 D Œ@S � 2 H1.†IZ=2/ since S maps to @S under the map H2.M; †IZ=2/! H1.†IZ=2/. Pick a
set F0 of components of † j @S as in Lemma 7.10. Gluing the Fi 2F0 to S along the common boundary,
we obtain a closed surface N. First note that N represents the same class as S in H2.M; †IZ=2/ since
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it only differs by a subset of F.†/. Hence, 0D ŒN � 2H2.M; †IZ=2/. As N is closed, it also defines an
element in H2.M IZ=2/. Note that we have the pair sequence

� � � !H2.†IZ=2/
F
�!H2.M IZ=2/!H2.M; †IZ=2/! � � � :

Hence, N represents the same class in H2.M IZ=2/ as a subsurface †0 of †. Let �M denote the
Z=2–valued intersection form on H2.M IZ=2/. By hypothesis, we have �M .fj ; fj 0/D 0 for any two
connected components fj and fj 0 of F. Thus,

(7-3) �M .ŒN �; ŒF �/C�M .ŒN �; ŒN �/D 0:

We finish the proof of (i) by showing that ‚A.S/D �M .ŒN �; ŒF �/C�M .ŒN �; ŒN �/.

Recall that we were able to assume that @S is embedded in F.†/ away from the double points and that
�M .ŒN �; ŒN �/D e.�N / mod 2. We claim that this in turn agrees with e.S/C

P
Fi2F0 e.Fi/. Here we

define e.Fi/ as follows. We used F to define a nowhere-vanishing section of �M
S
j@S . Since �M

S
j@S is

2–dimensional, we can pick a linearly independent nonvanishing section. This can be equivalently used
for the definition of e.S/. But this new section now can also be used to define e.Fi/. Combining these
vector fields that are transverse to the zero section defines a vector field on the normal bundle of N, and
hence computes the Euler number of the normal bundle of N. Thus we have shown

�M .ŒN �; ŒN �/D e.S/C
X

Fi2F0

e.Fi/:

Now consider �M .ŒN �; ŒF �/. We can use the vector field used for defining e.Fi/ to make N and F

transverse. Then �M .ŒN �; ŒF �/ is given by the sum of jS t F j,
P

Fi2F0 e.Fi/ and the self-intersection
points of F contained in the Fi 2 F0. As the self-intersection points of F are paired by the Whitney
arcs A, we have that modulo two the number of self-intersection points of F contained inside Fi agrees
with jA t @Fi j. Since the boundary of the Fi is precisely @S, we have

�M .ŒN �; ŒF �/D jInt S t F jC
X

Fi2F0

e.Fi/CjA t @S j:

Therefore,

�M .ŒN �; ŒN �/C�M .ŒN �; ŒF �/D e.S/C
X

Fi2F0

e.Fi/CjInt S t F jC
X

Fi2F0

e.Fi/CjA t @S j

D e.S/CjInt S t F jC jA t @S j
D‚A.S/ 2 Z=2;

where the last equality holds because �S .@S/D 0. Combine this with (7-3) to obtain

‚A.S/D �M .ŒN �; ŒN �/C�M .ŒN �; ŒF �/D 0:

This completes the proof of (i).
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F 0

F 0

�
F

F

zB

Figure 16: A strip, ie half of the tube, added to �.

Before proving (ii) and (iii), we introduce a general construction. Let B be an annulus as in (ii) with an
embedded arc D in B connecting its two boundary components. As in Remark 5.15, add a tube to F.†/

along the arc D. Let d; d 0 denote the two discs removed from F when the tube is added. Adding the tube
changes F to some F 0, an immersion of a surface †0, and changes B to a disc �. As before, observe that
@� is an orientation-preserving curve in †0 and A is now a collection of Whitney arcs pairing the double
points of F 0. By construction, we see that ‚A.B;D/D‚A.�/.

Moreover, suppose there is either some immersed compact surface S in M as in (i) or some immersed
annulus B0 as in (ii), with an embedded arc D0 on B0 connecting its two boundary components, where pos-
sibly BDB0. We may choose the tube in the above construction thin enough that ‚A.S/ and ‚A.B

0;D0/

remain unchanged. In particular, this means we assume, after a small local isotopy, that the discs d and d 0

do not intersect the boundaries of S and B0, so both represent classes in H2.M; †0IZ=2/. We have the
following claim.

Claim 7.11 If ŒB�D ŒS �2H2.M; †IZ=2/, then either Œ��D ŒS �2H2.M; †0IZ=2/ or Œ��D ŒS �C Œd �2
H2.M; †0IZ=2/. Similarly , if ŒB�D ŒB0� 2H2.M; †IZ=2/ then either Œ��D ŒB0� 2H2.M; †0IZ=2/ or
Œ��D ŒB0�C Œd � 2H2.M; †0IZ=2/.

Proof The exact sequence of the triple with Z=2 coefficients yields

.Z=2/2 ŠH2.†;† n . Vd [ Vd 0//!H2.M; † n . Vd [ Vd 0//
j
�!H2.M; †/!H1.†;† n . Vd [ Vd 0//D 0;

so j is surjective with kernel generated by the images of Œd � and Œd 0� from the left-hand group.

Construct a lift zB of � in H2.M; † n . Vd [ Vd 0// by adding a strip along the added tube to �, as shown
in Figure 16. Since zB, S and B0 are mapped by j to B, S and B0 in H2.M; †/, respectively, and the
kernel is generated by Œd � and Œd 0�, we see that the classes of zB, S and B0 differ at most by the classes Œd �
and Œd 0�. The map H2.M; † n . Vd [ Vd 0//!H2.M; †0/ identifies Œd � and Œd 0�, so the claim follows.

We continue now to prove (ii). Let B and B0 be immersed annuli in M as in the statement of (ii). Choose
arcs D in B and D0 in B0 connecting the boundary components of each, and assume that ŒB�D ŒB0�. By
the construction from the proof of Claim 7.11 applied twice, once to B and once to B0, we find discs �
and �0, coming from B and B0, respectively, such that ‚A.B;D/D‚A.�/ and ‚A.B

0;D0/D‚A.�
0/.
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From Claim 7.11, applied twice with the roles of B and B0 reversed, we see that the classes Œ�� and Œ�0�
satisfy

Œ��D ŒB� or Œ��D ŒB�C Œd �;

and
Œ�0�D ŒB0� or Œ�0�D ŒB0�C Œd �:

Since also ŒB�D ŒB0�, it follows that either Œ��D Œ�0� or Œ��D Œ�0�C Œd � in H2.M; †0IZ=2/ for †0 the
surface obtained from applying the construction (twice) to †.

In the first case, Œ��D Œ�0�, the proof of (ii) is completed by appealing to (i), which says that ‚A.�/D

‚A.�
0/, since both� and�0 have w1.†

0/ trivial on the boundary. In the second case, Œ��D Œ�0�C Œd �, we
also appeal to (i), but now for the pair of surfaces � and �0[ d . So we have that ‚A.�/D‚A.�

0[ d/.
It follows directly from the definition that ‚A.�

0 [ d/D‚A.�
0/. This completes the proof of (ii). In

particular, we have proved that ‚A.B;D/ does not depend on the choice of arc D.

The proof of (iii) is similar. Suppose we have an immersed annulus B in M as in the statement of (ii), as
well as an immersed compact surface S in M as in the statement of (i). Choose an embedded arc D �B

connecting the boundary components. Assume that ŒS � D ŒB� 2 H2.M; †IZ=2/. Apply the previous
construction to B, yielding a disc � which, by Claim 7.11, satisfies either Œ��D ŒS � or Œ��D ŒS �C Œd �
in the group H2.M; †0IZ=2/ for the surface †0 obtained from applying the construction to †. Further,
we know that ‚A.B;D/D‚A.�/. Now, in the first case, the proof is completed by appealing to (ii),
which says that ‚A.�/ D ‚A.S/. In the second case, apply (ii) to the pair � and S [ d , to see that
‚A.�/D‚A.S [ d/. It follows directly from the definition that ‚A.S [ d/D‚A.S/.

It remains to prove (iv). Let B denote an element of B.F /. First note that only the term j@B t Aj

of ‚A.B/ depends on the Whitney arcs A. Let A0 denote another collection of Whitney arcs. The
quantities ‚A.B/ and ‚A0.B/ differ by j@B tAjC j@B tA0j, regardless of whether † is orientable or
nonorientable.

Case 1 The collections of Whitney arcs A and A0 correspond to the same choice of pairing up of the
double points of F.

For each pair of double points, we can pick Whitney discs W1 and W2 with boundary in A and A0,
respectively. By adding small strips to the union of W1 and W2 in the neighbourhood of the double points,
we can see that the difference of A and A0 is the boundary of some collection of bands B0. For more
details about this construction, see the upcoming proof of Theorem 1.6. Then we have

j@B tAjC j@B tA0j D j@B t .A[A0/j D j@B t @B0j D �†.@B; @B0/ mod 2;

which vanishes by assumption.

Case 2 The collections of Whitney arcs A and A0 correspond to a different pairing up of the double
points of F.
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W1 W2

V1

V2p1 p2 q1
q2 p1 q2

Figure 17: Left: the Whitney discs W1, W2 and V1, pairing up double points as .p1;p2/, .q1;p2/

and .q1; q2/, respectively. Right: the Whitney disc V2 pairing up .p1; q2/ is obtained as a union
of W1, W2 and V1, by adding small bands at the points p2 and q1 to resolve the singularities, and
pushing the interiors of the bands into the complement of F. Compare with [Stong 1994, Figure 2].

From A we can construct Whitney arcs A00 so that A0 and A00 correspond to the same pairing up of double
points, as in Figure 17. Here are the details. We will define the family A00 iteratively, starting with A. Let
p1, p2, q1 and q2 be double points of F. Suppose that arcs in A pair up p1 and p2, as well as q1 and q2,
while arcs in A0 pair up p2 and q1. Pick Whitney discs W1 and W2 with boundary in A. Let V1 be a
Whitney disc for the points p2 and q1 with boundary away from A. Then, as indicated in Figure 17, we
may choose Whitney arcs, away from the other arcs in A, so that p2 and q1 are also paired by a Whitney
disc V2, obtained as a union of W1, W2 and V1. Modify the family A by removing @W1 and @W2, and
adding in @V1 and @V2. Comparing this new family with A0, we see that we have reduced the number of
mismatches in the pairing up of double points of F. Iterate this process and call the result A00.

Looking more closely at the construction in the previous paragraph, observe that, at each step, the family
of arcs changes by adding in two parallel copies of the boundary of a Whitney disc V1. Since intersection
points are counted modulo 2, ‚A and ‚A00 are equal. By Case 1, we know that ‚A0 and ‚A00 are equal
when restricted to B.F /. Thus, ‚A and ‚A0 are equal when restricted to B.F /, as needed.

8 Proof of Theorems 1.6 and 1.9

First we prove Theorem 1.9 from the introduction, which shows that, for b–characteristic surfaces,
t.F;W/ 2 Z=2 is well defined, ie independent of the Whitney discs W. Note that the theorem has no
assumption about the existence of algebraically dual spheres.

Theorem 1.9 Let F W .†; @†/# .M; @M / be as in Convention 1.1 with �.F / D 0. Let W be a
convenient collection of Whitney discs for the double points of F. Then F is b–characteristic if and only
if , for every F 0 regularly homotopic to F and convenient collection W0 for the double points of F 0, we
have t.F;W/D t.F 0;W0/.

For b–characteristic F, we denote the resulting regular homotopy invariant by t.F / 2 Z=2. Then , if
km.F /D 0 — eg if F is an embedding — then t.F /D 0.

Proof The final sentence, that km.F / D 0 implies t.F / D 0 for b–characteristic F, is an immediate
consequence of the definitions.
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Figure 18: Within † we see the preimages p˙1 and p˙2 , for the double points p1 and p2 of F,
respectively. Blue denotes the Whitney arcs for W1 while red denotes the Whitney arcs for the new
disc V1. On the left, the choice of sheets stays the same, while it changes on the right. Compare
with [Stong 1994, Figure 3].

Now suppose that F is not b–characteristic. Then, by Lemma 5.11, we can assume that �†j@B.F / is trivial,
which implies that the function‚ is well defined on B.F /. Since we assume that F is not b–characteristic,
there exists B 2B.F / such that ‚.B/D 1, so we can apply Construction 7.2 and Lemma 7.3 to find F 0

regularly homotopic to F, and a convenient collection of Whitney discs W0 for the double points of F 0

with t.F;W/¤ t.F 0;W0/.

If F is b–characteristic, by definition �†j@B.F / is trivial and ‚ is trivial on B.F /. As indicated above,
the function ‚, as well as which classes of H2.M; †IZ=2/ can be represented by bands, only depends on
the immersion F up to regular homotopy. We need to show that t.F;W/ does not depend on the choice of
pairing of the double points, the choice of Whitney arcs, nor the choice of Whitney discs; see Figure 18.
Let W be a given initial choice of convenient collection of Whitney discs for the double points of F. Let
A be the corresponding collection of Whitney arcs for the double points of F.

The remainder of the proof is similar to [Stong 1994, pages 1311–1313; Freedman and Quinn 1990,
Section 10.8A]. We will work with weak collections of framed Whitney discs and the alternative count
talt 2 Z=2, as in Definitions 7.4 and 7.5. So the boundaries of our collections of Whitney discs might not
be disjointly embedded, but the Whitney discs will be framed (as can always be arranged by boundary
twisting). We will show that talt.F;W/ does not depend on the choice of weak collection of Whitney
discs W, and then use that talt.F;W/D t.F;W/ for W a convenient collection (Lemma 7.6).

Claim 8.1 Suppose we are given a weak collection of Whitney discs W corresponding to some choice of
pairing up of double points of F ; then , for any other choice of pairing , there exists a weak collection of
Whitney discs V for that choice such that talt.V/D talt.W/.

Proof Let p1, p2, q1 and q2 be double points of F. Suppose that, in the initial choice of data, p1 and p2

are paired by a Whitney disc W1 2W, and q1 and q2 by a Whitney disc W2 2W. Suppose we instead pair
up p1 and q2 by some Whitney disc V1. Then, as indicated in Figure 17, p2 and q1 are also paired by
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Figure 19: Left: two sheets of the surface † and two Whitney discs Wi and Vi between the same
pair of double points. The disc Wi is assumed to be framed, embedded, have interior disjoint
from F and the Whitney discs Ui�1 n fWig, and @Wi disjoint from Ai . One of its Whitney arcs ai

is also labelled. The blue strip to the right of ai is an extension of Wi beyond its boundary, which
is part of the data for the Whitney move. Right: the result of the Whitney move. The strip and the
disc Vi from the previous panel have formed a band B (blue).

a Whitney disc V2, obtained as a union of W1, W2 and V1. Then .W n fW1;W2g/[fV1;V2g is a weak
collection of framed Whitney discs. The contribution of V1 and V2 to talt

�
F; .Wn fW1;W2g/[fV1;V2g

�
counts the intersections of F with each disc W1 and W2 once, while it counts the intersections of F with
the disc V1 twice. Each intersection of @V1 with A n .@W1 [ @W2/ can be paired with an intersection
of @V2 with A n .@W1[ @W2/. Each intersection of @V1 with @W1[ @W2 gives rise to two contributions
to talt: an intersection of @V2 with @V1 and a self-intersection of @V2. Since intersections are counted
mod 2 in the definition of talt, we see that

talt
�
F; .W n fW1;W2g/[fV1;V2g

�
D talt.F;W/ 2 Z=2;

as needed. Iterate this process to complete the proof of Claim 8.1.

Continuing with the proof of Theorem 1.9, next we check that talt is independent of the choice of Whitney
discs. This includes potentially changing the Whitney arcs and the choice of sheets at each double point.
Suppose we are given another weak collection of framed Whitney discs V for the double points of F. By
applying Claim 8.1, we may assume that V corresponds to the same pairing of double points of F as W.
Assume the collections are indexed so that Wl 2W and Vl 2 V correspond to the same pair of double
points. For each i , define the weak collection of Whitney discs

Ui WD fV1;V2; : : : ;Vi ;WiC1;WiC2 : : : ;WN g;

where U0 DW and UN D V. We will show that talt.F;Ui�1/D talt.F;Ui/ 2 Z=2 for each i . Let Ai

denote the collection of Whitney arcs for Ui . First we prove a special case.

Claim 8.2 Suppose the Whitney disc Wi is framed , embedded , with interior disjoint from F and the
Whitney discs Ui�1nfWig, and with @Wi disjoint from Ai , other than the endpoints. Then talt.F;Ui�1/D

talt.F;Ui/ 2 Z=2.

Proof A neighbourhood of Wi is depicted in Figure 19. Note that the two arcs of @Vi lie in Ai and thus,
by hypothesis, only intersect the arcs in @Wi at the endpoints. As described in the figure, we wish to
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perform the Whitney move using Wi pushing towards the Whitney arc ai for Wi . Observe that the union
of Vi with a strip, corresponding to the unit outward-pointing normal vector field of ai � @Wi , is either
an annulus or a Möbius band; this requires a small isotopy of Vi to ensure that the chosen vector field
of ai is compatible with the Whitney arcs of Vi , as shown in Figure 19. Denote the union of Vi and the
strip by B.

We show that B 2B.F /. For this we need to check that condition (5-1) holds. From Figure 19, right, one
sees that @B is homotopic in † to the union of @Vi and @Wi . The core C of B is given by the union of ai

and either of the Whitney arcs of Vi . The Whitney arcs must induce opposite signs at the two double points,
as explained in Definition 2.27. The orientation conditions in the latter definition imply that the condition
in (5-1) holds, as we explain next. Let p1 and p2 denote the double points paired by Wi (and Vi). Let ai

and bi denote the Whitney arcs of Wi , and let ci and di denote those of Vi . Begin by fixing local orientations
of M and both sheets of† at p1, so that the first agrees with the one determined by the latter two. Transport
the local orientations of † to p2 via the Whitney arcs of Wi and form the induced local orientation of M

at p2. By Definition 2.27, this does not agree with the local orientation of M at p2 determined by the one
at p1 by transporting along ai . Continuing with the local orientations at p2 determined in the previous
step, transport the local orientations of † back to p1, this time along the Whitney arcs of Vi . Again by
Definition 2.27, the resulting induced local orientation of M at p1 agrees with the local orientation of M

transported to p1 along ci . In this circuit, we have constructed a new set of local orientations of M and
the two sheets of † at p1. Compared to the initial choice, the local orientation induced by the sheets of †
has changed by hw1.†/; ai[bi[ci[dii D hw1.†/; @Vi[@Wii. On the other hand, the local orientation
of M transported along ai [ ci has changed by hw1.M /; ai [ cii D hw1.M /;C i, where C is the core
of B from above. Since the two orientations must agree, we have hw1.†/; @Vi [ @Wii D hw1.M /;C i,
as needed.

For the band B as above, performing a finger move as in Construction 7.2 creates Wi as the standard
Whitney disc, and Vi as the new Whitney disc arising from the band. Here we used the fact that @Wi

and @Vi only intersect at the endpoints. Since F is b–characteristic, the disc Vi has trivial contribution
to talt.F;Ui/ by Lemma 7.3. So does Wi to talt.F;Ui�1/ since, by hypothesis, @Wi is framed, embedded,
and disjoint from Ai�1nfai ; big�Ai , and the interior of Wi is disjoint from F. Therefore, talt.F;Ui�1/D

talt.F;Ui/ 2 Z=2, as asserted.

Now we prove the general case. Denote the double points paired by Wi by p1 and p2. By a small isotopy,
assume that, other than p1 and p2, the arcs of @Wi intersect the arcs in Ai in isolated double points
in the interiors. By performing a suitable finger move near p2, split Wi into new Whitney discs W 0i
and U1, creating two new double points q1 and q2 in the process, paired by a standard trivial Whitney
disc U2, where U1 satisfies the conditions of Claim 8.2. We choose both the base and tip of the finger
arc to be closer to p2 than any intersections of @Wi with arcs in Ai , as well as any self-intersections
of @Wi . See Figure 20. By construction, the points p1 and q1 are paired by W 0i , and the points q2 and p2

are paired by U1. Here U1 is framed, embedded, has interior disjoint from F and the Whitney discs
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p1 Wi p2 p1
W 0

i p2

q1 q2

U2

U1

@Vi

Figure 20: Splitting a Whitney disc Wi into two Whitney discs. One of the new Whitney discs,
U1, pairing p2 and q2, satisfies the hypotheses of Claim 8.2. The other Whitney disc W 0

i intersects
whatever Wi intersected. The trivial Whitney disc U2 pairing the new double points q1 and q2 is
shown in grey. Note that @Wi may intersect @Vi , or more generally other arcs in Ai , or itself.

Ui�1 n fWig. In addition, @U1 is disjoint from Ai , other than at p2, and is disjoint from @W 0i . These
conditions will shortly allow us to apply Claim 8.2 to U1.

Let F 0 denote the result of performing the finger move above to F . Note that

(8-1) talt.F;Ui�1/D talt
�
F 0; .Ui�1 n fWig/[fW

0
i ;U1g

�
by construction. Let V 0i denote the Whitney disc obtained as the union of Vi , W 0i and U2, as in Figure 17.
Observe that the Whitney discs U1 and V 0i pair the same double points, namely q2 and p2. Consider
the two collections of Whitney discs .Ui�1 n fWig/[ fW

0
i ;U1g and .Ui�1 n fWig/[ fW

0
i ;V

0
i g for the

double points of F 0. The two collections differ only in that one contains the disc U1 and the other the
disc V 0i . We will apply Claim 8.2 to change between the two collections. This is permitted since U1 is
framed, embedded, has interior disjoint from F 0 and the Whitney discs .Ui�1 n fWig/[fW

0
i g, and @U1

is disjoint, other than at the endpoints, from the Whitney arcs of .Ui�1 n fWig/[ fW
0

i ;V
0

i g, given by
Ai [ @W

0
i [ @U2.

So, by Claim 8.2,

(8-2) talt
�
F 0; .Ui�1 n fWig/[fW

0
i ;U1g

�
D talt

�
F 0; .Ui�1 n fWig/[fW

0
i ;V

0
i g
�
:

By the proof of Claim 8.1 (see Figure 17),

(8-3) talt
�
F 0; .Ui�1 n fWig/[fW

0
i ;V

0
i g
�
D talt

�
F 0; .Ui�1 n fWig/[fU2;Vig

�
:

Since U2 is trivial, we can use it to undo the Whitney move, and obtain

(8-4) talt
�
F 0; .Ui�1 n fWig/[fU2;Vig

�
D talt

�
F; .Ui�1 n fWig/[fVig

�
D talt.F;Ui/:

The combination of (8-1), (8-2), (8-3) and (8-4) implies talt.F;Ui�1/D talt.F;Ui/. This completes the
proof that talt is independent of the choices of Whitney discs, and therefore completes the proof that talt is
well defined.

Finally, by Lemma 7.6, we know that talt.F;W/D t.F;W/ for W a convenient collection, so t is well
defined for convenient collections W, as desired.
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Next we recall the statement of Theorem 1.6 for the convenience of the reader.

Theorem 1.6 Let F W .†; @†/# .M; @M / be as in Convention 1.1. Suppose that �.F /D 0 and that F

has algebraically dual spheres. If F is not b–characteristic , then km.F /D 0. If F is b–characteristic ,
then the secondary embedding obstruction satisfies

km.F /D t.F ;W / 2 Z=2

for every convenient collection of Whitney discs W pairing all the double points of F .

Proof First we show that, if F is not b–characteristic then km.F /D 0. By Lemma 5.11, we reduce to
the case that �† j@B.F / is trivial, which implies that the function ‚ is well defined on B.F /. Since
we assumed that F is not b–characteristic, there exists B 2 B.F / such that ‚.B/ D 1, so we can
apply Construction 7.2 and Lemma 7.3 to find a collection of Whitney discs W for the double points
of F with t.F ;W /D 0. Then, by Lemma 5.4, we know that km.F /D 0.

By Theorem 1.9, if F is b–characteristic, then t.F ;W / is well defined, ie is independent of W . As
in Theorem 1.9, we denote the resulting invariant t.F /. We need to show that km.F /D t.F /.

Recall that b–characteristic implies r–characteristic by Lemma 5.18, and also r–characteristic implies
s–characteristic by Remark 5.6. Therefore Lemma 5.4 applies, which says that, if t.F /D t.F ;W /D 0,
then km.F /D 0. On the other hand, if km.F /D 0, then after a regular homotopy the double points of F

can be paired up by a convenient collection of Whitney discs with interiors disjoint from F. Using these
Whitney discs to calculate t.F /, and regular homotopy invariance of t from Theorem 1.9, it follows that
t.F /D 0.

Thus we have shown that, for F b–characteristic and F with algebraically dual spheres, km.F /D 0 if
and only if t.F /D 0 or, equivalently, km.F /D t.F / 2 Z=2, as desired.

9 Examples and applications

Proposition 9.1 Let F W .†; @†/# .M; @M / be as in Convention 1.1 and assume that �.F /D 0. If
there are two orientation-preserving immersed loops in † that intersect transversely in an odd number of
points and are null-homotopic in M, then F is not b–characteristic.

Proof The two immersed loops in † from the assumption bound immersed discs in M. These discs give
classes in B.F / by Construction 5.10 and, by assumption, �†jB.F / is nontrivial. It follows by definition
that F is not b–characteristic.

This applies to every simply connected target M whenever † has a component of positive genus.
Proposition 9.1 also implies Corollaries 1.7 and 1.8, whose statements we recall, as follows.

Geometry & Topology, Volume 28 (2024)



Embedding surfaces in 4–manifolds 2473

Corollary 1.7 If M is a simply connected 4–manifold and † is a connected , oriented surface with
positive genus , then any generic immersion F W .†; @†/# .M; @M / with vanishing self-intersection
number is not b–characteristic. Thus , if F has an algebraically dual sphere , then km.F /D 0, and , since
�1.M / is good , the map F is regularly homotopic , relative to @†, to an embedding.

Proof As �1.M / is trivial and † has positive genus, F is not b–characteristic by Proposition 9.1. By
Theorem 1.6, it follows that km.F /D 0 if F has an algebraically dual sphere. In this case F is regularly
homotopic, relative to @†, to an embedding, by Theorem 1.2. The theorem applies because �1.M / is
good.

Corollary 1.8 Let F W .†; @†/# .M; @M / be as in Convention 1.1, with �.F /D 0 and † connected.
If F 0 is obtained from F by an ambient connected sum with an embedding S1�S1 ,! S4, then F 0 is not
b–characteristic. Thus , if F has an algebraically dual sphere , then km.F 0/D 0, and , if �1.M / is good ,
then F 0 is regularly homotopic , relative to @†, to an embedding.

Proof Since F 0 is obtained from F by an ambient connected sum with an embedding S1�S1 ,!S4, we
can apply Proposition 9.1 to see that F 0 is not b–characteristic. By Theorem 1.6, it follows that km.F 0/D0

if F has an algebraically dual sphere, as this sphere remains algebraically dual to F 0. If in addition �1.M /

is good, then, by Theorem 1.2, F is regularly homotopic, relative to @†, to an embedding.

Example 9.2 To illustrate the difference between r–characteristic and b–characteristic surfaces, we give
an example of a surface that is r–characteristic but not b–characteristic. Consider any r–characteristic
immersed sphere with trivial self-intersection number. Add a single trivial tube to obtain an immersed
torus. As this will not change the intersection number with any closed surface, the new torus is still
r–characteristic. But it fails to be b–characteristic by Corollary 1.8.

Example 9.3 We explain next why our methods allow us to obtain embeddings where [Freedman
and Quinn 1990, Theorem 10.5A(1)] would not produce them (see the discussion directly following
Theorem 1.2).

Let f WS2#M be a generic immersion in a 4–manifold with �1.M / good, equipped with an algebraically
dual sphere and with km.f /D 1, for example a sphere representing a generator of H2.�CP2/. Other such
spheres may be constructed as in [Kasprowski et al. 2021a, Theorem 2]. Let T be a generic immersion of
a torus produced by adding a trivial tube to f, ie by taking the ambient connected sum of f with the
standard embedding S1�S1 ,! S4. Then by Corollary 1.8 we see that km.T /D 0. Thus T is regularly
homotopic to an embedding since �1.M / is good. Fix a 1–skeleton †0 for S1 � S1. Then T is not
regularly homotopic to an embedding relative to †0, since the Kervaire–Milnor invariant for f restricted
to the 2–cell(s) .S1 �S1/ n �†0 considered as a map to M nT .�†0/ equals km.f /D 1.

We emphasise that this holds for every choice of 1–skeleton †0 � S1�S1. In order to apply the strategy
of [Freedman and Quinn 1990, Theorem 10.5A(1)] to find an embedding, one needs to first make a
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judicious choice of finger moves. But, without our theory, there is no clear strategy for finding these
finger moves. To obtain an embedding obstruction in this way, matters are worse, since one would need
to compute the Kervaire–Milnor invariant of the 2–skeleton for every choice of finger moves and for
every choice of 1–skeleton.

Example 9.4 We construct an immersed torus with nontrivial Kervaire–Milnor invariant. In contrast to
Proposition 9.1, the torus in this example is not �1–trivial. Consider an immersion f1 of a 2–sphere in
�CP2 representing a generator of H2.�CP2

IZ/ with trivial self-intersection number. Let K W S1 ,! S3

be an arbitrary knot and consider the embedding of a torus given by the product f2 WDK�Id WS1�S1 ,!

S3 �S1. Let F denote the interior connected sum f1 #f2 W S
1 �S1#W WD �CP2 # .S3 �S1/.

First we claim that F is b–characteristic. To see this, we start by computing H2.W;S1�S1IZ=2/ using
the long exact sequence of the pair with Z=2 coefficients:

H2.S
1 �S1/ H2.W / H2.W;S1 �S1/ H1.S

1 �S1/ H1.W /

Z=2˚Z=2 Z=2

0

Š Š

Therefore, H2.W;S1 �S1IZ=2/Š Z=2 is generated by S � fpg, where S � S3 is a Seifert surface for
the knot K.S1/ and p 2 S1. The intersection form of S1�S1 restricted to @S is trivial. Since ‚ is well
defined on homology classes we can compute it using S. But S has interior disjoint from the image of F,
embedded boundary and trivial relative Euler number, so ‚.S/D 0. If follows that ‚ vanishes on all
of H2.W;S1 �S1IZ=2/, in particular it vanishes on the subset B.F /. Thus F is b–characteristic, as
claimed.

Observe that km.f1/D 1 inside �CP2 (see eg [Freedman and Quinn 1990, Section 10.8]). We can pick
a convenient collection of Whitney discs for f1 in �CP2. Since f2 is an embedding, these constitute a
convenient collection of Whitney discs for F. It follows that km.F /D km.f1/D 1. Note that the choice
of knot K was irrelevant, since, for any two choices, the resulting immersions F are regularly homotopic
and hence have equal Kervaire–Milnor invariant.

Example 9.5 In the previous example we constructed a generically immersed torus in �CP2 #.S1�S3/

with nontrivial Kervaire–Milnor invariant. In particular, this torus is not homotopic to an embedding
(see Section 1.4). Now we show that, in contrast to this, every map f from a closed surface † to
S1 �S3 is homotopic to an embedding. Note that these classes do not have algebraically dual spheres
since �2.S

1 � S3/ D 0. The surfaces in the regular homotopy class with �.f /1 D 0 are either not
b–characteristic or t.f / vanishes.

Since the projection S1�S3! S1 is 3–connected, the induced map Œ†;S1�S3�! Œ†;S1� is bijective.
In particular, the homotopy class of a map f W † ! S1 � S3 is determined by the induced map on
fundamental groups.
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We first consider the case that † is connected. Since �1.S
1 �S3/ Š Z, we can find a generating set

for �1.†/ such that at most one generator is nontrivial in �1.S
1�S3/. Thus there exists a decomposition

†DH #†0, where H is either a sphere, a torus or a Klein bottle, with respect to which f can be written
as an internal connected sum T # f 0, where T is a map on H and f 0 is �1–trivial. In particular, f 0 is
homotopic to an embedding inside a ball D4 � S1 �S3. It remains to show that T is homotopic to an
embedding, which will show that the connected sum is homotopic to an embedding.

If H is a sphere, we are done. If H is a torus, let i W S1 �S1 ,! S3 be an embedding. For each k 2 Z,
define the embedding h0

k
W S1 �S1! S1 � .S1 �S1/ by .s; t/ 7! .sk ; .s; t//. Let hk WD .Id�i/ ı h0

k
.

There exists some k and some identification of H with S1�S1 such that T and hk induce the same map
on fundamental groups and thus are homotopic. If H is a Klein bottle, let p WH ! S1 be a fibre bundle
with fibre S1. For each k 2 Z, there exists an immersion i WH # S3 such that hk.x/ WD .p.x/

k ; i.x//

is an embedding H ,! S1 �S3. As before, there exists some k such that T and hk are homotopic.

The above embeddings can be realised as embeddings into S1�D3�S1�S3. The argument generalises
to disconnected surfaces by picking disjoint copies of S1�D3 in S1�S3 for each connected component.

Next we prove Proposition 1.10 and Corollary 1.11, which we restate for the convenience of the reader.

Proposition 1.10 Let M1 and M2 be oriented 4–manifolds. Let F1 W .†1; @†1/# .M1; @M1/ and
F2 W .†2; @†2/# .M2; @M2/ be generic immersions of connected , compact , oriented surfaces , each
with vanishing self-intersection number. If Fi is b–characteristic for each i , then both the disjoint union

F1 tF2 W†1 t†2#M1 # M2

and any interior connected sum
F1 # F2 W†1 #†2#M1 # M2

are b–characteristic , and satisfy

t.F1 tF2/D t.F1 # F2/D t.F1/C t.F2/:

Proof The vanishing of the self-intersection number of Fi is witnessed by a convenient collection of
Whitney discs Wi in Mi for each i . The union W1 tW2, now considered in M1 # M2, shows that the
intersection and self-intersection numbers of F1 tF2, as well as for F1 # F2, vanish in M1 # M2. Since
the union W1 tW2 pairs all the double points of F1 tF2 (resp. F1 # F2), and since components of Wi

cannot intersect Fj .†j / for all i ¤ j, the claimed relationship t.F1tF2/D t.F1 # F2/D t.F1/C t.F2/

holds as long as F1 tF2 and F # F2 are b–characteristic.

As a preliminary step, note that neither Fi has a framed dual sphere in Mi , since otherwise it would not
be s–characteristic, and therefore not b–characteristic by Lemma 5.18. As a result, †i D†i for i D 1; 2.

Next we consider the immersion F1 t F2 W .†1 t†2; @†1 t @†2/# M1 # M2. Let S � M1 # M2

denote a connected sum 3–sphere. Consider a band ŒB� 2 H2.M1 # M2; †1 t†2/. By (topological)
transversality, we can assume that B is immersed, the double points of B are disjoint from S, and the
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intersection B \ S corresponds to an embedded 1–manifold in the interior of the domain of B, since
@B �†1t†2 � .M1 #M2/nS. The image of this 1–manifold in S is embedded and bounds a collection
of immersed (perhaps intersecting) discs in S. Surger B using two copies each of these discs to produce
B1 �M1 and B2 �M2, where each Bi is an immersed collection of surfaces with @Bi �†i .

Each component of Bi can be replaced by a band as follows. Recall that since each Mi and †i is
oriented, there is no condition on Stiefel–Whitney classes for bands, and we need only arrange that each
component is either a Möbius band or an annulus. By considering the Euler characteristic, we see that
each component is homeomorphic to either a sphere, an RP2, a disc, a Möbius band or an annulus. Then
use the tubing procedure from Construction 5.10 to replace each sphere, RP2 or disc component by a
band. More precisely, choose a small disc on †1 or †2, as appropriate, away from all Whitney arcs and
double points, and tube into the disc, sphere or RP2.

Since each Fi is b–characteristic, �†1
j@B.Fi / is trivial for each i . Therefore, �†1t†2

is trivial on
@B D @B1 [ @B2. It follows by Lemma 5.16(iv) that ‚ W B.F1 t F2/ ! Z=2 is well defined. By
Lemma 7.8, ‚ extends to a linear map hB.F1 tF2/i ! Z=2 on the subspace

hB.F1 tF2/i �H2.M1 # M2; †1 t†2IZ=2/

generated by the bands. Then, since ŒB1 [ B2� D ŒB� 2 H2.M1 # M2; †1 t †2IZ=2/, we see that
‚.B/D‚.B1/C‚.B2/.

For each i , the value of ‚.Bi/ does not depend on whether the ambient manifold is Mi or M1 # M2,
since Bi does not intersect Fj .†j / for all i ¤ j (see Definition 5.12). Since each Fi is b–characteristic,
‚.B/D‚.B1/C‚.B2/D 0C 0D 0 2 Z=2. This completes the proof that F1 tF2 is b–characteristic.

Now we consider the connected sum F1 # F2. Let B 2H2.M1 # M2; †1 #†2/ be a band. As above, we
assume that the intersection B \S corresponds to an embedded 1–manifold in the domain of B. Unlike
above, this may include embedded arcs with endpoints on the boundary. These endpoints are mapped to
the intersection .F1 #F2/.†1 #†2/\S. By connecting the endpoints with arcs on .F1 #F2/.†1 #†2/\S,
we again get a collection of closed circles in S, which bound an immersed collection of discs in S.
Surger using these discs as before to produce collections Bi �Mi . Once again, each component of Bi is
homeomorphic to either a sphere, an RP2, a disc, a Möbius band or an annulus. By Construction 5.10
applied to the sphere, RP2 and disc components, we may arrange that each component is a band. The
argument of the previous paragraph now applies to show that F1 # F2 is b–characteristic.

Corollary 1.11 For any g, there exists a smooth , closed 4–manifold Mg, a closed , connected , oriented
surface †g of genus g, and a smooth , b–characteristic , generic immersion F W†g#Mg with t.F /¤ 0

and therefore km.F /¤ 0.

Proof By the same proof as in Example 9.4, for any knot K the product T WDK�Id WS1�S1!S3�S1

is an embedded b–characteristic torus. Since T is an embedding, t.T /D 0. A computation using the
intersection form shows that a generic immersion S W S2!CP2 representing three times a generator of
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H2.CP2
IZ/ is s–characteristic. Since �1.CP2/ has no 2–torsion, the map S is also r–characteristic

and thus b–characteristic by Lemma 5.18. We will show that km.S/D 1. This was the original example
of Kervaire and Milnor [1961]. To see that km.S/ D 1, represent S in the following way. Take a
cuspidal cubic, which is a smooth embedding of a 2–sphere away from a single singular point. In a
neighbourhood of the singular point we see a cone on the trefoil. Replace a neighbourhood of the
singular point with an immersed disc � in D4 with boundary the trefoil, and two double points that
are paired by a framed Whitney disc that intersects � once. Alternatively, we can compute t.S/ as
1
8
.�.CP2/ � S � S/ D 1

8
.1 � 9/ � 1 mod 2; see Section 3. This gives us the case g D 0. Next, by

Proposition 1.10, for every g 2N,

S # #g
T W†g!CP2 # #g

.S3
�S1/

is a b–characteristic generic immersion of a closed surface of genus g with nontrivial t , and there-
fore km

�
S # #g

T
�
¤ 0. In particular, S # #g

T is not regularly homotopic to an embedding. Note
these examples are smooth, but have no algebraically dual sphere. We could replace .CP2;S/ with�
CP2 # #8 CP2;S 0

�
, where S 0 is a generic immersion representing the class .3; 1; : : : ; 1/ 2 Z9 Š

H2

�
CP2 # #8 CP2

�
, to obtain an example with an algebraically dual sphere and km.S 0/D 1

8
.�7�1/�

1 mod 2.

Remark 9.6 Let M denote the infinite connected sum CP2 # #1.S3�S1/. The proof of Corollary 1.11,
along with the formula from Proposition 1.10, shows that, for every g, there exists a smooth generic
immersion F W†g#M with t.F /¤ 0 and therefore km.F /¤ 0. The following proposition shows that,
if there is such a compact 4–manifold M and such an F, then the 4–manifolds must have nonabelian
fundamental group. In other words, if there is an immersed surface in a 4–manifold with abelian
fundamental group with nontrivial km, then we give a bound on the complexity of that surface.

Proposition 9.7 Let M be a compact 4–manifold such that �1.M / is abelian with n generators. Let
F W†#M be a b–characteristic generic immersion , where † is a closed , connected surface. Then the
Euler characteristic satisfies �.†/� �2n.

Proof Suppose that �.†/ <�2n. Note that † can be written as a connected sum of a genus g orientable
surface †0 for some g > n with zero, one or two copies of RP2. There exists a surjection Zn� �1.M /.
Then the induced map H1.†

0/!H1.M /Š �1.M / admits a lift H1.†
0/! Zn, which has kernel of

rank at least 2g� n> g. So there exist closed curves 1 and 2 in †0 n VD2 �† that are null-homotopic
in M and �†.1; 2/� 1 mod 2. It follows that F is not b–characteristic.

Next we prove our corollaries on knot theory from Section 1.5.

Corollary 1.15 For every knot K � S3,

(1) gM .K/D 0 for every simply connected 4–manifold M not homeomorphic to one of S4, CP2 or
�CP2;
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(2) gCP2.K/� 1 and gCP2

�
#3

T .2; 3/
�
D 1; and

(3) g
�CP2.K/� 1 and g

�CP2

�
#2

T .2; 3/
�
D 1.

Proof Let K � S3 be an arbitrary knot and let M be an arbitrary closed, simply connected 4–manifold.
Let �0 be a generically immersed disc bounded by K in a collar S3 � Œ0; 1� of @M ı. Since M is simply
connected, every class in H2.M IZ/ Š �2.M / is represented by a generically immersed sphere. By
assumption, M is not homeomorphic to S4 and thus H2.M IZ/ is nontrivial. Since M is closed, every
primitive class ˛ 2H2.M IZ/ has an algebraic dual ˇ 2H2.M IZ/, ie �.˛; ˇ/D 1. Represent ˛ and ˇ
by generically immersed spheres, and tube the interior of �0 into ˇ to obtain �. Add local cusps to
arrange �.�/D 0.

First we prove (1). In this case we claim that in the construction of � we can choose the primitive class ˛
to satisfy �.˛; ˛/2 2Z, as we explain presently. Then the disc � constructed above is not r–characteristic,
since � � ˛ 6� ˛ � ˛ mod 2 (see Remark 5.6). By Theorem 5.7, this implies that km.�/D 0. Since the
disc � has the algebraically dual sphere ˛ and �1.M /D 1 is good, by Theorem 1.2, � is homotopic
rel boundary to an embedding. To see the claim regarding ˛, note that, when M © S4;CP2;�CP2,
the group H2.M IZ/ has rank at least 2 by the classification of closed, simply connected 4–manifolds
up to homeomorphism. Then H2.M IZ/ has a summand isomorphic to Z˚ Z, so the classes x, y

and xCy, for the generators x and y of the Z factors, are primitive, and at least one of �.x;x/, �.y;y/
or �.xCy;xCy/ is even.

In (2) and (3), we have M D CP2 or �CP2. The only primitive classes are ˙ŒCP1�, so we choose
˛ D ˇ D ŒCP1� in the construction of the first paragraph. We construct the disc � as before, but are no
longer able to conclude that it is r–characteristic. However, by Corollary 1.8, we know that the connected
sum of � with an unknotted torus is homotopic to an embedding. This completes the proof of the first
parts of (2) and (3).

Now we prove that gCP2

�
#3

T .2; 3/
�
D 1. Let K WD #3

T .2; 3/. Let gd

CP2.K/ denote the minimal
genus of a surface bounded by K in .CP2/ı in the homology class d 2 Z Š H2.CP2

IZ/. First we
consider d D˙1, where the class is b–characteristic (or equivalently, s–characteristic; see Lemma 5.18).
As before, construct the disc �0 � S3� Œ0; 1�, and tube into CP1 to obtain the disc �. We assume that �0

has trivial self-intersection number, so 1D Arf.K/D t.�0/ by [Matsumoto 1978; Freedman and Kirby
1978; Conant et al. 2014, Lemma 10]. Since CP1 is embedded disjointly from �0, t.�/D 1. Thus, by
Theorem 1.9, � is not homotopic to an embedding and so g˙1

CP2.K/¤ 0.

Next let �d .K/ WD �K .e
� i.d�1/=d /, where �K denotes the Levine–Tristram signature function of K. By

[Gilmer 1981; Viro 1975], for even d ,

2gd

CP2.K/C 1�
ˇ̌

1
2
d2
� 1� �.K/

ˇ̌
;
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while, if d is divisible by an odd prime p, then

2gd

CP2.K/C 1�

ˇ̌̌̌
p2� 1

2p2
d2
� 1� �d .K/

ˇ̌̌̌
:

In our case, �.K/D �d .K/D �6 for all d , and so gd

CP2.K/ � 1 for all d ¤˙1. This completes the
argument that gCP2.K/D 1.

Finally we show that g
�CP2

�
#2

T .2; 3/
�
D 1. Write K WD #2

T .2; 3/ and let gd

�CP2.K/ denote the
minimal genus of a surface bounded by K in .�CP2/ı in the homology class d 2H2.�CP2

IZ/. For
d D˙1, modify the argument above for the case of CP2, using that tubing into a sphere representing
a generator of H2.�CP2

IZ/ to obtain a disc �0 adds 1 to the t count, and so 1D 1CArf.K/D t.�0/.
Therefore, again by Theorem 1.9, g˙1

�CP2.K/¤ 0. Next, for �CP2, the same inequalities from [Gilmer
1981; Viro 1975] hold, and �.K/D �d .K/D�4 for all d . Therefore, applying the inequalities, we see
that gd

�CP2.K/� 1 for all d . It follows that g
�CP2.K/D 1, as asserted.

Corollary 1.16 For any knot K � S3, gsh
˙1
.K/D Arf.K/ 2 f0; 1g.

Proof A generator of H2.X˙1.K/IZ/ can be represented by a generically immersed sphere F which
is b–characteristic (or equivalently s–characteristic; see Lemma 5.18), has trivial �.F /, and has an
algebraically dual sphere. We also recall from [Matsumoto 1978; Freedman and Kirby 1978; Conant
et al. 2014, Lemma 10] that Arf.K/ coincides with the count t.F /. Then, by Theorems 1.6 and 1.9,
the sphere F is homotopic to an embedding if and only if Arf.K/ D 0. We have an embedded torus
representative for both generators by Corollary 1.8.
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